xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35 
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 				 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 				struct btrfs_root *root,
43 				u64 bytenr, u64 num_bytes, u64 parent,
44 				u64 root_objectid, u64 owner_objectid,
45 				u64 owner_offset, int refs_to_drop,
46 				struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 				    struct extent_buffer *leaf,
49 				    struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 				      struct btrfs_root *root,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_root *root,
57 				     u64 parent, u64 root_objectid,
58 				     u64 flags, struct btrfs_disk_key *key,
59 				     int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 			  struct btrfs_root *extent_root, u64 alloc_bytes,
62 			  u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 			 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 			    int dump_block_groups);
67 
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 	smp_mb();
72 	return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74 
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 	return (cache->flags & bits) == bits;
78 }
79 
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 	atomic_inc(&cache->count);
83 }
84 
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 	if (atomic_dec_and_test(&cache->count)) {
88 		WARN_ON(cache->pinned > 0);
89 		WARN_ON(cache->reserved > 0);
90 		WARN_ON(cache->reserved_pinned > 0);
91 		kfree(cache);
92 	}
93 }
94 
95 /*
96  * this adds the block group to the fs_info rb tree for the block group
97  * cache
98  */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 				struct btrfs_block_group_cache *block_group)
101 {
102 	struct rb_node **p;
103 	struct rb_node *parent = NULL;
104 	struct btrfs_block_group_cache *cache;
105 
106 	spin_lock(&info->block_group_cache_lock);
107 	p = &info->block_group_cache_tree.rb_node;
108 
109 	while (*p) {
110 		parent = *p;
111 		cache = rb_entry(parent, struct btrfs_block_group_cache,
112 				 cache_node);
113 		if (block_group->key.objectid < cache->key.objectid) {
114 			p = &(*p)->rb_left;
115 		} else if (block_group->key.objectid > cache->key.objectid) {
116 			p = &(*p)->rb_right;
117 		} else {
118 			spin_unlock(&info->block_group_cache_lock);
119 			return -EEXIST;
120 		}
121 	}
122 
123 	rb_link_node(&block_group->cache_node, parent, p);
124 	rb_insert_color(&block_group->cache_node,
125 			&info->block_group_cache_tree);
126 	spin_unlock(&info->block_group_cache_lock);
127 
128 	return 0;
129 }
130 
131 /*
132  * This will return the block group at or after bytenr if contains is 0, else
133  * it will return the block group that contains the bytenr
134  */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 			      int contains)
138 {
139 	struct btrfs_block_group_cache *cache, *ret = NULL;
140 	struct rb_node *n;
141 	u64 end, start;
142 
143 	spin_lock(&info->block_group_cache_lock);
144 	n = info->block_group_cache_tree.rb_node;
145 
146 	while (n) {
147 		cache = rb_entry(n, struct btrfs_block_group_cache,
148 				 cache_node);
149 		end = cache->key.objectid + cache->key.offset - 1;
150 		start = cache->key.objectid;
151 
152 		if (bytenr < start) {
153 			if (!contains && (!ret || start < ret->key.objectid))
154 				ret = cache;
155 			n = n->rb_left;
156 		} else if (bytenr > start) {
157 			if (contains && bytenr <= end) {
158 				ret = cache;
159 				break;
160 			}
161 			n = n->rb_right;
162 		} else {
163 			ret = cache;
164 			break;
165 		}
166 	}
167 	if (ret)
168 		btrfs_get_block_group(ret);
169 	spin_unlock(&info->block_group_cache_lock);
170 
171 	return ret;
172 }
173 
174 static int add_excluded_extent(struct btrfs_root *root,
175 			       u64 start, u64 num_bytes)
176 {
177 	u64 end = start + num_bytes - 1;
178 	set_extent_bits(&root->fs_info->freed_extents[0],
179 			start, end, EXTENT_UPTODATE, GFP_NOFS);
180 	set_extent_bits(&root->fs_info->freed_extents[1],
181 			start, end, EXTENT_UPTODATE, GFP_NOFS);
182 	return 0;
183 }
184 
185 static void free_excluded_extents(struct btrfs_root *root,
186 				  struct btrfs_block_group_cache *cache)
187 {
188 	u64 start, end;
189 
190 	start = cache->key.objectid;
191 	end = start + cache->key.offset - 1;
192 
193 	clear_extent_bits(&root->fs_info->freed_extents[0],
194 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
195 	clear_extent_bits(&root->fs_info->freed_extents[1],
196 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198 
199 static int exclude_super_stripes(struct btrfs_root *root,
200 				 struct btrfs_block_group_cache *cache)
201 {
202 	u64 bytenr;
203 	u64 *logical;
204 	int stripe_len;
205 	int i, nr, ret;
206 
207 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 		cache->bytes_super += stripe_len;
210 		ret = add_excluded_extent(root, cache->key.objectid,
211 					  stripe_len);
212 		BUG_ON(ret);
213 	}
214 
215 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 		bytenr = btrfs_sb_offset(i);
217 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 				       cache->key.objectid, bytenr,
219 				       0, &logical, &nr, &stripe_len);
220 		BUG_ON(ret);
221 
222 		while (nr--) {
223 			cache->bytes_super += stripe_len;
224 			ret = add_excluded_extent(root, logical[nr],
225 						  stripe_len);
226 			BUG_ON(ret);
227 		}
228 
229 		kfree(logical);
230 	}
231 	return 0;
232 }
233 
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 	struct btrfs_caching_control *ctl;
238 
239 	spin_lock(&cache->lock);
240 	if (cache->cached != BTRFS_CACHE_STARTED) {
241 		spin_unlock(&cache->lock);
242 		return NULL;
243 	}
244 
245 	/* We're loading it the fast way, so we don't have a caching_ctl. */
246 	if (!cache->caching_ctl) {
247 		spin_unlock(&cache->lock);
248 		return NULL;
249 	}
250 
251 	ctl = cache->caching_ctl;
252 	atomic_inc(&ctl->count);
253 	spin_unlock(&cache->lock);
254 	return ctl;
255 }
256 
257 static void put_caching_control(struct btrfs_caching_control *ctl)
258 {
259 	if (atomic_dec_and_test(&ctl->count))
260 		kfree(ctl);
261 }
262 
263 /*
264  * this is only called by cache_block_group, since we could have freed extents
265  * we need to check the pinned_extents for any extents that can't be used yet
266  * since their free space will be released as soon as the transaction commits.
267  */
268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
269 			      struct btrfs_fs_info *info, u64 start, u64 end)
270 {
271 	u64 extent_start, extent_end, size, total_added = 0;
272 	int ret;
273 
274 	while (start < end) {
275 		ret = find_first_extent_bit(info->pinned_extents, start,
276 					    &extent_start, &extent_end,
277 					    EXTENT_DIRTY | EXTENT_UPTODATE);
278 		if (ret)
279 			break;
280 
281 		if (extent_start <= start) {
282 			start = extent_end + 1;
283 		} else if (extent_start > start && extent_start < end) {
284 			size = extent_start - start;
285 			total_added += size;
286 			ret = btrfs_add_free_space(block_group, start,
287 						   size);
288 			BUG_ON(ret);
289 			start = extent_end + 1;
290 		} else {
291 			break;
292 		}
293 	}
294 
295 	if (start < end) {
296 		size = end - start;
297 		total_added += size;
298 		ret = btrfs_add_free_space(block_group, start, size);
299 		BUG_ON(ret);
300 	}
301 
302 	return total_added;
303 }
304 
305 static int caching_kthread(void *data)
306 {
307 	struct btrfs_block_group_cache *block_group = data;
308 	struct btrfs_fs_info *fs_info = block_group->fs_info;
309 	struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
310 	struct btrfs_root *extent_root = fs_info->extent_root;
311 	struct btrfs_path *path;
312 	struct extent_buffer *leaf;
313 	struct btrfs_key key;
314 	u64 total_found = 0;
315 	u64 last = 0;
316 	u32 nritems;
317 	int ret = 0;
318 
319 	path = btrfs_alloc_path();
320 	if (!path)
321 		return -ENOMEM;
322 
323 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
324 
325 	/*
326 	 * We don't want to deadlock with somebody trying to allocate a new
327 	 * extent for the extent root while also trying to search the extent
328 	 * root to add free space.  So we skip locking and search the commit
329 	 * root, since its read-only
330 	 */
331 	path->skip_locking = 1;
332 	path->search_commit_root = 1;
333 	path->reada = 2;
334 
335 	key.objectid = last;
336 	key.offset = 0;
337 	key.type = BTRFS_EXTENT_ITEM_KEY;
338 again:
339 	mutex_lock(&caching_ctl->mutex);
340 	/* need to make sure the commit_root doesn't disappear */
341 	down_read(&fs_info->extent_commit_sem);
342 
343 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
344 	if (ret < 0)
345 		goto err;
346 
347 	leaf = path->nodes[0];
348 	nritems = btrfs_header_nritems(leaf);
349 
350 	while (1) {
351 		smp_mb();
352 		if (fs_info->closing > 1) {
353 			last = (u64)-1;
354 			break;
355 		}
356 
357 		if (path->slots[0] < nritems) {
358 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
359 		} else {
360 			ret = find_next_key(path, 0, &key);
361 			if (ret)
362 				break;
363 
364 			caching_ctl->progress = last;
365 			btrfs_release_path(extent_root, path);
366 			up_read(&fs_info->extent_commit_sem);
367 			mutex_unlock(&caching_ctl->mutex);
368 			if (btrfs_transaction_in_commit(fs_info))
369 				schedule_timeout(1);
370 			else
371 				cond_resched();
372 			goto again;
373 		}
374 
375 		if (key.objectid < block_group->key.objectid) {
376 			path->slots[0]++;
377 			continue;
378 		}
379 
380 		if (key.objectid >= block_group->key.objectid +
381 		    block_group->key.offset)
382 			break;
383 
384 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
385 			total_found += add_new_free_space(block_group,
386 							  fs_info, last,
387 							  key.objectid);
388 			last = key.objectid + key.offset;
389 
390 			if (total_found > (1024 * 1024 * 2)) {
391 				total_found = 0;
392 				wake_up(&caching_ctl->wait);
393 			}
394 		}
395 		path->slots[0]++;
396 	}
397 	ret = 0;
398 
399 	total_found += add_new_free_space(block_group, fs_info, last,
400 					  block_group->key.objectid +
401 					  block_group->key.offset);
402 	caching_ctl->progress = (u64)-1;
403 
404 	spin_lock(&block_group->lock);
405 	block_group->caching_ctl = NULL;
406 	block_group->cached = BTRFS_CACHE_FINISHED;
407 	spin_unlock(&block_group->lock);
408 
409 err:
410 	btrfs_free_path(path);
411 	up_read(&fs_info->extent_commit_sem);
412 
413 	free_excluded_extents(extent_root, block_group);
414 
415 	mutex_unlock(&caching_ctl->mutex);
416 	wake_up(&caching_ctl->wait);
417 
418 	put_caching_control(caching_ctl);
419 	atomic_dec(&block_group->space_info->caching_threads);
420 	btrfs_put_block_group(block_group);
421 
422 	return 0;
423 }
424 
425 static int cache_block_group(struct btrfs_block_group_cache *cache,
426 			     struct btrfs_trans_handle *trans,
427 			     struct btrfs_root *root,
428 			     int load_cache_only)
429 {
430 	struct btrfs_fs_info *fs_info = cache->fs_info;
431 	struct btrfs_caching_control *caching_ctl;
432 	struct task_struct *tsk;
433 	int ret = 0;
434 
435 	smp_mb();
436 	if (cache->cached != BTRFS_CACHE_NO)
437 		return 0;
438 
439 	/*
440 	 * We can't do the read from on-disk cache during a commit since we need
441 	 * to have the normal tree locking.  Also if we are currently trying to
442 	 * allocate blocks for the tree root we can't do the fast caching since
443 	 * we likely hold important locks.
444 	 */
445 	if (!trans->transaction->in_commit &&
446 	    (root && root != root->fs_info->tree_root)) {
447 		spin_lock(&cache->lock);
448 		if (cache->cached != BTRFS_CACHE_NO) {
449 			spin_unlock(&cache->lock);
450 			return 0;
451 		}
452 		cache->cached = BTRFS_CACHE_STARTED;
453 		spin_unlock(&cache->lock);
454 
455 		ret = load_free_space_cache(fs_info, cache);
456 
457 		spin_lock(&cache->lock);
458 		if (ret == 1) {
459 			cache->cached = BTRFS_CACHE_FINISHED;
460 			cache->last_byte_to_unpin = (u64)-1;
461 		} else {
462 			cache->cached = BTRFS_CACHE_NO;
463 		}
464 		spin_unlock(&cache->lock);
465 		if (ret == 1) {
466 			free_excluded_extents(fs_info->extent_root, cache);
467 			return 0;
468 		}
469 	}
470 
471 	if (load_cache_only)
472 		return 0;
473 
474 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
475 	BUG_ON(!caching_ctl);
476 
477 	INIT_LIST_HEAD(&caching_ctl->list);
478 	mutex_init(&caching_ctl->mutex);
479 	init_waitqueue_head(&caching_ctl->wait);
480 	caching_ctl->block_group = cache;
481 	caching_ctl->progress = cache->key.objectid;
482 	/* one for caching kthread, one for caching block group list */
483 	atomic_set(&caching_ctl->count, 2);
484 
485 	spin_lock(&cache->lock);
486 	if (cache->cached != BTRFS_CACHE_NO) {
487 		spin_unlock(&cache->lock);
488 		kfree(caching_ctl);
489 		return 0;
490 	}
491 	cache->caching_ctl = caching_ctl;
492 	cache->cached = BTRFS_CACHE_STARTED;
493 	spin_unlock(&cache->lock);
494 
495 	down_write(&fs_info->extent_commit_sem);
496 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
497 	up_write(&fs_info->extent_commit_sem);
498 
499 	atomic_inc(&cache->space_info->caching_threads);
500 	btrfs_get_block_group(cache);
501 
502 	tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
503 			  cache->key.objectid);
504 	if (IS_ERR(tsk)) {
505 		ret = PTR_ERR(tsk);
506 		printk(KERN_ERR "error running thread %d\n", ret);
507 		BUG();
508 	}
509 
510 	return ret;
511 }
512 
513 /*
514  * return the block group that starts at or after bytenr
515  */
516 static struct btrfs_block_group_cache *
517 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
518 {
519 	struct btrfs_block_group_cache *cache;
520 
521 	cache = block_group_cache_tree_search(info, bytenr, 0);
522 
523 	return cache;
524 }
525 
526 /*
527  * return the block group that contains the given bytenr
528  */
529 struct btrfs_block_group_cache *btrfs_lookup_block_group(
530 						 struct btrfs_fs_info *info,
531 						 u64 bytenr)
532 {
533 	struct btrfs_block_group_cache *cache;
534 
535 	cache = block_group_cache_tree_search(info, bytenr, 1);
536 
537 	return cache;
538 }
539 
540 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
541 						  u64 flags)
542 {
543 	struct list_head *head = &info->space_info;
544 	struct btrfs_space_info *found;
545 
546 	flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
547 		 BTRFS_BLOCK_GROUP_METADATA;
548 
549 	rcu_read_lock();
550 	list_for_each_entry_rcu(found, head, list) {
551 		if (found->flags & flags) {
552 			rcu_read_unlock();
553 			return found;
554 		}
555 	}
556 	rcu_read_unlock();
557 	return NULL;
558 }
559 
560 /*
561  * after adding space to the filesystem, we need to clear the full flags
562  * on all the space infos.
563  */
564 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
565 {
566 	struct list_head *head = &info->space_info;
567 	struct btrfs_space_info *found;
568 
569 	rcu_read_lock();
570 	list_for_each_entry_rcu(found, head, list)
571 		found->full = 0;
572 	rcu_read_unlock();
573 }
574 
575 static u64 div_factor(u64 num, int factor)
576 {
577 	if (factor == 10)
578 		return num;
579 	num *= factor;
580 	do_div(num, 10);
581 	return num;
582 }
583 
584 static u64 div_factor_fine(u64 num, int factor)
585 {
586 	if (factor == 100)
587 		return num;
588 	num *= factor;
589 	do_div(num, 100);
590 	return num;
591 }
592 
593 u64 btrfs_find_block_group(struct btrfs_root *root,
594 			   u64 search_start, u64 search_hint, int owner)
595 {
596 	struct btrfs_block_group_cache *cache;
597 	u64 used;
598 	u64 last = max(search_hint, search_start);
599 	u64 group_start = 0;
600 	int full_search = 0;
601 	int factor = 9;
602 	int wrapped = 0;
603 again:
604 	while (1) {
605 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
606 		if (!cache)
607 			break;
608 
609 		spin_lock(&cache->lock);
610 		last = cache->key.objectid + cache->key.offset;
611 		used = btrfs_block_group_used(&cache->item);
612 
613 		if ((full_search || !cache->ro) &&
614 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
615 			if (used + cache->pinned + cache->reserved <
616 			    div_factor(cache->key.offset, factor)) {
617 				group_start = cache->key.objectid;
618 				spin_unlock(&cache->lock);
619 				btrfs_put_block_group(cache);
620 				goto found;
621 			}
622 		}
623 		spin_unlock(&cache->lock);
624 		btrfs_put_block_group(cache);
625 		cond_resched();
626 	}
627 	if (!wrapped) {
628 		last = search_start;
629 		wrapped = 1;
630 		goto again;
631 	}
632 	if (!full_search && factor < 10) {
633 		last = search_start;
634 		full_search = 1;
635 		factor = 10;
636 		goto again;
637 	}
638 found:
639 	return group_start;
640 }
641 
642 /* simple helper to search for an existing extent at a given offset */
643 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
644 {
645 	int ret;
646 	struct btrfs_key key;
647 	struct btrfs_path *path;
648 
649 	path = btrfs_alloc_path();
650 	BUG_ON(!path);
651 	key.objectid = start;
652 	key.offset = len;
653 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
654 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
655 				0, 0);
656 	btrfs_free_path(path);
657 	return ret;
658 }
659 
660 /*
661  * helper function to lookup reference count and flags of extent.
662  *
663  * the head node for delayed ref is used to store the sum of all the
664  * reference count modifications queued up in the rbtree. the head
665  * node may also store the extent flags to set. This way you can check
666  * to see what the reference count and extent flags would be if all of
667  * the delayed refs are not processed.
668  */
669 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
670 			     struct btrfs_root *root, u64 bytenr,
671 			     u64 num_bytes, u64 *refs, u64 *flags)
672 {
673 	struct btrfs_delayed_ref_head *head;
674 	struct btrfs_delayed_ref_root *delayed_refs;
675 	struct btrfs_path *path;
676 	struct btrfs_extent_item *ei;
677 	struct extent_buffer *leaf;
678 	struct btrfs_key key;
679 	u32 item_size;
680 	u64 num_refs;
681 	u64 extent_flags;
682 	int ret;
683 
684 	path = btrfs_alloc_path();
685 	if (!path)
686 		return -ENOMEM;
687 
688 	key.objectid = bytenr;
689 	key.type = BTRFS_EXTENT_ITEM_KEY;
690 	key.offset = num_bytes;
691 	if (!trans) {
692 		path->skip_locking = 1;
693 		path->search_commit_root = 1;
694 	}
695 again:
696 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
697 				&key, path, 0, 0);
698 	if (ret < 0)
699 		goto out_free;
700 
701 	if (ret == 0) {
702 		leaf = path->nodes[0];
703 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
704 		if (item_size >= sizeof(*ei)) {
705 			ei = btrfs_item_ptr(leaf, path->slots[0],
706 					    struct btrfs_extent_item);
707 			num_refs = btrfs_extent_refs(leaf, ei);
708 			extent_flags = btrfs_extent_flags(leaf, ei);
709 		} else {
710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
711 			struct btrfs_extent_item_v0 *ei0;
712 			BUG_ON(item_size != sizeof(*ei0));
713 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
714 					     struct btrfs_extent_item_v0);
715 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
716 			/* FIXME: this isn't correct for data */
717 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
718 #else
719 			BUG();
720 #endif
721 		}
722 		BUG_ON(num_refs == 0);
723 	} else {
724 		num_refs = 0;
725 		extent_flags = 0;
726 		ret = 0;
727 	}
728 
729 	if (!trans)
730 		goto out;
731 
732 	delayed_refs = &trans->transaction->delayed_refs;
733 	spin_lock(&delayed_refs->lock);
734 	head = btrfs_find_delayed_ref_head(trans, bytenr);
735 	if (head) {
736 		if (!mutex_trylock(&head->mutex)) {
737 			atomic_inc(&head->node.refs);
738 			spin_unlock(&delayed_refs->lock);
739 
740 			btrfs_release_path(root->fs_info->extent_root, path);
741 
742 			mutex_lock(&head->mutex);
743 			mutex_unlock(&head->mutex);
744 			btrfs_put_delayed_ref(&head->node);
745 			goto again;
746 		}
747 		if (head->extent_op && head->extent_op->update_flags)
748 			extent_flags |= head->extent_op->flags_to_set;
749 		else
750 			BUG_ON(num_refs == 0);
751 
752 		num_refs += head->node.ref_mod;
753 		mutex_unlock(&head->mutex);
754 	}
755 	spin_unlock(&delayed_refs->lock);
756 out:
757 	WARN_ON(num_refs == 0);
758 	if (refs)
759 		*refs = num_refs;
760 	if (flags)
761 		*flags = extent_flags;
762 out_free:
763 	btrfs_free_path(path);
764 	return ret;
765 }
766 
767 /*
768  * Back reference rules.  Back refs have three main goals:
769  *
770  * 1) differentiate between all holders of references to an extent so that
771  *    when a reference is dropped we can make sure it was a valid reference
772  *    before freeing the extent.
773  *
774  * 2) Provide enough information to quickly find the holders of an extent
775  *    if we notice a given block is corrupted or bad.
776  *
777  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
778  *    maintenance.  This is actually the same as #2, but with a slightly
779  *    different use case.
780  *
781  * There are two kinds of back refs. The implicit back refs is optimized
782  * for pointers in non-shared tree blocks. For a given pointer in a block,
783  * back refs of this kind provide information about the block's owner tree
784  * and the pointer's key. These information allow us to find the block by
785  * b-tree searching. The full back refs is for pointers in tree blocks not
786  * referenced by their owner trees. The location of tree block is recorded
787  * in the back refs. Actually the full back refs is generic, and can be
788  * used in all cases the implicit back refs is used. The major shortcoming
789  * of the full back refs is its overhead. Every time a tree block gets
790  * COWed, we have to update back refs entry for all pointers in it.
791  *
792  * For a newly allocated tree block, we use implicit back refs for
793  * pointers in it. This means most tree related operations only involve
794  * implicit back refs. For a tree block created in old transaction, the
795  * only way to drop a reference to it is COW it. So we can detect the
796  * event that tree block loses its owner tree's reference and do the
797  * back refs conversion.
798  *
799  * When a tree block is COW'd through a tree, there are four cases:
800  *
801  * The reference count of the block is one and the tree is the block's
802  * owner tree. Nothing to do in this case.
803  *
804  * The reference count of the block is one and the tree is not the
805  * block's owner tree. In this case, full back refs is used for pointers
806  * in the block. Remove these full back refs, add implicit back refs for
807  * every pointers in the new block.
808  *
809  * The reference count of the block is greater than one and the tree is
810  * the block's owner tree. In this case, implicit back refs is used for
811  * pointers in the block. Add full back refs for every pointers in the
812  * block, increase lower level extents' reference counts. The original
813  * implicit back refs are entailed to the new block.
814  *
815  * The reference count of the block is greater than one and the tree is
816  * not the block's owner tree. Add implicit back refs for every pointer in
817  * the new block, increase lower level extents' reference count.
818  *
819  * Back Reference Key composing:
820  *
821  * The key objectid corresponds to the first byte in the extent,
822  * The key type is used to differentiate between types of back refs.
823  * There are different meanings of the key offset for different types
824  * of back refs.
825  *
826  * File extents can be referenced by:
827  *
828  * - multiple snapshots, subvolumes, or different generations in one subvol
829  * - different files inside a single subvolume
830  * - different offsets inside a file (bookend extents in file.c)
831  *
832  * The extent ref structure for the implicit back refs has fields for:
833  *
834  * - Objectid of the subvolume root
835  * - objectid of the file holding the reference
836  * - original offset in the file
837  * - how many bookend extents
838  *
839  * The key offset for the implicit back refs is hash of the first
840  * three fields.
841  *
842  * The extent ref structure for the full back refs has field for:
843  *
844  * - number of pointers in the tree leaf
845  *
846  * The key offset for the implicit back refs is the first byte of
847  * the tree leaf
848  *
849  * When a file extent is allocated, The implicit back refs is used.
850  * the fields are filled in:
851  *
852  *     (root_key.objectid, inode objectid, offset in file, 1)
853  *
854  * When a file extent is removed file truncation, we find the
855  * corresponding implicit back refs and check the following fields:
856  *
857  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
858  *
859  * Btree extents can be referenced by:
860  *
861  * - Different subvolumes
862  *
863  * Both the implicit back refs and the full back refs for tree blocks
864  * only consist of key. The key offset for the implicit back refs is
865  * objectid of block's owner tree. The key offset for the full back refs
866  * is the first byte of parent block.
867  *
868  * When implicit back refs is used, information about the lowest key and
869  * level of the tree block are required. These information are stored in
870  * tree block info structure.
871  */
872 
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
875 				  struct btrfs_root *root,
876 				  struct btrfs_path *path,
877 				  u64 owner, u32 extra_size)
878 {
879 	struct btrfs_extent_item *item;
880 	struct btrfs_extent_item_v0 *ei0;
881 	struct btrfs_extent_ref_v0 *ref0;
882 	struct btrfs_tree_block_info *bi;
883 	struct extent_buffer *leaf;
884 	struct btrfs_key key;
885 	struct btrfs_key found_key;
886 	u32 new_size = sizeof(*item);
887 	u64 refs;
888 	int ret;
889 
890 	leaf = path->nodes[0];
891 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
892 
893 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
894 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
895 			     struct btrfs_extent_item_v0);
896 	refs = btrfs_extent_refs_v0(leaf, ei0);
897 
898 	if (owner == (u64)-1) {
899 		while (1) {
900 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
901 				ret = btrfs_next_leaf(root, path);
902 				if (ret < 0)
903 					return ret;
904 				BUG_ON(ret > 0);
905 				leaf = path->nodes[0];
906 			}
907 			btrfs_item_key_to_cpu(leaf, &found_key,
908 					      path->slots[0]);
909 			BUG_ON(key.objectid != found_key.objectid);
910 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
911 				path->slots[0]++;
912 				continue;
913 			}
914 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
915 					      struct btrfs_extent_ref_v0);
916 			owner = btrfs_ref_objectid_v0(leaf, ref0);
917 			break;
918 		}
919 	}
920 	btrfs_release_path(root, path);
921 
922 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
923 		new_size += sizeof(*bi);
924 
925 	new_size -= sizeof(*ei0);
926 	ret = btrfs_search_slot(trans, root, &key, path,
927 				new_size + extra_size, 1);
928 	if (ret < 0)
929 		return ret;
930 	BUG_ON(ret);
931 
932 	ret = btrfs_extend_item(trans, root, path, new_size);
933 	BUG_ON(ret);
934 
935 	leaf = path->nodes[0];
936 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
937 	btrfs_set_extent_refs(leaf, item, refs);
938 	/* FIXME: get real generation */
939 	btrfs_set_extent_generation(leaf, item, 0);
940 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
941 		btrfs_set_extent_flags(leaf, item,
942 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
943 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
944 		bi = (struct btrfs_tree_block_info *)(item + 1);
945 		/* FIXME: get first key of the block */
946 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
947 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
948 	} else {
949 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
950 	}
951 	btrfs_mark_buffer_dirty(leaf);
952 	return 0;
953 }
954 #endif
955 
956 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
957 {
958 	u32 high_crc = ~(u32)0;
959 	u32 low_crc = ~(u32)0;
960 	__le64 lenum;
961 
962 	lenum = cpu_to_le64(root_objectid);
963 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
964 	lenum = cpu_to_le64(owner);
965 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
966 	lenum = cpu_to_le64(offset);
967 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
968 
969 	return ((u64)high_crc << 31) ^ (u64)low_crc;
970 }
971 
972 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
973 				     struct btrfs_extent_data_ref *ref)
974 {
975 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
976 				    btrfs_extent_data_ref_objectid(leaf, ref),
977 				    btrfs_extent_data_ref_offset(leaf, ref));
978 }
979 
980 static int match_extent_data_ref(struct extent_buffer *leaf,
981 				 struct btrfs_extent_data_ref *ref,
982 				 u64 root_objectid, u64 owner, u64 offset)
983 {
984 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
985 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
986 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
987 		return 0;
988 	return 1;
989 }
990 
991 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
992 					   struct btrfs_root *root,
993 					   struct btrfs_path *path,
994 					   u64 bytenr, u64 parent,
995 					   u64 root_objectid,
996 					   u64 owner, u64 offset)
997 {
998 	struct btrfs_key key;
999 	struct btrfs_extent_data_ref *ref;
1000 	struct extent_buffer *leaf;
1001 	u32 nritems;
1002 	int ret;
1003 	int recow;
1004 	int err = -ENOENT;
1005 
1006 	key.objectid = bytenr;
1007 	if (parent) {
1008 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1009 		key.offset = parent;
1010 	} else {
1011 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1012 		key.offset = hash_extent_data_ref(root_objectid,
1013 						  owner, offset);
1014 	}
1015 again:
1016 	recow = 0;
1017 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1018 	if (ret < 0) {
1019 		err = ret;
1020 		goto fail;
1021 	}
1022 
1023 	if (parent) {
1024 		if (!ret)
1025 			return 0;
1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1027 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1028 		btrfs_release_path(root, path);
1029 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1030 		if (ret < 0) {
1031 			err = ret;
1032 			goto fail;
1033 		}
1034 		if (!ret)
1035 			return 0;
1036 #endif
1037 		goto fail;
1038 	}
1039 
1040 	leaf = path->nodes[0];
1041 	nritems = btrfs_header_nritems(leaf);
1042 	while (1) {
1043 		if (path->slots[0] >= nritems) {
1044 			ret = btrfs_next_leaf(root, path);
1045 			if (ret < 0)
1046 				err = ret;
1047 			if (ret)
1048 				goto fail;
1049 
1050 			leaf = path->nodes[0];
1051 			nritems = btrfs_header_nritems(leaf);
1052 			recow = 1;
1053 		}
1054 
1055 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 		if (key.objectid != bytenr ||
1057 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1058 			goto fail;
1059 
1060 		ref = btrfs_item_ptr(leaf, path->slots[0],
1061 				     struct btrfs_extent_data_ref);
1062 
1063 		if (match_extent_data_ref(leaf, ref, root_objectid,
1064 					  owner, offset)) {
1065 			if (recow) {
1066 				btrfs_release_path(root, path);
1067 				goto again;
1068 			}
1069 			err = 0;
1070 			break;
1071 		}
1072 		path->slots[0]++;
1073 	}
1074 fail:
1075 	return err;
1076 }
1077 
1078 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1079 					   struct btrfs_root *root,
1080 					   struct btrfs_path *path,
1081 					   u64 bytenr, u64 parent,
1082 					   u64 root_objectid, u64 owner,
1083 					   u64 offset, int refs_to_add)
1084 {
1085 	struct btrfs_key key;
1086 	struct extent_buffer *leaf;
1087 	u32 size;
1088 	u32 num_refs;
1089 	int ret;
1090 
1091 	key.objectid = bytenr;
1092 	if (parent) {
1093 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1094 		key.offset = parent;
1095 		size = sizeof(struct btrfs_shared_data_ref);
1096 	} else {
1097 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1098 		key.offset = hash_extent_data_ref(root_objectid,
1099 						  owner, offset);
1100 		size = sizeof(struct btrfs_extent_data_ref);
1101 	}
1102 
1103 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1104 	if (ret && ret != -EEXIST)
1105 		goto fail;
1106 
1107 	leaf = path->nodes[0];
1108 	if (parent) {
1109 		struct btrfs_shared_data_ref *ref;
1110 		ref = btrfs_item_ptr(leaf, path->slots[0],
1111 				     struct btrfs_shared_data_ref);
1112 		if (ret == 0) {
1113 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1114 		} else {
1115 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1116 			num_refs += refs_to_add;
1117 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1118 		}
1119 	} else {
1120 		struct btrfs_extent_data_ref *ref;
1121 		while (ret == -EEXIST) {
1122 			ref = btrfs_item_ptr(leaf, path->slots[0],
1123 					     struct btrfs_extent_data_ref);
1124 			if (match_extent_data_ref(leaf, ref, root_objectid,
1125 						  owner, offset))
1126 				break;
1127 			btrfs_release_path(root, path);
1128 			key.offset++;
1129 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1130 						      size);
1131 			if (ret && ret != -EEXIST)
1132 				goto fail;
1133 
1134 			leaf = path->nodes[0];
1135 		}
1136 		ref = btrfs_item_ptr(leaf, path->slots[0],
1137 				     struct btrfs_extent_data_ref);
1138 		if (ret == 0) {
1139 			btrfs_set_extent_data_ref_root(leaf, ref,
1140 						       root_objectid);
1141 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1142 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1143 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1144 		} else {
1145 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1146 			num_refs += refs_to_add;
1147 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1148 		}
1149 	}
1150 	btrfs_mark_buffer_dirty(leaf);
1151 	ret = 0;
1152 fail:
1153 	btrfs_release_path(root, path);
1154 	return ret;
1155 }
1156 
1157 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1158 					   struct btrfs_root *root,
1159 					   struct btrfs_path *path,
1160 					   int refs_to_drop)
1161 {
1162 	struct btrfs_key key;
1163 	struct btrfs_extent_data_ref *ref1 = NULL;
1164 	struct btrfs_shared_data_ref *ref2 = NULL;
1165 	struct extent_buffer *leaf;
1166 	u32 num_refs = 0;
1167 	int ret = 0;
1168 
1169 	leaf = path->nodes[0];
1170 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1171 
1172 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1173 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1174 				      struct btrfs_extent_data_ref);
1175 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1176 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1177 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1178 				      struct btrfs_shared_data_ref);
1179 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1181 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1182 		struct btrfs_extent_ref_v0 *ref0;
1183 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1184 				      struct btrfs_extent_ref_v0);
1185 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1186 #endif
1187 	} else {
1188 		BUG();
1189 	}
1190 
1191 	BUG_ON(num_refs < refs_to_drop);
1192 	num_refs -= refs_to_drop;
1193 
1194 	if (num_refs == 0) {
1195 		ret = btrfs_del_item(trans, root, path);
1196 	} else {
1197 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1198 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1199 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1200 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 		else {
1203 			struct btrfs_extent_ref_v0 *ref0;
1204 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 					struct btrfs_extent_ref_v0);
1206 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1207 		}
1208 #endif
1209 		btrfs_mark_buffer_dirty(leaf);
1210 	}
1211 	return ret;
1212 }
1213 
1214 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1215 					  struct btrfs_path *path,
1216 					  struct btrfs_extent_inline_ref *iref)
1217 {
1218 	struct btrfs_key key;
1219 	struct extent_buffer *leaf;
1220 	struct btrfs_extent_data_ref *ref1;
1221 	struct btrfs_shared_data_ref *ref2;
1222 	u32 num_refs = 0;
1223 
1224 	leaf = path->nodes[0];
1225 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1226 	if (iref) {
1227 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1228 		    BTRFS_EXTENT_DATA_REF_KEY) {
1229 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1230 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1231 		} else {
1232 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1233 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1234 		}
1235 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1236 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1237 				      struct btrfs_extent_data_ref);
1238 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1239 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1240 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1241 				      struct btrfs_shared_data_ref);
1242 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1245 		struct btrfs_extent_ref_v0 *ref0;
1246 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1247 				      struct btrfs_extent_ref_v0);
1248 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1249 #endif
1250 	} else {
1251 		WARN_ON(1);
1252 	}
1253 	return num_refs;
1254 }
1255 
1256 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1257 					  struct btrfs_root *root,
1258 					  struct btrfs_path *path,
1259 					  u64 bytenr, u64 parent,
1260 					  u64 root_objectid)
1261 {
1262 	struct btrfs_key key;
1263 	int ret;
1264 
1265 	key.objectid = bytenr;
1266 	if (parent) {
1267 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1268 		key.offset = parent;
1269 	} else {
1270 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1271 		key.offset = root_objectid;
1272 	}
1273 
1274 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1275 	if (ret > 0)
1276 		ret = -ENOENT;
1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1278 	if (ret == -ENOENT && parent) {
1279 		btrfs_release_path(root, path);
1280 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1281 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1282 		if (ret > 0)
1283 			ret = -ENOENT;
1284 	}
1285 #endif
1286 	return ret;
1287 }
1288 
1289 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1290 					  struct btrfs_root *root,
1291 					  struct btrfs_path *path,
1292 					  u64 bytenr, u64 parent,
1293 					  u64 root_objectid)
1294 {
1295 	struct btrfs_key key;
1296 	int ret;
1297 
1298 	key.objectid = bytenr;
1299 	if (parent) {
1300 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1301 		key.offset = parent;
1302 	} else {
1303 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1304 		key.offset = root_objectid;
1305 	}
1306 
1307 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1308 	btrfs_release_path(root, path);
1309 	return ret;
1310 }
1311 
1312 static inline int extent_ref_type(u64 parent, u64 owner)
1313 {
1314 	int type;
1315 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1316 		if (parent > 0)
1317 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1318 		else
1319 			type = BTRFS_TREE_BLOCK_REF_KEY;
1320 	} else {
1321 		if (parent > 0)
1322 			type = BTRFS_SHARED_DATA_REF_KEY;
1323 		else
1324 			type = BTRFS_EXTENT_DATA_REF_KEY;
1325 	}
1326 	return type;
1327 }
1328 
1329 static int find_next_key(struct btrfs_path *path, int level,
1330 			 struct btrfs_key *key)
1331 
1332 {
1333 	for (; level < BTRFS_MAX_LEVEL; level++) {
1334 		if (!path->nodes[level])
1335 			break;
1336 		if (path->slots[level] + 1 >=
1337 		    btrfs_header_nritems(path->nodes[level]))
1338 			continue;
1339 		if (level == 0)
1340 			btrfs_item_key_to_cpu(path->nodes[level], key,
1341 					      path->slots[level] + 1);
1342 		else
1343 			btrfs_node_key_to_cpu(path->nodes[level], key,
1344 					      path->slots[level] + 1);
1345 		return 0;
1346 	}
1347 	return 1;
1348 }
1349 
1350 /*
1351  * look for inline back ref. if back ref is found, *ref_ret is set
1352  * to the address of inline back ref, and 0 is returned.
1353  *
1354  * if back ref isn't found, *ref_ret is set to the address where it
1355  * should be inserted, and -ENOENT is returned.
1356  *
1357  * if insert is true and there are too many inline back refs, the path
1358  * points to the extent item, and -EAGAIN is returned.
1359  *
1360  * NOTE: inline back refs are ordered in the same way that back ref
1361  *	 items in the tree are ordered.
1362  */
1363 static noinline_for_stack
1364 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1365 				 struct btrfs_root *root,
1366 				 struct btrfs_path *path,
1367 				 struct btrfs_extent_inline_ref **ref_ret,
1368 				 u64 bytenr, u64 num_bytes,
1369 				 u64 parent, u64 root_objectid,
1370 				 u64 owner, u64 offset, int insert)
1371 {
1372 	struct btrfs_key key;
1373 	struct extent_buffer *leaf;
1374 	struct btrfs_extent_item *ei;
1375 	struct btrfs_extent_inline_ref *iref;
1376 	u64 flags;
1377 	u64 item_size;
1378 	unsigned long ptr;
1379 	unsigned long end;
1380 	int extra_size;
1381 	int type;
1382 	int want;
1383 	int ret;
1384 	int err = 0;
1385 
1386 	key.objectid = bytenr;
1387 	key.type = BTRFS_EXTENT_ITEM_KEY;
1388 	key.offset = num_bytes;
1389 
1390 	want = extent_ref_type(parent, owner);
1391 	if (insert) {
1392 		extra_size = btrfs_extent_inline_ref_size(want);
1393 		path->keep_locks = 1;
1394 	} else
1395 		extra_size = -1;
1396 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1397 	if (ret < 0) {
1398 		err = ret;
1399 		goto out;
1400 	}
1401 	BUG_ON(ret);
1402 
1403 	leaf = path->nodes[0];
1404 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 	if (item_size < sizeof(*ei)) {
1407 		if (!insert) {
1408 			err = -ENOENT;
1409 			goto out;
1410 		}
1411 		ret = convert_extent_item_v0(trans, root, path, owner,
1412 					     extra_size);
1413 		if (ret < 0) {
1414 			err = ret;
1415 			goto out;
1416 		}
1417 		leaf = path->nodes[0];
1418 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1419 	}
1420 #endif
1421 	BUG_ON(item_size < sizeof(*ei));
1422 
1423 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1424 	flags = btrfs_extent_flags(leaf, ei);
1425 
1426 	ptr = (unsigned long)(ei + 1);
1427 	end = (unsigned long)ei + item_size;
1428 
1429 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1430 		ptr += sizeof(struct btrfs_tree_block_info);
1431 		BUG_ON(ptr > end);
1432 	} else {
1433 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1434 	}
1435 
1436 	err = -ENOENT;
1437 	while (1) {
1438 		if (ptr >= end) {
1439 			WARN_ON(ptr > end);
1440 			break;
1441 		}
1442 		iref = (struct btrfs_extent_inline_ref *)ptr;
1443 		type = btrfs_extent_inline_ref_type(leaf, iref);
1444 		if (want < type)
1445 			break;
1446 		if (want > type) {
1447 			ptr += btrfs_extent_inline_ref_size(type);
1448 			continue;
1449 		}
1450 
1451 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1452 			struct btrfs_extent_data_ref *dref;
1453 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1454 			if (match_extent_data_ref(leaf, dref, root_objectid,
1455 						  owner, offset)) {
1456 				err = 0;
1457 				break;
1458 			}
1459 			if (hash_extent_data_ref_item(leaf, dref) <
1460 			    hash_extent_data_ref(root_objectid, owner, offset))
1461 				break;
1462 		} else {
1463 			u64 ref_offset;
1464 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1465 			if (parent > 0) {
1466 				if (parent == ref_offset) {
1467 					err = 0;
1468 					break;
1469 				}
1470 				if (ref_offset < parent)
1471 					break;
1472 			} else {
1473 				if (root_objectid == ref_offset) {
1474 					err = 0;
1475 					break;
1476 				}
1477 				if (ref_offset < root_objectid)
1478 					break;
1479 			}
1480 		}
1481 		ptr += btrfs_extent_inline_ref_size(type);
1482 	}
1483 	if (err == -ENOENT && insert) {
1484 		if (item_size + extra_size >=
1485 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1486 			err = -EAGAIN;
1487 			goto out;
1488 		}
1489 		/*
1490 		 * To add new inline back ref, we have to make sure
1491 		 * there is no corresponding back ref item.
1492 		 * For simplicity, we just do not add new inline back
1493 		 * ref if there is any kind of item for this block
1494 		 */
1495 		if (find_next_key(path, 0, &key) == 0 &&
1496 		    key.objectid == bytenr &&
1497 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1498 			err = -EAGAIN;
1499 			goto out;
1500 		}
1501 	}
1502 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1503 out:
1504 	if (insert) {
1505 		path->keep_locks = 0;
1506 		btrfs_unlock_up_safe(path, 1);
1507 	}
1508 	return err;
1509 }
1510 
1511 /*
1512  * helper to add new inline back ref
1513  */
1514 static noinline_for_stack
1515 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1516 				struct btrfs_root *root,
1517 				struct btrfs_path *path,
1518 				struct btrfs_extent_inline_ref *iref,
1519 				u64 parent, u64 root_objectid,
1520 				u64 owner, u64 offset, int refs_to_add,
1521 				struct btrfs_delayed_extent_op *extent_op)
1522 {
1523 	struct extent_buffer *leaf;
1524 	struct btrfs_extent_item *ei;
1525 	unsigned long ptr;
1526 	unsigned long end;
1527 	unsigned long item_offset;
1528 	u64 refs;
1529 	int size;
1530 	int type;
1531 	int ret;
1532 
1533 	leaf = path->nodes[0];
1534 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1535 	item_offset = (unsigned long)iref - (unsigned long)ei;
1536 
1537 	type = extent_ref_type(parent, owner);
1538 	size = btrfs_extent_inline_ref_size(type);
1539 
1540 	ret = btrfs_extend_item(trans, root, path, size);
1541 	BUG_ON(ret);
1542 
1543 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1544 	refs = btrfs_extent_refs(leaf, ei);
1545 	refs += refs_to_add;
1546 	btrfs_set_extent_refs(leaf, ei, refs);
1547 	if (extent_op)
1548 		__run_delayed_extent_op(extent_op, leaf, ei);
1549 
1550 	ptr = (unsigned long)ei + item_offset;
1551 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1552 	if (ptr < end - size)
1553 		memmove_extent_buffer(leaf, ptr + size, ptr,
1554 				      end - size - ptr);
1555 
1556 	iref = (struct btrfs_extent_inline_ref *)ptr;
1557 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1558 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1559 		struct btrfs_extent_data_ref *dref;
1560 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1561 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1562 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1563 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1564 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1565 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1566 		struct btrfs_shared_data_ref *sref;
1567 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1568 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1569 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1570 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1571 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1572 	} else {
1573 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1574 	}
1575 	btrfs_mark_buffer_dirty(leaf);
1576 	return 0;
1577 }
1578 
1579 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1580 				 struct btrfs_root *root,
1581 				 struct btrfs_path *path,
1582 				 struct btrfs_extent_inline_ref **ref_ret,
1583 				 u64 bytenr, u64 num_bytes, u64 parent,
1584 				 u64 root_objectid, u64 owner, u64 offset)
1585 {
1586 	int ret;
1587 
1588 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1589 					   bytenr, num_bytes, parent,
1590 					   root_objectid, owner, offset, 0);
1591 	if (ret != -ENOENT)
1592 		return ret;
1593 
1594 	btrfs_release_path(root, path);
1595 	*ref_ret = NULL;
1596 
1597 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1598 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1599 					    root_objectid);
1600 	} else {
1601 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1602 					     root_objectid, owner, offset);
1603 	}
1604 	return ret;
1605 }
1606 
1607 /*
1608  * helper to update/remove inline back ref
1609  */
1610 static noinline_for_stack
1611 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1612 				 struct btrfs_root *root,
1613 				 struct btrfs_path *path,
1614 				 struct btrfs_extent_inline_ref *iref,
1615 				 int refs_to_mod,
1616 				 struct btrfs_delayed_extent_op *extent_op)
1617 {
1618 	struct extent_buffer *leaf;
1619 	struct btrfs_extent_item *ei;
1620 	struct btrfs_extent_data_ref *dref = NULL;
1621 	struct btrfs_shared_data_ref *sref = NULL;
1622 	unsigned long ptr;
1623 	unsigned long end;
1624 	u32 item_size;
1625 	int size;
1626 	int type;
1627 	int ret;
1628 	u64 refs;
1629 
1630 	leaf = path->nodes[0];
1631 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1632 	refs = btrfs_extent_refs(leaf, ei);
1633 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1634 	refs += refs_to_mod;
1635 	btrfs_set_extent_refs(leaf, ei, refs);
1636 	if (extent_op)
1637 		__run_delayed_extent_op(extent_op, leaf, ei);
1638 
1639 	type = btrfs_extent_inline_ref_type(leaf, iref);
1640 
1641 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1643 		refs = btrfs_extent_data_ref_count(leaf, dref);
1644 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 		refs = btrfs_shared_data_ref_count(leaf, sref);
1647 	} else {
1648 		refs = 1;
1649 		BUG_ON(refs_to_mod != -1);
1650 	}
1651 
1652 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1653 	refs += refs_to_mod;
1654 
1655 	if (refs > 0) {
1656 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1657 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1658 		else
1659 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1660 	} else {
1661 		size =  btrfs_extent_inline_ref_size(type);
1662 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1663 		ptr = (unsigned long)iref;
1664 		end = (unsigned long)ei + item_size;
1665 		if (ptr + size < end)
1666 			memmove_extent_buffer(leaf, ptr, ptr + size,
1667 					      end - ptr - size);
1668 		item_size -= size;
1669 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1670 		BUG_ON(ret);
1671 	}
1672 	btrfs_mark_buffer_dirty(leaf);
1673 	return 0;
1674 }
1675 
1676 static noinline_for_stack
1677 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 				 struct btrfs_root *root,
1679 				 struct btrfs_path *path,
1680 				 u64 bytenr, u64 num_bytes, u64 parent,
1681 				 u64 root_objectid, u64 owner,
1682 				 u64 offset, int refs_to_add,
1683 				 struct btrfs_delayed_extent_op *extent_op)
1684 {
1685 	struct btrfs_extent_inline_ref *iref;
1686 	int ret;
1687 
1688 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1689 					   bytenr, num_bytes, parent,
1690 					   root_objectid, owner, offset, 1);
1691 	if (ret == 0) {
1692 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1693 		ret = update_inline_extent_backref(trans, root, path, iref,
1694 						   refs_to_add, extent_op);
1695 	} else if (ret == -ENOENT) {
1696 		ret = setup_inline_extent_backref(trans, root, path, iref,
1697 						  parent, root_objectid,
1698 						  owner, offset, refs_to_add,
1699 						  extent_op);
1700 	}
1701 	return ret;
1702 }
1703 
1704 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1705 				 struct btrfs_root *root,
1706 				 struct btrfs_path *path,
1707 				 u64 bytenr, u64 parent, u64 root_objectid,
1708 				 u64 owner, u64 offset, int refs_to_add)
1709 {
1710 	int ret;
1711 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1712 		BUG_ON(refs_to_add != 1);
1713 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1714 					    parent, root_objectid);
1715 	} else {
1716 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1717 					     parent, root_objectid,
1718 					     owner, offset, refs_to_add);
1719 	}
1720 	return ret;
1721 }
1722 
1723 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref *iref,
1727 				 int refs_to_drop, int is_data)
1728 {
1729 	int ret;
1730 
1731 	BUG_ON(!is_data && refs_to_drop != 1);
1732 	if (iref) {
1733 		ret = update_inline_extent_backref(trans, root, path, iref,
1734 						   -refs_to_drop, NULL);
1735 	} else if (is_data) {
1736 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1737 	} else {
1738 		ret = btrfs_del_item(trans, root, path);
1739 	}
1740 	return ret;
1741 }
1742 
1743 static void btrfs_issue_discard(struct block_device *bdev,
1744 				u64 start, u64 len)
1745 {
1746 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1747 }
1748 
1749 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1750 				u64 num_bytes)
1751 {
1752 	int ret;
1753 	u64 map_length = num_bytes;
1754 	struct btrfs_multi_bio *multi = NULL;
1755 
1756 	if (!btrfs_test_opt(root, DISCARD))
1757 		return 0;
1758 
1759 	/* Tell the block device(s) that the sectors can be discarded */
1760 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1761 			      bytenr, &map_length, &multi, 0);
1762 	if (!ret) {
1763 		struct btrfs_bio_stripe *stripe = multi->stripes;
1764 		int i;
1765 
1766 		if (map_length > num_bytes)
1767 			map_length = num_bytes;
1768 
1769 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1770 			btrfs_issue_discard(stripe->dev->bdev,
1771 					    stripe->physical,
1772 					    map_length);
1773 		}
1774 		kfree(multi);
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1781 			 struct btrfs_root *root,
1782 			 u64 bytenr, u64 num_bytes, u64 parent,
1783 			 u64 root_objectid, u64 owner, u64 offset)
1784 {
1785 	int ret;
1786 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1787 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1788 
1789 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1791 					parent, root_objectid, (int)owner,
1792 					BTRFS_ADD_DELAYED_REF, NULL);
1793 	} else {
1794 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1795 					parent, root_objectid, owner, offset,
1796 					BTRFS_ADD_DELAYED_REF, NULL);
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1802 				  struct btrfs_root *root,
1803 				  u64 bytenr, u64 num_bytes,
1804 				  u64 parent, u64 root_objectid,
1805 				  u64 owner, u64 offset, int refs_to_add,
1806 				  struct btrfs_delayed_extent_op *extent_op)
1807 {
1808 	struct btrfs_path *path;
1809 	struct extent_buffer *leaf;
1810 	struct btrfs_extent_item *item;
1811 	u64 refs;
1812 	int ret;
1813 	int err = 0;
1814 
1815 	path = btrfs_alloc_path();
1816 	if (!path)
1817 		return -ENOMEM;
1818 
1819 	path->reada = 1;
1820 	path->leave_spinning = 1;
1821 	/* this will setup the path even if it fails to insert the back ref */
1822 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1823 					   path, bytenr, num_bytes, parent,
1824 					   root_objectid, owner, offset,
1825 					   refs_to_add, extent_op);
1826 	if (ret == 0)
1827 		goto out;
1828 
1829 	if (ret != -EAGAIN) {
1830 		err = ret;
1831 		goto out;
1832 	}
1833 
1834 	leaf = path->nodes[0];
1835 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 	refs = btrfs_extent_refs(leaf, item);
1837 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1838 	if (extent_op)
1839 		__run_delayed_extent_op(extent_op, leaf, item);
1840 
1841 	btrfs_mark_buffer_dirty(leaf);
1842 	btrfs_release_path(root->fs_info->extent_root, path);
1843 
1844 	path->reada = 1;
1845 	path->leave_spinning = 1;
1846 
1847 	/* now insert the actual backref */
1848 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1849 				    path, bytenr, parent, root_objectid,
1850 				    owner, offset, refs_to_add);
1851 	BUG_ON(ret);
1852 out:
1853 	btrfs_free_path(path);
1854 	return err;
1855 }
1856 
1857 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1858 				struct btrfs_root *root,
1859 				struct btrfs_delayed_ref_node *node,
1860 				struct btrfs_delayed_extent_op *extent_op,
1861 				int insert_reserved)
1862 {
1863 	int ret = 0;
1864 	struct btrfs_delayed_data_ref *ref;
1865 	struct btrfs_key ins;
1866 	u64 parent = 0;
1867 	u64 ref_root = 0;
1868 	u64 flags = 0;
1869 
1870 	ins.objectid = node->bytenr;
1871 	ins.offset = node->num_bytes;
1872 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1873 
1874 	ref = btrfs_delayed_node_to_data_ref(node);
1875 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1876 		parent = ref->parent;
1877 	else
1878 		ref_root = ref->root;
1879 
1880 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1881 		if (extent_op) {
1882 			BUG_ON(extent_op->update_key);
1883 			flags |= extent_op->flags_to_set;
1884 		}
1885 		ret = alloc_reserved_file_extent(trans, root,
1886 						 parent, ref_root, flags,
1887 						 ref->objectid, ref->offset,
1888 						 &ins, node->ref_mod);
1889 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1890 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1891 					     node->num_bytes, parent,
1892 					     ref_root, ref->objectid,
1893 					     ref->offset, node->ref_mod,
1894 					     extent_op);
1895 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1896 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1897 					  node->num_bytes, parent,
1898 					  ref_root, ref->objectid,
1899 					  ref->offset, node->ref_mod,
1900 					  extent_op);
1901 	} else {
1902 		BUG();
1903 	}
1904 	return ret;
1905 }
1906 
1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1908 				    struct extent_buffer *leaf,
1909 				    struct btrfs_extent_item *ei)
1910 {
1911 	u64 flags = btrfs_extent_flags(leaf, ei);
1912 	if (extent_op->update_flags) {
1913 		flags |= extent_op->flags_to_set;
1914 		btrfs_set_extent_flags(leaf, ei, flags);
1915 	}
1916 
1917 	if (extent_op->update_key) {
1918 		struct btrfs_tree_block_info *bi;
1919 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1920 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1921 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1922 	}
1923 }
1924 
1925 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1926 				 struct btrfs_root *root,
1927 				 struct btrfs_delayed_ref_node *node,
1928 				 struct btrfs_delayed_extent_op *extent_op)
1929 {
1930 	struct btrfs_key key;
1931 	struct btrfs_path *path;
1932 	struct btrfs_extent_item *ei;
1933 	struct extent_buffer *leaf;
1934 	u32 item_size;
1935 	int ret;
1936 	int err = 0;
1937 
1938 	path = btrfs_alloc_path();
1939 	if (!path)
1940 		return -ENOMEM;
1941 
1942 	key.objectid = node->bytenr;
1943 	key.type = BTRFS_EXTENT_ITEM_KEY;
1944 	key.offset = node->num_bytes;
1945 
1946 	path->reada = 1;
1947 	path->leave_spinning = 1;
1948 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1949 				path, 0, 1);
1950 	if (ret < 0) {
1951 		err = ret;
1952 		goto out;
1953 	}
1954 	if (ret > 0) {
1955 		err = -EIO;
1956 		goto out;
1957 	}
1958 
1959 	leaf = path->nodes[0];
1960 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1962 	if (item_size < sizeof(*ei)) {
1963 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1964 					     path, (u64)-1, 0);
1965 		if (ret < 0) {
1966 			err = ret;
1967 			goto out;
1968 		}
1969 		leaf = path->nodes[0];
1970 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 	}
1972 #endif
1973 	BUG_ON(item_size < sizeof(*ei));
1974 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1975 	__run_delayed_extent_op(extent_op, leaf, ei);
1976 
1977 	btrfs_mark_buffer_dirty(leaf);
1978 out:
1979 	btrfs_free_path(path);
1980 	return err;
1981 }
1982 
1983 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1984 				struct btrfs_root *root,
1985 				struct btrfs_delayed_ref_node *node,
1986 				struct btrfs_delayed_extent_op *extent_op,
1987 				int insert_reserved)
1988 {
1989 	int ret = 0;
1990 	struct btrfs_delayed_tree_ref *ref;
1991 	struct btrfs_key ins;
1992 	u64 parent = 0;
1993 	u64 ref_root = 0;
1994 
1995 	ins.objectid = node->bytenr;
1996 	ins.offset = node->num_bytes;
1997 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1998 
1999 	ref = btrfs_delayed_node_to_tree_ref(node);
2000 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2001 		parent = ref->parent;
2002 	else
2003 		ref_root = ref->root;
2004 
2005 	BUG_ON(node->ref_mod != 1);
2006 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2007 		BUG_ON(!extent_op || !extent_op->update_flags ||
2008 		       !extent_op->update_key);
2009 		ret = alloc_reserved_tree_block(trans, root,
2010 						parent, ref_root,
2011 						extent_op->flags_to_set,
2012 						&extent_op->key,
2013 						ref->level, &ins);
2014 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2015 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2016 					     node->num_bytes, parent, ref_root,
2017 					     ref->level, 0, 1, extent_op);
2018 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2019 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2020 					  node->num_bytes, parent, ref_root,
2021 					  ref->level, 0, 1, extent_op);
2022 	} else {
2023 		BUG();
2024 	}
2025 	return ret;
2026 }
2027 
2028 /* helper function to actually process a single delayed ref entry */
2029 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2030 			       struct btrfs_root *root,
2031 			       struct btrfs_delayed_ref_node *node,
2032 			       struct btrfs_delayed_extent_op *extent_op,
2033 			       int insert_reserved)
2034 {
2035 	int ret;
2036 	if (btrfs_delayed_ref_is_head(node)) {
2037 		struct btrfs_delayed_ref_head *head;
2038 		/*
2039 		 * we've hit the end of the chain and we were supposed
2040 		 * to insert this extent into the tree.  But, it got
2041 		 * deleted before we ever needed to insert it, so all
2042 		 * we have to do is clean up the accounting
2043 		 */
2044 		BUG_ON(extent_op);
2045 		head = btrfs_delayed_node_to_head(node);
2046 		if (insert_reserved) {
2047 			btrfs_pin_extent(root, node->bytenr,
2048 					 node->num_bytes, 1);
2049 			if (head->is_data) {
2050 				ret = btrfs_del_csums(trans, root,
2051 						      node->bytenr,
2052 						      node->num_bytes);
2053 				BUG_ON(ret);
2054 			}
2055 		}
2056 		mutex_unlock(&head->mutex);
2057 		return 0;
2058 	}
2059 
2060 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2061 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2062 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2063 					   insert_reserved);
2064 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2065 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2066 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2067 					   insert_reserved);
2068 	else
2069 		BUG();
2070 	return ret;
2071 }
2072 
2073 static noinline struct btrfs_delayed_ref_node *
2074 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2075 {
2076 	struct rb_node *node;
2077 	struct btrfs_delayed_ref_node *ref;
2078 	int action = BTRFS_ADD_DELAYED_REF;
2079 again:
2080 	/*
2081 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2082 	 * this prevents ref count from going down to zero when
2083 	 * there still are pending delayed ref.
2084 	 */
2085 	node = rb_prev(&head->node.rb_node);
2086 	while (1) {
2087 		if (!node)
2088 			break;
2089 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2090 				rb_node);
2091 		if (ref->bytenr != head->node.bytenr)
2092 			break;
2093 		if (ref->action == action)
2094 			return ref;
2095 		node = rb_prev(node);
2096 	}
2097 	if (action == BTRFS_ADD_DELAYED_REF) {
2098 		action = BTRFS_DROP_DELAYED_REF;
2099 		goto again;
2100 	}
2101 	return NULL;
2102 }
2103 
2104 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2105 				       struct btrfs_root *root,
2106 				       struct list_head *cluster)
2107 {
2108 	struct btrfs_delayed_ref_root *delayed_refs;
2109 	struct btrfs_delayed_ref_node *ref;
2110 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2111 	struct btrfs_delayed_extent_op *extent_op;
2112 	int ret;
2113 	int count = 0;
2114 	int must_insert_reserved = 0;
2115 
2116 	delayed_refs = &trans->transaction->delayed_refs;
2117 	while (1) {
2118 		if (!locked_ref) {
2119 			/* pick a new head ref from the cluster list */
2120 			if (list_empty(cluster))
2121 				break;
2122 
2123 			locked_ref = list_entry(cluster->next,
2124 				     struct btrfs_delayed_ref_head, cluster);
2125 
2126 			/* grab the lock that says we are going to process
2127 			 * all the refs for this head */
2128 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2129 
2130 			/*
2131 			 * we may have dropped the spin lock to get the head
2132 			 * mutex lock, and that might have given someone else
2133 			 * time to free the head.  If that's true, it has been
2134 			 * removed from our list and we can move on.
2135 			 */
2136 			if (ret == -EAGAIN) {
2137 				locked_ref = NULL;
2138 				count++;
2139 				continue;
2140 			}
2141 		}
2142 
2143 		/*
2144 		 * record the must insert reserved flag before we
2145 		 * drop the spin lock.
2146 		 */
2147 		must_insert_reserved = locked_ref->must_insert_reserved;
2148 		locked_ref->must_insert_reserved = 0;
2149 
2150 		extent_op = locked_ref->extent_op;
2151 		locked_ref->extent_op = NULL;
2152 
2153 		/*
2154 		 * locked_ref is the head node, so we have to go one
2155 		 * node back for any delayed ref updates
2156 		 */
2157 		ref = select_delayed_ref(locked_ref);
2158 		if (!ref) {
2159 			/* All delayed refs have been processed, Go ahead
2160 			 * and send the head node to run_one_delayed_ref,
2161 			 * so that any accounting fixes can happen
2162 			 */
2163 			ref = &locked_ref->node;
2164 
2165 			if (extent_op && must_insert_reserved) {
2166 				kfree(extent_op);
2167 				extent_op = NULL;
2168 			}
2169 
2170 			if (extent_op) {
2171 				spin_unlock(&delayed_refs->lock);
2172 
2173 				ret = run_delayed_extent_op(trans, root,
2174 							    ref, extent_op);
2175 				BUG_ON(ret);
2176 				kfree(extent_op);
2177 
2178 				cond_resched();
2179 				spin_lock(&delayed_refs->lock);
2180 				continue;
2181 			}
2182 
2183 			list_del_init(&locked_ref->cluster);
2184 			locked_ref = NULL;
2185 		}
2186 
2187 		ref->in_tree = 0;
2188 		rb_erase(&ref->rb_node, &delayed_refs->root);
2189 		delayed_refs->num_entries--;
2190 
2191 		spin_unlock(&delayed_refs->lock);
2192 
2193 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2194 					  must_insert_reserved);
2195 		BUG_ON(ret);
2196 
2197 		btrfs_put_delayed_ref(ref);
2198 		kfree(extent_op);
2199 		count++;
2200 
2201 		cond_resched();
2202 		spin_lock(&delayed_refs->lock);
2203 	}
2204 	return count;
2205 }
2206 
2207 /*
2208  * this starts processing the delayed reference count updates and
2209  * extent insertions we have queued up so far.  count can be
2210  * 0, which means to process everything in the tree at the start
2211  * of the run (but not newly added entries), or it can be some target
2212  * number you'd like to process.
2213  */
2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2215 			   struct btrfs_root *root, unsigned long count)
2216 {
2217 	struct rb_node *node;
2218 	struct btrfs_delayed_ref_root *delayed_refs;
2219 	struct btrfs_delayed_ref_node *ref;
2220 	struct list_head cluster;
2221 	int ret;
2222 	int run_all = count == (unsigned long)-1;
2223 	int run_most = 0;
2224 
2225 	if (root == root->fs_info->extent_root)
2226 		root = root->fs_info->tree_root;
2227 
2228 	delayed_refs = &trans->transaction->delayed_refs;
2229 	INIT_LIST_HEAD(&cluster);
2230 again:
2231 	spin_lock(&delayed_refs->lock);
2232 	if (count == 0) {
2233 		count = delayed_refs->num_entries * 2;
2234 		run_most = 1;
2235 	}
2236 	while (1) {
2237 		if (!(run_all || run_most) &&
2238 		    delayed_refs->num_heads_ready < 64)
2239 			break;
2240 
2241 		/*
2242 		 * go find something we can process in the rbtree.  We start at
2243 		 * the beginning of the tree, and then build a cluster
2244 		 * of refs to process starting at the first one we are able to
2245 		 * lock
2246 		 */
2247 		ret = btrfs_find_ref_cluster(trans, &cluster,
2248 					     delayed_refs->run_delayed_start);
2249 		if (ret)
2250 			break;
2251 
2252 		ret = run_clustered_refs(trans, root, &cluster);
2253 		BUG_ON(ret < 0);
2254 
2255 		count -= min_t(unsigned long, ret, count);
2256 
2257 		if (count == 0)
2258 			break;
2259 	}
2260 
2261 	if (run_all) {
2262 		node = rb_first(&delayed_refs->root);
2263 		if (!node)
2264 			goto out;
2265 		count = (unsigned long)-1;
2266 
2267 		while (node) {
2268 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2269 				       rb_node);
2270 			if (btrfs_delayed_ref_is_head(ref)) {
2271 				struct btrfs_delayed_ref_head *head;
2272 
2273 				head = btrfs_delayed_node_to_head(ref);
2274 				atomic_inc(&ref->refs);
2275 
2276 				spin_unlock(&delayed_refs->lock);
2277 				mutex_lock(&head->mutex);
2278 				mutex_unlock(&head->mutex);
2279 
2280 				btrfs_put_delayed_ref(ref);
2281 				cond_resched();
2282 				goto again;
2283 			}
2284 			node = rb_next(node);
2285 		}
2286 		spin_unlock(&delayed_refs->lock);
2287 		schedule_timeout(1);
2288 		goto again;
2289 	}
2290 out:
2291 	spin_unlock(&delayed_refs->lock);
2292 	return 0;
2293 }
2294 
2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2296 				struct btrfs_root *root,
2297 				u64 bytenr, u64 num_bytes, u64 flags,
2298 				int is_data)
2299 {
2300 	struct btrfs_delayed_extent_op *extent_op;
2301 	int ret;
2302 
2303 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2304 	if (!extent_op)
2305 		return -ENOMEM;
2306 
2307 	extent_op->flags_to_set = flags;
2308 	extent_op->update_flags = 1;
2309 	extent_op->update_key = 0;
2310 	extent_op->is_data = is_data ? 1 : 0;
2311 
2312 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2313 	if (ret)
2314 		kfree(extent_op);
2315 	return ret;
2316 }
2317 
2318 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2319 				      struct btrfs_root *root,
2320 				      struct btrfs_path *path,
2321 				      u64 objectid, u64 offset, u64 bytenr)
2322 {
2323 	struct btrfs_delayed_ref_head *head;
2324 	struct btrfs_delayed_ref_node *ref;
2325 	struct btrfs_delayed_data_ref *data_ref;
2326 	struct btrfs_delayed_ref_root *delayed_refs;
2327 	struct rb_node *node;
2328 	int ret = 0;
2329 
2330 	ret = -ENOENT;
2331 	delayed_refs = &trans->transaction->delayed_refs;
2332 	spin_lock(&delayed_refs->lock);
2333 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2334 	if (!head)
2335 		goto out;
2336 
2337 	if (!mutex_trylock(&head->mutex)) {
2338 		atomic_inc(&head->node.refs);
2339 		spin_unlock(&delayed_refs->lock);
2340 
2341 		btrfs_release_path(root->fs_info->extent_root, path);
2342 
2343 		mutex_lock(&head->mutex);
2344 		mutex_unlock(&head->mutex);
2345 		btrfs_put_delayed_ref(&head->node);
2346 		return -EAGAIN;
2347 	}
2348 
2349 	node = rb_prev(&head->node.rb_node);
2350 	if (!node)
2351 		goto out_unlock;
2352 
2353 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2354 
2355 	if (ref->bytenr != bytenr)
2356 		goto out_unlock;
2357 
2358 	ret = 1;
2359 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2360 		goto out_unlock;
2361 
2362 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2363 
2364 	node = rb_prev(node);
2365 	if (node) {
2366 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2367 		if (ref->bytenr == bytenr)
2368 			goto out_unlock;
2369 	}
2370 
2371 	if (data_ref->root != root->root_key.objectid ||
2372 	    data_ref->objectid != objectid || data_ref->offset != offset)
2373 		goto out_unlock;
2374 
2375 	ret = 0;
2376 out_unlock:
2377 	mutex_unlock(&head->mutex);
2378 out:
2379 	spin_unlock(&delayed_refs->lock);
2380 	return ret;
2381 }
2382 
2383 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2384 					struct btrfs_root *root,
2385 					struct btrfs_path *path,
2386 					u64 objectid, u64 offset, u64 bytenr)
2387 {
2388 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2389 	struct extent_buffer *leaf;
2390 	struct btrfs_extent_data_ref *ref;
2391 	struct btrfs_extent_inline_ref *iref;
2392 	struct btrfs_extent_item *ei;
2393 	struct btrfs_key key;
2394 	u32 item_size;
2395 	int ret;
2396 
2397 	key.objectid = bytenr;
2398 	key.offset = (u64)-1;
2399 	key.type = BTRFS_EXTENT_ITEM_KEY;
2400 
2401 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2402 	if (ret < 0)
2403 		goto out;
2404 	BUG_ON(ret == 0);
2405 
2406 	ret = -ENOENT;
2407 	if (path->slots[0] == 0)
2408 		goto out;
2409 
2410 	path->slots[0]--;
2411 	leaf = path->nodes[0];
2412 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2413 
2414 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2415 		goto out;
2416 
2417 	ret = 1;
2418 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 	if (item_size < sizeof(*ei)) {
2421 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2422 		goto out;
2423 	}
2424 #endif
2425 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2426 
2427 	if (item_size != sizeof(*ei) +
2428 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2429 		goto out;
2430 
2431 	if (btrfs_extent_generation(leaf, ei) <=
2432 	    btrfs_root_last_snapshot(&root->root_item))
2433 		goto out;
2434 
2435 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2436 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2437 	    BTRFS_EXTENT_DATA_REF_KEY)
2438 		goto out;
2439 
2440 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2441 	if (btrfs_extent_refs(leaf, ei) !=
2442 	    btrfs_extent_data_ref_count(leaf, ref) ||
2443 	    btrfs_extent_data_ref_root(leaf, ref) !=
2444 	    root->root_key.objectid ||
2445 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2446 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2447 		goto out;
2448 
2449 	ret = 0;
2450 out:
2451 	return ret;
2452 }
2453 
2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2455 			  struct btrfs_root *root,
2456 			  u64 objectid, u64 offset, u64 bytenr)
2457 {
2458 	struct btrfs_path *path;
2459 	int ret;
2460 	int ret2;
2461 
2462 	path = btrfs_alloc_path();
2463 	if (!path)
2464 		return -ENOENT;
2465 
2466 	do {
2467 		ret = check_committed_ref(trans, root, path, objectid,
2468 					  offset, bytenr);
2469 		if (ret && ret != -ENOENT)
2470 			goto out;
2471 
2472 		ret2 = check_delayed_ref(trans, root, path, objectid,
2473 					 offset, bytenr);
2474 	} while (ret2 == -EAGAIN);
2475 
2476 	if (ret2 && ret2 != -ENOENT) {
2477 		ret = ret2;
2478 		goto out;
2479 	}
2480 
2481 	if (ret != -ENOENT || ret2 != -ENOENT)
2482 		ret = 0;
2483 out:
2484 	btrfs_free_path(path);
2485 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2486 		WARN_ON(ret > 0);
2487 	return ret;
2488 }
2489 
2490 #if 0
2491 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2492 		    struct extent_buffer *buf, u32 nr_extents)
2493 {
2494 	struct btrfs_key key;
2495 	struct btrfs_file_extent_item *fi;
2496 	u64 root_gen;
2497 	u32 nritems;
2498 	int i;
2499 	int level;
2500 	int ret = 0;
2501 	int shared = 0;
2502 
2503 	if (!root->ref_cows)
2504 		return 0;
2505 
2506 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2507 		shared = 0;
2508 		root_gen = root->root_key.offset;
2509 	} else {
2510 		shared = 1;
2511 		root_gen = trans->transid - 1;
2512 	}
2513 
2514 	level = btrfs_header_level(buf);
2515 	nritems = btrfs_header_nritems(buf);
2516 
2517 	if (level == 0) {
2518 		struct btrfs_leaf_ref *ref;
2519 		struct btrfs_extent_info *info;
2520 
2521 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
2522 		if (!ref) {
2523 			ret = -ENOMEM;
2524 			goto out;
2525 		}
2526 
2527 		ref->root_gen = root_gen;
2528 		ref->bytenr = buf->start;
2529 		ref->owner = btrfs_header_owner(buf);
2530 		ref->generation = btrfs_header_generation(buf);
2531 		ref->nritems = nr_extents;
2532 		info = ref->extents;
2533 
2534 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
2535 			u64 disk_bytenr;
2536 			btrfs_item_key_to_cpu(buf, &key, i);
2537 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2538 				continue;
2539 			fi = btrfs_item_ptr(buf, i,
2540 					    struct btrfs_file_extent_item);
2541 			if (btrfs_file_extent_type(buf, fi) ==
2542 			    BTRFS_FILE_EXTENT_INLINE)
2543 				continue;
2544 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2545 			if (disk_bytenr == 0)
2546 				continue;
2547 
2548 			info->bytenr = disk_bytenr;
2549 			info->num_bytes =
2550 				btrfs_file_extent_disk_num_bytes(buf, fi);
2551 			info->objectid = key.objectid;
2552 			info->offset = key.offset;
2553 			info++;
2554 		}
2555 
2556 		ret = btrfs_add_leaf_ref(root, ref, shared);
2557 		if (ret == -EEXIST && shared) {
2558 			struct btrfs_leaf_ref *old;
2559 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2560 			BUG_ON(!old);
2561 			btrfs_remove_leaf_ref(root, old);
2562 			btrfs_free_leaf_ref(root, old);
2563 			ret = btrfs_add_leaf_ref(root, ref, shared);
2564 		}
2565 		WARN_ON(ret);
2566 		btrfs_free_leaf_ref(root, ref);
2567 	}
2568 out:
2569 	return ret;
2570 }
2571 
2572 /* when a block goes through cow, we update the reference counts of
2573  * everything that block points to.  The internal pointers of the block
2574  * can be in just about any order, and it is likely to have clusters of
2575  * things that are close together and clusters of things that are not.
2576  *
2577  * To help reduce the seeks that come with updating all of these reference
2578  * counts, sort them by byte number before actual updates are done.
2579  *
2580  * struct refsort is used to match byte number to slot in the btree block.
2581  * we sort based on the byte number and then use the slot to actually
2582  * find the item.
2583  *
2584  * struct refsort is smaller than strcut btrfs_item and smaller than
2585  * struct btrfs_key_ptr.  Since we're currently limited to the page size
2586  * for a btree block, there's no way for a kmalloc of refsorts for a
2587  * single node to be bigger than a page.
2588  */
2589 struct refsort {
2590 	u64 bytenr;
2591 	u32 slot;
2592 };
2593 
2594 /*
2595  * for passing into sort()
2596  */
2597 static int refsort_cmp(const void *a_void, const void *b_void)
2598 {
2599 	const struct refsort *a = a_void;
2600 	const struct refsort *b = b_void;
2601 
2602 	if (a->bytenr < b->bytenr)
2603 		return -1;
2604 	if (a->bytenr > b->bytenr)
2605 		return 1;
2606 	return 0;
2607 }
2608 #endif
2609 
2610 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2611 			   struct btrfs_root *root,
2612 			   struct extent_buffer *buf,
2613 			   int full_backref, int inc)
2614 {
2615 	u64 bytenr;
2616 	u64 num_bytes;
2617 	u64 parent;
2618 	u64 ref_root;
2619 	u32 nritems;
2620 	struct btrfs_key key;
2621 	struct btrfs_file_extent_item *fi;
2622 	int i;
2623 	int level;
2624 	int ret = 0;
2625 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2626 			    u64, u64, u64, u64, u64, u64);
2627 
2628 	ref_root = btrfs_header_owner(buf);
2629 	nritems = btrfs_header_nritems(buf);
2630 	level = btrfs_header_level(buf);
2631 
2632 	if (!root->ref_cows && level == 0)
2633 		return 0;
2634 
2635 	if (inc)
2636 		process_func = btrfs_inc_extent_ref;
2637 	else
2638 		process_func = btrfs_free_extent;
2639 
2640 	if (full_backref)
2641 		parent = buf->start;
2642 	else
2643 		parent = 0;
2644 
2645 	for (i = 0; i < nritems; i++) {
2646 		if (level == 0) {
2647 			btrfs_item_key_to_cpu(buf, &key, i);
2648 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2649 				continue;
2650 			fi = btrfs_item_ptr(buf, i,
2651 					    struct btrfs_file_extent_item);
2652 			if (btrfs_file_extent_type(buf, fi) ==
2653 			    BTRFS_FILE_EXTENT_INLINE)
2654 				continue;
2655 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2656 			if (bytenr == 0)
2657 				continue;
2658 
2659 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2660 			key.offset -= btrfs_file_extent_offset(buf, fi);
2661 			ret = process_func(trans, root, bytenr, num_bytes,
2662 					   parent, ref_root, key.objectid,
2663 					   key.offset);
2664 			if (ret)
2665 				goto fail;
2666 		} else {
2667 			bytenr = btrfs_node_blockptr(buf, i);
2668 			num_bytes = btrfs_level_size(root, level - 1);
2669 			ret = process_func(trans, root, bytenr, num_bytes,
2670 					   parent, ref_root, level - 1, 0);
2671 			if (ret)
2672 				goto fail;
2673 		}
2674 	}
2675 	return 0;
2676 fail:
2677 	BUG();
2678 	return ret;
2679 }
2680 
2681 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2682 		  struct extent_buffer *buf, int full_backref)
2683 {
2684 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2685 }
2686 
2687 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2688 		  struct extent_buffer *buf, int full_backref)
2689 {
2690 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2691 }
2692 
2693 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2694 				 struct btrfs_root *root,
2695 				 struct btrfs_path *path,
2696 				 struct btrfs_block_group_cache *cache)
2697 {
2698 	int ret;
2699 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2700 	unsigned long bi;
2701 	struct extent_buffer *leaf;
2702 
2703 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2704 	if (ret < 0)
2705 		goto fail;
2706 	BUG_ON(ret);
2707 
2708 	leaf = path->nodes[0];
2709 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2710 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2711 	btrfs_mark_buffer_dirty(leaf);
2712 	btrfs_release_path(extent_root, path);
2713 fail:
2714 	if (ret)
2715 		return ret;
2716 	return 0;
2717 
2718 }
2719 
2720 static struct btrfs_block_group_cache *
2721 next_block_group(struct btrfs_root *root,
2722 		 struct btrfs_block_group_cache *cache)
2723 {
2724 	struct rb_node *node;
2725 	spin_lock(&root->fs_info->block_group_cache_lock);
2726 	node = rb_next(&cache->cache_node);
2727 	btrfs_put_block_group(cache);
2728 	if (node) {
2729 		cache = rb_entry(node, struct btrfs_block_group_cache,
2730 				 cache_node);
2731 		btrfs_get_block_group(cache);
2732 	} else
2733 		cache = NULL;
2734 	spin_unlock(&root->fs_info->block_group_cache_lock);
2735 	return cache;
2736 }
2737 
2738 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2739 			    struct btrfs_trans_handle *trans,
2740 			    struct btrfs_path *path)
2741 {
2742 	struct btrfs_root *root = block_group->fs_info->tree_root;
2743 	struct inode *inode = NULL;
2744 	u64 alloc_hint = 0;
2745 	int dcs = BTRFS_DC_ERROR;
2746 	int num_pages = 0;
2747 	int retries = 0;
2748 	int ret = 0;
2749 
2750 	/*
2751 	 * If this block group is smaller than 100 megs don't bother caching the
2752 	 * block group.
2753 	 */
2754 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2755 		spin_lock(&block_group->lock);
2756 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2757 		spin_unlock(&block_group->lock);
2758 		return 0;
2759 	}
2760 
2761 again:
2762 	inode = lookup_free_space_inode(root, block_group, path);
2763 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2764 		ret = PTR_ERR(inode);
2765 		btrfs_release_path(root, path);
2766 		goto out;
2767 	}
2768 
2769 	if (IS_ERR(inode)) {
2770 		BUG_ON(retries);
2771 		retries++;
2772 
2773 		if (block_group->ro)
2774 			goto out_free;
2775 
2776 		ret = create_free_space_inode(root, trans, block_group, path);
2777 		if (ret)
2778 			goto out_free;
2779 		goto again;
2780 	}
2781 
2782 	/*
2783 	 * We want to set the generation to 0, that way if anything goes wrong
2784 	 * from here on out we know not to trust this cache when we load up next
2785 	 * time.
2786 	 */
2787 	BTRFS_I(inode)->generation = 0;
2788 	ret = btrfs_update_inode(trans, root, inode);
2789 	WARN_ON(ret);
2790 
2791 	if (i_size_read(inode) > 0) {
2792 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2793 						      inode);
2794 		if (ret)
2795 			goto out_put;
2796 	}
2797 
2798 	spin_lock(&block_group->lock);
2799 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2800 		/* We're not cached, don't bother trying to write stuff out */
2801 		dcs = BTRFS_DC_WRITTEN;
2802 		spin_unlock(&block_group->lock);
2803 		goto out_put;
2804 	}
2805 	spin_unlock(&block_group->lock);
2806 
2807 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2808 	if (!num_pages)
2809 		num_pages = 1;
2810 
2811 	/*
2812 	 * Just to make absolutely sure we have enough space, we're going to
2813 	 * preallocate 12 pages worth of space for each block group.  In
2814 	 * practice we ought to use at most 8, but we need extra space so we can
2815 	 * add our header and have a terminator between the extents and the
2816 	 * bitmaps.
2817 	 */
2818 	num_pages *= 16;
2819 	num_pages *= PAGE_CACHE_SIZE;
2820 
2821 	ret = btrfs_check_data_free_space(inode, num_pages);
2822 	if (ret)
2823 		goto out_put;
2824 
2825 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2826 					      num_pages, num_pages,
2827 					      &alloc_hint);
2828 	if (!ret)
2829 		dcs = BTRFS_DC_SETUP;
2830 	btrfs_free_reserved_data_space(inode, num_pages);
2831 out_put:
2832 	iput(inode);
2833 out_free:
2834 	btrfs_release_path(root, path);
2835 out:
2836 	spin_lock(&block_group->lock);
2837 	block_group->disk_cache_state = dcs;
2838 	spin_unlock(&block_group->lock);
2839 
2840 	return ret;
2841 }
2842 
2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2844 				   struct btrfs_root *root)
2845 {
2846 	struct btrfs_block_group_cache *cache;
2847 	int err = 0;
2848 	struct btrfs_path *path;
2849 	u64 last = 0;
2850 
2851 	path = btrfs_alloc_path();
2852 	if (!path)
2853 		return -ENOMEM;
2854 
2855 again:
2856 	while (1) {
2857 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2858 		while (cache) {
2859 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2860 				break;
2861 			cache = next_block_group(root, cache);
2862 		}
2863 		if (!cache) {
2864 			if (last == 0)
2865 				break;
2866 			last = 0;
2867 			continue;
2868 		}
2869 		err = cache_save_setup(cache, trans, path);
2870 		last = cache->key.objectid + cache->key.offset;
2871 		btrfs_put_block_group(cache);
2872 	}
2873 
2874 	while (1) {
2875 		if (last == 0) {
2876 			err = btrfs_run_delayed_refs(trans, root,
2877 						     (unsigned long)-1);
2878 			BUG_ON(err);
2879 		}
2880 
2881 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2882 		while (cache) {
2883 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2884 				btrfs_put_block_group(cache);
2885 				goto again;
2886 			}
2887 
2888 			if (cache->dirty)
2889 				break;
2890 			cache = next_block_group(root, cache);
2891 		}
2892 		if (!cache) {
2893 			if (last == 0)
2894 				break;
2895 			last = 0;
2896 			continue;
2897 		}
2898 
2899 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2900 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2901 		cache->dirty = 0;
2902 		last = cache->key.objectid + cache->key.offset;
2903 
2904 		err = write_one_cache_group(trans, root, path, cache);
2905 		BUG_ON(err);
2906 		btrfs_put_block_group(cache);
2907 	}
2908 
2909 	while (1) {
2910 		/*
2911 		 * I don't think this is needed since we're just marking our
2912 		 * preallocated extent as written, but just in case it can't
2913 		 * hurt.
2914 		 */
2915 		if (last == 0) {
2916 			err = btrfs_run_delayed_refs(trans, root,
2917 						     (unsigned long)-1);
2918 			BUG_ON(err);
2919 		}
2920 
2921 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2922 		while (cache) {
2923 			/*
2924 			 * Really this shouldn't happen, but it could if we
2925 			 * couldn't write the entire preallocated extent and
2926 			 * splitting the extent resulted in a new block.
2927 			 */
2928 			if (cache->dirty) {
2929 				btrfs_put_block_group(cache);
2930 				goto again;
2931 			}
2932 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2933 				break;
2934 			cache = next_block_group(root, cache);
2935 		}
2936 		if (!cache) {
2937 			if (last == 0)
2938 				break;
2939 			last = 0;
2940 			continue;
2941 		}
2942 
2943 		btrfs_write_out_cache(root, trans, cache, path);
2944 
2945 		/*
2946 		 * If we didn't have an error then the cache state is still
2947 		 * NEED_WRITE, so we can set it to WRITTEN.
2948 		 */
2949 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2950 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
2951 		last = cache->key.objectid + cache->key.offset;
2952 		btrfs_put_block_group(cache);
2953 	}
2954 
2955 	btrfs_free_path(path);
2956 	return 0;
2957 }
2958 
2959 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2960 {
2961 	struct btrfs_block_group_cache *block_group;
2962 	int readonly = 0;
2963 
2964 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2965 	if (!block_group || block_group->ro)
2966 		readonly = 1;
2967 	if (block_group)
2968 		btrfs_put_block_group(block_group);
2969 	return readonly;
2970 }
2971 
2972 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2973 			     u64 total_bytes, u64 bytes_used,
2974 			     struct btrfs_space_info **space_info)
2975 {
2976 	struct btrfs_space_info *found;
2977 	int i;
2978 	int factor;
2979 
2980 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2981 		     BTRFS_BLOCK_GROUP_RAID10))
2982 		factor = 2;
2983 	else
2984 		factor = 1;
2985 
2986 	found = __find_space_info(info, flags);
2987 	if (found) {
2988 		spin_lock(&found->lock);
2989 		found->total_bytes += total_bytes;
2990 		found->disk_total += total_bytes * factor;
2991 		found->bytes_used += bytes_used;
2992 		found->disk_used += bytes_used * factor;
2993 		found->full = 0;
2994 		spin_unlock(&found->lock);
2995 		*space_info = found;
2996 		return 0;
2997 	}
2998 	found = kzalloc(sizeof(*found), GFP_NOFS);
2999 	if (!found)
3000 		return -ENOMEM;
3001 
3002 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3003 		INIT_LIST_HEAD(&found->block_groups[i]);
3004 	init_rwsem(&found->groups_sem);
3005 	spin_lock_init(&found->lock);
3006 	found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3007 				BTRFS_BLOCK_GROUP_SYSTEM |
3008 				BTRFS_BLOCK_GROUP_METADATA);
3009 	found->total_bytes = total_bytes;
3010 	found->disk_total = total_bytes * factor;
3011 	found->bytes_used = bytes_used;
3012 	found->disk_used = bytes_used * factor;
3013 	found->bytes_pinned = 0;
3014 	found->bytes_reserved = 0;
3015 	found->bytes_readonly = 0;
3016 	found->bytes_may_use = 0;
3017 	found->full = 0;
3018 	found->force_alloc = 0;
3019 	*space_info = found;
3020 	list_add_rcu(&found->list, &info->space_info);
3021 	atomic_set(&found->caching_threads, 0);
3022 	return 0;
3023 }
3024 
3025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3026 {
3027 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3028 				   BTRFS_BLOCK_GROUP_RAID1 |
3029 				   BTRFS_BLOCK_GROUP_RAID10 |
3030 				   BTRFS_BLOCK_GROUP_DUP);
3031 	if (extra_flags) {
3032 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3033 			fs_info->avail_data_alloc_bits |= extra_flags;
3034 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
3035 			fs_info->avail_metadata_alloc_bits |= extra_flags;
3036 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3037 			fs_info->avail_system_alloc_bits |= extra_flags;
3038 	}
3039 }
3040 
3041 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3042 {
3043 	/*
3044 	 * we add in the count of missing devices because we want
3045 	 * to make sure that any RAID levels on a degraded FS
3046 	 * continue to be honored.
3047 	 */
3048 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3049 		root->fs_info->fs_devices->missing_devices;
3050 
3051 	if (num_devices == 1)
3052 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3053 	if (num_devices < 4)
3054 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3055 
3056 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3057 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3058 		      BTRFS_BLOCK_GROUP_RAID10))) {
3059 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3060 	}
3061 
3062 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3063 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3064 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3065 	}
3066 
3067 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3068 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3069 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3070 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
3071 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3072 	return flags;
3073 }
3074 
3075 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3076 {
3077 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3078 		flags |= root->fs_info->avail_data_alloc_bits &
3079 			 root->fs_info->data_alloc_profile;
3080 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3081 		flags |= root->fs_info->avail_system_alloc_bits &
3082 			 root->fs_info->system_alloc_profile;
3083 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3084 		flags |= root->fs_info->avail_metadata_alloc_bits &
3085 			 root->fs_info->metadata_alloc_profile;
3086 	return btrfs_reduce_alloc_profile(root, flags);
3087 }
3088 
3089 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3090 {
3091 	u64 flags;
3092 
3093 	if (data)
3094 		flags = BTRFS_BLOCK_GROUP_DATA;
3095 	else if (root == root->fs_info->chunk_root)
3096 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3097 	else
3098 		flags = BTRFS_BLOCK_GROUP_METADATA;
3099 
3100 	return get_alloc_profile(root, flags);
3101 }
3102 
3103 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3104 {
3105 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3106 						       BTRFS_BLOCK_GROUP_DATA);
3107 }
3108 
3109 /*
3110  * This will check the space that the inode allocates from to make sure we have
3111  * enough space for bytes.
3112  */
3113 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3114 {
3115 	struct btrfs_space_info *data_sinfo;
3116 	struct btrfs_root *root = BTRFS_I(inode)->root;
3117 	u64 used;
3118 	int ret = 0, committed = 0, alloc_chunk = 1;
3119 
3120 	/* make sure bytes are sectorsize aligned */
3121 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3122 
3123 	if (root == root->fs_info->tree_root) {
3124 		alloc_chunk = 0;
3125 		committed = 1;
3126 	}
3127 
3128 	data_sinfo = BTRFS_I(inode)->space_info;
3129 	if (!data_sinfo)
3130 		goto alloc;
3131 
3132 again:
3133 	/* make sure we have enough space to handle the data first */
3134 	spin_lock(&data_sinfo->lock);
3135 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3136 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3137 		data_sinfo->bytes_may_use;
3138 
3139 	if (used + bytes > data_sinfo->total_bytes) {
3140 		struct btrfs_trans_handle *trans;
3141 
3142 		/*
3143 		 * if we don't have enough free bytes in this space then we need
3144 		 * to alloc a new chunk.
3145 		 */
3146 		if (!data_sinfo->full && alloc_chunk) {
3147 			u64 alloc_target;
3148 
3149 			data_sinfo->force_alloc = 1;
3150 			spin_unlock(&data_sinfo->lock);
3151 alloc:
3152 			alloc_target = btrfs_get_alloc_profile(root, 1);
3153 			trans = btrfs_join_transaction(root, 1);
3154 			if (IS_ERR(trans))
3155 				return PTR_ERR(trans);
3156 
3157 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3158 					     bytes + 2 * 1024 * 1024,
3159 					     alloc_target, 0);
3160 			btrfs_end_transaction(trans, root);
3161 			if (ret < 0) {
3162 				if (ret != -ENOSPC)
3163 					return ret;
3164 				else
3165 					goto commit_trans;
3166 			}
3167 
3168 			if (!data_sinfo) {
3169 				btrfs_set_inode_space_info(root, inode);
3170 				data_sinfo = BTRFS_I(inode)->space_info;
3171 			}
3172 			goto again;
3173 		}
3174 		spin_unlock(&data_sinfo->lock);
3175 
3176 		/* commit the current transaction and try again */
3177 commit_trans:
3178 		if (!committed && !root->fs_info->open_ioctl_trans) {
3179 			committed = 1;
3180 			trans = btrfs_join_transaction(root, 1);
3181 			if (IS_ERR(trans))
3182 				return PTR_ERR(trans);
3183 			ret = btrfs_commit_transaction(trans, root);
3184 			if (ret)
3185 				return ret;
3186 			goto again;
3187 		}
3188 
3189 #if 0 /* I hope we never need this code again, just in case */
3190 		printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
3191 		       "%llu bytes_reserved, " "%llu bytes_pinned, "
3192 		       "%llu bytes_readonly, %llu may use %llu total\n",
3193 		       (unsigned long long)bytes,
3194 		       (unsigned long long)data_sinfo->bytes_used,
3195 		       (unsigned long long)data_sinfo->bytes_reserved,
3196 		       (unsigned long long)data_sinfo->bytes_pinned,
3197 		       (unsigned long long)data_sinfo->bytes_readonly,
3198 		       (unsigned long long)data_sinfo->bytes_may_use,
3199 		       (unsigned long long)data_sinfo->total_bytes);
3200 #endif
3201 		return -ENOSPC;
3202 	}
3203 	data_sinfo->bytes_may_use += bytes;
3204 	BTRFS_I(inode)->reserved_bytes += bytes;
3205 	spin_unlock(&data_sinfo->lock);
3206 
3207 	return 0;
3208 }
3209 
3210 /*
3211  * called when we are clearing an delalloc extent from the
3212  * inode's io_tree or there was an error for whatever reason
3213  * after calling btrfs_check_data_free_space
3214  */
3215 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3216 {
3217 	struct btrfs_root *root = BTRFS_I(inode)->root;
3218 	struct btrfs_space_info *data_sinfo;
3219 
3220 	/* make sure bytes are sectorsize aligned */
3221 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3222 
3223 	data_sinfo = BTRFS_I(inode)->space_info;
3224 	spin_lock(&data_sinfo->lock);
3225 	data_sinfo->bytes_may_use -= bytes;
3226 	BTRFS_I(inode)->reserved_bytes -= bytes;
3227 	spin_unlock(&data_sinfo->lock);
3228 }
3229 
3230 static void force_metadata_allocation(struct btrfs_fs_info *info)
3231 {
3232 	struct list_head *head = &info->space_info;
3233 	struct btrfs_space_info *found;
3234 
3235 	rcu_read_lock();
3236 	list_for_each_entry_rcu(found, head, list) {
3237 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3238 			found->force_alloc = 1;
3239 	}
3240 	rcu_read_unlock();
3241 }
3242 
3243 static int should_alloc_chunk(struct btrfs_root *root,
3244 			      struct btrfs_space_info *sinfo, u64 alloc_bytes)
3245 {
3246 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3247 	u64 thresh;
3248 
3249 	if (sinfo->bytes_used + sinfo->bytes_reserved +
3250 	    alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3251 		return 0;
3252 
3253 	if (sinfo->bytes_used + sinfo->bytes_reserved +
3254 	    alloc_bytes < div_factor(num_bytes, 8))
3255 		return 0;
3256 
3257 	thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3258 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3259 
3260 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3261 		return 0;
3262 
3263 	return 1;
3264 }
3265 
3266 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3267 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3268 			  u64 flags, int force)
3269 {
3270 	struct btrfs_space_info *space_info;
3271 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3272 	int ret = 0;
3273 
3274 	mutex_lock(&fs_info->chunk_mutex);
3275 
3276 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3277 
3278 	space_info = __find_space_info(extent_root->fs_info, flags);
3279 	if (!space_info) {
3280 		ret = update_space_info(extent_root->fs_info, flags,
3281 					0, 0, &space_info);
3282 		BUG_ON(ret);
3283 	}
3284 	BUG_ON(!space_info);
3285 
3286 	spin_lock(&space_info->lock);
3287 	if (space_info->force_alloc)
3288 		force = 1;
3289 	if (space_info->full) {
3290 		spin_unlock(&space_info->lock);
3291 		goto out;
3292 	}
3293 
3294 	if (!force && !should_alloc_chunk(extent_root, space_info,
3295 					  alloc_bytes)) {
3296 		spin_unlock(&space_info->lock);
3297 		goto out;
3298 	}
3299 	spin_unlock(&space_info->lock);
3300 
3301 	/*
3302 	 * If we have mixed data/metadata chunks we want to make sure we keep
3303 	 * allocating mixed chunks instead of individual chunks.
3304 	 */
3305 	if (btrfs_mixed_space_info(space_info))
3306 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3307 
3308 	/*
3309 	 * if we're doing a data chunk, go ahead and make sure that
3310 	 * we keep a reasonable number of metadata chunks allocated in the
3311 	 * FS as well.
3312 	 */
3313 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3314 		fs_info->data_chunk_allocations++;
3315 		if (!(fs_info->data_chunk_allocations %
3316 		      fs_info->metadata_ratio))
3317 			force_metadata_allocation(fs_info);
3318 	}
3319 
3320 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3321 	spin_lock(&space_info->lock);
3322 	if (ret)
3323 		space_info->full = 1;
3324 	else
3325 		ret = 1;
3326 	space_info->force_alloc = 0;
3327 	spin_unlock(&space_info->lock);
3328 out:
3329 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3330 	return ret;
3331 }
3332 
3333 /*
3334  * shrink metadata reservation for delalloc
3335  */
3336 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3337 			   struct btrfs_root *root, u64 to_reclaim, int sync)
3338 {
3339 	struct btrfs_block_rsv *block_rsv;
3340 	struct btrfs_space_info *space_info;
3341 	u64 reserved;
3342 	u64 max_reclaim;
3343 	u64 reclaimed = 0;
3344 	long time_left;
3345 	int pause = 1;
3346 	int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3347 	int loops = 0;
3348 
3349 	block_rsv = &root->fs_info->delalloc_block_rsv;
3350 	space_info = block_rsv->space_info;
3351 
3352 	smp_mb();
3353 	reserved = space_info->bytes_reserved;
3354 
3355 	if (reserved == 0)
3356 		return 0;
3357 
3358 	max_reclaim = min(reserved, to_reclaim);
3359 
3360 	while (loops < 1024) {
3361 		/* have the flusher threads jump in and do some IO */
3362 		smp_mb();
3363 		nr_pages = min_t(unsigned long, nr_pages,
3364 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3365 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3366 
3367 		spin_lock(&space_info->lock);
3368 		if (reserved > space_info->bytes_reserved) {
3369 			loops = 0;
3370 			reclaimed += reserved - space_info->bytes_reserved;
3371 		} else {
3372 			loops++;
3373 		}
3374 		reserved = space_info->bytes_reserved;
3375 		spin_unlock(&space_info->lock);
3376 
3377 		if (reserved == 0 || reclaimed >= max_reclaim)
3378 			break;
3379 
3380 		if (trans && trans->transaction->blocked)
3381 			return -EAGAIN;
3382 
3383 		__set_current_state(TASK_INTERRUPTIBLE);
3384 		time_left = schedule_timeout(pause);
3385 
3386 		/* We were interrupted, exit */
3387 		if (time_left)
3388 			break;
3389 
3390 		pause <<= 1;
3391 		if (pause > HZ / 10)
3392 			pause = HZ / 10;
3393 
3394 	}
3395 	return reclaimed >= to_reclaim;
3396 }
3397 
3398 /*
3399  * Retries tells us how many times we've called reserve_metadata_bytes.  The
3400  * idea is if this is the first call (retries == 0) then we will add to our
3401  * reserved count if we can't make the allocation in order to hold our place
3402  * while we go and try and free up space.  That way for retries > 1 we don't try
3403  * and add space, we just check to see if the amount of unused space is >= the
3404  * total space, meaning that our reservation is valid.
3405  *
3406  * However if we don't intend to retry this reservation, pass -1 as retries so
3407  * that it short circuits this logic.
3408  */
3409 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3410 				  struct btrfs_root *root,
3411 				  struct btrfs_block_rsv *block_rsv,
3412 				  u64 orig_bytes, int flush)
3413 {
3414 	struct btrfs_space_info *space_info = block_rsv->space_info;
3415 	u64 unused;
3416 	u64 num_bytes = orig_bytes;
3417 	int retries = 0;
3418 	int ret = 0;
3419 	bool reserved = false;
3420 	bool committed = false;
3421 
3422 again:
3423 	ret = -ENOSPC;
3424 	if (reserved)
3425 		num_bytes = 0;
3426 
3427 	spin_lock(&space_info->lock);
3428 	unused = space_info->bytes_used + space_info->bytes_reserved +
3429 		 space_info->bytes_pinned + space_info->bytes_readonly +
3430 		 space_info->bytes_may_use;
3431 
3432 	/*
3433 	 * The idea here is that we've not already over-reserved the block group
3434 	 * then we can go ahead and save our reservation first and then start
3435 	 * flushing if we need to.  Otherwise if we've already overcommitted
3436 	 * lets start flushing stuff first and then come back and try to make
3437 	 * our reservation.
3438 	 */
3439 	if (unused <= space_info->total_bytes) {
3440 		unused = space_info->total_bytes - unused;
3441 		if (unused >= num_bytes) {
3442 			if (!reserved)
3443 				space_info->bytes_reserved += orig_bytes;
3444 			ret = 0;
3445 		} else {
3446 			/*
3447 			 * Ok set num_bytes to orig_bytes since we aren't
3448 			 * overocmmitted, this way we only try and reclaim what
3449 			 * we need.
3450 			 */
3451 			num_bytes = orig_bytes;
3452 		}
3453 	} else {
3454 		/*
3455 		 * Ok we're over committed, set num_bytes to the overcommitted
3456 		 * amount plus the amount of bytes that we need for this
3457 		 * reservation.
3458 		 */
3459 		num_bytes = unused - space_info->total_bytes +
3460 			(orig_bytes * (retries + 1));
3461 	}
3462 
3463 	/*
3464 	 * Couldn't make our reservation, save our place so while we're trying
3465 	 * to reclaim space we can actually use it instead of somebody else
3466 	 * stealing it from us.
3467 	 */
3468 	if (ret && !reserved) {
3469 		space_info->bytes_reserved += orig_bytes;
3470 		reserved = true;
3471 	}
3472 
3473 	spin_unlock(&space_info->lock);
3474 
3475 	if (!ret)
3476 		return 0;
3477 
3478 	if (!flush)
3479 		goto out;
3480 
3481 	/*
3482 	 * We do synchronous shrinking since we don't actually unreserve
3483 	 * metadata until after the IO is completed.
3484 	 */
3485 	ret = shrink_delalloc(trans, root, num_bytes, 1);
3486 	if (ret > 0)
3487 		return 0;
3488 	else if (ret < 0)
3489 		goto out;
3490 
3491 	/*
3492 	 * So if we were overcommitted it's possible that somebody else flushed
3493 	 * out enough space and we simply didn't have enough space to reclaim,
3494 	 * so go back around and try again.
3495 	 */
3496 	if (retries < 2) {
3497 		retries++;
3498 		goto again;
3499 	}
3500 
3501 	spin_lock(&space_info->lock);
3502 	/*
3503 	 * Not enough space to be reclaimed, don't bother committing the
3504 	 * transaction.
3505 	 */
3506 	if (space_info->bytes_pinned < orig_bytes)
3507 		ret = -ENOSPC;
3508 	spin_unlock(&space_info->lock);
3509 	if (ret)
3510 		goto out;
3511 
3512 	ret = -EAGAIN;
3513 	if (trans || committed)
3514 		goto out;
3515 
3516 	ret = -ENOSPC;
3517 	trans = btrfs_join_transaction(root, 1);
3518 	if (IS_ERR(trans))
3519 		goto out;
3520 	ret = btrfs_commit_transaction(trans, root);
3521 	if (!ret) {
3522 		trans = NULL;
3523 		committed = true;
3524 		goto again;
3525 	}
3526 
3527 out:
3528 	if (reserved) {
3529 		spin_lock(&space_info->lock);
3530 		space_info->bytes_reserved -= orig_bytes;
3531 		spin_unlock(&space_info->lock);
3532 	}
3533 
3534 	return ret;
3535 }
3536 
3537 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3538 					     struct btrfs_root *root)
3539 {
3540 	struct btrfs_block_rsv *block_rsv;
3541 	if (root->ref_cows)
3542 		block_rsv = trans->block_rsv;
3543 	else
3544 		block_rsv = root->block_rsv;
3545 
3546 	if (!block_rsv)
3547 		block_rsv = &root->fs_info->empty_block_rsv;
3548 
3549 	return block_rsv;
3550 }
3551 
3552 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3553 			       u64 num_bytes)
3554 {
3555 	int ret = -ENOSPC;
3556 	spin_lock(&block_rsv->lock);
3557 	if (block_rsv->reserved >= num_bytes) {
3558 		block_rsv->reserved -= num_bytes;
3559 		if (block_rsv->reserved < block_rsv->size)
3560 			block_rsv->full = 0;
3561 		ret = 0;
3562 	}
3563 	spin_unlock(&block_rsv->lock);
3564 	return ret;
3565 }
3566 
3567 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3568 				u64 num_bytes, int update_size)
3569 {
3570 	spin_lock(&block_rsv->lock);
3571 	block_rsv->reserved += num_bytes;
3572 	if (update_size)
3573 		block_rsv->size += num_bytes;
3574 	else if (block_rsv->reserved >= block_rsv->size)
3575 		block_rsv->full = 1;
3576 	spin_unlock(&block_rsv->lock);
3577 }
3578 
3579 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3580 			     struct btrfs_block_rsv *dest, u64 num_bytes)
3581 {
3582 	struct btrfs_space_info *space_info = block_rsv->space_info;
3583 
3584 	spin_lock(&block_rsv->lock);
3585 	if (num_bytes == (u64)-1)
3586 		num_bytes = block_rsv->size;
3587 	block_rsv->size -= num_bytes;
3588 	if (block_rsv->reserved >= block_rsv->size) {
3589 		num_bytes = block_rsv->reserved - block_rsv->size;
3590 		block_rsv->reserved = block_rsv->size;
3591 		block_rsv->full = 1;
3592 	} else {
3593 		num_bytes = 0;
3594 	}
3595 	spin_unlock(&block_rsv->lock);
3596 
3597 	if (num_bytes > 0) {
3598 		if (dest) {
3599 			spin_lock(&dest->lock);
3600 			if (!dest->full) {
3601 				u64 bytes_to_add;
3602 
3603 				bytes_to_add = dest->size - dest->reserved;
3604 				bytes_to_add = min(num_bytes, bytes_to_add);
3605 				dest->reserved += bytes_to_add;
3606 				if (dest->reserved >= dest->size)
3607 					dest->full = 1;
3608 				num_bytes -= bytes_to_add;
3609 			}
3610 			spin_unlock(&dest->lock);
3611 		}
3612 		if (num_bytes) {
3613 			spin_lock(&space_info->lock);
3614 			space_info->bytes_reserved -= num_bytes;
3615 			spin_unlock(&space_info->lock);
3616 		}
3617 	}
3618 }
3619 
3620 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3621 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3622 {
3623 	int ret;
3624 
3625 	ret = block_rsv_use_bytes(src, num_bytes);
3626 	if (ret)
3627 		return ret;
3628 
3629 	block_rsv_add_bytes(dst, num_bytes, 1);
3630 	return 0;
3631 }
3632 
3633 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3634 {
3635 	memset(rsv, 0, sizeof(*rsv));
3636 	spin_lock_init(&rsv->lock);
3637 	atomic_set(&rsv->usage, 1);
3638 	rsv->priority = 6;
3639 	INIT_LIST_HEAD(&rsv->list);
3640 }
3641 
3642 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3643 {
3644 	struct btrfs_block_rsv *block_rsv;
3645 	struct btrfs_fs_info *fs_info = root->fs_info;
3646 
3647 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3648 	if (!block_rsv)
3649 		return NULL;
3650 
3651 	btrfs_init_block_rsv(block_rsv);
3652 	block_rsv->space_info = __find_space_info(fs_info,
3653 						  BTRFS_BLOCK_GROUP_METADATA);
3654 	return block_rsv;
3655 }
3656 
3657 void btrfs_free_block_rsv(struct btrfs_root *root,
3658 			  struct btrfs_block_rsv *rsv)
3659 {
3660 	if (rsv && atomic_dec_and_test(&rsv->usage)) {
3661 		btrfs_block_rsv_release(root, rsv, (u64)-1);
3662 		if (!rsv->durable)
3663 			kfree(rsv);
3664 	}
3665 }
3666 
3667 /*
3668  * make the block_rsv struct be able to capture freed space.
3669  * the captured space will re-add to the the block_rsv struct
3670  * after transaction commit
3671  */
3672 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3673 				 struct btrfs_block_rsv *block_rsv)
3674 {
3675 	block_rsv->durable = 1;
3676 	mutex_lock(&fs_info->durable_block_rsv_mutex);
3677 	list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3678 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
3679 }
3680 
3681 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3682 			struct btrfs_root *root,
3683 			struct btrfs_block_rsv *block_rsv,
3684 			u64 num_bytes)
3685 {
3686 	int ret;
3687 
3688 	if (num_bytes == 0)
3689 		return 0;
3690 
3691 	ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3692 	if (!ret) {
3693 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3694 		return 0;
3695 	}
3696 
3697 	return ret;
3698 }
3699 
3700 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3701 			  struct btrfs_root *root,
3702 			  struct btrfs_block_rsv *block_rsv,
3703 			  u64 min_reserved, int min_factor)
3704 {
3705 	u64 num_bytes = 0;
3706 	int commit_trans = 0;
3707 	int ret = -ENOSPC;
3708 
3709 	if (!block_rsv)
3710 		return 0;
3711 
3712 	spin_lock(&block_rsv->lock);
3713 	if (min_factor > 0)
3714 		num_bytes = div_factor(block_rsv->size, min_factor);
3715 	if (min_reserved > num_bytes)
3716 		num_bytes = min_reserved;
3717 
3718 	if (block_rsv->reserved >= num_bytes) {
3719 		ret = 0;
3720 	} else {
3721 		num_bytes -= block_rsv->reserved;
3722 		if (block_rsv->durable &&
3723 		    block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3724 			commit_trans = 1;
3725 	}
3726 	spin_unlock(&block_rsv->lock);
3727 	if (!ret)
3728 		return 0;
3729 
3730 	if (block_rsv->refill_used) {
3731 		ret = reserve_metadata_bytes(trans, root, block_rsv,
3732 					     num_bytes, 0);
3733 		if (!ret) {
3734 			block_rsv_add_bytes(block_rsv, num_bytes, 0);
3735 			return 0;
3736 		}
3737 	}
3738 
3739 	if (commit_trans) {
3740 		if (trans)
3741 			return -EAGAIN;
3742 
3743 		trans = btrfs_join_transaction(root, 1);
3744 		BUG_ON(IS_ERR(trans));
3745 		ret = btrfs_commit_transaction(trans, root);
3746 		return 0;
3747 	}
3748 
3749 	return -ENOSPC;
3750 }
3751 
3752 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3753 			    struct btrfs_block_rsv *dst_rsv,
3754 			    u64 num_bytes)
3755 {
3756 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3757 }
3758 
3759 void btrfs_block_rsv_release(struct btrfs_root *root,
3760 			     struct btrfs_block_rsv *block_rsv,
3761 			     u64 num_bytes)
3762 {
3763 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3764 	if (global_rsv->full || global_rsv == block_rsv ||
3765 	    block_rsv->space_info != global_rsv->space_info)
3766 		global_rsv = NULL;
3767 	block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3768 }
3769 
3770 /*
3771  * helper to calculate size of global block reservation.
3772  * the desired value is sum of space used by extent tree,
3773  * checksum tree and root tree
3774  */
3775 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3776 {
3777 	struct btrfs_space_info *sinfo;
3778 	u64 num_bytes;
3779 	u64 meta_used;
3780 	u64 data_used;
3781 	int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3782 #if 0
3783 	/*
3784 	 * per tree used space accounting can be inaccuracy, so we
3785 	 * can't rely on it.
3786 	 */
3787 	spin_lock(&fs_info->extent_root->accounting_lock);
3788 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3789 	spin_unlock(&fs_info->extent_root->accounting_lock);
3790 
3791 	spin_lock(&fs_info->csum_root->accounting_lock);
3792 	num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3793 	spin_unlock(&fs_info->csum_root->accounting_lock);
3794 
3795 	spin_lock(&fs_info->tree_root->accounting_lock);
3796 	num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3797 	spin_unlock(&fs_info->tree_root->accounting_lock);
3798 #endif
3799 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3800 	spin_lock(&sinfo->lock);
3801 	data_used = sinfo->bytes_used;
3802 	spin_unlock(&sinfo->lock);
3803 
3804 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3805 	spin_lock(&sinfo->lock);
3806 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3807 		data_used = 0;
3808 	meta_used = sinfo->bytes_used;
3809 	spin_unlock(&sinfo->lock);
3810 
3811 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3812 		    csum_size * 2;
3813 	num_bytes += div64_u64(data_used + meta_used, 50);
3814 
3815 	if (num_bytes * 3 > meta_used)
3816 		num_bytes = div64_u64(meta_used, 3);
3817 
3818 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3819 }
3820 
3821 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3822 {
3823 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3824 	struct btrfs_space_info *sinfo = block_rsv->space_info;
3825 	u64 num_bytes;
3826 
3827 	num_bytes = calc_global_metadata_size(fs_info);
3828 
3829 	spin_lock(&block_rsv->lock);
3830 	spin_lock(&sinfo->lock);
3831 
3832 	block_rsv->size = num_bytes;
3833 
3834 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3835 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
3836 		    sinfo->bytes_may_use;
3837 
3838 	if (sinfo->total_bytes > num_bytes) {
3839 		num_bytes = sinfo->total_bytes - num_bytes;
3840 		block_rsv->reserved += num_bytes;
3841 		sinfo->bytes_reserved += num_bytes;
3842 	}
3843 
3844 	if (block_rsv->reserved >= block_rsv->size) {
3845 		num_bytes = block_rsv->reserved - block_rsv->size;
3846 		sinfo->bytes_reserved -= num_bytes;
3847 		block_rsv->reserved = block_rsv->size;
3848 		block_rsv->full = 1;
3849 	}
3850 #if 0
3851 	printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3852 		block_rsv->size, block_rsv->reserved);
3853 #endif
3854 	spin_unlock(&sinfo->lock);
3855 	spin_unlock(&block_rsv->lock);
3856 }
3857 
3858 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3859 {
3860 	struct btrfs_space_info *space_info;
3861 
3862 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3863 	fs_info->chunk_block_rsv.space_info = space_info;
3864 	fs_info->chunk_block_rsv.priority = 10;
3865 
3866 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3867 	fs_info->global_block_rsv.space_info = space_info;
3868 	fs_info->global_block_rsv.priority = 10;
3869 	fs_info->global_block_rsv.refill_used = 1;
3870 	fs_info->delalloc_block_rsv.space_info = space_info;
3871 	fs_info->trans_block_rsv.space_info = space_info;
3872 	fs_info->empty_block_rsv.space_info = space_info;
3873 	fs_info->empty_block_rsv.priority = 10;
3874 
3875 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3876 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3877 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3878 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3879 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3880 
3881 	btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3882 
3883 	btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3884 
3885 	update_global_block_rsv(fs_info);
3886 }
3887 
3888 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3889 {
3890 	block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3891 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3892 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3893 	WARN_ON(fs_info->trans_block_rsv.size > 0);
3894 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3895 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
3896 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3897 }
3898 
3899 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3900 {
3901 	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3902 		3 * num_items;
3903 }
3904 
3905 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3906 				 struct btrfs_root *root,
3907 				 int num_items)
3908 {
3909 	u64 num_bytes;
3910 	int ret;
3911 
3912 	if (num_items == 0 || root->fs_info->chunk_root == root)
3913 		return 0;
3914 
3915 	num_bytes = calc_trans_metadata_size(root, num_items);
3916 	ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3917 				  num_bytes);
3918 	if (!ret) {
3919 		trans->bytes_reserved += num_bytes;
3920 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3921 	}
3922 	return ret;
3923 }
3924 
3925 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3926 				  struct btrfs_root *root)
3927 {
3928 	if (!trans->bytes_reserved)
3929 		return;
3930 
3931 	BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3932 	btrfs_block_rsv_release(root, trans->block_rsv,
3933 				trans->bytes_reserved);
3934 	trans->bytes_reserved = 0;
3935 }
3936 
3937 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3938 				  struct inode *inode)
3939 {
3940 	struct btrfs_root *root = BTRFS_I(inode)->root;
3941 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3942 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3943 
3944 	/*
3945 	 * one for deleting orphan item, one for updating inode and
3946 	 * two for calling btrfs_truncate_inode_items.
3947 	 *
3948 	 * btrfs_truncate_inode_items is a delete operation, it frees
3949 	 * more space than it uses in most cases. So two units of
3950 	 * metadata space should be enough for calling it many times.
3951 	 * If all of the metadata space is used, we can commit
3952 	 * transaction and use space it freed.
3953 	 */
3954 	u64 num_bytes = calc_trans_metadata_size(root, 4);
3955 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3956 }
3957 
3958 void btrfs_orphan_release_metadata(struct inode *inode)
3959 {
3960 	struct btrfs_root *root = BTRFS_I(inode)->root;
3961 	u64 num_bytes = calc_trans_metadata_size(root, 4);
3962 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3963 }
3964 
3965 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3966 				struct btrfs_pending_snapshot *pending)
3967 {
3968 	struct btrfs_root *root = pending->root;
3969 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3970 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3971 	/*
3972 	 * two for root back/forward refs, two for directory entries
3973 	 * and one for root of the snapshot.
3974 	 */
3975 	u64 num_bytes = calc_trans_metadata_size(root, 5);
3976 	dst_rsv->space_info = src_rsv->space_info;
3977 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3978 }
3979 
3980 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3981 {
3982 	return num_bytes >>= 3;
3983 }
3984 
3985 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3986 {
3987 	struct btrfs_root *root = BTRFS_I(inode)->root;
3988 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3989 	u64 to_reserve;
3990 	int nr_extents;
3991 	int ret;
3992 
3993 	if (btrfs_transaction_in_commit(root->fs_info))
3994 		schedule_timeout(1);
3995 
3996 	num_bytes = ALIGN(num_bytes, root->sectorsize);
3997 
3998 	spin_lock(&BTRFS_I(inode)->accounting_lock);
3999 	nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
4000 	if (nr_extents > BTRFS_I(inode)->reserved_extents) {
4001 		nr_extents -= BTRFS_I(inode)->reserved_extents;
4002 		to_reserve = calc_trans_metadata_size(root, nr_extents);
4003 	} else {
4004 		nr_extents = 0;
4005 		to_reserve = 0;
4006 	}
4007 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4008 
4009 	to_reserve += calc_csum_metadata_size(inode, num_bytes);
4010 	ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4011 	if (ret)
4012 		return ret;
4013 
4014 	spin_lock(&BTRFS_I(inode)->accounting_lock);
4015 	BTRFS_I(inode)->reserved_extents += nr_extents;
4016 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
4017 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4018 
4019 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4020 
4021 	if (block_rsv->size > 512 * 1024 * 1024)
4022 		shrink_delalloc(NULL, root, to_reserve, 0);
4023 
4024 	return 0;
4025 }
4026 
4027 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4028 {
4029 	struct btrfs_root *root = BTRFS_I(inode)->root;
4030 	u64 to_free;
4031 	int nr_extents;
4032 
4033 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4034 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4035 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4036 
4037 	spin_lock(&BTRFS_I(inode)->accounting_lock);
4038 	nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4039 	if (nr_extents < BTRFS_I(inode)->reserved_extents) {
4040 		nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
4041 		BTRFS_I(inode)->reserved_extents -= nr_extents;
4042 	} else {
4043 		nr_extents = 0;
4044 	}
4045 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4046 
4047 	to_free = calc_csum_metadata_size(inode, num_bytes);
4048 	if (nr_extents > 0)
4049 		to_free += calc_trans_metadata_size(root, nr_extents);
4050 
4051 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4052 				to_free);
4053 }
4054 
4055 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4056 {
4057 	int ret;
4058 
4059 	ret = btrfs_check_data_free_space(inode, num_bytes);
4060 	if (ret)
4061 		return ret;
4062 
4063 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4064 	if (ret) {
4065 		btrfs_free_reserved_data_space(inode, num_bytes);
4066 		return ret;
4067 	}
4068 
4069 	return 0;
4070 }
4071 
4072 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4073 {
4074 	btrfs_delalloc_release_metadata(inode, num_bytes);
4075 	btrfs_free_reserved_data_space(inode, num_bytes);
4076 }
4077 
4078 static int update_block_group(struct btrfs_trans_handle *trans,
4079 			      struct btrfs_root *root,
4080 			      u64 bytenr, u64 num_bytes, int alloc)
4081 {
4082 	struct btrfs_block_group_cache *cache = NULL;
4083 	struct btrfs_fs_info *info = root->fs_info;
4084 	u64 total = num_bytes;
4085 	u64 old_val;
4086 	u64 byte_in_group;
4087 	int factor;
4088 
4089 	/* block accounting for super block */
4090 	spin_lock(&info->delalloc_lock);
4091 	old_val = btrfs_super_bytes_used(&info->super_copy);
4092 	if (alloc)
4093 		old_val += num_bytes;
4094 	else
4095 		old_val -= num_bytes;
4096 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
4097 	spin_unlock(&info->delalloc_lock);
4098 
4099 	while (total) {
4100 		cache = btrfs_lookup_block_group(info, bytenr);
4101 		if (!cache)
4102 			return -1;
4103 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4104 				    BTRFS_BLOCK_GROUP_RAID1 |
4105 				    BTRFS_BLOCK_GROUP_RAID10))
4106 			factor = 2;
4107 		else
4108 			factor = 1;
4109 		/*
4110 		 * If this block group has free space cache written out, we
4111 		 * need to make sure to load it if we are removing space.  This
4112 		 * is because we need the unpinning stage to actually add the
4113 		 * space back to the block group, otherwise we will leak space.
4114 		 */
4115 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4116 			cache_block_group(cache, trans, NULL, 1);
4117 
4118 		byte_in_group = bytenr - cache->key.objectid;
4119 		WARN_ON(byte_in_group > cache->key.offset);
4120 
4121 		spin_lock(&cache->space_info->lock);
4122 		spin_lock(&cache->lock);
4123 
4124 		if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4125 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4126 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4127 
4128 		cache->dirty = 1;
4129 		old_val = btrfs_block_group_used(&cache->item);
4130 		num_bytes = min(total, cache->key.offset - byte_in_group);
4131 		if (alloc) {
4132 			old_val += num_bytes;
4133 			btrfs_set_block_group_used(&cache->item, old_val);
4134 			cache->reserved -= num_bytes;
4135 			cache->space_info->bytes_reserved -= num_bytes;
4136 			cache->space_info->bytes_used += num_bytes;
4137 			cache->space_info->disk_used += num_bytes * factor;
4138 			spin_unlock(&cache->lock);
4139 			spin_unlock(&cache->space_info->lock);
4140 		} else {
4141 			old_val -= num_bytes;
4142 			btrfs_set_block_group_used(&cache->item, old_val);
4143 			cache->pinned += num_bytes;
4144 			cache->space_info->bytes_pinned += num_bytes;
4145 			cache->space_info->bytes_used -= num_bytes;
4146 			cache->space_info->disk_used -= num_bytes * factor;
4147 			spin_unlock(&cache->lock);
4148 			spin_unlock(&cache->space_info->lock);
4149 
4150 			set_extent_dirty(info->pinned_extents,
4151 					 bytenr, bytenr + num_bytes - 1,
4152 					 GFP_NOFS | __GFP_NOFAIL);
4153 		}
4154 		btrfs_put_block_group(cache);
4155 		total -= num_bytes;
4156 		bytenr += num_bytes;
4157 	}
4158 	return 0;
4159 }
4160 
4161 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4162 {
4163 	struct btrfs_block_group_cache *cache;
4164 	u64 bytenr;
4165 
4166 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4167 	if (!cache)
4168 		return 0;
4169 
4170 	bytenr = cache->key.objectid;
4171 	btrfs_put_block_group(cache);
4172 
4173 	return bytenr;
4174 }
4175 
4176 static int pin_down_extent(struct btrfs_root *root,
4177 			   struct btrfs_block_group_cache *cache,
4178 			   u64 bytenr, u64 num_bytes, int reserved)
4179 {
4180 	spin_lock(&cache->space_info->lock);
4181 	spin_lock(&cache->lock);
4182 	cache->pinned += num_bytes;
4183 	cache->space_info->bytes_pinned += num_bytes;
4184 	if (reserved) {
4185 		cache->reserved -= num_bytes;
4186 		cache->space_info->bytes_reserved -= num_bytes;
4187 	}
4188 	spin_unlock(&cache->lock);
4189 	spin_unlock(&cache->space_info->lock);
4190 
4191 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4192 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4193 	return 0;
4194 }
4195 
4196 /*
4197  * this function must be called within transaction
4198  */
4199 int btrfs_pin_extent(struct btrfs_root *root,
4200 		     u64 bytenr, u64 num_bytes, int reserved)
4201 {
4202 	struct btrfs_block_group_cache *cache;
4203 
4204 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4205 	BUG_ON(!cache);
4206 
4207 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4208 
4209 	btrfs_put_block_group(cache);
4210 	return 0;
4211 }
4212 
4213 /*
4214  * update size of reserved extents. this function may return -EAGAIN
4215  * if 'reserve' is true or 'sinfo' is false.
4216  */
4217 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
4218 				 u64 num_bytes, int reserve, int sinfo)
4219 {
4220 	int ret = 0;
4221 	if (sinfo) {
4222 		struct btrfs_space_info *space_info = cache->space_info;
4223 		spin_lock(&space_info->lock);
4224 		spin_lock(&cache->lock);
4225 		if (reserve) {
4226 			if (cache->ro) {
4227 				ret = -EAGAIN;
4228 			} else {
4229 				cache->reserved += num_bytes;
4230 				space_info->bytes_reserved += num_bytes;
4231 			}
4232 		} else {
4233 			if (cache->ro)
4234 				space_info->bytes_readonly += num_bytes;
4235 			cache->reserved -= num_bytes;
4236 			space_info->bytes_reserved -= num_bytes;
4237 		}
4238 		spin_unlock(&cache->lock);
4239 		spin_unlock(&space_info->lock);
4240 	} else {
4241 		spin_lock(&cache->lock);
4242 		if (cache->ro) {
4243 			ret = -EAGAIN;
4244 		} else {
4245 			if (reserve)
4246 				cache->reserved += num_bytes;
4247 			else
4248 				cache->reserved -= num_bytes;
4249 		}
4250 		spin_unlock(&cache->lock);
4251 	}
4252 	return ret;
4253 }
4254 
4255 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4256 				struct btrfs_root *root)
4257 {
4258 	struct btrfs_fs_info *fs_info = root->fs_info;
4259 	struct btrfs_caching_control *next;
4260 	struct btrfs_caching_control *caching_ctl;
4261 	struct btrfs_block_group_cache *cache;
4262 
4263 	down_write(&fs_info->extent_commit_sem);
4264 
4265 	list_for_each_entry_safe(caching_ctl, next,
4266 				 &fs_info->caching_block_groups, list) {
4267 		cache = caching_ctl->block_group;
4268 		if (block_group_cache_done(cache)) {
4269 			cache->last_byte_to_unpin = (u64)-1;
4270 			list_del_init(&caching_ctl->list);
4271 			put_caching_control(caching_ctl);
4272 		} else {
4273 			cache->last_byte_to_unpin = caching_ctl->progress;
4274 		}
4275 	}
4276 
4277 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4278 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4279 	else
4280 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4281 
4282 	up_write(&fs_info->extent_commit_sem);
4283 
4284 	update_global_block_rsv(fs_info);
4285 	return 0;
4286 }
4287 
4288 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4289 {
4290 	struct btrfs_fs_info *fs_info = root->fs_info;
4291 	struct btrfs_block_group_cache *cache = NULL;
4292 	u64 len;
4293 
4294 	while (start <= end) {
4295 		if (!cache ||
4296 		    start >= cache->key.objectid + cache->key.offset) {
4297 			if (cache)
4298 				btrfs_put_block_group(cache);
4299 			cache = btrfs_lookup_block_group(fs_info, start);
4300 			BUG_ON(!cache);
4301 		}
4302 
4303 		len = cache->key.objectid + cache->key.offset - start;
4304 		len = min(len, end + 1 - start);
4305 
4306 		if (start < cache->last_byte_to_unpin) {
4307 			len = min(len, cache->last_byte_to_unpin - start);
4308 			btrfs_add_free_space(cache, start, len);
4309 		}
4310 
4311 		start += len;
4312 
4313 		spin_lock(&cache->space_info->lock);
4314 		spin_lock(&cache->lock);
4315 		cache->pinned -= len;
4316 		cache->space_info->bytes_pinned -= len;
4317 		if (cache->ro) {
4318 			cache->space_info->bytes_readonly += len;
4319 		} else if (cache->reserved_pinned > 0) {
4320 			len = min(len, cache->reserved_pinned);
4321 			cache->reserved_pinned -= len;
4322 			cache->space_info->bytes_reserved += len;
4323 		}
4324 		spin_unlock(&cache->lock);
4325 		spin_unlock(&cache->space_info->lock);
4326 	}
4327 
4328 	if (cache)
4329 		btrfs_put_block_group(cache);
4330 	return 0;
4331 }
4332 
4333 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4334 			       struct btrfs_root *root)
4335 {
4336 	struct btrfs_fs_info *fs_info = root->fs_info;
4337 	struct extent_io_tree *unpin;
4338 	struct btrfs_block_rsv *block_rsv;
4339 	struct btrfs_block_rsv *next_rsv;
4340 	u64 start;
4341 	u64 end;
4342 	int idx;
4343 	int ret;
4344 
4345 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4346 		unpin = &fs_info->freed_extents[1];
4347 	else
4348 		unpin = &fs_info->freed_extents[0];
4349 
4350 	while (1) {
4351 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4352 					    EXTENT_DIRTY);
4353 		if (ret)
4354 			break;
4355 
4356 		ret = btrfs_discard_extent(root, start, end + 1 - start);
4357 
4358 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4359 		unpin_extent_range(root, start, end);
4360 		cond_resched();
4361 	}
4362 
4363 	mutex_lock(&fs_info->durable_block_rsv_mutex);
4364 	list_for_each_entry_safe(block_rsv, next_rsv,
4365 				 &fs_info->durable_block_rsv_list, list) {
4366 
4367 		idx = trans->transid & 0x1;
4368 		if (block_rsv->freed[idx] > 0) {
4369 			block_rsv_add_bytes(block_rsv,
4370 					    block_rsv->freed[idx], 0);
4371 			block_rsv->freed[idx] = 0;
4372 		}
4373 		if (atomic_read(&block_rsv->usage) == 0) {
4374 			btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4375 
4376 			if (block_rsv->freed[0] == 0 &&
4377 			    block_rsv->freed[1] == 0) {
4378 				list_del_init(&block_rsv->list);
4379 				kfree(block_rsv);
4380 			}
4381 		} else {
4382 			btrfs_block_rsv_release(root, block_rsv, 0);
4383 		}
4384 	}
4385 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
4386 
4387 	return 0;
4388 }
4389 
4390 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4391 				struct btrfs_root *root,
4392 				u64 bytenr, u64 num_bytes, u64 parent,
4393 				u64 root_objectid, u64 owner_objectid,
4394 				u64 owner_offset, int refs_to_drop,
4395 				struct btrfs_delayed_extent_op *extent_op)
4396 {
4397 	struct btrfs_key key;
4398 	struct btrfs_path *path;
4399 	struct btrfs_fs_info *info = root->fs_info;
4400 	struct btrfs_root *extent_root = info->extent_root;
4401 	struct extent_buffer *leaf;
4402 	struct btrfs_extent_item *ei;
4403 	struct btrfs_extent_inline_ref *iref;
4404 	int ret;
4405 	int is_data;
4406 	int extent_slot = 0;
4407 	int found_extent = 0;
4408 	int num_to_del = 1;
4409 	u32 item_size;
4410 	u64 refs;
4411 
4412 	path = btrfs_alloc_path();
4413 	if (!path)
4414 		return -ENOMEM;
4415 
4416 	path->reada = 1;
4417 	path->leave_spinning = 1;
4418 
4419 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4420 	BUG_ON(!is_data && refs_to_drop != 1);
4421 
4422 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4423 				    bytenr, num_bytes, parent,
4424 				    root_objectid, owner_objectid,
4425 				    owner_offset);
4426 	if (ret == 0) {
4427 		extent_slot = path->slots[0];
4428 		while (extent_slot >= 0) {
4429 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4430 					      extent_slot);
4431 			if (key.objectid != bytenr)
4432 				break;
4433 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4434 			    key.offset == num_bytes) {
4435 				found_extent = 1;
4436 				break;
4437 			}
4438 			if (path->slots[0] - extent_slot > 5)
4439 				break;
4440 			extent_slot--;
4441 		}
4442 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4443 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4444 		if (found_extent && item_size < sizeof(*ei))
4445 			found_extent = 0;
4446 #endif
4447 		if (!found_extent) {
4448 			BUG_ON(iref);
4449 			ret = remove_extent_backref(trans, extent_root, path,
4450 						    NULL, refs_to_drop,
4451 						    is_data);
4452 			BUG_ON(ret);
4453 			btrfs_release_path(extent_root, path);
4454 			path->leave_spinning = 1;
4455 
4456 			key.objectid = bytenr;
4457 			key.type = BTRFS_EXTENT_ITEM_KEY;
4458 			key.offset = num_bytes;
4459 
4460 			ret = btrfs_search_slot(trans, extent_root,
4461 						&key, path, -1, 1);
4462 			if (ret) {
4463 				printk(KERN_ERR "umm, got %d back from search"
4464 				       ", was looking for %llu\n", ret,
4465 				       (unsigned long long)bytenr);
4466 				btrfs_print_leaf(extent_root, path->nodes[0]);
4467 			}
4468 			BUG_ON(ret);
4469 			extent_slot = path->slots[0];
4470 		}
4471 	} else {
4472 		btrfs_print_leaf(extent_root, path->nodes[0]);
4473 		WARN_ON(1);
4474 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4475 		       "parent %llu root %llu  owner %llu offset %llu\n",
4476 		       (unsigned long long)bytenr,
4477 		       (unsigned long long)parent,
4478 		       (unsigned long long)root_objectid,
4479 		       (unsigned long long)owner_objectid,
4480 		       (unsigned long long)owner_offset);
4481 	}
4482 
4483 	leaf = path->nodes[0];
4484 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4486 	if (item_size < sizeof(*ei)) {
4487 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4488 		ret = convert_extent_item_v0(trans, extent_root, path,
4489 					     owner_objectid, 0);
4490 		BUG_ON(ret < 0);
4491 
4492 		btrfs_release_path(extent_root, path);
4493 		path->leave_spinning = 1;
4494 
4495 		key.objectid = bytenr;
4496 		key.type = BTRFS_EXTENT_ITEM_KEY;
4497 		key.offset = num_bytes;
4498 
4499 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4500 					-1, 1);
4501 		if (ret) {
4502 			printk(KERN_ERR "umm, got %d back from search"
4503 			       ", was looking for %llu\n", ret,
4504 			       (unsigned long long)bytenr);
4505 			btrfs_print_leaf(extent_root, path->nodes[0]);
4506 		}
4507 		BUG_ON(ret);
4508 		extent_slot = path->slots[0];
4509 		leaf = path->nodes[0];
4510 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4511 	}
4512 #endif
4513 	BUG_ON(item_size < sizeof(*ei));
4514 	ei = btrfs_item_ptr(leaf, extent_slot,
4515 			    struct btrfs_extent_item);
4516 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4517 		struct btrfs_tree_block_info *bi;
4518 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4519 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4520 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4521 	}
4522 
4523 	refs = btrfs_extent_refs(leaf, ei);
4524 	BUG_ON(refs < refs_to_drop);
4525 	refs -= refs_to_drop;
4526 
4527 	if (refs > 0) {
4528 		if (extent_op)
4529 			__run_delayed_extent_op(extent_op, leaf, ei);
4530 		/*
4531 		 * In the case of inline back ref, reference count will
4532 		 * be updated by remove_extent_backref
4533 		 */
4534 		if (iref) {
4535 			BUG_ON(!found_extent);
4536 		} else {
4537 			btrfs_set_extent_refs(leaf, ei, refs);
4538 			btrfs_mark_buffer_dirty(leaf);
4539 		}
4540 		if (found_extent) {
4541 			ret = remove_extent_backref(trans, extent_root, path,
4542 						    iref, refs_to_drop,
4543 						    is_data);
4544 			BUG_ON(ret);
4545 		}
4546 	} else {
4547 		if (found_extent) {
4548 			BUG_ON(is_data && refs_to_drop !=
4549 			       extent_data_ref_count(root, path, iref));
4550 			if (iref) {
4551 				BUG_ON(path->slots[0] != extent_slot);
4552 			} else {
4553 				BUG_ON(path->slots[0] != extent_slot + 1);
4554 				path->slots[0] = extent_slot;
4555 				num_to_del = 2;
4556 			}
4557 		}
4558 
4559 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4560 				      num_to_del);
4561 		BUG_ON(ret);
4562 		btrfs_release_path(extent_root, path);
4563 
4564 		if (is_data) {
4565 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4566 			BUG_ON(ret);
4567 		} else {
4568 			invalidate_mapping_pages(info->btree_inode->i_mapping,
4569 			     bytenr >> PAGE_CACHE_SHIFT,
4570 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4571 		}
4572 
4573 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4574 		BUG_ON(ret);
4575 	}
4576 	btrfs_free_path(path);
4577 	return ret;
4578 }
4579 
4580 /*
4581  * when we free an block, it is possible (and likely) that we free the last
4582  * delayed ref for that extent as well.  This searches the delayed ref tree for
4583  * a given extent, and if there are no other delayed refs to be processed, it
4584  * removes it from the tree.
4585  */
4586 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4587 				      struct btrfs_root *root, u64 bytenr)
4588 {
4589 	struct btrfs_delayed_ref_head *head;
4590 	struct btrfs_delayed_ref_root *delayed_refs;
4591 	struct btrfs_delayed_ref_node *ref;
4592 	struct rb_node *node;
4593 	int ret = 0;
4594 
4595 	delayed_refs = &trans->transaction->delayed_refs;
4596 	spin_lock(&delayed_refs->lock);
4597 	head = btrfs_find_delayed_ref_head(trans, bytenr);
4598 	if (!head)
4599 		goto out;
4600 
4601 	node = rb_prev(&head->node.rb_node);
4602 	if (!node)
4603 		goto out;
4604 
4605 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4606 
4607 	/* there are still entries for this ref, we can't drop it */
4608 	if (ref->bytenr == bytenr)
4609 		goto out;
4610 
4611 	if (head->extent_op) {
4612 		if (!head->must_insert_reserved)
4613 			goto out;
4614 		kfree(head->extent_op);
4615 		head->extent_op = NULL;
4616 	}
4617 
4618 	/*
4619 	 * waiting for the lock here would deadlock.  If someone else has it
4620 	 * locked they are already in the process of dropping it anyway
4621 	 */
4622 	if (!mutex_trylock(&head->mutex))
4623 		goto out;
4624 
4625 	/*
4626 	 * at this point we have a head with no other entries.  Go
4627 	 * ahead and process it.
4628 	 */
4629 	head->node.in_tree = 0;
4630 	rb_erase(&head->node.rb_node, &delayed_refs->root);
4631 
4632 	delayed_refs->num_entries--;
4633 
4634 	/*
4635 	 * we don't take a ref on the node because we're removing it from the
4636 	 * tree, so we just steal the ref the tree was holding.
4637 	 */
4638 	delayed_refs->num_heads--;
4639 	if (list_empty(&head->cluster))
4640 		delayed_refs->num_heads_ready--;
4641 
4642 	list_del_init(&head->cluster);
4643 	spin_unlock(&delayed_refs->lock);
4644 
4645 	BUG_ON(head->extent_op);
4646 	if (head->must_insert_reserved)
4647 		ret = 1;
4648 
4649 	mutex_unlock(&head->mutex);
4650 	btrfs_put_delayed_ref(&head->node);
4651 	return ret;
4652 out:
4653 	spin_unlock(&delayed_refs->lock);
4654 	return 0;
4655 }
4656 
4657 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4658 			   struct btrfs_root *root,
4659 			   struct extent_buffer *buf,
4660 			   u64 parent, int last_ref)
4661 {
4662 	struct btrfs_block_rsv *block_rsv;
4663 	struct btrfs_block_group_cache *cache = NULL;
4664 	int ret;
4665 
4666 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4667 		ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4668 						parent, root->root_key.objectid,
4669 						btrfs_header_level(buf),
4670 						BTRFS_DROP_DELAYED_REF, NULL);
4671 		BUG_ON(ret);
4672 	}
4673 
4674 	if (!last_ref)
4675 		return;
4676 
4677 	block_rsv = get_block_rsv(trans, root);
4678 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4679 	if (block_rsv->space_info != cache->space_info)
4680 		goto out;
4681 
4682 	if (btrfs_header_generation(buf) == trans->transid) {
4683 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4684 			ret = check_ref_cleanup(trans, root, buf->start);
4685 			if (!ret)
4686 				goto pin;
4687 		}
4688 
4689 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4690 			pin_down_extent(root, cache, buf->start, buf->len, 1);
4691 			goto pin;
4692 		}
4693 
4694 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4695 
4696 		btrfs_add_free_space(cache, buf->start, buf->len);
4697 		ret = update_reserved_bytes(cache, buf->len, 0, 0);
4698 		if (ret == -EAGAIN) {
4699 			/* block group became read-only */
4700 			update_reserved_bytes(cache, buf->len, 0, 1);
4701 			goto out;
4702 		}
4703 
4704 		ret = 1;
4705 		spin_lock(&block_rsv->lock);
4706 		if (block_rsv->reserved < block_rsv->size) {
4707 			block_rsv->reserved += buf->len;
4708 			ret = 0;
4709 		}
4710 		spin_unlock(&block_rsv->lock);
4711 
4712 		if (ret) {
4713 			spin_lock(&cache->space_info->lock);
4714 			cache->space_info->bytes_reserved -= buf->len;
4715 			spin_unlock(&cache->space_info->lock);
4716 		}
4717 		goto out;
4718 	}
4719 pin:
4720 	if (block_rsv->durable && !cache->ro) {
4721 		ret = 0;
4722 		spin_lock(&cache->lock);
4723 		if (!cache->ro) {
4724 			cache->reserved_pinned += buf->len;
4725 			ret = 1;
4726 		}
4727 		spin_unlock(&cache->lock);
4728 
4729 		if (ret) {
4730 			spin_lock(&block_rsv->lock);
4731 			block_rsv->freed[trans->transid & 0x1] += buf->len;
4732 			spin_unlock(&block_rsv->lock);
4733 		}
4734 	}
4735 out:
4736 	btrfs_put_block_group(cache);
4737 }
4738 
4739 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4740 		      struct btrfs_root *root,
4741 		      u64 bytenr, u64 num_bytes, u64 parent,
4742 		      u64 root_objectid, u64 owner, u64 offset)
4743 {
4744 	int ret;
4745 
4746 	/*
4747 	 * tree log blocks never actually go into the extent allocation
4748 	 * tree, just update pinning info and exit early.
4749 	 */
4750 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4751 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4752 		/* unlocks the pinned mutex */
4753 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
4754 		ret = 0;
4755 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4756 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4757 					parent, root_objectid, (int)owner,
4758 					BTRFS_DROP_DELAYED_REF, NULL);
4759 		BUG_ON(ret);
4760 	} else {
4761 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4762 					parent, root_objectid, owner,
4763 					offset, BTRFS_DROP_DELAYED_REF, NULL);
4764 		BUG_ON(ret);
4765 	}
4766 	return ret;
4767 }
4768 
4769 static u64 stripe_align(struct btrfs_root *root, u64 val)
4770 {
4771 	u64 mask = ((u64)root->stripesize - 1);
4772 	u64 ret = (val + mask) & ~mask;
4773 	return ret;
4774 }
4775 
4776 /*
4777  * when we wait for progress in the block group caching, its because
4778  * our allocation attempt failed at least once.  So, we must sleep
4779  * and let some progress happen before we try again.
4780  *
4781  * This function will sleep at least once waiting for new free space to
4782  * show up, and then it will check the block group free space numbers
4783  * for our min num_bytes.  Another option is to have it go ahead
4784  * and look in the rbtree for a free extent of a given size, but this
4785  * is a good start.
4786  */
4787 static noinline int
4788 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4789 				u64 num_bytes)
4790 {
4791 	struct btrfs_caching_control *caching_ctl;
4792 	DEFINE_WAIT(wait);
4793 
4794 	caching_ctl = get_caching_control(cache);
4795 	if (!caching_ctl)
4796 		return 0;
4797 
4798 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4799 		   (cache->free_space >= num_bytes));
4800 
4801 	put_caching_control(caching_ctl);
4802 	return 0;
4803 }
4804 
4805 static noinline int
4806 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4807 {
4808 	struct btrfs_caching_control *caching_ctl;
4809 	DEFINE_WAIT(wait);
4810 
4811 	caching_ctl = get_caching_control(cache);
4812 	if (!caching_ctl)
4813 		return 0;
4814 
4815 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
4816 
4817 	put_caching_control(caching_ctl);
4818 	return 0;
4819 }
4820 
4821 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4822 {
4823 	int index;
4824 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4825 		index = 0;
4826 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4827 		index = 1;
4828 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4829 		index = 2;
4830 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4831 		index = 3;
4832 	else
4833 		index = 4;
4834 	return index;
4835 }
4836 
4837 enum btrfs_loop_type {
4838 	LOOP_FIND_IDEAL = 0,
4839 	LOOP_CACHING_NOWAIT = 1,
4840 	LOOP_CACHING_WAIT = 2,
4841 	LOOP_ALLOC_CHUNK = 3,
4842 	LOOP_NO_EMPTY_SIZE = 4,
4843 };
4844 
4845 /*
4846  * walks the btree of allocated extents and find a hole of a given size.
4847  * The key ins is changed to record the hole:
4848  * ins->objectid == block start
4849  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4850  * ins->offset == number of blocks
4851  * Any available blocks before search_start are skipped.
4852  */
4853 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4854 				     struct btrfs_root *orig_root,
4855 				     u64 num_bytes, u64 empty_size,
4856 				     u64 search_start, u64 search_end,
4857 				     u64 hint_byte, struct btrfs_key *ins,
4858 				     int data)
4859 {
4860 	int ret = 0;
4861 	struct btrfs_root *root = orig_root->fs_info->extent_root;
4862 	struct btrfs_free_cluster *last_ptr = NULL;
4863 	struct btrfs_block_group_cache *block_group = NULL;
4864 	int empty_cluster = 2 * 1024 * 1024;
4865 	int allowed_chunk_alloc = 0;
4866 	int done_chunk_alloc = 0;
4867 	struct btrfs_space_info *space_info;
4868 	int last_ptr_loop = 0;
4869 	int loop = 0;
4870 	int index = 0;
4871 	bool found_uncached_bg = false;
4872 	bool failed_cluster_refill = false;
4873 	bool failed_alloc = false;
4874 	bool use_cluster = true;
4875 	u64 ideal_cache_percent = 0;
4876 	u64 ideal_cache_offset = 0;
4877 
4878 	WARN_ON(num_bytes < root->sectorsize);
4879 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4880 	ins->objectid = 0;
4881 	ins->offset = 0;
4882 
4883 	space_info = __find_space_info(root->fs_info, data);
4884 	if (!space_info) {
4885 		printk(KERN_ERR "No space info for %d\n", data);
4886 		return -ENOSPC;
4887 	}
4888 
4889 	/*
4890 	 * If the space info is for both data and metadata it means we have a
4891 	 * small filesystem and we can't use the clustering stuff.
4892 	 */
4893 	if (btrfs_mixed_space_info(space_info))
4894 		use_cluster = false;
4895 
4896 	if (orig_root->ref_cows || empty_size)
4897 		allowed_chunk_alloc = 1;
4898 
4899 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4900 		last_ptr = &root->fs_info->meta_alloc_cluster;
4901 		if (!btrfs_test_opt(root, SSD))
4902 			empty_cluster = 64 * 1024;
4903 	}
4904 
4905 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4906 	    btrfs_test_opt(root, SSD)) {
4907 		last_ptr = &root->fs_info->data_alloc_cluster;
4908 	}
4909 
4910 	if (last_ptr) {
4911 		spin_lock(&last_ptr->lock);
4912 		if (last_ptr->block_group)
4913 			hint_byte = last_ptr->window_start;
4914 		spin_unlock(&last_ptr->lock);
4915 	}
4916 
4917 	search_start = max(search_start, first_logical_byte(root, 0));
4918 	search_start = max(search_start, hint_byte);
4919 
4920 	if (!last_ptr)
4921 		empty_cluster = 0;
4922 
4923 	if (search_start == hint_byte) {
4924 ideal_cache:
4925 		block_group = btrfs_lookup_block_group(root->fs_info,
4926 						       search_start);
4927 		/*
4928 		 * we don't want to use the block group if it doesn't match our
4929 		 * allocation bits, or if its not cached.
4930 		 *
4931 		 * However if we are re-searching with an ideal block group
4932 		 * picked out then we don't care that the block group is cached.
4933 		 */
4934 		if (block_group && block_group_bits(block_group, data) &&
4935 		    (block_group->cached != BTRFS_CACHE_NO ||
4936 		     search_start == ideal_cache_offset)) {
4937 			down_read(&space_info->groups_sem);
4938 			if (list_empty(&block_group->list) ||
4939 			    block_group->ro) {
4940 				/*
4941 				 * someone is removing this block group,
4942 				 * we can't jump into the have_block_group
4943 				 * target because our list pointers are not
4944 				 * valid
4945 				 */
4946 				btrfs_put_block_group(block_group);
4947 				up_read(&space_info->groups_sem);
4948 			} else {
4949 				index = get_block_group_index(block_group);
4950 				goto have_block_group;
4951 			}
4952 		} else if (block_group) {
4953 			btrfs_put_block_group(block_group);
4954 		}
4955 	}
4956 search:
4957 	down_read(&space_info->groups_sem);
4958 	list_for_each_entry(block_group, &space_info->block_groups[index],
4959 			    list) {
4960 		u64 offset;
4961 		int cached;
4962 
4963 		btrfs_get_block_group(block_group);
4964 		search_start = block_group->key.objectid;
4965 
4966 		/*
4967 		 * this can happen if we end up cycling through all the
4968 		 * raid types, but we want to make sure we only allocate
4969 		 * for the proper type.
4970 		 */
4971 		if (!block_group_bits(block_group, data)) {
4972 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
4973 				BTRFS_BLOCK_GROUP_RAID1 |
4974 				BTRFS_BLOCK_GROUP_RAID10;
4975 
4976 			/*
4977 			 * if they asked for extra copies and this block group
4978 			 * doesn't provide them, bail.  This does allow us to
4979 			 * fill raid0 from raid1.
4980 			 */
4981 			if ((data & extra) && !(block_group->flags & extra))
4982 				goto loop;
4983 		}
4984 
4985 have_block_group:
4986 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4987 			u64 free_percent;
4988 
4989 			ret = cache_block_group(block_group, trans,
4990 						orig_root, 1);
4991 			if (block_group->cached == BTRFS_CACHE_FINISHED)
4992 				goto have_block_group;
4993 
4994 			free_percent = btrfs_block_group_used(&block_group->item);
4995 			free_percent *= 100;
4996 			free_percent = div64_u64(free_percent,
4997 						 block_group->key.offset);
4998 			free_percent = 100 - free_percent;
4999 			if (free_percent > ideal_cache_percent &&
5000 			    likely(!block_group->ro)) {
5001 				ideal_cache_offset = block_group->key.objectid;
5002 				ideal_cache_percent = free_percent;
5003 			}
5004 
5005 			/*
5006 			 * We only want to start kthread caching if we are at
5007 			 * the point where we will wait for caching to make
5008 			 * progress, or if our ideal search is over and we've
5009 			 * found somebody to start caching.
5010 			 */
5011 			if (loop > LOOP_CACHING_NOWAIT ||
5012 			    (loop > LOOP_FIND_IDEAL &&
5013 			     atomic_read(&space_info->caching_threads) < 2)) {
5014 				ret = cache_block_group(block_group, trans,
5015 							orig_root, 0);
5016 				BUG_ON(ret);
5017 			}
5018 			found_uncached_bg = true;
5019 
5020 			/*
5021 			 * If loop is set for cached only, try the next block
5022 			 * group.
5023 			 */
5024 			if (loop == LOOP_FIND_IDEAL)
5025 				goto loop;
5026 		}
5027 
5028 		cached = block_group_cache_done(block_group);
5029 		if (unlikely(!cached))
5030 			found_uncached_bg = true;
5031 
5032 		if (unlikely(block_group->ro))
5033 			goto loop;
5034 
5035 		/*
5036 		 * Ok we want to try and use the cluster allocator, so lets look
5037 		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5038 		 * have tried the cluster allocator plenty of times at this
5039 		 * point and not have found anything, so we are likely way too
5040 		 * fragmented for the clustering stuff to find anything, so lets
5041 		 * just skip it and let the allocator find whatever block it can
5042 		 * find
5043 		 */
5044 		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5045 			/*
5046 			 * the refill lock keeps out other
5047 			 * people trying to start a new cluster
5048 			 */
5049 			spin_lock(&last_ptr->refill_lock);
5050 			if (last_ptr->block_group &&
5051 			    (last_ptr->block_group->ro ||
5052 			    !block_group_bits(last_ptr->block_group, data))) {
5053 				offset = 0;
5054 				goto refill_cluster;
5055 			}
5056 
5057 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5058 						 num_bytes, search_start);
5059 			if (offset) {
5060 				/* we have a block, we're done */
5061 				spin_unlock(&last_ptr->refill_lock);
5062 				goto checks;
5063 			}
5064 
5065 			spin_lock(&last_ptr->lock);
5066 			/*
5067 			 * whoops, this cluster doesn't actually point to
5068 			 * this block group.  Get a ref on the block
5069 			 * group is does point to and try again
5070 			 */
5071 			if (!last_ptr_loop && last_ptr->block_group &&
5072 			    last_ptr->block_group != block_group) {
5073 
5074 				btrfs_put_block_group(block_group);
5075 				block_group = last_ptr->block_group;
5076 				btrfs_get_block_group(block_group);
5077 				spin_unlock(&last_ptr->lock);
5078 				spin_unlock(&last_ptr->refill_lock);
5079 
5080 				last_ptr_loop = 1;
5081 				search_start = block_group->key.objectid;
5082 				/*
5083 				 * we know this block group is properly
5084 				 * in the list because
5085 				 * btrfs_remove_block_group, drops the
5086 				 * cluster before it removes the block
5087 				 * group from the list
5088 				 */
5089 				goto have_block_group;
5090 			}
5091 			spin_unlock(&last_ptr->lock);
5092 refill_cluster:
5093 			/*
5094 			 * this cluster didn't work out, free it and
5095 			 * start over
5096 			 */
5097 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5098 
5099 			last_ptr_loop = 0;
5100 
5101 			/* allocate a cluster in this block group */
5102 			ret = btrfs_find_space_cluster(trans, root,
5103 					       block_group, last_ptr,
5104 					       offset, num_bytes,
5105 					       empty_cluster + empty_size);
5106 			if (ret == 0) {
5107 				/*
5108 				 * now pull our allocation out of this
5109 				 * cluster
5110 				 */
5111 				offset = btrfs_alloc_from_cluster(block_group,
5112 						  last_ptr, num_bytes,
5113 						  search_start);
5114 				if (offset) {
5115 					/* we found one, proceed */
5116 					spin_unlock(&last_ptr->refill_lock);
5117 					goto checks;
5118 				}
5119 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5120 				   && !failed_cluster_refill) {
5121 				spin_unlock(&last_ptr->refill_lock);
5122 
5123 				failed_cluster_refill = true;
5124 				wait_block_group_cache_progress(block_group,
5125 				       num_bytes + empty_cluster + empty_size);
5126 				goto have_block_group;
5127 			}
5128 
5129 			/*
5130 			 * at this point we either didn't find a cluster
5131 			 * or we weren't able to allocate a block from our
5132 			 * cluster.  Free the cluster we've been trying
5133 			 * to use, and go to the next block group
5134 			 */
5135 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5136 			spin_unlock(&last_ptr->refill_lock);
5137 			goto loop;
5138 		}
5139 
5140 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5141 						    num_bytes, empty_size);
5142 		/*
5143 		 * If we didn't find a chunk, and we haven't failed on this
5144 		 * block group before, and this block group is in the middle of
5145 		 * caching and we are ok with waiting, then go ahead and wait
5146 		 * for progress to be made, and set failed_alloc to true.
5147 		 *
5148 		 * If failed_alloc is true then we've already waited on this
5149 		 * block group once and should move on to the next block group.
5150 		 */
5151 		if (!offset && !failed_alloc && !cached &&
5152 		    loop > LOOP_CACHING_NOWAIT) {
5153 			wait_block_group_cache_progress(block_group,
5154 						num_bytes + empty_size);
5155 			failed_alloc = true;
5156 			goto have_block_group;
5157 		} else if (!offset) {
5158 			goto loop;
5159 		}
5160 checks:
5161 		search_start = stripe_align(root, offset);
5162 		/* move on to the next group */
5163 		if (search_start + num_bytes >= search_end) {
5164 			btrfs_add_free_space(block_group, offset, num_bytes);
5165 			goto loop;
5166 		}
5167 
5168 		/* move on to the next group */
5169 		if (search_start + num_bytes >
5170 		    block_group->key.objectid + block_group->key.offset) {
5171 			btrfs_add_free_space(block_group, offset, num_bytes);
5172 			goto loop;
5173 		}
5174 
5175 		ins->objectid = search_start;
5176 		ins->offset = num_bytes;
5177 
5178 		if (offset < search_start)
5179 			btrfs_add_free_space(block_group, offset,
5180 					     search_start - offset);
5181 		BUG_ON(offset > search_start);
5182 
5183 		ret = update_reserved_bytes(block_group, num_bytes, 1,
5184 					    (data & BTRFS_BLOCK_GROUP_DATA));
5185 		if (ret == -EAGAIN) {
5186 			btrfs_add_free_space(block_group, offset, num_bytes);
5187 			goto loop;
5188 		}
5189 
5190 		/* we are all good, lets return */
5191 		ins->objectid = search_start;
5192 		ins->offset = num_bytes;
5193 
5194 		if (offset < search_start)
5195 			btrfs_add_free_space(block_group, offset,
5196 					     search_start - offset);
5197 		BUG_ON(offset > search_start);
5198 		break;
5199 loop:
5200 		failed_cluster_refill = false;
5201 		failed_alloc = false;
5202 		BUG_ON(index != get_block_group_index(block_group));
5203 		btrfs_put_block_group(block_group);
5204 	}
5205 	up_read(&space_info->groups_sem);
5206 
5207 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5208 		goto search;
5209 
5210 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5211 	 *			for them to make caching progress.  Also
5212 	 *			determine the best possible bg to cache
5213 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5214 	 *			caching kthreads as we move along
5215 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5216 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5217 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5218 	 *			again
5219 	 */
5220 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5221 	    (found_uncached_bg || empty_size || empty_cluster ||
5222 	     allowed_chunk_alloc)) {
5223 		index = 0;
5224 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5225 			found_uncached_bg = false;
5226 			loop++;
5227 			if (!ideal_cache_percent &&
5228 			    atomic_read(&space_info->caching_threads))
5229 				goto search;
5230 
5231 			/*
5232 			 * 1 of the following 2 things have happened so far
5233 			 *
5234 			 * 1) We found an ideal block group for caching that
5235 			 * is mostly full and will cache quickly, so we might
5236 			 * as well wait for it.
5237 			 *
5238 			 * 2) We searched for cached only and we didn't find
5239 			 * anything, and we didn't start any caching kthreads
5240 			 * either, so chances are we will loop through and
5241 			 * start a couple caching kthreads, and then come back
5242 			 * around and just wait for them.  This will be slower
5243 			 * because we will have 2 caching kthreads reading at
5244 			 * the same time when we could have just started one
5245 			 * and waited for it to get far enough to give us an
5246 			 * allocation, so go ahead and go to the wait caching
5247 			 * loop.
5248 			 */
5249 			loop = LOOP_CACHING_WAIT;
5250 			search_start = ideal_cache_offset;
5251 			ideal_cache_percent = 0;
5252 			goto ideal_cache;
5253 		} else if (loop == LOOP_FIND_IDEAL) {
5254 			/*
5255 			 * Didn't find a uncached bg, wait on anything we find
5256 			 * next.
5257 			 */
5258 			loop = LOOP_CACHING_WAIT;
5259 			goto search;
5260 		}
5261 
5262 		if (loop < LOOP_CACHING_WAIT) {
5263 			loop++;
5264 			goto search;
5265 		}
5266 
5267 		if (loop == LOOP_ALLOC_CHUNK) {
5268 			empty_size = 0;
5269 			empty_cluster = 0;
5270 		}
5271 
5272 		if (allowed_chunk_alloc) {
5273 			ret = do_chunk_alloc(trans, root, num_bytes +
5274 					     2 * 1024 * 1024, data, 1);
5275 			allowed_chunk_alloc = 0;
5276 			done_chunk_alloc = 1;
5277 		} else if (!done_chunk_alloc) {
5278 			space_info->force_alloc = 1;
5279 		}
5280 
5281 		if (loop < LOOP_NO_EMPTY_SIZE) {
5282 			loop++;
5283 			goto search;
5284 		}
5285 		ret = -ENOSPC;
5286 	} else if (!ins->objectid) {
5287 		ret = -ENOSPC;
5288 	}
5289 
5290 	/* we found what we needed */
5291 	if (ins->objectid) {
5292 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
5293 			trans->block_group = block_group->key.objectid;
5294 
5295 		btrfs_put_block_group(block_group);
5296 		ret = 0;
5297 	}
5298 
5299 	return ret;
5300 }
5301 
5302 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5303 			    int dump_block_groups)
5304 {
5305 	struct btrfs_block_group_cache *cache;
5306 	int index = 0;
5307 
5308 	spin_lock(&info->lock);
5309 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5310 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5311 				    info->bytes_pinned - info->bytes_reserved -
5312 				    info->bytes_readonly),
5313 	       (info->full) ? "" : "not ");
5314 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5315 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5316 	       (unsigned long long)info->total_bytes,
5317 	       (unsigned long long)info->bytes_used,
5318 	       (unsigned long long)info->bytes_pinned,
5319 	       (unsigned long long)info->bytes_reserved,
5320 	       (unsigned long long)info->bytes_may_use,
5321 	       (unsigned long long)info->bytes_readonly);
5322 	spin_unlock(&info->lock);
5323 
5324 	if (!dump_block_groups)
5325 		return;
5326 
5327 	down_read(&info->groups_sem);
5328 again:
5329 	list_for_each_entry(cache, &info->block_groups[index], list) {
5330 		spin_lock(&cache->lock);
5331 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5332 		       "%llu pinned %llu reserved\n",
5333 		       (unsigned long long)cache->key.objectid,
5334 		       (unsigned long long)cache->key.offset,
5335 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5336 		       (unsigned long long)cache->pinned,
5337 		       (unsigned long long)cache->reserved);
5338 		btrfs_dump_free_space(cache, bytes);
5339 		spin_unlock(&cache->lock);
5340 	}
5341 	if (++index < BTRFS_NR_RAID_TYPES)
5342 		goto again;
5343 	up_read(&info->groups_sem);
5344 }
5345 
5346 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5347 			 struct btrfs_root *root,
5348 			 u64 num_bytes, u64 min_alloc_size,
5349 			 u64 empty_size, u64 hint_byte,
5350 			 u64 search_end, struct btrfs_key *ins,
5351 			 u64 data)
5352 {
5353 	int ret;
5354 	u64 search_start = 0;
5355 
5356 	data = btrfs_get_alloc_profile(root, data);
5357 again:
5358 	/*
5359 	 * the only place that sets empty_size is btrfs_realloc_node, which
5360 	 * is not called recursively on allocations
5361 	 */
5362 	if (empty_size || root->ref_cows)
5363 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5364 				     num_bytes + 2 * 1024 * 1024, data, 0);
5365 
5366 	WARN_ON(num_bytes < root->sectorsize);
5367 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5368 			       search_start, search_end, hint_byte,
5369 			       ins, data);
5370 
5371 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5372 		num_bytes = num_bytes >> 1;
5373 		num_bytes = num_bytes & ~(root->sectorsize - 1);
5374 		num_bytes = max(num_bytes, min_alloc_size);
5375 		do_chunk_alloc(trans, root->fs_info->extent_root,
5376 			       num_bytes, data, 1);
5377 		goto again;
5378 	}
5379 	if (ret == -ENOSPC) {
5380 		struct btrfs_space_info *sinfo;
5381 
5382 		sinfo = __find_space_info(root->fs_info, data);
5383 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
5384 		       "wanted %llu\n", (unsigned long long)data,
5385 		       (unsigned long long)num_bytes);
5386 		dump_space_info(sinfo, num_bytes, 1);
5387 	}
5388 
5389 	return ret;
5390 }
5391 
5392 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5393 {
5394 	struct btrfs_block_group_cache *cache;
5395 	int ret = 0;
5396 
5397 	cache = btrfs_lookup_block_group(root->fs_info, start);
5398 	if (!cache) {
5399 		printk(KERN_ERR "Unable to find block group for %llu\n",
5400 		       (unsigned long long)start);
5401 		return -ENOSPC;
5402 	}
5403 
5404 	ret = btrfs_discard_extent(root, start, len);
5405 
5406 	btrfs_add_free_space(cache, start, len);
5407 	update_reserved_bytes(cache, len, 0, 1);
5408 	btrfs_put_block_group(cache);
5409 
5410 	return ret;
5411 }
5412 
5413 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5414 				      struct btrfs_root *root,
5415 				      u64 parent, u64 root_objectid,
5416 				      u64 flags, u64 owner, u64 offset,
5417 				      struct btrfs_key *ins, int ref_mod)
5418 {
5419 	int ret;
5420 	struct btrfs_fs_info *fs_info = root->fs_info;
5421 	struct btrfs_extent_item *extent_item;
5422 	struct btrfs_extent_inline_ref *iref;
5423 	struct btrfs_path *path;
5424 	struct extent_buffer *leaf;
5425 	int type;
5426 	u32 size;
5427 
5428 	if (parent > 0)
5429 		type = BTRFS_SHARED_DATA_REF_KEY;
5430 	else
5431 		type = BTRFS_EXTENT_DATA_REF_KEY;
5432 
5433 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5434 
5435 	path = btrfs_alloc_path();
5436 	BUG_ON(!path);
5437 
5438 	path->leave_spinning = 1;
5439 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5440 				      ins, size);
5441 	BUG_ON(ret);
5442 
5443 	leaf = path->nodes[0];
5444 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5445 				     struct btrfs_extent_item);
5446 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5447 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5448 	btrfs_set_extent_flags(leaf, extent_item,
5449 			       flags | BTRFS_EXTENT_FLAG_DATA);
5450 
5451 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5452 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5453 	if (parent > 0) {
5454 		struct btrfs_shared_data_ref *ref;
5455 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5456 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5457 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5458 	} else {
5459 		struct btrfs_extent_data_ref *ref;
5460 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5461 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5462 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5463 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5464 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5465 	}
5466 
5467 	btrfs_mark_buffer_dirty(path->nodes[0]);
5468 	btrfs_free_path(path);
5469 
5470 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5471 	if (ret) {
5472 		printk(KERN_ERR "btrfs update block group failed for %llu "
5473 		       "%llu\n", (unsigned long long)ins->objectid,
5474 		       (unsigned long long)ins->offset);
5475 		BUG();
5476 	}
5477 	return ret;
5478 }
5479 
5480 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5481 				     struct btrfs_root *root,
5482 				     u64 parent, u64 root_objectid,
5483 				     u64 flags, struct btrfs_disk_key *key,
5484 				     int level, struct btrfs_key *ins)
5485 {
5486 	int ret;
5487 	struct btrfs_fs_info *fs_info = root->fs_info;
5488 	struct btrfs_extent_item *extent_item;
5489 	struct btrfs_tree_block_info *block_info;
5490 	struct btrfs_extent_inline_ref *iref;
5491 	struct btrfs_path *path;
5492 	struct extent_buffer *leaf;
5493 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5494 
5495 	path = btrfs_alloc_path();
5496 	BUG_ON(!path);
5497 
5498 	path->leave_spinning = 1;
5499 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5500 				      ins, size);
5501 	BUG_ON(ret);
5502 
5503 	leaf = path->nodes[0];
5504 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5505 				     struct btrfs_extent_item);
5506 	btrfs_set_extent_refs(leaf, extent_item, 1);
5507 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5508 	btrfs_set_extent_flags(leaf, extent_item,
5509 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5510 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5511 
5512 	btrfs_set_tree_block_key(leaf, block_info, key);
5513 	btrfs_set_tree_block_level(leaf, block_info, level);
5514 
5515 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5516 	if (parent > 0) {
5517 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5518 		btrfs_set_extent_inline_ref_type(leaf, iref,
5519 						 BTRFS_SHARED_BLOCK_REF_KEY);
5520 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5521 	} else {
5522 		btrfs_set_extent_inline_ref_type(leaf, iref,
5523 						 BTRFS_TREE_BLOCK_REF_KEY);
5524 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5525 	}
5526 
5527 	btrfs_mark_buffer_dirty(leaf);
5528 	btrfs_free_path(path);
5529 
5530 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5531 	if (ret) {
5532 		printk(KERN_ERR "btrfs update block group failed for %llu "
5533 		       "%llu\n", (unsigned long long)ins->objectid,
5534 		       (unsigned long long)ins->offset);
5535 		BUG();
5536 	}
5537 	return ret;
5538 }
5539 
5540 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5541 				     struct btrfs_root *root,
5542 				     u64 root_objectid, u64 owner,
5543 				     u64 offset, struct btrfs_key *ins)
5544 {
5545 	int ret;
5546 
5547 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5548 
5549 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5550 					 0, root_objectid, owner, offset,
5551 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
5552 	return ret;
5553 }
5554 
5555 /*
5556  * this is used by the tree logging recovery code.  It records that
5557  * an extent has been allocated and makes sure to clear the free
5558  * space cache bits as well
5559  */
5560 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5561 				   struct btrfs_root *root,
5562 				   u64 root_objectid, u64 owner, u64 offset,
5563 				   struct btrfs_key *ins)
5564 {
5565 	int ret;
5566 	struct btrfs_block_group_cache *block_group;
5567 	struct btrfs_caching_control *caching_ctl;
5568 	u64 start = ins->objectid;
5569 	u64 num_bytes = ins->offset;
5570 
5571 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5572 	cache_block_group(block_group, trans, NULL, 0);
5573 	caching_ctl = get_caching_control(block_group);
5574 
5575 	if (!caching_ctl) {
5576 		BUG_ON(!block_group_cache_done(block_group));
5577 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5578 		BUG_ON(ret);
5579 	} else {
5580 		mutex_lock(&caching_ctl->mutex);
5581 
5582 		if (start >= caching_ctl->progress) {
5583 			ret = add_excluded_extent(root, start, num_bytes);
5584 			BUG_ON(ret);
5585 		} else if (start + num_bytes <= caching_ctl->progress) {
5586 			ret = btrfs_remove_free_space(block_group,
5587 						      start, num_bytes);
5588 			BUG_ON(ret);
5589 		} else {
5590 			num_bytes = caching_ctl->progress - start;
5591 			ret = btrfs_remove_free_space(block_group,
5592 						      start, num_bytes);
5593 			BUG_ON(ret);
5594 
5595 			start = caching_ctl->progress;
5596 			num_bytes = ins->objectid + ins->offset -
5597 				    caching_ctl->progress;
5598 			ret = add_excluded_extent(root, start, num_bytes);
5599 			BUG_ON(ret);
5600 		}
5601 
5602 		mutex_unlock(&caching_ctl->mutex);
5603 		put_caching_control(caching_ctl);
5604 	}
5605 
5606 	ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5607 	BUG_ON(ret);
5608 	btrfs_put_block_group(block_group);
5609 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5610 					 0, owner, offset, ins, 1);
5611 	return ret;
5612 }
5613 
5614 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5615 					    struct btrfs_root *root,
5616 					    u64 bytenr, u32 blocksize,
5617 					    int level)
5618 {
5619 	struct extent_buffer *buf;
5620 
5621 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5622 	if (!buf)
5623 		return ERR_PTR(-ENOMEM);
5624 	btrfs_set_header_generation(buf, trans->transid);
5625 	btrfs_set_buffer_lockdep_class(buf, level);
5626 	btrfs_tree_lock(buf);
5627 	clean_tree_block(trans, root, buf);
5628 
5629 	btrfs_set_lock_blocking(buf);
5630 	btrfs_set_buffer_uptodate(buf);
5631 
5632 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5633 		/*
5634 		 * we allow two log transactions at a time, use different
5635 		 * EXENT bit to differentiate dirty pages.
5636 		 */
5637 		if (root->log_transid % 2 == 0)
5638 			set_extent_dirty(&root->dirty_log_pages, buf->start,
5639 					buf->start + buf->len - 1, GFP_NOFS);
5640 		else
5641 			set_extent_new(&root->dirty_log_pages, buf->start,
5642 					buf->start + buf->len - 1, GFP_NOFS);
5643 	} else {
5644 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5645 			 buf->start + buf->len - 1, GFP_NOFS);
5646 	}
5647 	trans->blocks_used++;
5648 	/* this returns a buffer locked for blocking */
5649 	return buf;
5650 }
5651 
5652 static struct btrfs_block_rsv *
5653 use_block_rsv(struct btrfs_trans_handle *trans,
5654 	      struct btrfs_root *root, u32 blocksize)
5655 {
5656 	struct btrfs_block_rsv *block_rsv;
5657 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5658 	int ret;
5659 
5660 	block_rsv = get_block_rsv(trans, root);
5661 
5662 	if (block_rsv->size == 0) {
5663 		ret = reserve_metadata_bytes(trans, root, block_rsv,
5664 					     blocksize, 0);
5665 		/*
5666 		 * If we couldn't reserve metadata bytes try and use some from
5667 		 * the global reserve.
5668 		 */
5669 		if (ret && block_rsv != global_rsv) {
5670 			ret = block_rsv_use_bytes(global_rsv, blocksize);
5671 			if (!ret)
5672 				return global_rsv;
5673 			return ERR_PTR(ret);
5674 		} else if (ret) {
5675 			return ERR_PTR(ret);
5676 		}
5677 		return block_rsv;
5678 	}
5679 
5680 	ret = block_rsv_use_bytes(block_rsv, blocksize);
5681 	if (!ret)
5682 		return block_rsv;
5683 	if (ret) {
5684 		WARN_ON(1);
5685 		ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5686 					     0);
5687 		if (!ret) {
5688 			spin_lock(&block_rsv->lock);
5689 			block_rsv->size += blocksize;
5690 			spin_unlock(&block_rsv->lock);
5691 			return block_rsv;
5692 		} else if (ret && block_rsv != global_rsv) {
5693 			ret = block_rsv_use_bytes(global_rsv, blocksize);
5694 			if (!ret)
5695 				return global_rsv;
5696 		}
5697 	}
5698 
5699 	return ERR_PTR(-ENOSPC);
5700 }
5701 
5702 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5703 {
5704 	block_rsv_add_bytes(block_rsv, blocksize, 0);
5705 	block_rsv_release_bytes(block_rsv, NULL, 0);
5706 }
5707 
5708 /*
5709  * finds a free extent and does all the dirty work required for allocation
5710  * returns the key for the extent through ins, and a tree buffer for
5711  * the first block of the extent through buf.
5712  *
5713  * returns the tree buffer or NULL.
5714  */
5715 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5716 					struct btrfs_root *root, u32 blocksize,
5717 					u64 parent, u64 root_objectid,
5718 					struct btrfs_disk_key *key, int level,
5719 					u64 hint, u64 empty_size)
5720 {
5721 	struct btrfs_key ins;
5722 	struct btrfs_block_rsv *block_rsv;
5723 	struct extent_buffer *buf;
5724 	u64 flags = 0;
5725 	int ret;
5726 
5727 
5728 	block_rsv = use_block_rsv(trans, root, blocksize);
5729 	if (IS_ERR(block_rsv))
5730 		return ERR_CAST(block_rsv);
5731 
5732 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5733 				   empty_size, hint, (u64)-1, &ins, 0);
5734 	if (ret) {
5735 		unuse_block_rsv(block_rsv, blocksize);
5736 		return ERR_PTR(ret);
5737 	}
5738 
5739 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5740 				    blocksize, level);
5741 	BUG_ON(IS_ERR(buf));
5742 
5743 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5744 		if (parent == 0)
5745 			parent = ins.objectid;
5746 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5747 	} else
5748 		BUG_ON(parent > 0);
5749 
5750 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5751 		struct btrfs_delayed_extent_op *extent_op;
5752 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5753 		BUG_ON(!extent_op);
5754 		if (key)
5755 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5756 		else
5757 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5758 		extent_op->flags_to_set = flags;
5759 		extent_op->update_key = 1;
5760 		extent_op->update_flags = 1;
5761 		extent_op->is_data = 0;
5762 
5763 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5764 					ins.offset, parent, root_objectid,
5765 					level, BTRFS_ADD_DELAYED_EXTENT,
5766 					extent_op);
5767 		BUG_ON(ret);
5768 	}
5769 	return buf;
5770 }
5771 
5772 struct walk_control {
5773 	u64 refs[BTRFS_MAX_LEVEL];
5774 	u64 flags[BTRFS_MAX_LEVEL];
5775 	struct btrfs_key update_progress;
5776 	int stage;
5777 	int level;
5778 	int shared_level;
5779 	int update_ref;
5780 	int keep_locks;
5781 	int reada_slot;
5782 	int reada_count;
5783 };
5784 
5785 #define DROP_REFERENCE	1
5786 #define UPDATE_BACKREF	2
5787 
5788 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5789 				     struct btrfs_root *root,
5790 				     struct walk_control *wc,
5791 				     struct btrfs_path *path)
5792 {
5793 	u64 bytenr;
5794 	u64 generation;
5795 	u64 refs;
5796 	u64 flags;
5797 	u32 nritems;
5798 	u32 blocksize;
5799 	struct btrfs_key key;
5800 	struct extent_buffer *eb;
5801 	int ret;
5802 	int slot;
5803 	int nread = 0;
5804 
5805 	if (path->slots[wc->level] < wc->reada_slot) {
5806 		wc->reada_count = wc->reada_count * 2 / 3;
5807 		wc->reada_count = max(wc->reada_count, 2);
5808 	} else {
5809 		wc->reada_count = wc->reada_count * 3 / 2;
5810 		wc->reada_count = min_t(int, wc->reada_count,
5811 					BTRFS_NODEPTRS_PER_BLOCK(root));
5812 	}
5813 
5814 	eb = path->nodes[wc->level];
5815 	nritems = btrfs_header_nritems(eb);
5816 	blocksize = btrfs_level_size(root, wc->level - 1);
5817 
5818 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5819 		if (nread >= wc->reada_count)
5820 			break;
5821 
5822 		cond_resched();
5823 		bytenr = btrfs_node_blockptr(eb, slot);
5824 		generation = btrfs_node_ptr_generation(eb, slot);
5825 
5826 		if (slot == path->slots[wc->level])
5827 			goto reada;
5828 
5829 		if (wc->stage == UPDATE_BACKREF &&
5830 		    generation <= root->root_key.offset)
5831 			continue;
5832 
5833 		/* We don't lock the tree block, it's OK to be racy here */
5834 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5835 					       &refs, &flags);
5836 		BUG_ON(ret);
5837 		BUG_ON(refs == 0);
5838 
5839 		if (wc->stage == DROP_REFERENCE) {
5840 			if (refs == 1)
5841 				goto reada;
5842 
5843 			if (wc->level == 1 &&
5844 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5845 				continue;
5846 			if (!wc->update_ref ||
5847 			    generation <= root->root_key.offset)
5848 				continue;
5849 			btrfs_node_key_to_cpu(eb, &key, slot);
5850 			ret = btrfs_comp_cpu_keys(&key,
5851 						  &wc->update_progress);
5852 			if (ret < 0)
5853 				continue;
5854 		} else {
5855 			if (wc->level == 1 &&
5856 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5857 				continue;
5858 		}
5859 reada:
5860 		ret = readahead_tree_block(root, bytenr, blocksize,
5861 					   generation);
5862 		if (ret)
5863 			break;
5864 		nread++;
5865 	}
5866 	wc->reada_slot = slot;
5867 }
5868 
5869 /*
5870  * hepler to process tree block while walking down the tree.
5871  *
5872  * when wc->stage == UPDATE_BACKREF, this function updates
5873  * back refs for pointers in the block.
5874  *
5875  * NOTE: return value 1 means we should stop walking down.
5876  */
5877 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5878 				   struct btrfs_root *root,
5879 				   struct btrfs_path *path,
5880 				   struct walk_control *wc, int lookup_info)
5881 {
5882 	int level = wc->level;
5883 	struct extent_buffer *eb = path->nodes[level];
5884 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5885 	int ret;
5886 
5887 	if (wc->stage == UPDATE_BACKREF &&
5888 	    btrfs_header_owner(eb) != root->root_key.objectid)
5889 		return 1;
5890 
5891 	/*
5892 	 * when reference count of tree block is 1, it won't increase
5893 	 * again. once full backref flag is set, we never clear it.
5894 	 */
5895 	if (lookup_info &&
5896 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5897 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5898 		BUG_ON(!path->locks[level]);
5899 		ret = btrfs_lookup_extent_info(trans, root,
5900 					       eb->start, eb->len,
5901 					       &wc->refs[level],
5902 					       &wc->flags[level]);
5903 		BUG_ON(ret);
5904 		BUG_ON(wc->refs[level] == 0);
5905 	}
5906 
5907 	if (wc->stage == DROP_REFERENCE) {
5908 		if (wc->refs[level] > 1)
5909 			return 1;
5910 
5911 		if (path->locks[level] && !wc->keep_locks) {
5912 			btrfs_tree_unlock(eb);
5913 			path->locks[level] = 0;
5914 		}
5915 		return 0;
5916 	}
5917 
5918 	/* wc->stage == UPDATE_BACKREF */
5919 	if (!(wc->flags[level] & flag)) {
5920 		BUG_ON(!path->locks[level]);
5921 		ret = btrfs_inc_ref(trans, root, eb, 1);
5922 		BUG_ON(ret);
5923 		ret = btrfs_dec_ref(trans, root, eb, 0);
5924 		BUG_ON(ret);
5925 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5926 						  eb->len, flag, 0);
5927 		BUG_ON(ret);
5928 		wc->flags[level] |= flag;
5929 	}
5930 
5931 	/*
5932 	 * the block is shared by multiple trees, so it's not good to
5933 	 * keep the tree lock
5934 	 */
5935 	if (path->locks[level] && level > 0) {
5936 		btrfs_tree_unlock(eb);
5937 		path->locks[level] = 0;
5938 	}
5939 	return 0;
5940 }
5941 
5942 /*
5943  * hepler to process tree block pointer.
5944  *
5945  * when wc->stage == DROP_REFERENCE, this function checks
5946  * reference count of the block pointed to. if the block
5947  * is shared and we need update back refs for the subtree
5948  * rooted at the block, this function changes wc->stage to
5949  * UPDATE_BACKREF. if the block is shared and there is no
5950  * need to update back, this function drops the reference
5951  * to the block.
5952  *
5953  * NOTE: return value 1 means we should stop walking down.
5954  */
5955 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5956 				 struct btrfs_root *root,
5957 				 struct btrfs_path *path,
5958 				 struct walk_control *wc, int *lookup_info)
5959 {
5960 	u64 bytenr;
5961 	u64 generation;
5962 	u64 parent;
5963 	u32 blocksize;
5964 	struct btrfs_key key;
5965 	struct extent_buffer *next;
5966 	int level = wc->level;
5967 	int reada = 0;
5968 	int ret = 0;
5969 
5970 	generation = btrfs_node_ptr_generation(path->nodes[level],
5971 					       path->slots[level]);
5972 	/*
5973 	 * if the lower level block was created before the snapshot
5974 	 * was created, we know there is no need to update back refs
5975 	 * for the subtree
5976 	 */
5977 	if (wc->stage == UPDATE_BACKREF &&
5978 	    generation <= root->root_key.offset) {
5979 		*lookup_info = 1;
5980 		return 1;
5981 	}
5982 
5983 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5984 	blocksize = btrfs_level_size(root, level - 1);
5985 
5986 	next = btrfs_find_tree_block(root, bytenr, blocksize);
5987 	if (!next) {
5988 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5989 		if (!next)
5990 			return -ENOMEM;
5991 		reada = 1;
5992 	}
5993 	btrfs_tree_lock(next);
5994 	btrfs_set_lock_blocking(next);
5995 
5996 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5997 				       &wc->refs[level - 1],
5998 				       &wc->flags[level - 1]);
5999 	BUG_ON(ret);
6000 	BUG_ON(wc->refs[level - 1] == 0);
6001 	*lookup_info = 0;
6002 
6003 	if (wc->stage == DROP_REFERENCE) {
6004 		if (wc->refs[level - 1] > 1) {
6005 			if (level == 1 &&
6006 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6007 				goto skip;
6008 
6009 			if (!wc->update_ref ||
6010 			    generation <= root->root_key.offset)
6011 				goto skip;
6012 
6013 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6014 					      path->slots[level]);
6015 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6016 			if (ret < 0)
6017 				goto skip;
6018 
6019 			wc->stage = UPDATE_BACKREF;
6020 			wc->shared_level = level - 1;
6021 		}
6022 	} else {
6023 		if (level == 1 &&
6024 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6025 			goto skip;
6026 	}
6027 
6028 	if (!btrfs_buffer_uptodate(next, generation)) {
6029 		btrfs_tree_unlock(next);
6030 		free_extent_buffer(next);
6031 		next = NULL;
6032 		*lookup_info = 1;
6033 	}
6034 
6035 	if (!next) {
6036 		if (reada && level == 1)
6037 			reada_walk_down(trans, root, wc, path);
6038 		next = read_tree_block(root, bytenr, blocksize, generation);
6039 		btrfs_tree_lock(next);
6040 		btrfs_set_lock_blocking(next);
6041 	}
6042 
6043 	level--;
6044 	BUG_ON(level != btrfs_header_level(next));
6045 	path->nodes[level] = next;
6046 	path->slots[level] = 0;
6047 	path->locks[level] = 1;
6048 	wc->level = level;
6049 	if (wc->level == 1)
6050 		wc->reada_slot = 0;
6051 	return 0;
6052 skip:
6053 	wc->refs[level - 1] = 0;
6054 	wc->flags[level - 1] = 0;
6055 	if (wc->stage == DROP_REFERENCE) {
6056 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6057 			parent = path->nodes[level]->start;
6058 		} else {
6059 			BUG_ON(root->root_key.objectid !=
6060 			       btrfs_header_owner(path->nodes[level]));
6061 			parent = 0;
6062 		}
6063 
6064 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6065 					root->root_key.objectid, level - 1, 0);
6066 		BUG_ON(ret);
6067 	}
6068 	btrfs_tree_unlock(next);
6069 	free_extent_buffer(next);
6070 	*lookup_info = 1;
6071 	return 1;
6072 }
6073 
6074 /*
6075  * hepler to process tree block while walking up the tree.
6076  *
6077  * when wc->stage == DROP_REFERENCE, this function drops
6078  * reference count on the block.
6079  *
6080  * when wc->stage == UPDATE_BACKREF, this function changes
6081  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6082  * to UPDATE_BACKREF previously while processing the block.
6083  *
6084  * NOTE: return value 1 means we should stop walking up.
6085  */
6086 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6087 				 struct btrfs_root *root,
6088 				 struct btrfs_path *path,
6089 				 struct walk_control *wc)
6090 {
6091 	int ret;
6092 	int level = wc->level;
6093 	struct extent_buffer *eb = path->nodes[level];
6094 	u64 parent = 0;
6095 
6096 	if (wc->stage == UPDATE_BACKREF) {
6097 		BUG_ON(wc->shared_level < level);
6098 		if (level < wc->shared_level)
6099 			goto out;
6100 
6101 		ret = find_next_key(path, level + 1, &wc->update_progress);
6102 		if (ret > 0)
6103 			wc->update_ref = 0;
6104 
6105 		wc->stage = DROP_REFERENCE;
6106 		wc->shared_level = -1;
6107 		path->slots[level] = 0;
6108 
6109 		/*
6110 		 * check reference count again if the block isn't locked.
6111 		 * we should start walking down the tree again if reference
6112 		 * count is one.
6113 		 */
6114 		if (!path->locks[level]) {
6115 			BUG_ON(level == 0);
6116 			btrfs_tree_lock(eb);
6117 			btrfs_set_lock_blocking(eb);
6118 			path->locks[level] = 1;
6119 
6120 			ret = btrfs_lookup_extent_info(trans, root,
6121 						       eb->start, eb->len,
6122 						       &wc->refs[level],
6123 						       &wc->flags[level]);
6124 			BUG_ON(ret);
6125 			BUG_ON(wc->refs[level] == 0);
6126 			if (wc->refs[level] == 1) {
6127 				btrfs_tree_unlock(eb);
6128 				path->locks[level] = 0;
6129 				return 1;
6130 			}
6131 		}
6132 	}
6133 
6134 	/* wc->stage == DROP_REFERENCE */
6135 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6136 
6137 	if (wc->refs[level] == 1) {
6138 		if (level == 0) {
6139 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6140 				ret = btrfs_dec_ref(trans, root, eb, 1);
6141 			else
6142 				ret = btrfs_dec_ref(trans, root, eb, 0);
6143 			BUG_ON(ret);
6144 		}
6145 		/* make block locked assertion in clean_tree_block happy */
6146 		if (!path->locks[level] &&
6147 		    btrfs_header_generation(eb) == trans->transid) {
6148 			btrfs_tree_lock(eb);
6149 			btrfs_set_lock_blocking(eb);
6150 			path->locks[level] = 1;
6151 		}
6152 		clean_tree_block(trans, root, eb);
6153 	}
6154 
6155 	if (eb == root->node) {
6156 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6157 			parent = eb->start;
6158 		else
6159 			BUG_ON(root->root_key.objectid !=
6160 			       btrfs_header_owner(eb));
6161 	} else {
6162 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6163 			parent = path->nodes[level + 1]->start;
6164 		else
6165 			BUG_ON(root->root_key.objectid !=
6166 			       btrfs_header_owner(path->nodes[level + 1]));
6167 	}
6168 
6169 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6170 out:
6171 	wc->refs[level] = 0;
6172 	wc->flags[level] = 0;
6173 	return 0;
6174 }
6175 
6176 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6177 				   struct btrfs_root *root,
6178 				   struct btrfs_path *path,
6179 				   struct walk_control *wc)
6180 {
6181 	int level = wc->level;
6182 	int lookup_info = 1;
6183 	int ret;
6184 
6185 	while (level >= 0) {
6186 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6187 		if (ret > 0)
6188 			break;
6189 
6190 		if (level == 0)
6191 			break;
6192 
6193 		if (path->slots[level] >=
6194 		    btrfs_header_nritems(path->nodes[level]))
6195 			break;
6196 
6197 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6198 		if (ret > 0) {
6199 			path->slots[level]++;
6200 			continue;
6201 		} else if (ret < 0)
6202 			return ret;
6203 		level = wc->level;
6204 	}
6205 	return 0;
6206 }
6207 
6208 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6209 				 struct btrfs_root *root,
6210 				 struct btrfs_path *path,
6211 				 struct walk_control *wc, int max_level)
6212 {
6213 	int level = wc->level;
6214 	int ret;
6215 
6216 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6217 	while (level < max_level && path->nodes[level]) {
6218 		wc->level = level;
6219 		if (path->slots[level] + 1 <
6220 		    btrfs_header_nritems(path->nodes[level])) {
6221 			path->slots[level]++;
6222 			return 0;
6223 		} else {
6224 			ret = walk_up_proc(trans, root, path, wc);
6225 			if (ret > 0)
6226 				return 0;
6227 
6228 			if (path->locks[level]) {
6229 				btrfs_tree_unlock(path->nodes[level]);
6230 				path->locks[level] = 0;
6231 			}
6232 			free_extent_buffer(path->nodes[level]);
6233 			path->nodes[level] = NULL;
6234 			level++;
6235 		}
6236 	}
6237 	return 1;
6238 }
6239 
6240 /*
6241  * drop a subvolume tree.
6242  *
6243  * this function traverses the tree freeing any blocks that only
6244  * referenced by the tree.
6245  *
6246  * when a shared tree block is found. this function decreases its
6247  * reference count by one. if update_ref is true, this function
6248  * also make sure backrefs for the shared block and all lower level
6249  * blocks are properly updated.
6250  */
6251 int btrfs_drop_snapshot(struct btrfs_root *root,
6252 			struct btrfs_block_rsv *block_rsv, int update_ref)
6253 {
6254 	struct btrfs_path *path;
6255 	struct btrfs_trans_handle *trans;
6256 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6257 	struct btrfs_root_item *root_item = &root->root_item;
6258 	struct walk_control *wc;
6259 	struct btrfs_key key;
6260 	int err = 0;
6261 	int ret;
6262 	int level;
6263 
6264 	path = btrfs_alloc_path();
6265 	BUG_ON(!path);
6266 
6267 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6268 	BUG_ON(!wc);
6269 
6270 	trans = btrfs_start_transaction(tree_root, 0);
6271 	BUG_ON(IS_ERR(trans));
6272 
6273 	if (block_rsv)
6274 		trans->block_rsv = block_rsv;
6275 
6276 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6277 		level = btrfs_header_level(root->node);
6278 		path->nodes[level] = btrfs_lock_root_node(root);
6279 		btrfs_set_lock_blocking(path->nodes[level]);
6280 		path->slots[level] = 0;
6281 		path->locks[level] = 1;
6282 		memset(&wc->update_progress, 0,
6283 		       sizeof(wc->update_progress));
6284 	} else {
6285 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6286 		memcpy(&wc->update_progress, &key,
6287 		       sizeof(wc->update_progress));
6288 
6289 		level = root_item->drop_level;
6290 		BUG_ON(level == 0);
6291 		path->lowest_level = level;
6292 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6293 		path->lowest_level = 0;
6294 		if (ret < 0) {
6295 			err = ret;
6296 			goto out;
6297 		}
6298 		WARN_ON(ret > 0);
6299 
6300 		/*
6301 		 * unlock our path, this is safe because only this
6302 		 * function is allowed to delete this snapshot
6303 		 */
6304 		btrfs_unlock_up_safe(path, 0);
6305 
6306 		level = btrfs_header_level(root->node);
6307 		while (1) {
6308 			btrfs_tree_lock(path->nodes[level]);
6309 			btrfs_set_lock_blocking(path->nodes[level]);
6310 
6311 			ret = btrfs_lookup_extent_info(trans, root,
6312 						path->nodes[level]->start,
6313 						path->nodes[level]->len,
6314 						&wc->refs[level],
6315 						&wc->flags[level]);
6316 			BUG_ON(ret);
6317 			BUG_ON(wc->refs[level] == 0);
6318 
6319 			if (level == root_item->drop_level)
6320 				break;
6321 
6322 			btrfs_tree_unlock(path->nodes[level]);
6323 			WARN_ON(wc->refs[level] != 1);
6324 			level--;
6325 		}
6326 	}
6327 
6328 	wc->level = level;
6329 	wc->shared_level = -1;
6330 	wc->stage = DROP_REFERENCE;
6331 	wc->update_ref = update_ref;
6332 	wc->keep_locks = 0;
6333 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6334 
6335 	while (1) {
6336 		ret = walk_down_tree(trans, root, path, wc);
6337 		if (ret < 0) {
6338 			err = ret;
6339 			break;
6340 		}
6341 
6342 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6343 		if (ret < 0) {
6344 			err = ret;
6345 			break;
6346 		}
6347 
6348 		if (ret > 0) {
6349 			BUG_ON(wc->stage != DROP_REFERENCE);
6350 			break;
6351 		}
6352 
6353 		if (wc->stage == DROP_REFERENCE) {
6354 			level = wc->level;
6355 			btrfs_node_key(path->nodes[level],
6356 				       &root_item->drop_progress,
6357 				       path->slots[level]);
6358 			root_item->drop_level = level;
6359 		}
6360 
6361 		BUG_ON(wc->level == 0);
6362 		if (btrfs_should_end_transaction(trans, tree_root)) {
6363 			ret = btrfs_update_root(trans, tree_root,
6364 						&root->root_key,
6365 						root_item);
6366 			BUG_ON(ret);
6367 
6368 			btrfs_end_transaction_throttle(trans, tree_root);
6369 			trans = btrfs_start_transaction(tree_root, 0);
6370 			BUG_ON(IS_ERR(trans));
6371 			if (block_rsv)
6372 				trans->block_rsv = block_rsv;
6373 		}
6374 	}
6375 	btrfs_release_path(root, path);
6376 	BUG_ON(err);
6377 
6378 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6379 	BUG_ON(ret);
6380 
6381 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6382 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6383 					   NULL, NULL);
6384 		BUG_ON(ret < 0);
6385 		if (ret > 0) {
6386 			/* if we fail to delete the orphan item this time
6387 			 * around, it'll get picked up the next time.
6388 			 *
6389 			 * The most common failure here is just -ENOENT.
6390 			 */
6391 			btrfs_del_orphan_item(trans, tree_root,
6392 					      root->root_key.objectid);
6393 		}
6394 	}
6395 
6396 	if (root->in_radix) {
6397 		btrfs_free_fs_root(tree_root->fs_info, root);
6398 	} else {
6399 		free_extent_buffer(root->node);
6400 		free_extent_buffer(root->commit_root);
6401 		kfree(root);
6402 	}
6403 out:
6404 	btrfs_end_transaction_throttle(trans, tree_root);
6405 	kfree(wc);
6406 	btrfs_free_path(path);
6407 	return err;
6408 }
6409 
6410 /*
6411  * drop subtree rooted at tree block 'node'.
6412  *
6413  * NOTE: this function will unlock and release tree block 'node'
6414  */
6415 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6416 			struct btrfs_root *root,
6417 			struct extent_buffer *node,
6418 			struct extent_buffer *parent)
6419 {
6420 	struct btrfs_path *path;
6421 	struct walk_control *wc;
6422 	int level;
6423 	int parent_level;
6424 	int ret = 0;
6425 	int wret;
6426 
6427 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6428 
6429 	path = btrfs_alloc_path();
6430 	BUG_ON(!path);
6431 
6432 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6433 	BUG_ON(!wc);
6434 
6435 	btrfs_assert_tree_locked(parent);
6436 	parent_level = btrfs_header_level(parent);
6437 	extent_buffer_get(parent);
6438 	path->nodes[parent_level] = parent;
6439 	path->slots[parent_level] = btrfs_header_nritems(parent);
6440 
6441 	btrfs_assert_tree_locked(node);
6442 	level = btrfs_header_level(node);
6443 	path->nodes[level] = node;
6444 	path->slots[level] = 0;
6445 	path->locks[level] = 1;
6446 
6447 	wc->refs[parent_level] = 1;
6448 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6449 	wc->level = level;
6450 	wc->shared_level = -1;
6451 	wc->stage = DROP_REFERENCE;
6452 	wc->update_ref = 0;
6453 	wc->keep_locks = 1;
6454 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6455 
6456 	while (1) {
6457 		wret = walk_down_tree(trans, root, path, wc);
6458 		if (wret < 0) {
6459 			ret = wret;
6460 			break;
6461 		}
6462 
6463 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6464 		if (wret < 0)
6465 			ret = wret;
6466 		if (wret != 0)
6467 			break;
6468 	}
6469 
6470 	kfree(wc);
6471 	btrfs_free_path(path);
6472 	return ret;
6473 }
6474 
6475 #if 0
6476 static unsigned long calc_ra(unsigned long start, unsigned long last,
6477 			     unsigned long nr)
6478 {
6479 	return min(last, start + nr - 1);
6480 }
6481 
6482 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6483 					 u64 len)
6484 {
6485 	u64 page_start;
6486 	u64 page_end;
6487 	unsigned long first_index;
6488 	unsigned long last_index;
6489 	unsigned long i;
6490 	struct page *page;
6491 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6492 	struct file_ra_state *ra;
6493 	struct btrfs_ordered_extent *ordered;
6494 	unsigned int total_read = 0;
6495 	unsigned int total_dirty = 0;
6496 	int ret = 0;
6497 
6498 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
6499 	if (!ra)
6500 		return -ENOMEM;
6501 
6502 	mutex_lock(&inode->i_mutex);
6503 	first_index = start >> PAGE_CACHE_SHIFT;
6504 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6505 
6506 	/* make sure the dirty trick played by the caller work */
6507 	ret = invalidate_inode_pages2_range(inode->i_mapping,
6508 					    first_index, last_index);
6509 	if (ret)
6510 		goto out_unlock;
6511 
6512 	file_ra_state_init(ra, inode->i_mapping);
6513 
6514 	for (i = first_index ; i <= last_index; i++) {
6515 		if (total_read % ra->ra_pages == 0) {
6516 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6517 				       calc_ra(i, last_index, ra->ra_pages));
6518 		}
6519 		total_read++;
6520 again:
6521 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6522 			BUG_ON(1);
6523 		page = grab_cache_page(inode->i_mapping, i);
6524 		if (!page) {
6525 			ret = -ENOMEM;
6526 			goto out_unlock;
6527 		}
6528 		if (!PageUptodate(page)) {
6529 			btrfs_readpage(NULL, page);
6530 			lock_page(page);
6531 			if (!PageUptodate(page)) {
6532 				unlock_page(page);
6533 				page_cache_release(page);
6534 				ret = -EIO;
6535 				goto out_unlock;
6536 			}
6537 		}
6538 		wait_on_page_writeback(page);
6539 
6540 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6541 		page_end = page_start + PAGE_CACHE_SIZE - 1;
6542 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6543 
6544 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
6545 		if (ordered) {
6546 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6547 			unlock_page(page);
6548 			page_cache_release(page);
6549 			btrfs_start_ordered_extent(inode, ordered, 1);
6550 			btrfs_put_ordered_extent(ordered);
6551 			goto again;
6552 		}
6553 		set_page_extent_mapped(page);
6554 
6555 		if (i == first_index)
6556 			set_extent_bits(io_tree, page_start, page_end,
6557 					EXTENT_BOUNDARY, GFP_NOFS);
6558 		btrfs_set_extent_delalloc(inode, page_start, page_end);
6559 
6560 		set_page_dirty(page);
6561 		total_dirty++;
6562 
6563 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6564 		unlock_page(page);
6565 		page_cache_release(page);
6566 	}
6567 
6568 out_unlock:
6569 	kfree(ra);
6570 	mutex_unlock(&inode->i_mutex);
6571 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6572 	return ret;
6573 }
6574 
6575 static noinline int relocate_data_extent(struct inode *reloc_inode,
6576 					 struct btrfs_key *extent_key,
6577 					 u64 offset)
6578 {
6579 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6580 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6581 	struct extent_map *em;
6582 	u64 start = extent_key->objectid - offset;
6583 	u64 end = start + extent_key->offset - 1;
6584 
6585 	em = alloc_extent_map(GFP_NOFS);
6586 	BUG_ON(!em);
6587 
6588 	em->start = start;
6589 	em->len = extent_key->offset;
6590 	em->block_len = extent_key->offset;
6591 	em->block_start = extent_key->objectid;
6592 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6593 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6594 
6595 	/* setup extent map to cheat btrfs_readpage */
6596 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6597 	while (1) {
6598 		int ret;
6599 		write_lock(&em_tree->lock);
6600 		ret = add_extent_mapping(em_tree, em);
6601 		write_unlock(&em_tree->lock);
6602 		if (ret != -EEXIST) {
6603 			free_extent_map(em);
6604 			break;
6605 		}
6606 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6607 	}
6608 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6609 
6610 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6611 }
6612 
6613 struct btrfs_ref_path {
6614 	u64 extent_start;
6615 	u64 nodes[BTRFS_MAX_LEVEL];
6616 	u64 root_objectid;
6617 	u64 root_generation;
6618 	u64 owner_objectid;
6619 	u32 num_refs;
6620 	int lowest_level;
6621 	int current_level;
6622 	int shared_level;
6623 
6624 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6625 	u64 new_nodes[BTRFS_MAX_LEVEL];
6626 };
6627 
6628 struct disk_extent {
6629 	u64 ram_bytes;
6630 	u64 disk_bytenr;
6631 	u64 disk_num_bytes;
6632 	u64 offset;
6633 	u64 num_bytes;
6634 	u8 compression;
6635 	u8 encryption;
6636 	u16 other_encoding;
6637 };
6638 
6639 static int is_cowonly_root(u64 root_objectid)
6640 {
6641 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6642 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6643 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6644 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6645 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6646 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6647 		return 1;
6648 	return 0;
6649 }
6650 
6651 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6652 				    struct btrfs_root *extent_root,
6653 				    struct btrfs_ref_path *ref_path,
6654 				    int first_time)
6655 {
6656 	struct extent_buffer *leaf;
6657 	struct btrfs_path *path;
6658 	struct btrfs_extent_ref *ref;
6659 	struct btrfs_key key;
6660 	struct btrfs_key found_key;
6661 	u64 bytenr;
6662 	u32 nritems;
6663 	int level;
6664 	int ret = 1;
6665 
6666 	path = btrfs_alloc_path();
6667 	if (!path)
6668 		return -ENOMEM;
6669 
6670 	if (first_time) {
6671 		ref_path->lowest_level = -1;
6672 		ref_path->current_level = -1;
6673 		ref_path->shared_level = -1;
6674 		goto walk_up;
6675 	}
6676 walk_down:
6677 	level = ref_path->current_level - 1;
6678 	while (level >= -1) {
6679 		u64 parent;
6680 		if (level < ref_path->lowest_level)
6681 			break;
6682 
6683 		if (level >= 0)
6684 			bytenr = ref_path->nodes[level];
6685 		else
6686 			bytenr = ref_path->extent_start;
6687 		BUG_ON(bytenr == 0);
6688 
6689 		parent = ref_path->nodes[level + 1];
6690 		ref_path->nodes[level + 1] = 0;
6691 		ref_path->current_level = level;
6692 		BUG_ON(parent == 0);
6693 
6694 		key.objectid = bytenr;
6695 		key.offset = parent + 1;
6696 		key.type = BTRFS_EXTENT_REF_KEY;
6697 
6698 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6699 		if (ret < 0)
6700 			goto out;
6701 		BUG_ON(ret == 0);
6702 
6703 		leaf = path->nodes[0];
6704 		nritems = btrfs_header_nritems(leaf);
6705 		if (path->slots[0] >= nritems) {
6706 			ret = btrfs_next_leaf(extent_root, path);
6707 			if (ret < 0)
6708 				goto out;
6709 			if (ret > 0)
6710 				goto next;
6711 			leaf = path->nodes[0];
6712 		}
6713 
6714 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6715 		if (found_key.objectid == bytenr &&
6716 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
6717 			if (level < ref_path->shared_level)
6718 				ref_path->shared_level = level;
6719 			goto found;
6720 		}
6721 next:
6722 		level--;
6723 		btrfs_release_path(extent_root, path);
6724 		cond_resched();
6725 	}
6726 	/* reached lowest level */
6727 	ret = 1;
6728 	goto out;
6729 walk_up:
6730 	level = ref_path->current_level;
6731 	while (level < BTRFS_MAX_LEVEL - 1) {
6732 		u64 ref_objectid;
6733 
6734 		if (level >= 0)
6735 			bytenr = ref_path->nodes[level];
6736 		else
6737 			bytenr = ref_path->extent_start;
6738 
6739 		BUG_ON(bytenr == 0);
6740 
6741 		key.objectid = bytenr;
6742 		key.offset = 0;
6743 		key.type = BTRFS_EXTENT_REF_KEY;
6744 
6745 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6746 		if (ret < 0)
6747 			goto out;
6748 
6749 		leaf = path->nodes[0];
6750 		nritems = btrfs_header_nritems(leaf);
6751 		if (path->slots[0] >= nritems) {
6752 			ret = btrfs_next_leaf(extent_root, path);
6753 			if (ret < 0)
6754 				goto out;
6755 			if (ret > 0) {
6756 				/* the extent was freed by someone */
6757 				if (ref_path->lowest_level == level)
6758 					goto out;
6759 				btrfs_release_path(extent_root, path);
6760 				goto walk_down;
6761 			}
6762 			leaf = path->nodes[0];
6763 		}
6764 
6765 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6766 		if (found_key.objectid != bytenr ||
6767 				found_key.type != BTRFS_EXTENT_REF_KEY) {
6768 			/* the extent was freed by someone */
6769 			if (ref_path->lowest_level == level) {
6770 				ret = 1;
6771 				goto out;
6772 			}
6773 			btrfs_release_path(extent_root, path);
6774 			goto walk_down;
6775 		}
6776 found:
6777 		ref = btrfs_item_ptr(leaf, path->slots[0],
6778 				struct btrfs_extent_ref);
6779 		ref_objectid = btrfs_ref_objectid(leaf, ref);
6780 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6781 			if (first_time) {
6782 				level = (int)ref_objectid;
6783 				BUG_ON(level >= BTRFS_MAX_LEVEL);
6784 				ref_path->lowest_level = level;
6785 				ref_path->current_level = level;
6786 				ref_path->nodes[level] = bytenr;
6787 			} else {
6788 				WARN_ON(ref_objectid != level);
6789 			}
6790 		} else {
6791 			WARN_ON(level != -1);
6792 		}
6793 		first_time = 0;
6794 
6795 		if (ref_path->lowest_level == level) {
6796 			ref_path->owner_objectid = ref_objectid;
6797 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6798 		}
6799 
6800 		/*
6801 		 * the block is tree root or the block isn't in reference
6802 		 * counted tree.
6803 		 */
6804 		if (found_key.objectid == found_key.offset ||
6805 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6806 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6807 			ref_path->root_generation =
6808 				btrfs_ref_generation(leaf, ref);
6809 			if (level < 0) {
6810 				/* special reference from the tree log */
6811 				ref_path->nodes[0] = found_key.offset;
6812 				ref_path->current_level = 0;
6813 			}
6814 			ret = 0;
6815 			goto out;
6816 		}
6817 
6818 		level++;
6819 		BUG_ON(ref_path->nodes[level] != 0);
6820 		ref_path->nodes[level] = found_key.offset;
6821 		ref_path->current_level = level;
6822 
6823 		/*
6824 		 * the reference was created in the running transaction,
6825 		 * no need to continue walking up.
6826 		 */
6827 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6828 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6829 			ref_path->root_generation =
6830 				btrfs_ref_generation(leaf, ref);
6831 			ret = 0;
6832 			goto out;
6833 		}
6834 
6835 		btrfs_release_path(extent_root, path);
6836 		cond_resched();
6837 	}
6838 	/* reached max tree level, but no tree root found. */
6839 	BUG();
6840 out:
6841 	btrfs_free_path(path);
6842 	return ret;
6843 }
6844 
6845 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6846 				struct btrfs_root *extent_root,
6847 				struct btrfs_ref_path *ref_path,
6848 				u64 extent_start)
6849 {
6850 	memset(ref_path, 0, sizeof(*ref_path));
6851 	ref_path->extent_start = extent_start;
6852 
6853 	return __next_ref_path(trans, extent_root, ref_path, 1);
6854 }
6855 
6856 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6857 			       struct btrfs_root *extent_root,
6858 			       struct btrfs_ref_path *ref_path)
6859 {
6860 	return __next_ref_path(trans, extent_root, ref_path, 0);
6861 }
6862 
6863 static noinline int get_new_locations(struct inode *reloc_inode,
6864 				      struct btrfs_key *extent_key,
6865 				      u64 offset, int no_fragment,
6866 				      struct disk_extent **extents,
6867 				      int *nr_extents)
6868 {
6869 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6870 	struct btrfs_path *path;
6871 	struct btrfs_file_extent_item *fi;
6872 	struct extent_buffer *leaf;
6873 	struct disk_extent *exts = *extents;
6874 	struct btrfs_key found_key;
6875 	u64 cur_pos;
6876 	u64 last_byte;
6877 	u32 nritems;
6878 	int nr = 0;
6879 	int max = *nr_extents;
6880 	int ret;
6881 
6882 	WARN_ON(!no_fragment && *extents);
6883 	if (!exts) {
6884 		max = 1;
6885 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6886 		if (!exts)
6887 			return -ENOMEM;
6888 	}
6889 
6890 	path = btrfs_alloc_path();
6891 	BUG_ON(!path);
6892 
6893 	cur_pos = extent_key->objectid - offset;
6894 	last_byte = extent_key->objectid + extent_key->offset;
6895 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6896 				       cur_pos, 0);
6897 	if (ret < 0)
6898 		goto out;
6899 	if (ret > 0) {
6900 		ret = -ENOENT;
6901 		goto out;
6902 	}
6903 
6904 	while (1) {
6905 		leaf = path->nodes[0];
6906 		nritems = btrfs_header_nritems(leaf);
6907 		if (path->slots[0] >= nritems) {
6908 			ret = btrfs_next_leaf(root, path);
6909 			if (ret < 0)
6910 				goto out;
6911 			if (ret > 0)
6912 				break;
6913 			leaf = path->nodes[0];
6914 		}
6915 
6916 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6917 		if (found_key.offset != cur_pos ||
6918 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
6919 		    found_key.objectid != reloc_inode->i_ino)
6920 			break;
6921 
6922 		fi = btrfs_item_ptr(leaf, path->slots[0],
6923 				    struct btrfs_file_extent_item);
6924 		if (btrfs_file_extent_type(leaf, fi) !=
6925 		    BTRFS_FILE_EXTENT_REG ||
6926 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6927 			break;
6928 
6929 		if (nr == max) {
6930 			struct disk_extent *old = exts;
6931 			max *= 2;
6932 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6933 			memcpy(exts, old, sizeof(*exts) * nr);
6934 			if (old != *extents)
6935 				kfree(old);
6936 		}
6937 
6938 		exts[nr].disk_bytenr =
6939 			btrfs_file_extent_disk_bytenr(leaf, fi);
6940 		exts[nr].disk_num_bytes =
6941 			btrfs_file_extent_disk_num_bytes(leaf, fi);
6942 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6943 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6944 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6945 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6946 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6947 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6948 									   fi);
6949 		BUG_ON(exts[nr].offset > 0);
6950 		BUG_ON(exts[nr].compression || exts[nr].encryption);
6951 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6952 
6953 		cur_pos += exts[nr].num_bytes;
6954 		nr++;
6955 
6956 		if (cur_pos + offset >= last_byte)
6957 			break;
6958 
6959 		if (no_fragment) {
6960 			ret = 1;
6961 			goto out;
6962 		}
6963 		path->slots[0]++;
6964 	}
6965 
6966 	BUG_ON(cur_pos + offset > last_byte);
6967 	if (cur_pos + offset < last_byte) {
6968 		ret = -ENOENT;
6969 		goto out;
6970 	}
6971 	ret = 0;
6972 out:
6973 	btrfs_free_path(path);
6974 	if (ret) {
6975 		if (exts != *extents)
6976 			kfree(exts);
6977 	} else {
6978 		*extents = exts;
6979 		*nr_extents = nr;
6980 	}
6981 	return ret;
6982 }
6983 
6984 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6985 					struct btrfs_root *root,
6986 					struct btrfs_path *path,
6987 					struct btrfs_key *extent_key,
6988 					struct btrfs_key *leaf_key,
6989 					struct btrfs_ref_path *ref_path,
6990 					struct disk_extent *new_extents,
6991 					int nr_extents)
6992 {
6993 	struct extent_buffer *leaf;
6994 	struct btrfs_file_extent_item *fi;
6995 	struct inode *inode = NULL;
6996 	struct btrfs_key key;
6997 	u64 lock_start = 0;
6998 	u64 lock_end = 0;
6999 	u64 num_bytes;
7000 	u64 ext_offset;
7001 	u64 search_end = (u64)-1;
7002 	u32 nritems;
7003 	int nr_scaned = 0;
7004 	int extent_locked = 0;
7005 	int extent_type;
7006 	int ret;
7007 
7008 	memcpy(&key, leaf_key, sizeof(key));
7009 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7010 		if (key.objectid < ref_path->owner_objectid ||
7011 		    (key.objectid == ref_path->owner_objectid &&
7012 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
7013 			key.objectid = ref_path->owner_objectid;
7014 			key.type = BTRFS_EXTENT_DATA_KEY;
7015 			key.offset = 0;
7016 		}
7017 	}
7018 
7019 	while (1) {
7020 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
7021 		if (ret < 0)
7022 			goto out;
7023 
7024 		leaf = path->nodes[0];
7025 		nritems = btrfs_header_nritems(leaf);
7026 next:
7027 		if (extent_locked && ret > 0) {
7028 			/*
7029 			 * the file extent item was modified by someone
7030 			 * before the extent got locked.
7031 			 */
7032 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7033 				      lock_end, GFP_NOFS);
7034 			extent_locked = 0;
7035 		}
7036 
7037 		if (path->slots[0] >= nritems) {
7038 			if (++nr_scaned > 2)
7039 				break;
7040 
7041 			BUG_ON(extent_locked);
7042 			ret = btrfs_next_leaf(root, path);
7043 			if (ret < 0)
7044 				goto out;
7045 			if (ret > 0)
7046 				break;
7047 			leaf = path->nodes[0];
7048 			nritems = btrfs_header_nritems(leaf);
7049 		}
7050 
7051 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7052 
7053 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7054 			if ((key.objectid > ref_path->owner_objectid) ||
7055 			    (key.objectid == ref_path->owner_objectid &&
7056 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
7057 			    key.offset >= search_end)
7058 				break;
7059 		}
7060 
7061 		if (inode && key.objectid != inode->i_ino) {
7062 			BUG_ON(extent_locked);
7063 			btrfs_release_path(root, path);
7064 			mutex_unlock(&inode->i_mutex);
7065 			iput(inode);
7066 			inode = NULL;
7067 			continue;
7068 		}
7069 
7070 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
7071 			path->slots[0]++;
7072 			ret = 1;
7073 			goto next;
7074 		}
7075 		fi = btrfs_item_ptr(leaf, path->slots[0],
7076 				    struct btrfs_file_extent_item);
7077 		extent_type = btrfs_file_extent_type(leaf, fi);
7078 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
7079 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
7080 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
7081 		     extent_key->objectid)) {
7082 			path->slots[0]++;
7083 			ret = 1;
7084 			goto next;
7085 		}
7086 
7087 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7088 		ext_offset = btrfs_file_extent_offset(leaf, fi);
7089 
7090 		if (search_end == (u64)-1) {
7091 			search_end = key.offset - ext_offset +
7092 				btrfs_file_extent_ram_bytes(leaf, fi);
7093 		}
7094 
7095 		if (!extent_locked) {
7096 			lock_start = key.offset;
7097 			lock_end = lock_start + num_bytes - 1;
7098 		} else {
7099 			if (lock_start > key.offset ||
7100 			    lock_end + 1 < key.offset + num_bytes) {
7101 				unlock_extent(&BTRFS_I(inode)->io_tree,
7102 					      lock_start, lock_end, GFP_NOFS);
7103 				extent_locked = 0;
7104 			}
7105 		}
7106 
7107 		if (!inode) {
7108 			btrfs_release_path(root, path);
7109 
7110 			inode = btrfs_iget_locked(root->fs_info->sb,
7111 						  key.objectid, root);
7112 			if (inode->i_state & I_NEW) {
7113 				BTRFS_I(inode)->root = root;
7114 				BTRFS_I(inode)->location.objectid =
7115 					key.objectid;
7116 				BTRFS_I(inode)->location.type =
7117 					BTRFS_INODE_ITEM_KEY;
7118 				BTRFS_I(inode)->location.offset = 0;
7119 				btrfs_read_locked_inode(inode);
7120 				unlock_new_inode(inode);
7121 			}
7122 			/*
7123 			 * some code call btrfs_commit_transaction while
7124 			 * holding the i_mutex, so we can't use mutex_lock
7125 			 * here.
7126 			 */
7127 			if (is_bad_inode(inode) ||
7128 			    !mutex_trylock(&inode->i_mutex)) {
7129 				iput(inode);
7130 				inode = NULL;
7131 				key.offset = (u64)-1;
7132 				goto skip;
7133 			}
7134 		}
7135 
7136 		if (!extent_locked) {
7137 			struct btrfs_ordered_extent *ordered;
7138 
7139 			btrfs_release_path(root, path);
7140 
7141 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7142 				    lock_end, GFP_NOFS);
7143 			ordered = btrfs_lookup_first_ordered_extent(inode,
7144 								    lock_end);
7145 			if (ordered &&
7146 			    ordered->file_offset <= lock_end &&
7147 			    ordered->file_offset + ordered->len > lock_start) {
7148 				unlock_extent(&BTRFS_I(inode)->io_tree,
7149 					      lock_start, lock_end, GFP_NOFS);
7150 				btrfs_start_ordered_extent(inode, ordered, 1);
7151 				btrfs_put_ordered_extent(ordered);
7152 				key.offset += num_bytes;
7153 				goto skip;
7154 			}
7155 			if (ordered)
7156 				btrfs_put_ordered_extent(ordered);
7157 
7158 			extent_locked = 1;
7159 			continue;
7160 		}
7161 
7162 		if (nr_extents == 1) {
7163 			/* update extent pointer in place */
7164 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
7165 						new_extents[0].disk_bytenr);
7166 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7167 						new_extents[0].disk_num_bytes);
7168 			btrfs_mark_buffer_dirty(leaf);
7169 
7170 			btrfs_drop_extent_cache(inode, key.offset,
7171 						key.offset + num_bytes - 1, 0);
7172 
7173 			ret = btrfs_inc_extent_ref(trans, root,
7174 						new_extents[0].disk_bytenr,
7175 						new_extents[0].disk_num_bytes,
7176 						leaf->start,
7177 						root->root_key.objectid,
7178 						trans->transid,
7179 						key.objectid);
7180 			BUG_ON(ret);
7181 
7182 			ret = btrfs_free_extent(trans, root,
7183 						extent_key->objectid,
7184 						extent_key->offset,
7185 						leaf->start,
7186 						btrfs_header_owner(leaf),
7187 						btrfs_header_generation(leaf),
7188 						key.objectid, 0);
7189 			BUG_ON(ret);
7190 
7191 			btrfs_release_path(root, path);
7192 			key.offset += num_bytes;
7193 		} else {
7194 			BUG_ON(1);
7195 #if 0
7196 			u64 alloc_hint;
7197 			u64 extent_len;
7198 			int i;
7199 			/*
7200 			 * drop old extent pointer at first, then insert the
7201 			 * new pointers one bye one
7202 			 */
7203 			btrfs_release_path(root, path);
7204 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
7205 						 key.offset + num_bytes,
7206 						 key.offset, &alloc_hint);
7207 			BUG_ON(ret);
7208 
7209 			for (i = 0; i < nr_extents; i++) {
7210 				if (ext_offset >= new_extents[i].num_bytes) {
7211 					ext_offset -= new_extents[i].num_bytes;
7212 					continue;
7213 				}
7214 				extent_len = min(new_extents[i].num_bytes -
7215 						 ext_offset, num_bytes);
7216 
7217 				ret = btrfs_insert_empty_item(trans, root,
7218 							      path, &key,
7219 							      sizeof(*fi));
7220 				BUG_ON(ret);
7221 
7222 				leaf = path->nodes[0];
7223 				fi = btrfs_item_ptr(leaf, path->slots[0],
7224 						struct btrfs_file_extent_item);
7225 				btrfs_set_file_extent_generation(leaf, fi,
7226 							trans->transid);
7227 				btrfs_set_file_extent_type(leaf, fi,
7228 							BTRFS_FILE_EXTENT_REG);
7229 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
7230 						new_extents[i].disk_bytenr);
7231 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7232 						new_extents[i].disk_num_bytes);
7233 				btrfs_set_file_extent_ram_bytes(leaf, fi,
7234 						new_extents[i].ram_bytes);
7235 
7236 				btrfs_set_file_extent_compression(leaf, fi,
7237 						new_extents[i].compression);
7238 				btrfs_set_file_extent_encryption(leaf, fi,
7239 						new_extents[i].encryption);
7240 				btrfs_set_file_extent_other_encoding(leaf, fi,
7241 						new_extents[i].other_encoding);
7242 
7243 				btrfs_set_file_extent_num_bytes(leaf, fi,
7244 							extent_len);
7245 				ext_offset += new_extents[i].offset;
7246 				btrfs_set_file_extent_offset(leaf, fi,
7247 							ext_offset);
7248 				btrfs_mark_buffer_dirty(leaf);
7249 
7250 				btrfs_drop_extent_cache(inode, key.offset,
7251 						key.offset + extent_len - 1, 0);
7252 
7253 				ret = btrfs_inc_extent_ref(trans, root,
7254 						new_extents[i].disk_bytenr,
7255 						new_extents[i].disk_num_bytes,
7256 						leaf->start,
7257 						root->root_key.objectid,
7258 						trans->transid, key.objectid);
7259 				BUG_ON(ret);
7260 				btrfs_release_path(root, path);
7261 
7262 				inode_add_bytes(inode, extent_len);
7263 
7264 				ext_offset = 0;
7265 				num_bytes -= extent_len;
7266 				key.offset += extent_len;
7267 
7268 				if (num_bytes == 0)
7269 					break;
7270 			}
7271 			BUG_ON(i >= nr_extents);
7272 #endif
7273 		}
7274 
7275 		if (extent_locked) {
7276 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7277 				      lock_end, GFP_NOFS);
7278 			extent_locked = 0;
7279 		}
7280 skip:
7281 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
7282 		    key.offset >= search_end)
7283 			break;
7284 
7285 		cond_resched();
7286 	}
7287 	ret = 0;
7288 out:
7289 	btrfs_release_path(root, path);
7290 	if (inode) {
7291 		mutex_unlock(&inode->i_mutex);
7292 		if (extent_locked) {
7293 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7294 				      lock_end, GFP_NOFS);
7295 		}
7296 		iput(inode);
7297 	}
7298 	return ret;
7299 }
7300 
7301 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
7302 			       struct btrfs_root *root,
7303 			       struct extent_buffer *buf, u64 orig_start)
7304 {
7305 	int level;
7306 	int ret;
7307 
7308 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
7309 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7310 
7311 	level = btrfs_header_level(buf);
7312 	if (level == 0) {
7313 		struct btrfs_leaf_ref *ref;
7314 		struct btrfs_leaf_ref *orig_ref;
7315 
7316 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
7317 		if (!orig_ref)
7318 			return -ENOENT;
7319 
7320 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
7321 		if (!ref) {
7322 			btrfs_free_leaf_ref(root, orig_ref);
7323 			return -ENOMEM;
7324 		}
7325 
7326 		ref->nritems = orig_ref->nritems;
7327 		memcpy(ref->extents, orig_ref->extents,
7328 			sizeof(ref->extents[0]) * ref->nritems);
7329 
7330 		btrfs_free_leaf_ref(root, orig_ref);
7331 
7332 		ref->root_gen = trans->transid;
7333 		ref->bytenr = buf->start;
7334 		ref->owner = btrfs_header_owner(buf);
7335 		ref->generation = btrfs_header_generation(buf);
7336 
7337 		ret = btrfs_add_leaf_ref(root, ref, 0);
7338 		WARN_ON(ret);
7339 		btrfs_free_leaf_ref(root, ref);
7340 	}
7341 	return 0;
7342 }
7343 
7344 static noinline int invalidate_extent_cache(struct btrfs_root *root,
7345 					struct extent_buffer *leaf,
7346 					struct btrfs_block_group_cache *group,
7347 					struct btrfs_root *target_root)
7348 {
7349 	struct btrfs_key key;
7350 	struct inode *inode = NULL;
7351 	struct btrfs_file_extent_item *fi;
7352 	struct extent_state *cached_state = NULL;
7353 	u64 num_bytes;
7354 	u64 skip_objectid = 0;
7355 	u32 nritems;
7356 	u32 i;
7357 
7358 	nritems = btrfs_header_nritems(leaf);
7359 	for (i = 0; i < nritems; i++) {
7360 		btrfs_item_key_to_cpu(leaf, &key, i);
7361 		if (key.objectid == skip_objectid ||
7362 		    key.type != BTRFS_EXTENT_DATA_KEY)
7363 			continue;
7364 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7365 		if (btrfs_file_extent_type(leaf, fi) ==
7366 		    BTRFS_FILE_EXTENT_INLINE)
7367 			continue;
7368 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
7369 			continue;
7370 		if (!inode || inode->i_ino != key.objectid) {
7371 			iput(inode);
7372 			inode = btrfs_ilookup(target_root->fs_info->sb,
7373 					      key.objectid, target_root, 1);
7374 		}
7375 		if (!inode) {
7376 			skip_objectid = key.objectid;
7377 			continue;
7378 		}
7379 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7380 
7381 		lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7382 				 key.offset + num_bytes - 1, 0, &cached_state,
7383 				 GFP_NOFS);
7384 		btrfs_drop_extent_cache(inode, key.offset,
7385 					key.offset + num_bytes - 1, 1);
7386 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7387 				     key.offset + num_bytes - 1, &cached_state,
7388 				     GFP_NOFS);
7389 		cond_resched();
7390 	}
7391 	iput(inode);
7392 	return 0;
7393 }
7394 
7395 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7396 					struct btrfs_root *root,
7397 					struct extent_buffer *leaf,
7398 					struct btrfs_block_group_cache *group,
7399 					struct inode *reloc_inode)
7400 {
7401 	struct btrfs_key key;
7402 	struct btrfs_key extent_key;
7403 	struct btrfs_file_extent_item *fi;
7404 	struct btrfs_leaf_ref *ref;
7405 	struct disk_extent *new_extent;
7406 	u64 bytenr;
7407 	u64 num_bytes;
7408 	u32 nritems;
7409 	u32 i;
7410 	int ext_index;
7411 	int nr_extent;
7412 	int ret;
7413 
7414 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7415 	BUG_ON(!new_extent);
7416 
7417 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
7418 	BUG_ON(!ref);
7419 
7420 	ext_index = -1;
7421 	nritems = btrfs_header_nritems(leaf);
7422 	for (i = 0; i < nritems; i++) {
7423 		btrfs_item_key_to_cpu(leaf, &key, i);
7424 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7425 			continue;
7426 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7427 		if (btrfs_file_extent_type(leaf, fi) ==
7428 		    BTRFS_FILE_EXTENT_INLINE)
7429 			continue;
7430 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7431 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7432 		if (bytenr == 0)
7433 			continue;
7434 
7435 		ext_index++;
7436 		if (bytenr >= group->key.objectid + group->key.offset ||
7437 		    bytenr + num_bytes <= group->key.objectid)
7438 			continue;
7439 
7440 		extent_key.objectid = bytenr;
7441 		extent_key.offset = num_bytes;
7442 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7443 		nr_extent = 1;
7444 		ret = get_new_locations(reloc_inode, &extent_key,
7445 					group->key.objectid, 1,
7446 					&new_extent, &nr_extent);
7447 		if (ret > 0)
7448 			continue;
7449 		BUG_ON(ret < 0);
7450 
7451 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7452 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7453 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7454 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7455 
7456 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
7457 						new_extent->disk_bytenr);
7458 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7459 						new_extent->disk_num_bytes);
7460 		btrfs_mark_buffer_dirty(leaf);
7461 
7462 		ret = btrfs_inc_extent_ref(trans, root,
7463 					new_extent->disk_bytenr,
7464 					new_extent->disk_num_bytes,
7465 					leaf->start,
7466 					root->root_key.objectid,
7467 					trans->transid, key.objectid);
7468 		BUG_ON(ret);
7469 
7470 		ret = btrfs_free_extent(trans, root,
7471 					bytenr, num_bytes, leaf->start,
7472 					btrfs_header_owner(leaf),
7473 					btrfs_header_generation(leaf),
7474 					key.objectid, 0);
7475 		BUG_ON(ret);
7476 		cond_resched();
7477 	}
7478 	kfree(new_extent);
7479 	BUG_ON(ext_index + 1 != ref->nritems);
7480 	btrfs_free_leaf_ref(root, ref);
7481 	return 0;
7482 }
7483 
7484 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7485 			  struct btrfs_root *root)
7486 {
7487 	struct btrfs_root *reloc_root;
7488 	int ret;
7489 
7490 	if (root->reloc_root) {
7491 		reloc_root = root->reloc_root;
7492 		root->reloc_root = NULL;
7493 		list_add(&reloc_root->dead_list,
7494 			 &root->fs_info->dead_reloc_roots);
7495 
7496 		btrfs_set_root_bytenr(&reloc_root->root_item,
7497 				      reloc_root->node->start);
7498 		btrfs_set_root_level(&root->root_item,
7499 				     btrfs_header_level(reloc_root->node));
7500 		memset(&reloc_root->root_item.drop_progress, 0,
7501 			sizeof(struct btrfs_disk_key));
7502 		reloc_root->root_item.drop_level = 0;
7503 
7504 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
7505 					&reloc_root->root_key,
7506 					&reloc_root->root_item);
7507 		BUG_ON(ret);
7508 	}
7509 	return 0;
7510 }
7511 
7512 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7513 {
7514 	struct btrfs_trans_handle *trans;
7515 	struct btrfs_root *reloc_root;
7516 	struct btrfs_root *prev_root = NULL;
7517 	struct list_head dead_roots;
7518 	int ret;
7519 	unsigned long nr;
7520 
7521 	INIT_LIST_HEAD(&dead_roots);
7522 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7523 
7524 	while (!list_empty(&dead_roots)) {
7525 		reloc_root = list_entry(dead_roots.prev,
7526 					struct btrfs_root, dead_list);
7527 		list_del_init(&reloc_root->dead_list);
7528 
7529 		BUG_ON(reloc_root->commit_root != NULL);
7530 		while (1) {
7531 			trans = btrfs_join_transaction(root, 1);
7532 			BUG_ON(IS_ERR(trans));
7533 
7534 			mutex_lock(&root->fs_info->drop_mutex);
7535 			ret = btrfs_drop_snapshot(trans, reloc_root);
7536 			if (ret != -EAGAIN)
7537 				break;
7538 			mutex_unlock(&root->fs_info->drop_mutex);
7539 
7540 			nr = trans->blocks_used;
7541 			ret = btrfs_end_transaction(trans, root);
7542 			BUG_ON(ret);
7543 			btrfs_btree_balance_dirty(root, nr);
7544 		}
7545 
7546 		free_extent_buffer(reloc_root->node);
7547 
7548 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
7549 				     &reloc_root->root_key);
7550 		BUG_ON(ret);
7551 		mutex_unlock(&root->fs_info->drop_mutex);
7552 
7553 		nr = trans->blocks_used;
7554 		ret = btrfs_end_transaction(trans, root);
7555 		BUG_ON(ret);
7556 		btrfs_btree_balance_dirty(root, nr);
7557 
7558 		kfree(prev_root);
7559 		prev_root = reloc_root;
7560 	}
7561 	if (prev_root) {
7562 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7563 		kfree(prev_root);
7564 	}
7565 	return 0;
7566 }
7567 
7568 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7569 {
7570 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7571 	return 0;
7572 }
7573 
7574 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7575 {
7576 	struct btrfs_root *reloc_root;
7577 	struct btrfs_trans_handle *trans;
7578 	struct btrfs_key location;
7579 	int found;
7580 	int ret;
7581 
7582 	mutex_lock(&root->fs_info->tree_reloc_mutex);
7583 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7584 	BUG_ON(ret);
7585 	found = !list_empty(&root->fs_info->dead_reloc_roots);
7586 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
7587 
7588 	if (found) {
7589 		trans = btrfs_start_transaction(root, 1);
7590 		BUG_ON(IS_ERR(trans));
7591 		ret = btrfs_commit_transaction(trans, root);
7592 		BUG_ON(ret);
7593 	}
7594 
7595 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7596 	location.offset = (u64)-1;
7597 	location.type = BTRFS_ROOT_ITEM_KEY;
7598 
7599 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7600 	BUG_ON(!reloc_root);
7601 	btrfs_orphan_cleanup(reloc_root);
7602 	return 0;
7603 }
7604 
7605 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7606 				    struct btrfs_root *root)
7607 {
7608 	struct btrfs_root *reloc_root;
7609 	struct extent_buffer *eb;
7610 	struct btrfs_root_item *root_item;
7611 	struct btrfs_key root_key;
7612 	int ret;
7613 
7614 	BUG_ON(!root->ref_cows);
7615 	if (root->reloc_root)
7616 		return 0;
7617 
7618 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7619 	BUG_ON(!root_item);
7620 
7621 	ret = btrfs_copy_root(trans, root, root->commit_root,
7622 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
7623 	BUG_ON(ret);
7624 
7625 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7626 	root_key.offset = root->root_key.objectid;
7627 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7628 
7629 	memcpy(root_item, &root->root_item, sizeof(root_item));
7630 	btrfs_set_root_refs(root_item, 0);
7631 	btrfs_set_root_bytenr(root_item, eb->start);
7632 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
7633 	btrfs_set_root_generation(root_item, trans->transid);
7634 
7635 	btrfs_tree_unlock(eb);
7636 	free_extent_buffer(eb);
7637 
7638 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7639 				&root_key, root_item);
7640 	BUG_ON(ret);
7641 	kfree(root_item);
7642 
7643 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7644 						 &root_key);
7645 	BUG_ON(!reloc_root);
7646 	reloc_root->last_trans = trans->transid;
7647 	reloc_root->commit_root = NULL;
7648 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7649 
7650 	root->reloc_root = reloc_root;
7651 	return 0;
7652 }
7653 
7654 /*
7655  * Core function of space balance.
7656  *
7657  * The idea is using reloc trees to relocate tree blocks in reference
7658  * counted roots. There is one reloc tree for each subvol, and all
7659  * reloc trees share same root key objectid. Reloc trees are snapshots
7660  * of the latest committed roots of subvols (root->commit_root).
7661  *
7662  * To relocate a tree block referenced by a subvol, there are two steps.
7663  * COW the block through subvol's reloc tree, then update block pointer
7664  * in the subvol to point to the new block. Since all reloc trees share
7665  * same root key objectid, doing special handing for tree blocks owned
7666  * by them is easy. Once a tree block has been COWed in one reloc tree,
7667  * we can use the resulting new block directly when the same block is
7668  * required to COW again through other reloc trees. By this way, relocated
7669  * tree blocks are shared between reloc trees, so they are also shared
7670  * between subvols.
7671  */
7672 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7673 				      struct btrfs_root *root,
7674 				      struct btrfs_path *path,
7675 				      struct btrfs_key *first_key,
7676 				      struct btrfs_ref_path *ref_path,
7677 				      struct btrfs_block_group_cache *group,
7678 				      struct inode *reloc_inode)
7679 {
7680 	struct btrfs_root *reloc_root;
7681 	struct extent_buffer *eb = NULL;
7682 	struct btrfs_key *keys;
7683 	u64 *nodes;
7684 	int level;
7685 	int shared_level;
7686 	int lowest_level = 0;
7687 	int ret;
7688 
7689 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7690 		lowest_level = ref_path->owner_objectid;
7691 
7692 	if (!root->ref_cows) {
7693 		path->lowest_level = lowest_level;
7694 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7695 		BUG_ON(ret < 0);
7696 		path->lowest_level = 0;
7697 		btrfs_release_path(root, path);
7698 		return 0;
7699 	}
7700 
7701 	mutex_lock(&root->fs_info->tree_reloc_mutex);
7702 	ret = init_reloc_tree(trans, root);
7703 	BUG_ON(ret);
7704 	reloc_root = root->reloc_root;
7705 
7706 	shared_level = ref_path->shared_level;
7707 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7708 
7709 	keys = ref_path->node_keys;
7710 	nodes = ref_path->new_nodes;
7711 	memset(&keys[shared_level + 1], 0,
7712 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7713 	memset(&nodes[shared_level + 1], 0,
7714 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7715 
7716 	if (nodes[lowest_level] == 0) {
7717 		path->lowest_level = lowest_level;
7718 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7719 					0, 1);
7720 		BUG_ON(ret);
7721 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7722 			eb = path->nodes[level];
7723 			if (!eb || eb == reloc_root->node)
7724 				break;
7725 			nodes[level] = eb->start;
7726 			if (level == 0)
7727 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
7728 			else
7729 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
7730 		}
7731 		if (nodes[0] &&
7732 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7733 			eb = path->nodes[0];
7734 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
7735 						      group, reloc_inode);
7736 			BUG_ON(ret);
7737 		}
7738 		btrfs_release_path(reloc_root, path);
7739 	} else {
7740 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7741 				       lowest_level);
7742 		BUG_ON(ret);
7743 	}
7744 
7745 	/*
7746 	 * replace tree blocks in the fs tree with tree blocks in
7747 	 * the reloc tree.
7748 	 */
7749 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7750 	BUG_ON(ret < 0);
7751 
7752 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7753 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7754 					0, 0);
7755 		BUG_ON(ret);
7756 		extent_buffer_get(path->nodes[0]);
7757 		eb = path->nodes[0];
7758 		btrfs_release_path(reloc_root, path);
7759 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
7760 		BUG_ON(ret);
7761 		free_extent_buffer(eb);
7762 	}
7763 
7764 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
7765 	path->lowest_level = 0;
7766 	return 0;
7767 }
7768 
7769 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7770 					struct btrfs_root *root,
7771 					struct btrfs_path *path,
7772 					struct btrfs_key *first_key,
7773 					struct btrfs_ref_path *ref_path)
7774 {
7775 	int ret;
7776 
7777 	ret = relocate_one_path(trans, root, path, first_key,
7778 				ref_path, NULL, NULL);
7779 	BUG_ON(ret);
7780 
7781 	return 0;
7782 }
7783 
7784 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7785 				    struct btrfs_root *extent_root,
7786 				    struct btrfs_path *path,
7787 				    struct btrfs_key *extent_key)
7788 {
7789 	int ret;
7790 
7791 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7792 	if (ret)
7793 		goto out;
7794 	ret = btrfs_del_item(trans, extent_root, path);
7795 out:
7796 	btrfs_release_path(extent_root, path);
7797 	return ret;
7798 }
7799 
7800 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7801 						struct btrfs_ref_path *ref_path)
7802 {
7803 	struct btrfs_key root_key;
7804 
7805 	root_key.objectid = ref_path->root_objectid;
7806 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7807 	if (is_cowonly_root(ref_path->root_objectid))
7808 		root_key.offset = 0;
7809 	else
7810 		root_key.offset = (u64)-1;
7811 
7812 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
7813 }
7814 
7815 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7816 					struct btrfs_path *path,
7817 					struct btrfs_key *extent_key,
7818 					struct btrfs_block_group_cache *group,
7819 					struct inode *reloc_inode, int pass)
7820 {
7821 	struct btrfs_trans_handle *trans;
7822 	struct btrfs_root *found_root;
7823 	struct btrfs_ref_path *ref_path = NULL;
7824 	struct disk_extent *new_extents = NULL;
7825 	int nr_extents = 0;
7826 	int loops;
7827 	int ret;
7828 	int level;
7829 	struct btrfs_key first_key;
7830 	u64 prev_block = 0;
7831 
7832 
7833 	trans = btrfs_start_transaction(extent_root, 1);
7834 	BUG_ON(IS_ERR(trans));
7835 
7836 	if (extent_key->objectid == 0) {
7837 		ret = del_extent_zero(trans, extent_root, path, extent_key);
7838 		goto out;
7839 	}
7840 
7841 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7842 	if (!ref_path) {
7843 		ret = -ENOMEM;
7844 		goto out;
7845 	}
7846 
7847 	for (loops = 0; ; loops++) {
7848 		if (loops == 0) {
7849 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7850 						   extent_key->objectid);
7851 		} else {
7852 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7853 		}
7854 		if (ret < 0)
7855 			goto out;
7856 		if (ret > 0)
7857 			break;
7858 
7859 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7860 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7861 			continue;
7862 
7863 		found_root = read_ref_root(extent_root->fs_info, ref_path);
7864 		BUG_ON(!found_root);
7865 		/*
7866 		 * for reference counted tree, only process reference paths
7867 		 * rooted at the latest committed root.
7868 		 */
7869 		if (found_root->ref_cows &&
7870 		    ref_path->root_generation != found_root->root_key.offset)
7871 			continue;
7872 
7873 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7874 			if (pass == 0) {
7875 				/*
7876 				 * copy data extents to new locations
7877 				 */
7878 				u64 group_start = group->key.objectid;
7879 				ret = relocate_data_extent(reloc_inode,
7880 							   extent_key,
7881 							   group_start);
7882 				if (ret < 0)
7883 					goto out;
7884 				break;
7885 			}
7886 			level = 0;
7887 		} else {
7888 			level = ref_path->owner_objectid;
7889 		}
7890 
7891 		if (prev_block != ref_path->nodes[level]) {
7892 			struct extent_buffer *eb;
7893 			u64 block_start = ref_path->nodes[level];
7894 			u64 block_size = btrfs_level_size(found_root, level);
7895 
7896 			eb = read_tree_block(found_root, block_start,
7897 					     block_size, 0);
7898 			btrfs_tree_lock(eb);
7899 			BUG_ON(level != btrfs_header_level(eb));
7900 
7901 			if (level == 0)
7902 				btrfs_item_key_to_cpu(eb, &first_key, 0);
7903 			else
7904 				btrfs_node_key_to_cpu(eb, &first_key, 0);
7905 
7906 			btrfs_tree_unlock(eb);
7907 			free_extent_buffer(eb);
7908 			prev_block = block_start;
7909 		}
7910 
7911 		mutex_lock(&extent_root->fs_info->trans_mutex);
7912 		btrfs_record_root_in_trans(found_root);
7913 		mutex_unlock(&extent_root->fs_info->trans_mutex);
7914 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7915 			/*
7916 			 * try to update data extent references while
7917 			 * keeping metadata shared between snapshots.
7918 			 */
7919 			if (pass == 1) {
7920 				ret = relocate_one_path(trans, found_root,
7921 						path, &first_key, ref_path,
7922 						group, reloc_inode);
7923 				if (ret < 0)
7924 					goto out;
7925 				continue;
7926 			}
7927 			/*
7928 			 * use fallback method to process the remaining
7929 			 * references.
7930 			 */
7931 			if (!new_extents) {
7932 				u64 group_start = group->key.objectid;
7933 				new_extents = kmalloc(sizeof(*new_extents),
7934 						      GFP_NOFS);
7935 				nr_extents = 1;
7936 				ret = get_new_locations(reloc_inode,
7937 							extent_key,
7938 							group_start, 1,
7939 							&new_extents,
7940 							&nr_extents);
7941 				if (ret)
7942 					goto out;
7943 			}
7944 			ret = replace_one_extent(trans, found_root,
7945 						path, extent_key,
7946 						&first_key, ref_path,
7947 						new_extents, nr_extents);
7948 		} else {
7949 			ret = relocate_tree_block(trans, found_root, path,
7950 						  &first_key, ref_path);
7951 		}
7952 		if (ret < 0)
7953 			goto out;
7954 	}
7955 	ret = 0;
7956 out:
7957 	btrfs_end_transaction(trans, extent_root);
7958 	kfree(new_extents);
7959 	kfree(ref_path);
7960 	return ret;
7961 }
7962 #endif
7963 
7964 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7965 {
7966 	u64 num_devices;
7967 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7968 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7969 
7970 	/*
7971 	 * we add in the count of missing devices because we want
7972 	 * to make sure that any RAID levels on a degraded FS
7973 	 * continue to be honored.
7974 	 */
7975 	num_devices = root->fs_info->fs_devices->rw_devices +
7976 		root->fs_info->fs_devices->missing_devices;
7977 
7978 	if (num_devices == 1) {
7979 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7980 		stripped = flags & ~stripped;
7981 
7982 		/* turn raid0 into single device chunks */
7983 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7984 			return stripped;
7985 
7986 		/* turn mirroring into duplication */
7987 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7988 			     BTRFS_BLOCK_GROUP_RAID10))
7989 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7990 		return flags;
7991 	} else {
7992 		/* they already had raid on here, just return */
7993 		if (flags & stripped)
7994 			return flags;
7995 
7996 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7997 		stripped = flags & ~stripped;
7998 
7999 		/* switch duplicated blocks with raid1 */
8000 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8001 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8002 
8003 		/* turn single device chunks into raid0 */
8004 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
8005 	}
8006 	return flags;
8007 }
8008 
8009 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
8010 {
8011 	struct btrfs_space_info *sinfo = cache->space_info;
8012 	u64 num_bytes;
8013 	int ret = -ENOSPC;
8014 
8015 	if (cache->ro)
8016 		return 0;
8017 
8018 	spin_lock(&sinfo->lock);
8019 	spin_lock(&cache->lock);
8020 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8021 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8022 
8023 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8024 	    sinfo->bytes_may_use + sinfo->bytes_readonly +
8025 	    cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
8026 		sinfo->bytes_readonly += num_bytes;
8027 		sinfo->bytes_reserved += cache->reserved_pinned;
8028 		cache->reserved_pinned = 0;
8029 		cache->ro = 1;
8030 		ret = 0;
8031 	}
8032 
8033 	spin_unlock(&cache->lock);
8034 	spin_unlock(&sinfo->lock);
8035 	return ret;
8036 }
8037 
8038 int btrfs_set_block_group_ro(struct btrfs_root *root,
8039 			     struct btrfs_block_group_cache *cache)
8040 
8041 {
8042 	struct btrfs_trans_handle *trans;
8043 	u64 alloc_flags;
8044 	int ret;
8045 
8046 	BUG_ON(cache->ro);
8047 
8048 	trans = btrfs_join_transaction(root, 1);
8049 	BUG_ON(IS_ERR(trans));
8050 
8051 	alloc_flags = update_block_group_flags(root, cache->flags);
8052 	if (alloc_flags != cache->flags)
8053 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8054 
8055 	ret = set_block_group_ro(cache);
8056 	if (!ret)
8057 		goto out;
8058 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8059 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8060 	if (ret < 0)
8061 		goto out;
8062 	ret = set_block_group_ro(cache);
8063 out:
8064 	btrfs_end_transaction(trans, root);
8065 	return ret;
8066 }
8067 
8068 /*
8069  * helper to account the unused space of all the readonly block group in the
8070  * list. takes mirrors into account.
8071  */
8072 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8073 {
8074 	struct btrfs_block_group_cache *block_group;
8075 	u64 free_bytes = 0;
8076 	int factor;
8077 
8078 	list_for_each_entry(block_group, groups_list, list) {
8079 		spin_lock(&block_group->lock);
8080 
8081 		if (!block_group->ro) {
8082 			spin_unlock(&block_group->lock);
8083 			continue;
8084 		}
8085 
8086 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8087 					  BTRFS_BLOCK_GROUP_RAID10 |
8088 					  BTRFS_BLOCK_GROUP_DUP))
8089 			factor = 2;
8090 		else
8091 			factor = 1;
8092 
8093 		free_bytes += (block_group->key.offset -
8094 			       btrfs_block_group_used(&block_group->item)) *
8095 			       factor;
8096 
8097 		spin_unlock(&block_group->lock);
8098 	}
8099 
8100 	return free_bytes;
8101 }
8102 
8103 /*
8104  * helper to account the unused space of all the readonly block group in the
8105  * space_info. takes mirrors into account.
8106  */
8107 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8108 {
8109 	int i;
8110 	u64 free_bytes = 0;
8111 
8112 	spin_lock(&sinfo->lock);
8113 
8114 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8115 		if (!list_empty(&sinfo->block_groups[i]))
8116 			free_bytes += __btrfs_get_ro_block_group_free_space(
8117 						&sinfo->block_groups[i]);
8118 
8119 	spin_unlock(&sinfo->lock);
8120 
8121 	return free_bytes;
8122 }
8123 
8124 int btrfs_set_block_group_rw(struct btrfs_root *root,
8125 			      struct btrfs_block_group_cache *cache)
8126 {
8127 	struct btrfs_space_info *sinfo = cache->space_info;
8128 	u64 num_bytes;
8129 
8130 	BUG_ON(!cache->ro);
8131 
8132 	spin_lock(&sinfo->lock);
8133 	spin_lock(&cache->lock);
8134 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8135 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8136 	sinfo->bytes_readonly -= num_bytes;
8137 	cache->ro = 0;
8138 	spin_unlock(&cache->lock);
8139 	spin_unlock(&sinfo->lock);
8140 	return 0;
8141 }
8142 
8143 /*
8144  * checks to see if its even possible to relocate this block group.
8145  *
8146  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8147  * ok to go ahead and try.
8148  */
8149 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8150 {
8151 	struct btrfs_block_group_cache *block_group;
8152 	struct btrfs_space_info *space_info;
8153 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8154 	struct btrfs_device *device;
8155 	int full = 0;
8156 	int ret = 0;
8157 
8158 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8159 
8160 	/* odd, couldn't find the block group, leave it alone */
8161 	if (!block_group)
8162 		return -1;
8163 
8164 	/* no bytes used, we're good */
8165 	if (!btrfs_block_group_used(&block_group->item))
8166 		goto out;
8167 
8168 	space_info = block_group->space_info;
8169 	spin_lock(&space_info->lock);
8170 
8171 	full = space_info->full;
8172 
8173 	/*
8174 	 * if this is the last block group we have in this space, we can't
8175 	 * relocate it unless we're able to allocate a new chunk below.
8176 	 *
8177 	 * Otherwise, we need to make sure we have room in the space to handle
8178 	 * all of the extents from this block group.  If we can, we're good
8179 	 */
8180 	if ((space_info->total_bytes != block_group->key.offset) &&
8181 	   (space_info->bytes_used + space_info->bytes_reserved +
8182 	    space_info->bytes_pinned + space_info->bytes_readonly +
8183 	    btrfs_block_group_used(&block_group->item) <
8184 	    space_info->total_bytes)) {
8185 		spin_unlock(&space_info->lock);
8186 		goto out;
8187 	}
8188 	spin_unlock(&space_info->lock);
8189 
8190 	/*
8191 	 * ok we don't have enough space, but maybe we have free space on our
8192 	 * devices to allocate new chunks for relocation, so loop through our
8193 	 * alloc devices and guess if we have enough space.  However, if we
8194 	 * were marked as full, then we know there aren't enough chunks, and we
8195 	 * can just return.
8196 	 */
8197 	ret = -1;
8198 	if (full)
8199 		goto out;
8200 
8201 	mutex_lock(&root->fs_info->chunk_mutex);
8202 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8203 		u64 min_free = btrfs_block_group_used(&block_group->item);
8204 		u64 dev_offset;
8205 
8206 		/*
8207 		 * check to make sure we can actually find a chunk with enough
8208 		 * space to fit our block group in.
8209 		 */
8210 		if (device->total_bytes > device->bytes_used + min_free) {
8211 			ret = find_free_dev_extent(NULL, device, min_free,
8212 						   &dev_offset, NULL);
8213 			if (!ret)
8214 				break;
8215 			ret = -1;
8216 		}
8217 	}
8218 	mutex_unlock(&root->fs_info->chunk_mutex);
8219 out:
8220 	btrfs_put_block_group(block_group);
8221 	return ret;
8222 }
8223 
8224 static int find_first_block_group(struct btrfs_root *root,
8225 		struct btrfs_path *path, struct btrfs_key *key)
8226 {
8227 	int ret = 0;
8228 	struct btrfs_key found_key;
8229 	struct extent_buffer *leaf;
8230 	int slot;
8231 
8232 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8233 	if (ret < 0)
8234 		goto out;
8235 
8236 	while (1) {
8237 		slot = path->slots[0];
8238 		leaf = path->nodes[0];
8239 		if (slot >= btrfs_header_nritems(leaf)) {
8240 			ret = btrfs_next_leaf(root, path);
8241 			if (ret == 0)
8242 				continue;
8243 			if (ret < 0)
8244 				goto out;
8245 			break;
8246 		}
8247 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8248 
8249 		if (found_key.objectid >= key->objectid &&
8250 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8251 			ret = 0;
8252 			goto out;
8253 		}
8254 		path->slots[0]++;
8255 	}
8256 out:
8257 	return ret;
8258 }
8259 
8260 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8261 {
8262 	struct btrfs_block_group_cache *block_group;
8263 	u64 last = 0;
8264 
8265 	while (1) {
8266 		struct inode *inode;
8267 
8268 		block_group = btrfs_lookup_first_block_group(info, last);
8269 		while (block_group) {
8270 			spin_lock(&block_group->lock);
8271 			if (block_group->iref)
8272 				break;
8273 			spin_unlock(&block_group->lock);
8274 			block_group = next_block_group(info->tree_root,
8275 						       block_group);
8276 		}
8277 		if (!block_group) {
8278 			if (last == 0)
8279 				break;
8280 			last = 0;
8281 			continue;
8282 		}
8283 
8284 		inode = block_group->inode;
8285 		block_group->iref = 0;
8286 		block_group->inode = NULL;
8287 		spin_unlock(&block_group->lock);
8288 		iput(inode);
8289 		last = block_group->key.objectid + block_group->key.offset;
8290 		btrfs_put_block_group(block_group);
8291 	}
8292 }
8293 
8294 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8295 {
8296 	struct btrfs_block_group_cache *block_group;
8297 	struct btrfs_space_info *space_info;
8298 	struct btrfs_caching_control *caching_ctl;
8299 	struct rb_node *n;
8300 
8301 	down_write(&info->extent_commit_sem);
8302 	while (!list_empty(&info->caching_block_groups)) {
8303 		caching_ctl = list_entry(info->caching_block_groups.next,
8304 					 struct btrfs_caching_control, list);
8305 		list_del(&caching_ctl->list);
8306 		put_caching_control(caching_ctl);
8307 	}
8308 	up_write(&info->extent_commit_sem);
8309 
8310 	spin_lock(&info->block_group_cache_lock);
8311 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8312 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8313 				       cache_node);
8314 		rb_erase(&block_group->cache_node,
8315 			 &info->block_group_cache_tree);
8316 		spin_unlock(&info->block_group_cache_lock);
8317 
8318 		down_write(&block_group->space_info->groups_sem);
8319 		list_del(&block_group->list);
8320 		up_write(&block_group->space_info->groups_sem);
8321 
8322 		if (block_group->cached == BTRFS_CACHE_STARTED)
8323 			wait_block_group_cache_done(block_group);
8324 
8325 		/*
8326 		 * We haven't cached this block group, which means we could
8327 		 * possibly have excluded extents on this block group.
8328 		 */
8329 		if (block_group->cached == BTRFS_CACHE_NO)
8330 			free_excluded_extents(info->extent_root, block_group);
8331 
8332 		btrfs_remove_free_space_cache(block_group);
8333 		btrfs_put_block_group(block_group);
8334 
8335 		spin_lock(&info->block_group_cache_lock);
8336 	}
8337 	spin_unlock(&info->block_group_cache_lock);
8338 
8339 	/* now that all the block groups are freed, go through and
8340 	 * free all the space_info structs.  This is only called during
8341 	 * the final stages of unmount, and so we know nobody is
8342 	 * using them.  We call synchronize_rcu() once before we start,
8343 	 * just to be on the safe side.
8344 	 */
8345 	synchronize_rcu();
8346 
8347 	release_global_block_rsv(info);
8348 
8349 	while(!list_empty(&info->space_info)) {
8350 		space_info = list_entry(info->space_info.next,
8351 					struct btrfs_space_info,
8352 					list);
8353 		if (space_info->bytes_pinned > 0 ||
8354 		    space_info->bytes_reserved > 0) {
8355 			WARN_ON(1);
8356 			dump_space_info(space_info, 0, 0);
8357 		}
8358 		list_del(&space_info->list);
8359 		kfree(space_info);
8360 	}
8361 	return 0;
8362 }
8363 
8364 static void __link_block_group(struct btrfs_space_info *space_info,
8365 			       struct btrfs_block_group_cache *cache)
8366 {
8367 	int index = get_block_group_index(cache);
8368 
8369 	down_write(&space_info->groups_sem);
8370 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8371 	up_write(&space_info->groups_sem);
8372 }
8373 
8374 int btrfs_read_block_groups(struct btrfs_root *root)
8375 {
8376 	struct btrfs_path *path;
8377 	int ret;
8378 	struct btrfs_block_group_cache *cache;
8379 	struct btrfs_fs_info *info = root->fs_info;
8380 	struct btrfs_space_info *space_info;
8381 	struct btrfs_key key;
8382 	struct btrfs_key found_key;
8383 	struct extent_buffer *leaf;
8384 	int need_clear = 0;
8385 	u64 cache_gen;
8386 
8387 	root = info->extent_root;
8388 	key.objectid = 0;
8389 	key.offset = 0;
8390 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8391 	path = btrfs_alloc_path();
8392 	if (!path)
8393 		return -ENOMEM;
8394 
8395 	cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
8396 	if (cache_gen != 0 &&
8397 	    btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
8398 		need_clear = 1;
8399 	if (btrfs_test_opt(root, CLEAR_CACHE))
8400 		need_clear = 1;
8401 	if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
8402 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
8403 
8404 	while (1) {
8405 		ret = find_first_block_group(root, path, &key);
8406 		if (ret > 0)
8407 			break;
8408 		if (ret != 0)
8409 			goto error;
8410 		leaf = path->nodes[0];
8411 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8412 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8413 		if (!cache) {
8414 			ret = -ENOMEM;
8415 			goto error;
8416 		}
8417 
8418 		atomic_set(&cache->count, 1);
8419 		spin_lock_init(&cache->lock);
8420 		spin_lock_init(&cache->tree_lock);
8421 		cache->fs_info = info;
8422 		INIT_LIST_HEAD(&cache->list);
8423 		INIT_LIST_HEAD(&cache->cluster_list);
8424 
8425 		if (need_clear)
8426 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8427 
8428 		/*
8429 		 * we only want to have 32k of ram per block group for keeping
8430 		 * track of free space, and if we pass 1/2 of that we want to
8431 		 * start converting things over to using bitmaps
8432 		 */
8433 		cache->extents_thresh = ((1024 * 32) / 2) /
8434 			sizeof(struct btrfs_free_space);
8435 
8436 		read_extent_buffer(leaf, &cache->item,
8437 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8438 				   sizeof(cache->item));
8439 		memcpy(&cache->key, &found_key, sizeof(found_key));
8440 
8441 		key.objectid = found_key.objectid + found_key.offset;
8442 		btrfs_release_path(root, path);
8443 		cache->flags = btrfs_block_group_flags(&cache->item);
8444 		cache->sectorsize = root->sectorsize;
8445 
8446 		/*
8447 		 * We need to exclude the super stripes now so that the space
8448 		 * info has super bytes accounted for, otherwise we'll think
8449 		 * we have more space than we actually do.
8450 		 */
8451 		exclude_super_stripes(root, cache);
8452 
8453 		/*
8454 		 * check for two cases, either we are full, and therefore
8455 		 * don't need to bother with the caching work since we won't
8456 		 * find any space, or we are empty, and we can just add all
8457 		 * the space in and be done with it.  This saves us _alot_ of
8458 		 * time, particularly in the full case.
8459 		 */
8460 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8461 			cache->last_byte_to_unpin = (u64)-1;
8462 			cache->cached = BTRFS_CACHE_FINISHED;
8463 			free_excluded_extents(root, cache);
8464 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8465 			cache->last_byte_to_unpin = (u64)-1;
8466 			cache->cached = BTRFS_CACHE_FINISHED;
8467 			add_new_free_space(cache, root->fs_info,
8468 					   found_key.objectid,
8469 					   found_key.objectid +
8470 					   found_key.offset);
8471 			free_excluded_extents(root, cache);
8472 		}
8473 
8474 		ret = update_space_info(info, cache->flags, found_key.offset,
8475 					btrfs_block_group_used(&cache->item),
8476 					&space_info);
8477 		BUG_ON(ret);
8478 		cache->space_info = space_info;
8479 		spin_lock(&cache->space_info->lock);
8480 		cache->space_info->bytes_readonly += cache->bytes_super;
8481 		spin_unlock(&cache->space_info->lock);
8482 
8483 		__link_block_group(space_info, cache);
8484 
8485 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8486 		BUG_ON(ret);
8487 
8488 		set_avail_alloc_bits(root->fs_info, cache->flags);
8489 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8490 			set_block_group_ro(cache);
8491 	}
8492 
8493 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8494 		if (!(get_alloc_profile(root, space_info->flags) &
8495 		      (BTRFS_BLOCK_GROUP_RAID10 |
8496 		       BTRFS_BLOCK_GROUP_RAID1 |
8497 		       BTRFS_BLOCK_GROUP_DUP)))
8498 			continue;
8499 		/*
8500 		 * avoid allocating from un-mirrored block group if there are
8501 		 * mirrored block groups.
8502 		 */
8503 		list_for_each_entry(cache, &space_info->block_groups[3], list)
8504 			set_block_group_ro(cache);
8505 		list_for_each_entry(cache, &space_info->block_groups[4], list)
8506 			set_block_group_ro(cache);
8507 	}
8508 
8509 	init_global_block_rsv(info);
8510 	ret = 0;
8511 error:
8512 	btrfs_free_path(path);
8513 	return ret;
8514 }
8515 
8516 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8517 			   struct btrfs_root *root, u64 bytes_used,
8518 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8519 			   u64 size)
8520 {
8521 	int ret;
8522 	struct btrfs_root *extent_root;
8523 	struct btrfs_block_group_cache *cache;
8524 
8525 	extent_root = root->fs_info->extent_root;
8526 
8527 	root->fs_info->last_trans_log_full_commit = trans->transid;
8528 
8529 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8530 	if (!cache)
8531 		return -ENOMEM;
8532 
8533 	cache->key.objectid = chunk_offset;
8534 	cache->key.offset = size;
8535 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8536 	cache->sectorsize = root->sectorsize;
8537 	cache->fs_info = root->fs_info;
8538 
8539 	/*
8540 	 * we only want to have 32k of ram per block group for keeping track
8541 	 * of free space, and if we pass 1/2 of that we want to start
8542 	 * converting things over to using bitmaps
8543 	 */
8544 	cache->extents_thresh = ((1024 * 32) / 2) /
8545 		sizeof(struct btrfs_free_space);
8546 	atomic_set(&cache->count, 1);
8547 	spin_lock_init(&cache->lock);
8548 	spin_lock_init(&cache->tree_lock);
8549 	INIT_LIST_HEAD(&cache->list);
8550 	INIT_LIST_HEAD(&cache->cluster_list);
8551 
8552 	btrfs_set_block_group_used(&cache->item, bytes_used);
8553 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8554 	cache->flags = type;
8555 	btrfs_set_block_group_flags(&cache->item, type);
8556 
8557 	cache->last_byte_to_unpin = (u64)-1;
8558 	cache->cached = BTRFS_CACHE_FINISHED;
8559 	exclude_super_stripes(root, cache);
8560 
8561 	add_new_free_space(cache, root->fs_info, chunk_offset,
8562 			   chunk_offset + size);
8563 
8564 	free_excluded_extents(root, cache);
8565 
8566 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8567 				&cache->space_info);
8568 	BUG_ON(ret);
8569 
8570 	spin_lock(&cache->space_info->lock);
8571 	cache->space_info->bytes_readonly += cache->bytes_super;
8572 	spin_unlock(&cache->space_info->lock);
8573 
8574 	__link_block_group(cache->space_info, cache);
8575 
8576 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8577 	BUG_ON(ret);
8578 
8579 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8580 				sizeof(cache->item));
8581 	BUG_ON(ret);
8582 
8583 	set_avail_alloc_bits(extent_root->fs_info, type);
8584 
8585 	return 0;
8586 }
8587 
8588 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8589 			     struct btrfs_root *root, u64 group_start)
8590 {
8591 	struct btrfs_path *path;
8592 	struct btrfs_block_group_cache *block_group;
8593 	struct btrfs_free_cluster *cluster;
8594 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8595 	struct btrfs_key key;
8596 	struct inode *inode;
8597 	int ret;
8598 	int factor;
8599 
8600 	root = root->fs_info->extent_root;
8601 
8602 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8603 	BUG_ON(!block_group);
8604 	BUG_ON(!block_group->ro);
8605 
8606 	memcpy(&key, &block_group->key, sizeof(key));
8607 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8608 				  BTRFS_BLOCK_GROUP_RAID1 |
8609 				  BTRFS_BLOCK_GROUP_RAID10))
8610 		factor = 2;
8611 	else
8612 		factor = 1;
8613 
8614 	/* make sure this block group isn't part of an allocation cluster */
8615 	cluster = &root->fs_info->data_alloc_cluster;
8616 	spin_lock(&cluster->refill_lock);
8617 	btrfs_return_cluster_to_free_space(block_group, cluster);
8618 	spin_unlock(&cluster->refill_lock);
8619 
8620 	/*
8621 	 * make sure this block group isn't part of a metadata
8622 	 * allocation cluster
8623 	 */
8624 	cluster = &root->fs_info->meta_alloc_cluster;
8625 	spin_lock(&cluster->refill_lock);
8626 	btrfs_return_cluster_to_free_space(block_group, cluster);
8627 	spin_unlock(&cluster->refill_lock);
8628 
8629 	path = btrfs_alloc_path();
8630 	BUG_ON(!path);
8631 
8632 	inode = lookup_free_space_inode(root, block_group, path);
8633 	if (!IS_ERR(inode)) {
8634 		btrfs_orphan_add(trans, inode);
8635 		clear_nlink(inode);
8636 		/* One for the block groups ref */
8637 		spin_lock(&block_group->lock);
8638 		if (block_group->iref) {
8639 			block_group->iref = 0;
8640 			block_group->inode = NULL;
8641 			spin_unlock(&block_group->lock);
8642 			iput(inode);
8643 		} else {
8644 			spin_unlock(&block_group->lock);
8645 		}
8646 		/* One for our lookup ref */
8647 		iput(inode);
8648 	}
8649 
8650 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8651 	key.offset = block_group->key.objectid;
8652 	key.type = 0;
8653 
8654 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8655 	if (ret < 0)
8656 		goto out;
8657 	if (ret > 0)
8658 		btrfs_release_path(tree_root, path);
8659 	if (ret == 0) {
8660 		ret = btrfs_del_item(trans, tree_root, path);
8661 		if (ret)
8662 			goto out;
8663 		btrfs_release_path(tree_root, path);
8664 	}
8665 
8666 	spin_lock(&root->fs_info->block_group_cache_lock);
8667 	rb_erase(&block_group->cache_node,
8668 		 &root->fs_info->block_group_cache_tree);
8669 	spin_unlock(&root->fs_info->block_group_cache_lock);
8670 
8671 	down_write(&block_group->space_info->groups_sem);
8672 	/*
8673 	 * we must use list_del_init so people can check to see if they
8674 	 * are still on the list after taking the semaphore
8675 	 */
8676 	list_del_init(&block_group->list);
8677 	up_write(&block_group->space_info->groups_sem);
8678 
8679 	if (block_group->cached == BTRFS_CACHE_STARTED)
8680 		wait_block_group_cache_done(block_group);
8681 
8682 	btrfs_remove_free_space_cache(block_group);
8683 
8684 	spin_lock(&block_group->space_info->lock);
8685 	block_group->space_info->total_bytes -= block_group->key.offset;
8686 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8687 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8688 	spin_unlock(&block_group->space_info->lock);
8689 
8690 	memcpy(&key, &block_group->key, sizeof(key));
8691 
8692 	btrfs_clear_space_info_full(root->fs_info);
8693 
8694 	btrfs_put_block_group(block_group);
8695 	btrfs_put_block_group(block_group);
8696 
8697 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8698 	if (ret > 0)
8699 		ret = -EIO;
8700 	if (ret < 0)
8701 		goto out;
8702 
8703 	ret = btrfs_del_item(trans, root, path);
8704 out:
8705 	btrfs_free_path(path);
8706 	return ret;
8707 }
8708 
8709 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8710 {
8711 	return unpin_extent_range(root, start, end);
8712 }
8713 
8714 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8715 			       u64 num_bytes)
8716 {
8717 	return btrfs_discard_extent(root, bytenr, num_bytes);
8718 }
8719