1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include "compat.h" 27 #include "hash.h" 28 #include "ctree.h" 29 #include "disk-io.h" 30 #include "print-tree.h" 31 #include "transaction.h" 32 #include "volumes.h" 33 #include "locking.h" 34 #include "free-space-cache.h" 35 36 static int update_block_group(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 u64 bytenr, u64 num_bytes, int alloc); 39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache, 40 u64 num_bytes, int reserve, int sinfo); 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_root *root, 43 u64 bytenr, u64 num_bytes, u64 parent, 44 u64 root_objectid, u64 owner_objectid, 45 u64 owner_offset, int refs_to_drop, 46 struct btrfs_delayed_extent_op *extra_op); 47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 48 struct extent_buffer *leaf, 49 struct btrfs_extent_item *ei); 50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_root *root, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_root *root, 57 u64 parent, u64 root_objectid, 58 u64 flags, struct btrfs_disk_key *key, 59 int level, struct btrfs_key *ins); 60 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 61 struct btrfs_root *extent_root, u64 alloc_bytes, 62 u64 flags, int force); 63 static int find_next_key(struct btrfs_path *path, int level, 64 struct btrfs_key *key); 65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 66 int dump_block_groups); 67 68 static noinline int 69 block_group_cache_done(struct btrfs_block_group_cache *cache) 70 { 71 smp_mb(); 72 return cache->cached == BTRFS_CACHE_FINISHED; 73 } 74 75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 76 { 77 return (cache->flags & bits) == bits; 78 } 79 80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 81 { 82 atomic_inc(&cache->count); 83 } 84 85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 86 { 87 if (atomic_dec_and_test(&cache->count)) { 88 WARN_ON(cache->pinned > 0); 89 WARN_ON(cache->reserved > 0); 90 WARN_ON(cache->reserved_pinned > 0); 91 kfree(cache); 92 } 93 } 94 95 /* 96 * this adds the block group to the fs_info rb tree for the block group 97 * cache 98 */ 99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 100 struct btrfs_block_group_cache *block_group) 101 { 102 struct rb_node **p; 103 struct rb_node *parent = NULL; 104 struct btrfs_block_group_cache *cache; 105 106 spin_lock(&info->block_group_cache_lock); 107 p = &info->block_group_cache_tree.rb_node; 108 109 while (*p) { 110 parent = *p; 111 cache = rb_entry(parent, struct btrfs_block_group_cache, 112 cache_node); 113 if (block_group->key.objectid < cache->key.objectid) { 114 p = &(*p)->rb_left; 115 } else if (block_group->key.objectid > cache->key.objectid) { 116 p = &(*p)->rb_right; 117 } else { 118 spin_unlock(&info->block_group_cache_lock); 119 return -EEXIST; 120 } 121 } 122 123 rb_link_node(&block_group->cache_node, parent, p); 124 rb_insert_color(&block_group->cache_node, 125 &info->block_group_cache_tree); 126 spin_unlock(&info->block_group_cache_lock); 127 128 return 0; 129 } 130 131 /* 132 * This will return the block group at or after bytenr if contains is 0, else 133 * it will return the block group that contains the bytenr 134 */ 135 static struct btrfs_block_group_cache * 136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 137 int contains) 138 { 139 struct btrfs_block_group_cache *cache, *ret = NULL; 140 struct rb_node *n; 141 u64 end, start; 142 143 spin_lock(&info->block_group_cache_lock); 144 n = info->block_group_cache_tree.rb_node; 145 146 while (n) { 147 cache = rb_entry(n, struct btrfs_block_group_cache, 148 cache_node); 149 end = cache->key.objectid + cache->key.offset - 1; 150 start = cache->key.objectid; 151 152 if (bytenr < start) { 153 if (!contains && (!ret || start < ret->key.objectid)) 154 ret = cache; 155 n = n->rb_left; 156 } else if (bytenr > start) { 157 if (contains && bytenr <= end) { 158 ret = cache; 159 break; 160 } 161 n = n->rb_right; 162 } else { 163 ret = cache; 164 break; 165 } 166 } 167 if (ret) 168 btrfs_get_block_group(ret); 169 spin_unlock(&info->block_group_cache_lock); 170 171 return ret; 172 } 173 174 static int add_excluded_extent(struct btrfs_root *root, 175 u64 start, u64 num_bytes) 176 { 177 u64 end = start + num_bytes - 1; 178 set_extent_bits(&root->fs_info->freed_extents[0], 179 start, end, EXTENT_UPTODATE, GFP_NOFS); 180 set_extent_bits(&root->fs_info->freed_extents[1], 181 start, end, EXTENT_UPTODATE, GFP_NOFS); 182 return 0; 183 } 184 185 static void free_excluded_extents(struct btrfs_root *root, 186 struct btrfs_block_group_cache *cache) 187 { 188 u64 start, end; 189 190 start = cache->key.objectid; 191 end = start + cache->key.offset - 1; 192 193 clear_extent_bits(&root->fs_info->freed_extents[0], 194 start, end, EXTENT_UPTODATE, GFP_NOFS); 195 clear_extent_bits(&root->fs_info->freed_extents[1], 196 start, end, EXTENT_UPTODATE, GFP_NOFS); 197 } 198 199 static int exclude_super_stripes(struct btrfs_root *root, 200 struct btrfs_block_group_cache *cache) 201 { 202 u64 bytenr; 203 u64 *logical; 204 int stripe_len; 205 int i, nr, ret; 206 207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 209 cache->bytes_super += stripe_len; 210 ret = add_excluded_extent(root, cache->key.objectid, 211 stripe_len); 212 BUG_ON(ret); 213 } 214 215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 216 bytenr = btrfs_sb_offset(i); 217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 218 cache->key.objectid, bytenr, 219 0, &logical, &nr, &stripe_len); 220 BUG_ON(ret); 221 222 while (nr--) { 223 cache->bytes_super += stripe_len; 224 ret = add_excluded_extent(root, logical[nr], 225 stripe_len); 226 BUG_ON(ret); 227 } 228 229 kfree(logical); 230 } 231 return 0; 232 } 233 234 static struct btrfs_caching_control * 235 get_caching_control(struct btrfs_block_group_cache *cache) 236 { 237 struct btrfs_caching_control *ctl; 238 239 spin_lock(&cache->lock); 240 if (cache->cached != BTRFS_CACHE_STARTED) { 241 spin_unlock(&cache->lock); 242 return NULL; 243 } 244 245 /* We're loading it the fast way, so we don't have a caching_ctl. */ 246 if (!cache->caching_ctl) { 247 spin_unlock(&cache->lock); 248 return NULL; 249 } 250 251 ctl = cache->caching_ctl; 252 atomic_inc(&ctl->count); 253 spin_unlock(&cache->lock); 254 return ctl; 255 } 256 257 static void put_caching_control(struct btrfs_caching_control *ctl) 258 { 259 if (atomic_dec_and_test(&ctl->count)) 260 kfree(ctl); 261 } 262 263 /* 264 * this is only called by cache_block_group, since we could have freed extents 265 * we need to check the pinned_extents for any extents that can't be used yet 266 * since their free space will be released as soon as the transaction commits. 267 */ 268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 269 struct btrfs_fs_info *info, u64 start, u64 end) 270 { 271 u64 extent_start, extent_end, size, total_added = 0; 272 int ret; 273 274 while (start < end) { 275 ret = find_first_extent_bit(info->pinned_extents, start, 276 &extent_start, &extent_end, 277 EXTENT_DIRTY | EXTENT_UPTODATE); 278 if (ret) 279 break; 280 281 if (extent_start <= start) { 282 start = extent_end + 1; 283 } else if (extent_start > start && extent_start < end) { 284 size = extent_start - start; 285 total_added += size; 286 ret = btrfs_add_free_space(block_group, start, 287 size); 288 BUG_ON(ret); 289 start = extent_end + 1; 290 } else { 291 break; 292 } 293 } 294 295 if (start < end) { 296 size = end - start; 297 total_added += size; 298 ret = btrfs_add_free_space(block_group, start, size); 299 BUG_ON(ret); 300 } 301 302 return total_added; 303 } 304 305 static int caching_kthread(void *data) 306 { 307 struct btrfs_block_group_cache *block_group = data; 308 struct btrfs_fs_info *fs_info = block_group->fs_info; 309 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl; 310 struct btrfs_root *extent_root = fs_info->extent_root; 311 struct btrfs_path *path; 312 struct extent_buffer *leaf; 313 struct btrfs_key key; 314 u64 total_found = 0; 315 u64 last = 0; 316 u32 nritems; 317 int ret = 0; 318 319 path = btrfs_alloc_path(); 320 if (!path) 321 return -ENOMEM; 322 323 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 324 325 /* 326 * We don't want to deadlock with somebody trying to allocate a new 327 * extent for the extent root while also trying to search the extent 328 * root to add free space. So we skip locking and search the commit 329 * root, since its read-only 330 */ 331 path->skip_locking = 1; 332 path->search_commit_root = 1; 333 path->reada = 2; 334 335 key.objectid = last; 336 key.offset = 0; 337 key.type = BTRFS_EXTENT_ITEM_KEY; 338 again: 339 mutex_lock(&caching_ctl->mutex); 340 /* need to make sure the commit_root doesn't disappear */ 341 down_read(&fs_info->extent_commit_sem); 342 343 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 344 if (ret < 0) 345 goto err; 346 347 leaf = path->nodes[0]; 348 nritems = btrfs_header_nritems(leaf); 349 350 while (1) { 351 smp_mb(); 352 if (fs_info->closing > 1) { 353 last = (u64)-1; 354 break; 355 } 356 357 if (path->slots[0] < nritems) { 358 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 359 } else { 360 ret = find_next_key(path, 0, &key); 361 if (ret) 362 break; 363 364 caching_ctl->progress = last; 365 btrfs_release_path(extent_root, path); 366 up_read(&fs_info->extent_commit_sem); 367 mutex_unlock(&caching_ctl->mutex); 368 if (btrfs_transaction_in_commit(fs_info)) 369 schedule_timeout(1); 370 else 371 cond_resched(); 372 goto again; 373 } 374 375 if (key.objectid < block_group->key.objectid) { 376 path->slots[0]++; 377 continue; 378 } 379 380 if (key.objectid >= block_group->key.objectid + 381 block_group->key.offset) 382 break; 383 384 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 385 total_found += add_new_free_space(block_group, 386 fs_info, last, 387 key.objectid); 388 last = key.objectid + key.offset; 389 390 if (total_found > (1024 * 1024 * 2)) { 391 total_found = 0; 392 wake_up(&caching_ctl->wait); 393 } 394 } 395 path->slots[0]++; 396 } 397 ret = 0; 398 399 total_found += add_new_free_space(block_group, fs_info, last, 400 block_group->key.objectid + 401 block_group->key.offset); 402 caching_ctl->progress = (u64)-1; 403 404 spin_lock(&block_group->lock); 405 block_group->caching_ctl = NULL; 406 block_group->cached = BTRFS_CACHE_FINISHED; 407 spin_unlock(&block_group->lock); 408 409 err: 410 btrfs_free_path(path); 411 up_read(&fs_info->extent_commit_sem); 412 413 free_excluded_extents(extent_root, block_group); 414 415 mutex_unlock(&caching_ctl->mutex); 416 wake_up(&caching_ctl->wait); 417 418 put_caching_control(caching_ctl); 419 atomic_dec(&block_group->space_info->caching_threads); 420 btrfs_put_block_group(block_group); 421 422 return 0; 423 } 424 425 static int cache_block_group(struct btrfs_block_group_cache *cache, 426 struct btrfs_trans_handle *trans, 427 struct btrfs_root *root, 428 int load_cache_only) 429 { 430 struct btrfs_fs_info *fs_info = cache->fs_info; 431 struct btrfs_caching_control *caching_ctl; 432 struct task_struct *tsk; 433 int ret = 0; 434 435 smp_mb(); 436 if (cache->cached != BTRFS_CACHE_NO) 437 return 0; 438 439 /* 440 * We can't do the read from on-disk cache during a commit since we need 441 * to have the normal tree locking. Also if we are currently trying to 442 * allocate blocks for the tree root we can't do the fast caching since 443 * we likely hold important locks. 444 */ 445 if (!trans->transaction->in_commit && 446 (root && root != root->fs_info->tree_root)) { 447 spin_lock(&cache->lock); 448 if (cache->cached != BTRFS_CACHE_NO) { 449 spin_unlock(&cache->lock); 450 return 0; 451 } 452 cache->cached = BTRFS_CACHE_STARTED; 453 spin_unlock(&cache->lock); 454 455 ret = load_free_space_cache(fs_info, cache); 456 457 spin_lock(&cache->lock); 458 if (ret == 1) { 459 cache->cached = BTRFS_CACHE_FINISHED; 460 cache->last_byte_to_unpin = (u64)-1; 461 } else { 462 cache->cached = BTRFS_CACHE_NO; 463 } 464 spin_unlock(&cache->lock); 465 if (ret == 1) { 466 free_excluded_extents(fs_info->extent_root, cache); 467 return 0; 468 } 469 } 470 471 if (load_cache_only) 472 return 0; 473 474 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL); 475 BUG_ON(!caching_ctl); 476 477 INIT_LIST_HEAD(&caching_ctl->list); 478 mutex_init(&caching_ctl->mutex); 479 init_waitqueue_head(&caching_ctl->wait); 480 caching_ctl->block_group = cache; 481 caching_ctl->progress = cache->key.objectid; 482 /* one for caching kthread, one for caching block group list */ 483 atomic_set(&caching_ctl->count, 2); 484 485 spin_lock(&cache->lock); 486 if (cache->cached != BTRFS_CACHE_NO) { 487 spin_unlock(&cache->lock); 488 kfree(caching_ctl); 489 return 0; 490 } 491 cache->caching_ctl = caching_ctl; 492 cache->cached = BTRFS_CACHE_STARTED; 493 spin_unlock(&cache->lock); 494 495 down_write(&fs_info->extent_commit_sem); 496 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 497 up_write(&fs_info->extent_commit_sem); 498 499 atomic_inc(&cache->space_info->caching_threads); 500 btrfs_get_block_group(cache); 501 502 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n", 503 cache->key.objectid); 504 if (IS_ERR(tsk)) { 505 ret = PTR_ERR(tsk); 506 printk(KERN_ERR "error running thread %d\n", ret); 507 BUG(); 508 } 509 510 return ret; 511 } 512 513 /* 514 * return the block group that starts at or after bytenr 515 */ 516 static struct btrfs_block_group_cache * 517 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 518 { 519 struct btrfs_block_group_cache *cache; 520 521 cache = block_group_cache_tree_search(info, bytenr, 0); 522 523 return cache; 524 } 525 526 /* 527 * return the block group that contains the given bytenr 528 */ 529 struct btrfs_block_group_cache *btrfs_lookup_block_group( 530 struct btrfs_fs_info *info, 531 u64 bytenr) 532 { 533 struct btrfs_block_group_cache *cache; 534 535 cache = block_group_cache_tree_search(info, bytenr, 1); 536 537 return cache; 538 } 539 540 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 541 u64 flags) 542 { 543 struct list_head *head = &info->space_info; 544 struct btrfs_space_info *found; 545 546 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | 547 BTRFS_BLOCK_GROUP_METADATA; 548 549 rcu_read_lock(); 550 list_for_each_entry_rcu(found, head, list) { 551 if (found->flags & flags) { 552 rcu_read_unlock(); 553 return found; 554 } 555 } 556 rcu_read_unlock(); 557 return NULL; 558 } 559 560 /* 561 * after adding space to the filesystem, we need to clear the full flags 562 * on all the space infos. 563 */ 564 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 565 { 566 struct list_head *head = &info->space_info; 567 struct btrfs_space_info *found; 568 569 rcu_read_lock(); 570 list_for_each_entry_rcu(found, head, list) 571 found->full = 0; 572 rcu_read_unlock(); 573 } 574 575 static u64 div_factor(u64 num, int factor) 576 { 577 if (factor == 10) 578 return num; 579 num *= factor; 580 do_div(num, 10); 581 return num; 582 } 583 584 static u64 div_factor_fine(u64 num, int factor) 585 { 586 if (factor == 100) 587 return num; 588 num *= factor; 589 do_div(num, 100); 590 return num; 591 } 592 593 u64 btrfs_find_block_group(struct btrfs_root *root, 594 u64 search_start, u64 search_hint, int owner) 595 { 596 struct btrfs_block_group_cache *cache; 597 u64 used; 598 u64 last = max(search_hint, search_start); 599 u64 group_start = 0; 600 int full_search = 0; 601 int factor = 9; 602 int wrapped = 0; 603 again: 604 while (1) { 605 cache = btrfs_lookup_first_block_group(root->fs_info, last); 606 if (!cache) 607 break; 608 609 spin_lock(&cache->lock); 610 last = cache->key.objectid + cache->key.offset; 611 used = btrfs_block_group_used(&cache->item); 612 613 if ((full_search || !cache->ro) && 614 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 615 if (used + cache->pinned + cache->reserved < 616 div_factor(cache->key.offset, factor)) { 617 group_start = cache->key.objectid; 618 spin_unlock(&cache->lock); 619 btrfs_put_block_group(cache); 620 goto found; 621 } 622 } 623 spin_unlock(&cache->lock); 624 btrfs_put_block_group(cache); 625 cond_resched(); 626 } 627 if (!wrapped) { 628 last = search_start; 629 wrapped = 1; 630 goto again; 631 } 632 if (!full_search && factor < 10) { 633 last = search_start; 634 full_search = 1; 635 factor = 10; 636 goto again; 637 } 638 found: 639 return group_start; 640 } 641 642 /* simple helper to search for an existing extent at a given offset */ 643 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 644 { 645 int ret; 646 struct btrfs_key key; 647 struct btrfs_path *path; 648 649 path = btrfs_alloc_path(); 650 BUG_ON(!path); 651 key.objectid = start; 652 key.offset = len; 653 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 654 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 655 0, 0); 656 btrfs_free_path(path); 657 return ret; 658 } 659 660 /* 661 * helper function to lookup reference count and flags of extent. 662 * 663 * the head node for delayed ref is used to store the sum of all the 664 * reference count modifications queued up in the rbtree. the head 665 * node may also store the extent flags to set. This way you can check 666 * to see what the reference count and extent flags would be if all of 667 * the delayed refs are not processed. 668 */ 669 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root, u64 bytenr, 671 u64 num_bytes, u64 *refs, u64 *flags) 672 { 673 struct btrfs_delayed_ref_head *head; 674 struct btrfs_delayed_ref_root *delayed_refs; 675 struct btrfs_path *path; 676 struct btrfs_extent_item *ei; 677 struct extent_buffer *leaf; 678 struct btrfs_key key; 679 u32 item_size; 680 u64 num_refs; 681 u64 extent_flags; 682 int ret; 683 684 path = btrfs_alloc_path(); 685 if (!path) 686 return -ENOMEM; 687 688 key.objectid = bytenr; 689 key.type = BTRFS_EXTENT_ITEM_KEY; 690 key.offset = num_bytes; 691 if (!trans) { 692 path->skip_locking = 1; 693 path->search_commit_root = 1; 694 } 695 again: 696 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 697 &key, path, 0, 0); 698 if (ret < 0) 699 goto out_free; 700 701 if (ret == 0) { 702 leaf = path->nodes[0]; 703 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 704 if (item_size >= sizeof(*ei)) { 705 ei = btrfs_item_ptr(leaf, path->slots[0], 706 struct btrfs_extent_item); 707 num_refs = btrfs_extent_refs(leaf, ei); 708 extent_flags = btrfs_extent_flags(leaf, ei); 709 } else { 710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 711 struct btrfs_extent_item_v0 *ei0; 712 BUG_ON(item_size != sizeof(*ei0)); 713 ei0 = btrfs_item_ptr(leaf, path->slots[0], 714 struct btrfs_extent_item_v0); 715 num_refs = btrfs_extent_refs_v0(leaf, ei0); 716 /* FIXME: this isn't correct for data */ 717 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 718 #else 719 BUG(); 720 #endif 721 } 722 BUG_ON(num_refs == 0); 723 } else { 724 num_refs = 0; 725 extent_flags = 0; 726 ret = 0; 727 } 728 729 if (!trans) 730 goto out; 731 732 delayed_refs = &trans->transaction->delayed_refs; 733 spin_lock(&delayed_refs->lock); 734 head = btrfs_find_delayed_ref_head(trans, bytenr); 735 if (head) { 736 if (!mutex_trylock(&head->mutex)) { 737 atomic_inc(&head->node.refs); 738 spin_unlock(&delayed_refs->lock); 739 740 btrfs_release_path(root->fs_info->extent_root, path); 741 742 mutex_lock(&head->mutex); 743 mutex_unlock(&head->mutex); 744 btrfs_put_delayed_ref(&head->node); 745 goto again; 746 } 747 if (head->extent_op && head->extent_op->update_flags) 748 extent_flags |= head->extent_op->flags_to_set; 749 else 750 BUG_ON(num_refs == 0); 751 752 num_refs += head->node.ref_mod; 753 mutex_unlock(&head->mutex); 754 } 755 spin_unlock(&delayed_refs->lock); 756 out: 757 WARN_ON(num_refs == 0); 758 if (refs) 759 *refs = num_refs; 760 if (flags) 761 *flags = extent_flags; 762 out_free: 763 btrfs_free_path(path); 764 return ret; 765 } 766 767 /* 768 * Back reference rules. Back refs have three main goals: 769 * 770 * 1) differentiate between all holders of references to an extent so that 771 * when a reference is dropped we can make sure it was a valid reference 772 * before freeing the extent. 773 * 774 * 2) Provide enough information to quickly find the holders of an extent 775 * if we notice a given block is corrupted or bad. 776 * 777 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 778 * maintenance. This is actually the same as #2, but with a slightly 779 * different use case. 780 * 781 * There are two kinds of back refs. The implicit back refs is optimized 782 * for pointers in non-shared tree blocks. For a given pointer in a block, 783 * back refs of this kind provide information about the block's owner tree 784 * and the pointer's key. These information allow us to find the block by 785 * b-tree searching. The full back refs is for pointers in tree blocks not 786 * referenced by their owner trees. The location of tree block is recorded 787 * in the back refs. Actually the full back refs is generic, and can be 788 * used in all cases the implicit back refs is used. The major shortcoming 789 * of the full back refs is its overhead. Every time a tree block gets 790 * COWed, we have to update back refs entry for all pointers in it. 791 * 792 * For a newly allocated tree block, we use implicit back refs for 793 * pointers in it. This means most tree related operations only involve 794 * implicit back refs. For a tree block created in old transaction, the 795 * only way to drop a reference to it is COW it. So we can detect the 796 * event that tree block loses its owner tree's reference and do the 797 * back refs conversion. 798 * 799 * When a tree block is COW'd through a tree, there are four cases: 800 * 801 * The reference count of the block is one and the tree is the block's 802 * owner tree. Nothing to do in this case. 803 * 804 * The reference count of the block is one and the tree is not the 805 * block's owner tree. In this case, full back refs is used for pointers 806 * in the block. Remove these full back refs, add implicit back refs for 807 * every pointers in the new block. 808 * 809 * The reference count of the block is greater than one and the tree is 810 * the block's owner tree. In this case, implicit back refs is used for 811 * pointers in the block. Add full back refs for every pointers in the 812 * block, increase lower level extents' reference counts. The original 813 * implicit back refs are entailed to the new block. 814 * 815 * The reference count of the block is greater than one and the tree is 816 * not the block's owner tree. Add implicit back refs for every pointer in 817 * the new block, increase lower level extents' reference count. 818 * 819 * Back Reference Key composing: 820 * 821 * The key objectid corresponds to the first byte in the extent, 822 * The key type is used to differentiate between types of back refs. 823 * There are different meanings of the key offset for different types 824 * of back refs. 825 * 826 * File extents can be referenced by: 827 * 828 * - multiple snapshots, subvolumes, or different generations in one subvol 829 * - different files inside a single subvolume 830 * - different offsets inside a file (bookend extents in file.c) 831 * 832 * The extent ref structure for the implicit back refs has fields for: 833 * 834 * - Objectid of the subvolume root 835 * - objectid of the file holding the reference 836 * - original offset in the file 837 * - how many bookend extents 838 * 839 * The key offset for the implicit back refs is hash of the first 840 * three fields. 841 * 842 * The extent ref structure for the full back refs has field for: 843 * 844 * - number of pointers in the tree leaf 845 * 846 * The key offset for the implicit back refs is the first byte of 847 * the tree leaf 848 * 849 * When a file extent is allocated, The implicit back refs is used. 850 * the fields are filled in: 851 * 852 * (root_key.objectid, inode objectid, offset in file, 1) 853 * 854 * When a file extent is removed file truncation, we find the 855 * corresponding implicit back refs and check the following fields: 856 * 857 * (btrfs_header_owner(leaf), inode objectid, offset in file) 858 * 859 * Btree extents can be referenced by: 860 * 861 * - Different subvolumes 862 * 863 * Both the implicit back refs and the full back refs for tree blocks 864 * only consist of key. The key offset for the implicit back refs is 865 * objectid of block's owner tree. The key offset for the full back refs 866 * is the first byte of parent block. 867 * 868 * When implicit back refs is used, information about the lowest key and 869 * level of the tree block are required. These information are stored in 870 * tree block info structure. 871 */ 872 873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 874 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 875 struct btrfs_root *root, 876 struct btrfs_path *path, 877 u64 owner, u32 extra_size) 878 { 879 struct btrfs_extent_item *item; 880 struct btrfs_extent_item_v0 *ei0; 881 struct btrfs_extent_ref_v0 *ref0; 882 struct btrfs_tree_block_info *bi; 883 struct extent_buffer *leaf; 884 struct btrfs_key key; 885 struct btrfs_key found_key; 886 u32 new_size = sizeof(*item); 887 u64 refs; 888 int ret; 889 890 leaf = path->nodes[0]; 891 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 892 893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 894 ei0 = btrfs_item_ptr(leaf, path->slots[0], 895 struct btrfs_extent_item_v0); 896 refs = btrfs_extent_refs_v0(leaf, ei0); 897 898 if (owner == (u64)-1) { 899 while (1) { 900 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 901 ret = btrfs_next_leaf(root, path); 902 if (ret < 0) 903 return ret; 904 BUG_ON(ret > 0); 905 leaf = path->nodes[0]; 906 } 907 btrfs_item_key_to_cpu(leaf, &found_key, 908 path->slots[0]); 909 BUG_ON(key.objectid != found_key.objectid); 910 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 911 path->slots[0]++; 912 continue; 913 } 914 ref0 = btrfs_item_ptr(leaf, path->slots[0], 915 struct btrfs_extent_ref_v0); 916 owner = btrfs_ref_objectid_v0(leaf, ref0); 917 break; 918 } 919 } 920 btrfs_release_path(root, path); 921 922 if (owner < BTRFS_FIRST_FREE_OBJECTID) 923 new_size += sizeof(*bi); 924 925 new_size -= sizeof(*ei0); 926 ret = btrfs_search_slot(trans, root, &key, path, 927 new_size + extra_size, 1); 928 if (ret < 0) 929 return ret; 930 BUG_ON(ret); 931 932 ret = btrfs_extend_item(trans, root, path, new_size); 933 BUG_ON(ret); 934 935 leaf = path->nodes[0]; 936 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 937 btrfs_set_extent_refs(leaf, item, refs); 938 /* FIXME: get real generation */ 939 btrfs_set_extent_generation(leaf, item, 0); 940 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 941 btrfs_set_extent_flags(leaf, item, 942 BTRFS_EXTENT_FLAG_TREE_BLOCK | 943 BTRFS_BLOCK_FLAG_FULL_BACKREF); 944 bi = (struct btrfs_tree_block_info *)(item + 1); 945 /* FIXME: get first key of the block */ 946 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 947 btrfs_set_tree_block_level(leaf, bi, (int)owner); 948 } else { 949 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 950 } 951 btrfs_mark_buffer_dirty(leaf); 952 return 0; 953 } 954 #endif 955 956 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 957 { 958 u32 high_crc = ~(u32)0; 959 u32 low_crc = ~(u32)0; 960 __le64 lenum; 961 962 lenum = cpu_to_le64(root_objectid); 963 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 964 lenum = cpu_to_le64(owner); 965 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 966 lenum = cpu_to_le64(offset); 967 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 968 969 return ((u64)high_crc << 31) ^ (u64)low_crc; 970 } 971 972 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 973 struct btrfs_extent_data_ref *ref) 974 { 975 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 976 btrfs_extent_data_ref_objectid(leaf, ref), 977 btrfs_extent_data_ref_offset(leaf, ref)); 978 } 979 980 static int match_extent_data_ref(struct extent_buffer *leaf, 981 struct btrfs_extent_data_ref *ref, 982 u64 root_objectid, u64 owner, u64 offset) 983 { 984 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 985 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 986 btrfs_extent_data_ref_offset(leaf, ref) != offset) 987 return 0; 988 return 1; 989 } 990 991 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 992 struct btrfs_root *root, 993 struct btrfs_path *path, 994 u64 bytenr, u64 parent, 995 u64 root_objectid, 996 u64 owner, u64 offset) 997 { 998 struct btrfs_key key; 999 struct btrfs_extent_data_ref *ref; 1000 struct extent_buffer *leaf; 1001 u32 nritems; 1002 int ret; 1003 int recow; 1004 int err = -ENOENT; 1005 1006 key.objectid = bytenr; 1007 if (parent) { 1008 key.type = BTRFS_SHARED_DATA_REF_KEY; 1009 key.offset = parent; 1010 } else { 1011 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1012 key.offset = hash_extent_data_ref(root_objectid, 1013 owner, offset); 1014 } 1015 again: 1016 recow = 0; 1017 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1018 if (ret < 0) { 1019 err = ret; 1020 goto fail; 1021 } 1022 1023 if (parent) { 1024 if (!ret) 1025 return 0; 1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1027 key.type = BTRFS_EXTENT_REF_V0_KEY; 1028 btrfs_release_path(root, path); 1029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1030 if (ret < 0) { 1031 err = ret; 1032 goto fail; 1033 } 1034 if (!ret) 1035 return 0; 1036 #endif 1037 goto fail; 1038 } 1039 1040 leaf = path->nodes[0]; 1041 nritems = btrfs_header_nritems(leaf); 1042 while (1) { 1043 if (path->slots[0] >= nritems) { 1044 ret = btrfs_next_leaf(root, path); 1045 if (ret < 0) 1046 err = ret; 1047 if (ret) 1048 goto fail; 1049 1050 leaf = path->nodes[0]; 1051 nritems = btrfs_header_nritems(leaf); 1052 recow = 1; 1053 } 1054 1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1056 if (key.objectid != bytenr || 1057 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1058 goto fail; 1059 1060 ref = btrfs_item_ptr(leaf, path->slots[0], 1061 struct btrfs_extent_data_ref); 1062 1063 if (match_extent_data_ref(leaf, ref, root_objectid, 1064 owner, offset)) { 1065 if (recow) { 1066 btrfs_release_path(root, path); 1067 goto again; 1068 } 1069 err = 0; 1070 break; 1071 } 1072 path->slots[0]++; 1073 } 1074 fail: 1075 return err; 1076 } 1077 1078 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1079 struct btrfs_root *root, 1080 struct btrfs_path *path, 1081 u64 bytenr, u64 parent, 1082 u64 root_objectid, u64 owner, 1083 u64 offset, int refs_to_add) 1084 { 1085 struct btrfs_key key; 1086 struct extent_buffer *leaf; 1087 u32 size; 1088 u32 num_refs; 1089 int ret; 1090 1091 key.objectid = bytenr; 1092 if (parent) { 1093 key.type = BTRFS_SHARED_DATA_REF_KEY; 1094 key.offset = parent; 1095 size = sizeof(struct btrfs_shared_data_ref); 1096 } else { 1097 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1098 key.offset = hash_extent_data_ref(root_objectid, 1099 owner, offset); 1100 size = sizeof(struct btrfs_extent_data_ref); 1101 } 1102 1103 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1104 if (ret && ret != -EEXIST) 1105 goto fail; 1106 1107 leaf = path->nodes[0]; 1108 if (parent) { 1109 struct btrfs_shared_data_ref *ref; 1110 ref = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_shared_data_ref); 1112 if (ret == 0) { 1113 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1114 } else { 1115 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1116 num_refs += refs_to_add; 1117 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1118 } 1119 } else { 1120 struct btrfs_extent_data_ref *ref; 1121 while (ret == -EEXIST) { 1122 ref = btrfs_item_ptr(leaf, path->slots[0], 1123 struct btrfs_extent_data_ref); 1124 if (match_extent_data_ref(leaf, ref, root_objectid, 1125 owner, offset)) 1126 break; 1127 btrfs_release_path(root, path); 1128 key.offset++; 1129 ret = btrfs_insert_empty_item(trans, root, path, &key, 1130 size); 1131 if (ret && ret != -EEXIST) 1132 goto fail; 1133 1134 leaf = path->nodes[0]; 1135 } 1136 ref = btrfs_item_ptr(leaf, path->slots[0], 1137 struct btrfs_extent_data_ref); 1138 if (ret == 0) { 1139 btrfs_set_extent_data_ref_root(leaf, ref, 1140 root_objectid); 1141 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1142 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1143 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1144 } else { 1145 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1146 num_refs += refs_to_add; 1147 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1148 } 1149 } 1150 btrfs_mark_buffer_dirty(leaf); 1151 ret = 0; 1152 fail: 1153 btrfs_release_path(root, path); 1154 return ret; 1155 } 1156 1157 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1158 struct btrfs_root *root, 1159 struct btrfs_path *path, 1160 int refs_to_drop) 1161 { 1162 struct btrfs_key key; 1163 struct btrfs_extent_data_ref *ref1 = NULL; 1164 struct btrfs_shared_data_ref *ref2 = NULL; 1165 struct extent_buffer *leaf; 1166 u32 num_refs = 0; 1167 int ret = 0; 1168 1169 leaf = path->nodes[0]; 1170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1171 1172 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1173 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1174 struct btrfs_extent_data_ref); 1175 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1176 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1177 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1178 struct btrfs_shared_data_ref); 1179 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1181 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1182 struct btrfs_extent_ref_v0 *ref0; 1183 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1184 struct btrfs_extent_ref_v0); 1185 num_refs = btrfs_ref_count_v0(leaf, ref0); 1186 #endif 1187 } else { 1188 BUG(); 1189 } 1190 1191 BUG_ON(num_refs < refs_to_drop); 1192 num_refs -= refs_to_drop; 1193 1194 if (num_refs == 0) { 1195 ret = btrfs_del_item(trans, root, path); 1196 } else { 1197 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1198 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1199 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1200 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1202 else { 1203 struct btrfs_extent_ref_v0 *ref0; 1204 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_extent_ref_v0); 1206 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1207 } 1208 #endif 1209 btrfs_mark_buffer_dirty(leaf); 1210 } 1211 return ret; 1212 } 1213 1214 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1215 struct btrfs_path *path, 1216 struct btrfs_extent_inline_ref *iref) 1217 { 1218 struct btrfs_key key; 1219 struct extent_buffer *leaf; 1220 struct btrfs_extent_data_ref *ref1; 1221 struct btrfs_shared_data_ref *ref2; 1222 u32 num_refs = 0; 1223 1224 leaf = path->nodes[0]; 1225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1226 if (iref) { 1227 if (btrfs_extent_inline_ref_type(leaf, iref) == 1228 BTRFS_EXTENT_DATA_REF_KEY) { 1229 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1230 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1231 } else { 1232 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1233 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1234 } 1235 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1236 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_extent_data_ref); 1238 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1239 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1240 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_shared_data_ref); 1242 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1244 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1245 struct btrfs_extent_ref_v0 *ref0; 1246 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1247 struct btrfs_extent_ref_v0); 1248 num_refs = btrfs_ref_count_v0(leaf, ref0); 1249 #endif 1250 } else { 1251 WARN_ON(1); 1252 } 1253 return num_refs; 1254 } 1255 1256 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1257 struct btrfs_root *root, 1258 struct btrfs_path *path, 1259 u64 bytenr, u64 parent, 1260 u64 root_objectid) 1261 { 1262 struct btrfs_key key; 1263 int ret; 1264 1265 key.objectid = bytenr; 1266 if (parent) { 1267 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1268 key.offset = parent; 1269 } else { 1270 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1271 key.offset = root_objectid; 1272 } 1273 1274 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1275 if (ret > 0) 1276 ret = -ENOENT; 1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1278 if (ret == -ENOENT && parent) { 1279 btrfs_release_path(root, path); 1280 key.type = BTRFS_EXTENT_REF_V0_KEY; 1281 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1282 if (ret > 0) 1283 ret = -ENOENT; 1284 } 1285 #endif 1286 return ret; 1287 } 1288 1289 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1290 struct btrfs_root *root, 1291 struct btrfs_path *path, 1292 u64 bytenr, u64 parent, 1293 u64 root_objectid) 1294 { 1295 struct btrfs_key key; 1296 int ret; 1297 1298 key.objectid = bytenr; 1299 if (parent) { 1300 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1301 key.offset = parent; 1302 } else { 1303 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1304 key.offset = root_objectid; 1305 } 1306 1307 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1308 btrfs_release_path(root, path); 1309 return ret; 1310 } 1311 1312 static inline int extent_ref_type(u64 parent, u64 owner) 1313 { 1314 int type; 1315 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1316 if (parent > 0) 1317 type = BTRFS_SHARED_BLOCK_REF_KEY; 1318 else 1319 type = BTRFS_TREE_BLOCK_REF_KEY; 1320 } else { 1321 if (parent > 0) 1322 type = BTRFS_SHARED_DATA_REF_KEY; 1323 else 1324 type = BTRFS_EXTENT_DATA_REF_KEY; 1325 } 1326 return type; 1327 } 1328 1329 static int find_next_key(struct btrfs_path *path, int level, 1330 struct btrfs_key *key) 1331 1332 { 1333 for (; level < BTRFS_MAX_LEVEL; level++) { 1334 if (!path->nodes[level]) 1335 break; 1336 if (path->slots[level] + 1 >= 1337 btrfs_header_nritems(path->nodes[level])) 1338 continue; 1339 if (level == 0) 1340 btrfs_item_key_to_cpu(path->nodes[level], key, 1341 path->slots[level] + 1); 1342 else 1343 btrfs_node_key_to_cpu(path->nodes[level], key, 1344 path->slots[level] + 1); 1345 return 0; 1346 } 1347 return 1; 1348 } 1349 1350 /* 1351 * look for inline back ref. if back ref is found, *ref_ret is set 1352 * to the address of inline back ref, and 0 is returned. 1353 * 1354 * if back ref isn't found, *ref_ret is set to the address where it 1355 * should be inserted, and -ENOENT is returned. 1356 * 1357 * if insert is true and there are too many inline back refs, the path 1358 * points to the extent item, and -EAGAIN is returned. 1359 * 1360 * NOTE: inline back refs are ordered in the same way that back ref 1361 * items in the tree are ordered. 1362 */ 1363 static noinline_for_stack 1364 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1365 struct btrfs_root *root, 1366 struct btrfs_path *path, 1367 struct btrfs_extent_inline_ref **ref_ret, 1368 u64 bytenr, u64 num_bytes, 1369 u64 parent, u64 root_objectid, 1370 u64 owner, u64 offset, int insert) 1371 { 1372 struct btrfs_key key; 1373 struct extent_buffer *leaf; 1374 struct btrfs_extent_item *ei; 1375 struct btrfs_extent_inline_ref *iref; 1376 u64 flags; 1377 u64 item_size; 1378 unsigned long ptr; 1379 unsigned long end; 1380 int extra_size; 1381 int type; 1382 int want; 1383 int ret; 1384 int err = 0; 1385 1386 key.objectid = bytenr; 1387 key.type = BTRFS_EXTENT_ITEM_KEY; 1388 key.offset = num_bytes; 1389 1390 want = extent_ref_type(parent, owner); 1391 if (insert) { 1392 extra_size = btrfs_extent_inline_ref_size(want); 1393 path->keep_locks = 1; 1394 } else 1395 extra_size = -1; 1396 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1397 if (ret < 0) { 1398 err = ret; 1399 goto out; 1400 } 1401 BUG_ON(ret); 1402 1403 leaf = path->nodes[0]; 1404 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1406 if (item_size < sizeof(*ei)) { 1407 if (!insert) { 1408 err = -ENOENT; 1409 goto out; 1410 } 1411 ret = convert_extent_item_v0(trans, root, path, owner, 1412 extra_size); 1413 if (ret < 0) { 1414 err = ret; 1415 goto out; 1416 } 1417 leaf = path->nodes[0]; 1418 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1419 } 1420 #endif 1421 BUG_ON(item_size < sizeof(*ei)); 1422 1423 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1424 flags = btrfs_extent_flags(leaf, ei); 1425 1426 ptr = (unsigned long)(ei + 1); 1427 end = (unsigned long)ei + item_size; 1428 1429 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1430 ptr += sizeof(struct btrfs_tree_block_info); 1431 BUG_ON(ptr > end); 1432 } else { 1433 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1434 } 1435 1436 err = -ENOENT; 1437 while (1) { 1438 if (ptr >= end) { 1439 WARN_ON(ptr > end); 1440 break; 1441 } 1442 iref = (struct btrfs_extent_inline_ref *)ptr; 1443 type = btrfs_extent_inline_ref_type(leaf, iref); 1444 if (want < type) 1445 break; 1446 if (want > type) { 1447 ptr += btrfs_extent_inline_ref_size(type); 1448 continue; 1449 } 1450 1451 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1452 struct btrfs_extent_data_ref *dref; 1453 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1454 if (match_extent_data_ref(leaf, dref, root_objectid, 1455 owner, offset)) { 1456 err = 0; 1457 break; 1458 } 1459 if (hash_extent_data_ref_item(leaf, dref) < 1460 hash_extent_data_ref(root_objectid, owner, offset)) 1461 break; 1462 } else { 1463 u64 ref_offset; 1464 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1465 if (parent > 0) { 1466 if (parent == ref_offset) { 1467 err = 0; 1468 break; 1469 } 1470 if (ref_offset < parent) 1471 break; 1472 } else { 1473 if (root_objectid == ref_offset) { 1474 err = 0; 1475 break; 1476 } 1477 if (ref_offset < root_objectid) 1478 break; 1479 } 1480 } 1481 ptr += btrfs_extent_inline_ref_size(type); 1482 } 1483 if (err == -ENOENT && insert) { 1484 if (item_size + extra_size >= 1485 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1486 err = -EAGAIN; 1487 goto out; 1488 } 1489 /* 1490 * To add new inline back ref, we have to make sure 1491 * there is no corresponding back ref item. 1492 * For simplicity, we just do not add new inline back 1493 * ref if there is any kind of item for this block 1494 */ 1495 if (find_next_key(path, 0, &key) == 0 && 1496 key.objectid == bytenr && 1497 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1498 err = -EAGAIN; 1499 goto out; 1500 } 1501 } 1502 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1503 out: 1504 if (insert) { 1505 path->keep_locks = 0; 1506 btrfs_unlock_up_safe(path, 1); 1507 } 1508 return err; 1509 } 1510 1511 /* 1512 * helper to add new inline back ref 1513 */ 1514 static noinline_for_stack 1515 int setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1516 struct btrfs_root *root, 1517 struct btrfs_path *path, 1518 struct btrfs_extent_inline_ref *iref, 1519 u64 parent, u64 root_objectid, 1520 u64 owner, u64 offset, int refs_to_add, 1521 struct btrfs_delayed_extent_op *extent_op) 1522 { 1523 struct extent_buffer *leaf; 1524 struct btrfs_extent_item *ei; 1525 unsigned long ptr; 1526 unsigned long end; 1527 unsigned long item_offset; 1528 u64 refs; 1529 int size; 1530 int type; 1531 int ret; 1532 1533 leaf = path->nodes[0]; 1534 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1535 item_offset = (unsigned long)iref - (unsigned long)ei; 1536 1537 type = extent_ref_type(parent, owner); 1538 size = btrfs_extent_inline_ref_size(type); 1539 1540 ret = btrfs_extend_item(trans, root, path, size); 1541 BUG_ON(ret); 1542 1543 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1544 refs = btrfs_extent_refs(leaf, ei); 1545 refs += refs_to_add; 1546 btrfs_set_extent_refs(leaf, ei, refs); 1547 if (extent_op) 1548 __run_delayed_extent_op(extent_op, leaf, ei); 1549 1550 ptr = (unsigned long)ei + item_offset; 1551 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1552 if (ptr < end - size) 1553 memmove_extent_buffer(leaf, ptr + size, ptr, 1554 end - size - ptr); 1555 1556 iref = (struct btrfs_extent_inline_ref *)ptr; 1557 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1558 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1559 struct btrfs_extent_data_ref *dref; 1560 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1561 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1562 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1563 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1564 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1565 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1566 struct btrfs_shared_data_ref *sref; 1567 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1568 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1569 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1570 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1571 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1572 } else { 1573 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1574 } 1575 btrfs_mark_buffer_dirty(leaf); 1576 return 0; 1577 } 1578 1579 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1580 struct btrfs_root *root, 1581 struct btrfs_path *path, 1582 struct btrfs_extent_inline_ref **ref_ret, 1583 u64 bytenr, u64 num_bytes, u64 parent, 1584 u64 root_objectid, u64 owner, u64 offset) 1585 { 1586 int ret; 1587 1588 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1589 bytenr, num_bytes, parent, 1590 root_objectid, owner, offset, 0); 1591 if (ret != -ENOENT) 1592 return ret; 1593 1594 btrfs_release_path(root, path); 1595 *ref_ret = NULL; 1596 1597 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1598 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1599 root_objectid); 1600 } else { 1601 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1602 root_objectid, owner, offset); 1603 } 1604 return ret; 1605 } 1606 1607 /* 1608 * helper to update/remove inline back ref 1609 */ 1610 static noinline_for_stack 1611 int update_inline_extent_backref(struct btrfs_trans_handle *trans, 1612 struct btrfs_root *root, 1613 struct btrfs_path *path, 1614 struct btrfs_extent_inline_ref *iref, 1615 int refs_to_mod, 1616 struct btrfs_delayed_extent_op *extent_op) 1617 { 1618 struct extent_buffer *leaf; 1619 struct btrfs_extent_item *ei; 1620 struct btrfs_extent_data_ref *dref = NULL; 1621 struct btrfs_shared_data_ref *sref = NULL; 1622 unsigned long ptr; 1623 unsigned long end; 1624 u32 item_size; 1625 int size; 1626 int type; 1627 int ret; 1628 u64 refs; 1629 1630 leaf = path->nodes[0]; 1631 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1632 refs = btrfs_extent_refs(leaf, ei); 1633 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1634 refs += refs_to_mod; 1635 btrfs_set_extent_refs(leaf, ei, refs); 1636 if (extent_op) 1637 __run_delayed_extent_op(extent_op, leaf, ei); 1638 1639 type = btrfs_extent_inline_ref_type(leaf, iref); 1640 1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1642 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1643 refs = btrfs_extent_data_ref_count(leaf, dref); 1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1645 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1646 refs = btrfs_shared_data_ref_count(leaf, sref); 1647 } else { 1648 refs = 1; 1649 BUG_ON(refs_to_mod != -1); 1650 } 1651 1652 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1653 refs += refs_to_mod; 1654 1655 if (refs > 0) { 1656 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1657 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1658 else 1659 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1660 } else { 1661 size = btrfs_extent_inline_ref_size(type); 1662 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1663 ptr = (unsigned long)iref; 1664 end = (unsigned long)ei + item_size; 1665 if (ptr + size < end) 1666 memmove_extent_buffer(leaf, ptr, ptr + size, 1667 end - ptr - size); 1668 item_size -= size; 1669 ret = btrfs_truncate_item(trans, root, path, item_size, 1); 1670 BUG_ON(ret); 1671 } 1672 btrfs_mark_buffer_dirty(leaf); 1673 return 0; 1674 } 1675 1676 static noinline_for_stack 1677 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1678 struct btrfs_root *root, 1679 struct btrfs_path *path, 1680 u64 bytenr, u64 num_bytes, u64 parent, 1681 u64 root_objectid, u64 owner, 1682 u64 offset, int refs_to_add, 1683 struct btrfs_delayed_extent_op *extent_op) 1684 { 1685 struct btrfs_extent_inline_ref *iref; 1686 int ret; 1687 1688 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1689 bytenr, num_bytes, parent, 1690 root_objectid, owner, offset, 1); 1691 if (ret == 0) { 1692 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1693 ret = update_inline_extent_backref(trans, root, path, iref, 1694 refs_to_add, extent_op); 1695 } else if (ret == -ENOENT) { 1696 ret = setup_inline_extent_backref(trans, root, path, iref, 1697 parent, root_objectid, 1698 owner, offset, refs_to_add, 1699 extent_op); 1700 } 1701 return ret; 1702 } 1703 1704 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1705 struct btrfs_root *root, 1706 struct btrfs_path *path, 1707 u64 bytenr, u64 parent, u64 root_objectid, 1708 u64 owner, u64 offset, int refs_to_add) 1709 { 1710 int ret; 1711 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1712 BUG_ON(refs_to_add != 1); 1713 ret = insert_tree_block_ref(trans, root, path, bytenr, 1714 parent, root_objectid); 1715 } else { 1716 ret = insert_extent_data_ref(trans, root, path, bytenr, 1717 parent, root_objectid, 1718 owner, offset, refs_to_add); 1719 } 1720 return ret; 1721 } 1722 1723 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref *iref, 1727 int refs_to_drop, int is_data) 1728 { 1729 int ret; 1730 1731 BUG_ON(!is_data && refs_to_drop != 1); 1732 if (iref) { 1733 ret = update_inline_extent_backref(trans, root, path, iref, 1734 -refs_to_drop, NULL); 1735 } else if (is_data) { 1736 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1737 } else { 1738 ret = btrfs_del_item(trans, root, path); 1739 } 1740 return ret; 1741 } 1742 1743 static void btrfs_issue_discard(struct block_device *bdev, 1744 u64 start, u64 len) 1745 { 1746 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0); 1747 } 1748 1749 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1750 u64 num_bytes) 1751 { 1752 int ret; 1753 u64 map_length = num_bytes; 1754 struct btrfs_multi_bio *multi = NULL; 1755 1756 if (!btrfs_test_opt(root, DISCARD)) 1757 return 0; 1758 1759 /* Tell the block device(s) that the sectors can be discarded */ 1760 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, 1761 bytenr, &map_length, &multi, 0); 1762 if (!ret) { 1763 struct btrfs_bio_stripe *stripe = multi->stripes; 1764 int i; 1765 1766 if (map_length > num_bytes) 1767 map_length = num_bytes; 1768 1769 for (i = 0; i < multi->num_stripes; i++, stripe++) { 1770 btrfs_issue_discard(stripe->dev->bdev, 1771 stripe->physical, 1772 map_length); 1773 } 1774 kfree(multi); 1775 } 1776 1777 return ret; 1778 } 1779 1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1781 struct btrfs_root *root, 1782 u64 bytenr, u64 num_bytes, u64 parent, 1783 u64 root_objectid, u64 owner, u64 offset) 1784 { 1785 int ret; 1786 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1787 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1788 1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1790 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 1791 parent, root_objectid, (int)owner, 1792 BTRFS_ADD_DELAYED_REF, NULL); 1793 } else { 1794 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 1795 parent, root_objectid, owner, offset, 1796 BTRFS_ADD_DELAYED_REF, NULL); 1797 } 1798 return ret; 1799 } 1800 1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1802 struct btrfs_root *root, 1803 u64 bytenr, u64 num_bytes, 1804 u64 parent, u64 root_objectid, 1805 u64 owner, u64 offset, int refs_to_add, 1806 struct btrfs_delayed_extent_op *extent_op) 1807 { 1808 struct btrfs_path *path; 1809 struct extent_buffer *leaf; 1810 struct btrfs_extent_item *item; 1811 u64 refs; 1812 int ret; 1813 int err = 0; 1814 1815 path = btrfs_alloc_path(); 1816 if (!path) 1817 return -ENOMEM; 1818 1819 path->reada = 1; 1820 path->leave_spinning = 1; 1821 /* this will setup the path even if it fails to insert the back ref */ 1822 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1823 path, bytenr, num_bytes, parent, 1824 root_objectid, owner, offset, 1825 refs_to_add, extent_op); 1826 if (ret == 0) 1827 goto out; 1828 1829 if (ret != -EAGAIN) { 1830 err = ret; 1831 goto out; 1832 } 1833 1834 leaf = path->nodes[0]; 1835 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1836 refs = btrfs_extent_refs(leaf, item); 1837 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1838 if (extent_op) 1839 __run_delayed_extent_op(extent_op, leaf, item); 1840 1841 btrfs_mark_buffer_dirty(leaf); 1842 btrfs_release_path(root->fs_info->extent_root, path); 1843 1844 path->reada = 1; 1845 path->leave_spinning = 1; 1846 1847 /* now insert the actual backref */ 1848 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1849 path, bytenr, parent, root_objectid, 1850 owner, offset, refs_to_add); 1851 BUG_ON(ret); 1852 out: 1853 btrfs_free_path(path); 1854 return err; 1855 } 1856 1857 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1858 struct btrfs_root *root, 1859 struct btrfs_delayed_ref_node *node, 1860 struct btrfs_delayed_extent_op *extent_op, 1861 int insert_reserved) 1862 { 1863 int ret = 0; 1864 struct btrfs_delayed_data_ref *ref; 1865 struct btrfs_key ins; 1866 u64 parent = 0; 1867 u64 ref_root = 0; 1868 u64 flags = 0; 1869 1870 ins.objectid = node->bytenr; 1871 ins.offset = node->num_bytes; 1872 ins.type = BTRFS_EXTENT_ITEM_KEY; 1873 1874 ref = btrfs_delayed_node_to_data_ref(node); 1875 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1876 parent = ref->parent; 1877 else 1878 ref_root = ref->root; 1879 1880 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1881 if (extent_op) { 1882 BUG_ON(extent_op->update_key); 1883 flags |= extent_op->flags_to_set; 1884 } 1885 ret = alloc_reserved_file_extent(trans, root, 1886 parent, ref_root, flags, 1887 ref->objectid, ref->offset, 1888 &ins, node->ref_mod); 1889 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1890 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1891 node->num_bytes, parent, 1892 ref_root, ref->objectid, 1893 ref->offset, node->ref_mod, 1894 extent_op); 1895 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1896 ret = __btrfs_free_extent(trans, root, node->bytenr, 1897 node->num_bytes, parent, 1898 ref_root, ref->objectid, 1899 ref->offset, node->ref_mod, 1900 extent_op); 1901 } else { 1902 BUG(); 1903 } 1904 return ret; 1905 } 1906 1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1908 struct extent_buffer *leaf, 1909 struct btrfs_extent_item *ei) 1910 { 1911 u64 flags = btrfs_extent_flags(leaf, ei); 1912 if (extent_op->update_flags) { 1913 flags |= extent_op->flags_to_set; 1914 btrfs_set_extent_flags(leaf, ei, flags); 1915 } 1916 1917 if (extent_op->update_key) { 1918 struct btrfs_tree_block_info *bi; 1919 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1920 bi = (struct btrfs_tree_block_info *)(ei + 1); 1921 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1922 } 1923 } 1924 1925 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1926 struct btrfs_root *root, 1927 struct btrfs_delayed_ref_node *node, 1928 struct btrfs_delayed_extent_op *extent_op) 1929 { 1930 struct btrfs_key key; 1931 struct btrfs_path *path; 1932 struct btrfs_extent_item *ei; 1933 struct extent_buffer *leaf; 1934 u32 item_size; 1935 int ret; 1936 int err = 0; 1937 1938 path = btrfs_alloc_path(); 1939 if (!path) 1940 return -ENOMEM; 1941 1942 key.objectid = node->bytenr; 1943 key.type = BTRFS_EXTENT_ITEM_KEY; 1944 key.offset = node->num_bytes; 1945 1946 path->reada = 1; 1947 path->leave_spinning = 1; 1948 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 1949 path, 0, 1); 1950 if (ret < 0) { 1951 err = ret; 1952 goto out; 1953 } 1954 if (ret > 0) { 1955 err = -EIO; 1956 goto out; 1957 } 1958 1959 leaf = path->nodes[0]; 1960 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1962 if (item_size < sizeof(*ei)) { 1963 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 1964 path, (u64)-1, 0); 1965 if (ret < 0) { 1966 err = ret; 1967 goto out; 1968 } 1969 leaf = path->nodes[0]; 1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1971 } 1972 #endif 1973 BUG_ON(item_size < sizeof(*ei)); 1974 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1975 __run_delayed_extent_op(extent_op, leaf, ei); 1976 1977 btrfs_mark_buffer_dirty(leaf); 1978 out: 1979 btrfs_free_path(path); 1980 return err; 1981 } 1982 1983 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1984 struct btrfs_root *root, 1985 struct btrfs_delayed_ref_node *node, 1986 struct btrfs_delayed_extent_op *extent_op, 1987 int insert_reserved) 1988 { 1989 int ret = 0; 1990 struct btrfs_delayed_tree_ref *ref; 1991 struct btrfs_key ins; 1992 u64 parent = 0; 1993 u64 ref_root = 0; 1994 1995 ins.objectid = node->bytenr; 1996 ins.offset = node->num_bytes; 1997 ins.type = BTRFS_EXTENT_ITEM_KEY; 1998 1999 ref = btrfs_delayed_node_to_tree_ref(node); 2000 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2001 parent = ref->parent; 2002 else 2003 ref_root = ref->root; 2004 2005 BUG_ON(node->ref_mod != 1); 2006 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2007 BUG_ON(!extent_op || !extent_op->update_flags || 2008 !extent_op->update_key); 2009 ret = alloc_reserved_tree_block(trans, root, 2010 parent, ref_root, 2011 extent_op->flags_to_set, 2012 &extent_op->key, 2013 ref->level, &ins); 2014 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2015 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2016 node->num_bytes, parent, ref_root, 2017 ref->level, 0, 1, extent_op); 2018 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2019 ret = __btrfs_free_extent(trans, root, node->bytenr, 2020 node->num_bytes, parent, ref_root, 2021 ref->level, 0, 1, extent_op); 2022 } else { 2023 BUG(); 2024 } 2025 return ret; 2026 } 2027 2028 /* helper function to actually process a single delayed ref entry */ 2029 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2030 struct btrfs_root *root, 2031 struct btrfs_delayed_ref_node *node, 2032 struct btrfs_delayed_extent_op *extent_op, 2033 int insert_reserved) 2034 { 2035 int ret; 2036 if (btrfs_delayed_ref_is_head(node)) { 2037 struct btrfs_delayed_ref_head *head; 2038 /* 2039 * we've hit the end of the chain and we were supposed 2040 * to insert this extent into the tree. But, it got 2041 * deleted before we ever needed to insert it, so all 2042 * we have to do is clean up the accounting 2043 */ 2044 BUG_ON(extent_op); 2045 head = btrfs_delayed_node_to_head(node); 2046 if (insert_reserved) { 2047 btrfs_pin_extent(root, node->bytenr, 2048 node->num_bytes, 1); 2049 if (head->is_data) { 2050 ret = btrfs_del_csums(trans, root, 2051 node->bytenr, 2052 node->num_bytes); 2053 BUG_ON(ret); 2054 } 2055 } 2056 mutex_unlock(&head->mutex); 2057 return 0; 2058 } 2059 2060 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2061 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2062 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2063 insert_reserved); 2064 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2065 node->type == BTRFS_SHARED_DATA_REF_KEY) 2066 ret = run_delayed_data_ref(trans, root, node, extent_op, 2067 insert_reserved); 2068 else 2069 BUG(); 2070 return ret; 2071 } 2072 2073 static noinline struct btrfs_delayed_ref_node * 2074 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2075 { 2076 struct rb_node *node; 2077 struct btrfs_delayed_ref_node *ref; 2078 int action = BTRFS_ADD_DELAYED_REF; 2079 again: 2080 /* 2081 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2082 * this prevents ref count from going down to zero when 2083 * there still are pending delayed ref. 2084 */ 2085 node = rb_prev(&head->node.rb_node); 2086 while (1) { 2087 if (!node) 2088 break; 2089 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2090 rb_node); 2091 if (ref->bytenr != head->node.bytenr) 2092 break; 2093 if (ref->action == action) 2094 return ref; 2095 node = rb_prev(node); 2096 } 2097 if (action == BTRFS_ADD_DELAYED_REF) { 2098 action = BTRFS_DROP_DELAYED_REF; 2099 goto again; 2100 } 2101 return NULL; 2102 } 2103 2104 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2105 struct btrfs_root *root, 2106 struct list_head *cluster) 2107 { 2108 struct btrfs_delayed_ref_root *delayed_refs; 2109 struct btrfs_delayed_ref_node *ref; 2110 struct btrfs_delayed_ref_head *locked_ref = NULL; 2111 struct btrfs_delayed_extent_op *extent_op; 2112 int ret; 2113 int count = 0; 2114 int must_insert_reserved = 0; 2115 2116 delayed_refs = &trans->transaction->delayed_refs; 2117 while (1) { 2118 if (!locked_ref) { 2119 /* pick a new head ref from the cluster list */ 2120 if (list_empty(cluster)) 2121 break; 2122 2123 locked_ref = list_entry(cluster->next, 2124 struct btrfs_delayed_ref_head, cluster); 2125 2126 /* grab the lock that says we are going to process 2127 * all the refs for this head */ 2128 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2129 2130 /* 2131 * we may have dropped the spin lock to get the head 2132 * mutex lock, and that might have given someone else 2133 * time to free the head. If that's true, it has been 2134 * removed from our list and we can move on. 2135 */ 2136 if (ret == -EAGAIN) { 2137 locked_ref = NULL; 2138 count++; 2139 continue; 2140 } 2141 } 2142 2143 /* 2144 * record the must insert reserved flag before we 2145 * drop the spin lock. 2146 */ 2147 must_insert_reserved = locked_ref->must_insert_reserved; 2148 locked_ref->must_insert_reserved = 0; 2149 2150 extent_op = locked_ref->extent_op; 2151 locked_ref->extent_op = NULL; 2152 2153 /* 2154 * locked_ref is the head node, so we have to go one 2155 * node back for any delayed ref updates 2156 */ 2157 ref = select_delayed_ref(locked_ref); 2158 if (!ref) { 2159 /* All delayed refs have been processed, Go ahead 2160 * and send the head node to run_one_delayed_ref, 2161 * so that any accounting fixes can happen 2162 */ 2163 ref = &locked_ref->node; 2164 2165 if (extent_op && must_insert_reserved) { 2166 kfree(extent_op); 2167 extent_op = NULL; 2168 } 2169 2170 if (extent_op) { 2171 spin_unlock(&delayed_refs->lock); 2172 2173 ret = run_delayed_extent_op(trans, root, 2174 ref, extent_op); 2175 BUG_ON(ret); 2176 kfree(extent_op); 2177 2178 cond_resched(); 2179 spin_lock(&delayed_refs->lock); 2180 continue; 2181 } 2182 2183 list_del_init(&locked_ref->cluster); 2184 locked_ref = NULL; 2185 } 2186 2187 ref->in_tree = 0; 2188 rb_erase(&ref->rb_node, &delayed_refs->root); 2189 delayed_refs->num_entries--; 2190 2191 spin_unlock(&delayed_refs->lock); 2192 2193 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2194 must_insert_reserved); 2195 BUG_ON(ret); 2196 2197 btrfs_put_delayed_ref(ref); 2198 kfree(extent_op); 2199 count++; 2200 2201 cond_resched(); 2202 spin_lock(&delayed_refs->lock); 2203 } 2204 return count; 2205 } 2206 2207 /* 2208 * this starts processing the delayed reference count updates and 2209 * extent insertions we have queued up so far. count can be 2210 * 0, which means to process everything in the tree at the start 2211 * of the run (but not newly added entries), or it can be some target 2212 * number you'd like to process. 2213 */ 2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, unsigned long count) 2216 { 2217 struct rb_node *node; 2218 struct btrfs_delayed_ref_root *delayed_refs; 2219 struct btrfs_delayed_ref_node *ref; 2220 struct list_head cluster; 2221 int ret; 2222 int run_all = count == (unsigned long)-1; 2223 int run_most = 0; 2224 2225 if (root == root->fs_info->extent_root) 2226 root = root->fs_info->tree_root; 2227 2228 delayed_refs = &trans->transaction->delayed_refs; 2229 INIT_LIST_HEAD(&cluster); 2230 again: 2231 spin_lock(&delayed_refs->lock); 2232 if (count == 0) { 2233 count = delayed_refs->num_entries * 2; 2234 run_most = 1; 2235 } 2236 while (1) { 2237 if (!(run_all || run_most) && 2238 delayed_refs->num_heads_ready < 64) 2239 break; 2240 2241 /* 2242 * go find something we can process in the rbtree. We start at 2243 * the beginning of the tree, and then build a cluster 2244 * of refs to process starting at the first one we are able to 2245 * lock 2246 */ 2247 ret = btrfs_find_ref_cluster(trans, &cluster, 2248 delayed_refs->run_delayed_start); 2249 if (ret) 2250 break; 2251 2252 ret = run_clustered_refs(trans, root, &cluster); 2253 BUG_ON(ret < 0); 2254 2255 count -= min_t(unsigned long, ret, count); 2256 2257 if (count == 0) 2258 break; 2259 } 2260 2261 if (run_all) { 2262 node = rb_first(&delayed_refs->root); 2263 if (!node) 2264 goto out; 2265 count = (unsigned long)-1; 2266 2267 while (node) { 2268 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2269 rb_node); 2270 if (btrfs_delayed_ref_is_head(ref)) { 2271 struct btrfs_delayed_ref_head *head; 2272 2273 head = btrfs_delayed_node_to_head(ref); 2274 atomic_inc(&ref->refs); 2275 2276 spin_unlock(&delayed_refs->lock); 2277 mutex_lock(&head->mutex); 2278 mutex_unlock(&head->mutex); 2279 2280 btrfs_put_delayed_ref(ref); 2281 cond_resched(); 2282 goto again; 2283 } 2284 node = rb_next(node); 2285 } 2286 spin_unlock(&delayed_refs->lock); 2287 schedule_timeout(1); 2288 goto again; 2289 } 2290 out: 2291 spin_unlock(&delayed_refs->lock); 2292 return 0; 2293 } 2294 2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2296 struct btrfs_root *root, 2297 u64 bytenr, u64 num_bytes, u64 flags, 2298 int is_data) 2299 { 2300 struct btrfs_delayed_extent_op *extent_op; 2301 int ret; 2302 2303 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2304 if (!extent_op) 2305 return -ENOMEM; 2306 2307 extent_op->flags_to_set = flags; 2308 extent_op->update_flags = 1; 2309 extent_op->update_key = 0; 2310 extent_op->is_data = is_data ? 1 : 0; 2311 2312 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2313 if (ret) 2314 kfree(extent_op); 2315 return ret; 2316 } 2317 2318 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2319 struct btrfs_root *root, 2320 struct btrfs_path *path, 2321 u64 objectid, u64 offset, u64 bytenr) 2322 { 2323 struct btrfs_delayed_ref_head *head; 2324 struct btrfs_delayed_ref_node *ref; 2325 struct btrfs_delayed_data_ref *data_ref; 2326 struct btrfs_delayed_ref_root *delayed_refs; 2327 struct rb_node *node; 2328 int ret = 0; 2329 2330 ret = -ENOENT; 2331 delayed_refs = &trans->transaction->delayed_refs; 2332 spin_lock(&delayed_refs->lock); 2333 head = btrfs_find_delayed_ref_head(trans, bytenr); 2334 if (!head) 2335 goto out; 2336 2337 if (!mutex_trylock(&head->mutex)) { 2338 atomic_inc(&head->node.refs); 2339 spin_unlock(&delayed_refs->lock); 2340 2341 btrfs_release_path(root->fs_info->extent_root, path); 2342 2343 mutex_lock(&head->mutex); 2344 mutex_unlock(&head->mutex); 2345 btrfs_put_delayed_ref(&head->node); 2346 return -EAGAIN; 2347 } 2348 2349 node = rb_prev(&head->node.rb_node); 2350 if (!node) 2351 goto out_unlock; 2352 2353 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2354 2355 if (ref->bytenr != bytenr) 2356 goto out_unlock; 2357 2358 ret = 1; 2359 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2360 goto out_unlock; 2361 2362 data_ref = btrfs_delayed_node_to_data_ref(ref); 2363 2364 node = rb_prev(node); 2365 if (node) { 2366 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2367 if (ref->bytenr == bytenr) 2368 goto out_unlock; 2369 } 2370 2371 if (data_ref->root != root->root_key.objectid || 2372 data_ref->objectid != objectid || data_ref->offset != offset) 2373 goto out_unlock; 2374 2375 ret = 0; 2376 out_unlock: 2377 mutex_unlock(&head->mutex); 2378 out: 2379 spin_unlock(&delayed_refs->lock); 2380 return ret; 2381 } 2382 2383 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2384 struct btrfs_root *root, 2385 struct btrfs_path *path, 2386 u64 objectid, u64 offset, u64 bytenr) 2387 { 2388 struct btrfs_root *extent_root = root->fs_info->extent_root; 2389 struct extent_buffer *leaf; 2390 struct btrfs_extent_data_ref *ref; 2391 struct btrfs_extent_inline_ref *iref; 2392 struct btrfs_extent_item *ei; 2393 struct btrfs_key key; 2394 u32 item_size; 2395 int ret; 2396 2397 key.objectid = bytenr; 2398 key.offset = (u64)-1; 2399 key.type = BTRFS_EXTENT_ITEM_KEY; 2400 2401 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2402 if (ret < 0) 2403 goto out; 2404 BUG_ON(ret == 0); 2405 2406 ret = -ENOENT; 2407 if (path->slots[0] == 0) 2408 goto out; 2409 2410 path->slots[0]--; 2411 leaf = path->nodes[0]; 2412 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2413 2414 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2415 goto out; 2416 2417 ret = 1; 2418 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2420 if (item_size < sizeof(*ei)) { 2421 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2422 goto out; 2423 } 2424 #endif 2425 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2426 2427 if (item_size != sizeof(*ei) + 2428 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2429 goto out; 2430 2431 if (btrfs_extent_generation(leaf, ei) <= 2432 btrfs_root_last_snapshot(&root->root_item)) 2433 goto out; 2434 2435 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2436 if (btrfs_extent_inline_ref_type(leaf, iref) != 2437 BTRFS_EXTENT_DATA_REF_KEY) 2438 goto out; 2439 2440 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2441 if (btrfs_extent_refs(leaf, ei) != 2442 btrfs_extent_data_ref_count(leaf, ref) || 2443 btrfs_extent_data_ref_root(leaf, ref) != 2444 root->root_key.objectid || 2445 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2446 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2447 goto out; 2448 2449 ret = 0; 2450 out: 2451 return ret; 2452 } 2453 2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2455 struct btrfs_root *root, 2456 u64 objectid, u64 offset, u64 bytenr) 2457 { 2458 struct btrfs_path *path; 2459 int ret; 2460 int ret2; 2461 2462 path = btrfs_alloc_path(); 2463 if (!path) 2464 return -ENOENT; 2465 2466 do { 2467 ret = check_committed_ref(trans, root, path, objectid, 2468 offset, bytenr); 2469 if (ret && ret != -ENOENT) 2470 goto out; 2471 2472 ret2 = check_delayed_ref(trans, root, path, objectid, 2473 offset, bytenr); 2474 } while (ret2 == -EAGAIN); 2475 2476 if (ret2 && ret2 != -ENOENT) { 2477 ret = ret2; 2478 goto out; 2479 } 2480 2481 if (ret != -ENOENT || ret2 != -ENOENT) 2482 ret = 0; 2483 out: 2484 btrfs_free_path(path); 2485 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2486 WARN_ON(ret > 0); 2487 return ret; 2488 } 2489 2490 #if 0 2491 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2492 struct extent_buffer *buf, u32 nr_extents) 2493 { 2494 struct btrfs_key key; 2495 struct btrfs_file_extent_item *fi; 2496 u64 root_gen; 2497 u32 nritems; 2498 int i; 2499 int level; 2500 int ret = 0; 2501 int shared = 0; 2502 2503 if (!root->ref_cows) 2504 return 0; 2505 2506 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2507 shared = 0; 2508 root_gen = root->root_key.offset; 2509 } else { 2510 shared = 1; 2511 root_gen = trans->transid - 1; 2512 } 2513 2514 level = btrfs_header_level(buf); 2515 nritems = btrfs_header_nritems(buf); 2516 2517 if (level == 0) { 2518 struct btrfs_leaf_ref *ref; 2519 struct btrfs_extent_info *info; 2520 2521 ref = btrfs_alloc_leaf_ref(root, nr_extents); 2522 if (!ref) { 2523 ret = -ENOMEM; 2524 goto out; 2525 } 2526 2527 ref->root_gen = root_gen; 2528 ref->bytenr = buf->start; 2529 ref->owner = btrfs_header_owner(buf); 2530 ref->generation = btrfs_header_generation(buf); 2531 ref->nritems = nr_extents; 2532 info = ref->extents; 2533 2534 for (i = 0; nr_extents > 0 && i < nritems; i++) { 2535 u64 disk_bytenr; 2536 btrfs_item_key_to_cpu(buf, &key, i); 2537 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2538 continue; 2539 fi = btrfs_item_ptr(buf, i, 2540 struct btrfs_file_extent_item); 2541 if (btrfs_file_extent_type(buf, fi) == 2542 BTRFS_FILE_EXTENT_INLINE) 2543 continue; 2544 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2545 if (disk_bytenr == 0) 2546 continue; 2547 2548 info->bytenr = disk_bytenr; 2549 info->num_bytes = 2550 btrfs_file_extent_disk_num_bytes(buf, fi); 2551 info->objectid = key.objectid; 2552 info->offset = key.offset; 2553 info++; 2554 } 2555 2556 ret = btrfs_add_leaf_ref(root, ref, shared); 2557 if (ret == -EEXIST && shared) { 2558 struct btrfs_leaf_ref *old; 2559 old = btrfs_lookup_leaf_ref(root, ref->bytenr); 2560 BUG_ON(!old); 2561 btrfs_remove_leaf_ref(root, old); 2562 btrfs_free_leaf_ref(root, old); 2563 ret = btrfs_add_leaf_ref(root, ref, shared); 2564 } 2565 WARN_ON(ret); 2566 btrfs_free_leaf_ref(root, ref); 2567 } 2568 out: 2569 return ret; 2570 } 2571 2572 /* when a block goes through cow, we update the reference counts of 2573 * everything that block points to. The internal pointers of the block 2574 * can be in just about any order, and it is likely to have clusters of 2575 * things that are close together and clusters of things that are not. 2576 * 2577 * To help reduce the seeks that come with updating all of these reference 2578 * counts, sort them by byte number before actual updates are done. 2579 * 2580 * struct refsort is used to match byte number to slot in the btree block. 2581 * we sort based on the byte number and then use the slot to actually 2582 * find the item. 2583 * 2584 * struct refsort is smaller than strcut btrfs_item and smaller than 2585 * struct btrfs_key_ptr. Since we're currently limited to the page size 2586 * for a btree block, there's no way for a kmalloc of refsorts for a 2587 * single node to be bigger than a page. 2588 */ 2589 struct refsort { 2590 u64 bytenr; 2591 u32 slot; 2592 }; 2593 2594 /* 2595 * for passing into sort() 2596 */ 2597 static int refsort_cmp(const void *a_void, const void *b_void) 2598 { 2599 const struct refsort *a = a_void; 2600 const struct refsort *b = b_void; 2601 2602 if (a->bytenr < b->bytenr) 2603 return -1; 2604 if (a->bytenr > b->bytenr) 2605 return 1; 2606 return 0; 2607 } 2608 #endif 2609 2610 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2611 struct btrfs_root *root, 2612 struct extent_buffer *buf, 2613 int full_backref, int inc) 2614 { 2615 u64 bytenr; 2616 u64 num_bytes; 2617 u64 parent; 2618 u64 ref_root; 2619 u32 nritems; 2620 struct btrfs_key key; 2621 struct btrfs_file_extent_item *fi; 2622 int i; 2623 int level; 2624 int ret = 0; 2625 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2626 u64, u64, u64, u64, u64, u64); 2627 2628 ref_root = btrfs_header_owner(buf); 2629 nritems = btrfs_header_nritems(buf); 2630 level = btrfs_header_level(buf); 2631 2632 if (!root->ref_cows && level == 0) 2633 return 0; 2634 2635 if (inc) 2636 process_func = btrfs_inc_extent_ref; 2637 else 2638 process_func = btrfs_free_extent; 2639 2640 if (full_backref) 2641 parent = buf->start; 2642 else 2643 parent = 0; 2644 2645 for (i = 0; i < nritems; i++) { 2646 if (level == 0) { 2647 btrfs_item_key_to_cpu(buf, &key, i); 2648 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2649 continue; 2650 fi = btrfs_item_ptr(buf, i, 2651 struct btrfs_file_extent_item); 2652 if (btrfs_file_extent_type(buf, fi) == 2653 BTRFS_FILE_EXTENT_INLINE) 2654 continue; 2655 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2656 if (bytenr == 0) 2657 continue; 2658 2659 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2660 key.offset -= btrfs_file_extent_offset(buf, fi); 2661 ret = process_func(trans, root, bytenr, num_bytes, 2662 parent, ref_root, key.objectid, 2663 key.offset); 2664 if (ret) 2665 goto fail; 2666 } else { 2667 bytenr = btrfs_node_blockptr(buf, i); 2668 num_bytes = btrfs_level_size(root, level - 1); 2669 ret = process_func(trans, root, bytenr, num_bytes, 2670 parent, ref_root, level - 1, 0); 2671 if (ret) 2672 goto fail; 2673 } 2674 } 2675 return 0; 2676 fail: 2677 BUG(); 2678 return ret; 2679 } 2680 2681 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2682 struct extent_buffer *buf, int full_backref) 2683 { 2684 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2685 } 2686 2687 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2688 struct extent_buffer *buf, int full_backref) 2689 { 2690 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2691 } 2692 2693 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2694 struct btrfs_root *root, 2695 struct btrfs_path *path, 2696 struct btrfs_block_group_cache *cache) 2697 { 2698 int ret; 2699 struct btrfs_root *extent_root = root->fs_info->extent_root; 2700 unsigned long bi; 2701 struct extent_buffer *leaf; 2702 2703 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2704 if (ret < 0) 2705 goto fail; 2706 BUG_ON(ret); 2707 2708 leaf = path->nodes[0]; 2709 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2710 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2711 btrfs_mark_buffer_dirty(leaf); 2712 btrfs_release_path(extent_root, path); 2713 fail: 2714 if (ret) 2715 return ret; 2716 return 0; 2717 2718 } 2719 2720 static struct btrfs_block_group_cache * 2721 next_block_group(struct btrfs_root *root, 2722 struct btrfs_block_group_cache *cache) 2723 { 2724 struct rb_node *node; 2725 spin_lock(&root->fs_info->block_group_cache_lock); 2726 node = rb_next(&cache->cache_node); 2727 btrfs_put_block_group(cache); 2728 if (node) { 2729 cache = rb_entry(node, struct btrfs_block_group_cache, 2730 cache_node); 2731 btrfs_get_block_group(cache); 2732 } else 2733 cache = NULL; 2734 spin_unlock(&root->fs_info->block_group_cache_lock); 2735 return cache; 2736 } 2737 2738 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2739 struct btrfs_trans_handle *trans, 2740 struct btrfs_path *path) 2741 { 2742 struct btrfs_root *root = block_group->fs_info->tree_root; 2743 struct inode *inode = NULL; 2744 u64 alloc_hint = 0; 2745 int dcs = BTRFS_DC_ERROR; 2746 int num_pages = 0; 2747 int retries = 0; 2748 int ret = 0; 2749 2750 /* 2751 * If this block group is smaller than 100 megs don't bother caching the 2752 * block group. 2753 */ 2754 if (block_group->key.offset < (100 * 1024 * 1024)) { 2755 spin_lock(&block_group->lock); 2756 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2757 spin_unlock(&block_group->lock); 2758 return 0; 2759 } 2760 2761 again: 2762 inode = lookup_free_space_inode(root, block_group, path); 2763 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2764 ret = PTR_ERR(inode); 2765 btrfs_release_path(root, path); 2766 goto out; 2767 } 2768 2769 if (IS_ERR(inode)) { 2770 BUG_ON(retries); 2771 retries++; 2772 2773 if (block_group->ro) 2774 goto out_free; 2775 2776 ret = create_free_space_inode(root, trans, block_group, path); 2777 if (ret) 2778 goto out_free; 2779 goto again; 2780 } 2781 2782 /* 2783 * We want to set the generation to 0, that way if anything goes wrong 2784 * from here on out we know not to trust this cache when we load up next 2785 * time. 2786 */ 2787 BTRFS_I(inode)->generation = 0; 2788 ret = btrfs_update_inode(trans, root, inode); 2789 WARN_ON(ret); 2790 2791 if (i_size_read(inode) > 0) { 2792 ret = btrfs_truncate_free_space_cache(root, trans, path, 2793 inode); 2794 if (ret) 2795 goto out_put; 2796 } 2797 2798 spin_lock(&block_group->lock); 2799 if (block_group->cached != BTRFS_CACHE_FINISHED) { 2800 /* We're not cached, don't bother trying to write stuff out */ 2801 dcs = BTRFS_DC_WRITTEN; 2802 spin_unlock(&block_group->lock); 2803 goto out_put; 2804 } 2805 spin_unlock(&block_group->lock); 2806 2807 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); 2808 if (!num_pages) 2809 num_pages = 1; 2810 2811 /* 2812 * Just to make absolutely sure we have enough space, we're going to 2813 * preallocate 12 pages worth of space for each block group. In 2814 * practice we ought to use at most 8, but we need extra space so we can 2815 * add our header and have a terminator between the extents and the 2816 * bitmaps. 2817 */ 2818 num_pages *= 16; 2819 num_pages *= PAGE_CACHE_SIZE; 2820 2821 ret = btrfs_check_data_free_space(inode, num_pages); 2822 if (ret) 2823 goto out_put; 2824 2825 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2826 num_pages, num_pages, 2827 &alloc_hint); 2828 if (!ret) 2829 dcs = BTRFS_DC_SETUP; 2830 btrfs_free_reserved_data_space(inode, num_pages); 2831 out_put: 2832 iput(inode); 2833 out_free: 2834 btrfs_release_path(root, path); 2835 out: 2836 spin_lock(&block_group->lock); 2837 block_group->disk_cache_state = dcs; 2838 spin_unlock(&block_group->lock); 2839 2840 return ret; 2841 } 2842 2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root) 2845 { 2846 struct btrfs_block_group_cache *cache; 2847 int err = 0; 2848 struct btrfs_path *path; 2849 u64 last = 0; 2850 2851 path = btrfs_alloc_path(); 2852 if (!path) 2853 return -ENOMEM; 2854 2855 again: 2856 while (1) { 2857 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2858 while (cache) { 2859 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2860 break; 2861 cache = next_block_group(root, cache); 2862 } 2863 if (!cache) { 2864 if (last == 0) 2865 break; 2866 last = 0; 2867 continue; 2868 } 2869 err = cache_save_setup(cache, trans, path); 2870 last = cache->key.objectid + cache->key.offset; 2871 btrfs_put_block_group(cache); 2872 } 2873 2874 while (1) { 2875 if (last == 0) { 2876 err = btrfs_run_delayed_refs(trans, root, 2877 (unsigned long)-1); 2878 BUG_ON(err); 2879 } 2880 2881 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2882 while (cache) { 2883 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 2884 btrfs_put_block_group(cache); 2885 goto again; 2886 } 2887 2888 if (cache->dirty) 2889 break; 2890 cache = next_block_group(root, cache); 2891 } 2892 if (!cache) { 2893 if (last == 0) 2894 break; 2895 last = 0; 2896 continue; 2897 } 2898 2899 if (cache->disk_cache_state == BTRFS_DC_SETUP) 2900 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 2901 cache->dirty = 0; 2902 last = cache->key.objectid + cache->key.offset; 2903 2904 err = write_one_cache_group(trans, root, path, cache); 2905 BUG_ON(err); 2906 btrfs_put_block_group(cache); 2907 } 2908 2909 while (1) { 2910 /* 2911 * I don't think this is needed since we're just marking our 2912 * preallocated extent as written, but just in case it can't 2913 * hurt. 2914 */ 2915 if (last == 0) { 2916 err = btrfs_run_delayed_refs(trans, root, 2917 (unsigned long)-1); 2918 BUG_ON(err); 2919 } 2920 2921 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2922 while (cache) { 2923 /* 2924 * Really this shouldn't happen, but it could if we 2925 * couldn't write the entire preallocated extent and 2926 * splitting the extent resulted in a new block. 2927 */ 2928 if (cache->dirty) { 2929 btrfs_put_block_group(cache); 2930 goto again; 2931 } 2932 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 2933 break; 2934 cache = next_block_group(root, cache); 2935 } 2936 if (!cache) { 2937 if (last == 0) 2938 break; 2939 last = 0; 2940 continue; 2941 } 2942 2943 btrfs_write_out_cache(root, trans, cache, path); 2944 2945 /* 2946 * If we didn't have an error then the cache state is still 2947 * NEED_WRITE, so we can set it to WRITTEN. 2948 */ 2949 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 2950 cache->disk_cache_state = BTRFS_DC_WRITTEN; 2951 last = cache->key.objectid + cache->key.offset; 2952 btrfs_put_block_group(cache); 2953 } 2954 2955 btrfs_free_path(path); 2956 return 0; 2957 } 2958 2959 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 2960 { 2961 struct btrfs_block_group_cache *block_group; 2962 int readonly = 0; 2963 2964 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 2965 if (!block_group || block_group->ro) 2966 readonly = 1; 2967 if (block_group) 2968 btrfs_put_block_group(block_group); 2969 return readonly; 2970 } 2971 2972 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 2973 u64 total_bytes, u64 bytes_used, 2974 struct btrfs_space_info **space_info) 2975 { 2976 struct btrfs_space_info *found; 2977 int i; 2978 int factor; 2979 2980 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2981 BTRFS_BLOCK_GROUP_RAID10)) 2982 factor = 2; 2983 else 2984 factor = 1; 2985 2986 found = __find_space_info(info, flags); 2987 if (found) { 2988 spin_lock(&found->lock); 2989 found->total_bytes += total_bytes; 2990 found->disk_total += total_bytes * factor; 2991 found->bytes_used += bytes_used; 2992 found->disk_used += bytes_used * factor; 2993 found->full = 0; 2994 spin_unlock(&found->lock); 2995 *space_info = found; 2996 return 0; 2997 } 2998 found = kzalloc(sizeof(*found), GFP_NOFS); 2999 if (!found) 3000 return -ENOMEM; 3001 3002 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3003 INIT_LIST_HEAD(&found->block_groups[i]); 3004 init_rwsem(&found->groups_sem); 3005 spin_lock_init(&found->lock); 3006 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | 3007 BTRFS_BLOCK_GROUP_SYSTEM | 3008 BTRFS_BLOCK_GROUP_METADATA); 3009 found->total_bytes = total_bytes; 3010 found->disk_total = total_bytes * factor; 3011 found->bytes_used = bytes_used; 3012 found->disk_used = bytes_used * factor; 3013 found->bytes_pinned = 0; 3014 found->bytes_reserved = 0; 3015 found->bytes_readonly = 0; 3016 found->bytes_may_use = 0; 3017 found->full = 0; 3018 found->force_alloc = 0; 3019 *space_info = found; 3020 list_add_rcu(&found->list, &info->space_info); 3021 atomic_set(&found->caching_threads, 0); 3022 return 0; 3023 } 3024 3025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3026 { 3027 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | 3028 BTRFS_BLOCK_GROUP_RAID1 | 3029 BTRFS_BLOCK_GROUP_RAID10 | 3030 BTRFS_BLOCK_GROUP_DUP); 3031 if (extra_flags) { 3032 if (flags & BTRFS_BLOCK_GROUP_DATA) 3033 fs_info->avail_data_alloc_bits |= extra_flags; 3034 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3035 fs_info->avail_metadata_alloc_bits |= extra_flags; 3036 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3037 fs_info->avail_system_alloc_bits |= extra_flags; 3038 } 3039 } 3040 3041 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3042 { 3043 /* 3044 * we add in the count of missing devices because we want 3045 * to make sure that any RAID levels on a degraded FS 3046 * continue to be honored. 3047 */ 3048 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3049 root->fs_info->fs_devices->missing_devices; 3050 3051 if (num_devices == 1) 3052 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3053 if (num_devices < 4) 3054 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3055 3056 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3057 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3058 BTRFS_BLOCK_GROUP_RAID10))) { 3059 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3060 } 3061 3062 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3063 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3064 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3065 } 3066 3067 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3068 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3069 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3070 (flags & BTRFS_BLOCK_GROUP_DUP))) 3071 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3072 return flags; 3073 } 3074 3075 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3076 { 3077 if (flags & BTRFS_BLOCK_GROUP_DATA) 3078 flags |= root->fs_info->avail_data_alloc_bits & 3079 root->fs_info->data_alloc_profile; 3080 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3081 flags |= root->fs_info->avail_system_alloc_bits & 3082 root->fs_info->system_alloc_profile; 3083 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3084 flags |= root->fs_info->avail_metadata_alloc_bits & 3085 root->fs_info->metadata_alloc_profile; 3086 return btrfs_reduce_alloc_profile(root, flags); 3087 } 3088 3089 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3090 { 3091 u64 flags; 3092 3093 if (data) 3094 flags = BTRFS_BLOCK_GROUP_DATA; 3095 else if (root == root->fs_info->chunk_root) 3096 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3097 else 3098 flags = BTRFS_BLOCK_GROUP_METADATA; 3099 3100 return get_alloc_profile(root, flags); 3101 } 3102 3103 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 3104 { 3105 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 3106 BTRFS_BLOCK_GROUP_DATA); 3107 } 3108 3109 /* 3110 * This will check the space that the inode allocates from to make sure we have 3111 * enough space for bytes. 3112 */ 3113 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3114 { 3115 struct btrfs_space_info *data_sinfo; 3116 struct btrfs_root *root = BTRFS_I(inode)->root; 3117 u64 used; 3118 int ret = 0, committed = 0, alloc_chunk = 1; 3119 3120 /* make sure bytes are sectorsize aligned */ 3121 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3122 3123 if (root == root->fs_info->tree_root) { 3124 alloc_chunk = 0; 3125 committed = 1; 3126 } 3127 3128 data_sinfo = BTRFS_I(inode)->space_info; 3129 if (!data_sinfo) 3130 goto alloc; 3131 3132 again: 3133 /* make sure we have enough space to handle the data first */ 3134 spin_lock(&data_sinfo->lock); 3135 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3136 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3137 data_sinfo->bytes_may_use; 3138 3139 if (used + bytes > data_sinfo->total_bytes) { 3140 struct btrfs_trans_handle *trans; 3141 3142 /* 3143 * if we don't have enough free bytes in this space then we need 3144 * to alloc a new chunk. 3145 */ 3146 if (!data_sinfo->full && alloc_chunk) { 3147 u64 alloc_target; 3148 3149 data_sinfo->force_alloc = 1; 3150 spin_unlock(&data_sinfo->lock); 3151 alloc: 3152 alloc_target = btrfs_get_alloc_profile(root, 1); 3153 trans = btrfs_join_transaction(root, 1); 3154 if (IS_ERR(trans)) 3155 return PTR_ERR(trans); 3156 3157 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3158 bytes + 2 * 1024 * 1024, 3159 alloc_target, 0); 3160 btrfs_end_transaction(trans, root); 3161 if (ret < 0) { 3162 if (ret != -ENOSPC) 3163 return ret; 3164 else 3165 goto commit_trans; 3166 } 3167 3168 if (!data_sinfo) { 3169 btrfs_set_inode_space_info(root, inode); 3170 data_sinfo = BTRFS_I(inode)->space_info; 3171 } 3172 goto again; 3173 } 3174 spin_unlock(&data_sinfo->lock); 3175 3176 /* commit the current transaction and try again */ 3177 commit_trans: 3178 if (!committed && !root->fs_info->open_ioctl_trans) { 3179 committed = 1; 3180 trans = btrfs_join_transaction(root, 1); 3181 if (IS_ERR(trans)) 3182 return PTR_ERR(trans); 3183 ret = btrfs_commit_transaction(trans, root); 3184 if (ret) 3185 return ret; 3186 goto again; 3187 } 3188 3189 #if 0 /* I hope we never need this code again, just in case */ 3190 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, " 3191 "%llu bytes_reserved, " "%llu bytes_pinned, " 3192 "%llu bytes_readonly, %llu may use %llu total\n", 3193 (unsigned long long)bytes, 3194 (unsigned long long)data_sinfo->bytes_used, 3195 (unsigned long long)data_sinfo->bytes_reserved, 3196 (unsigned long long)data_sinfo->bytes_pinned, 3197 (unsigned long long)data_sinfo->bytes_readonly, 3198 (unsigned long long)data_sinfo->bytes_may_use, 3199 (unsigned long long)data_sinfo->total_bytes); 3200 #endif 3201 return -ENOSPC; 3202 } 3203 data_sinfo->bytes_may_use += bytes; 3204 BTRFS_I(inode)->reserved_bytes += bytes; 3205 spin_unlock(&data_sinfo->lock); 3206 3207 return 0; 3208 } 3209 3210 /* 3211 * called when we are clearing an delalloc extent from the 3212 * inode's io_tree or there was an error for whatever reason 3213 * after calling btrfs_check_data_free_space 3214 */ 3215 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3216 { 3217 struct btrfs_root *root = BTRFS_I(inode)->root; 3218 struct btrfs_space_info *data_sinfo; 3219 3220 /* make sure bytes are sectorsize aligned */ 3221 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3222 3223 data_sinfo = BTRFS_I(inode)->space_info; 3224 spin_lock(&data_sinfo->lock); 3225 data_sinfo->bytes_may_use -= bytes; 3226 BTRFS_I(inode)->reserved_bytes -= bytes; 3227 spin_unlock(&data_sinfo->lock); 3228 } 3229 3230 static void force_metadata_allocation(struct btrfs_fs_info *info) 3231 { 3232 struct list_head *head = &info->space_info; 3233 struct btrfs_space_info *found; 3234 3235 rcu_read_lock(); 3236 list_for_each_entry_rcu(found, head, list) { 3237 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3238 found->force_alloc = 1; 3239 } 3240 rcu_read_unlock(); 3241 } 3242 3243 static int should_alloc_chunk(struct btrfs_root *root, 3244 struct btrfs_space_info *sinfo, u64 alloc_bytes) 3245 { 3246 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3247 u64 thresh; 3248 3249 if (sinfo->bytes_used + sinfo->bytes_reserved + 3250 alloc_bytes + 256 * 1024 * 1024 < num_bytes) 3251 return 0; 3252 3253 if (sinfo->bytes_used + sinfo->bytes_reserved + 3254 alloc_bytes < div_factor(num_bytes, 8)) 3255 return 0; 3256 3257 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy); 3258 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5)); 3259 3260 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3)) 3261 return 0; 3262 3263 return 1; 3264 } 3265 3266 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3267 struct btrfs_root *extent_root, u64 alloc_bytes, 3268 u64 flags, int force) 3269 { 3270 struct btrfs_space_info *space_info; 3271 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3272 int ret = 0; 3273 3274 mutex_lock(&fs_info->chunk_mutex); 3275 3276 flags = btrfs_reduce_alloc_profile(extent_root, flags); 3277 3278 space_info = __find_space_info(extent_root->fs_info, flags); 3279 if (!space_info) { 3280 ret = update_space_info(extent_root->fs_info, flags, 3281 0, 0, &space_info); 3282 BUG_ON(ret); 3283 } 3284 BUG_ON(!space_info); 3285 3286 spin_lock(&space_info->lock); 3287 if (space_info->force_alloc) 3288 force = 1; 3289 if (space_info->full) { 3290 spin_unlock(&space_info->lock); 3291 goto out; 3292 } 3293 3294 if (!force && !should_alloc_chunk(extent_root, space_info, 3295 alloc_bytes)) { 3296 spin_unlock(&space_info->lock); 3297 goto out; 3298 } 3299 spin_unlock(&space_info->lock); 3300 3301 /* 3302 * If we have mixed data/metadata chunks we want to make sure we keep 3303 * allocating mixed chunks instead of individual chunks. 3304 */ 3305 if (btrfs_mixed_space_info(space_info)) 3306 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3307 3308 /* 3309 * if we're doing a data chunk, go ahead and make sure that 3310 * we keep a reasonable number of metadata chunks allocated in the 3311 * FS as well. 3312 */ 3313 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3314 fs_info->data_chunk_allocations++; 3315 if (!(fs_info->data_chunk_allocations % 3316 fs_info->metadata_ratio)) 3317 force_metadata_allocation(fs_info); 3318 } 3319 3320 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3321 spin_lock(&space_info->lock); 3322 if (ret) 3323 space_info->full = 1; 3324 else 3325 ret = 1; 3326 space_info->force_alloc = 0; 3327 spin_unlock(&space_info->lock); 3328 out: 3329 mutex_unlock(&extent_root->fs_info->chunk_mutex); 3330 return ret; 3331 } 3332 3333 /* 3334 * shrink metadata reservation for delalloc 3335 */ 3336 static int shrink_delalloc(struct btrfs_trans_handle *trans, 3337 struct btrfs_root *root, u64 to_reclaim, int sync) 3338 { 3339 struct btrfs_block_rsv *block_rsv; 3340 struct btrfs_space_info *space_info; 3341 u64 reserved; 3342 u64 max_reclaim; 3343 u64 reclaimed = 0; 3344 long time_left; 3345 int pause = 1; 3346 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3347 int loops = 0; 3348 3349 block_rsv = &root->fs_info->delalloc_block_rsv; 3350 space_info = block_rsv->space_info; 3351 3352 smp_mb(); 3353 reserved = space_info->bytes_reserved; 3354 3355 if (reserved == 0) 3356 return 0; 3357 3358 max_reclaim = min(reserved, to_reclaim); 3359 3360 while (loops < 1024) { 3361 /* have the flusher threads jump in and do some IO */ 3362 smp_mb(); 3363 nr_pages = min_t(unsigned long, nr_pages, 3364 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); 3365 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages); 3366 3367 spin_lock(&space_info->lock); 3368 if (reserved > space_info->bytes_reserved) { 3369 loops = 0; 3370 reclaimed += reserved - space_info->bytes_reserved; 3371 } else { 3372 loops++; 3373 } 3374 reserved = space_info->bytes_reserved; 3375 spin_unlock(&space_info->lock); 3376 3377 if (reserved == 0 || reclaimed >= max_reclaim) 3378 break; 3379 3380 if (trans && trans->transaction->blocked) 3381 return -EAGAIN; 3382 3383 __set_current_state(TASK_INTERRUPTIBLE); 3384 time_left = schedule_timeout(pause); 3385 3386 /* We were interrupted, exit */ 3387 if (time_left) 3388 break; 3389 3390 pause <<= 1; 3391 if (pause > HZ / 10) 3392 pause = HZ / 10; 3393 3394 } 3395 return reclaimed >= to_reclaim; 3396 } 3397 3398 /* 3399 * Retries tells us how many times we've called reserve_metadata_bytes. The 3400 * idea is if this is the first call (retries == 0) then we will add to our 3401 * reserved count if we can't make the allocation in order to hold our place 3402 * while we go and try and free up space. That way for retries > 1 we don't try 3403 * and add space, we just check to see if the amount of unused space is >= the 3404 * total space, meaning that our reservation is valid. 3405 * 3406 * However if we don't intend to retry this reservation, pass -1 as retries so 3407 * that it short circuits this logic. 3408 */ 3409 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans, 3410 struct btrfs_root *root, 3411 struct btrfs_block_rsv *block_rsv, 3412 u64 orig_bytes, int flush) 3413 { 3414 struct btrfs_space_info *space_info = block_rsv->space_info; 3415 u64 unused; 3416 u64 num_bytes = orig_bytes; 3417 int retries = 0; 3418 int ret = 0; 3419 bool reserved = false; 3420 bool committed = false; 3421 3422 again: 3423 ret = -ENOSPC; 3424 if (reserved) 3425 num_bytes = 0; 3426 3427 spin_lock(&space_info->lock); 3428 unused = space_info->bytes_used + space_info->bytes_reserved + 3429 space_info->bytes_pinned + space_info->bytes_readonly + 3430 space_info->bytes_may_use; 3431 3432 /* 3433 * The idea here is that we've not already over-reserved the block group 3434 * then we can go ahead and save our reservation first and then start 3435 * flushing if we need to. Otherwise if we've already overcommitted 3436 * lets start flushing stuff first and then come back and try to make 3437 * our reservation. 3438 */ 3439 if (unused <= space_info->total_bytes) { 3440 unused = space_info->total_bytes - unused; 3441 if (unused >= num_bytes) { 3442 if (!reserved) 3443 space_info->bytes_reserved += orig_bytes; 3444 ret = 0; 3445 } else { 3446 /* 3447 * Ok set num_bytes to orig_bytes since we aren't 3448 * overocmmitted, this way we only try and reclaim what 3449 * we need. 3450 */ 3451 num_bytes = orig_bytes; 3452 } 3453 } else { 3454 /* 3455 * Ok we're over committed, set num_bytes to the overcommitted 3456 * amount plus the amount of bytes that we need for this 3457 * reservation. 3458 */ 3459 num_bytes = unused - space_info->total_bytes + 3460 (orig_bytes * (retries + 1)); 3461 } 3462 3463 /* 3464 * Couldn't make our reservation, save our place so while we're trying 3465 * to reclaim space we can actually use it instead of somebody else 3466 * stealing it from us. 3467 */ 3468 if (ret && !reserved) { 3469 space_info->bytes_reserved += orig_bytes; 3470 reserved = true; 3471 } 3472 3473 spin_unlock(&space_info->lock); 3474 3475 if (!ret) 3476 return 0; 3477 3478 if (!flush) 3479 goto out; 3480 3481 /* 3482 * We do synchronous shrinking since we don't actually unreserve 3483 * metadata until after the IO is completed. 3484 */ 3485 ret = shrink_delalloc(trans, root, num_bytes, 1); 3486 if (ret > 0) 3487 return 0; 3488 else if (ret < 0) 3489 goto out; 3490 3491 /* 3492 * So if we were overcommitted it's possible that somebody else flushed 3493 * out enough space and we simply didn't have enough space to reclaim, 3494 * so go back around and try again. 3495 */ 3496 if (retries < 2) { 3497 retries++; 3498 goto again; 3499 } 3500 3501 spin_lock(&space_info->lock); 3502 /* 3503 * Not enough space to be reclaimed, don't bother committing the 3504 * transaction. 3505 */ 3506 if (space_info->bytes_pinned < orig_bytes) 3507 ret = -ENOSPC; 3508 spin_unlock(&space_info->lock); 3509 if (ret) 3510 goto out; 3511 3512 ret = -EAGAIN; 3513 if (trans || committed) 3514 goto out; 3515 3516 ret = -ENOSPC; 3517 trans = btrfs_join_transaction(root, 1); 3518 if (IS_ERR(trans)) 3519 goto out; 3520 ret = btrfs_commit_transaction(trans, root); 3521 if (!ret) { 3522 trans = NULL; 3523 committed = true; 3524 goto again; 3525 } 3526 3527 out: 3528 if (reserved) { 3529 spin_lock(&space_info->lock); 3530 space_info->bytes_reserved -= orig_bytes; 3531 spin_unlock(&space_info->lock); 3532 } 3533 3534 return ret; 3535 } 3536 3537 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, 3538 struct btrfs_root *root) 3539 { 3540 struct btrfs_block_rsv *block_rsv; 3541 if (root->ref_cows) 3542 block_rsv = trans->block_rsv; 3543 else 3544 block_rsv = root->block_rsv; 3545 3546 if (!block_rsv) 3547 block_rsv = &root->fs_info->empty_block_rsv; 3548 3549 return block_rsv; 3550 } 3551 3552 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 3553 u64 num_bytes) 3554 { 3555 int ret = -ENOSPC; 3556 spin_lock(&block_rsv->lock); 3557 if (block_rsv->reserved >= num_bytes) { 3558 block_rsv->reserved -= num_bytes; 3559 if (block_rsv->reserved < block_rsv->size) 3560 block_rsv->full = 0; 3561 ret = 0; 3562 } 3563 spin_unlock(&block_rsv->lock); 3564 return ret; 3565 } 3566 3567 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 3568 u64 num_bytes, int update_size) 3569 { 3570 spin_lock(&block_rsv->lock); 3571 block_rsv->reserved += num_bytes; 3572 if (update_size) 3573 block_rsv->size += num_bytes; 3574 else if (block_rsv->reserved >= block_rsv->size) 3575 block_rsv->full = 1; 3576 spin_unlock(&block_rsv->lock); 3577 } 3578 3579 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, 3580 struct btrfs_block_rsv *dest, u64 num_bytes) 3581 { 3582 struct btrfs_space_info *space_info = block_rsv->space_info; 3583 3584 spin_lock(&block_rsv->lock); 3585 if (num_bytes == (u64)-1) 3586 num_bytes = block_rsv->size; 3587 block_rsv->size -= num_bytes; 3588 if (block_rsv->reserved >= block_rsv->size) { 3589 num_bytes = block_rsv->reserved - block_rsv->size; 3590 block_rsv->reserved = block_rsv->size; 3591 block_rsv->full = 1; 3592 } else { 3593 num_bytes = 0; 3594 } 3595 spin_unlock(&block_rsv->lock); 3596 3597 if (num_bytes > 0) { 3598 if (dest) { 3599 spin_lock(&dest->lock); 3600 if (!dest->full) { 3601 u64 bytes_to_add; 3602 3603 bytes_to_add = dest->size - dest->reserved; 3604 bytes_to_add = min(num_bytes, bytes_to_add); 3605 dest->reserved += bytes_to_add; 3606 if (dest->reserved >= dest->size) 3607 dest->full = 1; 3608 num_bytes -= bytes_to_add; 3609 } 3610 spin_unlock(&dest->lock); 3611 } 3612 if (num_bytes) { 3613 spin_lock(&space_info->lock); 3614 space_info->bytes_reserved -= num_bytes; 3615 spin_unlock(&space_info->lock); 3616 } 3617 } 3618 } 3619 3620 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 3621 struct btrfs_block_rsv *dst, u64 num_bytes) 3622 { 3623 int ret; 3624 3625 ret = block_rsv_use_bytes(src, num_bytes); 3626 if (ret) 3627 return ret; 3628 3629 block_rsv_add_bytes(dst, num_bytes, 1); 3630 return 0; 3631 } 3632 3633 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 3634 { 3635 memset(rsv, 0, sizeof(*rsv)); 3636 spin_lock_init(&rsv->lock); 3637 atomic_set(&rsv->usage, 1); 3638 rsv->priority = 6; 3639 INIT_LIST_HEAD(&rsv->list); 3640 } 3641 3642 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 3643 { 3644 struct btrfs_block_rsv *block_rsv; 3645 struct btrfs_fs_info *fs_info = root->fs_info; 3646 3647 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 3648 if (!block_rsv) 3649 return NULL; 3650 3651 btrfs_init_block_rsv(block_rsv); 3652 block_rsv->space_info = __find_space_info(fs_info, 3653 BTRFS_BLOCK_GROUP_METADATA); 3654 return block_rsv; 3655 } 3656 3657 void btrfs_free_block_rsv(struct btrfs_root *root, 3658 struct btrfs_block_rsv *rsv) 3659 { 3660 if (rsv && atomic_dec_and_test(&rsv->usage)) { 3661 btrfs_block_rsv_release(root, rsv, (u64)-1); 3662 if (!rsv->durable) 3663 kfree(rsv); 3664 } 3665 } 3666 3667 /* 3668 * make the block_rsv struct be able to capture freed space. 3669 * the captured space will re-add to the the block_rsv struct 3670 * after transaction commit 3671 */ 3672 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info, 3673 struct btrfs_block_rsv *block_rsv) 3674 { 3675 block_rsv->durable = 1; 3676 mutex_lock(&fs_info->durable_block_rsv_mutex); 3677 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list); 3678 mutex_unlock(&fs_info->durable_block_rsv_mutex); 3679 } 3680 3681 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans, 3682 struct btrfs_root *root, 3683 struct btrfs_block_rsv *block_rsv, 3684 u64 num_bytes) 3685 { 3686 int ret; 3687 3688 if (num_bytes == 0) 3689 return 0; 3690 3691 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1); 3692 if (!ret) { 3693 block_rsv_add_bytes(block_rsv, num_bytes, 1); 3694 return 0; 3695 } 3696 3697 return ret; 3698 } 3699 3700 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans, 3701 struct btrfs_root *root, 3702 struct btrfs_block_rsv *block_rsv, 3703 u64 min_reserved, int min_factor) 3704 { 3705 u64 num_bytes = 0; 3706 int commit_trans = 0; 3707 int ret = -ENOSPC; 3708 3709 if (!block_rsv) 3710 return 0; 3711 3712 spin_lock(&block_rsv->lock); 3713 if (min_factor > 0) 3714 num_bytes = div_factor(block_rsv->size, min_factor); 3715 if (min_reserved > num_bytes) 3716 num_bytes = min_reserved; 3717 3718 if (block_rsv->reserved >= num_bytes) { 3719 ret = 0; 3720 } else { 3721 num_bytes -= block_rsv->reserved; 3722 if (block_rsv->durable && 3723 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes) 3724 commit_trans = 1; 3725 } 3726 spin_unlock(&block_rsv->lock); 3727 if (!ret) 3728 return 0; 3729 3730 if (block_rsv->refill_used) { 3731 ret = reserve_metadata_bytes(trans, root, block_rsv, 3732 num_bytes, 0); 3733 if (!ret) { 3734 block_rsv_add_bytes(block_rsv, num_bytes, 0); 3735 return 0; 3736 } 3737 } 3738 3739 if (commit_trans) { 3740 if (trans) 3741 return -EAGAIN; 3742 3743 trans = btrfs_join_transaction(root, 1); 3744 BUG_ON(IS_ERR(trans)); 3745 ret = btrfs_commit_transaction(trans, root); 3746 return 0; 3747 } 3748 3749 return -ENOSPC; 3750 } 3751 3752 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3753 struct btrfs_block_rsv *dst_rsv, 3754 u64 num_bytes) 3755 { 3756 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3757 } 3758 3759 void btrfs_block_rsv_release(struct btrfs_root *root, 3760 struct btrfs_block_rsv *block_rsv, 3761 u64 num_bytes) 3762 { 3763 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3764 if (global_rsv->full || global_rsv == block_rsv || 3765 block_rsv->space_info != global_rsv->space_info) 3766 global_rsv = NULL; 3767 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); 3768 } 3769 3770 /* 3771 * helper to calculate size of global block reservation. 3772 * the desired value is sum of space used by extent tree, 3773 * checksum tree and root tree 3774 */ 3775 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 3776 { 3777 struct btrfs_space_info *sinfo; 3778 u64 num_bytes; 3779 u64 meta_used; 3780 u64 data_used; 3781 int csum_size = btrfs_super_csum_size(&fs_info->super_copy); 3782 #if 0 3783 /* 3784 * per tree used space accounting can be inaccuracy, so we 3785 * can't rely on it. 3786 */ 3787 spin_lock(&fs_info->extent_root->accounting_lock); 3788 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item); 3789 spin_unlock(&fs_info->extent_root->accounting_lock); 3790 3791 spin_lock(&fs_info->csum_root->accounting_lock); 3792 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item); 3793 spin_unlock(&fs_info->csum_root->accounting_lock); 3794 3795 spin_lock(&fs_info->tree_root->accounting_lock); 3796 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item); 3797 spin_unlock(&fs_info->tree_root->accounting_lock); 3798 #endif 3799 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 3800 spin_lock(&sinfo->lock); 3801 data_used = sinfo->bytes_used; 3802 spin_unlock(&sinfo->lock); 3803 3804 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3805 spin_lock(&sinfo->lock); 3806 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 3807 data_used = 0; 3808 meta_used = sinfo->bytes_used; 3809 spin_unlock(&sinfo->lock); 3810 3811 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 3812 csum_size * 2; 3813 num_bytes += div64_u64(data_used + meta_used, 50); 3814 3815 if (num_bytes * 3 > meta_used) 3816 num_bytes = div64_u64(meta_used, 3); 3817 3818 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 3819 } 3820 3821 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 3822 { 3823 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3824 struct btrfs_space_info *sinfo = block_rsv->space_info; 3825 u64 num_bytes; 3826 3827 num_bytes = calc_global_metadata_size(fs_info); 3828 3829 spin_lock(&block_rsv->lock); 3830 spin_lock(&sinfo->lock); 3831 3832 block_rsv->size = num_bytes; 3833 3834 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 3835 sinfo->bytes_reserved + sinfo->bytes_readonly + 3836 sinfo->bytes_may_use; 3837 3838 if (sinfo->total_bytes > num_bytes) { 3839 num_bytes = sinfo->total_bytes - num_bytes; 3840 block_rsv->reserved += num_bytes; 3841 sinfo->bytes_reserved += num_bytes; 3842 } 3843 3844 if (block_rsv->reserved >= block_rsv->size) { 3845 num_bytes = block_rsv->reserved - block_rsv->size; 3846 sinfo->bytes_reserved -= num_bytes; 3847 block_rsv->reserved = block_rsv->size; 3848 block_rsv->full = 1; 3849 } 3850 #if 0 3851 printk(KERN_INFO"global block rsv size %llu reserved %llu\n", 3852 block_rsv->size, block_rsv->reserved); 3853 #endif 3854 spin_unlock(&sinfo->lock); 3855 spin_unlock(&block_rsv->lock); 3856 } 3857 3858 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 3859 { 3860 struct btrfs_space_info *space_info; 3861 3862 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3863 fs_info->chunk_block_rsv.space_info = space_info; 3864 fs_info->chunk_block_rsv.priority = 10; 3865 3866 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3867 fs_info->global_block_rsv.space_info = space_info; 3868 fs_info->global_block_rsv.priority = 10; 3869 fs_info->global_block_rsv.refill_used = 1; 3870 fs_info->delalloc_block_rsv.space_info = space_info; 3871 fs_info->trans_block_rsv.space_info = space_info; 3872 fs_info->empty_block_rsv.space_info = space_info; 3873 fs_info->empty_block_rsv.priority = 10; 3874 3875 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 3876 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 3877 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 3878 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 3879 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 3880 3881 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv); 3882 3883 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv); 3884 3885 update_global_block_rsv(fs_info); 3886 } 3887 3888 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 3889 { 3890 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); 3891 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 3892 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 3893 WARN_ON(fs_info->trans_block_rsv.size > 0); 3894 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 3895 WARN_ON(fs_info->chunk_block_rsv.size > 0); 3896 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 3897 } 3898 3899 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items) 3900 { 3901 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3902 3 * num_items; 3903 } 3904 3905 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans, 3906 struct btrfs_root *root, 3907 int num_items) 3908 { 3909 u64 num_bytes; 3910 int ret; 3911 3912 if (num_items == 0 || root->fs_info->chunk_root == root) 3913 return 0; 3914 3915 num_bytes = calc_trans_metadata_size(root, num_items); 3916 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv, 3917 num_bytes); 3918 if (!ret) { 3919 trans->bytes_reserved += num_bytes; 3920 trans->block_rsv = &root->fs_info->trans_block_rsv; 3921 } 3922 return ret; 3923 } 3924 3925 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3926 struct btrfs_root *root) 3927 { 3928 if (!trans->bytes_reserved) 3929 return; 3930 3931 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv); 3932 btrfs_block_rsv_release(root, trans->block_rsv, 3933 trans->bytes_reserved); 3934 trans->bytes_reserved = 0; 3935 } 3936 3937 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3938 struct inode *inode) 3939 { 3940 struct btrfs_root *root = BTRFS_I(inode)->root; 3941 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3942 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 3943 3944 /* 3945 * one for deleting orphan item, one for updating inode and 3946 * two for calling btrfs_truncate_inode_items. 3947 * 3948 * btrfs_truncate_inode_items is a delete operation, it frees 3949 * more space than it uses in most cases. So two units of 3950 * metadata space should be enough for calling it many times. 3951 * If all of the metadata space is used, we can commit 3952 * transaction and use space it freed. 3953 */ 3954 u64 num_bytes = calc_trans_metadata_size(root, 4); 3955 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3956 } 3957 3958 void btrfs_orphan_release_metadata(struct inode *inode) 3959 { 3960 struct btrfs_root *root = BTRFS_I(inode)->root; 3961 u64 num_bytes = calc_trans_metadata_size(root, 4); 3962 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 3963 } 3964 3965 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 3966 struct btrfs_pending_snapshot *pending) 3967 { 3968 struct btrfs_root *root = pending->root; 3969 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3970 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 3971 /* 3972 * two for root back/forward refs, two for directory entries 3973 * and one for root of the snapshot. 3974 */ 3975 u64 num_bytes = calc_trans_metadata_size(root, 5); 3976 dst_rsv->space_info = src_rsv->space_info; 3977 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3978 } 3979 3980 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes) 3981 { 3982 return num_bytes >>= 3; 3983 } 3984 3985 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 3986 { 3987 struct btrfs_root *root = BTRFS_I(inode)->root; 3988 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 3989 u64 to_reserve; 3990 int nr_extents; 3991 int ret; 3992 3993 if (btrfs_transaction_in_commit(root->fs_info)) 3994 schedule_timeout(1); 3995 3996 num_bytes = ALIGN(num_bytes, root->sectorsize); 3997 3998 spin_lock(&BTRFS_I(inode)->accounting_lock); 3999 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1; 4000 if (nr_extents > BTRFS_I(inode)->reserved_extents) { 4001 nr_extents -= BTRFS_I(inode)->reserved_extents; 4002 to_reserve = calc_trans_metadata_size(root, nr_extents); 4003 } else { 4004 nr_extents = 0; 4005 to_reserve = 0; 4006 } 4007 spin_unlock(&BTRFS_I(inode)->accounting_lock); 4008 4009 to_reserve += calc_csum_metadata_size(inode, num_bytes); 4010 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1); 4011 if (ret) 4012 return ret; 4013 4014 spin_lock(&BTRFS_I(inode)->accounting_lock); 4015 BTRFS_I(inode)->reserved_extents += nr_extents; 4016 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 4017 spin_unlock(&BTRFS_I(inode)->accounting_lock); 4018 4019 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4020 4021 if (block_rsv->size > 512 * 1024 * 1024) 4022 shrink_delalloc(NULL, root, to_reserve, 0); 4023 4024 return 0; 4025 } 4026 4027 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4028 { 4029 struct btrfs_root *root = BTRFS_I(inode)->root; 4030 u64 to_free; 4031 int nr_extents; 4032 4033 num_bytes = ALIGN(num_bytes, root->sectorsize); 4034 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 4035 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0); 4036 4037 spin_lock(&BTRFS_I(inode)->accounting_lock); 4038 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents); 4039 if (nr_extents < BTRFS_I(inode)->reserved_extents) { 4040 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents; 4041 BTRFS_I(inode)->reserved_extents -= nr_extents; 4042 } else { 4043 nr_extents = 0; 4044 } 4045 spin_unlock(&BTRFS_I(inode)->accounting_lock); 4046 4047 to_free = calc_csum_metadata_size(inode, num_bytes); 4048 if (nr_extents > 0) 4049 to_free += calc_trans_metadata_size(root, nr_extents); 4050 4051 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4052 to_free); 4053 } 4054 4055 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4056 { 4057 int ret; 4058 4059 ret = btrfs_check_data_free_space(inode, num_bytes); 4060 if (ret) 4061 return ret; 4062 4063 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4064 if (ret) { 4065 btrfs_free_reserved_data_space(inode, num_bytes); 4066 return ret; 4067 } 4068 4069 return 0; 4070 } 4071 4072 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4073 { 4074 btrfs_delalloc_release_metadata(inode, num_bytes); 4075 btrfs_free_reserved_data_space(inode, num_bytes); 4076 } 4077 4078 static int update_block_group(struct btrfs_trans_handle *trans, 4079 struct btrfs_root *root, 4080 u64 bytenr, u64 num_bytes, int alloc) 4081 { 4082 struct btrfs_block_group_cache *cache = NULL; 4083 struct btrfs_fs_info *info = root->fs_info; 4084 u64 total = num_bytes; 4085 u64 old_val; 4086 u64 byte_in_group; 4087 int factor; 4088 4089 /* block accounting for super block */ 4090 spin_lock(&info->delalloc_lock); 4091 old_val = btrfs_super_bytes_used(&info->super_copy); 4092 if (alloc) 4093 old_val += num_bytes; 4094 else 4095 old_val -= num_bytes; 4096 btrfs_set_super_bytes_used(&info->super_copy, old_val); 4097 spin_unlock(&info->delalloc_lock); 4098 4099 while (total) { 4100 cache = btrfs_lookup_block_group(info, bytenr); 4101 if (!cache) 4102 return -1; 4103 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4104 BTRFS_BLOCK_GROUP_RAID1 | 4105 BTRFS_BLOCK_GROUP_RAID10)) 4106 factor = 2; 4107 else 4108 factor = 1; 4109 /* 4110 * If this block group has free space cache written out, we 4111 * need to make sure to load it if we are removing space. This 4112 * is because we need the unpinning stage to actually add the 4113 * space back to the block group, otherwise we will leak space. 4114 */ 4115 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4116 cache_block_group(cache, trans, NULL, 1); 4117 4118 byte_in_group = bytenr - cache->key.objectid; 4119 WARN_ON(byte_in_group > cache->key.offset); 4120 4121 spin_lock(&cache->space_info->lock); 4122 spin_lock(&cache->lock); 4123 4124 if (btrfs_super_cache_generation(&info->super_copy) != 0 && 4125 cache->disk_cache_state < BTRFS_DC_CLEAR) 4126 cache->disk_cache_state = BTRFS_DC_CLEAR; 4127 4128 cache->dirty = 1; 4129 old_val = btrfs_block_group_used(&cache->item); 4130 num_bytes = min(total, cache->key.offset - byte_in_group); 4131 if (alloc) { 4132 old_val += num_bytes; 4133 btrfs_set_block_group_used(&cache->item, old_val); 4134 cache->reserved -= num_bytes; 4135 cache->space_info->bytes_reserved -= num_bytes; 4136 cache->space_info->bytes_used += num_bytes; 4137 cache->space_info->disk_used += num_bytes * factor; 4138 spin_unlock(&cache->lock); 4139 spin_unlock(&cache->space_info->lock); 4140 } else { 4141 old_val -= num_bytes; 4142 btrfs_set_block_group_used(&cache->item, old_val); 4143 cache->pinned += num_bytes; 4144 cache->space_info->bytes_pinned += num_bytes; 4145 cache->space_info->bytes_used -= num_bytes; 4146 cache->space_info->disk_used -= num_bytes * factor; 4147 spin_unlock(&cache->lock); 4148 spin_unlock(&cache->space_info->lock); 4149 4150 set_extent_dirty(info->pinned_extents, 4151 bytenr, bytenr + num_bytes - 1, 4152 GFP_NOFS | __GFP_NOFAIL); 4153 } 4154 btrfs_put_block_group(cache); 4155 total -= num_bytes; 4156 bytenr += num_bytes; 4157 } 4158 return 0; 4159 } 4160 4161 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4162 { 4163 struct btrfs_block_group_cache *cache; 4164 u64 bytenr; 4165 4166 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4167 if (!cache) 4168 return 0; 4169 4170 bytenr = cache->key.objectid; 4171 btrfs_put_block_group(cache); 4172 4173 return bytenr; 4174 } 4175 4176 static int pin_down_extent(struct btrfs_root *root, 4177 struct btrfs_block_group_cache *cache, 4178 u64 bytenr, u64 num_bytes, int reserved) 4179 { 4180 spin_lock(&cache->space_info->lock); 4181 spin_lock(&cache->lock); 4182 cache->pinned += num_bytes; 4183 cache->space_info->bytes_pinned += num_bytes; 4184 if (reserved) { 4185 cache->reserved -= num_bytes; 4186 cache->space_info->bytes_reserved -= num_bytes; 4187 } 4188 spin_unlock(&cache->lock); 4189 spin_unlock(&cache->space_info->lock); 4190 4191 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4192 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4193 return 0; 4194 } 4195 4196 /* 4197 * this function must be called within transaction 4198 */ 4199 int btrfs_pin_extent(struct btrfs_root *root, 4200 u64 bytenr, u64 num_bytes, int reserved) 4201 { 4202 struct btrfs_block_group_cache *cache; 4203 4204 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4205 BUG_ON(!cache); 4206 4207 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4208 4209 btrfs_put_block_group(cache); 4210 return 0; 4211 } 4212 4213 /* 4214 * update size of reserved extents. this function may return -EAGAIN 4215 * if 'reserve' is true or 'sinfo' is false. 4216 */ 4217 static int update_reserved_bytes(struct btrfs_block_group_cache *cache, 4218 u64 num_bytes, int reserve, int sinfo) 4219 { 4220 int ret = 0; 4221 if (sinfo) { 4222 struct btrfs_space_info *space_info = cache->space_info; 4223 spin_lock(&space_info->lock); 4224 spin_lock(&cache->lock); 4225 if (reserve) { 4226 if (cache->ro) { 4227 ret = -EAGAIN; 4228 } else { 4229 cache->reserved += num_bytes; 4230 space_info->bytes_reserved += num_bytes; 4231 } 4232 } else { 4233 if (cache->ro) 4234 space_info->bytes_readonly += num_bytes; 4235 cache->reserved -= num_bytes; 4236 space_info->bytes_reserved -= num_bytes; 4237 } 4238 spin_unlock(&cache->lock); 4239 spin_unlock(&space_info->lock); 4240 } else { 4241 spin_lock(&cache->lock); 4242 if (cache->ro) { 4243 ret = -EAGAIN; 4244 } else { 4245 if (reserve) 4246 cache->reserved += num_bytes; 4247 else 4248 cache->reserved -= num_bytes; 4249 } 4250 spin_unlock(&cache->lock); 4251 } 4252 return ret; 4253 } 4254 4255 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4256 struct btrfs_root *root) 4257 { 4258 struct btrfs_fs_info *fs_info = root->fs_info; 4259 struct btrfs_caching_control *next; 4260 struct btrfs_caching_control *caching_ctl; 4261 struct btrfs_block_group_cache *cache; 4262 4263 down_write(&fs_info->extent_commit_sem); 4264 4265 list_for_each_entry_safe(caching_ctl, next, 4266 &fs_info->caching_block_groups, list) { 4267 cache = caching_ctl->block_group; 4268 if (block_group_cache_done(cache)) { 4269 cache->last_byte_to_unpin = (u64)-1; 4270 list_del_init(&caching_ctl->list); 4271 put_caching_control(caching_ctl); 4272 } else { 4273 cache->last_byte_to_unpin = caching_ctl->progress; 4274 } 4275 } 4276 4277 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4278 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4279 else 4280 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4281 4282 up_write(&fs_info->extent_commit_sem); 4283 4284 update_global_block_rsv(fs_info); 4285 return 0; 4286 } 4287 4288 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4289 { 4290 struct btrfs_fs_info *fs_info = root->fs_info; 4291 struct btrfs_block_group_cache *cache = NULL; 4292 u64 len; 4293 4294 while (start <= end) { 4295 if (!cache || 4296 start >= cache->key.objectid + cache->key.offset) { 4297 if (cache) 4298 btrfs_put_block_group(cache); 4299 cache = btrfs_lookup_block_group(fs_info, start); 4300 BUG_ON(!cache); 4301 } 4302 4303 len = cache->key.objectid + cache->key.offset - start; 4304 len = min(len, end + 1 - start); 4305 4306 if (start < cache->last_byte_to_unpin) { 4307 len = min(len, cache->last_byte_to_unpin - start); 4308 btrfs_add_free_space(cache, start, len); 4309 } 4310 4311 start += len; 4312 4313 spin_lock(&cache->space_info->lock); 4314 spin_lock(&cache->lock); 4315 cache->pinned -= len; 4316 cache->space_info->bytes_pinned -= len; 4317 if (cache->ro) { 4318 cache->space_info->bytes_readonly += len; 4319 } else if (cache->reserved_pinned > 0) { 4320 len = min(len, cache->reserved_pinned); 4321 cache->reserved_pinned -= len; 4322 cache->space_info->bytes_reserved += len; 4323 } 4324 spin_unlock(&cache->lock); 4325 spin_unlock(&cache->space_info->lock); 4326 } 4327 4328 if (cache) 4329 btrfs_put_block_group(cache); 4330 return 0; 4331 } 4332 4333 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 4334 struct btrfs_root *root) 4335 { 4336 struct btrfs_fs_info *fs_info = root->fs_info; 4337 struct extent_io_tree *unpin; 4338 struct btrfs_block_rsv *block_rsv; 4339 struct btrfs_block_rsv *next_rsv; 4340 u64 start; 4341 u64 end; 4342 int idx; 4343 int ret; 4344 4345 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4346 unpin = &fs_info->freed_extents[1]; 4347 else 4348 unpin = &fs_info->freed_extents[0]; 4349 4350 while (1) { 4351 ret = find_first_extent_bit(unpin, 0, &start, &end, 4352 EXTENT_DIRTY); 4353 if (ret) 4354 break; 4355 4356 ret = btrfs_discard_extent(root, start, end + 1 - start); 4357 4358 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4359 unpin_extent_range(root, start, end); 4360 cond_resched(); 4361 } 4362 4363 mutex_lock(&fs_info->durable_block_rsv_mutex); 4364 list_for_each_entry_safe(block_rsv, next_rsv, 4365 &fs_info->durable_block_rsv_list, list) { 4366 4367 idx = trans->transid & 0x1; 4368 if (block_rsv->freed[idx] > 0) { 4369 block_rsv_add_bytes(block_rsv, 4370 block_rsv->freed[idx], 0); 4371 block_rsv->freed[idx] = 0; 4372 } 4373 if (atomic_read(&block_rsv->usage) == 0) { 4374 btrfs_block_rsv_release(root, block_rsv, (u64)-1); 4375 4376 if (block_rsv->freed[0] == 0 && 4377 block_rsv->freed[1] == 0) { 4378 list_del_init(&block_rsv->list); 4379 kfree(block_rsv); 4380 } 4381 } else { 4382 btrfs_block_rsv_release(root, block_rsv, 0); 4383 } 4384 } 4385 mutex_unlock(&fs_info->durable_block_rsv_mutex); 4386 4387 return 0; 4388 } 4389 4390 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 4391 struct btrfs_root *root, 4392 u64 bytenr, u64 num_bytes, u64 parent, 4393 u64 root_objectid, u64 owner_objectid, 4394 u64 owner_offset, int refs_to_drop, 4395 struct btrfs_delayed_extent_op *extent_op) 4396 { 4397 struct btrfs_key key; 4398 struct btrfs_path *path; 4399 struct btrfs_fs_info *info = root->fs_info; 4400 struct btrfs_root *extent_root = info->extent_root; 4401 struct extent_buffer *leaf; 4402 struct btrfs_extent_item *ei; 4403 struct btrfs_extent_inline_ref *iref; 4404 int ret; 4405 int is_data; 4406 int extent_slot = 0; 4407 int found_extent = 0; 4408 int num_to_del = 1; 4409 u32 item_size; 4410 u64 refs; 4411 4412 path = btrfs_alloc_path(); 4413 if (!path) 4414 return -ENOMEM; 4415 4416 path->reada = 1; 4417 path->leave_spinning = 1; 4418 4419 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 4420 BUG_ON(!is_data && refs_to_drop != 1); 4421 4422 ret = lookup_extent_backref(trans, extent_root, path, &iref, 4423 bytenr, num_bytes, parent, 4424 root_objectid, owner_objectid, 4425 owner_offset); 4426 if (ret == 0) { 4427 extent_slot = path->slots[0]; 4428 while (extent_slot >= 0) { 4429 btrfs_item_key_to_cpu(path->nodes[0], &key, 4430 extent_slot); 4431 if (key.objectid != bytenr) 4432 break; 4433 if (key.type == BTRFS_EXTENT_ITEM_KEY && 4434 key.offset == num_bytes) { 4435 found_extent = 1; 4436 break; 4437 } 4438 if (path->slots[0] - extent_slot > 5) 4439 break; 4440 extent_slot--; 4441 } 4442 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4443 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 4444 if (found_extent && item_size < sizeof(*ei)) 4445 found_extent = 0; 4446 #endif 4447 if (!found_extent) { 4448 BUG_ON(iref); 4449 ret = remove_extent_backref(trans, extent_root, path, 4450 NULL, refs_to_drop, 4451 is_data); 4452 BUG_ON(ret); 4453 btrfs_release_path(extent_root, path); 4454 path->leave_spinning = 1; 4455 4456 key.objectid = bytenr; 4457 key.type = BTRFS_EXTENT_ITEM_KEY; 4458 key.offset = num_bytes; 4459 4460 ret = btrfs_search_slot(trans, extent_root, 4461 &key, path, -1, 1); 4462 if (ret) { 4463 printk(KERN_ERR "umm, got %d back from search" 4464 ", was looking for %llu\n", ret, 4465 (unsigned long long)bytenr); 4466 btrfs_print_leaf(extent_root, path->nodes[0]); 4467 } 4468 BUG_ON(ret); 4469 extent_slot = path->slots[0]; 4470 } 4471 } else { 4472 btrfs_print_leaf(extent_root, path->nodes[0]); 4473 WARN_ON(1); 4474 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 4475 "parent %llu root %llu owner %llu offset %llu\n", 4476 (unsigned long long)bytenr, 4477 (unsigned long long)parent, 4478 (unsigned long long)root_objectid, 4479 (unsigned long long)owner_objectid, 4480 (unsigned long long)owner_offset); 4481 } 4482 4483 leaf = path->nodes[0]; 4484 item_size = btrfs_item_size_nr(leaf, extent_slot); 4485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4486 if (item_size < sizeof(*ei)) { 4487 BUG_ON(found_extent || extent_slot != path->slots[0]); 4488 ret = convert_extent_item_v0(trans, extent_root, path, 4489 owner_objectid, 0); 4490 BUG_ON(ret < 0); 4491 4492 btrfs_release_path(extent_root, path); 4493 path->leave_spinning = 1; 4494 4495 key.objectid = bytenr; 4496 key.type = BTRFS_EXTENT_ITEM_KEY; 4497 key.offset = num_bytes; 4498 4499 ret = btrfs_search_slot(trans, extent_root, &key, path, 4500 -1, 1); 4501 if (ret) { 4502 printk(KERN_ERR "umm, got %d back from search" 4503 ", was looking for %llu\n", ret, 4504 (unsigned long long)bytenr); 4505 btrfs_print_leaf(extent_root, path->nodes[0]); 4506 } 4507 BUG_ON(ret); 4508 extent_slot = path->slots[0]; 4509 leaf = path->nodes[0]; 4510 item_size = btrfs_item_size_nr(leaf, extent_slot); 4511 } 4512 #endif 4513 BUG_ON(item_size < sizeof(*ei)); 4514 ei = btrfs_item_ptr(leaf, extent_slot, 4515 struct btrfs_extent_item); 4516 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4517 struct btrfs_tree_block_info *bi; 4518 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 4519 bi = (struct btrfs_tree_block_info *)(ei + 1); 4520 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 4521 } 4522 4523 refs = btrfs_extent_refs(leaf, ei); 4524 BUG_ON(refs < refs_to_drop); 4525 refs -= refs_to_drop; 4526 4527 if (refs > 0) { 4528 if (extent_op) 4529 __run_delayed_extent_op(extent_op, leaf, ei); 4530 /* 4531 * In the case of inline back ref, reference count will 4532 * be updated by remove_extent_backref 4533 */ 4534 if (iref) { 4535 BUG_ON(!found_extent); 4536 } else { 4537 btrfs_set_extent_refs(leaf, ei, refs); 4538 btrfs_mark_buffer_dirty(leaf); 4539 } 4540 if (found_extent) { 4541 ret = remove_extent_backref(trans, extent_root, path, 4542 iref, refs_to_drop, 4543 is_data); 4544 BUG_ON(ret); 4545 } 4546 } else { 4547 if (found_extent) { 4548 BUG_ON(is_data && refs_to_drop != 4549 extent_data_ref_count(root, path, iref)); 4550 if (iref) { 4551 BUG_ON(path->slots[0] != extent_slot); 4552 } else { 4553 BUG_ON(path->slots[0] != extent_slot + 1); 4554 path->slots[0] = extent_slot; 4555 num_to_del = 2; 4556 } 4557 } 4558 4559 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 4560 num_to_del); 4561 BUG_ON(ret); 4562 btrfs_release_path(extent_root, path); 4563 4564 if (is_data) { 4565 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 4566 BUG_ON(ret); 4567 } else { 4568 invalidate_mapping_pages(info->btree_inode->i_mapping, 4569 bytenr >> PAGE_CACHE_SHIFT, 4570 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 4571 } 4572 4573 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 4574 BUG_ON(ret); 4575 } 4576 btrfs_free_path(path); 4577 return ret; 4578 } 4579 4580 /* 4581 * when we free an block, it is possible (and likely) that we free the last 4582 * delayed ref for that extent as well. This searches the delayed ref tree for 4583 * a given extent, and if there are no other delayed refs to be processed, it 4584 * removes it from the tree. 4585 */ 4586 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 4587 struct btrfs_root *root, u64 bytenr) 4588 { 4589 struct btrfs_delayed_ref_head *head; 4590 struct btrfs_delayed_ref_root *delayed_refs; 4591 struct btrfs_delayed_ref_node *ref; 4592 struct rb_node *node; 4593 int ret = 0; 4594 4595 delayed_refs = &trans->transaction->delayed_refs; 4596 spin_lock(&delayed_refs->lock); 4597 head = btrfs_find_delayed_ref_head(trans, bytenr); 4598 if (!head) 4599 goto out; 4600 4601 node = rb_prev(&head->node.rb_node); 4602 if (!node) 4603 goto out; 4604 4605 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 4606 4607 /* there are still entries for this ref, we can't drop it */ 4608 if (ref->bytenr == bytenr) 4609 goto out; 4610 4611 if (head->extent_op) { 4612 if (!head->must_insert_reserved) 4613 goto out; 4614 kfree(head->extent_op); 4615 head->extent_op = NULL; 4616 } 4617 4618 /* 4619 * waiting for the lock here would deadlock. If someone else has it 4620 * locked they are already in the process of dropping it anyway 4621 */ 4622 if (!mutex_trylock(&head->mutex)) 4623 goto out; 4624 4625 /* 4626 * at this point we have a head with no other entries. Go 4627 * ahead and process it. 4628 */ 4629 head->node.in_tree = 0; 4630 rb_erase(&head->node.rb_node, &delayed_refs->root); 4631 4632 delayed_refs->num_entries--; 4633 4634 /* 4635 * we don't take a ref on the node because we're removing it from the 4636 * tree, so we just steal the ref the tree was holding. 4637 */ 4638 delayed_refs->num_heads--; 4639 if (list_empty(&head->cluster)) 4640 delayed_refs->num_heads_ready--; 4641 4642 list_del_init(&head->cluster); 4643 spin_unlock(&delayed_refs->lock); 4644 4645 BUG_ON(head->extent_op); 4646 if (head->must_insert_reserved) 4647 ret = 1; 4648 4649 mutex_unlock(&head->mutex); 4650 btrfs_put_delayed_ref(&head->node); 4651 return ret; 4652 out: 4653 spin_unlock(&delayed_refs->lock); 4654 return 0; 4655 } 4656 4657 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 4658 struct btrfs_root *root, 4659 struct extent_buffer *buf, 4660 u64 parent, int last_ref) 4661 { 4662 struct btrfs_block_rsv *block_rsv; 4663 struct btrfs_block_group_cache *cache = NULL; 4664 int ret; 4665 4666 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4667 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len, 4668 parent, root->root_key.objectid, 4669 btrfs_header_level(buf), 4670 BTRFS_DROP_DELAYED_REF, NULL); 4671 BUG_ON(ret); 4672 } 4673 4674 if (!last_ref) 4675 return; 4676 4677 block_rsv = get_block_rsv(trans, root); 4678 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 4679 if (block_rsv->space_info != cache->space_info) 4680 goto out; 4681 4682 if (btrfs_header_generation(buf) == trans->transid) { 4683 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4684 ret = check_ref_cleanup(trans, root, buf->start); 4685 if (!ret) 4686 goto pin; 4687 } 4688 4689 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 4690 pin_down_extent(root, cache, buf->start, buf->len, 1); 4691 goto pin; 4692 } 4693 4694 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 4695 4696 btrfs_add_free_space(cache, buf->start, buf->len); 4697 ret = update_reserved_bytes(cache, buf->len, 0, 0); 4698 if (ret == -EAGAIN) { 4699 /* block group became read-only */ 4700 update_reserved_bytes(cache, buf->len, 0, 1); 4701 goto out; 4702 } 4703 4704 ret = 1; 4705 spin_lock(&block_rsv->lock); 4706 if (block_rsv->reserved < block_rsv->size) { 4707 block_rsv->reserved += buf->len; 4708 ret = 0; 4709 } 4710 spin_unlock(&block_rsv->lock); 4711 4712 if (ret) { 4713 spin_lock(&cache->space_info->lock); 4714 cache->space_info->bytes_reserved -= buf->len; 4715 spin_unlock(&cache->space_info->lock); 4716 } 4717 goto out; 4718 } 4719 pin: 4720 if (block_rsv->durable && !cache->ro) { 4721 ret = 0; 4722 spin_lock(&cache->lock); 4723 if (!cache->ro) { 4724 cache->reserved_pinned += buf->len; 4725 ret = 1; 4726 } 4727 spin_unlock(&cache->lock); 4728 4729 if (ret) { 4730 spin_lock(&block_rsv->lock); 4731 block_rsv->freed[trans->transid & 0x1] += buf->len; 4732 spin_unlock(&block_rsv->lock); 4733 } 4734 } 4735 out: 4736 btrfs_put_block_group(cache); 4737 } 4738 4739 int btrfs_free_extent(struct btrfs_trans_handle *trans, 4740 struct btrfs_root *root, 4741 u64 bytenr, u64 num_bytes, u64 parent, 4742 u64 root_objectid, u64 owner, u64 offset) 4743 { 4744 int ret; 4745 4746 /* 4747 * tree log blocks never actually go into the extent allocation 4748 * tree, just update pinning info and exit early. 4749 */ 4750 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 4751 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 4752 /* unlocks the pinned mutex */ 4753 btrfs_pin_extent(root, bytenr, num_bytes, 1); 4754 ret = 0; 4755 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 4756 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 4757 parent, root_objectid, (int)owner, 4758 BTRFS_DROP_DELAYED_REF, NULL); 4759 BUG_ON(ret); 4760 } else { 4761 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 4762 parent, root_objectid, owner, 4763 offset, BTRFS_DROP_DELAYED_REF, NULL); 4764 BUG_ON(ret); 4765 } 4766 return ret; 4767 } 4768 4769 static u64 stripe_align(struct btrfs_root *root, u64 val) 4770 { 4771 u64 mask = ((u64)root->stripesize - 1); 4772 u64 ret = (val + mask) & ~mask; 4773 return ret; 4774 } 4775 4776 /* 4777 * when we wait for progress in the block group caching, its because 4778 * our allocation attempt failed at least once. So, we must sleep 4779 * and let some progress happen before we try again. 4780 * 4781 * This function will sleep at least once waiting for new free space to 4782 * show up, and then it will check the block group free space numbers 4783 * for our min num_bytes. Another option is to have it go ahead 4784 * and look in the rbtree for a free extent of a given size, but this 4785 * is a good start. 4786 */ 4787 static noinline int 4788 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 4789 u64 num_bytes) 4790 { 4791 struct btrfs_caching_control *caching_ctl; 4792 DEFINE_WAIT(wait); 4793 4794 caching_ctl = get_caching_control(cache); 4795 if (!caching_ctl) 4796 return 0; 4797 4798 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 4799 (cache->free_space >= num_bytes)); 4800 4801 put_caching_control(caching_ctl); 4802 return 0; 4803 } 4804 4805 static noinline int 4806 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 4807 { 4808 struct btrfs_caching_control *caching_ctl; 4809 DEFINE_WAIT(wait); 4810 4811 caching_ctl = get_caching_control(cache); 4812 if (!caching_ctl) 4813 return 0; 4814 4815 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 4816 4817 put_caching_control(caching_ctl); 4818 return 0; 4819 } 4820 4821 static int get_block_group_index(struct btrfs_block_group_cache *cache) 4822 { 4823 int index; 4824 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) 4825 index = 0; 4826 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) 4827 index = 1; 4828 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) 4829 index = 2; 4830 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) 4831 index = 3; 4832 else 4833 index = 4; 4834 return index; 4835 } 4836 4837 enum btrfs_loop_type { 4838 LOOP_FIND_IDEAL = 0, 4839 LOOP_CACHING_NOWAIT = 1, 4840 LOOP_CACHING_WAIT = 2, 4841 LOOP_ALLOC_CHUNK = 3, 4842 LOOP_NO_EMPTY_SIZE = 4, 4843 }; 4844 4845 /* 4846 * walks the btree of allocated extents and find a hole of a given size. 4847 * The key ins is changed to record the hole: 4848 * ins->objectid == block start 4849 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4850 * ins->offset == number of blocks 4851 * Any available blocks before search_start are skipped. 4852 */ 4853 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 4854 struct btrfs_root *orig_root, 4855 u64 num_bytes, u64 empty_size, 4856 u64 search_start, u64 search_end, 4857 u64 hint_byte, struct btrfs_key *ins, 4858 int data) 4859 { 4860 int ret = 0; 4861 struct btrfs_root *root = orig_root->fs_info->extent_root; 4862 struct btrfs_free_cluster *last_ptr = NULL; 4863 struct btrfs_block_group_cache *block_group = NULL; 4864 int empty_cluster = 2 * 1024 * 1024; 4865 int allowed_chunk_alloc = 0; 4866 int done_chunk_alloc = 0; 4867 struct btrfs_space_info *space_info; 4868 int last_ptr_loop = 0; 4869 int loop = 0; 4870 int index = 0; 4871 bool found_uncached_bg = false; 4872 bool failed_cluster_refill = false; 4873 bool failed_alloc = false; 4874 bool use_cluster = true; 4875 u64 ideal_cache_percent = 0; 4876 u64 ideal_cache_offset = 0; 4877 4878 WARN_ON(num_bytes < root->sectorsize); 4879 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 4880 ins->objectid = 0; 4881 ins->offset = 0; 4882 4883 space_info = __find_space_info(root->fs_info, data); 4884 if (!space_info) { 4885 printk(KERN_ERR "No space info for %d\n", data); 4886 return -ENOSPC; 4887 } 4888 4889 /* 4890 * If the space info is for both data and metadata it means we have a 4891 * small filesystem and we can't use the clustering stuff. 4892 */ 4893 if (btrfs_mixed_space_info(space_info)) 4894 use_cluster = false; 4895 4896 if (orig_root->ref_cows || empty_size) 4897 allowed_chunk_alloc = 1; 4898 4899 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 4900 last_ptr = &root->fs_info->meta_alloc_cluster; 4901 if (!btrfs_test_opt(root, SSD)) 4902 empty_cluster = 64 * 1024; 4903 } 4904 4905 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 4906 btrfs_test_opt(root, SSD)) { 4907 last_ptr = &root->fs_info->data_alloc_cluster; 4908 } 4909 4910 if (last_ptr) { 4911 spin_lock(&last_ptr->lock); 4912 if (last_ptr->block_group) 4913 hint_byte = last_ptr->window_start; 4914 spin_unlock(&last_ptr->lock); 4915 } 4916 4917 search_start = max(search_start, first_logical_byte(root, 0)); 4918 search_start = max(search_start, hint_byte); 4919 4920 if (!last_ptr) 4921 empty_cluster = 0; 4922 4923 if (search_start == hint_byte) { 4924 ideal_cache: 4925 block_group = btrfs_lookup_block_group(root->fs_info, 4926 search_start); 4927 /* 4928 * we don't want to use the block group if it doesn't match our 4929 * allocation bits, or if its not cached. 4930 * 4931 * However if we are re-searching with an ideal block group 4932 * picked out then we don't care that the block group is cached. 4933 */ 4934 if (block_group && block_group_bits(block_group, data) && 4935 (block_group->cached != BTRFS_CACHE_NO || 4936 search_start == ideal_cache_offset)) { 4937 down_read(&space_info->groups_sem); 4938 if (list_empty(&block_group->list) || 4939 block_group->ro) { 4940 /* 4941 * someone is removing this block group, 4942 * we can't jump into the have_block_group 4943 * target because our list pointers are not 4944 * valid 4945 */ 4946 btrfs_put_block_group(block_group); 4947 up_read(&space_info->groups_sem); 4948 } else { 4949 index = get_block_group_index(block_group); 4950 goto have_block_group; 4951 } 4952 } else if (block_group) { 4953 btrfs_put_block_group(block_group); 4954 } 4955 } 4956 search: 4957 down_read(&space_info->groups_sem); 4958 list_for_each_entry(block_group, &space_info->block_groups[index], 4959 list) { 4960 u64 offset; 4961 int cached; 4962 4963 btrfs_get_block_group(block_group); 4964 search_start = block_group->key.objectid; 4965 4966 /* 4967 * this can happen if we end up cycling through all the 4968 * raid types, but we want to make sure we only allocate 4969 * for the proper type. 4970 */ 4971 if (!block_group_bits(block_group, data)) { 4972 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4973 BTRFS_BLOCK_GROUP_RAID1 | 4974 BTRFS_BLOCK_GROUP_RAID10; 4975 4976 /* 4977 * if they asked for extra copies and this block group 4978 * doesn't provide them, bail. This does allow us to 4979 * fill raid0 from raid1. 4980 */ 4981 if ((data & extra) && !(block_group->flags & extra)) 4982 goto loop; 4983 } 4984 4985 have_block_group: 4986 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) { 4987 u64 free_percent; 4988 4989 ret = cache_block_group(block_group, trans, 4990 orig_root, 1); 4991 if (block_group->cached == BTRFS_CACHE_FINISHED) 4992 goto have_block_group; 4993 4994 free_percent = btrfs_block_group_used(&block_group->item); 4995 free_percent *= 100; 4996 free_percent = div64_u64(free_percent, 4997 block_group->key.offset); 4998 free_percent = 100 - free_percent; 4999 if (free_percent > ideal_cache_percent && 5000 likely(!block_group->ro)) { 5001 ideal_cache_offset = block_group->key.objectid; 5002 ideal_cache_percent = free_percent; 5003 } 5004 5005 /* 5006 * We only want to start kthread caching if we are at 5007 * the point where we will wait for caching to make 5008 * progress, or if our ideal search is over and we've 5009 * found somebody to start caching. 5010 */ 5011 if (loop > LOOP_CACHING_NOWAIT || 5012 (loop > LOOP_FIND_IDEAL && 5013 atomic_read(&space_info->caching_threads) < 2)) { 5014 ret = cache_block_group(block_group, trans, 5015 orig_root, 0); 5016 BUG_ON(ret); 5017 } 5018 found_uncached_bg = true; 5019 5020 /* 5021 * If loop is set for cached only, try the next block 5022 * group. 5023 */ 5024 if (loop == LOOP_FIND_IDEAL) 5025 goto loop; 5026 } 5027 5028 cached = block_group_cache_done(block_group); 5029 if (unlikely(!cached)) 5030 found_uncached_bg = true; 5031 5032 if (unlikely(block_group->ro)) 5033 goto loop; 5034 5035 /* 5036 * Ok we want to try and use the cluster allocator, so lets look 5037 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will 5038 * have tried the cluster allocator plenty of times at this 5039 * point and not have found anything, so we are likely way too 5040 * fragmented for the clustering stuff to find anything, so lets 5041 * just skip it and let the allocator find whatever block it can 5042 * find 5043 */ 5044 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) { 5045 /* 5046 * the refill lock keeps out other 5047 * people trying to start a new cluster 5048 */ 5049 spin_lock(&last_ptr->refill_lock); 5050 if (last_ptr->block_group && 5051 (last_ptr->block_group->ro || 5052 !block_group_bits(last_ptr->block_group, data))) { 5053 offset = 0; 5054 goto refill_cluster; 5055 } 5056 5057 offset = btrfs_alloc_from_cluster(block_group, last_ptr, 5058 num_bytes, search_start); 5059 if (offset) { 5060 /* we have a block, we're done */ 5061 spin_unlock(&last_ptr->refill_lock); 5062 goto checks; 5063 } 5064 5065 spin_lock(&last_ptr->lock); 5066 /* 5067 * whoops, this cluster doesn't actually point to 5068 * this block group. Get a ref on the block 5069 * group is does point to and try again 5070 */ 5071 if (!last_ptr_loop && last_ptr->block_group && 5072 last_ptr->block_group != block_group) { 5073 5074 btrfs_put_block_group(block_group); 5075 block_group = last_ptr->block_group; 5076 btrfs_get_block_group(block_group); 5077 spin_unlock(&last_ptr->lock); 5078 spin_unlock(&last_ptr->refill_lock); 5079 5080 last_ptr_loop = 1; 5081 search_start = block_group->key.objectid; 5082 /* 5083 * we know this block group is properly 5084 * in the list because 5085 * btrfs_remove_block_group, drops the 5086 * cluster before it removes the block 5087 * group from the list 5088 */ 5089 goto have_block_group; 5090 } 5091 spin_unlock(&last_ptr->lock); 5092 refill_cluster: 5093 /* 5094 * this cluster didn't work out, free it and 5095 * start over 5096 */ 5097 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5098 5099 last_ptr_loop = 0; 5100 5101 /* allocate a cluster in this block group */ 5102 ret = btrfs_find_space_cluster(trans, root, 5103 block_group, last_ptr, 5104 offset, num_bytes, 5105 empty_cluster + empty_size); 5106 if (ret == 0) { 5107 /* 5108 * now pull our allocation out of this 5109 * cluster 5110 */ 5111 offset = btrfs_alloc_from_cluster(block_group, 5112 last_ptr, num_bytes, 5113 search_start); 5114 if (offset) { 5115 /* we found one, proceed */ 5116 spin_unlock(&last_ptr->refill_lock); 5117 goto checks; 5118 } 5119 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5120 && !failed_cluster_refill) { 5121 spin_unlock(&last_ptr->refill_lock); 5122 5123 failed_cluster_refill = true; 5124 wait_block_group_cache_progress(block_group, 5125 num_bytes + empty_cluster + empty_size); 5126 goto have_block_group; 5127 } 5128 5129 /* 5130 * at this point we either didn't find a cluster 5131 * or we weren't able to allocate a block from our 5132 * cluster. Free the cluster we've been trying 5133 * to use, and go to the next block group 5134 */ 5135 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5136 spin_unlock(&last_ptr->refill_lock); 5137 goto loop; 5138 } 5139 5140 offset = btrfs_find_space_for_alloc(block_group, search_start, 5141 num_bytes, empty_size); 5142 /* 5143 * If we didn't find a chunk, and we haven't failed on this 5144 * block group before, and this block group is in the middle of 5145 * caching and we are ok with waiting, then go ahead and wait 5146 * for progress to be made, and set failed_alloc to true. 5147 * 5148 * If failed_alloc is true then we've already waited on this 5149 * block group once and should move on to the next block group. 5150 */ 5151 if (!offset && !failed_alloc && !cached && 5152 loop > LOOP_CACHING_NOWAIT) { 5153 wait_block_group_cache_progress(block_group, 5154 num_bytes + empty_size); 5155 failed_alloc = true; 5156 goto have_block_group; 5157 } else if (!offset) { 5158 goto loop; 5159 } 5160 checks: 5161 search_start = stripe_align(root, offset); 5162 /* move on to the next group */ 5163 if (search_start + num_bytes >= search_end) { 5164 btrfs_add_free_space(block_group, offset, num_bytes); 5165 goto loop; 5166 } 5167 5168 /* move on to the next group */ 5169 if (search_start + num_bytes > 5170 block_group->key.objectid + block_group->key.offset) { 5171 btrfs_add_free_space(block_group, offset, num_bytes); 5172 goto loop; 5173 } 5174 5175 ins->objectid = search_start; 5176 ins->offset = num_bytes; 5177 5178 if (offset < search_start) 5179 btrfs_add_free_space(block_group, offset, 5180 search_start - offset); 5181 BUG_ON(offset > search_start); 5182 5183 ret = update_reserved_bytes(block_group, num_bytes, 1, 5184 (data & BTRFS_BLOCK_GROUP_DATA)); 5185 if (ret == -EAGAIN) { 5186 btrfs_add_free_space(block_group, offset, num_bytes); 5187 goto loop; 5188 } 5189 5190 /* we are all good, lets return */ 5191 ins->objectid = search_start; 5192 ins->offset = num_bytes; 5193 5194 if (offset < search_start) 5195 btrfs_add_free_space(block_group, offset, 5196 search_start - offset); 5197 BUG_ON(offset > search_start); 5198 break; 5199 loop: 5200 failed_cluster_refill = false; 5201 failed_alloc = false; 5202 BUG_ON(index != get_block_group_index(block_group)); 5203 btrfs_put_block_group(block_group); 5204 } 5205 up_read(&space_info->groups_sem); 5206 5207 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5208 goto search; 5209 5210 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for 5211 * for them to make caching progress. Also 5212 * determine the best possible bg to cache 5213 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5214 * caching kthreads as we move along 5215 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5216 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5217 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5218 * again 5219 */ 5220 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE && 5221 (found_uncached_bg || empty_size || empty_cluster || 5222 allowed_chunk_alloc)) { 5223 index = 0; 5224 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { 5225 found_uncached_bg = false; 5226 loop++; 5227 if (!ideal_cache_percent && 5228 atomic_read(&space_info->caching_threads)) 5229 goto search; 5230 5231 /* 5232 * 1 of the following 2 things have happened so far 5233 * 5234 * 1) We found an ideal block group for caching that 5235 * is mostly full and will cache quickly, so we might 5236 * as well wait for it. 5237 * 5238 * 2) We searched for cached only and we didn't find 5239 * anything, and we didn't start any caching kthreads 5240 * either, so chances are we will loop through and 5241 * start a couple caching kthreads, and then come back 5242 * around and just wait for them. This will be slower 5243 * because we will have 2 caching kthreads reading at 5244 * the same time when we could have just started one 5245 * and waited for it to get far enough to give us an 5246 * allocation, so go ahead and go to the wait caching 5247 * loop. 5248 */ 5249 loop = LOOP_CACHING_WAIT; 5250 search_start = ideal_cache_offset; 5251 ideal_cache_percent = 0; 5252 goto ideal_cache; 5253 } else if (loop == LOOP_FIND_IDEAL) { 5254 /* 5255 * Didn't find a uncached bg, wait on anything we find 5256 * next. 5257 */ 5258 loop = LOOP_CACHING_WAIT; 5259 goto search; 5260 } 5261 5262 if (loop < LOOP_CACHING_WAIT) { 5263 loop++; 5264 goto search; 5265 } 5266 5267 if (loop == LOOP_ALLOC_CHUNK) { 5268 empty_size = 0; 5269 empty_cluster = 0; 5270 } 5271 5272 if (allowed_chunk_alloc) { 5273 ret = do_chunk_alloc(trans, root, num_bytes + 5274 2 * 1024 * 1024, data, 1); 5275 allowed_chunk_alloc = 0; 5276 done_chunk_alloc = 1; 5277 } else if (!done_chunk_alloc) { 5278 space_info->force_alloc = 1; 5279 } 5280 5281 if (loop < LOOP_NO_EMPTY_SIZE) { 5282 loop++; 5283 goto search; 5284 } 5285 ret = -ENOSPC; 5286 } else if (!ins->objectid) { 5287 ret = -ENOSPC; 5288 } 5289 5290 /* we found what we needed */ 5291 if (ins->objectid) { 5292 if (!(data & BTRFS_BLOCK_GROUP_DATA)) 5293 trans->block_group = block_group->key.objectid; 5294 5295 btrfs_put_block_group(block_group); 5296 ret = 0; 5297 } 5298 5299 return ret; 5300 } 5301 5302 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5303 int dump_block_groups) 5304 { 5305 struct btrfs_block_group_cache *cache; 5306 int index = 0; 5307 5308 spin_lock(&info->lock); 5309 printk(KERN_INFO "space_info has %llu free, is %sfull\n", 5310 (unsigned long long)(info->total_bytes - info->bytes_used - 5311 info->bytes_pinned - info->bytes_reserved - 5312 info->bytes_readonly), 5313 (info->full) ? "" : "not "); 5314 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5315 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5316 (unsigned long long)info->total_bytes, 5317 (unsigned long long)info->bytes_used, 5318 (unsigned long long)info->bytes_pinned, 5319 (unsigned long long)info->bytes_reserved, 5320 (unsigned long long)info->bytes_may_use, 5321 (unsigned long long)info->bytes_readonly); 5322 spin_unlock(&info->lock); 5323 5324 if (!dump_block_groups) 5325 return; 5326 5327 down_read(&info->groups_sem); 5328 again: 5329 list_for_each_entry(cache, &info->block_groups[index], list) { 5330 spin_lock(&cache->lock); 5331 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 5332 "%llu pinned %llu reserved\n", 5333 (unsigned long long)cache->key.objectid, 5334 (unsigned long long)cache->key.offset, 5335 (unsigned long long)btrfs_block_group_used(&cache->item), 5336 (unsigned long long)cache->pinned, 5337 (unsigned long long)cache->reserved); 5338 btrfs_dump_free_space(cache, bytes); 5339 spin_unlock(&cache->lock); 5340 } 5341 if (++index < BTRFS_NR_RAID_TYPES) 5342 goto again; 5343 up_read(&info->groups_sem); 5344 } 5345 5346 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5347 struct btrfs_root *root, 5348 u64 num_bytes, u64 min_alloc_size, 5349 u64 empty_size, u64 hint_byte, 5350 u64 search_end, struct btrfs_key *ins, 5351 u64 data) 5352 { 5353 int ret; 5354 u64 search_start = 0; 5355 5356 data = btrfs_get_alloc_profile(root, data); 5357 again: 5358 /* 5359 * the only place that sets empty_size is btrfs_realloc_node, which 5360 * is not called recursively on allocations 5361 */ 5362 if (empty_size || root->ref_cows) 5363 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5364 num_bytes + 2 * 1024 * 1024, data, 0); 5365 5366 WARN_ON(num_bytes < root->sectorsize); 5367 ret = find_free_extent(trans, root, num_bytes, empty_size, 5368 search_start, search_end, hint_byte, 5369 ins, data); 5370 5371 if (ret == -ENOSPC && num_bytes > min_alloc_size) { 5372 num_bytes = num_bytes >> 1; 5373 num_bytes = num_bytes & ~(root->sectorsize - 1); 5374 num_bytes = max(num_bytes, min_alloc_size); 5375 do_chunk_alloc(trans, root->fs_info->extent_root, 5376 num_bytes, data, 1); 5377 goto again; 5378 } 5379 if (ret == -ENOSPC) { 5380 struct btrfs_space_info *sinfo; 5381 5382 sinfo = __find_space_info(root->fs_info, data); 5383 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5384 "wanted %llu\n", (unsigned long long)data, 5385 (unsigned long long)num_bytes); 5386 dump_space_info(sinfo, num_bytes, 1); 5387 } 5388 5389 return ret; 5390 } 5391 5392 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) 5393 { 5394 struct btrfs_block_group_cache *cache; 5395 int ret = 0; 5396 5397 cache = btrfs_lookup_block_group(root->fs_info, start); 5398 if (!cache) { 5399 printk(KERN_ERR "Unable to find block group for %llu\n", 5400 (unsigned long long)start); 5401 return -ENOSPC; 5402 } 5403 5404 ret = btrfs_discard_extent(root, start, len); 5405 5406 btrfs_add_free_space(cache, start, len); 5407 update_reserved_bytes(cache, len, 0, 1); 5408 btrfs_put_block_group(cache); 5409 5410 return ret; 5411 } 5412 5413 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5414 struct btrfs_root *root, 5415 u64 parent, u64 root_objectid, 5416 u64 flags, u64 owner, u64 offset, 5417 struct btrfs_key *ins, int ref_mod) 5418 { 5419 int ret; 5420 struct btrfs_fs_info *fs_info = root->fs_info; 5421 struct btrfs_extent_item *extent_item; 5422 struct btrfs_extent_inline_ref *iref; 5423 struct btrfs_path *path; 5424 struct extent_buffer *leaf; 5425 int type; 5426 u32 size; 5427 5428 if (parent > 0) 5429 type = BTRFS_SHARED_DATA_REF_KEY; 5430 else 5431 type = BTRFS_EXTENT_DATA_REF_KEY; 5432 5433 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 5434 5435 path = btrfs_alloc_path(); 5436 BUG_ON(!path); 5437 5438 path->leave_spinning = 1; 5439 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5440 ins, size); 5441 BUG_ON(ret); 5442 5443 leaf = path->nodes[0]; 5444 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5445 struct btrfs_extent_item); 5446 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 5447 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5448 btrfs_set_extent_flags(leaf, extent_item, 5449 flags | BTRFS_EXTENT_FLAG_DATA); 5450 5451 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 5452 btrfs_set_extent_inline_ref_type(leaf, iref, type); 5453 if (parent > 0) { 5454 struct btrfs_shared_data_ref *ref; 5455 ref = (struct btrfs_shared_data_ref *)(iref + 1); 5456 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5457 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 5458 } else { 5459 struct btrfs_extent_data_ref *ref; 5460 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 5461 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 5462 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 5463 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 5464 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 5465 } 5466 5467 btrfs_mark_buffer_dirty(path->nodes[0]); 5468 btrfs_free_path(path); 5469 5470 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5471 if (ret) { 5472 printk(KERN_ERR "btrfs update block group failed for %llu " 5473 "%llu\n", (unsigned long long)ins->objectid, 5474 (unsigned long long)ins->offset); 5475 BUG(); 5476 } 5477 return ret; 5478 } 5479 5480 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 5481 struct btrfs_root *root, 5482 u64 parent, u64 root_objectid, 5483 u64 flags, struct btrfs_disk_key *key, 5484 int level, struct btrfs_key *ins) 5485 { 5486 int ret; 5487 struct btrfs_fs_info *fs_info = root->fs_info; 5488 struct btrfs_extent_item *extent_item; 5489 struct btrfs_tree_block_info *block_info; 5490 struct btrfs_extent_inline_ref *iref; 5491 struct btrfs_path *path; 5492 struct extent_buffer *leaf; 5493 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 5494 5495 path = btrfs_alloc_path(); 5496 BUG_ON(!path); 5497 5498 path->leave_spinning = 1; 5499 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5500 ins, size); 5501 BUG_ON(ret); 5502 5503 leaf = path->nodes[0]; 5504 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5505 struct btrfs_extent_item); 5506 btrfs_set_extent_refs(leaf, extent_item, 1); 5507 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5508 btrfs_set_extent_flags(leaf, extent_item, 5509 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 5510 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 5511 5512 btrfs_set_tree_block_key(leaf, block_info, key); 5513 btrfs_set_tree_block_level(leaf, block_info, level); 5514 5515 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 5516 if (parent > 0) { 5517 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 5518 btrfs_set_extent_inline_ref_type(leaf, iref, 5519 BTRFS_SHARED_BLOCK_REF_KEY); 5520 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5521 } else { 5522 btrfs_set_extent_inline_ref_type(leaf, iref, 5523 BTRFS_TREE_BLOCK_REF_KEY); 5524 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 5525 } 5526 5527 btrfs_mark_buffer_dirty(leaf); 5528 btrfs_free_path(path); 5529 5530 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5531 if (ret) { 5532 printk(KERN_ERR "btrfs update block group failed for %llu " 5533 "%llu\n", (unsigned long long)ins->objectid, 5534 (unsigned long long)ins->offset); 5535 BUG(); 5536 } 5537 return ret; 5538 } 5539 5540 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5541 struct btrfs_root *root, 5542 u64 root_objectid, u64 owner, 5543 u64 offset, struct btrfs_key *ins) 5544 { 5545 int ret; 5546 5547 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 5548 5549 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, 5550 0, root_objectid, owner, offset, 5551 BTRFS_ADD_DELAYED_EXTENT, NULL); 5552 return ret; 5553 } 5554 5555 /* 5556 * this is used by the tree logging recovery code. It records that 5557 * an extent has been allocated and makes sure to clear the free 5558 * space cache bits as well 5559 */ 5560 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 5561 struct btrfs_root *root, 5562 u64 root_objectid, u64 owner, u64 offset, 5563 struct btrfs_key *ins) 5564 { 5565 int ret; 5566 struct btrfs_block_group_cache *block_group; 5567 struct btrfs_caching_control *caching_ctl; 5568 u64 start = ins->objectid; 5569 u64 num_bytes = ins->offset; 5570 5571 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 5572 cache_block_group(block_group, trans, NULL, 0); 5573 caching_ctl = get_caching_control(block_group); 5574 5575 if (!caching_ctl) { 5576 BUG_ON(!block_group_cache_done(block_group)); 5577 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5578 BUG_ON(ret); 5579 } else { 5580 mutex_lock(&caching_ctl->mutex); 5581 5582 if (start >= caching_ctl->progress) { 5583 ret = add_excluded_extent(root, start, num_bytes); 5584 BUG_ON(ret); 5585 } else if (start + num_bytes <= caching_ctl->progress) { 5586 ret = btrfs_remove_free_space(block_group, 5587 start, num_bytes); 5588 BUG_ON(ret); 5589 } else { 5590 num_bytes = caching_ctl->progress - start; 5591 ret = btrfs_remove_free_space(block_group, 5592 start, num_bytes); 5593 BUG_ON(ret); 5594 5595 start = caching_ctl->progress; 5596 num_bytes = ins->objectid + ins->offset - 5597 caching_ctl->progress; 5598 ret = add_excluded_extent(root, start, num_bytes); 5599 BUG_ON(ret); 5600 } 5601 5602 mutex_unlock(&caching_ctl->mutex); 5603 put_caching_control(caching_ctl); 5604 } 5605 5606 ret = update_reserved_bytes(block_group, ins->offset, 1, 1); 5607 BUG_ON(ret); 5608 btrfs_put_block_group(block_group); 5609 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 5610 0, owner, offset, ins, 1); 5611 return ret; 5612 } 5613 5614 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 5615 struct btrfs_root *root, 5616 u64 bytenr, u32 blocksize, 5617 int level) 5618 { 5619 struct extent_buffer *buf; 5620 5621 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 5622 if (!buf) 5623 return ERR_PTR(-ENOMEM); 5624 btrfs_set_header_generation(buf, trans->transid); 5625 btrfs_set_buffer_lockdep_class(buf, level); 5626 btrfs_tree_lock(buf); 5627 clean_tree_block(trans, root, buf); 5628 5629 btrfs_set_lock_blocking(buf); 5630 btrfs_set_buffer_uptodate(buf); 5631 5632 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5633 /* 5634 * we allow two log transactions at a time, use different 5635 * EXENT bit to differentiate dirty pages. 5636 */ 5637 if (root->log_transid % 2 == 0) 5638 set_extent_dirty(&root->dirty_log_pages, buf->start, 5639 buf->start + buf->len - 1, GFP_NOFS); 5640 else 5641 set_extent_new(&root->dirty_log_pages, buf->start, 5642 buf->start + buf->len - 1, GFP_NOFS); 5643 } else { 5644 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 5645 buf->start + buf->len - 1, GFP_NOFS); 5646 } 5647 trans->blocks_used++; 5648 /* this returns a buffer locked for blocking */ 5649 return buf; 5650 } 5651 5652 static struct btrfs_block_rsv * 5653 use_block_rsv(struct btrfs_trans_handle *trans, 5654 struct btrfs_root *root, u32 blocksize) 5655 { 5656 struct btrfs_block_rsv *block_rsv; 5657 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5658 int ret; 5659 5660 block_rsv = get_block_rsv(trans, root); 5661 5662 if (block_rsv->size == 0) { 5663 ret = reserve_metadata_bytes(trans, root, block_rsv, 5664 blocksize, 0); 5665 /* 5666 * If we couldn't reserve metadata bytes try and use some from 5667 * the global reserve. 5668 */ 5669 if (ret && block_rsv != global_rsv) { 5670 ret = block_rsv_use_bytes(global_rsv, blocksize); 5671 if (!ret) 5672 return global_rsv; 5673 return ERR_PTR(ret); 5674 } else if (ret) { 5675 return ERR_PTR(ret); 5676 } 5677 return block_rsv; 5678 } 5679 5680 ret = block_rsv_use_bytes(block_rsv, blocksize); 5681 if (!ret) 5682 return block_rsv; 5683 if (ret) { 5684 WARN_ON(1); 5685 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize, 5686 0); 5687 if (!ret) { 5688 spin_lock(&block_rsv->lock); 5689 block_rsv->size += blocksize; 5690 spin_unlock(&block_rsv->lock); 5691 return block_rsv; 5692 } else if (ret && block_rsv != global_rsv) { 5693 ret = block_rsv_use_bytes(global_rsv, blocksize); 5694 if (!ret) 5695 return global_rsv; 5696 } 5697 } 5698 5699 return ERR_PTR(-ENOSPC); 5700 } 5701 5702 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) 5703 { 5704 block_rsv_add_bytes(block_rsv, blocksize, 0); 5705 block_rsv_release_bytes(block_rsv, NULL, 0); 5706 } 5707 5708 /* 5709 * finds a free extent and does all the dirty work required for allocation 5710 * returns the key for the extent through ins, and a tree buffer for 5711 * the first block of the extent through buf. 5712 * 5713 * returns the tree buffer or NULL. 5714 */ 5715 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 5716 struct btrfs_root *root, u32 blocksize, 5717 u64 parent, u64 root_objectid, 5718 struct btrfs_disk_key *key, int level, 5719 u64 hint, u64 empty_size) 5720 { 5721 struct btrfs_key ins; 5722 struct btrfs_block_rsv *block_rsv; 5723 struct extent_buffer *buf; 5724 u64 flags = 0; 5725 int ret; 5726 5727 5728 block_rsv = use_block_rsv(trans, root, blocksize); 5729 if (IS_ERR(block_rsv)) 5730 return ERR_CAST(block_rsv); 5731 5732 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 5733 empty_size, hint, (u64)-1, &ins, 0); 5734 if (ret) { 5735 unuse_block_rsv(block_rsv, blocksize); 5736 return ERR_PTR(ret); 5737 } 5738 5739 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 5740 blocksize, level); 5741 BUG_ON(IS_ERR(buf)); 5742 5743 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5744 if (parent == 0) 5745 parent = ins.objectid; 5746 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5747 } else 5748 BUG_ON(parent > 0); 5749 5750 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5751 struct btrfs_delayed_extent_op *extent_op; 5752 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 5753 BUG_ON(!extent_op); 5754 if (key) 5755 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5756 else 5757 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5758 extent_op->flags_to_set = flags; 5759 extent_op->update_key = 1; 5760 extent_op->update_flags = 1; 5761 extent_op->is_data = 0; 5762 5763 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, 5764 ins.offset, parent, root_objectid, 5765 level, BTRFS_ADD_DELAYED_EXTENT, 5766 extent_op); 5767 BUG_ON(ret); 5768 } 5769 return buf; 5770 } 5771 5772 struct walk_control { 5773 u64 refs[BTRFS_MAX_LEVEL]; 5774 u64 flags[BTRFS_MAX_LEVEL]; 5775 struct btrfs_key update_progress; 5776 int stage; 5777 int level; 5778 int shared_level; 5779 int update_ref; 5780 int keep_locks; 5781 int reada_slot; 5782 int reada_count; 5783 }; 5784 5785 #define DROP_REFERENCE 1 5786 #define UPDATE_BACKREF 2 5787 5788 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5789 struct btrfs_root *root, 5790 struct walk_control *wc, 5791 struct btrfs_path *path) 5792 { 5793 u64 bytenr; 5794 u64 generation; 5795 u64 refs; 5796 u64 flags; 5797 u32 nritems; 5798 u32 blocksize; 5799 struct btrfs_key key; 5800 struct extent_buffer *eb; 5801 int ret; 5802 int slot; 5803 int nread = 0; 5804 5805 if (path->slots[wc->level] < wc->reada_slot) { 5806 wc->reada_count = wc->reada_count * 2 / 3; 5807 wc->reada_count = max(wc->reada_count, 2); 5808 } else { 5809 wc->reada_count = wc->reada_count * 3 / 2; 5810 wc->reada_count = min_t(int, wc->reada_count, 5811 BTRFS_NODEPTRS_PER_BLOCK(root)); 5812 } 5813 5814 eb = path->nodes[wc->level]; 5815 nritems = btrfs_header_nritems(eb); 5816 blocksize = btrfs_level_size(root, wc->level - 1); 5817 5818 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5819 if (nread >= wc->reada_count) 5820 break; 5821 5822 cond_resched(); 5823 bytenr = btrfs_node_blockptr(eb, slot); 5824 generation = btrfs_node_ptr_generation(eb, slot); 5825 5826 if (slot == path->slots[wc->level]) 5827 goto reada; 5828 5829 if (wc->stage == UPDATE_BACKREF && 5830 generation <= root->root_key.offset) 5831 continue; 5832 5833 /* We don't lock the tree block, it's OK to be racy here */ 5834 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 5835 &refs, &flags); 5836 BUG_ON(ret); 5837 BUG_ON(refs == 0); 5838 5839 if (wc->stage == DROP_REFERENCE) { 5840 if (refs == 1) 5841 goto reada; 5842 5843 if (wc->level == 1 && 5844 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5845 continue; 5846 if (!wc->update_ref || 5847 generation <= root->root_key.offset) 5848 continue; 5849 btrfs_node_key_to_cpu(eb, &key, slot); 5850 ret = btrfs_comp_cpu_keys(&key, 5851 &wc->update_progress); 5852 if (ret < 0) 5853 continue; 5854 } else { 5855 if (wc->level == 1 && 5856 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5857 continue; 5858 } 5859 reada: 5860 ret = readahead_tree_block(root, bytenr, blocksize, 5861 generation); 5862 if (ret) 5863 break; 5864 nread++; 5865 } 5866 wc->reada_slot = slot; 5867 } 5868 5869 /* 5870 * hepler to process tree block while walking down the tree. 5871 * 5872 * when wc->stage == UPDATE_BACKREF, this function updates 5873 * back refs for pointers in the block. 5874 * 5875 * NOTE: return value 1 means we should stop walking down. 5876 */ 5877 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5878 struct btrfs_root *root, 5879 struct btrfs_path *path, 5880 struct walk_control *wc, int lookup_info) 5881 { 5882 int level = wc->level; 5883 struct extent_buffer *eb = path->nodes[level]; 5884 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5885 int ret; 5886 5887 if (wc->stage == UPDATE_BACKREF && 5888 btrfs_header_owner(eb) != root->root_key.objectid) 5889 return 1; 5890 5891 /* 5892 * when reference count of tree block is 1, it won't increase 5893 * again. once full backref flag is set, we never clear it. 5894 */ 5895 if (lookup_info && 5896 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5897 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5898 BUG_ON(!path->locks[level]); 5899 ret = btrfs_lookup_extent_info(trans, root, 5900 eb->start, eb->len, 5901 &wc->refs[level], 5902 &wc->flags[level]); 5903 BUG_ON(ret); 5904 BUG_ON(wc->refs[level] == 0); 5905 } 5906 5907 if (wc->stage == DROP_REFERENCE) { 5908 if (wc->refs[level] > 1) 5909 return 1; 5910 5911 if (path->locks[level] && !wc->keep_locks) { 5912 btrfs_tree_unlock(eb); 5913 path->locks[level] = 0; 5914 } 5915 return 0; 5916 } 5917 5918 /* wc->stage == UPDATE_BACKREF */ 5919 if (!(wc->flags[level] & flag)) { 5920 BUG_ON(!path->locks[level]); 5921 ret = btrfs_inc_ref(trans, root, eb, 1); 5922 BUG_ON(ret); 5923 ret = btrfs_dec_ref(trans, root, eb, 0); 5924 BUG_ON(ret); 5925 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 5926 eb->len, flag, 0); 5927 BUG_ON(ret); 5928 wc->flags[level] |= flag; 5929 } 5930 5931 /* 5932 * the block is shared by multiple trees, so it's not good to 5933 * keep the tree lock 5934 */ 5935 if (path->locks[level] && level > 0) { 5936 btrfs_tree_unlock(eb); 5937 path->locks[level] = 0; 5938 } 5939 return 0; 5940 } 5941 5942 /* 5943 * hepler to process tree block pointer. 5944 * 5945 * when wc->stage == DROP_REFERENCE, this function checks 5946 * reference count of the block pointed to. if the block 5947 * is shared and we need update back refs for the subtree 5948 * rooted at the block, this function changes wc->stage to 5949 * UPDATE_BACKREF. if the block is shared and there is no 5950 * need to update back, this function drops the reference 5951 * to the block. 5952 * 5953 * NOTE: return value 1 means we should stop walking down. 5954 */ 5955 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5956 struct btrfs_root *root, 5957 struct btrfs_path *path, 5958 struct walk_control *wc, int *lookup_info) 5959 { 5960 u64 bytenr; 5961 u64 generation; 5962 u64 parent; 5963 u32 blocksize; 5964 struct btrfs_key key; 5965 struct extent_buffer *next; 5966 int level = wc->level; 5967 int reada = 0; 5968 int ret = 0; 5969 5970 generation = btrfs_node_ptr_generation(path->nodes[level], 5971 path->slots[level]); 5972 /* 5973 * if the lower level block was created before the snapshot 5974 * was created, we know there is no need to update back refs 5975 * for the subtree 5976 */ 5977 if (wc->stage == UPDATE_BACKREF && 5978 generation <= root->root_key.offset) { 5979 *lookup_info = 1; 5980 return 1; 5981 } 5982 5983 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5984 blocksize = btrfs_level_size(root, level - 1); 5985 5986 next = btrfs_find_tree_block(root, bytenr, blocksize); 5987 if (!next) { 5988 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 5989 if (!next) 5990 return -ENOMEM; 5991 reada = 1; 5992 } 5993 btrfs_tree_lock(next); 5994 btrfs_set_lock_blocking(next); 5995 5996 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 5997 &wc->refs[level - 1], 5998 &wc->flags[level - 1]); 5999 BUG_ON(ret); 6000 BUG_ON(wc->refs[level - 1] == 0); 6001 *lookup_info = 0; 6002 6003 if (wc->stage == DROP_REFERENCE) { 6004 if (wc->refs[level - 1] > 1) { 6005 if (level == 1 && 6006 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6007 goto skip; 6008 6009 if (!wc->update_ref || 6010 generation <= root->root_key.offset) 6011 goto skip; 6012 6013 btrfs_node_key_to_cpu(path->nodes[level], &key, 6014 path->slots[level]); 6015 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6016 if (ret < 0) 6017 goto skip; 6018 6019 wc->stage = UPDATE_BACKREF; 6020 wc->shared_level = level - 1; 6021 } 6022 } else { 6023 if (level == 1 && 6024 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6025 goto skip; 6026 } 6027 6028 if (!btrfs_buffer_uptodate(next, generation)) { 6029 btrfs_tree_unlock(next); 6030 free_extent_buffer(next); 6031 next = NULL; 6032 *lookup_info = 1; 6033 } 6034 6035 if (!next) { 6036 if (reada && level == 1) 6037 reada_walk_down(trans, root, wc, path); 6038 next = read_tree_block(root, bytenr, blocksize, generation); 6039 btrfs_tree_lock(next); 6040 btrfs_set_lock_blocking(next); 6041 } 6042 6043 level--; 6044 BUG_ON(level != btrfs_header_level(next)); 6045 path->nodes[level] = next; 6046 path->slots[level] = 0; 6047 path->locks[level] = 1; 6048 wc->level = level; 6049 if (wc->level == 1) 6050 wc->reada_slot = 0; 6051 return 0; 6052 skip: 6053 wc->refs[level - 1] = 0; 6054 wc->flags[level - 1] = 0; 6055 if (wc->stage == DROP_REFERENCE) { 6056 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6057 parent = path->nodes[level]->start; 6058 } else { 6059 BUG_ON(root->root_key.objectid != 6060 btrfs_header_owner(path->nodes[level])); 6061 parent = 0; 6062 } 6063 6064 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6065 root->root_key.objectid, level - 1, 0); 6066 BUG_ON(ret); 6067 } 6068 btrfs_tree_unlock(next); 6069 free_extent_buffer(next); 6070 *lookup_info = 1; 6071 return 1; 6072 } 6073 6074 /* 6075 * hepler to process tree block while walking up the tree. 6076 * 6077 * when wc->stage == DROP_REFERENCE, this function drops 6078 * reference count on the block. 6079 * 6080 * when wc->stage == UPDATE_BACKREF, this function changes 6081 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6082 * to UPDATE_BACKREF previously while processing the block. 6083 * 6084 * NOTE: return value 1 means we should stop walking up. 6085 */ 6086 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6087 struct btrfs_root *root, 6088 struct btrfs_path *path, 6089 struct walk_control *wc) 6090 { 6091 int ret; 6092 int level = wc->level; 6093 struct extent_buffer *eb = path->nodes[level]; 6094 u64 parent = 0; 6095 6096 if (wc->stage == UPDATE_BACKREF) { 6097 BUG_ON(wc->shared_level < level); 6098 if (level < wc->shared_level) 6099 goto out; 6100 6101 ret = find_next_key(path, level + 1, &wc->update_progress); 6102 if (ret > 0) 6103 wc->update_ref = 0; 6104 6105 wc->stage = DROP_REFERENCE; 6106 wc->shared_level = -1; 6107 path->slots[level] = 0; 6108 6109 /* 6110 * check reference count again if the block isn't locked. 6111 * we should start walking down the tree again if reference 6112 * count is one. 6113 */ 6114 if (!path->locks[level]) { 6115 BUG_ON(level == 0); 6116 btrfs_tree_lock(eb); 6117 btrfs_set_lock_blocking(eb); 6118 path->locks[level] = 1; 6119 6120 ret = btrfs_lookup_extent_info(trans, root, 6121 eb->start, eb->len, 6122 &wc->refs[level], 6123 &wc->flags[level]); 6124 BUG_ON(ret); 6125 BUG_ON(wc->refs[level] == 0); 6126 if (wc->refs[level] == 1) { 6127 btrfs_tree_unlock(eb); 6128 path->locks[level] = 0; 6129 return 1; 6130 } 6131 } 6132 } 6133 6134 /* wc->stage == DROP_REFERENCE */ 6135 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6136 6137 if (wc->refs[level] == 1) { 6138 if (level == 0) { 6139 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6140 ret = btrfs_dec_ref(trans, root, eb, 1); 6141 else 6142 ret = btrfs_dec_ref(trans, root, eb, 0); 6143 BUG_ON(ret); 6144 } 6145 /* make block locked assertion in clean_tree_block happy */ 6146 if (!path->locks[level] && 6147 btrfs_header_generation(eb) == trans->transid) { 6148 btrfs_tree_lock(eb); 6149 btrfs_set_lock_blocking(eb); 6150 path->locks[level] = 1; 6151 } 6152 clean_tree_block(trans, root, eb); 6153 } 6154 6155 if (eb == root->node) { 6156 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6157 parent = eb->start; 6158 else 6159 BUG_ON(root->root_key.objectid != 6160 btrfs_header_owner(eb)); 6161 } else { 6162 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6163 parent = path->nodes[level + 1]->start; 6164 else 6165 BUG_ON(root->root_key.objectid != 6166 btrfs_header_owner(path->nodes[level + 1])); 6167 } 6168 6169 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6170 out: 6171 wc->refs[level] = 0; 6172 wc->flags[level] = 0; 6173 return 0; 6174 } 6175 6176 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6177 struct btrfs_root *root, 6178 struct btrfs_path *path, 6179 struct walk_control *wc) 6180 { 6181 int level = wc->level; 6182 int lookup_info = 1; 6183 int ret; 6184 6185 while (level >= 0) { 6186 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6187 if (ret > 0) 6188 break; 6189 6190 if (level == 0) 6191 break; 6192 6193 if (path->slots[level] >= 6194 btrfs_header_nritems(path->nodes[level])) 6195 break; 6196 6197 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6198 if (ret > 0) { 6199 path->slots[level]++; 6200 continue; 6201 } else if (ret < 0) 6202 return ret; 6203 level = wc->level; 6204 } 6205 return 0; 6206 } 6207 6208 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6209 struct btrfs_root *root, 6210 struct btrfs_path *path, 6211 struct walk_control *wc, int max_level) 6212 { 6213 int level = wc->level; 6214 int ret; 6215 6216 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6217 while (level < max_level && path->nodes[level]) { 6218 wc->level = level; 6219 if (path->slots[level] + 1 < 6220 btrfs_header_nritems(path->nodes[level])) { 6221 path->slots[level]++; 6222 return 0; 6223 } else { 6224 ret = walk_up_proc(trans, root, path, wc); 6225 if (ret > 0) 6226 return 0; 6227 6228 if (path->locks[level]) { 6229 btrfs_tree_unlock(path->nodes[level]); 6230 path->locks[level] = 0; 6231 } 6232 free_extent_buffer(path->nodes[level]); 6233 path->nodes[level] = NULL; 6234 level++; 6235 } 6236 } 6237 return 1; 6238 } 6239 6240 /* 6241 * drop a subvolume tree. 6242 * 6243 * this function traverses the tree freeing any blocks that only 6244 * referenced by the tree. 6245 * 6246 * when a shared tree block is found. this function decreases its 6247 * reference count by one. if update_ref is true, this function 6248 * also make sure backrefs for the shared block and all lower level 6249 * blocks are properly updated. 6250 */ 6251 int btrfs_drop_snapshot(struct btrfs_root *root, 6252 struct btrfs_block_rsv *block_rsv, int update_ref) 6253 { 6254 struct btrfs_path *path; 6255 struct btrfs_trans_handle *trans; 6256 struct btrfs_root *tree_root = root->fs_info->tree_root; 6257 struct btrfs_root_item *root_item = &root->root_item; 6258 struct walk_control *wc; 6259 struct btrfs_key key; 6260 int err = 0; 6261 int ret; 6262 int level; 6263 6264 path = btrfs_alloc_path(); 6265 BUG_ON(!path); 6266 6267 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6268 BUG_ON(!wc); 6269 6270 trans = btrfs_start_transaction(tree_root, 0); 6271 BUG_ON(IS_ERR(trans)); 6272 6273 if (block_rsv) 6274 trans->block_rsv = block_rsv; 6275 6276 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6277 level = btrfs_header_level(root->node); 6278 path->nodes[level] = btrfs_lock_root_node(root); 6279 btrfs_set_lock_blocking(path->nodes[level]); 6280 path->slots[level] = 0; 6281 path->locks[level] = 1; 6282 memset(&wc->update_progress, 0, 6283 sizeof(wc->update_progress)); 6284 } else { 6285 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6286 memcpy(&wc->update_progress, &key, 6287 sizeof(wc->update_progress)); 6288 6289 level = root_item->drop_level; 6290 BUG_ON(level == 0); 6291 path->lowest_level = level; 6292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6293 path->lowest_level = 0; 6294 if (ret < 0) { 6295 err = ret; 6296 goto out; 6297 } 6298 WARN_ON(ret > 0); 6299 6300 /* 6301 * unlock our path, this is safe because only this 6302 * function is allowed to delete this snapshot 6303 */ 6304 btrfs_unlock_up_safe(path, 0); 6305 6306 level = btrfs_header_level(root->node); 6307 while (1) { 6308 btrfs_tree_lock(path->nodes[level]); 6309 btrfs_set_lock_blocking(path->nodes[level]); 6310 6311 ret = btrfs_lookup_extent_info(trans, root, 6312 path->nodes[level]->start, 6313 path->nodes[level]->len, 6314 &wc->refs[level], 6315 &wc->flags[level]); 6316 BUG_ON(ret); 6317 BUG_ON(wc->refs[level] == 0); 6318 6319 if (level == root_item->drop_level) 6320 break; 6321 6322 btrfs_tree_unlock(path->nodes[level]); 6323 WARN_ON(wc->refs[level] != 1); 6324 level--; 6325 } 6326 } 6327 6328 wc->level = level; 6329 wc->shared_level = -1; 6330 wc->stage = DROP_REFERENCE; 6331 wc->update_ref = update_ref; 6332 wc->keep_locks = 0; 6333 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6334 6335 while (1) { 6336 ret = walk_down_tree(trans, root, path, wc); 6337 if (ret < 0) { 6338 err = ret; 6339 break; 6340 } 6341 6342 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6343 if (ret < 0) { 6344 err = ret; 6345 break; 6346 } 6347 6348 if (ret > 0) { 6349 BUG_ON(wc->stage != DROP_REFERENCE); 6350 break; 6351 } 6352 6353 if (wc->stage == DROP_REFERENCE) { 6354 level = wc->level; 6355 btrfs_node_key(path->nodes[level], 6356 &root_item->drop_progress, 6357 path->slots[level]); 6358 root_item->drop_level = level; 6359 } 6360 6361 BUG_ON(wc->level == 0); 6362 if (btrfs_should_end_transaction(trans, tree_root)) { 6363 ret = btrfs_update_root(trans, tree_root, 6364 &root->root_key, 6365 root_item); 6366 BUG_ON(ret); 6367 6368 btrfs_end_transaction_throttle(trans, tree_root); 6369 trans = btrfs_start_transaction(tree_root, 0); 6370 BUG_ON(IS_ERR(trans)); 6371 if (block_rsv) 6372 trans->block_rsv = block_rsv; 6373 } 6374 } 6375 btrfs_release_path(root, path); 6376 BUG_ON(err); 6377 6378 ret = btrfs_del_root(trans, tree_root, &root->root_key); 6379 BUG_ON(ret); 6380 6381 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 6382 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 6383 NULL, NULL); 6384 BUG_ON(ret < 0); 6385 if (ret > 0) { 6386 /* if we fail to delete the orphan item this time 6387 * around, it'll get picked up the next time. 6388 * 6389 * The most common failure here is just -ENOENT. 6390 */ 6391 btrfs_del_orphan_item(trans, tree_root, 6392 root->root_key.objectid); 6393 } 6394 } 6395 6396 if (root->in_radix) { 6397 btrfs_free_fs_root(tree_root->fs_info, root); 6398 } else { 6399 free_extent_buffer(root->node); 6400 free_extent_buffer(root->commit_root); 6401 kfree(root); 6402 } 6403 out: 6404 btrfs_end_transaction_throttle(trans, tree_root); 6405 kfree(wc); 6406 btrfs_free_path(path); 6407 return err; 6408 } 6409 6410 /* 6411 * drop subtree rooted at tree block 'node'. 6412 * 6413 * NOTE: this function will unlock and release tree block 'node' 6414 */ 6415 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6416 struct btrfs_root *root, 6417 struct extent_buffer *node, 6418 struct extent_buffer *parent) 6419 { 6420 struct btrfs_path *path; 6421 struct walk_control *wc; 6422 int level; 6423 int parent_level; 6424 int ret = 0; 6425 int wret; 6426 6427 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6428 6429 path = btrfs_alloc_path(); 6430 BUG_ON(!path); 6431 6432 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6433 BUG_ON(!wc); 6434 6435 btrfs_assert_tree_locked(parent); 6436 parent_level = btrfs_header_level(parent); 6437 extent_buffer_get(parent); 6438 path->nodes[parent_level] = parent; 6439 path->slots[parent_level] = btrfs_header_nritems(parent); 6440 6441 btrfs_assert_tree_locked(node); 6442 level = btrfs_header_level(node); 6443 path->nodes[level] = node; 6444 path->slots[level] = 0; 6445 path->locks[level] = 1; 6446 6447 wc->refs[parent_level] = 1; 6448 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6449 wc->level = level; 6450 wc->shared_level = -1; 6451 wc->stage = DROP_REFERENCE; 6452 wc->update_ref = 0; 6453 wc->keep_locks = 1; 6454 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6455 6456 while (1) { 6457 wret = walk_down_tree(trans, root, path, wc); 6458 if (wret < 0) { 6459 ret = wret; 6460 break; 6461 } 6462 6463 wret = walk_up_tree(trans, root, path, wc, parent_level); 6464 if (wret < 0) 6465 ret = wret; 6466 if (wret != 0) 6467 break; 6468 } 6469 6470 kfree(wc); 6471 btrfs_free_path(path); 6472 return ret; 6473 } 6474 6475 #if 0 6476 static unsigned long calc_ra(unsigned long start, unsigned long last, 6477 unsigned long nr) 6478 { 6479 return min(last, start + nr - 1); 6480 } 6481 6482 static noinline int relocate_inode_pages(struct inode *inode, u64 start, 6483 u64 len) 6484 { 6485 u64 page_start; 6486 u64 page_end; 6487 unsigned long first_index; 6488 unsigned long last_index; 6489 unsigned long i; 6490 struct page *page; 6491 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6492 struct file_ra_state *ra; 6493 struct btrfs_ordered_extent *ordered; 6494 unsigned int total_read = 0; 6495 unsigned int total_dirty = 0; 6496 int ret = 0; 6497 6498 ra = kzalloc(sizeof(*ra), GFP_NOFS); 6499 if (!ra) 6500 return -ENOMEM; 6501 6502 mutex_lock(&inode->i_mutex); 6503 first_index = start >> PAGE_CACHE_SHIFT; 6504 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; 6505 6506 /* make sure the dirty trick played by the caller work */ 6507 ret = invalidate_inode_pages2_range(inode->i_mapping, 6508 first_index, last_index); 6509 if (ret) 6510 goto out_unlock; 6511 6512 file_ra_state_init(ra, inode->i_mapping); 6513 6514 for (i = first_index ; i <= last_index; i++) { 6515 if (total_read % ra->ra_pages == 0) { 6516 btrfs_force_ra(inode->i_mapping, ra, NULL, i, 6517 calc_ra(i, last_index, ra->ra_pages)); 6518 } 6519 total_read++; 6520 again: 6521 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) 6522 BUG_ON(1); 6523 page = grab_cache_page(inode->i_mapping, i); 6524 if (!page) { 6525 ret = -ENOMEM; 6526 goto out_unlock; 6527 } 6528 if (!PageUptodate(page)) { 6529 btrfs_readpage(NULL, page); 6530 lock_page(page); 6531 if (!PageUptodate(page)) { 6532 unlock_page(page); 6533 page_cache_release(page); 6534 ret = -EIO; 6535 goto out_unlock; 6536 } 6537 } 6538 wait_on_page_writeback(page); 6539 6540 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 6541 page_end = page_start + PAGE_CACHE_SIZE - 1; 6542 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 6543 6544 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6545 if (ordered) { 6546 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 6547 unlock_page(page); 6548 page_cache_release(page); 6549 btrfs_start_ordered_extent(inode, ordered, 1); 6550 btrfs_put_ordered_extent(ordered); 6551 goto again; 6552 } 6553 set_page_extent_mapped(page); 6554 6555 if (i == first_index) 6556 set_extent_bits(io_tree, page_start, page_end, 6557 EXTENT_BOUNDARY, GFP_NOFS); 6558 btrfs_set_extent_delalloc(inode, page_start, page_end); 6559 6560 set_page_dirty(page); 6561 total_dirty++; 6562 6563 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 6564 unlock_page(page); 6565 page_cache_release(page); 6566 } 6567 6568 out_unlock: 6569 kfree(ra); 6570 mutex_unlock(&inode->i_mutex); 6571 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); 6572 return ret; 6573 } 6574 6575 static noinline int relocate_data_extent(struct inode *reloc_inode, 6576 struct btrfs_key *extent_key, 6577 u64 offset) 6578 { 6579 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 6580 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; 6581 struct extent_map *em; 6582 u64 start = extent_key->objectid - offset; 6583 u64 end = start + extent_key->offset - 1; 6584 6585 em = alloc_extent_map(GFP_NOFS); 6586 BUG_ON(!em); 6587 6588 em->start = start; 6589 em->len = extent_key->offset; 6590 em->block_len = extent_key->offset; 6591 em->block_start = extent_key->objectid; 6592 em->bdev = root->fs_info->fs_devices->latest_bdev; 6593 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6594 6595 /* setup extent map to cheat btrfs_readpage */ 6596 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 6597 while (1) { 6598 int ret; 6599 write_lock(&em_tree->lock); 6600 ret = add_extent_mapping(em_tree, em); 6601 write_unlock(&em_tree->lock); 6602 if (ret != -EEXIST) { 6603 free_extent_map(em); 6604 break; 6605 } 6606 btrfs_drop_extent_cache(reloc_inode, start, end, 0); 6607 } 6608 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 6609 6610 return relocate_inode_pages(reloc_inode, start, extent_key->offset); 6611 } 6612 6613 struct btrfs_ref_path { 6614 u64 extent_start; 6615 u64 nodes[BTRFS_MAX_LEVEL]; 6616 u64 root_objectid; 6617 u64 root_generation; 6618 u64 owner_objectid; 6619 u32 num_refs; 6620 int lowest_level; 6621 int current_level; 6622 int shared_level; 6623 6624 struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; 6625 u64 new_nodes[BTRFS_MAX_LEVEL]; 6626 }; 6627 6628 struct disk_extent { 6629 u64 ram_bytes; 6630 u64 disk_bytenr; 6631 u64 disk_num_bytes; 6632 u64 offset; 6633 u64 num_bytes; 6634 u8 compression; 6635 u8 encryption; 6636 u16 other_encoding; 6637 }; 6638 6639 static int is_cowonly_root(u64 root_objectid) 6640 { 6641 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 6642 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 6643 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 6644 root_objectid == BTRFS_DEV_TREE_OBJECTID || 6645 root_objectid == BTRFS_TREE_LOG_OBJECTID || 6646 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 6647 return 1; 6648 return 0; 6649 } 6650 6651 static noinline int __next_ref_path(struct btrfs_trans_handle *trans, 6652 struct btrfs_root *extent_root, 6653 struct btrfs_ref_path *ref_path, 6654 int first_time) 6655 { 6656 struct extent_buffer *leaf; 6657 struct btrfs_path *path; 6658 struct btrfs_extent_ref *ref; 6659 struct btrfs_key key; 6660 struct btrfs_key found_key; 6661 u64 bytenr; 6662 u32 nritems; 6663 int level; 6664 int ret = 1; 6665 6666 path = btrfs_alloc_path(); 6667 if (!path) 6668 return -ENOMEM; 6669 6670 if (first_time) { 6671 ref_path->lowest_level = -1; 6672 ref_path->current_level = -1; 6673 ref_path->shared_level = -1; 6674 goto walk_up; 6675 } 6676 walk_down: 6677 level = ref_path->current_level - 1; 6678 while (level >= -1) { 6679 u64 parent; 6680 if (level < ref_path->lowest_level) 6681 break; 6682 6683 if (level >= 0) 6684 bytenr = ref_path->nodes[level]; 6685 else 6686 bytenr = ref_path->extent_start; 6687 BUG_ON(bytenr == 0); 6688 6689 parent = ref_path->nodes[level + 1]; 6690 ref_path->nodes[level + 1] = 0; 6691 ref_path->current_level = level; 6692 BUG_ON(parent == 0); 6693 6694 key.objectid = bytenr; 6695 key.offset = parent + 1; 6696 key.type = BTRFS_EXTENT_REF_KEY; 6697 6698 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 6699 if (ret < 0) 6700 goto out; 6701 BUG_ON(ret == 0); 6702 6703 leaf = path->nodes[0]; 6704 nritems = btrfs_header_nritems(leaf); 6705 if (path->slots[0] >= nritems) { 6706 ret = btrfs_next_leaf(extent_root, path); 6707 if (ret < 0) 6708 goto out; 6709 if (ret > 0) 6710 goto next; 6711 leaf = path->nodes[0]; 6712 } 6713 6714 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6715 if (found_key.objectid == bytenr && 6716 found_key.type == BTRFS_EXTENT_REF_KEY) { 6717 if (level < ref_path->shared_level) 6718 ref_path->shared_level = level; 6719 goto found; 6720 } 6721 next: 6722 level--; 6723 btrfs_release_path(extent_root, path); 6724 cond_resched(); 6725 } 6726 /* reached lowest level */ 6727 ret = 1; 6728 goto out; 6729 walk_up: 6730 level = ref_path->current_level; 6731 while (level < BTRFS_MAX_LEVEL - 1) { 6732 u64 ref_objectid; 6733 6734 if (level >= 0) 6735 bytenr = ref_path->nodes[level]; 6736 else 6737 bytenr = ref_path->extent_start; 6738 6739 BUG_ON(bytenr == 0); 6740 6741 key.objectid = bytenr; 6742 key.offset = 0; 6743 key.type = BTRFS_EXTENT_REF_KEY; 6744 6745 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 6746 if (ret < 0) 6747 goto out; 6748 6749 leaf = path->nodes[0]; 6750 nritems = btrfs_header_nritems(leaf); 6751 if (path->slots[0] >= nritems) { 6752 ret = btrfs_next_leaf(extent_root, path); 6753 if (ret < 0) 6754 goto out; 6755 if (ret > 0) { 6756 /* the extent was freed by someone */ 6757 if (ref_path->lowest_level == level) 6758 goto out; 6759 btrfs_release_path(extent_root, path); 6760 goto walk_down; 6761 } 6762 leaf = path->nodes[0]; 6763 } 6764 6765 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6766 if (found_key.objectid != bytenr || 6767 found_key.type != BTRFS_EXTENT_REF_KEY) { 6768 /* the extent was freed by someone */ 6769 if (ref_path->lowest_level == level) { 6770 ret = 1; 6771 goto out; 6772 } 6773 btrfs_release_path(extent_root, path); 6774 goto walk_down; 6775 } 6776 found: 6777 ref = btrfs_item_ptr(leaf, path->slots[0], 6778 struct btrfs_extent_ref); 6779 ref_objectid = btrfs_ref_objectid(leaf, ref); 6780 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { 6781 if (first_time) { 6782 level = (int)ref_objectid; 6783 BUG_ON(level >= BTRFS_MAX_LEVEL); 6784 ref_path->lowest_level = level; 6785 ref_path->current_level = level; 6786 ref_path->nodes[level] = bytenr; 6787 } else { 6788 WARN_ON(ref_objectid != level); 6789 } 6790 } else { 6791 WARN_ON(level != -1); 6792 } 6793 first_time = 0; 6794 6795 if (ref_path->lowest_level == level) { 6796 ref_path->owner_objectid = ref_objectid; 6797 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); 6798 } 6799 6800 /* 6801 * the block is tree root or the block isn't in reference 6802 * counted tree. 6803 */ 6804 if (found_key.objectid == found_key.offset || 6805 is_cowonly_root(btrfs_ref_root(leaf, ref))) { 6806 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 6807 ref_path->root_generation = 6808 btrfs_ref_generation(leaf, ref); 6809 if (level < 0) { 6810 /* special reference from the tree log */ 6811 ref_path->nodes[0] = found_key.offset; 6812 ref_path->current_level = 0; 6813 } 6814 ret = 0; 6815 goto out; 6816 } 6817 6818 level++; 6819 BUG_ON(ref_path->nodes[level] != 0); 6820 ref_path->nodes[level] = found_key.offset; 6821 ref_path->current_level = level; 6822 6823 /* 6824 * the reference was created in the running transaction, 6825 * no need to continue walking up. 6826 */ 6827 if (btrfs_ref_generation(leaf, ref) == trans->transid) { 6828 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 6829 ref_path->root_generation = 6830 btrfs_ref_generation(leaf, ref); 6831 ret = 0; 6832 goto out; 6833 } 6834 6835 btrfs_release_path(extent_root, path); 6836 cond_resched(); 6837 } 6838 /* reached max tree level, but no tree root found. */ 6839 BUG(); 6840 out: 6841 btrfs_free_path(path); 6842 return ret; 6843 } 6844 6845 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, 6846 struct btrfs_root *extent_root, 6847 struct btrfs_ref_path *ref_path, 6848 u64 extent_start) 6849 { 6850 memset(ref_path, 0, sizeof(*ref_path)); 6851 ref_path->extent_start = extent_start; 6852 6853 return __next_ref_path(trans, extent_root, ref_path, 1); 6854 } 6855 6856 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, 6857 struct btrfs_root *extent_root, 6858 struct btrfs_ref_path *ref_path) 6859 { 6860 return __next_ref_path(trans, extent_root, ref_path, 0); 6861 } 6862 6863 static noinline int get_new_locations(struct inode *reloc_inode, 6864 struct btrfs_key *extent_key, 6865 u64 offset, int no_fragment, 6866 struct disk_extent **extents, 6867 int *nr_extents) 6868 { 6869 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 6870 struct btrfs_path *path; 6871 struct btrfs_file_extent_item *fi; 6872 struct extent_buffer *leaf; 6873 struct disk_extent *exts = *extents; 6874 struct btrfs_key found_key; 6875 u64 cur_pos; 6876 u64 last_byte; 6877 u32 nritems; 6878 int nr = 0; 6879 int max = *nr_extents; 6880 int ret; 6881 6882 WARN_ON(!no_fragment && *extents); 6883 if (!exts) { 6884 max = 1; 6885 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); 6886 if (!exts) 6887 return -ENOMEM; 6888 } 6889 6890 path = btrfs_alloc_path(); 6891 BUG_ON(!path); 6892 6893 cur_pos = extent_key->objectid - offset; 6894 last_byte = extent_key->objectid + extent_key->offset; 6895 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, 6896 cur_pos, 0); 6897 if (ret < 0) 6898 goto out; 6899 if (ret > 0) { 6900 ret = -ENOENT; 6901 goto out; 6902 } 6903 6904 while (1) { 6905 leaf = path->nodes[0]; 6906 nritems = btrfs_header_nritems(leaf); 6907 if (path->slots[0] >= nritems) { 6908 ret = btrfs_next_leaf(root, path); 6909 if (ret < 0) 6910 goto out; 6911 if (ret > 0) 6912 break; 6913 leaf = path->nodes[0]; 6914 } 6915 6916 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6917 if (found_key.offset != cur_pos || 6918 found_key.type != BTRFS_EXTENT_DATA_KEY || 6919 found_key.objectid != reloc_inode->i_ino) 6920 break; 6921 6922 fi = btrfs_item_ptr(leaf, path->slots[0], 6923 struct btrfs_file_extent_item); 6924 if (btrfs_file_extent_type(leaf, fi) != 6925 BTRFS_FILE_EXTENT_REG || 6926 btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 6927 break; 6928 6929 if (nr == max) { 6930 struct disk_extent *old = exts; 6931 max *= 2; 6932 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); 6933 memcpy(exts, old, sizeof(*exts) * nr); 6934 if (old != *extents) 6935 kfree(old); 6936 } 6937 6938 exts[nr].disk_bytenr = 6939 btrfs_file_extent_disk_bytenr(leaf, fi); 6940 exts[nr].disk_num_bytes = 6941 btrfs_file_extent_disk_num_bytes(leaf, fi); 6942 exts[nr].offset = btrfs_file_extent_offset(leaf, fi); 6943 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 6944 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6945 exts[nr].compression = btrfs_file_extent_compression(leaf, fi); 6946 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); 6947 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, 6948 fi); 6949 BUG_ON(exts[nr].offset > 0); 6950 BUG_ON(exts[nr].compression || exts[nr].encryption); 6951 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); 6952 6953 cur_pos += exts[nr].num_bytes; 6954 nr++; 6955 6956 if (cur_pos + offset >= last_byte) 6957 break; 6958 6959 if (no_fragment) { 6960 ret = 1; 6961 goto out; 6962 } 6963 path->slots[0]++; 6964 } 6965 6966 BUG_ON(cur_pos + offset > last_byte); 6967 if (cur_pos + offset < last_byte) { 6968 ret = -ENOENT; 6969 goto out; 6970 } 6971 ret = 0; 6972 out: 6973 btrfs_free_path(path); 6974 if (ret) { 6975 if (exts != *extents) 6976 kfree(exts); 6977 } else { 6978 *extents = exts; 6979 *nr_extents = nr; 6980 } 6981 return ret; 6982 } 6983 6984 static noinline int replace_one_extent(struct btrfs_trans_handle *trans, 6985 struct btrfs_root *root, 6986 struct btrfs_path *path, 6987 struct btrfs_key *extent_key, 6988 struct btrfs_key *leaf_key, 6989 struct btrfs_ref_path *ref_path, 6990 struct disk_extent *new_extents, 6991 int nr_extents) 6992 { 6993 struct extent_buffer *leaf; 6994 struct btrfs_file_extent_item *fi; 6995 struct inode *inode = NULL; 6996 struct btrfs_key key; 6997 u64 lock_start = 0; 6998 u64 lock_end = 0; 6999 u64 num_bytes; 7000 u64 ext_offset; 7001 u64 search_end = (u64)-1; 7002 u32 nritems; 7003 int nr_scaned = 0; 7004 int extent_locked = 0; 7005 int extent_type; 7006 int ret; 7007 7008 memcpy(&key, leaf_key, sizeof(key)); 7009 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 7010 if (key.objectid < ref_path->owner_objectid || 7011 (key.objectid == ref_path->owner_objectid && 7012 key.type < BTRFS_EXTENT_DATA_KEY)) { 7013 key.objectid = ref_path->owner_objectid; 7014 key.type = BTRFS_EXTENT_DATA_KEY; 7015 key.offset = 0; 7016 } 7017 } 7018 7019 while (1) { 7020 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 7021 if (ret < 0) 7022 goto out; 7023 7024 leaf = path->nodes[0]; 7025 nritems = btrfs_header_nritems(leaf); 7026 next: 7027 if (extent_locked && ret > 0) { 7028 /* 7029 * the file extent item was modified by someone 7030 * before the extent got locked. 7031 */ 7032 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7033 lock_end, GFP_NOFS); 7034 extent_locked = 0; 7035 } 7036 7037 if (path->slots[0] >= nritems) { 7038 if (++nr_scaned > 2) 7039 break; 7040 7041 BUG_ON(extent_locked); 7042 ret = btrfs_next_leaf(root, path); 7043 if (ret < 0) 7044 goto out; 7045 if (ret > 0) 7046 break; 7047 leaf = path->nodes[0]; 7048 nritems = btrfs_header_nritems(leaf); 7049 } 7050 7051 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7052 7053 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 7054 if ((key.objectid > ref_path->owner_objectid) || 7055 (key.objectid == ref_path->owner_objectid && 7056 key.type > BTRFS_EXTENT_DATA_KEY) || 7057 key.offset >= search_end) 7058 break; 7059 } 7060 7061 if (inode && key.objectid != inode->i_ino) { 7062 BUG_ON(extent_locked); 7063 btrfs_release_path(root, path); 7064 mutex_unlock(&inode->i_mutex); 7065 iput(inode); 7066 inode = NULL; 7067 continue; 7068 } 7069 7070 if (key.type != BTRFS_EXTENT_DATA_KEY) { 7071 path->slots[0]++; 7072 ret = 1; 7073 goto next; 7074 } 7075 fi = btrfs_item_ptr(leaf, path->slots[0], 7076 struct btrfs_file_extent_item); 7077 extent_type = btrfs_file_extent_type(leaf, fi); 7078 if ((extent_type != BTRFS_FILE_EXTENT_REG && 7079 extent_type != BTRFS_FILE_EXTENT_PREALLOC) || 7080 (btrfs_file_extent_disk_bytenr(leaf, fi) != 7081 extent_key->objectid)) { 7082 path->slots[0]++; 7083 ret = 1; 7084 goto next; 7085 } 7086 7087 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 7088 ext_offset = btrfs_file_extent_offset(leaf, fi); 7089 7090 if (search_end == (u64)-1) { 7091 search_end = key.offset - ext_offset + 7092 btrfs_file_extent_ram_bytes(leaf, fi); 7093 } 7094 7095 if (!extent_locked) { 7096 lock_start = key.offset; 7097 lock_end = lock_start + num_bytes - 1; 7098 } else { 7099 if (lock_start > key.offset || 7100 lock_end + 1 < key.offset + num_bytes) { 7101 unlock_extent(&BTRFS_I(inode)->io_tree, 7102 lock_start, lock_end, GFP_NOFS); 7103 extent_locked = 0; 7104 } 7105 } 7106 7107 if (!inode) { 7108 btrfs_release_path(root, path); 7109 7110 inode = btrfs_iget_locked(root->fs_info->sb, 7111 key.objectid, root); 7112 if (inode->i_state & I_NEW) { 7113 BTRFS_I(inode)->root = root; 7114 BTRFS_I(inode)->location.objectid = 7115 key.objectid; 7116 BTRFS_I(inode)->location.type = 7117 BTRFS_INODE_ITEM_KEY; 7118 BTRFS_I(inode)->location.offset = 0; 7119 btrfs_read_locked_inode(inode); 7120 unlock_new_inode(inode); 7121 } 7122 /* 7123 * some code call btrfs_commit_transaction while 7124 * holding the i_mutex, so we can't use mutex_lock 7125 * here. 7126 */ 7127 if (is_bad_inode(inode) || 7128 !mutex_trylock(&inode->i_mutex)) { 7129 iput(inode); 7130 inode = NULL; 7131 key.offset = (u64)-1; 7132 goto skip; 7133 } 7134 } 7135 7136 if (!extent_locked) { 7137 struct btrfs_ordered_extent *ordered; 7138 7139 btrfs_release_path(root, path); 7140 7141 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7142 lock_end, GFP_NOFS); 7143 ordered = btrfs_lookup_first_ordered_extent(inode, 7144 lock_end); 7145 if (ordered && 7146 ordered->file_offset <= lock_end && 7147 ordered->file_offset + ordered->len > lock_start) { 7148 unlock_extent(&BTRFS_I(inode)->io_tree, 7149 lock_start, lock_end, GFP_NOFS); 7150 btrfs_start_ordered_extent(inode, ordered, 1); 7151 btrfs_put_ordered_extent(ordered); 7152 key.offset += num_bytes; 7153 goto skip; 7154 } 7155 if (ordered) 7156 btrfs_put_ordered_extent(ordered); 7157 7158 extent_locked = 1; 7159 continue; 7160 } 7161 7162 if (nr_extents == 1) { 7163 /* update extent pointer in place */ 7164 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7165 new_extents[0].disk_bytenr); 7166 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7167 new_extents[0].disk_num_bytes); 7168 btrfs_mark_buffer_dirty(leaf); 7169 7170 btrfs_drop_extent_cache(inode, key.offset, 7171 key.offset + num_bytes - 1, 0); 7172 7173 ret = btrfs_inc_extent_ref(trans, root, 7174 new_extents[0].disk_bytenr, 7175 new_extents[0].disk_num_bytes, 7176 leaf->start, 7177 root->root_key.objectid, 7178 trans->transid, 7179 key.objectid); 7180 BUG_ON(ret); 7181 7182 ret = btrfs_free_extent(trans, root, 7183 extent_key->objectid, 7184 extent_key->offset, 7185 leaf->start, 7186 btrfs_header_owner(leaf), 7187 btrfs_header_generation(leaf), 7188 key.objectid, 0); 7189 BUG_ON(ret); 7190 7191 btrfs_release_path(root, path); 7192 key.offset += num_bytes; 7193 } else { 7194 BUG_ON(1); 7195 #if 0 7196 u64 alloc_hint; 7197 u64 extent_len; 7198 int i; 7199 /* 7200 * drop old extent pointer at first, then insert the 7201 * new pointers one bye one 7202 */ 7203 btrfs_release_path(root, path); 7204 ret = btrfs_drop_extents(trans, root, inode, key.offset, 7205 key.offset + num_bytes, 7206 key.offset, &alloc_hint); 7207 BUG_ON(ret); 7208 7209 for (i = 0; i < nr_extents; i++) { 7210 if (ext_offset >= new_extents[i].num_bytes) { 7211 ext_offset -= new_extents[i].num_bytes; 7212 continue; 7213 } 7214 extent_len = min(new_extents[i].num_bytes - 7215 ext_offset, num_bytes); 7216 7217 ret = btrfs_insert_empty_item(trans, root, 7218 path, &key, 7219 sizeof(*fi)); 7220 BUG_ON(ret); 7221 7222 leaf = path->nodes[0]; 7223 fi = btrfs_item_ptr(leaf, path->slots[0], 7224 struct btrfs_file_extent_item); 7225 btrfs_set_file_extent_generation(leaf, fi, 7226 trans->transid); 7227 btrfs_set_file_extent_type(leaf, fi, 7228 BTRFS_FILE_EXTENT_REG); 7229 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7230 new_extents[i].disk_bytenr); 7231 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7232 new_extents[i].disk_num_bytes); 7233 btrfs_set_file_extent_ram_bytes(leaf, fi, 7234 new_extents[i].ram_bytes); 7235 7236 btrfs_set_file_extent_compression(leaf, fi, 7237 new_extents[i].compression); 7238 btrfs_set_file_extent_encryption(leaf, fi, 7239 new_extents[i].encryption); 7240 btrfs_set_file_extent_other_encoding(leaf, fi, 7241 new_extents[i].other_encoding); 7242 7243 btrfs_set_file_extent_num_bytes(leaf, fi, 7244 extent_len); 7245 ext_offset += new_extents[i].offset; 7246 btrfs_set_file_extent_offset(leaf, fi, 7247 ext_offset); 7248 btrfs_mark_buffer_dirty(leaf); 7249 7250 btrfs_drop_extent_cache(inode, key.offset, 7251 key.offset + extent_len - 1, 0); 7252 7253 ret = btrfs_inc_extent_ref(trans, root, 7254 new_extents[i].disk_bytenr, 7255 new_extents[i].disk_num_bytes, 7256 leaf->start, 7257 root->root_key.objectid, 7258 trans->transid, key.objectid); 7259 BUG_ON(ret); 7260 btrfs_release_path(root, path); 7261 7262 inode_add_bytes(inode, extent_len); 7263 7264 ext_offset = 0; 7265 num_bytes -= extent_len; 7266 key.offset += extent_len; 7267 7268 if (num_bytes == 0) 7269 break; 7270 } 7271 BUG_ON(i >= nr_extents); 7272 #endif 7273 } 7274 7275 if (extent_locked) { 7276 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7277 lock_end, GFP_NOFS); 7278 extent_locked = 0; 7279 } 7280 skip: 7281 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && 7282 key.offset >= search_end) 7283 break; 7284 7285 cond_resched(); 7286 } 7287 ret = 0; 7288 out: 7289 btrfs_release_path(root, path); 7290 if (inode) { 7291 mutex_unlock(&inode->i_mutex); 7292 if (extent_locked) { 7293 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7294 lock_end, GFP_NOFS); 7295 } 7296 iput(inode); 7297 } 7298 return ret; 7299 } 7300 7301 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, 7302 struct btrfs_root *root, 7303 struct extent_buffer *buf, u64 orig_start) 7304 { 7305 int level; 7306 int ret; 7307 7308 BUG_ON(btrfs_header_generation(buf) != trans->transid); 7309 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7310 7311 level = btrfs_header_level(buf); 7312 if (level == 0) { 7313 struct btrfs_leaf_ref *ref; 7314 struct btrfs_leaf_ref *orig_ref; 7315 7316 orig_ref = btrfs_lookup_leaf_ref(root, orig_start); 7317 if (!orig_ref) 7318 return -ENOENT; 7319 7320 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); 7321 if (!ref) { 7322 btrfs_free_leaf_ref(root, orig_ref); 7323 return -ENOMEM; 7324 } 7325 7326 ref->nritems = orig_ref->nritems; 7327 memcpy(ref->extents, orig_ref->extents, 7328 sizeof(ref->extents[0]) * ref->nritems); 7329 7330 btrfs_free_leaf_ref(root, orig_ref); 7331 7332 ref->root_gen = trans->transid; 7333 ref->bytenr = buf->start; 7334 ref->owner = btrfs_header_owner(buf); 7335 ref->generation = btrfs_header_generation(buf); 7336 7337 ret = btrfs_add_leaf_ref(root, ref, 0); 7338 WARN_ON(ret); 7339 btrfs_free_leaf_ref(root, ref); 7340 } 7341 return 0; 7342 } 7343 7344 static noinline int invalidate_extent_cache(struct btrfs_root *root, 7345 struct extent_buffer *leaf, 7346 struct btrfs_block_group_cache *group, 7347 struct btrfs_root *target_root) 7348 { 7349 struct btrfs_key key; 7350 struct inode *inode = NULL; 7351 struct btrfs_file_extent_item *fi; 7352 struct extent_state *cached_state = NULL; 7353 u64 num_bytes; 7354 u64 skip_objectid = 0; 7355 u32 nritems; 7356 u32 i; 7357 7358 nritems = btrfs_header_nritems(leaf); 7359 for (i = 0; i < nritems; i++) { 7360 btrfs_item_key_to_cpu(leaf, &key, i); 7361 if (key.objectid == skip_objectid || 7362 key.type != BTRFS_EXTENT_DATA_KEY) 7363 continue; 7364 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 7365 if (btrfs_file_extent_type(leaf, fi) == 7366 BTRFS_FILE_EXTENT_INLINE) 7367 continue; 7368 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 7369 continue; 7370 if (!inode || inode->i_ino != key.objectid) { 7371 iput(inode); 7372 inode = btrfs_ilookup(target_root->fs_info->sb, 7373 key.objectid, target_root, 1); 7374 } 7375 if (!inode) { 7376 skip_objectid = key.objectid; 7377 continue; 7378 } 7379 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 7380 7381 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset, 7382 key.offset + num_bytes - 1, 0, &cached_state, 7383 GFP_NOFS); 7384 btrfs_drop_extent_cache(inode, key.offset, 7385 key.offset + num_bytes - 1, 1); 7386 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset, 7387 key.offset + num_bytes - 1, &cached_state, 7388 GFP_NOFS); 7389 cond_resched(); 7390 } 7391 iput(inode); 7392 return 0; 7393 } 7394 7395 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, 7396 struct btrfs_root *root, 7397 struct extent_buffer *leaf, 7398 struct btrfs_block_group_cache *group, 7399 struct inode *reloc_inode) 7400 { 7401 struct btrfs_key key; 7402 struct btrfs_key extent_key; 7403 struct btrfs_file_extent_item *fi; 7404 struct btrfs_leaf_ref *ref; 7405 struct disk_extent *new_extent; 7406 u64 bytenr; 7407 u64 num_bytes; 7408 u32 nritems; 7409 u32 i; 7410 int ext_index; 7411 int nr_extent; 7412 int ret; 7413 7414 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); 7415 BUG_ON(!new_extent); 7416 7417 ref = btrfs_lookup_leaf_ref(root, leaf->start); 7418 BUG_ON(!ref); 7419 7420 ext_index = -1; 7421 nritems = btrfs_header_nritems(leaf); 7422 for (i = 0; i < nritems; i++) { 7423 btrfs_item_key_to_cpu(leaf, &key, i); 7424 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 7425 continue; 7426 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 7427 if (btrfs_file_extent_type(leaf, fi) == 7428 BTRFS_FILE_EXTENT_INLINE) 7429 continue; 7430 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7431 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 7432 if (bytenr == 0) 7433 continue; 7434 7435 ext_index++; 7436 if (bytenr >= group->key.objectid + group->key.offset || 7437 bytenr + num_bytes <= group->key.objectid) 7438 continue; 7439 7440 extent_key.objectid = bytenr; 7441 extent_key.offset = num_bytes; 7442 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 7443 nr_extent = 1; 7444 ret = get_new_locations(reloc_inode, &extent_key, 7445 group->key.objectid, 1, 7446 &new_extent, &nr_extent); 7447 if (ret > 0) 7448 continue; 7449 BUG_ON(ret < 0); 7450 7451 BUG_ON(ref->extents[ext_index].bytenr != bytenr); 7452 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); 7453 ref->extents[ext_index].bytenr = new_extent->disk_bytenr; 7454 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; 7455 7456 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7457 new_extent->disk_bytenr); 7458 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7459 new_extent->disk_num_bytes); 7460 btrfs_mark_buffer_dirty(leaf); 7461 7462 ret = btrfs_inc_extent_ref(trans, root, 7463 new_extent->disk_bytenr, 7464 new_extent->disk_num_bytes, 7465 leaf->start, 7466 root->root_key.objectid, 7467 trans->transid, key.objectid); 7468 BUG_ON(ret); 7469 7470 ret = btrfs_free_extent(trans, root, 7471 bytenr, num_bytes, leaf->start, 7472 btrfs_header_owner(leaf), 7473 btrfs_header_generation(leaf), 7474 key.objectid, 0); 7475 BUG_ON(ret); 7476 cond_resched(); 7477 } 7478 kfree(new_extent); 7479 BUG_ON(ext_index + 1 != ref->nritems); 7480 btrfs_free_leaf_ref(root, ref); 7481 return 0; 7482 } 7483 7484 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, 7485 struct btrfs_root *root) 7486 { 7487 struct btrfs_root *reloc_root; 7488 int ret; 7489 7490 if (root->reloc_root) { 7491 reloc_root = root->reloc_root; 7492 root->reloc_root = NULL; 7493 list_add(&reloc_root->dead_list, 7494 &root->fs_info->dead_reloc_roots); 7495 7496 btrfs_set_root_bytenr(&reloc_root->root_item, 7497 reloc_root->node->start); 7498 btrfs_set_root_level(&root->root_item, 7499 btrfs_header_level(reloc_root->node)); 7500 memset(&reloc_root->root_item.drop_progress, 0, 7501 sizeof(struct btrfs_disk_key)); 7502 reloc_root->root_item.drop_level = 0; 7503 7504 ret = btrfs_update_root(trans, root->fs_info->tree_root, 7505 &reloc_root->root_key, 7506 &reloc_root->root_item); 7507 BUG_ON(ret); 7508 } 7509 return 0; 7510 } 7511 7512 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) 7513 { 7514 struct btrfs_trans_handle *trans; 7515 struct btrfs_root *reloc_root; 7516 struct btrfs_root *prev_root = NULL; 7517 struct list_head dead_roots; 7518 int ret; 7519 unsigned long nr; 7520 7521 INIT_LIST_HEAD(&dead_roots); 7522 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); 7523 7524 while (!list_empty(&dead_roots)) { 7525 reloc_root = list_entry(dead_roots.prev, 7526 struct btrfs_root, dead_list); 7527 list_del_init(&reloc_root->dead_list); 7528 7529 BUG_ON(reloc_root->commit_root != NULL); 7530 while (1) { 7531 trans = btrfs_join_transaction(root, 1); 7532 BUG_ON(IS_ERR(trans)); 7533 7534 mutex_lock(&root->fs_info->drop_mutex); 7535 ret = btrfs_drop_snapshot(trans, reloc_root); 7536 if (ret != -EAGAIN) 7537 break; 7538 mutex_unlock(&root->fs_info->drop_mutex); 7539 7540 nr = trans->blocks_used; 7541 ret = btrfs_end_transaction(trans, root); 7542 BUG_ON(ret); 7543 btrfs_btree_balance_dirty(root, nr); 7544 } 7545 7546 free_extent_buffer(reloc_root->node); 7547 7548 ret = btrfs_del_root(trans, root->fs_info->tree_root, 7549 &reloc_root->root_key); 7550 BUG_ON(ret); 7551 mutex_unlock(&root->fs_info->drop_mutex); 7552 7553 nr = trans->blocks_used; 7554 ret = btrfs_end_transaction(trans, root); 7555 BUG_ON(ret); 7556 btrfs_btree_balance_dirty(root, nr); 7557 7558 kfree(prev_root); 7559 prev_root = reloc_root; 7560 } 7561 if (prev_root) { 7562 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); 7563 kfree(prev_root); 7564 } 7565 return 0; 7566 } 7567 7568 int btrfs_add_dead_reloc_root(struct btrfs_root *root) 7569 { 7570 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); 7571 return 0; 7572 } 7573 7574 int btrfs_cleanup_reloc_trees(struct btrfs_root *root) 7575 { 7576 struct btrfs_root *reloc_root; 7577 struct btrfs_trans_handle *trans; 7578 struct btrfs_key location; 7579 int found; 7580 int ret; 7581 7582 mutex_lock(&root->fs_info->tree_reloc_mutex); 7583 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); 7584 BUG_ON(ret); 7585 found = !list_empty(&root->fs_info->dead_reloc_roots); 7586 mutex_unlock(&root->fs_info->tree_reloc_mutex); 7587 7588 if (found) { 7589 trans = btrfs_start_transaction(root, 1); 7590 BUG_ON(IS_ERR(trans)); 7591 ret = btrfs_commit_transaction(trans, root); 7592 BUG_ON(ret); 7593 } 7594 7595 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 7596 location.offset = (u64)-1; 7597 location.type = BTRFS_ROOT_ITEM_KEY; 7598 7599 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 7600 BUG_ON(!reloc_root); 7601 btrfs_orphan_cleanup(reloc_root); 7602 return 0; 7603 } 7604 7605 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, 7606 struct btrfs_root *root) 7607 { 7608 struct btrfs_root *reloc_root; 7609 struct extent_buffer *eb; 7610 struct btrfs_root_item *root_item; 7611 struct btrfs_key root_key; 7612 int ret; 7613 7614 BUG_ON(!root->ref_cows); 7615 if (root->reloc_root) 7616 return 0; 7617 7618 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 7619 BUG_ON(!root_item); 7620 7621 ret = btrfs_copy_root(trans, root, root->commit_root, 7622 &eb, BTRFS_TREE_RELOC_OBJECTID); 7623 BUG_ON(ret); 7624 7625 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 7626 root_key.offset = root->root_key.objectid; 7627 root_key.type = BTRFS_ROOT_ITEM_KEY; 7628 7629 memcpy(root_item, &root->root_item, sizeof(root_item)); 7630 btrfs_set_root_refs(root_item, 0); 7631 btrfs_set_root_bytenr(root_item, eb->start); 7632 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 7633 btrfs_set_root_generation(root_item, trans->transid); 7634 7635 btrfs_tree_unlock(eb); 7636 free_extent_buffer(eb); 7637 7638 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 7639 &root_key, root_item); 7640 BUG_ON(ret); 7641 kfree(root_item); 7642 7643 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 7644 &root_key); 7645 BUG_ON(!reloc_root); 7646 reloc_root->last_trans = trans->transid; 7647 reloc_root->commit_root = NULL; 7648 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; 7649 7650 root->reloc_root = reloc_root; 7651 return 0; 7652 } 7653 7654 /* 7655 * Core function of space balance. 7656 * 7657 * The idea is using reloc trees to relocate tree blocks in reference 7658 * counted roots. There is one reloc tree for each subvol, and all 7659 * reloc trees share same root key objectid. Reloc trees are snapshots 7660 * of the latest committed roots of subvols (root->commit_root). 7661 * 7662 * To relocate a tree block referenced by a subvol, there are two steps. 7663 * COW the block through subvol's reloc tree, then update block pointer 7664 * in the subvol to point to the new block. Since all reloc trees share 7665 * same root key objectid, doing special handing for tree blocks owned 7666 * by them is easy. Once a tree block has been COWed in one reloc tree, 7667 * we can use the resulting new block directly when the same block is 7668 * required to COW again through other reloc trees. By this way, relocated 7669 * tree blocks are shared between reloc trees, so they are also shared 7670 * between subvols. 7671 */ 7672 static noinline int relocate_one_path(struct btrfs_trans_handle *trans, 7673 struct btrfs_root *root, 7674 struct btrfs_path *path, 7675 struct btrfs_key *first_key, 7676 struct btrfs_ref_path *ref_path, 7677 struct btrfs_block_group_cache *group, 7678 struct inode *reloc_inode) 7679 { 7680 struct btrfs_root *reloc_root; 7681 struct extent_buffer *eb = NULL; 7682 struct btrfs_key *keys; 7683 u64 *nodes; 7684 int level; 7685 int shared_level; 7686 int lowest_level = 0; 7687 int ret; 7688 7689 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 7690 lowest_level = ref_path->owner_objectid; 7691 7692 if (!root->ref_cows) { 7693 path->lowest_level = lowest_level; 7694 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); 7695 BUG_ON(ret < 0); 7696 path->lowest_level = 0; 7697 btrfs_release_path(root, path); 7698 return 0; 7699 } 7700 7701 mutex_lock(&root->fs_info->tree_reloc_mutex); 7702 ret = init_reloc_tree(trans, root); 7703 BUG_ON(ret); 7704 reloc_root = root->reloc_root; 7705 7706 shared_level = ref_path->shared_level; 7707 ref_path->shared_level = BTRFS_MAX_LEVEL - 1; 7708 7709 keys = ref_path->node_keys; 7710 nodes = ref_path->new_nodes; 7711 memset(&keys[shared_level + 1], 0, 7712 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); 7713 memset(&nodes[shared_level + 1], 0, 7714 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); 7715 7716 if (nodes[lowest_level] == 0) { 7717 path->lowest_level = lowest_level; 7718 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 7719 0, 1); 7720 BUG_ON(ret); 7721 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { 7722 eb = path->nodes[level]; 7723 if (!eb || eb == reloc_root->node) 7724 break; 7725 nodes[level] = eb->start; 7726 if (level == 0) 7727 btrfs_item_key_to_cpu(eb, &keys[level], 0); 7728 else 7729 btrfs_node_key_to_cpu(eb, &keys[level], 0); 7730 } 7731 if (nodes[0] && 7732 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7733 eb = path->nodes[0]; 7734 ret = replace_extents_in_leaf(trans, reloc_root, eb, 7735 group, reloc_inode); 7736 BUG_ON(ret); 7737 } 7738 btrfs_release_path(reloc_root, path); 7739 } else { 7740 ret = btrfs_merge_path(trans, reloc_root, keys, nodes, 7741 lowest_level); 7742 BUG_ON(ret); 7743 } 7744 7745 /* 7746 * replace tree blocks in the fs tree with tree blocks in 7747 * the reloc tree. 7748 */ 7749 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); 7750 BUG_ON(ret < 0); 7751 7752 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7753 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 7754 0, 0); 7755 BUG_ON(ret); 7756 extent_buffer_get(path->nodes[0]); 7757 eb = path->nodes[0]; 7758 btrfs_release_path(reloc_root, path); 7759 ret = invalidate_extent_cache(reloc_root, eb, group, root); 7760 BUG_ON(ret); 7761 free_extent_buffer(eb); 7762 } 7763 7764 mutex_unlock(&root->fs_info->tree_reloc_mutex); 7765 path->lowest_level = 0; 7766 return 0; 7767 } 7768 7769 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, 7770 struct btrfs_root *root, 7771 struct btrfs_path *path, 7772 struct btrfs_key *first_key, 7773 struct btrfs_ref_path *ref_path) 7774 { 7775 int ret; 7776 7777 ret = relocate_one_path(trans, root, path, first_key, 7778 ref_path, NULL, NULL); 7779 BUG_ON(ret); 7780 7781 return 0; 7782 } 7783 7784 static noinline int del_extent_zero(struct btrfs_trans_handle *trans, 7785 struct btrfs_root *extent_root, 7786 struct btrfs_path *path, 7787 struct btrfs_key *extent_key) 7788 { 7789 int ret; 7790 7791 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); 7792 if (ret) 7793 goto out; 7794 ret = btrfs_del_item(trans, extent_root, path); 7795 out: 7796 btrfs_release_path(extent_root, path); 7797 return ret; 7798 } 7799 7800 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, 7801 struct btrfs_ref_path *ref_path) 7802 { 7803 struct btrfs_key root_key; 7804 7805 root_key.objectid = ref_path->root_objectid; 7806 root_key.type = BTRFS_ROOT_ITEM_KEY; 7807 if (is_cowonly_root(ref_path->root_objectid)) 7808 root_key.offset = 0; 7809 else 7810 root_key.offset = (u64)-1; 7811 7812 return btrfs_read_fs_root_no_name(fs_info, &root_key); 7813 } 7814 7815 static noinline int relocate_one_extent(struct btrfs_root *extent_root, 7816 struct btrfs_path *path, 7817 struct btrfs_key *extent_key, 7818 struct btrfs_block_group_cache *group, 7819 struct inode *reloc_inode, int pass) 7820 { 7821 struct btrfs_trans_handle *trans; 7822 struct btrfs_root *found_root; 7823 struct btrfs_ref_path *ref_path = NULL; 7824 struct disk_extent *new_extents = NULL; 7825 int nr_extents = 0; 7826 int loops; 7827 int ret; 7828 int level; 7829 struct btrfs_key first_key; 7830 u64 prev_block = 0; 7831 7832 7833 trans = btrfs_start_transaction(extent_root, 1); 7834 BUG_ON(IS_ERR(trans)); 7835 7836 if (extent_key->objectid == 0) { 7837 ret = del_extent_zero(trans, extent_root, path, extent_key); 7838 goto out; 7839 } 7840 7841 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); 7842 if (!ref_path) { 7843 ret = -ENOMEM; 7844 goto out; 7845 } 7846 7847 for (loops = 0; ; loops++) { 7848 if (loops == 0) { 7849 ret = btrfs_first_ref_path(trans, extent_root, ref_path, 7850 extent_key->objectid); 7851 } else { 7852 ret = btrfs_next_ref_path(trans, extent_root, ref_path); 7853 } 7854 if (ret < 0) 7855 goto out; 7856 if (ret > 0) 7857 break; 7858 7859 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || 7860 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) 7861 continue; 7862 7863 found_root = read_ref_root(extent_root->fs_info, ref_path); 7864 BUG_ON(!found_root); 7865 /* 7866 * for reference counted tree, only process reference paths 7867 * rooted at the latest committed root. 7868 */ 7869 if (found_root->ref_cows && 7870 ref_path->root_generation != found_root->root_key.offset) 7871 continue; 7872 7873 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7874 if (pass == 0) { 7875 /* 7876 * copy data extents to new locations 7877 */ 7878 u64 group_start = group->key.objectid; 7879 ret = relocate_data_extent(reloc_inode, 7880 extent_key, 7881 group_start); 7882 if (ret < 0) 7883 goto out; 7884 break; 7885 } 7886 level = 0; 7887 } else { 7888 level = ref_path->owner_objectid; 7889 } 7890 7891 if (prev_block != ref_path->nodes[level]) { 7892 struct extent_buffer *eb; 7893 u64 block_start = ref_path->nodes[level]; 7894 u64 block_size = btrfs_level_size(found_root, level); 7895 7896 eb = read_tree_block(found_root, block_start, 7897 block_size, 0); 7898 btrfs_tree_lock(eb); 7899 BUG_ON(level != btrfs_header_level(eb)); 7900 7901 if (level == 0) 7902 btrfs_item_key_to_cpu(eb, &first_key, 0); 7903 else 7904 btrfs_node_key_to_cpu(eb, &first_key, 0); 7905 7906 btrfs_tree_unlock(eb); 7907 free_extent_buffer(eb); 7908 prev_block = block_start; 7909 } 7910 7911 mutex_lock(&extent_root->fs_info->trans_mutex); 7912 btrfs_record_root_in_trans(found_root); 7913 mutex_unlock(&extent_root->fs_info->trans_mutex); 7914 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7915 /* 7916 * try to update data extent references while 7917 * keeping metadata shared between snapshots. 7918 */ 7919 if (pass == 1) { 7920 ret = relocate_one_path(trans, found_root, 7921 path, &first_key, ref_path, 7922 group, reloc_inode); 7923 if (ret < 0) 7924 goto out; 7925 continue; 7926 } 7927 /* 7928 * use fallback method to process the remaining 7929 * references. 7930 */ 7931 if (!new_extents) { 7932 u64 group_start = group->key.objectid; 7933 new_extents = kmalloc(sizeof(*new_extents), 7934 GFP_NOFS); 7935 nr_extents = 1; 7936 ret = get_new_locations(reloc_inode, 7937 extent_key, 7938 group_start, 1, 7939 &new_extents, 7940 &nr_extents); 7941 if (ret) 7942 goto out; 7943 } 7944 ret = replace_one_extent(trans, found_root, 7945 path, extent_key, 7946 &first_key, ref_path, 7947 new_extents, nr_extents); 7948 } else { 7949 ret = relocate_tree_block(trans, found_root, path, 7950 &first_key, ref_path); 7951 } 7952 if (ret < 0) 7953 goto out; 7954 } 7955 ret = 0; 7956 out: 7957 btrfs_end_transaction(trans, extent_root); 7958 kfree(new_extents); 7959 kfree(ref_path); 7960 return ret; 7961 } 7962 #endif 7963 7964 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7965 { 7966 u64 num_devices; 7967 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7968 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7969 7970 /* 7971 * we add in the count of missing devices because we want 7972 * to make sure that any RAID levels on a degraded FS 7973 * continue to be honored. 7974 */ 7975 num_devices = root->fs_info->fs_devices->rw_devices + 7976 root->fs_info->fs_devices->missing_devices; 7977 7978 if (num_devices == 1) { 7979 stripped |= BTRFS_BLOCK_GROUP_DUP; 7980 stripped = flags & ~stripped; 7981 7982 /* turn raid0 into single device chunks */ 7983 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7984 return stripped; 7985 7986 /* turn mirroring into duplication */ 7987 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7988 BTRFS_BLOCK_GROUP_RAID10)) 7989 return stripped | BTRFS_BLOCK_GROUP_DUP; 7990 return flags; 7991 } else { 7992 /* they already had raid on here, just return */ 7993 if (flags & stripped) 7994 return flags; 7995 7996 stripped |= BTRFS_BLOCK_GROUP_DUP; 7997 stripped = flags & ~stripped; 7998 7999 /* switch duplicated blocks with raid1 */ 8000 if (flags & BTRFS_BLOCK_GROUP_DUP) 8001 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8002 8003 /* turn single device chunks into raid0 */ 8004 return stripped | BTRFS_BLOCK_GROUP_RAID0; 8005 } 8006 return flags; 8007 } 8008 8009 static int set_block_group_ro(struct btrfs_block_group_cache *cache) 8010 { 8011 struct btrfs_space_info *sinfo = cache->space_info; 8012 u64 num_bytes; 8013 int ret = -ENOSPC; 8014 8015 if (cache->ro) 8016 return 0; 8017 8018 spin_lock(&sinfo->lock); 8019 spin_lock(&cache->lock); 8020 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8021 cache->bytes_super - btrfs_block_group_used(&cache->item); 8022 8023 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8024 sinfo->bytes_may_use + sinfo->bytes_readonly + 8025 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) { 8026 sinfo->bytes_readonly += num_bytes; 8027 sinfo->bytes_reserved += cache->reserved_pinned; 8028 cache->reserved_pinned = 0; 8029 cache->ro = 1; 8030 ret = 0; 8031 } 8032 8033 spin_unlock(&cache->lock); 8034 spin_unlock(&sinfo->lock); 8035 return ret; 8036 } 8037 8038 int btrfs_set_block_group_ro(struct btrfs_root *root, 8039 struct btrfs_block_group_cache *cache) 8040 8041 { 8042 struct btrfs_trans_handle *trans; 8043 u64 alloc_flags; 8044 int ret; 8045 8046 BUG_ON(cache->ro); 8047 8048 trans = btrfs_join_transaction(root, 1); 8049 BUG_ON(IS_ERR(trans)); 8050 8051 alloc_flags = update_block_group_flags(root, cache->flags); 8052 if (alloc_flags != cache->flags) 8053 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 8054 8055 ret = set_block_group_ro(cache); 8056 if (!ret) 8057 goto out; 8058 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8059 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 8060 if (ret < 0) 8061 goto out; 8062 ret = set_block_group_ro(cache); 8063 out: 8064 btrfs_end_transaction(trans, root); 8065 return ret; 8066 } 8067 8068 /* 8069 * helper to account the unused space of all the readonly block group in the 8070 * list. takes mirrors into account. 8071 */ 8072 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 8073 { 8074 struct btrfs_block_group_cache *block_group; 8075 u64 free_bytes = 0; 8076 int factor; 8077 8078 list_for_each_entry(block_group, groups_list, list) { 8079 spin_lock(&block_group->lock); 8080 8081 if (!block_group->ro) { 8082 spin_unlock(&block_group->lock); 8083 continue; 8084 } 8085 8086 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8087 BTRFS_BLOCK_GROUP_RAID10 | 8088 BTRFS_BLOCK_GROUP_DUP)) 8089 factor = 2; 8090 else 8091 factor = 1; 8092 8093 free_bytes += (block_group->key.offset - 8094 btrfs_block_group_used(&block_group->item)) * 8095 factor; 8096 8097 spin_unlock(&block_group->lock); 8098 } 8099 8100 return free_bytes; 8101 } 8102 8103 /* 8104 * helper to account the unused space of all the readonly block group in the 8105 * space_info. takes mirrors into account. 8106 */ 8107 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8108 { 8109 int i; 8110 u64 free_bytes = 0; 8111 8112 spin_lock(&sinfo->lock); 8113 8114 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8115 if (!list_empty(&sinfo->block_groups[i])) 8116 free_bytes += __btrfs_get_ro_block_group_free_space( 8117 &sinfo->block_groups[i]); 8118 8119 spin_unlock(&sinfo->lock); 8120 8121 return free_bytes; 8122 } 8123 8124 int btrfs_set_block_group_rw(struct btrfs_root *root, 8125 struct btrfs_block_group_cache *cache) 8126 { 8127 struct btrfs_space_info *sinfo = cache->space_info; 8128 u64 num_bytes; 8129 8130 BUG_ON(!cache->ro); 8131 8132 spin_lock(&sinfo->lock); 8133 spin_lock(&cache->lock); 8134 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8135 cache->bytes_super - btrfs_block_group_used(&cache->item); 8136 sinfo->bytes_readonly -= num_bytes; 8137 cache->ro = 0; 8138 spin_unlock(&cache->lock); 8139 spin_unlock(&sinfo->lock); 8140 return 0; 8141 } 8142 8143 /* 8144 * checks to see if its even possible to relocate this block group. 8145 * 8146 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8147 * ok to go ahead and try. 8148 */ 8149 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8150 { 8151 struct btrfs_block_group_cache *block_group; 8152 struct btrfs_space_info *space_info; 8153 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8154 struct btrfs_device *device; 8155 int full = 0; 8156 int ret = 0; 8157 8158 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8159 8160 /* odd, couldn't find the block group, leave it alone */ 8161 if (!block_group) 8162 return -1; 8163 8164 /* no bytes used, we're good */ 8165 if (!btrfs_block_group_used(&block_group->item)) 8166 goto out; 8167 8168 space_info = block_group->space_info; 8169 spin_lock(&space_info->lock); 8170 8171 full = space_info->full; 8172 8173 /* 8174 * if this is the last block group we have in this space, we can't 8175 * relocate it unless we're able to allocate a new chunk below. 8176 * 8177 * Otherwise, we need to make sure we have room in the space to handle 8178 * all of the extents from this block group. If we can, we're good 8179 */ 8180 if ((space_info->total_bytes != block_group->key.offset) && 8181 (space_info->bytes_used + space_info->bytes_reserved + 8182 space_info->bytes_pinned + space_info->bytes_readonly + 8183 btrfs_block_group_used(&block_group->item) < 8184 space_info->total_bytes)) { 8185 spin_unlock(&space_info->lock); 8186 goto out; 8187 } 8188 spin_unlock(&space_info->lock); 8189 8190 /* 8191 * ok we don't have enough space, but maybe we have free space on our 8192 * devices to allocate new chunks for relocation, so loop through our 8193 * alloc devices and guess if we have enough space. However, if we 8194 * were marked as full, then we know there aren't enough chunks, and we 8195 * can just return. 8196 */ 8197 ret = -1; 8198 if (full) 8199 goto out; 8200 8201 mutex_lock(&root->fs_info->chunk_mutex); 8202 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8203 u64 min_free = btrfs_block_group_used(&block_group->item); 8204 u64 dev_offset; 8205 8206 /* 8207 * check to make sure we can actually find a chunk with enough 8208 * space to fit our block group in. 8209 */ 8210 if (device->total_bytes > device->bytes_used + min_free) { 8211 ret = find_free_dev_extent(NULL, device, min_free, 8212 &dev_offset, NULL); 8213 if (!ret) 8214 break; 8215 ret = -1; 8216 } 8217 } 8218 mutex_unlock(&root->fs_info->chunk_mutex); 8219 out: 8220 btrfs_put_block_group(block_group); 8221 return ret; 8222 } 8223 8224 static int find_first_block_group(struct btrfs_root *root, 8225 struct btrfs_path *path, struct btrfs_key *key) 8226 { 8227 int ret = 0; 8228 struct btrfs_key found_key; 8229 struct extent_buffer *leaf; 8230 int slot; 8231 8232 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8233 if (ret < 0) 8234 goto out; 8235 8236 while (1) { 8237 slot = path->slots[0]; 8238 leaf = path->nodes[0]; 8239 if (slot >= btrfs_header_nritems(leaf)) { 8240 ret = btrfs_next_leaf(root, path); 8241 if (ret == 0) 8242 continue; 8243 if (ret < 0) 8244 goto out; 8245 break; 8246 } 8247 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8248 8249 if (found_key.objectid >= key->objectid && 8250 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8251 ret = 0; 8252 goto out; 8253 } 8254 path->slots[0]++; 8255 } 8256 out: 8257 return ret; 8258 } 8259 8260 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8261 { 8262 struct btrfs_block_group_cache *block_group; 8263 u64 last = 0; 8264 8265 while (1) { 8266 struct inode *inode; 8267 8268 block_group = btrfs_lookup_first_block_group(info, last); 8269 while (block_group) { 8270 spin_lock(&block_group->lock); 8271 if (block_group->iref) 8272 break; 8273 spin_unlock(&block_group->lock); 8274 block_group = next_block_group(info->tree_root, 8275 block_group); 8276 } 8277 if (!block_group) { 8278 if (last == 0) 8279 break; 8280 last = 0; 8281 continue; 8282 } 8283 8284 inode = block_group->inode; 8285 block_group->iref = 0; 8286 block_group->inode = NULL; 8287 spin_unlock(&block_group->lock); 8288 iput(inode); 8289 last = block_group->key.objectid + block_group->key.offset; 8290 btrfs_put_block_group(block_group); 8291 } 8292 } 8293 8294 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8295 { 8296 struct btrfs_block_group_cache *block_group; 8297 struct btrfs_space_info *space_info; 8298 struct btrfs_caching_control *caching_ctl; 8299 struct rb_node *n; 8300 8301 down_write(&info->extent_commit_sem); 8302 while (!list_empty(&info->caching_block_groups)) { 8303 caching_ctl = list_entry(info->caching_block_groups.next, 8304 struct btrfs_caching_control, list); 8305 list_del(&caching_ctl->list); 8306 put_caching_control(caching_ctl); 8307 } 8308 up_write(&info->extent_commit_sem); 8309 8310 spin_lock(&info->block_group_cache_lock); 8311 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8312 block_group = rb_entry(n, struct btrfs_block_group_cache, 8313 cache_node); 8314 rb_erase(&block_group->cache_node, 8315 &info->block_group_cache_tree); 8316 spin_unlock(&info->block_group_cache_lock); 8317 8318 down_write(&block_group->space_info->groups_sem); 8319 list_del(&block_group->list); 8320 up_write(&block_group->space_info->groups_sem); 8321 8322 if (block_group->cached == BTRFS_CACHE_STARTED) 8323 wait_block_group_cache_done(block_group); 8324 8325 /* 8326 * We haven't cached this block group, which means we could 8327 * possibly have excluded extents on this block group. 8328 */ 8329 if (block_group->cached == BTRFS_CACHE_NO) 8330 free_excluded_extents(info->extent_root, block_group); 8331 8332 btrfs_remove_free_space_cache(block_group); 8333 btrfs_put_block_group(block_group); 8334 8335 spin_lock(&info->block_group_cache_lock); 8336 } 8337 spin_unlock(&info->block_group_cache_lock); 8338 8339 /* now that all the block groups are freed, go through and 8340 * free all the space_info structs. This is only called during 8341 * the final stages of unmount, and so we know nobody is 8342 * using them. We call synchronize_rcu() once before we start, 8343 * just to be on the safe side. 8344 */ 8345 synchronize_rcu(); 8346 8347 release_global_block_rsv(info); 8348 8349 while(!list_empty(&info->space_info)) { 8350 space_info = list_entry(info->space_info.next, 8351 struct btrfs_space_info, 8352 list); 8353 if (space_info->bytes_pinned > 0 || 8354 space_info->bytes_reserved > 0) { 8355 WARN_ON(1); 8356 dump_space_info(space_info, 0, 0); 8357 } 8358 list_del(&space_info->list); 8359 kfree(space_info); 8360 } 8361 return 0; 8362 } 8363 8364 static void __link_block_group(struct btrfs_space_info *space_info, 8365 struct btrfs_block_group_cache *cache) 8366 { 8367 int index = get_block_group_index(cache); 8368 8369 down_write(&space_info->groups_sem); 8370 list_add_tail(&cache->list, &space_info->block_groups[index]); 8371 up_write(&space_info->groups_sem); 8372 } 8373 8374 int btrfs_read_block_groups(struct btrfs_root *root) 8375 { 8376 struct btrfs_path *path; 8377 int ret; 8378 struct btrfs_block_group_cache *cache; 8379 struct btrfs_fs_info *info = root->fs_info; 8380 struct btrfs_space_info *space_info; 8381 struct btrfs_key key; 8382 struct btrfs_key found_key; 8383 struct extent_buffer *leaf; 8384 int need_clear = 0; 8385 u64 cache_gen; 8386 8387 root = info->extent_root; 8388 key.objectid = 0; 8389 key.offset = 0; 8390 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8391 path = btrfs_alloc_path(); 8392 if (!path) 8393 return -ENOMEM; 8394 8395 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy); 8396 if (cache_gen != 0 && 8397 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen) 8398 need_clear = 1; 8399 if (btrfs_test_opt(root, CLEAR_CACHE)) 8400 need_clear = 1; 8401 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen) 8402 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 8403 8404 while (1) { 8405 ret = find_first_block_group(root, path, &key); 8406 if (ret > 0) 8407 break; 8408 if (ret != 0) 8409 goto error; 8410 leaf = path->nodes[0]; 8411 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8412 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8413 if (!cache) { 8414 ret = -ENOMEM; 8415 goto error; 8416 } 8417 8418 atomic_set(&cache->count, 1); 8419 spin_lock_init(&cache->lock); 8420 spin_lock_init(&cache->tree_lock); 8421 cache->fs_info = info; 8422 INIT_LIST_HEAD(&cache->list); 8423 INIT_LIST_HEAD(&cache->cluster_list); 8424 8425 if (need_clear) 8426 cache->disk_cache_state = BTRFS_DC_CLEAR; 8427 8428 /* 8429 * we only want to have 32k of ram per block group for keeping 8430 * track of free space, and if we pass 1/2 of that we want to 8431 * start converting things over to using bitmaps 8432 */ 8433 cache->extents_thresh = ((1024 * 32) / 2) / 8434 sizeof(struct btrfs_free_space); 8435 8436 read_extent_buffer(leaf, &cache->item, 8437 btrfs_item_ptr_offset(leaf, path->slots[0]), 8438 sizeof(cache->item)); 8439 memcpy(&cache->key, &found_key, sizeof(found_key)); 8440 8441 key.objectid = found_key.objectid + found_key.offset; 8442 btrfs_release_path(root, path); 8443 cache->flags = btrfs_block_group_flags(&cache->item); 8444 cache->sectorsize = root->sectorsize; 8445 8446 /* 8447 * We need to exclude the super stripes now so that the space 8448 * info has super bytes accounted for, otherwise we'll think 8449 * we have more space than we actually do. 8450 */ 8451 exclude_super_stripes(root, cache); 8452 8453 /* 8454 * check for two cases, either we are full, and therefore 8455 * don't need to bother with the caching work since we won't 8456 * find any space, or we are empty, and we can just add all 8457 * the space in and be done with it. This saves us _alot_ of 8458 * time, particularly in the full case. 8459 */ 8460 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8461 cache->last_byte_to_unpin = (u64)-1; 8462 cache->cached = BTRFS_CACHE_FINISHED; 8463 free_excluded_extents(root, cache); 8464 } else if (btrfs_block_group_used(&cache->item) == 0) { 8465 cache->last_byte_to_unpin = (u64)-1; 8466 cache->cached = BTRFS_CACHE_FINISHED; 8467 add_new_free_space(cache, root->fs_info, 8468 found_key.objectid, 8469 found_key.objectid + 8470 found_key.offset); 8471 free_excluded_extents(root, cache); 8472 } 8473 8474 ret = update_space_info(info, cache->flags, found_key.offset, 8475 btrfs_block_group_used(&cache->item), 8476 &space_info); 8477 BUG_ON(ret); 8478 cache->space_info = space_info; 8479 spin_lock(&cache->space_info->lock); 8480 cache->space_info->bytes_readonly += cache->bytes_super; 8481 spin_unlock(&cache->space_info->lock); 8482 8483 __link_block_group(space_info, cache); 8484 8485 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8486 BUG_ON(ret); 8487 8488 set_avail_alloc_bits(root->fs_info, cache->flags); 8489 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8490 set_block_group_ro(cache); 8491 } 8492 8493 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8494 if (!(get_alloc_profile(root, space_info->flags) & 8495 (BTRFS_BLOCK_GROUP_RAID10 | 8496 BTRFS_BLOCK_GROUP_RAID1 | 8497 BTRFS_BLOCK_GROUP_DUP))) 8498 continue; 8499 /* 8500 * avoid allocating from un-mirrored block group if there are 8501 * mirrored block groups. 8502 */ 8503 list_for_each_entry(cache, &space_info->block_groups[3], list) 8504 set_block_group_ro(cache); 8505 list_for_each_entry(cache, &space_info->block_groups[4], list) 8506 set_block_group_ro(cache); 8507 } 8508 8509 init_global_block_rsv(info); 8510 ret = 0; 8511 error: 8512 btrfs_free_path(path); 8513 return ret; 8514 } 8515 8516 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8517 struct btrfs_root *root, u64 bytes_used, 8518 u64 type, u64 chunk_objectid, u64 chunk_offset, 8519 u64 size) 8520 { 8521 int ret; 8522 struct btrfs_root *extent_root; 8523 struct btrfs_block_group_cache *cache; 8524 8525 extent_root = root->fs_info->extent_root; 8526 8527 root->fs_info->last_trans_log_full_commit = trans->transid; 8528 8529 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8530 if (!cache) 8531 return -ENOMEM; 8532 8533 cache->key.objectid = chunk_offset; 8534 cache->key.offset = size; 8535 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8536 cache->sectorsize = root->sectorsize; 8537 cache->fs_info = root->fs_info; 8538 8539 /* 8540 * we only want to have 32k of ram per block group for keeping track 8541 * of free space, and if we pass 1/2 of that we want to start 8542 * converting things over to using bitmaps 8543 */ 8544 cache->extents_thresh = ((1024 * 32) / 2) / 8545 sizeof(struct btrfs_free_space); 8546 atomic_set(&cache->count, 1); 8547 spin_lock_init(&cache->lock); 8548 spin_lock_init(&cache->tree_lock); 8549 INIT_LIST_HEAD(&cache->list); 8550 INIT_LIST_HEAD(&cache->cluster_list); 8551 8552 btrfs_set_block_group_used(&cache->item, bytes_used); 8553 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8554 cache->flags = type; 8555 btrfs_set_block_group_flags(&cache->item, type); 8556 8557 cache->last_byte_to_unpin = (u64)-1; 8558 cache->cached = BTRFS_CACHE_FINISHED; 8559 exclude_super_stripes(root, cache); 8560 8561 add_new_free_space(cache, root->fs_info, chunk_offset, 8562 chunk_offset + size); 8563 8564 free_excluded_extents(root, cache); 8565 8566 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8567 &cache->space_info); 8568 BUG_ON(ret); 8569 8570 spin_lock(&cache->space_info->lock); 8571 cache->space_info->bytes_readonly += cache->bytes_super; 8572 spin_unlock(&cache->space_info->lock); 8573 8574 __link_block_group(cache->space_info, cache); 8575 8576 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8577 BUG_ON(ret); 8578 8579 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 8580 sizeof(cache->item)); 8581 BUG_ON(ret); 8582 8583 set_avail_alloc_bits(extent_root->fs_info, type); 8584 8585 return 0; 8586 } 8587 8588 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8589 struct btrfs_root *root, u64 group_start) 8590 { 8591 struct btrfs_path *path; 8592 struct btrfs_block_group_cache *block_group; 8593 struct btrfs_free_cluster *cluster; 8594 struct btrfs_root *tree_root = root->fs_info->tree_root; 8595 struct btrfs_key key; 8596 struct inode *inode; 8597 int ret; 8598 int factor; 8599 8600 root = root->fs_info->extent_root; 8601 8602 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8603 BUG_ON(!block_group); 8604 BUG_ON(!block_group->ro); 8605 8606 memcpy(&key, &block_group->key, sizeof(key)); 8607 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8608 BTRFS_BLOCK_GROUP_RAID1 | 8609 BTRFS_BLOCK_GROUP_RAID10)) 8610 factor = 2; 8611 else 8612 factor = 1; 8613 8614 /* make sure this block group isn't part of an allocation cluster */ 8615 cluster = &root->fs_info->data_alloc_cluster; 8616 spin_lock(&cluster->refill_lock); 8617 btrfs_return_cluster_to_free_space(block_group, cluster); 8618 spin_unlock(&cluster->refill_lock); 8619 8620 /* 8621 * make sure this block group isn't part of a metadata 8622 * allocation cluster 8623 */ 8624 cluster = &root->fs_info->meta_alloc_cluster; 8625 spin_lock(&cluster->refill_lock); 8626 btrfs_return_cluster_to_free_space(block_group, cluster); 8627 spin_unlock(&cluster->refill_lock); 8628 8629 path = btrfs_alloc_path(); 8630 BUG_ON(!path); 8631 8632 inode = lookup_free_space_inode(root, block_group, path); 8633 if (!IS_ERR(inode)) { 8634 btrfs_orphan_add(trans, inode); 8635 clear_nlink(inode); 8636 /* One for the block groups ref */ 8637 spin_lock(&block_group->lock); 8638 if (block_group->iref) { 8639 block_group->iref = 0; 8640 block_group->inode = NULL; 8641 spin_unlock(&block_group->lock); 8642 iput(inode); 8643 } else { 8644 spin_unlock(&block_group->lock); 8645 } 8646 /* One for our lookup ref */ 8647 iput(inode); 8648 } 8649 8650 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8651 key.offset = block_group->key.objectid; 8652 key.type = 0; 8653 8654 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8655 if (ret < 0) 8656 goto out; 8657 if (ret > 0) 8658 btrfs_release_path(tree_root, path); 8659 if (ret == 0) { 8660 ret = btrfs_del_item(trans, tree_root, path); 8661 if (ret) 8662 goto out; 8663 btrfs_release_path(tree_root, path); 8664 } 8665 8666 spin_lock(&root->fs_info->block_group_cache_lock); 8667 rb_erase(&block_group->cache_node, 8668 &root->fs_info->block_group_cache_tree); 8669 spin_unlock(&root->fs_info->block_group_cache_lock); 8670 8671 down_write(&block_group->space_info->groups_sem); 8672 /* 8673 * we must use list_del_init so people can check to see if they 8674 * are still on the list after taking the semaphore 8675 */ 8676 list_del_init(&block_group->list); 8677 up_write(&block_group->space_info->groups_sem); 8678 8679 if (block_group->cached == BTRFS_CACHE_STARTED) 8680 wait_block_group_cache_done(block_group); 8681 8682 btrfs_remove_free_space_cache(block_group); 8683 8684 spin_lock(&block_group->space_info->lock); 8685 block_group->space_info->total_bytes -= block_group->key.offset; 8686 block_group->space_info->bytes_readonly -= block_group->key.offset; 8687 block_group->space_info->disk_total -= block_group->key.offset * factor; 8688 spin_unlock(&block_group->space_info->lock); 8689 8690 memcpy(&key, &block_group->key, sizeof(key)); 8691 8692 btrfs_clear_space_info_full(root->fs_info); 8693 8694 btrfs_put_block_group(block_group); 8695 btrfs_put_block_group(block_group); 8696 8697 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8698 if (ret > 0) 8699 ret = -EIO; 8700 if (ret < 0) 8701 goto out; 8702 8703 ret = btrfs_del_item(trans, root, path); 8704 out: 8705 btrfs_free_path(path); 8706 return ret; 8707 } 8708 8709 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8710 { 8711 return unpin_extent_range(root, start, end); 8712 } 8713 8714 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8715 u64 num_bytes) 8716 { 8717 return btrfs_discard_extent(root, bytenr, num_bytes); 8718 } 8719