xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision efe4a1ac)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41 
42 #undef SCRAMBLE_DELAYED_REFS
43 
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59 	CHUNK_ALLOC_NO_FORCE = 0,
60 	CHUNK_ALLOC_LIMITED = 1,
61 	CHUNK_ALLOC_FORCE = 2,
62 };
63 
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 			      struct btrfs_fs_info *fs_info, u64 bytenr,
66 			      u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 			       struct btrfs_fs_info *fs_info,
69 				struct btrfs_delayed_ref_node *node, u64 parent,
70 				u64 root_objectid, u64 owner_objectid,
71 				u64 owner_offset, int refs_to_drop,
72 				struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 				    struct extent_buffer *leaf,
75 				    struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 				      struct btrfs_fs_info *fs_info,
78 				      u64 parent, u64 root_objectid,
79 				      u64 flags, u64 owner, u64 offset,
80 				      struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 				     struct btrfs_fs_info *fs_info,
83 				     u64 parent, u64 root_objectid,
84 				     u64 flags, struct btrfs_disk_key *key,
85 				     int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 			  struct btrfs_fs_info *fs_info, u64 flags,
88 			  int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 			 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 			    struct btrfs_space_info *info, u64 bytes,
93 			    int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 				    u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 				     u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 			       u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 				    struct btrfs_space_info *space_info,
102 				    u64 orig_bytes,
103 				    enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 				     struct btrfs_space_info *space_info,
106 				     u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 				     struct btrfs_space_info *space_info,
109 				     u64 num_bytes);
110 
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 	smp_mb();
115 	return cache->cached == BTRFS_CACHE_FINISHED ||
116 		cache->cached == BTRFS_CACHE_ERROR;
117 }
118 
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 	return (cache->flags & bits) == bits;
122 }
123 
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	atomic_inc(&cache->count);
127 }
128 
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	if (atomic_dec_and_test(&cache->count)) {
132 		WARN_ON(cache->pinned > 0);
133 		WARN_ON(cache->reserved > 0);
134 
135 		/*
136 		 * If not empty, someone is still holding mutex of
137 		 * full_stripe_lock, which can only be released by caller.
138 		 * And it will definitely cause use-after-free when caller
139 		 * tries to release full stripe lock.
140 		 *
141 		 * No better way to resolve, but only to warn.
142 		 */
143 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
144 		kfree(cache->free_space_ctl);
145 		kfree(cache);
146 	}
147 }
148 
149 /*
150  * this adds the block group to the fs_info rb tree for the block group
151  * cache
152  */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 				struct btrfs_block_group_cache *block_group)
155 {
156 	struct rb_node **p;
157 	struct rb_node *parent = NULL;
158 	struct btrfs_block_group_cache *cache;
159 
160 	spin_lock(&info->block_group_cache_lock);
161 	p = &info->block_group_cache_tree.rb_node;
162 
163 	while (*p) {
164 		parent = *p;
165 		cache = rb_entry(parent, struct btrfs_block_group_cache,
166 				 cache_node);
167 		if (block_group->key.objectid < cache->key.objectid) {
168 			p = &(*p)->rb_left;
169 		} else if (block_group->key.objectid > cache->key.objectid) {
170 			p = &(*p)->rb_right;
171 		} else {
172 			spin_unlock(&info->block_group_cache_lock);
173 			return -EEXIST;
174 		}
175 	}
176 
177 	rb_link_node(&block_group->cache_node, parent, p);
178 	rb_insert_color(&block_group->cache_node,
179 			&info->block_group_cache_tree);
180 
181 	if (info->first_logical_byte > block_group->key.objectid)
182 		info->first_logical_byte = block_group->key.objectid;
183 
184 	spin_unlock(&info->block_group_cache_lock);
185 
186 	return 0;
187 }
188 
189 /*
190  * This will return the block group at or after bytenr if contains is 0, else
191  * it will return the block group that contains the bytenr
192  */
193 static struct btrfs_block_group_cache *
194 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
195 			      int contains)
196 {
197 	struct btrfs_block_group_cache *cache, *ret = NULL;
198 	struct rb_node *n;
199 	u64 end, start;
200 
201 	spin_lock(&info->block_group_cache_lock);
202 	n = info->block_group_cache_tree.rb_node;
203 
204 	while (n) {
205 		cache = rb_entry(n, struct btrfs_block_group_cache,
206 				 cache_node);
207 		end = cache->key.objectid + cache->key.offset - 1;
208 		start = cache->key.objectid;
209 
210 		if (bytenr < start) {
211 			if (!contains && (!ret || start < ret->key.objectid))
212 				ret = cache;
213 			n = n->rb_left;
214 		} else if (bytenr > start) {
215 			if (contains && bytenr <= end) {
216 				ret = cache;
217 				break;
218 			}
219 			n = n->rb_right;
220 		} else {
221 			ret = cache;
222 			break;
223 		}
224 	}
225 	if (ret) {
226 		btrfs_get_block_group(ret);
227 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
228 			info->first_logical_byte = ret->key.objectid;
229 	}
230 	spin_unlock(&info->block_group_cache_lock);
231 
232 	return ret;
233 }
234 
235 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
236 			       u64 start, u64 num_bytes)
237 {
238 	u64 end = start + num_bytes - 1;
239 	set_extent_bits(&fs_info->freed_extents[0],
240 			start, end, EXTENT_UPTODATE);
241 	set_extent_bits(&fs_info->freed_extents[1],
242 			start, end, EXTENT_UPTODATE);
243 	return 0;
244 }
245 
246 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
247 				  struct btrfs_block_group_cache *cache)
248 {
249 	u64 start, end;
250 
251 	start = cache->key.objectid;
252 	end = start + cache->key.offset - 1;
253 
254 	clear_extent_bits(&fs_info->freed_extents[0],
255 			  start, end, EXTENT_UPTODATE);
256 	clear_extent_bits(&fs_info->freed_extents[1],
257 			  start, end, EXTENT_UPTODATE);
258 }
259 
260 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
261 				 struct btrfs_block_group_cache *cache)
262 {
263 	u64 bytenr;
264 	u64 *logical;
265 	int stripe_len;
266 	int i, nr, ret;
267 
268 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
269 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
270 		cache->bytes_super += stripe_len;
271 		ret = add_excluded_extent(fs_info, cache->key.objectid,
272 					  stripe_len);
273 		if (ret)
274 			return ret;
275 	}
276 
277 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
278 		bytenr = btrfs_sb_offset(i);
279 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
280 				       bytenr, 0, &logical, &nr, &stripe_len);
281 		if (ret)
282 			return ret;
283 
284 		while (nr--) {
285 			u64 start, len;
286 
287 			if (logical[nr] > cache->key.objectid +
288 			    cache->key.offset)
289 				continue;
290 
291 			if (logical[nr] + stripe_len <= cache->key.objectid)
292 				continue;
293 
294 			start = logical[nr];
295 			if (start < cache->key.objectid) {
296 				start = cache->key.objectid;
297 				len = (logical[nr] + stripe_len) - start;
298 			} else {
299 				len = min_t(u64, stripe_len,
300 					    cache->key.objectid +
301 					    cache->key.offset - start);
302 			}
303 
304 			cache->bytes_super += len;
305 			ret = add_excluded_extent(fs_info, start, len);
306 			if (ret) {
307 				kfree(logical);
308 				return ret;
309 			}
310 		}
311 
312 		kfree(logical);
313 	}
314 	return 0;
315 }
316 
317 static struct btrfs_caching_control *
318 get_caching_control(struct btrfs_block_group_cache *cache)
319 {
320 	struct btrfs_caching_control *ctl;
321 
322 	spin_lock(&cache->lock);
323 	if (!cache->caching_ctl) {
324 		spin_unlock(&cache->lock);
325 		return NULL;
326 	}
327 
328 	ctl = cache->caching_ctl;
329 	refcount_inc(&ctl->count);
330 	spin_unlock(&cache->lock);
331 	return ctl;
332 }
333 
334 static void put_caching_control(struct btrfs_caching_control *ctl)
335 {
336 	if (refcount_dec_and_test(&ctl->count))
337 		kfree(ctl);
338 }
339 
340 #ifdef CONFIG_BTRFS_DEBUG
341 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
342 {
343 	struct btrfs_fs_info *fs_info = block_group->fs_info;
344 	u64 start = block_group->key.objectid;
345 	u64 len = block_group->key.offset;
346 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
347 		fs_info->nodesize : fs_info->sectorsize;
348 	u64 step = chunk << 1;
349 
350 	while (len > chunk) {
351 		btrfs_remove_free_space(block_group, start, chunk);
352 		start += step;
353 		if (len < step)
354 			len = 0;
355 		else
356 			len -= step;
357 	}
358 }
359 #endif
360 
361 /*
362  * this is only called by cache_block_group, since we could have freed extents
363  * we need to check the pinned_extents for any extents that can't be used yet
364  * since their free space will be released as soon as the transaction commits.
365  */
366 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
367 		       struct btrfs_fs_info *info, u64 start, u64 end)
368 {
369 	u64 extent_start, extent_end, size, total_added = 0;
370 	int ret;
371 
372 	while (start < end) {
373 		ret = find_first_extent_bit(info->pinned_extents, start,
374 					    &extent_start, &extent_end,
375 					    EXTENT_DIRTY | EXTENT_UPTODATE,
376 					    NULL);
377 		if (ret)
378 			break;
379 
380 		if (extent_start <= start) {
381 			start = extent_end + 1;
382 		} else if (extent_start > start && extent_start < end) {
383 			size = extent_start - start;
384 			total_added += size;
385 			ret = btrfs_add_free_space(block_group, start,
386 						   size);
387 			BUG_ON(ret); /* -ENOMEM or logic error */
388 			start = extent_end + 1;
389 		} else {
390 			break;
391 		}
392 	}
393 
394 	if (start < end) {
395 		size = end - start;
396 		total_added += size;
397 		ret = btrfs_add_free_space(block_group, start, size);
398 		BUG_ON(ret); /* -ENOMEM or logic error */
399 	}
400 
401 	return total_added;
402 }
403 
404 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
405 {
406 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
407 	struct btrfs_fs_info *fs_info = block_group->fs_info;
408 	struct btrfs_root *extent_root = fs_info->extent_root;
409 	struct btrfs_path *path;
410 	struct extent_buffer *leaf;
411 	struct btrfs_key key;
412 	u64 total_found = 0;
413 	u64 last = 0;
414 	u32 nritems;
415 	int ret;
416 	bool wakeup = true;
417 
418 	path = btrfs_alloc_path();
419 	if (!path)
420 		return -ENOMEM;
421 
422 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423 
424 #ifdef CONFIG_BTRFS_DEBUG
425 	/*
426 	 * If we're fragmenting we don't want to make anybody think we can
427 	 * allocate from this block group until we've had a chance to fragment
428 	 * the free space.
429 	 */
430 	if (btrfs_should_fragment_free_space(block_group))
431 		wakeup = false;
432 #endif
433 	/*
434 	 * We don't want to deadlock with somebody trying to allocate a new
435 	 * extent for the extent root while also trying to search the extent
436 	 * root to add free space.  So we skip locking and search the commit
437 	 * root, since its read-only
438 	 */
439 	path->skip_locking = 1;
440 	path->search_commit_root = 1;
441 	path->reada = READA_FORWARD;
442 
443 	key.objectid = last;
444 	key.offset = 0;
445 	key.type = BTRFS_EXTENT_ITEM_KEY;
446 
447 next:
448 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
449 	if (ret < 0)
450 		goto out;
451 
452 	leaf = path->nodes[0];
453 	nritems = btrfs_header_nritems(leaf);
454 
455 	while (1) {
456 		if (btrfs_fs_closing(fs_info) > 1) {
457 			last = (u64)-1;
458 			break;
459 		}
460 
461 		if (path->slots[0] < nritems) {
462 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 		} else {
464 			ret = find_next_key(path, 0, &key);
465 			if (ret)
466 				break;
467 
468 			if (need_resched() ||
469 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
470 				if (wakeup)
471 					caching_ctl->progress = last;
472 				btrfs_release_path(path);
473 				up_read(&fs_info->commit_root_sem);
474 				mutex_unlock(&caching_ctl->mutex);
475 				cond_resched();
476 				mutex_lock(&caching_ctl->mutex);
477 				down_read(&fs_info->commit_root_sem);
478 				goto next;
479 			}
480 
481 			ret = btrfs_next_leaf(extent_root, path);
482 			if (ret < 0)
483 				goto out;
484 			if (ret)
485 				break;
486 			leaf = path->nodes[0];
487 			nritems = btrfs_header_nritems(leaf);
488 			continue;
489 		}
490 
491 		if (key.objectid < last) {
492 			key.objectid = last;
493 			key.offset = 0;
494 			key.type = BTRFS_EXTENT_ITEM_KEY;
495 
496 			if (wakeup)
497 				caching_ctl->progress = last;
498 			btrfs_release_path(path);
499 			goto next;
500 		}
501 
502 		if (key.objectid < block_group->key.objectid) {
503 			path->slots[0]++;
504 			continue;
505 		}
506 
507 		if (key.objectid >= block_group->key.objectid +
508 		    block_group->key.offset)
509 			break;
510 
511 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
512 		    key.type == BTRFS_METADATA_ITEM_KEY) {
513 			total_found += add_new_free_space(block_group,
514 							  fs_info, last,
515 							  key.objectid);
516 			if (key.type == BTRFS_METADATA_ITEM_KEY)
517 				last = key.objectid +
518 					fs_info->nodesize;
519 			else
520 				last = key.objectid + key.offset;
521 
522 			if (total_found > CACHING_CTL_WAKE_UP) {
523 				total_found = 0;
524 				if (wakeup)
525 					wake_up(&caching_ctl->wait);
526 			}
527 		}
528 		path->slots[0]++;
529 	}
530 	ret = 0;
531 
532 	total_found += add_new_free_space(block_group, fs_info, last,
533 					  block_group->key.objectid +
534 					  block_group->key.offset);
535 	caching_ctl->progress = (u64)-1;
536 
537 out:
538 	btrfs_free_path(path);
539 	return ret;
540 }
541 
542 static noinline void caching_thread(struct btrfs_work *work)
543 {
544 	struct btrfs_block_group_cache *block_group;
545 	struct btrfs_fs_info *fs_info;
546 	struct btrfs_caching_control *caching_ctl;
547 	struct btrfs_root *extent_root;
548 	int ret;
549 
550 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
551 	block_group = caching_ctl->block_group;
552 	fs_info = block_group->fs_info;
553 	extent_root = fs_info->extent_root;
554 
555 	mutex_lock(&caching_ctl->mutex);
556 	down_read(&fs_info->commit_root_sem);
557 
558 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
559 		ret = load_free_space_tree(caching_ctl);
560 	else
561 		ret = load_extent_tree_free(caching_ctl);
562 
563 	spin_lock(&block_group->lock);
564 	block_group->caching_ctl = NULL;
565 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
566 	spin_unlock(&block_group->lock);
567 
568 #ifdef CONFIG_BTRFS_DEBUG
569 	if (btrfs_should_fragment_free_space(block_group)) {
570 		u64 bytes_used;
571 
572 		spin_lock(&block_group->space_info->lock);
573 		spin_lock(&block_group->lock);
574 		bytes_used = block_group->key.offset -
575 			btrfs_block_group_used(&block_group->item);
576 		block_group->space_info->bytes_used += bytes_used >> 1;
577 		spin_unlock(&block_group->lock);
578 		spin_unlock(&block_group->space_info->lock);
579 		fragment_free_space(block_group);
580 	}
581 #endif
582 
583 	caching_ctl->progress = (u64)-1;
584 
585 	up_read(&fs_info->commit_root_sem);
586 	free_excluded_extents(fs_info, block_group);
587 	mutex_unlock(&caching_ctl->mutex);
588 
589 	wake_up(&caching_ctl->wait);
590 
591 	put_caching_control(caching_ctl);
592 	btrfs_put_block_group(block_group);
593 }
594 
595 static int cache_block_group(struct btrfs_block_group_cache *cache,
596 			     int load_cache_only)
597 {
598 	DEFINE_WAIT(wait);
599 	struct btrfs_fs_info *fs_info = cache->fs_info;
600 	struct btrfs_caching_control *caching_ctl;
601 	int ret = 0;
602 
603 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
604 	if (!caching_ctl)
605 		return -ENOMEM;
606 
607 	INIT_LIST_HEAD(&caching_ctl->list);
608 	mutex_init(&caching_ctl->mutex);
609 	init_waitqueue_head(&caching_ctl->wait);
610 	caching_ctl->block_group = cache;
611 	caching_ctl->progress = cache->key.objectid;
612 	refcount_set(&caching_ctl->count, 1);
613 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
614 			caching_thread, NULL, NULL);
615 
616 	spin_lock(&cache->lock);
617 	/*
618 	 * This should be a rare occasion, but this could happen I think in the
619 	 * case where one thread starts to load the space cache info, and then
620 	 * some other thread starts a transaction commit which tries to do an
621 	 * allocation while the other thread is still loading the space cache
622 	 * info.  The previous loop should have kept us from choosing this block
623 	 * group, but if we've moved to the state where we will wait on caching
624 	 * block groups we need to first check if we're doing a fast load here,
625 	 * so we can wait for it to finish, otherwise we could end up allocating
626 	 * from a block group who's cache gets evicted for one reason or
627 	 * another.
628 	 */
629 	while (cache->cached == BTRFS_CACHE_FAST) {
630 		struct btrfs_caching_control *ctl;
631 
632 		ctl = cache->caching_ctl;
633 		refcount_inc(&ctl->count);
634 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
635 		spin_unlock(&cache->lock);
636 
637 		schedule();
638 
639 		finish_wait(&ctl->wait, &wait);
640 		put_caching_control(ctl);
641 		spin_lock(&cache->lock);
642 	}
643 
644 	if (cache->cached != BTRFS_CACHE_NO) {
645 		spin_unlock(&cache->lock);
646 		kfree(caching_ctl);
647 		return 0;
648 	}
649 	WARN_ON(cache->caching_ctl);
650 	cache->caching_ctl = caching_ctl;
651 	cache->cached = BTRFS_CACHE_FAST;
652 	spin_unlock(&cache->lock);
653 
654 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
655 		mutex_lock(&caching_ctl->mutex);
656 		ret = load_free_space_cache(fs_info, cache);
657 
658 		spin_lock(&cache->lock);
659 		if (ret == 1) {
660 			cache->caching_ctl = NULL;
661 			cache->cached = BTRFS_CACHE_FINISHED;
662 			cache->last_byte_to_unpin = (u64)-1;
663 			caching_ctl->progress = (u64)-1;
664 		} else {
665 			if (load_cache_only) {
666 				cache->caching_ctl = NULL;
667 				cache->cached = BTRFS_CACHE_NO;
668 			} else {
669 				cache->cached = BTRFS_CACHE_STARTED;
670 				cache->has_caching_ctl = 1;
671 			}
672 		}
673 		spin_unlock(&cache->lock);
674 #ifdef CONFIG_BTRFS_DEBUG
675 		if (ret == 1 &&
676 		    btrfs_should_fragment_free_space(cache)) {
677 			u64 bytes_used;
678 
679 			spin_lock(&cache->space_info->lock);
680 			spin_lock(&cache->lock);
681 			bytes_used = cache->key.offset -
682 				btrfs_block_group_used(&cache->item);
683 			cache->space_info->bytes_used += bytes_used >> 1;
684 			spin_unlock(&cache->lock);
685 			spin_unlock(&cache->space_info->lock);
686 			fragment_free_space(cache);
687 		}
688 #endif
689 		mutex_unlock(&caching_ctl->mutex);
690 
691 		wake_up(&caching_ctl->wait);
692 		if (ret == 1) {
693 			put_caching_control(caching_ctl);
694 			free_excluded_extents(fs_info, cache);
695 			return 0;
696 		}
697 	} else {
698 		/*
699 		 * We're either using the free space tree or no caching at all.
700 		 * Set cached to the appropriate value and wakeup any waiters.
701 		 */
702 		spin_lock(&cache->lock);
703 		if (load_cache_only) {
704 			cache->caching_ctl = NULL;
705 			cache->cached = BTRFS_CACHE_NO;
706 		} else {
707 			cache->cached = BTRFS_CACHE_STARTED;
708 			cache->has_caching_ctl = 1;
709 		}
710 		spin_unlock(&cache->lock);
711 		wake_up(&caching_ctl->wait);
712 	}
713 
714 	if (load_cache_only) {
715 		put_caching_control(caching_ctl);
716 		return 0;
717 	}
718 
719 	down_write(&fs_info->commit_root_sem);
720 	refcount_inc(&caching_ctl->count);
721 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 	up_write(&fs_info->commit_root_sem);
723 
724 	btrfs_get_block_group(cache);
725 
726 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727 
728 	return ret;
729 }
730 
731 /*
732  * return the block group that starts at or after bytenr
733  */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 	return block_group_cache_tree_search(info, bytenr, 0);
738 }
739 
740 /*
741  * return the block group that contains the given bytenr
742  */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 						 struct btrfs_fs_info *info,
745 						 u64 bytenr)
746 {
747 	return block_group_cache_tree_search(info, bytenr, 1);
748 }
749 
750 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
751 						  u64 flags)
752 {
753 	struct list_head *head = &info->space_info;
754 	struct btrfs_space_info *found;
755 
756 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
757 
758 	rcu_read_lock();
759 	list_for_each_entry_rcu(found, head, list) {
760 		if (found->flags & flags) {
761 			rcu_read_unlock();
762 			return found;
763 		}
764 	}
765 	rcu_read_unlock();
766 	return NULL;
767 }
768 
769 /*
770  * after adding space to the filesystem, we need to clear the full flags
771  * on all the space infos.
772  */
773 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
774 {
775 	struct list_head *head = &info->space_info;
776 	struct btrfs_space_info *found;
777 
778 	rcu_read_lock();
779 	list_for_each_entry_rcu(found, head, list)
780 		found->full = 0;
781 	rcu_read_unlock();
782 }
783 
784 /* simple helper to search for an existing data extent at a given offset */
785 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
786 {
787 	int ret;
788 	struct btrfs_key key;
789 	struct btrfs_path *path;
790 
791 	path = btrfs_alloc_path();
792 	if (!path)
793 		return -ENOMEM;
794 
795 	key.objectid = start;
796 	key.offset = len;
797 	key.type = BTRFS_EXTENT_ITEM_KEY;
798 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
799 	btrfs_free_path(path);
800 	return ret;
801 }
802 
803 /*
804  * helper function to lookup reference count and flags of a tree block.
805  *
806  * the head node for delayed ref is used to store the sum of all the
807  * reference count modifications queued up in the rbtree. the head
808  * node may also store the extent flags to set. This way you can check
809  * to see what the reference count and extent flags would be if all of
810  * the delayed refs are not processed.
811  */
812 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
813 			     struct btrfs_fs_info *fs_info, u64 bytenr,
814 			     u64 offset, int metadata, u64 *refs, u64 *flags)
815 {
816 	struct btrfs_delayed_ref_head *head;
817 	struct btrfs_delayed_ref_root *delayed_refs;
818 	struct btrfs_path *path;
819 	struct btrfs_extent_item *ei;
820 	struct extent_buffer *leaf;
821 	struct btrfs_key key;
822 	u32 item_size;
823 	u64 num_refs;
824 	u64 extent_flags;
825 	int ret;
826 
827 	/*
828 	 * If we don't have skinny metadata, don't bother doing anything
829 	 * different
830 	 */
831 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
832 		offset = fs_info->nodesize;
833 		metadata = 0;
834 	}
835 
836 	path = btrfs_alloc_path();
837 	if (!path)
838 		return -ENOMEM;
839 
840 	if (!trans) {
841 		path->skip_locking = 1;
842 		path->search_commit_root = 1;
843 	}
844 
845 search_again:
846 	key.objectid = bytenr;
847 	key.offset = offset;
848 	if (metadata)
849 		key.type = BTRFS_METADATA_ITEM_KEY;
850 	else
851 		key.type = BTRFS_EXTENT_ITEM_KEY;
852 
853 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
854 	if (ret < 0)
855 		goto out_free;
856 
857 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
858 		if (path->slots[0]) {
859 			path->slots[0]--;
860 			btrfs_item_key_to_cpu(path->nodes[0], &key,
861 					      path->slots[0]);
862 			if (key.objectid == bytenr &&
863 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
864 			    key.offset == fs_info->nodesize)
865 				ret = 0;
866 		}
867 	}
868 
869 	if (ret == 0) {
870 		leaf = path->nodes[0];
871 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
872 		if (item_size >= sizeof(*ei)) {
873 			ei = btrfs_item_ptr(leaf, path->slots[0],
874 					    struct btrfs_extent_item);
875 			num_refs = btrfs_extent_refs(leaf, ei);
876 			extent_flags = btrfs_extent_flags(leaf, ei);
877 		} else {
878 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
879 			struct btrfs_extent_item_v0 *ei0;
880 			BUG_ON(item_size != sizeof(*ei0));
881 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
882 					     struct btrfs_extent_item_v0);
883 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
884 			/* FIXME: this isn't correct for data */
885 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
886 #else
887 			BUG();
888 #endif
889 		}
890 		BUG_ON(num_refs == 0);
891 	} else {
892 		num_refs = 0;
893 		extent_flags = 0;
894 		ret = 0;
895 	}
896 
897 	if (!trans)
898 		goto out;
899 
900 	delayed_refs = &trans->transaction->delayed_refs;
901 	spin_lock(&delayed_refs->lock);
902 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
903 	if (head) {
904 		if (!mutex_trylock(&head->mutex)) {
905 			refcount_inc(&head->node.refs);
906 			spin_unlock(&delayed_refs->lock);
907 
908 			btrfs_release_path(path);
909 
910 			/*
911 			 * Mutex was contended, block until it's released and try
912 			 * again
913 			 */
914 			mutex_lock(&head->mutex);
915 			mutex_unlock(&head->mutex);
916 			btrfs_put_delayed_ref(&head->node);
917 			goto search_again;
918 		}
919 		spin_lock(&head->lock);
920 		if (head->extent_op && head->extent_op->update_flags)
921 			extent_flags |= head->extent_op->flags_to_set;
922 		else
923 			BUG_ON(num_refs == 0);
924 
925 		num_refs += head->node.ref_mod;
926 		spin_unlock(&head->lock);
927 		mutex_unlock(&head->mutex);
928 	}
929 	spin_unlock(&delayed_refs->lock);
930 out:
931 	WARN_ON(num_refs == 0);
932 	if (refs)
933 		*refs = num_refs;
934 	if (flags)
935 		*flags = extent_flags;
936 out_free:
937 	btrfs_free_path(path);
938 	return ret;
939 }
940 
941 /*
942  * Back reference rules.  Back refs have three main goals:
943  *
944  * 1) differentiate between all holders of references to an extent so that
945  *    when a reference is dropped we can make sure it was a valid reference
946  *    before freeing the extent.
947  *
948  * 2) Provide enough information to quickly find the holders of an extent
949  *    if we notice a given block is corrupted or bad.
950  *
951  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
952  *    maintenance.  This is actually the same as #2, but with a slightly
953  *    different use case.
954  *
955  * There are two kinds of back refs. The implicit back refs is optimized
956  * for pointers in non-shared tree blocks. For a given pointer in a block,
957  * back refs of this kind provide information about the block's owner tree
958  * and the pointer's key. These information allow us to find the block by
959  * b-tree searching. The full back refs is for pointers in tree blocks not
960  * referenced by their owner trees. The location of tree block is recorded
961  * in the back refs. Actually the full back refs is generic, and can be
962  * used in all cases the implicit back refs is used. The major shortcoming
963  * of the full back refs is its overhead. Every time a tree block gets
964  * COWed, we have to update back refs entry for all pointers in it.
965  *
966  * For a newly allocated tree block, we use implicit back refs for
967  * pointers in it. This means most tree related operations only involve
968  * implicit back refs. For a tree block created in old transaction, the
969  * only way to drop a reference to it is COW it. So we can detect the
970  * event that tree block loses its owner tree's reference and do the
971  * back refs conversion.
972  *
973  * When a tree block is COWed through a tree, there are four cases:
974  *
975  * The reference count of the block is one and the tree is the block's
976  * owner tree. Nothing to do in this case.
977  *
978  * The reference count of the block is one and the tree is not the
979  * block's owner tree. In this case, full back refs is used for pointers
980  * in the block. Remove these full back refs, add implicit back refs for
981  * every pointers in the new block.
982  *
983  * The reference count of the block is greater than one and the tree is
984  * the block's owner tree. In this case, implicit back refs is used for
985  * pointers in the block. Add full back refs for every pointers in the
986  * block, increase lower level extents' reference counts. The original
987  * implicit back refs are entailed to the new block.
988  *
989  * The reference count of the block is greater than one and the tree is
990  * not the block's owner tree. Add implicit back refs for every pointer in
991  * the new block, increase lower level extents' reference count.
992  *
993  * Back Reference Key composing:
994  *
995  * The key objectid corresponds to the first byte in the extent,
996  * The key type is used to differentiate between types of back refs.
997  * There are different meanings of the key offset for different types
998  * of back refs.
999  *
1000  * File extents can be referenced by:
1001  *
1002  * - multiple snapshots, subvolumes, or different generations in one subvol
1003  * - different files inside a single subvolume
1004  * - different offsets inside a file (bookend extents in file.c)
1005  *
1006  * The extent ref structure for the implicit back refs has fields for:
1007  *
1008  * - Objectid of the subvolume root
1009  * - objectid of the file holding the reference
1010  * - original offset in the file
1011  * - how many bookend extents
1012  *
1013  * The key offset for the implicit back refs is hash of the first
1014  * three fields.
1015  *
1016  * The extent ref structure for the full back refs has field for:
1017  *
1018  * - number of pointers in the tree leaf
1019  *
1020  * The key offset for the implicit back refs is the first byte of
1021  * the tree leaf
1022  *
1023  * When a file extent is allocated, The implicit back refs is used.
1024  * the fields are filled in:
1025  *
1026  *     (root_key.objectid, inode objectid, offset in file, 1)
1027  *
1028  * When a file extent is removed file truncation, we find the
1029  * corresponding implicit back refs and check the following fields:
1030  *
1031  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1032  *
1033  * Btree extents can be referenced by:
1034  *
1035  * - Different subvolumes
1036  *
1037  * Both the implicit back refs and the full back refs for tree blocks
1038  * only consist of key. The key offset for the implicit back refs is
1039  * objectid of block's owner tree. The key offset for the full back refs
1040  * is the first byte of parent block.
1041  *
1042  * When implicit back refs is used, information about the lowest key and
1043  * level of the tree block are required. These information are stored in
1044  * tree block info structure.
1045  */
1046 
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1049 				  struct btrfs_fs_info *fs_info,
1050 				  struct btrfs_path *path,
1051 				  u64 owner, u32 extra_size)
1052 {
1053 	struct btrfs_root *root = fs_info->extent_root;
1054 	struct btrfs_extent_item *item;
1055 	struct btrfs_extent_item_v0 *ei0;
1056 	struct btrfs_extent_ref_v0 *ref0;
1057 	struct btrfs_tree_block_info *bi;
1058 	struct extent_buffer *leaf;
1059 	struct btrfs_key key;
1060 	struct btrfs_key found_key;
1061 	u32 new_size = sizeof(*item);
1062 	u64 refs;
1063 	int ret;
1064 
1065 	leaf = path->nodes[0];
1066 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1067 
1068 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1069 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1070 			     struct btrfs_extent_item_v0);
1071 	refs = btrfs_extent_refs_v0(leaf, ei0);
1072 
1073 	if (owner == (u64)-1) {
1074 		while (1) {
1075 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1076 				ret = btrfs_next_leaf(root, path);
1077 				if (ret < 0)
1078 					return ret;
1079 				BUG_ON(ret > 0); /* Corruption */
1080 				leaf = path->nodes[0];
1081 			}
1082 			btrfs_item_key_to_cpu(leaf, &found_key,
1083 					      path->slots[0]);
1084 			BUG_ON(key.objectid != found_key.objectid);
1085 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 				path->slots[0]++;
1087 				continue;
1088 			}
1089 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1090 					      struct btrfs_extent_ref_v0);
1091 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 			break;
1093 		}
1094 	}
1095 	btrfs_release_path(path);
1096 
1097 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1098 		new_size += sizeof(*bi);
1099 
1100 	new_size -= sizeof(*ei0);
1101 	ret = btrfs_search_slot(trans, root, &key, path,
1102 				new_size + extra_size, 1);
1103 	if (ret < 0)
1104 		return ret;
1105 	BUG_ON(ret); /* Corruption */
1106 
1107 	btrfs_extend_item(fs_info, path, new_size);
1108 
1109 	leaf = path->nodes[0];
1110 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1111 	btrfs_set_extent_refs(leaf, item, refs);
1112 	/* FIXME: get real generation */
1113 	btrfs_set_extent_generation(leaf, item, 0);
1114 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1115 		btrfs_set_extent_flags(leaf, item,
1116 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1117 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1118 		bi = (struct btrfs_tree_block_info *)(item + 1);
1119 		/* FIXME: get first key of the block */
1120 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1121 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1122 	} else {
1123 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1124 	}
1125 	btrfs_mark_buffer_dirty(leaf);
1126 	return 0;
1127 }
1128 #endif
1129 
1130 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1131 {
1132 	u32 high_crc = ~(u32)0;
1133 	u32 low_crc = ~(u32)0;
1134 	__le64 lenum;
1135 
1136 	lenum = cpu_to_le64(root_objectid);
1137 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1138 	lenum = cpu_to_le64(owner);
1139 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1140 	lenum = cpu_to_le64(offset);
1141 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1142 
1143 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1144 }
1145 
1146 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1147 				     struct btrfs_extent_data_ref *ref)
1148 {
1149 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1150 				    btrfs_extent_data_ref_objectid(leaf, ref),
1151 				    btrfs_extent_data_ref_offset(leaf, ref));
1152 }
1153 
1154 static int match_extent_data_ref(struct extent_buffer *leaf,
1155 				 struct btrfs_extent_data_ref *ref,
1156 				 u64 root_objectid, u64 owner, u64 offset)
1157 {
1158 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1159 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1160 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1161 		return 0;
1162 	return 1;
1163 }
1164 
1165 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1166 					   struct btrfs_fs_info *fs_info,
1167 					   struct btrfs_path *path,
1168 					   u64 bytenr, u64 parent,
1169 					   u64 root_objectid,
1170 					   u64 owner, u64 offset)
1171 {
1172 	struct btrfs_root *root = fs_info->extent_root;
1173 	struct btrfs_key key;
1174 	struct btrfs_extent_data_ref *ref;
1175 	struct extent_buffer *leaf;
1176 	u32 nritems;
1177 	int ret;
1178 	int recow;
1179 	int err = -ENOENT;
1180 
1181 	key.objectid = bytenr;
1182 	if (parent) {
1183 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1184 		key.offset = parent;
1185 	} else {
1186 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1187 		key.offset = hash_extent_data_ref(root_objectid,
1188 						  owner, offset);
1189 	}
1190 again:
1191 	recow = 0;
1192 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193 	if (ret < 0) {
1194 		err = ret;
1195 		goto fail;
1196 	}
1197 
1198 	if (parent) {
1199 		if (!ret)
1200 			return 0;
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1203 		btrfs_release_path(path);
1204 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205 		if (ret < 0) {
1206 			err = ret;
1207 			goto fail;
1208 		}
1209 		if (!ret)
1210 			return 0;
1211 #endif
1212 		goto fail;
1213 	}
1214 
1215 	leaf = path->nodes[0];
1216 	nritems = btrfs_header_nritems(leaf);
1217 	while (1) {
1218 		if (path->slots[0] >= nritems) {
1219 			ret = btrfs_next_leaf(root, path);
1220 			if (ret < 0)
1221 				err = ret;
1222 			if (ret)
1223 				goto fail;
1224 
1225 			leaf = path->nodes[0];
1226 			nritems = btrfs_header_nritems(leaf);
1227 			recow = 1;
1228 		}
1229 
1230 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1231 		if (key.objectid != bytenr ||
1232 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1233 			goto fail;
1234 
1235 		ref = btrfs_item_ptr(leaf, path->slots[0],
1236 				     struct btrfs_extent_data_ref);
1237 
1238 		if (match_extent_data_ref(leaf, ref, root_objectid,
1239 					  owner, offset)) {
1240 			if (recow) {
1241 				btrfs_release_path(path);
1242 				goto again;
1243 			}
1244 			err = 0;
1245 			break;
1246 		}
1247 		path->slots[0]++;
1248 	}
1249 fail:
1250 	return err;
1251 }
1252 
1253 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1254 					   struct btrfs_fs_info *fs_info,
1255 					   struct btrfs_path *path,
1256 					   u64 bytenr, u64 parent,
1257 					   u64 root_objectid, u64 owner,
1258 					   u64 offset, int refs_to_add)
1259 {
1260 	struct btrfs_root *root = fs_info->extent_root;
1261 	struct btrfs_key key;
1262 	struct extent_buffer *leaf;
1263 	u32 size;
1264 	u32 num_refs;
1265 	int ret;
1266 
1267 	key.objectid = bytenr;
1268 	if (parent) {
1269 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1270 		key.offset = parent;
1271 		size = sizeof(struct btrfs_shared_data_ref);
1272 	} else {
1273 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1274 		key.offset = hash_extent_data_ref(root_objectid,
1275 						  owner, offset);
1276 		size = sizeof(struct btrfs_extent_data_ref);
1277 	}
1278 
1279 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1280 	if (ret && ret != -EEXIST)
1281 		goto fail;
1282 
1283 	leaf = path->nodes[0];
1284 	if (parent) {
1285 		struct btrfs_shared_data_ref *ref;
1286 		ref = btrfs_item_ptr(leaf, path->slots[0],
1287 				     struct btrfs_shared_data_ref);
1288 		if (ret == 0) {
1289 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1290 		} else {
1291 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1292 			num_refs += refs_to_add;
1293 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1294 		}
1295 	} else {
1296 		struct btrfs_extent_data_ref *ref;
1297 		while (ret == -EEXIST) {
1298 			ref = btrfs_item_ptr(leaf, path->slots[0],
1299 					     struct btrfs_extent_data_ref);
1300 			if (match_extent_data_ref(leaf, ref, root_objectid,
1301 						  owner, offset))
1302 				break;
1303 			btrfs_release_path(path);
1304 			key.offset++;
1305 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1306 						      size);
1307 			if (ret && ret != -EEXIST)
1308 				goto fail;
1309 
1310 			leaf = path->nodes[0];
1311 		}
1312 		ref = btrfs_item_ptr(leaf, path->slots[0],
1313 				     struct btrfs_extent_data_ref);
1314 		if (ret == 0) {
1315 			btrfs_set_extent_data_ref_root(leaf, ref,
1316 						       root_objectid);
1317 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1318 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1319 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1320 		} else {
1321 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1322 			num_refs += refs_to_add;
1323 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1324 		}
1325 	}
1326 	btrfs_mark_buffer_dirty(leaf);
1327 	ret = 0;
1328 fail:
1329 	btrfs_release_path(path);
1330 	return ret;
1331 }
1332 
1333 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1334 					   struct btrfs_fs_info *fs_info,
1335 					   struct btrfs_path *path,
1336 					   int refs_to_drop, int *last_ref)
1337 {
1338 	struct btrfs_key key;
1339 	struct btrfs_extent_data_ref *ref1 = NULL;
1340 	struct btrfs_shared_data_ref *ref2 = NULL;
1341 	struct extent_buffer *leaf;
1342 	u32 num_refs = 0;
1343 	int ret = 0;
1344 
1345 	leaf = path->nodes[0];
1346 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1347 
1348 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 				      struct btrfs_extent_data_ref);
1351 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 				      struct btrfs_shared_data_ref);
1355 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 		struct btrfs_extent_ref_v0 *ref0;
1359 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 				      struct btrfs_extent_ref_v0);
1361 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 	} else {
1364 		BUG();
1365 	}
1366 
1367 	BUG_ON(num_refs < refs_to_drop);
1368 	num_refs -= refs_to_drop;
1369 
1370 	if (num_refs == 0) {
1371 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1372 		*last_ref = 1;
1373 	} else {
1374 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1375 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1376 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1377 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1378 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1379 		else {
1380 			struct btrfs_extent_ref_v0 *ref0;
1381 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1382 					struct btrfs_extent_ref_v0);
1383 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1384 		}
1385 #endif
1386 		btrfs_mark_buffer_dirty(leaf);
1387 	}
1388 	return ret;
1389 }
1390 
1391 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1392 					  struct btrfs_extent_inline_ref *iref)
1393 {
1394 	struct btrfs_key key;
1395 	struct extent_buffer *leaf;
1396 	struct btrfs_extent_data_ref *ref1;
1397 	struct btrfs_shared_data_ref *ref2;
1398 	u32 num_refs = 0;
1399 
1400 	leaf = path->nodes[0];
1401 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 	if (iref) {
1403 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1404 		    BTRFS_EXTENT_DATA_REF_KEY) {
1405 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 		} else {
1408 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1409 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 		}
1411 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1412 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1413 				      struct btrfs_extent_data_ref);
1414 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1416 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1417 				      struct btrfs_shared_data_ref);
1418 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1420 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1421 		struct btrfs_extent_ref_v0 *ref0;
1422 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1423 				      struct btrfs_extent_ref_v0);
1424 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1425 #endif
1426 	} else {
1427 		WARN_ON(1);
1428 	}
1429 	return num_refs;
1430 }
1431 
1432 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1433 					  struct btrfs_fs_info *fs_info,
1434 					  struct btrfs_path *path,
1435 					  u64 bytenr, u64 parent,
1436 					  u64 root_objectid)
1437 {
1438 	struct btrfs_root *root = fs_info->extent_root;
1439 	struct btrfs_key key;
1440 	int ret;
1441 
1442 	key.objectid = bytenr;
1443 	if (parent) {
1444 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 		key.offset = parent;
1446 	} else {
1447 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1448 		key.offset = root_objectid;
1449 	}
1450 
1451 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1452 	if (ret > 0)
1453 		ret = -ENOENT;
1454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1455 	if (ret == -ENOENT && parent) {
1456 		btrfs_release_path(path);
1457 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1458 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1459 		if (ret > 0)
1460 			ret = -ENOENT;
1461 	}
1462 #endif
1463 	return ret;
1464 }
1465 
1466 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1467 					  struct btrfs_fs_info *fs_info,
1468 					  struct btrfs_path *path,
1469 					  u64 bytenr, u64 parent,
1470 					  u64 root_objectid)
1471 {
1472 	struct btrfs_key key;
1473 	int ret;
1474 
1475 	key.objectid = bytenr;
1476 	if (parent) {
1477 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1478 		key.offset = parent;
1479 	} else {
1480 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1481 		key.offset = root_objectid;
1482 	}
1483 
1484 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1485 				      path, &key, 0);
1486 	btrfs_release_path(path);
1487 	return ret;
1488 }
1489 
1490 static inline int extent_ref_type(u64 parent, u64 owner)
1491 {
1492 	int type;
1493 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1494 		if (parent > 0)
1495 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1496 		else
1497 			type = BTRFS_TREE_BLOCK_REF_KEY;
1498 	} else {
1499 		if (parent > 0)
1500 			type = BTRFS_SHARED_DATA_REF_KEY;
1501 		else
1502 			type = BTRFS_EXTENT_DATA_REF_KEY;
1503 	}
1504 	return type;
1505 }
1506 
1507 static int find_next_key(struct btrfs_path *path, int level,
1508 			 struct btrfs_key *key)
1509 
1510 {
1511 	for (; level < BTRFS_MAX_LEVEL; level++) {
1512 		if (!path->nodes[level])
1513 			break;
1514 		if (path->slots[level] + 1 >=
1515 		    btrfs_header_nritems(path->nodes[level]))
1516 			continue;
1517 		if (level == 0)
1518 			btrfs_item_key_to_cpu(path->nodes[level], key,
1519 					      path->slots[level] + 1);
1520 		else
1521 			btrfs_node_key_to_cpu(path->nodes[level], key,
1522 					      path->slots[level] + 1);
1523 		return 0;
1524 	}
1525 	return 1;
1526 }
1527 
1528 /*
1529  * look for inline back ref. if back ref is found, *ref_ret is set
1530  * to the address of inline back ref, and 0 is returned.
1531  *
1532  * if back ref isn't found, *ref_ret is set to the address where it
1533  * should be inserted, and -ENOENT is returned.
1534  *
1535  * if insert is true and there are too many inline back refs, the path
1536  * points to the extent item, and -EAGAIN is returned.
1537  *
1538  * NOTE: inline back refs are ordered in the same way that back ref
1539  *	 items in the tree are ordered.
1540  */
1541 static noinline_for_stack
1542 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1543 				 struct btrfs_fs_info *fs_info,
1544 				 struct btrfs_path *path,
1545 				 struct btrfs_extent_inline_ref **ref_ret,
1546 				 u64 bytenr, u64 num_bytes,
1547 				 u64 parent, u64 root_objectid,
1548 				 u64 owner, u64 offset, int insert)
1549 {
1550 	struct btrfs_root *root = fs_info->extent_root;
1551 	struct btrfs_key key;
1552 	struct extent_buffer *leaf;
1553 	struct btrfs_extent_item *ei;
1554 	struct btrfs_extent_inline_ref *iref;
1555 	u64 flags;
1556 	u64 item_size;
1557 	unsigned long ptr;
1558 	unsigned long end;
1559 	int extra_size;
1560 	int type;
1561 	int want;
1562 	int ret;
1563 	int err = 0;
1564 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1565 
1566 	key.objectid = bytenr;
1567 	key.type = BTRFS_EXTENT_ITEM_KEY;
1568 	key.offset = num_bytes;
1569 
1570 	want = extent_ref_type(parent, owner);
1571 	if (insert) {
1572 		extra_size = btrfs_extent_inline_ref_size(want);
1573 		path->keep_locks = 1;
1574 	} else
1575 		extra_size = -1;
1576 
1577 	/*
1578 	 * Owner is our parent level, so we can just add one to get the level
1579 	 * for the block we are interested in.
1580 	 */
1581 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1582 		key.type = BTRFS_METADATA_ITEM_KEY;
1583 		key.offset = owner;
1584 	}
1585 
1586 again:
1587 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1588 	if (ret < 0) {
1589 		err = ret;
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * We may be a newly converted file system which still has the old fat
1595 	 * extent entries for metadata, so try and see if we have one of those.
1596 	 */
1597 	if (ret > 0 && skinny_metadata) {
1598 		skinny_metadata = false;
1599 		if (path->slots[0]) {
1600 			path->slots[0]--;
1601 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1602 					      path->slots[0]);
1603 			if (key.objectid == bytenr &&
1604 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1605 			    key.offset == num_bytes)
1606 				ret = 0;
1607 		}
1608 		if (ret) {
1609 			key.objectid = bytenr;
1610 			key.type = BTRFS_EXTENT_ITEM_KEY;
1611 			key.offset = num_bytes;
1612 			btrfs_release_path(path);
1613 			goto again;
1614 		}
1615 	}
1616 
1617 	if (ret && !insert) {
1618 		err = -ENOENT;
1619 		goto out;
1620 	} else if (WARN_ON(ret)) {
1621 		err = -EIO;
1622 		goto out;
1623 	}
1624 
1625 	leaf = path->nodes[0];
1626 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1628 	if (item_size < sizeof(*ei)) {
1629 		if (!insert) {
1630 			err = -ENOENT;
1631 			goto out;
1632 		}
1633 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1634 					     extra_size);
1635 		if (ret < 0) {
1636 			err = ret;
1637 			goto out;
1638 		}
1639 		leaf = path->nodes[0];
1640 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 	}
1642 #endif
1643 	BUG_ON(item_size < sizeof(*ei));
1644 
1645 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646 	flags = btrfs_extent_flags(leaf, ei);
1647 
1648 	ptr = (unsigned long)(ei + 1);
1649 	end = (unsigned long)ei + item_size;
1650 
1651 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1652 		ptr += sizeof(struct btrfs_tree_block_info);
1653 		BUG_ON(ptr > end);
1654 	}
1655 
1656 	err = -ENOENT;
1657 	while (1) {
1658 		if (ptr >= end) {
1659 			WARN_ON(ptr > end);
1660 			break;
1661 		}
1662 		iref = (struct btrfs_extent_inline_ref *)ptr;
1663 		type = btrfs_extent_inline_ref_type(leaf, iref);
1664 		if (want < type)
1665 			break;
1666 		if (want > type) {
1667 			ptr += btrfs_extent_inline_ref_size(type);
1668 			continue;
1669 		}
1670 
1671 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1672 			struct btrfs_extent_data_ref *dref;
1673 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1674 			if (match_extent_data_ref(leaf, dref, root_objectid,
1675 						  owner, offset)) {
1676 				err = 0;
1677 				break;
1678 			}
1679 			if (hash_extent_data_ref_item(leaf, dref) <
1680 			    hash_extent_data_ref(root_objectid, owner, offset))
1681 				break;
1682 		} else {
1683 			u64 ref_offset;
1684 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1685 			if (parent > 0) {
1686 				if (parent == ref_offset) {
1687 					err = 0;
1688 					break;
1689 				}
1690 				if (ref_offset < parent)
1691 					break;
1692 			} else {
1693 				if (root_objectid == ref_offset) {
1694 					err = 0;
1695 					break;
1696 				}
1697 				if (ref_offset < root_objectid)
1698 					break;
1699 			}
1700 		}
1701 		ptr += btrfs_extent_inline_ref_size(type);
1702 	}
1703 	if (err == -ENOENT && insert) {
1704 		if (item_size + extra_size >=
1705 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1706 			err = -EAGAIN;
1707 			goto out;
1708 		}
1709 		/*
1710 		 * To add new inline back ref, we have to make sure
1711 		 * there is no corresponding back ref item.
1712 		 * For simplicity, we just do not add new inline back
1713 		 * ref if there is any kind of item for this block
1714 		 */
1715 		if (find_next_key(path, 0, &key) == 0 &&
1716 		    key.objectid == bytenr &&
1717 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1718 			err = -EAGAIN;
1719 			goto out;
1720 		}
1721 	}
1722 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1723 out:
1724 	if (insert) {
1725 		path->keep_locks = 0;
1726 		btrfs_unlock_up_safe(path, 1);
1727 	}
1728 	return err;
1729 }
1730 
1731 /*
1732  * helper to add new inline back ref
1733  */
1734 static noinline_for_stack
1735 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1736 				 struct btrfs_path *path,
1737 				 struct btrfs_extent_inline_ref *iref,
1738 				 u64 parent, u64 root_objectid,
1739 				 u64 owner, u64 offset, int refs_to_add,
1740 				 struct btrfs_delayed_extent_op *extent_op)
1741 {
1742 	struct extent_buffer *leaf;
1743 	struct btrfs_extent_item *ei;
1744 	unsigned long ptr;
1745 	unsigned long end;
1746 	unsigned long item_offset;
1747 	u64 refs;
1748 	int size;
1749 	int type;
1750 
1751 	leaf = path->nodes[0];
1752 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1753 	item_offset = (unsigned long)iref - (unsigned long)ei;
1754 
1755 	type = extent_ref_type(parent, owner);
1756 	size = btrfs_extent_inline_ref_size(type);
1757 
1758 	btrfs_extend_item(fs_info, path, size);
1759 
1760 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1761 	refs = btrfs_extent_refs(leaf, ei);
1762 	refs += refs_to_add;
1763 	btrfs_set_extent_refs(leaf, ei, refs);
1764 	if (extent_op)
1765 		__run_delayed_extent_op(extent_op, leaf, ei);
1766 
1767 	ptr = (unsigned long)ei + item_offset;
1768 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1769 	if (ptr < end - size)
1770 		memmove_extent_buffer(leaf, ptr + size, ptr,
1771 				      end - size - ptr);
1772 
1773 	iref = (struct btrfs_extent_inline_ref *)ptr;
1774 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1775 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1776 		struct btrfs_extent_data_ref *dref;
1777 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1778 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1779 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1780 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1781 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1782 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1783 		struct btrfs_shared_data_ref *sref;
1784 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1785 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1786 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1787 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1788 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1789 	} else {
1790 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1791 	}
1792 	btrfs_mark_buffer_dirty(leaf);
1793 }
1794 
1795 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1796 				 struct btrfs_fs_info *fs_info,
1797 				 struct btrfs_path *path,
1798 				 struct btrfs_extent_inline_ref **ref_ret,
1799 				 u64 bytenr, u64 num_bytes, u64 parent,
1800 				 u64 root_objectid, u64 owner, u64 offset)
1801 {
1802 	int ret;
1803 
1804 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1805 					   bytenr, num_bytes, parent,
1806 					   root_objectid, owner, offset, 0);
1807 	if (ret != -ENOENT)
1808 		return ret;
1809 
1810 	btrfs_release_path(path);
1811 	*ref_ret = NULL;
1812 
1813 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1814 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1815 					    parent, root_objectid);
1816 	} else {
1817 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1818 					     parent, root_objectid, owner,
1819 					     offset);
1820 	}
1821 	return ret;
1822 }
1823 
1824 /*
1825  * helper to update/remove inline back ref
1826  */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1829 				  struct btrfs_path *path,
1830 				  struct btrfs_extent_inline_ref *iref,
1831 				  int refs_to_mod,
1832 				  struct btrfs_delayed_extent_op *extent_op,
1833 				  int *last_ref)
1834 {
1835 	struct extent_buffer *leaf;
1836 	struct btrfs_extent_item *ei;
1837 	struct btrfs_extent_data_ref *dref = NULL;
1838 	struct btrfs_shared_data_ref *sref = NULL;
1839 	unsigned long ptr;
1840 	unsigned long end;
1841 	u32 item_size;
1842 	int size;
1843 	int type;
1844 	u64 refs;
1845 
1846 	leaf = path->nodes[0];
1847 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 	refs = btrfs_extent_refs(leaf, ei);
1849 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 	refs += refs_to_mod;
1851 	btrfs_set_extent_refs(leaf, ei, refs);
1852 	if (extent_op)
1853 		__run_delayed_extent_op(extent_op, leaf, ei);
1854 
1855 	type = btrfs_extent_inline_ref_type(leaf, iref);
1856 
1857 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 		refs = btrfs_extent_data_ref_count(leaf, dref);
1860 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 		refs = btrfs_shared_data_ref_count(leaf, sref);
1863 	} else {
1864 		refs = 1;
1865 		BUG_ON(refs_to_mod != -1);
1866 	}
1867 
1868 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 	refs += refs_to_mod;
1870 
1871 	if (refs > 0) {
1872 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 		else
1875 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 	} else {
1877 		*last_ref = 1;
1878 		size =  btrfs_extent_inline_ref_size(type);
1879 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 		ptr = (unsigned long)iref;
1881 		end = (unsigned long)ei + item_size;
1882 		if (ptr + size < end)
1883 			memmove_extent_buffer(leaf, ptr, ptr + size,
1884 					      end - ptr - size);
1885 		item_size -= size;
1886 		btrfs_truncate_item(fs_info, path, item_size, 1);
1887 	}
1888 	btrfs_mark_buffer_dirty(leaf);
1889 }
1890 
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 				 struct btrfs_fs_info *fs_info,
1894 				 struct btrfs_path *path,
1895 				 u64 bytenr, u64 num_bytes, u64 parent,
1896 				 u64 root_objectid, u64 owner,
1897 				 u64 offset, int refs_to_add,
1898 				 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 	struct btrfs_extent_inline_ref *iref;
1901 	int ret;
1902 
1903 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1904 					   bytenr, num_bytes, parent,
1905 					   root_objectid, owner, offset, 1);
1906 	if (ret == 0) {
1907 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 		update_inline_extent_backref(fs_info, path, iref,
1909 					     refs_to_add, extent_op, NULL);
1910 	} else if (ret == -ENOENT) {
1911 		setup_inline_extent_backref(fs_info, path, iref, parent,
1912 					    root_objectid, owner, offset,
1913 					    refs_to_add, extent_op);
1914 		ret = 0;
1915 	}
1916 	return ret;
1917 }
1918 
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 				 struct btrfs_fs_info *fs_info,
1921 				 struct btrfs_path *path,
1922 				 u64 bytenr, u64 parent, u64 root_objectid,
1923 				 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 	int ret;
1926 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 		BUG_ON(refs_to_add != 1);
1928 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1929 					    parent, root_objectid);
1930 	} else {
1931 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1932 					     parent, root_objectid,
1933 					     owner, offset, refs_to_add);
1934 	}
1935 	return ret;
1936 }
1937 
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 				 struct btrfs_fs_info *fs_info,
1940 				 struct btrfs_path *path,
1941 				 struct btrfs_extent_inline_ref *iref,
1942 				 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 	int ret = 0;
1945 
1946 	BUG_ON(!is_data && refs_to_drop != 1);
1947 	if (iref) {
1948 		update_inline_extent_backref(fs_info, path, iref,
1949 					     -refs_to_drop, NULL, last_ref);
1950 	} else if (is_data) {
1951 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1952 					     last_ref);
1953 	} else {
1954 		*last_ref = 1;
1955 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1956 	}
1957 	return ret;
1958 }
1959 
1960 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 			       u64 *discarded_bytes)
1963 {
1964 	int j, ret = 0;
1965 	u64 bytes_left, end;
1966 	u64 aligned_start = ALIGN(start, 1 << 9);
1967 
1968 	if (WARN_ON(start != aligned_start)) {
1969 		len -= aligned_start - start;
1970 		len = round_down(len, 1 << 9);
1971 		start = aligned_start;
1972 	}
1973 
1974 	*discarded_bytes = 0;
1975 
1976 	if (!len)
1977 		return 0;
1978 
1979 	end = start + len;
1980 	bytes_left = len;
1981 
1982 	/* Skip any superblocks on this device. */
1983 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 		u64 sb_start = btrfs_sb_offset(j);
1985 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 		u64 size = sb_start - start;
1987 
1988 		if (!in_range(sb_start, start, bytes_left) &&
1989 		    !in_range(sb_end, start, bytes_left) &&
1990 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 			continue;
1992 
1993 		/*
1994 		 * Superblock spans beginning of range.  Adjust start and
1995 		 * try again.
1996 		 */
1997 		if (sb_start <= start) {
1998 			start += sb_end - start;
1999 			if (start > end) {
2000 				bytes_left = 0;
2001 				break;
2002 			}
2003 			bytes_left = end - start;
2004 			continue;
2005 		}
2006 
2007 		if (size) {
2008 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 						   GFP_NOFS, 0);
2010 			if (!ret)
2011 				*discarded_bytes += size;
2012 			else if (ret != -EOPNOTSUPP)
2013 				return ret;
2014 		}
2015 
2016 		start = sb_end;
2017 		if (start > end) {
2018 			bytes_left = 0;
2019 			break;
2020 		}
2021 		bytes_left = end - start;
2022 	}
2023 
2024 	if (bytes_left) {
2025 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 					   GFP_NOFS, 0);
2027 		if (!ret)
2028 			*discarded_bytes += bytes_left;
2029 	}
2030 	return ret;
2031 }
2032 
2033 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2034 			 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 	int ret;
2037 	u64 discarded_bytes = 0;
2038 	struct btrfs_bio *bbio = NULL;
2039 
2040 
2041 	/*
2042 	 * Avoid races with device replace and make sure our bbio has devices
2043 	 * associated to its stripes that don't go away while we are discarding.
2044 	 */
2045 	btrfs_bio_counter_inc_blocked(fs_info);
2046 	/* Tell the block device(s) that the sectors can be discarded */
2047 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2048 			      &bbio, 0);
2049 	/* Error condition is -ENOMEM */
2050 	if (!ret) {
2051 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 		int i;
2053 
2054 
2055 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 			u64 bytes;
2057 			if (!stripe->dev->can_discard)
2058 				continue;
2059 
2060 			ret = btrfs_issue_discard(stripe->dev->bdev,
2061 						  stripe->physical,
2062 						  stripe->length,
2063 						  &bytes);
2064 			if (!ret)
2065 				discarded_bytes += bytes;
2066 			else if (ret != -EOPNOTSUPP)
2067 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068 
2069 			/*
2070 			 * Just in case we get back EOPNOTSUPP for some reason,
2071 			 * just ignore the return value so we don't screw up
2072 			 * people calling discard_extent.
2073 			 */
2074 			ret = 0;
2075 		}
2076 		btrfs_put_bbio(bbio);
2077 	}
2078 	btrfs_bio_counter_dec(fs_info);
2079 
2080 	if (actual_bytes)
2081 		*actual_bytes = discarded_bytes;
2082 
2083 
2084 	if (ret == -EOPNOTSUPP)
2085 		ret = 0;
2086 	return ret;
2087 }
2088 
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 			 struct btrfs_fs_info *fs_info,
2092 			 u64 bytenr, u64 num_bytes, u64 parent,
2093 			 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 	int ret;
2096 
2097 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2098 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099 
2100 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2101 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102 					num_bytes,
2103 					parent, root_objectid, (int)owner,
2104 					BTRFS_ADD_DELAYED_REF, NULL);
2105 	} else {
2106 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2107 					num_bytes, parent, root_objectid,
2108 					owner, offset, 0,
2109 					BTRFS_ADD_DELAYED_REF);
2110 	}
2111 	return ret;
2112 }
2113 
2114 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2115 				  struct btrfs_fs_info *fs_info,
2116 				  struct btrfs_delayed_ref_node *node,
2117 				  u64 parent, u64 root_objectid,
2118 				  u64 owner, u64 offset, int refs_to_add,
2119 				  struct btrfs_delayed_extent_op *extent_op)
2120 {
2121 	struct btrfs_path *path;
2122 	struct extent_buffer *leaf;
2123 	struct btrfs_extent_item *item;
2124 	struct btrfs_key key;
2125 	u64 bytenr = node->bytenr;
2126 	u64 num_bytes = node->num_bytes;
2127 	u64 refs;
2128 	int ret;
2129 
2130 	path = btrfs_alloc_path();
2131 	if (!path)
2132 		return -ENOMEM;
2133 
2134 	path->reada = READA_FORWARD;
2135 	path->leave_spinning = 1;
2136 	/* this will setup the path even if it fails to insert the back ref */
2137 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2138 					   num_bytes, parent, root_objectid,
2139 					   owner, offset,
2140 					   refs_to_add, extent_op);
2141 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 		goto out;
2143 
2144 	/*
2145 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 	 * inline extent ref, so just update the reference count and add a
2147 	 * normal backref.
2148 	 */
2149 	leaf = path->nodes[0];
2150 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 	refs = btrfs_extent_refs(leaf, item);
2153 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 	if (extent_op)
2155 		__run_delayed_extent_op(extent_op, leaf, item);
2156 
2157 	btrfs_mark_buffer_dirty(leaf);
2158 	btrfs_release_path(path);
2159 
2160 	path->reada = READA_FORWARD;
2161 	path->leave_spinning = 1;
2162 	/* now insert the actual backref */
2163 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2164 				    root_objectid, owner, offset, refs_to_add);
2165 	if (ret)
2166 		btrfs_abort_transaction(trans, ret);
2167 out:
2168 	btrfs_free_path(path);
2169 	return ret;
2170 }
2171 
2172 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2173 				struct btrfs_fs_info *fs_info,
2174 				struct btrfs_delayed_ref_node *node,
2175 				struct btrfs_delayed_extent_op *extent_op,
2176 				int insert_reserved)
2177 {
2178 	int ret = 0;
2179 	struct btrfs_delayed_data_ref *ref;
2180 	struct btrfs_key ins;
2181 	u64 parent = 0;
2182 	u64 ref_root = 0;
2183 	u64 flags = 0;
2184 
2185 	ins.objectid = node->bytenr;
2186 	ins.offset = node->num_bytes;
2187 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2188 
2189 	ref = btrfs_delayed_node_to_data_ref(node);
2190 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2191 
2192 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 		parent = ref->parent;
2194 	ref_root = ref->root;
2195 
2196 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 		if (extent_op)
2198 			flags |= extent_op->flags_to_set;
2199 		ret = alloc_reserved_file_extent(trans, fs_info,
2200 						 parent, ref_root, flags,
2201 						 ref->objectid, ref->offset,
2202 						 &ins, node->ref_mod);
2203 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2205 					     ref_root, ref->objectid,
2206 					     ref->offset, node->ref_mod,
2207 					     extent_op);
2208 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2209 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2210 					  ref_root, ref->objectid,
2211 					  ref->offset, node->ref_mod,
2212 					  extent_op);
2213 	} else {
2214 		BUG();
2215 	}
2216 	return ret;
2217 }
2218 
2219 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220 				    struct extent_buffer *leaf,
2221 				    struct btrfs_extent_item *ei)
2222 {
2223 	u64 flags = btrfs_extent_flags(leaf, ei);
2224 	if (extent_op->update_flags) {
2225 		flags |= extent_op->flags_to_set;
2226 		btrfs_set_extent_flags(leaf, ei, flags);
2227 	}
2228 
2229 	if (extent_op->update_key) {
2230 		struct btrfs_tree_block_info *bi;
2231 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2233 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234 	}
2235 }
2236 
2237 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2238 				 struct btrfs_fs_info *fs_info,
2239 				 struct btrfs_delayed_ref_node *node,
2240 				 struct btrfs_delayed_extent_op *extent_op)
2241 {
2242 	struct btrfs_key key;
2243 	struct btrfs_path *path;
2244 	struct btrfs_extent_item *ei;
2245 	struct extent_buffer *leaf;
2246 	u32 item_size;
2247 	int ret;
2248 	int err = 0;
2249 	int metadata = !extent_op->is_data;
2250 
2251 	if (trans->aborted)
2252 		return 0;
2253 
2254 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255 		metadata = 0;
2256 
2257 	path = btrfs_alloc_path();
2258 	if (!path)
2259 		return -ENOMEM;
2260 
2261 	key.objectid = node->bytenr;
2262 
2263 	if (metadata) {
2264 		key.type = BTRFS_METADATA_ITEM_KEY;
2265 		key.offset = extent_op->level;
2266 	} else {
2267 		key.type = BTRFS_EXTENT_ITEM_KEY;
2268 		key.offset = node->num_bytes;
2269 	}
2270 
2271 again:
2272 	path->reada = READA_FORWARD;
2273 	path->leave_spinning = 1;
2274 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2275 	if (ret < 0) {
2276 		err = ret;
2277 		goto out;
2278 	}
2279 	if (ret > 0) {
2280 		if (metadata) {
2281 			if (path->slots[0] > 0) {
2282 				path->slots[0]--;
2283 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2284 						      path->slots[0]);
2285 				if (key.objectid == node->bytenr &&
2286 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2287 				    key.offset == node->num_bytes)
2288 					ret = 0;
2289 			}
2290 			if (ret > 0) {
2291 				btrfs_release_path(path);
2292 				metadata = 0;
2293 
2294 				key.objectid = node->bytenr;
2295 				key.offset = node->num_bytes;
2296 				key.type = BTRFS_EXTENT_ITEM_KEY;
2297 				goto again;
2298 			}
2299 		} else {
2300 			err = -EIO;
2301 			goto out;
2302 		}
2303 	}
2304 
2305 	leaf = path->nodes[0];
2306 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2308 	if (item_size < sizeof(*ei)) {
2309 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2310 		if (ret < 0) {
2311 			err = ret;
2312 			goto out;
2313 		}
2314 		leaf = path->nodes[0];
2315 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2316 	}
2317 #endif
2318 	BUG_ON(item_size < sizeof(*ei));
2319 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2320 	__run_delayed_extent_op(extent_op, leaf, ei);
2321 
2322 	btrfs_mark_buffer_dirty(leaf);
2323 out:
2324 	btrfs_free_path(path);
2325 	return err;
2326 }
2327 
2328 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2329 				struct btrfs_fs_info *fs_info,
2330 				struct btrfs_delayed_ref_node *node,
2331 				struct btrfs_delayed_extent_op *extent_op,
2332 				int insert_reserved)
2333 {
2334 	int ret = 0;
2335 	struct btrfs_delayed_tree_ref *ref;
2336 	struct btrfs_key ins;
2337 	u64 parent = 0;
2338 	u64 ref_root = 0;
2339 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2340 
2341 	ref = btrfs_delayed_node_to_tree_ref(node);
2342 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2343 
2344 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2345 		parent = ref->parent;
2346 	ref_root = ref->root;
2347 
2348 	ins.objectid = node->bytenr;
2349 	if (skinny_metadata) {
2350 		ins.offset = ref->level;
2351 		ins.type = BTRFS_METADATA_ITEM_KEY;
2352 	} else {
2353 		ins.offset = node->num_bytes;
2354 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2355 	}
2356 
2357 	if (node->ref_mod != 1) {
2358 		btrfs_err(fs_info,
2359 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2360 			  node->bytenr, node->ref_mod, node->action, ref_root,
2361 			  parent);
2362 		return -EIO;
2363 	}
2364 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 		BUG_ON(!extent_op || !extent_op->update_flags);
2366 		ret = alloc_reserved_tree_block(trans, fs_info,
2367 						parent, ref_root,
2368 						extent_op->flags_to_set,
2369 						&extent_op->key,
2370 						ref->level, &ins);
2371 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2373 					     parent, ref_root,
2374 					     ref->level, 0, 1,
2375 					     extent_op);
2376 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 		ret = __btrfs_free_extent(trans, fs_info, node,
2378 					  parent, ref_root,
2379 					  ref->level, 0, 1, extent_op);
2380 	} else {
2381 		BUG();
2382 	}
2383 	return ret;
2384 }
2385 
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 			       struct btrfs_fs_info *fs_info,
2389 			       struct btrfs_delayed_ref_node *node,
2390 			       struct btrfs_delayed_extent_op *extent_op,
2391 			       int insert_reserved)
2392 {
2393 	int ret = 0;
2394 
2395 	if (trans->aborted) {
2396 		if (insert_reserved)
2397 			btrfs_pin_extent(fs_info, node->bytenr,
2398 					 node->num_bytes, 1);
2399 		return 0;
2400 	}
2401 
2402 	if (btrfs_delayed_ref_is_head(node)) {
2403 		struct btrfs_delayed_ref_head *head;
2404 		/*
2405 		 * we've hit the end of the chain and we were supposed
2406 		 * to insert this extent into the tree.  But, it got
2407 		 * deleted before we ever needed to insert it, so all
2408 		 * we have to do is clean up the accounting
2409 		 */
2410 		BUG_ON(extent_op);
2411 		head = btrfs_delayed_node_to_head(node);
2412 		trace_run_delayed_ref_head(fs_info, node, head, node->action);
2413 
2414 		if (insert_reserved) {
2415 			btrfs_pin_extent(fs_info, node->bytenr,
2416 					 node->num_bytes, 1);
2417 			if (head->is_data) {
2418 				ret = btrfs_del_csums(trans, fs_info,
2419 						      node->bytenr,
2420 						      node->num_bytes);
2421 			}
2422 		}
2423 
2424 		/* Also free its reserved qgroup space */
2425 		btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2426 					      head->qgroup_reserved);
2427 		return ret;
2428 	}
2429 
2430 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2433 					   insert_reserved);
2434 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2437 					   insert_reserved);
2438 	else
2439 		BUG();
2440 	return ret;
2441 }
2442 
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 	struct btrfs_delayed_ref_node *ref;
2447 
2448 	if (list_empty(&head->ref_list))
2449 		return NULL;
2450 
2451 	/*
2452 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 	 * This is to prevent a ref count from going down to zero, which deletes
2454 	 * the extent item from the extent tree, when there still are references
2455 	 * to add, which would fail because they would not find the extent item.
2456 	 */
2457 	if (!list_empty(&head->ref_add_list))
2458 		return list_first_entry(&head->ref_add_list,
2459 				struct btrfs_delayed_ref_node, add_list);
2460 
2461 	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 			       list);
2463 	ASSERT(list_empty(&ref->add_list));
2464 	return ref;
2465 }
2466 
2467 /*
2468  * Returns 0 on success or if called with an already aborted transaction.
2469  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470  */
2471 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472 					     struct btrfs_fs_info *fs_info,
2473 					     unsigned long nr)
2474 {
2475 	struct btrfs_delayed_ref_root *delayed_refs;
2476 	struct btrfs_delayed_ref_node *ref;
2477 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2478 	struct btrfs_delayed_extent_op *extent_op;
2479 	ktime_t start = ktime_get();
2480 	int ret;
2481 	unsigned long count = 0;
2482 	unsigned long actual_count = 0;
2483 	int must_insert_reserved = 0;
2484 
2485 	delayed_refs = &trans->transaction->delayed_refs;
2486 	while (1) {
2487 		if (!locked_ref) {
2488 			if (count >= nr)
2489 				break;
2490 
2491 			spin_lock(&delayed_refs->lock);
2492 			locked_ref = btrfs_select_ref_head(trans);
2493 			if (!locked_ref) {
2494 				spin_unlock(&delayed_refs->lock);
2495 				break;
2496 			}
2497 
2498 			/* grab the lock that says we are going to process
2499 			 * all the refs for this head */
2500 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 			spin_unlock(&delayed_refs->lock);
2502 			/*
2503 			 * we may have dropped the spin lock to get the head
2504 			 * mutex lock, and that might have given someone else
2505 			 * time to free the head.  If that's true, it has been
2506 			 * removed from our list and we can move on.
2507 			 */
2508 			if (ret == -EAGAIN) {
2509 				locked_ref = NULL;
2510 				count++;
2511 				continue;
2512 			}
2513 		}
2514 
2515 		/*
2516 		 * We need to try and merge add/drops of the same ref since we
2517 		 * can run into issues with relocate dropping the implicit ref
2518 		 * and then it being added back again before the drop can
2519 		 * finish.  If we merged anything we need to re-loop so we can
2520 		 * get a good ref.
2521 		 * Or we can get node references of the same type that weren't
2522 		 * merged when created due to bumps in the tree mod seq, and
2523 		 * we need to merge them to prevent adding an inline extent
2524 		 * backref before dropping it (triggering a BUG_ON at
2525 		 * insert_inline_extent_backref()).
2526 		 */
2527 		spin_lock(&locked_ref->lock);
2528 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 					 locked_ref);
2530 
2531 		/*
2532 		 * locked_ref is the head node, so we have to go one
2533 		 * node back for any delayed ref updates
2534 		 */
2535 		ref = select_delayed_ref(locked_ref);
2536 
2537 		if (ref && ref->seq &&
2538 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 			spin_unlock(&locked_ref->lock);
2540 			spin_lock(&delayed_refs->lock);
2541 			locked_ref->processing = 0;
2542 			delayed_refs->num_heads_ready++;
2543 			spin_unlock(&delayed_refs->lock);
2544 			btrfs_delayed_ref_unlock(locked_ref);
2545 			locked_ref = NULL;
2546 			cond_resched();
2547 			count++;
2548 			continue;
2549 		}
2550 
2551 		/*
2552 		 * record the must insert reserved flag before we
2553 		 * drop the spin lock.
2554 		 */
2555 		must_insert_reserved = locked_ref->must_insert_reserved;
2556 		locked_ref->must_insert_reserved = 0;
2557 
2558 		extent_op = locked_ref->extent_op;
2559 		locked_ref->extent_op = NULL;
2560 
2561 		if (!ref) {
2562 
2563 
2564 			/* All delayed refs have been processed, Go ahead
2565 			 * and send the head node to run_one_delayed_ref,
2566 			 * so that any accounting fixes can happen
2567 			 */
2568 			ref = &locked_ref->node;
2569 
2570 			if (extent_op && must_insert_reserved) {
2571 				btrfs_free_delayed_extent_op(extent_op);
2572 				extent_op = NULL;
2573 			}
2574 
2575 			if (extent_op) {
2576 				spin_unlock(&locked_ref->lock);
2577 				ret = run_delayed_extent_op(trans, fs_info,
2578 							    ref, extent_op);
2579 				btrfs_free_delayed_extent_op(extent_op);
2580 
2581 				if (ret) {
2582 					/*
2583 					 * Need to reset must_insert_reserved if
2584 					 * there was an error so the abort stuff
2585 					 * can cleanup the reserved space
2586 					 * properly.
2587 					 */
2588 					if (must_insert_reserved)
2589 						locked_ref->must_insert_reserved = 1;
2590 					spin_lock(&delayed_refs->lock);
2591 					locked_ref->processing = 0;
2592 					delayed_refs->num_heads_ready++;
2593 					spin_unlock(&delayed_refs->lock);
2594 					btrfs_debug(fs_info,
2595 						    "run_delayed_extent_op returned %d",
2596 						    ret);
2597 					btrfs_delayed_ref_unlock(locked_ref);
2598 					return ret;
2599 				}
2600 				continue;
2601 			}
2602 
2603 			/*
2604 			 * Need to drop our head ref lock and re-acquire the
2605 			 * delayed ref lock and then re-check to make sure
2606 			 * nobody got added.
2607 			 */
2608 			spin_unlock(&locked_ref->lock);
2609 			spin_lock(&delayed_refs->lock);
2610 			spin_lock(&locked_ref->lock);
2611 			if (!list_empty(&locked_ref->ref_list) ||
2612 			    locked_ref->extent_op) {
2613 				spin_unlock(&locked_ref->lock);
2614 				spin_unlock(&delayed_refs->lock);
2615 				continue;
2616 			}
2617 			ref->in_tree = 0;
2618 			delayed_refs->num_heads--;
2619 			rb_erase(&locked_ref->href_node,
2620 				 &delayed_refs->href_root);
2621 			spin_unlock(&delayed_refs->lock);
2622 		} else {
2623 			actual_count++;
2624 			ref->in_tree = 0;
2625 			list_del(&ref->list);
2626 			if (!list_empty(&ref->add_list))
2627 				list_del(&ref->add_list);
2628 		}
2629 		atomic_dec(&delayed_refs->num_entries);
2630 
2631 		if (!btrfs_delayed_ref_is_head(ref)) {
2632 			/*
2633 			 * when we play the delayed ref, also correct the
2634 			 * ref_mod on head
2635 			 */
2636 			switch (ref->action) {
2637 			case BTRFS_ADD_DELAYED_REF:
2638 			case BTRFS_ADD_DELAYED_EXTENT:
2639 				locked_ref->node.ref_mod -= ref->ref_mod;
2640 				break;
2641 			case BTRFS_DROP_DELAYED_REF:
2642 				locked_ref->node.ref_mod += ref->ref_mod;
2643 				break;
2644 			default:
2645 				WARN_ON(1);
2646 			}
2647 		}
2648 		spin_unlock(&locked_ref->lock);
2649 
2650 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2651 					  must_insert_reserved);
2652 
2653 		btrfs_free_delayed_extent_op(extent_op);
2654 		if (ret) {
2655 			spin_lock(&delayed_refs->lock);
2656 			locked_ref->processing = 0;
2657 			delayed_refs->num_heads_ready++;
2658 			spin_unlock(&delayed_refs->lock);
2659 			btrfs_delayed_ref_unlock(locked_ref);
2660 			btrfs_put_delayed_ref(ref);
2661 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662 				    ret);
2663 			return ret;
2664 		}
2665 
2666 		/*
2667 		 * If this node is a head, that means all the refs in this head
2668 		 * have been dealt with, and we will pick the next head to deal
2669 		 * with, so we must unlock the head and drop it from the cluster
2670 		 * list before we release it.
2671 		 */
2672 		if (btrfs_delayed_ref_is_head(ref)) {
2673 			if (locked_ref->is_data &&
2674 			    locked_ref->total_ref_mod < 0) {
2675 				spin_lock(&delayed_refs->lock);
2676 				delayed_refs->pending_csums -= ref->num_bytes;
2677 				spin_unlock(&delayed_refs->lock);
2678 			}
2679 			btrfs_delayed_ref_unlock(locked_ref);
2680 			locked_ref = NULL;
2681 		}
2682 		btrfs_put_delayed_ref(ref);
2683 		count++;
2684 		cond_resched();
2685 	}
2686 
2687 	/*
2688 	 * We don't want to include ref heads since we can have empty ref heads
2689 	 * and those will drastically skew our runtime down since we just do
2690 	 * accounting, no actual extent tree updates.
2691 	 */
2692 	if (actual_count > 0) {
2693 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2694 		u64 avg;
2695 
2696 		/*
2697 		 * We weigh the current average higher than our current runtime
2698 		 * to avoid large swings in the average.
2699 		 */
2700 		spin_lock(&delayed_refs->lock);
2701 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2702 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2703 		spin_unlock(&delayed_refs->lock);
2704 	}
2705 	return 0;
2706 }
2707 
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 /*
2710  * Normally delayed refs get processed in ascending bytenr order. This
2711  * correlates in most cases to the order added. To expose dependencies on this
2712  * order, we start to process the tree in the middle instead of the beginning
2713  */
2714 static u64 find_middle(struct rb_root *root)
2715 {
2716 	struct rb_node *n = root->rb_node;
2717 	struct btrfs_delayed_ref_node *entry;
2718 	int alt = 1;
2719 	u64 middle;
2720 	u64 first = 0, last = 0;
2721 
2722 	n = rb_first(root);
2723 	if (n) {
2724 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 		first = entry->bytenr;
2726 	}
2727 	n = rb_last(root);
2728 	if (n) {
2729 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 		last = entry->bytenr;
2731 	}
2732 	n = root->rb_node;
2733 
2734 	while (n) {
2735 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736 		WARN_ON(!entry->in_tree);
2737 
2738 		middle = entry->bytenr;
2739 
2740 		if (alt)
2741 			n = n->rb_left;
2742 		else
2743 			n = n->rb_right;
2744 
2745 		alt = 1 - alt;
2746 	}
2747 	return middle;
2748 }
2749 #endif
2750 
2751 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2752 {
2753 	u64 num_bytes;
2754 
2755 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2756 			     sizeof(struct btrfs_extent_inline_ref));
2757 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2758 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2759 
2760 	/*
2761 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2762 	 * closer to what we're really going to want to use.
2763 	 */
2764 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2765 }
2766 
2767 /*
2768  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2769  * would require to store the csums for that many bytes.
2770  */
2771 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2772 {
2773 	u64 csum_size;
2774 	u64 num_csums_per_leaf;
2775 	u64 num_csums;
2776 
2777 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2778 	num_csums_per_leaf = div64_u64(csum_size,
2779 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2780 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2781 	num_csums += num_csums_per_leaf - 1;
2782 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2783 	return num_csums;
2784 }
2785 
2786 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2787 				       struct btrfs_fs_info *fs_info)
2788 {
2789 	struct btrfs_block_rsv *global_rsv;
2790 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2791 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2792 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2793 	u64 num_bytes, num_dirty_bgs_bytes;
2794 	int ret = 0;
2795 
2796 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2797 	num_heads = heads_to_leaves(fs_info, num_heads);
2798 	if (num_heads > 1)
2799 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2800 	num_bytes <<= 1;
2801 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2802 							fs_info->nodesize;
2803 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2804 							     num_dirty_bgs);
2805 	global_rsv = &fs_info->global_block_rsv;
2806 
2807 	/*
2808 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2809 	 * wiggle room since running delayed refs can create more delayed refs.
2810 	 */
2811 	if (global_rsv->space_info->full) {
2812 		num_dirty_bgs_bytes <<= 1;
2813 		num_bytes <<= 1;
2814 	}
2815 
2816 	spin_lock(&global_rsv->lock);
2817 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2818 		ret = 1;
2819 	spin_unlock(&global_rsv->lock);
2820 	return ret;
2821 }
2822 
2823 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2824 				       struct btrfs_fs_info *fs_info)
2825 {
2826 	u64 num_entries =
2827 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2828 	u64 avg_runtime;
2829 	u64 val;
2830 
2831 	smp_mb();
2832 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2833 	val = num_entries * avg_runtime;
2834 	if (val >= NSEC_PER_SEC)
2835 		return 1;
2836 	if (val >= NSEC_PER_SEC / 2)
2837 		return 2;
2838 
2839 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2840 }
2841 
2842 struct async_delayed_refs {
2843 	struct btrfs_root *root;
2844 	u64 transid;
2845 	int count;
2846 	int error;
2847 	int sync;
2848 	struct completion wait;
2849 	struct btrfs_work work;
2850 };
2851 
2852 static inline struct async_delayed_refs *
2853 to_async_delayed_refs(struct btrfs_work *work)
2854 {
2855 	return container_of(work, struct async_delayed_refs, work);
2856 }
2857 
2858 static void delayed_ref_async_start(struct btrfs_work *work)
2859 {
2860 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2861 	struct btrfs_trans_handle *trans;
2862 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2863 	int ret;
2864 
2865 	/* if the commit is already started, we don't need to wait here */
2866 	if (btrfs_transaction_blocked(fs_info))
2867 		goto done;
2868 
2869 	trans = btrfs_join_transaction(async->root);
2870 	if (IS_ERR(trans)) {
2871 		async->error = PTR_ERR(trans);
2872 		goto done;
2873 	}
2874 
2875 	/*
2876 	 * trans->sync means that when we call end_transaction, we won't
2877 	 * wait on delayed refs
2878 	 */
2879 	trans->sync = true;
2880 
2881 	/* Don't bother flushing if we got into a different transaction */
2882 	if (trans->transid > async->transid)
2883 		goto end;
2884 
2885 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2886 	if (ret)
2887 		async->error = ret;
2888 end:
2889 	ret = btrfs_end_transaction(trans);
2890 	if (ret && !async->error)
2891 		async->error = ret;
2892 done:
2893 	if (async->sync)
2894 		complete(&async->wait);
2895 	else
2896 		kfree(async);
2897 }
2898 
2899 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2900 				 unsigned long count, u64 transid, int wait)
2901 {
2902 	struct async_delayed_refs *async;
2903 	int ret;
2904 
2905 	async = kmalloc(sizeof(*async), GFP_NOFS);
2906 	if (!async)
2907 		return -ENOMEM;
2908 
2909 	async->root = fs_info->tree_root;
2910 	async->count = count;
2911 	async->error = 0;
2912 	async->transid = transid;
2913 	if (wait)
2914 		async->sync = 1;
2915 	else
2916 		async->sync = 0;
2917 	init_completion(&async->wait);
2918 
2919 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 			delayed_ref_async_start, NULL, NULL);
2921 
2922 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2923 
2924 	if (wait) {
2925 		wait_for_completion(&async->wait);
2926 		ret = async->error;
2927 		kfree(async);
2928 		return ret;
2929 	}
2930 	return 0;
2931 }
2932 
2933 /*
2934  * this starts processing the delayed reference count updates and
2935  * extent insertions we have queued up so far.  count can be
2936  * 0, which means to process everything in the tree at the start
2937  * of the run (but not newly added entries), or it can be some target
2938  * number you'd like to process.
2939  *
2940  * Returns 0 on success or if called with an aborted transaction
2941  * Returns <0 on error and aborts the transaction
2942  */
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944 			   struct btrfs_fs_info *fs_info, unsigned long count)
2945 {
2946 	struct rb_node *node;
2947 	struct btrfs_delayed_ref_root *delayed_refs;
2948 	struct btrfs_delayed_ref_head *head;
2949 	int ret;
2950 	int run_all = count == (unsigned long)-1;
2951 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952 
2953 	/* We'll clean this up in btrfs_cleanup_transaction */
2954 	if (trans->aborted)
2955 		return 0;
2956 
2957 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2958 		return 0;
2959 
2960 	delayed_refs = &trans->transaction->delayed_refs;
2961 	if (count == 0)
2962 		count = atomic_read(&delayed_refs->num_entries) * 2;
2963 
2964 again:
2965 #ifdef SCRAMBLE_DELAYED_REFS
2966 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2967 #endif
2968 	trans->can_flush_pending_bgs = false;
2969 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2970 	if (ret < 0) {
2971 		btrfs_abort_transaction(trans, ret);
2972 		return ret;
2973 	}
2974 
2975 	if (run_all) {
2976 		if (!list_empty(&trans->new_bgs))
2977 			btrfs_create_pending_block_groups(trans, fs_info);
2978 
2979 		spin_lock(&delayed_refs->lock);
2980 		node = rb_first(&delayed_refs->href_root);
2981 		if (!node) {
2982 			spin_unlock(&delayed_refs->lock);
2983 			goto out;
2984 		}
2985 
2986 		while (node) {
2987 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2988 					href_node);
2989 			if (btrfs_delayed_ref_is_head(&head->node)) {
2990 				struct btrfs_delayed_ref_node *ref;
2991 
2992 				ref = &head->node;
2993 				refcount_inc(&ref->refs);
2994 
2995 				spin_unlock(&delayed_refs->lock);
2996 				/*
2997 				 * Mutex was contended, block until it's
2998 				 * released and try again
2999 				 */
3000 				mutex_lock(&head->mutex);
3001 				mutex_unlock(&head->mutex);
3002 
3003 				btrfs_put_delayed_ref(ref);
3004 				cond_resched();
3005 				goto again;
3006 			} else {
3007 				WARN_ON(1);
3008 			}
3009 			node = rb_next(node);
3010 		}
3011 		spin_unlock(&delayed_refs->lock);
3012 		cond_resched();
3013 		goto again;
3014 	}
3015 out:
3016 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3017 	return 0;
3018 }
3019 
3020 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3021 				struct btrfs_fs_info *fs_info,
3022 				u64 bytenr, u64 num_bytes, u64 flags,
3023 				int level, int is_data)
3024 {
3025 	struct btrfs_delayed_extent_op *extent_op;
3026 	int ret;
3027 
3028 	extent_op = btrfs_alloc_delayed_extent_op();
3029 	if (!extent_op)
3030 		return -ENOMEM;
3031 
3032 	extent_op->flags_to_set = flags;
3033 	extent_op->update_flags = true;
3034 	extent_op->update_key = false;
3035 	extent_op->is_data = is_data ? true : false;
3036 	extent_op->level = level;
3037 
3038 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3039 					  num_bytes, extent_op);
3040 	if (ret)
3041 		btrfs_free_delayed_extent_op(extent_op);
3042 	return ret;
3043 }
3044 
3045 static noinline int check_delayed_ref(struct btrfs_root *root,
3046 				      struct btrfs_path *path,
3047 				      u64 objectid, u64 offset, u64 bytenr)
3048 {
3049 	struct btrfs_delayed_ref_head *head;
3050 	struct btrfs_delayed_ref_node *ref;
3051 	struct btrfs_delayed_data_ref *data_ref;
3052 	struct btrfs_delayed_ref_root *delayed_refs;
3053 	struct btrfs_transaction *cur_trans;
3054 	int ret = 0;
3055 
3056 	cur_trans = root->fs_info->running_transaction;
3057 	if (!cur_trans)
3058 		return 0;
3059 
3060 	delayed_refs = &cur_trans->delayed_refs;
3061 	spin_lock(&delayed_refs->lock);
3062 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3063 	if (!head) {
3064 		spin_unlock(&delayed_refs->lock);
3065 		return 0;
3066 	}
3067 
3068 	if (!mutex_trylock(&head->mutex)) {
3069 		refcount_inc(&head->node.refs);
3070 		spin_unlock(&delayed_refs->lock);
3071 
3072 		btrfs_release_path(path);
3073 
3074 		/*
3075 		 * Mutex was contended, block until it's released and let
3076 		 * caller try again
3077 		 */
3078 		mutex_lock(&head->mutex);
3079 		mutex_unlock(&head->mutex);
3080 		btrfs_put_delayed_ref(&head->node);
3081 		return -EAGAIN;
3082 	}
3083 	spin_unlock(&delayed_refs->lock);
3084 
3085 	spin_lock(&head->lock);
3086 	list_for_each_entry(ref, &head->ref_list, list) {
3087 		/* If it's a shared ref we know a cross reference exists */
3088 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 			ret = 1;
3090 			break;
3091 		}
3092 
3093 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3094 
3095 		/*
3096 		 * If our ref doesn't match the one we're currently looking at
3097 		 * then we have a cross reference.
3098 		 */
3099 		if (data_ref->root != root->root_key.objectid ||
3100 		    data_ref->objectid != objectid ||
3101 		    data_ref->offset != offset) {
3102 			ret = 1;
3103 			break;
3104 		}
3105 	}
3106 	spin_unlock(&head->lock);
3107 	mutex_unlock(&head->mutex);
3108 	return ret;
3109 }
3110 
3111 static noinline int check_committed_ref(struct btrfs_root *root,
3112 					struct btrfs_path *path,
3113 					u64 objectid, u64 offset, u64 bytenr)
3114 {
3115 	struct btrfs_fs_info *fs_info = root->fs_info;
3116 	struct btrfs_root *extent_root = fs_info->extent_root;
3117 	struct extent_buffer *leaf;
3118 	struct btrfs_extent_data_ref *ref;
3119 	struct btrfs_extent_inline_ref *iref;
3120 	struct btrfs_extent_item *ei;
3121 	struct btrfs_key key;
3122 	u32 item_size;
3123 	int ret;
3124 
3125 	key.objectid = bytenr;
3126 	key.offset = (u64)-1;
3127 	key.type = BTRFS_EXTENT_ITEM_KEY;
3128 
3129 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 	if (ret < 0)
3131 		goto out;
3132 	BUG_ON(ret == 0); /* Corruption */
3133 
3134 	ret = -ENOENT;
3135 	if (path->slots[0] == 0)
3136 		goto out;
3137 
3138 	path->slots[0]--;
3139 	leaf = path->nodes[0];
3140 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141 
3142 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3143 		goto out;
3144 
3145 	ret = 1;
3146 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 	if (item_size < sizeof(*ei)) {
3149 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 		goto out;
3151 	}
3152 #endif
3153 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3154 
3155 	if (item_size != sizeof(*ei) +
3156 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 		goto out;
3158 
3159 	if (btrfs_extent_generation(leaf, ei) <=
3160 	    btrfs_root_last_snapshot(&root->root_item))
3161 		goto out;
3162 
3163 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 	    BTRFS_EXTENT_DATA_REF_KEY)
3166 		goto out;
3167 
3168 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 	if (btrfs_extent_refs(leaf, ei) !=
3170 	    btrfs_extent_data_ref_count(leaf, ref) ||
3171 	    btrfs_extent_data_ref_root(leaf, ref) !=
3172 	    root->root_key.objectid ||
3173 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 		goto out;
3176 
3177 	ret = 0;
3178 out:
3179 	return ret;
3180 }
3181 
3182 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3183 			  u64 bytenr)
3184 {
3185 	struct btrfs_path *path;
3186 	int ret;
3187 	int ret2;
3188 
3189 	path = btrfs_alloc_path();
3190 	if (!path)
3191 		return -ENOENT;
3192 
3193 	do {
3194 		ret = check_committed_ref(root, path, objectid,
3195 					  offset, bytenr);
3196 		if (ret && ret != -ENOENT)
3197 			goto out;
3198 
3199 		ret2 = check_delayed_ref(root, path, objectid,
3200 					 offset, bytenr);
3201 	} while (ret2 == -EAGAIN);
3202 
3203 	if (ret2 && ret2 != -ENOENT) {
3204 		ret = ret2;
3205 		goto out;
3206 	}
3207 
3208 	if (ret != -ENOENT || ret2 != -ENOENT)
3209 		ret = 0;
3210 out:
3211 	btrfs_free_path(path);
3212 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3213 		WARN_ON(ret > 0);
3214 	return ret;
3215 }
3216 
3217 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3218 			   struct btrfs_root *root,
3219 			   struct extent_buffer *buf,
3220 			   int full_backref, int inc)
3221 {
3222 	struct btrfs_fs_info *fs_info = root->fs_info;
3223 	u64 bytenr;
3224 	u64 num_bytes;
3225 	u64 parent;
3226 	u64 ref_root;
3227 	u32 nritems;
3228 	struct btrfs_key key;
3229 	struct btrfs_file_extent_item *fi;
3230 	int i;
3231 	int level;
3232 	int ret = 0;
3233 	int (*process_func)(struct btrfs_trans_handle *,
3234 			    struct btrfs_fs_info *,
3235 			    u64, u64, u64, u64, u64, u64);
3236 
3237 
3238 	if (btrfs_is_testing(fs_info))
3239 		return 0;
3240 
3241 	ref_root = btrfs_header_owner(buf);
3242 	nritems = btrfs_header_nritems(buf);
3243 	level = btrfs_header_level(buf);
3244 
3245 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3246 		return 0;
3247 
3248 	if (inc)
3249 		process_func = btrfs_inc_extent_ref;
3250 	else
3251 		process_func = btrfs_free_extent;
3252 
3253 	if (full_backref)
3254 		parent = buf->start;
3255 	else
3256 		parent = 0;
3257 
3258 	for (i = 0; i < nritems; i++) {
3259 		if (level == 0) {
3260 			btrfs_item_key_to_cpu(buf, &key, i);
3261 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3262 				continue;
3263 			fi = btrfs_item_ptr(buf, i,
3264 					    struct btrfs_file_extent_item);
3265 			if (btrfs_file_extent_type(buf, fi) ==
3266 			    BTRFS_FILE_EXTENT_INLINE)
3267 				continue;
3268 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 			if (bytenr == 0)
3270 				continue;
3271 
3272 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 			key.offset -= btrfs_file_extent_offset(buf, fi);
3274 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3275 					   parent, ref_root, key.objectid,
3276 					   key.offset);
3277 			if (ret)
3278 				goto fail;
3279 		} else {
3280 			bytenr = btrfs_node_blockptr(buf, i);
3281 			num_bytes = fs_info->nodesize;
3282 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3283 					   parent, ref_root, level - 1, 0);
3284 			if (ret)
3285 				goto fail;
3286 		}
3287 	}
3288 	return 0;
3289 fail:
3290 	return ret;
3291 }
3292 
3293 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3294 		  struct extent_buffer *buf, int full_backref)
3295 {
3296 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3297 }
3298 
3299 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3300 		  struct extent_buffer *buf, int full_backref)
3301 {
3302 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3303 }
3304 
3305 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306 				 struct btrfs_fs_info *fs_info,
3307 				 struct btrfs_path *path,
3308 				 struct btrfs_block_group_cache *cache)
3309 {
3310 	int ret;
3311 	struct btrfs_root *extent_root = fs_info->extent_root;
3312 	unsigned long bi;
3313 	struct extent_buffer *leaf;
3314 
3315 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3316 	if (ret) {
3317 		if (ret > 0)
3318 			ret = -ENOENT;
3319 		goto fail;
3320 	}
3321 
3322 	leaf = path->nodes[0];
3323 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 	btrfs_mark_buffer_dirty(leaf);
3326 fail:
3327 	btrfs_release_path(path);
3328 	return ret;
3329 
3330 }
3331 
3332 static struct btrfs_block_group_cache *
3333 next_block_group(struct btrfs_fs_info *fs_info,
3334 		 struct btrfs_block_group_cache *cache)
3335 {
3336 	struct rb_node *node;
3337 
3338 	spin_lock(&fs_info->block_group_cache_lock);
3339 
3340 	/* If our block group was removed, we need a full search. */
3341 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343 
3344 		spin_unlock(&fs_info->block_group_cache_lock);
3345 		btrfs_put_block_group(cache);
3346 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3347 	}
3348 	node = rb_next(&cache->cache_node);
3349 	btrfs_put_block_group(cache);
3350 	if (node) {
3351 		cache = rb_entry(node, struct btrfs_block_group_cache,
3352 				 cache_node);
3353 		btrfs_get_block_group(cache);
3354 	} else
3355 		cache = NULL;
3356 	spin_unlock(&fs_info->block_group_cache_lock);
3357 	return cache;
3358 }
3359 
3360 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3361 			    struct btrfs_trans_handle *trans,
3362 			    struct btrfs_path *path)
3363 {
3364 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3365 	struct btrfs_root *root = fs_info->tree_root;
3366 	struct inode *inode = NULL;
3367 	u64 alloc_hint = 0;
3368 	int dcs = BTRFS_DC_ERROR;
3369 	u64 num_pages = 0;
3370 	int retries = 0;
3371 	int ret = 0;
3372 
3373 	/*
3374 	 * If this block group is smaller than 100 megs don't bother caching the
3375 	 * block group.
3376 	 */
3377 	if (block_group->key.offset < (100 * SZ_1M)) {
3378 		spin_lock(&block_group->lock);
3379 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 		spin_unlock(&block_group->lock);
3381 		return 0;
3382 	}
3383 
3384 	if (trans->aborted)
3385 		return 0;
3386 again:
3387 	inode = lookup_free_space_inode(fs_info, block_group, path);
3388 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 		ret = PTR_ERR(inode);
3390 		btrfs_release_path(path);
3391 		goto out;
3392 	}
3393 
3394 	if (IS_ERR(inode)) {
3395 		BUG_ON(retries);
3396 		retries++;
3397 
3398 		if (block_group->ro)
3399 			goto out_free;
3400 
3401 		ret = create_free_space_inode(fs_info, trans, block_group,
3402 					      path);
3403 		if (ret)
3404 			goto out_free;
3405 		goto again;
3406 	}
3407 
3408 	/* We've already setup this transaction, go ahead and exit */
3409 	if (block_group->cache_generation == trans->transid &&
3410 	    i_size_read(inode)) {
3411 		dcs = BTRFS_DC_SETUP;
3412 		goto out_put;
3413 	}
3414 
3415 	/*
3416 	 * We want to set the generation to 0, that way if anything goes wrong
3417 	 * from here on out we know not to trust this cache when we load up next
3418 	 * time.
3419 	 */
3420 	BTRFS_I(inode)->generation = 0;
3421 	ret = btrfs_update_inode(trans, root, inode);
3422 	if (ret) {
3423 		/*
3424 		 * So theoretically we could recover from this, simply set the
3425 		 * super cache generation to 0 so we know to invalidate the
3426 		 * cache, but then we'd have to keep track of the block groups
3427 		 * that fail this way so we know we _have_ to reset this cache
3428 		 * before the next commit or risk reading stale cache.  So to
3429 		 * limit our exposure to horrible edge cases lets just abort the
3430 		 * transaction, this only happens in really bad situations
3431 		 * anyway.
3432 		 */
3433 		btrfs_abort_transaction(trans, ret);
3434 		goto out_put;
3435 	}
3436 	WARN_ON(ret);
3437 
3438 	if (i_size_read(inode) > 0) {
3439 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3440 					&fs_info->global_block_rsv);
3441 		if (ret)
3442 			goto out_put;
3443 
3444 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3445 		if (ret)
3446 			goto out_put;
3447 	}
3448 
3449 	spin_lock(&block_group->lock);
3450 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3451 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3452 		/*
3453 		 * don't bother trying to write stuff out _if_
3454 		 * a) we're not cached,
3455 		 * b) we're with nospace_cache mount option,
3456 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3457 		 */
3458 		dcs = BTRFS_DC_WRITTEN;
3459 		spin_unlock(&block_group->lock);
3460 		goto out_put;
3461 	}
3462 	spin_unlock(&block_group->lock);
3463 
3464 	/*
3465 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3466 	 * skip doing the setup, we've already cleared the cache so we're safe.
3467 	 */
3468 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3469 		ret = -ENOSPC;
3470 		goto out_put;
3471 	}
3472 
3473 	/*
3474 	 * Try to preallocate enough space based on how big the block group is.
3475 	 * Keep in mind this has to include any pinned space which could end up
3476 	 * taking up quite a bit since it's not folded into the other space
3477 	 * cache.
3478 	 */
3479 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3480 	if (!num_pages)
3481 		num_pages = 1;
3482 
3483 	num_pages *= 16;
3484 	num_pages *= PAGE_SIZE;
3485 
3486 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3487 	if (ret)
3488 		goto out_put;
3489 
3490 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3491 					      num_pages, num_pages,
3492 					      &alloc_hint);
3493 	/*
3494 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3495 	 * of metadata or split extents when writing the cache out, which means
3496 	 * we can enospc if we are heavily fragmented in addition to just normal
3497 	 * out of space conditions.  So if we hit this just skip setting up any
3498 	 * other block groups for this transaction, maybe we'll unpin enough
3499 	 * space the next time around.
3500 	 */
3501 	if (!ret)
3502 		dcs = BTRFS_DC_SETUP;
3503 	else if (ret == -ENOSPC)
3504 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3505 
3506 out_put:
3507 	iput(inode);
3508 out_free:
3509 	btrfs_release_path(path);
3510 out:
3511 	spin_lock(&block_group->lock);
3512 	if (!ret && dcs == BTRFS_DC_SETUP)
3513 		block_group->cache_generation = trans->transid;
3514 	block_group->disk_cache_state = dcs;
3515 	spin_unlock(&block_group->lock);
3516 
3517 	return ret;
3518 }
3519 
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521 			    struct btrfs_fs_info *fs_info)
3522 {
3523 	struct btrfs_block_group_cache *cache, *tmp;
3524 	struct btrfs_transaction *cur_trans = trans->transaction;
3525 	struct btrfs_path *path;
3526 
3527 	if (list_empty(&cur_trans->dirty_bgs) ||
3528 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3529 		return 0;
3530 
3531 	path = btrfs_alloc_path();
3532 	if (!path)
3533 		return -ENOMEM;
3534 
3535 	/* Could add new block groups, use _safe just in case */
3536 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 				 dirty_list) {
3538 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 			cache_save_setup(cache, trans, path);
3540 	}
3541 
3542 	btrfs_free_path(path);
3543 	return 0;
3544 }
3545 
3546 /*
3547  * transaction commit does final block group cache writeback during a
3548  * critical section where nothing is allowed to change the FS.  This is
3549  * required in order for the cache to actually match the block group,
3550  * but can introduce a lot of latency into the commit.
3551  *
3552  * So, btrfs_start_dirty_block_groups is here to kick off block group
3553  * cache IO.  There's a chance we'll have to redo some of it if the
3554  * block group changes again during the commit, but it greatly reduces
3555  * the commit latency by getting rid of the easy block groups while
3556  * we're still allowing others to join the commit.
3557  */
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3559 				   struct btrfs_fs_info *fs_info)
3560 {
3561 	struct btrfs_block_group_cache *cache;
3562 	struct btrfs_transaction *cur_trans = trans->transaction;
3563 	int ret = 0;
3564 	int should_put;
3565 	struct btrfs_path *path = NULL;
3566 	LIST_HEAD(dirty);
3567 	struct list_head *io = &cur_trans->io_bgs;
3568 	int num_started = 0;
3569 	int loops = 0;
3570 
3571 	spin_lock(&cur_trans->dirty_bgs_lock);
3572 	if (list_empty(&cur_trans->dirty_bgs)) {
3573 		spin_unlock(&cur_trans->dirty_bgs_lock);
3574 		return 0;
3575 	}
3576 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3577 	spin_unlock(&cur_trans->dirty_bgs_lock);
3578 
3579 again:
3580 	/*
3581 	 * make sure all the block groups on our dirty list actually
3582 	 * exist
3583 	 */
3584 	btrfs_create_pending_block_groups(trans, fs_info);
3585 
3586 	if (!path) {
3587 		path = btrfs_alloc_path();
3588 		if (!path)
3589 			return -ENOMEM;
3590 	}
3591 
3592 	/*
3593 	 * cache_write_mutex is here only to save us from balance or automatic
3594 	 * removal of empty block groups deleting this block group while we are
3595 	 * writing out the cache
3596 	 */
3597 	mutex_lock(&trans->transaction->cache_write_mutex);
3598 	while (!list_empty(&dirty)) {
3599 		cache = list_first_entry(&dirty,
3600 					 struct btrfs_block_group_cache,
3601 					 dirty_list);
3602 		/*
3603 		 * this can happen if something re-dirties a block
3604 		 * group that is already under IO.  Just wait for it to
3605 		 * finish and then do it all again
3606 		 */
3607 		if (!list_empty(&cache->io_list)) {
3608 			list_del_init(&cache->io_list);
3609 			btrfs_wait_cache_io(trans, cache, path);
3610 			btrfs_put_block_group(cache);
3611 		}
3612 
3613 
3614 		/*
3615 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3616 		 * if it should update the cache_state.  Don't delete
3617 		 * until after we wait.
3618 		 *
3619 		 * Since we're not running in the commit critical section
3620 		 * we need the dirty_bgs_lock to protect from update_block_group
3621 		 */
3622 		spin_lock(&cur_trans->dirty_bgs_lock);
3623 		list_del_init(&cache->dirty_list);
3624 		spin_unlock(&cur_trans->dirty_bgs_lock);
3625 
3626 		should_put = 1;
3627 
3628 		cache_save_setup(cache, trans, path);
3629 
3630 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3631 			cache->io_ctl.inode = NULL;
3632 			ret = btrfs_write_out_cache(fs_info, trans,
3633 						    cache, path);
3634 			if (ret == 0 && cache->io_ctl.inode) {
3635 				num_started++;
3636 				should_put = 0;
3637 
3638 				/*
3639 				 * the cache_write_mutex is protecting
3640 				 * the io_list
3641 				 */
3642 				list_add_tail(&cache->io_list, io);
3643 			} else {
3644 				/*
3645 				 * if we failed to write the cache, the
3646 				 * generation will be bad and life goes on
3647 				 */
3648 				ret = 0;
3649 			}
3650 		}
3651 		if (!ret) {
3652 			ret = write_one_cache_group(trans, fs_info,
3653 						    path, cache);
3654 			/*
3655 			 * Our block group might still be attached to the list
3656 			 * of new block groups in the transaction handle of some
3657 			 * other task (struct btrfs_trans_handle->new_bgs). This
3658 			 * means its block group item isn't yet in the extent
3659 			 * tree. If this happens ignore the error, as we will
3660 			 * try again later in the critical section of the
3661 			 * transaction commit.
3662 			 */
3663 			if (ret == -ENOENT) {
3664 				ret = 0;
3665 				spin_lock(&cur_trans->dirty_bgs_lock);
3666 				if (list_empty(&cache->dirty_list)) {
3667 					list_add_tail(&cache->dirty_list,
3668 						      &cur_trans->dirty_bgs);
3669 					btrfs_get_block_group(cache);
3670 				}
3671 				spin_unlock(&cur_trans->dirty_bgs_lock);
3672 			} else if (ret) {
3673 				btrfs_abort_transaction(trans, ret);
3674 			}
3675 		}
3676 
3677 		/* if its not on the io list, we need to put the block group */
3678 		if (should_put)
3679 			btrfs_put_block_group(cache);
3680 
3681 		if (ret)
3682 			break;
3683 
3684 		/*
3685 		 * Avoid blocking other tasks for too long. It might even save
3686 		 * us from writing caches for block groups that are going to be
3687 		 * removed.
3688 		 */
3689 		mutex_unlock(&trans->transaction->cache_write_mutex);
3690 		mutex_lock(&trans->transaction->cache_write_mutex);
3691 	}
3692 	mutex_unlock(&trans->transaction->cache_write_mutex);
3693 
3694 	/*
3695 	 * go through delayed refs for all the stuff we've just kicked off
3696 	 * and then loop back (just once)
3697 	 */
3698 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3699 	if (!ret && loops == 0) {
3700 		loops++;
3701 		spin_lock(&cur_trans->dirty_bgs_lock);
3702 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3703 		/*
3704 		 * dirty_bgs_lock protects us from concurrent block group
3705 		 * deletes too (not just cache_write_mutex).
3706 		 */
3707 		if (!list_empty(&dirty)) {
3708 			spin_unlock(&cur_trans->dirty_bgs_lock);
3709 			goto again;
3710 		}
3711 		spin_unlock(&cur_trans->dirty_bgs_lock);
3712 	} else if (ret < 0) {
3713 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3714 	}
3715 
3716 	btrfs_free_path(path);
3717 	return ret;
3718 }
3719 
3720 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3721 				   struct btrfs_fs_info *fs_info)
3722 {
3723 	struct btrfs_block_group_cache *cache;
3724 	struct btrfs_transaction *cur_trans = trans->transaction;
3725 	int ret = 0;
3726 	int should_put;
3727 	struct btrfs_path *path;
3728 	struct list_head *io = &cur_trans->io_bgs;
3729 	int num_started = 0;
3730 
3731 	path = btrfs_alloc_path();
3732 	if (!path)
3733 		return -ENOMEM;
3734 
3735 	/*
3736 	 * Even though we are in the critical section of the transaction commit,
3737 	 * we can still have concurrent tasks adding elements to this
3738 	 * transaction's list of dirty block groups. These tasks correspond to
3739 	 * endio free space workers started when writeback finishes for a
3740 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3741 	 * allocate new block groups as a result of COWing nodes of the root
3742 	 * tree when updating the free space inode. The writeback for the space
3743 	 * caches is triggered by an earlier call to
3744 	 * btrfs_start_dirty_block_groups() and iterations of the following
3745 	 * loop.
3746 	 * Also we want to do the cache_save_setup first and then run the
3747 	 * delayed refs to make sure we have the best chance at doing this all
3748 	 * in one shot.
3749 	 */
3750 	spin_lock(&cur_trans->dirty_bgs_lock);
3751 	while (!list_empty(&cur_trans->dirty_bgs)) {
3752 		cache = list_first_entry(&cur_trans->dirty_bgs,
3753 					 struct btrfs_block_group_cache,
3754 					 dirty_list);
3755 
3756 		/*
3757 		 * this can happen if cache_save_setup re-dirties a block
3758 		 * group that is already under IO.  Just wait for it to
3759 		 * finish and then do it all again
3760 		 */
3761 		if (!list_empty(&cache->io_list)) {
3762 			spin_unlock(&cur_trans->dirty_bgs_lock);
3763 			list_del_init(&cache->io_list);
3764 			btrfs_wait_cache_io(trans, cache, path);
3765 			btrfs_put_block_group(cache);
3766 			spin_lock(&cur_trans->dirty_bgs_lock);
3767 		}
3768 
3769 		/*
3770 		 * don't remove from the dirty list until after we've waited
3771 		 * on any pending IO
3772 		 */
3773 		list_del_init(&cache->dirty_list);
3774 		spin_unlock(&cur_trans->dirty_bgs_lock);
3775 		should_put = 1;
3776 
3777 		cache_save_setup(cache, trans, path);
3778 
3779 		if (!ret)
3780 			ret = btrfs_run_delayed_refs(trans, fs_info,
3781 						     (unsigned long) -1);
3782 
3783 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3784 			cache->io_ctl.inode = NULL;
3785 			ret = btrfs_write_out_cache(fs_info, trans,
3786 						    cache, path);
3787 			if (ret == 0 && cache->io_ctl.inode) {
3788 				num_started++;
3789 				should_put = 0;
3790 				list_add_tail(&cache->io_list, io);
3791 			} else {
3792 				/*
3793 				 * if we failed to write the cache, the
3794 				 * generation will be bad and life goes on
3795 				 */
3796 				ret = 0;
3797 			}
3798 		}
3799 		if (!ret) {
3800 			ret = write_one_cache_group(trans, fs_info,
3801 						    path, cache);
3802 			/*
3803 			 * One of the free space endio workers might have
3804 			 * created a new block group while updating a free space
3805 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3806 			 * and hasn't released its transaction handle yet, in
3807 			 * which case the new block group is still attached to
3808 			 * its transaction handle and its creation has not
3809 			 * finished yet (no block group item in the extent tree
3810 			 * yet, etc). If this is the case, wait for all free
3811 			 * space endio workers to finish and retry. This is a
3812 			 * a very rare case so no need for a more efficient and
3813 			 * complex approach.
3814 			 */
3815 			if (ret == -ENOENT) {
3816 				wait_event(cur_trans->writer_wait,
3817 				   atomic_read(&cur_trans->num_writers) == 1);
3818 				ret = write_one_cache_group(trans, fs_info,
3819 							    path, cache);
3820 			}
3821 			if (ret)
3822 				btrfs_abort_transaction(trans, ret);
3823 		}
3824 
3825 		/* if its not on the io list, we need to put the block group */
3826 		if (should_put)
3827 			btrfs_put_block_group(cache);
3828 		spin_lock(&cur_trans->dirty_bgs_lock);
3829 	}
3830 	spin_unlock(&cur_trans->dirty_bgs_lock);
3831 
3832 	while (!list_empty(io)) {
3833 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3834 					 io_list);
3835 		list_del_init(&cache->io_list);
3836 		btrfs_wait_cache_io(trans, cache, path);
3837 		btrfs_put_block_group(cache);
3838 	}
3839 
3840 	btrfs_free_path(path);
3841 	return ret;
3842 }
3843 
3844 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846 	struct btrfs_block_group_cache *block_group;
3847 	int readonly = 0;
3848 
3849 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3850 	if (!block_group || block_group->ro)
3851 		readonly = 1;
3852 	if (block_group)
3853 		btrfs_put_block_group(block_group);
3854 	return readonly;
3855 }
3856 
3857 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859 	struct btrfs_block_group_cache *bg;
3860 	bool ret = true;
3861 
3862 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3863 	if (!bg)
3864 		return false;
3865 
3866 	spin_lock(&bg->lock);
3867 	if (bg->ro)
3868 		ret = false;
3869 	else
3870 		atomic_inc(&bg->nocow_writers);
3871 	spin_unlock(&bg->lock);
3872 
3873 	/* no put on block group, done by btrfs_dec_nocow_writers */
3874 	if (!ret)
3875 		btrfs_put_block_group(bg);
3876 
3877 	return ret;
3878 
3879 }
3880 
3881 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3882 {
3883 	struct btrfs_block_group_cache *bg;
3884 
3885 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3886 	ASSERT(bg);
3887 	if (atomic_dec_and_test(&bg->nocow_writers))
3888 		wake_up_atomic_t(&bg->nocow_writers);
3889 	/*
3890 	 * Once for our lookup and once for the lookup done by a previous call
3891 	 * to btrfs_inc_nocow_writers()
3892 	 */
3893 	btrfs_put_block_group(bg);
3894 	btrfs_put_block_group(bg);
3895 }
3896 
3897 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3898 {
3899 	schedule();
3900 	return 0;
3901 }
3902 
3903 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3904 {
3905 	wait_on_atomic_t(&bg->nocow_writers,
3906 			 btrfs_wait_nocow_writers_atomic_t,
3907 			 TASK_UNINTERRUPTIBLE);
3908 }
3909 
3910 static const char *alloc_name(u64 flags)
3911 {
3912 	switch (flags) {
3913 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3914 		return "mixed";
3915 	case BTRFS_BLOCK_GROUP_METADATA:
3916 		return "metadata";
3917 	case BTRFS_BLOCK_GROUP_DATA:
3918 		return "data";
3919 	case BTRFS_BLOCK_GROUP_SYSTEM:
3920 		return "system";
3921 	default:
3922 		WARN_ON(1);
3923 		return "invalid-combination";
3924 	};
3925 }
3926 
3927 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3928 			     u64 total_bytes, u64 bytes_used,
3929 			     u64 bytes_readonly,
3930 			     struct btrfs_space_info **space_info)
3931 {
3932 	struct btrfs_space_info *found;
3933 	int i;
3934 	int factor;
3935 	int ret;
3936 
3937 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3938 		     BTRFS_BLOCK_GROUP_RAID10))
3939 		factor = 2;
3940 	else
3941 		factor = 1;
3942 
3943 	found = __find_space_info(info, flags);
3944 	if (found) {
3945 		spin_lock(&found->lock);
3946 		found->total_bytes += total_bytes;
3947 		found->disk_total += total_bytes * factor;
3948 		found->bytes_used += bytes_used;
3949 		found->disk_used += bytes_used * factor;
3950 		found->bytes_readonly += bytes_readonly;
3951 		if (total_bytes > 0)
3952 			found->full = 0;
3953 		space_info_add_new_bytes(info, found, total_bytes -
3954 					 bytes_used - bytes_readonly);
3955 		spin_unlock(&found->lock);
3956 		*space_info = found;
3957 		return 0;
3958 	}
3959 	found = kzalloc(sizeof(*found), GFP_NOFS);
3960 	if (!found)
3961 		return -ENOMEM;
3962 
3963 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3964 	if (ret) {
3965 		kfree(found);
3966 		return ret;
3967 	}
3968 
3969 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3970 		INIT_LIST_HEAD(&found->block_groups[i]);
3971 	init_rwsem(&found->groups_sem);
3972 	spin_lock_init(&found->lock);
3973 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3974 	found->total_bytes = total_bytes;
3975 	found->disk_total = total_bytes * factor;
3976 	found->bytes_used = bytes_used;
3977 	found->disk_used = bytes_used * factor;
3978 	found->bytes_pinned = 0;
3979 	found->bytes_reserved = 0;
3980 	found->bytes_readonly = bytes_readonly;
3981 	found->bytes_may_use = 0;
3982 	found->full = 0;
3983 	found->max_extent_size = 0;
3984 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3985 	found->chunk_alloc = 0;
3986 	found->flush = 0;
3987 	init_waitqueue_head(&found->wait);
3988 	INIT_LIST_HEAD(&found->ro_bgs);
3989 	INIT_LIST_HEAD(&found->tickets);
3990 	INIT_LIST_HEAD(&found->priority_tickets);
3991 
3992 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3993 				    info->space_info_kobj, "%s",
3994 				    alloc_name(found->flags));
3995 	if (ret) {
3996 		percpu_counter_destroy(&found->total_bytes_pinned);
3997 		kfree(found);
3998 		return ret;
3999 	}
4000 
4001 	*space_info = found;
4002 	list_add_rcu(&found->list, &info->space_info);
4003 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 		info->data_sinfo = found;
4005 
4006 	return ret;
4007 }
4008 
4009 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4010 {
4011 	u64 extra_flags = chunk_to_extended(flags) &
4012 				BTRFS_EXTENDED_PROFILE_MASK;
4013 
4014 	write_seqlock(&fs_info->profiles_lock);
4015 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4016 		fs_info->avail_data_alloc_bits |= extra_flags;
4017 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4018 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4019 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4020 		fs_info->avail_system_alloc_bits |= extra_flags;
4021 	write_sequnlock(&fs_info->profiles_lock);
4022 }
4023 
4024 /*
4025  * returns target flags in extended format or 0 if restripe for this
4026  * chunk_type is not in progress
4027  *
4028  * should be called with either volume_mutex or balance_lock held
4029  */
4030 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4031 {
4032 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4033 	u64 target = 0;
4034 
4035 	if (!bctl)
4036 		return 0;
4037 
4038 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4039 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4041 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4042 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4044 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4045 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4046 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4047 	}
4048 
4049 	return target;
4050 }
4051 
4052 /*
4053  * @flags: available profiles in extended format (see ctree.h)
4054  *
4055  * Returns reduced profile in chunk format.  If profile changing is in
4056  * progress (either running or paused) picks the target profile (if it's
4057  * already available), otherwise falls back to plain reducing.
4058  */
4059 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4060 {
4061 	u64 num_devices = fs_info->fs_devices->rw_devices;
4062 	u64 target;
4063 	u64 raid_type;
4064 	u64 allowed = 0;
4065 
4066 	/*
4067 	 * see if restripe for this chunk_type is in progress, if so
4068 	 * try to reduce to the target profile
4069 	 */
4070 	spin_lock(&fs_info->balance_lock);
4071 	target = get_restripe_target(fs_info, flags);
4072 	if (target) {
4073 		/* pick target profile only if it's already available */
4074 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4075 			spin_unlock(&fs_info->balance_lock);
4076 			return extended_to_chunk(target);
4077 		}
4078 	}
4079 	spin_unlock(&fs_info->balance_lock);
4080 
4081 	/* First, mask out the RAID levels which aren't possible */
4082 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4084 			allowed |= btrfs_raid_group[raid_type];
4085 	}
4086 	allowed &= flags;
4087 
4088 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4089 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4090 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4091 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4092 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4093 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4094 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4095 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4096 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4097 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4098 
4099 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4100 
4101 	return extended_to_chunk(flags | allowed);
4102 }
4103 
4104 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4105 {
4106 	unsigned seq;
4107 	u64 flags;
4108 
4109 	do {
4110 		flags = orig_flags;
4111 		seq = read_seqbegin(&fs_info->profiles_lock);
4112 
4113 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4114 			flags |= fs_info->avail_data_alloc_bits;
4115 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4116 			flags |= fs_info->avail_system_alloc_bits;
4117 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4118 			flags |= fs_info->avail_metadata_alloc_bits;
4119 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4120 
4121 	return btrfs_reduce_alloc_profile(fs_info, flags);
4122 }
4123 
4124 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4125 {
4126 	struct btrfs_fs_info *fs_info = root->fs_info;
4127 	u64 flags;
4128 	u64 ret;
4129 
4130 	if (data)
4131 		flags = BTRFS_BLOCK_GROUP_DATA;
4132 	else if (root == fs_info->chunk_root)
4133 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4134 	else
4135 		flags = BTRFS_BLOCK_GROUP_METADATA;
4136 
4137 	ret = get_alloc_profile(fs_info, flags);
4138 	return ret;
4139 }
4140 
4141 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4142 				 bool may_use_included)
4143 {
4144 	ASSERT(s_info);
4145 	return s_info->bytes_used + s_info->bytes_reserved +
4146 		s_info->bytes_pinned + s_info->bytes_readonly +
4147 		(may_use_included ? s_info->bytes_may_use : 0);
4148 }
4149 
4150 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4151 {
4152 	struct btrfs_space_info *data_sinfo;
4153 	struct btrfs_root *root = inode->root;
4154 	struct btrfs_fs_info *fs_info = root->fs_info;
4155 	u64 used;
4156 	int ret = 0;
4157 	int need_commit = 2;
4158 	int have_pinned_space;
4159 
4160 	/* make sure bytes are sectorsize aligned */
4161 	bytes = ALIGN(bytes, fs_info->sectorsize);
4162 
4163 	if (btrfs_is_free_space_inode(inode)) {
4164 		need_commit = 0;
4165 		ASSERT(current->journal_info);
4166 	}
4167 
4168 	data_sinfo = fs_info->data_sinfo;
4169 	if (!data_sinfo)
4170 		goto alloc;
4171 
4172 again:
4173 	/* make sure we have enough space to handle the data first */
4174 	spin_lock(&data_sinfo->lock);
4175 	used = btrfs_space_info_used(data_sinfo, true);
4176 
4177 	if (used + bytes > data_sinfo->total_bytes) {
4178 		struct btrfs_trans_handle *trans;
4179 
4180 		/*
4181 		 * if we don't have enough free bytes in this space then we need
4182 		 * to alloc a new chunk.
4183 		 */
4184 		if (!data_sinfo->full) {
4185 			u64 alloc_target;
4186 
4187 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4188 			spin_unlock(&data_sinfo->lock);
4189 alloc:
4190 			alloc_target = btrfs_get_alloc_profile(root, 1);
4191 			/*
4192 			 * It is ugly that we don't call nolock join
4193 			 * transaction for the free space inode case here.
4194 			 * But it is safe because we only do the data space
4195 			 * reservation for the free space cache in the
4196 			 * transaction context, the common join transaction
4197 			 * just increase the counter of the current transaction
4198 			 * handler, doesn't try to acquire the trans_lock of
4199 			 * the fs.
4200 			 */
4201 			trans = btrfs_join_transaction(root);
4202 			if (IS_ERR(trans))
4203 				return PTR_ERR(trans);
4204 
4205 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4206 					     CHUNK_ALLOC_NO_FORCE);
4207 			btrfs_end_transaction(trans);
4208 			if (ret < 0) {
4209 				if (ret != -ENOSPC)
4210 					return ret;
4211 				else {
4212 					have_pinned_space = 1;
4213 					goto commit_trans;
4214 				}
4215 			}
4216 
4217 			if (!data_sinfo)
4218 				data_sinfo = fs_info->data_sinfo;
4219 
4220 			goto again;
4221 		}
4222 
4223 		/*
4224 		 * If we don't have enough pinned space to deal with this
4225 		 * allocation, and no removed chunk in current transaction,
4226 		 * don't bother committing the transaction.
4227 		 */
4228 		have_pinned_space = percpu_counter_compare(
4229 			&data_sinfo->total_bytes_pinned,
4230 			used + bytes - data_sinfo->total_bytes);
4231 		spin_unlock(&data_sinfo->lock);
4232 
4233 		/* commit the current transaction and try again */
4234 commit_trans:
4235 		if (need_commit &&
4236 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4237 			need_commit--;
4238 
4239 			if (need_commit > 0) {
4240 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4241 				btrfs_wait_ordered_roots(fs_info, -1, 0,
4242 							 (u64)-1);
4243 			}
4244 
4245 			trans = btrfs_join_transaction(root);
4246 			if (IS_ERR(trans))
4247 				return PTR_ERR(trans);
4248 			if (have_pinned_space >= 0 ||
4249 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4250 				     &trans->transaction->flags) ||
4251 			    need_commit > 0) {
4252 				ret = btrfs_commit_transaction(trans);
4253 				if (ret)
4254 					return ret;
4255 				/*
4256 				 * The cleaner kthread might still be doing iput
4257 				 * operations. Wait for it to finish so that
4258 				 * more space is released.
4259 				 */
4260 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4261 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4262 				goto again;
4263 			} else {
4264 				btrfs_end_transaction(trans);
4265 			}
4266 		}
4267 
4268 		trace_btrfs_space_reservation(fs_info,
4269 					      "space_info:enospc",
4270 					      data_sinfo->flags, bytes, 1);
4271 		return -ENOSPC;
4272 	}
4273 	data_sinfo->bytes_may_use += bytes;
4274 	trace_btrfs_space_reservation(fs_info, "space_info",
4275 				      data_sinfo->flags, bytes, 1);
4276 	spin_unlock(&data_sinfo->lock);
4277 
4278 	return ret;
4279 }
4280 
4281 /*
4282  * New check_data_free_space() with ability for precious data reservation
4283  * Will replace old btrfs_check_data_free_space(), but for patch split,
4284  * add a new function first and then replace it.
4285  */
4286 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4287 {
4288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4289 	int ret;
4290 
4291 	/* align the range */
4292 	len = round_up(start + len, fs_info->sectorsize) -
4293 	      round_down(start, fs_info->sectorsize);
4294 	start = round_down(start, fs_info->sectorsize);
4295 
4296 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4297 	if (ret < 0)
4298 		return ret;
4299 
4300 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4301 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4302 	if (ret)
4303 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4304 	return ret;
4305 }
4306 
4307 /*
4308  * Called if we need to clear a data reservation for this inode
4309  * Normally in a error case.
4310  *
4311  * This one will *NOT* use accurate qgroup reserved space API, just for case
4312  * which we can't sleep and is sure it won't affect qgroup reserved space.
4313  * Like clear_bit_hook().
4314  */
4315 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4316 					    u64 len)
4317 {
4318 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4319 	struct btrfs_space_info *data_sinfo;
4320 
4321 	/* Make sure the range is aligned to sectorsize */
4322 	len = round_up(start + len, fs_info->sectorsize) -
4323 	      round_down(start, fs_info->sectorsize);
4324 	start = round_down(start, fs_info->sectorsize);
4325 
4326 	data_sinfo = fs_info->data_sinfo;
4327 	spin_lock(&data_sinfo->lock);
4328 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4329 		data_sinfo->bytes_may_use = 0;
4330 	else
4331 		data_sinfo->bytes_may_use -= len;
4332 	trace_btrfs_space_reservation(fs_info, "space_info",
4333 				      data_sinfo->flags, len, 0);
4334 	spin_unlock(&data_sinfo->lock);
4335 }
4336 
4337 /*
4338  * Called if we need to clear a data reservation for this inode
4339  * Normally in a error case.
4340  *
4341  * This one will handle the per-inode data rsv map for accurate reserved
4342  * space framework.
4343  */
4344 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4345 {
4346 	struct btrfs_root *root = BTRFS_I(inode)->root;
4347 
4348 	/* Make sure the range is aligned to sectorsize */
4349 	len = round_up(start + len, root->fs_info->sectorsize) -
4350 	      round_down(start, root->fs_info->sectorsize);
4351 	start = round_down(start, root->fs_info->sectorsize);
4352 
4353 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4354 	btrfs_qgroup_free_data(inode, start, len);
4355 }
4356 
4357 static void force_metadata_allocation(struct btrfs_fs_info *info)
4358 {
4359 	struct list_head *head = &info->space_info;
4360 	struct btrfs_space_info *found;
4361 
4362 	rcu_read_lock();
4363 	list_for_each_entry_rcu(found, head, list) {
4364 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4365 			found->force_alloc = CHUNK_ALLOC_FORCE;
4366 	}
4367 	rcu_read_unlock();
4368 }
4369 
4370 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4371 {
4372 	return (global->size << 1);
4373 }
4374 
4375 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4376 			      struct btrfs_space_info *sinfo, int force)
4377 {
4378 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4379 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4380 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4381 	u64 thresh;
4382 
4383 	if (force == CHUNK_ALLOC_FORCE)
4384 		return 1;
4385 
4386 	/*
4387 	 * We need to take into account the global rsv because for all intents
4388 	 * and purposes it's used space.  Don't worry about locking the
4389 	 * global_rsv, it doesn't change except when the transaction commits.
4390 	 */
4391 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4392 		num_allocated += calc_global_rsv_need_space(global_rsv);
4393 
4394 	/*
4395 	 * in limited mode, we want to have some free space up to
4396 	 * about 1% of the FS size.
4397 	 */
4398 	if (force == CHUNK_ALLOC_LIMITED) {
4399 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4400 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4401 
4402 		if (num_bytes - num_allocated < thresh)
4403 			return 1;
4404 	}
4405 
4406 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4407 		return 0;
4408 	return 1;
4409 }
4410 
4411 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4412 {
4413 	u64 num_dev;
4414 
4415 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4416 		    BTRFS_BLOCK_GROUP_RAID0 |
4417 		    BTRFS_BLOCK_GROUP_RAID5 |
4418 		    BTRFS_BLOCK_GROUP_RAID6))
4419 		num_dev = fs_info->fs_devices->rw_devices;
4420 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4421 		num_dev = 2;
4422 	else
4423 		num_dev = 1;	/* DUP or single */
4424 
4425 	return num_dev;
4426 }
4427 
4428 /*
4429  * If @is_allocation is true, reserve space in the system space info necessary
4430  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4431  * removing a chunk.
4432  */
4433 void check_system_chunk(struct btrfs_trans_handle *trans,
4434 			struct btrfs_fs_info *fs_info, u64 type)
4435 {
4436 	struct btrfs_space_info *info;
4437 	u64 left;
4438 	u64 thresh;
4439 	int ret = 0;
4440 	u64 num_devs;
4441 
4442 	/*
4443 	 * Needed because we can end up allocating a system chunk and for an
4444 	 * atomic and race free space reservation in the chunk block reserve.
4445 	 */
4446 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4447 
4448 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4449 	spin_lock(&info->lock);
4450 	left = info->total_bytes - btrfs_space_info_used(info, true);
4451 	spin_unlock(&info->lock);
4452 
4453 	num_devs = get_profile_num_devs(fs_info, type);
4454 
4455 	/* num_devs device items to update and 1 chunk item to add or remove */
4456 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4457 		btrfs_calc_trans_metadata_size(fs_info, 1);
4458 
4459 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4460 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4461 			   left, thresh, type);
4462 		dump_space_info(fs_info, info, 0, 0);
4463 	}
4464 
4465 	if (left < thresh) {
4466 		u64 flags;
4467 
4468 		flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4469 		/*
4470 		 * Ignore failure to create system chunk. We might end up not
4471 		 * needing it, as we might not need to COW all nodes/leafs from
4472 		 * the paths we visit in the chunk tree (they were already COWed
4473 		 * or created in the current transaction for example).
4474 		 */
4475 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4476 	}
4477 
4478 	if (!ret) {
4479 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4480 					  &fs_info->chunk_block_rsv,
4481 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4482 		if (!ret)
4483 			trans->chunk_bytes_reserved += thresh;
4484 	}
4485 }
4486 
4487 /*
4488  * If force is CHUNK_ALLOC_FORCE:
4489  *    - return 1 if it successfully allocates a chunk,
4490  *    - return errors including -ENOSPC otherwise.
4491  * If force is NOT CHUNK_ALLOC_FORCE:
4492  *    - return 0 if it doesn't need to allocate a new chunk,
4493  *    - return 1 if it successfully allocates a chunk,
4494  *    - return errors including -ENOSPC otherwise.
4495  */
4496 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4497 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4498 {
4499 	struct btrfs_space_info *space_info;
4500 	int wait_for_alloc = 0;
4501 	int ret = 0;
4502 
4503 	/* Don't re-enter if we're already allocating a chunk */
4504 	if (trans->allocating_chunk)
4505 		return -ENOSPC;
4506 
4507 	space_info = __find_space_info(fs_info, flags);
4508 	if (!space_info) {
4509 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4510 		BUG_ON(ret); /* -ENOMEM */
4511 	}
4512 	BUG_ON(!space_info); /* Logic error */
4513 
4514 again:
4515 	spin_lock(&space_info->lock);
4516 	if (force < space_info->force_alloc)
4517 		force = space_info->force_alloc;
4518 	if (space_info->full) {
4519 		if (should_alloc_chunk(fs_info, space_info, force))
4520 			ret = -ENOSPC;
4521 		else
4522 			ret = 0;
4523 		spin_unlock(&space_info->lock);
4524 		return ret;
4525 	}
4526 
4527 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4528 		spin_unlock(&space_info->lock);
4529 		return 0;
4530 	} else if (space_info->chunk_alloc) {
4531 		wait_for_alloc = 1;
4532 	} else {
4533 		space_info->chunk_alloc = 1;
4534 	}
4535 
4536 	spin_unlock(&space_info->lock);
4537 
4538 	mutex_lock(&fs_info->chunk_mutex);
4539 
4540 	/*
4541 	 * The chunk_mutex is held throughout the entirety of a chunk
4542 	 * allocation, so once we've acquired the chunk_mutex we know that the
4543 	 * other guy is done and we need to recheck and see if we should
4544 	 * allocate.
4545 	 */
4546 	if (wait_for_alloc) {
4547 		mutex_unlock(&fs_info->chunk_mutex);
4548 		wait_for_alloc = 0;
4549 		goto again;
4550 	}
4551 
4552 	trans->allocating_chunk = true;
4553 
4554 	/*
4555 	 * If we have mixed data/metadata chunks we want to make sure we keep
4556 	 * allocating mixed chunks instead of individual chunks.
4557 	 */
4558 	if (btrfs_mixed_space_info(space_info))
4559 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4560 
4561 	/*
4562 	 * if we're doing a data chunk, go ahead and make sure that
4563 	 * we keep a reasonable number of metadata chunks allocated in the
4564 	 * FS as well.
4565 	 */
4566 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4567 		fs_info->data_chunk_allocations++;
4568 		if (!(fs_info->data_chunk_allocations %
4569 		      fs_info->metadata_ratio))
4570 			force_metadata_allocation(fs_info);
4571 	}
4572 
4573 	/*
4574 	 * Check if we have enough space in SYSTEM chunk because we may need
4575 	 * to update devices.
4576 	 */
4577 	check_system_chunk(trans, fs_info, flags);
4578 
4579 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4580 	trans->allocating_chunk = false;
4581 
4582 	spin_lock(&space_info->lock);
4583 	if (ret < 0 && ret != -ENOSPC)
4584 		goto out;
4585 	if (ret)
4586 		space_info->full = 1;
4587 	else
4588 		ret = 1;
4589 
4590 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4591 out:
4592 	space_info->chunk_alloc = 0;
4593 	spin_unlock(&space_info->lock);
4594 	mutex_unlock(&fs_info->chunk_mutex);
4595 	/*
4596 	 * When we allocate a new chunk we reserve space in the chunk block
4597 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4598 	 * add new nodes/leafs to it if we end up needing to do it when
4599 	 * inserting the chunk item and updating device items as part of the
4600 	 * second phase of chunk allocation, performed by
4601 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4602 	 * large number of new block groups to create in our transaction
4603 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4604 	 * in extreme cases - like having a single transaction create many new
4605 	 * block groups when starting to write out the free space caches of all
4606 	 * the block groups that were made dirty during the lifetime of the
4607 	 * transaction.
4608 	 */
4609 	if (trans->can_flush_pending_bgs &&
4610 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4611 		btrfs_create_pending_block_groups(trans, fs_info);
4612 		btrfs_trans_release_chunk_metadata(trans);
4613 	}
4614 	return ret;
4615 }
4616 
4617 static int can_overcommit(struct btrfs_root *root,
4618 			  struct btrfs_space_info *space_info, u64 bytes,
4619 			  enum btrfs_reserve_flush_enum flush)
4620 {
4621 	struct btrfs_fs_info *fs_info = root->fs_info;
4622 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4623 	u64 profile;
4624 	u64 space_size;
4625 	u64 avail;
4626 	u64 used;
4627 
4628 	/* Don't overcommit when in mixed mode. */
4629 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4630 		return 0;
4631 
4632 	profile = btrfs_get_alloc_profile(root, 0);
4633 	used = btrfs_space_info_used(space_info, false);
4634 
4635 	/*
4636 	 * We only want to allow over committing if we have lots of actual space
4637 	 * free, but if we don't have enough space to handle the global reserve
4638 	 * space then we could end up having a real enospc problem when trying
4639 	 * to allocate a chunk or some other such important allocation.
4640 	 */
4641 	spin_lock(&global_rsv->lock);
4642 	space_size = calc_global_rsv_need_space(global_rsv);
4643 	spin_unlock(&global_rsv->lock);
4644 	if (used + space_size >= space_info->total_bytes)
4645 		return 0;
4646 
4647 	used += space_info->bytes_may_use;
4648 
4649 	spin_lock(&fs_info->free_chunk_lock);
4650 	avail = fs_info->free_chunk_space;
4651 	spin_unlock(&fs_info->free_chunk_lock);
4652 
4653 	/*
4654 	 * If we have dup, raid1 or raid10 then only half of the free
4655 	 * space is actually useable.  For raid56, the space info used
4656 	 * doesn't include the parity drive, so we don't have to
4657 	 * change the math
4658 	 */
4659 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4660 		       BTRFS_BLOCK_GROUP_RAID1 |
4661 		       BTRFS_BLOCK_GROUP_RAID10))
4662 		avail >>= 1;
4663 
4664 	/*
4665 	 * If we aren't flushing all things, let us overcommit up to
4666 	 * 1/2th of the space. If we can flush, don't let us overcommit
4667 	 * too much, let it overcommit up to 1/8 of the space.
4668 	 */
4669 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4670 		avail >>= 3;
4671 	else
4672 		avail >>= 1;
4673 
4674 	if (used + bytes < space_info->total_bytes + avail)
4675 		return 1;
4676 	return 0;
4677 }
4678 
4679 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4680 					 unsigned long nr_pages, int nr_items)
4681 {
4682 	struct super_block *sb = fs_info->sb;
4683 
4684 	if (down_read_trylock(&sb->s_umount)) {
4685 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4686 		up_read(&sb->s_umount);
4687 	} else {
4688 		/*
4689 		 * We needn't worry the filesystem going from r/w to r/o though
4690 		 * we don't acquire ->s_umount mutex, because the filesystem
4691 		 * should guarantee the delalloc inodes list be empty after
4692 		 * the filesystem is readonly(all dirty pages are written to
4693 		 * the disk).
4694 		 */
4695 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4696 		if (!current->journal_info)
4697 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4698 	}
4699 }
4700 
4701 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4702 					u64 to_reclaim)
4703 {
4704 	u64 bytes;
4705 	int nr;
4706 
4707 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4708 	nr = (int)div64_u64(to_reclaim, bytes);
4709 	if (!nr)
4710 		nr = 1;
4711 	return nr;
4712 }
4713 
4714 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4715 
4716 /*
4717  * shrink metadata reservation for delalloc
4718  */
4719 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4720 			    bool wait_ordered)
4721 {
4722 	struct btrfs_fs_info *fs_info = root->fs_info;
4723 	struct btrfs_block_rsv *block_rsv;
4724 	struct btrfs_space_info *space_info;
4725 	struct btrfs_trans_handle *trans;
4726 	u64 delalloc_bytes;
4727 	u64 max_reclaim;
4728 	long time_left;
4729 	unsigned long nr_pages;
4730 	int loops;
4731 	int items;
4732 	enum btrfs_reserve_flush_enum flush;
4733 
4734 	/* Calc the number of the pages we need flush for space reservation */
4735 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4736 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4737 
4738 	trans = (struct btrfs_trans_handle *)current->journal_info;
4739 	block_rsv = &fs_info->delalloc_block_rsv;
4740 	space_info = block_rsv->space_info;
4741 
4742 	delalloc_bytes = percpu_counter_sum_positive(
4743 						&fs_info->delalloc_bytes);
4744 	if (delalloc_bytes == 0) {
4745 		if (trans)
4746 			return;
4747 		if (wait_ordered)
4748 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4749 		return;
4750 	}
4751 
4752 	loops = 0;
4753 	while (delalloc_bytes && loops < 3) {
4754 		max_reclaim = min(delalloc_bytes, to_reclaim);
4755 		nr_pages = max_reclaim >> PAGE_SHIFT;
4756 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4757 		/*
4758 		 * We need to wait for the async pages to actually start before
4759 		 * we do anything.
4760 		 */
4761 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4762 		if (!max_reclaim)
4763 			goto skip_async;
4764 
4765 		if (max_reclaim <= nr_pages)
4766 			max_reclaim = 0;
4767 		else
4768 			max_reclaim -= nr_pages;
4769 
4770 		wait_event(fs_info->async_submit_wait,
4771 			   atomic_read(&fs_info->async_delalloc_pages) <=
4772 			   (int)max_reclaim);
4773 skip_async:
4774 		if (!trans)
4775 			flush = BTRFS_RESERVE_FLUSH_ALL;
4776 		else
4777 			flush = BTRFS_RESERVE_NO_FLUSH;
4778 		spin_lock(&space_info->lock);
4779 		if (can_overcommit(root, space_info, orig, flush)) {
4780 			spin_unlock(&space_info->lock);
4781 			break;
4782 		}
4783 		if (list_empty(&space_info->tickets) &&
4784 		    list_empty(&space_info->priority_tickets)) {
4785 			spin_unlock(&space_info->lock);
4786 			break;
4787 		}
4788 		spin_unlock(&space_info->lock);
4789 
4790 		loops++;
4791 		if (wait_ordered && !trans) {
4792 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4793 		} else {
4794 			time_left = schedule_timeout_killable(1);
4795 			if (time_left)
4796 				break;
4797 		}
4798 		delalloc_bytes = percpu_counter_sum_positive(
4799 						&fs_info->delalloc_bytes);
4800 	}
4801 }
4802 
4803 /**
4804  * maybe_commit_transaction - possibly commit the transaction if its ok to
4805  * @root - the root we're allocating for
4806  * @bytes - the number of bytes we want to reserve
4807  * @force - force the commit
4808  *
4809  * This will check to make sure that committing the transaction will actually
4810  * get us somewhere and then commit the transaction if it does.  Otherwise it
4811  * will return -ENOSPC.
4812  */
4813 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4814 				  struct btrfs_space_info *space_info,
4815 				  u64 bytes, int force)
4816 {
4817 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4818 	struct btrfs_trans_handle *trans;
4819 
4820 	trans = (struct btrfs_trans_handle *)current->journal_info;
4821 	if (trans)
4822 		return -EAGAIN;
4823 
4824 	if (force)
4825 		goto commit;
4826 
4827 	/* See if there is enough pinned space to make this reservation */
4828 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4829 				   bytes) >= 0)
4830 		goto commit;
4831 
4832 	/*
4833 	 * See if there is some space in the delayed insertion reservation for
4834 	 * this reservation.
4835 	 */
4836 	if (space_info != delayed_rsv->space_info)
4837 		return -ENOSPC;
4838 
4839 	spin_lock(&delayed_rsv->lock);
4840 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4841 				   bytes - delayed_rsv->size) >= 0) {
4842 		spin_unlock(&delayed_rsv->lock);
4843 		return -ENOSPC;
4844 	}
4845 	spin_unlock(&delayed_rsv->lock);
4846 
4847 commit:
4848 	trans = btrfs_join_transaction(fs_info->extent_root);
4849 	if (IS_ERR(trans))
4850 		return -ENOSPC;
4851 
4852 	return btrfs_commit_transaction(trans);
4853 }
4854 
4855 struct reserve_ticket {
4856 	u64 bytes;
4857 	int error;
4858 	struct list_head list;
4859 	wait_queue_head_t wait;
4860 };
4861 
4862 static int flush_space(struct btrfs_fs_info *fs_info,
4863 		       struct btrfs_space_info *space_info, u64 num_bytes,
4864 		       u64 orig_bytes, int state)
4865 {
4866 	struct btrfs_root *root = fs_info->extent_root;
4867 	struct btrfs_trans_handle *trans;
4868 	int nr;
4869 	int ret = 0;
4870 
4871 	switch (state) {
4872 	case FLUSH_DELAYED_ITEMS_NR:
4873 	case FLUSH_DELAYED_ITEMS:
4874 		if (state == FLUSH_DELAYED_ITEMS_NR)
4875 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4876 		else
4877 			nr = -1;
4878 
4879 		trans = btrfs_join_transaction(root);
4880 		if (IS_ERR(trans)) {
4881 			ret = PTR_ERR(trans);
4882 			break;
4883 		}
4884 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4885 		btrfs_end_transaction(trans);
4886 		break;
4887 	case FLUSH_DELALLOC:
4888 	case FLUSH_DELALLOC_WAIT:
4889 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4890 				state == FLUSH_DELALLOC_WAIT);
4891 		break;
4892 	case ALLOC_CHUNK:
4893 		trans = btrfs_join_transaction(root);
4894 		if (IS_ERR(trans)) {
4895 			ret = PTR_ERR(trans);
4896 			break;
4897 		}
4898 		ret = do_chunk_alloc(trans, fs_info,
4899 				     btrfs_get_alloc_profile(root, 0),
4900 				     CHUNK_ALLOC_NO_FORCE);
4901 		btrfs_end_transaction(trans);
4902 		if (ret > 0 || ret == -ENOSPC)
4903 			ret = 0;
4904 		break;
4905 	case COMMIT_TRANS:
4906 		ret = may_commit_transaction(fs_info, space_info,
4907 					     orig_bytes, 0);
4908 		break;
4909 	default:
4910 		ret = -ENOSPC;
4911 		break;
4912 	}
4913 
4914 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4915 				orig_bytes, state, ret);
4916 	return ret;
4917 }
4918 
4919 static inline u64
4920 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4921 				 struct btrfs_space_info *space_info)
4922 {
4923 	struct reserve_ticket *ticket;
4924 	u64 used;
4925 	u64 expected;
4926 	u64 to_reclaim = 0;
4927 
4928 	list_for_each_entry(ticket, &space_info->tickets, list)
4929 		to_reclaim += ticket->bytes;
4930 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4931 		to_reclaim += ticket->bytes;
4932 	if (to_reclaim)
4933 		return to_reclaim;
4934 
4935 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4936 	if (can_overcommit(root, space_info, to_reclaim,
4937 			   BTRFS_RESERVE_FLUSH_ALL))
4938 		return 0;
4939 
4940 	used = space_info->bytes_used + space_info->bytes_reserved +
4941 	       space_info->bytes_pinned + space_info->bytes_readonly +
4942 	       space_info->bytes_may_use;
4943 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4944 		expected = div_factor_fine(space_info->total_bytes, 95);
4945 	else
4946 		expected = div_factor_fine(space_info->total_bytes, 90);
4947 
4948 	if (used > expected)
4949 		to_reclaim = used - expected;
4950 	else
4951 		to_reclaim = 0;
4952 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4953 				     space_info->bytes_reserved);
4954 	return to_reclaim;
4955 }
4956 
4957 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4958 					struct btrfs_root *root, u64 used)
4959 {
4960 	struct btrfs_fs_info *fs_info = root->fs_info;
4961 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4962 
4963 	/* If we're just plain full then async reclaim just slows us down. */
4964 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4965 		return 0;
4966 
4967 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4968 		return 0;
4969 
4970 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4971 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4972 }
4973 
4974 static void wake_all_tickets(struct list_head *head)
4975 {
4976 	struct reserve_ticket *ticket;
4977 
4978 	while (!list_empty(head)) {
4979 		ticket = list_first_entry(head, struct reserve_ticket, list);
4980 		list_del_init(&ticket->list);
4981 		ticket->error = -ENOSPC;
4982 		wake_up(&ticket->wait);
4983 	}
4984 }
4985 
4986 /*
4987  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4988  * will loop and continuously try to flush as long as we are making progress.
4989  * We count progress as clearing off tickets each time we have to loop.
4990  */
4991 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4992 {
4993 	struct btrfs_fs_info *fs_info;
4994 	struct btrfs_space_info *space_info;
4995 	u64 to_reclaim;
4996 	int flush_state;
4997 	int commit_cycles = 0;
4998 	u64 last_tickets_id;
4999 
5000 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5001 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5002 
5003 	spin_lock(&space_info->lock);
5004 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5005 						      space_info);
5006 	if (!to_reclaim) {
5007 		space_info->flush = 0;
5008 		spin_unlock(&space_info->lock);
5009 		return;
5010 	}
5011 	last_tickets_id = space_info->tickets_id;
5012 	spin_unlock(&space_info->lock);
5013 
5014 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5015 	do {
5016 		struct reserve_ticket *ticket;
5017 		int ret;
5018 
5019 		ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5020 				  flush_state);
5021 		spin_lock(&space_info->lock);
5022 		if (list_empty(&space_info->tickets)) {
5023 			space_info->flush = 0;
5024 			spin_unlock(&space_info->lock);
5025 			return;
5026 		}
5027 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5028 							      space_info);
5029 		ticket = list_first_entry(&space_info->tickets,
5030 					  struct reserve_ticket, list);
5031 		if (last_tickets_id == space_info->tickets_id) {
5032 			flush_state++;
5033 		} else {
5034 			last_tickets_id = space_info->tickets_id;
5035 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 			if (commit_cycles)
5037 				commit_cycles--;
5038 		}
5039 
5040 		if (flush_state > COMMIT_TRANS) {
5041 			commit_cycles++;
5042 			if (commit_cycles > 2) {
5043 				wake_all_tickets(&space_info->tickets);
5044 				space_info->flush = 0;
5045 			} else {
5046 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5047 			}
5048 		}
5049 		spin_unlock(&space_info->lock);
5050 	} while (flush_state <= COMMIT_TRANS);
5051 }
5052 
5053 void btrfs_init_async_reclaim_work(struct work_struct *work)
5054 {
5055 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5056 }
5057 
5058 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5059 					    struct btrfs_space_info *space_info,
5060 					    struct reserve_ticket *ticket)
5061 {
5062 	u64 to_reclaim;
5063 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5064 
5065 	spin_lock(&space_info->lock);
5066 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->extent_root,
5067 						      space_info);
5068 	if (!to_reclaim) {
5069 		spin_unlock(&space_info->lock);
5070 		return;
5071 	}
5072 	spin_unlock(&space_info->lock);
5073 
5074 	do {
5075 		flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5076 			    flush_state);
5077 		flush_state++;
5078 		spin_lock(&space_info->lock);
5079 		if (ticket->bytes == 0) {
5080 			spin_unlock(&space_info->lock);
5081 			return;
5082 		}
5083 		spin_unlock(&space_info->lock);
5084 
5085 		/*
5086 		 * Priority flushers can't wait on delalloc without
5087 		 * deadlocking.
5088 		 */
5089 		if (flush_state == FLUSH_DELALLOC ||
5090 		    flush_state == FLUSH_DELALLOC_WAIT)
5091 			flush_state = ALLOC_CHUNK;
5092 	} while (flush_state < COMMIT_TRANS);
5093 }
5094 
5095 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5096 			       struct btrfs_space_info *space_info,
5097 			       struct reserve_ticket *ticket, u64 orig_bytes)
5098 
5099 {
5100 	DEFINE_WAIT(wait);
5101 	int ret = 0;
5102 
5103 	spin_lock(&space_info->lock);
5104 	while (ticket->bytes > 0 && ticket->error == 0) {
5105 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5106 		if (ret) {
5107 			ret = -EINTR;
5108 			break;
5109 		}
5110 		spin_unlock(&space_info->lock);
5111 
5112 		schedule();
5113 
5114 		finish_wait(&ticket->wait, &wait);
5115 		spin_lock(&space_info->lock);
5116 	}
5117 	if (!ret)
5118 		ret = ticket->error;
5119 	if (!list_empty(&ticket->list))
5120 		list_del_init(&ticket->list);
5121 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5122 		u64 num_bytes = orig_bytes - ticket->bytes;
5123 		space_info->bytes_may_use -= num_bytes;
5124 		trace_btrfs_space_reservation(fs_info, "space_info",
5125 					      space_info->flags, num_bytes, 0);
5126 	}
5127 	spin_unlock(&space_info->lock);
5128 
5129 	return ret;
5130 }
5131 
5132 /**
5133  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5134  * @root - the root we're allocating for
5135  * @space_info - the space info we want to allocate from
5136  * @orig_bytes - the number of bytes we want
5137  * @flush - whether or not we can flush to make our reservation
5138  *
5139  * This will reserve orig_bytes number of bytes from the space info associated
5140  * with the block_rsv.  If there is not enough space it will make an attempt to
5141  * flush out space to make room.  It will do this by flushing delalloc if
5142  * possible or committing the transaction.  If flush is 0 then no attempts to
5143  * regain reservations will be made and this will fail if there is not enough
5144  * space already.
5145  */
5146 static int __reserve_metadata_bytes(struct btrfs_root *root,
5147 				    struct btrfs_space_info *space_info,
5148 				    u64 orig_bytes,
5149 				    enum btrfs_reserve_flush_enum flush)
5150 {
5151 	struct btrfs_fs_info *fs_info = root->fs_info;
5152 	struct reserve_ticket ticket;
5153 	u64 used;
5154 	int ret = 0;
5155 
5156 	ASSERT(orig_bytes);
5157 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5158 
5159 	spin_lock(&space_info->lock);
5160 	ret = -ENOSPC;
5161 	used = btrfs_space_info_used(space_info, true);
5162 
5163 	/*
5164 	 * If we have enough space then hooray, make our reservation and carry
5165 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5166 	 * If not things get more complicated.
5167 	 */
5168 	if (used + orig_bytes <= space_info->total_bytes) {
5169 		space_info->bytes_may_use += orig_bytes;
5170 		trace_btrfs_space_reservation(fs_info, "space_info",
5171 					      space_info->flags, orig_bytes, 1);
5172 		ret = 0;
5173 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5174 		space_info->bytes_may_use += orig_bytes;
5175 		trace_btrfs_space_reservation(fs_info, "space_info",
5176 					      space_info->flags, orig_bytes, 1);
5177 		ret = 0;
5178 	}
5179 
5180 	/*
5181 	 * If we couldn't make a reservation then setup our reservation ticket
5182 	 * and kick the async worker if it's not already running.
5183 	 *
5184 	 * If we are a priority flusher then we just need to add our ticket to
5185 	 * the list and we will do our own flushing further down.
5186 	 */
5187 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5188 		ticket.bytes = orig_bytes;
5189 		ticket.error = 0;
5190 		init_waitqueue_head(&ticket.wait);
5191 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5192 			list_add_tail(&ticket.list, &space_info->tickets);
5193 			if (!space_info->flush) {
5194 				space_info->flush = 1;
5195 				trace_btrfs_trigger_flush(fs_info,
5196 							  space_info->flags,
5197 							  orig_bytes, flush,
5198 							  "enospc");
5199 				queue_work(system_unbound_wq,
5200 					   &root->fs_info->async_reclaim_work);
5201 			}
5202 		} else {
5203 			list_add_tail(&ticket.list,
5204 				      &space_info->priority_tickets);
5205 		}
5206 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5207 		used += orig_bytes;
5208 		/*
5209 		 * We will do the space reservation dance during log replay,
5210 		 * which means we won't have fs_info->fs_root set, so don't do
5211 		 * the async reclaim as we will panic.
5212 		 */
5213 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5214 		    need_do_async_reclaim(space_info, root, used) &&
5215 		    !work_busy(&fs_info->async_reclaim_work)) {
5216 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5217 						  orig_bytes, flush, "preempt");
5218 			queue_work(system_unbound_wq,
5219 				   &fs_info->async_reclaim_work);
5220 		}
5221 	}
5222 	spin_unlock(&space_info->lock);
5223 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5224 		return ret;
5225 
5226 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5227 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5228 					   orig_bytes);
5229 
5230 	ret = 0;
5231 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5232 	spin_lock(&space_info->lock);
5233 	if (ticket.bytes) {
5234 		if (ticket.bytes < orig_bytes) {
5235 			u64 num_bytes = orig_bytes - ticket.bytes;
5236 			space_info->bytes_may_use -= num_bytes;
5237 			trace_btrfs_space_reservation(fs_info, "space_info",
5238 						      space_info->flags,
5239 						      num_bytes, 0);
5240 
5241 		}
5242 		list_del_init(&ticket.list);
5243 		ret = -ENOSPC;
5244 	}
5245 	spin_unlock(&space_info->lock);
5246 	ASSERT(list_empty(&ticket.list));
5247 	return ret;
5248 }
5249 
5250 /**
5251  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5252  * @root - the root we're allocating for
5253  * @block_rsv - the block_rsv we're allocating for
5254  * @orig_bytes - the number of bytes we want
5255  * @flush - whether or not we can flush to make our reservation
5256  *
5257  * This will reserve orgi_bytes number of bytes from the space info associated
5258  * with the block_rsv.  If there is not enough space it will make an attempt to
5259  * flush out space to make room.  It will do this by flushing delalloc if
5260  * possible or committing the transaction.  If flush is 0 then no attempts to
5261  * regain reservations will be made and this will fail if there is not enough
5262  * space already.
5263  */
5264 static int reserve_metadata_bytes(struct btrfs_root *root,
5265 				  struct btrfs_block_rsv *block_rsv,
5266 				  u64 orig_bytes,
5267 				  enum btrfs_reserve_flush_enum flush)
5268 {
5269 	struct btrfs_fs_info *fs_info = root->fs_info;
5270 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5271 	int ret;
5272 
5273 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5274 				       flush);
5275 	if (ret == -ENOSPC &&
5276 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5277 		if (block_rsv != global_rsv &&
5278 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5279 			ret = 0;
5280 	}
5281 	if (ret == -ENOSPC)
5282 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5283 					      block_rsv->space_info->flags,
5284 					      orig_bytes, 1);
5285 	return ret;
5286 }
5287 
5288 static struct btrfs_block_rsv *get_block_rsv(
5289 					const struct btrfs_trans_handle *trans,
5290 					const struct btrfs_root *root)
5291 {
5292 	struct btrfs_fs_info *fs_info = root->fs_info;
5293 	struct btrfs_block_rsv *block_rsv = NULL;
5294 
5295 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5296 	    (root == fs_info->csum_root && trans->adding_csums) ||
5297 	    (root == fs_info->uuid_root))
5298 		block_rsv = trans->block_rsv;
5299 
5300 	if (!block_rsv)
5301 		block_rsv = root->block_rsv;
5302 
5303 	if (!block_rsv)
5304 		block_rsv = &fs_info->empty_block_rsv;
5305 
5306 	return block_rsv;
5307 }
5308 
5309 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5310 			       u64 num_bytes)
5311 {
5312 	int ret = -ENOSPC;
5313 	spin_lock(&block_rsv->lock);
5314 	if (block_rsv->reserved >= num_bytes) {
5315 		block_rsv->reserved -= num_bytes;
5316 		if (block_rsv->reserved < block_rsv->size)
5317 			block_rsv->full = 0;
5318 		ret = 0;
5319 	}
5320 	spin_unlock(&block_rsv->lock);
5321 	return ret;
5322 }
5323 
5324 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5325 				u64 num_bytes, int update_size)
5326 {
5327 	spin_lock(&block_rsv->lock);
5328 	block_rsv->reserved += num_bytes;
5329 	if (update_size)
5330 		block_rsv->size += num_bytes;
5331 	else if (block_rsv->reserved >= block_rsv->size)
5332 		block_rsv->full = 1;
5333 	spin_unlock(&block_rsv->lock);
5334 }
5335 
5336 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5337 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5338 			     int min_factor)
5339 {
5340 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5341 	u64 min_bytes;
5342 
5343 	if (global_rsv->space_info != dest->space_info)
5344 		return -ENOSPC;
5345 
5346 	spin_lock(&global_rsv->lock);
5347 	min_bytes = div_factor(global_rsv->size, min_factor);
5348 	if (global_rsv->reserved < min_bytes + num_bytes) {
5349 		spin_unlock(&global_rsv->lock);
5350 		return -ENOSPC;
5351 	}
5352 	global_rsv->reserved -= num_bytes;
5353 	if (global_rsv->reserved < global_rsv->size)
5354 		global_rsv->full = 0;
5355 	spin_unlock(&global_rsv->lock);
5356 
5357 	block_rsv_add_bytes(dest, num_bytes, 1);
5358 	return 0;
5359 }
5360 
5361 /*
5362  * This is for space we already have accounted in space_info->bytes_may_use, so
5363  * basically when we're returning space from block_rsv's.
5364  */
5365 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5366 				     struct btrfs_space_info *space_info,
5367 				     u64 num_bytes)
5368 {
5369 	struct reserve_ticket *ticket;
5370 	struct list_head *head;
5371 	u64 used;
5372 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5373 	bool check_overcommit = false;
5374 
5375 	spin_lock(&space_info->lock);
5376 	head = &space_info->priority_tickets;
5377 
5378 	/*
5379 	 * If we are over our limit then we need to check and see if we can
5380 	 * overcommit, and if we can't then we just need to free up our space
5381 	 * and not satisfy any requests.
5382 	 */
5383 	used = space_info->bytes_used + space_info->bytes_reserved +
5384 		space_info->bytes_pinned + space_info->bytes_readonly +
5385 		space_info->bytes_may_use;
5386 	if (used - num_bytes >= space_info->total_bytes)
5387 		check_overcommit = true;
5388 again:
5389 	while (!list_empty(head) && num_bytes) {
5390 		ticket = list_first_entry(head, struct reserve_ticket,
5391 					  list);
5392 		/*
5393 		 * We use 0 bytes because this space is already reserved, so
5394 		 * adding the ticket space would be a double count.
5395 		 */
5396 		if (check_overcommit &&
5397 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5398 				    flush))
5399 			break;
5400 		if (num_bytes >= ticket->bytes) {
5401 			list_del_init(&ticket->list);
5402 			num_bytes -= ticket->bytes;
5403 			ticket->bytes = 0;
5404 			space_info->tickets_id++;
5405 			wake_up(&ticket->wait);
5406 		} else {
5407 			ticket->bytes -= num_bytes;
5408 			num_bytes = 0;
5409 		}
5410 	}
5411 
5412 	if (num_bytes && head == &space_info->priority_tickets) {
5413 		head = &space_info->tickets;
5414 		flush = BTRFS_RESERVE_FLUSH_ALL;
5415 		goto again;
5416 	}
5417 	space_info->bytes_may_use -= num_bytes;
5418 	trace_btrfs_space_reservation(fs_info, "space_info",
5419 				      space_info->flags, num_bytes, 0);
5420 	spin_unlock(&space_info->lock);
5421 }
5422 
5423 /*
5424  * This is for newly allocated space that isn't accounted in
5425  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5426  * we use this helper.
5427  */
5428 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5429 				     struct btrfs_space_info *space_info,
5430 				     u64 num_bytes)
5431 {
5432 	struct reserve_ticket *ticket;
5433 	struct list_head *head = &space_info->priority_tickets;
5434 
5435 again:
5436 	while (!list_empty(head) && num_bytes) {
5437 		ticket = list_first_entry(head, struct reserve_ticket,
5438 					  list);
5439 		if (num_bytes >= ticket->bytes) {
5440 			trace_btrfs_space_reservation(fs_info, "space_info",
5441 						      space_info->flags,
5442 						      ticket->bytes, 1);
5443 			list_del_init(&ticket->list);
5444 			num_bytes -= ticket->bytes;
5445 			space_info->bytes_may_use += ticket->bytes;
5446 			ticket->bytes = 0;
5447 			space_info->tickets_id++;
5448 			wake_up(&ticket->wait);
5449 		} else {
5450 			trace_btrfs_space_reservation(fs_info, "space_info",
5451 						      space_info->flags,
5452 						      num_bytes, 1);
5453 			space_info->bytes_may_use += num_bytes;
5454 			ticket->bytes -= num_bytes;
5455 			num_bytes = 0;
5456 		}
5457 	}
5458 
5459 	if (num_bytes && head == &space_info->priority_tickets) {
5460 		head = &space_info->tickets;
5461 		goto again;
5462 	}
5463 }
5464 
5465 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5466 				    struct btrfs_block_rsv *block_rsv,
5467 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5468 {
5469 	struct btrfs_space_info *space_info = block_rsv->space_info;
5470 
5471 	spin_lock(&block_rsv->lock);
5472 	if (num_bytes == (u64)-1)
5473 		num_bytes = block_rsv->size;
5474 	block_rsv->size -= num_bytes;
5475 	if (block_rsv->reserved >= block_rsv->size) {
5476 		num_bytes = block_rsv->reserved - block_rsv->size;
5477 		block_rsv->reserved = block_rsv->size;
5478 		block_rsv->full = 1;
5479 	} else {
5480 		num_bytes = 0;
5481 	}
5482 	spin_unlock(&block_rsv->lock);
5483 
5484 	if (num_bytes > 0) {
5485 		if (dest) {
5486 			spin_lock(&dest->lock);
5487 			if (!dest->full) {
5488 				u64 bytes_to_add;
5489 
5490 				bytes_to_add = dest->size - dest->reserved;
5491 				bytes_to_add = min(num_bytes, bytes_to_add);
5492 				dest->reserved += bytes_to_add;
5493 				if (dest->reserved >= dest->size)
5494 					dest->full = 1;
5495 				num_bytes -= bytes_to_add;
5496 			}
5497 			spin_unlock(&dest->lock);
5498 		}
5499 		if (num_bytes)
5500 			space_info_add_old_bytes(fs_info, space_info,
5501 						 num_bytes);
5502 	}
5503 }
5504 
5505 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5506 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5507 			    int update_size)
5508 {
5509 	int ret;
5510 
5511 	ret = block_rsv_use_bytes(src, num_bytes);
5512 	if (ret)
5513 		return ret;
5514 
5515 	block_rsv_add_bytes(dst, num_bytes, update_size);
5516 	return 0;
5517 }
5518 
5519 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5520 {
5521 	memset(rsv, 0, sizeof(*rsv));
5522 	spin_lock_init(&rsv->lock);
5523 	rsv->type = type;
5524 }
5525 
5526 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5527 					      unsigned short type)
5528 {
5529 	struct btrfs_block_rsv *block_rsv;
5530 
5531 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5532 	if (!block_rsv)
5533 		return NULL;
5534 
5535 	btrfs_init_block_rsv(block_rsv, type);
5536 	block_rsv->space_info = __find_space_info(fs_info,
5537 						  BTRFS_BLOCK_GROUP_METADATA);
5538 	return block_rsv;
5539 }
5540 
5541 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5542 			  struct btrfs_block_rsv *rsv)
5543 {
5544 	if (!rsv)
5545 		return;
5546 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5547 	kfree(rsv);
5548 }
5549 
5550 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5551 {
5552 	kfree(rsv);
5553 }
5554 
5555 int btrfs_block_rsv_add(struct btrfs_root *root,
5556 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5557 			enum btrfs_reserve_flush_enum flush)
5558 {
5559 	int ret;
5560 
5561 	if (num_bytes == 0)
5562 		return 0;
5563 
5564 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5565 	if (!ret) {
5566 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5567 		return 0;
5568 	}
5569 
5570 	return ret;
5571 }
5572 
5573 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5574 {
5575 	u64 num_bytes = 0;
5576 	int ret = -ENOSPC;
5577 
5578 	if (!block_rsv)
5579 		return 0;
5580 
5581 	spin_lock(&block_rsv->lock);
5582 	num_bytes = div_factor(block_rsv->size, min_factor);
5583 	if (block_rsv->reserved >= num_bytes)
5584 		ret = 0;
5585 	spin_unlock(&block_rsv->lock);
5586 
5587 	return ret;
5588 }
5589 
5590 int btrfs_block_rsv_refill(struct btrfs_root *root,
5591 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5592 			   enum btrfs_reserve_flush_enum flush)
5593 {
5594 	u64 num_bytes = 0;
5595 	int ret = -ENOSPC;
5596 
5597 	if (!block_rsv)
5598 		return 0;
5599 
5600 	spin_lock(&block_rsv->lock);
5601 	num_bytes = min_reserved;
5602 	if (block_rsv->reserved >= num_bytes)
5603 		ret = 0;
5604 	else
5605 		num_bytes -= block_rsv->reserved;
5606 	spin_unlock(&block_rsv->lock);
5607 
5608 	if (!ret)
5609 		return 0;
5610 
5611 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5612 	if (!ret) {
5613 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5614 		return 0;
5615 	}
5616 
5617 	return ret;
5618 }
5619 
5620 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5621 			     struct btrfs_block_rsv *block_rsv,
5622 			     u64 num_bytes)
5623 {
5624 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5625 
5626 	if (global_rsv == block_rsv ||
5627 	    block_rsv->space_info != global_rsv->space_info)
5628 		global_rsv = NULL;
5629 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5630 }
5631 
5632 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5633 {
5634 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5635 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5636 	u64 num_bytes;
5637 
5638 	/*
5639 	 * The global block rsv is based on the size of the extent tree, the
5640 	 * checksum tree and the root tree.  If the fs is empty we want to set
5641 	 * it to a minimal amount for safety.
5642 	 */
5643 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5644 		btrfs_root_used(&fs_info->csum_root->root_item) +
5645 		btrfs_root_used(&fs_info->tree_root->root_item);
5646 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5647 
5648 	spin_lock(&sinfo->lock);
5649 	spin_lock(&block_rsv->lock);
5650 
5651 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5652 
5653 	if (block_rsv->reserved < block_rsv->size) {
5654 		num_bytes = btrfs_space_info_used(sinfo, true);
5655 		if (sinfo->total_bytes > num_bytes) {
5656 			num_bytes = sinfo->total_bytes - num_bytes;
5657 			num_bytes = min(num_bytes,
5658 					block_rsv->size - block_rsv->reserved);
5659 			block_rsv->reserved += num_bytes;
5660 			sinfo->bytes_may_use += num_bytes;
5661 			trace_btrfs_space_reservation(fs_info, "space_info",
5662 						      sinfo->flags, num_bytes,
5663 						      1);
5664 		}
5665 	} else if (block_rsv->reserved > block_rsv->size) {
5666 		num_bytes = block_rsv->reserved - block_rsv->size;
5667 		sinfo->bytes_may_use -= num_bytes;
5668 		trace_btrfs_space_reservation(fs_info, "space_info",
5669 				      sinfo->flags, num_bytes, 0);
5670 		block_rsv->reserved = block_rsv->size;
5671 	}
5672 
5673 	if (block_rsv->reserved == block_rsv->size)
5674 		block_rsv->full = 1;
5675 	else
5676 		block_rsv->full = 0;
5677 
5678 	spin_unlock(&block_rsv->lock);
5679 	spin_unlock(&sinfo->lock);
5680 }
5681 
5682 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5683 {
5684 	struct btrfs_space_info *space_info;
5685 
5686 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5687 	fs_info->chunk_block_rsv.space_info = space_info;
5688 
5689 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5690 	fs_info->global_block_rsv.space_info = space_info;
5691 	fs_info->delalloc_block_rsv.space_info = space_info;
5692 	fs_info->trans_block_rsv.space_info = space_info;
5693 	fs_info->empty_block_rsv.space_info = space_info;
5694 	fs_info->delayed_block_rsv.space_info = space_info;
5695 
5696 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5697 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5698 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5699 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5700 	if (fs_info->quota_root)
5701 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5702 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5703 
5704 	update_global_block_rsv(fs_info);
5705 }
5706 
5707 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5708 {
5709 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5710 				(u64)-1);
5711 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5712 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5713 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5714 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5715 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5716 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5717 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5718 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5719 }
5720 
5721 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5722 				  struct btrfs_fs_info *fs_info)
5723 {
5724 	if (!trans->block_rsv)
5725 		return;
5726 
5727 	if (!trans->bytes_reserved)
5728 		return;
5729 
5730 	trace_btrfs_space_reservation(fs_info, "transaction",
5731 				      trans->transid, trans->bytes_reserved, 0);
5732 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5733 				trans->bytes_reserved);
5734 	trans->bytes_reserved = 0;
5735 }
5736 
5737 /*
5738  * To be called after all the new block groups attached to the transaction
5739  * handle have been created (btrfs_create_pending_block_groups()).
5740  */
5741 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5742 {
5743 	struct btrfs_fs_info *fs_info = trans->fs_info;
5744 
5745 	if (!trans->chunk_bytes_reserved)
5746 		return;
5747 
5748 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5749 
5750 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5751 				trans->chunk_bytes_reserved);
5752 	trans->chunk_bytes_reserved = 0;
5753 }
5754 
5755 /* Can only return 0 or -ENOSPC */
5756 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5757 				  struct btrfs_inode *inode)
5758 {
5759 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5760 	struct btrfs_root *root = inode->root;
5761 	/*
5762 	 * We always use trans->block_rsv here as we will have reserved space
5763 	 * for our orphan when starting the transaction, using get_block_rsv()
5764 	 * here will sometimes make us choose the wrong block rsv as we could be
5765 	 * doing a reloc inode for a non refcounted root.
5766 	 */
5767 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5768 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5769 
5770 	/*
5771 	 * We need to hold space in order to delete our orphan item once we've
5772 	 * added it, so this takes the reservation so we can release it later
5773 	 * when we are truly done with the orphan item.
5774 	 */
5775 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776 
5777 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778 			num_bytes, 1);
5779 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5780 }
5781 
5782 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5783 {
5784 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5785 	struct btrfs_root *root = inode->root;
5786 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5787 
5788 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5789 			num_bytes, 0);
5790 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5791 }
5792 
5793 /*
5794  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5795  * root: the root of the parent directory
5796  * rsv: block reservation
5797  * items: the number of items that we need do reservation
5798  * qgroup_reserved: used to return the reserved size in qgroup
5799  *
5800  * This function is used to reserve the space for snapshot/subvolume
5801  * creation and deletion. Those operations are different with the
5802  * common file/directory operations, they change two fs/file trees
5803  * and root tree, the number of items that the qgroup reserves is
5804  * different with the free space reservation. So we can not use
5805  * the space reservation mechanism in start_transaction().
5806  */
5807 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5808 				     struct btrfs_block_rsv *rsv,
5809 				     int items,
5810 				     u64 *qgroup_reserved,
5811 				     bool use_global_rsv)
5812 {
5813 	u64 num_bytes;
5814 	int ret;
5815 	struct btrfs_fs_info *fs_info = root->fs_info;
5816 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5817 
5818 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5819 		/* One for parent inode, two for dir entries */
5820 		num_bytes = 3 * fs_info->nodesize;
5821 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5822 		if (ret)
5823 			return ret;
5824 	} else {
5825 		num_bytes = 0;
5826 	}
5827 
5828 	*qgroup_reserved = num_bytes;
5829 
5830 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5831 	rsv->space_info = __find_space_info(fs_info,
5832 					    BTRFS_BLOCK_GROUP_METADATA);
5833 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5834 				  BTRFS_RESERVE_FLUSH_ALL);
5835 
5836 	if (ret == -ENOSPC && use_global_rsv)
5837 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5838 
5839 	if (ret && *qgroup_reserved)
5840 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5841 
5842 	return ret;
5843 }
5844 
5845 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5846 				      struct btrfs_block_rsv *rsv)
5847 {
5848 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5849 }
5850 
5851 /**
5852  * drop_outstanding_extent - drop an outstanding extent
5853  * @inode: the inode we're dropping the extent for
5854  * @num_bytes: the number of bytes we're releasing.
5855  *
5856  * This is called when we are freeing up an outstanding extent, either called
5857  * after an error or after an extent is written.  This will return the number of
5858  * reserved extents that need to be freed.  This must be called with
5859  * BTRFS_I(inode)->lock held.
5860  */
5861 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5862 		u64 num_bytes)
5863 {
5864 	unsigned drop_inode_space = 0;
5865 	unsigned dropped_extents = 0;
5866 	unsigned num_extents;
5867 
5868 	num_extents = count_max_extents(num_bytes);
5869 	ASSERT(num_extents);
5870 	ASSERT(inode->outstanding_extents >= num_extents);
5871 	inode->outstanding_extents -= num_extents;
5872 
5873 	if (inode->outstanding_extents == 0 &&
5874 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5875 			       &inode->runtime_flags))
5876 		drop_inode_space = 1;
5877 
5878 	/*
5879 	 * If we have more or the same amount of outstanding extents than we have
5880 	 * reserved then we need to leave the reserved extents count alone.
5881 	 */
5882 	if (inode->outstanding_extents >= inode->reserved_extents)
5883 		return drop_inode_space;
5884 
5885 	dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5886 	inode->reserved_extents -= dropped_extents;
5887 	return dropped_extents + drop_inode_space;
5888 }
5889 
5890 /**
5891  * calc_csum_metadata_size - return the amount of metadata space that must be
5892  *	reserved/freed for the given bytes.
5893  * @inode: the inode we're manipulating
5894  * @num_bytes: the number of bytes in question
5895  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5896  *
5897  * This adjusts the number of csum_bytes in the inode and then returns the
5898  * correct amount of metadata that must either be reserved or freed.  We
5899  * calculate how many checksums we can fit into one leaf and then divide the
5900  * number of bytes that will need to be checksumed by this value to figure out
5901  * how many checksums will be required.  If we are adding bytes then the number
5902  * may go up and we will return the number of additional bytes that must be
5903  * reserved.  If it is going down we will return the number of bytes that must
5904  * be freed.
5905  *
5906  * This must be called with BTRFS_I(inode)->lock held.
5907  */
5908 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5909 				   int reserve)
5910 {
5911 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5912 	u64 old_csums, num_csums;
5913 
5914 	if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5915 		return 0;
5916 
5917 	old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5918 	if (reserve)
5919 		inode->csum_bytes += num_bytes;
5920 	else
5921 		inode->csum_bytes -= num_bytes;
5922 	num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5923 
5924 	/* No change, no need to reserve more */
5925 	if (old_csums == num_csums)
5926 		return 0;
5927 
5928 	if (reserve)
5929 		return btrfs_calc_trans_metadata_size(fs_info,
5930 						      num_csums - old_csums);
5931 
5932 	return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5933 }
5934 
5935 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5936 {
5937 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938 	struct btrfs_root *root = inode->root;
5939 	struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5940 	u64 to_reserve = 0;
5941 	u64 csum_bytes;
5942 	unsigned nr_extents;
5943 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5944 	int ret = 0;
5945 	bool delalloc_lock = true;
5946 	u64 to_free = 0;
5947 	unsigned dropped;
5948 	bool release_extra = false;
5949 
5950 	/* If we are a free space inode we need to not flush since we will be in
5951 	 * the middle of a transaction commit.  We also don't need the delalloc
5952 	 * mutex since we won't race with anybody.  We need this mostly to make
5953 	 * lockdep shut its filthy mouth.
5954 	 *
5955 	 * If we have a transaction open (can happen if we call truncate_block
5956 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5957 	 */
5958 	if (btrfs_is_free_space_inode(inode)) {
5959 		flush = BTRFS_RESERVE_NO_FLUSH;
5960 		delalloc_lock = false;
5961 	} else if (current->journal_info) {
5962 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5963 	}
5964 
5965 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5966 	    btrfs_transaction_in_commit(fs_info))
5967 		schedule_timeout(1);
5968 
5969 	if (delalloc_lock)
5970 		mutex_lock(&inode->delalloc_mutex);
5971 
5972 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5973 
5974 	spin_lock(&inode->lock);
5975 	nr_extents = count_max_extents(num_bytes);
5976 	inode->outstanding_extents += nr_extents;
5977 
5978 	nr_extents = 0;
5979 	if (inode->outstanding_extents > inode->reserved_extents)
5980 		nr_extents += inode->outstanding_extents -
5981 			inode->reserved_extents;
5982 
5983 	/* We always want to reserve a slot for updating the inode. */
5984 	to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5985 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5986 	csum_bytes = inode->csum_bytes;
5987 	spin_unlock(&inode->lock);
5988 
5989 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5990 		ret = btrfs_qgroup_reserve_meta(root,
5991 				nr_extents * fs_info->nodesize, true);
5992 		if (ret)
5993 			goto out_fail;
5994 	}
5995 
5996 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5997 	if (unlikely(ret)) {
5998 		btrfs_qgroup_free_meta(root,
5999 				       nr_extents * fs_info->nodesize);
6000 		goto out_fail;
6001 	}
6002 
6003 	spin_lock(&inode->lock);
6004 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6005 			     &inode->runtime_flags)) {
6006 		to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6007 		release_extra = true;
6008 	}
6009 	inode->reserved_extents += nr_extents;
6010 	spin_unlock(&inode->lock);
6011 
6012 	if (delalloc_lock)
6013 		mutex_unlock(&inode->delalloc_mutex);
6014 
6015 	if (to_reserve)
6016 		trace_btrfs_space_reservation(fs_info, "delalloc",
6017 					      btrfs_ino(inode), to_reserve, 1);
6018 	if (release_extra)
6019 		btrfs_block_rsv_release(fs_info, block_rsv,
6020 				btrfs_calc_trans_metadata_size(fs_info, 1));
6021 	return 0;
6022 
6023 out_fail:
6024 	spin_lock(&inode->lock);
6025 	dropped = drop_outstanding_extent(inode, num_bytes);
6026 	/*
6027 	 * If the inodes csum_bytes is the same as the original
6028 	 * csum_bytes then we know we haven't raced with any free()ers
6029 	 * so we can just reduce our inodes csum bytes and carry on.
6030 	 */
6031 	if (inode->csum_bytes == csum_bytes) {
6032 		calc_csum_metadata_size(inode, num_bytes, 0);
6033 	} else {
6034 		u64 orig_csum_bytes = inode->csum_bytes;
6035 		u64 bytes;
6036 
6037 		/*
6038 		 * This is tricky, but first we need to figure out how much we
6039 		 * freed from any free-ers that occurred during this
6040 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6041 		 * before we dropped our lock, and then call the free for the
6042 		 * number of bytes that were freed while we were trying our
6043 		 * reservation.
6044 		 */
6045 		bytes = csum_bytes - inode->csum_bytes;
6046 		inode->csum_bytes = csum_bytes;
6047 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6048 
6049 
6050 		/*
6051 		 * Now we need to see how much we would have freed had we not
6052 		 * been making this reservation and our ->csum_bytes were not
6053 		 * artificially inflated.
6054 		 */
6055 		inode->csum_bytes = csum_bytes - num_bytes;
6056 		bytes = csum_bytes - orig_csum_bytes;
6057 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6058 
6059 		/*
6060 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6061 		 * more than to_free then we would have freed more space had we
6062 		 * not had an artificially high ->csum_bytes, so we need to free
6063 		 * the remainder.  If bytes is the same or less then we don't
6064 		 * need to do anything, the other free-ers did the correct
6065 		 * thing.
6066 		 */
6067 		inode->csum_bytes = orig_csum_bytes - num_bytes;
6068 		if (bytes > to_free)
6069 			to_free = bytes - to_free;
6070 		else
6071 			to_free = 0;
6072 	}
6073 	spin_unlock(&inode->lock);
6074 	if (dropped)
6075 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6076 
6077 	if (to_free) {
6078 		btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6079 		trace_btrfs_space_reservation(fs_info, "delalloc",
6080 					      btrfs_ino(inode), to_free, 0);
6081 	}
6082 	if (delalloc_lock)
6083 		mutex_unlock(&inode->delalloc_mutex);
6084 	return ret;
6085 }
6086 
6087 /**
6088  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6089  * @inode: the inode to release the reservation for
6090  * @num_bytes: the number of bytes we're releasing
6091  *
6092  * This will release the metadata reservation for an inode.  This can be called
6093  * once we complete IO for a given set of bytes to release their metadata
6094  * reservations.
6095  */
6096 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6097 {
6098 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6099 	u64 to_free = 0;
6100 	unsigned dropped;
6101 
6102 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6103 	spin_lock(&inode->lock);
6104 	dropped = drop_outstanding_extent(inode, num_bytes);
6105 
6106 	if (num_bytes)
6107 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6108 	spin_unlock(&inode->lock);
6109 	if (dropped > 0)
6110 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6111 
6112 	if (btrfs_is_testing(fs_info))
6113 		return;
6114 
6115 	trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6116 				      to_free, 0);
6117 
6118 	btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6119 }
6120 
6121 /**
6122  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6123  * delalloc
6124  * @inode: inode we're writing to
6125  * @start: start range we are writing to
6126  * @len: how long the range we are writing to
6127  *
6128  * This will do the following things
6129  *
6130  * o reserve space in data space info for num bytes
6131  *   and reserve precious corresponding qgroup space
6132  *   (Done in check_data_free_space)
6133  *
6134  * o reserve space for metadata space, based on the number of outstanding
6135  *   extents and how much csums will be needed
6136  *   also reserve metadata space in a per root over-reserve method.
6137  * o add to the inodes->delalloc_bytes
6138  * o add it to the fs_info's delalloc inodes list.
6139  *   (Above 3 all done in delalloc_reserve_metadata)
6140  *
6141  * Return 0 for success
6142  * Return <0 for error(-ENOSPC or -EQUOT)
6143  */
6144 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6145 {
6146 	int ret;
6147 
6148 	ret = btrfs_check_data_free_space(inode, start, len);
6149 	if (ret < 0)
6150 		return ret;
6151 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6152 	if (ret < 0)
6153 		btrfs_free_reserved_data_space(inode, start, len);
6154 	return ret;
6155 }
6156 
6157 /**
6158  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6159  * @inode: inode we're releasing space for
6160  * @start: start position of the space already reserved
6161  * @len: the len of the space already reserved
6162  *
6163  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6164  * called in the case that we don't need the metadata AND data reservations
6165  * anymore.  So if there is an error or we insert an inline extent.
6166  *
6167  * This function will release the metadata space that was not used and will
6168  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6169  * list if there are no delalloc bytes left.
6170  * Also it will handle the qgroup reserved space.
6171  */
6172 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6173 {
6174 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6175 	btrfs_free_reserved_data_space(inode, start, len);
6176 }
6177 
6178 static int update_block_group(struct btrfs_trans_handle *trans,
6179 			      struct btrfs_fs_info *info, u64 bytenr,
6180 			      u64 num_bytes, int alloc)
6181 {
6182 	struct btrfs_block_group_cache *cache = NULL;
6183 	u64 total = num_bytes;
6184 	u64 old_val;
6185 	u64 byte_in_group;
6186 	int factor;
6187 
6188 	/* block accounting for super block */
6189 	spin_lock(&info->delalloc_root_lock);
6190 	old_val = btrfs_super_bytes_used(info->super_copy);
6191 	if (alloc)
6192 		old_val += num_bytes;
6193 	else
6194 		old_val -= num_bytes;
6195 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6196 	spin_unlock(&info->delalloc_root_lock);
6197 
6198 	while (total) {
6199 		cache = btrfs_lookup_block_group(info, bytenr);
6200 		if (!cache)
6201 			return -ENOENT;
6202 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6203 				    BTRFS_BLOCK_GROUP_RAID1 |
6204 				    BTRFS_BLOCK_GROUP_RAID10))
6205 			factor = 2;
6206 		else
6207 			factor = 1;
6208 		/*
6209 		 * If this block group has free space cache written out, we
6210 		 * need to make sure to load it if we are removing space.  This
6211 		 * is because we need the unpinning stage to actually add the
6212 		 * space back to the block group, otherwise we will leak space.
6213 		 */
6214 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6215 			cache_block_group(cache, 1);
6216 
6217 		byte_in_group = bytenr - cache->key.objectid;
6218 		WARN_ON(byte_in_group > cache->key.offset);
6219 
6220 		spin_lock(&cache->space_info->lock);
6221 		spin_lock(&cache->lock);
6222 
6223 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6224 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6225 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6226 
6227 		old_val = btrfs_block_group_used(&cache->item);
6228 		num_bytes = min(total, cache->key.offset - byte_in_group);
6229 		if (alloc) {
6230 			old_val += num_bytes;
6231 			btrfs_set_block_group_used(&cache->item, old_val);
6232 			cache->reserved -= num_bytes;
6233 			cache->space_info->bytes_reserved -= num_bytes;
6234 			cache->space_info->bytes_used += num_bytes;
6235 			cache->space_info->disk_used += num_bytes * factor;
6236 			spin_unlock(&cache->lock);
6237 			spin_unlock(&cache->space_info->lock);
6238 		} else {
6239 			old_val -= num_bytes;
6240 			btrfs_set_block_group_used(&cache->item, old_val);
6241 			cache->pinned += num_bytes;
6242 			cache->space_info->bytes_pinned += num_bytes;
6243 			cache->space_info->bytes_used -= num_bytes;
6244 			cache->space_info->disk_used -= num_bytes * factor;
6245 			spin_unlock(&cache->lock);
6246 			spin_unlock(&cache->space_info->lock);
6247 
6248 			trace_btrfs_space_reservation(info, "pinned",
6249 						      cache->space_info->flags,
6250 						      num_bytes, 1);
6251 			set_extent_dirty(info->pinned_extents,
6252 					 bytenr, bytenr + num_bytes - 1,
6253 					 GFP_NOFS | __GFP_NOFAIL);
6254 		}
6255 
6256 		spin_lock(&trans->transaction->dirty_bgs_lock);
6257 		if (list_empty(&cache->dirty_list)) {
6258 			list_add_tail(&cache->dirty_list,
6259 				      &trans->transaction->dirty_bgs);
6260 				trans->transaction->num_dirty_bgs++;
6261 			btrfs_get_block_group(cache);
6262 		}
6263 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6264 
6265 		/*
6266 		 * No longer have used bytes in this block group, queue it for
6267 		 * deletion. We do this after adding the block group to the
6268 		 * dirty list to avoid races between cleaner kthread and space
6269 		 * cache writeout.
6270 		 */
6271 		if (!alloc && old_val == 0) {
6272 			spin_lock(&info->unused_bgs_lock);
6273 			if (list_empty(&cache->bg_list)) {
6274 				btrfs_get_block_group(cache);
6275 				list_add_tail(&cache->bg_list,
6276 					      &info->unused_bgs);
6277 			}
6278 			spin_unlock(&info->unused_bgs_lock);
6279 		}
6280 
6281 		btrfs_put_block_group(cache);
6282 		total -= num_bytes;
6283 		bytenr += num_bytes;
6284 	}
6285 	return 0;
6286 }
6287 
6288 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6289 {
6290 	struct btrfs_block_group_cache *cache;
6291 	u64 bytenr;
6292 
6293 	spin_lock(&fs_info->block_group_cache_lock);
6294 	bytenr = fs_info->first_logical_byte;
6295 	spin_unlock(&fs_info->block_group_cache_lock);
6296 
6297 	if (bytenr < (u64)-1)
6298 		return bytenr;
6299 
6300 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6301 	if (!cache)
6302 		return 0;
6303 
6304 	bytenr = cache->key.objectid;
6305 	btrfs_put_block_group(cache);
6306 
6307 	return bytenr;
6308 }
6309 
6310 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6311 			   struct btrfs_block_group_cache *cache,
6312 			   u64 bytenr, u64 num_bytes, int reserved)
6313 {
6314 	spin_lock(&cache->space_info->lock);
6315 	spin_lock(&cache->lock);
6316 	cache->pinned += num_bytes;
6317 	cache->space_info->bytes_pinned += num_bytes;
6318 	if (reserved) {
6319 		cache->reserved -= num_bytes;
6320 		cache->space_info->bytes_reserved -= num_bytes;
6321 	}
6322 	spin_unlock(&cache->lock);
6323 	spin_unlock(&cache->space_info->lock);
6324 
6325 	trace_btrfs_space_reservation(fs_info, "pinned",
6326 				      cache->space_info->flags, num_bytes, 1);
6327 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6328 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6329 	return 0;
6330 }
6331 
6332 /*
6333  * this function must be called within transaction
6334  */
6335 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6336 		     u64 bytenr, u64 num_bytes, int reserved)
6337 {
6338 	struct btrfs_block_group_cache *cache;
6339 
6340 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6341 	BUG_ON(!cache); /* Logic error */
6342 
6343 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6344 
6345 	btrfs_put_block_group(cache);
6346 	return 0;
6347 }
6348 
6349 /*
6350  * this function must be called within transaction
6351  */
6352 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6353 				    u64 bytenr, u64 num_bytes)
6354 {
6355 	struct btrfs_block_group_cache *cache;
6356 	int ret;
6357 
6358 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6359 	if (!cache)
6360 		return -EINVAL;
6361 
6362 	/*
6363 	 * pull in the free space cache (if any) so that our pin
6364 	 * removes the free space from the cache.  We have load_only set
6365 	 * to one because the slow code to read in the free extents does check
6366 	 * the pinned extents.
6367 	 */
6368 	cache_block_group(cache, 1);
6369 
6370 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6371 
6372 	/* remove us from the free space cache (if we're there at all) */
6373 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6374 	btrfs_put_block_group(cache);
6375 	return ret;
6376 }
6377 
6378 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6379 				   u64 start, u64 num_bytes)
6380 {
6381 	int ret;
6382 	struct btrfs_block_group_cache *block_group;
6383 	struct btrfs_caching_control *caching_ctl;
6384 
6385 	block_group = btrfs_lookup_block_group(fs_info, start);
6386 	if (!block_group)
6387 		return -EINVAL;
6388 
6389 	cache_block_group(block_group, 0);
6390 	caching_ctl = get_caching_control(block_group);
6391 
6392 	if (!caching_ctl) {
6393 		/* Logic error */
6394 		BUG_ON(!block_group_cache_done(block_group));
6395 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6396 	} else {
6397 		mutex_lock(&caching_ctl->mutex);
6398 
6399 		if (start >= caching_ctl->progress) {
6400 			ret = add_excluded_extent(fs_info, start, num_bytes);
6401 		} else if (start + num_bytes <= caching_ctl->progress) {
6402 			ret = btrfs_remove_free_space(block_group,
6403 						      start, num_bytes);
6404 		} else {
6405 			num_bytes = caching_ctl->progress - start;
6406 			ret = btrfs_remove_free_space(block_group,
6407 						      start, num_bytes);
6408 			if (ret)
6409 				goto out_lock;
6410 
6411 			num_bytes = (start + num_bytes) -
6412 				caching_ctl->progress;
6413 			start = caching_ctl->progress;
6414 			ret = add_excluded_extent(fs_info, start, num_bytes);
6415 		}
6416 out_lock:
6417 		mutex_unlock(&caching_ctl->mutex);
6418 		put_caching_control(caching_ctl);
6419 	}
6420 	btrfs_put_block_group(block_group);
6421 	return ret;
6422 }
6423 
6424 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6425 				 struct extent_buffer *eb)
6426 {
6427 	struct btrfs_file_extent_item *item;
6428 	struct btrfs_key key;
6429 	int found_type;
6430 	int i;
6431 
6432 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6433 		return 0;
6434 
6435 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6436 		btrfs_item_key_to_cpu(eb, &key, i);
6437 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6438 			continue;
6439 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6440 		found_type = btrfs_file_extent_type(eb, item);
6441 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6442 			continue;
6443 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6444 			continue;
6445 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6446 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6447 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6448 	}
6449 
6450 	return 0;
6451 }
6452 
6453 static void
6454 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6455 {
6456 	atomic_inc(&bg->reservations);
6457 }
6458 
6459 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6460 					const u64 start)
6461 {
6462 	struct btrfs_block_group_cache *bg;
6463 
6464 	bg = btrfs_lookup_block_group(fs_info, start);
6465 	ASSERT(bg);
6466 	if (atomic_dec_and_test(&bg->reservations))
6467 		wake_up_atomic_t(&bg->reservations);
6468 	btrfs_put_block_group(bg);
6469 }
6470 
6471 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6472 {
6473 	schedule();
6474 	return 0;
6475 }
6476 
6477 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6478 {
6479 	struct btrfs_space_info *space_info = bg->space_info;
6480 
6481 	ASSERT(bg->ro);
6482 
6483 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6484 		return;
6485 
6486 	/*
6487 	 * Our block group is read only but before we set it to read only,
6488 	 * some task might have had allocated an extent from it already, but it
6489 	 * has not yet created a respective ordered extent (and added it to a
6490 	 * root's list of ordered extents).
6491 	 * Therefore wait for any task currently allocating extents, since the
6492 	 * block group's reservations counter is incremented while a read lock
6493 	 * on the groups' semaphore is held and decremented after releasing
6494 	 * the read access on that semaphore and creating the ordered extent.
6495 	 */
6496 	down_write(&space_info->groups_sem);
6497 	up_write(&space_info->groups_sem);
6498 
6499 	wait_on_atomic_t(&bg->reservations,
6500 			 btrfs_wait_bg_reservations_atomic_t,
6501 			 TASK_UNINTERRUPTIBLE);
6502 }
6503 
6504 /**
6505  * btrfs_add_reserved_bytes - update the block_group and space info counters
6506  * @cache:	The cache we are manipulating
6507  * @ram_bytes:  The number of bytes of file content, and will be same to
6508  *              @num_bytes except for the compress path.
6509  * @num_bytes:	The number of bytes in question
6510  * @delalloc:   The blocks are allocated for the delalloc write
6511  *
6512  * This is called by the allocator when it reserves space. If this is a
6513  * reservation and the block group has become read only we cannot make the
6514  * reservation and return -EAGAIN, otherwise this function always succeeds.
6515  */
6516 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6517 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6518 {
6519 	struct btrfs_space_info *space_info = cache->space_info;
6520 	int ret = 0;
6521 
6522 	spin_lock(&space_info->lock);
6523 	spin_lock(&cache->lock);
6524 	if (cache->ro) {
6525 		ret = -EAGAIN;
6526 	} else {
6527 		cache->reserved += num_bytes;
6528 		space_info->bytes_reserved += num_bytes;
6529 
6530 		trace_btrfs_space_reservation(cache->fs_info,
6531 				"space_info", space_info->flags,
6532 				ram_bytes, 0);
6533 		space_info->bytes_may_use -= ram_bytes;
6534 		if (delalloc)
6535 			cache->delalloc_bytes += num_bytes;
6536 	}
6537 	spin_unlock(&cache->lock);
6538 	spin_unlock(&space_info->lock);
6539 	return ret;
6540 }
6541 
6542 /**
6543  * btrfs_free_reserved_bytes - update the block_group and space info counters
6544  * @cache:      The cache we are manipulating
6545  * @num_bytes:  The number of bytes in question
6546  * @delalloc:   The blocks are allocated for the delalloc write
6547  *
6548  * This is called by somebody who is freeing space that was never actually used
6549  * on disk.  For example if you reserve some space for a new leaf in transaction
6550  * A and before transaction A commits you free that leaf, you call this with
6551  * reserve set to 0 in order to clear the reservation.
6552  */
6553 
6554 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6555 				     u64 num_bytes, int delalloc)
6556 {
6557 	struct btrfs_space_info *space_info = cache->space_info;
6558 	int ret = 0;
6559 
6560 	spin_lock(&space_info->lock);
6561 	spin_lock(&cache->lock);
6562 	if (cache->ro)
6563 		space_info->bytes_readonly += num_bytes;
6564 	cache->reserved -= num_bytes;
6565 	space_info->bytes_reserved -= num_bytes;
6566 
6567 	if (delalloc)
6568 		cache->delalloc_bytes -= num_bytes;
6569 	spin_unlock(&cache->lock);
6570 	spin_unlock(&space_info->lock);
6571 	return ret;
6572 }
6573 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6574 {
6575 	struct btrfs_caching_control *next;
6576 	struct btrfs_caching_control *caching_ctl;
6577 	struct btrfs_block_group_cache *cache;
6578 
6579 	down_write(&fs_info->commit_root_sem);
6580 
6581 	list_for_each_entry_safe(caching_ctl, next,
6582 				 &fs_info->caching_block_groups, list) {
6583 		cache = caching_ctl->block_group;
6584 		if (block_group_cache_done(cache)) {
6585 			cache->last_byte_to_unpin = (u64)-1;
6586 			list_del_init(&caching_ctl->list);
6587 			put_caching_control(caching_ctl);
6588 		} else {
6589 			cache->last_byte_to_unpin = caching_ctl->progress;
6590 		}
6591 	}
6592 
6593 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6594 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6595 	else
6596 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6597 
6598 	up_write(&fs_info->commit_root_sem);
6599 
6600 	update_global_block_rsv(fs_info);
6601 }
6602 
6603 /*
6604  * Returns the free cluster for the given space info and sets empty_cluster to
6605  * what it should be based on the mount options.
6606  */
6607 static struct btrfs_free_cluster *
6608 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6609 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6610 {
6611 	struct btrfs_free_cluster *ret = NULL;
6612 	bool ssd = btrfs_test_opt(fs_info, SSD);
6613 
6614 	*empty_cluster = 0;
6615 	if (btrfs_mixed_space_info(space_info))
6616 		return ret;
6617 
6618 	if (ssd)
6619 		*empty_cluster = SZ_2M;
6620 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6621 		ret = &fs_info->meta_alloc_cluster;
6622 		if (!ssd)
6623 			*empty_cluster = SZ_64K;
6624 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6625 		ret = &fs_info->data_alloc_cluster;
6626 	}
6627 
6628 	return ret;
6629 }
6630 
6631 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6632 			      u64 start, u64 end,
6633 			      const bool return_free_space)
6634 {
6635 	struct btrfs_block_group_cache *cache = NULL;
6636 	struct btrfs_space_info *space_info;
6637 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6638 	struct btrfs_free_cluster *cluster = NULL;
6639 	u64 len;
6640 	u64 total_unpinned = 0;
6641 	u64 empty_cluster = 0;
6642 	bool readonly;
6643 
6644 	while (start <= end) {
6645 		readonly = false;
6646 		if (!cache ||
6647 		    start >= cache->key.objectid + cache->key.offset) {
6648 			if (cache)
6649 				btrfs_put_block_group(cache);
6650 			total_unpinned = 0;
6651 			cache = btrfs_lookup_block_group(fs_info, start);
6652 			BUG_ON(!cache); /* Logic error */
6653 
6654 			cluster = fetch_cluster_info(fs_info,
6655 						     cache->space_info,
6656 						     &empty_cluster);
6657 			empty_cluster <<= 1;
6658 		}
6659 
6660 		len = cache->key.objectid + cache->key.offset - start;
6661 		len = min(len, end + 1 - start);
6662 
6663 		if (start < cache->last_byte_to_unpin) {
6664 			len = min(len, cache->last_byte_to_unpin - start);
6665 			if (return_free_space)
6666 				btrfs_add_free_space(cache, start, len);
6667 		}
6668 
6669 		start += len;
6670 		total_unpinned += len;
6671 		space_info = cache->space_info;
6672 
6673 		/*
6674 		 * If this space cluster has been marked as fragmented and we've
6675 		 * unpinned enough in this block group to potentially allow a
6676 		 * cluster to be created inside of it go ahead and clear the
6677 		 * fragmented check.
6678 		 */
6679 		if (cluster && cluster->fragmented &&
6680 		    total_unpinned > empty_cluster) {
6681 			spin_lock(&cluster->lock);
6682 			cluster->fragmented = 0;
6683 			spin_unlock(&cluster->lock);
6684 		}
6685 
6686 		spin_lock(&space_info->lock);
6687 		spin_lock(&cache->lock);
6688 		cache->pinned -= len;
6689 		space_info->bytes_pinned -= len;
6690 
6691 		trace_btrfs_space_reservation(fs_info, "pinned",
6692 					      space_info->flags, len, 0);
6693 		space_info->max_extent_size = 0;
6694 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6695 		if (cache->ro) {
6696 			space_info->bytes_readonly += len;
6697 			readonly = true;
6698 		}
6699 		spin_unlock(&cache->lock);
6700 		if (!readonly && return_free_space &&
6701 		    global_rsv->space_info == space_info) {
6702 			u64 to_add = len;
6703 			WARN_ON(!return_free_space);
6704 			spin_lock(&global_rsv->lock);
6705 			if (!global_rsv->full) {
6706 				to_add = min(len, global_rsv->size -
6707 					     global_rsv->reserved);
6708 				global_rsv->reserved += to_add;
6709 				space_info->bytes_may_use += to_add;
6710 				if (global_rsv->reserved >= global_rsv->size)
6711 					global_rsv->full = 1;
6712 				trace_btrfs_space_reservation(fs_info,
6713 							      "space_info",
6714 							      space_info->flags,
6715 							      to_add, 1);
6716 				len -= to_add;
6717 			}
6718 			spin_unlock(&global_rsv->lock);
6719 			/* Add to any tickets we may have */
6720 			if (len)
6721 				space_info_add_new_bytes(fs_info, space_info,
6722 							 len);
6723 		}
6724 		spin_unlock(&space_info->lock);
6725 	}
6726 
6727 	if (cache)
6728 		btrfs_put_block_group(cache);
6729 	return 0;
6730 }
6731 
6732 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6733 			       struct btrfs_fs_info *fs_info)
6734 {
6735 	struct btrfs_block_group_cache *block_group, *tmp;
6736 	struct list_head *deleted_bgs;
6737 	struct extent_io_tree *unpin;
6738 	u64 start;
6739 	u64 end;
6740 	int ret;
6741 
6742 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6743 		unpin = &fs_info->freed_extents[1];
6744 	else
6745 		unpin = &fs_info->freed_extents[0];
6746 
6747 	while (!trans->aborted) {
6748 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6749 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6750 					    EXTENT_DIRTY, NULL);
6751 		if (ret) {
6752 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 			break;
6754 		}
6755 
6756 		if (btrfs_test_opt(fs_info, DISCARD))
6757 			ret = btrfs_discard_extent(fs_info, start,
6758 						   end + 1 - start, NULL);
6759 
6760 		clear_extent_dirty(unpin, start, end);
6761 		unpin_extent_range(fs_info, start, end, true);
6762 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6763 		cond_resched();
6764 	}
6765 
6766 	/*
6767 	 * Transaction is finished.  We don't need the lock anymore.  We
6768 	 * do need to clean up the block groups in case of a transaction
6769 	 * abort.
6770 	 */
6771 	deleted_bgs = &trans->transaction->deleted_bgs;
6772 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 		u64 trimmed = 0;
6774 
6775 		ret = -EROFS;
6776 		if (!trans->aborted)
6777 			ret = btrfs_discard_extent(fs_info,
6778 						   block_group->key.objectid,
6779 						   block_group->key.offset,
6780 						   &trimmed);
6781 
6782 		list_del_init(&block_group->bg_list);
6783 		btrfs_put_block_group_trimming(block_group);
6784 		btrfs_put_block_group(block_group);
6785 
6786 		if (ret) {
6787 			const char *errstr = btrfs_decode_error(ret);
6788 			btrfs_warn(fs_info,
6789 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6790 				   ret, errstr);
6791 		}
6792 	}
6793 
6794 	return 0;
6795 }
6796 
6797 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6798 			     u64 owner, u64 root_objectid)
6799 {
6800 	struct btrfs_space_info *space_info;
6801 	u64 flags;
6802 
6803 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6804 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6805 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6806 		else
6807 			flags = BTRFS_BLOCK_GROUP_METADATA;
6808 	} else {
6809 		flags = BTRFS_BLOCK_GROUP_DATA;
6810 	}
6811 
6812 	space_info = __find_space_info(fs_info, flags);
6813 	BUG_ON(!space_info); /* Logic bug */
6814 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815 }
6816 
6817 
6818 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6819 				struct btrfs_fs_info *info,
6820 				struct btrfs_delayed_ref_node *node, u64 parent,
6821 				u64 root_objectid, u64 owner_objectid,
6822 				u64 owner_offset, int refs_to_drop,
6823 				struct btrfs_delayed_extent_op *extent_op)
6824 {
6825 	struct btrfs_key key;
6826 	struct btrfs_path *path;
6827 	struct btrfs_root *extent_root = info->extent_root;
6828 	struct extent_buffer *leaf;
6829 	struct btrfs_extent_item *ei;
6830 	struct btrfs_extent_inline_ref *iref;
6831 	int ret;
6832 	int is_data;
6833 	int extent_slot = 0;
6834 	int found_extent = 0;
6835 	int num_to_del = 1;
6836 	u32 item_size;
6837 	u64 refs;
6838 	u64 bytenr = node->bytenr;
6839 	u64 num_bytes = node->num_bytes;
6840 	int last_ref = 0;
6841 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6842 
6843 	path = btrfs_alloc_path();
6844 	if (!path)
6845 		return -ENOMEM;
6846 
6847 	path->reada = READA_FORWARD;
6848 	path->leave_spinning = 1;
6849 
6850 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6851 	BUG_ON(!is_data && refs_to_drop != 1);
6852 
6853 	if (is_data)
6854 		skinny_metadata = 0;
6855 
6856 	ret = lookup_extent_backref(trans, info, path, &iref,
6857 				    bytenr, num_bytes, parent,
6858 				    root_objectid, owner_objectid,
6859 				    owner_offset);
6860 	if (ret == 0) {
6861 		extent_slot = path->slots[0];
6862 		while (extent_slot >= 0) {
6863 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6864 					      extent_slot);
6865 			if (key.objectid != bytenr)
6866 				break;
6867 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6868 			    key.offset == num_bytes) {
6869 				found_extent = 1;
6870 				break;
6871 			}
6872 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6873 			    key.offset == owner_objectid) {
6874 				found_extent = 1;
6875 				break;
6876 			}
6877 			if (path->slots[0] - extent_slot > 5)
6878 				break;
6879 			extent_slot--;
6880 		}
6881 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6882 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6883 		if (found_extent && item_size < sizeof(*ei))
6884 			found_extent = 0;
6885 #endif
6886 		if (!found_extent) {
6887 			BUG_ON(iref);
6888 			ret = remove_extent_backref(trans, info, path, NULL,
6889 						    refs_to_drop,
6890 						    is_data, &last_ref);
6891 			if (ret) {
6892 				btrfs_abort_transaction(trans, ret);
6893 				goto out;
6894 			}
6895 			btrfs_release_path(path);
6896 			path->leave_spinning = 1;
6897 
6898 			key.objectid = bytenr;
6899 			key.type = BTRFS_EXTENT_ITEM_KEY;
6900 			key.offset = num_bytes;
6901 
6902 			if (!is_data && skinny_metadata) {
6903 				key.type = BTRFS_METADATA_ITEM_KEY;
6904 				key.offset = owner_objectid;
6905 			}
6906 
6907 			ret = btrfs_search_slot(trans, extent_root,
6908 						&key, path, -1, 1);
6909 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6910 				/*
6911 				 * Couldn't find our skinny metadata item,
6912 				 * see if we have ye olde extent item.
6913 				 */
6914 				path->slots[0]--;
6915 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6916 						      path->slots[0]);
6917 				if (key.objectid == bytenr &&
6918 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6919 				    key.offset == num_bytes)
6920 					ret = 0;
6921 			}
6922 
6923 			if (ret > 0 && skinny_metadata) {
6924 				skinny_metadata = false;
6925 				key.objectid = bytenr;
6926 				key.type = BTRFS_EXTENT_ITEM_KEY;
6927 				key.offset = num_bytes;
6928 				btrfs_release_path(path);
6929 				ret = btrfs_search_slot(trans, extent_root,
6930 							&key, path, -1, 1);
6931 			}
6932 
6933 			if (ret) {
6934 				btrfs_err(info,
6935 					  "umm, got %d back from search, was looking for %llu",
6936 					  ret, bytenr);
6937 				if (ret > 0)
6938 					btrfs_print_leaf(info, path->nodes[0]);
6939 			}
6940 			if (ret < 0) {
6941 				btrfs_abort_transaction(trans, ret);
6942 				goto out;
6943 			}
6944 			extent_slot = path->slots[0];
6945 		}
6946 	} else if (WARN_ON(ret == -ENOENT)) {
6947 		btrfs_print_leaf(info, path->nodes[0]);
6948 		btrfs_err(info,
6949 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6950 			bytenr, parent, root_objectid, owner_objectid,
6951 			owner_offset);
6952 		btrfs_abort_transaction(trans, ret);
6953 		goto out;
6954 	} else {
6955 		btrfs_abort_transaction(trans, ret);
6956 		goto out;
6957 	}
6958 
6959 	leaf = path->nodes[0];
6960 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6962 	if (item_size < sizeof(*ei)) {
6963 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6964 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6965 					     0);
6966 		if (ret < 0) {
6967 			btrfs_abort_transaction(trans, ret);
6968 			goto out;
6969 		}
6970 
6971 		btrfs_release_path(path);
6972 		path->leave_spinning = 1;
6973 
6974 		key.objectid = bytenr;
6975 		key.type = BTRFS_EXTENT_ITEM_KEY;
6976 		key.offset = num_bytes;
6977 
6978 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6979 					-1, 1);
6980 		if (ret) {
6981 			btrfs_err(info,
6982 				  "umm, got %d back from search, was looking for %llu",
6983 				ret, bytenr);
6984 			btrfs_print_leaf(info, path->nodes[0]);
6985 		}
6986 		if (ret < 0) {
6987 			btrfs_abort_transaction(trans, ret);
6988 			goto out;
6989 		}
6990 
6991 		extent_slot = path->slots[0];
6992 		leaf = path->nodes[0];
6993 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 	}
6995 #endif
6996 	BUG_ON(item_size < sizeof(*ei));
6997 	ei = btrfs_item_ptr(leaf, extent_slot,
6998 			    struct btrfs_extent_item);
6999 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7000 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7001 		struct btrfs_tree_block_info *bi;
7002 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7003 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7004 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7005 	}
7006 
7007 	refs = btrfs_extent_refs(leaf, ei);
7008 	if (refs < refs_to_drop) {
7009 		btrfs_err(info,
7010 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7011 			  refs_to_drop, refs, bytenr);
7012 		ret = -EINVAL;
7013 		btrfs_abort_transaction(trans, ret);
7014 		goto out;
7015 	}
7016 	refs -= refs_to_drop;
7017 
7018 	if (refs > 0) {
7019 		if (extent_op)
7020 			__run_delayed_extent_op(extent_op, leaf, ei);
7021 		/*
7022 		 * In the case of inline back ref, reference count will
7023 		 * be updated by remove_extent_backref
7024 		 */
7025 		if (iref) {
7026 			BUG_ON(!found_extent);
7027 		} else {
7028 			btrfs_set_extent_refs(leaf, ei, refs);
7029 			btrfs_mark_buffer_dirty(leaf);
7030 		}
7031 		if (found_extent) {
7032 			ret = remove_extent_backref(trans, info, path,
7033 						    iref, refs_to_drop,
7034 						    is_data, &last_ref);
7035 			if (ret) {
7036 				btrfs_abort_transaction(trans, ret);
7037 				goto out;
7038 			}
7039 		}
7040 		add_pinned_bytes(info, -num_bytes, owner_objectid,
7041 				 root_objectid);
7042 	} else {
7043 		if (found_extent) {
7044 			BUG_ON(is_data && refs_to_drop !=
7045 			       extent_data_ref_count(path, iref));
7046 			if (iref) {
7047 				BUG_ON(path->slots[0] != extent_slot);
7048 			} else {
7049 				BUG_ON(path->slots[0] != extent_slot + 1);
7050 				path->slots[0] = extent_slot;
7051 				num_to_del = 2;
7052 			}
7053 		}
7054 
7055 		last_ref = 1;
7056 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7057 				      num_to_del);
7058 		if (ret) {
7059 			btrfs_abort_transaction(trans, ret);
7060 			goto out;
7061 		}
7062 		btrfs_release_path(path);
7063 
7064 		if (is_data) {
7065 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7066 			if (ret) {
7067 				btrfs_abort_transaction(trans, ret);
7068 				goto out;
7069 			}
7070 		}
7071 
7072 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7073 		if (ret) {
7074 			btrfs_abort_transaction(trans, ret);
7075 			goto out;
7076 		}
7077 
7078 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7079 		if (ret) {
7080 			btrfs_abort_transaction(trans, ret);
7081 			goto out;
7082 		}
7083 	}
7084 	btrfs_release_path(path);
7085 
7086 out:
7087 	btrfs_free_path(path);
7088 	return ret;
7089 }
7090 
7091 /*
7092  * when we free an block, it is possible (and likely) that we free the last
7093  * delayed ref for that extent as well.  This searches the delayed ref tree for
7094  * a given extent, and if there are no other delayed refs to be processed, it
7095  * removes it from the tree.
7096  */
7097 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7098 				      u64 bytenr)
7099 {
7100 	struct btrfs_delayed_ref_head *head;
7101 	struct btrfs_delayed_ref_root *delayed_refs;
7102 	int ret = 0;
7103 
7104 	delayed_refs = &trans->transaction->delayed_refs;
7105 	spin_lock(&delayed_refs->lock);
7106 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7107 	if (!head)
7108 		goto out_delayed_unlock;
7109 
7110 	spin_lock(&head->lock);
7111 	if (!list_empty(&head->ref_list))
7112 		goto out;
7113 
7114 	if (head->extent_op) {
7115 		if (!head->must_insert_reserved)
7116 			goto out;
7117 		btrfs_free_delayed_extent_op(head->extent_op);
7118 		head->extent_op = NULL;
7119 	}
7120 
7121 	/*
7122 	 * waiting for the lock here would deadlock.  If someone else has it
7123 	 * locked they are already in the process of dropping it anyway
7124 	 */
7125 	if (!mutex_trylock(&head->mutex))
7126 		goto out;
7127 
7128 	/*
7129 	 * at this point we have a head with no other entries.  Go
7130 	 * ahead and process it.
7131 	 */
7132 	head->node.in_tree = 0;
7133 	rb_erase(&head->href_node, &delayed_refs->href_root);
7134 
7135 	atomic_dec(&delayed_refs->num_entries);
7136 
7137 	/*
7138 	 * we don't take a ref on the node because we're removing it from the
7139 	 * tree, so we just steal the ref the tree was holding.
7140 	 */
7141 	delayed_refs->num_heads--;
7142 	if (head->processing == 0)
7143 		delayed_refs->num_heads_ready--;
7144 	head->processing = 0;
7145 	spin_unlock(&head->lock);
7146 	spin_unlock(&delayed_refs->lock);
7147 
7148 	BUG_ON(head->extent_op);
7149 	if (head->must_insert_reserved)
7150 		ret = 1;
7151 
7152 	mutex_unlock(&head->mutex);
7153 	btrfs_put_delayed_ref(&head->node);
7154 	return ret;
7155 out:
7156 	spin_unlock(&head->lock);
7157 
7158 out_delayed_unlock:
7159 	spin_unlock(&delayed_refs->lock);
7160 	return 0;
7161 }
7162 
7163 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7164 			   struct btrfs_root *root,
7165 			   struct extent_buffer *buf,
7166 			   u64 parent, int last_ref)
7167 {
7168 	struct btrfs_fs_info *fs_info = root->fs_info;
7169 	int pin = 1;
7170 	int ret;
7171 
7172 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7173 		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7174 						 buf->start, buf->len,
7175 						 parent,
7176 						 root->root_key.objectid,
7177 						 btrfs_header_level(buf),
7178 						 BTRFS_DROP_DELAYED_REF, NULL);
7179 		BUG_ON(ret); /* -ENOMEM */
7180 	}
7181 
7182 	if (!last_ref)
7183 		return;
7184 
7185 	if (btrfs_header_generation(buf) == trans->transid) {
7186 		struct btrfs_block_group_cache *cache;
7187 
7188 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7189 			ret = check_ref_cleanup(trans, buf->start);
7190 			if (!ret)
7191 				goto out;
7192 		}
7193 
7194 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7195 
7196 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7197 			pin_down_extent(fs_info, cache, buf->start,
7198 					buf->len, 1);
7199 			btrfs_put_block_group(cache);
7200 			goto out;
7201 		}
7202 
7203 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7204 
7205 		btrfs_add_free_space(cache, buf->start, buf->len);
7206 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7207 		btrfs_put_block_group(cache);
7208 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7209 		pin = 0;
7210 	}
7211 out:
7212 	if (pin)
7213 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7214 				 root->root_key.objectid);
7215 
7216 	/*
7217 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7218 	 * anymore.
7219 	 */
7220 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7221 }
7222 
7223 /* Can return -ENOMEM */
7224 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7225 		      struct btrfs_fs_info *fs_info,
7226 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7227 		      u64 owner, u64 offset)
7228 {
7229 	int ret;
7230 
7231 	if (btrfs_is_testing(fs_info))
7232 		return 0;
7233 
7234 	add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7235 
7236 	/*
7237 	 * tree log blocks never actually go into the extent allocation
7238 	 * tree, just update pinning info and exit early.
7239 	 */
7240 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7241 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7242 		/* unlocks the pinned mutex */
7243 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7244 		ret = 0;
7245 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7246 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7247 					num_bytes,
7248 					parent, root_objectid, (int)owner,
7249 					BTRFS_DROP_DELAYED_REF, NULL);
7250 	} else {
7251 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7252 						num_bytes,
7253 						parent, root_objectid, owner,
7254 						offset, 0,
7255 						BTRFS_DROP_DELAYED_REF);
7256 	}
7257 	return ret;
7258 }
7259 
7260 /*
7261  * when we wait for progress in the block group caching, its because
7262  * our allocation attempt failed at least once.  So, we must sleep
7263  * and let some progress happen before we try again.
7264  *
7265  * This function will sleep at least once waiting for new free space to
7266  * show up, and then it will check the block group free space numbers
7267  * for our min num_bytes.  Another option is to have it go ahead
7268  * and look in the rbtree for a free extent of a given size, but this
7269  * is a good start.
7270  *
7271  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7272  * any of the information in this block group.
7273  */
7274 static noinline void
7275 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7276 				u64 num_bytes)
7277 {
7278 	struct btrfs_caching_control *caching_ctl;
7279 
7280 	caching_ctl = get_caching_control(cache);
7281 	if (!caching_ctl)
7282 		return;
7283 
7284 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7285 		   (cache->free_space_ctl->free_space >= num_bytes));
7286 
7287 	put_caching_control(caching_ctl);
7288 }
7289 
7290 static noinline int
7291 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7292 {
7293 	struct btrfs_caching_control *caching_ctl;
7294 	int ret = 0;
7295 
7296 	caching_ctl = get_caching_control(cache);
7297 	if (!caching_ctl)
7298 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7299 
7300 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7301 	if (cache->cached == BTRFS_CACHE_ERROR)
7302 		ret = -EIO;
7303 	put_caching_control(caching_ctl);
7304 	return ret;
7305 }
7306 
7307 int __get_raid_index(u64 flags)
7308 {
7309 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7310 		return BTRFS_RAID_RAID10;
7311 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7312 		return BTRFS_RAID_RAID1;
7313 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7314 		return BTRFS_RAID_DUP;
7315 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7316 		return BTRFS_RAID_RAID0;
7317 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7318 		return BTRFS_RAID_RAID5;
7319 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7320 		return BTRFS_RAID_RAID6;
7321 
7322 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7323 }
7324 
7325 int get_block_group_index(struct btrfs_block_group_cache *cache)
7326 {
7327 	return __get_raid_index(cache->flags);
7328 }
7329 
7330 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7331 	[BTRFS_RAID_RAID10]	= "raid10",
7332 	[BTRFS_RAID_RAID1]	= "raid1",
7333 	[BTRFS_RAID_DUP]	= "dup",
7334 	[BTRFS_RAID_RAID0]	= "raid0",
7335 	[BTRFS_RAID_SINGLE]	= "single",
7336 	[BTRFS_RAID_RAID5]	= "raid5",
7337 	[BTRFS_RAID_RAID6]	= "raid6",
7338 };
7339 
7340 static const char *get_raid_name(enum btrfs_raid_types type)
7341 {
7342 	if (type >= BTRFS_NR_RAID_TYPES)
7343 		return NULL;
7344 
7345 	return btrfs_raid_type_names[type];
7346 }
7347 
7348 enum btrfs_loop_type {
7349 	LOOP_CACHING_NOWAIT = 0,
7350 	LOOP_CACHING_WAIT = 1,
7351 	LOOP_ALLOC_CHUNK = 2,
7352 	LOOP_NO_EMPTY_SIZE = 3,
7353 };
7354 
7355 static inline void
7356 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7357 		       int delalloc)
7358 {
7359 	if (delalloc)
7360 		down_read(&cache->data_rwsem);
7361 }
7362 
7363 static inline void
7364 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7365 		       int delalloc)
7366 {
7367 	btrfs_get_block_group(cache);
7368 	if (delalloc)
7369 		down_read(&cache->data_rwsem);
7370 }
7371 
7372 static struct btrfs_block_group_cache *
7373 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7374 		   struct btrfs_free_cluster *cluster,
7375 		   int delalloc)
7376 {
7377 	struct btrfs_block_group_cache *used_bg = NULL;
7378 
7379 	spin_lock(&cluster->refill_lock);
7380 	while (1) {
7381 		used_bg = cluster->block_group;
7382 		if (!used_bg)
7383 			return NULL;
7384 
7385 		if (used_bg == block_group)
7386 			return used_bg;
7387 
7388 		btrfs_get_block_group(used_bg);
7389 
7390 		if (!delalloc)
7391 			return used_bg;
7392 
7393 		if (down_read_trylock(&used_bg->data_rwsem))
7394 			return used_bg;
7395 
7396 		spin_unlock(&cluster->refill_lock);
7397 
7398 		/* We should only have one-level nested. */
7399 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7400 
7401 		spin_lock(&cluster->refill_lock);
7402 		if (used_bg == cluster->block_group)
7403 			return used_bg;
7404 
7405 		up_read(&used_bg->data_rwsem);
7406 		btrfs_put_block_group(used_bg);
7407 	}
7408 }
7409 
7410 static inline void
7411 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7412 			 int delalloc)
7413 {
7414 	if (delalloc)
7415 		up_read(&cache->data_rwsem);
7416 	btrfs_put_block_group(cache);
7417 }
7418 
7419 /*
7420  * walks the btree of allocated extents and find a hole of a given size.
7421  * The key ins is changed to record the hole:
7422  * ins->objectid == start position
7423  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7424  * ins->offset == the size of the hole.
7425  * Any available blocks before search_start are skipped.
7426  *
7427  * If there is no suitable free space, we will record the max size of
7428  * the free space extent currently.
7429  */
7430 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7431 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7432 				u64 hint_byte, struct btrfs_key *ins,
7433 				u64 flags, int delalloc)
7434 {
7435 	int ret = 0;
7436 	struct btrfs_root *root = fs_info->extent_root;
7437 	struct btrfs_free_cluster *last_ptr = NULL;
7438 	struct btrfs_block_group_cache *block_group = NULL;
7439 	u64 search_start = 0;
7440 	u64 max_extent_size = 0;
7441 	u64 empty_cluster = 0;
7442 	struct btrfs_space_info *space_info;
7443 	int loop = 0;
7444 	int index = __get_raid_index(flags);
7445 	bool failed_cluster_refill = false;
7446 	bool failed_alloc = false;
7447 	bool use_cluster = true;
7448 	bool have_caching_bg = false;
7449 	bool orig_have_caching_bg = false;
7450 	bool full_search = false;
7451 
7452 	WARN_ON(num_bytes < fs_info->sectorsize);
7453 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7454 	ins->objectid = 0;
7455 	ins->offset = 0;
7456 
7457 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7458 
7459 	space_info = __find_space_info(fs_info, flags);
7460 	if (!space_info) {
7461 		btrfs_err(fs_info, "No space info for %llu", flags);
7462 		return -ENOSPC;
7463 	}
7464 
7465 	/*
7466 	 * If our free space is heavily fragmented we may not be able to make
7467 	 * big contiguous allocations, so instead of doing the expensive search
7468 	 * for free space, simply return ENOSPC with our max_extent_size so we
7469 	 * can go ahead and search for a more manageable chunk.
7470 	 *
7471 	 * If our max_extent_size is large enough for our allocation simply
7472 	 * disable clustering since we will likely not be able to find enough
7473 	 * space to create a cluster and induce latency trying.
7474 	 */
7475 	if (unlikely(space_info->max_extent_size)) {
7476 		spin_lock(&space_info->lock);
7477 		if (space_info->max_extent_size &&
7478 		    num_bytes > space_info->max_extent_size) {
7479 			ins->offset = space_info->max_extent_size;
7480 			spin_unlock(&space_info->lock);
7481 			return -ENOSPC;
7482 		} else if (space_info->max_extent_size) {
7483 			use_cluster = false;
7484 		}
7485 		spin_unlock(&space_info->lock);
7486 	}
7487 
7488 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7489 	if (last_ptr) {
7490 		spin_lock(&last_ptr->lock);
7491 		if (last_ptr->block_group)
7492 			hint_byte = last_ptr->window_start;
7493 		if (last_ptr->fragmented) {
7494 			/*
7495 			 * We still set window_start so we can keep track of the
7496 			 * last place we found an allocation to try and save
7497 			 * some time.
7498 			 */
7499 			hint_byte = last_ptr->window_start;
7500 			use_cluster = false;
7501 		}
7502 		spin_unlock(&last_ptr->lock);
7503 	}
7504 
7505 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7506 	search_start = max(search_start, hint_byte);
7507 	if (search_start == hint_byte) {
7508 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7509 		/*
7510 		 * we don't want to use the block group if it doesn't match our
7511 		 * allocation bits, or if its not cached.
7512 		 *
7513 		 * However if we are re-searching with an ideal block group
7514 		 * picked out then we don't care that the block group is cached.
7515 		 */
7516 		if (block_group && block_group_bits(block_group, flags) &&
7517 		    block_group->cached != BTRFS_CACHE_NO) {
7518 			down_read(&space_info->groups_sem);
7519 			if (list_empty(&block_group->list) ||
7520 			    block_group->ro) {
7521 				/*
7522 				 * someone is removing this block group,
7523 				 * we can't jump into the have_block_group
7524 				 * target because our list pointers are not
7525 				 * valid
7526 				 */
7527 				btrfs_put_block_group(block_group);
7528 				up_read(&space_info->groups_sem);
7529 			} else {
7530 				index = get_block_group_index(block_group);
7531 				btrfs_lock_block_group(block_group, delalloc);
7532 				goto have_block_group;
7533 			}
7534 		} else if (block_group) {
7535 			btrfs_put_block_group(block_group);
7536 		}
7537 	}
7538 search:
7539 	have_caching_bg = false;
7540 	if (index == 0 || index == __get_raid_index(flags))
7541 		full_search = true;
7542 	down_read(&space_info->groups_sem);
7543 	list_for_each_entry(block_group, &space_info->block_groups[index],
7544 			    list) {
7545 		u64 offset;
7546 		int cached;
7547 
7548 		btrfs_grab_block_group(block_group, delalloc);
7549 		search_start = block_group->key.objectid;
7550 
7551 		/*
7552 		 * this can happen if we end up cycling through all the
7553 		 * raid types, but we want to make sure we only allocate
7554 		 * for the proper type.
7555 		 */
7556 		if (!block_group_bits(block_group, flags)) {
7557 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7558 				BTRFS_BLOCK_GROUP_RAID1 |
7559 				BTRFS_BLOCK_GROUP_RAID5 |
7560 				BTRFS_BLOCK_GROUP_RAID6 |
7561 				BTRFS_BLOCK_GROUP_RAID10;
7562 
7563 			/*
7564 			 * if they asked for extra copies and this block group
7565 			 * doesn't provide them, bail.  This does allow us to
7566 			 * fill raid0 from raid1.
7567 			 */
7568 			if ((flags & extra) && !(block_group->flags & extra))
7569 				goto loop;
7570 		}
7571 
7572 have_block_group:
7573 		cached = block_group_cache_done(block_group);
7574 		if (unlikely(!cached)) {
7575 			have_caching_bg = true;
7576 			ret = cache_block_group(block_group, 0);
7577 			BUG_ON(ret < 0);
7578 			ret = 0;
7579 		}
7580 
7581 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7582 			goto loop;
7583 		if (unlikely(block_group->ro))
7584 			goto loop;
7585 
7586 		/*
7587 		 * Ok we want to try and use the cluster allocator, so
7588 		 * lets look there
7589 		 */
7590 		if (last_ptr && use_cluster) {
7591 			struct btrfs_block_group_cache *used_block_group;
7592 			unsigned long aligned_cluster;
7593 			/*
7594 			 * the refill lock keeps out other
7595 			 * people trying to start a new cluster
7596 			 */
7597 			used_block_group = btrfs_lock_cluster(block_group,
7598 							      last_ptr,
7599 							      delalloc);
7600 			if (!used_block_group)
7601 				goto refill_cluster;
7602 
7603 			if (used_block_group != block_group &&
7604 			    (used_block_group->ro ||
7605 			     !block_group_bits(used_block_group, flags)))
7606 				goto release_cluster;
7607 
7608 			offset = btrfs_alloc_from_cluster(used_block_group,
7609 						last_ptr,
7610 						num_bytes,
7611 						used_block_group->key.objectid,
7612 						&max_extent_size);
7613 			if (offset) {
7614 				/* we have a block, we're done */
7615 				spin_unlock(&last_ptr->refill_lock);
7616 				trace_btrfs_reserve_extent_cluster(fs_info,
7617 						used_block_group,
7618 						search_start, num_bytes);
7619 				if (used_block_group != block_group) {
7620 					btrfs_release_block_group(block_group,
7621 								  delalloc);
7622 					block_group = used_block_group;
7623 				}
7624 				goto checks;
7625 			}
7626 
7627 			WARN_ON(last_ptr->block_group != used_block_group);
7628 release_cluster:
7629 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7630 			 * set up a new clusters, so lets just skip it
7631 			 * and let the allocator find whatever block
7632 			 * it can find.  If we reach this point, we
7633 			 * will have tried the cluster allocator
7634 			 * plenty of times and not have found
7635 			 * anything, so we are likely way too
7636 			 * fragmented for the clustering stuff to find
7637 			 * anything.
7638 			 *
7639 			 * However, if the cluster is taken from the
7640 			 * current block group, release the cluster
7641 			 * first, so that we stand a better chance of
7642 			 * succeeding in the unclustered
7643 			 * allocation.  */
7644 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7645 			    used_block_group != block_group) {
7646 				spin_unlock(&last_ptr->refill_lock);
7647 				btrfs_release_block_group(used_block_group,
7648 							  delalloc);
7649 				goto unclustered_alloc;
7650 			}
7651 
7652 			/*
7653 			 * this cluster didn't work out, free it and
7654 			 * start over
7655 			 */
7656 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7657 
7658 			if (used_block_group != block_group)
7659 				btrfs_release_block_group(used_block_group,
7660 							  delalloc);
7661 refill_cluster:
7662 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7663 				spin_unlock(&last_ptr->refill_lock);
7664 				goto unclustered_alloc;
7665 			}
7666 
7667 			aligned_cluster = max_t(unsigned long,
7668 						empty_cluster + empty_size,
7669 					      block_group->full_stripe_len);
7670 
7671 			/* allocate a cluster in this block group */
7672 			ret = btrfs_find_space_cluster(fs_info, block_group,
7673 						       last_ptr, search_start,
7674 						       num_bytes,
7675 						       aligned_cluster);
7676 			if (ret == 0) {
7677 				/*
7678 				 * now pull our allocation out of this
7679 				 * cluster
7680 				 */
7681 				offset = btrfs_alloc_from_cluster(block_group,
7682 							last_ptr,
7683 							num_bytes,
7684 							search_start,
7685 							&max_extent_size);
7686 				if (offset) {
7687 					/* we found one, proceed */
7688 					spin_unlock(&last_ptr->refill_lock);
7689 					trace_btrfs_reserve_extent_cluster(fs_info,
7690 						block_group, search_start,
7691 						num_bytes);
7692 					goto checks;
7693 				}
7694 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7695 				   && !failed_cluster_refill) {
7696 				spin_unlock(&last_ptr->refill_lock);
7697 
7698 				failed_cluster_refill = true;
7699 				wait_block_group_cache_progress(block_group,
7700 				       num_bytes + empty_cluster + empty_size);
7701 				goto have_block_group;
7702 			}
7703 
7704 			/*
7705 			 * at this point we either didn't find a cluster
7706 			 * or we weren't able to allocate a block from our
7707 			 * cluster.  Free the cluster we've been trying
7708 			 * to use, and go to the next block group
7709 			 */
7710 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7711 			spin_unlock(&last_ptr->refill_lock);
7712 			goto loop;
7713 		}
7714 
7715 unclustered_alloc:
7716 		/*
7717 		 * We are doing an unclustered alloc, set the fragmented flag so
7718 		 * we don't bother trying to setup a cluster again until we get
7719 		 * more space.
7720 		 */
7721 		if (unlikely(last_ptr)) {
7722 			spin_lock(&last_ptr->lock);
7723 			last_ptr->fragmented = 1;
7724 			spin_unlock(&last_ptr->lock);
7725 		}
7726 		if (cached) {
7727 			struct btrfs_free_space_ctl *ctl =
7728 				block_group->free_space_ctl;
7729 
7730 			spin_lock(&ctl->tree_lock);
7731 			if (ctl->free_space <
7732 			    num_bytes + empty_cluster + empty_size) {
7733 				if (ctl->free_space > max_extent_size)
7734 					max_extent_size = ctl->free_space;
7735 				spin_unlock(&ctl->tree_lock);
7736 				goto loop;
7737 			}
7738 			spin_unlock(&ctl->tree_lock);
7739 		}
7740 
7741 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7742 						    num_bytes, empty_size,
7743 						    &max_extent_size);
7744 		/*
7745 		 * If we didn't find a chunk, and we haven't failed on this
7746 		 * block group before, and this block group is in the middle of
7747 		 * caching and we are ok with waiting, then go ahead and wait
7748 		 * for progress to be made, and set failed_alloc to true.
7749 		 *
7750 		 * If failed_alloc is true then we've already waited on this
7751 		 * block group once and should move on to the next block group.
7752 		 */
7753 		if (!offset && !failed_alloc && !cached &&
7754 		    loop > LOOP_CACHING_NOWAIT) {
7755 			wait_block_group_cache_progress(block_group,
7756 						num_bytes + empty_size);
7757 			failed_alloc = true;
7758 			goto have_block_group;
7759 		} else if (!offset) {
7760 			goto loop;
7761 		}
7762 checks:
7763 		search_start = ALIGN(offset, fs_info->stripesize);
7764 
7765 		/* move on to the next group */
7766 		if (search_start + num_bytes >
7767 		    block_group->key.objectid + block_group->key.offset) {
7768 			btrfs_add_free_space(block_group, offset, num_bytes);
7769 			goto loop;
7770 		}
7771 
7772 		if (offset < search_start)
7773 			btrfs_add_free_space(block_group, offset,
7774 					     search_start - offset);
7775 		BUG_ON(offset > search_start);
7776 
7777 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7778 				num_bytes, delalloc);
7779 		if (ret == -EAGAIN) {
7780 			btrfs_add_free_space(block_group, offset, num_bytes);
7781 			goto loop;
7782 		}
7783 		btrfs_inc_block_group_reservations(block_group);
7784 
7785 		/* we are all good, lets return */
7786 		ins->objectid = search_start;
7787 		ins->offset = num_bytes;
7788 
7789 		trace_btrfs_reserve_extent(fs_info, block_group,
7790 					   search_start, num_bytes);
7791 		btrfs_release_block_group(block_group, delalloc);
7792 		break;
7793 loop:
7794 		failed_cluster_refill = false;
7795 		failed_alloc = false;
7796 		BUG_ON(index != get_block_group_index(block_group));
7797 		btrfs_release_block_group(block_group, delalloc);
7798 	}
7799 	up_read(&space_info->groups_sem);
7800 
7801 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7802 		&& !orig_have_caching_bg)
7803 		orig_have_caching_bg = true;
7804 
7805 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7806 		goto search;
7807 
7808 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7809 		goto search;
7810 
7811 	/*
7812 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7813 	 *			caching kthreads as we move along
7814 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7815 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7816 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7817 	 *			again
7818 	 */
7819 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7820 		index = 0;
7821 		if (loop == LOOP_CACHING_NOWAIT) {
7822 			/*
7823 			 * We want to skip the LOOP_CACHING_WAIT step if we
7824 			 * don't have any uncached bgs and we've already done a
7825 			 * full search through.
7826 			 */
7827 			if (orig_have_caching_bg || !full_search)
7828 				loop = LOOP_CACHING_WAIT;
7829 			else
7830 				loop = LOOP_ALLOC_CHUNK;
7831 		} else {
7832 			loop++;
7833 		}
7834 
7835 		if (loop == LOOP_ALLOC_CHUNK) {
7836 			struct btrfs_trans_handle *trans;
7837 			int exist = 0;
7838 
7839 			trans = current->journal_info;
7840 			if (trans)
7841 				exist = 1;
7842 			else
7843 				trans = btrfs_join_transaction(root);
7844 
7845 			if (IS_ERR(trans)) {
7846 				ret = PTR_ERR(trans);
7847 				goto out;
7848 			}
7849 
7850 			ret = do_chunk_alloc(trans, fs_info, flags,
7851 					     CHUNK_ALLOC_FORCE);
7852 
7853 			/*
7854 			 * If we can't allocate a new chunk we've already looped
7855 			 * through at least once, move on to the NO_EMPTY_SIZE
7856 			 * case.
7857 			 */
7858 			if (ret == -ENOSPC)
7859 				loop = LOOP_NO_EMPTY_SIZE;
7860 
7861 			/*
7862 			 * Do not bail out on ENOSPC since we
7863 			 * can do more things.
7864 			 */
7865 			if (ret < 0 && ret != -ENOSPC)
7866 				btrfs_abort_transaction(trans, ret);
7867 			else
7868 				ret = 0;
7869 			if (!exist)
7870 				btrfs_end_transaction(trans);
7871 			if (ret)
7872 				goto out;
7873 		}
7874 
7875 		if (loop == LOOP_NO_EMPTY_SIZE) {
7876 			/*
7877 			 * Don't loop again if we already have no empty_size and
7878 			 * no empty_cluster.
7879 			 */
7880 			if (empty_size == 0 &&
7881 			    empty_cluster == 0) {
7882 				ret = -ENOSPC;
7883 				goto out;
7884 			}
7885 			empty_size = 0;
7886 			empty_cluster = 0;
7887 		}
7888 
7889 		goto search;
7890 	} else if (!ins->objectid) {
7891 		ret = -ENOSPC;
7892 	} else if (ins->objectid) {
7893 		if (!use_cluster && last_ptr) {
7894 			spin_lock(&last_ptr->lock);
7895 			last_ptr->window_start = ins->objectid;
7896 			spin_unlock(&last_ptr->lock);
7897 		}
7898 		ret = 0;
7899 	}
7900 out:
7901 	if (ret == -ENOSPC) {
7902 		spin_lock(&space_info->lock);
7903 		space_info->max_extent_size = max_extent_size;
7904 		spin_unlock(&space_info->lock);
7905 		ins->offset = max_extent_size;
7906 	}
7907 	return ret;
7908 }
7909 
7910 static void dump_space_info(struct btrfs_fs_info *fs_info,
7911 			    struct btrfs_space_info *info, u64 bytes,
7912 			    int dump_block_groups)
7913 {
7914 	struct btrfs_block_group_cache *cache;
7915 	int index = 0;
7916 
7917 	spin_lock(&info->lock);
7918 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7919 		   info->flags,
7920 		   info->total_bytes - btrfs_space_info_used(info, true),
7921 		   info->full ? "" : "not ");
7922 	btrfs_info(fs_info,
7923 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7924 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7925 		info->bytes_reserved, info->bytes_may_use,
7926 		info->bytes_readonly);
7927 	spin_unlock(&info->lock);
7928 
7929 	if (!dump_block_groups)
7930 		return;
7931 
7932 	down_read(&info->groups_sem);
7933 again:
7934 	list_for_each_entry(cache, &info->block_groups[index], list) {
7935 		spin_lock(&cache->lock);
7936 		btrfs_info(fs_info,
7937 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7938 			cache->key.objectid, cache->key.offset,
7939 			btrfs_block_group_used(&cache->item), cache->pinned,
7940 			cache->reserved, cache->ro ? "[readonly]" : "");
7941 		btrfs_dump_free_space(cache, bytes);
7942 		spin_unlock(&cache->lock);
7943 	}
7944 	if (++index < BTRFS_NR_RAID_TYPES)
7945 		goto again;
7946 	up_read(&info->groups_sem);
7947 }
7948 
7949 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7950 			 u64 num_bytes, u64 min_alloc_size,
7951 			 u64 empty_size, u64 hint_byte,
7952 			 struct btrfs_key *ins, int is_data, int delalloc)
7953 {
7954 	struct btrfs_fs_info *fs_info = root->fs_info;
7955 	bool final_tried = num_bytes == min_alloc_size;
7956 	u64 flags;
7957 	int ret;
7958 
7959 	flags = btrfs_get_alloc_profile(root, is_data);
7960 again:
7961 	WARN_ON(num_bytes < fs_info->sectorsize);
7962 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7963 			       hint_byte, ins, flags, delalloc);
7964 	if (!ret && !is_data) {
7965 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7966 	} else if (ret == -ENOSPC) {
7967 		if (!final_tried && ins->offset) {
7968 			num_bytes = min(num_bytes >> 1, ins->offset);
7969 			num_bytes = round_down(num_bytes,
7970 					       fs_info->sectorsize);
7971 			num_bytes = max(num_bytes, min_alloc_size);
7972 			ram_bytes = num_bytes;
7973 			if (num_bytes == min_alloc_size)
7974 				final_tried = true;
7975 			goto again;
7976 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7977 			struct btrfs_space_info *sinfo;
7978 
7979 			sinfo = __find_space_info(fs_info, flags);
7980 			btrfs_err(fs_info,
7981 				  "allocation failed flags %llu, wanted %llu",
7982 				  flags, num_bytes);
7983 			if (sinfo)
7984 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7985 		}
7986 	}
7987 
7988 	return ret;
7989 }
7990 
7991 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7992 					u64 start, u64 len,
7993 					int pin, int delalloc)
7994 {
7995 	struct btrfs_block_group_cache *cache;
7996 	int ret = 0;
7997 
7998 	cache = btrfs_lookup_block_group(fs_info, start);
7999 	if (!cache) {
8000 		btrfs_err(fs_info, "Unable to find block group for %llu",
8001 			  start);
8002 		return -ENOSPC;
8003 	}
8004 
8005 	if (pin)
8006 		pin_down_extent(fs_info, cache, start, len, 1);
8007 	else {
8008 		if (btrfs_test_opt(fs_info, DISCARD))
8009 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8010 		btrfs_add_free_space(cache, start, len);
8011 		btrfs_free_reserved_bytes(cache, len, delalloc);
8012 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8013 	}
8014 
8015 	btrfs_put_block_group(cache);
8016 	return ret;
8017 }
8018 
8019 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8020 			       u64 start, u64 len, int delalloc)
8021 {
8022 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8023 }
8024 
8025 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8026 				       u64 start, u64 len)
8027 {
8028 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8029 }
8030 
8031 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8032 				      struct btrfs_fs_info *fs_info,
8033 				      u64 parent, u64 root_objectid,
8034 				      u64 flags, u64 owner, u64 offset,
8035 				      struct btrfs_key *ins, int ref_mod)
8036 {
8037 	int ret;
8038 	struct btrfs_extent_item *extent_item;
8039 	struct btrfs_extent_inline_ref *iref;
8040 	struct btrfs_path *path;
8041 	struct extent_buffer *leaf;
8042 	int type;
8043 	u32 size;
8044 
8045 	if (parent > 0)
8046 		type = BTRFS_SHARED_DATA_REF_KEY;
8047 	else
8048 		type = BTRFS_EXTENT_DATA_REF_KEY;
8049 
8050 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8051 
8052 	path = btrfs_alloc_path();
8053 	if (!path)
8054 		return -ENOMEM;
8055 
8056 	path->leave_spinning = 1;
8057 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8058 				      ins, size);
8059 	if (ret) {
8060 		btrfs_free_path(path);
8061 		return ret;
8062 	}
8063 
8064 	leaf = path->nodes[0];
8065 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8066 				     struct btrfs_extent_item);
8067 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8068 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8069 	btrfs_set_extent_flags(leaf, extent_item,
8070 			       flags | BTRFS_EXTENT_FLAG_DATA);
8071 
8072 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8073 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8074 	if (parent > 0) {
8075 		struct btrfs_shared_data_ref *ref;
8076 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8077 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8078 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8079 	} else {
8080 		struct btrfs_extent_data_ref *ref;
8081 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8082 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8083 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8084 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8085 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8086 	}
8087 
8088 	btrfs_mark_buffer_dirty(path->nodes[0]);
8089 	btrfs_free_path(path);
8090 
8091 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8092 					  ins->offset);
8093 	if (ret)
8094 		return ret;
8095 
8096 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8097 	if (ret) { /* -ENOENT, logic error */
8098 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8099 			ins->objectid, ins->offset);
8100 		BUG();
8101 	}
8102 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8103 	return ret;
8104 }
8105 
8106 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8107 				     struct btrfs_fs_info *fs_info,
8108 				     u64 parent, u64 root_objectid,
8109 				     u64 flags, struct btrfs_disk_key *key,
8110 				     int level, struct btrfs_key *ins)
8111 {
8112 	int ret;
8113 	struct btrfs_extent_item *extent_item;
8114 	struct btrfs_tree_block_info *block_info;
8115 	struct btrfs_extent_inline_ref *iref;
8116 	struct btrfs_path *path;
8117 	struct extent_buffer *leaf;
8118 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8119 	u64 num_bytes = ins->offset;
8120 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8121 
8122 	if (!skinny_metadata)
8123 		size += sizeof(*block_info);
8124 
8125 	path = btrfs_alloc_path();
8126 	if (!path) {
8127 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8128 						   fs_info->nodesize);
8129 		return -ENOMEM;
8130 	}
8131 
8132 	path->leave_spinning = 1;
8133 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8134 				      ins, size);
8135 	if (ret) {
8136 		btrfs_free_path(path);
8137 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8138 						   fs_info->nodesize);
8139 		return ret;
8140 	}
8141 
8142 	leaf = path->nodes[0];
8143 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8144 				     struct btrfs_extent_item);
8145 	btrfs_set_extent_refs(leaf, extent_item, 1);
8146 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8147 	btrfs_set_extent_flags(leaf, extent_item,
8148 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8149 
8150 	if (skinny_metadata) {
8151 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8152 		num_bytes = fs_info->nodesize;
8153 	} else {
8154 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8155 		btrfs_set_tree_block_key(leaf, block_info, key);
8156 		btrfs_set_tree_block_level(leaf, block_info, level);
8157 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8158 	}
8159 
8160 	if (parent > 0) {
8161 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8162 		btrfs_set_extent_inline_ref_type(leaf, iref,
8163 						 BTRFS_SHARED_BLOCK_REF_KEY);
8164 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8165 	} else {
8166 		btrfs_set_extent_inline_ref_type(leaf, iref,
8167 						 BTRFS_TREE_BLOCK_REF_KEY);
8168 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8169 	}
8170 
8171 	btrfs_mark_buffer_dirty(leaf);
8172 	btrfs_free_path(path);
8173 
8174 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8175 					  num_bytes);
8176 	if (ret)
8177 		return ret;
8178 
8179 	ret = update_block_group(trans, fs_info, ins->objectid,
8180 				 fs_info->nodesize, 1);
8181 	if (ret) { /* -ENOENT, logic error */
8182 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8183 			ins->objectid, ins->offset);
8184 		BUG();
8185 	}
8186 
8187 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8188 					  fs_info->nodesize);
8189 	return ret;
8190 }
8191 
8192 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8193 				     u64 root_objectid, u64 owner,
8194 				     u64 offset, u64 ram_bytes,
8195 				     struct btrfs_key *ins)
8196 {
8197 	struct btrfs_fs_info *fs_info = trans->fs_info;
8198 	int ret;
8199 
8200 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8201 
8202 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8203 					 ins->offset, 0,
8204 					 root_objectid, owner, offset,
8205 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8206 	return ret;
8207 }
8208 
8209 /*
8210  * this is used by the tree logging recovery code.  It records that
8211  * an extent has been allocated and makes sure to clear the free
8212  * space cache bits as well
8213  */
8214 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8215 				   struct btrfs_fs_info *fs_info,
8216 				   u64 root_objectid, u64 owner, u64 offset,
8217 				   struct btrfs_key *ins)
8218 {
8219 	int ret;
8220 	struct btrfs_block_group_cache *block_group;
8221 	struct btrfs_space_info *space_info;
8222 
8223 	/*
8224 	 * Mixed block groups will exclude before processing the log so we only
8225 	 * need to do the exclude dance if this fs isn't mixed.
8226 	 */
8227 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8228 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8229 					      ins->offset);
8230 		if (ret)
8231 			return ret;
8232 	}
8233 
8234 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8235 	if (!block_group)
8236 		return -EINVAL;
8237 
8238 	space_info = block_group->space_info;
8239 	spin_lock(&space_info->lock);
8240 	spin_lock(&block_group->lock);
8241 	space_info->bytes_reserved += ins->offset;
8242 	block_group->reserved += ins->offset;
8243 	spin_unlock(&block_group->lock);
8244 	spin_unlock(&space_info->lock);
8245 
8246 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8247 					 0, owner, offset, ins, 1);
8248 	btrfs_put_block_group(block_group);
8249 	return ret;
8250 }
8251 
8252 static struct extent_buffer *
8253 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8254 		      u64 bytenr, int level)
8255 {
8256 	struct btrfs_fs_info *fs_info = root->fs_info;
8257 	struct extent_buffer *buf;
8258 
8259 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8260 	if (IS_ERR(buf))
8261 		return buf;
8262 
8263 	btrfs_set_header_generation(buf, trans->transid);
8264 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8265 	btrfs_tree_lock(buf);
8266 	clean_tree_block(fs_info, buf);
8267 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8268 
8269 	btrfs_set_lock_blocking(buf);
8270 	set_extent_buffer_uptodate(buf);
8271 
8272 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8273 		buf->log_index = root->log_transid % 2;
8274 		/*
8275 		 * we allow two log transactions at a time, use different
8276 		 * EXENT bit to differentiate dirty pages.
8277 		 */
8278 		if (buf->log_index == 0)
8279 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8280 					buf->start + buf->len - 1, GFP_NOFS);
8281 		else
8282 			set_extent_new(&root->dirty_log_pages, buf->start,
8283 					buf->start + buf->len - 1);
8284 	} else {
8285 		buf->log_index = -1;
8286 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8287 			 buf->start + buf->len - 1, GFP_NOFS);
8288 	}
8289 	trans->dirty = true;
8290 	/* this returns a buffer locked for blocking */
8291 	return buf;
8292 }
8293 
8294 static struct btrfs_block_rsv *
8295 use_block_rsv(struct btrfs_trans_handle *trans,
8296 	      struct btrfs_root *root, u32 blocksize)
8297 {
8298 	struct btrfs_fs_info *fs_info = root->fs_info;
8299 	struct btrfs_block_rsv *block_rsv;
8300 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8301 	int ret;
8302 	bool global_updated = false;
8303 
8304 	block_rsv = get_block_rsv(trans, root);
8305 
8306 	if (unlikely(block_rsv->size == 0))
8307 		goto try_reserve;
8308 again:
8309 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8310 	if (!ret)
8311 		return block_rsv;
8312 
8313 	if (block_rsv->failfast)
8314 		return ERR_PTR(ret);
8315 
8316 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8317 		global_updated = true;
8318 		update_global_block_rsv(fs_info);
8319 		goto again;
8320 	}
8321 
8322 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8323 		static DEFINE_RATELIMIT_STATE(_rs,
8324 				DEFAULT_RATELIMIT_INTERVAL * 10,
8325 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8326 		if (__ratelimit(&_rs))
8327 			WARN(1, KERN_DEBUG
8328 				"BTRFS: block rsv returned %d\n", ret);
8329 	}
8330 try_reserve:
8331 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8332 				     BTRFS_RESERVE_NO_FLUSH);
8333 	if (!ret)
8334 		return block_rsv;
8335 	/*
8336 	 * If we couldn't reserve metadata bytes try and use some from
8337 	 * the global reserve if its space type is the same as the global
8338 	 * reservation.
8339 	 */
8340 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8341 	    block_rsv->space_info == global_rsv->space_info) {
8342 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8343 		if (!ret)
8344 			return global_rsv;
8345 	}
8346 	return ERR_PTR(ret);
8347 }
8348 
8349 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8350 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8351 {
8352 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8353 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8354 }
8355 
8356 /*
8357  * finds a free extent and does all the dirty work required for allocation
8358  * returns the tree buffer or an ERR_PTR on error.
8359  */
8360 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8361 					     struct btrfs_root *root,
8362 					     u64 parent, u64 root_objectid,
8363 					     const struct btrfs_disk_key *key,
8364 					     int level, u64 hint,
8365 					     u64 empty_size)
8366 {
8367 	struct btrfs_fs_info *fs_info = root->fs_info;
8368 	struct btrfs_key ins;
8369 	struct btrfs_block_rsv *block_rsv;
8370 	struct extent_buffer *buf;
8371 	struct btrfs_delayed_extent_op *extent_op;
8372 	u64 flags = 0;
8373 	int ret;
8374 	u32 blocksize = fs_info->nodesize;
8375 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8376 
8377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8378 	if (btrfs_is_testing(fs_info)) {
8379 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8380 					    level);
8381 		if (!IS_ERR(buf))
8382 			root->alloc_bytenr += blocksize;
8383 		return buf;
8384 	}
8385 #endif
8386 
8387 	block_rsv = use_block_rsv(trans, root, blocksize);
8388 	if (IS_ERR(block_rsv))
8389 		return ERR_CAST(block_rsv);
8390 
8391 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8392 				   empty_size, hint, &ins, 0, 0);
8393 	if (ret)
8394 		goto out_unuse;
8395 
8396 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8397 	if (IS_ERR(buf)) {
8398 		ret = PTR_ERR(buf);
8399 		goto out_free_reserved;
8400 	}
8401 
8402 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8403 		if (parent == 0)
8404 			parent = ins.objectid;
8405 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8406 	} else
8407 		BUG_ON(parent > 0);
8408 
8409 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8410 		extent_op = btrfs_alloc_delayed_extent_op();
8411 		if (!extent_op) {
8412 			ret = -ENOMEM;
8413 			goto out_free_buf;
8414 		}
8415 		if (key)
8416 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8417 		else
8418 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8419 		extent_op->flags_to_set = flags;
8420 		extent_op->update_key = skinny_metadata ? false : true;
8421 		extent_op->update_flags = true;
8422 		extent_op->is_data = false;
8423 		extent_op->level = level;
8424 
8425 		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8426 						 ins.objectid, ins.offset,
8427 						 parent, root_objectid, level,
8428 						 BTRFS_ADD_DELAYED_EXTENT,
8429 						 extent_op);
8430 		if (ret)
8431 			goto out_free_delayed;
8432 	}
8433 	return buf;
8434 
8435 out_free_delayed:
8436 	btrfs_free_delayed_extent_op(extent_op);
8437 out_free_buf:
8438 	free_extent_buffer(buf);
8439 out_free_reserved:
8440 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8441 out_unuse:
8442 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8443 	return ERR_PTR(ret);
8444 }
8445 
8446 struct walk_control {
8447 	u64 refs[BTRFS_MAX_LEVEL];
8448 	u64 flags[BTRFS_MAX_LEVEL];
8449 	struct btrfs_key update_progress;
8450 	int stage;
8451 	int level;
8452 	int shared_level;
8453 	int update_ref;
8454 	int keep_locks;
8455 	int reada_slot;
8456 	int reada_count;
8457 	int for_reloc;
8458 };
8459 
8460 #define DROP_REFERENCE	1
8461 #define UPDATE_BACKREF	2
8462 
8463 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8464 				     struct btrfs_root *root,
8465 				     struct walk_control *wc,
8466 				     struct btrfs_path *path)
8467 {
8468 	struct btrfs_fs_info *fs_info = root->fs_info;
8469 	u64 bytenr;
8470 	u64 generation;
8471 	u64 refs;
8472 	u64 flags;
8473 	u32 nritems;
8474 	struct btrfs_key key;
8475 	struct extent_buffer *eb;
8476 	int ret;
8477 	int slot;
8478 	int nread = 0;
8479 
8480 	if (path->slots[wc->level] < wc->reada_slot) {
8481 		wc->reada_count = wc->reada_count * 2 / 3;
8482 		wc->reada_count = max(wc->reada_count, 2);
8483 	} else {
8484 		wc->reada_count = wc->reada_count * 3 / 2;
8485 		wc->reada_count = min_t(int, wc->reada_count,
8486 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8487 	}
8488 
8489 	eb = path->nodes[wc->level];
8490 	nritems = btrfs_header_nritems(eb);
8491 
8492 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8493 		if (nread >= wc->reada_count)
8494 			break;
8495 
8496 		cond_resched();
8497 		bytenr = btrfs_node_blockptr(eb, slot);
8498 		generation = btrfs_node_ptr_generation(eb, slot);
8499 
8500 		if (slot == path->slots[wc->level])
8501 			goto reada;
8502 
8503 		if (wc->stage == UPDATE_BACKREF &&
8504 		    generation <= root->root_key.offset)
8505 			continue;
8506 
8507 		/* We don't lock the tree block, it's OK to be racy here */
8508 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8509 					       wc->level - 1, 1, &refs,
8510 					       &flags);
8511 		/* We don't care about errors in readahead. */
8512 		if (ret < 0)
8513 			continue;
8514 		BUG_ON(refs == 0);
8515 
8516 		if (wc->stage == DROP_REFERENCE) {
8517 			if (refs == 1)
8518 				goto reada;
8519 
8520 			if (wc->level == 1 &&
8521 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8522 				continue;
8523 			if (!wc->update_ref ||
8524 			    generation <= root->root_key.offset)
8525 				continue;
8526 			btrfs_node_key_to_cpu(eb, &key, slot);
8527 			ret = btrfs_comp_cpu_keys(&key,
8528 						  &wc->update_progress);
8529 			if (ret < 0)
8530 				continue;
8531 		} else {
8532 			if (wc->level == 1 &&
8533 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8534 				continue;
8535 		}
8536 reada:
8537 		readahead_tree_block(fs_info, bytenr);
8538 		nread++;
8539 	}
8540 	wc->reada_slot = slot;
8541 }
8542 
8543 /*
8544  * helper to process tree block while walking down the tree.
8545  *
8546  * when wc->stage == UPDATE_BACKREF, this function updates
8547  * back refs for pointers in the block.
8548  *
8549  * NOTE: return value 1 means we should stop walking down.
8550  */
8551 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8552 				   struct btrfs_root *root,
8553 				   struct btrfs_path *path,
8554 				   struct walk_control *wc, int lookup_info)
8555 {
8556 	struct btrfs_fs_info *fs_info = root->fs_info;
8557 	int level = wc->level;
8558 	struct extent_buffer *eb = path->nodes[level];
8559 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8560 	int ret;
8561 
8562 	if (wc->stage == UPDATE_BACKREF &&
8563 	    btrfs_header_owner(eb) != root->root_key.objectid)
8564 		return 1;
8565 
8566 	/*
8567 	 * when reference count of tree block is 1, it won't increase
8568 	 * again. once full backref flag is set, we never clear it.
8569 	 */
8570 	if (lookup_info &&
8571 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8572 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8573 		BUG_ON(!path->locks[level]);
8574 		ret = btrfs_lookup_extent_info(trans, fs_info,
8575 					       eb->start, level, 1,
8576 					       &wc->refs[level],
8577 					       &wc->flags[level]);
8578 		BUG_ON(ret == -ENOMEM);
8579 		if (ret)
8580 			return ret;
8581 		BUG_ON(wc->refs[level] == 0);
8582 	}
8583 
8584 	if (wc->stage == DROP_REFERENCE) {
8585 		if (wc->refs[level] > 1)
8586 			return 1;
8587 
8588 		if (path->locks[level] && !wc->keep_locks) {
8589 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8590 			path->locks[level] = 0;
8591 		}
8592 		return 0;
8593 	}
8594 
8595 	/* wc->stage == UPDATE_BACKREF */
8596 	if (!(wc->flags[level] & flag)) {
8597 		BUG_ON(!path->locks[level]);
8598 		ret = btrfs_inc_ref(trans, root, eb, 1);
8599 		BUG_ON(ret); /* -ENOMEM */
8600 		ret = btrfs_dec_ref(trans, root, eb, 0);
8601 		BUG_ON(ret); /* -ENOMEM */
8602 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8603 						  eb->len, flag,
8604 						  btrfs_header_level(eb), 0);
8605 		BUG_ON(ret); /* -ENOMEM */
8606 		wc->flags[level] |= flag;
8607 	}
8608 
8609 	/*
8610 	 * the block is shared by multiple trees, so it's not good to
8611 	 * keep the tree lock
8612 	 */
8613 	if (path->locks[level] && level > 0) {
8614 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8615 		path->locks[level] = 0;
8616 	}
8617 	return 0;
8618 }
8619 
8620 /*
8621  * helper to process tree block pointer.
8622  *
8623  * when wc->stage == DROP_REFERENCE, this function checks
8624  * reference count of the block pointed to. if the block
8625  * is shared and we need update back refs for the subtree
8626  * rooted at the block, this function changes wc->stage to
8627  * UPDATE_BACKREF. if the block is shared and there is no
8628  * need to update back, this function drops the reference
8629  * to the block.
8630  *
8631  * NOTE: return value 1 means we should stop walking down.
8632  */
8633 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8634 				 struct btrfs_root *root,
8635 				 struct btrfs_path *path,
8636 				 struct walk_control *wc, int *lookup_info)
8637 {
8638 	struct btrfs_fs_info *fs_info = root->fs_info;
8639 	u64 bytenr;
8640 	u64 generation;
8641 	u64 parent;
8642 	u32 blocksize;
8643 	struct btrfs_key key;
8644 	struct extent_buffer *next;
8645 	int level = wc->level;
8646 	int reada = 0;
8647 	int ret = 0;
8648 	bool need_account = false;
8649 
8650 	generation = btrfs_node_ptr_generation(path->nodes[level],
8651 					       path->slots[level]);
8652 	/*
8653 	 * if the lower level block was created before the snapshot
8654 	 * was created, we know there is no need to update back refs
8655 	 * for the subtree
8656 	 */
8657 	if (wc->stage == UPDATE_BACKREF &&
8658 	    generation <= root->root_key.offset) {
8659 		*lookup_info = 1;
8660 		return 1;
8661 	}
8662 
8663 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8664 	blocksize = fs_info->nodesize;
8665 
8666 	next = find_extent_buffer(fs_info, bytenr);
8667 	if (!next) {
8668 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8669 		if (IS_ERR(next))
8670 			return PTR_ERR(next);
8671 
8672 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8673 					       level - 1);
8674 		reada = 1;
8675 	}
8676 	btrfs_tree_lock(next);
8677 	btrfs_set_lock_blocking(next);
8678 
8679 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8680 				       &wc->refs[level - 1],
8681 				       &wc->flags[level - 1]);
8682 	if (ret < 0)
8683 		goto out_unlock;
8684 
8685 	if (unlikely(wc->refs[level - 1] == 0)) {
8686 		btrfs_err(fs_info, "Missing references.");
8687 		ret = -EIO;
8688 		goto out_unlock;
8689 	}
8690 	*lookup_info = 0;
8691 
8692 	if (wc->stage == DROP_REFERENCE) {
8693 		if (wc->refs[level - 1] > 1) {
8694 			need_account = true;
8695 			if (level == 1 &&
8696 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8697 				goto skip;
8698 
8699 			if (!wc->update_ref ||
8700 			    generation <= root->root_key.offset)
8701 				goto skip;
8702 
8703 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8704 					      path->slots[level]);
8705 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8706 			if (ret < 0)
8707 				goto skip;
8708 
8709 			wc->stage = UPDATE_BACKREF;
8710 			wc->shared_level = level - 1;
8711 		}
8712 	} else {
8713 		if (level == 1 &&
8714 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8715 			goto skip;
8716 	}
8717 
8718 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8719 		btrfs_tree_unlock(next);
8720 		free_extent_buffer(next);
8721 		next = NULL;
8722 		*lookup_info = 1;
8723 	}
8724 
8725 	if (!next) {
8726 		if (reada && level == 1)
8727 			reada_walk_down(trans, root, wc, path);
8728 		next = read_tree_block(fs_info, bytenr, generation);
8729 		if (IS_ERR(next)) {
8730 			return PTR_ERR(next);
8731 		} else if (!extent_buffer_uptodate(next)) {
8732 			free_extent_buffer(next);
8733 			return -EIO;
8734 		}
8735 		btrfs_tree_lock(next);
8736 		btrfs_set_lock_blocking(next);
8737 	}
8738 
8739 	level--;
8740 	ASSERT(level == btrfs_header_level(next));
8741 	if (level != btrfs_header_level(next)) {
8742 		btrfs_err(root->fs_info, "mismatched level");
8743 		ret = -EIO;
8744 		goto out_unlock;
8745 	}
8746 	path->nodes[level] = next;
8747 	path->slots[level] = 0;
8748 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8749 	wc->level = level;
8750 	if (wc->level == 1)
8751 		wc->reada_slot = 0;
8752 	return 0;
8753 skip:
8754 	wc->refs[level - 1] = 0;
8755 	wc->flags[level - 1] = 0;
8756 	if (wc->stage == DROP_REFERENCE) {
8757 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8758 			parent = path->nodes[level]->start;
8759 		} else {
8760 			ASSERT(root->root_key.objectid ==
8761 			       btrfs_header_owner(path->nodes[level]));
8762 			if (root->root_key.objectid !=
8763 			    btrfs_header_owner(path->nodes[level])) {
8764 				btrfs_err(root->fs_info,
8765 						"mismatched block owner");
8766 				ret = -EIO;
8767 				goto out_unlock;
8768 			}
8769 			parent = 0;
8770 		}
8771 
8772 		if (need_account) {
8773 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8774 							 generation, level - 1);
8775 			if (ret) {
8776 				btrfs_err_rl(fs_info,
8777 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8778 					     ret);
8779 			}
8780 		}
8781 		ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8782 					parent, root->root_key.objectid,
8783 					level - 1, 0);
8784 		if (ret)
8785 			goto out_unlock;
8786 	}
8787 
8788 	*lookup_info = 1;
8789 	ret = 1;
8790 
8791 out_unlock:
8792 	btrfs_tree_unlock(next);
8793 	free_extent_buffer(next);
8794 
8795 	return ret;
8796 }
8797 
8798 /*
8799  * helper to process tree block while walking up the tree.
8800  *
8801  * when wc->stage == DROP_REFERENCE, this function drops
8802  * reference count on the block.
8803  *
8804  * when wc->stage == UPDATE_BACKREF, this function changes
8805  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8806  * to UPDATE_BACKREF previously while processing the block.
8807  *
8808  * NOTE: return value 1 means we should stop walking up.
8809  */
8810 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8811 				 struct btrfs_root *root,
8812 				 struct btrfs_path *path,
8813 				 struct walk_control *wc)
8814 {
8815 	struct btrfs_fs_info *fs_info = root->fs_info;
8816 	int ret;
8817 	int level = wc->level;
8818 	struct extent_buffer *eb = path->nodes[level];
8819 	u64 parent = 0;
8820 
8821 	if (wc->stage == UPDATE_BACKREF) {
8822 		BUG_ON(wc->shared_level < level);
8823 		if (level < wc->shared_level)
8824 			goto out;
8825 
8826 		ret = find_next_key(path, level + 1, &wc->update_progress);
8827 		if (ret > 0)
8828 			wc->update_ref = 0;
8829 
8830 		wc->stage = DROP_REFERENCE;
8831 		wc->shared_level = -1;
8832 		path->slots[level] = 0;
8833 
8834 		/*
8835 		 * check reference count again if the block isn't locked.
8836 		 * we should start walking down the tree again if reference
8837 		 * count is one.
8838 		 */
8839 		if (!path->locks[level]) {
8840 			BUG_ON(level == 0);
8841 			btrfs_tree_lock(eb);
8842 			btrfs_set_lock_blocking(eb);
8843 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8844 
8845 			ret = btrfs_lookup_extent_info(trans, fs_info,
8846 						       eb->start, level, 1,
8847 						       &wc->refs[level],
8848 						       &wc->flags[level]);
8849 			if (ret < 0) {
8850 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8851 				path->locks[level] = 0;
8852 				return ret;
8853 			}
8854 			BUG_ON(wc->refs[level] == 0);
8855 			if (wc->refs[level] == 1) {
8856 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8857 				path->locks[level] = 0;
8858 				return 1;
8859 			}
8860 		}
8861 	}
8862 
8863 	/* wc->stage == DROP_REFERENCE */
8864 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8865 
8866 	if (wc->refs[level] == 1) {
8867 		if (level == 0) {
8868 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8869 				ret = btrfs_dec_ref(trans, root, eb, 1);
8870 			else
8871 				ret = btrfs_dec_ref(trans, root, eb, 0);
8872 			BUG_ON(ret); /* -ENOMEM */
8873 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8874 			if (ret) {
8875 				btrfs_err_rl(fs_info,
8876 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8877 					     ret);
8878 			}
8879 		}
8880 		/* make block locked assertion in clean_tree_block happy */
8881 		if (!path->locks[level] &&
8882 		    btrfs_header_generation(eb) == trans->transid) {
8883 			btrfs_tree_lock(eb);
8884 			btrfs_set_lock_blocking(eb);
8885 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8886 		}
8887 		clean_tree_block(fs_info, eb);
8888 	}
8889 
8890 	if (eb == root->node) {
8891 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8892 			parent = eb->start;
8893 		else
8894 			BUG_ON(root->root_key.objectid !=
8895 			       btrfs_header_owner(eb));
8896 	} else {
8897 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8898 			parent = path->nodes[level + 1]->start;
8899 		else
8900 			BUG_ON(root->root_key.objectid !=
8901 			       btrfs_header_owner(path->nodes[level + 1]));
8902 	}
8903 
8904 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8905 out:
8906 	wc->refs[level] = 0;
8907 	wc->flags[level] = 0;
8908 	return 0;
8909 }
8910 
8911 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8912 				   struct btrfs_root *root,
8913 				   struct btrfs_path *path,
8914 				   struct walk_control *wc)
8915 {
8916 	int level = wc->level;
8917 	int lookup_info = 1;
8918 	int ret;
8919 
8920 	while (level >= 0) {
8921 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8922 		if (ret > 0)
8923 			break;
8924 
8925 		if (level == 0)
8926 			break;
8927 
8928 		if (path->slots[level] >=
8929 		    btrfs_header_nritems(path->nodes[level]))
8930 			break;
8931 
8932 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8933 		if (ret > 0) {
8934 			path->slots[level]++;
8935 			continue;
8936 		} else if (ret < 0)
8937 			return ret;
8938 		level = wc->level;
8939 	}
8940 	return 0;
8941 }
8942 
8943 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8944 				 struct btrfs_root *root,
8945 				 struct btrfs_path *path,
8946 				 struct walk_control *wc, int max_level)
8947 {
8948 	int level = wc->level;
8949 	int ret;
8950 
8951 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8952 	while (level < max_level && path->nodes[level]) {
8953 		wc->level = level;
8954 		if (path->slots[level] + 1 <
8955 		    btrfs_header_nritems(path->nodes[level])) {
8956 			path->slots[level]++;
8957 			return 0;
8958 		} else {
8959 			ret = walk_up_proc(trans, root, path, wc);
8960 			if (ret > 0)
8961 				return 0;
8962 
8963 			if (path->locks[level]) {
8964 				btrfs_tree_unlock_rw(path->nodes[level],
8965 						     path->locks[level]);
8966 				path->locks[level] = 0;
8967 			}
8968 			free_extent_buffer(path->nodes[level]);
8969 			path->nodes[level] = NULL;
8970 			level++;
8971 		}
8972 	}
8973 	return 1;
8974 }
8975 
8976 /*
8977  * drop a subvolume tree.
8978  *
8979  * this function traverses the tree freeing any blocks that only
8980  * referenced by the tree.
8981  *
8982  * when a shared tree block is found. this function decreases its
8983  * reference count by one. if update_ref is true, this function
8984  * also make sure backrefs for the shared block and all lower level
8985  * blocks are properly updated.
8986  *
8987  * If called with for_reloc == 0, may exit early with -EAGAIN
8988  */
8989 int btrfs_drop_snapshot(struct btrfs_root *root,
8990 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8991 			 int for_reloc)
8992 {
8993 	struct btrfs_fs_info *fs_info = root->fs_info;
8994 	struct btrfs_path *path;
8995 	struct btrfs_trans_handle *trans;
8996 	struct btrfs_root *tree_root = fs_info->tree_root;
8997 	struct btrfs_root_item *root_item = &root->root_item;
8998 	struct walk_control *wc;
8999 	struct btrfs_key key;
9000 	int err = 0;
9001 	int ret;
9002 	int level;
9003 	bool root_dropped = false;
9004 
9005 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9006 
9007 	path = btrfs_alloc_path();
9008 	if (!path) {
9009 		err = -ENOMEM;
9010 		goto out;
9011 	}
9012 
9013 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9014 	if (!wc) {
9015 		btrfs_free_path(path);
9016 		err = -ENOMEM;
9017 		goto out;
9018 	}
9019 
9020 	trans = btrfs_start_transaction(tree_root, 0);
9021 	if (IS_ERR(trans)) {
9022 		err = PTR_ERR(trans);
9023 		goto out_free;
9024 	}
9025 
9026 	if (block_rsv)
9027 		trans->block_rsv = block_rsv;
9028 
9029 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9030 		level = btrfs_header_level(root->node);
9031 		path->nodes[level] = btrfs_lock_root_node(root);
9032 		btrfs_set_lock_blocking(path->nodes[level]);
9033 		path->slots[level] = 0;
9034 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9035 		memset(&wc->update_progress, 0,
9036 		       sizeof(wc->update_progress));
9037 	} else {
9038 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9039 		memcpy(&wc->update_progress, &key,
9040 		       sizeof(wc->update_progress));
9041 
9042 		level = root_item->drop_level;
9043 		BUG_ON(level == 0);
9044 		path->lowest_level = level;
9045 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9046 		path->lowest_level = 0;
9047 		if (ret < 0) {
9048 			err = ret;
9049 			goto out_end_trans;
9050 		}
9051 		WARN_ON(ret > 0);
9052 
9053 		/*
9054 		 * unlock our path, this is safe because only this
9055 		 * function is allowed to delete this snapshot
9056 		 */
9057 		btrfs_unlock_up_safe(path, 0);
9058 
9059 		level = btrfs_header_level(root->node);
9060 		while (1) {
9061 			btrfs_tree_lock(path->nodes[level]);
9062 			btrfs_set_lock_blocking(path->nodes[level]);
9063 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9064 
9065 			ret = btrfs_lookup_extent_info(trans, fs_info,
9066 						path->nodes[level]->start,
9067 						level, 1, &wc->refs[level],
9068 						&wc->flags[level]);
9069 			if (ret < 0) {
9070 				err = ret;
9071 				goto out_end_trans;
9072 			}
9073 			BUG_ON(wc->refs[level] == 0);
9074 
9075 			if (level == root_item->drop_level)
9076 				break;
9077 
9078 			btrfs_tree_unlock(path->nodes[level]);
9079 			path->locks[level] = 0;
9080 			WARN_ON(wc->refs[level] != 1);
9081 			level--;
9082 		}
9083 	}
9084 
9085 	wc->level = level;
9086 	wc->shared_level = -1;
9087 	wc->stage = DROP_REFERENCE;
9088 	wc->update_ref = update_ref;
9089 	wc->keep_locks = 0;
9090 	wc->for_reloc = for_reloc;
9091 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9092 
9093 	while (1) {
9094 
9095 		ret = walk_down_tree(trans, root, path, wc);
9096 		if (ret < 0) {
9097 			err = ret;
9098 			break;
9099 		}
9100 
9101 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9102 		if (ret < 0) {
9103 			err = ret;
9104 			break;
9105 		}
9106 
9107 		if (ret > 0) {
9108 			BUG_ON(wc->stage != DROP_REFERENCE);
9109 			break;
9110 		}
9111 
9112 		if (wc->stage == DROP_REFERENCE) {
9113 			level = wc->level;
9114 			btrfs_node_key(path->nodes[level],
9115 				       &root_item->drop_progress,
9116 				       path->slots[level]);
9117 			root_item->drop_level = level;
9118 		}
9119 
9120 		BUG_ON(wc->level == 0);
9121 		if (btrfs_should_end_transaction(trans) ||
9122 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9123 			ret = btrfs_update_root(trans, tree_root,
9124 						&root->root_key,
9125 						root_item);
9126 			if (ret) {
9127 				btrfs_abort_transaction(trans, ret);
9128 				err = ret;
9129 				goto out_end_trans;
9130 			}
9131 
9132 			btrfs_end_transaction_throttle(trans);
9133 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9134 				btrfs_debug(fs_info,
9135 					    "drop snapshot early exit");
9136 				err = -EAGAIN;
9137 				goto out_free;
9138 			}
9139 
9140 			trans = btrfs_start_transaction(tree_root, 0);
9141 			if (IS_ERR(trans)) {
9142 				err = PTR_ERR(trans);
9143 				goto out_free;
9144 			}
9145 			if (block_rsv)
9146 				trans->block_rsv = block_rsv;
9147 		}
9148 	}
9149 	btrfs_release_path(path);
9150 	if (err)
9151 		goto out_end_trans;
9152 
9153 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9154 	if (ret) {
9155 		btrfs_abort_transaction(trans, ret);
9156 		goto out_end_trans;
9157 	}
9158 
9159 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9160 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9161 				      NULL, NULL);
9162 		if (ret < 0) {
9163 			btrfs_abort_transaction(trans, ret);
9164 			err = ret;
9165 			goto out_end_trans;
9166 		} else if (ret > 0) {
9167 			/* if we fail to delete the orphan item this time
9168 			 * around, it'll get picked up the next time.
9169 			 *
9170 			 * The most common failure here is just -ENOENT.
9171 			 */
9172 			btrfs_del_orphan_item(trans, tree_root,
9173 					      root->root_key.objectid);
9174 		}
9175 	}
9176 
9177 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9178 		btrfs_add_dropped_root(trans, root);
9179 	} else {
9180 		free_extent_buffer(root->node);
9181 		free_extent_buffer(root->commit_root);
9182 		btrfs_put_fs_root(root);
9183 	}
9184 	root_dropped = true;
9185 out_end_trans:
9186 	btrfs_end_transaction_throttle(trans);
9187 out_free:
9188 	kfree(wc);
9189 	btrfs_free_path(path);
9190 out:
9191 	/*
9192 	 * So if we need to stop dropping the snapshot for whatever reason we
9193 	 * need to make sure to add it back to the dead root list so that we
9194 	 * keep trying to do the work later.  This also cleans up roots if we
9195 	 * don't have it in the radix (like when we recover after a power fail
9196 	 * or unmount) so we don't leak memory.
9197 	 */
9198 	if (!for_reloc && root_dropped == false)
9199 		btrfs_add_dead_root(root);
9200 	if (err && err != -EAGAIN)
9201 		btrfs_handle_fs_error(fs_info, err, NULL);
9202 	return err;
9203 }
9204 
9205 /*
9206  * drop subtree rooted at tree block 'node'.
9207  *
9208  * NOTE: this function will unlock and release tree block 'node'
9209  * only used by relocation code
9210  */
9211 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9212 			struct btrfs_root *root,
9213 			struct extent_buffer *node,
9214 			struct extent_buffer *parent)
9215 {
9216 	struct btrfs_fs_info *fs_info = root->fs_info;
9217 	struct btrfs_path *path;
9218 	struct walk_control *wc;
9219 	int level;
9220 	int parent_level;
9221 	int ret = 0;
9222 	int wret;
9223 
9224 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9225 
9226 	path = btrfs_alloc_path();
9227 	if (!path)
9228 		return -ENOMEM;
9229 
9230 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9231 	if (!wc) {
9232 		btrfs_free_path(path);
9233 		return -ENOMEM;
9234 	}
9235 
9236 	btrfs_assert_tree_locked(parent);
9237 	parent_level = btrfs_header_level(parent);
9238 	extent_buffer_get(parent);
9239 	path->nodes[parent_level] = parent;
9240 	path->slots[parent_level] = btrfs_header_nritems(parent);
9241 
9242 	btrfs_assert_tree_locked(node);
9243 	level = btrfs_header_level(node);
9244 	path->nodes[level] = node;
9245 	path->slots[level] = 0;
9246 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9247 
9248 	wc->refs[parent_level] = 1;
9249 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9250 	wc->level = level;
9251 	wc->shared_level = -1;
9252 	wc->stage = DROP_REFERENCE;
9253 	wc->update_ref = 0;
9254 	wc->keep_locks = 1;
9255 	wc->for_reloc = 1;
9256 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9257 
9258 	while (1) {
9259 		wret = walk_down_tree(trans, root, path, wc);
9260 		if (wret < 0) {
9261 			ret = wret;
9262 			break;
9263 		}
9264 
9265 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9266 		if (wret < 0)
9267 			ret = wret;
9268 		if (wret != 0)
9269 			break;
9270 	}
9271 
9272 	kfree(wc);
9273 	btrfs_free_path(path);
9274 	return ret;
9275 }
9276 
9277 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9278 {
9279 	u64 num_devices;
9280 	u64 stripped;
9281 
9282 	/*
9283 	 * if restripe for this chunk_type is on pick target profile and
9284 	 * return, otherwise do the usual balance
9285 	 */
9286 	stripped = get_restripe_target(fs_info, flags);
9287 	if (stripped)
9288 		return extended_to_chunk(stripped);
9289 
9290 	num_devices = fs_info->fs_devices->rw_devices;
9291 
9292 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9293 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9294 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9295 
9296 	if (num_devices == 1) {
9297 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9298 		stripped = flags & ~stripped;
9299 
9300 		/* turn raid0 into single device chunks */
9301 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9302 			return stripped;
9303 
9304 		/* turn mirroring into duplication */
9305 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9306 			     BTRFS_BLOCK_GROUP_RAID10))
9307 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9308 	} else {
9309 		/* they already had raid on here, just return */
9310 		if (flags & stripped)
9311 			return flags;
9312 
9313 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9314 		stripped = flags & ~stripped;
9315 
9316 		/* switch duplicated blocks with raid1 */
9317 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9318 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9319 
9320 		/* this is drive concat, leave it alone */
9321 	}
9322 
9323 	return flags;
9324 }
9325 
9326 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9327 {
9328 	struct btrfs_space_info *sinfo = cache->space_info;
9329 	u64 num_bytes;
9330 	u64 min_allocable_bytes;
9331 	int ret = -ENOSPC;
9332 
9333 	/*
9334 	 * We need some metadata space and system metadata space for
9335 	 * allocating chunks in some corner cases until we force to set
9336 	 * it to be readonly.
9337 	 */
9338 	if ((sinfo->flags &
9339 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9340 	    !force)
9341 		min_allocable_bytes = SZ_1M;
9342 	else
9343 		min_allocable_bytes = 0;
9344 
9345 	spin_lock(&sinfo->lock);
9346 	spin_lock(&cache->lock);
9347 
9348 	if (cache->ro) {
9349 		cache->ro++;
9350 		ret = 0;
9351 		goto out;
9352 	}
9353 
9354 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9355 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9356 
9357 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9358 	    min_allocable_bytes <= sinfo->total_bytes) {
9359 		sinfo->bytes_readonly += num_bytes;
9360 		cache->ro++;
9361 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9362 		ret = 0;
9363 	}
9364 out:
9365 	spin_unlock(&cache->lock);
9366 	spin_unlock(&sinfo->lock);
9367 	return ret;
9368 }
9369 
9370 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9371 			     struct btrfs_block_group_cache *cache)
9372 
9373 {
9374 	struct btrfs_trans_handle *trans;
9375 	u64 alloc_flags;
9376 	int ret;
9377 
9378 again:
9379 	trans = btrfs_join_transaction(fs_info->extent_root);
9380 	if (IS_ERR(trans))
9381 		return PTR_ERR(trans);
9382 
9383 	/*
9384 	 * we're not allowed to set block groups readonly after the dirty
9385 	 * block groups cache has started writing.  If it already started,
9386 	 * back off and let this transaction commit
9387 	 */
9388 	mutex_lock(&fs_info->ro_block_group_mutex);
9389 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9390 		u64 transid = trans->transid;
9391 
9392 		mutex_unlock(&fs_info->ro_block_group_mutex);
9393 		btrfs_end_transaction(trans);
9394 
9395 		ret = btrfs_wait_for_commit(fs_info, transid);
9396 		if (ret)
9397 			return ret;
9398 		goto again;
9399 	}
9400 
9401 	/*
9402 	 * if we are changing raid levels, try to allocate a corresponding
9403 	 * block group with the new raid level.
9404 	 */
9405 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9406 	if (alloc_flags != cache->flags) {
9407 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9408 				     CHUNK_ALLOC_FORCE);
9409 		/*
9410 		 * ENOSPC is allowed here, we may have enough space
9411 		 * already allocated at the new raid level to
9412 		 * carry on
9413 		 */
9414 		if (ret == -ENOSPC)
9415 			ret = 0;
9416 		if (ret < 0)
9417 			goto out;
9418 	}
9419 
9420 	ret = inc_block_group_ro(cache, 0);
9421 	if (!ret)
9422 		goto out;
9423 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9424 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9425 			     CHUNK_ALLOC_FORCE);
9426 	if (ret < 0)
9427 		goto out;
9428 	ret = inc_block_group_ro(cache, 0);
9429 out:
9430 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9431 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9432 		mutex_lock(&fs_info->chunk_mutex);
9433 		check_system_chunk(trans, fs_info, alloc_flags);
9434 		mutex_unlock(&fs_info->chunk_mutex);
9435 	}
9436 	mutex_unlock(&fs_info->ro_block_group_mutex);
9437 
9438 	btrfs_end_transaction(trans);
9439 	return ret;
9440 }
9441 
9442 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9443 			    struct btrfs_fs_info *fs_info, u64 type)
9444 {
9445 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9446 
9447 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9448 }
9449 
9450 /*
9451  * helper to account the unused space of all the readonly block group in the
9452  * space_info. takes mirrors into account.
9453  */
9454 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9455 {
9456 	struct btrfs_block_group_cache *block_group;
9457 	u64 free_bytes = 0;
9458 	int factor;
9459 
9460 	/* It's df, we don't care if it's racy */
9461 	if (list_empty(&sinfo->ro_bgs))
9462 		return 0;
9463 
9464 	spin_lock(&sinfo->lock);
9465 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9466 		spin_lock(&block_group->lock);
9467 
9468 		if (!block_group->ro) {
9469 			spin_unlock(&block_group->lock);
9470 			continue;
9471 		}
9472 
9473 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9474 					  BTRFS_BLOCK_GROUP_RAID10 |
9475 					  BTRFS_BLOCK_GROUP_DUP))
9476 			factor = 2;
9477 		else
9478 			factor = 1;
9479 
9480 		free_bytes += (block_group->key.offset -
9481 			       btrfs_block_group_used(&block_group->item)) *
9482 			       factor;
9483 
9484 		spin_unlock(&block_group->lock);
9485 	}
9486 	spin_unlock(&sinfo->lock);
9487 
9488 	return free_bytes;
9489 }
9490 
9491 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9492 {
9493 	struct btrfs_space_info *sinfo = cache->space_info;
9494 	u64 num_bytes;
9495 
9496 	BUG_ON(!cache->ro);
9497 
9498 	spin_lock(&sinfo->lock);
9499 	spin_lock(&cache->lock);
9500 	if (!--cache->ro) {
9501 		num_bytes = cache->key.offset - cache->reserved -
9502 			    cache->pinned - cache->bytes_super -
9503 			    btrfs_block_group_used(&cache->item);
9504 		sinfo->bytes_readonly -= num_bytes;
9505 		list_del_init(&cache->ro_list);
9506 	}
9507 	spin_unlock(&cache->lock);
9508 	spin_unlock(&sinfo->lock);
9509 }
9510 
9511 /*
9512  * checks to see if its even possible to relocate this block group.
9513  *
9514  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9515  * ok to go ahead and try.
9516  */
9517 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9518 {
9519 	struct btrfs_root *root = fs_info->extent_root;
9520 	struct btrfs_block_group_cache *block_group;
9521 	struct btrfs_space_info *space_info;
9522 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9523 	struct btrfs_device *device;
9524 	struct btrfs_trans_handle *trans;
9525 	u64 min_free;
9526 	u64 dev_min = 1;
9527 	u64 dev_nr = 0;
9528 	u64 target;
9529 	int debug;
9530 	int index;
9531 	int full = 0;
9532 	int ret = 0;
9533 
9534 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9535 
9536 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9537 
9538 	/* odd, couldn't find the block group, leave it alone */
9539 	if (!block_group) {
9540 		if (debug)
9541 			btrfs_warn(fs_info,
9542 				   "can't find block group for bytenr %llu",
9543 				   bytenr);
9544 		return -1;
9545 	}
9546 
9547 	min_free = btrfs_block_group_used(&block_group->item);
9548 
9549 	/* no bytes used, we're good */
9550 	if (!min_free)
9551 		goto out;
9552 
9553 	space_info = block_group->space_info;
9554 	spin_lock(&space_info->lock);
9555 
9556 	full = space_info->full;
9557 
9558 	/*
9559 	 * if this is the last block group we have in this space, we can't
9560 	 * relocate it unless we're able to allocate a new chunk below.
9561 	 *
9562 	 * Otherwise, we need to make sure we have room in the space to handle
9563 	 * all of the extents from this block group.  If we can, we're good
9564 	 */
9565 	if ((space_info->total_bytes != block_group->key.offset) &&
9566 	    (btrfs_space_info_used(space_info, false) + min_free <
9567 	     space_info->total_bytes)) {
9568 		spin_unlock(&space_info->lock);
9569 		goto out;
9570 	}
9571 	spin_unlock(&space_info->lock);
9572 
9573 	/*
9574 	 * ok we don't have enough space, but maybe we have free space on our
9575 	 * devices to allocate new chunks for relocation, so loop through our
9576 	 * alloc devices and guess if we have enough space.  if this block
9577 	 * group is going to be restriped, run checks against the target
9578 	 * profile instead of the current one.
9579 	 */
9580 	ret = -1;
9581 
9582 	/*
9583 	 * index:
9584 	 *      0: raid10
9585 	 *      1: raid1
9586 	 *      2: dup
9587 	 *      3: raid0
9588 	 *      4: single
9589 	 */
9590 	target = get_restripe_target(fs_info, block_group->flags);
9591 	if (target) {
9592 		index = __get_raid_index(extended_to_chunk(target));
9593 	} else {
9594 		/*
9595 		 * this is just a balance, so if we were marked as full
9596 		 * we know there is no space for a new chunk
9597 		 */
9598 		if (full) {
9599 			if (debug)
9600 				btrfs_warn(fs_info,
9601 					   "no space to alloc new chunk for block group %llu",
9602 					   block_group->key.objectid);
9603 			goto out;
9604 		}
9605 
9606 		index = get_block_group_index(block_group);
9607 	}
9608 
9609 	if (index == BTRFS_RAID_RAID10) {
9610 		dev_min = 4;
9611 		/* Divide by 2 */
9612 		min_free >>= 1;
9613 	} else if (index == BTRFS_RAID_RAID1) {
9614 		dev_min = 2;
9615 	} else if (index == BTRFS_RAID_DUP) {
9616 		/* Multiply by 2 */
9617 		min_free <<= 1;
9618 	} else if (index == BTRFS_RAID_RAID0) {
9619 		dev_min = fs_devices->rw_devices;
9620 		min_free = div64_u64(min_free, dev_min);
9621 	}
9622 
9623 	/* We need to do this so that we can look at pending chunks */
9624 	trans = btrfs_join_transaction(root);
9625 	if (IS_ERR(trans)) {
9626 		ret = PTR_ERR(trans);
9627 		goto out;
9628 	}
9629 
9630 	mutex_lock(&fs_info->chunk_mutex);
9631 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9632 		u64 dev_offset;
9633 
9634 		/*
9635 		 * check to make sure we can actually find a chunk with enough
9636 		 * space to fit our block group in.
9637 		 */
9638 		if (device->total_bytes > device->bytes_used + min_free &&
9639 		    !device->is_tgtdev_for_dev_replace) {
9640 			ret = find_free_dev_extent(trans, device, min_free,
9641 						   &dev_offset, NULL);
9642 			if (!ret)
9643 				dev_nr++;
9644 
9645 			if (dev_nr >= dev_min)
9646 				break;
9647 
9648 			ret = -1;
9649 		}
9650 	}
9651 	if (debug && ret == -1)
9652 		btrfs_warn(fs_info,
9653 			   "no space to allocate a new chunk for block group %llu",
9654 			   block_group->key.objectid);
9655 	mutex_unlock(&fs_info->chunk_mutex);
9656 	btrfs_end_transaction(trans);
9657 out:
9658 	btrfs_put_block_group(block_group);
9659 	return ret;
9660 }
9661 
9662 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9663 				  struct btrfs_path *path,
9664 				  struct btrfs_key *key)
9665 {
9666 	struct btrfs_root *root = fs_info->extent_root;
9667 	int ret = 0;
9668 	struct btrfs_key found_key;
9669 	struct extent_buffer *leaf;
9670 	int slot;
9671 
9672 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9673 	if (ret < 0)
9674 		goto out;
9675 
9676 	while (1) {
9677 		slot = path->slots[0];
9678 		leaf = path->nodes[0];
9679 		if (slot >= btrfs_header_nritems(leaf)) {
9680 			ret = btrfs_next_leaf(root, path);
9681 			if (ret == 0)
9682 				continue;
9683 			if (ret < 0)
9684 				goto out;
9685 			break;
9686 		}
9687 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9688 
9689 		if (found_key.objectid >= key->objectid &&
9690 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9691 			struct extent_map_tree *em_tree;
9692 			struct extent_map *em;
9693 
9694 			em_tree = &root->fs_info->mapping_tree.map_tree;
9695 			read_lock(&em_tree->lock);
9696 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9697 						   found_key.offset);
9698 			read_unlock(&em_tree->lock);
9699 			if (!em) {
9700 				btrfs_err(fs_info,
9701 			"logical %llu len %llu found bg but no related chunk",
9702 					  found_key.objectid, found_key.offset);
9703 				ret = -ENOENT;
9704 			} else {
9705 				ret = 0;
9706 			}
9707 			free_extent_map(em);
9708 			goto out;
9709 		}
9710 		path->slots[0]++;
9711 	}
9712 out:
9713 	return ret;
9714 }
9715 
9716 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9717 {
9718 	struct btrfs_block_group_cache *block_group;
9719 	u64 last = 0;
9720 
9721 	while (1) {
9722 		struct inode *inode;
9723 
9724 		block_group = btrfs_lookup_first_block_group(info, last);
9725 		while (block_group) {
9726 			spin_lock(&block_group->lock);
9727 			if (block_group->iref)
9728 				break;
9729 			spin_unlock(&block_group->lock);
9730 			block_group = next_block_group(info, block_group);
9731 		}
9732 		if (!block_group) {
9733 			if (last == 0)
9734 				break;
9735 			last = 0;
9736 			continue;
9737 		}
9738 
9739 		inode = block_group->inode;
9740 		block_group->iref = 0;
9741 		block_group->inode = NULL;
9742 		spin_unlock(&block_group->lock);
9743 		ASSERT(block_group->io_ctl.inode == NULL);
9744 		iput(inode);
9745 		last = block_group->key.objectid + block_group->key.offset;
9746 		btrfs_put_block_group(block_group);
9747 	}
9748 }
9749 
9750 /*
9751  * Must be called only after stopping all workers, since we could have block
9752  * group caching kthreads running, and therefore they could race with us if we
9753  * freed the block groups before stopping them.
9754  */
9755 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9756 {
9757 	struct btrfs_block_group_cache *block_group;
9758 	struct btrfs_space_info *space_info;
9759 	struct btrfs_caching_control *caching_ctl;
9760 	struct rb_node *n;
9761 
9762 	down_write(&info->commit_root_sem);
9763 	while (!list_empty(&info->caching_block_groups)) {
9764 		caching_ctl = list_entry(info->caching_block_groups.next,
9765 					 struct btrfs_caching_control, list);
9766 		list_del(&caching_ctl->list);
9767 		put_caching_control(caching_ctl);
9768 	}
9769 	up_write(&info->commit_root_sem);
9770 
9771 	spin_lock(&info->unused_bgs_lock);
9772 	while (!list_empty(&info->unused_bgs)) {
9773 		block_group = list_first_entry(&info->unused_bgs,
9774 					       struct btrfs_block_group_cache,
9775 					       bg_list);
9776 		list_del_init(&block_group->bg_list);
9777 		btrfs_put_block_group(block_group);
9778 	}
9779 	spin_unlock(&info->unused_bgs_lock);
9780 
9781 	spin_lock(&info->block_group_cache_lock);
9782 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9783 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9784 				       cache_node);
9785 		rb_erase(&block_group->cache_node,
9786 			 &info->block_group_cache_tree);
9787 		RB_CLEAR_NODE(&block_group->cache_node);
9788 		spin_unlock(&info->block_group_cache_lock);
9789 
9790 		down_write(&block_group->space_info->groups_sem);
9791 		list_del(&block_group->list);
9792 		up_write(&block_group->space_info->groups_sem);
9793 
9794 		/*
9795 		 * We haven't cached this block group, which means we could
9796 		 * possibly have excluded extents on this block group.
9797 		 */
9798 		if (block_group->cached == BTRFS_CACHE_NO ||
9799 		    block_group->cached == BTRFS_CACHE_ERROR)
9800 			free_excluded_extents(info, block_group);
9801 
9802 		btrfs_remove_free_space_cache(block_group);
9803 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9804 		ASSERT(list_empty(&block_group->dirty_list));
9805 		ASSERT(list_empty(&block_group->io_list));
9806 		ASSERT(list_empty(&block_group->bg_list));
9807 		ASSERT(atomic_read(&block_group->count) == 1);
9808 		btrfs_put_block_group(block_group);
9809 
9810 		spin_lock(&info->block_group_cache_lock);
9811 	}
9812 	spin_unlock(&info->block_group_cache_lock);
9813 
9814 	/* now that all the block groups are freed, go through and
9815 	 * free all the space_info structs.  This is only called during
9816 	 * the final stages of unmount, and so we know nobody is
9817 	 * using them.  We call synchronize_rcu() once before we start,
9818 	 * just to be on the safe side.
9819 	 */
9820 	synchronize_rcu();
9821 
9822 	release_global_block_rsv(info);
9823 
9824 	while (!list_empty(&info->space_info)) {
9825 		int i;
9826 
9827 		space_info = list_entry(info->space_info.next,
9828 					struct btrfs_space_info,
9829 					list);
9830 
9831 		/*
9832 		 * Do not hide this behind enospc_debug, this is actually
9833 		 * important and indicates a real bug if this happens.
9834 		 */
9835 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9836 			    space_info->bytes_reserved > 0 ||
9837 			    space_info->bytes_may_use > 0))
9838 			dump_space_info(info, space_info, 0, 0);
9839 		list_del(&space_info->list);
9840 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9841 			struct kobject *kobj;
9842 			kobj = space_info->block_group_kobjs[i];
9843 			space_info->block_group_kobjs[i] = NULL;
9844 			if (kobj) {
9845 				kobject_del(kobj);
9846 				kobject_put(kobj);
9847 			}
9848 		}
9849 		kobject_del(&space_info->kobj);
9850 		kobject_put(&space_info->kobj);
9851 	}
9852 	return 0;
9853 }
9854 
9855 static void __link_block_group(struct btrfs_space_info *space_info,
9856 			       struct btrfs_block_group_cache *cache)
9857 {
9858 	int index = get_block_group_index(cache);
9859 	bool first = false;
9860 
9861 	down_write(&space_info->groups_sem);
9862 	if (list_empty(&space_info->block_groups[index]))
9863 		first = true;
9864 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9865 	up_write(&space_info->groups_sem);
9866 
9867 	if (first) {
9868 		struct raid_kobject *rkobj;
9869 		int ret;
9870 
9871 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9872 		if (!rkobj)
9873 			goto out_err;
9874 		rkobj->raid_type = index;
9875 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9876 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9877 				  "%s", get_raid_name(index));
9878 		if (ret) {
9879 			kobject_put(&rkobj->kobj);
9880 			goto out_err;
9881 		}
9882 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9883 	}
9884 
9885 	return;
9886 out_err:
9887 	btrfs_warn(cache->fs_info,
9888 		   "failed to add kobject for block cache, ignoring");
9889 }
9890 
9891 static struct btrfs_block_group_cache *
9892 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9893 			       u64 start, u64 size)
9894 {
9895 	struct btrfs_block_group_cache *cache;
9896 
9897 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9898 	if (!cache)
9899 		return NULL;
9900 
9901 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9902 					GFP_NOFS);
9903 	if (!cache->free_space_ctl) {
9904 		kfree(cache);
9905 		return NULL;
9906 	}
9907 
9908 	cache->key.objectid = start;
9909 	cache->key.offset = size;
9910 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9911 
9912 	cache->sectorsize = fs_info->sectorsize;
9913 	cache->fs_info = fs_info;
9914 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9915 						       &fs_info->mapping_tree,
9916 						       start);
9917 	set_free_space_tree_thresholds(cache);
9918 
9919 	atomic_set(&cache->count, 1);
9920 	spin_lock_init(&cache->lock);
9921 	init_rwsem(&cache->data_rwsem);
9922 	INIT_LIST_HEAD(&cache->list);
9923 	INIT_LIST_HEAD(&cache->cluster_list);
9924 	INIT_LIST_HEAD(&cache->bg_list);
9925 	INIT_LIST_HEAD(&cache->ro_list);
9926 	INIT_LIST_HEAD(&cache->dirty_list);
9927 	INIT_LIST_HEAD(&cache->io_list);
9928 	btrfs_init_free_space_ctl(cache);
9929 	atomic_set(&cache->trimming, 0);
9930 	mutex_init(&cache->free_space_lock);
9931 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9932 
9933 	return cache;
9934 }
9935 
9936 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9937 {
9938 	struct btrfs_path *path;
9939 	int ret;
9940 	struct btrfs_block_group_cache *cache;
9941 	struct btrfs_space_info *space_info;
9942 	struct btrfs_key key;
9943 	struct btrfs_key found_key;
9944 	struct extent_buffer *leaf;
9945 	int need_clear = 0;
9946 	u64 cache_gen;
9947 	u64 feature;
9948 	int mixed;
9949 
9950 	feature = btrfs_super_incompat_flags(info->super_copy);
9951 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9952 
9953 	key.objectid = 0;
9954 	key.offset = 0;
9955 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9956 	path = btrfs_alloc_path();
9957 	if (!path)
9958 		return -ENOMEM;
9959 	path->reada = READA_FORWARD;
9960 
9961 	cache_gen = btrfs_super_cache_generation(info->super_copy);
9962 	if (btrfs_test_opt(info, SPACE_CACHE) &&
9963 	    btrfs_super_generation(info->super_copy) != cache_gen)
9964 		need_clear = 1;
9965 	if (btrfs_test_opt(info, CLEAR_CACHE))
9966 		need_clear = 1;
9967 
9968 	while (1) {
9969 		ret = find_first_block_group(info, path, &key);
9970 		if (ret > 0)
9971 			break;
9972 		if (ret != 0)
9973 			goto error;
9974 
9975 		leaf = path->nodes[0];
9976 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9977 
9978 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
9979 						       found_key.offset);
9980 		if (!cache) {
9981 			ret = -ENOMEM;
9982 			goto error;
9983 		}
9984 
9985 		if (need_clear) {
9986 			/*
9987 			 * When we mount with old space cache, we need to
9988 			 * set BTRFS_DC_CLEAR and set dirty flag.
9989 			 *
9990 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9991 			 *    truncate the old free space cache inode and
9992 			 *    setup a new one.
9993 			 * b) Setting 'dirty flag' makes sure that we flush
9994 			 *    the new space cache info onto disk.
9995 			 */
9996 			if (btrfs_test_opt(info, SPACE_CACHE))
9997 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9998 		}
9999 
10000 		read_extent_buffer(leaf, &cache->item,
10001 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10002 				   sizeof(cache->item));
10003 		cache->flags = btrfs_block_group_flags(&cache->item);
10004 		if (!mixed &&
10005 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10006 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10007 			btrfs_err(info,
10008 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10009 				  cache->key.objectid);
10010 			ret = -EINVAL;
10011 			goto error;
10012 		}
10013 
10014 		key.objectid = found_key.objectid + found_key.offset;
10015 		btrfs_release_path(path);
10016 
10017 		/*
10018 		 * We need to exclude the super stripes now so that the space
10019 		 * info has super bytes accounted for, otherwise we'll think
10020 		 * we have more space than we actually do.
10021 		 */
10022 		ret = exclude_super_stripes(info, cache);
10023 		if (ret) {
10024 			/*
10025 			 * We may have excluded something, so call this just in
10026 			 * case.
10027 			 */
10028 			free_excluded_extents(info, cache);
10029 			btrfs_put_block_group(cache);
10030 			goto error;
10031 		}
10032 
10033 		/*
10034 		 * check for two cases, either we are full, and therefore
10035 		 * don't need to bother with the caching work since we won't
10036 		 * find any space, or we are empty, and we can just add all
10037 		 * the space in and be done with it.  This saves us _alot_ of
10038 		 * time, particularly in the full case.
10039 		 */
10040 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10041 			cache->last_byte_to_unpin = (u64)-1;
10042 			cache->cached = BTRFS_CACHE_FINISHED;
10043 			free_excluded_extents(info, cache);
10044 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10045 			cache->last_byte_to_unpin = (u64)-1;
10046 			cache->cached = BTRFS_CACHE_FINISHED;
10047 			add_new_free_space(cache, info,
10048 					   found_key.objectid,
10049 					   found_key.objectid +
10050 					   found_key.offset);
10051 			free_excluded_extents(info, cache);
10052 		}
10053 
10054 		ret = btrfs_add_block_group_cache(info, cache);
10055 		if (ret) {
10056 			btrfs_remove_free_space_cache(cache);
10057 			btrfs_put_block_group(cache);
10058 			goto error;
10059 		}
10060 
10061 		trace_btrfs_add_block_group(info, cache, 0);
10062 		ret = update_space_info(info, cache->flags, found_key.offset,
10063 					btrfs_block_group_used(&cache->item),
10064 					cache->bytes_super, &space_info);
10065 		if (ret) {
10066 			btrfs_remove_free_space_cache(cache);
10067 			spin_lock(&info->block_group_cache_lock);
10068 			rb_erase(&cache->cache_node,
10069 				 &info->block_group_cache_tree);
10070 			RB_CLEAR_NODE(&cache->cache_node);
10071 			spin_unlock(&info->block_group_cache_lock);
10072 			btrfs_put_block_group(cache);
10073 			goto error;
10074 		}
10075 
10076 		cache->space_info = space_info;
10077 
10078 		__link_block_group(space_info, cache);
10079 
10080 		set_avail_alloc_bits(info, cache->flags);
10081 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10082 			inc_block_group_ro(cache, 1);
10083 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10084 			spin_lock(&info->unused_bgs_lock);
10085 			/* Should always be true but just in case. */
10086 			if (list_empty(&cache->bg_list)) {
10087 				btrfs_get_block_group(cache);
10088 				list_add_tail(&cache->bg_list,
10089 					      &info->unused_bgs);
10090 			}
10091 			spin_unlock(&info->unused_bgs_lock);
10092 		}
10093 	}
10094 
10095 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10096 		if (!(get_alloc_profile(info, space_info->flags) &
10097 		      (BTRFS_BLOCK_GROUP_RAID10 |
10098 		       BTRFS_BLOCK_GROUP_RAID1 |
10099 		       BTRFS_BLOCK_GROUP_RAID5 |
10100 		       BTRFS_BLOCK_GROUP_RAID6 |
10101 		       BTRFS_BLOCK_GROUP_DUP)))
10102 			continue;
10103 		/*
10104 		 * avoid allocating from un-mirrored block group if there are
10105 		 * mirrored block groups.
10106 		 */
10107 		list_for_each_entry(cache,
10108 				&space_info->block_groups[BTRFS_RAID_RAID0],
10109 				list)
10110 			inc_block_group_ro(cache, 1);
10111 		list_for_each_entry(cache,
10112 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10113 				list)
10114 			inc_block_group_ro(cache, 1);
10115 	}
10116 
10117 	init_global_block_rsv(info);
10118 	ret = 0;
10119 error:
10120 	btrfs_free_path(path);
10121 	return ret;
10122 }
10123 
10124 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10125 				       struct btrfs_fs_info *fs_info)
10126 {
10127 	struct btrfs_block_group_cache *block_group, *tmp;
10128 	struct btrfs_root *extent_root = fs_info->extent_root;
10129 	struct btrfs_block_group_item item;
10130 	struct btrfs_key key;
10131 	int ret = 0;
10132 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10133 
10134 	trans->can_flush_pending_bgs = false;
10135 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10136 		if (ret)
10137 			goto next;
10138 
10139 		spin_lock(&block_group->lock);
10140 		memcpy(&item, &block_group->item, sizeof(item));
10141 		memcpy(&key, &block_group->key, sizeof(key));
10142 		spin_unlock(&block_group->lock);
10143 
10144 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10145 					sizeof(item));
10146 		if (ret)
10147 			btrfs_abort_transaction(trans, ret);
10148 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10149 					       key.offset);
10150 		if (ret)
10151 			btrfs_abort_transaction(trans, ret);
10152 		add_block_group_free_space(trans, fs_info, block_group);
10153 		/* already aborted the transaction if it failed. */
10154 next:
10155 		list_del_init(&block_group->bg_list);
10156 	}
10157 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10158 }
10159 
10160 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10161 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10162 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10163 			   u64 size)
10164 {
10165 	struct btrfs_block_group_cache *cache;
10166 	int ret;
10167 
10168 	btrfs_set_log_full_commit(fs_info, trans);
10169 
10170 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10171 	if (!cache)
10172 		return -ENOMEM;
10173 
10174 	btrfs_set_block_group_used(&cache->item, bytes_used);
10175 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10176 	btrfs_set_block_group_flags(&cache->item, type);
10177 
10178 	cache->flags = type;
10179 	cache->last_byte_to_unpin = (u64)-1;
10180 	cache->cached = BTRFS_CACHE_FINISHED;
10181 	cache->needs_free_space = 1;
10182 	ret = exclude_super_stripes(fs_info, cache);
10183 	if (ret) {
10184 		/*
10185 		 * We may have excluded something, so call this just in
10186 		 * case.
10187 		 */
10188 		free_excluded_extents(fs_info, cache);
10189 		btrfs_put_block_group(cache);
10190 		return ret;
10191 	}
10192 
10193 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10194 
10195 	free_excluded_extents(fs_info, cache);
10196 
10197 #ifdef CONFIG_BTRFS_DEBUG
10198 	if (btrfs_should_fragment_free_space(cache)) {
10199 		u64 new_bytes_used = size - bytes_used;
10200 
10201 		bytes_used += new_bytes_used >> 1;
10202 		fragment_free_space(cache);
10203 	}
10204 #endif
10205 	/*
10206 	 * Call to ensure the corresponding space_info object is created and
10207 	 * assigned to our block group, but don't update its counters just yet.
10208 	 * We want our bg to be added to the rbtree with its ->space_info set.
10209 	 */
10210 	ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10211 				&cache->space_info);
10212 	if (ret) {
10213 		btrfs_remove_free_space_cache(cache);
10214 		btrfs_put_block_group(cache);
10215 		return ret;
10216 	}
10217 
10218 	ret = btrfs_add_block_group_cache(fs_info, cache);
10219 	if (ret) {
10220 		btrfs_remove_free_space_cache(cache);
10221 		btrfs_put_block_group(cache);
10222 		return ret;
10223 	}
10224 
10225 	/*
10226 	 * Now that our block group has its ->space_info set and is inserted in
10227 	 * the rbtree, update the space info's counters.
10228 	 */
10229 	trace_btrfs_add_block_group(fs_info, cache, 1);
10230 	ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10231 				cache->bytes_super, &cache->space_info);
10232 	if (ret) {
10233 		btrfs_remove_free_space_cache(cache);
10234 		spin_lock(&fs_info->block_group_cache_lock);
10235 		rb_erase(&cache->cache_node,
10236 			 &fs_info->block_group_cache_tree);
10237 		RB_CLEAR_NODE(&cache->cache_node);
10238 		spin_unlock(&fs_info->block_group_cache_lock);
10239 		btrfs_put_block_group(cache);
10240 		return ret;
10241 	}
10242 	update_global_block_rsv(fs_info);
10243 
10244 	__link_block_group(cache->space_info, cache);
10245 
10246 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10247 
10248 	set_avail_alloc_bits(fs_info, type);
10249 	return 0;
10250 }
10251 
10252 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10253 {
10254 	u64 extra_flags = chunk_to_extended(flags) &
10255 				BTRFS_EXTENDED_PROFILE_MASK;
10256 
10257 	write_seqlock(&fs_info->profiles_lock);
10258 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10259 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10260 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10261 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10262 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10263 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10264 	write_sequnlock(&fs_info->profiles_lock);
10265 }
10266 
10267 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10268 			     struct btrfs_fs_info *fs_info, u64 group_start,
10269 			     struct extent_map *em)
10270 {
10271 	struct btrfs_root *root = fs_info->extent_root;
10272 	struct btrfs_path *path;
10273 	struct btrfs_block_group_cache *block_group;
10274 	struct btrfs_free_cluster *cluster;
10275 	struct btrfs_root *tree_root = fs_info->tree_root;
10276 	struct btrfs_key key;
10277 	struct inode *inode;
10278 	struct kobject *kobj = NULL;
10279 	int ret;
10280 	int index;
10281 	int factor;
10282 	struct btrfs_caching_control *caching_ctl = NULL;
10283 	bool remove_em;
10284 
10285 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10286 	BUG_ON(!block_group);
10287 	BUG_ON(!block_group->ro);
10288 
10289 	/*
10290 	 * Free the reserved super bytes from this block group before
10291 	 * remove it.
10292 	 */
10293 	free_excluded_extents(fs_info, block_group);
10294 
10295 	memcpy(&key, &block_group->key, sizeof(key));
10296 	index = get_block_group_index(block_group);
10297 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10298 				  BTRFS_BLOCK_GROUP_RAID1 |
10299 				  BTRFS_BLOCK_GROUP_RAID10))
10300 		factor = 2;
10301 	else
10302 		factor = 1;
10303 
10304 	/* make sure this block group isn't part of an allocation cluster */
10305 	cluster = &fs_info->data_alloc_cluster;
10306 	spin_lock(&cluster->refill_lock);
10307 	btrfs_return_cluster_to_free_space(block_group, cluster);
10308 	spin_unlock(&cluster->refill_lock);
10309 
10310 	/*
10311 	 * make sure this block group isn't part of a metadata
10312 	 * allocation cluster
10313 	 */
10314 	cluster = &fs_info->meta_alloc_cluster;
10315 	spin_lock(&cluster->refill_lock);
10316 	btrfs_return_cluster_to_free_space(block_group, cluster);
10317 	spin_unlock(&cluster->refill_lock);
10318 
10319 	path = btrfs_alloc_path();
10320 	if (!path) {
10321 		ret = -ENOMEM;
10322 		goto out;
10323 	}
10324 
10325 	/*
10326 	 * get the inode first so any iput calls done for the io_list
10327 	 * aren't the final iput (no unlinks allowed now)
10328 	 */
10329 	inode = lookup_free_space_inode(fs_info, block_group, path);
10330 
10331 	mutex_lock(&trans->transaction->cache_write_mutex);
10332 	/*
10333 	 * make sure our free spache cache IO is done before remove the
10334 	 * free space inode
10335 	 */
10336 	spin_lock(&trans->transaction->dirty_bgs_lock);
10337 	if (!list_empty(&block_group->io_list)) {
10338 		list_del_init(&block_group->io_list);
10339 
10340 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10341 
10342 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10343 		btrfs_wait_cache_io(trans, block_group, path);
10344 		btrfs_put_block_group(block_group);
10345 		spin_lock(&trans->transaction->dirty_bgs_lock);
10346 	}
10347 
10348 	if (!list_empty(&block_group->dirty_list)) {
10349 		list_del_init(&block_group->dirty_list);
10350 		btrfs_put_block_group(block_group);
10351 	}
10352 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10353 	mutex_unlock(&trans->transaction->cache_write_mutex);
10354 
10355 	if (!IS_ERR(inode)) {
10356 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10357 		if (ret) {
10358 			btrfs_add_delayed_iput(inode);
10359 			goto out;
10360 		}
10361 		clear_nlink(inode);
10362 		/* One for the block groups ref */
10363 		spin_lock(&block_group->lock);
10364 		if (block_group->iref) {
10365 			block_group->iref = 0;
10366 			block_group->inode = NULL;
10367 			spin_unlock(&block_group->lock);
10368 			iput(inode);
10369 		} else {
10370 			spin_unlock(&block_group->lock);
10371 		}
10372 		/* One for our lookup ref */
10373 		btrfs_add_delayed_iput(inode);
10374 	}
10375 
10376 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10377 	key.offset = block_group->key.objectid;
10378 	key.type = 0;
10379 
10380 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10381 	if (ret < 0)
10382 		goto out;
10383 	if (ret > 0)
10384 		btrfs_release_path(path);
10385 	if (ret == 0) {
10386 		ret = btrfs_del_item(trans, tree_root, path);
10387 		if (ret)
10388 			goto out;
10389 		btrfs_release_path(path);
10390 	}
10391 
10392 	spin_lock(&fs_info->block_group_cache_lock);
10393 	rb_erase(&block_group->cache_node,
10394 		 &fs_info->block_group_cache_tree);
10395 	RB_CLEAR_NODE(&block_group->cache_node);
10396 
10397 	if (fs_info->first_logical_byte == block_group->key.objectid)
10398 		fs_info->first_logical_byte = (u64)-1;
10399 	spin_unlock(&fs_info->block_group_cache_lock);
10400 
10401 	down_write(&block_group->space_info->groups_sem);
10402 	/*
10403 	 * we must use list_del_init so people can check to see if they
10404 	 * are still on the list after taking the semaphore
10405 	 */
10406 	list_del_init(&block_group->list);
10407 	if (list_empty(&block_group->space_info->block_groups[index])) {
10408 		kobj = block_group->space_info->block_group_kobjs[index];
10409 		block_group->space_info->block_group_kobjs[index] = NULL;
10410 		clear_avail_alloc_bits(fs_info, block_group->flags);
10411 	}
10412 	up_write(&block_group->space_info->groups_sem);
10413 	if (kobj) {
10414 		kobject_del(kobj);
10415 		kobject_put(kobj);
10416 	}
10417 
10418 	if (block_group->has_caching_ctl)
10419 		caching_ctl = get_caching_control(block_group);
10420 	if (block_group->cached == BTRFS_CACHE_STARTED)
10421 		wait_block_group_cache_done(block_group);
10422 	if (block_group->has_caching_ctl) {
10423 		down_write(&fs_info->commit_root_sem);
10424 		if (!caching_ctl) {
10425 			struct btrfs_caching_control *ctl;
10426 
10427 			list_for_each_entry(ctl,
10428 				    &fs_info->caching_block_groups, list)
10429 				if (ctl->block_group == block_group) {
10430 					caching_ctl = ctl;
10431 					refcount_inc(&caching_ctl->count);
10432 					break;
10433 				}
10434 		}
10435 		if (caching_ctl)
10436 			list_del_init(&caching_ctl->list);
10437 		up_write(&fs_info->commit_root_sem);
10438 		if (caching_ctl) {
10439 			/* Once for the caching bgs list and once for us. */
10440 			put_caching_control(caching_ctl);
10441 			put_caching_control(caching_ctl);
10442 		}
10443 	}
10444 
10445 	spin_lock(&trans->transaction->dirty_bgs_lock);
10446 	if (!list_empty(&block_group->dirty_list)) {
10447 		WARN_ON(1);
10448 	}
10449 	if (!list_empty(&block_group->io_list)) {
10450 		WARN_ON(1);
10451 	}
10452 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10453 	btrfs_remove_free_space_cache(block_group);
10454 
10455 	spin_lock(&block_group->space_info->lock);
10456 	list_del_init(&block_group->ro_list);
10457 
10458 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10459 		WARN_ON(block_group->space_info->total_bytes
10460 			< block_group->key.offset);
10461 		WARN_ON(block_group->space_info->bytes_readonly
10462 			< block_group->key.offset);
10463 		WARN_ON(block_group->space_info->disk_total
10464 			< block_group->key.offset * factor);
10465 	}
10466 	block_group->space_info->total_bytes -= block_group->key.offset;
10467 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10468 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10469 
10470 	spin_unlock(&block_group->space_info->lock);
10471 
10472 	memcpy(&key, &block_group->key, sizeof(key));
10473 
10474 	mutex_lock(&fs_info->chunk_mutex);
10475 	if (!list_empty(&em->list)) {
10476 		/* We're in the transaction->pending_chunks list. */
10477 		free_extent_map(em);
10478 	}
10479 	spin_lock(&block_group->lock);
10480 	block_group->removed = 1;
10481 	/*
10482 	 * At this point trimming can't start on this block group, because we
10483 	 * removed the block group from the tree fs_info->block_group_cache_tree
10484 	 * so no one can't find it anymore and even if someone already got this
10485 	 * block group before we removed it from the rbtree, they have already
10486 	 * incremented block_group->trimming - if they didn't, they won't find
10487 	 * any free space entries because we already removed them all when we
10488 	 * called btrfs_remove_free_space_cache().
10489 	 *
10490 	 * And we must not remove the extent map from the fs_info->mapping_tree
10491 	 * to prevent the same logical address range and physical device space
10492 	 * ranges from being reused for a new block group. This is because our
10493 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10494 	 * completely transactionless, so while it is trimming a range the
10495 	 * currently running transaction might finish and a new one start,
10496 	 * allowing for new block groups to be created that can reuse the same
10497 	 * physical device locations unless we take this special care.
10498 	 *
10499 	 * There may also be an implicit trim operation if the file system
10500 	 * is mounted with -odiscard. The same protections must remain
10501 	 * in place until the extents have been discarded completely when
10502 	 * the transaction commit has completed.
10503 	 */
10504 	remove_em = (atomic_read(&block_group->trimming) == 0);
10505 	/*
10506 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10507 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10508 	 * before checking block_group->removed).
10509 	 */
10510 	if (!remove_em) {
10511 		/*
10512 		 * Our em might be in trans->transaction->pending_chunks which
10513 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10514 		 * and so is the fs_info->pinned_chunks list.
10515 		 *
10516 		 * So at this point we must be holding the chunk_mutex to avoid
10517 		 * any races with chunk allocation (more specifically at
10518 		 * volumes.c:contains_pending_extent()), to ensure it always
10519 		 * sees the em, either in the pending_chunks list or in the
10520 		 * pinned_chunks list.
10521 		 */
10522 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10523 	}
10524 	spin_unlock(&block_group->lock);
10525 
10526 	if (remove_em) {
10527 		struct extent_map_tree *em_tree;
10528 
10529 		em_tree = &fs_info->mapping_tree.map_tree;
10530 		write_lock(&em_tree->lock);
10531 		/*
10532 		 * The em might be in the pending_chunks list, so make sure the
10533 		 * chunk mutex is locked, since remove_extent_mapping() will
10534 		 * delete us from that list.
10535 		 */
10536 		remove_extent_mapping(em_tree, em);
10537 		write_unlock(&em_tree->lock);
10538 		/* once for the tree */
10539 		free_extent_map(em);
10540 	}
10541 
10542 	mutex_unlock(&fs_info->chunk_mutex);
10543 
10544 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10545 	if (ret)
10546 		goto out;
10547 
10548 	btrfs_put_block_group(block_group);
10549 	btrfs_put_block_group(block_group);
10550 
10551 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10552 	if (ret > 0)
10553 		ret = -EIO;
10554 	if (ret < 0)
10555 		goto out;
10556 
10557 	ret = btrfs_del_item(trans, root, path);
10558 out:
10559 	btrfs_free_path(path);
10560 	return ret;
10561 }
10562 
10563 struct btrfs_trans_handle *
10564 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10565 				     const u64 chunk_offset)
10566 {
10567 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10568 	struct extent_map *em;
10569 	struct map_lookup *map;
10570 	unsigned int num_items;
10571 
10572 	read_lock(&em_tree->lock);
10573 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10574 	read_unlock(&em_tree->lock);
10575 	ASSERT(em && em->start == chunk_offset);
10576 
10577 	/*
10578 	 * We need to reserve 3 + N units from the metadata space info in order
10579 	 * to remove a block group (done at btrfs_remove_chunk() and at
10580 	 * btrfs_remove_block_group()), which are used for:
10581 	 *
10582 	 * 1 unit for adding the free space inode's orphan (located in the tree
10583 	 * of tree roots).
10584 	 * 1 unit for deleting the block group item (located in the extent
10585 	 * tree).
10586 	 * 1 unit for deleting the free space item (located in tree of tree
10587 	 * roots).
10588 	 * N units for deleting N device extent items corresponding to each
10589 	 * stripe (located in the device tree).
10590 	 *
10591 	 * In order to remove a block group we also need to reserve units in the
10592 	 * system space info in order to update the chunk tree (update one or
10593 	 * more device items and remove one chunk item), but this is done at
10594 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10595 	 */
10596 	map = em->map_lookup;
10597 	num_items = 3 + map->num_stripes;
10598 	free_extent_map(em);
10599 
10600 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10601 							   num_items, 1);
10602 }
10603 
10604 /*
10605  * Process the unused_bgs list and remove any that don't have any allocated
10606  * space inside of them.
10607  */
10608 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10609 {
10610 	struct btrfs_block_group_cache *block_group;
10611 	struct btrfs_space_info *space_info;
10612 	struct btrfs_trans_handle *trans;
10613 	int ret = 0;
10614 
10615 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10616 		return;
10617 
10618 	spin_lock(&fs_info->unused_bgs_lock);
10619 	while (!list_empty(&fs_info->unused_bgs)) {
10620 		u64 start, end;
10621 		int trimming;
10622 
10623 		block_group = list_first_entry(&fs_info->unused_bgs,
10624 					       struct btrfs_block_group_cache,
10625 					       bg_list);
10626 		list_del_init(&block_group->bg_list);
10627 
10628 		space_info = block_group->space_info;
10629 
10630 		if (ret || btrfs_mixed_space_info(space_info)) {
10631 			btrfs_put_block_group(block_group);
10632 			continue;
10633 		}
10634 		spin_unlock(&fs_info->unused_bgs_lock);
10635 
10636 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10637 
10638 		/* Don't want to race with allocators so take the groups_sem */
10639 		down_write(&space_info->groups_sem);
10640 		spin_lock(&block_group->lock);
10641 		if (block_group->reserved ||
10642 		    btrfs_block_group_used(&block_group->item) ||
10643 		    block_group->ro ||
10644 		    list_is_singular(&block_group->list)) {
10645 			/*
10646 			 * We want to bail if we made new allocations or have
10647 			 * outstanding allocations in this block group.  We do
10648 			 * the ro check in case balance is currently acting on
10649 			 * this block group.
10650 			 */
10651 			spin_unlock(&block_group->lock);
10652 			up_write(&space_info->groups_sem);
10653 			goto next;
10654 		}
10655 		spin_unlock(&block_group->lock);
10656 
10657 		/* We don't want to force the issue, only flip if it's ok. */
10658 		ret = inc_block_group_ro(block_group, 0);
10659 		up_write(&space_info->groups_sem);
10660 		if (ret < 0) {
10661 			ret = 0;
10662 			goto next;
10663 		}
10664 
10665 		/*
10666 		 * Want to do this before we do anything else so we can recover
10667 		 * properly if we fail to join the transaction.
10668 		 */
10669 		trans = btrfs_start_trans_remove_block_group(fs_info,
10670 						     block_group->key.objectid);
10671 		if (IS_ERR(trans)) {
10672 			btrfs_dec_block_group_ro(block_group);
10673 			ret = PTR_ERR(trans);
10674 			goto next;
10675 		}
10676 
10677 		/*
10678 		 * We could have pending pinned extents for this block group,
10679 		 * just delete them, we don't care about them anymore.
10680 		 */
10681 		start = block_group->key.objectid;
10682 		end = start + block_group->key.offset - 1;
10683 		/*
10684 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10685 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10686 		 * another task might be running finish_extent_commit() for the
10687 		 * previous transaction N - 1, and have seen a range belonging
10688 		 * to the block group in freed_extents[] before we were able to
10689 		 * clear the whole block group range from freed_extents[]. This
10690 		 * means that task can lookup for the block group after we
10691 		 * unpinned it from freed_extents[] and removed it, leading to
10692 		 * a BUG_ON() at btrfs_unpin_extent_range().
10693 		 */
10694 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10695 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10696 				  EXTENT_DIRTY);
10697 		if (ret) {
10698 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10699 			btrfs_dec_block_group_ro(block_group);
10700 			goto end_trans;
10701 		}
10702 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10703 				  EXTENT_DIRTY);
10704 		if (ret) {
10705 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10706 			btrfs_dec_block_group_ro(block_group);
10707 			goto end_trans;
10708 		}
10709 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10710 
10711 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10712 		spin_lock(&space_info->lock);
10713 		spin_lock(&block_group->lock);
10714 
10715 		space_info->bytes_pinned -= block_group->pinned;
10716 		space_info->bytes_readonly += block_group->pinned;
10717 		percpu_counter_add(&space_info->total_bytes_pinned,
10718 				   -block_group->pinned);
10719 		block_group->pinned = 0;
10720 
10721 		spin_unlock(&block_group->lock);
10722 		spin_unlock(&space_info->lock);
10723 
10724 		/* DISCARD can flip during remount */
10725 		trimming = btrfs_test_opt(fs_info, DISCARD);
10726 
10727 		/* Implicit trim during transaction commit. */
10728 		if (trimming)
10729 			btrfs_get_block_group_trimming(block_group);
10730 
10731 		/*
10732 		 * Btrfs_remove_chunk will abort the transaction if things go
10733 		 * horribly wrong.
10734 		 */
10735 		ret = btrfs_remove_chunk(trans, fs_info,
10736 					 block_group->key.objectid);
10737 
10738 		if (ret) {
10739 			if (trimming)
10740 				btrfs_put_block_group_trimming(block_group);
10741 			goto end_trans;
10742 		}
10743 
10744 		/*
10745 		 * If we're not mounted with -odiscard, we can just forget
10746 		 * about this block group. Otherwise we'll need to wait
10747 		 * until transaction commit to do the actual discard.
10748 		 */
10749 		if (trimming) {
10750 			spin_lock(&fs_info->unused_bgs_lock);
10751 			/*
10752 			 * A concurrent scrub might have added us to the list
10753 			 * fs_info->unused_bgs, so use a list_move operation
10754 			 * to add the block group to the deleted_bgs list.
10755 			 */
10756 			list_move(&block_group->bg_list,
10757 				  &trans->transaction->deleted_bgs);
10758 			spin_unlock(&fs_info->unused_bgs_lock);
10759 			btrfs_get_block_group(block_group);
10760 		}
10761 end_trans:
10762 		btrfs_end_transaction(trans);
10763 next:
10764 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10765 		btrfs_put_block_group(block_group);
10766 		spin_lock(&fs_info->unused_bgs_lock);
10767 	}
10768 	spin_unlock(&fs_info->unused_bgs_lock);
10769 }
10770 
10771 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10772 {
10773 	struct btrfs_space_info *space_info;
10774 	struct btrfs_super_block *disk_super;
10775 	u64 features;
10776 	u64 flags;
10777 	int mixed = 0;
10778 	int ret;
10779 
10780 	disk_super = fs_info->super_copy;
10781 	if (!btrfs_super_root(disk_super))
10782 		return -EINVAL;
10783 
10784 	features = btrfs_super_incompat_flags(disk_super);
10785 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10786 		mixed = 1;
10787 
10788 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10789 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10790 	if (ret)
10791 		goto out;
10792 
10793 	if (mixed) {
10794 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10795 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10796 	} else {
10797 		flags = BTRFS_BLOCK_GROUP_METADATA;
10798 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10799 		if (ret)
10800 			goto out;
10801 
10802 		flags = BTRFS_BLOCK_GROUP_DATA;
10803 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10804 	}
10805 out:
10806 	return ret;
10807 }
10808 
10809 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10810 				   u64 start, u64 end)
10811 {
10812 	return unpin_extent_range(fs_info, start, end, false);
10813 }
10814 
10815 /*
10816  * It used to be that old block groups would be left around forever.
10817  * Iterating over them would be enough to trim unused space.  Since we
10818  * now automatically remove them, we also need to iterate over unallocated
10819  * space.
10820  *
10821  * We don't want a transaction for this since the discard may take a
10822  * substantial amount of time.  We don't require that a transaction be
10823  * running, but we do need to take a running transaction into account
10824  * to ensure that we're not discarding chunks that were released in
10825  * the current transaction.
10826  *
10827  * Holding the chunks lock will prevent other threads from allocating
10828  * or releasing chunks, but it won't prevent a running transaction
10829  * from committing and releasing the memory that the pending chunks
10830  * list head uses.  For that, we need to take a reference to the
10831  * transaction.
10832  */
10833 static int btrfs_trim_free_extents(struct btrfs_device *device,
10834 				   u64 minlen, u64 *trimmed)
10835 {
10836 	u64 start = 0, len = 0;
10837 	int ret;
10838 
10839 	*trimmed = 0;
10840 
10841 	/* Not writeable = nothing to do. */
10842 	if (!device->writeable)
10843 		return 0;
10844 
10845 	/* No free space = nothing to do. */
10846 	if (device->total_bytes <= device->bytes_used)
10847 		return 0;
10848 
10849 	ret = 0;
10850 
10851 	while (1) {
10852 		struct btrfs_fs_info *fs_info = device->fs_info;
10853 		struct btrfs_transaction *trans;
10854 		u64 bytes;
10855 
10856 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10857 		if (ret)
10858 			return ret;
10859 
10860 		down_read(&fs_info->commit_root_sem);
10861 
10862 		spin_lock(&fs_info->trans_lock);
10863 		trans = fs_info->running_transaction;
10864 		if (trans)
10865 			refcount_inc(&trans->use_count);
10866 		spin_unlock(&fs_info->trans_lock);
10867 
10868 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10869 						 &start, &len);
10870 		if (trans)
10871 			btrfs_put_transaction(trans);
10872 
10873 		if (ret) {
10874 			up_read(&fs_info->commit_root_sem);
10875 			mutex_unlock(&fs_info->chunk_mutex);
10876 			if (ret == -ENOSPC)
10877 				ret = 0;
10878 			break;
10879 		}
10880 
10881 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10882 		up_read(&fs_info->commit_root_sem);
10883 		mutex_unlock(&fs_info->chunk_mutex);
10884 
10885 		if (ret)
10886 			break;
10887 
10888 		start += len;
10889 		*trimmed += bytes;
10890 
10891 		if (fatal_signal_pending(current)) {
10892 			ret = -ERESTARTSYS;
10893 			break;
10894 		}
10895 
10896 		cond_resched();
10897 	}
10898 
10899 	return ret;
10900 }
10901 
10902 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10903 {
10904 	struct btrfs_block_group_cache *cache = NULL;
10905 	struct btrfs_device *device;
10906 	struct list_head *devices;
10907 	u64 group_trimmed;
10908 	u64 start;
10909 	u64 end;
10910 	u64 trimmed = 0;
10911 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10912 	int ret = 0;
10913 
10914 	/*
10915 	 * try to trim all FS space, our block group may start from non-zero.
10916 	 */
10917 	if (range->len == total_bytes)
10918 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10919 	else
10920 		cache = btrfs_lookup_block_group(fs_info, range->start);
10921 
10922 	while (cache) {
10923 		if (cache->key.objectid >= (range->start + range->len)) {
10924 			btrfs_put_block_group(cache);
10925 			break;
10926 		}
10927 
10928 		start = max(range->start, cache->key.objectid);
10929 		end = min(range->start + range->len,
10930 				cache->key.objectid + cache->key.offset);
10931 
10932 		if (end - start >= range->minlen) {
10933 			if (!block_group_cache_done(cache)) {
10934 				ret = cache_block_group(cache, 0);
10935 				if (ret) {
10936 					btrfs_put_block_group(cache);
10937 					break;
10938 				}
10939 				ret = wait_block_group_cache_done(cache);
10940 				if (ret) {
10941 					btrfs_put_block_group(cache);
10942 					break;
10943 				}
10944 			}
10945 			ret = btrfs_trim_block_group(cache,
10946 						     &group_trimmed,
10947 						     start,
10948 						     end,
10949 						     range->minlen);
10950 
10951 			trimmed += group_trimmed;
10952 			if (ret) {
10953 				btrfs_put_block_group(cache);
10954 				break;
10955 			}
10956 		}
10957 
10958 		cache = next_block_group(fs_info, cache);
10959 	}
10960 
10961 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10962 	devices = &fs_info->fs_devices->alloc_list;
10963 	list_for_each_entry(device, devices, dev_alloc_list) {
10964 		ret = btrfs_trim_free_extents(device, range->minlen,
10965 					      &group_trimmed);
10966 		if (ret)
10967 			break;
10968 
10969 		trimmed += group_trimmed;
10970 	}
10971 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10972 
10973 	range->len = trimmed;
10974 	return ret;
10975 }
10976 
10977 /*
10978  * btrfs_{start,end}_write_no_snapshoting() are similar to
10979  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10980  * data into the page cache through nocow before the subvolume is snapshoted,
10981  * but flush the data into disk after the snapshot creation, or to prevent
10982  * operations while snapshoting is ongoing and that cause the snapshot to be
10983  * inconsistent (writes followed by expanding truncates for example).
10984  */
10985 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10986 {
10987 	percpu_counter_dec(&root->subv_writers->counter);
10988 	/*
10989 	 * Make sure counter is updated before we wake up waiters.
10990 	 */
10991 	smp_mb();
10992 	if (waitqueue_active(&root->subv_writers->wait))
10993 		wake_up(&root->subv_writers->wait);
10994 }
10995 
10996 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10997 {
10998 	if (atomic_read(&root->will_be_snapshoted))
10999 		return 0;
11000 
11001 	percpu_counter_inc(&root->subv_writers->counter);
11002 	/*
11003 	 * Make sure counter is updated before we check for snapshot creation.
11004 	 */
11005 	smp_mb();
11006 	if (atomic_read(&root->will_be_snapshoted)) {
11007 		btrfs_end_write_no_snapshoting(root);
11008 		return 0;
11009 	}
11010 	return 1;
11011 }
11012 
11013 static int wait_snapshoting_atomic_t(atomic_t *a)
11014 {
11015 	schedule();
11016 	return 0;
11017 }
11018 
11019 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11020 {
11021 	while (true) {
11022 		int ret;
11023 
11024 		ret = btrfs_start_write_no_snapshoting(root);
11025 		if (ret)
11026 			break;
11027 		wait_on_atomic_t(&root->will_be_snapshoted,
11028 				 wait_snapshoting_atomic_t,
11029 				 TASK_UNINTERRUPTIBLE);
11030 	}
11031 }
11032