xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 			       struct btrfs_delayed_ref_node *node, u64 parent,
43 			       u64 root_objectid, u64 owner_objectid,
44 			       u64 owner_offset, int refs_to_drop,
45 			       struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 				    struct extent_buffer *leaf,
48 				    struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 				      u64 parent, u64 root_objectid,
51 				      u64 flags, u64 owner, u64 offset,
52 				      struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 				     struct btrfs_delayed_ref_node *node,
55 				     struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 			 struct btrfs_key *key);
58 
59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 	return (cache->flags & bits) == bits;
62 }
63 
64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 			      u64 start, u64 num_bytes)
66 {
67 	u64 end = start + num_bytes - 1;
68 	set_extent_bits(&fs_info->excluded_extents, start, end,
69 			EXTENT_UPTODATE);
70 	return 0;
71 }
72 
73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 	struct btrfs_fs_info *fs_info = cache->fs_info;
76 	u64 start, end;
77 
78 	start = cache->start;
79 	end = start + cache->length - 1;
80 
81 	clear_extent_bits(&fs_info->excluded_extents, start, end,
82 			  EXTENT_UPTODATE);
83 }
84 
85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
86 {
87 	if (ref->type == BTRFS_REF_METADATA) {
88 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
89 			return BTRFS_BLOCK_GROUP_SYSTEM;
90 		else
91 			return BTRFS_BLOCK_GROUP_METADATA;
92 	}
93 	return BTRFS_BLOCK_GROUP_DATA;
94 }
95 
96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
97 			     struct btrfs_ref *ref)
98 {
99 	struct btrfs_space_info *space_info;
100 	u64 flags = generic_ref_to_space_flags(ref);
101 
102 	space_info = btrfs_find_space_info(fs_info, flags);
103 	ASSERT(space_info);
104 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
105 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
106 }
107 
108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
109 			     struct btrfs_ref *ref)
110 {
111 	struct btrfs_space_info *space_info;
112 	u64 flags = generic_ref_to_space_flags(ref);
113 
114 	space_info = btrfs_find_space_info(fs_info, flags);
115 	ASSERT(space_info);
116 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
117 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
118 }
119 
120 /* simple helper to search for an existing data extent at a given offset */
121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
122 {
123 	int ret;
124 	struct btrfs_key key;
125 	struct btrfs_path *path;
126 
127 	path = btrfs_alloc_path();
128 	if (!path)
129 		return -ENOMEM;
130 
131 	key.objectid = start;
132 	key.offset = len;
133 	key.type = BTRFS_EXTENT_ITEM_KEY;
134 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
135 	btrfs_free_path(path);
136 	return ret;
137 }
138 
139 /*
140  * helper function to lookup reference count and flags of a tree block.
141  *
142  * the head node for delayed ref is used to store the sum of all the
143  * reference count modifications queued up in the rbtree. the head
144  * node may also store the extent flags to set. This way you can check
145  * to see what the reference count and extent flags would be if all of
146  * the delayed refs are not processed.
147  */
148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
149 			     struct btrfs_fs_info *fs_info, u64 bytenr,
150 			     u64 offset, int metadata, u64 *refs, u64 *flags)
151 {
152 	struct btrfs_delayed_ref_head *head;
153 	struct btrfs_delayed_ref_root *delayed_refs;
154 	struct btrfs_path *path;
155 	struct btrfs_extent_item *ei;
156 	struct extent_buffer *leaf;
157 	struct btrfs_key key;
158 	u32 item_size;
159 	u64 num_refs;
160 	u64 extent_flags;
161 	int ret;
162 
163 	/*
164 	 * If we don't have skinny metadata, don't bother doing anything
165 	 * different
166 	 */
167 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
168 		offset = fs_info->nodesize;
169 		metadata = 0;
170 	}
171 
172 	path = btrfs_alloc_path();
173 	if (!path)
174 		return -ENOMEM;
175 
176 	if (!trans) {
177 		path->skip_locking = 1;
178 		path->search_commit_root = 1;
179 	}
180 
181 search_again:
182 	key.objectid = bytenr;
183 	key.offset = offset;
184 	if (metadata)
185 		key.type = BTRFS_METADATA_ITEM_KEY;
186 	else
187 		key.type = BTRFS_EXTENT_ITEM_KEY;
188 
189 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
190 	if (ret < 0)
191 		goto out_free;
192 
193 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
194 		if (path->slots[0]) {
195 			path->slots[0]--;
196 			btrfs_item_key_to_cpu(path->nodes[0], &key,
197 					      path->slots[0]);
198 			if (key.objectid == bytenr &&
199 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
200 			    key.offset == fs_info->nodesize)
201 				ret = 0;
202 		}
203 	}
204 
205 	if (ret == 0) {
206 		leaf = path->nodes[0];
207 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
208 		if (item_size >= sizeof(*ei)) {
209 			ei = btrfs_item_ptr(leaf, path->slots[0],
210 					    struct btrfs_extent_item);
211 			num_refs = btrfs_extent_refs(leaf, ei);
212 			extent_flags = btrfs_extent_flags(leaf, ei);
213 		} else {
214 			ret = -EINVAL;
215 			btrfs_print_v0_err(fs_info);
216 			if (trans)
217 				btrfs_abort_transaction(trans, ret);
218 			else
219 				btrfs_handle_fs_error(fs_info, ret, NULL);
220 
221 			goto out_free;
222 		}
223 
224 		BUG_ON(num_refs == 0);
225 	} else {
226 		num_refs = 0;
227 		extent_flags = 0;
228 		ret = 0;
229 	}
230 
231 	if (!trans)
232 		goto out;
233 
234 	delayed_refs = &trans->transaction->delayed_refs;
235 	spin_lock(&delayed_refs->lock);
236 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
237 	if (head) {
238 		if (!mutex_trylock(&head->mutex)) {
239 			refcount_inc(&head->refs);
240 			spin_unlock(&delayed_refs->lock);
241 
242 			btrfs_release_path(path);
243 
244 			/*
245 			 * Mutex was contended, block until it's released and try
246 			 * again
247 			 */
248 			mutex_lock(&head->mutex);
249 			mutex_unlock(&head->mutex);
250 			btrfs_put_delayed_ref_head(head);
251 			goto search_again;
252 		}
253 		spin_lock(&head->lock);
254 		if (head->extent_op && head->extent_op->update_flags)
255 			extent_flags |= head->extent_op->flags_to_set;
256 		else
257 			BUG_ON(num_refs == 0);
258 
259 		num_refs += head->ref_mod;
260 		spin_unlock(&head->lock);
261 		mutex_unlock(&head->mutex);
262 	}
263 	spin_unlock(&delayed_refs->lock);
264 out:
265 	WARN_ON(num_refs == 0);
266 	if (refs)
267 		*refs = num_refs;
268 	if (flags)
269 		*flags = extent_flags;
270 out_free:
271 	btrfs_free_path(path);
272 	return ret;
273 }
274 
275 /*
276  * Back reference rules.  Back refs have three main goals:
277  *
278  * 1) differentiate between all holders of references to an extent so that
279  *    when a reference is dropped we can make sure it was a valid reference
280  *    before freeing the extent.
281  *
282  * 2) Provide enough information to quickly find the holders of an extent
283  *    if we notice a given block is corrupted or bad.
284  *
285  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
286  *    maintenance.  This is actually the same as #2, but with a slightly
287  *    different use case.
288  *
289  * There are two kinds of back refs. The implicit back refs is optimized
290  * for pointers in non-shared tree blocks. For a given pointer in a block,
291  * back refs of this kind provide information about the block's owner tree
292  * and the pointer's key. These information allow us to find the block by
293  * b-tree searching. The full back refs is for pointers in tree blocks not
294  * referenced by their owner trees. The location of tree block is recorded
295  * in the back refs. Actually the full back refs is generic, and can be
296  * used in all cases the implicit back refs is used. The major shortcoming
297  * of the full back refs is its overhead. Every time a tree block gets
298  * COWed, we have to update back refs entry for all pointers in it.
299  *
300  * For a newly allocated tree block, we use implicit back refs for
301  * pointers in it. This means most tree related operations only involve
302  * implicit back refs. For a tree block created in old transaction, the
303  * only way to drop a reference to it is COW it. So we can detect the
304  * event that tree block loses its owner tree's reference and do the
305  * back refs conversion.
306  *
307  * When a tree block is COWed through a tree, there are four cases:
308  *
309  * The reference count of the block is one and the tree is the block's
310  * owner tree. Nothing to do in this case.
311  *
312  * The reference count of the block is one and the tree is not the
313  * block's owner tree. In this case, full back refs is used for pointers
314  * in the block. Remove these full back refs, add implicit back refs for
315  * every pointers in the new block.
316  *
317  * The reference count of the block is greater than one and the tree is
318  * the block's owner tree. In this case, implicit back refs is used for
319  * pointers in the block. Add full back refs for every pointers in the
320  * block, increase lower level extents' reference counts. The original
321  * implicit back refs are entailed to the new block.
322  *
323  * The reference count of the block is greater than one and the tree is
324  * not the block's owner tree. Add implicit back refs for every pointer in
325  * the new block, increase lower level extents' reference count.
326  *
327  * Back Reference Key composing:
328  *
329  * The key objectid corresponds to the first byte in the extent,
330  * The key type is used to differentiate between types of back refs.
331  * There are different meanings of the key offset for different types
332  * of back refs.
333  *
334  * File extents can be referenced by:
335  *
336  * - multiple snapshots, subvolumes, or different generations in one subvol
337  * - different files inside a single subvolume
338  * - different offsets inside a file (bookend extents in file.c)
339  *
340  * The extent ref structure for the implicit back refs has fields for:
341  *
342  * - Objectid of the subvolume root
343  * - objectid of the file holding the reference
344  * - original offset in the file
345  * - how many bookend extents
346  *
347  * The key offset for the implicit back refs is hash of the first
348  * three fields.
349  *
350  * The extent ref structure for the full back refs has field for:
351  *
352  * - number of pointers in the tree leaf
353  *
354  * The key offset for the implicit back refs is the first byte of
355  * the tree leaf
356  *
357  * When a file extent is allocated, The implicit back refs is used.
358  * the fields are filled in:
359  *
360  *     (root_key.objectid, inode objectid, offset in file, 1)
361  *
362  * When a file extent is removed file truncation, we find the
363  * corresponding implicit back refs and check the following fields:
364  *
365  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
366  *
367  * Btree extents can be referenced by:
368  *
369  * - Different subvolumes
370  *
371  * Both the implicit back refs and the full back refs for tree blocks
372  * only consist of key. The key offset for the implicit back refs is
373  * objectid of block's owner tree. The key offset for the full back refs
374  * is the first byte of parent block.
375  *
376  * When implicit back refs is used, information about the lowest key and
377  * level of the tree block are required. These information are stored in
378  * tree block info structure.
379  */
380 
381 /*
382  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
383  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
384  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
385  */
386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
387 				     struct btrfs_extent_inline_ref *iref,
388 				     enum btrfs_inline_ref_type is_data)
389 {
390 	int type = btrfs_extent_inline_ref_type(eb, iref);
391 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
392 
393 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
394 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
395 	    type == BTRFS_SHARED_DATA_REF_KEY ||
396 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
397 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
398 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
399 				return type;
400 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
401 				ASSERT(eb->fs_info);
402 				/*
403 				 * Every shared one has parent tree block,
404 				 * which must be aligned to sector size.
405 				 */
406 				if (offset &&
407 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
408 					return type;
409 			}
410 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
411 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 				return type;
413 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 				ASSERT(eb->fs_info);
415 				/*
416 				 * Every shared one has parent tree block,
417 				 * which must be aligned to sector size.
418 				 */
419 				if (offset &&
420 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
421 					return type;
422 			}
423 		} else {
424 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
425 			return type;
426 		}
427 	}
428 
429 	btrfs_print_leaf((struct extent_buffer *)eb);
430 	btrfs_err(eb->fs_info,
431 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
432 		  eb->start, (unsigned long)iref, type);
433 	WARN_ON(1);
434 
435 	return BTRFS_REF_TYPE_INVALID;
436 }
437 
438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439 {
440 	u32 high_crc = ~(u32)0;
441 	u32 low_crc = ~(u32)0;
442 	__le64 lenum;
443 
444 	lenum = cpu_to_le64(root_objectid);
445 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 	lenum = cpu_to_le64(owner);
447 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 	lenum = cpu_to_le64(offset);
449 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450 
451 	return ((u64)high_crc << 31) ^ (u64)low_crc;
452 }
453 
454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 				     struct btrfs_extent_data_ref *ref)
456 {
457 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 				    btrfs_extent_data_ref_objectid(leaf, ref),
459 				    btrfs_extent_data_ref_offset(leaf, ref));
460 }
461 
462 static int match_extent_data_ref(struct extent_buffer *leaf,
463 				 struct btrfs_extent_data_ref *ref,
464 				 u64 root_objectid, u64 owner, u64 offset)
465 {
466 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 		return 0;
470 	return 1;
471 }
472 
473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 					   struct btrfs_path *path,
475 					   u64 bytenr, u64 parent,
476 					   u64 root_objectid,
477 					   u64 owner, u64 offset)
478 {
479 	struct btrfs_root *root = trans->fs_info->extent_root;
480 	struct btrfs_key key;
481 	struct btrfs_extent_data_ref *ref;
482 	struct extent_buffer *leaf;
483 	u32 nritems;
484 	int ret;
485 	int recow;
486 	int err = -ENOENT;
487 
488 	key.objectid = bytenr;
489 	if (parent) {
490 		key.type = BTRFS_SHARED_DATA_REF_KEY;
491 		key.offset = parent;
492 	} else {
493 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 		key.offset = hash_extent_data_ref(root_objectid,
495 						  owner, offset);
496 	}
497 again:
498 	recow = 0;
499 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 	if (ret < 0) {
501 		err = ret;
502 		goto fail;
503 	}
504 
505 	if (parent) {
506 		if (!ret)
507 			return 0;
508 		goto fail;
509 	}
510 
511 	leaf = path->nodes[0];
512 	nritems = btrfs_header_nritems(leaf);
513 	while (1) {
514 		if (path->slots[0] >= nritems) {
515 			ret = btrfs_next_leaf(root, path);
516 			if (ret < 0)
517 				err = ret;
518 			if (ret)
519 				goto fail;
520 
521 			leaf = path->nodes[0];
522 			nritems = btrfs_header_nritems(leaf);
523 			recow = 1;
524 		}
525 
526 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 		if (key.objectid != bytenr ||
528 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 			goto fail;
530 
531 		ref = btrfs_item_ptr(leaf, path->slots[0],
532 				     struct btrfs_extent_data_ref);
533 
534 		if (match_extent_data_ref(leaf, ref, root_objectid,
535 					  owner, offset)) {
536 			if (recow) {
537 				btrfs_release_path(path);
538 				goto again;
539 			}
540 			err = 0;
541 			break;
542 		}
543 		path->slots[0]++;
544 	}
545 fail:
546 	return err;
547 }
548 
549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 					   struct btrfs_path *path,
551 					   u64 bytenr, u64 parent,
552 					   u64 root_objectid, u64 owner,
553 					   u64 offset, int refs_to_add)
554 {
555 	struct btrfs_root *root = trans->fs_info->extent_root;
556 	struct btrfs_key key;
557 	struct extent_buffer *leaf;
558 	u32 size;
559 	u32 num_refs;
560 	int ret;
561 
562 	key.objectid = bytenr;
563 	if (parent) {
564 		key.type = BTRFS_SHARED_DATA_REF_KEY;
565 		key.offset = parent;
566 		size = sizeof(struct btrfs_shared_data_ref);
567 	} else {
568 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 		key.offset = hash_extent_data_ref(root_objectid,
570 						  owner, offset);
571 		size = sizeof(struct btrfs_extent_data_ref);
572 	}
573 
574 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 	if (ret && ret != -EEXIST)
576 		goto fail;
577 
578 	leaf = path->nodes[0];
579 	if (parent) {
580 		struct btrfs_shared_data_ref *ref;
581 		ref = btrfs_item_ptr(leaf, path->slots[0],
582 				     struct btrfs_shared_data_ref);
583 		if (ret == 0) {
584 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 		}
590 	} else {
591 		struct btrfs_extent_data_ref *ref;
592 		while (ret == -EEXIST) {
593 			ref = btrfs_item_ptr(leaf, path->slots[0],
594 					     struct btrfs_extent_data_ref);
595 			if (match_extent_data_ref(leaf, ref, root_objectid,
596 						  owner, offset))
597 				break;
598 			btrfs_release_path(path);
599 			key.offset++;
600 			ret = btrfs_insert_empty_item(trans, root, path, &key,
601 						      size);
602 			if (ret && ret != -EEXIST)
603 				goto fail;
604 
605 			leaf = path->nodes[0];
606 		}
607 		ref = btrfs_item_ptr(leaf, path->slots[0],
608 				     struct btrfs_extent_data_ref);
609 		if (ret == 0) {
610 			btrfs_set_extent_data_ref_root(leaf, ref,
611 						       root_objectid);
612 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 		} else {
616 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 			num_refs += refs_to_add;
618 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 		}
620 	}
621 	btrfs_mark_buffer_dirty(leaf);
622 	ret = 0;
623 fail:
624 	btrfs_release_path(path);
625 	return ret;
626 }
627 
628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 					   struct btrfs_path *path,
630 					   int refs_to_drop, int *last_ref)
631 {
632 	struct btrfs_key key;
633 	struct btrfs_extent_data_ref *ref1 = NULL;
634 	struct btrfs_shared_data_ref *ref2 = NULL;
635 	struct extent_buffer *leaf;
636 	u32 num_refs = 0;
637 	int ret = 0;
638 
639 	leaf = path->nodes[0];
640 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 
642 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 				      struct btrfs_extent_data_ref);
645 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 				      struct btrfs_shared_data_ref);
649 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 		btrfs_print_v0_err(trans->fs_info);
652 		btrfs_abort_transaction(trans, -EINVAL);
653 		return -EINVAL;
654 	} else {
655 		BUG();
656 	}
657 
658 	BUG_ON(num_refs < refs_to_drop);
659 	num_refs -= refs_to_drop;
660 
661 	if (num_refs == 0) {
662 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 		*last_ref = 1;
664 	} else {
665 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 		btrfs_mark_buffer_dirty(leaf);
670 	}
671 	return ret;
672 }
673 
674 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 					  struct btrfs_extent_inline_ref *iref)
676 {
677 	struct btrfs_key key;
678 	struct extent_buffer *leaf;
679 	struct btrfs_extent_data_ref *ref1;
680 	struct btrfs_shared_data_ref *ref2;
681 	u32 num_refs = 0;
682 	int type;
683 
684 	leaf = path->nodes[0];
685 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686 
687 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 	if (iref) {
689 		/*
690 		 * If type is invalid, we should have bailed out earlier than
691 		 * this call.
692 		 */
693 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 		} else {
699 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 		}
702 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 				      struct btrfs_extent_data_ref);
705 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 				      struct btrfs_shared_data_ref);
709 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 	} else {
711 		WARN_ON(1);
712 	}
713 	return num_refs;
714 }
715 
716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = trans->fs_info->extent_root;
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 	if (ret > 0)
736 		ret = -ENOENT;
737 	return ret;
738 }
739 
740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 					  struct btrfs_path *path,
742 					  u64 bytenr, u64 parent,
743 					  u64 root_objectid)
744 {
745 	struct btrfs_key key;
746 	int ret;
747 
748 	key.objectid = bytenr;
749 	if (parent) {
750 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 		key.offset = parent;
752 	} else {
753 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 		key.offset = root_objectid;
755 	}
756 
757 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 				      path, &key, 0);
759 	btrfs_release_path(path);
760 	return ret;
761 }
762 
763 static inline int extent_ref_type(u64 parent, u64 owner)
764 {
765 	int type;
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (parent > 0)
768 			type = BTRFS_SHARED_BLOCK_REF_KEY;
769 		else
770 			type = BTRFS_TREE_BLOCK_REF_KEY;
771 	} else {
772 		if (parent > 0)
773 			type = BTRFS_SHARED_DATA_REF_KEY;
774 		else
775 			type = BTRFS_EXTENT_DATA_REF_KEY;
776 	}
777 	return type;
778 }
779 
780 static int find_next_key(struct btrfs_path *path, int level,
781 			 struct btrfs_key *key)
782 
783 {
784 	for (; level < BTRFS_MAX_LEVEL; level++) {
785 		if (!path->nodes[level])
786 			break;
787 		if (path->slots[level] + 1 >=
788 		    btrfs_header_nritems(path->nodes[level]))
789 			continue;
790 		if (level == 0)
791 			btrfs_item_key_to_cpu(path->nodes[level], key,
792 					      path->slots[level] + 1);
793 		else
794 			btrfs_node_key_to_cpu(path->nodes[level], key,
795 					      path->slots[level] + 1);
796 		return 0;
797 	}
798 	return 1;
799 }
800 
801 /*
802  * look for inline back ref. if back ref is found, *ref_ret is set
803  * to the address of inline back ref, and 0 is returned.
804  *
805  * if back ref isn't found, *ref_ret is set to the address where it
806  * should be inserted, and -ENOENT is returned.
807  *
808  * if insert is true and there are too many inline back refs, the path
809  * points to the extent item, and -EAGAIN is returned.
810  *
811  * NOTE: inline back refs are ordered in the same way that back ref
812  *	 items in the tree are ordered.
813  */
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 				 struct btrfs_path *path,
817 				 struct btrfs_extent_inline_ref **ref_ret,
818 				 u64 bytenr, u64 num_bytes,
819 				 u64 parent, u64 root_objectid,
820 				 u64 owner, u64 offset, int insert)
821 {
822 	struct btrfs_fs_info *fs_info = trans->fs_info;
823 	struct btrfs_root *root = fs_info->extent_root;
824 	struct btrfs_key key;
825 	struct extent_buffer *leaf;
826 	struct btrfs_extent_item *ei;
827 	struct btrfs_extent_inline_ref *iref;
828 	u64 flags;
829 	u64 item_size;
830 	unsigned long ptr;
831 	unsigned long end;
832 	int extra_size;
833 	int type;
834 	int want;
835 	int ret;
836 	int err = 0;
837 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 	int needed;
839 
840 	key.objectid = bytenr;
841 	key.type = BTRFS_EXTENT_ITEM_KEY;
842 	key.offset = num_bytes;
843 
844 	want = extent_ref_type(parent, owner);
845 	if (insert) {
846 		extra_size = btrfs_extent_inline_ref_size(want);
847 		path->keep_locks = 1;
848 	} else
849 		extra_size = -1;
850 
851 	/*
852 	 * Owner is our level, so we can just add one to get the level for the
853 	 * block we are interested in.
854 	 */
855 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
856 		key.type = BTRFS_METADATA_ITEM_KEY;
857 		key.offset = owner;
858 	}
859 
860 again:
861 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
862 	if (ret < 0) {
863 		err = ret;
864 		goto out;
865 	}
866 
867 	/*
868 	 * We may be a newly converted file system which still has the old fat
869 	 * extent entries for metadata, so try and see if we have one of those.
870 	 */
871 	if (ret > 0 && skinny_metadata) {
872 		skinny_metadata = false;
873 		if (path->slots[0]) {
874 			path->slots[0]--;
875 			btrfs_item_key_to_cpu(path->nodes[0], &key,
876 					      path->slots[0]);
877 			if (key.objectid == bytenr &&
878 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
879 			    key.offset == num_bytes)
880 				ret = 0;
881 		}
882 		if (ret) {
883 			key.objectid = bytenr;
884 			key.type = BTRFS_EXTENT_ITEM_KEY;
885 			key.offset = num_bytes;
886 			btrfs_release_path(path);
887 			goto again;
888 		}
889 	}
890 
891 	if (ret && !insert) {
892 		err = -ENOENT;
893 		goto out;
894 	} else if (WARN_ON(ret)) {
895 		err = -EIO;
896 		goto out;
897 	}
898 
899 	leaf = path->nodes[0];
900 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
901 	if (unlikely(item_size < sizeof(*ei))) {
902 		err = -EINVAL;
903 		btrfs_print_v0_err(fs_info);
904 		btrfs_abort_transaction(trans, err);
905 		goto out;
906 	}
907 
908 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
909 	flags = btrfs_extent_flags(leaf, ei);
910 
911 	ptr = (unsigned long)(ei + 1);
912 	end = (unsigned long)ei + item_size;
913 
914 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
915 		ptr += sizeof(struct btrfs_tree_block_info);
916 		BUG_ON(ptr > end);
917 	}
918 
919 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
920 		needed = BTRFS_REF_TYPE_DATA;
921 	else
922 		needed = BTRFS_REF_TYPE_BLOCK;
923 
924 	err = -ENOENT;
925 	while (1) {
926 		if (ptr >= end) {
927 			WARN_ON(ptr > end);
928 			break;
929 		}
930 		iref = (struct btrfs_extent_inline_ref *)ptr;
931 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
932 		if (type == BTRFS_REF_TYPE_INVALID) {
933 			err = -EUCLEAN;
934 			goto out;
935 		}
936 
937 		if (want < type)
938 			break;
939 		if (want > type) {
940 			ptr += btrfs_extent_inline_ref_size(type);
941 			continue;
942 		}
943 
944 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
945 			struct btrfs_extent_data_ref *dref;
946 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
947 			if (match_extent_data_ref(leaf, dref, root_objectid,
948 						  owner, offset)) {
949 				err = 0;
950 				break;
951 			}
952 			if (hash_extent_data_ref_item(leaf, dref) <
953 			    hash_extent_data_ref(root_objectid, owner, offset))
954 				break;
955 		} else {
956 			u64 ref_offset;
957 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
958 			if (parent > 0) {
959 				if (parent == ref_offset) {
960 					err = 0;
961 					break;
962 				}
963 				if (ref_offset < parent)
964 					break;
965 			} else {
966 				if (root_objectid == ref_offset) {
967 					err = 0;
968 					break;
969 				}
970 				if (ref_offset < root_objectid)
971 					break;
972 			}
973 		}
974 		ptr += btrfs_extent_inline_ref_size(type);
975 	}
976 	if (err == -ENOENT && insert) {
977 		if (item_size + extra_size >=
978 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
979 			err = -EAGAIN;
980 			goto out;
981 		}
982 		/*
983 		 * To add new inline back ref, we have to make sure
984 		 * there is no corresponding back ref item.
985 		 * For simplicity, we just do not add new inline back
986 		 * ref if there is any kind of item for this block
987 		 */
988 		if (find_next_key(path, 0, &key) == 0 &&
989 		    key.objectid == bytenr &&
990 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
991 			err = -EAGAIN;
992 			goto out;
993 		}
994 	}
995 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
996 out:
997 	if (insert) {
998 		path->keep_locks = 0;
999 		btrfs_unlock_up_safe(path, 1);
1000 	}
1001 	return err;
1002 }
1003 
1004 /*
1005  * helper to add new inline back ref
1006  */
1007 static noinline_for_stack
1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1009 				 struct btrfs_path *path,
1010 				 struct btrfs_extent_inline_ref *iref,
1011 				 u64 parent, u64 root_objectid,
1012 				 u64 owner, u64 offset, int refs_to_add,
1013 				 struct btrfs_delayed_extent_op *extent_op)
1014 {
1015 	struct extent_buffer *leaf;
1016 	struct btrfs_extent_item *ei;
1017 	unsigned long ptr;
1018 	unsigned long end;
1019 	unsigned long item_offset;
1020 	u64 refs;
1021 	int size;
1022 	int type;
1023 
1024 	leaf = path->nodes[0];
1025 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1026 	item_offset = (unsigned long)iref - (unsigned long)ei;
1027 
1028 	type = extent_ref_type(parent, owner);
1029 	size = btrfs_extent_inline_ref_size(type);
1030 
1031 	btrfs_extend_item(path, size);
1032 
1033 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1034 	refs = btrfs_extent_refs(leaf, ei);
1035 	refs += refs_to_add;
1036 	btrfs_set_extent_refs(leaf, ei, refs);
1037 	if (extent_op)
1038 		__run_delayed_extent_op(extent_op, leaf, ei);
1039 
1040 	ptr = (unsigned long)ei + item_offset;
1041 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1042 	if (ptr < end - size)
1043 		memmove_extent_buffer(leaf, ptr + size, ptr,
1044 				      end - size - ptr);
1045 
1046 	iref = (struct btrfs_extent_inline_ref *)ptr;
1047 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1048 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1049 		struct btrfs_extent_data_ref *dref;
1050 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1051 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1052 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1053 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1054 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1055 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1056 		struct btrfs_shared_data_ref *sref;
1057 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1058 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1059 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1060 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1061 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 	} else {
1063 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 }
1067 
1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1069 				 struct btrfs_path *path,
1070 				 struct btrfs_extent_inline_ref **ref_ret,
1071 				 u64 bytenr, u64 num_bytes, u64 parent,
1072 				 u64 root_objectid, u64 owner, u64 offset)
1073 {
1074 	int ret;
1075 
1076 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1077 					   num_bytes, parent, root_objectid,
1078 					   owner, offset, 0);
1079 	if (ret != -ENOENT)
1080 		return ret;
1081 
1082 	btrfs_release_path(path);
1083 	*ref_ret = NULL;
1084 
1085 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1086 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1087 					    root_objectid);
1088 	} else {
1089 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1090 					     root_objectid, owner, offset);
1091 	}
1092 	return ret;
1093 }
1094 
1095 /*
1096  * helper to update/remove inline back ref
1097  */
1098 static noinline_for_stack
1099 void update_inline_extent_backref(struct btrfs_path *path,
1100 				  struct btrfs_extent_inline_ref *iref,
1101 				  int refs_to_mod,
1102 				  struct btrfs_delayed_extent_op *extent_op,
1103 				  int *last_ref)
1104 {
1105 	struct extent_buffer *leaf = path->nodes[0];
1106 	struct btrfs_extent_item *ei;
1107 	struct btrfs_extent_data_ref *dref = NULL;
1108 	struct btrfs_shared_data_ref *sref = NULL;
1109 	unsigned long ptr;
1110 	unsigned long end;
1111 	u32 item_size;
1112 	int size;
1113 	int type;
1114 	u64 refs;
1115 
1116 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1117 	refs = btrfs_extent_refs(leaf, ei);
1118 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1119 	refs += refs_to_mod;
1120 	btrfs_set_extent_refs(leaf, ei, refs);
1121 	if (extent_op)
1122 		__run_delayed_extent_op(extent_op, leaf, ei);
1123 
1124 	/*
1125 	 * If type is invalid, we should have bailed out after
1126 	 * lookup_inline_extent_backref().
1127 	 */
1128 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1129 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1130 
1131 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1132 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1133 		refs = btrfs_extent_data_ref_count(leaf, dref);
1134 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1135 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1136 		refs = btrfs_shared_data_ref_count(leaf, sref);
1137 	} else {
1138 		refs = 1;
1139 		BUG_ON(refs_to_mod != -1);
1140 	}
1141 
1142 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1143 	refs += refs_to_mod;
1144 
1145 	if (refs > 0) {
1146 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1147 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1148 		else
1149 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1150 	} else {
1151 		*last_ref = 1;
1152 		size =  btrfs_extent_inline_ref_size(type);
1153 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1154 		ptr = (unsigned long)iref;
1155 		end = (unsigned long)ei + item_size;
1156 		if (ptr + size < end)
1157 			memmove_extent_buffer(leaf, ptr, ptr + size,
1158 					      end - ptr - size);
1159 		item_size -= size;
1160 		btrfs_truncate_item(path, item_size, 1);
1161 	}
1162 	btrfs_mark_buffer_dirty(leaf);
1163 }
1164 
1165 static noinline_for_stack
1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1167 				 struct btrfs_path *path,
1168 				 u64 bytenr, u64 num_bytes, u64 parent,
1169 				 u64 root_objectid, u64 owner,
1170 				 u64 offset, int refs_to_add,
1171 				 struct btrfs_delayed_extent_op *extent_op)
1172 {
1173 	struct btrfs_extent_inline_ref *iref;
1174 	int ret;
1175 
1176 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1177 					   num_bytes, parent, root_objectid,
1178 					   owner, offset, 1);
1179 	if (ret == 0) {
1180 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1181 		update_inline_extent_backref(path, iref, refs_to_add,
1182 					     extent_op, NULL);
1183 	} else if (ret == -ENOENT) {
1184 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1185 					    root_objectid, owner, offset,
1186 					    refs_to_add, extent_op);
1187 		ret = 0;
1188 	}
1189 	return ret;
1190 }
1191 
1192 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1193 				 struct btrfs_path *path,
1194 				 struct btrfs_extent_inline_ref *iref,
1195 				 int refs_to_drop, int is_data, int *last_ref)
1196 {
1197 	int ret = 0;
1198 
1199 	BUG_ON(!is_data && refs_to_drop != 1);
1200 	if (iref) {
1201 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1202 					     last_ref);
1203 	} else if (is_data) {
1204 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1205 					     last_ref);
1206 	} else {
1207 		*last_ref = 1;
1208 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1209 	}
1210 	return ret;
1211 }
1212 
1213 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1214 			       u64 *discarded_bytes)
1215 {
1216 	int j, ret = 0;
1217 	u64 bytes_left, end;
1218 	u64 aligned_start = ALIGN(start, 1 << 9);
1219 
1220 	if (WARN_ON(start != aligned_start)) {
1221 		len -= aligned_start - start;
1222 		len = round_down(len, 1 << 9);
1223 		start = aligned_start;
1224 	}
1225 
1226 	*discarded_bytes = 0;
1227 
1228 	if (!len)
1229 		return 0;
1230 
1231 	end = start + len;
1232 	bytes_left = len;
1233 
1234 	/* Skip any superblocks on this device. */
1235 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1236 		u64 sb_start = btrfs_sb_offset(j);
1237 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1238 		u64 size = sb_start - start;
1239 
1240 		if (!in_range(sb_start, start, bytes_left) &&
1241 		    !in_range(sb_end, start, bytes_left) &&
1242 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1243 			continue;
1244 
1245 		/*
1246 		 * Superblock spans beginning of range.  Adjust start and
1247 		 * try again.
1248 		 */
1249 		if (sb_start <= start) {
1250 			start += sb_end - start;
1251 			if (start > end) {
1252 				bytes_left = 0;
1253 				break;
1254 			}
1255 			bytes_left = end - start;
1256 			continue;
1257 		}
1258 
1259 		if (size) {
1260 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1261 						   GFP_NOFS, 0);
1262 			if (!ret)
1263 				*discarded_bytes += size;
1264 			else if (ret != -EOPNOTSUPP)
1265 				return ret;
1266 		}
1267 
1268 		start = sb_end;
1269 		if (start > end) {
1270 			bytes_left = 0;
1271 			break;
1272 		}
1273 		bytes_left = end - start;
1274 	}
1275 
1276 	if (bytes_left) {
1277 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1278 					   GFP_NOFS, 0);
1279 		if (!ret)
1280 			*discarded_bytes += bytes_left;
1281 	}
1282 	return ret;
1283 }
1284 
1285 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1286 			 u64 num_bytes, u64 *actual_bytes)
1287 {
1288 	int ret = 0;
1289 	u64 discarded_bytes = 0;
1290 	u64 end = bytenr + num_bytes;
1291 	u64 cur = bytenr;
1292 	struct btrfs_bio *bbio = NULL;
1293 
1294 
1295 	/*
1296 	 * Avoid races with device replace and make sure our bbio has devices
1297 	 * associated to its stripes that don't go away while we are discarding.
1298 	 */
1299 	btrfs_bio_counter_inc_blocked(fs_info);
1300 	while (cur < end) {
1301 		struct btrfs_bio_stripe *stripe;
1302 		int i;
1303 
1304 		num_bytes = end - cur;
1305 		/* Tell the block device(s) that the sectors can be discarded */
1306 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1307 				      &num_bytes, &bbio, 0);
1308 		/*
1309 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1310 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1311 		 * thus we can't continue anyway.
1312 		 */
1313 		if (ret < 0)
1314 			goto out;
1315 
1316 		stripe = bbio->stripes;
1317 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1318 			u64 bytes;
1319 			struct request_queue *req_q;
1320 
1321 			if (!stripe->dev->bdev) {
1322 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1323 				continue;
1324 			}
1325 			req_q = bdev_get_queue(stripe->dev->bdev);
1326 			if (!blk_queue_discard(req_q))
1327 				continue;
1328 
1329 			ret = btrfs_issue_discard(stripe->dev->bdev,
1330 						  stripe->physical,
1331 						  stripe->length,
1332 						  &bytes);
1333 			if (!ret) {
1334 				discarded_bytes += bytes;
1335 			} else if (ret != -EOPNOTSUPP) {
1336 				/*
1337 				 * Logic errors or -ENOMEM, or -EIO, but
1338 				 * unlikely to happen.
1339 				 *
1340 				 * And since there are two loops, explicitly
1341 				 * go to out to avoid confusion.
1342 				 */
1343 				btrfs_put_bbio(bbio);
1344 				goto out;
1345 			}
1346 
1347 			/*
1348 			 * Just in case we get back EOPNOTSUPP for some reason,
1349 			 * just ignore the return value so we don't screw up
1350 			 * people calling discard_extent.
1351 			 */
1352 			ret = 0;
1353 		}
1354 		btrfs_put_bbio(bbio);
1355 		cur += num_bytes;
1356 	}
1357 out:
1358 	btrfs_bio_counter_dec(fs_info);
1359 
1360 	if (actual_bytes)
1361 		*actual_bytes = discarded_bytes;
1362 
1363 
1364 	if (ret == -EOPNOTSUPP)
1365 		ret = 0;
1366 	return ret;
1367 }
1368 
1369 /* Can return -ENOMEM */
1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 			 struct btrfs_ref *generic_ref)
1372 {
1373 	struct btrfs_fs_info *fs_info = trans->fs_info;
1374 	int old_ref_mod, new_ref_mod;
1375 	int ret;
1376 
1377 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 	       generic_ref->action);
1379 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381 
1382 	if (generic_ref->type == BTRFS_REF_METADATA)
1383 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 				NULL, &old_ref_mod, &new_ref_mod);
1385 	else
1386 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 						 &old_ref_mod, &new_ref_mod);
1388 
1389 	btrfs_ref_tree_mod(fs_info, generic_ref);
1390 
1391 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 		sub_pinned_bytes(fs_info, generic_ref);
1393 
1394 	return ret;
1395 }
1396 
1397 /*
1398  * __btrfs_inc_extent_ref - insert backreference for a given extent
1399  *
1400  * @trans:	    Handle of transaction
1401  *
1402  * @node:	    The delayed ref node used to get the bytenr/length for
1403  *		    extent whose references are incremented.
1404  *
1405  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407  *		    bytenr of the parent block. Since new extents are always
1408  *		    created with indirect references, this will only be the case
1409  *		    when relocating a shared extent. In that case, root_objectid
1410  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411  *		    be 0
1412  *
1413  * @root_objectid:  The id of the root where this modification has originated,
1414  *		    this can be either one of the well-known metadata trees or
1415  *		    the subvolume id which references this extent.
1416  *
1417  * @owner:	    For data extents it is the inode number of the owning file.
1418  *		    For metadata extents this parameter holds the level in the
1419  *		    tree of the extent.
1420  *
1421  * @offset:	    For metadata extents the offset is ignored and is currently
1422  *		    always passed as 0. For data extents it is the fileoffset
1423  *		    this extent belongs to.
1424  *
1425  * @refs_to_add     Number of references to add
1426  *
1427  * @extent_op       Pointer to a structure, holding information necessary when
1428  *                  updating a tree block's flags
1429  *
1430  */
1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 				  struct btrfs_delayed_ref_node *node,
1433 				  u64 parent, u64 root_objectid,
1434 				  u64 owner, u64 offset, int refs_to_add,
1435 				  struct btrfs_delayed_extent_op *extent_op)
1436 {
1437 	struct btrfs_path *path;
1438 	struct extent_buffer *leaf;
1439 	struct btrfs_extent_item *item;
1440 	struct btrfs_key key;
1441 	u64 bytenr = node->bytenr;
1442 	u64 num_bytes = node->num_bytes;
1443 	u64 refs;
1444 	int ret;
1445 
1446 	path = btrfs_alloc_path();
1447 	if (!path)
1448 		return -ENOMEM;
1449 
1450 	path->leave_spinning = 1;
1451 	/* this will setup the path even if it fails to insert the back ref */
1452 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1453 					   parent, root_objectid, owner,
1454 					   offset, refs_to_add, extent_op);
1455 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1456 		goto out;
1457 
1458 	/*
1459 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1460 	 * inline extent ref, so just update the reference count and add a
1461 	 * normal backref.
1462 	 */
1463 	leaf = path->nodes[0];
1464 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1465 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1466 	refs = btrfs_extent_refs(leaf, item);
1467 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1468 	if (extent_op)
1469 		__run_delayed_extent_op(extent_op, leaf, item);
1470 
1471 	btrfs_mark_buffer_dirty(leaf);
1472 	btrfs_release_path(path);
1473 
1474 	path->leave_spinning = 1;
1475 	/* now insert the actual backref */
1476 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1477 		BUG_ON(refs_to_add != 1);
1478 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1479 					    root_objectid);
1480 	} else {
1481 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1482 					     root_objectid, owner, offset,
1483 					     refs_to_add);
1484 	}
1485 	if (ret)
1486 		btrfs_abort_transaction(trans, ret);
1487 out:
1488 	btrfs_free_path(path);
1489 	return ret;
1490 }
1491 
1492 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1493 				struct btrfs_delayed_ref_node *node,
1494 				struct btrfs_delayed_extent_op *extent_op,
1495 				int insert_reserved)
1496 {
1497 	int ret = 0;
1498 	struct btrfs_delayed_data_ref *ref;
1499 	struct btrfs_key ins;
1500 	u64 parent = 0;
1501 	u64 ref_root = 0;
1502 	u64 flags = 0;
1503 
1504 	ins.objectid = node->bytenr;
1505 	ins.offset = node->num_bytes;
1506 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1507 
1508 	ref = btrfs_delayed_node_to_data_ref(node);
1509 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1510 
1511 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1512 		parent = ref->parent;
1513 	ref_root = ref->root;
1514 
1515 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1516 		if (extent_op)
1517 			flags |= extent_op->flags_to_set;
1518 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1519 						 flags, ref->objectid,
1520 						 ref->offset, &ins,
1521 						 node->ref_mod);
1522 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1523 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1524 					     ref->objectid, ref->offset,
1525 					     node->ref_mod, extent_op);
1526 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1527 		ret = __btrfs_free_extent(trans, node, parent,
1528 					  ref_root, ref->objectid,
1529 					  ref->offset, node->ref_mod,
1530 					  extent_op);
1531 	} else {
1532 		BUG();
1533 	}
1534 	return ret;
1535 }
1536 
1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1538 				    struct extent_buffer *leaf,
1539 				    struct btrfs_extent_item *ei)
1540 {
1541 	u64 flags = btrfs_extent_flags(leaf, ei);
1542 	if (extent_op->update_flags) {
1543 		flags |= extent_op->flags_to_set;
1544 		btrfs_set_extent_flags(leaf, ei, flags);
1545 	}
1546 
1547 	if (extent_op->update_key) {
1548 		struct btrfs_tree_block_info *bi;
1549 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1550 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1551 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1552 	}
1553 }
1554 
1555 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1556 				 struct btrfs_delayed_ref_head *head,
1557 				 struct btrfs_delayed_extent_op *extent_op)
1558 {
1559 	struct btrfs_fs_info *fs_info = trans->fs_info;
1560 	struct btrfs_key key;
1561 	struct btrfs_path *path;
1562 	struct btrfs_extent_item *ei;
1563 	struct extent_buffer *leaf;
1564 	u32 item_size;
1565 	int ret;
1566 	int err = 0;
1567 	int metadata = !extent_op->is_data;
1568 
1569 	if (TRANS_ABORTED(trans))
1570 		return 0;
1571 
1572 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1573 		metadata = 0;
1574 
1575 	path = btrfs_alloc_path();
1576 	if (!path)
1577 		return -ENOMEM;
1578 
1579 	key.objectid = head->bytenr;
1580 
1581 	if (metadata) {
1582 		key.type = BTRFS_METADATA_ITEM_KEY;
1583 		key.offset = extent_op->level;
1584 	} else {
1585 		key.type = BTRFS_EXTENT_ITEM_KEY;
1586 		key.offset = head->num_bytes;
1587 	}
1588 
1589 again:
1590 	path->leave_spinning = 1;
1591 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1592 	if (ret < 0) {
1593 		err = ret;
1594 		goto out;
1595 	}
1596 	if (ret > 0) {
1597 		if (metadata) {
1598 			if (path->slots[0] > 0) {
1599 				path->slots[0]--;
1600 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1601 						      path->slots[0]);
1602 				if (key.objectid == head->bytenr &&
1603 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1604 				    key.offset == head->num_bytes)
1605 					ret = 0;
1606 			}
1607 			if (ret > 0) {
1608 				btrfs_release_path(path);
1609 				metadata = 0;
1610 
1611 				key.objectid = head->bytenr;
1612 				key.offset = head->num_bytes;
1613 				key.type = BTRFS_EXTENT_ITEM_KEY;
1614 				goto again;
1615 			}
1616 		} else {
1617 			err = -EIO;
1618 			goto out;
1619 		}
1620 	}
1621 
1622 	leaf = path->nodes[0];
1623 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1624 
1625 	if (unlikely(item_size < sizeof(*ei))) {
1626 		err = -EINVAL;
1627 		btrfs_print_v0_err(fs_info);
1628 		btrfs_abort_transaction(trans, err);
1629 		goto out;
1630 	}
1631 
1632 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1633 	__run_delayed_extent_op(extent_op, leaf, ei);
1634 
1635 	btrfs_mark_buffer_dirty(leaf);
1636 out:
1637 	btrfs_free_path(path);
1638 	return err;
1639 }
1640 
1641 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1642 				struct btrfs_delayed_ref_node *node,
1643 				struct btrfs_delayed_extent_op *extent_op,
1644 				int insert_reserved)
1645 {
1646 	int ret = 0;
1647 	struct btrfs_delayed_tree_ref *ref;
1648 	u64 parent = 0;
1649 	u64 ref_root = 0;
1650 
1651 	ref = btrfs_delayed_node_to_tree_ref(node);
1652 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1653 
1654 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1655 		parent = ref->parent;
1656 	ref_root = ref->root;
1657 
1658 	if (node->ref_mod != 1) {
1659 		btrfs_err(trans->fs_info,
1660 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1661 			  node->bytenr, node->ref_mod, node->action, ref_root,
1662 			  parent);
1663 		return -EIO;
1664 	}
1665 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1666 		BUG_ON(!extent_op || !extent_op->update_flags);
1667 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1668 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1669 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1670 					     ref->level, 0, 1, extent_op);
1671 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1672 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1673 					  ref->level, 0, 1, extent_op);
1674 	} else {
1675 		BUG();
1676 	}
1677 	return ret;
1678 }
1679 
1680 /* helper function to actually process a single delayed ref entry */
1681 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1682 			       struct btrfs_delayed_ref_node *node,
1683 			       struct btrfs_delayed_extent_op *extent_op,
1684 			       int insert_reserved)
1685 {
1686 	int ret = 0;
1687 
1688 	if (TRANS_ABORTED(trans)) {
1689 		if (insert_reserved)
1690 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1691 		return 0;
1692 	}
1693 
1694 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1695 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1696 		ret = run_delayed_tree_ref(trans, node, extent_op,
1697 					   insert_reserved);
1698 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1699 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1700 		ret = run_delayed_data_ref(trans, node, extent_op,
1701 					   insert_reserved);
1702 	else
1703 		BUG();
1704 	if (ret && insert_reserved)
1705 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1706 	return ret;
1707 }
1708 
1709 static inline struct btrfs_delayed_ref_node *
1710 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1711 {
1712 	struct btrfs_delayed_ref_node *ref;
1713 
1714 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1715 		return NULL;
1716 
1717 	/*
1718 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1719 	 * This is to prevent a ref count from going down to zero, which deletes
1720 	 * the extent item from the extent tree, when there still are references
1721 	 * to add, which would fail because they would not find the extent item.
1722 	 */
1723 	if (!list_empty(&head->ref_add_list))
1724 		return list_first_entry(&head->ref_add_list,
1725 				struct btrfs_delayed_ref_node, add_list);
1726 
1727 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1728 		       struct btrfs_delayed_ref_node, ref_node);
1729 	ASSERT(list_empty(&ref->add_list));
1730 	return ref;
1731 }
1732 
1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1734 				      struct btrfs_delayed_ref_head *head)
1735 {
1736 	spin_lock(&delayed_refs->lock);
1737 	head->processing = 0;
1738 	delayed_refs->num_heads_ready++;
1739 	spin_unlock(&delayed_refs->lock);
1740 	btrfs_delayed_ref_unlock(head);
1741 }
1742 
1743 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1744 				struct btrfs_delayed_ref_head *head)
1745 {
1746 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1747 
1748 	if (!extent_op)
1749 		return NULL;
1750 
1751 	if (head->must_insert_reserved) {
1752 		head->extent_op = NULL;
1753 		btrfs_free_delayed_extent_op(extent_op);
1754 		return NULL;
1755 	}
1756 	return extent_op;
1757 }
1758 
1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1760 				     struct btrfs_delayed_ref_head *head)
1761 {
1762 	struct btrfs_delayed_extent_op *extent_op;
1763 	int ret;
1764 
1765 	extent_op = cleanup_extent_op(head);
1766 	if (!extent_op)
1767 		return 0;
1768 	head->extent_op = NULL;
1769 	spin_unlock(&head->lock);
1770 	ret = run_delayed_extent_op(trans, head, extent_op);
1771 	btrfs_free_delayed_extent_op(extent_op);
1772 	return ret ? ret : 1;
1773 }
1774 
1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1776 				  struct btrfs_delayed_ref_root *delayed_refs,
1777 				  struct btrfs_delayed_ref_head *head)
1778 {
1779 	int nr_items = 1;	/* Dropping this ref head update. */
1780 
1781 	if (head->total_ref_mod < 0) {
1782 		struct btrfs_space_info *space_info;
1783 		u64 flags;
1784 
1785 		if (head->is_data)
1786 			flags = BTRFS_BLOCK_GROUP_DATA;
1787 		else if (head->is_system)
1788 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1789 		else
1790 			flags = BTRFS_BLOCK_GROUP_METADATA;
1791 		space_info = btrfs_find_space_info(fs_info, flags);
1792 		ASSERT(space_info);
1793 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1794 				   -head->num_bytes,
1795 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1796 
1797 		/*
1798 		 * We had csum deletions accounted for in our delayed refs rsv,
1799 		 * we need to drop the csum leaves for this update from our
1800 		 * delayed_refs_rsv.
1801 		 */
1802 		if (head->is_data) {
1803 			spin_lock(&delayed_refs->lock);
1804 			delayed_refs->pending_csums -= head->num_bytes;
1805 			spin_unlock(&delayed_refs->lock);
1806 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1807 				head->num_bytes);
1808 		}
1809 	}
1810 
1811 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1812 }
1813 
1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1815 			    struct btrfs_delayed_ref_head *head)
1816 {
1817 
1818 	struct btrfs_fs_info *fs_info = trans->fs_info;
1819 	struct btrfs_delayed_ref_root *delayed_refs;
1820 	int ret;
1821 
1822 	delayed_refs = &trans->transaction->delayed_refs;
1823 
1824 	ret = run_and_cleanup_extent_op(trans, head);
1825 	if (ret < 0) {
1826 		unselect_delayed_ref_head(delayed_refs, head);
1827 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1828 		return ret;
1829 	} else if (ret) {
1830 		return ret;
1831 	}
1832 
1833 	/*
1834 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 	 * and then re-check to make sure nobody got added.
1836 	 */
1837 	spin_unlock(&head->lock);
1838 	spin_lock(&delayed_refs->lock);
1839 	spin_lock(&head->lock);
1840 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1841 		spin_unlock(&head->lock);
1842 		spin_unlock(&delayed_refs->lock);
1843 		return 1;
1844 	}
1845 	btrfs_delete_ref_head(delayed_refs, head);
1846 	spin_unlock(&head->lock);
1847 	spin_unlock(&delayed_refs->lock);
1848 
1849 	if (head->must_insert_reserved) {
1850 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1851 		if (head->is_data) {
1852 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1853 					      head->bytenr, head->num_bytes);
1854 		}
1855 	}
1856 
1857 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1858 
1859 	trace_run_delayed_ref_head(fs_info, head, 0);
1860 	btrfs_delayed_ref_unlock(head);
1861 	btrfs_put_delayed_ref_head(head);
1862 	return 0;
1863 }
1864 
1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1866 					struct btrfs_trans_handle *trans)
1867 {
1868 	struct btrfs_delayed_ref_root *delayed_refs =
1869 		&trans->transaction->delayed_refs;
1870 	struct btrfs_delayed_ref_head *head = NULL;
1871 	int ret;
1872 
1873 	spin_lock(&delayed_refs->lock);
1874 	head = btrfs_select_ref_head(delayed_refs);
1875 	if (!head) {
1876 		spin_unlock(&delayed_refs->lock);
1877 		return head;
1878 	}
1879 
1880 	/*
1881 	 * Grab the lock that says we are going to process all the refs for
1882 	 * this head
1883 	 */
1884 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1885 	spin_unlock(&delayed_refs->lock);
1886 
1887 	/*
1888 	 * We may have dropped the spin lock to get the head mutex lock, and
1889 	 * that might have given someone else time to free the head.  If that's
1890 	 * true, it has been removed from our list and we can move on.
1891 	 */
1892 	if (ret == -EAGAIN)
1893 		head = ERR_PTR(-EAGAIN);
1894 
1895 	return head;
1896 }
1897 
1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1899 				    struct btrfs_delayed_ref_head *locked_ref,
1900 				    unsigned long *run_refs)
1901 {
1902 	struct btrfs_fs_info *fs_info = trans->fs_info;
1903 	struct btrfs_delayed_ref_root *delayed_refs;
1904 	struct btrfs_delayed_extent_op *extent_op;
1905 	struct btrfs_delayed_ref_node *ref;
1906 	int must_insert_reserved = 0;
1907 	int ret;
1908 
1909 	delayed_refs = &trans->transaction->delayed_refs;
1910 
1911 	lockdep_assert_held(&locked_ref->mutex);
1912 	lockdep_assert_held(&locked_ref->lock);
1913 
1914 	while ((ref = select_delayed_ref(locked_ref))) {
1915 		if (ref->seq &&
1916 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1917 			spin_unlock(&locked_ref->lock);
1918 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1919 			return -EAGAIN;
1920 		}
1921 
1922 		(*run_refs)++;
1923 		ref->in_tree = 0;
1924 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1925 		RB_CLEAR_NODE(&ref->ref_node);
1926 		if (!list_empty(&ref->add_list))
1927 			list_del(&ref->add_list);
1928 		/*
1929 		 * When we play the delayed ref, also correct the ref_mod on
1930 		 * head
1931 		 */
1932 		switch (ref->action) {
1933 		case BTRFS_ADD_DELAYED_REF:
1934 		case BTRFS_ADD_DELAYED_EXTENT:
1935 			locked_ref->ref_mod -= ref->ref_mod;
1936 			break;
1937 		case BTRFS_DROP_DELAYED_REF:
1938 			locked_ref->ref_mod += ref->ref_mod;
1939 			break;
1940 		default:
1941 			WARN_ON(1);
1942 		}
1943 		atomic_dec(&delayed_refs->num_entries);
1944 
1945 		/*
1946 		 * Record the must_insert_reserved flag before we drop the
1947 		 * spin lock.
1948 		 */
1949 		must_insert_reserved = locked_ref->must_insert_reserved;
1950 		locked_ref->must_insert_reserved = 0;
1951 
1952 		extent_op = locked_ref->extent_op;
1953 		locked_ref->extent_op = NULL;
1954 		spin_unlock(&locked_ref->lock);
1955 
1956 		ret = run_one_delayed_ref(trans, ref, extent_op,
1957 					  must_insert_reserved);
1958 
1959 		btrfs_free_delayed_extent_op(extent_op);
1960 		if (ret) {
1961 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1962 			btrfs_put_delayed_ref(ref);
1963 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1964 				    ret);
1965 			return ret;
1966 		}
1967 
1968 		btrfs_put_delayed_ref(ref);
1969 		cond_resched();
1970 
1971 		spin_lock(&locked_ref->lock);
1972 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 /*
1979  * Returns 0 on success or if called with an already aborted transaction.
1980  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1981  */
1982 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1983 					     unsigned long nr)
1984 {
1985 	struct btrfs_fs_info *fs_info = trans->fs_info;
1986 	struct btrfs_delayed_ref_root *delayed_refs;
1987 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1988 	ktime_t start = ktime_get();
1989 	int ret;
1990 	unsigned long count = 0;
1991 	unsigned long actual_count = 0;
1992 
1993 	delayed_refs = &trans->transaction->delayed_refs;
1994 	do {
1995 		if (!locked_ref) {
1996 			locked_ref = btrfs_obtain_ref_head(trans);
1997 			if (IS_ERR_OR_NULL(locked_ref)) {
1998 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1999 					continue;
2000 				} else {
2001 					break;
2002 				}
2003 			}
2004 			count++;
2005 		}
2006 		/*
2007 		 * We need to try and merge add/drops of the same ref since we
2008 		 * can run into issues with relocate dropping the implicit ref
2009 		 * and then it being added back again before the drop can
2010 		 * finish.  If we merged anything we need to re-loop so we can
2011 		 * get a good ref.
2012 		 * Or we can get node references of the same type that weren't
2013 		 * merged when created due to bumps in the tree mod seq, and
2014 		 * we need to merge them to prevent adding an inline extent
2015 		 * backref before dropping it (triggering a BUG_ON at
2016 		 * insert_inline_extent_backref()).
2017 		 */
2018 		spin_lock(&locked_ref->lock);
2019 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2020 
2021 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2022 						      &actual_count);
2023 		if (ret < 0 && ret != -EAGAIN) {
2024 			/*
2025 			 * Error, btrfs_run_delayed_refs_for_head already
2026 			 * unlocked everything so just bail out
2027 			 */
2028 			return ret;
2029 		} else if (!ret) {
2030 			/*
2031 			 * Success, perform the usual cleanup of a processed
2032 			 * head
2033 			 */
2034 			ret = cleanup_ref_head(trans, locked_ref);
2035 			if (ret > 0 ) {
2036 				/* We dropped our lock, we need to loop. */
2037 				ret = 0;
2038 				continue;
2039 			} else if (ret) {
2040 				return ret;
2041 			}
2042 		}
2043 
2044 		/*
2045 		 * Either success case or btrfs_run_delayed_refs_for_head
2046 		 * returned -EAGAIN, meaning we need to select another head
2047 		 */
2048 
2049 		locked_ref = NULL;
2050 		cond_resched();
2051 	} while ((nr != -1 && count < nr) || locked_ref);
2052 
2053 	/*
2054 	 * We don't want to include ref heads since we can have empty ref heads
2055 	 * and those will drastically skew our runtime down since we just do
2056 	 * accounting, no actual extent tree updates.
2057 	 */
2058 	if (actual_count > 0) {
2059 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2060 		u64 avg;
2061 
2062 		/*
2063 		 * We weigh the current average higher than our current runtime
2064 		 * to avoid large swings in the average.
2065 		 */
2066 		spin_lock(&delayed_refs->lock);
2067 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2068 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2069 		spin_unlock(&delayed_refs->lock);
2070 	}
2071 	return 0;
2072 }
2073 
2074 #ifdef SCRAMBLE_DELAYED_REFS
2075 /*
2076  * Normally delayed refs get processed in ascending bytenr order. This
2077  * correlates in most cases to the order added. To expose dependencies on this
2078  * order, we start to process the tree in the middle instead of the beginning
2079  */
2080 static u64 find_middle(struct rb_root *root)
2081 {
2082 	struct rb_node *n = root->rb_node;
2083 	struct btrfs_delayed_ref_node *entry;
2084 	int alt = 1;
2085 	u64 middle;
2086 	u64 first = 0, last = 0;
2087 
2088 	n = rb_first(root);
2089 	if (n) {
2090 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2091 		first = entry->bytenr;
2092 	}
2093 	n = rb_last(root);
2094 	if (n) {
2095 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 		last = entry->bytenr;
2097 	}
2098 	n = root->rb_node;
2099 
2100 	while (n) {
2101 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2102 		WARN_ON(!entry->in_tree);
2103 
2104 		middle = entry->bytenr;
2105 
2106 		if (alt)
2107 			n = n->rb_left;
2108 		else
2109 			n = n->rb_right;
2110 
2111 		alt = 1 - alt;
2112 	}
2113 	return middle;
2114 }
2115 #endif
2116 
2117 /*
2118  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2119  * would require to store the csums for that many bytes.
2120  */
2121 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2122 {
2123 	u64 csum_size;
2124 	u64 num_csums_per_leaf;
2125 	u64 num_csums;
2126 
2127 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2128 	num_csums_per_leaf = div64_u64(csum_size,
2129 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2130 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2131 	num_csums += num_csums_per_leaf - 1;
2132 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2133 	return num_csums;
2134 }
2135 
2136 /*
2137  * this starts processing the delayed reference count updates and
2138  * extent insertions we have queued up so far.  count can be
2139  * 0, which means to process everything in the tree at the start
2140  * of the run (but not newly added entries), or it can be some target
2141  * number you'd like to process.
2142  *
2143  * Returns 0 on success or if called with an aborted transaction
2144  * Returns <0 on error and aborts the transaction
2145  */
2146 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2147 			   unsigned long count)
2148 {
2149 	struct btrfs_fs_info *fs_info = trans->fs_info;
2150 	struct rb_node *node;
2151 	struct btrfs_delayed_ref_root *delayed_refs;
2152 	struct btrfs_delayed_ref_head *head;
2153 	int ret;
2154 	int run_all = count == (unsigned long)-1;
2155 
2156 	/* We'll clean this up in btrfs_cleanup_transaction */
2157 	if (TRANS_ABORTED(trans))
2158 		return 0;
2159 
2160 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2161 		return 0;
2162 
2163 	delayed_refs = &trans->transaction->delayed_refs;
2164 	if (count == 0)
2165 		count = atomic_read(&delayed_refs->num_entries) * 2;
2166 
2167 again:
2168 #ifdef SCRAMBLE_DELAYED_REFS
2169 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2170 #endif
2171 	ret = __btrfs_run_delayed_refs(trans, count);
2172 	if (ret < 0) {
2173 		btrfs_abort_transaction(trans, ret);
2174 		return ret;
2175 	}
2176 
2177 	if (run_all) {
2178 		btrfs_create_pending_block_groups(trans);
2179 
2180 		spin_lock(&delayed_refs->lock);
2181 		node = rb_first_cached(&delayed_refs->href_root);
2182 		if (!node) {
2183 			spin_unlock(&delayed_refs->lock);
2184 			goto out;
2185 		}
2186 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2187 				href_node);
2188 		refcount_inc(&head->refs);
2189 		spin_unlock(&delayed_refs->lock);
2190 
2191 		/* Mutex was contended, block until it's released and retry. */
2192 		mutex_lock(&head->mutex);
2193 		mutex_unlock(&head->mutex);
2194 
2195 		btrfs_put_delayed_ref_head(head);
2196 		cond_resched();
2197 		goto again;
2198 	}
2199 out:
2200 	return 0;
2201 }
2202 
2203 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2204 				struct extent_buffer *eb, u64 flags,
2205 				int level, int is_data)
2206 {
2207 	struct btrfs_delayed_extent_op *extent_op;
2208 	int ret;
2209 
2210 	extent_op = btrfs_alloc_delayed_extent_op();
2211 	if (!extent_op)
2212 		return -ENOMEM;
2213 
2214 	extent_op->flags_to_set = flags;
2215 	extent_op->update_flags = true;
2216 	extent_op->update_key = false;
2217 	extent_op->is_data = is_data ? true : false;
2218 	extent_op->level = level;
2219 
2220 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2221 	if (ret)
2222 		btrfs_free_delayed_extent_op(extent_op);
2223 	return ret;
2224 }
2225 
2226 static noinline int check_delayed_ref(struct btrfs_root *root,
2227 				      struct btrfs_path *path,
2228 				      u64 objectid, u64 offset, u64 bytenr)
2229 {
2230 	struct btrfs_delayed_ref_head *head;
2231 	struct btrfs_delayed_ref_node *ref;
2232 	struct btrfs_delayed_data_ref *data_ref;
2233 	struct btrfs_delayed_ref_root *delayed_refs;
2234 	struct btrfs_transaction *cur_trans;
2235 	struct rb_node *node;
2236 	int ret = 0;
2237 
2238 	spin_lock(&root->fs_info->trans_lock);
2239 	cur_trans = root->fs_info->running_transaction;
2240 	if (cur_trans)
2241 		refcount_inc(&cur_trans->use_count);
2242 	spin_unlock(&root->fs_info->trans_lock);
2243 	if (!cur_trans)
2244 		return 0;
2245 
2246 	delayed_refs = &cur_trans->delayed_refs;
2247 	spin_lock(&delayed_refs->lock);
2248 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2249 	if (!head) {
2250 		spin_unlock(&delayed_refs->lock);
2251 		btrfs_put_transaction(cur_trans);
2252 		return 0;
2253 	}
2254 
2255 	if (!mutex_trylock(&head->mutex)) {
2256 		refcount_inc(&head->refs);
2257 		spin_unlock(&delayed_refs->lock);
2258 
2259 		btrfs_release_path(path);
2260 
2261 		/*
2262 		 * Mutex was contended, block until it's released and let
2263 		 * caller try again
2264 		 */
2265 		mutex_lock(&head->mutex);
2266 		mutex_unlock(&head->mutex);
2267 		btrfs_put_delayed_ref_head(head);
2268 		btrfs_put_transaction(cur_trans);
2269 		return -EAGAIN;
2270 	}
2271 	spin_unlock(&delayed_refs->lock);
2272 
2273 	spin_lock(&head->lock);
2274 	/*
2275 	 * XXX: We should replace this with a proper search function in the
2276 	 * future.
2277 	 */
2278 	for (node = rb_first_cached(&head->ref_tree); node;
2279 	     node = rb_next(node)) {
2280 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2281 		/* If it's a shared ref we know a cross reference exists */
2282 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2283 			ret = 1;
2284 			break;
2285 		}
2286 
2287 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2288 
2289 		/*
2290 		 * If our ref doesn't match the one we're currently looking at
2291 		 * then we have a cross reference.
2292 		 */
2293 		if (data_ref->root != root->root_key.objectid ||
2294 		    data_ref->objectid != objectid ||
2295 		    data_ref->offset != offset) {
2296 			ret = 1;
2297 			break;
2298 		}
2299 	}
2300 	spin_unlock(&head->lock);
2301 	mutex_unlock(&head->mutex);
2302 	btrfs_put_transaction(cur_trans);
2303 	return ret;
2304 }
2305 
2306 static noinline int check_committed_ref(struct btrfs_root *root,
2307 					struct btrfs_path *path,
2308 					u64 objectid, u64 offset, u64 bytenr,
2309 					bool strict)
2310 {
2311 	struct btrfs_fs_info *fs_info = root->fs_info;
2312 	struct btrfs_root *extent_root = fs_info->extent_root;
2313 	struct extent_buffer *leaf;
2314 	struct btrfs_extent_data_ref *ref;
2315 	struct btrfs_extent_inline_ref *iref;
2316 	struct btrfs_extent_item *ei;
2317 	struct btrfs_key key;
2318 	u32 item_size;
2319 	int type;
2320 	int ret;
2321 
2322 	key.objectid = bytenr;
2323 	key.offset = (u64)-1;
2324 	key.type = BTRFS_EXTENT_ITEM_KEY;
2325 
2326 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2327 	if (ret < 0)
2328 		goto out;
2329 	BUG_ON(ret == 0); /* Corruption */
2330 
2331 	ret = -ENOENT;
2332 	if (path->slots[0] == 0)
2333 		goto out;
2334 
2335 	path->slots[0]--;
2336 	leaf = path->nodes[0];
2337 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2338 
2339 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2340 		goto out;
2341 
2342 	ret = 1;
2343 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2345 
2346 	/* If extent item has more than 1 inline ref then it's shared */
2347 	if (item_size != sizeof(*ei) +
2348 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2349 		goto out;
2350 
2351 	/*
2352 	 * If extent created before last snapshot => it's shared unless the
2353 	 * snapshot has been deleted. Use the heuristic if strict is false.
2354 	 */
2355 	if (!strict &&
2356 	    (btrfs_extent_generation(leaf, ei) <=
2357 	     btrfs_root_last_snapshot(&root->root_item)))
2358 		goto out;
2359 
2360 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2361 
2362 	/* If this extent has SHARED_DATA_REF then it's shared */
2363 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2364 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2365 		goto out;
2366 
2367 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2368 	if (btrfs_extent_refs(leaf, ei) !=
2369 	    btrfs_extent_data_ref_count(leaf, ref) ||
2370 	    btrfs_extent_data_ref_root(leaf, ref) !=
2371 	    root->root_key.objectid ||
2372 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2373 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2374 		goto out;
2375 
2376 	ret = 0;
2377 out:
2378 	return ret;
2379 }
2380 
2381 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2382 			  u64 bytenr, bool strict)
2383 {
2384 	struct btrfs_path *path;
2385 	int ret;
2386 
2387 	path = btrfs_alloc_path();
2388 	if (!path)
2389 		return -ENOMEM;
2390 
2391 	do {
2392 		ret = check_committed_ref(root, path, objectid,
2393 					  offset, bytenr, strict);
2394 		if (ret && ret != -ENOENT)
2395 			goto out;
2396 
2397 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2398 	} while (ret == -EAGAIN);
2399 
2400 out:
2401 	btrfs_free_path(path);
2402 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2403 		WARN_ON(ret > 0);
2404 	return ret;
2405 }
2406 
2407 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2408 			   struct btrfs_root *root,
2409 			   struct extent_buffer *buf,
2410 			   int full_backref, int inc)
2411 {
2412 	struct btrfs_fs_info *fs_info = root->fs_info;
2413 	u64 bytenr;
2414 	u64 num_bytes;
2415 	u64 parent;
2416 	u64 ref_root;
2417 	u32 nritems;
2418 	struct btrfs_key key;
2419 	struct btrfs_file_extent_item *fi;
2420 	struct btrfs_ref generic_ref = { 0 };
2421 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2422 	int i;
2423 	int action;
2424 	int level;
2425 	int ret = 0;
2426 
2427 	if (btrfs_is_testing(fs_info))
2428 		return 0;
2429 
2430 	ref_root = btrfs_header_owner(buf);
2431 	nritems = btrfs_header_nritems(buf);
2432 	level = btrfs_header_level(buf);
2433 
2434 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2435 		return 0;
2436 
2437 	if (full_backref)
2438 		parent = buf->start;
2439 	else
2440 		parent = 0;
2441 	if (inc)
2442 		action = BTRFS_ADD_DELAYED_REF;
2443 	else
2444 		action = BTRFS_DROP_DELAYED_REF;
2445 
2446 	for (i = 0; i < nritems; i++) {
2447 		if (level == 0) {
2448 			btrfs_item_key_to_cpu(buf, &key, i);
2449 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2450 				continue;
2451 			fi = btrfs_item_ptr(buf, i,
2452 					    struct btrfs_file_extent_item);
2453 			if (btrfs_file_extent_type(buf, fi) ==
2454 			    BTRFS_FILE_EXTENT_INLINE)
2455 				continue;
2456 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2457 			if (bytenr == 0)
2458 				continue;
2459 
2460 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2461 			key.offset -= btrfs_file_extent_offset(buf, fi);
2462 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2463 					       num_bytes, parent);
2464 			generic_ref.real_root = root->root_key.objectid;
2465 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2466 					    key.offset);
2467 			generic_ref.skip_qgroup = for_reloc;
2468 			if (inc)
2469 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2470 			else
2471 				ret = btrfs_free_extent(trans, &generic_ref);
2472 			if (ret)
2473 				goto fail;
2474 		} else {
2475 			bytenr = btrfs_node_blockptr(buf, i);
2476 			num_bytes = fs_info->nodesize;
2477 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2478 					       num_bytes, parent);
2479 			generic_ref.real_root = root->root_key.objectid;
2480 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2481 			generic_ref.skip_qgroup = for_reloc;
2482 			if (inc)
2483 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2484 			else
2485 				ret = btrfs_free_extent(trans, &generic_ref);
2486 			if (ret)
2487 				goto fail;
2488 		}
2489 	}
2490 	return 0;
2491 fail:
2492 	return ret;
2493 }
2494 
2495 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2496 		  struct extent_buffer *buf, int full_backref)
2497 {
2498 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2499 }
2500 
2501 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2502 		  struct extent_buffer *buf, int full_backref)
2503 {
2504 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2505 }
2506 
2507 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2508 {
2509 	struct btrfs_block_group *block_group;
2510 	int readonly = 0;
2511 
2512 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2513 	if (!block_group || block_group->ro)
2514 		readonly = 1;
2515 	if (block_group)
2516 		btrfs_put_block_group(block_group);
2517 	return readonly;
2518 }
2519 
2520 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2521 {
2522 	struct btrfs_fs_info *fs_info = root->fs_info;
2523 	u64 flags;
2524 	u64 ret;
2525 
2526 	if (data)
2527 		flags = BTRFS_BLOCK_GROUP_DATA;
2528 	else if (root == fs_info->chunk_root)
2529 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2530 	else
2531 		flags = BTRFS_BLOCK_GROUP_METADATA;
2532 
2533 	ret = btrfs_get_alloc_profile(fs_info, flags);
2534 	return ret;
2535 }
2536 
2537 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2538 {
2539 	struct btrfs_block_group *cache;
2540 	u64 bytenr;
2541 
2542 	spin_lock(&fs_info->block_group_cache_lock);
2543 	bytenr = fs_info->first_logical_byte;
2544 	spin_unlock(&fs_info->block_group_cache_lock);
2545 
2546 	if (bytenr < (u64)-1)
2547 		return bytenr;
2548 
2549 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2550 	if (!cache)
2551 		return 0;
2552 
2553 	bytenr = cache->start;
2554 	btrfs_put_block_group(cache);
2555 
2556 	return bytenr;
2557 }
2558 
2559 static int pin_down_extent(struct btrfs_trans_handle *trans,
2560 			   struct btrfs_block_group *cache,
2561 			   u64 bytenr, u64 num_bytes, int reserved)
2562 {
2563 	struct btrfs_fs_info *fs_info = cache->fs_info;
2564 
2565 	spin_lock(&cache->space_info->lock);
2566 	spin_lock(&cache->lock);
2567 	cache->pinned += num_bytes;
2568 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2569 					     num_bytes);
2570 	if (reserved) {
2571 		cache->reserved -= num_bytes;
2572 		cache->space_info->bytes_reserved -= num_bytes;
2573 	}
2574 	spin_unlock(&cache->lock);
2575 	spin_unlock(&cache->space_info->lock);
2576 
2577 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2578 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2579 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2580 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2581 	return 0;
2582 }
2583 
2584 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2585 		     u64 bytenr, u64 num_bytes, int reserved)
2586 {
2587 	struct btrfs_block_group *cache;
2588 
2589 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2590 	BUG_ON(!cache); /* Logic error */
2591 
2592 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2593 
2594 	btrfs_put_block_group(cache);
2595 	return 0;
2596 }
2597 
2598 /*
2599  * this function must be called within transaction
2600  */
2601 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2602 				    u64 bytenr, u64 num_bytes)
2603 {
2604 	struct btrfs_block_group *cache;
2605 	int ret;
2606 
2607 	btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2608 
2609 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2610 	if (!cache)
2611 		return -EINVAL;
2612 
2613 	/*
2614 	 * pull in the free space cache (if any) so that our pin
2615 	 * removes the free space from the cache.  We have load_only set
2616 	 * to one because the slow code to read in the free extents does check
2617 	 * the pinned extents.
2618 	 */
2619 	btrfs_cache_block_group(cache, 1);
2620 
2621 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2622 
2623 	/* remove us from the free space cache (if we're there at all) */
2624 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2625 	btrfs_put_block_group(cache);
2626 	return ret;
2627 }
2628 
2629 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2630 				   u64 start, u64 num_bytes)
2631 {
2632 	int ret;
2633 	struct btrfs_block_group *block_group;
2634 	struct btrfs_caching_control *caching_ctl;
2635 
2636 	block_group = btrfs_lookup_block_group(fs_info, start);
2637 	if (!block_group)
2638 		return -EINVAL;
2639 
2640 	btrfs_cache_block_group(block_group, 0);
2641 	caching_ctl = btrfs_get_caching_control(block_group);
2642 
2643 	if (!caching_ctl) {
2644 		/* Logic error */
2645 		BUG_ON(!btrfs_block_group_done(block_group));
2646 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2647 	} else {
2648 		mutex_lock(&caching_ctl->mutex);
2649 
2650 		if (start >= caching_ctl->progress) {
2651 			ret = btrfs_add_excluded_extent(fs_info, start,
2652 							num_bytes);
2653 		} else if (start + num_bytes <= caching_ctl->progress) {
2654 			ret = btrfs_remove_free_space(block_group,
2655 						      start, num_bytes);
2656 		} else {
2657 			num_bytes = caching_ctl->progress - start;
2658 			ret = btrfs_remove_free_space(block_group,
2659 						      start, num_bytes);
2660 			if (ret)
2661 				goto out_lock;
2662 
2663 			num_bytes = (start + num_bytes) -
2664 				caching_ctl->progress;
2665 			start = caching_ctl->progress;
2666 			ret = btrfs_add_excluded_extent(fs_info, start,
2667 							num_bytes);
2668 		}
2669 out_lock:
2670 		mutex_unlock(&caching_ctl->mutex);
2671 		btrfs_put_caching_control(caching_ctl);
2672 	}
2673 	btrfs_put_block_group(block_group);
2674 	return ret;
2675 }
2676 
2677 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2678 {
2679 	struct btrfs_fs_info *fs_info = eb->fs_info;
2680 	struct btrfs_file_extent_item *item;
2681 	struct btrfs_key key;
2682 	int found_type;
2683 	int i;
2684 	int ret = 0;
2685 
2686 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2687 		return 0;
2688 
2689 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2690 		btrfs_item_key_to_cpu(eb, &key, i);
2691 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2692 			continue;
2693 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2694 		found_type = btrfs_file_extent_type(eb, item);
2695 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2696 			continue;
2697 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2698 			continue;
2699 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2700 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2701 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2702 		if (ret)
2703 			break;
2704 	}
2705 
2706 	return ret;
2707 }
2708 
2709 static void
2710 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2711 {
2712 	atomic_inc(&bg->reservations);
2713 }
2714 
2715 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2716 {
2717 	struct btrfs_caching_control *next;
2718 	struct btrfs_caching_control *caching_ctl;
2719 	struct btrfs_block_group *cache;
2720 
2721 	down_write(&fs_info->commit_root_sem);
2722 
2723 	list_for_each_entry_safe(caching_ctl, next,
2724 				 &fs_info->caching_block_groups, list) {
2725 		cache = caching_ctl->block_group;
2726 		if (btrfs_block_group_done(cache)) {
2727 			cache->last_byte_to_unpin = (u64)-1;
2728 			list_del_init(&caching_ctl->list);
2729 			btrfs_put_caching_control(caching_ctl);
2730 		} else {
2731 			cache->last_byte_to_unpin = caching_ctl->progress;
2732 		}
2733 	}
2734 
2735 	up_write(&fs_info->commit_root_sem);
2736 
2737 	btrfs_update_global_block_rsv(fs_info);
2738 }
2739 
2740 /*
2741  * Returns the free cluster for the given space info and sets empty_cluster to
2742  * what it should be based on the mount options.
2743  */
2744 static struct btrfs_free_cluster *
2745 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2746 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2747 {
2748 	struct btrfs_free_cluster *ret = NULL;
2749 
2750 	*empty_cluster = 0;
2751 	if (btrfs_mixed_space_info(space_info))
2752 		return ret;
2753 
2754 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2755 		ret = &fs_info->meta_alloc_cluster;
2756 		if (btrfs_test_opt(fs_info, SSD))
2757 			*empty_cluster = SZ_2M;
2758 		else
2759 			*empty_cluster = SZ_64K;
2760 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2761 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2762 		*empty_cluster = SZ_2M;
2763 		ret = &fs_info->data_alloc_cluster;
2764 	}
2765 
2766 	return ret;
2767 }
2768 
2769 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2770 			      u64 start, u64 end,
2771 			      const bool return_free_space)
2772 {
2773 	struct btrfs_block_group *cache = NULL;
2774 	struct btrfs_space_info *space_info;
2775 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2776 	struct btrfs_free_cluster *cluster = NULL;
2777 	u64 len;
2778 	u64 total_unpinned = 0;
2779 	u64 empty_cluster = 0;
2780 	bool readonly;
2781 
2782 	while (start <= end) {
2783 		readonly = false;
2784 		if (!cache ||
2785 		    start >= cache->start + cache->length) {
2786 			if (cache)
2787 				btrfs_put_block_group(cache);
2788 			total_unpinned = 0;
2789 			cache = btrfs_lookup_block_group(fs_info, start);
2790 			BUG_ON(!cache); /* Logic error */
2791 
2792 			cluster = fetch_cluster_info(fs_info,
2793 						     cache->space_info,
2794 						     &empty_cluster);
2795 			empty_cluster <<= 1;
2796 		}
2797 
2798 		len = cache->start + cache->length - start;
2799 		len = min(len, end + 1 - start);
2800 
2801 		if (start < cache->last_byte_to_unpin) {
2802 			len = min(len, cache->last_byte_to_unpin - start);
2803 			if (return_free_space)
2804 				btrfs_add_free_space(cache, start, len);
2805 		}
2806 
2807 		start += len;
2808 		total_unpinned += len;
2809 		space_info = cache->space_info;
2810 
2811 		/*
2812 		 * If this space cluster has been marked as fragmented and we've
2813 		 * unpinned enough in this block group to potentially allow a
2814 		 * cluster to be created inside of it go ahead and clear the
2815 		 * fragmented check.
2816 		 */
2817 		if (cluster && cluster->fragmented &&
2818 		    total_unpinned > empty_cluster) {
2819 			spin_lock(&cluster->lock);
2820 			cluster->fragmented = 0;
2821 			spin_unlock(&cluster->lock);
2822 		}
2823 
2824 		spin_lock(&space_info->lock);
2825 		spin_lock(&cache->lock);
2826 		cache->pinned -= len;
2827 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2828 		space_info->max_extent_size = 0;
2829 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2830 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2831 		if (cache->ro) {
2832 			space_info->bytes_readonly += len;
2833 			readonly = true;
2834 		}
2835 		spin_unlock(&cache->lock);
2836 		if (!readonly && return_free_space &&
2837 		    global_rsv->space_info == space_info) {
2838 			u64 to_add = len;
2839 
2840 			spin_lock(&global_rsv->lock);
2841 			if (!global_rsv->full) {
2842 				to_add = min(len, global_rsv->size -
2843 					     global_rsv->reserved);
2844 				global_rsv->reserved += to_add;
2845 				btrfs_space_info_update_bytes_may_use(fs_info,
2846 						space_info, to_add);
2847 				if (global_rsv->reserved >= global_rsv->size)
2848 					global_rsv->full = 1;
2849 				len -= to_add;
2850 			}
2851 			spin_unlock(&global_rsv->lock);
2852 			/* Add to any tickets we may have */
2853 			if (len)
2854 				btrfs_try_granting_tickets(fs_info,
2855 							   space_info);
2856 		}
2857 		spin_unlock(&space_info->lock);
2858 	}
2859 
2860 	if (cache)
2861 		btrfs_put_block_group(cache);
2862 	return 0;
2863 }
2864 
2865 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2866 {
2867 	struct btrfs_fs_info *fs_info = trans->fs_info;
2868 	struct btrfs_block_group *block_group, *tmp;
2869 	struct list_head *deleted_bgs;
2870 	struct extent_io_tree *unpin;
2871 	u64 start;
2872 	u64 end;
2873 	int ret;
2874 
2875 	unpin = &trans->transaction->pinned_extents;
2876 
2877 	while (!TRANS_ABORTED(trans)) {
2878 		struct extent_state *cached_state = NULL;
2879 
2880 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2881 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2882 					    EXTENT_DIRTY, &cached_state);
2883 		if (ret) {
2884 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2885 			break;
2886 		}
2887 		if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2888 			clear_extent_bits(&fs_info->excluded_extents, start,
2889 					  end, EXTENT_UPTODATE);
2890 
2891 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2892 			ret = btrfs_discard_extent(fs_info, start,
2893 						   end + 1 - start, NULL);
2894 
2895 		clear_extent_dirty(unpin, start, end, &cached_state);
2896 		unpin_extent_range(fs_info, start, end, true);
2897 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2898 		free_extent_state(cached_state);
2899 		cond_resched();
2900 	}
2901 
2902 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2903 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2904 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2905 	}
2906 
2907 	/*
2908 	 * Transaction is finished.  We don't need the lock anymore.  We
2909 	 * do need to clean up the block groups in case of a transaction
2910 	 * abort.
2911 	 */
2912 	deleted_bgs = &trans->transaction->deleted_bgs;
2913 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2914 		u64 trimmed = 0;
2915 
2916 		ret = -EROFS;
2917 		if (!TRANS_ABORTED(trans))
2918 			ret = btrfs_discard_extent(fs_info,
2919 						   block_group->start,
2920 						   block_group->length,
2921 						   &trimmed);
2922 
2923 		list_del_init(&block_group->bg_list);
2924 		btrfs_unfreeze_block_group(block_group);
2925 		btrfs_put_block_group(block_group);
2926 
2927 		if (ret) {
2928 			const char *errstr = btrfs_decode_error(ret);
2929 			btrfs_warn(fs_info,
2930 			   "discard failed while removing blockgroup: errno=%d %s",
2931 				   ret, errstr);
2932 		}
2933 	}
2934 
2935 	return 0;
2936 }
2937 
2938 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2939 			       struct btrfs_delayed_ref_node *node, u64 parent,
2940 			       u64 root_objectid, u64 owner_objectid,
2941 			       u64 owner_offset, int refs_to_drop,
2942 			       struct btrfs_delayed_extent_op *extent_op)
2943 {
2944 	struct btrfs_fs_info *info = trans->fs_info;
2945 	struct btrfs_key key;
2946 	struct btrfs_path *path;
2947 	struct btrfs_root *extent_root = info->extent_root;
2948 	struct extent_buffer *leaf;
2949 	struct btrfs_extent_item *ei;
2950 	struct btrfs_extent_inline_ref *iref;
2951 	int ret;
2952 	int is_data;
2953 	int extent_slot = 0;
2954 	int found_extent = 0;
2955 	int num_to_del = 1;
2956 	u32 item_size;
2957 	u64 refs;
2958 	u64 bytenr = node->bytenr;
2959 	u64 num_bytes = node->num_bytes;
2960 	int last_ref = 0;
2961 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2962 
2963 	path = btrfs_alloc_path();
2964 	if (!path)
2965 		return -ENOMEM;
2966 
2967 	path->leave_spinning = 1;
2968 
2969 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2970 	BUG_ON(!is_data && refs_to_drop != 1);
2971 
2972 	if (is_data)
2973 		skinny_metadata = false;
2974 
2975 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2976 				    parent, root_objectid, owner_objectid,
2977 				    owner_offset);
2978 	if (ret == 0) {
2979 		extent_slot = path->slots[0];
2980 		while (extent_slot >= 0) {
2981 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2982 					      extent_slot);
2983 			if (key.objectid != bytenr)
2984 				break;
2985 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2986 			    key.offset == num_bytes) {
2987 				found_extent = 1;
2988 				break;
2989 			}
2990 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2991 			    key.offset == owner_objectid) {
2992 				found_extent = 1;
2993 				break;
2994 			}
2995 			if (path->slots[0] - extent_slot > 5)
2996 				break;
2997 			extent_slot--;
2998 		}
2999 
3000 		if (!found_extent) {
3001 			BUG_ON(iref);
3002 			ret = remove_extent_backref(trans, path, NULL,
3003 						    refs_to_drop,
3004 						    is_data, &last_ref);
3005 			if (ret) {
3006 				btrfs_abort_transaction(trans, ret);
3007 				goto out;
3008 			}
3009 			btrfs_release_path(path);
3010 			path->leave_spinning = 1;
3011 
3012 			key.objectid = bytenr;
3013 			key.type = BTRFS_EXTENT_ITEM_KEY;
3014 			key.offset = num_bytes;
3015 
3016 			if (!is_data && skinny_metadata) {
3017 				key.type = BTRFS_METADATA_ITEM_KEY;
3018 				key.offset = owner_objectid;
3019 			}
3020 
3021 			ret = btrfs_search_slot(trans, extent_root,
3022 						&key, path, -1, 1);
3023 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3024 				/*
3025 				 * Couldn't find our skinny metadata item,
3026 				 * see if we have ye olde extent item.
3027 				 */
3028 				path->slots[0]--;
3029 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3030 						      path->slots[0]);
3031 				if (key.objectid == bytenr &&
3032 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3033 				    key.offset == num_bytes)
3034 					ret = 0;
3035 			}
3036 
3037 			if (ret > 0 && skinny_metadata) {
3038 				skinny_metadata = false;
3039 				key.objectid = bytenr;
3040 				key.type = BTRFS_EXTENT_ITEM_KEY;
3041 				key.offset = num_bytes;
3042 				btrfs_release_path(path);
3043 				ret = btrfs_search_slot(trans, extent_root,
3044 							&key, path, -1, 1);
3045 			}
3046 
3047 			if (ret) {
3048 				btrfs_err(info,
3049 					  "umm, got %d back from search, was looking for %llu",
3050 					  ret, bytenr);
3051 				if (ret > 0)
3052 					btrfs_print_leaf(path->nodes[0]);
3053 			}
3054 			if (ret < 0) {
3055 				btrfs_abort_transaction(trans, ret);
3056 				goto out;
3057 			}
3058 			extent_slot = path->slots[0];
3059 		}
3060 	} else if (WARN_ON(ret == -ENOENT)) {
3061 		btrfs_print_leaf(path->nodes[0]);
3062 		btrfs_err(info,
3063 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3064 			bytenr, parent, root_objectid, owner_objectid,
3065 			owner_offset);
3066 		btrfs_abort_transaction(trans, ret);
3067 		goto out;
3068 	} else {
3069 		btrfs_abort_transaction(trans, ret);
3070 		goto out;
3071 	}
3072 
3073 	leaf = path->nodes[0];
3074 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3075 	if (unlikely(item_size < sizeof(*ei))) {
3076 		ret = -EINVAL;
3077 		btrfs_print_v0_err(info);
3078 		btrfs_abort_transaction(trans, ret);
3079 		goto out;
3080 	}
3081 	ei = btrfs_item_ptr(leaf, extent_slot,
3082 			    struct btrfs_extent_item);
3083 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3084 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3085 		struct btrfs_tree_block_info *bi;
3086 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3087 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3088 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3089 	}
3090 
3091 	refs = btrfs_extent_refs(leaf, ei);
3092 	if (refs < refs_to_drop) {
3093 		btrfs_err(info,
3094 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3095 			  refs_to_drop, refs, bytenr);
3096 		ret = -EINVAL;
3097 		btrfs_abort_transaction(trans, ret);
3098 		goto out;
3099 	}
3100 	refs -= refs_to_drop;
3101 
3102 	if (refs > 0) {
3103 		if (extent_op)
3104 			__run_delayed_extent_op(extent_op, leaf, ei);
3105 		/*
3106 		 * In the case of inline back ref, reference count will
3107 		 * be updated by remove_extent_backref
3108 		 */
3109 		if (iref) {
3110 			BUG_ON(!found_extent);
3111 		} else {
3112 			btrfs_set_extent_refs(leaf, ei, refs);
3113 			btrfs_mark_buffer_dirty(leaf);
3114 		}
3115 		if (found_extent) {
3116 			ret = remove_extent_backref(trans, path, iref,
3117 						    refs_to_drop, is_data,
3118 						    &last_ref);
3119 			if (ret) {
3120 				btrfs_abort_transaction(trans, ret);
3121 				goto out;
3122 			}
3123 		}
3124 	} else {
3125 		if (found_extent) {
3126 			BUG_ON(is_data && refs_to_drop !=
3127 			       extent_data_ref_count(path, iref));
3128 			if (iref) {
3129 				BUG_ON(path->slots[0] != extent_slot);
3130 			} else {
3131 				BUG_ON(path->slots[0] != extent_slot + 1);
3132 				path->slots[0] = extent_slot;
3133 				num_to_del = 2;
3134 			}
3135 		}
3136 
3137 		last_ref = 1;
3138 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3139 				      num_to_del);
3140 		if (ret) {
3141 			btrfs_abort_transaction(trans, ret);
3142 			goto out;
3143 		}
3144 		btrfs_release_path(path);
3145 
3146 		if (is_data) {
3147 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3148 					      num_bytes);
3149 			if (ret) {
3150 				btrfs_abort_transaction(trans, ret);
3151 				goto out;
3152 			}
3153 		}
3154 
3155 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3156 		if (ret) {
3157 			btrfs_abort_transaction(trans, ret);
3158 			goto out;
3159 		}
3160 
3161 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3162 		if (ret) {
3163 			btrfs_abort_transaction(trans, ret);
3164 			goto out;
3165 		}
3166 	}
3167 	btrfs_release_path(path);
3168 
3169 out:
3170 	btrfs_free_path(path);
3171 	return ret;
3172 }
3173 
3174 /*
3175  * when we free an block, it is possible (and likely) that we free the last
3176  * delayed ref for that extent as well.  This searches the delayed ref tree for
3177  * a given extent, and if there are no other delayed refs to be processed, it
3178  * removes it from the tree.
3179  */
3180 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3181 				      u64 bytenr)
3182 {
3183 	struct btrfs_delayed_ref_head *head;
3184 	struct btrfs_delayed_ref_root *delayed_refs;
3185 	int ret = 0;
3186 
3187 	delayed_refs = &trans->transaction->delayed_refs;
3188 	spin_lock(&delayed_refs->lock);
3189 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3190 	if (!head)
3191 		goto out_delayed_unlock;
3192 
3193 	spin_lock(&head->lock);
3194 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3195 		goto out;
3196 
3197 	if (cleanup_extent_op(head) != NULL)
3198 		goto out;
3199 
3200 	/*
3201 	 * waiting for the lock here would deadlock.  If someone else has it
3202 	 * locked they are already in the process of dropping it anyway
3203 	 */
3204 	if (!mutex_trylock(&head->mutex))
3205 		goto out;
3206 
3207 	btrfs_delete_ref_head(delayed_refs, head);
3208 	head->processing = 0;
3209 
3210 	spin_unlock(&head->lock);
3211 	spin_unlock(&delayed_refs->lock);
3212 
3213 	BUG_ON(head->extent_op);
3214 	if (head->must_insert_reserved)
3215 		ret = 1;
3216 
3217 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3218 	mutex_unlock(&head->mutex);
3219 	btrfs_put_delayed_ref_head(head);
3220 	return ret;
3221 out:
3222 	spin_unlock(&head->lock);
3223 
3224 out_delayed_unlock:
3225 	spin_unlock(&delayed_refs->lock);
3226 	return 0;
3227 }
3228 
3229 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3230 			   struct btrfs_root *root,
3231 			   struct extent_buffer *buf,
3232 			   u64 parent, int last_ref)
3233 {
3234 	struct btrfs_fs_info *fs_info = root->fs_info;
3235 	struct btrfs_ref generic_ref = { 0 };
3236 	int pin = 1;
3237 	int ret;
3238 
3239 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3240 			       buf->start, buf->len, parent);
3241 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3242 			    root->root_key.objectid);
3243 
3244 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3245 		int old_ref_mod, new_ref_mod;
3246 
3247 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3248 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3249 						 &old_ref_mod, &new_ref_mod);
3250 		BUG_ON(ret); /* -ENOMEM */
3251 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3252 	}
3253 
3254 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3255 		struct btrfs_block_group *cache;
3256 
3257 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3258 			ret = check_ref_cleanup(trans, buf->start);
3259 			if (!ret)
3260 				goto out;
3261 		}
3262 
3263 		pin = 0;
3264 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3265 
3266 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3267 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3268 			btrfs_put_block_group(cache);
3269 			goto out;
3270 		}
3271 
3272 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3273 
3274 		btrfs_add_free_space(cache, buf->start, buf->len);
3275 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3276 		btrfs_put_block_group(cache);
3277 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3278 	}
3279 out:
3280 	if (pin)
3281 		add_pinned_bytes(fs_info, &generic_ref);
3282 
3283 	if (last_ref) {
3284 		/*
3285 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3286 		 * matter anymore.
3287 		 */
3288 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3289 	}
3290 }
3291 
3292 /* Can return -ENOMEM */
3293 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3294 {
3295 	struct btrfs_fs_info *fs_info = trans->fs_info;
3296 	int old_ref_mod, new_ref_mod;
3297 	int ret;
3298 
3299 	if (btrfs_is_testing(fs_info))
3300 		return 0;
3301 
3302 	/*
3303 	 * tree log blocks never actually go into the extent allocation
3304 	 * tree, just update pinning info and exit early.
3305 	 */
3306 	if ((ref->type == BTRFS_REF_METADATA &&
3307 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3308 	    (ref->type == BTRFS_REF_DATA &&
3309 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3310 		/* unlocks the pinned mutex */
3311 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3312 		old_ref_mod = new_ref_mod = 0;
3313 		ret = 0;
3314 	} else if (ref->type == BTRFS_REF_METADATA) {
3315 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3316 						 &old_ref_mod, &new_ref_mod);
3317 	} else {
3318 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3319 						 &old_ref_mod, &new_ref_mod);
3320 	}
3321 
3322 	if (!((ref->type == BTRFS_REF_METADATA &&
3323 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3324 	      (ref->type == BTRFS_REF_DATA &&
3325 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3326 		btrfs_ref_tree_mod(fs_info, ref);
3327 
3328 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3329 		add_pinned_bytes(fs_info, ref);
3330 
3331 	return ret;
3332 }
3333 
3334 enum btrfs_loop_type {
3335 	LOOP_CACHING_NOWAIT,
3336 	LOOP_CACHING_WAIT,
3337 	LOOP_ALLOC_CHUNK,
3338 	LOOP_NO_EMPTY_SIZE,
3339 };
3340 
3341 static inline void
3342 btrfs_lock_block_group(struct btrfs_block_group *cache,
3343 		       int delalloc)
3344 {
3345 	if (delalloc)
3346 		down_read(&cache->data_rwsem);
3347 }
3348 
3349 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3350 		       int delalloc)
3351 {
3352 	btrfs_get_block_group(cache);
3353 	if (delalloc)
3354 		down_read(&cache->data_rwsem);
3355 }
3356 
3357 static struct btrfs_block_group *btrfs_lock_cluster(
3358 		   struct btrfs_block_group *block_group,
3359 		   struct btrfs_free_cluster *cluster,
3360 		   int delalloc)
3361 	__acquires(&cluster->refill_lock)
3362 {
3363 	struct btrfs_block_group *used_bg = NULL;
3364 
3365 	spin_lock(&cluster->refill_lock);
3366 	while (1) {
3367 		used_bg = cluster->block_group;
3368 		if (!used_bg)
3369 			return NULL;
3370 
3371 		if (used_bg == block_group)
3372 			return used_bg;
3373 
3374 		btrfs_get_block_group(used_bg);
3375 
3376 		if (!delalloc)
3377 			return used_bg;
3378 
3379 		if (down_read_trylock(&used_bg->data_rwsem))
3380 			return used_bg;
3381 
3382 		spin_unlock(&cluster->refill_lock);
3383 
3384 		/* We should only have one-level nested. */
3385 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3386 
3387 		spin_lock(&cluster->refill_lock);
3388 		if (used_bg == cluster->block_group)
3389 			return used_bg;
3390 
3391 		up_read(&used_bg->data_rwsem);
3392 		btrfs_put_block_group(used_bg);
3393 	}
3394 }
3395 
3396 static inline void
3397 btrfs_release_block_group(struct btrfs_block_group *cache,
3398 			 int delalloc)
3399 {
3400 	if (delalloc)
3401 		up_read(&cache->data_rwsem);
3402 	btrfs_put_block_group(cache);
3403 }
3404 
3405 enum btrfs_extent_allocation_policy {
3406 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3407 };
3408 
3409 /*
3410  * Structure used internally for find_free_extent() function.  Wraps needed
3411  * parameters.
3412  */
3413 struct find_free_extent_ctl {
3414 	/* Basic allocation info */
3415 	u64 num_bytes;
3416 	u64 empty_size;
3417 	u64 flags;
3418 	int delalloc;
3419 
3420 	/* Where to start the search inside the bg */
3421 	u64 search_start;
3422 
3423 	/* For clustered allocation */
3424 	u64 empty_cluster;
3425 	struct btrfs_free_cluster *last_ptr;
3426 	bool use_cluster;
3427 
3428 	bool have_caching_bg;
3429 	bool orig_have_caching_bg;
3430 
3431 	/* RAID index, converted from flags */
3432 	int index;
3433 
3434 	/*
3435 	 * Current loop number, check find_free_extent_update_loop() for details
3436 	 */
3437 	int loop;
3438 
3439 	/*
3440 	 * Whether we're refilling a cluster, if true we need to re-search
3441 	 * current block group but don't try to refill the cluster again.
3442 	 */
3443 	bool retry_clustered;
3444 
3445 	/*
3446 	 * Whether we're updating free space cache, if true we need to re-search
3447 	 * current block group but don't try updating free space cache again.
3448 	 */
3449 	bool retry_unclustered;
3450 
3451 	/* If current block group is cached */
3452 	int cached;
3453 
3454 	/* Max contiguous hole found */
3455 	u64 max_extent_size;
3456 
3457 	/* Total free space from free space cache, not always contiguous */
3458 	u64 total_free_space;
3459 
3460 	/* Found result */
3461 	u64 found_offset;
3462 
3463 	/* Hint where to start looking for an empty space */
3464 	u64 hint_byte;
3465 
3466 	/* Allocation policy */
3467 	enum btrfs_extent_allocation_policy policy;
3468 };
3469 
3470 
3471 /*
3472  * Helper function for find_free_extent().
3473  *
3474  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3475  * Return -EAGAIN to inform caller that we need to re-search this block group
3476  * Return >0 to inform caller that we find nothing
3477  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3478  */
3479 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3480 				      struct find_free_extent_ctl *ffe_ctl,
3481 				      struct btrfs_block_group **cluster_bg_ret)
3482 {
3483 	struct btrfs_block_group *cluster_bg;
3484 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3485 	u64 aligned_cluster;
3486 	u64 offset;
3487 	int ret;
3488 
3489 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3490 	if (!cluster_bg)
3491 		goto refill_cluster;
3492 	if (cluster_bg != bg && (cluster_bg->ro ||
3493 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3494 		goto release_cluster;
3495 
3496 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3497 			ffe_ctl->num_bytes, cluster_bg->start,
3498 			&ffe_ctl->max_extent_size);
3499 	if (offset) {
3500 		/* We have a block, we're done */
3501 		spin_unlock(&last_ptr->refill_lock);
3502 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3503 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3504 		*cluster_bg_ret = cluster_bg;
3505 		ffe_ctl->found_offset = offset;
3506 		return 0;
3507 	}
3508 	WARN_ON(last_ptr->block_group != cluster_bg);
3509 
3510 release_cluster:
3511 	/*
3512 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3513 	 * lets just skip it and let the allocator find whatever block it can
3514 	 * find. If we reach this point, we will have tried the cluster
3515 	 * allocator plenty of times and not have found anything, so we are
3516 	 * likely way too fragmented for the clustering stuff to find anything.
3517 	 *
3518 	 * However, if the cluster is taken from the current block group,
3519 	 * release the cluster first, so that we stand a better chance of
3520 	 * succeeding in the unclustered allocation.
3521 	 */
3522 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3523 		spin_unlock(&last_ptr->refill_lock);
3524 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3525 		return -ENOENT;
3526 	}
3527 
3528 	/* This cluster didn't work out, free it and start over */
3529 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3530 
3531 	if (cluster_bg != bg)
3532 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3533 
3534 refill_cluster:
3535 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3536 		spin_unlock(&last_ptr->refill_lock);
3537 		return -ENOENT;
3538 	}
3539 
3540 	aligned_cluster = max_t(u64,
3541 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3542 			bg->full_stripe_len);
3543 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3544 			ffe_ctl->num_bytes, aligned_cluster);
3545 	if (ret == 0) {
3546 		/* Now pull our allocation out of this cluster */
3547 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3548 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3549 				&ffe_ctl->max_extent_size);
3550 		if (offset) {
3551 			/* We found one, proceed */
3552 			spin_unlock(&last_ptr->refill_lock);
3553 			trace_btrfs_reserve_extent_cluster(bg,
3554 					ffe_ctl->search_start,
3555 					ffe_ctl->num_bytes);
3556 			ffe_ctl->found_offset = offset;
3557 			return 0;
3558 		}
3559 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3560 		   !ffe_ctl->retry_clustered) {
3561 		spin_unlock(&last_ptr->refill_lock);
3562 
3563 		ffe_ctl->retry_clustered = true;
3564 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3565 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3566 		return -EAGAIN;
3567 	}
3568 	/*
3569 	 * At this point we either didn't find a cluster or we weren't able to
3570 	 * allocate a block from our cluster.  Free the cluster we've been
3571 	 * trying to use, and go to the next block group.
3572 	 */
3573 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3574 	spin_unlock(&last_ptr->refill_lock);
3575 	return 1;
3576 }
3577 
3578 /*
3579  * Return >0 to inform caller that we find nothing
3580  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3581  * Return -EAGAIN to inform caller that we need to re-search this block group
3582  */
3583 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3584 					struct find_free_extent_ctl *ffe_ctl)
3585 {
3586 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3587 	u64 offset;
3588 
3589 	/*
3590 	 * We are doing an unclustered allocation, set the fragmented flag so
3591 	 * we don't bother trying to setup a cluster again until we get more
3592 	 * space.
3593 	 */
3594 	if (unlikely(last_ptr)) {
3595 		spin_lock(&last_ptr->lock);
3596 		last_ptr->fragmented = 1;
3597 		spin_unlock(&last_ptr->lock);
3598 	}
3599 	if (ffe_ctl->cached) {
3600 		struct btrfs_free_space_ctl *free_space_ctl;
3601 
3602 		free_space_ctl = bg->free_space_ctl;
3603 		spin_lock(&free_space_ctl->tree_lock);
3604 		if (free_space_ctl->free_space <
3605 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3606 		    ffe_ctl->empty_size) {
3607 			ffe_ctl->total_free_space = max_t(u64,
3608 					ffe_ctl->total_free_space,
3609 					free_space_ctl->free_space);
3610 			spin_unlock(&free_space_ctl->tree_lock);
3611 			return 1;
3612 		}
3613 		spin_unlock(&free_space_ctl->tree_lock);
3614 	}
3615 
3616 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3617 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3618 			&ffe_ctl->max_extent_size);
3619 
3620 	/*
3621 	 * If we didn't find a chunk, and we haven't failed on this block group
3622 	 * before, and this block group is in the middle of caching and we are
3623 	 * ok with waiting, then go ahead and wait for progress to be made, and
3624 	 * set @retry_unclustered to true.
3625 	 *
3626 	 * If @retry_unclustered is true then we've already waited on this
3627 	 * block group once and should move on to the next block group.
3628 	 */
3629 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3630 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3631 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3632 						      ffe_ctl->empty_size);
3633 		ffe_ctl->retry_unclustered = true;
3634 		return -EAGAIN;
3635 	} else if (!offset) {
3636 		return 1;
3637 	}
3638 	ffe_ctl->found_offset = offset;
3639 	return 0;
3640 }
3641 
3642 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3643 				   struct find_free_extent_ctl *ffe_ctl,
3644 				   struct btrfs_block_group **bg_ret)
3645 {
3646 	int ret;
3647 
3648 	/* We want to try and use the cluster allocator, so lets look there */
3649 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3650 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3651 		if (ret >= 0 || ret == -EAGAIN)
3652 			return ret;
3653 		/* ret == -ENOENT case falls through */
3654 	}
3655 
3656 	return find_free_extent_unclustered(block_group, ffe_ctl);
3657 }
3658 
3659 static int do_allocation(struct btrfs_block_group *block_group,
3660 			 struct find_free_extent_ctl *ffe_ctl,
3661 			 struct btrfs_block_group **bg_ret)
3662 {
3663 	switch (ffe_ctl->policy) {
3664 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3665 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3666 	default:
3667 		BUG();
3668 	}
3669 }
3670 
3671 static void release_block_group(struct btrfs_block_group *block_group,
3672 				struct find_free_extent_ctl *ffe_ctl,
3673 				int delalloc)
3674 {
3675 	switch (ffe_ctl->policy) {
3676 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3677 		ffe_ctl->retry_clustered = false;
3678 		ffe_ctl->retry_unclustered = false;
3679 		break;
3680 	default:
3681 		BUG();
3682 	}
3683 
3684 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3685 	       ffe_ctl->index);
3686 	btrfs_release_block_group(block_group, delalloc);
3687 }
3688 
3689 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3690 				   struct btrfs_key *ins)
3691 {
3692 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3693 
3694 	if (!ffe_ctl->use_cluster && last_ptr) {
3695 		spin_lock(&last_ptr->lock);
3696 		last_ptr->window_start = ins->objectid;
3697 		spin_unlock(&last_ptr->lock);
3698 	}
3699 }
3700 
3701 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3702 			 struct btrfs_key *ins)
3703 {
3704 	switch (ffe_ctl->policy) {
3705 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3706 		found_extent_clustered(ffe_ctl, ins);
3707 		break;
3708 	default:
3709 		BUG();
3710 	}
3711 }
3712 
3713 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3714 {
3715 	switch (ffe_ctl->policy) {
3716 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3717 		/*
3718 		 * If we can't allocate a new chunk we've already looped through
3719 		 * at least once, move on to the NO_EMPTY_SIZE case.
3720 		 */
3721 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3722 		return 0;
3723 	default:
3724 		BUG();
3725 	}
3726 }
3727 
3728 /*
3729  * Return >0 means caller needs to re-search for free extent
3730  * Return 0 means we have the needed free extent.
3731  * Return <0 means we failed to locate any free extent.
3732  */
3733 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3734 					struct btrfs_key *ins,
3735 					struct find_free_extent_ctl *ffe_ctl,
3736 					bool full_search)
3737 {
3738 	struct btrfs_root *root = fs_info->extent_root;
3739 	int ret;
3740 
3741 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3742 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3743 		ffe_ctl->orig_have_caching_bg = true;
3744 
3745 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3746 	    ffe_ctl->have_caching_bg)
3747 		return 1;
3748 
3749 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3750 		return 1;
3751 
3752 	if (ins->objectid) {
3753 		found_extent(ffe_ctl, ins);
3754 		return 0;
3755 	}
3756 
3757 	/*
3758 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3759 	 *			caching kthreads as we move along
3760 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3761 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3762 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3763 	 *		       again
3764 	 */
3765 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3766 		ffe_ctl->index = 0;
3767 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3768 			/*
3769 			 * We want to skip the LOOP_CACHING_WAIT step if we
3770 			 * don't have any uncached bgs and we've already done a
3771 			 * full search through.
3772 			 */
3773 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3774 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3775 			else
3776 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3777 		} else {
3778 			ffe_ctl->loop++;
3779 		}
3780 
3781 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3782 			struct btrfs_trans_handle *trans;
3783 			int exist = 0;
3784 
3785 			trans = current->journal_info;
3786 			if (trans)
3787 				exist = 1;
3788 			else
3789 				trans = btrfs_join_transaction(root);
3790 
3791 			if (IS_ERR(trans)) {
3792 				ret = PTR_ERR(trans);
3793 				return ret;
3794 			}
3795 
3796 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3797 						CHUNK_ALLOC_FORCE);
3798 
3799 			/* Do not bail out on ENOSPC since we can do more. */
3800 			if (ret == -ENOSPC)
3801 				ret = chunk_allocation_failed(ffe_ctl);
3802 			else if (ret < 0)
3803 				btrfs_abort_transaction(trans, ret);
3804 			else
3805 				ret = 0;
3806 			if (!exist)
3807 				btrfs_end_transaction(trans);
3808 			if (ret)
3809 				return ret;
3810 		}
3811 
3812 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3813 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3814 				return -ENOSPC;
3815 
3816 			/*
3817 			 * Don't loop again if we already have no empty_size and
3818 			 * no empty_cluster.
3819 			 */
3820 			if (ffe_ctl->empty_size == 0 &&
3821 			    ffe_ctl->empty_cluster == 0)
3822 				return -ENOSPC;
3823 			ffe_ctl->empty_size = 0;
3824 			ffe_ctl->empty_cluster = 0;
3825 		}
3826 		return 1;
3827 	}
3828 	return -ENOSPC;
3829 }
3830 
3831 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3832 					struct find_free_extent_ctl *ffe_ctl,
3833 					struct btrfs_space_info *space_info,
3834 					struct btrfs_key *ins)
3835 {
3836 	/*
3837 	 * If our free space is heavily fragmented we may not be able to make
3838 	 * big contiguous allocations, so instead of doing the expensive search
3839 	 * for free space, simply return ENOSPC with our max_extent_size so we
3840 	 * can go ahead and search for a more manageable chunk.
3841 	 *
3842 	 * If our max_extent_size is large enough for our allocation simply
3843 	 * disable clustering since we will likely not be able to find enough
3844 	 * space to create a cluster and induce latency trying.
3845 	 */
3846 	if (space_info->max_extent_size) {
3847 		spin_lock(&space_info->lock);
3848 		if (space_info->max_extent_size &&
3849 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
3850 			ins->offset = space_info->max_extent_size;
3851 			spin_unlock(&space_info->lock);
3852 			return -ENOSPC;
3853 		} else if (space_info->max_extent_size) {
3854 			ffe_ctl->use_cluster = false;
3855 		}
3856 		spin_unlock(&space_info->lock);
3857 	}
3858 
3859 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3860 					       &ffe_ctl->empty_cluster);
3861 	if (ffe_ctl->last_ptr) {
3862 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3863 
3864 		spin_lock(&last_ptr->lock);
3865 		if (last_ptr->block_group)
3866 			ffe_ctl->hint_byte = last_ptr->window_start;
3867 		if (last_ptr->fragmented) {
3868 			/*
3869 			 * We still set window_start so we can keep track of the
3870 			 * last place we found an allocation to try and save
3871 			 * some time.
3872 			 */
3873 			ffe_ctl->hint_byte = last_ptr->window_start;
3874 			ffe_ctl->use_cluster = false;
3875 		}
3876 		spin_unlock(&last_ptr->lock);
3877 	}
3878 
3879 	return 0;
3880 }
3881 
3882 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3883 			      struct find_free_extent_ctl *ffe_ctl,
3884 			      struct btrfs_space_info *space_info,
3885 			      struct btrfs_key *ins)
3886 {
3887 	switch (ffe_ctl->policy) {
3888 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3889 		return prepare_allocation_clustered(fs_info, ffe_ctl,
3890 						    space_info, ins);
3891 	default:
3892 		BUG();
3893 	}
3894 }
3895 
3896 /*
3897  * walks the btree of allocated extents and find a hole of a given size.
3898  * The key ins is changed to record the hole:
3899  * ins->objectid == start position
3900  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3901  * ins->offset == the size of the hole.
3902  * Any available blocks before search_start are skipped.
3903  *
3904  * If there is no suitable free space, we will record the max size of
3905  * the free space extent currently.
3906  *
3907  * The overall logic and call chain:
3908  *
3909  * find_free_extent()
3910  * |- Iterate through all block groups
3911  * |  |- Get a valid block group
3912  * |  |- Try to do clustered allocation in that block group
3913  * |  |- Try to do unclustered allocation in that block group
3914  * |  |- Check if the result is valid
3915  * |  |  |- If valid, then exit
3916  * |  |- Jump to next block group
3917  * |
3918  * |- Push harder to find free extents
3919  *    |- If not found, re-iterate all block groups
3920  */
3921 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3922 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3923 				u64 hint_byte_orig, struct btrfs_key *ins,
3924 				u64 flags, int delalloc)
3925 {
3926 	int ret = 0;
3927 	int cache_block_group_error = 0;
3928 	struct btrfs_block_group *block_group = NULL;
3929 	struct find_free_extent_ctl ffe_ctl = {0};
3930 	struct btrfs_space_info *space_info;
3931 	bool full_search = false;
3932 
3933 	WARN_ON(num_bytes < fs_info->sectorsize);
3934 
3935 	ffe_ctl.num_bytes = num_bytes;
3936 	ffe_ctl.empty_size = empty_size;
3937 	ffe_ctl.flags = flags;
3938 	ffe_ctl.search_start = 0;
3939 	ffe_ctl.delalloc = delalloc;
3940 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3941 	ffe_ctl.have_caching_bg = false;
3942 	ffe_ctl.orig_have_caching_bg = false;
3943 	ffe_ctl.found_offset = 0;
3944 	ffe_ctl.hint_byte = hint_byte_orig;
3945 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
3946 
3947 	/* For clustered allocation */
3948 	ffe_ctl.retry_clustered = false;
3949 	ffe_ctl.retry_unclustered = false;
3950 	ffe_ctl.last_ptr = NULL;
3951 	ffe_ctl.use_cluster = true;
3952 
3953 	ins->type = BTRFS_EXTENT_ITEM_KEY;
3954 	ins->objectid = 0;
3955 	ins->offset = 0;
3956 
3957 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3958 
3959 	space_info = btrfs_find_space_info(fs_info, flags);
3960 	if (!space_info) {
3961 		btrfs_err(fs_info, "No space info for %llu", flags);
3962 		return -ENOSPC;
3963 	}
3964 
3965 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
3966 	if (ret < 0)
3967 		return ret;
3968 
3969 	ffe_ctl.search_start = max(ffe_ctl.search_start,
3970 				   first_logical_byte(fs_info, 0));
3971 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
3972 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
3973 		block_group = btrfs_lookup_block_group(fs_info,
3974 						       ffe_ctl.search_start);
3975 		/*
3976 		 * we don't want to use the block group if it doesn't match our
3977 		 * allocation bits, or if its not cached.
3978 		 *
3979 		 * However if we are re-searching with an ideal block group
3980 		 * picked out then we don't care that the block group is cached.
3981 		 */
3982 		if (block_group && block_group_bits(block_group, flags) &&
3983 		    block_group->cached != BTRFS_CACHE_NO) {
3984 			down_read(&space_info->groups_sem);
3985 			if (list_empty(&block_group->list) ||
3986 			    block_group->ro) {
3987 				/*
3988 				 * someone is removing this block group,
3989 				 * we can't jump into the have_block_group
3990 				 * target because our list pointers are not
3991 				 * valid
3992 				 */
3993 				btrfs_put_block_group(block_group);
3994 				up_read(&space_info->groups_sem);
3995 			} else {
3996 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3997 						block_group->flags);
3998 				btrfs_lock_block_group(block_group, delalloc);
3999 				goto have_block_group;
4000 			}
4001 		} else if (block_group) {
4002 			btrfs_put_block_group(block_group);
4003 		}
4004 	}
4005 search:
4006 	ffe_ctl.have_caching_bg = false;
4007 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4008 	    ffe_ctl.index == 0)
4009 		full_search = true;
4010 	down_read(&space_info->groups_sem);
4011 	list_for_each_entry(block_group,
4012 			    &space_info->block_groups[ffe_ctl.index], list) {
4013 		struct btrfs_block_group *bg_ret;
4014 
4015 		/* If the block group is read-only, we can skip it entirely. */
4016 		if (unlikely(block_group->ro))
4017 			continue;
4018 
4019 		btrfs_grab_block_group(block_group, delalloc);
4020 		ffe_ctl.search_start = block_group->start;
4021 
4022 		/*
4023 		 * this can happen if we end up cycling through all the
4024 		 * raid types, but we want to make sure we only allocate
4025 		 * for the proper type.
4026 		 */
4027 		if (!block_group_bits(block_group, flags)) {
4028 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4029 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4030 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4031 				BTRFS_BLOCK_GROUP_RAID10;
4032 
4033 			/*
4034 			 * if they asked for extra copies and this block group
4035 			 * doesn't provide them, bail.  This does allow us to
4036 			 * fill raid0 from raid1.
4037 			 */
4038 			if ((flags & extra) && !(block_group->flags & extra))
4039 				goto loop;
4040 
4041 			/*
4042 			 * This block group has different flags than we want.
4043 			 * It's possible that we have MIXED_GROUP flag but no
4044 			 * block group is mixed.  Just skip such block group.
4045 			 */
4046 			btrfs_release_block_group(block_group, delalloc);
4047 			continue;
4048 		}
4049 
4050 have_block_group:
4051 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4052 		if (unlikely(!ffe_ctl.cached)) {
4053 			ffe_ctl.have_caching_bg = true;
4054 			ret = btrfs_cache_block_group(block_group, 0);
4055 
4056 			/*
4057 			 * If we get ENOMEM here or something else we want to
4058 			 * try other block groups, because it may not be fatal.
4059 			 * However if we can't find anything else we need to
4060 			 * save our return here so that we return the actual
4061 			 * error that caused problems, not ENOSPC.
4062 			 */
4063 			if (ret < 0) {
4064 				if (!cache_block_group_error)
4065 					cache_block_group_error = ret;
4066 				ret = 0;
4067 				goto loop;
4068 			}
4069 			ret = 0;
4070 		}
4071 
4072 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4073 			goto loop;
4074 
4075 		bg_ret = NULL;
4076 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4077 		if (ret == 0) {
4078 			if (bg_ret && bg_ret != block_group) {
4079 				btrfs_release_block_group(block_group, delalloc);
4080 				block_group = bg_ret;
4081 			}
4082 		} else if (ret == -EAGAIN) {
4083 			goto have_block_group;
4084 		} else if (ret > 0) {
4085 			goto loop;
4086 		}
4087 
4088 		/* Checks */
4089 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4090 					     fs_info->stripesize);
4091 
4092 		/* move on to the next group */
4093 		if (ffe_ctl.search_start + num_bytes >
4094 		    block_group->start + block_group->length) {
4095 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4096 					     num_bytes);
4097 			goto loop;
4098 		}
4099 
4100 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4101 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4102 				ffe_ctl.search_start - ffe_ctl.found_offset);
4103 
4104 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4105 				num_bytes, delalloc);
4106 		if (ret == -EAGAIN) {
4107 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4108 					     num_bytes);
4109 			goto loop;
4110 		}
4111 		btrfs_inc_block_group_reservations(block_group);
4112 
4113 		/* we are all good, lets return */
4114 		ins->objectid = ffe_ctl.search_start;
4115 		ins->offset = num_bytes;
4116 
4117 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4118 					   num_bytes);
4119 		btrfs_release_block_group(block_group, delalloc);
4120 		break;
4121 loop:
4122 		release_block_group(block_group, &ffe_ctl, delalloc);
4123 		cond_resched();
4124 	}
4125 	up_read(&space_info->groups_sem);
4126 
4127 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4128 	if (ret > 0)
4129 		goto search;
4130 
4131 	if (ret == -ENOSPC && !cache_block_group_error) {
4132 		/*
4133 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4134 		 * any contiguous hole.
4135 		 */
4136 		if (!ffe_ctl.max_extent_size)
4137 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4138 		spin_lock(&space_info->lock);
4139 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4140 		spin_unlock(&space_info->lock);
4141 		ins->offset = ffe_ctl.max_extent_size;
4142 	} else if (ret == -ENOSPC) {
4143 		ret = cache_block_group_error;
4144 	}
4145 	return ret;
4146 }
4147 
4148 /*
4149  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4150  *			  hole that is at least as big as @num_bytes.
4151  *
4152  * @root           -	The root that will contain this extent
4153  *
4154  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4155  *			is used for accounting purposes. This value differs
4156  *			from @num_bytes only in the case of compressed extents.
4157  *
4158  * @num_bytes      -	Number of bytes to allocate on-disk.
4159  *
4160  * @min_alloc_size -	Indicates the minimum amount of space that the
4161  *			allocator should try to satisfy. In some cases
4162  *			@num_bytes may be larger than what is required and if
4163  *			the filesystem is fragmented then allocation fails.
4164  *			However, the presence of @min_alloc_size gives a
4165  *			chance to try and satisfy the smaller allocation.
4166  *
4167  * @empty_size     -	A hint that you plan on doing more COW. This is the
4168  *			size in bytes the allocator should try to find free
4169  *			next to the block it returns.  This is just a hint and
4170  *			may be ignored by the allocator.
4171  *
4172  * @hint_byte      -	Hint to the allocator to start searching above the byte
4173  *			address passed. It might be ignored.
4174  *
4175  * @ins            -	This key is modified to record the found hole. It will
4176  *			have the following values:
4177  *			ins->objectid == start position
4178  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4179  *			ins->offset == the size of the hole.
4180  *
4181  * @is_data        -	Boolean flag indicating whether an extent is
4182  *			allocated for data (true) or metadata (false)
4183  *
4184  * @delalloc       -	Boolean flag indicating whether this allocation is for
4185  *			delalloc or not. If 'true' data_rwsem of block groups
4186  *			is going to be acquired.
4187  *
4188  *
4189  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4190  * case -ENOSPC is returned then @ins->offset will contain the size of the
4191  * largest available hole the allocator managed to find.
4192  */
4193 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4194 			 u64 num_bytes, u64 min_alloc_size,
4195 			 u64 empty_size, u64 hint_byte,
4196 			 struct btrfs_key *ins, int is_data, int delalloc)
4197 {
4198 	struct btrfs_fs_info *fs_info = root->fs_info;
4199 	bool final_tried = num_bytes == min_alloc_size;
4200 	u64 flags;
4201 	int ret;
4202 
4203 	flags = get_alloc_profile_by_root(root, is_data);
4204 again:
4205 	WARN_ON(num_bytes < fs_info->sectorsize);
4206 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4207 			       hint_byte, ins, flags, delalloc);
4208 	if (!ret && !is_data) {
4209 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4210 	} else if (ret == -ENOSPC) {
4211 		if (!final_tried && ins->offset) {
4212 			num_bytes = min(num_bytes >> 1, ins->offset);
4213 			num_bytes = round_down(num_bytes,
4214 					       fs_info->sectorsize);
4215 			num_bytes = max(num_bytes, min_alloc_size);
4216 			ram_bytes = num_bytes;
4217 			if (num_bytes == min_alloc_size)
4218 				final_tried = true;
4219 			goto again;
4220 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4221 			struct btrfs_space_info *sinfo;
4222 
4223 			sinfo = btrfs_find_space_info(fs_info, flags);
4224 			btrfs_err(fs_info,
4225 				  "allocation failed flags %llu, wanted %llu",
4226 				  flags, num_bytes);
4227 			if (sinfo)
4228 				btrfs_dump_space_info(fs_info, sinfo,
4229 						      num_bytes, 1);
4230 		}
4231 	}
4232 
4233 	return ret;
4234 }
4235 
4236 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4237 			       u64 start, u64 len, int delalloc)
4238 {
4239 	struct btrfs_block_group *cache;
4240 
4241 	cache = btrfs_lookup_block_group(fs_info, start);
4242 	if (!cache) {
4243 		btrfs_err(fs_info, "Unable to find block group for %llu",
4244 			  start);
4245 		return -ENOSPC;
4246 	}
4247 
4248 	btrfs_add_free_space(cache, start, len);
4249 	btrfs_free_reserved_bytes(cache, len, delalloc);
4250 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4251 
4252 	btrfs_put_block_group(cache);
4253 	return 0;
4254 }
4255 
4256 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4257 			      u64 len)
4258 {
4259 	struct btrfs_block_group *cache;
4260 	int ret = 0;
4261 
4262 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4263 	if (!cache) {
4264 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4265 			  start);
4266 		return -ENOSPC;
4267 	}
4268 
4269 	ret = pin_down_extent(trans, cache, start, len, 1);
4270 	btrfs_put_block_group(cache);
4271 	return ret;
4272 }
4273 
4274 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4275 				      u64 parent, u64 root_objectid,
4276 				      u64 flags, u64 owner, u64 offset,
4277 				      struct btrfs_key *ins, int ref_mod)
4278 {
4279 	struct btrfs_fs_info *fs_info = trans->fs_info;
4280 	int ret;
4281 	struct btrfs_extent_item *extent_item;
4282 	struct btrfs_extent_inline_ref *iref;
4283 	struct btrfs_path *path;
4284 	struct extent_buffer *leaf;
4285 	int type;
4286 	u32 size;
4287 
4288 	if (parent > 0)
4289 		type = BTRFS_SHARED_DATA_REF_KEY;
4290 	else
4291 		type = BTRFS_EXTENT_DATA_REF_KEY;
4292 
4293 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4294 
4295 	path = btrfs_alloc_path();
4296 	if (!path)
4297 		return -ENOMEM;
4298 
4299 	path->leave_spinning = 1;
4300 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4301 				      ins, size);
4302 	if (ret) {
4303 		btrfs_free_path(path);
4304 		return ret;
4305 	}
4306 
4307 	leaf = path->nodes[0];
4308 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4309 				     struct btrfs_extent_item);
4310 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4311 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4312 	btrfs_set_extent_flags(leaf, extent_item,
4313 			       flags | BTRFS_EXTENT_FLAG_DATA);
4314 
4315 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4316 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4317 	if (parent > 0) {
4318 		struct btrfs_shared_data_ref *ref;
4319 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4320 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4321 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4322 	} else {
4323 		struct btrfs_extent_data_ref *ref;
4324 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4325 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4326 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4327 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4328 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4329 	}
4330 
4331 	btrfs_mark_buffer_dirty(path->nodes[0]);
4332 	btrfs_free_path(path);
4333 
4334 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4335 	if (ret)
4336 		return ret;
4337 
4338 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4339 	if (ret) { /* -ENOENT, logic error */
4340 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4341 			ins->objectid, ins->offset);
4342 		BUG();
4343 	}
4344 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4345 	return ret;
4346 }
4347 
4348 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4349 				     struct btrfs_delayed_ref_node *node,
4350 				     struct btrfs_delayed_extent_op *extent_op)
4351 {
4352 	struct btrfs_fs_info *fs_info = trans->fs_info;
4353 	int ret;
4354 	struct btrfs_extent_item *extent_item;
4355 	struct btrfs_key extent_key;
4356 	struct btrfs_tree_block_info *block_info;
4357 	struct btrfs_extent_inline_ref *iref;
4358 	struct btrfs_path *path;
4359 	struct extent_buffer *leaf;
4360 	struct btrfs_delayed_tree_ref *ref;
4361 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4362 	u64 num_bytes;
4363 	u64 flags = extent_op->flags_to_set;
4364 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4365 
4366 	ref = btrfs_delayed_node_to_tree_ref(node);
4367 
4368 	extent_key.objectid = node->bytenr;
4369 	if (skinny_metadata) {
4370 		extent_key.offset = ref->level;
4371 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4372 		num_bytes = fs_info->nodesize;
4373 	} else {
4374 		extent_key.offset = node->num_bytes;
4375 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4376 		size += sizeof(*block_info);
4377 		num_bytes = node->num_bytes;
4378 	}
4379 
4380 	path = btrfs_alloc_path();
4381 	if (!path)
4382 		return -ENOMEM;
4383 
4384 	path->leave_spinning = 1;
4385 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4386 				      &extent_key, size);
4387 	if (ret) {
4388 		btrfs_free_path(path);
4389 		return ret;
4390 	}
4391 
4392 	leaf = path->nodes[0];
4393 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4394 				     struct btrfs_extent_item);
4395 	btrfs_set_extent_refs(leaf, extent_item, 1);
4396 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4397 	btrfs_set_extent_flags(leaf, extent_item,
4398 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4399 
4400 	if (skinny_metadata) {
4401 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4402 	} else {
4403 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4404 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4405 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4406 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4407 	}
4408 
4409 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4410 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4411 		btrfs_set_extent_inline_ref_type(leaf, iref,
4412 						 BTRFS_SHARED_BLOCK_REF_KEY);
4413 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4414 	} else {
4415 		btrfs_set_extent_inline_ref_type(leaf, iref,
4416 						 BTRFS_TREE_BLOCK_REF_KEY);
4417 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4418 	}
4419 
4420 	btrfs_mark_buffer_dirty(leaf);
4421 	btrfs_free_path(path);
4422 
4423 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4424 					  num_bytes);
4425 	if (ret)
4426 		return ret;
4427 
4428 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4429 				       fs_info->nodesize, 1);
4430 	if (ret) { /* -ENOENT, logic error */
4431 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4432 			extent_key.objectid, extent_key.offset);
4433 		BUG();
4434 	}
4435 
4436 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4437 					  fs_info->nodesize);
4438 	return ret;
4439 }
4440 
4441 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4442 				     struct btrfs_root *root, u64 owner,
4443 				     u64 offset, u64 ram_bytes,
4444 				     struct btrfs_key *ins)
4445 {
4446 	struct btrfs_ref generic_ref = { 0 };
4447 	int ret;
4448 
4449 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4450 
4451 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4452 			       ins->objectid, ins->offset, 0);
4453 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4454 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4455 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4456 					 ram_bytes, NULL, NULL);
4457 	return ret;
4458 }
4459 
4460 /*
4461  * this is used by the tree logging recovery code.  It records that
4462  * an extent has been allocated and makes sure to clear the free
4463  * space cache bits as well
4464  */
4465 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4466 				   u64 root_objectid, u64 owner, u64 offset,
4467 				   struct btrfs_key *ins)
4468 {
4469 	struct btrfs_fs_info *fs_info = trans->fs_info;
4470 	int ret;
4471 	struct btrfs_block_group *block_group;
4472 	struct btrfs_space_info *space_info;
4473 
4474 	/*
4475 	 * Mixed block groups will exclude before processing the log so we only
4476 	 * need to do the exclude dance if this fs isn't mixed.
4477 	 */
4478 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4479 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4480 					      ins->offset);
4481 		if (ret)
4482 			return ret;
4483 	}
4484 
4485 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4486 	if (!block_group)
4487 		return -EINVAL;
4488 
4489 	space_info = block_group->space_info;
4490 	spin_lock(&space_info->lock);
4491 	spin_lock(&block_group->lock);
4492 	space_info->bytes_reserved += ins->offset;
4493 	block_group->reserved += ins->offset;
4494 	spin_unlock(&block_group->lock);
4495 	spin_unlock(&space_info->lock);
4496 
4497 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4498 					 offset, ins, 1);
4499 	if (ret)
4500 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4501 	btrfs_put_block_group(block_group);
4502 	return ret;
4503 }
4504 
4505 static struct extent_buffer *
4506 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4507 		      u64 bytenr, int level, u64 owner)
4508 {
4509 	struct btrfs_fs_info *fs_info = root->fs_info;
4510 	struct extent_buffer *buf;
4511 
4512 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4513 	if (IS_ERR(buf))
4514 		return buf;
4515 
4516 	/*
4517 	 * Extra safety check in case the extent tree is corrupted and extent
4518 	 * allocator chooses to use a tree block which is already used and
4519 	 * locked.
4520 	 */
4521 	if (buf->lock_owner == current->pid) {
4522 		btrfs_err_rl(fs_info,
4523 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4524 			buf->start, btrfs_header_owner(buf), current->pid);
4525 		free_extent_buffer(buf);
4526 		return ERR_PTR(-EUCLEAN);
4527 	}
4528 
4529 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4530 	btrfs_tree_lock(buf);
4531 	btrfs_clean_tree_block(buf);
4532 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4533 
4534 	btrfs_set_lock_blocking_write(buf);
4535 	set_extent_buffer_uptodate(buf);
4536 
4537 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4538 	btrfs_set_header_level(buf, level);
4539 	btrfs_set_header_bytenr(buf, buf->start);
4540 	btrfs_set_header_generation(buf, trans->transid);
4541 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4542 	btrfs_set_header_owner(buf, owner);
4543 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4544 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4545 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4546 		buf->log_index = root->log_transid % 2;
4547 		/*
4548 		 * we allow two log transactions at a time, use different
4549 		 * EXTENT bit to differentiate dirty pages.
4550 		 */
4551 		if (buf->log_index == 0)
4552 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4553 					buf->start + buf->len - 1, GFP_NOFS);
4554 		else
4555 			set_extent_new(&root->dirty_log_pages, buf->start,
4556 					buf->start + buf->len - 1);
4557 	} else {
4558 		buf->log_index = -1;
4559 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4560 			 buf->start + buf->len - 1, GFP_NOFS);
4561 	}
4562 	trans->dirty = true;
4563 	/* this returns a buffer locked for blocking */
4564 	return buf;
4565 }
4566 
4567 /*
4568  * finds a free extent and does all the dirty work required for allocation
4569  * returns the tree buffer or an ERR_PTR on error.
4570  */
4571 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4572 					     struct btrfs_root *root,
4573 					     u64 parent, u64 root_objectid,
4574 					     const struct btrfs_disk_key *key,
4575 					     int level, u64 hint,
4576 					     u64 empty_size)
4577 {
4578 	struct btrfs_fs_info *fs_info = root->fs_info;
4579 	struct btrfs_key ins;
4580 	struct btrfs_block_rsv *block_rsv;
4581 	struct extent_buffer *buf;
4582 	struct btrfs_delayed_extent_op *extent_op;
4583 	struct btrfs_ref generic_ref = { 0 };
4584 	u64 flags = 0;
4585 	int ret;
4586 	u32 blocksize = fs_info->nodesize;
4587 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4588 
4589 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4590 	if (btrfs_is_testing(fs_info)) {
4591 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4592 					    level, root_objectid);
4593 		if (!IS_ERR(buf))
4594 			root->alloc_bytenr += blocksize;
4595 		return buf;
4596 	}
4597 #endif
4598 
4599 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4600 	if (IS_ERR(block_rsv))
4601 		return ERR_CAST(block_rsv);
4602 
4603 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4604 				   empty_size, hint, &ins, 0, 0);
4605 	if (ret)
4606 		goto out_unuse;
4607 
4608 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4609 				    root_objectid);
4610 	if (IS_ERR(buf)) {
4611 		ret = PTR_ERR(buf);
4612 		goto out_free_reserved;
4613 	}
4614 
4615 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4616 		if (parent == 0)
4617 			parent = ins.objectid;
4618 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4619 	} else
4620 		BUG_ON(parent > 0);
4621 
4622 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4623 		extent_op = btrfs_alloc_delayed_extent_op();
4624 		if (!extent_op) {
4625 			ret = -ENOMEM;
4626 			goto out_free_buf;
4627 		}
4628 		if (key)
4629 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4630 		else
4631 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4632 		extent_op->flags_to_set = flags;
4633 		extent_op->update_key = skinny_metadata ? false : true;
4634 		extent_op->update_flags = true;
4635 		extent_op->is_data = false;
4636 		extent_op->level = level;
4637 
4638 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4639 				       ins.objectid, ins.offset, parent);
4640 		generic_ref.real_root = root->root_key.objectid;
4641 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4642 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4643 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4644 						 extent_op, NULL, NULL);
4645 		if (ret)
4646 			goto out_free_delayed;
4647 	}
4648 	return buf;
4649 
4650 out_free_delayed:
4651 	btrfs_free_delayed_extent_op(extent_op);
4652 out_free_buf:
4653 	free_extent_buffer(buf);
4654 out_free_reserved:
4655 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4656 out_unuse:
4657 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4658 	return ERR_PTR(ret);
4659 }
4660 
4661 struct walk_control {
4662 	u64 refs[BTRFS_MAX_LEVEL];
4663 	u64 flags[BTRFS_MAX_LEVEL];
4664 	struct btrfs_key update_progress;
4665 	struct btrfs_key drop_progress;
4666 	int drop_level;
4667 	int stage;
4668 	int level;
4669 	int shared_level;
4670 	int update_ref;
4671 	int keep_locks;
4672 	int reada_slot;
4673 	int reada_count;
4674 	int restarted;
4675 };
4676 
4677 #define DROP_REFERENCE	1
4678 #define UPDATE_BACKREF	2
4679 
4680 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4681 				     struct btrfs_root *root,
4682 				     struct walk_control *wc,
4683 				     struct btrfs_path *path)
4684 {
4685 	struct btrfs_fs_info *fs_info = root->fs_info;
4686 	u64 bytenr;
4687 	u64 generation;
4688 	u64 refs;
4689 	u64 flags;
4690 	u32 nritems;
4691 	struct btrfs_key key;
4692 	struct extent_buffer *eb;
4693 	int ret;
4694 	int slot;
4695 	int nread = 0;
4696 
4697 	if (path->slots[wc->level] < wc->reada_slot) {
4698 		wc->reada_count = wc->reada_count * 2 / 3;
4699 		wc->reada_count = max(wc->reada_count, 2);
4700 	} else {
4701 		wc->reada_count = wc->reada_count * 3 / 2;
4702 		wc->reada_count = min_t(int, wc->reada_count,
4703 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4704 	}
4705 
4706 	eb = path->nodes[wc->level];
4707 	nritems = btrfs_header_nritems(eb);
4708 
4709 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4710 		if (nread >= wc->reada_count)
4711 			break;
4712 
4713 		cond_resched();
4714 		bytenr = btrfs_node_blockptr(eb, slot);
4715 		generation = btrfs_node_ptr_generation(eb, slot);
4716 
4717 		if (slot == path->slots[wc->level])
4718 			goto reada;
4719 
4720 		if (wc->stage == UPDATE_BACKREF &&
4721 		    generation <= root->root_key.offset)
4722 			continue;
4723 
4724 		/* We don't lock the tree block, it's OK to be racy here */
4725 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4726 					       wc->level - 1, 1, &refs,
4727 					       &flags);
4728 		/* We don't care about errors in readahead. */
4729 		if (ret < 0)
4730 			continue;
4731 		BUG_ON(refs == 0);
4732 
4733 		if (wc->stage == DROP_REFERENCE) {
4734 			if (refs == 1)
4735 				goto reada;
4736 
4737 			if (wc->level == 1 &&
4738 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4739 				continue;
4740 			if (!wc->update_ref ||
4741 			    generation <= root->root_key.offset)
4742 				continue;
4743 			btrfs_node_key_to_cpu(eb, &key, slot);
4744 			ret = btrfs_comp_cpu_keys(&key,
4745 						  &wc->update_progress);
4746 			if (ret < 0)
4747 				continue;
4748 		} else {
4749 			if (wc->level == 1 &&
4750 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4751 				continue;
4752 		}
4753 reada:
4754 		readahead_tree_block(fs_info, bytenr);
4755 		nread++;
4756 	}
4757 	wc->reada_slot = slot;
4758 }
4759 
4760 /*
4761  * helper to process tree block while walking down the tree.
4762  *
4763  * when wc->stage == UPDATE_BACKREF, this function updates
4764  * back refs for pointers in the block.
4765  *
4766  * NOTE: return value 1 means we should stop walking down.
4767  */
4768 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4769 				   struct btrfs_root *root,
4770 				   struct btrfs_path *path,
4771 				   struct walk_control *wc, int lookup_info)
4772 {
4773 	struct btrfs_fs_info *fs_info = root->fs_info;
4774 	int level = wc->level;
4775 	struct extent_buffer *eb = path->nodes[level];
4776 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4777 	int ret;
4778 
4779 	if (wc->stage == UPDATE_BACKREF &&
4780 	    btrfs_header_owner(eb) != root->root_key.objectid)
4781 		return 1;
4782 
4783 	/*
4784 	 * when reference count of tree block is 1, it won't increase
4785 	 * again. once full backref flag is set, we never clear it.
4786 	 */
4787 	if (lookup_info &&
4788 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4789 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4790 		BUG_ON(!path->locks[level]);
4791 		ret = btrfs_lookup_extent_info(trans, fs_info,
4792 					       eb->start, level, 1,
4793 					       &wc->refs[level],
4794 					       &wc->flags[level]);
4795 		BUG_ON(ret == -ENOMEM);
4796 		if (ret)
4797 			return ret;
4798 		BUG_ON(wc->refs[level] == 0);
4799 	}
4800 
4801 	if (wc->stage == DROP_REFERENCE) {
4802 		if (wc->refs[level] > 1)
4803 			return 1;
4804 
4805 		if (path->locks[level] && !wc->keep_locks) {
4806 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4807 			path->locks[level] = 0;
4808 		}
4809 		return 0;
4810 	}
4811 
4812 	/* wc->stage == UPDATE_BACKREF */
4813 	if (!(wc->flags[level] & flag)) {
4814 		BUG_ON(!path->locks[level]);
4815 		ret = btrfs_inc_ref(trans, root, eb, 1);
4816 		BUG_ON(ret); /* -ENOMEM */
4817 		ret = btrfs_dec_ref(trans, root, eb, 0);
4818 		BUG_ON(ret); /* -ENOMEM */
4819 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4820 						  btrfs_header_level(eb), 0);
4821 		BUG_ON(ret); /* -ENOMEM */
4822 		wc->flags[level] |= flag;
4823 	}
4824 
4825 	/*
4826 	 * the block is shared by multiple trees, so it's not good to
4827 	 * keep the tree lock
4828 	 */
4829 	if (path->locks[level] && level > 0) {
4830 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4831 		path->locks[level] = 0;
4832 	}
4833 	return 0;
4834 }
4835 
4836 /*
4837  * This is used to verify a ref exists for this root to deal with a bug where we
4838  * would have a drop_progress key that hadn't been updated properly.
4839  */
4840 static int check_ref_exists(struct btrfs_trans_handle *trans,
4841 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4842 			    int level)
4843 {
4844 	struct btrfs_path *path;
4845 	struct btrfs_extent_inline_ref *iref;
4846 	int ret;
4847 
4848 	path = btrfs_alloc_path();
4849 	if (!path)
4850 		return -ENOMEM;
4851 
4852 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4853 				    root->fs_info->nodesize, parent,
4854 				    root->root_key.objectid, level, 0);
4855 	btrfs_free_path(path);
4856 	if (ret == -ENOENT)
4857 		return 0;
4858 	if (ret < 0)
4859 		return ret;
4860 	return 1;
4861 }
4862 
4863 /*
4864  * helper to process tree block pointer.
4865  *
4866  * when wc->stage == DROP_REFERENCE, this function checks
4867  * reference count of the block pointed to. if the block
4868  * is shared and we need update back refs for the subtree
4869  * rooted at the block, this function changes wc->stage to
4870  * UPDATE_BACKREF. if the block is shared and there is no
4871  * need to update back, this function drops the reference
4872  * to the block.
4873  *
4874  * NOTE: return value 1 means we should stop walking down.
4875  */
4876 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4877 				 struct btrfs_root *root,
4878 				 struct btrfs_path *path,
4879 				 struct walk_control *wc, int *lookup_info)
4880 {
4881 	struct btrfs_fs_info *fs_info = root->fs_info;
4882 	u64 bytenr;
4883 	u64 generation;
4884 	u64 parent;
4885 	struct btrfs_key key;
4886 	struct btrfs_key first_key;
4887 	struct btrfs_ref ref = { 0 };
4888 	struct extent_buffer *next;
4889 	int level = wc->level;
4890 	int reada = 0;
4891 	int ret = 0;
4892 	bool need_account = false;
4893 
4894 	generation = btrfs_node_ptr_generation(path->nodes[level],
4895 					       path->slots[level]);
4896 	/*
4897 	 * if the lower level block was created before the snapshot
4898 	 * was created, we know there is no need to update back refs
4899 	 * for the subtree
4900 	 */
4901 	if (wc->stage == UPDATE_BACKREF &&
4902 	    generation <= root->root_key.offset) {
4903 		*lookup_info = 1;
4904 		return 1;
4905 	}
4906 
4907 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4908 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4909 			      path->slots[level]);
4910 
4911 	next = find_extent_buffer(fs_info, bytenr);
4912 	if (!next) {
4913 		next = btrfs_find_create_tree_block(fs_info, bytenr);
4914 		if (IS_ERR(next))
4915 			return PTR_ERR(next);
4916 
4917 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4918 					       level - 1);
4919 		reada = 1;
4920 	}
4921 	btrfs_tree_lock(next);
4922 	btrfs_set_lock_blocking_write(next);
4923 
4924 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4925 				       &wc->refs[level - 1],
4926 				       &wc->flags[level - 1]);
4927 	if (ret < 0)
4928 		goto out_unlock;
4929 
4930 	if (unlikely(wc->refs[level - 1] == 0)) {
4931 		btrfs_err(fs_info, "Missing references.");
4932 		ret = -EIO;
4933 		goto out_unlock;
4934 	}
4935 	*lookup_info = 0;
4936 
4937 	if (wc->stage == DROP_REFERENCE) {
4938 		if (wc->refs[level - 1] > 1) {
4939 			need_account = true;
4940 			if (level == 1 &&
4941 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4942 				goto skip;
4943 
4944 			if (!wc->update_ref ||
4945 			    generation <= root->root_key.offset)
4946 				goto skip;
4947 
4948 			btrfs_node_key_to_cpu(path->nodes[level], &key,
4949 					      path->slots[level]);
4950 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4951 			if (ret < 0)
4952 				goto skip;
4953 
4954 			wc->stage = UPDATE_BACKREF;
4955 			wc->shared_level = level - 1;
4956 		}
4957 	} else {
4958 		if (level == 1 &&
4959 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4960 			goto skip;
4961 	}
4962 
4963 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4964 		btrfs_tree_unlock(next);
4965 		free_extent_buffer(next);
4966 		next = NULL;
4967 		*lookup_info = 1;
4968 	}
4969 
4970 	if (!next) {
4971 		if (reada && level == 1)
4972 			reada_walk_down(trans, root, wc, path);
4973 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4974 				       &first_key);
4975 		if (IS_ERR(next)) {
4976 			return PTR_ERR(next);
4977 		} else if (!extent_buffer_uptodate(next)) {
4978 			free_extent_buffer(next);
4979 			return -EIO;
4980 		}
4981 		btrfs_tree_lock(next);
4982 		btrfs_set_lock_blocking_write(next);
4983 	}
4984 
4985 	level--;
4986 	ASSERT(level == btrfs_header_level(next));
4987 	if (level != btrfs_header_level(next)) {
4988 		btrfs_err(root->fs_info, "mismatched level");
4989 		ret = -EIO;
4990 		goto out_unlock;
4991 	}
4992 	path->nodes[level] = next;
4993 	path->slots[level] = 0;
4994 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4995 	wc->level = level;
4996 	if (wc->level == 1)
4997 		wc->reada_slot = 0;
4998 	return 0;
4999 skip:
5000 	wc->refs[level - 1] = 0;
5001 	wc->flags[level - 1] = 0;
5002 	if (wc->stage == DROP_REFERENCE) {
5003 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5004 			parent = path->nodes[level]->start;
5005 		} else {
5006 			ASSERT(root->root_key.objectid ==
5007 			       btrfs_header_owner(path->nodes[level]));
5008 			if (root->root_key.objectid !=
5009 			    btrfs_header_owner(path->nodes[level])) {
5010 				btrfs_err(root->fs_info,
5011 						"mismatched block owner");
5012 				ret = -EIO;
5013 				goto out_unlock;
5014 			}
5015 			parent = 0;
5016 		}
5017 
5018 		/*
5019 		 * If we had a drop_progress we need to verify the refs are set
5020 		 * as expected.  If we find our ref then we know that from here
5021 		 * on out everything should be correct, and we can clear the
5022 		 * ->restarted flag.
5023 		 */
5024 		if (wc->restarted) {
5025 			ret = check_ref_exists(trans, root, bytenr, parent,
5026 					       level - 1);
5027 			if (ret < 0)
5028 				goto out_unlock;
5029 			if (ret == 0)
5030 				goto no_delete;
5031 			ret = 0;
5032 			wc->restarted = 0;
5033 		}
5034 
5035 		/*
5036 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5037 		 * already accounted them at merge time (replace_path),
5038 		 * thus we could skip expensive subtree trace here.
5039 		 */
5040 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5041 		    need_account) {
5042 			ret = btrfs_qgroup_trace_subtree(trans, next,
5043 							 generation, level - 1);
5044 			if (ret) {
5045 				btrfs_err_rl(fs_info,
5046 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5047 					     ret);
5048 			}
5049 		}
5050 
5051 		/*
5052 		 * We need to update the next key in our walk control so we can
5053 		 * update the drop_progress key accordingly.  We don't care if
5054 		 * find_next_key doesn't find a key because that means we're at
5055 		 * the end and are going to clean up now.
5056 		 */
5057 		wc->drop_level = level;
5058 		find_next_key(path, level, &wc->drop_progress);
5059 
5060 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5061 				       fs_info->nodesize, parent);
5062 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5063 		ret = btrfs_free_extent(trans, &ref);
5064 		if (ret)
5065 			goto out_unlock;
5066 	}
5067 no_delete:
5068 	*lookup_info = 1;
5069 	ret = 1;
5070 
5071 out_unlock:
5072 	btrfs_tree_unlock(next);
5073 	free_extent_buffer(next);
5074 
5075 	return ret;
5076 }
5077 
5078 /*
5079  * helper to process tree block while walking up the tree.
5080  *
5081  * when wc->stage == DROP_REFERENCE, this function drops
5082  * reference count on the block.
5083  *
5084  * when wc->stage == UPDATE_BACKREF, this function changes
5085  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5086  * to UPDATE_BACKREF previously while processing the block.
5087  *
5088  * NOTE: return value 1 means we should stop walking up.
5089  */
5090 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5091 				 struct btrfs_root *root,
5092 				 struct btrfs_path *path,
5093 				 struct walk_control *wc)
5094 {
5095 	struct btrfs_fs_info *fs_info = root->fs_info;
5096 	int ret;
5097 	int level = wc->level;
5098 	struct extent_buffer *eb = path->nodes[level];
5099 	u64 parent = 0;
5100 
5101 	if (wc->stage == UPDATE_BACKREF) {
5102 		BUG_ON(wc->shared_level < level);
5103 		if (level < wc->shared_level)
5104 			goto out;
5105 
5106 		ret = find_next_key(path, level + 1, &wc->update_progress);
5107 		if (ret > 0)
5108 			wc->update_ref = 0;
5109 
5110 		wc->stage = DROP_REFERENCE;
5111 		wc->shared_level = -1;
5112 		path->slots[level] = 0;
5113 
5114 		/*
5115 		 * check reference count again if the block isn't locked.
5116 		 * we should start walking down the tree again if reference
5117 		 * count is one.
5118 		 */
5119 		if (!path->locks[level]) {
5120 			BUG_ON(level == 0);
5121 			btrfs_tree_lock(eb);
5122 			btrfs_set_lock_blocking_write(eb);
5123 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5124 
5125 			ret = btrfs_lookup_extent_info(trans, fs_info,
5126 						       eb->start, level, 1,
5127 						       &wc->refs[level],
5128 						       &wc->flags[level]);
5129 			if (ret < 0) {
5130 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5131 				path->locks[level] = 0;
5132 				return ret;
5133 			}
5134 			BUG_ON(wc->refs[level] == 0);
5135 			if (wc->refs[level] == 1) {
5136 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5137 				path->locks[level] = 0;
5138 				return 1;
5139 			}
5140 		}
5141 	}
5142 
5143 	/* wc->stage == DROP_REFERENCE */
5144 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5145 
5146 	if (wc->refs[level] == 1) {
5147 		if (level == 0) {
5148 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5149 				ret = btrfs_dec_ref(trans, root, eb, 1);
5150 			else
5151 				ret = btrfs_dec_ref(trans, root, eb, 0);
5152 			BUG_ON(ret); /* -ENOMEM */
5153 			if (is_fstree(root->root_key.objectid)) {
5154 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5155 				if (ret) {
5156 					btrfs_err_rl(fs_info,
5157 	"error %d accounting leaf items, quota is out of sync, rescan required",
5158 					     ret);
5159 				}
5160 			}
5161 		}
5162 		/* make block locked assertion in btrfs_clean_tree_block happy */
5163 		if (!path->locks[level] &&
5164 		    btrfs_header_generation(eb) == trans->transid) {
5165 			btrfs_tree_lock(eb);
5166 			btrfs_set_lock_blocking_write(eb);
5167 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5168 		}
5169 		btrfs_clean_tree_block(eb);
5170 	}
5171 
5172 	if (eb == root->node) {
5173 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5174 			parent = eb->start;
5175 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5176 			goto owner_mismatch;
5177 	} else {
5178 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5179 			parent = path->nodes[level + 1]->start;
5180 		else if (root->root_key.objectid !=
5181 			 btrfs_header_owner(path->nodes[level + 1]))
5182 			goto owner_mismatch;
5183 	}
5184 
5185 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5186 out:
5187 	wc->refs[level] = 0;
5188 	wc->flags[level] = 0;
5189 	return 0;
5190 
5191 owner_mismatch:
5192 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5193 		     btrfs_header_owner(eb), root->root_key.objectid);
5194 	return -EUCLEAN;
5195 }
5196 
5197 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5198 				   struct btrfs_root *root,
5199 				   struct btrfs_path *path,
5200 				   struct walk_control *wc)
5201 {
5202 	int level = wc->level;
5203 	int lookup_info = 1;
5204 	int ret;
5205 
5206 	while (level >= 0) {
5207 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5208 		if (ret > 0)
5209 			break;
5210 
5211 		if (level == 0)
5212 			break;
5213 
5214 		if (path->slots[level] >=
5215 		    btrfs_header_nritems(path->nodes[level]))
5216 			break;
5217 
5218 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5219 		if (ret > 0) {
5220 			path->slots[level]++;
5221 			continue;
5222 		} else if (ret < 0)
5223 			return ret;
5224 		level = wc->level;
5225 	}
5226 	return 0;
5227 }
5228 
5229 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5230 				 struct btrfs_root *root,
5231 				 struct btrfs_path *path,
5232 				 struct walk_control *wc, int max_level)
5233 {
5234 	int level = wc->level;
5235 	int ret;
5236 
5237 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5238 	while (level < max_level && path->nodes[level]) {
5239 		wc->level = level;
5240 		if (path->slots[level] + 1 <
5241 		    btrfs_header_nritems(path->nodes[level])) {
5242 			path->slots[level]++;
5243 			return 0;
5244 		} else {
5245 			ret = walk_up_proc(trans, root, path, wc);
5246 			if (ret > 0)
5247 				return 0;
5248 			if (ret < 0)
5249 				return ret;
5250 
5251 			if (path->locks[level]) {
5252 				btrfs_tree_unlock_rw(path->nodes[level],
5253 						     path->locks[level]);
5254 				path->locks[level] = 0;
5255 			}
5256 			free_extent_buffer(path->nodes[level]);
5257 			path->nodes[level] = NULL;
5258 			level++;
5259 		}
5260 	}
5261 	return 1;
5262 }
5263 
5264 /*
5265  * drop a subvolume tree.
5266  *
5267  * this function traverses the tree freeing any blocks that only
5268  * referenced by the tree.
5269  *
5270  * when a shared tree block is found. this function decreases its
5271  * reference count by one. if update_ref is true, this function
5272  * also make sure backrefs for the shared block and all lower level
5273  * blocks are properly updated.
5274  *
5275  * If called with for_reloc == 0, may exit early with -EAGAIN
5276  */
5277 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5278 {
5279 	struct btrfs_fs_info *fs_info = root->fs_info;
5280 	struct btrfs_path *path;
5281 	struct btrfs_trans_handle *trans;
5282 	struct btrfs_root *tree_root = fs_info->tree_root;
5283 	struct btrfs_root_item *root_item = &root->root_item;
5284 	struct walk_control *wc;
5285 	struct btrfs_key key;
5286 	int err = 0;
5287 	int ret;
5288 	int level;
5289 	bool root_dropped = false;
5290 
5291 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5292 
5293 	path = btrfs_alloc_path();
5294 	if (!path) {
5295 		err = -ENOMEM;
5296 		goto out;
5297 	}
5298 
5299 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5300 	if (!wc) {
5301 		btrfs_free_path(path);
5302 		err = -ENOMEM;
5303 		goto out;
5304 	}
5305 
5306 	/*
5307 	 * Use join to avoid potential EINTR from transaction start. See
5308 	 * wait_reserve_ticket and the whole reservation callchain.
5309 	 */
5310 	if (for_reloc)
5311 		trans = btrfs_join_transaction(tree_root);
5312 	else
5313 		trans = btrfs_start_transaction(tree_root, 0);
5314 	if (IS_ERR(trans)) {
5315 		err = PTR_ERR(trans);
5316 		goto out_free;
5317 	}
5318 
5319 	err = btrfs_run_delayed_items(trans);
5320 	if (err)
5321 		goto out_end_trans;
5322 
5323 	/*
5324 	 * This will help us catch people modifying the fs tree while we're
5325 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5326 	 * dropped as we unlock the root node and parent nodes as we walk down
5327 	 * the tree, assuming nothing will change.  If something does change
5328 	 * then we'll have stale information and drop references to blocks we've
5329 	 * already dropped.
5330 	 */
5331 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5332 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5333 		level = btrfs_header_level(root->node);
5334 		path->nodes[level] = btrfs_lock_root_node(root);
5335 		btrfs_set_lock_blocking_write(path->nodes[level]);
5336 		path->slots[level] = 0;
5337 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5338 		memset(&wc->update_progress, 0,
5339 		       sizeof(wc->update_progress));
5340 	} else {
5341 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5342 		memcpy(&wc->update_progress, &key,
5343 		       sizeof(wc->update_progress));
5344 
5345 		level = root_item->drop_level;
5346 		BUG_ON(level == 0);
5347 		path->lowest_level = level;
5348 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5349 		path->lowest_level = 0;
5350 		if (ret < 0) {
5351 			err = ret;
5352 			goto out_end_trans;
5353 		}
5354 		WARN_ON(ret > 0);
5355 
5356 		/*
5357 		 * unlock our path, this is safe because only this
5358 		 * function is allowed to delete this snapshot
5359 		 */
5360 		btrfs_unlock_up_safe(path, 0);
5361 
5362 		level = btrfs_header_level(root->node);
5363 		while (1) {
5364 			btrfs_tree_lock(path->nodes[level]);
5365 			btrfs_set_lock_blocking_write(path->nodes[level]);
5366 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5367 
5368 			ret = btrfs_lookup_extent_info(trans, fs_info,
5369 						path->nodes[level]->start,
5370 						level, 1, &wc->refs[level],
5371 						&wc->flags[level]);
5372 			if (ret < 0) {
5373 				err = ret;
5374 				goto out_end_trans;
5375 			}
5376 			BUG_ON(wc->refs[level] == 0);
5377 
5378 			if (level == root_item->drop_level)
5379 				break;
5380 
5381 			btrfs_tree_unlock(path->nodes[level]);
5382 			path->locks[level] = 0;
5383 			WARN_ON(wc->refs[level] != 1);
5384 			level--;
5385 		}
5386 	}
5387 
5388 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5389 	wc->level = level;
5390 	wc->shared_level = -1;
5391 	wc->stage = DROP_REFERENCE;
5392 	wc->update_ref = update_ref;
5393 	wc->keep_locks = 0;
5394 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5395 
5396 	while (1) {
5397 
5398 		ret = walk_down_tree(trans, root, path, wc);
5399 		if (ret < 0) {
5400 			err = ret;
5401 			break;
5402 		}
5403 
5404 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5405 		if (ret < 0) {
5406 			err = ret;
5407 			break;
5408 		}
5409 
5410 		if (ret > 0) {
5411 			BUG_ON(wc->stage != DROP_REFERENCE);
5412 			break;
5413 		}
5414 
5415 		if (wc->stage == DROP_REFERENCE) {
5416 			wc->drop_level = wc->level;
5417 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5418 					      &wc->drop_progress,
5419 					      path->slots[wc->drop_level]);
5420 		}
5421 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5422 				      &wc->drop_progress);
5423 		root_item->drop_level = wc->drop_level;
5424 
5425 		BUG_ON(wc->level == 0);
5426 		if (btrfs_should_end_transaction(trans) ||
5427 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5428 			ret = btrfs_update_root(trans, tree_root,
5429 						&root->root_key,
5430 						root_item);
5431 			if (ret) {
5432 				btrfs_abort_transaction(trans, ret);
5433 				err = ret;
5434 				goto out_end_trans;
5435 			}
5436 
5437 			btrfs_end_transaction_throttle(trans);
5438 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5439 				btrfs_debug(fs_info,
5440 					    "drop snapshot early exit");
5441 				err = -EAGAIN;
5442 				goto out_free;
5443 			}
5444 
5445 			trans = btrfs_start_transaction(tree_root, 0);
5446 			if (IS_ERR(trans)) {
5447 				err = PTR_ERR(trans);
5448 				goto out_free;
5449 			}
5450 		}
5451 	}
5452 	btrfs_release_path(path);
5453 	if (err)
5454 		goto out_end_trans;
5455 
5456 	ret = btrfs_del_root(trans, &root->root_key);
5457 	if (ret) {
5458 		btrfs_abort_transaction(trans, ret);
5459 		err = ret;
5460 		goto out_end_trans;
5461 	}
5462 
5463 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5464 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5465 				      NULL, NULL);
5466 		if (ret < 0) {
5467 			btrfs_abort_transaction(trans, ret);
5468 			err = ret;
5469 			goto out_end_trans;
5470 		} else if (ret > 0) {
5471 			/* if we fail to delete the orphan item this time
5472 			 * around, it'll get picked up the next time.
5473 			 *
5474 			 * The most common failure here is just -ENOENT.
5475 			 */
5476 			btrfs_del_orphan_item(trans, tree_root,
5477 					      root->root_key.objectid);
5478 		}
5479 	}
5480 
5481 	/*
5482 	 * This subvolume is going to be completely dropped, and won't be
5483 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5484 	 * commit transaction time.  So free it here manually.
5485 	 */
5486 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5487 	btrfs_qgroup_free_meta_all_pertrans(root);
5488 
5489 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5490 		btrfs_add_dropped_root(trans, root);
5491 	else
5492 		btrfs_put_root(root);
5493 	root_dropped = true;
5494 out_end_trans:
5495 	btrfs_end_transaction_throttle(trans);
5496 out_free:
5497 	kfree(wc);
5498 	btrfs_free_path(path);
5499 out:
5500 	/*
5501 	 * So if we need to stop dropping the snapshot for whatever reason we
5502 	 * need to make sure to add it back to the dead root list so that we
5503 	 * keep trying to do the work later.  This also cleans up roots if we
5504 	 * don't have it in the radix (like when we recover after a power fail
5505 	 * or unmount) so we don't leak memory.
5506 	 */
5507 	if (!for_reloc && !root_dropped)
5508 		btrfs_add_dead_root(root);
5509 	return err;
5510 }
5511 
5512 /*
5513  * drop subtree rooted at tree block 'node'.
5514  *
5515  * NOTE: this function will unlock and release tree block 'node'
5516  * only used by relocation code
5517  */
5518 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5519 			struct btrfs_root *root,
5520 			struct extent_buffer *node,
5521 			struct extent_buffer *parent)
5522 {
5523 	struct btrfs_fs_info *fs_info = root->fs_info;
5524 	struct btrfs_path *path;
5525 	struct walk_control *wc;
5526 	int level;
5527 	int parent_level;
5528 	int ret = 0;
5529 	int wret;
5530 
5531 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5532 
5533 	path = btrfs_alloc_path();
5534 	if (!path)
5535 		return -ENOMEM;
5536 
5537 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5538 	if (!wc) {
5539 		btrfs_free_path(path);
5540 		return -ENOMEM;
5541 	}
5542 
5543 	btrfs_assert_tree_locked(parent);
5544 	parent_level = btrfs_header_level(parent);
5545 	atomic_inc(&parent->refs);
5546 	path->nodes[parent_level] = parent;
5547 	path->slots[parent_level] = btrfs_header_nritems(parent);
5548 
5549 	btrfs_assert_tree_locked(node);
5550 	level = btrfs_header_level(node);
5551 	path->nodes[level] = node;
5552 	path->slots[level] = 0;
5553 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5554 
5555 	wc->refs[parent_level] = 1;
5556 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5557 	wc->level = level;
5558 	wc->shared_level = -1;
5559 	wc->stage = DROP_REFERENCE;
5560 	wc->update_ref = 0;
5561 	wc->keep_locks = 1;
5562 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5563 
5564 	while (1) {
5565 		wret = walk_down_tree(trans, root, path, wc);
5566 		if (wret < 0) {
5567 			ret = wret;
5568 			break;
5569 		}
5570 
5571 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5572 		if (wret < 0)
5573 			ret = wret;
5574 		if (wret != 0)
5575 			break;
5576 	}
5577 
5578 	kfree(wc);
5579 	btrfs_free_path(path);
5580 	return ret;
5581 }
5582 
5583 /*
5584  * helper to account the unused space of all the readonly block group in the
5585  * space_info. takes mirrors into account.
5586  */
5587 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5588 {
5589 	struct btrfs_block_group *block_group;
5590 	u64 free_bytes = 0;
5591 	int factor;
5592 
5593 	/* It's df, we don't care if it's racy */
5594 	if (list_empty(&sinfo->ro_bgs))
5595 		return 0;
5596 
5597 	spin_lock(&sinfo->lock);
5598 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5599 		spin_lock(&block_group->lock);
5600 
5601 		if (!block_group->ro) {
5602 			spin_unlock(&block_group->lock);
5603 			continue;
5604 		}
5605 
5606 		factor = btrfs_bg_type_to_factor(block_group->flags);
5607 		free_bytes += (block_group->length -
5608 			       block_group->used) * factor;
5609 
5610 		spin_unlock(&block_group->lock);
5611 	}
5612 	spin_unlock(&sinfo->lock);
5613 
5614 	return free_bytes;
5615 }
5616 
5617 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5618 				   u64 start, u64 end)
5619 {
5620 	return unpin_extent_range(fs_info, start, end, false);
5621 }
5622 
5623 /*
5624  * It used to be that old block groups would be left around forever.
5625  * Iterating over them would be enough to trim unused space.  Since we
5626  * now automatically remove them, we also need to iterate over unallocated
5627  * space.
5628  *
5629  * We don't want a transaction for this since the discard may take a
5630  * substantial amount of time.  We don't require that a transaction be
5631  * running, but we do need to take a running transaction into account
5632  * to ensure that we're not discarding chunks that were released or
5633  * allocated in the current transaction.
5634  *
5635  * Holding the chunks lock will prevent other threads from allocating
5636  * or releasing chunks, but it won't prevent a running transaction
5637  * from committing and releasing the memory that the pending chunks
5638  * list head uses.  For that, we need to take a reference to the
5639  * transaction and hold the commit root sem.  We only need to hold
5640  * it while performing the free space search since we have already
5641  * held back allocations.
5642  */
5643 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5644 {
5645 	u64 start = SZ_1M, len = 0, end = 0;
5646 	int ret;
5647 
5648 	*trimmed = 0;
5649 
5650 	/* Discard not supported = nothing to do. */
5651 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5652 		return 0;
5653 
5654 	/* Not writable = nothing to do. */
5655 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5656 		return 0;
5657 
5658 	/* No free space = nothing to do. */
5659 	if (device->total_bytes <= device->bytes_used)
5660 		return 0;
5661 
5662 	ret = 0;
5663 
5664 	while (1) {
5665 		struct btrfs_fs_info *fs_info = device->fs_info;
5666 		u64 bytes;
5667 
5668 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5669 		if (ret)
5670 			break;
5671 
5672 		find_first_clear_extent_bit(&device->alloc_state, start,
5673 					    &start, &end,
5674 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5675 
5676 		/* Check if there are any CHUNK_* bits left */
5677 		if (start > device->total_bytes) {
5678 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5679 			btrfs_warn_in_rcu(fs_info,
5680 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5681 					  start, end - start + 1,
5682 					  rcu_str_deref(device->name),
5683 					  device->total_bytes);
5684 			mutex_unlock(&fs_info->chunk_mutex);
5685 			ret = 0;
5686 			break;
5687 		}
5688 
5689 		/* Ensure we skip the reserved area in the first 1M */
5690 		start = max_t(u64, start, SZ_1M);
5691 
5692 		/*
5693 		 * If find_first_clear_extent_bit find a range that spans the
5694 		 * end of the device it will set end to -1, in this case it's up
5695 		 * to the caller to trim the value to the size of the device.
5696 		 */
5697 		end = min(end, device->total_bytes - 1);
5698 
5699 		len = end - start + 1;
5700 
5701 		/* We didn't find any extents */
5702 		if (!len) {
5703 			mutex_unlock(&fs_info->chunk_mutex);
5704 			ret = 0;
5705 			break;
5706 		}
5707 
5708 		ret = btrfs_issue_discard(device->bdev, start, len,
5709 					  &bytes);
5710 		if (!ret)
5711 			set_extent_bits(&device->alloc_state, start,
5712 					start + bytes - 1,
5713 					CHUNK_TRIMMED);
5714 		mutex_unlock(&fs_info->chunk_mutex);
5715 
5716 		if (ret)
5717 			break;
5718 
5719 		start += len;
5720 		*trimmed += bytes;
5721 
5722 		if (fatal_signal_pending(current)) {
5723 			ret = -ERESTARTSYS;
5724 			break;
5725 		}
5726 
5727 		cond_resched();
5728 	}
5729 
5730 	return ret;
5731 }
5732 
5733 /*
5734  * Trim the whole filesystem by:
5735  * 1) trimming the free space in each block group
5736  * 2) trimming the unallocated space on each device
5737  *
5738  * This will also continue trimming even if a block group or device encounters
5739  * an error.  The return value will be the last error, or 0 if nothing bad
5740  * happens.
5741  */
5742 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5743 {
5744 	struct btrfs_block_group *cache = NULL;
5745 	struct btrfs_device *device;
5746 	struct list_head *devices;
5747 	u64 group_trimmed;
5748 	u64 range_end = U64_MAX;
5749 	u64 start;
5750 	u64 end;
5751 	u64 trimmed = 0;
5752 	u64 bg_failed = 0;
5753 	u64 dev_failed = 0;
5754 	int bg_ret = 0;
5755 	int dev_ret = 0;
5756 	int ret = 0;
5757 
5758 	/*
5759 	 * Check range overflow if range->len is set.
5760 	 * The default range->len is U64_MAX.
5761 	 */
5762 	if (range->len != U64_MAX &&
5763 	    check_add_overflow(range->start, range->len, &range_end))
5764 		return -EINVAL;
5765 
5766 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5767 	for (; cache; cache = btrfs_next_block_group(cache)) {
5768 		if (cache->start >= range_end) {
5769 			btrfs_put_block_group(cache);
5770 			break;
5771 		}
5772 
5773 		start = max(range->start, cache->start);
5774 		end = min(range_end, cache->start + cache->length);
5775 
5776 		if (end - start >= range->minlen) {
5777 			if (!btrfs_block_group_done(cache)) {
5778 				ret = btrfs_cache_block_group(cache, 0);
5779 				if (ret) {
5780 					bg_failed++;
5781 					bg_ret = ret;
5782 					continue;
5783 				}
5784 				ret = btrfs_wait_block_group_cache_done(cache);
5785 				if (ret) {
5786 					bg_failed++;
5787 					bg_ret = ret;
5788 					continue;
5789 				}
5790 			}
5791 			ret = btrfs_trim_block_group(cache,
5792 						     &group_trimmed,
5793 						     start,
5794 						     end,
5795 						     range->minlen);
5796 
5797 			trimmed += group_trimmed;
5798 			if (ret) {
5799 				bg_failed++;
5800 				bg_ret = ret;
5801 				continue;
5802 			}
5803 		}
5804 	}
5805 
5806 	if (bg_failed)
5807 		btrfs_warn(fs_info,
5808 			"failed to trim %llu block group(s), last error %d",
5809 			bg_failed, bg_ret);
5810 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5811 	devices = &fs_info->fs_devices->devices;
5812 	list_for_each_entry(device, devices, dev_list) {
5813 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5814 		if (ret) {
5815 			dev_failed++;
5816 			dev_ret = ret;
5817 			break;
5818 		}
5819 
5820 		trimmed += group_trimmed;
5821 	}
5822 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5823 
5824 	if (dev_failed)
5825 		btrfs_warn(fs_info,
5826 			"failed to trim %llu device(s), last error %d",
5827 			dev_failed, dev_ret);
5828 	range->len = trimmed;
5829 	if (bg_ret)
5830 		return bg_ret;
5831 	return dev_ret;
5832 }
5833