1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 46 #undef SCRAMBLE_DELAYED_REFS 47 48 49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 50 struct btrfs_delayed_ref_node *node, u64 parent, 51 u64 root_objectid, u64 owner_objectid, 52 u64 owner_offset, int refs_to_drop, 53 struct btrfs_delayed_extent_op *extra_op); 54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 55 struct extent_buffer *leaf, 56 struct btrfs_extent_item *ei); 57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 58 u64 parent, u64 root_objectid, 59 u64 flags, u64 owner, u64 offset, 60 struct btrfs_key *ins, int ref_mod); 61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 62 struct btrfs_delayed_ref_node *node, 63 struct btrfs_delayed_extent_op *extent_op); 64 static int find_next_key(struct btrfs_path *path, int level, 65 struct btrfs_key *key); 66 67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 68 { 69 return (cache->flags & bits) == bits; 70 } 71 72 /* simple helper to search for an existing data extent at a given offset */ 73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 74 { 75 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 76 int ret; 77 struct btrfs_key key; 78 struct btrfs_path *path; 79 80 path = btrfs_alloc_path(); 81 if (!path) 82 return -ENOMEM; 83 84 key.objectid = start; 85 key.offset = len; 86 key.type = BTRFS_EXTENT_ITEM_KEY; 87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 88 btrfs_free_path(path); 89 return ret; 90 } 91 92 /* 93 * helper function to lookup reference count and flags of a tree block. 94 * 95 * the head node for delayed ref is used to store the sum of all the 96 * reference count modifications queued up in the rbtree. the head 97 * node may also store the extent flags to set. This way you can check 98 * to see what the reference count and extent flags would be if all of 99 * the delayed refs are not processed. 100 */ 101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 102 struct btrfs_fs_info *fs_info, u64 bytenr, 103 u64 offset, int metadata, u64 *refs, u64 *flags) 104 { 105 struct btrfs_root *extent_root; 106 struct btrfs_delayed_ref_head *head; 107 struct btrfs_delayed_ref_root *delayed_refs; 108 struct btrfs_path *path; 109 struct btrfs_extent_item *ei; 110 struct extent_buffer *leaf; 111 struct btrfs_key key; 112 u32 item_size; 113 u64 num_refs; 114 u64 extent_flags; 115 int ret; 116 117 /* 118 * If we don't have skinny metadata, don't bother doing anything 119 * different 120 */ 121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 122 offset = fs_info->nodesize; 123 metadata = 0; 124 } 125 126 path = btrfs_alloc_path(); 127 if (!path) 128 return -ENOMEM; 129 130 if (!trans) { 131 path->skip_locking = 1; 132 path->search_commit_root = 1; 133 } 134 135 search_again: 136 key.objectid = bytenr; 137 key.offset = offset; 138 if (metadata) 139 key.type = BTRFS_METADATA_ITEM_KEY; 140 else 141 key.type = BTRFS_EXTENT_ITEM_KEY; 142 143 extent_root = btrfs_extent_root(fs_info, bytenr); 144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 145 if (ret < 0) 146 goto out_free; 147 148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 149 if (path->slots[0]) { 150 path->slots[0]--; 151 btrfs_item_key_to_cpu(path->nodes[0], &key, 152 path->slots[0]); 153 if (key.objectid == bytenr && 154 key.type == BTRFS_EXTENT_ITEM_KEY && 155 key.offset == fs_info->nodesize) 156 ret = 0; 157 } 158 } 159 160 if (ret == 0) { 161 leaf = path->nodes[0]; 162 item_size = btrfs_item_size(leaf, path->slots[0]); 163 if (item_size >= sizeof(*ei)) { 164 ei = btrfs_item_ptr(leaf, path->slots[0], 165 struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 extent_flags = btrfs_extent_flags(leaf, ei); 168 } else { 169 ret = -EUCLEAN; 170 btrfs_err(fs_info, 171 "unexpected extent item size, has %u expect >= %zu", 172 item_size, sizeof(*ei)); 173 if (trans) 174 btrfs_abort_transaction(trans, ret); 175 else 176 btrfs_handle_fs_error(fs_info, ret, NULL); 177 178 goto out_free; 179 } 180 181 BUG_ON(num_refs == 0); 182 } else { 183 num_refs = 0; 184 extent_flags = 0; 185 ret = 0; 186 } 187 188 if (!trans) 189 goto out; 190 191 delayed_refs = &trans->transaction->delayed_refs; 192 spin_lock(&delayed_refs->lock); 193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 194 if (head) { 195 if (!mutex_trylock(&head->mutex)) { 196 refcount_inc(&head->refs); 197 spin_unlock(&delayed_refs->lock); 198 199 btrfs_release_path(path); 200 201 /* 202 * Mutex was contended, block until it's released and try 203 * again 204 */ 205 mutex_lock(&head->mutex); 206 mutex_unlock(&head->mutex); 207 btrfs_put_delayed_ref_head(head); 208 goto search_again; 209 } 210 spin_lock(&head->lock); 211 if (head->extent_op && head->extent_op->update_flags) 212 extent_flags |= head->extent_op->flags_to_set; 213 else 214 BUG_ON(num_refs == 0); 215 216 num_refs += head->ref_mod; 217 spin_unlock(&head->lock); 218 mutex_unlock(&head->mutex); 219 } 220 spin_unlock(&delayed_refs->lock); 221 out: 222 WARN_ON(num_refs == 0); 223 if (refs) 224 *refs = num_refs; 225 if (flags) 226 *flags = extent_flags; 227 out_free: 228 btrfs_free_path(path); 229 return ret; 230 } 231 232 /* 233 * Back reference rules. Back refs have three main goals: 234 * 235 * 1) differentiate between all holders of references to an extent so that 236 * when a reference is dropped we can make sure it was a valid reference 237 * before freeing the extent. 238 * 239 * 2) Provide enough information to quickly find the holders of an extent 240 * if we notice a given block is corrupted or bad. 241 * 242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 243 * maintenance. This is actually the same as #2, but with a slightly 244 * different use case. 245 * 246 * There are two kinds of back refs. The implicit back refs is optimized 247 * for pointers in non-shared tree blocks. For a given pointer in a block, 248 * back refs of this kind provide information about the block's owner tree 249 * and the pointer's key. These information allow us to find the block by 250 * b-tree searching. The full back refs is for pointers in tree blocks not 251 * referenced by their owner trees. The location of tree block is recorded 252 * in the back refs. Actually the full back refs is generic, and can be 253 * used in all cases the implicit back refs is used. The major shortcoming 254 * of the full back refs is its overhead. Every time a tree block gets 255 * COWed, we have to update back refs entry for all pointers in it. 256 * 257 * For a newly allocated tree block, we use implicit back refs for 258 * pointers in it. This means most tree related operations only involve 259 * implicit back refs. For a tree block created in old transaction, the 260 * only way to drop a reference to it is COW it. So we can detect the 261 * event that tree block loses its owner tree's reference and do the 262 * back refs conversion. 263 * 264 * When a tree block is COWed through a tree, there are four cases: 265 * 266 * The reference count of the block is one and the tree is the block's 267 * owner tree. Nothing to do in this case. 268 * 269 * The reference count of the block is one and the tree is not the 270 * block's owner tree. In this case, full back refs is used for pointers 271 * in the block. Remove these full back refs, add implicit back refs for 272 * every pointers in the new block. 273 * 274 * The reference count of the block is greater than one and the tree is 275 * the block's owner tree. In this case, implicit back refs is used for 276 * pointers in the block. Add full back refs for every pointers in the 277 * block, increase lower level extents' reference counts. The original 278 * implicit back refs are entailed to the new block. 279 * 280 * The reference count of the block is greater than one and the tree is 281 * not the block's owner tree. Add implicit back refs for every pointer in 282 * the new block, increase lower level extents' reference count. 283 * 284 * Back Reference Key composing: 285 * 286 * The key objectid corresponds to the first byte in the extent, 287 * The key type is used to differentiate between types of back refs. 288 * There are different meanings of the key offset for different types 289 * of back refs. 290 * 291 * File extents can be referenced by: 292 * 293 * - multiple snapshots, subvolumes, or different generations in one subvol 294 * - different files inside a single subvolume 295 * - different offsets inside a file (bookend extents in file.c) 296 * 297 * The extent ref structure for the implicit back refs has fields for: 298 * 299 * - Objectid of the subvolume root 300 * - objectid of the file holding the reference 301 * - original offset in the file 302 * - how many bookend extents 303 * 304 * The key offset for the implicit back refs is hash of the first 305 * three fields. 306 * 307 * The extent ref structure for the full back refs has field for: 308 * 309 * - number of pointers in the tree leaf 310 * 311 * The key offset for the implicit back refs is the first byte of 312 * the tree leaf 313 * 314 * When a file extent is allocated, The implicit back refs is used. 315 * the fields are filled in: 316 * 317 * (root_key.objectid, inode objectid, offset in file, 1) 318 * 319 * When a file extent is removed file truncation, we find the 320 * corresponding implicit back refs and check the following fields: 321 * 322 * (btrfs_header_owner(leaf), inode objectid, offset in file) 323 * 324 * Btree extents can be referenced by: 325 * 326 * - Different subvolumes 327 * 328 * Both the implicit back refs and the full back refs for tree blocks 329 * only consist of key. The key offset for the implicit back refs is 330 * objectid of block's owner tree. The key offset for the full back refs 331 * is the first byte of parent block. 332 * 333 * When implicit back refs is used, information about the lowest key and 334 * level of the tree block are required. These information are stored in 335 * tree block info structure. 336 */ 337 338 /* 339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 342 */ 343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 344 struct btrfs_extent_inline_ref *iref, 345 enum btrfs_inline_ref_type is_data) 346 { 347 int type = btrfs_extent_inline_ref_type(eb, iref); 348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 349 350 if (type == BTRFS_TREE_BLOCK_REF_KEY || 351 type == BTRFS_SHARED_BLOCK_REF_KEY || 352 type == BTRFS_SHARED_DATA_REF_KEY || 353 type == BTRFS_EXTENT_DATA_REF_KEY) { 354 if (is_data == BTRFS_REF_TYPE_BLOCK) { 355 if (type == BTRFS_TREE_BLOCK_REF_KEY) 356 return type; 357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 358 ASSERT(eb->fs_info); 359 /* 360 * Every shared one has parent tree block, 361 * which must be aligned to sector size. 362 */ 363 if (offset && 364 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 365 return type; 366 } 367 } else if (is_data == BTRFS_REF_TYPE_DATA) { 368 if (type == BTRFS_EXTENT_DATA_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_DATA_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else { 381 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 382 return type; 383 } 384 } 385 386 WARN_ON(1); 387 btrfs_print_leaf(eb); 388 btrfs_err(eb->fs_info, 389 "eb %llu iref 0x%lx invalid extent inline ref type %d", 390 eb->start, (unsigned long)iref, type); 391 392 return BTRFS_REF_TYPE_INVALID; 393 } 394 395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 396 { 397 u32 high_crc = ~(u32)0; 398 u32 low_crc = ~(u32)0; 399 __le64 lenum; 400 401 lenum = cpu_to_le64(root_objectid); 402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 403 lenum = cpu_to_le64(owner); 404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 405 lenum = cpu_to_le64(offset); 406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 407 408 return ((u64)high_crc << 31) ^ (u64)low_crc; 409 } 410 411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 412 struct btrfs_extent_data_ref *ref) 413 { 414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 415 btrfs_extent_data_ref_objectid(leaf, ref), 416 btrfs_extent_data_ref_offset(leaf, ref)); 417 } 418 419 static int match_extent_data_ref(struct extent_buffer *leaf, 420 struct btrfs_extent_data_ref *ref, 421 u64 root_objectid, u64 owner, u64 offset) 422 { 423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 424 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 425 btrfs_extent_data_ref_offset(leaf, ref) != offset) 426 return 0; 427 return 1; 428 } 429 430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 431 struct btrfs_path *path, 432 u64 bytenr, u64 parent, 433 u64 root_objectid, 434 u64 owner, u64 offset) 435 { 436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 437 struct btrfs_key key; 438 struct btrfs_extent_data_ref *ref; 439 struct extent_buffer *leaf; 440 u32 nritems; 441 int ret; 442 int recow; 443 int err = -ENOENT; 444 445 key.objectid = bytenr; 446 if (parent) { 447 key.type = BTRFS_SHARED_DATA_REF_KEY; 448 key.offset = parent; 449 } else { 450 key.type = BTRFS_EXTENT_DATA_REF_KEY; 451 key.offset = hash_extent_data_ref(root_objectid, 452 owner, offset); 453 } 454 again: 455 recow = 0; 456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 457 if (ret < 0) { 458 err = ret; 459 goto fail; 460 } 461 462 if (parent) { 463 if (!ret) 464 return 0; 465 goto fail; 466 } 467 468 leaf = path->nodes[0]; 469 nritems = btrfs_header_nritems(leaf); 470 while (1) { 471 if (path->slots[0] >= nritems) { 472 ret = btrfs_next_leaf(root, path); 473 if (ret < 0) 474 err = ret; 475 if (ret) 476 goto fail; 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 recow = 1; 481 } 482 483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 484 if (key.objectid != bytenr || 485 key.type != BTRFS_EXTENT_DATA_REF_KEY) 486 goto fail; 487 488 ref = btrfs_item_ptr(leaf, path->slots[0], 489 struct btrfs_extent_data_ref); 490 491 if (match_extent_data_ref(leaf, ref, root_objectid, 492 owner, offset)) { 493 if (recow) { 494 btrfs_release_path(path); 495 goto again; 496 } 497 err = 0; 498 break; 499 } 500 path->slots[0]++; 501 } 502 fail: 503 return err; 504 } 505 506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 507 struct btrfs_path *path, 508 u64 bytenr, u64 parent, 509 u64 root_objectid, u64 owner, 510 u64 offset, int refs_to_add) 511 { 512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 513 struct btrfs_key key; 514 struct extent_buffer *leaf; 515 u32 size; 516 u32 num_refs; 517 int ret; 518 519 key.objectid = bytenr; 520 if (parent) { 521 key.type = BTRFS_SHARED_DATA_REF_KEY; 522 key.offset = parent; 523 size = sizeof(struct btrfs_shared_data_ref); 524 } else { 525 key.type = BTRFS_EXTENT_DATA_REF_KEY; 526 key.offset = hash_extent_data_ref(root_objectid, 527 owner, offset); 528 size = sizeof(struct btrfs_extent_data_ref); 529 } 530 531 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 532 if (ret && ret != -EEXIST) 533 goto fail; 534 535 leaf = path->nodes[0]; 536 if (parent) { 537 struct btrfs_shared_data_ref *ref; 538 ref = btrfs_item_ptr(leaf, path->slots[0], 539 struct btrfs_shared_data_ref); 540 if (ret == 0) { 541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 542 } else { 543 num_refs = btrfs_shared_data_ref_count(leaf, ref); 544 num_refs += refs_to_add; 545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 546 } 547 } else { 548 struct btrfs_extent_data_ref *ref; 549 while (ret == -EEXIST) { 550 ref = btrfs_item_ptr(leaf, path->slots[0], 551 struct btrfs_extent_data_ref); 552 if (match_extent_data_ref(leaf, ref, root_objectid, 553 owner, offset)) 554 break; 555 btrfs_release_path(path); 556 key.offset++; 557 ret = btrfs_insert_empty_item(trans, root, path, &key, 558 size); 559 if (ret && ret != -EEXIST) 560 goto fail; 561 562 leaf = path->nodes[0]; 563 } 564 ref = btrfs_item_ptr(leaf, path->slots[0], 565 struct btrfs_extent_data_ref); 566 if (ret == 0) { 567 btrfs_set_extent_data_ref_root(leaf, ref, 568 root_objectid); 569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 570 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 572 } else { 573 num_refs = btrfs_extent_data_ref_count(leaf, ref); 574 num_refs += refs_to_add; 575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 576 } 577 } 578 btrfs_mark_buffer_dirty(trans, leaf); 579 ret = 0; 580 fail: 581 btrfs_release_path(path); 582 return ret; 583 } 584 585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 586 struct btrfs_root *root, 587 struct btrfs_path *path, 588 int refs_to_drop) 589 { 590 struct btrfs_key key; 591 struct btrfs_extent_data_ref *ref1 = NULL; 592 struct btrfs_shared_data_ref *ref2 = NULL; 593 struct extent_buffer *leaf; 594 u32 num_refs = 0; 595 int ret = 0; 596 597 leaf = path->nodes[0]; 598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 599 600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 601 ref1 = btrfs_item_ptr(leaf, path->slots[0], 602 struct btrfs_extent_data_ref); 603 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 605 ref2 = btrfs_item_ptr(leaf, path->slots[0], 606 struct btrfs_shared_data_ref); 607 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 608 } else { 609 btrfs_err(trans->fs_info, 610 "unrecognized backref key (%llu %u %llu)", 611 key.objectid, key.type, key.offset); 612 btrfs_abort_transaction(trans, -EUCLEAN); 613 return -EUCLEAN; 614 } 615 616 BUG_ON(num_refs < refs_to_drop); 617 num_refs -= refs_to_drop; 618 619 if (num_refs == 0) { 620 ret = btrfs_del_item(trans, root, path); 621 } else { 622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 626 btrfs_mark_buffer_dirty(trans, leaf); 627 } 628 return ret; 629 } 630 631 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 632 struct btrfs_extent_inline_ref *iref) 633 { 634 struct btrfs_key key; 635 struct extent_buffer *leaf; 636 struct btrfs_extent_data_ref *ref1; 637 struct btrfs_shared_data_ref *ref2; 638 u32 num_refs = 0; 639 int type; 640 641 leaf = path->nodes[0]; 642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 643 644 if (iref) { 645 /* 646 * If type is invalid, we should have bailed out earlier than 647 * this call. 648 */ 649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 650 ASSERT(type != BTRFS_REF_TYPE_INVALID); 651 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 653 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 654 } else { 655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 656 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 657 } 658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 659 ref1 = btrfs_item_ptr(leaf, path->slots[0], 660 struct btrfs_extent_data_ref); 661 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 663 ref2 = btrfs_item_ptr(leaf, path->slots[0], 664 struct btrfs_shared_data_ref); 665 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 666 } else { 667 WARN_ON(1); 668 } 669 return num_refs; 670 } 671 672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 673 struct btrfs_path *path, 674 u64 bytenr, u64 parent, 675 u64 root_objectid) 676 { 677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 678 struct btrfs_key key; 679 int ret; 680 681 key.objectid = bytenr; 682 if (parent) { 683 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 684 key.offset = parent; 685 } else { 686 key.type = BTRFS_TREE_BLOCK_REF_KEY; 687 key.offset = root_objectid; 688 } 689 690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 691 if (ret > 0) 692 ret = -ENOENT; 693 return ret; 694 } 695 696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 697 struct btrfs_path *path, 698 u64 bytenr, u64 parent, 699 u64 root_objectid) 700 { 701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 702 struct btrfs_key key; 703 int ret; 704 705 key.objectid = bytenr; 706 if (parent) { 707 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 708 key.offset = parent; 709 } else { 710 key.type = BTRFS_TREE_BLOCK_REF_KEY; 711 key.offset = root_objectid; 712 } 713 714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 715 btrfs_release_path(path); 716 return ret; 717 } 718 719 static inline int extent_ref_type(u64 parent, u64 owner) 720 { 721 int type; 722 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 723 if (parent > 0) 724 type = BTRFS_SHARED_BLOCK_REF_KEY; 725 else 726 type = BTRFS_TREE_BLOCK_REF_KEY; 727 } else { 728 if (parent > 0) 729 type = BTRFS_SHARED_DATA_REF_KEY; 730 else 731 type = BTRFS_EXTENT_DATA_REF_KEY; 732 } 733 return type; 734 } 735 736 static int find_next_key(struct btrfs_path *path, int level, 737 struct btrfs_key *key) 738 739 { 740 for (; level < BTRFS_MAX_LEVEL; level++) { 741 if (!path->nodes[level]) 742 break; 743 if (path->slots[level] + 1 >= 744 btrfs_header_nritems(path->nodes[level])) 745 continue; 746 if (level == 0) 747 btrfs_item_key_to_cpu(path->nodes[level], key, 748 path->slots[level] + 1); 749 else 750 btrfs_node_key_to_cpu(path->nodes[level], key, 751 path->slots[level] + 1); 752 return 0; 753 } 754 return 1; 755 } 756 757 /* 758 * look for inline back ref. if back ref is found, *ref_ret is set 759 * to the address of inline back ref, and 0 is returned. 760 * 761 * if back ref isn't found, *ref_ret is set to the address where it 762 * should be inserted, and -ENOENT is returned. 763 * 764 * if insert is true and there are too many inline back refs, the path 765 * points to the extent item, and -EAGAIN is returned. 766 * 767 * NOTE: inline back refs are ordered in the same way that back ref 768 * items in the tree are ordered. 769 */ 770 static noinline_for_stack 771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 772 struct btrfs_path *path, 773 struct btrfs_extent_inline_ref **ref_ret, 774 u64 bytenr, u64 num_bytes, 775 u64 parent, u64 root_objectid, 776 u64 owner, u64 offset, int insert) 777 { 778 struct btrfs_fs_info *fs_info = trans->fs_info; 779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 780 struct btrfs_key key; 781 struct extent_buffer *leaf; 782 struct btrfs_extent_item *ei; 783 struct btrfs_extent_inline_ref *iref; 784 u64 flags; 785 u64 item_size; 786 unsigned long ptr; 787 unsigned long end; 788 int extra_size; 789 int type; 790 int want; 791 int ret; 792 int err = 0; 793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 794 int needed; 795 796 key.objectid = bytenr; 797 key.type = BTRFS_EXTENT_ITEM_KEY; 798 key.offset = num_bytes; 799 800 want = extent_ref_type(parent, owner); 801 if (insert) { 802 extra_size = btrfs_extent_inline_ref_size(want); 803 path->search_for_extension = 1; 804 path->keep_locks = 1; 805 } else 806 extra_size = -1; 807 808 /* 809 * Owner is our level, so we can just add one to get the level for the 810 * block we are interested in. 811 */ 812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 813 key.type = BTRFS_METADATA_ITEM_KEY; 814 key.offset = owner; 815 } 816 817 again: 818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 819 if (ret < 0) { 820 err = ret; 821 goto out; 822 } 823 824 /* 825 * We may be a newly converted file system which still has the old fat 826 * extent entries for metadata, so try and see if we have one of those. 827 */ 828 if (ret > 0 && skinny_metadata) { 829 skinny_metadata = false; 830 if (path->slots[0]) { 831 path->slots[0]--; 832 btrfs_item_key_to_cpu(path->nodes[0], &key, 833 path->slots[0]); 834 if (key.objectid == bytenr && 835 key.type == BTRFS_EXTENT_ITEM_KEY && 836 key.offset == num_bytes) 837 ret = 0; 838 } 839 if (ret) { 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 btrfs_release_path(path); 844 goto again; 845 } 846 } 847 848 if (ret && !insert) { 849 err = -ENOENT; 850 goto out; 851 } else if (WARN_ON(ret)) { 852 btrfs_print_leaf(path->nodes[0]); 853 btrfs_err(fs_info, 854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 855 bytenr, num_bytes, parent, root_objectid, owner, 856 offset); 857 err = -EIO; 858 goto out; 859 } 860 861 leaf = path->nodes[0]; 862 item_size = btrfs_item_size(leaf, path->slots[0]); 863 if (unlikely(item_size < sizeof(*ei))) { 864 err = -EUCLEAN; 865 btrfs_err(fs_info, 866 "unexpected extent item size, has %llu expect >= %zu", 867 item_size, sizeof(*ei)); 868 btrfs_abort_transaction(trans, err); 869 goto out; 870 } 871 872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 873 flags = btrfs_extent_flags(leaf, ei); 874 875 ptr = (unsigned long)(ei + 1); 876 end = (unsigned long)ei + item_size; 877 878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 879 ptr += sizeof(struct btrfs_tree_block_info); 880 BUG_ON(ptr > end); 881 } 882 883 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 884 needed = BTRFS_REF_TYPE_DATA; 885 else 886 needed = BTRFS_REF_TYPE_BLOCK; 887 888 err = -ENOENT; 889 while (1) { 890 if (ptr >= end) { 891 if (ptr > end) { 892 err = -EUCLEAN; 893 btrfs_print_leaf(path->nodes[0]); 894 btrfs_crit(fs_info, 895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 896 path->slots[0], root_objectid, owner, offset, parent); 897 } 898 break; 899 } 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_REF_TYPE_INVALID) { 903 err = -EUCLEAN; 904 goto out; 905 } 906 907 if (want < type) 908 break; 909 if (want > type) { 910 ptr += btrfs_extent_inline_ref_size(type); 911 continue; 912 } 913 914 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 915 struct btrfs_extent_data_ref *dref; 916 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 917 if (match_extent_data_ref(leaf, dref, root_objectid, 918 owner, offset)) { 919 err = 0; 920 break; 921 } 922 if (hash_extent_data_ref_item(leaf, dref) < 923 hash_extent_data_ref(root_objectid, owner, offset)) 924 break; 925 } else { 926 u64 ref_offset; 927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 928 if (parent > 0) { 929 if (parent == ref_offset) { 930 err = 0; 931 break; 932 } 933 if (ref_offset < parent) 934 break; 935 } else { 936 if (root_objectid == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < root_objectid) 941 break; 942 } 943 } 944 ptr += btrfs_extent_inline_ref_size(type); 945 } 946 if (err == -ENOENT && insert) { 947 if (item_size + extra_size >= 948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 949 err = -EAGAIN; 950 goto out; 951 } 952 /* 953 * To add new inline back ref, we have to make sure 954 * there is no corresponding back ref item. 955 * For simplicity, we just do not add new inline back 956 * ref if there is any kind of item for this block 957 */ 958 if (find_next_key(path, 0, &key) == 0 && 959 key.objectid == bytenr && 960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 961 err = -EAGAIN; 962 goto out; 963 } 964 } 965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 966 out: 967 if (insert) { 968 path->keep_locks = 0; 969 path->search_for_extension = 0; 970 btrfs_unlock_up_safe(path, 1); 971 } 972 return err; 973 } 974 975 /* 976 * helper to add new inline back ref 977 */ 978 static noinline_for_stack 979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 980 struct btrfs_path *path, 981 struct btrfs_extent_inline_ref *iref, 982 u64 parent, u64 root_objectid, 983 u64 owner, u64 offset, int refs_to_add, 984 struct btrfs_delayed_extent_op *extent_op) 985 { 986 struct extent_buffer *leaf; 987 struct btrfs_extent_item *ei; 988 unsigned long ptr; 989 unsigned long end; 990 unsigned long item_offset; 991 u64 refs; 992 int size; 993 int type; 994 995 leaf = path->nodes[0]; 996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 997 item_offset = (unsigned long)iref - (unsigned long)ei; 998 999 type = extent_ref_type(parent, owner); 1000 size = btrfs_extent_inline_ref_size(type); 1001 1002 btrfs_extend_item(trans, path, size); 1003 1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1005 refs = btrfs_extent_refs(leaf, ei); 1006 refs += refs_to_add; 1007 btrfs_set_extent_refs(leaf, ei, refs); 1008 if (extent_op) 1009 __run_delayed_extent_op(extent_op, leaf, ei); 1010 1011 ptr = (unsigned long)ei + item_offset; 1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1013 if (ptr < end - size) 1014 memmove_extent_buffer(leaf, ptr + size, ptr, 1015 end - size - ptr); 1016 1017 iref = (struct btrfs_extent_inline_ref *)ptr; 1018 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1020 struct btrfs_extent_data_ref *dref; 1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1027 struct btrfs_shared_data_ref *sref; 1028 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1033 } else { 1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1035 } 1036 btrfs_mark_buffer_dirty(trans, leaf); 1037 } 1038 1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1040 struct btrfs_path *path, 1041 struct btrfs_extent_inline_ref **ref_ret, 1042 u64 bytenr, u64 num_bytes, u64 parent, 1043 u64 root_objectid, u64 owner, u64 offset) 1044 { 1045 int ret; 1046 1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1048 num_bytes, parent, root_objectid, 1049 owner, offset, 0); 1050 if (ret != -ENOENT) 1051 return ret; 1052 1053 btrfs_release_path(path); 1054 *ref_ret = NULL; 1055 1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1058 root_objectid); 1059 } else { 1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1061 root_objectid, owner, offset); 1062 } 1063 return ret; 1064 } 1065 1066 /* 1067 * helper to update/remove inline back ref 1068 */ 1069 static noinline_for_stack int update_inline_extent_backref( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_extent_inline_ref *iref, 1073 int refs_to_mod, 1074 struct btrfs_delayed_extent_op *extent_op) 1075 { 1076 struct extent_buffer *leaf = path->nodes[0]; 1077 struct btrfs_fs_info *fs_info = leaf->fs_info; 1078 struct btrfs_extent_item *ei; 1079 struct btrfs_extent_data_ref *dref = NULL; 1080 struct btrfs_shared_data_ref *sref = NULL; 1081 unsigned long ptr; 1082 unsigned long end; 1083 u32 item_size; 1084 int size; 1085 int type; 1086 u64 refs; 1087 1088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1089 refs = btrfs_extent_refs(leaf, ei); 1090 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1091 struct btrfs_key key; 1092 u32 extent_size; 1093 1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1095 if (key.type == BTRFS_METADATA_ITEM_KEY) 1096 extent_size = fs_info->nodesize; 1097 else 1098 extent_size = key.offset; 1099 btrfs_print_leaf(leaf); 1100 btrfs_err(fs_info, 1101 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1102 key.objectid, extent_size, refs_to_mod, refs); 1103 return -EUCLEAN; 1104 } 1105 refs += refs_to_mod; 1106 btrfs_set_extent_refs(leaf, ei, refs); 1107 if (extent_op) 1108 __run_delayed_extent_op(extent_op, leaf, ei); 1109 1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1111 /* 1112 * Function btrfs_get_extent_inline_ref_type() has already printed 1113 * error messages. 1114 */ 1115 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1116 return -EUCLEAN; 1117 1118 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1119 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1120 refs = btrfs_extent_data_ref_count(leaf, dref); 1121 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1122 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1123 refs = btrfs_shared_data_ref_count(leaf, sref); 1124 } else { 1125 refs = 1; 1126 /* 1127 * For tree blocks we can only drop one ref for it, and tree 1128 * blocks should not have refs > 1. 1129 * 1130 * Furthermore if we're inserting a new inline backref, we 1131 * won't reach this path either. That would be 1132 * setup_inline_extent_backref(). 1133 */ 1134 if (unlikely(refs_to_mod != -1)) { 1135 struct btrfs_key key; 1136 1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1138 1139 btrfs_print_leaf(leaf); 1140 btrfs_err(fs_info, 1141 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1142 key.objectid, refs_to_mod); 1143 return -EUCLEAN; 1144 } 1145 } 1146 1147 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1148 struct btrfs_key key; 1149 u32 extent_size; 1150 1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1152 if (key.type == BTRFS_METADATA_ITEM_KEY) 1153 extent_size = fs_info->nodesize; 1154 else 1155 extent_size = key.offset; 1156 btrfs_print_leaf(leaf); 1157 btrfs_err(fs_info, 1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1159 (unsigned long)iref, key.objectid, extent_size, 1160 refs_to_mod, refs); 1161 return -EUCLEAN; 1162 } 1163 refs += refs_to_mod; 1164 1165 if (refs > 0) { 1166 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1167 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1168 else 1169 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1170 } else { 1171 size = btrfs_extent_inline_ref_size(type); 1172 item_size = btrfs_item_size(leaf, path->slots[0]); 1173 ptr = (unsigned long)iref; 1174 end = (unsigned long)ei + item_size; 1175 if (ptr + size < end) 1176 memmove_extent_buffer(leaf, ptr, ptr + size, 1177 end - ptr - size); 1178 item_size -= size; 1179 btrfs_truncate_item(trans, path, item_size, 1); 1180 } 1181 btrfs_mark_buffer_dirty(trans, leaf); 1182 return 0; 1183 } 1184 1185 static noinline_for_stack 1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1187 struct btrfs_path *path, 1188 u64 bytenr, u64 num_bytes, u64 parent, 1189 u64 root_objectid, u64 owner, 1190 u64 offset, int refs_to_add, 1191 struct btrfs_delayed_extent_op *extent_op) 1192 { 1193 struct btrfs_extent_inline_ref *iref; 1194 int ret; 1195 1196 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1197 num_bytes, parent, root_objectid, 1198 owner, offset, 1); 1199 if (ret == 0) { 1200 /* 1201 * We're adding refs to a tree block we already own, this 1202 * should not happen at all. 1203 */ 1204 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1205 btrfs_print_leaf(path->nodes[0]); 1206 btrfs_crit(trans->fs_info, 1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1208 bytenr, num_bytes, root_objectid, path->slots[0]); 1209 return -EUCLEAN; 1210 } 1211 ret = update_inline_extent_backref(trans, path, iref, 1212 refs_to_add, extent_op); 1213 } else if (ret == -ENOENT) { 1214 setup_inline_extent_backref(trans, path, iref, parent, 1215 root_objectid, owner, offset, 1216 refs_to_add, extent_op); 1217 ret = 0; 1218 } 1219 return ret; 1220 } 1221 1222 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, 1225 struct btrfs_extent_inline_ref *iref, 1226 int refs_to_drop, int is_data) 1227 { 1228 int ret = 0; 1229 1230 BUG_ON(!is_data && refs_to_drop != 1); 1231 if (iref) 1232 ret = update_inline_extent_backref(trans, path, iref, 1233 -refs_to_drop, NULL); 1234 else if (is_data) 1235 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1236 else 1237 ret = btrfs_del_item(trans, root, path); 1238 return ret; 1239 } 1240 1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1242 u64 *discarded_bytes) 1243 { 1244 int j, ret = 0; 1245 u64 bytes_left, end; 1246 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1247 1248 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1249 if (start != aligned_start) { 1250 len -= aligned_start - start; 1251 len = round_down(len, 1 << SECTOR_SHIFT); 1252 start = aligned_start; 1253 } 1254 1255 *discarded_bytes = 0; 1256 1257 if (!len) 1258 return 0; 1259 1260 end = start + len; 1261 bytes_left = len; 1262 1263 /* Skip any superblocks on this device. */ 1264 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1265 u64 sb_start = btrfs_sb_offset(j); 1266 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1267 u64 size = sb_start - start; 1268 1269 if (!in_range(sb_start, start, bytes_left) && 1270 !in_range(sb_end, start, bytes_left) && 1271 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1272 continue; 1273 1274 /* 1275 * Superblock spans beginning of range. Adjust start and 1276 * try again. 1277 */ 1278 if (sb_start <= start) { 1279 start += sb_end - start; 1280 if (start > end) { 1281 bytes_left = 0; 1282 break; 1283 } 1284 bytes_left = end - start; 1285 continue; 1286 } 1287 1288 if (size) { 1289 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1290 size >> SECTOR_SHIFT, 1291 GFP_NOFS); 1292 if (!ret) 1293 *discarded_bytes += size; 1294 else if (ret != -EOPNOTSUPP) 1295 return ret; 1296 } 1297 1298 start = sb_end; 1299 if (start > end) { 1300 bytes_left = 0; 1301 break; 1302 } 1303 bytes_left = end - start; 1304 } 1305 1306 while (bytes_left) { 1307 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); 1308 1309 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1310 bytes_to_discard >> SECTOR_SHIFT, 1311 GFP_NOFS); 1312 1313 if (ret) { 1314 if (ret != -EOPNOTSUPP) 1315 break; 1316 continue; 1317 } 1318 1319 start += bytes_to_discard; 1320 bytes_left -= bytes_to_discard; 1321 *discarded_bytes += bytes_to_discard; 1322 } 1323 1324 return ret; 1325 } 1326 1327 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1328 { 1329 struct btrfs_device *dev = stripe->dev; 1330 struct btrfs_fs_info *fs_info = dev->fs_info; 1331 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1332 u64 phys = stripe->physical; 1333 u64 len = stripe->length; 1334 u64 discarded = 0; 1335 int ret = 0; 1336 1337 /* Zone reset on a zoned filesystem */ 1338 if (btrfs_can_zone_reset(dev, phys, len)) { 1339 u64 src_disc; 1340 1341 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1342 if (ret) 1343 goto out; 1344 1345 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1346 dev != dev_replace->srcdev) 1347 goto out; 1348 1349 src_disc = discarded; 1350 1351 /* Send to replace target as well */ 1352 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1353 &discarded); 1354 discarded += src_disc; 1355 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1356 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1357 } else { 1358 ret = 0; 1359 *bytes = 0; 1360 } 1361 1362 out: 1363 *bytes = discarded; 1364 return ret; 1365 } 1366 1367 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1368 u64 num_bytes, u64 *actual_bytes) 1369 { 1370 int ret = 0; 1371 u64 discarded_bytes = 0; 1372 u64 end = bytenr + num_bytes; 1373 u64 cur = bytenr; 1374 1375 /* 1376 * Avoid races with device replace and make sure the devices in the 1377 * stripes don't go away while we are discarding. 1378 */ 1379 btrfs_bio_counter_inc_blocked(fs_info); 1380 while (cur < end) { 1381 struct btrfs_discard_stripe *stripes; 1382 unsigned int num_stripes; 1383 int i; 1384 1385 num_bytes = end - cur; 1386 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1387 if (IS_ERR(stripes)) { 1388 ret = PTR_ERR(stripes); 1389 if (ret == -EOPNOTSUPP) 1390 ret = 0; 1391 break; 1392 } 1393 1394 for (i = 0; i < num_stripes; i++) { 1395 struct btrfs_discard_stripe *stripe = stripes + i; 1396 u64 bytes; 1397 1398 if (!stripe->dev->bdev) { 1399 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1400 continue; 1401 } 1402 1403 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1404 &stripe->dev->dev_state)) 1405 continue; 1406 1407 ret = do_discard_extent(stripe, &bytes); 1408 if (ret) { 1409 /* 1410 * Keep going if discard is not supported by the 1411 * device. 1412 */ 1413 if (ret != -EOPNOTSUPP) 1414 break; 1415 ret = 0; 1416 } else { 1417 discarded_bytes += bytes; 1418 } 1419 } 1420 kfree(stripes); 1421 if (ret) 1422 break; 1423 cur += num_bytes; 1424 } 1425 btrfs_bio_counter_dec(fs_info); 1426 if (actual_bytes) 1427 *actual_bytes = discarded_bytes; 1428 return ret; 1429 } 1430 1431 /* Can return -ENOMEM */ 1432 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1433 struct btrfs_ref *generic_ref) 1434 { 1435 struct btrfs_fs_info *fs_info = trans->fs_info; 1436 int ret; 1437 1438 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1439 generic_ref->action); 1440 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1441 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1442 1443 if (generic_ref->type == BTRFS_REF_METADATA) 1444 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1445 else 1446 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1447 1448 btrfs_ref_tree_mod(fs_info, generic_ref); 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * __btrfs_inc_extent_ref - insert backreference for a given extent 1455 * 1456 * The counterpart is in __btrfs_free_extent(), with examples and more details 1457 * how it works. 1458 * 1459 * @trans: Handle of transaction 1460 * 1461 * @node: The delayed ref node used to get the bytenr/length for 1462 * extent whose references are incremented. 1463 * 1464 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1465 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1466 * bytenr of the parent block. Since new extents are always 1467 * created with indirect references, this will only be the case 1468 * when relocating a shared extent. In that case, root_objectid 1469 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1470 * be 0 1471 * 1472 * @root_objectid: The id of the root where this modification has originated, 1473 * this can be either one of the well-known metadata trees or 1474 * the subvolume id which references this extent. 1475 * 1476 * @owner: For data extents it is the inode number of the owning file. 1477 * For metadata extents this parameter holds the level in the 1478 * tree of the extent. 1479 * 1480 * @offset: For metadata extents the offset is ignored and is currently 1481 * always passed as 0. For data extents it is the fileoffset 1482 * this extent belongs to. 1483 * 1484 * @refs_to_add Number of references to add 1485 * 1486 * @extent_op Pointer to a structure, holding information necessary when 1487 * updating a tree block's flags 1488 * 1489 */ 1490 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1491 struct btrfs_delayed_ref_node *node, 1492 u64 parent, u64 root_objectid, 1493 u64 owner, u64 offset, int refs_to_add, 1494 struct btrfs_delayed_extent_op *extent_op) 1495 { 1496 struct btrfs_path *path; 1497 struct extent_buffer *leaf; 1498 struct btrfs_extent_item *item; 1499 struct btrfs_key key; 1500 u64 bytenr = node->bytenr; 1501 u64 num_bytes = node->num_bytes; 1502 u64 refs; 1503 int ret; 1504 1505 path = btrfs_alloc_path(); 1506 if (!path) 1507 return -ENOMEM; 1508 1509 /* this will setup the path even if it fails to insert the back ref */ 1510 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1511 parent, root_objectid, owner, 1512 offset, refs_to_add, extent_op); 1513 if ((ret < 0 && ret != -EAGAIN) || !ret) 1514 goto out; 1515 1516 /* 1517 * Ok we had -EAGAIN which means we didn't have space to insert and 1518 * inline extent ref, so just update the reference count and add a 1519 * normal backref. 1520 */ 1521 leaf = path->nodes[0]; 1522 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1523 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1524 refs = btrfs_extent_refs(leaf, item); 1525 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1526 if (extent_op) 1527 __run_delayed_extent_op(extent_op, leaf, item); 1528 1529 btrfs_mark_buffer_dirty(trans, leaf); 1530 btrfs_release_path(path); 1531 1532 /* now insert the actual backref */ 1533 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1534 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1535 root_objectid); 1536 else 1537 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1538 root_objectid, owner, offset, 1539 refs_to_add); 1540 1541 if (ret) 1542 btrfs_abort_transaction(trans, ret); 1543 out: 1544 btrfs_free_path(path); 1545 return ret; 1546 } 1547 1548 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1549 struct btrfs_delayed_ref_node *node, 1550 struct btrfs_delayed_extent_op *extent_op, 1551 bool insert_reserved) 1552 { 1553 int ret = 0; 1554 struct btrfs_delayed_data_ref *ref; 1555 struct btrfs_key ins; 1556 u64 parent = 0; 1557 u64 ref_root = 0; 1558 u64 flags = 0; 1559 1560 ins.objectid = node->bytenr; 1561 ins.offset = node->num_bytes; 1562 ins.type = BTRFS_EXTENT_ITEM_KEY; 1563 1564 ref = btrfs_delayed_node_to_data_ref(node); 1565 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1566 1567 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1568 parent = ref->parent; 1569 ref_root = ref->root; 1570 1571 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1572 if (extent_op) 1573 flags |= extent_op->flags_to_set; 1574 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1575 flags, ref->objectid, 1576 ref->offset, &ins, 1577 node->ref_mod); 1578 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1579 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1580 ref->objectid, ref->offset, 1581 node->ref_mod, extent_op); 1582 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1583 ret = __btrfs_free_extent(trans, node, parent, 1584 ref_root, ref->objectid, 1585 ref->offset, node->ref_mod, 1586 extent_op); 1587 } else { 1588 BUG(); 1589 } 1590 return ret; 1591 } 1592 1593 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1594 struct extent_buffer *leaf, 1595 struct btrfs_extent_item *ei) 1596 { 1597 u64 flags = btrfs_extent_flags(leaf, ei); 1598 if (extent_op->update_flags) { 1599 flags |= extent_op->flags_to_set; 1600 btrfs_set_extent_flags(leaf, ei, flags); 1601 } 1602 1603 if (extent_op->update_key) { 1604 struct btrfs_tree_block_info *bi; 1605 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1606 bi = (struct btrfs_tree_block_info *)(ei + 1); 1607 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1608 } 1609 } 1610 1611 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1612 struct btrfs_delayed_ref_head *head, 1613 struct btrfs_delayed_extent_op *extent_op) 1614 { 1615 struct btrfs_fs_info *fs_info = trans->fs_info; 1616 struct btrfs_root *root; 1617 struct btrfs_key key; 1618 struct btrfs_path *path; 1619 struct btrfs_extent_item *ei; 1620 struct extent_buffer *leaf; 1621 u32 item_size; 1622 int ret; 1623 int err = 0; 1624 int metadata = 1; 1625 1626 if (TRANS_ABORTED(trans)) 1627 return 0; 1628 1629 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1630 metadata = 0; 1631 1632 path = btrfs_alloc_path(); 1633 if (!path) 1634 return -ENOMEM; 1635 1636 key.objectid = head->bytenr; 1637 1638 if (metadata) { 1639 key.type = BTRFS_METADATA_ITEM_KEY; 1640 key.offset = extent_op->level; 1641 } else { 1642 key.type = BTRFS_EXTENT_ITEM_KEY; 1643 key.offset = head->num_bytes; 1644 } 1645 1646 root = btrfs_extent_root(fs_info, key.objectid); 1647 again: 1648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1649 if (ret < 0) { 1650 err = ret; 1651 goto out; 1652 } 1653 if (ret > 0) { 1654 if (metadata) { 1655 if (path->slots[0] > 0) { 1656 path->slots[0]--; 1657 btrfs_item_key_to_cpu(path->nodes[0], &key, 1658 path->slots[0]); 1659 if (key.objectid == head->bytenr && 1660 key.type == BTRFS_EXTENT_ITEM_KEY && 1661 key.offset == head->num_bytes) 1662 ret = 0; 1663 } 1664 if (ret > 0) { 1665 btrfs_release_path(path); 1666 metadata = 0; 1667 1668 key.objectid = head->bytenr; 1669 key.offset = head->num_bytes; 1670 key.type = BTRFS_EXTENT_ITEM_KEY; 1671 goto again; 1672 } 1673 } else { 1674 err = -EUCLEAN; 1675 btrfs_err(fs_info, 1676 "missing extent item for extent %llu num_bytes %llu level %d", 1677 head->bytenr, head->num_bytes, extent_op->level); 1678 goto out; 1679 } 1680 } 1681 1682 leaf = path->nodes[0]; 1683 item_size = btrfs_item_size(leaf, path->slots[0]); 1684 1685 if (unlikely(item_size < sizeof(*ei))) { 1686 err = -EUCLEAN; 1687 btrfs_err(fs_info, 1688 "unexpected extent item size, has %u expect >= %zu", 1689 item_size, sizeof(*ei)); 1690 btrfs_abort_transaction(trans, err); 1691 goto out; 1692 } 1693 1694 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1695 __run_delayed_extent_op(extent_op, leaf, ei); 1696 1697 btrfs_mark_buffer_dirty(trans, leaf); 1698 out: 1699 btrfs_free_path(path); 1700 return err; 1701 } 1702 1703 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1704 struct btrfs_delayed_ref_node *node, 1705 struct btrfs_delayed_extent_op *extent_op, 1706 bool insert_reserved) 1707 { 1708 int ret = 0; 1709 struct btrfs_delayed_tree_ref *ref; 1710 u64 parent = 0; 1711 u64 ref_root = 0; 1712 1713 ref = btrfs_delayed_node_to_tree_ref(node); 1714 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1715 1716 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1717 parent = ref->parent; 1718 ref_root = ref->root; 1719 1720 if (unlikely(node->ref_mod != 1)) { 1721 btrfs_err(trans->fs_info, 1722 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1723 node->bytenr, node->ref_mod, node->action, ref_root, 1724 parent); 1725 return -EUCLEAN; 1726 } 1727 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1728 BUG_ON(!extent_op || !extent_op->update_flags); 1729 ret = alloc_reserved_tree_block(trans, node, extent_op); 1730 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1731 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1732 ref->level, 0, 1, extent_op); 1733 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1734 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1735 ref->level, 0, 1, extent_op); 1736 } else { 1737 BUG(); 1738 } 1739 return ret; 1740 } 1741 1742 /* helper function to actually process a single delayed ref entry */ 1743 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1744 struct btrfs_delayed_ref_node *node, 1745 struct btrfs_delayed_extent_op *extent_op, 1746 bool insert_reserved) 1747 { 1748 int ret = 0; 1749 1750 if (TRANS_ABORTED(trans)) { 1751 if (insert_reserved) 1752 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1753 return 0; 1754 } 1755 1756 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1757 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1758 ret = run_delayed_tree_ref(trans, node, extent_op, 1759 insert_reserved); 1760 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1761 node->type == BTRFS_SHARED_DATA_REF_KEY) 1762 ret = run_delayed_data_ref(trans, node, extent_op, 1763 insert_reserved); 1764 else 1765 BUG(); 1766 if (ret && insert_reserved) 1767 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1768 if (ret < 0) 1769 btrfs_err(trans->fs_info, 1770 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1771 node->bytenr, node->num_bytes, node->type, 1772 node->action, node->ref_mod, ret); 1773 return ret; 1774 } 1775 1776 static inline struct btrfs_delayed_ref_node * 1777 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1778 { 1779 struct btrfs_delayed_ref_node *ref; 1780 1781 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1782 return NULL; 1783 1784 /* 1785 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1786 * This is to prevent a ref count from going down to zero, which deletes 1787 * the extent item from the extent tree, when there still are references 1788 * to add, which would fail because they would not find the extent item. 1789 */ 1790 if (!list_empty(&head->ref_add_list)) 1791 return list_first_entry(&head->ref_add_list, 1792 struct btrfs_delayed_ref_node, add_list); 1793 1794 ref = rb_entry(rb_first_cached(&head->ref_tree), 1795 struct btrfs_delayed_ref_node, ref_node); 1796 ASSERT(list_empty(&ref->add_list)); 1797 return ref; 1798 } 1799 1800 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1801 struct btrfs_delayed_ref_head *head) 1802 { 1803 spin_lock(&delayed_refs->lock); 1804 head->processing = false; 1805 delayed_refs->num_heads_ready++; 1806 spin_unlock(&delayed_refs->lock); 1807 btrfs_delayed_ref_unlock(head); 1808 } 1809 1810 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1811 struct btrfs_delayed_ref_head *head) 1812 { 1813 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1814 1815 if (!extent_op) 1816 return NULL; 1817 1818 if (head->must_insert_reserved) { 1819 head->extent_op = NULL; 1820 btrfs_free_delayed_extent_op(extent_op); 1821 return NULL; 1822 } 1823 return extent_op; 1824 } 1825 1826 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1827 struct btrfs_delayed_ref_head *head) 1828 { 1829 struct btrfs_delayed_extent_op *extent_op; 1830 int ret; 1831 1832 extent_op = cleanup_extent_op(head); 1833 if (!extent_op) 1834 return 0; 1835 head->extent_op = NULL; 1836 spin_unlock(&head->lock); 1837 ret = run_delayed_extent_op(trans, head, extent_op); 1838 btrfs_free_delayed_extent_op(extent_op); 1839 return ret ? ret : 1; 1840 } 1841 1842 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1843 struct btrfs_delayed_ref_root *delayed_refs, 1844 struct btrfs_delayed_ref_head *head) 1845 { 1846 int nr_items = 1; /* Dropping this ref head update. */ 1847 1848 /* 1849 * We had csum deletions accounted for in our delayed refs rsv, we need 1850 * to drop the csum leaves for this update from our delayed_refs_rsv. 1851 */ 1852 if (head->total_ref_mod < 0 && head->is_data) { 1853 spin_lock(&delayed_refs->lock); 1854 delayed_refs->pending_csums -= head->num_bytes; 1855 spin_unlock(&delayed_refs->lock); 1856 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1857 } 1858 1859 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1860 } 1861 1862 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1863 struct btrfs_delayed_ref_head *head) 1864 { 1865 1866 struct btrfs_fs_info *fs_info = trans->fs_info; 1867 struct btrfs_delayed_ref_root *delayed_refs; 1868 int ret; 1869 1870 delayed_refs = &trans->transaction->delayed_refs; 1871 1872 ret = run_and_cleanup_extent_op(trans, head); 1873 if (ret < 0) { 1874 unselect_delayed_ref_head(delayed_refs, head); 1875 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1876 return ret; 1877 } else if (ret) { 1878 return ret; 1879 } 1880 1881 /* 1882 * Need to drop our head ref lock and re-acquire the delayed ref lock 1883 * and then re-check to make sure nobody got added. 1884 */ 1885 spin_unlock(&head->lock); 1886 spin_lock(&delayed_refs->lock); 1887 spin_lock(&head->lock); 1888 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1889 spin_unlock(&head->lock); 1890 spin_unlock(&delayed_refs->lock); 1891 return 1; 1892 } 1893 btrfs_delete_ref_head(delayed_refs, head); 1894 spin_unlock(&head->lock); 1895 spin_unlock(&delayed_refs->lock); 1896 1897 if (head->must_insert_reserved) { 1898 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1899 if (head->is_data) { 1900 struct btrfs_root *csum_root; 1901 1902 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1903 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1904 head->num_bytes); 1905 } 1906 } 1907 1908 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1909 1910 trace_run_delayed_ref_head(fs_info, head, 0); 1911 btrfs_delayed_ref_unlock(head); 1912 btrfs_put_delayed_ref_head(head); 1913 return ret; 1914 } 1915 1916 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1917 struct btrfs_trans_handle *trans) 1918 { 1919 struct btrfs_delayed_ref_root *delayed_refs = 1920 &trans->transaction->delayed_refs; 1921 struct btrfs_delayed_ref_head *head = NULL; 1922 int ret; 1923 1924 spin_lock(&delayed_refs->lock); 1925 head = btrfs_select_ref_head(delayed_refs); 1926 if (!head) { 1927 spin_unlock(&delayed_refs->lock); 1928 return head; 1929 } 1930 1931 /* 1932 * Grab the lock that says we are going to process all the refs for 1933 * this head 1934 */ 1935 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1936 spin_unlock(&delayed_refs->lock); 1937 1938 /* 1939 * We may have dropped the spin lock to get the head mutex lock, and 1940 * that might have given someone else time to free the head. If that's 1941 * true, it has been removed from our list and we can move on. 1942 */ 1943 if (ret == -EAGAIN) 1944 head = ERR_PTR(-EAGAIN); 1945 1946 return head; 1947 } 1948 1949 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1950 struct btrfs_delayed_ref_head *locked_ref) 1951 { 1952 struct btrfs_fs_info *fs_info = trans->fs_info; 1953 struct btrfs_delayed_ref_root *delayed_refs; 1954 struct btrfs_delayed_extent_op *extent_op; 1955 struct btrfs_delayed_ref_node *ref; 1956 bool must_insert_reserved; 1957 int ret; 1958 1959 delayed_refs = &trans->transaction->delayed_refs; 1960 1961 lockdep_assert_held(&locked_ref->mutex); 1962 lockdep_assert_held(&locked_ref->lock); 1963 1964 while ((ref = select_delayed_ref(locked_ref))) { 1965 if (ref->seq && 1966 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1967 spin_unlock(&locked_ref->lock); 1968 unselect_delayed_ref_head(delayed_refs, locked_ref); 1969 return -EAGAIN; 1970 } 1971 1972 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1973 RB_CLEAR_NODE(&ref->ref_node); 1974 if (!list_empty(&ref->add_list)) 1975 list_del(&ref->add_list); 1976 /* 1977 * When we play the delayed ref, also correct the ref_mod on 1978 * head 1979 */ 1980 switch (ref->action) { 1981 case BTRFS_ADD_DELAYED_REF: 1982 case BTRFS_ADD_DELAYED_EXTENT: 1983 locked_ref->ref_mod -= ref->ref_mod; 1984 break; 1985 case BTRFS_DROP_DELAYED_REF: 1986 locked_ref->ref_mod += ref->ref_mod; 1987 break; 1988 default: 1989 WARN_ON(1); 1990 } 1991 atomic_dec(&delayed_refs->num_entries); 1992 1993 /* 1994 * Record the must_insert_reserved flag before we drop the 1995 * spin lock. 1996 */ 1997 must_insert_reserved = locked_ref->must_insert_reserved; 1998 locked_ref->must_insert_reserved = false; 1999 2000 extent_op = locked_ref->extent_op; 2001 locked_ref->extent_op = NULL; 2002 spin_unlock(&locked_ref->lock); 2003 2004 ret = run_one_delayed_ref(trans, ref, extent_op, 2005 must_insert_reserved); 2006 2007 btrfs_free_delayed_extent_op(extent_op); 2008 if (ret) { 2009 unselect_delayed_ref_head(delayed_refs, locked_ref); 2010 btrfs_put_delayed_ref(ref); 2011 return ret; 2012 } 2013 2014 btrfs_put_delayed_ref(ref); 2015 cond_resched(); 2016 2017 spin_lock(&locked_ref->lock); 2018 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2019 } 2020 2021 return 0; 2022 } 2023 2024 /* 2025 * Returns 0 on success or if called with an already aborted transaction. 2026 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2027 */ 2028 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2029 unsigned long nr) 2030 { 2031 struct btrfs_fs_info *fs_info = trans->fs_info; 2032 struct btrfs_delayed_ref_root *delayed_refs; 2033 struct btrfs_delayed_ref_head *locked_ref = NULL; 2034 int ret; 2035 unsigned long count = 0; 2036 2037 delayed_refs = &trans->transaction->delayed_refs; 2038 do { 2039 if (!locked_ref) { 2040 locked_ref = btrfs_obtain_ref_head(trans); 2041 if (IS_ERR_OR_NULL(locked_ref)) { 2042 if (PTR_ERR(locked_ref) == -EAGAIN) { 2043 continue; 2044 } else { 2045 break; 2046 } 2047 } 2048 count++; 2049 } 2050 /* 2051 * We need to try and merge add/drops of the same ref since we 2052 * can run into issues with relocate dropping the implicit ref 2053 * and then it being added back again before the drop can 2054 * finish. If we merged anything we need to re-loop so we can 2055 * get a good ref. 2056 * Or we can get node references of the same type that weren't 2057 * merged when created due to bumps in the tree mod seq, and 2058 * we need to merge them to prevent adding an inline extent 2059 * backref before dropping it (triggering a BUG_ON at 2060 * insert_inline_extent_backref()). 2061 */ 2062 spin_lock(&locked_ref->lock); 2063 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2064 2065 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref); 2066 if (ret < 0 && ret != -EAGAIN) { 2067 /* 2068 * Error, btrfs_run_delayed_refs_for_head already 2069 * unlocked everything so just bail out 2070 */ 2071 return ret; 2072 } else if (!ret) { 2073 /* 2074 * Success, perform the usual cleanup of a processed 2075 * head 2076 */ 2077 ret = cleanup_ref_head(trans, locked_ref); 2078 if (ret > 0 ) { 2079 /* We dropped our lock, we need to loop. */ 2080 ret = 0; 2081 continue; 2082 } else if (ret) { 2083 return ret; 2084 } 2085 } 2086 2087 /* 2088 * Either success case or btrfs_run_delayed_refs_for_head 2089 * returned -EAGAIN, meaning we need to select another head 2090 */ 2091 2092 locked_ref = NULL; 2093 cond_resched(); 2094 } while ((nr != -1 && count < nr) || locked_ref); 2095 2096 return 0; 2097 } 2098 2099 #ifdef SCRAMBLE_DELAYED_REFS 2100 /* 2101 * Normally delayed refs get processed in ascending bytenr order. This 2102 * correlates in most cases to the order added. To expose dependencies on this 2103 * order, we start to process the tree in the middle instead of the beginning 2104 */ 2105 static u64 find_middle(struct rb_root *root) 2106 { 2107 struct rb_node *n = root->rb_node; 2108 struct btrfs_delayed_ref_node *entry; 2109 int alt = 1; 2110 u64 middle; 2111 u64 first = 0, last = 0; 2112 2113 n = rb_first(root); 2114 if (n) { 2115 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2116 first = entry->bytenr; 2117 } 2118 n = rb_last(root); 2119 if (n) { 2120 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2121 last = entry->bytenr; 2122 } 2123 n = root->rb_node; 2124 2125 while (n) { 2126 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2127 WARN_ON(!entry->in_tree); 2128 2129 middle = entry->bytenr; 2130 2131 if (alt) 2132 n = n->rb_left; 2133 else 2134 n = n->rb_right; 2135 2136 alt = 1 - alt; 2137 } 2138 return middle; 2139 } 2140 #endif 2141 2142 /* 2143 * this starts processing the delayed reference count updates and 2144 * extent insertions we have queued up so far. count can be 2145 * 0, which means to process everything in the tree at the start 2146 * of the run (but not newly added entries), or it can be some target 2147 * number you'd like to process. 2148 * 2149 * Returns 0 on success or if called with an aborted transaction 2150 * Returns <0 on error and aborts the transaction 2151 */ 2152 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2153 unsigned long count) 2154 { 2155 struct btrfs_fs_info *fs_info = trans->fs_info; 2156 struct rb_node *node; 2157 struct btrfs_delayed_ref_root *delayed_refs; 2158 struct btrfs_delayed_ref_head *head; 2159 int ret; 2160 int run_all = count == (unsigned long)-1; 2161 2162 /* We'll clean this up in btrfs_cleanup_transaction */ 2163 if (TRANS_ABORTED(trans)) 2164 return 0; 2165 2166 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2167 return 0; 2168 2169 delayed_refs = &trans->transaction->delayed_refs; 2170 if (count == 0) 2171 count = delayed_refs->num_heads_ready; 2172 2173 again: 2174 #ifdef SCRAMBLE_DELAYED_REFS 2175 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2176 #endif 2177 ret = __btrfs_run_delayed_refs(trans, count); 2178 if (ret < 0) { 2179 btrfs_abort_transaction(trans, ret); 2180 return ret; 2181 } 2182 2183 if (run_all) { 2184 btrfs_create_pending_block_groups(trans); 2185 2186 spin_lock(&delayed_refs->lock); 2187 node = rb_first_cached(&delayed_refs->href_root); 2188 if (!node) { 2189 spin_unlock(&delayed_refs->lock); 2190 goto out; 2191 } 2192 head = rb_entry(node, struct btrfs_delayed_ref_head, 2193 href_node); 2194 refcount_inc(&head->refs); 2195 spin_unlock(&delayed_refs->lock); 2196 2197 /* Mutex was contended, block until it's released and retry. */ 2198 mutex_lock(&head->mutex); 2199 mutex_unlock(&head->mutex); 2200 2201 btrfs_put_delayed_ref_head(head); 2202 cond_resched(); 2203 goto again; 2204 } 2205 out: 2206 return 0; 2207 } 2208 2209 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2210 struct extent_buffer *eb, u64 flags) 2211 { 2212 struct btrfs_delayed_extent_op *extent_op; 2213 int level = btrfs_header_level(eb); 2214 int ret; 2215 2216 extent_op = btrfs_alloc_delayed_extent_op(); 2217 if (!extent_op) 2218 return -ENOMEM; 2219 2220 extent_op->flags_to_set = flags; 2221 extent_op->update_flags = true; 2222 extent_op->update_key = false; 2223 extent_op->level = level; 2224 2225 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2226 if (ret) 2227 btrfs_free_delayed_extent_op(extent_op); 2228 return ret; 2229 } 2230 2231 static noinline int check_delayed_ref(struct btrfs_root *root, 2232 struct btrfs_path *path, 2233 u64 objectid, u64 offset, u64 bytenr) 2234 { 2235 struct btrfs_delayed_ref_head *head; 2236 struct btrfs_delayed_ref_node *ref; 2237 struct btrfs_delayed_data_ref *data_ref; 2238 struct btrfs_delayed_ref_root *delayed_refs; 2239 struct btrfs_transaction *cur_trans; 2240 struct rb_node *node; 2241 int ret = 0; 2242 2243 spin_lock(&root->fs_info->trans_lock); 2244 cur_trans = root->fs_info->running_transaction; 2245 if (cur_trans) 2246 refcount_inc(&cur_trans->use_count); 2247 spin_unlock(&root->fs_info->trans_lock); 2248 if (!cur_trans) 2249 return 0; 2250 2251 delayed_refs = &cur_trans->delayed_refs; 2252 spin_lock(&delayed_refs->lock); 2253 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2254 if (!head) { 2255 spin_unlock(&delayed_refs->lock); 2256 btrfs_put_transaction(cur_trans); 2257 return 0; 2258 } 2259 2260 if (!mutex_trylock(&head->mutex)) { 2261 if (path->nowait) { 2262 spin_unlock(&delayed_refs->lock); 2263 btrfs_put_transaction(cur_trans); 2264 return -EAGAIN; 2265 } 2266 2267 refcount_inc(&head->refs); 2268 spin_unlock(&delayed_refs->lock); 2269 2270 btrfs_release_path(path); 2271 2272 /* 2273 * Mutex was contended, block until it's released and let 2274 * caller try again 2275 */ 2276 mutex_lock(&head->mutex); 2277 mutex_unlock(&head->mutex); 2278 btrfs_put_delayed_ref_head(head); 2279 btrfs_put_transaction(cur_trans); 2280 return -EAGAIN; 2281 } 2282 spin_unlock(&delayed_refs->lock); 2283 2284 spin_lock(&head->lock); 2285 /* 2286 * XXX: We should replace this with a proper search function in the 2287 * future. 2288 */ 2289 for (node = rb_first_cached(&head->ref_tree); node; 2290 node = rb_next(node)) { 2291 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2292 /* If it's a shared ref we know a cross reference exists */ 2293 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2294 ret = 1; 2295 break; 2296 } 2297 2298 data_ref = btrfs_delayed_node_to_data_ref(ref); 2299 2300 /* 2301 * If our ref doesn't match the one we're currently looking at 2302 * then we have a cross reference. 2303 */ 2304 if (data_ref->root != root->root_key.objectid || 2305 data_ref->objectid != objectid || 2306 data_ref->offset != offset) { 2307 ret = 1; 2308 break; 2309 } 2310 } 2311 spin_unlock(&head->lock); 2312 mutex_unlock(&head->mutex); 2313 btrfs_put_transaction(cur_trans); 2314 return ret; 2315 } 2316 2317 static noinline int check_committed_ref(struct btrfs_root *root, 2318 struct btrfs_path *path, 2319 u64 objectid, u64 offset, u64 bytenr, 2320 bool strict) 2321 { 2322 struct btrfs_fs_info *fs_info = root->fs_info; 2323 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2324 struct extent_buffer *leaf; 2325 struct btrfs_extent_data_ref *ref; 2326 struct btrfs_extent_inline_ref *iref; 2327 struct btrfs_extent_item *ei; 2328 struct btrfs_key key; 2329 u32 item_size; 2330 int type; 2331 int ret; 2332 2333 key.objectid = bytenr; 2334 key.offset = (u64)-1; 2335 key.type = BTRFS_EXTENT_ITEM_KEY; 2336 2337 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 BUG_ON(ret == 0); /* Corruption */ 2341 2342 ret = -ENOENT; 2343 if (path->slots[0] == 0) 2344 goto out; 2345 2346 path->slots[0]--; 2347 leaf = path->nodes[0]; 2348 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2349 2350 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2351 goto out; 2352 2353 ret = 1; 2354 item_size = btrfs_item_size(leaf, path->slots[0]); 2355 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2356 2357 /* If extent item has more than 1 inline ref then it's shared */ 2358 if (item_size != sizeof(*ei) + 2359 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2360 goto out; 2361 2362 /* 2363 * If extent created before last snapshot => it's shared unless the 2364 * snapshot has been deleted. Use the heuristic if strict is false. 2365 */ 2366 if (!strict && 2367 (btrfs_extent_generation(leaf, ei) <= 2368 btrfs_root_last_snapshot(&root->root_item))) 2369 goto out; 2370 2371 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2372 2373 /* If this extent has SHARED_DATA_REF then it's shared */ 2374 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2375 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2376 goto out; 2377 2378 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2379 if (btrfs_extent_refs(leaf, ei) != 2380 btrfs_extent_data_ref_count(leaf, ref) || 2381 btrfs_extent_data_ref_root(leaf, ref) != 2382 root->root_key.objectid || 2383 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2384 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2385 goto out; 2386 2387 ret = 0; 2388 out: 2389 return ret; 2390 } 2391 2392 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2393 u64 bytenr, bool strict, struct btrfs_path *path) 2394 { 2395 int ret; 2396 2397 do { 2398 ret = check_committed_ref(root, path, objectid, 2399 offset, bytenr, strict); 2400 if (ret && ret != -ENOENT) 2401 goto out; 2402 2403 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2404 } while (ret == -EAGAIN && !path->nowait); 2405 2406 out: 2407 btrfs_release_path(path); 2408 if (btrfs_is_data_reloc_root(root)) 2409 WARN_ON(ret > 0); 2410 return ret; 2411 } 2412 2413 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2414 struct btrfs_root *root, 2415 struct extent_buffer *buf, 2416 int full_backref, int inc) 2417 { 2418 struct btrfs_fs_info *fs_info = root->fs_info; 2419 u64 bytenr; 2420 u64 num_bytes; 2421 u64 parent; 2422 u64 ref_root; 2423 u32 nritems; 2424 struct btrfs_key key; 2425 struct btrfs_file_extent_item *fi; 2426 struct btrfs_ref generic_ref = { 0 }; 2427 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2428 int i; 2429 int action; 2430 int level; 2431 int ret = 0; 2432 2433 if (btrfs_is_testing(fs_info)) 2434 return 0; 2435 2436 ref_root = btrfs_header_owner(buf); 2437 nritems = btrfs_header_nritems(buf); 2438 level = btrfs_header_level(buf); 2439 2440 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2441 return 0; 2442 2443 if (full_backref) 2444 parent = buf->start; 2445 else 2446 parent = 0; 2447 if (inc) 2448 action = BTRFS_ADD_DELAYED_REF; 2449 else 2450 action = BTRFS_DROP_DELAYED_REF; 2451 2452 for (i = 0; i < nritems; i++) { 2453 if (level == 0) { 2454 btrfs_item_key_to_cpu(buf, &key, i); 2455 if (key.type != BTRFS_EXTENT_DATA_KEY) 2456 continue; 2457 fi = btrfs_item_ptr(buf, i, 2458 struct btrfs_file_extent_item); 2459 if (btrfs_file_extent_type(buf, fi) == 2460 BTRFS_FILE_EXTENT_INLINE) 2461 continue; 2462 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2463 if (bytenr == 0) 2464 continue; 2465 2466 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2467 key.offset -= btrfs_file_extent_offset(buf, fi); 2468 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2469 num_bytes, parent); 2470 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2471 key.offset, root->root_key.objectid, 2472 for_reloc); 2473 if (inc) 2474 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2475 else 2476 ret = btrfs_free_extent(trans, &generic_ref); 2477 if (ret) 2478 goto fail; 2479 } else { 2480 bytenr = btrfs_node_blockptr(buf, i); 2481 num_bytes = fs_info->nodesize; 2482 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2483 num_bytes, parent); 2484 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2485 root->root_key.objectid, for_reloc); 2486 if (inc) 2487 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2488 else 2489 ret = btrfs_free_extent(trans, &generic_ref); 2490 if (ret) 2491 goto fail; 2492 } 2493 } 2494 return 0; 2495 fail: 2496 return ret; 2497 } 2498 2499 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2500 struct extent_buffer *buf, int full_backref) 2501 { 2502 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2503 } 2504 2505 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2506 struct extent_buffer *buf, int full_backref) 2507 { 2508 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2509 } 2510 2511 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2512 { 2513 struct btrfs_fs_info *fs_info = root->fs_info; 2514 u64 flags; 2515 u64 ret; 2516 2517 if (data) 2518 flags = BTRFS_BLOCK_GROUP_DATA; 2519 else if (root == fs_info->chunk_root) 2520 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2521 else 2522 flags = BTRFS_BLOCK_GROUP_METADATA; 2523 2524 ret = btrfs_get_alloc_profile(fs_info, flags); 2525 return ret; 2526 } 2527 2528 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2529 { 2530 struct rb_node *leftmost; 2531 u64 bytenr = 0; 2532 2533 read_lock(&fs_info->block_group_cache_lock); 2534 /* Get the block group with the lowest logical start address. */ 2535 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2536 if (leftmost) { 2537 struct btrfs_block_group *bg; 2538 2539 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2540 bytenr = bg->start; 2541 } 2542 read_unlock(&fs_info->block_group_cache_lock); 2543 2544 return bytenr; 2545 } 2546 2547 static int pin_down_extent(struct btrfs_trans_handle *trans, 2548 struct btrfs_block_group *cache, 2549 u64 bytenr, u64 num_bytes, int reserved) 2550 { 2551 struct btrfs_fs_info *fs_info = cache->fs_info; 2552 2553 spin_lock(&cache->space_info->lock); 2554 spin_lock(&cache->lock); 2555 cache->pinned += num_bytes; 2556 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2557 num_bytes); 2558 if (reserved) { 2559 cache->reserved -= num_bytes; 2560 cache->space_info->bytes_reserved -= num_bytes; 2561 } 2562 spin_unlock(&cache->lock); 2563 spin_unlock(&cache->space_info->lock); 2564 2565 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2566 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2567 return 0; 2568 } 2569 2570 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2571 u64 bytenr, u64 num_bytes, int reserved) 2572 { 2573 struct btrfs_block_group *cache; 2574 2575 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2576 BUG_ON(!cache); /* Logic error */ 2577 2578 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2579 2580 btrfs_put_block_group(cache); 2581 return 0; 2582 } 2583 2584 /* 2585 * this function must be called within transaction 2586 */ 2587 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2588 u64 bytenr, u64 num_bytes) 2589 { 2590 struct btrfs_block_group *cache; 2591 int ret; 2592 2593 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2594 if (!cache) 2595 return -EINVAL; 2596 2597 /* 2598 * Fully cache the free space first so that our pin removes the free space 2599 * from the cache. 2600 */ 2601 ret = btrfs_cache_block_group(cache, true); 2602 if (ret) 2603 goto out; 2604 2605 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2606 2607 /* remove us from the free space cache (if we're there at all) */ 2608 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2609 out: 2610 btrfs_put_block_group(cache); 2611 return ret; 2612 } 2613 2614 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2615 u64 start, u64 num_bytes) 2616 { 2617 int ret; 2618 struct btrfs_block_group *block_group; 2619 2620 block_group = btrfs_lookup_block_group(fs_info, start); 2621 if (!block_group) 2622 return -EINVAL; 2623 2624 ret = btrfs_cache_block_group(block_group, true); 2625 if (ret) 2626 goto out; 2627 2628 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2629 out: 2630 btrfs_put_block_group(block_group); 2631 return ret; 2632 } 2633 2634 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2635 { 2636 struct btrfs_fs_info *fs_info = eb->fs_info; 2637 struct btrfs_file_extent_item *item; 2638 struct btrfs_key key; 2639 int found_type; 2640 int i; 2641 int ret = 0; 2642 2643 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2644 return 0; 2645 2646 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2647 btrfs_item_key_to_cpu(eb, &key, i); 2648 if (key.type != BTRFS_EXTENT_DATA_KEY) 2649 continue; 2650 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2651 found_type = btrfs_file_extent_type(eb, item); 2652 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2653 continue; 2654 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2655 continue; 2656 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2657 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2658 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2659 if (ret) 2660 break; 2661 } 2662 2663 return ret; 2664 } 2665 2666 static void 2667 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2668 { 2669 atomic_inc(&bg->reservations); 2670 } 2671 2672 /* 2673 * Returns the free cluster for the given space info and sets empty_cluster to 2674 * what it should be based on the mount options. 2675 */ 2676 static struct btrfs_free_cluster * 2677 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2678 struct btrfs_space_info *space_info, u64 *empty_cluster) 2679 { 2680 struct btrfs_free_cluster *ret = NULL; 2681 2682 *empty_cluster = 0; 2683 if (btrfs_mixed_space_info(space_info)) 2684 return ret; 2685 2686 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2687 ret = &fs_info->meta_alloc_cluster; 2688 if (btrfs_test_opt(fs_info, SSD)) 2689 *empty_cluster = SZ_2M; 2690 else 2691 *empty_cluster = SZ_64K; 2692 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2693 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2694 *empty_cluster = SZ_2M; 2695 ret = &fs_info->data_alloc_cluster; 2696 } 2697 2698 return ret; 2699 } 2700 2701 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2702 u64 start, u64 end, 2703 const bool return_free_space) 2704 { 2705 struct btrfs_block_group *cache = NULL; 2706 struct btrfs_space_info *space_info; 2707 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2708 struct btrfs_free_cluster *cluster = NULL; 2709 u64 len; 2710 u64 total_unpinned = 0; 2711 u64 empty_cluster = 0; 2712 bool readonly; 2713 2714 while (start <= end) { 2715 readonly = false; 2716 if (!cache || 2717 start >= cache->start + cache->length) { 2718 if (cache) 2719 btrfs_put_block_group(cache); 2720 total_unpinned = 0; 2721 cache = btrfs_lookup_block_group(fs_info, start); 2722 BUG_ON(!cache); /* Logic error */ 2723 2724 cluster = fetch_cluster_info(fs_info, 2725 cache->space_info, 2726 &empty_cluster); 2727 empty_cluster <<= 1; 2728 } 2729 2730 len = cache->start + cache->length - start; 2731 len = min(len, end + 1 - start); 2732 2733 if (return_free_space) 2734 btrfs_add_free_space(cache, start, len); 2735 2736 start += len; 2737 total_unpinned += len; 2738 space_info = cache->space_info; 2739 2740 /* 2741 * If this space cluster has been marked as fragmented and we've 2742 * unpinned enough in this block group to potentially allow a 2743 * cluster to be created inside of it go ahead and clear the 2744 * fragmented check. 2745 */ 2746 if (cluster && cluster->fragmented && 2747 total_unpinned > empty_cluster) { 2748 spin_lock(&cluster->lock); 2749 cluster->fragmented = 0; 2750 spin_unlock(&cluster->lock); 2751 } 2752 2753 spin_lock(&space_info->lock); 2754 spin_lock(&cache->lock); 2755 cache->pinned -= len; 2756 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2757 space_info->max_extent_size = 0; 2758 if (cache->ro) { 2759 space_info->bytes_readonly += len; 2760 readonly = true; 2761 } else if (btrfs_is_zoned(fs_info)) { 2762 /* Need reset before reusing in a zoned block group */ 2763 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info, 2764 len); 2765 readonly = true; 2766 } 2767 spin_unlock(&cache->lock); 2768 if (!readonly && return_free_space && 2769 global_rsv->space_info == space_info) { 2770 spin_lock(&global_rsv->lock); 2771 if (!global_rsv->full) { 2772 u64 to_add = min(len, global_rsv->size - 2773 global_rsv->reserved); 2774 2775 global_rsv->reserved += to_add; 2776 btrfs_space_info_update_bytes_may_use(fs_info, 2777 space_info, to_add); 2778 if (global_rsv->reserved >= global_rsv->size) 2779 global_rsv->full = 1; 2780 len -= to_add; 2781 } 2782 spin_unlock(&global_rsv->lock); 2783 } 2784 /* Add to any tickets we may have */ 2785 if (!readonly && return_free_space && len) 2786 btrfs_try_granting_tickets(fs_info, space_info); 2787 spin_unlock(&space_info->lock); 2788 } 2789 2790 if (cache) 2791 btrfs_put_block_group(cache); 2792 return 0; 2793 } 2794 2795 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2796 { 2797 struct btrfs_fs_info *fs_info = trans->fs_info; 2798 struct btrfs_block_group *block_group, *tmp; 2799 struct list_head *deleted_bgs; 2800 struct extent_io_tree *unpin; 2801 u64 start; 2802 u64 end; 2803 int ret; 2804 2805 unpin = &trans->transaction->pinned_extents; 2806 2807 while (!TRANS_ABORTED(trans)) { 2808 struct extent_state *cached_state = NULL; 2809 2810 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2811 if (!find_first_extent_bit(unpin, 0, &start, &end, 2812 EXTENT_DIRTY, &cached_state)) { 2813 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2814 break; 2815 } 2816 2817 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2818 ret = btrfs_discard_extent(fs_info, start, 2819 end + 1 - start, NULL); 2820 2821 clear_extent_dirty(unpin, start, end, &cached_state); 2822 unpin_extent_range(fs_info, start, end, true); 2823 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2824 free_extent_state(cached_state); 2825 cond_resched(); 2826 } 2827 2828 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2829 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2830 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2831 } 2832 2833 /* 2834 * Transaction is finished. We don't need the lock anymore. We 2835 * do need to clean up the block groups in case of a transaction 2836 * abort. 2837 */ 2838 deleted_bgs = &trans->transaction->deleted_bgs; 2839 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2840 u64 trimmed = 0; 2841 2842 ret = -EROFS; 2843 if (!TRANS_ABORTED(trans)) 2844 ret = btrfs_discard_extent(fs_info, 2845 block_group->start, 2846 block_group->length, 2847 &trimmed); 2848 2849 list_del_init(&block_group->bg_list); 2850 btrfs_unfreeze_block_group(block_group); 2851 btrfs_put_block_group(block_group); 2852 2853 if (ret) { 2854 const char *errstr = btrfs_decode_error(ret); 2855 btrfs_warn(fs_info, 2856 "discard failed while removing blockgroup: errno=%d %s", 2857 ret, errstr); 2858 } 2859 } 2860 2861 return 0; 2862 } 2863 2864 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2865 u64 bytenr, u64 num_bytes, bool is_data) 2866 { 2867 int ret; 2868 2869 if (is_data) { 2870 struct btrfs_root *csum_root; 2871 2872 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2873 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2874 if (ret) { 2875 btrfs_abort_transaction(trans, ret); 2876 return ret; 2877 } 2878 } 2879 2880 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2881 if (ret) { 2882 btrfs_abort_transaction(trans, ret); 2883 return ret; 2884 } 2885 2886 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2887 if (ret) 2888 btrfs_abort_transaction(trans, ret); 2889 2890 return ret; 2891 } 2892 2893 #define abort_and_dump(trans, path, fmt, args...) \ 2894 ({ \ 2895 btrfs_abort_transaction(trans, -EUCLEAN); \ 2896 btrfs_print_leaf(path->nodes[0]); \ 2897 btrfs_crit(trans->fs_info, fmt, ##args); \ 2898 }) 2899 2900 /* 2901 * Drop one or more refs of @node. 2902 * 2903 * 1. Locate the extent refs. 2904 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2905 * Locate it, then reduce the refs number or remove the ref line completely. 2906 * 2907 * 2. Update the refs count in EXTENT/METADATA_ITEM 2908 * 2909 * Inline backref case: 2910 * 2911 * in extent tree we have: 2912 * 2913 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2914 * refs 2 gen 6 flags DATA 2915 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2916 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2917 * 2918 * This function gets called with: 2919 * 2920 * node->bytenr = 13631488 2921 * node->num_bytes = 1048576 2922 * root_objectid = FS_TREE 2923 * owner_objectid = 257 2924 * owner_offset = 0 2925 * refs_to_drop = 1 2926 * 2927 * Then we should get some like: 2928 * 2929 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2930 * refs 1 gen 6 flags DATA 2931 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2932 * 2933 * Keyed backref case: 2934 * 2935 * in extent tree we have: 2936 * 2937 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2938 * refs 754 gen 6 flags DATA 2939 * [...] 2940 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2941 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2942 * 2943 * This function get called with: 2944 * 2945 * node->bytenr = 13631488 2946 * node->num_bytes = 1048576 2947 * root_objectid = FS_TREE 2948 * owner_objectid = 866 2949 * owner_offset = 0 2950 * refs_to_drop = 1 2951 * 2952 * Then we should get some like: 2953 * 2954 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2955 * refs 753 gen 6 flags DATA 2956 * 2957 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2958 */ 2959 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2960 struct btrfs_delayed_ref_node *node, u64 parent, 2961 u64 root_objectid, u64 owner_objectid, 2962 u64 owner_offset, int refs_to_drop, 2963 struct btrfs_delayed_extent_op *extent_op) 2964 { 2965 struct btrfs_fs_info *info = trans->fs_info; 2966 struct btrfs_key key; 2967 struct btrfs_path *path; 2968 struct btrfs_root *extent_root; 2969 struct extent_buffer *leaf; 2970 struct btrfs_extent_item *ei; 2971 struct btrfs_extent_inline_ref *iref; 2972 int ret; 2973 int is_data; 2974 int extent_slot = 0; 2975 int found_extent = 0; 2976 int num_to_del = 1; 2977 u32 item_size; 2978 u64 refs; 2979 u64 bytenr = node->bytenr; 2980 u64 num_bytes = node->num_bytes; 2981 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2982 2983 extent_root = btrfs_extent_root(info, bytenr); 2984 ASSERT(extent_root); 2985 2986 path = btrfs_alloc_path(); 2987 if (!path) 2988 return -ENOMEM; 2989 2990 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2991 2992 if (!is_data && refs_to_drop != 1) { 2993 btrfs_crit(info, 2994 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2995 node->bytenr, refs_to_drop); 2996 ret = -EINVAL; 2997 btrfs_abort_transaction(trans, ret); 2998 goto out; 2999 } 3000 3001 if (is_data) 3002 skinny_metadata = false; 3003 3004 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3005 parent, root_objectid, owner_objectid, 3006 owner_offset); 3007 if (ret == 0) { 3008 /* 3009 * Either the inline backref or the SHARED_DATA_REF/ 3010 * SHARED_BLOCK_REF is found 3011 * 3012 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3013 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3014 */ 3015 extent_slot = path->slots[0]; 3016 while (extent_slot >= 0) { 3017 btrfs_item_key_to_cpu(path->nodes[0], &key, 3018 extent_slot); 3019 if (key.objectid != bytenr) 3020 break; 3021 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3022 key.offset == num_bytes) { 3023 found_extent = 1; 3024 break; 3025 } 3026 if (key.type == BTRFS_METADATA_ITEM_KEY && 3027 key.offset == owner_objectid) { 3028 found_extent = 1; 3029 break; 3030 } 3031 3032 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3033 if (path->slots[0] - extent_slot > 5) 3034 break; 3035 extent_slot--; 3036 } 3037 3038 if (!found_extent) { 3039 if (iref) { 3040 abort_and_dump(trans, path, 3041 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3042 path->slots[0]); 3043 ret = -EUCLEAN; 3044 goto out; 3045 } 3046 /* Must be SHARED_* item, remove the backref first */ 3047 ret = remove_extent_backref(trans, extent_root, path, 3048 NULL, refs_to_drop, is_data); 3049 if (ret) { 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 btrfs_release_path(path); 3054 3055 /* Slow path to locate EXTENT/METADATA_ITEM */ 3056 key.objectid = bytenr; 3057 key.type = BTRFS_EXTENT_ITEM_KEY; 3058 key.offset = num_bytes; 3059 3060 if (!is_data && skinny_metadata) { 3061 key.type = BTRFS_METADATA_ITEM_KEY; 3062 key.offset = owner_objectid; 3063 } 3064 3065 ret = btrfs_search_slot(trans, extent_root, 3066 &key, path, -1, 1); 3067 if (ret > 0 && skinny_metadata && path->slots[0]) { 3068 /* 3069 * Couldn't find our skinny metadata item, 3070 * see if we have ye olde extent item. 3071 */ 3072 path->slots[0]--; 3073 btrfs_item_key_to_cpu(path->nodes[0], &key, 3074 path->slots[0]); 3075 if (key.objectid == bytenr && 3076 key.type == BTRFS_EXTENT_ITEM_KEY && 3077 key.offset == num_bytes) 3078 ret = 0; 3079 } 3080 3081 if (ret > 0 && skinny_metadata) { 3082 skinny_metadata = false; 3083 key.objectid = bytenr; 3084 key.type = BTRFS_EXTENT_ITEM_KEY; 3085 key.offset = num_bytes; 3086 btrfs_release_path(path); 3087 ret = btrfs_search_slot(trans, extent_root, 3088 &key, path, -1, 1); 3089 } 3090 3091 if (ret) { 3092 if (ret > 0) 3093 btrfs_print_leaf(path->nodes[0]); 3094 btrfs_err(info, 3095 "umm, got %d back from search, was looking for %llu, slot %d", 3096 ret, bytenr, path->slots[0]); 3097 } 3098 if (ret < 0) { 3099 btrfs_abort_transaction(trans, ret); 3100 goto out; 3101 } 3102 extent_slot = path->slots[0]; 3103 } 3104 } else if (WARN_ON(ret == -ENOENT)) { 3105 abort_and_dump(trans, path, 3106 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3107 bytenr, parent, root_objectid, owner_objectid, 3108 owner_offset, path->slots[0]); 3109 goto out; 3110 } else { 3111 btrfs_abort_transaction(trans, ret); 3112 goto out; 3113 } 3114 3115 leaf = path->nodes[0]; 3116 item_size = btrfs_item_size(leaf, extent_slot); 3117 if (unlikely(item_size < sizeof(*ei))) { 3118 ret = -EUCLEAN; 3119 btrfs_err(trans->fs_info, 3120 "unexpected extent item size, has %u expect >= %zu", 3121 item_size, sizeof(*ei)); 3122 btrfs_abort_transaction(trans, ret); 3123 goto out; 3124 } 3125 ei = btrfs_item_ptr(leaf, extent_slot, 3126 struct btrfs_extent_item); 3127 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3128 key.type == BTRFS_EXTENT_ITEM_KEY) { 3129 struct btrfs_tree_block_info *bi; 3130 3131 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3132 abort_and_dump(trans, path, 3133 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3134 key.objectid, key.type, key.offset, 3135 path->slots[0], owner_objectid, item_size, 3136 sizeof(*ei) + sizeof(*bi)); 3137 ret = -EUCLEAN; 3138 goto out; 3139 } 3140 bi = (struct btrfs_tree_block_info *)(ei + 1); 3141 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3142 } 3143 3144 refs = btrfs_extent_refs(leaf, ei); 3145 if (refs < refs_to_drop) { 3146 abort_and_dump(trans, path, 3147 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3148 refs_to_drop, refs, bytenr, path->slots[0]); 3149 ret = -EUCLEAN; 3150 goto out; 3151 } 3152 refs -= refs_to_drop; 3153 3154 if (refs > 0) { 3155 if (extent_op) 3156 __run_delayed_extent_op(extent_op, leaf, ei); 3157 /* 3158 * In the case of inline back ref, reference count will 3159 * be updated by remove_extent_backref 3160 */ 3161 if (iref) { 3162 if (!found_extent) { 3163 abort_and_dump(trans, path, 3164 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3165 path->slots[0]); 3166 ret = -EUCLEAN; 3167 goto out; 3168 } 3169 } else { 3170 btrfs_set_extent_refs(leaf, ei, refs); 3171 btrfs_mark_buffer_dirty(trans, leaf); 3172 } 3173 if (found_extent) { 3174 ret = remove_extent_backref(trans, extent_root, path, 3175 iref, refs_to_drop, is_data); 3176 if (ret) { 3177 btrfs_abort_transaction(trans, ret); 3178 goto out; 3179 } 3180 } 3181 } else { 3182 /* In this branch refs == 1 */ 3183 if (found_extent) { 3184 if (is_data && refs_to_drop != 3185 extent_data_ref_count(path, iref)) { 3186 abort_and_dump(trans, path, 3187 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3188 extent_data_ref_count(path, iref), 3189 refs_to_drop, path->slots[0]); 3190 ret = -EUCLEAN; 3191 goto out; 3192 } 3193 if (iref) { 3194 if (path->slots[0] != extent_slot) { 3195 abort_and_dump(trans, path, 3196 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3197 key.objectid, key.type, 3198 key.offset, path->slots[0]); 3199 ret = -EUCLEAN; 3200 goto out; 3201 } 3202 } else { 3203 /* 3204 * No inline ref, we must be at SHARED_* item, 3205 * And it's single ref, it must be: 3206 * | extent_slot ||extent_slot + 1| 3207 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3208 */ 3209 if (path->slots[0] != extent_slot + 1) { 3210 abort_and_dump(trans, path, 3211 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3212 path->slots[0]); 3213 ret = -EUCLEAN; 3214 goto out; 3215 } 3216 path->slots[0] = extent_slot; 3217 num_to_del = 2; 3218 } 3219 } 3220 3221 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3222 num_to_del); 3223 if (ret) { 3224 btrfs_abort_transaction(trans, ret); 3225 goto out; 3226 } 3227 btrfs_release_path(path); 3228 3229 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3230 } 3231 btrfs_release_path(path); 3232 3233 out: 3234 btrfs_free_path(path); 3235 return ret; 3236 } 3237 3238 /* 3239 * when we free an block, it is possible (and likely) that we free the last 3240 * delayed ref for that extent as well. This searches the delayed ref tree for 3241 * a given extent, and if there are no other delayed refs to be processed, it 3242 * removes it from the tree. 3243 */ 3244 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3245 u64 bytenr) 3246 { 3247 struct btrfs_delayed_ref_head *head; 3248 struct btrfs_delayed_ref_root *delayed_refs; 3249 int ret = 0; 3250 3251 delayed_refs = &trans->transaction->delayed_refs; 3252 spin_lock(&delayed_refs->lock); 3253 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3254 if (!head) 3255 goto out_delayed_unlock; 3256 3257 spin_lock(&head->lock); 3258 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3259 goto out; 3260 3261 if (cleanup_extent_op(head) != NULL) 3262 goto out; 3263 3264 /* 3265 * waiting for the lock here would deadlock. If someone else has it 3266 * locked they are already in the process of dropping it anyway 3267 */ 3268 if (!mutex_trylock(&head->mutex)) 3269 goto out; 3270 3271 btrfs_delete_ref_head(delayed_refs, head); 3272 head->processing = false; 3273 3274 spin_unlock(&head->lock); 3275 spin_unlock(&delayed_refs->lock); 3276 3277 BUG_ON(head->extent_op); 3278 if (head->must_insert_reserved) 3279 ret = 1; 3280 3281 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3282 mutex_unlock(&head->mutex); 3283 btrfs_put_delayed_ref_head(head); 3284 return ret; 3285 out: 3286 spin_unlock(&head->lock); 3287 3288 out_delayed_unlock: 3289 spin_unlock(&delayed_refs->lock); 3290 return 0; 3291 } 3292 3293 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3294 u64 root_id, 3295 struct extent_buffer *buf, 3296 u64 parent, int last_ref) 3297 { 3298 struct btrfs_fs_info *fs_info = trans->fs_info; 3299 struct btrfs_ref generic_ref = { 0 }; 3300 int ret; 3301 3302 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3303 buf->start, buf->len, parent); 3304 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3305 root_id, 0, false); 3306 3307 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3308 btrfs_ref_tree_mod(fs_info, &generic_ref); 3309 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3310 if (ret < 0) 3311 return ret; 3312 } 3313 3314 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3315 struct btrfs_block_group *cache; 3316 bool must_pin = false; 3317 3318 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3319 ret = check_ref_cleanup(trans, buf->start); 3320 if (!ret) { 3321 btrfs_redirty_list_add(trans->transaction, buf); 3322 goto out; 3323 } 3324 } 3325 3326 cache = btrfs_lookup_block_group(fs_info, buf->start); 3327 3328 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3329 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3330 btrfs_put_block_group(cache); 3331 goto out; 3332 } 3333 3334 /* 3335 * If there are tree mod log users we may have recorded mod log 3336 * operations for this node. If we re-allocate this node we 3337 * could replay operations on this node that happened when it 3338 * existed in a completely different root. For example if it 3339 * was part of root A, then was reallocated to root B, and we 3340 * are doing a btrfs_old_search_slot(root b), we could replay 3341 * operations that happened when the block was part of root A, 3342 * giving us an inconsistent view of the btree. 3343 * 3344 * We are safe from races here because at this point no other 3345 * node or root points to this extent buffer, so if after this 3346 * check a new tree mod log user joins we will not have an 3347 * existing log of operations on this node that we have to 3348 * contend with. 3349 */ 3350 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3351 must_pin = true; 3352 3353 if (must_pin || btrfs_is_zoned(fs_info)) { 3354 btrfs_redirty_list_add(trans->transaction, buf); 3355 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3356 btrfs_put_block_group(cache); 3357 goto out; 3358 } 3359 3360 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3361 3362 btrfs_add_free_space(cache, buf->start, buf->len); 3363 btrfs_free_reserved_bytes(cache, buf->len, 0); 3364 btrfs_put_block_group(cache); 3365 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3366 } 3367 out: 3368 if (last_ref) { 3369 /* 3370 * Deleting the buffer, clear the corrupt flag since it doesn't 3371 * matter anymore. 3372 */ 3373 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3374 } 3375 return 0; 3376 } 3377 3378 /* Can return -ENOMEM */ 3379 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3380 { 3381 struct btrfs_fs_info *fs_info = trans->fs_info; 3382 int ret; 3383 3384 if (btrfs_is_testing(fs_info)) 3385 return 0; 3386 3387 /* 3388 * tree log blocks never actually go into the extent allocation 3389 * tree, just update pinning info and exit early. 3390 */ 3391 if ((ref->type == BTRFS_REF_METADATA && 3392 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3393 (ref->type == BTRFS_REF_DATA && 3394 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3395 /* unlocks the pinned mutex */ 3396 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3397 ret = 0; 3398 } else if (ref->type == BTRFS_REF_METADATA) { 3399 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3400 } else { 3401 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3402 } 3403 3404 if (!((ref->type == BTRFS_REF_METADATA && 3405 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3406 (ref->type == BTRFS_REF_DATA && 3407 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3408 btrfs_ref_tree_mod(fs_info, ref); 3409 3410 return ret; 3411 } 3412 3413 enum btrfs_loop_type { 3414 /* 3415 * Start caching block groups but do not wait for progress or for them 3416 * to be done. 3417 */ 3418 LOOP_CACHING_NOWAIT, 3419 3420 /* 3421 * Wait for the block group free_space >= the space we're waiting for if 3422 * the block group isn't cached. 3423 */ 3424 LOOP_CACHING_WAIT, 3425 3426 /* 3427 * Allow allocations to happen from block groups that do not yet have a 3428 * size classification. 3429 */ 3430 LOOP_UNSET_SIZE_CLASS, 3431 3432 /* 3433 * Allocate a chunk and then retry the allocation. 3434 */ 3435 LOOP_ALLOC_CHUNK, 3436 3437 /* 3438 * Ignore the size class restrictions for this allocation. 3439 */ 3440 LOOP_WRONG_SIZE_CLASS, 3441 3442 /* 3443 * Ignore the empty size, only try to allocate the number of bytes 3444 * needed for this allocation. 3445 */ 3446 LOOP_NO_EMPTY_SIZE, 3447 }; 3448 3449 static inline void 3450 btrfs_lock_block_group(struct btrfs_block_group *cache, 3451 int delalloc) 3452 { 3453 if (delalloc) 3454 down_read(&cache->data_rwsem); 3455 } 3456 3457 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3458 int delalloc) 3459 { 3460 btrfs_get_block_group(cache); 3461 if (delalloc) 3462 down_read(&cache->data_rwsem); 3463 } 3464 3465 static struct btrfs_block_group *btrfs_lock_cluster( 3466 struct btrfs_block_group *block_group, 3467 struct btrfs_free_cluster *cluster, 3468 int delalloc) 3469 __acquires(&cluster->refill_lock) 3470 { 3471 struct btrfs_block_group *used_bg = NULL; 3472 3473 spin_lock(&cluster->refill_lock); 3474 while (1) { 3475 used_bg = cluster->block_group; 3476 if (!used_bg) 3477 return NULL; 3478 3479 if (used_bg == block_group) 3480 return used_bg; 3481 3482 btrfs_get_block_group(used_bg); 3483 3484 if (!delalloc) 3485 return used_bg; 3486 3487 if (down_read_trylock(&used_bg->data_rwsem)) 3488 return used_bg; 3489 3490 spin_unlock(&cluster->refill_lock); 3491 3492 /* We should only have one-level nested. */ 3493 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3494 3495 spin_lock(&cluster->refill_lock); 3496 if (used_bg == cluster->block_group) 3497 return used_bg; 3498 3499 up_read(&used_bg->data_rwsem); 3500 btrfs_put_block_group(used_bg); 3501 } 3502 } 3503 3504 static inline void 3505 btrfs_release_block_group(struct btrfs_block_group *cache, 3506 int delalloc) 3507 { 3508 if (delalloc) 3509 up_read(&cache->data_rwsem); 3510 btrfs_put_block_group(cache); 3511 } 3512 3513 /* 3514 * Helper function for find_free_extent(). 3515 * 3516 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3517 * Return >0 to inform caller that we find nothing 3518 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3519 */ 3520 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3521 struct find_free_extent_ctl *ffe_ctl, 3522 struct btrfs_block_group **cluster_bg_ret) 3523 { 3524 struct btrfs_block_group *cluster_bg; 3525 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3526 u64 aligned_cluster; 3527 u64 offset; 3528 int ret; 3529 3530 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3531 if (!cluster_bg) 3532 goto refill_cluster; 3533 if (cluster_bg != bg && (cluster_bg->ro || 3534 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3535 goto release_cluster; 3536 3537 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3538 ffe_ctl->num_bytes, cluster_bg->start, 3539 &ffe_ctl->max_extent_size); 3540 if (offset) { 3541 /* We have a block, we're done */ 3542 spin_unlock(&last_ptr->refill_lock); 3543 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3544 *cluster_bg_ret = cluster_bg; 3545 ffe_ctl->found_offset = offset; 3546 return 0; 3547 } 3548 WARN_ON(last_ptr->block_group != cluster_bg); 3549 3550 release_cluster: 3551 /* 3552 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3553 * lets just skip it and let the allocator find whatever block it can 3554 * find. If we reach this point, we will have tried the cluster 3555 * allocator plenty of times and not have found anything, so we are 3556 * likely way too fragmented for the clustering stuff to find anything. 3557 * 3558 * However, if the cluster is taken from the current block group, 3559 * release the cluster first, so that we stand a better chance of 3560 * succeeding in the unclustered allocation. 3561 */ 3562 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3563 spin_unlock(&last_ptr->refill_lock); 3564 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3565 return -ENOENT; 3566 } 3567 3568 /* This cluster didn't work out, free it and start over */ 3569 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3570 3571 if (cluster_bg != bg) 3572 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3573 3574 refill_cluster: 3575 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3576 spin_unlock(&last_ptr->refill_lock); 3577 return -ENOENT; 3578 } 3579 3580 aligned_cluster = max_t(u64, 3581 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3582 bg->full_stripe_len); 3583 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3584 ffe_ctl->num_bytes, aligned_cluster); 3585 if (ret == 0) { 3586 /* Now pull our allocation out of this cluster */ 3587 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3588 ffe_ctl->num_bytes, ffe_ctl->search_start, 3589 &ffe_ctl->max_extent_size); 3590 if (offset) { 3591 /* We found one, proceed */ 3592 spin_unlock(&last_ptr->refill_lock); 3593 ffe_ctl->found_offset = offset; 3594 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3595 return 0; 3596 } 3597 } 3598 /* 3599 * At this point we either didn't find a cluster or we weren't able to 3600 * allocate a block from our cluster. Free the cluster we've been 3601 * trying to use, and go to the next block group. 3602 */ 3603 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3604 spin_unlock(&last_ptr->refill_lock); 3605 return 1; 3606 } 3607 3608 /* 3609 * Return >0 to inform caller that we find nothing 3610 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3611 */ 3612 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3613 struct find_free_extent_ctl *ffe_ctl) 3614 { 3615 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3616 u64 offset; 3617 3618 /* 3619 * We are doing an unclustered allocation, set the fragmented flag so 3620 * we don't bother trying to setup a cluster again until we get more 3621 * space. 3622 */ 3623 if (unlikely(last_ptr)) { 3624 spin_lock(&last_ptr->lock); 3625 last_ptr->fragmented = 1; 3626 spin_unlock(&last_ptr->lock); 3627 } 3628 if (ffe_ctl->cached) { 3629 struct btrfs_free_space_ctl *free_space_ctl; 3630 3631 free_space_ctl = bg->free_space_ctl; 3632 spin_lock(&free_space_ctl->tree_lock); 3633 if (free_space_ctl->free_space < 3634 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3635 ffe_ctl->empty_size) { 3636 ffe_ctl->total_free_space = max_t(u64, 3637 ffe_ctl->total_free_space, 3638 free_space_ctl->free_space); 3639 spin_unlock(&free_space_ctl->tree_lock); 3640 return 1; 3641 } 3642 spin_unlock(&free_space_ctl->tree_lock); 3643 } 3644 3645 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3646 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3647 &ffe_ctl->max_extent_size); 3648 if (!offset) 3649 return 1; 3650 ffe_ctl->found_offset = offset; 3651 return 0; 3652 } 3653 3654 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3655 struct find_free_extent_ctl *ffe_ctl, 3656 struct btrfs_block_group **bg_ret) 3657 { 3658 int ret; 3659 3660 /* We want to try and use the cluster allocator, so lets look there */ 3661 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3662 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3663 if (ret >= 0) 3664 return ret; 3665 /* ret == -ENOENT case falls through */ 3666 } 3667 3668 return find_free_extent_unclustered(block_group, ffe_ctl); 3669 } 3670 3671 /* 3672 * Tree-log block group locking 3673 * ============================ 3674 * 3675 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3676 * indicates the starting address of a block group, which is reserved only 3677 * for tree-log metadata. 3678 * 3679 * Lock nesting 3680 * ============ 3681 * 3682 * space_info::lock 3683 * block_group::lock 3684 * fs_info::treelog_bg_lock 3685 */ 3686 3687 /* 3688 * Simple allocator for sequential-only block group. It only allows sequential 3689 * allocation. No need to play with trees. This function also reserves the 3690 * bytes as in btrfs_add_reserved_bytes. 3691 */ 3692 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3693 struct find_free_extent_ctl *ffe_ctl, 3694 struct btrfs_block_group **bg_ret) 3695 { 3696 struct btrfs_fs_info *fs_info = block_group->fs_info; 3697 struct btrfs_space_info *space_info = block_group->space_info; 3698 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3699 u64 start = block_group->start; 3700 u64 num_bytes = ffe_ctl->num_bytes; 3701 u64 avail; 3702 u64 bytenr = block_group->start; 3703 u64 log_bytenr; 3704 u64 data_reloc_bytenr; 3705 int ret = 0; 3706 bool skip = false; 3707 3708 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3709 3710 /* 3711 * Do not allow non-tree-log blocks in the dedicated tree-log block 3712 * group, and vice versa. 3713 */ 3714 spin_lock(&fs_info->treelog_bg_lock); 3715 log_bytenr = fs_info->treelog_bg; 3716 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3717 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3718 skip = true; 3719 spin_unlock(&fs_info->treelog_bg_lock); 3720 if (skip) 3721 return 1; 3722 3723 /* 3724 * Do not allow non-relocation blocks in the dedicated relocation block 3725 * group, and vice versa. 3726 */ 3727 spin_lock(&fs_info->relocation_bg_lock); 3728 data_reloc_bytenr = fs_info->data_reloc_bg; 3729 if (data_reloc_bytenr && 3730 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3731 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3732 skip = true; 3733 spin_unlock(&fs_info->relocation_bg_lock); 3734 if (skip) 3735 return 1; 3736 3737 /* Check RO and no space case before trying to activate it */ 3738 spin_lock(&block_group->lock); 3739 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3740 ret = 1; 3741 /* 3742 * May need to clear fs_info->{treelog,data_reloc}_bg. 3743 * Return the error after taking the locks. 3744 */ 3745 } 3746 spin_unlock(&block_group->lock); 3747 3748 /* Metadata block group is activated at write time. */ 3749 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3750 !btrfs_zone_activate(block_group)) { 3751 ret = 1; 3752 /* 3753 * May need to clear fs_info->{treelog,data_reloc}_bg. 3754 * Return the error after taking the locks. 3755 */ 3756 } 3757 3758 spin_lock(&space_info->lock); 3759 spin_lock(&block_group->lock); 3760 spin_lock(&fs_info->treelog_bg_lock); 3761 spin_lock(&fs_info->relocation_bg_lock); 3762 3763 if (ret) 3764 goto out; 3765 3766 ASSERT(!ffe_ctl->for_treelog || 3767 block_group->start == fs_info->treelog_bg || 3768 fs_info->treelog_bg == 0); 3769 ASSERT(!ffe_ctl->for_data_reloc || 3770 block_group->start == fs_info->data_reloc_bg || 3771 fs_info->data_reloc_bg == 0); 3772 3773 if (block_group->ro || 3774 (!ffe_ctl->for_data_reloc && 3775 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3776 ret = 1; 3777 goto out; 3778 } 3779 3780 /* 3781 * Do not allow currently using block group to be tree-log dedicated 3782 * block group. 3783 */ 3784 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3785 (block_group->used || block_group->reserved)) { 3786 ret = 1; 3787 goto out; 3788 } 3789 3790 /* 3791 * Do not allow currently used block group to be the data relocation 3792 * dedicated block group. 3793 */ 3794 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3795 (block_group->used || block_group->reserved)) { 3796 ret = 1; 3797 goto out; 3798 } 3799 3800 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3801 avail = block_group->zone_capacity - block_group->alloc_offset; 3802 if (avail < num_bytes) { 3803 if (ffe_ctl->max_extent_size < avail) { 3804 /* 3805 * With sequential allocator, free space is always 3806 * contiguous 3807 */ 3808 ffe_ctl->max_extent_size = avail; 3809 ffe_ctl->total_free_space = avail; 3810 } 3811 ret = 1; 3812 goto out; 3813 } 3814 3815 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3816 fs_info->treelog_bg = block_group->start; 3817 3818 if (ffe_ctl->for_data_reloc) { 3819 if (!fs_info->data_reloc_bg) 3820 fs_info->data_reloc_bg = block_group->start; 3821 /* 3822 * Do not allow allocations from this block group, unless it is 3823 * for data relocation. Compared to increasing the ->ro, setting 3824 * the ->zoned_data_reloc_ongoing flag still allows nocow 3825 * writers to come in. See btrfs_inc_nocow_writers(). 3826 * 3827 * We need to disable an allocation to avoid an allocation of 3828 * regular (non-relocation data) extent. With mix of relocation 3829 * extents and regular extents, we can dispatch WRITE commands 3830 * (for relocation extents) and ZONE APPEND commands (for 3831 * regular extents) at the same time to the same zone, which 3832 * easily break the write pointer. 3833 * 3834 * Also, this flag avoids this block group to be zone finished. 3835 */ 3836 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3837 } 3838 3839 ffe_ctl->found_offset = start + block_group->alloc_offset; 3840 block_group->alloc_offset += num_bytes; 3841 spin_lock(&ctl->tree_lock); 3842 ctl->free_space -= num_bytes; 3843 spin_unlock(&ctl->tree_lock); 3844 3845 /* 3846 * We do not check if found_offset is aligned to stripesize. The 3847 * address is anyway rewritten when using zone append writing. 3848 */ 3849 3850 ffe_ctl->search_start = ffe_ctl->found_offset; 3851 3852 out: 3853 if (ret && ffe_ctl->for_treelog) 3854 fs_info->treelog_bg = 0; 3855 if (ret && ffe_ctl->for_data_reloc) 3856 fs_info->data_reloc_bg = 0; 3857 spin_unlock(&fs_info->relocation_bg_lock); 3858 spin_unlock(&fs_info->treelog_bg_lock); 3859 spin_unlock(&block_group->lock); 3860 spin_unlock(&space_info->lock); 3861 return ret; 3862 } 3863 3864 static int do_allocation(struct btrfs_block_group *block_group, 3865 struct find_free_extent_ctl *ffe_ctl, 3866 struct btrfs_block_group **bg_ret) 3867 { 3868 switch (ffe_ctl->policy) { 3869 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3870 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3871 case BTRFS_EXTENT_ALLOC_ZONED: 3872 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3873 default: 3874 BUG(); 3875 } 3876 } 3877 3878 static void release_block_group(struct btrfs_block_group *block_group, 3879 struct find_free_extent_ctl *ffe_ctl, 3880 int delalloc) 3881 { 3882 switch (ffe_ctl->policy) { 3883 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3884 ffe_ctl->retry_uncached = false; 3885 break; 3886 case BTRFS_EXTENT_ALLOC_ZONED: 3887 /* Nothing to do */ 3888 break; 3889 default: 3890 BUG(); 3891 } 3892 3893 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3894 ffe_ctl->index); 3895 btrfs_release_block_group(block_group, delalloc); 3896 } 3897 3898 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3899 struct btrfs_key *ins) 3900 { 3901 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3902 3903 if (!ffe_ctl->use_cluster && last_ptr) { 3904 spin_lock(&last_ptr->lock); 3905 last_ptr->window_start = ins->objectid; 3906 spin_unlock(&last_ptr->lock); 3907 } 3908 } 3909 3910 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3911 struct btrfs_key *ins) 3912 { 3913 switch (ffe_ctl->policy) { 3914 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3915 found_extent_clustered(ffe_ctl, ins); 3916 break; 3917 case BTRFS_EXTENT_ALLOC_ZONED: 3918 /* Nothing to do */ 3919 break; 3920 default: 3921 BUG(); 3922 } 3923 } 3924 3925 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3926 struct find_free_extent_ctl *ffe_ctl) 3927 { 3928 /* Block group's activeness is not a requirement for METADATA block groups. */ 3929 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 3930 return 0; 3931 3932 /* If we can activate new zone, just allocate a chunk and use it */ 3933 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3934 return 0; 3935 3936 /* 3937 * We already reached the max active zones. Try to finish one block 3938 * group to make a room for a new block group. This is only possible 3939 * for a data block group because btrfs_zone_finish() may need to wait 3940 * for a running transaction which can cause a deadlock for metadata 3941 * allocation. 3942 */ 3943 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3944 int ret = btrfs_zone_finish_one_bg(fs_info); 3945 3946 if (ret == 1) 3947 return 0; 3948 else if (ret < 0) 3949 return ret; 3950 } 3951 3952 /* 3953 * If we have enough free space left in an already active block group 3954 * and we can't activate any other zone now, do not allow allocating a 3955 * new chunk and let find_free_extent() retry with a smaller size. 3956 */ 3957 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3958 return -ENOSPC; 3959 3960 /* 3961 * Even min_alloc_size is not left in any block groups. Since we cannot 3962 * activate a new block group, allocating it may not help. Let's tell a 3963 * caller to try again and hope it progress something by writing some 3964 * parts of the region. That is only possible for data block groups, 3965 * where a part of the region can be written. 3966 */ 3967 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3968 return -EAGAIN; 3969 3970 /* 3971 * We cannot activate a new block group and no enough space left in any 3972 * block groups. So, allocating a new block group may not help. But, 3973 * there is nothing to do anyway, so let's go with it. 3974 */ 3975 return 0; 3976 } 3977 3978 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 3979 struct find_free_extent_ctl *ffe_ctl) 3980 { 3981 switch (ffe_ctl->policy) { 3982 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3983 return 0; 3984 case BTRFS_EXTENT_ALLOC_ZONED: 3985 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 3986 default: 3987 BUG(); 3988 } 3989 } 3990 3991 /* 3992 * Return >0 means caller needs to re-search for free extent 3993 * Return 0 means we have the needed free extent. 3994 * Return <0 means we failed to locate any free extent. 3995 */ 3996 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3997 struct btrfs_key *ins, 3998 struct find_free_extent_ctl *ffe_ctl, 3999 bool full_search) 4000 { 4001 struct btrfs_root *root = fs_info->chunk_root; 4002 int ret; 4003 4004 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4005 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4006 ffe_ctl->orig_have_caching_bg = true; 4007 4008 if (ins->objectid) { 4009 found_extent(ffe_ctl, ins); 4010 return 0; 4011 } 4012 4013 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4014 return 1; 4015 4016 ffe_ctl->index++; 4017 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4018 return 1; 4019 4020 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4021 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4022 ffe_ctl->index = 0; 4023 /* 4024 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4025 * any uncached bgs and we've already done a full search 4026 * through. 4027 */ 4028 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4029 (!ffe_ctl->orig_have_caching_bg && full_search)) 4030 ffe_ctl->loop++; 4031 ffe_ctl->loop++; 4032 4033 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4034 struct btrfs_trans_handle *trans; 4035 int exist = 0; 4036 4037 /* Check if allocation policy allows to create a new chunk */ 4038 ret = can_allocate_chunk(fs_info, ffe_ctl); 4039 if (ret) 4040 return ret; 4041 4042 trans = current->journal_info; 4043 if (trans) 4044 exist = 1; 4045 else 4046 trans = btrfs_join_transaction(root); 4047 4048 if (IS_ERR(trans)) { 4049 ret = PTR_ERR(trans); 4050 return ret; 4051 } 4052 4053 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4054 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4055 4056 /* Do not bail out on ENOSPC since we can do more. */ 4057 if (ret == -ENOSPC) { 4058 ret = 0; 4059 ffe_ctl->loop++; 4060 } 4061 else if (ret < 0) 4062 btrfs_abort_transaction(trans, ret); 4063 else 4064 ret = 0; 4065 if (!exist) 4066 btrfs_end_transaction(trans); 4067 if (ret) 4068 return ret; 4069 } 4070 4071 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4072 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4073 return -ENOSPC; 4074 4075 /* 4076 * Don't loop again if we already have no empty_size and 4077 * no empty_cluster. 4078 */ 4079 if (ffe_ctl->empty_size == 0 && 4080 ffe_ctl->empty_cluster == 0) 4081 return -ENOSPC; 4082 ffe_ctl->empty_size = 0; 4083 ffe_ctl->empty_cluster = 0; 4084 } 4085 return 1; 4086 } 4087 return -ENOSPC; 4088 } 4089 4090 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4091 struct btrfs_block_group *bg) 4092 { 4093 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4094 return true; 4095 if (!btrfs_block_group_should_use_size_class(bg)) 4096 return true; 4097 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4098 return true; 4099 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4100 bg->size_class == BTRFS_BG_SZ_NONE) 4101 return true; 4102 return ffe_ctl->size_class == bg->size_class; 4103 } 4104 4105 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4106 struct find_free_extent_ctl *ffe_ctl, 4107 struct btrfs_space_info *space_info, 4108 struct btrfs_key *ins) 4109 { 4110 /* 4111 * If our free space is heavily fragmented we may not be able to make 4112 * big contiguous allocations, so instead of doing the expensive search 4113 * for free space, simply return ENOSPC with our max_extent_size so we 4114 * can go ahead and search for a more manageable chunk. 4115 * 4116 * If our max_extent_size is large enough for our allocation simply 4117 * disable clustering since we will likely not be able to find enough 4118 * space to create a cluster and induce latency trying. 4119 */ 4120 if (space_info->max_extent_size) { 4121 spin_lock(&space_info->lock); 4122 if (space_info->max_extent_size && 4123 ffe_ctl->num_bytes > space_info->max_extent_size) { 4124 ins->offset = space_info->max_extent_size; 4125 spin_unlock(&space_info->lock); 4126 return -ENOSPC; 4127 } else if (space_info->max_extent_size) { 4128 ffe_ctl->use_cluster = false; 4129 } 4130 spin_unlock(&space_info->lock); 4131 } 4132 4133 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4134 &ffe_ctl->empty_cluster); 4135 if (ffe_ctl->last_ptr) { 4136 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4137 4138 spin_lock(&last_ptr->lock); 4139 if (last_ptr->block_group) 4140 ffe_ctl->hint_byte = last_ptr->window_start; 4141 if (last_ptr->fragmented) { 4142 /* 4143 * We still set window_start so we can keep track of the 4144 * last place we found an allocation to try and save 4145 * some time. 4146 */ 4147 ffe_ctl->hint_byte = last_ptr->window_start; 4148 ffe_ctl->use_cluster = false; 4149 } 4150 spin_unlock(&last_ptr->lock); 4151 } 4152 4153 return 0; 4154 } 4155 4156 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4157 struct find_free_extent_ctl *ffe_ctl) 4158 { 4159 if (ffe_ctl->for_treelog) { 4160 spin_lock(&fs_info->treelog_bg_lock); 4161 if (fs_info->treelog_bg) 4162 ffe_ctl->hint_byte = fs_info->treelog_bg; 4163 spin_unlock(&fs_info->treelog_bg_lock); 4164 } else if (ffe_ctl->for_data_reloc) { 4165 spin_lock(&fs_info->relocation_bg_lock); 4166 if (fs_info->data_reloc_bg) 4167 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4168 spin_unlock(&fs_info->relocation_bg_lock); 4169 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4170 struct btrfs_block_group *block_group; 4171 4172 spin_lock(&fs_info->zone_active_bgs_lock); 4173 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4174 /* 4175 * No lock is OK here because avail is monotinically 4176 * decreasing, and this is just a hint. 4177 */ 4178 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4179 4180 if (block_group_bits(block_group, ffe_ctl->flags) && 4181 avail >= ffe_ctl->num_bytes) { 4182 ffe_ctl->hint_byte = block_group->start; 4183 break; 4184 } 4185 } 4186 spin_unlock(&fs_info->zone_active_bgs_lock); 4187 } 4188 4189 return 0; 4190 } 4191 4192 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4193 struct find_free_extent_ctl *ffe_ctl, 4194 struct btrfs_space_info *space_info, 4195 struct btrfs_key *ins) 4196 { 4197 switch (ffe_ctl->policy) { 4198 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4199 return prepare_allocation_clustered(fs_info, ffe_ctl, 4200 space_info, ins); 4201 case BTRFS_EXTENT_ALLOC_ZONED: 4202 return prepare_allocation_zoned(fs_info, ffe_ctl); 4203 default: 4204 BUG(); 4205 } 4206 } 4207 4208 /* 4209 * walks the btree of allocated extents and find a hole of a given size. 4210 * The key ins is changed to record the hole: 4211 * ins->objectid == start position 4212 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4213 * ins->offset == the size of the hole. 4214 * Any available blocks before search_start are skipped. 4215 * 4216 * If there is no suitable free space, we will record the max size of 4217 * the free space extent currently. 4218 * 4219 * The overall logic and call chain: 4220 * 4221 * find_free_extent() 4222 * |- Iterate through all block groups 4223 * | |- Get a valid block group 4224 * | |- Try to do clustered allocation in that block group 4225 * | |- Try to do unclustered allocation in that block group 4226 * | |- Check if the result is valid 4227 * | | |- If valid, then exit 4228 * | |- Jump to next block group 4229 * | 4230 * |- Push harder to find free extents 4231 * |- If not found, re-iterate all block groups 4232 */ 4233 static noinline int find_free_extent(struct btrfs_root *root, 4234 struct btrfs_key *ins, 4235 struct find_free_extent_ctl *ffe_ctl) 4236 { 4237 struct btrfs_fs_info *fs_info = root->fs_info; 4238 int ret = 0; 4239 int cache_block_group_error = 0; 4240 struct btrfs_block_group *block_group = NULL; 4241 struct btrfs_space_info *space_info; 4242 bool full_search = false; 4243 4244 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4245 4246 ffe_ctl->search_start = 0; 4247 /* For clustered allocation */ 4248 ffe_ctl->empty_cluster = 0; 4249 ffe_ctl->last_ptr = NULL; 4250 ffe_ctl->use_cluster = true; 4251 ffe_ctl->have_caching_bg = false; 4252 ffe_ctl->orig_have_caching_bg = false; 4253 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4254 ffe_ctl->loop = 0; 4255 ffe_ctl->retry_uncached = false; 4256 ffe_ctl->cached = 0; 4257 ffe_ctl->max_extent_size = 0; 4258 ffe_ctl->total_free_space = 0; 4259 ffe_ctl->found_offset = 0; 4260 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4261 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4262 4263 if (btrfs_is_zoned(fs_info)) 4264 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4265 4266 ins->type = BTRFS_EXTENT_ITEM_KEY; 4267 ins->objectid = 0; 4268 ins->offset = 0; 4269 4270 trace_find_free_extent(root, ffe_ctl); 4271 4272 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4273 if (!space_info) { 4274 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4275 return -ENOSPC; 4276 } 4277 4278 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4279 if (ret < 0) 4280 return ret; 4281 4282 ffe_ctl->search_start = max(ffe_ctl->search_start, 4283 first_logical_byte(fs_info)); 4284 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4285 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4286 block_group = btrfs_lookup_block_group(fs_info, 4287 ffe_ctl->search_start); 4288 /* 4289 * we don't want to use the block group if it doesn't match our 4290 * allocation bits, or if its not cached. 4291 * 4292 * However if we are re-searching with an ideal block group 4293 * picked out then we don't care that the block group is cached. 4294 */ 4295 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4296 block_group->cached != BTRFS_CACHE_NO) { 4297 down_read(&space_info->groups_sem); 4298 if (list_empty(&block_group->list) || 4299 block_group->ro) { 4300 /* 4301 * someone is removing this block group, 4302 * we can't jump into the have_block_group 4303 * target because our list pointers are not 4304 * valid 4305 */ 4306 btrfs_put_block_group(block_group); 4307 up_read(&space_info->groups_sem); 4308 } else { 4309 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4310 block_group->flags); 4311 btrfs_lock_block_group(block_group, 4312 ffe_ctl->delalloc); 4313 ffe_ctl->hinted = true; 4314 goto have_block_group; 4315 } 4316 } else if (block_group) { 4317 btrfs_put_block_group(block_group); 4318 } 4319 } 4320 search: 4321 trace_find_free_extent_search_loop(root, ffe_ctl); 4322 ffe_ctl->have_caching_bg = false; 4323 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4324 ffe_ctl->index == 0) 4325 full_search = true; 4326 down_read(&space_info->groups_sem); 4327 list_for_each_entry(block_group, 4328 &space_info->block_groups[ffe_ctl->index], list) { 4329 struct btrfs_block_group *bg_ret; 4330 4331 ffe_ctl->hinted = false; 4332 /* If the block group is read-only, we can skip it entirely. */ 4333 if (unlikely(block_group->ro)) { 4334 if (ffe_ctl->for_treelog) 4335 btrfs_clear_treelog_bg(block_group); 4336 if (ffe_ctl->for_data_reloc) 4337 btrfs_clear_data_reloc_bg(block_group); 4338 continue; 4339 } 4340 4341 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4342 ffe_ctl->search_start = block_group->start; 4343 4344 /* 4345 * this can happen if we end up cycling through all the 4346 * raid types, but we want to make sure we only allocate 4347 * for the proper type. 4348 */ 4349 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4350 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4351 BTRFS_BLOCK_GROUP_RAID1_MASK | 4352 BTRFS_BLOCK_GROUP_RAID56_MASK | 4353 BTRFS_BLOCK_GROUP_RAID10; 4354 4355 /* 4356 * if they asked for extra copies and this block group 4357 * doesn't provide them, bail. This does allow us to 4358 * fill raid0 from raid1. 4359 */ 4360 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4361 goto loop; 4362 4363 /* 4364 * This block group has different flags than we want. 4365 * It's possible that we have MIXED_GROUP flag but no 4366 * block group is mixed. Just skip such block group. 4367 */ 4368 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4369 continue; 4370 } 4371 4372 have_block_group: 4373 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4374 ffe_ctl->cached = btrfs_block_group_done(block_group); 4375 if (unlikely(!ffe_ctl->cached)) { 4376 ffe_ctl->have_caching_bg = true; 4377 ret = btrfs_cache_block_group(block_group, false); 4378 4379 /* 4380 * If we get ENOMEM here or something else we want to 4381 * try other block groups, because it may not be fatal. 4382 * However if we can't find anything else we need to 4383 * save our return here so that we return the actual 4384 * error that caused problems, not ENOSPC. 4385 */ 4386 if (ret < 0) { 4387 if (!cache_block_group_error) 4388 cache_block_group_error = ret; 4389 ret = 0; 4390 goto loop; 4391 } 4392 ret = 0; 4393 } 4394 4395 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4396 if (!cache_block_group_error) 4397 cache_block_group_error = -EIO; 4398 goto loop; 4399 } 4400 4401 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4402 goto loop; 4403 4404 bg_ret = NULL; 4405 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4406 if (ret > 0) 4407 goto loop; 4408 4409 if (bg_ret && bg_ret != block_group) { 4410 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4411 block_group = bg_ret; 4412 } 4413 4414 /* Checks */ 4415 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4416 fs_info->stripesize); 4417 4418 /* move on to the next group */ 4419 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4420 block_group->start + block_group->length) { 4421 btrfs_add_free_space_unused(block_group, 4422 ffe_ctl->found_offset, 4423 ffe_ctl->num_bytes); 4424 goto loop; 4425 } 4426 4427 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4428 btrfs_add_free_space_unused(block_group, 4429 ffe_ctl->found_offset, 4430 ffe_ctl->search_start - ffe_ctl->found_offset); 4431 4432 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4433 ffe_ctl->num_bytes, 4434 ffe_ctl->delalloc, 4435 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4436 if (ret == -EAGAIN) { 4437 btrfs_add_free_space_unused(block_group, 4438 ffe_ctl->found_offset, 4439 ffe_ctl->num_bytes); 4440 goto loop; 4441 } 4442 btrfs_inc_block_group_reservations(block_group); 4443 4444 /* we are all good, lets return */ 4445 ins->objectid = ffe_ctl->search_start; 4446 ins->offset = ffe_ctl->num_bytes; 4447 4448 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4449 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4450 break; 4451 loop: 4452 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4453 !ffe_ctl->retry_uncached) { 4454 ffe_ctl->retry_uncached = true; 4455 btrfs_wait_block_group_cache_progress(block_group, 4456 ffe_ctl->num_bytes + 4457 ffe_ctl->empty_cluster + 4458 ffe_ctl->empty_size); 4459 goto have_block_group; 4460 } 4461 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4462 cond_resched(); 4463 } 4464 up_read(&space_info->groups_sem); 4465 4466 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4467 if (ret > 0) 4468 goto search; 4469 4470 if (ret == -ENOSPC && !cache_block_group_error) { 4471 /* 4472 * Use ffe_ctl->total_free_space as fallback if we can't find 4473 * any contiguous hole. 4474 */ 4475 if (!ffe_ctl->max_extent_size) 4476 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4477 spin_lock(&space_info->lock); 4478 space_info->max_extent_size = ffe_ctl->max_extent_size; 4479 spin_unlock(&space_info->lock); 4480 ins->offset = ffe_ctl->max_extent_size; 4481 } else if (ret == -ENOSPC) { 4482 ret = cache_block_group_error; 4483 } 4484 return ret; 4485 } 4486 4487 /* 4488 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4489 * hole that is at least as big as @num_bytes. 4490 * 4491 * @root - The root that will contain this extent 4492 * 4493 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4494 * is used for accounting purposes. This value differs 4495 * from @num_bytes only in the case of compressed extents. 4496 * 4497 * @num_bytes - Number of bytes to allocate on-disk. 4498 * 4499 * @min_alloc_size - Indicates the minimum amount of space that the 4500 * allocator should try to satisfy. In some cases 4501 * @num_bytes may be larger than what is required and if 4502 * the filesystem is fragmented then allocation fails. 4503 * However, the presence of @min_alloc_size gives a 4504 * chance to try and satisfy the smaller allocation. 4505 * 4506 * @empty_size - A hint that you plan on doing more COW. This is the 4507 * size in bytes the allocator should try to find free 4508 * next to the block it returns. This is just a hint and 4509 * may be ignored by the allocator. 4510 * 4511 * @hint_byte - Hint to the allocator to start searching above the byte 4512 * address passed. It might be ignored. 4513 * 4514 * @ins - This key is modified to record the found hole. It will 4515 * have the following values: 4516 * ins->objectid == start position 4517 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4518 * ins->offset == the size of the hole. 4519 * 4520 * @is_data - Boolean flag indicating whether an extent is 4521 * allocated for data (true) or metadata (false) 4522 * 4523 * @delalloc - Boolean flag indicating whether this allocation is for 4524 * delalloc or not. If 'true' data_rwsem of block groups 4525 * is going to be acquired. 4526 * 4527 * 4528 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4529 * case -ENOSPC is returned then @ins->offset will contain the size of the 4530 * largest available hole the allocator managed to find. 4531 */ 4532 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4533 u64 num_bytes, u64 min_alloc_size, 4534 u64 empty_size, u64 hint_byte, 4535 struct btrfs_key *ins, int is_data, int delalloc) 4536 { 4537 struct btrfs_fs_info *fs_info = root->fs_info; 4538 struct find_free_extent_ctl ffe_ctl = {}; 4539 bool final_tried = num_bytes == min_alloc_size; 4540 u64 flags; 4541 int ret; 4542 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4543 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4544 4545 flags = get_alloc_profile_by_root(root, is_data); 4546 again: 4547 WARN_ON(num_bytes < fs_info->sectorsize); 4548 4549 ffe_ctl.ram_bytes = ram_bytes; 4550 ffe_ctl.num_bytes = num_bytes; 4551 ffe_ctl.min_alloc_size = min_alloc_size; 4552 ffe_ctl.empty_size = empty_size; 4553 ffe_ctl.flags = flags; 4554 ffe_ctl.delalloc = delalloc; 4555 ffe_ctl.hint_byte = hint_byte; 4556 ffe_ctl.for_treelog = for_treelog; 4557 ffe_ctl.for_data_reloc = for_data_reloc; 4558 4559 ret = find_free_extent(root, ins, &ffe_ctl); 4560 if (!ret && !is_data) { 4561 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4562 } else if (ret == -ENOSPC) { 4563 if (!final_tried && ins->offset) { 4564 num_bytes = min(num_bytes >> 1, ins->offset); 4565 num_bytes = round_down(num_bytes, 4566 fs_info->sectorsize); 4567 num_bytes = max(num_bytes, min_alloc_size); 4568 ram_bytes = num_bytes; 4569 if (num_bytes == min_alloc_size) 4570 final_tried = true; 4571 goto again; 4572 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4573 struct btrfs_space_info *sinfo; 4574 4575 sinfo = btrfs_find_space_info(fs_info, flags); 4576 btrfs_err(fs_info, 4577 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4578 flags, num_bytes, for_treelog, for_data_reloc); 4579 if (sinfo) 4580 btrfs_dump_space_info(fs_info, sinfo, 4581 num_bytes, 1); 4582 } 4583 } 4584 4585 return ret; 4586 } 4587 4588 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4589 u64 start, u64 len, int delalloc) 4590 { 4591 struct btrfs_block_group *cache; 4592 4593 cache = btrfs_lookup_block_group(fs_info, start); 4594 if (!cache) { 4595 btrfs_err(fs_info, "Unable to find block group for %llu", 4596 start); 4597 return -ENOSPC; 4598 } 4599 4600 btrfs_add_free_space(cache, start, len); 4601 btrfs_free_reserved_bytes(cache, len, delalloc); 4602 trace_btrfs_reserved_extent_free(fs_info, start, len); 4603 4604 btrfs_put_block_group(cache); 4605 return 0; 4606 } 4607 4608 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4609 u64 len) 4610 { 4611 struct btrfs_block_group *cache; 4612 int ret = 0; 4613 4614 cache = btrfs_lookup_block_group(trans->fs_info, start); 4615 if (!cache) { 4616 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4617 start); 4618 return -ENOSPC; 4619 } 4620 4621 ret = pin_down_extent(trans, cache, start, len, 1); 4622 btrfs_put_block_group(cache); 4623 return ret; 4624 } 4625 4626 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4627 u64 num_bytes) 4628 { 4629 struct btrfs_fs_info *fs_info = trans->fs_info; 4630 int ret; 4631 4632 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4633 if (ret) 4634 return ret; 4635 4636 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4637 if (ret) { 4638 ASSERT(!ret); 4639 btrfs_err(fs_info, "update block group failed for %llu %llu", 4640 bytenr, num_bytes); 4641 return ret; 4642 } 4643 4644 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4645 return 0; 4646 } 4647 4648 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4649 u64 parent, u64 root_objectid, 4650 u64 flags, u64 owner, u64 offset, 4651 struct btrfs_key *ins, int ref_mod) 4652 { 4653 struct btrfs_fs_info *fs_info = trans->fs_info; 4654 struct btrfs_root *extent_root; 4655 int ret; 4656 struct btrfs_extent_item *extent_item; 4657 struct btrfs_extent_inline_ref *iref; 4658 struct btrfs_path *path; 4659 struct extent_buffer *leaf; 4660 int type; 4661 u32 size; 4662 4663 if (parent > 0) 4664 type = BTRFS_SHARED_DATA_REF_KEY; 4665 else 4666 type = BTRFS_EXTENT_DATA_REF_KEY; 4667 4668 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4669 4670 path = btrfs_alloc_path(); 4671 if (!path) 4672 return -ENOMEM; 4673 4674 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4675 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4676 if (ret) { 4677 btrfs_free_path(path); 4678 return ret; 4679 } 4680 4681 leaf = path->nodes[0]; 4682 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4683 struct btrfs_extent_item); 4684 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4685 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4686 btrfs_set_extent_flags(leaf, extent_item, 4687 flags | BTRFS_EXTENT_FLAG_DATA); 4688 4689 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4690 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4691 if (parent > 0) { 4692 struct btrfs_shared_data_ref *ref; 4693 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4694 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4695 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4696 } else { 4697 struct btrfs_extent_data_ref *ref; 4698 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4699 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4700 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4701 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4702 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4703 } 4704 4705 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4706 btrfs_free_path(path); 4707 4708 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4709 } 4710 4711 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4712 struct btrfs_delayed_ref_node *node, 4713 struct btrfs_delayed_extent_op *extent_op) 4714 { 4715 struct btrfs_fs_info *fs_info = trans->fs_info; 4716 struct btrfs_root *extent_root; 4717 int ret; 4718 struct btrfs_extent_item *extent_item; 4719 struct btrfs_key extent_key; 4720 struct btrfs_tree_block_info *block_info; 4721 struct btrfs_extent_inline_ref *iref; 4722 struct btrfs_path *path; 4723 struct extent_buffer *leaf; 4724 struct btrfs_delayed_tree_ref *ref; 4725 u32 size = sizeof(*extent_item) + sizeof(*iref); 4726 u64 flags = extent_op->flags_to_set; 4727 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4728 4729 ref = btrfs_delayed_node_to_tree_ref(node); 4730 4731 extent_key.objectid = node->bytenr; 4732 if (skinny_metadata) { 4733 extent_key.offset = ref->level; 4734 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4735 } else { 4736 extent_key.offset = node->num_bytes; 4737 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4738 size += sizeof(*block_info); 4739 } 4740 4741 path = btrfs_alloc_path(); 4742 if (!path) 4743 return -ENOMEM; 4744 4745 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4746 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4747 size); 4748 if (ret) { 4749 btrfs_free_path(path); 4750 return ret; 4751 } 4752 4753 leaf = path->nodes[0]; 4754 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4755 struct btrfs_extent_item); 4756 btrfs_set_extent_refs(leaf, extent_item, 1); 4757 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4758 btrfs_set_extent_flags(leaf, extent_item, 4759 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4760 4761 if (skinny_metadata) { 4762 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4763 } else { 4764 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4765 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4766 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4767 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4768 } 4769 4770 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4771 btrfs_set_extent_inline_ref_type(leaf, iref, 4772 BTRFS_SHARED_BLOCK_REF_KEY); 4773 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4774 } else { 4775 btrfs_set_extent_inline_ref_type(leaf, iref, 4776 BTRFS_TREE_BLOCK_REF_KEY); 4777 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4778 } 4779 4780 btrfs_mark_buffer_dirty(trans, leaf); 4781 btrfs_free_path(path); 4782 4783 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4784 } 4785 4786 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4787 struct btrfs_root *root, u64 owner, 4788 u64 offset, u64 ram_bytes, 4789 struct btrfs_key *ins) 4790 { 4791 struct btrfs_ref generic_ref = { 0 }; 4792 4793 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4794 4795 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4796 ins->objectid, ins->offset, 0); 4797 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4798 offset, 0, false); 4799 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4800 4801 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4802 } 4803 4804 /* 4805 * this is used by the tree logging recovery code. It records that 4806 * an extent has been allocated and makes sure to clear the free 4807 * space cache bits as well 4808 */ 4809 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4810 u64 root_objectid, u64 owner, u64 offset, 4811 struct btrfs_key *ins) 4812 { 4813 struct btrfs_fs_info *fs_info = trans->fs_info; 4814 int ret; 4815 struct btrfs_block_group *block_group; 4816 struct btrfs_space_info *space_info; 4817 4818 /* 4819 * Mixed block groups will exclude before processing the log so we only 4820 * need to do the exclude dance if this fs isn't mixed. 4821 */ 4822 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4823 ret = __exclude_logged_extent(fs_info, ins->objectid, 4824 ins->offset); 4825 if (ret) 4826 return ret; 4827 } 4828 4829 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4830 if (!block_group) 4831 return -EINVAL; 4832 4833 space_info = block_group->space_info; 4834 spin_lock(&space_info->lock); 4835 spin_lock(&block_group->lock); 4836 space_info->bytes_reserved += ins->offset; 4837 block_group->reserved += ins->offset; 4838 spin_unlock(&block_group->lock); 4839 spin_unlock(&space_info->lock); 4840 4841 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4842 offset, ins, 1); 4843 if (ret) 4844 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4845 btrfs_put_block_group(block_group); 4846 return ret; 4847 } 4848 4849 static struct extent_buffer * 4850 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4851 u64 bytenr, int level, u64 owner, 4852 enum btrfs_lock_nesting nest) 4853 { 4854 struct btrfs_fs_info *fs_info = root->fs_info; 4855 struct extent_buffer *buf; 4856 u64 lockdep_owner = owner; 4857 4858 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4859 if (IS_ERR(buf)) 4860 return buf; 4861 4862 /* 4863 * Extra safety check in case the extent tree is corrupted and extent 4864 * allocator chooses to use a tree block which is already used and 4865 * locked. 4866 */ 4867 if (buf->lock_owner == current->pid) { 4868 btrfs_err_rl(fs_info, 4869 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4870 buf->start, btrfs_header_owner(buf), current->pid); 4871 free_extent_buffer(buf); 4872 return ERR_PTR(-EUCLEAN); 4873 } 4874 4875 /* 4876 * The reloc trees are just snapshots, so we need them to appear to be 4877 * just like any other fs tree WRT lockdep. 4878 * 4879 * The exception however is in replace_path() in relocation, where we 4880 * hold the lock on the original fs root and then search for the reloc 4881 * root. At that point we need to make sure any reloc root buffers are 4882 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4883 * lockdep happy. 4884 */ 4885 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4886 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4887 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4888 4889 /* btrfs_clear_buffer_dirty() accesses generation field. */ 4890 btrfs_set_header_generation(buf, trans->transid); 4891 4892 /* 4893 * This needs to stay, because we could allocate a freed block from an 4894 * old tree into a new tree, so we need to make sure this new block is 4895 * set to the appropriate level and owner. 4896 */ 4897 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4898 4899 __btrfs_tree_lock(buf, nest); 4900 btrfs_clear_buffer_dirty(trans, buf); 4901 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4902 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4903 4904 set_extent_buffer_uptodate(buf); 4905 4906 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4907 btrfs_set_header_level(buf, level); 4908 btrfs_set_header_bytenr(buf, buf->start); 4909 btrfs_set_header_generation(buf, trans->transid); 4910 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4911 btrfs_set_header_owner(buf, owner); 4912 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4913 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4914 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4915 buf->log_index = root->log_transid % 2; 4916 /* 4917 * we allow two log transactions at a time, use different 4918 * EXTENT bit to differentiate dirty pages. 4919 */ 4920 if (buf->log_index == 0) 4921 set_extent_bit(&root->dirty_log_pages, buf->start, 4922 buf->start + buf->len - 1, 4923 EXTENT_DIRTY, NULL); 4924 else 4925 set_extent_bit(&root->dirty_log_pages, buf->start, 4926 buf->start + buf->len - 1, 4927 EXTENT_NEW, NULL); 4928 } else { 4929 buf->log_index = -1; 4930 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 4931 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 4932 } 4933 /* this returns a buffer locked for blocking */ 4934 return buf; 4935 } 4936 4937 /* 4938 * finds a free extent and does all the dirty work required for allocation 4939 * returns the tree buffer or an ERR_PTR on error. 4940 */ 4941 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4942 struct btrfs_root *root, 4943 u64 parent, u64 root_objectid, 4944 const struct btrfs_disk_key *key, 4945 int level, u64 hint, 4946 u64 empty_size, 4947 enum btrfs_lock_nesting nest) 4948 { 4949 struct btrfs_fs_info *fs_info = root->fs_info; 4950 struct btrfs_key ins; 4951 struct btrfs_block_rsv *block_rsv; 4952 struct extent_buffer *buf; 4953 struct btrfs_delayed_extent_op *extent_op; 4954 struct btrfs_ref generic_ref = { 0 }; 4955 u64 flags = 0; 4956 int ret; 4957 u32 blocksize = fs_info->nodesize; 4958 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4959 4960 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4961 if (btrfs_is_testing(fs_info)) { 4962 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4963 level, root_objectid, nest); 4964 if (!IS_ERR(buf)) 4965 root->alloc_bytenr += blocksize; 4966 return buf; 4967 } 4968 #endif 4969 4970 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4971 if (IS_ERR(block_rsv)) 4972 return ERR_CAST(block_rsv); 4973 4974 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4975 empty_size, hint, &ins, 0, 0); 4976 if (ret) 4977 goto out_unuse; 4978 4979 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4980 root_objectid, nest); 4981 if (IS_ERR(buf)) { 4982 ret = PTR_ERR(buf); 4983 goto out_free_reserved; 4984 } 4985 4986 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4987 if (parent == 0) 4988 parent = ins.objectid; 4989 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4990 } else 4991 BUG_ON(parent > 0); 4992 4993 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4994 extent_op = btrfs_alloc_delayed_extent_op(); 4995 if (!extent_op) { 4996 ret = -ENOMEM; 4997 goto out_free_buf; 4998 } 4999 if (key) 5000 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5001 else 5002 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5003 extent_op->flags_to_set = flags; 5004 extent_op->update_key = skinny_metadata ? false : true; 5005 extent_op->update_flags = true; 5006 extent_op->level = level; 5007 5008 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5009 ins.objectid, ins.offset, parent); 5010 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5011 root->root_key.objectid, false); 5012 btrfs_ref_tree_mod(fs_info, &generic_ref); 5013 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5014 if (ret) 5015 goto out_free_delayed; 5016 } 5017 return buf; 5018 5019 out_free_delayed: 5020 btrfs_free_delayed_extent_op(extent_op); 5021 out_free_buf: 5022 btrfs_tree_unlock(buf); 5023 free_extent_buffer(buf); 5024 out_free_reserved: 5025 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5026 out_unuse: 5027 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5028 return ERR_PTR(ret); 5029 } 5030 5031 struct walk_control { 5032 u64 refs[BTRFS_MAX_LEVEL]; 5033 u64 flags[BTRFS_MAX_LEVEL]; 5034 struct btrfs_key update_progress; 5035 struct btrfs_key drop_progress; 5036 int drop_level; 5037 int stage; 5038 int level; 5039 int shared_level; 5040 int update_ref; 5041 int keep_locks; 5042 int reada_slot; 5043 int reada_count; 5044 int restarted; 5045 }; 5046 5047 #define DROP_REFERENCE 1 5048 #define UPDATE_BACKREF 2 5049 5050 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5051 struct btrfs_root *root, 5052 struct walk_control *wc, 5053 struct btrfs_path *path) 5054 { 5055 struct btrfs_fs_info *fs_info = root->fs_info; 5056 u64 bytenr; 5057 u64 generation; 5058 u64 refs; 5059 u64 flags; 5060 u32 nritems; 5061 struct btrfs_key key; 5062 struct extent_buffer *eb; 5063 int ret; 5064 int slot; 5065 int nread = 0; 5066 5067 if (path->slots[wc->level] < wc->reada_slot) { 5068 wc->reada_count = wc->reada_count * 2 / 3; 5069 wc->reada_count = max(wc->reada_count, 2); 5070 } else { 5071 wc->reada_count = wc->reada_count * 3 / 2; 5072 wc->reada_count = min_t(int, wc->reada_count, 5073 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5074 } 5075 5076 eb = path->nodes[wc->level]; 5077 nritems = btrfs_header_nritems(eb); 5078 5079 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5080 if (nread >= wc->reada_count) 5081 break; 5082 5083 cond_resched(); 5084 bytenr = btrfs_node_blockptr(eb, slot); 5085 generation = btrfs_node_ptr_generation(eb, slot); 5086 5087 if (slot == path->slots[wc->level]) 5088 goto reada; 5089 5090 if (wc->stage == UPDATE_BACKREF && 5091 generation <= root->root_key.offset) 5092 continue; 5093 5094 /* We don't lock the tree block, it's OK to be racy here */ 5095 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5096 wc->level - 1, 1, &refs, 5097 &flags); 5098 /* We don't care about errors in readahead. */ 5099 if (ret < 0) 5100 continue; 5101 5102 /* 5103 * This could be racey, it's conceivable that we raced and end 5104 * up with a bogus refs count, if that's the case just skip, if 5105 * we are actually corrupt we will notice when we look up 5106 * everything again with our locks. 5107 */ 5108 if (refs == 0) 5109 continue; 5110 5111 if (wc->stage == DROP_REFERENCE) { 5112 if (refs == 1) 5113 goto reada; 5114 5115 if (wc->level == 1 && 5116 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5117 continue; 5118 if (!wc->update_ref || 5119 generation <= root->root_key.offset) 5120 continue; 5121 btrfs_node_key_to_cpu(eb, &key, slot); 5122 ret = btrfs_comp_cpu_keys(&key, 5123 &wc->update_progress); 5124 if (ret < 0) 5125 continue; 5126 } else { 5127 if (wc->level == 1 && 5128 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5129 continue; 5130 } 5131 reada: 5132 btrfs_readahead_node_child(eb, slot); 5133 nread++; 5134 } 5135 wc->reada_slot = slot; 5136 } 5137 5138 /* 5139 * helper to process tree block while walking down the tree. 5140 * 5141 * when wc->stage == UPDATE_BACKREF, this function updates 5142 * back refs for pointers in the block. 5143 * 5144 * NOTE: return value 1 means we should stop walking down. 5145 */ 5146 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5147 struct btrfs_root *root, 5148 struct btrfs_path *path, 5149 struct walk_control *wc, int lookup_info) 5150 { 5151 struct btrfs_fs_info *fs_info = root->fs_info; 5152 int level = wc->level; 5153 struct extent_buffer *eb = path->nodes[level]; 5154 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5155 int ret; 5156 5157 if (wc->stage == UPDATE_BACKREF && 5158 btrfs_header_owner(eb) != root->root_key.objectid) 5159 return 1; 5160 5161 /* 5162 * when reference count of tree block is 1, it won't increase 5163 * again. once full backref flag is set, we never clear it. 5164 */ 5165 if (lookup_info && 5166 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5167 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5168 ASSERT(path->locks[level]); 5169 ret = btrfs_lookup_extent_info(trans, fs_info, 5170 eb->start, level, 1, 5171 &wc->refs[level], 5172 &wc->flags[level]); 5173 if (ret) 5174 return ret; 5175 if (unlikely(wc->refs[level] == 0)) { 5176 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5177 eb->start); 5178 return -EUCLEAN; 5179 } 5180 } 5181 5182 if (wc->stage == DROP_REFERENCE) { 5183 if (wc->refs[level] > 1) 5184 return 1; 5185 5186 if (path->locks[level] && !wc->keep_locks) { 5187 btrfs_tree_unlock_rw(eb, path->locks[level]); 5188 path->locks[level] = 0; 5189 } 5190 return 0; 5191 } 5192 5193 /* wc->stage == UPDATE_BACKREF */ 5194 if (!(wc->flags[level] & flag)) { 5195 ASSERT(path->locks[level]); 5196 ret = btrfs_inc_ref(trans, root, eb, 1); 5197 BUG_ON(ret); /* -ENOMEM */ 5198 ret = btrfs_dec_ref(trans, root, eb, 0); 5199 BUG_ON(ret); /* -ENOMEM */ 5200 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5201 BUG_ON(ret); /* -ENOMEM */ 5202 wc->flags[level] |= flag; 5203 } 5204 5205 /* 5206 * the block is shared by multiple trees, so it's not good to 5207 * keep the tree lock 5208 */ 5209 if (path->locks[level] && level > 0) { 5210 btrfs_tree_unlock_rw(eb, path->locks[level]); 5211 path->locks[level] = 0; 5212 } 5213 return 0; 5214 } 5215 5216 /* 5217 * This is used to verify a ref exists for this root to deal with a bug where we 5218 * would have a drop_progress key that hadn't been updated properly. 5219 */ 5220 static int check_ref_exists(struct btrfs_trans_handle *trans, 5221 struct btrfs_root *root, u64 bytenr, u64 parent, 5222 int level) 5223 { 5224 struct btrfs_path *path; 5225 struct btrfs_extent_inline_ref *iref; 5226 int ret; 5227 5228 path = btrfs_alloc_path(); 5229 if (!path) 5230 return -ENOMEM; 5231 5232 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5233 root->fs_info->nodesize, parent, 5234 root->root_key.objectid, level, 0); 5235 btrfs_free_path(path); 5236 if (ret == -ENOENT) 5237 return 0; 5238 if (ret < 0) 5239 return ret; 5240 return 1; 5241 } 5242 5243 /* 5244 * helper to process tree block pointer. 5245 * 5246 * when wc->stage == DROP_REFERENCE, this function checks 5247 * reference count of the block pointed to. if the block 5248 * is shared and we need update back refs for the subtree 5249 * rooted at the block, this function changes wc->stage to 5250 * UPDATE_BACKREF. if the block is shared and there is no 5251 * need to update back, this function drops the reference 5252 * to the block. 5253 * 5254 * NOTE: return value 1 means we should stop walking down. 5255 */ 5256 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5257 struct btrfs_root *root, 5258 struct btrfs_path *path, 5259 struct walk_control *wc, int *lookup_info) 5260 { 5261 struct btrfs_fs_info *fs_info = root->fs_info; 5262 u64 bytenr; 5263 u64 generation; 5264 u64 parent; 5265 struct btrfs_tree_parent_check check = { 0 }; 5266 struct btrfs_key key; 5267 struct btrfs_ref ref = { 0 }; 5268 struct extent_buffer *next; 5269 int level = wc->level; 5270 int reada = 0; 5271 int ret = 0; 5272 bool need_account = false; 5273 5274 generation = btrfs_node_ptr_generation(path->nodes[level], 5275 path->slots[level]); 5276 /* 5277 * if the lower level block was created before the snapshot 5278 * was created, we know there is no need to update back refs 5279 * for the subtree 5280 */ 5281 if (wc->stage == UPDATE_BACKREF && 5282 generation <= root->root_key.offset) { 5283 *lookup_info = 1; 5284 return 1; 5285 } 5286 5287 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5288 5289 check.level = level - 1; 5290 check.transid = generation; 5291 check.owner_root = root->root_key.objectid; 5292 check.has_first_key = true; 5293 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5294 path->slots[level]); 5295 5296 next = find_extent_buffer(fs_info, bytenr); 5297 if (!next) { 5298 next = btrfs_find_create_tree_block(fs_info, bytenr, 5299 root->root_key.objectid, level - 1); 5300 if (IS_ERR(next)) 5301 return PTR_ERR(next); 5302 reada = 1; 5303 } 5304 btrfs_tree_lock(next); 5305 5306 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5307 &wc->refs[level - 1], 5308 &wc->flags[level - 1]); 5309 if (ret < 0) 5310 goto out_unlock; 5311 5312 if (unlikely(wc->refs[level - 1] == 0)) { 5313 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5314 bytenr); 5315 ret = -EUCLEAN; 5316 goto out_unlock; 5317 } 5318 *lookup_info = 0; 5319 5320 if (wc->stage == DROP_REFERENCE) { 5321 if (wc->refs[level - 1] > 1) { 5322 need_account = true; 5323 if (level == 1 && 5324 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5325 goto skip; 5326 5327 if (!wc->update_ref || 5328 generation <= root->root_key.offset) 5329 goto skip; 5330 5331 btrfs_node_key_to_cpu(path->nodes[level], &key, 5332 path->slots[level]); 5333 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5334 if (ret < 0) 5335 goto skip; 5336 5337 wc->stage = UPDATE_BACKREF; 5338 wc->shared_level = level - 1; 5339 } 5340 } else { 5341 if (level == 1 && 5342 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5343 goto skip; 5344 } 5345 5346 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5347 btrfs_tree_unlock(next); 5348 free_extent_buffer(next); 5349 next = NULL; 5350 *lookup_info = 1; 5351 } 5352 5353 if (!next) { 5354 if (reada && level == 1) 5355 reada_walk_down(trans, root, wc, path); 5356 next = read_tree_block(fs_info, bytenr, &check); 5357 if (IS_ERR(next)) { 5358 return PTR_ERR(next); 5359 } else if (!extent_buffer_uptodate(next)) { 5360 free_extent_buffer(next); 5361 return -EIO; 5362 } 5363 btrfs_tree_lock(next); 5364 } 5365 5366 level--; 5367 ASSERT(level == btrfs_header_level(next)); 5368 if (level != btrfs_header_level(next)) { 5369 btrfs_err(root->fs_info, "mismatched level"); 5370 ret = -EIO; 5371 goto out_unlock; 5372 } 5373 path->nodes[level] = next; 5374 path->slots[level] = 0; 5375 path->locks[level] = BTRFS_WRITE_LOCK; 5376 wc->level = level; 5377 if (wc->level == 1) 5378 wc->reada_slot = 0; 5379 return 0; 5380 skip: 5381 wc->refs[level - 1] = 0; 5382 wc->flags[level - 1] = 0; 5383 if (wc->stage == DROP_REFERENCE) { 5384 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5385 parent = path->nodes[level]->start; 5386 } else { 5387 ASSERT(root->root_key.objectid == 5388 btrfs_header_owner(path->nodes[level])); 5389 if (root->root_key.objectid != 5390 btrfs_header_owner(path->nodes[level])) { 5391 btrfs_err(root->fs_info, 5392 "mismatched block owner"); 5393 ret = -EIO; 5394 goto out_unlock; 5395 } 5396 parent = 0; 5397 } 5398 5399 /* 5400 * If we had a drop_progress we need to verify the refs are set 5401 * as expected. If we find our ref then we know that from here 5402 * on out everything should be correct, and we can clear the 5403 * ->restarted flag. 5404 */ 5405 if (wc->restarted) { 5406 ret = check_ref_exists(trans, root, bytenr, parent, 5407 level - 1); 5408 if (ret < 0) 5409 goto out_unlock; 5410 if (ret == 0) 5411 goto no_delete; 5412 ret = 0; 5413 wc->restarted = 0; 5414 } 5415 5416 /* 5417 * Reloc tree doesn't contribute to qgroup numbers, and we have 5418 * already accounted them at merge time (replace_path), 5419 * thus we could skip expensive subtree trace here. 5420 */ 5421 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5422 need_account) { 5423 ret = btrfs_qgroup_trace_subtree(trans, next, 5424 generation, level - 1); 5425 if (ret) { 5426 btrfs_err_rl(fs_info, 5427 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5428 ret); 5429 } 5430 } 5431 5432 /* 5433 * We need to update the next key in our walk control so we can 5434 * update the drop_progress key accordingly. We don't care if 5435 * find_next_key doesn't find a key because that means we're at 5436 * the end and are going to clean up now. 5437 */ 5438 wc->drop_level = level; 5439 find_next_key(path, level, &wc->drop_progress); 5440 5441 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5442 fs_info->nodesize, parent); 5443 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5444 0, false); 5445 ret = btrfs_free_extent(trans, &ref); 5446 if (ret) 5447 goto out_unlock; 5448 } 5449 no_delete: 5450 *lookup_info = 1; 5451 ret = 1; 5452 5453 out_unlock: 5454 btrfs_tree_unlock(next); 5455 free_extent_buffer(next); 5456 5457 return ret; 5458 } 5459 5460 /* 5461 * helper to process tree block while walking up the tree. 5462 * 5463 * when wc->stage == DROP_REFERENCE, this function drops 5464 * reference count on the block. 5465 * 5466 * when wc->stage == UPDATE_BACKREF, this function changes 5467 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5468 * to UPDATE_BACKREF previously while processing the block. 5469 * 5470 * NOTE: return value 1 means we should stop walking up. 5471 */ 5472 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5473 struct btrfs_root *root, 5474 struct btrfs_path *path, 5475 struct walk_control *wc) 5476 { 5477 struct btrfs_fs_info *fs_info = root->fs_info; 5478 int ret = 0; 5479 int level = wc->level; 5480 struct extent_buffer *eb = path->nodes[level]; 5481 u64 parent = 0; 5482 5483 if (wc->stage == UPDATE_BACKREF) { 5484 BUG_ON(wc->shared_level < level); 5485 if (level < wc->shared_level) 5486 goto out; 5487 5488 ret = find_next_key(path, level + 1, &wc->update_progress); 5489 if (ret > 0) 5490 wc->update_ref = 0; 5491 5492 wc->stage = DROP_REFERENCE; 5493 wc->shared_level = -1; 5494 path->slots[level] = 0; 5495 5496 /* 5497 * check reference count again if the block isn't locked. 5498 * we should start walking down the tree again if reference 5499 * count is one. 5500 */ 5501 if (!path->locks[level]) { 5502 BUG_ON(level == 0); 5503 btrfs_tree_lock(eb); 5504 path->locks[level] = BTRFS_WRITE_LOCK; 5505 5506 ret = btrfs_lookup_extent_info(trans, fs_info, 5507 eb->start, level, 1, 5508 &wc->refs[level], 5509 &wc->flags[level]); 5510 if (ret < 0) { 5511 btrfs_tree_unlock_rw(eb, path->locks[level]); 5512 path->locks[level] = 0; 5513 return ret; 5514 } 5515 if (unlikely(wc->refs[level] == 0)) { 5516 btrfs_tree_unlock_rw(eb, path->locks[level]); 5517 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5518 eb->start); 5519 return -EUCLEAN; 5520 } 5521 if (wc->refs[level] == 1) { 5522 btrfs_tree_unlock_rw(eb, path->locks[level]); 5523 path->locks[level] = 0; 5524 return 1; 5525 } 5526 } 5527 } 5528 5529 /* wc->stage == DROP_REFERENCE */ 5530 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5531 5532 if (wc->refs[level] == 1) { 5533 if (level == 0) { 5534 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5535 ret = btrfs_dec_ref(trans, root, eb, 1); 5536 else 5537 ret = btrfs_dec_ref(trans, root, eb, 0); 5538 BUG_ON(ret); /* -ENOMEM */ 5539 if (is_fstree(root->root_key.objectid)) { 5540 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5541 if (ret) { 5542 btrfs_err_rl(fs_info, 5543 "error %d accounting leaf items, quota is out of sync, rescan required", 5544 ret); 5545 } 5546 } 5547 } 5548 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5549 if (!path->locks[level]) { 5550 btrfs_tree_lock(eb); 5551 path->locks[level] = BTRFS_WRITE_LOCK; 5552 } 5553 btrfs_clear_buffer_dirty(trans, eb); 5554 } 5555 5556 if (eb == root->node) { 5557 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5558 parent = eb->start; 5559 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5560 goto owner_mismatch; 5561 } else { 5562 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5563 parent = path->nodes[level + 1]->start; 5564 else if (root->root_key.objectid != 5565 btrfs_header_owner(path->nodes[level + 1])) 5566 goto owner_mismatch; 5567 } 5568 5569 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5570 wc->refs[level] == 1); 5571 if (ret < 0) 5572 btrfs_abort_transaction(trans, ret); 5573 out: 5574 wc->refs[level] = 0; 5575 wc->flags[level] = 0; 5576 return ret; 5577 5578 owner_mismatch: 5579 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5580 btrfs_header_owner(eb), root->root_key.objectid); 5581 return -EUCLEAN; 5582 } 5583 5584 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5585 struct btrfs_root *root, 5586 struct btrfs_path *path, 5587 struct walk_control *wc) 5588 { 5589 int level = wc->level; 5590 int lookup_info = 1; 5591 int ret = 0; 5592 5593 while (level >= 0) { 5594 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5595 if (ret) 5596 break; 5597 5598 if (level == 0) 5599 break; 5600 5601 if (path->slots[level] >= 5602 btrfs_header_nritems(path->nodes[level])) 5603 break; 5604 5605 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5606 if (ret > 0) { 5607 path->slots[level]++; 5608 continue; 5609 } else if (ret < 0) 5610 break; 5611 level = wc->level; 5612 } 5613 return (ret == 1) ? 0 : ret; 5614 } 5615 5616 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5617 struct btrfs_root *root, 5618 struct btrfs_path *path, 5619 struct walk_control *wc, int max_level) 5620 { 5621 int level = wc->level; 5622 int ret; 5623 5624 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5625 while (level < max_level && path->nodes[level]) { 5626 wc->level = level; 5627 if (path->slots[level] + 1 < 5628 btrfs_header_nritems(path->nodes[level])) { 5629 path->slots[level]++; 5630 return 0; 5631 } else { 5632 ret = walk_up_proc(trans, root, path, wc); 5633 if (ret > 0) 5634 return 0; 5635 if (ret < 0) 5636 return ret; 5637 5638 if (path->locks[level]) { 5639 btrfs_tree_unlock_rw(path->nodes[level], 5640 path->locks[level]); 5641 path->locks[level] = 0; 5642 } 5643 free_extent_buffer(path->nodes[level]); 5644 path->nodes[level] = NULL; 5645 level++; 5646 } 5647 } 5648 return 1; 5649 } 5650 5651 /* 5652 * drop a subvolume tree. 5653 * 5654 * this function traverses the tree freeing any blocks that only 5655 * referenced by the tree. 5656 * 5657 * when a shared tree block is found. this function decreases its 5658 * reference count by one. if update_ref is true, this function 5659 * also make sure backrefs for the shared block and all lower level 5660 * blocks are properly updated. 5661 * 5662 * If called with for_reloc == 0, may exit early with -EAGAIN 5663 */ 5664 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5665 { 5666 const bool is_reloc_root = (root->root_key.objectid == 5667 BTRFS_TREE_RELOC_OBJECTID); 5668 struct btrfs_fs_info *fs_info = root->fs_info; 5669 struct btrfs_path *path; 5670 struct btrfs_trans_handle *trans; 5671 struct btrfs_root *tree_root = fs_info->tree_root; 5672 struct btrfs_root_item *root_item = &root->root_item; 5673 struct walk_control *wc; 5674 struct btrfs_key key; 5675 int err = 0; 5676 int ret; 5677 int level; 5678 bool root_dropped = false; 5679 bool unfinished_drop = false; 5680 5681 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5682 5683 path = btrfs_alloc_path(); 5684 if (!path) { 5685 err = -ENOMEM; 5686 goto out; 5687 } 5688 5689 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5690 if (!wc) { 5691 btrfs_free_path(path); 5692 err = -ENOMEM; 5693 goto out; 5694 } 5695 5696 /* 5697 * Use join to avoid potential EINTR from transaction start. See 5698 * wait_reserve_ticket and the whole reservation callchain. 5699 */ 5700 if (for_reloc) 5701 trans = btrfs_join_transaction(tree_root); 5702 else 5703 trans = btrfs_start_transaction(tree_root, 0); 5704 if (IS_ERR(trans)) { 5705 err = PTR_ERR(trans); 5706 goto out_free; 5707 } 5708 5709 err = btrfs_run_delayed_items(trans); 5710 if (err) 5711 goto out_end_trans; 5712 5713 /* 5714 * This will help us catch people modifying the fs tree while we're 5715 * dropping it. It is unsafe to mess with the fs tree while it's being 5716 * dropped as we unlock the root node and parent nodes as we walk down 5717 * the tree, assuming nothing will change. If something does change 5718 * then we'll have stale information and drop references to blocks we've 5719 * already dropped. 5720 */ 5721 set_bit(BTRFS_ROOT_DELETING, &root->state); 5722 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5723 5724 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5725 level = btrfs_header_level(root->node); 5726 path->nodes[level] = btrfs_lock_root_node(root); 5727 path->slots[level] = 0; 5728 path->locks[level] = BTRFS_WRITE_LOCK; 5729 memset(&wc->update_progress, 0, 5730 sizeof(wc->update_progress)); 5731 } else { 5732 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5733 memcpy(&wc->update_progress, &key, 5734 sizeof(wc->update_progress)); 5735 5736 level = btrfs_root_drop_level(root_item); 5737 BUG_ON(level == 0); 5738 path->lowest_level = level; 5739 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5740 path->lowest_level = 0; 5741 if (ret < 0) { 5742 err = ret; 5743 goto out_end_trans; 5744 } 5745 WARN_ON(ret > 0); 5746 5747 /* 5748 * unlock our path, this is safe because only this 5749 * function is allowed to delete this snapshot 5750 */ 5751 btrfs_unlock_up_safe(path, 0); 5752 5753 level = btrfs_header_level(root->node); 5754 while (1) { 5755 btrfs_tree_lock(path->nodes[level]); 5756 path->locks[level] = BTRFS_WRITE_LOCK; 5757 5758 ret = btrfs_lookup_extent_info(trans, fs_info, 5759 path->nodes[level]->start, 5760 level, 1, &wc->refs[level], 5761 &wc->flags[level]); 5762 if (ret < 0) { 5763 err = ret; 5764 goto out_end_trans; 5765 } 5766 BUG_ON(wc->refs[level] == 0); 5767 5768 if (level == btrfs_root_drop_level(root_item)) 5769 break; 5770 5771 btrfs_tree_unlock(path->nodes[level]); 5772 path->locks[level] = 0; 5773 WARN_ON(wc->refs[level] != 1); 5774 level--; 5775 } 5776 } 5777 5778 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5779 wc->level = level; 5780 wc->shared_level = -1; 5781 wc->stage = DROP_REFERENCE; 5782 wc->update_ref = update_ref; 5783 wc->keep_locks = 0; 5784 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5785 5786 while (1) { 5787 5788 ret = walk_down_tree(trans, root, path, wc); 5789 if (ret < 0) { 5790 btrfs_abort_transaction(trans, ret); 5791 err = ret; 5792 break; 5793 } 5794 5795 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5796 if (ret < 0) { 5797 btrfs_abort_transaction(trans, ret); 5798 err = ret; 5799 break; 5800 } 5801 5802 if (ret > 0) { 5803 BUG_ON(wc->stage != DROP_REFERENCE); 5804 break; 5805 } 5806 5807 if (wc->stage == DROP_REFERENCE) { 5808 wc->drop_level = wc->level; 5809 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5810 &wc->drop_progress, 5811 path->slots[wc->drop_level]); 5812 } 5813 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5814 &wc->drop_progress); 5815 btrfs_set_root_drop_level(root_item, wc->drop_level); 5816 5817 BUG_ON(wc->level == 0); 5818 if (btrfs_should_end_transaction(trans) || 5819 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5820 ret = btrfs_update_root(trans, tree_root, 5821 &root->root_key, 5822 root_item); 5823 if (ret) { 5824 btrfs_abort_transaction(trans, ret); 5825 err = ret; 5826 goto out_end_trans; 5827 } 5828 5829 if (!is_reloc_root) 5830 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5831 5832 btrfs_end_transaction_throttle(trans); 5833 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5834 btrfs_debug(fs_info, 5835 "drop snapshot early exit"); 5836 err = -EAGAIN; 5837 goto out_free; 5838 } 5839 5840 /* 5841 * Use join to avoid potential EINTR from transaction 5842 * start. See wait_reserve_ticket and the whole 5843 * reservation callchain. 5844 */ 5845 if (for_reloc) 5846 trans = btrfs_join_transaction(tree_root); 5847 else 5848 trans = btrfs_start_transaction(tree_root, 0); 5849 if (IS_ERR(trans)) { 5850 err = PTR_ERR(trans); 5851 goto out_free; 5852 } 5853 } 5854 } 5855 btrfs_release_path(path); 5856 if (err) 5857 goto out_end_trans; 5858 5859 ret = btrfs_del_root(trans, &root->root_key); 5860 if (ret) { 5861 btrfs_abort_transaction(trans, ret); 5862 err = ret; 5863 goto out_end_trans; 5864 } 5865 5866 if (!is_reloc_root) { 5867 ret = btrfs_find_root(tree_root, &root->root_key, path, 5868 NULL, NULL); 5869 if (ret < 0) { 5870 btrfs_abort_transaction(trans, ret); 5871 err = ret; 5872 goto out_end_trans; 5873 } else if (ret > 0) { 5874 /* if we fail to delete the orphan item this time 5875 * around, it'll get picked up the next time. 5876 * 5877 * The most common failure here is just -ENOENT. 5878 */ 5879 btrfs_del_orphan_item(trans, tree_root, 5880 root->root_key.objectid); 5881 } 5882 } 5883 5884 /* 5885 * This subvolume is going to be completely dropped, and won't be 5886 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5887 * commit transaction time. So free it here manually. 5888 */ 5889 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5890 btrfs_qgroup_free_meta_all_pertrans(root); 5891 5892 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5893 btrfs_add_dropped_root(trans, root); 5894 else 5895 btrfs_put_root(root); 5896 root_dropped = true; 5897 out_end_trans: 5898 if (!is_reloc_root) 5899 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5900 5901 btrfs_end_transaction_throttle(trans); 5902 out_free: 5903 kfree(wc); 5904 btrfs_free_path(path); 5905 out: 5906 /* 5907 * We were an unfinished drop root, check to see if there are any 5908 * pending, and if not clear and wake up any waiters. 5909 */ 5910 if (!err && unfinished_drop) 5911 btrfs_maybe_wake_unfinished_drop(fs_info); 5912 5913 /* 5914 * So if we need to stop dropping the snapshot for whatever reason we 5915 * need to make sure to add it back to the dead root list so that we 5916 * keep trying to do the work later. This also cleans up roots if we 5917 * don't have it in the radix (like when we recover after a power fail 5918 * or unmount) so we don't leak memory. 5919 */ 5920 if (!for_reloc && !root_dropped) 5921 btrfs_add_dead_root(root); 5922 return err; 5923 } 5924 5925 /* 5926 * drop subtree rooted at tree block 'node'. 5927 * 5928 * NOTE: this function will unlock and release tree block 'node' 5929 * only used by relocation code 5930 */ 5931 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5932 struct btrfs_root *root, 5933 struct extent_buffer *node, 5934 struct extent_buffer *parent) 5935 { 5936 struct btrfs_fs_info *fs_info = root->fs_info; 5937 struct btrfs_path *path; 5938 struct walk_control *wc; 5939 int level; 5940 int parent_level; 5941 int ret = 0; 5942 int wret; 5943 5944 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5945 5946 path = btrfs_alloc_path(); 5947 if (!path) 5948 return -ENOMEM; 5949 5950 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5951 if (!wc) { 5952 btrfs_free_path(path); 5953 return -ENOMEM; 5954 } 5955 5956 btrfs_assert_tree_write_locked(parent); 5957 parent_level = btrfs_header_level(parent); 5958 atomic_inc(&parent->refs); 5959 path->nodes[parent_level] = parent; 5960 path->slots[parent_level] = btrfs_header_nritems(parent); 5961 5962 btrfs_assert_tree_write_locked(node); 5963 level = btrfs_header_level(node); 5964 path->nodes[level] = node; 5965 path->slots[level] = 0; 5966 path->locks[level] = BTRFS_WRITE_LOCK; 5967 5968 wc->refs[parent_level] = 1; 5969 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5970 wc->level = level; 5971 wc->shared_level = -1; 5972 wc->stage = DROP_REFERENCE; 5973 wc->update_ref = 0; 5974 wc->keep_locks = 1; 5975 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5976 5977 while (1) { 5978 wret = walk_down_tree(trans, root, path, wc); 5979 if (wret < 0) { 5980 ret = wret; 5981 break; 5982 } 5983 5984 wret = walk_up_tree(trans, root, path, wc, parent_level); 5985 if (wret < 0) 5986 ret = wret; 5987 if (wret != 0) 5988 break; 5989 } 5990 5991 kfree(wc); 5992 btrfs_free_path(path); 5993 return ret; 5994 } 5995 5996 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5997 u64 start, u64 end) 5998 { 5999 return unpin_extent_range(fs_info, start, end, false); 6000 } 6001 6002 /* 6003 * It used to be that old block groups would be left around forever. 6004 * Iterating over them would be enough to trim unused space. Since we 6005 * now automatically remove them, we also need to iterate over unallocated 6006 * space. 6007 * 6008 * We don't want a transaction for this since the discard may take a 6009 * substantial amount of time. We don't require that a transaction be 6010 * running, but we do need to take a running transaction into account 6011 * to ensure that we're not discarding chunks that were released or 6012 * allocated in the current transaction. 6013 * 6014 * Holding the chunks lock will prevent other threads from allocating 6015 * or releasing chunks, but it won't prevent a running transaction 6016 * from committing and releasing the memory that the pending chunks 6017 * list head uses. For that, we need to take a reference to the 6018 * transaction and hold the commit root sem. We only need to hold 6019 * it while performing the free space search since we have already 6020 * held back allocations. 6021 */ 6022 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6023 { 6024 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6025 int ret; 6026 6027 *trimmed = 0; 6028 6029 /* Discard not supported = nothing to do. */ 6030 if (!bdev_max_discard_sectors(device->bdev)) 6031 return 0; 6032 6033 /* Not writable = nothing to do. */ 6034 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6035 return 0; 6036 6037 /* No free space = nothing to do. */ 6038 if (device->total_bytes <= device->bytes_used) 6039 return 0; 6040 6041 ret = 0; 6042 6043 while (1) { 6044 struct btrfs_fs_info *fs_info = device->fs_info; 6045 u64 bytes; 6046 6047 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6048 if (ret) 6049 break; 6050 6051 find_first_clear_extent_bit(&device->alloc_state, start, 6052 &start, &end, 6053 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6054 6055 /* Check if there are any CHUNK_* bits left */ 6056 if (start > device->total_bytes) { 6057 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6058 btrfs_warn_in_rcu(fs_info, 6059 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6060 start, end - start + 1, 6061 btrfs_dev_name(device), 6062 device->total_bytes); 6063 mutex_unlock(&fs_info->chunk_mutex); 6064 ret = 0; 6065 break; 6066 } 6067 6068 /* Ensure we skip the reserved space on each device. */ 6069 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6070 6071 /* 6072 * If find_first_clear_extent_bit find a range that spans the 6073 * end of the device it will set end to -1, in this case it's up 6074 * to the caller to trim the value to the size of the device. 6075 */ 6076 end = min(end, device->total_bytes - 1); 6077 6078 len = end - start + 1; 6079 6080 /* We didn't find any extents */ 6081 if (!len) { 6082 mutex_unlock(&fs_info->chunk_mutex); 6083 ret = 0; 6084 break; 6085 } 6086 6087 ret = btrfs_issue_discard(device->bdev, start, len, 6088 &bytes); 6089 if (!ret) 6090 set_extent_bit(&device->alloc_state, start, 6091 start + bytes - 1, CHUNK_TRIMMED, NULL); 6092 mutex_unlock(&fs_info->chunk_mutex); 6093 6094 if (ret) 6095 break; 6096 6097 start += len; 6098 *trimmed += bytes; 6099 6100 if (fatal_signal_pending(current)) { 6101 ret = -ERESTARTSYS; 6102 break; 6103 } 6104 6105 cond_resched(); 6106 } 6107 6108 return ret; 6109 } 6110 6111 /* 6112 * Trim the whole filesystem by: 6113 * 1) trimming the free space in each block group 6114 * 2) trimming the unallocated space on each device 6115 * 6116 * This will also continue trimming even if a block group or device encounters 6117 * an error. The return value will be the last error, or 0 if nothing bad 6118 * happens. 6119 */ 6120 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6121 { 6122 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6123 struct btrfs_block_group *cache = NULL; 6124 struct btrfs_device *device; 6125 u64 group_trimmed; 6126 u64 range_end = U64_MAX; 6127 u64 start; 6128 u64 end; 6129 u64 trimmed = 0; 6130 u64 bg_failed = 0; 6131 u64 dev_failed = 0; 6132 int bg_ret = 0; 6133 int dev_ret = 0; 6134 int ret = 0; 6135 6136 if (range->start == U64_MAX) 6137 return -EINVAL; 6138 6139 /* 6140 * Check range overflow if range->len is set. 6141 * The default range->len is U64_MAX. 6142 */ 6143 if (range->len != U64_MAX && 6144 check_add_overflow(range->start, range->len, &range_end)) 6145 return -EINVAL; 6146 6147 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6148 for (; cache; cache = btrfs_next_block_group(cache)) { 6149 if (cache->start >= range_end) { 6150 btrfs_put_block_group(cache); 6151 break; 6152 } 6153 6154 start = max(range->start, cache->start); 6155 end = min(range_end, cache->start + cache->length); 6156 6157 if (end - start >= range->minlen) { 6158 if (!btrfs_block_group_done(cache)) { 6159 ret = btrfs_cache_block_group(cache, true); 6160 if (ret) { 6161 bg_failed++; 6162 bg_ret = ret; 6163 continue; 6164 } 6165 } 6166 ret = btrfs_trim_block_group(cache, 6167 &group_trimmed, 6168 start, 6169 end, 6170 range->minlen); 6171 6172 trimmed += group_trimmed; 6173 if (ret) { 6174 bg_failed++; 6175 bg_ret = ret; 6176 continue; 6177 } 6178 } 6179 } 6180 6181 if (bg_failed) 6182 btrfs_warn(fs_info, 6183 "failed to trim %llu block group(s), last error %d", 6184 bg_failed, bg_ret); 6185 6186 mutex_lock(&fs_devices->device_list_mutex); 6187 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6188 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6189 continue; 6190 6191 ret = btrfs_trim_free_extents(device, &group_trimmed); 6192 6193 trimmed += group_trimmed; 6194 if (ret) { 6195 dev_failed++; 6196 dev_ret = ret; 6197 break; 6198 } 6199 } 6200 mutex_unlock(&fs_devices->device_list_mutex); 6201 6202 if (dev_failed) 6203 btrfs_warn(fs_info, 6204 "failed to trim %llu device(s), last error %d", 6205 dev_failed, dev_ret); 6206 range->len = trimmed; 6207 if (bg_ret) 6208 return bg_ret; 6209 return dev_ret; 6210 } 6211