1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_delayed_ref_node *node, u64 parent, 43 u64 root_objectid, u64 owner_objectid, 44 u64 owner_offset, int refs_to_drop, 45 struct btrfs_delayed_extent_op *extra_op); 46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 47 struct extent_buffer *leaf, 48 struct btrfs_extent_item *ei); 49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 50 u64 parent, u64 root_objectid, 51 u64 flags, u64 owner, u64 offset, 52 struct btrfs_key *ins, int ref_mod); 53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 54 struct btrfs_delayed_ref_node *node, 55 struct btrfs_delayed_extent_op *extent_op); 56 static int find_next_key(struct btrfs_path *path, int level, 57 struct btrfs_key *key); 58 59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 60 { 61 return (cache->flags & bits) == bits; 62 } 63 64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 65 u64 start, u64 num_bytes) 66 { 67 u64 end = start + num_bytes - 1; 68 set_extent_bits(&fs_info->excluded_extents, start, end, 69 EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->start; 79 end = start + cache->length - 1; 80 81 clear_extent_bits(&fs_info->excluded_extents, start, end, 82 EXTENT_UPTODATE); 83 } 84 85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 86 { 87 if (ref->type == BTRFS_REF_METADATA) { 88 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 89 return BTRFS_BLOCK_GROUP_SYSTEM; 90 else 91 return BTRFS_BLOCK_GROUP_METADATA; 92 } 93 return BTRFS_BLOCK_GROUP_DATA; 94 } 95 96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 97 struct btrfs_ref *ref) 98 { 99 struct btrfs_space_info *space_info; 100 u64 flags = generic_ref_to_space_flags(ref); 101 102 space_info = btrfs_find_space_info(fs_info, flags); 103 ASSERT(space_info); 104 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 105 BTRFS_TOTAL_BYTES_PINNED_BATCH); 106 } 107 108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_ref *ref) 110 { 111 struct btrfs_space_info *space_info; 112 u64 flags = generic_ref_to_space_flags(ref); 113 114 space_info = btrfs_find_space_info(fs_info, flags); 115 ASSERT(space_info); 116 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 117 BTRFS_TOTAL_BYTES_PINNED_BATCH); 118 } 119 120 /* simple helper to search for an existing data extent at a given offset */ 121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 122 { 123 int ret; 124 struct btrfs_key key; 125 struct btrfs_path *path; 126 127 path = btrfs_alloc_path(); 128 if (!path) 129 return -ENOMEM; 130 131 key.objectid = start; 132 key.offset = len; 133 key.type = BTRFS_EXTENT_ITEM_KEY; 134 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 135 btrfs_free_path(path); 136 return ret; 137 } 138 139 /* 140 * helper function to lookup reference count and flags of a tree block. 141 * 142 * the head node for delayed ref is used to store the sum of all the 143 * reference count modifications queued up in the rbtree. the head 144 * node may also store the extent flags to set. This way you can check 145 * to see what the reference count and extent flags would be if all of 146 * the delayed refs are not processed. 147 */ 148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 149 struct btrfs_fs_info *fs_info, u64 bytenr, 150 u64 offset, int metadata, u64 *refs, u64 *flags) 151 { 152 struct btrfs_delayed_ref_head *head; 153 struct btrfs_delayed_ref_root *delayed_refs; 154 struct btrfs_path *path; 155 struct btrfs_extent_item *ei; 156 struct extent_buffer *leaf; 157 struct btrfs_key key; 158 u32 item_size; 159 u64 num_refs; 160 u64 extent_flags; 161 int ret; 162 163 /* 164 * If we don't have skinny metadata, don't bother doing anything 165 * different 166 */ 167 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 168 offset = fs_info->nodesize; 169 metadata = 0; 170 } 171 172 path = btrfs_alloc_path(); 173 if (!path) 174 return -ENOMEM; 175 176 if (!trans) { 177 path->skip_locking = 1; 178 path->search_commit_root = 1; 179 } 180 181 search_again: 182 key.objectid = bytenr; 183 key.offset = offset; 184 if (metadata) 185 key.type = BTRFS_METADATA_ITEM_KEY; 186 else 187 key.type = BTRFS_EXTENT_ITEM_KEY; 188 189 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 190 if (ret < 0) 191 goto out_free; 192 193 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 194 if (path->slots[0]) { 195 path->slots[0]--; 196 btrfs_item_key_to_cpu(path->nodes[0], &key, 197 path->slots[0]); 198 if (key.objectid == bytenr && 199 key.type == BTRFS_EXTENT_ITEM_KEY && 200 key.offset == fs_info->nodesize) 201 ret = 0; 202 } 203 } 204 205 if (ret == 0) { 206 leaf = path->nodes[0]; 207 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 208 if (item_size >= sizeof(*ei)) { 209 ei = btrfs_item_ptr(leaf, path->slots[0], 210 struct btrfs_extent_item); 211 num_refs = btrfs_extent_refs(leaf, ei); 212 extent_flags = btrfs_extent_flags(leaf, ei); 213 } else { 214 ret = -EINVAL; 215 btrfs_print_v0_err(fs_info); 216 if (trans) 217 btrfs_abort_transaction(trans, ret); 218 else 219 btrfs_handle_fs_error(fs_info, ret, NULL); 220 221 goto out_free; 222 } 223 224 BUG_ON(num_refs == 0); 225 } else { 226 num_refs = 0; 227 extent_flags = 0; 228 ret = 0; 229 } 230 231 if (!trans) 232 goto out; 233 234 delayed_refs = &trans->transaction->delayed_refs; 235 spin_lock(&delayed_refs->lock); 236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 237 if (head) { 238 if (!mutex_trylock(&head->mutex)) { 239 refcount_inc(&head->refs); 240 spin_unlock(&delayed_refs->lock); 241 242 btrfs_release_path(path); 243 244 /* 245 * Mutex was contended, block until it's released and try 246 * again 247 */ 248 mutex_lock(&head->mutex); 249 mutex_unlock(&head->mutex); 250 btrfs_put_delayed_ref_head(head); 251 goto search_again; 252 } 253 spin_lock(&head->lock); 254 if (head->extent_op && head->extent_op->update_flags) 255 extent_flags |= head->extent_op->flags_to_set; 256 else 257 BUG_ON(num_refs == 0); 258 259 num_refs += head->ref_mod; 260 spin_unlock(&head->lock); 261 mutex_unlock(&head->mutex); 262 } 263 spin_unlock(&delayed_refs->lock); 264 out: 265 WARN_ON(num_refs == 0); 266 if (refs) 267 *refs = num_refs; 268 if (flags) 269 *flags = extent_flags; 270 out_free: 271 btrfs_free_path(path); 272 return ret; 273 } 274 275 /* 276 * Back reference rules. Back refs have three main goals: 277 * 278 * 1) differentiate between all holders of references to an extent so that 279 * when a reference is dropped we can make sure it was a valid reference 280 * before freeing the extent. 281 * 282 * 2) Provide enough information to quickly find the holders of an extent 283 * if we notice a given block is corrupted or bad. 284 * 285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 286 * maintenance. This is actually the same as #2, but with a slightly 287 * different use case. 288 * 289 * There are two kinds of back refs. The implicit back refs is optimized 290 * for pointers in non-shared tree blocks. For a given pointer in a block, 291 * back refs of this kind provide information about the block's owner tree 292 * and the pointer's key. These information allow us to find the block by 293 * b-tree searching. The full back refs is for pointers in tree blocks not 294 * referenced by their owner trees. The location of tree block is recorded 295 * in the back refs. Actually the full back refs is generic, and can be 296 * used in all cases the implicit back refs is used. The major shortcoming 297 * of the full back refs is its overhead. Every time a tree block gets 298 * COWed, we have to update back refs entry for all pointers in it. 299 * 300 * For a newly allocated tree block, we use implicit back refs for 301 * pointers in it. This means most tree related operations only involve 302 * implicit back refs. For a tree block created in old transaction, the 303 * only way to drop a reference to it is COW it. So we can detect the 304 * event that tree block loses its owner tree's reference and do the 305 * back refs conversion. 306 * 307 * When a tree block is COWed through a tree, there are four cases: 308 * 309 * The reference count of the block is one and the tree is the block's 310 * owner tree. Nothing to do in this case. 311 * 312 * The reference count of the block is one and the tree is not the 313 * block's owner tree. In this case, full back refs is used for pointers 314 * in the block. Remove these full back refs, add implicit back refs for 315 * every pointers in the new block. 316 * 317 * The reference count of the block is greater than one and the tree is 318 * the block's owner tree. In this case, implicit back refs is used for 319 * pointers in the block. Add full back refs for every pointers in the 320 * block, increase lower level extents' reference counts. The original 321 * implicit back refs are entailed to the new block. 322 * 323 * The reference count of the block is greater than one and the tree is 324 * not the block's owner tree. Add implicit back refs for every pointer in 325 * the new block, increase lower level extents' reference count. 326 * 327 * Back Reference Key composing: 328 * 329 * The key objectid corresponds to the first byte in the extent, 330 * The key type is used to differentiate between types of back refs. 331 * There are different meanings of the key offset for different types 332 * of back refs. 333 * 334 * File extents can be referenced by: 335 * 336 * - multiple snapshots, subvolumes, or different generations in one subvol 337 * - different files inside a single subvolume 338 * - different offsets inside a file (bookend extents in file.c) 339 * 340 * The extent ref structure for the implicit back refs has fields for: 341 * 342 * - Objectid of the subvolume root 343 * - objectid of the file holding the reference 344 * - original offset in the file 345 * - how many bookend extents 346 * 347 * The key offset for the implicit back refs is hash of the first 348 * three fields. 349 * 350 * The extent ref structure for the full back refs has field for: 351 * 352 * - number of pointers in the tree leaf 353 * 354 * The key offset for the implicit back refs is the first byte of 355 * the tree leaf 356 * 357 * When a file extent is allocated, The implicit back refs is used. 358 * the fields are filled in: 359 * 360 * (root_key.objectid, inode objectid, offset in file, 1) 361 * 362 * When a file extent is removed file truncation, we find the 363 * corresponding implicit back refs and check the following fields: 364 * 365 * (btrfs_header_owner(leaf), inode objectid, offset in file) 366 * 367 * Btree extents can be referenced by: 368 * 369 * - Different subvolumes 370 * 371 * Both the implicit back refs and the full back refs for tree blocks 372 * only consist of key. The key offset for the implicit back refs is 373 * objectid of block's owner tree. The key offset for the full back refs 374 * is the first byte of parent block. 375 * 376 * When implicit back refs is used, information about the lowest key and 377 * level of the tree block are required. These information are stored in 378 * tree block info structure. 379 */ 380 381 /* 382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 385 */ 386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 387 struct btrfs_extent_inline_ref *iref, 388 enum btrfs_inline_ref_type is_data) 389 { 390 int type = btrfs_extent_inline_ref_type(eb, iref); 391 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 392 393 if (type == BTRFS_TREE_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_BLOCK_REF_KEY || 395 type == BTRFS_SHARED_DATA_REF_KEY || 396 type == BTRFS_EXTENT_DATA_REF_KEY) { 397 if (is_data == BTRFS_REF_TYPE_BLOCK) { 398 if (type == BTRFS_TREE_BLOCK_REF_KEY) 399 return type; 400 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 401 ASSERT(eb->fs_info); 402 /* 403 * Every shared one has parent tree block, 404 * which must be aligned to sector size. 405 */ 406 if (offset && 407 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 408 return type; 409 } 410 } else if (is_data == BTRFS_REF_TYPE_DATA) { 411 if (type == BTRFS_EXTENT_DATA_REF_KEY) 412 return type; 413 if (type == BTRFS_SHARED_DATA_REF_KEY) { 414 ASSERT(eb->fs_info); 415 /* 416 * Every shared one has parent tree block, 417 * which must be aligned to sector size. 418 */ 419 if (offset && 420 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 421 return type; 422 } 423 } else { 424 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 425 return type; 426 } 427 } 428 429 btrfs_print_leaf((struct extent_buffer *)eb); 430 btrfs_err(eb->fs_info, 431 "eb %llu iref 0x%lx invalid extent inline ref type %d", 432 eb->start, (unsigned long)iref, type); 433 WARN_ON(1); 434 435 return BTRFS_REF_TYPE_INVALID; 436 } 437 438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 439 { 440 u32 high_crc = ~(u32)0; 441 u32 low_crc = ~(u32)0; 442 __le64 lenum; 443 444 lenum = cpu_to_le64(root_objectid); 445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 446 lenum = cpu_to_le64(owner); 447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 448 lenum = cpu_to_le64(offset); 449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 450 451 return ((u64)high_crc << 31) ^ (u64)low_crc; 452 } 453 454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 455 struct btrfs_extent_data_ref *ref) 456 { 457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 458 btrfs_extent_data_ref_objectid(leaf, ref), 459 btrfs_extent_data_ref_offset(leaf, ref)); 460 } 461 462 static int match_extent_data_ref(struct extent_buffer *leaf, 463 struct btrfs_extent_data_ref *ref, 464 u64 root_objectid, u64 owner, u64 offset) 465 { 466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 467 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 468 btrfs_extent_data_ref_offset(leaf, ref) != offset) 469 return 0; 470 return 1; 471 } 472 473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_path *path, 475 u64 bytenr, u64 parent, 476 u64 root_objectid, 477 u64 owner, u64 offset) 478 { 479 struct btrfs_root *root = trans->fs_info->extent_root; 480 struct btrfs_key key; 481 struct btrfs_extent_data_ref *ref; 482 struct extent_buffer *leaf; 483 u32 nritems; 484 int ret; 485 int recow; 486 int err = -ENOENT; 487 488 key.objectid = bytenr; 489 if (parent) { 490 key.type = BTRFS_SHARED_DATA_REF_KEY; 491 key.offset = parent; 492 } else { 493 key.type = BTRFS_EXTENT_DATA_REF_KEY; 494 key.offset = hash_extent_data_ref(root_objectid, 495 owner, offset); 496 } 497 again: 498 recow = 0; 499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 500 if (ret < 0) { 501 err = ret; 502 goto fail; 503 } 504 505 if (parent) { 506 if (!ret) 507 return 0; 508 goto fail; 509 } 510 511 leaf = path->nodes[0]; 512 nritems = btrfs_header_nritems(leaf); 513 while (1) { 514 if (path->slots[0] >= nritems) { 515 ret = btrfs_next_leaf(root, path); 516 if (ret < 0) 517 err = ret; 518 if (ret) 519 goto fail; 520 521 leaf = path->nodes[0]; 522 nritems = btrfs_header_nritems(leaf); 523 recow = 1; 524 } 525 526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 527 if (key.objectid != bytenr || 528 key.type != BTRFS_EXTENT_DATA_REF_KEY) 529 goto fail; 530 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_extent_data_ref); 533 534 if (match_extent_data_ref(leaf, ref, root_objectid, 535 owner, offset)) { 536 if (recow) { 537 btrfs_release_path(path); 538 goto again; 539 } 540 err = 0; 541 break; 542 } 543 path->slots[0]++; 544 } 545 fail: 546 return err; 547 } 548 549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 550 struct btrfs_path *path, 551 u64 bytenr, u64 parent, 552 u64 root_objectid, u64 owner, 553 u64 offset, int refs_to_add) 554 { 555 struct btrfs_root *root = trans->fs_info->extent_root; 556 struct btrfs_key key; 557 struct extent_buffer *leaf; 558 u32 size; 559 u32 num_refs; 560 int ret; 561 562 key.objectid = bytenr; 563 if (parent) { 564 key.type = BTRFS_SHARED_DATA_REF_KEY; 565 key.offset = parent; 566 size = sizeof(struct btrfs_shared_data_ref); 567 } else { 568 key.type = BTRFS_EXTENT_DATA_REF_KEY; 569 key.offset = hash_extent_data_ref(root_objectid, 570 owner, offset); 571 size = sizeof(struct btrfs_extent_data_ref); 572 } 573 574 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 575 if (ret && ret != -EEXIST) 576 goto fail; 577 578 leaf = path->nodes[0]; 579 if (parent) { 580 struct btrfs_shared_data_ref *ref; 581 ref = btrfs_item_ptr(leaf, path->slots[0], 582 struct btrfs_shared_data_ref); 583 if (ret == 0) { 584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_shared_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 589 } 590 } else { 591 struct btrfs_extent_data_ref *ref; 592 while (ret == -EEXIST) { 593 ref = btrfs_item_ptr(leaf, path->slots[0], 594 struct btrfs_extent_data_ref); 595 if (match_extent_data_ref(leaf, ref, root_objectid, 596 owner, offset)) 597 break; 598 btrfs_release_path(path); 599 key.offset++; 600 ret = btrfs_insert_empty_item(trans, root, path, &key, 601 size); 602 if (ret && ret != -EEXIST) 603 goto fail; 604 605 leaf = path->nodes[0]; 606 } 607 ref = btrfs_item_ptr(leaf, path->slots[0], 608 struct btrfs_extent_data_ref); 609 if (ret == 0) { 610 btrfs_set_extent_data_ref_root(leaf, ref, 611 root_objectid); 612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 613 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 615 } else { 616 num_refs = btrfs_extent_data_ref_count(leaf, ref); 617 num_refs += refs_to_add; 618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 619 } 620 } 621 btrfs_mark_buffer_dirty(leaf); 622 ret = 0; 623 fail: 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 629 struct btrfs_path *path, 630 int refs_to_drop, int *last_ref) 631 { 632 struct btrfs_key key; 633 struct btrfs_extent_data_ref *ref1 = NULL; 634 struct btrfs_shared_data_ref *ref2 = NULL; 635 struct extent_buffer *leaf; 636 u32 num_refs = 0; 637 int ret = 0; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 643 ref1 = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_extent_data_ref); 645 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 647 ref2 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_shared_data_ref); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 651 btrfs_print_v0_err(trans->fs_info); 652 btrfs_abort_transaction(trans, -EINVAL); 653 return -EINVAL; 654 } else { 655 BUG(); 656 } 657 658 BUG_ON(num_refs < refs_to_drop); 659 num_refs -= refs_to_drop; 660 661 if (num_refs == 0) { 662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 663 *last_ref = 1; 664 } else { 665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 669 btrfs_mark_buffer_dirty(leaf); 670 } 671 return ret; 672 } 673 674 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 675 struct btrfs_extent_inline_ref *iref) 676 { 677 struct btrfs_key key; 678 struct extent_buffer *leaf; 679 struct btrfs_extent_data_ref *ref1; 680 struct btrfs_shared_data_ref *ref2; 681 u32 num_refs = 0; 682 int type; 683 684 leaf = path->nodes[0]; 685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 686 687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 688 if (iref) { 689 /* 690 * If type is invalid, we should have bailed out earlier than 691 * this call. 692 */ 693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 694 ASSERT(type != BTRFS_REF_TYPE_INVALID); 695 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 697 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 698 } else { 699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 700 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 701 } 702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 703 ref1 = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_extent_data_ref); 705 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 707 ref2 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_shared_data_ref); 709 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 710 } else { 711 WARN_ON(1); 712 } 713 return num_refs; 714 } 715 716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = trans->fs_info->extent_root; 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 735 if (ret > 0) 736 ret = -ENOENT; 737 return ret; 738 } 739 740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 741 struct btrfs_path *path, 742 u64 bytenr, u64 parent, 743 u64 root_objectid) 744 { 745 struct btrfs_key key; 746 int ret; 747 748 key.objectid = bytenr; 749 if (parent) { 750 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 751 key.offset = parent; 752 } else { 753 key.type = BTRFS_TREE_BLOCK_REF_KEY; 754 key.offset = root_objectid; 755 } 756 757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 758 path, &key, 0); 759 btrfs_release_path(path); 760 return ret; 761 } 762 763 static inline int extent_ref_type(u64 parent, u64 owner) 764 { 765 int type; 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (parent > 0) 768 type = BTRFS_SHARED_BLOCK_REF_KEY; 769 else 770 type = BTRFS_TREE_BLOCK_REF_KEY; 771 } else { 772 if (parent > 0) 773 type = BTRFS_SHARED_DATA_REF_KEY; 774 else 775 type = BTRFS_EXTENT_DATA_REF_KEY; 776 } 777 return type; 778 } 779 780 static int find_next_key(struct btrfs_path *path, int level, 781 struct btrfs_key *key) 782 783 { 784 for (; level < BTRFS_MAX_LEVEL; level++) { 785 if (!path->nodes[level]) 786 break; 787 if (path->slots[level] + 1 >= 788 btrfs_header_nritems(path->nodes[level])) 789 continue; 790 if (level == 0) 791 btrfs_item_key_to_cpu(path->nodes[level], key, 792 path->slots[level] + 1); 793 else 794 btrfs_node_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 return 0; 797 } 798 return 1; 799 } 800 801 /* 802 * look for inline back ref. if back ref is found, *ref_ret is set 803 * to the address of inline back ref, and 0 is returned. 804 * 805 * if back ref isn't found, *ref_ret is set to the address where it 806 * should be inserted, and -ENOENT is returned. 807 * 808 * if insert is true and there are too many inline back refs, the path 809 * points to the extent item, and -EAGAIN is returned. 810 * 811 * NOTE: inline back refs are ordered in the same way that back ref 812 * items in the tree are ordered. 813 */ 814 static noinline_for_stack 815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_extent_inline_ref **ref_ret, 818 u64 bytenr, u64 num_bytes, 819 u64 parent, u64 root_objectid, 820 u64 owner, u64 offset, int insert) 821 { 822 struct btrfs_fs_info *fs_info = trans->fs_info; 823 struct btrfs_root *root = fs_info->extent_root; 824 struct btrfs_key key; 825 struct extent_buffer *leaf; 826 struct btrfs_extent_item *ei; 827 struct btrfs_extent_inline_ref *iref; 828 u64 flags; 829 u64 item_size; 830 unsigned long ptr; 831 unsigned long end; 832 int extra_size; 833 int type; 834 int want; 835 int ret; 836 int err = 0; 837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 838 int needed; 839 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 844 want = extent_ref_type(parent, owner); 845 if (insert) { 846 extra_size = btrfs_extent_inline_ref_size(want); 847 path->keep_locks = 1; 848 } else 849 extra_size = -1; 850 851 /* 852 * Owner is our level, so we can just add one to get the level for the 853 * block we are interested in. 854 */ 855 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 856 key.type = BTRFS_METADATA_ITEM_KEY; 857 key.offset = owner; 858 } 859 860 again: 861 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 862 if (ret < 0) { 863 err = ret; 864 goto out; 865 } 866 867 /* 868 * We may be a newly converted file system which still has the old fat 869 * extent entries for metadata, so try and see if we have one of those. 870 */ 871 if (ret > 0 && skinny_metadata) { 872 skinny_metadata = false; 873 if (path->slots[0]) { 874 path->slots[0]--; 875 btrfs_item_key_to_cpu(path->nodes[0], &key, 876 path->slots[0]); 877 if (key.objectid == bytenr && 878 key.type == BTRFS_EXTENT_ITEM_KEY && 879 key.offset == num_bytes) 880 ret = 0; 881 } 882 if (ret) { 883 key.objectid = bytenr; 884 key.type = BTRFS_EXTENT_ITEM_KEY; 885 key.offset = num_bytes; 886 btrfs_release_path(path); 887 goto again; 888 } 889 } 890 891 if (ret && !insert) { 892 err = -ENOENT; 893 goto out; 894 } else if (WARN_ON(ret)) { 895 err = -EIO; 896 goto out; 897 } 898 899 leaf = path->nodes[0]; 900 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 901 if (unlikely(item_size < sizeof(*ei))) { 902 err = -EINVAL; 903 btrfs_print_v0_err(fs_info); 904 btrfs_abort_transaction(trans, err); 905 goto out; 906 } 907 908 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 909 flags = btrfs_extent_flags(leaf, ei); 910 911 ptr = (unsigned long)(ei + 1); 912 end = (unsigned long)ei + item_size; 913 914 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 915 ptr += sizeof(struct btrfs_tree_block_info); 916 BUG_ON(ptr > end); 917 } 918 919 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 920 needed = BTRFS_REF_TYPE_DATA; 921 else 922 needed = BTRFS_REF_TYPE_BLOCK; 923 924 err = -ENOENT; 925 while (1) { 926 if (ptr >= end) { 927 WARN_ON(ptr > end); 928 break; 929 } 930 iref = (struct btrfs_extent_inline_ref *)ptr; 931 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 932 if (type == BTRFS_REF_TYPE_INVALID) { 933 err = -EUCLEAN; 934 goto out; 935 } 936 937 if (want < type) 938 break; 939 if (want > type) { 940 ptr += btrfs_extent_inline_ref_size(type); 941 continue; 942 } 943 944 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 945 struct btrfs_extent_data_ref *dref; 946 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 947 if (match_extent_data_ref(leaf, dref, root_objectid, 948 owner, offset)) { 949 err = 0; 950 break; 951 } 952 if (hash_extent_data_ref_item(leaf, dref) < 953 hash_extent_data_ref(root_objectid, owner, offset)) 954 break; 955 } else { 956 u64 ref_offset; 957 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 958 if (parent > 0) { 959 if (parent == ref_offset) { 960 err = 0; 961 break; 962 } 963 if (ref_offset < parent) 964 break; 965 } else { 966 if (root_objectid == ref_offset) { 967 err = 0; 968 break; 969 } 970 if (ref_offset < root_objectid) 971 break; 972 } 973 } 974 ptr += btrfs_extent_inline_ref_size(type); 975 } 976 if (err == -ENOENT && insert) { 977 if (item_size + extra_size >= 978 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 979 err = -EAGAIN; 980 goto out; 981 } 982 /* 983 * To add new inline back ref, we have to make sure 984 * there is no corresponding back ref item. 985 * For simplicity, we just do not add new inline back 986 * ref if there is any kind of item for this block 987 */ 988 if (find_next_key(path, 0, &key) == 0 && 989 key.objectid == bytenr && 990 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 991 err = -EAGAIN; 992 goto out; 993 } 994 } 995 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 996 out: 997 if (insert) { 998 path->keep_locks = 0; 999 btrfs_unlock_up_safe(path, 1); 1000 } 1001 return err; 1002 } 1003 1004 /* 1005 * helper to add new inline back ref 1006 */ 1007 static noinline_for_stack 1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1009 struct btrfs_path *path, 1010 struct btrfs_extent_inline_ref *iref, 1011 u64 parent, u64 root_objectid, 1012 u64 owner, u64 offset, int refs_to_add, 1013 struct btrfs_delayed_extent_op *extent_op) 1014 { 1015 struct extent_buffer *leaf; 1016 struct btrfs_extent_item *ei; 1017 unsigned long ptr; 1018 unsigned long end; 1019 unsigned long item_offset; 1020 u64 refs; 1021 int size; 1022 int type; 1023 1024 leaf = path->nodes[0]; 1025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1026 item_offset = (unsigned long)iref - (unsigned long)ei; 1027 1028 type = extent_ref_type(parent, owner); 1029 size = btrfs_extent_inline_ref_size(type); 1030 1031 btrfs_extend_item(path, size); 1032 1033 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1034 refs = btrfs_extent_refs(leaf, ei); 1035 refs += refs_to_add; 1036 btrfs_set_extent_refs(leaf, ei, refs); 1037 if (extent_op) 1038 __run_delayed_extent_op(extent_op, leaf, ei); 1039 1040 ptr = (unsigned long)ei + item_offset; 1041 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1042 if (ptr < end - size) 1043 memmove_extent_buffer(leaf, ptr + size, ptr, 1044 end - size - ptr); 1045 1046 iref = (struct btrfs_extent_inline_ref *)ptr; 1047 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1048 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1049 struct btrfs_extent_data_ref *dref; 1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1051 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1052 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1053 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1054 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1055 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1056 struct btrfs_shared_data_ref *sref; 1057 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1058 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1059 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1060 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1062 } else { 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 } 1067 1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1069 struct btrfs_path *path, 1070 struct btrfs_extent_inline_ref **ref_ret, 1071 u64 bytenr, u64 num_bytes, u64 parent, 1072 u64 root_objectid, u64 owner, u64 offset) 1073 { 1074 int ret; 1075 1076 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1077 num_bytes, parent, root_objectid, 1078 owner, offset, 0); 1079 if (ret != -ENOENT) 1080 return ret; 1081 1082 btrfs_release_path(path); 1083 *ref_ret = NULL; 1084 1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1086 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1087 root_objectid); 1088 } else { 1089 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1090 root_objectid, owner, offset); 1091 } 1092 return ret; 1093 } 1094 1095 /* 1096 * helper to update/remove inline back ref 1097 */ 1098 static noinline_for_stack 1099 void update_inline_extent_backref(struct btrfs_path *path, 1100 struct btrfs_extent_inline_ref *iref, 1101 int refs_to_mod, 1102 struct btrfs_delayed_extent_op *extent_op, 1103 int *last_ref) 1104 { 1105 struct extent_buffer *leaf = path->nodes[0]; 1106 struct btrfs_extent_item *ei; 1107 struct btrfs_extent_data_ref *dref = NULL; 1108 struct btrfs_shared_data_ref *sref = NULL; 1109 unsigned long ptr; 1110 unsigned long end; 1111 u32 item_size; 1112 int size; 1113 int type; 1114 u64 refs; 1115 1116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1117 refs = btrfs_extent_refs(leaf, ei); 1118 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1119 refs += refs_to_mod; 1120 btrfs_set_extent_refs(leaf, ei, refs); 1121 if (extent_op) 1122 __run_delayed_extent_op(extent_op, leaf, ei); 1123 1124 /* 1125 * If type is invalid, we should have bailed out after 1126 * lookup_inline_extent_backref(). 1127 */ 1128 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1129 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1130 1131 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1132 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1133 refs = btrfs_extent_data_ref_count(leaf, dref); 1134 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1135 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1136 refs = btrfs_shared_data_ref_count(leaf, sref); 1137 } else { 1138 refs = 1; 1139 BUG_ON(refs_to_mod != -1); 1140 } 1141 1142 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1143 refs += refs_to_mod; 1144 1145 if (refs > 0) { 1146 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1147 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1148 else 1149 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1150 } else { 1151 *last_ref = 1; 1152 size = btrfs_extent_inline_ref_size(type); 1153 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1154 ptr = (unsigned long)iref; 1155 end = (unsigned long)ei + item_size; 1156 if (ptr + size < end) 1157 memmove_extent_buffer(leaf, ptr, ptr + size, 1158 end - ptr - size); 1159 item_size -= size; 1160 btrfs_truncate_item(path, item_size, 1); 1161 } 1162 btrfs_mark_buffer_dirty(leaf); 1163 } 1164 1165 static noinline_for_stack 1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1167 struct btrfs_path *path, 1168 u64 bytenr, u64 num_bytes, u64 parent, 1169 u64 root_objectid, u64 owner, 1170 u64 offset, int refs_to_add, 1171 struct btrfs_delayed_extent_op *extent_op) 1172 { 1173 struct btrfs_extent_inline_ref *iref; 1174 int ret; 1175 1176 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1177 num_bytes, parent, root_objectid, 1178 owner, offset, 1); 1179 if (ret == 0) { 1180 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1181 update_inline_extent_backref(path, iref, refs_to_add, 1182 extent_op, NULL); 1183 } else if (ret == -ENOENT) { 1184 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1185 root_objectid, owner, offset, 1186 refs_to_add, extent_op); 1187 ret = 0; 1188 } 1189 return ret; 1190 } 1191 1192 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1193 struct btrfs_path *path, 1194 struct btrfs_extent_inline_ref *iref, 1195 int refs_to_drop, int is_data, int *last_ref) 1196 { 1197 int ret = 0; 1198 1199 BUG_ON(!is_data && refs_to_drop != 1); 1200 if (iref) { 1201 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1202 last_ref); 1203 } else if (is_data) { 1204 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1205 last_ref); 1206 } else { 1207 *last_ref = 1; 1208 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1209 } 1210 return ret; 1211 } 1212 1213 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1214 u64 *discarded_bytes) 1215 { 1216 int j, ret = 0; 1217 u64 bytes_left, end; 1218 u64 aligned_start = ALIGN(start, 1 << 9); 1219 1220 if (WARN_ON(start != aligned_start)) { 1221 len -= aligned_start - start; 1222 len = round_down(len, 1 << 9); 1223 start = aligned_start; 1224 } 1225 1226 *discarded_bytes = 0; 1227 1228 if (!len) 1229 return 0; 1230 1231 end = start + len; 1232 bytes_left = len; 1233 1234 /* Skip any superblocks on this device. */ 1235 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1236 u64 sb_start = btrfs_sb_offset(j); 1237 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1238 u64 size = sb_start - start; 1239 1240 if (!in_range(sb_start, start, bytes_left) && 1241 !in_range(sb_end, start, bytes_left) && 1242 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1243 continue; 1244 1245 /* 1246 * Superblock spans beginning of range. Adjust start and 1247 * try again. 1248 */ 1249 if (sb_start <= start) { 1250 start += sb_end - start; 1251 if (start > end) { 1252 bytes_left = 0; 1253 break; 1254 } 1255 bytes_left = end - start; 1256 continue; 1257 } 1258 1259 if (size) { 1260 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1261 GFP_NOFS, 0); 1262 if (!ret) 1263 *discarded_bytes += size; 1264 else if (ret != -EOPNOTSUPP) 1265 return ret; 1266 } 1267 1268 start = sb_end; 1269 if (start > end) { 1270 bytes_left = 0; 1271 break; 1272 } 1273 bytes_left = end - start; 1274 } 1275 1276 if (bytes_left) { 1277 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1278 GFP_NOFS, 0); 1279 if (!ret) 1280 *discarded_bytes += bytes_left; 1281 } 1282 return ret; 1283 } 1284 1285 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1286 u64 num_bytes, u64 *actual_bytes) 1287 { 1288 int ret = 0; 1289 u64 discarded_bytes = 0; 1290 u64 end = bytenr + num_bytes; 1291 u64 cur = bytenr; 1292 struct btrfs_bio *bbio = NULL; 1293 1294 1295 /* 1296 * Avoid races with device replace and make sure our bbio has devices 1297 * associated to its stripes that don't go away while we are discarding. 1298 */ 1299 btrfs_bio_counter_inc_blocked(fs_info); 1300 while (cur < end) { 1301 struct btrfs_bio_stripe *stripe; 1302 int i; 1303 1304 num_bytes = end - cur; 1305 /* Tell the block device(s) that the sectors can be discarded */ 1306 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1307 &num_bytes, &bbio, 0); 1308 /* 1309 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1310 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1311 * thus we can't continue anyway. 1312 */ 1313 if (ret < 0) 1314 goto out; 1315 1316 stripe = bbio->stripes; 1317 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1318 u64 bytes; 1319 struct request_queue *req_q; 1320 1321 if (!stripe->dev->bdev) { 1322 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1323 continue; 1324 } 1325 req_q = bdev_get_queue(stripe->dev->bdev); 1326 if (!blk_queue_discard(req_q)) 1327 continue; 1328 1329 ret = btrfs_issue_discard(stripe->dev->bdev, 1330 stripe->physical, 1331 stripe->length, 1332 &bytes); 1333 if (!ret) { 1334 discarded_bytes += bytes; 1335 } else if (ret != -EOPNOTSUPP) { 1336 /* 1337 * Logic errors or -ENOMEM, or -EIO, but 1338 * unlikely to happen. 1339 * 1340 * And since there are two loops, explicitly 1341 * go to out to avoid confusion. 1342 */ 1343 btrfs_put_bbio(bbio); 1344 goto out; 1345 } 1346 1347 /* 1348 * Just in case we get back EOPNOTSUPP for some reason, 1349 * just ignore the return value so we don't screw up 1350 * people calling discard_extent. 1351 */ 1352 ret = 0; 1353 } 1354 btrfs_put_bbio(bbio); 1355 cur += num_bytes; 1356 } 1357 out: 1358 btrfs_bio_counter_dec(fs_info); 1359 1360 if (actual_bytes) 1361 *actual_bytes = discarded_bytes; 1362 1363 1364 if (ret == -EOPNOTSUPP) 1365 ret = 0; 1366 return ret; 1367 } 1368 1369 /* Can return -ENOMEM */ 1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_ref *generic_ref) 1372 { 1373 struct btrfs_fs_info *fs_info = trans->fs_info; 1374 int old_ref_mod, new_ref_mod; 1375 int ret; 1376 1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1378 generic_ref->action); 1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1381 1382 if (generic_ref->type == BTRFS_REF_METADATA) 1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1384 NULL, &old_ref_mod, &new_ref_mod); 1385 else 1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1387 &old_ref_mod, &new_ref_mod); 1388 1389 btrfs_ref_tree_mod(fs_info, generic_ref); 1390 1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1392 sub_pinned_bytes(fs_info, generic_ref); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * __btrfs_inc_extent_ref - insert backreference for a given extent 1399 * 1400 * @trans: Handle of transaction 1401 * 1402 * @node: The delayed ref node used to get the bytenr/length for 1403 * extent whose references are incremented. 1404 * 1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1407 * bytenr of the parent block. Since new extents are always 1408 * created with indirect references, this will only be the case 1409 * when relocating a shared extent. In that case, root_objectid 1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1411 * be 0 1412 * 1413 * @root_objectid: The id of the root where this modification has originated, 1414 * this can be either one of the well-known metadata trees or 1415 * the subvolume id which references this extent. 1416 * 1417 * @owner: For data extents it is the inode number of the owning file. 1418 * For metadata extents this parameter holds the level in the 1419 * tree of the extent. 1420 * 1421 * @offset: For metadata extents the offset is ignored and is currently 1422 * always passed as 0. For data extents it is the fileoffset 1423 * this extent belongs to. 1424 * 1425 * @refs_to_add Number of references to add 1426 * 1427 * @extent_op Pointer to a structure, holding information necessary when 1428 * updating a tree block's flags 1429 * 1430 */ 1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1432 struct btrfs_delayed_ref_node *node, 1433 u64 parent, u64 root_objectid, 1434 u64 owner, u64 offset, int refs_to_add, 1435 struct btrfs_delayed_extent_op *extent_op) 1436 { 1437 struct btrfs_path *path; 1438 struct extent_buffer *leaf; 1439 struct btrfs_extent_item *item; 1440 struct btrfs_key key; 1441 u64 bytenr = node->bytenr; 1442 u64 num_bytes = node->num_bytes; 1443 u64 refs; 1444 int ret; 1445 1446 path = btrfs_alloc_path(); 1447 if (!path) 1448 return -ENOMEM; 1449 1450 path->leave_spinning = 1; 1451 /* this will setup the path even if it fails to insert the back ref */ 1452 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1453 parent, root_objectid, owner, 1454 offset, refs_to_add, extent_op); 1455 if ((ret < 0 && ret != -EAGAIN) || !ret) 1456 goto out; 1457 1458 /* 1459 * Ok we had -EAGAIN which means we didn't have space to insert and 1460 * inline extent ref, so just update the reference count and add a 1461 * normal backref. 1462 */ 1463 leaf = path->nodes[0]; 1464 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1465 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1466 refs = btrfs_extent_refs(leaf, item); 1467 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1468 if (extent_op) 1469 __run_delayed_extent_op(extent_op, leaf, item); 1470 1471 btrfs_mark_buffer_dirty(leaf); 1472 btrfs_release_path(path); 1473 1474 path->leave_spinning = 1; 1475 /* now insert the actual backref */ 1476 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1477 BUG_ON(refs_to_add != 1); 1478 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1479 root_objectid); 1480 } else { 1481 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1482 root_objectid, owner, offset, 1483 refs_to_add); 1484 } 1485 if (ret) 1486 btrfs_abort_transaction(trans, ret); 1487 out: 1488 btrfs_free_path(path); 1489 return ret; 1490 } 1491 1492 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1493 struct btrfs_delayed_ref_node *node, 1494 struct btrfs_delayed_extent_op *extent_op, 1495 int insert_reserved) 1496 { 1497 int ret = 0; 1498 struct btrfs_delayed_data_ref *ref; 1499 struct btrfs_key ins; 1500 u64 parent = 0; 1501 u64 ref_root = 0; 1502 u64 flags = 0; 1503 1504 ins.objectid = node->bytenr; 1505 ins.offset = node->num_bytes; 1506 ins.type = BTRFS_EXTENT_ITEM_KEY; 1507 1508 ref = btrfs_delayed_node_to_data_ref(node); 1509 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1510 1511 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1512 parent = ref->parent; 1513 ref_root = ref->root; 1514 1515 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1516 if (extent_op) 1517 flags |= extent_op->flags_to_set; 1518 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1519 flags, ref->objectid, 1520 ref->offset, &ins, 1521 node->ref_mod); 1522 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1523 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1524 ref->objectid, ref->offset, 1525 node->ref_mod, extent_op); 1526 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1527 ret = __btrfs_free_extent(trans, node, parent, 1528 ref_root, ref->objectid, 1529 ref->offset, node->ref_mod, 1530 extent_op); 1531 } else { 1532 BUG(); 1533 } 1534 return ret; 1535 } 1536 1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1538 struct extent_buffer *leaf, 1539 struct btrfs_extent_item *ei) 1540 { 1541 u64 flags = btrfs_extent_flags(leaf, ei); 1542 if (extent_op->update_flags) { 1543 flags |= extent_op->flags_to_set; 1544 btrfs_set_extent_flags(leaf, ei, flags); 1545 } 1546 1547 if (extent_op->update_key) { 1548 struct btrfs_tree_block_info *bi; 1549 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1550 bi = (struct btrfs_tree_block_info *)(ei + 1); 1551 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1552 } 1553 } 1554 1555 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1556 struct btrfs_delayed_ref_head *head, 1557 struct btrfs_delayed_extent_op *extent_op) 1558 { 1559 struct btrfs_fs_info *fs_info = trans->fs_info; 1560 struct btrfs_key key; 1561 struct btrfs_path *path; 1562 struct btrfs_extent_item *ei; 1563 struct extent_buffer *leaf; 1564 u32 item_size; 1565 int ret; 1566 int err = 0; 1567 int metadata = !extent_op->is_data; 1568 1569 if (TRANS_ABORTED(trans)) 1570 return 0; 1571 1572 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1573 metadata = 0; 1574 1575 path = btrfs_alloc_path(); 1576 if (!path) 1577 return -ENOMEM; 1578 1579 key.objectid = head->bytenr; 1580 1581 if (metadata) { 1582 key.type = BTRFS_METADATA_ITEM_KEY; 1583 key.offset = extent_op->level; 1584 } else { 1585 key.type = BTRFS_EXTENT_ITEM_KEY; 1586 key.offset = head->num_bytes; 1587 } 1588 1589 again: 1590 path->leave_spinning = 1; 1591 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1592 if (ret < 0) { 1593 err = ret; 1594 goto out; 1595 } 1596 if (ret > 0) { 1597 if (metadata) { 1598 if (path->slots[0] > 0) { 1599 path->slots[0]--; 1600 btrfs_item_key_to_cpu(path->nodes[0], &key, 1601 path->slots[0]); 1602 if (key.objectid == head->bytenr && 1603 key.type == BTRFS_EXTENT_ITEM_KEY && 1604 key.offset == head->num_bytes) 1605 ret = 0; 1606 } 1607 if (ret > 0) { 1608 btrfs_release_path(path); 1609 metadata = 0; 1610 1611 key.objectid = head->bytenr; 1612 key.offset = head->num_bytes; 1613 key.type = BTRFS_EXTENT_ITEM_KEY; 1614 goto again; 1615 } 1616 } else { 1617 err = -EIO; 1618 goto out; 1619 } 1620 } 1621 1622 leaf = path->nodes[0]; 1623 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1624 1625 if (unlikely(item_size < sizeof(*ei))) { 1626 err = -EINVAL; 1627 btrfs_print_v0_err(fs_info); 1628 btrfs_abort_transaction(trans, err); 1629 goto out; 1630 } 1631 1632 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1633 __run_delayed_extent_op(extent_op, leaf, ei); 1634 1635 btrfs_mark_buffer_dirty(leaf); 1636 out: 1637 btrfs_free_path(path); 1638 return err; 1639 } 1640 1641 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1642 struct btrfs_delayed_ref_node *node, 1643 struct btrfs_delayed_extent_op *extent_op, 1644 int insert_reserved) 1645 { 1646 int ret = 0; 1647 struct btrfs_delayed_tree_ref *ref; 1648 u64 parent = 0; 1649 u64 ref_root = 0; 1650 1651 ref = btrfs_delayed_node_to_tree_ref(node); 1652 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1653 1654 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1655 parent = ref->parent; 1656 ref_root = ref->root; 1657 1658 if (node->ref_mod != 1) { 1659 btrfs_err(trans->fs_info, 1660 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1661 node->bytenr, node->ref_mod, node->action, ref_root, 1662 parent); 1663 return -EIO; 1664 } 1665 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1666 BUG_ON(!extent_op || !extent_op->update_flags); 1667 ret = alloc_reserved_tree_block(trans, node, extent_op); 1668 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1669 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1670 ref->level, 0, 1, extent_op); 1671 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1672 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1673 ref->level, 0, 1, extent_op); 1674 } else { 1675 BUG(); 1676 } 1677 return ret; 1678 } 1679 1680 /* helper function to actually process a single delayed ref entry */ 1681 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1682 struct btrfs_delayed_ref_node *node, 1683 struct btrfs_delayed_extent_op *extent_op, 1684 int insert_reserved) 1685 { 1686 int ret = 0; 1687 1688 if (TRANS_ABORTED(trans)) { 1689 if (insert_reserved) 1690 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1691 return 0; 1692 } 1693 1694 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1695 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1696 ret = run_delayed_tree_ref(trans, node, extent_op, 1697 insert_reserved); 1698 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1699 node->type == BTRFS_SHARED_DATA_REF_KEY) 1700 ret = run_delayed_data_ref(trans, node, extent_op, 1701 insert_reserved); 1702 else 1703 BUG(); 1704 if (ret && insert_reserved) 1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1706 return ret; 1707 } 1708 1709 static inline struct btrfs_delayed_ref_node * 1710 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1711 { 1712 struct btrfs_delayed_ref_node *ref; 1713 1714 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1715 return NULL; 1716 1717 /* 1718 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1719 * This is to prevent a ref count from going down to zero, which deletes 1720 * the extent item from the extent tree, when there still are references 1721 * to add, which would fail because they would not find the extent item. 1722 */ 1723 if (!list_empty(&head->ref_add_list)) 1724 return list_first_entry(&head->ref_add_list, 1725 struct btrfs_delayed_ref_node, add_list); 1726 1727 ref = rb_entry(rb_first_cached(&head->ref_tree), 1728 struct btrfs_delayed_ref_node, ref_node); 1729 ASSERT(list_empty(&ref->add_list)); 1730 return ref; 1731 } 1732 1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1734 struct btrfs_delayed_ref_head *head) 1735 { 1736 spin_lock(&delayed_refs->lock); 1737 head->processing = 0; 1738 delayed_refs->num_heads_ready++; 1739 spin_unlock(&delayed_refs->lock); 1740 btrfs_delayed_ref_unlock(head); 1741 } 1742 1743 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1744 struct btrfs_delayed_ref_head *head) 1745 { 1746 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1747 1748 if (!extent_op) 1749 return NULL; 1750 1751 if (head->must_insert_reserved) { 1752 head->extent_op = NULL; 1753 btrfs_free_delayed_extent_op(extent_op); 1754 return NULL; 1755 } 1756 return extent_op; 1757 } 1758 1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1760 struct btrfs_delayed_ref_head *head) 1761 { 1762 struct btrfs_delayed_extent_op *extent_op; 1763 int ret; 1764 1765 extent_op = cleanup_extent_op(head); 1766 if (!extent_op) 1767 return 0; 1768 head->extent_op = NULL; 1769 spin_unlock(&head->lock); 1770 ret = run_delayed_extent_op(trans, head, extent_op); 1771 btrfs_free_delayed_extent_op(extent_op); 1772 return ret ? ret : 1; 1773 } 1774 1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1776 struct btrfs_delayed_ref_root *delayed_refs, 1777 struct btrfs_delayed_ref_head *head) 1778 { 1779 int nr_items = 1; /* Dropping this ref head update. */ 1780 1781 if (head->total_ref_mod < 0) { 1782 struct btrfs_space_info *space_info; 1783 u64 flags; 1784 1785 if (head->is_data) 1786 flags = BTRFS_BLOCK_GROUP_DATA; 1787 else if (head->is_system) 1788 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1789 else 1790 flags = BTRFS_BLOCK_GROUP_METADATA; 1791 space_info = btrfs_find_space_info(fs_info, flags); 1792 ASSERT(space_info); 1793 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1794 -head->num_bytes, 1795 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1796 1797 /* 1798 * We had csum deletions accounted for in our delayed refs rsv, 1799 * we need to drop the csum leaves for this update from our 1800 * delayed_refs_rsv. 1801 */ 1802 if (head->is_data) { 1803 spin_lock(&delayed_refs->lock); 1804 delayed_refs->pending_csums -= head->num_bytes; 1805 spin_unlock(&delayed_refs->lock); 1806 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1807 head->num_bytes); 1808 } 1809 } 1810 1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1812 } 1813 1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1815 struct btrfs_delayed_ref_head *head) 1816 { 1817 1818 struct btrfs_fs_info *fs_info = trans->fs_info; 1819 struct btrfs_delayed_ref_root *delayed_refs; 1820 int ret; 1821 1822 delayed_refs = &trans->transaction->delayed_refs; 1823 1824 ret = run_and_cleanup_extent_op(trans, head); 1825 if (ret < 0) { 1826 unselect_delayed_ref_head(delayed_refs, head); 1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1828 return ret; 1829 } else if (ret) { 1830 return ret; 1831 } 1832 1833 /* 1834 * Need to drop our head ref lock and re-acquire the delayed ref lock 1835 * and then re-check to make sure nobody got added. 1836 */ 1837 spin_unlock(&head->lock); 1838 spin_lock(&delayed_refs->lock); 1839 spin_lock(&head->lock); 1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1841 spin_unlock(&head->lock); 1842 spin_unlock(&delayed_refs->lock); 1843 return 1; 1844 } 1845 btrfs_delete_ref_head(delayed_refs, head); 1846 spin_unlock(&head->lock); 1847 spin_unlock(&delayed_refs->lock); 1848 1849 if (head->must_insert_reserved) { 1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1851 if (head->is_data) { 1852 ret = btrfs_del_csums(trans, fs_info->csum_root, 1853 head->bytenr, head->num_bytes); 1854 } 1855 } 1856 1857 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1858 1859 trace_run_delayed_ref_head(fs_info, head, 0); 1860 btrfs_delayed_ref_unlock(head); 1861 btrfs_put_delayed_ref_head(head); 1862 return 0; 1863 } 1864 1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1866 struct btrfs_trans_handle *trans) 1867 { 1868 struct btrfs_delayed_ref_root *delayed_refs = 1869 &trans->transaction->delayed_refs; 1870 struct btrfs_delayed_ref_head *head = NULL; 1871 int ret; 1872 1873 spin_lock(&delayed_refs->lock); 1874 head = btrfs_select_ref_head(delayed_refs); 1875 if (!head) { 1876 spin_unlock(&delayed_refs->lock); 1877 return head; 1878 } 1879 1880 /* 1881 * Grab the lock that says we are going to process all the refs for 1882 * this head 1883 */ 1884 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1885 spin_unlock(&delayed_refs->lock); 1886 1887 /* 1888 * We may have dropped the spin lock to get the head mutex lock, and 1889 * that might have given someone else time to free the head. If that's 1890 * true, it has been removed from our list and we can move on. 1891 */ 1892 if (ret == -EAGAIN) 1893 head = ERR_PTR(-EAGAIN); 1894 1895 return head; 1896 } 1897 1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1899 struct btrfs_delayed_ref_head *locked_ref, 1900 unsigned long *run_refs) 1901 { 1902 struct btrfs_fs_info *fs_info = trans->fs_info; 1903 struct btrfs_delayed_ref_root *delayed_refs; 1904 struct btrfs_delayed_extent_op *extent_op; 1905 struct btrfs_delayed_ref_node *ref; 1906 int must_insert_reserved = 0; 1907 int ret; 1908 1909 delayed_refs = &trans->transaction->delayed_refs; 1910 1911 lockdep_assert_held(&locked_ref->mutex); 1912 lockdep_assert_held(&locked_ref->lock); 1913 1914 while ((ref = select_delayed_ref(locked_ref))) { 1915 if (ref->seq && 1916 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1917 spin_unlock(&locked_ref->lock); 1918 unselect_delayed_ref_head(delayed_refs, locked_ref); 1919 return -EAGAIN; 1920 } 1921 1922 (*run_refs)++; 1923 ref->in_tree = 0; 1924 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1925 RB_CLEAR_NODE(&ref->ref_node); 1926 if (!list_empty(&ref->add_list)) 1927 list_del(&ref->add_list); 1928 /* 1929 * When we play the delayed ref, also correct the ref_mod on 1930 * head 1931 */ 1932 switch (ref->action) { 1933 case BTRFS_ADD_DELAYED_REF: 1934 case BTRFS_ADD_DELAYED_EXTENT: 1935 locked_ref->ref_mod -= ref->ref_mod; 1936 break; 1937 case BTRFS_DROP_DELAYED_REF: 1938 locked_ref->ref_mod += ref->ref_mod; 1939 break; 1940 default: 1941 WARN_ON(1); 1942 } 1943 atomic_dec(&delayed_refs->num_entries); 1944 1945 /* 1946 * Record the must_insert_reserved flag before we drop the 1947 * spin lock. 1948 */ 1949 must_insert_reserved = locked_ref->must_insert_reserved; 1950 locked_ref->must_insert_reserved = 0; 1951 1952 extent_op = locked_ref->extent_op; 1953 locked_ref->extent_op = NULL; 1954 spin_unlock(&locked_ref->lock); 1955 1956 ret = run_one_delayed_ref(trans, ref, extent_op, 1957 must_insert_reserved); 1958 1959 btrfs_free_delayed_extent_op(extent_op); 1960 if (ret) { 1961 unselect_delayed_ref_head(delayed_refs, locked_ref); 1962 btrfs_put_delayed_ref(ref); 1963 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1964 ret); 1965 return ret; 1966 } 1967 1968 btrfs_put_delayed_ref(ref); 1969 cond_resched(); 1970 1971 spin_lock(&locked_ref->lock); 1972 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1973 } 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Returns 0 on success or if called with an already aborted transaction. 1980 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1981 */ 1982 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1983 unsigned long nr) 1984 { 1985 struct btrfs_fs_info *fs_info = trans->fs_info; 1986 struct btrfs_delayed_ref_root *delayed_refs; 1987 struct btrfs_delayed_ref_head *locked_ref = NULL; 1988 ktime_t start = ktime_get(); 1989 int ret; 1990 unsigned long count = 0; 1991 unsigned long actual_count = 0; 1992 1993 delayed_refs = &trans->transaction->delayed_refs; 1994 do { 1995 if (!locked_ref) { 1996 locked_ref = btrfs_obtain_ref_head(trans); 1997 if (IS_ERR_OR_NULL(locked_ref)) { 1998 if (PTR_ERR(locked_ref) == -EAGAIN) { 1999 continue; 2000 } else { 2001 break; 2002 } 2003 } 2004 count++; 2005 } 2006 /* 2007 * We need to try and merge add/drops of the same ref since we 2008 * can run into issues with relocate dropping the implicit ref 2009 * and then it being added back again before the drop can 2010 * finish. If we merged anything we need to re-loop so we can 2011 * get a good ref. 2012 * Or we can get node references of the same type that weren't 2013 * merged when created due to bumps in the tree mod seq, and 2014 * we need to merge them to prevent adding an inline extent 2015 * backref before dropping it (triggering a BUG_ON at 2016 * insert_inline_extent_backref()). 2017 */ 2018 spin_lock(&locked_ref->lock); 2019 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2020 2021 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2022 &actual_count); 2023 if (ret < 0 && ret != -EAGAIN) { 2024 /* 2025 * Error, btrfs_run_delayed_refs_for_head already 2026 * unlocked everything so just bail out 2027 */ 2028 return ret; 2029 } else if (!ret) { 2030 /* 2031 * Success, perform the usual cleanup of a processed 2032 * head 2033 */ 2034 ret = cleanup_ref_head(trans, locked_ref); 2035 if (ret > 0 ) { 2036 /* We dropped our lock, we need to loop. */ 2037 ret = 0; 2038 continue; 2039 } else if (ret) { 2040 return ret; 2041 } 2042 } 2043 2044 /* 2045 * Either success case or btrfs_run_delayed_refs_for_head 2046 * returned -EAGAIN, meaning we need to select another head 2047 */ 2048 2049 locked_ref = NULL; 2050 cond_resched(); 2051 } while ((nr != -1 && count < nr) || locked_ref); 2052 2053 /* 2054 * We don't want to include ref heads since we can have empty ref heads 2055 * and those will drastically skew our runtime down since we just do 2056 * accounting, no actual extent tree updates. 2057 */ 2058 if (actual_count > 0) { 2059 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2060 u64 avg; 2061 2062 /* 2063 * We weigh the current average higher than our current runtime 2064 * to avoid large swings in the average. 2065 */ 2066 spin_lock(&delayed_refs->lock); 2067 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2068 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2069 spin_unlock(&delayed_refs->lock); 2070 } 2071 return 0; 2072 } 2073 2074 #ifdef SCRAMBLE_DELAYED_REFS 2075 /* 2076 * Normally delayed refs get processed in ascending bytenr order. This 2077 * correlates in most cases to the order added. To expose dependencies on this 2078 * order, we start to process the tree in the middle instead of the beginning 2079 */ 2080 static u64 find_middle(struct rb_root *root) 2081 { 2082 struct rb_node *n = root->rb_node; 2083 struct btrfs_delayed_ref_node *entry; 2084 int alt = 1; 2085 u64 middle; 2086 u64 first = 0, last = 0; 2087 2088 n = rb_first(root); 2089 if (n) { 2090 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2091 first = entry->bytenr; 2092 } 2093 n = rb_last(root); 2094 if (n) { 2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2096 last = entry->bytenr; 2097 } 2098 n = root->rb_node; 2099 2100 while (n) { 2101 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2102 WARN_ON(!entry->in_tree); 2103 2104 middle = entry->bytenr; 2105 2106 if (alt) 2107 n = n->rb_left; 2108 else 2109 n = n->rb_right; 2110 2111 alt = 1 - alt; 2112 } 2113 return middle; 2114 } 2115 #endif 2116 2117 /* 2118 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2119 * would require to store the csums for that many bytes. 2120 */ 2121 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2122 { 2123 u64 csum_size; 2124 u64 num_csums_per_leaf; 2125 u64 num_csums; 2126 2127 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2128 num_csums_per_leaf = div64_u64(csum_size, 2129 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2130 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2131 num_csums += num_csums_per_leaf - 1; 2132 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2133 return num_csums; 2134 } 2135 2136 /* 2137 * this starts processing the delayed reference count updates and 2138 * extent insertions we have queued up so far. count can be 2139 * 0, which means to process everything in the tree at the start 2140 * of the run (but not newly added entries), or it can be some target 2141 * number you'd like to process. 2142 * 2143 * Returns 0 on success or if called with an aborted transaction 2144 * Returns <0 on error and aborts the transaction 2145 */ 2146 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2147 unsigned long count) 2148 { 2149 struct btrfs_fs_info *fs_info = trans->fs_info; 2150 struct rb_node *node; 2151 struct btrfs_delayed_ref_root *delayed_refs; 2152 struct btrfs_delayed_ref_head *head; 2153 int ret; 2154 int run_all = count == (unsigned long)-1; 2155 2156 /* We'll clean this up in btrfs_cleanup_transaction */ 2157 if (TRANS_ABORTED(trans)) 2158 return 0; 2159 2160 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2161 return 0; 2162 2163 delayed_refs = &trans->transaction->delayed_refs; 2164 if (count == 0) 2165 count = atomic_read(&delayed_refs->num_entries) * 2; 2166 2167 again: 2168 #ifdef SCRAMBLE_DELAYED_REFS 2169 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2170 #endif 2171 ret = __btrfs_run_delayed_refs(trans, count); 2172 if (ret < 0) { 2173 btrfs_abort_transaction(trans, ret); 2174 return ret; 2175 } 2176 2177 if (run_all) { 2178 btrfs_create_pending_block_groups(trans); 2179 2180 spin_lock(&delayed_refs->lock); 2181 node = rb_first_cached(&delayed_refs->href_root); 2182 if (!node) { 2183 spin_unlock(&delayed_refs->lock); 2184 goto out; 2185 } 2186 head = rb_entry(node, struct btrfs_delayed_ref_head, 2187 href_node); 2188 refcount_inc(&head->refs); 2189 spin_unlock(&delayed_refs->lock); 2190 2191 /* Mutex was contended, block until it's released and retry. */ 2192 mutex_lock(&head->mutex); 2193 mutex_unlock(&head->mutex); 2194 2195 btrfs_put_delayed_ref_head(head); 2196 cond_resched(); 2197 goto again; 2198 } 2199 out: 2200 return 0; 2201 } 2202 2203 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2204 struct extent_buffer *eb, u64 flags, 2205 int level, int is_data) 2206 { 2207 struct btrfs_delayed_extent_op *extent_op; 2208 int ret; 2209 2210 extent_op = btrfs_alloc_delayed_extent_op(); 2211 if (!extent_op) 2212 return -ENOMEM; 2213 2214 extent_op->flags_to_set = flags; 2215 extent_op->update_flags = true; 2216 extent_op->update_key = false; 2217 extent_op->is_data = is_data ? true : false; 2218 extent_op->level = level; 2219 2220 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2221 if (ret) 2222 btrfs_free_delayed_extent_op(extent_op); 2223 return ret; 2224 } 2225 2226 static noinline int check_delayed_ref(struct btrfs_root *root, 2227 struct btrfs_path *path, 2228 u64 objectid, u64 offset, u64 bytenr) 2229 { 2230 struct btrfs_delayed_ref_head *head; 2231 struct btrfs_delayed_ref_node *ref; 2232 struct btrfs_delayed_data_ref *data_ref; 2233 struct btrfs_delayed_ref_root *delayed_refs; 2234 struct btrfs_transaction *cur_trans; 2235 struct rb_node *node; 2236 int ret = 0; 2237 2238 spin_lock(&root->fs_info->trans_lock); 2239 cur_trans = root->fs_info->running_transaction; 2240 if (cur_trans) 2241 refcount_inc(&cur_trans->use_count); 2242 spin_unlock(&root->fs_info->trans_lock); 2243 if (!cur_trans) 2244 return 0; 2245 2246 delayed_refs = &cur_trans->delayed_refs; 2247 spin_lock(&delayed_refs->lock); 2248 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2249 if (!head) { 2250 spin_unlock(&delayed_refs->lock); 2251 btrfs_put_transaction(cur_trans); 2252 return 0; 2253 } 2254 2255 if (!mutex_trylock(&head->mutex)) { 2256 refcount_inc(&head->refs); 2257 spin_unlock(&delayed_refs->lock); 2258 2259 btrfs_release_path(path); 2260 2261 /* 2262 * Mutex was contended, block until it's released and let 2263 * caller try again 2264 */ 2265 mutex_lock(&head->mutex); 2266 mutex_unlock(&head->mutex); 2267 btrfs_put_delayed_ref_head(head); 2268 btrfs_put_transaction(cur_trans); 2269 return -EAGAIN; 2270 } 2271 spin_unlock(&delayed_refs->lock); 2272 2273 spin_lock(&head->lock); 2274 /* 2275 * XXX: We should replace this with a proper search function in the 2276 * future. 2277 */ 2278 for (node = rb_first_cached(&head->ref_tree); node; 2279 node = rb_next(node)) { 2280 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2281 /* If it's a shared ref we know a cross reference exists */ 2282 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2283 ret = 1; 2284 break; 2285 } 2286 2287 data_ref = btrfs_delayed_node_to_data_ref(ref); 2288 2289 /* 2290 * If our ref doesn't match the one we're currently looking at 2291 * then we have a cross reference. 2292 */ 2293 if (data_ref->root != root->root_key.objectid || 2294 data_ref->objectid != objectid || 2295 data_ref->offset != offset) { 2296 ret = 1; 2297 break; 2298 } 2299 } 2300 spin_unlock(&head->lock); 2301 mutex_unlock(&head->mutex); 2302 btrfs_put_transaction(cur_trans); 2303 return ret; 2304 } 2305 2306 static noinline int check_committed_ref(struct btrfs_root *root, 2307 struct btrfs_path *path, 2308 u64 objectid, u64 offset, u64 bytenr, 2309 bool strict) 2310 { 2311 struct btrfs_fs_info *fs_info = root->fs_info; 2312 struct btrfs_root *extent_root = fs_info->extent_root; 2313 struct extent_buffer *leaf; 2314 struct btrfs_extent_data_ref *ref; 2315 struct btrfs_extent_inline_ref *iref; 2316 struct btrfs_extent_item *ei; 2317 struct btrfs_key key; 2318 u32 item_size; 2319 int type; 2320 int ret; 2321 2322 key.objectid = bytenr; 2323 key.offset = (u64)-1; 2324 key.type = BTRFS_EXTENT_ITEM_KEY; 2325 2326 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2327 if (ret < 0) 2328 goto out; 2329 BUG_ON(ret == 0); /* Corruption */ 2330 2331 ret = -ENOENT; 2332 if (path->slots[0] == 0) 2333 goto out; 2334 2335 path->slots[0]--; 2336 leaf = path->nodes[0]; 2337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2338 2339 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2340 goto out; 2341 2342 ret = 1; 2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2344 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2345 2346 /* If extent item has more than 1 inline ref then it's shared */ 2347 if (item_size != sizeof(*ei) + 2348 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2349 goto out; 2350 2351 /* 2352 * If extent created before last snapshot => it's shared unless the 2353 * snapshot has been deleted. Use the heuristic if strict is false. 2354 */ 2355 if (!strict && 2356 (btrfs_extent_generation(leaf, ei) <= 2357 btrfs_root_last_snapshot(&root->root_item))) 2358 goto out; 2359 2360 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2361 2362 /* If this extent has SHARED_DATA_REF then it's shared */ 2363 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2364 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2365 goto out; 2366 2367 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2368 if (btrfs_extent_refs(leaf, ei) != 2369 btrfs_extent_data_ref_count(leaf, ref) || 2370 btrfs_extent_data_ref_root(leaf, ref) != 2371 root->root_key.objectid || 2372 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2373 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2374 goto out; 2375 2376 ret = 0; 2377 out: 2378 return ret; 2379 } 2380 2381 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2382 u64 bytenr, bool strict) 2383 { 2384 struct btrfs_path *path; 2385 int ret; 2386 2387 path = btrfs_alloc_path(); 2388 if (!path) 2389 return -ENOMEM; 2390 2391 do { 2392 ret = check_committed_ref(root, path, objectid, 2393 offset, bytenr, strict); 2394 if (ret && ret != -ENOENT) 2395 goto out; 2396 2397 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2398 } while (ret == -EAGAIN); 2399 2400 out: 2401 btrfs_free_path(path); 2402 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2403 WARN_ON(ret > 0); 2404 return ret; 2405 } 2406 2407 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2408 struct btrfs_root *root, 2409 struct extent_buffer *buf, 2410 int full_backref, int inc) 2411 { 2412 struct btrfs_fs_info *fs_info = root->fs_info; 2413 u64 bytenr; 2414 u64 num_bytes; 2415 u64 parent; 2416 u64 ref_root; 2417 u32 nritems; 2418 struct btrfs_key key; 2419 struct btrfs_file_extent_item *fi; 2420 struct btrfs_ref generic_ref = { 0 }; 2421 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2422 int i; 2423 int action; 2424 int level; 2425 int ret = 0; 2426 2427 if (btrfs_is_testing(fs_info)) 2428 return 0; 2429 2430 ref_root = btrfs_header_owner(buf); 2431 nritems = btrfs_header_nritems(buf); 2432 level = btrfs_header_level(buf); 2433 2434 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2435 return 0; 2436 2437 if (full_backref) 2438 parent = buf->start; 2439 else 2440 parent = 0; 2441 if (inc) 2442 action = BTRFS_ADD_DELAYED_REF; 2443 else 2444 action = BTRFS_DROP_DELAYED_REF; 2445 2446 for (i = 0; i < nritems; i++) { 2447 if (level == 0) { 2448 btrfs_item_key_to_cpu(buf, &key, i); 2449 if (key.type != BTRFS_EXTENT_DATA_KEY) 2450 continue; 2451 fi = btrfs_item_ptr(buf, i, 2452 struct btrfs_file_extent_item); 2453 if (btrfs_file_extent_type(buf, fi) == 2454 BTRFS_FILE_EXTENT_INLINE) 2455 continue; 2456 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2457 if (bytenr == 0) 2458 continue; 2459 2460 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2461 key.offset -= btrfs_file_extent_offset(buf, fi); 2462 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2463 num_bytes, parent); 2464 generic_ref.real_root = root->root_key.objectid; 2465 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2466 key.offset); 2467 generic_ref.skip_qgroup = for_reloc; 2468 if (inc) 2469 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2470 else 2471 ret = btrfs_free_extent(trans, &generic_ref); 2472 if (ret) 2473 goto fail; 2474 } else { 2475 bytenr = btrfs_node_blockptr(buf, i); 2476 num_bytes = fs_info->nodesize; 2477 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2478 num_bytes, parent); 2479 generic_ref.real_root = root->root_key.objectid; 2480 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2481 generic_ref.skip_qgroup = for_reloc; 2482 if (inc) 2483 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2484 else 2485 ret = btrfs_free_extent(trans, &generic_ref); 2486 if (ret) 2487 goto fail; 2488 } 2489 } 2490 return 0; 2491 fail: 2492 return ret; 2493 } 2494 2495 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2496 struct extent_buffer *buf, int full_backref) 2497 { 2498 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2499 } 2500 2501 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2502 struct extent_buffer *buf, int full_backref) 2503 { 2504 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2505 } 2506 2507 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2508 { 2509 struct btrfs_block_group *block_group; 2510 int readonly = 0; 2511 2512 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2513 if (!block_group || block_group->ro) 2514 readonly = 1; 2515 if (block_group) 2516 btrfs_put_block_group(block_group); 2517 return readonly; 2518 } 2519 2520 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2521 { 2522 struct btrfs_fs_info *fs_info = root->fs_info; 2523 u64 flags; 2524 u64 ret; 2525 2526 if (data) 2527 flags = BTRFS_BLOCK_GROUP_DATA; 2528 else if (root == fs_info->chunk_root) 2529 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2530 else 2531 flags = BTRFS_BLOCK_GROUP_METADATA; 2532 2533 ret = btrfs_get_alloc_profile(fs_info, flags); 2534 return ret; 2535 } 2536 2537 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2538 { 2539 struct btrfs_block_group *cache; 2540 u64 bytenr; 2541 2542 spin_lock(&fs_info->block_group_cache_lock); 2543 bytenr = fs_info->first_logical_byte; 2544 spin_unlock(&fs_info->block_group_cache_lock); 2545 2546 if (bytenr < (u64)-1) 2547 return bytenr; 2548 2549 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2550 if (!cache) 2551 return 0; 2552 2553 bytenr = cache->start; 2554 btrfs_put_block_group(cache); 2555 2556 return bytenr; 2557 } 2558 2559 static int pin_down_extent(struct btrfs_trans_handle *trans, 2560 struct btrfs_block_group *cache, 2561 u64 bytenr, u64 num_bytes, int reserved) 2562 { 2563 struct btrfs_fs_info *fs_info = cache->fs_info; 2564 2565 spin_lock(&cache->space_info->lock); 2566 spin_lock(&cache->lock); 2567 cache->pinned += num_bytes; 2568 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2569 num_bytes); 2570 if (reserved) { 2571 cache->reserved -= num_bytes; 2572 cache->space_info->bytes_reserved -= num_bytes; 2573 } 2574 spin_unlock(&cache->lock); 2575 spin_unlock(&cache->space_info->lock); 2576 2577 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2578 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2579 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2580 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2581 return 0; 2582 } 2583 2584 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2585 u64 bytenr, u64 num_bytes, int reserved) 2586 { 2587 struct btrfs_block_group *cache; 2588 2589 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2590 BUG_ON(!cache); /* Logic error */ 2591 2592 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2593 2594 btrfs_put_block_group(cache); 2595 return 0; 2596 } 2597 2598 /* 2599 * this function must be called within transaction 2600 */ 2601 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2602 u64 bytenr, u64 num_bytes) 2603 { 2604 struct btrfs_block_group *cache; 2605 int ret; 2606 2607 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes); 2608 2609 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2610 if (!cache) 2611 return -EINVAL; 2612 2613 /* 2614 * pull in the free space cache (if any) so that our pin 2615 * removes the free space from the cache. We have load_only set 2616 * to one because the slow code to read in the free extents does check 2617 * the pinned extents. 2618 */ 2619 btrfs_cache_block_group(cache, 1); 2620 2621 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2622 2623 /* remove us from the free space cache (if we're there at all) */ 2624 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2625 btrfs_put_block_group(cache); 2626 return ret; 2627 } 2628 2629 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2630 u64 start, u64 num_bytes) 2631 { 2632 int ret; 2633 struct btrfs_block_group *block_group; 2634 struct btrfs_caching_control *caching_ctl; 2635 2636 block_group = btrfs_lookup_block_group(fs_info, start); 2637 if (!block_group) 2638 return -EINVAL; 2639 2640 btrfs_cache_block_group(block_group, 0); 2641 caching_ctl = btrfs_get_caching_control(block_group); 2642 2643 if (!caching_ctl) { 2644 /* Logic error */ 2645 BUG_ON(!btrfs_block_group_done(block_group)); 2646 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2647 } else { 2648 mutex_lock(&caching_ctl->mutex); 2649 2650 if (start >= caching_ctl->progress) { 2651 ret = btrfs_add_excluded_extent(fs_info, start, 2652 num_bytes); 2653 } else if (start + num_bytes <= caching_ctl->progress) { 2654 ret = btrfs_remove_free_space(block_group, 2655 start, num_bytes); 2656 } else { 2657 num_bytes = caching_ctl->progress - start; 2658 ret = btrfs_remove_free_space(block_group, 2659 start, num_bytes); 2660 if (ret) 2661 goto out_lock; 2662 2663 num_bytes = (start + num_bytes) - 2664 caching_ctl->progress; 2665 start = caching_ctl->progress; 2666 ret = btrfs_add_excluded_extent(fs_info, start, 2667 num_bytes); 2668 } 2669 out_lock: 2670 mutex_unlock(&caching_ctl->mutex); 2671 btrfs_put_caching_control(caching_ctl); 2672 } 2673 btrfs_put_block_group(block_group); 2674 return ret; 2675 } 2676 2677 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2678 { 2679 struct btrfs_fs_info *fs_info = eb->fs_info; 2680 struct btrfs_file_extent_item *item; 2681 struct btrfs_key key; 2682 int found_type; 2683 int i; 2684 int ret = 0; 2685 2686 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2687 return 0; 2688 2689 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2690 btrfs_item_key_to_cpu(eb, &key, i); 2691 if (key.type != BTRFS_EXTENT_DATA_KEY) 2692 continue; 2693 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2694 found_type = btrfs_file_extent_type(eb, item); 2695 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2696 continue; 2697 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2698 continue; 2699 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2700 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2701 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2702 if (ret) 2703 break; 2704 } 2705 2706 return ret; 2707 } 2708 2709 static void 2710 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2711 { 2712 atomic_inc(&bg->reservations); 2713 } 2714 2715 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2716 { 2717 struct btrfs_caching_control *next; 2718 struct btrfs_caching_control *caching_ctl; 2719 struct btrfs_block_group *cache; 2720 2721 down_write(&fs_info->commit_root_sem); 2722 2723 list_for_each_entry_safe(caching_ctl, next, 2724 &fs_info->caching_block_groups, list) { 2725 cache = caching_ctl->block_group; 2726 if (btrfs_block_group_done(cache)) { 2727 cache->last_byte_to_unpin = (u64)-1; 2728 list_del_init(&caching_ctl->list); 2729 btrfs_put_caching_control(caching_ctl); 2730 } else { 2731 cache->last_byte_to_unpin = caching_ctl->progress; 2732 } 2733 } 2734 2735 up_write(&fs_info->commit_root_sem); 2736 2737 btrfs_update_global_block_rsv(fs_info); 2738 } 2739 2740 /* 2741 * Returns the free cluster for the given space info and sets empty_cluster to 2742 * what it should be based on the mount options. 2743 */ 2744 static struct btrfs_free_cluster * 2745 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2746 struct btrfs_space_info *space_info, u64 *empty_cluster) 2747 { 2748 struct btrfs_free_cluster *ret = NULL; 2749 2750 *empty_cluster = 0; 2751 if (btrfs_mixed_space_info(space_info)) 2752 return ret; 2753 2754 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2755 ret = &fs_info->meta_alloc_cluster; 2756 if (btrfs_test_opt(fs_info, SSD)) 2757 *empty_cluster = SZ_2M; 2758 else 2759 *empty_cluster = SZ_64K; 2760 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2761 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2762 *empty_cluster = SZ_2M; 2763 ret = &fs_info->data_alloc_cluster; 2764 } 2765 2766 return ret; 2767 } 2768 2769 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2770 u64 start, u64 end, 2771 const bool return_free_space) 2772 { 2773 struct btrfs_block_group *cache = NULL; 2774 struct btrfs_space_info *space_info; 2775 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2776 struct btrfs_free_cluster *cluster = NULL; 2777 u64 len; 2778 u64 total_unpinned = 0; 2779 u64 empty_cluster = 0; 2780 bool readonly; 2781 2782 while (start <= end) { 2783 readonly = false; 2784 if (!cache || 2785 start >= cache->start + cache->length) { 2786 if (cache) 2787 btrfs_put_block_group(cache); 2788 total_unpinned = 0; 2789 cache = btrfs_lookup_block_group(fs_info, start); 2790 BUG_ON(!cache); /* Logic error */ 2791 2792 cluster = fetch_cluster_info(fs_info, 2793 cache->space_info, 2794 &empty_cluster); 2795 empty_cluster <<= 1; 2796 } 2797 2798 len = cache->start + cache->length - start; 2799 len = min(len, end + 1 - start); 2800 2801 if (start < cache->last_byte_to_unpin) { 2802 len = min(len, cache->last_byte_to_unpin - start); 2803 if (return_free_space) 2804 btrfs_add_free_space(cache, start, len); 2805 } 2806 2807 start += len; 2808 total_unpinned += len; 2809 space_info = cache->space_info; 2810 2811 /* 2812 * If this space cluster has been marked as fragmented and we've 2813 * unpinned enough in this block group to potentially allow a 2814 * cluster to be created inside of it go ahead and clear the 2815 * fragmented check. 2816 */ 2817 if (cluster && cluster->fragmented && 2818 total_unpinned > empty_cluster) { 2819 spin_lock(&cluster->lock); 2820 cluster->fragmented = 0; 2821 spin_unlock(&cluster->lock); 2822 } 2823 2824 spin_lock(&space_info->lock); 2825 spin_lock(&cache->lock); 2826 cache->pinned -= len; 2827 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2828 space_info->max_extent_size = 0; 2829 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2830 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2831 if (cache->ro) { 2832 space_info->bytes_readonly += len; 2833 readonly = true; 2834 } 2835 spin_unlock(&cache->lock); 2836 if (!readonly && return_free_space && 2837 global_rsv->space_info == space_info) { 2838 u64 to_add = len; 2839 2840 spin_lock(&global_rsv->lock); 2841 if (!global_rsv->full) { 2842 to_add = min(len, global_rsv->size - 2843 global_rsv->reserved); 2844 global_rsv->reserved += to_add; 2845 btrfs_space_info_update_bytes_may_use(fs_info, 2846 space_info, to_add); 2847 if (global_rsv->reserved >= global_rsv->size) 2848 global_rsv->full = 1; 2849 len -= to_add; 2850 } 2851 spin_unlock(&global_rsv->lock); 2852 /* Add to any tickets we may have */ 2853 if (len) 2854 btrfs_try_granting_tickets(fs_info, 2855 space_info); 2856 } 2857 spin_unlock(&space_info->lock); 2858 } 2859 2860 if (cache) 2861 btrfs_put_block_group(cache); 2862 return 0; 2863 } 2864 2865 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2866 { 2867 struct btrfs_fs_info *fs_info = trans->fs_info; 2868 struct btrfs_block_group *block_group, *tmp; 2869 struct list_head *deleted_bgs; 2870 struct extent_io_tree *unpin; 2871 u64 start; 2872 u64 end; 2873 int ret; 2874 2875 unpin = &trans->transaction->pinned_extents; 2876 2877 while (!TRANS_ABORTED(trans)) { 2878 struct extent_state *cached_state = NULL; 2879 2880 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2881 ret = find_first_extent_bit(unpin, 0, &start, &end, 2882 EXTENT_DIRTY, &cached_state); 2883 if (ret) { 2884 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2885 break; 2886 } 2887 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 2888 clear_extent_bits(&fs_info->excluded_extents, start, 2889 end, EXTENT_UPTODATE); 2890 2891 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2892 ret = btrfs_discard_extent(fs_info, start, 2893 end + 1 - start, NULL); 2894 2895 clear_extent_dirty(unpin, start, end, &cached_state); 2896 unpin_extent_range(fs_info, start, end, true); 2897 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2898 free_extent_state(cached_state); 2899 cond_resched(); 2900 } 2901 2902 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2903 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2904 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2905 } 2906 2907 /* 2908 * Transaction is finished. We don't need the lock anymore. We 2909 * do need to clean up the block groups in case of a transaction 2910 * abort. 2911 */ 2912 deleted_bgs = &trans->transaction->deleted_bgs; 2913 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2914 u64 trimmed = 0; 2915 2916 ret = -EROFS; 2917 if (!TRANS_ABORTED(trans)) 2918 ret = btrfs_discard_extent(fs_info, 2919 block_group->start, 2920 block_group->length, 2921 &trimmed); 2922 2923 list_del_init(&block_group->bg_list); 2924 btrfs_unfreeze_block_group(block_group); 2925 btrfs_put_block_group(block_group); 2926 2927 if (ret) { 2928 const char *errstr = btrfs_decode_error(ret); 2929 btrfs_warn(fs_info, 2930 "discard failed while removing blockgroup: errno=%d %s", 2931 ret, errstr); 2932 } 2933 } 2934 2935 return 0; 2936 } 2937 2938 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2939 struct btrfs_delayed_ref_node *node, u64 parent, 2940 u64 root_objectid, u64 owner_objectid, 2941 u64 owner_offset, int refs_to_drop, 2942 struct btrfs_delayed_extent_op *extent_op) 2943 { 2944 struct btrfs_fs_info *info = trans->fs_info; 2945 struct btrfs_key key; 2946 struct btrfs_path *path; 2947 struct btrfs_root *extent_root = info->extent_root; 2948 struct extent_buffer *leaf; 2949 struct btrfs_extent_item *ei; 2950 struct btrfs_extent_inline_ref *iref; 2951 int ret; 2952 int is_data; 2953 int extent_slot = 0; 2954 int found_extent = 0; 2955 int num_to_del = 1; 2956 u32 item_size; 2957 u64 refs; 2958 u64 bytenr = node->bytenr; 2959 u64 num_bytes = node->num_bytes; 2960 int last_ref = 0; 2961 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2962 2963 path = btrfs_alloc_path(); 2964 if (!path) 2965 return -ENOMEM; 2966 2967 path->leave_spinning = 1; 2968 2969 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2970 BUG_ON(!is_data && refs_to_drop != 1); 2971 2972 if (is_data) 2973 skinny_metadata = false; 2974 2975 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2976 parent, root_objectid, owner_objectid, 2977 owner_offset); 2978 if (ret == 0) { 2979 extent_slot = path->slots[0]; 2980 while (extent_slot >= 0) { 2981 btrfs_item_key_to_cpu(path->nodes[0], &key, 2982 extent_slot); 2983 if (key.objectid != bytenr) 2984 break; 2985 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2986 key.offset == num_bytes) { 2987 found_extent = 1; 2988 break; 2989 } 2990 if (key.type == BTRFS_METADATA_ITEM_KEY && 2991 key.offset == owner_objectid) { 2992 found_extent = 1; 2993 break; 2994 } 2995 if (path->slots[0] - extent_slot > 5) 2996 break; 2997 extent_slot--; 2998 } 2999 3000 if (!found_extent) { 3001 BUG_ON(iref); 3002 ret = remove_extent_backref(trans, path, NULL, 3003 refs_to_drop, 3004 is_data, &last_ref); 3005 if (ret) { 3006 btrfs_abort_transaction(trans, ret); 3007 goto out; 3008 } 3009 btrfs_release_path(path); 3010 path->leave_spinning = 1; 3011 3012 key.objectid = bytenr; 3013 key.type = BTRFS_EXTENT_ITEM_KEY; 3014 key.offset = num_bytes; 3015 3016 if (!is_data && skinny_metadata) { 3017 key.type = BTRFS_METADATA_ITEM_KEY; 3018 key.offset = owner_objectid; 3019 } 3020 3021 ret = btrfs_search_slot(trans, extent_root, 3022 &key, path, -1, 1); 3023 if (ret > 0 && skinny_metadata && path->slots[0]) { 3024 /* 3025 * Couldn't find our skinny metadata item, 3026 * see if we have ye olde extent item. 3027 */ 3028 path->slots[0]--; 3029 btrfs_item_key_to_cpu(path->nodes[0], &key, 3030 path->slots[0]); 3031 if (key.objectid == bytenr && 3032 key.type == BTRFS_EXTENT_ITEM_KEY && 3033 key.offset == num_bytes) 3034 ret = 0; 3035 } 3036 3037 if (ret > 0 && skinny_metadata) { 3038 skinny_metadata = false; 3039 key.objectid = bytenr; 3040 key.type = BTRFS_EXTENT_ITEM_KEY; 3041 key.offset = num_bytes; 3042 btrfs_release_path(path); 3043 ret = btrfs_search_slot(trans, extent_root, 3044 &key, path, -1, 1); 3045 } 3046 3047 if (ret) { 3048 btrfs_err(info, 3049 "umm, got %d back from search, was looking for %llu", 3050 ret, bytenr); 3051 if (ret > 0) 3052 btrfs_print_leaf(path->nodes[0]); 3053 } 3054 if (ret < 0) { 3055 btrfs_abort_transaction(trans, ret); 3056 goto out; 3057 } 3058 extent_slot = path->slots[0]; 3059 } 3060 } else if (WARN_ON(ret == -ENOENT)) { 3061 btrfs_print_leaf(path->nodes[0]); 3062 btrfs_err(info, 3063 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3064 bytenr, parent, root_objectid, owner_objectid, 3065 owner_offset); 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } else { 3069 btrfs_abort_transaction(trans, ret); 3070 goto out; 3071 } 3072 3073 leaf = path->nodes[0]; 3074 item_size = btrfs_item_size_nr(leaf, extent_slot); 3075 if (unlikely(item_size < sizeof(*ei))) { 3076 ret = -EINVAL; 3077 btrfs_print_v0_err(info); 3078 btrfs_abort_transaction(trans, ret); 3079 goto out; 3080 } 3081 ei = btrfs_item_ptr(leaf, extent_slot, 3082 struct btrfs_extent_item); 3083 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3084 key.type == BTRFS_EXTENT_ITEM_KEY) { 3085 struct btrfs_tree_block_info *bi; 3086 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3087 bi = (struct btrfs_tree_block_info *)(ei + 1); 3088 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3089 } 3090 3091 refs = btrfs_extent_refs(leaf, ei); 3092 if (refs < refs_to_drop) { 3093 btrfs_err(info, 3094 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3095 refs_to_drop, refs, bytenr); 3096 ret = -EINVAL; 3097 btrfs_abort_transaction(trans, ret); 3098 goto out; 3099 } 3100 refs -= refs_to_drop; 3101 3102 if (refs > 0) { 3103 if (extent_op) 3104 __run_delayed_extent_op(extent_op, leaf, ei); 3105 /* 3106 * In the case of inline back ref, reference count will 3107 * be updated by remove_extent_backref 3108 */ 3109 if (iref) { 3110 BUG_ON(!found_extent); 3111 } else { 3112 btrfs_set_extent_refs(leaf, ei, refs); 3113 btrfs_mark_buffer_dirty(leaf); 3114 } 3115 if (found_extent) { 3116 ret = remove_extent_backref(trans, path, iref, 3117 refs_to_drop, is_data, 3118 &last_ref); 3119 if (ret) { 3120 btrfs_abort_transaction(trans, ret); 3121 goto out; 3122 } 3123 } 3124 } else { 3125 if (found_extent) { 3126 BUG_ON(is_data && refs_to_drop != 3127 extent_data_ref_count(path, iref)); 3128 if (iref) { 3129 BUG_ON(path->slots[0] != extent_slot); 3130 } else { 3131 BUG_ON(path->slots[0] != extent_slot + 1); 3132 path->slots[0] = extent_slot; 3133 num_to_del = 2; 3134 } 3135 } 3136 3137 last_ref = 1; 3138 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3139 num_to_del); 3140 if (ret) { 3141 btrfs_abort_transaction(trans, ret); 3142 goto out; 3143 } 3144 btrfs_release_path(path); 3145 3146 if (is_data) { 3147 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3148 num_bytes); 3149 if (ret) { 3150 btrfs_abort_transaction(trans, ret); 3151 goto out; 3152 } 3153 } 3154 3155 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3156 if (ret) { 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 3161 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3162 if (ret) { 3163 btrfs_abort_transaction(trans, ret); 3164 goto out; 3165 } 3166 } 3167 btrfs_release_path(path); 3168 3169 out: 3170 btrfs_free_path(path); 3171 return ret; 3172 } 3173 3174 /* 3175 * when we free an block, it is possible (and likely) that we free the last 3176 * delayed ref for that extent as well. This searches the delayed ref tree for 3177 * a given extent, and if there are no other delayed refs to be processed, it 3178 * removes it from the tree. 3179 */ 3180 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3181 u64 bytenr) 3182 { 3183 struct btrfs_delayed_ref_head *head; 3184 struct btrfs_delayed_ref_root *delayed_refs; 3185 int ret = 0; 3186 3187 delayed_refs = &trans->transaction->delayed_refs; 3188 spin_lock(&delayed_refs->lock); 3189 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3190 if (!head) 3191 goto out_delayed_unlock; 3192 3193 spin_lock(&head->lock); 3194 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3195 goto out; 3196 3197 if (cleanup_extent_op(head) != NULL) 3198 goto out; 3199 3200 /* 3201 * waiting for the lock here would deadlock. If someone else has it 3202 * locked they are already in the process of dropping it anyway 3203 */ 3204 if (!mutex_trylock(&head->mutex)) 3205 goto out; 3206 3207 btrfs_delete_ref_head(delayed_refs, head); 3208 head->processing = 0; 3209 3210 spin_unlock(&head->lock); 3211 spin_unlock(&delayed_refs->lock); 3212 3213 BUG_ON(head->extent_op); 3214 if (head->must_insert_reserved) 3215 ret = 1; 3216 3217 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3218 mutex_unlock(&head->mutex); 3219 btrfs_put_delayed_ref_head(head); 3220 return ret; 3221 out: 3222 spin_unlock(&head->lock); 3223 3224 out_delayed_unlock: 3225 spin_unlock(&delayed_refs->lock); 3226 return 0; 3227 } 3228 3229 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3230 struct btrfs_root *root, 3231 struct extent_buffer *buf, 3232 u64 parent, int last_ref) 3233 { 3234 struct btrfs_fs_info *fs_info = root->fs_info; 3235 struct btrfs_ref generic_ref = { 0 }; 3236 int pin = 1; 3237 int ret; 3238 3239 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3240 buf->start, buf->len, parent); 3241 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3242 root->root_key.objectid); 3243 3244 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3245 int old_ref_mod, new_ref_mod; 3246 3247 btrfs_ref_tree_mod(fs_info, &generic_ref); 3248 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3249 &old_ref_mod, &new_ref_mod); 3250 BUG_ON(ret); /* -ENOMEM */ 3251 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3252 } 3253 3254 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3255 struct btrfs_block_group *cache; 3256 3257 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3258 ret = check_ref_cleanup(trans, buf->start); 3259 if (!ret) 3260 goto out; 3261 } 3262 3263 pin = 0; 3264 cache = btrfs_lookup_block_group(fs_info, buf->start); 3265 3266 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3267 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3268 btrfs_put_block_group(cache); 3269 goto out; 3270 } 3271 3272 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3273 3274 btrfs_add_free_space(cache, buf->start, buf->len); 3275 btrfs_free_reserved_bytes(cache, buf->len, 0); 3276 btrfs_put_block_group(cache); 3277 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3278 } 3279 out: 3280 if (pin) 3281 add_pinned_bytes(fs_info, &generic_ref); 3282 3283 if (last_ref) { 3284 /* 3285 * Deleting the buffer, clear the corrupt flag since it doesn't 3286 * matter anymore. 3287 */ 3288 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3289 } 3290 } 3291 3292 /* Can return -ENOMEM */ 3293 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3294 { 3295 struct btrfs_fs_info *fs_info = trans->fs_info; 3296 int old_ref_mod, new_ref_mod; 3297 int ret; 3298 3299 if (btrfs_is_testing(fs_info)) 3300 return 0; 3301 3302 /* 3303 * tree log blocks never actually go into the extent allocation 3304 * tree, just update pinning info and exit early. 3305 */ 3306 if ((ref->type == BTRFS_REF_METADATA && 3307 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3308 (ref->type == BTRFS_REF_DATA && 3309 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3310 /* unlocks the pinned mutex */ 3311 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3312 old_ref_mod = new_ref_mod = 0; 3313 ret = 0; 3314 } else if (ref->type == BTRFS_REF_METADATA) { 3315 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3316 &old_ref_mod, &new_ref_mod); 3317 } else { 3318 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3319 &old_ref_mod, &new_ref_mod); 3320 } 3321 3322 if (!((ref->type == BTRFS_REF_METADATA && 3323 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3324 (ref->type == BTRFS_REF_DATA && 3325 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3326 btrfs_ref_tree_mod(fs_info, ref); 3327 3328 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3329 add_pinned_bytes(fs_info, ref); 3330 3331 return ret; 3332 } 3333 3334 enum btrfs_loop_type { 3335 LOOP_CACHING_NOWAIT, 3336 LOOP_CACHING_WAIT, 3337 LOOP_ALLOC_CHUNK, 3338 LOOP_NO_EMPTY_SIZE, 3339 }; 3340 3341 static inline void 3342 btrfs_lock_block_group(struct btrfs_block_group *cache, 3343 int delalloc) 3344 { 3345 if (delalloc) 3346 down_read(&cache->data_rwsem); 3347 } 3348 3349 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3350 int delalloc) 3351 { 3352 btrfs_get_block_group(cache); 3353 if (delalloc) 3354 down_read(&cache->data_rwsem); 3355 } 3356 3357 static struct btrfs_block_group *btrfs_lock_cluster( 3358 struct btrfs_block_group *block_group, 3359 struct btrfs_free_cluster *cluster, 3360 int delalloc) 3361 __acquires(&cluster->refill_lock) 3362 { 3363 struct btrfs_block_group *used_bg = NULL; 3364 3365 spin_lock(&cluster->refill_lock); 3366 while (1) { 3367 used_bg = cluster->block_group; 3368 if (!used_bg) 3369 return NULL; 3370 3371 if (used_bg == block_group) 3372 return used_bg; 3373 3374 btrfs_get_block_group(used_bg); 3375 3376 if (!delalloc) 3377 return used_bg; 3378 3379 if (down_read_trylock(&used_bg->data_rwsem)) 3380 return used_bg; 3381 3382 spin_unlock(&cluster->refill_lock); 3383 3384 /* We should only have one-level nested. */ 3385 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3386 3387 spin_lock(&cluster->refill_lock); 3388 if (used_bg == cluster->block_group) 3389 return used_bg; 3390 3391 up_read(&used_bg->data_rwsem); 3392 btrfs_put_block_group(used_bg); 3393 } 3394 } 3395 3396 static inline void 3397 btrfs_release_block_group(struct btrfs_block_group *cache, 3398 int delalloc) 3399 { 3400 if (delalloc) 3401 up_read(&cache->data_rwsem); 3402 btrfs_put_block_group(cache); 3403 } 3404 3405 enum btrfs_extent_allocation_policy { 3406 BTRFS_EXTENT_ALLOC_CLUSTERED, 3407 }; 3408 3409 /* 3410 * Structure used internally for find_free_extent() function. Wraps needed 3411 * parameters. 3412 */ 3413 struct find_free_extent_ctl { 3414 /* Basic allocation info */ 3415 u64 num_bytes; 3416 u64 empty_size; 3417 u64 flags; 3418 int delalloc; 3419 3420 /* Where to start the search inside the bg */ 3421 u64 search_start; 3422 3423 /* For clustered allocation */ 3424 u64 empty_cluster; 3425 struct btrfs_free_cluster *last_ptr; 3426 bool use_cluster; 3427 3428 bool have_caching_bg; 3429 bool orig_have_caching_bg; 3430 3431 /* RAID index, converted from flags */ 3432 int index; 3433 3434 /* 3435 * Current loop number, check find_free_extent_update_loop() for details 3436 */ 3437 int loop; 3438 3439 /* 3440 * Whether we're refilling a cluster, if true we need to re-search 3441 * current block group but don't try to refill the cluster again. 3442 */ 3443 bool retry_clustered; 3444 3445 /* 3446 * Whether we're updating free space cache, if true we need to re-search 3447 * current block group but don't try updating free space cache again. 3448 */ 3449 bool retry_unclustered; 3450 3451 /* If current block group is cached */ 3452 int cached; 3453 3454 /* Max contiguous hole found */ 3455 u64 max_extent_size; 3456 3457 /* Total free space from free space cache, not always contiguous */ 3458 u64 total_free_space; 3459 3460 /* Found result */ 3461 u64 found_offset; 3462 3463 /* Hint where to start looking for an empty space */ 3464 u64 hint_byte; 3465 3466 /* Allocation policy */ 3467 enum btrfs_extent_allocation_policy policy; 3468 }; 3469 3470 3471 /* 3472 * Helper function for find_free_extent(). 3473 * 3474 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3475 * Return -EAGAIN to inform caller that we need to re-search this block group 3476 * Return >0 to inform caller that we find nothing 3477 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3478 */ 3479 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3480 struct find_free_extent_ctl *ffe_ctl, 3481 struct btrfs_block_group **cluster_bg_ret) 3482 { 3483 struct btrfs_block_group *cluster_bg; 3484 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3485 u64 aligned_cluster; 3486 u64 offset; 3487 int ret; 3488 3489 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3490 if (!cluster_bg) 3491 goto refill_cluster; 3492 if (cluster_bg != bg && (cluster_bg->ro || 3493 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3494 goto release_cluster; 3495 3496 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3497 ffe_ctl->num_bytes, cluster_bg->start, 3498 &ffe_ctl->max_extent_size); 3499 if (offset) { 3500 /* We have a block, we're done */ 3501 spin_unlock(&last_ptr->refill_lock); 3502 trace_btrfs_reserve_extent_cluster(cluster_bg, 3503 ffe_ctl->search_start, ffe_ctl->num_bytes); 3504 *cluster_bg_ret = cluster_bg; 3505 ffe_ctl->found_offset = offset; 3506 return 0; 3507 } 3508 WARN_ON(last_ptr->block_group != cluster_bg); 3509 3510 release_cluster: 3511 /* 3512 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3513 * lets just skip it and let the allocator find whatever block it can 3514 * find. If we reach this point, we will have tried the cluster 3515 * allocator plenty of times and not have found anything, so we are 3516 * likely way too fragmented for the clustering stuff to find anything. 3517 * 3518 * However, if the cluster is taken from the current block group, 3519 * release the cluster first, so that we stand a better chance of 3520 * succeeding in the unclustered allocation. 3521 */ 3522 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3523 spin_unlock(&last_ptr->refill_lock); 3524 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3525 return -ENOENT; 3526 } 3527 3528 /* This cluster didn't work out, free it and start over */ 3529 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3530 3531 if (cluster_bg != bg) 3532 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3533 3534 refill_cluster: 3535 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3536 spin_unlock(&last_ptr->refill_lock); 3537 return -ENOENT; 3538 } 3539 3540 aligned_cluster = max_t(u64, 3541 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3542 bg->full_stripe_len); 3543 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3544 ffe_ctl->num_bytes, aligned_cluster); 3545 if (ret == 0) { 3546 /* Now pull our allocation out of this cluster */ 3547 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3548 ffe_ctl->num_bytes, ffe_ctl->search_start, 3549 &ffe_ctl->max_extent_size); 3550 if (offset) { 3551 /* We found one, proceed */ 3552 spin_unlock(&last_ptr->refill_lock); 3553 trace_btrfs_reserve_extent_cluster(bg, 3554 ffe_ctl->search_start, 3555 ffe_ctl->num_bytes); 3556 ffe_ctl->found_offset = offset; 3557 return 0; 3558 } 3559 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3560 !ffe_ctl->retry_clustered) { 3561 spin_unlock(&last_ptr->refill_lock); 3562 3563 ffe_ctl->retry_clustered = true; 3564 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3565 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3566 return -EAGAIN; 3567 } 3568 /* 3569 * At this point we either didn't find a cluster or we weren't able to 3570 * allocate a block from our cluster. Free the cluster we've been 3571 * trying to use, and go to the next block group. 3572 */ 3573 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3574 spin_unlock(&last_ptr->refill_lock); 3575 return 1; 3576 } 3577 3578 /* 3579 * Return >0 to inform caller that we find nothing 3580 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3581 * Return -EAGAIN to inform caller that we need to re-search this block group 3582 */ 3583 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3584 struct find_free_extent_ctl *ffe_ctl) 3585 { 3586 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3587 u64 offset; 3588 3589 /* 3590 * We are doing an unclustered allocation, set the fragmented flag so 3591 * we don't bother trying to setup a cluster again until we get more 3592 * space. 3593 */ 3594 if (unlikely(last_ptr)) { 3595 spin_lock(&last_ptr->lock); 3596 last_ptr->fragmented = 1; 3597 spin_unlock(&last_ptr->lock); 3598 } 3599 if (ffe_ctl->cached) { 3600 struct btrfs_free_space_ctl *free_space_ctl; 3601 3602 free_space_ctl = bg->free_space_ctl; 3603 spin_lock(&free_space_ctl->tree_lock); 3604 if (free_space_ctl->free_space < 3605 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3606 ffe_ctl->empty_size) { 3607 ffe_ctl->total_free_space = max_t(u64, 3608 ffe_ctl->total_free_space, 3609 free_space_ctl->free_space); 3610 spin_unlock(&free_space_ctl->tree_lock); 3611 return 1; 3612 } 3613 spin_unlock(&free_space_ctl->tree_lock); 3614 } 3615 3616 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3617 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3618 &ffe_ctl->max_extent_size); 3619 3620 /* 3621 * If we didn't find a chunk, and we haven't failed on this block group 3622 * before, and this block group is in the middle of caching and we are 3623 * ok with waiting, then go ahead and wait for progress to be made, and 3624 * set @retry_unclustered to true. 3625 * 3626 * If @retry_unclustered is true then we've already waited on this 3627 * block group once and should move on to the next block group. 3628 */ 3629 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3630 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3631 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3632 ffe_ctl->empty_size); 3633 ffe_ctl->retry_unclustered = true; 3634 return -EAGAIN; 3635 } else if (!offset) { 3636 return 1; 3637 } 3638 ffe_ctl->found_offset = offset; 3639 return 0; 3640 } 3641 3642 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3643 struct find_free_extent_ctl *ffe_ctl, 3644 struct btrfs_block_group **bg_ret) 3645 { 3646 int ret; 3647 3648 /* We want to try and use the cluster allocator, so lets look there */ 3649 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3650 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3651 if (ret >= 0 || ret == -EAGAIN) 3652 return ret; 3653 /* ret == -ENOENT case falls through */ 3654 } 3655 3656 return find_free_extent_unclustered(block_group, ffe_ctl); 3657 } 3658 3659 static int do_allocation(struct btrfs_block_group *block_group, 3660 struct find_free_extent_ctl *ffe_ctl, 3661 struct btrfs_block_group **bg_ret) 3662 { 3663 switch (ffe_ctl->policy) { 3664 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3665 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3666 default: 3667 BUG(); 3668 } 3669 } 3670 3671 static void release_block_group(struct btrfs_block_group *block_group, 3672 struct find_free_extent_ctl *ffe_ctl, 3673 int delalloc) 3674 { 3675 switch (ffe_ctl->policy) { 3676 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3677 ffe_ctl->retry_clustered = false; 3678 ffe_ctl->retry_unclustered = false; 3679 break; 3680 default: 3681 BUG(); 3682 } 3683 3684 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3685 ffe_ctl->index); 3686 btrfs_release_block_group(block_group, delalloc); 3687 } 3688 3689 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3690 struct btrfs_key *ins) 3691 { 3692 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3693 3694 if (!ffe_ctl->use_cluster && last_ptr) { 3695 spin_lock(&last_ptr->lock); 3696 last_ptr->window_start = ins->objectid; 3697 spin_unlock(&last_ptr->lock); 3698 } 3699 } 3700 3701 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3702 struct btrfs_key *ins) 3703 { 3704 switch (ffe_ctl->policy) { 3705 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3706 found_extent_clustered(ffe_ctl, ins); 3707 break; 3708 default: 3709 BUG(); 3710 } 3711 } 3712 3713 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3714 { 3715 switch (ffe_ctl->policy) { 3716 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3717 /* 3718 * If we can't allocate a new chunk we've already looped through 3719 * at least once, move on to the NO_EMPTY_SIZE case. 3720 */ 3721 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3722 return 0; 3723 default: 3724 BUG(); 3725 } 3726 } 3727 3728 /* 3729 * Return >0 means caller needs to re-search for free extent 3730 * Return 0 means we have the needed free extent. 3731 * Return <0 means we failed to locate any free extent. 3732 */ 3733 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3734 struct btrfs_key *ins, 3735 struct find_free_extent_ctl *ffe_ctl, 3736 bool full_search) 3737 { 3738 struct btrfs_root *root = fs_info->extent_root; 3739 int ret; 3740 3741 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3742 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3743 ffe_ctl->orig_have_caching_bg = true; 3744 3745 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3746 ffe_ctl->have_caching_bg) 3747 return 1; 3748 3749 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3750 return 1; 3751 3752 if (ins->objectid) { 3753 found_extent(ffe_ctl, ins); 3754 return 0; 3755 } 3756 3757 /* 3758 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3759 * caching kthreads as we move along 3760 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3761 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3762 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3763 * again 3764 */ 3765 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3766 ffe_ctl->index = 0; 3767 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3768 /* 3769 * We want to skip the LOOP_CACHING_WAIT step if we 3770 * don't have any uncached bgs and we've already done a 3771 * full search through. 3772 */ 3773 if (ffe_ctl->orig_have_caching_bg || !full_search) 3774 ffe_ctl->loop = LOOP_CACHING_WAIT; 3775 else 3776 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3777 } else { 3778 ffe_ctl->loop++; 3779 } 3780 3781 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3782 struct btrfs_trans_handle *trans; 3783 int exist = 0; 3784 3785 trans = current->journal_info; 3786 if (trans) 3787 exist = 1; 3788 else 3789 trans = btrfs_join_transaction(root); 3790 3791 if (IS_ERR(trans)) { 3792 ret = PTR_ERR(trans); 3793 return ret; 3794 } 3795 3796 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3797 CHUNK_ALLOC_FORCE); 3798 3799 /* Do not bail out on ENOSPC since we can do more. */ 3800 if (ret == -ENOSPC) 3801 ret = chunk_allocation_failed(ffe_ctl); 3802 else if (ret < 0) 3803 btrfs_abort_transaction(trans, ret); 3804 else 3805 ret = 0; 3806 if (!exist) 3807 btrfs_end_transaction(trans); 3808 if (ret) 3809 return ret; 3810 } 3811 3812 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3813 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3814 return -ENOSPC; 3815 3816 /* 3817 * Don't loop again if we already have no empty_size and 3818 * no empty_cluster. 3819 */ 3820 if (ffe_ctl->empty_size == 0 && 3821 ffe_ctl->empty_cluster == 0) 3822 return -ENOSPC; 3823 ffe_ctl->empty_size = 0; 3824 ffe_ctl->empty_cluster = 0; 3825 } 3826 return 1; 3827 } 3828 return -ENOSPC; 3829 } 3830 3831 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3832 struct find_free_extent_ctl *ffe_ctl, 3833 struct btrfs_space_info *space_info, 3834 struct btrfs_key *ins) 3835 { 3836 /* 3837 * If our free space is heavily fragmented we may not be able to make 3838 * big contiguous allocations, so instead of doing the expensive search 3839 * for free space, simply return ENOSPC with our max_extent_size so we 3840 * can go ahead and search for a more manageable chunk. 3841 * 3842 * If our max_extent_size is large enough for our allocation simply 3843 * disable clustering since we will likely not be able to find enough 3844 * space to create a cluster and induce latency trying. 3845 */ 3846 if (space_info->max_extent_size) { 3847 spin_lock(&space_info->lock); 3848 if (space_info->max_extent_size && 3849 ffe_ctl->num_bytes > space_info->max_extent_size) { 3850 ins->offset = space_info->max_extent_size; 3851 spin_unlock(&space_info->lock); 3852 return -ENOSPC; 3853 } else if (space_info->max_extent_size) { 3854 ffe_ctl->use_cluster = false; 3855 } 3856 spin_unlock(&space_info->lock); 3857 } 3858 3859 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3860 &ffe_ctl->empty_cluster); 3861 if (ffe_ctl->last_ptr) { 3862 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3863 3864 spin_lock(&last_ptr->lock); 3865 if (last_ptr->block_group) 3866 ffe_ctl->hint_byte = last_ptr->window_start; 3867 if (last_ptr->fragmented) { 3868 /* 3869 * We still set window_start so we can keep track of the 3870 * last place we found an allocation to try and save 3871 * some time. 3872 */ 3873 ffe_ctl->hint_byte = last_ptr->window_start; 3874 ffe_ctl->use_cluster = false; 3875 } 3876 spin_unlock(&last_ptr->lock); 3877 } 3878 3879 return 0; 3880 } 3881 3882 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3883 struct find_free_extent_ctl *ffe_ctl, 3884 struct btrfs_space_info *space_info, 3885 struct btrfs_key *ins) 3886 { 3887 switch (ffe_ctl->policy) { 3888 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3889 return prepare_allocation_clustered(fs_info, ffe_ctl, 3890 space_info, ins); 3891 default: 3892 BUG(); 3893 } 3894 } 3895 3896 /* 3897 * walks the btree of allocated extents and find a hole of a given size. 3898 * The key ins is changed to record the hole: 3899 * ins->objectid == start position 3900 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3901 * ins->offset == the size of the hole. 3902 * Any available blocks before search_start are skipped. 3903 * 3904 * If there is no suitable free space, we will record the max size of 3905 * the free space extent currently. 3906 * 3907 * The overall logic and call chain: 3908 * 3909 * find_free_extent() 3910 * |- Iterate through all block groups 3911 * | |- Get a valid block group 3912 * | |- Try to do clustered allocation in that block group 3913 * | |- Try to do unclustered allocation in that block group 3914 * | |- Check if the result is valid 3915 * | | |- If valid, then exit 3916 * | |- Jump to next block group 3917 * | 3918 * |- Push harder to find free extents 3919 * |- If not found, re-iterate all block groups 3920 */ 3921 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3922 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3923 u64 hint_byte_orig, struct btrfs_key *ins, 3924 u64 flags, int delalloc) 3925 { 3926 int ret = 0; 3927 int cache_block_group_error = 0; 3928 struct btrfs_block_group *block_group = NULL; 3929 struct find_free_extent_ctl ffe_ctl = {0}; 3930 struct btrfs_space_info *space_info; 3931 bool full_search = false; 3932 3933 WARN_ON(num_bytes < fs_info->sectorsize); 3934 3935 ffe_ctl.num_bytes = num_bytes; 3936 ffe_ctl.empty_size = empty_size; 3937 ffe_ctl.flags = flags; 3938 ffe_ctl.search_start = 0; 3939 ffe_ctl.delalloc = delalloc; 3940 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3941 ffe_ctl.have_caching_bg = false; 3942 ffe_ctl.orig_have_caching_bg = false; 3943 ffe_ctl.found_offset = 0; 3944 ffe_ctl.hint_byte = hint_byte_orig; 3945 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 3946 3947 /* For clustered allocation */ 3948 ffe_ctl.retry_clustered = false; 3949 ffe_ctl.retry_unclustered = false; 3950 ffe_ctl.last_ptr = NULL; 3951 ffe_ctl.use_cluster = true; 3952 3953 ins->type = BTRFS_EXTENT_ITEM_KEY; 3954 ins->objectid = 0; 3955 ins->offset = 0; 3956 3957 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3958 3959 space_info = btrfs_find_space_info(fs_info, flags); 3960 if (!space_info) { 3961 btrfs_err(fs_info, "No space info for %llu", flags); 3962 return -ENOSPC; 3963 } 3964 3965 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 3966 if (ret < 0) 3967 return ret; 3968 3969 ffe_ctl.search_start = max(ffe_ctl.search_start, 3970 first_logical_byte(fs_info, 0)); 3971 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 3972 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 3973 block_group = btrfs_lookup_block_group(fs_info, 3974 ffe_ctl.search_start); 3975 /* 3976 * we don't want to use the block group if it doesn't match our 3977 * allocation bits, or if its not cached. 3978 * 3979 * However if we are re-searching with an ideal block group 3980 * picked out then we don't care that the block group is cached. 3981 */ 3982 if (block_group && block_group_bits(block_group, flags) && 3983 block_group->cached != BTRFS_CACHE_NO) { 3984 down_read(&space_info->groups_sem); 3985 if (list_empty(&block_group->list) || 3986 block_group->ro) { 3987 /* 3988 * someone is removing this block group, 3989 * we can't jump into the have_block_group 3990 * target because our list pointers are not 3991 * valid 3992 */ 3993 btrfs_put_block_group(block_group); 3994 up_read(&space_info->groups_sem); 3995 } else { 3996 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 3997 block_group->flags); 3998 btrfs_lock_block_group(block_group, delalloc); 3999 goto have_block_group; 4000 } 4001 } else if (block_group) { 4002 btrfs_put_block_group(block_group); 4003 } 4004 } 4005 search: 4006 ffe_ctl.have_caching_bg = false; 4007 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4008 ffe_ctl.index == 0) 4009 full_search = true; 4010 down_read(&space_info->groups_sem); 4011 list_for_each_entry(block_group, 4012 &space_info->block_groups[ffe_ctl.index], list) { 4013 struct btrfs_block_group *bg_ret; 4014 4015 /* If the block group is read-only, we can skip it entirely. */ 4016 if (unlikely(block_group->ro)) 4017 continue; 4018 4019 btrfs_grab_block_group(block_group, delalloc); 4020 ffe_ctl.search_start = block_group->start; 4021 4022 /* 4023 * this can happen if we end up cycling through all the 4024 * raid types, but we want to make sure we only allocate 4025 * for the proper type. 4026 */ 4027 if (!block_group_bits(block_group, flags)) { 4028 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4029 BTRFS_BLOCK_GROUP_RAID1_MASK | 4030 BTRFS_BLOCK_GROUP_RAID56_MASK | 4031 BTRFS_BLOCK_GROUP_RAID10; 4032 4033 /* 4034 * if they asked for extra copies and this block group 4035 * doesn't provide them, bail. This does allow us to 4036 * fill raid0 from raid1. 4037 */ 4038 if ((flags & extra) && !(block_group->flags & extra)) 4039 goto loop; 4040 4041 /* 4042 * This block group has different flags than we want. 4043 * It's possible that we have MIXED_GROUP flag but no 4044 * block group is mixed. Just skip such block group. 4045 */ 4046 btrfs_release_block_group(block_group, delalloc); 4047 continue; 4048 } 4049 4050 have_block_group: 4051 ffe_ctl.cached = btrfs_block_group_done(block_group); 4052 if (unlikely(!ffe_ctl.cached)) { 4053 ffe_ctl.have_caching_bg = true; 4054 ret = btrfs_cache_block_group(block_group, 0); 4055 4056 /* 4057 * If we get ENOMEM here or something else we want to 4058 * try other block groups, because it may not be fatal. 4059 * However if we can't find anything else we need to 4060 * save our return here so that we return the actual 4061 * error that caused problems, not ENOSPC. 4062 */ 4063 if (ret < 0) { 4064 if (!cache_block_group_error) 4065 cache_block_group_error = ret; 4066 ret = 0; 4067 goto loop; 4068 } 4069 ret = 0; 4070 } 4071 4072 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4073 goto loop; 4074 4075 bg_ret = NULL; 4076 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4077 if (ret == 0) { 4078 if (bg_ret && bg_ret != block_group) { 4079 btrfs_release_block_group(block_group, delalloc); 4080 block_group = bg_ret; 4081 } 4082 } else if (ret == -EAGAIN) { 4083 goto have_block_group; 4084 } else if (ret > 0) { 4085 goto loop; 4086 } 4087 4088 /* Checks */ 4089 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4090 fs_info->stripesize); 4091 4092 /* move on to the next group */ 4093 if (ffe_ctl.search_start + num_bytes > 4094 block_group->start + block_group->length) { 4095 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4096 num_bytes); 4097 goto loop; 4098 } 4099 4100 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4101 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4102 ffe_ctl.search_start - ffe_ctl.found_offset); 4103 4104 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4105 num_bytes, delalloc); 4106 if (ret == -EAGAIN) { 4107 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4108 num_bytes); 4109 goto loop; 4110 } 4111 btrfs_inc_block_group_reservations(block_group); 4112 4113 /* we are all good, lets return */ 4114 ins->objectid = ffe_ctl.search_start; 4115 ins->offset = num_bytes; 4116 4117 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4118 num_bytes); 4119 btrfs_release_block_group(block_group, delalloc); 4120 break; 4121 loop: 4122 release_block_group(block_group, &ffe_ctl, delalloc); 4123 cond_resched(); 4124 } 4125 up_read(&space_info->groups_sem); 4126 4127 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4128 if (ret > 0) 4129 goto search; 4130 4131 if (ret == -ENOSPC && !cache_block_group_error) { 4132 /* 4133 * Use ffe_ctl->total_free_space as fallback if we can't find 4134 * any contiguous hole. 4135 */ 4136 if (!ffe_ctl.max_extent_size) 4137 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4138 spin_lock(&space_info->lock); 4139 space_info->max_extent_size = ffe_ctl.max_extent_size; 4140 spin_unlock(&space_info->lock); 4141 ins->offset = ffe_ctl.max_extent_size; 4142 } else if (ret == -ENOSPC) { 4143 ret = cache_block_group_error; 4144 } 4145 return ret; 4146 } 4147 4148 /* 4149 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4150 * hole that is at least as big as @num_bytes. 4151 * 4152 * @root - The root that will contain this extent 4153 * 4154 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4155 * is used for accounting purposes. This value differs 4156 * from @num_bytes only in the case of compressed extents. 4157 * 4158 * @num_bytes - Number of bytes to allocate on-disk. 4159 * 4160 * @min_alloc_size - Indicates the minimum amount of space that the 4161 * allocator should try to satisfy. In some cases 4162 * @num_bytes may be larger than what is required and if 4163 * the filesystem is fragmented then allocation fails. 4164 * However, the presence of @min_alloc_size gives a 4165 * chance to try and satisfy the smaller allocation. 4166 * 4167 * @empty_size - A hint that you plan on doing more COW. This is the 4168 * size in bytes the allocator should try to find free 4169 * next to the block it returns. This is just a hint and 4170 * may be ignored by the allocator. 4171 * 4172 * @hint_byte - Hint to the allocator to start searching above the byte 4173 * address passed. It might be ignored. 4174 * 4175 * @ins - This key is modified to record the found hole. It will 4176 * have the following values: 4177 * ins->objectid == start position 4178 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4179 * ins->offset == the size of the hole. 4180 * 4181 * @is_data - Boolean flag indicating whether an extent is 4182 * allocated for data (true) or metadata (false) 4183 * 4184 * @delalloc - Boolean flag indicating whether this allocation is for 4185 * delalloc or not. If 'true' data_rwsem of block groups 4186 * is going to be acquired. 4187 * 4188 * 4189 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4190 * case -ENOSPC is returned then @ins->offset will contain the size of the 4191 * largest available hole the allocator managed to find. 4192 */ 4193 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4194 u64 num_bytes, u64 min_alloc_size, 4195 u64 empty_size, u64 hint_byte, 4196 struct btrfs_key *ins, int is_data, int delalloc) 4197 { 4198 struct btrfs_fs_info *fs_info = root->fs_info; 4199 bool final_tried = num_bytes == min_alloc_size; 4200 u64 flags; 4201 int ret; 4202 4203 flags = get_alloc_profile_by_root(root, is_data); 4204 again: 4205 WARN_ON(num_bytes < fs_info->sectorsize); 4206 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4207 hint_byte, ins, flags, delalloc); 4208 if (!ret && !is_data) { 4209 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4210 } else if (ret == -ENOSPC) { 4211 if (!final_tried && ins->offset) { 4212 num_bytes = min(num_bytes >> 1, ins->offset); 4213 num_bytes = round_down(num_bytes, 4214 fs_info->sectorsize); 4215 num_bytes = max(num_bytes, min_alloc_size); 4216 ram_bytes = num_bytes; 4217 if (num_bytes == min_alloc_size) 4218 final_tried = true; 4219 goto again; 4220 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4221 struct btrfs_space_info *sinfo; 4222 4223 sinfo = btrfs_find_space_info(fs_info, flags); 4224 btrfs_err(fs_info, 4225 "allocation failed flags %llu, wanted %llu", 4226 flags, num_bytes); 4227 if (sinfo) 4228 btrfs_dump_space_info(fs_info, sinfo, 4229 num_bytes, 1); 4230 } 4231 } 4232 4233 return ret; 4234 } 4235 4236 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4237 u64 start, u64 len, int delalloc) 4238 { 4239 struct btrfs_block_group *cache; 4240 4241 cache = btrfs_lookup_block_group(fs_info, start); 4242 if (!cache) { 4243 btrfs_err(fs_info, "Unable to find block group for %llu", 4244 start); 4245 return -ENOSPC; 4246 } 4247 4248 btrfs_add_free_space(cache, start, len); 4249 btrfs_free_reserved_bytes(cache, len, delalloc); 4250 trace_btrfs_reserved_extent_free(fs_info, start, len); 4251 4252 btrfs_put_block_group(cache); 4253 return 0; 4254 } 4255 4256 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4257 u64 len) 4258 { 4259 struct btrfs_block_group *cache; 4260 int ret = 0; 4261 4262 cache = btrfs_lookup_block_group(trans->fs_info, start); 4263 if (!cache) { 4264 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4265 start); 4266 return -ENOSPC; 4267 } 4268 4269 ret = pin_down_extent(trans, cache, start, len, 1); 4270 btrfs_put_block_group(cache); 4271 return ret; 4272 } 4273 4274 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4275 u64 parent, u64 root_objectid, 4276 u64 flags, u64 owner, u64 offset, 4277 struct btrfs_key *ins, int ref_mod) 4278 { 4279 struct btrfs_fs_info *fs_info = trans->fs_info; 4280 int ret; 4281 struct btrfs_extent_item *extent_item; 4282 struct btrfs_extent_inline_ref *iref; 4283 struct btrfs_path *path; 4284 struct extent_buffer *leaf; 4285 int type; 4286 u32 size; 4287 4288 if (parent > 0) 4289 type = BTRFS_SHARED_DATA_REF_KEY; 4290 else 4291 type = BTRFS_EXTENT_DATA_REF_KEY; 4292 4293 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4294 4295 path = btrfs_alloc_path(); 4296 if (!path) 4297 return -ENOMEM; 4298 4299 path->leave_spinning = 1; 4300 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4301 ins, size); 4302 if (ret) { 4303 btrfs_free_path(path); 4304 return ret; 4305 } 4306 4307 leaf = path->nodes[0]; 4308 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4309 struct btrfs_extent_item); 4310 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4311 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4312 btrfs_set_extent_flags(leaf, extent_item, 4313 flags | BTRFS_EXTENT_FLAG_DATA); 4314 4315 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4316 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4317 if (parent > 0) { 4318 struct btrfs_shared_data_ref *ref; 4319 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4320 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4321 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4322 } else { 4323 struct btrfs_extent_data_ref *ref; 4324 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4325 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4326 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4327 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4328 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4329 } 4330 4331 btrfs_mark_buffer_dirty(path->nodes[0]); 4332 btrfs_free_path(path); 4333 4334 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4335 if (ret) 4336 return ret; 4337 4338 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4339 if (ret) { /* -ENOENT, logic error */ 4340 btrfs_err(fs_info, "update block group failed for %llu %llu", 4341 ins->objectid, ins->offset); 4342 BUG(); 4343 } 4344 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4345 return ret; 4346 } 4347 4348 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4349 struct btrfs_delayed_ref_node *node, 4350 struct btrfs_delayed_extent_op *extent_op) 4351 { 4352 struct btrfs_fs_info *fs_info = trans->fs_info; 4353 int ret; 4354 struct btrfs_extent_item *extent_item; 4355 struct btrfs_key extent_key; 4356 struct btrfs_tree_block_info *block_info; 4357 struct btrfs_extent_inline_ref *iref; 4358 struct btrfs_path *path; 4359 struct extent_buffer *leaf; 4360 struct btrfs_delayed_tree_ref *ref; 4361 u32 size = sizeof(*extent_item) + sizeof(*iref); 4362 u64 num_bytes; 4363 u64 flags = extent_op->flags_to_set; 4364 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4365 4366 ref = btrfs_delayed_node_to_tree_ref(node); 4367 4368 extent_key.objectid = node->bytenr; 4369 if (skinny_metadata) { 4370 extent_key.offset = ref->level; 4371 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4372 num_bytes = fs_info->nodesize; 4373 } else { 4374 extent_key.offset = node->num_bytes; 4375 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4376 size += sizeof(*block_info); 4377 num_bytes = node->num_bytes; 4378 } 4379 4380 path = btrfs_alloc_path(); 4381 if (!path) 4382 return -ENOMEM; 4383 4384 path->leave_spinning = 1; 4385 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4386 &extent_key, size); 4387 if (ret) { 4388 btrfs_free_path(path); 4389 return ret; 4390 } 4391 4392 leaf = path->nodes[0]; 4393 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4394 struct btrfs_extent_item); 4395 btrfs_set_extent_refs(leaf, extent_item, 1); 4396 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4397 btrfs_set_extent_flags(leaf, extent_item, 4398 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4399 4400 if (skinny_metadata) { 4401 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4402 } else { 4403 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4404 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4405 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4406 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4407 } 4408 4409 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4410 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4411 btrfs_set_extent_inline_ref_type(leaf, iref, 4412 BTRFS_SHARED_BLOCK_REF_KEY); 4413 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4414 } else { 4415 btrfs_set_extent_inline_ref_type(leaf, iref, 4416 BTRFS_TREE_BLOCK_REF_KEY); 4417 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4418 } 4419 4420 btrfs_mark_buffer_dirty(leaf); 4421 btrfs_free_path(path); 4422 4423 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4424 num_bytes); 4425 if (ret) 4426 return ret; 4427 4428 ret = btrfs_update_block_group(trans, extent_key.objectid, 4429 fs_info->nodesize, 1); 4430 if (ret) { /* -ENOENT, logic error */ 4431 btrfs_err(fs_info, "update block group failed for %llu %llu", 4432 extent_key.objectid, extent_key.offset); 4433 BUG(); 4434 } 4435 4436 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4437 fs_info->nodesize); 4438 return ret; 4439 } 4440 4441 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4442 struct btrfs_root *root, u64 owner, 4443 u64 offset, u64 ram_bytes, 4444 struct btrfs_key *ins) 4445 { 4446 struct btrfs_ref generic_ref = { 0 }; 4447 int ret; 4448 4449 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4450 4451 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4452 ins->objectid, ins->offset, 0); 4453 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4454 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4455 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4456 ram_bytes, NULL, NULL); 4457 return ret; 4458 } 4459 4460 /* 4461 * this is used by the tree logging recovery code. It records that 4462 * an extent has been allocated and makes sure to clear the free 4463 * space cache bits as well 4464 */ 4465 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4466 u64 root_objectid, u64 owner, u64 offset, 4467 struct btrfs_key *ins) 4468 { 4469 struct btrfs_fs_info *fs_info = trans->fs_info; 4470 int ret; 4471 struct btrfs_block_group *block_group; 4472 struct btrfs_space_info *space_info; 4473 4474 /* 4475 * Mixed block groups will exclude before processing the log so we only 4476 * need to do the exclude dance if this fs isn't mixed. 4477 */ 4478 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4479 ret = __exclude_logged_extent(fs_info, ins->objectid, 4480 ins->offset); 4481 if (ret) 4482 return ret; 4483 } 4484 4485 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4486 if (!block_group) 4487 return -EINVAL; 4488 4489 space_info = block_group->space_info; 4490 spin_lock(&space_info->lock); 4491 spin_lock(&block_group->lock); 4492 space_info->bytes_reserved += ins->offset; 4493 block_group->reserved += ins->offset; 4494 spin_unlock(&block_group->lock); 4495 spin_unlock(&space_info->lock); 4496 4497 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4498 offset, ins, 1); 4499 if (ret) 4500 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4501 btrfs_put_block_group(block_group); 4502 return ret; 4503 } 4504 4505 static struct extent_buffer * 4506 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4507 u64 bytenr, int level, u64 owner) 4508 { 4509 struct btrfs_fs_info *fs_info = root->fs_info; 4510 struct extent_buffer *buf; 4511 4512 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4513 if (IS_ERR(buf)) 4514 return buf; 4515 4516 /* 4517 * Extra safety check in case the extent tree is corrupted and extent 4518 * allocator chooses to use a tree block which is already used and 4519 * locked. 4520 */ 4521 if (buf->lock_owner == current->pid) { 4522 btrfs_err_rl(fs_info, 4523 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4524 buf->start, btrfs_header_owner(buf), current->pid); 4525 free_extent_buffer(buf); 4526 return ERR_PTR(-EUCLEAN); 4527 } 4528 4529 btrfs_set_buffer_lockdep_class(owner, buf, level); 4530 btrfs_tree_lock(buf); 4531 btrfs_clean_tree_block(buf); 4532 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4533 4534 btrfs_set_lock_blocking_write(buf); 4535 set_extent_buffer_uptodate(buf); 4536 4537 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4538 btrfs_set_header_level(buf, level); 4539 btrfs_set_header_bytenr(buf, buf->start); 4540 btrfs_set_header_generation(buf, trans->transid); 4541 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4542 btrfs_set_header_owner(buf, owner); 4543 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4544 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4545 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4546 buf->log_index = root->log_transid % 2; 4547 /* 4548 * we allow two log transactions at a time, use different 4549 * EXTENT bit to differentiate dirty pages. 4550 */ 4551 if (buf->log_index == 0) 4552 set_extent_dirty(&root->dirty_log_pages, buf->start, 4553 buf->start + buf->len - 1, GFP_NOFS); 4554 else 4555 set_extent_new(&root->dirty_log_pages, buf->start, 4556 buf->start + buf->len - 1); 4557 } else { 4558 buf->log_index = -1; 4559 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4560 buf->start + buf->len - 1, GFP_NOFS); 4561 } 4562 trans->dirty = true; 4563 /* this returns a buffer locked for blocking */ 4564 return buf; 4565 } 4566 4567 /* 4568 * finds a free extent and does all the dirty work required for allocation 4569 * returns the tree buffer or an ERR_PTR on error. 4570 */ 4571 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4572 struct btrfs_root *root, 4573 u64 parent, u64 root_objectid, 4574 const struct btrfs_disk_key *key, 4575 int level, u64 hint, 4576 u64 empty_size) 4577 { 4578 struct btrfs_fs_info *fs_info = root->fs_info; 4579 struct btrfs_key ins; 4580 struct btrfs_block_rsv *block_rsv; 4581 struct extent_buffer *buf; 4582 struct btrfs_delayed_extent_op *extent_op; 4583 struct btrfs_ref generic_ref = { 0 }; 4584 u64 flags = 0; 4585 int ret; 4586 u32 blocksize = fs_info->nodesize; 4587 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4588 4589 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4590 if (btrfs_is_testing(fs_info)) { 4591 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4592 level, root_objectid); 4593 if (!IS_ERR(buf)) 4594 root->alloc_bytenr += blocksize; 4595 return buf; 4596 } 4597 #endif 4598 4599 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4600 if (IS_ERR(block_rsv)) 4601 return ERR_CAST(block_rsv); 4602 4603 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4604 empty_size, hint, &ins, 0, 0); 4605 if (ret) 4606 goto out_unuse; 4607 4608 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4609 root_objectid); 4610 if (IS_ERR(buf)) { 4611 ret = PTR_ERR(buf); 4612 goto out_free_reserved; 4613 } 4614 4615 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4616 if (parent == 0) 4617 parent = ins.objectid; 4618 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4619 } else 4620 BUG_ON(parent > 0); 4621 4622 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4623 extent_op = btrfs_alloc_delayed_extent_op(); 4624 if (!extent_op) { 4625 ret = -ENOMEM; 4626 goto out_free_buf; 4627 } 4628 if (key) 4629 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4630 else 4631 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4632 extent_op->flags_to_set = flags; 4633 extent_op->update_key = skinny_metadata ? false : true; 4634 extent_op->update_flags = true; 4635 extent_op->is_data = false; 4636 extent_op->level = level; 4637 4638 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4639 ins.objectid, ins.offset, parent); 4640 generic_ref.real_root = root->root_key.objectid; 4641 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4642 btrfs_ref_tree_mod(fs_info, &generic_ref); 4643 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4644 extent_op, NULL, NULL); 4645 if (ret) 4646 goto out_free_delayed; 4647 } 4648 return buf; 4649 4650 out_free_delayed: 4651 btrfs_free_delayed_extent_op(extent_op); 4652 out_free_buf: 4653 free_extent_buffer(buf); 4654 out_free_reserved: 4655 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4656 out_unuse: 4657 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4658 return ERR_PTR(ret); 4659 } 4660 4661 struct walk_control { 4662 u64 refs[BTRFS_MAX_LEVEL]; 4663 u64 flags[BTRFS_MAX_LEVEL]; 4664 struct btrfs_key update_progress; 4665 struct btrfs_key drop_progress; 4666 int drop_level; 4667 int stage; 4668 int level; 4669 int shared_level; 4670 int update_ref; 4671 int keep_locks; 4672 int reada_slot; 4673 int reada_count; 4674 int restarted; 4675 }; 4676 4677 #define DROP_REFERENCE 1 4678 #define UPDATE_BACKREF 2 4679 4680 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4681 struct btrfs_root *root, 4682 struct walk_control *wc, 4683 struct btrfs_path *path) 4684 { 4685 struct btrfs_fs_info *fs_info = root->fs_info; 4686 u64 bytenr; 4687 u64 generation; 4688 u64 refs; 4689 u64 flags; 4690 u32 nritems; 4691 struct btrfs_key key; 4692 struct extent_buffer *eb; 4693 int ret; 4694 int slot; 4695 int nread = 0; 4696 4697 if (path->slots[wc->level] < wc->reada_slot) { 4698 wc->reada_count = wc->reada_count * 2 / 3; 4699 wc->reada_count = max(wc->reada_count, 2); 4700 } else { 4701 wc->reada_count = wc->reada_count * 3 / 2; 4702 wc->reada_count = min_t(int, wc->reada_count, 4703 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4704 } 4705 4706 eb = path->nodes[wc->level]; 4707 nritems = btrfs_header_nritems(eb); 4708 4709 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4710 if (nread >= wc->reada_count) 4711 break; 4712 4713 cond_resched(); 4714 bytenr = btrfs_node_blockptr(eb, slot); 4715 generation = btrfs_node_ptr_generation(eb, slot); 4716 4717 if (slot == path->slots[wc->level]) 4718 goto reada; 4719 4720 if (wc->stage == UPDATE_BACKREF && 4721 generation <= root->root_key.offset) 4722 continue; 4723 4724 /* We don't lock the tree block, it's OK to be racy here */ 4725 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4726 wc->level - 1, 1, &refs, 4727 &flags); 4728 /* We don't care about errors in readahead. */ 4729 if (ret < 0) 4730 continue; 4731 BUG_ON(refs == 0); 4732 4733 if (wc->stage == DROP_REFERENCE) { 4734 if (refs == 1) 4735 goto reada; 4736 4737 if (wc->level == 1 && 4738 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4739 continue; 4740 if (!wc->update_ref || 4741 generation <= root->root_key.offset) 4742 continue; 4743 btrfs_node_key_to_cpu(eb, &key, slot); 4744 ret = btrfs_comp_cpu_keys(&key, 4745 &wc->update_progress); 4746 if (ret < 0) 4747 continue; 4748 } else { 4749 if (wc->level == 1 && 4750 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4751 continue; 4752 } 4753 reada: 4754 readahead_tree_block(fs_info, bytenr); 4755 nread++; 4756 } 4757 wc->reada_slot = slot; 4758 } 4759 4760 /* 4761 * helper to process tree block while walking down the tree. 4762 * 4763 * when wc->stage == UPDATE_BACKREF, this function updates 4764 * back refs for pointers in the block. 4765 * 4766 * NOTE: return value 1 means we should stop walking down. 4767 */ 4768 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4769 struct btrfs_root *root, 4770 struct btrfs_path *path, 4771 struct walk_control *wc, int lookup_info) 4772 { 4773 struct btrfs_fs_info *fs_info = root->fs_info; 4774 int level = wc->level; 4775 struct extent_buffer *eb = path->nodes[level]; 4776 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4777 int ret; 4778 4779 if (wc->stage == UPDATE_BACKREF && 4780 btrfs_header_owner(eb) != root->root_key.objectid) 4781 return 1; 4782 4783 /* 4784 * when reference count of tree block is 1, it won't increase 4785 * again. once full backref flag is set, we never clear it. 4786 */ 4787 if (lookup_info && 4788 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4789 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4790 BUG_ON(!path->locks[level]); 4791 ret = btrfs_lookup_extent_info(trans, fs_info, 4792 eb->start, level, 1, 4793 &wc->refs[level], 4794 &wc->flags[level]); 4795 BUG_ON(ret == -ENOMEM); 4796 if (ret) 4797 return ret; 4798 BUG_ON(wc->refs[level] == 0); 4799 } 4800 4801 if (wc->stage == DROP_REFERENCE) { 4802 if (wc->refs[level] > 1) 4803 return 1; 4804 4805 if (path->locks[level] && !wc->keep_locks) { 4806 btrfs_tree_unlock_rw(eb, path->locks[level]); 4807 path->locks[level] = 0; 4808 } 4809 return 0; 4810 } 4811 4812 /* wc->stage == UPDATE_BACKREF */ 4813 if (!(wc->flags[level] & flag)) { 4814 BUG_ON(!path->locks[level]); 4815 ret = btrfs_inc_ref(trans, root, eb, 1); 4816 BUG_ON(ret); /* -ENOMEM */ 4817 ret = btrfs_dec_ref(trans, root, eb, 0); 4818 BUG_ON(ret); /* -ENOMEM */ 4819 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4820 btrfs_header_level(eb), 0); 4821 BUG_ON(ret); /* -ENOMEM */ 4822 wc->flags[level] |= flag; 4823 } 4824 4825 /* 4826 * the block is shared by multiple trees, so it's not good to 4827 * keep the tree lock 4828 */ 4829 if (path->locks[level] && level > 0) { 4830 btrfs_tree_unlock_rw(eb, path->locks[level]); 4831 path->locks[level] = 0; 4832 } 4833 return 0; 4834 } 4835 4836 /* 4837 * This is used to verify a ref exists for this root to deal with a bug where we 4838 * would have a drop_progress key that hadn't been updated properly. 4839 */ 4840 static int check_ref_exists(struct btrfs_trans_handle *trans, 4841 struct btrfs_root *root, u64 bytenr, u64 parent, 4842 int level) 4843 { 4844 struct btrfs_path *path; 4845 struct btrfs_extent_inline_ref *iref; 4846 int ret; 4847 4848 path = btrfs_alloc_path(); 4849 if (!path) 4850 return -ENOMEM; 4851 4852 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4853 root->fs_info->nodesize, parent, 4854 root->root_key.objectid, level, 0); 4855 btrfs_free_path(path); 4856 if (ret == -ENOENT) 4857 return 0; 4858 if (ret < 0) 4859 return ret; 4860 return 1; 4861 } 4862 4863 /* 4864 * helper to process tree block pointer. 4865 * 4866 * when wc->stage == DROP_REFERENCE, this function checks 4867 * reference count of the block pointed to. if the block 4868 * is shared and we need update back refs for the subtree 4869 * rooted at the block, this function changes wc->stage to 4870 * UPDATE_BACKREF. if the block is shared and there is no 4871 * need to update back, this function drops the reference 4872 * to the block. 4873 * 4874 * NOTE: return value 1 means we should stop walking down. 4875 */ 4876 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4877 struct btrfs_root *root, 4878 struct btrfs_path *path, 4879 struct walk_control *wc, int *lookup_info) 4880 { 4881 struct btrfs_fs_info *fs_info = root->fs_info; 4882 u64 bytenr; 4883 u64 generation; 4884 u64 parent; 4885 struct btrfs_key key; 4886 struct btrfs_key first_key; 4887 struct btrfs_ref ref = { 0 }; 4888 struct extent_buffer *next; 4889 int level = wc->level; 4890 int reada = 0; 4891 int ret = 0; 4892 bool need_account = false; 4893 4894 generation = btrfs_node_ptr_generation(path->nodes[level], 4895 path->slots[level]); 4896 /* 4897 * if the lower level block was created before the snapshot 4898 * was created, we know there is no need to update back refs 4899 * for the subtree 4900 */ 4901 if (wc->stage == UPDATE_BACKREF && 4902 generation <= root->root_key.offset) { 4903 *lookup_info = 1; 4904 return 1; 4905 } 4906 4907 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4908 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4909 path->slots[level]); 4910 4911 next = find_extent_buffer(fs_info, bytenr); 4912 if (!next) { 4913 next = btrfs_find_create_tree_block(fs_info, bytenr); 4914 if (IS_ERR(next)) 4915 return PTR_ERR(next); 4916 4917 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4918 level - 1); 4919 reada = 1; 4920 } 4921 btrfs_tree_lock(next); 4922 btrfs_set_lock_blocking_write(next); 4923 4924 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4925 &wc->refs[level - 1], 4926 &wc->flags[level - 1]); 4927 if (ret < 0) 4928 goto out_unlock; 4929 4930 if (unlikely(wc->refs[level - 1] == 0)) { 4931 btrfs_err(fs_info, "Missing references."); 4932 ret = -EIO; 4933 goto out_unlock; 4934 } 4935 *lookup_info = 0; 4936 4937 if (wc->stage == DROP_REFERENCE) { 4938 if (wc->refs[level - 1] > 1) { 4939 need_account = true; 4940 if (level == 1 && 4941 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4942 goto skip; 4943 4944 if (!wc->update_ref || 4945 generation <= root->root_key.offset) 4946 goto skip; 4947 4948 btrfs_node_key_to_cpu(path->nodes[level], &key, 4949 path->slots[level]); 4950 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4951 if (ret < 0) 4952 goto skip; 4953 4954 wc->stage = UPDATE_BACKREF; 4955 wc->shared_level = level - 1; 4956 } 4957 } else { 4958 if (level == 1 && 4959 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4960 goto skip; 4961 } 4962 4963 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4964 btrfs_tree_unlock(next); 4965 free_extent_buffer(next); 4966 next = NULL; 4967 *lookup_info = 1; 4968 } 4969 4970 if (!next) { 4971 if (reada && level == 1) 4972 reada_walk_down(trans, root, wc, path); 4973 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4974 &first_key); 4975 if (IS_ERR(next)) { 4976 return PTR_ERR(next); 4977 } else if (!extent_buffer_uptodate(next)) { 4978 free_extent_buffer(next); 4979 return -EIO; 4980 } 4981 btrfs_tree_lock(next); 4982 btrfs_set_lock_blocking_write(next); 4983 } 4984 4985 level--; 4986 ASSERT(level == btrfs_header_level(next)); 4987 if (level != btrfs_header_level(next)) { 4988 btrfs_err(root->fs_info, "mismatched level"); 4989 ret = -EIO; 4990 goto out_unlock; 4991 } 4992 path->nodes[level] = next; 4993 path->slots[level] = 0; 4994 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 4995 wc->level = level; 4996 if (wc->level == 1) 4997 wc->reada_slot = 0; 4998 return 0; 4999 skip: 5000 wc->refs[level - 1] = 0; 5001 wc->flags[level - 1] = 0; 5002 if (wc->stage == DROP_REFERENCE) { 5003 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5004 parent = path->nodes[level]->start; 5005 } else { 5006 ASSERT(root->root_key.objectid == 5007 btrfs_header_owner(path->nodes[level])); 5008 if (root->root_key.objectid != 5009 btrfs_header_owner(path->nodes[level])) { 5010 btrfs_err(root->fs_info, 5011 "mismatched block owner"); 5012 ret = -EIO; 5013 goto out_unlock; 5014 } 5015 parent = 0; 5016 } 5017 5018 /* 5019 * If we had a drop_progress we need to verify the refs are set 5020 * as expected. If we find our ref then we know that from here 5021 * on out everything should be correct, and we can clear the 5022 * ->restarted flag. 5023 */ 5024 if (wc->restarted) { 5025 ret = check_ref_exists(trans, root, bytenr, parent, 5026 level - 1); 5027 if (ret < 0) 5028 goto out_unlock; 5029 if (ret == 0) 5030 goto no_delete; 5031 ret = 0; 5032 wc->restarted = 0; 5033 } 5034 5035 /* 5036 * Reloc tree doesn't contribute to qgroup numbers, and we have 5037 * already accounted them at merge time (replace_path), 5038 * thus we could skip expensive subtree trace here. 5039 */ 5040 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5041 need_account) { 5042 ret = btrfs_qgroup_trace_subtree(trans, next, 5043 generation, level - 1); 5044 if (ret) { 5045 btrfs_err_rl(fs_info, 5046 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5047 ret); 5048 } 5049 } 5050 5051 /* 5052 * We need to update the next key in our walk control so we can 5053 * update the drop_progress key accordingly. We don't care if 5054 * find_next_key doesn't find a key because that means we're at 5055 * the end and are going to clean up now. 5056 */ 5057 wc->drop_level = level; 5058 find_next_key(path, level, &wc->drop_progress); 5059 5060 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5061 fs_info->nodesize, parent); 5062 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5063 ret = btrfs_free_extent(trans, &ref); 5064 if (ret) 5065 goto out_unlock; 5066 } 5067 no_delete: 5068 *lookup_info = 1; 5069 ret = 1; 5070 5071 out_unlock: 5072 btrfs_tree_unlock(next); 5073 free_extent_buffer(next); 5074 5075 return ret; 5076 } 5077 5078 /* 5079 * helper to process tree block while walking up the tree. 5080 * 5081 * when wc->stage == DROP_REFERENCE, this function drops 5082 * reference count on the block. 5083 * 5084 * when wc->stage == UPDATE_BACKREF, this function changes 5085 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5086 * to UPDATE_BACKREF previously while processing the block. 5087 * 5088 * NOTE: return value 1 means we should stop walking up. 5089 */ 5090 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5091 struct btrfs_root *root, 5092 struct btrfs_path *path, 5093 struct walk_control *wc) 5094 { 5095 struct btrfs_fs_info *fs_info = root->fs_info; 5096 int ret; 5097 int level = wc->level; 5098 struct extent_buffer *eb = path->nodes[level]; 5099 u64 parent = 0; 5100 5101 if (wc->stage == UPDATE_BACKREF) { 5102 BUG_ON(wc->shared_level < level); 5103 if (level < wc->shared_level) 5104 goto out; 5105 5106 ret = find_next_key(path, level + 1, &wc->update_progress); 5107 if (ret > 0) 5108 wc->update_ref = 0; 5109 5110 wc->stage = DROP_REFERENCE; 5111 wc->shared_level = -1; 5112 path->slots[level] = 0; 5113 5114 /* 5115 * check reference count again if the block isn't locked. 5116 * we should start walking down the tree again if reference 5117 * count is one. 5118 */ 5119 if (!path->locks[level]) { 5120 BUG_ON(level == 0); 5121 btrfs_tree_lock(eb); 5122 btrfs_set_lock_blocking_write(eb); 5123 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5124 5125 ret = btrfs_lookup_extent_info(trans, fs_info, 5126 eb->start, level, 1, 5127 &wc->refs[level], 5128 &wc->flags[level]); 5129 if (ret < 0) { 5130 btrfs_tree_unlock_rw(eb, path->locks[level]); 5131 path->locks[level] = 0; 5132 return ret; 5133 } 5134 BUG_ON(wc->refs[level] == 0); 5135 if (wc->refs[level] == 1) { 5136 btrfs_tree_unlock_rw(eb, path->locks[level]); 5137 path->locks[level] = 0; 5138 return 1; 5139 } 5140 } 5141 } 5142 5143 /* wc->stage == DROP_REFERENCE */ 5144 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5145 5146 if (wc->refs[level] == 1) { 5147 if (level == 0) { 5148 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5149 ret = btrfs_dec_ref(trans, root, eb, 1); 5150 else 5151 ret = btrfs_dec_ref(trans, root, eb, 0); 5152 BUG_ON(ret); /* -ENOMEM */ 5153 if (is_fstree(root->root_key.objectid)) { 5154 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5155 if (ret) { 5156 btrfs_err_rl(fs_info, 5157 "error %d accounting leaf items, quota is out of sync, rescan required", 5158 ret); 5159 } 5160 } 5161 } 5162 /* make block locked assertion in btrfs_clean_tree_block happy */ 5163 if (!path->locks[level] && 5164 btrfs_header_generation(eb) == trans->transid) { 5165 btrfs_tree_lock(eb); 5166 btrfs_set_lock_blocking_write(eb); 5167 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5168 } 5169 btrfs_clean_tree_block(eb); 5170 } 5171 5172 if (eb == root->node) { 5173 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5174 parent = eb->start; 5175 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5176 goto owner_mismatch; 5177 } else { 5178 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5179 parent = path->nodes[level + 1]->start; 5180 else if (root->root_key.objectid != 5181 btrfs_header_owner(path->nodes[level + 1])) 5182 goto owner_mismatch; 5183 } 5184 5185 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5186 out: 5187 wc->refs[level] = 0; 5188 wc->flags[level] = 0; 5189 return 0; 5190 5191 owner_mismatch: 5192 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5193 btrfs_header_owner(eb), root->root_key.objectid); 5194 return -EUCLEAN; 5195 } 5196 5197 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5198 struct btrfs_root *root, 5199 struct btrfs_path *path, 5200 struct walk_control *wc) 5201 { 5202 int level = wc->level; 5203 int lookup_info = 1; 5204 int ret; 5205 5206 while (level >= 0) { 5207 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5208 if (ret > 0) 5209 break; 5210 5211 if (level == 0) 5212 break; 5213 5214 if (path->slots[level] >= 5215 btrfs_header_nritems(path->nodes[level])) 5216 break; 5217 5218 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5219 if (ret > 0) { 5220 path->slots[level]++; 5221 continue; 5222 } else if (ret < 0) 5223 return ret; 5224 level = wc->level; 5225 } 5226 return 0; 5227 } 5228 5229 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5230 struct btrfs_root *root, 5231 struct btrfs_path *path, 5232 struct walk_control *wc, int max_level) 5233 { 5234 int level = wc->level; 5235 int ret; 5236 5237 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5238 while (level < max_level && path->nodes[level]) { 5239 wc->level = level; 5240 if (path->slots[level] + 1 < 5241 btrfs_header_nritems(path->nodes[level])) { 5242 path->slots[level]++; 5243 return 0; 5244 } else { 5245 ret = walk_up_proc(trans, root, path, wc); 5246 if (ret > 0) 5247 return 0; 5248 if (ret < 0) 5249 return ret; 5250 5251 if (path->locks[level]) { 5252 btrfs_tree_unlock_rw(path->nodes[level], 5253 path->locks[level]); 5254 path->locks[level] = 0; 5255 } 5256 free_extent_buffer(path->nodes[level]); 5257 path->nodes[level] = NULL; 5258 level++; 5259 } 5260 } 5261 return 1; 5262 } 5263 5264 /* 5265 * drop a subvolume tree. 5266 * 5267 * this function traverses the tree freeing any blocks that only 5268 * referenced by the tree. 5269 * 5270 * when a shared tree block is found. this function decreases its 5271 * reference count by one. if update_ref is true, this function 5272 * also make sure backrefs for the shared block and all lower level 5273 * blocks are properly updated. 5274 * 5275 * If called with for_reloc == 0, may exit early with -EAGAIN 5276 */ 5277 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5278 { 5279 struct btrfs_fs_info *fs_info = root->fs_info; 5280 struct btrfs_path *path; 5281 struct btrfs_trans_handle *trans; 5282 struct btrfs_root *tree_root = fs_info->tree_root; 5283 struct btrfs_root_item *root_item = &root->root_item; 5284 struct walk_control *wc; 5285 struct btrfs_key key; 5286 int err = 0; 5287 int ret; 5288 int level; 5289 bool root_dropped = false; 5290 5291 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5292 5293 path = btrfs_alloc_path(); 5294 if (!path) { 5295 err = -ENOMEM; 5296 goto out; 5297 } 5298 5299 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5300 if (!wc) { 5301 btrfs_free_path(path); 5302 err = -ENOMEM; 5303 goto out; 5304 } 5305 5306 /* 5307 * Use join to avoid potential EINTR from transaction start. See 5308 * wait_reserve_ticket and the whole reservation callchain. 5309 */ 5310 if (for_reloc) 5311 trans = btrfs_join_transaction(tree_root); 5312 else 5313 trans = btrfs_start_transaction(tree_root, 0); 5314 if (IS_ERR(trans)) { 5315 err = PTR_ERR(trans); 5316 goto out_free; 5317 } 5318 5319 err = btrfs_run_delayed_items(trans); 5320 if (err) 5321 goto out_end_trans; 5322 5323 /* 5324 * This will help us catch people modifying the fs tree while we're 5325 * dropping it. It is unsafe to mess with the fs tree while it's being 5326 * dropped as we unlock the root node and parent nodes as we walk down 5327 * the tree, assuming nothing will change. If something does change 5328 * then we'll have stale information and drop references to blocks we've 5329 * already dropped. 5330 */ 5331 set_bit(BTRFS_ROOT_DELETING, &root->state); 5332 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5333 level = btrfs_header_level(root->node); 5334 path->nodes[level] = btrfs_lock_root_node(root); 5335 btrfs_set_lock_blocking_write(path->nodes[level]); 5336 path->slots[level] = 0; 5337 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5338 memset(&wc->update_progress, 0, 5339 sizeof(wc->update_progress)); 5340 } else { 5341 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5342 memcpy(&wc->update_progress, &key, 5343 sizeof(wc->update_progress)); 5344 5345 level = root_item->drop_level; 5346 BUG_ON(level == 0); 5347 path->lowest_level = level; 5348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5349 path->lowest_level = 0; 5350 if (ret < 0) { 5351 err = ret; 5352 goto out_end_trans; 5353 } 5354 WARN_ON(ret > 0); 5355 5356 /* 5357 * unlock our path, this is safe because only this 5358 * function is allowed to delete this snapshot 5359 */ 5360 btrfs_unlock_up_safe(path, 0); 5361 5362 level = btrfs_header_level(root->node); 5363 while (1) { 5364 btrfs_tree_lock(path->nodes[level]); 5365 btrfs_set_lock_blocking_write(path->nodes[level]); 5366 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5367 5368 ret = btrfs_lookup_extent_info(trans, fs_info, 5369 path->nodes[level]->start, 5370 level, 1, &wc->refs[level], 5371 &wc->flags[level]); 5372 if (ret < 0) { 5373 err = ret; 5374 goto out_end_trans; 5375 } 5376 BUG_ON(wc->refs[level] == 0); 5377 5378 if (level == root_item->drop_level) 5379 break; 5380 5381 btrfs_tree_unlock(path->nodes[level]); 5382 path->locks[level] = 0; 5383 WARN_ON(wc->refs[level] != 1); 5384 level--; 5385 } 5386 } 5387 5388 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5389 wc->level = level; 5390 wc->shared_level = -1; 5391 wc->stage = DROP_REFERENCE; 5392 wc->update_ref = update_ref; 5393 wc->keep_locks = 0; 5394 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5395 5396 while (1) { 5397 5398 ret = walk_down_tree(trans, root, path, wc); 5399 if (ret < 0) { 5400 err = ret; 5401 break; 5402 } 5403 5404 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5405 if (ret < 0) { 5406 err = ret; 5407 break; 5408 } 5409 5410 if (ret > 0) { 5411 BUG_ON(wc->stage != DROP_REFERENCE); 5412 break; 5413 } 5414 5415 if (wc->stage == DROP_REFERENCE) { 5416 wc->drop_level = wc->level; 5417 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5418 &wc->drop_progress, 5419 path->slots[wc->drop_level]); 5420 } 5421 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5422 &wc->drop_progress); 5423 root_item->drop_level = wc->drop_level; 5424 5425 BUG_ON(wc->level == 0); 5426 if (btrfs_should_end_transaction(trans) || 5427 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5428 ret = btrfs_update_root(trans, tree_root, 5429 &root->root_key, 5430 root_item); 5431 if (ret) { 5432 btrfs_abort_transaction(trans, ret); 5433 err = ret; 5434 goto out_end_trans; 5435 } 5436 5437 btrfs_end_transaction_throttle(trans); 5438 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5439 btrfs_debug(fs_info, 5440 "drop snapshot early exit"); 5441 err = -EAGAIN; 5442 goto out_free; 5443 } 5444 5445 trans = btrfs_start_transaction(tree_root, 0); 5446 if (IS_ERR(trans)) { 5447 err = PTR_ERR(trans); 5448 goto out_free; 5449 } 5450 } 5451 } 5452 btrfs_release_path(path); 5453 if (err) 5454 goto out_end_trans; 5455 5456 ret = btrfs_del_root(trans, &root->root_key); 5457 if (ret) { 5458 btrfs_abort_transaction(trans, ret); 5459 err = ret; 5460 goto out_end_trans; 5461 } 5462 5463 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5464 ret = btrfs_find_root(tree_root, &root->root_key, path, 5465 NULL, NULL); 5466 if (ret < 0) { 5467 btrfs_abort_transaction(trans, ret); 5468 err = ret; 5469 goto out_end_trans; 5470 } else if (ret > 0) { 5471 /* if we fail to delete the orphan item this time 5472 * around, it'll get picked up the next time. 5473 * 5474 * The most common failure here is just -ENOENT. 5475 */ 5476 btrfs_del_orphan_item(trans, tree_root, 5477 root->root_key.objectid); 5478 } 5479 } 5480 5481 /* 5482 * This subvolume is going to be completely dropped, and won't be 5483 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5484 * commit transaction time. So free it here manually. 5485 */ 5486 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5487 btrfs_qgroup_free_meta_all_pertrans(root); 5488 5489 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5490 btrfs_add_dropped_root(trans, root); 5491 else 5492 btrfs_put_root(root); 5493 root_dropped = true; 5494 out_end_trans: 5495 btrfs_end_transaction_throttle(trans); 5496 out_free: 5497 kfree(wc); 5498 btrfs_free_path(path); 5499 out: 5500 /* 5501 * So if we need to stop dropping the snapshot for whatever reason we 5502 * need to make sure to add it back to the dead root list so that we 5503 * keep trying to do the work later. This also cleans up roots if we 5504 * don't have it in the radix (like when we recover after a power fail 5505 * or unmount) so we don't leak memory. 5506 */ 5507 if (!for_reloc && !root_dropped) 5508 btrfs_add_dead_root(root); 5509 return err; 5510 } 5511 5512 /* 5513 * drop subtree rooted at tree block 'node'. 5514 * 5515 * NOTE: this function will unlock and release tree block 'node' 5516 * only used by relocation code 5517 */ 5518 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5519 struct btrfs_root *root, 5520 struct extent_buffer *node, 5521 struct extent_buffer *parent) 5522 { 5523 struct btrfs_fs_info *fs_info = root->fs_info; 5524 struct btrfs_path *path; 5525 struct walk_control *wc; 5526 int level; 5527 int parent_level; 5528 int ret = 0; 5529 int wret; 5530 5531 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5532 5533 path = btrfs_alloc_path(); 5534 if (!path) 5535 return -ENOMEM; 5536 5537 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5538 if (!wc) { 5539 btrfs_free_path(path); 5540 return -ENOMEM; 5541 } 5542 5543 btrfs_assert_tree_locked(parent); 5544 parent_level = btrfs_header_level(parent); 5545 atomic_inc(&parent->refs); 5546 path->nodes[parent_level] = parent; 5547 path->slots[parent_level] = btrfs_header_nritems(parent); 5548 5549 btrfs_assert_tree_locked(node); 5550 level = btrfs_header_level(node); 5551 path->nodes[level] = node; 5552 path->slots[level] = 0; 5553 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5554 5555 wc->refs[parent_level] = 1; 5556 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5557 wc->level = level; 5558 wc->shared_level = -1; 5559 wc->stage = DROP_REFERENCE; 5560 wc->update_ref = 0; 5561 wc->keep_locks = 1; 5562 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5563 5564 while (1) { 5565 wret = walk_down_tree(trans, root, path, wc); 5566 if (wret < 0) { 5567 ret = wret; 5568 break; 5569 } 5570 5571 wret = walk_up_tree(trans, root, path, wc, parent_level); 5572 if (wret < 0) 5573 ret = wret; 5574 if (wret != 0) 5575 break; 5576 } 5577 5578 kfree(wc); 5579 btrfs_free_path(path); 5580 return ret; 5581 } 5582 5583 /* 5584 * helper to account the unused space of all the readonly block group in the 5585 * space_info. takes mirrors into account. 5586 */ 5587 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5588 { 5589 struct btrfs_block_group *block_group; 5590 u64 free_bytes = 0; 5591 int factor; 5592 5593 /* It's df, we don't care if it's racy */ 5594 if (list_empty(&sinfo->ro_bgs)) 5595 return 0; 5596 5597 spin_lock(&sinfo->lock); 5598 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5599 spin_lock(&block_group->lock); 5600 5601 if (!block_group->ro) { 5602 spin_unlock(&block_group->lock); 5603 continue; 5604 } 5605 5606 factor = btrfs_bg_type_to_factor(block_group->flags); 5607 free_bytes += (block_group->length - 5608 block_group->used) * factor; 5609 5610 spin_unlock(&block_group->lock); 5611 } 5612 spin_unlock(&sinfo->lock); 5613 5614 return free_bytes; 5615 } 5616 5617 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5618 u64 start, u64 end) 5619 { 5620 return unpin_extent_range(fs_info, start, end, false); 5621 } 5622 5623 /* 5624 * It used to be that old block groups would be left around forever. 5625 * Iterating over them would be enough to trim unused space. Since we 5626 * now automatically remove them, we also need to iterate over unallocated 5627 * space. 5628 * 5629 * We don't want a transaction for this since the discard may take a 5630 * substantial amount of time. We don't require that a transaction be 5631 * running, but we do need to take a running transaction into account 5632 * to ensure that we're not discarding chunks that were released or 5633 * allocated in the current transaction. 5634 * 5635 * Holding the chunks lock will prevent other threads from allocating 5636 * or releasing chunks, but it won't prevent a running transaction 5637 * from committing and releasing the memory that the pending chunks 5638 * list head uses. For that, we need to take a reference to the 5639 * transaction and hold the commit root sem. We only need to hold 5640 * it while performing the free space search since we have already 5641 * held back allocations. 5642 */ 5643 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5644 { 5645 u64 start = SZ_1M, len = 0, end = 0; 5646 int ret; 5647 5648 *trimmed = 0; 5649 5650 /* Discard not supported = nothing to do. */ 5651 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5652 return 0; 5653 5654 /* Not writable = nothing to do. */ 5655 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5656 return 0; 5657 5658 /* No free space = nothing to do. */ 5659 if (device->total_bytes <= device->bytes_used) 5660 return 0; 5661 5662 ret = 0; 5663 5664 while (1) { 5665 struct btrfs_fs_info *fs_info = device->fs_info; 5666 u64 bytes; 5667 5668 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5669 if (ret) 5670 break; 5671 5672 find_first_clear_extent_bit(&device->alloc_state, start, 5673 &start, &end, 5674 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5675 5676 /* Check if there are any CHUNK_* bits left */ 5677 if (start > device->total_bytes) { 5678 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5679 btrfs_warn_in_rcu(fs_info, 5680 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5681 start, end - start + 1, 5682 rcu_str_deref(device->name), 5683 device->total_bytes); 5684 mutex_unlock(&fs_info->chunk_mutex); 5685 ret = 0; 5686 break; 5687 } 5688 5689 /* Ensure we skip the reserved area in the first 1M */ 5690 start = max_t(u64, start, SZ_1M); 5691 5692 /* 5693 * If find_first_clear_extent_bit find a range that spans the 5694 * end of the device it will set end to -1, in this case it's up 5695 * to the caller to trim the value to the size of the device. 5696 */ 5697 end = min(end, device->total_bytes - 1); 5698 5699 len = end - start + 1; 5700 5701 /* We didn't find any extents */ 5702 if (!len) { 5703 mutex_unlock(&fs_info->chunk_mutex); 5704 ret = 0; 5705 break; 5706 } 5707 5708 ret = btrfs_issue_discard(device->bdev, start, len, 5709 &bytes); 5710 if (!ret) 5711 set_extent_bits(&device->alloc_state, start, 5712 start + bytes - 1, 5713 CHUNK_TRIMMED); 5714 mutex_unlock(&fs_info->chunk_mutex); 5715 5716 if (ret) 5717 break; 5718 5719 start += len; 5720 *trimmed += bytes; 5721 5722 if (fatal_signal_pending(current)) { 5723 ret = -ERESTARTSYS; 5724 break; 5725 } 5726 5727 cond_resched(); 5728 } 5729 5730 return ret; 5731 } 5732 5733 /* 5734 * Trim the whole filesystem by: 5735 * 1) trimming the free space in each block group 5736 * 2) trimming the unallocated space on each device 5737 * 5738 * This will also continue trimming even if a block group or device encounters 5739 * an error. The return value will be the last error, or 0 if nothing bad 5740 * happens. 5741 */ 5742 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5743 { 5744 struct btrfs_block_group *cache = NULL; 5745 struct btrfs_device *device; 5746 struct list_head *devices; 5747 u64 group_trimmed; 5748 u64 range_end = U64_MAX; 5749 u64 start; 5750 u64 end; 5751 u64 trimmed = 0; 5752 u64 bg_failed = 0; 5753 u64 dev_failed = 0; 5754 int bg_ret = 0; 5755 int dev_ret = 0; 5756 int ret = 0; 5757 5758 /* 5759 * Check range overflow if range->len is set. 5760 * The default range->len is U64_MAX. 5761 */ 5762 if (range->len != U64_MAX && 5763 check_add_overflow(range->start, range->len, &range_end)) 5764 return -EINVAL; 5765 5766 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5767 for (; cache; cache = btrfs_next_block_group(cache)) { 5768 if (cache->start >= range_end) { 5769 btrfs_put_block_group(cache); 5770 break; 5771 } 5772 5773 start = max(range->start, cache->start); 5774 end = min(range_end, cache->start + cache->length); 5775 5776 if (end - start >= range->minlen) { 5777 if (!btrfs_block_group_done(cache)) { 5778 ret = btrfs_cache_block_group(cache, 0); 5779 if (ret) { 5780 bg_failed++; 5781 bg_ret = ret; 5782 continue; 5783 } 5784 ret = btrfs_wait_block_group_cache_done(cache); 5785 if (ret) { 5786 bg_failed++; 5787 bg_ret = ret; 5788 continue; 5789 } 5790 } 5791 ret = btrfs_trim_block_group(cache, 5792 &group_trimmed, 5793 start, 5794 end, 5795 range->minlen); 5796 5797 trimmed += group_trimmed; 5798 if (ret) { 5799 bg_failed++; 5800 bg_ret = ret; 5801 continue; 5802 } 5803 } 5804 } 5805 5806 if (bg_failed) 5807 btrfs_warn(fs_info, 5808 "failed to trim %llu block group(s), last error %d", 5809 bg_failed, bg_ret); 5810 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5811 devices = &fs_info->fs_devices->devices; 5812 list_for_each_entry(device, devices, dev_list) { 5813 ret = btrfs_trim_free_extents(device, &group_trimmed); 5814 if (ret) { 5815 dev_failed++; 5816 dev_ret = ret; 5817 break; 5818 } 5819 5820 trimmed += group_trimmed; 5821 } 5822 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5823 5824 if (dev_failed) 5825 btrfs_warn(fs_info, 5826 "failed to trim %llu device(s), last error %d", 5827 dev_failed, dev_ret); 5828 range->len = trimmed; 5829 if (bg_ret) 5830 return bg_ret; 5831 return dev_ret; 5832 } 5833