xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision e2ad626f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 /* simple helper to search for an existing data extent at a given offset */
73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 	int ret;
77 	struct btrfs_key key;
78 	struct btrfs_path *path;
79 
80 	path = btrfs_alloc_path();
81 	if (!path)
82 		return -ENOMEM;
83 
84 	key.objectid = start;
85 	key.offset = len;
86 	key.type = BTRFS_EXTENT_ITEM_KEY;
87 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 	btrfs_free_path(path);
89 	return ret;
90 }
91 
92 /*
93  * helper function to lookup reference count and flags of a tree block.
94  *
95  * the head node for delayed ref is used to store the sum of all the
96  * reference count modifications queued up in the rbtree. the head
97  * node may also store the extent flags to set. This way you can check
98  * to see what the reference count and extent flags would be if all of
99  * the delayed refs are not processed.
100  */
101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 			     struct btrfs_fs_info *fs_info, u64 bytenr,
103 			     u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 	struct btrfs_root *extent_root;
106 	struct btrfs_delayed_ref_head *head;
107 	struct btrfs_delayed_ref_root *delayed_refs;
108 	struct btrfs_path *path;
109 	struct btrfs_extent_item *ei;
110 	struct extent_buffer *leaf;
111 	struct btrfs_key key;
112 	u32 item_size;
113 	u64 num_refs;
114 	u64 extent_flags;
115 	int ret;
116 
117 	/*
118 	 * If we don't have skinny metadata, don't bother doing anything
119 	 * different
120 	 */
121 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 		offset = fs_info->nodesize;
123 		metadata = 0;
124 	}
125 
126 	path = btrfs_alloc_path();
127 	if (!path)
128 		return -ENOMEM;
129 
130 	if (!trans) {
131 		path->skip_locking = 1;
132 		path->search_commit_root = 1;
133 	}
134 
135 search_again:
136 	key.objectid = bytenr;
137 	key.offset = offset;
138 	if (metadata)
139 		key.type = BTRFS_METADATA_ITEM_KEY;
140 	else
141 		key.type = BTRFS_EXTENT_ITEM_KEY;
142 
143 	extent_root = btrfs_extent_root(fs_info, bytenr);
144 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 	if (ret < 0)
146 		goto out_free;
147 
148 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 		if (path->slots[0]) {
150 			path->slots[0]--;
151 			btrfs_item_key_to_cpu(path->nodes[0], &key,
152 					      path->slots[0]);
153 			if (key.objectid == bytenr &&
154 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
155 			    key.offset == fs_info->nodesize)
156 				ret = 0;
157 		}
158 	}
159 
160 	if (ret == 0) {
161 		leaf = path->nodes[0];
162 		item_size = btrfs_item_size(leaf, path->slots[0]);
163 		if (item_size >= sizeof(*ei)) {
164 			ei = btrfs_item_ptr(leaf, path->slots[0],
165 					    struct btrfs_extent_item);
166 			num_refs = btrfs_extent_refs(leaf, ei);
167 			extent_flags = btrfs_extent_flags(leaf, ei);
168 		} else {
169 			ret = -EUCLEAN;
170 			btrfs_err(fs_info,
171 			"unexpected extent item size, has %u expect >= %zu",
172 				  item_size, sizeof(*ei));
173 			if (trans)
174 				btrfs_abort_transaction(trans, ret);
175 			else
176 				btrfs_handle_fs_error(fs_info, ret, NULL);
177 
178 			goto out_free;
179 		}
180 
181 		BUG_ON(num_refs == 0);
182 	} else {
183 		num_refs = 0;
184 		extent_flags = 0;
185 		ret = 0;
186 	}
187 
188 	if (!trans)
189 		goto out;
190 
191 	delayed_refs = &trans->transaction->delayed_refs;
192 	spin_lock(&delayed_refs->lock);
193 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 	if (head) {
195 		if (!mutex_trylock(&head->mutex)) {
196 			refcount_inc(&head->refs);
197 			spin_unlock(&delayed_refs->lock);
198 
199 			btrfs_release_path(path);
200 
201 			/*
202 			 * Mutex was contended, block until it's released and try
203 			 * again
204 			 */
205 			mutex_lock(&head->mutex);
206 			mutex_unlock(&head->mutex);
207 			btrfs_put_delayed_ref_head(head);
208 			goto search_again;
209 		}
210 		spin_lock(&head->lock);
211 		if (head->extent_op && head->extent_op->update_flags)
212 			extent_flags |= head->extent_op->flags_to_set;
213 		else
214 			BUG_ON(num_refs == 0);
215 
216 		num_refs += head->ref_mod;
217 		spin_unlock(&head->lock);
218 		mutex_unlock(&head->mutex);
219 	}
220 	spin_unlock(&delayed_refs->lock);
221 out:
222 	WARN_ON(num_refs == 0);
223 	if (refs)
224 		*refs = num_refs;
225 	if (flags)
226 		*flags = extent_flags;
227 out_free:
228 	btrfs_free_path(path);
229 	return ret;
230 }
231 
232 /*
233  * Back reference rules.  Back refs have three main goals:
234  *
235  * 1) differentiate between all holders of references to an extent so that
236  *    when a reference is dropped we can make sure it was a valid reference
237  *    before freeing the extent.
238  *
239  * 2) Provide enough information to quickly find the holders of an extent
240  *    if we notice a given block is corrupted or bad.
241  *
242  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243  *    maintenance.  This is actually the same as #2, but with a slightly
244  *    different use case.
245  *
246  * There are two kinds of back refs. The implicit back refs is optimized
247  * for pointers in non-shared tree blocks. For a given pointer in a block,
248  * back refs of this kind provide information about the block's owner tree
249  * and the pointer's key. These information allow us to find the block by
250  * b-tree searching. The full back refs is for pointers in tree blocks not
251  * referenced by their owner trees. The location of tree block is recorded
252  * in the back refs. Actually the full back refs is generic, and can be
253  * used in all cases the implicit back refs is used. The major shortcoming
254  * of the full back refs is its overhead. Every time a tree block gets
255  * COWed, we have to update back refs entry for all pointers in it.
256  *
257  * For a newly allocated tree block, we use implicit back refs for
258  * pointers in it. This means most tree related operations only involve
259  * implicit back refs. For a tree block created in old transaction, the
260  * only way to drop a reference to it is COW it. So we can detect the
261  * event that tree block loses its owner tree's reference and do the
262  * back refs conversion.
263  *
264  * When a tree block is COWed through a tree, there are four cases:
265  *
266  * The reference count of the block is one and the tree is the block's
267  * owner tree. Nothing to do in this case.
268  *
269  * The reference count of the block is one and the tree is not the
270  * block's owner tree. In this case, full back refs is used for pointers
271  * in the block. Remove these full back refs, add implicit back refs for
272  * every pointers in the new block.
273  *
274  * The reference count of the block is greater than one and the tree is
275  * the block's owner tree. In this case, implicit back refs is used for
276  * pointers in the block. Add full back refs for every pointers in the
277  * block, increase lower level extents' reference counts. The original
278  * implicit back refs are entailed to the new block.
279  *
280  * The reference count of the block is greater than one and the tree is
281  * not the block's owner tree. Add implicit back refs for every pointer in
282  * the new block, increase lower level extents' reference count.
283  *
284  * Back Reference Key composing:
285  *
286  * The key objectid corresponds to the first byte in the extent,
287  * The key type is used to differentiate between types of back refs.
288  * There are different meanings of the key offset for different types
289  * of back refs.
290  *
291  * File extents can be referenced by:
292  *
293  * - multiple snapshots, subvolumes, or different generations in one subvol
294  * - different files inside a single subvolume
295  * - different offsets inside a file (bookend extents in file.c)
296  *
297  * The extent ref structure for the implicit back refs has fields for:
298  *
299  * - Objectid of the subvolume root
300  * - objectid of the file holding the reference
301  * - original offset in the file
302  * - how many bookend extents
303  *
304  * The key offset for the implicit back refs is hash of the first
305  * three fields.
306  *
307  * The extent ref structure for the full back refs has field for:
308  *
309  * - number of pointers in the tree leaf
310  *
311  * The key offset for the implicit back refs is the first byte of
312  * the tree leaf
313  *
314  * When a file extent is allocated, The implicit back refs is used.
315  * the fields are filled in:
316  *
317  *     (root_key.objectid, inode objectid, offset in file, 1)
318  *
319  * When a file extent is removed file truncation, we find the
320  * corresponding implicit back refs and check the following fields:
321  *
322  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
323  *
324  * Btree extents can be referenced by:
325  *
326  * - Different subvolumes
327  *
328  * Both the implicit back refs and the full back refs for tree blocks
329  * only consist of key. The key offset for the implicit back refs is
330  * objectid of block's owner tree. The key offset for the full back refs
331  * is the first byte of parent block.
332  *
333  * When implicit back refs is used, information about the lowest key and
334  * level of the tree block are required. These information are stored in
335  * tree block info structure.
336  */
337 
338 /*
339  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342  */
343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 				     struct btrfs_extent_inline_ref *iref,
345 				     enum btrfs_inline_ref_type is_data)
346 {
347 	int type = btrfs_extent_inline_ref_type(eb, iref);
348 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349 
350 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 	    type == BTRFS_SHARED_DATA_REF_KEY ||
353 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
354 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 				return type;
357 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 				ASSERT(eb->fs_info);
359 				/*
360 				 * Every shared one has parent tree block,
361 				 * which must be aligned to sector size.
362 				 */
363 				if (offset &&
364 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 					return type;
366 			}
367 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
368 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else {
381 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 			return type;
383 		}
384 	}
385 
386 	WARN_ON(1);
387 	btrfs_print_leaf(eb);
388 	btrfs_err(eb->fs_info,
389 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 		  eb->start, (unsigned long)iref, type);
391 
392 	return BTRFS_REF_TYPE_INVALID;
393 }
394 
395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 	u32 high_crc = ~(u32)0;
398 	u32 low_crc = ~(u32)0;
399 	__le64 lenum;
400 
401 	lenum = cpu_to_le64(root_objectid);
402 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 	lenum = cpu_to_le64(owner);
404 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 	lenum = cpu_to_le64(offset);
406 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407 
408 	return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410 
411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 				     struct btrfs_extent_data_ref *ref)
413 {
414 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 				    btrfs_extent_data_ref_objectid(leaf, ref),
416 				    btrfs_extent_data_ref_offset(leaf, ref));
417 }
418 
419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 				 struct btrfs_extent_data_ref *ref,
421 				 u64 root_objectid, u64 owner, u64 offset)
422 {
423 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 		return 0;
427 	return 1;
428 }
429 
430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 					   struct btrfs_path *path,
432 					   u64 bytenr, u64 parent,
433 					   u64 root_objectid,
434 					   u64 owner, u64 offset)
435 {
436 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 	struct btrfs_key key;
438 	struct btrfs_extent_data_ref *ref;
439 	struct extent_buffer *leaf;
440 	u32 nritems;
441 	int ret;
442 	int recow;
443 	int err = -ENOENT;
444 
445 	key.objectid = bytenr;
446 	if (parent) {
447 		key.type = BTRFS_SHARED_DATA_REF_KEY;
448 		key.offset = parent;
449 	} else {
450 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 		key.offset = hash_extent_data_ref(root_objectid,
452 						  owner, offset);
453 	}
454 again:
455 	recow = 0;
456 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 	if (ret < 0) {
458 		err = ret;
459 		goto fail;
460 	}
461 
462 	if (parent) {
463 		if (!ret)
464 			return 0;
465 		goto fail;
466 	}
467 
468 	leaf = path->nodes[0];
469 	nritems = btrfs_header_nritems(leaf);
470 	while (1) {
471 		if (path->slots[0] >= nritems) {
472 			ret = btrfs_next_leaf(root, path);
473 			if (ret < 0)
474 				err = ret;
475 			if (ret)
476 				goto fail;
477 
478 			leaf = path->nodes[0];
479 			nritems = btrfs_header_nritems(leaf);
480 			recow = 1;
481 		}
482 
483 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 		if (key.objectid != bytenr ||
485 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 			goto fail;
487 
488 		ref = btrfs_item_ptr(leaf, path->slots[0],
489 				     struct btrfs_extent_data_ref);
490 
491 		if (match_extent_data_ref(leaf, ref, root_objectid,
492 					  owner, offset)) {
493 			if (recow) {
494 				btrfs_release_path(path);
495 				goto again;
496 			}
497 			err = 0;
498 			break;
499 		}
500 		path->slots[0]++;
501 	}
502 fail:
503 	return err;
504 }
505 
506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 					   struct btrfs_path *path,
508 					   u64 bytenr, u64 parent,
509 					   u64 root_objectid, u64 owner,
510 					   u64 offset, int refs_to_add)
511 {
512 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 	struct btrfs_key key;
514 	struct extent_buffer *leaf;
515 	u32 size;
516 	u32 num_refs;
517 	int ret;
518 
519 	key.objectid = bytenr;
520 	if (parent) {
521 		key.type = BTRFS_SHARED_DATA_REF_KEY;
522 		key.offset = parent;
523 		size = sizeof(struct btrfs_shared_data_ref);
524 	} else {
525 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 		key.offset = hash_extent_data_ref(root_objectid,
527 						  owner, offset);
528 		size = sizeof(struct btrfs_extent_data_ref);
529 	}
530 
531 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 	if (ret && ret != -EEXIST)
533 		goto fail;
534 
535 	leaf = path->nodes[0];
536 	if (parent) {
537 		struct btrfs_shared_data_ref *ref;
538 		ref = btrfs_item_ptr(leaf, path->slots[0],
539 				     struct btrfs_shared_data_ref);
540 		if (ret == 0) {
541 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 		} else {
543 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 			num_refs += refs_to_add;
545 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 		}
547 	} else {
548 		struct btrfs_extent_data_ref *ref;
549 		while (ret == -EEXIST) {
550 			ref = btrfs_item_ptr(leaf, path->slots[0],
551 					     struct btrfs_extent_data_ref);
552 			if (match_extent_data_ref(leaf, ref, root_objectid,
553 						  owner, offset))
554 				break;
555 			btrfs_release_path(path);
556 			key.offset++;
557 			ret = btrfs_insert_empty_item(trans, root, path, &key,
558 						      size);
559 			if (ret && ret != -EEXIST)
560 				goto fail;
561 
562 			leaf = path->nodes[0];
563 		}
564 		ref = btrfs_item_ptr(leaf, path->slots[0],
565 				     struct btrfs_extent_data_ref);
566 		if (ret == 0) {
567 			btrfs_set_extent_data_ref_root(leaf, ref,
568 						       root_objectid);
569 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 		} else {
573 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 			num_refs += refs_to_add;
575 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 		}
577 	}
578 	btrfs_mark_buffer_dirty(leaf);
579 	ret = 0;
580 fail:
581 	btrfs_release_path(path);
582 	return ret;
583 }
584 
585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 					   struct btrfs_root *root,
587 					   struct btrfs_path *path,
588 					   int refs_to_drop)
589 {
590 	struct btrfs_key key;
591 	struct btrfs_extent_data_ref *ref1 = NULL;
592 	struct btrfs_shared_data_ref *ref2 = NULL;
593 	struct extent_buffer *leaf;
594 	u32 num_refs = 0;
595 	int ret = 0;
596 
597 	leaf = path->nodes[0];
598 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599 
600 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 				      struct btrfs_extent_data_ref);
603 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 				      struct btrfs_shared_data_ref);
607 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 	} else {
609 		btrfs_err(trans->fs_info,
610 			  "unrecognized backref key (%llu %u %llu)",
611 			  key.objectid, key.type, key.offset);
612 		btrfs_abort_transaction(trans, -EUCLEAN);
613 		return -EUCLEAN;
614 	}
615 
616 	BUG_ON(num_refs < refs_to_drop);
617 	num_refs -= refs_to_drop;
618 
619 	if (num_refs == 0) {
620 		ret = btrfs_del_item(trans, root, path);
621 	} else {
622 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 		btrfs_mark_buffer_dirty(leaf);
627 	}
628 	return ret;
629 }
630 
631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 					  struct btrfs_extent_inline_ref *iref)
633 {
634 	struct btrfs_key key;
635 	struct extent_buffer *leaf;
636 	struct btrfs_extent_data_ref *ref1;
637 	struct btrfs_shared_data_ref *ref2;
638 	u32 num_refs = 0;
639 	int type;
640 
641 	leaf = path->nodes[0];
642 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643 
644 	if (iref) {
645 		/*
646 		 * If type is invalid, we should have bailed out earlier than
647 		 * this call.
648 		 */
649 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 		} else {
655 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 		}
658 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 				      struct btrfs_extent_data_ref);
661 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 				      struct btrfs_shared_data_ref);
665 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 	} else {
667 		WARN_ON(1);
668 	}
669 	return num_refs;
670 }
671 
672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 					  struct btrfs_path *path,
674 					  u64 bytenr, u64 parent,
675 					  u64 root_objectid)
676 {
677 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 	struct btrfs_key key;
679 	int ret;
680 
681 	key.objectid = bytenr;
682 	if (parent) {
683 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 		key.offset = parent;
685 	} else {
686 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 		key.offset = root_objectid;
688 	}
689 
690 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 	if (ret > 0)
692 		ret = -ENOENT;
693 	return ret;
694 }
695 
696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 					  struct btrfs_path *path,
698 					  u64 bytenr, u64 parent,
699 					  u64 root_objectid)
700 {
701 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 	struct btrfs_key key;
703 	int ret;
704 
705 	key.objectid = bytenr;
706 	if (parent) {
707 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 		key.offset = parent;
709 	} else {
710 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 		key.offset = root_objectid;
712 	}
713 
714 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 	btrfs_release_path(path);
716 	return ret;
717 }
718 
719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 	int type;
722 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 		if (parent > 0)
724 			type = BTRFS_SHARED_BLOCK_REF_KEY;
725 		else
726 			type = BTRFS_TREE_BLOCK_REF_KEY;
727 	} else {
728 		if (parent > 0)
729 			type = BTRFS_SHARED_DATA_REF_KEY;
730 		else
731 			type = BTRFS_EXTENT_DATA_REF_KEY;
732 	}
733 	return type;
734 }
735 
736 static int find_next_key(struct btrfs_path *path, int level,
737 			 struct btrfs_key *key)
738 
739 {
740 	for (; level < BTRFS_MAX_LEVEL; level++) {
741 		if (!path->nodes[level])
742 			break;
743 		if (path->slots[level] + 1 >=
744 		    btrfs_header_nritems(path->nodes[level]))
745 			continue;
746 		if (level == 0)
747 			btrfs_item_key_to_cpu(path->nodes[level], key,
748 					      path->slots[level] + 1);
749 		else
750 			btrfs_node_key_to_cpu(path->nodes[level], key,
751 					      path->slots[level] + 1);
752 		return 0;
753 	}
754 	return 1;
755 }
756 
757 /*
758  * look for inline back ref. if back ref is found, *ref_ret is set
759  * to the address of inline back ref, and 0 is returned.
760  *
761  * if back ref isn't found, *ref_ret is set to the address where it
762  * should be inserted, and -ENOENT is returned.
763  *
764  * if insert is true and there are too many inline back refs, the path
765  * points to the extent item, and -EAGAIN is returned.
766  *
767  * NOTE: inline back refs are ordered in the same way that back ref
768  *	 items in the tree are ordered.
769  */
770 static noinline_for_stack
771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 				 struct btrfs_path *path,
773 				 struct btrfs_extent_inline_ref **ref_ret,
774 				 u64 bytenr, u64 num_bytes,
775 				 u64 parent, u64 root_objectid,
776 				 u64 owner, u64 offset, int insert)
777 {
778 	struct btrfs_fs_info *fs_info = trans->fs_info;
779 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 	struct btrfs_key key;
781 	struct extent_buffer *leaf;
782 	struct btrfs_extent_item *ei;
783 	struct btrfs_extent_inline_ref *iref;
784 	u64 flags;
785 	u64 item_size;
786 	unsigned long ptr;
787 	unsigned long end;
788 	int extra_size;
789 	int type;
790 	int want;
791 	int ret;
792 	int err = 0;
793 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 	int needed;
795 
796 	key.objectid = bytenr;
797 	key.type = BTRFS_EXTENT_ITEM_KEY;
798 	key.offset = num_bytes;
799 
800 	want = extent_ref_type(parent, owner);
801 	if (insert) {
802 		extra_size = btrfs_extent_inline_ref_size(want);
803 		path->search_for_extension = 1;
804 		path->keep_locks = 1;
805 	} else
806 		extra_size = -1;
807 
808 	/*
809 	 * Owner is our level, so we can just add one to get the level for the
810 	 * block we are interested in.
811 	 */
812 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 		key.type = BTRFS_METADATA_ITEM_KEY;
814 		key.offset = owner;
815 	}
816 
817 again:
818 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 	if (ret < 0) {
820 		err = ret;
821 		goto out;
822 	}
823 
824 	/*
825 	 * We may be a newly converted file system which still has the old fat
826 	 * extent entries for metadata, so try and see if we have one of those.
827 	 */
828 	if (ret > 0 && skinny_metadata) {
829 		skinny_metadata = false;
830 		if (path->slots[0]) {
831 			path->slots[0]--;
832 			btrfs_item_key_to_cpu(path->nodes[0], &key,
833 					      path->slots[0]);
834 			if (key.objectid == bytenr &&
835 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
836 			    key.offset == num_bytes)
837 				ret = 0;
838 		}
839 		if (ret) {
840 			key.objectid = bytenr;
841 			key.type = BTRFS_EXTENT_ITEM_KEY;
842 			key.offset = num_bytes;
843 			btrfs_release_path(path);
844 			goto again;
845 		}
846 	}
847 
848 	if (ret && !insert) {
849 		err = -ENOENT;
850 		goto out;
851 	} else if (WARN_ON(ret)) {
852 		btrfs_print_leaf(path->nodes[0]);
853 		btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 			  bytenr, num_bytes, parent, root_objectid, owner,
856 			  offset);
857 		err = -EIO;
858 		goto out;
859 	}
860 
861 	leaf = path->nodes[0];
862 	item_size = btrfs_item_size(leaf, path->slots[0]);
863 	if (unlikely(item_size < sizeof(*ei))) {
864 		err = -EUCLEAN;
865 		btrfs_err(fs_info,
866 			  "unexpected extent item size, has %llu expect >= %zu",
867 			  item_size, sizeof(*ei));
868 		btrfs_abort_transaction(trans, err);
869 		goto out;
870 	}
871 
872 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 	flags = btrfs_extent_flags(leaf, ei);
874 
875 	ptr = (unsigned long)(ei + 1);
876 	end = (unsigned long)ei + item_size;
877 
878 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 		ptr += sizeof(struct btrfs_tree_block_info);
880 		BUG_ON(ptr > end);
881 	}
882 
883 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 		needed = BTRFS_REF_TYPE_DATA;
885 	else
886 		needed = BTRFS_REF_TYPE_BLOCK;
887 
888 	err = -ENOENT;
889 	while (1) {
890 		if (ptr >= end) {
891 			if (ptr > end) {
892 				err = -EUCLEAN;
893 				btrfs_print_leaf(path->nodes[0]);
894 				btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 					path->slots[0], root_objectid, owner, offset, parent);
897 			}
898 			break;
899 		}
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_REF_TYPE_INVALID) {
903 			err = -EUCLEAN;
904 			goto out;
905 		}
906 
907 		if (want < type)
908 			break;
909 		if (want > type) {
910 			ptr += btrfs_extent_inline_ref_size(type);
911 			continue;
912 		}
913 
914 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 			struct btrfs_extent_data_ref *dref;
916 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 			if (match_extent_data_ref(leaf, dref, root_objectid,
918 						  owner, offset)) {
919 				err = 0;
920 				break;
921 			}
922 			if (hash_extent_data_ref_item(leaf, dref) <
923 			    hash_extent_data_ref(root_objectid, owner, offset))
924 				break;
925 		} else {
926 			u64 ref_offset;
927 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 			if (parent > 0) {
929 				if (parent == ref_offset) {
930 					err = 0;
931 					break;
932 				}
933 				if (ref_offset < parent)
934 					break;
935 			} else {
936 				if (root_objectid == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < root_objectid)
941 					break;
942 			}
943 		}
944 		ptr += btrfs_extent_inline_ref_size(type);
945 	}
946 	if (err == -ENOENT && insert) {
947 		if (item_size + extra_size >=
948 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 			err = -EAGAIN;
950 			goto out;
951 		}
952 		/*
953 		 * To add new inline back ref, we have to make sure
954 		 * there is no corresponding back ref item.
955 		 * For simplicity, we just do not add new inline back
956 		 * ref if there is any kind of item for this block
957 		 */
958 		if (find_next_key(path, 0, &key) == 0 &&
959 		    key.objectid == bytenr &&
960 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 			err = -EAGAIN;
962 			goto out;
963 		}
964 	}
965 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 	if (insert) {
968 		path->keep_locks = 0;
969 		path->search_for_extension = 0;
970 		btrfs_unlock_up_safe(path, 1);
971 	}
972 	return err;
973 }
974 
975 /*
976  * helper to add new inline back ref
977  */
978 static noinline_for_stack
979 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
980 				 struct btrfs_path *path,
981 				 struct btrfs_extent_inline_ref *iref,
982 				 u64 parent, u64 root_objectid,
983 				 u64 owner, u64 offset, int refs_to_add,
984 				 struct btrfs_delayed_extent_op *extent_op)
985 {
986 	struct extent_buffer *leaf;
987 	struct btrfs_extent_item *ei;
988 	unsigned long ptr;
989 	unsigned long end;
990 	unsigned long item_offset;
991 	u64 refs;
992 	int size;
993 	int type;
994 
995 	leaf = path->nodes[0];
996 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 	item_offset = (unsigned long)iref - (unsigned long)ei;
998 
999 	type = extent_ref_type(parent, owner);
1000 	size = btrfs_extent_inline_ref_size(type);
1001 
1002 	btrfs_extend_item(path, size);
1003 
1004 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 	refs = btrfs_extent_refs(leaf, ei);
1006 	refs += refs_to_add;
1007 	btrfs_set_extent_refs(leaf, ei, refs);
1008 	if (extent_op)
1009 		__run_delayed_extent_op(extent_op, leaf, ei);
1010 
1011 	ptr = (unsigned long)ei + item_offset;
1012 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 	if (ptr < end - size)
1014 		memmove_extent_buffer(leaf, ptr + size, ptr,
1015 				      end - size - ptr);
1016 
1017 	iref = (struct btrfs_extent_inline_ref *)ptr;
1018 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 		struct btrfs_extent_data_ref *dref;
1021 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 		struct btrfs_shared_data_ref *sref;
1028 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 	} else {
1034 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 	}
1036 	btrfs_mark_buffer_dirty(leaf);
1037 }
1038 
1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 				 struct btrfs_path *path,
1041 				 struct btrfs_extent_inline_ref **ref_ret,
1042 				 u64 bytenr, u64 num_bytes, u64 parent,
1043 				 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 	int ret;
1046 
1047 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 					   num_bytes, parent, root_objectid,
1049 					   owner, offset, 0);
1050 	if (ret != -ENOENT)
1051 		return ret;
1052 
1053 	btrfs_release_path(path);
1054 	*ref_ret = NULL;
1055 
1056 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 					    root_objectid);
1059 	} else {
1060 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 					     root_objectid, owner, offset);
1062 	}
1063 	return ret;
1064 }
1065 
1066 /*
1067  * helper to update/remove inline back ref
1068  */
1069 static noinline_for_stack int update_inline_extent_backref(struct btrfs_path *path,
1070 				  struct btrfs_extent_inline_ref *iref,
1071 				  int refs_to_mod,
1072 				  struct btrfs_delayed_extent_op *extent_op)
1073 {
1074 	struct extent_buffer *leaf = path->nodes[0];
1075 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1076 	struct btrfs_extent_item *ei;
1077 	struct btrfs_extent_data_ref *dref = NULL;
1078 	struct btrfs_shared_data_ref *sref = NULL;
1079 	unsigned long ptr;
1080 	unsigned long end;
1081 	u32 item_size;
1082 	int size;
1083 	int type;
1084 	u64 refs;
1085 
1086 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 	refs = btrfs_extent_refs(leaf, ei);
1088 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1089 		struct btrfs_key key;
1090 		u32 extent_size;
1091 
1092 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1094 			extent_size = fs_info->nodesize;
1095 		else
1096 			extent_size = key.offset;
1097 		btrfs_print_leaf(leaf);
1098 		btrfs_err(fs_info,
1099 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1100 			  key.objectid, extent_size, refs_to_mod, refs);
1101 		return -EUCLEAN;
1102 	}
1103 	refs += refs_to_mod;
1104 	btrfs_set_extent_refs(leaf, ei, refs);
1105 	if (extent_op)
1106 		__run_delayed_extent_op(extent_op, leaf, ei);
1107 
1108 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1109 	/*
1110 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1111 	 * error messages.
1112 	 */
1113 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1114 		return -EUCLEAN;
1115 
1116 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1117 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1118 		refs = btrfs_extent_data_ref_count(leaf, dref);
1119 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1120 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1121 		refs = btrfs_shared_data_ref_count(leaf, sref);
1122 	} else {
1123 		refs = 1;
1124 		/*
1125 		 * For tree blocks we can only drop one ref for it, and tree
1126 		 * blocks should not have refs > 1.
1127 		 *
1128 		 * Furthermore if we're inserting a new inline backref, we
1129 		 * won't reach this path either. That would be
1130 		 * setup_inline_extent_backref().
1131 		 */
1132 		if (unlikely(refs_to_mod != -1)) {
1133 			struct btrfs_key key;
1134 
1135 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 
1137 			btrfs_print_leaf(leaf);
1138 			btrfs_err(fs_info,
1139 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1140 				  key.objectid, refs_to_mod);
1141 			return -EUCLEAN;
1142 		}
1143 	}
1144 
1145 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1146 		struct btrfs_key key;
1147 		u32 extent_size;
1148 
1149 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1150 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1151 			extent_size = fs_info->nodesize;
1152 		else
1153 			extent_size = key.offset;
1154 		btrfs_print_leaf(leaf);
1155 		btrfs_err(fs_info,
1156 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1157 			  (unsigned long)iref, key.objectid, extent_size,
1158 			  refs_to_mod, refs);
1159 		return -EUCLEAN;
1160 	}
1161 	refs += refs_to_mod;
1162 
1163 	if (refs > 0) {
1164 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1165 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1166 		else
1167 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1168 	} else {
1169 		size =  btrfs_extent_inline_ref_size(type);
1170 		item_size = btrfs_item_size(leaf, path->slots[0]);
1171 		ptr = (unsigned long)iref;
1172 		end = (unsigned long)ei + item_size;
1173 		if (ptr + size < end)
1174 			memmove_extent_buffer(leaf, ptr, ptr + size,
1175 					      end - ptr - size);
1176 		item_size -= size;
1177 		btrfs_truncate_item(path, item_size, 1);
1178 	}
1179 	btrfs_mark_buffer_dirty(leaf);
1180 	return 0;
1181 }
1182 
1183 static noinline_for_stack
1184 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1185 				 struct btrfs_path *path,
1186 				 u64 bytenr, u64 num_bytes, u64 parent,
1187 				 u64 root_objectid, u64 owner,
1188 				 u64 offset, int refs_to_add,
1189 				 struct btrfs_delayed_extent_op *extent_op)
1190 {
1191 	struct btrfs_extent_inline_ref *iref;
1192 	int ret;
1193 
1194 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1195 					   num_bytes, parent, root_objectid,
1196 					   owner, offset, 1);
1197 	if (ret == 0) {
1198 		/*
1199 		 * We're adding refs to a tree block we already own, this
1200 		 * should not happen at all.
1201 		 */
1202 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1203 			btrfs_print_leaf(path->nodes[0]);
1204 			btrfs_crit(trans->fs_info,
1205 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1206 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1207 			return -EUCLEAN;
1208 		}
1209 		ret = update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1210 	} else if (ret == -ENOENT) {
1211 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1212 					    root_objectid, owner, offset,
1213 					    refs_to_add, extent_op);
1214 		ret = 0;
1215 	}
1216 	return ret;
1217 }
1218 
1219 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1220 				 struct btrfs_root *root,
1221 				 struct btrfs_path *path,
1222 				 struct btrfs_extent_inline_ref *iref,
1223 				 int refs_to_drop, int is_data)
1224 {
1225 	int ret = 0;
1226 
1227 	BUG_ON(!is_data && refs_to_drop != 1);
1228 	if (iref)
1229 		ret = update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1230 	else if (is_data)
1231 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1232 	else
1233 		ret = btrfs_del_item(trans, root, path);
1234 	return ret;
1235 }
1236 
1237 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1238 			       u64 *discarded_bytes)
1239 {
1240 	int j, ret = 0;
1241 	u64 bytes_left, end;
1242 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1243 
1244 	if (WARN_ON(start != aligned_start)) {
1245 		len -= aligned_start - start;
1246 		len = round_down(len, 1 << SECTOR_SHIFT);
1247 		start = aligned_start;
1248 	}
1249 
1250 	*discarded_bytes = 0;
1251 
1252 	if (!len)
1253 		return 0;
1254 
1255 	end = start + len;
1256 	bytes_left = len;
1257 
1258 	/* Skip any superblocks on this device. */
1259 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1260 		u64 sb_start = btrfs_sb_offset(j);
1261 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1262 		u64 size = sb_start - start;
1263 
1264 		if (!in_range(sb_start, start, bytes_left) &&
1265 		    !in_range(sb_end, start, bytes_left) &&
1266 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1267 			continue;
1268 
1269 		/*
1270 		 * Superblock spans beginning of range.  Adjust start and
1271 		 * try again.
1272 		 */
1273 		if (sb_start <= start) {
1274 			start += sb_end - start;
1275 			if (start > end) {
1276 				bytes_left = 0;
1277 				break;
1278 			}
1279 			bytes_left = end - start;
1280 			continue;
1281 		}
1282 
1283 		if (size) {
1284 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1285 						   size >> SECTOR_SHIFT,
1286 						   GFP_NOFS);
1287 			if (!ret)
1288 				*discarded_bytes += size;
1289 			else if (ret != -EOPNOTSUPP)
1290 				return ret;
1291 		}
1292 
1293 		start = sb_end;
1294 		if (start > end) {
1295 			bytes_left = 0;
1296 			break;
1297 		}
1298 		bytes_left = end - start;
1299 	}
1300 
1301 	if (bytes_left) {
1302 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1303 					   bytes_left >> SECTOR_SHIFT,
1304 					   GFP_NOFS);
1305 		if (!ret)
1306 			*discarded_bytes += bytes_left;
1307 	}
1308 	return ret;
1309 }
1310 
1311 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1312 {
1313 	struct btrfs_device *dev = stripe->dev;
1314 	struct btrfs_fs_info *fs_info = dev->fs_info;
1315 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1316 	u64 phys = stripe->physical;
1317 	u64 len = stripe->length;
1318 	u64 discarded = 0;
1319 	int ret = 0;
1320 
1321 	/* Zone reset on a zoned filesystem */
1322 	if (btrfs_can_zone_reset(dev, phys, len)) {
1323 		u64 src_disc;
1324 
1325 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1326 		if (ret)
1327 			goto out;
1328 
1329 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1330 		    dev != dev_replace->srcdev)
1331 			goto out;
1332 
1333 		src_disc = discarded;
1334 
1335 		/* Send to replace target as well */
1336 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1337 					      &discarded);
1338 		discarded += src_disc;
1339 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1340 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1341 	} else {
1342 		ret = 0;
1343 		*bytes = 0;
1344 	}
1345 
1346 out:
1347 	*bytes = discarded;
1348 	return ret;
1349 }
1350 
1351 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1352 			 u64 num_bytes, u64 *actual_bytes)
1353 {
1354 	int ret = 0;
1355 	u64 discarded_bytes = 0;
1356 	u64 end = bytenr + num_bytes;
1357 	u64 cur = bytenr;
1358 
1359 	/*
1360 	 * Avoid races with device replace and make sure the devices in the
1361 	 * stripes don't go away while we are discarding.
1362 	 */
1363 	btrfs_bio_counter_inc_blocked(fs_info);
1364 	while (cur < end) {
1365 		struct btrfs_discard_stripe *stripes;
1366 		unsigned int num_stripes;
1367 		int i;
1368 
1369 		num_bytes = end - cur;
1370 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1371 		if (IS_ERR(stripes)) {
1372 			ret = PTR_ERR(stripes);
1373 			if (ret == -EOPNOTSUPP)
1374 				ret = 0;
1375 			break;
1376 		}
1377 
1378 		for (i = 0; i < num_stripes; i++) {
1379 			struct btrfs_discard_stripe *stripe = stripes + i;
1380 			u64 bytes;
1381 
1382 			if (!stripe->dev->bdev) {
1383 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1384 				continue;
1385 			}
1386 
1387 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1388 					&stripe->dev->dev_state))
1389 				continue;
1390 
1391 			ret = do_discard_extent(stripe, &bytes);
1392 			if (ret) {
1393 				/*
1394 				 * Keep going if discard is not supported by the
1395 				 * device.
1396 				 */
1397 				if (ret != -EOPNOTSUPP)
1398 					break;
1399 				ret = 0;
1400 			} else {
1401 				discarded_bytes += bytes;
1402 			}
1403 		}
1404 		kfree(stripes);
1405 		if (ret)
1406 			break;
1407 		cur += num_bytes;
1408 	}
1409 	btrfs_bio_counter_dec(fs_info);
1410 	if (actual_bytes)
1411 		*actual_bytes = discarded_bytes;
1412 	return ret;
1413 }
1414 
1415 /* Can return -ENOMEM */
1416 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1417 			 struct btrfs_ref *generic_ref)
1418 {
1419 	struct btrfs_fs_info *fs_info = trans->fs_info;
1420 	int ret;
1421 
1422 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1423 	       generic_ref->action);
1424 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1425 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1426 
1427 	if (generic_ref->type == BTRFS_REF_METADATA)
1428 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1429 	else
1430 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1431 
1432 	btrfs_ref_tree_mod(fs_info, generic_ref);
1433 
1434 	return ret;
1435 }
1436 
1437 /*
1438  * __btrfs_inc_extent_ref - insert backreference for a given extent
1439  *
1440  * The counterpart is in __btrfs_free_extent(), with examples and more details
1441  * how it works.
1442  *
1443  * @trans:	    Handle of transaction
1444  *
1445  * @node:	    The delayed ref node used to get the bytenr/length for
1446  *		    extent whose references are incremented.
1447  *
1448  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1449  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1450  *		    bytenr of the parent block. Since new extents are always
1451  *		    created with indirect references, this will only be the case
1452  *		    when relocating a shared extent. In that case, root_objectid
1453  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1454  *		    be 0
1455  *
1456  * @root_objectid:  The id of the root where this modification has originated,
1457  *		    this can be either one of the well-known metadata trees or
1458  *		    the subvolume id which references this extent.
1459  *
1460  * @owner:	    For data extents it is the inode number of the owning file.
1461  *		    For metadata extents this parameter holds the level in the
1462  *		    tree of the extent.
1463  *
1464  * @offset:	    For metadata extents the offset is ignored and is currently
1465  *		    always passed as 0. For data extents it is the fileoffset
1466  *		    this extent belongs to.
1467  *
1468  * @refs_to_add     Number of references to add
1469  *
1470  * @extent_op       Pointer to a structure, holding information necessary when
1471  *                  updating a tree block's flags
1472  *
1473  */
1474 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1475 				  struct btrfs_delayed_ref_node *node,
1476 				  u64 parent, u64 root_objectid,
1477 				  u64 owner, u64 offset, int refs_to_add,
1478 				  struct btrfs_delayed_extent_op *extent_op)
1479 {
1480 	struct btrfs_path *path;
1481 	struct extent_buffer *leaf;
1482 	struct btrfs_extent_item *item;
1483 	struct btrfs_key key;
1484 	u64 bytenr = node->bytenr;
1485 	u64 num_bytes = node->num_bytes;
1486 	u64 refs;
1487 	int ret;
1488 
1489 	path = btrfs_alloc_path();
1490 	if (!path)
1491 		return -ENOMEM;
1492 
1493 	/* this will setup the path even if it fails to insert the back ref */
1494 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1495 					   parent, root_objectid, owner,
1496 					   offset, refs_to_add, extent_op);
1497 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1498 		goto out;
1499 
1500 	/*
1501 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1502 	 * inline extent ref, so just update the reference count and add a
1503 	 * normal backref.
1504 	 */
1505 	leaf = path->nodes[0];
1506 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1507 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1508 	refs = btrfs_extent_refs(leaf, item);
1509 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1510 	if (extent_op)
1511 		__run_delayed_extent_op(extent_op, leaf, item);
1512 
1513 	btrfs_mark_buffer_dirty(leaf);
1514 	btrfs_release_path(path);
1515 
1516 	/* now insert the actual backref */
1517 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 		BUG_ON(refs_to_add != 1);
1519 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1520 					    root_objectid);
1521 	} else {
1522 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1523 					     root_objectid, owner, offset,
1524 					     refs_to_add);
1525 	}
1526 	if (ret)
1527 		btrfs_abort_transaction(trans, ret);
1528 out:
1529 	btrfs_free_path(path);
1530 	return ret;
1531 }
1532 
1533 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1534 				struct btrfs_delayed_ref_node *node,
1535 				struct btrfs_delayed_extent_op *extent_op,
1536 				bool insert_reserved)
1537 {
1538 	int ret = 0;
1539 	struct btrfs_delayed_data_ref *ref;
1540 	struct btrfs_key ins;
1541 	u64 parent = 0;
1542 	u64 ref_root = 0;
1543 	u64 flags = 0;
1544 
1545 	ins.objectid = node->bytenr;
1546 	ins.offset = node->num_bytes;
1547 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1548 
1549 	ref = btrfs_delayed_node_to_data_ref(node);
1550 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1551 
1552 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1553 		parent = ref->parent;
1554 	ref_root = ref->root;
1555 
1556 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1557 		if (extent_op)
1558 			flags |= extent_op->flags_to_set;
1559 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1560 						 flags, ref->objectid,
1561 						 ref->offset, &ins,
1562 						 node->ref_mod);
1563 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1564 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1565 					     ref->objectid, ref->offset,
1566 					     node->ref_mod, extent_op);
1567 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1568 		ret = __btrfs_free_extent(trans, node, parent,
1569 					  ref_root, ref->objectid,
1570 					  ref->offset, node->ref_mod,
1571 					  extent_op);
1572 	} else {
1573 		BUG();
1574 	}
1575 	return ret;
1576 }
1577 
1578 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1579 				    struct extent_buffer *leaf,
1580 				    struct btrfs_extent_item *ei)
1581 {
1582 	u64 flags = btrfs_extent_flags(leaf, ei);
1583 	if (extent_op->update_flags) {
1584 		flags |= extent_op->flags_to_set;
1585 		btrfs_set_extent_flags(leaf, ei, flags);
1586 	}
1587 
1588 	if (extent_op->update_key) {
1589 		struct btrfs_tree_block_info *bi;
1590 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1591 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1592 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1593 	}
1594 }
1595 
1596 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1597 				 struct btrfs_delayed_ref_head *head,
1598 				 struct btrfs_delayed_extent_op *extent_op)
1599 {
1600 	struct btrfs_fs_info *fs_info = trans->fs_info;
1601 	struct btrfs_root *root;
1602 	struct btrfs_key key;
1603 	struct btrfs_path *path;
1604 	struct btrfs_extent_item *ei;
1605 	struct extent_buffer *leaf;
1606 	u32 item_size;
1607 	int ret;
1608 	int err = 0;
1609 	int metadata = 1;
1610 
1611 	if (TRANS_ABORTED(trans))
1612 		return 0;
1613 
1614 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1615 		metadata = 0;
1616 
1617 	path = btrfs_alloc_path();
1618 	if (!path)
1619 		return -ENOMEM;
1620 
1621 	key.objectid = head->bytenr;
1622 
1623 	if (metadata) {
1624 		key.type = BTRFS_METADATA_ITEM_KEY;
1625 		key.offset = extent_op->level;
1626 	} else {
1627 		key.type = BTRFS_EXTENT_ITEM_KEY;
1628 		key.offset = head->num_bytes;
1629 	}
1630 
1631 	root = btrfs_extent_root(fs_info, key.objectid);
1632 again:
1633 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1634 	if (ret < 0) {
1635 		err = ret;
1636 		goto out;
1637 	}
1638 	if (ret > 0) {
1639 		if (metadata) {
1640 			if (path->slots[0] > 0) {
1641 				path->slots[0]--;
1642 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1643 						      path->slots[0]);
1644 				if (key.objectid == head->bytenr &&
1645 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1646 				    key.offset == head->num_bytes)
1647 					ret = 0;
1648 			}
1649 			if (ret > 0) {
1650 				btrfs_release_path(path);
1651 				metadata = 0;
1652 
1653 				key.objectid = head->bytenr;
1654 				key.offset = head->num_bytes;
1655 				key.type = BTRFS_EXTENT_ITEM_KEY;
1656 				goto again;
1657 			}
1658 		} else {
1659 			err = -EIO;
1660 			goto out;
1661 		}
1662 	}
1663 
1664 	leaf = path->nodes[0];
1665 	item_size = btrfs_item_size(leaf, path->slots[0]);
1666 
1667 	if (unlikely(item_size < sizeof(*ei))) {
1668 		err = -EUCLEAN;
1669 		btrfs_err(fs_info,
1670 			  "unexpected extent item size, has %u expect >= %zu",
1671 			  item_size, sizeof(*ei));
1672 		btrfs_abort_transaction(trans, err);
1673 		goto out;
1674 	}
1675 
1676 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1677 	__run_delayed_extent_op(extent_op, leaf, ei);
1678 
1679 	btrfs_mark_buffer_dirty(leaf);
1680 out:
1681 	btrfs_free_path(path);
1682 	return err;
1683 }
1684 
1685 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1686 				struct btrfs_delayed_ref_node *node,
1687 				struct btrfs_delayed_extent_op *extent_op,
1688 				bool insert_reserved)
1689 {
1690 	int ret = 0;
1691 	struct btrfs_delayed_tree_ref *ref;
1692 	u64 parent = 0;
1693 	u64 ref_root = 0;
1694 
1695 	ref = btrfs_delayed_node_to_tree_ref(node);
1696 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1697 
1698 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1699 		parent = ref->parent;
1700 	ref_root = ref->root;
1701 
1702 	if (node->ref_mod != 1) {
1703 		btrfs_err(trans->fs_info,
1704 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1705 			  node->bytenr, node->ref_mod, node->action, ref_root,
1706 			  parent);
1707 		return -EIO;
1708 	}
1709 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1710 		BUG_ON(!extent_op || !extent_op->update_flags);
1711 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1712 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1713 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1714 					     ref->level, 0, 1, extent_op);
1715 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1716 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1717 					  ref->level, 0, 1, extent_op);
1718 	} else {
1719 		BUG();
1720 	}
1721 	return ret;
1722 }
1723 
1724 /* helper function to actually process a single delayed ref entry */
1725 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1726 			       struct btrfs_delayed_ref_node *node,
1727 			       struct btrfs_delayed_extent_op *extent_op,
1728 			       bool insert_reserved)
1729 {
1730 	int ret = 0;
1731 
1732 	if (TRANS_ABORTED(trans)) {
1733 		if (insert_reserved)
1734 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1735 		return 0;
1736 	}
1737 
1738 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1739 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1740 		ret = run_delayed_tree_ref(trans, node, extent_op,
1741 					   insert_reserved);
1742 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1743 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1744 		ret = run_delayed_data_ref(trans, node, extent_op,
1745 					   insert_reserved);
1746 	else
1747 		BUG();
1748 	if (ret && insert_reserved)
1749 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1750 	if (ret < 0)
1751 		btrfs_err(trans->fs_info,
1752 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1753 			  node->bytenr, node->num_bytes, node->type,
1754 			  node->action, node->ref_mod, ret);
1755 	return ret;
1756 }
1757 
1758 static inline struct btrfs_delayed_ref_node *
1759 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1760 {
1761 	struct btrfs_delayed_ref_node *ref;
1762 
1763 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1764 		return NULL;
1765 
1766 	/*
1767 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1768 	 * This is to prevent a ref count from going down to zero, which deletes
1769 	 * the extent item from the extent tree, when there still are references
1770 	 * to add, which would fail because they would not find the extent item.
1771 	 */
1772 	if (!list_empty(&head->ref_add_list))
1773 		return list_first_entry(&head->ref_add_list,
1774 				struct btrfs_delayed_ref_node, add_list);
1775 
1776 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1777 		       struct btrfs_delayed_ref_node, ref_node);
1778 	ASSERT(list_empty(&ref->add_list));
1779 	return ref;
1780 }
1781 
1782 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1783 				      struct btrfs_delayed_ref_head *head)
1784 {
1785 	spin_lock(&delayed_refs->lock);
1786 	head->processing = false;
1787 	delayed_refs->num_heads_ready++;
1788 	spin_unlock(&delayed_refs->lock);
1789 	btrfs_delayed_ref_unlock(head);
1790 }
1791 
1792 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1793 				struct btrfs_delayed_ref_head *head)
1794 {
1795 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1796 
1797 	if (!extent_op)
1798 		return NULL;
1799 
1800 	if (head->must_insert_reserved) {
1801 		head->extent_op = NULL;
1802 		btrfs_free_delayed_extent_op(extent_op);
1803 		return NULL;
1804 	}
1805 	return extent_op;
1806 }
1807 
1808 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1809 				     struct btrfs_delayed_ref_head *head)
1810 {
1811 	struct btrfs_delayed_extent_op *extent_op;
1812 	int ret;
1813 
1814 	extent_op = cleanup_extent_op(head);
1815 	if (!extent_op)
1816 		return 0;
1817 	head->extent_op = NULL;
1818 	spin_unlock(&head->lock);
1819 	ret = run_delayed_extent_op(trans, head, extent_op);
1820 	btrfs_free_delayed_extent_op(extent_op);
1821 	return ret ? ret : 1;
1822 }
1823 
1824 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1825 				  struct btrfs_delayed_ref_root *delayed_refs,
1826 				  struct btrfs_delayed_ref_head *head)
1827 {
1828 	int nr_items = 1;	/* Dropping this ref head update. */
1829 
1830 	/*
1831 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1832 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1833 	 */
1834 	if (head->total_ref_mod < 0 && head->is_data) {
1835 		spin_lock(&delayed_refs->lock);
1836 		delayed_refs->pending_csums -= head->num_bytes;
1837 		spin_unlock(&delayed_refs->lock);
1838 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1839 	}
1840 
1841 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1842 }
1843 
1844 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1845 			    struct btrfs_delayed_ref_head *head)
1846 {
1847 
1848 	struct btrfs_fs_info *fs_info = trans->fs_info;
1849 	struct btrfs_delayed_ref_root *delayed_refs;
1850 	int ret;
1851 
1852 	delayed_refs = &trans->transaction->delayed_refs;
1853 
1854 	ret = run_and_cleanup_extent_op(trans, head);
1855 	if (ret < 0) {
1856 		unselect_delayed_ref_head(delayed_refs, head);
1857 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1858 		return ret;
1859 	} else if (ret) {
1860 		return ret;
1861 	}
1862 
1863 	/*
1864 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1865 	 * and then re-check to make sure nobody got added.
1866 	 */
1867 	spin_unlock(&head->lock);
1868 	spin_lock(&delayed_refs->lock);
1869 	spin_lock(&head->lock);
1870 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1871 		spin_unlock(&head->lock);
1872 		spin_unlock(&delayed_refs->lock);
1873 		return 1;
1874 	}
1875 	btrfs_delete_ref_head(delayed_refs, head);
1876 	spin_unlock(&head->lock);
1877 	spin_unlock(&delayed_refs->lock);
1878 
1879 	if (head->must_insert_reserved) {
1880 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1881 		if (head->is_data) {
1882 			struct btrfs_root *csum_root;
1883 
1884 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1885 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1886 					      head->num_bytes);
1887 		}
1888 	}
1889 
1890 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1891 
1892 	trace_run_delayed_ref_head(fs_info, head, 0);
1893 	btrfs_delayed_ref_unlock(head);
1894 	btrfs_put_delayed_ref_head(head);
1895 	return ret;
1896 }
1897 
1898 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1899 					struct btrfs_trans_handle *trans)
1900 {
1901 	struct btrfs_delayed_ref_root *delayed_refs =
1902 		&trans->transaction->delayed_refs;
1903 	struct btrfs_delayed_ref_head *head = NULL;
1904 	int ret;
1905 
1906 	spin_lock(&delayed_refs->lock);
1907 	head = btrfs_select_ref_head(delayed_refs);
1908 	if (!head) {
1909 		spin_unlock(&delayed_refs->lock);
1910 		return head;
1911 	}
1912 
1913 	/*
1914 	 * Grab the lock that says we are going to process all the refs for
1915 	 * this head
1916 	 */
1917 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1918 	spin_unlock(&delayed_refs->lock);
1919 
1920 	/*
1921 	 * We may have dropped the spin lock to get the head mutex lock, and
1922 	 * that might have given someone else time to free the head.  If that's
1923 	 * true, it has been removed from our list and we can move on.
1924 	 */
1925 	if (ret == -EAGAIN)
1926 		head = ERR_PTR(-EAGAIN);
1927 
1928 	return head;
1929 }
1930 
1931 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1932 					   struct btrfs_delayed_ref_head *locked_ref)
1933 {
1934 	struct btrfs_fs_info *fs_info = trans->fs_info;
1935 	struct btrfs_delayed_ref_root *delayed_refs;
1936 	struct btrfs_delayed_extent_op *extent_op;
1937 	struct btrfs_delayed_ref_node *ref;
1938 	bool must_insert_reserved;
1939 	int ret;
1940 
1941 	delayed_refs = &trans->transaction->delayed_refs;
1942 
1943 	lockdep_assert_held(&locked_ref->mutex);
1944 	lockdep_assert_held(&locked_ref->lock);
1945 
1946 	while ((ref = select_delayed_ref(locked_ref))) {
1947 		if (ref->seq &&
1948 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1949 			spin_unlock(&locked_ref->lock);
1950 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1951 			return -EAGAIN;
1952 		}
1953 
1954 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1955 		RB_CLEAR_NODE(&ref->ref_node);
1956 		if (!list_empty(&ref->add_list))
1957 			list_del(&ref->add_list);
1958 		/*
1959 		 * When we play the delayed ref, also correct the ref_mod on
1960 		 * head
1961 		 */
1962 		switch (ref->action) {
1963 		case BTRFS_ADD_DELAYED_REF:
1964 		case BTRFS_ADD_DELAYED_EXTENT:
1965 			locked_ref->ref_mod -= ref->ref_mod;
1966 			break;
1967 		case BTRFS_DROP_DELAYED_REF:
1968 			locked_ref->ref_mod += ref->ref_mod;
1969 			break;
1970 		default:
1971 			WARN_ON(1);
1972 		}
1973 		atomic_dec(&delayed_refs->num_entries);
1974 
1975 		/*
1976 		 * Record the must_insert_reserved flag before we drop the
1977 		 * spin lock.
1978 		 */
1979 		must_insert_reserved = locked_ref->must_insert_reserved;
1980 		locked_ref->must_insert_reserved = false;
1981 
1982 		extent_op = locked_ref->extent_op;
1983 		locked_ref->extent_op = NULL;
1984 		spin_unlock(&locked_ref->lock);
1985 
1986 		ret = run_one_delayed_ref(trans, ref, extent_op,
1987 					  must_insert_reserved);
1988 
1989 		btrfs_free_delayed_extent_op(extent_op);
1990 		if (ret) {
1991 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1992 			btrfs_put_delayed_ref(ref);
1993 			return ret;
1994 		}
1995 
1996 		btrfs_put_delayed_ref(ref);
1997 		cond_resched();
1998 
1999 		spin_lock(&locked_ref->lock);
2000 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Returns 0 on success or if called with an already aborted transaction.
2008  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2009  */
2010 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2011 					     unsigned long nr)
2012 {
2013 	struct btrfs_fs_info *fs_info = trans->fs_info;
2014 	struct btrfs_delayed_ref_root *delayed_refs;
2015 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2016 	int ret;
2017 	unsigned long count = 0;
2018 
2019 	delayed_refs = &trans->transaction->delayed_refs;
2020 	do {
2021 		if (!locked_ref) {
2022 			locked_ref = btrfs_obtain_ref_head(trans);
2023 			if (IS_ERR_OR_NULL(locked_ref)) {
2024 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2025 					continue;
2026 				} else {
2027 					break;
2028 				}
2029 			}
2030 			count++;
2031 		}
2032 		/*
2033 		 * We need to try and merge add/drops of the same ref since we
2034 		 * can run into issues with relocate dropping the implicit ref
2035 		 * and then it being added back again before the drop can
2036 		 * finish.  If we merged anything we need to re-loop so we can
2037 		 * get a good ref.
2038 		 * Or we can get node references of the same type that weren't
2039 		 * merged when created due to bumps in the tree mod seq, and
2040 		 * we need to merge them to prevent adding an inline extent
2041 		 * backref before dropping it (triggering a BUG_ON at
2042 		 * insert_inline_extent_backref()).
2043 		 */
2044 		spin_lock(&locked_ref->lock);
2045 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2046 
2047 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2048 		if (ret < 0 && ret != -EAGAIN) {
2049 			/*
2050 			 * Error, btrfs_run_delayed_refs_for_head already
2051 			 * unlocked everything so just bail out
2052 			 */
2053 			return ret;
2054 		} else if (!ret) {
2055 			/*
2056 			 * Success, perform the usual cleanup of a processed
2057 			 * head
2058 			 */
2059 			ret = cleanup_ref_head(trans, locked_ref);
2060 			if (ret > 0 ) {
2061 				/* We dropped our lock, we need to loop. */
2062 				ret = 0;
2063 				continue;
2064 			} else if (ret) {
2065 				return ret;
2066 			}
2067 		}
2068 
2069 		/*
2070 		 * Either success case or btrfs_run_delayed_refs_for_head
2071 		 * returned -EAGAIN, meaning we need to select another head
2072 		 */
2073 
2074 		locked_ref = NULL;
2075 		cond_resched();
2076 	} while ((nr != -1 && count < nr) || locked_ref);
2077 
2078 	return 0;
2079 }
2080 
2081 #ifdef SCRAMBLE_DELAYED_REFS
2082 /*
2083  * Normally delayed refs get processed in ascending bytenr order. This
2084  * correlates in most cases to the order added. To expose dependencies on this
2085  * order, we start to process the tree in the middle instead of the beginning
2086  */
2087 static u64 find_middle(struct rb_root *root)
2088 {
2089 	struct rb_node *n = root->rb_node;
2090 	struct btrfs_delayed_ref_node *entry;
2091 	int alt = 1;
2092 	u64 middle;
2093 	u64 first = 0, last = 0;
2094 
2095 	n = rb_first(root);
2096 	if (n) {
2097 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 		first = entry->bytenr;
2099 	}
2100 	n = rb_last(root);
2101 	if (n) {
2102 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2103 		last = entry->bytenr;
2104 	}
2105 	n = root->rb_node;
2106 
2107 	while (n) {
2108 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2109 		WARN_ON(!entry->in_tree);
2110 
2111 		middle = entry->bytenr;
2112 
2113 		if (alt)
2114 			n = n->rb_left;
2115 		else
2116 			n = n->rb_right;
2117 
2118 		alt = 1 - alt;
2119 	}
2120 	return middle;
2121 }
2122 #endif
2123 
2124 /*
2125  * this starts processing the delayed reference count updates and
2126  * extent insertions we have queued up so far.  count can be
2127  * 0, which means to process everything in the tree at the start
2128  * of the run (but not newly added entries), or it can be some target
2129  * number you'd like to process.
2130  *
2131  * Returns 0 on success or if called with an aborted transaction
2132  * Returns <0 on error and aborts the transaction
2133  */
2134 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2135 			   unsigned long count)
2136 {
2137 	struct btrfs_fs_info *fs_info = trans->fs_info;
2138 	struct rb_node *node;
2139 	struct btrfs_delayed_ref_root *delayed_refs;
2140 	struct btrfs_delayed_ref_head *head;
2141 	int ret;
2142 	int run_all = count == (unsigned long)-1;
2143 
2144 	/* We'll clean this up in btrfs_cleanup_transaction */
2145 	if (TRANS_ABORTED(trans))
2146 		return 0;
2147 
2148 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2149 		return 0;
2150 
2151 	delayed_refs = &trans->transaction->delayed_refs;
2152 	if (count == 0)
2153 		count = delayed_refs->num_heads_ready;
2154 
2155 again:
2156 #ifdef SCRAMBLE_DELAYED_REFS
2157 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2158 #endif
2159 	ret = __btrfs_run_delayed_refs(trans, count);
2160 	if (ret < 0) {
2161 		btrfs_abort_transaction(trans, ret);
2162 		return ret;
2163 	}
2164 
2165 	if (run_all) {
2166 		btrfs_create_pending_block_groups(trans);
2167 
2168 		spin_lock(&delayed_refs->lock);
2169 		node = rb_first_cached(&delayed_refs->href_root);
2170 		if (!node) {
2171 			spin_unlock(&delayed_refs->lock);
2172 			goto out;
2173 		}
2174 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2175 				href_node);
2176 		refcount_inc(&head->refs);
2177 		spin_unlock(&delayed_refs->lock);
2178 
2179 		/* Mutex was contended, block until it's released and retry. */
2180 		mutex_lock(&head->mutex);
2181 		mutex_unlock(&head->mutex);
2182 
2183 		btrfs_put_delayed_ref_head(head);
2184 		cond_resched();
2185 		goto again;
2186 	}
2187 out:
2188 	return 0;
2189 }
2190 
2191 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2192 				struct extent_buffer *eb, u64 flags)
2193 {
2194 	struct btrfs_delayed_extent_op *extent_op;
2195 	int level = btrfs_header_level(eb);
2196 	int ret;
2197 
2198 	extent_op = btrfs_alloc_delayed_extent_op();
2199 	if (!extent_op)
2200 		return -ENOMEM;
2201 
2202 	extent_op->flags_to_set = flags;
2203 	extent_op->update_flags = true;
2204 	extent_op->update_key = false;
2205 	extent_op->level = level;
2206 
2207 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2208 	if (ret)
2209 		btrfs_free_delayed_extent_op(extent_op);
2210 	return ret;
2211 }
2212 
2213 static noinline int check_delayed_ref(struct btrfs_root *root,
2214 				      struct btrfs_path *path,
2215 				      u64 objectid, u64 offset, u64 bytenr)
2216 {
2217 	struct btrfs_delayed_ref_head *head;
2218 	struct btrfs_delayed_ref_node *ref;
2219 	struct btrfs_delayed_data_ref *data_ref;
2220 	struct btrfs_delayed_ref_root *delayed_refs;
2221 	struct btrfs_transaction *cur_trans;
2222 	struct rb_node *node;
2223 	int ret = 0;
2224 
2225 	spin_lock(&root->fs_info->trans_lock);
2226 	cur_trans = root->fs_info->running_transaction;
2227 	if (cur_trans)
2228 		refcount_inc(&cur_trans->use_count);
2229 	spin_unlock(&root->fs_info->trans_lock);
2230 	if (!cur_trans)
2231 		return 0;
2232 
2233 	delayed_refs = &cur_trans->delayed_refs;
2234 	spin_lock(&delayed_refs->lock);
2235 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2236 	if (!head) {
2237 		spin_unlock(&delayed_refs->lock);
2238 		btrfs_put_transaction(cur_trans);
2239 		return 0;
2240 	}
2241 
2242 	if (!mutex_trylock(&head->mutex)) {
2243 		if (path->nowait) {
2244 			spin_unlock(&delayed_refs->lock);
2245 			btrfs_put_transaction(cur_trans);
2246 			return -EAGAIN;
2247 		}
2248 
2249 		refcount_inc(&head->refs);
2250 		spin_unlock(&delayed_refs->lock);
2251 
2252 		btrfs_release_path(path);
2253 
2254 		/*
2255 		 * Mutex was contended, block until it's released and let
2256 		 * caller try again
2257 		 */
2258 		mutex_lock(&head->mutex);
2259 		mutex_unlock(&head->mutex);
2260 		btrfs_put_delayed_ref_head(head);
2261 		btrfs_put_transaction(cur_trans);
2262 		return -EAGAIN;
2263 	}
2264 	spin_unlock(&delayed_refs->lock);
2265 
2266 	spin_lock(&head->lock);
2267 	/*
2268 	 * XXX: We should replace this with a proper search function in the
2269 	 * future.
2270 	 */
2271 	for (node = rb_first_cached(&head->ref_tree); node;
2272 	     node = rb_next(node)) {
2273 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2274 		/* If it's a shared ref we know a cross reference exists */
2275 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2276 			ret = 1;
2277 			break;
2278 		}
2279 
2280 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2281 
2282 		/*
2283 		 * If our ref doesn't match the one we're currently looking at
2284 		 * then we have a cross reference.
2285 		 */
2286 		if (data_ref->root != root->root_key.objectid ||
2287 		    data_ref->objectid != objectid ||
2288 		    data_ref->offset != offset) {
2289 			ret = 1;
2290 			break;
2291 		}
2292 	}
2293 	spin_unlock(&head->lock);
2294 	mutex_unlock(&head->mutex);
2295 	btrfs_put_transaction(cur_trans);
2296 	return ret;
2297 }
2298 
2299 static noinline int check_committed_ref(struct btrfs_root *root,
2300 					struct btrfs_path *path,
2301 					u64 objectid, u64 offset, u64 bytenr,
2302 					bool strict)
2303 {
2304 	struct btrfs_fs_info *fs_info = root->fs_info;
2305 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2306 	struct extent_buffer *leaf;
2307 	struct btrfs_extent_data_ref *ref;
2308 	struct btrfs_extent_inline_ref *iref;
2309 	struct btrfs_extent_item *ei;
2310 	struct btrfs_key key;
2311 	u32 item_size;
2312 	int type;
2313 	int ret;
2314 
2315 	key.objectid = bytenr;
2316 	key.offset = (u64)-1;
2317 	key.type = BTRFS_EXTENT_ITEM_KEY;
2318 
2319 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2320 	if (ret < 0)
2321 		goto out;
2322 	BUG_ON(ret == 0); /* Corruption */
2323 
2324 	ret = -ENOENT;
2325 	if (path->slots[0] == 0)
2326 		goto out;
2327 
2328 	path->slots[0]--;
2329 	leaf = path->nodes[0];
2330 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2331 
2332 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2333 		goto out;
2334 
2335 	ret = 1;
2336 	item_size = btrfs_item_size(leaf, path->slots[0]);
2337 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2338 
2339 	/* If extent item has more than 1 inline ref then it's shared */
2340 	if (item_size != sizeof(*ei) +
2341 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2342 		goto out;
2343 
2344 	/*
2345 	 * If extent created before last snapshot => it's shared unless the
2346 	 * snapshot has been deleted. Use the heuristic if strict is false.
2347 	 */
2348 	if (!strict &&
2349 	    (btrfs_extent_generation(leaf, ei) <=
2350 	     btrfs_root_last_snapshot(&root->root_item)))
2351 		goto out;
2352 
2353 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2354 
2355 	/* If this extent has SHARED_DATA_REF then it's shared */
2356 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2357 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2358 		goto out;
2359 
2360 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2361 	if (btrfs_extent_refs(leaf, ei) !=
2362 	    btrfs_extent_data_ref_count(leaf, ref) ||
2363 	    btrfs_extent_data_ref_root(leaf, ref) !=
2364 	    root->root_key.objectid ||
2365 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2366 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2367 		goto out;
2368 
2369 	ret = 0;
2370 out:
2371 	return ret;
2372 }
2373 
2374 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2375 			  u64 bytenr, bool strict, struct btrfs_path *path)
2376 {
2377 	int ret;
2378 
2379 	do {
2380 		ret = check_committed_ref(root, path, objectid,
2381 					  offset, bytenr, strict);
2382 		if (ret && ret != -ENOENT)
2383 			goto out;
2384 
2385 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2386 	} while (ret == -EAGAIN);
2387 
2388 out:
2389 	btrfs_release_path(path);
2390 	if (btrfs_is_data_reloc_root(root))
2391 		WARN_ON(ret > 0);
2392 	return ret;
2393 }
2394 
2395 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2396 			   struct btrfs_root *root,
2397 			   struct extent_buffer *buf,
2398 			   int full_backref, int inc)
2399 {
2400 	struct btrfs_fs_info *fs_info = root->fs_info;
2401 	u64 bytenr;
2402 	u64 num_bytes;
2403 	u64 parent;
2404 	u64 ref_root;
2405 	u32 nritems;
2406 	struct btrfs_key key;
2407 	struct btrfs_file_extent_item *fi;
2408 	struct btrfs_ref generic_ref = { 0 };
2409 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2410 	int i;
2411 	int action;
2412 	int level;
2413 	int ret = 0;
2414 
2415 	if (btrfs_is_testing(fs_info))
2416 		return 0;
2417 
2418 	ref_root = btrfs_header_owner(buf);
2419 	nritems = btrfs_header_nritems(buf);
2420 	level = btrfs_header_level(buf);
2421 
2422 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2423 		return 0;
2424 
2425 	if (full_backref)
2426 		parent = buf->start;
2427 	else
2428 		parent = 0;
2429 	if (inc)
2430 		action = BTRFS_ADD_DELAYED_REF;
2431 	else
2432 		action = BTRFS_DROP_DELAYED_REF;
2433 
2434 	for (i = 0; i < nritems; i++) {
2435 		if (level == 0) {
2436 			btrfs_item_key_to_cpu(buf, &key, i);
2437 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2438 				continue;
2439 			fi = btrfs_item_ptr(buf, i,
2440 					    struct btrfs_file_extent_item);
2441 			if (btrfs_file_extent_type(buf, fi) ==
2442 			    BTRFS_FILE_EXTENT_INLINE)
2443 				continue;
2444 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2445 			if (bytenr == 0)
2446 				continue;
2447 
2448 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2449 			key.offset -= btrfs_file_extent_offset(buf, fi);
2450 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2451 					       num_bytes, parent);
2452 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2453 					    key.offset, root->root_key.objectid,
2454 					    for_reloc);
2455 			if (inc)
2456 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2457 			else
2458 				ret = btrfs_free_extent(trans, &generic_ref);
2459 			if (ret)
2460 				goto fail;
2461 		} else {
2462 			bytenr = btrfs_node_blockptr(buf, i);
2463 			num_bytes = fs_info->nodesize;
2464 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2465 					       num_bytes, parent);
2466 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2467 					    root->root_key.objectid, for_reloc);
2468 			if (inc)
2469 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2470 			else
2471 				ret = btrfs_free_extent(trans, &generic_ref);
2472 			if (ret)
2473 				goto fail;
2474 		}
2475 	}
2476 	return 0;
2477 fail:
2478 	return ret;
2479 }
2480 
2481 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2482 		  struct extent_buffer *buf, int full_backref)
2483 {
2484 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2485 }
2486 
2487 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2488 		  struct extent_buffer *buf, int full_backref)
2489 {
2490 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2491 }
2492 
2493 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2494 {
2495 	struct btrfs_fs_info *fs_info = root->fs_info;
2496 	u64 flags;
2497 	u64 ret;
2498 
2499 	if (data)
2500 		flags = BTRFS_BLOCK_GROUP_DATA;
2501 	else if (root == fs_info->chunk_root)
2502 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2503 	else
2504 		flags = BTRFS_BLOCK_GROUP_METADATA;
2505 
2506 	ret = btrfs_get_alloc_profile(fs_info, flags);
2507 	return ret;
2508 }
2509 
2510 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2511 {
2512 	struct rb_node *leftmost;
2513 	u64 bytenr = 0;
2514 
2515 	read_lock(&fs_info->block_group_cache_lock);
2516 	/* Get the block group with the lowest logical start address. */
2517 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2518 	if (leftmost) {
2519 		struct btrfs_block_group *bg;
2520 
2521 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2522 		bytenr = bg->start;
2523 	}
2524 	read_unlock(&fs_info->block_group_cache_lock);
2525 
2526 	return bytenr;
2527 }
2528 
2529 static int pin_down_extent(struct btrfs_trans_handle *trans,
2530 			   struct btrfs_block_group *cache,
2531 			   u64 bytenr, u64 num_bytes, int reserved)
2532 {
2533 	struct btrfs_fs_info *fs_info = cache->fs_info;
2534 
2535 	spin_lock(&cache->space_info->lock);
2536 	spin_lock(&cache->lock);
2537 	cache->pinned += num_bytes;
2538 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2539 					     num_bytes);
2540 	if (reserved) {
2541 		cache->reserved -= num_bytes;
2542 		cache->space_info->bytes_reserved -= num_bytes;
2543 	}
2544 	spin_unlock(&cache->lock);
2545 	spin_unlock(&cache->space_info->lock);
2546 
2547 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2548 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2549 	return 0;
2550 }
2551 
2552 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2553 		     u64 bytenr, u64 num_bytes, int reserved)
2554 {
2555 	struct btrfs_block_group *cache;
2556 
2557 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2558 	BUG_ON(!cache); /* Logic error */
2559 
2560 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2561 
2562 	btrfs_put_block_group(cache);
2563 	return 0;
2564 }
2565 
2566 /*
2567  * this function must be called within transaction
2568  */
2569 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2570 				    u64 bytenr, u64 num_bytes)
2571 {
2572 	struct btrfs_block_group *cache;
2573 	int ret;
2574 
2575 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2576 	if (!cache)
2577 		return -EINVAL;
2578 
2579 	/*
2580 	 * Fully cache the free space first so that our pin removes the free space
2581 	 * from the cache.
2582 	 */
2583 	ret = btrfs_cache_block_group(cache, true);
2584 	if (ret)
2585 		goto out;
2586 
2587 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2588 
2589 	/* remove us from the free space cache (if we're there at all) */
2590 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2591 out:
2592 	btrfs_put_block_group(cache);
2593 	return ret;
2594 }
2595 
2596 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2597 				   u64 start, u64 num_bytes)
2598 {
2599 	int ret;
2600 	struct btrfs_block_group *block_group;
2601 
2602 	block_group = btrfs_lookup_block_group(fs_info, start);
2603 	if (!block_group)
2604 		return -EINVAL;
2605 
2606 	ret = btrfs_cache_block_group(block_group, true);
2607 	if (ret)
2608 		goto out;
2609 
2610 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2611 out:
2612 	btrfs_put_block_group(block_group);
2613 	return ret;
2614 }
2615 
2616 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2617 {
2618 	struct btrfs_fs_info *fs_info = eb->fs_info;
2619 	struct btrfs_file_extent_item *item;
2620 	struct btrfs_key key;
2621 	int found_type;
2622 	int i;
2623 	int ret = 0;
2624 
2625 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2626 		return 0;
2627 
2628 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2629 		btrfs_item_key_to_cpu(eb, &key, i);
2630 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2631 			continue;
2632 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2633 		found_type = btrfs_file_extent_type(eb, item);
2634 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2635 			continue;
2636 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2637 			continue;
2638 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2639 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2640 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2641 		if (ret)
2642 			break;
2643 	}
2644 
2645 	return ret;
2646 }
2647 
2648 static void
2649 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2650 {
2651 	atomic_inc(&bg->reservations);
2652 }
2653 
2654 /*
2655  * Returns the free cluster for the given space info and sets empty_cluster to
2656  * what it should be based on the mount options.
2657  */
2658 static struct btrfs_free_cluster *
2659 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2660 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2661 {
2662 	struct btrfs_free_cluster *ret = NULL;
2663 
2664 	*empty_cluster = 0;
2665 	if (btrfs_mixed_space_info(space_info))
2666 		return ret;
2667 
2668 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2669 		ret = &fs_info->meta_alloc_cluster;
2670 		if (btrfs_test_opt(fs_info, SSD))
2671 			*empty_cluster = SZ_2M;
2672 		else
2673 			*empty_cluster = SZ_64K;
2674 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2675 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2676 		*empty_cluster = SZ_2M;
2677 		ret = &fs_info->data_alloc_cluster;
2678 	}
2679 
2680 	return ret;
2681 }
2682 
2683 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2684 			      u64 start, u64 end,
2685 			      const bool return_free_space)
2686 {
2687 	struct btrfs_block_group *cache = NULL;
2688 	struct btrfs_space_info *space_info;
2689 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2690 	struct btrfs_free_cluster *cluster = NULL;
2691 	u64 len;
2692 	u64 total_unpinned = 0;
2693 	u64 empty_cluster = 0;
2694 	bool readonly;
2695 
2696 	while (start <= end) {
2697 		readonly = false;
2698 		if (!cache ||
2699 		    start >= cache->start + cache->length) {
2700 			if (cache)
2701 				btrfs_put_block_group(cache);
2702 			total_unpinned = 0;
2703 			cache = btrfs_lookup_block_group(fs_info, start);
2704 			BUG_ON(!cache); /* Logic error */
2705 
2706 			cluster = fetch_cluster_info(fs_info,
2707 						     cache->space_info,
2708 						     &empty_cluster);
2709 			empty_cluster <<= 1;
2710 		}
2711 
2712 		len = cache->start + cache->length - start;
2713 		len = min(len, end + 1 - start);
2714 
2715 		if (return_free_space)
2716 			btrfs_add_free_space(cache, start, len);
2717 
2718 		start += len;
2719 		total_unpinned += len;
2720 		space_info = cache->space_info;
2721 
2722 		/*
2723 		 * If this space cluster has been marked as fragmented and we've
2724 		 * unpinned enough in this block group to potentially allow a
2725 		 * cluster to be created inside of it go ahead and clear the
2726 		 * fragmented check.
2727 		 */
2728 		if (cluster && cluster->fragmented &&
2729 		    total_unpinned > empty_cluster) {
2730 			spin_lock(&cluster->lock);
2731 			cluster->fragmented = 0;
2732 			spin_unlock(&cluster->lock);
2733 		}
2734 
2735 		spin_lock(&space_info->lock);
2736 		spin_lock(&cache->lock);
2737 		cache->pinned -= len;
2738 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2739 		space_info->max_extent_size = 0;
2740 		if (cache->ro) {
2741 			space_info->bytes_readonly += len;
2742 			readonly = true;
2743 		} else if (btrfs_is_zoned(fs_info)) {
2744 			/* Need reset before reusing in a zoned block group */
2745 			space_info->bytes_zone_unusable += len;
2746 			readonly = true;
2747 		}
2748 		spin_unlock(&cache->lock);
2749 		if (!readonly && return_free_space &&
2750 		    global_rsv->space_info == space_info) {
2751 			spin_lock(&global_rsv->lock);
2752 			if (!global_rsv->full) {
2753 				u64 to_add = min(len, global_rsv->size -
2754 						      global_rsv->reserved);
2755 
2756 				global_rsv->reserved += to_add;
2757 				btrfs_space_info_update_bytes_may_use(fs_info,
2758 						space_info, to_add);
2759 				if (global_rsv->reserved >= global_rsv->size)
2760 					global_rsv->full = 1;
2761 				len -= to_add;
2762 			}
2763 			spin_unlock(&global_rsv->lock);
2764 		}
2765 		/* Add to any tickets we may have */
2766 		if (!readonly && return_free_space && len)
2767 			btrfs_try_granting_tickets(fs_info, space_info);
2768 		spin_unlock(&space_info->lock);
2769 	}
2770 
2771 	if (cache)
2772 		btrfs_put_block_group(cache);
2773 	return 0;
2774 }
2775 
2776 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2777 {
2778 	struct btrfs_fs_info *fs_info = trans->fs_info;
2779 	struct btrfs_block_group *block_group, *tmp;
2780 	struct list_head *deleted_bgs;
2781 	struct extent_io_tree *unpin;
2782 	u64 start;
2783 	u64 end;
2784 	int ret;
2785 
2786 	unpin = &trans->transaction->pinned_extents;
2787 
2788 	while (!TRANS_ABORTED(trans)) {
2789 		struct extent_state *cached_state = NULL;
2790 
2791 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2792 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2793 					   EXTENT_DIRTY, &cached_state)) {
2794 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2795 			break;
2796 		}
2797 
2798 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2799 			ret = btrfs_discard_extent(fs_info, start,
2800 						   end + 1 - start, NULL);
2801 
2802 		clear_extent_dirty(unpin, start, end, &cached_state);
2803 		unpin_extent_range(fs_info, start, end, true);
2804 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2805 		free_extent_state(cached_state);
2806 		cond_resched();
2807 	}
2808 
2809 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2810 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2811 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2812 	}
2813 
2814 	/*
2815 	 * Transaction is finished.  We don't need the lock anymore.  We
2816 	 * do need to clean up the block groups in case of a transaction
2817 	 * abort.
2818 	 */
2819 	deleted_bgs = &trans->transaction->deleted_bgs;
2820 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2821 		u64 trimmed = 0;
2822 
2823 		ret = -EROFS;
2824 		if (!TRANS_ABORTED(trans))
2825 			ret = btrfs_discard_extent(fs_info,
2826 						   block_group->start,
2827 						   block_group->length,
2828 						   &trimmed);
2829 
2830 		list_del_init(&block_group->bg_list);
2831 		btrfs_unfreeze_block_group(block_group);
2832 		btrfs_put_block_group(block_group);
2833 
2834 		if (ret) {
2835 			const char *errstr = btrfs_decode_error(ret);
2836 			btrfs_warn(fs_info,
2837 			   "discard failed while removing blockgroup: errno=%d %s",
2838 				   ret, errstr);
2839 		}
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2846 				     u64 bytenr, u64 num_bytes, bool is_data)
2847 {
2848 	int ret;
2849 
2850 	if (is_data) {
2851 		struct btrfs_root *csum_root;
2852 
2853 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2854 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2855 		if (ret) {
2856 			btrfs_abort_transaction(trans, ret);
2857 			return ret;
2858 		}
2859 	}
2860 
2861 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2862 	if (ret) {
2863 		btrfs_abort_transaction(trans, ret);
2864 		return ret;
2865 	}
2866 
2867 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2868 	if (ret)
2869 		btrfs_abort_transaction(trans, ret);
2870 
2871 	return ret;
2872 }
2873 
2874 #define abort_and_dump(trans, path, fmt, args...)	\
2875 ({							\
2876 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2877 	btrfs_print_leaf(path->nodes[0]);		\
2878 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2879 })
2880 
2881 /*
2882  * Drop one or more refs of @node.
2883  *
2884  * 1. Locate the extent refs.
2885  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2886  *    Locate it, then reduce the refs number or remove the ref line completely.
2887  *
2888  * 2. Update the refs count in EXTENT/METADATA_ITEM
2889  *
2890  * Inline backref case:
2891  *
2892  * in extent tree we have:
2893  *
2894  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2895  *		refs 2 gen 6 flags DATA
2896  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2897  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2898  *
2899  * This function gets called with:
2900  *
2901  *    node->bytenr = 13631488
2902  *    node->num_bytes = 1048576
2903  *    root_objectid = FS_TREE
2904  *    owner_objectid = 257
2905  *    owner_offset = 0
2906  *    refs_to_drop = 1
2907  *
2908  * Then we should get some like:
2909  *
2910  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2911  *		refs 1 gen 6 flags DATA
2912  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2913  *
2914  * Keyed backref case:
2915  *
2916  * in extent tree we have:
2917  *
2918  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2919  *		refs 754 gen 6 flags DATA
2920  *	[...]
2921  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2922  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2923  *
2924  * This function get called with:
2925  *
2926  *    node->bytenr = 13631488
2927  *    node->num_bytes = 1048576
2928  *    root_objectid = FS_TREE
2929  *    owner_objectid = 866
2930  *    owner_offset = 0
2931  *    refs_to_drop = 1
2932  *
2933  * Then we should get some like:
2934  *
2935  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2936  *		refs 753 gen 6 flags DATA
2937  *
2938  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2939  */
2940 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2941 			       struct btrfs_delayed_ref_node *node, u64 parent,
2942 			       u64 root_objectid, u64 owner_objectid,
2943 			       u64 owner_offset, int refs_to_drop,
2944 			       struct btrfs_delayed_extent_op *extent_op)
2945 {
2946 	struct btrfs_fs_info *info = trans->fs_info;
2947 	struct btrfs_key key;
2948 	struct btrfs_path *path;
2949 	struct btrfs_root *extent_root;
2950 	struct extent_buffer *leaf;
2951 	struct btrfs_extent_item *ei;
2952 	struct btrfs_extent_inline_ref *iref;
2953 	int ret;
2954 	int is_data;
2955 	int extent_slot = 0;
2956 	int found_extent = 0;
2957 	int num_to_del = 1;
2958 	u32 item_size;
2959 	u64 refs;
2960 	u64 bytenr = node->bytenr;
2961 	u64 num_bytes = node->num_bytes;
2962 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2963 
2964 	extent_root = btrfs_extent_root(info, bytenr);
2965 	ASSERT(extent_root);
2966 
2967 	path = btrfs_alloc_path();
2968 	if (!path)
2969 		return -ENOMEM;
2970 
2971 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2972 
2973 	if (!is_data && refs_to_drop != 1) {
2974 		btrfs_crit(info,
2975 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2976 			   node->bytenr, refs_to_drop);
2977 		ret = -EINVAL;
2978 		btrfs_abort_transaction(trans, ret);
2979 		goto out;
2980 	}
2981 
2982 	if (is_data)
2983 		skinny_metadata = false;
2984 
2985 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2986 				    parent, root_objectid, owner_objectid,
2987 				    owner_offset);
2988 	if (ret == 0) {
2989 		/*
2990 		 * Either the inline backref or the SHARED_DATA_REF/
2991 		 * SHARED_BLOCK_REF is found
2992 		 *
2993 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2994 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2995 		 */
2996 		extent_slot = path->slots[0];
2997 		while (extent_slot >= 0) {
2998 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2999 					      extent_slot);
3000 			if (key.objectid != bytenr)
3001 				break;
3002 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3003 			    key.offset == num_bytes) {
3004 				found_extent = 1;
3005 				break;
3006 			}
3007 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3008 			    key.offset == owner_objectid) {
3009 				found_extent = 1;
3010 				break;
3011 			}
3012 
3013 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3014 			if (path->slots[0] - extent_slot > 5)
3015 				break;
3016 			extent_slot--;
3017 		}
3018 
3019 		if (!found_extent) {
3020 			if (iref) {
3021 				abort_and_dump(trans, path,
3022 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3023 					   path->slots[0]);
3024 				ret = -EUCLEAN;
3025 				goto out;
3026 			}
3027 			/* Must be SHARED_* item, remove the backref first */
3028 			ret = remove_extent_backref(trans, extent_root, path,
3029 						    NULL, refs_to_drop, is_data);
3030 			if (ret) {
3031 				btrfs_abort_transaction(trans, ret);
3032 				goto out;
3033 			}
3034 			btrfs_release_path(path);
3035 
3036 			/* Slow path to locate EXTENT/METADATA_ITEM */
3037 			key.objectid = bytenr;
3038 			key.type = BTRFS_EXTENT_ITEM_KEY;
3039 			key.offset = num_bytes;
3040 
3041 			if (!is_data && skinny_metadata) {
3042 				key.type = BTRFS_METADATA_ITEM_KEY;
3043 				key.offset = owner_objectid;
3044 			}
3045 
3046 			ret = btrfs_search_slot(trans, extent_root,
3047 						&key, path, -1, 1);
3048 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3049 				/*
3050 				 * Couldn't find our skinny metadata item,
3051 				 * see if we have ye olde extent item.
3052 				 */
3053 				path->slots[0]--;
3054 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3055 						      path->slots[0]);
3056 				if (key.objectid == bytenr &&
3057 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3058 				    key.offset == num_bytes)
3059 					ret = 0;
3060 			}
3061 
3062 			if (ret > 0 && skinny_metadata) {
3063 				skinny_metadata = false;
3064 				key.objectid = bytenr;
3065 				key.type = BTRFS_EXTENT_ITEM_KEY;
3066 				key.offset = num_bytes;
3067 				btrfs_release_path(path);
3068 				ret = btrfs_search_slot(trans, extent_root,
3069 							&key, path, -1, 1);
3070 			}
3071 
3072 			if (ret) {
3073 				if (ret > 0)
3074 					btrfs_print_leaf(path->nodes[0]);
3075 				btrfs_err(info,
3076 			"umm, got %d back from search, was looking for %llu, slot %d",
3077 					  ret, bytenr, path->slots[0]);
3078 			}
3079 			if (ret < 0) {
3080 				btrfs_abort_transaction(trans, ret);
3081 				goto out;
3082 			}
3083 			extent_slot = path->slots[0];
3084 		}
3085 	} else if (WARN_ON(ret == -ENOENT)) {
3086 		abort_and_dump(trans, path,
3087 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3088 			       bytenr, parent, root_objectid, owner_objectid,
3089 			       owner_offset, path->slots[0]);
3090 		goto out;
3091 	} else {
3092 		btrfs_abort_transaction(trans, ret);
3093 		goto out;
3094 	}
3095 
3096 	leaf = path->nodes[0];
3097 	item_size = btrfs_item_size(leaf, extent_slot);
3098 	if (unlikely(item_size < sizeof(*ei))) {
3099 		ret = -EUCLEAN;
3100 		btrfs_err(trans->fs_info,
3101 			  "unexpected extent item size, has %u expect >= %zu",
3102 			  item_size, sizeof(*ei));
3103 		btrfs_abort_transaction(trans, ret);
3104 		goto out;
3105 	}
3106 	ei = btrfs_item_ptr(leaf, extent_slot,
3107 			    struct btrfs_extent_item);
3108 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3109 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3110 		struct btrfs_tree_block_info *bi;
3111 
3112 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3113 			abort_and_dump(trans, path,
3114 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3115 				       key.objectid, key.type, key.offset,
3116 				       path->slots[0], owner_objectid, item_size,
3117 				       sizeof(*ei) + sizeof(*bi));
3118 			ret = -EUCLEAN;
3119 			goto out;
3120 		}
3121 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3122 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3123 	}
3124 
3125 	refs = btrfs_extent_refs(leaf, ei);
3126 	if (refs < refs_to_drop) {
3127 		abort_and_dump(trans, path,
3128 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3129 			       refs_to_drop, refs, bytenr, path->slots[0]);
3130 		ret = -EUCLEAN;
3131 		goto out;
3132 	}
3133 	refs -= refs_to_drop;
3134 
3135 	if (refs > 0) {
3136 		if (extent_op)
3137 			__run_delayed_extent_op(extent_op, leaf, ei);
3138 		/*
3139 		 * In the case of inline back ref, reference count will
3140 		 * be updated by remove_extent_backref
3141 		 */
3142 		if (iref) {
3143 			if (!found_extent) {
3144 				abort_and_dump(trans, path,
3145 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3146 					       path->slots[0]);
3147 				ret = -EUCLEAN;
3148 				goto out;
3149 			}
3150 		} else {
3151 			btrfs_set_extent_refs(leaf, ei, refs);
3152 			btrfs_mark_buffer_dirty(leaf);
3153 		}
3154 		if (found_extent) {
3155 			ret = remove_extent_backref(trans, extent_root, path,
3156 						    iref, refs_to_drop, is_data);
3157 			if (ret) {
3158 				btrfs_abort_transaction(trans, ret);
3159 				goto out;
3160 			}
3161 		}
3162 	} else {
3163 		/* In this branch refs == 1 */
3164 		if (found_extent) {
3165 			if (is_data && refs_to_drop !=
3166 			    extent_data_ref_count(path, iref)) {
3167 				abort_and_dump(trans, path,
3168 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3169 					       extent_data_ref_count(path, iref),
3170 					       refs_to_drop, path->slots[0]);
3171 				ret = -EUCLEAN;
3172 				goto out;
3173 			}
3174 			if (iref) {
3175 				if (path->slots[0] != extent_slot) {
3176 					abort_and_dump(trans, path,
3177 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3178 						       key.objectid, key.type,
3179 						       key.offset, path->slots[0]);
3180 					ret = -EUCLEAN;
3181 					goto out;
3182 				}
3183 			} else {
3184 				/*
3185 				 * No inline ref, we must be at SHARED_* item,
3186 				 * And it's single ref, it must be:
3187 				 * |	extent_slot	  ||extent_slot + 1|
3188 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3189 				 */
3190 				if (path->slots[0] != extent_slot + 1) {
3191 					abort_and_dump(trans, path,
3192 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3193 						       path->slots[0]);
3194 					ret = -EUCLEAN;
3195 					goto out;
3196 				}
3197 				path->slots[0] = extent_slot;
3198 				num_to_del = 2;
3199 			}
3200 		}
3201 
3202 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3203 				      num_to_del);
3204 		if (ret) {
3205 			btrfs_abort_transaction(trans, ret);
3206 			goto out;
3207 		}
3208 		btrfs_release_path(path);
3209 
3210 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3211 	}
3212 	btrfs_release_path(path);
3213 
3214 out:
3215 	btrfs_free_path(path);
3216 	return ret;
3217 }
3218 
3219 /*
3220  * when we free an block, it is possible (and likely) that we free the last
3221  * delayed ref for that extent as well.  This searches the delayed ref tree for
3222  * a given extent, and if there are no other delayed refs to be processed, it
3223  * removes it from the tree.
3224  */
3225 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3226 				      u64 bytenr)
3227 {
3228 	struct btrfs_delayed_ref_head *head;
3229 	struct btrfs_delayed_ref_root *delayed_refs;
3230 	int ret = 0;
3231 
3232 	delayed_refs = &trans->transaction->delayed_refs;
3233 	spin_lock(&delayed_refs->lock);
3234 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3235 	if (!head)
3236 		goto out_delayed_unlock;
3237 
3238 	spin_lock(&head->lock);
3239 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3240 		goto out;
3241 
3242 	if (cleanup_extent_op(head) != NULL)
3243 		goto out;
3244 
3245 	/*
3246 	 * waiting for the lock here would deadlock.  If someone else has it
3247 	 * locked they are already in the process of dropping it anyway
3248 	 */
3249 	if (!mutex_trylock(&head->mutex))
3250 		goto out;
3251 
3252 	btrfs_delete_ref_head(delayed_refs, head);
3253 	head->processing = false;
3254 
3255 	spin_unlock(&head->lock);
3256 	spin_unlock(&delayed_refs->lock);
3257 
3258 	BUG_ON(head->extent_op);
3259 	if (head->must_insert_reserved)
3260 		ret = 1;
3261 
3262 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3263 	mutex_unlock(&head->mutex);
3264 	btrfs_put_delayed_ref_head(head);
3265 	return ret;
3266 out:
3267 	spin_unlock(&head->lock);
3268 
3269 out_delayed_unlock:
3270 	spin_unlock(&delayed_refs->lock);
3271 	return 0;
3272 }
3273 
3274 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3275 			   u64 root_id,
3276 			   struct extent_buffer *buf,
3277 			   u64 parent, int last_ref)
3278 {
3279 	struct btrfs_fs_info *fs_info = trans->fs_info;
3280 	struct btrfs_ref generic_ref = { 0 };
3281 	int ret;
3282 
3283 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3284 			       buf->start, buf->len, parent);
3285 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3286 			    root_id, 0, false);
3287 
3288 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3289 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3290 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3291 		BUG_ON(ret); /* -ENOMEM */
3292 	}
3293 
3294 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3295 		struct btrfs_block_group *cache;
3296 		bool must_pin = false;
3297 
3298 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3299 			ret = check_ref_cleanup(trans, buf->start);
3300 			if (!ret) {
3301 				btrfs_redirty_list_add(trans->transaction, buf);
3302 				goto out;
3303 			}
3304 		}
3305 
3306 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3307 
3308 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3309 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3310 			btrfs_put_block_group(cache);
3311 			goto out;
3312 		}
3313 
3314 		/*
3315 		 * If there are tree mod log users we may have recorded mod log
3316 		 * operations for this node.  If we re-allocate this node we
3317 		 * could replay operations on this node that happened when it
3318 		 * existed in a completely different root.  For example if it
3319 		 * was part of root A, then was reallocated to root B, and we
3320 		 * are doing a btrfs_old_search_slot(root b), we could replay
3321 		 * operations that happened when the block was part of root A,
3322 		 * giving us an inconsistent view of the btree.
3323 		 *
3324 		 * We are safe from races here because at this point no other
3325 		 * node or root points to this extent buffer, so if after this
3326 		 * check a new tree mod log user joins we will not have an
3327 		 * existing log of operations on this node that we have to
3328 		 * contend with.
3329 		 */
3330 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3331 			must_pin = true;
3332 
3333 		if (must_pin || btrfs_is_zoned(fs_info)) {
3334 			btrfs_redirty_list_add(trans->transaction, buf);
3335 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3336 			btrfs_put_block_group(cache);
3337 			goto out;
3338 		}
3339 
3340 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3341 
3342 		btrfs_add_free_space(cache, buf->start, buf->len);
3343 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3344 		btrfs_put_block_group(cache);
3345 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3346 	}
3347 out:
3348 	if (last_ref) {
3349 		/*
3350 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3351 		 * matter anymore.
3352 		 */
3353 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3354 	}
3355 }
3356 
3357 /* Can return -ENOMEM */
3358 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3359 {
3360 	struct btrfs_fs_info *fs_info = trans->fs_info;
3361 	int ret;
3362 
3363 	if (btrfs_is_testing(fs_info))
3364 		return 0;
3365 
3366 	/*
3367 	 * tree log blocks never actually go into the extent allocation
3368 	 * tree, just update pinning info and exit early.
3369 	 */
3370 	if ((ref->type == BTRFS_REF_METADATA &&
3371 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3372 	    (ref->type == BTRFS_REF_DATA &&
3373 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3374 		/* unlocks the pinned mutex */
3375 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3376 		ret = 0;
3377 	} else if (ref->type == BTRFS_REF_METADATA) {
3378 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3379 	} else {
3380 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3381 	}
3382 
3383 	if (!((ref->type == BTRFS_REF_METADATA &&
3384 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3385 	      (ref->type == BTRFS_REF_DATA &&
3386 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3387 		btrfs_ref_tree_mod(fs_info, ref);
3388 
3389 	return ret;
3390 }
3391 
3392 enum btrfs_loop_type {
3393 	/*
3394 	 * Start caching block groups but do not wait for progress or for them
3395 	 * to be done.
3396 	 */
3397 	LOOP_CACHING_NOWAIT,
3398 
3399 	/*
3400 	 * Wait for the block group free_space >= the space we're waiting for if
3401 	 * the block group isn't cached.
3402 	 */
3403 	LOOP_CACHING_WAIT,
3404 
3405 	/*
3406 	 * Allow allocations to happen from block groups that do not yet have a
3407 	 * size classification.
3408 	 */
3409 	LOOP_UNSET_SIZE_CLASS,
3410 
3411 	/*
3412 	 * Allocate a chunk and then retry the allocation.
3413 	 */
3414 	LOOP_ALLOC_CHUNK,
3415 
3416 	/*
3417 	 * Ignore the size class restrictions for this allocation.
3418 	 */
3419 	LOOP_WRONG_SIZE_CLASS,
3420 
3421 	/*
3422 	 * Ignore the empty size, only try to allocate the number of bytes
3423 	 * needed for this allocation.
3424 	 */
3425 	LOOP_NO_EMPTY_SIZE,
3426 };
3427 
3428 static inline void
3429 btrfs_lock_block_group(struct btrfs_block_group *cache,
3430 		       int delalloc)
3431 {
3432 	if (delalloc)
3433 		down_read(&cache->data_rwsem);
3434 }
3435 
3436 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3437 		       int delalloc)
3438 {
3439 	btrfs_get_block_group(cache);
3440 	if (delalloc)
3441 		down_read(&cache->data_rwsem);
3442 }
3443 
3444 static struct btrfs_block_group *btrfs_lock_cluster(
3445 		   struct btrfs_block_group *block_group,
3446 		   struct btrfs_free_cluster *cluster,
3447 		   int delalloc)
3448 	__acquires(&cluster->refill_lock)
3449 {
3450 	struct btrfs_block_group *used_bg = NULL;
3451 
3452 	spin_lock(&cluster->refill_lock);
3453 	while (1) {
3454 		used_bg = cluster->block_group;
3455 		if (!used_bg)
3456 			return NULL;
3457 
3458 		if (used_bg == block_group)
3459 			return used_bg;
3460 
3461 		btrfs_get_block_group(used_bg);
3462 
3463 		if (!delalloc)
3464 			return used_bg;
3465 
3466 		if (down_read_trylock(&used_bg->data_rwsem))
3467 			return used_bg;
3468 
3469 		spin_unlock(&cluster->refill_lock);
3470 
3471 		/* We should only have one-level nested. */
3472 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3473 
3474 		spin_lock(&cluster->refill_lock);
3475 		if (used_bg == cluster->block_group)
3476 			return used_bg;
3477 
3478 		up_read(&used_bg->data_rwsem);
3479 		btrfs_put_block_group(used_bg);
3480 	}
3481 }
3482 
3483 static inline void
3484 btrfs_release_block_group(struct btrfs_block_group *cache,
3485 			 int delalloc)
3486 {
3487 	if (delalloc)
3488 		up_read(&cache->data_rwsem);
3489 	btrfs_put_block_group(cache);
3490 }
3491 
3492 /*
3493  * Helper function for find_free_extent().
3494  *
3495  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3496  * Return >0 to inform caller that we find nothing
3497  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3498  */
3499 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3500 				      struct find_free_extent_ctl *ffe_ctl,
3501 				      struct btrfs_block_group **cluster_bg_ret)
3502 {
3503 	struct btrfs_block_group *cluster_bg;
3504 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3505 	u64 aligned_cluster;
3506 	u64 offset;
3507 	int ret;
3508 
3509 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3510 	if (!cluster_bg)
3511 		goto refill_cluster;
3512 	if (cluster_bg != bg && (cluster_bg->ro ||
3513 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3514 		goto release_cluster;
3515 
3516 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3517 			ffe_ctl->num_bytes, cluster_bg->start,
3518 			&ffe_ctl->max_extent_size);
3519 	if (offset) {
3520 		/* We have a block, we're done */
3521 		spin_unlock(&last_ptr->refill_lock);
3522 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3523 		*cluster_bg_ret = cluster_bg;
3524 		ffe_ctl->found_offset = offset;
3525 		return 0;
3526 	}
3527 	WARN_ON(last_ptr->block_group != cluster_bg);
3528 
3529 release_cluster:
3530 	/*
3531 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3532 	 * lets just skip it and let the allocator find whatever block it can
3533 	 * find. If we reach this point, we will have tried the cluster
3534 	 * allocator plenty of times and not have found anything, so we are
3535 	 * likely way too fragmented for the clustering stuff to find anything.
3536 	 *
3537 	 * However, if the cluster is taken from the current block group,
3538 	 * release the cluster first, so that we stand a better chance of
3539 	 * succeeding in the unclustered allocation.
3540 	 */
3541 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3542 		spin_unlock(&last_ptr->refill_lock);
3543 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3544 		return -ENOENT;
3545 	}
3546 
3547 	/* This cluster didn't work out, free it and start over */
3548 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3549 
3550 	if (cluster_bg != bg)
3551 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3552 
3553 refill_cluster:
3554 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3555 		spin_unlock(&last_ptr->refill_lock);
3556 		return -ENOENT;
3557 	}
3558 
3559 	aligned_cluster = max_t(u64,
3560 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3561 			bg->full_stripe_len);
3562 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3563 			ffe_ctl->num_bytes, aligned_cluster);
3564 	if (ret == 0) {
3565 		/* Now pull our allocation out of this cluster */
3566 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3567 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3568 				&ffe_ctl->max_extent_size);
3569 		if (offset) {
3570 			/* We found one, proceed */
3571 			spin_unlock(&last_ptr->refill_lock);
3572 			ffe_ctl->found_offset = offset;
3573 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3574 			return 0;
3575 		}
3576 	}
3577 	/*
3578 	 * At this point we either didn't find a cluster or we weren't able to
3579 	 * allocate a block from our cluster.  Free the cluster we've been
3580 	 * trying to use, and go to the next block group.
3581 	 */
3582 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3583 	spin_unlock(&last_ptr->refill_lock);
3584 	return 1;
3585 }
3586 
3587 /*
3588  * Return >0 to inform caller that we find nothing
3589  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3590  */
3591 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3592 					struct find_free_extent_ctl *ffe_ctl)
3593 {
3594 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3595 	u64 offset;
3596 
3597 	/*
3598 	 * We are doing an unclustered allocation, set the fragmented flag so
3599 	 * we don't bother trying to setup a cluster again until we get more
3600 	 * space.
3601 	 */
3602 	if (unlikely(last_ptr)) {
3603 		spin_lock(&last_ptr->lock);
3604 		last_ptr->fragmented = 1;
3605 		spin_unlock(&last_ptr->lock);
3606 	}
3607 	if (ffe_ctl->cached) {
3608 		struct btrfs_free_space_ctl *free_space_ctl;
3609 
3610 		free_space_ctl = bg->free_space_ctl;
3611 		spin_lock(&free_space_ctl->tree_lock);
3612 		if (free_space_ctl->free_space <
3613 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3614 		    ffe_ctl->empty_size) {
3615 			ffe_ctl->total_free_space = max_t(u64,
3616 					ffe_ctl->total_free_space,
3617 					free_space_ctl->free_space);
3618 			spin_unlock(&free_space_ctl->tree_lock);
3619 			return 1;
3620 		}
3621 		spin_unlock(&free_space_ctl->tree_lock);
3622 	}
3623 
3624 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3625 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3626 			&ffe_ctl->max_extent_size);
3627 	if (!offset)
3628 		return 1;
3629 	ffe_ctl->found_offset = offset;
3630 	return 0;
3631 }
3632 
3633 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3634 				   struct find_free_extent_ctl *ffe_ctl,
3635 				   struct btrfs_block_group **bg_ret)
3636 {
3637 	int ret;
3638 
3639 	/* We want to try and use the cluster allocator, so lets look there */
3640 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3641 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3642 		if (ret >= 0)
3643 			return ret;
3644 		/* ret == -ENOENT case falls through */
3645 	}
3646 
3647 	return find_free_extent_unclustered(block_group, ffe_ctl);
3648 }
3649 
3650 /*
3651  * Tree-log block group locking
3652  * ============================
3653  *
3654  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3655  * indicates the starting address of a block group, which is reserved only
3656  * for tree-log metadata.
3657  *
3658  * Lock nesting
3659  * ============
3660  *
3661  * space_info::lock
3662  *   block_group::lock
3663  *     fs_info::treelog_bg_lock
3664  */
3665 
3666 /*
3667  * Simple allocator for sequential-only block group. It only allows sequential
3668  * allocation. No need to play with trees. This function also reserves the
3669  * bytes as in btrfs_add_reserved_bytes.
3670  */
3671 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3672 			       struct find_free_extent_ctl *ffe_ctl,
3673 			       struct btrfs_block_group **bg_ret)
3674 {
3675 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3676 	struct btrfs_space_info *space_info = block_group->space_info;
3677 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3678 	u64 start = block_group->start;
3679 	u64 num_bytes = ffe_ctl->num_bytes;
3680 	u64 avail;
3681 	u64 bytenr = block_group->start;
3682 	u64 log_bytenr;
3683 	u64 data_reloc_bytenr;
3684 	int ret = 0;
3685 	bool skip = false;
3686 
3687 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3688 
3689 	/*
3690 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3691 	 * group, and vice versa.
3692 	 */
3693 	spin_lock(&fs_info->treelog_bg_lock);
3694 	log_bytenr = fs_info->treelog_bg;
3695 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3696 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3697 		skip = true;
3698 	spin_unlock(&fs_info->treelog_bg_lock);
3699 	if (skip)
3700 		return 1;
3701 
3702 	/*
3703 	 * Do not allow non-relocation blocks in the dedicated relocation block
3704 	 * group, and vice versa.
3705 	 */
3706 	spin_lock(&fs_info->relocation_bg_lock);
3707 	data_reloc_bytenr = fs_info->data_reloc_bg;
3708 	if (data_reloc_bytenr &&
3709 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3710 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3711 		skip = true;
3712 	spin_unlock(&fs_info->relocation_bg_lock);
3713 	if (skip)
3714 		return 1;
3715 
3716 	/* Check RO and no space case before trying to activate it */
3717 	spin_lock(&block_group->lock);
3718 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3719 		ret = 1;
3720 		/*
3721 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3722 		 * Return the error after taking the locks.
3723 		 */
3724 	}
3725 	spin_unlock(&block_group->lock);
3726 
3727 	/* Metadata block group is activated at write time. */
3728 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3729 	    !btrfs_zone_activate(block_group)) {
3730 		ret = 1;
3731 		/*
3732 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3733 		 * Return the error after taking the locks.
3734 		 */
3735 	}
3736 
3737 	spin_lock(&space_info->lock);
3738 	spin_lock(&block_group->lock);
3739 	spin_lock(&fs_info->treelog_bg_lock);
3740 	spin_lock(&fs_info->relocation_bg_lock);
3741 
3742 	if (ret)
3743 		goto out;
3744 
3745 	ASSERT(!ffe_ctl->for_treelog ||
3746 	       block_group->start == fs_info->treelog_bg ||
3747 	       fs_info->treelog_bg == 0);
3748 	ASSERT(!ffe_ctl->for_data_reloc ||
3749 	       block_group->start == fs_info->data_reloc_bg ||
3750 	       fs_info->data_reloc_bg == 0);
3751 
3752 	if (block_group->ro ||
3753 	    (!ffe_ctl->for_data_reloc &&
3754 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3755 		ret = 1;
3756 		goto out;
3757 	}
3758 
3759 	/*
3760 	 * Do not allow currently using block group to be tree-log dedicated
3761 	 * block group.
3762 	 */
3763 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3764 	    (block_group->used || block_group->reserved)) {
3765 		ret = 1;
3766 		goto out;
3767 	}
3768 
3769 	/*
3770 	 * Do not allow currently used block group to be the data relocation
3771 	 * dedicated block group.
3772 	 */
3773 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3774 	    (block_group->used || block_group->reserved)) {
3775 		ret = 1;
3776 		goto out;
3777 	}
3778 
3779 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3780 	avail = block_group->zone_capacity - block_group->alloc_offset;
3781 	if (avail < num_bytes) {
3782 		if (ffe_ctl->max_extent_size < avail) {
3783 			/*
3784 			 * With sequential allocator, free space is always
3785 			 * contiguous
3786 			 */
3787 			ffe_ctl->max_extent_size = avail;
3788 			ffe_ctl->total_free_space = avail;
3789 		}
3790 		ret = 1;
3791 		goto out;
3792 	}
3793 
3794 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3795 		fs_info->treelog_bg = block_group->start;
3796 
3797 	if (ffe_ctl->for_data_reloc) {
3798 		if (!fs_info->data_reloc_bg)
3799 			fs_info->data_reloc_bg = block_group->start;
3800 		/*
3801 		 * Do not allow allocations from this block group, unless it is
3802 		 * for data relocation. Compared to increasing the ->ro, setting
3803 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3804 		 * writers to come in. See btrfs_inc_nocow_writers().
3805 		 *
3806 		 * We need to disable an allocation to avoid an allocation of
3807 		 * regular (non-relocation data) extent. With mix of relocation
3808 		 * extents and regular extents, we can dispatch WRITE commands
3809 		 * (for relocation extents) and ZONE APPEND commands (for
3810 		 * regular extents) at the same time to the same zone, which
3811 		 * easily break the write pointer.
3812 		 *
3813 		 * Also, this flag avoids this block group to be zone finished.
3814 		 */
3815 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3816 	}
3817 
3818 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3819 	block_group->alloc_offset += num_bytes;
3820 	spin_lock(&ctl->tree_lock);
3821 	ctl->free_space -= num_bytes;
3822 	spin_unlock(&ctl->tree_lock);
3823 
3824 	/*
3825 	 * We do not check if found_offset is aligned to stripesize. The
3826 	 * address is anyway rewritten when using zone append writing.
3827 	 */
3828 
3829 	ffe_ctl->search_start = ffe_ctl->found_offset;
3830 
3831 out:
3832 	if (ret && ffe_ctl->for_treelog)
3833 		fs_info->treelog_bg = 0;
3834 	if (ret && ffe_ctl->for_data_reloc)
3835 		fs_info->data_reloc_bg = 0;
3836 	spin_unlock(&fs_info->relocation_bg_lock);
3837 	spin_unlock(&fs_info->treelog_bg_lock);
3838 	spin_unlock(&block_group->lock);
3839 	spin_unlock(&space_info->lock);
3840 	return ret;
3841 }
3842 
3843 static int do_allocation(struct btrfs_block_group *block_group,
3844 			 struct find_free_extent_ctl *ffe_ctl,
3845 			 struct btrfs_block_group **bg_ret)
3846 {
3847 	switch (ffe_ctl->policy) {
3848 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3849 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3850 	case BTRFS_EXTENT_ALLOC_ZONED:
3851 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3852 	default:
3853 		BUG();
3854 	}
3855 }
3856 
3857 static void release_block_group(struct btrfs_block_group *block_group,
3858 				struct find_free_extent_ctl *ffe_ctl,
3859 				int delalloc)
3860 {
3861 	switch (ffe_ctl->policy) {
3862 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3863 		ffe_ctl->retry_uncached = false;
3864 		break;
3865 	case BTRFS_EXTENT_ALLOC_ZONED:
3866 		/* Nothing to do */
3867 		break;
3868 	default:
3869 		BUG();
3870 	}
3871 
3872 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3873 	       ffe_ctl->index);
3874 	btrfs_release_block_group(block_group, delalloc);
3875 }
3876 
3877 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3878 				   struct btrfs_key *ins)
3879 {
3880 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3881 
3882 	if (!ffe_ctl->use_cluster && last_ptr) {
3883 		spin_lock(&last_ptr->lock);
3884 		last_ptr->window_start = ins->objectid;
3885 		spin_unlock(&last_ptr->lock);
3886 	}
3887 }
3888 
3889 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3890 			 struct btrfs_key *ins)
3891 {
3892 	switch (ffe_ctl->policy) {
3893 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3894 		found_extent_clustered(ffe_ctl, ins);
3895 		break;
3896 	case BTRFS_EXTENT_ALLOC_ZONED:
3897 		/* Nothing to do */
3898 		break;
3899 	default:
3900 		BUG();
3901 	}
3902 }
3903 
3904 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3905 				    struct find_free_extent_ctl *ffe_ctl)
3906 {
3907 	/* Block group's activeness is not a requirement for METADATA block groups. */
3908 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3909 		return 0;
3910 
3911 	/* If we can activate new zone, just allocate a chunk and use it */
3912 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3913 		return 0;
3914 
3915 	/*
3916 	 * We already reached the max active zones. Try to finish one block
3917 	 * group to make a room for a new block group. This is only possible
3918 	 * for a data block group because btrfs_zone_finish() may need to wait
3919 	 * for a running transaction which can cause a deadlock for metadata
3920 	 * allocation.
3921 	 */
3922 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3923 		int ret = btrfs_zone_finish_one_bg(fs_info);
3924 
3925 		if (ret == 1)
3926 			return 0;
3927 		else if (ret < 0)
3928 			return ret;
3929 	}
3930 
3931 	/*
3932 	 * If we have enough free space left in an already active block group
3933 	 * and we can't activate any other zone now, do not allow allocating a
3934 	 * new chunk and let find_free_extent() retry with a smaller size.
3935 	 */
3936 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3937 		return -ENOSPC;
3938 
3939 	/*
3940 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3941 	 * activate a new block group, allocating it may not help. Let's tell a
3942 	 * caller to try again and hope it progress something by writing some
3943 	 * parts of the region. That is only possible for data block groups,
3944 	 * where a part of the region can be written.
3945 	 */
3946 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3947 		return -EAGAIN;
3948 
3949 	/*
3950 	 * We cannot activate a new block group and no enough space left in any
3951 	 * block groups. So, allocating a new block group may not help. But,
3952 	 * there is nothing to do anyway, so let's go with it.
3953 	 */
3954 	return 0;
3955 }
3956 
3957 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3958 			      struct find_free_extent_ctl *ffe_ctl)
3959 {
3960 	switch (ffe_ctl->policy) {
3961 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3962 		return 0;
3963 	case BTRFS_EXTENT_ALLOC_ZONED:
3964 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3965 	default:
3966 		BUG();
3967 	}
3968 }
3969 
3970 /*
3971  * Return >0 means caller needs to re-search for free extent
3972  * Return 0 means we have the needed free extent.
3973  * Return <0 means we failed to locate any free extent.
3974  */
3975 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3976 					struct btrfs_key *ins,
3977 					struct find_free_extent_ctl *ffe_ctl,
3978 					bool full_search)
3979 {
3980 	struct btrfs_root *root = fs_info->chunk_root;
3981 	int ret;
3982 
3983 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3984 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3985 		ffe_ctl->orig_have_caching_bg = true;
3986 
3987 	if (ins->objectid) {
3988 		found_extent(ffe_ctl, ins);
3989 		return 0;
3990 	}
3991 
3992 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3993 		return 1;
3994 
3995 	ffe_ctl->index++;
3996 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3997 		return 1;
3998 
3999 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4000 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4001 		ffe_ctl->index = 0;
4002 		/*
4003 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4004 		 * any uncached bgs and we've already done a full search
4005 		 * through.
4006 		 */
4007 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4008 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4009 			ffe_ctl->loop++;
4010 		ffe_ctl->loop++;
4011 
4012 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4013 			struct btrfs_trans_handle *trans;
4014 			int exist = 0;
4015 
4016 			/* Check if allocation policy allows to create a new chunk */
4017 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4018 			if (ret)
4019 				return ret;
4020 
4021 			trans = current->journal_info;
4022 			if (trans)
4023 				exist = 1;
4024 			else
4025 				trans = btrfs_join_transaction(root);
4026 
4027 			if (IS_ERR(trans)) {
4028 				ret = PTR_ERR(trans);
4029 				return ret;
4030 			}
4031 
4032 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4033 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4034 
4035 			/* Do not bail out on ENOSPC since we can do more. */
4036 			if (ret == -ENOSPC) {
4037 				ret = 0;
4038 				ffe_ctl->loop++;
4039 			}
4040 			else if (ret < 0)
4041 				btrfs_abort_transaction(trans, ret);
4042 			else
4043 				ret = 0;
4044 			if (!exist)
4045 				btrfs_end_transaction(trans);
4046 			if (ret)
4047 				return ret;
4048 		}
4049 
4050 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4051 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4052 				return -ENOSPC;
4053 
4054 			/*
4055 			 * Don't loop again if we already have no empty_size and
4056 			 * no empty_cluster.
4057 			 */
4058 			if (ffe_ctl->empty_size == 0 &&
4059 			    ffe_ctl->empty_cluster == 0)
4060 				return -ENOSPC;
4061 			ffe_ctl->empty_size = 0;
4062 			ffe_ctl->empty_cluster = 0;
4063 		}
4064 		return 1;
4065 	}
4066 	return -ENOSPC;
4067 }
4068 
4069 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4070 					      struct btrfs_block_group *bg)
4071 {
4072 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4073 		return true;
4074 	if (!btrfs_block_group_should_use_size_class(bg))
4075 		return true;
4076 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4077 		return true;
4078 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4079 	    bg->size_class == BTRFS_BG_SZ_NONE)
4080 		return true;
4081 	return ffe_ctl->size_class == bg->size_class;
4082 }
4083 
4084 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4085 					struct find_free_extent_ctl *ffe_ctl,
4086 					struct btrfs_space_info *space_info,
4087 					struct btrfs_key *ins)
4088 {
4089 	/*
4090 	 * If our free space is heavily fragmented we may not be able to make
4091 	 * big contiguous allocations, so instead of doing the expensive search
4092 	 * for free space, simply return ENOSPC with our max_extent_size so we
4093 	 * can go ahead and search for a more manageable chunk.
4094 	 *
4095 	 * If our max_extent_size is large enough for our allocation simply
4096 	 * disable clustering since we will likely not be able to find enough
4097 	 * space to create a cluster and induce latency trying.
4098 	 */
4099 	if (space_info->max_extent_size) {
4100 		spin_lock(&space_info->lock);
4101 		if (space_info->max_extent_size &&
4102 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4103 			ins->offset = space_info->max_extent_size;
4104 			spin_unlock(&space_info->lock);
4105 			return -ENOSPC;
4106 		} else if (space_info->max_extent_size) {
4107 			ffe_ctl->use_cluster = false;
4108 		}
4109 		spin_unlock(&space_info->lock);
4110 	}
4111 
4112 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4113 					       &ffe_ctl->empty_cluster);
4114 	if (ffe_ctl->last_ptr) {
4115 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4116 
4117 		spin_lock(&last_ptr->lock);
4118 		if (last_ptr->block_group)
4119 			ffe_ctl->hint_byte = last_ptr->window_start;
4120 		if (last_ptr->fragmented) {
4121 			/*
4122 			 * We still set window_start so we can keep track of the
4123 			 * last place we found an allocation to try and save
4124 			 * some time.
4125 			 */
4126 			ffe_ctl->hint_byte = last_ptr->window_start;
4127 			ffe_ctl->use_cluster = false;
4128 		}
4129 		spin_unlock(&last_ptr->lock);
4130 	}
4131 
4132 	return 0;
4133 }
4134 
4135 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4136 			      struct find_free_extent_ctl *ffe_ctl,
4137 			      struct btrfs_space_info *space_info,
4138 			      struct btrfs_key *ins)
4139 {
4140 	switch (ffe_ctl->policy) {
4141 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4142 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4143 						    space_info, ins);
4144 	case BTRFS_EXTENT_ALLOC_ZONED:
4145 		if (ffe_ctl->for_treelog) {
4146 			spin_lock(&fs_info->treelog_bg_lock);
4147 			if (fs_info->treelog_bg)
4148 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4149 			spin_unlock(&fs_info->treelog_bg_lock);
4150 		}
4151 		if (ffe_ctl->for_data_reloc) {
4152 			spin_lock(&fs_info->relocation_bg_lock);
4153 			if (fs_info->data_reloc_bg)
4154 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4155 			spin_unlock(&fs_info->relocation_bg_lock);
4156 		}
4157 		return 0;
4158 	default:
4159 		BUG();
4160 	}
4161 }
4162 
4163 /*
4164  * walks the btree of allocated extents and find a hole of a given size.
4165  * The key ins is changed to record the hole:
4166  * ins->objectid == start position
4167  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4168  * ins->offset == the size of the hole.
4169  * Any available blocks before search_start are skipped.
4170  *
4171  * If there is no suitable free space, we will record the max size of
4172  * the free space extent currently.
4173  *
4174  * The overall logic and call chain:
4175  *
4176  * find_free_extent()
4177  * |- Iterate through all block groups
4178  * |  |- Get a valid block group
4179  * |  |- Try to do clustered allocation in that block group
4180  * |  |- Try to do unclustered allocation in that block group
4181  * |  |- Check if the result is valid
4182  * |  |  |- If valid, then exit
4183  * |  |- Jump to next block group
4184  * |
4185  * |- Push harder to find free extents
4186  *    |- If not found, re-iterate all block groups
4187  */
4188 static noinline int find_free_extent(struct btrfs_root *root,
4189 				     struct btrfs_key *ins,
4190 				     struct find_free_extent_ctl *ffe_ctl)
4191 {
4192 	struct btrfs_fs_info *fs_info = root->fs_info;
4193 	int ret = 0;
4194 	int cache_block_group_error = 0;
4195 	struct btrfs_block_group *block_group = NULL;
4196 	struct btrfs_space_info *space_info;
4197 	bool full_search = false;
4198 
4199 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4200 
4201 	ffe_ctl->search_start = 0;
4202 	/* For clustered allocation */
4203 	ffe_ctl->empty_cluster = 0;
4204 	ffe_ctl->last_ptr = NULL;
4205 	ffe_ctl->use_cluster = true;
4206 	ffe_ctl->have_caching_bg = false;
4207 	ffe_ctl->orig_have_caching_bg = false;
4208 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4209 	ffe_ctl->loop = 0;
4210 	ffe_ctl->retry_uncached = false;
4211 	ffe_ctl->cached = 0;
4212 	ffe_ctl->max_extent_size = 0;
4213 	ffe_ctl->total_free_space = 0;
4214 	ffe_ctl->found_offset = 0;
4215 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4216 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4217 
4218 	if (btrfs_is_zoned(fs_info))
4219 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4220 
4221 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4222 	ins->objectid = 0;
4223 	ins->offset = 0;
4224 
4225 	trace_find_free_extent(root, ffe_ctl);
4226 
4227 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4228 	if (!space_info) {
4229 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4230 		return -ENOSPC;
4231 	}
4232 
4233 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4234 	if (ret < 0)
4235 		return ret;
4236 
4237 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4238 				    first_logical_byte(fs_info));
4239 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4240 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4241 		block_group = btrfs_lookup_block_group(fs_info,
4242 						       ffe_ctl->search_start);
4243 		/*
4244 		 * we don't want to use the block group if it doesn't match our
4245 		 * allocation bits, or if its not cached.
4246 		 *
4247 		 * However if we are re-searching with an ideal block group
4248 		 * picked out then we don't care that the block group is cached.
4249 		 */
4250 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4251 		    block_group->cached != BTRFS_CACHE_NO) {
4252 			down_read(&space_info->groups_sem);
4253 			if (list_empty(&block_group->list) ||
4254 			    block_group->ro) {
4255 				/*
4256 				 * someone is removing this block group,
4257 				 * we can't jump into the have_block_group
4258 				 * target because our list pointers are not
4259 				 * valid
4260 				 */
4261 				btrfs_put_block_group(block_group);
4262 				up_read(&space_info->groups_sem);
4263 			} else {
4264 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4265 							block_group->flags);
4266 				btrfs_lock_block_group(block_group,
4267 						       ffe_ctl->delalloc);
4268 				ffe_ctl->hinted = true;
4269 				goto have_block_group;
4270 			}
4271 		} else if (block_group) {
4272 			btrfs_put_block_group(block_group);
4273 		}
4274 	}
4275 search:
4276 	trace_find_free_extent_search_loop(root, ffe_ctl);
4277 	ffe_ctl->have_caching_bg = false;
4278 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4279 	    ffe_ctl->index == 0)
4280 		full_search = true;
4281 	down_read(&space_info->groups_sem);
4282 	list_for_each_entry(block_group,
4283 			    &space_info->block_groups[ffe_ctl->index], list) {
4284 		struct btrfs_block_group *bg_ret;
4285 
4286 		ffe_ctl->hinted = false;
4287 		/* If the block group is read-only, we can skip it entirely. */
4288 		if (unlikely(block_group->ro)) {
4289 			if (ffe_ctl->for_treelog)
4290 				btrfs_clear_treelog_bg(block_group);
4291 			if (ffe_ctl->for_data_reloc)
4292 				btrfs_clear_data_reloc_bg(block_group);
4293 			continue;
4294 		}
4295 
4296 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4297 		ffe_ctl->search_start = block_group->start;
4298 
4299 		/*
4300 		 * this can happen if we end up cycling through all the
4301 		 * raid types, but we want to make sure we only allocate
4302 		 * for the proper type.
4303 		 */
4304 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4305 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4306 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4307 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4308 				BTRFS_BLOCK_GROUP_RAID10;
4309 
4310 			/*
4311 			 * if they asked for extra copies and this block group
4312 			 * doesn't provide them, bail.  This does allow us to
4313 			 * fill raid0 from raid1.
4314 			 */
4315 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4316 				goto loop;
4317 
4318 			/*
4319 			 * This block group has different flags than we want.
4320 			 * It's possible that we have MIXED_GROUP flag but no
4321 			 * block group is mixed.  Just skip such block group.
4322 			 */
4323 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4324 			continue;
4325 		}
4326 
4327 have_block_group:
4328 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4329 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4330 		if (unlikely(!ffe_ctl->cached)) {
4331 			ffe_ctl->have_caching_bg = true;
4332 			ret = btrfs_cache_block_group(block_group, false);
4333 
4334 			/*
4335 			 * If we get ENOMEM here or something else we want to
4336 			 * try other block groups, because it may not be fatal.
4337 			 * However if we can't find anything else we need to
4338 			 * save our return here so that we return the actual
4339 			 * error that caused problems, not ENOSPC.
4340 			 */
4341 			if (ret < 0) {
4342 				if (!cache_block_group_error)
4343 					cache_block_group_error = ret;
4344 				ret = 0;
4345 				goto loop;
4346 			}
4347 			ret = 0;
4348 		}
4349 
4350 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4351 			if (!cache_block_group_error)
4352 				cache_block_group_error = -EIO;
4353 			goto loop;
4354 		}
4355 
4356 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4357 			goto loop;
4358 
4359 		bg_ret = NULL;
4360 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4361 		if (ret > 0)
4362 			goto loop;
4363 
4364 		if (bg_ret && bg_ret != block_group) {
4365 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4366 			block_group = bg_ret;
4367 		}
4368 
4369 		/* Checks */
4370 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4371 						 fs_info->stripesize);
4372 
4373 		/* move on to the next group */
4374 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4375 		    block_group->start + block_group->length) {
4376 			btrfs_add_free_space_unused(block_group,
4377 					    ffe_ctl->found_offset,
4378 					    ffe_ctl->num_bytes);
4379 			goto loop;
4380 		}
4381 
4382 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4383 			btrfs_add_free_space_unused(block_group,
4384 					ffe_ctl->found_offset,
4385 					ffe_ctl->search_start - ffe_ctl->found_offset);
4386 
4387 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4388 					       ffe_ctl->num_bytes,
4389 					       ffe_ctl->delalloc,
4390 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4391 		if (ret == -EAGAIN) {
4392 			btrfs_add_free_space_unused(block_group,
4393 					ffe_ctl->found_offset,
4394 					ffe_ctl->num_bytes);
4395 			goto loop;
4396 		}
4397 		btrfs_inc_block_group_reservations(block_group);
4398 
4399 		/* we are all good, lets return */
4400 		ins->objectid = ffe_ctl->search_start;
4401 		ins->offset = ffe_ctl->num_bytes;
4402 
4403 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4404 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4405 		break;
4406 loop:
4407 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4408 		    !ffe_ctl->retry_uncached) {
4409 			ffe_ctl->retry_uncached = true;
4410 			btrfs_wait_block_group_cache_progress(block_group,
4411 						ffe_ctl->num_bytes +
4412 						ffe_ctl->empty_cluster +
4413 						ffe_ctl->empty_size);
4414 			goto have_block_group;
4415 		}
4416 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4417 		cond_resched();
4418 	}
4419 	up_read(&space_info->groups_sem);
4420 
4421 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4422 	if (ret > 0)
4423 		goto search;
4424 
4425 	if (ret == -ENOSPC && !cache_block_group_error) {
4426 		/*
4427 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4428 		 * any contiguous hole.
4429 		 */
4430 		if (!ffe_ctl->max_extent_size)
4431 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4432 		spin_lock(&space_info->lock);
4433 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4434 		spin_unlock(&space_info->lock);
4435 		ins->offset = ffe_ctl->max_extent_size;
4436 	} else if (ret == -ENOSPC) {
4437 		ret = cache_block_group_error;
4438 	}
4439 	return ret;
4440 }
4441 
4442 /*
4443  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4444  *			  hole that is at least as big as @num_bytes.
4445  *
4446  * @root           -	The root that will contain this extent
4447  *
4448  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4449  *			is used for accounting purposes. This value differs
4450  *			from @num_bytes only in the case of compressed extents.
4451  *
4452  * @num_bytes      -	Number of bytes to allocate on-disk.
4453  *
4454  * @min_alloc_size -	Indicates the minimum amount of space that the
4455  *			allocator should try to satisfy. In some cases
4456  *			@num_bytes may be larger than what is required and if
4457  *			the filesystem is fragmented then allocation fails.
4458  *			However, the presence of @min_alloc_size gives a
4459  *			chance to try and satisfy the smaller allocation.
4460  *
4461  * @empty_size     -	A hint that you plan on doing more COW. This is the
4462  *			size in bytes the allocator should try to find free
4463  *			next to the block it returns.  This is just a hint and
4464  *			may be ignored by the allocator.
4465  *
4466  * @hint_byte      -	Hint to the allocator to start searching above the byte
4467  *			address passed. It might be ignored.
4468  *
4469  * @ins            -	This key is modified to record the found hole. It will
4470  *			have the following values:
4471  *			ins->objectid == start position
4472  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4473  *			ins->offset == the size of the hole.
4474  *
4475  * @is_data        -	Boolean flag indicating whether an extent is
4476  *			allocated for data (true) or metadata (false)
4477  *
4478  * @delalloc       -	Boolean flag indicating whether this allocation is for
4479  *			delalloc or not. If 'true' data_rwsem of block groups
4480  *			is going to be acquired.
4481  *
4482  *
4483  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4484  * case -ENOSPC is returned then @ins->offset will contain the size of the
4485  * largest available hole the allocator managed to find.
4486  */
4487 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4488 			 u64 num_bytes, u64 min_alloc_size,
4489 			 u64 empty_size, u64 hint_byte,
4490 			 struct btrfs_key *ins, int is_data, int delalloc)
4491 {
4492 	struct btrfs_fs_info *fs_info = root->fs_info;
4493 	struct find_free_extent_ctl ffe_ctl = {};
4494 	bool final_tried = num_bytes == min_alloc_size;
4495 	u64 flags;
4496 	int ret;
4497 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4498 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4499 
4500 	flags = get_alloc_profile_by_root(root, is_data);
4501 again:
4502 	WARN_ON(num_bytes < fs_info->sectorsize);
4503 
4504 	ffe_ctl.ram_bytes = ram_bytes;
4505 	ffe_ctl.num_bytes = num_bytes;
4506 	ffe_ctl.min_alloc_size = min_alloc_size;
4507 	ffe_ctl.empty_size = empty_size;
4508 	ffe_ctl.flags = flags;
4509 	ffe_ctl.delalloc = delalloc;
4510 	ffe_ctl.hint_byte = hint_byte;
4511 	ffe_ctl.for_treelog = for_treelog;
4512 	ffe_ctl.for_data_reloc = for_data_reloc;
4513 
4514 	ret = find_free_extent(root, ins, &ffe_ctl);
4515 	if (!ret && !is_data) {
4516 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4517 	} else if (ret == -ENOSPC) {
4518 		if (!final_tried && ins->offset) {
4519 			num_bytes = min(num_bytes >> 1, ins->offset);
4520 			num_bytes = round_down(num_bytes,
4521 					       fs_info->sectorsize);
4522 			num_bytes = max(num_bytes, min_alloc_size);
4523 			ram_bytes = num_bytes;
4524 			if (num_bytes == min_alloc_size)
4525 				final_tried = true;
4526 			goto again;
4527 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4528 			struct btrfs_space_info *sinfo;
4529 
4530 			sinfo = btrfs_find_space_info(fs_info, flags);
4531 			btrfs_err(fs_info,
4532 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4533 				  flags, num_bytes, for_treelog, for_data_reloc);
4534 			if (sinfo)
4535 				btrfs_dump_space_info(fs_info, sinfo,
4536 						      num_bytes, 1);
4537 		}
4538 	}
4539 
4540 	return ret;
4541 }
4542 
4543 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4544 			       u64 start, u64 len, int delalloc)
4545 {
4546 	struct btrfs_block_group *cache;
4547 
4548 	cache = btrfs_lookup_block_group(fs_info, start);
4549 	if (!cache) {
4550 		btrfs_err(fs_info, "Unable to find block group for %llu",
4551 			  start);
4552 		return -ENOSPC;
4553 	}
4554 
4555 	btrfs_add_free_space(cache, start, len);
4556 	btrfs_free_reserved_bytes(cache, len, delalloc);
4557 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4558 
4559 	btrfs_put_block_group(cache);
4560 	return 0;
4561 }
4562 
4563 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4564 			      u64 len)
4565 {
4566 	struct btrfs_block_group *cache;
4567 	int ret = 0;
4568 
4569 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4570 	if (!cache) {
4571 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4572 			  start);
4573 		return -ENOSPC;
4574 	}
4575 
4576 	ret = pin_down_extent(trans, cache, start, len, 1);
4577 	btrfs_put_block_group(cache);
4578 	return ret;
4579 }
4580 
4581 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4582 				 u64 num_bytes)
4583 {
4584 	struct btrfs_fs_info *fs_info = trans->fs_info;
4585 	int ret;
4586 
4587 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4588 	if (ret)
4589 		return ret;
4590 
4591 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4592 	if (ret) {
4593 		ASSERT(!ret);
4594 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4595 			  bytenr, num_bytes);
4596 		return ret;
4597 	}
4598 
4599 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4600 	return 0;
4601 }
4602 
4603 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4604 				      u64 parent, u64 root_objectid,
4605 				      u64 flags, u64 owner, u64 offset,
4606 				      struct btrfs_key *ins, int ref_mod)
4607 {
4608 	struct btrfs_fs_info *fs_info = trans->fs_info;
4609 	struct btrfs_root *extent_root;
4610 	int ret;
4611 	struct btrfs_extent_item *extent_item;
4612 	struct btrfs_extent_inline_ref *iref;
4613 	struct btrfs_path *path;
4614 	struct extent_buffer *leaf;
4615 	int type;
4616 	u32 size;
4617 
4618 	if (parent > 0)
4619 		type = BTRFS_SHARED_DATA_REF_KEY;
4620 	else
4621 		type = BTRFS_EXTENT_DATA_REF_KEY;
4622 
4623 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4624 
4625 	path = btrfs_alloc_path();
4626 	if (!path)
4627 		return -ENOMEM;
4628 
4629 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4630 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4631 	if (ret) {
4632 		btrfs_free_path(path);
4633 		return ret;
4634 	}
4635 
4636 	leaf = path->nodes[0];
4637 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4638 				     struct btrfs_extent_item);
4639 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4640 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4641 	btrfs_set_extent_flags(leaf, extent_item,
4642 			       flags | BTRFS_EXTENT_FLAG_DATA);
4643 
4644 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4645 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4646 	if (parent > 0) {
4647 		struct btrfs_shared_data_ref *ref;
4648 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4649 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4650 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4651 	} else {
4652 		struct btrfs_extent_data_ref *ref;
4653 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4654 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4655 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4656 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4657 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4658 	}
4659 
4660 	btrfs_mark_buffer_dirty(path->nodes[0]);
4661 	btrfs_free_path(path);
4662 
4663 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4664 }
4665 
4666 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4667 				     struct btrfs_delayed_ref_node *node,
4668 				     struct btrfs_delayed_extent_op *extent_op)
4669 {
4670 	struct btrfs_fs_info *fs_info = trans->fs_info;
4671 	struct btrfs_root *extent_root;
4672 	int ret;
4673 	struct btrfs_extent_item *extent_item;
4674 	struct btrfs_key extent_key;
4675 	struct btrfs_tree_block_info *block_info;
4676 	struct btrfs_extent_inline_ref *iref;
4677 	struct btrfs_path *path;
4678 	struct extent_buffer *leaf;
4679 	struct btrfs_delayed_tree_ref *ref;
4680 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4681 	u64 flags = extent_op->flags_to_set;
4682 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4683 
4684 	ref = btrfs_delayed_node_to_tree_ref(node);
4685 
4686 	extent_key.objectid = node->bytenr;
4687 	if (skinny_metadata) {
4688 		extent_key.offset = ref->level;
4689 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4690 	} else {
4691 		extent_key.offset = node->num_bytes;
4692 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4693 		size += sizeof(*block_info);
4694 	}
4695 
4696 	path = btrfs_alloc_path();
4697 	if (!path)
4698 		return -ENOMEM;
4699 
4700 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4701 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4702 				      size);
4703 	if (ret) {
4704 		btrfs_free_path(path);
4705 		return ret;
4706 	}
4707 
4708 	leaf = path->nodes[0];
4709 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4710 				     struct btrfs_extent_item);
4711 	btrfs_set_extent_refs(leaf, extent_item, 1);
4712 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4713 	btrfs_set_extent_flags(leaf, extent_item,
4714 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4715 
4716 	if (skinny_metadata) {
4717 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4718 	} else {
4719 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4720 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4721 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4722 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4723 	}
4724 
4725 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4726 		btrfs_set_extent_inline_ref_type(leaf, iref,
4727 						 BTRFS_SHARED_BLOCK_REF_KEY);
4728 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4729 	} else {
4730 		btrfs_set_extent_inline_ref_type(leaf, iref,
4731 						 BTRFS_TREE_BLOCK_REF_KEY);
4732 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4733 	}
4734 
4735 	btrfs_mark_buffer_dirty(leaf);
4736 	btrfs_free_path(path);
4737 
4738 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4739 }
4740 
4741 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4742 				     struct btrfs_root *root, u64 owner,
4743 				     u64 offset, u64 ram_bytes,
4744 				     struct btrfs_key *ins)
4745 {
4746 	struct btrfs_ref generic_ref = { 0 };
4747 
4748 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4749 
4750 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4751 			       ins->objectid, ins->offset, 0);
4752 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4753 			    offset, 0, false);
4754 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4755 
4756 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4757 }
4758 
4759 /*
4760  * this is used by the tree logging recovery code.  It records that
4761  * an extent has been allocated and makes sure to clear the free
4762  * space cache bits as well
4763  */
4764 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4765 				   u64 root_objectid, u64 owner, u64 offset,
4766 				   struct btrfs_key *ins)
4767 {
4768 	struct btrfs_fs_info *fs_info = trans->fs_info;
4769 	int ret;
4770 	struct btrfs_block_group *block_group;
4771 	struct btrfs_space_info *space_info;
4772 
4773 	/*
4774 	 * Mixed block groups will exclude before processing the log so we only
4775 	 * need to do the exclude dance if this fs isn't mixed.
4776 	 */
4777 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4778 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4779 					      ins->offset);
4780 		if (ret)
4781 			return ret;
4782 	}
4783 
4784 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4785 	if (!block_group)
4786 		return -EINVAL;
4787 
4788 	space_info = block_group->space_info;
4789 	spin_lock(&space_info->lock);
4790 	spin_lock(&block_group->lock);
4791 	space_info->bytes_reserved += ins->offset;
4792 	block_group->reserved += ins->offset;
4793 	spin_unlock(&block_group->lock);
4794 	spin_unlock(&space_info->lock);
4795 
4796 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4797 					 offset, ins, 1);
4798 	if (ret)
4799 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4800 	btrfs_put_block_group(block_group);
4801 	return ret;
4802 }
4803 
4804 static struct extent_buffer *
4805 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4806 		      u64 bytenr, int level, u64 owner,
4807 		      enum btrfs_lock_nesting nest)
4808 {
4809 	struct btrfs_fs_info *fs_info = root->fs_info;
4810 	struct extent_buffer *buf;
4811 	u64 lockdep_owner = owner;
4812 
4813 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4814 	if (IS_ERR(buf))
4815 		return buf;
4816 
4817 	/*
4818 	 * Extra safety check in case the extent tree is corrupted and extent
4819 	 * allocator chooses to use a tree block which is already used and
4820 	 * locked.
4821 	 */
4822 	if (buf->lock_owner == current->pid) {
4823 		btrfs_err_rl(fs_info,
4824 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4825 			buf->start, btrfs_header_owner(buf), current->pid);
4826 		free_extent_buffer(buf);
4827 		return ERR_PTR(-EUCLEAN);
4828 	}
4829 
4830 	/*
4831 	 * The reloc trees are just snapshots, so we need them to appear to be
4832 	 * just like any other fs tree WRT lockdep.
4833 	 *
4834 	 * The exception however is in replace_path() in relocation, where we
4835 	 * hold the lock on the original fs root and then search for the reloc
4836 	 * root.  At that point we need to make sure any reloc root buffers are
4837 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4838 	 * lockdep happy.
4839 	 */
4840 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4841 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4842 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4843 
4844 	/* btrfs_clear_buffer_dirty() accesses generation field. */
4845 	btrfs_set_header_generation(buf, trans->transid);
4846 
4847 	/*
4848 	 * This needs to stay, because we could allocate a freed block from an
4849 	 * old tree into a new tree, so we need to make sure this new block is
4850 	 * set to the appropriate level and owner.
4851 	 */
4852 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4853 
4854 	__btrfs_tree_lock(buf, nest);
4855 	btrfs_clear_buffer_dirty(trans, buf);
4856 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4857 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4858 
4859 	set_extent_buffer_uptodate(buf);
4860 
4861 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4862 	btrfs_set_header_level(buf, level);
4863 	btrfs_set_header_bytenr(buf, buf->start);
4864 	btrfs_set_header_generation(buf, trans->transid);
4865 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4866 	btrfs_set_header_owner(buf, owner);
4867 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4868 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4869 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4870 		buf->log_index = root->log_transid % 2;
4871 		/*
4872 		 * we allow two log transactions at a time, use different
4873 		 * EXTENT bit to differentiate dirty pages.
4874 		 */
4875 		if (buf->log_index == 0)
4876 			set_extent_bit(&root->dirty_log_pages, buf->start,
4877 				       buf->start + buf->len - 1,
4878 				       EXTENT_DIRTY, NULL);
4879 		else
4880 			set_extent_bit(&root->dirty_log_pages, buf->start,
4881 				       buf->start + buf->len - 1,
4882 				       EXTENT_NEW, NULL);
4883 	} else {
4884 		buf->log_index = -1;
4885 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4886 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4887 	}
4888 	/* this returns a buffer locked for blocking */
4889 	return buf;
4890 }
4891 
4892 /*
4893  * finds a free extent and does all the dirty work required for allocation
4894  * returns the tree buffer or an ERR_PTR on error.
4895  */
4896 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4897 					     struct btrfs_root *root,
4898 					     u64 parent, u64 root_objectid,
4899 					     const struct btrfs_disk_key *key,
4900 					     int level, u64 hint,
4901 					     u64 empty_size,
4902 					     enum btrfs_lock_nesting nest)
4903 {
4904 	struct btrfs_fs_info *fs_info = root->fs_info;
4905 	struct btrfs_key ins;
4906 	struct btrfs_block_rsv *block_rsv;
4907 	struct extent_buffer *buf;
4908 	struct btrfs_delayed_extent_op *extent_op;
4909 	struct btrfs_ref generic_ref = { 0 };
4910 	u64 flags = 0;
4911 	int ret;
4912 	u32 blocksize = fs_info->nodesize;
4913 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4914 
4915 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4916 	if (btrfs_is_testing(fs_info)) {
4917 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4918 					    level, root_objectid, nest);
4919 		if (!IS_ERR(buf))
4920 			root->alloc_bytenr += blocksize;
4921 		return buf;
4922 	}
4923 #endif
4924 
4925 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4926 	if (IS_ERR(block_rsv))
4927 		return ERR_CAST(block_rsv);
4928 
4929 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4930 				   empty_size, hint, &ins, 0, 0);
4931 	if (ret)
4932 		goto out_unuse;
4933 
4934 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4935 				    root_objectid, nest);
4936 	if (IS_ERR(buf)) {
4937 		ret = PTR_ERR(buf);
4938 		goto out_free_reserved;
4939 	}
4940 
4941 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4942 		if (parent == 0)
4943 			parent = ins.objectid;
4944 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4945 	} else
4946 		BUG_ON(parent > 0);
4947 
4948 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4949 		extent_op = btrfs_alloc_delayed_extent_op();
4950 		if (!extent_op) {
4951 			ret = -ENOMEM;
4952 			goto out_free_buf;
4953 		}
4954 		if (key)
4955 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4956 		else
4957 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4958 		extent_op->flags_to_set = flags;
4959 		extent_op->update_key = skinny_metadata ? false : true;
4960 		extent_op->update_flags = true;
4961 		extent_op->level = level;
4962 
4963 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4964 				       ins.objectid, ins.offset, parent);
4965 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4966 				    root->root_key.objectid, false);
4967 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4968 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4969 		if (ret)
4970 			goto out_free_delayed;
4971 	}
4972 	return buf;
4973 
4974 out_free_delayed:
4975 	btrfs_free_delayed_extent_op(extent_op);
4976 out_free_buf:
4977 	btrfs_tree_unlock(buf);
4978 	free_extent_buffer(buf);
4979 out_free_reserved:
4980 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4981 out_unuse:
4982 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4983 	return ERR_PTR(ret);
4984 }
4985 
4986 struct walk_control {
4987 	u64 refs[BTRFS_MAX_LEVEL];
4988 	u64 flags[BTRFS_MAX_LEVEL];
4989 	struct btrfs_key update_progress;
4990 	struct btrfs_key drop_progress;
4991 	int drop_level;
4992 	int stage;
4993 	int level;
4994 	int shared_level;
4995 	int update_ref;
4996 	int keep_locks;
4997 	int reada_slot;
4998 	int reada_count;
4999 	int restarted;
5000 };
5001 
5002 #define DROP_REFERENCE	1
5003 #define UPDATE_BACKREF	2
5004 
5005 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5006 				     struct btrfs_root *root,
5007 				     struct walk_control *wc,
5008 				     struct btrfs_path *path)
5009 {
5010 	struct btrfs_fs_info *fs_info = root->fs_info;
5011 	u64 bytenr;
5012 	u64 generation;
5013 	u64 refs;
5014 	u64 flags;
5015 	u32 nritems;
5016 	struct btrfs_key key;
5017 	struct extent_buffer *eb;
5018 	int ret;
5019 	int slot;
5020 	int nread = 0;
5021 
5022 	if (path->slots[wc->level] < wc->reada_slot) {
5023 		wc->reada_count = wc->reada_count * 2 / 3;
5024 		wc->reada_count = max(wc->reada_count, 2);
5025 	} else {
5026 		wc->reada_count = wc->reada_count * 3 / 2;
5027 		wc->reada_count = min_t(int, wc->reada_count,
5028 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5029 	}
5030 
5031 	eb = path->nodes[wc->level];
5032 	nritems = btrfs_header_nritems(eb);
5033 
5034 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5035 		if (nread >= wc->reada_count)
5036 			break;
5037 
5038 		cond_resched();
5039 		bytenr = btrfs_node_blockptr(eb, slot);
5040 		generation = btrfs_node_ptr_generation(eb, slot);
5041 
5042 		if (slot == path->slots[wc->level])
5043 			goto reada;
5044 
5045 		if (wc->stage == UPDATE_BACKREF &&
5046 		    generation <= root->root_key.offset)
5047 			continue;
5048 
5049 		/* We don't lock the tree block, it's OK to be racy here */
5050 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5051 					       wc->level - 1, 1, &refs,
5052 					       &flags);
5053 		/* We don't care about errors in readahead. */
5054 		if (ret < 0)
5055 			continue;
5056 		BUG_ON(refs == 0);
5057 
5058 		if (wc->stage == DROP_REFERENCE) {
5059 			if (refs == 1)
5060 				goto reada;
5061 
5062 			if (wc->level == 1 &&
5063 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5064 				continue;
5065 			if (!wc->update_ref ||
5066 			    generation <= root->root_key.offset)
5067 				continue;
5068 			btrfs_node_key_to_cpu(eb, &key, slot);
5069 			ret = btrfs_comp_cpu_keys(&key,
5070 						  &wc->update_progress);
5071 			if (ret < 0)
5072 				continue;
5073 		} else {
5074 			if (wc->level == 1 &&
5075 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5076 				continue;
5077 		}
5078 reada:
5079 		btrfs_readahead_node_child(eb, slot);
5080 		nread++;
5081 	}
5082 	wc->reada_slot = slot;
5083 }
5084 
5085 /*
5086  * helper to process tree block while walking down the tree.
5087  *
5088  * when wc->stage == UPDATE_BACKREF, this function updates
5089  * back refs for pointers in the block.
5090  *
5091  * NOTE: return value 1 means we should stop walking down.
5092  */
5093 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5094 				   struct btrfs_root *root,
5095 				   struct btrfs_path *path,
5096 				   struct walk_control *wc, int lookup_info)
5097 {
5098 	struct btrfs_fs_info *fs_info = root->fs_info;
5099 	int level = wc->level;
5100 	struct extent_buffer *eb = path->nodes[level];
5101 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5102 	int ret;
5103 
5104 	if (wc->stage == UPDATE_BACKREF &&
5105 	    btrfs_header_owner(eb) != root->root_key.objectid)
5106 		return 1;
5107 
5108 	/*
5109 	 * when reference count of tree block is 1, it won't increase
5110 	 * again. once full backref flag is set, we never clear it.
5111 	 */
5112 	if (lookup_info &&
5113 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5114 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5115 		BUG_ON(!path->locks[level]);
5116 		ret = btrfs_lookup_extent_info(trans, fs_info,
5117 					       eb->start, level, 1,
5118 					       &wc->refs[level],
5119 					       &wc->flags[level]);
5120 		BUG_ON(ret == -ENOMEM);
5121 		if (ret)
5122 			return ret;
5123 		BUG_ON(wc->refs[level] == 0);
5124 	}
5125 
5126 	if (wc->stage == DROP_REFERENCE) {
5127 		if (wc->refs[level] > 1)
5128 			return 1;
5129 
5130 		if (path->locks[level] && !wc->keep_locks) {
5131 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5132 			path->locks[level] = 0;
5133 		}
5134 		return 0;
5135 	}
5136 
5137 	/* wc->stage == UPDATE_BACKREF */
5138 	if (!(wc->flags[level] & flag)) {
5139 		BUG_ON(!path->locks[level]);
5140 		ret = btrfs_inc_ref(trans, root, eb, 1);
5141 		BUG_ON(ret); /* -ENOMEM */
5142 		ret = btrfs_dec_ref(trans, root, eb, 0);
5143 		BUG_ON(ret); /* -ENOMEM */
5144 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5145 		BUG_ON(ret); /* -ENOMEM */
5146 		wc->flags[level] |= flag;
5147 	}
5148 
5149 	/*
5150 	 * the block is shared by multiple trees, so it's not good to
5151 	 * keep the tree lock
5152 	 */
5153 	if (path->locks[level] && level > 0) {
5154 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5155 		path->locks[level] = 0;
5156 	}
5157 	return 0;
5158 }
5159 
5160 /*
5161  * This is used to verify a ref exists for this root to deal with a bug where we
5162  * would have a drop_progress key that hadn't been updated properly.
5163  */
5164 static int check_ref_exists(struct btrfs_trans_handle *trans,
5165 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5166 			    int level)
5167 {
5168 	struct btrfs_path *path;
5169 	struct btrfs_extent_inline_ref *iref;
5170 	int ret;
5171 
5172 	path = btrfs_alloc_path();
5173 	if (!path)
5174 		return -ENOMEM;
5175 
5176 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5177 				    root->fs_info->nodesize, parent,
5178 				    root->root_key.objectid, level, 0);
5179 	btrfs_free_path(path);
5180 	if (ret == -ENOENT)
5181 		return 0;
5182 	if (ret < 0)
5183 		return ret;
5184 	return 1;
5185 }
5186 
5187 /*
5188  * helper to process tree block pointer.
5189  *
5190  * when wc->stage == DROP_REFERENCE, this function checks
5191  * reference count of the block pointed to. if the block
5192  * is shared and we need update back refs for the subtree
5193  * rooted at the block, this function changes wc->stage to
5194  * UPDATE_BACKREF. if the block is shared and there is no
5195  * need to update back, this function drops the reference
5196  * to the block.
5197  *
5198  * NOTE: return value 1 means we should stop walking down.
5199  */
5200 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5201 				 struct btrfs_root *root,
5202 				 struct btrfs_path *path,
5203 				 struct walk_control *wc, int *lookup_info)
5204 {
5205 	struct btrfs_fs_info *fs_info = root->fs_info;
5206 	u64 bytenr;
5207 	u64 generation;
5208 	u64 parent;
5209 	struct btrfs_tree_parent_check check = { 0 };
5210 	struct btrfs_key key;
5211 	struct btrfs_ref ref = { 0 };
5212 	struct extent_buffer *next;
5213 	int level = wc->level;
5214 	int reada = 0;
5215 	int ret = 0;
5216 	bool need_account = false;
5217 
5218 	generation = btrfs_node_ptr_generation(path->nodes[level],
5219 					       path->slots[level]);
5220 	/*
5221 	 * if the lower level block was created before the snapshot
5222 	 * was created, we know there is no need to update back refs
5223 	 * for the subtree
5224 	 */
5225 	if (wc->stage == UPDATE_BACKREF &&
5226 	    generation <= root->root_key.offset) {
5227 		*lookup_info = 1;
5228 		return 1;
5229 	}
5230 
5231 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5232 
5233 	check.level = level - 1;
5234 	check.transid = generation;
5235 	check.owner_root = root->root_key.objectid;
5236 	check.has_first_key = true;
5237 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5238 			      path->slots[level]);
5239 
5240 	next = find_extent_buffer(fs_info, bytenr);
5241 	if (!next) {
5242 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5243 				root->root_key.objectid, level - 1);
5244 		if (IS_ERR(next))
5245 			return PTR_ERR(next);
5246 		reada = 1;
5247 	}
5248 	btrfs_tree_lock(next);
5249 
5250 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5251 				       &wc->refs[level - 1],
5252 				       &wc->flags[level - 1]);
5253 	if (ret < 0)
5254 		goto out_unlock;
5255 
5256 	if (unlikely(wc->refs[level - 1] == 0)) {
5257 		btrfs_err(fs_info, "Missing references.");
5258 		ret = -EIO;
5259 		goto out_unlock;
5260 	}
5261 	*lookup_info = 0;
5262 
5263 	if (wc->stage == DROP_REFERENCE) {
5264 		if (wc->refs[level - 1] > 1) {
5265 			need_account = true;
5266 			if (level == 1 &&
5267 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5268 				goto skip;
5269 
5270 			if (!wc->update_ref ||
5271 			    generation <= root->root_key.offset)
5272 				goto skip;
5273 
5274 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5275 					      path->slots[level]);
5276 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5277 			if (ret < 0)
5278 				goto skip;
5279 
5280 			wc->stage = UPDATE_BACKREF;
5281 			wc->shared_level = level - 1;
5282 		}
5283 	} else {
5284 		if (level == 1 &&
5285 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5286 			goto skip;
5287 	}
5288 
5289 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5290 		btrfs_tree_unlock(next);
5291 		free_extent_buffer(next);
5292 		next = NULL;
5293 		*lookup_info = 1;
5294 	}
5295 
5296 	if (!next) {
5297 		if (reada && level == 1)
5298 			reada_walk_down(trans, root, wc, path);
5299 		next = read_tree_block(fs_info, bytenr, &check);
5300 		if (IS_ERR(next)) {
5301 			return PTR_ERR(next);
5302 		} else if (!extent_buffer_uptodate(next)) {
5303 			free_extent_buffer(next);
5304 			return -EIO;
5305 		}
5306 		btrfs_tree_lock(next);
5307 	}
5308 
5309 	level--;
5310 	ASSERT(level == btrfs_header_level(next));
5311 	if (level != btrfs_header_level(next)) {
5312 		btrfs_err(root->fs_info, "mismatched level");
5313 		ret = -EIO;
5314 		goto out_unlock;
5315 	}
5316 	path->nodes[level] = next;
5317 	path->slots[level] = 0;
5318 	path->locks[level] = BTRFS_WRITE_LOCK;
5319 	wc->level = level;
5320 	if (wc->level == 1)
5321 		wc->reada_slot = 0;
5322 	return 0;
5323 skip:
5324 	wc->refs[level - 1] = 0;
5325 	wc->flags[level - 1] = 0;
5326 	if (wc->stage == DROP_REFERENCE) {
5327 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5328 			parent = path->nodes[level]->start;
5329 		} else {
5330 			ASSERT(root->root_key.objectid ==
5331 			       btrfs_header_owner(path->nodes[level]));
5332 			if (root->root_key.objectid !=
5333 			    btrfs_header_owner(path->nodes[level])) {
5334 				btrfs_err(root->fs_info,
5335 						"mismatched block owner");
5336 				ret = -EIO;
5337 				goto out_unlock;
5338 			}
5339 			parent = 0;
5340 		}
5341 
5342 		/*
5343 		 * If we had a drop_progress we need to verify the refs are set
5344 		 * as expected.  If we find our ref then we know that from here
5345 		 * on out everything should be correct, and we can clear the
5346 		 * ->restarted flag.
5347 		 */
5348 		if (wc->restarted) {
5349 			ret = check_ref_exists(trans, root, bytenr, parent,
5350 					       level - 1);
5351 			if (ret < 0)
5352 				goto out_unlock;
5353 			if (ret == 0)
5354 				goto no_delete;
5355 			ret = 0;
5356 			wc->restarted = 0;
5357 		}
5358 
5359 		/*
5360 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5361 		 * already accounted them at merge time (replace_path),
5362 		 * thus we could skip expensive subtree trace here.
5363 		 */
5364 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5365 		    need_account) {
5366 			ret = btrfs_qgroup_trace_subtree(trans, next,
5367 							 generation, level - 1);
5368 			if (ret) {
5369 				btrfs_err_rl(fs_info,
5370 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5371 					     ret);
5372 			}
5373 		}
5374 
5375 		/*
5376 		 * We need to update the next key in our walk control so we can
5377 		 * update the drop_progress key accordingly.  We don't care if
5378 		 * find_next_key doesn't find a key because that means we're at
5379 		 * the end and are going to clean up now.
5380 		 */
5381 		wc->drop_level = level;
5382 		find_next_key(path, level, &wc->drop_progress);
5383 
5384 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5385 				       fs_info->nodesize, parent);
5386 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5387 				    0, false);
5388 		ret = btrfs_free_extent(trans, &ref);
5389 		if (ret)
5390 			goto out_unlock;
5391 	}
5392 no_delete:
5393 	*lookup_info = 1;
5394 	ret = 1;
5395 
5396 out_unlock:
5397 	btrfs_tree_unlock(next);
5398 	free_extent_buffer(next);
5399 
5400 	return ret;
5401 }
5402 
5403 /*
5404  * helper to process tree block while walking up the tree.
5405  *
5406  * when wc->stage == DROP_REFERENCE, this function drops
5407  * reference count on the block.
5408  *
5409  * when wc->stage == UPDATE_BACKREF, this function changes
5410  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5411  * to UPDATE_BACKREF previously while processing the block.
5412  *
5413  * NOTE: return value 1 means we should stop walking up.
5414  */
5415 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5416 				 struct btrfs_root *root,
5417 				 struct btrfs_path *path,
5418 				 struct walk_control *wc)
5419 {
5420 	struct btrfs_fs_info *fs_info = root->fs_info;
5421 	int ret;
5422 	int level = wc->level;
5423 	struct extent_buffer *eb = path->nodes[level];
5424 	u64 parent = 0;
5425 
5426 	if (wc->stage == UPDATE_BACKREF) {
5427 		BUG_ON(wc->shared_level < level);
5428 		if (level < wc->shared_level)
5429 			goto out;
5430 
5431 		ret = find_next_key(path, level + 1, &wc->update_progress);
5432 		if (ret > 0)
5433 			wc->update_ref = 0;
5434 
5435 		wc->stage = DROP_REFERENCE;
5436 		wc->shared_level = -1;
5437 		path->slots[level] = 0;
5438 
5439 		/*
5440 		 * check reference count again if the block isn't locked.
5441 		 * we should start walking down the tree again if reference
5442 		 * count is one.
5443 		 */
5444 		if (!path->locks[level]) {
5445 			BUG_ON(level == 0);
5446 			btrfs_tree_lock(eb);
5447 			path->locks[level] = BTRFS_WRITE_LOCK;
5448 
5449 			ret = btrfs_lookup_extent_info(trans, fs_info,
5450 						       eb->start, level, 1,
5451 						       &wc->refs[level],
5452 						       &wc->flags[level]);
5453 			if (ret < 0) {
5454 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 				path->locks[level] = 0;
5456 				return ret;
5457 			}
5458 			BUG_ON(wc->refs[level] == 0);
5459 			if (wc->refs[level] == 1) {
5460 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5461 				path->locks[level] = 0;
5462 				return 1;
5463 			}
5464 		}
5465 	}
5466 
5467 	/* wc->stage == DROP_REFERENCE */
5468 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5469 
5470 	if (wc->refs[level] == 1) {
5471 		if (level == 0) {
5472 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5473 				ret = btrfs_dec_ref(trans, root, eb, 1);
5474 			else
5475 				ret = btrfs_dec_ref(trans, root, eb, 0);
5476 			BUG_ON(ret); /* -ENOMEM */
5477 			if (is_fstree(root->root_key.objectid)) {
5478 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5479 				if (ret) {
5480 					btrfs_err_rl(fs_info,
5481 	"error %d accounting leaf items, quota is out of sync, rescan required",
5482 					     ret);
5483 				}
5484 			}
5485 		}
5486 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5487 		if (!path->locks[level]) {
5488 			btrfs_tree_lock(eb);
5489 			path->locks[level] = BTRFS_WRITE_LOCK;
5490 		}
5491 		btrfs_clear_buffer_dirty(trans, eb);
5492 	}
5493 
5494 	if (eb == root->node) {
5495 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5496 			parent = eb->start;
5497 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5498 			goto owner_mismatch;
5499 	} else {
5500 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5501 			parent = path->nodes[level + 1]->start;
5502 		else if (root->root_key.objectid !=
5503 			 btrfs_header_owner(path->nodes[level + 1]))
5504 			goto owner_mismatch;
5505 	}
5506 
5507 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5508 			      wc->refs[level] == 1);
5509 out:
5510 	wc->refs[level] = 0;
5511 	wc->flags[level] = 0;
5512 	return 0;
5513 
5514 owner_mismatch:
5515 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5516 		     btrfs_header_owner(eb), root->root_key.objectid);
5517 	return -EUCLEAN;
5518 }
5519 
5520 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5521 				   struct btrfs_root *root,
5522 				   struct btrfs_path *path,
5523 				   struct walk_control *wc)
5524 {
5525 	int level = wc->level;
5526 	int lookup_info = 1;
5527 	int ret = 0;
5528 
5529 	while (level >= 0) {
5530 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5531 		if (ret)
5532 			break;
5533 
5534 		if (level == 0)
5535 			break;
5536 
5537 		if (path->slots[level] >=
5538 		    btrfs_header_nritems(path->nodes[level]))
5539 			break;
5540 
5541 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5542 		if (ret > 0) {
5543 			path->slots[level]++;
5544 			continue;
5545 		} else if (ret < 0)
5546 			break;
5547 		level = wc->level;
5548 	}
5549 	return (ret == 1) ? 0 : ret;
5550 }
5551 
5552 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5553 				 struct btrfs_root *root,
5554 				 struct btrfs_path *path,
5555 				 struct walk_control *wc, int max_level)
5556 {
5557 	int level = wc->level;
5558 	int ret;
5559 
5560 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5561 	while (level < max_level && path->nodes[level]) {
5562 		wc->level = level;
5563 		if (path->slots[level] + 1 <
5564 		    btrfs_header_nritems(path->nodes[level])) {
5565 			path->slots[level]++;
5566 			return 0;
5567 		} else {
5568 			ret = walk_up_proc(trans, root, path, wc);
5569 			if (ret > 0)
5570 				return 0;
5571 			if (ret < 0)
5572 				return ret;
5573 
5574 			if (path->locks[level]) {
5575 				btrfs_tree_unlock_rw(path->nodes[level],
5576 						     path->locks[level]);
5577 				path->locks[level] = 0;
5578 			}
5579 			free_extent_buffer(path->nodes[level]);
5580 			path->nodes[level] = NULL;
5581 			level++;
5582 		}
5583 	}
5584 	return 1;
5585 }
5586 
5587 /*
5588  * drop a subvolume tree.
5589  *
5590  * this function traverses the tree freeing any blocks that only
5591  * referenced by the tree.
5592  *
5593  * when a shared tree block is found. this function decreases its
5594  * reference count by one. if update_ref is true, this function
5595  * also make sure backrefs for the shared block and all lower level
5596  * blocks are properly updated.
5597  *
5598  * If called with for_reloc == 0, may exit early with -EAGAIN
5599  */
5600 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5601 {
5602 	const bool is_reloc_root = (root->root_key.objectid ==
5603 				    BTRFS_TREE_RELOC_OBJECTID);
5604 	struct btrfs_fs_info *fs_info = root->fs_info;
5605 	struct btrfs_path *path;
5606 	struct btrfs_trans_handle *trans;
5607 	struct btrfs_root *tree_root = fs_info->tree_root;
5608 	struct btrfs_root_item *root_item = &root->root_item;
5609 	struct walk_control *wc;
5610 	struct btrfs_key key;
5611 	int err = 0;
5612 	int ret;
5613 	int level;
5614 	bool root_dropped = false;
5615 	bool unfinished_drop = false;
5616 
5617 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5618 
5619 	path = btrfs_alloc_path();
5620 	if (!path) {
5621 		err = -ENOMEM;
5622 		goto out;
5623 	}
5624 
5625 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5626 	if (!wc) {
5627 		btrfs_free_path(path);
5628 		err = -ENOMEM;
5629 		goto out;
5630 	}
5631 
5632 	/*
5633 	 * Use join to avoid potential EINTR from transaction start. See
5634 	 * wait_reserve_ticket and the whole reservation callchain.
5635 	 */
5636 	if (for_reloc)
5637 		trans = btrfs_join_transaction(tree_root);
5638 	else
5639 		trans = btrfs_start_transaction(tree_root, 0);
5640 	if (IS_ERR(trans)) {
5641 		err = PTR_ERR(trans);
5642 		goto out_free;
5643 	}
5644 
5645 	err = btrfs_run_delayed_items(trans);
5646 	if (err)
5647 		goto out_end_trans;
5648 
5649 	/*
5650 	 * This will help us catch people modifying the fs tree while we're
5651 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5652 	 * dropped as we unlock the root node and parent nodes as we walk down
5653 	 * the tree, assuming nothing will change.  If something does change
5654 	 * then we'll have stale information and drop references to blocks we've
5655 	 * already dropped.
5656 	 */
5657 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5658 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5659 
5660 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5661 		level = btrfs_header_level(root->node);
5662 		path->nodes[level] = btrfs_lock_root_node(root);
5663 		path->slots[level] = 0;
5664 		path->locks[level] = BTRFS_WRITE_LOCK;
5665 		memset(&wc->update_progress, 0,
5666 		       sizeof(wc->update_progress));
5667 	} else {
5668 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5669 		memcpy(&wc->update_progress, &key,
5670 		       sizeof(wc->update_progress));
5671 
5672 		level = btrfs_root_drop_level(root_item);
5673 		BUG_ON(level == 0);
5674 		path->lowest_level = level;
5675 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5676 		path->lowest_level = 0;
5677 		if (ret < 0) {
5678 			err = ret;
5679 			goto out_end_trans;
5680 		}
5681 		WARN_ON(ret > 0);
5682 
5683 		/*
5684 		 * unlock our path, this is safe because only this
5685 		 * function is allowed to delete this snapshot
5686 		 */
5687 		btrfs_unlock_up_safe(path, 0);
5688 
5689 		level = btrfs_header_level(root->node);
5690 		while (1) {
5691 			btrfs_tree_lock(path->nodes[level]);
5692 			path->locks[level] = BTRFS_WRITE_LOCK;
5693 
5694 			ret = btrfs_lookup_extent_info(trans, fs_info,
5695 						path->nodes[level]->start,
5696 						level, 1, &wc->refs[level],
5697 						&wc->flags[level]);
5698 			if (ret < 0) {
5699 				err = ret;
5700 				goto out_end_trans;
5701 			}
5702 			BUG_ON(wc->refs[level] == 0);
5703 
5704 			if (level == btrfs_root_drop_level(root_item))
5705 				break;
5706 
5707 			btrfs_tree_unlock(path->nodes[level]);
5708 			path->locks[level] = 0;
5709 			WARN_ON(wc->refs[level] != 1);
5710 			level--;
5711 		}
5712 	}
5713 
5714 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5715 	wc->level = level;
5716 	wc->shared_level = -1;
5717 	wc->stage = DROP_REFERENCE;
5718 	wc->update_ref = update_ref;
5719 	wc->keep_locks = 0;
5720 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5721 
5722 	while (1) {
5723 
5724 		ret = walk_down_tree(trans, root, path, wc);
5725 		if (ret < 0) {
5726 			btrfs_abort_transaction(trans, ret);
5727 			err = ret;
5728 			break;
5729 		}
5730 
5731 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5732 		if (ret < 0) {
5733 			btrfs_abort_transaction(trans, ret);
5734 			err = ret;
5735 			break;
5736 		}
5737 
5738 		if (ret > 0) {
5739 			BUG_ON(wc->stage != DROP_REFERENCE);
5740 			break;
5741 		}
5742 
5743 		if (wc->stage == DROP_REFERENCE) {
5744 			wc->drop_level = wc->level;
5745 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5746 					      &wc->drop_progress,
5747 					      path->slots[wc->drop_level]);
5748 		}
5749 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5750 				      &wc->drop_progress);
5751 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5752 
5753 		BUG_ON(wc->level == 0);
5754 		if (btrfs_should_end_transaction(trans) ||
5755 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5756 			ret = btrfs_update_root(trans, tree_root,
5757 						&root->root_key,
5758 						root_item);
5759 			if (ret) {
5760 				btrfs_abort_transaction(trans, ret);
5761 				err = ret;
5762 				goto out_end_trans;
5763 			}
5764 
5765 			if (!is_reloc_root)
5766 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5767 
5768 			btrfs_end_transaction_throttle(trans);
5769 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5770 				btrfs_debug(fs_info,
5771 					    "drop snapshot early exit");
5772 				err = -EAGAIN;
5773 				goto out_free;
5774 			}
5775 
5776 		       /*
5777 			* Use join to avoid potential EINTR from transaction
5778 			* start. See wait_reserve_ticket and the whole
5779 			* reservation callchain.
5780 			*/
5781 			if (for_reloc)
5782 				trans = btrfs_join_transaction(tree_root);
5783 			else
5784 				trans = btrfs_start_transaction(tree_root, 0);
5785 			if (IS_ERR(trans)) {
5786 				err = PTR_ERR(trans);
5787 				goto out_free;
5788 			}
5789 		}
5790 	}
5791 	btrfs_release_path(path);
5792 	if (err)
5793 		goto out_end_trans;
5794 
5795 	ret = btrfs_del_root(trans, &root->root_key);
5796 	if (ret) {
5797 		btrfs_abort_transaction(trans, ret);
5798 		err = ret;
5799 		goto out_end_trans;
5800 	}
5801 
5802 	if (!is_reloc_root) {
5803 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5804 				      NULL, NULL);
5805 		if (ret < 0) {
5806 			btrfs_abort_transaction(trans, ret);
5807 			err = ret;
5808 			goto out_end_trans;
5809 		} else if (ret > 0) {
5810 			/* if we fail to delete the orphan item this time
5811 			 * around, it'll get picked up the next time.
5812 			 *
5813 			 * The most common failure here is just -ENOENT.
5814 			 */
5815 			btrfs_del_orphan_item(trans, tree_root,
5816 					      root->root_key.objectid);
5817 		}
5818 	}
5819 
5820 	/*
5821 	 * This subvolume is going to be completely dropped, and won't be
5822 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5823 	 * commit transaction time.  So free it here manually.
5824 	 */
5825 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5826 	btrfs_qgroup_free_meta_all_pertrans(root);
5827 
5828 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5829 		btrfs_add_dropped_root(trans, root);
5830 	else
5831 		btrfs_put_root(root);
5832 	root_dropped = true;
5833 out_end_trans:
5834 	if (!is_reloc_root)
5835 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5836 
5837 	btrfs_end_transaction_throttle(trans);
5838 out_free:
5839 	kfree(wc);
5840 	btrfs_free_path(path);
5841 out:
5842 	/*
5843 	 * We were an unfinished drop root, check to see if there are any
5844 	 * pending, and if not clear and wake up any waiters.
5845 	 */
5846 	if (!err && unfinished_drop)
5847 		btrfs_maybe_wake_unfinished_drop(fs_info);
5848 
5849 	/*
5850 	 * So if we need to stop dropping the snapshot for whatever reason we
5851 	 * need to make sure to add it back to the dead root list so that we
5852 	 * keep trying to do the work later.  This also cleans up roots if we
5853 	 * don't have it in the radix (like when we recover after a power fail
5854 	 * or unmount) so we don't leak memory.
5855 	 */
5856 	if (!for_reloc && !root_dropped)
5857 		btrfs_add_dead_root(root);
5858 	return err;
5859 }
5860 
5861 /*
5862  * drop subtree rooted at tree block 'node'.
5863  *
5864  * NOTE: this function will unlock and release tree block 'node'
5865  * only used by relocation code
5866  */
5867 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5868 			struct btrfs_root *root,
5869 			struct extent_buffer *node,
5870 			struct extent_buffer *parent)
5871 {
5872 	struct btrfs_fs_info *fs_info = root->fs_info;
5873 	struct btrfs_path *path;
5874 	struct walk_control *wc;
5875 	int level;
5876 	int parent_level;
5877 	int ret = 0;
5878 	int wret;
5879 
5880 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5881 
5882 	path = btrfs_alloc_path();
5883 	if (!path)
5884 		return -ENOMEM;
5885 
5886 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5887 	if (!wc) {
5888 		btrfs_free_path(path);
5889 		return -ENOMEM;
5890 	}
5891 
5892 	btrfs_assert_tree_write_locked(parent);
5893 	parent_level = btrfs_header_level(parent);
5894 	atomic_inc(&parent->refs);
5895 	path->nodes[parent_level] = parent;
5896 	path->slots[parent_level] = btrfs_header_nritems(parent);
5897 
5898 	btrfs_assert_tree_write_locked(node);
5899 	level = btrfs_header_level(node);
5900 	path->nodes[level] = node;
5901 	path->slots[level] = 0;
5902 	path->locks[level] = BTRFS_WRITE_LOCK;
5903 
5904 	wc->refs[parent_level] = 1;
5905 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5906 	wc->level = level;
5907 	wc->shared_level = -1;
5908 	wc->stage = DROP_REFERENCE;
5909 	wc->update_ref = 0;
5910 	wc->keep_locks = 1;
5911 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5912 
5913 	while (1) {
5914 		wret = walk_down_tree(trans, root, path, wc);
5915 		if (wret < 0) {
5916 			ret = wret;
5917 			break;
5918 		}
5919 
5920 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5921 		if (wret < 0)
5922 			ret = wret;
5923 		if (wret != 0)
5924 			break;
5925 	}
5926 
5927 	kfree(wc);
5928 	btrfs_free_path(path);
5929 	return ret;
5930 }
5931 
5932 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5933 				   u64 start, u64 end)
5934 {
5935 	return unpin_extent_range(fs_info, start, end, false);
5936 }
5937 
5938 /*
5939  * It used to be that old block groups would be left around forever.
5940  * Iterating over them would be enough to trim unused space.  Since we
5941  * now automatically remove them, we also need to iterate over unallocated
5942  * space.
5943  *
5944  * We don't want a transaction for this since the discard may take a
5945  * substantial amount of time.  We don't require that a transaction be
5946  * running, but we do need to take a running transaction into account
5947  * to ensure that we're not discarding chunks that were released or
5948  * allocated in the current transaction.
5949  *
5950  * Holding the chunks lock will prevent other threads from allocating
5951  * or releasing chunks, but it won't prevent a running transaction
5952  * from committing and releasing the memory that the pending chunks
5953  * list head uses.  For that, we need to take a reference to the
5954  * transaction and hold the commit root sem.  We only need to hold
5955  * it while performing the free space search since we have already
5956  * held back allocations.
5957  */
5958 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5959 {
5960 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5961 	int ret;
5962 
5963 	*trimmed = 0;
5964 
5965 	/* Discard not supported = nothing to do. */
5966 	if (!bdev_max_discard_sectors(device->bdev))
5967 		return 0;
5968 
5969 	/* Not writable = nothing to do. */
5970 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5971 		return 0;
5972 
5973 	/* No free space = nothing to do. */
5974 	if (device->total_bytes <= device->bytes_used)
5975 		return 0;
5976 
5977 	ret = 0;
5978 
5979 	while (1) {
5980 		struct btrfs_fs_info *fs_info = device->fs_info;
5981 		u64 bytes;
5982 
5983 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5984 		if (ret)
5985 			break;
5986 
5987 		find_first_clear_extent_bit(&device->alloc_state, start,
5988 					    &start, &end,
5989 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5990 
5991 		/* Check if there are any CHUNK_* bits left */
5992 		if (start > device->total_bytes) {
5993 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5994 			btrfs_warn_in_rcu(fs_info,
5995 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5996 					  start, end - start + 1,
5997 					  btrfs_dev_name(device),
5998 					  device->total_bytes);
5999 			mutex_unlock(&fs_info->chunk_mutex);
6000 			ret = 0;
6001 			break;
6002 		}
6003 
6004 		/* Ensure we skip the reserved space on each device. */
6005 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6006 
6007 		/*
6008 		 * If find_first_clear_extent_bit find a range that spans the
6009 		 * end of the device it will set end to -1, in this case it's up
6010 		 * to the caller to trim the value to the size of the device.
6011 		 */
6012 		end = min(end, device->total_bytes - 1);
6013 
6014 		len = end - start + 1;
6015 
6016 		/* We didn't find any extents */
6017 		if (!len) {
6018 			mutex_unlock(&fs_info->chunk_mutex);
6019 			ret = 0;
6020 			break;
6021 		}
6022 
6023 		ret = btrfs_issue_discard(device->bdev, start, len,
6024 					  &bytes);
6025 		if (!ret)
6026 			set_extent_bit(&device->alloc_state, start,
6027 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6028 		mutex_unlock(&fs_info->chunk_mutex);
6029 
6030 		if (ret)
6031 			break;
6032 
6033 		start += len;
6034 		*trimmed += bytes;
6035 
6036 		if (fatal_signal_pending(current)) {
6037 			ret = -ERESTARTSYS;
6038 			break;
6039 		}
6040 
6041 		cond_resched();
6042 	}
6043 
6044 	return ret;
6045 }
6046 
6047 /*
6048  * Trim the whole filesystem by:
6049  * 1) trimming the free space in each block group
6050  * 2) trimming the unallocated space on each device
6051  *
6052  * This will also continue trimming even if a block group or device encounters
6053  * an error.  The return value will be the last error, or 0 if nothing bad
6054  * happens.
6055  */
6056 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6057 {
6058 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6059 	struct btrfs_block_group *cache = NULL;
6060 	struct btrfs_device *device;
6061 	u64 group_trimmed;
6062 	u64 range_end = U64_MAX;
6063 	u64 start;
6064 	u64 end;
6065 	u64 trimmed = 0;
6066 	u64 bg_failed = 0;
6067 	u64 dev_failed = 0;
6068 	int bg_ret = 0;
6069 	int dev_ret = 0;
6070 	int ret = 0;
6071 
6072 	if (range->start == U64_MAX)
6073 		return -EINVAL;
6074 
6075 	/*
6076 	 * Check range overflow if range->len is set.
6077 	 * The default range->len is U64_MAX.
6078 	 */
6079 	if (range->len != U64_MAX &&
6080 	    check_add_overflow(range->start, range->len, &range_end))
6081 		return -EINVAL;
6082 
6083 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6084 	for (; cache; cache = btrfs_next_block_group(cache)) {
6085 		if (cache->start >= range_end) {
6086 			btrfs_put_block_group(cache);
6087 			break;
6088 		}
6089 
6090 		start = max(range->start, cache->start);
6091 		end = min(range_end, cache->start + cache->length);
6092 
6093 		if (end - start >= range->minlen) {
6094 			if (!btrfs_block_group_done(cache)) {
6095 				ret = btrfs_cache_block_group(cache, true);
6096 				if (ret) {
6097 					bg_failed++;
6098 					bg_ret = ret;
6099 					continue;
6100 				}
6101 			}
6102 			ret = btrfs_trim_block_group(cache,
6103 						     &group_trimmed,
6104 						     start,
6105 						     end,
6106 						     range->minlen);
6107 
6108 			trimmed += group_trimmed;
6109 			if (ret) {
6110 				bg_failed++;
6111 				bg_ret = ret;
6112 				continue;
6113 			}
6114 		}
6115 	}
6116 
6117 	if (bg_failed)
6118 		btrfs_warn(fs_info,
6119 			"failed to trim %llu block group(s), last error %d",
6120 			bg_failed, bg_ret);
6121 
6122 	mutex_lock(&fs_devices->device_list_mutex);
6123 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6124 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6125 			continue;
6126 
6127 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6128 		if (ret) {
6129 			dev_failed++;
6130 			dev_ret = ret;
6131 			break;
6132 		}
6133 
6134 		trimmed += group_trimmed;
6135 	}
6136 	mutex_unlock(&fs_devices->device_list_mutex);
6137 
6138 	if (dev_failed)
6139 		btrfs_warn(fs_info,
6140 			"failed to trim %llu device(s), last error %d",
6141 			dev_failed, dev_ret);
6142 	range->len = trimmed;
6143 	if (bg_ret)
6144 		return bg_ret;
6145 	return dev_ret;
6146 }
6147