1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "tree-log.h" 20 #include "disk-io.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "locking.h" 25 #include "free-space-cache.h" 26 #include "free-space-tree.h" 27 #include "math.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 32 #undef SCRAMBLE_DELAYED_REFS 33 34 /* 35 * control flags for do_chunk_alloc's force field 36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 37 * if we really need one. 38 * 39 * CHUNK_ALLOC_LIMITED means to only try and allocate one 40 * if we have very few chunks already allocated. This is 41 * used as part of the clustering code to help make sure 42 * we have a good pool of storage to cluster in, without 43 * filling the FS with empty chunks 44 * 45 * CHUNK_ALLOC_FORCE means it must try to allocate one 46 * 47 */ 48 enum { 49 CHUNK_ALLOC_NO_FORCE = 0, 50 CHUNK_ALLOC_LIMITED = 1, 51 CHUNK_ALLOC_FORCE = 2, 52 }; 53 54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 55 struct btrfs_fs_info *fs_info, 56 struct btrfs_delayed_ref_node *node, u64 parent, 57 u64 root_objectid, u64 owner_objectid, 58 u64 owner_offset, int refs_to_drop, 59 struct btrfs_delayed_extent_op *extra_op); 60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 61 struct extent_buffer *leaf, 62 struct btrfs_extent_item *ei); 63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 64 struct btrfs_fs_info *fs_info, 65 u64 parent, u64 root_objectid, 66 u64 flags, u64 owner, u64 offset, 67 struct btrfs_key *ins, int ref_mod); 68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 69 struct btrfs_fs_info *fs_info, 70 u64 parent, u64 root_objectid, 71 u64 flags, struct btrfs_disk_key *key, 72 int level, struct btrfs_key *ins); 73 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 74 struct btrfs_fs_info *fs_info, u64 flags, 75 int force); 76 static int find_next_key(struct btrfs_path *path, int level, 77 struct btrfs_key *key); 78 static void dump_space_info(struct btrfs_fs_info *fs_info, 79 struct btrfs_space_info *info, u64 bytes, 80 int dump_block_groups); 81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 82 u64 num_bytes); 83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 84 struct btrfs_space_info *space_info, 85 u64 num_bytes); 86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 87 struct btrfs_space_info *space_info, 88 u64 num_bytes); 89 90 static noinline int 91 block_group_cache_done(struct btrfs_block_group_cache *cache) 92 { 93 smp_mb(); 94 return cache->cached == BTRFS_CACHE_FINISHED || 95 cache->cached == BTRFS_CACHE_ERROR; 96 } 97 98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 99 { 100 return (cache->flags & bits) == bits; 101 } 102 103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 104 { 105 atomic_inc(&cache->count); 106 } 107 108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 109 { 110 if (atomic_dec_and_test(&cache->count)) { 111 WARN_ON(cache->pinned > 0); 112 WARN_ON(cache->reserved > 0); 113 114 /* 115 * If not empty, someone is still holding mutex of 116 * full_stripe_lock, which can only be released by caller. 117 * And it will definitely cause use-after-free when caller 118 * tries to release full stripe lock. 119 * 120 * No better way to resolve, but only to warn. 121 */ 122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 123 kfree(cache->free_space_ctl); 124 kfree(cache); 125 } 126 } 127 128 /* 129 * this adds the block group to the fs_info rb tree for the block group 130 * cache 131 */ 132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 133 struct btrfs_block_group_cache *block_group) 134 { 135 struct rb_node **p; 136 struct rb_node *parent = NULL; 137 struct btrfs_block_group_cache *cache; 138 139 spin_lock(&info->block_group_cache_lock); 140 p = &info->block_group_cache_tree.rb_node; 141 142 while (*p) { 143 parent = *p; 144 cache = rb_entry(parent, struct btrfs_block_group_cache, 145 cache_node); 146 if (block_group->key.objectid < cache->key.objectid) { 147 p = &(*p)->rb_left; 148 } else if (block_group->key.objectid > cache->key.objectid) { 149 p = &(*p)->rb_right; 150 } else { 151 spin_unlock(&info->block_group_cache_lock); 152 return -EEXIST; 153 } 154 } 155 156 rb_link_node(&block_group->cache_node, parent, p); 157 rb_insert_color(&block_group->cache_node, 158 &info->block_group_cache_tree); 159 160 if (info->first_logical_byte > block_group->key.objectid) 161 info->first_logical_byte = block_group->key.objectid; 162 163 spin_unlock(&info->block_group_cache_lock); 164 165 return 0; 166 } 167 168 /* 169 * This will return the block group at or after bytenr if contains is 0, else 170 * it will return the block group that contains the bytenr 171 */ 172 static struct btrfs_block_group_cache * 173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 174 int contains) 175 { 176 struct btrfs_block_group_cache *cache, *ret = NULL; 177 struct rb_node *n; 178 u64 end, start; 179 180 spin_lock(&info->block_group_cache_lock); 181 n = info->block_group_cache_tree.rb_node; 182 183 while (n) { 184 cache = rb_entry(n, struct btrfs_block_group_cache, 185 cache_node); 186 end = cache->key.objectid + cache->key.offset - 1; 187 start = cache->key.objectid; 188 189 if (bytenr < start) { 190 if (!contains && (!ret || start < ret->key.objectid)) 191 ret = cache; 192 n = n->rb_left; 193 } else if (bytenr > start) { 194 if (contains && bytenr <= end) { 195 ret = cache; 196 break; 197 } 198 n = n->rb_right; 199 } else { 200 ret = cache; 201 break; 202 } 203 } 204 if (ret) { 205 btrfs_get_block_group(ret); 206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 207 info->first_logical_byte = ret->key.objectid; 208 } 209 spin_unlock(&info->block_group_cache_lock); 210 211 return ret; 212 } 213 214 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 215 u64 start, u64 num_bytes) 216 { 217 u64 end = start + num_bytes - 1; 218 set_extent_bits(&fs_info->freed_extents[0], 219 start, end, EXTENT_UPTODATE); 220 set_extent_bits(&fs_info->freed_extents[1], 221 start, end, EXTENT_UPTODATE); 222 return 0; 223 } 224 225 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 226 struct btrfs_block_group_cache *cache) 227 { 228 u64 start, end; 229 230 start = cache->key.objectid; 231 end = start + cache->key.offset - 1; 232 233 clear_extent_bits(&fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE); 235 clear_extent_bits(&fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE); 237 } 238 239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 240 struct btrfs_block_group_cache *cache) 241 { 242 u64 bytenr; 243 u64 *logical; 244 int stripe_len; 245 int i, nr, ret; 246 247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 249 cache->bytes_super += stripe_len; 250 ret = add_excluded_extent(fs_info, cache->key.objectid, 251 stripe_len); 252 if (ret) 253 return ret; 254 } 255 256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 257 bytenr = btrfs_sb_offset(i); 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 259 bytenr, 0, &logical, &nr, &stripe_len); 260 if (ret) 261 return ret; 262 263 while (nr--) { 264 u64 start, len; 265 266 if (logical[nr] > cache->key.objectid + 267 cache->key.offset) 268 continue; 269 270 if (logical[nr] + stripe_len <= cache->key.objectid) 271 continue; 272 273 start = logical[nr]; 274 if (start < cache->key.objectid) { 275 start = cache->key.objectid; 276 len = (logical[nr] + stripe_len) - start; 277 } else { 278 len = min_t(u64, stripe_len, 279 cache->key.objectid + 280 cache->key.offset - start); 281 } 282 283 cache->bytes_super += len; 284 ret = add_excluded_extent(fs_info, start, len); 285 if (ret) { 286 kfree(logical); 287 return ret; 288 } 289 } 290 291 kfree(logical); 292 } 293 return 0; 294 } 295 296 static struct btrfs_caching_control * 297 get_caching_control(struct btrfs_block_group_cache *cache) 298 { 299 struct btrfs_caching_control *ctl; 300 301 spin_lock(&cache->lock); 302 if (!cache->caching_ctl) { 303 spin_unlock(&cache->lock); 304 return NULL; 305 } 306 307 ctl = cache->caching_ctl; 308 refcount_inc(&ctl->count); 309 spin_unlock(&cache->lock); 310 return ctl; 311 } 312 313 static void put_caching_control(struct btrfs_caching_control *ctl) 314 { 315 if (refcount_dec_and_test(&ctl->count)) 316 kfree(ctl); 317 } 318 319 #ifdef CONFIG_BTRFS_DEBUG 320 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 321 { 322 struct btrfs_fs_info *fs_info = block_group->fs_info; 323 u64 start = block_group->key.objectid; 324 u64 len = block_group->key.offset; 325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 326 fs_info->nodesize : fs_info->sectorsize; 327 u64 step = chunk << 1; 328 329 while (len > chunk) { 330 btrfs_remove_free_space(block_group, start, chunk); 331 start += step; 332 if (len < step) 333 len = 0; 334 else 335 len -= step; 336 } 337 } 338 #endif 339 340 /* 341 * this is only called by cache_block_group, since we could have freed extents 342 * we need to check the pinned_extents for any extents that can't be used yet 343 * since their free space will be released as soon as the transaction commits. 344 */ 345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 346 struct btrfs_fs_info *info, u64 start, u64 end) 347 { 348 u64 extent_start, extent_end, size, total_added = 0; 349 int ret; 350 351 while (start < end) { 352 ret = find_first_extent_bit(info->pinned_extents, start, 353 &extent_start, &extent_end, 354 EXTENT_DIRTY | EXTENT_UPTODATE, 355 NULL); 356 if (ret) 357 break; 358 359 if (extent_start <= start) { 360 start = extent_end + 1; 361 } else if (extent_start > start && extent_start < end) { 362 size = extent_start - start; 363 total_added += size; 364 ret = btrfs_add_free_space(block_group, start, 365 size); 366 BUG_ON(ret); /* -ENOMEM or logic error */ 367 start = extent_end + 1; 368 } else { 369 break; 370 } 371 } 372 373 if (start < end) { 374 size = end - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, size); 377 BUG_ON(ret); /* -ENOMEM or logic error */ 378 } 379 380 return total_added; 381 } 382 383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 384 { 385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 386 struct btrfs_fs_info *fs_info = block_group->fs_info; 387 struct btrfs_root *extent_root = fs_info->extent_root; 388 struct btrfs_path *path; 389 struct extent_buffer *leaf; 390 struct btrfs_key key; 391 u64 total_found = 0; 392 u64 last = 0; 393 u32 nritems; 394 int ret; 395 bool wakeup = true; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 return -ENOMEM; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 #ifdef CONFIG_BTRFS_DEBUG 404 /* 405 * If we're fragmenting we don't want to make anybody think we can 406 * allocate from this block group until we've had a chance to fragment 407 * the free space. 408 */ 409 if (btrfs_should_fragment_free_space(block_group)) 410 wakeup = false; 411 #endif 412 /* 413 * We don't want to deadlock with somebody trying to allocate a new 414 * extent for the extent root while also trying to search the extent 415 * root to add free space. So we skip locking and search the commit 416 * root, since its read-only 417 */ 418 path->skip_locking = 1; 419 path->search_commit_root = 1; 420 path->reada = READA_FORWARD; 421 422 key.objectid = last; 423 key.offset = 0; 424 key.type = BTRFS_EXTENT_ITEM_KEY; 425 426 next: 427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 428 if (ret < 0) 429 goto out; 430 431 leaf = path->nodes[0]; 432 nritems = btrfs_header_nritems(leaf); 433 434 while (1) { 435 if (btrfs_fs_closing(fs_info) > 1) { 436 last = (u64)-1; 437 break; 438 } 439 440 if (path->slots[0] < nritems) { 441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 442 } else { 443 ret = find_next_key(path, 0, &key); 444 if (ret) 445 break; 446 447 if (need_resched() || 448 rwsem_is_contended(&fs_info->commit_root_sem)) { 449 if (wakeup) 450 caching_ctl->progress = last; 451 btrfs_release_path(path); 452 up_read(&fs_info->commit_root_sem); 453 mutex_unlock(&caching_ctl->mutex); 454 cond_resched(); 455 mutex_lock(&caching_ctl->mutex); 456 down_read(&fs_info->commit_root_sem); 457 goto next; 458 } 459 460 ret = btrfs_next_leaf(extent_root, path); 461 if (ret < 0) 462 goto out; 463 if (ret) 464 break; 465 leaf = path->nodes[0]; 466 nritems = btrfs_header_nritems(leaf); 467 continue; 468 } 469 470 if (key.objectid < last) { 471 key.objectid = last; 472 key.offset = 0; 473 key.type = BTRFS_EXTENT_ITEM_KEY; 474 475 if (wakeup) 476 caching_ctl->progress = last; 477 btrfs_release_path(path); 478 goto next; 479 } 480 481 if (key.objectid < block_group->key.objectid) { 482 path->slots[0]++; 483 continue; 484 } 485 486 if (key.objectid >= block_group->key.objectid + 487 block_group->key.offset) 488 break; 489 490 if (key.type == BTRFS_EXTENT_ITEM_KEY || 491 key.type == BTRFS_METADATA_ITEM_KEY) { 492 total_found += add_new_free_space(block_group, 493 fs_info, last, 494 key.objectid); 495 if (key.type == BTRFS_METADATA_ITEM_KEY) 496 last = key.objectid + 497 fs_info->nodesize; 498 else 499 last = key.objectid + key.offset; 500 501 if (total_found > CACHING_CTL_WAKE_UP) { 502 total_found = 0; 503 if (wakeup) 504 wake_up(&caching_ctl->wait); 505 } 506 } 507 path->slots[0]++; 508 } 509 ret = 0; 510 511 total_found += add_new_free_space(block_group, fs_info, last, 512 block_group->key.objectid + 513 block_group->key.offset); 514 caching_ctl->progress = (u64)-1; 515 516 out: 517 btrfs_free_path(path); 518 return ret; 519 } 520 521 static noinline void caching_thread(struct btrfs_work *work) 522 { 523 struct btrfs_block_group_cache *block_group; 524 struct btrfs_fs_info *fs_info; 525 struct btrfs_caching_control *caching_ctl; 526 int ret; 527 528 caching_ctl = container_of(work, struct btrfs_caching_control, work); 529 block_group = caching_ctl->block_group; 530 fs_info = block_group->fs_info; 531 532 mutex_lock(&caching_ctl->mutex); 533 down_read(&fs_info->commit_root_sem); 534 535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 536 ret = load_free_space_tree(caching_ctl); 537 else 538 ret = load_extent_tree_free(caching_ctl); 539 540 spin_lock(&block_group->lock); 541 block_group->caching_ctl = NULL; 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 543 spin_unlock(&block_group->lock); 544 545 #ifdef CONFIG_BTRFS_DEBUG 546 if (btrfs_should_fragment_free_space(block_group)) { 547 u64 bytes_used; 548 549 spin_lock(&block_group->space_info->lock); 550 spin_lock(&block_group->lock); 551 bytes_used = block_group->key.offset - 552 btrfs_block_group_used(&block_group->item); 553 block_group->space_info->bytes_used += bytes_used >> 1; 554 spin_unlock(&block_group->lock); 555 spin_unlock(&block_group->space_info->lock); 556 fragment_free_space(block_group); 557 } 558 #endif 559 560 caching_ctl->progress = (u64)-1; 561 562 up_read(&fs_info->commit_root_sem); 563 free_excluded_extents(fs_info, block_group); 564 mutex_unlock(&caching_ctl->mutex); 565 566 wake_up(&caching_ctl->wait); 567 568 put_caching_control(caching_ctl); 569 btrfs_put_block_group(block_group); 570 } 571 572 static int cache_block_group(struct btrfs_block_group_cache *cache, 573 int load_cache_only) 574 { 575 DEFINE_WAIT(wait); 576 struct btrfs_fs_info *fs_info = cache->fs_info; 577 struct btrfs_caching_control *caching_ctl; 578 int ret = 0; 579 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 581 if (!caching_ctl) 582 return -ENOMEM; 583 584 INIT_LIST_HEAD(&caching_ctl->list); 585 mutex_init(&caching_ctl->mutex); 586 init_waitqueue_head(&caching_ctl->wait); 587 caching_ctl->block_group = cache; 588 caching_ctl->progress = cache->key.objectid; 589 refcount_set(&caching_ctl->count, 1); 590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 591 caching_thread, NULL, NULL); 592 593 spin_lock(&cache->lock); 594 /* 595 * This should be a rare occasion, but this could happen I think in the 596 * case where one thread starts to load the space cache info, and then 597 * some other thread starts a transaction commit which tries to do an 598 * allocation while the other thread is still loading the space cache 599 * info. The previous loop should have kept us from choosing this block 600 * group, but if we've moved to the state where we will wait on caching 601 * block groups we need to first check if we're doing a fast load here, 602 * so we can wait for it to finish, otherwise we could end up allocating 603 * from a block group who's cache gets evicted for one reason or 604 * another. 605 */ 606 while (cache->cached == BTRFS_CACHE_FAST) { 607 struct btrfs_caching_control *ctl; 608 609 ctl = cache->caching_ctl; 610 refcount_inc(&ctl->count); 611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 612 spin_unlock(&cache->lock); 613 614 schedule(); 615 616 finish_wait(&ctl->wait, &wait); 617 put_caching_control(ctl); 618 spin_lock(&cache->lock); 619 } 620 621 if (cache->cached != BTRFS_CACHE_NO) { 622 spin_unlock(&cache->lock); 623 kfree(caching_ctl); 624 return 0; 625 } 626 WARN_ON(cache->caching_ctl); 627 cache->caching_ctl = caching_ctl; 628 cache->cached = BTRFS_CACHE_FAST; 629 spin_unlock(&cache->lock); 630 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 632 mutex_lock(&caching_ctl->mutex); 633 ret = load_free_space_cache(fs_info, cache); 634 635 spin_lock(&cache->lock); 636 if (ret == 1) { 637 cache->caching_ctl = NULL; 638 cache->cached = BTRFS_CACHE_FINISHED; 639 cache->last_byte_to_unpin = (u64)-1; 640 caching_ctl->progress = (u64)-1; 641 } else { 642 if (load_cache_only) { 643 cache->caching_ctl = NULL; 644 cache->cached = BTRFS_CACHE_NO; 645 } else { 646 cache->cached = BTRFS_CACHE_STARTED; 647 cache->has_caching_ctl = 1; 648 } 649 } 650 spin_unlock(&cache->lock); 651 #ifdef CONFIG_BTRFS_DEBUG 652 if (ret == 1 && 653 btrfs_should_fragment_free_space(cache)) { 654 u64 bytes_used; 655 656 spin_lock(&cache->space_info->lock); 657 spin_lock(&cache->lock); 658 bytes_used = cache->key.offset - 659 btrfs_block_group_used(&cache->item); 660 cache->space_info->bytes_used += bytes_used >> 1; 661 spin_unlock(&cache->lock); 662 spin_unlock(&cache->space_info->lock); 663 fragment_free_space(cache); 664 } 665 #endif 666 mutex_unlock(&caching_ctl->mutex); 667 668 wake_up(&caching_ctl->wait); 669 if (ret == 1) { 670 put_caching_control(caching_ctl); 671 free_excluded_extents(fs_info, cache); 672 return 0; 673 } 674 } else { 675 /* 676 * We're either using the free space tree or no caching at all. 677 * Set cached to the appropriate value and wakeup any waiters. 678 */ 679 spin_lock(&cache->lock); 680 if (load_cache_only) { 681 cache->caching_ctl = NULL; 682 cache->cached = BTRFS_CACHE_NO; 683 } else { 684 cache->cached = BTRFS_CACHE_STARTED; 685 cache->has_caching_ctl = 1; 686 } 687 spin_unlock(&cache->lock); 688 wake_up(&caching_ctl->wait); 689 } 690 691 if (load_cache_only) { 692 put_caching_control(caching_ctl); 693 return 0; 694 } 695 696 down_write(&fs_info->commit_root_sem); 697 refcount_inc(&caching_ctl->count); 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 699 up_write(&fs_info->commit_root_sem); 700 701 btrfs_get_block_group(cache); 702 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 704 705 return ret; 706 } 707 708 /* 709 * return the block group that starts at or after bytenr 710 */ 711 static struct btrfs_block_group_cache * 712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 713 { 714 return block_group_cache_tree_search(info, bytenr, 0); 715 } 716 717 /* 718 * return the block group that contains the given bytenr 719 */ 720 struct btrfs_block_group_cache *btrfs_lookup_block_group( 721 struct btrfs_fs_info *info, 722 u64 bytenr) 723 { 724 return block_group_cache_tree_search(info, bytenr, 1); 725 } 726 727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 728 u64 flags) 729 { 730 struct list_head *head = &info->space_info; 731 struct btrfs_space_info *found; 732 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 734 735 rcu_read_lock(); 736 list_for_each_entry_rcu(found, head, list) { 737 if (found->flags & flags) { 738 rcu_read_unlock(); 739 return found; 740 } 741 } 742 rcu_read_unlock(); 743 return NULL; 744 } 745 746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 747 u64 owner, u64 root_objectid) 748 { 749 struct btrfs_space_info *space_info; 750 u64 flags; 751 752 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 754 flags = BTRFS_BLOCK_GROUP_SYSTEM; 755 else 756 flags = BTRFS_BLOCK_GROUP_METADATA; 757 } else { 758 flags = BTRFS_BLOCK_GROUP_DATA; 759 } 760 761 space_info = __find_space_info(fs_info, flags); 762 ASSERT(space_info); 763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 764 } 765 766 /* 767 * after adding space to the filesystem, we need to clear the full flags 768 * on all the space infos. 769 */ 770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 771 { 772 struct list_head *head = &info->space_info; 773 struct btrfs_space_info *found; 774 775 rcu_read_lock(); 776 list_for_each_entry_rcu(found, head, list) 777 found->full = 0; 778 rcu_read_unlock(); 779 } 780 781 /* simple helper to search for an existing data extent at a given offset */ 782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 783 { 784 int ret; 785 struct btrfs_key key; 786 struct btrfs_path *path; 787 788 path = btrfs_alloc_path(); 789 if (!path) 790 return -ENOMEM; 791 792 key.objectid = start; 793 key.offset = len; 794 key.type = BTRFS_EXTENT_ITEM_KEY; 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 796 btrfs_free_path(path); 797 return ret; 798 } 799 800 /* 801 * helper function to lookup reference count and flags of a tree block. 802 * 803 * the head node for delayed ref is used to store the sum of all the 804 * reference count modifications queued up in the rbtree. the head 805 * node may also store the extent flags to set. This way you can check 806 * to see what the reference count and extent flags would be if all of 807 * the delayed refs are not processed. 808 */ 809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 810 struct btrfs_fs_info *fs_info, u64 bytenr, 811 u64 offset, int metadata, u64 *refs, u64 *flags) 812 { 813 struct btrfs_delayed_ref_head *head; 814 struct btrfs_delayed_ref_root *delayed_refs; 815 struct btrfs_path *path; 816 struct btrfs_extent_item *ei; 817 struct extent_buffer *leaf; 818 struct btrfs_key key; 819 u32 item_size; 820 u64 num_refs; 821 u64 extent_flags; 822 int ret; 823 824 /* 825 * If we don't have skinny metadata, don't bother doing anything 826 * different 827 */ 828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 829 offset = fs_info->nodesize; 830 metadata = 0; 831 } 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return -ENOMEM; 836 837 if (!trans) { 838 path->skip_locking = 1; 839 path->search_commit_root = 1; 840 } 841 842 search_again: 843 key.objectid = bytenr; 844 key.offset = offset; 845 if (metadata) 846 key.type = BTRFS_METADATA_ITEM_KEY; 847 else 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 851 if (ret < 0) 852 goto out_free; 853 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 855 if (path->slots[0]) { 856 path->slots[0]--; 857 btrfs_item_key_to_cpu(path->nodes[0], &key, 858 path->slots[0]); 859 if (key.objectid == bytenr && 860 key.type == BTRFS_EXTENT_ITEM_KEY && 861 key.offset == fs_info->nodesize) 862 ret = 0; 863 } 864 } 865 866 if (ret == 0) { 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (item_size >= sizeof(*ei)) { 870 ei = btrfs_item_ptr(leaf, path->slots[0], 871 struct btrfs_extent_item); 872 num_refs = btrfs_extent_refs(leaf, ei); 873 extent_flags = btrfs_extent_flags(leaf, ei); 874 } else { 875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 876 struct btrfs_extent_item_v0 *ei0; 877 BUG_ON(item_size != sizeof(*ei0)); 878 ei0 = btrfs_item_ptr(leaf, path->slots[0], 879 struct btrfs_extent_item_v0); 880 num_refs = btrfs_extent_refs_v0(leaf, ei0); 881 /* FIXME: this isn't correct for data */ 882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 883 #else 884 BUG(); 885 #endif 886 } 887 BUG_ON(num_refs == 0); 888 } else { 889 num_refs = 0; 890 extent_flags = 0; 891 ret = 0; 892 } 893 894 if (!trans) 895 goto out; 896 897 delayed_refs = &trans->transaction->delayed_refs; 898 spin_lock(&delayed_refs->lock); 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 900 if (head) { 901 if (!mutex_trylock(&head->mutex)) { 902 refcount_inc(&head->refs); 903 spin_unlock(&delayed_refs->lock); 904 905 btrfs_release_path(path); 906 907 /* 908 * Mutex was contended, block until it's released and try 909 * again 910 */ 911 mutex_lock(&head->mutex); 912 mutex_unlock(&head->mutex); 913 btrfs_put_delayed_ref_head(head); 914 goto search_again; 915 } 916 spin_lock(&head->lock); 917 if (head->extent_op && head->extent_op->update_flags) 918 extent_flags |= head->extent_op->flags_to_set; 919 else 920 BUG_ON(num_refs == 0); 921 922 num_refs += head->ref_mod; 923 spin_unlock(&head->lock); 924 mutex_unlock(&head->mutex); 925 } 926 spin_unlock(&delayed_refs->lock); 927 out: 928 WARN_ON(num_refs == 0); 929 if (refs) 930 *refs = num_refs; 931 if (flags) 932 *flags = extent_flags; 933 out_free: 934 btrfs_free_path(path); 935 return ret; 936 } 937 938 /* 939 * Back reference rules. Back refs have three main goals: 940 * 941 * 1) differentiate between all holders of references to an extent so that 942 * when a reference is dropped we can make sure it was a valid reference 943 * before freeing the extent. 944 * 945 * 2) Provide enough information to quickly find the holders of an extent 946 * if we notice a given block is corrupted or bad. 947 * 948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 949 * maintenance. This is actually the same as #2, but with a slightly 950 * different use case. 951 * 952 * There are two kinds of back refs. The implicit back refs is optimized 953 * for pointers in non-shared tree blocks. For a given pointer in a block, 954 * back refs of this kind provide information about the block's owner tree 955 * and the pointer's key. These information allow us to find the block by 956 * b-tree searching. The full back refs is for pointers in tree blocks not 957 * referenced by their owner trees. The location of tree block is recorded 958 * in the back refs. Actually the full back refs is generic, and can be 959 * used in all cases the implicit back refs is used. The major shortcoming 960 * of the full back refs is its overhead. Every time a tree block gets 961 * COWed, we have to update back refs entry for all pointers in it. 962 * 963 * For a newly allocated tree block, we use implicit back refs for 964 * pointers in it. This means most tree related operations only involve 965 * implicit back refs. For a tree block created in old transaction, the 966 * only way to drop a reference to it is COW it. So we can detect the 967 * event that tree block loses its owner tree's reference and do the 968 * back refs conversion. 969 * 970 * When a tree block is COWed through a tree, there are four cases: 971 * 972 * The reference count of the block is one and the tree is the block's 973 * owner tree. Nothing to do in this case. 974 * 975 * The reference count of the block is one and the tree is not the 976 * block's owner tree. In this case, full back refs is used for pointers 977 * in the block. Remove these full back refs, add implicit back refs for 978 * every pointers in the new block. 979 * 980 * The reference count of the block is greater than one and the tree is 981 * the block's owner tree. In this case, implicit back refs is used for 982 * pointers in the block. Add full back refs for every pointers in the 983 * block, increase lower level extents' reference counts. The original 984 * implicit back refs are entailed to the new block. 985 * 986 * The reference count of the block is greater than one and the tree is 987 * not the block's owner tree. Add implicit back refs for every pointer in 988 * the new block, increase lower level extents' reference count. 989 * 990 * Back Reference Key composing: 991 * 992 * The key objectid corresponds to the first byte in the extent, 993 * The key type is used to differentiate between types of back refs. 994 * There are different meanings of the key offset for different types 995 * of back refs. 996 * 997 * File extents can be referenced by: 998 * 999 * - multiple snapshots, subvolumes, or different generations in one subvol 1000 * - different files inside a single subvolume 1001 * - different offsets inside a file (bookend extents in file.c) 1002 * 1003 * The extent ref structure for the implicit back refs has fields for: 1004 * 1005 * - Objectid of the subvolume root 1006 * - objectid of the file holding the reference 1007 * - original offset in the file 1008 * - how many bookend extents 1009 * 1010 * The key offset for the implicit back refs is hash of the first 1011 * three fields. 1012 * 1013 * The extent ref structure for the full back refs has field for: 1014 * 1015 * - number of pointers in the tree leaf 1016 * 1017 * The key offset for the implicit back refs is the first byte of 1018 * the tree leaf 1019 * 1020 * When a file extent is allocated, The implicit back refs is used. 1021 * the fields are filled in: 1022 * 1023 * (root_key.objectid, inode objectid, offset in file, 1) 1024 * 1025 * When a file extent is removed file truncation, we find the 1026 * corresponding implicit back refs and check the following fields: 1027 * 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1029 * 1030 * Btree extents can be referenced by: 1031 * 1032 * - Different subvolumes 1033 * 1034 * Both the implicit back refs and the full back refs for tree blocks 1035 * only consist of key. The key offset for the implicit back refs is 1036 * objectid of block's owner tree. The key offset for the full back refs 1037 * is the first byte of parent block. 1038 * 1039 * When implicit back refs is used, information about the lowest key and 1040 * level of the tree block are required. These information are stored in 1041 * tree block info structure. 1042 */ 1043 1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1046 struct btrfs_fs_info *fs_info, 1047 struct btrfs_path *path, 1048 u64 owner, u32 extra_size) 1049 { 1050 struct btrfs_root *root = fs_info->extent_root; 1051 struct btrfs_extent_item *item; 1052 struct btrfs_extent_item_v0 *ei0; 1053 struct btrfs_extent_ref_v0 *ref0; 1054 struct btrfs_tree_block_info *bi; 1055 struct extent_buffer *leaf; 1056 struct btrfs_key key; 1057 struct btrfs_key found_key; 1058 u32 new_size = sizeof(*item); 1059 u64 refs; 1060 int ret; 1061 1062 leaf = path->nodes[0]; 1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1064 1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1066 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_extent_item_v0); 1068 refs = btrfs_extent_refs_v0(leaf, ei0); 1069 1070 if (owner == (u64)-1) { 1071 while (1) { 1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1073 ret = btrfs_next_leaf(root, path); 1074 if (ret < 0) 1075 return ret; 1076 BUG_ON(ret > 0); /* Corruption */ 1077 leaf = path->nodes[0]; 1078 } 1079 btrfs_item_key_to_cpu(leaf, &found_key, 1080 path->slots[0]); 1081 BUG_ON(key.objectid != found_key.objectid); 1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1083 path->slots[0]++; 1084 continue; 1085 } 1086 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_extent_ref_v0); 1088 owner = btrfs_ref_objectid_v0(leaf, ref0); 1089 break; 1090 } 1091 } 1092 btrfs_release_path(path); 1093 1094 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1095 new_size += sizeof(*bi); 1096 1097 new_size -= sizeof(*ei0); 1098 ret = btrfs_search_slot(trans, root, &key, path, 1099 new_size + extra_size, 1); 1100 if (ret < 0) 1101 return ret; 1102 BUG_ON(ret); /* Corruption */ 1103 1104 btrfs_extend_item(fs_info, path, new_size); 1105 1106 leaf = path->nodes[0]; 1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1108 btrfs_set_extent_refs(leaf, item, refs); 1109 /* FIXME: get real generation */ 1110 btrfs_set_extent_generation(leaf, item, 0); 1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1112 btrfs_set_extent_flags(leaf, item, 1113 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1114 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1115 bi = (struct btrfs_tree_block_info *)(item + 1); 1116 /* FIXME: get first key of the block */ 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1118 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1119 } else { 1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1121 } 1122 btrfs_mark_buffer_dirty(leaf); 1123 return 0; 1124 } 1125 #endif 1126 1127 /* 1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1131 */ 1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1133 struct btrfs_extent_inline_ref *iref, 1134 enum btrfs_inline_ref_type is_data) 1135 { 1136 int type = btrfs_extent_inline_ref_type(eb, iref); 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1138 1139 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1140 type == BTRFS_SHARED_BLOCK_REF_KEY || 1141 type == BTRFS_SHARED_DATA_REF_KEY || 1142 type == BTRFS_EXTENT_DATA_REF_KEY) { 1143 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1145 return type; 1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1147 ASSERT(eb->fs_info); 1148 /* 1149 * Every shared one has parent tree 1150 * block, which must be aligned to 1151 * nodesize. 1152 */ 1153 if (offset && 1154 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1155 return type; 1156 } 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else { 1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1173 return type; 1174 } 1175 } 1176 1177 btrfs_print_leaf((struct extent_buffer *)eb); 1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1179 eb->start, type); 1180 WARN_ON(1); 1181 1182 return BTRFS_REF_TYPE_INVALID; 1183 } 1184 1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1186 { 1187 u32 high_crc = ~(u32)0; 1188 u32 low_crc = ~(u32)0; 1189 __le64 lenum; 1190 1191 lenum = cpu_to_le64(root_objectid); 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1193 lenum = cpu_to_le64(owner); 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1195 lenum = cpu_to_le64(offset); 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1197 1198 return ((u64)high_crc << 31) ^ (u64)low_crc; 1199 } 1200 1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1202 struct btrfs_extent_data_ref *ref) 1203 { 1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1205 btrfs_extent_data_ref_objectid(leaf, ref), 1206 btrfs_extent_data_ref_offset(leaf, ref)); 1207 } 1208 1209 static int match_extent_data_ref(struct extent_buffer *leaf, 1210 struct btrfs_extent_data_ref *ref, 1211 u64 root_objectid, u64 owner, u64 offset) 1212 { 1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1215 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1216 return 0; 1217 return 1; 1218 } 1219 1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1221 struct btrfs_fs_info *fs_info, 1222 struct btrfs_path *path, 1223 u64 bytenr, u64 parent, 1224 u64 root_objectid, 1225 u64 owner, u64 offset) 1226 { 1227 struct btrfs_root *root = fs_info->extent_root; 1228 struct btrfs_key key; 1229 struct btrfs_extent_data_ref *ref; 1230 struct extent_buffer *leaf; 1231 u32 nritems; 1232 int ret; 1233 int recow; 1234 int err = -ENOENT; 1235 1236 key.objectid = bytenr; 1237 if (parent) { 1238 key.type = BTRFS_SHARED_DATA_REF_KEY; 1239 key.offset = parent; 1240 } else { 1241 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1242 key.offset = hash_extent_data_ref(root_objectid, 1243 owner, offset); 1244 } 1245 again: 1246 recow = 0; 1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1248 if (ret < 0) { 1249 err = ret; 1250 goto fail; 1251 } 1252 1253 if (parent) { 1254 if (!ret) 1255 return 0; 1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1257 key.type = BTRFS_EXTENT_REF_V0_KEY; 1258 btrfs_release_path(path); 1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1260 if (ret < 0) { 1261 err = ret; 1262 goto fail; 1263 } 1264 if (!ret) 1265 return 0; 1266 #endif 1267 goto fail; 1268 } 1269 1270 leaf = path->nodes[0]; 1271 nritems = btrfs_header_nritems(leaf); 1272 while (1) { 1273 if (path->slots[0] >= nritems) { 1274 ret = btrfs_next_leaf(root, path); 1275 if (ret < 0) 1276 err = ret; 1277 if (ret) 1278 goto fail; 1279 1280 leaf = path->nodes[0]; 1281 nritems = btrfs_header_nritems(leaf); 1282 recow = 1; 1283 } 1284 1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1286 if (key.objectid != bytenr || 1287 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1288 goto fail; 1289 1290 ref = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_extent_data_ref); 1292 1293 if (match_extent_data_ref(leaf, ref, root_objectid, 1294 owner, offset)) { 1295 if (recow) { 1296 btrfs_release_path(path); 1297 goto again; 1298 } 1299 err = 0; 1300 break; 1301 } 1302 path->slots[0]++; 1303 } 1304 fail: 1305 return err; 1306 } 1307 1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info, 1310 struct btrfs_path *path, 1311 u64 bytenr, u64 parent, 1312 u64 root_objectid, u64 owner, 1313 u64 offset, int refs_to_add) 1314 { 1315 struct btrfs_root *root = fs_info->extent_root; 1316 struct btrfs_key key; 1317 struct extent_buffer *leaf; 1318 u32 size; 1319 u32 num_refs; 1320 int ret; 1321 1322 key.objectid = bytenr; 1323 if (parent) { 1324 key.type = BTRFS_SHARED_DATA_REF_KEY; 1325 key.offset = parent; 1326 size = sizeof(struct btrfs_shared_data_ref); 1327 } else { 1328 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1329 key.offset = hash_extent_data_ref(root_objectid, 1330 owner, offset); 1331 size = sizeof(struct btrfs_extent_data_ref); 1332 } 1333 1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1335 if (ret && ret != -EEXIST) 1336 goto fail; 1337 1338 leaf = path->nodes[0]; 1339 if (parent) { 1340 struct btrfs_shared_data_ref *ref; 1341 ref = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_shared_data_ref); 1343 if (ret == 0) { 1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1345 } else { 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1347 num_refs += refs_to_add; 1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1349 } 1350 } else { 1351 struct btrfs_extent_data_ref *ref; 1352 while (ret == -EEXIST) { 1353 ref = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_extent_data_ref); 1355 if (match_extent_data_ref(leaf, ref, root_objectid, 1356 owner, offset)) 1357 break; 1358 btrfs_release_path(path); 1359 key.offset++; 1360 ret = btrfs_insert_empty_item(trans, root, path, &key, 1361 size); 1362 if (ret && ret != -EEXIST) 1363 goto fail; 1364 1365 leaf = path->nodes[0]; 1366 } 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (ret == 0) { 1370 btrfs_set_extent_data_ref_root(leaf, ref, 1371 root_objectid); 1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1375 } else { 1376 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1377 num_refs += refs_to_add; 1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1379 } 1380 } 1381 btrfs_mark_buffer_dirty(leaf); 1382 ret = 0; 1383 fail: 1384 btrfs_release_path(path); 1385 return ret; 1386 } 1387 1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info, 1390 struct btrfs_path *path, 1391 int refs_to_drop, int *last_ref) 1392 { 1393 struct btrfs_key key; 1394 struct btrfs_extent_data_ref *ref1 = NULL; 1395 struct btrfs_shared_data_ref *ref2 = NULL; 1396 struct extent_buffer *leaf; 1397 u32 num_refs = 0; 1398 int ret = 0; 1399 1400 leaf = path->nodes[0]; 1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1402 1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1404 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1405 struct btrfs_extent_data_ref); 1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1408 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1409 struct btrfs_shared_data_ref); 1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1413 struct btrfs_extent_ref_v0 *ref0; 1414 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1415 struct btrfs_extent_ref_v0); 1416 num_refs = btrfs_ref_count_v0(leaf, ref0); 1417 #endif 1418 } else { 1419 BUG(); 1420 } 1421 1422 BUG_ON(num_refs < refs_to_drop); 1423 num_refs -= refs_to_drop; 1424 1425 if (num_refs == 0) { 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1427 *last_ref = 1; 1428 } else { 1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1434 else { 1435 struct btrfs_extent_ref_v0 *ref0; 1436 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1437 struct btrfs_extent_ref_v0); 1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1439 } 1440 #endif 1441 btrfs_mark_buffer_dirty(leaf); 1442 } 1443 return ret; 1444 } 1445 1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1447 struct btrfs_extent_inline_ref *iref) 1448 { 1449 struct btrfs_key key; 1450 struct extent_buffer *leaf; 1451 struct btrfs_extent_data_ref *ref1; 1452 struct btrfs_shared_data_ref *ref2; 1453 u32 num_refs = 0; 1454 int type; 1455 1456 leaf = path->nodes[0]; 1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1458 if (iref) { 1459 /* 1460 * If type is invalid, we should have bailed out earlier than 1461 * this call. 1462 */ 1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1464 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1468 } else { 1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1471 } 1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1473 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1474 struct btrfs_extent_data_ref); 1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1477 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1478 struct btrfs_shared_data_ref); 1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1482 struct btrfs_extent_ref_v0 *ref0; 1483 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1484 struct btrfs_extent_ref_v0); 1485 num_refs = btrfs_ref_count_v0(leaf, ref0); 1486 #endif 1487 } else { 1488 WARN_ON(1); 1489 } 1490 return num_refs; 1491 } 1492 1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1494 struct btrfs_fs_info *fs_info, 1495 struct btrfs_path *path, 1496 u64 bytenr, u64 parent, 1497 u64 root_objectid) 1498 { 1499 struct btrfs_root *root = fs_info->extent_root; 1500 struct btrfs_key key; 1501 int ret; 1502 1503 key.objectid = bytenr; 1504 if (parent) { 1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1506 key.offset = parent; 1507 } else { 1508 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1509 key.offset = root_objectid; 1510 } 1511 1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1513 if (ret > 0) 1514 ret = -ENOENT; 1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1516 if (ret == -ENOENT && parent) { 1517 btrfs_release_path(path); 1518 key.type = BTRFS_EXTENT_REF_V0_KEY; 1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1520 if (ret > 0) 1521 ret = -ENOENT; 1522 } 1523 #endif 1524 return ret; 1525 } 1526 1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1528 struct btrfs_fs_info *fs_info, 1529 struct btrfs_path *path, 1530 u64 bytenr, u64 parent, 1531 u64 root_objectid) 1532 { 1533 struct btrfs_key key; 1534 int ret; 1535 1536 key.objectid = bytenr; 1537 if (parent) { 1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1539 key.offset = parent; 1540 } else { 1541 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1542 key.offset = root_objectid; 1543 } 1544 1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1546 path, &key, 0); 1547 btrfs_release_path(path); 1548 return ret; 1549 } 1550 1551 static inline int extent_ref_type(u64 parent, u64 owner) 1552 { 1553 int type; 1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1555 if (parent > 0) 1556 type = BTRFS_SHARED_BLOCK_REF_KEY; 1557 else 1558 type = BTRFS_TREE_BLOCK_REF_KEY; 1559 } else { 1560 if (parent > 0) 1561 type = BTRFS_SHARED_DATA_REF_KEY; 1562 else 1563 type = BTRFS_EXTENT_DATA_REF_KEY; 1564 } 1565 return type; 1566 } 1567 1568 static int find_next_key(struct btrfs_path *path, int level, 1569 struct btrfs_key *key) 1570 1571 { 1572 for (; level < BTRFS_MAX_LEVEL; level++) { 1573 if (!path->nodes[level]) 1574 break; 1575 if (path->slots[level] + 1 >= 1576 btrfs_header_nritems(path->nodes[level])) 1577 continue; 1578 if (level == 0) 1579 btrfs_item_key_to_cpu(path->nodes[level], key, 1580 path->slots[level] + 1); 1581 else 1582 btrfs_node_key_to_cpu(path->nodes[level], key, 1583 path->slots[level] + 1); 1584 return 0; 1585 } 1586 return 1; 1587 } 1588 1589 /* 1590 * look for inline back ref. if back ref is found, *ref_ret is set 1591 * to the address of inline back ref, and 0 is returned. 1592 * 1593 * if back ref isn't found, *ref_ret is set to the address where it 1594 * should be inserted, and -ENOENT is returned. 1595 * 1596 * if insert is true and there are too many inline back refs, the path 1597 * points to the extent item, and -EAGAIN is returned. 1598 * 1599 * NOTE: inline back refs are ordered in the same way that back ref 1600 * items in the tree are ordered. 1601 */ 1602 static noinline_for_stack 1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1604 struct btrfs_fs_info *fs_info, 1605 struct btrfs_path *path, 1606 struct btrfs_extent_inline_ref **ref_ret, 1607 u64 bytenr, u64 num_bytes, 1608 u64 parent, u64 root_objectid, 1609 u64 owner, u64 offset, int insert) 1610 { 1611 struct btrfs_root *root = fs_info->extent_root; 1612 struct btrfs_key key; 1613 struct extent_buffer *leaf; 1614 struct btrfs_extent_item *ei; 1615 struct btrfs_extent_inline_ref *iref; 1616 u64 flags; 1617 u64 item_size; 1618 unsigned long ptr; 1619 unsigned long end; 1620 int extra_size; 1621 int type; 1622 int want; 1623 int ret; 1624 int err = 0; 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1626 int needed; 1627 1628 key.objectid = bytenr; 1629 key.type = BTRFS_EXTENT_ITEM_KEY; 1630 key.offset = num_bytes; 1631 1632 want = extent_ref_type(parent, owner); 1633 if (insert) { 1634 extra_size = btrfs_extent_inline_ref_size(want); 1635 path->keep_locks = 1; 1636 } else 1637 extra_size = -1; 1638 1639 /* 1640 * Owner is our parent level, so we can just add one to get the level 1641 * for the block we are interested in. 1642 */ 1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1644 key.type = BTRFS_METADATA_ITEM_KEY; 1645 key.offset = owner; 1646 } 1647 1648 again: 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1650 if (ret < 0) { 1651 err = ret; 1652 goto out; 1653 } 1654 1655 /* 1656 * We may be a newly converted file system which still has the old fat 1657 * extent entries for metadata, so try and see if we have one of those. 1658 */ 1659 if (ret > 0 && skinny_metadata) { 1660 skinny_metadata = false; 1661 if (path->slots[0]) { 1662 path->slots[0]--; 1663 btrfs_item_key_to_cpu(path->nodes[0], &key, 1664 path->slots[0]); 1665 if (key.objectid == bytenr && 1666 key.type == BTRFS_EXTENT_ITEM_KEY && 1667 key.offset == num_bytes) 1668 ret = 0; 1669 } 1670 if (ret) { 1671 key.objectid = bytenr; 1672 key.type = BTRFS_EXTENT_ITEM_KEY; 1673 key.offset = num_bytes; 1674 btrfs_release_path(path); 1675 goto again; 1676 } 1677 } 1678 1679 if (ret && !insert) { 1680 err = -ENOENT; 1681 goto out; 1682 } else if (WARN_ON(ret)) { 1683 err = -EIO; 1684 goto out; 1685 } 1686 1687 leaf = path->nodes[0]; 1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1690 if (item_size < sizeof(*ei)) { 1691 if (!insert) { 1692 err = -ENOENT; 1693 goto out; 1694 } 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1696 extra_size); 1697 if (ret < 0) { 1698 err = ret; 1699 goto out; 1700 } 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 } 1704 #endif 1705 BUG_ON(item_size < sizeof(*ei)); 1706 1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1708 flags = btrfs_extent_flags(leaf, ei); 1709 1710 ptr = (unsigned long)(ei + 1); 1711 end = (unsigned long)ei + item_size; 1712 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1714 ptr += sizeof(struct btrfs_tree_block_info); 1715 BUG_ON(ptr > end); 1716 } 1717 1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1719 needed = BTRFS_REF_TYPE_DATA; 1720 else 1721 needed = BTRFS_REF_TYPE_BLOCK; 1722 1723 err = -ENOENT; 1724 while (1) { 1725 if (ptr >= end) { 1726 WARN_ON(ptr > end); 1727 break; 1728 } 1729 iref = (struct btrfs_extent_inline_ref *)ptr; 1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1731 if (type == BTRFS_REF_TYPE_INVALID) { 1732 err = -EINVAL; 1733 goto out; 1734 } 1735 1736 if (want < type) 1737 break; 1738 if (want > type) { 1739 ptr += btrfs_extent_inline_ref_size(type); 1740 continue; 1741 } 1742 1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1744 struct btrfs_extent_data_ref *dref; 1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1746 if (match_extent_data_ref(leaf, dref, root_objectid, 1747 owner, offset)) { 1748 err = 0; 1749 break; 1750 } 1751 if (hash_extent_data_ref_item(leaf, dref) < 1752 hash_extent_data_ref(root_objectid, owner, offset)) 1753 break; 1754 } else { 1755 u64 ref_offset; 1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1757 if (parent > 0) { 1758 if (parent == ref_offset) { 1759 err = 0; 1760 break; 1761 } 1762 if (ref_offset < parent) 1763 break; 1764 } else { 1765 if (root_objectid == ref_offset) { 1766 err = 0; 1767 break; 1768 } 1769 if (ref_offset < root_objectid) 1770 break; 1771 } 1772 } 1773 ptr += btrfs_extent_inline_ref_size(type); 1774 } 1775 if (err == -ENOENT && insert) { 1776 if (item_size + extra_size >= 1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1778 err = -EAGAIN; 1779 goto out; 1780 } 1781 /* 1782 * To add new inline back ref, we have to make sure 1783 * there is no corresponding back ref item. 1784 * For simplicity, we just do not add new inline back 1785 * ref if there is any kind of item for this block 1786 */ 1787 if (find_next_key(path, 0, &key) == 0 && 1788 key.objectid == bytenr && 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1790 err = -EAGAIN; 1791 goto out; 1792 } 1793 } 1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1795 out: 1796 if (insert) { 1797 path->keep_locks = 0; 1798 btrfs_unlock_up_safe(path, 1); 1799 } 1800 return err; 1801 } 1802 1803 /* 1804 * helper to add new inline back ref 1805 */ 1806 static noinline_for_stack 1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1808 struct btrfs_path *path, 1809 struct btrfs_extent_inline_ref *iref, 1810 u64 parent, u64 root_objectid, 1811 u64 owner, u64 offset, int refs_to_add, 1812 struct btrfs_delayed_extent_op *extent_op) 1813 { 1814 struct extent_buffer *leaf; 1815 struct btrfs_extent_item *ei; 1816 unsigned long ptr; 1817 unsigned long end; 1818 unsigned long item_offset; 1819 u64 refs; 1820 int size; 1821 int type; 1822 1823 leaf = path->nodes[0]; 1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1825 item_offset = (unsigned long)iref - (unsigned long)ei; 1826 1827 type = extent_ref_type(parent, owner); 1828 size = btrfs_extent_inline_ref_size(type); 1829 1830 btrfs_extend_item(fs_info, path, size); 1831 1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1833 refs = btrfs_extent_refs(leaf, ei); 1834 refs += refs_to_add; 1835 btrfs_set_extent_refs(leaf, ei, refs); 1836 if (extent_op) 1837 __run_delayed_extent_op(extent_op, leaf, ei); 1838 1839 ptr = (unsigned long)ei + item_offset; 1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1841 if (ptr < end - size) 1842 memmove_extent_buffer(leaf, ptr + size, ptr, 1843 end - size - ptr); 1844 1845 iref = (struct btrfs_extent_inline_ref *)ptr; 1846 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1848 struct btrfs_extent_data_ref *dref; 1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1855 struct btrfs_shared_data_ref *sref; 1856 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1861 } else { 1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1863 } 1864 btrfs_mark_buffer_dirty(leaf); 1865 } 1866 1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1868 struct btrfs_fs_info *fs_info, 1869 struct btrfs_path *path, 1870 struct btrfs_extent_inline_ref **ref_ret, 1871 u64 bytenr, u64 num_bytes, u64 parent, 1872 u64 root_objectid, u64 owner, u64 offset) 1873 { 1874 int ret; 1875 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1877 bytenr, num_bytes, parent, 1878 root_objectid, owner, offset, 0); 1879 if (ret != -ENOENT) 1880 return ret; 1881 1882 btrfs_release_path(path); 1883 *ref_ret = NULL; 1884 1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1887 parent, root_objectid); 1888 } else { 1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1890 parent, root_objectid, owner, 1891 offset); 1892 } 1893 return ret; 1894 } 1895 1896 /* 1897 * helper to update/remove inline back ref 1898 */ 1899 static noinline_for_stack 1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1901 struct btrfs_path *path, 1902 struct btrfs_extent_inline_ref *iref, 1903 int refs_to_mod, 1904 struct btrfs_delayed_extent_op *extent_op, 1905 int *last_ref) 1906 { 1907 struct extent_buffer *leaf; 1908 struct btrfs_extent_item *ei; 1909 struct btrfs_extent_data_ref *dref = NULL; 1910 struct btrfs_shared_data_ref *sref = NULL; 1911 unsigned long ptr; 1912 unsigned long end; 1913 u32 item_size; 1914 int size; 1915 int type; 1916 u64 refs; 1917 1918 leaf = path->nodes[0]; 1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1920 refs = btrfs_extent_refs(leaf, ei); 1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1922 refs += refs_to_mod; 1923 btrfs_set_extent_refs(leaf, ei, refs); 1924 if (extent_op) 1925 __run_delayed_extent_op(extent_op, leaf, ei); 1926 1927 /* 1928 * If type is invalid, we should have bailed out after 1929 * lookup_inline_extent_backref(). 1930 */ 1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1932 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1933 1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1936 refs = btrfs_extent_data_ref_count(leaf, dref); 1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1938 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1939 refs = btrfs_shared_data_ref_count(leaf, sref); 1940 } else { 1941 refs = 1; 1942 BUG_ON(refs_to_mod != -1); 1943 } 1944 1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1946 refs += refs_to_mod; 1947 1948 if (refs > 0) { 1949 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1950 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1951 else 1952 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1953 } else { 1954 *last_ref = 1; 1955 size = btrfs_extent_inline_ref_size(type); 1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1957 ptr = (unsigned long)iref; 1958 end = (unsigned long)ei + item_size; 1959 if (ptr + size < end) 1960 memmove_extent_buffer(leaf, ptr, ptr + size, 1961 end - ptr - size); 1962 item_size -= size; 1963 btrfs_truncate_item(fs_info, path, item_size, 1); 1964 } 1965 btrfs_mark_buffer_dirty(leaf); 1966 } 1967 1968 static noinline_for_stack 1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1970 struct btrfs_fs_info *fs_info, 1971 struct btrfs_path *path, 1972 u64 bytenr, u64 num_bytes, u64 parent, 1973 u64 root_objectid, u64 owner, 1974 u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_extent_inline_ref *iref; 1978 int ret; 1979 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1981 bytenr, num_bytes, parent, 1982 root_objectid, owner, offset, 1); 1983 if (ret == 0) { 1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1985 update_inline_extent_backref(fs_info, path, iref, 1986 refs_to_add, extent_op, NULL); 1987 } else if (ret == -ENOENT) { 1988 setup_inline_extent_backref(fs_info, path, iref, parent, 1989 root_objectid, owner, offset, 1990 refs_to_add, extent_op); 1991 ret = 0; 1992 } 1993 return ret; 1994 } 1995 1996 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1997 struct btrfs_fs_info *fs_info, 1998 struct btrfs_path *path, 1999 u64 bytenr, u64 parent, u64 root_objectid, 2000 u64 owner, u64 offset, int refs_to_add) 2001 { 2002 int ret; 2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2004 BUG_ON(refs_to_add != 1); 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2006 parent, root_objectid); 2007 } else { 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2009 parent, root_objectid, 2010 owner, offset, refs_to_add); 2011 } 2012 return ret; 2013 } 2014 2015 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2016 struct btrfs_fs_info *fs_info, 2017 struct btrfs_path *path, 2018 struct btrfs_extent_inline_ref *iref, 2019 int refs_to_drop, int is_data, int *last_ref) 2020 { 2021 int ret = 0; 2022 2023 BUG_ON(!is_data && refs_to_drop != 1); 2024 if (iref) { 2025 update_inline_extent_backref(fs_info, path, iref, 2026 -refs_to_drop, NULL, last_ref); 2027 } else if (is_data) { 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2029 last_ref); 2030 } else { 2031 *last_ref = 1; 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2033 } 2034 return ret; 2035 } 2036 2037 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2039 u64 *discarded_bytes) 2040 { 2041 int j, ret = 0; 2042 u64 bytes_left, end; 2043 u64 aligned_start = ALIGN(start, 1 << 9); 2044 2045 if (WARN_ON(start != aligned_start)) { 2046 len -= aligned_start - start; 2047 len = round_down(len, 1 << 9); 2048 start = aligned_start; 2049 } 2050 2051 *discarded_bytes = 0; 2052 2053 if (!len) 2054 return 0; 2055 2056 end = start + len; 2057 bytes_left = len; 2058 2059 /* Skip any superblocks on this device. */ 2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2061 u64 sb_start = btrfs_sb_offset(j); 2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2063 u64 size = sb_start - start; 2064 2065 if (!in_range(sb_start, start, bytes_left) && 2066 !in_range(sb_end, start, bytes_left) && 2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2068 continue; 2069 2070 /* 2071 * Superblock spans beginning of range. Adjust start and 2072 * try again. 2073 */ 2074 if (sb_start <= start) { 2075 start += sb_end - start; 2076 if (start > end) { 2077 bytes_left = 0; 2078 break; 2079 } 2080 bytes_left = end - start; 2081 continue; 2082 } 2083 2084 if (size) { 2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2086 GFP_NOFS, 0); 2087 if (!ret) 2088 *discarded_bytes += size; 2089 else if (ret != -EOPNOTSUPP) 2090 return ret; 2091 } 2092 2093 start = sb_end; 2094 if (start > end) { 2095 bytes_left = 0; 2096 break; 2097 } 2098 bytes_left = end - start; 2099 } 2100 2101 if (bytes_left) { 2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2103 GFP_NOFS, 0); 2104 if (!ret) 2105 *discarded_bytes += bytes_left; 2106 } 2107 return ret; 2108 } 2109 2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2111 u64 num_bytes, u64 *actual_bytes) 2112 { 2113 int ret; 2114 u64 discarded_bytes = 0; 2115 struct btrfs_bio *bbio = NULL; 2116 2117 2118 /* 2119 * Avoid races with device replace and make sure our bbio has devices 2120 * associated to its stripes that don't go away while we are discarding. 2121 */ 2122 btrfs_bio_counter_inc_blocked(fs_info); 2123 /* Tell the block device(s) that the sectors can be discarded */ 2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2125 &bbio, 0); 2126 /* Error condition is -ENOMEM */ 2127 if (!ret) { 2128 struct btrfs_bio_stripe *stripe = bbio->stripes; 2129 int i; 2130 2131 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2133 u64 bytes; 2134 struct request_queue *req_q; 2135 2136 if (!stripe->dev->bdev) { 2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2138 continue; 2139 } 2140 req_q = bdev_get_queue(stripe->dev->bdev); 2141 if (!blk_queue_discard(req_q)) 2142 continue; 2143 2144 ret = btrfs_issue_discard(stripe->dev->bdev, 2145 stripe->physical, 2146 stripe->length, 2147 &bytes); 2148 if (!ret) 2149 discarded_bytes += bytes; 2150 else if (ret != -EOPNOTSUPP) 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2152 2153 /* 2154 * Just in case we get back EOPNOTSUPP for some reason, 2155 * just ignore the return value so we don't screw up 2156 * people calling discard_extent. 2157 */ 2158 ret = 0; 2159 } 2160 btrfs_put_bbio(bbio); 2161 } 2162 btrfs_bio_counter_dec(fs_info); 2163 2164 if (actual_bytes) 2165 *actual_bytes = discarded_bytes; 2166 2167 2168 if (ret == -EOPNOTSUPP) 2169 ret = 0; 2170 return ret; 2171 } 2172 2173 /* Can return -ENOMEM */ 2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2175 struct btrfs_root *root, 2176 u64 bytenr, u64 num_bytes, u64 parent, 2177 u64 root_objectid, u64 owner, u64 offset) 2178 { 2179 struct btrfs_fs_info *fs_info = root->fs_info; 2180 int old_ref_mod, new_ref_mod; 2181 int ret; 2182 2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2184 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2185 2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2187 owner, offset, BTRFS_ADD_DELAYED_REF); 2188 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2191 num_bytes, parent, 2192 root_objectid, (int)owner, 2193 BTRFS_ADD_DELAYED_REF, NULL, 2194 &old_ref_mod, &new_ref_mod); 2195 } else { 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2197 num_bytes, parent, 2198 root_objectid, owner, offset, 2199 0, BTRFS_ADD_DELAYED_REF, 2200 &old_ref_mod, &new_ref_mod); 2201 } 2202 2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2204 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2205 2206 return ret; 2207 } 2208 2209 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2210 struct btrfs_fs_info *fs_info, 2211 struct btrfs_delayed_ref_node *node, 2212 u64 parent, u64 root_objectid, 2213 u64 owner, u64 offset, int refs_to_add, 2214 struct btrfs_delayed_extent_op *extent_op) 2215 { 2216 struct btrfs_path *path; 2217 struct extent_buffer *leaf; 2218 struct btrfs_extent_item *item; 2219 struct btrfs_key key; 2220 u64 bytenr = node->bytenr; 2221 u64 num_bytes = node->num_bytes; 2222 u64 refs; 2223 int ret; 2224 2225 path = btrfs_alloc_path(); 2226 if (!path) 2227 return -ENOMEM; 2228 2229 path->reada = READA_FORWARD; 2230 path->leave_spinning = 1; 2231 /* this will setup the path even if it fails to insert the back ref */ 2232 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2233 num_bytes, parent, root_objectid, 2234 owner, offset, 2235 refs_to_add, extent_op); 2236 if ((ret < 0 && ret != -EAGAIN) || !ret) 2237 goto out; 2238 2239 /* 2240 * Ok we had -EAGAIN which means we didn't have space to insert and 2241 * inline extent ref, so just update the reference count and add a 2242 * normal backref. 2243 */ 2244 leaf = path->nodes[0]; 2245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2247 refs = btrfs_extent_refs(leaf, item); 2248 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2249 if (extent_op) 2250 __run_delayed_extent_op(extent_op, leaf, item); 2251 2252 btrfs_mark_buffer_dirty(leaf); 2253 btrfs_release_path(path); 2254 2255 path->reada = READA_FORWARD; 2256 path->leave_spinning = 1; 2257 /* now insert the actual backref */ 2258 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2259 root_objectid, owner, offset, refs_to_add); 2260 if (ret) 2261 btrfs_abort_transaction(trans, ret); 2262 out: 2263 btrfs_free_path(path); 2264 return ret; 2265 } 2266 2267 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2268 struct btrfs_fs_info *fs_info, 2269 struct btrfs_delayed_ref_node *node, 2270 struct btrfs_delayed_extent_op *extent_op, 2271 int insert_reserved) 2272 { 2273 int ret = 0; 2274 struct btrfs_delayed_data_ref *ref; 2275 struct btrfs_key ins; 2276 u64 parent = 0; 2277 u64 ref_root = 0; 2278 u64 flags = 0; 2279 2280 ins.objectid = node->bytenr; 2281 ins.offset = node->num_bytes; 2282 ins.type = BTRFS_EXTENT_ITEM_KEY; 2283 2284 ref = btrfs_delayed_node_to_data_ref(node); 2285 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2286 2287 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2288 parent = ref->parent; 2289 ref_root = ref->root; 2290 2291 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2292 if (extent_op) 2293 flags |= extent_op->flags_to_set; 2294 ret = alloc_reserved_file_extent(trans, fs_info, 2295 parent, ref_root, flags, 2296 ref->objectid, ref->offset, 2297 &ins, node->ref_mod); 2298 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2299 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2300 ref_root, ref->objectid, 2301 ref->offset, node->ref_mod, 2302 extent_op); 2303 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2304 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2305 ref_root, ref->objectid, 2306 ref->offset, node->ref_mod, 2307 extent_op); 2308 } else { 2309 BUG(); 2310 } 2311 return ret; 2312 } 2313 2314 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2315 struct extent_buffer *leaf, 2316 struct btrfs_extent_item *ei) 2317 { 2318 u64 flags = btrfs_extent_flags(leaf, ei); 2319 if (extent_op->update_flags) { 2320 flags |= extent_op->flags_to_set; 2321 btrfs_set_extent_flags(leaf, ei, flags); 2322 } 2323 2324 if (extent_op->update_key) { 2325 struct btrfs_tree_block_info *bi; 2326 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2327 bi = (struct btrfs_tree_block_info *)(ei + 1); 2328 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2329 } 2330 } 2331 2332 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2333 struct btrfs_fs_info *fs_info, 2334 struct btrfs_delayed_ref_head *head, 2335 struct btrfs_delayed_extent_op *extent_op) 2336 { 2337 struct btrfs_key key; 2338 struct btrfs_path *path; 2339 struct btrfs_extent_item *ei; 2340 struct extent_buffer *leaf; 2341 u32 item_size; 2342 int ret; 2343 int err = 0; 2344 int metadata = !extent_op->is_data; 2345 2346 if (trans->aborted) 2347 return 0; 2348 2349 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2350 metadata = 0; 2351 2352 path = btrfs_alloc_path(); 2353 if (!path) 2354 return -ENOMEM; 2355 2356 key.objectid = head->bytenr; 2357 2358 if (metadata) { 2359 key.type = BTRFS_METADATA_ITEM_KEY; 2360 key.offset = extent_op->level; 2361 } else { 2362 key.type = BTRFS_EXTENT_ITEM_KEY; 2363 key.offset = head->num_bytes; 2364 } 2365 2366 again: 2367 path->reada = READA_FORWARD; 2368 path->leave_spinning = 1; 2369 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2370 if (ret < 0) { 2371 err = ret; 2372 goto out; 2373 } 2374 if (ret > 0) { 2375 if (metadata) { 2376 if (path->slots[0] > 0) { 2377 path->slots[0]--; 2378 btrfs_item_key_to_cpu(path->nodes[0], &key, 2379 path->slots[0]); 2380 if (key.objectid == head->bytenr && 2381 key.type == BTRFS_EXTENT_ITEM_KEY && 2382 key.offset == head->num_bytes) 2383 ret = 0; 2384 } 2385 if (ret > 0) { 2386 btrfs_release_path(path); 2387 metadata = 0; 2388 2389 key.objectid = head->bytenr; 2390 key.offset = head->num_bytes; 2391 key.type = BTRFS_EXTENT_ITEM_KEY; 2392 goto again; 2393 } 2394 } else { 2395 err = -EIO; 2396 goto out; 2397 } 2398 } 2399 2400 leaf = path->nodes[0]; 2401 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2402 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2403 if (item_size < sizeof(*ei)) { 2404 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2405 if (ret < 0) { 2406 err = ret; 2407 goto out; 2408 } 2409 leaf = path->nodes[0]; 2410 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2411 } 2412 #endif 2413 BUG_ON(item_size < sizeof(*ei)); 2414 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2415 __run_delayed_extent_op(extent_op, leaf, ei); 2416 2417 btrfs_mark_buffer_dirty(leaf); 2418 out: 2419 btrfs_free_path(path); 2420 return err; 2421 } 2422 2423 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2424 struct btrfs_fs_info *fs_info, 2425 struct btrfs_delayed_ref_node *node, 2426 struct btrfs_delayed_extent_op *extent_op, 2427 int insert_reserved) 2428 { 2429 int ret = 0; 2430 struct btrfs_delayed_tree_ref *ref; 2431 struct btrfs_key ins; 2432 u64 parent = 0; 2433 u64 ref_root = 0; 2434 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2435 2436 ref = btrfs_delayed_node_to_tree_ref(node); 2437 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2438 2439 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2440 parent = ref->parent; 2441 ref_root = ref->root; 2442 2443 ins.objectid = node->bytenr; 2444 if (skinny_metadata) { 2445 ins.offset = ref->level; 2446 ins.type = BTRFS_METADATA_ITEM_KEY; 2447 } else { 2448 ins.offset = node->num_bytes; 2449 ins.type = BTRFS_EXTENT_ITEM_KEY; 2450 } 2451 2452 if (node->ref_mod != 1) { 2453 btrfs_err(fs_info, 2454 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2455 node->bytenr, node->ref_mod, node->action, ref_root, 2456 parent); 2457 return -EIO; 2458 } 2459 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2460 BUG_ON(!extent_op || !extent_op->update_flags); 2461 ret = alloc_reserved_tree_block(trans, fs_info, 2462 parent, ref_root, 2463 extent_op->flags_to_set, 2464 &extent_op->key, 2465 ref->level, &ins); 2466 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2467 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2468 parent, ref_root, 2469 ref->level, 0, 1, 2470 extent_op); 2471 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2472 ret = __btrfs_free_extent(trans, fs_info, node, 2473 parent, ref_root, 2474 ref->level, 0, 1, extent_op); 2475 } else { 2476 BUG(); 2477 } 2478 return ret; 2479 } 2480 2481 /* helper function to actually process a single delayed ref entry */ 2482 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2483 struct btrfs_fs_info *fs_info, 2484 struct btrfs_delayed_ref_node *node, 2485 struct btrfs_delayed_extent_op *extent_op, 2486 int insert_reserved) 2487 { 2488 int ret = 0; 2489 2490 if (trans->aborted) { 2491 if (insert_reserved) 2492 btrfs_pin_extent(fs_info, node->bytenr, 2493 node->num_bytes, 1); 2494 return 0; 2495 } 2496 2497 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2498 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2499 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2500 insert_reserved); 2501 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2502 node->type == BTRFS_SHARED_DATA_REF_KEY) 2503 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2504 insert_reserved); 2505 else 2506 BUG(); 2507 return ret; 2508 } 2509 2510 static inline struct btrfs_delayed_ref_node * 2511 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2512 { 2513 struct btrfs_delayed_ref_node *ref; 2514 2515 if (RB_EMPTY_ROOT(&head->ref_tree)) 2516 return NULL; 2517 2518 /* 2519 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2520 * This is to prevent a ref count from going down to zero, which deletes 2521 * the extent item from the extent tree, when there still are references 2522 * to add, which would fail because they would not find the extent item. 2523 */ 2524 if (!list_empty(&head->ref_add_list)) 2525 return list_first_entry(&head->ref_add_list, 2526 struct btrfs_delayed_ref_node, add_list); 2527 2528 ref = rb_entry(rb_first(&head->ref_tree), 2529 struct btrfs_delayed_ref_node, ref_node); 2530 ASSERT(list_empty(&ref->add_list)); 2531 return ref; 2532 } 2533 2534 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2535 struct btrfs_delayed_ref_head *head) 2536 { 2537 spin_lock(&delayed_refs->lock); 2538 head->processing = 0; 2539 delayed_refs->num_heads_ready++; 2540 spin_unlock(&delayed_refs->lock); 2541 btrfs_delayed_ref_unlock(head); 2542 } 2543 2544 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2545 struct btrfs_fs_info *fs_info, 2546 struct btrfs_delayed_ref_head *head) 2547 { 2548 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2549 int ret; 2550 2551 if (!extent_op) 2552 return 0; 2553 head->extent_op = NULL; 2554 if (head->must_insert_reserved) { 2555 btrfs_free_delayed_extent_op(extent_op); 2556 return 0; 2557 } 2558 spin_unlock(&head->lock); 2559 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2560 btrfs_free_delayed_extent_op(extent_op); 2561 return ret ? ret : 1; 2562 } 2563 2564 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2565 struct btrfs_fs_info *fs_info, 2566 struct btrfs_delayed_ref_head *head) 2567 { 2568 struct btrfs_delayed_ref_root *delayed_refs; 2569 int ret; 2570 2571 delayed_refs = &trans->transaction->delayed_refs; 2572 2573 ret = cleanup_extent_op(trans, fs_info, head); 2574 if (ret < 0) { 2575 unselect_delayed_ref_head(delayed_refs, head); 2576 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2577 return ret; 2578 } else if (ret) { 2579 return ret; 2580 } 2581 2582 /* 2583 * Need to drop our head ref lock and re-acquire the delayed ref lock 2584 * and then re-check to make sure nobody got added. 2585 */ 2586 spin_unlock(&head->lock); 2587 spin_lock(&delayed_refs->lock); 2588 spin_lock(&head->lock); 2589 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2590 spin_unlock(&head->lock); 2591 spin_unlock(&delayed_refs->lock); 2592 return 1; 2593 } 2594 delayed_refs->num_heads--; 2595 rb_erase(&head->href_node, &delayed_refs->href_root); 2596 RB_CLEAR_NODE(&head->href_node); 2597 spin_unlock(&delayed_refs->lock); 2598 spin_unlock(&head->lock); 2599 atomic_dec(&delayed_refs->num_entries); 2600 2601 trace_run_delayed_ref_head(fs_info, head, 0); 2602 2603 if (head->total_ref_mod < 0) { 2604 struct btrfs_space_info *space_info; 2605 u64 flags; 2606 2607 if (head->is_data) 2608 flags = BTRFS_BLOCK_GROUP_DATA; 2609 else if (head->is_system) 2610 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2611 else 2612 flags = BTRFS_BLOCK_GROUP_METADATA; 2613 space_info = __find_space_info(fs_info, flags); 2614 ASSERT(space_info); 2615 percpu_counter_add(&space_info->total_bytes_pinned, 2616 -head->num_bytes); 2617 2618 if (head->is_data) { 2619 spin_lock(&delayed_refs->lock); 2620 delayed_refs->pending_csums -= head->num_bytes; 2621 spin_unlock(&delayed_refs->lock); 2622 } 2623 } 2624 2625 if (head->must_insert_reserved) { 2626 btrfs_pin_extent(fs_info, head->bytenr, 2627 head->num_bytes, 1); 2628 if (head->is_data) { 2629 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2630 head->num_bytes); 2631 } 2632 } 2633 2634 /* Also free its reserved qgroup space */ 2635 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2636 head->qgroup_reserved); 2637 btrfs_delayed_ref_unlock(head); 2638 btrfs_put_delayed_ref_head(head); 2639 return 0; 2640 } 2641 2642 /* 2643 * Returns 0 on success or if called with an already aborted transaction. 2644 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2645 */ 2646 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2647 unsigned long nr) 2648 { 2649 struct btrfs_fs_info *fs_info = trans->fs_info; 2650 struct btrfs_delayed_ref_root *delayed_refs; 2651 struct btrfs_delayed_ref_node *ref; 2652 struct btrfs_delayed_ref_head *locked_ref = NULL; 2653 struct btrfs_delayed_extent_op *extent_op; 2654 ktime_t start = ktime_get(); 2655 int ret; 2656 unsigned long count = 0; 2657 unsigned long actual_count = 0; 2658 int must_insert_reserved = 0; 2659 2660 delayed_refs = &trans->transaction->delayed_refs; 2661 while (1) { 2662 if (!locked_ref) { 2663 if (count >= nr) 2664 break; 2665 2666 spin_lock(&delayed_refs->lock); 2667 locked_ref = btrfs_select_ref_head(trans); 2668 if (!locked_ref) { 2669 spin_unlock(&delayed_refs->lock); 2670 break; 2671 } 2672 2673 /* grab the lock that says we are going to process 2674 * all the refs for this head */ 2675 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2676 spin_unlock(&delayed_refs->lock); 2677 /* 2678 * we may have dropped the spin lock to get the head 2679 * mutex lock, and that might have given someone else 2680 * time to free the head. If that's true, it has been 2681 * removed from our list and we can move on. 2682 */ 2683 if (ret == -EAGAIN) { 2684 locked_ref = NULL; 2685 count++; 2686 continue; 2687 } 2688 } 2689 2690 /* 2691 * We need to try and merge add/drops of the same ref since we 2692 * can run into issues with relocate dropping the implicit ref 2693 * and then it being added back again before the drop can 2694 * finish. If we merged anything we need to re-loop so we can 2695 * get a good ref. 2696 * Or we can get node references of the same type that weren't 2697 * merged when created due to bumps in the tree mod seq, and 2698 * we need to merge them to prevent adding an inline extent 2699 * backref before dropping it (triggering a BUG_ON at 2700 * insert_inline_extent_backref()). 2701 */ 2702 spin_lock(&locked_ref->lock); 2703 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2704 locked_ref); 2705 2706 /* 2707 * locked_ref is the head node, so we have to go one 2708 * node back for any delayed ref updates 2709 */ 2710 ref = select_delayed_ref(locked_ref); 2711 2712 if (ref && ref->seq && 2713 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2714 spin_unlock(&locked_ref->lock); 2715 unselect_delayed_ref_head(delayed_refs, locked_ref); 2716 locked_ref = NULL; 2717 cond_resched(); 2718 count++; 2719 continue; 2720 } 2721 2722 /* 2723 * We're done processing refs in this ref_head, clean everything 2724 * up and move on to the next ref_head. 2725 */ 2726 if (!ref) { 2727 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2728 if (ret > 0 ) { 2729 /* We dropped our lock, we need to loop. */ 2730 ret = 0; 2731 continue; 2732 } else if (ret) { 2733 return ret; 2734 } 2735 locked_ref = NULL; 2736 count++; 2737 continue; 2738 } 2739 2740 actual_count++; 2741 ref->in_tree = 0; 2742 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2743 RB_CLEAR_NODE(&ref->ref_node); 2744 if (!list_empty(&ref->add_list)) 2745 list_del(&ref->add_list); 2746 /* 2747 * When we play the delayed ref, also correct the ref_mod on 2748 * head 2749 */ 2750 switch (ref->action) { 2751 case BTRFS_ADD_DELAYED_REF: 2752 case BTRFS_ADD_DELAYED_EXTENT: 2753 locked_ref->ref_mod -= ref->ref_mod; 2754 break; 2755 case BTRFS_DROP_DELAYED_REF: 2756 locked_ref->ref_mod += ref->ref_mod; 2757 break; 2758 default: 2759 WARN_ON(1); 2760 } 2761 atomic_dec(&delayed_refs->num_entries); 2762 2763 /* 2764 * Record the must-insert_reserved flag before we drop the spin 2765 * lock. 2766 */ 2767 must_insert_reserved = locked_ref->must_insert_reserved; 2768 locked_ref->must_insert_reserved = 0; 2769 2770 extent_op = locked_ref->extent_op; 2771 locked_ref->extent_op = NULL; 2772 spin_unlock(&locked_ref->lock); 2773 2774 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2775 must_insert_reserved); 2776 2777 btrfs_free_delayed_extent_op(extent_op); 2778 if (ret) { 2779 unselect_delayed_ref_head(delayed_refs, locked_ref); 2780 btrfs_put_delayed_ref(ref); 2781 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2782 ret); 2783 return ret; 2784 } 2785 2786 btrfs_put_delayed_ref(ref); 2787 count++; 2788 cond_resched(); 2789 } 2790 2791 /* 2792 * We don't want to include ref heads since we can have empty ref heads 2793 * and those will drastically skew our runtime down since we just do 2794 * accounting, no actual extent tree updates. 2795 */ 2796 if (actual_count > 0) { 2797 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2798 u64 avg; 2799 2800 /* 2801 * We weigh the current average higher than our current runtime 2802 * to avoid large swings in the average. 2803 */ 2804 spin_lock(&delayed_refs->lock); 2805 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2806 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2807 spin_unlock(&delayed_refs->lock); 2808 } 2809 return 0; 2810 } 2811 2812 #ifdef SCRAMBLE_DELAYED_REFS 2813 /* 2814 * Normally delayed refs get processed in ascending bytenr order. This 2815 * correlates in most cases to the order added. To expose dependencies on this 2816 * order, we start to process the tree in the middle instead of the beginning 2817 */ 2818 static u64 find_middle(struct rb_root *root) 2819 { 2820 struct rb_node *n = root->rb_node; 2821 struct btrfs_delayed_ref_node *entry; 2822 int alt = 1; 2823 u64 middle; 2824 u64 first = 0, last = 0; 2825 2826 n = rb_first(root); 2827 if (n) { 2828 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2829 first = entry->bytenr; 2830 } 2831 n = rb_last(root); 2832 if (n) { 2833 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2834 last = entry->bytenr; 2835 } 2836 n = root->rb_node; 2837 2838 while (n) { 2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2840 WARN_ON(!entry->in_tree); 2841 2842 middle = entry->bytenr; 2843 2844 if (alt) 2845 n = n->rb_left; 2846 else 2847 n = n->rb_right; 2848 2849 alt = 1 - alt; 2850 } 2851 return middle; 2852 } 2853 #endif 2854 2855 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2856 { 2857 u64 num_bytes; 2858 2859 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2860 sizeof(struct btrfs_extent_inline_ref)); 2861 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2862 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2863 2864 /* 2865 * We don't ever fill up leaves all the way so multiply by 2 just to be 2866 * closer to what we're really going to want to use. 2867 */ 2868 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2869 } 2870 2871 /* 2872 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2873 * would require to store the csums for that many bytes. 2874 */ 2875 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2876 { 2877 u64 csum_size; 2878 u64 num_csums_per_leaf; 2879 u64 num_csums; 2880 2881 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2882 num_csums_per_leaf = div64_u64(csum_size, 2883 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2884 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2885 num_csums += num_csums_per_leaf - 1; 2886 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2887 return num_csums; 2888 } 2889 2890 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2891 struct btrfs_fs_info *fs_info) 2892 { 2893 struct btrfs_block_rsv *global_rsv; 2894 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2895 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2896 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2897 u64 num_bytes, num_dirty_bgs_bytes; 2898 int ret = 0; 2899 2900 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2901 num_heads = heads_to_leaves(fs_info, num_heads); 2902 if (num_heads > 1) 2903 num_bytes += (num_heads - 1) * fs_info->nodesize; 2904 num_bytes <<= 1; 2905 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2906 fs_info->nodesize; 2907 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2908 num_dirty_bgs); 2909 global_rsv = &fs_info->global_block_rsv; 2910 2911 /* 2912 * If we can't allocate any more chunks lets make sure we have _lots_ of 2913 * wiggle room since running delayed refs can create more delayed refs. 2914 */ 2915 if (global_rsv->space_info->full) { 2916 num_dirty_bgs_bytes <<= 1; 2917 num_bytes <<= 1; 2918 } 2919 2920 spin_lock(&global_rsv->lock); 2921 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2922 ret = 1; 2923 spin_unlock(&global_rsv->lock); 2924 return ret; 2925 } 2926 2927 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2928 struct btrfs_fs_info *fs_info) 2929 { 2930 u64 num_entries = 2931 atomic_read(&trans->transaction->delayed_refs.num_entries); 2932 u64 avg_runtime; 2933 u64 val; 2934 2935 smp_mb(); 2936 avg_runtime = fs_info->avg_delayed_ref_runtime; 2937 val = num_entries * avg_runtime; 2938 if (val >= NSEC_PER_SEC) 2939 return 1; 2940 if (val >= NSEC_PER_SEC / 2) 2941 return 2; 2942 2943 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2944 } 2945 2946 struct async_delayed_refs { 2947 struct btrfs_root *root; 2948 u64 transid; 2949 int count; 2950 int error; 2951 int sync; 2952 struct completion wait; 2953 struct btrfs_work work; 2954 }; 2955 2956 static inline struct async_delayed_refs * 2957 to_async_delayed_refs(struct btrfs_work *work) 2958 { 2959 return container_of(work, struct async_delayed_refs, work); 2960 } 2961 2962 static void delayed_ref_async_start(struct btrfs_work *work) 2963 { 2964 struct async_delayed_refs *async = to_async_delayed_refs(work); 2965 struct btrfs_trans_handle *trans; 2966 struct btrfs_fs_info *fs_info = async->root->fs_info; 2967 int ret; 2968 2969 /* if the commit is already started, we don't need to wait here */ 2970 if (btrfs_transaction_blocked(fs_info)) 2971 goto done; 2972 2973 trans = btrfs_join_transaction(async->root); 2974 if (IS_ERR(trans)) { 2975 async->error = PTR_ERR(trans); 2976 goto done; 2977 } 2978 2979 /* 2980 * trans->sync means that when we call end_transaction, we won't 2981 * wait on delayed refs 2982 */ 2983 trans->sync = true; 2984 2985 /* Don't bother flushing if we got into a different transaction */ 2986 if (trans->transid > async->transid) 2987 goto end; 2988 2989 ret = btrfs_run_delayed_refs(trans, async->count); 2990 if (ret) 2991 async->error = ret; 2992 end: 2993 ret = btrfs_end_transaction(trans); 2994 if (ret && !async->error) 2995 async->error = ret; 2996 done: 2997 if (async->sync) 2998 complete(&async->wait); 2999 else 3000 kfree(async); 3001 } 3002 3003 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3004 unsigned long count, u64 transid, int wait) 3005 { 3006 struct async_delayed_refs *async; 3007 int ret; 3008 3009 async = kmalloc(sizeof(*async), GFP_NOFS); 3010 if (!async) 3011 return -ENOMEM; 3012 3013 async->root = fs_info->tree_root; 3014 async->count = count; 3015 async->error = 0; 3016 async->transid = transid; 3017 if (wait) 3018 async->sync = 1; 3019 else 3020 async->sync = 0; 3021 init_completion(&async->wait); 3022 3023 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3024 delayed_ref_async_start, NULL, NULL); 3025 3026 btrfs_queue_work(fs_info->extent_workers, &async->work); 3027 3028 if (wait) { 3029 wait_for_completion(&async->wait); 3030 ret = async->error; 3031 kfree(async); 3032 return ret; 3033 } 3034 return 0; 3035 } 3036 3037 /* 3038 * this starts processing the delayed reference count updates and 3039 * extent insertions we have queued up so far. count can be 3040 * 0, which means to process everything in the tree at the start 3041 * of the run (but not newly added entries), or it can be some target 3042 * number you'd like to process. 3043 * 3044 * Returns 0 on success or if called with an aborted transaction 3045 * Returns <0 on error and aborts the transaction 3046 */ 3047 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3048 unsigned long count) 3049 { 3050 struct btrfs_fs_info *fs_info = trans->fs_info; 3051 struct rb_node *node; 3052 struct btrfs_delayed_ref_root *delayed_refs; 3053 struct btrfs_delayed_ref_head *head; 3054 int ret; 3055 int run_all = count == (unsigned long)-1; 3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3057 3058 /* We'll clean this up in btrfs_cleanup_transaction */ 3059 if (trans->aborted) 3060 return 0; 3061 3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3063 return 0; 3064 3065 delayed_refs = &trans->transaction->delayed_refs; 3066 if (count == 0) 3067 count = atomic_read(&delayed_refs->num_entries) * 2; 3068 3069 again: 3070 #ifdef SCRAMBLE_DELAYED_REFS 3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3072 #endif 3073 trans->can_flush_pending_bgs = false; 3074 ret = __btrfs_run_delayed_refs(trans, count); 3075 if (ret < 0) { 3076 btrfs_abort_transaction(trans, ret); 3077 return ret; 3078 } 3079 3080 if (run_all) { 3081 if (!list_empty(&trans->new_bgs)) 3082 btrfs_create_pending_block_groups(trans); 3083 3084 spin_lock(&delayed_refs->lock); 3085 node = rb_first(&delayed_refs->href_root); 3086 if (!node) { 3087 spin_unlock(&delayed_refs->lock); 3088 goto out; 3089 } 3090 head = rb_entry(node, struct btrfs_delayed_ref_head, 3091 href_node); 3092 refcount_inc(&head->refs); 3093 spin_unlock(&delayed_refs->lock); 3094 3095 /* Mutex was contended, block until it's released and retry. */ 3096 mutex_lock(&head->mutex); 3097 mutex_unlock(&head->mutex); 3098 3099 btrfs_put_delayed_ref_head(head); 3100 cond_resched(); 3101 goto again; 3102 } 3103 out: 3104 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3105 return 0; 3106 } 3107 3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3109 struct btrfs_fs_info *fs_info, 3110 u64 bytenr, u64 num_bytes, u64 flags, 3111 int level, int is_data) 3112 { 3113 struct btrfs_delayed_extent_op *extent_op; 3114 int ret; 3115 3116 extent_op = btrfs_alloc_delayed_extent_op(); 3117 if (!extent_op) 3118 return -ENOMEM; 3119 3120 extent_op->flags_to_set = flags; 3121 extent_op->update_flags = true; 3122 extent_op->update_key = false; 3123 extent_op->is_data = is_data ? true : false; 3124 extent_op->level = level; 3125 3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3127 num_bytes, extent_op); 3128 if (ret) 3129 btrfs_free_delayed_extent_op(extent_op); 3130 return ret; 3131 } 3132 3133 static noinline int check_delayed_ref(struct btrfs_root *root, 3134 struct btrfs_path *path, 3135 u64 objectid, u64 offset, u64 bytenr) 3136 { 3137 struct btrfs_delayed_ref_head *head; 3138 struct btrfs_delayed_ref_node *ref; 3139 struct btrfs_delayed_data_ref *data_ref; 3140 struct btrfs_delayed_ref_root *delayed_refs; 3141 struct btrfs_transaction *cur_trans; 3142 struct rb_node *node; 3143 int ret = 0; 3144 3145 cur_trans = root->fs_info->running_transaction; 3146 if (!cur_trans) 3147 return 0; 3148 3149 delayed_refs = &cur_trans->delayed_refs; 3150 spin_lock(&delayed_refs->lock); 3151 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3152 if (!head) { 3153 spin_unlock(&delayed_refs->lock); 3154 return 0; 3155 } 3156 3157 if (!mutex_trylock(&head->mutex)) { 3158 refcount_inc(&head->refs); 3159 spin_unlock(&delayed_refs->lock); 3160 3161 btrfs_release_path(path); 3162 3163 /* 3164 * Mutex was contended, block until it's released and let 3165 * caller try again 3166 */ 3167 mutex_lock(&head->mutex); 3168 mutex_unlock(&head->mutex); 3169 btrfs_put_delayed_ref_head(head); 3170 return -EAGAIN; 3171 } 3172 spin_unlock(&delayed_refs->lock); 3173 3174 spin_lock(&head->lock); 3175 /* 3176 * XXX: We should replace this with a proper search function in the 3177 * future. 3178 */ 3179 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3180 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3181 /* If it's a shared ref we know a cross reference exists */ 3182 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3183 ret = 1; 3184 break; 3185 } 3186 3187 data_ref = btrfs_delayed_node_to_data_ref(ref); 3188 3189 /* 3190 * If our ref doesn't match the one we're currently looking at 3191 * then we have a cross reference. 3192 */ 3193 if (data_ref->root != root->root_key.objectid || 3194 data_ref->objectid != objectid || 3195 data_ref->offset != offset) { 3196 ret = 1; 3197 break; 3198 } 3199 } 3200 spin_unlock(&head->lock); 3201 mutex_unlock(&head->mutex); 3202 return ret; 3203 } 3204 3205 static noinline int check_committed_ref(struct btrfs_root *root, 3206 struct btrfs_path *path, 3207 u64 objectid, u64 offset, u64 bytenr) 3208 { 3209 struct btrfs_fs_info *fs_info = root->fs_info; 3210 struct btrfs_root *extent_root = fs_info->extent_root; 3211 struct extent_buffer *leaf; 3212 struct btrfs_extent_data_ref *ref; 3213 struct btrfs_extent_inline_ref *iref; 3214 struct btrfs_extent_item *ei; 3215 struct btrfs_key key; 3216 u32 item_size; 3217 int type; 3218 int ret; 3219 3220 key.objectid = bytenr; 3221 key.offset = (u64)-1; 3222 key.type = BTRFS_EXTENT_ITEM_KEY; 3223 3224 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3225 if (ret < 0) 3226 goto out; 3227 BUG_ON(ret == 0); /* Corruption */ 3228 3229 ret = -ENOENT; 3230 if (path->slots[0] == 0) 3231 goto out; 3232 3233 path->slots[0]--; 3234 leaf = path->nodes[0]; 3235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3236 3237 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3238 goto out; 3239 3240 ret = 1; 3241 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3243 if (item_size < sizeof(*ei)) { 3244 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3245 goto out; 3246 } 3247 #endif 3248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3249 3250 if (item_size != sizeof(*ei) + 3251 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3252 goto out; 3253 3254 if (btrfs_extent_generation(leaf, ei) <= 3255 btrfs_root_last_snapshot(&root->root_item)) 3256 goto out; 3257 3258 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3259 3260 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3261 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3262 goto out; 3263 3264 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3265 if (btrfs_extent_refs(leaf, ei) != 3266 btrfs_extent_data_ref_count(leaf, ref) || 3267 btrfs_extent_data_ref_root(leaf, ref) != 3268 root->root_key.objectid || 3269 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3270 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3271 goto out; 3272 3273 ret = 0; 3274 out: 3275 return ret; 3276 } 3277 3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3279 u64 bytenr) 3280 { 3281 struct btrfs_path *path; 3282 int ret; 3283 int ret2; 3284 3285 path = btrfs_alloc_path(); 3286 if (!path) 3287 return -ENOENT; 3288 3289 do { 3290 ret = check_committed_ref(root, path, objectid, 3291 offset, bytenr); 3292 if (ret && ret != -ENOENT) 3293 goto out; 3294 3295 ret2 = check_delayed_ref(root, path, objectid, 3296 offset, bytenr); 3297 } while (ret2 == -EAGAIN); 3298 3299 if (ret2 && ret2 != -ENOENT) { 3300 ret = ret2; 3301 goto out; 3302 } 3303 3304 if (ret != -ENOENT || ret2 != -ENOENT) 3305 ret = 0; 3306 out: 3307 btrfs_free_path(path); 3308 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3309 WARN_ON(ret > 0); 3310 return ret; 3311 } 3312 3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3314 struct btrfs_root *root, 3315 struct extent_buffer *buf, 3316 int full_backref, int inc) 3317 { 3318 struct btrfs_fs_info *fs_info = root->fs_info; 3319 u64 bytenr; 3320 u64 num_bytes; 3321 u64 parent; 3322 u64 ref_root; 3323 u32 nritems; 3324 struct btrfs_key key; 3325 struct btrfs_file_extent_item *fi; 3326 int i; 3327 int level; 3328 int ret = 0; 3329 int (*process_func)(struct btrfs_trans_handle *, 3330 struct btrfs_root *, 3331 u64, u64, u64, u64, u64, u64); 3332 3333 3334 if (btrfs_is_testing(fs_info)) 3335 return 0; 3336 3337 ref_root = btrfs_header_owner(buf); 3338 nritems = btrfs_header_nritems(buf); 3339 level = btrfs_header_level(buf); 3340 3341 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3342 return 0; 3343 3344 if (inc) 3345 process_func = btrfs_inc_extent_ref; 3346 else 3347 process_func = btrfs_free_extent; 3348 3349 if (full_backref) 3350 parent = buf->start; 3351 else 3352 parent = 0; 3353 3354 for (i = 0; i < nritems; i++) { 3355 if (level == 0) { 3356 btrfs_item_key_to_cpu(buf, &key, i); 3357 if (key.type != BTRFS_EXTENT_DATA_KEY) 3358 continue; 3359 fi = btrfs_item_ptr(buf, i, 3360 struct btrfs_file_extent_item); 3361 if (btrfs_file_extent_type(buf, fi) == 3362 BTRFS_FILE_EXTENT_INLINE) 3363 continue; 3364 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3365 if (bytenr == 0) 3366 continue; 3367 3368 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3369 key.offset -= btrfs_file_extent_offset(buf, fi); 3370 ret = process_func(trans, root, bytenr, num_bytes, 3371 parent, ref_root, key.objectid, 3372 key.offset); 3373 if (ret) 3374 goto fail; 3375 } else { 3376 bytenr = btrfs_node_blockptr(buf, i); 3377 num_bytes = fs_info->nodesize; 3378 ret = process_func(trans, root, bytenr, num_bytes, 3379 parent, ref_root, level - 1, 0); 3380 if (ret) 3381 goto fail; 3382 } 3383 } 3384 return 0; 3385 fail: 3386 return ret; 3387 } 3388 3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3390 struct extent_buffer *buf, int full_backref) 3391 { 3392 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3393 } 3394 3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3396 struct extent_buffer *buf, int full_backref) 3397 { 3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3399 } 3400 3401 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3402 struct btrfs_fs_info *fs_info, 3403 struct btrfs_path *path, 3404 struct btrfs_block_group_cache *cache) 3405 { 3406 int ret; 3407 struct btrfs_root *extent_root = fs_info->extent_root; 3408 unsigned long bi; 3409 struct extent_buffer *leaf; 3410 3411 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3412 if (ret) { 3413 if (ret > 0) 3414 ret = -ENOENT; 3415 goto fail; 3416 } 3417 3418 leaf = path->nodes[0]; 3419 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3420 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3421 btrfs_mark_buffer_dirty(leaf); 3422 fail: 3423 btrfs_release_path(path); 3424 return ret; 3425 3426 } 3427 3428 static struct btrfs_block_group_cache * 3429 next_block_group(struct btrfs_fs_info *fs_info, 3430 struct btrfs_block_group_cache *cache) 3431 { 3432 struct rb_node *node; 3433 3434 spin_lock(&fs_info->block_group_cache_lock); 3435 3436 /* If our block group was removed, we need a full search. */ 3437 if (RB_EMPTY_NODE(&cache->cache_node)) { 3438 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3439 3440 spin_unlock(&fs_info->block_group_cache_lock); 3441 btrfs_put_block_group(cache); 3442 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3443 } 3444 node = rb_next(&cache->cache_node); 3445 btrfs_put_block_group(cache); 3446 if (node) { 3447 cache = rb_entry(node, struct btrfs_block_group_cache, 3448 cache_node); 3449 btrfs_get_block_group(cache); 3450 } else 3451 cache = NULL; 3452 spin_unlock(&fs_info->block_group_cache_lock); 3453 return cache; 3454 } 3455 3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3457 struct btrfs_trans_handle *trans, 3458 struct btrfs_path *path) 3459 { 3460 struct btrfs_fs_info *fs_info = block_group->fs_info; 3461 struct btrfs_root *root = fs_info->tree_root; 3462 struct inode *inode = NULL; 3463 struct extent_changeset *data_reserved = NULL; 3464 u64 alloc_hint = 0; 3465 int dcs = BTRFS_DC_ERROR; 3466 u64 num_pages = 0; 3467 int retries = 0; 3468 int ret = 0; 3469 3470 /* 3471 * If this block group is smaller than 100 megs don't bother caching the 3472 * block group. 3473 */ 3474 if (block_group->key.offset < (100 * SZ_1M)) { 3475 spin_lock(&block_group->lock); 3476 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3477 spin_unlock(&block_group->lock); 3478 return 0; 3479 } 3480 3481 if (trans->aborted) 3482 return 0; 3483 again: 3484 inode = lookup_free_space_inode(fs_info, block_group, path); 3485 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3486 ret = PTR_ERR(inode); 3487 btrfs_release_path(path); 3488 goto out; 3489 } 3490 3491 if (IS_ERR(inode)) { 3492 BUG_ON(retries); 3493 retries++; 3494 3495 if (block_group->ro) 3496 goto out_free; 3497 3498 ret = create_free_space_inode(fs_info, trans, block_group, 3499 path); 3500 if (ret) 3501 goto out_free; 3502 goto again; 3503 } 3504 3505 /* 3506 * We want to set the generation to 0, that way if anything goes wrong 3507 * from here on out we know not to trust this cache when we load up next 3508 * time. 3509 */ 3510 BTRFS_I(inode)->generation = 0; 3511 ret = btrfs_update_inode(trans, root, inode); 3512 if (ret) { 3513 /* 3514 * So theoretically we could recover from this, simply set the 3515 * super cache generation to 0 so we know to invalidate the 3516 * cache, but then we'd have to keep track of the block groups 3517 * that fail this way so we know we _have_ to reset this cache 3518 * before the next commit or risk reading stale cache. So to 3519 * limit our exposure to horrible edge cases lets just abort the 3520 * transaction, this only happens in really bad situations 3521 * anyway. 3522 */ 3523 btrfs_abort_transaction(trans, ret); 3524 goto out_put; 3525 } 3526 WARN_ON(ret); 3527 3528 /* We've already setup this transaction, go ahead and exit */ 3529 if (block_group->cache_generation == trans->transid && 3530 i_size_read(inode)) { 3531 dcs = BTRFS_DC_SETUP; 3532 goto out_put; 3533 } 3534 3535 if (i_size_read(inode) > 0) { 3536 ret = btrfs_check_trunc_cache_free_space(fs_info, 3537 &fs_info->global_block_rsv); 3538 if (ret) 3539 goto out_put; 3540 3541 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3542 if (ret) 3543 goto out_put; 3544 } 3545 3546 spin_lock(&block_group->lock); 3547 if (block_group->cached != BTRFS_CACHE_FINISHED || 3548 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3549 /* 3550 * don't bother trying to write stuff out _if_ 3551 * a) we're not cached, 3552 * b) we're with nospace_cache mount option, 3553 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3554 */ 3555 dcs = BTRFS_DC_WRITTEN; 3556 spin_unlock(&block_group->lock); 3557 goto out_put; 3558 } 3559 spin_unlock(&block_group->lock); 3560 3561 /* 3562 * We hit an ENOSPC when setting up the cache in this transaction, just 3563 * skip doing the setup, we've already cleared the cache so we're safe. 3564 */ 3565 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3566 ret = -ENOSPC; 3567 goto out_put; 3568 } 3569 3570 /* 3571 * Try to preallocate enough space based on how big the block group is. 3572 * Keep in mind this has to include any pinned space which could end up 3573 * taking up quite a bit since it's not folded into the other space 3574 * cache. 3575 */ 3576 num_pages = div_u64(block_group->key.offset, SZ_256M); 3577 if (!num_pages) 3578 num_pages = 1; 3579 3580 num_pages *= 16; 3581 num_pages *= PAGE_SIZE; 3582 3583 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3584 if (ret) 3585 goto out_put; 3586 3587 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3588 num_pages, num_pages, 3589 &alloc_hint); 3590 /* 3591 * Our cache requires contiguous chunks so that we don't modify a bunch 3592 * of metadata or split extents when writing the cache out, which means 3593 * we can enospc if we are heavily fragmented in addition to just normal 3594 * out of space conditions. So if we hit this just skip setting up any 3595 * other block groups for this transaction, maybe we'll unpin enough 3596 * space the next time around. 3597 */ 3598 if (!ret) 3599 dcs = BTRFS_DC_SETUP; 3600 else if (ret == -ENOSPC) 3601 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3602 3603 out_put: 3604 iput(inode); 3605 out_free: 3606 btrfs_release_path(path); 3607 out: 3608 spin_lock(&block_group->lock); 3609 if (!ret && dcs == BTRFS_DC_SETUP) 3610 block_group->cache_generation = trans->transid; 3611 block_group->disk_cache_state = dcs; 3612 spin_unlock(&block_group->lock); 3613 3614 extent_changeset_free(data_reserved); 3615 return ret; 3616 } 3617 3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3619 struct btrfs_fs_info *fs_info) 3620 { 3621 struct btrfs_block_group_cache *cache, *tmp; 3622 struct btrfs_transaction *cur_trans = trans->transaction; 3623 struct btrfs_path *path; 3624 3625 if (list_empty(&cur_trans->dirty_bgs) || 3626 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3627 return 0; 3628 3629 path = btrfs_alloc_path(); 3630 if (!path) 3631 return -ENOMEM; 3632 3633 /* Could add new block groups, use _safe just in case */ 3634 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3635 dirty_list) { 3636 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3637 cache_save_setup(cache, trans, path); 3638 } 3639 3640 btrfs_free_path(path); 3641 return 0; 3642 } 3643 3644 /* 3645 * transaction commit does final block group cache writeback during a 3646 * critical section where nothing is allowed to change the FS. This is 3647 * required in order for the cache to actually match the block group, 3648 * but can introduce a lot of latency into the commit. 3649 * 3650 * So, btrfs_start_dirty_block_groups is here to kick off block group 3651 * cache IO. There's a chance we'll have to redo some of it if the 3652 * block group changes again during the commit, but it greatly reduces 3653 * the commit latency by getting rid of the easy block groups while 3654 * we're still allowing others to join the commit. 3655 */ 3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3657 { 3658 struct btrfs_fs_info *fs_info = trans->fs_info; 3659 struct btrfs_block_group_cache *cache; 3660 struct btrfs_transaction *cur_trans = trans->transaction; 3661 int ret = 0; 3662 int should_put; 3663 struct btrfs_path *path = NULL; 3664 LIST_HEAD(dirty); 3665 struct list_head *io = &cur_trans->io_bgs; 3666 int num_started = 0; 3667 int loops = 0; 3668 3669 spin_lock(&cur_trans->dirty_bgs_lock); 3670 if (list_empty(&cur_trans->dirty_bgs)) { 3671 spin_unlock(&cur_trans->dirty_bgs_lock); 3672 return 0; 3673 } 3674 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3675 spin_unlock(&cur_trans->dirty_bgs_lock); 3676 3677 again: 3678 /* 3679 * make sure all the block groups on our dirty list actually 3680 * exist 3681 */ 3682 btrfs_create_pending_block_groups(trans); 3683 3684 if (!path) { 3685 path = btrfs_alloc_path(); 3686 if (!path) 3687 return -ENOMEM; 3688 } 3689 3690 /* 3691 * cache_write_mutex is here only to save us from balance or automatic 3692 * removal of empty block groups deleting this block group while we are 3693 * writing out the cache 3694 */ 3695 mutex_lock(&trans->transaction->cache_write_mutex); 3696 while (!list_empty(&dirty)) { 3697 cache = list_first_entry(&dirty, 3698 struct btrfs_block_group_cache, 3699 dirty_list); 3700 /* 3701 * this can happen if something re-dirties a block 3702 * group that is already under IO. Just wait for it to 3703 * finish and then do it all again 3704 */ 3705 if (!list_empty(&cache->io_list)) { 3706 list_del_init(&cache->io_list); 3707 btrfs_wait_cache_io(trans, cache, path); 3708 btrfs_put_block_group(cache); 3709 } 3710 3711 3712 /* 3713 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3714 * if it should update the cache_state. Don't delete 3715 * until after we wait. 3716 * 3717 * Since we're not running in the commit critical section 3718 * we need the dirty_bgs_lock to protect from update_block_group 3719 */ 3720 spin_lock(&cur_trans->dirty_bgs_lock); 3721 list_del_init(&cache->dirty_list); 3722 spin_unlock(&cur_trans->dirty_bgs_lock); 3723 3724 should_put = 1; 3725 3726 cache_save_setup(cache, trans, path); 3727 3728 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3729 cache->io_ctl.inode = NULL; 3730 ret = btrfs_write_out_cache(fs_info, trans, 3731 cache, path); 3732 if (ret == 0 && cache->io_ctl.inode) { 3733 num_started++; 3734 should_put = 0; 3735 3736 /* 3737 * The cache_write_mutex is protecting the 3738 * io_list, also refer to the definition of 3739 * btrfs_transaction::io_bgs for more details 3740 */ 3741 list_add_tail(&cache->io_list, io); 3742 } else { 3743 /* 3744 * if we failed to write the cache, the 3745 * generation will be bad and life goes on 3746 */ 3747 ret = 0; 3748 } 3749 } 3750 if (!ret) { 3751 ret = write_one_cache_group(trans, fs_info, 3752 path, cache); 3753 /* 3754 * Our block group might still be attached to the list 3755 * of new block groups in the transaction handle of some 3756 * other task (struct btrfs_trans_handle->new_bgs). This 3757 * means its block group item isn't yet in the extent 3758 * tree. If this happens ignore the error, as we will 3759 * try again later in the critical section of the 3760 * transaction commit. 3761 */ 3762 if (ret == -ENOENT) { 3763 ret = 0; 3764 spin_lock(&cur_trans->dirty_bgs_lock); 3765 if (list_empty(&cache->dirty_list)) { 3766 list_add_tail(&cache->dirty_list, 3767 &cur_trans->dirty_bgs); 3768 btrfs_get_block_group(cache); 3769 } 3770 spin_unlock(&cur_trans->dirty_bgs_lock); 3771 } else if (ret) { 3772 btrfs_abort_transaction(trans, ret); 3773 } 3774 } 3775 3776 /* if its not on the io list, we need to put the block group */ 3777 if (should_put) 3778 btrfs_put_block_group(cache); 3779 3780 if (ret) 3781 break; 3782 3783 /* 3784 * Avoid blocking other tasks for too long. It might even save 3785 * us from writing caches for block groups that are going to be 3786 * removed. 3787 */ 3788 mutex_unlock(&trans->transaction->cache_write_mutex); 3789 mutex_lock(&trans->transaction->cache_write_mutex); 3790 } 3791 mutex_unlock(&trans->transaction->cache_write_mutex); 3792 3793 /* 3794 * go through delayed refs for all the stuff we've just kicked off 3795 * and then loop back (just once) 3796 */ 3797 ret = btrfs_run_delayed_refs(trans, 0); 3798 if (!ret && loops == 0) { 3799 loops++; 3800 spin_lock(&cur_trans->dirty_bgs_lock); 3801 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3802 /* 3803 * dirty_bgs_lock protects us from concurrent block group 3804 * deletes too (not just cache_write_mutex). 3805 */ 3806 if (!list_empty(&dirty)) { 3807 spin_unlock(&cur_trans->dirty_bgs_lock); 3808 goto again; 3809 } 3810 spin_unlock(&cur_trans->dirty_bgs_lock); 3811 } else if (ret < 0) { 3812 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3813 } 3814 3815 btrfs_free_path(path); 3816 return ret; 3817 } 3818 3819 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3820 struct btrfs_fs_info *fs_info) 3821 { 3822 struct btrfs_block_group_cache *cache; 3823 struct btrfs_transaction *cur_trans = trans->transaction; 3824 int ret = 0; 3825 int should_put; 3826 struct btrfs_path *path; 3827 struct list_head *io = &cur_trans->io_bgs; 3828 int num_started = 0; 3829 3830 path = btrfs_alloc_path(); 3831 if (!path) 3832 return -ENOMEM; 3833 3834 /* 3835 * Even though we are in the critical section of the transaction commit, 3836 * we can still have concurrent tasks adding elements to this 3837 * transaction's list of dirty block groups. These tasks correspond to 3838 * endio free space workers started when writeback finishes for a 3839 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3840 * allocate new block groups as a result of COWing nodes of the root 3841 * tree when updating the free space inode. The writeback for the space 3842 * caches is triggered by an earlier call to 3843 * btrfs_start_dirty_block_groups() and iterations of the following 3844 * loop. 3845 * Also we want to do the cache_save_setup first and then run the 3846 * delayed refs to make sure we have the best chance at doing this all 3847 * in one shot. 3848 */ 3849 spin_lock(&cur_trans->dirty_bgs_lock); 3850 while (!list_empty(&cur_trans->dirty_bgs)) { 3851 cache = list_first_entry(&cur_trans->dirty_bgs, 3852 struct btrfs_block_group_cache, 3853 dirty_list); 3854 3855 /* 3856 * this can happen if cache_save_setup re-dirties a block 3857 * group that is already under IO. Just wait for it to 3858 * finish and then do it all again 3859 */ 3860 if (!list_empty(&cache->io_list)) { 3861 spin_unlock(&cur_trans->dirty_bgs_lock); 3862 list_del_init(&cache->io_list); 3863 btrfs_wait_cache_io(trans, cache, path); 3864 btrfs_put_block_group(cache); 3865 spin_lock(&cur_trans->dirty_bgs_lock); 3866 } 3867 3868 /* 3869 * don't remove from the dirty list until after we've waited 3870 * on any pending IO 3871 */ 3872 list_del_init(&cache->dirty_list); 3873 spin_unlock(&cur_trans->dirty_bgs_lock); 3874 should_put = 1; 3875 3876 cache_save_setup(cache, trans, path); 3877 3878 if (!ret) 3879 ret = btrfs_run_delayed_refs(trans, 3880 (unsigned long) -1); 3881 3882 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3883 cache->io_ctl.inode = NULL; 3884 ret = btrfs_write_out_cache(fs_info, trans, 3885 cache, path); 3886 if (ret == 0 && cache->io_ctl.inode) { 3887 num_started++; 3888 should_put = 0; 3889 list_add_tail(&cache->io_list, io); 3890 } else { 3891 /* 3892 * if we failed to write the cache, the 3893 * generation will be bad and life goes on 3894 */ 3895 ret = 0; 3896 } 3897 } 3898 if (!ret) { 3899 ret = write_one_cache_group(trans, fs_info, 3900 path, cache); 3901 /* 3902 * One of the free space endio workers might have 3903 * created a new block group while updating a free space 3904 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3905 * and hasn't released its transaction handle yet, in 3906 * which case the new block group is still attached to 3907 * its transaction handle and its creation has not 3908 * finished yet (no block group item in the extent tree 3909 * yet, etc). If this is the case, wait for all free 3910 * space endio workers to finish and retry. This is a 3911 * a very rare case so no need for a more efficient and 3912 * complex approach. 3913 */ 3914 if (ret == -ENOENT) { 3915 wait_event(cur_trans->writer_wait, 3916 atomic_read(&cur_trans->num_writers) == 1); 3917 ret = write_one_cache_group(trans, fs_info, 3918 path, cache); 3919 } 3920 if (ret) 3921 btrfs_abort_transaction(trans, ret); 3922 } 3923 3924 /* if its not on the io list, we need to put the block group */ 3925 if (should_put) 3926 btrfs_put_block_group(cache); 3927 spin_lock(&cur_trans->dirty_bgs_lock); 3928 } 3929 spin_unlock(&cur_trans->dirty_bgs_lock); 3930 3931 /* 3932 * Refer to the definition of io_bgs member for details why it's safe 3933 * to use it without any locking 3934 */ 3935 while (!list_empty(io)) { 3936 cache = list_first_entry(io, struct btrfs_block_group_cache, 3937 io_list); 3938 list_del_init(&cache->io_list); 3939 btrfs_wait_cache_io(trans, cache, path); 3940 btrfs_put_block_group(cache); 3941 } 3942 3943 btrfs_free_path(path); 3944 return ret; 3945 } 3946 3947 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3948 { 3949 struct btrfs_block_group_cache *block_group; 3950 int readonly = 0; 3951 3952 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3953 if (!block_group || block_group->ro) 3954 readonly = 1; 3955 if (block_group) 3956 btrfs_put_block_group(block_group); 3957 return readonly; 3958 } 3959 3960 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3961 { 3962 struct btrfs_block_group_cache *bg; 3963 bool ret = true; 3964 3965 bg = btrfs_lookup_block_group(fs_info, bytenr); 3966 if (!bg) 3967 return false; 3968 3969 spin_lock(&bg->lock); 3970 if (bg->ro) 3971 ret = false; 3972 else 3973 atomic_inc(&bg->nocow_writers); 3974 spin_unlock(&bg->lock); 3975 3976 /* no put on block group, done by btrfs_dec_nocow_writers */ 3977 if (!ret) 3978 btrfs_put_block_group(bg); 3979 3980 return ret; 3981 3982 } 3983 3984 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3985 { 3986 struct btrfs_block_group_cache *bg; 3987 3988 bg = btrfs_lookup_block_group(fs_info, bytenr); 3989 ASSERT(bg); 3990 if (atomic_dec_and_test(&bg->nocow_writers)) 3991 wake_up_var(&bg->nocow_writers); 3992 /* 3993 * Once for our lookup and once for the lookup done by a previous call 3994 * to btrfs_inc_nocow_writers() 3995 */ 3996 btrfs_put_block_group(bg); 3997 btrfs_put_block_group(bg); 3998 } 3999 4000 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4001 { 4002 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 4003 } 4004 4005 static const char *alloc_name(u64 flags) 4006 { 4007 switch (flags) { 4008 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4009 return "mixed"; 4010 case BTRFS_BLOCK_GROUP_METADATA: 4011 return "metadata"; 4012 case BTRFS_BLOCK_GROUP_DATA: 4013 return "data"; 4014 case BTRFS_BLOCK_GROUP_SYSTEM: 4015 return "system"; 4016 default: 4017 WARN_ON(1); 4018 return "invalid-combination"; 4019 }; 4020 } 4021 4022 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4023 struct btrfs_space_info **new) 4024 { 4025 4026 struct btrfs_space_info *space_info; 4027 int i; 4028 int ret; 4029 4030 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4031 if (!space_info) 4032 return -ENOMEM; 4033 4034 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4035 GFP_KERNEL); 4036 if (ret) { 4037 kfree(space_info); 4038 return ret; 4039 } 4040 4041 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4042 INIT_LIST_HEAD(&space_info->block_groups[i]); 4043 init_rwsem(&space_info->groups_sem); 4044 spin_lock_init(&space_info->lock); 4045 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4046 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4047 init_waitqueue_head(&space_info->wait); 4048 INIT_LIST_HEAD(&space_info->ro_bgs); 4049 INIT_LIST_HEAD(&space_info->tickets); 4050 INIT_LIST_HEAD(&space_info->priority_tickets); 4051 4052 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4053 info->space_info_kobj, "%s", 4054 alloc_name(space_info->flags)); 4055 if (ret) { 4056 percpu_counter_destroy(&space_info->total_bytes_pinned); 4057 kfree(space_info); 4058 return ret; 4059 } 4060 4061 *new = space_info; 4062 list_add_rcu(&space_info->list, &info->space_info); 4063 if (flags & BTRFS_BLOCK_GROUP_DATA) 4064 info->data_sinfo = space_info; 4065 4066 return ret; 4067 } 4068 4069 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4070 u64 total_bytes, u64 bytes_used, 4071 u64 bytes_readonly, 4072 struct btrfs_space_info **space_info) 4073 { 4074 struct btrfs_space_info *found; 4075 int factor; 4076 4077 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4078 BTRFS_BLOCK_GROUP_RAID10)) 4079 factor = 2; 4080 else 4081 factor = 1; 4082 4083 found = __find_space_info(info, flags); 4084 ASSERT(found); 4085 spin_lock(&found->lock); 4086 found->total_bytes += total_bytes; 4087 found->disk_total += total_bytes * factor; 4088 found->bytes_used += bytes_used; 4089 found->disk_used += bytes_used * factor; 4090 found->bytes_readonly += bytes_readonly; 4091 if (total_bytes > 0) 4092 found->full = 0; 4093 space_info_add_new_bytes(info, found, total_bytes - 4094 bytes_used - bytes_readonly); 4095 spin_unlock(&found->lock); 4096 *space_info = found; 4097 } 4098 4099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4100 { 4101 u64 extra_flags = chunk_to_extended(flags) & 4102 BTRFS_EXTENDED_PROFILE_MASK; 4103 4104 write_seqlock(&fs_info->profiles_lock); 4105 if (flags & BTRFS_BLOCK_GROUP_DATA) 4106 fs_info->avail_data_alloc_bits |= extra_flags; 4107 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4108 fs_info->avail_metadata_alloc_bits |= extra_flags; 4109 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4110 fs_info->avail_system_alloc_bits |= extra_flags; 4111 write_sequnlock(&fs_info->profiles_lock); 4112 } 4113 4114 /* 4115 * returns target flags in extended format or 0 if restripe for this 4116 * chunk_type is not in progress 4117 * 4118 * should be called with either volume_mutex or balance_lock held 4119 */ 4120 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4121 { 4122 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4123 u64 target = 0; 4124 4125 if (!bctl) 4126 return 0; 4127 4128 if (flags & BTRFS_BLOCK_GROUP_DATA && 4129 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4130 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4131 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4132 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4133 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4134 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4135 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4136 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4137 } 4138 4139 return target; 4140 } 4141 4142 /* 4143 * @flags: available profiles in extended format (see ctree.h) 4144 * 4145 * Returns reduced profile in chunk format. If profile changing is in 4146 * progress (either running or paused) picks the target profile (if it's 4147 * already available), otherwise falls back to plain reducing. 4148 */ 4149 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4150 { 4151 u64 num_devices = fs_info->fs_devices->rw_devices; 4152 u64 target; 4153 u64 raid_type; 4154 u64 allowed = 0; 4155 4156 /* 4157 * see if restripe for this chunk_type is in progress, if so 4158 * try to reduce to the target profile 4159 */ 4160 spin_lock(&fs_info->balance_lock); 4161 target = get_restripe_target(fs_info, flags); 4162 if (target) { 4163 /* pick target profile only if it's already available */ 4164 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4165 spin_unlock(&fs_info->balance_lock); 4166 return extended_to_chunk(target); 4167 } 4168 } 4169 spin_unlock(&fs_info->balance_lock); 4170 4171 /* First, mask out the RAID levels which aren't possible */ 4172 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4173 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4174 allowed |= btrfs_raid_group[raid_type]; 4175 } 4176 allowed &= flags; 4177 4178 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4179 allowed = BTRFS_BLOCK_GROUP_RAID6; 4180 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4181 allowed = BTRFS_BLOCK_GROUP_RAID5; 4182 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4183 allowed = BTRFS_BLOCK_GROUP_RAID10; 4184 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4185 allowed = BTRFS_BLOCK_GROUP_RAID1; 4186 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4187 allowed = BTRFS_BLOCK_GROUP_RAID0; 4188 4189 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4190 4191 return extended_to_chunk(flags | allowed); 4192 } 4193 4194 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4195 { 4196 unsigned seq; 4197 u64 flags; 4198 4199 do { 4200 flags = orig_flags; 4201 seq = read_seqbegin(&fs_info->profiles_lock); 4202 4203 if (flags & BTRFS_BLOCK_GROUP_DATA) 4204 flags |= fs_info->avail_data_alloc_bits; 4205 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4206 flags |= fs_info->avail_system_alloc_bits; 4207 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4208 flags |= fs_info->avail_metadata_alloc_bits; 4209 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4210 4211 return btrfs_reduce_alloc_profile(fs_info, flags); 4212 } 4213 4214 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4215 { 4216 struct btrfs_fs_info *fs_info = root->fs_info; 4217 u64 flags; 4218 u64 ret; 4219 4220 if (data) 4221 flags = BTRFS_BLOCK_GROUP_DATA; 4222 else if (root == fs_info->chunk_root) 4223 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4224 else 4225 flags = BTRFS_BLOCK_GROUP_METADATA; 4226 4227 ret = get_alloc_profile(fs_info, flags); 4228 return ret; 4229 } 4230 4231 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4232 { 4233 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4234 } 4235 4236 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4237 { 4238 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4239 } 4240 4241 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4242 { 4243 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4244 } 4245 4246 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4247 bool may_use_included) 4248 { 4249 ASSERT(s_info); 4250 return s_info->bytes_used + s_info->bytes_reserved + 4251 s_info->bytes_pinned + s_info->bytes_readonly + 4252 (may_use_included ? s_info->bytes_may_use : 0); 4253 } 4254 4255 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4256 { 4257 struct btrfs_root *root = inode->root; 4258 struct btrfs_fs_info *fs_info = root->fs_info; 4259 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4260 u64 used; 4261 int ret = 0; 4262 int need_commit = 2; 4263 int have_pinned_space; 4264 4265 /* make sure bytes are sectorsize aligned */ 4266 bytes = ALIGN(bytes, fs_info->sectorsize); 4267 4268 if (btrfs_is_free_space_inode(inode)) { 4269 need_commit = 0; 4270 ASSERT(current->journal_info); 4271 } 4272 4273 again: 4274 /* make sure we have enough space to handle the data first */ 4275 spin_lock(&data_sinfo->lock); 4276 used = btrfs_space_info_used(data_sinfo, true); 4277 4278 if (used + bytes > data_sinfo->total_bytes) { 4279 struct btrfs_trans_handle *trans; 4280 4281 /* 4282 * if we don't have enough free bytes in this space then we need 4283 * to alloc a new chunk. 4284 */ 4285 if (!data_sinfo->full) { 4286 u64 alloc_target; 4287 4288 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4289 spin_unlock(&data_sinfo->lock); 4290 4291 alloc_target = btrfs_data_alloc_profile(fs_info); 4292 /* 4293 * It is ugly that we don't call nolock join 4294 * transaction for the free space inode case here. 4295 * But it is safe because we only do the data space 4296 * reservation for the free space cache in the 4297 * transaction context, the common join transaction 4298 * just increase the counter of the current transaction 4299 * handler, doesn't try to acquire the trans_lock of 4300 * the fs. 4301 */ 4302 trans = btrfs_join_transaction(root); 4303 if (IS_ERR(trans)) 4304 return PTR_ERR(trans); 4305 4306 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4307 CHUNK_ALLOC_NO_FORCE); 4308 btrfs_end_transaction(trans); 4309 if (ret < 0) { 4310 if (ret != -ENOSPC) 4311 return ret; 4312 else { 4313 have_pinned_space = 1; 4314 goto commit_trans; 4315 } 4316 } 4317 4318 goto again; 4319 } 4320 4321 /* 4322 * If we don't have enough pinned space to deal with this 4323 * allocation, and no removed chunk in current transaction, 4324 * don't bother committing the transaction. 4325 */ 4326 have_pinned_space = percpu_counter_compare( 4327 &data_sinfo->total_bytes_pinned, 4328 used + bytes - data_sinfo->total_bytes); 4329 spin_unlock(&data_sinfo->lock); 4330 4331 /* commit the current transaction and try again */ 4332 commit_trans: 4333 if (need_commit) { 4334 need_commit--; 4335 4336 if (need_commit > 0) { 4337 btrfs_start_delalloc_roots(fs_info, 0, -1); 4338 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4339 (u64)-1); 4340 } 4341 4342 trans = btrfs_join_transaction(root); 4343 if (IS_ERR(trans)) 4344 return PTR_ERR(trans); 4345 if (have_pinned_space >= 0 || 4346 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4347 &trans->transaction->flags) || 4348 need_commit > 0) { 4349 ret = btrfs_commit_transaction(trans); 4350 if (ret) 4351 return ret; 4352 /* 4353 * The cleaner kthread might still be doing iput 4354 * operations. Wait for it to finish so that 4355 * more space is released. 4356 */ 4357 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4358 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4359 goto again; 4360 } else { 4361 btrfs_end_transaction(trans); 4362 } 4363 } 4364 4365 trace_btrfs_space_reservation(fs_info, 4366 "space_info:enospc", 4367 data_sinfo->flags, bytes, 1); 4368 return -ENOSPC; 4369 } 4370 data_sinfo->bytes_may_use += bytes; 4371 trace_btrfs_space_reservation(fs_info, "space_info", 4372 data_sinfo->flags, bytes, 1); 4373 spin_unlock(&data_sinfo->lock); 4374 4375 return ret; 4376 } 4377 4378 int btrfs_check_data_free_space(struct inode *inode, 4379 struct extent_changeset **reserved, u64 start, u64 len) 4380 { 4381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4382 int ret; 4383 4384 /* align the range */ 4385 len = round_up(start + len, fs_info->sectorsize) - 4386 round_down(start, fs_info->sectorsize); 4387 start = round_down(start, fs_info->sectorsize); 4388 4389 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4390 if (ret < 0) 4391 return ret; 4392 4393 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4394 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4395 if (ret < 0) 4396 btrfs_free_reserved_data_space_noquota(inode, start, len); 4397 else 4398 ret = 0; 4399 return ret; 4400 } 4401 4402 /* 4403 * Called if we need to clear a data reservation for this inode 4404 * Normally in a error case. 4405 * 4406 * This one will *NOT* use accurate qgroup reserved space API, just for case 4407 * which we can't sleep and is sure it won't affect qgroup reserved space. 4408 * Like clear_bit_hook(). 4409 */ 4410 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4411 u64 len) 4412 { 4413 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4414 struct btrfs_space_info *data_sinfo; 4415 4416 /* Make sure the range is aligned to sectorsize */ 4417 len = round_up(start + len, fs_info->sectorsize) - 4418 round_down(start, fs_info->sectorsize); 4419 start = round_down(start, fs_info->sectorsize); 4420 4421 data_sinfo = fs_info->data_sinfo; 4422 spin_lock(&data_sinfo->lock); 4423 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4424 data_sinfo->bytes_may_use = 0; 4425 else 4426 data_sinfo->bytes_may_use -= len; 4427 trace_btrfs_space_reservation(fs_info, "space_info", 4428 data_sinfo->flags, len, 0); 4429 spin_unlock(&data_sinfo->lock); 4430 } 4431 4432 /* 4433 * Called if we need to clear a data reservation for this inode 4434 * Normally in a error case. 4435 * 4436 * This one will handle the per-inode data rsv map for accurate reserved 4437 * space framework. 4438 */ 4439 void btrfs_free_reserved_data_space(struct inode *inode, 4440 struct extent_changeset *reserved, u64 start, u64 len) 4441 { 4442 struct btrfs_root *root = BTRFS_I(inode)->root; 4443 4444 /* Make sure the range is aligned to sectorsize */ 4445 len = round_up(start + len, root->fs_info->sectorsize) - 4446 round_down(start, root->fs_info->sectorsize); 4447 start = round_down(start, root->fs_info->sectorsize); 4448 4449 btrfs_free_reserved_data_space_noquota(inode, start, len); 4450 btrfs_qgroup_free_data(inode, reserved, start, len); 4451 } 4452 4453 static void force_metadata_allocation(struct btrfs_fs_info *info) 4454 { 4455 struct list_head *head = &info->space_info; 4456 struct btrfs_space_info *found; 4457 4458 rcu_read_lock(); 4459 list_for_each_entry_rcu(found, head, list) { 4460 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4461 found->force_alloc = CHUNK_ALLOC_FORCE; 4462 } 4463 rcu_read_unlock(); 4464 } 4465 4466 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4467 { 4468 return (global->size << 1); 4469 } 4470 4471 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4472 struct btrfs_space_info *sinfo, int force) 4473 { 4474 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4475 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4476 u64 thresh; 4477 4478 if (force == CHUNK_ALLOC_FORCE) 4479 return 1; 4480 4481 /* 4482 * We need to take into account the global rsv because for all intents 4483 * and purposes it's used space. Don't worry about locking the 4484 * global_rsv, it doesn't change except when the transaction commits. 4485 */ 4486 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4487 bytes_used += calc_global_rsv_need_space(global_rsv); 4488 4489 /* 4490 * in limited mode, we want to have some free space up to 4491 * about 1% of the FS size. 4492 */ 4493 if (force == CHUNK_ALLOC_LIMITED) { 4494 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4495 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4496 4497 if (sinfo->total_bytes - bytes_used < thresh) 4498 return 1; 4499 } 4500 4501 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4502 return 0; 4503 return 1; 4504 } 4505 4506 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4507 { 4508 u64 num_dev; 4509 4510 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4511 BTRFS_BLOCK_GROUP_RAID0 | 4512 BTRFS_BLOCK_GROUP_RAID5 | 4513 BTRFS_BLOCK_GROUP_RAID6)) 4514 num_dev = fs_info->fs_devices->rw_devices; 4515 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4516 num_dev = 2; 4517 else 4518 num_dev = 1; /* DUP or single */ 4519 4520 return num_dev; 4521 } 4522 4523 /* 4524 * If @is_allocation is true, reserve space in the system space info necessary 4525 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4526 * removing a chunk. 4527 */ 4528 void check_system_chunk(struct btrfs_trans_handle *trans, 4529 struct btrfs_fs_info *fs_info, u64 type) 4530 { 4531 struct btrfs_space_info *info; 4532 u64 left; 4533 u64 thresh; 4534 int ret = 0; 4535 u64 num_devs; 4536 4537 /* 4538 * Needed because we can end up allocating a system chunk and for an 4539 * atomic and race free space reservation in the chunk block reserve. 4540 */ 4541 lockdep_assert_held(&fs_info->chunk_mutex); 4542 4543 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4544 spin_lock(&info->lock); 4545 left = info->total_bytes - btrfs_space_info_used(info, true); 4546 spin_unlock(&info->lock); 4547 4548 num_devs = get_profile_num_devs(fs_info, type); 4549 4550 /* num_devs device items to update and 1 chunk item to add or remove */ 4551 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4552 btrfs_calc_trans_metadata_size(fs_info, 1); 4553 4554 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4555 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4556 left, thresh, type); 4557 dump_space_info(fs_info, info, 0, 0); 4558 } 4559 4560 if (left < thresh) { 4561 u64 flags = btrfs_system_alloc_profile(fs_info); 4562 4563 /* 4564 * Ignore failure to create system chunk. We might end up not 4565 * needing it, as we might not need to COW all nodes/leafs from 4566 * the paths we visit in the chunk tree (they were already COWed 4567 * or created in the current transaction for example). 4568 */ 4569 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4570 } 4571 4572 if (!ret) { 4573 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4574 &fs_info->chunk_block_rsv, 4575 thresh, BTRFS_RESERVE_NO_FLUSH); 4576 if (!ret) 4577 trans->chunk_bytes_reserved += thresh; 4578 } 4579 } 4580 4581 /* 4582 * If force is CHUNK_ALLOC_FORCE: 4583 * - return 1 if it successfully allocates a chunk, 4584 * - return errors including -ENOSPC otherwise. 4585 * If force is NOT CHUNK_ALLOC_FORCE: 4586 * - return 0 if it doesn't need to allocate a new chunk, 4587 * - return 1 if it successfully allocates a chunk, 4588 * - return errors including -ENOSPC otherwise. 4589 */ 4590 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4591 struct btrfs_fs_info *fs_info, u64 flags, int force) 4592 { 4593 struct btrfs_space_info *space_info; 4594 int wait_for_alloc = 0; 4595 int ret = 0; 4596 4597 /* Don't re-enter if we're already allocating a chunk */ 4598 if (trans->allocating_chunk) 4599 return -ENOSPC; 4600 4601 space_info = __find_space_info(fs_info, flags); 4602 ASSERT(space_info); 4603 4604 again: 4605 spin_lock(&space_info->lock); 4606 if (force < space_info->force_alloc) 4607 force = space_info->force_alloc; 4608 if (space_info->full) { 4609 if (should_alloc_chunk(fs_info, space_info, force)) 4610 ret = -ENOSPC; 4611 else 4612 ret = 0; 4613 spin_unlock(&space_info->lock); 4614 return ret; 4615 } 4616 4617 if (!should_alloc_chunk(fs_info, space_info, force)) { 4618 spin_unlock(&space_info->lock); 4619 return 0; 4620 } else if (space_info->chunk_alloc) { 4621 wait_for_alloc = 1; 4622 } else { 4623 space_info->chunk_alloc = 1; 4624 } 4625 4626 spin_unlock(&space_info->lock); 4627 4628 mutex_lock(&fs_info->chunk_mutex); 4629 4630 /* 4631 * The chunk_mutex is held throughout the entirety of a chunk 4632 * allocation, so once we've acquired the chunk_mutex we know that the 4633 * other guy is done and we need to recheck and see if we should 4634 * allocate. 4635 */ 4636 if (wait_for_alloc) { 4637 mutex_unlock(&fs_info->chunk_mutex); 4638 wait_for_alloc = 0; 4639 cond_resched(); 4640 goto again; 4641 } 4642 4643 trans->allocating_chunk = true; 4644 4645 /* 4646 * If we have mixed data/metadata chunks we want to make sure we keep 4647 * allocating mixed chunks instead of individual chunks. 4648 */ 4649 if (btrfs_mixed_space_info(space_info)) 4650 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4651 4652 /* 4653 * if we're doing a data chunk, go ahead and make sure that 4654 * we keep a reasonable number of metadata chunks allocated in the 4655 * FS as well. 4656 */ 4657 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4658 fs_info->data_chunk_allocations++; 4659 if (!(fs_info->data_chunk_allocations % 4660 fs_info->metadata_ratio)) 4661 force_metadata_allocation(fs_info); 4662 } 4663 4664 /* 4665 * Check if we have enough space in SYSTEM chunk because we may need 4666 * to update devices. 4667 */ 4668 check_system_chunk(trans, fs_info, flags); 4669 4670 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4671 trans->allocating_chunk = false; 4672 4673 spin_lock(&space_info->lock); 4674 if (ret < 0 && ret != -ENOSPC) 4675 goto out; 4676 if (ret) 4677 space_info->full = 1; 4678 else 4679 ret = 1; 4680 4681 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4682 out: 4683 space_info->chunk_alloc = 0; 4684 spin_unlock(&space_info->lock); 4685 mutex_unlock(&fs_info->chunk_mutex); 4686 /* 4687 * When we allocate a new chunk we reserve space in the chunk block 4688 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4689 * add new nodes/leafs to it if we end up needing to do it when 4690 * inserting the chunk item and updating device items as part of the 4691 * second phase of chunk allocation, performed by 4692 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4693 * large number of new block groups to create in our transaction 4694 * handle's new_bgs list to avoid exhausting the chunk block reserve 4695 * in extreme cases - like having a single transaction create many new 4696 * block groups when starting to write out the free space caches of all 4697 * the block groups that were made dirty during the lifetime of the 4698 * transaction. 4699 */ 4700 if (trans->can_flush_pending_bgs && 4701 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4702 btrfs_create_pending_block_groups(trans); 4703 btrfs_trans_release_chunk_metadata(trans); 4704 } 4705 return ret; 4706 } 4707 4708 static int can_overcommit(struct btrfs_fs_info *fs_info, 4709 struct btrfs_space_info *space_info, u64 bytes, 4710 enum btrfs_reserve_flush_enum flush, 4711 bool system_chunk) 4712 { 4713 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4714 u64 profile; 4715 u64 space_size; 4716 u64 avail; 4717 u64 used; 4718 4719 /* Don't overcommit when in mixed mode. */ 4720 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4721 return 0; 4722 4723 if (system_chunk) 4724 profile = btrfs_system_alloc_profile(fs_info); 4725 else 4726 profile = btrfs_metadata_alloc_profile(fs_info); 4727 4728 used = btrfs_space_info_used(space_info, false); 4729 4730 /* 4731 * We only want to allow over committing if we have lots of actual space 4732 * free, but if we don't have enough space to handle the global reserve 4733 * space then we could end up having a real enospc problem when trying 4734 * to allocate a chunk or some other such important allocation. 4735 */ 4736 spin_lock(&global_rsv->lock); 4737 space_size = calc_global_rsv_need_space(global_rsv); 4738 spin_unlock(&global_rsv->lock); 4739 if (used + space_size >= space_info->total_bytes) 4740 return 0; 4741 4742 used += space_info->bytes_may_use; 4743 4744 avail = atomic64_read(&fs_info->free_chunk_space); 4745 4746 /* 4747 * If we have dup, raid1 or raid10 then only half of the free 4748 * space is actually useable. For raid56, the space info used 4749 * doesn't include the parity drive, so we don't have to 4750 * change the math 4751 */ 4752 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4753 BTRFS_BLOCK_GROUP_RAID1 | 4754 BTRFS_BLOCK_GROUP_RAID10)) 4755 avail >>= 1; 4756 4757 /* 4758 * If we aren't flushing all things, let us overcommit up to 4759 * 1/2th of the space. If we can flush, don't let us overcommit 4760 * too much, let it overcommit up to 1/8 of the space. 4761 */ 4762 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4763 avail >>= 3; 4764 else 4765 avail >>= 1; 4766 4767 if (used + bytes < space_info->total_bytes + avail) 4768 return 1; 4769 return 0; 4770 } 4771 4772 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4773 unsigned long nr_pages, int nr_items) 4774 { 4775 struct super_block *sb = fs_info->sb; 4776 4777 if (down_read_trylock(&sb->s_umount)) { 4778 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4779 up_read(&sb->s_umount); 4780 } else { 4781 /* 4782 * We needn't worry the filesystem going from r/w to r/o though 4783 * we don't acquire ->s_umount mutex, because the filesystem 4784 * should guarantee the delalloc inodes list be empty after 4785 * the filesystem is readonly(all dirty pages are written to 4786 * the disk). 4787 */ 4788 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4789 if (!current->journal_info) 4790 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4791 } 4792 } 4793 4794 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4795 u64 to_reclaim) 4796 { 4797 u64 bytes; 4798 u64 nr; 4799 4800 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4801 nr = div64_u64(to_reclaim, bytes); 4802 if (!nr) 4803 nr = 1; 4804 return nr; 4805 } 4806 4807 #define EXTENT_SIZE_PER_ITEM SZ_256K 4808 4809 /* 4810 * shrink metadata reservation for delalloc 4811 */ 4812 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4813 u64 orig, bool wait_ordered) 4814 { 4815 struct btrfs_space_info *space_info; 4816 struct btrfs_trans_handle *trans; 4817 u64 delalloc_bytes; 4818 u64 max_reclaim; 4819 u64 items; 4820 long time_left; 4821 unsigned long nr_pages; 4822 int loops; 4823 4824 /* Calc the number of the pages we need flush for space reservation */ 4825 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4826 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4827 4828 trans = (struct btrfs_trans_handle *)current->journal_info; 4829 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4830 4831 delalloc_bytes = percpu_counter_sum_positive( 4832 &fs_info->delalloc_bytes); 4833 if (delalloc_bytes == 0) { 4834 if (trans) 4835 return; 4836 if (wait_ordered) 4837 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4838 return; 4839 } 4840 4841 loops = 0; 4842 while (delalloc_bytes && loops < 3) { 4843 max_reclaim = min(delalloc_bytes, to_reclaim); 4844 nr_pages = max_reclaim >> PAGE_SHIFT; 4845 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4846 /* 4847 * We need to wait for the async pages to actually start before 4848 * we do anything. 4849 */ 4850 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4851 if (!max_reclaim) 4852 goto skip_async; 4853 4854 if (max_reclaim <= nr_pages) 4855 max_reclaim = 0; 4856 else 4857 max_reclaim -= nr_pages; 4858 4859 wait_event(fs_info->async_submit_wait, 4860 atomic_read(&fs_info->async_delalloc_pages) <= 4861 (int)max_reclaim); 4862 skip_async: 4863 spin_lock(&space_info->lock); 4864 if (list_empty(&space_info->tickets) && 4865 list_empty(&space_info->priority_tickets)) { 4866 spin_unlock(&space_info->lock); 4867 break; 4868 } 4869 spin_unlock(&space_info->lock); 4870 4871 loops++; 4872 if (wait_ordered && !trans) { 4873 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4874 } else { 4875 time_left = schedule_timeout_killable(1); 4876 if (time_left) 4877 break; 4878 } 4879 delalloc_bytes = percpu_counter_sum_positive( 4880 &fs_info->delalloc_bytes); 4881 } 4882 } 4883 4884 struct reserve_ticket { 4885 u64 bytes; 4886 int error; 4887 struct list_head list; 4888 wait_queue_head_t wait; 4889 }; 4890 4891 /** 4892 * maybe_commit_transaction - possibly commit the transaction if its ok to 4893 * @root - the root we're allocating for 4894 * @bytes - the number of bytes we want to reserve 4895 * @force - force the commit 4896 * 4897 * This will check to make sure that committing the transaction will actually 4898 * get us somewhere and then commit the transaction if it does. Otherwise it 4899 * will return -ENOSPC. 4900 */ 4901 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4902 struct btrfs_space_info *space_info) 4903 { 4904 struct reserve_ticket *ticket = NULL; 4905 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4906 struct btrfs_trans_handle *trans; 4907 u64 bytes; 4908 4909 trans = (struct btrfs_trans_handle *)current->journal_info; 4910 if (trans) 4911 return -EAGAIN; 4912 4913 spin_lock(&space_info->lock); 4914 if (!list_empty(&space_info->priority_tickets)) 4915 ticket = list_first_entry(&space_info->priority_tickets, 4916 struct reserve_ticket, list); 4917 else if (!list_empty(&space_info->tickets)) 4918 ticket = list_first_entry(&space_info->tickets, 4919 struct reserve_ticket, list); 4920 bytes = (ticket) ? ticket->bytes : 0; 4921 spin_unlock(&space_info->lock); 4922 4923 if (!bytes) 4924 return 0; 4925 4926 /* See if there is enough pinned space to make this reservation */ 4927 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4928 bytes) >= 0) 4929 goto commit; 4930 4931 /* 4932 * See if there is some space in the delayed insertion reservation for 4933 * this reservation. 4934 */ 4935 if (space_info != delayed_rsv->space_info) 4936 return -ENOSPC; 4937 4938 spin_lock(&delayed_rsv->lock); 4939 if (delayed_rsv->size > bytes) 4940 bytes = 0; 4941 else 4942 bytes -= delayed_rsv->size; 4943 spin_unlock(&delayed_rsv->lock); 4944 4945 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4946 bytes) < 0) { 4947 return -ENOSPC; 4948 } 4949 4950 commit: 4951 trans = btrfs_join_transaction(fs_info->extent_root); 4952 if (IS_ERR(trans)) 4953 return -ENOSPC; 4954 4955 return btrfs_commit_transaction(trans); 4956 } 4957 4958 /* 4959 * Try to flush some data based on policy set by @state. This is only advisory 4960 * and may fail for various reasons. The caller is supposed to examine the 4961 * state of @space_info to detect the outcome. 4962 */ 4963 static void flush_space(struct btrfs_fs_info *fs_info, 4964 struct btrfs_space_info *space_info, u64 num_bytes, 4965 int state) 4966 { 4967 struct btrfs_root *root = fs_info->extent_root; 4968 struct btrfs_trans_handle *trans; 4969 int nr; 4970 int ret = 0; 4971 4972 switch (state) { 4973 case FLUSH_DELAYED_ITEMS_NR: 4974 case FLUSH_DELAYED_ITEMS: 4975 if (state == FLUSH_DELAYED_ITEMS_NR) 4976 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4977 else 4978 nr = -1; 4979 4980 trans = btrfs_join_transaction(root); 4981 if (IS_ERR(trans)) { 4982 ret = PTR_ERR(trans); 4983 break; 4984 } 4985 ret = btrfs_run_delayed_items_nr(trans, nr); 4986 btrfs_end_transaction(trans); 4987 break; 4988 case FLUSH_DELALLOC: 4989 case FLUSH_DELALLOC_WAIT: 4990 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4991 state == FLUSH_DELALLOC_WAIT); 4992 break; 4993 case ALLOC_CHUNK: 4994 trans = btrfs_join_transaction(root); 4995 if (IS_ERR(trans)) { 4996 ret = PTR_ERR(trans); 4997 break; 4998 } 4999 ret = do_chunk_alloc(trans, fs_info, 5000 btrfs_metadata_alloc_profile(fs_info), 5001 CHUNK_ALLOC_NO_FORCE); 5002 btrfs_end_transaction(trans); 5003 if (ret > 0 || ret == -ENOSPC) 5004 ret = 0; 5005 break; 5006 case COMMIT_TRANS: 5007 ret = may_commit_transaction(fs_info, space_info); 5008 break; 5009 default: 5010 ret = -ENOSPC; 5011 break; 5012 } 5013 5014 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5015 ret); 5016 return; 5017 } 5018 5019 static inline u64 5020 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5021 struct btrfs_space_info *space_info, 5022 bool system_chunk) 5023 { 5024 struct reserve_ticket *ticket; 5025 u64 used; 5026 u64 expected; 5027 u64 to_reclaim = 0; 5028 5029 list_for_each_entry(ticket, &space_info->tickets, list) 5030 to_reclaim += ticket->bytes; 5031 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5032 to_reclaim += ticket->bytes; 5033 if (to_reclaim) 5034 return to_reclaim; 5035 5036 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5037 if (can_overcommit(fs_info, space_info, to_reclaim, 5038 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5039 return 0; 5040 5041 used = btrfs_space_info_used(space_info, true); 5042 5043 if (can_overcommit(fs_info, space_info, SZ_1M, 5044 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5045 expected = div_factor_fine(space_info->total_bytes, 95); 5046 else 5047 expected = div_factor_fine(space_info->total_bytes, 90); 5048 5049 if (used > expected) 5050 to_reclaim = used - expected; 5051 else 5052 to_reclaim = 0; 5053 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5054 space_info->bytes_reserved); 5055 return to_reclaim; 5056 } 5057 5058 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5059 struct btrfs_space_info *space_info, 5060 u64 used, bool system_chunk) 5061 { 5062 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5063 5064 /* If we're just plain full then async reclaim just slows us down. */ 5065 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5066 return 0; 5067 5068 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5069 system_chunk)) 5070 return 0; 5071 5072 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5073 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5074 } 5075 5076 static void wake_all_tickets(struct list_head *head) 5077 { 5078 struct reserve_ticket *ticket; 5079 5080 while (!list_empty(head)) { 5081 ticket = list_first_entry(head, struct reserve_ticket, list); 5082 list_del_init(&ticket->list); 5083 ticket->error = -ENOSPC; 5084 wake_up(&ticket->wait); 5085 } 5086 } 5087 5088 /* 5089 * This is for normal flushers, we can wait all goddamned day if we want to. We 5090 * will loop and continuously try to flush as long as we are making progress. 5091 * We count progress as clearing off tickets each time we have to loop. 5092 */ 5093 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5094 { 5095 struct btrfs_fs_info *fs_info; 5096 struct btrfs_space_info *space_info; 5097 u64 to_reclaim; 5098 int flush_state; 5099 int commit_cycles = 0; 5100 u64 last_tickets_id; 5101 5102 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5103 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5104 5105 spin_lock(&space_info->lock); 5106 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5107 false); 5108 if (!to_reclaim) { 5109 space_info->flush = 0; 5110 spin_unlock(&space_info->lock); 5111 return; 5112 } 5113 last_tickets_id = space_info->tickets_id; 5114 spin_unlock(&space_info->lock); 5115 5116 flush_state = FLUSH_DELAYED_ITEMS_NR; 5117 do { 5118 flush_space(fs_info, space_info, to_reclaim, flush_state); 5119 spin_lock(&space_info->lock); 5120 if (list_empty(&space_info->tickets)) { 5121 space_info->flush = 0; 5122 spin_unlock(&space_info->lock); 5123 return; 5124 } 5125 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5126 space_info, 5127 false); 5128 if (last_tickets_id == space_info->tickets_id) { 5129 flush_state++; 5130 } else { 5131 last_tickets_id = space_info->tickets_id; 5132 flush_state = FLUSH_DELAYED_ITEMS_NR; 5133 if (commit_cycles) 5134 commit_cycles--; 5135 } 5136 5137 if (flush_state > COMMIT_TRANS) { 5138 commit_cycles++; 5139 if (commit_cycles > 2) { 5140 wake_all_tickets(&space_info->tickets); 5141 space_info->flush = 0; 5142 } else { 5143 flush_state = FLUSH_DELAYED_ITEMS_NR; 5144 } 5145 } 5146 spin_unlock(&space_info->lock); 5147 } while (flush_state <= COMMIT_TRANS); 5148 } 5149 5150 void btrfs_init_async_reclaim_work(struct work_struct *work) 5151 { 5152 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5153 } 5154 5155 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5156 struct btrfs_space_info *space_info, 5157 struct reserve_ticket *ticket) 5158 { 5159 u64 to_reclaim; 5160 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5161 5162 spin_lock(&space_info->lock); 5163 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5164 false); 5165 if (!to_reclaim) { 5166 spin_unlock(&space_info->lock); 5167 return; 5168 } 5169 spin_unlock(&space_info->lock); 5170 5171 do { 5172 flush_space(fs_info, space_info, to_reclaim, flush_state); 5173 flush_state++; 5174 spin_lock(&space_info->lock); 5175 if (ticket->bytes == 0) { 5176 spin_unlock(&space_info->lock); 5177 return; 5178 } 5179 spin_unlock(&space_info->lock); 5180 5181 /* 5182 * Priority flushers can't wait on delalloc without 5183 * deadlocking. 5184 */ 5185 if (flush_state == FLUSH_DELALLOC || 5186 flush_state == FLUSH_DELALLOC_WAIT) 5187 flush_state = ALLOC_CHUNK; 5188 } while (flush_state < COMMIT_TRANS); 5189 } 5190 5191 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5192 struct btrfs_space_info *space_info, 5193 struct reserve_ticket *ticket, u64 orig_bytes) 5194 5195 { 5196 DEFINE_WAIT(wait); 5197 int ret = 0; 5198 5199 spin_lock(&space_info->lock); 5200 while (ticket->bytes > 0 && ticket->error == 0) { 5201 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5202 if (ret) { 5203 ret = -EINTR; 5204 break; 5205 } 5206 spin_unlock(&space_info->lock); 5207 5208 schedule(); 5209 5210 finish_wait(&ticket->wait, &wait); 5211 spin_lock(&space_info->lock); 5212 } 5213 if (!ret) 5214 ret = ticket->error; 5215 if (!list_empty(&ticket->list)) 5216 list_del_init(&ticket->list); 5217 if (ticket->bytes && ticket->bytes < orig_bytes) { 5218 u64 num_bytes = orig_bytes - ticket->bytes; 5219 space_info->bytes_may_use -= num_bytes; 5220 trace_btrfs_space_reservation(fs_info, "space_info", 5221 space_info->flags, num_bytes, 0); 5222 } 5223 spin_unlock(&space_info->lock); 5224 5225 return ret; 5226 } 5227 5228 /** 5229 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5230 * @root - the root we're allocating for 5231 * @space_info - the space info we want to allocate from 5232 * @orig_bytes - the number of bytes we want 5233 * @flush - whether or not we can flush to make our reservation 5234 * 5235 * This will reserve orig_bytes number of bytes from the space info associated 5236 * with the block_rsv. If there is not enough space it will make an attempt to 5237 * flush out space to make room. It will do this by flushing delalloc if 5238 * possible or committing the transaction. If flush is 0 then no attempts to 5239 * regain reservations will be made and this will fail if there is not enough 5240 * space already. 5241 */ 5242 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5243 struct btrfs_space_info *space_info, 5244 u64 orig_bytes, 5245 enum btrfs_reserve_flush_enum flush, 5246 bool system_chunk) 5247 { 5248 struct reserve_ticket ticket; 5249 u64 used; 5250 int ret = 0; 5251 5252 ASSERT(orig_bytes); 5253 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5254 5255 spin_lock(&space_info->lock); 5256 ret = -ENOSPC; 5257 used = btrfs_space_info_used(space_info, true); 5258 5259 /* 5260 * If we have enough space then hooray, make our reservation and carry 5261 * on. If not see if we can overcommit, and if we can, hooray carry on. 5262 * If not things get more complicated. 5263 */ 5264 if (used + orig_bytes <= space_info->total_bytes) { 5265 space_info->bytes_may_use += orig_bytes; 5266 trace_btrfs_space_reservation(fs_info, "space_info", 5267 space_info->flags, orig_bytes, 1); 5268 ret = 0; 5269 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5270 system_chunk)) { 5271 space_info->bytes_may_use += orig_bytes; 5272 trace_btrfs_space_reservation(fs_info, "space_info", 5273 space_info->flags, orig_bytes, 1); 5274 ret = 0; 5275 } 5276 5277 /* 5278 * If we couldn't make a reservation then setup our reservation ticket 5279 * and kick the async worker if it's not already running. 5280 * 5281 * If we are a priority flusher then we just need to add our ticket to 5282 * the list and we will do our own flushing further down. 5283 */ 5284 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5285 ticket.bytes = orig_bytes; 5286 ticket.error = 0; 5287 init_waitqueue_head(&ticket.wait); 5288 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5289 list_add_tail(&ticket.list, &space_info->tickets); 5290 if (!space_info->flush) { 5291 space_info->flush = 1; 5292 trace_btrfs_trigger_flush(fs_info, 5293 space_info->flags, 5294 orig_bytes, flush, 5295 "enospc"); 5296 queue_work(system_unbound_wq, 5297 &fs_info->async_reclaim_work); 5298 } 5299 } else { 5300 list_add_tail(&ticket.list, 5301 &space_info->priority_tickets); 5302 } 5303 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5304 used += orig_bytes; 5305 /* 5306 * We will do the space reservation dance during log replay, 5307 * which means we won't have fs_info->fs_root set, so don't do 5308 * the async reclaim as we will panic. 5309 */ 5310 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5311 need_do_async_reclaim(fs_info, space_info, 5312 used, system_chunk) && 5313 !work_busy(&fs_info->async_reclaim_work)) { 5314 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5315 orig_bytes, flush, "preempt"); 5316 queue_work(system_unbound_wq, 5317 &fs_info->async_reclaim_work); 5318 } 5319 } 5320 spin_unlock(&space_info->lock); 5321 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5322 return ret; 5323 5324 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5325 return wait_reserve_ticket(fs_info, space_info, &ticket, 5326 orig_bytes); 5327 5328 ret = 0; 5329 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5330 spin_lock(&space_info->lock); 5331 if (ticket.bytes) { 5332 if (ticket.bytes < orig_bytes) { 5333 u64 num_bytes = orig_bytes - ticket.bytes; 5334 space_info->bytes_may_use -= num_bytes; 5335 trace_btrfs_space_reservation(fs_info, "space_info", 5336 space_info->flags, 5337 num_bytes, 0); 5338 5339 } 5340 list_del_init(&ticket.list); 5341 ret = -ENOSPC; 5342 } 5343 spin_unlock(&space_info->lock); 5344 ASSERT(list_empty(&ticket.list)); 5345 return ret; 5346 } 5347 5348 /** 5349 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5350 * @root - the root we're allocating for 5351 * @block_rsv - the block_rsv we're allocating for 5352 * @orig_bytes - the number of bytes we want 5353 * @flush - whether or not we can flush to make our reservation 5354 * 5355 * This will reserve orgi_bytes number of bytes from the space info associated 5356 * with the block_rsv. If there is not enough space it will make an attempt to 5357 * flush out space to make room. It will do this by flushing delalloc if 5358 * possible or committing the transaction. If flush is 0 then no attempts to 5359 * regain reservations will be made and this will fail if there is not enough 5360 * space already. 5361 */ 5362 static int reserve_metadata_bytes(struct btrfs_root *root, 5363 struct btrfs_block_rsv *block_rsv, 5364 u64 orig_bytes, 5365 enum btrfs_reserve_flush_enum flush) 5366 { 5367 struct btrfs_fs_info *fs_info = root->fs_info; 5368 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5369 int ret; 5370 bool system_chunk = (root == fs_info->chunk_root); 5371 5372 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5373 orig_bytes, flush, system_chunk); 5374 if (ret == -ENOSPC && 5375 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5376 if (block_rsv != global_rsv && 5377 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5378 ret = 0; 5379 } 5380 if (ret == -ENOSPC) { 5381 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5382 block_rsv->space_info->flags, 5383 orig_bytes, 1); 5384 5385 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5386 dump_space_info(fs_info, block_rsv->space_info, 5387 orig_bytes, 0); 5388 } 5389 return ret; 5390 } 5391 5392 static struct btrfs_block_rsv *get_block_rsv( 5393 const struct btrfs_trans_handle *trans, 5394 const struct btrfs_root *root) 5395 { 5396 struct btrfs_fs_info *fs_info = root->fs_info; 5397 struct btrfs_block_rsv *block_rsv = NULL; 5398 5399 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5400 (root == fs_info->csum_root && trans->adding_csums) || 5401 (root == fs_info->uuid_root)) 5402 block_rsv = trans->block_rsv; 5403 5404 if (!block_rsv) 5405 block_rsv = root->block_rsv; 5406 5407 if (!block_rsv) 5408 block_rsv = &fs_info->empty_block_rsv; 5409 5410 return block_rsv; 5411 } 5412 5413 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5414 u64 num_bytes) 5415 { 5416 int ret = -ENOSPC; 5417 spin_lock(&block_rsv->lock); 5418 if (block_rsv->reserved >= num_bytes) { 5419 block_rsv->reserved -= num_bytes; 5420 if (block_rsv->reserved < block_rsv->size) 5421 block_rsv->full = 0; 5422 ret = 0; 5423 } 5424 spin_unlock(&block_rsv->lock); 5425 return ret; 5426 } 5427 5428 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5429 u64 num_bytes, int update_size) 5430 { 5431 spin_lock(&block_rsv->lock); 5432 block_rsv->reserved += num_bytes; 5433 if (update_size) 5434 block_rsv->size += num_bytes; 5435 else if (block_rsv->reserved >= block_rsv->size) 5436 block_rsv->full = 1; 5437 spin_unlock(&block_rsv->lock); 5438 } 5439 5440 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5441 struct btrfs_block_rsv *dest, u64 num_bytes, 5442 int min_factor) 5443 { 5444 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5445 u64 min_bytes; 5446 5447 if (global_rsv->space_info != dest->space_info) 5448 return -ENOSPC; 5449 5450 spin_lock(&global_rsv->lock); 5451 min_bytes = div_factor(global_rsv->size, min_factor); 5452 if (global_rsv->reserved < min_bytes + num_bytes) { 5453 spin_unlock(&global_rsv->lock); 5454 return -ENOSPC; 5455 } 5456 global_rsv->reserved -= num_bytes; 5457 if (global_rsv->reserved < global_rsv->size) 5458 global_rsv->full = 0; 5459 spin_unlock(&global_rsv->lock); 5460 5461 block_rsv_add_bytes(dest, num_bytes, 1); 5462 return 0; 5463 } 5464 5465 /* 5466 * This is for space we already have accounted in space_info->bytes_may_use, so 5467 * basically when we're returning space from block_rsv's. 5468 */ 5469 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5470 struct btrfs_space_info *space_info, 5471 u64 num_bytes) 5472 { 5473 struct reserve_ticket *ticket; 5474 struct list_head *head; 5475 u64 used; 5476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5477 bool check_overcommit = false; 5478 5479 spin_lock(&space_info->lock); 5480 head = &space_info->priority_tickets; 5481 5482 /* 5483 * If we are over our limit then we need to check and see if we can 5484 * overcommit, and if we can't then we just need to free up our space 5485 * and not satisfy any requests. 5486 */ 5487 used = btrfs_space_info_used(space_info, true); 5488 if (used - num_bytes >= space_info->total_bytes) 5489 check_overcommit = true; 5490 again: 5491 while (!list_empty(head) && num_bytes) { 5492 ticket = list_first_entry(head, struct reserve_ticket, 5493 list); 5494 /* 5495 * We use 0 bytes because this space is already reserved, so 5496 * adding the ticket space would be a double count. 5497 */ 5498 if (check_overcommit && 5499 !can_overcommit(fs_info, space_info, 0, flush, false)) 5500 break; 5501 if (num_bytes >= ticket->bytes) { 5502 list_del_init(&ticket->list); 5503 num_bytes -= ticket->bytes; 5504 ticket->bytes = 0; 5505 space_info->tickets_id++; 5506 wake_up(&ticket->wait); 5507 } else { 5508 ticket->bytes -= num_bytes; 5509 num_bytes = 0; 5510 } 5511 } 5512 5513 if (num_bytes && head == &space_info->priority_tickets) { 5514 head = &space_info->tickets; 5515 flush = BTRFS_RESERVE_FLUSH_ALL; 5516 goto again; 5517 } 5518 space_info->bytes_may_use -= num_bytes; 5519 trace_btrfs_space_reservation(fs_info, "space_info", 5520 space_info->flags, num_bytes, 0); 5521 spin_unlock(&space_info->lock); 5522 } 5523 5524 /* 5525 * This is for newly allocated space that isn't accounted in 5526 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5527 * we use this helper. 5528 */ 5529 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5530 struct btrfs_space_info *space_info, 5531 u64 num_bytes) 5532 { 5533 struct reserve_ticket *ticket; 5534 struct list_head *head = &space_info->priority_tickets; 5535 5536 again: 5537 while (!list_empty(head) && num_bytes) { 5538 ticket = list_first_entry(head, struct reserve_ticket, 5539 list); 5540 if (num_bytes >= ticket->bytes) { 5541 trace_btrfs_space_reservation(fs_info, "space_info", 5542 space_info->flags, 5543 ticket->bytes, 1); 5544 list_del_init(&ticket->list); 5545 num_bytes -= ticket->bytes; 5546 space_info->bytes_may_use += ticket->bytes; 5547 ticket->bytes = 0; 5548 space_info->tickets_id++; 5549 wake_up(&ticket->wait); 5550 } else { 5551 trace_btrfs_space_reservation(fs_info, "space_info", 5552 space_info->flags, 5553 num_bytes, 1); 5554 space_info->bytes_may_use += num_bytes; 5555 ticket->bytes -= num_bytes; 5556 num_bytes = 0; 5557 } 5558 } 5559 5560 if (num_bytes && head == &space_info->priority_tickets) { 5561 head = &space_info->tickets; 5562 goto again; 5563 } 5564 } 5565 5566 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5567 struct btrfs_block_rsv *block_rsv, 5568 struct btrfs_block_rsv *dest, u64 num_bytes, 5569 u64 *qgroup_to_release_ret) 5570 { 5571 struct btrfs_space_info *space_info = block_rsv->space_info; 5572 u64 qgroup_to_release = 0; 5573 u64 ret; 5574 5575 spin_lock(&block_rsv->lock); 5576 if (num_bytes == (u64)-1) { 5577 num_bytes = block_rsv->size; 5578 qgroup_to_release = block_rsv->qgroup_rsv_size; 5579 } 5580 block_rsv->size -= num_bytes; 5581 if (block_rsv->reserved >= block_rsv->size) { 5582 num_bytes = block_rsv->reserved - block_rsv->size; 5583 block_rsv->reserved = block_rsv->size; 5584 block_rsv->full = 1; 5585 } else { 5586 num_bytes = 0; 5587 } 5588 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 5589 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 5590 block_rsv->qgroup_rsv_size; 5591 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 5592 } else { 5593 qgroup_to_release = 0; 5594 } 5595 spin_unlock(&block_rsv->lock); 5596 5597 ret = num_bytes; 5598 if (num_bytes > 0) { 5599 if (dest) { 5600 spin_lock(&dest->lock); 5601 if (!dest->full) { 5602 u64 bytes_to_add; 5603 5604 bytes_to_add = dest->size - dest->reserved; 5605 bytes_to_add = min(num_bytes, bytes_to_add); 5606 dest->reserved += bytes_to_add; 5607 if (dest->reserved >= dest->size) 5608 dest->full = 1; 5609 num_bytes -= bytes_to_add; 5610 } 5611 spin_unlock(&dest->lock); 5612 } 5613 if (num_bytes) 5614 space_info_add_old_bytes(fs_info, space_info, 5615 num_bytes); 5616 } 5617 if (qgroup_to_release_ret) 5618 *qgroup_to_release_ret = qgroup_to_release; 5619 return ret; 5620 } 5621 5622 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5623 struct btrfs_block_rsv *dst, u64 num_bytes, 5624 int update_size) 5625 { 5626 int ret; 5627 5628 ret = block_rsv_use_bytes(src, num_bytes); 5629 if (ret) 5630 return ret; 5631 5632 block_rsv_add_bytes(dst, num_bytes, update_size); 5633 return 0; 5634 } 5635 5636 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5637 { 5638 memset(rsv, 0, sizeof(*rsv)); 5639 spin_lock_init(&rsv->lock); 5640 rsv->type = type; 5641 } 5642 5643 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5644 struct btrfs_block_rsv *rsv, 5645 unsigned short type) 5646 { 5647 btrfs_init_block_rsv(rsv, type); 5648 rsv->space_info = __find_space_info(fs_info, 5649 BTRFS_BLOCK_GROUP_METADATA); 5650 } 5651 5652 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5653 unsigned short type) 5654 { 5655 struct btrfs_block_rsv *block_rsv; 5656 5657 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5658 if (!block_rsv) 5659 return NULL; 5660 5661 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5662 return block_rsv; 5663 } 5664 5665 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5666 struct btrfs_block_rsv *rsv) 5667 { 5668 if (!rsv) 5669 return; 5670 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5671 kfree(rsv); 5672 } 5673 5674 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5675 { 5676 kfree(rsv); 5677 } 5678 5679 int btrfs_block_rsv_add(struct btrfs_root *root, 5680 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5681 enum btrfs_reserve_flush_enum flush) 5682 { 5683 int ret; 5684 5685 if (num_bytes == 0) 5686 return 0; 5687 5688 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5689 if (!ret) { 5690 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5691 return 0; 5692 } 5693 5694 return ret; 5695 } 5696 5697 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5698 { 5699 u64 num_bytes = 0; 5700 int ret = -ENOSPC; 5701 5702 if (!block_rsv) 5703 return 0; 5704 5705 spin_lock(&block_rsv->lock); 5706 num_bytes = div_factor(block_rsv->size, min_factor); 5707 if (block_rsv->reserved >= num_bytes) 5708 ret = 0; 5709 spin_unlock(&block_rsv->lock); 5710 5711 return ret; 5712 } 5713 5714 int btrfs_block_rsv_refill(struct btrfs_root *root, 5715 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5716 enum btrfs_reserve_flush_enum flush) 5717 { 5718 u64 num_bytes = 0; 5719 int ret = -ENOSPC; 5720 5721 if (!block_rsv) 5722 return 0; 5723 5724 spin_lock(&block_rsv->lock); 5725 num_bytes = min_reserved; 5726 if (block_rsv->reserved >= num_bytes) 5727 ret = 0; 5728 else 5729 num_bytes -= block_rsv->reserved; 5730 spin_unlock(&block_rsv->lock); 5731 5732 if (!ret) 5733 return 0; 5734 5735 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5736 if (!ret) { 5737 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5738 return 0; 5739 } 5740 5741 return ret; 5742 } 5743 5744 /** 5745 * btrfs_inode_rsv_refill - refill the inode block rsv. 5746 * @inode - the inode we are refilling. 5747 * @flush - the flusing restriction. 5748 * 5749 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5750 * block_rsv->size as the minimum size. We'll either refill the missing amount 5751 * or return if we already have enough space. This will also handle the resreve 5752 * tracepoint for the reserved amount. 5753 */ 5754 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5755 enum btrfs_reserve_flush_enum flush) 5756 { 5757 struct btrfs_root *root = inode->root; 5758 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5759 u64 num_bytes = 0; 5760 u64 qgroup_num_bytes = 0; 5761 int ret = -ENOSPC; 5762 5763 spin_lock(&block_rsv->lock); 5764 if (block_rsv->reserved < block_rsv->size) 5765 num_bytes = block_rsv->size - block_rsv->reserved; 5766 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) 5767 qgroup_num_bytes = block_rsv->qgroup_rsv_size - 5768 block_rsv->qgroup_rsv_reserved; 5769 spin_unlock(&block_rsv->lock); 5770 5771 if (num_bytes == 0) 5772 return 0; 5773 5774 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); 5775 if (ret) 5776 return ret; 5777 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5778 if (!ret) { 5779 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5780 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5781 btrfs_ino(inode), num_bytes, 1); 5782 5783 /* Don't forget to increase qgroup_rsv_reserved */ 5784 spin_lock(&block_rsv->lock); 5785 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; 5786 spin_unlock(&block_rsv->lock); 5787 } else 5788 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 5789 return ret; 5790 } 5791 5792 /** 5793 * btrfs_inode_rsv_release - release any excessive reservation. 5794 * @inode - the inode we need to release from. 5795 * @qgroup_free - free or convert qgroup meta. 5796 * Unlike normal operation, qgroup meta reservation needs to know if we are 5797 * freeing qgroup reservation or just converting it into per-trans. Normally 5798 * @qgroup_free is true for error handling, and false for normal release. 5799 * 5800 * This is the same as btrfs_block_rsv_release, except that it handles the 5801 * tracepoint for the reservation. 5802 */ 5803 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5804 { 5805 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5806 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5807 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5808 u64 released = 0; 5809 u64 qgroup_to_release = 0; 5810 5811 /* 5812 * Since we statically set the block_rsv->size we just want to say we 5813 * are releasing 0 bytes, and then we'll just get the reservation over 5814 * the size free'd. 5815 */ 5816 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, 5817 &qgroup_to_release); 5818 if (released > 0) 5819 trace_btrfs_space_reservation(fs_info, "delalloc", 5820 btrfs_ino(inode), released, 0); 5821 if (qgroup_free) 5822 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 5823 else 5824 btrfs_qgroup_convert_reserved_meta(inode->root, 5825 qgroup_to_release); 5826 } 5827 5828 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5829 struct btrfs_block_rsv *block_rsv, 5830 u64 num_bytes) 5831 { 5832 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5833 5834 if (global_rsv == block_rsv || 5835 block_rsv->space_info != global_rsv->space_info) 5836 global_rsv = NULL; 5837 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); 5838 } 5839 5840 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5841 { 5842 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5843 struct btrfs_space_info *sinfo = block_rsv->space_info; 5844 u64 num_bytes; 5845 5846 /* 5847 * The global block rsv is based on the size of the extent tree, the 5848 * checksum tree and the root tree. If the fs is empty we want to set 5849 * it to a minimal amount for safety. 5850 */ 5851 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5852 btrfs_root_used(&fs_info->csum_root->root_item) + 5853 btrfs_root_used(&fs_info->tree_root->root_item); 5854 num_bytes = max_t(u64, num_bytes, SZ_16M); 5855 5856 spin_lock(&sinfo->lock); 5857 spin_lock(&block_rsv->lock); 5858 5859 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5860 5861 if (block_rsv->reserved < block_rsv->size) { 5862 num_bytes = btrfs_space_info_used(sinfo, true); 5863 if (sinfo->total_bytes > num_bytes) { 5864 num_bytes = sinfo->total_bytes - num_bytes; 5865 num_bytes = min(num_bytes, 5866 block_rsv->size - block_rsv->reserved); 5867 block_rsv->reserved += num_bytes; 5868 sinfo->bytes_may_use += num_bytes; 5869 trace_btrfs_space_reservation(fs_info, "space_info", 5870 sinfo->flags, num_bytes, 5871 1); 5872 } 5873 } else if (block_rsv->reserved > block_rsv->size) { 5874 num_bytes = block_rsv->reserved - block_rsv->size; 5875 sinfo->bytes_may_use -= num_bytes; 5876 trace_btrfs_space_reservation(fs_info, "space_info", 5877 sinfo->flags, num_bytes, 0); 5878 block_rsv->reserved = block_rsv->size; 5879 } 5880 5881 if (block_rsv->reserved == block_rsv->size) 5882 block_rsv->full = 1; 5883 else 5884 block_rsv->full = 0; 5885 5886 spin_unlock(&block_rsv->lock); 5887 spin_unlock(&sinfo->lock); 5888 } 5889 5890 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5891 { 5892 struct btrfs_space_info *space_info; 5893 5894 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5895 fs_info->chunk_block_rsv.space_info = space_info; 5896 5897 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5898 fs_info->global_block_rsv.space_info = space_info; 5899 fs_info->trans_block_rsv.space_info = space_info; 5900 fs_info->empty_block_rsv.space_info = space_info; 5901 fs_info->delayed_block_rsv.space_info = space_info; 5902 5903 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5904 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5905 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5906 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5907 if (fs_info->quota_root) 5908 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5909 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5910 5911 update_global_block_rsv(fs_info); 5912 } 5913 5914 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5915 { 5916 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5917 (u64)-1, NULL); 5918 WARN_ON(fs_info->trans_block_rsv.size > 0); 5919 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5920 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5921 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5922 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5923 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5924 } 5925 5926 5927 /* 5928 * To be called after all the new block groups attached to the transaction 5929 * handle have been created (btrfs_create_pending_block_groups()). 5930 */ 5931 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5932 { 5933 struct btrfs_fs_info *fs_info = trans->fs_info; 5934 5935 if (!trans->chunk_bytes_reserved) 5936 return; 5937 5938 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5939 5940 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5941 trans->chunk_bytes_reserved, NULL); 5942 trans->chunk_bytes_reserved = 0; 5943 } 5944 5945 /* Can only return 0 or -ENOSPC */ 5946 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5947 struct btrfs_inode *inode) 5948 { 5949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5950 struct btrfs_root *root = inode->root; 5951 /* 5952 * We always use trans->block_rsv here as we will have reserved space 5953 * for our orphan when starting the transaction, using get_block_rsv() 5954 * here will sometimes make us choose the wrong block rsv as we could be 5955 * doing a reloc inode for a non refcounted root. 5956 */ 5957 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5958 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5959 5960 /* 5961 * We need to hold space in order to delete our orphan item once we've 5962 * added it, so this takes the reservation so we can release it later 5963 * when we are truly done with the orphan item. 5964 */ 5965 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5966 5967 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5968 num_bytes, 1); 5969 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5970 } 5971 5972 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5973 { 5974 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5975 struct btrfs_root *root = inode->root; 5976 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5977 5978 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5979 num_bytes, 0); 5980 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5981 } 5982 5983 /* 5984 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5985 * root: the root of the parent directory 5986 * rsv: block reservation 5987 * items: the number of items that we need do reservation 5988 * qgroup_reserved: used to return the reserved size in qgroup 5989 * 5990 * This function is used to reserve the space for snapshot/subvolume 5991 * creation and deletion. Those operations are different with the 5992 * common file/directory operations, they change two fs/file trees 5993 * and root tree, the number of items that the qgroup reserves is 5994 * different with the free space reservation. So we can not use 5995 * the space reservation mechanism in start_transaction(). 5996 */ 5997 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5998 struct btrfs_block_rsv *rsv, 5999 int items, 6000 u64 *qgroup_reserved, 6001 bool use_global_rsv) 6002 { 6003 u64 num_bytes; 6004 int ret; 6005 struct btrfs_fs_info *fs_info = root->fs_info; 6006 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6007 6008 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6009 /* One for parent inode, two for dir entries */ 6010 num_bytes = 3 * fs_info->nodesize; 6011 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 6012 if (ret) 6013 return ret; 6014 } else { 6015 num_bytes = 0; 6016 } 6017 6018 *qgroup_reserved = num_bytes; 6019 6020 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6021 rsv->space_info = __find_space_info(fs_info, 6022 BTRFS_BLOCK_GROUP_METADATA); 6023 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6024 BTRFS_RESERVE_FLUSH_ALL); 6025 6026 if (ret == -ENOSPC && use_global_rsv) 6027 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6028 6029 if (ret && *qgroup_reserved) 6030 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved); 6031 6032 return ret; 6033 } 6034 6035 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6036 struct btrfs_block_rsv *rsv) 6037 { 6038 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6039 } 6040 6041 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6042 struct btrfs_inode *inode) 6043 { 6044 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6045 u64 reserve_size = 0; 6046 u64 qgroup_rsv_size = 0; 6047 u64 csum_leaves; 6048 unsigned outstanding_extents; 6049 6050 lockdep_assert_held(&inode->lock); 6051 outstanding_extents = inode->outstanding_extents; 6052 if (outstanding_extents) 6053 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6054 outstanding_extents + 1); 6055 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6056 inode->csum_bytes); 6057 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6058 csum_leaves); 6059 /* 6060 * For qgroup rsv, the calculation is very simple: 6061 * account one nodesize for each outstanding extent 6062 * 6063 * This is overestimating in most cases. 6064 */ 6065 qgroup_rsv_size = outstanding_extents * fs_info->nodesize; 6066 6067 spin_lock(&block_rsv->lock); 6068 block_rsv->size = reserve_size; 6069 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 6070 spin_unlock(&block_rsv->lock); 6071 } 6072 6073 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6074 { 6075 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6076 unsigned nr_extents; 6077 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6078 int ret = 0; 6079 bool delalloc_lock = true; 6080 6081 /* If we are a free space inode we need to not flush since we will be in 6082 * the middle of a transaction commit. We also don't need the delalloc 6083 * mutex since we won't race with anybody. We need this mostly to make 6084 * lockdep shut its filthy mouth. 6085 * 6086 * If we have a transaction open (can happen if we call truncate_block 6087 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6088 */ 6089 if (btrfs_is_free_space_inode(inode)) { 6090 flush = BTRFS_RESERVE_NO_FLUSH; 6091 delalloc_lock = false; 6092 } else { 6093 if (current->journal_info) 6094 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6095 6096 if (btrfs_transaction_in_commit(fs_info)) 6097 schedule_timeout(1); 6098 } 6099 6100 if (delalloc_lock) 6101 mutex_lock(&inode->delalloc_mutex); 6102 6103 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6104 6105 /* Add our new extents and calculate the new rsv size. */ 6106 spin_lock(&inode->lock); 6107 nr_extents = count_max_extents(num_bytes); 6108 btrfs_mod_outstanding_extents(inode, nr_extents); 6109 inode->csum_bytes += num_bytes; 6110 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6111 spin_unlock(&inode->lock); 6112 6113 ret = btrfs_inode_rsv_refill(inode, flush); 6114 if (unlikely(ret)) 6115 goto out_fail; 6116 6117 if (delalloc_lock) 6118 mutex_unlock(&inode->delalloc_mutex); 6119 return 0; 6120 6121 out_fail: 6122 spin_lock(&inode->lock); 6123 nr_extents = count_max_extents(num_bytes); 6124 btrfs_mod_outstanding_extents(inode, -nr_extents); 6125 inode->csum_bytes -= num_bytes; 6126 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6127 spin_unlock(&inode->lock); 6128 6129 btrfs_inode_rsv_release(inode, true); 6130 if (delalloc_lock) 6131 mutex_unlock(&inode->delalloc_mutex); 6132 return ret; 6133 } 6134 6135 /** 6136 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6137 * @inode: the inode to release the reservation for. 6138 * @num_bytes: the number of bytes we are releasing. 6139 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 6140 * 6141 * This will release the metadata reservation for an inode. This can be called 6142 * once we complete IO for a given set of bytes to release their metadata 6143 * reservations, or on error for the same reason. 6144 */ 6145 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 6146 bool qgroup_free) 6147 { 6148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6149 6150 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6151 spin_lock(&inode->lock); 6152 inode->csum_bytes -= num_bytes; 6153 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6154 spin_unlock(&inode->lock); 6155 6156 if (btrfs_is_testing(fs_info)) 6157 return; 6158 6159 btrfs_inode_rsv_release(inode, qgroup_free); 6160 } 6161 6162 /** 6163 * btrfs_delalloc_release_extents - release our outstanding_extents 6164 * @inode: the inode to balance the reservation for. 6165 * @num_bytes: the number of bytes we originally reserved with 6166 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6167 * 6168 * When we reserve space we increase outstanding_extents for the extents we may 6169 * add. Once we've set the range as delalloc or created our ordered extents we 6170 * have outstanding_extents to track the real usage, so we use this to free our 6171 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6172 * with btrfs_delalloc_reserve_metadata. 6173 */ 6174 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6175 bool qgroup_free) 6176 { 6177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6178 unsigned num_extents; 6179 6180 spin_lock(&inode->lock); 6181 num_extents = count_max_extents(num_bytes); 6182 btrfs_mod_outstanding_extents(inode, -num_extents); 6183 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6184 spin_unlock(&inode->lock); 6185 6186 if (btrfs_is_testing(fs_info)) 6187 return; 6188 6189 btrfs_inode_rsv_release(inode, qgroup_free); 6190 } 6191 6192 /** 6193 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6194 * delalloc 6195 * @inode: inode we're writing to 6196 * @start: start range we are writing to 6197 * @len: how long the range we are writing to 6198 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6199 * current reservation. 6200 * 6201 * This will do the following things 6202 * 6203 * o reserve space in data space info for num bytes 6204 * and reserve precious corresponding qgroup space 6205 * (Done in check_data_free_space) 6206 * 6207 * o reserve space for metadata space, based on the number of outstanding 6208 * extents and how much csums will be needed 6209 * also reserve metadata space in a per root over-reserve method. 6210 * o add to the inodes->delalloc_bytes 6211 * o add it to the fs_info's delalloc inodes list. 6212 * (Above 3 all done in delalloc_reserve_metadata) 6213 * 6214 * Return 0 for success 6215 * Return <0 for error(-ENOSPC or -EQUOT) 6216 */ 6217 int btrfs_delalloc_reserve_space(struct inode *inode, 6218 struct extent_changeset **reserved, u64 start, u64 len) 6219 { 6220 int ret; 6221 6222 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6223 if (ret < 0) 6224 return ret; 6225 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6226 if (ret < 0) 6227 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6228 return ret; 6229 } 6230 6231 /** 6232 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6233 * @inode: inode we're releasing space for 6234 * @start: start position of the space already reserved 6235 * @len: the len of the space already reserved 6236 * @release_bytes: the len of the space we consumed or didn't use 6237 * 6238 * This function will release the metadata space that was not used and will 6239 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6240 * list if there are no delalloc bytes left. 6241 * Also it will handle the qgroup reserved space. 6242 */ 6243 void btrfs_delalloc_release_space(struct inode *inode, 6244 struct extent_changeset *reserved, 6245 u64 start, u64 len, bool qgroup_free) 6246 { 6247 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6248 btrfs_free_reserved_data_space(inode, reserved, start, len); 6249 } 6250 6251 static int update_block_group(struct btrfs_trans_handle *trans, 6252 struct btrfs_fs_info *info, u64 bytenr, 6253 u64 num_bytes, int alloc) 6254 { 6255 struct btrfs_block_group_cache *cache = NULL; 6256 u64 total = num_bytes; 6257 u64 old_val; 6258 u64 byte_in_group; 6259 int factor; 6260 6261 /* block accounting for super block */ 6262 spin_lock(&info->delalloc_root_lock); 6263 old_val = btrfs_super_bytes_used(info->super_copy); 6264 if (alloc) 6265 old_val += num_bytes; 6266 else 6267 old_val -= num_bytes; 6268 btrfs_set_super_bytes_used(info->super_copy, old_val); 6269 spin_unlock(&info->delalloc_root_lock); 6270 6271 while (total) { 6272 cache = btrfs_lookup_block_group(info, bytenr); 6273 if (!cache) 6274 return -ENOENT; 6275 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6276 BTRFS_BLOCK_GROUP_RAID1 | 6277 BTRFS_BLOCK_GROUP_RAID10)) 6278 factor = 2; 6279 else 6280 factor = 1; 6281 /* 6282 * If this block group has free space cache written out, we 6283 * need to make sure to load it if we are removing space. This 6284 * is because we need the unpinning stage to actually add the 6285 * space back to the block group, otherwise we will leak space. 6286 */ 6287 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6288 cache_block_group(cache, 1); 6289 6290 byte_in_group = bytenr - cache->key.objectid; 6291 WARN_ON(byte_in_group > cache->key.offset); 6292 6293 spin_lock(&cache->space_info->lock); 6294 spin_lock(&cache->lock); 6295 6296 if (btrfs_test_opt(info, SPACE_CACHE) && 6297 cache->disk_cache_state < BTRFS_DC_CLEAR) 6298 cache->disk_cache_state = BTRFS_DC_CLEAR; 6299 6300 old_val = btrfs_block_group_used(&cache->item); 6301 num_bytes = min(total, cache->key.offset - byte_in_group); 6302 if (alloc) { 6303 old_val += num_bytes; 6304 btrfs_set_block_group_used(&cache->item, old_val); 6305 cache->reserved -= num_bytes; 6306 cache->space_info->bytes_reserved -= num_bytes; 6307 cache->space_info->bytes_used += num_bytes; 6308 cache->space_info->disk_used += num_bytes * factor; 6309 spin_unlock(&cache->lock); 6310 spin_unlock(&cache->space_info->lock); 6311 } else { 6312 old_val -= num_bytes; 6313 btrfs_set_block_group_used(&cache->item, old_val); 6314 cache->pinned += num_bytes; 6315 cache->space_info->bytes_pinned += num_bytes; 6316 cache->space_info->bytes_used -= num_bytes; 6317 cache->space_info->disk_used -= num_bytes * factor; 6318 spin_unlock(&cache->lock); 6319 spin_unlock(&cache->space_info->lock); 6320 6321 trace_btrfs_space_reservation(info, "pinned", 6322 cache->space_info->flags, 6323 num_bytes, 1); 6324 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6325 num_bytes); 6326 set_extent_dirty(info->pinned_extents, 6327 bytenr, bytenr + num_bytes - 1, 6328 GFP_NOFS | __GFP_NOFAIL); 6329 } 6330 6331 spin_lock(&trans->transaction->dirty_bgs_lock); 6332 if (list_empty(&cache->dirty_list)) { 6333 list_add_tail(&cache->dirty_list, 6334 &trans->transaction->dirty_bgs); 6335 trans->transaction->num_dirty_bgs++; 6336 btrfs_get_block_group(cache); 6337 } 6338 spin_unlock(&trans->transaction->dirty_bgs_lock); 6339 6340 /* 6341 * No longer have used bytes in this block group, queue it for 6342 * deletion. We do this after adding the block group to the 6343 * dirty list to avoid races between cleaner kthread and space 6344 * cache writeout. 6345 */ 6346 if (!alloc && old_val == 0) { 6347 spin_lock(&info->unused_bgs_lock); 6348 if (list_empty(&cache->bg_list)) { 6349 btrfs_get_block_group(cache); 6350 list_add_tail(&cache->bg_list, 6351 &info->unused_bgs); 6352 } 6353 spin_unlock(&info->unused_bgs_lock); 6354 } 6355 6356 btrfs_put_block_group(cache); 6357 total -= num_bytes; 6358 bytenr += num_bytes; 6359 } 6360 return 0; 6361 } 6362 6363 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6364 { 6365 struct btrfs_block_group_cache *cache; 6366 u64 bytenr; 6367 6368 spin_lock(&fs_info->block_group_cache_lock); 6369 bytenr = fs_info->first_logical_byte; 6370 spin_unlock(&fs_info->block_group_cache_lock); 6371 6372 if (bytenr < (u64)-1) 6373 return bytenr; 6374 6375 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6376 if (!cache) 6377 return 0; 6378 6379 bytenr = cache->key.objectid; 6380 btrfs_put_block_group(cache); 6381 6382 return bytenr; 6383 } 6384 6385 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6386 struct btrfs_block_group_cache *cache, 6387 u64 bytenr, u64 num_bytes, int reserved) 6388 { 6389 spin_lock(&cache->space_info->lock); 6390 spin_lock(&cache->lock); 6391 cache->pinned += num_bytes; 6392 cache->space_info->bytes_pinned += num_bytes; 6393 if (reserved) { 6394 cache->reserved -= num_bytes; 6395 cache->space_info->bytes_reserved -= num_bytes; 6396 } 6397 spin_unlock(&cache->lock); 6398 spin_unlock(&cache->space_info->lock); 6399 6400 trace_btrfs_space_reservation(fs_info, "pinned", 6401 cache->space_info->flags, num_bytes, 1); 6402 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6403 set_extent_dirty(fs_info->pinned_extents, bytenr, 6404 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6405 return 0; 6406 } 6407 6408 /* 6409 * this function must be called within transaction 6410 */ 6411 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6412 u64 bytenr, u64 num_bytes, int reserved) 6413 { 6414 struct btrfs_block_group_cache *cache; 6415 6416 cache = btrfs_lookup_block_group(fs_info, bytenr); 6417 BUG_ON(!cache); /* Logic error */ 6418 6419 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6420 6421 btrfs_put_block_group(cache); 6422 return 0; 6423 } 6424 6425 /* 6426 * this function must be called within transaction 6427 */ 6428 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6429 u64 bytenr, u64 num_bytes) 6430 { 6431 struct btrfs_block_group_cache *cache; 6432 int ret; 6433 6434 cache = btrfs_lookup_block_group(fs_info, bytenr); 6435 if (!cache) 6436 return -EINVAL; 6437 6438 /* 6439 * pull in the free space cache (if any) so that our pin 6440 * removes the free space from the cache. We have load_only set 6441 * to one because the slow code to read in the free extents does check 6442 * the pinned extents. 6443 */ 6444 cache_block_group(cache, 1); 6445 6446 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6447 6448 /* remove us from the free space cache (if we're there at all) */ 6449 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6450 btrfs_put_block_group(cache); 6451 return ret; 6452 } 6453 6454 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6455 u64 start, u64 num_bytes) 6456 { 6457 int ret; 6458 struct btrfs_block_group_cache *block_group; 6459 struct btrfs_caching_control *caching_ctl; 6460 6461 block_group = btrfs_lookup_block_group(fs_info, start); 6462 if (!block_group) 6463 return -EINVAL; 6464 6465 cache_block_group(block_group, 0); 6466 caching_ctl = get_caching_control(block_group); 6467 6468 if (!caching_ctl) { 6469 /* Logic error */ 6470 BUG_ON(!block_group_cache_done(block_group)); 6471 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6472 } else { 6473 mutex_lock(&caching_ctl->mutex); 6474 6475 if (start >= caching_ctl->progress) { 6476 ret = add_excluded_extent(fs_info, start, num_bytes); 6477 } else if (start + num_bytes <= caching_ctl->progress) { 6478 ret = btrfs_remove_free_space(block_group, 6479 start, num_bytes); 6480 } else { 6481 num_bytes = caching_ctl->progress - start; 6482 ret = btrfs_remove_free_space(block_group, 6483 start, num_bytes); 6484 if (ret) 6485 goto out_lock; 6486 6487 num_bytes = (start + num_bytes) - 6488 caching_ctl->progress; 6489 start = caching_ctl->progress; 6490 ret = add_excluded_extent(fs_info, start, num_bytes); 6491 } 6492 out_lock: 6493 mutex_unlock(&caching_ctl->mutex); 6494 put_caching_control(caching_ctl); 6495 } 6496 btrfs_put_block_group(block_group); 6497 return ret; 6498 } 6499 6500 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6501 struct extent_buffer *eb) 6502 { 6503 struct btrfs_file_extent_item *item; 6504 struct btrfs_key key; 6505 int found_type; 6506 int i; 6507 6508 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6509 return 0; 6510 6511 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6512 btrfs_item_key_to_cpu(eb, &key, i); 6513 if (key.type != BTRFS_EXTENT_DATA_KEY) 6514 continue; 6515 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6516 found_type = btrfs_file_extent_type(eb, item); 6517 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6518 continue; 6519 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6520 continue; 6521 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6522 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6523 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6524 } 6525 6526 return 0; 6527 } 6528 6529 static void 6530 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6531 { 6532 atomic_inc(&bg->reservations); 6533 } 6534 6535 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6536 const u64 start) 6537 { 6538 struct btrfs_block_group_cache *bg; 6539 6540 bg = btrfs_lookup_block_group(fs_info, start); 6541 ASSERT(bg); 6542 if (atomic_dec_and_test(&bg->reservations)) 6543 wake_up_var(&bg->reservations); 6544 btrfs_put_block_group(bg); 6545 } 6546 6547 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6548 { 6549 struct btrfs_space_info *space_info = bg->space_info; 6550 6551 ASSERT(bg->ro); 6552 6553 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6554 return; 6555 6556 /* 6557 * Our block group is read only but before we set it to read only, 6558 * some task might have had allocated an extent from it already, but it 6559 * has not yet created a respective ordered extent (and added it to a 6560 * root's list of ordered extents). 6561 * Therefore wait for any task currently allocating extents, since the 6562 * block group's reservations counter is incremented while a read lock 6563 * on the groups' semaphore is held and decremented after releasing 6564 * the read access on that semaphore and creating the ordered extent. 6565 */ 6566 down_write(&space_info->groups_sem); 6567 up_write(&space_info->groups_sem); 6568 6569 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6570 } 6571 6572 /** 6573 * btrfs_add_reserved_bytes - update the block_group and space info counters 6574 * @cache: The cache we are manipulating 6575 * @ram_bytes: The number of bytes of file content, and will be same to 6576 * @num_bytes except for the compress path. 6577 * @num_bytes: The number of bytes in question 6578 * @delalloc: The blocks are allocated for the delalloc write 6579 * 6580 * This is called by the allocator when it reserves space. If this is a 6581 * reservation and the block group has become read only we cannot make the 6582 * reservation and return -EAGAIN, otherwise this function always succeeds. 6583 */ 6584 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6585 u64 ram_bytes, u64 num_bytes, int delalloc) 6586 { 6587 struct btrfs_space_info *space_info = cache->space_info; 6588 int ret = 0; 6589 6590 spin_lock(&space_info->lock); 6591 spin_lock(&cache->lock); 6592 if (cache->ro) { 6593 ret = -EAGAIN; 6594 } else { 6595 cache->reserved += num_bytes; 6596 space_info->bytes_reserved += num_bytes; 6597 6598 trace_btrfs_space_reservation(cache->fs_info, 6599 "space_info", space_info->flags, 6600 ram_bytes, 0); 6601 space_info->bytes_may_use -= ram_bytes; 6602 if (delalloc) 6603 cache->delalloc_bytes += num_bytes; 6604 } 6605 spin_unlock(&cache->lock); 6606 spin_unlock(&space_info->lock); 6607 return ret; 6608 } 6609 6610 /** 6611 * btrfs_free_reserved_bytes - update the block_group and space info counters 6612 * @cache: The cache we are manipulating 6613 * @num_bytes: The number of bytes in question 6614 * @delalloc: The blocks are allocated for the delalloc write 6615 * 6616 * This is called by somebody who is freeing space that was never actually used 6617 * on disk. For example if you reserve some space for a new leaf in transaction 6618 * A and before transaction A commits you free that leaf, you call this with 6619 * reserve set to 0 in order to clear the reservation. 6620 */ 6621 6622 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6623 u64 num_bytes, int delalloc) 6624 { 6625 struct btrfs_space_info *space_info = cache->space_info; 6626 int ret = 0; 6627 6628 spin_lock(&space_info->lock); 6629 spin_lock(&cache->lock); 6630 if (cache->ro) 6631 space_info->bytes_readonly += num_bytes; 6632 cache->reserved -= num_bytes; 6633 space_info->bytes_reserved -= num_bytes; 6634 6635 if (delalloc) 6636 cache->delalloc_bytes -= num_bytes; 6637 spin_unlock(&cache->lock); 6638 spin_unlock(&space_info->lock); 6639 return ret; 6640 } 6641 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6642 { 6643 struct btrfs_caching_control *next; 6644 struct btrfs_caching_control *caching_ctl; 6645 struct btrfs_block_group_cache *cache; 6646 6647 down_write(&fs_info->commit_root_sem); 6648 6649 list_for_each_entry_safe(caching_ctl, next, 6650 &fs_info->caching_block_groups, list) { 6651 cache = caching_ctl->block_group; 6652 if (block_group_cache_done(cache)) { 6653 cache->last_byte_to_unpin = (u64)-1; 6654 list_del_init(&caching_ctl->list); 6655 put_caching_control(caching_ctl); 6656 } else { 6657 cache->last_byte_to_unpin = caching_ctl->progress; 6658 } 6659 } 6660 6661 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6662 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6663 else 6664 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6665 6666 up_write(&fs_info->commit_root_sem); 6667 6668 update_global_block_rsv(fs_info); 6669 } 6670 6671 /* 6672 * Returns the free cluster for the given space info and sets empty_cluster to 6673 * what it should be based on the mount options. 6674 */ 6675 static struct btrfs_free_cluster * 6676 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6677 struct btrfs_space_info *space_info, u64 *empty_cluster) 6678 { 6679 struct btrfs_free_cluster *ret = NULL; 6680 6681 *empty_cluster = 0; 6682 if (btrfs_mixed_space_info(space_info)) 6683 return ret; 6684 6685 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6686 ret = &fs_info->meta_alloc_cluster; 6687 if (btrfs_test_opt(fs_info, SSD)) 6688 *empty_cluster = SZ_2M; 6689 else 6690 *empty_cluster = SZ_64K; 6691 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6692 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6693 *empty_cluster = SZ_2M; 6694 ret = &fs_info->data_alloc_cluster; 6695 } 6696 6697 return ret; 6698 } 6699 6700 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6701 u64 start, u64 end, 6702 const bool return_free_space) 6703 { 6704 struct btrfs_block_group_cache *cache = NULL; 6705 struct btrfs_space_info *space_info; 6706 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6707 struct btrfs_free_cluster *cluster = NULL; 6708 u64 len; 6709 u64 total_unpinned = 0; 6710 u64 empty_cluster = 0; 6711 bool readonly; 6712 6713 while (start <= end) { 6714 readonly = false; 6715 if (!cache || 6716 start >= cache->key.objectid + cache->key.offset) { 6717 if (cache) 6718 btrfs_put_block_group(cache); 6719 total_unpinned = 0; 6720 cache = btrfs_lookup_block_group(fs_info, start); 6721 BUG_ON(!cache); /* Logic error */ 6722 6723 cluster = fetch_cluster_info(fs_info, 6724 cache->space_info, 6725 &empty_cluster); 6726 empty_cluster <<= 1; 6727 } 6728 6729 len = cache->key.objectid + cache->key.offset - start; 6730 len = min(len, end + 1 - start); 6731 6732 if (start < cache->last_byte_to_unpin) { 6733 len = min(len, cache->last_byte_to_unpin - start); 6734 if (return_free_space) 6735 btrfs_add_free_space(cache, start, len); 6736 } 6737 6738 start += len; 6739 total_unpinned += len; 6740 space_info = cache->space_info; 6741 6742 /* 6743 * If this space cluster has been marked as fragmented and we've 6744 * unpinned enough in this block group to potentially allow a 6745 * cluster to be created inside of it go ahead and clear the 6746 * fragmented check. 6747 */ 6748 if (cluster && cluster->fragmented && 6749 total_unpinned > empty_cluster) { 6750 spin_lock(&cluster->lock); 6751 cluster->fragmented = 0; 6752 spin_unlock(&cluster->lock); 6753 } 6754 6755 spin_lock(&space_info->lock); 6756 spin_lock(&cache->lock); 6757 cache->pinned -= len; 6758 space_info->bytes_pinned -= len; 6759 6760 trace_btrfs_space_reservation(fs_info, "pinned", 6761 space_info->flags, len, 0); 6762 space_info->max_extent_size = 0; 6763 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6764 if (cache->ro) { 6765 space_info->bytes_readonly += len; 6766 readonly = true; 6767 } 6768 spin_unlock(&cache->lock); 6769 if (!readonly && return_free_space && 6770 global_rsv->space_info == space_info) { 6771 u64 to_add = len; 6772 6773 spin_lock(&global_rsv->lock); 6774 if (!global_rsv->full) { 6775 to_add = min(len, global_rsv->size - 6776 global_rsv->reserved); 6777 global_rsv->reserved += to_add; 6778 space_info->bytes_may_use += to_add; 6779 if (global_rsv->reserved >= global_rsv->size) 6780 global_rsv->full = 1; 6781 trace_btrfs_space_reservation(fs_info, 6782 "space_info", 6783 space_info->flags, 6784 to_add, 1); 6785 len -= to_add; 6786 } 6787 spin_unlock(&global_rsv->lock); 6788 /* Add to any tickets we may have */ 6789 if (len) 6790 space_info_add_new_bytes(fs_info, space_info, 6791 len); 6792 } 6793 spin_unlock(&space_info->lock); 6794 } 6795 6796 if (cache) 6797 btrfs_put_block_group(cache); 6798 return 0; 6799 } 6800 6801 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6802 { 6803 struct btrfs_fs_info *fs_info = trans->fs_info; 6804 struct btrfs_block_group_cache *block_group, *tmp; 6805 struct list_head *deleted_bgs; 6806 struct extent_io_tree *unpin; 6807 u64 start; 6808 u64 end; 6809 int ret; 6810 6811 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6812 unpin = &fs_info->freed_extents[1]; 6813 else 6814 unpin = &fs_info->freed_extents[0]; 6815 6816 while (!trans->aborted) { 6817 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6818 ret = find_first_extent_bit(unpin, 0, &start, &end, 6819 EXTENT_DIRTY, NULL); 6820 if (ret) { 6821 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6822 break; 6823 } 6824 6825 if (btrfs_test_opt(fs_info, DISCARD)) 6826 ret = btrfs_discard_extent(fs_info, start, 6827 end + 1 - start, NULL); 6828 6829 clear_extent_dirty(unpin, start, end); 6830 unpin_extent_range(fs_info, start, end, true); 6831 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6832 cond_resched(); 6833 } 6834 6835 /* 6836 * Transaction is finished. We don't need the lock anymore. We 6837 * do need to clean up the block groups in case of a transaction 6838 * abort. 6839 */ 6840 deleted_bgs = &trans->transaction->deleted_bgs; 6841 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6842 u64 trimmed = 0; 6843 6844 ret = -EROFS; 6845 if (!trans->aborted) 6846 ret = btrfs_discard_extent(fs_info, 6847 block_group->key.objectid, 6848 block_group->key.offset, 6849 &trimmed); 6850 6851 list_del_init(&block_group->bg_list); 6852 btrfs_put_block_group_trimming(block_group); 6853 btrfs_put_block_group(block_group); 6854 6855 if (ret) { 6856 const char *errstr = btrfs_decode_error(ret); 6857 btrfs_warn(fs_info, 6858 "discard failed while removing blockgroup: errno=%d %s", 6859 ret, errstr); 6860 } 6861 } 6862 6863 return 0; 6864 } 6865 6866 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6867 struct btrfs_fs_info *info, 6868 struct btrfs_delayed_ref_node *node, u64 parent, 6869 u64 root_objectid, u64 owner_objectid, 6870 u64 owner_offset, int refs_to_drop, 6871 struct btrfs_delayed_extent_op *extent_op) 6872 { 6873 struct btrfs_key key; 6874 struct btrfs_path *path; 6875 struct btrfs_root *extent_root = info->extent_root; 6876 struct extent_buffer *leaf; 6877 struct btrfs_extent_item *ei; 6878 struct btrfs_extent_inline_ref *iref; 6879 int ret; 6880 int is_data; 6881 int extent_slot = 0; 6882 int found_extent = 0; 6883 int num_to_del = 1; 6884 u32 item_size; 6885 u64 refs; 6886 u64 bytenr = node->bytenr; 6887 u64 num_bytes = node->num_bytes; 6888 int last_ref = 0; 6889 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6890 6891 path = btrfs_alloc_path(); 6892 if (!path) 6893 return -ENOMEM; 6894 6895 path->reada = READA_FORWARD; 6896 path->leave_spinning = 1; 6897 6898 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6899 BUG_ON(!is_data && refs_to_drop != 1); 6900 6901 if (is_data) 6902 skinny_metadata = false; 6903 6904 ret = lookup_extent_backref(trans, info, path, &iref, 6905 bytenr, num_bytes, parent, 6906 root_objectid, owner_objectid, 6907 owner_offset); 6908 if (ret == 0) { 6909 extent_slot = path->slots[0]; 6910 while (extent_slot >= 0) { 6911 btrfs_item_key_to_cpu(path->nodes[0], &key, 6912 extent_slot); 6913 if (key.objectid != bytenr) 6914 break; 6915 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6916 key.offset == num_bytes) { 6917 found_extent = 1; 6918 break; 6919 } 6920 if (key.type == BTRFS_METADATA_ITEM_KEY && 6921 key.offset == owner_objectid) { 6922 found_extent = 1; 6923 break; 6924 } 6925 if (path->slots[0] - extent_slot > 5) 6926 break; 6927 extent_slot--; 6928 } 6929 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6930 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6931 if (found_extent && item_size < sizeof(*ei)) 6932 found_extent = 0; 6933 #endif 6934 if (!found_extent) { 6935 BUG_ON(iref); 6936 ret = remove_extent_backref(trans, info, path, NULL, 6937 refs_to_drop, 6938 is_data, &last_ref); 6939 if (ret) { 6940 btrfs_abort_transaction(trans, ret); 6941 goto out; 6942 } 6943 btrfs_release_path(path); 6944 path->leave_spinning = 1; 6945 6946 key.objectid = bytenr; 6947 key.type = BTRFS_EXTENT_ITEM_KEY; 6948 key.offset = num_bytes; 6949 6950 if (!is_data && skinny_metadata) { 6951 key.type = BTRFS_METADATA_ITEM_KEY; 6952 key.offset = owner_objectid; 6953 } 6954 6955 ret = btrfs_search_slot(trans, extent_root, 6956 &key, path, -1, 1); 6957 if (ret > 0 && skinny_metadata && path->slots[0]) { 6958 /* 6959 * Couldn't find our skinny metadata item, 6960 * see if we have ye olde extent item. 6961 */ 6962 path->slots[0]--; 6963 btrfs_item_key_to_cpu(path->nodes[0], &key, 6964 path->slots[0]); 6965 if (key.objectid == bytenr && 6966 key.type == BTRFS_EXTENT_ITEM_KEY && 6967 key.offset == num_bytes) 6968 ret = 0; 6969 } 6970 6971 if (ret > 0 && skinny_metadata) { 6972 skinny_metadata = false; 6973 key.objectid = bytenr; 6974 key.type = BTRFS_EXTENT_ITEM_KEY; 6975 key.offset = num_bytes; 6976 btrfs_release_path(path); 6977 ret = btrfs_search_slot(trans, extent_root, 6978 &key, path, -1, 1); 6979 } 6980 6981 if (ret) { 6982 btrfs_err(info, 6983 "umm, got %d back from search, was looking for %llu", 6984 ret, bytenr); 6985 if (ret > 0) 6986 btrfs_print_leaf(path->nodes[0]); 6987 } 6988 if (ret < 0) { 6989 btrfs_abort_transaction(trans, ret); 6990 goto out; 6991 } 6992 extent_slot = path->slots[0]; 6993 } 6994 } else if (WARN_ON(ret == -ENOENT)) { 6995 btrfs_print_leaf(path->nodes[0]); 6996 btrfs_err(info, 6997 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6998 bytenr, parent, root_objectid, owner_objectid, 6999 owner_offset); 7000 btrfs_abort_transaction(trans, ret); 7001 goto out; 7002 } else { 7003 btrfs_abort_transaction(trans, ret); 7004 goto out; 7005 } 7006 7007 leaf = path->nodes[0]; 7008 item_size = btrfs_item_size_nr(leaf, extent_slot); 7009 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 7010 if (item_size < sizeof(*ei)) { 7011 BUG_ON(found_extent || extent_slot != path->slots[0]); 7012 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 7013 0); 7014 if (ret < 0) { 7015 btrfs_abort_transaction(trans, ret); 7016 goto out; 7017 } 7018 7019 btrfs_release_path(path); 7020 path->leave_spinning = 1; 7021 7022 key.objectid = bytenr; 7023 key.type = BTRFS_EXTENT_ITEM_KEY; 7024 key.offset = num_bytes; 7025 7026 ret = btrfs_search_slot(trans, extent_root, &key, path, 7027 -1, 1); 7028 if (ret) { 7029 btrfs_err(info, 7030 "umm, got %d back from search, was looking for %llu", 7031 ret, bytenr); 7032 btrfs_print_leaf(path->nodes[0]); 7033 } 7034 if (ret < 0) { 7035 btrfs_abort_transaction(trans, ret); 7036 goto out; 7037 } 7038 7039 extent_slot = path->slots[0]; 7040 leaf = path->nodes[0]; 7041 item_size = btrfs_item_size_nr(leaf, extent_slot); 7042 } 7043 #endif 7044 BUG_ON(item_size < sizeof(*ei)); 7045 ei = btrfs_item_ptr(leaf, extent_slot, 7046 struct btrfs_extent_item); 7047 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7048 key.type == BTRFS_EXTENT_ITEM_KEY) { 7049 struct btrfs_tree_block_info *bi; 7050 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7051 bi = (struct btrfs_tree_block_info *)(ei + 1); 7052 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7053 } 7054 7055 refs = btrfs_extent_refs(leaf, ei); 7056 if (refs < refs_to_drop) { 7057 btrfs_err(info, 7058 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7059 refs_to_drop, refs, bytenr); 7060 ret = -EINVAL; 7061 btrfs_abort_transaction(trans, ret); 7062 goto out; 7063 } 7064 refs -= refs_to_drop; 7065 7066 if (refs > 0) { 7067 if (extent_op) 7068 __run_delayed_extent_op(extent_op, leaf, ei); 7069 /* 7070 * In the case of inline back ref, reference count will 7071 * be updated by remove_extent_backref 7072 */ 7073 if (iref) { 7074 BUG_ON(!found_extent); 7075 } else { 7076 btrfs_set_extent_refs(leaf, ei, refs); 7077 btrfs_mark_buffer_dirty(leaf); 7078 } 7079 if (found_extent) { 7080 ret = remove_extent_backref(trans, info, path, 7081 iref, refs_to_drop, 7082 is_data, &last_ref); 7083 if (ret) { 7084 btrfs_abort_transaction(trans, ret); 7085 goto out; 7086 } 7087 } 7088 } else { 7089 if (found_extent) { 7090 BUG_ON(is_data && refs_to_drop != 7091 extent_data_ref_count(path, iref)); 7092 if (iref) { 7093 BUG_ON(path->slots[0] != extent_slot); 7094 } else { 7095 BUG_ON(path->slots[0] != extent_slot + 1); 7096 path->slots[0] = extent_slot; 7097 num_to_del = 2; 7098 } 7099 } 7100 7101 last_ref = 1; 7102 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7103 num_to_del); 7104 if (ret) { 7105 btrfs_abort_transaction(trans, ret); 7106 goto out; 7107 } 7108 btrfs_release_path(path); 7109 7110 if (is_data) { 7111 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7112 if (ret) { 7113 btrfs_abort_transaction(trans, ret); 7114 goto out; 7115 } 7116 } 7117 7118 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7119 if (ret) { 7120 btrfs_abort_transaction(trans, ret); 7121 goto out; 7122 } 7123 7124 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7125 if (ret) { 7126 btrfs_abort_transaction(trans, ret); 7127 goto out; 7128 } 7129 } 7130 btrfs_release_path(path); 7131 7132 out: 7133 btrfs_free_path(path); 7134 return ret; 7135 } 7136 7137 /* 7138 * when we free an block, it is possible (and likely) that we free the last 7139 * delayed ref for that extent as well. This searches the delayed ref tree for 7140 * a given extent, and if there are no other delayed refs to be processed, it 7141 * removes it from the tree. 7142 */ 7143 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7144 u64 bytenr) 7145 { 7146 struct btrfs_delayed_ref_head *head; 7147 struct btrfs_delayed_ref_root *delayed_refs; 7148 int ret = 0; 7149 7150 delayed_refs = &trans->transaction->delayed_refs; 7151 spin_lock(&delayed_refs->lock); 7152 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7153 if (!head) 7154 goto out_delayed_unlock; 7155 7156 spin_lock(&head->lock); 7157 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7158 goto out; 7159 7160 if (head->extent_op) { 7161 if (!head->must_insert_reserved) 7162 goto out; 7163 btrfs_free_delayed_extent_op(head->extent_op); 7164 head->extent_op = NULL; 7165 } 7166 7167 /* 7168 * waiting for the lock here would deadlock. If someone else has it 7169 * locked they are already in the process of dropping it anyway 7170 */ 7171 if (!mutex_trylock(&head->mutex)) 7172 goto out; 7173 7174 /* 7175 * at this point we have a head with no other entries. Go 7176 * ahead and process it. 7177 */ 7178 rb_erase(&head->href_node, &delayed_refs->href_root); 7179 RB_CLEAR_NODE(&head->href_node); 7180 atomic_dec(&delayed_refs->num_entries); 7181 7182 /* 7183 * we don't take a ref on the node because we're removing it from the 7184 * tree, so we just steal the ref the tree was holding. 7185 */ 7186 delayed_refs->num_heads--; 7187 if (head->processing == 0) 7188 delayed_refs->num_heads_ready--; 7189 head->processing = 0; 7190 spin_unlock(&head->lock); 7191 spin_unlock(&delayed_refs->lock); 7192 7193 BUG_ON(head->extent_op); 7194 if (head->must_insert_reserved) 7195 ret = 1; 7196 7197 mutex_unlock(&head->mutex); 7198 btrfs_put_delayed_ref_head(head); 7199 return ret; 7200 out: 7201 spin_unlock(&head->lock); 7202 7203 out_delayed_unlock: 7204 spin_unlock(&delayed_refs->lock); 7205 return 0; 7206 } 7207 7208 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7209 struct btrfs_root *root, 7210 struct extent_buffer *buf, 7211 u64 parent, int last_ref) 7212 { 7213 struct btrfs_fs_info *fs_info = root->fs_info; 7214 int pin = 1; 7215 int ret; 7216 7217 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7218 int old_ref_mod, new_ref_mod; 7219 7220 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7221 root->root_key.objectid, 7222 btrfs_header_level(buf), 0, 7223 BTRFS_DROP_DELAYED_REF); 7224 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7225 buf->len, parent, 7226 root->root_key.objectid, 7227 btrfs_header_level(buf), 7228 BTRFS_DROP_DELAYED_REF, NULL, 7229 &old_ref_mod, &new_ref_mod); 7230 BUG_ON(ret); /* -ENOMEM */ 7231 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7232 } 7233 7234 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7235 struct btrfs_block_group_cache *cache; 7236 7237 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7238 ret = check_ref_cleanup(trans, buf->start); 7239 if (!ret) 7240 goto out; 7241 } 7242 7243 pin = 0; 7244 cache = btrfs_lookup_block_group(fs_info, buf->start); 7245 7246 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7247 pin_down_extent(fs_info, cache, buf->start, 7248 buf->len, 1); 7249 btrfs_put_block_group(cache); 7250 goto out; 7251 } 7252 7253 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7254 7255 btrfs_add_free_space(cache, buf->start, buf->len); 7256 btrfs_free_reserved_bytes(cache, buf->len, 0); 7257 btrfs_put_block_group(cache); 7258 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7259 } 7260 out: 7261 if (pin) 7262 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7263 root->root_key.objectid); 7264 7265 if (last_ref) { 7266 /* 7267 * Deleting the buffer, clear the corrupt flag since it doesn't 7268 * matter anymore. 7269 */ 7270 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7271 } 7272 } 7273 7274 /* Can return -ENOMEM */ 7275 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7276 struct btrfs_root *root, 7277 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7278 u64 owner, u64 offset) 7279 { 7280 struct btrfs_fs_info *fs_info = root->fs_info; 7281 int old_ref_mod, new_ref_mod; 7282 int ret; 7283 7284 if (btrfs_is_testing(fs_info)) 7285 return 0; 7286 7287 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7288 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7289 root_objectid, owner, offset, 7290 BTRFS_DROP_DELAYED_REF); 7291 7292 /* 7293 * tree log blocks never actually go into the extent allocation 7294 * tree, just update pinning info and exit early. 7295 */ 7296 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7297 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7298 /* unlocks the pinned mutex */ 7299 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7300 old_ref_mod = new_ref_mod = 0; 7301 ret = 0; 7302 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7303 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7304 num_bytes, parent, 7305 root_objectid, (int)owner, 7306 BTRFS_DROP_DELAYED_REF, NULL, 7307 &old_ref_mod, &new_ref_mod); 7308 } else { 7309 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7310 num_bytes, parent, 7311 root_objectid, owner, offset, 7312 0, BTRFS_DROP_DELAYED_REF, 7313 &old_ref_mod, &new_ref_mod); 7314 } 7315 7316 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7317 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7318 7319 return ret; 7320 } 7321 7322 /* 7323 * when we wait for progress in the block group caching, its because 7324 * our allocation attempt failed at least once. So, we must sleep 7325 * and let some progress happen before we try again. 7326 * 7327 * This function will sleep at least once waiting for new free space to 7328 * show up, and then it will check the block group free space numbers 7329 * for our min num_bytes. Another option is to have it go ahead 7330 * and look in the rbtree for a free extent of a given size, but this 7331 * is a good start. 7332 * 7333 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7334 * any of the information in this block group. 7335 */ 7336 static noinline void 7337 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7338 u64 num_bytes) 7339 { 7340 struct btrfs_caching_control *caching_ctl; 7341 7342 caching_ctl = get_caching_control(cache); 7343 if (!caching_ctl) 7344 return; 7345 7346 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7347 (cache->free_space_ctl->free_space >= num_bytes)); 7348 7349 put_caching_control(caching_ctl); 7350 } 7351 7352 static noinline int 7353 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7354 { 7355 struct btrfs_caching_control *caching_ctl; 7356 int ret = 0; 7357 7358 caching_ctl = get_caching_control(cache); 7359 if (!caching_ctl) 7360 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7361 7362 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7363 if (cache->cached == BTRFS_CACHE_ERROR) 7364 ret = -EIO; 7365 put_caching_control(caching_ctl); 7366 return ret; 7367 } 7368 7369 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7370 [BTRFS_RAID_RAID10] = "raid10", 7371 [BTRFS_RAID_RAID1] = "raid1", 7372 [BTRFS_RAID_DUP] = "dup", 7373 [BTRFS_RAID_RAID0] = "raid0", 7374 [BTRFS_RAID_SINGLE] = "single", 7375 [BTRFS_RAID_RAID5] = "raid5", 7376 [BTRFS_RAID_RAID6] = "raid6", 7377 }; 7378 7379 static const char *get_raid_name(enum btrfs_raid_types type) 7380 { 7381 if (type >= BTRFS_NR_RAID_TYPES) 7382 return NULL; 7383 7384 return btrfs_raid_type_names[type]; 7385 } 7386 7387 enum btrfs_loop_type { 7388 LOOP_CACHING_NOWAIT = 0, 7389 LOOP_CACHING_WAIT = 1, 7390 LOOP_ALLOC_CHUNK = 2, 7391 LOOP_NO_EMPTY_SIZE = 3, 7392 }; 7393 7394 static inline void 7395 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7396 int delalloc) 7397 { 7398 if (delalloc) 7399 down_read(&cache->data_rwsem); 7400 } 7401 7402 static inline void 7403 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7404 int delalloc) 7405 { 7406 btrfs_get_block_group(cache); 7407 if (delalloc) 7408 down_read(&cache->data_rwsem); 7409 } 7410 7411 static struct btrfs_block_group_cache * 7412 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7413 struct btrfs_free_cluster *cluster, 7414 int delalloc) 7415 { 7416 struct btrfs_block_group_cache *used_bg = NULL; 7417 7418 spin_lock(&cluster->refill_lock); 7419 while (1) { 7420 used_bg = cluster->block_group; 7421 if (!used_bg) 7422 return NULL; 7423 7424 if (used_bg == block_group) 7425 return used_bg; 7426 7427 btrfs_get_block_group(used_bg); 7428 7429 if (!delalloc) 7430 return used_bg; 7431 7432 if (down_read_trylock(&used_bg->data_rwsem)) 7433 return used_bg; 7434 7435 spin_unlock(&cluster->refill_lock); 7436 7437 /* We should only have one-level nested. */ 7438 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7439 7440 spin_lock(&cluster->refill_lock); 7441 if (used_bg == cluster->block_group) 7442 return used_bg; 7443 7444 up_read(&used_bg->data_rwsem); 7445 btrfs_put_block_group(used_bg); 7446 } 7447 } 7448 7449 static inline void 7450 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7451 int delalloc) 7452 { 7453 if (delalloc) 7454 up_read(&cache->data_rwsem); 7455 btrfs_put_block_group(cache); 7456 } 7457 7458 /* 7459 * walks the btree of allocated extents and find a hole of a given size. 7460 * The key ins is changed to record the hole: 7461 * ins->objectid == start position 7462 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7463 * ins->offset == the size of the hole. 7464 * Any available blocks before search_start are skipped. 7465 * 7466 * If there is no suitable free space, we will record the max size of 7467 * the free space extent currently. 7468 */ 7469 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7470 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7471 u64 hint_byte, struct btrfs_key *ins, 7472 u64 flags, int delalloc) 7473 { 7474 int ret = 0; 7475 struct btrfs_root *root = fs_info->extent_root; 7476 struct btrfs_free_cluster *last_ptr = NULL; 7477 struct btrfs_block_group_cache *block_group = NULL; 7478 u64 search_start = 0; 7479 u64 max_extent_size = 0; 7480 u64 empty_cluster = 0; 7481 struct btrfs_space_info *space_info; 7482 int loop = 0; 7483 int index = btrfs_bg_flags_to_raid_index(flags); 7484 bool failed_cluster_refill = false; 7485 bool failed_alloc = false; 7486 bool use_cluster = true; 7487 bool have_caching_bg = false; 7488 bool orig_have_caching_bg = false; 7489 bool full_search = false; 7490 7491 WARN_ON(num_bytes < fs_info->sectorsize); 7492 ins->type = BTRFS_EXTENT_ITEM_KEY; 7493 ins->objectid = 0; 7494 ins->offset = 0; 7495 7496 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7497 7498 space_info = __find_space_info(fs_info, flags); 7499 if (!space_info) { 7500 btrfs_err(fs_info, "No space info for %llu", flags); 7501 return -ENOSPC; 7502 } 7503 7504 /* 7505 * If our free space is heavily fragmented we may not be able to make 7506 * big contiguous allocations, so instead of doing the expensive search 7507 * for free space, simply return ENOSPC with our max_extent_size so we 7508 * can go ahead and search for a more manageable chunk. 7509 * 7510 * If our max_extent_size is large enough for our allocation simply 7511 * disable clustering since we will likely not be able to find enough 7512 * space to create a cluster and induce latency trying. 7513 */ 7514 if (unlikely(space_info->max_extent_size)) { 7515 spin_lock(&space_info->lock); 7516 if (space_info->max_extent_size && 7517 num_bytes > space_info->max_extent_size) { 7518 ins->offset = space_info->max_extent_size; 7519 spin_unlock(&space_info->lock); 7520 return -ENOSPC; 7521 } else if (space_info->max_extent_size) { 7522 use_cluster = false; 7523 } 7524 spin_unlock(&space_info->lock); 7525 } 7526 7527 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7528 if (last_ptr) { 7529 spin_lock(&last_ptr->lock); 7530 if (last_ptr->block_group) 7531 hint_byte = last_ptr->window_start; 7532 if (last_ptr->fragmented) { 7533 /* 7534 * We still set window_start so we can keep track of the 7535 * last place we found an allocation to try and save 7536 * some time. 7537 */ 7538 hint_byte = last_ptr->window_start; 7539 use_cluster = false; 7540 } 7541 spin_unlock(&last_ptr->lock); 7542 } 7543 7544 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7545 search_start = max(search_start, hint_byte); 7546 if (search_start == hint_byte) { 7547 block_group = btrfs_lookup_block_group(fs_info, search_start); 7548 /* 7549 * we don't want to use the block group if it doesn't match our 7550 * allocation bits, or if its not cached. 7551 * 7552 * However if we are re-searching with an ideal block group 7553 * picked out then we don't care that the block group is cached. 7554 */ 7555 if (block_group && block_group_bits(block_group, flags) && 7556 block_group->cached != BTRFS_CACHE_NO) { 7557 down_read(&space_info->groups_sem); 7558 if (list_empty(&block_group->list) || 7559 block_group->ro) { 7560 /* 7561 * someone is removing this block group, 7562 * we can't jump into the have_block_group 7563 * target because our list pointers are not 7564 * valid 7565 */ 7566 btrfs_put_block_group(block_group); 7567 up_read(&space_info->groups_sem); 7568 } else { 7569 index = btrfs_bg_flags_to_raid_index( 7570 block_group->flags); 7571 btrfs_lock_block_group(block_group, delalloc); 7572 goto have_block_group; 7573 } 7574 } else if (block_group) { 7575 btrfs_put_block_group(block_group); 7576 } 7577 } 7578 search: 7579 have_caching_bg = false; 7580 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7581 full_search = true; 7582 down_read(&space_info->groups_sem); 7583 list_for_each_entry(block_group, &space_info->block_groups[index], 7584 list) { 7585 u64 offset; 7586 int cached; 7587 7588 /* If the block group is read-only, we can skip it entirely. */ 7589 if (unlikely(block_group->ro)) 7590 continue; 7591 7592 btrfs_grab_block_group(block_group, delalloc); 7593 search_start = block_group->key.objectid; 7594 7595 /* 7596 * this can happen if we end up cycling through all the 7597 * raid types, but we want to make sure we only allocate 7598 * for the proper type. 7599 */ 7600 if (!block_group_bits(block_group, flags)) { 7601 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7602 BTRFS_BLOCK_GROUP_RAID1 | 7603 BTRFS_BLOCK_GROUP_RAID5 | 7604 BTRFS_BLOCK_GROUP_RAID6 | 7605 BTRFS_BLOCK_GROUP_RAID10; 7606 7607 /* 7608 * if they asked for extra copies and this block group 7609 * doesn't provide them, bail. This does allow us to 7610 * fill raid0 from raid1. 7611 */ 7612 if ((flags & extra) && !(block_group->flags & extra)) 7613 goto loop; 7614 } 7615 7616 have_block_group: 7617 cached = block_group_cache_done(block_group); 7618 if (unlikely(!cached)) { 7619 have_caching_bg = true; 7620 ret = cache_block_group(block_group, 0); 7621 BUG_ON(ret < 0); 7622 ret = 0; 7623 } 7624 7625 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7626 goto loop; 7627 7628 /* 7629 * Ok we want to try and use the cluster allocator, so 7630 * lets look there 7631 */ 7632 if (last_ptr && use_cluster) { 7633 struct btrfs_block_group_cache *used_block_group; 7634 unsigned long aligned_cluster; 7635 /* 7636 * the refill lock keeps out other 7637 * people trying to start a new cluster 7638 */ 7639 used_block_group = btrfs_lock_cluster(block_group, 7640 last_ptr, 7641 delalloc); 7642 if (!used_block_group) 7643 goto refill_cluster; 7644 7645 if (used_block_group != block_group && 7646 (used_block_group->ro || 7647 !block_group_bits(used_block_group, flags))) 7648 goto release_cluster; 7649 7650 offset = btrfs_alloc_from_cluster(used_block_group, 7651 last_ptr, 7652 num_bytes, 7653 used_block_group->key.objectid, 7654 &max_extent_size); 7655 if (offset) { 7656 /* we have a block, we're done */ 7657 spin_unlock(&last_ptr->refill_lock); 7658 trace_btrfs_reserve_extent_cluster(fs_info, 7659 used_block_group, 7660 search_start, num_bytes); 7661 if (used_block_group != block_group) { 7662 btrfs_release_block_group(block_group, 7663 delalloc); 7664 block_group = used_block_group; 7665 } 7666 goto checks; 7667 } 7668 7669 WARN_ON(last_ptr->block_group != used_block_group); 7670 release_cluster: 7671 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7672 * set up a new clusters, so lets just skip it 7673 * and let the allocator find whatever block 7674 * it can find. If we reach this point, we 7675 * will have tried the cluster allocator 7676 * plenty of times and not have found 7677 * anything, so we are likely way too 7678 * fragmented for the clustering stuff to find 7679 * anything. 7680 * 7681 * However, if the cluster is taken from the 7682 * current block group, release the cluster 7683 * first, so that we stand a better chance of 7684 * succeeding in the unclustered 7685 * allocation. */ 7686 if (loop >= LOOP_NO_EMPTY_SIZE && 7687 used_block_group != block_group) { 7688 spin_unlock(&last_ptr->refill_lock); 7689 btrfs_release_block_group(used_block_group, 7690 delalloc); 7691 goto unclustered_alloc; 7692 } 7693 7694 /* 7695 * this cluster didn't work out, free it and 7696 * start over 7697 */ 7698 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7699 7700 if (used_block_group != block_group) 7701 btrfs_release_block_group(used_block_group, 7702 delalloc); 7703 refill_cluster: 7704 if (loop >= LOOP_NO_EMPTY_SIZE) { 7705 spin_unlock(&last_ptr->refill_lock); 7706 goto unclustered_alloc; 7707 } 7708 7709 aligned_cluster = max_t(unsigned long, 7710 empty_cluster + empty_size, 7711 block_group->full_stripe_len); 7712 7713 /* allocate a cluster in this block group */ 7714 ret = btrfs_find_space_cluster(fs_info, block_group, 7715 last_ptr, search_start, 7716 num_bytes, 7717 aligned_cluster); 7718 if (ret == 0) { 7719 /* 7720 * now pull our allocation out of this 7721 * cluster 7722 */ 7723 offset = btrfs_alloc_from_cluster(block_group, 7724 last_ptr, 7725 num_bytes, 7726 search_start, 7727 &max_extent_size); 7728 if (offset) { 7729 /* we found one, proceed */ 7730 spin_unlock(&last_ptr->refill_lock); 7731 trace_btrfs_reserve_extent_cluster(fs_info, 7732 block_group, search_start, 7733 num_bytes); 7734 goto checks; 7735 } 7736 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7737 && !failed_cluster_refill) { 7738 spin_unlock(&last_ptr->refill_lock); 7739 7740 failed_cluster_refill = true; 7741 wait_block_group_cache_progress(block_group, 7742 num_bytes + empty_cluster + empty_size); 7743 goto have_block_group; 7744 } 7745 7746 /* 7747 * at this point we either didn't find a cluster 7748 * or we weren't able to allocate a block from our 7749 * cluster. Free the cluster we've been trying 7750 * to use, and go to the next block group 7751 */ 7752 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7753 spin_unlock(&last_ptr->refill_lock); 7754 goto loop; 7755 } 7756 7757 unclustered_alloc: 7758 /* 7759 * We are doing an unclustered alloc, set the fragmented flag so 7760 * we don't bother trying to setup a cluster again until we get 7761 * more space. 7762 */ 7763 if (unlikely(last_ptr)) { 7764 spin_lock(&last_ptr->lock); 7765 last_ptr->fragmented = 1; 7766 spin_unlock(&last_ptr->lock); 7767 } 7768 if (cached) { 7769 struct btrfs_free_space_ctl *ctl = 7770 block_group->free_space_ctl; 7771 7772 spin_lock(&ctl->tree_lock); 7773 if (ctl->free_space < 7774 num_bytes + empty_cluster + empty_size) { 7775 if (ctl->free_space > max_extent_size) 7776 max_extent_size = ctl->free_space; 7777 spin_unlock(&ctl->tree_lock); 7778 goto loop; 7779 } 7780 spin_unlock(&ctl->tree_lock); 7781 } 7782 7783 offset = btrfs_find_space_for_alloc(block_group, search_start, 7784 num_bytes, empty_size, 7785 &max_extent_size); 7786 /* 7787 * If we didn't find a chunk, and we haven't failed on this 7788 * block group before, and this block group is in the middle of 7789 * caching and we are ok with waiting, then go ahead and wait 7790 * for progress to be made, and set failed_alloc to true. 7791 * 7792 * If failed_alloc is true then we've already waited on this 7793 * block group once and should move on to the next block group. 7794 */ 7795 if (!offset && !failed_alloc && !cached && 7796 loop > LOOP_CACHING_NOWAIT) { 7797 wait_block_group_cache_progress(block_group, 7798 num_bytes + empty_size); 7799 failed_alloc = true; 7800 goto have_block_group; 7801 } else if (!offset) { 7802 goto loop; 7803 } 7804 checks: 7805 search_start = ALIGN(offset, fs_info->stripesize); 7806 7807 /* move on to the next group */ 7808 if (search_start + num_bytes > 7809 block_group->key.objectid + block_group->key.offset) { 7810 btrfs_add_free_space(block_group, offset, num_bytes); 7811 goto loop; 7812 } 7813 7814 if (offset < search_start) 7815 btrfs_add_free_space(block_group, offset, 7816 search_start - offset); 7817 BUG_ON(offset > search_start); 7818 7819 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7820 num_bytes, delalloc); 7821 if (ret == -EAGAIN) { 7822 btrfs_add_free_space(block_group, offset, num_bytes); 7823 goto loop; 7824 } 7825 btrfs_inc_block_group_reservations(block_group); 7826 7827 /* we are all good, lets return */ 7828 ins->objectid = search_start; 7829 ins->offset = num_bytes; 7830 7831 trace_btrfs_reserve_extent(fs_info, block_group, 7832 search_start, num_bytes); 7833 btrfs_release_block_group(block_group, delalloc); 7834 break; 7835 loop: 7836 failed_cluster_refill = false; 7837 failed_alloc = false; 7838 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7839 index); 7840 btrfs_release_block_group(block_group, delalloc); 7841 cond_resched(); 7842 } 7843 up_read(&space_info->groups_sem); 7844 7845 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7846 && !orig_have_caching_bg) 7847 orig_have_caching_bg = true; 7848 7849 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7850 goto search; 7851 7852 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7853 goto search; 7854 7855 /* 7856 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7857 * caching kthreads as we move along 7858 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7859 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7860 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7861 * again 7862 */ 7863 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7864 index = 0; 7865 if (loop == LOOP_CACHING_NOWAIT) { 7866 /* 7867 * We want to skip the LOOP_CACHING_WAIT step if we 7868 * don't have any uncached bgs and we've already done a 7869 * full search through. 7870 */ 7871 if (orig_have_caching_bg || !full_search) 7872 loop = LOOP_CACHING_WAIT; 7873 else 7874 loop = LOOP_ALLOC_CHUNK; 7875 } else { 7876 loop++; 7877 } 7878 7879 if (loop == LOOP_ALLOC_CHUNK) { 7880 struct btrfs_trans_handle *trans; 7881 int exist = 0; 7882 7883 trans = current->journal_info; 7884 if (trans) 7885 exist = 1; 7886 else 7887 trans = btrfs_join_transaction(root); 7888 7889 if (IS_ERR(trans)) { 7890 ret = PTR_ERR(trans); 7891 goto out; 7892 } 7893 7894 ret = do_chunk_alloc(trans, fs_info, flags, 7895 CHUNK_ALLOC_FORCE); 7896 7897 /* 7898 * If we can't allocate a new chunk we've already looped 7899 * through at least once, move on to the NO_EMPTY_SIZE 7900 * case. 7901 */ 7902 if (ret == -ENOSPC) 7903 loop = LOOP_NO_EMPTY_SIZE; 7904 7905 /* 7906 * Do not bail out on ENOSPC since we 7907 * can do more things. 7908 */ 7909 if (ret < 0 && ret != -ENOSPC) 7910 btrfs_abort_transaction(trans, ret); 7911 else 7912 ret = 0; 7913 if (!exist) 7914 btrfs_end_transaction(trans); 7915 if (ret) 7916 goto out; 7917 } 7918 7919 if (loop == LOOP_NO_EMPTY_SIZE) { 7920 /* 7921 * Don't loop again if we already have no empty_size and 7922 * no empty_cluster. 7923 */ 7924 if (empty_size == 0 && 7925 empty_cluster == 0) { 7926 ret = -ENOSPC; 7927 goto out; 7928 } 7929 empty_size = 0; 7930 empty_cluster = 0; 7931 } 7932 7933 goto search; 7934 } else if (!ins->objectid) { 7935 ret = -ENOSPC; 7936 } else if (ins->objectid) { 7937 if (!use_cluster && last_ptr) { 7938 spin_lock(&last_ptr->lock); 7939 last_ptr->window_start = ins->objectid; 7940 spin_unlock(&last_ptr->lock); 7941 } 7942 ret = 0; 7943 } 7944 out: 7945 if (ret == -ENOSPC) { 7946 spin_lock(&space_info->lock); 7947 space_info->max_extent_size = max_extent_size; 7948 spin_unlock(&space_info->lock); 7949 ins->offset = max_extent_size; 7950 } 7951 return ret; 7952 } 7953 7954 static void dump_space_info(struct btrfs_fs_info *fs_info, 7955 struct btrfs_space_info *info, u64 bytes, 7956 int dump_block_groups) 7957 { 7958 struct btrfs_block_group_cache *cache; 7959 int index = 0; 7960 7961 spin_lock(&info->lock); 7962 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7963 info->flags, 7964 info->total_bytes - btrfs_space_info_used(info, true), 7965 info->full ? "" : "not "); 7966 btrfs_info(fs_info, 7967 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7968 info->total_bytes, info->bytes_used, info->bytes_pinned, 7969 info->bytes_reserved, info->bytes_may_use, 7970 info->bytes_readonly); 7971 spin_unlock(&info->lock); 7972 7973 if (!dump_block_groups) 7974 return; 7975 7976 down_read(&info->groups_sem); 7977 again: 7978 list_for_each_entry(cache, &info->block_groups[index], list) { 7979 spin_lock(&cache->lock); 7980 btrfs_info(fs_info, 7981 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7982 cache->key.objectid, cache->key.offset, 7983 btrfs_block_group_used(&cache->item), cache->pinned, 7984 cache->reserved, cache->ro ? "[readonly]" : ""); 7985 btrfs_dump_free_space(cache, bytes); 7986 spin_unlock(&cache->lock); 7987 } 7988 if (++index < BTRFS_NR_RAID_TYPES) 7989 goto again; 7990 up_read(&info->groups_sem); 7991 } 7992 7993 /* 7994 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 7995 * hole that is at least as big as @num_bytes. 7996 * 7997 * @root - The root that will contain this extent 7998 * 7999 * @ram_bytes - The amount of space in ram that @num_bytes take. This 8000 * is used for accounting purposes. This value differs 8001 * from @num_bytes only in the case of compressed extents. 8002 * 8003 * @num_bytes - Number of bytes to allocate on-disk. 8004 * 8005 * @min_alloc_size - Indicates the minimum amount of space that the 8006 * allocator should try to satisfy. In some cases 8007 * @num_bytes may be larger than what is required and if 8008 * the filesystem is fragmented then allocation fails. 8009 * However, the presence of @min_alloc_size gives a 8010 * chance to try and satisfy the smaller allocation. 8011 * 8012 * @empty_size - A hint that you plan on doing more COW. This is the 8013 * size in bytes the allocator should try to find free 8014 * next to the block it returns. This is just a hint and 8015 * may be ignored by the allocator. 8016 * 8017 * @hint_byte - Hint to the allocator to start searching above the byte 8018 * address passed. It might be ignored. 8019 * 8020 * @ins - This key is modified to record the found hole. It will 8021 * have the following values: 8022 * ins->objectid == start position 8023 * ins->flags = BTRFS_EXTENT_ITEM_KEY 8024 * ins->offset == the size of the hole. 8025 * 8026 * @is_data - Boolean flag indicating whether an extent is 8027 * allocated for data (true) or metadata (false) 8028 * 8029 * @delalloc - Boolean flag indicating whether this allocation is for 8030 * delalloc or not. If 'true' data_rwsem of block groups 8031 * is going to be acquired. 8032 * 8033 * 8034 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 8035 * case -ENOSPC is returned then @ins->offset will contain the size of the 8036 * largest available hole the allocator managed to find. 8037 */ 8038 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8039 u64 num_bytes, u64 min_alloc_size, 8040 u64 empty_size, u64 hint_byte, 8041 struct btrfs_key *ins, int is_data, int delalloc) 8042 { 8043 struct btrfs_fs_info *fs_info = root->fs_info; 8044 bool final_tried = num_bytes == min_alloc_size; 8045 u64 flags; 8046 int ret; 8047 8048 flags = get_alloc_profile_by_root(root, is_data); 8049 again: 8050 WARN_ON(num_bytes < fs_info->sectorsize); 8051 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8052 hint_byte, ins, flags, delalloc); 8053 if (!ret && !is_data) { 8054 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8055 } else if (ret == -ENOSPC) { 8056 if (!final_tried && ins->offset) { 8057 num_bytes = min(num_bytes >> 1, ins->offset); 8058 num_bytes = round_down(num_bytes, 8059 fs_info->sectorsize); 8060 num_bytes = max(num_bytes, min_alloc_size); 8061 ram_bytes = num_bytes; 8062 if (num_bytes == min_alloc_size) 8063 final_tried = true; 8064 goto again; 8065 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8066 struct btrfs_space_info *sinfo; 8067 8068 sinfo = __find_space_info(fs_info, flags); 8069 btrfs_err(fs_info, 8070 "allocation failed flags %llu, wanted %llu", 8071 flags, num_bytes); 8072 if (sinfo) 8073 dump_space_info(fs_info, sinfo, num_bytes, 1); 8074 } 8075 } 8076 8077 return ret; 8078 } 8079 8080 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8081 u64 start, u64 len, 8082 int pin, int delalloc) 8083 { 8084 struct btrfs_block_group_cache *cache; 8085 int ret = 0; 8086 8087 cache = btrfs_lookup_block_group(fs_info, start); 8088 if (!cache) { 8089 btrfs_err(fs_info, "Unable to find block group for %llu", 8090 start); 8091 return -ENOSPC; 8092 } 8093 8094 if (pin) 8095 pin_down_extent(fs_info, cache, start, len, 1); 8096 else { 8097 if (btrfs_test_opt(fs_info, DISCARD)) 8098 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8099 btrfs_add_free_space(cache, start, len); 8100 btrfs_free_reserved_bytes(cache, len, delalloc); 8101 trace_btrfs_reserved_extent_free(fs_info, start, len); 8102 } 8103 8104 btrfs_put_block_group(cache); 8105 return ret; 8106 } 8107 8108 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8109 u64 start, u64 len, int delalloc) 8110 { 8111 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8112 } 8113 8114 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8115 u64 start, u64 len) 8116 { 8117 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8118 } 8119 8120 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8121 struct btrfs_fs_info *fs_info, 8122 u64 parent, u64 root_objectid, 8123 u64 flags, u64 owner, u64 offset, 8124 struct btrfs_key *ins, int ref_mod) 8125 { 8126 int ret; 8127 struct btrfs_extent_item *extent_item; 8128 struct btrfs_extent_inline_ref *iref; 8129 struct btrfs_path *path; 8130 struct extent_buffer *leaf; 8131 int type; 8132 u32 size; 8133 8134 if (parent > 0) 8135 type = BTRFS_SHARED_DATA_REF_KEY; 8136 else 8137 type = BTRFS_EXTENT_DATA_REF_KEY; 8138 8139 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8140 8141 path = btrfs_alloc_path(); 8142 if (!path) 8143 return -ENOMEM; 8144 8145 path->leave_spinning = 1; 8146 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8147 ins, size); 8148 if (ret) { 8149 btrfs_free_path(path); 8150 return ret; 8151 } 8152 8153 leaf = path->nodes[0]; 8154 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8155 struct btrfs_extent_item); 8156 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8157 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8158 btrfs_set_extent_flags(leaf, extent_item, 8159 flags | BTRFS_EXTENT_FLAG_DATA); 8160 8161 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8162 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8163 if (parent > 0) { 8164 struct btrfs_shared_data_ref *ref; 8165 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8166 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8167 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8168 } else { 8169 struct btrfs_extent_data_ref *ref; 8170 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8171 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8172 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8173 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8174 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8175 } 8176 8177 btrfs_mark_buffer_dirty(path->nodes[0]); 8178 btrfs_free_path(path); 8179 8180 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8181 ins->offset); 8182 if (ret) 8183 return ret; 8184 8185 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8186 if (ret) { /* -ENOENT, logic error */ 8187 btrfs_err(fs_info, "update block group failed for %llu %llu", 8188 ins->objectid, ins->offset); 8189 BUG(); 8190 } 8191 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8192 return ret; 8193 } 8194 8195 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8196 struct btrfs_fs_info *fs_info, 8197 u64 parent, u64 root_objectid, 8198 u64 flags, struct btrfs_disk_key *key, 8199 int level, struct btrfs_key *ins) 8200 { 8201 int ret; 8202 struct btrfs_extent_item *extent_item; 8203 struct btrfs_tree_block_info *block_info; 8204 struct btrfs_extent_inline_ref *iref; 8205 struct btrfs_path *path; 8206 struct extent_buffer *leaf; 8207 u32 size = sizeof(*extent_item) + sizeof(*iref); 8208 u64 num_bytes = ins->offset; 8209 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8210 8211 if (!skinny_metadata) 8212 size += sizeof(*block_info); 8213 8214 path = btrfs_alloc_path(); 8215 if (!path) { 8216 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8217 fs_info->nodesize); 8218 return -ENOMEM; 8219 } 8220 8221 path->leave_spinning = 1; 8222 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8223 ins, size); 8224 if (ret) { 8225 btrfs_free_path(path); 8226 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8227 fs_info->nodesize); 8228 return ret; 8229 } 8230 8231 leaf = path->nodes[0]; 8232 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8233 struct btrfs_extent_item); 8234 btrfs_set_extent_refs(leaf, extent_item, 1); 8235 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8236 btrfs_set_extent_flags(leaf, extent_item, 8237 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8238 8239 if (skinny_metadata) { 8240 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8241 num_bytes = fs_info->nodesize; 8242 } else { 8243 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8244 btrfs_set_tree_block_key(leaf, block_info, key); 8245 btrfs_set_tree_block_level(leaf, block_info, level); 8246 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8247 } 8248 8249 if (parent > 0) { 8250 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8251 btrfs_set_extent_inline_ref_type(leaf, iref, 8252 BTRFS_SHARED_BLOCK_REF_KEY); 8253 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8254 } else { 8255 btrfs_set_extent_inline_ref_type(leaf, iref, 8256 BTRFS_TREE_BLOCK_REF_KEY); 8257 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8258 } 8259 8260 btrfs_mark_buffer_dirty(leaf); 8261 btrfs_free_path(path); 8262 8263 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8264 num_bytes); 8265 if (ret) 8266 return ret; 8267 8268 ret = update_block_group(trans, fs_info, ins->objectid, 8269 fs_info->nodesize, 1); 8270 if (ret) { /* -ENOENT, logic error */ 8271 btrfs_err(fs_info, "update block group failed for %llu %llu", 8272 ins->objectid, ins->offset); 8273 BUG(); 8274 } 8275 8276 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8277 fs_info->nodesize); 8278 return ret; 8279 } 8280 8281 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8282 struct btrfs_root *root, u64 owner, 8283 u64 offset, u64 ram_bytes, 8284 struct btrfs_key *ins) 8285 { 8286 struct btrfs_fs_info *fs_info = root->fs_info; 8287 int ret; 8288 8289 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8290 8291 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8292 root->root_key.objectid, owner, offset, 8293 BTRFS_ADD_DELAYED_EXTENT); 8294 8295 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8296 ins->offset, 0, 8297 root->root_key.objectid, owner, 8298 offset, ram_bytes, 8299 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8300 return ret; 8301 } 8302 8303 /* 8304 * this is used by the tree logging recovery code. It records that 8305 * an extent has been allocated and makes sure to clear the free 8306 * space cache bits as well 8307 */ 8308 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8309 struct btrfs_fs_info *fs_info, 8310 u64 root_objectid, u64 owner, u64 offset, 8311 struct btrfs_key *ins) 8312 { 8313 int ret; 8314 struct btrfs_block_group_cache *block_group; 8315 struct btrfs_space_info *space_info; 8316 8317 /* 8318 * Mixed block groups will exclude before processing the log so we only 8319 * need to do the exclude dance if this fs isn't mixed. 8320 */ 8321 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8322 ret = __exclude_logged_extent(fs_info, ins->objectid, 8323 ins->offset); 8324 if (ret) 8325 return ret; 8326 } 8327 8328 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8329 if (!block_group) 8330 return -EINVAL; 8331 8332 space_info = block_group->space_info; 8333 spin_lock(&space_info->lock); 8334 spin_lock(&block_group->lock); 8335 space_info->bytes_reserved += ins->offset; 8336 block_group->reserved += ins->offset; 8337 spin_unlock(&block_group->lock); 8338 spin_unlock(&space_info->lock); 8339 8340 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8341 0, owner, offset, ins, 1); 8342 btrfs_put_block_group(block_group); 8343 return ret; 8344 } 8345 8346 static struct extent_buffer * 8347 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8348 u64 bytenr, int level) 8349 { 8350 struct btrfs_fs_info *fs_info = root->fs_info; 8351 struct extent_buffer *buf; 8352 8353 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8354 if (IS_ERR(buf)) 8355 return buf; 8356 8357 btrfs_set_header_generation(buf, trans->transid); 8358 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8359 btrfs_tree_lock(buf); 8360 clean_tree_block(fs_info, buf); 8361 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8362 8363 btrfs_set_lock_blocking(buf); 8364 set_extent_buffer_uptodate(buf); 8365 8366 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8367 buf->log_index = root->log_transid % 2; 8368 /* 8369 * we allow two log transactions at a time, use different 8370 * EXENT bit to differentiate dirty pages. 8371 */ 8372 if (buf->log_index == 0) 8373 set_extent_dirty(&root->dirty_log_pages, buf->start, 8374 buf->start + buf->len - 1, GFP_NOFS); 8375 else 8376 set_extent_new(&root->dirty_log_pages, buf->start, 8377 buf->start + buf->len - 1); 8378 } else { 8379 buf->log_index = -1; 8380 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8381 buf->start + buf->len - 1, GFP_NOFS); 8382 } 8383 trans->dirty = true; 8384 /* this returns a buffer locked for blocking */ 8385 return buf; 8386 } 8387 8388 static struct btrfs_block_rsv * 8389 use_block_rsv(struct btrfs_trans_handle *trans, 8390 struct btrfs_root *root, u32 blocksize) 8391 { 8392 struct btrfs_fs_info *fs_info = root->fs_info; 8393 struct btrfs_block_rsv *block_rsv; 8394 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8395 int ret; 8396 bool global_updated = false; 8397 8398 block_rsv = get_block_rsv(trans, root); 8399 8400 if (unlikely(block_rsv->size == 0)) 8401 goto try_reserve; 8402 again: 8403 ret = block_rsv_use_bytes(block_rsv, blocksize); 8404 if (!ret) 8405 return block_rsv; 8406 8407 if (block_rsv->failfast) 8408 return ERR_PTR(ret); 8409 8410 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8411 global_updated = true; 8412 update_global_block_rsv(fs_info); 8413 goto again; 8414 } 8415 8416 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8417 static DEFINE_RATELIMIT_STATE(_rs, 8418 DEFAULT_RATELIMIT_INTERVAL * 10, 8419 /*DEFAULT_RATELIMIT_BURST*/ 1); 8420 if (__ratelimit(&_rs)) 8421 WARN(1, KERN_DEBUG 8422 "BTRFS: block rsv returned %d\n", ret); 8423 } 8424 try_reserve: 8425 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8426 BTRFS_RESERVE_NO_FLUSH); 8427 if (!ret) 8428 return block_rsv; 8429 /* 8430 * If we couldn't reserve metadata bytes try and use some from 8431 * the global reserve if its space type is the same as the global 8432 * reservation. 8433 */ 8434 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8435 block_rsv->space_info == global_rsv->space_info) { 8436 ret = block_rsv_use_bytes(global_rsv, blocksize); 8437 if (!ret) 8438 return global_rsv; 8439 } 8440 return ERR_PTR(ret); 8441 } 8442 8443 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8444 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8445 { 8446 block_rsv_add_bytes(block_rsv, blocksize, 0); 8447 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); 8448 } 8449 8450 /* 8451 * finds a free extent and does all the dirty work required for allocation 8452 * returns the tree buffer or an ERR_PTR on error. 8453 */ 8454 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8455 struct btrfs_root *root, 8456 u64 parent, u64 root_objectid, 8457 const struct btrfs_disk_key *key, 8458 int level, u64 hint, 8459 u64 empty_size) 8460 { 8461 struct btrfs_fs_info *fs_info = root->fs_info; 8462 struct btrfs_key ins; 8463 struct btrfs_block_rsv *block_rsv; 8464 struct extent_buffer *buf; 8465 struct btrfs_delayed_extent_op *extent_op; 8466 u64 flags = 0; 8467 int ret; 8468 u32 blocksize = fs_info->nodesize; 8469 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8470 8471 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8472 if (btrfs_is_testing(fs_info)) { 8473 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8474 level); 8475 if (!IS_ERR(buf)) 8476 root->alloc_bytenr += blocksize; 8477 return buf; 8478 } 8479 #endif 8480 8481 block_rsv = use_block_rsv(trans, root, blocksize); 8482 if (IS_ERR(block_rsv)) 8483 return ERR_CAST(block_rsv); 8484 8485 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8486 empty_size, hint, &ins, 0, 0); 8487 if (ret) 8488 goto out_unuse; 8489 8490 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8491 if (IS_ERR(buf)) { 8492 ret = PTR_ERR(buf); 8493 goto out_free_reserved; 8494 } 8495 8496 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8497 if (parent == 0) 8498 parent = ins.objectid; 8499 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8500 } else 8501 BUG_ON(parent > 0); 8502 8503 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8504 extent_op = btrfs_alloc_delayed_extent_op(); 8505 if (!extent_op) { 8506 ret = -ENOMEM; 8507 goto out_free_buf; 8508 } 8509 if (key) 8510 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8511 else 8512 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8513 extent_op->flags_to_set = flags; 8514 extent_op->update_key = skinny_metadata ? false : true; 8515 extent_op->update_flags = true; 8516 extent_op->is_data = false; 8517 extent_op->level = level; 8518 8519 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8520 root_objectid, level, 0, 8521 BTRFS_ADD_DELAYED_EXTENT); 8522 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8523 ins.offset, parent, 8524 root_objectid, level, 8525 BTRFS_ADD_DELAYED_EXTENT, 8526 extent_op, NULL, NULL); 8527 if (ret) 8528 goto out_free_delayed; 8529 } 8530 return buf; 8531 8532 out_free_delayed: 8533 btrfs_free_delayed_extent_op(extent_op); 8534 out_free_buf: 8535 free_extent_buffer(buf); 8536 out_free_reserved: 8537 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8538 out_unuse: 8539 unuse_block_rsv(fs_info, block_rsv, blocksize); 8540 return ERR_PTR(ret); 8541 } 8542 8543 struct walk_control { 8544 u64 refs[BTRFS_MAX_LEVEL]; 8545 u64 flags[BTRFS_MAX_LEVEL]; 8546 struct btrfs_key update_progress; 8547 int stage; 8548 int level; 8549 int shared_level; 8550 int update_ref; 8551 int keep_locks; 8552 int reada_slot; 8553 int reada_count; 8554 int for_reloc; 8555 }; 8556 8557 #define DROP_REFERENCE 1 8558 #define UPDATE_BACKREF 2 8559 8560 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8561 struct btrfs_root *root, 8562 struct walk_control *wc, 8563 struct btrfs_path *path) 8564 { 8565 struct btrfs_fs_info *fs_info = root->fs_info; 8566 u64 bytenr; 8567 u64 generation; 8568 u64 refs; 8569 u64 flags; 8570 u32 nritems; 8571 struct btrfs_key key; 8572 struct extent_buffer *eb; 8573 int ret; 8574 int slot; 8575 int nread = 0; 8576 8577 if (path->slots[wc->level] < wc->reada_slot) { 8578 wc->reada_count = wc->reada_count * 2 / 3; 8579 wc->reada_count = max(wc->reada_count, 2); 8580 } else { 8581 wc->reada_count = wc->reada_count * 3 / 2; 8582 wc->reada_count = min_t(int, wc->reada_count, 8583 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8584 } 8585 8586 eb = path->nodes[wc->level]; 8587 nritems = btrfs_header_nritems(eb); 8588 8589 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8590 if (nread >= wc->reada_count) 8591 break; 8592 8593 cond_resched(); 8594 bytenr = btrfs_node_blockptr(eb, slot); 8595 generation = btrfs_node_ptr_generation(eb, slot); 8596 8597 if (slot == path->slots[wc->level]) 8598 goto reada; 8599 8600 if (wc->stage == UPDATE_BACKREF && 8601 generation <= root->root_key.offset) 8602 continue; 8603 8604 /* We don't lock the tree block, it's OK to be racy here */ 8605 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8606 wc->level - 1, 1, &refs, 8607 &flags); 8608 /* We don't care about errors in readahead. */ 8609 if (ret < 0) 8610 continue; 8611 BUG_ON(refs == 0); 8612 8613 if (wc->stage == DROP_REFERENCE) { 8614 if (refs == 1) 8615 goto reada; 8616 8617 if (wc->level == 1 && 8618 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8619 continue; 8620 if (!wc->update_ref || 8621 generation <= root->root_key.offset) 8622 continue; 8623 btrfs_node_key_to_cpu(eb, &key, slot); 8624 ret = btrfs_comp_cpu_keys(&key, 8625 &wc->update_progress); 8626 if (ret < 0) 8627 continue; 8628 } else { 8629 if (wc->level == 1 && 8630 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8631 continue; 8632 } 8633 reada: 8634 readahead_tree_block(fs_info, bytenr); 8635 nread++; 8636 } 8637 wc->reada_slot = slot; 8638 } 8639 8640 /* 8641 * helper to process tree block while walking down the tree. 8642 * 8643 * when wc->stage == UPDATE_BACKREF, this function updates 8644 * back refs for pointers in the block. 8645 * 8646 * NOTE: return value 1 means we should stop walking down. 8647 */ 8648 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8649 struct btrfs_root *root, 8650 struct btrfs_path *path, 8651 struct walk_control *wc, int lookup_info) 8652 { 8653 struct btrfs_fs_info *fs_info = root->fs_info; 8654 int level = wc->level; 8655 struct extent_buffer *eb = path->nodes[level]; 8656 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8657 int ret; 8658 8659 if (wc->stage == UPDATE_BACKREF && 8660 btrfs_header_owner(eb) != root->root_key.objectid) 8661 return 1; 8662 8663 /* 8664 * when reference count of tree block is 1, it won't increase 8665 * again. once full backref flag is set, we never clear it. 8666 */ 8667 if (lookup_info && 8668 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8669 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8670 BUG_ON(!path->locks[level]); 8671 ret = btrfs_lookup_extent_info(trans, fs_info, 8672 eb->start, level, 1, 8673 &wc->refs[level], 8674 &wc->flags[level]); 8675 BUG_ON(ret == -ENOMEM); 8676 if (ret) 8677 return ret; 8678 BUG_ON(wc->refs[level] == 0); 8679 } 8680 8681 if (wc->stage == DROP_REFERENCE) { 8682 if (wc->refs[level] > 1) 8683 return 1; 8684 8685 if (path->locks[level] && !wc->keep_locks) { 8686 btrfs_tree_unlock_rw(eb, path->locks[level]); 8687 path->locks[level] = 0; 8688 } 8689 return 0; 8690 } 8691 8692 /* wc->stage == UPDATE_BACKREF */ 8693 if (!(wc->flags[level] & flag)) { 8694 BUG_ON(!path->locks[level]); 8695 ret = btrfs_inc_ref(trans, root, eb, 1); 8696 BUG_ON(ret); /* -ENOMEM */ 8697 ret = btrfs_dec_ref(trans, root, eb, 0); 8698 BUG_ON(ret); /* -ENOMEM */ 8699 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8700 eb->len, flag, 8701 btrfs_header_level(eb), 0); 8702 BUG_ON(ret); /* -ENOMEM */ 8703 wc->flags[level] |= flag; 8704 } 8705 8706 /* 8707 * the block is shared by multiple trees, so it's not good to 8708 * keep the tree lock 8709 */ 8710 if (path->locks[level] && level > 0) { 8711 btrfs_tree_unlock_rw(eb, path->locks[level]); 8712 path->locks[level] = 0; 8713 } 8714 return 0; 8715 } 8716 8717 /* 8718 * helper to process tree block pointer. 8719 * 8720 * when wc->stage == DROP_REFERENCE, this function checks 8721 * reference count of the block pointed to. if the block 8722 * is shared and we need update back refs for the subtree 8723 * rooted at the block, this function changes wc->stage to 8724 * UPDATE_BACKREF. if the block is shared and there is no 8725 * need to update back, this function drops the reference 8726 * to the block. 8727 * 8728 * NOTE: return value 1 means we should stop walking down. 8729 */ 8730 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8731 struct btrfs_root *root, 8732 struct btrfs_path *path, 8733 struct walk_control *wc, int *lookup_info) 8734 { 8735 struct btrfs_fs_info *fs_info = root->fs_info; 8736 u64 bytenr; 8737 u64 generation; 8738 u64 parent; 8739 u32 blocksize; 8740 struct btrfs_key key; 8741 struct btrfs_key first_key; 8742 struct extent_buffer *next; 8743 int level = wc->level; 8744 int reada = 0; 8745 int ret = 0; 8746 bool need_account = false; 8747 8748 generation = btrfs_node_ptr_generation(path->nodes[level], 8749 path->slots[level]); 8750 /* 8751 * if the lower level block was created before the snapshot 8752 * was created, we know there is no need to update back refs 8753 * for the subtree 8754 */ 8755 if (wc->stage == UPDATE_BACKREF && 8756 generation <= root->root_key.offset) { 8757 *lookup_info = 1; 8758 return 1; 8759 } 8760 8761 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8762 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8763 path->slots[level]); 8764 blocksize = fs_info->nodesize; 8765 8766 next = find_extent_buffer(fs_info, bytenr); 8767 if (!next) { 8768 next = btrfs_find_create_tree_block(fs_info, bytenr); 8769 if (IS_ERR(next)) 8770 return PTR_ERR(next); 8771 8772 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8773 level - 1); 8774 reada = 1; 8775 } 8776 btrfs_tree_lock(next); 8777 btrfs_set_lock_blocking(next); 8778 8779 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8780 &wc->refs[level - 1], 8781 &wc->flags[level - 1]); 8782 if (ret < 0) 8783 goto out_unlock; 8784 8785 if (unlikely(wc->refs[level - 1] == 0)) { 8786 btrfs_err(fs_info, "Missing references."); 8787 ret = -EIO; 8788 goto out_unlock; 8789 } 8790 *lookup_info = 0; 8791 8792 if (wc->stage == DROP_REFERENCE) { 8793 if (wc->refs[level - 1] > 1) { 8794 need_account = true; 8795 if (level == 1 && 8796 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8797 goto skip; 8798 8799 if (!wc->update_ref || 8800 generation <= root->root_key.offset) 8801 goto skip; 8802 8803 btrfs_node_key_to_cpu(path->nodes[level], &key, 8804 path->slots[level]); 8805 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8806 if (ret < 0) 8807 goto skip; 8808 8809 wc->stage = UPDATE_BACKREF; 8810 wc->shared_level = level - 1; 8811 } 8812 } else { 8813 if (level == 1 && 8814 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8815 goto skip; 8816 } 8817 8818 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8819 btrfs_tree_unlock(next); 8820 free_extent_buffer(next); 8821 next = NULL; 8822 *lookup_info = 1; 8823 } 8824 8825 if (!next) { 8826 if (reada && level == 1) 8827 reada_walk_down(trans, root, wc, path); 8828 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8829 &first_key); 8830 if (IS_ERR(next)) { 8831 return PTR_ERR(next); 8832 } else if (!extent_buffer_uptodate(next)) { 8833 free_extent_buffer(next); 8834 return -EIO; 8835 } 8836 btrfs_tree_lock(next); 8837 btrfs_set_lock_blocking(next); 8838 } 8839 8840 level--; 8841 ASSERT(level == btrfs_header_level(next)); 8842 if (level != btrfs_header_level(next)) { 8843 btrfs_err(root->fs_info, "mismatched level"); 8844 ret = -EIO; 8845 goto out_unlock; 8846 } 8847 path->nodes[level] = next; 8848 path->slots[level] = 0; 8849 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8850 wc->level = level; 8851 if (wc->level == 1) 8852 wc->reada_slot = 0; 8853 return 0; 8854 skip: 8855 wc->refs[level - 1] = 0; 8856 wc->flags[level - 1] = 0; 8857 if (wc->stage == DROP_REFERENCE) { 8858 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8859 parent = path->nodes[level]->start; 8860 } else { 8861 ASSERT(root->root_key.objectid == 8862 btrfs_header_owner(path->nodes[level])); 8863 if (root->root_key.objectid != 8864 btrfs_header_owner(path->nodes[level])) { 8865 btrfs_err(root->fs_info, 8866 "mismatched block owner"); 8867 ret = -EIO; 8868 goto out_unlock; 8869 } 8870 parent = 0; 8871 } 8872 8873 if (need_account) { 8874 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8875 generation, level - 1); 8876 if (ret) { 8877 btrfs_err_rl(fs_info, 8878 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8879 ret); 8880 } 8881 } 8882 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8883 parent, root->root_key.objectid, 8884 level - 1, 0); 8885 if (ret) 8886 goto out_unlock; 8887 } 8888 8889 *lookup_info = 1; 8890 ret = 1; 8891 8892 out_unlock: 8893 btrfs_tree_unlock(next); 8894 free_extent_buffer(next); 8895 8896 return ret; 8897 } 8898 8899 /* 8900 * helper to process tree block while walking up the tree. 8901 * 8902 * when wc->stage == DROP_REFERENCE, this function drops 8903 * reference count on the block. 8904 * 8905 * when wc->stage == UPDATE_BACKREF, this function changes 8906 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8907 * to UPDATE_BACKREF previously while processing the block. 8908 * 8909 * NOTE: return value 1 means we should stop walking up. 8910 */ 8911 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8912 struct btrfs_root *root, 8913 struct btrfs_path *path, 8914 struct walk_control *wc) 8915 { 8916 struct btrfs_fs_info *fs_info = root->fs_info; 8917 int ret; 8918 int level = wc->level; 8919 struct extent_buffer *eb = path->nodes[level]; 8920 u64 parent = 0; 8921 8922 if (wc->stage == UPDATE_BACKREF) { 8923 BUG_ON(wc->shared_level < level); 8924 if (level < wc->shared_level) 8925 goto out; 8926 8927 ret = find_next_key(path, level + 1, &wc->update_progress); 8928 if (ret > 0) 8929 wc->update_ref = 0; 8930 8931 wc->stage = DROP_REFERENCE; 8932 wc->shared_level = -1; 8933 path->slots[level] = 0; 8934 8935 /* 8936 * check reference count again if the block isn't locked. 8937 * we should start walking down the tree again if reference 8938 * count is one. 8939 */ 8940 if (!path->locks[level]) { 8941 BUG_ON(level == 0); 8942 btrfs_tree_lock(eb); 8943 btrfs_set_lock_blocking(eb); 8944 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8945 8946 ret = btrfs_lookup_extent_info(trans, fs_info, 8947 eb->start, level, 1, 8948 &wc->refs[level], 8949 &wc->flags[level]); 8950 if (ret < 0) { 8951 btrfs_tree_unlock_rw(eb, path->locks[level]); 8952 path->locks[level] = 0; 8953 return ret; 8954 } 8955 BUG_ON(wc->refs[level] == 0); 8956 if (wc->refs[level] == 1) { 8957 btrfs_tree_unlock_rw(eb, path->locks[level]); 8958 path->locks[level] = 0; 8959 return 1; 8960 } 8961 } 8962 } 8963 8964 /* wc->stage == DROP_REFERENCE */ 8965 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8966 8967 if (wc->refs[level] == 1) { 8968 if (level == 0) { 8969 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8970 ret = btrfs_dec_ref(trans, root, eb, 1); 8971 else 8972 ret = btrfs_dec_ref(trans, root, eb, 0); 8973 BUG_ON(ret); /* -ENOMEM */ 8974 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8975 if (ret) { 8976 btrfs_err_rl(fs_info, 8977 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8978 ret); 8979 } 8980 } 8981 /* make block locked assertion in clean_tree_block happy */ 8982 if (!path->locks[level] && 8983 btrfs_header_generation(eb) == trans->transid) { 8984 btrfs_tree_lock(eb); 8985 btrfs_set_lock_blocking(eb); 8986 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8987 } 8988 clean_tree_block(fs_info, eb); 8989 } 8990 8991 if (eb == root->node) { 8992 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8993 parent = eb->start; 8994 else 8995 BUG_ON(root->root_key.objectid != 8996 btrfs_header_owner(eb)); 8997 } else { 8998 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8999 parent = path->nodes[level + 1]->start; 9000 else 9001 BUG_ON(root->root_key.objectid != 9002 btrfs_header_owner(path->nodes[level + 1])); 9003 } 9004 9005 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9006 out: 9007 wc->refs[level] = 0; 9008 wc->flags[level] = 0; 9009 return 0; 9010 } 9011 9012 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9013 struct btrfs_root *root, 9014 struct btrfs_path *path, 9015 struct walk_control *wc) 9016 { 9017 int level = wc->level; 9018 int lookup_info = 1; 9019 int ret; 9020 9021 while (level >= 0) { 9022 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9023 if (ret > 0) 9024 break; 9025 9026 if (level == 0) 9027 break; 9028 9029 if (path->slots[level] >= 9030 btrfs_header_nritems(path->nodes[level])) 9031 break; 9032 9033 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9034 if (ret > 0) { 9035 path->slots[level]++; 9036 continue; 9037 } else if (ret < 0) 9038 return ret; 9039 level = wc->level; 9040 } 9041 return 0; 9042 } 9043 9044 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9045 struct btrfs_root *root, 9046 struct btrfs_path *path, 9047 struct walk_control *wc, int max_level) 9048 { 9049 int level = wc->level; 9050 int ret; 9051 9052 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9053 while (level < max_level && path->nodes[level]) { 9054 wc->level = level; 9055 if (path->slots[level] + 1 < 9056 btrfs_header_nritems(path->nodes[level])) { 9057 path->slots[level]++; 9058 return 0; 9059 } else { 9060 ret = walk_up_proc(trans, root, path, wc); 9061 if (ret > 0) 9062 return 0; 9063 9064 if (path->locks[level]) { 9065 btrfs_tree_unlock_rw(path->nodes[level], 9066 path->locks[level]); 9067 path->locks[level] = 0; 9068 } 9069 free_extent_buffer(path->nodes[level]); 9070 path->nodes[level] = NULL; 9071 level++; 9072 } 9073 } 9074 return 1; 9075 } 9076 9077 /* 9078 * drop a subvolume tree. 9079 * 9080 * this function traverses the tree freeing any blocks that only 9081 * referenced by the tree. 9082 * 9083 * when a shared tree block is found. this function decreases its 9084 * reference count by one. if update_ref is true, this function 9085 * also make sure backrefs for the shared block and all lower level 9086 * blocks are properly updated. 9087 * 9088 * If called with for_reloc == 0, may exit early with -EAGAIN 9089 */ 9090 int btrfs_drop_snapshot(struct btrfs_root *root, 9091 struct btrfs_block_rsv *block_rsv, int update_ref, 9092 int for_reloc) 9093 { 9094 struct btrfs_fs_info *fs_info = root->fs_info; 9095 struct btrfs_path *path; 9096 struct btrfs_trans_handle *trans; 9097 struct btrfs_root *tree_root = fs_info->tree_root; 9098 struct btrfs_root_item *root_item = &root->root_item; 9099 struct walk_control *wc; 9100 struct btrfs_key key; 9101 int err = 0; 9102 int ret; 9103 int level; 9104 bool root_dropped = false; 9105 9106 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9107 9108 path = btrfs_alloc_path(); 9109 if (!path) { 9110 err = -ENOMEM; 9111 goto out; 9112 } 9113 9114 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9115 if (!wc) { 9116 btrfs_free_path(path); 9117 err = -ENOMEM; 9118 goto out; 9119 } 9120 9121 trans = btrfs_start_transaction(tree_root, 0); 9122 if (IS_ERR(trans)) { 9123 err = PTR_ERR(trans); 9124 goto out_free; 9125 } 9126 9127 if (block_rsv) 9128 trans->block_rsv = block_rsv; 9129 9130 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9131 level = btrfs_header_level(root->node); 9132 path->nodes[level] = btrfs_lock_root_node(root); 9133 btrfs_set_lock_blocking(path->nodes[level]); 9134 path->slots[level] = 0; 9135 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9136 memset(&wc->update_progress, 0, 9137 sizeof(wc->update_progress)); 9138 } else { 9139 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9140 memcpy(&wc->update_progress, &key, 9141 sizeof(wc->update_progress)); 9142 9143 level = root_item->drop_level; 9144 BUG_ON(level == 0); 9145 path->lowest_level = level; 9146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9147 path->lowest_level = 0; 9148 if (ret < 0) { 9149 err = ret; 9150 goto out_end_trans; 9151 } 9152 WARN_ON(ret > 0); 9153 9154 /* 9155 * unlock our path, this is safe because only this 9156 * function is allowed to delete this snapshot 9157 */ 9158 btrfs_unlock_up_safe(path, 0); 9159 9160 level = btrfs_header_level(root->node); 9161 while (1) { 9162 btrfs_tree_lock(path->nodes[level]); 9163 btrfs_set_lock_blocking(path->nodes[level]); 9164 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9165 9166 ret = btrfs_lookup_extent_info(trans, fs_info, 9167 path->nodes[level]->start, 9168 level, 1, &wc->refs[level], 9169 &wc->flags[level]); 9170 if (ret < 0) { 9171 err = ret; 9172 goto out_end_trans; 9173 } 9174 BUG_ON(wc->refs[level] == 0); 9175 9176 if (level == root_item->drop_level) 9177 break; 9178 9179 btrfs_tree_unlock(path->nodes[level]); 9180 path->locks[level] = 0; 9181 WARN_ON(wc->refs[level] != 1); 9182 level--; 9183 } 9184 } 9185 9186 wc->level = level; 9187 wc->shared_level = -1; 9188 wc->stage = DROP_REFERENCE; 9189 wc->update_ref = update_ref; 9190 wc->keep_locks = 0; 9191 wc->for_reloc = for_reloc; 9192 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9193 9194 while (1) { 9195 9196 ret = walk_down_tree(trans, root, path, wc); 9197 if (ret < 0) { 9198 err = ret; 9199 break; 9200 } 9201 9202 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9203 if (ret < 0) { 9204 err = ret; 9205 break; 9206 } 9207 9208 if (ret > 0) { 9209 BUG_ON(wc->stage != DROP_REFERENCE); 9210 break; 9211 } 9212 9213 if (wc->stage == DROP_REFERENCE) { 9214 level = wc->level; 9215 btrfs_node_key(path->nodes[level], 9216 &root_item->drop_progress, 9217 path->slots[level]); 9218 root_item->drop_level = level; 9219 } 9220 9221 BUG_ON(wc->level == 0); 9222 if (btrfs_should_end_transaction(trans) || 9223 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9224 ret = btrfs_update_root(trans, tree_root, 9225 &root->root_key, 9226 root_item); 9227 if (ret) { 9228 btrfs_abort_transaction(trans, ret); 9229 err = ret; 9230 goto out_end_trans; 9231 } 9232 9233 btrfs_end_transaction_throttle(trans); 9234 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9235 btrfs_debug(fs_info, 9236 "drop snapshot early exit"); 9237 err = -EAGAIN; 9238 goto out_free; 9239 } 9240 9241 trans = btrfs_start_transaction(tree_root, 0); 9242 if (IS_ERR(trans)) { 9243 err = PTR_ERR(trans); 9244 goto out_free; 9245 } 9246 if (block_rsv) 9247 trans->block_rsv = block_rsv; 9248 } 9249 } 9250 btrfs_release_path(path); 9251 if (err) 9252 goto out_end_trans; 9253 9254 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9255 if (ret) { 9256 btrfs_abort_transaction(trans, ret); 9257 err = ret; 9258 goto out_end_trans; 9259 } 9260 9261 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9262 ret = btrfs_find_root(tree_root, &root->root_key, path, 9263 NULL, NULL); 9264 if (ret < 0) { 9265 btrfs_abort_transaction(trans, ret); 9266 err = ret; 9267 goto out_end_trans; 9268 } else if (ret > 0) { 9269 /* if we fail to delete the orphan item this time 9270 * around, it'll get picked up the next time. 9271 * 9272 * The most common failure here is just -ENOENT. 9273 */ 9274 btrfs_del_orphan_item(trans, tree_root, 9275 root->root_key.objectid); 9276 } 9277 } 9278 9279 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9280 btrfs_add_dropped_root(trans, root); 9281 } else { 9282 free_extent_buffer(root->node); 9283 free_extent_buffer(root->commit_root); 9284 btrfs_put_fs_root(root); 9285 } 9286 root_dropped = true; 9287 out_end_trans: 9288 btrfs_end_transaction_throttle(trans); 9289 out_free: 9290 kfree(wc); 9291 btrfs_free_path(path); 9292 out: 9293 /* 9294 * So if we need to stop dropping the snapshot for whatever reason we 9295 * need to make sure to add it back to the dead root list so that we 9296 * keep trying to do the work later. This also cleans up roots if we 9297 * don't have it in the radix (like when we recover after a power fail 9298 * or unmount) so we don't leak memory. 9299 */ 9300 if (!for_reloc && !root_dropped) 9301 btrfs_add_dead_root(root); 9302 if (err && err != -EAGAIN) 9303 btrfs_handle_fs_error(fs_info, err, NULL); 9304 return err; 9305 } 9306 9307 /* 9308 * drop subtree rooted at tree block 'node'. 9309 * 9310 * NOTE: this function will unlock and release tree block 'node' 9311 * only used by relocation code 9312 */ 9313 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9314 struct btrfs_root *root, 9315 struct extent_buffer *node, 9316 struct extent_buffer *parent) 9317 { 9318 struct btrfs_fs_info *fs_info = root->fs_info; 9319 struct btrfs_path *path; 9320 struct walk_control *wc; 9321 int level; 9322 int parent_level; 9323 int ret = 0; 9324 int wret; 9325 9326 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9327 9328 path = btrfs_alloc_path(); 9329 if (!path) 9330 return -ENOMEM; 9331 9332 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9333 if (!wc) { 9334 btrfs_free_path(path); 9335 return -ENOMEM; 9336 } 9337 9338 btrfs_assert_tree_locked(parent); 9339 parent_level = btrfs_header_level(parent); 9340 extent_buffer_get(parent); 9341 path->nodes[parent_level] = parent; 9342 path->slots[parent_level] = btrfs_header_nritems(parent); 9343 9344 btrfs_assert_tree_locked(node); 9345 level = btrfs_header_level(node); 9346 path->nodes[level] = node; 9347 path->slots[level] = 0; 9348 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9349 9350 wc->refs[parent_level] = 1; 9351 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9352 wc->level = level; 9353 wc->shared_level = -1; 9354 wc->stage = DROP_REFERENCE; 9355 wc->update_ref = 0; 9356 wc->keep_locks = 1; 9357 wc->for_reloc = 1; 9358 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9359 9360 while (1) { 9361 wret = walk_down_tree(trans, root, path, wc); 9362 if (wret < 0) { 9363 ret = wret; 9364 break; 9365 } 9366 9367 wret = walk_up_tree(trans, root, path, wc, parent_level); 9368 if (wret < 0) 9369 ret = wret; 9370 if (wret != 0) 9371 break; 9372 } 9373 9374 kfree(wc); 9375 btrfs_free_path(path); 9376 return ret; 9377 } 9378 9379 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9380 { 9381 u64 num_devices; 9382 u64 stripped; 9383 9384 /* 9385 * if restripe for this chunk_type is on pick target profile and 9386 * return, otherwise do the usual balance 9387 */ 9388 stripped = get_restripe_target(fs_info, flags); 9389 if (stripped) 9390 return extended_to_chunk(stripped); 9391 9392 num_devices = fs_info->fs_devices->rw_devices; 9393 9394 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9395 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9396 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9397 9398 if (num_devices == 1) { 9399 stripped |= BTRFS_BLOCK_GROUP_DUP; 9400 stripped = flags & ~stripped; 9401 9402 /* turn raid0 into single device chunks */ 9403 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9404 return stripped; 9405 9406 /* turn mirroring into duplication */ 9407 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9408 BTRFS_BLOCK_GROUP_RAID10)) 9409 return stripped | BTRFS_BLOCK_GROUP_DUP; 9410 } else { 9411 /* they already had raid on here, just return */ 9412 if (flags & stripped) 9413 return flags; 9414 9415 stripped |= BTRFS_BLOCK_GROUP_DUP; 9416 stripped = flags & ~stripped; 9417 9418 /* switch duplicated blocks with raid1 */ 9419 if (flags & BTRFS_BLOCK_GROUP_DUP) 9420 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9421 9422 /* this is drive concat, leave it alone */ 9423 } 9424 9425 return flags; 9426 } 9427 9428 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9429 { 9430 struct btrfs_space_info *sinfo = cache->space_info; 9431 u64 num_bytes; 9432 u64 min_allocable_bytes; 9433 int ret = -ENOSPC; 9434 9435 /* 9436 * We need some metadata space and system metadata space for 9437 * allocating chunks in some corner cases until we force to set 9438 * it to be readonly. 9439 */ 9440 if ((sinfo->flags & 9441 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9442 !force) 9443 min_allocable_bytes = SZ_1M; 9444 else 9445 min_allocable_bytes = 0; 9446 9447 spin_lock(&sinfo->lock); 9448 spin_lock(&cache->lock); 9449 9450 if (cache->ro) { 9451 cache->ro++; 9452 ret = 0; 9453 goto out; 9454 } 9455 9456 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9457 cache->bytes_super - btrfs_block_group_used(&cache->item); 9458 9459 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9460 min_allocable_bytes <= sinfo->total_bytes) { 9461 sinfo->bytes_readonly += num_bytes; 9462 cache->ro++; 9463 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9464 ret = 0; 9465 } 9466 out: 9467 spin_unlock(&cache->lock); 9468 spin_unlock(&sinfo->lock); 9469 return ret; 9470 } 9471 9472 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9473 struct btrfs_block_group_cache *cache) 9474 9475 { 9476 struct btrfs_trans_handle *trans; 9477 u64 alloc_flags; 9478 int ret; 9479 9480 again: 9481 trans = btrfs_join_transaction(fs_info->extent_root); 9482 if (IS_ERR(trans)) 9483 return PTR_ERR(trans); 9484 9485 /* 9486 * we're not allowed to set block groups readonly after the dirty 9487 * block groups cache has started writing. If it already started, 9488 * back off and let this transaction commit 9489 */ 9490 mutex_lock(&fs_info->ro_block_group_mutex); 9491 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9492 u64 transid = trans->transid; 9493 9494 mutex_unlock(&fs_info->ro_block_group_mutex); 9495 btrfs_end_transaction(trans); 9496 9497 ret = btrfs_wait_for_commit(fs_info, transid); 9498 if (ret) 9499 return ret; 9500 goto again; 9501 } 9502 9503 /* 9504 * if we are changing raid levels, try to allocate a corresponding 9505 * block group with the new raid level. 9506 */ 9507 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9508 if (alloc_flags != cache->flags) { 9509 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9510 CHUNK_ALLOC_FORCE); 9511 /* 9512 * ENOSPC is allowed here, we may have enough space 9513 * already allocated at the new raid level to 9514 * carry on 9515 */ 9516 if (ret == -ENOSPC) 9517 ret = 0; 9518 if (ret < 0) 9519 goto out; 9520 } 9521 9522 ret = inc_block_group_ro(cache, 0); 9523 if (!ret) 9524 goto out; 9525 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9526 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9527 CHUNK_ALLOC_FORCE); 9528 if (ret < 0) 9529 goto out; 9530 ret = inc_block_group_ro(cache, 0); 9531 out: 9532 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9533 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9534 mutex_lock(&fs_info->chunk_mutex); 9535 check_system_chunk(trans, fs_info, alloc_flags); 9536 mutex_unlock(&fs_info->chunk_mutex); 9537 } 9538 mutex_unlock(&fs_info->ro_block_group_mutex); 9539 9540 btrfs_end_transaction(trans); 9541 return ret; 9542 } 9543 9544 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9545 struct btrfs_fs_info *fs_info, u64 type) 9546 { 9547 u64 alloc_flags = get_alloc_profile(fs_info, type); 9548 9549 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9550 } 9551 9552 /* 9553 * helper to account the unused space of all the readonly block group in the 9554 * space_info. takes mirrors into account. 9555 */ 9556 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9557 { 9558 struct btrfs_block_group_cache *block_group; 9559 u64 free_bytes = 0; 9560 int factor; 9561 9562 /* It's df, we don't care if it's racy */ 9563 if (list_empty(&sinfo->ro_bgs)) 9564 return 0; 9565 9566 spin_lock(&sinfo->lock); 9567 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9568 spin_lock(&block_group->lock); 9569 9570 if (!block_group->ro) { 9571 spin_unlock(&block_group->lock); 9572 continue; 9573 } 9574 9575 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9576 BTRFS_BLOCK_GROUP_RAID10 | 9577 BTRFS_BLOCK_GROUP_DUP)) 9578 factor = 2; 9579 else 9580 factor = 1; 9581 9582 free_bytes += (block_group->key.offset - 9583 btrfs_block_group_used(&block_group->item)) * 9584 factor; 9585 9586 spin_unlock(&block_group->lock); 9587 } 9588 spin_unlock(&sinfo->lock); 9589 9590 return free_bytes; 9591 } 9592 9593 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9594 { 9595 struct btrfs_space_info *sinfo = cache->space_info; 9596 u64 num_bytes; 9597 9598 BUG_ON(!cache->ro); 9599 9600 spin_lock(&sinfo->lock); 9601 spin_lock(&cache->lock); 9602 if (!--cache->ro) { 9603 num_bytes = cache->key.offset - cache->reserved - 9604 cache->pinned - cache->bytes_super - 9605 btrfs_block_group_used(&cache->item); 9606 sinfo->bytes_readonly -= num_bytes; 9607 list_del_init(&cache->ro_list); 9608 } 9609 spin_unlock(&cache->lock); 9610 spin_unlock(&sinfo->lock); 9611 } 9612 9613 /* 9614 * checks to see if its even possible to relocate this block group. 9615 * 9616 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9617 * ok to go ahead and try. 9618 */ 9619 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9620 { 9621 struct btrfs_root *root = fs_info->extent_root; 9622 struct btrfs_block_group_cache *block_group; 9623 struct btrfs_space_info *space_info; 9624 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9625 struct btrfs_device *device; 9626 struct btrfs_trans_handle *trans; 9627 u64 min_free; 9628 u64 dev_min = 1; 9629 u64 dev_nr = 0; 9630 u64 target; 9631 int debug; 9632 int index; 9633 int full = 0; 9634 int ret = 0; 9635 9636 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9637 9638 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9639 9640 /* odd, couldn't find the block group, leave it alone */ 9641 if (!block_group) { 9642 if (debug) 9643 btrfs_warn(fs_info, 9644 "can't find block group for bytenr %llu", 9645 bytenr); 9646 return -1; 9647 } 9648 9649 min_free = btrfs_block_group_used(&block_group->item); 9650 9651 /* no bytes used, we're good */ 9652 if (!min_free) 9653 goto out; 9654 9655 space_info = block_group->space_info; 9656 spin_lock(&space_info->lock); 9657 9658 full = space_info->full; 9659 9660 /* 9661 * if this is the last block group we have in this space, we can't 9662 * relocate it unless we're able to allocate a new chunk below. 9663 * 9664 * Otherwise, we need to make sure we have room in the space to handle 9665 * all of the extents from this block group. If we can, we're good 9666 */ 9667 if ((space_info->total_bytes != block_group->key.offset) && 9668 (btrfs_space_info_used(space_info, false) + min_free < 9669 space_info->total_bytes)) { 9670 spin_unlock(&space_info->lock); 9671 goto out; 9672 } 9673 spin_unlock(&space_info->lock); 9674 9675 /* 9676 * ok we don't have enough space, but maybe we have free space on our 9677 * devices to allocate new chunks for relocation, so loop through our 9678 * alloc devices and guess if we have enough space. if this block 9679 * group is going to be restriped, run checks against the target 9680 * profile instead of the current one. 9681 */ 9682 ret = -1; 9683 9684 /* 9685 * index: 9686 * 0: raid10 9687 * 1: raid1 9688 * 2: dup 9689 * 3: raid0 9690 * 4: single 9691 */ 9692 target = get_restripe_target(fs_info, block_group->flags); 9693 if (target) { 9694 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9695 } else { 9696 /* 9697 * this is just a balance, so if we were marked as full 9698 * we know there is no space for a new chunk 9699 */ 9700 if (full) { 9701 if (debug) 9702 btrfs_warn(fs_info, 9703 "no space to alloc new chunk for block group %llu", 9704 block_group->key.objectid); 9705 goto out; 9706 } 9707 9708 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9709 } 9710 9711 if (index == BTRFS_RAID_RAID10) { 9712 dev_min = 4; 9713 /* Divide by 2 */ 9714 min_free >>= 1; 9715 } else if (index == BTRFS_RAID_RAID1) { 9716 dev_min = 2; 9717 } else if (index == BTRFS_RAID_DUP) { 9718 /* Multiply by 2 */ 9719 min_free <<= 1; 9720 } else if (index == BTRFS_RAID_RAID0) { 9721 dev_min = fs_devices->rw_devices; 9722 min_free = div64_u64(min_free, dev_min); 9723 } 9724 9725 /* We need to do this so that we can look at pending chunks */ 9726 trans = btrfs_join_transaction(root); 9727 if (IS_ERR(trans)) { 9728 ret = PTR_ERR(trans); 9729 goto out; 9730 } 9731 9732 mutex_lock(&fs_info->chunk_mutex); 9733 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9734 u64 dev_offset; 9735 9736 /* 9737 * check to make sure we can actually find a chunk with enough 9738 * space to fit our block group in. 9739 */ 9740 if (device->total_bytes > device->bytes_used + min_free && 9741 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9742 ret = find_free_dev_extent(trans, device, min_free, 9743 &dev_offset, NULL); 9744 if (!ret) 9745 dev_nr++; 9746 9747 if (dev_nr >= dev_min) 9748 break; 9749 9750 ret = -1; 9751 } 9752 } 9753 if (debug && ret == -1) 9754 btrfs_warn(fs_info, 9755 "no space to allocate a new chunk for block group %llu", 9756 block_group->key.objectid); 9757 mutex_unlock(&fs_info->chunk_mutex); 9758 btrfs_end_transaction(trans); 9759 out: 9760 btrfs_put_block_group(block_group); 9761 return ret; 9762 } 9763 9764 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9765 struct btrfs_path *path, 9766 struct btrfs_key *key) 9767 { 9768 struct btrfs_root *root = fs_info->extent_root; 9769 int ret = 0; 9770 struct btrfs_key found_key; 9771 struct extent_buffer *leaf; 9772 int slot; 9773 9774 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9775 if (ret < 0) 9776 goto out; 9777 9778 while (1) { 9779 slot = path->slots[0]; 9780 leaf = path->nodes[0]; 9781 if (slot >= btrfs_header_nritems(leaf)) { 9782 ret = btrfs_next_leaf(root, path); 9783 if (ret == 0) 9784 continue; 9785 if (ret < 0) 9786 goto out; 9787 break; 9788 } 9789 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9790 9791 if (found_key.objectid >= key->objectid && 9792 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9793 struct extent_map_tree *em_tree; 9794 struct extent_map *em; 9795 9796 em_tree = &root->fs_info->mapping_tree.map_tree; 9797 read_lock(&em_tree->lock); 9798 em = lookup_extent_mapping(em_tree, found_key.objectid, 9799 found_key.offset); 9800 read_unlock(&em_tree->lock); 9801 if (!em) { 9802 btrfs_err(fs_info, 9803 "logical %llu len %llu found bg but no related chunk", 9804 found_key.objectid, found_key.offset); 9805 ret = -ENOENT; 9806 } else { 9807 ret = 0; 9808 } 9809 free_extent_map(em); 9810 goto out; 9811 } 9812 path->slots[0]++; 9813 } 9814 out: 9815 return ret; 9816 } 9817 9818 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9819 { 9820 struct btrfs_block_group_cache *block_group; 9821 u64 last = 0; 9822 9823 while (1) { 9824 struct inode *inode; 9825 9826 block_group = btrfs_lookup_first_block_group(info, last); 9827 while (block_group) { 9828 spin_lock(&block_group->lock); 9829 if (block_group->iref) 9830 break; 9831 spin_unlock(&block_group->lock); 9832 block_group = next_block_group(info, block_group); 9833 } 9834 if (!block_group) { 9835 if (last == 0) 9836 break; 9837 last = 0; 9838 continue; 9839 } 9840 9841 inode = block_group->inode; 9842 block_group->iref = 0; 9843 block_group->inode = NULL; 9844 spin_unlock(&block_group->lock); 9845 ASSERT(block_group->io_ctl.inode == NULL); 9846 iput(inode); 9847 last = block_group->key.objectid + block_group->key.offset; 9848 btrfs_put_block_group(block_group); 9849 } 9850 } 9851 9852 /* 9853 * Must be called only after stopping all workers, since we could have block 9854 * group caching kthreads running, and therefore they could race with us if we 9855 * freed the block groups before stopping them. 9856 */ 9857 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9858 { 9859 struct btrfs_block_group_cache *block_group; 9860 struct btrfs_space_info *space_info; 9861 struct btrfs_caching_control *caching_ctl; 9862 struct rb_node *n; 9863 9864 down_write(&info->commit_root_sem); 9865 while (!list_empty(&info->caching_block_groups)) { 9866 caching_ctl = list_entry(info->caching_block_groups.next, 9867 struct btrfs_caching_control, list); 9868 list_del(&caching_ctl->list); 9869 put_caching_control(caching_ctl); 9870 } 9871 up_write(&info->commit_root_sem); 9872 9873 spin_lock(&info->unused_bgs_lock); 9874 while (!list_empty(&info->unused_bgs)) { 9875 block_group = list_first_entry(&info->unused_bgs, 9876 struct btrfs_block_group_cache, 9877 bg_list); 9878 list_del_init(&block_group->bg_list); 9879 btrfs_put_block_group(block_group); 9880 } 9881 spin_unlock(&info->unused_bgs_lock); 9882 9883 spin_lock(&info->block_group_cache_lock); 9884 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9885 block_group = rb_entry(n, struct btrfs_block_group_cache, 9886 cache_node); 9887 rb_erase(&block_group->cache_node, 9888 &info->block_group_cache_tree); 9889 RB_CLEAR_NODE(&block_group->cache_node); 9890 spin_unlock(&info->block_group_cache_lock); 9891 9892 down_write(&block_group->space_info->groups_sem); 9893 list_del(&block_group->list); 9894 up_write(&block_group->space_info->groups_sem); 9895 9896 /* 9897 * We haven't cached this block group, which means we could 9898 * possibly have excluded extents on this block group. 9899 */ 9900 if (block_group->cached == BTRFS_CACHE_NO || 9901 block_group->cached == BTRFS_CACHE_ERROR) 9902 free_excluded_extents(info, block_group); 9903 9904 btrfs_remove_free_space_cache(block_group); 9905 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9906 ASSERT(list_empty(&block_group->dirty_list)); 9907 ASSERT(list_empty(&block_group->io_list)); 9908 ASSERT(list_empty(&block_group->bg_list)); 9909 ASSERT(atomic_read(&block_group->count) == 1); 9910 btrfs_put_block_group(block_group); 9911 9912 spin_lock(&info->block_group_cache_lock); 9913 } 9914 spin_unlock(&info->block_group_cache_lock); 9915 9916 /* now that all the block groups are freed, go through and 9917 * free all the space_info structs. This is only called during 9918 * the final stages of unmount, and so we know nobody is 9919 * using them. We call synchronize_rcu() once before we start, 9920 * just to be on the safe side. 9921 */ 9922 synchronize_rcu(); 9923 9924 release_global_block_rsv(info); 9925 9926 while (!list_empty(&info->space_info)) { 9927 int i; 9928 9929 space_info = list_entry(info->space_info.next, 9930 struct btrfs_space_info, 9931 list); 9932 9933 /* 9934 * Do not hide this behind enospc_debug, this is actually 9935 * important and indicates a real bug if this happens. 9936 */ 9937 if (WARN_ON(space_info->bytes_pinned > 0 || 9938 space_info->bytes_reserved > 0 || 9939 space_info->bytes_may_use > 0)) 9940 dump_space_info(info, space_info, 0, 0); 9941 list_del(&space_info->list); 9942 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9943 struct kobject *kobj; 9944 kobj = space_info->block_group_kobjs[i]; 9945 space_info->block_group_kobjs[i] = NULL; 9946 if (kobj) { 9947 kobject_del(kobj); 9948 kobject_put(kobj); 9949 } 9950 } 9951 kobject_del(&space_info->kobj); 9952 kobject_put(&space_info->kobj); 9953 } 9954 return 0; 9955 } 9956 9957 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9958 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9959 { 9960 struct btrfs_space_info *space_info; 9961 struct raid_kobject *rkobj; 9962 LIST_HEAD(list); 9963 int index; 9964 int ret = 0; 9965 9966 spin_lock(&fs_info->pending_raid_kobjs_lock); 9967 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9968 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9969 9970 list_for_each_entry(rkobj, &list, list) { 9971 space_info = __find_space_info(fs_info, rkobj->flags); 9972 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9973 9974 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9975 "%s", get_raid_name(index)); 9976 if (ret) { 9977 kobject_put(&rkobj->kobj); 9978 break; 9979 } 9980 } 9981 if (ret) 9982 btrfs_warn(fs_info, 9983 "failed to add kobject for block cache, ignoring"); 9984 } 9985 9986 static void link_block_group(struct btrfs_block_group_cache *cache) 9987 { 9988 struct btrfs_space_info *space_info = cache->space_info; 9989 struct btrfs_fs_info *fs_info = cache->fs_info; 9990 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9991 bool first = false; 9992 9993 down_write(&space_info->groups_sem); 9994 if (list_empty(&space_info->block_groups[index])) 9995 first = true; 9996 list_add_tail(&cache->list, &space_info->block_groups[index]); 9997 up_write(&space_info->groups_sem); 9998 9999 if (first) { 10000 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 10001 if (!rkobj) { 10002 btrfs_warn(cache->fs_info, 10003 "couldn't alloc memory for raid level kobject"); 10004 return; 10005 } 10006 rkobj->flags = cache->flags; 10007 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10008 10009 spin_lock(&fs_info->pending_raid_kobjs_lock); 10010 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 10011 spin_unlock(&fs_info->pending_raid_kobjs_lock); 10012 space_info->block_group_kobjs[index] = &rkobj->kobj; 10013 } 10014 } 10015 10016 static struct btrfs_block_group_cache * 10017 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 10018 u64 start, u64 size) 10019 { 10020 struct btrfs_block_group_cache *cache; 10021 10022 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10023 if (!cache) 10024 return NULL; 10025 10026 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10027 GFP_NOFS); 10028 if (!cache->free_space_ctl) { 10029 kfree(cache); 10030 return NULL; 10031 } 10032 10033 cache->key.objectid = start; 10034 cache->key.offset = size; 10035 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10036 10037 cache->fs_info = fs_info; 10038 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 10039 set_free_space_tree_thresholds(cache); 10040 10041 atomic_set(&cache->count, 1); 10042 spin_lock_init(&cache->lock); 10043 init_rwsem(&cache->data_rwsem); 10044 INIT_LIST_HEAD(&cache->list); 10045 INIT_LIST_HEAD(&cache->cluster_list); 10046 INIT_LIST_HEAD(&cache->bg_list); 10047 INIT_LIST_HEAD(&cache->ro_list); 10048 INIT_LIST_HEAD(&cache->dirty_list); 10049 INIT_LIST_HEAD(&cache->io_list); 10050 btrfs_init_free_space_ctl(cache); 10051 atomic_set(&cache->trimming, 0); 10052 mutex_init(&cache->free_space_lock); 10053 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10054 10055 return cache; 10056 } 10057 10058 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10059 { 10060 struct btrfs_path *path; 10061 int ret; 10062 struct btrfs_block_group_cache *cache; 10063 struct btrfs_space_info *space_info; 10064 struct btrfs_key key; 10065 struct btrfs_key found_key; 10066 struct extent_buffer *leaf; 10067 int need_clear = 0; 10068 u64 cache_gen; 10069 u64 feature; 10070 int mixed; 10071 10072 feature = btrfs_super_incompat_flags(info->super_copy); 10073 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10074 10075 key.objectid = 0; 10076 key.offset = 0; 10077 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10078 path = btrfs_alloc_path(); 10079 if (!path) 10080 return -ENOMEM; 10081 path->reada = READA_FORWARD; 10082 10083 cache_gen = btrfs_super_cache_generation(info->super_copy); 10084 if (btrfs_test_opt(info, SPACE_CACHE) && 10085 btrfs_super_generation(info->super_copy) != cache_gen) 10086 need_clear = 1; 10087 if (btrfs_test_opt(info, CLEAR_CACHE)) 10088 need_clear = 1; 10089 10090 while (1) { 10091 ret = find_first_block_group(info, path, &key); 10092 if (ret > 0) 10093 break; 10094 if (ret != 0) 10095 goto error; 10096 10097 leaf = path->nodes[0]; 10098 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10099 10100 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10101 found_key.offset); 10102 if (!cache) { 10103 ret = -ENOMEM; 10104 goto error; 10105 } 10106 10107 if (need_clear) { 10108 /* 10109 * When we mount with old space cache, we need to 10110 * set BTRFS_DC_CLEAR and set dirty flag. 10111 * 10112 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10113 * truncate the old free space cache inode and 10114 * setup a new one. 10115 * b) Setting 'dirty flag' makes sure that we flush 10116 * the new space cache info onto disk. 10117 */ 10118 if (btrfs_test_opt(info, SPACE_CACHE)) 10119 cache->disk_cache_state = BTRFS_DC_CLEAR; 10120 } 10121 10122 read_extent_buffer(leaf, &cache->item, 10123 btrfs_item_ptr_offset(leaf, path->slots[0]), 10124 sizeof(cache->item)); 10125 cache->flags = btrfs_block_group_flags(&cache->item); 10126 if (!mixed && 10127 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10128 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10129 btrfs_err(info, 10130 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10131 cache->key.objectid); 10132 ret = -EINVAL; 10133 goto error; 10134 } 10135 10136 key.objectid = found_key.objectid + found_key.offset; 10137 btrfs_release_path(path); 10138 10139 /* 10140 * We need to exclude the super stripes now so that the space 10141 * info has super bytes accounted for, otherwise we'll think 10142 * we have more space than we actually do. 10143 */ 10144 ret = exclude_super_stripes(info, cache); 10145 if (ret) { 10146 /* 10147 * We may have excluded something, so call this just in 10148 * case. 10149 */ 10150 free_excluded_extents(info, cache); 10151 btrfs_put_block_group(cache); 10152 goto error; 10153 } 10154 10155 /* 10156 * check for two cases, either we are full, and therefore 10157 * don't need to bother with the caching work since we won't 10158 * find any space, or we are empty, and we can just add all 10159 * the space in and be done with it. This saves us _alot_ of 10160 * time, particularly in the full case. 10161 */ 10162 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10163 cache->last_byte_to_unpin = (u64)-1; 10164 cache->cached = BTRFS_CACHE_FINISHED; 10165 free_excluded_extents(info, cache); 10166 } else if (btrfs_block_group_used(&cache->item) == 0) { 10167 cache->last_byte_to_unpin = (u64)-1; 10168 cache->cached = BTRFS_CACHE_FINISHED; 10169 add_new_free_space(cache, info, 10170 found_key.objectid, 10171 found_key.objectid + 10172 found_key.offset); 10173 free_excluded_extents(info, cache); 10174 } 10175 10176 ret = btrfs_add_block_group_cache(info, cache); 10177 if (ret) { 10178 btrfs_remove_free_space_cache(cache); 10179 btrfs_put_block_group(cache); 10180 goto error; 10181 } 10182 10183 trace_btrfs_add_block_group(info, cache, 0); 10184 update_space_info(info, cache->flags, found_key.offset, 10185 btrfs_block_group_used(&cache->item), 10186 cache->bytes_super, &space_info); 10187 10188 cache->space_info = space_info; 10189 10190 link_block_group(cache); 10191 10192 set_avail_alloc_bits(info, cache->flags); 10193 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10194 inc_block_group_ro(cache, 1); 10195 } else if (btrfs_block_group_used(&cache->item) == 0) { 10196 spin_lock(&info->unused_bgs_lock); 10197 /* Should always be true but just in case. */ 10198 if (list_empty(&cache->bg_list)) { 10199 btrfs_get_block_group(cache); 10200 list_add_tail(&cache->bg_list, 10201 &info->unused_bgs); 10202 } 10203 spin_unlock(&info->unused_bgs_lock); 10204 } 10205 } 10206 10207 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10208 if (!(get_alloc_profile(info, space_info->flags) & 10209 (BTRFS_BLOCK_GROUP_RAID10 | 10210 BTRFS_BLOCK_GROUP_RAID1 | 10211 BTRFS_BLOCK_GROUP_RAID5 | 10212 BTRFS_BLOCK_GROUP_RAID6 | 10213 BTRFS_BLOCK_GROUP_DUP))) 10214 continue; 10215 /* 10216 * avoid allocating from un-mirrored block group if there are 10217 * mirrored block groups. 10218 */ 10219 list_for_each_entry(cache, 10220 &space_info->block_groups[BTRFS_RAID_RAID0], 10221 list) 10222 inc_block_group_ro(cache, 1); 10223 list_for_each_entry(cache, 10224 &space_info->block_groups[BTRFS_RAID_SINGLE], 10225 list) 10226 inc_block_group_ro(cache, 1); 10227 } 10228 10229 btrfs_add_raid_kobjects(info); 10230 init_global_block_rsv(info); 10231 ret = 0; 10232 error: 10233 btrfs_free_path(path); 10234 return ret; 10235 } 10236 10237 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10238 { 10239 struct btrfs_fs_info *fs_info = trans->fs_info; 10240 struct btrfs_block_group_cache *block_group, *tmp; 10241 struct btrfs_root *extent_root = fs_info->extent_root; 10242 struct btrfs_block_group_item item; 10243 struct btrfs_key key; 10244 int ret = 0; 10245 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10246 10247 trans->can_flush_pending_bgs = false; 10248 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10249 if (ret) 10250 goto next; 10251 10252 spin_lock(&block_group->lock); 10253 memcpy(&item, &block_group->item, sizeof(item)); 10254 memcpy(&key, &block_group->key, sizeof(key)); 10255 spin_unlock(&block_group->lock); 10256 10257 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10258 sizeof(item)); 10259 if (ret) 10260 btrfs_abort_transaction(trans, ret); 10261 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10262 key.offset); 10263 if (ret) 10264 btrfs_abort_transaction(trans, ret); 10265 add_block_group_free_space(trans, fs_info, block_group); 10266 /* already aborted the transaction if it failed. */ 10267 next: 10268 list_del_init(&block_group->bg_list); 10269 } 10270 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10271 } 10272 10273 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10274 struct btrfs_fs_info *fs_info, u64 bytes_used, 10275 u64 type, u64 chunk_offset, u64 size) 10276 { 10277 struct btrfs_block_group_cache *cache; 10278 int ret; 10279 10280 btrfs_set_log_full_commit(fs_info, trans); 10281 10282 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10283 if (!cache) 10284 return -ENOMEM; 10285 10286 btrfs_set_block_group_used(&cache->item, bytes_used); 10287 btrfs_set_block_group_chunk_objectid(&cache->item, 10288 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10289 btrfs_set_block_group_flags(&cache->item, type); 10290 10291 cache->flags = type; 10292 cache->last_byte_to_unpin = (u64)-1; 10293 cache->cached = BTRFS_CACHE_FINISHED; 10294 cache->needs_free_space = 1; 10295 ret = exclude_super_stripes(fs_info, cache); 10296 if (ret) { 10297 /* 10298 * We may have excluded something, so call this just in 10299 * case. 10300 */ 10301 free_excluded_extents(fs_info, cache); 10302 btrfs_put_block_group(cache); 10303 return ret; 10304 } 10305 10306 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10307 10308 free_excluded_extents(fs_info, cache); 10309 10310 #ifdef CONFIG_BTRFS_DEBUG 10311 if (btrfs_should_fragment_free_space(cache)) { 10312 u64 new_bytes_used = size - bytes_used; 10313 10314 bytes_used += new_bytes_used >> 1; 10315 fragment_free_space(cache); 10316 } 10317 #endif 10318 /* 10319 * Ensure the corresponding space_info object is created and 10320 * assigned to our block group. We want our bg to be added to the rbtree 10321 * with its ->space_info set. 10322 */ 10323 cache->space_info = __find_space_info(fs_info, cache->flags); 10324 ASSERT(cache->space_info); 10325 10326 ret = btrfs_add_block_group_cache(fs_info, cache); 10327 if (ret) { 10328 btrfs_remove_free_space_cache(cache); 10329 btrfs_put_block_group(cache); 10330 return ret; 10331 } 10332 10333 /* 10334 * Now that our block group has its ->space_info set and is inserted in 10335 * the rbtree, update the space info's counters. 10336 */ 10337 trace_btrfs_add_block_group(fs_info, cache, 1); 10338 update_space_info(fs_info, cache->flags, size, bytes_used, 10339 cache->bytes_super, &cache->space_info); 10340 update_global_block_rsv(fs_info); 10341 10342 link_block_group(cache); 10343 10344 list_add_tail(&cache->bg_list, &trans->new_bgs); 10345 10346 set_avail_alloc_bits(fs_info, type); 10347 return 0; 10348 } 10349 10350 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10351 { 10352 u64 extra_flags = chunk_to_extended(flags) & 10353 BTRFS_EXTENDED_PROFILE_MASK; 10354 10355 write_seqlock(&fs_info->profiles_lock); 10356 if (flags & BTRFS_BLOCK_GROUP_DATA) 10357 fs_info->avail_data_alloc_bits &= ~extra_flags; 10358 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10359 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10360 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10361 fs_info->avail_system_alloc_bits &= ~extra_flags; 10362 write_sequnlock(&fs_info->profiles_lock); 10363 } 10364 10365 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10366 struct btrfs_fs_info *fs_info, u64 group_start, 10367 struct extent_map *em) 10368 { 10369 struct btrfs_root *root = fs_info->extent_root; 10370 struct btrfs_path *path; 10371 struct btrfs_block_group_cache *block_group; 10372 struct btrfs_free_cluster *cluster; 10373 struct btrfs_root *tree_root = fs_info->tree_root; 10374 struct btrfs_key key; 10375 struct inode *inode; 10376 struct kobject *kobj = NULL; 10377 int ret; 10378 int index; 10379 int factor; 10380 struct btrfs_caching_control *caching_ctl = NULL; 10381 bool remove_em; 10382 10383 block_group = btrfs_lookup_block_group(fs_info, group_start); 10384 BUG_ON(!block_group); 10385 BUG_ON(!block_group->ro); 10386 10387 /* 10388 * Free the reserved super bytes from this block group before 10389 * remove it. 10390 */ 10391 free_excluded_extents(fs_info, block_group); 10392 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10393 block_group->key.offset); 10394 10395 memcpy(&key, &block_group->key, sizeof(key)); 10396 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10397 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10398 BTRFS_BLOCK_GROUP_RAID1 | 10399 BTRFS_BLOCK_GROUP_RAID10)) 10400 factor = 2; 10401 else 10402 factor = 1; 10403 10404 /* make sure this block group isn't part of an allocation cluster */ 10405 cluster = &fs_info->data_alloc_cluster; 10406 spin_lock(&cluster->refill_lock); 10407 btrfs_return_cluster_to_free_space(block_group, cluster); 10408 spin_unlock(&cluster->refill_lock); 10409 10410 /* 10411 * make sure this block group isn't part of a metadata 10412 * allocation cluster 10413 */ 10414 cluster = &fs_info->meta_alloc_cluster; 10415 spin_lock(&cluster->refill_lock); 10416 btrfs_return_cluster_to_free_space(block_group, cluster); 10417 spin_unlock(&cluster->refill_lock); 10418 10419 path = btrfs_alloc_path(); 10420 if (!path) { 10421 ret = -ENOMEM; 10422 goto out; 10423 } 10424 10425 /* 10426 * get the inode first so any iput calls done for the io_list 10427 * aren't the final iput (no unlinks allowed now) 10428 */ 10429 inode = lookup_free_space_inode(fs_info, block_group, path); 10430 10431 mutex_lock(&trans->transaction->cache_write_mutex); 10432 /* 10433 * make sure our free spache cache IO is done before remove the 10434 * free space inode 10435 */ 10436 spin_lock(&trans->transaction->dirty_bgs_lock); 10437 if (!list_empty(&block_group->io_list)) { 10438 list_del_init(&block_group->io_list); 10439 10440 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10441 10442 spin_unlock(&trans->transaction->dirty_bgs_lock); 10443 btrfs_wait_cache_io(trans, block_group, path); 10444 btrfs_put_block_group(block_group); 10445 spin_lock(&trans->transaction->dirty_bgs_lock); 10446 } 10447 10448 if (!list_empty(&block_group->dirty_list)) { 10449 list_del_init(&block_group->dirty_list); 10450 btrfs_put_block_group(block_group); 10451 } 10452 spin_unlock(&trans->transaction->dirty_bgs_lock); 10453 mutex_unlock(&trans->transaction->cache_write_mutex); 10454 10455 if (!IS_ERR(inode)) { 10456 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10457 if (ret) { 10458 btrfs_add_delayed_iput(inode); 10459 goto out; 10460 } 10461 clear_nlink(inode); 10462 /* One for the block groups ref */ 10463 spin_lock(&block_group->lock); 10464 if (block_group->iref) { 10465 block_group->iref = 0; 10466 block_group->inode = NULL; 10467 spin_unlock(&block_group->lock); 10468 iput(inode); 10469 } else { 10470 spin_unlock(&block_group->lock); 10471 } 10472 /* One for our lookup ref */ 10473 btrfs_add_delayed_iput(inode); 10474 } 10475 10476 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10477 key.offset = block_group->key.objectid; 10478 key.type = 0; 10479 10480 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10481 if (ret < 0) 10482 goto out; 10483 if (ret > 0) 10484 btrfs_release_path(path); 10485 if (ret == 0) { 10486 ret = btrfs_del_item(trans, tree_root, path); 10487 if (ret) 10488 goto out; 10489 btrfs_release_path(path); 10490 } 10491 10492 spin_lock(&fs_info->block_group_cache_lock); 10493 rb_erase(&block_group->cache_node, 10494 &fs_info->block_group_cache_tree); 10495 RB_CLEAR_NODE(&block_group->cache_node); 10496 10497 if (fs_info->first_logical_byte == block_group->key.objectid) 10498 fs_info->first_logical_byte = (u64)-1; 10499 spin_unlock(&fs_info->block_group_cache_lock); 10500 10501 down_write(&block_group->space_info->groups_sem); 10502 /* 10503 * we must use list_del_init so people can check to see if they 10504 * are still on the list after taking the semaphore 10505 */ 10506 list_del_init(&block_group->list); 10507 if (list_empty(&block_group->space_info->block_groups[index])) { 10508 kobj = block_group->space_info->block_group_kobjs[index]; 10509 block_group->space_info->block_group_kobjs[index] = NULL; 10510 clear_avail_alloc_bits(fs_info, block_group->flags); 10511 } 10512 up_write(&block_group->space_info->groups_sem); 10513 if (kobj) { 10514 kobject_del(kobj); 10515 kobject_put(kobj); 10516 } 10517 10518 if (block_group->has_caching_ctl) 10519 caching_ctl = get_caching_control(block_group); 10520 if (block_group->cached == BTRFS_CACHE_STARTED) 10521 wait_block_group_cache_done(block_group); 10522 if (block_group->has_caching_ctl) { 10523 down_write(&fs_info->commit_root_sem); 10524 if (!caching_ctl) { 10525 struct btrfs_caching_control *ctl; 10526 10527 list_for_each_entry(ctl, 10528 &fs_info->caching_block_groups, list) 10529 if (ctl->block_group == block_group) { 10530 caching_ctl = ctl; 10531 refcount_inc(&caching_ctl->count); 10532 break; 10533 } 10534 } 10535 if (caching_ctl) 10536 list_del_init(&caching_ctl->list); 10537 up_write(&fs_info->commit_root_sem); 10538 if (caching_ctl) { 10539 /* Once for the caching bgs list and once for us. */ 10540 put_caching_control(caching_ctl); 10541 put_caching_control(caching_ctl); 10542 } 10543 } 10544 10545 spin_lock(&trans->transaction->dirty_bgs_lock); 10546 if (!list_empty(&block_group->dirty_list)) { 10547 WARN_ON(1); 10548 } 10549 if (!list_empty(&block_group->io_list)) { 10550 WARN_ON(1); 10551 } 10552 spin_unlock(&trans->transaction->dirty_bgs_lock); 10553 btrfs_remove_free_space_cache(block_group); 10554 10555 spin_lock(&block_group->space_info->lock); 10556 list_del_init(&block_group->ro_list); 10557 10558 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10559 WARN_ON(block_group->space_info->total_bytes 10560 < block_group->key.offset); 10561 WARN_ON(block_group->space_info->bytes_readonly 10562 < block_group->key.offset); 10563 WARN_ON(block_group->space_info->disk_total 10564 < block_group->key.offset * factor); 10565 } 10566 block_group->space_info->total_bytes -= block_group->key.offset; 10567 block_group->space_info->bytes_readonly -= block_group->key.offset; 10568 block_group->space_info->disk_total -= block_group->key.offset * factor; 10569 10570 spin_unlock(&block_group->space_info->lock); 10571 10572 memcpy(&key, &block_group->key, sizeof(key)); 10573 10574 mutex_lock(&fs_info->chunk_mutex); 10575 if (!list_empty(&em->list)) { 10576 /* We're in the transaction->pending_chunks list. */ 10577 free_extent_map(em); 10578 } 10579 spin_lock(&block_group->lock); 10580 block_group->removed = 1; 10581 /* 10582 * At this point trimming can't start on this block group, because we 10583 * removed the block group from the tree fs_info->block_group_cache_tree 10584 * so no one can't find it anymore and even if someone already got this 10585 * block group before we removed it from the rbtree, they have already 10586 * incremented block_group->trimming - if they didn't, they won't find 10587 * any free space entries because we already removed them all when we 10588 * called btrfs_remove_free_space_cache(). 10589 * 10590 * And we must not remove the extent map from the fs_info->mapping_tree 10591 * to prevent the same logical address range and physical device space 10592 * ranges from being reused for a new block group. This is because our 10593 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10594 * completely transactionless, so while it is trimming a range the 10595 * currently running transaction might finish and a new one start, 10596 * allowing for new block groups to be created that can reuse the same 10597 * physical device locations unless we take this special care. 10598 * 10599 * There may also be an implicit trim operation if the file system 10600 * is mounted with -odiscard. The same protections must remain 10601 * in place until the extents have been discarded completely when 10602 * the transaction commit has completed. 10603 */ 10604 remove_em = (atomic_read(&block_group->trimming) == 0); 10605 /* 10606 * Make sure a trimmer task always sees the em in the pinned_chunks list 10607 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10608 * before checking block_group->removed). 10609 */ 10610 if (!remove_em) { 10611 /* 10612 * Our em might be in trans->transaction->pending_chunks which 10613 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10614 * and so is the fs_info->pinned_chunks list. 10615 * 10616 * So at this point we must be holding the chunk_mutex to avoid 10617 * any races with chunk allocation (more specifically at 10618 * volumes.c:contains_pending_extent()), to ensure it always 10619 * sees the em, either in the pending_chunks list or in the 10620 * pinned_chunks list. 10621 */ 10622 list_move_tail(&em->list, &fs_info->pinned_chunks); 10623 } 10624 spin_unlock(&block_group->lock); 10625 10626 if (remove_em) { 10627 struct extent_map_tree *em_tree; 10628 10629 em_tree = &fs_info->mapping_tree.map_tree; 10630 write_lock(&em_tree->lock); 10631 /* 10632 * The em might be in the pending_chunks list, so make sure the 10633 * chunk mutex is locked, since remove_extent_mapping() will 10634 * delete us from that list. 10635 */ 10636 remove_extent_mapping(em_tree, em); 10637 write_unlock(&em_tree->lock); 10638 /* once for the tree */ 10639 free_extent_map(em); 10640 } 10641 10642 mutex_unlock(&fs_info->chunk_mutex); 10643 10644 ret = remove_block_group_free_space(trans, fs_info, block_group); 10645 if (ret) 10646 goto out; 10647 10648 btrfs_put_block_group(block_group); 10649 btrfs_put_block_group(block_group); 10650 10651 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10652 if (ret > 0) 10653 ret = -EIO; 10654 if (ret < 0) 10655 goto out; 10656 10657 ret = btrfs_del_item(trans, root, path); 10658 out: 10659 btrfs_free_path(path); 10660 return ret; 10661 } 10662 10663 struct btrfs_trans_handle * 10664 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10665 const u64 chunk_offset) 10666 { 10667 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10668 struct extent_map *em; 10669 struct map_lookup *map; 10670 unsigned int num_items; 10671 10672 read_lock(&em_tree->lock); 10673 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10674 read_unlock(&em_tree->lock); 10675 ASSERT(em && em->start == chunk_offset); 10676 10677 /* 10678 * We need to reserve 3 + N units from the metadata space info in order 10679 * to remove a block group (done at btrfs_remove_chunk() and at 10680 * btrfs_remove_block_group()), which are used for: 10681 * 10682 * 1 unit for adding the free space inode's orphan (located in the tree 10683 * of tree roots). 10684 * 1 unit for deleting the block group item (located in the extent 10685 * tree). 10686 * 1 unit for deleting the free space item (located in tree of tree 10687 * roots). 10688 * N units for deleting N device extent items corresponding to each 10689 * stripe (located in the device tree). 10690 * 10691 * In order to remove a block group we also need to reserve units in the 10692 * system space info in order to update the chunk tree (update one or 10693 * more device items and remove one chunk item), but this is done at 10694 * btrfs_remove_chunk() through a call to check_system_chunk(). 10695 */ 10696 map = em->map_lookup; 10697 num_items = 3 + map->num_stripes; 10698 free_extent_map(em); 10699 10700 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10701 num_items, 1); 10702 } 10703 10704 /* 10705 * Process the unused_bgs list and remove any that don't have any allocated 10706 * space inside of them. 10707 */ 10708 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10709 { 10710 struct btrfs_block_group_cache *block_group; 10711 struct btrfs_space_info *space_info; 10712 struct btrfs_trans_handle *trans; 10713 int ret = 0; 10714 10715 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10716 return; 10717 10718 spin_lock(&fs_info->unused_bgs_lock); 10719 while (!list_empty(&fs_info->unused_bgs)) { 10720 u64 start, end; 10721 int trimming; 10722 10723 block_group = list_first_entry(&fs_info->unused_bgs, 10724 struct btrfs_block_group_cache, 10725 bg_list); 10726 list_del_init(&block_group->bg_list); 10727 10728 space_info = block_group->space_info; 10729 10730 if (ret || btrfs_mixed_space_info(space_info)) { 10731 btrfs_put_block_group(block_group); 10732 continue; 10733 } 10734 spin_unlock(&fs_info->unused_bgs_lock); 10735 10736 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10737 10738 /* Don't want to race with allocators so take the groups_sem */ 10739 down_write(&space_info->groups_sem); 10740 spin_lock(&block_group->lock); 10741 if (block_group->reserved || 10742 btrfs_block_group_used(&block_group->item) || 10743 block_group->ro || 10744 list_is_singular(&block_group->list)) { 10745 /* 10746 * We want to bail if we made new allocations or have 10747 * outstanding allocations in this block group. We do 10748 * the ro check in case balance is currently acting on 10749 * this block group. 10750 */ 10751 spin_unlock(&block_group->lock); 10752 up_write(&space_info->groups_sem); 10753 goto next; 10754 } 10755 spin_unlock(&block_group->lock); 10756 10757 /* We don't want to force the issue, only flip if it's ok. */ 10758 ret = inc_block_group_ro(block_group, 0); 10759 up_write(&space_info->groups_sem); 10760 if (ret < 0) { 10761 ret = 0; 10762 goto next; 10763 } 10764 10765 /* 10766 * Want to do this before we do anything else so we can recover 10767 * properly if we fail to join the transaction. 10768 */ 10769 trans = btrfs_start_trans_remove_block_group(fs_info, 10770 block_group->key.objectid); 10771 if (IS_ERR(trans)) { 10772 btrfs_dec_block_group_ro(block_group); 10773 ret = PTR_ERR(trans); 10774 goto next; 10775 } 10776 10777 /* 10778 * We could have pending pinned extents for this block group, 10779 * just delete them, we don't care about them anymore. 10780 */ 10781 start = block_group->key.objectid; 10782 end = start + block_group->key.offset - 1; 10783 /* 10784 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10785 * btrfs_finish_extent_commit(). If we are at transaction N, 10786 * another task might be running finish_extent_commit() for the 10787 * previous transaction N - 1, and have seen a range belonging 10788 * to the block group in freed_extents[] before we were able to 10789 * clear the whole block group range from freed_extents[]. This 10790 * means that task can lookup for the block group after we 10791 * unpinned it from freed_extents[] and removed it, leading to 10792 * a BUG_ON() at btrfs_unpin_extent_range(). 10793 */ 10794 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10795 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10796 EXTENT_DIRTY); 10797 if (ret) { 10798 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10799 btrfs_dec_block_group_ro(block_group); 10800 goto end_trans; 10801 } 10802 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10803 EXTENT_DIRTY); 10804 if (ret) { 10805 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10806 btrfs_dec_block_group_ro(block_group); 10807 goto end_trans; 10808 } 10809 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10810 10811 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10812 spin_lock(&space_info->lock); 10813 spin_lock(&block_group->lock); 10814 10815 space_info->bytes_pinned -= block_group->pinned; 10816 space_info->bytes_readonly += block_group->pinned; 10817 percpu_counter_add(&space_info->total_bytes_pinned, 10818 -block_group->pinned); 10819 block_group->pinned = 0; 10820 10821 spin_unlock(&block_group->lock); 10822 spin_unlock(&space_info->lock); 10823 10824 /* DISCARD can flip during remount */ 10825 trimming = btrfs_test_opt(fs_info, DISCARD); 10826 10827 /* Implicit trim during transaction commit. */ 10828 if (trimming) 10829 btrfs_get_block_group_trimming(block_group); 10830 10831 /* 10832 * Btrfs_remove_chunk will abort the transaction if things go 10833 * horribly wrong. 10834 */ 10835 ret = btrfs_remove_chunk(trans, fs_info, 10836 block_group->key.objectid); 10837 10838 if (ret) { 10839 if (trimming) 10840 btrfs_put_block_group_trimming(block_group); 10841 goto end_trans; 10842 } 10843 10844 /* 10845 * If we're not mounted with -odiscard, we can just forget 10846 * about this block group. Otherwise we'll need to wait 10847 * until transaction commit to do the actual discard. 10848 */ 10849 if (trimming) { 10850 spin_lock(&fs_info->unused_bgs_lock); 10851 /* 10852 * A concurrent scrub might have added us to the list 10853 * fs_info->unused_bgs, so use a list_move operation 10854 * to add the block group to the deleted_bgs list. 10855 */ 10856 list_move(&block_group->bg_list, 10857 &trans->transaction->deleted_bgs); 10858 spin_unlock(&fs_info->unused_bgs_lock); 10859 btrfs_get_block_group(block_group); 10860 } 10861 end_trans: 10862 btrfs_end_transaction(trans); 10863 next: 10864 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10865 btrfs_put_block_group(block_group); 10866 spin_lock(&fs_info->unused_bgs_lock); 10867 } 10868 spin_unlock(&fs_info->unused_bgs_lock); 10869 } 10870 10871 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10872 { 10873 struct btrfs_space_info *space_info; 10874 struct btrfs_super_block *disk_super; 10875 u64 features; 10876 u64 flags; 10877 int mixed = 0; 10878 int ret; 10879 10880 disk_super = fs_info->super_copy; 10881 if (!btrfs_super_root(disk_super)) 10882 return -EINVAL; 10883 10884 features = btrfs_super_incompat_flags(disk_super); 10885 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10886 mixed = 1; 10887 10888 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10889 ret = create_space_info(fs_info, flags, &space_info); 10890 if (ret) 10891 goto out; 10892 10893 if (mixed) { 10894 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10895 ret = create_space_info(fs_info, flags, &space_info); 10896 } else { 10897 flags = BTRFS_BLOCK_GROUP_METADATA; 10898 ret = create_space_info(fs_info, flags, &space_info); 10899 if (ret) 10900 goto out; 10901 10902 flags = BTRFS_BLOCK_GROUP_DATA; 10903 ret = create_space_info(fs_info, flags, &space_info); 10904 } 10905 out: 10906 return ret; 10907 } 10908 10909 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10910 u64 start, u64 end) 10911 { 10912 return unpin_extent_range(fs_info, start, end, false); 10913 } 10914 10915 /* 10916 * It used to be that old block groups would be left around forever. 10917 * Iterating over them would be enough to trim unused space. Since we 10918 * now automatically remove them, we also need to iterate over unallocated 10919 * space. 10920 * 10921 * We don't want a transaction for this since the discard may take a 10922 * substantial amount of time. We don't require that a transaction be 10923 * running, but we do need to take a running transaction into account 10924 * to ensure that we're not discarding chunks that were released in 10925 * the current transaction. 10926 * 10927 * Holding the chunks lock will prevent other threads from allocating 10928 * or releasing chunks, but it won't prevent a running transaction 10929 * from committing and releasing the memory that the pending chunks 10930 * list head uses. For that, we need to take a reference to the 10931 * transaction. 10932 */ 10933 static int btrfs_trim_free_extents(struct btrfs_device *device, 10934 u64 minlen, u64 *trimmed) 10935 { 10936 u64 start = 0, len = 0; 10937 int ret; 10938 10939 *trimmed = 0; 10940 10941 /* Not writeable = nothing to do. */ 10942 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10943 return 0; 10944 10945 /* No free space = nothing to do. */ 10946 if (device->total_bytes <= device->bytes_used) 10947 return 0; 10948 10949 ret = 0; 10950 10951 while (1) { 10952 struct btrfs_fs_info *fs_info = device->fs_info; 10953 struct btrfs_transaction *trans; 10954 u64 bytes; 10955 10956 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10957 if (ret) 10958 return ret; 10959 10960 down_read(&fs_info->commit_root_sem); 10961 10962 spin_lock(&fs_info->trans_lock); 10963 trans = fs_info->running_transaction; 10964 if (trans) 10965 refcount_inc(&trans->use_count); 10966 spin_unlock(&fs_info->trans_lock); 10967 10968 ret = find_free_dev_extent_start(trans, device, minlen, start, 10969 &start, &len); 10970 if (trans) 10971 btrfs_put_transaction(trans); 10972 10973 if (ret) { 10974 up_read(&fs_info->commit_root_sem); 10975 mutex_unlock(&fs_info->chunk_mutex); 10976 if (ret == -ENOSPC) 10977 ret = 0; 10978 break; 10979 } 10980 10981 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10982 up_read(&fs_info->commit_root_sem); 10983 mutex_unlock(&fs_info->chunk_mutex); 10984 10985 if (ret) 10986 break; 10987 10988 start += len; 10989 *trimmed += bytes; 10990 10991 if (fatal_signal_pending(current)) { 10992 ret = -ERESTARTSYS; 10993 break; 10994 } 10995 10996 cond_resched(); 10997 } 10998 10999 return ret; 11000 } 11001 11002 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 11003 { 11004 struct btrfs_block_group_cache *cache = NULL; 11005 struct btrfs_device *device; 11006 struct list_head *devices; 11007 u64 group_trimmed; 11008 u64 start; 11009 u64 end; 11010 u64 trimmed = 0; 11011 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11012 int ret = 0; 11013 11014 /* 11015 * try to trim all FS space, our block group may start from non-zero. 11016 */ 11017 if (range->len == total_bytes) 11018 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11019 else 11020 cache = btrfs_lookup_block_group(fs_info, range->start); 11021 11022 while (cache) { 11023 if (cache->key.objectid >= (range->start + range->len)) { 11024 btrfs_put_block_group(cache); 11025 break; 11026 } 11027 11028 start = max(range->start, cache->key.objectid); 11029 end = min(range->start + range->len, 11030 cache->key.objectid + cache->key.offset); 11031 11032 if (end - start >= range->minlen) { 11033 if (!block_group_cache_done(cache)) { 11034 ret = cache_block_group(cache, 0); 11035 if (ret) { 11036 btrfs_put_block_group(cache); 11037 break; 11038 } 11039 ret = wait_block_group_cache_done(cache); 11040 if (ret) { 11041 btrfs_put_block_group(cache); 11042 break; 11043 } 11044 } 11045 ret = btrfs_trim_block_group(cache, 11046 &group_trimmed, 11047 start, 11048 end, 11049 range->minlen); 11050 11051 trimmed += group_trimmed; 11052 if (ret) { 11053 btrfs_put_block_group(cache); 11054 break; 11055 } 11056 } 11057 11058 cache = next_block_group(fs_info, cache); 11059 } 11060 11061 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11062 devices = &fs_info->fs_devices->alloc_list; 11063 list_for_each_entry(device, devices, dev_alloc_list) { 11064 ret = btrfs_trim_free_extents(device, range->minlen, 11065 &group_trimmed); 11066 if (ret) 11067 break; 11068 11069 trimmed += group_trimmed; 11070 } 11071 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11072 11073 range->len = trimmed; 11074 return ret; 11075 } 11076 11077 /* 11078 * btrfs_{start,end}_write_no_snapshotting() are similar to 11079 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11080 * data into the page cache through nocow before the subvolume is snapshoted, 11081 * but flush the data into disk after the snapshot creation, or to prevent 11082 * operations while snapshotting is ongoing and that cause the snapshot to be 11083 * inconsistent (writes followed by expanding truncates for example). 11084 */ 11085 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11086 { 11087 percpu_counter_dec(&root->subv_writers->counter); 11088 /* 11089 * Make sure counter is updated before we wake up waiters. 11090 */ 11091 smp_mb(); 11092 if (waitqueue_active(&root->subv_writers->wait)) 11093 wake_up(&root->subv_writers->wait); 11094 } 11095 11096 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11097 { 11098 if (atomic_read(&root->will_be_snapshotted)) 11099 return 0; 11100 11101 percpu_counter_inc(&root->subv_writers->counter); 11102 /* 11103 * Make sure counter is updated before we check for snapshot creation. 11104 */ 11105 smp_mb(); 11106 if (atomic_read(&root->will_be_snapshotted)) { 11107 btrfs_end_write_no_snapshotting(root); 11108 return 0; 11109 } 11110 return 1; 11111 } 11112 11113 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11114 { 11115 while (true) { 11116 int ret; 11117 11118 ret = btrfs_start_write_no_snapshotting(root); 11119 if (ret) 11120 break; 11121 wait_var_event(&root->will_be_snapshotted, 11122 !atomic_read(&root->will_be_snapshotted)); 11123 } 11124 } 11125