1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 91 int ret; 92 struct btrfs_key key; 93 struct btrfs_path *path; 94 95 path = btrfs_alloc_path(); 96 if (!path) 97 return -ENOMEM; 98 99 key.objectid = start; 100 key.offset = len; 101 key.type = BTRFS_EXTENT_ITEM_KEY; 102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 103 btrfs_free_path(path); 104 return ret; 105 } 106 107 /* 108 * helper function to lookup reference count and flags of a tree block. 109 * 110 * the head node for delayed ref is used to store the sum of all the 111 * reference count modifications queued up in the rbtree. the head 112 * node may also store the extent flags to set. This way you can check 113 * to see what the reference count and extent flags would be if all of 114 * the delayed refs are not processed. 115 */ 116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 117 struct btrfs_fs_info *fs_info, u64 bytenr, 118 u64 offset, int metadata, u64 *refs, u64 *flags) 119 { 120 struct btrfs_root *extent_root; 121 struct btrfs_delayed_ref_head *head; 122 struct btrfs_delayed_ref_root *delayed_refs; 123 struct btrfs_path *path; 124 struct btrfs_extent_item *ei; 125 struct extent_buffer *leaf; 126 struct btrfs_key key; 127 u32 item_size; 128 u64 num_refs; 129 u64 extent_flags; 130 int ret; 131 132 /* 133 * If we don't have skinny metadata, don't bother doing anything 134 * different 135 */ 136 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 137 offset = fs_info->nodesize; 138 metadata = 0; 139 } 140 141 path = btrfs_alloc_path(); 142 if (!path) 143 return -ENOMEM; 144 145 if (!trans) { 146 path->skip_locking = 1; 147 path->search_commit_root = 1; 148 } 149 150 search_again: 151 key.objectid = bytenr; 152 key.offset = offset; 153 if (metadata) 154 key.type = BTRFS_METADATA_ITEM_KEY; 155 else 156 key.type = BTRFS_EXTENT_ITEM_KEY; 157 158 extent_root = btrfs_extent_root(fs_info, bytenr); 159 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 160 if (ret < 0) 161 goto out_free; 162 163 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 164 if (path->slots[0]) { 165 path->slots[0]--; 166 btrfs_item_key_to_cpu(path->nodes[0], &key, 167 path->slots[0]); 168 if (key.objectid == bytenr && 169 key.type == BTRFS_EXTENT_ITEM_KEY && 170 key.offset == fs_info->nodesize) 171 ret = 0; 172 } 173 } 174 175 if (ret == 0) { 176 leaf = path->nodes[0]; 177 item_size = btrfs_item_size(leaf, path->slots[0]); 178 if (item_size >= sizeof(*ei)) { 179 ei = btrfs_item_ptr(leaf, path->slots[0], 180 struct btrfs_extent_item); 181 num_refs = btrfs_extent_refs(leaf, ei); 182 extent_flags = btrfs_extent_flags(leaf, ei); 183 } else { 184 ret = -EINVAL; 185 btrfs_print_v0_err(fs_info); 186 if (trans) 187 btrfs_abort_transaction(trans, ret); 188 else 189 btrfs_handle_fs_error(fs_info, ret, NULL); 190 191 goto out_free; 192 } 193 194 BUG_ON(num_refs == 0); 195 } else { 196 num_refs = 0; 197 extent_flags = 0; 198 ret = 0; 199 } 200 201 if (!trans) 202 goto out; 203 204 delayed_refs = &trans->transaction->delayed_refs; 205 spin_lock(&delayed_refs->lock); 206 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 207 if (head) { 208 if (!mutex_trylock(&head->mutex)) { 209 refcount_inc(&head->refs); 210 spin_unlock(&delayed_refs->lock); 211 212 btrfs_release_path(path); 213 214 /* 215 * Mutex was contended, block until it's released and try 216 * again 217 */ 218 mutex_lock(&head->mutex); 219 mutex_unlock(&head->mutex); 220 btrfs_put_delayed_ref_head(head); 221 goto search_again; 222 } 223 spin_lock(&head->lock); 224 if (head->extent_op && head->extent_op->update_flags) 225 extent_flags |= head->extent_op->flags_to_set; 226 else 227 BUG_ON(num_refs == 0); 228 229 num_refs += head->ref_mod; 230 spin_unlock(&head->lock); 231 mutex_unlock(&head->mutex); 232 } 233 spin_unlock(&delayed_refs->lock); 234 out: 235 WARN_ON(num_refs == 0); 236 if (refs) 237 *refs = num_refs; 238 if (flags) 239 *flags = extent_flags; 240 out_free: 241 btrfs_free_path(path); 242 return ret; 243 } 244 245 /* 246 * Back reference rules. Back refs have three main goals: 247 * 248 * 1) differentiate between all holders of references to an extent so that 249 * when a reference is dropped we can make sure it was a valid reference 250 * before freeing the extent. 251 * 252 * 2) Provide enough information to quickly find the holders of an extent 253 * if we notice a given block is corrupted or bad. 254 * 255 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 256 * maintenance. This is actually the same as #2, but with a slightly 257 * different use case. 258 * 259 * There are two kinds of back refs. The implicit back refs is optimized 260 * for pointers in non-shared tree blocks. For a given pointer in a block, 261 * back refs of this kind provide information about the block's owner tree 262 * and the pointer's key. These information allow us to find the block by 263 * b-tree searching. The full back refs is for pointers in tree blocks not 264 * referenced by their owner trees. The location of tree block is recorded 265 * in the back refs. Actually the full back refs is generic, and can be 266 * used in all cases the implicit back refs is used. The major shortcoming 267 * of the full back refs is its overhead. Every time a tree block gets 268 * COWed, we have to update back refs entry for all pointers in it. 269 * 270 * For a newly allocated tree block, we use implicit back refs for 271 * pointers in it. This means most tree related operations only involve 272 * implicit back refs. For a tree block created in old transaction, the 273 * only way to drop a reference to it is COW it. So we can detect the 274 * event that tree block loses its owner tree's reference and do the 275 * back refs conversion. 276 * 277 * When a tree block is COWed through a tree, there are four cases: 278 * 279 * The reference count of the block is one and the tree is the block's 280 * owner tree. Nothing to do in this case. 281 * 282 * The reference count of the block is one and the tree is not the 283 * block's owner tree. In this case, full back refs is used for pointers 284 * in the block. Remove these full back refs, add implicit back refs for 285 * every pointers in the new block. 286 * 287 * The reference count of the block is greater than one and the tree is 288 * the block's owner tree. In this case, implicit back refs is used for 289 * pointers in the block. Add full back refs for every pointers in the 290 * block, increase lower level extents' reference counts. The original 291 * implicit back refs are entailed to the new block. 292 * 293 * The reference count of the block is greater than one and the tree is 294 * not the block's owner tree. Add implicit back refs for every pointer in 295 * the new block, increase lower level extents' reference count. 296 * 297 * Back Reference Key composing: 298 * 299 * The key objectid corresponds to the first byte in the extent, 300 * The key type is used to differentiate between types of back refs. 301 * There are different meanings of the key offset for different types 302 * of back refs. 303 * 304 * File extents can be referenced by: 305 * 306 * - multiple snapshots, subvolumes, or different generations in one subvol 307 * - different files inside a single subvolume 308 * - different offsets inside a file (bookend extents in file.c) 309 * 310 * The extent ref structure for the implicit back refs has fields for: 311 * 312 * - Objectid of the subvolume root 313 * - objectid of the file holding the reference 314 * - original offset in the file 315 * - how many bookend extents 316 * 317 * The key offset for the implicit back refs is hash of the first 318 * three fields. 319 * 320 * The extent ref structure for the full back refs has field for: 321 * 322 * - number of pointers in the tree leaf 323 * 324 * The key offset for the implicit back refs is the first byte of 325 * the tree leaf 326 * 327 * When a file extent is allocated, The implicit back refs is used. 328 * the fields are filled in: 329 * 330 * (root_key.objectid, inode objectid, offset in file, 1) 331 * 332 * When a file extent is removed file truncation, we find the 333 * corresponding implicit back refs and check the following fields: 334 * 335 * (btrfs_header_owner(leaf), inode objectid, offset in file) 336 * 337 * Btree extents can be referenced by: 338 * 339 * - Different subvolumes 340 * 341 * Both the implicit back refs and the full back refs for tree blocks 342 * only consist of key. The key offset for the implicit back refs is 343 * objectid of block's owner tree. The key offset for the full back refs 344 * is the first byte of parent block. 345 * 346 * When implicit back refs is used, information about the lowest key and 347 * level of the tree block are required. These information are stored in 348 * tree block info structure. 349 */ 350 351 /* 352 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 353 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 354 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 355 */ 356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 357 struct btrfs_extent_inline_ref *iref, 358 enum btrfs_inline_ref_type is_data) 359 { 360 int type = btrfs_extent_inline_ref_type(eb, iref); 361 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 362 363 if (type == BTRFS_TREE_BLOCK_REF_KEY || 364 type == BTRFS_SHARED_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_DATA_REF_KEY || 366 type == BTRFS_EXTENT_DATA_REF_KEY) { 367 if (is_data == BTRFS_REF_TYPE_BLOCK) { 368 if (type == BTRFS_TREE_BLOCK_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(eb->fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 btrfs_print_leaf((struct extent_buffer *)eb); 400 btrfs_err(eb->fs_info, 401 "eb %llu iref 0x%lx invalid extent inline ref type %d", 402 eb->start, (unsigned long)iref, type); 403 WARN_ON(1); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 622 btrfs_print_v0_err(trans->fs_info); 623 btrfs_abort_transaction(trans, -EINVAL); 624 return -EINVAL; 625 } else { 626 BUG(); 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 658 if (iref) { 659 /* 660 * If type is invalid, we should have bailed out earlier than 661 * this call. 662 */ 663 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 664 ASSERT(type != BTRFS_REF_TYPE_INVALID); 665 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 666 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 667 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 668 } else { 669 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 670 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 671 } 672 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 673 ref1 = btrfs_item_ptr(leaf, path->slots[0], 674 struct btrfs_extent_data_ref); 675 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 676 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 677 ref2 = btrfs_item_ptr(leaf, path->slots[0], 678 struct btrfs_shared_data_ref); 679 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 680 } else { 681 WARN_ON(1); 682 } 683 return num_refs; 684 } 685 686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 687 struct btrfs_path *path, 688 u64 bytenr, u64 parent, 689 u64 root_objectid) 690 { 691 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 692 struct btrfs_key key; 693 int ret; 694 695 key.objectid = bytenr; 696 if (parent) { 697 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 698 key.offset = parent; 699 } else { 700 key.type = BTRFS_TREE_BLOCK_REF_KEY; 701 key.offset = root_objectid; 702 } 703 704 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 705 if (ret > 0) 706 ret = -ENOENT; 707 return ret; 708 } 709 710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 711 struct btrfs_path *path, 712 u64 bytenr, u64 parent, 713 u64 root_objectid) 714 { 715 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 716 struct btrfs_key key; 717 int ret; 718 719 key.objectid = bytenr; 720 if (parent) { 721 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 722 key.offset = parent; 723 } else { 724 key.type = BTRFS_TREE_BLOCK_REF_KEY; 725 key.offset = root_objectid; 726 } 727 728 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 729 btrfs_release_path(path); 730 return ret; 731 } 732 733 static inline int extent_ref_type(u64 parent, u64 owner) 734 { 735 int type; 736 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 737 if (parent > 0) 738 type = BTRFS_SHARED_BLOCK_REF_KEY; 739 else 740 type = BTRFS_TREE_BLOCK_REF_KEY; 741 } else { 742 if (parent > 0) 743 type = BTRFS_SHARED_DATA_REF_KEY; 744 else 745 type = BTRFS_EXTENT_DATA_REF_KEY; 746 } 747 return type; 748 } 749 750 static int find_next_key(struct btrfs_path *path, int level, 751 struct btrfs_key *key) 752 753 { 754 for (; level < BTRFS_MAX_LEVEL; level++) { 755 if (!path->nodes[level]) 756 break; 757 if (path->slots[level] + 1 >= 758 btrfs_header_nritems(path->nodes[level])) 759 continue; 760 if (level == 0) 761 btrfs_item_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 else 764 btrfs_node_key_to_cpu(path->nodes[level], key, 765 path->slots[level] + 1); 766 return 0; 767 } 768 return 1; 769 } 770 771 /* 772 * look for inline back ref. if back ref is found, *ref_ret is set 773 * to the address of inline back ref, and 0 is returned. 774 * 775 * if back ref isn't found, *ref_ret is set to the address where it 776 * should be inserted, and -ENOENT is returned. 777 * 778 * if insert is true and there are too many inline back refs, the path 779 * points to the extent item, and -EAGAIN is returned. 780 * 781 * NOTE: inline back refs are ordered in the same way that back ref 782 * items in the tree are ordered. 783 */ 784 static noinline_for_stack 785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 786 struct btrfs_path *path, 787 struct btrfs_extent_inline_ref **ref_ret, 788 u64 bytenr, u64 num_bytes, 789 u64 parent, u64 root_objectid, 790 u64 owner, u64 offset, int insert) 791 { 792 struct btrfs_fs_info *fs_info = trans->fs_info; 793 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 794 struct btrfs_key key; 795 struct extent_buffer *leaf; 796 struct btrfs_extent_item *ei; 797 struct btrfs_extent_inline_ref *iref; 798 u64 flags; 799 u64 item_size; 800 unsigned long ptr; 801 unsigned long end; 802 int extra_size; 803 int type; 804 int want; 805 int ret; 806 int err = 0; 807 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 808 int needed; 809 810 key.objectid = bytenr; 811 key.type = BTRFS_EXTENT_ITEM_KEY; 812 key.offset = num_bytes; 813 814 want = extent_ref_type(parent, owner); 815 if (insert) { 816 extra_size = btrfs_extent_inline_ref_size(want); 817 path->search_for_extension = 1; 818 path->keep_locks = 1; 819 } else 820 extra_size = -1; 821 822 /* 823 * Owner is our level, so we can just add one to get the level for the 824 * block we are interested in. 825 */ 826 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 827 key.type = BTRFS_METADATA_ITEM_KEY; 828 key.offset = owner; 829 } 830 831 again: 832 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 833 if (ret < 0) { 834 err = ret; 835 goto out; 836 } 837 838 /* 839 * We may be a newly converted file system which still has the old fat 840 * extent entries for metadata, so try and see if we have one of those. 841 */ 842 if (ret > 0 && skinny_metadata) { 843 skinny_metadata = false; 844 if (path->slots[0]) { 845 path->slots[0]--; 846 btrfs_item_key_to_cpu(path->nodes[0], &key, 847 path->slots[0]); 848 if (key.objectid == bytenr && 849 key.type == BTRFS_EXTENT_ITEM_KEY && 850 key.offset == num_bytes) 851 ret = 0; 852 } 853 if (ret) { 854 key.objectid = bytenr; 855 key.type = BTRFS_EXTENT_ITEM_KEY; 856 key.offset = num_bytes; 857 btrfs_release_path(path); 858 goto again; 859 } 860 } 861 862 if (ret && !insert) { 863 err = -ENOENT; 864 goto out; 865 } else if (WARN_ON(ret)) { 866 err = -EIO; 867 goto out; 868 } 869 870 leaf = path->nodes[0]; 871 item_size = btrfs_item_size(leaf, path->slots[0]); 872 if (unlikely(item_size < sizeof(*ei))) { 873 err = -EINVAL; 874 btrfs_print_v0_err(fs_info); 875 btrfs_abort_transaction(trans, err); 876 goto out; 877 } 878 879 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 880 flags = btrfs_extent_flags(leaf, ei); 881 882 ptr = (unsigned long)(ei + 1); 883 end = (unsigned long)ei + item_size; 884 885 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 886 ptr += sizeof(struct btrfs_tree_block_info); 887 BUG_ON(ptr > end); 888 } 889 890 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 891 needed = BTRFS_REF_TYPE_DATA; 892 else 893 needed = BTRFS_REF_TYPE_BLOCK; 894 895 err = -ENOENT; 896 while (1) { 897 if (ptr >= end) { 898 if (ptr > end) { 899 err = -EUCLEAN; 900 btrfs_print_leaf(path->nodes[0]); 901 btrfs_crit(fs_info, 902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 903 path->slots[0], root_objectid, owner, offset, parent); 904 } 905 break; 906 } 907 iref = (struct btrfs_extent_inline_ref *)ptr; 908 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 909 if (type == BTRFS_REF_TYPE_INVALID) { 910 err = -EUCLEAN; 911 goto out; 912 } 913 914 if (want < type) 915 break; 916 if (want > type) { 917 ptr += btrfs_extent_inline_ref_size(type); 918 continue; 919 } 920 921 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 922 struct btrfs_extent_data_ref *dref; 923 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 924 if (match_extent_data_ref(leaf, dref, root_objectid, 925 owner, offset)) { 926 err = 0; 927 break; 928 } 929 if (hash_extent_data_ref_item(leaf, dref) < 930 hash_extent_data_ref(root_objectid, owner, offset)) 931 break; 932 } else { 933 u64 ref_offset; 934 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 935 if (parent > 0) { 936 if (parent == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < parent) 941 break; 942 } else { 943 if (root_objectid == ref_offset) { 944 err = 0; 945 break; 946 } 947 if (ref_offset < root_objectid) 948 break; 949 } 950 } 951 ptr += btrfs_extent_inline_ref_size(type); 952 } 953 if (err == -ENOENT && insert) { 954 if (item_size + extra_size >= 955 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 956 err = -EAGAIN; 957 goto out; 958 } 959 /* 960 * To add new inline back ref, we have to make sure 961 * there is no corresponding back ref item. 962 * For simplicity, we just do not add new inline back 963 * ref if there is any kind of item for this block 964 */ 965 if (find_next_key(path, 0, &key) == 0 && 966 key.objectid == bytenr && 967 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 968 err = -EAGAIN; 969 goto out; 970 } 971 } 972 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 973 out: 974 if (insert) { 975 path->keep_locks = 0; 976 path->search_for_extension = 0; 977 btrfs_unlock_up_safe(path, 1); 978 } 979 return err; 980 } 981 982 /* 983 * helper to add new inline back ref 984 */ 985 static noinline_for_stack 986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 987 struct btrfs_path *path, 988 struct btrfs_extent_inline_ref *iref, 989 u64 parent, u64 root_objectid, 990 u64 owner, u64 offset, int refs_to_add, 991 struct btrfs_delayed_extent_op *extent_op) 992 { 993 struct extent_buffer *leaf; 994 struct btrfs_extent_item *ei; 995 unsigned long ptr; 996 unsigned long end; 997 unsigned long item_offset; 998 u64 refs; 999 int size; 1000 int type; 1001 1002 leaf = path->nodes[0]; 1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1004 item_offset = (unsigned long)iref - (unsigned long)ei; 1005 1006 type = extent_ref_type(parent, owner); 1007 size = btrfs_extent_inline_ref_size(type); 1008 1009 btrfs_extend_item(path, size); 1010 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 refs = btrfs_extent_refs(leaf, ei); 1013 refs += refs_to_add; 1014 btrfs_set_extent_refs(leaf, ei, refs); 1015 if (extent_op) 1016 __run_delayed_extent_op(extent_op, leaf, ei); 1017 1018 ptr = (unsigned long)ei + item_offset; 1019 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1020 if (ptr < end - size) 1021 memmove_extent_buffer(leaf, ptr + size, ptr, 1022 end - size - ptr); 1023 1024 iref = (struct btrfs_extent_inline_ref *)ptr; 1025 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1026 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1027 struct btrfs_extent_data_ref *dref; 1028 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1029 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1030 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1031 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1032 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1033 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1034 struct btrfs_shared_data_ref *sref; 1035 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1036 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1037 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1038 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1039 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1040 } else { 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1042 } 1043 btrfs_mark_buffer_dirty(leaf); 1044 } 1045 1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1047 struct btrfs_path *path, 1048 struct btrfs_extent_inline_ref **ref_ret, 1049 u64 bytenr, u64 num_bytes, u64 parent, 1050 u64 root_objectid, u64 owner, u64 offset) 1051 { 1052 int ret; 1053 1054 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1055 num_bytes, parent, root_objectid, 1056 owner, offset, 0); 1057 if (ret != -ENOENT) 1058 return ret; 1059 1060 btrfs_release_path(path); 1061 *ref_ret = NULL; 1062 1063 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1064 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1065 root_objectid); 1066 } else { 1067 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1068 root_objectid, owner, offset); 1069 } 1070 return ret; 1071 } 1072 1073 /* 1074 * helper to update/remove inline back ref 1075 */ 1076 static noinline_for_stack 1077 void update_inline_extent_backref(struct btrfs_path *path, 1078 struct btrfs_extent_inline_ref *iref, 1079 int refs_to_mod, 1080 struct btrfs_delayed_extent_op *extent_op) 1081 { 1082 struct extent_buffer *leaf = path->nodes[0]; 1083 struct btrfs_extent_item *ei; 1084 struct btrfs_extent_data_ref *dref = NULL; 1085 struct btrfs_shared_data_ref *sref = NULL; 1086 unsigned long ptr; 1087 unsigned long end; 1088 u32 item_size; 1089 int size; 1090 int type; 1091 u64 refs; 1092 1093 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1094 refs = btrfs_extent_refs(leaf, ei); 1095 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1096 refs += refs_to_mod; 1097 btrfs_set_extent_refs(leaf, ei, refs); 1098 if (extent_op) 1099 __run_delayed_extent_op(extent_op, leaf, ei); 1100 1101 /* 1102 * If type is invalid, we should have bailed out after 1103 * lookup_inline_extent_backref(). 1104 */ 1105 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1106 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1107 1108 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1110 refs = btrfs_extent_data_ref_count(leaf, dref); 1111 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1112 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1113 refs = btrfs_shared_data_ref_count(leaf, sref); 1114 } else { 1115 refs = 1; 1116 BUG_ON(refs_to_mod != -1); 1117 } 1118 1119 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1120 refs += refs_to_mod; 1121 1122 if (refs > 0) { 1123 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1124 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1125 else 1126 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1127 } else { 1128 size = btrfs_extent_inline_ref_size(type); 1129 item_size = btrfs_item_size(leaf, path->slots[0]); 1130 ptr = (unsigned long)iref; 1131 end = (unsigned long)ei + item_size; 1132 if (ptr + size < end) 1133 memmove_extent_buffer(leaf, ptr, ptr + size, 1134 end - ptr - size); 1135 item_size -= size; 1136 btrfs_truncate_item(path, item_size, 1); 1137 } 1138 btrfs_mark_buffer_dirty(leaf); 1139 } 1140 1141 static noinline_for_stack 1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1143 struct btrfs_path *path, 1144 u64 bytenr, u64 num_bytes, u64 parent, 1145 u64 root_objectid, u64 owner, 1146 u64 offset, int refs_to_add, 1147 struct btrfs_delayed_extent_op *extent_op) 1148 { 1149 struct btrfs_extent_inline_ref *iref; 1150 int ret; 1151 1152 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1153 num_bytes, parent, root_objectid, 1154 owner, offset, 1); 1155 if (ret == 0) { 1156 /* 1157 * We're adding refs to a tree block we already own, this 1158 * should not happen at all. 1159 */ 1160 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1161 btrfs_crit(trans->fs_info, 1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1163 bytenr, num_bytes, root_objectid); 1164 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1165 WARN_ON(1); 1166 btrfs_crit(trans->fs_info, 1167 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1168 btrfs_print_leaf(path->nodes[0]); 1169 } 1170 return -EUCLEAN; 1171 } 1172 update_inline_extent_backref(path, iref, refs_to_add, extent_op); 1173 } else if (ret == -ENOENT) { 1174 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1175 root_objectid, owner, offset, 1176 refs_to_add, extent_op); 1177 ret = 0; 1178 } 1179 return ret; 1180 } 1181 1182 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 struct btrfs_extent_inline_ref *iref, 1186 int refs_to_drop, int is_data) 1187 { 1188 int ret = 0; 1189 1190 BUG_ON(!is_data && refs_to_drop != 1); 1191 if (iref) 1192 update_inline_extent_backref(path, iref, -refs_to_drop, NULL); 1193 else if (is_data) 1194 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1195 else 1196 ret = btrfs_del_item(trans, root, path); 1197 return ret; 1198 } 1199 1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1201 u64 *discarded_bytes) 1202 { 1203 int j, ret = 0; 1204 u64 bytes_left, end; 1205 u64 aligned_start = ALIGN(start, 1 << 9); 1206 1207 if (WARN_ON(start != aligned_start)) { 1208 len -= aligned_start - start; 1209 len = round_down(len, 1 << 9); 1210 start = aligned_start; 1211 } 1212 1213 *discarded_bytes = 0; 1214 1215 if (!len) 1216 return 0; 1217 1218 end = start + len; 1219 bytes_left = len; 1220 1221 /* Skip any superblocks on this device. */ 1222 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1223 u64 sb_start = btrfs_sb_offset(j); 1224 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1225 u64 size = sb_start - start; 1226 1227 if (!in_range(sb_start, start, bytes_left) && 1228 !in_range(sb_end, start, bytes_left) && 1229 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1230 continue; 1231 1232 /* 1233 * Superblock spans beginning of range. Adjust start and 1234 * try again. 1235 */ 1236 if (sb_start <= start) { 1237 start += sb_end - start; 1238 if (start > end) { 1239 bytes_left = 0; 1240 break; 1241 } 1242 bytes_left = end - start; 1243 continue; 1244 } 1245 1246 if (size) { 1247 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1248 GFP_NOFS); 1249 if (!ret) 1250 *discarded_bytes += size; 1251 else if (ret != -EOPNOTSUPP) 1252 return ret; 1253 } 1254 1255 start = sb_end; 1256 if (start > end) { 1257 bytes_left = 0; 1258 break; 1259 } 1260 bytes_left = end - start; 1261 } 1262 1263 if (bytes_left) { 1264 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1265 GFP_NOFS); 1266 if (!ret) 1267 *discarded_bytes += bytes_left; 1268 } 1269 return ret; 1270 } 1271 1272 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1273 { 1274 struct btrfs_device *dev = stripe->dev; 1275 struct btrfs_fs_info *fs_info = dev->fs_info; 1276 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1277 u64 phys = stripe->physical; 1278 u64 len = stripe->length; 1279 u64 discarded = 0; 1280 int ret = 0; 1281 1282 /* Zone reset on a zoned filesystem */ 1283 if (btrfs_can_zone_reset(dev, phys, len)) { 1284 u64 src_disc; 1285 1286 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1287 if (ret) 1288 goto out; 1289 1290 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1291 dev != dev_replace->srcdev) 1292 goto out; 1293 1294 src_disc = discarded; 1295 1296 /* Send to replace target as well */ 1297 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1298 &discarded); 1299 discarded += src_disc; 1300 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1301 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1302 } else { 1303 ret = 0; 1304 *bytes = 0; 1305 } 1306 1307 out: 1308 *bytes = discarded; 1309 return ret; 1310 } 1311 1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1313 u64 num_bytes, u64 *actual_bytes) 1314 { 1315 int ret = 0; 1316 u64 discarded_bytes = 0; 1317 u64 end = bytenr + num_bytes; 1318 u64 cur = bytenr; 1319 1320 /* 1321 * Avoid races with device replace and make sure the devices in the 1322 * stripes don't go away while we are discarding. 1323 */ 1324 btrfs_bio_counter_inc_blocked(fs_info); 1325 while (cur < end) { 1326 struct btrfs_discard_stripe *stripes; 1327 unsigned int num_stripes; 1328 int i; 1329 1330 num_bytes = end - cur; 1331 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1332 if (IS_ERR(stripes)) { 1333 ret = PTR_ERR(stripes); 1334 if (ret == -EOPNOTSUPP) 1335 ret = 0; 1336 break; 1337 } 1338 1339 for (i = 0; i < num_stripes; i++) { 1340 struct btrfs_discard_stripe *stripe = stripes + i; 1341 u64 bytes; 1342 1343 if (!stripe->dev->bdev) { 1344 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1345 continue; 1346 } 1347 1348 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1349 &stripe->dev->dev_state)) 1350 continue; 1351 1352 ret = do_discard_extent(stripe, &bytes); 1353 if (ret) { 1354 /* 1355 * Keep going if discard is not supported by the 1356 * device. 1357 */ 1358 if (ret != -EOPNOTSUPP) 1359 break; 1360 ret = 0; 1361 } else { 1362 discarded_bytes += bytes; 1363 } 1364 } 1365 kfree(stripes); 1366 if (ret) 1367 break; 1368 cur += num_bytes; 1369 } 1370 btrfs_bio_counter_dec(fs_info); 1371 if (actual_bytes) 1372 *actual_bytes = discarded_bytes; 1373 return ret; 1374 } 1375 1376 /* Can return -ENOMEM */ 1377 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1378 struct btrfs_ref *generic_ref) 1379 { 1380 struct btrfs_fs_info *fs_info = trans->fs_info; 1381 int ret; 1382 1383 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1384 generic_ref->action); 1385 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1386 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1387 1388 if (generic_ref->type == BTRFS_REF_METADATA) 1389 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1390 else 1391 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1392 1393 btrfs_ref_tree_mod(fs_info, generic_ref); 1394 1395 return ret; 1396 } 1397 1398 /* 1399 * __btrfs_inc_extent_ref - insert backreference for a given extent 1400 * 1401 * The counterpart is in __btrfs_free_extent(), with examples and more details 1402 * how it works. 1403 * 1404 * @trans: Handle of transaction 1405 * 1406 * @node: The delayed ref node used to get the bytenr/length for 1407 * extent whose references are incremented. 1408 * 1409 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1410 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1411 * bytenr of the parent block. Since new extents are always 1412 * created with indirect references, this will only be the case 1413 * when relocating a shared extent. In that case, root_objectid 1414 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1415 * be 0 1416 * 1417 * @root_objectid: The id of the root where this modification has originated, 1418 * this can be either one of the well-known metadata trees or 1419 * the subvolume id which references this extent. 1420 * 1421 * @owner: For data extents it is the inode number of the owning file. 1422 * For metadata extents this parameter holds the level in the 1423 * tree of the extent. 1424 * 1425 * @offset: For metadata extents the offset is ignored and is currently 1426 * always passed as 0. For data extents it is the fileoffset 1427 * this extent belongs to. 1428 * 1429 * @refs_to_add Number of references to add 1430 * 1431 * @extent_op Pointer to a structure, holding information necessary when 1432 * updating a tree block's flags 1433 * 1434 */ 1435 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_delayed_ref_node *node, 1437 u64 parent, u64 root_objectid, 1438 u64 owner, u64 offset, int refs_to_add, 1439 struct btrfs_delayed_extent_op *extent_op) 1440 { 1441 struct btrfs_path *path; 1442 struct extent_buffer *leaf; 1443 struct btrfs_extent_item *item; 1444 struct btrfs_key key; 1445 u64 bytenr = node->bytenr; 1446 u64 num_bytes = node->num_bytes; 1447 u64 refs; 1448 int ret; 1449 1450 path = btrfs_alloc_path(); 1451 if (!path) 1452 return -ENOMEM; 1453 1454 /* this will setup the path even if it fails to insert the back ref */ 1455 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1456 parent, root_objectid, owner, 1457 offset, refs_to_add, extent_op); 1458 if ((ret < 0 && ret != -EAGAIN) || !ret) 1459 goto out; 1460 1461 /* 1462 * Ok we had -EAGAIN which means we didn't have space to insert and 1463 * inline extent ref, so just update the reference count and add a 1464 * normal backref. 1465 */ 1466 leaf = path->nodes[0]; 1467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1468 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1469 refs = btrfs_extent_refs(leaf, item); 1470 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1471 if (extent_op) 1472 __run_delayed_extent_op(extent_op, leaf, item); 1473 1474 btrfs_mark_buffer_dirty(leaf); 1475 btrfs_release_path(path); 1476 1477 /* now insert the actual backref */ 1478 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1479 BUG_ON(refs_to_add != 1); 1480 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1481 root_objectid); 1482 } else { 1483 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1484 root_objectid, owner, offset, 1485 refs_to_add); 1486 } 1487 if (ret) 1488 btrfs_abort_transaction(trans, ret); 1489 out: 1490 btrfs_free_path(path); 1491 return ret; 1492 } 1493 1494 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1495 struct btrfs_delayed_ref_node *node, 1496 struct btrfs_delayed_extent_op *extent_op, 1497 int insert_reserved) 1498 { 1499 int ret = 0; 1500 struct btrfs_delayed_data_ref *ref; 1501 struct btrfs_key ins; 1502 u64 parent = 0; 1503 u64 ref_root = 0; 1504 u64 flags = 0; 1505 1506 ins.objectid = node->bytenr; 1507 ins.offset = node->num_bytes; 1508 ins.type = BTRFS_EXTENT_ITEM_KEY; 1509 1510 ref = btrfs_delayed_node_to_data_ref(node); 1511 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1512 1513 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1514 parent = ref->parent; 1515 ref_root = ref->root; 1516 1517 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1518 if (extent_op) 1519 flags |= extent_op->flags_to_set; 1520 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1521 flags, ref->objectid, 1522 ref->offset, &ins, 1523 node->ref_mod); 1524 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1525 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1526 ref->objectid, ref->offset, 1527 node->ref_mod, extent_op); 1528 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1529 ret = __btrfs_free_extent(trans, node, parent, 1530 ref_root, ref->objectid, 1531 ref->offset, node->ref_mod, 1532 extent_op); 1533 } else { 1534 BUG(); 1535 } 1536 return ret; 1537 } 1538 1539 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1540 struct extent_buffer *leaf, 1541 struct btrfs_extent_item *ei) 1542 { 1543 u64 flags = btrfs_extent_flags(leaf, ei); 1544 if (extent_op->update_flags) { 1545 flags |= extent_op->flags_to_set; 1546 btrfs_set_extent_flags(leaf, ei, flags); 1547 } 1548 1549 if (extent_op->update_key) { 1550 struct btrfs_tree_block_info *bi; 1551 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1552 bi = (struct btrfs_tree_block_info *)(ei + 1); 1553 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1554 } 1555 } 1556 1557 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1558 struct btrfs_delayed_ref_head *head, 1559 struct btrfs_delayed_extent_op *extent_op) 1560 { 1561 struct btrfs_fs_info *fs_info = trans->fs_info; 1562 struct btrfs_root *root; 1563 struct btrfs_key key; 1564 struct btrfs_path *path; 1565 struct btrfs_extent_item *ei; 1566 struct extent_buffer *leaf; 1567 u32 item_size; 1568 int ret; 1569 int err = 0; 1570 int metadata = 1; 1571 1572 if (TRANS_ABORTED(trans)) 1573 return 0; 1574 1575 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1576 metadata = 0; 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 key.objectid = head->bytenr; 1583 1584 if (metadata) { 1585 key.type = BTRFS_METADATA_ITEM_KEY; 1586 key.offset = extent_op->level; 1587 } else { 1588 key.type = BTRFS_EXTENT_ITEM_KEY; 1589 key.offset = head->num_bytes; 1590 } 1591 1592 root = btrfs_extent_root(fs_info, key.objectid); 1593 again: 1594 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1595 if (ret < 0) { 1596 err = ret; 1597 goto out; 1598 } 1599 if (ret > 0) { 1600 if (metadata) { 1601 if (path->slots[0] > 0) { 1602 path->slots[0]--; 1603 btrfs_item_key_to_cpu(path->nodes[0], &key, 1604 path->slots[0]); 1605 if (key.objectid == head->bytenr && 1606 key.type == BTRFS_EXTENT_ITEM_KEY && 1607 key.offset == head->num_bytes) 1608 ret = 0; 1609 } 1610 if (ret > 0) { 1611 btrfs_release_path(path); 1612 metadata = 0; 1613 1614 key.objectid = head->bytenr; 1615 key.offset = head->num_bytes; 1616 key.type = BTRFS_EXTENT_ITEM_KEY; 1617 goto again; 1618 } 1619 } else { 1620 err = -EIO; 1621 goto out; 1622 } 1623 } 1624 1625 leaf = path->nodes[0]; 1626 item_size = btrfs_item_size(leaf, path->slots[0]); 1627 1628 if (unlikely(item_size < sizeof(*ei))) { 1629 err = -EINVAL; 1630 btrfs_print_v0_err(fs_info); 1631 btrfs_abort_transaction(trans, err); 1632 goto out; 1633 } 1634 1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1636 __run_delayed_extent_op(extent_op, leaf, ei); 1637 1638 btrfs_mark_buffer_dirty(leaf); 1639 out: 1640 btrfs_free_path(path); 1641 return err; 1642 } 1643 1644 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1645 struct btrfs_delayed_ref_node *node, 1646 struct btrfs_delayed_extent_op *extent_op, 1647 int insert_reserved) 1648 { 1649 int ret = 0; 1650 struct btrfs_delayed_tree_ref *ref; 1651 u64 parent = 0; 1652 u64 ref_root = 0; 1653 1654 ref = btrfs_delayed_node_to_tree_ref(node); 1655 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1656 1657 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1658 parent = ref->parent; 1659 ref_root = ref->root; 1660 1661 if (node->ref_mod != 1) { 1662 btrfs_err(trans->fs_info, 1663 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1664 node->bytenr, node->ref_mod, node->action, ref_root, 1665 parent); 1666 return -EIO; 1667 } 1668 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1669 BUG_ON(!extent_op || !extent_op->update_flags); 1670 ret = alloc_reserved_tree_block(trans, node, extent_op); 1671 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1672 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1673 ref->level, 0, 1, extent_op); 1674 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1675 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1676 ref->level, 0, 1, extent_op); 1677 } else { 1678 BUG(); 1679 } 1680 return ret; 1681 } 1682 1683 /* helper function to actually process a single delayed ref entry */ 1684 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1685 struct btrfs_delayed_ref_node *node, 1686 struct btrfs_delayed_extent_op *extent_op, 1687 int insert_reserved) 1688 { 1689 int ret = 0; 1690 1691 if (TRANS_ABORTED(trans)) { 1692 if (insert_reserved) 1693 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1694 return 0; 1695 } 1696 1697 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1698 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1699 ret = run_delayed_tree_ref(trans, node, extent_op, 1700 insert_reserved); 1701 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1702 node->type == BTRFS_SHARED_DATA_REF_KEY) 1703 ret = run_delayed_data_ref(trans, node, extent_op, 1704 insert_reserved); 1705 else 1706 BUG(); 1707 if (ret && insert_reserved) 1708 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1709 return ret; 1710 } 1711 1712 static inline struct btrfs_delayed_ref_node * 1713 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1714 { 1715 struct btrfs_delayed_ref_node *ref; 1716 1717 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1718 return NULL; 1719 1720 /* 1721 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1722 * This is to prevent a ref count from going down to zero, which deletes 1723 * the extent item from the extent tree, when there still are references 1724 * to add, which would fail because they would not find the extent item. 1725 */ 1726 if (!list_empty(&head->ref_add_list)) 1727 return list_first_entry(&head->ref_add_list, 1728 struct btrfs_delayed_ref_node, add_list); 1729 1730 ref = rb_entry(rb_first_cached(&head->ref_tree), 1731 struct btrfs_delayed_ref_node, ref_node); 1732 ASSERT(list_empty(&ref->add_list)); 1733 return ref; 1734 } 1735 1736 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1737 struct btrfs_delayed_ref_head *head) 1738 { 1739 spin_lock(&delayed_refs->lock); 1740 head->processing = 0; 1741 delayed_refs->num_heads_ready++; 1742 spin_unlock(&delayed_refs->lock); 1743 btrfs_delayed_ref_unlock(head); 1744 } 1745 1746 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1747 struct btrfs_delayed_ref_head *head) 1748 { 1749 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1750 1751 if (!extent_op) 1752 return NULL; 1753 1754 if (head->must_insert_reserved) { 1755 head->extent_op = NULL; 1756 btrfs_free_delayed_extent_op(extent_op); 1757 return NULL; 1758 } 1759 return extent_op; 1760 } 1761 1762 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1763 struct btrfs_delayed_ref_head *head) 1764 { 1765 struct btrfs_delayed_extent_op *extent_op; 1766 int ret; 1767 1768 extent_op = cleanup_extent_op(head); 1769 if (!extent_op) 1770 return 0; 1771 head->extent_op = NULL; 1772 spin_unlock(&head->lock); 1773 ret = run_delayed_extent_op(trans, head, extent_op); 1774 btrfs_free_delayed_extent_op(extent_op); 1775 return ret ? ret : 1; 1776 } 1777 1778 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1779 struct btrfs_delayed_ref_root *delayed_refs, 1780 struct btrfs_delayed_ref_head *head) 1781 { 1782 int nr_items = 1; /* Dropping this ref head update. */ 1783 1784 /* 1785 * We had csum deletions accounted for in our delayed refs rsv, we need 1786 * to drop the csum leaves for this update from our delayed_refs_rsv. 1787 */ 1788 if (head->total_ref_mod < 0 && head->is_data) { 1789 spin_lock(&delayed_refs->lock); 1790 delayed_refs->pending_csums -= head->num_bytes; 1791 spin_unlock(&delayed_refs->lock); 1792 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1793 } 1794 1795 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1796 } 1797 1798 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1799 struct btrfs_delayed_ref_head *head) 1800 { 1801 1802 struct btrfs_fs_info *fs_info = trans->fs_info; 1803 struct btrfs_delayed_ref_root *delayed_refs; 1804 int ret; 1805 1806 delayed_refs = &trans->transaction->delayed_refs; 1807 1808 ret = run_and_cleanup_extent_op(trans, head); 1809 if (ret < 0) { 1810 unselect_delayed_ref_head(delayed_refs, head); 1811 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1812 return ret; 1813 } else if (ret) { 1814 return ret; 1815 } 1816 1817 /* 1818 * Need to drop our head ref lock and re-acquire the delayed ref lock 1819 * and then re-check to make sure nobody got added. 1820 */ 1821 spin_unlock(&head->lock); 1822 spin_lock(&delayed_refs->lock); 1823 spin_lock(&head->lock); 1824 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1825 spin_unlock(&head->lock); 1826 spin_unlock(&delayed_refs->lock); 1827 return 1; 1828 } 1829 btrfs_delete_ref_head(delayed_refs, head); 1830 spin_unlock(&head->lock); 1831 spin_unlock(&delayed_refs->lock); 1832 1833 if (head->must_insert_reserved) { 1834 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1835 if (head->is_data) { 1836 struct btrfs_root *csum_root; 1837 1838 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1839 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1840 head->num_bytes); 1841 } 1842 } 1843 1844 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1845 1846 trace_run_delayed_ref_head(fs_info, head, 0); 1847 btrfs_delayed_ref_unlock(head); 1848 btrfs_put_delayed_ref_head(head); 1849 return ret; 1850 } 1851 1852 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1853 struct btrfs_trans_handle *trans) 1854 { 1855 struct btrfs_delayed_ref_root *delayed_refs = 1856 &trans->transaction->delayed_refs; 1857 struct btrfs_delayed_ref_head *head = NULL; 1858 int ret; 1859 1860 spin_lock(&delayed_refs->lock); 1861 head = btrfs_select_ref_head(delayed_refs); 1862 if (!head) { 1863 spin_unlock(&delayed_refs->lock); 1864 return head; 1865 } 1866 1867 /* 1868 * Grab the lock that says we are going to process all the refs for 1869 * this head 1870 */ 1871 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1872 spin_unlock(&delayed_refs->lock); 1873 1874 /* 1875 * We may have dropped the spin lock to get the head mutex lock, and 1876 * that might have given someone else time to free the head. If that's 1877 * true, it has been removed from our list and we can move on. 1878 */ 1879 if (ret == -EAGAIN) 1880 head = ERR_PTR(-EAGAIN); 1881 1882 return head; 1883 } 1884 1885 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1886 struct btrfs_delayed_ref_head *locked_ref, 1887 unsigned long *run_refs) 1888 { 1889 struct btrfs_fs_info *fs_info = trans->fs_info; 1890 struct btrfs_delayed_ref_root *delayed_refs; 1891 struct btrfs_delayed_extent_op *extent_op; 1892 struct btrfs_delayed_ref_node *ref; 1893 int must_insert_reserved = 0; 1894 int ret; 1895 1896 delayed_refs = &trans->transaction->delayed_refs; 1897 1898 lockdep_assert_held(&locked_ref->mutex); 1899 lockdep_assert_held(&locked_ref->lock); 1900 1901 while ((ref = select_delayed_ref(locked_ref))) { 1902 if (ref->seq && 1903 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1904 spin_unlock(&locked_ref->lock); 1905 unselect_delayed_ref_head(delayed_refs, locked_ref); 1906 return -EAGAIN; 1907 } 1908 1909 (*run_refs)++; 1910 ref->in_tree = 0; 1911 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1912 RB_CLEAR_NODE(&ref->ref_node); 1913 if (!list_empty(&ref->add_list)) 1914 list_del(&ref->add_list); 1915 /* 1916 * When we play the delayed ref, also correct the ref_mod on 1917 * head 1918 */ 1919 switch (ref->action) { 1920 case BTRFS_ADD_DELAYED_REF: 1921 case BTRFS_ADD_DELAYED_EXTENT: 1922 locked_ref->ref_mod -= ref->ref_mod; 1923 break; 1924 case BTRFS_DROP_DELAYED_REF: 1925 locked_ref->ref_mod += ref->ref_mod; 1926 break; 1927 default: 1928 WARN_ON(1); 1929 } 1930 atomic_dec(&delayed_refs->num_entries); 1931 1932 /* 1933 * Record the must_insert_reserved flag before we drop the 1934 * spin lock. 1935 */ 1936 must_insert_reserved = locked_ref->must_insert_reserved; 1937 locked_ref->must_insert_reserved = 0; 1938 1939 extent_op = locked_ref->extent_op; 1940 locked_ref->extent_op = NULL; 1941 spin_unlock(&locked_ref->lock); 1942 1943 ret = run_one_delayed_ref(trans, ref, extent_op, 1944 must_insert_reserved); 1945 1946 btrfs_free_delayed_extent_op(extent_op); 1947 if (ret) { 1948 unselect_delayed_ref_head(delayed_refs, locked_ref); 1949 btrfs_put_delayed_ref(ref); 1950 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1951 ret); 1952 return ret; 1953 } 1954 1955 btrfs_put_delayed_ref(ref); 1956 cond_resched(); 1957 1958 spin_lock(&locked_ref->lock); 1959 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1960 } 1961 1962 return 0; 1963 } 1964 1965 /* 1966 * Returns 0 on success or if called with an already aborted transaction. 1967 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1968 */ 1969 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1970 unsigned long nr) 1971 { 1972 struct btrfs_fs_info *fs_info = trans->fs_info; 1973 struct btrfs_delayed_ref_root *delayed_refs; 1974 struct btrfs_delayed_ref_head *locked_ref = NULL; 1975 ktime_t start = ktime_get(); 1976 int ret; 1977 unsigned long count = 0; 1978 unsigned long actual_count = 0; 1979 1980 delayed_refs = &trans->transaction->delayed_refs; 1981 do { 1982 if (!locked_ref) { 1983 locked_ref = btrfs_obtain_ref_head(trans); 1984 if (IS_ERR_OR_NULL(locked_ref)) { 1985 if (PTR_ERR(locked_ref) == -EAGAIN) { 1986 continue; 1987 } else { 1988 break; 1989 } 1990 } 1991 count++; 1992 } 1993 /* 1994 * We need to try and merge add/drops of the same ref since we 1995 * can run into issues with relocate dropping the implicit ref 1996 * and then it being added back again before the drop can 1997 * finish. If we merged anything we need to re-loop so we can 1998 * get a good ref. 1999 * Or we can get node references of the same type that weren't 2000 * merged when created due to bumps in the tree mod seq, and 2001 * we need to merge them to prevent adding an inline extent 2002 * backref before dropping it (triggering a BUG_ON at 2003 * insert_inline_extent_backref()). 2004 */ 2005 spin_lock(&locked_ref->lock); 2006 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2007 2008 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2009 &actual_count); 2010 if (ret < 0 && ret != -EAGAIN) { 2011 /* 2012 * Error, btrfs_run_delayed_refs_for_head already 2013 * unlocked everything so just bail out 2014 */ 2015 return ret; 2016 } else if (!ret) { 2017 /* 2018 * Success, perform the usual cleanup of a processed 2019 * head 2020 */ 2021 ret = cleanup_ref_head(trans, locked_ref); 2022 if (ret > 0 ) { 2023 /* We dropped our lock, we need to loop. */ 2024 ret = 0; 2025 continue; 2026 } else if (ret) { 2027 return ret; 2028 } 2029 } 2030 2031 /* 2032 * Either success case or btrfs_run_delayed_refs_for_head 2033 * returned -EAGAIN, meaning we need to select another head 2034 */ 2035 2036 locked_ref = NULL; 2037 cond_resched(); 2038 } while ((nr != -1 && count < nr) || locked_ref); 2039 2040 /* 2041 * We don't want to include ref heads since we can have empty ref heads 2042 * and those will drastically skew our runtime down since we just do 2043 * accounting, no actual extent tree updates. 2044 */ 2045 if (actual_count > 0) { 2046 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2047 u64 avg; 2048 2049 /* 2050 * We weigh the current average higher than our current runtime 2051 * to avoid large swings in the average. 2052 */ 2053 spin_lock(&delayed_refs->lock); 2054 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2055 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2056 spin_unlock(&delayed_refs->lock); 2057 } 2058 return 0; 2059 } 2060 2061 #ifdef SCRAMBLE_DELAYED_REFS 2062 /* 2063 * Normally delayed refs get processed in ascending bytenr order. This 2064 * correlates in most cases to the order added. To expose dependencies on this 2065 * order, we start to process the tree in the middle instead of the beginning 2066 */ 2067 static u64 find_middle(struct rb_root *root) 2068 { 2069 struct rb_node *n = root->rb_node; 2070 struct btrfs_delayed_ref_node *entry; 2071 int alt = 1; 2072 u64 middle; 2073 u64 first = 0, last = 0; 2074 2075 n = rb_first(root); 2076 if (n) { 2077 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2078 first = entry->bytenr; 2079 } 2080 n = rb_last(root); 2081 if (n) { 2082 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2083 last = entry->bytenr; 2084 } 2085 n = root->rb_node; 2086 2087 while (n) { 2088 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2089 WARN_ON(!entry->in_tree); 2090 2091 middle = entry->bytenr; 2092 2093 if (alt) 2094 n = n->rb_left; 2095 else 2096 n = n->rb_right; 2097 2098 alt = 1 - alt; 2099 } 2100 return middle; 2101 } 2102 #endif 2103 2104 /* 2105 * this starts processing the delayed reference count updates and 2106 * extent insertions we have queued up so far. count can be 2107 * 0, which means to process everything in the tree at the start 2108 * of the run (but not newly added entries), or it can be some target 2109 * number you'd like to process. 2110 * 2111 * Returns 0 on success or if called with an aborted transaction 2112 * Returns <0 on error and aborts the transaction 2113 */ 2114 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2115 unsigned long count) 2116 { 2117 struct btrfs_fs_info *fs_info = trans->fs_info; 2118 struct rb_node *node; 2119 struct btrfs_delayed_ref_root *delayed_refs; 2120 struct btrfs_delayed_ref_head *head; 2121 int ret; 2122 int run_all = count == (unsigned long)-1; 2123 2124 /* We'll clean this up in btrfs_cleanup_transaction */ 2125 if (TRANS_ABORTED(trans)) 2126 return 0; 2127 2128 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2129 return 0; 2130 2131 delayed_refs = &trans->transaction->delayed_refs; 2132 if (count == 0) 2133 count = delayed_refs->num_heads_ready; 2134 2135 again: 2136 #ifdef SCRAMBLE_DELAYED_REFS 2137 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2138 #endif 2139 ret = __btrfs_run_delayed_refs(trans, count); 2140 if (ret < 0) { 2141 btrfs_abort_transaction(trans, ret); 2142 return ret; 2143 } 2144 2145 if (run_all) { 2146 btrfs_create_pending_block_groups(trans); 2147 2148 spin_lock(&delayed_refs->lock); 2149 node = rb_first_cached(&delayed_refs->href_root); 2150 if (!node) { 2151 spin_unlock(&delayed_refs->lock); 2152 goto out; 2153 } 2154 head = rb_entry(node, struct btrfs_delayed_ref_head, 2155 href_node); 2156 refcount_inc(&head->refs); 2157 spin_unlock(&delayed_refs->lock); 2158 2159 /* Mutex was contended, block until it's released and retry. */ 2160 mutex_lock(&head->mutex); 2161 mutex_unlock(&head->mutex); 2162 2163 btrfs_put_delayed_ref_head(head); 2164 cond_resched(); 2165 goto again; 2166 } 2167 out: 2168 return 0; 2169 } 2170 2171 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2172 struct extent_buffer *eb, u64 flags, 2173 int level) 2174 { 2175 struct btrfs_delayed_extent_op *extent_op; 2176 int ret; 2177 2178 extent_op = btrfs_alloc_delayed_extent_op(); 2179 if (!extent_op) 2180 return -ENOMEM; 2181 2182 extent_op->flags_to_set = flags; 2183 extent_op->update_flags = true; 2184 extent_op->update_key = false; 2185 extent_op->level = level; 2186 2187 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2188 if (ret) 2189 btrfs_free_delayed_extent_op(extent_op); 2190 return ret; 2191 } 2192 2193 static noinline int check_delayed_ref(struct btrfs_root *root, 2194 struct btrfs_path *path, 2195 u64 objectid, u64 offset, u64 bytenr) 2196 { 2197 struct btrfs_delayed_ref_head *head; 2198 struct btrfs_delayed_ref_node *ref; 2199 struct btrfs_delayed_data_ref *data_ref; 2200 struct btrfs_delayed_ref_root *delayed_refs; 2201 struct btrfs_transaction *cur_trans; 2202 struct rb_node *node; 2203 int ret = 0; 2204 2205 spin_lock(&root->fs_info->trans_lock); 2206 cur_trans = root->fs_info->running_transaction; 2207 if (cur_trans) 2208 refcount_inc(&cur_trans->use_count); 2209 spin_unlock(&root->fs_info->trans_lock); 2210 if (!cur_trans) 2211 return 0; 2212 2213 delayed_refs = &cur_trans->delayed_refs; 2214 spin_lock(&delayed_refs->lock); 2215 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2216 if (!head) { 2217 spin_unlock(&delayed_refs->lock); 2218 btrfs_put_transaction(cur_trans); 2219 return 0; 2220 } 2221 2222 if (!mutex_trylock(&head->mutex)) { 2223 if (path->nowait) { 2224 spin_unlock(&delayed_refs->lock); 2225 btrfs_put_transaction(cur_trans); 2226 return -EAGAIN; 2227 } 2228 2229 refcount_inc(&head->refs); 2230 spin_unlock(&delayed_refs->lock); 2231 2232 btrfs_release_path(path); 2233 2234 /* 2235 * Mutex was contended, block until it's released and let 2236 * caller try again 2237 */ 2238 mutex_lock(&head->mutex); 2239 mutex_unlock(&head->mutex); 2240 btrfs_put_delayed_ref_head(head); 2241 btrfs_put_transaction(cur_trans); 2242 return -EAGAIN; 2243 } 2244 spin_unlock(&delayed_refs->lock); 2245 2246 spin_lock(&head->lock); 2247 /* 2248 * XXX: We should replace this with a proper search function in the 2249 * future. 2250 */ 2251 for (node = rb_first_cached(&head->ref_tree); node; 2252 node = rb_next(node)) { 2253 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2254 /* If it's a shared ref we know a cross reference exists */ 2255 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2256 ret = 1; 2257 break; 2258 } 2259 2260 data_ref = btrfs_delayed_node_to_data_ref(ref); 2261 2262 /* 2263 * If our ref doesn't match the one we're currently looking at 2264 * then we have a cross reference. 2265 */ 2266 if (data_ref->root != root->root_key.objectid || 2267 data_ref->objectid != objectid || 2268 data_ref->offset != offset) { 2269 ret = 1; 2270 break; 2271 } 2272 } 2273 spin_unlock(&head->lock); 2274 mutex_unlock(&head->mutex); 2275 btrfs_put_transaction(cur_trans); 2276 return ret; 2277 } 2278 2279 static noinline int check_committed_ref(struct btrfs_root *root, 2280 struct btrfs_path *path, 2281 u64 objectid, u64 offset, u64 bytenr, 2282 bool strict) 2283 { 2284 struct btrfs_fs_info *fs_info = root->fs_info; 2285 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2286 struct extent_buffer *leaf; 2287 struct btrfs_extent_data_ref *ref; 2288 struct btrfs_extent_inline_ref *iref; 2289 struct btrfs_extent_item *ei; 2290 struct btrfs_key key; 2291 u32 item_size; 2292 int type; 2293 int ret; 2294 2295 key.objectid = bytenr; 2296 key.offset = (u64)-1; 2297 key.type = BTRFS_EXTENT_ITEM_KEY; 2298 2299 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2300 if (ret < 0) 2301 goto out; 2302 BUG_ON(ret == 0); /* Corruption */ 2303 2304 ret = -ENOENT; 2305 if (path->slots[0] == 0) 2306 goto out; 2307 2308 path->slots[0]--; 2309 leaf = path->nodes[0]; 2310 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2311 2312 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2313 goto out; 2314 2315 ret = 1; 2316 item_size = btrfs_item_size(leaf, path->slots[0]); 2317 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2318 2319 /* If extent item has more than 1 inline ref then it's shared */ 2320 if (item_size != sizeof(*ei) + 2321 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2322 goto out; 2323 2324 /* 2325 * If extent created before last snapshot => it's shared unless the 2326 * snapshot has been deleted. Use the heuristic if strict is false. 2327 */ 2328 if (!strict && 2329 (btrfs_extent_generation(leaf, ei) <= 2330 btrfs_root_last_snapshot(&root->root_item))) 2331 goto out; 2332 2333 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2334 2335 /* If this extent has SHARED_DATA_REF then it's shared */ 2336 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2337 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2338 goto out; 2339 2340 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2341 if (btrfs_extent_refs(leaf, ei) != 2342 btrfs_extent_data_ref_count(leaf, ref) || 2343 btrfs_extent_data_ref_root(leaf, ref) != 2344 root->root_key.objectid || 2345 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2346 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2347 goto out; 2348 2349 ret = 0; 2350 out: 2351 return ret; 2352 } 2353 2354 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2355 u64 bytenr, bool strict, struct btrfs_path *path) 2356 { 2357 int ret; 2358 2359 do { 2360 ret = check_committed_ref(root, path, objectid, 2361 offset, bytenr, strict); 2362 if (ret && ret != -ENOENT) 2363 goto out; 2364 2365 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2366 } while (ret == -EAGAIN); 2367 2368 out: 2369 btrfs_release_path(path); 2370 if (btrfs_is_data_reloc_root(root)) 2371 WARN_ON(ret > 0); 2372 return ret; 2373 } 2374 2375 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2376 struct btrfs_root *root, 2377 struct extent_buffer *buf, 2378 int full_backref, int inc) 2379 { 2380 struct btrfs_fs_info *fs_info = root->fs_info; 2381 u64 bytenr; 2382 u64 num_bytes; 2383 u64 parent; 2384 u64 ref_root; 2385 u32 nritems; 2386 struct btrfs_key key; 2387 struct btrfs_file_extent_item *fi; 2388 struct btrfs_ref generic_ref = { 0 }; 2389 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2390 int i; 2391 int action; 2392 int level; 2393 int ret = 0; 2394 2395 if (btrfs_is_testing(fs_info)) 2396 return 0; 2397 2398 ref_root = btrfs_header_owner(buf); 2399 nritems = btrfs_header_nritems(buf); 2400 level = btrfs_header_level(buf); 2401 2402 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2403 return 0; 2404 2405 if (full_backref) 2406 parent = buf->start; 2407 else 2408 parent = 0; 2409 if (inc) 2410 action = BTRFS_ADD_DELAYED_REF; 2411 else 2412 action = BTRFS_DROP_DELAYED_REF; 2413 2414 for (i = 0; i < nritems; i++) { 2415 if (level == 0) { 2416 btrfs_item_key_to_cpu(buf, &key, i); 2417 if (key.type != BTRFS_EXTENT_DATA_KEY) 2418 continue; 2419 fi = btrfs_item_ptr(buf, i, 2420 struct btrfs_file_extent_item); 2421 if (btrfs_file_extent_type(buf, fi) == 2422 BTRFS_FILE_EXTENT_INLINE) 2423 continue; 2424 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2425 if (bytenr == 0) 2426 continue; 2427 2428 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2429 key.offset -= btrfs_file_extent_offset(buf, fi); 2430 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2431 num_bytes, parent); 2432 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2433 key.offset, root->root_key.objectid, 2434 for_reloc); 2435 if (inc) 2436 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2437 else 2438 ret = btrfs_free_extent(trans, &generic_ref); 2439 if (ret) 2440 goto fail; 2441 } else { 2442 bytenr = btrfs_node_blockptr(buf, i); 2443 num_bytes = fs_info->nodesize; 2444 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2445 num_bytes, parent); 2446 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2447 root->root_key.objectid, for_reloc); 2448 if (inc) 2449 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2450 else 2451 ret = btrfs_free_extent(trans, &generic_ref); 2452 if (ret) 2453 goto fail; 2454 } 2455 } 2456 return 0; 2457 fail: 2458 return ret; 2459 } 2460 2461 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2462 struct extent_buffer *buf, int full_backref) 2463 { 2464 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2465 } 2466 2467 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2468 struct extent_buffer *buf, int full_backref) 2469 { 2470 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2471 } 2472 2473 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2474 { 2475 struct btrfs_fs_info *fs_info = root->fs_info; 2476 u64 flags; 2477 u64 ret; 2478 2479 if (data) 2480 flags = BTRFS_BLOCK_GROUP_DATA; 2481 else if (root == fs_info->chunk_root) 2482 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2483 else 2484 flags = BTRFS_BLOCK_GROUP_METADATA; 2485 2486 ret = btrfs_get_alloc_profile(fs_info, flags); 2487 return ret; 2488 } 2489 2490 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2491 { 2492 struct rb_node *leftmost; 2493 u64 bytenr = 0; 2494 2495 read_lock(&fs_info->block_group_cache_lock); 2496 /* Get the block group with the lowest logical start address. */ 2497 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2498 if (leftmost) { 2499 struct btrfs_block_group *bg; 2500 2501 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2502 bytenr = bg->start; 2503 } 2504 read_unlock(&fs_info->block_group_cache_lock); 2505 2506 return bytenr; 2507 } 2508 2509 static int pin_down_extent(struct btrfs_trans_handle *trans, 2510 struct btrfs_block_group *cache, 2511 u64 bytenr, u64 num_bytes, int reserved) 2512 { 2513 struct btrfs_fs_info *fs_info = cache->fs_info; 2514 2515 spin_lock(&cache->space_info->lock); 2516 spin_lock(&cache->lock); 2517 cache->pinned += num_bytes; 2518 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2519 num_bytes); 2520 if (reserved) { 2521 cache->reserved -= num_bytes; 2522 cache->space_info->bytes_reserved -= num_bytes; 2523 } 2524 spin_unlock(&cache->lock); 2525 spin_unlock(&cache->space_info->lock); 2526 2527 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2528 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2529 return 0; 2530 } 2531 2532 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2533 u64 bytenr, u64 num_bytes, int reserved) 2534 { 2535 struct btrfs_block_group *cache; 2536 2537 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2538 BUG_ON(!cache); /* Logic error */ 2539 2540 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2541 2542 btrfs_put_block_group(cache); 2543 return 0; 2544 } 2545 2546 /* 2547 * this function must be called within transaction 2548 */ 2549 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2550 u64 bytenr, u64 num_bytes) 2551 { 2552 struct btrfs_block_group *cache; 2553 int ret; 2554 2555 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2556 if (!cache) 2557 return -EINVAL; 2558 2559 /* 2560 * Fully cache the free space first so that our pin removes the free space 2561 * from the cache. 2562 */ 2563 ret = btrfs_cache_block_group(cache, true); 2564 if (ret) 2565 goto out; 2566 2567 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2568 2569 /* remove us from the free space cache (if we're there at all) */ 2570 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2571 out: 2572 btrfs_put_block_group(cache); 2573 return ret; 2574 } 2575 2576 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2577 u64 start, u64 num_bytes) 2578 { 2579 int ret; 2580 struct btrfs_block_group *block_group; 2581 2582 block_group = btrfs_lookup_block_group(fs_info, start); 2583 if (!block_group) 2584 return -EINVAL; 2585 2586 ret = btrfs_cache_block_group(block_group, true); 2587 if (ret) 2588 goto out; 2589 2590 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2591 out: 2592 btrfs_put_block_group(block_group); 2593 return ret; 2594 } 2595 2596 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2597 { 2598 struct btrfs_fs_info *fs_info = eb->fs_info; 2599 struct btrfs_file_extent_item *item; 2600 struct btrfs_key key; 2601 int found_type; 2602 int i; 2603 int ret = 0; 2604 2605 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2606 return 0; 2607 2608 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2609 btrfs_item_key_to_cpu(eb, &key, i); 2610 if (key.type != BTRFS_EXTENT_DATA_KEY) 2611 continue; 2612 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2613 found_type = btrfs_file_extent_type(eb, item); 2614 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2615 continue; 2616 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2617 continue; 2618 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2619 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2620 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2621 if (ret) 2622 break; 2623 } 2624 2625 return ret; 2626 } 2627 2628 static void 2629 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2630 { 2631 atomic_inc(&bg->reservations); 2632 } 2633 2634 /* 2635 * Returns the free cluster for the given space info and sets empty_cluster to 2636 * what it should be based on the mount options. 2637 */ 2638 static struct btrfs_free_cluster * 2639 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2640 struct btrfs_space_info *space_info, u64 *empty_cluster) 2641 { 2642 struct btrfs_free_cluster *ret = NULL; 2643 2644 *empty_cluster = 0; 2645 if (btrfs_mixed_space_info(space_info)) 2646 return ret; 2647 2648 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2649 ret = &fs_info->meta_alloc_cluster; 2650 if (btrfs_test_opt(fs_info, SSD)) 2651 *empty_cluster = SZ_2M; 2652 else 2653 *empty_cluster = SZ_64K; 2654 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2655 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2656 *empty_cluster = SZ_2M; 2657 ret = &fs_info->data_alloc_cluster; 2658 } 2659 2660 return ret; 2661 } 2662 2663 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2664 u64 start, u64 end, 2665 const bool return_free_space) 2666 { 2667 struct btrfs_block_group *cache = NULL; 2668 struct btrfs_space_info *space_info; 2669 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2670 struct btrfs_free_cluster *cluster = NULL; 2671 u64 len; 2672 u64 total_unpinned = 0; 2673 u64 empty_cluster = 0; 2674 bool readonly; 2675 2676 while (start <= end) { 2677 readonly = false; 2678 if (!cache || 2679 start >= cache->start + cache->length) { 2680 if (cache) 2681 btrfs_put_block_group(cache); 2682 total_unpinned = 0; 2683 cache = btrfs_lookup_block_group(fs_info, start); 2684 BUG_ON(!cache); /* Logic error */ 2685 2686 cluster = fetch_cluster_info(fs_info, 2687 cache->space_info, 2688 &empty_cluster); 2689 empty_cluster <<= 1; 2690 } 2691 2692 len = cache->start + cache->length - start; 2693 len = min(len, end + 1 - start); 2694 2695 if (return_free_space) 2696 btrfs_add_free_space(cache, start, len); 2697 2698 start += len; 2699 total_unpinned += len; 2700 space_info = cache->space_info; 2701 2702 /* 2703 * If this space cluster has been marked as fragmented and we've 2704 * unpinned enough in this block group to potentially allow a 2705 * cluster to be created inside of it go ahead and clear the 2706 * fragmented check. 2707 */ 2708 if (cluster && cluster->fragmented && 2709 total_unpinned > empty_cluster) { 2710 spin_lock(&cluster->lock); 2711 cluster->fragmented = 0; 2712 spin_unlock(&cluster->lock); 2713 } 2714 2715 spin_lock(&space_info->lock); 2716 spin_lock(&cache->lock); 2717 cache->pinned -= len; 2718 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2719 space_info->max_extent_size = 0; 2720 if (cache->ro) { 2721 space_info->bytes_readonly += len; 2722 readonly = true; 2723 } else if (btrfs_is_zoned(fs_info)) { 2724 /* Need reset before reusing in a zoned block group */ 2725 space_info->bytes_zone_unusable += len; 2726 readonly = true; 2727 } 2728 spin_unlock(&cache->lock); 2729 if (!readonly && return_free_space && 2730 global_rsv->space_info == space_info) { 2731 spin_lock(&global_rsv->lock); 2732 if (!global_rsv->full) { 2733 u64 to_add = min(len, global_rsv->size - 2734 global_rsv->reserved); 2735 2736 global_rsv->reserved += to_add; 2737 btrfs_space_info_update_bytes_may_use(fs_info, 2738 space_info, to_add); 2739 if (global_rsv->reserved >= global_rsv->size) 2740 global_rsv->full = 1; 2741 len -= to_add; 2742 } 2743 spin_unlock(&global_rsv->lock); 2744 } 2745 /* Add to any tickets we may have */ 2746 if (!readonly && return_free_space && len) 2747 btrfs_try_granting_tickets(fs_info, space_info); 2748 spin_unlock(&space_info->lock); 2749 } 2750 2751 if (cache) 2752 btrfs_put_block_group(cache); 2753 return 0; 2754 } 2755 2756 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2757 { 2758 struct btrfs_fs_info *fs_info = trans->fs_info; 2759 struct btrfs_block_group *block_group, *tmp; 2760 struct list_head *deleted_bgs; 2761 struct extent_io_tree *unpin; 2762 u64 start; 2763 u64 end; 2764 int ret; 2765 2766 unpin = &trans->transaction->pinned_extents; 2767 2768 while (!TRANS_ABORTED(trans)) { 2769 struct extent_state *cached_state = NULL; 2770 2771 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2772 ret = find_first_extent_bit(unpin, 0, &start, &end, 2773 EXTENT_DIRTY, &cached_state); 2774 if (ret) { 2775 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2776 break; 2777 } 2778 2779 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2780 ret = btrfs_discard_extent(fs_info, start, 2781 end + 1 - start, NULL); 2782 2783 clear_extent_dirty(unpin, start, end, &cached_state); 2784 unpin_extent_range(fs_info, start, end, true); 2785 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2786 free_extent_state(cached_state); 2787 cond_resched(); 2788 } 2789 2790 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2791 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2792 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2793 } 2794 2795 /* 2796 * Transaction is finished. We don't need the lock anymore. We 2797 * do need to clean up the block groups in case of a transaction 2798 * abort. 2799 */ 2800 deleted_bgs = &trans->transaction->deleted_bgs; 2801 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2802 u64 trimmed = 0; 2803 2804 ret = -EROFS; 2805 if (!TRANS_ABORTED(trans)) 2806 ret = btrfs_discard_extent(fs_info, 2807 block_group->start, 2808 block_group->length, 2809 &trimmed); 2810 2811 list_del_init(&block_group->bg_list); 2812 btrfs_unfreeze_block_group(block_group); 2813 btrfs_put_block_group(block_group); 2814 2815 if (ret) { 2816 const char *errstr = btrfs_decode_error(ret); 2817 btrfs_warn(fs_info, 2818 "discard failed while removing blockgroup: errno=%d %s", 2819 ret, errstr); 2820 } 2821 } 2822 2823 return 0; 2824 } 2825 2826 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2827 u64 bytenr, u64 num_bytes, bool is_data) 2828 { 2829 int ret; 2830 2831 if (is_data) { 2832 struct btrfs_root *csum_root; 2833 2834 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2835 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2836 if (ret) { 2837 btrfs_abort_transaction(trans, ret); 2838 return ret; 2839 } 2840 } 2841 2842 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2843 if (ret) { 2844 btrfs_abort_transaction(trans, ret); 2845 return ret; 2846 } 2847 2848 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2849 if (ret) 2850 btrfs_abort_transaction(trans, ret); 2851 2852 return ret; 2853 } 2854 2855 /* 2856 * Drop one or more refs of @node. 2857 * 2858 * 1. Locate the extent refs. 2859 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2860 * Locate it, then reduce the refs number or remove the ref line completely. 2861 * 2862 * 2. Update the refs count in EXTENT/METADATA_ITEM 2863 * 2864 * Inline backref case: 2865 * 2866 * in extent tree we have: 2867 * 2868 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2869 * refs 2 gen 6 flags DATA 2870 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2871 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2872 * 2873 * This function gets called with: 2874 * 2875 * node->bytenr = 13631488 2876 * node->num_bytes = 1048576 2877 * root_objectid = FS_TREE 2878 * owner_objectid = 257 2879 * owner_offset = 0 2880 * refs_to_drop = 1 2881 * 2882 * Then we should get some like: 2883 * 2884 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2885 * refs 1 gen 6 flags DATA 2886 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2887 * 2888 * Keyed backref case: 2889 * 2890 * in extent tree we have: 2891 * 2892 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2893 * refs 754 gen 6 flags DATA 2894 * [...] 2895 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2896 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2897 * 2898 * This function get called with: 2899 * 2900 * node->bytenr = 13631488 2901 * node->num_bytes = 1048576 2902 * root_objectid = FS_TREE 2903 * owner_objectid = 866 2904 * owner_offset = 0 2905 * refs_to_drop = 1 2906 * 2907 * Then we should get some like: 2908 * 2909 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2910 * refs 753 gen 6 flags DATA 2911 * 2912 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2913 */ 2914 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2915 struct btrfs_delayed_ref_node *node, u64 parent, 2916 u64 root_objectid, u64 owner_objectid, 2917 u64 owner_offset, int refs_to_drop, 2918 struct btrfs_delayed_extent_op *extent_op) 2919 { 2920 struct btrfs_fs_info *info = trans->fs_info; 2921 struct btrfs_key key; 2922 struct btrfs_path *path; 2923 struct btrfs_root *extent_root; 2924 struct extent_buffer *leaf; 2925 struct btrfs_extent_item *ei; 2926 struct btrfs_extent_inline_ref *iref; 2927 int ret; 2928 int is_data; 2929 int extent_slot = 0; 2930 int found_extent = 0; 2931 int num_to_del = 1; 2932 u32 item_size; 2933 u64 refs; 2934 u64 bytenr = node->bytenr; 2935 u64 num_bytes = node->num_bytes; 2936 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2937 2938 extent_root = btrfs_extent_root(info, bytenr); 2939 ASSERT(extent_root); 2940 2941 path = btrfs_alloc_path(); 2942 if (!path) 2943 return -ENOMEM; 2944 2945 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2946 2947 if (!is_data && refs_to_drop != 1) { 2948 btrfs_crit(info, 2949 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2950 node->bytenr, refs_to_drop); 2951 ret = -EINVAL; 2952 btrfs_abort_transaction(trans, ret); 2953 goto out; 2954 } 2955 2956 if (is_data) 2957 skinny_metadata = false; 2958 2959 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2960 parent, root_objectid, owner_objectid, 2961 owner_offset); 2962 if (ret == 0) { 2963 /* 2964 * Either the inline backref or the SHARED_DATA_REF/ 2965 * SHARED_BLOCK_REF is found 2966 * 2967 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2968 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2969 */ 2970 extent_slot = path->slots[0]; 2971 while (extent_slot >= 0) { 2972 btrfs_item_key_to_cpu(path->nodes[0], &key, 2973 extent_slot); 2974 if (key.objectid != bytenr) 2975 break; 2976 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2977 key.offset == num_bytes) { 2978 found_extent = 1; 2979 break; 2980 } 2981 if (key.type == BTRFS_METADATA_ITEM_KEY && 2982 key.offset == owner_objectid) { 2983 found_extent = 1; 2984 break; 2985 } 2986 2987 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2988 if (path->slots[0] - extent_slot > 5) 2989 break; 2990 extent_slot--; 2991 } 2992 2993 if (!found_extent) { 2994 if (iref) { 2995 btrfs_crit(info, 2996 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 2997 btrfs_abort_transaction(trans, -EUCLEAN); 2998 goto err_dump; 2999 } 3000 /* Must be SHARED_* item, remove the backref first */ 3001 ret = remove_extent_backref(trans, extent_root, path, 3002 NULL, refs_to_drop, is_data); 3003 if (ret) { 3004 btrfs_abort_transaction(trans, ret); 3005 goto out; 3006 } 3007 btrfs_release_path(path); 3008 3009 /* Slow path to locate EXTENT/METADATA_ITEM */ 3010 key.objectid = bytenr; 3011 key.type = BTRFS_EXTENT_ITEM_KEY; 3012 key.offset = num_bytes; 3013 3014 if (!is_data && skinny_metadata) { 3015 key.type = BTRFS_METADATA_ITEM_KEY; 3016 key.offset = owner_objectid; 3017 } 3018 3019 ret = btrfs_search_slot(trans, extent_root, 3020 &key, path, -1, 1); 3021 if (ret > 0 && skinny_metadata && path->slots[0]) { 3022 /* 3023 * Couldn't find our skinny metadata item, 3024 * see if we have ye olde extent item. 3025 */ 3026 path->slots[0]--; 3027 btrfs_item_key_to_cpu(path->nodes[0], &key, 3028 path->slots[0]); 3029 if (key.objectid == bytenr && 3030 key.type == BTRFS_EXTENT_ITEM_KEY && 3031 key.offset == num_bytes) 3032 ret = 0; 3033 } 3034 3035 if (ret > 0 && skinny_metadata) { 3036 skinny_metadata = false; 3037 key.objectid = bytenr; 3038 key.type = BTRFS_EXTENT_ITEM_KEY; 3039 key.offset = num_bytes; 3040 btrfs_release_path(path); 3041 ret = btrfs_search_slot(trans, extent_root, 3042 &key, path, -1, 1); 3043 } 3044 3045 if (ret) { 3046 btrfs_err(info, 3047 "umm, got %d back from search, was looking for %llu", 3048 ret, bytenr); 3049 if (ret > 0) 3050 btrfs_print_leaf(path->nodes[0]); 3051 } 3052 if (ret < 0) { 3053 btrfs_abort_transaction(trans, ret); 3054 goto out; 3055 } 3056 extent_slot = path->slots[0]; 3057 } 3058 } else if (WARN_ON(ret == -ENOENT)) { 3059 btrfs_print_leaf(path->nodes[0]); 3060 btrfs_err(info, 3061 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3062 bytenr, parent, root_objectid, owner_objectid, 3063 owner_offset); 3064 btrfs_abort_transaction(trans, ret); 3065 goto out; 3066 } else { 3067 btrfs_abort_transaction(trans, ret); 3068 goto out; 3069 } 3070 3071 leaf = path->nodes[0]; 3072 item_size = btrfs_item_size(leaf, extent_slot); 3073 if (unlikely(item_size < sizeof(*ei))) { 3074 ret = -EINVAL; 3075 btrfs_print_v0_err(info); 3076 btrfs_abort_transaction(trans, ret); 3077 goto out; 3078 } 3079 ei = btrfs_item_ptr(leaf, extent_slot, 3080 struct btrfs_extent_item); 3081 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3082 key.type == BTRFS_EXTENT_ITEM_KEY) { 3083 struct btrfs_tree_block_info *bi; 3084 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3085 btrfs_crit(info, 3086 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3087 key.objectid, key.type, key.offset, 3088 owner_objectid, item_size, 3089 sizeof(*ei) + sizeof(*bi)); 3090 btrfs_abort_transaction(trans, -EUCLEAN); 3091 goto err_dump; 3092 } 3093 bi = (struct btrfs_tree_block_info *)(ei + 1); 3094 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3095 } 3096 3097 refs = btrfs_extent_refs(leaf, ei); 3098 if (refs < refs_to_drop) { 3099 btrfs_crit(info, 3100 "trying to drop %d refs but we only have %llu for bytenr %llu", 3101 refs_to_drop, refs, bytenr); 3102 btrfs_abort_transaction(trans, -EUCLEAN); 3103 goto err_dump; 3104 } 3105 refs -= refs_to_drop; 3106 3107 if (refs > 0) { 3108 if (extent_op) 3109 __run_delayed_extent_op(extent_op, leaf, ei); 3110 /* 3111 * In the case of inline back ref, reference count will 3112 * be updated by remove_extent_backref 3113 */ 3114 if (iref) { 3115 if (!found_extent) { 3116 btrfs_crit(info, 3117 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3118 btrfs_abort_transaction(trans, -EUCLEAN); 3119 goto err_dump; 3120 } 3121 } else { 3122 btrfs_set_extent_refs(leaf, ei, refs); 3123 btrfs_mark_buffer_dirty(leaf); 3124 } 3125 if (found_extent) { 3126 ret = remove_extent_backref(trans, extent_root, path, 3127 iref, refs_to_drop, is_data); 3128 if (ret) { 3129 btrfs_abort_transaction(trans, ret); 3130 goto out; 3131 } 3132 } 3133 } else { 3134 /* In this branch refs == 1 */ 3135 if (found_extent) { 3136 if (is_data && refs_to_drop != 3137 extent_data_ref_count(path, iref)) { 3138 btrfs_crit(info, 3139 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3140 extent_data_ref_count(path, iref), 3141 refs_to_drop); 3142 btrfs_abort_transaction(trans, -EUCLEAN); 3143 goto err_dump; 3144 } 3145 if (iref) { 3146 if (path->slots[0] != extent_slot) { 3147 btrfs_crit(info, 3148 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3149 key.objectid, key.type, 3150 key.offset); 3151 btrfs_abort_transaction(trans, -EUCLEAN); 3152 goto err_dump; 3153 } 3154 } else { 3155 /* 3156 * No inline ref, we must be at SHARED_* item, 3157 * And it's single ref, it must be: 3158 * | extent_slot ||extent_slot + 1| 3159 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3160 */ 3161 if (path->slots[0] != extent_slot + 1) { 3162 btrfs_crit(info, 3163 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3164 btrfs_abort_transaction(trans, -EUCLEAN); 3165 goto err_dump; 3166 } 3167 path->slots[0] = extent_slot; 3168 num_to_del = 2; 3169 } 3170 } 3171 3172 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3173 num_to_del); 3174 if (ret) { 3175 btrfs_abort_transaction(trans, ret); 3176 goto out; 3177 } 3178 btrfs_release_path(path); 3179 3180 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3181 } 3182 btrfs_release_path(path); 3183 3184 out: 3185 btrfs_free_path(path); 3186 return ret; 3187 err_dump: 3188 /* 3189 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3190 * dump for debug build. 3191 */ 3192 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3193 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3194 path->slots[0], extent_slot); 3195 btrfs_print_leaf(path->nodes[0]); 3196 } 3197 3198 btrfs_free_path(path); 3199 return -EUCLEAN; 3200 } 3201 3202 /* 3203 * when we free an block, it is possible (and likely) that we free the last 3204 * delayed ref for that extent as well. This searches the delayed ref tree for 3205 * a given extent, and if there are no other delayed refs to be processed, it 3206 * removes it from the tree. 3207 */ 3208 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3209 u64 bytenr) 3210 { 3211 struct btrfs_delayed_ref_head *head; 3212 struct btrfs_delayed_ref_root *delayed_refs; 3213 int ret = 0; 3214 3215 delayed_refs = &trans->transaction->delayed_refs; 3216 spin_lock(&delayed_refs->lock); 3217 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3218 if (!head) 3219 goto out_delayed_unlock; 3220 3221 spin_lock(&head->lock); 3222 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3223 goto out; 3224 3225 if (cleanup_extent_op(head) != NULL) 3226 goto out; 3227 3228 /* 3229 * waiting for the lock here would deadlock. If someone else has it 3230 * locked they are already in the process of dropping it anyway 3231 */ 3232 if (!mutex_trylock(&head->mutex)) 3233 goto out; 3234 3235 btrfs_delete_ref_head(delayed_refs, head); 3236 head->processing = 0; 3237 3238 spin_unlock(&head->lock); 3239 spin_unlock(&delayed_refs->lock); 3240 3241 BUG_ON(head->extent_op); 3242 if (head->must_insert_reserved) 3243 ret = 1; 3244 3245 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3246 mutex_unlock(&head->mutex); 3247 btrfs_put_delayed_ref_head(head); 3248 return ret; 3249 out: 3250 spin_unlock(&head->lock); 3251 3252 out_delayed_unlock: 3253 spin_unlock(&delayed_refs->lock); 3254 return 0; 3255 } 3256 3257 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3258 u64 root_id, 3259 struct extent_buffer *buf, 3260 u64 parent, int last_ref) 3261 { 3262 struct btrfs_fs_info *fs_info = trans->fs_info; 3263 struct btrfs_ref generic_ref = { 0 }; 3264 int ret; 3265 3266 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3267 buf->start, buf->len, parent); 3268 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3269 root_id, 0, false); 3270 3271 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3272 btrfs_ref_tree_mod(fs_info, &generic_ref); 3273 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3274 BUG_ON(ret); /* -ENOMEM */ 3275 } 3276 3277 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3278 struct btrfs_block_group *cache; 3279 bool must_pin = false; 3280 3281 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3282 ret = check_ref_cleanup(trans, buf->start); 3283 if (!ret) { 3284 btrfs_redirty_list_add(trans->transaction, buf); 3285 goto out; 3286 } 3287 } 3288 3289 cache = btrfs_lookup_block_group(fs_info, buf->start); 3290 3291 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3292 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3293 btrfs_put_block_group(cache); 3294 goto out; 3295 } 3296 3297 /* 3298 * If there are tree mod log users we may have recorded mod log 3299 * operations for this node. If we re-allocate this node we 3300 * could replay operations on this node that happened when it 3301 * existed in a completely different root. For example if it 3302 * was part of root A, then was reallocated to root B, and we 3303 * are doing a btrfs_old_search_slot(root b), we could replay 3304 * operations that happened when the block was part of root A, 3305 * giving us an inconsistent view of the btree. 3306 * 3307 * We are safe from races here because at this point no other 3308 * node or root points to this extent buffer, so if after this 3309 * check a new tree mod log user joins we will not have an 3310 * existing log of operations on this node that we have to 3311 * contend with. 3312 */ 3313 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3314 must_pin = true; 3315 3316 if (must_pin || btrfs_is_zoned(fs_info)) { 3317 btrfs_redirty_list_add(trans->transaction, buf); 3318 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3319 btrfs_put_block_group(cache); 3320 goto out; 3321 } 3322 3323 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3324 3325 btrfs_add_free_space(cache, buf->start, buf->len); 3326 btrfs_free_reserved_bytes(cache, buf->len, 0); 3327 btrfs_put_block_group(cache); 3328 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3329 } 3330 out: 3331 if (last_ref) { 3332 /* 3333 * Deleting the buffer, clear the corrupt flag since it doesn't 3334 * matter anymore. 3335 */ 3336 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3337 } 3338 } 3339 3340 /* Can return -ENOMEM */ 3341 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3342 { 3343 struct btrfs_fs_info *fs_info = trans->fs_info; 3344 int ret; 3345 3346 if (btrfs_is_testing(fs_info)) 3347 return 0; 3348 3349 /* 3350 * tree log blocks never actually go into the extent allocation 3351 * tree, just update pinning info and exit early. 3352 */ 3353 if ((ref->type == BTRFS_REF_METADATA && 3354 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3355 (ref->type == BTRFS_REF_DATA && 3356 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3357 /* unlocks the pinned mutex */ 3358 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3359 ret = 0; 3360 } else if (ref->type == BTRFS_REF_METADATA) { 3361 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3362 } else { 3363 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3364 } 3365 3366 if (!((ref->type == BTRFS_REF_METADATA && 3367 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3368 (ref->type == BTRFS_REF_DATA && 3369 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3370 btrfs_ref_tree_mod(fs_info, ref); 3371 3372 return ret; 3373 } 3374 3375 enum btrfs_loop_type { 3376 LOOP_CACHING_NOWAIT, 3377 LOOP_CACHING_WAIT, 3378 LOOP_ALLOC_CHUNK, 3379 LOOP_NO_EMPTY_SIZE, 3380 }; 3381 3382 static inline void 3383 btrfs_lock_block_group(struct btrfs_block_group *cache, 3384 int delalloc) 3385 { 3386 if (delalloc) 3387 down_read(&cache->data_rwsem); 3388 } 3389 3390 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3391 int delalloc) 3392 { 3393 btrfs_get_block_group(cache); 3394 if (delalloc) 3395 down_read(&cache->data_rwsem); 3396 } 3397 3398 static struct btrfs_block_group *btrfs_lock_cluster( 3399 struct btrfs_block_group *block_group, 3400 struct btrfs_free_cluster *cluster, 3401 int delalloc) 3402 __acquires(&cluster->refill_lock) 3403 { 3404 struct btrfs_block_group *used_bg = NULL; 3405 3406 spin_lock(&cluster->refill_lock); 3407 while (1) { 3408 used_bg = cluster->block_group; 3409 if (!used_bg) 3410 return NULL; 3411 3412 if (used_bg == block_group) 3413 return used_bg; 3414 3415 btrfs_get_block_group(used_bg); 3416 3417 if (!delalloc) 3418 return used_bg; 3419 3420 if (down_read_trylock(&used_bg->data_rwsem)) 3421 return used_bg; 3422 3423 spin_unlock(&cluster->refill_lock); 3424 3425 /* We should only have one-level nested. */ 3426 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3427 3428 spin_lock(&cluster->refill_lock); 3429 if (used_bg == cluster->block_group) 3430 return used_bg; 3431 3432 up_read(&used_bg->data_rwsem); 3433 btrfs_put_block_group(used_bg); 3434 } 3435 } 3436 3437 static inline void 3438 btrfs_release_block_group(struct btrfs_block_group *cache, 3439 int delalloc) 3440 { 3441 if (delalloc) 3442 up_read(&cache->data_rwsem); 3443 btrfs_put_block_group(cache); 3444 } 3445 3446 enum btrfs_extent_allocation_policy { 3447 BTRFS_EXTENT_ALLOC_CLUSTERED, 3448 BTRFS_EXTENT_ALLOC_ZONED, 3449 }; 3450 3451 /* 3452 * Structure used internally for find_free_extent() function. Wraps needed 3453 * parameters. 3454 */ 3455 struct find_free_extent_ctl { 3456 /* Basic allocation info */ 3457 u64 ram_bytes; 3458 u64 num_bytes; 3459 u64 min_alloc_size; 3460 u64 empty_size; 3461 u64 flags; 3462 int delalloc; 3463 3464 /* Where to start the search inside the bg */ 3465 u64 search_start; 3466 3467 /* For clustered allocation */ 3468 u64 empty_cluster; 3469 struct btrfs_free_cluster *last_ptr; 3470 bool use_cluster; 3471 3472 bool have_caching_bg; 3473 bool orig_have_caching_bg; 3474 3475 /* Allocation is called for tree-log */ 3476 bool for_treelog; 3477 3478 /* Allocation is called for data relocation */ 3479 bool for_data_reloc; 3480 3481 /* RAID index, converted from flags */ 3482 int index; 3483 3484 /* 3485 * Current loop number, check find_free_extent_update_loop() for details 3486 */ 3487 int loop; 3488 3489 /* 3490 * Whether we're refilling a cluster, if true we need to re-search 3491 * current block group but don't try to refill the cluster again. 3492 */ 3493 bool retry_clustered; 3494 3495 /* 3496 * Whether we're updating free space cache, if true we need to re-search 3497 * current block group but don't try updating free space cache again. 3498 */ 3499 bool retry_unclustered; 3500 3501 /* If current block group is cached */ 3502 int cached; 3503 3504 /* Max contiguous hole found */ 3505 u64 max_extent_size; 3506 3507 /* Total free space from free space cache, not always contiguous */ 3508 u64 total_free_space; 3509 3510 /* Found result */ 3511 u64 found_offset; 3512 3513 /* Hint where to start looking for an empty space */ 3514 u64 hint_byte; 3515 3516 /* Allocation policy */ 3517 enum btrfs_extent_allocation_policy policy; 3518 }; 3519 3520 3521 /* 3522 * Helper function for find_free_extent(). 3523 * 3524 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3525 * Return -EAGAIN to inform caller that we need to re-search this block group 3526 * Return >0 to inform caller that we find nothing 3527 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3528 */ 3529 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3530 struct find_free_extent_ctl *ffe_ctl, 3531 struct btrfs_block_group **cluster_bg_ret) 3532 { 3533 struct btrfs_block_group *cluster_bg; 3534 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3535 u64 aligned_cluster; 3536 u64 offset; 3537 int ret; 3538 3539 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3540 if (!cluster_bg) 3541 goto refill_cluster; 3542 if (cluster_bg != bg && (cluster_bg->ro || 3543 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3544 goto release_cluster; 3545 3546 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3547 ffe_ctl->num_bytes, cluster_bg->start, 3548 &ffe_ctl->max_extent_size); 3549 if (offset) { 3550 /* We have a block, we're done */ 3551 spin_unlock(&last_ptr->refill_lock); 3552 trace_btrfs_reserve_extent_cluster(cluster_bg, 3553 ffe_ctl->search_start, ffe_ctl->num_bytes); 3554 *cluster_bg_ret = cluster_bg; 3555 ffe_ctl->found_offset = offset; 3556 return 0; 3557 } 3558 WARN_ON(last_ptr->block_group != cluster_bg); 3559 3560 release_cluster: 3561 /* 3562 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3563 * lets just skip it and let the allocator find whatever block it can 3564 * find. If we reach this point, we will have tried the cluster 3565 * allocator plenty of times and not have found anything, so we are 3566 * likely way too fragmented for the clustering stuff to find anything. 3567 * 3568 * However, if the cluster is taken from the current block group, 3569 * release the cluster first, so that we stand a better chance of 3570 * succeeding in the unclustered allocation. 3571 */ 3572 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3573 spin_unlock(&last_ptr->refill_lock); 3574 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3575 return -ENOENT; 3576 } 3577 3578 /* This cluster didn't work out, free it and start over */ 3579 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3580 3581 if (cluster_bg != bg) 3582 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3583 3584 refill_cluster: 3585 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3586 spin_unlock(&last_ptr->refill_lock); 3587 return -ENOENT; 3588 } 3589 3590 aligned_cluster = max_t(u64, 3591 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3592 bg->full_stripe_len); 3593 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3594 ffe_ctl->num_bytes, aligned_cluster); 3595 if (ret == 0) { 3596 /* Now pull our allocation out of this cluster */ 3597 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3598 ffe_ctl->num_bytes, ffe_ctl->search_start, 3599 &ffe_ctl->max_extent_size); 3600 if (offset) { 3601 /* We found one, proceed */ 3602 spin_unlock(&last_ptr->refill_lock); 3603 trace_btrfs_reserve_extent_cluster(bg, 3604 ffe_ctl->search_start, 3605 ffe_ctl->num_bytes); 3606 ffe_ctl->found_offset = offset; 3607 return 0; 3608 } 3609 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3610 !ffe_ctl->retry_clustered) { 3611 spin_unlock(&last_ptr->refill_lock); 3612 3613 ffe_ctl->retry_clustered = true; 3614 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3615 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3616 return -EAGAIN; 3617 } 3618 /* 3619 * At this point we either didn't find a cluster or we weren't able to 3620 * allocate a block from our cluster. Free the cluster we've been 3621 * trying to use, and go to the next block group. 3622 */ 3623 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3624 spin_unlock(&last_ptr->refill_lock); 3625 return 1; 3626 } 3627 3628 /* 3629 * Return >0 to inform caller that we find nothing 3630 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3631 * Return -EAGAIN to inform caller that we need to re-search this block group 3632 */ 3633 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3634 struct find_free_extent_ctl *ffe_ctl) 3635 { 3636 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3637 u64 offset; 3638 3639 /* 3640 * We are doing an unclustered allocation, set the fragmented flag so 3641 * we don't bother trying to setup a cluster again until we get more 3642 * space. 3643 */ 3644 if (unlikely(last_ptr)) { 3645 spin_lock(&last_ptr->lock); 3646 last_ptr->fragmented = 1; 3647 spin_unlock(&last_ptr->lock); 3648 } 3649 if (ffe_ctl->cached) { 3650 struct btrfs_free_space_ctl *free_space_ctl; 3651 3652 free_space_ctl = bg->free_space_ctl; 3653 spin_lock(&free_space_ctl->tree_lock); 3654 if (free_space_ctl->free_space < 3655 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3656 ffe_ctl->empty_size) { 3657 ffe_ctl->total_free_space = max_t(u64, 3658 ffe_ctl->total_free_space, 3659 free_space_ctl->free_space); 3660 spin_unlock(&free_space_ctl->tree_lock); 3661 return 1; 3662 } 3663 spin_unlock(&free_space_ctl->tree_lock); 3664 } 3665 3666 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3667 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3668 &ffe_ctl->max_extent_size); 3669 3670 /* 3671 * If we didn't find a chunk, and we haven't failed on this block group 3672 * before, and this block group is in the middle of caching and we are 3673 * ok with waiting, then go ahead and wait for progress to be made, and 3674 * set @retry_unclustered to true. 3675 * 3676 * If @retry_unclustered is true then we've already waited on this 3677 * block group once and should move on to the next block group. 3678 */ 3679 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3680 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3681 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3682 ffe_ctl->empty_size); 3683 ffe_ctl->retry_unclustered = true; 3684 return -EAGAIN; 3685 } else if (!offset) { 3686 return 1; 3687 } 3688 ffe_ctl->found_offset = offset; 3689 return 0; 3690 } 3691 3692 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3693 struct find_free_extent_ctl *ffe_ctl, 3694 struct btrfs_block_group **bg_ret) 3695 { 3696 int ret; 3697 3698 /* We want to try and use the cluster allocator, so lets look there */ 3699 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3700 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3701 if (ret >= 0 || ret == -EAGAIN) 3702 return ret; 3703 /* ret == -ENOENT case falls through */ 3704 } 3705 3706 return find_free_extent_unclustered(block_group, ffe_ctl); 3707 } 3708 3709 /* 3710 * Tree-log block group locking 3711 * ============================ 3712 * 3713 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3714 * indicates the starting address of a block group, which is reserved only 3715 * for tree-log metadata. 3716 * 3717 * Lock nesting 3718 * ============ 3719 * 3720 * space_info::lock 3721 * block_group::lock 3722 * fs_info::treelog_bg_lock 3723 */ 3724 3725 /* 3726 * Simple allocator for sequential-only block group. It only allows sequential 3727 * allocation. No need to play with trees. This function also reserves the 3728 * bytes as in btrfs_add_reserved_bytes. 3729 */ 3730 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3731 struct find_free_extent_ctl *ffe_ctl, 3732 struct btrfs_block_group **bg_ret) 3733 { 3734 struct btrfs_fs_info *fs_info = block_group->fs_info; 3735 struct btrfs_space_info *space_info = block_group->space_info; 3736 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3737 u64 start = block_group->start; 3738 u64 num_bytes = ffe_ctl->num_bytes; 3739 u64 avail; 3740 u64 bytenr = block_group->start; 3741 u64 log_bytenr; 3742 u64 data_reloc_bytenr; 3743 int ret = 0; 3744 bool skip = false; 3745 3746 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3747 3748 /* 3749 * Do not allow non-tree-log blocks in the dedicated tree-log block 3750 * group, and vice versa. 3751 */ 3752 spin_lock(&fs_info->treelog_bg_lock); 3753 log_bytenr = fs_info->treelog_bg; 3754 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3755 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3756 skip = true; 3757 spin_unlock(&fs_info->treelog_bg_lock); 3758 if (skip) 3759 return 1; 3760 3761 /* 3762 * Do not allow non-relocation blocks in the dedicated relocation block 3763 * group, and vice versa. 3764 */ 3765 spin_lock(&fs_info->relocation_bg_lock); 3766 data_reloc_bytenr = fs_info->data_reloc_bg; 3767 if (data_reloc_bytenr && 3768 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3769 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3770 skip = true; 3771 spin_unlock(&fs_info->relocation_bg_lock); 3772 if (skip) 3773 return 1; 3774 3775 /* Check RO and no space case before trying to activate it */ 3776 spin_lock(&block_group->lock); 3777 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3778 ret = 1; 3779 /* 3780 * May need to clear fs_info->{treelog,data_reloc}_bg. 3781 * Return the error after taking the locks. 3782 */ 3783 } 3784 spin_unlock(&block_group->lock); 3785 3786 if (!ret && !btrfs_zone_activate(block_group)) { 3787 ret = 1; 3788 /* 3789 * May need to clear fs_info->{treelog,data_reloc}_bg. 3790 * Return the error after taking the locks. 3791 */ 3792 } 3793 3794 spin_lock(&space_info->lock); 3795 spin_lock(&block_group->lock); 3796 spin_lock(&fs_info->treelog_bg_lock); 3797 spin_lock(&fs_info->relocation_bg_lock); 3798 3799 if (ret) 3800 goto out; 3801 3802 ASSERT(!ffe_ctl->for_treelog || 3803 block_group->start == fs_info->treelog_bg || 3804 fs_info->treelog_bg == 0); 3805 ASSERT(!ffe_ctl->for_data_reloc || 3806 block_group->start == fs_info->data_reloc_bg || 3807 fs_info->data_reloc_bg == 0); 3808 3809 if (block_group->ro || 3810 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 3811 ret = 1; 3812 goto out; 3813 } 3814 3815 /* 3816 * Do not allow currently using block group to be tree-log dedicated 3817 * block group. 3818 */ 3819 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3820 (block_group->used || block_group->reserved)) { 3821 ret = 1; 3822 goto out; 3823 } 3824 3825 /* 3826 * Do not allow currently used block group to be the data relocation 3827 * dedicated block group. 3828 */ 3829 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3830 (block_group->used || block_group->reserved)) { 3831 ret = 1; 3832 goto out; 3833 } 3834 3835 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3836 avail = block_group->zone_capacity - block_group->alloc_offset; 3837 if (avail < num_bytes) { 3838 if (ffe_ctl->max_extent_size < avail) { 3839 /* 3840 * With sequential allocator, free space is always 3841 * contiguous 3842 */ 3843 ffe_ctl->max_extent_size = avail; 3844 ffe_ctl->total_free_space = avail; 3845 } 3846 ret = 1; 3847 goto out; 3848 } 3849 3850 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3851 fs_info->treelog_bg = block_group->start; 3852 3853 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3854 fs_info->data_reloc_bg = block_group->start; 3855 3856 ffe_ctl->found_offset = start + block_group->alloc_offset; 3857 block_group->alloc_offset += num_bytes; 3858 spin_lock(&ctl->tree_lock); 3859 ctl->free_space -= num_bytes; 3860 spin_unlock(&ctl->tree_lock); 3861 3862 /* 3863 * We do not check if found_offset is aligned to stripesize. The 3864 * address is anyway rewritten when using zone append writing. 3865 */ 3866 3867 ffe_ctl->search_start = ffe_ctl->found_offset; 3868 3869 out: 3870 if (ret && ffe_ctl->for_treelog) 3871 fs_info->treelog_bg = 0; 3872 if (ret && ffe_ctl->for_data_reloc && 3873 fs_info->data_reloc_bg == block_group->start) { 3874 /* 3875 * Do not allow further allocations from this block group. 3876 * Compared to increasing the ->ro, setting the 3877 * ->zoned_data_reloc_ongoing flag still allows nocow 3878 * writers to come in. See btrfs_inc_nocow_writers(). 3879 * 3880 * We need to disable an allocation to avoid an allocation of 3881 * regular (non-relocation data) extent. With mix of relocation 3882 * extents and regular extents, we can dispatch WRITE commands 3883 * (for relocation extents) and ZONE APPEND commands (for 3884 * regular extents) at the same time to the same zone, which 3885 * easily break the write pointer. 3886 */ 3887 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3888 fs_info->data_reloc_bg = 0; 3889 } 3890 spin_unlock(&fs_info->relocation_bg_lock); 3891 spin_unlock(&fs_info->treelog_bg_lock); 3892 spin_unlock(&block_group->lock); 3893 spin_unlock(&space_info->lock); 3894 return ret; 3895 } 3896 3897 static int do_allocation(struct btrfs_block_group *block_group, 3898 struct find_free_extent_ctl *ffe_ctl, 3899 struct btrfs_block_group **bg_ret) 3900 { 3901 switch (ffe_ctl->policy) { 3902 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3903 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3904 case BTRFS_EXTENT_ALLOC_ZONED: 3905 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3906 default: 3907 BUG(); 3908 } 3909 } 3910 3911 static void release_block_group(struct btrfs_block_group *block_group, 3912 struct find_free_extent_ctl *ffe_ctl, 3913 int delalloc) 3914 { 3915 switch (ffe_ctl->policy) { 3916 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3917 ffe_ctl->retry_clustered = false; 3918 ffe_ctl->retry_unclustered = false; 3919 break; 3920 case BTRFS_EXTENT_ALLOC_ZONED: 3921 /* Nothing to do */ 3922 break; 3923 default: 3924 BUG(); 3925 } 3926 3927 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3928 ffe_ctl->index); 3929 btrfs_release_block_group(block_group, delalloc); 3930 } 3931 3932 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3933 struct btrfs_key *ins) 3934 { 3935 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3936 3937 if (!ffe_ctl->use_cluster && last_ptr) { 3938 spin_lock(&last_ptr->lock); 3939 last_ptr->window_start = ins->objectid; 3940 spin_unlock(&last_ptr->lock); 3941 } 3942 } 3943 3944 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3945 struct btrfs_key *ins) 3946 { 3947 switch (ffe_ctl->policy) { 3948 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3949 found_extent_clustered(ffe_ctl, ins); 3950 break; 3951 case BTRFS_EXTENT_ALLOC_ZONED: 3952 /* Nothing to do */ 3953 break; 3954 default: 3955 BUG(); 3956 } 3957 } 3958 3959 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3960 struct find_free_extent_ctl *ffe_ctl) 3961 { 3962 /* If we can activate new zone, just allocate a chunk and use it */ 3963 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3964 return 0; 3965 3966 /* 3967 * We already reached the max active zones. Try to finish one block 3968 * group to make a room for a new block group. This is only possible 3969 * for a data block group because btrfs_zone_finish() may need to wait 3970 * for a running transaction which can cause a deadlock for metadata 3971 * allocation. 3972 */ 3973 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3974 int ret = btrfs_zone_finish_one_bg(fs_info); 3975 3976 if (ret == 1) 3977 return 0; 3978 else if (ret < 0) 3979 return ret; 3980 } 3981 3982 /* 3983 * If we have enough free space left in an already active block group 3984 * and we can't activate any other zone now, do not allow allocating a 3985 * new chunk and let find_free_extent() retry with a smaller size. 3986 */ 3987 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3988 return -ENOSPC; 3989 3990 /* 3991 * Even min_alloc_size is not left in any block groups. Since we cannot 3992 * activate a new block group, allocating it may not help. Let's tell a 3993 * caller to try again and hope it progress something by writing some 3994 * parts of the region. That is only possible for data block groups, 3995 * where a part of the region can be written. 3996 */ 3997 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3998 return -EAGAIN; 3999 4000 /* 4001 * We cannot activate a new block group and no enough space left in any 4002 * block groups. So, allocating a new block group may not help. But, 4003 * there is nothing to do anyway, so let's go with it. 4004 */ 4005 return 0; 4006 } 4007 4008 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4009 struct find_free_extent_ctl *ffe_ctl) 4010 { 4011 switch (ffe_ctl->policy) { 4012 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4013 return 0; 4014 case BTRFS_EXTENT_ALLOC_ZONED: 4015 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4016 default: 4017 BUG(); 4018 } 4019 } 4020 4021 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 4022 { 4023 switch (ffe_ctl->policy) { 4024 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4025 /* 4026 * If we can't allocate a new chunk we've already looped through 4027 * at least once, move on to the NO_EMPTY_SIZE case. 4028 */ 4029 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 4030 return 0; 4031 case BTRFS_EXTENT_ALLOC_ZONED: 4032 /* Give up here */ 4033 return -ENOSPC; 4034 default: 4035 BUG(); 4036 } 4037 } 4038 4039 /* 4040 * Return >0 means caller needs to re-search for free extent 4041 * Return 0 means we have the needed free extent. 4042 * Return <0 means we failed to locate any free extent. 4043 */ 4044 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4045 struct btrfs_key *ins, 4046 struct find_free_extent_ctl *ffe_ctl, 4047 bool full_search) 4048 { 4049 struct btrfs_root *root = fs_info->chunk_root; 4050 int ret; 4051 4052 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4053 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4054 ffe_ctl->orig_have_caching_bg = true; 4055 4056 if (ins->objectid) { 4057 found_extent(ffe_ctl, ins); 4058 return 0; 4059 } 4060 4061 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4062 return 1; 4063 4064 ffe_ctl->index++; 4065 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4066 return 1; 4067 4068 /* 4069 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4070 * caching kthreads as we move along 4071 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4072 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4073 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4074 * again 4075 */ 4076 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4077 ffe_ctl->index = 0; 4078 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4079 /* 4080 * We want to skip the LOOP_CACHING_WAIT step if we 4081 * don't have any uncached bgs and we've already done a 4082 * full search through. 4083 */ 4084 if (ffe_ctl->orig_have_caching_bg || !full_search) 4085 ffe_ctl->loop = LOOP_CACHING_WAIT; 4086 else 4087 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4088 } else { 4089 ffe_ctl->loop++; 4090 } 4091 4092 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4093 struct btrfs_trans_handle *trans; 4094 int exist = 0; 4095 4096 /*Check if allocation policy allows to create a new chunk */ 4097 ret = can_allocate_chunk(fs_info, ffe_ctl); 4098 if (ret) 4099 return ret; 4100 4101 trans = current->journal_info; 4102 if (trans) 4103 exist = 1; 4104 else 4105 trans = btrfs_join_transaction(root); 4106 4107 if (IS_ERR(trans)) { 4108 ret = PTR_ERR(trans); 4109 return ret; 4110 } 4111 4112 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4113 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4114 4115 /* Do not bail out on ENOSPC since we can do more. */ 4116 if (ret == -ENOSPC) 4117 ret = chunk_allocation_failed(ffe_ctl); 4118 else if (ret < 0) 4119 btrfs_abort_transaction(trans, ret); 4120 else 4121 ret = 0; 4122 if (!exist) 4123 btrfs_end_transaction(trans); 4124 if (ret) 4125 return ret; 4126 } 4127 4128 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4129 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4130 return -ENOSPC; 4131 4132 /* 4133 * Don't loop again if we already have no empty_size and 4134 * no empty_cluster. 4135 */ 4136 if (ffe_ctl->empty_size == 0 && 4137 ffe_ctl->empty_cluster == 0) 4138 return -ENOSPC; 4139 ffe_ctl->empty_size = 0; 4140 ffe_ctl->empty_cluster = 0; 4141 } 4142 return 1; 4143 } 4144 return -ENOSPC; 4145 } 4146 4147 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4148 struct find_free_extent_ctl *ffe_ctl, 4149 struct btrfs_space_info *space_info, 4150 struct btrfs_key *ins) 4151 { 4152 /* 4153 * If our free space is heavily fragmented we may not be able to make 4154 * big contiguous allocations, so instead of doing the expensive search 4155 * for free space, simply return ENOSPC with our max_extent_size so we 4156 * can go ahead and search for a more manageable chunk. 4157 * 4158 * If our max_extent_size is large enough for our allocation simply 4159 * disable clustering since we will likely not be able to find enough 4160 * space to create a cluster and induce latency trying. 4161 */ 4162 if (space_info->max_extent_size) { 4163 spin_lock(&space_info->lock); 4164 if (space_info->max_extent_size && 4165 ffe_ctl->num_bytes > space_info->max_extent_size) { 4166 ins->offset = space_info->max_extent_size; 4167 spin_unlock(&space_info->lock); 4168 return -ENOSPC; 4169 } else if (space_info->max_extent_size) { 4170 ffe_ctl->use_cluster = false; 4171 } 4172 spin_unlock(&space_info->lock); 4173 } 4174 4175 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4176 &ffe_ctl->empty_cluster); 4177 if (ffe_ctl->last_ptr) { 4178 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4179 4180 spin_lock(&last_ptr->lock); 4181 if (last_ptr->block_group) 4182 ffe_ctl->hint_byte = last_ptr->window_start; 4183 if (last_ptr->fragmented) { 4184 /* 4185 * We still set window_start so we can keep track of the 4186 * last place we found an allocation to try and save 4187 * some time. 4188 */ 4189 ffe_ctl->hint_byte = last_ptr->window_start; 4190 ffe_ctl->use_cluster = false; 4191 } 4192 spin_unlock(&last_ptr->lock); 4193 } 4194 4195 return 0; 4196 } 4197 4198 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4199 struct find_free_extent_ctl *ffe_ctl, 4200 struct btrfs_space_info *space_info, 4201 struct btrfs_key *ins) 4202 { 4203 switch (ffe_ctl->policy) { 4204 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4205 return prepare_allocation_clustered(fs_info, ffe_ctl, 4206 space_info, ins); 4207 case BTRFS_EXTENT_ALLOC_ZONED: 4208 if (ffe_ctl->for_treelog) { 4209 spin_lock(&fs_info->treelog_bg_lock); 4210 if (fs_info->treelog_bg) 4211 ffe_ctl->hint_byte = fs_info->treelog_bg; 4212 spin_unlock(&fs_info->treelog_bg_lock); 4213 } 4214 if (ffe_ctl->for_data_reloc) { 4215 spin_lock(&fs_info->relocation_bg_lock); 4216 if (fs_info->data_reloc_bg) 4217 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4218 spin_unlock(&fs_info->relocation_bg_lock); 4219 } 4220 return 0; 4221 default: 4222 BUG(); 4223 } 4224 } 4225 4226 /* 4227 * walks the btree of allocated extents and find a hole of a given size. 4228 * The key ins is changed to record the hole: 4229 * ins->objectid == start position 4230 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4231 * ins->offset == the size of the hole. 4232 * Any available blocks before search_start are skipped. 4233 * 4234 * If there is no suitable free space, we will record the max size of 4235 * the free space extent currently. 4236 * 4237 * The overall logic and call chain: 4238 * 4239 * find_free_extent() 4240 * |- Iterate through all block groups 4241 * | |- Get a valid block group 4242 * | |- Try to do clustered allocation in that block group 4243 * | |- Try to do unclustered allocation in that block group 4244 * | |- Check if the result is valid 4245 * | | |- If valid, then exit 4246 * | |- Jump to next block group 4247 * | 4248 * |- Push harder to find free extents 4249 * |- If not found, re-iterate all block groups 4250 */ 4251 static noinline int find_free_extent(struct btrfs_root *root, 4252 struct btrfs_key *ins, 4253 struct find_free_extent_ctl *ffe_ctl) 4254 { 4255 struct btrfs_fs_info *fs_info = root->fs_info; 4256 int ret = 0; 4257 int cache_block_group_error = 0; 4258 struct btrfs_block_group *block_group = NULL; 4259 struct btrfs_space_info *space_info; 4260 bool full_search = false; 4261 4262 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4263 4264 ffe_ctl->search_start = 0; 4265 /* For clustered allocation */ 4266 ffe_ctl->empty_cluster = 0; 4267 ffe_ctl->last_ptr = NULL; 4268 ffe_ctl->use_cluster = true; 4269 ffe_ctl->have_caching_bg = false; 4270 ffe_ctl->orig_have_caching_bg = false; 4271 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4272 ffe_ctl->loop = 0; 4273 /* For clustered allocation */ 4274 ffe_ctl->retry_clustered = false; 4275 ffe_ctl->retry_unclustered = false; 4276 ffe_ctl->cached = 0; 4277 ffe_ctl->max_extent_size = 0; 4278 ffe_ctl->total_free_space = 0; 4279 ffe_ctl->found_offset = 0; 4280 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4281 4282 if (btrfs_is_zoned(fs_info)) 4283 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4284 4285 ins->type = BTRFS_EXTENT_ITEM_KEY; 4286 ins->objectid = 0; 4287 ins->offset = 0; 4288 4289 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4290 ffe_ctl->flags); 4291 4292 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4293 if (!space_info) { 4294 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4295 return -ENOSPC; 4296 } 4297 4298 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4299 if (ret < 0) 4300 return ret; 4301 4302 ffe_ctl->search_start = max(ffe_ctl->search_start, 4303 first_logical_byte(fs_info)); 4304 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4305 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4306 block_group = btrfs_lookup_block_group(fs_info, 4307 ffe_ctl->search_start); 4308 /* 4309 * we don't want to use the block group if it doesn't match our 4310 * allocation bits, or if its not cached. 4311 * 4312 * However if we are re-searching with an ideal block group 4313 * picked out then we don't care that the block group is cached. 4314 */ 4315 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4316 block_group->cached != BTRFS_CACHE_NO) { 4317 down_read(&space_info->groups_sem); 4318 if (list_empty(&block_group->list) || 4319 block_group->ro) { 4320 /* 4321 * someone is removing this block group, 4322 * we can't jump into the have_block_group 4323 * target because our list pointers are not 4324 * valid 4325 */ 4326 btrfs_put_block_group(block_group); 4327 up_read(&space_info->groups_sem); 4328 } else { 4329 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4330 block_group->flags); 4331 btrfs_lock_block_group(block_group, 4332 ffe_ctl->delalloc); 4333 goto have_block_group; 4334 } 4335 } else if (block_group) { 4336 btrfs_put_block_group(block_group); 4337 } 4338 } 4339 search: 4340 ffe_ctl->have_caching_bg = false; 4341 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4342 ffe_ctl->index == 0) 4343 full_search = true; 4344 down_read(&space_info->groups_sem); 4345 list_for_each_entry(block_group, 4346 &space_info->block_groups[ffe_ctl->index], list) { 4347 struct btrfs_block_group *bg_ret; 4348 4349 /* If the block group is read-only, we can skip it entirely. */ 4350 if (unlikely(block_group->ro)) { 4351 if (ffe_ctl->for_treelog) 4352 btrfs_clear_treelog_bg(block_group); 4353 if (ffe_ctl->for_data_reloc) 4354 btrfs_clear_data_reloc_bg(block_group); 4355 continue; 4356 } 4357 4358 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4359 ffe_ctl->search_start = block_group->start; 4360 4361 /* 4362 * this can happen if we end up cycling through all the 4363 * raid types, but we want to make sure we only allocate 4364 * for the proper type. 4365 */ 4366 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4367 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4368 BTRFS_BLOCK_GROUP_RAID1_MASK | 4369 BTRFS_BLOCK_GROUP_RAID56_MASK | 4370 BTRFS_BLOCK_GROUP_RAID10; 4371 4372 /* 4373 * if they asked for extra copies and this block group 4374 * doesn't provide them, bail. This does allow us to 4375 * fill raid0 from raid1. 4376 */ 4377 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4378 goto loop; 4379 4380 /* 4381 * This block group has different flags than we want. 4382 * It's possible that we have MIXED_GROUP flag but no 4383 * block group is mixed. Just skip such block group. 4384 */ 4385 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4386 continue; 4387 } 4388 4389 have_block_group: 4390 ffe_ctl->cached = btrfs_block_group_done(block_group); 4391 if (unlikely(!ffe_ctl->cached)) { 4392 ffe_ctl->have_caching_bg = true; 4393 ret = btrfs_cache_block_group(block_group, false); 4394 4395 /* 4396 * If we get ENOMEM here or something else we want to 4397 * try other block groups, because it may not be fatal. 4398 * However if we can't find anything else we need to 4399 * save our return here so that we return the actual 4400 * error that caused problems, not ENOSPC. 4401 */ 4402 if (ret < 0) { 4403 if (!cache_block_group_error) 4404 cache_block_group_error = ret; 4405 ret = 0; 4406 goto loop; 4407 } 4408 ret = 0; 4409 } 4410 4411 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4412 goto loop; 4413 4414 bg_ret = NULL; 4415 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4416 if (ret == 0) { 4417 if (bg_ret && bg_ret != block_group) { 4418 btrfs_release_block_group(block_group, 4419 ffe_ctl->delalloc); 4420 block_group = bg_ret; 4421 } 4422 } else if (ret == -EAGAIN) { 4423 goto have_block_group; 4424 } else if (ret > 0) { 4425 goto loop; 4426 } 4427 4428 /* Checks */ 4429 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4430 fs_info->stripesize); 4431 4432 /* move on to the next group */ 4433 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4434 block_group->start + block_group->length) { 4435 btrfs_add_free_space_unused(block_group, 4436 ffe_ctl->found_offset, 4437 ffe_ctl->num_bytes); 4438 goto loop; 4439 } 4440 4441 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4442 btrfs_add_free_space_unused(block_group, 4443 ffe_ctl->found_offset, 4444 ffe_ctl->search_start - ffe_ctl->found_offset); 4445 4446 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4447 ffe_ctl->num_bytes, 4448 ffe_ctl->delalloc); 4449 if (ret == -EAGAIN) { 4450 btrfs_add_free_space_unused(block_group, 4451 ffe_ctl->found_offset, 4452 ffe_ctl->num_bytes); 4453 goto loop; 4454 } 4455 btrfs_inc_block_group_reservations(block_group); 4456 4457 /* we are all good, lets return */ 4458 ins->objectid = ffe_ctl->search_start; 4459 ins->offset = ffe_ctl->num_bytes; 4460 4461 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4462 ffe_ctl->num_bytes); 4463 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4464 break; 4465 loop: 4466 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4467 cond_resched(); 4468 } 4469 up_read(&space_info->groups_sem); 4470 4471 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4472 if (ret > 0) 4473 goto search; 4474 4475 if (ret == -ENOSPC && !cache_block_group_error) { 4476 /* 4477 * Use ffe_ctl->total_free_space as fallback if we can't find 4478 * any contiguous hole. 4479 */ 4480 if (!ffe_ctl->max_extent_size) 4481 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4482 spin_lock(&space_info->lock); 4483 space_info->max_extent_size = ffe_ctl->max_extent_size; 4484 spin_unlock(&space_info->lock); 4485 ins->offset = ffe_ctl->max_extent_size; 4486 } else if (ret == -ENOSPC) { 4487 ret = cache_block_group_error; 4488 } 4489 return ret; 4490 } 4491 4492 /* 4493 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4494 * hole that is at least as big as @num_bytes. 4495 * 4496 * @root - The root that will contain this extent 4497 * 4498 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4499 * is used for accounting purposes. This value differs 4500 * from @num_bytes only in the case of compressed extents. 4501 * 4502 * @num_bytes - Number of bytes to allocate on-disk. 4503 * 4504 * @min_alloc_size - Indicates the minimum amount of space that the 4505 * allocator should try to satisfy. In some cases 4506 * @num_bytes may be larger than what is required and if 4507 * the filesystem is fragmented then allocation fails. 4508 * However, the presence of @min_alloc_size gives a 4509 * chance to try and satisfy the smaller allocation. 4510 * 4511 * @empty_size - A hint that you plan on doing more COW. This is the 4512 * size in bytes the allocator should try to find free 4513 * next to the block it returns. This is just a hint and 4514 * may be ignored by the allocator. 4515 * 4516 * @hint_byte - Hint to the allocator to start searching above the byte 4517 * address passed. It might be ignored. 4518 * 4519 * @ins - This key is modified to record the found hole. It will 4520 * have the following values: 4521 * ins->objectid == start position 4522 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4523 * ins->offset == the size of the hole. 4524 * 4525 * @is_data - Boolean flag indicating whether an extent is 4526 * allocated for data (true) or metadata (false) 4527 * 4528 * @delalloc - Boolean flag indicating whether this allocation is for 4529 * delalloc or not. If 'true' data_rwsem of block groups 4530 * is going to be acquired. 4531 * 4532 * 4533 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4534 * case -ENOSPC is returned then @ins->offset will contain the size of the 4535 * largest available hole the allocator managed to find. 4536 */ 4537 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4538 u64 num_bytes, u64 min_alloc_size, 4539 u64 empty_size, u64 hint_byte, 4540 struct btrfs_key *ins, int is_data, int delalloc) 4541 { 4542 struct btrfs_fs_info *fs_info = root->fs_info; 4543 struct find_free_extent_ctl ffe_ctl = {}; 4544 bool final_tried = num_bytes == min_alloc_size; 4545 u64 flags; 4546 int ret; 4547 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4548 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4549 4550 flags = get_alloc_profile_by_root(root, is_data); 4551 again: 4552 WARN_ON(num_bytes < fs_info->sectorsize); 4553 4554 ffe_ctl.ram_bytes = ram_bytes; 4555 ffe_ctl.num_bytes = num_bytes; 4556 ffe_ctl.min_alloc_size = min_alloc_size; 4557 ffe_ctl.empty_size = empty_size; 4558 ffe_ctl.flags = flags; 4559 ffe_ctl.delalloc = delalloc; 4560 ffe_ctl.hint_byte = hint_byte; 4561 ffe_ctl.for_treelog = for_treelog; 4562 ffe_ctl.for_data_reloc = for_data_reloc; 4563 4564 ret = find_free_extent(root, ins, &ffe_ctl); 4565 if (!ret && !is_data) { 4566 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4567 } else if (ret == -ENOSPC) { 4568 if (!final_tried && ins->offset) { 4569 num_bytes = min(num_bytes >> 1, ins->offset); 4570 num_bytes = round_down(num_bytes, 4571 fs_info->sectorsize); 4572 num_bytes = max(num_bytes, min_alloc_size); 4573 ram_bytes = num_bytes; 4574 if (num_bytes == min_alloc_size) 4575 final_tried = true; 4576 goto again; 4577 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4578 struct btrfs_space_info *sinfo; 4579 4580 sinfo = btrfs_find_space_info(fs_info, flags); 4581 btrfs_err(fs_info, 4582 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4583 flags, num_bytes, for_treelog, for_data_reloc); 4584 if (sinfo) 4585 btrfs_dump_space_info(fs_info, sinfo, 4586 num_bytes, 1); 4587 } 4588 } 4589 4590 return ret; 4591 } 4592 4593 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4594 u64 start, u64 len, int delalloc) 4595 { 4596 struct btrfs_block_group *cache; 4597 4598 cache = btrfs_lookup_block_group(fs_info, start); 4599 if (!cache) { 4600 btrfs_err(fs_info, "Unable to find block group for %llu", 4601 start); 4602 return -ENOSPC; 4603 } 4604 4605 btrfs_add_free_space(cache, start, len); 4606 btrfs_free_reserved_bytes(cache, len, delalloc); 4607 trace_btrfs_reserved_extent_free(fs_info, start, len); 4608 4609 btrfs_put_block_group(cache); 4610 return 0; 4611 } 4612 4613 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4614 u64 len) 4615 { 4616 struct btrfs_block_group *cache; 4617 int ret = 0; 4618 4619 cache = btrfs_lookup_block_group(trans->fs_info, start); 4620 if (!cache) { 4621 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4622 start); 4623 return -ENOSPC; 4624 } 4625 4626 ret = pin_down_extent(trans, cache, start, len, 1); 4627 btrfs_put_block_group(cache); 4628 return ret; 4629 } 4630 4631 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4632 u64 num_bytes) 4633 { 4634 struct btrfs_fs_info *fs_info = trans->fs_info; 4635 int ret; 4636 4637 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4638 if (ret) 4639 return ret; 4640 4641 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4642 if (ret) { 4643 ASSERT(!ret); 4644 btrfs_err(fs_info, "update block group failed for %llu %llu", 4645 bytenr, num_bytes); 4646 return ret; 4647 } 4648 4649 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4650 return 0; 4651 } 4652 4653 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4654 u64 parent, u64 root_objectid, 4655 u64 flags, u64 owner, u64 offset, 4656 struct btrfs_key *ins, int ref_mod) 4657 { 4658 struct btrfs_fs_info *fs_info = trans->fs_info; 4659 struct btrfs_root *extent_root; 4660 int ret; 4661 struct btrfs_extent_item *extent_item; 4662 struct btrfs_extent_inline_ref *iref; 4663 struct btrfs_path *path; 4664 struct extent_buffer *leaf; 4665 int type; 4666 u32 size; 4667 4668 if (parent > 0) 4669 type = BTRFS_SHARED_DATA_REF_KEY; 4670 else 4671 type = BTRFS_EXTENT_DATA_REF_KEY; 4672 4673 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4674 4675 path = btrfs_alloc_path(); 4676 if (!path) 4677 return -ENOMEM; 4678 4679 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4680 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4681 if (ret) { 4682 btrfs_free_path(path); 4683 return ret; 4684 } 4685 4686 leaf = path->nodes[0]; 4687 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4688 struct btrfs_extent_item); 4689 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4690 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4691 btrfs_set_extent_flags(leaf, extent_item, 4692 flags | BTRFS_EXTENT_FLAG_DATA); 4693 4694 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4695 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4696 if (parent > 0) { 4697 struct btrfs_shared_data_ref *ref; 4698 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4699 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4700 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4701 } else { 4702 struct btrfs_extent_data_ref *ref; 4703 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4704 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4705 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4706 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4707 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4708 } 4709 4710 btrfs_mark_buffer_dirty(path->nodes[0]); 4711 btrfs_free_path(path); 4712 4713 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4714 } 4715 4716 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4717 struct btrfs_delayed_ref_node *node, 4718 struct btrfs_delayed_extent_op *extent_op) 4719 { 4720 struct btrfs_fs_info *fs_info = trans->fs_info; 4721 struct btrfs_root *extent_root; 4722 int ret; 4723 struct btrfs_extent_item *extent_item; 4724 struct btrfs_key extent_key; 4725 struct btrfs_tree_block_info *block_info; 4726 struct btrfs_extent_inline_ref *iref; 4727 struct btrfs_path *path; 4728 struct extent_buffer *leaf; 4729 struct btrfs_delayed_tree_ref *ref; 4730 u32 size = sizeof(*extent_item) + sizeof(*iref); 4731 u64 flags = extent_op->flags_to_set; 4732 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4733 4734 ref = btrfs_delayed_node_to_tree_ref(node); 4735 4736 extent_key.objectid = node->bytenr; 4737 if (skinny_metadata) { 4738 extent_key.offset = ref->level; 4739 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4740 } else { 4741 extent_key.offset = node->num_bytes; 4742 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4743 size += sizeof(*block_info); 4744 } 4745 4746 path = btrfs_alloc_path(); 4747 if (!path) 4748 return -ENOMEM; 4749 4750 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4751 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4752 size); 4753 if (ret) { 4754 btrfs_free_path(path); 4755 return ret; 4756 } 4757 4758 leaf = path->nodes[0]; 4759 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4760 struct btrfs_extent_item); 4761 btrfs_set_extent_refs(leaf, extent_item, 1); 4762 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4763 btrfs_set_extent_flags(leaf, extent_item, 4764 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4765 4766 if (skinny_metadata) { 4767 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4768 } else { 4769 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4770 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4771 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4772 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4773 } 4774 4775 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4776 btrfs_set_extent_inline_ref_type(leaf, iref, 4777 BTRFS_SHARED_BLOCK_REF_KEY); 4778 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4779 } else { 4780 btrfs_set_extent_inline_ref_type(leaf, iref, 4781 BTRFS_TREE_BLOCK_REF_KEY); 4782 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4783 } 4784 4785 btrfs_mark_buffer_dirty(leaf); 4786 btrfs_free_path(path); 4787 4788 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4789 } 4790 4791 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4792 struct btrfs_root *root, u64 owner, 4793 u64 offset, u64 ram_bytes, 4794 struct btrfs_key *ins) 4795 { 4796 struct btrfs_ref generic_ref = { 0 }; 4797 4798 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4799 4800 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4801 ins->objectid, ins->offset, 0); 4802 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4803 offset, 0, false); 4804 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4805 4806 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4807 } 4808 4809 /* 4810 * this is used by the tree logging recovery code. It records that 4811 * an extent has been allocated and makes sure to clear the free 4812 * space cache bits as well 4813 */ 4814 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4815 u64 root_objectid, u64 owner, u64 offset, 4816 struct btrfs_key *ins) 4817 { 4818 struct btrfs_fs_info *fs_info = trans->fs_info; 4819 int ret; 4820 struct btrfs_block_group *block_group; 4821 struct btrfs_space_info *space_info; 4822 4823 /* 4824 * Mixed block groups will exclude before processing the log so we only 4825 * need to do the exclude dance if this fs isn't mixed. 4826 */ 4827 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4828 ret = __exclude_logged_extent(fs_info, ins->objectid, 4829 ins->offset); 4830 if (ret) 4831 return ret; 4832 } 4833 4834 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4835 if (!block_group) 4836 return -EINVAL; 4837 4838 space_info = block_group->space_info; 4839 spin_lock(&space_info->lock); 4840 spin_lock(&block_group->lock); 4841 space_info->bytes_reserved += ins->offset; 4842 block_group->reserved += ins->offset; 4843 spin_unlock(&block_group->lock); 4844 spin_unlock(&space_info->lock); 4845 4846 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4847 offset, ins, 1); 4848 if (ret) 4849 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4850 btrfs_put_block_group(block_group); 4851 return ret; 4852 } 4853 4854 static struct extent_buffer * 4855 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4856 u64 bytenr, int level, u64 owner, 4857 enum btrfs_lock_nesting nest) 4858 { 4859 struct btrfs_fs_info *fs_info = root->fs_info; 4860 struct extent_buffer *buf; 4861 u64 lockdep_owner = owner; 4862 4863 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4864 if (IS_ERR(buf)) 4865 return buf; 4866 4867 /* 4868 * Extra safety check in case the extent tree is corrupted and extent 4869 * allocator chooses to use a tree block which is already used and 4870 * locked. 4871 */ 4872 if (buf->lock_owner == current->pid) { 4873 btrfs_err_rl(fs_info, 4874 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4875 buf->start, btrfs_header_owner(buf), current->pid); 4876 free_extent_buffer(buf); 4877 return ERR_PTR(-EUCLEAN); 4878 } 4879 4880 /* 4881 * The reloc trees are just snapshots, so we need them to appear to be 4882 * just like any other fs tree WRT lockdep. 4883 * 4884 * The exception however is in replace_path() in relocation, where we 4885 * hold the lock on the original fs root and then search for the reloc 4886 * root. At that point we need to make sure any reloc root buffers are 4887 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4888 * lockdep happy. 4889 */ 4890 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4891 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4892 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4893 4894 /* btrfs_clean_tree_block() accesses generation field. */ 4895 btrfs_set_header_generation(buf, trans->transid); 4896 4897 /* 4898 * This needs to stay, because we could allocate a freed block from an 4899 * old tree into a new tree, so we need to make sure this new block is 4900 * set to the appropriate level and owner. 4901 */ 4902 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4903 4904 __btrfs_tree_lock(buf, nest); 4905 btrfs_clean_tree_block(buf); 4906 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4907 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4908 4909 set_extent_buffer_uptodate(buf); 4910 4911 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4912 btrfs_set_header_level(buf, level); 4913 btrfs_set_header_bytenr(buf, buf->start); 4914 btrfs_set_header_generation(buf, trans->transid); 4915 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4916 btrfs_set_header_owner(buf, owner); 4917 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4918 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4919 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4920 buf->log_index = root->log_transid % 2; 4921 /* 4922 * we allow two log transactions at a time, use different 4923 * EXTENT bit to differentiate dirty pages. 4924 */ 4925 if (buf->log_index == 0) 4926 set_extent_dirty(&root->dirty_log_pages, buf->start, 4927 buf->start + buf->len - 1, GFP_NOFS); 4928 else 4929 set_extent_new(&root->dirty_log_pages, buf->start, 4930 buf->start + buf->len - 1); 4931 } else { 4932 buf->log_index = -1; 4933 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4934 buf->start + buf->len - 1, GFP_NOFS); 4935 } 4936 /* this returns a buffer locked for blocking */ 4937 return buf; 4938 } 4939 4940 /* 4941 * finds a free extent and does all the dirty work required for allocation 4942 * returns the tree buffer or an ERR_PTR on error. 4943 */ 4944 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4945 struct btrfs_root *root, 4946 u64 parent, u64 root_objectid, 4947 const struct btrfs_disk_key *key, 4948 int level, u64 hint, 4949 u64 empty_size, 4950 enum btrfs_lock_nesting nest) 4951 { 4952 struct btrfs_fs_info *fs_info = root->fs_info; 4953 struct btrfs_key ins; 4954 struct btrfs_block_rsv *block_rsv; 4955 struct extent_buffer *buf; 4956 struct btrfs_delayed_extent_op *extent_op; 4957 struct btrfs_ref generic_ref = { 0 }; 4958 u64 flags = 0; 4959 int ret; 4960 u32 blocksize = fs_info->nodesize; 4961 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4962 4963 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4964 if (btrfs_is_testing(fs_info)) { 4965 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4966 level, root_objectid, nest); 4967 if (!IS_ERR(buf)) 4968 root->alloc_bytenr += blocksize; 4969 return buf; 4970 } 4971 #endif 4972 4973 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4974 if (IS_ERR(block_rsv)) 4975 return ERR_CAST(block_rsv); 4976 4977 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4978 empty_size, hint, &ins, 0, 0); 4979 if (ret) 4980 goto out_unuse; 4981 4982 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4983 root_objectid, nest); 4984 if (IS_ERR(buf)) { 4985 ret = PTR_ERR(buf); 4986 goto out_free_reserved; 4987 } 4988 4989 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4990 if (parent == 0) 4991 parent = ins.objectid; 4992 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4993 } else 4994 BUG_ON(parent > 0); 4995 4996 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4997 extent_op = btrfs_alloc_delayed_extent_op(); 4998 if (!extent_op) { 4999 ret = -ENOMEM; 5000 goto out_free_buf; 5001 } 5002 if (key) 5003 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5004 else 5005 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5006 extent_op->flags_to_set = flags; 5007 extent_op->update_key = skinny_metadata ? false : true; 5008 extent_op->update_flags = true; 5009 extent_op->level = level; 5010 5011 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5012 ins.objectid, ins.offset, parent); 5013 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5014 root->root_key.objectid, false); 5015 btrfs_ref_tree_mod(fs_info, &generic_ref); 5016 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5017 if (ret) 5018 goto out_free_delayed; 5019 } 5020 return buf; 5021 5022 out_free_delayed: 5023 btrfs_free_delayed_extent_op(extent_op); 5024 out_free_buf: 5025 btrfs_tree_unlock(buf); 5026 free_extent_buffer(buf); 5027 out_free_reserved: 5028 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5029 out_unuse: 5030 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5031 return ERR_PTR(ret); 5032 } 5033 5034 struct walk_control { 5035 u64 refs[BTRFS_MAX_LEVEL]; 5036 u64 flags[BTRFS_MAX_LEVEL]; 5037 struct btrfs_key update_progress; 5038 struct btrfs_key drop_progress; 5039 int drop_level; 5040 int stage; 5041 int level; 5042 int shared_level; 5043 int update_ref; 5044 int keep_locks; 5045 int reada_slot; 5046 int reada_count; 5047 int restarted; 5048 }; 5049 5050 #define DROP_REFERENCE 1 5051 #define UPDATE_BACKREF 2 5052 5053 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5054 struct btrfs_root *root, 5055 struct walk_control *wc, 5056 struct btrfs_path *path) 5057 { 5058 struct btrfs_fs_info *fs_info = root->fs_info; 5059 u64 bytenr; 5060 u64 generation; 5061 u64 refs; 5062 u64 flags; 5063 u32 nritems; 5064 struct btrfs_key key; 5065 struct extent_buffer *eb; 5066 int ret; 5067 int slot; 5068 int nread = 0; 5069 5070 if (path->slots[wc->level] < wc->reada_slot) { 5071 wc->reada_count = wc->reada_count * 2 / 3; 5072 wc->reada_count = max(wc->reada_count, 2); 5073 } else { 5074 wc->reada_count = wc->reada_count * 3 / 2; 5075 wc->reada_count = min_t(int, wc->reada_count, 5076 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5077 } 5078 5079 eb = path->nodes[wc->level]; 5080 nritems = btrfs_header_nritems(eb); 5081 5082 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5083 if (nread >= wc->reada_count) 5084 break; 5085 5086 cond_resched(); 5087 bytenr = btrfs_node_blockptr(eb, slot); 5088 generation = btrfs_node_ptr_generation(eb, slot); 5089 5090 if (slot == path->slots[wc->level]) 5091 goto reada; 5092 5093 if (wc->stage == UPDATE_BACKREF && 5094 generation <= root->root_key.offset) 5095 continue; 5096 5097 /* We don't lock the tree block, it's OK to be racy here */ 5098 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5099 wc->level - 1, 1, &refs, 5100 &flags); 5101 /* We don't care about errors in readahead. */ 5102 if (ret < 0) 5103 continue; 5104 BUG_ON(refs == 0); 5105 5106 if (wc->stage == DROP_REFERENCE) { 5107 if (refs == 1) 5108 goto reada; 5109 5110 if (wc->level == 1 && 5111 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5112 continue; 5113 if (!wc->update_ref || 5114 generation <= root->root_key.offset) 5115 continue; 5116 btrfs_node_key_to_cpu(eb, &key, slot); 5117 ret = btrfs_comp_cpu_keys(&key, 5118 &wc->update_progress); 5119 if (ret < 0) 5120 continue; 5121 } else { 5122 if (wc->level == 1 && 5123 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5124 continue; 5125 } 5126 reada: 5127 btrfs_readahead_node_child(eb, slot); 5128 nread++; 5129 } 5130 wc->reada_slot = slot; 5131 } 5132 5133 /* 5134 * helper to process tree block while walking down the tree. 5135 * 5136 * when wc->stage == UPDATE_BACKREF, this function updates 5137 * back refs for pointers in the block. 5138 * 5139 * NOTE: return value 1 means we should stop walking down. 5140 */ 5141 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5142 struct btrfs_root *root, 5143 struct btrfs_path *path, 5144 struct walk_control *wc, int lookup_info) 5145 { 5146 struct btrfs_fs_info *fs_info = root->fs_info; 5147 int level = wc->level; 5148 struct extent_buffer *eb = path->nodes[level]; 5149 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5150 int ret; 5151 5152 if (wc->stage == UPDATE_BACKREF && 5153 btrfs_header_owner(eb) != root->root_key.objectid) 5154 return 1; 5155 5156 /* 5157 * when reference count of tree block is 1, it won't increase 5158 * again. once full backref flag is set, we never clear it. 5159 */ 5160 if (lookup_info && 5161 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5162 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5163 BUG_ON(!path->locks[level]); 5164 ret = btrfs_lookup_extent_info(trans, fs_info, 5165 eb->start, level, 1, 5166 &wc->refs[level], 5167 &wc->flags[level]); 5168 BUG_ON(ret == -ENOMEM); 5169 if (ret) 5170 return ret; 5171 BUG_ON(wc->refs[level] == 0); 5172 } 5173 5174 if (wc->stage == DROP_REFERENCE) { 5175 if (wc->refs[level] > 1) 5176 return 1; 5177 5178 if (path->locks[level] && !wc->keep_locks) { 5179 btrfs_tree_unlock_rw(eb, path->locks[level]); 5180 path->locks[level] = 0; 5181 } 5182 return 0; 5183 } 5184 5185 /* wc->stage == UPDATE_BACKREF */ 5186 if (!(wc->flags[level] & flag)) { 5187 BUG_ON(!path->locks[level]); 5188 ret = btrfs_inc_ref(trans, root, eb, 1); 5189 BUG_ON(ret); /* -ENOMEM */ 5190 ret = btrfs_dec_ref(trans, root, eb, 0); 5191 BUG_ON(ret); /* -ENOMEM */ 5192 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5193 btrfs_header_level(eb)); 5194 BUG_ON(ret); /* -ENOMEM */ 5195 wc->flags[level] |= flag; 5196 } 5197 5198 /* 5199 * the block is shared by multiple trees, so it's not good to 5200 * keep the tree lock 5201 */ 5202 if (path->locks[level] && level > 0) { 5203 btrfs_tree_unlock_rw(eb, path->locks[level]); 5204 path->locks[level] = 0; 5205 } 5206 return 0; 5207 } 5208 5209 /* 5210 * This is used to verify a ref exists for this root to deal with a bug where we 5211 * would have a drop_progress key that hadn't been updated properly. 5212 */ 5213 static int check_ref_exists(struct btrfs_trans_handle *trans, 5214 struct btrfs_root *root, u64 bytenr, u64 parent, 5215 int level) 5216 { 5217 struct btrfs_path *path; 5218 struct btrfs_extent_inline_ref *iref; 5219 int ret; 5220 5221 path = btrfs_alloc_path(); 5222 if (!path) 5223 return -ENOMEM; 5224 5225 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5226 root->fs_info->nodesize, parent, 5227 root->root_key.objectid, level, 0); 5228 btrfs_free_path(path); 5229 if (ret == -ENOENT) 5230 return 0; 5231 if (ret < 0) 5232 return ret; 5233 return 1; 5234 } 5235 5236 /* 5237 * helper to process tree block pointer. 5238 * 5239 * when wc->stage == DROP_REFERENCE, this function checks 5240 * reference count of the block pointed to. if the block 5241 * is shared and we need update back refs for the subtree 5242 * rooted at the block, this function changes wc->stage to 5243 * UPDATE_BACKREF. if the block is shared and there is no 5244 * need to update back, this function drops the reference 5245 * to the block. 5246 * 5247 * NOTE: return value 1 means we should stop walking down. 5248 */ 5249 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5250 struct btrfs_root *root, 5251 struct btrfs_path *path, 5252 struct walk_control *wc, int *lookup_info) 5253 { 5254 struct btrfs_fs_info *fs_info = root->fs_info; 5255 u64 bytenr; 5256 u64 generation; 5257 u64 parent; 5258 struct btrfs_key key; 5259 struct btrfs_key first_key; 5260 struct btrfs_ref ref = { 0 }; 5261 struct extent_buffer *next; 5262 int level = wc->level; 5263 int reada = 0; 5264 int ret = 0; 5265 bool need_account = false; 5266 5267 generation = btrfs_node_ptr_generation(path->nodes[level], 5268 path->slots[level]); 5269 /* 5270 * if the lower level block was created before the snapshot 5271 * was created, we know there is no need to update back refs 5272 * for the subtree 5273 */ 5274 if (wc->stage == UPDATE_BACKREF && 5275 generation <= root->root_key.offset) { 5276 *lookup_info = 1; 5277 return 1; 5278 } 5279 5280 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5281 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5282 path->slots[level]); 5283 5284 next = find_extent_buffer(fs_info, bytenr); 5285 if (!next) { 5286 next = btrfs_find_create_tree_block(fs_info, bytenr, 5287 root->root_key.objectid, level - 1); 5288 if (IS_ERR(next)) 5289 return PTR_ERR(next); 5290 reada = 1; 5291 } 5292 btrfs_tree_lock(next); 5293 5294 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5295 &wc->refs[level - 1], 5296 &wc->flags[level - 1]); 5297 if (ret < 0) 5298 goto out_unlock; 5299 5300 if (unlikely(wc->refs[level - 1] == 0)) { 5301 btrfs_err(fs_info, "Missing references."); 5302 ret = -EIO; 5303 goto out_unlock; 5304 } 5305 *lookup_info = 0; 5306 5307 if (wc->stage == DROP_REFERENCE) { 5308 if (wc->refs[level - 1] > 1) { 5309 need_account = true; 5310 if (level == 1 && 5311 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5312 goto skip; 5313 5314 if (!wc->update_ref || 5315 generation <= root->root_key.offset) 5316 goto skip; 5317 5318 btrfs_node_key_to_cpu(path->nodes[level], &key, 5319 path->slots[level]); 5320 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5321 if (ret < 0) 5322 goto skip; 5323 5324 wc->stage = UPDATE_BACKREF; 5325 wc->shared_level = level - 1; 5326 } 5327 } else { 5328 if (level == 1 && 5329 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5330 goto skip; 5331 } 5332 5333 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5334 btrfs_tree_unlock(next); 5335 free_extent_buffer(next); 5336 next = NULL; 5337 *lookup_info = 1; 5338 } 5339 5340 if (!next) { 5341 if (reada && level == 1) 5342 reada_walk_down(trans, root, wc, path); 5343 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5344 generation, level - 1, &first_key); 5345 if (IS_ERR(next)) { 5346 return PTR_ERR(next); 5347 } else if (!extent_buffer_uptodate(next)) { 5348 free_extent_buffer(next); 5349 return -EIO; 5350 } 5351 btrfs_tree_lock(next); 5352 } 5353 5354 level--; 5355 ASSERT(level == btrfs_header_level(next)); 5356 if (level != btrfs_header_level(next)) { 5357 btrfs_err(root->fs_info, "mismatched level"); 5358 ret = -EIO; 5359 goto out_unlock; 5360 } 5361 path->nodes[level] = next; 5362 path->slots[level] = 0; 5363 path->locks[level] = BTRFS_WRITE_LOCK; 5364 wc->level = level; 5365 if (wc->level == 1) 5366 wc->reada_slot = 0; 5367 return 0; 5368 skip: 5369 wc->refs[level - 1] = 0; 5370 wc->flags[level - 1] = 0; 5371 if (wc->stage == DROP_REFERENCE) { 5372 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5373 parent = path->nodes[level]->start; 5374 } else { 5375 ASSERT(root->root_key.objectid == 5376 btrfs_header_owner(path->nodes[level])); 5377 if (root->root_key.objectid != 5378 btrfs_header_owner(path->nodes[level])) { 5379 btrfs_err(root->fs_info, 5380 "mismatched block owner"); 5381 ret = -EIO; 5382 goto out_unlock; 5383 } 5384 parent = 0; 5385 } 5386 5387 /* 5388 * If we had a drop_progress we need to verify the refs are set 5389 * as expected. If we find our ref then we know that from here 5390 * on out everything should be correct, and we can clear the 5391 * ->restarted flag. 5392 */ 5393 if (wc->restarted) { 5394 ret = check_ref_exists(trans, root, bytenr, parent, 5395 level - 1); 5396 if (ret < 0) 5397 goto out_unlock; 5398 if (ret == 0) 5399 goto no_delete; 5400 ret = 0; 5401 wc->restarted = 0; 5402 } 5403 5404 /* 5405 * Reloc tree doesn't contribute to qgroup numbers, and we have 5406 * already accounted them at merge time (replace_path), 5407 * thus we could skip expensive subtree trace here. 5408 */ 5409 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5410 need_account) { 5411 ret = btrfs_qgroup_trace_subtree(trans, next, 5412 generation, level - 1); 5413 if (ret) { 5414 btrfs_err_rl(fs_info, 5415 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5416 ret); 5417 } 5418 } 5419 5420 /* 5421 * We need to update the next key in our walk control so we can 5422 * update the drop_progress key accordingly. We don't care if 5423 * find_next_key doesn't find a key because that means we're at 5424 * the end and are going to clean up now. 5425 */ 5426 wc->drop_level = level; 5427 find_next_key(path, level, &wc->drop_progress); 5428 5429 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5430 fs_info->nodesize, parent); 5431 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5432 0, false); 5433 ret = btrfs_free_extent(trans, &ref); 5434 if (ret) 5435 goto out_unlock; 5436 } 5437 no_delete: 5438 *lookup_info = 1; 5439 ret = 1; 5440 5441 out_unlock: 5442 btrfs_tree_unlock(next); 5443 free_extent_buffer(next); 5444 5445 return ret; 5446 } 5447 5448 /* 5449 * helper to process tree block while walking up the tree. 5450 * 5451 * when wc->stage == DROP_REFERENCE, this function drops 5452 * reference count on the block. 5453 * 5454 * when wc->stage == UPDATE_BACKREF, this function changes 5455 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5456 * to UPDATE_BACKREF previously while processing the block. 5457 * 5458 * NOTE: return value 1 means we should stop walking up. 5459 */ 5460 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5461 struct btrfs_root *root, 5462 struct btrfs_path *path, 5463 struct walk_control *wc) 5464 { 5465 struct btrfs_fs_info *fs_info = root->fs_info; 5466 int ret; 5467 int level = wc->level; 5468 struct extent_buffer *eb = path->nodes[level]; 5469 u64 parent = 0; 5470 5471 if (wc->stage == UPDATE_BACKREF) { 5472 BUG_ON(wc->shared_level < level); 5473 if (level < wc->shared_level) 5474 goto out; 5475 5476 ret = find_next_key(path, level + 1, &wc->update_progress); 5477 if (ret > 0) 5478 wc->update_ref = 0; 5479 5480 wc->stage = DROP_REFERENCE; 5481 wc->shared_level = -1; 5482 path->slots[level] = 0; 5483 5484 /* 5485 * check reference count again if the block isn't locked. 5486 * we should start walking down the tree again if reference 5487 * count is one. 5488 */ 5489 if (!path->locks[level]) { 5490 BUG_ON(level == 0); 5491 btrfs_tree_lock(eb); 5492 path->locks[level] = BTRFS_WRITE_LOCK; 5493 5494 ret = btrfs_lookup_extent_info(trans, fs_info, 5495 eb->start, level, 1, 5496 &wc->refs[level], 5497 &wc->flags[level]); 5498 if (ret < 0) { 5499 btrfs_tree_unlock_rw(eb, path->locks[level]); 5500 path->locks[level] = 0; 5501 return ret; 5502 } 5503 BUG_ON(wc->refs[level] == 0); 5504 if (wc->refs[level] == 1) { 5505 btrfs_tree_unlock_rw(eb, path->locks[level]); 5506 path->locks[level] = 0; 5507 return 1; 5508 } 5509 } 5510 } 5511 5512 /* wc->stage == DROP_REFERENCE */ 5513 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5514 5515 if (wc->refs[level] == 1) { 5516 if (level == 0) { 5517 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5518 ret = btrfs_dec_ref(trans, root, eb, 1); 5519 else 5520 ret = btrfs_dec_ref(trans, root, eb, 0); 5521 BUG_ON(ret); /* -ENOMEM */ 5522 if (is_fstree(root->root_key.objectid)) { 5523 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5524 if (ret) { 5525 btrfs_err_rl(fs_info, 5526 "error %d accounting leaf items, quota is out of sync, rescan required", 5527 ret); 5528 } 5529 } 5530 } 5531 /* make block locked assertion in btrfs_clean_tree_block happy */ 5532 if (!path->locks[level] && 5533 btrfs_header_generation(eb) == trans->transid) { 5534 btrfs_tree_lock(eb); 5535 path->locks[level] = BTRFS_WRITE_LOCK; 5536 } 5537 btrfs_clean_tree_block(eb); 5538 } 5539 5540 if (eb == root->node) { 5541 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5542 parent = eb->start; 5543 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5544 goto owner_mismatch; 5545 } else { 5546 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5547 parent = path->nodes[level + 1]->start; 5548 else if (root->root_key.objectid != 5549 btrfs_header_owner(path->nodes[level + 1])) 5550 goto owner_mismatch; 5551 } 5552 5553 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5554 wc->refs[level] == 1); 5555 out: 5556 wc->refs[level] = 0; 5557 wc->flags[level] = 0; 5558 return 0; 5559 5560 owner_mismatch: 5561 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5562 btrfs_header_owner(eb), root->root_key.objectid); 5563 return -EUCLEAN; 5564 } 5565 5566 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5567 struct btrfs_root *root, 5568 struct btrfs_path *path, 5569 struct walk_control *wc) 5570 { 5571 int level = wc->level; 5572 int lookup_info = 1; 5573 int ret; 5574 5575 while (level >= 0) { 5576 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5577 if (ret > 0) 5578 break; 5579 5580 if (level == 0) 5581 break; 5582 5583 if (path->slots[level] >= 5584 btrfs_header_nritems(path->nodes[level])) 5585 break; 5586 5587 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5588 if (ret > 0) { 5589 path->slots[level]++; 5590 continue; 5591 } else if (ret < 0) 5592 return ret; 5593 level = wc->level; 5594 } 5595 return 0; 5596 } 5597 5598 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5599 struct btrfs_root *root, 5600 struct btrfs_path *path, 5601 struct walk_control *wc, int max_level) 5602 { 5603 int level = wc->level; 5604 int ret; 5605 5606 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5607 while (level < max_level && path->nodes[level]) { 5608 wc->level = level; 5609 if (path->slots[level] + 1 < 5610 btrfs_header_nritems(path->nodes[level])) { 5611 path->slots[level]++; 5612 return 0; 5613 } else { 5614 ret = walk_up_proc(trans, root, path, wc); 5615 if (ret > 0) 5616 return 0; 5617 if (ret < 0) 5618 return ret; 5619 5620 if (path->locks[level]) { 5621 btrfs_tree_unlock_rw(path->nodes[level], 5622 path->locks[level]); 5623 path->locks[level] = 0; 5624 } 5625 free_extent_buffer(path->nodes[level]); 5626 path->nodes[level] = NULL; 5627 level++; 5628 } 5629 } 5630 return 1; 5631 } 5632 5633 /* 5634 * drop a subvolume tree. 5635 * 5636 * this function traverses the tree freeing any blocks that only 5637 * referenced by the tree. 5638 * 5639 * when a shared tree block is found. this function decreases its 5640 * reference count by one. if update_ref is true, this function 5641 * also make sure backrefs for the shared block and all lower level 5642 * blocks are properly updated. 5643 * 5644 * If called with for_reloc == 0, may exit early with -EAGAIN 5645 */ 5646 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5647 { 5648 const bool is_reloc_root = (root->root_key.objectid == 5649 BTRFS_TREE_RELOC_OBJECTID); 5650 struct btrfs_fs_info *fs_info = root->fs_info; 5651 struct btrfs_path *path; 5652 struct btrfs_trans_handle *trans; 5653 struct btrfs_root *tree_root = fs_info->tree_root; 5654 struct btrfs_root_item *root_item = &root->root_item; 5655 struct walk_control *wc; 5656 struct btrfs_key key; 5657 int err = 0; 5658 int ret; 5659 int level; 5660 bool root_dropped = false; 5661 bool unfinished_drop = false; 5662 5663 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5664 5665 path = btrfs_alloc_path(); 5666 if (!path) { 5667 err = -ENOMEM; 5668 goto out; 5669 } 5670 5671 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5672 if (!wc) { 5673 btrfs_free_path(path); 5674 err = -ENOMEM; 5675 goto out; 5676 } 5677 5678 /* 5679 * Use join to avoid potential EINTR from transaction start. See 5680 * wait_reserve_ticket and the whole reservation callchain. 5681 */ 5682 if (for_reloc) 5683 trans = btrfs_join_transaction(tree_root); 5684 else 5685 trans = btrfs_start_transaction(tree_root, 0); 5686 if (IS_ERR(trans)) { 5687 err = PTR_ERR(trans); 5688 goto out_free; 5689 } 5690 5691 err = btrfs_run_delayed_items(trans); 5692 if (err) 5693 goto out_end_trans; 5694 5695 /* 5696 * This will help us catch people modifying the fs tree while we're 5697 * dropping it. It is unsafe to mess with the fs tree while it's being 5698 * dropped as we unlock the root node and parent nodes as we walk down 5699 * the tree, assuming nothing will change. If something does change 5700 * then we'll have stale information and drop references to blocks we've 5701 * already dropped. 5702 */ 5703 set_bit(BTRFS_ROOT_DELETING, &root->state); 5704 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5705 5706 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5707 level = btrfs_header_level(root->node); 5708 path->nodes[level] = btrfs_lock_root_node(root); 5709 path->slots[level] = 0; 5710 path->locks[level] = BTRFS_WRITE_LOCK; 5711 memset(&wc->update_progress, 0, 5712 sizeof(wc->update_progress)); 5713 } else { 5714 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5715 memcpy(&wc->update_progress, &key, 5716 sizeof(wc->update_progress)); 5717 5718 level = btrfs_root_drop_level(root_item); 5719 BUG_ON(level == 0); 5720 path->lowest_level = level; 5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5722 path->lowest_level = 0; 5723 if (ret < 0) { 5724 err = ret; 5725 goto out_end_trans; 5726 } 5727 WARN_ON(ret > 0); 5728 5729 /* 5730 * unlock our path, this is safe because only this 5731 * function is allowed to delete this snapshot 5732 */ 5733 btrfs_unlock_up_safe(path, 0); 5734 5735 level = btrfs_header_level(root->node); 5736 while (1) { 5737 btrfs_tree_lock(path->nodes[level]); 5738 path->locks[level] = BTRFS_WRITE_LOCK; 5739 5740 ret = btrfs_lookup_extent_info(trans, fs_info, 5741 path->nodes[level]->start, 5742 level, 1, &wc->refs[level], 5743 &wc->flags[level]); 5744 if (ret < 0) { 5745 err = ret; 5746 goto out_end_trans; 5747 } 5748 BUG_ON(wc->refs[level] == 0); 5749 5750 if (level == btrfs_root_drop_level(root_item)) 5751 break; 5752 5753 btrfs_tree_unlock(path->nodes[level]); 5754 path->locks[level] = 0; 5755 WARN_ON(wc->refs[level] != 1); 5756 level--; 5757 } 5758 } 5759 5760 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5761 wc->level = level; 5762 wc->shared_level = -1; 5763 wc->stage = DROP_REFERENCE; 5764 wc->update_ref = update_ref; 5765 wc->keep_locks = 0; 5766 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5767 5768 while (1) { 5769 5770 ret = walk_down_tree(trans, root, path, wc); 5771 if (ret < 0) { 5772 err = ret; 5773 break; 5774 } 5775 5776 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5777 if (ret < 0) { 5778 err = ret; 5779 break; 5780 } 5781 5782 if (ret > 0) { 5783 BUG_ON(wc->stage != DROP_REFERENCE); 5784 break; 5785 } 5786 5787 if (wc->stage == DROP_REFERENCE) { 5788 wc->drop_level = wc->level; 5789 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5790 &wc->drop_progress, 5791 path->slots[wc->drop_level]); 5792 } 5793 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5794 &wc->drop_progress); 5795 btrfs_set_root_drop_level(root_item, wc->drop_level); 5796 5797 BUG_ON(wc->level == 0); 5798 if (btrfs_should_end_transaction(trans) || 5799 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5800 ret = btrfs_update_root(trans, tree_root, 5801 &root->root_key, 5802 root_item); 5803 if (ret) { 5804 btrfs_abort_transaction(trans, ret); 5805 err = ret; 5806 goto out_end_trans; 5807 } 5808 5809 if (!is_reloc_root) 5810 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5811 5812 btrfs_end_transaction_throttle(trans); 5813 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5814 btrfs_debug(fs_info, 5815 "drop snapshot early exit"); 5816 err = -EAGAIN; 5817 goto out_free; 5818 } 5819 5820 /* 5821 * Use join to avoid potential EINTR from transaction 5822 * start. See wait_reserve_ticket and the whole 5823 * reservation callchain. 5824 */ 5825 if (for_reloc) 5826 trans = btrfs_join_transaction(tree_root); 5827 else 5828 trans = btrfs_start_transaction(tree_root, 0); 5829 if (IS_ERR(trans)) { 5830 err = PTR_ERR(trans); 5831 goto out_free; 5832 } 5833 } 5834 } 5835 btrfs_release_path(path); 5836 if (err) 5837 goto out_end_trans; 5838 5839 ret = btrfs_del_root(trans, &root->root_key); 5840 if (ret) { 5841 btrfs_abort_transaction(trans, ret); 5842 err = ret; 5843 goto out_end_trans; 5844 } 5845 5846 if (!is_reloc_root) { 5847 ret = btrfs_find_root(tree_root, &root->root_key, path, 5848 NULL, NULL); 5849 if (ret < 0) { 5850 btrfs_abort_transaction(trans, ret); 5851 err = ret; 5852 goto out_end_trans; 5853 } else if (ret > 0) { 5854 /* if we fail to delete the orphan item this time 5855 * around, it'll get picked up the next time. 5856 * 5857 * The most common failure here is just -ENOENT. 5858 */ 5859 btrfs_del_orphan_item(trans, tree_root, 5860 root->root_key.objectid); 5861 } 5862 } 5863 5864 /* 5865 * This subvolume is going to be completely dropped, and won't be 5866 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5867 * commit transaction time. So free it here manually. 5868 */ 5869 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5870 btrfs_qgroup_free_meta_all_pertrans(root); 5871 5872 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5873 btrfs_add_dropped_root(trans, root); 5874 else 5875 btrfs_put_root(root); 5876 root_dropped = true; 5877 out_end_trans: 5878 if (!is_reloc_root) 5879 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5880 5881 btrfs_end_transaction_throttle(trans); 5882 out_free: 5883 kfree(wc); 5884 btrfs_free_path(path); 5885 out: 5886 /* 5887 * We were an unfinished drop root, check to see if there are any 5888 * pending, and if not clear and wake up any waiters. 5889 */ 5890 if (!err && unfinished_drop) 5891 btrfs_maybe_wake_unfinished_drop(fs_info); 5892 5893 /* 5894 * So if we need to stop dropping the snapshot for whatever reason we 5895 * need to make sure to add it back to the dead root list so that we 5896 * keep trying to do the work later. This also cleans up roots if we 5897 * don't have it in the radix (like when we recover after a power fail 5898 * or unmount) so we don't leak memory. 5899 */ 5900 if (!for_reloc && !root_dropped) 5901 btrfs_add_dead_root(root); 5902 return err; 5903 } 5904 5905 /* 5906 * drop subtree rooted at tree block 'node'. 5907 * 5908 * NOTE: this function will unlock and release tree block 'node' 5909 * only used by relocation code 5910 */ 5911 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5912 struct btrfs_root *root, 5913 struct extent_buffer *node, 5914 struct extent_buffer *parent) 5915 { 5916 struct btrfs_fs_info *fs_info = root->fs_info; 5917 struct btrfs_path *path; 5918 struct walk_control *wc; 5919 int level; 5920 int parent_level; 5921 int ret = 0; 5922 int wret; 5923 5924 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5925 5926 path = btrfs_alloc_path(); 5927 if (!path) 5928 return -ENOMEM; 5929 5930 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5931 if (!wc) { 5932 btrfs_free_path(path); 5933 return -ENOMEM; 5934 } 5935 5936 btrfs_assert_tree_write_locked(parent); 5937 parent_level = btrfs_header_level(parent); 5938 atomic_inc(&parent->refs); 5939 path->nodes[parent_level] = parent; 5940 path->slots[parent_level] = btrfs_header_nritems(parent); 5941 5942 btrfs_assert_tree_write_locked(node); 5943 level = btrfs_header_level(node); 5944 path->nodes[level] = node; 5945 path->slots[level] = 0; 5946 path->locks[level] = BTRFS_WRITE_LOCK; 5947 5948 wc->refs[parent_level] = 1; 5949 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5950 wc->level = level; 5951 wc->shared_level = -1; 5952 wc->stage = DROP_REFERENCE; 5953 wc->update_ref = 0; 5954 wc->keep_locks = 1; 5955 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5956 5957 while (1) { 5958 wret = walk_down_tree(trans, root, path, wc); 5959 if (wret < 0) { 5960 ret = wret; 5961 break; 5962 } 5963 5964 wret = walk_up_tree(trans, root, path, wc, parent_level); 5965 if (wret < 0) 5966 ret = wret; 5967 if (wret != 0) 5968 break; 5969 } 5970 5971 kfree(wc); 5972 btrfs_free_path(path); 5973 return ret; 5974 } 5975 5976 /* 5977 * helper to account the unused space of all the readonly block group in the 5978 * space_info. takes mirrors into account. 5979 */ 5980 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5981 { 5982 struct btrfs_block_group *block_group; 5983 u64 free_bytes = 0; 5984 int factor; 5985 5986 /* It's df, we don't care if it's racy */ 5987 if (list_empty(&sinfo->ro_bgs)) 5988 return 0; 5989 5990 spin_lock(&sinfo->lock); 5991 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5992 spin_lock(&block_group->lock); 5993 5994 if (!block_group->ro) { 5995 spin_unlock(&block_group->lock); 5996 continue; 5997 } 5998 5999 factor = btrfs_bg_type_to_factor(block_group->flags); 6000 free_bytes += (block_group->length - 6001 block_group->used) * factor; 6002 6003 spin_unlock(&block_group->lock); 6004 } 6005 spin_unlock(&sinfo->lock); 6006 6007 return free_bytes; 6008 } 6009 6010 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 6011 u64 start, u64 end) 6012 { 6013 return unpin_extent_range(fs_info, start, end, false); 6014 } 6015 6016 /* 6017 * It used to be that old block groups would be left around forever. 6018 * Iterating over them would be enough to trim unused space. Since we 6019 * now automatically remove them, we also need to iterate over unallocated 6020 * space. 6021 * 6022 * We don't want a transaction for this since the discard may take a 6023 * substantial amount of time. We don't require that a transaction be 6024 * running, but we do need to take a running transaction into account 6025 * to ensure that we're not discarding chunks that were released or 6026 * allocated in the current transaction. 6027 * 6028 * Holding the chunks lock will prevent other threads from allocating 6029 * or releasing chunks, but it won't prevent a running transaction 6030 * from committing and releasing the memory that the pending chunks 6031 * list head uses. For that, we need to take a reference to the 6032 * transaction and hold the commit root sem. We only need to hold 6033 * it while performing the free space search since we have already 6034 * held back allocations. 6035 */ 6036 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6037 { 6038 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6039 int ret; 6040 6041 *trimmed = 0; 6042 6043 /* Discard not supported = nothing to do. */ 6044 if (!bdev_max_discard_sectors(device->bdev)) 6045 return 0; 6046 6047 /* Not writable = nothing to do. */ 6048 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6049 return 0; 6050 6051 /* No free space = nothing to do. */ 6052 if (device->total_bytes <= device->bytes_used) 6053 return 0; 6054 6055 ret = 0; 6056 6057 while (1) { 6058 struct btrfs_fs_info *fs_info = device->fs_info; 6059 u64 bytes; 6060 6061 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6062 if (ret) 6063 break; 6064 6065 find_first_clear_extent_bit(&device->alloc_state, start, 6066 &start, &end, 6067 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6068 6069 /* Check if there are any CHUNK_* bits left */ 6070 if (start > device->total_bytes) { 6071 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6072 btrfs_warn_in_rcu(fs_info, 6073 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6074 start, end - start + 1, 6075 rcu_str_deref(device->name), 6076 device->total_bytes); 6077 mutex_unlock(&fs_info->chunk_mutex); 6078 ret = 0; 6079 break; 6080 } 6081 6082 /* Ensure we skip the reserved space on each device. */ 6083 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6084 6085 /* 6086 * If find_first_clear_extent_bit find a range that spans the 6087 * end of the device it will set end to -1, in this case it's up 6088 * to the caller to trim the value to the size of the device. 6089 */ 6090 end = min(end, device->total_bytes - 1); 6091 6092 len = end - start + 1; 6093 6094 /* We didn't find any extents */ 6095 if (!len) { 6096 mutex_unlock(&fs_info->chunk_mutex); 6097 ret = 0; 6098 break; 6099 } 6100 6101 ret = btrfs_issue_discard(device->bdev, start, len, 6102 &bytes); 6103 if (!ret) 6104 set_extent_bits(&device->alloc_state, start, 6105 start + bytes - 1, 6106 CHUNK_TRIMMED); 6107 mutex_unlock(&fs_info->chunk_mutex); 6108 6109 if (ret) 6110 break; 6111 6112 start += len; 6113 *trimmed += bytes; 6114 6115 if (fatal_signal_pending(current)) { 6116 ret = -ERESTARTSYS; 6117 break; 6118 } 6119 6120 cond_resched(); 6121 } 6122 6123 return ret; 6124 } 6125 6126 /* 6127 * Trim the whole filesystem by: 6128 * 1) trimming the free space in each block group 6129 * 2) trimming the unallocated space on each device 6130 * 6131 * This will also continue trimming even if a block group or device encounters 6132 * an error. The return value will be the last error, or 0 if nothing bad 6133 * happens. 6134 */ 6135 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6136 { 6137 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6138 struct btrfs_block_group *cache = NULL; 6139 struct btrfs_device *device; 6140 u64 group_trimmed; 6141 u64 range_end = U64_MAX; 6142 u64 start; 6143 u64 end; 6144 u64 trimmed = 0; 6145 u64 bg_failed = 0; 6146 u64 dev_failed = 0; 6147 int bg_ret = 0; 6148 int dev_ret = 0; 6149 int ret = 0; 6150 6151 if (range->start == U64_MAX) 6152 return -EINVAL; 6153 6154 /* 6155 * Check range overflow if range->len is set. 6156 * The default range->len is U64_MAX. 6157 */ 6158 if (range->len != U64_MAX && 6159 check_add_overflow(range->start, range->len, &range_end)) 6160 return -EINVAL; 6161 6162 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6163 for (; cache; cache = btrfs_next_block_group(cache)) { 6164 if (cache->start >= range_end) { 6165 btrfs_put_block_group(cache); 6166 break; 6167 } 6168 6169 start = max(range->start, cache->start); 6170 end = min(range_end, cache->start + cache->length); 6171 6172 if (end - start >= range->minlen) { 6173 if (!btrfs_block_group_done(cache)) { 6174 ret = btrfs_cache_block_group(cache, true); 6175 if (ret) { 6176 bg_failed++; 6177 bg_ret = ret; 6178 continue; 6179 } 6180 } 6181 ret = btrfs_trim_block_group(cache, 6182 &group_trimmed, 6183 start, 6184 end, 6185 range->minlen); 6186 6187 trimmed += group_trimmed; 6188 if (ret) { 6189 bg_failed++; 6190 bg_ret = ret; 6191 continue; 6192 } 6193 } 6194 } 6195 6196 if (bg_failed) 6197 btrfs_warn(fs_info, 6198 "failed to trim %llu block group(s), last error %d", 6199 bg_failed, bg_ret); 6200 6201 mutex_lock(&fs_devices->device_list_mutex); 6202 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6203 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6204 continue; 6205 6206 ret = btrfs_trim_free_extents(device, &group_trimmed); 6207 if (ret) { 6208 dev_failed++; 6209 dev_ret = ret; 6210 break; 6211 } 6212 6213 trimmed += group_trimmed; 6214 } 6215 mutex_unlock(&fs_devices->device_list_mutex); 6216 6217 if (dev_failed) 6218 btrfs_warn(fs_info, 6219 "failed to trim %llu device(s), last error %d", 6220 dev_failed, dev_ret); 6221 range->len = trimmed; 6222 if (bg_ret) 6223 return bg_ret; 6224 return dev_ret; 6225 } 6226