1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 static int update_block_group(struct btrfs_trans_handle *trans, 64 struct btrfs_root *root, u64 bytenr, 65 u64 num_bytes, int alloc); 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_root *root, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_root *extent_root, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 94 u64 ram_bytes, u64 num_bytes, int delalloc); 95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 96 u64 num_bytes, int delalloc); 97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 98 u64 num_bytes); 99 int btrfs_pin_extent(struct btrfs_root *root, 100 u64 bytenr, u64 num_bytes, int reserved); 101 static int __reserve_metadata_bytes(struct btrfs_root *root, 102 struct btrfs_space_info *space_info, 103 u64 orig_bytes, 104 enum btrfs_reserve_flush_enum flush); 105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_space_info *space_info, 107 u64 num_bytes); 108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_space_info *space_info, 110 u64 num_bytes); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(root->fs_info, cache->key.objectid, 271 bytenr, 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(root, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 atomic_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (atomic_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_root *root, 333 struct btrfs_block_group_cache *block_group) 334 { 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 root->nodesize : root->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group; 398 struct btrfs_fs_info *fs_info; 399 struct btrfs_root *extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 block_group = caching_ctl->block_group; 410 fs_info = block_group->fs_info; 411 extent_root = fs_info->extent_root; 412 413 path = btrfs_alloc_path(); 414 if (!path) 415 return -ENOMEM; 416 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 418 419 #ifdef CONFIG_BTRFS_DEBUG 420 /* 421 * If we're fragmenting we don't want to make anybody think we can 422 * allocate from this block group until we've had a chance to fragment 423 * the free space. 424 */ 425 if (btrfs_should_fragment_free_space(extent_root, block_group)) 426 wakeup = false; 427 #endif 428 /* 429 * We don't want to deadlock with somebody trying to allocate a new 430 * extent for the extent root while also trying to search the extent 431 * root to add free space. So we skip locking and search the commit 432 * root, since its read-only 433 */ 434 path->skip_locking = 1; 435 path->search_commit_root = 1; 436 path->reada = READA_FORWARD; 437 438 key.objectid = last; 439 key.offset = 0; 440 key.type = BTRFS_EXTENT_ITEM_KEY; 441 442 next: 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 444 if (ret < 0) 445 goto out; 446 447 leaf = path->nodes[0]; 448 nritems = btrfs_header_nritems(leaf); 449 450 while (1) { 451 if (btrfs_fs_closing(fs_info) > 1) { 452 last = (u64)-1; 453 break; 454 } 455 456 if (path->slots[0] < nritems) { 457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 458 } else { 459 ret = find_next_key(path, 0, &key); 460 if (ret) 461 break; 462 463 if (need_resched() || 464 rwsem_is_contended(&fs_info->commit_root_sem)) { 465 if (wakeup) 466 caching_ctl->progress = last; 467 btrfs_release_path(path); 468 up_read(&fs_info->commit_root_sem); 469 mutex_unlock(&caching_ctl->mutex); 470 cond_resched(); 471 mutex_lock(&caching_ctl->mutex); 472 down_read(&fs_info->commit_root_sem); 473 goto next; 474 } 475 476 ret = btrfs_next_leaf(extent_root, path); 477 if (ret < 0) 478 goto out; 479 if (ret) 480 break; 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 continue; 484 } 485 486 if (key.objectid < last) { 487 key.objectid = last; 488 key.offset = 0; 489 key.type = BTRFS_EXTENT_ITEM_KEY; 490 491 if (wakeup) 492 caching_ctl->progress = last; 493 btrfs_release_path(path); 494 goto next; 495 } 496 497 if (key.objectid < block_group->key.objectid) { 498 path->slots[0]++; 499 continue; 500 } 501 502 if (key.objectid >= block_group->key.objectid + 503 block_group->key.offset) 504 break; 505 506 if (key.type == BTRFS_EXTENT_ITEM_KEY || 507 key.type == BTRFS_METADATA_ITEM_KEY) { 508 total_found += add_new_free_space(block_group, 509 fs_info, last, 510 key.objectid); 511 if (key.type == BTRFS_METADATA_ITEM_KEY) 512 last = key.objectid + 513 fs_info->tree_root->nodesize; 514 else 515 last = key.objectid + key.offset; 516 517 if (total_found > CACHING_CTL_WAKE_UP) { 518 total_found = 0; 519 if (wakeup) 520 wake_up(&caching_ctl->wait); 521 } 522 } 523 path->slots[0]++; 524 } 525 ret = 0; 526 527 total_found += add_new_free_space(block_group, fs_info, last, 528 block_group->key.objectid + 529 block_group->key.offset); 530 caching_ctl->progress = (u64)-1; 531 532 out: 533 btrfs_free_path(path); 534 return ret; 535 } 536 537 static noinline void caching_thread(struct btrfs_work *work) 538 { 539 struct btrfs_block_group_cache *block_group; 540 struct btrfs_fs_info *fs_info; 541 struct btrfs_caching_control *caching_ctl; 542 struct btrfs_root *extent_root; 543 int ret; 544 545 caching_ctl = container_of(work, struct btrfs_caching_control, work); 546 block_group = caching_ctl->block_group; 547 fs_info = block_group->fs_info; 548 extent_root = fs_info->extent_root; 549 550 mutex_lock(&caching_ctl->mutex); 551 down_read(&fs_info->commit_root_sem); 552 553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 554 ret = load_free_space_tree(caching_ctl); 555 else 556 ret = load_extent_tree_free(caching_ctl); 557 558 spin_lock(&block_group->lock); 559 block_group->caching_ctl = NULL; 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 561 spin_unlock(&block_group->lock); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 565 u64 bytes_used; 566 567 spin_lock(&block_group->space_info->lock); 568 spin_lock(&block_group->lock); 569 bytes_used = block_group->key.offset - 570 btrfs_block_group_used(&block_group->item); 571 block_group->space_info->bytes_used += bytes_used >> 1; 572 spin_unlock(&block_group->lock); 573 spin_unlock(&block_group->space_info->lock); 574 fragment_free_space(extent_root, block_group); 575 } 576 #endif 577 578 caching_ctl->progress = (u64)-1; 579 580 up_read(&fs_info->commit_root_sem); 581 free_excluded_extents(fs_info->extent_root, block_group); 582 mutex_unlock(&caching_ctl->mutex); 583 584 wake_up(&caching_ctl->wait); 585 586 put_caching_control(caching_ctl); 587 btrfs_put_block_group(block_group); 588 } 589 590 static int cache_block_group(struct btrfs_block_group_cache *cache, 591 int load_cache_only) 592 { 593 DEFINE_WAIT(wait); 594 struct btrfs_fs_info *fs_info = cache->fs_info; 595 struct btrfs_caching_control *caching_ctl; 596 int ret = 0; 597 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 599 if (!caching_ctl) 600 return -ENOMEM; 601 602 INIT_LIST_HEAD(&caching_ctl->list); 603 mutex_init(&caching_ctl->mutex); 604 init_waitqueue_head(&caching_ctl->wait); 605 caching_ctl->block_group = cache; 606 caching_ctl->progress = cache->key.objectid; 607 atomic_set(&caching_ctl->count, 1); 608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 609 caching_thread, NULL, NULL); 610 611 spin_lock(&cache->lock); 612 /* 613 * This should be a rare occasion, but this could happen I think in the 614 * case where one thread starts to load the space cache info, and then 615 * some other thread starts a transaction commit which tries to do an 616 * allocation while the other thread is still loading the space cache 617 * info. The previous loop should have kept us from choosing this block 618 * group, but if we've moved to the state where we will wait on caching 619 * block groups we need to first check if we're doing a fast load here, 620 * so we can wait for it to finish, otherwise we could end up allocating 621 * from a block group who's cache gets evicted for one reason or 622 * another. 623 */ 624 while (cache->cached == BTRFS_CACHE_FAST) { 625 struct btrfs_caching_control *ctl; 626 627 ctl = cache->caching_ctl; 628 atomic_inc(&ctl->count); 629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 630 spin_unlock(&cache->lock); 631 632 schedule(); 633 634 finish_wait(&ctl->wait, &wait); 635 put_caching_control(ctl); 636 spin_lock(&cache->lock); 637 } 638 639 if (cache->cached != BTRFS_CACHE_NO) { 640 spin_unlock(&cache->lock); 641 kfree(caching_ctl); 642 return 0; 643 } 644 WARN_ON(cache->caching_ctl); 645 cache->caching_ctl = caching_ctl; 646 cache->cached = BTRFS_CACHE_FAST; 647 spin_unlock(&cache->lock); 648 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 650 mutex_lock(&caching_ctl->mutex); 651 ret = load_free_space_cache(fs_info, cache); 652 653 spin_lock(&cache->lock); 654 if (ret == 1) { 655 cache->caching_ctl = NULL; 656 cache->cached = BTRFS_CACHE_FINISHED; 657 cache->last_byte_to_unpin = (u64)-1; 658 caching_ctl->progress = (u64)-1; 659 } else { 660 if (load_cache_only) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_NO; 663 } else { 664 cache->cached = BTRFS_CACHE_STARTED; 665 cache->has_caching_ctl = 1; 666 } 667 } 668 spin_unlock(&cache->lock); 669 #ifdef CONFIG_BTRFS_DEBUG 670 if (ret == 1 && 671 btrfs_should_fragment_free_space(fs_info->extent_root, 672 cache)) { 673 u64 bytes_used; 674 675 spin_lock(&cache->space_info->lock); 676 spin_lock(&cache->lock); 677 bytes_used = cache->key.offset - 678 btrfs_block_group_used(&cache->item); 679 cache->space_info->bytes_used += bytes_used >> 1; 680 spin_unlock(&cache->lock); 681 spin_unlock(&cache->space_info->lock); 682 fragment_free_space(fs_info->extent_root, cache); 683 } 684 #endif 685 mutex_unlock(&caching_ctl->mutex); 686 687 wake_up(&caching_ctl->wait); 688 if (ret == 1) { 689 put_caching_control(caching_ctl); 690 free_excluded_extents(fs_info->extent_root, cache); 691 return 0; 692 } 693 } else { 694 /* 695 * We're either using the free space tree or no caching at all. 696 * Set cached to the appropriate value and wakeup any waiters. 697 */ 698 spin_lock(&cache->lock); 699 if (load_cache_only) { 700 cache->caching_ctl = NULL; 701 cache->cached = BTRFS_CACHE_NO; 702 } else { 703 cache->cached = BTRFS_CACHE_STARTED; 704 cache->has_caching_ctl = 1; 705 } 706 spin_unlock(&cache->lock); 707 wake_up(&caching_ctl->wait); 708 } 709 710 if (load_cache_only) { 711 put_caching_control(caching_ctl); 712 return 0; 713 } 714 715 down_write(&fs_info->commit_root_sem); 716 atomic_inc(&caching_ctl->count); 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 718 up_write(&fs_info->commit_root_sem); 719 720 btrfs_get_block_group(cache); 721 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 723 724 return ret; 725 } 726 727 /* 728 * return the block group that starts at or after bytenr 729 */ 730 static struct btrfs_block_group_cache * 731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 732 { 733 return block_group_cache_tree_search(info, bytenr, 0); 734 } 735 736 /* 737 * return the block group that contains the given bytenr 738 */ 739 struct btrfs_block_group_cache *btrfs_lookup_block_group( 740 struct btrfs_fs_info *info, 741 u64 bytenr) 742 { 743 return block_group_cache_tree_search(info, bytenr, 1); 744 } 745 746 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 747 u64 flags) 748 { 749 struct list_head *head = &info->space_info; 750 struct btrfs_space_info *found; 751 752 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 753 754 rcu_read_lock(); 755 list_for_each_entry_rcu(found, head, list) { 756 if (found->flags & flags) { 757 rcu_read_unlock(); 758 return found; 759 } 760 } 761 rcu_read_unlock(); 762 return NULL; 763 } 764 765 /* 766 * after adding space to the filesystem, we need to clear the full flags 767 * on all the space infos. 768 */ 769 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 770 { 771 struct list_head *head = &info->space_info; 772 struct btrfs_space_info *found; 773 774 rcu_read_lock(); 775 list_for_each_entry_rcu(found, head, list) 776 found->full = 0; 777 rcu_read_unlock(); 778 } 779 780 /* simple helper to search for an existing data extent at a given offset */ 781 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 782 { 783 int ret; 784 struct btrfs_key key; 785 struct btrfs_path *path; 786 787 path = btrfs_alloc_path(); 788 if (!path) 789 return -ENOMEM; 790 791 key.objectid = start; 792 key.offset = len; 793 key.type = BTRFS_EXTENT_ITEM_KEY; 794 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 795 0, 0); 796 btrfs_free_path(path); 797 return ret; 798 } 799 800 /* 801 * helper function to lookup reference count and flags of a tree block. 802 * 803 * the head node for delayed ref is used to store the sum of all the 804 * reference count modifications queued up in the rbtree. the head 805 * node may also store the extent flags to set. This way you can check 806 * to see what the reference count and extent flags would be if all of 807 * the delayed refs are not processed. 808 */ 809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 810 struct btrfs_root *root, u64 bytenr, 811 u64 offset, int metadata, u64 *refs, u64 *flags) 812 { 813 struct btrfs_delayed_ref_head *head; 814 struct btrfs_delayed_ref_root *delayed_refs; 815 struct btrfs_path *path; 816 struct btrfs_extent_item *ei; 817 struct extent_buffer *leaf; 818 struct btrfs_key key; 819 u32 item_size; 820 u64 num_refs; 821 u64 extent_flags; 822 int ret; 823 824 /* 825 * If we don't have skinny metadata, don't bother doing anything 826 * different 827 */ 828 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 829 offset = root->nodesize; 830 metadata = 0; 831 } 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return -ENOMEM; 836 837 if (!trans) { 838 path->skip_locking = 1; 839 path->search_commit_root = 1; 840 } 841 842 search_again: 843 key.objectid = bytenr; 844 key.offset = offset; 845 if (metadata) 846 key.type = BTRFS_METADATA_ITEM_KEY; 847 else 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 850 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 851 &key, path, 0, 0); 852 if (ret < 0) 853 goto out_free; 854 855 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 856 if (path->slots[0]) { 857 path->slots[0]--; 858 btrfs_item_key_to_cpu(path->nodes[0], &key, 859 path->slots[0]); 860 if (key.objectid == bytenr && 861 key.type == BTRFS_EXTENT_ITEM_KEY && 862 key.offset == root->nodesize) 863 ret = 0; 864 } 865 } 866 867 if (ret == 0) { 868 leaf = path->nodes[0]; 869 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 870 if (item_size >= sizeof(*ei)) { 871 ei = btrfs_item_ptr(leaf, path->slots[0], 872 struct btrfs_extent_item); 873 num_refs = btrfs_extent_refs(leaf, ei); 874 extent_flags = btrfs_extent_flags(leaf, ei); 875 } else { 876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 877 struct btrfs_extent_item_v0 *ei0; 878 BUG_ON(item_size != sizeof(*ei0)); 879 ei0 = btrfs_item_ptr(leaf, path->slots[0], 880 struct btrfs_extent_item_v0); 881 num_refs = btrfs_extent_refs_v0(leaf, ei0); 882 /* FIXME: this isn't correct for data */ 883 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 884 #else 885 BUG(); 886 #endif 887 } 888 BUG_ON(num_refs == 0); 889 } else { 890 num_refs = 0; 891 extent_flags = 0; 892 ret = 0; 893 } 894 895 if (!trans) 896 goto out; 897 898 delayed_refs = &trans->transaction->delayed_refs; 899 spin_lock(&delayed_refs->lock); 900 head = btrfs_find_delayed_ref_head(trans, bytenr); 901 if (head) { 902 if (!mutex_trylock(&head->mutex)) { 903 atomic_inc(&head->node.refs); 904 spin_unlock(&delayed_refs->lock); 905 906 btrfs_release_path(path); 907 908 /* 909 * Mutex was contended, block until it's released and try 910 * again 911 */ 912 mutex_lock(&head->mutex); 913 mutex_unlock(&head->mutex); 914 btrfs_put_delayed_ref(&head->node); 915 goto search_again; 916 } 917 spin_lock(&head->lock); 918 if (head->extent_op && head->extent_op->update_flags) 919 extent_flags |= head->extent_op->flags_to_set; 920 else 921 BUG_ON(num_refs == 0); 922 923 num_refs += head->node.ref_mod; 924 spin_unlock(&head->lock); 925 mutex_unlock(&head->mutex); 926 } 927 spin_unlock(&delayed_refs->lock); 928 out: 929 WARN_ON(num_refs == 0); 930 if (refs) 931 *refs = num_refs; 932 if (flags) 933 *flags = extent_flags; 934 out_free: 935 btrfs_free_path(path); 936 return ret; 937 } 938 939 /* 940 * Back reference rules. Back refs have three main goals: 941 * 942 * 1) differentiate between all holders of references to an extent so that 943 * when a reference is dropped we can make sure it was a valid reference 944 * before freeing the extent. 945 * 946 * 2) Provide enough information to quickly find the holders of an extent 947 * if we notice a given block is corrupted or bad. 948 * 949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 950 * maintenance. This is actually the same as #2, but with a slightly 951 * different use case. 952 * 953 * There are two kinds of back refs. The implicit back refs is optimized 954 * for pointers in non-shared tree blocks. For a given pointer in a block, 955 * back refs of this kind provide information about the block's owner tree 956 * and the pointer's key. These information allow us to find the block by 957 * b-tree searching. The full back refs is for pointers in tree blocks not 958 * referenced by their owner trees. The location of tree block is recorded 959 * in the back refs. Actually the full back refs is generic, and can be 960 * used in all cases the implicit back refs is used. The major shortcoming 961 * of the full back refs is its overhead. Every time a tree block gets 962 * COWed, we have to update back refs entry for all pointers in it. 963 * 964 * For a newly allocated tree block, we use implicit back refs for 965 * pointers in it. This means most tree related operations only involve 966 * implicit back refs. For a tree block created in old transaction, the 967 * only way to drop a reference to it is COW it. So we can detect the 968 * event that tree block loses its owner tree's reference and do the 969 * back refs conversion. 970 * 971 * When a tree block is COWed through a tree, there are four cases: 972 * 973 * The reference count of the block is one and the tree is the block's 974 * owner tree. Nothing to do in this case. 975 * 976 * The reference count of the block is one and the tree is not the 977 * block's owner tree. In this case, full back refs is used for pointers 978 * in the block. Remove these full back refs, add implicit back refs for 979 * every pointers in the new block. 980 * 981 * The reference count of the block is greater than one and the tree is 982 * the block's owner tree. In this case, implicit back refs is used for 983 * pointers in the block. Add full back refs for every pointers in the 984 * block, increase lower level extents' reference counts. The original 985 * implicit back refs are entailed to the new block. 986 * 987 * The reference count of the block is greater than one and the tree is 988 * not the block's owner tree. Add implicit back refs for every pointer in 989 * the new block, increase lower level extents' reference count. 990 * 991 * Back Reference Key composing: 992 * 993 * The key objectid corresponds to the first byte in the extent, 994 * The key type is used to differentiate between types of back refs. 995 * There are different meanings of the key offset for different types 996 * of back refs. 997 * 998 * File extents can be referenced by: 999 * 1000 * - multiple snapshots, subvolumes, or different generations in one subvol 1001 * - different files inside a single subvolume 1002 * - different offsets inside a file (bookend extents in file.c) 1003 * 1004 * The extent ref structure for the implicit back refs has fields for: 1005 * 1006 * - Objectid of the subvolume root 1007 * - objectid of the file holding the reference 1008 * - original offset in the file 1009 * - how many bookend extents 1010 * 1011 * The key offset for the implicit back refs is hash of the first 1012 * three fields. 1013 * 1014 * The extent ref structure for the full back refs has field for: 1015 * 1016 * - number of pointers in the tree leaf 1017 * 1018 * The key offset for the implicit back refs is the first byte of 1019 * the tree leaf 1020 * 1021 * When a file extent is allocated, The implicit back refs is used. 1022 * the fields are filled in: 1023 * 1024 * (root_key.objectid, inode objectid, offset in file, 1) 1025 * 1026 * When a file extent is removed file truncation, we find the 1027 * corresponding implicit back refs and check the following fields: 1028 * 1029 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1030 * 1031 * Btree extents can be referenced by: 1032 * 1033 * - Different subvolumes 1034 * 1035 * Both the implicit back refs and the full back refs for tree blocks 1036 * only consist of key. The key offset for the implicit back refs is 1037 * objectid of block's owner tree. The key offset for the full back refs 1038 * is the first byte of parent block. 1039 * 1040 * When implicit back refs is used, information about the lowest key and 1041 * level of the tree block are required. These information are stored in 1042 * tree block info structure. 1043 */ 1044 1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1046 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1047 struct btrfs_root *root, 1048 struct btrfs_path *path, 1049 u64 owner, u32 extra_size) 1050 { 1051 struct btrfs_extent_item *item; 1052 struct btrfs_extent_item_v0 *ei0; 1053 struct btrfs_extent_ref_v0 *ref0; 1054 struct btrfs_tree_block_info *bi; 1055 struct extent_buffer *leaf; 1056 struct btrfs_key key; 1057 struct btrfs_key found_key; 1058 u32 new_size = sizeof(*item); 1059 u64 refs; 1060 int ret; 1061 1062 leaf = path->nodes[0]; 1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1064 1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1066 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_extent_item_v0); 1068 refs = btrfs_extent_refs_v0(leaf, ei0); 1069 1070 if (owner == (u64)-1) { 1071 while (1) { 1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1073 ret = btrfs_next_leaf(root, path); 1074 if (ret < 0) 1075 return ret; 1076 BUG_ON(ret > 0); /* Corruption */ 1077 leaf = path->nodes[0]; 1078 } 1079 btrfs_item_key_to_cpu(leaf, &found_key, 1080 path->slots[0]); 1081 BUG_ON(key.objectid != found_key.objectid); 1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1083 path->slots[0]++; 1084 continue; 1085 } 1086 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_extent_ref_v0); 1088 owner = btrfs_ref_objectid_v0(leaf, ref0); 1089 break; 1090 } 1091 } 1092 btrfs_release_path(path); 1093 1094 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1095 new_size += sizeof(*bi); 1096 1097 new_size -= sizeof(*ei0); 1098 ret = btrfs_search_slot(trans, root, &key, path, 1099 new_size + extra_size, 1); 1100 if (ret < 0) 1101 return ret; 1102 BUG_ON(ret); /* Corruption */ 1103 1104 btrfs_extend_item(root, path, new_size); 1105 1106 leaf = path->nodes[0]; 1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1108 btrfs_set_extent_refs(leaf, item, refs); 1109 /* FIXME: get real generation */ 1110 btrfs_set_extent_generation(leaf, item, 0); 1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1112 btrfs_set_extent_flags(leaf, item, 1113 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1114 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1115 bi = (struct btrfs_tree_block_info *)(item + 1); 1116 /* FIXME: get first key of the block */ 1117 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1118 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1119 } else { 1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1121 } 1122 btrfs_mark_buffer_dirty(leaf); 1123 return 0; 1124 } 1125 #endif 1126 1127 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1128 { 1129 u32 high_crc = ~(u32)0; 1130 u32 low_crc = ~(u32)0; 1131 __le64 lenum; 1132 1133 lenum = cpu_to_le64(root_objectid); 1134 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1135 lenum = cpu_to_le64(owner); 1136 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1137 lenum = cpu_to_le64(offset); 1138 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1139 1140 return ((u64)high_crc << 31) ^ (u64)low_crc; 1141 } 1142 1143 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1144 struct btrfs_extent_data_ref *ref) 1145 { 1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1147 btrfs_extent_data_ref_objectid(leaf, ref), 1148 btrfs_extent_data_ref_offset(leaf, ref)); 1149 } 1150 1151 static int match_extent_data_ref(struct extent_buffer *leaf, 1152 struct btrfs_extent_data_ref *ref, 1153 u64 root_objectid, u64 owner, u64 offset) 1154 { 1155 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1156 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1157 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1158 return 0; 1159 return 1; 1160 } 1161 1162 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1163 struct btrfs_root *root, 1164 struct btrfs_path *path, 1165 u64 bytenr, u64 parent, 1166 u64 root_objectid, 1167 u64 owner, u64 offset) 1168 { 1169 struct btrfs_key key; 1170 struct btrfs_extent_data_ref *ref; 1171 struct extent_buffer *leaf; 1172 u32 nritems; 1173 int ret; 1174 int recow; 1175 int err = -ENOENT; 1176 1177 key.objectid = bytenr; 1178 if (parent) { 1179 key.type = BTRFS_SHARED_DATA_REF_KEY; 1180 key.offset = parent; 1181 } else { 1182 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1183 key.offset = hash_extent_data_ref(root_objectid, 1184 owner, offset); 1185 } 1186 again: 1187 recow = 0; 1188 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1189 if (ret < 0) { 1190 err = ret; 1191 goto fail; 1192 } 1193 1194 if (parent) { 1195 if (!ret) 1196 return 0; 1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1198 key.type = BTRFS_EXTENT_REF_V0_KEY; 1199 btrfs_release_path(path); 1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1201 if (ret < 0) { 1202 err = ret; 1203 goto fail; 1204 } 1205 if (!ret) 1206 return 0; 1207 #endif 1208 goto fail; 1209 } 1210 1211 leaf = path->nodes[0]; 1212 nritems = btrfs_header_nritems(leaf); 1213 while (1) { 1214 if (path->slots[0] >= nritems) { 1215 ret = btrfs_next_leaf(root, path); 1216 if (ret < 0) 1217 err = ret; 1218 if (ret) 1219 goto fail; 1220 1221 leaf = path->nodes[0]; 1222 nritems = btrfs_header_nritems(leaf); 1223 recow = 1; 1224 } 1225 1226 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1227 if (key.objectid != bytenr || 1228 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1229 goto fail; 1230 1231 ref = btrfs_item_ptr(leaf, path->slots[0], 1232 struct btrfs_extent_data_ref); 1233 1234 if (match_extent_data_ref(leaf, ref, root_objectid, 1235 owner, offset)) { 1236 if (recow) { 1237 btrfs_release_path(path); 1238 goto again; 1239 } 1240 err = 0; 1241 break; 1242 } 1243 path->slots[0]++; 1244 } 1245 fail: 1246 return err; 1247 } 1248 1249 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1250 struct btrfs_root *root, 1251 struct btrfs_path *path, 1252 u64 bytenr, u64 parent, 1253 u64 root_objectid, u64 owner, 1254 u64 offset, int refs_to_add) 1255 { 1256 struct btrfs_key key; 1257 struct extent_buffer *leaf; 1258 u32 size; 1259 u32 num_refs; 1260 int ret; 1261 1262 key.objectid = bytenr; 1263 if (parent) { 1264 key.type = BTRFS_SHARED_DATA_REF_KEY; 1265 key.offset = parent; 1266 size = sizeof(struct btrfs_shared_data_ref); 1267 } else { 1268 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1269 key.offset = hash_extent_data_ref(root_objectid, 1270 owner, offset); 1271 size = sizeof(struct btrfs_extent_data_ref); 1272 } 1273 1274 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1275 if (ret && ret != -EEXIST) 1276 goto fail; 1277 1278 leaf = path->nodes[0]; 1279 if (parent) { 1280 struct btrfs_shared_data_ref *ref; 1281 ref = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 if (ret == 0) { 1284 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1285 } else { 1286 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1287 num_refs += refs_to_add; 1288 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1289 } 1290 } else { 1291 struct btrfs_extent_data_ref *ref; 1292 while (ret == -EEXIST) { 1293 ref = btrfs_item_ptr(leaf, path->slots[0], 1294 struct btrfs_extent_data_ref); 1295 if (match_extent_data_ref(leaf, ref, root_objectid, 1296 owner, offset)) 1297 break; 1298 btrfs_release_path(path); 1299 key.offset++; 1300 ret = btrfs_insert_empty_item(trans, root, path, &key, 1301 size); 1302 if (ret && ret != -EEXIST) 1303 goto fail; 1304 1305 leaf = path->nodes[0]; 1306 } 1307 ref = btrfs_item_ptr(leaf, path->slots[0], 1308 struct btrfs_extent_data_ref); 1309 if (ret == 0) { 1310 btrfs_set_extent_data_ref_root(leaf, ref, 1311 root_objectid); 1312 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1313 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1314 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1315 } else { 1316 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1317 num_refs += refs_to_add; 1318 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1319 } 1320 } 1321 btrfs_mark_buffer_dirty(leaf); 1322 ret = 0; 1323 fail: 1324 btrfs_release_path(path); 1325 return ret; 1326 } 1327 1328 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1329 struct btrfs_root *root, 1330 struct btrfs_path *path, 1331 int refs_to_drop, int *last_ref) 1332 { 1333 struct btrfs_key key; 1334 struct btrfs_extent_data_ref *ref1 = NULL; 1335 struct btrfs_shared_data_ref *ref2 = NULL; 1336 struct extent_buffer *leaf; 1337 u32 num_refs = 0; 1338 int ret = 0; 1339 1340 leaf = path->nodes[0]; 1341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1342 1343 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1344 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1345 struct btrfs_extent_data_ref); 1346 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1347 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1348 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1349 struct btrfs_shared_data_ref); 1350 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1352 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1353 struct btrfs_extent_ref_v0 *ref0; 1354 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_extent_ref_v0); 1356 num_refs = btrfs_ref_count_v0(leaf, ref0); 1357 #endif 1358 } else { 1359 BUG(); 1360 } 1361 1362 BUG_ON(num_refs < refs_to_drop); 1363 num_refs -= refs_to_drop; 1364 1365 if (num_refs == 0) { 1366 ret = btrfs_del_item(trans, root, path); 1367 *last_ref = 1; 1368 } else { 1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1370 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1371 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1372 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1374 else { 1375 struct btrfs_extent_ref_v0 *ref0; 1376 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1377 struct btrfs_extent_ref_v0); 1378 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1379 } 1380 #endif 1381 btrfs_mark_buffer_dirty(leaf); 1382 } 1383 return ret; 1384 } 1385 1386 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1387 struct btrfs_extent_inline_ref *iref) 1388 { 1389 struct btrfs_key key; 1390 struct extent_buffer *leaf; 1391 struct btrfs_extent_data_ref *ref1; 1392 struct btrfs_shared_data_ref *ref2; 1393 u32 num_refs = 0; 1394 1395 leaf = path->nodes[0]; 1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1397 if (iref) { 1398 if (btrfs_extent_inline_ref_type(leaf, iref) == 1399 BTRFS_EXTENT_DATA_REF_KEY) { 1400 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1402 } else { 1403 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1405 } 1406 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1407 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1408 struct btrfs_extent_data_ref); 1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1410 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1411 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1412 struct btrfs_shared_data_ref); 1413 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1415 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1416 struct btrfs_extent_ref_v0 *ref0; 1417 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1418 struct btrfs_extent_ref_v0); 1419 num_refs = btrfs_ref_count_v0(leaf, ref0); 1420 #endif 1421 } else { 1422 WARN_ON(1); 1423 } 1424 return num_refs; 1425 } 1426 1427 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1428 struct btrfs_root *root, 1429 struct btrfs_path *path, 1430 u64 bytenr, u64 parent, 1431 u64 root_objectid) 1432 { 1433 struct btrfs_key key; 1434 int ret; 1435 1436 key.objectid = bytenr; 1437 if (parent) { 1438 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1439 key.offset = parent; 1440 } else { 1441 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1442 key.offset = root_objectid; 1443 } 1444 1445 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1446 if (ret > 0) 1447 ret = -ENOENT; 1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1449 if (ret == -ENOENT && parent) { 1450 btrfs_release_path(path); 1451 key.type = BTRFS_EXTENT_REF_V0_KEY; 1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1453 if (ret > 0) 1454 ret = -ENOENT; 1455 } 1456 #endif 1457 return ret; 1458 } 1459 1460 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1461 struct btrfs_root *root, 1462 struct btrfs_path *path, 1463 u64 bytenr, u64 parent, 1464 u64 root_objectid) 1465 { 1466 struct btrfs_key key; 1467 int ret; 1468 1469 key.objectid = bytenr; 1470 if (parent) { 1471 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1472 key.offset = parent; 1473 } else { 1474 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1475 key.offset = root_objectid; 1476 } 1477 1478 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1479 btrfs_release_path(path); 1480 return ret; 1481 } 1482 1483 static inline int extent_ref_type(u64 parent, u64 owner) 1484 { 1485 int type; 1486 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1487 if (parent > 0) 1488 type = BTRFS_SHARED_BLOCK_REF_KEY; 1489 else 1490 type = BTRFS_TREE_BLOCK_REF_KEY; 1491 } else { 1492 if (parent > 0) 1493 type = BTRFS_SHARED_DATA_REF_KEY; 1494 else 1495 type = BTRFS_EXTENT_DATA_REF_KEY; 1496 } 1497 return type; 1498 } 1499 1500 static int find_next_key(struct btrfs_path *path, int level, 1501 struct btrfs_key *key) 1502 1503 { 1504 for (; level < BTRFS_MAX_LEVEL; level++) { 1505 if (!path->nodes[level]) 1506 break; 1507 if (path->slots[level] + 1 >= 1508 btrfs_header_nritems(path->nodes[level])) 1509 continue; 1510 if (level == 0) 1511 btrfs_item_key_to_cpu(path->nodes[level], key, 1512 path->slots[level] + 1); 1513 else 1514 btrfs_node_key_to_cpu(path->nodes[level], key, 1515 path->slots[level] + 1); 1516 return 0; 1517 } 1518 return 1; 1519 } 1520 1521 /* 1522 * look for inline back ref. if back ref is found, *ref_ret is set 1523 * to the address of inline back ref, and 0 is returned. 1524 * 1525 * if back ref isn't found, *ref_ret is set to the address where it 1526 * should be inserted, and -ENOENT is returned. 1527 * 1528 * if insert is true and there are too many inline back refs, the path 1529 * points to the extent item, and -EAGAIN is returned. 1530 * 1531 * NOTE: inline back refs are ordered in the same way that back ref 1532 * items in the tree are ordered. 1533 */ 1534 static noinline_for_stack 1535 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1536 struct btrfs_root *root, 1537 struct btrfs_path *path, 1538 struct btrfs_extent_inline_ref **ref_ret, 1539 u64 bytenr, u64 num_bytes, 1540 u64 parent, u64 root_objectid, 1541 u64 owner, u64 offset, int insert) 1542 { 1543 struct btrfs_key key; 1544 struct extent_buffer *leaf; 1545 struct btrfs_extent_item *ei; 1546 struct btrfs_extent_inline_ref *iref; 1547 u64 flags; 1548 u64 item_size; 1549 unsigned long ptr; 1550 unsigned long end; 1551 int extra_size; 1552 int type; 1553 int want; 1554 int ret; 1555 int err = 0; 1556 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1557 SKINNY_METADATA); 1558 1559 key.objectid = bytenr; 1560 key.type = BTRFS_EXTENT_ITEM_KEY; 1561 key.offset = num_bytes; 1562 1563 want = extent_ref_type(parent, owner); 1564 if (insert) { 1565 extra_size = btrfs_extent_inline_ref_size(want); 1566 path->keep_locks = 1; 1567 } else 1568 extra_size = -1; 1569 1570 /* 1571 * Owner is our parent level, so we can just add one to get the level 1572 * for the block we are interested in. 1573 */ 1574 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1575 key.type = BTRFS_METADATA_ITEM_KEY; 1576 key.offset = owner; 1577 } 1578 1579 again: 1580 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1581 if (ret < 0) { 1582 err = ret; 1583 goto out; 1584 } 1585 1586 /* 1587 * We may be a newly converted file system which still has the old fat 1588 * extent entries for metadata, so try and see if we have one of those. 1589 */ 1590 if (ret > 0 && skinny_metadata) { 1591 skinny_metadata = false; 1592 if (path->slots[0]) { 1593 path->slots[0]--; 1594 btrfs_item_key_to_cpu(path->nodes[0], &key, 1595 path->slots[0]); 1596 if (key.objectid == bytenr && 1597 key.type == BTRFS_EXTENT_ITEM_KEY && 1598 key.offset == num_bytes) 1599 ret = 0; 1600 } 1601 if (ret) { 1602 key.objectid = bytenr; 1603 key.type = BTRFS_EXTENT_ITEM_KEY; 1604 key.offset = num_bytes; 1605 btrfs_release_path(path); 1606 goto again; 1607 } 1608 } 1609 1610 if (ret && !insert) { 1611 err = -ENOENT; 1612 goto out; 1613 } else if (WARN_ON(ret)) { 1614 err = -EIO; 1615 goto out; 1616 } 1617 1618 leaf = path->nodes[0]; 1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1621 if (item_size < sizeof(*ei)) { 1622 if (!insert) { 1623 err = -ENOENT; 1624 goto out; 1625 } 1626 ret = convert_extent_item_v0(trans, root, path, owner, 1627 extra_size); 1628 if (ret < 0) { 1629 err = ret; 1630 goto out; 1631 } 1632 leaf = path->nodes[0]; 1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1634 } 1635 #endif 1636 BUG_ON(item_size < sizeof(*ei)); 1637 1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1639 flags = btrfs_extent_flags(leaf, ei); 1640 1641 ptr = (unsigned long)(ei + 1); 1642 end = (unsigned long)ei + item_size; 1643 1644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1645 ptr += sizeof(struct btrfs_tree_block_info); 1646 BUG_ON(ptr > end); 1647 } 1648 1649 err = -ENOENT; 1650 while (1) { 1651 if (ptr >= end) { 1652 WARN_ON(ptr > end); 1653 break; 1654 } 1655 iref = (struct btrfs_extent_inline_ref *)ptr; 1656 type = btrfs_extent_inline_ref_type(leaf, iref); 1657 if (want < type) 1658 break; 1659 if (want > type) { 1660 ptr += btrfs_extent_inline_ref_size(type); 1661 continue; 1662 } 1663 1664 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1665 struct btrfs_extent_data_ref *dref; 1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1667 if (match_extent_data_ref(leaf, dref, root_objectid, 1668 owner, offset)) { 1669 err = 0; 1670 break; 1671 } 1672 if (hash_extent_data_ref_item(leaf, dref) < 1673 hash_extent_data_ref(root_objectid, owner, offset)) 1674 break; 1675 } else { 1676 u64 ref_offset; 1677 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1678 if (parent > 0) { 1679 if (parent == ref_offset) { 1680 err = 0; 1681 break; 1682 } 1683 if (ref_offset < parent) 1684 break; 1685 } else { 1686 if (root_objectid == ref_offset) { 1687 err = 0; 1688 break; 1689 } 1690 if (ref_offset < root_objectid) 1691 break; 1692 } 1693 } 1694 ptr += btrfs_extent_inline_ref_size(type); 1695 } 1696 if (err == -ENOENT && insert) { 1697 if (item_size + extra_size >= 1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1699 err = -EAGAIN; 1700 goto out; 1701 } 1702 /* 1703 * To add new inline back ref, we have to make sure 1704 * there is no corresponding back ref item. 1705 * For simplicity, we just do not add new inline back 1706 * ref if there is any kind of item for this block 1707 */ 1708 if (find_next_key(path, 0, &key) == 0 && 1709 key.objectid == bytenr && 1710 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1711 err = -EAGAIN; 1712 goto out; 1713 } 1714 } 1715 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1716 out: 1717 if (insert) { 1718 path->keep_locks = 0; 1719 btrfs_unlock_up_safe(path, 1); 1720 } 1721 return err; 1722 } 1723 1724 /* 1725 * helper to add new inline back ref 1726 */ 1727 static noinline_for_stack 1728 void setup_inline_extent_backref(struct btrfs_root *root, 1729 struct btrfs_path *path, 1730 struct btrfs_extent_inline_ref *iref, 1731 u64 parent, u64 root_objectid, 1732 u64 owner, u64 offset, int refs_to_add, 1733 struct btrfs_delayed_extent_op *extent_op) 1734 { 1735 struct extent_buffer *leaf; 1736 struct btrfs_extent_item *ei; 1737 unsigned long ptr; 1738 unsigned long end; 1739 unsigned long item_offset; 1740 u64 refs; 1741 int size; 1742 int type; 1743 1744 leaf = path->nodes[0]; 1745 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1746 item_offset = (unsigned long)iref - (unsigned long)ei; 1747 1748 type = extent_ref_type(parent, owner); 1749 size = btrfs_extent_inline_ref_size(type); 1750 1751 btrfs_extend_item(root, path, size); 1752 1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1754 refs = btrfs_extent_refs(leaf, ei); 1755 refs += refs_to_add; 1756 btrfs_set_extent_refs(leaf, ei, refs); 1757 if (extent_op) 1758 __run_delayed_extent_op(extent_op, leaf, ei); 1759 1760 ptr = (unsigned long)ei + item_offset; 1761 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1762 if (ptr < end - size) 1763 memmove_extent_buffer(leaf, ptr + size, ptr, 1764 end - size - ptr); 1765 1766 iref = (struct btrfs_extent_inline_ref *)ptr; 1767 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1768 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1769 struct btrfs_extent_data_ref *dref; 1770 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1771 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1772 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1773 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1774 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1775 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1776 struct btrfs_shared_data_ref *sref; 1777 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1778 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1779 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1780 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1781 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1782 } else { 1783 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1784 } 1785 btrfs_mark_buffer_dirty(leaf); 1786 } 1787 1788 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1789 struct btrfs_root *root, 1790 struct btrfs_path *path, 1791 struct btrfs_extent_inline_ref **ref_ret, 1792 u64 bytenr, u64 num_bytes, u64 parent, 1793 u64 root_objectid, u64 owner, u64 offset) 1794 { 1795 int ret; 1796 1797 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1798 bytenr, num_bytes, parent, 1799 root_objectid, owner, offset, 0); 1800 if (ret != -ENOENT) 1801 return ret; 1802 1803 btrfs_release_path(path); 1804 *ref_ret = NULL; 1805 1806 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1807 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1808 root_objectid); 1809 } else { 1810 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1811 root_objectid, owner, offset); 1812 } 1813 return ret; 1814 } 1815 1816 /* 1817 * helper to update/remove inline back ref 1818 */ 1819 static noinline_for_stack 1820 void update_inline_extent_backref(struct btrfs_root *root, 1821 struct btrfs_path *path, 1822 struct btrfs_extent_inline_ref *iref, 1823 int refs_to_mod, 1824 struct btrfs_delayed_extent_op *extent_op, 1825 int *last_ref) 1826 { 1827 struct extent_buffer *leaf; 1828 struct btrfs_extent_item *ei; 1829 struct btrfs_extent_data_ref *dref = NULL; 1830 struct btrfs_shared_data_ref *sref = NULL; 1831 unsigned long ptr; 1832 unsigned long end; 1833 u32 item_size; 1834 int size; 1835 int type; 1836 u64 refs; 1837 1838 leaf = path->nodes[0]; 1839 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1840 refs = btrfs_extent_refs(leaf, ei); 1841 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1842 refs += refs_to_mod; 1843 btrfs_set_extent_refs(leaf, ei, refs); 1844 if (extent_op) 1845 __run_delayed_extent_op(extent_op, leaf, ei); 1846 1847 type = btrfs_extent_inline_ref_type(leaf, iref); 1848 1849 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1850 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1851 refs = btrfs_extent_data_ref_count(leaf, dref); 1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1853 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1854 refs = btrfs_shared_data_ref_count(leaf, sref); 1855 } else { 1856 refs = 1; 1857 BUG_ON(refs_to_mod != -1); 1858 } 1859 1860 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1861 refs += refs_to_mod; 1862 1863 if (refs > 0) { 1864 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1865 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1866 else 1867 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1868 } else { 1869 *last_ref = 1; 1870 size = btrfs_extent_inline_ref_size(type); 1871 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1872 ptr = (unsigned long)iref; 1873 end = (unsigned long)ei + item_size; 1874 if (ptr + size < end) 1875 memmove_extent_buffer(leaf, ptr, ptr + size, 1876 end - ptr - size); 1877 item_size -= size; 1878 btrfs_truncate_item(root, path, item_size, 1); 1879 } 1880 btrfs_mark_buffer_dirty(leaf); 1881 } 1882 1883 static noinline_for_stack 1884 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 struct btrfs_path *path, 1887 u64 bytenr, u64 num_bytes, u64 parent, 1888 u64 root_objectid, u64 owner, 1889 u64 offset, int refs_to_add, 1890 struct btrfs_delayed_extent_op *extent_op) 1891 { 1892 struct btrfs_extent_inline_ref *iref; 1893 int ret; 1894 1895 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1896 bytenr, num_bytes, parent, 1897 root_objectid, owner, offset, 1); 1898 if (ret == 0) { 1899 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1900 update_inline_extent_backref(root, path, iref, 1901 refs_to_add, extent_op, NULL); 1902 } else if (ret == -ENOENT) { 1903 setup_inline_extent_backref(root, path, iref, parent, 1904 root_objectid, owner, offset, 1905 refs_to_add, extent_op); 1906 ret = 0; 1907 } 1908 return ret; 1909 } 1910 1911 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1912 struct btrfs_root *root, 1913 struct btrfs_path *path, 1914 u64 bytenr, u64 parent, u64 root_objectid, 1915 u64 owner, u64 offset, int refs_to_add) 1916 { 1917 int ret; 1918 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1919 BUG_ON(refs_to_add != 1); 1920 ret = insert_tree_block_ref(trans, root, path, bytenr, 1921 parent, root_objectid); 1922 } else { 1923 ret = insert_extent_data_ref(trans, root, path, bytenr, 1924 parent, root_objectid, 1925 owner, offset, refs_to_add); 1926 } 1927 return ret; 1928 } 1929 1930 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1931 struct btrfs_root *root, 1932 struct btrfs_path *path, 1933 struct btrfs_extent_inline_ref *iref, 1934 int refs_to_drop, int is_data, int *last_ref) 1935 { 1936 int ret = 0; 1937 1938 BUG_ON(!is_data && refs_to_drop != 1); 1939 if (iref) { 1940 update_inline_extent_backref(root, path, iref, 1941 -refs_to_drop, NULL, last_ref); 1942 } else if (is_data) { 1943 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1944 last_ref); 1945 } else { 1946 *last_ref = 1; 1947 ret = btrfs_del_item(trans, root, path); 1948 } 1949 return ret; 1950 } 1951 1952 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1953 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1954 u64 *discarded_bytes) 1955 { 1956 int j, ret = 0; 1957 u64 bytes_left, end; 1958 u64 aligned_start = ALIGN(start, 1 << 9); 1959 1960 if (WARN_ON(start != aligned_start)) { 1961 len -= aligned_start - start; 1962 len = round_down(len, 1 << 9); 1963 start = aligned_start; 1964 } 1965 1966 *discarded_bytes = 0; 1967 1968 if (!len) 1969 return 0; 1970 1971 end = start + len; 1972 bytes_left = len; 1973 1974 /* Skip any superblocks on this device. */ 1975 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1976 u64 sb_start = btrfs_sb_offset(j); 1977 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1978 u64 size = sb_start - start; 1979 1980 if (!in_range(sb_start, start, bytes_left) && 1981 !in_range(sb_end, start, bytes_left) && 1982 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1983 continue; 1984 1985 /* 1986 * Superblock spans beginning of range. Adjust start and 1987 * try again. 1988 */ 1989 if (sb_start <= start) { 1990 start += sb_end - start; 1991 if (start > end) { 1992 bytes_left = 0; 1993 break; 1994 } 1995 bytes_left = end - start; 1996 continue; 1997 } 1998 1999 if (size) { 2000 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2001 GFP_NOFS, 0); 2002 if (!ret) 2003 *discarded_bytes += size; 2004 else if (ret != -EOPNOTSUPP) 2005 return ret; 2006 } 2007 2008 start = sb_end; 2009 if (start > end) { 2010 bytes_left = 0; 2011 break; 2012 } 2013 bytes_left = end - start; 2014 } 2015 2016 if (bytes_left) { 2017 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2018 GFP_NOFS, 0); 2019 if (!ret) 2020 *discarded_bytes += bytes_left; 2021 } 2022 return ret; 2023 } 2024 2025 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2026 u64 num_bytes, u64 *actual_bytes) 2027 { 2028 int ret; 2029 u64 discarded_bytes = 0; 2030 struct btrfs_bio *bbio = NULL; 2031 2032 2033 /* 2034 * Avoid races with device replace and make sure our bbio has devices 2035 * associated to its stripes that don't go away while we are discarding. 2036 */ 2037 btrfs_bio_counter_inc_blocked(root->fs_info); 2038 /* Tell the block device(s) that the sectors can be discarded */ 2039 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD, 2040 bytenr, &num_bytes, &bbio, 0); 2041 /* Error condition is -ENOMEM */ 2042 if (!ret) { 2043 struct btrfs_bio_stripe *stripe = bbio->stripes; 2044 int i; 2045 2046 2047 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2048 u64 bytes; 2049 if (!stripe->dev->can_discard) 2050 continue; 2051 2052 ret = btrfs_issue_discard(stripe->dev->bdev, 2053 stripe->physical, 2054 stripe->length, 2055 &bytes); 2056 if (!ret) 2057 discarded_bytes += bytes; 2058 else if (ret != -EOPNOTSUPP) 2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2060 2061 /* 2062 * Just in case we get back EOPNOTSUPP for some reason, 2063 * just ignore the return value so we don't screw up 2064 * people calling discard_extent. 2065 */ 2066 ret = 0; 2067 } 2068 btrfs_put_bbio(bbio); 2069 } 2070 btrfs_bio_counter_dec(root->fs_info); 2071 2072 if (actual_bytes) 2073 *actual_bytes = discarded_bytes; 2074 2075 2076 if (ret == -EOPNOTSUPP) 2077 ret = 0; 2078 return ret; 2079 } 2080 2081 /* Can return -ENOMEM */ 2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2083 struct btrfs_root *root, 2084 u64 bytenr, u64 num_bytes, u64 parent, 2085 u64 root_objectid, u64 owner, u64 offset) 2086 { 2087 int ret; 2088 struct btrfs_fs_info *fs_info = root->fs_info; 2089 2090 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2091 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2092 2093 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2094 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2095 num_bytes, 2096 parent, root_objectid, (int)owner, 2097 BTRFS_ADD_DELAYED_REF, NULL); 2098 } else { 2099 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2100 num_bytes, parent, root_objectid, 2101 owner, offset, 0, 2102 BTRFS_ADD_DELAYED_REF, NULL); 2103 } 2104 return ret; 2105 } 2106 2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2108 struct btrfs_root *root, 2109 struct btrfs_delayed_ref_node *node, 2110 u64 parent, u64 root_objectid, 2111 u64 owner, u64 offset, int refs_to_add, 2112 struct btrfs_delayed_extent_op *extent_op) 2113 { 2114 struct btrfs_fs_info *fs_info = root->fs_info; 2115 struct btrfs_path *path; 2116 struct extent_buffer *leaf; 2117 struct btrfs_extent_item *item; 2118 struct btrfs_key key; 2119 u64 bytenr = node->bytenr; 2120 u64 num_bytes = node->num_bytes; 2121 u64 refs; 2122 int ret; 2123 2124 path = btrfs_alloc_path(); 2125 if (!path) 2126 return -ENOMEM; 2127 2128 path->reada = READA_FORWARD; 2129 path->leave_spinning = 1; 2130 /* this will setup the path even if it fails to insert the back ref */ 2131 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2132 bytenr, num_bytes, parent, 2133 root_objectid, owner, offset, 2134 refs_to_add, extent_op); 2135 if ((ret < 0 && ret != -EAGAIN) || !ret) 2136 goto out; 2137 2138 /* 2139 * Ok we had -EAGAIN which means we didn't have space to insert and 2140 * inline extent ref, so just update the reference count and add a 2141 * normal backref. 2142 */ 2143 leaf = path->nodes[0]; 2144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2145 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2146 refs = btrfs_extent_refs(leaf, item); 2147 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2148 if (extent_op) 2149 __run_delayed_extent_op(extent_op, leaf, item); 2150 2151 btrfs_mark_buffer_dirty(leaf); 2152 btrfs_release_path(path); 2153 2154 path->reada = READA_FORWARD; 2155 path->leave_spinning = 1; 2156 /* now insert the actual backref */ 2157 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2158 path, bytenr, parent, root_objectid, 2159 owner, offset, refs_to_add); 2160 if (ret) 2161 btrfs_abort_transaction(trans, ret); 2162 out: 2163 btrfs_free_path(path); 2164 return ret; 2165 } 2166 2167 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2168 struct btrfs_root *root, 2169 struct btrfs_delayed_ref_node *node, 2170 struct btrfs_delayed_extent_op *extent_op, 2171 int insert_reserved) 2172 { 2173 int ret = 0; 2174 struct btrfs_delayed_data_ref *ref; 2175 struct btrfs_key ins; 2176 u64 parent = 0; 2177 u64 ref_root = 0; 2178 u64 flags = 0; 2179 2180 ins.objectid = node->bytenr; 2181 ins.offset = node->num_bytes; 2182 ins.type = BTRFS_EXTENT_ITEM_KEY; 2183 2184 ref = btrfs_delayed_node_to_data_ref(node); 2185 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action); 2186 2187 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2188 parent = ref->parent; 2189 ref_root = ref->root; 2190 2191 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2192 if (extent_op) 2193 flags |= extent_op->flags_to_set; 2194 ret = alloc_reserved_file_extent(trans, root, 2195 parent, ref_root, flags, 2196 ref->objectid, ref->offset, 2197 &ins, node->ref_mod); 2198 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2199 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2200 ref_root, ref->objectid, 2201 ref->offset, node->ref_mod, 2202 extent_op); 2203 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2204 ret = __btrfs_free_extent(trans, root, node, parent, 2205 ref_root, ref->objectid, 2206 ref->offset, node->ref_mod, 2207 extent_op); 2208 } else { 2209 BUG(); 2210 } 2211 return ret; 2212 } 2213 2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2215 struct extent_buffer *leaf, 2216 struct btrfs_extent_item *ei) 2217 { 2218 u64 flags = btrfs_extent_flags(leaf, ei); 2219 if (extent_op->update_flags) { 2220 flags |= extent_op->flags_to_set; 2221 btrfs_set_extent_flags(leaf, ei, flags); 2222 } 2223 2224 if (extent_op->update_key) { 2225 struct btrfs_tree_block_info *bi; 2226 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2227 bi = (struct btrfs_tree_block_info *)(ei + 1); 2228 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2229 } 2230 } 2231 2232 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2233 struct btrfs_root *root, 2234 struct btrfs_delayed_ref_node *node, 2235 struct btrfs_delayed_extent_op *extent_op) 2236 { 2237 struct btrfs_key key; 2238 struct btrfs_path *path; 2239 struct btrfs_extent_item *ei; 2240 struct extent_buffer *leaf; 2241 u32 item_size; 2242 int ret; 2243 int err = 0; 2244 int metadata = !extent_op->is_data; 2245 2246 if (trans->aborted) 2247 return 0; 2248 2249 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2250 metadata = 0; 2251 2252 path = btrfs_alloc_path(); 2253 if (!path) 2254 return -ENOMEM; 2255 2256 key.objectid = node->bytenr; 2257 2258 if (metadata) { 2259 key.type = BTRFS_METADATA_ITEM_KEY; 2260 key.offset = extent_op->level; 2261 } else { 2262 key.type = BTRFS_EXTENT_ITEM_KEY; 2263 key.offset = node->num_bytes; 2264 } 2265 2266 again: 2267 path->reada = READA_FORWARD; 2268 path->leave_spinning = 1; 2269 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2270 path, 0, 1); 2271 if (ret < 0) { 2272 err = ret; 2273 goto out; 2274 } 2275 if (ret > 0) { 2276 if (metadata) { 2277 if (path->slots[0] > 0) { 2278 path->slots[0]--; 2279 btrfs_item_key_to_cpu(path->nodes[0], &key, 2280 path->slots[0]); 2281 if (key.objectid == node->bytenr && 2282 key.type == BTRFS_EXTENT_ITEM_KEY && 2283 key.offset == node->num_bytes) 2284 ret = 0; 2285 } 2286 if (ret > 0) { 2287 btrfs_release_path(path); 2288 metadata = 0; 2289 2290 key.objectid = node->bytenr; 2291 key.offset = node->num_bytes; 2292 key.type = BTRFS_EXTENT_ITEM_KEY; 2293 goto again; 2294 } 2295 } else { 2296 err = -EIO; 2297 goto out; 2298 } 2299 } 2300 2301 leaf = path->nodes[0]; 2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2304 if (item_size < sizeof(*ei)) { 2305 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2306 path, (u64)-1, 0); 2307 if (ret < 0) { 2308 err = ret; 2309 goto out; 2310 } 2311 leaf = path->nodes[0]; 2312 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2313 } 2314 #endif 2315 BUG_ON(item_size < sizeof(*ei)); 2316 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2317 __run_delayed_extent_op(extent_op, leaf, ei); 2318 2319 btrfs_mark_buffer_dirty(leaf); 2320 out: 2321 btrfs_free_path(path); 2322 return err; 2323 } 2324 2325 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2326 struct btrfs_root *root, 2327 struct btrfs_delayed_ref_node *node, 2328 struct btrfs_delayed_extent_op *extent_op, 2329 int insert_reserved) 2330 { 2331 int ret = 0; 2332 struct btrfs_delayed_tree_ref *ref; 2333 struct btrfs_key ins; 2334 u64 parent = 0; 2335 u64 ref_root = 0; 2336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2337 SKINNY_METADATA); 2338 2339 ref = btrfs_delayed_node_to_tree_ref(node); 2340 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action); 2341 2342 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2343 parent = ref->parent; 2344 ref_root = ref->root; 2345 2346 ins.objectid = node->bytenr; 2347 if (skinny_metadata) { 2348 ins.offset = ref->level; 2349 ins.type = BTRFS_METADATA_ITEM_KEY; 2350 } else { 2351 ins.offset = node->num_bytes; 2352 ins.type = BTRFS_EXTENT_ITEM_KEY; 2353 } 2354 2355 if (node->ref_mod != 1) { 2356 btrfs_err(root->fs_info, 2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2358 node->bytenr, node->ref_mod, node->action, ref_root, 2359 parent); 2360 return -EIO; 2361 } 2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2363 BUG_ON(!extent_op || !extent_op->update_flags); 2364 ret = alloc_reserved_tree_block(trans, root, 2365 parent, ref_root, 2366 extent_op->flags_to_set, 2367 &extent_op->key, 2368 ref->level, &ins); 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2370 ret = __btrfs_inc_extent_ref(trans, root, node, 2371 parent, ref_root, 2372 ref->level, 0, 1, 2373 extent_op); 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2375 ret = __btrfs_free_extent(trans, root, node, 2376 parent, ref_root, 2377 ref->level, 0, 1, extent_op); 2378 } else { 2379 BUG(); 2380 } 2381 return ret; 2382 } 2383 2384 /* helper function to actually process a single delayed ref entry */ 2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct btrfs_delayed_ref_node *node, 2388 struct btrfs_delayed_extent_op *extent_op, 2389 int insert_reserved) 2390 { 2391 int ret = 0; 2392 2393 if (trans->aborted) { 2394 if (insert_reserved) 2395 btrfs_pin_extent(root, node->bytenr, 2396 node->num_bytes, 1); 2397 return 0; 2398 } 2399 2400 if (btrfs_delayed_ref_is_head(node)) { 2401 struct btrfs_delayed_ref_head *head; 2402 /* 2403 * we've hit the end of the chain and we were supposed 2404 * to insert this extent into the tree. But, it got 2405 * deleted before we ever needed to insert it, so all 2406 * we have to do is clean up the accounting 2407 */ 2408 BUG_ON(extent_op); 2409 head = btrfs_delayed_node_to_head(node); 2410 trace_run_delayed_ref_head(root->fs_info, node, head, 2411 node->action); 2412 2413 if (insert_reserved) { 2414 btrfs_pin_extent(root, node->bytenr, 2415 node->num_bytes, 1); 2416 if (head->is_data) { 2417 ret = btrfs_del_csums(trans, root, 2418 node->bytenr, 2419 node->num_bytes); 2420 } 2421 } 2422 2423 /* Also free its reserved qgroup space */ 2424 btrfs_qgroup_free_delayed_ref(root->fs_info, 2425 head->qgroup_ref_root, 2426 head->qgroup_reserved); 2427 return ret; 2428 } 2429 2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2432 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2433 insert_reserved); 2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2435 node->type == BTRFS_SHARED_DATA_REF_KEY) 2436 ret = run_delayed_data_ref(trans, root, node, extent_op, 2437 insert_reserved); 2438 else 2439 BUG(); 2440 return ret; 2441 } 2442 2443 static inline struct btrfs_delayed_ref_node * 2444 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2445 { 2446 struct btrfs_delayed_ref_node *ref; 2447 2448 if (list_empty(&head->ref_list)) 2449 return NULL; 2450 2451 /* 2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2453 * This is to prevent a ref count from going down to zero, which deletes 2454 * the extent item from the extent tree, when there still are references 2455 * to add, which would fail because they would not find the extent item. 2456 */ 2457 list_for_each_entry(ref, &head->ref_list, list) { 2458 if (ref->action == BTRFS_ADD_DELAYED_REF) 2459 return ref; 2460 } 2461 2462 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2463 list); 2464 } 2465 2466 /* 2467 * Returns 0 on success or if called with an already aborted transaction. 2468 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2469 */ 2470 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2471 struct btrfs_root *root, 2472 unsigned long nr) 2473 { 2474 struct btrfs_delayed_ref_root *delayed_refs; 2475 struct btrfs_delayed_ref_node *ref; 2476 struct btrfs_delayed_ref_head *locked_ref = NULL; 2477 struct btrfs_delayed_extent_op *extent_op; 2478 struct btrfs_fs_info *fs_info = root->fs_info; 2479 ktime_t start = ktime_get(); 2480 int ret; 2481 unsigned long count = 0; 2482 unsigned long actual_count = 0; 2483 int must_insert_reserved = 0; 2484 2485 delayed_refs = &trans->transaction->delayed_refs; 2486 while (1) { 2487 if (!locked_ref) { 2488 if (count >= nr) 2489 break; 2490 2491 spin_lock(&delayed_refs->lock); 2492 locked_ref = btrfs_select_ref_head(trans); 2493 if (!locked_ref) { 2494 spin_unlock(&delayed_refs->lock); 2495 break; 2496 } 2497 2498 /* grab the lock that says we are going to process 2499 * all the refs for this head */ 2500 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2501 spin_unlock(&delayed_refs->lock); 2502 /* 2503 * we may have dropped the spin lock to get the head 2504 * mutex lock, and that might have given someone else 2505 * time to free the head. If that's true, it has been 2506 * removed from our list and we can move on. 2507 */ 2508 if (ret == -EAGAIN) { 2509 locked_ref = NULL; 2510 count++; 2511 continue; 2512 } 2513 } 2514 2515 /* 2516 * We need to try and merge add/drops of the same ref since we 2517 * can run into issues with relocate dropping the implicit ref 2518 * and then it being added back again before the drop can 2519 * finish. If we merged anything we need to re-loop so we can 2520 * get a good ref. 2521 * Or we can get node references of the same type that weren't 2522 * merged when created due to bumps in the tree mod seq, and 2523 * we need to merge them to prevent adding an inline extent 2524 * backref before dropping it (triggering a BUG_ON at 2525 * insert_inline_extent_backref()). 2526 */ 2527 spin_lock(&locked_ref->lock); 2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2529 locked_ref); 2530 2531 /* 2532 * locked_ref is the head node, so we have to go one 2533 * node back for any delayed ref updates 2534 */ 2535 ref = select_delayed_ref(locked_ref); 2536 2537 if (ref && ref->seq && 2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2539 spin_unlock(&locked_ref->lock); 2540 btrfs_delayed_ref_unlock(locked_ref); 2541 spin_lock(&delayed_refs->lock); 2542 locked_ref->processing = 0; 2543 delayed_refs->num_heads_ready++; 2544 spin_unlock(&delayed_refs->lock); 2545 locked_ref = NULL; 2546 cond_resched(); 2547 count++; 2548 continue; 2549 } 2550 2551 /* 2552 * record the must insert reserved flag before we 2553 * drop the spin lock. 2554 */ 2555 must_insert_reserved = locked_ref->must_insert_reserved; 2556 locked_ref->must_insert_reserved = 0; 2557 2558 extent_op = locked_ref->extent_op; 2559 locked_ref->extent_op = NULL; 2560 2561 if (!ref) { 2562 2563 2564 /* All delayed refs have been processed, Go ahead 2565 * and send the head node to run_one_delayed_ref, 2566 * so that any accounting fixes can happen 2567 */ 2568 ref = &locked_ref->node; 2569 2570 if (extent_op && must_insert_reserved) { 2571 btrfs_free_delayed_extent_op(extent_op); 2572 extent_op = NULL; 2573 } 2574 2575 if (extent_op) { 2576 spin_unlock(&locked_ref->lock); 2577 ret = run_delayed_extent_op(trans, root, 2578 ref, extent_op); 2579 btrfs_free_delayed_extent_op(extent_op); 2580 2581 if (ret) { 2582 /* 2583 * Need to reset must_insert_reserved if 2584 * there was an error so the abort stuff 2585 * can cleanup the reserved space 2586 * properly. 2587 */ 2588 if (must_insert_reserved) 2589 locked_ref->must_insert_reserved = 1; 2590 locked_ref->processing = 0; 2591 btrfs_debug(fs_info, 2592 "run_delayed_extent_op returned %d", 2593 ret); 2594 btrfs_delayed_ref_unlock(locked_ref); 2595 return ret; 2596 } 2597 continue; 2598 } 2599 2600 /* 2601 * Need to drop our head ref lock and re-acquire the 2602 * delayed ref lock and then re-check to make sure 2603 * nobody got added. 2604 */ 2605 spin_unlock(&locked_ref->lock); 2606 spin_lock(&delayed_refs->lock); 2607 spin_lock(&locked_ref->lock); 2608 if (!list_empty(&locked_ref->ref_list) || 2609 locked_ref->extent_op) { 2610 spin_unlock(&locked_ref->lock); 2611 spin_unlock(&delayed_refs->lock); 2612 continue; 2613 } 2614 ref->in_tree = 0; 2615 delayed_refs->num_heads--; 2616 rb_erase(&locked_ref->href_node, 2617 &delayed_refs->href_root); 2618 spin_unlock(&delayed_refs->lock); 2619 } else { 2620 actual_count++; 2621 ref->in_tree = 0; 2622 list_del(&ref->list); 2623 } 2624 atomic_dec(&delayed_refs->num_entries); 2625 2626 if (!btrfs_delayed_ref_is_head(ref)) { 2627 /* 2628 * when we play the delayed ref, also correct the 2629 * ref_mod on head 2630 */ 2631 switch (ref->action) { 2632 case BTRFS_ADD_DELAYED_REF: 2633 case BTRFS_ADD_DELAYED_EXTENT: 2634 locked_ref->node.ref_mod -= ref->ref_mod; 2635 break; 2636 case BTRFS_DROP_DELAYED_REF: 2637 locked_ref->node.ref_mod += ref->ref_mod; 2638 break; 2639 default: 2640 WARN_ON(1); 2641 } 2642 } 2643 spin_unlock(&locked_ref->lock); 2644 2645 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2646 must_insert_reserved); 2647 2648 btrfs_free_delayed_extent_op(extent_op); 2649 if (ret) { 2650 locked_ref->processing = 0; 2651 btrfs_delayed_ref_unlock(locked_ref); 2652 btrfs_put_delayed_ref(ref); 2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2654 ret); 2655 return ret; 2656 } 2657 2658 /* 2659 * If this node is a head, that means all the refs in this head 2660 * have been dealt with, and we will pick the next head to deal 2661 * with, so we must unlock the head and drop it from the cluster 2662 * list before we release it. 2663 */ 2664 if (btrfs_delayed_ref_is_head(ref)) { 2665 if (locked_ref->is_data && 2666 locked_ref->total_ref_mod < 0) { 2667 spin_lock(&delayed_refs->lock); 2668 delayed_refs->pending_csums -= ref->num_bytes; 2669 spin_unlock(&delayed_refs->lock); 2670 } 2671 btrfs_delayed_ref_unlock(locked_ref); 2672 locked_ref = NULL; 2673 } 2674 btrfs_put_delayed_ref(ref); 2675 count++; 2676 cond_resched(); 2677 } 2678 2679 /* 2680 * We don't want to include ref heads since we can have empty ref heads 2681 * and those will drastically skew our runtime down since we just do 2682 * accounting, no actual extent tree updates. 2683 */ 2684 if (actual_count > 0) { 2685 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2686 u64 avg; 2687 2688 /* 2689 * We weigh the current average higher than our current runtime 2690 * to avoid large swings in the average. 2691 */ 2692 spin_lock(&delayed_refs->lock); 2693 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2694 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2695 spin_unlock(&delayed_refs->lock); 2696 } 2697 return 0; 2698 } 2699 2700 #ifdef SCRAMBLE_DELAYED_REFS 2701 /* 2702 * Normally delayed refs get processed in ascending bytenr order. This 2703 * correlates in most cases to the order added. To expose dependencies on this 2704 * order, we start to process the tree in the middle instead of the beginning 2705 */ 2706 static u64 find_middle(struct rb_root *root) 2707 { 2708 struct rb_node *n = root->rb_node; 2709 struct btrfs_delayed_ref_node *entry; 2710 int alt = 1; 2711 u64 middle; 2712 u64 first = 0, last = 0; 2713 2714 n = rb_first(root); 2715 if (n) { 2716 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2717 first = entry->bytenr; 2718 } 2719 n = rb_last(root); 2720 if (n) { 2721 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2722 last = entry->bytenr; 2723 } 2724 n = root->rb_node; 2725 2726 while (n) { 2727 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2728 WARN_ON(!entry->in_tree); 2729 2730 middle = entry->bytenr; 2731 2732 if (alt) 2733 n = n->rb_left; 2734 else 2735 n = n->rb_right; 2736 2737 alt = 1 - alt; 2738 } 2739 return middle; 2740 } 2741 #endif 2742 2743 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2744 { 2745 u64 num_bytes; 2746 2747 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2748 sizeof(struct btrfs_extent_inline_ref)); 2749 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2750 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2751 2752 /* 2753 * We don't ever fill up leaves all the way so multiply by 2 just to be 2754 * closer to what we're really going to want to use. 2755 */ 2756 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2757 } 2758 2759 /* 2760 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2761 * would require to store the csums for that many bytes. 2762 */ 2763 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2764 { 2765 u64 csum_size; 2766 u64 num_csums_per_leaf; 2767 u64 num_csums; 2768 2769 csum_size = BTRFS_MAX_ITEM_SIZE(root); 2770 num_csums_per_leaf = div64_u64(csum_size, 2771 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2772 num_csums = div64_u64(csum_bytes, root->sectorsize); 2773 num_csums += num_csums_per_leaf - 1; 2774 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2775 return num_csums; 2776 } 2777 2778 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2779 struct btrfs_root *root) 2780 { 2781 struct btrfs_block_rsv *global_rsv; 2782 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2783 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2784 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2785 u64 num_bytes, num_dirty_bgs_bytes; 2786 int ret = 0; 2787 2788 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2789 num_heads = heads_to_leaves(root, num_heads); 2790 if (num_heads > 1) 2791 num_bytes += (num_heads - 1) * root->nodesize; 2792 num_bytes <<= 1; 2793 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2794 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2795 num_dirty_bgs); 2796 global_rsv = &root->fs_info->global_block_rsv; 2797 2798 /* 2799 * If we can't allocate any more chunks lets make sure we have _lots_ of 2800 * wiggle room since running delayed refs can create more delayed refs. 2801 */ 2802 if (global_rsv->space_info->full) { 2803 num_dirty_bgs_bytes <<= 1; 2804 num_bytes <<= 1; 2805 } 2806 2807 spin_lock(&global_rsv->lock); 2808 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2809 ret = 1; 2810 spin_unlock(&global_rsv->lock); 2811 return ret; 2812 } 2813 2814 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2815 struct btrfs_root *root) 2816 { 2817 struct btrfs_fs_info *fs_info = root->fs_info; 2818 u64 num_entries = 2819 atomic_read(&trans->transaction->delayed_refs.num_entries); 2820 u64 avg_runtime; 2821 u64 val; 2822 2823 smp_mb(); 2824 avg_runtime = fs_info->avg_delayed_ref_runtime; 2825 val = num_entries * avg_runtime; 2826 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2827 return 1; 2828 if (val >= NSEC_PER_SEC / 2) 2829 return 2; 2830 2831 return btrfs_check_space_for_delayed_refs(trans, root); 2832 } 2833 2834 struct async_delayed_refs { 2835 struct btrfs_root *root; 2836 u64 transid; 2837 int count; 2838 int error; 2839 int sync; 2840 struct completion wait; 2841 struct btrfs_work work; 2842 }; 2843 2844 static void delayed_ref_async_start(struct btrfs_work *work) 2845 { 2846 struct async_delayed_refs *async; 2847 struct btrfs_trans_handle *trans; 2848 int ret; 2849 2850 async = container_of(work, struct async_delayed_refs, work); 2851 2852 /* if the commit is already started, we don't need to wait here */ 2853 if (btrfs_transaction_blocked(async->root->fs_info)) 2854 goto done; 2855 2856 trans = btrfs_join_transaction(async->root); 2857 if (IS_ERR(trans)) { 2858 async->error = PTR_ERR(trans); 2859 goto done; 2860 } 2861 2862 /* 2863 * trans->sync means that when we call end_transaction, we won't 2864 * wait on delayed refs 2865 */ 2866 trans->sync = true; 2867 2868 /* Don't bother flushing if we got into a different transaction */ 2869 if (trans->transid > async->transid) 2870 goto end; 2871 2872 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2873 if (ret) 2874 async->error = ret; 2875 end: 2876 ret = btrfs_end_transaction(trans, async->root); 2877 if (ret && !async->error) 2878 async->error = ret; 2879 done: 2880 if (async->sync) 2881 complete(&async->wait); 2882 else 2883 kfree(async); 2884 } 2885 2886 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2887 unsigned long count, u64 transid, int wait) 2888 { 2889 struct async_delayed_refs *async; 2890 int ret; 2891 2892 async = kmalloc(sizeof(*async), GFP_NOFS); 2893 if (!async) 2894 return -ENOMEM; 2895 2896 async->root = root->fs_info->tree_root; 2897 async->count = count; 2898 async->error = 0; 2899 async->transid = transid; 2900 if (wait) 2901 async->sync = 1; 2902 else 2903 async->sync = 0; 2904 init_completion(&async->wait); 2905 2906 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2907 delayed_ref_async_start, NULL, NULL); 2908 2909 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2910 2911 if (wait) { 2912 wait_for_completion(&async->wait); 2913 ret = async->error; 2914 kfree(async); 2915 return ret; 2916 } 2917 return 0; 2918 } 2919 2920 /* 2921 * this starts processing the delayed reference count updates and 2922 * extent insertions we have queued up so far. count can be 2923 * 0, which means to process everything in the tree at the start 2924 * of the run (but not newly added entries), or it can be some target 2925 * number you'd like to process. 2926 * 2927 * Returns 0 on success or if called with an aborted transaction 2928 * Returns <0 on error and aborts the transaction 2929 */ 2930 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2931 struct btrfs_root *root, unsigned long count) 2932 { 2933 struct rb_node *node; 2934 struct btrfs_delayed_ref_root *delayed_refs; 2935 struct btrfs_delayed_ref_head *head; 2936 int ret; 2937 int run_all = count == (unsigned long)-1; 2938 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2939 2940 /* We'll clean this up in btrfs_cleanup_transaction */ 2941 if (trans->aborted) 2942 return 0; 2943 2944 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags)) 2945 return 0; 2946 2947 if (root == root->fs_info->extent_root) 2948 root = root->fs_info->tree_root; 2949 2950 delayed_refs = &trans->transaction->delayed_refs; 2951 if (count == 0) 2952 count = atomic_read(&delayed_refs->num_entries) * 2; 2953 2954 again: 2955 #ifdef SCRAMBLE_DELAYED_REFS 2956 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2957 #endif 2958 trans->can_flush_pending_bgs = false; 2959 ret = __btrfs_run_delayed_refs(trans, root, count); 2960 if (ret < 0) { 2961 btrfs_abort_transaction(trans, ret); 2962 return ret; 2963 } 2964 2965 if (run_all) { 2966 if (!list_empty(&trans->new_bgs)) 2967 btrfs_create_pending_block_groups(trans, root); 2968 2969 spin_lock(&delayed_refs->lock); 2970 node = rb_first(&delayed_refs->href_root); 2971 if (!node) { 2972 spin_unlock(&delayed_refs->lock); 2973 goto out; 2974 } 2975 2976 while (node) { 2977 head = rb_entry(node, struct btrfs_delayed_ref_head, 2978 href_node); 2979 if (btrfs_delayed_ref_is_head(&head->node)) { 2980 struct btrfs_delayed_ref_node *ref; 2981 2982 ref = &head->node; 2983 atomic_inc(&ref->refs); 2984 2985 spin_unlock(&delayed_refs->lock); 2986 /* 2987 * Mutex was contended, block until it's 2988 * released and try again 2989 */ 2990 mutex_lock(&head->mutex); 2991 mutex_unlock(&head->mutex); 2992 2993 btrfs_put_delayed_ref(ref); 2994 cond_resched(); 2995 goto again; 2996 } else { 2997 WARN_ON(1); 2998 } 2999 node = rb_next(node); 3000 } 3001 spin_unlock(&delayed_refs->lock); 3002 cond_resched(); 3003 goto again; 3004 } 3005 out: 3006 assert_qgroups_uptodate(trans); 3007 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3008 return 0; 3009 } 3010 3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3012 struct btrfs_root *root, 3013 u64 bytenr, u64 num_bytes, u64 flags, 3014 int level, int is_data) 3015 { 3016 struct btrfs_delayed_extent_op *extent_op; 3017 int ret; 3018 3019 extent_op = btrfs_alloc_delayed_extent_op(); 3020 if (!extent_op) 3021 return -ENOMEM; 3022 3023 extent_op->flags_to_set = flags; 3024 extent_op->update_flags = true; 3025 extent_op->update_key = false; 3026 extent_op->is_data = is_data ? true : false; 3027 extent_op->level = level; 3028 3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3030 num_bytes, extent_op); 3031 if (ret) 3032 btrfs_free_delayed_extent_op(extent_op); 3033 return ret; 3034 } 3035 3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3037 struct btrfs_root *root, 3038 struct btrfs_path *path, 3039 u64 objectid, u64 offset, u64 bytenr) 3040 { 3041 struct btrfs_delayed_ref_head *head; 3042 struct btrfs_delayed_ref_node *ref; 3043 struct btrfs_delayed_data_ref *data_ref; 3044 struct btrfs_delayed_ref_root *delayed_refs; 3045 int ret = 0; 3046 3047 delayed_refs = &trans->transaction->delayed_refs; 3048 spin_lock(&delayed_refs->lock); 3049 head = btrfs_find_delayed_ref_head(trans, bytenr); 3050 if (!head) { 3051 spin_unlock(&delayed_refs->lock); 3052 return 0; 3053 } 3054 3055 if (!mutex_trylock(&head->mutex)) { 3056 atomic_inc(&head->node.refs); 3057 spin_unlock(&delayed_refs->lock); 3058 3059 btrfs_release_path(path); 3060 3061 /* 3062 * Mutex was contended, block until it's released and let 3063 * caller try again 3064 */ 3065 mutex_lock(&head->mutex); 3066 mutex_unlock(&head->mutex); 3067 btrfs_put_delayed_ref(&head->node); 3068 return -EAGAIN; 3069 } 3070 spin_unlock(&delayed_refs->lock); 3071 3072 spin_lock(&head->lock); 3073 list_for_each_entry(ref, &head->ref_list, list) { 3074 /* If it's a shared ref we know a cross reference exists */ 3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3076 ret = 1; 3077 break; 3078 } 3079 3080 data_ref = btrfs_delayed_node_to_data_ref(ref); 3081 3082 /* 3083 * If our ref doesn't match the one we're currently looking at 3084 * then we have a cross reference. 3085 */ 3086 if (data_ref->root != root->root_key.objectid || 3087 data_ref->objectid != objectid || 3088 data_ref->offset != offset) { 3089 ret = 1; 3090 break; 3091 } 3092 } 3093 spin_unlock(&head->lock); 3094 mutex_unlock(&head->mutex); 3095 return ret; 3096 } 3097 3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3099 struct btrfs_root *root, 3100 struct btrfs_path *path, 3101 u64 objectid, u64 offset, u64 bytenr) 3102 { 3103 struct btrfs_root *extent_root = root->fs_info->extent_root; 3104 struct extent_buffer *leaf; 3105 struct btrfs_extent_data_ref *ref; 3106 struct btrfs_extent_inline_ref *iref; 3107 struct btrfs_extent_item *ei; 3108 struct btrfs_key key; 3109 u32 item_size; 3110 int ret; 3111 3112 key.objectid = bytenr; 3113 key.offset = (u64)-1; 3114 key.type = BTRFS_EXTENT_ITEM_KEY; 3115 3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3117 if (ret < 0) 3118 goto out; 3119 BUG_ON(ret == 0); /* Corruption */ 3120 3121 ret = -ENOENT; 3122 if (path->slots[0] == 0) 3123 goto out; 3124 3125 path->slots[0]--; 3126 leaf = path->nodes[0]; 3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3128 3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3130 goto out; 3131 3132 ret = 1; 3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3135 if (item_size < sizeof(*ei)) { 3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3137 goto out; 3138 } 3139 #endif 3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3141 3142 if (item_size != sizeof(*ei) + 3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3144 goto out; 3145 3146 if (btrfs_extent_generation(leaf, ei) <= 3147 btrfs_root_last_snapshot(&root->root_item)) 3148 goto out; 3149 3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3151 if (btrfs_extent_inline_ref_type(leaf, iref) != 3152 BTRFS_EXTENT_DATA_REF_KEY) 3153 goto out; 3154 3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3156 if (btrfs_extent_refs(leaf, ei) != 3157 btrfs_extent_data_ref_count(leaf, ref) || 3158 btrfs_extent_data_ref_root(leaf, ref) != 3159 root->root_key.objectid || 3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3161 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3162 goto out; 3163 3164 ret = 0; 3165 out: 3166 return ret; 3167 } 3168 3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3170 struct btrfs_root *root, 3171 u64 objectid, u64 offset, u64 bytenr) 3172 { 3173 struct btrfs_path *path; 3174 int ret; 3175 int ret2; 3176 3177 path = btrfs_alloc_path(); 3178 if (!path) 3179 return -ENOENT; 3180 3181 do { 3182 ret = check_committed_ref(trans, root, path, objectid, 3183 offset, bytenr); 3184 if (ret && ret != -ENOENT) 3185 goto out; 3186 3187 ret2 = check_delayed_ref(trans, root, path, objectid, 3188 offset, bytenr); 3189 } while (ret2 == -EAGAIN); 3190 3191 if (ret2 && ret2 != -ENOENT) { 3192 ret = ret2; 3193 goto out; 3194 } 3195 3196 if (ret != -ENOENT || ret2 != -ENOENT) 3197 ret = 0; 3198 out: 3199 btrfs_free_path(path); 3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3201 WARN_ON(ret > 0); 3202 return ret; 3203 } 3204 3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3206 struct btrfs_root *root, 3207 struct extent_buffer *buf, 3208 int full_backref, int inc) 3209 { 3210 u64 bytenr; 3211 u64 num_bytes; 3212 u64 parent; 3213 u64 ref_root; 3214 u32 nritems; 3215 struct btrfs_key key; 3216 struct btrfs_file_extent_item *fi; 3217 int i; 3218 int level; 3219 int ret = 0; 3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3221 u64, u64, u64, u64, u64, u64); 3222 3223 3224 if (btrfs_is_testing(root->fs_info)) 3225 return 0; 3226 3227 ref_root = btrfs_header_owner(buf); 3228 nritems = btrfs_header_nritems(buf); 3229 level = btrfs_header_level(buf); 3230 3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3232 return 0; 3233 3234 if (inc) 3235 process_func = btrfs_inc_extent_ref; 3236 else 3237 process_func = btrfs_free_extent; 3238 3239 if (full_backref) 3240 parent = buf->start; 3241 else 3242 parent = 0; 3243 3244 for (i = 0; i < nritems; i++) { 3245 if (level == 0) { 3246 btrfs_item_key_to_cpu(buf, &key, i); 3247 if (key.type != BTRFS_EXTENT_DATA_KEY) 3248 continue; 3249 fi = btrfs_item_ptr(buf, i, 3250 struct btrfs_file_extent_item); 3251 if (btrfs_file_extent_type(buf, fi) == 3252 BTRFS_FILE_EXTENT_INLINE) 3253 continue; 3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3255 if (bytenr == 0) 3256 continue; 3257 3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3259 key.offset -= btrfs_file_extent_offset(buf, fi); 3260 ret = process_func(trans, root, bytenr, num_bytes, 3261 parent, ref_root, key.objectid, 3262 key.offset); 3263 if (ret) 3264 goto fail; 3265 } else { 3266 bytenr = btrfs_node_blockptr(buf, i); 3267 num_bytes = root->nodesize; 3268 ret = process_func(trans, root, bytenr, num_bytes, 3269 parent, ref_root, level - 1, 0); 3270 if (ret) 3271 goto fail; 3272 } 3273 } 3274 return 0; 3275 fail: 3276 return ret; 3277 } 3278 3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3280 struct extent_buffer *buf, int full_backref) 3281 { 3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3283 } 3284 3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3286 struct extent_buffer *buf, int full_backref) 3287 { 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3289 } 3290 3291 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3292 struct btrfs_root *root, 3293 struct btrfs_path *path, 3294 struct btrfs_block_group_cache *cache) 3295 { 3296 int ret; 3297 struct btrfs_root *extent_root = root->fs_info->extent_root; 3298 unsigned long bi; 3299 struct extent_buffer *leaf; 3300 3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3302 if (ret) { 3303 if (ret > 0) 3304 ret = -ENOENT; 3305 goto fail; 3306 } 3307 3308 leaf = path->nodes[0]; 3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3311 btrfs_mark_buffer_dirty(leaf); 3312 fail: 3313 btrfs_release_path(path); 3314 return ret; 3315 3316 } 3317 3318 static struct btrfs_block_group_cache * 3319 next_block_group(struct btrfs_root *root, 3320 struct btrfs_block_group_cache *cache) 3321 { 3322 struct rb_node *node; 3323 3324 spin_lock(&root->fs_info->block_group_cache_lock); 3325 3326 /* If our block group was removed, we need a full search. */ 3327 if (RB_EMPTY_NODE(&cache->cache_node)) { 3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3329 3330 spin_unlock(&root->fs_info->block_group_cache_lock); 3331 btrfs_put_block_group(cache); 3332 cache = btrfs_lookup_first_block_group(root->fs_info, 3333 next_bytenr); 3334 return cache; 3335 } 3336 node = rb_next(&cache->cache_node); 3337 btrfs_put_block_group(cache); 3338 if (node) { 3339 cache = rb_entry(node, struct btrfs_block_group_cache, 3340 cache_node); 3341 btrfs_get_block_group(cache); 3342 } else 3343 cache = NULL; 3344 spin_unlock(&root->fs_info->block_group_cache_lock); 3345 return cache; 3346 } 3347 3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3349 struct btrfs_trans_handle *trans, 3350 struct btrfs_path *path) 3351 { 3352 struct btrfs_root *root = block_group->fs_info->tree_root; 3353 struct inode *inode = NULL; 3354 u64 alloc_hint = 0; 3355 int dcs = BTRFS_DC_ERROR; 3356 u64 num_pages = 0; 3357 int retries = 0; 3358 int ret = 0; 3359 3360 /* 3361 * If this block group is smaller than 100 megs don't bother caching the 3362 * block group. 3363 */ 3364 if (block_group->key.offset < (100 * SZ_1M)) { 3365 spin_lock(&block_group->lock); 3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3367 spin_unlock(&block_group->lock); 3368 return 0; 3369 } 3370 3371 if (trans->aborted) 3372 return 0; 3373 again: 3374 inode = lookup_free_space_inode(root, block_group, path); 3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3376 ret = PTR_ERR(inode); 3377 btrfs_release_path(path); 3378 goto out; 3379 } 3380 3381 if (IS_ERR(inode)) { 3382 BUG_ON(retries); 3383 retries++; 3384 3385 if (block_group->ro) 3386 goto out_free; 3387 3388 ret = create_free_space_inode(root, trans, block_group, path); 3389 if (ret) 3390 goto out_free; 3391 goto again; 3392 } 3393 3394 /* We've already setup this transaction, go ahead and exit */ 3395 if (block_group->cache_generation == trans->transid && 3396 i_size_read(inode)) { 3397 dcs = BTRFS_DC_SETUP; 3398 goto out_put; 3399 } 3400 3401 /* 3402 * We want to set the generation to 0, that way if anything goes wrong 3403 * from here on out we know not to trust this cache when we load up next 3404 * time. 3405 */ 3406 BTRFS_I(inode)->generation = 0; 3407 ret = btrfs_update_inode(trans, root, inode); 3408 if (ret) { 3409 /* 3410 * So theoretically we could recover from this, simply set the 3411 * super cache generation to 0 so we know to invalidate the 3412 * cache, but then we'd have to keep track of the block groups 3413 * that fail this way so we know we _have_ to reset this cache 3414 * before the next commit or risk reading stale cache. So to 3415 * limit our exposure to horrible edge cases lets just abort the 3416 * transaction, this only happens in really bad situations 3417 * anyway. 3418 */ 3419 btrfs_abort_transaction(trans, ret); 3420 goto out_put; 3421 } 3422 WARN_ON(ret); 3423 3424 if (i_size_read(inode) > 0) { 3425 ret = btrfs_check_trunc_cache_free_space(root, 3426 &root->fs_info->global_block_rsv); 3427 if (ret) 3428 goto out_put; 3429 3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3431 if (ret) 3432 goto out_put; 3433 } 3434 3435 spin_lock(&block_group->lock); 3436 if (block_group->cached != BTRFS_CACHE_FINISHED || 3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) { 3438 /* 3439 * don't bother trying to write stuff out _if_ 3440 * a) we're not cached, 3441 * b) we're with nospace_cache mount option. 3442 */ 3443 dcs = BTRFS_DC_WRITTEN; 3444 spin_unlock(&block_group->lock); 3445 goto out_put; 3446 } 3447 spin_unlock(&block_group->lock); 3448 3449 /* 3450 * We hit an ENOSPC when setting up the cache in this transaction, just 3451 * skip doing the setup, we've already cleared the cache so we're safe. 3452 */ 3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3454 ret = -ENOSPC; 3455 goto out_put; 3456 } 3457 3458 /* 3459 * Try to preallocate enough space based on how big the block group is. 3460 * Keep in mind this has to include any pinned space which could end up 3461 * taking up quite a bit since it's not folded into the other space 3462 * cache. 3463 */ 3464 num_pages = div_u64(block_group->key.offset, SZ_256M); 3465 if (!num_pages) 3466 num_pages = 1; 3467 3468 num_pages *= 16; 3469 num_pages *= PAGE_SIZE; 3470 3471 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3472 if (ret) 3473 goto out_put; 3474 3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3476 num_pages, num_pages, 3477 &alloc_hint); 3478 /* 3479 * Our cache requires contiguous chunks so that we don't modify a bunch 3480 * of metadata or split extents when writing the cache out, which means 3481 * we can enospc if we are heavily fragmented in addition to just normal 3482 * out of space conditions. So if we hit this just skip setting up any 3483 * other block groups for this transaction, maybe we'll unpin enough 3484 * space the next time around. 3485 */ 3486 if (!ret) 3487 dcs = BTRFS_DC_SETUP; 3488 else if (ret == -ENOSPC) 3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3490 3491 out_put: 3492 iput(inode); 3493 out_free: 3494 btrfs_release_path(path); 3495 out: 3496 spin_lock(&block_group->lock); 3497 if (!ret && dcs == BTRFS_DC_SETUP) 3498 block_group->cache_generation = trans->transid; 3499 block_group->disk_cache_state = dcs; 3500 spin_unlock(&block_group->lock); 3501 3502 return ret; 3503 } 3504 3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3506 struct btrfs_root *root) 3507 { 3508 struct btrfs_block_group_cache *cache, *tmp; 3509 struct btrfs_transaction *cur_trans = trans->transaction; 3510 struct btrfs_path *path; 3511 3512 if (list_empty(&cur_trans->dirty_bgs) || 3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) 3514 return 0; 3515 3516 path = btrfs_alloc_path(); 3517 if (!path) 3518 return -ENOMEM; 3519 3520 /* Could add new block groups, use _safe just in case */ 3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3522 dirty_list) { 3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3524 cache_save_setup(cache, trans, path); 3525 } 3526 3527 btrfs_free_path(path); 3528 return 0; 3529 } 3530 3531 /* 3532 * transaction commit does final block group cache writeback during a 3533 * critical section where nothing is allowed to change the FS. This is 3534 * required in order for the cache to actually match the block group, 3535 * but can introduce a lot of latency into the commit. 3536 * 3537 * So, btrfs_start_dirty_block_groups is here to kick off block group 3538 * cache IO. There's a chance we'll have to redo some of it if the 3539 * block group changes again during the commit, but it greatly reduces 3540 * the commit latency by getting rid of the easy block groups while 3541 * we're still allowing others to join the commit. 3542 */ 3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3544 struct btrfs_root *root) 3545 { 3546 struct btrfs_block_group_cache *cache; 3547 struct btrfs_transaction *cur_trans = trans->transaction; 3548 int ret = 0; 3549 int should_put; 3550 struct btrfs_path *path = NULL; 3551 LIST_HEAD(dirty); 3552 struct list_head *io = &cur_trans->io_bgs; 3553 int num_started = 0; 3554 int loops = 0; 3555 3556 spin_lock(&cur_trans->dirty_bgs_lock); 3557 if (list_empty(&cur_trans->dirty_bgs)) { 3558 spin_unlock(&cur_trans->dirty_bgs_lock); 3559 return 0; 3560 } 3561 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3562 spin_unlock(&cur_trans->dirty_bgs_lock); 3563 3564 again: 3565 /* 3566 * make sure all the block groups on our dirty list actually 3567 * exist 3568 */ 3569 btrfs_create_pending_block_groups(trans, root); 3570 3571 if (!path) { 3572 path = btrfs_alloc_path(); 3573 if (!path) 3574 return -ENOMEM; 3575 } 3576 3577 /* 3578 * cache_write_mutex is here only to save us from balance or automatic 3579 * removal of empty block groups deleting this block group while we are 3580 * writing out the cache 3581 */ 3582 mutex_lock(&trans->transaction->cache_write_mutex); 3583 while (!list_empty(&dirty)) { 3584 cache = list_first_entry(&dirty, 3585 struct btrfs_block_group_cache, 3586 dirty_list); 3587 /* 3588 * this can happen if something re-dirties a block 3589 * group that is already under IO. Just wait for it to 3590 * finish and then do it all again 3591 */ 3592 if (!list_empty(&cache->io_list)) { 3593 list_del_init(&cache->io_list); 3594 btrfs_wait_cache_io(root, trans, cache, 3595 &cache->io_ctl, path, 3596 cache->key.objectid); 3597 btrfs_put_block_group(cache); 3598 } 3599 3600 3601 /* 3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3603 * if it should update the cache_state. Don't delete 3604 * until after we wait. 3605 * 3606 * Since we're not running in the commit critical section 3607 * we need the dirty_bgs_lock to protect from update_block_group 3608 */ 3609 spin_lock(&cur_trans->dirty_bgs_lock); 3610 list_del_init(&cache->dirty_list); 3611 spin_unlock(&cur_trans->dirty_bgs_lock); 3612 3613 should_put = 1; 3614 3615 cache_save_setup(cache, trans, path); 3616 3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3618 cache->io_ctl.inode = NULL; 3619 ret = btrfs_write_out_cache(root, trans, cache, path); 3620 if (ret == 0 && cache->io_ctl.inode) { 3621 num_started++; 3622 should_put = 0; 3623 3624 /* 3625 * the cache_write_mutex is protecting 3626 * the io_list 3627 */ 3628 list_add_tail(&cache->io_list, io); 3629 } else { 3630 /* 3631 * if we failed to write the cache, the 3632 * generation will be bad and life goes on 3633 */ 3634 ret = 0; 3635 } 3636 } 3637 if (!ret) { 3638 ret = write_one_cache_group(trans, root, path, cache); 3639 /* 3640 * Our block group might still be attached to the list 3641 * of new block groups in the transaction handle of some 3642 * other task (struct btrfs_trans_handle->new_bgs). This 3643 * means its block group item isn't yet in the extent 3644 * tree. If this happens ignore the error, as we will 3645 * try again later in the critical section of the 3646 * transaction commit. 3647 */ 3648 if (ret == -ENOENT) { 3649 ret = 0; 3650 spin_lock(&cur_trans->dirty_bgs_lock); 3651 if (list_empty(&cache->dirty_list)) { 3652 list_add_tail(&cache->dirty_list, 3653 &cur_trans->dirty_bgs); 3654 btrfs_get_block_group(cache); 3655 } 3656 spin_unlock(&cur_trans->dirty_bgs_lock); 3657 } else if (ret) { 3658 btrfs_abort_transaction(trans, ret); 3659 } 3660 } 3661 3662 /* if its not on the io list, we need to put the block group */ 3663 if (should_put) 3664 btrfs_put_block_group(cache); 3665 3666 if (ret) 3667 break; 3668 3669 /* 3670 * Avoid blocking other tasks for too long. It might even save 3671 * us from writing caches for block groups that are going to be 3672 * removed. 3673 */ 3674 mutex_unlock(&trans->transaction->cache_write_mutex); 3675 mutex_lock(&trans->transaction->cache_write_mutex); 3676 } 3677 mutex_unlock(&trans->transaction->cache_write_mutex); 3678 3679 /* 3680 * go through delayed refs for all the stuff we've just kicked off 3681 * and then loop back (just once) 3682 */ 3683 ret = btrfs_run_delayed_refs(trans, root, 0); 3684 if (!ret && loops == 0) { 3685 loops++; 3686 spin_lock(&cur_trans->dirty_bgs_lock); 3687 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3688 /* 3689 * dirty_bgs_lock protects us from concurrent block group 3690 * deletes too (not just cache_write_mutex). 3691 */ 3692 if (!list_empty(&dirty)) { 3693 spin_unlock(&cur_trans->dirty_bgs_lock); 3694 goto again; 3695 } 3696 spin_unlock(&cur_trans->dirty_bgs_lock); 3697 } else if (ret < 0) { 3698 btrfs_cleanup_dirty_bgs(cur_trans, root); 3699 } 3700 3701 btrfs_free_path(path); 3702 return ret; 3703 } 3704 3705 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3706 struct btrfs_root *root) 3707 { 3708 struct btrfs_block_group_cache *cache; 3709 struct btrfs_transaction *cur_trans = trans->transaction; 3710 int ret = 0; 3711 int should_put; 3712 struct btrfs_path *path; 3713 struct list_head *io = &cur_trans->io_bgs; 3714 int num_started = 0; 3715 3716 path = btrfs_alloc_path(); 3717 if (!path) 3718 return -ENOMEM; 3719 3720 /* 3721 * Even though we are in the critical section of the transaction commit, 3722 * we can still have concurrent tasks adding elements to this 3723 * transaction's list of dirty block groups. These tasks correspond to 3724 * endio free space workers started when writeback finishes for a 3725 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3726 * allocate new block groups as a result of COWing nodes of the root 3727 * tree when updating the free space inode. The writeback for the space 3728 * caches is triggered by an earlier call to 3729 * btrfs_start_dirty_block_groups() and iterations of the following 3730 * loop. 3731 * Also we want to do the cache_save_setup first and then run the 3732 * delayed refs to make sure we have the best chance at doing this all 3733 * in one shot. 3734 */ 3735 spin_lock(&cur_trans->dirty_bgs_lock); 3736 while (!list_empty(&cur_trans->dirty_bgs)) { 3737 cache = list_first_entry(&cur_trans->dirty_bgs, 3738 struct btrfs_block_group_cache, 3739 dirty_list); 3740 3741 /* 3742 * this can happen if cache_save_setup re-dirties a block 3743 * group that is already under IO. Just wait for it to 3744 * finish and then do it all again 3745 */ 3746 if (!list_empty(&cache->io_list)) { 3747 spin_unlock(&cur_trans->dirty_bgs_lock); 3748 list_del_init(&cache->io_list); 3749 btrfs_wait_cache_io(root, trans, cache, 3750 &cache->io_ctl, path, 3751 cache->key.objectid); 3752 btrfs_put_block_group(cache); 3753 spin_lock(&cur_trans->dirty_bgs_lock); 3754 } 3755 3756 /* 3757 * don't remove from the dirty list until after we've waited 3758 * on any pending IO 3759 */ 3760 list_del_init(&cache->dirty_list); 3761 spin_unlock(&cur_trans->dirty_bgs_lock); 3762 should_put = 1; 3763 3764 cache_save_setup(cache, trans, path); 3765 3766 if (!ret) 3767 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3768 3769 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3770 cache->io_ctl.inode = NULL; 3771 ret = btrfs_write_out_cache(root, trans, cache, path); 3772 if (ret == 0 && cache->io_ctl.inode) { 3773 num_started++; 3774 should_put = 0; 3775 list_add_tail(&cache->io_list, io); 3776 } else { 3777 /* 3778 * if we failed to write the cache, the 3779 * generation will be bad and life goes on 3780 */ 3781 ret = 0; 3782 } 3783 } 3784 if (!ret) { 3785 ret = write_one_cache_group(trans, root, path, cache); 3786 /* 3787 * One of the free space endio workers might have 3788 * created a new block group while updating a free space 3789 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3790 * and hasn't released its transaction handle yet, in 3791 * which case the new block group is still attached to 3792 * its transaction handle and its creation has not 3793 * finished yet (no block group item in the extent tree 3794 * yet, etc). If this is the case, wait for all free 3795 * space endio workers to finish and retry. This is a 3796 * a very rare case so no need for a more efficient and 3797 * complex approach. 3798 */ 3799 if (ret == -ENOENT) { 3800 wait_event(cur_trans->writer_wait, 3801 atomic_read(&cur_trans->num_writers) == 1); 3802 ret = write_one_cache_group(trans, root, path, 3803 cache); 3804 } 3805 if (ret) 3806 btrfs_abort_transaction(trans, ret); 3807 } 3808 3809 /* if its not on the io list, we need to put the block group */ 3810 if (should_put) 3811 btrfs_put_block_group(cache); 3812 spin_lock(&cur_trans->dirty_bgs_lock); 3813 } 3814 spin_unlock(&cur_trans->dirty_bgs_lock); 3815 3816 while (!list_empty(io)) { 3817 cache = list_first_entry(io, struct btrfs_block_group_cache, 3818 io_list); 3819 list_del_init(&cache->io_list); 3820 btrfs_wait_cache_io(root, trans, cache, 3821 &cache->io_ctl, path, cache->key.objectid); 3822 btrfs_put_block_group(cache); 3823 } 3824 3825 btrfs_free_path(path); 3826 return ret; 3827 } 3828 3829 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3830 { 3831 struct btrfs_block_group_cache *block_group; 3832 int readonly = 0; 3833 3834 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3835 if (!block_group || block_group->ro) 3836 readonly = 1; 3837 if (block_group) 3838 btrfs_put_block_group(block_group); 3839 return readonly; 3840 } 3841 3842 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3843 { 3844 struct btrfs_block_group_cache *bg; 3845 bool ret = true; 3846 3847 bg = btrfs_lookup_block_group(fs_info, bytenr); 3848 if (!bg) 3849 return false; 3850 3851 spin_lock(&bg->lock); 3852 if (bg->ro) 3853 ret = false; 3854 else 3855 atomic_inc(&bg->nocow_writers); 3856 spin_unlock(&bg->lock); 3857 3858 /* no put on block group, done by btrfs_dec_nocow_writers */ 3859 if (!ret) 3860 btrfs_put_block_group(bg); 3861 3862 return ret; 3863 3864 } 3865 3866 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3867 { 3868 struct btrfs_block_group_cache *bg; 3869 3870 bg = btrfs_lookup_block_group(fs_info, bytenr); 3871 ASSERT(bg); 3872 if (atomic_dec_and_test(&bg->nocow_writers)) 3873 wake_up_atomic_t(&bg->nocow_writers); 3874 /* 3875 * Once for our lookup and once for the lookup done by a previous call 3876 * to btrfs_inc_nocow_writers() 3877 */ 3878 btrfs_put_block_group(bg); 3879 btrfs_put_block_group(bg); 3880 } 3881 3882 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3883 { 3884 schedule(); 3885 return 0; 3886 } 3887 3888 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3889 { 3890 wait_on_atomic_t(&bg->nocow_writers, 3891 btrfs_wait_nocow_writers_atomic_t, 3892 TASK_UNINTERRUPTIBLE); 3893 } 3894 3895 static const char *alloc_name(u64 flags) 3896 { 3897 switch (flags) { 3898 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3899 return "mixed"; 3900 case BTRFS_BLOCK_GROUP_METADATA: 3901 return "metadata"; 3902 case BTRFS_BLOCK_GROUP_DATA: 3903 return "data"; 3904 case BTRFS_BLOCK_GROUP_SYSTEM: 3905 return "system"; 3906 default: 3907 WARN_ON(1); 3908 return "invalid-combination"; 3909 }; 3910 } 3911 3912 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3913 u64 total_bytes, u64 bytes_used, 3914 u64 bytes_readonly, 3915 struct btrfs_space_info **space_info) 3916 { 3917 struct btrfs_space_info *found; 3918 int i; 3919 int factor; 3920 int ret; 3921 3922 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3923 BTRFS_BLOCK_GROUP_RAID10)) 3924 factor = 2; 3925 else 3926 factor = 1; 3927 3928 found = __find_space_info(info, flags); 3929 if (found) { 3930 spin_lock(&found->lock); 3931 found->total_bytes += total_bytes; 3932 found->disk_total += total_bytes * factor; 3933 found->bytes_used += bytes_used; 3934 found->disk_used += bytes_used * factor; 3935 found->bytes_readonly += bytes_readonly; 3936 if (total_bytes > 0) 3937 found->full = 0; 3938 space_info_add_new_bytes(info, found, total_bytes - 3939 bytes_used - bytes_readonly); 3940 spin_unlock(&found->lock); 3941 *space_info = found; 3942 return 0; 3943 } 3944 found = kzalloc(sizeof(*found), GFP_NOFS); 3945 if (!found) 3946 return -ENOMEM; 3947 3948 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3949 if (ret) { 3950 kfree(found); 3951 return ret; 3952 } 3953 3954 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3955 INIT_LIST_HEAD(&found->block_groups[i]); 3956 init_rwsem(&found->groups_sem); 3957 spin_lock_init(&found->lock); 3958 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3959 found->total_bytes = total_bytes; 3960 found->disk_total = total_bytes * factor; 3961 found->bytes_used = bytes_used; 3962 found->disk_used = bytes_used * factor; 3963 found->bytes_pinned = 0; 3964 found->bytes_reserved = 0; 3965 found->bytes_readonly = bytes_readonly; 3966 found->bytes_may_use = 0; 3967 found->full = 0; 3968 found->max_extent_size = 0; 3969 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3970 found->chunk_alloc = 0; 3971 found->flush = 0; 3972 init_waitqueue_head(&found->wait); 3973 INIT_LIST_HEAD(&found->ro_bgs); 3974 INIT_LIST_HEAD(&found->tickets); 3975 INIT_LIST_HEAD(&found->priority_tickets); 3976 3977 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3978 info->space_info_kobj, "%s", 3979 alloc_name(found->flags)); 3980 if (ret) { 3981 kfree(found); 3982 return ret; 3983 } 3984 3985 *space_info = found; 3986 list_add_rcu(&found->list, &info->space_info); 3987 if (flags & BTRFS_BLOCK_GROUP_DATA) 3988 info->data_sinfo = found; 3989 3990 return ret; 3991 } 3992 3993 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3994 { 3995 u64 extra_flags = chunk_to_extended(flags) & 3996 BTRFS_EXTENDED_PROFILE_MASK; 3997 3998 write_seqlock(&fs_info->profiles_lock); 3999 if (flags & BTRFS_BLOCK_GROUP_DATA) 4000 fs_info->avail_data_alloc_bits |= extra_flags; 4001 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4002 fs_info->avail_metadata_alloc_bits |= extra_flags; 4003 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4004 fs_info->avail_system_alloc_bits |= extra_flags; 4005 write_sequnlock(&fs_info->profiles_lock); 4006 } 4007 4008 /* 4009 * returns target flags in extended format or 0 if restripe for this 4010 * chunk_type is not in progress 4011 * 4012 * should be called with either volume_mutex or balance_lock held 4013 */ 4014 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4015 { 4016 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4017 u64 target = 0; 4018 4019 if (!bctl) 4020 return 0; 4021 4022 if (flags & BTRFS_BLOCK_GROUP_DATA && 4023 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4024 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4025 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4026 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4027 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4028 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4029 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4030 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4031 } 4032 4033 return target; 4034 } 4035 4036 /* 4037 * @flags: available profiles in extended format (see ctree.h) 4038 * 4039 * Returns reduced profile in chunk format. If profile changing is in 4040 * progress (either running or paused) picks the target profile (if it's 4041 * already available), otherwise falls back to plain reducing. 4042 */ 4043 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 4044 { 4045 u64 num_devices = root->fs_info->fs_devices->rw_devices; 4046 u64 target; 4047 u64 raid_type; 4048 u64 allowed = 0; 4049 4050 /* 4051 * see if restripe for this chunk_type is in progress, if so 4052 * try to reduce to the target profile 4053 */ 4054 spin_lock(&root->fs_info->balance_lock); 4055 target = get_restripe_target(root->fs_info, flags); 4056 if (target) { 4057 /* pick target profile only if it's already available */ 4058 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4059 spin_unlock(&root->fs_info->balance_lock); 4060 return extended_to_chunk(target); 4061 } 4062 } 4063 spin_unlock(&root->fs_info->balance_lock); 4064 4065 /* First, mask out the RAID levels which aren't possible */ 4066 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4067 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4068 allowed |= btrfs_raid_group[raid_type]; 4069 } 4070 allowed &= flags; 4071 4072 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4073 allowed = BTRFS_BLOCK_GROUP_RAID6; 4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4075 allowed = BTRFS_BLOCK_GROUP_RAID5; 4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4077 allowed = BTRFS_BLOCK_GROUP_RAID10; 4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4079 allowed = BTRFS_BLOCK_GROUP_RAID1; 4080 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4081 allowed = BTRFS_BLOCK_GROUP_RAID0; 4082 4083 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4084 4085 return extended_to_chunk(flags | allowed); 4086 } 4087 4088 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4089 { 4090 unsigned seq; 4091 u64 flags; 4092 4093 do { 4094 flags = orig_flags; 4095 seq = read_seqbegin(&root->fs_info->profiles_lock); 4096 4097 if (flags & BTRFS_BLOCK_GROUP_DATA) 4098 flags |= root->fs_info->avail_data_alloc_bits; 4099 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4100 flags |= root->fs_info->avail_system_alloc_bits; 4101 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4102 flags |= root->fs_info->avail_metadata_alloc_bits; 4103 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4104 4105 return btrfs_reduce_alloc_profile(root, flags); 4106 } 4107 4108 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4109 { 4110 u64 flags; 4111 u64 ret; 4112 4113 if (data) 4114 flags = BTRFS_BLOCK_GROUP_DATA; 4115 else if (root == root->fs_info->chunk_root) 4116 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4117 else 4118 flags = BTRFS_BLOCK_GROUP_METADATA; 4119 4120 ret = get_alloc_profile(root, flags); 4121 return ret; 4122 } 4123 4124 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4125 { 4126 struct btrfs_space_info *data_sinfo; 4127 struct btrfs_root *root = BTRFS_I(inode)->root; 4128 struct btrfs_fs_info *fs_info = root->fs_info; 4129 u64 used; 4130 int ret = 0; 4131 int need_commit = 2; 4132 int have_pinned_space; 4133 4134 /* make sure bytes are sectorsize aligned */ 4135 bytes = ALIGN(bytes, root->sectorsize); 4136 4137 if (btrfs_is_free_space_inode(inode)) { 4138 need_commit = 0; 4139 ASSERT(current->journal_info); 4140 } 4141 4142 data_sinfo = fs_info->data_sinfo; 4143 if (!data_sinfo) 4144 goto alloc; 4145 4146 again: 4147 /* make sure we have enough space to handle the data first */ 4148 spin_lock(&data_sinfo->lock); 4149 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4150 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4151 data_sinfo->bytes_may_use; 4152 4153 if (used + bytes > data_sinfo->total_bytes) { 4154 struct btrfs_trans_handle *trans; 4155 4156 /* 4157 * if we don't have enough free bytes in this space then we need 4158 * to alloc a new chunk. 4159 */ 4160 if (!data_sinfo->full) { 4161 u64 alloc_target; 4162 4163 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4164 spin_unlock(&data_sinfo->lock); 4165 alloc: 4166 alloc_target = btrfs_get_alloc_profile(root, 1); 4167 /* 4168 * It is ugly that we don't call nolock join 4169 * transaction for the free space inode case here. 4170 * But it is safe because we only do the data space 4171 * reservation for the free space cache in the 4172 * transaction context, the common join transaction 4173 * just increase the counter of the current transaction 4174 * handler, doesn't try to acquire the trans_lock of 4175 * the fs. 4176 */ 4177 trans = btrfs_join_transaction(root); 4178 if (IS_ERR(trans)) 4179 return PTR_ERR(trans); 4180 4181 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4182 alloc_target, 4183 CHUNK_ALLOC_NO_FORCE); 4184 btrfs_end_transaction(trans, root); 4185 if (ret < 0) { 4186 if (ret != -ENOSPC) 4187 return ret; 4188 else { 4189 have_pinned_space = 1; 4190 goto commit_trans; 4191 } 4192 } 4193 4194 if (!data_sinfo) 4195 data_sinfo = fs_info->data_sinfo; 4196 4197 goto again; 4198 } 4199 4200 /* 4201 * If we don't have enough pinned space to deal with this 4202 * allocation, and no removed chunk in current transaction, 4203 * don't bother committing the transaction. 4204 */ 4205 have_pinned_space = percpu_counter_compare( 4206 &data_sinfo->total_bytes_pinned, 4207 used + bytes - data_sinfo->total_bytes); 4208 spin_unlock(&data_sinfo->lock); 4209 4210 /* commit the current transaction and try again */ 4211 commit_trans: 4212 if (need_commit && 4213 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4214 need_commit--; 4215 4216 if (need_commit > 0) { 4217 btrfs_start_delalloc_roots(fs_info, 0, -1); 4218 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 4219 } 4220 4221 trans = btrfs_join_transaction(root); 4222 if (IS_ERR(trans)) 4223 return PTR_ERR(trans); 4224 if (have_pinned_space >= 0 || 4225 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4226 &trans->transaction->flags) || 4227 need_commit > 0) { 4228 ret = btrfs_commit_transaction(trans, root); 4229 if (ret) 4230 return ret; 4231 /* 4232 * The cleaner kthread might still be doing iput 4233 * operations. Wait for it to finish so that 4234 * more space is released. 4235 */ 4236 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4237 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4238 goto again; 4239 } else { 4240 btrfs_end_transaction(trans, root); 4241 } 4242 } 4243 4244 trace_btrfs_space_reservation(root->fs_info, 4245 "space_info:enospc", 4246 data_sinfo->flags, bytes, 1); 4247 return -ENOSPC; 4248 } 4249 data_sinfo->bytes_may_use += bytes; 4250 trace_btrfs_space_reservation(root->fs_info, "space_info", 4251 data_sinfo->flags, bytes, 1); 4252 spin_unlock(&data_sinfo->lock); 4253 4254 return ret; 4255 } 4256 4257 /* 4258 * New check_data_free_space() with ability for precious data reservation 4259 * Will replace old btrfs_check_data_free_space(), but for patch split, 4260 * add a new function first and then replace it. 4261 */ 4262 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4263 { 4264 struct btrfs_root *root = BTRFS_I(inode)->root; 4265 int ret; 4266 4267 /* align the range */ 4268 len = round_up(start + len, root->sectorsize) - 4269 round_down(start, root->sectorsize); 4270 start = round_down(start, root->sectorsize); 4271 4272 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4273 if (ret < 0) 4274 return ret; 4275 4276 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4277 ret = btrfs_qgroup_reserve_data(inode, start, len); 4278 if (ret) 4279 btrfs_free_reserved_data_space_noquota(inode, start, len); 4280 return ret; 4281 } 4282 4283 /* 4284 * Called if we need to clear a data reservation for this inode 4285 * Normally in a error case. 4286 * 4287 * This one will *NOT* use accurate qgroup reserved space API, just for case 4288 * which we can't sleep and is sure it won't affect qgroup reserved space. 4289 * Like clear_bit_hook(). 4290 */ 4291 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4292 u64 len) 4293 { 4294 struct btrfs_root *root = BTRFS_I(inode)->root; 4295 struct btrfs_space_info *data_sinfo; 4296 4297 /* Make sure the range is aligned to sectorsize */ 4298 len = round_up(start + len, root->sectorsize) - 4299 round_down(start, root->sectorsize); 4300 start = round_down(start, root->sectorsize); 4301 4302 data_sinfo = root->fs_info->data_sinfo; 4303 spin_lock(&data_sinfo->lock); 4304 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4305 data_sinfo->bytes_may_use = 0; 4306 else 4307 data_sinfo->bytes_may_use -= len; 4308 trace_btrfs_space_reservation(root->fs_info, "space_info", 4309 data_sinfo->flags, len, 0); 4310 spin_unlock(&data_sinfo->lock); 4311 } 4312 4313 /* 4314 * Called if we need to clear a data reservation for this inode 4315 * Normally in a error case. 4316 * 4317 * This one will handle the per-inode data rsv map for accurate reserved 4318 * space framework. 4319 */ 4320 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4321 { 4322 btrfs_free_reserved_data_space_noquota(inode, start, len); 4323 btrfs_qgroup_free_data(inode, start, len); 4324 } 4325 4326 static void force_metadata_allocation(struct btrfs_fs_info *info) 4327 { 4328 struct list_head *head = &info->space_info; 4329 struct btrfs_space_info *found; 4330 4331 rcu_read_lock(); 4332 list_for_each_entry_rcu(found, head, list) { 4333 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4334 found->force_alloc = CHUNK_ALLOC_FORCE; 4335 } 4336 rcu_read_unlock(); 4337 } 4338 4339 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4340 { 4341 return (global->size << 1); 4342 } 4343 4344 static int should_alloc_chunk(struct btrfs_root *root, 4345 struct btrfs_space_info *sinfo, int force) 4346 { 4347 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4348 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4349 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4350 u64 thresh; 4351 4352 if (force == CHUNK_ALLOC_FORCE) 4353 return 1; 4354 4355 /* 4356 * We need to take into account the global rsv because for all intents 4357 * and purposes it's used space. Don't worry about locking the 4358 * global_rsv, it doesn't change except when the transaction commits. 4359 */ 4360 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4361 num_allocated += calc_global_rsv_need_space(global_rsv); 4362 4363 /* 4364 * in limited mode, we want to have some free space up to 4365 * about 1% of the FS size. 4366 */ 4367 if (force == CHUNK_ALLOC_LIMITED) { 4368 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4369 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4370 4371 if (num_bytes - num_allocated < thresh) 4372 return 1; 4373 } 4374 4375 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4376 return 0; 4377 return 1; 4378 } 4379 4380 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4381 { 4382 u64 num_dev; 4383 4384 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4385 BTRFS_BLOCK_GROUP_RAID0 | 4386 BTRFS_BLOCK_GROUP_RAID5 | 4387 BTRFS_BLOCK_GROUP_RAID6)) 4388 num_dev = root->fs_info->fs_devices->rw_devices; 4389 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4390 num_dev = 2; 4391 else 4392 num_dev = 1; /* DUP or single */ 4393 4394 return num_dev; 4395 } 4396 4397 /* 4398 * If @is_allocation is true, reserve space in the system space info necessary 4399 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4400 * removing a chunk. 4401 */ 4402 void check_system_chunk(struct btrfs_trans_handle *trans, 4403 struct btrfs_root *root, 4404 u64 type) 4405 { 4406 struct btrfs_space_info *info; 4407 u64 left; 4408 u64 thresh; 4409 int ret = 0; 4410 u64 num_devs; 4411 4412 /* 4413 * Needed because we can end up allocating a system chunk and for an 4414 * atomic and race free space reservation in the chunk block reserve. 4415 */ 4416 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4417 4418 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4419 spin_lock(&info->lock); 4420 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4421 info->bytes_reserved - info->bytes_readonly - 4422 info->bytes_may_use; 4423 spin_unlock(&info->lock); 4424 4425 num_devs = get_profile_num_devs(root, type); 4426 4427 /* num_devs device items to update and 1 chunk item to add or remove */ 4428 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4429 btrfs_calc_trans_metadata_size(root, 1); 4430 4431 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 4432 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4433 left, thresh, type); 4434 dump_space_info(root->fs_info, info, 0, 0); 4435 } 4436 4437 if (left < thresh) { 4438 u64 flags; 4439 4440 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4441 /* 4442 * Ignore failure to create system chunk. We might end up not 4443 * needing it, as we might not need to COW all nodes/leafs from 4444 * the paths we visit in the chunk tree (they were already COWed 4445 * or created in the current transaction for example). 4446 */ 4447 ret = btrfs_alloc_chunk(trans, root, flags); 4448 } 4449 4450 if (!ret) { 4451 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4452 &root->fs_info->chunk_block_rsv, 4453 thresh, BTRFS_RESERVE_NO_FLUSH); 4454 if (!ret) 4455 trans->chunk_bytes_reserved += thresh; 4456 } 4457 } 4458 4459 /* 4460 * If force is CHUNK_ALLOC_FORCE: 4461 * - return 1 if it successfully allocates a chunk, 4462 * - return errors including -ENOSPC otherwise. 4463 * If force is NOT CHUNK_ALLOC_FORCE: 4464 * - return 0 if it doesn't need to allocate a new chunk, 4465 * - return 1 if it successfully allocates a chunk, 4466 * - return errors including -ENOSPC otherwise. 4467 */ 4468 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4469 struct btrfs_root *extent_root, u64 flags, int force) 4470 { 4471 struct btrfs_space_info *space_info; 4472 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4473 int wait_for_alloc = 0; 4474 int ret = 0; 4475 4476 /* Don't re-enter if we're already allocating a chunk */ 4477 if (trans->allocating_chunk) 4478 return -ENOSPC; 4479 4480 space_info = __find_space_info(extent_root->fs_info, flags); 4481 if (!space_info) { 4482 ret = update_space_info(extent_root->fs_info, flags, 4483 0, 0, 0, &space_info); 4484 BUG_ON(ret); /* -ENOMEM */ 4485 } 4486 BUG_ON(!space_info); /* Logic error */ 4487 4488 again: 4489 spin_lock(&space_info->lock); 4490 if (force < space_info->force_alloc) 4491 force = space_info->force_alloc; 4492 if (space_info->full) { 4493 if (should_alloc_chunk(extent_root, space_info, force)) 4494 ret = -ENOSPC; 4495 else 4496 ret = 0; 4497 spin_unlock(&space_info->lock); 4498 return ret; 4499 } 4500 4501 if (!should_alloc_chunk(extent_root, space_info, force)) { 4502 spin_unlock(&space_info->lock); 4503 return 0; 4504 } else if (space_info->chunk_alloc) { 4505 wait_for_alloc = 1; 4506 } else { 4507 space_info->chunk_alloc = 1; 4508 } 4509 4510 spin_unlock(&space_info->lock); 4511 4512 mutex_lock(&fs_info->chunk_mutex); 4513 4514 /* 4515 * The chunk_mutex is held throughout the entirety of a chunk 4516 * allocation, so once we've acquired the chunk_mutex we know that the 4517 * other guy is done and we need to recheck and see if we should 4518 * allocate. 4519 */ 4520 if (wait_for_alloc) { 4521 mutex_unlock(&fs_info->chunk_mutex); 4522 wait_for_alloc = 0; 4523 goto again; 4524 } 4525 4526 trans->allocating_chunk = true; 4527 4528 /* 4529 * If we have mixed data/metadata chunks we want to make sure we keep 4530 * allocating mixed chunks instead of individual chunks. 4531 */ 4532 if (btrfs_mixed_space_info(space_info)) 4533 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4534 4535 /* 4536 * if we're doing a data chunk, go ahead and make sure that 4537 * we keep a reasonable number of metadata chunks allocated in the 4538 * FS as well. 4539 */ 4540 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4541 fs_info->data_chunk_allocations++; 4542 if (!(fs_info->data_chunk_allocations % 4543 fs_info->metadata_ratio)) 4544 force_metadata_allocation(fs_info); 4545 } 4546 4547 /* 4548 * Check if we have enough space in SYSTEM chunk because we may need 4549 * to update devices. 4550 */ 4551 check_system_chunk(trans, extent_root, flags); 4552 4553 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4554 trans->allocating_chunk = false; 4555 4556 spin_lock(&space_info->lock); 4557 if (ret < 0 && ret != -ENOSPC) 4558 goto out; 4559 if (ret) 4560 space_info->full = 1; 4561 else 4562 ret = 1; 4563 4564 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4565 out: 4566 space_info->chunk_alloc = 0; 4567 spin_unlock(&space_info->lock); 4568 mutex_unlock(&fs_info->chunk_mutex); 4569 /* 4570 * When we allocate a new chunk we reserve space in the chunk block 4571 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4572 * add new nodes/leafs to it if we end up needing to do it when 4573 * inserting the chunk item and updating device items as part of the 4574 * second phase of chunk allocation, performed by 4575 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4576 * large number of new block groups to create in our transaction 4577 * handle's new_bgs list to avoid exhausting the chunk block reserve 4578 * in extreme cases - like having a single transaction create many new 4579 * block groups when starting to write out the free space caches of all 4580 * the block groups that were made dirty during the lifetime of the 4581 * transaction. 4582 */ 4583 if (trans->can_flush_pending_bgs && 4584 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4585 btrfs_create_pending_block_groups(trans, extent_root); 4586 btrfs_trans_release_chunk_metadata(trans); 4587 } 4588 return ret; 4589 } 4590 4591 static int can_overcommit(struct btrfs_root *root, 4592 struct btrfs_space_info *space_info, u64 bytes, 4593 enum btrfs_reserve_flush_enum flush) 4594 { 4595 struct btrfs_block_rsv *global_rsv; 4596 u64 profile; 4597 u64 space_size; 4598 u64 avail; 4599 u64 used; 4600 4601 /* Don't overcommit when in mixed mode. */ 4602 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4603 return 0; 4604 4605 BUG_ON(root->fs_info == NULL); 4606 global_rsv = &root->fs_info->global_block_rsv; 4607 profile = btrfs_get_alloc_profile(root, 0); 4608 used = space_info->bytes_used + space_info->bytes_reserved + 4609 space_info->bytes_pinned + space_info->bytes_readonly; 4610 4611 /* 4612 * We only want to allow over committing if we have lots of actual space 4613 * free, but if we don't have enough space to handle the global reserve 4614 * space then we could end up having a real enospc problem when trying 4615 * to allocate a chunk or some other such important allocation. 4616 */ 4617 spin_lock(&global_rsv->lock); 4618 space_size = calc_global_rsv_need_space(global_rsv); 4619 spin_unlock(&global_rsv->lock); 4620 if (used + space_size >= space_info->total_bytes) 4621 return 0; 4622 4623 used += space_info->bytes_may_use; 4624 4625 spin_lock(&root->fs_info->free_chunk_lock); 4626 avail = root->fs_info->free_chunk_space; 4627 spin_unlock(&root->fs_info->free_chunk_lock); 4628 4629 /* 4630 * If we have dup, raid1 or raid10 then only half of the free 4631 * space is actually useable. For raid56, the space info used 4632 * doesn't include the parity drive, so we don't have to 4633 * change the math 4634 */ 4635 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4636 BTRFS_BLOCK_GROUP_RAID1 | 4637 BTRFS_BLOCK_GROUP_RAID10)) 4638 avail >>= 1; 4639 4640 /* 4641 * If we aren't flushing all things, let us overcommit up to 4642 * 1/2th of the space. If we can flush, don't let us overcommit 4643 * too much, let it overcommit up to 1/8 of the space. 4644 */ 4645 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4646 avail >>= 3; 4647 else 4648 avail >>= 1; 4649 4650 if (used + bytes < space_info->total_bytes + avail) 4651 return 1; 4652 return 0; 4653 } 4654 4655 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4656 unsigned long nr_pages, int nr_items) 4657 { 4658 struct super_block *sb = root->fs_info->sb; 4659 4660 if (down_read_trylock(&sb->s_umount)) { 4661 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4662 up_read(&sb->s_umount); 4663 } else { 4664 /* 4665 * We needn't worry the filesystem going from r/w to r/o though 4666 * we don't acquire ->s_umount mutex, because the filesystem 4667 * should guarantee the delalloc inodes list be empty after 4668 * the filesystem is readonly(all dirty pages are written to 4669 * the disk). 4670 */ 4671 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4672 if (!current->journal_info) 4673 btrfs_wait_ordered_roots(root->fs_info, nr_items, 4674 0, (u64)-1); 4675 } 4676 } 4677 4678 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4679 { 4680 u64 bytes; 4681 int nr; 4682 4683 bytes = btrfs_calc_trans_metadata_size(root, 1); 4684 nr = (int)div64_u64(to_reclaim, bytes); 4685 if (!nr) 4686 nr = 1; 4687 return nr; 4688 } 4689 4690 #define EXTENT_SIZE_PER_ITEM SZ_256K 4691 4692 /* 4693 * shrink metadata reservation for delalloc 4694 */ 4695 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4696 bool wait_ordered) 4697 { 4698 struct btrfs_block_rsv *block_rsv; 4699 struct btrfs_space_info *space_info; 4700 struct btrfs_trans_handle *trans; 4701 u64 delalloc_bytes; 4702 u64 max_reclaim; 4703 long time_left; 4704 unsigned long nr_pages; 4705 int loops; 4706 int items; 4707 enum btrfs_reserve_flush_enum flush; 4708 4709 /* Calc the number of the pages we need flush for space reservation */ 4710 items = calc_reclaim_items_nr(root, to_reclaim); 4711 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4712 4713 trans = (struct btrfs_trans_handle *)current->journal_info; 4714 block_rsv = &root->fs_info->delalloc_block_rsv; 4715 space_info = block_rsv->space_info; 4716 4717 delalloc_bytes = percpu_counter_sum_positive( 4718 &root->fs_info->delalloc_bytes); 4719 if (delalloc_bytes == 0) { 4720 if (trans) 4721 return; 4722 if (wait_ordered) 4723 btrfs_wait_ordered_roots(root->fs_info, items, 4724 0, (u64)-1); 4725 return; 4726 } 4727 4728 loops = 0; 4729 while (delalloc_bytes && loops < 3) { 4730 max_reclaim = min(delalloc_bytes, to_reclaim); 4731 nr_pages = max_reclaim >> PAGE_SHIFT; 4732 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4733 /* 4734 * We need to wait for the async pages to actually start before 4735 * we do anything. 4736 */ 4737 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4738 if (!max_reclaim) 4739 goto skip_async; 4740 4741 if (max_reclaim <= nr_pages) 4742 max_reclaim = 0; 4743 else 4744 max_reclaim -= nr_pages; 4745 4746 wait_event(root->fs_info->async_submit_wait, 4747 atomic_read(&root->fs_info->async_delalloc_pages) <= 4748 (int)max_reclaim); 4749 skip_async: 4750 if (!trans) 4751 flush = BTRFS_RESERVE_FLUSH_ALL; 4752 else 4753 flush = BTRFS_RESERVE_NO_FLUSH; 4754 spin_lock(&space_info->lock); 4755 if (can_overcommit(root, space_info, orig, flush)) { 4756 spin_unlock(&space_info->lock); 4757 break; 4758 } 4759 if (list_empty(&space_info->tickets) && 4760 list_empty(&space_info->priority_tickets)) { 4761 spin_unlock(&space_info->lock); 4762 break; 4763 } 4764 spin_unlock(&space_info->lock); 4765 4766 loops++; 4767 if (wait_ordered && !trans) { 4768 btrfs_wait_ordered_roots(root->fs_info, items, 4769 0, (u64)-1); 4770 } else { 4771 time_left = schedule_timeout_killable(1); 4772 if (time_left) 4773 break; 4774 } 4775 delalloc_bytes = percpu_counter_sum_positive( 4776 &root->fs_info->delalloc_bytes); 4777 } 4778 } 4779 4780 /** 4781 * maybe_commit_transaction - possibly commit the transaction if its ok to 4782 * @root - the root we're allocating for 4783 * @bytes - the number of bytes we want to reserve 4784 * @force - force the commit 4785 * 4786 * This will check to make sure that committing the transaction will actually 4787 * get us somewhere and then commit the transaction if it does. Otherwise it 4788 * will return -ENOSPC. 4789 */ 4790 static int may_commit_transaction(struct btrfs_root *root, 4791 struct btrfs_space_info *space_info, 4792 u64 bytes, int force) 4793 { 4794 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4795 struct btrfs_trans_handle *trans; 4796 4797 trans = (struct btrfs_trans_handle *)current->journal_info; 4798 if (trans) 4799 return -EAGAIN; 4800 4801 if (force) 4802 goto commit; 4803 4804 /* See if there is enough pinned space to make this reservation */ 4805 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4806 bytes) >= 0) 4807 goto commit; 4808 4809 /* 4810 * See if there is some space in the delayed insertion reservation for 4811 * this reservation. 4812 */ 4813 if (space_info != delayed_rsv->space_info) 4814 return -ENOSPC; 4815 4816 spin_lock(&delayed_rsv->lock); 4817 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4818 bytes - delayed_rsv->size) >= 0) { 4819 spin_unlock(&delayed_rsv->lock); 4820 return -ENOSPC; 4821 } 4822 spin_unlock(&delayed_rsv->lock); 4823 4824 commit: 4825 trans = btrfs_join_transaction(root); 4826 if (IS_ERR(trans)) 4827 return -ENOSPC; 4828 4829 return btrfs_commit_transaction(trans, root); 4830 } 4831 4832 struct reserve_ticket { 4833 u64 bytes; 4834 int error; 4835 struct list_head list; 4836 wait_queue_head_t wait; 4837 }; 4838 4839 static int flush_space(struct btrfs_root *root, 4840 struct btrfs_space_info *space_info, u64 num_bytes, 4841 u64 orig_bytes, int state) 4842 { 4843 struct btrfs_trans_handle *trans; 4844 int nr; 4845 int ret = 0; 4846 4847 switch (state) { 4848 case FLUSH_DELAYED_ITEMS_NR: 4849 case FLUSH_DELAYED_ITEMS: 4850 if (state == FLUSH_DELAYED_ITEMS_NR) 4851 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4852 else 4853 nr = -1; 4854 4855 trans = btrfs_join_transaction(root); 4856 if (IS_ERR(trans)) { 4857 ret = PTR_ERR(trans); 4858 break; 4859 } 4860 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4861 btrfs_end_transaction(trans, root); 4862 break; 4863 case FLUSH_DELALLOC: 4864 case FLUSH_DELALLOC_WAIT: 4865 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4866 state == FLUSH_DELALLOC_WAIT); 4867 break; 4868 case ALLOC_CHUNK: 4869 trans = btrfs_join_transaction(root); 4870 if (IS_ERR(trans)) { 4871 ret = PTR_ERR(trans); 4872 break; 4873 } 4874 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4875 btrfs_get_alloc_profile(root, 0), 4876 CHUNK_ALLOC_NO_FORCE); 4877 btrfs_end_transaction(trans, root); 4878 if (ret > 0 || ret == -ENOSPC) 4879 ret = 0; 4880 break; 4881 case COMMIT_TRANS: 4882 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4883 break; 4884 default: 4885 ret = -ENOSPC; 4886 break; 4887 } 4888 4889 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes, 4890 orig_bytes, state, ret); 4891 return ret; 4892 } 4893 4894 static inline u64 4895 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4896 struct btrfs_space_info *space_info) 4897 { 4898 struct reserve_ticket *ticket; 4899 u64 used; 4900 u64 expected; 4901 u64 to_reclaim = 0; 4902 4903 list_for_each_entry(ticket, &space_info->tickets, list) 4904 to_reclaim += ticket->bytes; 4905 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4906 to_reclaim += ticket->bytes; 4907 if (to_reclaim) 4908 return to_reclaim; 4909 4910 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4911 if (can_overcommit(root, space_info, to_reclaim, 4912 BTRFS_RESERVE_FLUSH_ALL)) 4913 return 0; 4914 4915 used = space_info->bytes_used + space_info->bytes_reserved + 4916 space_info->bytes_pinned + space_info->bytes_readonly + 4917 space_info->bytes_may_use; 4918 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4919 expected = div_factor_fine(space_info->total_bytes, 95); 4920 else 4921 expected = div_factor_fine(space_info->total_bytes, 90); 4922 4923 if (used > expected) 4924 to_reclaim = used - expected; 4925 else 4926 to_reclaim = 0; 4927 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4928 space_info->bytes_reserved); 4929 return to_reclaim; 4930 } 4931 4932 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4933 struct btrfs_root *root, u64 used) 4934 { 4935 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4936 4937 /* If we're just plain full then async reclaim just slows us down. */ 4938 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4939 return 0; 4940 4941 if (!btrfs_calc_reclaim_metadata_size(root, space_info)) 4942 return 0; 4943 4944 return (used >= thresh && !btrfs_fs_closing(root->fs_info) && 4945 !test_bit(BTRFS_FS_STATE_REMOUNTING, 4946 &root->fs_info->fs_state)); 4947 } 4948 4949 static void wake_all_tickets(struct list_head *head) 4950 { 4951 struct reserve_ticket *ticket; 4952 4953 while (!list_empty(head)) { 4954 ticket = list_first_entry(head, struct reserve_ticket, list); 4955 list_del_init(&ticket->list); 4956 ticket->error = -ENOSPC; 4957 wake_up(&ticket->wait); 4958 } 4959 } 4960 4961 /* 4962 * This is for normal flushers, we can wait all goddamned day if we want to. We 4963 * will loop and continuously try to flush as long as we are making progress. 4964 * We count progress as clearing off tickets each time we have to loop. 4965 */ 4966 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4967 { 4968 struct btrfs_fs_info *fs_info; 4969 struct btrfs_space_info *space_info; 4970 u64 to_reclaim; 4971 int flush_state; 4972 int commit_cycles = 0; 4973 u64 last_tickets_id; 4974 4975 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4976 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4977 4978 spin_lock(&space_info->lock); 4979 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4980 space_info); 4981 if (!to_reclaim) { 4982 space_info->flush = 0; 4983 spin_unlock(&space_info->lock); 4984 return; 4985 } 4986 last_tickets_id = space_info->tickets_id; 4987 spin_unlock(&space_info->lock); 4988 4989 flush_state = FLUSH_DELAYED_ITEMS_NR; 4990 do { 4991 struct reserve_ticket *ticket; 4992 int ret; 4993 4994 ret = flush_space(fs_info->fs_root, space_info, to_reclaim, 4995 to_reclaim, flush_state); 4996 spin_lock(&space_info->lock); 4997 if (list_empty(&space_info->tickets)) { 4998 space_info->flush = 0; 4999 spin_unlock(&space_info->lock); 5000 return; 5001 } 5002 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5003 space_info); 5004 ticket = list_first_entry(&space_info->tickets, 5005 struct reserve_ticket, list); 5006 if (last_tickets_id == space_info->tickets_id) { 5007 flush_state++; 5008 } else { 5009 last_tickets_id = space_info->tickets_id; 5010 flush_state = FLUSH_DELAYED_ITEMS_NR; 5011 if (commit_cycles) 5012 commit_cycles--; 5013 } 5014 5015 if (flush_state > COMMIT_TRANS) { 5016 commit_cycles++; 5017 if (commit_cycles > 2) { 5018 wake_all_tickets(&space_info->tickets); 5019 space_info->flush = 0; 5020 } else { 5021 flush_state = FLUSH_DELAYED_ITEMS_NR; 5022 } 5023 } 5024 spin_unlock(&space_info->lock); 5025 } while (flush_state <= COMMIT_TRANS); 5026 } 5027 5028 void btrfs_init_async_reclaim_work(struct work_struct *work) 5029 { 5030 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5031 } 5032 5033 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5034 struct btrfs_space_info *space_info, 5035 struct reserve_ticket *ticket) 5036 { 5037 u64 to_reclaim; 5038 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5039 5040 spin_lock(&space_info->lock); 5041 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5042 space_info); 5043 if (!to_reclaim) { 5044 spin_unlock(&space_info->lock); 5045 return; 5046 } 5047 spin_unlock(&space_info->lock); 5048 5049 do { 5050 flush_space(fs_info->fs_root, space_info, to_reclaim, 5051 to_reclaim, flush_state); 5052 flush_state++; 5053 spin_lock(&space_info->lock); 5054 if (ticket->bytes == 0) { 5055 spin_unlock(&space_info->lock); 5056 return; 5057 } 5058 spin_unlock(&space_info->lock); 5059 5060 /* 5061 * Priority flushers can't wait on delalloc without 5062 * deadlocking. 5063 */ 5064 if (flush_state == FLUSH_DELALLOC || 5065 flush_state == FLUSH_DELALLOC_WAIT) 5066 flush_state = ALLOC_CHUNK; 5067 } while (flush_state < COMMIT_TRANS); 5068 } 5069 5070 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5071 struct btrfs_space_info *space_info, 5072 struct reserve_ticket *ticket, u64 orig_bytes) 5073 5074 { 5075 DEFINE_WAIT(wait); 5076 int ret = 0; 5077 5078 spin_lock(&space_info->lock); 5079 while (ticket->bytes > 0 && ticket->error == 0) { 5080 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5081 if (ret) { 5082 ret = -EINTR; 5083 break; 5084 } 5085 spin_unlock(&space_info->lock); 5086 5087 schedule(); 5088 5089 finish_wait(&ticket->wait, &wait); 5090 spin_lock(&space_info->lock); 5091 } 5092 if (!ret) 5093 ret = ticket->error; 5094 if (!list_empty(&ticket->list)) 5095 list_del_init(&ticket->list); 5096 if (ticket->bytes && ticket->bytes < orig_bytes) { 5097 u64 num_bytes = orig_bytes - ticket->bytes; 5098 space_info->bytes_may_use -= num_bytes; 5099 trace_btrfs_space_reservation(fs_info, "space_info", 5100 space_info->flags, num_bytes, 0); 5101 } 5102 spin_unlock(&space_info->lock); 5103 5104 return ret; 5105 } 5106 5107 /** 5108 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5109 * @root - the root we're allocating for 5110 * @space_info - the space info we want to allocate from 5111 * @orig_bytes - the number of bytes we want 5112 * @flush - whether or not we can flush to make our reservation 5113 * 5114 * This will reserve orig_bytes number of bytes from the space info associated 5115 * with the block_rsv. If there is not enough space it will make an attempt to 5116 * flush out space to make room. It will do this by flushing delalloc if 5117 * possible or committing the transaction. If flush is 0 then no attempts to 5118 * regain reservations will be made and this will fail if there is not enough 5119 * space already. 5120 */ 5121 static int __reserve_metadata_bytes(struct btrfs_root *root, 5122 struct btrfs_space_info *space_info, 5123 u64 orig_bytes, 5124 enum btrfs_reserve_flush_enum flush) 5125 { 5126 struct reserve_ticket ticket; 5127 u64 used; 5128 int ret = 0; 5129 5130 ASSERT(orig_bytes); 5131 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5132 5133 spin_lock(&space_info->lock); 5134 ret = -ENOSPC; 5135 used = space_info->bytes_used + space_info->bytes_reserved + 5136 space_info->bytes_pinned + space_info->bytes_readonly + 5137 space_info->bytes_may_use; 5138 5139 /* 5140 * If we have enough space then hooray, make our reservation and carry 5141 * on. If not see if we can overcommit, and if we can, hooray carry on. 5142 * If not things get more complicated. 5143 */ 5144 if (used + orig_bytes <= space_info->total_bytes) { 5145 space_info->bytes_may_use += orig_bytes; 5146 trace_btrfs_space_reservation(root->fs_info, "space_info", 5147 space_info->flags, orig_bytes, 5148 1); 5149 ret = 0; 5150 } else if (can_overcommit(root, space_info, orig_bytes, flush)) { 5151 space_info->bytes_may_use += orig_bytes; 5152 trace_btrfs_space_reservation(root->fs_info, "space_info", 5153 space_info->flags, orig_bytes, 5154 1); 5155 ret = 0; 5156 } 5157 5158 /* 5159 * If we couldn't make a reservation then setup our reservation ticket 5160 * and kick the async worker if it's not already running. 5161 * 5162 * If we are a priority flusher then we just need to add our ticket to 5163 * the list and we will do our own flushing further down. 5164 */ 5165 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5166 ticket.bytes = orig_bytes; 5167 ticket.error = 0; 5168 init_waitqueue_head(&ticket.wait); 5169 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5170 list_add_tail(&ticket.list, &space_info->tickets); 5171 if (!space_info->flush) { 5172 space_info->flush = 1; 5173 trace_btrfs_trigger_flush(root->fs_info, 5174 space_info->flags, 5175 orig_bytes, flush, 5176 "enospc"); 5177 queue_work(system_unbound_wq, 5178 &root->fs_info->async_reclaim_work); 5179 } 5180 } else { 5181 list_add_tail(&ticket.list, 5182 &space_info->priority_tickets); 5183 } 5184 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5185 used += orig_bytes; 5186 /* 5187 * We will do the space reservation dance during log replay, 5188 * which means we won't have fs_info->fs_root set, so don't do 5189 * the async reclaim as we will panic. 5190 */ 5191 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) && 5192 need_do_async_reclaim(space_info, root, used) && 5193 !work_busy(&root->fs_info->async_reclaim_work)) { 5194 trace_btrfs_trigger_flush(root->fs_info, 5195 space_info->flags, 5196 orig_bytes, flush, 5197 "preempt"); 5198 queue_work(system_unbound_wq, 5199 &root->fs_info->async_reclaim_work); 5200 } 5201 } 5202 spin_unlock(&space_info->lock); 5203 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5204 return ret; 5205 5206 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5207 return wait_reserve_ticket(root->fs_info, space_info, &ticket, 5208 orig_bytes); 5209 5210 ret = 0; 5211 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket); 5212 spin_lock(&space_info->lock); 5213 if (ticket.bytes) { 5214 if (ticket.bytes < orig_bytes) { 5215 u64 num_bytes = orig_bytes - ticket.bytes; 5216 space_info->bytes_may_use -= num_bytes; 5217 trace_btrfs_space_reservation(root->fs_info, 5218 "space_info", space_info->flags, 5219 num_bytes, 0); 5220 5221 } 5222 list_del_init(&ticket.list); 5223 ret = -ENOSPC; 5224 } 5225 spin_unlock(&space_info->lock); 5226 ASSERT(list_empty(&ticket.list)); 5227 return ret; 5228 } 5229 5230 /** 5231 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5232 * @root - the root we're allocating for 5233 * @block_rsv - the block_rsv we're allocating for 5234 * @orig_bytes - the number of bytes we want 5235 * @flush - whether or not we can flush to make our reservation 5236 * 5237 * This will reserve orgi_bytes number of bytes from the space info associated 5238 * with the block_rsv. If there is not enough space it will make an attempt to 5239 * flush out space to make room. It will do this by flushing delalloc if 5240 * possible or committing the transaction. If flush is 0 then no attempts to 5241 * regain reservations will be made and this will fail if there is not enough 5242 * space already. 5243 */ 5244 static int reserve_metadata_bytes(struct btrfs_root *root, 5245 struct btrfs_block_rsv *block_rsv, 5246 u64 orig_bytes, 5247 enum btrfs_reserve_flush_enum flush) 5248 { 5249 int ret; 5250 5251 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes, 5252 flush); 5253 if (ret == -ENOSPC && 5254 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5255 struct btrfs_block_rsv *global_rsv = 5256 &root->fs_info->global_block_rsv; 5257 5258 if (block_rsv != global_rsv && 5259 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5260 ret = 0; 5261 } 5262 if (ret == -ENOSPC) 5263 trace_btrfs_space_reservation(root->fs_info, 5264 "space_info:enospc", 5265 block_rsv->space_info->flags, 5266 orig_bytes, 1); 5267 return ret; 5268 } 5269 5270 static struct btrfs_block_rsv *get_block_rsv( 5271 const struct btrfs_trans_handle *trans, 5272 const struct btrfs_root *root) 5273 { 5274 struct btrfs_block_rsv *block_rsv = NULL; 5275 5276 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5277 (root == root->fs_info->csum_root && trans->adding_csums) || 5278 (root == root->fs_info->uuid_root)) 5279 block_rsv = trans->block_rsv; 5280 5281 if (!block_rsv) 5282 block_rsv = root->block_rsv; 5283 5284 if (!block_rsv) 5285 block_rsv = &root->fs_info->empty_block_rsv; 5286 5287 return block_rsv; 5288 } 5289 5290 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5291 u64 num_bytes) 5292 { 5293 int ret = -ENOSPC; 5294 spin_lock(&block_rsv->lock); 5295 if (block_rsv->reserved >= num_bytes) { 5296 block_rsv->reserved -= num_bytes; 5297 if (block_rsv->reserved < block_rsv->size) 5298 block_rsv->full = 0; 5299 ret = 0; 5300 } 5301 spin_unlock(&block_rsv->lock); 5302 return ret; 5303 } 5304 5305 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5306 u64 num_bytes, int update_size) 5307 { 5308 spin_lock(&block_rsv->lock); 5309 block_rsv->reserved += num_bytes; 5310 if (update_size) 5311 block_rsv->size += num_bytes; 5312 else if (block_rsv->reserved >= block_rsv->size) 5313 block_rsv->full = 1; 5314 spin_unlock(&block_rsv->lock); 5315 } 5316 5317 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5318 struct btrfs_block_rsv *dest, u64 num_bytes, 5319 int min_factor) 5320 { 5321 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5322 u64 min_bytes; 5323 5324 if (global_rsv->space_info != dest->space_info) 5325 return -ENOSPC; 5326 5327 spin_lock(&global_rsv->lock); 5328 min_bytes = div_factor(global_rsv->size, min_factor); 5329 if (global_rsv->reserved < min_bytes + num_bytes) { 5330 spin_unlock(&global_rsv->lock); 5331 return -ENOSPC; 5332 } 5333 global_rsv->reserved -= num_bytes; 5334 if (global_rsv->reserved < global_rsv->size) 5335 global_rsv->full = 0; 5336 spin_unlock(&global_rsv->lock); 5337 5338 block_rsv_add_bytes(dest, num_bytes, 1); 5339 return 0; 5340 } 5341 5342 /* 5343 * This is for space we already have accounted in space_info->bytes_may_use, so 5344 * basically when we're returning space from block_rsv's. 5345 */ 5346 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5347 struct btrfs_space_info *space_info, 5348 u64 num_bytes) 5349 { 5350 struct reserve_ticket *ticket; 5351 struct list_head *head; 5352 u64 used; 5353 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5354 bool check_overcommit = false; 5355 5356 spin_lock(&space_info->lock); 5357 head = &space_info->priority_tickets; 5358 5359 /* 5360 * If we are over our limit then we need to check and see if we can 5361 * overcommit, and if we can't then we just need to free up our space 5362 * and not satisfy any requests. 5363 */ 5364 used = space_info->bytes_used + space_info->bytes_reserved + 5365 space_info->bytes_pinned + space_info->bytes_readonly + 5366 space_info->bytes_may_use; 5367 if (used - num_bytes >= space_info->total_bytes) 5368 check_overcommit = true; 5369 again: 5370 while (!list_empty(head) && num_bytes) { 5371 ticket = list_first_entry(head, struct reserve_ticket, 5372 list); 5373 /* 5374 * We use 0 bytes because this space is already reserved, so 5375 * adding the ticket space would be a double count. 5376 */ 5377 if (check_overcommit && 5378 !can_overcommit(fs_info->extent_root, space_info, 0, 5379 flush)) 5380 break; 5381 if (num_bytes >= ticket->bytes) { 5382 list_del_init(&ticket->list); 5383 num_bytes -= ticket->bytes; 5384 ticket->bytes = 0; 5385 space_info->tickets_id++; 5386 wake_up(&ticket->wait); 5387 } else { 5388 ticket->bytes -= num_bytes; 5389 num_bytes = 0; 5390 } 5391 } 5392 5393 if (num_bytes && head == &space_info->priority_tickets) { 5394 head = &space_info->tickets; 5395 flush = BTRFS_RESERVE_FLUSH_ALL; 5396 goto again; 5397 } 5398 space_info->bytes_may_use -= num_bytes; 5399 trace_btrfs_space_reservation(fs_info, "space_info", 5400 space_info->flags, num_bytes, 0); 5401 spin_unlock(&space_info->lock); 5402 } 5403 5404 /* 5405 * This is for newly allocated space that isn't accounted in 5406 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5407 * we use this helper. 5408 */ 5409 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5410 struct btrfs_space_info *space_info, 5411 u64 num_bytes) 5412 { 5413 struct reserve_ticket *ticket; 5414 struct list_head *head = &space_info->priority_tickets; 5415 5416 again: 5417 while (!list_empty(head) && num_bytes) { 5418 ticket = list_first_entry(head, struct reserve_ticket, 5419 list); 5420 if (num_bytes >= ticket->bytes) { 5421 trace_btrfs_space_reservation(fs_info, "space_info", 5422 space_info->flags, 5423 ticket->bytes, 1); 5424 list_del_init(&ticket->list); 5425 num_bytes -= ticket->bytes; 5426 space_info->bytes_may_use += ticket->bytes; 5427 ticket->bytes = 0; 5428 space_info->tickets_id++; 5429 wake_up(&ticket->wait); 5430 } else { 5431 trace_btrfs_space_reservation(fs_info, "space_info", 5432 space_info->flags, 5433 num_bytes, 1); 5434 space_info->bytes_may_use += num_bytes; 5435 ticket->bytes -= num_bytes; 5436 num_bytes = 0; 5437 } 5438 } 5439 5440 if (num_bytes && head == &space_info->priority_tickets) { 5441 head = &space_info->tickets; 5442 goto again; 5443 } 5444 } 5445 5446 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5447 struct btrfs_block_rsv *block_rsv, 5448 struct btrfs_block_rsv *dest, u64 num_bytes) 5449 { 5450 struct btrfs_space_info *space_info = block_rsv->space_info; 5451 5452 spin_lock(&block_rsv->lock); 5453 if (num_bytes == (u64)-1) 5454 num_bytes = block_rsv->size; 5455 block_rsv->size -= num_bytes; 5456 if (block_rsv->reserved >= block_rsv->size) { 5457 num_bytes = block_rsv->reserved - block_rsv->size; 5458 block_rsv->reserved = block_rsv->size; 5459 block_rsv->full = 1; 5460 } else { 5461 num_bytes = 0; 5462 } 5463 spin_unlock(&block_rsv->lock); 5464 5465 if (num_bytes > 0) { 5466 if (dest) { 5467 spin_lock(&dest->lock); 5468 if (!dest->full) { 5469 u64 bytes_to_add; 5470 5471 bytes_to_add = dest->size - dest->reserved; 5472 bytes_to_add = min(num_bytes, bytes_to_add); 5473 dest->reserved += bytes_to_add; 5474 if (dest->reserved >= dest->size) 5475 dest->full = 1; 5476 num_bytes -= bytes_to_add; 5477 } 5478 spin_unlock(&dest->lock); 5479 } 5480 if (num_bytes) 5481 space_info_add_old_bytes(fs_info, space_info, 5482 num_bytes); 5483 } 5484 } 5485 5486 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5487 struct btrfs_block_rsv *dst, u64 num_bytes, 5488 int update_size) 5489 { 5490 int ret; 5491 5492 ret = block_rsv_use_bytes(src, num_bytes); 5493 if (ret) 5494 return ret; 5495 5496 block_rsv_add_bytes(dst, num_bytes, update_size); 5497 return 0; 5498 } 5499 5500 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5501 { 5502 memset(rsv, 0, sizeof(*rsv)); 5503 spin_lock_init(&rsv->lock); 5504 rsv->type = type; 5505 } 5506 5507 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5508 unsigned short type) 5509 { 5510 struct btrfs_block_rsv *block_rsv; 5511 struct btrfs_fs_info *fs_info = root->fs_info; 5512 5513 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5514 if (!block_rsv) 5515 return NULL; 5516 5517 btrfs_init_block_rsv(block_rsv, type); 5518 block_rsv->space_info = __find_space_info(fs_info, 5519 BTRFS_BLOCK_GROUP_METADATA); 5520 return block_rsv; 5521 } 5522 5523 void btrfs_free_block_rsv(struct btrfs_root *root, 5524 struct btrfs_block_rsv *rsv) 5525 { 5526 if (!rsv) 5527 return; 5528 btrfs_block_rsv_release(root, rsv, (u64)-1); 5529 kfree(rsv); 5530 } 5531 5532 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5533 { 5534 kfree(rsv); 5535 } 5536 5537 int btrfs_block_rsv_add(struct btrfs_root *root, 5538 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5539 enum btrfs_reserve_flush_enum flush) 5540 { 5541 int ret; 5542 5543 if (num_bytes == 0) 5544 return 0; 5545 5546 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5547 if (!ret) { 5548 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5549 return 0; 5550 } 5551 5552 return ret; 5553 } 5554 5555 int btrfs_block_rsv_check(struct btrfs_root *root, 5556 struct btrfs_block_rsv *block_rsv, int min_factor) 5557 { 5558 u64 num_bytes = 0; 5559 int ret = -ENOSPC; 5560 5561 if (!block_rsv) 5562 return 0; 5563 5564 spin_lock(&block_rsv->lock); 5565 num_bytes = div_factor(block_rsv->size, min_factor); 5566 if (block_rsv->reserved >= num_bytes) 5567 ret = 0; 5568 spin_unlock(&block_rsv->lock); 5569 5570 return ret; 5571 } 5572 5573 int btrfs_block_rsv_refill(struct btrfs_root *root, 5574 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5575 enum btrfs_reserve_flush_enum flush) 5576 { 5577 u64 num_bytes = 0; 5578 int ret = -ENOSPC; 5579 5580 if (!block_rsv) 5581 return 0; 5582 5583 spin_lock(&block_rsv->lock); 5584 num_bytes = min_reserved; 5585 if (block_rsv->reserved >= num_bytes) 5586 ret = 0; 5587 else 5588 num_bytes -= block_rsv->reserved; 5589 spin_unlock(&block_rsv->lock); 5590 5591 if (!ret) 5592 return 0; 5593 5594 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5595 if (!ret) { 5596 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5597 return 0; 5598 } 5599 5600 return ret; 5601 } 5602 5603 void btrfs_block_rsv_release(struct btrfs_root *root, 5604 struct btrfs_block_rsv *block_rsv, 5605 u64 num_bytes) 5606 { 5607 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5608 if (global_rsv == block_rsv || 5609 block_rsv->space_info != global_rsv->space_info) 5610 global_rsv = NULL; 5611 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5612 num_bytes); 5613 } 5614 5615 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5616 { 5617 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5618 struct btrfs_space_info *sinfo = block_rsv->space_info; 5619 u64 num_bytes; 5620 5621 /* 5622 * The global block rsv is based on the size of the extent tree, the 5623 * checksum tree and the root tree. If the fs is empty we want to set 5624 * it to a minimal amount for safety. 5625 */ 5626 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5627 btrfs_root_used(&fs_info->csum_root->root_item) + 5628 btrfs_root_used(&fs_info->tree_root->root_item); 5629 num_bytes = max_t(u64, num_bytes, SZ_16M); 5630 5631 spin_lock(&sinfo->lock); 5632 spin_lock(&block_rsv->lock); 5633 5634 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5635 5636 if (block_rsv->reserved < block_rsv->size) { 5637 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5638 sinfo->bytes_reserved + sinfo->bytes_readonly + 5639 sinfo->bytes_may_use; 5640 if (sinfo->total_bytes > num_bytes) { 5641 num_bytes = sinfo->total_bytes - num_bytes; 5642 num_bytes = min(num_bytes, 5643 block_rsv->size - block_rsv->reserved); 5644 block_rsv->reserved += num_bytes; 5645 sinfo->bytes_may_use += num_bytes; 5646 trace_btrfs_space_reservation(fs_info, "space_info", 5647 sinfo->flags, num_bytes, 5648 1); 5649 } 5650 } else if (block_rsv->reserved > block_rsv->size) { 5651 num_bytes = block_rsv->reserved - block_rsv->size; 5652 sinfo->bytes_may_use -= num_bytes; 5653 trace_btrfs_space_reservation(fs_info, "space_info", 5654 sinfo->flags, num_bytes, 0); 5655 block_rsv->reserved = block_rsv->size; 5656 } 5657 5658 if (block_rsv->reserved == block_rsv->size) 5659 block_rsv->full = 1; 5660 else 5661 block_rsv->full = 0; 5662 5663 spin_unlock(&block_rsv->lock); 5664 spin_unlock(&sinfo->lock); 5665 } 5666 5667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5668 { 5669 struct btrfs_space_info *space_info; 5670 5671 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5672 fs_info->chunk_block_rsv.space_info = space_info; 5673 5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5675 fs_info->global_block_rsv.space_info = space_info; 5676 fs_info->delalloc_block_rsv.space_info = space_info; 5677 fs_info->trans_block_rsv.space_info = space_info; 5678 fs_info->empty_block_rsv.space_info = space_info; 5679 fs_info->delayed_block_rsv.space_info = space_info; 5680 5681 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5682 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5683 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5684 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5685 if (fs_info->quota_root) 5686 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5687 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5688 5689 update_global_block_rsv(fs_info); 5690 } 5691 5692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5693 { 5694 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5695 (u64)-1); 5696 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5697 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5698 WARN_ON(fs_info->trans_block_rsv.size > 0); 5699 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5700 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5701 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5702 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5703 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5704 } 5705 5706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5707 struct btrfs_root *root) 5708 { 5709 if (!trans->block_rsv) 5710 return; 5711 5712 if (!trans->bytes_reserved) 5713 return; 5714 5715 trace_btrfs_space_reservation(root->fs_info, "transaction", 5716 trans->transid, trans->bytes_reserved, 0); 5717 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5718 trans->bytes_reserved = 0; 5719 } 5720 5721 /* 5722 * To be called after all the new block groups attached to the transaction 5723 * handle have been created (btrfs_create_pending_block_groups()). 5724 */ 5725 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5726 { 5727 struct btrfs_fs_info *fs_info = trans->fs_info; 5728 5729 if (!trans->chunk_bytes_reserved) 5730 return; 5731 5732 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5733 5734 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5735 trans->chunk_bytes_reserved); 5736 trans->chunk_bytes_reserved = 0; 5737 } 5738 5739 /* Can only return 0 or -ENOSPC */ 5740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5741 struct inode *inode) 5742 { 5743 struct btrfs_root *root = BTRFS_I(inode)->root; 5744 /* 5745 * We always use trans->block_rsv here as we will have reserved space 5746 * for our orphan when starting the transaction, using get_block_rsv() 5747 * here will sometimes make us choose the wrong block rsv as we could be 5748 * doing a reloc inode for a non refcounted root. 5749 */ 5750 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5751 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5752 5753 /* 5754 * We need to hold space in order to delete our orphan item once we've 5755 * added it, so this takes the reservation so we can release it later 5756 * when we are truly done with the orphan item. 5757 */ 5758 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5759 trace_btrfs_space_reservation(root->fs_info, "orphan", 5760 btrfs_ino(inode), num_bytes, 1); 5761 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5762 } 5763 5764 void btrfs_orphan_release_metadata(struct inode *inode) 5765 { 5766 struct btrfs_root *root = BTRFS_I(inode)->root; 5767 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5768 trace_btrfs_space_reservation(root->fs_info, "orphan", 5769 btrfs_ino(inode), num_bytes, 0); 5770 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5771 } 5772 5773 /* 5774 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5775 * root: the root of the parent directory 5776 * rsv: block reservation 5777 * items: the number of items that we need do reservation 5778 * qgroup_reserved: used to return the reserved size in qgroup 5779 * 5780 * This function is used to reserve the space for snapshot/subvolume 5781 * creation and deletion. Those operations are different with the 5782 * common file/directory operations, they change two fs/file trees 5783 * and root tree, the number of items that the qgroup reserves is 5784 * different with the free space reservation. So we can not use 5785 * the space reservation mechanism in start_transaction(). 5786 */ 5787 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5788 struct btrfs_block_rsv *rsv, 5789 int items, 5790 u64 *qgroup_reserved, 5791 bool use_global_rsv) 5792 { 5793 u64 num_bytes; 5794 int ret; 5795 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5796 5797 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) { 5798 /* One for parent inode, two for dir entries */ 5799 num_bytes = 3 * root->nodesize; 5800 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5801 if (ret) 5802 return ret; 5803 } else { 5804 num_bytes = 0; 5805 } 5806 5807 *qgroup_reserved = num_bytes; 5808 5809 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5810 rsv->space_info = __find_space_info(root->fs_info, 5811 BTRFS_BLOCK_GROUP_METADATA); 5812 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5813 BTRFS_RESERVE_FLUSH_ALL); 5814 5815 if (ret == -ENOSPC && use_global_rsv) 5816 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5817 5818 if (ret && *qgroup_reserved) 5819 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5820 5821 return ret; 5822 } 5823 5824 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5825 struct btrfs_block_rsv *rsv, 5826 u64 qgroup_reserved) 5827 { 5828 btrfs_block_rsv_release(root, rsv, (u64)-1); 5829 } 5830 5831 /** 5832 * drop_outstanding_extent - drop an outstanding extent 5833 * @inode: the inode we're dropping the extent for 5834 * @num_bytes: the number of bytes we're releasing. 5835 * 5836 * This is called when we are freeing up an outstanding extent, either called 5837 * after an error or after an extent is written. This will return the number of 5838 * reserved extents that need to be freed. This must be called with 5839 * BTRFS_I(inode)->lock held. 5840 */ 5841 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5842 { 5843 unsigned drop_inode_space = 0; 5844 unsigned dropped_extents = 0; 5845 unsigned num_extents = 0; 5846 5847 num_extents = (unsigned)div64_u64(num_bytes + 5848 BTRFS_MAX_EXTENT_SIZE - 1, 5849 BTRFS_MAX_EXTENT_SIZE); 5850 ASSERT(num_extents); 5851 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5852 BTRFS_I(inode)->outstanding_extents -= num_extents; 5853 5854 if (BTRFS_I(inode)->outstanding_extents == 0 && 5855 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5856 &BTRFS_I(inode)->runtime_flags)) 5857 drop_inode_space = 1; 5858 5859 /* 5860 * If we have more or the same amount of outstanding extents than we have 5861 * reserved then we need to leave the reserved extents count alone. 5862 */ 5863 if (BTRFS_I(inode)->outstanding_extents >= 5864 BTRFS_I(inode)->reserved_extents) 5865 return drop_inode_space; 5866 5867 dropped_extents = BTRFS_I(inode)->reserved_extents - 5868 BTRFS_I(inode)->outstanding_extents; 5869 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5870 return dropped_extents + drop_inode_space; 5871 } 5872 5873 /** 5874 * calc_csum_metadata_size - return the amount of metadata space that must be 5875 * reserved/freed for the given bytes. 5876 * @inode: the inode we're manipulating 5877 * @num_bytes: the number of bytes in question 5878 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5879 * 5880 * This adjusts the number of csum_bytes in the inode and then returns the 5881 * correct amount of metadata that must either be reserved or freed. We 5882 * calculate how many checksums we can fit into one leaf and then divide the 5883 * number of bytes that will need to be checksumed by this value to figure out 5884 * how many checksums will be required. If we are adding bytes then the number 5885 * may go up and we will return the number of additional bytes that must be 5886 * reserved. If it is going down we will return the number of bytes that must 5887 * be freed. 5888 * 5889 * This must be called with BTRFS_I(inode)->lock held. 5890 */ 5891 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5892 int reserve) 5893 { 5894 struct btrfs_root *root = BTRFS_I(inode)->root; 5895 u64 old_csums, num_csums; 5896 5897 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5898 BTRFS_I(inode)->csum_bytes == 0) 5899 return 0; 5900 5901 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5902 if (reserve) 5903 BTRFS_I(inode)->csum_bytes += num_bytes; 5904 else 5905 BTRFS_I(inode)->csum_bytes -= num_bytes; 5906 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5907 5908 /* No change, no need to reserve more */ 5909 if (old_csums == num_csums) 5910 return 0; 5911 5912 if (reserve) 5913 return btrfs_calc_trans_metadata_size(root, 5914 num_csums - old_csums); 5915 5916 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5917 } 5918 5919 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5920 { 5921 struct btrfs_root *root = BTRFS_I(inode)->root; 5922 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5923 u64 to_reserve = 0; 5924 u64 csum_bytes; 5925 unsigned nr_extents = 0; 5926 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5927 int ret = 0; 5928 bool delalloc_lock = true; 5929 u64 to_free = 0; 5930 unsigned dropped; 5931 bool release_extra = false; 5932 5933 /* If we are a free space inode we need to not flush since we will be in 5934 * the middle of a transaction commit. We also don't need the delalloc 5935 * mutex since we won't race with anybody. We need this mostly to make 5936 * lockdep shut its filthy mouth. 5937 * 5938 * If we have a transaction open (can happen if we call truncate_block 5939 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 5940 */ 5941 if (btrfs_is_free_space_inode(inode)) { 5942 flush = BTRFS_RESERVE_NO_FLUSH; 5943 delalloc_lock = false; 5944 } else if (current->journal_info) { 5945 flush = BTRFS_RESERVE_FLUSH_LIMIT; 5946 } 5947 5948 if (flush != BTRFS_RESERVE_NO_FLUSH && 5949 btrfs_transaction_in_commit(root->fs_info)) 5950 schedule_timeout(1); 5951 5952 if (delalloc_lock) 5953 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5954 5955 num_bytes = ALIGN(num_bytes, root->sectorsize); 5956 5957 spin_lock(&BTRFS_I(inode)->lock); 5958 nr_extents = (unsigned)div64_u64(num_bytes + 5959 BTRFS_MAX_EXTENT_SIZE - 1, 5960 BTRFS_MAX_EXTENT_SIZE); 5961 BTRFS_I(inode)->outstanding_extents += nr_extents; 5962 5963 nr_extents = 0; 5964 if (BTRFS_I(inode)->outstanding_extents > 5965 BTRFS_I(inode)->reserved_extents) 5966 nr_extents += BTRFS_I(inode)->outstanding_extents - 5967 BTRFS_I(inode)->reserved_extents; 5968 5969 /* We always want to reserve a slot for updating the inode. */ 5970 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1); 5971 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5972 csum_bytes = BTRFS_I(inode)->csum_bytes; 5973 spin_unlock(&BTRFS_I(inode)->lock); 5974 5975 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) { 5976 ret = btrfs_qgroup_reserve_meta(root, 5977 nr_extents * root->nodesize); 5978 if (ret) 5979 goto out_fail; 5980 } 5981 5982 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 5983 if (unlikely(ret)) { 5984 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5985 goto out_fail; 5986 } 5987 5988 spin_lock(&BTRFS_I(inode)->lock); 5989 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5990 &BTRFS_I(inode)->runtime_flags)) { 5991 to_reserve -= btrfs_calc_trans_metadata_size(root, 1); 5992 release_extra = true; 5993 } 5994 BTRFS_I(inode)->reserved_extents += nr_extents; 5995 spin_unlock(&BTRFS_I(inode)->lock); 5996 5997 if (delalloc_lock) 5998 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5999 6000 if (to_reserve) 6001 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6002 btrfs_ino(inode), to_reserve, 1); 6003 if (release_extra) 6004 btrfs_block_rsv_release(root, block_rsv, 6005 btrfs_calc_trans_metadata_size(root, 6006 1)); 6007 return 0; 6008 6009 out_fail: 6010 spin_lock(&BTRFS_I(inode)->lock); 6011 dropped = drop_outstanding_extent(inode, num_bytes); 6012 /* 6013 * If the inodes csum_bytes is the same as the original 6014 * csum_bytes then we know we haven't raced with any free()ers 6015 * so we can just reduce our inodes csum bytes and carry on. 6016 */ 6017 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 6018 calc_csum_metadata_size(inode, num_bytes, 0); 6019 } else { 6020 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 6021 u64 bytes; 6022 6023 /* 6024 * This is tricky, but first we need to figure out how much we 6025 * freed from any free-ers that occurred during this 6026 * reservation, so we reset ->csum_bytes to the csum_bytes 6027 * before we dropped our lock, and then call the free for the 6028 * number of bytes that were freed while we were trying our 6029 * reservation. 6030 */ 6031 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 6032 BTRFS_I(inode)->csum_bytes = csum_bytes; 6033 to_free = calc_csum_metadata_size(inode, bytes, 0); 6034 6035 6036 /* 6037 * Now we need to see how much we would have freed had we not 6038 * been making this reservation and our ->csum_bytes were not 6039 * artificially inflated. 6040 */ 6041 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 6042 bytes = csum_bytes - orig_csum_bytes; 6043 bytes = calc_csum_metadata_size(inode, bytes, 0); 6044 6045 /* 6046 * Now reset ->csum_bytes to what it should be. If bytes is 6047 * more than to_free then we would have freed more space had we 6048 * not had an artificially high ->csum_bytes, so we need to free 6049 * the remainder. If bytes is the same or less then we don't 6050 * need to do anything, the other free-ers did the correct 6051 * thing. 6052 */ 6053 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 6054 if (bytes > to_free) 6055 to_free = bytes - to_free; 6056 else 6057 to_free = 0; 6058 } 6059 spin_unlock(&BTRFS_I(inode)->lock); 6060 if (dropped) 6061 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6062 6063 if (to_free) { 6064 btrfs_block_rsv_release(root, block_rsv, to_free); 6065 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6066 btrfs_ino(inode), to_free, 0); 6067 } 6068 if (delalloc_lock) 6069 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6070 return ret; 6071 } 6072 6073 /** 6074 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6075 * @inode: the inode to release the reservation for 6076 * @num_bytes: the number of bytes we're releasing 6077 * 6078 * This will release the metadata reservation for an inode. This can be called 6079 * once we complete IO for a given set of bytes to release their metadata 6080 * reservations. 6081 */ 6082 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 6083 { 6084 struct btrfs_root *root = BTRFS_I(inode)->root; 6085 u64 to_free = 0; 6086 unsigned dropped; 6087 6088 num_bytes = ALIGN(num_bytes, root->sectorsize); 6089 spin_lock(&BTRFS_I(inode)->lock); 6090 dropped = drop_outstanding_extent(inode, num_bytes); 6091 6092 if (num_bytes) 6093 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6094 spin_unlock(&BTRFS_I(inode)->lock); 6095 if (dropped > 0) 6096 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6097 6098 if (btrfs_is_testing(root->fs_info)) 6099 return; 6100 6101 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6102 btrfs_ino(inode), to_free, 0); 6103 6104 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 6105 to_free); 6106 } 6107 6108 /** 6109 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6110 * delalloc 6111 * @inode: inode we're writing to 6112 * @start: start range we are writing to 6113 * @len: how long the range we are writing to 6114 * 6115 * This will do the following things 6116 * 6117 * o reserve space in data space info for num bytes 6118 * and reserve precious corresponding qgroup space 6119 * (Done in check_data_free_space) 6120 * 6121 * o reserve space for metadata space, based on the number of outstanding 6122 * extents and how much csums will be needed 6123 * also reserve metadata space in a per root over-reserve method. 6124 * o add to the inodes->delalloc_bytes 6125 * o add it to the fs_info's delalloc inodes list. 6126 * (Above 3 all done in delalloc_reserve_metadata) 6127 * 6128 * Return 0 for success 6129 * Return <0 for error(-ENOSPC or -EQUOT) 6130 */ 6131 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 6132 { 6133 int ret; 6134 6135 ret = btrfs_check_data_free_space(inode, start, len); 6136 if (ret < 0) 6137 return ret; 6138 ret = btrfs_delalloc_reserve_metadata(inode, len); 6139 if (ret < 0) 6140 btrfs_free_reserved_data_space(inode, start, len); 6141 return ret; 6142 } 6143 6144 /** 6145 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6146 * @inode: inode we're releasing space for 6147 * @start: start position of the space already reserved 6148 * @len: the len of the space already reserved 6149 * 6150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6151 * called in the case that we don't need the metadata AND data reservations 6152 * anymore. So if there is an error or we insert an inline extent. 6153 * 6154 * This function will release the metadata space that was not used and will 6155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6156 * list if there are no delalloc bytes left. 6157 * Also it will handle the qgroup reserved space. 6158 */ 6159 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 6160 { 6161 btrfs_delalloc_release_metadata(inode, len); 6162 btrfs_free_reserved_data_space(inode, start, len); 6163 } 6164 6165 static int update_block_group(struct btrfs_trans_handle *trans, 6166 struct btrfs_root *root, u64 bytenr, 6167 u64 num_bytes, int alloc) 6168 { 6169 struct btrfs_block_group_cache *cache = NULL; 6170 struct btrfs_fs_info *info = root->fs_info; 6171 u64 total = num_bytes; 6172 u64 old_val; 6173 u64 byte_in_group; 6174 int factor; 6175 6176 /* block accounting for super block */ 6177 spin_lock(&info->delalloc_root_lock); 6178 old_val = btrfs_super_bytes_used(info->super_copy); 6179 if (alloc) 6180 old_val += num_bytes; 6181 else 6182 old_val -= num_bytes; 6183 btrfs_set_super_bytes_used(info->super_copy, old_val); 6184 spin_unlock(&info->delalloc_root_lock); 6185 6186 while (total) { 6187 cache = btrfs_lookup_block_group(info, bytenr); 6188 if (!cache) 6189 return -ENOENT; 6190 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6191 BTRFS_BLOCK_GROUP_RAID1 | 6192 BTRFS_BLOCK_GROUP_RAID10)) 6193 factor = 2; 6194 else 6195 factor = 1; 6196 /* 6197 * If this block group has free space cache written out, we 6198 * need to make sure to load it if we are removing space. This 6199 * is because we need the unpinning stage to actually add the 6200 * space back to the block group, otherwise we will leak space. 6201 */ 6202 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6203 cache_block_group(cache, 1); 6204 6205 byte_in_group = bytenr - cache->key.objectid; 6206 WARN_ON(byte_in_group > cache->key.offset); 6207 6208 spin_lock(&cache->space_info->lock); 6209 spin_lock(&cache->lock); 6210 6211 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 6212 cache->disk_cache_state < BTRFS_DC_CLEAR) 6213 cache->disk_cache_state = BTRFS_DC_CLEAR; 6214 6215 old_val = btrfs_block_group_used(&cache->item); 6216 num_bytes = min(total, cache->key.offset - byte_in_group); 6217 if (alloc) { 6218 old_val += num_bytes; 6219 btrfs_set_block_group_used(&cache->item, old_val); 6220 cache->reserved -= num_bytes; 6221 cache->space_info->bytes_reserved -= num_bytes; 6222 cache->space_info->bytes_used += num_bytes; 6223 cache->space_info->disk_used += num_bytes * factor; 6224 spin_unlock(&cache->lock); 6225 spin_unlock(&cache->space_info->lock); 6226 } else { 6227 old_val -= num_bytes; 6228 btrfs_set_block_group_used(&cache->item, old_val); 6229 cache->pinned += num_bytes; 6230 cache->space_info->bytes_pinned += num_bytes; 6231 cache->space_info->bytes_used -= num_bytes; 6232 cache->space_info->disk_used -= num_bytes * factor; 6233 spin_unlock(&cache->lock); 6234 spin_unlock(&cache->space_info->lock); 6235 6236 trace_btrfs_space_reservation(root->fs_info, "pinned", 6237 cache->space_info->flags, 6238 num_bytes, 1); 6239 set_extent_dirty(info->pinned_extents, 6240 bytenr, bytenr + num_bytes - 1, 6241 GFP_NOFS | __GFP_NOFAIL); 6242 } 6243 6244 spin_lock(&trans->transaction->dirty_bgs_lock); 6245 if (list_empty(&cache->dirty_list)) { 6246 list_add_tail(&cache->dirty_list, 6247 &trans->transaction->dirty_bgs); 6248 trans->transaction->num_dirty_bgs++; 6249 btrfs_get_block_group(cache); 6250 } 6251 spin_unlock(&trans->transaction->dirty_bgs_lock); 6252 6253 /* 6254 * No longer have used bytes in this block group, queue it for 6255 * deletion. We do this after adding the block group to the 6256 * dirty list to avoid races between cleaner kthread and space 6257 * cache writeout. 6258 */ 6259 if (!alloc && old_val == 0) { 6260 spin_lock(&info->unused_bgs_lock); 6261 if (list_empty(&cache->bg_list)) { 6262 btrfs_get_block_group(cache); 6263 list_add_tail(&cache->bg_list, 6264 &info->unused_bgs); 6265 } 6266 spin_unlock(&info->unused_bgs_lock); 6267 } 6268 6269 btrfs_put_block_group(cache); 6270 total -= num_bytes; 6271 bytenr += num_bytes; 6272 } 6273 return 0; 6274 } 6275 6276 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6277 { 6278 struct btrfs_block_group_cache *cache; 6279 u64 bytenr; 6280 6281 spin_lock(&root->fs_info->block_group_cache_lock); 6282 bytenr = root->fs_info->first_logical_byte; 6283 spin_unlock(&root->fs_info->block_group_cache_lock); 6284 6285 if (bytenr < (u64)-1) 6286 return bytenr; 6287 6288 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6289 if (!cache) 6290 return 0; 6291 6292 bytenr = cache->key.objectid; 6293 btrfs_put_block_group(cache); 6294 6295 return bytenr; 6296 } 6297 6298 static int pin_down_extent(struct btrfs_root *root, 6299 struct btrfs_block_group_cache *cache, 6300 u64 bytenr, u64 num_bytes, int reserved) 6301 { 6302 spin_lock(&cache->space_info->lock); 6303 spin_lock(&cache->lock); 6304 cache->pinned += num_bytes; 6305 cache->space_info->bytes_pinned += num_bytes; 6306 if (reserved) { 6307 cache->reserved -= num_bytes; 6308 cache->space_info->bytes_reserved -= num_bytes; 6309 } 6310 spin_unlock(&cache->lock); 6311 spin_unlock(&cache->space_info->lock); 6312 6313 trace_btrfs_space_reservation(root->fs_info, "pinned", 6314 cache->space_info->flags, num_bytes, 1); 6315 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6316 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6317 return 0; 6318 } 6319 6320 /* 6321 * this function must be called within transaction 6322 */ 6323 int btrfs_pin_extent(struct btrfs_root *root, 6324 u64 bytenr, u64 num_bytes, int reserved) 6325 { 6326 struct btrfs_block_group_cache *cache; 6327 6328 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6329 BUG_ON(!cache); /* Logic error */ 6330 6331 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6332 6333 btrfs_put_block_group(cache); 6334 return 0; 6335 } 6336 6337 /* 6338 * this function must be called within transaction 6339 */ 6340 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6341 u64 bytenr, u64 num_bytes) 6342 { 6343 struct btrfs_block_group_cache *cache; 6344 int ret; 6345 6346 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6347 if (!cache) 6348 return -EINVAL; 6349 6350 /* 6351 * pull in the free space cache (if any) so that our pin 6352 * removes the free space from the cache. We have load_only set 6353 * to one because the slow code to read in the free extents does check 6354 * the pinned extents. 6355 */ 6356 cache_block_group(cache, 1); 6357 6358 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6359 6360 /* remove us from the free space cache (if we're there at all) */ 6361 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6362 btrfs_put_block_group(cache); 6363 return ret; 6364 } 6365 6366 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6367 { 6368 int ret; 6369 struct btrfs_block_group_cache *block_group; 6370 struct btrfs_caching_control *caching_ctl; 6371 6372 block_group = btrfs_lookup_block_group(root->fs_info, start); 6373 if (!block_group) 6374 return -EINVAL; 6375 6376 cache_block_group(block_group, 0); 6377 caching_ctl = get_caching_control(block_group); 6378 6379 if (!caching_ctl) { 6380 /* Logic error */ 6381 BUG_ON(!block_group_cache_done(block_group)); 6382 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6383 } else { 6384 mutex_lock(&caching_ctl->mutex); 6385 6386 if (start >= caching_ctl->progress) { 6387 ret = add_excluded_extent(root, start, num_bytes); 6388 } else if (start + num_bytes <= caching_ctl->progress) { 6389 ret = btrfs_remove_free_space(block_group, 6390 start, num_bytes); 6391 } else { 6392 num_bytes = caching_ctl->progress - start; 6393 ret = btrfs_remove_free_space(block_group, 6394 start, num_bytes); 6395 if (ret) 6396 goto out_lock; 6397 6398 num_bytes = (start + num_bytes) - 6399 caching_ctl->progress; 6400 start = caching_ctl->progress; 6401 ret = add_excluded_extent(root, start, num_bytes); 6402 } 6403 out_lock: 6404 mutex_unlock(&caching_ctl->mutex); 6405 put_caching_control(caching_ctl); 6406 } 6407 btrfs_put_block_group(block_group); 6408 return ret; 6409 } 6410 6411 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6412 struct extent_buffer *eb) 6413 { 6414 struct btrfs_file_extent_item *item; 6415 struct btrfs_key key; 6416 int found_type; 6417 int i; 6418 6419 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6420 return 0; 6421 6422 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6423 btrfs_item_key_to_cpu(eb, &key, i); 6424 if (key.type != BTRFS_EXTENT_DATA_KEY) 6425 continue; 6426 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6427 found_type = btrfs_file_extent_type(eb, item); 6428 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6429 continue; 6430 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6431 continue; 6432 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6433 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6434 __exclude_logged_extent(log, key.objectid, key.offset); 6435 } 6436 6437 return 0; 6438 } 6439 6440 static void 6441 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6442 { 6443 atomic_inc(&bg->reservations); 6444 } 6445 6446 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6447 const u64 start) 6448 { 6449 struct btrfs_block_group_cache *bg; 6450 6451 bg = btrfs_lookup_block_group(fs_info, start); 6452 ASSERT(bg); 6453 if (atomic_dec_and_test(&bg->reservations)) 6454 wake_up_atomic_t(&bg->reservations); 6455 btrfs_put_block_group(bg); 6456 } 6457 6458 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6459 { 6460 schedule(); 6461 return 0; 6462 } 6463 6464 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6465 { 6466 struct btrfs_space_info *space_info = bg->space_info; 6467 6468 ASSERT(bg->ro); 6469 6470 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6471 return; 6472 6473 /* 6474 * Our block group is read only but before we set it to read only, 6475 * some task might have had allocated an extent from it already, but it 6476 * has not yet created a respective ordered extent (and added it to a 6477 * root's list of ordered extents). 6478 * Therefore wait for any task currently allocating extents, since the 6479 * block group's reservations counter is incremented while a read lock 6480 * on the groups' semaphore is held and decremented after releasing 6481 * the read access on that semaphore and creating the ordered extent. 6482 */ 6483 down_write(&space_info->groups_sem); 6484 up_write(&space_info->groups_sem); 6485 6486 wait_on_atomic_t(&bg->reservations, 6487 btrfs_wait_bg_reservations_atomic_t, 6488 TASK_UNINTERRUPTIBLE); 6489 } 6490 6491 /** 6492 * btrfs_add_reserved_bytes - update the block_group and space info counters 6493 * @cache: The cache we are manipulating 6494 * @ram_bytes: The number of bytes of file content, and will be same to 6495 * @num_bytes except for the compress path. 6496 * @num_bytes: The number of bytes in question 6497 * @delalloc: The blocks are allocated for the delalloc write 6498 * 6499 * This is called by the allocator when it reserves space. Metadata 6500 * reservations should be called with RESERVE_ALLOC so we do the proper 6501 * ENOSPC accounting. For data we handle the reservation through clearing the 6502 * delalloc bits in the io_tree. We have to do this since we could end up 6503 * allocating less disk space for the amount of data we have reserved in the 6504 * case of compression. 6505 * 6506 * If this is a reservation and the block group has become read only we cannot 6507 * make the reservation and return -EAGAIN, otherwise this function always 6508 * succeeds. 6509 */ 6510 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6511 u64 ram_bytes, u64 num_bytes, int delalloc) 6512 { 6513 struct btrfs_space_info *space_info = cache->space_info; 6514 int ret = 0; 6515 6516 spin_lock(&space_info->lock); 6517 spin_lock(&cache->lock); 6518 if (cache->ro) { 6519 ret = -EAGAIN; 6520 } else { 6521 cache->reserved += num_bytes; 6522 space_info->bytes_reserved += num_bytes; 6523 6524 trace_btrfs_space_reservation(cache->fs_info, 6525 "space_info", space_info->flags, 6526 ram_bytes, 0); 6527 space_info->bytes_may_use -= ram_bytes; 6528 if (delalloc) 6529 cache->delalloc_bytes += num_bytes; 6530 } 6531 spin_unlock(&cache->lock); 6532 spin_unlock(&space_info->lock); 6533 return ret; 6534 } 6535 6536 /** 6537 * btrfs_free_reserved_bytes - update the block_group and space info counters 6538 * @cache: The cache we are manipulating 6539 * @num_bytes: The number of bytes in question 6540 * @delalloc: The blocks are allocated for the delalloc write 6541 * 6542 * This is called by somebody who is freeing space that was never actually used 6543 * on disk. For example if you reserve some space for a new leaf in transaction 6544 * A and before transaction A commits you free that leaf, you call this with 6545 * reserve set to 0 in order to clear the reservation. 6546 */ 6547 6548 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6549 u64 num_bytes, int delalloc) 6550 { 6551 struct btrfs_space_info *space_info = cache->space_info; 6552 int ret = 0; 6553 6554 spin_lock(&space_info->lock); 6555 spin_lock(&cache->lock); 6556 if (cache->ro) 6557 space_info->bytes_readonly += num_bytes; 6558 cache->reserved -= num_bytes; 6559 space_info->bytes_reserved -= num_bytes; 6560 6561 if (delalloc) 6562 cache->delalloc_bytes -= num_bytes; 6563 spin_unlock(&cache->lock); 6564 spin_unlock(&space_info->lock); 6565 return ret; 6566 } 6567 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6568 struct btrfs_root *root) 6569 { 6570 struct btrfs_fs_info *fs_info = root->fs_info; 6571 struct btrfs_caching_control *next; 6572 struct btrfs_caching_control *caching_ctl; 6573 struct btrfs_block_group_cache *cache; 6574 6575 down_write(&fs_info->commit_root_sem); 6576 6577 list_for_each_entry_safe(caching_ctl, next, 6578 &fs_info->caching_block_groups, list) { 6579 cache = caching_ctl->block_group; 6580 if (block_group_cache_done(cache)) { 6581 cache->last_byte_to_unpin = (u64)-1; 6582 list_del_init(&caching_ctl->list); 6583 put_caching_control(caching_ctl); 6584 } else { 6585 cache->last_byte_to_unpin = caching_ctl->progress; 6586 } 6587 } 6588 6589 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6590 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6591 else 6592 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6593 6594 up_write(&fs_info->commit_root_sem); 6595 6596 update_global_block_rsv(fs_info); 6597 } 6598 6599 /* 6600 * Returns the free cluster for the given space info and sets empty_cluster to 6601 * what it should be based on the mount options. 6602 */ 6603 static struct btrfs_free_cluster * 6604 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6605 u64 *empty_cluster) 6606 { 6607 struct btrfs_free_cluster *ret = NULL; 6608 bool ssd = btrfs_test_opt(root->fs_info, SSD); 6609 6610 *empty_cluster = 0; 6611 if (btrfs_mixed_space_info(space_info)) 6612 return ret; 6613 6614 if (ssd) 6615 *empty_cluster = SZ_2M; 6616 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6617 ret = &root->fs_info->meta_alloc_cluster; 6618 if (!ssd) 6619 *empty_cluster = SZ_64K; 6620 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6621 ret = &root->fs_info->data_alloc_cluster; 6622 } 6623 6624 return ret; 6625 } 6626 6627 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6628 const bool return_free_space) 6629 { 6630 struct btrfs_fs_info *fs_info = root->fs_info; 6631 struct btrfs_block_group_cache *cache = NULL; 6632 struct btrfs_space_info *space_info; 6633 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6634 struct btrfs_free_cluster *cluster = NULL; 6635 u64 len; 6636 u64 total_unpinned = 0; 6637 u64 empty_cluster = 0; 6638 bool readonly; 6639 6640 while (start <= end) { 6641 readonly = false; 6642 if (!cache || 6643 start >= cache->key.objectid + cache->key.offset) { 6644 if (cache) 6645 btrfs_put_block_group(cache); 6646 total_unpinned = 0; 6647 cache = btrfs_lookup_block_group(fs_info, start); 6648 BUG_ON(!cache); /* Logic error */ 6649 6650 cluster = fetch_cluster_info(root, 6651 cache->space_info, 6652 &empty_cluster); 6653 empty_cluster <<= 1; 6654 } 6655 6656 len = cache->key.objectid + cache->key.offset - start; 6657 len = min(len, end + 1 - start); 6658 6659 if (start < cache->last_byte_to_unpin) { 6660 len = min(len, cache->last_byte_to_unpin - start); 6661 if (return_free_space) 6662 btrfs_add_free_space(cache, start, len); 6663 } 6664 6665 start += len; 6666 total_unpinned += len; 6667 space_info = cache->space_info; 6668 6669 /* 6670 * If this space cluster has been marked as fragmented and we've 6671 * unpinned enough in this block group to potentially allow a 6672 * cluster to be created inside of it go ahead and clear the 6673 * fragmented check. 6674 */ 6675 if (cluster && cluster->fragmented && 6676 total_unpinned > empty_cluster) { 6677 spin_lock(&cluster->lock); 6678 cluster->fragmented = 0; 6679 spin_unlock(&cluster->lock); 6680 } 6681 6682 spin_lock(&space_info->lock); 6683 spin_lock(&cache->lock); 6684 cache->pinned -= len; 6685 space_info->bytes_pinned -= len; 6686 6687 trace_btrfs_space_reservation(fs_info, "pinned", 6688 space_info->flags, len, 0); 6689 space_info->max_extent_size = 0; 6690 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6691 if (cache->ro) { 6692 space_info->bytes_readonly += len; 6693 readonly = true; 6694 } 6695 spin_unlock(&cache->lock); 6696 if (!readonly && return_free_space && 6697 global_rsv->space_info == space_info) { 6698 u64 to_add = len; 6699 WARN_ON(!return_free_space); 6700 spin_lock(&global_rsv->lock); 6701 if (!global_rsv->full) { 6702 to_add = min(len, global_rsv->size - 6703 global_rsv->reserved); 6704 global_rsv->reserved += to_add; 6705 space_info->bytes_may_use += to_add; 6706 if (global_rsv->reserved >= global_rsv->size) 6707 global_rsv->full = 1; 6708 trace_btrfs_space_reservation(fs_info, 6709 "space_info", 6710 space_info->flags, 6711 to_add, 1); 6712 len -= to_add; 6713 } 6714 spin_unlock(&global_rsv->lock); 6715 /* Add to any tickets we may have */ 6716 if (len) 6717 space_info_add_new_bytes(fs_info, space_info, 6718 len); 6719 } 6720 spin_unlock(&space_info->lock); 6721 } 6722 6723 if (cache) 6724 btrfs_put_block_group(cache); 6725 return 0; 6726 } 6727 6728 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6729 struct btrfs_root *root) 6730 { 6731 struct btrfs_fs_info *fs_info = root->fs_info; 6732 struct btrfs_block_group_cache *block_group, *tmp; 6733 struct list_head *deleted_bgs; 6734 struct extent_io_tree *unpin; 6735 u64 start; 6736 u64 end; 6737 int ret; 6738 6739 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6740 unpin = &fs_info->freed_extents[1]; 6741 else 6742 unpin = &fs_info->freed_extents[0]; 6743 6744 while (!trans->aborted) { 6745 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6746 ret = find_first_extent_bit(unpin, 0, &start, &end, 6747 EXTENT_DIRTY, NULL); 6748 if (ret) { 6749 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6750 break; 6751 } 6752 6753 if (btrfs_test_opt(root->fs_info, DISCARD)) 6754 ret = btrfs_discard_extent(root, start, 6755 end + 1 - start, NULL); 6756 6757 clear_extent_dirty(unpin, start, end); 6758 unpin_extent_range(root, start, end, true); 6759 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6760 cond_resched(); 6761 } 6762 6763 /* 6764 * Transaction is finished. We don't need the lock anymore. We 6765 * do need to clean up the block groups in case of a transaction 6766 * abort. 6767 */ 6768 deleted_bgs = &trans->transaction->deleted_bgs; 6769 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6770 u64 trimmed = 0; 6771 6772 ret = -EROFS; 6773 if (!trans->aborted) 6774 ret = btrfs_discard_extent(root, 6775 block_group->key.objectid, 6776 block_group->key.offset, 6777 &trimmed); 6778 6779 list_del_init(&block_group->bg_list); 6780 btrfs_put_block_group_trimming(block_group); 6781 btrfs_put_block_group(block_group); 6782 6783 if (ret) { 6784 const char *errstr = btrfs_decode_error(ret); 6785 btrfs_warn(fs_info, 6786 "Discard failed while removing blockgroup: errno=%d %s\n", 6787 ret, errstr); 6788 } 6789 } 6790 6791 return 0; 6792 } 6793 6794 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6795 u64 owner, u64 root_objectid) 6796 { 6797 struct btrfs_space_info *space_info; 6798 u64 flags; 6799 6800 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6801 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6802 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6803 else 6804 flags = BTRFS_BLOCK_GROUP_METADATA; 6805 } else { 6806 flags = BTRFS_BLOCK_GROUP_DATA; 6807 } 6808 6809 space_info = __find_space_info(fs_info, flags); 6810 BUG_ON(!space_info); /* Logic bug */ 6811 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6812 } 6813 6814 6815 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6816 struct btrfs_root *root, 6817 struct btrfs_delayed_ref_node *node, u64 parent, 6818 u64 root_objectid, u64 owner_objectid, 6819 u64 owner_offset, int refs_to_drop, 6820 struct btrfs_delayed_extent_op *extent_op) 6821 { 6822 struct btrfs_key key; 6823 struct btrfs_path *path; 6824 struct btrfs_fs_info *info = root->fs_info; 6825 struct btrfs_root *extent_root = info->extent_root; 6826 struct extent_buffer *leaf; 6827 struct btrfs_extent_item *ei; 6828 struct btrfs_extent_inline_ref *iref; 6829 int ret; 6830 int is_data; 6831 int extent_slot = 0; 6832 int found_extent = 0; 6833 int num_to_del = 1; 6834 u32 item_size; 6835 u64 refs; 6836 u64 bytenr = node->bytenr; 6837 u64 num_bytes = node->num_bytes; 6838 int last_ref = 0; 6839 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6840 SKINNY_METADATA); 6841 6842 path = btrfs_alloc_path(); 6843 if (!path) 6844 return -ENOMEM; 6845 6846 path->reada = READA_FORWARD; 6847 path->leave_spinning = 1; 6848 6849 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6850 BUG_ON(!is_data && refs_to_drop != 1); 6851 6852 if (is_data) 6853 skinny_metadata = 0; 6854 6855 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6856 bytenr, num_bytes, parent, 6857 root_objectid, owner_objectid, 6858 owner_offset); 6859 if (ret == 0) { 6860 extent_slot = path->slots[0]; 6861 while (extent_slot >= 0) { 6862 btrfs_item_key_to_cpu(path->nodes[0], &key, 6863 extent_slot); 6864 if (key.objectid != bytenr) 6865 break; 6866 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6867 key.offset == num_bytes) { 6868 found_extent = 1; 6869 break; 6870 } 6871 if (key.type == BTRFS_METADATA_ITEM_KEY && 6872 key.offset == owner_objectid) { 6873 found_extent = 1; 6874 break; 6875 } 6876 if (path->slots[0] - extent_slot > 5) 6877 break; 6878 extent_slot--; 6879 } 6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6881 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6882 if (found_extent && item_size < sizeof(*ei)) 6883 found_extent = 0; 6884 #endif 6885 if (!found_extent) { 6886 BUG_ON(iref); 6887 ret = remove_extent_backref(trans, extent_root, path, 6888 NULL, refs_to_drop, 6889 is_data, &last_ref); 6890 if (ret) { 6891 btrfs_abort_transaction(trans, ret); 6892 goto out; 6893 } 6894 btrfs_release_path(path); 6895 path->leave_spinning = 1; 6896 6897 key.objectid = bytenr; 6898 key.type = BTRFS_EXTENT_ITEM_KEY; 6899 key.offset = num_bytes; 6900 6901 if (!is_data && skinny_metadata) { 6902 key.type = BTRFS_METADATA_ITEM_KEY; 6903 key.offset = owner_objectid; 6904 } 6905 6906 ret = btrfs_search_slot(trans, extent_root, 6907 &key, path, -1, 1); 6908 if (ret > 0 && skinny_metadata && path->slots[0]) { 6909 /* 6910 * Couldn't find our skinny metadata item, 6911 * see if we have ye olde extent item. 6912 */ 6913 path->slots[0]--; 6914 btrfs_item_key_to_cpu(path->nodes[0], &key, 6915 path->slots[0]); 6916 if (key.objectid == bytenr && 6917 key.type == BTRFS_EXTENT_ITEM_KEY && 6918 key.offset == num_bytes) 6919 ret = 0; 6920 } 6921 6922 if (ret > 0 && skinny_metadata) { 6923 skinny_metadata = false; 6924 key.objectid = bytenr; 6925 key.type = BTRFS_EXTENT_ITEM_KEY; 6926 key.offset = num_bytes; 6927 btrfs_release_path(path); 6928 ret = btrfs_search_slot(trans, extent_root, 6929 &key, path, -1, 1); 6930 } 6931 6932 if (ret) { 6933 btrfs_err(info, 6934 "umm, got %d back from search, was looking for %llu", 6935 ret, bytenr); 6936 if (ret > 0) 6937 btrfs_print_leaf(extent_root, 6938 path->nodes[0]); 6939 } 6940 if (ret < 0) { 6941 btrfs_abort_transaction(trans, ret); 6942 goto out; 6943 } 6944 extent_slot = path->slots[0]; 6945 } 6946 } else if (WARN_ON(ret == -ENOENT)) { 6947 btrfs_print_leaf(extent_root, path->nodes[0]); 6948 btrfs_err(info, 6949 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6950 bytenr, parent, root_objectid, owner_objectid, 6951 owner_offset); 6952 btrfs_abort_transaction(trans, ret); 6953 goto out; 6954 } else { 6955 btrfs_abort_transaction(trans, ret); 6956 goto out; 6957 } 6958 6959 leaf = path->nodes[0]; 6960 item_size = btrfs_item_size_nr(leaf, extent_slot); 6961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6962 if (item_size < sizeof(*ei)) { 6963 BUG_ON(found_extent || extent_slot != path->slots[0]); 6964 ret = convert_extent_item_v0(trans, extent_root, path, 6965 owner_objectid, 0); 6966 if (ret < 0) { 6967 btrfs_abort_transaction(trans, ret); 6968 goto out; 6969 } 6970 6971 btrfs_release_path(path); 6972 path->leave_spinning = 1; 6973 6974 key.objectid = bytenr; 6975 key.type = BTRFS_EXTENT_ITEM_KEY; 6976 key.offset = num_bytes; 6977 6978 ret = btrfs_search_slot(trans, extent_root, &key, path, 6979 -1, 1); 6980 if (ret) { 6981 btrfs_err(info, 6982 "umm, got %d back from search, was looking for %llu", 6983 ret, bytenr); 6984 btrfs_print_leaf(extent_root, path->nodes[0]); 6985 } 6986 if (ret < 0) { 6987 btrfs_abort_transaction(trans, ret); 6988 goto out; 6989 } 6990 6991 extent_slot = path->slots[0]; 6992 leaf = path->nodes[0]; 6993 item_size = btrfs_item_size_nr(leaf, extent_slot); 6994 } 6995 #endif 6996 BUG_ON(item_size < sizeof(*ei)); 6997 ei = btrfs_item_ptr(leaf, extent_slot, 6998 struct btrfs_extent_item); 6999 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7000 key.type == BTRFS_EXTENT_ITEM_KEY) { 7001 struct btrfs_tree_block_info *bi; 7002 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7003 bi = (struct btrfs_tree_block_info *)(ei + 1); 7004 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7005 } 7006 7007 refs = btrfs_extent_refs(leaf, ei); 7008 if (refs < refs_to_drop) { 7009 btrfs_err(info, 7010 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7011 refs_to_drop, refs, bytenr); 7012 ret = -EINVAL; 7013 btrfs_abort_transaction(trans, ret); 7014 goto out; 7015 } 7016 refs -= refs_to_drop; 7017 7018 if (refs > 0) { 7019 if (extent_op) 7020 __run_delayed_extent_op(extent_op, leaf, ei); 7021 /* 7022 * In the case of inline back ref, reference count will 7023 * be updated by remove_extent_backref 7024 */ 7025 if (iref) { 7026 BUG_ON(!found_extent); 7027 } else { 7028 btrfs_set_extent_refs(leaf, ei, refs); 7029 btrfs_mark_buffer_dirty(leaf); 7030 } 7031 if (found_extent) { 7032 ret = remove_extent_backref(trans, extent_root, path, 7033 iref, refs_to_drop, 7034 is_data, &last_ref); 7035 if (ret) { 7036 btrfs_abort_transaction(trans, ret); 7037 goto out; 7038 } 7039 } 7040 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 7041 root_objectid); 7042 } else { 7043 if (found_extent) { 7044 BUG_ON(is_data && refs_to_drop != 7045 extent_data_ref_count(path, iref)); 7046 if (iref) { 7047 BUG_ON(path->slots[0] != extent_slot); 7048 } else { 7049 BUG_ON(path->slots[0] != extent_slot + 1); 7050 path->slots[0] = extent_slot; 7051 num_to_del = 2; 7052 } 7053 } 7054 7055 last_ref = 1; 7056 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7057 num_to_del); 7058 if (ret) { 7059 btrfs_abort_transaction(trans, ret); 7060 goto out; 7061 } 7062 btrfs_release_path(path); 7063 7064 if (is_data) { 7065 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 7066 if (ret) { 7067 btrfs_abort_transaction(trans, ret); 7068 goto out; 7069 } 7070 } 7071 7072 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 7073 num_bytes); 7074 if (ret) { 7075 btrfs_abort_transaction(trans, ret); 7076 goto out; 7077 } 7078 7079 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 7080 if (ret) { 7081 btrfs_abort_transaction(trans, ret); 7082 goto out; 7083 } 7084 } 7085 btrfs_release_path(path); 7086 7087 out: 7088 btrfs_free_path(path); 7089 return ret; 7090 } 7091 7092 /* 7093 * when we free an block, it is possible (and likely) that we free the last 7094 * delayed ref for that extent as well. This searches the delayed ref tree for 7095 * a given extent, and if there are no other delayed refs to be processed, it 7096 * removes it from the tree. 7097 */ 7098 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7099 struct btrfs_root *root, u64 bytenr) 7100 { 7101 struct btrfs_delayed_ref_head *head; 7102 struct btrfs_delayed_ref_root *delayed_refs; 7103 int ret = 0; 7104 7105 delayed_refs = &trans->transaction->delayed_refs; 7106 spin_lock(&delayed_refs->lock); 7107 head = btrfs_find_delayed_ref_head(trans, bytenr); 7108 if (!head) 7109 goto out_delayed_unlock; 7110 7111 spin_lock(&head->lock); 7112 if (!list_empty(&head->ref_list)) 7113 goto out; 7114 7115 if (head->extent_op) { 7116 if (!head->must_insert_reserved) 7117 goto out; 7118 btrfs_free_delayed_extent_op(head->extent_op); 7119 head->extent_op = NULL; 7120 } 7121 7122 /* 7123 * waiting for the lock here would deadlock. If someone else has it 7124 * locked they are already in the process of dropping it anyway 7125 */ 7126 if (!mutex_trylock(&head->mutex)) 7127 goto out; 7128 7129 /* 7130 * at this point we have a head with no other entries. Go 7131 * ahead and process it. 7132 */ 7133 head->node.in_tree = 0; 7134 rb_erase(&head->href_node, &delayed_refs->href_root); 7135 7136 atomic_dec(&delayed_refs->num_entries); 7137 7138 /* 7139 * we don't take a ref on the node because we're removing it from the 7140 * tree, so we just steal the ref the tree was holding. 7141 */ 7142 delayed_refs->num_heads--; 7143 if (head->processing == 0) 7144 delayed_refs->num_heads_ready--; 7145 head->processing = 0; 7146 spin_unlock(&head->lock); 7147 spin_unlock(&delayed_refs->lock); 7148 7149 BUG_ON(head->extent_op); 7150 if (head->must_insert_reserved) 7151 ret = 1; 7152 7153 mutex_unlock(&head->mutex); 7154 btrfs_put_delayed_ref(&head->node); 7155 return ret; 7156 out: 7157 spin_unlock(&head->lock); 7158 7159 out_delayed_unlock: 7160 spin_unlock(&delayed_refs->lock); 7161 return 0; 7162 } 7163 7164 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7165 struct btrfs_root *root, 7166 struct extent_buffer *buf, 7167 u64 parent, int last_ref) 7168 { 7169 int pin = 1; 7170 int ret; 7171 7172 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7173 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7174 buf->start, buf->len, 7175 parent, root->root_key.objectid, 7176 btrfs_header_level(buf), 7177 BTRFS_DROP_DELAYED_REF, NULL); 7178 BUG_ON(ret); /* -ENOMEM */ 7179 } 7180 7181 if (!last_ref) 7182 return; 7183 7184 if (btrfs_header_generation(buf) == trans->transid) { 7185 struct btrfs_block_group_cache *cache; 7186 7187 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7188 ret = check_ref_cleanup(trans, root, buf->start); 7189 if (!ret) 7190 goto out; 7191 } 7192 7193 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 7194 7195 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7196 pin_down_extent(root, cache, buf->start, buf->len, 1); 7197 btrfs_put_block_group(cache); 7198 goto out; 7199 } 7200 7201 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7202 7203 btrfs_add_free_space(cache, buf->start, buf->len); 7204 btrfs_free_reserved_bytes(cache, buf->len, 0); 7205 btrfs_put_block_group(cache); 7206 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 7207 pin = 0; 7208 } 7209 out: 7210 if (pin) 7211 add_pinned_bytes(root->fs_info, buf->len, 7212 btrfs_header_level(buf), 7213 root->root_key.objectid); 7214 7215 /* 7216 * Deleting the buffer, clear the corrupt flag since it doesn't matter 7217 * anymore. 7218 */ 7219 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7220 } 7221 7222 /* Can return -ENOMEM */ 7223 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7224 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7225 u64 owner, u64 offset) 7226 { 7227 int ret; 7228 struct btrfs_fs_info *fs_info = root->fs_info; 7229 7230 if (btrfs_is_testing(fs_info)) 7231 return 0; 7232 7233 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 7234 7235 /* 7236 * tree log blocks never actually go into the extent allocation 7237 * tree, just update pinning info and exit early. 7238 */ 7239 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7240 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7241 /* unlocks the pinned mutex */ 7242 btrfs_pin_extent(root, bytenr, num_bytes, 1); 7243 ret = 0; 7244 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7245 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7246 num_bytes, 7247 parent, root_objectid, (int)owner, 7248 BTRFS_DROP_DELAYED_REF, NULL); 7249 } else { 7250 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7251 num_bytes, 7252 parent, root_objectid, owner, 7253 offset, 0, 7254 BTRFS_DROP_DELAYED_REF, NULL); 7255 } 7256 return ret; 7257 } 7258 7259 /* 7260 * when we wait for progress in the block group caching, its because 7261 * our allocation attempt failed at least once. So, we must sleep 7262 * and let some progress happen before we try again. 7263 * 7264 * This function will sleep at least once waiting for new free space to 7265 * show up, and then it will check the block group free space numbers 7266 * for our min num_bytes. Another option is to have it go ahead 7267 * and look in the rbtree for a free extent of a given size, but this 7268 * is a good start. 7269 * 7270 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7271 * any of the information in this block group. 7272 */ 7273 static noinline void 7274 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7275 u64 num_bytes) 7276 { 7277 struct btrfs_caching_control *caching_ctl; 7278 7279 caching_ctl = get_caching_control(cache); 7280 if (!caching_ctl) 7281 return; 7282 7283 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7284 (cache->free_space_ctl->free_space >= num_bytes)); 7285 7286 put_caching_control(caching_ctl); 7287 } 7288 7289 static noinline int 7290 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7291 { 7292 struct btrfs_caching_control *caching_ctl; 7293 int ret = 0; 7294 7295 caching_ctl = get_caching_control(cache); 7296 if (!caching_ctl) 7297 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7298 7299 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7300 if (cache->cached == BTRFS_CACHE_ERROR) 7301 ret = -EIO; 7302 put_caching_control(caching_ctl); 7303 return ret; 7304 } 7305 7306 int __get_raid_index(u64 flags) 7307 { 7308 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7309 return BTRFS_RAID_RAID10; 7310 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7311 return BTRFS_RAID_RAID1; 7312 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7313 return BTRFS_RAID_DUP; 7314 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7315 return BTRFS_RAID_RAID0; 7316 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7317 return BTRFS_RAID_RAID5; 7318 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7319 return BTRFS_RAID_RAID6; 7320 7321 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7322 } 7323 7324 int get_block_group_index(struct btrfs_block_group_cache *cache) 7325 { 7326 return __get_raid_index(cache->flags); 7327 } 7328 7329 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7330 [BTRFS_RAID_RAID10] = "raid10", 7331 [BTRFS_RAID_RAID1] = "raid1", 7332 [BTRFS_RAID_DUP] = "dup", 7333 [BTRFS_RAID_RAID0] = "raid0", 7334 [BTRFS_RAID_SINGLE] = "single", 7335 [BTRFS_RAID_RAID5] = "raid5", 7336 [BTRFS_RAID_RAID6] = "raid6", 7337 }; 7338 7339 static const char *get_raid_name(enum btrfs_raid_types type) 7340 { 7341 if (type >= BTRFS_NR_RAID_TYPES) 7342 return NULL; 7343 7344 return btrfs_raid_type_names[type]; 7345 } 7346 7347 enum btrfs_loop_type { 7348 LOOP_CACHING_NOWAIT = 0, 7349 LOOP_CACHING_WAIT = 1, 7350 LOOP_ALLOC_CHUNK = 2, 7351 LOOP_NO_EMPTY_SIZE = 3, 7352 }; 7353 7354 static inline void 7355 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7356 int delalloc) 7357 { 7358 if (delalloc) 7359 down_read(&cache->data_rwsem); 7360 } 7361 7362 static inline void 7363 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7364 int delalloc) 7365 { 7366 btrfs_get_block_group(cache); 7367 if (delalloc) 7368 down_read(&cache->data_rwsem); 7369 } 7370 7371 static struct btrfs_block_group_cache * 7372 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7373 struct btrfs_free_cluster *cluster, 7374 int delalloc) 7375 { 7376 struct btrfs_block_group_cache *used_bg = NULL; 7377 7378 spin_lock(&cluster->refill_lock); 7379 while (1) { 7380 used_bg = cluster->block_group; 7381 if (!used_bg) 7382 return NULL; 7383 7384 if (used_bg == block_group) 7385 return used_bg; 7386 7387 btrfs_get_block_group(used_bg); 7388 7389 if (!delalloc) 7390 return used_bg; 7391 7392 if (down_read_trylock(&used_bg->data_rwsem)) 7393 return used_bg; 7394 7395 spin_unlock(&cluster->refill_lock); 7396 7397 down_read(&used_bg->data_rwsem); 7398 7399 spin_lock(&cluster->refill_lock); 7400 if (used_bg == cluster->block_group) 7401 return used_bg; 7402 7403 up_read(&used_bg->data_rwsem); 7404 btrfs_put_block_group(used_bg); 7405 } 7406 } 7407 7408 static inline void 7409 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7410 int delalloc) 7411 { 7412 if (delalloc) 7413 up_read(&cache->data_rwsem); 7414 btrfs_put_block_group(cache); 7415 } 7416 7417 /* 7418 * walks the btree of allocated extents and find a hole of a given size. 7419 * The key ins is changed to record the hole: 7420 * ins->objectid == start position 7421 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7422 * ins->offset == the size of the hole. 7423 * Any available blocks before search_start are skipped. 7424 * 7425 * If there is no suitable free space, we will record the max size of 7426 * the free space extent currently. 7427 */ 7428 static noinline int find_free_extent(struct btrfs_root *orig_root, 7429 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7430 u64 hint_byte, struct btrfs_key *ins, 7431 u64 flags, int delalloc) 7432 { 7433 int ret = 0; 7434 struct btrfs_root *root = orig_root->fs_info->extent_root; 7435 struct btrfs_free_cluster *last_ptr = NULL; 7436 struct btrfs_block_group_cache *block_group = NULL; 7437 u64 search_start = 0; 7438 u64 max_extent_size = 0; 7439 u64 empty_cluster = 0; 7440 struct btrfs_space_info *space_info; 7441 int loop = 0; 7442 int index = __get_raid_index(flags); 7443 bool failed_cluster_refill = false; 7444 bool failed_alloc = false; 7445 bool use_cluster = true; 7446 bool have_caching_bg = false; 7447 bool orig_have_caching_bg = false; 7448 bool full_search = false; 7449 7450 WARN_ON(num_bytes < root->sectorsize); 7451 ins->type = BTRFS_EXTENT_ITEM_KEY; 7452 ins->objectid = 0; 7453 ins->offset = 0; 7454 7455 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7456 7457 space_info = __find_space_info(root->fs_info, flags); 7458 if (!space_info) { 7459 btrfs_err(root->fs_info, "No space info for %llu", flags); 7460 return -ENOSPC; 7461 } 7462 7463 /* 7464 * If our free space is heavily fragmented we may not be able to make 7465 * big contiguous allocations, so instead of doing the expensive search 7466 * for free space, simply return ENOSPC with our max_extent_size so we 7467 * can go ahead and search for a more manageable chunk. 7468 * 7469 * If our max_extent_size is large enough for our allocation simply 7470 * disable clustering since we will likely not be able to find enough 7471 * space to create a cluster and induce latency trying. 7472 */ 7473 if (unlikely(space_info->max_extent_size)) { 7474 spin_lock(&space_info->lock); 7475 if (space_info->max_extent_size && 7476 num_bytes > space_info->max_extent_size) { 7477 ins->offset = space_info->max_extent_size; 7478 spin_unlock(&space_info->lock); 7479 return -ENOSPC; 7480 } else if (space_info->max_extent_size) { 7481 use_cluster = false; 7482 } 7483 spin_unlock(&space_info->lock); 7484 } 7485 7486 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7487 if (last_ptr) { 7488 spin_lock(&last_ptr->lock); 7489 if (last_ptr->block_group) 7490 hint_byte = last_ptr->window_start; 7491 if (last_ptr->fragmented) { 7492 /* 7493 * We still set window_start so we can keep track of the 7494 * last place we found an allocation to try and save 7495 * some time. 7496 */ 7497 hint_byte = last_ptr->window_start; 7498 use_cluster = false; 7499 } 7500 spin_unlock(&last_ptr->lock); 7501 } 7502 7503 search_start = max(search_start, first_logical_byte(root, 0)); 7504 search_start = max(search_start, hint_byte); 7505 if (search_start == hint_byte) { 7506 block_group = btrfs_lookup_block_group(root->fs_info, 7507 search_start); 7508 /* 7509 * we don't want to use the block group if it doesn't match our 7510 * allocation bits, or if its not cached. 7511 * 7512 * However if we are re-searching with an ideal block group 7513 * picked out then we don't care that the block group is cached. 7514 */ 7515 if (block_group && block_group_bits(block_group, flags) && 7516 block_group->cached != BTRFS_CACHE_NO) { 7517 down_read(&space_info->groups_sem); 7518 if (list_empty(&block_group->list) || 7519 block_group->ro) { 7520 /* 7521 * someone is removing this block group, 7522 * we can't jump into the have_block_group 7523 * target because our list pointers are not 7524 * valid 7525 */ 7526 btrfs_put_block_group(block_group); 7527 up_read(&space_info->groups_sem); 7528 } else { 7529 index = get_block_group_index(block_group); 7530 btrfs_lock_block_group(block_group, delalloc); 7531 goto have_block_group; 7532 } 7533 } else if (block_group) { 7534 btrfs_put_block_group(block_group); 7535 } 7536 } 7537 search: 7538 have_caching_bg = false; 7539 if (index == 0 || index == __get_raid_index(flags)) 7540 full_search = true; 7541 down_read(&space_info->groups_sem); 7542 list_for_each_entry(block_group, &space_info->block_groups[index], 7543 list) { 7544 u64 offset; 7545 int cached; 7546 7547 btrfs_grab_block_group(block_group, delalloc); 7548 search_start = block_group->key.objectid; 7549 7550 /* 7551 * this can happen if we end up cycling through all the 7552 * raid types, but we want to make sure we only allocate 7553 * for the proper type. 7554 */ 7555 if (!block_group_bits(block_group, flags)) { 7556 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7557 BTRFS_BLOCK_GROUP_RAID1 | 7558 BTRFS_BLOCK_GROUP_RAID5 | 7559 BTRFS_BLOCK_GROUP_RAID6 | 7560 BTRFS_BLOCK_GROUP_RAID10; 7561 7562 /* 7563 * if they asked for extra copies and this block group 7564 * doesn't provide them, bail. This does allow us to 7565 * fill raid0 from raid1. 7566 */ 7567 if ((flags & extra) && !(block_group->flags & extra)) 7568 goto loop; 7569 } 7570 7571 have_block_group: 7572 cached = block_group_cache_done(block_group); 7573 if (unlikely(!cached)) { 7574 have_caching_bg = true; 7575 ret = cache_block_group(block_group, 0); 7576 BUG_ON(ret < 0); 7577 ret = 0; 7578 } 7579 7580 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7581 goto loop; 7582 if (unlikely(block_group->ro)) 7583 goto loop; 7584 7585 /* 7586 * Ok we want to try and use the cluster allocator, so 7587 * lets look there 7588 */ 7589 if (last_ptr && use_cluster) { 7590 struct btrfs_block_group_cache *used_block_group; 7591 unsigned long aligned_cluster; 7592 /* 7593 * the refill lock keeps out other 7594 * people trying to start a new cluster 7595 */ 7596 used_block_group = btrfs_lock_cluster(block_group, 7597 last_ptr, 7598 delalloc); 7599 if (!used_block_group) 7600 goto refill_cluster; 7601 7602 if (used_block_group != block_group && 7603 (used_block_group->ro || 7604 !block_group_bits(used_block_group, flags))) 7605 goto release_cluster; 7606 7607 offset = btrfs_alloc_from_cluster(used_block_group, 7608 last_ptr, 7609 num_bytes, 7610 used_block_group->key.objectid, 7611 &max_extent_size); 7612 if (offset) { 7613 /* we have a block, we're done */ 7614 spin_unlock(&last_ptr->refill_lock); 7615 trace_btrfs_reserve_extent_cluster(root, 7616 used_block_group, 7617 search_start, num_bytes); 7618 if (used_block_group != block_group) { 7619 btrfs_release_block_group(block_group, 7620 delalloc); 7621 block_group = used_block_group; 7622 } 7623 goto checks; 7624 } 7625 7626 WARN_ON(last_ptr->block_group != used_block_group); 7627 release_cluster: 7628 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7629 * set up a new clusters, so lets just skip it 7630 * and let the allocator find whatever block 7631 * it can find. If we reach this point, we 7632 * will have tried the cluster allocator 7633 * plenty of times and not have found 7634 * anything, so we are likely way too 7635 * fragmented for the clustering stuff to find 7636 * anything. 7637 * 7638 * However, if the cluster is taken from the 7639 * current block group, release the cluster 7640 * first, so that we stand a better chance of 7641 * succeeding in the unclustered 7642 * allocation. */ 7643 if (loop >= LOOP_NO_EMPTY_SIZE && 7644 used_block_group != block_group) { 7645 spin_unlock(&last_ptr->refill_lock); 7646 btrfs_release_block_group(used_block_group, 7647 delalloc); 7648 goto unclustered_alloc; 7649 } 7650 7651 /* 7652 * this cluster didn't work out, free it and 7653 * start over 7654 */ 7655 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7656 7657 if (used_block_group != block_group) 7658 btrfs_release_block_group(used_block_group, 7659 delalloc); 7660 refill_cluster: 7661 if (loop >= LOOP_NO_EMPTY_SIZE) { 7662 spin_unlock(&last_ptr->refill_lock); 7663 goto unclustered_alloc; 7664 } 7665 7666 aligned_cluster = max_t(unsigned long, 7667 empty_cluster + empty_size, 7668 block_group->full_stripe_len); 7669 7670 /* allocate a cluster in this block group */ 7671 ret = btrfs_find_space_cluster(root, block_group, 7672 last_ptr, search_start, 7673 num_bytes, 7674 aligned_cluster); 7675 if (ret == 0) { 7676 /* 7677 * now pull our allocation out of this 7678 * cluster 7679 */ 7680 offset = btrfs_alloc_from_cluster(block_group, 7681 last_ptr, 7682 num_bytes, 7683 search_start, 7684 &max_extent_size); 7685 if (offset) { 7686 /* we found one, proceed */ 7687 spin_unlock(&last_ptr->refill_lock); 7688 trace_btrfs_reserve_extent_cluster(root, 7689 block_group, search_start, 7690 num_bytes); 7691 goto checks; 7692 } 7693 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7694 && !failed_cluster_refill) { 7695 spin_unlock(&last_ptr->refill_lock); 7696 7697 failed_cluster_refill = true; 7698 wait_block_group_cache_progress(block_group, 7699 num_bytes + empty_cluster + empty_size); 7700 goto have_block_group; 7701 } 7702 7703 /* 7704 * at this point we either didn't find a cluster 7705 * or we weren't able to allocate a block from our 7706 * cluster. Free the cluster we've been trying 7707 * to use, and go to the next block group 7708 */ 7709 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7710 spin_unlock(&last_ptr->refill_lock); 7711 goto loop; 7712 } 7713 7714 unclustered_alloc: 7715 /* 7716 * We are doing an unclustered alloc, set the fragmented flag so 7717 * we don't bother trying to setup a cluster again until we get 7718 * more space. 7719 */ 7720 if (unlikely(last_ptr)) { 7721 spin_lock(&last_ptr->lock); 7722 last_ptr->fragmented = 1; 7723 spin_unlock(&last_ptr->lock); 7724 } 7725 spin_lock(&block_group->free_space_ctl->tree_lock); 7726 if (cached && 7727 block_group->free_space_ctl->free_space < 7728 num_bytes + empty_cluster + empty_size) { 7729 if (block_group->free_space_ctl->free_space > 7730 max_extent_size) 7731 max_extent_size = 7732 block_group->free_space_ctl->free_space; 7733 spin_unlock(&block_group->free_space_ctl->tree_lock); 7734 goto loop; 7735 } 7736 spin_unlock(&block_group->free_space_ctl->tree_lock); 7737 7738 offset = btrfs_find_space_for_alloc(block_group, search_start, 7739 num_bytes, empty_size, 7740 &max_extent_size); 7741 /* 7742 * If we didn't find a chunk, and we haven't failed on this 7743 * block group before, and this block group is in the middle of 7744 * caching and we are ok with waiting, then go ahead and wait 7745 * for progress to be made, and set failed_alloc to true. 7746 * 7747 * If failed_alloc is true then we've already waited on this 7748 * block group once and should move on to the next block group. 7749 */ 7750 if (!offset && !failed_alloc && !cached && 7751 loop > LOOP_CACHING_NOWAIT) { 7752 wait_block_group_cache_progress(block_group, 7753 num_bytes + empty_size); 7754 failed_alloc = true; 7755 goto have_block_group; 7756 } else if (!offset) { 7757 goto loop; 7758 } 7759 checks: 7760 search_start = ALIGN(offset, root->stripesize); 7761 7762 /* move on to the next group */ 7763 if (search_start + num_bytes > 7764 block_group->key.objectid + block_group->key.offset) { 7765 btrfs_add_free_space(block_group, offset, num_bytes); 7766 goto loop; 7767 } 7768 7769 if (offset < search_start) 7770 btrfs_add_free_space(block_group, offset, 7771 search_start - offset); 7772 BUG_ON(offset > search_start); 7773 7774 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7775 num_bytes, delalloc); 7776 if (ret == -EAGAIN) { 7777 btrfs_add_free_space(block_group, offset, num_bytes); 7778 goto loop; 7779 } 7780 btrfs_inc_block_group_reservations(block_group); 7781 7782 /* we are all good, lets return */ 7783 ins->objectid = search_start; 7784 ins->offset = num_bytes; 7785 7786 trace_btrfs_reserve_extent(orig_root, block_group, 7787 search_start, num_bytes); 7788 btrfs_release_block_group(block_group, delalloc); 7789 break; 7790 loop: 7791 failed_cluster_refill = false; 7792 failed_alloc = false; 7793 BUG_ON(index != get_block_group_index(block_group)); 7794 btrfs_release_block_group(block_group, delalloc); 7795 } 7796 up_read(&space_info->groups_sem); 7797 7798 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7799 && !orig_have_caching_bg) 7800 orig_have_caching_bg = true; 7801 7802 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7803 goto search; 7804 7805 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7806 goto search; 7807 7808 /* 7809 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7810 * caching kthreads as we move along 7811 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7812 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7813 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7814 * again 7815 */ 7816 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7817 index = 0; 7818 if (loop == LOOP_CACHING_NOWAIT) { 7819 /* 7820 * We want to skip the LOOP_CACHING_WAIT step if we 7821 * don't have any uncached bgs and we've already done a 7822 * full search through. 7823 */ 7824 if (orig_have_caching_bg || !full_search) 7825 loop = LOOP_CACHING_WAIT; 7826 else 7827 loop = LOOP_ALLOC_CHUNK; 7828 } else { 7829 loop++; 7830 } 7831 7832 if (loop == LOOP_ALLOC_CHUNK) { 7833 struct btrfs_trans_handle *trans; 7834 int exist = 0; 7835 7836 trans = current->journal_info; 7837 if (trans) 7838 exist = 1; 7839 else 7840 trans = btrfs_join_transaction(root); 7841 7842 if (IS_ERR(trans)) { 7843 ret = PTR_ERR(trans); 7844 goto out; 7845 } 7846 7847 ret = do_chunk_alloc(trans, root, flags, 7848 CHUNK_ALLOC_FORCE); 7849 7850 /* 7851 * If we can't allocate a new chunk we've already looped 7852 * through at least once, move on to the NO_EMPTY_SIZE 7853 * case. 7854 */ 7855 if (ret == -ENOSPC) 7856 loop = LOOP_NO_EMPTY_SIZE; 7857 7858 /* 7859 * Do not bail out on ENOSPC since we 7860 * can do more things. 7861 */ 7862 if (ret < 0 && ret != -ENOSPC) 7863 btrfs_abort_transaction(trans, ret); 7864 else 7865 ret = 0; 7866 if (!exist) 7867 btrfs_end_transaction(trans, root); 7868 if (ret) 7869 goto out; 7870 } 7871 7872 if (loop == LOOP_NO_EMPTY_SIZE) { 7873 /* 7874 * Don't loop again if we already have no empty_size and 7875 * no empty_cluster. 7876 */ 7877 if (empty_size == 0 && 7878 empty_cluster == 0) { 7879 ret = -ENOSPC; 7880 goto out; 7881 } 7882 empty_size = 0; 7883 empty_cluster = 0; 7884 } 7885 7886 goto search; 7887 } else if (!ins->objectid) { 7888 ret = -ENOSPC; 7889 } else if (ins->objectid) { 7890 if (!use_cluster && last_ptr) { 7891 spin_lock(&last_ptr->lock); 7892 last_ptr->window_start = ins->objectid; 7893 spin_unlock(&last_ptr->lock); 7894 } 7895 ret = 0; 7896 } 7897 out: 7898 if (ret == -ENOSPC) { 7899 spin_lock(&space_info->lock); 7900 space_info->max_extent_size = max_extent_size; 7901 spin_unlock(&space_info->lock); 7902 ins->offset = max_extent_size; 7903 } 7904 return ret; 7905 } 7906 7907 static void dump_space_info(struct btrfs_fs_info *fs_info, 7908 struct btrfs_space_info *info, u64 bytes, 7909 int dump_block_groups) 7910 { 7911 struct btrfs_block_group_cache *cache; 7912 int index = 0; 7913 7914 spin_lock(&info->lock); 7915 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7916 info->flags, 7917 info->total_bytes - info->bytes_used - info->bytes_pinned - 7918 info->bytes_reserved - info->bytes_readonly - 7919 info->bytes_may_use, (info->full) ? "" : "not "); 7920 btrfs_info(fs_info, 7921 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7922 info->total_bytes, info->bytes_used, info->bytes_pinned, 7923 info->bytes_reserved, info->bytes_may_use, 7924 info->bytes_readonly); 7925 spin_unlock(&info->lock); 7926 7927 if (!dump_block_groups) 7928 return; 7929 7930 down_read(&info->groups_sem); 7931 again: 7932 list_for_each_entry(cache, &info->block_groups[index], list) { 7933 spin_lock(&cache->lock); 7934 btrfs_info(fs_info, 7935 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7936 cache->key.objectid, cache->key.offset, 7937 btrfs_block_group_used(&cache->item), cache->pinned, 7938 cache->reserved, cache->ro ? "[readonly]" : ""); 7939 btrfs_dump_free_space(cache, bytes); 7940 spin_unlock(&cache->lock); 7941 } 7942 if (++index < BTRFS_NR_RAID_TYPES) 7943 goto again; 7944 up_read(&info->groups_sem); 7945 } 7946 7947 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7948 u64 num_bytes, u64 min_alloc_size, 7949 u64 empty_size, u64 hint_byte, 7950 struct btrfs_key *ins, int is_data, int delalloc) 7951 { 7952 struct btrfs_fs_info *fs_info = root->fs_info; 7953 bool final_tried = num_bytes == min_alloc_size; 7954 u64 flags; 7955 int ret; 7956 7957 flags = btrfs_get_alloc_profile(root, is_data); 7958 again: 7959 WARN_ON(num_bytes < root->sectorsize); 7960 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 7961 hint_byte, ins, flags, delalloc); 7962 if (!ret && !is_data) { 7963 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 7964 } else if (ret == -ENOSPC) { 7965 if (!final_tried && ins->offset) { 7966 num_bytes = min(num_bytes >> 1, ins->offset); 7967 num_bytes = round_down(num_bytes, root->sectorsize); 7968 num_bytes = max(num_bytes, min_alloc_size); 7969 ram_bytes = num_bytes; 7970 if (num_bytes == min_alloc_size) 7971 final_tried = true; 7972 goto again; 7973 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 7974 struct btrfs_space_info *sinfo; 7975 7976 sinfo = __find_space_info(fs_info, flags); 7977 btrfs_err(root->fs_info, 7978 "allocation failed flags %llu, wanted %llu", 7979 flags, num_bytes); 7980 if (sinfo) 7981 dump_space_info(fs_info, sinfo, num_bytes, 1); 7982 } 7983 } 7984 7985 return ret; 7986 } 7987 7988 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7989 u64 start, u64 len, 7990 int pin, int delalloc) 7991 { 7992 struct btrfs_block_group_cache *cache; 7993 int ret = 0; 7994 7995 cache = btrfs_lookup_block_group(root->fs_info, start); 7996 if (!cache) { 7997 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7998 start); 7999 return -ENOSPC; 8000 } 8001 8002 if (pin) 8003 pin_down_extent(root, cache, start, len, 1); 8004 else { 8005 if (btrfs_test_opt(root->fs_info, DISCARD)) 8006 ret = btrfs_discard_extent(root, start, len, NULL); 8007 btrfs_add_free_space(cache, start, len); 8008 btrfs_free_reserved_bytes(cache, len, delalloc); 8009 trace_btrfs_reserved_extent_free(root, start, len); 8010 } 8011 8012 btrfs_put_block_group(cache); 8013 return ret; 8014 } 8015 8016 int btrfs_free_reserved_extent(struct btrfs_root *root, 8017 u64 start, u64 len, int delalloc) 8018 { 8019 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 8020 } 8021 8022 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 8023 u64 start, u64 len) 8024 { 8025 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 8026 } 8027 8028 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8029 struct btrfs_root *root, 8030 u64 parent, u64 root_objectid, 8031 u64 flags, u64 owner, u64 offset, 8032 struct btrfs_key *ins, int ref_mod) 8033 { 8034 int ret; 8035 struct btrfs_fs_info *fs_info = root->fs_info; 8036 struct btrfs_extent_item *extent_item; 8037 struct btrfs_extent_inline_ref *iref; 8038 struct btrfs_path *path; 8039 struct extent_buffer *leaf; 8040 int type; 8041 u32 size; 8042 8043 if (parent > 0) 8044 type = BTRFS_SHARED_DATA_REF_KEY; 8045 else 8046 type = BTRFS_EXTENT_DATA_REF_KEY; 8047 8048 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8049 8050 path = btrfs_alloc_path(); 8051 if (!path) 8052 return -ENOMEM; 8053 8054 path->leave_spinning = 1; 8055 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8056 ins, size); 8057 if (ret) { 8058 btrfs_free_path(path); 8059 return ret; 8060 } 8061 8062 leaf = path->nodes[0]; 8063 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8064 struct btrfs_extent_item); 8065 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8066 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8067 btrfs_set_extent_flags(leaf, extent_item, 8068 flags | BTRFS_EXTENT_FLAG_DATA); 8069 8070 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8071 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8072 if (parent > 0) { 8073 struct btrfs_shared_data_ref *ref; 8074 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8075 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8076 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8077 } else { 8078 struct btrfs_extent_data_ref *ref; 8079 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8080 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8081 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8082 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8083 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8084 } 8085 8086 btrfs_mark_buffer_dirty(path->nodes[0]); 8087 btrfs_free_path(path); 8088 8089 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8090 ins->offset); 8091 if (ret) 8092 return ret; 8093 8094 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 8095 if (ret) { /* -ENOENT, logic error */ 8096 btrfs_err(fs_info, "update block group failed for %llu %llu", 8097 ins->objectid, ins->offset); 8098 BUG(); 8099 } 8100 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 8101 return ret; 8102 } 8103 8104 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8105 struct btrfs_root *root, 8106 u64 parent, u64 root_objectid, 8107 u64 flags, struct btrfs_disk_key *key, 8108 int level, struct btrfs_key *ins) 8109 { 8110 int ret; 8111 struct btrfs_fs_info *fs_info = root->fs_info; 8112 struct btrfs_extent_item *extent_item; 8113 struct btrfs_tree_block_info *block_info; 8114 struct btrfs_extent_inline_ref *iref; 8115 struct btrfs_path *path; 8116 struct extent_buffer *leaf; 8117 u32 size = sizeof(*extent_item) + sizeof(*iref); 8118 u64 num_bytes = ins->offset; 8119 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8120 SKINNY_METADATA); 8121 8122 if (!skinny_metadata) 8123 size += sizeof(*block_info); 8124 8125 path = btrfs_alloc_path(); 8126 if (!path) { 8127 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8128 root->nodesize); 8129 return -ENOMEM; 8130 } 8131 8132 path->leave_spinning = 1; 8133 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8134 ins, size); 8135 if (ret) { 8136 btrfs_free_path(path); 8137 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8138 root->nodesize); 8139 return ret; 8140 } 8141 8142 leaf = path->nodes[0]; 8143 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8144 struct btrfs_extent_item); 8145 btrfs_set_extent_refs(leaf, extent_item, 1); 8146 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8147 btrfs_set_extent_flags(leaf, extent_item, 8148 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8149 8150 if (skinny_metadata) { 8151 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8152 num_bytes = root->nodesize; 8153 } else { 8154 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8155 btrfs_set_tree_block_key(leaf, block_info, key); 8156 btrfs_set_tree_block_level(leaf, block_info, level); 8157 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8158 } 8159 8160 if (parent > 0) { 8161 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8162 btrfs_set_extent_inline_ref_type(leaf, iref, 8163 BTRFS_SHARED_BLOCK_REF_KEY); 8164 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8165 } else { 8166 btrfs_set_extent_inline_ref_type(leaf, iref, 8167 BTRFS_TREE_BLOCK_REF_KEY); 8168 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8169 } 8170 8171 btrfs_mark_buffer_dirty(leaf); 8172 btrfs_free_path(path); 8173 8174 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8175 num_bytes); 8176 if (ret) 8177 return ret; 8178 8179 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 8180 1); 8181 if (ret) { /* -ENOENT, logic error */ 8182 btrfs_err(fs_info, "update block group failed for %llu %llu", 8183 ins->objectid, ins->offset); 8184 BUG(); 8185 } 8186 8187 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 8188 return ret; 8189 } 8190 8191 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8192 struct btrfs_root *root, 8193 u64 root_objectid, u64 owner, 8194 u64 offset, u64 ram_bytes, 8195 struct btrfs_key *ins) 8196 { 8197 int ret; 8198 8199 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8200 8201 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 8202 ins->offset, 0, 8203 root_objectid, owner, offset, 8204 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 8205 NULL); 8206 return ret; 8207 } 8208 8209 /* 8210 * this is used by the tree logging recovery code. It records that 8211 * an extent has been allocated and makes sure to clear the free 8212 * space cache bits as well 8213 */ 8214 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8215 struct btrfs_root *root, 8216 u64 root_objectid, u64 owner, u64 offset, 8217 struct btrfs_key *ins) 8218 { 8219 int ret; 8220 struct btrfs_block_group_cache *block_group; 8221 struct btrfs_space_info *space_info; 8222 8223 /* 8224 * Mixed block groups will exclude before processing the log so we only 8225 * need to do the exclude dance if this fs isn't mixed. 8226 */ 8227 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 8228 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 8229 if (ret) 8230 return ret; 8231 } 8232 8233 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 8234 if (!block_group) 8235 return -EINVAL; 8236 8237 space_info = block_group->space_info; 8238 spin_lock(&space_info->lock); 8239 spin_lock(&block_group->lock); 8240 space_info->bytes_reserved += ins->offset; 8241 block_group->reserved += ins->offset; 8242 spin_unlock(&block_group->lock); 8243 spin_unlock(&space_info->lock); 8244 8245 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 8246 0, owner, offset, ins, 1); 8247 btrfs_put_block_group(block_group); 8248 return ret; 8249 } 8250 8251 static struct extent_buffer * 8252 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8253 u64 bytenr, int level) 8254 { 8255 struct extent_buffer *buf; 8256 8257 buf = btrfs_find_create_tree_block(root, bytenr); 8258 if (IS_ERR(buf)) 8259 return buf; 8260 8261 btrfs_set_header_generation(buf, trans->transid); 8262 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8263 btrfs_tree_lock(buf); 8264 clean_tree_block(trans, root->fs_info, buf); 8265 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8266 8267 btrfs_set_lock_blocking(buf); 8268 set_extent_buffer_uptodate(buf); 8269 8270 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8271 buf->log_index = root->log_transid % 2; 8272 /* 8273 * we allow two log transactions at a time, use different 8274 * EXENT bit to differentiate dirty pages. 8275 */ 8276 if (buf->log_index == 0) 8277 set_extent_dirty(&root->dirty_log_pages, buf->start, 8278 buf->start + buf->len - 1, GFP_NOFS); 8279 else 8280 set_extent_new(&root->dirty_log_pages, buf->start, 8281 buf->start + buf->len - 1); 8282 } else { 8283 buf->log_index = -1; 8284 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8285 buf->start + buf->len - 1, GFP_NOFS); 8286 } 8287 trans->dirty = true; 8288 /* this returns a buffer locked for blocking */ 8289 return buf; 8290 } 8291 8292 static struct btrfs_block_rsv * 8293 use_block_rsv(struct btrfs_trans_handle *trans, 8294 struct btrfs_root *root, u32 blocksize) 8295 { 8296 struct btrfs_block_rsv *block_rsv; 8297 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 8298 int ret; 8299 bool global_updated = false; 8300 8301 block_rsv = get_block_rsv(trans, root); 8302 8303 if (unlikely(block_rsv->size == 0)) 8304 goto try_reserve; 8305 again: 8306 ret = block_rsv_use_bytes(block_rsv, blocksize); 8307 if (!ret) 8308 return block_rsv; 8309 8310 if (block_rsv->failfast) 8311 return ERR_PTR(ret); 8312 8313 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8314 global_updated = true; 8315 update_global_block_rsv(root->fs_info); 8316 goto again; 8317 } 8318 8319 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 8320 static DEFINE_RATELIMIT_STATE(_rs, 8321 DEFAULT_RATELIMIT_INTERVAL * 10, 8322 /*DEFAULT_RATELIMIT_BURST*/ 1); 8323 if (__ratelimit(&_rs)) 8324 WARN(1, KERN_DEBUG 8325 "BTRFS: block rsv returned %d\n", ret); 8326 } 8327 try_reserve: 8328 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8329 BTRFS_RESERVE_NO_FLUSH); 8330 if (!ret) 8331 return block_rsv; 8332 /* 8333 * If we couldn't reserve metadata bytes try and use some from 8334 * the global reserve if its space type is the same as the global 8335 * reservation. 8336 */ 8337 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8338 block_rsv->space_info == global_rsv->space_info) { 8339 ret = block_rsv_use_bytes(global_rsv, blocksize); 8340 if (!ret) 8341 return global_rsv; 8342 } 8343 return ERR_PTR(ret); 8344 } 8345 8346 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8347 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8348 { 8349 block_rsv_add_bytes(block_rsv, blocksize, 0); 8350 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8351 } 8352 8353 /* 8354 * finds a free extent and does all the dirty work required for allocation 8355 * returns the tree buffer or an ERR_PTR on error. 8356 */ 8357 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8358 struct btrfs_root *root, 8359 u64 parent, u64 root_objectid, 8360 struct btrfs_disk_key *key, int level, 8361 u64 hint, u64 empty_size) 8362 { 8363 struct btrfs_key ins; 8364 struct btrfs_block_rsv *block_rsv; 8365 struct extent_buffer *buf; 8366 struct btrfs_delayed_extent_op *extent_op; 8367 u64 flags = 0; 8368 int ret; 8369 u32 blocksize = root->nodesize; 8370 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8371 SKINNY_METADATA); 8372 8373 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8374 if (btrfs_is_testing(root->fs_info)) { 8375 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8376 level); 8377 if (!IS_ERR(buf)) 8378 root->alloc_bytenr += blocksize; 8379 return buf; 8380 } 8381 #endif 8382 8383 block_rsv = use_block_rsv(trans, root, blocksize); 8384 if (IS_ERR(block_rsv)) 8385 return ERR_CAST(block_rsv); 8386 8387 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8388 empty_size, hint, &ins, 0, 0); 8389 if (ret) 8390 goto out_unuse; 8391 8392 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8393 if (IS_ERR(buf)) { 8394 ret = PTR_ERR(buf); 8395 goto out_free_reserved; 8396 } 8397 8398 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8399 if (parent == 0) 8400 parent = ins.objectid; 8401 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8402 } else 8403 BUG_ON(parent > 0); 8404 8405 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8406 extent_op = btrfs_alloc_delayed_extent_op(); 8407 if (!extent_op) { 8408 ret = -ENOMEM; 8409 goto out_free_buf; 8410 } 8411 if (key) 8412 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8413 else 8414 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8415 extent_op->flags_to_set = flags; 8416 extent_op->update_key = skinny_metadata ? false : true; 8417 extent_op->update_flags = true; 8418 extent_op->is_data = false; 8419 extent_op->level = level; 8420 8421 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8422 ins.objectid, ins.offset, 8423 parent, root_objectid, level, 8424 BTRFS_ADD_DELAYED_EXTENT, 8425 extent_op); 8426 if (ret) 8427 goto out_free_delayed; 8428 } 8429 return buf; 8430 8431 out_free_delayed: 8432 btrfs_free_delayed_extent_op(extent_op); 8433 out_free_buf: 8434 free_extent_buffer(buf); 8435 out_free_reserved: 8436 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8437 out_unuse: 8438 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8439 return ERR_PTR(ret); 8440 } 8441 8442 struct walk_control { 8443 u64 refs[BTRFS_MAX_LEVEL]; 8444 u64 flags[BTRFS_MAX_LEVEL]; 8445 struct btrfs_key update_progress; 8446 int stage; 8447 int level; 8448 int shared_level; 8449 int update_ref; 8450 int keep_locks; 8451 int reada_slot; 8452 int reada_count; 8453 int for_reloc; 8454 }; 8455 8456 #define DROP_REFERENCE 1 8457 #define UPDATE_BACKREF 2 8458 8459 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8460 struct btrfs_root *root, 8461 struct walk_control *wc, 8462 struct btrfs_path *path) 8463 { 8464 u64 bytenr; 8465 u64 generation; 8466 u64 refs; 8467 u64 flags; 8468 u32 nritems; 8469 struct btrfs_key key; 8470 struct extent_buffer *eb; 8471 int ret; 8472 int slot; 8473 int nread = 0; 8474 8475 if (path->slots[wc->level] < wc->reada_slot) { 8476 wc->reada_count = wc->reada_count * 2 / 3; 8477 wc->reada_count = max(wc->reada_count, 2); 8478 } else { 8479 wc->reada_count = wc->reada_count * 3 / 2; 8480 wc->reada_count = min_t(int, wc->reada_count, 8481 BTRFS_NODEPTRS_PER_BLOCK(root)); 8482 } 8483 8484 eb = path->nodes[wc->level]; 8485 nritems = btrfs_header_nritems(eb); 8486 8487 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8488 if (nread >= wc->reada_count) 8489 break; 8490 8491 cond_resched(); 8492 bytenr = btrfs_node_blockptr(eb, slot); 8493 generation = btrfs_node_ptr_generation(eb, slot); 8494 8495 if (slot == path->slots[wc->level]) 8496 goto reada; 8497 8498 if (wc->stage == UPDATE_BACKREF && 8499 generation <= root->root_key.offset) 8500 continue; 8501 8502 /* We don't lock the tree block, it's OK to be racy here */ 8503 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8504 wc->level - 1, 1, &refs, 8505 &flags); 8506 /* We don't care about errors in readahead. */ 8507 if (ret < 0) 8508 continue; 8509 BUG_ON(refs == 0); 8510 8511 if (wc->stage == DROP_REFERENCE) { 8512 if (refs == 1) 8513 goto reada; 8514 8515 if (wc->level == 1 && 8516 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8517 continue; 8518 if (!wc->update_ref || 8519 generation <= root->root_key.offset) 8520 continue; 8521 btrfs_node_key_to_cpu(eb, &key, slot); 8522 ret = btrfs_comp_cpu_keys(&key, 8523 &wc->update_progress); 8524 if (ret < 0) 8525 continue; 8526 } else { 8527 if (wc->level == 1 && 8528 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8529 continue; 8530 } 8531 reada: 8532 readahead_tree_block(root, bytenr); 8533 nread++; 8534 } 8535 wc->reada_slot = slot; 8536 } 8537 8538 static int account_leaf_items(struct btrfs_trans_handle *trans, 8539 struct btrfs_root *root, 8540 struct extent_buffer *eb) 8541 { 8542 int nr = btrfs_header_nritems(eb); 8543 int i, extent_type, ret; 8544 struct btrfs_key key; 8545 struct btrfs_file_extent_item *fi; 8546 u64 bytenr, num_bytes; 8547 8548 /* We can be called directly from walk_up_proc() */ 8549 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) 8550 return 0; 8551 8552 for (i = 0; i < nr; i++) { 8553 btrfs_item_key_to_cpu(eb, &key, i); 8554 8555 if (key.type != BTRFS_EXTENT_DATA_KEY) 8556 continue; 8557 8558 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8559 /* filter out non qgroup-accountable extents */ 8560 extent_type = btrfs_file_extent_type(eb, fi); 8561 8562 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8563 continue; 8564 8565 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8566 if (!bytenr) 8567 continue; 8568 8569 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8570 8571 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info, 8572 bytenr, num_bytes, GFP_NOFS); 8573 if (ret) 8574 return ret; 8575 } 8576 return 0; 8577 } 8578 8579 /* 8580 * Walk up the tree from the bottom, freeing leaves and any interior 8581 * nodes which have had all slots visited. If a node (leaf or 8582 * interior) is freed, the node above it will have it's slot 8583 * incremented. The root node will never be freed. 8584 * 8585 * At the end of this function, we should have a path which has all 8586 * slots incremented to the next position for a search. If we need to 8587 * read a new node it will be NULL and the node above it will have the 8588 * correct slot selected for a later read. 8589 * 8590 * If we increment the root nodes slot counter past the number of 8591 * elements, 1 is returned to signal completion of the search. 8592 */ 8593 static int adjust_slots_upwards(struct btrfs_root *root, 8594 struct btrfs_path *path, int root_level) 8595 { 8596 int level = 0; 8597 int nr, slot; 8598 struct extent_buffer *eb; 8599 8600 if (root_level == 0) 8601 return 1; 8602 8603 while (level <= root_level) { 8604 eb = path->nodes[level]; 8605 nr = btrfs_header_nritems(eb); 8606 path->slots[level]++; 8607 slot = path->slots[level]; 8608 if (slot >= nr || level == 0) { 8609 /* 8610 * Don't free the root - we will detect this 8611 * condition after our loop and return a 8612 * positive value for caller to stop walking the tree. 8613 */ 8614 if (level != root_level) { 8615 btrfs_tree_unlock_rw(eb, path->locks[level]); 8616 path->locks[level] = 0; 8617 8618 free_extent_buffer(eb); 8619 path->nodes[level] = NULL; 8620 path->slots[level] = 0; 8621 } 8622 } else { 8623 /* 8624 * We have a valid slot to walk back down 8625 * from. Stop here so caller can process these 8626 * new nodes. 8627 */ 8628 break; 8629 } 8630 8631 level++; 8632 } 8633 8634 eb = path->nodes[root_level]; 8635 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8636 return 1; 8637 8638 return 0; 8639 } 8640 8641 /* 8642 * root_eb is the subtree root and is locked before this function is called. 8643 */ 8644 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8645 struct btrfs_root *root, 8646 struct extent_buffer *root_eb, 8647 u64 root_gen, 8648 int root_level) 8649 { 8650 int ret = 0; 8651 int level; 8652 struct extent_buffer *eb = root_eb; 8653 struct btrfs_path *path = NULL; 8654 8655 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8656 BUG_ON(root_eb == NULL); 8657 8658 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) 8659 return 0; 8660 8661 if (!extent_buffer_uptodate(root_eb)) { 8662 ret = btrfs_read_buffer(root_eb, root_gen); 8663 if (ret) 8664 goto out; 8665 } 8666 8667 if (root_level == 0) { 8668 ret = account_leaf_items(trans, root, root_eb); 8669 goto out; 8670 } 8671 8672 path = btrfs_alloc_path(); 8673 if (!path) 8674 return -ENOMEM; 8675 8676 /* 8677 * Walk down the tree. Missing extent blocks are filled in as 8678 * we go. Metadata is accounted every time we read a new 8679 * extent block. 8680 * 8681 * When we reach a leaf, we account for file extent items in it, 8682 * walk back up the tree (adjusting slot pointers as we go) 8683 * and restart the search process. 8684 */ 8685 extent_buffer_get(root_eb); /* For path */ 8686 path->nodes[root_level] = root_eb; 8687 path->slots[root_level] = 0; 8688 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8689 walk_down: 8690 level = root_level; 8691 while (level >= 0) { 8692 if (path->nodes[level] == NULL) { 8693 int parent_slot; 8694 u64 child_gen; 8695 u64 child_bytenr; 8696 8697 /* We need to get child blockptr/gen from 8698 * parent before we can read it. */ 8699 eb = path->nodes[level + 1]; 8700 parent_slot = path->slots[level + 1]; 8701 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8702 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8703 8704 eb = read_tree_block(root, child_bytenr, child_gen); 8705 if (IS_ERR(eb)) { 8706 ret = PTR_ERR(eb); 8707 goto out; 8708 } else if (!extent_buffer_uptodate(eb)) { 8709 free_extent_buffer(eb); 8710 ret = -EIO; 8711 goto out; 8712 } 8713 8714 path->nodes[level] = eb; 8715 path->slots[level] = 0; 8716 8717 btrfs_tree_read_lock(eb); 8718 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8719 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8720 8721 ret = btrfs_qgroup_insert_dirty_extent(trans, 8722 root->fs_info, child_bytenr, 8723 root->nodesize, GFP_NOFS); 8724 if (ret) 8725 goto out; 8726 } 8727 8728 if (level == 0) { 8729 ret = account_leaf_items(trans, root, path->nodes[level]); 8730 if (ret) 8731 goto out; 8732 8733 /* Nonzero return here means we completed our search */ 8734 ret = adjust_slots_upwards(root, path, root_level); 8735 if (ret) 8736 break; 8737 8738 /* Restart search with new slots */ 8739 goto walk_down; 8740 } 8741 8742 level--; 8743 } 8744 8745 ret = 0; 8746 out: 8747 btrfs_free_path(path); 8748 8749 return ret; 8750 } 8751 8752 /* 8753 * helper to process tree block while walking down the tree. 8754 * 8755 * when wc->stage == UPDATE_BACKREF, this function updates 8756 * back refs for pointers in the block. 8757 * 8758 * NOTE: return value 1 means we should stop walking down. 8759 */ 8760 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8761 struct btrfs_root *root, 8762 struct btrfs_path *path, 8763 struct walk_control *wc, int lookup_info) 8764 { 8765 int level = wc->level; 8766 struct extent_buffer *eb = path->nodes[level]; 8767 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8768 int ret; 8769 8770 if (wc->stage == UPDATE_BACKREF && 8771 btrfs_header_owner(eb) != root->root_key.objectid) 8772 return 1; 8773 8774 /* 8775 * when reference count of tree block is 1, it won't increase 8776 * again. once full backref flag is set, we never clear it. 8777 */ 8778 if (lookup_info && 8779 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8780 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8781 BUG_ON(!path->locks[level]); 8782 ret = btrfs_lookup_extent_info(trans, root, 8783 eb->start, level, 1, 8784 &wc->refs[level], 8785 &wc->flags[level]); 8786 BUG_ON(ret == -ENOMEM); 8787 if (ret) 8788 return ret; 8789 BUG_ON(wc->refs[level] == 0); 8790 } 8791 8792 if (wc->stage == DROP_REFERENCE) { 8793 if (wc->refs[level] > 1) 8794 return 1; 8795 8796 if (path->locks[level] && !wc->keep_locks) { 8797 btrfs_tree_unlock_rw(eb, path->locks[level]); 8798 path->locks[level] = 0; 8799 } 8800 return 0; 8801 } 8802 8803 /* wc->stage == UPDATE_BACKREF */ 8804 if (!(wc->flags[level] & flag)) { 8805 BUG_ON(!path->locks[level]); 8806 ret = btrfs_inc_ref(trans, root, eb, 1); 8807 BUG_ON(ret); /* -ENOMEM */ 8808 ret = btrfs_dec_ref(trans, root, eb, 0); 8809 BUG_ON(ret); /* -ENOMEM */ 8810 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8811 eb->len, flag, 8812 btrfs_header_level(eb), 0); 8813 BUG_ON(ret); /* -ENOMEM */ 8814 wc->flags[level] |= flag; 8815 } 8816 8817 /* 8818 * the block is shared by multiple trees, so it's not good to 8819 * keep the tree lock 8820 */ 8821 if (path->locks[level] && level > 0) { 8822 btrfs_tree_unlock_rw(eb, path->locks[level]); 8823 path->locks[level] = 0; 8824 } 8825 return 0; 8826 } 8827 8828 /* 8829 * helper to process tree block pointer. 8830 * 8831 * when wc->stage == DROP_REFERENCE, this function checks 8832 * reference count of the block pointed to. if the block 8833 * is shared and we need update back refs for the subtree 8834 * rooted at the block, this function changes wc->stage to 8835 * UPDATE_BACKREF. if the block is shared and there is no 8836 * need to update back, this function drops the reference 8837 * to the block. 8838 * 8839 * NOTE: return value 1 means we should stop walking down. 8840 */ 8841 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8842 struct btrfs_root *root, 8843 struct btrfs_path *path, 8844 struct walk_control *wc, int *lookup_info) 8845 { 8846 u64 bytenr; 8847 u64 generation; 8848 u64 parent; 8849 u32 blocksize; 8850 struct btrfs_key key; 8851 struct extent_buffer *next; 8852 int level = wc->level; 8853 int reada = 0; 8854 int ret = 0; 8855 bool need_account = false; 8856 8857 generation = btrfs_node_ptr_generation(path->nodes[level], 8858 path->slots[level]); 8859 /* 8860 * if the lower level block was created before the snapshot 8861 * was created, we know there is no need to update back refs 8862 * for the subtree 8863 */ 8864 if (wc->stage == UPDATE_BACKREF && 8865 generation <= root->root_key.offset) { 8866 *lookup_info = 1; 8867 return 1; 8868 } 8869 8870 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8871 blocksize = root->nodesize; 8872 8873 next = btrfs_find_tree_block(root->fs_info, bytenr); 8874 if (!next) { 8875 next = btrfs_find_create_tree_block(root, bytenr); 8876 if (IS_ERR(next)) 8877 return PTR_ERR(next); 8878 8879 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8880 level - 1); 8881 reada = 1; 8882 } 8883 btrfs_tree_lock(next); 8884 btrfs_set_lock_blocking(next); 8885 8886 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8887 &wc->refs[level - 1], 8888 &wc->flags[level - 1]); 8889 if (ret < 0) 8890 goto out_unlock; 8891 8892 if (unlikely(wc->refs[level - 1] == 0)) { 8893 btrfs_err(root->fs_info, "Missing references."); 8894 ret = -EIO; 8895 goto out_unlock; 8896 } 8897 *lookup_info = 0; 8898 8899 if (wc->stage == DROP_REFERENCE) { 8900 if (wc->refs[level - 1] > 1) { 8901 need_account = true; 8902 if (level == 1 && 8903 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8904 goto skip; 8905 8906 if (!wc->update_ref || 8907 generation <= root->root_key.offset) 8908 goto skip; 8909 8910 btrfs_node_key_to_cpu(path->nodes[level], &key, 8911 path->slots[level]); 8912 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8913 if (ret < 0) 8914 goto skip; 8915 8916 wc->stage = UPDATE_BACKREF; 8917 wc->shared_level = level - 1; 8918 } 8919 } else { 8920 if (level == 1 && 8921 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8922 goto skip; 8923 } 8924 8925 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8926 btrfs_tree_unlock(next); 8927 free_extent_buffer(next); 8928 next = NULL; 8929 *lookup_info = 1; 8930 } 8931 8932 if (!next) { 8933 if (reada && level == 1) 8934 reada_walk_down(trans, root, wc, path); 8935 next = read_tree_block(root, bytenr, generation); 8936 if (IS_ERR(next)) { 8937 return PTR_ERR(next); 8938 } else if (!extent_buffer_uptodate(next)) { 8939 free_extent_buffer(next); 8940 return -EIO; 8941 } 8942 btrfs_tree_lock(next); 8943 btrfs_set_lock_blocking(next); 8944 } 8945 8946 level--; 8947 ASSERT(level == btrfs_header_level(next)); 8948 if (level != btrfs_header_level(next)) { 8949 btrfs_err(root->fs_info, "mismatched level"); 8950 ret = -EIO; 8951 goto out_unlock; 8952 } 8953 path->nodes[level] = next; 8954 path->slots[level] = 0; 8955 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8956 wc->level = level; 8957 if (wc->level == 1) 8958 wc->reada_slot = 0; 8959 return 0; 8960 skip: 8961 wc->refs[level - 1] = 0; 8962 wc->flags[level - 1] = 0; 8963 if (wc->stage == DROP_REFERENCE) { 8964 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8965 parent = path->nodes[level]->start; 8966 } else { 8967 ASSERT(root->root_key.objectid == 8968 btrfs_header_owner(path->nodes[level])); 8969 if (root->root_key.objectid != 8970 btrfs_header_owner(path->nodes[level])) { 8971 btrfs_err(root->fs_info, 8972 "mismatched block owner"); 8973 ret = -EIO; 8974 goto out_unlock; 8975 } 8976 parent = 0; 8977 } 8978 8979 if (need_account) { 8980 ret = account_shared_subtree(trans, root, next, 8981 generation, level - 1); 8982 if (ret) { 8983 btrfs_err_rl(root->fs_info, 8984 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8985 ret); 8986 } 8987 } 8988 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8989 root->root_key.objectid, level - 1, 0); 8990 if (ret) 8991 goto out_unlock; 8992 } 8993 8994 *lookup_info = 1; 8995 ret = 1; 8996 8997 out_unlock: 8998 btrfs_tree_unlock(next); 8999 free_extent_buffer(next); 9000 9001 return ret; 9002 } 9003 9004 /* 9005 * helper to process tree block while walking up the tree. 9006 * 9007 * when wc->stage == DROP_REFERENCE, this function drops 9008 * reference count on the block. 9009 * 9010 * when wc->stage == UPDATE_BACKREF, this function changes 9011 * wc->stage back to DROP_REFERENCE if we changed wc->stage 9012 * to UPDATE_BACKREF previously while processing the block. 9013 * 9014 * NOTE: return value 1 means we should stop walking up. 9015 */ 9016 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 9017 struct btrfs_root *root, 9018 struct btrfs_path *path, 9019 struct walk_control *wc) 9020 { 9021 int ret; 9022 int level = wc->level; 9023 struct extent_buffer *eb = path->nodes[level]; 9024 u64 parent = 0; 9025 9026 if (wc->stage == UPDATE_BACKREF) { 9027 BUG_ON(wc->shared_level < level); 9028 if (level < wc->shared_level) 9029 goto out; 9030 9031 ret = find_next_key(path, level + 1, &wc->update_progress); 9032 if (ret > 0) 9033 wc->update_ref = 0; 9034 9035 wc->stage = DROP_REFERENCE; 9036 wc->shared_level = -1; 9037 path->slots[level] = 0; 9038 9039 /* 9040 * check reference count again if the block isn't locked. 9041 * we should start walking down the tree again if reference 9042 * count is one. 9043 */ 9044 if (!path->locks[level]) { 9045 BUG_ON(level == 0); 9046 btrfs_tree_lock(eb); 9047 btrfs_set_lock_blocking(eb); 9048 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9049 9050 ret = btrfs_lookup_extent_info(trans, root, 9051 eb->start, level, 1, 9052 &wc->refs[level], 9053 &wc->flags[level]); 9054 if (ret < 0) { 9055 btrfs_tree_unlock_rw(eb, path->locks[level]); 9056 path->locks[level] = 0; 9057 return ret; 9058 } 9059 BUG_ON(wc->refs[level] == 0); 9060 if (wc->refs[level] == 1) { 9061 btrfs_tree_unlock_rw(eb, path->locks[level]); 9062 path->locks[level] = 0; 9063 return 1; 9064 } 9065 } 9066 } 9067 9068 /* wc->stage == DROP_REFERENCE */ 9069 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 9070 9071 if (wc->refs[level] == 1) { 9072 if (level == 0) { 9073 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9074 ret = btrfs_dec_ref(trans, root, eb, 1); 9075 else 9076 ret = btrfs_dec_ref(trans, root, eb, 0); 9077 BUG_ON(ret); /* -ENOMEM */ 9078 ret = account_leaf_items(trans, root, eb); 9079 if (ret) { 9080 btrfs_err_rl(root->fs_info, 9081 "error %d accounting leaf items. Quota is out of sync, rescan required.", 9082 ret); 9083 } 9084 } 9085 /* make block locked assertion in clean_tree_block happy */ 9086 if (!path->locks[level] && 9087 btrfs_header_generation(eb) == trans->transid) { 9088 btrfs_tree_lock(eb); 9089 btrfs_set_lock_blocking(eb); 9090 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9091 } 9092 clean_tree_block(trans, root->fs_info, eb); 9093 } 9094 9095 if (eb == root->node) { 9096 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9097 parent = eb->start; 9098 else 9099 BUG_ON(root->root_key.objectid != 9100 btrfs_header_owner(eb)); 9101 } else { 9102 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9103 parent = path->nodes[level + 1]->start; 9104 else 9105 BUG_ON(root->root_key.objectid != 9106 btrfs_header_owner(path->nodes[level + 1])); 9107 } 9108 9109 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9110 out: 9111 wc->refs[level] = 0; 9112 wc->flags[level] = 0; 9113 return 0; 9114 } 9115 9116 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9117 struct btrfs_root *root, 9118 struct btrfs_path *path, 9119 struct walk_control *wc) 9120 { 9121 int level = wc->level; 9122 int lookup_info = 1; 9123 int ret; 9124 9125 while (level >= 0) { 9126 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9127 if (ret > 0) 9128 break; 9129 9130 if (level == 0) 9131 break; 9132 9133 if (path->slots[level] >= 9134 btrfs_header_nritems(path->nodes[level])) 9135 break; 9136 9137 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9138 if (ret > 0) { 9139 path->slots[level]++; 9140 continue; 9141 } else if (ret < 0) 9142 return ret; 9143 level = wc->level; 9144 } 9145 return 0; 9146 } 9147 9148 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9149 struct btrfs_root *root, 9150 struct btrfs_path *path, 9151 struct walk_control *wc, int max_level) 9152 { 9153 int level = wc->level; 9154 int ret; 9155 9156 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9157 while (level < max_level && path->nodes[level]) { 9158 wc->level = level; 9159 if (path->slots[level] + 1 < 9160 btrfs_header_nritems(path->nodes[level])) { 9161 path->slots[level]++; 9162 return 0; 9163 } else { 9164 ret = walk_up_proc(trans, root, path, wc); 9165 if (ret > 0) 9166 return 0; 9167 9168 if (path->locks[level]) { 9169 btrfs_tree_unlock_rw(path->nodes[level], 9170 path->locks[level]); 9171 path->locks[level] = 0; 9172 } 9173 free_extent_buffer(path->nodes[level]); 9174 path->nodes[level] = NULL; 9175 level++; 9176 } 9177 } 9178 return 1; 9179 } 9180 9181 /* 9182 * drop a subvolume tree. 9183 * 9184 * this function traverses the tree freeing any blocks that only 9185 * referenced by the tree. 9186 * 9187 * when a shared tree block is found. this function decreases its 9188 * reference count by one. if update_ref is true, this function 9189 * also make sure backrefs for the shared block and all lower level 9190 * blocks are properly updated. 9191 * 9192 * If called with for_reloc == 0, may exit early with -EAGAIN 9193 */ 9194 int btrfs_drop_snapshot(struct btrfs_root *root, 9195 struct btrfs_block_rsv *block_rsv, int update_ref, 9196 int for_reloc) 9197 { 9198 struct btrfs_fs_info *fs_info = root->fs_info; 9199 struct btrfs_path *path; 9200 struct btrfs_trans_handle *trans; 9201 struct btrfs_root *tree_root = fs_info->tree_root; 9202 struct btrfs_root_item *root_item = &root->root_item; 9203 struct walk_control *wc; 9204 struct btrfs_key key; 9205 int err = 0; 9206 int ret; 9207 int level; 9208 bool root_dropped = false; 9209 9210 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9211 9212 path = btrfs_alloc_path(); 9213 if (!path) { 9214 err = -ENOMEM; 9215 goto out; 9216 } 9217 9218 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9219 if (!wc) { 9220 btrfs_free_path(path); 9221 err = -ENOMEM; 9222 goto out; 9223 } 9224 9225 trans = btrfs_start_transaction(tree_root, 0); 9226 if (IS_ERR(trans)) { 9227 err = PTR_ERR(trans); 9228 goto out_free; 9229 } 9230 9231 if (block_rsv) 9232 trans->block_rsv = block_rsv; 9233 9234 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9235 level = btrfs_header_level(root->node); 9236 path->nodes[level] = btrfs_lock_root_node(root); 9237 btrfs_set_lock_blocking(path->nodes[level]); 9238 path->slots[level] = 0; 9239 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9240 memset(&wc->update_progress, 0, 9241 sizeof(wc->update_progress)); 9242 } else { 9243 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9244 memcpy(&wc->update_progress, &key, 9245 sizeof(wc->update_progress)); 9246 9247 level = root_item->drop_level; 9248 BUG_ON(level == 0); 9249 path->lowest_level = level; 9250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9251 path->lowest_level = 0; 9252 if (ret < 0) { 9253 err = ret; 9254 goto out_end_trans; 9255 } 9256 WARN_ON(ret > 0); 9257 9258 /* 9259 * unlock our path, this is safe because only this 9260 * function is allowed to delete this snapshot 9261 */ 9262 btrfs_unlock_up_safe(path, 0); 9263 9264 level = btrfs_header_level(root->node); 9265 while (1) { 9266 btrfs_tree_lock(path->nodes[level]); 9267 btrfs_set_lock_blocking(path->nodes[level]); 9268 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9269 9270 ret = btrfs_lookup_extent_info(trans, root, 9271 path->nodes[level]->start, 9272 level, 1, &wc->refs[level], 9273 &wc->flags[level]); 9274 if (ret < 0) { 9275 err = ret; 9276 goto out_end_trans; 9277 } 9278 BUG_ON(wc->refs[level] == 0); 9279 9280 if (level == root_item->drop_level) 9281 break; 9282 9283 btrfs_tree_unlock(path->nodes[level]); 9284 path->locks[level] = 0; 9285 WARN_ON(wc->refs[level] != 1); 9286 level--; 9287 } 9288 } 9289 9290 wc->level = level; 9291 wc->shared_level = -1; 9292 wc->stage = DROP_REFERENCE; 9293 wc->update_ref = update_ref; 9294 wc->keep_locks = 0; 9295 wc->for_reloc = for_reloc; 9296 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9297 9298 while (1) { 9299 9300 ret = walk_down_tree(trans, root, path, wc); 9301 if (ret < 0) { 9302 err = ret; 9303 break; 9304 } 9305 9306 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9307 if (ret < 0) { 9308 err = ret; 9309 break; 9310 } 9311 9312 if (ret > 0) { 9313 BUG_ON(wc->stage != DROP_REFERENCE); 9314 break; 9315 } 9316 9317 if (wc->stage == DROP_REFERENCE) { 9318 level = wc->level; 9319 btrfs_node_key(path->nodes[level], 9320 &root_item->drop_progress, 9321 path->slots[level]); 9322 root_item->drop_level = level; 9323 } 9324 9325 BUG_ON(wc->level == 0); 9326 if (btrfs_should_end_transaction(trans, tree_root) || 9327 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 9328 ret = btrfs_update_root(trans, tree_root, 9329 &root->root_key, 9330 root_item); 9331 if (ret) { 9332 btrfs_abort_transaction(trans, ret); 9333 err = ret; 9334 goto out_end_trans; 9335 } 9336 9337 btrfs_end_transaction_throttle(trans, tree_root); 9338 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 9339 btrfs_debug(fs_info, 9340 "drop snapshot early exit"); 9341 err = -EAGAIN; 9342 goto out_free; 9343 } 9344 9345 trans = btrfs_start_transaction(tree_root, 0); 9346 if (IS_ERR(trans)) { 9347 err = PTR_ERR(trans); 9348 goto out_free; 9349 } 9350 if (block_rsv) 9351 trans->block_rsv = block_rsv; 9352 } 9353 } 9354 btrfs_release_path(path); 9355 if (err) 9356 goto out_end_trans; 9357 9358 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9359 if (ret) { 9360 btrfs_abort_transaction(trans, ret); 9361 goto out_end_trans; 9362 } 9363 9364 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9365 ret = btrfs_find_root(tree_root, &root->root_key, path, 9366 NULL, NULL); 9367 if (ret < 0) { 9368 btrfs_abort_transaction(trans, ret); 9369 err = ret; 9370 goto out_end_trans; 9371 } else if (ret > 0) { 9372 /* if we fail to delete the orphan item this time 9373 * around, it'll get picked up the next time. 9374 * 9375 * The most common failure here is just -ENOENT. 9376 */ 9377 btrfs_del_orphan_item(trans, tree_root, 9378 root->root_key.objectid); 9379 } 9380 } 9381 9382 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9383 btrfs_add_dropped_root(trans, root); 9384 } else { 9385 free_extent_buffer(root->node); 9386 free_extent_buffer(root->commit_root); 9387 btrfs_put_fs_root(root); 9388 } 9389 root_dropped = true; 9390 out_end_trans: 9391 btrfs_end_transaction_throttle(trans, tree_root); 9392 out_free: 9393 kfree(wc); 9394 btrfs_free_path(path); 9395 out: 9396 /* 9397 * So if we need to stop dropping the snapshot for whatever reason we 9398 * need to make sure to add it back to the dead root list so that we 9399 * keep trying to do the work later. This also cleans up roots if we 9400 * don't have it in the radix (like when we recover after a power fail 9401 * or unmount) so we don't leak memory. 9402 */ 9403 if (!for_reloc && root_dropped == false) 9404 btrfs_add_dead_root(root); 9405 if (err && err != -EAGAIN) 9406 btrfs_handle_fs_error(fs_info, err, NULL); 9407 return err; 9408 } 9409 9410 /* 9411 * drop subtree rooted at tree block 'node'. 9412 * 9413 * NOTE: this function will unlock and release tree block 'node' 9414 * only used by relocation code 9415 */ 9416 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9417 struct btrfs_root *root, 9418 struct extent_buffer *node, 9419 struct extent_buffer *parent) 9420 { 9421 struct btrfs_path *path; 9422 struct walk_control *wc; 9423 int level; 9424 int parent_level; 9425 int ret = 0; 9426 int wret; 9427 9428 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9429 9430 path = btrfs_alloc_path(); 9431 if (!path) 9432 return -ENOMEM; 9433 9434 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9435 if (!wc) { 9436 btrfs_free_path(path); 9437 return -ENOMEM; 9438 } 9439 9440 btrfs_assert_tree_locked(parent); 9441 parent_level = btrfs_header_level(parent); 9442 extent_buffer_get(parent); 9443 path->nodes[parent_level] = parent; 9444 path->slots[parent_level] = btrfs_header_nritems(parent); 9445 9446 btrfs_assert_tree_locked(node); 9447 level = btrfs_header_level(node); 9448 path->nodes[level] = node; 9449 path->slots[level] = 0; 9450 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9451 9452 wc->refs[parent_level] = 1; 9453 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9454 wc->level = level; 9455 wc->shared_level = -1; 9456 wc->stage = DROP_REFERENCE; 9457 wc->update_ref = 0; 9458 wc->keep_locks = 1; 9459 wc->for_reloc = 1; 9460 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9461 9462 while (1) { 9463 wret = walk_down_tree(trans, root, path, wc); 9464 if (wret < 0) { 9465 ret = wret; 9466 break; 9467 } 9468 9469 wret = walk_up_tree(trans, root, path, wc, parent_level); 9470 if (wret < 0) 9471 ret = wret; 9472 if (wret != 0) 9473 break; 9474 } 9475 9476 kfree(wc); 9477 btrfs_free_path(path); 9478 return ret; 9479 } 9480 9481 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9482 { 9483 u64 num_devices; 9484 u64 stripped; 9485 9486 /* 9487 * if restripe for this chunk_type is on pick target profile and 9488 * return, otherwise do the usual balance 9489 */ 9490 stripped = get_restripe_target(root->fs_info, flags); 9491 if (stripped) 9492 return extended_to_chunk(stripped); 9493 9494 num_devices = root->fs_info->fs_devices->rw_devices; 9495 9496 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9497 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9498 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9499 9500 if (num_devices == 1) { 9501 stripped |= BTRFS_BLOCK_GROUP_DUP; 9502 stripped = flags & ~stripped; 9503 9504 /* turn raid0 into single device chunks */ 9505 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9506 return stripped; 9507 9508 /* turn mirroring into duplication */ 9509 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9510 BTRFS_BLOCK_GROUP_RAID10)) 9511 return stripped | BTRFS_BLOCK_GROUP_DUP; 9512 } else { 9513 /* they already had raid on here, just return */ 9514 if (flags & stripped) 9515 return flags; 9516 9517 stripped |= BTRFS_BLOCK_GROUP_DUP; 9518 stripped = flags & ~stripped; 9519 9520 /* switch duplicated blocks with raid1 */ 9521 if (flags & BTRFS_BLOCK_GROUP_DUP) 9522 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9523 9524 /* this is drive concat, leave it alone */ 9525 } 9526 9527 return flags; 9528 } 9529 9530 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9531 { 9532 struct btrfs_space_info *sinfo = cache->space_info; 9533 u64 num_bytes; 9534 u64 min_allocable_bytes; 9535 int ret = -ENOSPC; 9536 9537 /* 9538 * We need some metadata space and system metadata space for 9539 * allocating chunks in some corner cases until we force to set 9540 * it to be readonly. 9541 */ 9542 if ((sinfo->flags & 9543 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9544 !force) 9545 min_allocable_bytes = SZ_1M; 9546 else 9547 min_allocable_bytes = 0; 9548 9549 spin_lock(&sinfo->lock); 9550 spin_lock(&cache->lock); 9551 9552 if (cache->ro) { 9553 cache->ro++; 9554 ret = 0; 9555 goto out; 9556 } 9557 9558 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9559 cache->bytes_super - btrfs_block_group_used(&cache->item); 9560 9561 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9562 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9563 min_allocable_bytes <= sinfo->total_bytes) { 9564 sinfo->bytes_readonly += num_bytes; 9565 cache->ro++; 9566 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9567 ret = 0; 9568 } 9569 out: 9570 spin_unlock(&cache->lock); 9571 spin_unlock(&sinfo->lock); 9572 return ret; 9573 } 9574 9575 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9576 struct btrfs_block_group_cache *cache) 9577 9578 { 9579 struct btrfs_trans_handle *trans; 9580 u64 alloc_flags; 9581 int ret; 9582 9583 again: 9584 trans = btrfs_join_transaction(root); 9585 if (IS_ERR(trans)) 9586 return PTR_ERR(trans); 9587 9588 /* 9589 * we're not allowed to set block groups readonly after the dirty 9590 * block groups cache has started writing. If it already started, 9591 * back off and let this transaction commit 9592 */ 9593 mutex_lock(&root->fs_info->ro_block_group_mutex); 9594 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9595 u64 transid = trans->transid; 9596 9597 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9598 btrfs_end_transaction(trans, root); 9599 9600 ret = btrfs_wait_for_commit(root, transid); 9601 if (ret) 9602 return ret; 9603 goto again; 9604 } 9605 9606 /* 9607 * if we are changing raid levels, try to allocate a corresponding 9608 * block group with the new raid level. 9609 */ 9610 alloc_flags = update_block_group_flags(root, cache->flags); 9611 if (alloc_flags != cache->flags) { 9612 ret = do_chunk_alloc(trans, root, alloc_flags, 9613 CHUNK_ALLOC_FORCE); 9614 /* 9615 * ENOSPC is allowed here, we may have enough space 9616 * already allocated at the new raid level to 9617 * carry on 9618 */ 9619 if (ret == -ENOSPC) 9620 ret = 0; 9621 if (ret < 0) 9622 goto out; 9623 } 9624 9625 ret = inc_block_group_ro(cache, 0); 9626 if (!ret) 9627 goto out; 9628 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9629 ret = do_chunk_alloc(trans, root, alloc_flags, 9630 CHUNK_ALLOC_FORCE); 9631 if (ret < 0) 9632 goto out; 9633 ret = inc_block_group_ro(cache, 0); 9634 out: 9635 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9636 alloc_flags = update_block_group_flags(root, cache->flags); 9637 lock_chunks(root->fs_info->chunk_root); 9638 check_system_chunk(trans, root, alloc_flags); 9639 unlock_chunks(root->fs_info->chunk_root); 9640 } 9641 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9642 9643 btrfs_end_transaction(trans, root); 9644 return ret; 9645 } 9646 9647 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9648 struct btrfs_root *root, u64 type) 9649 { 9650 u64 alloc_flags = get_alloc_profile(root, type); 9651 return do_chunk_alloc(trans, root, alloc_flags, 9652 CHUNK_ALLOC_FORCE); 9653 } 9654 9655 /* 9656 * helper to account the unused space of all the readonly block group in the 9657 * space_info. takes mirrors into account. 9658 */ 9659 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9660 { 9661 struct btrfs_block_group_cache *block_group; 9662 u64 free_bytes = 0; 9663 int factor; 9664 9665 /* It's df, we don't care if it's racy */ 9666 if (list_empty(&sinfo->ro_bgs)) 9667 return 0; 9668 9669 spin_lock(&sinfo->lock); 9670 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9671 spin_lock(&block_group->lock); 9672 9673 if (!block_group->ro) { 9674 spin_unlock(&block_group->lock); 9675 continue; 9676 } 9677 9678 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9679 BTRFS_BLOCK_GROUP_RAID10 | 9680 BTRFS_BLOCK_GROUP_DUP)) 9681 factor = 2; 9682 else 9683 factor = 1; 9684 9685 free_bytes += (block_group->key.offset - 9686 btrfs_block_group_used(&block_group->item)) * 9687 factor; 9688 9689 spin_unlock(&block_group->lock); 9690 } 9691 spin_unlock(&sinfo->lock); 9692 9693 return free_bytes; 9694 } 9695 9696 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9697 struct btrfs_block_group_cache *cache) 9698 { 9699 struct btrfs_space_info *sinfo = cache->space_info; 9700 u64 num_bytes; 9701 9702 BUG_ON(!cache->ro); 9703 9704 spin_lock(&sinfo->lock); 9705 spin_lock(&cache->lock); 9706 if (!--cache->ro) { 9707 num_bytes = cache->key.offset - cache->reserved - 9708 cache->pinned - cache->bytes_super - 9709 btrfs_block_group_used(&cache->item); 9710 sinfo->bytes_readonly -= num_bytes; 9711 list_del_init(&cache->ro_list); 9712 } 9713 spin_unlock(&cache->lock); 9714 spin_unlock(&sinfo->lock); 9715 } 9716 9717 /* 9718 * checks to see if its even possible to relocate this block group. 9719 * 9720 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9721 * ok to go ahead and try. 9722 */ 9723 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9724 { 9725 struct btrfs_block_group_cache *block_group; 9726 struct btrfs_space_info *space_info; 9727 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9728 struct btrfs_device *device; 9729 struct btrfs_trans_handle *trans; 9730 u64 min_free; 9731 u64 dev_min = 1; 9732 u64 dev_nr = 0; 9733 u64 target; 9734 int debug; 9735 int index; 9736 int full = 0; 9737 int ret = 0; 9738 9739 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG); 9740 9741 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9742 9743 /* odd, couldn't find the block group, leave it alone */ 9744 if (!block_group) { 9745 if (debug) 9746 btrfs_warn(root->fs_info, 9747 "can't find block group for bytenr %llu", 9748 bytenr); 9749 return -1; 9750 } 9751 9752 min_free = btrfs_block_group_used(&block_group->item); 9753 9754 /* no bytes used, we're good */ 9755 if (!min_free) 9756 goto out; 9757 9758 space_info = block_group->space_info; 9759 spin_lock(&space_info->lock); 9760 9761 full = space_info->full; 9762 9763 /* 9764 * if this is the last block group we have in this space, we can't 9765 * relocate it unless we're able to allocate a new chunk below. 9766 * 9767 * Otherwise, we need to make sure we have room in the space to handle 9768 * all of the extents from this block group. If we can, we're good 9769 */ 9770 if ((space_info->total_bytes != block_group->key.offset) && 9771 (space_info->bytes_used + space_info->bytes_reserved + 9772 space_info->bytes_pinned + space_info->bytes_readonly + 9773 min_free < space_info->total_bytes)) { 9774 spin_unlock(&space_info->lock); 9775 goto out; 9776 } 9777 spin_unlock(&space_info->lock); 9778 9779 /* 9780 * ok we don't have enough space, but maybe we have free space on our 9781 * devices to allocate new chunks for relocation, so loop through our 9782 * alloc devices and guess if we have enough space. if this block 9783 * group is going to be restriped, run checks against the target 9784 * profile instead of the current one. 9785 */ 9786 ret = -1; 9787 9788 /* 9789 * index: 9790 * 0: raid10 9791 * 1: raid1 9792 * 2: dup 9793 * 3: raid0 9794 * 4: single 9795 */ 9796 target = get_restripe_target(root->fs_info, block_group->flags); 9797 if (target) { 9798 index = __get_raid_index(extended_to_chunk(target)); 9799 } else { 9800 /* 9801 * this is just a balance, so if we were marked as full 9802 * we know there is no space for a new chunk 9803 */ 9804 if (full) { 9805 if (debug) 9806 btrfs_warn(root->fs_info, 9807 "no space to alloc new chunk for block group %llu", 9808 block_group->key.objectid); 9809 goto out; 9810 } 9811 9812 index = get_block_group_index(block_group); 9813 } 9814 9815 if (index == BTRFS_RAID_RAID10) { 9816 dev_min = 4; 9817 /* Divide by 2 */ 9818 min_free >>= 1; 9819 } else if (index == BTRFS_RAID_RAID1) { 9820 dev_min = 2; 9821 } else if (index == BTRFS_RAID_DUP) { 9822 /* Multiply by 2 */ 9823 min_free <<= 1; 9824 } else if (index == BTRFS_RAID_RAID0) { 9825 dev_min = fs_devices->rw_devices; 9826 min_free = div64_u64(min_free, dev_min); 9827 } 9828 9829 /* We need to do this so that we can look at pending chunks */ 9830 trans = btrfs_join_transaction(root); 9831 if (IS_ERR(trans)) { 9832 ret = PTR_ERR(trans); 9833 goto out; 9834 } 9835 9836 mutex_lock(&root->fs_info->chunk_mutex); 9837 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9838 u64 dev_offset; 9839 9840 /* 9841 * check to make sure we can actually find a chunk with enough 9842 * space to fit our block group in. 9843 */ 9844 if (device->total_bytes > device->bytes_used + min_free && 9845 !device->is_tgtdev_for_dev_replace) { 9846 ret = find_free_dev_extent(trans, device, min_free, 9847 &dev_offset, NULL); 9848 if (!ret) 9849 dev_nr++; 9850 9851 if (dev_nr >= dev_min) 9852 break; 9853 9854 ret = -1; 9855 } 9856 } 9857 if (debug && ret == -1) 9858 btrfs_warn(root->fs_info, 9859 "no space to allocate a new chunk for block group %llu", 9860 block_group->key.objectid); 9861 mutex_unlock(&root->fs_info->chunk_mutex); 9862 btrfs_end_transaction(trans, root); 9863 out: 9864 btrfs_put_block_group(block_group); 9865 return ret; 9866 } 9867 9868 static int find_first_block_group(struct btrfs_root *root, 9869 struct btrfs_path *path, struct btrfs_key *key) 9870 { 9871 int ret = 0; 9872 struct btrfs_key found_key; 9873 struct extent_buffer *leaf; 9874 int slot; 9875 9876 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9877 if (ret < 0) 9878 goto out; 9879 9880 while (1) { 9881 slot = path->slots[0]; 9882 leaf = path->nodes[0]; 9883 if (slot >= btrfs_header_nritems(leaf)) { 9884 ret = btrfs_next_leaf(root, path); 9885 if (ret == 0) 9886 continue; 9887 if (ret < 0) 9888 goto out; 9889 break; 9890 } 9891 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9892 9893 if (found_key.objectid >= key->objectid && 9894 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9895 struct extent_map_tree *em_tree; 9896 struct extent_map *em; 9897 9898 em_tree = &root->fs_info->mapping_tree.map_tree; 9899 read_lock(&em_tree->lock); 9900 em = lookup_extent_mapping(em_tree, found_key.objectid, 9901 found_key.offset); 9902 read_unlock(&em_tree->lock); 9903 if (!em) { 9904 btrfs_err(root->fs_info, 9905 "logical %llu len %llu found bg but no related chunk", 9906 found_key.objectid, found_key.offset); 9907 ret = -ENOENT; 9908 } else { 9909 ret = 0; 9910 } 9911 free_extent_map(em); 9912 goto out; 9913 } 9914 path->slots[0]++; 9915 } 9916 out: 9917 return ret; 9918 } 9919 9920 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9921 { 9922 struct btrfs_block_group_cache *block_group; 9923 u64 last = 0; 9924 9925 while (1) { 9926 struct inode *inode; 9927 9928 block_group = btrfs_lookup_first_block_group(info, last); 9929 while (block_group) { 9930 spin_lock(&block_group->lock); 9931 if (block_group->iref) 9932 break; 9933 spin_unlock(&block_group->lock); 9934 block_group = next_block_group(info->tree_root, 9935 block_group); 9936 } 9937 if (!block_group) { 9938 if (last == 0) 9939 break; 9940 last = 0; 9941 continue; 9942 } 9943 9944 inode = block_group->inode; 9945 block_group->iref = 0; 9946 block_group->inode = NULL; 9947 spin_unlock(&block_group->lock); 9948 ASSERT(block_group->io_ctl.inode == NULL); 9949 iput(inode); 9950 last = block_group->key.objectid + block_group->key.offset; 9951 btrfs_put_block_group(block_group); 9952 } 9953 } 9954 9955 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9956 { 9957 struct btrfs_block_group_cache *block_group; 9958 struct btrfs_space_info *space_info; 9959 struct btrfs_caching_control *caching_ctl; 9960 struct rb_node *n; 9961 9962 down_write(&info->commit_root_sem); 9963 while (!list_empty(&info->caching_block_groups)) { 9964 caching_ctl = list_entry(info->caching_block_groups.next, 9965 struct btrfs_caching_control, list); 9966 list_del(&caching_ctl->list); 9967 put_caching_control(caching_ctl); 9968 } 9969 up_write(&info->commit_root_sem); 9970 9971 spin_lock(&info->unused_bgs_lock); 9972 while (!list_empty(&info->unused_bgs)) { 9973 block_group = list_first_entry(&info->unused_bgs, 9974 struct btrfs_block_group_cache, 9975 bg_list); 9976 list_del_init(&block_group->bg_list); 9977 btrfs_put_block_group(block_group); 9978 } 9979 spin_unlock(&info->unused_bgs_lock); 9980 9981 spin_lock(&info->block_group_cache_lock); 9982 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9983 block_group = rb_entry(n, struct btrfs_block_group_cache, 9984 cache_node); 9985 rb_erase(&block_group->cache_node, 9986 &info->block_group_cache_tree); 9987 RB_CLEAR_NODE(&block_group->cache_node); 9988 spin_unlock(&info->block_group_cache_lock); 9989 9990 down_write(&block_group->space_info->groups_sem); 9991 list_del(&block_group->list); 9992 up_write(&block_group->space_info->groups_sem); 9993 9994 if (block_group->cached == BTRFS_CACHE_STARTED) 9995 wait_block_group_cache_done(block_group); 9996 9997 /* 9998 * We haven't cached this block group, which means we could 9999 * possibly have excluded extents on this block group. 10000 */ 10001 if (block_group->cached == BTRFS_CACHE_NO || 10002 block_group->cached == BTRFS_CACHE_ERROR) 10003 free_excluded_extents(info->extent_root, block_group); 10004 10005 btrfs_remove_free_space_cache(block_group); 10006 ASSERT(list_empty(&block_group->dirty_list)); 10007 ASSERT(list_empty(&block_group->io_list)); 10008 ASSERT(list_empty(&block_group->bg_list)); 10009 ASSERT(atomic_read(&block_group->count) == 1); 10010 btrfs_put_block_group(block_group); 10011 10012 spin_lock(&info->block_group_cache_lock); 10013 } 10014 spin_unlock(&info->block_group_cache_lock); 10015 10016 /* now that all the block groups are freed, go through and 10017 * free all the space_info structs. This is only called during 10018 * the final stages of unmount, and so we know nobody is 10019 * using them. We call synchronize_rcu() once before we start, 10020 * just to be on the safe side. 10021 */ 10022 synchronize_rcu(); 10023 10024 release_global_block_rsv(info); 10025 10026 while (!list_empty(&info->space_info)) { 10027 int i; 10028 10029 space_info = list_entry(info->space_info.next, 10030 struct btrfs_space_info, 10031 list); 10032 10033 /* 10034 * Do not hide this behind enospc_debug, this is actually 10035 * important and indicates a real bug if this happens. 10036 */ 10037 if (WARN_ON(space_info->bytes_pinned > 0 || 10038 space_info->bytes_reserved > 0 || 10039 space_info->bytes_may_use > 0)) 10040 dump_space_info(info, space_info, 0, 0); 10041 list_del(&space_info->list); 10042 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 10043 struct kobject *kobj; 10044 kobj = space_info->block_group_kobjs[i]; 10045 space_info->block_group_kobjs[i] = NULL; 10046 if (kobj) { 10047 kobject_del(kobj); 10048 kobject_put(kobj); 10049 } 10050 } 10051 kobject_del(&space_info->kobj); 10052 kobject_put(&space_info->kobj); 10053 } 10054 return 0; 10055 } 10056 10057 static void __link_block_group(struct btrfs_space_info *space_info, 10058 struct btrfs_block_group_cache *cache) 10059 { 10060 int index = get_block_group_index(cache); 10061 bool first = false; 10062 10063 down_write(&space_info->groups_sem); 10064 if (list_empty(&space_info->block_groups[index])) 10065 first = true; 10066 list_add_tail(&cache->list, &space_info->block_groups[index]); 10067 up_write(&space_info->groups_sem); 10068 10069 if (first) { 10070 struct raid_kobject *rkobj; 10071 int ret; 10072 10073 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 10074 if (!rkobj) 10075 goto out_err; 10076 rkobj->raid_type = index; 10077 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10078 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 10079 "%s", get_raid_name(index)); 10080 if (ret) { 10081 kobject_put(&rkobj->kobj); 10082 goto out_err; 10083 } 10084 space_info->block_group_kobjs[index] = &rkobj->kobj; 10085 } 10086 10087 return; 10088 out_err: 10089 btrfs_warn(cache->fs_info, 10090 "failed to add kobject for block cache, ignoring"); 10091 } 10092 10093 static struct btrfs_block_group_cache * 10094 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 10095 { 10096 struct btrfs_block_group_cache *cache; 10097 10098 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10099 if (!cache) 10100 return NULL; 10101 10102 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10103 GFP_NOFS); 10104 if (!cache->free_space_ctl) { 10105 kfree(cache); 10106 return NULL; 10107 } 10108 10109 cache->key.objectid = start; 10110 cache->key.offset = size; 10111 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10112 10113 cache->sectorsize = root->sectorsize; 10114 cache->fs_info = root->fs_info; 10115 cache->full_stripe_len = btrfs_full_stripe_len(root, 10116 &root->fs_info->mapping_tree, 10117 start); 10118 set_free_space_tree_thresholds(cache); 10119 10120 atomic_set(&cache->count, 1); 10121 spin_lock_init(&cache->lock); 10122 init_rwsem(&cache->data_rwsem); 10123 INIT_LIST_HEAD(&cache->list); 10124 INIT_LIST_HEAD(&cache->cluster_list); 10125 INIT_LIST_HEAD(&cache->bg_list); 10126 INIT_LIST_HEAD(&cache->ro_list); 10127 INIT_LIST_HEAD(&cache->dirty_list); 10128 INIT_LIST_HEAD(&cache->io_list); 10129 btrfs_init_free_space_ctl(cache); 10130 atomic_set(&cache->trimming, 0); 10131 mutex_init(&cache->free_space_lock); 10132 10133 return cache; 10134 } 10135 10136 int btrfs_read_block_groups(struct btrfs_root *root) 10137 { 10138 struct btrfs_path *path; 10139 int ret; 10140 struct btrfs_block_group_cache *cache; 10141 struct btrfs_fs_info *info = root->fs_info; 10142 struct btrfs_space_info *space_info; 10143 struct btrfs_key key; 10144 struct btrfs_key found_key; 10145 struct extent_buffer *leaf; 10146 int need_clear = 0; 10147 u64 cache_gen; 10148 u64 feature; 10149 int mixed; 10150 10151 feature = btrfs_super_incompat_flags(info->super_copy); 10152 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10153 10154 root = info->extent_root; 10155 key.objectid = 0; 10156 key.offset = 0; 10157 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10158 path = btrfs_alloc_path(); 10159 if (!path) 10160 return -ENOMEM; 10161 path->reada = READA_FORWARD; 10162 10163 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 10164 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 10165 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 10166 need_clear = 1; 10167 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE)) 10168 need_clear = 1; 10169 10170 while (1) { 10171 ret = find_first_block_group(root, path, &key); 10172 if (ret > 0) 10173 break; 10174 if (ret != 0) 10175 goto error; 10176 10177 leaf = path->nodes[0]; 10178 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10179 10180 cache = btrfs_create_block_group_cache(root, found_key.objectid, 10181 found_key.offset); 10182 if (!cache) { 10183 ret = -ENOMEM; 10184 goto error; 10185 } 10186 10187 if (need_clear) { 10188 /* 10189 * When we mount with old space cache, we need to 10190 * set BTRFS_DC_CLEAR and set dirty flag. 10191 * 10192 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10193 * truncate the old free space cache inode and 10194 * setup a new one. 10195 * b) Setting 'dirty flag' makes sure that we flush 10196 * the new space cache info onto disk. 10197 */ 10198 if (btrfs_test_opt(root->fs_info, SPACE_CACHE)) 10199 cache->disk_cache_state = BTRFS_DC_CLEAR; 10200 } 10201 10202 read_extent_buffer(leaf, &cache->item, 10203 btrfs_item_ptr_offset(leaf, path->slots[0]), 10204 sizeof(cache->item)); 10205 cache->flags = btrfs_block_group_flags(&cache->item); 10206 if (!mixed && 10207 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10208 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10209 btrfs_err(info, 10210 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10211 cache->key.objectid); 10212 ret = -EINVAL; 10213 goto error; 10214 } 10215 10216 key.objectid = found_key.objectid + found_key.offset; 10217 btrfs_release_path(path); 10218 10219 /* 10220 * We need to exclude the super stripes now so that the space 10221 * info has super bytes accounted for, otherwise we'll think 10222 * we have more space than we actually do. 10223 */ 10224 ret = exclude_super_stripes(root, cache); 10225 if (ret) { 10226 /* 10227 * We may have excluded something, so call this just in 10228 * case. 10229 */ 10230 free_excluded_extents(root, cache); 10231 btrfs_put_block_group(cache); 10232 goto error; 10233 } 10234 10235 /* 10236 * check for two cases, either we are full, and therefore 10237 * don't need to bother with the caching work since we won't 10238 * find any space, or we are empty, and we can just add all 10239 * the space in and be done with it. This saves us _alot_ of 10240 * time, particularly in the full case. 10241 */ 10242 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10243 cache->last_byte_to_unpin = (u64)-1; 10244 cache->cached = BTRFS_CACHE_FINISHED; 10245 free_excluded_extents(root, cache); 10246 } else if (btrfs_block_group_used(&cache->item) == 0) { 10247 cache->last_byte_to_unpin = (u64)-1; 10248 cache->cached = BTRFS_CACHE_FINISHED; 10249 add_new_free_space(cache, root->fs_info, 10250 found_key.objectid, 10251 found_key.objectid + 10252 found_key.offset); 10253 free_excluded_extents(root, cache); 10254 } 10255 10256 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10257 if (ret) { 10258 btrfs_remove_free_space_cache(cache); 10259 btrfs_put_block_group(cache); 10260 goto error; 10261 } 10262 10263 trace_btrfs_add_block_group(root->fs_info, cache, 0); 10264 ret = update_space_info(info, cache->flags, found_key.offset, 10265 btrfs_block_group_used(&cache->item), 10266 cache->bytes_super, &space_info); 10267 if (ret) { 10268 btrfs_remove_free_space_cache(cache); 10269 spin_lock(&info->block_group_cache_lock); 10270 rb_erase(&cache->cache_node, 10271 &info->block_group_cache_tree); 10272 RB_CLEAR_NODE(&cache->cache_node); 10273 spin_unlock(&info->block_group_cache_lock); 10274 btrfs_put_block_group(cache); 10275 goto error; 10276 } 10277 10278 cache->space_info = space_info; 10279 10280 __link_block_group(space_info, cache); 10281 10282 set_avail_alloc_bits(root->fs_info, cache->flags); 10283 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 10284 inc_block_group_ro(cache, 1); 10285 } else if (btrfs_block_group_used(&cache->item) == 0) { 10286 spin_lock(&info->unused_bgs_lock); 10287 /* Should always be true but just in case. */ 10288 if (list_empty(&cache->bg_list)) { 10289 btrfs_get_block_group(cache); 10290 list_add_tail(&cache->bg_list, 10291 &info->unused_bgs); 10292 } 10293 spin_unlock(&info->unused_bgs_lock); 10294 } 10295 } 10296 10297 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 10298 if (!(get_alloc_profile(root, space_info->flags) & 10299 (BTRFS_BLOCK_GROUP_RAID10 | 10300 BTRFS_BLOCK_GROUP_RAID1 | 10301 BTRFS_BLOCK_GROUP_RAID5 | 10302 BTRFS_BLOCK_GROUP_RAID6 | 10303 BTRFS_BLOCK_GROUP_DUP))) 10304 continue; 10305 /* 10306 * avoid allocating from un-mirrored block group if there are 10307 * mirrored block groups. 10308 */ 10309 list_for_each_entry(cache, 10310 &space_info->block_groups[BTRFS_RAID_RAID0], 10311 list) 10312 inc_block_group_ro(cache, 1); 10313 list_for_each_entry(cache, 10314 &space_info->block_groups[BTRFS_RAID_SINGLE], 10315 list) 10316 inc_block_group_ro(cache, 1); 10317 } 10318 10319 init_global_block_rsv(info); 10320 ret = 0; 10321 error: 10322 btrfs_free_path(path); 10323 return ret; 10324 } 10325 10326 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10327 struct btrfs_root *root) 10328 { 10329 struct btrfs_block_group_cache *block_group, *tmp; 10330 struct btrfs_root *extent_root = root->fs_info->extent_root; 10331 struct btrfs_block_group_item item; 10332 struct btrfs_key key; 10333 int ret = 0; 10334 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10335 10336 trans->can_flush_pending_bgs = false; 10337 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10338 if (ret) 10339 goto next; 10340 10341 spin_lock(&block_group->lock); 10342 memcpy(&item, &block_group->item, sizeof(item)); 10343 memcpy(&key, &block_group->key, sizeof(key)); 10344 spin_unlock(&block_group->lock); 10345 10346 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10347 sizeof(item)); 10348 if (ret) 10349 btrfs_abort_transaction(trans, ret); 10350 ret = btrfs_finish_chunk_alloc(trans, extent_root, 10351 key.objectid, key.offset); 10352 if (ret) 10353 btrfs_abort_transaction(trans, ret); 10354 add_block_group_free_space(trans, root->fs_info, block_group); 10355 /* already aborted the transaction if it failed. */ 10356 next: 10357 list_del_init(&block_group->bg_list); 10358 } 10359 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10360 } 10361 10362 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10363 struct btrfs_root *root, u64 bytes_used, 10364 u64 type, u64 chunk_objectid, u64 chunk_offset, 10365 u64 size) 10366 { 10367 int ret; 10368 struct btrfs_root *extent_root; 10369 struct btrfs_block_group_cache *cache; 10370 extent_root = root->fs_info->extent_root; 10371 10372 btrfs_set_log_full_commit(root->fs_info, trans); 10373 10374 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 10375 if (!cache) 10376 return -ENOMEM; 10377 10378 btrfs_set_block_group_used(&cache->item, bytes_used); 10379 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10380 btrfs_set_block_group_flags(&cache->item, type); 10381 10382 cache->flags = type; 10383 cache->last_byte_to_unpin = (u64)-1; 10384 cache->cached = BTRFS_CACHE_FINISHED; 10385 cache->needs_free_space = 1; 10386 ret = exclude_super_stripes(root, cache); 10387 if (ret) { 10388 /* 10389 * We may have excluded something, so call this just in 10390 * case. 10391 */ 10392 free_excluded_extents(root, cache); 10393 btrfs_put_block_group(cache); 10394 return ret; 10395 } 10396 10397 add_new_free_space(cache, root->fs_info, chunk_offset, 10398 chunk_offset + size); 10399 10400 free_excluded_extents(root, cache); 10401 10402 #ifdef CONFIG_BTRFS_DEBUG 10403 if (btrfs_should_fragment_free_space(root, cache)) { 10404 u64 new_bytes_used = size - bytes_used; 10405 10406 bytes_used += new_bytes_used >> 1; 10407 fragment_free_space(root, cache); 10408 } 10409 #endif 10410 /* 10411 * Call to ensure the corresponding space_info object is created and 10412 * assigned to our block group, but don't update its counters just yet. 10413 * We want our bg to be added to the rbtree with its ->space_info set. 10414 */ 10415 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0, 10416 &cache->space_info); 10417 if (ret) { 10418 btrfs_remove_free_space_cache(cache); 10419 btrfs_put_block_group(cache); 10420 return ret; 10421 } 10422 10423 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10424 if (ret) { 10425 btrfs_remove_free_space_cache(cache); 10426 btrfs_put_block_group(cache); 10427 return ret; 10428 } 10429 10430 /* 10431 * Now that our block group has its ->space_info set and is inserted in 10432 * the rbtree, update the space info's counters. 10433 */ 10434 trace_btrfs_add_block_group(root->fs_info, cache, 1); 10435 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10436 cache->bytes_super, &cache->space_info); 10437 if (ret) { 10438 btrfs_remove_free_space_cache(cache); 10439 spin_lock(&root->fs_info->block_group_cache_lock); 10440 rb_erase(&cache->cache_node, 10441 &root->fs_info->block_group_cache_tree); 10442 RB_CLEAR_NODE(&cache->cache_node); 10443 spin_unlock(&root->fs_info->block_group_cache_lock); 10444 btrfs_put_block_group(cache); 10445 return ret; 10446 } 10447 update_global_block_rsv(root->fs_info); 10448 10449 __link_block_group(cache->space_info, cache); 10450 10451 list_add_tail(&cache->bg_list, &trans->new_bgs); 10452 10453 set_avail_alloc_bits(extent_root->fs_info, type); 10454 return 0; 10455 } 10456 10457 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10458 { 10459 u64 extra_flags = chunk_to_extended(flags) & 10460 BTRFS_EXTENDED_PROFILE_MASK; 10461 10462 write_seqlock(&fs_info->profiles_lock); 10463 if (flags & BTRFS_BLOCK_GROUP_DATA) 10464 fs_info->avail_data_alloc_bits &= ~extra_flags; 10465 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10466 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10467 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10468 fs_info->avail_system_alloc_bits &= ~extra_flags; 10469 write_sequnlock(&fs_info->profiles_lock); 10470 } 10471 10472 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10473 struct btrfs_root *root, u64 group_start, 10474 struct extent_map *em) 10475 { 10476 struct btrfs_path *path; 10477 struct btrfs_block_group_cache *block_group; 10478 struct btrfs_free_cluster *cluster; 10479 struct btrfs_root *tree_root = root->fs_info->tree_root; 10480 struct btrfs_key key; 10481 struct inode *inode; 10482 struct kobject *kobj = NULL; 10483 int ret; 10484 int index; 10485 int factor; 10486 struct btrfs_caching_control *caching_ctl = NULL; 10487 bool remove_em; 10488 10489 root = root->fs_info->extent_root; 10490 10491 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10492 BUG_ON(!block_group); 10493 BUG_ON(!block_group->ro); 10494 10495 /* 10496 * Free the reserved super bytes from this block group before 10497 * remove it. 10498 */ 10499 free_excluded_extents(root, block_group); 10500 10501 memcpy(&key, &block_group->key, sizeof(key)); 10502 index = get_block_group_index(block_group); 10503 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10504 BTRFS_BLOCK_GROUP_RAID1 | 10505 BTRFS_BLOCK_GROUP_RAID10)) 10506 factor = 2; 10507 else 10508 factor = 1; 10509 10510 /* make sure this block group isn't part of an allocation cluster */ 10511 cluster = &root->fs_info->data_alloc_cluster; 10512 spin_lock(&cluster->refill_lock); 10513 btrfs_return_cluster_to_free_space(block_group, cluster); 10514 spin_unlock(&cluster->refill_lock); 10515 10516 /* 10517 * make sure this block group isn't part of a metadata 10518 * allocation cluster 10519 */ 10520 cluster = &root->fs_info->meta_alloc_cluster; 10521 spin_lock(&cluster->refill_lock); 10522 btrfs_return_cluster_to_free_space(block_group, cluster); 10523 spin_unlock(&cluster->refill_lock); 10524 10525 path = btrfs_alloc_path(); 10526 if (!path) { 10527 ret = -ENOMEM; 10528 goto out; 10529 } 10530 10531 /* 10532 * get the inode first so any iput calls done for the io_list 10533 * aren't the final iput (no unlinks allowed now) 10534 */ 10535 inode = lookup_free_space_inode(tree_root, block_group, path); 10536 10537 mutex_lock(&trans->transaction->cache_write_mutex); 10538 /* 10539 * make sure our free spache cache IO is done before remove the 10540 * free space inode 10541 */ 10542 spin_lock(&trans->transaction->dirty_bgs_lock); 10543 if (!list_empty(&block_group->io_list)) { 10544 list_del_init(&block_group->io_list); 10545 10546 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10547 10548 spin_unlock(&trans->transaction->dirty_bgs_lock); 10549 btrfs_wait_cache_io(root, trans, block_group, 10550 &block_group->io_ctl, path, 10551 block_group->key.objectid); 10552 btrfs_put_block_group(block_group); 10553 spin_lock(&trans->transaction->dirty_bgs_lock); 10554 } 10555 10556 if (!list_empty(&block_group->dirty_list)) { 10557 list_del_init(&block_group->dirty_list); 10558 btrfs_put_block_group(block_group); 10559 } 10560 spin_unlock(&trans->transaction->dirty_bgs_lock); 10561 mutex_unlock(&trans->transaction->cache_write_mutex); 10562 10563 if (!IS_ERR(inode)) { 10564 ret = btrfs_orphan_add(trans, inode); 10565 if (ret) { 10566 btrfs_add_delayed_iput(inode); 10567 goto out; 10568 } 10569 clear_nlink(inode); 10570 /* One for the block groups ref */ 10571 spin_lock(&block_group->lock); 10572 if (block_group->iref) { 10573 block_group->iref = 0; 10574 block_group->inode = NULL; 10575 spin_unlock(&block_group->lock); 10576 iput(inode); 10577 } else { 10578 spin_unlock(&block_group->lock); 10579 } 10580 /* One for our lookup ref */ 10581 btrfs_add_delayed_iput(inode); 10582 } 10583 10584 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10585 key.offset = block_group->key.objectid; 10586 key.type = 0; 10587 10588 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10589 if (ret < 0) 10590 goto out; 10591 if (ret > 0) 10592 btrfs_release_path(path); 10593 if (ret == 0) { 10594 ret = btrfs_del_item(trans, tree_root, path); 10595 if (ret) 10596 goto out; 10597 btrfs_release_path(path); 10598 } 10599 10600 spin_lock(&root->fs_info->block_group_cache_lock); 10601 rb_erase(&block_group->cache_node, 10602 &root->fs_info->block_group_cache_tree); 10603 RB_CLEAR_NODE(&block_group->cache_node); 10604 10605 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10606 root->fs_info->first_logical_byte = (u64)-1; 10607 spin_unlock(&root->fs_info->block_group_cache_lock); 10608 10609 down_write(&block_group->space_info->groups_sem); 10610 /* 10611 * we must use list_del_init so people can check to see if they 10612 * are still on the list after taking the semaphore 10613 */ 10614 list_del_init(&block_group->list); 10615 if (list_empty(&block_group->space_info->block_groups[index])) { 10616 kobj = block_group->space_info->block_group_kobjs[index]; 10617 block_group->space_info->block_group_kobjs[index] = NULL; 10618 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10619 } 10620 up_write(&block_group->space_info->groups_sem); 10621 if (kobj) { 10622 kobject_del(kobj); 10623 kobject_put(kobj); 10624 } 10625 10626 if (block_group->has_caching_ctl) 10627 caching_ctl = get_caching_control(block_group); 10628 if (block_group->cached == BTRFS_CACHE_STARTED) 10629 wait_block_group_cache_done(block_group); 10630 if (block_group->has_caching_ctl) { 10631 down_write(&root->fs_info->commit_root_sem); 10632 if (!caching_ctl) { 10633 struct btrfs_caching_control *ctl; 10634 10635 list_for_each_entry(ctl, 10636 &root->fs_info->caching_block_groups, list) 10637 if (ctl->block_group == block_group) { 10638 caching_ctl = ctl; 10639 atomic_inc(&caching_ctl->count); 10640 break; 10641 } 10642 } 10643 if (caching_ctl) 10644 list_del_init(&caching_ctl->list); 10645 up_write(&root->fs_info->commit_root_sem); 10646 if (caching_ctl) { 10647 /* Once for the caching bgs list and once for us. */ 10648 put_caching_control(caching_ctl); 10649 put_caching_control(caching_ctl); 10650 } 10651 } 10652 10653 spin_lock(&trans->transaction->dirty_bgs_lock); 10654 if (!list_empty(&block_group->dirty_list)) { 10655 WARN_ON(1); 10656 } 10657 if (!list_empty(&block_group->io_list)) { 10658 WARN_ON(1); 10659 } 10660 spin_unlock(&trans->transaction->dirty_bgs_lock); 10661 btrfs_remove_free_space_cache(block_group); 10662 10663 spin_lock(&block_group->space_info->lock); 10664 list_del_init(&block_group->ro_list); 10665 10666 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 10667 WARN_ON(block_group->space_info->total_bytes 10668 < block_group->key.offset); 10669 WARN_ON(block_group->space_info->bytes_readonly 10670 < block_group->key.offset); 10671 WARN_ON(block_group->space_info->disk_total 10672 < block_group->key.offset * factor); 10673 } 10674 block_group->space_info->total_bytes -= block_group->key.offset; 10675 block_group->space_info->bytes_readonly -= block_group->key.offset; 10676 block_group->space_info->disk_total -= block_group->key.offset * factor; 10677 10678 spin_unlock(&block_group->space_info->lock); 10679 10680 memcpy(&key, &block_group->key, sizeof(key)); 10681 10682 lock_chunks(root); 10683 if (!list_empty(&em->list)) { 10684 /* We're in the transaction->pending_chunks list. */ 10685 free_extent_map(em); 10686 } 10687 spin_lock(&block_group->lock); 10688 block_group->removed = 1; 10689 /* 10690 * At this point trimming can't start on this block group, because we 10691 * removed the block group from the tree fs_info->block_group_cache_tree 10692 * so no one can't find it anymore and even if someone already got this 10693 * block group before we removed it from the rbtree, they have already 10694 * incremented block_group->trimming - if they didn't, they won't find 10695 * any free space entries because we already removed them all when we 10696 * called btrfs_remove_free_space_cache(). 10697 * 10698 * And we must not remove the extent map from the fs_info->mapping_tree 10699 * to prevent the same logical address range and physical device space 10700 * ranges from being reused for a new block group. This is because our 10701 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10702 * completely transactionless, so while it is trimming a range the 10703 * currently running transaction might finish and a new one start, 10704 * allowing for new block groups to be created that can reuse the same 10705 * physical device locations unless we take this special care. 10706 * 10707 * There may also be an implicit trim operation if the file system 10708 * is mounted with -odiscard. The same protections must remain 10709 * in place until the extents have been discarded completely when 10710 * the transaction commit has completed. 10711 */ 10712 remove_em = (atomic_read(&block_group->trimming) == 0); 10713 /* 10714 * Make sure a trimmer task always sees the em in the pinned_chunks list 10715 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10716 * before checking block_group->removed). 10717 */ 10718 if (!remove_em) { 10719 /* 10720 * Our em might be in trans->transaction->pending_chunks which 10721 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10722 * and so is the fs_info->pinned_chunks list. 10723 * 10724 * So at this point we must be holding the chunk_mutex to avoid 10725 * any races with chunk allocation (more specifically at 10726 * volumes.c:contains_pending_extent()), to ensure it always 10727 * sees the em, either in the pending_chunks list or in the 10728 * pinned_chunks list. 10729 */ 10730 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10731 } 10732 spin_unlock(&block_group->lock); 10733 10734 if (remove_em) { 10735 struct extent_map_tree *em_tree; 10736 10737 em_tree = &root->fs_info->mapping_tree.map_tree; 10738 write_lock(&em_tree->lock); 10739 /* 10740 * The em might be in the pending_chunks list, so make sure the 10741 * chunk mutex is locked, since remove_extent_mapping() will 10742 * delete us from that list. 10743 */ 10744 remove_extent_mapping(em_tree, em); 10745 write_unlock(&em_tree->lock); 10746 /* once for the tree */ 10747 free_extent_map(em); 10748 } 10749 10750 unlock_chunks(root); 10751 10752 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10753 if (ret) 10754 goto out; 10755 10756 btrfs_put_block_group(block_group); 10757 btrfs_put_block_group(block_group); 10758 10759 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10760 if (ret > 0) 10761 ret = -EIO; 10762 if (ret < 0) 10763 goto out; 10764 10765 ret = btrfs_del_item(trans, root, path); 10766 out: 10767 btrfs_free_path(path); 10768 return ret; 10769 } 10770 10771 struct btrfs_trans_handle * 10772 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10773 const u64 chunk_offset) 10774 { 10775 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10776 struct extent_map *em; 10777 struct map_lookup *map; 10778 unsigned int num_items; 10779 10780 read_lock(&em_tree->lock); 10781 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10782 read_unlock(&em_tree->lock); 10783 ASSERT(em && em->start == chunk_offset); 10784 10785 /* 10786 * We need to reserve 3 + N units from the metadata space info in order 10787 * to remove a block group (done at btrfs_remove_chunk() and at 10788 * btrfs_remove_block_group()), which are used for: 10789 * 10790 * 1 unit for adding the free space inode's orphan (located in the tree 10791 * of tree roots). 10792 * 1 unit for deleting the block group item (located in the extent 10793 * tree). 10794 * 1 unit for deleting the free space item (located in tree of tree 10795 * roots). 10796 * N units for deleting N device extent items corresponding to each 10797 * stripe (located in the device tree). 10798 * 10799 * In order to remove a block group we also need to reserve units in the 10800 * system space info in order to update the chunk tree (update one or 10801 * more device items and remove one chunk item), but this is done at 10802 * btrfs_remove_chunk() through a call to check_system_chunk(). 10803 */ 10804 map = em->map_lookup; 10805 num_items = 3 + map->num_stripes; 10806 free_extent_map(em); 10807 10808 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10809 num_items, 1); 10810 } 10811 10812 /* 10813 * Process the unused_bgs list and remove any that don't have any allocated 10814 * space inside of them. 10815 */ 10816 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10817 { 10818 struct btrfs_block_group_cache *block_group; 10819 struct btrfs_space_info *space_info; 10820 struct btrfs_root *root = fs_info->extent_root; 10821 struct btrfs_trans_handle *trans; 10822 int ret = 0; 10823 10824 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10825 return; 10826 10827 spin_lock(&fs_info->unused_bgs_lock); 10828 while (!list_empty(&fs_info->unused_bgs)) { 10829 u64 start, end; 10830 int trimming; 10831 10832 block_group = list_first_entry(&fs_info->unused_bgs, 10833 struct btrfs_block_group_cache, 10834 bg_list); 10835 list_del_init(&block_group->bg_list); 10836 10837 space_info = block_group->space_info; 10838 10839 if (ret || btrfs_mixed_space_info(space_info)) { 10840 btrfs_put_block_group(block_group); 10841 continue; 10842 } 10843 spin_unlock(&fs_info->unused_bgs_lock); 10844 10845 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10846 10847 /* Don't want to race with allocators so take the groups_sem */ 10848 down_write(&space_info->groups_sem); 10849 spin_lock(&block_group->lock); 10850 if (block_group->reserved || 10851 btrfs_block_group_used(&block_group->item) || 10852 block_group->ro || 10853 list_is_singular(&block_group->list)) { 10854 /* 10855 * We want to bail if we made new allocations or have 10856 * outstanding allocations in this block group. We do 10857 * the ro check in case balance is currently acting on 10858 * this block group. 10859 */ 10860 spin_unlock(&block_group->lock); 10861 up_write(&space_info->groups_sem); 10862 goto next; 10863 } 10864 spin_unlock(&block_group->lock); 10865 10866 /* We don't want to force the issue, only flip if it's ok. */ 10867 ret = inc_block_group_ro(block_group, 0); 10868 up_write(&space_info->groups_sem); 10869 if (ret < 0) { 10870 ret = 0; 10871 goto next; 10872 } 10873 10874 /* 10875 * Want to do this before we do anything else so we can recover 10876 * properly if we fail to join the transaction. 10877 */ 10878 trans = btrfs_start_trans_remove_block_group(fs_info, 10879 block_group->key.objectid); 10880 if (IS_ERR(trans)) { 10881 btrfs_dec_block_group_ro(root, block_group); 10882 ret = PTR_ERR(trans); 10883 goto next; 10884 } 10885 10886 /* 10887 * We could have pending pinned extents for this block group, 10888 * just delete them, we don't care about them anymore. 10889 */ 10890 start = block_group->key.objectid; 10891 end = start + block_group->key.offset - 1; 10892 /* 10893 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10894 * btrfs_finish_extent_commit(). If we are at transaction N, 10895 * another task might be running finish_extent_commit() for the 10896 * previous transaction N - 1, and have seen a range belonging 10897 * to the block group in freed_extents[] before we were able to 10898 * clear the whole block group range from freed_extents[]. This 10899 * means that task can lookup for the block group after we 10900 * unpinned it from freed_extents[] and removed it, leading to 10901 * a BUG_ON() at btrfs_unpin_extent_range(). 10902 */ 10903 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10904 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10905 EXTENT_DIRTY); 10906 if (ret) { 10907 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10908 btrfs_dec_block_group_ro(root, block_group); 10909 goto end_trans; 10910 } 10911 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10912 EXTENT_DIRTY); 10913 if (ret) { 10914 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10915 btrfs_dec_block_group_ro(root, block_group); 10916 goto end_trans; 10917 } 10918 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10919 10920 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10921 spin_lock(&space_info->lock); 10922 spin_lock(&block_group->lock); 10923 10924 space_info->bytes_pinned -= block_group->pinned; 10925 space_info->bytes_readonly += block_group->pinned; 10926 percpu_counter_add(&space_info->total_bytes_pinned, 10927 -block_group->pinned); 10928 block_group->pinned = 0; 10929 10930 spin_unlock(&block_group->lock); 10931 spin_unlock(&space_info->lock); 10932 10933 /* DISCARD can flip during remount */ 10934 trimming = btrfs_test_opt(root->fs_info, DISCARD); 10935 10936 /* Implicit trim during transaction commit. */ 10937 if (trimming) 10938 btrfs_get_block_group_trimming(block_group); 10939 10940 /* 10941 * Btrfs_remove_chunk will abort the transaction if things go 10942 * horribly wrong. 10943 */ 10944 ret = btrfs_remove_chunk(trans, root, 10945 block_group->key.objectid); 10946 10947 if (ret) { 10948 if (trimming) 10949 btrfs_put_block_group_trimming(block_group); 10950 goto end_trans; 10951 } 10952 10953 /* 10954 * If we're not mounted with -odiscard, we can just forget 10955 * about this block group. Otherwise we'll need to wait 10956 * until transaction commit to do the actual discard. 10957 */ 10958 if (trimming) { 10959 spin_lock(&fs_info->unused_bgs_lock); 10960 /* 10961 * A concurrent scrub might have added us to the list 10962 * fs_info->unused_bgs, so use a list_move operation 10963 * to add the block group to the deleted_bgs list. 10964 */ 10965 list_move(&block_group->bg_list, 10966 &trans->transaction->deleted_bgs); 10967 spin_unlock(&fs_info->unused_bgs_lock); 10968 btrfs_get_block_group(block_group); 10969 } 10970 end_trans: 10971 btrfs_end_transaction(trans, root); 10972 next: 10973 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10974 btrfs_put_block_group(block_group); 10975 spin_lock(&fs_info->unused_bgs_lock); 10976 } 10977 spin_unlock(&fs_info->unused_bgs_lock); 10978 } 10979 10980 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10981 { 10982 struct btrfs_space_info *space_info; 10983 struct btrfs_super_block *disk_super; 10984 u64 features; 10985 u64 flags; 10986 int mixed = 0; 10987 int ret; 10988 10989 disk_super = fs_info->super_copy; 10990 if (!btrfs_super_root(disk_super)) 10991 return -EINVAL; 10992 10993 features = btrfs_super_incompat_flags(disk_super); 10994 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10995 mixed = 1; 10996 10997 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10998 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10999 if (ret) 11000 goto out; 11001 11002 if (mixed) { 11003 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 11004 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11005 } else { 11006 flags = BTRFS_BLOCK_GROUP_METADATA; 11007 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11008 if (ret) 11009 goto out; 11010 11011 flags = BTRFS_BLOCK_GROUP_DATA; 11012 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11013 } 11014 out: 11015 return ret; 11016 } 11017 11018 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 11019 { 11020 return unpin_extent_range(root, start, end, false); 11021 } 11022 11023 /* 11024 * It used to be that old block groups would be left around forever. 11025 * Iterating over them would be enough to trim unused space. Since we 11026 * now automatically remove them, we also need to iterate over unallocated 11027 * space. 11028 * 11029 * We don't want a transaction for this since the discard may take a 11030 * substantial amount of time. We don't require that a transaction be 11031 * running, but we do need to take a running transaction into account 11032 * to ensure that we're not discarding chunks that were released in 11033 * the current transaction. 11034 * 11035 * Holding the chunks lock will prevent other threads from allocating 11036 * or releasing chunks, but it won't prevent a running transaction 11037 * from committing and releasing the memory that the pending chunks 11038 * list head uses. For that, we need to take a reference to the 11039 * transaction. 11040 */ 11041 static int btrfs_trim_free_extents(struct btrfs_device *device, 11042 u64 minlen, u64 *trimmed) 11043 { 11044 u64 start = 0, len = 0; 11045 int ret; 11046 11047 *trimmed = 0; 11048 11049 /* Not writeable = nothing to do. */ 11050 if (!device->writeable) 11051 return 0; 11052 11053 /* No free space = nothing to do. */ 11054 if (device->total_bytes <= device->bytes_used) 11055 return 0; 11056 11057 ret = 0; 11058 11059 while (1) { 11060 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 11061 struct btrfs_transaction *trans; 11062 u64 bytes; 11063 11064 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 11065 if (ret) 11066 return ret; 11067 11068 down_read(&fs_info->commit_root_sem); 11069 11070 spin_lock(&fs_info->trans_lock); 11071 trans = fs_info->running_transaction; 11072 if (trans) 11073 atomic_inc(&trans->use_count); 11074 spin_unlock(&fs_info->trans_lock); 11075 11076 ret = find_free_dev_extent_start(trans, device, minlen, start, 11077 &start, &len); 11078 if (trans) 11079 btrfs_put_transaction(trans); 11080 11081 if (ret) { 11082 up_read(&fs_info->commit_root_sem); 11083 mutex_unlock(&fs_info->chunk_mutex); 11084 if (ret == -ENOSPC) 11085 ret = 0; 11086 break; 11087 } 11088 11089 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 11090 up_read(&fs_info->commit_root_sem); 11091 mutex_unlock(&fs_info->chunk_mutex); 11092 11093 if (ret) 11094 break; 11095 11096 start += len; 11097 *trimmed += bytes; 11098 11099 if (fatal_signal_pending(current)) { 11100 ret = -ERESTARTSYS; 11101 break; 11102 } 11103 11104 cond_resched(); 11105 } 11106 11107 return ret; 11108 } 11109 11110 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 11111 { 11112 struct btrfs_fs_info *fs_info = root->fs_info; 11113 struct btrfs_block_group_cache *cache = NULL; 11114 struct btrfs_device *device; 11115 struct list_head *devices; 11116 u64 group_trimmed; 11117 u64 start; 11118 u64 end; 11119 u64 trimmed = 0; 11120 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11121 int ret = 0; 11122 11123 /* 11124 * try to trim all FS space, our block group may start from non-zero. 11125 */ 11126 if (range->len == total_bytes) 11127 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11128 else 11129 cache = btrfs_lookup_block_group(fs_info, range->start); 11130 11131 while (cache) { 11132 if (cache->key.objectid >= (range->start + range->len)) { 11133 btrfs_put_block_group(cache); 11134 break; 11135 } 11136 11137 start = max(range->start, cache->key.objectid); 11138 end = min(range->start + range->len, 11139 cache->key.objectid + cache->key.offset); 11140 11141 if (end - start >= range->minlen) { 11142 if (!block_group_cache_done(cache)) { 11143 ret = cache_block_group(cache, 0); 11144 if (ret) { 11145 btrfs_put_block_group(cache); 11146 break; 11147 } 11148 ret = wait_block_group_cache_done(cache); 11149 if (ret) { 11150 btrfs_put_block_group(cache); 11151 break; 11152 } 11153 } 11154 ret = btrfs_trim_block_group(cache, 11155 &group_trimmed, 11156 start, 11157 end, 11158 range->minlen); 11159 11160 trimmed += group_trimmed; 11161 if (ret) { 11162 btrfs_put_block_group(cache); 11163 break; 11164 } 11165 } 11166 11167 cache = next_block_group(fs_info->tree_root, cache); 11168 } 11169 11170 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 11171 devices = &root->fs_info->fs_devices->alloc_list; 11172 list_for_each_entry(device, devices, dev_alloc_list) { 11173 ret = btrfs_trim_free_extents(device, range->minlen, 11174 &group_trimmed); 11175 if (ret) 11176 break; 11177 11178 trimmed += group_trimmed; 11179 } 11180 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 11181 11182 range->len = trimmed; 11183 return ret; 11184 } 11185 11186 /* 11187 * btrfs_{start,end}_write_no_snapshoting() are similar to 11188 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11189 * data into the page cache through nocow before the subvolume is snapshoted, 11190 * but flush the data into disk after the snapshot creation, or to prevent 11191 * operations while snapshoting is ongoing and that cause the snapshot to be 11192 * inconsistent (writes followed by expanding truncates for example). 11193 */ 11194 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 11195 { 11196 percpu_counter_dec(&root->subv_writers->counter); 11197 /* 11198 * Make sure counter is updated before we wake up waiters. 11199 */ 11200 smp_mb(); 11201 if (waitqueue_active(&root->subv_writers->wait)) 11202 wake_up(&root->subv_writers->wait); 11203 } 11204 11205 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 11206 { 11207 if (atomic_read(&root->will_be_snapshoted)) 11208 return 0; 11209 11210 percpu_counter_inc(&root->subv_writers->counter); 11211 /* 11212 * Make sure counter is updated before we check for snapshot creation. 11213 */ 11214 smp_mb(); 11215 if (atomic_read(&root->will_be_snapshoted)) { 11216 btrfs_end_write_no_snapshoting(root); 11217 return 0; 11218 } 11219 return 1; 11220 } 11221 11222 static int wait_snapshoting_atomic_t(atomic_t *a) 11223 { 11224 schedule(); 11225 return 0; 11226 } 11227 11228 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11229 { 11230 while (true) { 11231 int ret; 11232 11233 ret = btrfs_start_write_no_snapshoting(root); 11234 if (ret) 11235 break; 11236 wait_on_atomic_t(&root->will_be_snapshoted, 11237 wait_snapshoting_atomic_t, 11238 TASK_UNINTERRUPTIBLE); 11239 } 11240 } 11241