xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision d894fc60)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				u64 bytenr, u64 num_bytes, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op,
86 				int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins,
100 				     int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 			  struct btrfs_root *extent_root, u64 flags,
103 			  int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 			 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 			    int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 				       u64 num_bytes, int reserve,
110 				       int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 			       u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 		     u64 bytenr, u64 num_bytes, int reserved);
115 
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 	smp_mb();
120 	return cache->cached == BTRFS_CACHE_FINISHED ||
121 		cache->cached == BTRFS_CACHE_ERROR;
122 }
123 
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 	return (cache->flags & bits) == bits;
127 }
128 
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	atomic_inc(&cache->count);
132 }
133 
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 	if (atomic_dec_and_test(&cache->count)) {
137 		WARN_ON(cache->pinned > 0);
138 		WARN_ON(cache->reserved > 0);
139 		kfree(cache->free_space_ctl);
140 		kfree(cache);
141 	}
142 }
143 
144 /*
145  * this adds the block group to the fs_info rb tree for the block group
146  * cache
147  */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 				struct btrfs_block_group_cache *block_group)
150 {
151 	struct rb_node **p;
152 	struct rb_node *parent = NULL;
153 	struct btrfs_block_group_cache *cache;
154 
155 	spin_lock(&info->block_group_cache_lock);
156 	p = &info->block_group_cache_tree.rb_node;
157 
158 	while (*p) {
159 		parent = *p;
160 		cache = rb_entry(parent, struct btrfs_block_group_cache,
161 				 cache_node);
162 		if (block_group->key.objectid < cache->key.objectid) {
163 			p = &(*p)->rb_left;
164 		} else if (block_group->key.objectid > cache->key.objectid) {
165 			p = &(*p)->rb_right;
166 		} else {
167 			spin_unlock(&info->block_group_cache_lock);
168 			return -EEXIST;
169 		}
170 	}
171 
172 	rb_link_node(&block_group->cache_node, parent, p);
173 	rb_insert_color(&block_group->cache_node,
174 			&info->block_group_cache_tree);
175 
176 	if (info->first_logical_byte > block_group->key.objectid)
177 		info->first_logical_byte = block_group->key.objectid;
178 
179 	spin_unlock(&info->block_group_cache_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * This will return the block group at or after bytenr if contains is 0, else
186  * it will return the block group that contains the bytenr
187  */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 			      int contains)
191 {
192 	struct btrfs_block_group_cache *cache, *ret = NULL;
193 	struct rb_node *n;
194 	u64 end, start;
195 
196 	spin_lock(&info->block_group_cache_lock);
197 	n = info->block_group_cache_tree.rb_node;
198 
199 	while (n) {
200 		cache = rb_entry(n, struct btrfs_block_group_cache,
201 				 cache_node);
202 		end = cache->key.objectid + cache->key.offset - 1;
203 		start = cache->key.objectid;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->key.objectid))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 			info->first_logical_byte = ret->key.objectid;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 static int add_excluded_extent(struct btrfs_root *root,
231 			       u64 start, u64 num_bytes)
232 {
233 	u64 end = start + num_bytes - 1;
234 	set_extent_bits(&root->fs_info->freed_extents[0],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	set_extent_bits(&root->fs_info->freed_extents[1],
237 			start, end, EXTENT_UPTODATE, GFP_NOFS);
238 	return 0;
239 }
240 
241 static void free_excluded_extents(struct btrfs_root *root,
242 				  struct btrfs_block_group_cache *cache)
243 {
244 	u64 start, end;
245 
246 	start = cache->key.objectid;
247 	end = start + cache->key.offset - 1;
248 
249 	clear_extent_bits(&root->fs_info->freed_extents[0],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 	clear_extent_bits(&root->fs_info->freed_extents[1],
252 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254 
255 static int exclude_super_stripes(struct btrfs_root *root,
256 				 struct btrfs_block_group_cache *cache)
257 {
258 	u64 bytenr;
259 	u64 *logical;
260 	int stripe_len;
261 	int i, nr, ret;
262 
263 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 		cache->bytes_super += stripe_len;
266 		ret = add_excluded_extent(root, cache->key.objectid,
267 					  stripe_len);
268 		if (ret)
269 			return ret;
270 	}
271 
272 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 		bytenr = btrfs_sb_offset(i);
274 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 				       cache->key.objectid, bytenr,
276 				       0, &logical, &nr, &stripe_len);
277 		if (ret)
278 			return ret;
279 
280 		while (nr--) {
281 			u64 start, len;
282 
283 			if (logical[nr] > cache->key.objectid +
284 			    cache->key.offset)
285 				continue;
286 
287 			if (logical[nr] + stripe_len <= cache->key.objectid)
288 				continue;
289 
290 			start = logical[nr];
291 			if (start < cache->key.objectid) {
292 				start = cache->key.objectid;
293 				len = (logical[nr] + stripe_len) - start;
294 			} else {
295 				len = min_t(u64, stripe_len,
296 					    cache->key.objectid +
297 					    cache->key.offset - start);
298 			}
299 
300 			cache->bytes_super += len;
301 			ret = add_excluded_extent(root, start, len);
302 			if (ret) {
303 				kfree(logical);
304 				return ret;
305 			}
306 		}
307 
308 		kfree(logical);
309 	}
310 	return 0;
311 }
312 
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 	struct btrfs_caching_control *ctl;
317 
318 	spin_lock(&cache->lock);
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = -ENOMEM;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->commit_root_sem);
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto err;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->commit_root_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->nodesize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->commit_root_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 			caching_thread, NULL, NULL);
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		mutex_lock(&caching_ctl->mutex);
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 			caching_ctl->progress = (u64)-1;
601 		} else {
602 			if (load_cache_only) {
603 				cache->caching_ctl = NULL;
604 				cache->cached = BTRFS_CACHE_NO;
605 			} else {
606 				cache->cached = BTRFS_CACHE_STARTED;
607 				cache->has_caching_ctl = 1;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		mutex_unlock(&caching_ctl->mutex);
612 
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 			cache->has_caching_ctl = 1;
631 		}
632 		spin_unlock(&cache->lock);
633 		wake_up(&caching_ctl->wait);
634 	}
635 
636 	if (load_cache_only) {
637 		put_caching_control(caching_ctl);
638 		return 0;
639 	}
640 
641 	down_write(&fs_info->commit_root_sem);
642 	atomic_inc(&caching_ctl->count);
643 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 	up_write(&fs_info->commit_root_sem);
645 
646 	btrfs_get_block_group(cache);
647 
648 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 
650 	return ret;
651 }
652 
653 /*
654  * return the block group that starts at or after bytenr
655  */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 	struct btrfs_block_group_cache *cache;
660 
661 	cache = block_group_cache_tree_search(info, bytenr, 0);
662 
663 	return cache;
664 }
665 
666 /*
667  * return the block group that contains the given bytenr
668  */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 						 struct btrfs_fs_info *info,
671 						 u64 bytenr)
672 {
673 	struct btrfs_block_group_cache *cache;
674 
675 	cache = block_group_cache_tree_search(info, bytenr, 1);
676 
677 	return cache;
678 }
679 
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 						  u64 flags)
682 {
683 	struct list_head *head = &info->space_info;
684 	struct btrfs_space_info *found;
685 
686 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 
688 	rcu_read_lock();
689 	list_for_each_entry_rcu(found, head, list) {
690 		if (found->flags & flags) {
691 			rcu_read_unlock();
692 			return found;
693 		}
694 	}
695 	rcu_read_unlock();
696 	return NULL;
697 }
698 
699 /*
700  * after adding space to the filesystem, we need to clear the full flags
701  * on all the space infos.
702  */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 	struct list_head *head = &info->space_info;
706 	struct btrfs_space_info *found;
707 
708 	rcu_read_lock();
709 	list_for_each_entry_rcu(found, head, list)
710 		found->full = 0;
711 	rcu_read_unlock();
712 }
713 
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 	int ret;
718 	struct btrfs_key key;
719 	struct btrfs_path *path;
720 
721 	path = btrfs_alloc_path();
722 	if (!path)
723 		return -ENOMEM;
724 
725 	key.objectid = start;
726 	key.offset = len;
727 	key.type = BTRFS_EXTENT_ITEM_KEY;
728 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 				0, 0);
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->nodesize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (!trans) {
772 		path->skip_locking = 1;
773 		path->search_commit_root = 1;
774 	}
775 
776 search_again:
777 	key.objectid = bytenr;
778 	key.offset = offset;
779 	if (metadata)
780 		key.type = BTRFS_METADATA_ITEM_KEY;
781 	else
782 		key.type = BTRFS_EXTENT_ITEM_KEY;
783 
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->nodesize)
797 				ret = 0;
798 		}
799 	}
800 
801 	if (ret == 0) {
802 		leaf = path->nodes[0];
803 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 		if (item_size >= sizeof(*ei)) {
805 			ei = btrfs_item_ptr(leaf, path->slots[0],
806 					    struct btrfs_extent_item);
807 			num_refs = btrfs_extent_refs(leaf, ei);
808 			extent_flags = btrfs_extent_flags(leaf, ei);
809 		} else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 			struct btrfs_extent_item_v0 *ei0;
812 			BUG_ON(item_size != sizeof(*ei0));
813 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 					     struct btrfs_extent_item_v0);
815 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 			/* FIXME: this isn't correct for data */
817 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 			BUG();
820 #endif
821 		}
822 		BUG_ON(num_refs == 0);
823 	} else {
824 		num_refs = 0;
825 		extent_flags = 0;
826 		ret = 0;
827 	}
828 
829 	if (!trans)
830 		goto out;
831 
832 	delayed_refs = &trans->transaction->delayed_refs;
833 	spin_lock(&delayed_refs->lock);
834 	head = btrfs_find_delayed_ref_head(trans, bytenr);
835 	if (head) {
836 		if (!mutex_trylock(&head->mutex)) {
837 			atomic_inc(&head->node.refs);
838 			spin_unlock(&delayed_refs->lock);
839 
840 			btrfs_release_path(path);
841 
842 			/*
843 			 * Mutex was contended, block until it's released and try
844 			 * again
845 			 */
846 			mutex_lock(&head->mutex);
847 			mutex_unlock(&head->mutex);
848 			btrfs_put_delayed_ref(&head->node);
849 			goto search_again;
850 		}
851 		spin_lock(&head->lock);
852 		if (head->extent_op && head->extent_op->update_flags)
853 			extent_flags |= head->extent_op->flags_to_set;
854 		else
855 			BUG_ON(num_refs == 0);
856 
857 		num_refs += head->node.ref_mod;
858 		spin_unlock(&head->lock);
859 		mutex_unlock(&head->mutex);
860 	}
861 	spin_unlock(&delayed_refs->lock);
862 out:
863 	WARN_ON(num_refs == 0);
864 	if (refs)
865 		*refs = num_refs;
866 	if (flags)
867 		*flags = extent_flags;
868 out_free:
869 	btrfs_free_path(path);
870 	return ret;
871 }
872 
873 /*
874  * Back reference rules.  Back refs have three main goals:
875  *
876  * 1) differentiate between all holders of references to an extent so that
877  *    when a reference is dropped we can make sure it was a valid reference
878  *    before freeing the extent.
879  *
880  * 2) Provide enough information to quickly find the holders of an extent
881  *    if we notice a given block is corrupted or bad.
882  *
883  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884  *    maintenance.  This is actually the same as #2, but with a slightly
885  *    different use case.
886  *
887  * There are two kinds of back refs. The implicit back refs is optimized
888  * for pointers in non-shared tree blocks. For a given pointer in a block,
889  * back refs of this kind provide information about the block's owner tree
890  * and the pointer's key. These information allow us to find the block by
891  * b-tree searching. The full back refs is for pointers in tree blocks not
892  * referenced by their owner trees. The location of tree block is recorded
893  * in the back refs. Actually the full back refs is generic, and can be
894  * used in all cases the implicit back refs is used. The major shortcoming
895  * of the full back refs is its overhead. Every time a tree block gets
896  * COWed, we have to update back refs entry for all pointers in it.
897  *
898  * For a newly allocated tree block, we use implicit back refs for
899  * pointers in it. This means most tree related operations only involve
900  * implicit back refs. For a tree block created in old transaction, the
901  * only way to drop a reference to it is COW it. So we can detect the
902  * event that tree block loses its owner tree's reference and do the
903  * back refs conversion.
904  *
905  * When a tree block is COW'd through a tree, there are four cases:
906  *
907  * The reference count of the block is one and the tree is the block's
908  * owner tree. Nothing to do in this case.
909  *
910  * The reference count of the block is one and the tree is not the
911  * block's owner tree. In this case, full back refs is used for pointers
912  * in the block. Remove these full back refs, add implicit back refs for
913  * every pointers in the new block.
914  *
915  * The reference count of the block is greater than one and the tree is
916  * the block's owner tree. In this case, implicit back refs is used for
917  * pointers in the block. Add full back refs for every pointers in the
918  * block, increase lower level extents' reference counts. The original
919  * implicit back refs are entailed to the new block.
920  *
921  * The reference count of the block is greater than one and the tree is
922  * not the block's owner tree. Add implicit back refs for every pointer in
923  * the new block, increase lower level extents' reference count.
924  *
925  * Back Reference Key composing:
926  *
927  * The key objectid corresponds to the first byte in the extent,
928  * The key type is used to differentiate between types of back refs.
929  * There are different meanings of the key offset for different types
930  * of back refs.
931  *
932  * File extents can be referenced by:
933  *
934  * - multiple snapshots, subvolumes, or different generations in one subvol
935  * - different files inside a single subvolume
936  * - different offsets inside a file (bookend extents in file.c)
937  *
938  * The extent ref structure for the implicit back refs has fields for:
939  *
940  * - Objectid of the subvolume root
941  * - objectid of the file holding the reference
942  * - original offset in the file
943  * - how many bookend extents
944  *
945  * The key offset for the implicit back refs is hash of the first
946  * three fields.
947  *
948  * The extent ref structure for the full back refs has field for:
949  *
950  * - number of pointers in the tree leaf
951  *
952  * The key offset for the implicit back refs is the first byte of
953  * the tree leaf
954  *
955  * When a file extent is allocated, The implicit back refs is used.
956  * the fields are filled in:
957  *
958  *     (root_key.objectid, inode objectid, offset in file, 1)
959  *
960  * When a file extent is removed file truncation, we find the
961  * corresponding implicit back refs and check the following fields:
962  *
963  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
964  *
965  * Btree extents can be referenced by:
966  *
967  * - Different subvolumes
968  *
969  * Both the implicit back refs and the full back refs for tree blocks
970  * only consist of key. The key offset for the implicit back refs is
971  * objectid of block's owner tree. The key offset for the full back refs
972  * is the first byte of parent block.
973  *
974  * When implicit back refs is used, information about the lowest key and
975  * level of the tree block are required. These information are stored in
976  * tree block info structure.
977  */
978 
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 				  struct btrfs_root *root,
982 				  struct btrfs_path *path,
983 				  u64 owner, u32 extra_size)
984 {
985 	struct btrfs_extent_item *item;
986 	struct btrfs_extent_item_v0 *ei0;
987 	struct btrfs_extent_ref_v0 *ref0;
988 	struct btrfs_tree_block_info *bi;
989 	struct extent_buffer *leaf;
990 	struct btrfs_key key;
991 	struct btrfs_key found_key;
992 	u32 new_size = sizeof(*item);
993 	u64 refs;
994 	int ret;
995 
996 	leaf = path->nodes[0];
997 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998 
999 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 			     struct btrfs_extent_item_v0);
1002 	refs = btrfs_extent_refs_v0(leaf, ei0);
1003 
1004 	if (owner == (u64)-1) {
1005 		while (1) {
1006 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 				ret = btrfs_next_leaf(root, path);
1008 				if (ret < 0)
1009 					return ret;
1010 				BUG_ON(ret > 0); /* Corruption */
1011 				leaf = path->nodes[0];
1012 			}
1013 			btrfs_item_key_to_cpu(leaf, &found_key,
1014 					      path->slots[0]);
1015 			BUG_ON(key.objectid != found_key.objectid);
1016 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 				path->slots[0]++;
1018 				continue;
1019 			}
1020 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 					      struct btrfs_extent_ref_v0);
1022 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 			break;
1024 		}
1025 	}
1026 	btrfs_release_path(path);
1027 
1028 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 		new_size += sizeof(*bi);
1030 
1031 	new_size -= sizeof(*ei0);
1032 	ret = btrfs_search_slot(trans, root, &key, path,
1033 				new_size + extra_size, 1);
1034 	if (ret < 0)
1035 		return ret;
1036 	BUG_ON(ret); /* Corruption */
1037 
1038 	btrfs_extend_item(root, path, new_size);
1039 
1040 	leaf = path->nodes[0];
1041 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 	btrfs_set_extent_refs(leaf, item, refs);
1043 	/* FIXME: get real generation */
1044 	btrfs_set_extent_generation(leaf, item, 0);
1045 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 		btrfs_set_extent_flags(leaf, item,
1047 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 		bi = (struct btrfs_tree_block_info *)(item + 1);
1050 		/* FIXME: get first key of the block */
1051 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 	} else {
1054 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 	}
1056 	btrfs_mark_buffer_dirty(leaf);
1057 	return 0;
1058 }
1059 #endif
1060 
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	u32 high_crc = ~(u32)0;
1064 	u32 low_crc = ~(u32)0;
1065 	__le64 lenum;
1066 
1067 	lenum = cpu_to_le64(root_objectid);
1068 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 	lenum = cpu_to_le64(owner);
1070 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 	lenum = cpu_to_le64(offset);
1072 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073 
1074 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076 
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 				     struct btrfs_extent_data_ref *ref)
1079 {
1080 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 				    btrfs_extent_data_ref_objectid(leaf, ref),
1082 				    btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084 
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 				 struct btrfs_extent_data_ref *ref,
1087 				 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 		return 0;
1093 	return 1;
1094 }
1095 
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 					   struct btrfs_root *root,
1098 					   struct btrfs_path *path,
1099 					   u64 bytenr, u64 parent,
1100 					   u64 root_objectid,
1101 					   u64 owner, u64 offset)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_extent_data_ref *ref;
1105 	struct extent_buffer *leaf;
1106 	u32 nritems;
1107 	int ret;
1108 	int recow;
1109 	int err = -ENOENT;
1110 
1111 	key.objectid = bytenr;
1112 	if (parent) {
1113 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 		key.offset = parent;
1115 	} else {
1116 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 		key.offset = hash_extent_data_ref(root_objectid,
1118 						  owner, offset);
1119 	}
1120 again:
1121 	recow = 0;
1122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 	if (ret < 0) {
1124 		err = ret;
1125 		goto fail;
1126 	}
1127 
1128 	if (parent) {
1129 		if (!ret)
1130 			return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 		btrfs_release_path(path);
1134 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 		if (ret < 0) {
1136 			err = ret;
1137 			goto fail;
1138 		}
1139 		if (!ret)
1140 			return 0;
1141 #endif
1142 		goto fail;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	nritems = btrfs_header_nritems(leaf);
1147 	while (1) {
1148 		if (path->slots[0] >= nritems) {
1149 			ret = btrfs_next_leaf(root, path);
1150 			if (ret < 0)
1151 				err = ret;
1152 			if (ret)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 			nritems = btrfs_header_nritems(leaf);
1157 			recow = 1;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 		if (key.objectid != bytenr ||
1162 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 			goto fail;
1164 
1165 		ref = btrfs_item_ptr(leaf, path->slots[0],
1166 				     struct btrfs_extent_data_ref);
1167 
1168 		if (match_extent_data_ref(leaf, ref, root_objectid,
1169 					  owner, offset)) {
1170 			if (recow) {
1171 				btrfs_release_path(path);
1172 				goto again;
1173 			}
1174 			err = 0;
1175 			break;
1176 		}
1177 		path->slots[0]++;
1178 	}
1179 fail:
1180 	return err;
1181 }
1182 
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 					   struct btrfs_root *root,
1185 					   struct btrfs_path *path,
1186 					   u64 bytenr, u64 parent,
1187 					   u64 root_objectid, u64 owner,
1188 					   u64 offset, int refs_to_add)
1189 {
1190 	struct btrfs_key key;
1191 	struct extent_buffer *leaf;
1192 	u32 size;
1193 	u32 num_refs;
1194 	int ret;
1195 
1196 	key.objectid = bytenr;
1197 	if (parent) {
1198 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 		key.offset = parent;
1200 		size = sizeof(struct btrfs_shared_data_ref);
1201 	} else {
1202 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 		key.offset = hash_extent_data_ref(root_objectid,
1204 						  owner, offset);
1205 		size = sizeof(struct btrfs_extent_data_ref);
1206 	}
1207 
1208 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 	if (ret && ret != -EEXIST)
1210 		goto fail;
1211 
1212 	leaf = path->nodes[0];
1213 	if (parent) {
1214 		struct btrfs_shared_data_ref *ref;
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_shared_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 		} else {
1220 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 			num_refs += refs_to_add;
1222 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 		}
1224 	} else {
1225 		struct btrfs_extent_data_ref *ref;
1226 		while (ret == -EEXIST) {
1227 			ref = btrfs_item_ptr(leaf, path->slots[0],
1228 					     struct btrfs_extent_data_ref);
1229 			if (match_extent_data_ref(leaf, ref, root_objectid,
1230 						  owner, offset))
1231 				break;
1232 			btrfs_release_path(path);
1233 			key.offset++;
1234 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 						      size);
1236 			if (ret && ret != -EEXIST)
1237 				goto fail;
1238 
1239 			leaf = path->nodes[0];
1240 		}
1241 		ref = btrfs_item_ptr(leaf, path->slots[0],
1242 				     struct btrfs_extent_data_ref);
1243 		if (ret == 0) {
1244 			btrfs_set_extent_data_ref_root(leaf, ref,
1245 						       root_objectid);
1246 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 		} else {
1250 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 			num_refs += refs_to_add;
1252 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 		}
1254 	}
1255 	btrfs_mark_buffer_dirty(leaf);
1256 	ret = 0;
1257 fail:
1258 	btrfs_release_path(path);
1259 	return ret;
1260 }
1261 
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 					   struct btrfs_root *root,
1264 					   struct btrfs_path *path,
1265 					   int refs_to_drop, int *last_ref)
1266 {
1267 	struct btrfs_key key;
1268 	struct btrfs_extent_data_ref *ref1 = NULL;
1269 	struct btrfs_shared_data_ref *ref2 = NULL;
1270 	struct extent_buffer *leaf;
1271 	u32 num_refs = 0;
1272 	int ret = 0;
1273 
1274 	leaf = path->nodes[0];
1275 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276 
1277 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 				      struct btrfs_extent_data_ref);
1280 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 				      struct btrfs_shared_data_ref);
1284 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 		struct btrfs_extent_ref_v0 *ref0;
1288 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 				      struct btrfs_extent_ref_v0);
1290 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 	} else {
1293 		BUG();
1294 	}
1295 
1296 	BUG_ON(num_refs < refs_to_drop);
1297 	num_refs -= refs_to_drop;
1298 
1299 	if (num_refs == 0) {
1300 		ret = btrfs_del_item(trans, root, path);
1301 		*last_ref = 1;
1302 	} else {
1303 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 		else {
1309 			struct btrfs_extent_ref_v0 *ref0;
1310 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 					struct btrfs_extent_ref_v0);
1312 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 		}
1314 #endif
1315 		btrfs_mark_buffer_dirty(leaf);
1316 	}
1317 	return ret;
1318 }
1319 
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 					  struct btrfs_path *path,
1322 					  struct btrfs_extent_inline_ref *iref)
1323 {
1324 	struct btrfs_key key;
1325 	struct extent_buffer *leaf;
1326 	struct btrfs_extent_data_ref *ref1;
1327 	struct btrfs_shared_data_ref *ref2;
1328 	u32 num_refs = 0;
1329 
1330 	leaf = path->nodes[0];
1331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 	if (iref) {
1333 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 		    BTRFS_EXTENT_DATA_REF_KEY) {
1335 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 		} else {
1338 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 		}
1341 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_extent_data_ref);
1344 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_shared_data_ref);
1348 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 		struct btrfs_extent_ref_v0 *ref0;
1352 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_ref_v0);
1354 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 	} else {
1357 		WARN_ON(1);
1358 	}
1359 	return num_refs;
1360 }
1361 
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 					  struct btrfs_root *root,
1364 					  struct btrfs_path *path,
1365 					  u64 bytenr, u64 parent,
1366 					  u64 root_objectid)
1367 {
1368 	struct btrfs_key key;
1369 	int ret;
1370 
1371 	key.objectid = bytenr;
1372 	if (parent) {
1373 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 		key.offset = parent;
1375 	} else {
1376 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 		key.offset = root_objectid;
1378 	}
1379 
1380 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 	if (ret > 0)
1382 		ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 	if (ret == -ENOENT && parent) {
1385 		btrfs_release_path(path);
1386 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 		if (ret > 0)
1389 			ret = -ENOENT;
1390 	}
1391 #endif
1392 	return ret;
1393 }
1394 
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_root *root,
1397 					  struct btrfs_path *path,
1398 					  u64 bytenr, u64 parent,
1399 					  u64 root_objectid)
1400 {
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 	btrfs_release_path(path);
1415 	return ret;
1416 }
1417 
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 	int type;
1421 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 		if (parent > 0)
1423 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 		else
1425 			type = BTRFS_TREE_BLOCK_REF_KEY;
1426 	} else {
1427 		if (parent > 0)
1428 			type = BTRFS_SHARED_DATA_REF_KEY;
1429 		else
1430 			type = BTRFS_EXTENT_DATA_REF_KEY;
1431 	}
1432 	return type;
1433 }
1434 
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 			 struct btrfs_key *key)
1437 
1438 {
1439 	for (; level < BTRFS_MAX_LEVEL; level++) {
1440 		if (!path->nodes[level])
1441 			break;
1442 		if (path->slots[level] + 1 >=
1443 		    btrfs_header_nritems(path->nodes[level]))
1444 			continue;
1445 		if (level == 0)
1446 			btrfs_item_key_to_cpu(path->nodes[level], key,
1447 					      path->slots[level] + 1);
1448 		else
1449 			btrfs_node_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		return 0;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * look for inline back ref. if back ref is found, *ref_ret is set
1458  * to the address of inline back ref, and 0 is returned.
1459  *
1460  * if back ref isn't found, *ref_ret is set to the address where it
1461  * should be inserted, and -ENOENT is returned.
1462  *
1463  * if insert is true and there are too many inline back refs, the path
1464  * points to the extent item, and -EAGAIN is returned.
1465  *
1466  * NOTE: inline back refs are ordered in the same way that back ref
1467  *	 items in the tree are ordered.
1468  */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 				 struct btrfs_root *root,
1472 				 struct btrfs_path *path,
1473 				 struct btrfs_extent_inline_ref **ref_ret,
1474 				 u64 bytenr, u64 num_bytes,
1475 				 u64 parent, u64 root_objectid,
1476 				 u64 owner, u64 offset, int insert)
1477 {
1478 	struct btrfs_key key;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_extent_item *ei;
1481 	struct btrfs_extent_inline_ref *iref;
1482 	u64 flags;
1483 	u64 item_size;
1484 	unsigned long ptr;
1485 	unsigned long end;
1486 	int extra_size;
1487 	int type;
1488 	int want;
1489 	int ret;
1490 	int err = 0;
1491 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 						 SKINNY_METADATA);
1493 
1494 	key.objectid = bytenr;
1495 	key.type = BTRFS_EXTENT_ITEM_KEY;
1496 	key.offset = num_bytes;
1497 
1498 	want = extent_ref_type(parent, owner);
1499 	if (insert) {
1500 		extra_size = btrfs_extent_inline_ref_size(want);
1501 		path->keep_locks = 1;
1502 	} else
1503 		extra_size = -1;
1504 
1505 	/*
1506 	 * Owner is our parent level, so we can just add one to get the level
1507 	 * for the block we are interested in.
1508 	 */
1509 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 		key.type = BTRFS_METADATA_ITEM_KEY;
1511 		key.offset = owner;
1512 	}
1513 
1514 again:
1515 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 	if (ret < 0) {
1517 		err = ret;
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * We may be a newly converted file system which still has the old fat
1523 	 * extent entries for metadata, so try and see if we have one of those.
1524 	 */
1525 	if (ret > 0 && skinny_metadata) {
1526 		skinny_metadata = false;
1527 		if (path->slots[0]) {
1528 			path->slots[0]--;
1529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 					      path->slots[0]);
1531 			if (key.objectid == bytenr &&
1532 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 			    key.offset == num_bytes)
1534 				ret = 0;
1535 		}
1536 		if (ret) {
1537 			key.objectid = bytenr;
1538 			key.type = BTRFS_EXTENT_ITEM_KEY;
1539 			key.offset = num_bytes;
1540 			btrfs_release_path(path);
1541 			goto again;
1542 		}
1543 	}
1544 
1545 	if (ret && !insert) {
1546 		err = -ENOENT;
1547 		goto out;
1548 	} else if (WARN_ON(ret)) {
1549 		err = -EIO;
1550 		goto out;
1551 	}
1552 
1553 	leaf = path->nodes[0];
1554 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 	if (item_size < sizeof(*ei)) {
1557 		if (!insert) {
1558 			err = -ENOENT;
1559 			goto out;
1560 		}
1561 		ret = convert_extent_item_v0(trans, root, path, owner,
1562 					     extra_size);
1563 		if (ret < 0) {
1564 			err = ret;
1565 			goto out;
1566 		}
1567 		leaf = path->nodes[0];
1568 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 	}
1570 #endif
1571 	BUG_ON(item_size < sizeof(*ei));
1572 
1573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 	flags = btrfs_extent_flags(leaf, ei);
1575 
1576 	ptr = (unsigned long)(ei + 1);
1577 	end = (unsigned long)ei + item_size;
1578 
1579 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 		ptr += sizeof(struct btrfs_tree_block_info);
1581 		BUG_ON(ptr > end);
1582 	}
1583 
1584 	err = -ENOENT;
1585 	while (1) {
1586 		if (ptr >= end) {
1587 			WARN_ON(ptr > end);
1588 			break;
1589 		}
1590 		iref = (struct btrfs_extent_inline_ref *)ptr;
1591 		type = btrfs_extent_inline_ref_type(leaf, iref);
1592 		if (want < type)
1593 			break;
1594 		if (want > type) {
1595 			ptr += btrfs_extent_inline_ref_size(type);
1596 			continue;
1597 		}
1598 
1599 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 			struct btrfs_extent_data_ref *dref;
1601 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 			if (match_extent_data_ref(leaf, dref, root_objectid,
1603 						  owner, offset)) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (hash_extent_data_ref_item(leaf, dref) <
1608 			    hash_extent_data_ref(root_objectid, owner, offset))
1609 				break;
1610 		} else {
1611 			u64 ref_offset;
1612 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 			if (parent > 0) {
1614 				if (parent == ref_offset) {
1615 					err = 0;
1616 					break;
1617 				}
1618 				if (ref_offset < parent)
1619 					break;
1620 			} else {
1621 				if (root_objectid == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < root_objectid)
1626 					break;
1627 			}
1628 		}
1629 		ptr += btrfs_extent_inline_ref_size(type);
1630 	}
1631 	if (err == -ENOENT && insert) {
1632 		if (item_size + extra_size >=
1633 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 			err = -EAGAIN;
1635 			goto out;
1636 		}
1637 		/*
1638 		 * To add new inline back ref, we have to make sure
1639 		 * there is no corresponding back ref item.
1640 		 * For simplicity, we just do not add new inline back
1641 		 * ref if there is any kind of item for this block
1642 		 */
1643 		if (find_next_key(path, 0, &key) == 0 &&
1644 		    key.objectid == bytenr &&
1645 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 	}
1650 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 	if (insert) {
1653 		path->keep_locks = 0;
1654 		btrfs_unlock_up_safe(path, 1);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  * helper to add new inline back ref
1661  */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 				 struct btrfs_path *path,
1665 				 struct btrfs_extent_inline_ref *iref,
1666 				 u64 parent, u64 root_objectid,
1667 				 u64 owner, u64 offset, int refs_to_add,
1668 				 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 	struct extent_buffer *leaf;
1671 	struct btrfs_extent_item *ei;
1672 	unsigned long ptr;
1673 	unsigned long end;
1674 	unsigned long item_offset;
1675 	u64 refs;
1676 	int size;
1677 	int type;
1678 
1679 	leaf = path->nodes[0];
1680 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 	item_offset = (unsigned long)iref - (unsigned long)ei;
1682 
1683 	type = extent_ref_type(parent, owner);
1684 	size = btrfs_extent_inline_ref_size(type);
1685 
1686 	btrfs_extend_item(root, path, size);
1687 
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	refs = btrfs_extent_refs(leaf, ei);
1690 	refs += refs_to_add;
1691 	btrfs_set_extent_refs(leaf, ei, refs);
1692 	if (extent_op)
1693 		__run_delayed_extent_op(extent_op, leaf, ei);
1694 
1695 	ptr = (unsigned long)ei + item_offset;
1696 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 	if (ptr < end - size)
1698 		memmove_extent_buffer(leaf, ptr + size, ptr,
1699 				      end - size - ptr);
1700 
1701 	iref = (struct btrfs_extent_inline_ref *)ptr;
1702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 		struct btrfs_extent_data_ref *dref;
1705 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 		struct btrfs_shared_data_ref *sref;
1712 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 	} else {
1718 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 	}
1720 	btrfs_mark_buffer_dirty(leaf);
1721 }
1722 
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref **ref_ret,
1727 				 u64 bytenr, u64 num_bytes, u64 parent,
1728 				 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 	int ret;
1731 
1732 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 					   bytenr, num_bytes, parent,
1734 					   root_objectid, owner, offset, 0);
1735 	if (ret != -ENOENT)
1736 		return ret;
1737 
1738 	btrfs_release_path(path);
1739 	*ref_ret = NULL;
1740 
1741 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 					    root_objectid);
1744 	} else {
1745 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 					     root_objectid, owner, offset);
1747 	}
1748 	return ret;
1749 }
1750 
1751 /*
1752  * helper to update/remove inline back ref
1753  */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 				  struct btrfs_path *path,
1757 				  struct btrfs_extent_inline_ref *iref,
1758 				  int refs_to_mod,
1759 				  struct btrfs_delayed_extent_op *extent_op,
1760 				  int *last_ref)
1761 {
1762 	struct extent_buffer *leaf;
1763 	struct btrfs_extent_item *ei;
1764 	struct btrfs_extent_data_ref *dref = NULL;
1765 	struct btrfs_shared_data_ref *sref = NULL;
1766 	unsigned long ptr;
1767 	unsigned long end;
1768 	u32 item_size;
1769 	int size;
1770 	int type;
1771 	u64 refs;
1772 
1773 	leaf = path->nodes[0];
1774 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 	refs = btrfs_extent_refs(leaf, ei);
1776 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 	refs += refs_to_mod;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	type = btrfs_extent_inline_ref_type(leaf, iref);
1783 
1784 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 		refs = btrfs_extent_data_ref_count(leaf, dref);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 		refs = btrfs_shared_data_ref_count(leaf, sref);
1790 	} else {
1791 		refs = 1;
1792 		BUG_ON(refs_to_mod != -1);
1793 	}
1794 
1795 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 	refs += refs_to_mod;
1797 
1798 	if (refs > 0) {
1799 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 		else
1802 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 	} else {
1804 		*last_ref = 1;
1805 		size =  btrfs_extent_inline_ref_size(type);
1806 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 		ptr = (unsigned long)iref;
1808 		end = (unsigned long)ei + item_size;
1809 		if (ptr + size < end)
1810 			memmove_extent_buffer(leaf, ptr, ptr + size,
1811 					      end - ptr - size);
1812 		item_size -= size;
1813 		btrfs_truncate_item(root, path, item_size, 1);
1814 	}
1815 	btrfs_mark_buffer_dirty(leaf);
1816 }
1817 
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 num_bytes, u64 parent,
1823 				 u64 root_objectid, u64 owner,
1824 				 u64 offset, int refs_to_add,
1825 				 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 	struct btrfs_extent_inline_ref *iref;
1828 	int ret;
1829 
1830 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 					   bytenr, num_bytes, parent,
1832 					   root_objectid, owner, offset, 1);
1833 	if (ret == 0) {
1834 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 		update_inline_extent_backref(root, path, iref,
1836 					     refs_to_add, extent_op, NULL);
1837 	} else if (ret == -ENOENT) {
1838 		setup_inline_extent_backref(root, path, iref, parent,
1839 					    root_objectid, owner, offset,
1840 					    refs_to_add, extent_op);
1841 		ret = 0;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 				 struct btrfs_root *root,
1848 				 struct btrfs_path *path,
1849 				 u64 bytenr, u64 parent, u64 root_objectid,
1850 				 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 	int ret;
1853 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 		BUG_ON(refs_to_add != 1);
1855 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 					    parent, root_objectid);
1857 	} else {
1858 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 					     parent, root_objectid,
1860 					     owner, offset, refs_to_add);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 				 struct btrfs_root *root,
1867 				 struct btrfs_path *path,
1868 				 struct btrfs_extent_inline_ref *iref,
1869 				 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!is_data && refs_to_drop != 1);
1874 	if (iref) {
1875 		update_inline_extent_backref(root, path, iref,
1876 					     -refs_to_drop, NULL, last_ref);
1877 	} else if (is_data) {
1878 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 					     last_ref);
1880 	} else {
1881 		*last_ref = 1;
1882 		ret = btrfs_del_item(trans, root, path);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 				u64 start, u64 len)
1889 {
1890 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892 
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 			 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 	int ret;
1897 	u64 discarded_bytes = 0;
1898 	struct btrfs_bio *bbio = NULL;
1899 
1900 
1901 	/* Tell the block device(s) that the sectors can be discarded */
1902 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 			      bytenr, &num_bytes, &bbio, 0);
1904 	/* Error condition is -ENOMEM */
1905 	if (!ret) {
1906 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 		int i;
1908 
1909 
1910 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 			if (!stripe->dev->can_discard)
1912 				continue;
1913 
1914 			ret = btrfs_issue_discard(stripe->dev->bdev,
1915 						  stripe->physical,
1916 						  stripe->length);
1917 			if (!ret)
1918 				discarded_bytes += stripe->length;
1919 			else if (ret != -EOPNOTSUPP)
1920 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921 
1922 			/*
1923 			 * Just in case we get back EOPNOTSUPP for some reason,
1924 			 * just ignore the return value so we don't screw up
1925 			 * people calling discard_extent.
1926 			 */
1927 			ret = 0;
1928 		}
1929 		btrfs_put_bbio(bbio);
1930 	}
1931 
1932 	if (actual_bytes)
1933 		*actual_bytes = discarded_bytes;
1934 
1935 
1936 	if (ret == -EOPNOTSUPP)
1937 		ret = 0;
1938 	return ret;
1939 }
1940 
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 			 struct btrfs_root *root,
1944 			 u64 bytenr, u64 num_bytes, u64 parent,
1945 			 u64 root_objectid, u64 owner, u64 offset,
1946 			 int no_quota)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  int no_quota,
1974 				  struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 	struct btrfs_fs_info *fs_info = root->fs_info;
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	struct btrfs_key key;
1981 	u64 refs;
1982 	int ret;
1983 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 		goto out;
2001 	/*
2002 	 * Ok we were able to insert an inline extent and it appears to be a new
2003 	 * reference, deal with the qgroup accounting.
2004 	 */
2005 	if (!ret && !no_quota) {
2006 		ASSERT(root->fs_info->quota_enabled);
2007 		leaf = path->nodes[0];
2008 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 		item = btrfs_item_ptr(leaf, path->slots[0],
2010 				      struct btrfs_extent_item);
2011 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 		btrfs_release_path(path);
2014 
2015 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 					      bytenr, num_bytes, type, 0);
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 	 * inline extent ref, so just update the reference count and add a
2023 	 * normal backref.
2024 	 */
2025 	leaf = path->nodes[0];
2026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 	refs = btrfs_extent_refs(leaf, item);
2029 	if (refs)
2030 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 	if (extent_op)
2033 		__run_delayed_extent_op(extent_op, leaf, item);
2034 
2035 	btrfs_mark_buffer_dirty(leaf);
2036 	btrfs_release_path(path);
2037 
2038 	if (!no_quota) {
2039 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 					      bytenr, num_bytes, type, 0);
2041 		if (ret)
2042 			goto out;
2043 	}
2044 
2045 	path->reada = 1;
2046 	path->leave_spinning = 1;
2047 	/* now insert the actual backref */
2048 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 				    path, bytenr, parent, root_objectid,
2050 				    owner, offset, refs_to_add);
2051 	if (ret)
2052 		btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 	btrfs_free_path(path);
2055 	return ret;
2056 }
2057 
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 				struct btrfs_root *root,
2060 				struct btrfs_delayed_ref_node *node,
2061 				struct btrfs_delayed_extent_op *extent_op,
2062 				int insert_reserved)
2063 {
2064 	int ret = 0;
2065 	struct btrfs_delayed_data_ref *ref;
2066 	struct btrfs_key ins;
2067 	u64 parent = 0;
2068 	u64 ref_root = 0;
2069 	u64 flags = 0;
2070 
2071 	ins.objectid = node->bytenr;
2072 	ins.offset = node->num_bytes;
2073 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2074 
2075 	ref = btrfs_delayed_node_to_data_ref(node);
2076 	trace_run_delayed_data_ref(node, ref, node->action);
2077 
2078 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 		parent = ref->parent;
2080 	ref_root = ref->root;
2081 
2082 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 		if (extent_op)
2084 			flags |= extent_op->flags_to_set;
2085 		ret = alloc_reserved_file_extent(trans, root,
2086 						 parent, ref_root, flags,
2087 						 ref->objectid, ref->offset,
2088 						 &ins, node->ref_mod);
2089 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 					     node->num_bytes, parent,
2092 					     ref_root, ref->objectid,
2093 					     ref->offset, node->ref_mod,
2094 					     node->no_quota, extent_op);
2095 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 					  node->num_bytes, parent,
2098 					  ref_root, ref->objectid,
2099 					  ref->offset, node->ref_mod,
2100 					  extent_op, node->no_quota);
2101 	} else {
2102 		BUG();
2103 	}
2104 	return ret;
2105 }
2106 
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 				    struct extent_buffer *leaf,
2109 				    struct btrfs_extent_item *ei)
2110 {
2111 	u64 flags = btrfs_extent_flags(leaf, ei);
2112 	if (extent_op->update_flags) {
2113 		flags |= extent_op->flags_to_set;
2114 		btrfs_set_extent_flags(leaf, ei, flags);
2115 	}
2116 
2117 	if (extent_op->update_key) {
2118 		struct btrfs_tree_block_info *bi;
2119 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 	}
2123 }
2124 
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 				 struct btrfs_root *root,
2127 				 struct btrfs_delayed_ref_node *node,
2128 				 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 	struct btrfs_key key;
2131 	struct btrfs_path *path;
2132 	struct btrfs_extent_item *ei;
2133 	struct extent_buffer *leaf;
2134 	u32 item_size;
2135 	int ret;
2136 	int err = 0;
2137 	int metadata = !extent_op->is_data;
2138 
2139 	if (trans->aborted)
2140 		return 0;
2141 
2142 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 		metadata = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	key.objectid = node->bytenr;
2150 
2151 	if (metadata) {
2152 		key.type = BTRFS_METADATA_ITEM_KEY;
2153 		key.offset = extent_op->level;
2154 	} else {
2155 		key.type = BTRFS_EXTENT_ITEM_KEY;
2156 		key.offset = node->num_bytes;
2157 	}
2158 
2159 again:
2160 	path->reada = 1;
2161 	path->leave_spinning = 1;
2162 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 				path, 0, 1);
2164 	if (ret < 0) {
2165 		err = ret;
2166 		goto out;
2167 	}
2168 	if (ret > 0) {
2169 		if (metadata) {
2170 			if (path->slots[0] > 0) {
2171 				path->slots[0]--;
2172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 						      path->slots[0]);
2174 				if (key.objectid == node->bytenr &&
2175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 				    key.offset == node->num_bytes)
2177 					ret = 0;
2178 			}
2179 			if (ret > 0) {
2180 				btrfs_release_path(path);
2181 				metadata = 0;
2182 
2183 				key.objectid = node->bytenr;
2184 				key.offset = node->num_bytes;
2185 				key.type = BTRFS_EXTENT_ITEM_KEY;
2186 				goto again;
2187 			}
2188 		} else {
2189 			err = -EIO;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	leaf = path->nodes[0];
2195 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 	if (item_size < sizeof(*ei)) {
2198 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 					     path, (u64)-1, 0);
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 		leaf = path->nodes[0];
2205 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 	}
2207 #endif
2208 	BUG_ON(item_size < sizeof(*ei));
2209 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 	__run_delayed_extent_op(extent_op, leaf, ei);
2211 
2212 	btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 	btrfs_free_path(path);
2215 	return err;
2216 }
2217 
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 				struct btrfs_root *root,
2220 				struct btrfs_delayed_ref_node *node,
2221 				struct btrfs_delayed_extent_op *extent_op,
2222 				int insert_reserved)
2223 {
2224 	int ret = 0;
2225 	struct btrfs_delayed_tree_ref *ref;
2226 	struct btrfs_key ins;
2227 	u64 parent = 0;
2228 	u64 ref_root = 0;
2229 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 						 SKINNY_METADATA);
2231 
2232 	ref = btrfs_delayed_node_to_tree_ref(node);
2233 	trace_run_delayed_tree_ref(node, ref, node->action);
2234 
2235 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 		parent = ref->parent;
2237 	ref_root = ref->root;
2238 
2239 	ins.objectid = node->bytenr;
2240 	if (skinny_metadata) {
2241 		ins.offset = ref->level;
2242 		ins.type = BTRFS_METADATA_ITEM_KEY;
2243 	} else {
2244 		ins.offset = node->num_bytes;
2245 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 	}
2247 
2248 	BUG_ON(node->ref_mod != 1);
2249 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 		BUG_ON(!extent_op || !extent_op->update_flags);
2251 		ret = alloc_reserved_tree_block(trans, root,
2252 						parent, ref_root,
2253 						extent_op->flags_to_set,
2254 						&extent_op->key,
2255 						ref->level, &ins,
2256 						node->no_quota);
2257 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 					     node->num_bytes, parent, ref_root,
2260 					     ref->level, 0, 1, node->no_quota,
2261 					     extent_op);
2262 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 					  node->num_bytes, parent, ref_root,
2265 					  ref->level, 0, 1, extent_op,
2266 					  node->no_quota);
2267 	} else {
2268 		BUG();
2269 	}
2270 	return ret;
2271 }
2272 
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 			       struct btrfs_root *root,
2276 			       struct btrfs_delayed_ref_node *node,
2277 			       struct btrfs_delayed_extent_op *extent_op,
2278 			       int insert_reserved)
2279 {
2280 	int ret = 0;
2281 
2282 	if (trans->aborted) {
2283 		if (insert_reserved)
2284 			btrfs_pin_extent(root, node->bytenr,
2285 					 node->num_bytes, 1);
2286 		return 0;
2287 	}
2288 
2289 	if (btrfs_delayed_ref_is_head(node)) {
2290 		struct btrfs_delayed_ref_head *head;
2291 		/*
2292 		 * we've hit the end of the chain and we were supposed
2293 		 * to insert this extent into the tree.  But, it got
2294 		 * deleted before we ever needed to insert it, so all
2295 		 * we have to do is clean up the accounting
2296 		 */
2297 		BUG_ON(extent_op);
2298 		head = btrfs_delayed_node_to_head(node);
2299 		trace_run_delayed_ref_head(node, head, node->action);
2300 
2301 		if (insert_reserved) {
2302 			btrfs_pin_extent(root, node->bytenr,
2303 					 node->num_bytes, 1);
2304 			if (head->is_data) {
2305 				ret = btrfs_del_csums(trans, root,
2306 						      node->bytenr,
2307 						      node->num_bytes);
2308 			}
2309 		}
2310 		return ret;
2311 	}
2312 
2313 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 					   insert_reserved);
2317 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 					   insert_reserved);
2321 	else
2322 		BUG();
2323 	return ret;
2324 }
2325 
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 	struct rb_node *node;
2330 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331 
2332 	/*
2333 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 	 * this prevents ref count from going down to zero when
2335 	 * there still are pending delayed ref.
2336 	 */
2337 	node = rb_first(&head->ref_root);
2338 	while (node) {
2339 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 				rb_node);
2341 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 			return ref;
2343 		else if (last == NULL)
2344 			last = ref;
2345 		node = rb_next(node);
2346 	}
2347 	return last;
2348 }
2349 
2350 /*
2351  * Returns 0 on success or if called with an already aborted transaction.
2352  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353  */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 					     struct btrfs_root *root,
2356 					     unsigned long nr)
2357 {
2358 	struct btrfs_delayed_ref_root *delayed_refs;
2359 	struct btrfs_delayed_ref_node *ref;
2360 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 	struct btrfs_delayed_extent_op *extent_op;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	ktime_t start = ktime_get();
2364 	int ret;
2365 	unsigned long count = 0;
2366 	unsigned long actual_count = 0;
2367 	int must_insert_reserved = 0;
2368 
2369 	delayed_refs = &trans->transaction->delayed_refs;
2370 	while (1) {
2371 		if (!locked_ref) {
2372 			if (count >= nr)
2373 				break;
2374 
2375 			spin_lock(&delayed_refs->lock);
2376 			locked_ref = btrfs_select_ref_head(trans);
2377 			if (!locked_ref) {
2378 				spin_unlock(&delayed_refs->lock);
2379 				break;
2380 			}
2381 
2382 			/* grab the lock that says we are going to process
2383 			 * all the refs for this head */
2384 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 			spin_unlock(&delayed_refs->lock);
2386 			/*
2387 			 * we may have dropped the spin lock to get the head
2388 			 * mutex lock, and that might have given someone else
2389 			 * time to free the head.  If that's true, it has been
2390 			 * removed from our list and we can move on.
2391 			 */
2392 			if (ret == -EAGAIN) {
2393 				locked_ref = NULL;
2394 				count++;
2395 				continue;
2396 			}
2397 		}
2398 
2399 		/*
2400 		 * We need to try and merge add/drops of the same ref since we
2401 		 * can run into issues with relocate dropping the implicit ref
2402 		 * and then it being added back again before the drop can
2403 		 * finish.  If we merged anything we need to re-loop so we can
2404 		 * get a good ref.
2405 		 */
2406 		spin_lock(&locked_ref->lock);
2407 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 					 locked_ref);
2409 
2410 		/*
2411 		 * locked_ref is the head node, so we have to go one
2412 		 * node back for any delayed ref updates
2413 		 */
2414 		ref = select_delayed_ref(locked_ref);
2415 
2416 		if (ref && ref->seq &&
2417 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 			spin_unlock(&locked_ref->lock);
2419 			btrfs_delayed_ref_unlock(locked_ref);
2420 			spin_lock(&delayed_refs->lock);
2421 			locked_ref->processing = 0;
2422 			delayed_refs->num_heads_ready++;
2423 			spin_unlock(&delayed_refs->lock);
2424 			locked_ref = NULL;
2425 			cond_resched();
2426 			count++;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * record the must insert reserved flag before we
2432 		 * drop the spin lock.
2433 		 */
2434 		must_insert_reserved = locked_ref->must_insert_reserved;
2435 		locked_ref->must_insert_reserved = 0;
2436 
2437 		extent_op = locked_ref->extent_op;
2438 		locked_ref->extent_op = NULL;
2439 
2440 		if (!ref) {
2441 
2442 
2443 			/* All delayed refs have been processed, Go ahead
2444 			 * and send the head node to run_one_delayed_ref,
2445 			 * so that any accounting fixes can happen
2446 			 */
2447 			ref = &locked_ref->node;
2448 
2449 			if (extent_op && must_insert_reserved) {
2450 				btrfs_free_delayed_extent_op(extent_op);
2451 				extent_op = NULL;
2452 			}
2453 
2454 			if (extent_op) {
2455 				spin_unlock(&locked_ref->lock);
2456 				ret = run_delayed_extent_op(trans, root,
2457 							    ref, extent_op);
2458 				btrfs_free_delayed_extent_op(extent_op);
2459 
2460 				if (ret) {
2461 					/*
2462 					 * Need to reset must_insert_reserved if
2463 					 * there was an error so the abort stuff
2464 					 * can cleanup the reserved space
2465 					 * properly.
2466 					 */
2467 					if (must_insert_reserved)
2468 						locked_ref->must_insert_reserved = 1;
2469 					locked_ref->processing = 0;
2470 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 					btrfs_delayed_ref_unlock(locked_ref);
2472 					return ret;
2473 				}
2474 				continue;
2475 			}
2476 
2477 			/*
2478 			 * Need to drop our head ref lock and re-aqcuire the
2479 			 * delayed ref lock and then re-check to make sure
2480 			 * nobody got added.
2481 			 */
2482 			spin_unlock(&locked_ref->lock);
2483 			spin_lock(&delayed_refs->lock);
2484 			spin_lock(&locked_ref->lock);
2485 			if (rb_first(&locked_ref->ref_root) ||
2486 			    locked_ref->extent_op) {
2487 				spin_unlock(&locked_ref->lock);
2488 				spin_unlock(&delayed_refs->lock);
2489 				continue;
2490 			}
2491 			ref->in_tree = 0;
2492 			delayed_refs->num_heads--;
2493 			rb_erase(&locked_ref->href_node,
2494 				 &delayed_refs->href_root);
2495 			spin_unlock(&delayed_refs->lock);
2496 		} else {
2497 			actual_count++;
2498 			ref->in_tree = 0;
2499 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 		}
2501 		atomic_dec(&delayed_refs->num_entries);
2502 
2503 		if (!btrfs_delayed_ref_is_head(ref)) {
2504 			/*
2505 			 * when we play the delayed ref, also correct the
2506 			 * ref_mod on head
2507 			 */
2508 			switch (ref->action) {
2509 			case BTRFS_ADD_DELAYED_REF:
2510 			case BTRFS_ADD_DELAYED_EXTENT:
2511 				locked_ref->node.ref_mod -= ref->ref_mod;
2512 				break;
2513 			case BTRFS_DROP_DELAYED_REF:
2514 				locked_ref->node.ref_mod += ref->ref_mod;
2515 				break;
2516 			default:
2517 				WARN_ON(1);
2518 			}
2519 		}
2520 		spin_unlock(&locked_ref->lock);
2521 
2522 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 					  must_insert_reserved);
2524 
2525 		btrfs_free_delayed_extent_op(extent_op);
2526 		if (ret) {
2527 			locked_ref->processing = 0;
2528 			btrfs_delayed_ref_unlock(locked_ref);
2529 			btrfs_put_delayed_ref(ref);
2530 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 			return ret;
2532 		}
2533 
2534 		/*
2535 		 * If this node is a head, that means all the refs in this head
2536 		 * have been dealt with, and we will pick the next head to deal
2537 		 * with, so we must unlock the head and drop it from the cluster
2538 		 * list before we release it.
2539 		 */
2540 		if (btrfs_delayed_ref_is_head(ref)) {
2541 			btrfs_delayed_ref_unlock(locked_ref);
2542 			locked_ref = NULL;
2543 		}
2544 		btrfs_put_delayed_ref(ref);
2545 		count++;
2546 		cond_resched();
2547 	}
2548 
2549 	/*
2550 	 * We don't want to include ref heads since we can have empty ref heads
2551 	 * and those will drastically skew our runtime down since we just do
2552 	 * accounting, no actual extent tree updates.
2553 	 */
2554 	if (actual_count > 0) {
2555 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 		u64 avg;
2557 
2558 		/*
2559 		 * We weigh the current average higher than our current runtime
2560 		 * to avoid large swings in the average.
2561 		 */
2562 		spin_lock(&delayed_refs->lock);
2563 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 		avg = div64_u64(avg, 4);
2565 		fs_info->avg_delayed_ref_runtime = avg;
2566 		spin_unlock(&delayed_refs->lock);
2567 	}
2568 	return 0;
2569 }
2570 
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573  * Normally delayed refs get processed in ascending bytenr order. This
2574  * correlates in most cases to the order added. To expose dependencies on this
2575  * order, we start to process the tree in the middle instead of the beginning
2576  */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 	struct rb_node *n = root->rb_node;
2580 	struct btrfs_delayed_ref_node *entry;
2581 	int alt = 1;
2582 	u64 middle;
2583 	u64 first = 0, last = 0;
2584 
2585 	n = rb_first(root);
2586 	if (n) {
2587 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 		first = entry->bytenr;
2589 	}
2590 	n = rb_last(root);
2591 	if (n) {
2592 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 		last = entry->bytenr;
2594 	}
2595 	n = root->rb_node;
2596 
2597 	while (n) {
2598 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 		WARN_ON(!entry->in_tree);
2600 
2601 		middle = entry->bytenr;
2602 
2603 		if (alt)
2604 			n = n->rb_left;
2605 		else
2606 			n = n->rb_right;
2607 
2608 		alt = 1 - alt;
2609 	}
2610 	return middle;
2611 }
2612 #endif
2613 
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 	u64 num_bytes;
2617 
2618 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 			     sizeof(struct btrfs_extent_inline_ref));
2620 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622 
2623 	/*
2624 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 	 * closer to what we're really going to want to ouse.
2626 	 */
2627 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629 
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 				       struct btrfs_root *root)
2632 {
2633 	struct btrfs_block_rsv *global_rsv;
2634 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 	u64 num_bytes;
2636 	int ret = 0;
2637 
2638 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 	num_heads = heads_to_leaves(root, num_heads);
2640 	if (num_heads > 1)
2641 		num_bytes += (num_heads - 1) * root->nodesize;
2642 	num_bytes <<= 1;
2643 	global_rsv = &root->fs_info->global_block_rsv;
2644 
2645 	/*
2646 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 	 * wiggle room since running delayed refs can create more delayed refs.
2648 	 */
2649 	if (global_rsv->space_info->full)
2650 		num_bytes <<= 1;
2651 
2652 	spin_lock(&global_rsv->lock);
2653 	if (global_rsv->reserved <= num_bytes)
2654 		ret = 1;
2655 	spin_unlock(&global_rsv->lock);
2656 	return ret;
2657 }
2658 
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 				       struct btrfs_root *root)
2661 {
2662 	struct btrfs_fs_info *fs_info = root->fs_info;
2663 	u64 num_entries =
2664 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 	u64 avg_runtime;
2666 	u64 val;
2667 
2668 	smp_mb();
2669 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 	val = num_entries * avg_runtime;
2671 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 		return 1;
2673 	if (val >= NSEC_PER_SEC / 2)
2674 		return 2;
2675 
2676 	return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678 
2679 struct async_delayed_refs {
2680 	struct btrfs_root *root;
2681 	int count;
2682 	int error;
2683 	int sync;
2684 	struct completion wait;
2685 	struct btrfs_work work;
2686 };
2687 
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 	struct async_delayed_refs *async;
2691 	struct btrfs_trans_handle *trans;
2692 	int ret;
2693 
2694 	async = container_of(work, struct async_delayed_refs, work);
2695 
2696 	trans = btrfs_join_transaction(async->root);
2697 	if (IS_ERR(trans)) {
2698 		async->error = PTR_ERR(trans);
2699 		goto done;
2700 	}
2701 
2702 	/*
2703 	 * trans->sync means that when we call end_transaciton, we won't
2704 	 * wait on delayed refs
2705 	 */
2706 	trans->sync = true;
2707 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 	if (ret)
2709 		async->error = ret;
2710 
2711 	ret = btrfs_end_transaction(trans, async->root);
2712 	if (ret && !async->error)
2713 		async->error = ret;
2714 done:
2715 	if (async->sync)
2716 		complete(&async->wait);
2717 	else
2718 		kfree(async);
2719 }
2720 
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 				 unsigned long count, int wait)
2723 {
2724 	struct async_delayed_refs *async;
2725 	int ret;
2726 
2727 	async = kmalloc(sizeof(*async), GFP_NOFS);
2728 	if (!async)
2729 		return -ENOMEM;
2730 
2731 	async->root = root->fs_info->tree_root;
2732 	async->count = count;
2733 	async->error = 0;
2734 	if (wait)
2735 		async->sync = 1;
2736 	else
2737 		async->sync = 0;
2738 	init_completion(&async->wait);
2739 
2740 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 			delayed_ref_async_start, NULL, NULL);
2742 
2743 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744 
2745 	if (wait) {
2746 		wait_for_completion(&async->wait);
2747 		ret = async->error;
2748 		kfree(async);
2749 		return ret;
2750 	}
2751 	return 0;
2752 }
2753 
2754 /*
2755  * this starts processing the delayed reference count updates and
2756  * extent insertions we have queued up so far.  count can be
2757  * 0, which means to process everything in the tree at the start
2758  * of the run (but not newly added entries), or it can be some target
2759  * number you'd like to process.
2760  *
2761  * Returns 0 on success or if called with an aborted transaction
2762  * Returns <0 on error and aborts the transaction
2763  */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 			   struct btrfs_root *root, unsigned long count)
2766 {
2767 	struct rb_node *node;
2768 	struct btrfs_delayed_ref_root *delayed_refs;
2769 	struct btrfs_delayed_ref_head *head;
2770 	int ret;
2771 	int run_all = count == (unsigned long)-1;
2772 
2773 	/* We'll clean this up in btrfs_cleanup_transaction */
2774 	if (trans->aborted)
2775 		return 0;
2776 
2777 	if (root == root->fs_info->extent_root)
2778 		root = root->fs_info->tree_root;
2779 
2780 	delayed_refs = &trans->transaction->delayed_refs;
2781 	if (count == 0)
2782 		count = atomic_read(&delayed_refs->num_entries) * 2;
2783 
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 	ret = __btrfs_run_delayed_refs(trans, root, count);
2789 	if (ret < 0) {
2790 		btrfs_abort_transaction(trans, root, ret);
2791 		return ret;
2792 	}
2793 
2794 	if (run_all) {
2795 		if (!list_empty(&trans->new_bgs))
2796 			btrfs_create_pending_block_groups(trans, root);
2797 
2798 		spin_lock(&delayed_refs->lock);
2799 		node = rb_first(&delayed_refs->href_root);
2800 		if (!node) {
2801 			spin_unlock(&delayed_refs->lock);
2802 			goto out;
2803 		}
2804 		count = (unsigned long)-1;
2805 
2806 		while (node) {
2807 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 					href_node);
2809 			if (btrfs_delayed_ref_is_head(&head->node)) {
2810 				struct btrfs_delayed_ref_node *ref;
2811 
2812 				ref = &head->node;
2813 				atomic_inc(&ref->refs);
2814 
2815 				spin_unlock(&delayed_refs->lock);
2816 				/*
2817 				 * Mutex was contended, block until it's
2818 				 * released and try again
2819 				 */
2820 				mutex_lock(&head->mutex);
2821 				mutex_unlock(&head->mutex);
2822 
2823 				btrfs_put_delayed_ref(ref);
2824 				cond_resched();
2825 				goto again;
2826 			} else {
2827 				WARN_ON(1);
2828 			}
2829 			node = rb_next(node);
2830 		}
2831 		spin_unlock(&delayed_refs->lock);
2832 		cond_resched();
2833 		goto again;
2834 	}
2835 out:
2836 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 	if (ret)
2838 		return ret;
2839 	assert_qgroups_uptodate(trans);
2840 	return 0;
2841 }
2842 
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 				struct btrfs_root *root,
2845 				u64 bytenr, u64 num_bytes, u64 flags,
2846 				int level, int is_data)
2847 {
2848 	struct btrfs_delayed_extent_op *extent_op;
2849 	int ret;
2850 
2851 	extent_op = btrfs_alloc_delayed_extent_op();
2852 	if (!extent_op)
2853 		return -ENOMEM;
2854 
2855 	extent_op->flags_to_set = flags;
2856 	extent_op->update_flags = 1;
2857 	extent_op->update_key = 0;
2858 	extent_op->is_data = is_data ? 1 : 0;
2859 	extent_op->level = level;
2860 
2861 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 					  num_bytes, extent_op);
2863 	if (ret)
2864 		btrfs_free_delayed_extent_op(extent_op);
2865 	return ret;
2866 }
2867 
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 				      struct btrfs_root *root,
2870 				      struct btrfs_path *path,
2871 				      u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 	struct btrfs_delayed_ref_head *head;
2874 	struct btrfs_delayed_ref_node *ref;
2875 	struct btrfs_delayed_data_ref *data_ref;
2876 	struct btrfs_delayed_ref_root *delayed_refs;
2877 	struct rb_node *node;
2878 	int ret = 0;
2879 
2880 	delayed_refs = &trans->transaction->delayed_refs;
2881 	spin_lock(&delayed_refs->lock);
2882 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 	if (!head) {
2884 		spin_unlock(&delayed_refs->lock);
2885 		return 0;
2886 	}
2887 
2888 	if (!mutex_trylock(&head->mutex)) {
2889 		atomic_inc(&head->node.refs);
2890 		spin_unlock(&delayed_refs->lock);
2891 
2892 		btrfs_release_path(path);
2893 
2894 		/*
2895 		 * Mutex was contended, block until it's released and let
2896 		 * caller try again
2897 		 */
2898 		mutex_lock(&head->mutex);
2899 		mutex_unlock(&head->mutex);
2900 		btrfs_put_delayed_ref(&head->node);
2901 		return -EAGAIN;
2902 	}
2903 	spin_unlock(&delayed_refs->lock);
2904 
2905 	spin_lock(&head->lock);
2906 	node = rb_first(&head->ref_root);
2907 	while (node) {
2908 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 		node = rb_next(node);
2910 
2911 		/* If it's a shared ref we know a cross reference exists */
2912 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 			ret = 1;
2914 			break;
2915 		}
2916 
2917 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2918 
2919 		/*
2920 		 * If our ref doesn't match the one we're currently looking at
2921 		 * then we have a cross reference.
2922 		 */
2923 		if (data_ref->root != root->root_key.objectid ||
2924 		    data_ref->objectid != objectid ||
2925 		    data_ref->offset != offset) {
2926 			ret = 1;
2927 			break;
2928 		}
2929 	}
2930 	spin_unlock(&head->lock);
2931 	mutex_unlock(&head->mutex);
2932 	return ret;
2933 }
2934 
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 					struct btrfs_root *root,
2937 					struct btrfs_path *path,
2938 					u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 	struct extent_buffer *leaf;
2942 	struct btrfs_extent_data_ref *ref;
2943 	struct btrfs_extent_inline_ref *iref;
2944 	struct btrfs_extent_item *ei;
2945 	struct btrfs_key key;
2946 	u32 item_size;
2947 	int ret;
2948 
2949 	key.objectid = bytenr;
2950 	key.offset = (u64)-1;
2951 	key.type = BTRFS_EXTENT_ITEM_KEY;
2952 
2953 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 	if (ret < 0)
2955 		goto out;
2956 	BUG_ON(ret == 0); /* Corruption */
2957 
2958 	ret = -ENOENT;
2959 	if (path->slots[0] == 0)
2960 		goto out;
2961 
2962 	path->slots[0]--;
2963 	leaf = path->nodes[0];
2964 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965 
2966 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 		goto out;
2968 
2969 	ret = 1;
2970 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 	if (item_size < sizeof(*ei)) {
2973 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 		goto out;
2975 	}
2976 #endif
2977 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978 
2979 	if (item_size != sizeof(*ei) +
2980 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 		goto out;
2982 
2983 	if (btrfs_extent_generation(leaf, ei) <=
2984 	    btrfs_root_last_snapshot(&root->root_item))
2985 		goto out;
2986 
2987 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 	    BTRFS_EXTENT_DATA_REF_KEY)
2990 		goto out;
2991 
2992 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 	if (btrfs_extent_refs(leaf, ei) !=
2994 	    btrfs_extent_data_ref_count(leaf, ref) ||
2995 	    btrfs_extent_data_ref_root(leaf, ref) !=
2996 	    root->root_key.objectid ||
2997 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 		goto out;
3000 
3001 	ret = 0;
3002 out:
3003 	return ret;
3004 }
3005 
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 			  struct btrfs_root *root,
3008 			  u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 	struct btrfs_path *path;
3011 	int ret;
3012 	int ret2;
3013 
3014 	path = btrfs_alloc_path();
3015 	if (!path)
3016 		return -ENOENT;
3017 
3018 	do {
3019 		ret = check_committed_ref(trans, root, path, objectid,
3020 					  offset, bytenr);
3021 		if (ret && ret != -ENOENT)
3022 			goto out;
3023 
3024 		ret2 = check_delayed_ref(trans, root, path, objectid,
3025 					 offset, bytenr);
3026 	} while (ret2 == -EAGAIN);
3027 
3028 	if (ret2 && ret2 != -ENOENT) {
3029 		ret = ret2;
3030 		goto out;
3031 	}
3032 
3033 	if (ret != -ENOENT || ret2 != -ENOENT)
3034 		ret = 0;
3035 out:
3036 	btrfs_free_path(path);
3037 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 		WARN_ON(ret > 0);
3039 	return ret;
3040 }
3041 
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 			   struct btrfs_root *root,
3044 			   struct extent_buffer *buf,
3045 			   int full_backref, int inc)
3046 {
3047 	u64 bytenr;
3048 	u64 num_bytes;
3049 	u64 parent;
3050 	u64 ref_root;
3051 	u32 nritems;
3052 	struct btrfs_key key;
3053 	struct btrfs_file_extent_item *fi;
3054 	int i;
3055 	int level;
3056 	int ret = 0;
3057 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 			    u64, u64, u64, u64, u64, u64, int);
3059 
3060 
3061 	if (btrfs_test_is_dummy_root(root))
3062 		return 0;
3063 
3064 	ref_root = btrfs_header_owner(buf);
3065 	nritems = btrfs_header_nritems(buf);
3066 	level = btrfs_header_level(buf);
3067 
3068 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 		return 0;
3070 
3071 	if (inc)
3072 		process_func = btrfs_inc_extent_ref;
3073 	else
3074 		process_func = btrfs_free_extent;
3075 
3076 	if (full_backref)
3077 		parent = buf->start;
3078 	else
3079 		parent = 0;
3080 
3081 	for (i = 0; i < nritems; i++) {
3082 		if (level == 0) {
3083 			btrfs_item_key_to_cpu(buf, &key, i);
3084 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 				continue;
3086 			fi = btrfs_item_ptr(buf, i,
3087 					    struct btrfs_file_extent_item);
3088 			if (btrfs_file_extent_type(buf, fi) ==
3089 			    BTRFS_FILE_EXTENT_INLINE)
3090 				continue;
3091 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 			if (bytenr == 0)
3093 				continue;
3094 
3095 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 			key.offset -= btrfs_file_extent_offset(buf, fi);
3097 			ret = process_func(trans, root, bytenr, num_bytes,
3098 					   parent, ref_root, key.objectid,
3099 					   key.offset, 1);
3100 			if (ret)
3101 				goto fail;
3102 		} else {
3103 			bytenr = btrfs_node_blockptr(buf, i);
3104 			num_bytes = root->nodesize;
3105 			ret = process_func(trans, root, bytenr, num_bytes,
3106 					   parent, ref_root, level - 1, 0,
3107 					   1);
3108 			if (ret)
3109 				goto fail;
3110 		}
3111 	}
3112 	return 0;
3113 fail:
3114 	return ret;
3115 }
3116 
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 		  struct extent_buffer *buf, int full_backref)
3119 {
3120 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122 
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 		  struct extent_buffer *buf, int full_backref)
3125 {
3126 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128 
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 				 struct btrfs_root *root,
3131 				 struct btrfs_path *path,
3132 				 struct btrfs_block_group_cache *cache)
3133 {
3134 	int ret;
3135 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 	unsigned long bi;
3137 	struct extent_buffer *leaf;
3138 
3139 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 	if (ret) {
3141 		if (ret > 0)
3142 			ret = -ENOENT;
3143 		goto fail;
3144 	}
3145 
3146 	leaf = path->nodes[0];
3147 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 	btrfs_mark_buffer_dirty(leaf);
3150 	btrfs_release_path(path);
3151 fail:
3152 	if (ret)
3153 		btrfs_abort_transaction(trans, root, ret);
3154 	return ret;
3155 
3156 }
3157 
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 		 struct btrfs_block_group_cache *cache)
3161 {
3162 	struct rb_node *node;
3163 
3164 	spin_lock(&root->fs_info->block_group_cache_lock);
3165 
3166 	/* If our block group was removed, we need a full search. */
3167 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169 
3170 		spin_unlock(&root->fs_info->block_group_cache_lock);
3171 		btrfs_put_block_group(cache);
3172 		cache = btrfs_lookup_first_block_group(root->fs_info,
3173 						       next_bytenr);
3174 		return cache;
3175 	}
3176 	node = rb_next(&cache->cache_node);
3177 	btrfs_put_block_group(cache);
3178 	if (node) {
3179 		cache = rb_entry(node, struct btrfs_block_group_cache,
3180 				 cache_node);
3181 		btrfs_get_block_group(cache);
3182 	} else
3183 		cache = NULL;
3184 	spin_unlock(&root->fs_info->block_group_cache_lock);
3185 	return cache;
3186 }
3187 
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 			    struct btrfs_trans_handle *trans,
3190 			    struct btrfs_path *path)
3191 {
3192 	struct btrfs_root *root = block_group->fs_info->tree_root;
3193 	struct inode *inode = NULL;
3194 	u64 alloc_hint = 0;
3195 	int dcs = BTRFS_DC_ERROR;
3196 	int num_pages = 0;
3197 	int retries = 0;
3198 	int ret = 0;
3199 
3200 	/*
3201 	 * If this block group is smaller than 100 megs don't bother caching the
3202 	 * block group.
3203 	 */
3204 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 		spin_lock(&block_group->lock);
3206 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 		spin_unlock(&block_group->lock);
3208 		return 0;
3209 	}
3210 
3211 again:
3212 	inode = lookup_free_space_inode(root, block_group, path);
3213 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3214 		ret = PTR_ERR(inode);
3215 		btrfs_release_path(path);
3216 		goto out;
3217 	}
3218 
3219 	if (IS_ERR(inode)) {
3220 		BUG_ON(retries);
3221 		retries++;
3222 
3223 		if (block_group->ro)
3224 			goto out_free;
3225 
3226 		ret = create_free_space_inode(root, trans, block_group, path);
3227 		if (ret)
3228 			goto out_free;
3229 		goto again;
3230 	}
3231 
3232 	/* We've already setup this transaction, go ahead and exit */
3233 	if (block_group->cache_generation == trans->transid &&
3234 	    i_size_read(inode)) {
3235 		dcs = BTRFS_DC_SETUP;
3236 		goto out_put;
3237 	}
3238 
3239 	/*
3240 	 * We want to set the generation to 0, that way if anything goes wrong
3241 	 * from here on out we know not to trust this cache when we load up next
3242 	 * time.
3243 	 */
3244 	BTRFS_I(inode)->generation = 0;
3245 	ret = btrfs_update_inode(trans, root, inode);
3246 	WARN_ON(ret);
3247 
3248 	if (i_size_read(inode) > 0) {
3249 		ret = btrfs_check_trunc_cache_free_space(root,
3250 					&root->fs_info->global_block_rsv);
3251 		if (ret)
3252 			goto out_put;
3253 
3254 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3255 		if (ret)
3256 			goto out_put;
3257 	}
3258 
3259 	spin_lock(&block_group->lock);
3260 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3261 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3262 	    block_group->delalloc_bytes) {
3263 		/*
3264 		 * don't bother trying to write stuff out _if_
3265 		 * a) we're not cached,
3266 		 * b) we're with nospace_cache mount option.
3267 		 */
3268 		dcs = BTRFS_DC_WRITTEN;
3269 		spin_unlock(&block_group->lock);
3270 		goto out_put;
3271 	}
3272 	spin_unlock(&block_group->lock);
3273 
3274 	/*
3275 	 * Try to preallocate enough space based on how big the block group is.
3276 	 * Keep in mind this has to include any pinned space which could end up
3277 	 * taking up quite a bit since it's not folded into the other space
3278 	 * cache.
3279 	 */
3280 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3281 	if (!num_pages)
3282 		num_pages = 1;
3283 
3284 	num_pages *= 16;
3285 	num_pages *= PAGE_CACHE_SIZE;
3286 
3287 	ret = btrfs_check_data_free_space(inode, num_pages);
3288 	if (ret)
3289 		goto out_put;
3290 
3291 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3292 					      num_pages, num_pages,
3293 					      &alloc_hint);
3294 	if (!ret)
3295 		dcs = BTRFS_DC_SETUP;
3296 	btrfs_free_reserved_data_space(inode, num_pages);
3297 
3298 out_put:
3299 	iput(inode);
3300 out_free:
3301 	btrfs_release_path(path);
3302 out:
3303 	spin_lock(&block_group->lock);
3304 	if (!ret && dcs == BTRFS_DC_SETUP)
3305 		block_group->cache_generation = trans->transid;
3306 	block_group->disk_cache_state = dcs;
3307 	spin_unlock(&block_group->lock);
3308 
3309 	return ret;
3310 }
3311 
3312 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3313 				   struct btrfs_root *root)
3314 {
3315 	struct btrfs_block_group_cache *cache;
3316 	struct btrfs_transaction *cur_trans = trans->transaction;
3317 	int ret = 0;
3318 	struct btrfs_path *path;
3319 
3320 	if (list_empty(&cur_trans->dirty_bgs))
3321 		return 0;
3322 
3323 	path = btrfs_alloc_path();
3324 	if (!path)
3325 		return -ENOMEM;
3326 
3327 	/*
3328 	 * We don't need the lock here since we are protected by the transaction
3329 	 * commit.  We want to do the cache_save_setup first and then run the
3330 	 * delayed refs to make sure we have the best chance at doing this all
3331 	 * in one shot.
3332 	 */
3333 	while (!list_empty(&cur_trans->dirty_bgs)) {
3334 		cache = list_first_entry(&cur_trans->dirty_bgs,
3335 					 struct btrfs_block_group_cache,
3336 					 dirty_list);
3337 		list_del_init(&cache->dirty_list);
3338 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3339 			cache_save_setup(cache, trans, path);
3340 		if (!ret)
3341 			ret = btrfs_run_delayed_refs(trans, root,
3342 						     (unsigned long) -1);
3343 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3344 			btrfs_write_out_cache(root, trans, cache, path);
3345 		if (!ret)
3346 			ret = write_one_cache_group(trans, root, path, cache);
3347 		btrfs_put_block_group(cache);
3348 	}
3349 
3350 	btrfs_free_path(path);
3351 	return ret;
3352 }
3353 
3354 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3355 {
3356 	struct btrfs_block_group_cache *block_group;
3357 	int readonly = 0;
3358 
3359 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3360 	if (!block_group || block_group->ro)
3361 		readonly = 1;
3362 	if (block_group)
3363 		btrfs_put_block_group(block_group);
3364 	return readonly;
3365 }
3366 
3367 static const char *alloc_name(u64 flags)
3368 {
3369 	switch (flags) {
3370 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3371 		return "mixed";
3372 	case BTRFS_BLOCK_GROUP_METADATA:
3373 		return "metadata";
3374 	case BTRFS_BLOCK_GROUP_DATA:
3375 		return "data";
3376 	case BTRFS_BLOCK_GROUP_SYSTEM:
3377 		return "system";
3378 	default:
3379 		WARN_ON(1);
3380 		return "invalid-combination";
3381 	};
3382 }
3383 
3384 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3385 			     u64 total_bytes, u64 bytes_used,
3386 			     struct btrfs_space_info **space_info)
3387 {
3388 	struct btrfs_space_info *found;
3389 	int i;
3390 	int factor;
3391 	int ret;
3392 
3393 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3394 		     BTRFS_BLOCK_GROUP_RAID10))
3395 		factor = 2;
3396 	else
3397 		factor = 1;
3398 
3399 	found = __find_space_info(info, flags);
3400 	if (found) {
3401 		spin_lock(&found->lock);
3402 		found->total_bytes += total_bytes;
3403 		found->disk_total += total_bytes * factor;
3404 		found->bytes_used += bytes_used;
3405 		found->disk_used += bytes_used * factor;
3406 		found->full = 0;
3407 		spin_unlock(&found->lock);
3408 		*space_info = found;
3409 		return 0;
3410 	}
3411 	found = kzalloc(sizeof(*found), GFP_NOFS);
3412 	if (!found)
3413 		return -ENOMEM;
3414 
3415 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3416 	if (ret) {
3417 		kfree(found);
3418 		return ret;
3419 	}
3420 
3421 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3422 		INIT_LIST_HEAD(&found->block_groups[i]);
3423 	init_rwsem(&found->groups_sem);
3424 	spin_lock_init(&found->lock);
3425 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3426 	found->total_bytes = total_bytes;
3427 	found->disk_total = total_bytes * factor;
3428 	found->bytes_used = bytes_used;
3429 	found->disk_used = bytes_used * factor;
3430 	found->bytes_pinned = 0;
3431 	found->bytes_reserved = 0;
3432 	found->bytes_readonly = 0;
3433 	found->bytes_may_use = 0;
3434 	found->full = 0;
3435 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3436 	found->chunk_alloc = 0;
3437 	found->flush = 0;
3438 	init_waitqueue_head(&found->wait);
3439 	INIT_LIST_HEAD(&found->ro_bgs);
3440 
3441 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3442 				    info->space_info_kobj, "%s",
3443 				    alloc_name(found->flags));
3444 	if (ret) {
3445 		kfree(found);
3446 		return ret;
3447 	}
3448 
3449 	*space_info = found;
3450 	list_add_rcu(&found->list, &info->space_info);
3451 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3452 		info->data_sinfo = found;
3453 
3454 	return ret;
3455 }
3456 
3457 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3458 {
3459 	u64 extra_flags = chunk_to_extended(flags) &
3460 				BTRFS_EXTENDED_PROFILE_MASK;
3461 
3462 	write_seqlock(&fs_info->profiles_lock);
3463 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3464 		fs_info->avail_data_alloc_bits |= extra_flags;
3465 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3466 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3467 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3468 		fs_info->avail_system_alloc_bits |= extra_flags;
3469 	write_sequnlock(&fs_info->profiles_lock);
3470 }
3471 
3472 /*
3473  * returns target flags in extended format or 0 if restripe for this
3474  * chunk_type is not in progress
3475  *
3476  * should be called with either volume_mutex or balance_lock held
3477  */
3478 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3479 {
3480 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3481 	u64 target = 0;
3482 
3483 	if (!bctl)
3484 		return 0;
3485 
3486 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3487 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3489 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3490 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3492 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3493 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3494 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3495 	}
3496 
3497 	return target;
3498 }
3499 
3500 /*
3501  * @flags: available profiles in extended format (see ctree.h)
3502  *
3503  * Returns reduced profile in chunk format.  If profile changing is in
3504  * progress (either running or paused) picks the target profile (if it's
3505  * already available), otherwise falls back to plain reducing.
3506  */
3507 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3508 {
3509 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3510 	u64 target;
3511 	u64 tmp;
3512 
3513 	/*
3514 	 * see if restripe for this chunk_type is in progress, if so
3515 	 * try to reduce to the target profile
3516 	 */
3517 	spin_lock(&root->fs_info->balance_lock);
3518 	target = get_restripe_target(root->fs_info, flags);
3519 	if (target) {
3520 		/* pick target profile only if it's already available */
3521 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3522 			spin_unlock(&root->fs_info->balance_lock);
3523 			return extended_to_chunk(target);
3524 		}
3525 	}
3526 	spin_unlock(&root->fs_info->balance_lock);
3527 
3528 	/* First, mask out the RAID levels which aren't possible */
3529 	if (num_devices == 1)
3530 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3531 			   BTRFS_BLOCK_GROUP_RAID5);
3532 	if (num_devices < 3)
3533 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3534 	if (num_devices < 4)
3535 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3536 
3537 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3538 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3539 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3540 	flags &= ~tmp;
3541 
3542 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3543 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3544 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3545 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3546 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3547 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3548 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3549 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3550 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3551 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3552 
3553 	return extended_to_chunk(flags | tmp);
3554 }
3555 
3556 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3557 {
3558 	unsigned seq;
3559 	u64 flags;
3560 
3561 	do {
3562 		flags = orig_flags;
3563 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3564 
3565 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3566 			flags |= root->fs_info->avail_data_alloc_bits;
3567 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3568 			flags |= root->fs_info->avail_system_alloc_bits;
3569 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3570 			flags |= root->fs_info->avail_metadata_alloc_bits;
3571 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3572 
3573 	return btrfs_reduce_alloc_profile(root, flags);
3574 }
3575 
3576 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3577 {
3578 	u64 flags;
3579 	u64 ret;
3580 
3581 	if (data)
3582 		flags = BTRFS_BLOCK_GROUP_DATA;
3583 	else if (root == root->fs_info->chunk_root)
3584 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3585 	else
3586 		flags = BTRFS_BLOCK_GROUP_METADATA;
3587 
3588 	ret = get_alloc_profile(root, flags);
3589 	return ret;
3590 }
3591 
3592 /*
3593  * This will check the space that the inode allocates from to make sure we have
3594  * enough space for bytes.
3595  */
3596 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3597 {
3598 	struct btrfs_space_info *data_sinfo;
3599 	struct btrfs_root *root = BTRFS_I(inode)->root;
3600 	struct btrfs_fs_info *fs_info = root->fs_info;
3601 	u64 used;
3602 	int ret = 0, committed = 0, alloc_chunk = 1;
3603 
3604 	/* make sure bytes are sectorsize aligned */
3605 	bytes = ALIGN(bytes, root->sectorsize);
3606 
3607 	if (btrfs_is_free_space_inode(inode)) {
3608 		committed = 1;
3609 		ASSERT(current->journal_info);
3610 	}
3611 
3612 	data_sinfo = fs_info->data_sinfo;
3613 	if (!data_sinfo)
3614 		goto alloc;
3615 
3616 again:
3617 	/* make sure we have enough space to handle the data first */
3618 	spin_lock(&data_sinfo->lock);
3619 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3620 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3621 		data_sinfo->bytes_may_use;
3622 
3623 	if (used + bytes > data_sinfo->total_bytes) {
3624 		struct btrfs_trans_handle *trans;
3625 
3626 		/*
3627 		 * if we don't have enough free bytes in this space then we need
3628 		 * to alloc a new chunk.
3629 		 */
3630 		if (!data_sinfo->full && alloc_chunk) {
3631 			u64 alloc_target;
3632 
3633 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3634 			spin_unlock(&data_sinfo->lock);
3635 alloc:
3636 			alloc_target = btrfs_get_alloc_profile(root, 1);
3637 			/*
3638 			 * It is ugly that we don't call nolock join
3639 			 * transaction for the free space inode case here.
3640 			 * But it is safe because we only do the data space
3641 			 * reservation for the free space cache in the
3642 			 * transaction context, the common join transaction
3643 			 * just increase the counter of the current transaction
3644 			 * handler, doesn't try to acquire the trans_lock of
3645 			 * the fs.
3646 			 */
3647 			trans = btrfs_join_transaction(root);
3648 			if (IS_ERR(trans))
3649 				return PTR_ERR(trans);
3650 
3651 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3652 					     alloc_target,
3653 					     CHUNK_ALLOC_NO_FORCE);
3654 			btrfs_end_transaction(trans, root);
3655 			if (ret < 0) {
3656 				if (ret != -ENOSPC)
3657 					return ret;
3658 				else
3659 					goto commit_trans;
3660 			}
3661 
3662 			if (!data_sinfo)
3663 				data_sinfo = fs_info->data_sinfo;
3664 
3665 			goto again;
3666 		}
3667 
3668 		/*
3669 		 * If we don't have enough pinned space to deal with this
3670 		 * allocation don't bother committing the transaction.
3671 		 */
3672 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3673 					   bytes) < 0)
3674 			committed = 1;
3675 		spin_unlock(&data_sinfo->lock);
3676 
3677 		/* commit the current transaction and try again */
3678 commit_trans:
3679 		if (!committed &&
3680 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3681 			committed = 1;
3682 
3683 			trans = btrfs_join_transaction(root);
3684 			if (IS_ERR(trans))
3685 				return PTR_ERR(trans);
3686 			ret = btrfs_commit_transaction(trans, root);
3687 			if (ret)
3688 				return ret;
3689 			goto again;
3690 		}
3691 
3692 		trace_btrfs_space_reservation(root->fs_info,
3693 					      "space_info:enospc",
3694 					      data_sinfo->flags, bytes, 1);
3695 		return -ENOSPC;
3696 	}
3697 	data_sinfo->bytes_may_use += bytes;
3698 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3699 				      data_sinfo->flags, bytes, 1);
3700 	spin_unlock(&data_sinfo->lock);
3701 
3702 	return 0;
3703 }
3704 
3705 /*
3706  * Called if we need to clear a data reservation for this inode.
3707  */
3708 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3709 {
3710 	struct btrfs_root *root = BTRFS_I(inode)->root;
3711 	struct btrfs_space_info *data_sinfo;
3712 
3713 	/* make sure bytes are sectorsize aligned */
3714 	bytes = ALIGN(bytes, root->sectorsize);
3715 
3716 	data_sinfo = root->fs_info->data_sinfo;
3717 	spin_lock(&data_sinfo->lock);
3718 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3719 	data_sinfo->bytes_may_use -= bytes;
3720 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3721 				      data_sinfo->flags, bytes, 0);
3722 	spin_unlock(&data_sinfo->lock);
3723 }
3724 
3725 static void force_metadata_allocation(struct btrfs_fs_info *info)
3726 {
3727 	struct list_head *head = &info->space_info;
3728 	struct btrfs_space_info *found;
3729 
3730 	rcu_read_lock();
3731 	list_for_each_entry_rcu(found, head, list) {
3732 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3733 			found->force_alloc = CHUNK_ALLOC_FORCE;
3734 	}
3735 	rcu_read_unlock();
3736 }
3737 
3738 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3739 {
3740 	return (global->size << 1);
3741 }
3742 
3743 static int should_alloc_chunk(struct btrfs_root *root,
3744 			      struct btrfs_space_info *sinfo, int force)
3745 {
3746 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3747 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3748 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3749 	u64 thresh;
3750 
3751 	if (force == CHUNK_ALLOC_FORCE)
3752 		return 1;
3753 
3754 	/*
3755 	 * We need to take into account the global rsv because for all intents
3756 	 * and purposes it's used space.  Don't worry about locking the
3757 	 * global_rsv, it doesn't change except when the transaction commits.
3758 	 */
3759 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3760 		num_allocated += calc_global_rsv_need_space(global_rsv);
3761 
3762 	/*
3763 	 * in limited mode, we want to have some free space up to
3764 	 * about 1% of the FS size.
3765 	 */
3766 	if (force == CHUNK_ALLOC_LIMITED) {
3767 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3768 		thresh = max_t(u64, 64 * 1024 * 1024,
3769 			       div_factor_fine(thresh, 1));
3770 
3771 		if (num_bytes - num_allocated < thresh)
3772 			return 1;
3773 	}
3774 
3775 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3776 		return 0;
3777 	return 1;
3778 }
3779 
3780 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3781 {
3782 	u64 num_dev;
3783 
3784 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3785 		    BTRFS_BLOCK_GROUP_RAID0 |
3786 		    BTRFS_BLOCK_GROUP_RAID5 |
3787 		    BTRFS_BLOCK_GROUP_RAID6))
3788 		num_dev = root->fs_info->fs_devices->rw_devices;
3789 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3790 		num_dev = 2;
3791 	else
3792 		num_dev = 1;	/* DUP or single */
3793 
3794 	/* metadata for updaing devices and chunk tree */
3795 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3796 }
3797 
3798 static void check_system_chunk(struct btrfs_trans_handle *trans,
3799 			       struct btrfs_root *root, u64 type)
3800 {
3801 	struct btrfs_space_info *info;
3802 	u64 left;
3803 	u64 thresh;
3804 
3805 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3806 	spin_lock(&info->lock);
3807 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3808 		info->bytes_reserved - info->bytes_readonly;
3809 	spin_unlock(&info->lock);
3810 
3811 	thresh = get_system_chunk_thresh(root, type);
3812 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3813 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3814 			left, thresh, type);
3815 		dump_space_info(info, 0, 0);
3816 	}
3817 
3818 	if (left < thresh) {
3819 		u64 flags;
3820 
3821 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3822 		btrfs_alloc_chunk(trans, root, flags);
3823 	}
3824 }
3825 
3826 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3827 			  struct btrfs_root *extent_root, u64 flags, int force)
3828 {
3829 	struct btrfs_space_info *space_info;
3830 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3831 	int wait_for_alloc = 0;
3832 	int ret = 0;
3833 
3834 	/* Don't re-enter if we're already allocating a chunk */
3835 	if (trans->allocating_chunk)
3836 		return -ENOSPC;
3837 
3838 	space_info = __find_space_info(extent_root->fs_info, flags);
3839 	if (!space_info) {
3840 		ret = update_space_info(extent_root->fs_info, flags,
3841 					0, 0, &space_info);
3842 		BUG_ON(ret); /* -ENOMEM */
3843 	}
3844 	BUG_ON(!space_info); /* Logic error */
3845 
3846 again:
3847 	spin_lock(&space_info->lock);
3848 	if (force < space_info->force_alloc)
3849 		force = space_info->force_alloc;
3850 	if (space_info->full) {
3851 		if (should_alloc_chunk(extent_root, space_info, force))
3852 			ret = -ENOSPC;
3853 		else
3854 			ret = 0;
3855 		spin_unlock(&space_info->lock);
3856 		return ret;
3857 	}
3858 
3859 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3860 		spin_unlock(&space_info->lock);
3861 		return 0;
3862 	} else if (space_info->chunk_alloc) {
3863 		wait_for_alloc = 1;
3864 	} else {
3865 		space_info->chunk_alloc = 1;
3866 	}
3867 
3868 	spin_unlock(&space_info->lock);
3869 
3870 	mutex_lock(&fs_info->chunk_mutex);
3871 
3872 	/*
3873 	 * The chunk_mutex is held throughout the entirety of a chunk
3874 	 * allocation, so once we've acquired the chunk_mutex we know that the
3875 	 * other guy is done and we need to recheck and see if we should
3876 	 * allocate.
3877 	 */
3878 	if (wait_for_alloc) {
3879 		mutex_unlock(&fs_info->chunk_mutex);
3880 		wait_for_alloc = 0;
3881 		goto again;
3882 	}
3883 
3884 	trans->allocating_chunk = true;
3885 
3886 	/*
3887 	 * If we have mixed data/metadata chunks we want to make sure we keep
3888 	 * allocating mixed chunks instead of individual chunks.
3889 	 */
3890 	if (btrfs_mixed_space_info(space_info))
3891 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3892 
3893 	/*
3894 	 * if we're doing a data chunk, go ahead and make sure that
3895 	 * we keep a reasonable number of metadata chunks allocated in the
3896 	 * FS as well.
3897 	 */
3898 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3899 		fs_info->data_chunk_allocations++;
3900 		if (!(fs_info->data_chunk_allocations %
3901 		      fs_info->metadata_ratio))
3902 			force_metadata_allocation(fs_info);
3903 	}
3904 
3905 	/*
3906 	 * Check if we have enough space in SYSTEM chunk because we may need
3907 	 * to update devices.
3908 	 */
3909 	check_system_chunk(trans, extent_root, flags);
3910 
3911 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3912 	trans->allocating_chunk = false;
3913 
3914 	spin_lock(&space_info->lock);
3915 	if (ret < 0 && ret != -ENOSPC)
3916 		goto out;
3917 	if (ret)
3918 		space_info->full = 1;
3919 	else
3920 		ret = 1;
3921 
3922 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3923 out:
3924 	space_info->chunk_alloc = 0;
3925 	spin_unlock(&space_info->lock);
3926 	mutex_unlock(&fs_info->chunk_mutex);
3927 	return ret;
3928 }
3929 
3930 static int can_overcommit(struct btrfs_root *root,
3931 			  struct btrfs_space_info *space_info, u64 bytes,
3932 			  enum btrfs_reserve_flush_enum flush)
3933 {
3934 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3935 	u64 profile = btrfs_get_alloc_profile(root, 0);
3936 	u64 space_size;
3937 	u64 avail;
3938 	u64 used;
3939 
3940 	used = space_info->bytes_used + space_info->bytes_reserved +
3941 		space_info->bytes_pinned + space_info->bytes_readonly;
3942 
3943 	/*
3944 	 * We only want to allow over committing if we have lots of actual space
3945 	 * free, but if we don't have enough space to handle the global reserve
3946 	 * space then we could end up having a real enospc problem when trying
3947 	 * to allocate a chunk or some other such important allocation.
3948 	 */
3949 	spin_lock(&global_rsv->lock);
3950 	space_size = calc_global_rsv_need_space(global_rsv);
3951 	spin_unlock(&global_rsv->lock);
3952 	if (used + space_size >= space_info->total_bytes)
3953 		return 0;
3954 
3955 	used += space_info->bytes_may_use;
3956 
3957 	spin_lock(&root->fs_info->free_chunk_lock);
3958 	avail = root->fs_info->free_chunk_space;
3959 	spin_unlock(&root->fs_info->free_chunk_lock);
3960 
3961 	/*
3962 	 * If we have dup, raid1 or raid10 then only half of the free
3963 	 * space is actually useable.  For raid56, the space info used
3964 	 * doesn't include the parity drive, so we don't have to
3965 	 * change the math
3966 	 */
3967 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3968 		       BTRFS_BLOCK_GROUP_RAID1 |
3969 		       BTRFS_BLOCK_GROUP_RAID10))
3970 		avail >>= 1;
3971 
3972 	/*
3973 	 * If we aren't flushing all things, let us overcommit up to
3974 	 * 1/2th of the space. If we can flush, don't let us overcommit
3975 	 * too much, let it overcommit up to 1/8 of the space.
3976 	 */
3977 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3978 		avail >>= 3;
3979 	else
3980 		avail >>= 1;
3981 
3982 	if (used + bytes < space_info->total_bytes + avail)
3983 		return 1;
3984 	return 0;
3985 }
3986 
3987 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3988 					 unsigned long nr_pages, int nr_items)
3989 {
3990 	struct super_block *sb = root->fs_info->sb;
3991 
3992 	if (down_read_trylock(&sb->s_umount)) {
3993 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3994 		up_read(&sb->s_umount);
3995 	} else {
3996 		/*
3997 		 * We needn't worry the filesystem going from r/w to r/o though
3998 		 * we don't acquire ->s_umount mutex, because the filesystem
3999 		 * should guarantee the delalloc inodes list be empty after
4000 		 * the filesystem is readonly(all dirty pages are written to
4001 		 * the disk).
4002 		 */
4003 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4004 		if (!current->journal_info)
4005 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4006 	}
4007 }
4008 
4009 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4010 {
4011 	u64 bytes;
4012 	int nr;
4013 
4014 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4015 	nr = (int)div64_u64(to_reclaim, bytes);
4016 	if (!nr)
4017 		nr = 1;
4018 	return nr;
4019 }
4020 
4021 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4022 
4023 /*
4024  * shrink metadata reservation for delalloc
4025  */
4026 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4027 			    bool wait_ordered)
4028 {
4029 	struct btrfs_block_rsv *block_rsv;
4030 	struct btrfs_space_info *space_info;
4031 	struct btrfs_trans_handle *trans;
4032 	u64 delalloc_bytes;
4033 	u64 max_reclaim;
4034 	long time_left;
4035 	unsigned long nr_pages;
4036 	int loops;
4037 	int items;
4038 	enum btrfs_reserve_flush_enum flush;
4039 
4040 	/* Calc the number of the pages we need flush for space reservation */
4041 	items = calc_reclaim_items_nr(root, to_reclaim);
4042 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4043 
4044 	trans = (struct btrfs_trans_handle *)current->journal_info;
4045 	block_rsv = &root->fs_info->delalloc_block_rsv;
4046 	space_info = block_rsv->space_info;
4047 
4048 	delalloc_bytes = percpu_counter_sum_positive(
4049 						&root->fs_info->delalloc_bytes);
4050 	if (delalloc_bytes == 0) {
4051 		if (trans)
4052 			return;
4053 		if (wait_ordered)
4054 			btrfs_wait_ordered_roots(root->fs_info, items);
4055 		return;
4056 	}
4057 
4058 	loops = 0;
4059 	while (delalloc_bytes && loops < 3) {
4060 		max_reclaim = min(delalloc_bytes, to_reclaim);
4061 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4062 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4063 		/*
4064 		 * We need to wait for the async pages to actually start before
4065 		 * we do anything.
4066 		 */
4067 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4068 		if (!max_reclaim)
4069 			goto skip_async;
4070 
4071 		if (max_reclaim <= nr_pages)
4072 			max_reclaim = 0;
4073 		else
4074 			max_reclaim -= nr_pages;
4075 
4076 		wait_event(root->fs_info->async_submit_wait,
4077 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4078 			   (int)max_reclaim);
4079 skip_async:
4080 		if (!trans)
4081 			flush = BTRFS_RESERVE_FLUSH_ALL;
4082 		else
4083 			flush = BTRFS_RESERVE_NO_FLUSH;
4084 		spin_lock(&space_info->lock);
4085 		if (can_overcommit(root, space_info, orig, flush)) {
4086 			spin_unlock(&space_info->lock);
4087 			break;
4088 		}
4089 		spin_unlock(&space_info->lock);
4090 
4091 		loops++;
4092 		if (wait_ordered && !trans) {
4093 			btrfs_wait_ordered_roots(root->fs_info, items);
4094 		} else {
4095 			time_left = schedule_timeout_killable(1);
4096 			if (time_left)
4097 				break;
4098 		}
4099 		delalloc_bytes = percpu_counter_sum_positive(
4100 						&root->fs_info->delalloc_bytes);
4101 	}
4102 }
4103 
4104 /**
4105  * maybe_commit_transaction - possibly commit the transaction if its ok to
4106  * @root - the root we're allocating for
4107  * @bytes - the number of bytes we want to reserve
4108  * @force - force the commit
4109  *
4110  * This will check to make sure that committing the transaction will actually
4111  * get us somewhere and then commit the transaction if it does.  Otherwise it
4112  * will return -ENOSPC.
4113  */
4114 static int may_commit_transaction(struct btrfs_root *root,
4115 				  struct btrfs_space_info *space_info,
4116 				  u64 bytes, int force)
4117 {
4118 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4119 	struct btrfs_trans_handle *trans;
4120 
4121 	trans = (struct btrfs_trans_handle *)current->journal_info;
4122 	if (trans)
4123 		return -EAGAIN;
4124 
4125 	if (force)
4126 		goto commit;
4127 
4128 	/* See if there is enough pinned space to make this reservation */
4129 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4130 				   bytes) >= 0)
4131 		goto commit;
4132 
4133 	/*
4134 	 * See if there is some space in the delayed insertion reservation for
4135 	 * this reservation.
4136 	 */
4137 	if (space_info != delayed_rsv->space_info)
4138 		return -ENOSPC;
4139 
4140 	spin_lock(&delayed_rsv->lock);
4141 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4142 				   bytes - delayed_rsv->size) >= 0) {
4143 		spin_unlock(&delayed_rsv->lock);
4144 		return -ENOSPC;
4145 	}
4146 	spin_unlock(&delayed_rsv->lock);
4147 
4148 commit:
4149 	trans = btrfs_join_transaction(root);
4150 	if (IS_ERR(trans))
4151 		return -ENOSPC;
4152 
4153 	return btrfs_commit_transaction(trans, root);
4154 }
4155 
4156 enum flush_state {
4157 	FLUSH_DELAYED_ITEMS_NR	=	1,
4158 	FLUSH_DELAYED_ITEMS	=	2,
4159 	FLUSH_DELALLOC		=	3,
4160 	FLUSH_DELALLOC_WAIT	=	4,
4161 	ALLOC_CHUNK		=	5,
4162 	COMMIT_TRANS		=	6,
4163 };
4164 
4165 static int flush_space(struct btrfs_root *root,
4166 		       struct btrfs_space_info *space_info, u64 num_bytes,
4167 		       u64 orig_bytes, int state)
4168 {
4169 	struct btrfs_trans_handle *trans;
4170 	int nr;
4171 	int ret = 0;
4172 
4173 	switch (state) {
4174 	case FLUSH_DELAYED_ITEMS_NR:
4175 	case FLUSH_DELAYED_ITEMS:
4176 		if (state == FLUSH_DELAYED_ITEMS_NR)
4177 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4178 		else
4179 			nr = -1;
4180 
4181 		trans = btrfs_join_transaction(root);
4182 		if (IS_ERR(trans)) {
4183 			ret = PTR_ERR(trans);
4184 			break;
4185 		}
4186 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4187 		btrfs_end_transaction(trans, root);
4188 		break;
4189 	case FLUSH_DELALLOC:
4190 	case FLUSH_DELALLOC_WAIT:
4191 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4192 				state == FLUSH_DELALLOC_WAIT);
4193 		break;
4194 	case ALLOC_CHUNK:
4195 		trans = btrfs_join_transaction(root);
4196 		if (IS_ERR(trans)) {
4197 			ret = PTR_ERR(trans);
4198 			break;
4199 		}
4200 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4201 				     btrfs_get_alloc_profile(root, 0),
4202 				     CHUNK_ALLOC_NO_FORCE);
4203 		btrfs_end_transaction(trans, root);
4204 		if (ret == -ENOSPC)
4205 			ret = 0;
4206 		break;
4207 	case COMMIT_TRANS:
4208 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4209 		break;
4210 	default:
4211 		ret = -ENOSPC;
4212 		break;
4213 	}
4214 
4215 	return ret;
4216 }
4217 
4218 static inline u64
4219 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4220 				 struct btrfs_space_info *space_info)
4221 {
4222 	u64 used;
4223 	u64 expected;
4224 	u64 to_reclaim;
4225 
4226 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4227 				16 * 1024 * 1024);
4228 	spin_lock(&space_info->lock);
4229 	if (can_overcommit(root, space_info, to_reclaim,
4230 			   BTRFS_RESERVE_FLUSH_ALL)) {
4231 		to_reclaim = 0;
4232 		goto out;
4233 	}
4234 
4235 	used = space_info->bytes_used + space_info->bytes_reserved +
4236 	       space_info->bytes_pinned + space_info->bytes_readonly +
4237 	       space_info->bytes_may_use;
4238 	if (can_overcommit(root, space_info, 1024 * 1024,
4239 			   BTRFS_RESERVE_FLUSH_ALL))
4240 		expected = div_factor_fine(space_info->total_bytes, 95);
4241 	else
4242 		expected = div_factor_fine(space_info->total_bytes, 90);
4243 
4244 	if (used > expected)
4245 		to_reclaim = used - expected;
4246 	else
4247 		to_reclaim = 0;
4248 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4249 				     space_info->bytes_reserved);
4250 out:
4251 	spin_unlock(&space_info->lock);
4252 
4253 	return to_reclaim;
4254 }
4255 
4256 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4257 					struct btrfs_fs_info *fs_info, u64 used)
4258 {
4259 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4260 		!btrfs_fs_closing(fs_info) &&
4261 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4262 }
4263 
4264 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4265 				       struct btrfs_fs_info *fs_info,
4266 				       int flush_state)
4267 {
4268 	u64 used;
4269 
4270 	spin_lock(&space_info->lock);
4271 	/*
4272 	 * We run out of space and have not got any free space via flush_space,
4273 	 * so don't bother doing async reclaim.
4274 	 */
4275 	if (flush_state > COMMIT_TRANS && space_info->full) {
4276 		spin_unlock(&space_info->lock);
4277 		return 0;
4278 	}
4279 
4280 	used = space_info->bytes_used + space_info->bytes_reserved +
4281 	       space_info->bytes_pinned + space_info->bytes_readonly +
4282 	       space_info->bytes_may_use;
4283 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4284 		spin_unlock(&space_info->lock);
4285 		return 1;
4286 	}
4287 	spin_unlock(&space_info->lock);
4288 
4289 	return 0;
4290 }
4291 
4292 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4293 {
4294 	struct btrfs_fs_info *fs_info;
4295 	struct btrfs_space_info *space_info;
4296 	u64 to_reclaim;
4297 	int flush_state;
4298 
4299 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4300 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4301 
4302 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4303 						      space_info);
4304 	if (!to_reclaim)
4305 		return;
4306 
4307 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4308 	do {
4309 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4310 			    to_reclaim, flush_state);
4311 		flush_state++;
4312 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4313 						 flush_state))
4314 			return;
4315 	} while (flush_state <= COMMIT_TRANS);
4316 
4317 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4318 		queue_work(system_unbound_wq, work);
4319 }
4320 
4321 void btrfs_init_async_reclaim_work(struct work_struct *work)
4322 {
4323 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4324 }
4325 
4326 /**
4327  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4328  * @root - the root we're allocating for
4329  * @block_rsv - the block_rsv we're allocating for
4330  * @orig_bytes - the number of bytes we want
4331  * @flush - whether or not we can flush to make our reservation
4332  *
4333  * This will reserve orgi_bytes number of bytes from the space info associated
4334  * with the block_rsv.  If there is not enough space it will make an attempt to
4335  * flush out space to make room.  It will do this by flushing delalloc if
4336  * possible or committing the transaction.  If flush is 0 then no attempts to
4337  * regain reservations will be made and this will fail if there is not enough
4338  * space already.
4339  */
4340 static int reserve_metadata_bytes(struct btrfs_root *root,
4341 				  struct btrfs_block_rsv *block_rsv,
4342 				  u64 orig_bytes,
4343 				  enum btrfs_reserve_flush_enum flush)
4344 {
4345 	struct btrfs_space_info *space_info = block_rsv->space_info;
4346 	u64 used;
4347 	u64 num_bytes = orig_bytes;
4348 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4349 	int ret = 0;
4350 	bool flushing = false;
4351 
4352 again:
4353 	ret = 0;
4354 	spin_lock(&space_info->lock);
4355 	/*
4356 	 * We only want to wait if somebody other than us is flushing and we
4357 	 * are actually allowed to flush all things.
4358 	 */
4359 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4360 	       space_info->flush) {
4361 		spin_unlock(&space_info->lock);
4362 		/*
4363 		 * If we have a trans handle we can't wait because the flusher
4364 		 * may have to commit the transaction, which would mean we would
4365 		 * deadlock since we are waiting for the flusher to finish, but
4366 		 * hold the current transaction open.
4367 		 */
4368 		if (current->journal_info)
4369 			return -EAGAIN;
4370 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4371 		/* Must have been killed, return */
4372 		if (ret)
4373 			return -EINTR;
4374 
4375 		spin_lock(&space_info->lock);
4376 	}
4377 
4378 	ret = -ENOSPC;
4379 	used = space_info->bytes_used + space_info->bytes_reserved +
4380 		space_info->bytes_pinned + space_info->bytes_readonly +
4381 		space_info->bytes_may_use;
4382 
4383 	/*
4384 	 * The idea here is that we've not already over-reserved the block group
4385 	 * then we can go ahead and save our reservation first and then start
4386 	 * flushing if we need to.  Otherwise if we've already overcommitted
4387 	 * lets start flushing stuff first and then come back and try to make
4388 	 * our reservation.
4389 	 */
4390 	if (used <= space_info->total_bytes) {
4391 		if (used + orig_bytes <= space_info->total_bytes) {
4392 			space_info->bytes_may_use += orig_bytes;
4393 			trace_btrfs_space_reservation(root->fs_info,
4394 				"space_info", space_info->flags, orig_bytes, 1);
4395 			ret = 0;
4396 		} else {
4397 			/*
4398 			 * Ok set num_bytes to orig_bytes since we aren't
4399 			 * overocmmitted, this way we only try and reclaim what
4400 			 * we need.
4401 			 */
4402 			num_bytes = orig_bytes;
4403 		}
4404 	} else {
4405 		/*
4406 		 * Ok we're over committed, set num_bytes to the overcommitted
4407 		 * amount plus the amount of bytes that we need for this
4408 		 * reservation.
4409 		 */
4410 		num_bytes = used - space_info->total_bytes +
4411 			(orig_bytes * 2);
4412 	}
4413 
4414 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4415 		space_info->bytes_may_use += orig_bytes;
4416 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4417 					      space_info->flags, orig_bytes,
4418 					      1);
4419 		ret = 0;
4420 	}
4421 
4422 	/*
4423 	 * Couldn't make our reservation, save our place so while we're trying
4424 	 * to reclaim space we can actually use it instead of somebody else
4425 	 * stealing it from us.
4426 	 *
4427 	 * We make the other tasks wait for the flush only when we can flush
4428 	 * all things.
4429 	 */
4430 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4431 		flushing = true;
4432 		space_info->flush = 1;
4433 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4434 		used += orig_bytes;
4435 		/*
4436 		 * We will do the space reservation dance during log replay,
4437 		 * which means we won't have fs_info->fs_root set, so don't do
4438 		 * the async reclaim as we will panic.
4439 		 */
4440 		if (!root->fs_info->log_root_recovering &&
4441 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4442 		    !work_busy(&root->fs_info->async_reclaim_work))
4443 			queue_work(system_unbound_wq,
4444 				   &root->fs_info->async_reclaim_work);
4445 	}
4446 	spin_unlock(&space_info->lock);
4447 
4448 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4449 		goto out;
4450 
4451 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4452 			  flush_state);
4453 	flush_state++;
4454 
4455 	/*
4456 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4457 	 * would happen. So skip delalloc flush.
4458 	 */
4459 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4460 	    (flush_state == FLUSH_DELALLOC ||
4461 	     flush_state == FLUSH_DELALLOC_WAIT))
4462 		flush_state = ALLOC_CHUNK;
4463 
4464 	if (!ret)
4465 		goto again;
4466 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4467 		 flush_state < COMMIT_TRANS)
4468 		goto again;
4469 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4470 		 flush_state <= COMMIT_TRANS)
4471 		goto again;
4472 
4473 out:
4474 	if (ret == -ENOSPC &&
4475 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4476 		struct btrfs_block_rsv *global_rsv =
4477 			&root->fs_info->global_block_rsv;
4478 
4479 		if (block_rsv != global_rsv &&
4480 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4481 			ret = 0;
4482 	}
4483 	if (ret == -ENOSPC)
4484 		trace_btrfs_space_reservation(root->fs_info,
4485 					      "space_info:enospc",
4486 					      space_info->flags, orig_bytes, 1);
4487 	if (flushing) {
4488 		spin_lock(&space_info->lock);
4489 		space_info->flush = 0;
4490 		wake_up_all(&space_info->wait);
4491 		spin_unlock(&space_info->lock);
4492 	}
4493 	return ret;
4494 }
4495 
4496 static struct btrfs_block_rsv *get_block_rsv(
4497 					const struct btrfs_trans_handle *trans,
4498 					const struct btrfs_root *root)
4499 {
4500 	struct btrfs_block_rsv *block_rsv = NULL;
4501 
4502 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4503 		block_rsv = trans->block_rsv;
4504 
4505 	if (root == root->fs_info->csum_root && trans->adding_csums)
4506 		block_rsv = trans->block_rsv;
4507 
4508 	if (root == root->fs_info->uuid_root)
4509 		block_rsv = trans->block_rsv;
4510 
4511 	if (!block_rsv)
4512 		block_rsv = root->block_rsv;
4513 
4514 	if (!block_rsv)
4515 		block_rsv = &root->fs_info->empty_block_rsv;
4516 
4517 	return block_rsv;
4518 }
4519 
4520 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4521 			       u64 num_bytes)
4522 {
4523 	int ret = -ENOSPC;
4524 	spin_lock(&block_rsv->lock);
4525 	if (block_rsv->reserved >= num_bytes) {
4526 		block_rsv->reserved -= num_bytes;
4527 		if (block_rsv->reserved < block_rsv->size)
4528 			block_rsv->full = 0;
4529 		ret = 0;
4530 	}
4531 	spin_unlock(&block_rsv->lock);
4532 	return ret;
4533 }
4534 
4535 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4536 				u64 num_bytes, int update_size)
4537 {
4538 	spin_lock(&block_rsv->lock);
4539 	block_rsv->reserved += num_bytes;
4540 	if (update_size)
4541 		block_rsv->size += num_bytes;
4542 	else if (block_rsv->reserved >= block_rsv->size)
4543 		block_rsv->full = 1;
4544 	spin_unlock(&block_rsv->lock);
4545 }
4546 
4547 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4548 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4549 			     int min_factor)
4550 {
4551 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4552 	u64 min_bytes;
4553 
4554 	if (global_rsv->space_info != dest->space_info)
4555 		return -ENOSPC;
4556 
4557 	spin_lock(&global_rsv->lock);
4558 	min_bytes = div_factor(global_rsv->size, min_factor);
4559 	if (global_rsv->reserved < min_bytes + num_bytes) {
4560 		spin_unlock(&global_rsv->lock);
4561 		return -ENOSPC;
4562 	}
4563 	global_rsv->reserved -= num_bytes;
4564 	if (global_rsv->reserved < global_rsv->size)
4565 		global_rsv->full = 0;
4566 	spin_unlock(&global_rsv->lock);
4567 
4568 	block_rsv_add_bytes(dest, num_bytes, 1);
4569 	return 0;
4570 }
4571 
4572 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4573 				    struct btrfs_block_rsv *block_rsv,
4574 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4575 {
4576 	struct btrfs_space_info *space_info = block_rsv->space_info;
4577 
4578 	spin_lock(&block_rsv->lock);
4579 	if (num_bytes == (u64)-1)
4580 		num_bytes = block_rsv->size;
4581 	block_rsv->size -= num_bytes;
4582 	if (block_rsv->reserved >= block_rsv->size) {
4583 		num_bytes = block_rsv->reserved - block_rsv->size;
4584 		block_rsv->reserved = block_rsv->size;
4585 		block_rsv->full = 1;
4586 	} else {
4587 		num_bytes = 0;
4588 	}
4589 	spin_unlock(&block_rsv->lock);
4590 
4591 	if (num_bytes > 0) {
4592 		if (dest) {
4593 			spin_lock(&dest->lock);
4594 			if (!dest->full) {
4595 				u64 bytes_to_add;
4596 
4597 				bytes_to_add = dest->size - dest->reserved;
4598 				bytes_to_add = min(num_bytes, bytes_to_add);
4599 				dest->reserved += bytes_to_add;
4600 				if (dest->reserved >= dest->size)
4601 					dest->full = 1;
4602 				num_bytes -= bytes_to_add;
4603 			}
4604 			spin_unlock(&dest->lock);
4605 		}
4606 		if (num_bytes) {
4607 			spin_lock(&space_info->lock);
4608 			space_info->bytes_may_use -= num_bytes;
4609 			trace_btrfs_space_reservation(fs_info, "space_info",
4610 					space_info->flags, num_bytes, 0);
4611 			spin_unlock(&space_info->lock);
4612 		}
4613 	}
4614 }
4615 
4616 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4617 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4618 {
4619 	int ret;
4620 
4621 	ret = block_rsv_use_bytes(src, num_bytes);
4622 	if (ret)
4623 		return ret;
4624 
4625 	block_rsv_add_bytes(dst, num_bytes, 1);
4626 	return 0;
4627 }
4628 
4629 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4630 {
4631 	memset(rsv, 0, sizeof(*rsv));
4632 	spin_lock_init(&rsv->lock);
4633 	rsv->type = type;
4634 }
4635 
4636 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4637 					      unsigned short type)
4638 {
4639 	struct btrfs_block_rsv *block_rsv;
4640 	struct btrfs_fs_info *fs_info = root->fs_info;
4641 
4642 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4643 	if (!block_rsv)
4644 		return NULL;
4645 
4646 	btrfs_init_block_rsv(block_rsv, type);
4647 	block_rsv->space_info = __find_space_info(fs_info,
4648 						  BTRFS_BLOCK_GROUP_METADATA);
4649 	return block_rsv;
4650 }
4651 
4652 void btrfs_free_block_rsv(struct btrfs_root *root,
4653 			  struct btrfs_block_rsv *rsv)
4654 {
4655 	if (!rsv)
4656 		return;
4657 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4658 	kfree(rsv);
4659 }
4660 
4661 int btrfs_block_rsv_add(struct btrfs_root *root,
4662 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4663 			enum btrfs_reserve_flush_enum flush)
4664 {
4665 	int ret;
4666 
4667 	if (num_bytes == 0)
4668 		return 0;
4669 
4670 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4671 	if (!ret) {
4672 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4673 		return 0;
4674 	}
4675 
4676 	return ret;
4677 }
4678 
4679 int btrfs_block_rsv_check(struct btrfs_root *root,
4680 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4681 {
4682 	u64 num_bytes = 0;
4683 	int ret = -ENOSPC;
4684 
4685 	if (!block_rsv)
4686 		return 0;
4687 
4688 	spin_lock(&block_rsv->lock);
4689 	num_bytes = div_factor(block_rsv->size, min_factor);
4690 	if (block_rsv->reserved >= num_bytes)
4691 		ret = 0;
4692 	spin_unlock(&block_rsv->lock);
4693 
4694 	return ret;
4695 }
4696 
4697 int btrfs_block_rsv_refill(struct btrfs_root *root,
4698 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4699 			   enum btrfs_reserve_flush_enum flush)
4700 {
4701 	u64 num_bytes = 0;
4702 	int ret = -ENOSPC;
4703 
4704 	if (!block_rsv)
4705 		return 0;
4706 
4707 	spin_lock(&block_rsv->lock);
4708 	num_bytes = min_reserved;
4709 	if (block_rsv->reserved >= num_bytes)
4710 		ret = 0;
4711 	else
4712 		num_bytes -= block_rsv->reserved;
4713 	spin_unlock(&block_rsv->lock);
4714 
4715 	if (!ret)
4716 		return 0;
4717 
4718 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4719 	if (!ret) {
4720 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4721 		return 0;
4722 	}
4723 
4724 	return ret;
4725 }
4726 
4727 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4728 			    struct btrfs_block_rsv *dst_rsv,
4729 			    u64 num_bytes)
4730 {
4731 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4732 }
4733 
4734 void btrfs_block_rsv_release(struct btrfs_root *root,
4735 			     struct btrfs_block_rsv *block_rsv,
4736 			     u64 num_bytes)
4737 {
4738 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4739 	if (global_rsv == block_rsv ||
4740 	    block_rsv->space_info != global_rsv->space_info)
4741 		global_rsv = NULL;
4742 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4743 				num_bytes);
4744 }
4745 
4746 /*
4747  * helper to calculate size of global block reservation.
4748  * the desired value is sum of space used by extent tree,
4749  * checksum tree and root tree
4750  */
4751 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4752 {
4753 	struct btrfs_space_info *sinfo;
4754 	u64 num_bytes;
4755 	u64 meta_used;
4756 	u64 data_used;
4757 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4758 
4759 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4760 	spin_lock(&sinfo->lock);
4761 	data_used = sinfo->bytes_used;
4762 	spin_unlock(&sinfo->lock);
4763 
4764 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4765 	spin_lock(&sinfo->lock);
4766 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4767 		data_used = 0;
4768 	meta_used = sinfo->bytes_used;
4769 	spin_unlock(&sinfo->lock);
4770 
4771 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4772 		    csum_size * 2;
4773 	num_bytes += div64_u64(data_used + meta_used, 50);
4774 
4775 	if (num_bytes * 3 > meta_used)
4776 		num_bytes = div64_u64(meta_used, 3);
4777 
4778 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4779 }
4780 
4781 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4782 {
4783 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4784 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4785 	u64 num_bytes;
4786 
4787 	num_bytes = calc_global_metadata_size(fs_info);
4788 
4789 	spin_lock(&sinfo->lock);
4790 	spin_lock(&block_rsv->lock);
4791 
4792 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4793 
4794 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4795 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4796 		    sinfo->bytes_may_use;
4797 
4798 	if (sinfo->total_bytes > num_bytes) {
4799 		num_bytes = sinfo->total_bytes - num_bytes;
4800 		block_rsv->reserved += num_bytes;
4801 		sinfo->bytes_may_use += num_bytes;
4802 		trace_btrfs_space_reservation(fs_info, "space_info",
4803 				      sinfo->flags, num_bytes, 1);
4804 	}
4805 
4806 	if (block_rsv->reserved >= block_rsv->size) {
4807 		num_bytes = block_rsv->reserved - block_rsv->size;
4808 		sinfo->bytes_may_use -= num_bytes;
4809 		trace_btrfs_space_reservation(fs_info, "space_info",
4810 				      sinfo->flags, num_bytes, 0);
4811 		block_rsv->reserved = block_rsv->size;
4812 		block_rsv->full = 1;
4813 	}
4814 
4815 	spin_unlock(&block_rsv->lock);
4816 	spin_unlock(&sinfo->lock);
4817 }
4818 
4819 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4820 {
4821 	struct btrfs_space_info *space_info;
4822 
4823 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4824 	fs_info->chunk_block_rsv.space_info = space_info;
4825 
4826 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4827 	fs_info->global_block_rsv.space_info = space_info;
4828 	fs_info->delalloc_block_rsv.space_info = space_info;
4829 	fs_info->trans_block_rsv.space_info = space_info;
4830 	fs_info->empty_block_rsv.space_info = space_info;
4831 	fs_info->delayed_block_rsv.space_info = space_info;
4832 
4833 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4834 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4835 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4836 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4837 	if (fs_info->quota_root)
4838 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4839 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4840 
4841 	update_global_block_rsv(fs_info);
4842 }
4843 
4844 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4845 {
4846 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4847 				(u64)-1);
4848 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4849 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4850 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4851 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4852 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4853 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4854 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4855 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4856 }
4857 
4858 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4859 				  struct btrfs_root *root)
4860 {
4861 	if (!trans->block_rsv)
4862 		return;
4863 
4864 	if (!trans->bytes_reserved)
4865 		return;
4866 
4867 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4868 				      trans->transid, trans->bytes_reserved, 0);
4869 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4870 	trans->bytes_reserved = 0;
4871 }
4872 
4873 /* Can only return 0 or -ENOSPC */
4874 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4875 				  struct inode *inode)
4876 {
4877 	struct btrfs_root *root = BTRFS_I(inode)->root;
4878 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4879 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4880 
4881 	/*
4882 	 * We need to hold space in order to delete our orphan item once we've
4883 	 * added it, so this takes the reservation so we can release it later
4884 	 * when we are truly done with the orphan item.
4885 	 */
4886 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4887 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4888 				      btrfs_ino(inode), num_bytes, 1);
4889 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4890 }
4891 
4892 void btrfs_orphan_release_metadata(struct inode *inode)
4893 {
4894 	struct btrfs_root *root = BTRFS_I(inode)->root;
4895 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4896 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4897 				      btrfs_ino(inode), num_bytes, 0);
4898 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4899 }
4900 
4901 /*
4902  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4903  * root: the root of the parent directory
4904  * rsv: block reservation
4905  * items: the number of items that we need do reservation
4906  * qgroup_reserved: used to return the reserved size in qgroup
4907  *
4908  * This function is used to reserve the space for snapshot/subvolume
4909  * creation and deletion. Those operations are different with the
4910  * common file/directory operations, they change two fs/file trees
4911  * and root tree, the number of items that the qgroup reserves is
4912  * different with the free space reservation. So we can not use
4913  * the space reseravtion mechanism in start_transaction().
4914  */
4915 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4916 				     struct btrfs_block_rsv *rsv,
4917 				     int items,
4918 				     u64 *qgroup_reserved,
4919 				     bool use_global_rsv)
4920 {
4921 	u64 num_bytes;
4922 	int ret;
4923 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4924 
4925 	if (root->fs_info->quota_enabled) {
4926 		/* One for parent inode, two for dir entries */
4927 		num_bytes = 3 * root->nodesize;
4928 		ret = btrfs_qgroup_reserve(root, num_bytes);
4929 		if (ret)
4930 			return ret;
4931 	} else {
4932 		num_bytes = 0;
4933 	}
4934 
4935 	*qgroup_reserved = num_bytes;
4936 
4937 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4938 	rsv->space_info = __find_space_info(root->fs_info,
4939 					    BTRFS_BLOCK_GROUP_METADATA);
4940 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4941 				  BTRFS_RESERVE_FLUSH_ALL);
4942 
4943 	if (ret == -ENOSPC && use_global_rsv)
4944 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4945 
4946 	if (ret) {
4947 		if (*qgroup_reserved)
4948 			btrfs_qgroup_free(root, *qgroup_reserved);
4949 	}
4950 
4951 	return ret;
4952 }
4953 
4954 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4955 				      struct btrfs_block_rsv *rsv,
4956 				      u64 qgroup_reserved)
4957 {
4958 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4959 	if (qgroup_reserved)
4960 		btrfs_qgroup_free(root, qgroup_reserved);
4961 }
4962 
4963 /**
4964  * drop_outstanding_extent - drop an outstanding extent
4965  * @inode: the inode we're dropping the extent for
4966  * @num_bytes: the number of bytes we're relaseing.
4967  *
4968  * This is called when we are freeing up an outstanding extent, either called
4969  * after an error or after an extent is written.  This will return the number of
4970  * reserved extents that need to be freed.  This must be called with
4971  * BTRFS_I(inode)->lock held.
4972  */
4973 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
4974 {
4975 	unsigned drop_inode_space = 0;
4976 	unsigned dropped_extents = 0;
4977 	unsigned num_extents = 0;
4978 
4979 	num_extents = (unsigned)div64_u64(num_bytes +
4980 					  BTRFS_MAX_EXTENT_SIZE - 1,
4981 					  BTRFS_MAX_EXTENT_SIZE);
4982 	ASSERT(num_extents);
4983 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
4984 	BTRFS_I(inode)->outstanding_extents -= num_extents;
4985 
4986 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4987 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4988 			       &BTRFS_I(inode)->runtime_flags))
4989 		drop_inode_space = 1;
4990 
4991 	/*
4992 	 * If we have more or the same amount of outsanding extents than we have
4993 	 * reserved then we need to leave the reserved extents count alone.
4994 	 */
4995 	if (BTRFS_I(inode)->outstanding_extents >=
4996 	    BTRFS_I(inode)->reserved_extents)
4997 		return drop_inode_space;
4998 
4999 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5000 		BTRFS_I(inode)->outstanding_extents;
5001 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5002 	return dropped_extents + drop_inode_space;
5003 }
5004 
5005 /**
5006  * calc_csum_metadata_size - return the amount of metada space that must be
5007  *	reserved/free'd for the given bytes.
5008  * @inode: the inode we're manipulating
5009  * @num_bytes: the number of bytes in question
5010  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5011  *
5012  * This adjusts the number of csum_bytes in the inode and then returns the
5013  * correct amount of metadata that must either be reserved or freed.  We
5014  * calculate how many checksums we can fit into one leaf and then divide the
5015  * number of bytes that will need to be checksumed by this value to figure out
5016  * how many checksums will be required.  If we are adding bytes then the number
5017  * may go up and we will return the number of additional bytes that must be
5018  * reserved.  If it is going down we will return the number of bytes that must
5019  * be freed.
5020  *
5021  * This must be called with BTRFS_I(inode)->lock held.
5022  */
5023 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5024 				   int reserve)
5025 {
5026 	struct btrfs_root *root = BTRFS_I(inode)->root;
5027 	u64 csum_size;
5028 	int num_csums_per_leaf;
5029 	int num_csums;
5030 	int old_csums;
5031 
5032 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5033 	    BTRFS_I(inode)->csum_bytes == 0)
5034 		return 0;
5035 
5036 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5037 	if (reserve)
5038 		BTRFS_I(inode)->csum_bytes += num_bytes;
5039 	else
5040 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5041 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5042 	num_csums_per_leaf = (int)div64_u64(csum_size,
5043 					    sizeof(struct btrfs_csum_item) +
5044 					    sizeof(struct btrfs_disk_key));
5045 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5046 	num_csums = num_csums + num_csums_per_leaf - 1;
5047 	num_csums = num_csums / num_csums_per_leaf;
5048 
5049 	old_csums = old_csums + num_csums_per_leaf - 1;
5050 	old_csums = old_csums / num_csums_per_leaf;
5051 
5052 	/* No change, no need to reserve more */
5053 	if (old_csums == num_csums)
5054 		return 0;
5055 
5056 	if (reserve)
5057 		return btrfs_calc_trans_metadata_size(root,
5058 						      num_csums - old_csums);
5059 
5060 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5061 }
5062 
5063 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5064 {
5065 	struct btrfs_root *root = BTRFS_I(inode)->root;
5066 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5067 	u64 to_reserve = 0;
5068 	u64 csum_bytes;
5069 	unsigned nr_extents = 0;
5070 	int extra_reserve = 0;
5071 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5072 	int ret = 0;
5073 	bool delalloc_lock = true;
5074 	u64 to_free = 0;
5075 	unsigned dropped;
5076 
5077 	/* If we are a free space inode we need to not flush since we will be in
5078 	 * the middle of a transaction commit.  We also don't need the delalloc
5079 	 * mutex since we won't race with anybody.  We need this mostly to make
5080 	 * lockdep shut its filthy mouth.
5081 	 */
5082 	if (btrfs_is_free_space_inode(inode)) {
5083 		flush = BTRFS_RESERVE_NO_FLUSH;
5084 		delalloc_lock = false;
5085 	}
5086 
5087 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5088 	    btrfs_transaction_in_commit(root->fs_info))
5089 		schedule_timeout(1);
5090 
5091 	if (delalloc_lock)
5092 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5093 
5094 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5095 
5096 	spin_lock(&BTRFS_I(inode)->lock);
5097 	BTRFS_I(inode)->outstanding_extents++;
5098 
5099 	if (BTRFS_I(inode)->outstanding_extents >
5100 	    BTRFS_I(inode)->reserved_extents)
5101 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5102 			BTRFS_I(inode)->reserved_extents;
5103 
5104 	/*
5105 	 * Add an item to reserve for updating the inode when we complete the
5106 	 * delalloc io.
5107 	 */
5108 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5109 		      &BTRFS_I(inode)->runtime_flags)) {
5110 		nr_extents++;
5111 		extra_reserve = 1;
5112 	}
5113 
5114 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5115 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5116 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5117 	spin_unlock(&BTRFS_I(inode)->lock);
5118 
5119 	if (root->fs_info->quota_enabled) {
5120 		ret = btrfs_qgroup_reserve(root, num_bytes +
5121 					   nr_extents * root->nodesize);
5122 		if (ret)
5123 			goto out_fail;
5124 	}
5125 
5126 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5127 	if (unlikely(ret)) {
5128 		if (root->fs_info->quota_enabled)
5129 			btrfs_qgroup_free(root, num_bytes +
5130 						nr_extents * root->nodesize);
5131 		goto out_fail;
5132 	}
5133 
5134 	spin_lock(&BTRFS_I(inode)->lock);
5135 	if (extra_reserve) {
5136 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5137 			&BTRFS_I(inode)->runtime_flags);
5138 		nr_extents--;
5139 	}
5140 	BTRFS_I(inode)->reserved_extents += nr_extents;
5141 	spin_unlock(&BTRFS_I(inode)->lock);
5142 
5143 	if (delalloc_lock)
5144 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5145 
5146 	if (to_reserve)
5147 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5148 					      btrfs_ino(inode), to_reserve, 1);
5149 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5150 
5151 	return 0;
5152 
5153 out_fail:
5154 	spin_lock(&BTRFS_I(inode)->lock);
5155 	dropped = drop_outstanding_extent(inode, num_bytes);
5156 	/*
5157 	 * If the inodes csum_bytes is the same as the original
5158 	 * csum_bytes then we know we haven't raced with any free()ers
5159 	 * so we can just reduce our inodes csum bytes and carry on.
5160 	 */
5161 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5162 		calc_csum_metadata_size(inode, num_bytes, 0);
5163 	} else {
5164 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5165 		u64 bytes;
5166 
5167 		/*
5168 		 * This is tricky, but first we need to figure out how much we
5169 		 * free'd from any free-ers that occured during this
5170 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5171 		 * before we dropped our lock, and then call the free for the
5172 		 * number of bytes that were freed while we were trying our
5173 		 * reservation.
5174 		 */
5175 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5176 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5177 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5178 
5179 
5180 		/*
5181 		 * Now we need to see how much we would have freed had we not
5182 		 * been making this reservation and our ->csum_bytes were not
5183 		 * artificially inflated.
5184 		 */
5185 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5186 		bytes = csum_bytes - orig_csum_bytes;
5187 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5188 
5189 		/*
5190 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5191 		 * more than to_free then we would have free'd more space had we
5192 		 * not had an artificially high ->csum_bytes, so we need to free
5193 		 * the remainder.  If bytes is the same or less then we don't
5194 		 * need to do anything, the other free-ers did the correct
5195 		 * thing.
5196 		 */
5197 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5198 		if (bytes > to_free)
5199 			to_free = bytes - to_free;
5200 		else
5201 			to_free = 0;
5202 	}
5203 	spin_unlock(&BTRFS_I(inode)->lock);
5204 	if (dropped)
5205 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5206 
5207 	if (to_free) {
5208 		btrfs_block_rsv_release(root, block_rsv, to_free);
5209 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5210 					      btrfs_ino(inode), to_free, 0);
5211 	}
5212 	if (delalloc_lock)
5213 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5214 	return ret;
5215 }
5216 
5217 /**
5218  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5219  * @inode: the inode to release the reservation for
5220  * @num_bytes: the number of bytes we're releasing
5221  *
5222  * This will release the metadata reservation for an inode.  This can be called
5223  * once we complete IO for a given set of bytes to release their metadata
5224  * reservations.
5225  */
5226 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5227 {
5228 	struct btrfs_root *root = BTRFS_I(inode)->root;
5229 	u64 to_free = 0;
5230 	unsigned dropped;
5231 
5232 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5233 	spin_lock(&BTRFS_I(inode)->lock);
5234 	dropped = drop_outstanding_extent(inode, num_bytes);
5235 
5236 	if (num_bytes)
5237 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5238 	spin_unlock(&BTRFS_I(inode)->lock);
5239 	if (dropped > 0)
5240 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5241 
5242 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5243 				      btrfs_ino(inode), to_free, 0);
5244 	if (root->fs_info->quota_enabled) {
5245 		btrfs_qgroup_free(root, num_bytes +
5246 					dropped * root->nodesize);
5247 	}
5248 
5249 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5250 				to_free);
5251 }
5252 
5253 /**
5254  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5255  * @inode: inode we're writing to
5256  * @num_bytes: the number of bytes we want to allocate
5257  *
5258  * This will do the following things
5259  *
5260  * o reserve space in the data space info for num_bytes
5261  * o reserve space in the metadata space info based on number of outstanding
5262  *   extents and how much csums will be needed
5263  * o add to the inodes ->delalloc_bytes
5264  * o add it to the fs_info's delalloc inodes list.
5265  *
5266  * This will return 0 for success and -ENOSPC if there is no space left.
5267  */
5268 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5269 {
5270 	int ret;
5271 
5272 	ret = btrfs_check_data_free_space(inode, num_bytes);
5273 	if (ret)
5274 		return ret;
5275 
5276 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5277 	if (ret) {
5278 		btrfs_free_reserved_data_space(inode, num_bytes);
5279 		return ret;
5280 	}
5281 
5282 	return 0;
5283 }
5284 
5285 /**
5286  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5287  * @inode: inode we're releasing space for
5288  * @num_bytes: the number of bytes we want to free up
5289  *
5290  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5291  * called in the case that we don't need the metadata AND data reservations
5292  * anymore.  So if there is an error or we insert an inline extent.
5293  *
5294  * This function will release the metadata space that was not used and will
5295  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5296  * list if there are no delalloc bytes left.
5297  */
5298 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5299 {
5300 	btrfs_delalloc_release_metadata(inode, num_bytes);
5301 	btrfs_free_reserved_data_space(inode, num_bytes);
5302 }
5303 
5304 static int update_block_group(struct btrfs_trans_handle *trans,
5305 			      struct btrfs_root *root, u64 bytenr,
5306 			      u64 num_bytes, int alloc)
5307 {
5308 	struct btrfs_block_group_cache *cache = NULL;
5309 	struct btrfs_fs_info *info = root->fs_info;
5310 	u64 total = num_bytes;
5311 	u64 old_val;
5312 	u64 byte_in_group;
5313 	int factor;
5314 
5315 	/* block accounting for super block */
5316 	spin_lock(&info->delalloc_root_lock);
5317 	old_val = btrfs_super_bytes_used(info->super_copy);
5318 	if (alloc)
5319 		old_val += num_bytes;
5320 	else
5321 		old_val -= num_bytes;
5322 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5323 	spin_unlock(&info->delalloc_root_lock);
5324 
5325 	while (total) {
5326 		cache = btrfs_lookup_block_group(info, bytenr);
5327 		if (!cache)
5328 			return -ENOENT;
5329 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5330 				    BTRFS_BLOCK_GROUP_RAID1 |
5331 				    BTRFS_BLOCK_GROUP_RAID10))
5332 			factor = 2;
5333 		else
5334 			factor = 1;
5335 		/*
5336 		 * If this block group has free space cache written out, we
5337 		 * need to make sure to load it if we are removing space.  This
5338 		 * is because we need the unpinning stage to actually add the
5339 		 * space back to the block group, otherwise we will leak space.
5340 		 */
5341 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5342 			cache_block_group(cache, 1);
5343 
5344 		spin_lock(&trans->transaction->dirty_bgs_lock);
5345 		if (list_empty(&cache->dirty_list)) {
5346 			list_add_tail(&cache->dirty_list,
5347 				      &trans->transaction->dirty_bgs);
5348 			btrfs_get_block_group(cache);
5349 		}
5350 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5351 
5352 		byte_in_group = bytenr - cache->key.objectid;
5353 		WARN_ON(byte_in_group > cache->key.offset);
5354 
5355 		spin_lock(&cache->space_info->lock);
5356 		spin_lock(&cache->lock);
5357 
5358 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5359 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5360 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5361 
5362 		old_val = btrfs_block_group_used(&cache->item);
5363 		num_bytes = min(total, cache->key.offset - byte_in_group);
5364 		if (alloc) {
5365 			old_val += num_bytes;
5366 			btrfs_set_block_group_used(&cache->item, old_val);
5367 			cache->reserved -= num_bytes;
5368 			cache->space_info->bytes_reserved -= num_bytes;
5369 			cache->space_info->bytes_used += num_bytes;
5370 			cache->space_info->disk_used += num_bytes * factor;
5371 			spin_unlock(&cache->lock);
5372 			spin_unlock(&cache->space_info->lock);
5373 		} else {
5374 			old_val -= num_bytes;
5375 			btrfs_set_block_group_used(&cache->item, old_val);
5376 			cache->pinned += num_bytes;
5377 			cache->space_info->bytes_pinned += num_bytes;
5378 			cache->space_info->bytes_used -= num_bytes;
5379 			cache->space_info->disk_used -= num_bytes * factor;
5380 			spin_unlock(&cache->lock);
5381 			spin_unlock(&cache->space_info->lock);
5382 
5383 			set_extent_dirty(info->pinned_extents,
5384 					 bytenr, bytenr + num_bytes - 1,
5385 					 GFP_NOFS | __GFP_NOFAIL);
5386 			/*
5387 			 * No longer have used bytes in this block group, queue
5388 			 * it for deletion.
5389 			 */
5390 			if (old_val == 0) {
5391 				spin_lock(&info->unused_bgs_lock);
5392 				if (list_empty(&cache->bg_list)) {
5393 					btrfs_get_block_group(cache);
5394 					list_add_tail(&cache->bg_list,
5395 						      &info->unused_bgs);
5396 				}
5397 				spin_unlock(&info->unused_bgs_lock);
5398 			}
5399 		}
5400 		btrfs_put_block_group(cache);
5401 		total -= num_bytes;
5402 		bytenr += num_bytes;
5403 	}
5404 	return 0;
5405 }
5406 
5407 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5408 {
5409 	struct btrfs_block_group_cache *cache;
5410 	u64 bytenr;
5411 
5412 	spin_lock(&root->fs_info->block_group_cache_lock);
5413 	bytenr = root->fs_info->first_logical_byte;
5414 	spin_unlock(&root->fs_info->block_group_cache_lock);
5415 
5416 	if (bytenr < (u64)-1)
5417 		return bytenr;
5418 
5419 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5420 	if (!cache)
5421 		return 0;
5422 
5423 	bytenr = cache->key.objectid;
5424 	btrfs_put_block_group(cache);
5425 
5426 	return bytenr;
5427 }
5428 
5429 static int pin_down_extent(struct btrfs_root *root,
5430 			   struct btrfs_block_group_cache *cache,
5431 			   u64 bytenr, u64 num_bytes, int reserved)
5432 {
5433 	spin_lock(&cache->space_info->lock);
5434 	spin_lock(&cache->lock);
5435 	cache->pinned += num_bytes;
5436 	cache->space_info->bytes_pinned += num_bytes;
5437 	if (reserved) {
5438 		cache->reserved -= num_bytes;
5439 		cache->space_info->bytes_reserved -= num_bytes;
5440 	}
5441 	spin_unlock(&cache->lock);
5442 	spin_unlock(&cache->space_info->lock);
5443 
5444 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5445 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5446 	if (reserved)
5447 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5448 	return 0;
5449 }
5450 
5451 /*
5452  * this function must be called within transaction
5453  */
5454 int btrfs_pin_extent(struct btrfs_root *root,
5455 		     u64 bytenr, u64 num_bytes, int reserved)
5456 {
5457 	struct btrfs_block_group_cache *cache;
5458 
5459 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5460 	BUG_ON(!cache); /* Logic error */
5461 
5462 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5463 
5464 	btrfs_put_block_group(cache);
5465 	return 0;
5466 }
5467 
5468 /*
5469  * this function must be called within transaction
5470  */
5471 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5472 				    u64 bytenr, u64 num_bytes)
5473 {
5474 	struct btrfs_block_group_cache *cache;
5475 	int ret;
5476 
5477 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5478 	if (!cache)
5479 		return -EINVAL;
5480 
5481 	/*
5482 	 * pull in the free space cache (if any) so that our pin
5483 	 * removes the free space from the cache.  We have load_only set
5484 	 * to one because the slow code to read in the free extents does check
5485 	 * the pinned extents.
5486 	 */
5487 	cache_block_group(cache, 1);
5488 
5489 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5490 
5491 	/* remove us from the free space cache (if we're there at all) */
5492 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5493 	btrfs_put_block_group(cache);
5494 	return ret;
5495 }
5496 
5497 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5498 {
5499 	int ret;
5500 	struct btrfs_block_group_cache *block_group;
5501 	struct btrfs_caching_control *caching_ctl;
5502 
5503 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5504 	if (!block_group)
5505 		return -EINVAL;
5506 
5507 	cache_block_group(block_group, 0);
5508 	caching_ctl = get_caching_control(block_group);
5509 
5510 	if (!caching_ctl) {
5511 		/* Logic error */
5512 		BUG_ON(!block_group_cache_done(block_group));
5513 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5514 	} else {
5515 		mutex_lock(&caching_ctl->mutex);
5516 
5517 		if (start >= caching_ctl->progress) {
5518 			ret = add_excluded_extent(root, start, num_bytes);
5519 		} else if (start + num_bytes <= caching_ctl->progress) {
5520 			ret = btrfs_remove_free_space(block_group,
5521 						      start, num_bytes);
5522 		} else {
5523 			num_bytes = caching_ctl->progress - start;
5524 			ret = btrfs_remove_free_space(block_group,
5525 						      start, num_bytes);
5526 			if (ret)
5527 				goto out_lock;
5528 
5529 			num_bytes = (start + num_bytes) -
5530 				caching_ctl->progress;
5531 			start = caching_ctl->progress;
5532 			ret = add_excluded_extent(root, start, num_bytes);
5533 		}
5534 out_lock:
5535 		mutex_unlock(&caching_ctl->mutex);
5536 		put_caching_control(caching_ctl);
5537 	}
5538 	btrfs_put_block_group(block_group);
5539 	return ret;
5540 }
5541 
5542 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5543 				 struct extent_buffer *eb)
5544 {
5545 	struct btrfs_file_extent_item *item;
5546 	struct btrfs_key key;
5547 	int found_type;
5548 	int i;
5549 
5550 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5551 		return 0;
5552 
5553 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5554 		btrfs_item_key_to_cpu(eb, &key, i);
5555 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5556 			continue;
5557 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5558 		found_type = btrfs_file_extent_type(eb, item);
5559 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5560 			continue;
5561 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5562 			continue;
5563 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5564 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5565 		__exclude_logged_extent(log, key.objectid, key.offset);
5566 	}
5567 
5568 	return 0;
5569 }
5570 
5571 /**
5572  * btrfs_update_reserved_bytes - update the block_group and space info counters
5573  * @cache:	The cache we are manipulating
5574  * @num_bytes:	The number of bytes in question
5575  * @reserve:	One of the reservation enums
5576  * @delalloc:   The blocks are allocated for the delalloc write
5577  *
5578  * This is called by the allocator when it reserves space, or by somebody who is
5579  * freeing space that was never actually used on disk.  For example if you
5580  * reserve some space for a new leaf in transaction A and before transaction A
5581  * commits you free that leaf, you call this with reserve set to 0 in order to
5582  * clear the reservation.
5583  *
5584  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5585  * ENOSPC accounting.  For data we handle the reservation through clearing the
5586  * delalloc bits in the io_tree.  We have to do this since we could end up
5587  * allocating less disk space for the amount of data we have reserved in the
5588  * case of compression.
5589  *
5590  * If this is a reservation and the block group has become read only we cannot
5591  * make the reservation and return -EAGAIN, otherwise this function always
5592  * succeeds.
5593  */
5594 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5595 				       u64 num_bytes, int reserve, int delalloc)
5596 {
5597 	struct btrfs_space_info *space_info = cache->space_info;
5598 	int ret = 0;
5599 
5600 	spin_lock(&space_info->lock);
5601 	spin_lock(&cache->lock);
5602 	if (reserve != RESERVE_FREE) {
5603 		if (cache->ro) {
5604 			ret = -EAGAIN;
5605 		} else {
5606 			cache->reserved += num_bytes;
5607 			space_info->bytes_reserved += num_bytes;
5608 			if (reserve == RESERVE_ALLOC) {
5609 				trace_btrfs_space_reservation(cache->fs_info,
5610 						"space_info", space_info->flags,
5611 						num_bytes, 0);
5612 				space_info->bytes_may_use -= num_bytes;
5613 			}
5614 
5615 			if (delalloc)
5616 				cache->delalloc_bytes += num_bytes;
5617 		}
5618 	} else {
5619 		if (cache->ro)
5620 			space_info->bytes_readonly += num_bytes;
5621 		cache->reserved -= num_bytes;
5622 		space_info->bytes_reserved -= num_bytes;
5623 
5624 		if (delalloc)
5625 			cache->delalloc_bytes -= num_bytes;
5626 	}
5627 	spin_unlock(&cache->lock);
5628 	spin_unlock(&space_info->lock);
5629 	return ret;
5630 }
5631 
5632 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5633 				struct btrfs_root *root)
5634 {
5635 	struct btrfs_fs_info *fs_info = root->fs_info;
5636 	struct btrfs_caching_control *next;
5637 	struct btrfs_caching_control *caching_ctl;
5638 	struct btrfs_block_group_cache *cache;
5639 
5640 	down_write(&fs_info->commit_root_sem);
5641 
5642 	list_for_each_entry_safe(caching_ctl, next,
5643 				 &fs_info->caching_block_groups, list) {
5644 		cache = caching_ctl->block_group;
5645 		if (block_group_cache_done(cache)) {
5646 			cache->last_byte_to_unpin = (u64)-1;
5647 			list_del_init(&caching_ctl->list);
5648 			put_caching_control(caching_ctl);
5649 		} else {
5650 			cache->last_byte_to_unpin = caching_ctl->progress;
5651 		}
5652 	}
5653 
5654 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5655 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5656 	else
5657 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5658 
5659 	up_write(&fs_info->commit_root_sem);
5660 
5661 	update_global_block_rsv(fs_info);
5662 }
5663 
5664 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5665 			      const bool return_free_space)
5666 {
5667 	struct btrfs_fs_info *fs_info = root->fs_info;
5668 	struct btrfs_block_group_cache *cache = NULL;
5669 	struct btrfs_space_info *space_info;
5670 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5671 	u64 len;
5672 	bool readonly;
5673 
5674 	while (start <= end) {
5675 		readonly = false;
5676 		if (!cache ||
5677 		    start >= cache->key.objectid + cache->key.offset) {
5678 			if (cache)
5679 				btrfs_put_block_group(cache);
5680 			cache = btrfs_lookup_block_group(fs_info, start);
5681 			BUG_ON(!cache); /* Logic error */
5682 		}
5683 
5684 		len = cache->key.objectid + cache->key.offset - start;
5685 		len = min(len, end + 1 - start);
5686 
5687 		if (start < cache->last_byte_to_unpin) {
5688 			len = min(len, cache->last_byte_to_unpin - start);
5689 			if (return_free_space)
5690 				btrfs_add_free_space(cache, start, len);
5691 		}
5692 
5693 		start += len;
5694 		space_info = cache->space_info;
5695 
5696 		spin_lock(&space_info->lock);
5697 		spin_lock(&cache->lock);
5698 		cache->pinned -= len;
5699 		space_info->bytes_pinned -= len;
5700 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5701 		if (cache->ro) {
5702 			space_info->bytes_readonly += len;
5703 			readonly = true;
5704 		}
5705 		spin_unlock(&cache->lock);
5706 		if (!readonly && global_rsv->space_info == space_info) {
5707 			spin_lock(&global_rsv->lock);
5708 			if (!global_rsv->full) {
5709 				len = min(len, global_rsv->size -
5710 					  global_rsv->reserved);
5711 				global_rsv->reserved += len;
5712 				space_info->bytes_may_use += len;
5713 				if (global_rsv->reserved >= global_rsv->size)
5714 					global_rsv->full = 1;
5715 			}
5716 			spin_unlock(&global_rsv->lock);
5717 		}
5718 		spin_unlock(&space_info->lock);
5719 	}
5720 
5721 	if (cache)
5722 		btrfs_put_block_group(cache);
5723 	return 0;
5724 }
5725 
5726 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5727 			       struct btrfs_root *root)
5728 {
5729 	struct btrfs_fs_info *fs_info = root->fs_info;
5730 	struct extent_io_tree *unpin;
5731 	u64 start;
5732 	u64 end;
5733 	int ret;
5734 
5735 	if (trans->aborted)
5736 		return 0;
5737 
5738 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5739 		unpin = &fs_info->freed_extents[1];
5740 	else
5741 		unpin = &fs_info->freed_extents[0];
5742 
5743 	while (1) {
5744 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5745 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5746 					    EXTENT_DIRTY, NULL);
5747 		if (ret) {
5748 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5749 			break;
5750 		}
5751 
5752 		if (btrfs_test_opt(root, DISCARD))
5753 			ret = btrfs_discard_extent(root, start,
5754 						   end + 1 - start, NULL);
5755 
5756 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5757 		unpin_extent_range(root, start, end, true);
5758 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5759 		cond_resched();
5760 	}
5761 
5762 	return 0;
5763 }
5764 
5765 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5766 			     u64 owner, u64 root_objectid)
5767 {
5768 	struct btrfs_space_info *space_info;
5769 	u64 flags;
5770 
5771 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5772 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5773 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5774 		else
5775 			flags = BTRFS_BLOCK_GROUP_METADATA;
5776 	} else {
5777 		flags = BTRFS_BLOCK_GROUP_DATA;
5778 	}
5779 
5780 	space_info = __find_space_info(fs_info, flags);
5781 	BUG_ON(!space_info); /* Logic bug */
5782 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5783 }
5784 
5785 
5786 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5787 				struct btrfs_root *root,
5788 				u64 bytenr, u64 num_bytes, u64 parent,
5789 				u64 root_objectid, u64 owner_objectid,
5790 				u64 owner_offset, int refs_to_drop,
5791 				struct btrfs_delayed_extent_op *extent_op,
5792 				int no_quota)
5793 {
5794 	struct btrfs_key key;
5795 	struct btrfs_path *path;
5796 	struct btrfs_fs_info *info = root->fs_info;
5797 	struct btrfs_root *extent_root = info->extent_root;
5798 	struct extent_buffer *leaf;
5799 	struct btrfs_extent_item *ei;
5800 	struct btrfs_extent_inline_ref *iref;
5801 	int ret;
5802 	int is_data;
5803 	int extent_slot = 0;
5804 	int found_extent = 0;
5805 	int num_to_del = 1;
5806 	u32 item_size;
5807 	u64 refs;
5808 	int last_ref = 0;
5809 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5810 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5811 						 SKINNY_METADATA);
5812 
5813 	if (!info->quota_enabled || !is_fstree(root_objectid))
5814 		no_quota = 1;
5815 
5816 	path = btrfs_alloc_path();
5817 	if (!path)
5818 		return -ENOMEM;
5819 
5820 	path->reada = 1;
5821 	path->leave_spinning = 1;
5822 
5823 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5824 	BUG_ON(!is_data && refs_to_drop != 1);
5825 
5826 	if (is_data)
5827 		skinny_metadata = 0;
5828 
5829 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5830 				    bytenr, num_bytes, parent,
5831 				    root_objectid, owner_objectid,
5832 				    owner_offset);
5833 	if (ret == 0) {
5834 		extent_slot = path->slots[0];
5835 		while (extent_slot >= 0) {
5836 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5837 					      extent_slot);
5838 			if (key.objectid != bytenr)
5839 				break;
5840 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5841 			    key.offset == num_bytes) {
5842 				found_extent = 1;
5843 				break;
5844 			}
5845 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5846 			    key.offset == owner_objectid) {
5847 				found_extent = 1;
5848 				break;
5849 			}
5850 			if (path->slots[0] - extent_slot > 5)
5851 				break;
5852 			extent_slot--;
5853 		}
5854 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5855 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5856 		if (found_extent && item_size < sizeof(*ei))
5857 			found_extent = 0;
5858 #endif
5859 		if (!found_extent) {
5860 			BUG_ON(iref);
5861 			ret = remove_extent_backref(trans, extent_root, path,
5862 						    NULL, refs_to_drop,
5863 						    is_data, &last_ref);
5864 			if (ret) {
5865 				btrfs_abort_transaction(trans, extent_root, ret);
5866 				goto out;
5867 			}
5868 			btrfs_release_path(path);
5869 			path->leave_spinning = 1;
5870 
5871 			key.objectid = bytenr;
5872 			key.type = BTRFS_EXTENT_ITEM_KEY;
5873 			key.offset = num_bytes;
5874 
5875 			if (!is_data && skinny_metadata) {
5876 				key.type = BTRFS_METADATA_ITEM_KEY;
5877 				key.offset = owner_objectid;
5878 			}
5879 
5880 			ret = btrfs_search_slot(trans, extent_root,
5881 						&key, path, -1, 1);
5882 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5883 				/*
5884 				 * Couldn't find our skinny metadata item,
5885 				 * see if we have ye olde extent item.
5886 				 */
5887 				path->slots[0]--;
5888 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5889 						      path->slots[0]);
5890 				if (key.objectid == bytenr &&
5891 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5892 				    key.offset == num_bytes)
5893 					ret = 0;
5894 			}
5895 
5896 			if (ret > 0 && skinny_metadata) {
5897 				skinny_metadata = false;
5898 				key.objectid = bytenr;
5899 				key.type = BTRFS_EXTENT_ITEM_KEY;
5900 				key.offset = num_bytes;
5901 				btrfs_release_path(path);
5902 				ret = btrfs_search_slot(trans, extent_root,
5903 							&key, path, -1, 1);
5904 			}
5905 
5906 			if (ret) {
5907 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5908 					ret, bytenr);
5909 				if (ret > 0)
5910 					btrfs_print_leaf(extent_root,
5911 							 path->nodes[0]);
5912 			}
5913 			if (ret < 0) {
5914 				btrfs_abort_transaction(trans, extent_root, ret);
5915 				goto out;
5916 			}
5917 			extent_slot = path->slots[0];
5918 		}
5919 	} else if (WARN_ON(ret == -ENOENT)) {
5920 		btrfs_print_leaf(extent_root, path->nodes[0]);
5921 		btrfs_err(info,
5922 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5923 			bytenr, parent, root_objectid, owner_objectid,
5924 			owner_offset);
5925 		btrfs_abort_transaction(trans, extent_root, ret);
5926 		goto out;
5927 	} else {
5928 		btrfs_abort_transaction(trans, extent_root, ret);
5929 		goto out;
5930 	}
5931 
5932 	leaf = path->nodes[0];
5933 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5934 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5935 	if (item_size < sizeof(*ei)) {
5936 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5937 		ret = convert_extent_item_v0(trans, extent_root, path,
5938 					     owner_objectid, 0);
5939 		if (ret < 0) {
5940 			btrfs_abort_transaction(trans, extent_root, ret);
5941 			goto out;
5942 		}
5943 
5944 		btrfs_release_path(path);
5945 		path->leave_spinning = 1;
5946 
5947 		key.objectid = bytenr;
5948 		key.type = BTRFS_EXTENT_ITEM_KEY;
5949 		key.offset = num_bytes;
5950 
5951 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5952 					-1, 1);
5953 		if (ret) {
5954 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5955 				ret, bytenr);
5956 			btrfs_print_leaf(extent_root, path->nodes[0]);
5957 		}
5958 		if (ret < 0) {
5959 			btrfs_abort_transaction(trans, extent_root, ret);
5960 			goto out;
5961 		}
5962 
5963 		extent_slot = path->slots[0];
5964 		leaf = path->nodes[0];
5965 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5966 	}
5967 #endif
5968 	BUG_ON(item_size < sizeof(*ei));
5969 	ei = btrfs_item_ptr(leaf, extent_slot,
5970 			    struct btrfs_extent_item);
5971 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5972 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5973 		struct btrfs_tree_block_info *bi;
5974 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5975 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5976 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5977 	}
5978 
5979 	refs = btrfs_extent_refs(leaf, ei);
5980 	if (refs < refs_to_drop) {
5981 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5982 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
5983 		ret = -EINVAL;
5984 		btrfs_abort_transaction(trans, extent_root, ret);
5985 		goto out;
5986 	}
5987 	refs -= refs_to_drop;
5988 
5989 	if (refs > 0) {
5990 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
5991 		if (extent_op)
5992 			__run_delayed_extent_op(extent_op, leaf, ei);
5993 		/*
5994 		 * In the case of inline back ref, reference count will
5995 		 * be updated by remove_extent_backref
5996 		 */
5997 		if (iref) {
5998 			BUG_ON(!found_extent);
5999 		} else {
6000 			btrfs_set_extent_refs(leaf, ei, refs);
6001 			btrfs_mark_buffer_dirty(leaf);
6002 		}
6003 		if (found_extent) {
6004 			ret = remove_extent_backref(trans, extent_root, path,
6005 						    iref, refs_to_drop,
6006 						    is_data, &last_ref);
6007 			if (ret) {
6008 				btrfs_abort_transaction(trans, extent_root, ret);
6009 				goto out;
6010 			}
6011 		}
6012 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6013 				 root_objectid);
6014 	} else {
6015 		if (found_extent) {
6016 			BUG_ON(is_data && refs_to_drop !=
6017 			       extent_data_ref_count(root, path, iref));
6018 			if (iref) {
6019 				BUG_ON(path->slots[0] != extent_slot);
6020 			} else {
6021 				BUG_ON(path->slots[0] != extent_slot + 1);
6022 				path->slots[0] = extent_slot;
6023 				num_to_del = 2;
6024 			}
6025 		}
6026 
6027 		last_ref = 1;
6028 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6029 				      num_to_del);
6030 		if (ret) {
6031 			btrfs_abort_transaction(trans, extent_root, ret);
6032 			goto out;
6033 		}
6034 		btrfs_release_path(path);
6035 
6036 		if (is_data) {
6037 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6038 			if (ret) {
6039 				btrfs_abort_transaction(trans, extent_root, ret);
6040 				goto out;
6041 			}
6042 		}
6043 
6044 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6045 		if (ret) {
6046 			btrfs_abort_transaction(trans, extent_root, ret);
6047 			goto out;
6048 		}
6049 	}
6050 	btrfs_release_path(path);
6051 
6052 	/* Deal with the quota accounting */
6053 	if (!ret && last_ref && !no_quota) {
6054 		int mod_seq = 0;
6055 
6056 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6057 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6058 			mod_seq = 1;
6059 
6060 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6061 					      bytenr, num_bytes, type,
6062 					      mod_seq);
6063 	}
6064 out:
6065 	btrfs_free_path(path);
6066 	return ret;
6067 }
6068 
6069 /*
6070  * when we free an block, it is possible (and likely) that we free the last
6071  * delayed ref for that extent as well.  This searches the delayed ref tree for
6072  * a given extent, and if there are no other delayed refs to be processed, it
6073  * removes it from the tree.
6074  */
6075 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6076 				      struct btrfs_root *root, u64 bytenr)
6077 {
6078 	struct btrfs_delayed_ref_head *head;
6079 	struct btrfs_delayed_ref_root *delayed_refs;
6080 	int ret = 0;
6081 
6082 	delayed_refs = &trans->transaction->delayed_refs;
6083 	spin_lock(&delayed_refs->lock);
6084 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6085 	if (!head)
6086 		goto out_delayed_unlock;
6087 
6088 	spin_lock(&head->lock);
6089 	if (rb_first(&head->ref_root))
6090 		goto out;
6091 
6092 	if (head->extent_op) {
6093 		if (!head->must_insert_reserved)
6094 			goto out;
6095 		btrfs_free_delayed_extent_op(head->extent_op);
6096 		head->extent_op = NULL;
6097 	}
6098 
6099 	/*
6100 	 * waiting for the lock here would deadlock.  If someone else has it
6101 	 * locked they are already in the process of dropping it anyway
6102 	 */
6103 	if (!mutex_trylock(&head->mutex))
6104 		goto out;
6105 
6106 	/*
6107 	 * at this point we have a head with no other entries.  Go
6108 	 * ahead and process it.
6109 	 */
6110 	head->node.in_tree = 0;
6111 	rb_erase(&head->href_node, &delayed_refs->href_root);
6112 
6113 	atomic_dec(&delayed_refs->num_entries);
6114 
6115 	/*
6116 	 * we don't take a ref on the node because we're removing it from the
6117 	 * tree, so we just steal the ref the tree was holding.
6118 	 */
6119 	delayed_refs->num_heads--;
6120 	if (head->processing == 0)
6121 		delayed_refs->num_heads_ready--;
6122 	head->processing = 0;
6123 	spin_unlock(&head->lock);
6124 	spin_unlock(&delayed_refs->lock);
6125 
6126 	BUG_ON(head->extent_op);
6127 	if (head->must_insert_reserved)
6128 		ret = 1;
6129 
6130 	mutex_unlock(&head->mutex);
6131 	btrfs_put_delayed_ref(&head->node);
6132 	return ret;
6133 out:
6134 	spin_unlock(&head->lock);
6135 
6136 out_delayed_unlock:
6137 	spin_unlock(&delayed_refs->lock);
6138 	return 0;
6139 }
6140 
6141 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6142 			   struct btrfs_root *root,
6143 			   struct extent_buffer *buf,
6144 			   u64 parent, int last_ref)
6145 {
6146 	int pin = 1;
6147 	int ret;
6148 
6149 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6150 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6151 					buf->start, buf->len,
6152 					parent, root->root_key.objectid,
6153 					btrfs_header_level(buf),
6154 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6155 		BUG_ON(ret); /* -ENOMEM */
6156 	}
6157 
6158 	if (!last_ref)
6159 		return;
6160 
6161 	if (btrfs_header_generation(buf) == trans->transid) {
6162 		struct btrfs_block_group_cache *cache;
6163 
6164 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6165 			ret = check_ref_cleanup(trans, root, buf->start);
6166 			if (!ret)
6167 				goto out;
6168 		}
6169 
6170 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6171 
6172 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6173 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6174 			btrfs_put_block_group(cache);
6175 			goto out;
6176 		}
6177 
6178 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6179 
6180 		btrfs_add_free_space(cache, buf->start, buf->len);
6181 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6182 		btrfs_put_block_group(cache);
6183 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6184 		pin = 0;
6185 	}
6186 out:
6187 	if (pin)
6188 		add_pinned_bytes(root->fs_info, buf->len,
6189 				 btrfs_header_level(buf),
6190 				 root->root_key.objectid);
6191 
6192 	/*
6193 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6194 	 * anymore.
6195 	 */
6196 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6197 }
6198 
6199 /* Can return -ENOMEM */
6200 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6201 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6202 		      u64 owner, u64 offset, int no_quota)
6203 {
6204 	int ret;
6205 	struct btrfs_fs_info *fs_info = root->fs_info;
6206 
6207 	if (btrfs_test_is_dummy_root(root))
6208 		return 0;
6209 
6210 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6211 
6212 	/*
6213 	 * tree log blocks never actually go into the extent allocation
6214 	 * tree, just update pinning info and exit early.
6215 	 */
6216 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6217 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6218 		/* unlocks the pinned mutex */
6219 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6220 		ret = 0;
6221 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6222 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6223 					num_bytes,
6224 					parent, root_objectid, (int)owner,
6225 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6226 	} else {
6227 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6228 						num_bytes,
6229 						parent, root_objectid, owner,
6230 						offset, BTRFS_DROP_DELAYED_REF,
6231 						NULL, no_quota);
6232 	}
6233 	return ret;
6234 }
6235 
6236 /*
6237  * when we wait for progress in the block group caching, its because
6238  * our allocation attempt failed at least once.  So, we must sleep
6239  * and let some progress happen before we try again.
6240  *
6241  * This function will sleep at least once waiting for new free space to
6242  * show up, and then it will check the block group free space numbers
6243  * for our min num_bytes.  Another option is to have it go ahead
6244  * and look in the rbtree for a free extent of a given size, but this
6245  * is a good start.
6246  *
6247  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6248  * any of the information in this block group.
6249  */
6250 static noinline void
6251 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6252 				u64 num_bytes)
6253 {
6254 	struct btrfs_caching_control *caching_ctl;
6255 
6256 	caching_ctl = get_caching_control(cache);
6257 	if (!caching_ctl)
6258 		return;
6259 
6260 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6261 		   (cache->free_space_ctl->free_space >= num_bytes));
6262 
6263 	put_caching_control(caching_ctl);
6264 }
6265 
6266 static noinline int
6267 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6268 {
6269 	struct btrfs_caching_control *caching_ctl;
6270 	int ret = 0;
6271 
6272 	caching_ctl = get_caching_control(cache);
6273 	if (!caching_ctl)
6274 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6275 
6276 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6277 	if (cache->cached == BTRFS_CACHE_ERROR)
6278 		ret = -EIO;
6279 	put_caching_control(caching_ctl);
6280 	return ret;
6281 }
6282 
6283 int __get_raid_index(u64 flags)
6284 {
6285 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6286 		return BTRFS_RAID_RAID10;
6287 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6288 		return BTRFS_RAID_RAID1;
6289 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6290 		return BTRFS_RAID_DUP;
6291 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6292 		return BTRFS_RAID_RAID0;
6293 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6294 		return BTRFS_RAID_RAID5;
6295 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6296 		return BTRFS_RAID_RAID6;
6297 
6298 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6299 }
6300 
6301 int get_block_group_index(struct btrfs_block_group_cache *cache)
6302 {
6303 	return __get_raid_index(cache->flags);
6304 }
6305 
6306 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6307 	[BTRFS_RAID_RAID10]	= "raid10",
6308 	[BTRFS_RAID_RAID1]	= "raid1",
6309 	[BTRFS_RAID_DUP]	= "dup",
6310 	[BTRFS_RAID_RAID0]	= "raid0",
6311 	[BTRFS_RAID_SINGLE]	= "single",
6312 	[BTRFS_RAID_RAID5]	= "raid5",
6313 	[BTRFS_RAID_RAID6]	= "raid6",
6314 };
6315 
6316 static const char *get_raid_name(enum btrfs_raid_types type)
6317 {
6318 	if (type >= BTRFS_NR_RAID_TYPES)
6319 		return NULL;
6320 
6321 	return btrfs_raid_type_names[type];
6322 }
6323 
6324 enum btrfs_loop_type {
6325 	LOOP_CACHING_NOWAIT = 0,
6326 	LOOP_CACHING_WAIT = 1,
6327 	LOOP_ALLOC_CHUNK = 2,
6328 	LOOP_NO_EMPTY_SIZE = 3,
6329 };
6330 
6331 static inline void
6332 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6333 		       int delalloc)
6334 {
6335 	if (delalloc)
6336 		down_read(&cache->data_rwsem);
6337 }
6338 
6339 static inline void
6340 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6341 		       int delalloc)
6342 {
6343 	btrfs_get_block_group(cache);
6344 	if (delalloc)
6345 		down_read(&cache->data_rwsem);
6346 }
6347 
6348 static struct btrfs_block_group_cache *
6349 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6350 		   struct btrfs_free_cluster *cluster,
6351 		   int delalloc)
6352 {
6353 	struct btrfs_block_group_cache *used_bg;
6354 	bool locked = false;
6355 again:
6356 	spin_lock(&cluster->refill_lock);
6357 	if (locked) {
6358 		if (used_bg == cluster->block_group)
6359 			return used_bg;
6360 
6361 		up_read(&used_bg->data_rwsem);
6362 		btrfs_put_block_group(used_bg);
6363 	}
6364 
6365 	used_bg = cluster->block_group;
6366 	if (!used_bg)
6367 		return NULL;
6368 
6369 	if (used_bg == block_group)
6370 		return used_bg;
6371 
6372 	btrfs_get_block_group(used_bg);
6373 
6374 	if (!delalloc)
6375 		return used_bg;
6376 
6377 	if (down_read_trylock(&used_bg->data_rwsem))
6378 		return used_bg;
6379 
6380 	spin_unlock(&cluster->refill_lock);
6381 	down_read(&used_bg->data_rwsem);
6382 	locked = true;
6383 	goto again;
6384 }
6385 
6386 static inline void
6387 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6388 			 int delalloc)
6389 {
6390 	if (delalloc)
6391 		up_read(&cache->data_rwsem);
6392 	btrfs_put_block_group(cache);
6393 }
6394 
6395 /*
6396  * walks the btree of allocated extents and find a hole of a given size.
6397  * The key ins is changed to record the hole:
6398  * ins->objectid == start position
6399  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6400  * ins->offset == the size of the hole.
6401  * Any available blocks before search_start are skipped.
6402  *
6403  * If there is no suitable free space, we will record the max size of
6404  * the free space extent currently.
6405  */
6406 static noinline int find_free_extent(struct btrfs_root *orig_root,
6407 				     u64 num_bytes, u64 empty_size,
6408 				     u64 hint_byte, struct btrfs_key *ins,
6409 				     u64 flags, int delalloc)
6410 {
6411 	int ret = 0;
6412 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6413 	struct btrfs_free_cluster *last_ptr = NULL;
6414 	struct btrfs_block_group_cache *block_group = NULL;
6415 	u64 search_start = 0;
6416 	u64 max_extent_size = 0;
6417 	int empty_cluster = 2 * 1024 * 1024;
6418 	struct btrfs_space_info *space_info;
6419 	int loop = 0;
6420 	int index = __get_raid_index(flags);
6421 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6422 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6423 	bool failed_cluster_refill = false;
6424 	bool failed_alloc = false;
6425 	bool use_cluster = true;
6426 	bool have_caching_bg = false;
6427 
6428 	WARN_ON(num_bytes < root->sectorsize);
6429 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6430 	ins->objectid = 0;
6431 	ins->offset = 0;
6432 
6433 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6434 
6435 	space_info = __find_space_info(root->fs_info, flags);
6436 	if (!space_info) {
6437 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6438 		return -ENOSPC;
6439 	}
6440 
6441 	/*
6442 	 * If the space info is for both data and metadata it means we have a
6443 	 * small filesystem and we can't use the clustering stuff.
6444 	 */
6445 	if (btrfs_mixed_space_info(space_info))
6446 		use_cluster = false;
6447 
6448 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6449 		last_ptr = &root->fs_info->meta_alloc_cluster;
6450 		if (!btrfs_test_opt(root, SSD))
6451 			empty_cluster = 64 * 1024;
6452 	}
6453 
6454 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6455 	    btrfs_test_opt(root, SSD)) {
6456 		last_ptr = &root->fs_info->data_alloc_cluster;
6457 	}
6458 
6459 	if (last_ptr) {
6460 		spin_lock(&last_ptr->lock);
6461 		if (last_ptr->block_group)
6462 			hint_byte = last_ptr->window_start;
6463 		spin_unlock(&last_ptr->lock);
6464 	}
6465 
6466 	search_start = max(search_start, first_logical_byte(root, 0));
6467 	search_start = max(search_start, hint_byte);
6468 
6469 	if (!last_ptr)
6470 		empty_cluster = 0;
6471 
6472 	if (search_start == hint_byte) {
6473 		block_group = btrfs_lookup_block_group(root->fs_info,
6474 						       search_start);
6475 		/*
6476 		 * we don't want to use the block group if it doesn't match our
6477 		 * allocation bits, or if its not cached.
6478 		 *
6479 		 * However if we are re-searching with an ideal block group
6480 		 * picked out then we don't care that the block group is cached.
6481 		 */
6482 		if (block_group && block_group_bits(block_group, flags) &&
6483 		    block_group->cached != BTRFS_CACHE_NO) {
6484 			down_read(&space_info->groups_sem);
6485 			if (list_empty(&block_group->list) ||
6486 			    block_group->ro) {
6487 				/*
6488 				 * someone is removing this block group,
6489 				 * we can't jump into the have_block_group
6490 				 * target because our list pointers are not
6491 				 * valid
6492 				 */
6493 				btrfs_put_block_group(block_group);
6494 				up_read(&space_info->groups_sem);
6495 			} else {
6496 				index = get_block_group_index(block_group);
6497 				btrfs_lock_block_group(block_group, delalloc);
6498 				goto have_block_group;
6499 			}
6500 		} else if (block_group) {
6501 			btrfs_put_block_group(block_group);
6502 		}
6503 	}
6504 search:
6505 	have_caching_bg = false;
6506 	down_read(&space_info->groups_sem);
6507 	list_for_each_entry(block_group, &space_info->block_groups[index],
6508 			    list) {
6509 		u64 offset;
6510 		int cached;
6511 
6512 		btrfs_grab_block_group(block_group, delalloc);
6513 		search_start = block_group->key.objectid;
6514 
6515 		/*
6516 		 * this can happen if we end up cycling through all the
6517 		 * raid types, but we want to make sure we only allocate
6518 		 * for the proper type.
6519 		 */
6520 		if (!block_group_bits(block_group, flags)) {
6521 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6522 				BTRFS_BLOCK_GROUP_RAID1 |
6523 				BTRFS_BLOCK_GROUP_RAID5 |
6524 				BTRFS_BLOCK_GROUP_RAID6 |
6525 				BTRFS_BLOCK_GROUP_RAID10;
6526 
6527 			/*
6528 			 * if they asked for extra copies and this block group
6529 			 * doesn't provide them, bail.  This does allow us to
6530 			 * fill raid0 from raid1.
6531 			 */
6532 			if ((flags & extra) && !(block_group->flags & extra))
6533 				goto loop;
6534 		}
6535 
6536 have_block_group:
6537 		cached = block_group_cache_done(block_group);
6538 		if (unlikely(!cached)) {
6539 			ret = cache_block_group(block_group, 0);
6540 			BUG_ON(ret < 0);
6541 			ret = 0;
6542 		}
6543 
6544 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6545 			goto loop;
6546 		if (unlikely(block_group->ro))
6547 			goto loop;
6548 
6549 		/*
6550 		 * Ok we want to try and use the cluster allocator, so
6551 		 * lets look there
6552 		 */
6553 		if (last_ptr) {
6554 			struct btrfs_block_group_cache *used_block_group;
6555 			unsigned long aligned_cluster;
6556 			/*
6557 			 * the refill lock keeps out other
6558 			 * people trying to start a new cluster
6559 			 */
6560 			used_block_group = btrfs_lock_cluster(block_group,
6561 							      last_ptr,
6562 							      delalloc);
6563 			if (!used_block_group)
6564 				goto refill_cluster;
6565 
6566 			if (used_block_group != block_group &&
6567 			    (used_block_group->ro ||
6568 			     !block_group_bits(used_block_group, flags)))
6569 				goto release_cluster;
6570 
6571 			offset = btrfs_alloc_from_cluster(used_block_group,
6572 						last_ptr,
6573 						num_bytes,
6574 						used_block_group->key.objectid,
6575 						&max_extent_size);
6576 			if (offset) {
6577 				/* we have a block, we're done */
6578 				spin_unlock(&last_ptr->refill_lock);
6579 				trace_btrfs_reserve_extent_cluster(root,
6580 						used_block_group,
6581 						search_start, num_bytes);
6582 				if (used_block_group != block_group) {
6583 					btrfs_release_block_group(block_group,
6584 								  delalloc);
6585 					block_group = used_block_group;
6586 				}
6587 				goto checks;
6588 			}
6589 
6590 			WARN_ON(last_ptr->block_group != used_block_group);
6591 release_cluster:
6592 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6593 			 * set up a new clusters, so lets just skip it
6594 			 * and let the allocator find whatever block
6595 			 * it can find.  If we reach this point, we
6596 			 * will have tried the cluster allocator
6597 			 * plenty of times and not have found
6598 			 * anything, so we are likely way too
6599 			 * fragmented for the clustering stuff to find
6600 			 * anything.
6601 			 *
6602 			 * However, if the cluster is taken from the
6603 			 * current block group, release the cluster
6604 			 * first, so that we stand a better chance of
6605 			 * succeeding in the unclustered
6606 			 * allocation.  */
6607 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6608 			    used_block_group != block_group) {
6609 				spin_unlock(&last_ptr->refill_lock);
6610 				btrfs_release_block_group(used_block_group,
6611 							  delalloc);
6612 				goto unclustered_alloc;
6613 			}
6614 
6615 			/*
6616 			 * this cluster didn't work out, free it and
6617 			 * start over
6618 			 */
6619 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6620 
6621 			if (used_block_group != block_group)
6622 				btrfs_release_block_group(used_block_group,
6623 							  delalloc);
6624 refill_cluster:
6625 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6626 				spin_unlock(&last_ptr->refill_lock);
6627 				goto unclustered_alloc;
6628 			}
6629 
6630 			aligned_cluster = max_t(unsigned long,
6631 						empty_cluster + empty_size,
6632 					      block_group->full_stripe_len);
6633 
6634 			/* allocate a cluster in this block group */
6635 			ret = btrfs_find_space_cluster(root, block_group,
6636 						       last_ptr, search_start,
6637 						       num_bytes,
6638 						       aligned_cluster);
6639 			if (ret == 0) {
6640 				/*
6641 				 * now pull our allocation out of this
6642 				 * cluster
6643 				 */
6644 				offset = btrfs_alloc_from_cluster(block_group,
6645 							last_ptr,
6646 							num_bytes,
6647 							search_start,
6648 							&max_extent_size);
6649 				if (offset) {
6650 					/* we found one, proceed */
6651 					spin_unlock(&last_ptr->refill_lock);
6652 					trace_btrfs_reserve_extent_cluster(root,
6653 						block_group, search_start,
6654 						num_bytes);
6655 					goto checks;
6656 				}
6657 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6658 				   && !failed_cluster_refill) {
6659 				spin_unlock(&last_ptr->refill_lock);
6660 
6661 				failed_cluster_refill = true;
6662 				wait_block_group_cache_progress(block_group,
6663 				       num_bytes + empty_cluster + empty_size);
6664 				goto have_block_group;
6665 			}
6666 
6667 			/*
6668 			 * at this point we either didn't find a cluster
6669 			 * or we weren't able to allocate a block from our
6670 			 * cluster.  Free the cluster we've been trying
6671 			 * to use, and go to the next block group
6672 			 */
6673 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6674 			spin_unlock(&last_ptr->refill_lock);
6675 			goto loop;
6676 		}
6677 
6678 unclustered_alloc:
6679 		spin_lock(&block_group->free_space_ctl->tree_lock);
6680 		if (cached &&
6681 		    block_group->free_space_ctl->free_space <
6682 		    num_bytes + empty_cluster + empty_size) {
6683 			if (block_group->free_space_ctl->free_space >
6684 			    max_extent_size)
6685 				max_extent_size =
6686 					block_group->free_space_ctl->free_space;
6687 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6688 			goto loop;
6689 		}
6690 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6691 
6692 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6693 						    num_bytes, empty_size,
6694 						    &max_extent_size);
6695 		/*
6696 		 * If we didn't find a chunk, and we haven't failed on this
6697 		 * block group before, and this block group is in the middle of
6698 		 * caching and we are ok with waiting, then go ahead and wait
6699 		 * for progress to be made, and set failed_alloc to true.
6700 		 *
6701 		 * If failed_alloc is true then we've already waited on this
6702 		 * block group once and should move on to the next block group.
6703 		 */
6704 		if (!offset && !failed_alloc && !cached &&
6705 		    loop > LOOP_CACHING_NOWAIT) {
6706 			wait_block_group_cache_progress(block_group,
6707 						num_bytes + empty_size);
6708 			failed_alloc = true;
6709 			goto have_block_group;
6710 		} else if (!offset) {
6711 			if (!cached)
6712 				have_caching_bg = true;
6713 			goto loop;
6714 		}
6715 checks:
6716 		search_start = ALIGN(offset, root->stripesize);
6717 
6718 		/* move on to the next group */
6719 		if (search_start + num_bytes >
6720 		    block_group->key.objectid + block_group->key.offset) {
6721 			btrfs_add_free_space(block_group, offset, num_bytes);
6722 			goto loop;
6723 		}
6724 
6725 		if (offset < search_start)
6726 			btrfs_add_free_space(block_group, offset,
6727 					     search_start - offset);
6728 		BUG_ON(offset > search_start);
6729 
6730 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6731 						  alloc_type, delalloc);
6732 		if (ret == -EAGAIN) {
6733 			btrfs_add_free_space(block_group, offset, num_bytes);
6734 			goto loop;
6735 		}
6736 
6737 		/* we are all good, lets return */
6738 		ins->objectid = search_start;
6739 		ins->offset = num_bytes;
6740 
6741 		trace_btrfs_reserve_extent(orig_root, block_group,
6742 					   search_start, num_bytes);
6743 		btrfs_release_block_group(block_group, delalloc);
6744 		break;
6745 loop:
6746 		failed_cluster_refill = false;
6747 		failed_alloc = false;
6748 		BUG_ON(index != get_block_group_index(block_group));
6749 		btrfs_release_block_group(block_group, delalloc);
6750 	}
6751 	up_read(&space_info->groups_sem);
6752 
6753 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6754 		goto search;
6755 
6756 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6757 		goto search;
6758 
6759 	/*
6760 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6761 	 *			caching kthreads as we move along
6762 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6763 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6764 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6765 	 *			again
6766 	 */
6767 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6768 		index = 0;
6769 		loop++;
6770 		if (loop == LOOP_ALLOC_CHUNK) {
6771 			struct btrfs_trans_handle *trans;
6772 			int exist = 0;
6773 
6774 			trans = current->journal_info;
6775 			if (trans)
6776 				exist = 1;
6777 			else
6778 				trans = btrfs_join_transaction(root);
6779 
6780 			if (IS_ERR(trans)) {
6781 				ret = PTR_ERR(trans);
6782 				goto out;
6783 			}
6784 
6785 			ret = do_chunk_alloc(trans, root, flags,
6786 					     CHUNK_ALLOC_FORCE);
6787 			/*
6788 			 * Do not bail out on ENOSPC since we
6789 			 * can do more things.
6790 			 */
6791 			if (ret < 0 && ret != -ENOSPC)
6792 				btrfs_abort_transaction(trans,
6793 							root, ret);
6794 			else
6795 				ret = 0;
6796 			if (!exist)
6797 				btrfs_end_transaction(trans, root);
6798 			if (ret)
6799 				goto out;
6800 		}
6801 
6802 		if (loop == LOOP_NO_EMPTY_SIZE) {
6803 			empty_size = 0;
6804 			empty_cluster = 0;
6805 		}
6806 
6807 		goto search;
6808 	} else if (!ins->objectid) {
6809 		ret = -ENOSPC;
6810 	} else if (ins->objectid) {
6811 		ret = 0;
6812 	}
6813 out:
6814 	if (ret == -ENOSPC)
6815 		ins->offset = max_extent_size;
6816 	return ret;
6817 }
6818 
6819 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6820 			    int dump_block_groups)
6821 {
6822 	struct btrfs_block_group_cache *cache;
6823 	int index = 0;
6824 
6825 	spin_lock(&info->lock);
6826 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6827 	       info->flags,
6828 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6829 	       info->bytes_reserved - info->bytes_readonly,
6830 	       (info->full) ? "" : "not ");
6831 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6832 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6833 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6834 	       info->bytes_reserved, info->bytes_may_use,
6835 	       info->bytes_readonly);
6836 	spin_unlock(&info->lock);
6837 
6838 	if (!dump_block_groups)
6839 		return;
6840 
6841 	down_read(&info->groups_sem);
6842 again:
6843 	list_for_each_entry(cache, &info->block_groups[index], list) {
6844 		spin_lock(&cache->lock);
6845 		printk(KERN_INFO "BTRFS: "
6846 			   "block group %llu has %llu bytes, "
6847 			   "%llu used %llu pinned %llu reserved %s\n",
6848 		       cache->key.objectid, cache->key.offset,
6849 		       btrfs_block_group_used(&cache->item), cache->pinned,
6850 		       cache->reserved, cache->ro ? "[readonly]" : "");
6851 		btrfs_dump_free_space(cache, bytes);
6852 		spin_unlock(&cache->lock);
6853 	}
6854 	if (++index < BTRFS_NR_RAID_TYPES)
6855 		goto again;
6856 	up_read(&info->groups_sem);
6857 }
6858 
6859 int btrfs_reserve_extent(struct btrfs_root *root,
6860 			 u64 num_bytes, u64 min_alloc_size,
6861 			 u64 empty_size, u64 hint_byte,
6862 			 struct btrfs_key *ins, int is_data, int delalloc)
6863 {
6864 	bool final_tried = false;
6865 	u64 flags;
6866 	int ret;
6867 
6868 	flags = btrfs_get_alloc_profile(root, is_data);
6869 again:
6870 	WARN_ON(num_bytes < root->sectorsize);
6871 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6872 			       flags, delalloc);
6873 
6874 	if (ret == -ENOSPC) {
6875 		if (!final_tried && ins->offset) {
6876 			num_bytes = min(num_bytes >> 1, ins->offset);
6877 			num_bytes = round_down(num_bytes, root->sectorsize);
6878 			num_bytes = max(num_bytes, min_alloc_size);
6879 			if (num_bytes == min_alloc_size)
6880 				final_tried = true;
6881 			goto again;
6882 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6883 			struct btrfs_space_info *sinfo;
6884 
6885 			sinfo = __find_space_info(root->fs_info, flags);
6886 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6887 				flags, num_bytes);
6888 			if (sinfo)
6889 				dump_space_info(sinfo, num_bytes, 1);
6890 		}
6891 	}
6892 
6893 	return ret;
6894 }
6895 
6896 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6897 					u64 start, u64 len,
6898 					int pin, int delalloc)
6899 {
6900 	struct btrfs_block_group_cache *cache;
6901 	int ret = 0;
6902 
6903 	cache = btrfs_lookup_block_group(root->fs_info, start);
6904 	if (!cache) {
6905 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6906 			start);
6907 		return -ENOSPC;
6908 	}
6909 
6910 	if (btrfs_test_opt(root, DISCARD))
6911 		ret = btrfs_discard_extent(root, start, len, NULL);
6912 
6913 	if (pin)
6914 		pin_down_extent(root, cache, start, len, 1);
6915 	else {
6916 		btrfs_add_free_space(cache, start, len);
6917 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6918 	}
6919 	btrfs_put_block_group(cache);
6920 
6921 	trace_btrfs_reserved_extent_free(root, start, len);
6922 
6923 	return ret;
6924 }
6925 
6926 int btrfs_free_reserved_extent(struct btrfs_root *root,
6927 			       u64 start, u64 len, int delalloc)
6928 {
6929 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6930 }
6931 
6932 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6933 				       u64 start, u64 len)
6934 {
6935 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6936 }
6937 
6938 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6939 				      struct btrfs_root *root,
6940 				      u64 parent, u64 root_objectid,
6941 				      u64 flags, u64 owner, u64 offset,
6942 				      struct btrfs_key *ins, int ref_mod)
6943 {
6944 	int ret;
6945 	struct btrfs_fs_info *fs_info = root->fs_info;
6946 	struct btrfs_extent_item *extent_item;
6947 	struct btrfs_extent_inline_ref *iref;
6948 	struct btrfs_path *path;
6949 	struct extent_buffer *leaf;
6950 	int type;
6951 	u32 size;
6952 
6953 	if (parent > 0)
6954 		type = BTRFS_SHARED_DATA_REF_KEY;
6955 	else
6956 		type = BTRFS_EXTENT_DATA_REF_KEY;
6957 
6958 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6959 
6960 	path = btrfs_alloc_path();
6961 	if (!path)
6962 		return -ENOMEM;
6963 
6964 	path->leave_spinning = 1;
6965 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6966 				      ins, size);
6967 	if (ret) {
6968 		btrfs_free_path(path);
6969 		return ret;
6970 	}
6971 
6972 	leaf = path->nodes[0];
6973 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6974 				     struct btrfs_extent_item);
6975 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6976 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6977 	btrfs_set_extent_flags(leaf, extent_item,
6978 			       flags | BTRFS_EXTENT_FLAG_DATA);
6979 
6980 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6981 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6982 	if (parent > 0) {
6983 		struct btrfs_shared_data_ref *ref;
6984 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6985 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6986 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6987 	} else {
6988 		struct btrfs_extent_data_ref *ref;
6989 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6990 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6991 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6992 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6993 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6994 	}
6995 
6996 	btrfs_mark_buffer_dirty(path->nodes[0]);
6997 	btrfs_free_path(path);
6998 
6999 	/* Always set parent to 0 here since its exclusive anyway. */
7000 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7001 				      ins->objectid, ins->offset,
7002 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7003 	if (ret)
7004 		return ret;
7005 
7006 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7007 	if (ret) { /* -ENOENT, logic error */
7008 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7009 			ins->objectid, ins->offset);
7010 		BUG();
7011 	}
7012 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7013 	return ret;
7014 }
7015 
7016 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7017 				     struct btrfs_root *root,
7018 				     u64 parent, u64 root_objectid,
7019 				     u64 flags, struct btrfs_disk_key *key,
7020 				     int level, struct btrfs_key *ins,
7021 				     int no_quota)
7022 {
7023 	int ret;
7024 	struct btrfs_fs_info *fs_info = root->fs_info;
7025 	struct btrfs_extent_item *extent_item;
7026 	struct btrfs_tree_block_info *block_info;
7027 	struct btrfs_extent_inline_ref *iref;
7028 	struct btrfs_path *path;
7029 	struct extent_buffer *leaf;
7030 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7031 	u64 num_bytes = ins->offset;
7032 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7033 						 SKINNY_METADATA);
7034 
7035 	if (!skinny_metadata)
7036 		size += sizeof(*block_info);
7037 
7038 	path = btrfs_alloc_path();
7039 	if (!path) {
7040 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7041 						   root->nodesize);
7042 		return -ENOMEM;
7043 	}
7044 
7045 	path->leave_spinning = 1;
7046 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7047 				      ins, size);
7048 	if (ret) {
7049 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7050 						   root->nodesize);
7051 		btrfs_free_path(path);
7052 		return ret;
7053 	}
7054 
7055 	leaf = path->nodes[0];
7056 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7057 				     struct btrfs_extent_item);
7058 	btrfs_set_extent_refs(leaf, extent_item, 1);
7059 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7060 	btrfs_set_extent_flags(leaf, extent_item,
7061 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7062 
7063 	if (skinny_metadata) {
7064 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7065 		num_bytes = root->nodesize;
7066 	} else {
7067 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7068 		btrfs_set_tree_block_key(leaf, block_info, key);
7069 		btrfs_set_tree_block_level(leaf, block_info, level);
7070 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7071 	}
7072 
7073 	if (parent > 0) {
7074 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7075 		btrfs_set_extent_inline_ref_type(leaf, iref,
7076 						 BTRFS_SHARED_BLOCK_REF_KEY);
7077 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7078 	} else {
7079 		btrfs_set_extent_inline_ref_type(leaf, iref,
7080 						 BTRFS_TREE_BLOCK_REF_KEY);
7081 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7082 	}
7083 
7084 	btrfs_mark_buffer_dirty(leaf);
7085 	btrfs_free_path(path);
7086 
7087 	if (!no_quota) {
7088 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7089 					      ins->objectid, num_bytes,
7090 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7091 		if (ret)
7092 			return ret;
7093 	}
7094 
7095 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7096 				 1);
7097 	if (ret) { /* -ENOENT, logic error */
7098 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7099 			ins->objectid, ins->offset);
7100 		BUG();
7101 	}
7102 
7103 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7104 	return ret;
7105 }
7106 
7107 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7108 				     struct btrfs_root *root,
7109 				     u64 root_objectid, u64 owner,
7110 				     u64 offset, struct btrfs_key *ins)
7111 {
7112 	int ret;
7113 
7114 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7115 
7116 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7117 					 ins->offset, 0,
7118 					 root_objectid, owner, offset,
7119 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7120 	return ret;
7121 }
7122 
7123 /*
7124  * this is used by the tree logging recovery code.  It records that
7125  * an extent has been allocated and makes sure to clear the free
7126  * space cache bits as well
7127  */
7128 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7129 				   struct btrfs_root *root,
7130 				   u64 root_objectid, u64 owner, u64 offset,
7131 				   struct btrfs_key *ins)
7132 {
7133 	int ret;
7134 	struct btrfs_block_group_cache *block_group;
7135 
7136 	/*
7137 	 * Mixed block groups will exclude before processing the log so we only
7138 	 * need to do the exlude dance if this fs isn't mixed.
7139 	 */
7140 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7141 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7142 		if (ret)
7143 			return ret;
7144 	}
7145 
7146 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7147 	if (!block_group)
7148 		return -EINVAL;
7149 
7150 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7151 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7152 	BUG_ON(ret); /* logic error */
7153 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7154 					 0, owner, offset, ins, 1);
7155 	btrfs_put_block_group(block_group);
7156 	return ret;
7157 }
7158 
7159 static struct extent_buffer *
7160 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7161 		      u64 bytenr, int level)
7162 {
7163 	struct extent_buffer *buf;
7164 
7165 	buf = btrfs_find_create_tree_block(root, bytenr);
7166 	if (!buf)
7167 		return ERR_PTR(-ENOMEM);
7168 	btrfs_set_header_generation(buf, trans->transid);
7169 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7170 	btrfs_tree_lock(buf);
7171 	clean_tree_block(trans, root, buf);
7172 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7173 
7174 	btrfs_set_lock_blocking(buf);
7175 	btrfs_set_buffer_uptodate(buf);
7176 
7177 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7178 		buf->log_index = root->log_transid % 2;
7179 		/*
7180 		 * we allow two log transactions at a time, use different
7181 		 * EXENT bit to differentiate dirty pages.
7182 		 */
7183 		if (buf->log_index == 0)
7184 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7185 					buf->start + buf->len - 1, GFP_NOFS);
7186 		else
7187 			set_extent_new(&root->dirty_log_pages, buf->start,
7188 					buf->start + buf->len - 1, GFP_NOFS);
7189 	} else {
7190 		buf->log_index = -1;
7191 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7192 			 buf->start + buf->len - 1, GFP_NOFS);
7193 	}
7194 	trans->blocks_used++;
7195 	/* this returns a buffer locked for blocking */
7196 	return buf;
7197 }
7198 
7199 static struct btrfs_block_rsv *
7200 use_block_rsv(struct btrfs_trans_handle *trans,
7201 	      struct btrfs_root *root, u32 blocksize)
7202 {
7203 	struct btrfs_block_rsv *block_rsv;
7204 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7205 	int ret;
7206 	bool global_updated = false;
7207 
7208 	block_rsv = get_block_rsv(trans, root);
7209 
7210 	if (unlikely(block_rsv->size == 0))
7211 		goto try_reserve;
7212 again:
7213 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7214 	if (!ret)
7215 		return block_rsv;
7216 
7217 	if (block_rsv->failfast)
7218 		return ERR_PTR(ret);
7219 
7220 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7221 		global_updated = true;
7222 		update_global_block_rsv(root->fs_info);
7223 		goto again;
7224 	}
7225 
7226 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7227 		static DEFINE_RATELIMIT_STATE(_rs,
7228 				DEFAULT_RATELIMIT_INTERVAL * 10,
7229 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7230 		if (__ratelimit(&_rs))
7231 			WARN(1, KERN_DEBUG
7232 				"BTRFS: block rsv returned %d\n", ret);
7233 	}
7234 try_reserve:
7235 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7236 				     BTRFS_RESERVE_NO_FLUSH);
7237 	if (!ret)
7238 		return block_rsv;
7239 	/*
7240 	 * If we couldn't reserve metadata bytes try and use some from
7241 	 * the global reserve if its space type is the same as the global
7242 	 * reservation.
7243 	 */
7244 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7245 	    block_rsv->space_info == global_rsv->space_info) {
7246 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7247 		if (!ret)
7248 			return global_rsv;
7249 	}
7250 	return ERR_PTR(ret);
7251 }
7252 
7253 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7254 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7255 {
7256 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7257 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7258 }
7259 
7260 /*
7261  * finds a free extent and does all the dirty work required for allocation
7262  * returns the key for the extent through ins, and a tree buffer for
7263  * the first block of the extent through buf.
7264  *
7265  * returns the tree buffer or NULL.
7266  */
7267 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7268 					struct btrfs_root *root,
7269 					u64 parent, u64 root_objectid,
7270 					struct btrfs_disk_key *key, int level,
7271 					u64 hint, u64 empty_size)
7272 {
7273 	struct btrfs_key ins;
7274 	struct btrfs_block_rsv *block_rsv;
7275 	struct extent_buffer *buf;
7276 	u64 flags = 0;
7277 	int ret;
7278 	u32 blocksize = root->nodesize;
7279 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7280 						 SKINNY_METADATA);
7281 
7282 	if (btrfs_test_is_dummy_root(root)) {
7283 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7284 					    level);
7285 		if (!IS_ERR(buf))
7286 			root->alloc_bytenr += blocksize;
7287 		return buf;
7288 	}
7289 
7290 	block_rsv = use_block_rsv(trans, root, blocksize);
7291 	if (IS_ERR(block_rsv))
7292 		return ERR_CAST(block_rsv);
7293 
7294 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7295 				   empty_size, hint, &ins, 0, 0);
7296 	if (ret) {
7297 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7298 		return ERR_PTR(ret);
7299 	}
7300 
7301 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7302 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7303 
7304 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7305 		if (parent == 0)
7306 			parent = ins.objectid;
7307 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7308 	} else
7309 		BUG_ON(parent > 0);
7310 
7311 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7312 		struct btrfs_delayed_extent_op *extent_op;
7313 		extent_op = btrfs_alloc_delayed_extent_op();
7314 		BUG_ON(!extent_op); /* -ENOMEM */
7315 		if (key)
7316 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7317 		else
7318 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7319 		extent_op->flags_to_set = flags;
7320 		if (skinny_metadata)
7321 			extent_op->update_key = 0;
7322 		else
7323 			extent_op->update_key = 1;
7324 		extent_op->update_flags = 1;
7325 		extent_op->is_data = 0;
7326 		extent_op->level = level;
7327 
7328 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7329 					ins.objectid,
7330 					ins.offset, parent, root_objectid,
7331 					level, BTRFS_ADD_DELAYED_EXTENT,
7332 					extent_op, 0);
7333 		BUG_ON(ret); /* -ENOMEM */
7334 	}
7335 	return buf;
7336 }
7337 
7338 struct walk_control {
7339 	u64 refs[BTRFS_MAX_LEVEL];
7340 	u64 flags[BTRFS_MAX_LEVEL];
7341 	struct btrfs_key update_progress;
7342 	int stage;
7343 	int level;
7344 	int shared_level;
7345 	int update_ref;
7346 	int keep_locks;
7347 	int reada_slot;
7348 	int reada_count;
7349 	int for_reloc;
7350 };
7351 
7352 #define DROP_REFERENCE	1
7353 #define UPDATE_BACKREF	2
7354 
7355 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7356 				     struct btrfs_root *root,
7357 				     struct walk_control *wc,
7358 				     struct btrfs_path *path)
7359 {
7360 	u64 bytenr;
7361 	u64 generation;
7362 	u64 refs;
7363 	u64 flags;
7364 	u32 nritems;
7365 	u32 blocksize;
7366 	struct btrfs_key key;
7367 	struct extent_buffer *eb;
7368 	int ret;
7369 	int slot;
7370 	int nread = 0;
7371 
7372 	if (path->slots[wc->level] < wc->reada_slot) {
7373 		wc->reada_count = wc->reada_count * 2 / 3;
7374 		wc->reada_count = max(wc->reada_count, 2);
7375 	} else {
7376 		wc->reada_count = wc->reada_count * 3 / 2;
7377 		wc->reada_count = min_t(int, wc->reada_count,
7378 					BTRFS_NODEPTRS_PER_BLOCK(root));
7379 	}
7380 
7381 	eb = path->nodes[wc->level];
7382 	nritems = btrfs_header_nritems(eb);
7383 	blocksize = root->nodesize;
7384 
7385 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7386 		if (nread >= wc->reada_count)
7387 			break;
7388 
7389 		cond_resched();
7390 		bytenr = btrfs_node_blockptr(eb, slot);
7391 		generation = btrfs_node_ptr_generation(eb, slot);
7392 
7393 		if (slot == path->slots[wc->level])
7394 			goto reada;
7395 
7396 		if (wc->stage == UPDATE_BACKREF &&
7397 		    generation <= root->root_key.offset)
7398 			continue;
7399 
7400 		/* We don't lock the tree block, it's OK to be racy here */
7401 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7402 					       wc->level - 1, 1, &refs,
7403 					       &flags);
7404 		/* We don't care about errors in readahead. */
7405 		if (ret < 0)
7406 			continue;
7407 		BUG_ON(refs == 0);
7408 
7409 		if (wc->stage == DROP_REFERENCE) {
7410 			if (refs == 1)
7411 				goto reada;
7412 
7413 			if (wc->level == 1 &&
7414 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7415 				continue;
7416 			if (!wc->update_ref ||
7417 			    generation <= root->root_key.offset)
7418 				continue;
7419 			btrfs_node_key_to_cpu(eb, &key, slot);
7420 			ret = btrfs_comp_cpu_keys(&key,
7421 						  &wc->update_progress);
7422 			if (ret < 0)
7423 				continue;
7424 		} else {
7425 			if (wc->level == 1 &&
7426 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7427 				continue;
7428 		}
7429 reada:
7430 		readahead_tree_block(root, bytenr);
7431 		nread++;
7432 	}
7433 	wc->reada_slot = slot;
7434 }
7435 
7436 static int account_leaf_items(struct btrfs_trans_handle *trans,
7437 			      struct btrfs_root *root,
7438 			      struct extent_buffer *eb)
7439 {
7440 	int nr = btrfs_header_nritems(eb);
7441 	int i, extent_type, ret;
7442 	struct btrfs_key key;
7443 	struct btrfs_file_extent_item *fi;
7444 	u64 bytenr, num_bytes;
7445 
7446 	for (i = 0; i < nr; i++) {
7447 		btrfs_item_key_to_cpu(eb, &key, i);
7448 
7449 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7450 			continue;
7451 
7452 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7453 		/* filter out non qgroup-accountable extents  */
7454 		extent_type = btrfs_file_extent_type(eb, fi);
7455 
7456 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7457 			continue;
7458 
7459 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7460 		if (!bytenr)
7461 			continue;
7462 
7463 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7464 
7465 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7466 					      root->objectid,
7467 					      bytenr, num_bytes,
7468 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7469 		if (ret)
7470 			return ret;
7471 	}
7472 	return 0;
7473 }
7474 
7475 /*
7476  * Walk up the tree from the bottom, freeing leaves and any interior
7477  * nodes which have had all slots visited. If a node (leaf or
7478  * interior) is freed, the node above it will have it's slot
7479  * incremented. The root node will never be freed.
7480  *
7481  * At the end of this function, we should have a path which has all
7482  * slots incremented to the next position for a search. If we need to
7483  * read a new node it will be NULL and the node above it will have the
7484  * correct slot selected for a later read.
7485  *
7486  * If we increment the root nodes slot counter past the number of
7487  * elements, 1 is returned to signal completion of the search.
7488  */
7489 static int adjust_slots_upwards(struct btrfs_root *root,
7490 				struct btrfs_path *path, int root_level)
7491 {
7492 	int level = 0;
7493 	int nr, slot;
7494 	struct extent_buffer *eb;
7495 
7496 	if (root_level == 0)
7497 		return 1;
7498 
7499 	while (level <= root_level) {
7500 		eb = path->nodes[level];
7501 		nr = btrfs_header_nritems(eb);
7502 		path->slots[level]++;
7503 		slot = path->slots[level];
7504 		if (slot >= nr || level == 0) {
7505 			/*
7506 			 * Don't free the root -  we will detect this
7507 			 * condition after our loop and return a
7508 			 * positive value for caller to stop walking the tree.
7509 			 */
7510 			if (level != root_level) {
7511 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7512 				path->locks[level] = 0;
7513 
7514 				free_extent_buffer(eb);
7515 				path->nodes[level] = NULL;
7516 				path->slots[level] = 0;
7517 			}
7518 		} else {
7519 			/*
7520 			 * We have a valid slot to walk back down
7521 			 * from. Stop here so caller can process these
7522 			 * new nodes.
7523 			 */
7524 			break;
7525 		}
7526 
7527 		level++;
7528 	}
7529 
7530 	eb = path->nodes[root_level];
7531 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7532 		return 1;
7533 
7534 	return 0;
7535 }
7536 
7537 /*
7538  * root_eb is the subtree root and is locked before this function is called.
7539  */
7540 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7541 				  struct btrfs_root *root,
7542 				  struct extent_buffer *root_eb,
7543 				  u64 root_gen,
7544 				  int root_level)
7545 {
7546 	int ret = 0;
7547 	int level;
7548 	struct extent_buffer *eb = root_eb;
7549 	struct btrfs_path *path = NULL;
7550 
7551 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7552 	BUG_ON(root_eb == NULL);
7553 
7554 	if (!root->fs_info->quota_enabled)
7555 		return 0;
7556 
7557 	if (!extent_buffer_uptodate(root_eb)) {
7558 		ret = btrfs_read_buffer(root_eb, root_gen);
7559 		if (ret)
7560 			goto out;
7561 	}
7562 
7563 	if (root_level == 0) {
7564 		ret = account_leaf_items(trans, root, root_eb);
7565 		goto out;
7566 	}
7567 
7568 	path = btrfs_alloc_path();
7569 	if (!path)
7570 		return -ENOMEM;
7571 
7572 	/*
7573 	 * Walk down the tree.  Missing extent blocks are filled in as
7574 	 * we go. Metadata is accounted every time we read a new
7575 	 * extent block.
7576 	 *
7577 	 * When we reach a leaf, we account for file extent items in it,
7578 	 * walk back up the tree (adjusting slot pointers as we go)
7579 	 * and restart the search process.
7580 	 */
7581 	extent_buffer_get(root_eb); /* For path */
7582 	path->nodes[root_level] = root_eb;
7583 	path->slots[root_level] = 0;
7584 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7585 walk_down:
7586 	level = root_level;
7587 	while (level >= 0) {
7588 		if (path->nodes[level] == NULL) {
7589 			int parent_slot;
7590 			u64 child_gen;
7591 			u64 child_bytenr;
7592 
7593 			/* We need to get child blockptr/gen from
7594 			 * parent before we can read it. */
7595 			eb = path->nodes[level + 1];
7596 			parent_slot = path->slots[level + 1];
7597 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7598 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7599 
7600 			eb = read_tree_block(root, child_bytenr, child_gen);
7601 			if (!eb || !extent_buffer_uptodate(eb)) {
7602 				ret = -EIO;
7603 				goto out;
7604 			}
7605 
7606 			path->nodes[level] = eb;
7607 			path->slots[level] = 0;
7608 
7609 			btrfs_tree_read_lock(eb);
7610 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7611 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7612 
7613 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7614 						root->objectid,
7615 						child_bytenr,
7616 						root->nodesize,
7617 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7618 						0);
7619 			if (ret)
7620 				goto out;
7621 
7622 		}
7623 
7624 		if (level == 0) {
7625 			ret = account_leaf_items(trans, root, path->nodes[level]);
7626 			if (ret)
7627 				goto out;
7628 
7629 			/* Nonzero return here means we completed our search */
7630 			ret = adjust_slots_upwards(root, path, root_level);
7631 			if (ret)
7632 				break;
7633 
7634 			/* Restart search with new slots */
7635 			goto walk_down;
7636 		}
7637 
7638 		level--;
7639 	}
7640 
7641 	ret = 0;
7642 out:
7643 	btrfs_free_path(path);
7644 
7645 	return ret;
7646 }
7647 
7648 /*
7649  * helper to process tree block while walking down the tree.
7650  *
7651  * when wc->stage == UPDATE_BACKREF, this function updates
7652  * back refs for pointers in the block.
7653  *
7654  * NOTE: return value 1 means we should stop walking down.
7655  */
7656 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7657 				   struct btrfs_root *root,
7658 				   struct btrfs_path *path,
7659 				   struct walk_control *wc, int lookup_info)
7660 {
7661 	int level = wc->level;
7662 	struct extent_buffer *eb = path->nodes[level];
7663 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7664 	int ret;
7665 
7666 	if (wc->stage == UPDATE_BACKREF &&
7667 	    btrfs_header_owner(eb) != root->root_key.objectid)
7668 		return 1;
7669 
7670 	/*
7671 	 * when reference count of tree block is 1, it won't increase
7672 	 * again. once full backref flag is set, we never clear it.
7673 	 */
7674 	if (lookup_info &&
7675 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7676 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7677 		BUG_ON(!path->locks[level]);
7678 		ret = btrfs_lookup_extent_info(trans, root,
7679 					       eb->start, level, 1,
7680 					       &wc->refs[level],
7681 					       &wc->flags[level]);
7682 		BUG_ON(ret == -ENOMEM);
7683 		if (ret)
7684 			return ret;
7685 		BUG_ON(wc->refs[level] == 0);
7686 	}
7687 
7688 	if (wc->stage == DROP_REFERENCE) {
7689 		if (wc->refs[level] > 1)
7690 			return 1;
7691 
7692 		if (path->locks[level] && !wc->keep_locks) {
7693 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7694 			path->locks[level] = 0;
7695 		}
7696 		return 0;
7697 	}
7698 
7699 	/* wc->stage == UPDATE_BACKREF */
7700 	if (!(wc->flags[level] & flag)) {
7701 		BUG_ON(!path->locks[level]);
7702 		ret = btrfs_inc_ref(trans, root, eb, 1);
7703 		BUG_ON(ret); /* -ENOMEM */
7704 		ret = btrfs_dec_ref(trans, root, eb, 0);
7705 		BUG_ON(ret); /* -ENOMEM */
7706 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7707 						  eb->len, flag,
7708 						  btrfs_header_level(eb), 0);
7709 		BUG_ON(ret); /* -ENOMEM */
7710 		wc->flags[level] |= flag;
7711 	}
7712 
7713 	/*
7714 	 * the block is shared by multiple trees, so it's not good to
7715 	 * keep the tree lock
7716 	 */
7717 	if (path->locks[level] && level > 0) {
7718 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7719 		path->locks[level] = 0;
7720 	}
7721 	return 0;
7722 }
7723 
7724 /*
7725  * helper to process tree block pointer.
7726  *
7727  * when wc->stage == DROP_REFERENCE, this function checks
7728  * reference count of the block pointed to. if the block
7729  * is shared and we need update back refs for the subtree
7730  * rooted at the block, this function changes wc->stage to
7731  * UPDATE_BACKREF. if the block is shared and there is no
7732  * need to update back, this function drops the reference
7733  * to the block.
7734  *
7735  * NOTE: return value 1 means we should stop walking down.
7736  */
7737 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7738 				 struct btrfs_root *root,
7739 				 struct btrfs_path *path,
7740 				 struct walk_control *wc, int *lookup_info)
7741 {
7742 	u64 bytenr;
7743 	u64 generation;
7744 	u64 parent;
7745 	u32 blocksize;
7746 	struct btrfs_key key;
7747 	struct extent_buffer *next;
7748 	int level = wc->level;
7749 	int reada = 0;
7750 	int ret = 0;
7751 	bool need_account = false;
7752 
7753 	generation = btrfs_node_ptr_generation(path->nodes[level],
7754 					       path->slots[level]);
7755 	/*
7756 	 * if the lower level block was created before the snapshot
7757 	 * was created, we know there is no need to update back refs
7758 	 * for the subtree
7759 	 */
7760 	if (wc->stage == UPDATE_BACKREF &&
7761 	    generation <= root->root_key.offset) {
7762 		*lookup_info = 1;
7763 		return 1;
7764 	}
7765 
7766 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7767 	blocksize = root->nodesize;
7768 
7769 	next = btrfs_find_tree_block(root, bytenr);
7770 	if (!next) {
7771 		next = btrfs_find_create_tree_block(root, bytenr);
7772 		if (!next)
7773 			return -ENOMEM;
7774 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7775 					       level - 1);
7776 		reada = 1;
7777 	}
7778 	btrfs_tree_lock(next);
7779 	btrfs_set_lock_blocking(next);
7780 
7781 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7782 				       &wc->refs[level - 1],
7783 				       &wc->flags[level - 1]);
7784 	if (ret < 0) {
7785 		btrfs_tree_unlock(next);
7786 		return ret;
7787 	}
7788 
7789 	if (unlikely(wc->refs[level - 1] == 0)) {
7790 		btrfs_err(root->fs_info, "Missing references.");
7791 		BUG();
7792 	}
7793 	*lookup_info = 0;
7794 
7795 	if (wc->stage == DROP_REFERENCE) {
7796 		if (wc->refs[level - 1] > 1) {
7797 			need_account = true;
7798 			if (level == 1 &&
7799 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7800 				goto skip;
7801 
7802 			if (!wc->update_ref ||
7803 			    generation <= root->root_key.offset)
7804 				goto skip;
7805 
7806 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7807 					      path->slots[level]);
7808 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7809 			if (ret < 0)
7810 				goto skip;
7811 
7812 			wc->stage = UPDATE_BACKREF;
7813 			wc->shared_level = level - 1;
7814 		}
7815 	} else {
7816 		if (level == 1 &&
7817 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7818 			goto skip;
7819 	}
7820 
7821 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7822 		btrfs_tree_unlock(next);
7823 		free_extent_buffer(next);
7824 		next = NULL;
7825 		*lookup_info = 1;
7826 	}
7827 
7828 	if (!next) {
7829 		if (reada && level == 1)
7830 			reada_walk_down(trans, root, wc, path);
7831 		next = read_tree_block(root, bytenr, generation);
7832 		if (!next || !extent_buffer_uptodate(next)) {
7833 			free_extent_buffer(next);
7834 			return -EIO;
7835 		}
7836 		btrfs_tree_lock(next);
7837 		btrfs_set_lock_blocking(next);
7838 	}
7839 
7840 	level--;
7841 	BUG_ON(level != btrfs_header_level(next));
7842 	path->nodes[level] = next;
7843 	path->slots[level] = 0;
7844 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7845 	wc->level = level;
7846 	if (wc->level == 1)
7847 		wc->reada_slot = 0;
7848 	return 0;
7849 skip:
7850 	wc->refs[level - 1] = 0;
7851 	wc->flags[level - 1] = 0;
7852 	if (wc->stage == DROP_REFERENCE) {
7853 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7854 			parent = path->nodes[level]->start;
7855 		} else {
7856 			BUG_ON(root->root_key.objectid !=
7857 			       btrfs_header_owner(path->nodes[level]));
7858 			parent = 0;
7859 		}
7860 
7861 		if (need_account) {
7862 			ret = account_shared_subtree(trans, root, next,
7863 						     generation, level - 1);
7864 			if (ret) {
7865 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7866 					"%d accounting shared subtree. Quota "
7867 					"is out of sync, rescan required.\n",
7868 					root->fs_info->sb->s_id, ret);
7869 			}
7870 		}
7871 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7872 				root->root_key.objectid, level - 1, 0, 0);
7873 		BUG_ON(ret); /* -ENOMEM */
7874 	}
7875 	btrfs_tree_unlock(next);
7876 	free_extent_buffer(next);
7877 	*lookup_info = 1;
7878 	return 1;
7879 }
7880 
7881 /*
7882  * helper to process tree block while walking up the tree.
7883  *
7884  * when wc->stage == DROP_REFERENCE, this function drops
7885  * reference count on the block.
7886  *
7887  * when wc->stage == UPDATE_BACKREF, this function changes
7888  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7889  * to UPDATE_BACKREF previously while processing the block.
7890  *
7891  * NOTE: return value 1 means we should stop walking up.
7892  */
7893 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7894 				 struct btrfs_root *root,
7895 				 struct btrfs_path *path,
7896 				 struct walk_control *wc)
7897 {
7898 	int ret;
7899 	int level = wc->level;
7900 	struct extent_buffer *eb = path->nodes[level];
7901 	u64 parent = 0;
7902 
7903 	if (wc->stage == UPDATE_BACKREF) {
7904 		BUG_ON(wc->shared_level < level);
7905 		if (level < wc->shared_level)
7906 			goto out;
7907 
7908 		ret = find_next_key(path, level + 1, &wc->update_progress);
7909 		if (ret > 0)
7910 			wc->update_ref = 0;
7911 
7912 		wc->stage = DROP_REFERENCE;
7913 		wc->shared_level = -1;
7914 		path->slots[level] = 0;
7915 
7916 		/*
7917 		 * check reference count again if the block isn't locked.
7918 		 * we should start walking down the tree again if reference
7919 		 * count is one.
7920 		 */
7921 		if (!path->locks[level]) {
7922 			BUG_ON(level == 0);
7923 			btrfs_tree_lock(eb);
7924 			btrfs_set_lock_blocking(eb);
7925 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7926 
7927 			ret = btrfs_lookup_extent_info(trans, root,
7928 						       eb->start, level, 1,
7929 						       &wc->refs[level],
7930 						       &wc->flags[level]);
7931 			if (ret < 0) {
7932 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7933 				path->locks[level] = 0;
7934 				return ret;
7935 			}
7936 			BUG_ON(wc->refs[level] == 0);
7937 			if (wc->refs[level] == 1) {
7938 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7939 				path->locks[level] = 0;
7940 				return 1;
7941 			}
7942 		}
7943 	}
7944 
7945 	/* wc->stage == DROP_REFERENCE */
7946 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7947 
7948 	if (wc->refs[level] == 1) {
7949 		if (level == 0) {
7950 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7951 				ret = btrfs_dec_ref(trans, root, eb, 1);
7952 			else
7953 				ret = btrfs_dec_ref(trans, root, eb, 0);
7954 			BUG_ON(ret); /* -ENOMEM */
7955 			ret = account_leaf_items(trans, root, eb);
7956 			if (ret) {
7957 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7958 					"%d accounting leaf items. Quota "
7959 					"is out of sync, rescan required.\n",
7960 					root->fs_info->sb->s_id, ret);
7961 			}
7962 		}
7963 		/* make block locked assertion in clean_tree_block happy */
7964 		if (!path->locks[level] &&
7965 		    btrfs_header_generation(eb) == trans->transid) {
7966 			btrfs_tree_lock(eb);
7967 			btrfs_set_lock_blocking(eb);
7968 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7969 		}
7970 		clean_tree_block(trans, root, eb);
7971 	}
7972 
7973 	if (eb == root->node) {
7974 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7975 			parent = eb->start;
7976 		else
7977 			BUG_ON(root->root_key.objectid !=
7978 			       btrfs_header_owner(eb));
7979 	} else {
7980 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7981 			parent = path->nodes[level + 1]->start;
7982 		else
7983 			BUG_ON(root->root_key.objectid !=
7984 			       btrfs_header_owner(path->nodes[level + 1]));
7985 	}
7986 
7987 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7988 out:
7989 	wc->refs[level] = 0;
7990 	wc->flags[level] = 0;
7991 	return 0;
7992 }
7993 
7994 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7995 				   struct btrfs_root *root,
7996 				   struct btrfs_path *path,
7997 				   struct walk_control *wc)
7998 {
7999 	int level = wc->level;
8000 	int lookup_info = 1;
8001 	int ret;
8002 
8003 	while (level >= 0) {
8004 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8005 		if (ret > 0)
8006 			break;
8007 
8008 		if (level == 0)
8009 			break;
8010 
8011 		if (path->slots[level] >=
8012 		    btrfs_header_nritems(path->nodes[level]))
8013 			break;
8014 
8015 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8016 		if (ret > 0) {
8017 			path->slots[level]++;
8018 			continue;
8019 		} else if (ret < 0)
8020 			return ret;
8021 		level = wc->level;
8022 	}
8023 	return 0;
8024 }
8025 
8026 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8027 				 struct btrfs_root *root,
8028 				 struct btrfs_path *path,
8029 				 struct walk_control *wc, int max_level)
8030 {
8031 	int level = wc->level;
8032 	int ret;
8033 
8034 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8035 	while (level < max_level && path->nodes[level]) {
8036 		wc->level = level;
8037 		if (path->slots[level] + 1 <
8038 		    btrfs_header_nritems(path->nodes[level])) {
8039 			path->slots[level]++;
8040 			return 0;
8041 		} else {
8042 			ret = walk_up_proc(trans, root, path, wc);
8043 			if (ret > 0)
8044 				return 0;
8045 
8046 			if (path->locks[level]) {
8047 				btrfs_tree_unlock_rw(path->nodes[level],
8048 						     path->locks[level]);
8049 				path->locks[level] = 0;
8050 			}
8051 			free_extent_buffer(path->nodes[level]);
8052 			path->nodes[level] = NULL;
8053 			level++;
8054 		}
8055 	}
8056 	return 1;
8057 }
8058 
8059 /*
8060  * drop a subvolume tree.
8061  *
8062  * this function traverses the tree freeing any blocks that only
8063  * referenced by the tree.
8064  *
8065  * when a shared tree block is found. this function decreases its
8066  * reference count by one. if update_ref is true, this function
8067  * also make sure backrefs for the shared block and all lower level
8068  * blocks are properly updated.
8069  *
8070  * If called with for_reloc == 0, may exit early with -EAGAIN
8071  */
8072 int btrfs_drop_snapshot(struct btrfs_root *root,
8073 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8074 			 int for_reloc)
8075 {
8076 	struct btrfs_path *path;
8077 	struct btrfs_trans_handle *trans;
8078 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8079 	struct btrfs_root_item *root_item = &root->root_item;
8080 	struct walk_control *wc;
8081 	struct btrfs_key key;
8082 	int err = 0;
8083 	int ret;
8084 	int level;
8085 	bool root_dropped = false;
8086 
8087 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8088 
8089 	path = btrfs_alloc_path();
8090 	if (!path) {
8091 		err = -ENOMEM;
8092 		goto out;
8093 	}
8094 
8095 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8096 	if (!wc) {
8097 		btrfs_free_path(path);
8098 		err = -ENOMEM;
8099 		goto out;
8100 	}
8101 
8102 	trans = btrfs_start_transaction(tree_root, 0);
8103 	if (IS_ERR(trans)) {
8104 		err = PTR_ERR(trans);
8105 		goto out_free;
8106 	}
8107 
8108 	if (block_rsv)
8109 		trans->block_rsv = block_rsv;
8110 
8111 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8112 		level = btrfs_header_level(root->node);
8113 		path->nodes[level] = btrfs_lock_root_node(root);
8114 		btrfs_set_lock_blocking(path->nodes[level]);
8115 		path->slots[level] = 0;
8116 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8117 		memset(&wc->update_progress, 0,
8118 		       sizeof(wc->update_progress));
8119 	} else {
8120 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8121 		memcpy(&wc->update_progress, &key,
8122 		       sizeof(wc->update_progress));
8123 
8124 		level = root_item->drop_level;
8125 		BUG_ON(level == 0);
8126 		path->lowest_level = level;
8127 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8128 		path->lowest_level = 0;
8129 		if (ret < 0) {
8130 			err = ret;
8131 			goto out_end_trans;
8132 		}
8133 		WARN_ON(ret > 0);
8134 
8135 		/*
8136 		 * unlock our path, this is safe because only this
8137 		 * function is allowed to delete this snapshot
8138 		 */
8139 		btrfs_unlock_up_safe(path, 0);
8140 
8141 		level = btrfs_header_level(root->node);
8142 		while (1) {
8143 			btrfs_tree_lock(path->nodes[level]);
8144 			btrfs_set_lock_blocking(path->nodes[level]);
8145 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8146 
8147 			ret = btrfs_lookup_extent_info(trans, root,
8148 						path->nodes[level]->start,
8149 						level, 1, &wc->refs[level],
8150 						&wc->flags[level]);
8151 			if (ret < 0) {
8152 				err = ret;
8153 				goto out_end_trans;
8154 			}
8155 			BUG_ON(wc->refs[level] == 0);
8156 
8157 			if (level == root_item->drop_level)
8158 				break;
8159 
8160 			btrfs_tree_unlock(path->nodes[level]);
8161 			path->locks[level] = 0;
8162 			WARN_ON(wc->refs[level] != 1);
8163 			level--;
8164 		}
8165 	}
8166 
8167 	wc->level = level;
8168 	wc->shared_level = -1;
8169 	wc->stage = DROP_REFERENCE;
8170 	wc->update_ref = update_ref;
8171 	wc->keep_locks = 0;
8172 	wc->for_reloc = for_reloc;
8173 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8174 
8175 	while (1) {
8176 
8177 		ret = walk_down_tree(trans, root, path, wc);
8178 		if (ret < 0) {
8179 			err = ret;
8180 			break;
8181 		}
8182 
8183 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8184 		if (ret < 0) {
8185 			err = ret;
8186 			break;
8187 		}
8188 
8189 		if (ret > 0) {
8190 			BUG_ON(wc->stage != DROP_REFERENCE);
8191 			break;
8192 		}
8193 
8194 		if (wc->stage == DROP_REFERENCE) {
8195 			level = wc->level;
8196 			btrfs_node_key(path->nodes[level],
8197 				       &root_item->drop_progress,
8198 				       path->slots[level]);
8199 			root_item->drop_level = level;
8200 		}
8201 
8202 		BUG_ON(wc->level == 0);
8203 		if (btrfs_should_end_transaction(trans, tree_root) ||
8204 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8205 			ret = btrfs_update_root(trans, tree_root,
8206 						&root->root_key,
8207 						root_item);
8208 			if (ret) {
8209 				btrfs_abort_transaction(trans, tree_root, ret);
8210 				err = ret;
8211 				goto out_end_trans;
8212 			}
8213 
8214 			/*
8215 			 * Qgroup update accounting is run from
8216 			 * delayed ref handling. This usually works
8217 			 * out because delayed refs are normally the
8218 			 * only way qgroup updates are added. However,
8219 			 * we may have added updates during our tree
8220 			 * walk so run qgroups here to make sure we
8221 			 * don't lose any updates.
8222 			 */
8223 			ret = btrfs_delayed_qgroup_accounting(trans,
8224 							      root->fs_info);
8225 			if (ret)
8226 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8227 						   "running qgroup updates "
8228 						   "during snapshot delete. "
8229 						   "Quota is out of sync, "
8230 						   "rescan required.\n", ret);
8231 
8232 			btrfs_end_transaction_throttle(trans, tree_root);
8233 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8234 				pr_debug("BTRFS: drop snapshot early exit\n");
8235 				err = -EAGAIN;
8236 				goto out_free;
8237 			}
8238 
8239 			trans = btrfs_start_transaction(tree_root, 0);
8240 			if (IS_ERR(trans)) {
8241 				err = PTR_ERR(trans);
8242 				goto out_free;
8243 			}
8244 			if (block_rsv)
8245 				trans->block_rsv = block_rsv;
8246 		}
8247 	}
8248 	btrfs_release_path(path);
8249 	if (err)
8250 		goto out_end_trans;
8251 
8252 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8253 	if (ret) {
8254 		btrfs_abort_transaction(trans, tree_root, ret);
8255 		goto out_end_trans;
8256 	}
8257 
8258 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8259 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8260 				      NULL, NULL);
8261 		if (ret < 0) {
8262 			btrfs_abort_transaction(trans, tree_root, ret);
8263 			err = ret;
8264 			goto out_end_trans;
8265 		} else if (ret > 0) {
8266 			/* if we fail to delete the orphan item this time
8267 			 * around, it'll get picked up the next time.
8268 			 *
8269 			 * The most common failure here is just -ENOENT.
8270 			 */
8271 			btrfs_del_orphan_item(trans, tree_root,
8272 					      root->root_key.objectid);
8273 		}
8274 	}
8275 
8276 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8277 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8278 	} else {
8279 		free_extent_buffer(root->node);
8280 		free_extent_buffer(root->commit_root);
8281 		btrfs_put_fs_root(root);
8282 	}
8283 	root_dropped = true;
8284 out_end_trans:
8285 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8286 	if (ret)
8287 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8288 				   "running qgroup updates "
8289 				   "during snapshot delete. "
8290 				   "Quota is out of sync, "
8291 				   "rescan required.\n", ret);
8292 
8293 	btrfs_end_transaction_throttle(trans, tree_root);
8294 out_free:
8295 	kfree(wc);
8296 	btrfs_free_path(path);
8297 out:
8298 	/*
8299 	 * So if we need to stop dropping the snapshot for whatever reason we
8300 	 * need to make sure to add it back to the dead root list so that we
8301 	 * keep trying to do the work later.  This also cleans up roots if we
8302 	 * don't have it in the radix (like when we recover after a power fail
8303 	 * or unmount) so we don't leak memory.
8304 	 */
8305 	if (!for_reloc && root_dropped == false)
8306 		btrfs_add_dead_root(root);
8307 	if (err && err != -EAGAIN)
8308 		btrfs_std_error(root->fs_info, err);
8309 	return err;
8310 }
8311 
8312 /*
8313  * drop subtree rooted at tree block 'node'.
8314  *
8315  * NOTE: this function will unlock and release tree block 'node'
8316  * only used by relocation code
8317  */
8318 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8319 			struct btrfs_root *root,
8320 			struct extent_buffer *node,
8321 			struct extent_buffer *parent)
8322 {
8323 	struct btrfs_path *path;
8324 	struct walk_control *wc;
8325 	int level;
8326 	int parent_level;
8327 	int ret = 0;
8328 	int wret;
8329 
8330 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8331 
8332 	path = btrfs_alloc_path();
8333 	if (!path)
8334 		return -ENOMEM;
8335 
8336 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8337 	if (!wc) {
8338 		btrfs_free_path(path);
8339 		return -ENOMEM;
8340 	}
8341 
8342 	btrfs_assert_tree_locked(parent);
8343 	parent_level = btrfs_header_level(parent);
8344 	extent_buffer_get(parent);
8345 	path->nodes[parent_level] = parent;
8346 	path->slots[parent_level] = btrfs_header_nritems(parent);
8347 
8348 	btrfs_assert_tree_locked(node);
8349 	level = btrfs_header_level(node);
8350 	path->nodes[level] = node;
8351 	path->slots[level] = 0;
8352 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8353 
8354 	wc->refs[parent_level] = 1;
8355 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8356 	wc->level = level;
8357 	wc->shared_level = -1;
8358 	wc->stage = DROP_REFERENCE;
8359 	wc->update_ref = 0;
8360 	wc->keep_locks = 1;
8361 	wc->for_reloc = 1;
8362 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8363 
8364 	while (1) {
8365 		wret = walk_down_tree(trans, root, path, wc);
8366 		if (wret < 0) {
8367 			ret = wret;
8368 			break;
8369 		}
8370 
8371 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8372 		if (wret < 0)
8373 			ret = wret;
8374 		if (wret != 0)
8375 			break;
8376 	}
8377 
8378 	kfree(wc);
8379 	btrfs_free_path(path);
8380 	return ret;
8381 }
8382 
8383 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8384 {
8385 	u64 num_devices;
8386 	u64 stripped;
8387 
8388 	/*
8389 	 * if restripe for this chunk_type is on pick target profile and
8390 	 * return, otherwise do the usual balance
8391 	 */
8392 	stripped = get_restripe_target(root->fs_info, flags);
8393 	if (stripped)
8394 		return extended_to_chunk(stripped);
8395 
8396 	num_devices = root->fs_info->fs_devices->rw_devices;
8397 
8398 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8399 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8400 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8401 
8402 	if (num_devices == 1) {
8403 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8404 		stripped = flags & ~stripped;
8405 
8406 		/* turn raid0 into single device chunks */
8407 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8408 			return stripped;
8409 
8410 		/* turn mirroring into duplication */
8411 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8412 			     BTRFS_BLOCK_GROUP_RAID10))
8413 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8414 	} else {
8415 		/* they already had raid on here, just return */
8416 		if (flags & stripped)
8417 			return flags;
8418 
8419 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8420 		stripped = flags & ~stripped;
8421 
8422 		/* switch duplicated blocks with raid1 */
8423 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8424 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8425 
8426 		/* this is drive concat, leave it alone */
8427 	}
8428 
8429 	return flags;
8430 }
8431 
8432 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8433 {
8434 	struct btrfs_space_info *sinfo = cache->space_info;
8435 	u64 num_bytes;
8436 	u64 min_allocable_bytes;
8437 	int ret = -ENOSPC;
8438 
8439 
8440 	/*
8441 	 * We need some metadata space and system metadata space for
8442 	 * allocating chunks in some corner cases until we force to set
8443 	 * it to be readonly.
8444 	 */
8445 	if ((sinfo->flags &
8446 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8447 	    !force)
8448 		min_allocable_bytes = 1 * 1024 * 1024;
8449 	else
8450 		min_allocable_bytes = 0;
8451 
8452 	spin_lock(&sinfo->lock);
8453 	spin_lock(&cache->lock);
8454 
8455 	if (cache->ro) {
8456 		ret = 0;
8457 		goto out;
8458 	}
8459 
8460 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8461 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8462 
8463 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8464 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8465 	    min_allocable_bytes <= sinfo->total_bytes) {
8466 		sinfo->bytes_readonly += num_bytes;
8467 		cache->ro = 1;
8468 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8469 		ret = 0;
8470 	}
8471 out:
8472 	spin_unlock(&cache->lock);
8473 	spin_unlock(&sinfo->lock);
8474 	return ret;
8475 }
8476 
8477 int btrfs_set_block_group_ro(struct btrfs_root *root,
8478 			     struct btrfs_block_group_cache *cache)
8479 
8480 {
8481 	struct btrfs_trans_handle *trans;
8482 	u64 alloc_flags;
8483 	int ret;
8484 
8485 	BUG_ON(cache->ro);
8486 
8487 	trans = btrfs_join_transaction(root);
8488 	if (IS_ERR(trans))
8489 		return PTR_ERR(trans);
8490 
8491 	ret = set_block_group_ro(cache, 0);
8492 	if (!ret)
8493 		goto out;
8494 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8495 	ret = do_chunk_alloc(trans, root, alloc_flags,
8496 			     CHUNK_ALLOC_FORCE);
8497 	if (ret < 0)
8498 		goto out;
8499 	ret = set_block_group_ro(cache, 0);
8500 out:
8501 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8502 		alloc_flags = update_block_group_flags(root, cache->flags);
8503 		check_system_chunk(trans, root, alloc_flags);
8504 	}
8505 
8506 	btrfs_end_transaction(trans, root);
8507 	return ret;
8508 }
8509 
8510 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8511 			    struct btrfs_root *root, u64 type)
8512 {
8513 	u64 alloc_flags = get_alloc_profile(root, type);
8514 	return do_chunk_alloc(trans, root, alloc_flags,
8515 			      CHUNK_ALLOC_FORCE);
8516 }
8517 
8518 /*
8519  * helper to account the unused space of all the readonly block group in the
8520  * space_info. takes mirrors into account.
8521  */
8522 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8523 {
8524 	struct btrfs_block_group_cache *block_group;
8525 	u64 free_bytes = 0;
8526 	int factor;
8527 
8528 	/* It's df, we don't care if it's racey */
8529 	if (list_empty(&sinfo->ro_bgs))
8530 		return 0;
8531 
8532 	spin_lock(&sinfo->lock);
8533 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8534 		spin_lock(&block_group->lock);
8535 
8536 		if (!block_group->ro) {
8537 			spin_unlock(&block_group->lock);
8538 			continue;
8539 		}
8540 
8541 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8542 					  BTRFS_BLOCK_GROUP_RAID10 |
8543 					  BTRFS_BLOCK_GROUP_DUP))
8544 			factor = 2;
8545 		else
8546 			factor = 1;
8547 
8548 		free_bytes += (block_group->key.offset -
8549 			       btrfs_block_group_used(&block_group->item)) *
8550 			       factor;
8551 
8552 		spin_unlock(&block_group->lock);
8553 	}
8554 	spin_unlock(&sinfo->lock);
8555 
8556 	return free_bytes;
8557 }
8558 
8559 void btrfs_set_block_group_rw(struct btrfs_root *root,
8560 			      struct btrfs_block_group_cache *cache)
8561 {
8562 	struct btrfs_space_info *sinfo = cache->space_info;
8563 	u64 num_bytes;
8564 
8565 	BUG_ON(!cache->ro);
8566 
8567 	spin_lock(&sinfo->lock);
8568 	spin_lock(&cache->lock);
8569 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8570 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8571 	sinfo->bytes_readonly -= num_bytes;
8572 	cache->ro = 0;
8573 	list_del_init(&cache->ro_list);
8574 	spin_unlock(&cache->lock);
8575 	spin_unlock(&sinfo->lock);
8576 }
8577 
8578 /*
8579  * checks to see if its even possible to relocate this block group.
8580  *
8581  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8582  * ok to go ahead and try.
8583  */
8584 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8585 {
8586 	struct btrfs_block_group_cache *block_group;
8587 	struct btrfs_space_info *space_info;
8588 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8589 	struct btrfs_device *device;
8590 	struct btrfs_trans_handle *trans;
8591 	u64 min_free;
8592 	u64 dev_min = 1;
8593 	u64 dev_nr = 0;
8594 	u64 target;
8595 	int index;
8596 	int full = 0;
8597 	int ret = 0;
8598 
8599 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8600 
8601 	/* odd, couldn't find the block group, leave it alone */
8602 	if (!block_group)
8603 		return -1;
8604 
8605 	min_free = btrfs_block_group_used(&block_group->item);
8606 
8607 	/* no bytes used, we're good */
8608 	if (!min_free)
8609 		goto out;
8610 
8611 	space_info = block_group->space_info;
8612 	spin_lock(&space_info->lock);
8613 
8614 	full = space_info->full;
8615 
8616 	/*
8617 	 * if this is the last block group we have in this space, we can't
8618 	 * relocate it unless we're able to allocate a new chunk below.
8619 	 *
8620 	 * Otherwise, we need to make sure we have room in the space to handle
8621 	 * all of the extents from this block group.  If we can, we're good
8622 	 */
8623 	if ((space_info->total_bytes != block_group->key.offset) &&
8624 	    (space_info->bytes_used + space_info->bytes_reserved +
8625 	     space_info->bytes_pinned + space_info->bytes_readonly +
8626 	     min_free < space_info->total_bytes)) {
8627 		spin_unlock(&space_info->lock);
8628 		goto out;
8629 	}
8630 	spin_unlock(&space_info->lock);
8631 
8632 	/*
8633 	 * ok we don't have enough space, but maybe we have free space on our
8634 	 * devices to allocate new chunks for relocation, so loop through our
8635 	 * alloc devices and guess if we have enough space.  if this block
8636 	 * group is going to be restriped, run checks against the target
8637 	 * profile instead of the current one.
8638 	 */
8639 	ret = -1;
8640 
8641 	/*
8642 	 * index:
8643 	 *      0: raid10
8644 	 *      1: raid1
8645 	 *      2: dup
8646 	 *      3: raid0
8647 	 *      4: single
8648 	 */
8649 	target = get_restripe_target(root->fs_info, block_group->flags);
8650 	if (target) {
8651 		index = __get_raid_index(extended_to_chunk(target));
8652 	} else {
8653 		/*
8654 		 * this is just a balance, so if we were marked as full
8655 		 * we know there is no space for a new chunk
8656 		 */
8657 		if (full)
8658 			goto out;
8659 
8660 		index = get_block_group_index(block_group);
8661 	}
8662 
8663 	if (index == BTRFS_RAID_RAID10) {
8664 		dev_min = 4;
8665 		/* Divide by 2 */
8666 		min_free >>= 1;
8667 	} else if (index == BTRFS_RAID_RAID1) {
8668 		dev_min = 2;
8669 	} else if (index == BTRFS_RAID_DUP) {
8670 		/* Multiply by 2 */
8671 		min_free <<= 1;
8672 	} else if (index == BTRFS_RAID_RAID0) {
8673 		dev_min = fs_devices->rw_devices;
8674 		do_div(min_free, dev_min);
8675 	}
8676 
8677 	/* We need to do this so that we can look at pending chunks */
8678 	trans = btrfs_join_transaction(root);
8679 	if (IS_ERR(trans)) {
8680 		ret = PTR_ERR(trans);
8681 		goto out;
8682 	}
8683 
8684 	mutex_lock(&root->fs_info->chunk_mutex);
8685 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8686 		u64 dev_offset;
8687 
8688 		/*
8689 		 * check to make sure we can actually find a chunk with enough
8690 		 * space to fit our block group in.
8691 		 */
8692 		if (device->total_bytes > device->bytes_used + min_free &&
8693 		    !device->is_tgtdev_for_dev_replace) {
8694 			ret = find_free_dev_extent(trans, device, min_free,
8695 						   &dev_offset, NULL);
8696 			if (!ret)
8697 				dev_nr++;
8698 
8699 			if (dev_nr >= dev_min)
8700 				break;
8701 
8702 			ret = -1;
8703 		}
8704 	}
8705 	mutex_unlock(&root->fs_info->chunk_mutex);
8706 	btrfs_end_transaction(trans, root);
8707 out:
8708 	btrfs_put_block_group(block_group);
8709 	return ret;
8710 }
8711 
8712 static int find_first_block_group(struct btrfs_root *root,
8713 		struct btrfs_path *path, struct btrfs_key *key)
8714 {
8715 	int ret = 0;
8716 	struct btrfs_key found_key;
8717 	struct extent_buffer *leaf;
8718 	int slot;
8719 
8720 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8721 	if (ret < 0)
8722 		goto out;
8723 
8724 	while (1) {
8725 		slot = path->slots[0];
8726 		leaf = path->nodes[0];
8727 		if (slot >= btrfs_header_nritems(leaf)) {
8728 			ret = btrfs_next_leaf(root, path);
8729 			if (ret == 0)
8730 				continue;
8731 			if (ret < 0)
8732 				goto out;
8733 			break;
8734 		}
8735 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8736 
8737 		if (found_key.objectid >= key->objectid &&
8738 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8739 			ret = 0;
8740 			goto out;
8741 		}
8742 		path->slots[0]++;
8743 	}
8744 out:
8745 	return ret;
8746 }
8747 
8748 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8749 {
8750 	struct btrfs_block_group_cache *block_group;
8751 	u64 last = 0;
8752 
8753 	while (1) {
8754 		struct inode *inode;
8755 
8756 		block_group = btrfs_lookup_first_block_group(info, last);
8757 		while (block_group) {
8758 			spin_lock(&block_group->lock);
8759 			if (block_group->iref)
8760 				break;
8761 			spin_unlock(&block_group->lock);
8762 			block_group = next_block_group(info->tree_root,
8763 						       block_group);
8764 		}
8765 		if (!block_group) {
8766 			if (last == 0)
8767 				break;
8768 			last = 0;
8769 			continue;
8770 		}
8771 
8772 		inode = block_group->inode;
8773 		block_group->iref = 0;
8774 		block_group->inode = NULL;
8775 		spin_unlock(&block_group->lock);
8776 		iput(inode);
8777 		last = block_group->key.objectid + block_group->key.offset;
8778 		btrfs_put_block_group(block_group);
8779 	}
8780 }
8781 
8782 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8783 {
8784 	struct btrfs_block_group_cache *block_group;
8785 	struct btrfs_space_info *space_info;
8786 	struct btrfs_caching_control *caching_ctl;
8787 	struct rb_node *n;
8788 
8789 	down_write(&info->commit_root_sem);
8790 	while (!list_empty(&info->caching_block_groups)) {
8791 		caching_ctl = list_entry(info->caching_block_groups.next,
8792 					 struct btrfs_caching_control, list);
8793 		list_del(&caching_ctl->list);
8794 		put_caching_control(caching_ctl);
8795 	}
8796 	up_write(&info->commit_root_sem);
8797 
8798 	spin_lock(&info->unused_bgs_lock);
8799 	while (!list_empty(&info->unused_bgs)) {
8800 		block_group = list_first_entry(&info->unused_bgs,
8801 					       struct btrfs_block_group_cache,
8802 					       bg_list);
8803 		list_del_init(&block_group->bg_list);
8804 		btrfs_put_block_group(block_group);
8805 	}
8806 	spin_unlock(&info->unused_bgs_lock);
8807 
8808 	spin_lock(&info->block_group_cache_lock);
8809 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8810 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8811 				       cache_node);
8812 		rb_erase(&block_group->cache_node,
8813 			 &info->block_group_cache_tree);
8814 		RB_CLEAR_NODE(&block_group->cache_node);
8815 		spin_unlock(&info->block_group_cache_lock);
8816 
8817 		down_write(&block_group->space_info->groups_sem);
8818 		list_del(&block_group->list);
8819 		up_write(&block_group->space_info->groups_sem);
8820 
8821 		if (block_group->cached == BTRFS_CACHE_STARTED)
8822 			wait_block_group_cache_done(block_group);
8823 
8824 		/*
8825 		 * We haven't cached this block group, which means we could
8826 		 * possibly have excluded extents on this block group.
8827 		 */
8828 		if (block_group->cached == BTRFS_CACHE_NO ||
8829 		    block_group->cached == BTRFS_CACHE_ERROR)
8830 			free_excluded_extents(info->extent_root, block_group);
8831 
8832 		btrfs_remove_free_space_cache(block_group);
8833 		btrfs_put_block_group(block_group);
8834 
8835 		spin_lock(&info->block_group_cache_lock);
8836 	}
8837 	spin_unlock(&info->block_group_cache_lock);
8838 
8839 	/* now that all the block groups are freed, go through and
8840 	 * free all the space_info structs.  This is only called during
8841 	 * the final stages of unmount, and so we know nobody is
8842 	 * using them.  We call synchronize_rcu() once before we start,
8843 	 * just to be on the safe side.
8844 	 */
8845 	synchronize_rcu();
8846 
8847 	release_global_block_rsv(info);
8848 
8849 	while (!list_empty(&info->space_info)) {
8850 		int i;
8851 
8852 		space_info = list_entry(info->space_info.next,
8853 					struct btrfs_space_info,
8854 					list);
8855 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8856 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8857 			    space_info->bytes_reserved > 0 ||
8858 			    space_info->bytes_may_use > 0)) {
8859 				dump_space_info(space_info, 0, 0);
8860 			}
8861 		}
8862 		list_del(&space_info->list);
8863 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8864 			struct kobject *kobj;
8865 			kobj = space_info->block_group_kobjs[i];
8866 			space_info->block_group_kobjs[i] = NULL;
8867 			if (kobj) {
8868 				kobject_del(kobj);
8869 				kobject_put(kobj);
8870 			}
8871 		}
8872 		kobject_del(&space_info->kobj);
8873 		kobject_put(&space_info->kobj);
8874 	}
8875 	return 0;
8876 }
8877 
8878 static void __link_block_group(struct btrfs_space_info *space_info,
8879 			       struct btrfs_block_group_cache *cache)
8880 {
8881 	int index = get_block_group_index(cache);
8882 	bool first = false;
8883 
8884 	down_write(&space_info->groups_sem);
8885 	if (list_empty(&space_info->block_groups[index]))
8886 		first = true;
8887 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8888 	up_write(&space_info->groups_sem);
8889 
8890 	if (first) {
8891 		struct raid_kobject *rkobj;
8892 		int ret;
8893 
8894 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8895 		if (!rkobj)
8896 			goto out_err;
8897 		rkobj->raid_type = index;
8898 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8899 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8900 				  "%s", get_raid_name(index));
8901 		if (ret) {
8902 			kobject_put(&rkobj->kobj);
8903 			goto out_err;
8904 		}
8905 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8906 	}
8907 
8908 	return;
8909 out_err:
8910 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8911 }
8912 
8913 static struct btrfs_block_group_cache *
8914 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8915 {
8916 	struct btrfs_block_group_cache *cache;
8917 
8918 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8919 	if (!cache)
8920 		return NULL;
8921 
8922 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8923 					GFP_NOFS);
8924 	if (!cache->free_space_ctl) {
8925 		kfree(cache);
8926 		return NULL;
8927 	}
8928 
8929 	cache->key.objectid = start;
8930 	cache->key.offset = size;
8931 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8932 
8933 	cache->sectorsize = root->sectorsize;
8934 	cache->fs_info = root->fs_info;
8935 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8936 					       &root->fs_info->mapping_tree,
8937 					       start);
8938 	atomic_set(&cache->count, 1);
8939 	spin_lock_init(&cache->lock);
8940 	init_rwsem(&cache->data_rwsem);
8941 	INIT_LIST_HEAD(&cache->list);
8942 	INIT_LIST_HEAD(&cache->cluster_list);
8943 	INIT_LIST_HEAD(&cache->bg_list);
8944 	INIT_LIST_HEAD(&cache->ro_list);
8945 	INIT_LIST_HEAD(&cache->dirty_list);
8946 	btrfs_init_free_space_ctl(cache);
8947 	atomic_set(&cache->trimming, 0);
8948 
8949 	return cache;
8950 }
8951 
8952 int btrfs_read_block_groups(struct btrfs_root *root)
8953 {
8954 	struct btrfs_path *path;
8955 	int ret;
8956 	struct btrfs_block_group_cache *cache;
8957 	struct btrfs_fs_info *info = root->fs_info;
8958 	struct btrfs_space_info *space_info;
8959 	struct btrfs_key key;
8960 	struct btrfs_key found_key;
8961 	struct extent_buffer *leaf;
8962 	int need_clear = 0;
8963 	u64 cache_gen;
8964 
8965 	root = info->extent_root;
8966 	key.objectid = 0;
8967 	key.offset = 0;
8968 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8969 	path = btrfs_alloc_path();
8970 	if (!path)
8971 		return -ENOMEM;
8972 	path->reada = 1;
8973 
8974 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8975 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8976 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8977 		need_clear = 1;
8978 	if (btrfs_test_opt(root, CLEAR_CACHE))
8979 		need_clear = 1;
8980 
8981 	while (1) {
8982 		ret = find_first_block_group(root, path, &key);
8983 		if (ret > 0)
8984 			break;
8985 		if (ret != 0)
8986 			goto error;
8987 
8988 		leaf = path->nodes[0];
8989 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8990 
8991 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8992 						       found_key.offset);
8993 		if (!cache) {
8994 			ret = -ENOMEM;
8995 			goto error;
8996 		}
8997 
8998 		if (need_clear) {
8999 			/*
9000 			 * When we mount with old space cache, we need to
9001 			 * set BTRFS_DC_CLEAR and set dirty flag.
9002 			 *
9003 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9004 			 *    truncate the old free space cache inode and
9005 			 *    setup a new one.
9006 			 * b) Setting 'dirty flag' makes sure that we flush
9007 			 *    the new space cache info onto disk.
9008 			 */
9009 			if (btrfs_test_opt(root, SPACE_CACHE))
9010 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9011 		}
9012 
9013 		read_extent_buffer(leaf, &cache->item,
9014 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9015 				   sizeof(cache->item));
9016 		cache->flags = btrfs_block_group_flags(&cache->item);
9017 
9018 		key.objectid = found_key.objectid + found_key.offset;
9019 		btrfs_release_path(path);
9020 
9021 		/*
9022 		 * We need to exclude the super stripes now so that the space
9023 		 * info has super bytes accounted for, otherwise we'll think
9024 		 * we have more space than we actually do.
9025 		 */
9026 		ret = exclude_super_stripes(root, cache);
9027 		if (ret) {
9028 			/*
9029 			 * We may have excluded something, so call this just in
9030 			 * case.
9031 			 */
9032 			free_excluded_extents(root, cache);
9033 			btrfs_put_block_group(cache);
9034 			goto error;
9035 		}
9036 
9037 		/*
9038 		 * check for two cases, either we are full, and therefore
9039 		 * don't need to bother with the caching work since we won't
9040 		 * find any space, or we are empty, and we can just add all
9041 		 * the space in and be done with it.  This saves us _alot_ of
9042 		 * time, particularly in the full case.
9043 		 */
9044 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9045 			cache->last_byte_to_unpin = (u64)-1;
9046 			cache->cached = BTRFS_CACHE_FINISHED;
9047 			free_excluded_extents(root, cache);
9048 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9049 			cache->last_byte_to_unpin = (u64)-1;
9050 			cache->cached = BTRFS_CACHE_FINISHED;
9051 			add_new_free_space(cache, root->fs_info,
9052 					   found_key.objectid,
9053 					   found_key.objectid +
9054 					   found_key.offset);
9055 			free_excluded_extents(root, cache);
9056 		}
9057 
9058 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9059 		if (ret) {
9060 			btrfs_remove_free_space_cache(cache);
9061 			btrfs_put_block_group(cache);
9062 			goto error;
9063 		}
9064 
9065 		ret = update_space_info(info, cache->flags, found_key.offset,
9066 					btrfs_block_group_used(&cache->item),
9067 					&space_info);
9068 		if (ret) {
9069 			btrfs_remove_free_space_cache(cache);
9070 			spin_lock(&info->block_group_cache_lock);
9071 			rb_erase(&cache->cache_node,
9072 				 &info->block_group_cache_tree);
9073 			RB_CLEAR_NODE(&cache->cache_node);
9074 			spin_unlock(&info->block_group_cache_lock);
9075 			btrfs_put_block_group(cache);
9076 			goto error;
9077 		}
9078 
9079 		cache->space_info = space_info;
9080 		spin_lock(&cache->space_info->lock);
9081 		cache->space_info->bytes_readonly += cache->bytes_super;
9082 		spin_unlock(&cache->space_info->lock);
9083 
9084 		__link_block_group(space_info, cache);
9085 
9086 		set_avail_alloc_bits(root->fs_info, cache->flags);
9087 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9088 			set_block_group_ro(cache, 1);
9089 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9090 			spin_lock(&info->unused_bgs_lock);
9091 			/* Should always be true but just in case. */
9092 			if (list_empty(&cache->bg_list)) {
9093 				btrfs_get_block_group(cache);
9094 				list_add_tail(&cache->bg_list,
9095 					      &info->unused_bgs);
9096 			}
9097 			spin_unlock(&info->unused_bgs_lock);
9098 		}
9099 	}
9100 
9101 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9102 		if (!(get_alloc_profile(root, space_info->flags) &
9103 		      (BTRFS_BLOCK_GROUP_RAID10 |
9104 		       BTRFS_BLOCK_GROUP_RAID1 |
9105 		       BTRFS_BLOCK_GROUP_RAID5 |
9106 		       BTRFS_BLOCK_GROUP_RAID6 |
9107 		       BTRFS_BLOCK_GROUP_DUP)))
9108 			continue;
9109 		/*
9110 		 * avoid allocating from un-mirrored block group if there are
9111 		 * mirrored block groups.
9112 		 */
9113 		list_for_each_entry(cache,
9114 				&space_info->block_groups[BTRFS_RAID_RAID0],
9115 				list)
9116 			set_block_group_ro(cache, 1);
9117 		list_for_each_entry(cache,
9118 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9119 				list)
9120 			set_block_group_ro(cache, 1);
9121 	}
9122 
9123 	init_global_block_rsv(info);
9124 	ret = 0;
9125 error:
9126 	btrfs_free_path(path);
9127 	return ret;
9128 }
9129 
9130 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9131 				       struct btrfs_root *root)
9132 {
9133 	struct btrfs_block_group_cache *block_group, *tmp;
9134 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9135 	struct btrfs_block_group_item item;
9136 	struct btrfs_key key;
9137 	int ret = 0;
9138 
9139 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9140 		if (ret)
9141 			goto next;
9142 
9143 		spin_lock(&block_group->lock);
9144 		memcpy(&item, &block_group->item, sizeof(item));
9145 		memcpy(&key, &block_group->key, sizeof(key));
9146 		spin_unlock(&block_group->lock);
9147 
9148 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9149 					sizeof(item));
9150 		if (ret)
9151 			btrfs_abort_transaction(trans, extent_root, ret);
9152 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9153 					       key.objectid, key.offset);
9154 		if (ret)
9155 			btrfs_abort_transaction(trans, extent_root, ret);
9156 next:
9157 		list_del_init(&block_group->bg_list);
9158 	}
9159 }
9160 
9161 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9162 			   struct btrfs_root *root, u64 bytes_used,
9163 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9164 			   u64 size)
9165 {
9166 	int ret;
9167 	struct btrfs_root *extent_root;
9168 	struct btrfs_block_group_cache *cache;
9169 
9170 	extent_root = root->fs_info->extent_root;
9171 
9172 	btrfs_set_log_full_commit(root->fs_info, trans);
9173 
9174 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9175 	if (!cache)
9176 		return -ENOMEM;
9177 
9178 	btrfs_set_block_group_used(&cache->item, bytes_used);
9179 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9180 	btrfs_set_block_group_flags(&cache->item, type);
9181 
9182 	cache->flags = type;
9183 	cache->last_byte_to_unpin = (u64)-1;
9184 	cache->cached = BTRFS_CACHE_FINISHED;
9185 	ret = exclude_super_stripes(root, cache);
9186 	if (ret) {
9187 		/*
9188 		 * We may have excluded something, so call this just in
9189 		 * case.
9190 		 */
9191 		free_excluded_extents(root, cache);
9192 		btrfs_put_block_group(cache);
9193 		return ret;
9194 	}
9195 
9196 	add_new_free_space(cache, root->fs_info, chunk_offset,
9197 			   chunk_offset + size);
9198 
9199 	free_excluded_extents(root, cache);
9200 
9201 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9202 	if (ret) {
9203 		btrfs_remove_free_space_cache(cache);
9204 		btrfs_put_block_group(cache);
9205 		return ret;
9206 	}
9207 
9208 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9209 				&cache->space_info);
9210 	if (ret) {
9211 		btrfs_remove_free_space_cache(cache);
9212 		spin_lock(&root->fs_info->block_group_cache_lock);
9213 		rb_erase(&cache->cache_node,
9214 			 &root->fs_info->block_group_cache_tree);
9215 		RB_CLEAR_NODE(&cache->cache_node);
9216 		spin_unlock(&root->fs_info->block_group_cache_lock);
9217 		btrfs_put_block_group(cache);
9218 		return ret;
9219 	}
9220 	update_global_block_rsv(root->fs_info);
9221 
9222 	spin_lock(&cache->space_info->lock);
9223 	cache->space_info->bytes_readonly += cache->bytes_super;
9224 	spin_unlock(&cache->space_info->lock);
9225 
9226 	__link_block_group(cache->space_info, cache);
9227 
9228 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9229 
9230 	set_avail_alloc_bits(extent_root->fs_info, type);
9231 
9232 	return 0;
9233 }
9234 
9235 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9236 {
9237 	u64 extra_flags = chunk_to_extended(flags) &
9238 				BTRFS_EXTENDED_PROFILE_MASK;
9239 
9240 	write_seqlock(&fs_info->profiles_lock);
9241 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9242 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9243 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9244 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9245 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9246 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9247 	write_sequnlock(&fs_info->profiles_lock);
9248 }
9249 
9250 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9251 			     struct btrfs_root *root, u64 group_start,
9252 			     struct extent_map *em)
9253 {
9254 	struct btrfs_path *path;
9255 	struct btrfs_block_group_cache *block_group;
9256 	struct btrfs_free_cluster *cluster;
9257 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9258 	struct btrfs_key key;
9259 	struct inode *inode;
9260 	struct kobject *kobj = NULL;
9261 	int ret;
9262 	int index;
9263 	int factor;
9264 	struct btrfs_caching_control *caching_ctl = NULL;
9265 	bool remove_em;
9266 
9267 	root = root->fs_info->extent_root;
9268 
9269 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9270 	BUG_ON(!block_group);
9271 	BUG_ON(!block_group->ro);
9272 
9273 	/*
9274 	 * Free the reserved super bytes from this block group before
9275 	 * remove it.
9276 	 */
9277 	free_excluded_extents(root, block_group);
9278 
9279 	memcpy(&key, &block_group->key, sizeof(key));
9280 	index = get_block_group_index(block_group);
9281 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9282 				  BTRFS_BLOCK_GROUP_RAID1 |
9283 				  BTRFS_BLOCK_GROUP_RAID10))
9284 		factor = 2;
9285 	else
9286 		factor = 1;
9287 
9288 	/* make sure this block group isn't part of an allocation cluster */
9289 	cluster = &root->fs_info->data_alloc_cluster;
9290 	spin_lock(&cluster->refill_lock);
9291 	btrfs_return_cluster_to_free_space(block_group, cluster);
9292 	spin_unlock(&cluster->refill_lock);
9293 
9294 	/*
9295 	 * make sure this block group isn't part of a metadata
9296 	 * allocation cluster
9297 	 */
9298 	cluster = &root->fs_info->meta_alloc_cluster;
9299 	spin_lock(&cluster->refill_lock);
9300 	btrfs_return_cluster_to_free_space(block_group, cluster);
9301 	spin_unlock(&cluster->refill_lock);
9302 
9303 	path = btrfs_alloc_path();
9304 	if (!path) {
9305 		ret = -ENOMEM;
9306 		goto out;
9307 	}
9308 
9309 	inode = lookup_free_space_inode(tree_root, block_group, path);
9310 	if (!IS_ERR(inode)) {
9311 		ret = btrfs_orphan_add(trans, inode);
9312 		if (ret) {
9313 			btrfs_add_delayed_iput(inode);
9314 			goto out;
9315 		}
9316 		clear_nlink(inode);
9317 		/* One for the block groups ref */
9318 		spin_lock(&block_group->lock);
9319 		if (block_group->iref) {
9320 			block_group->iref = 0;
9321 			block_group->inode = NULL;
9322 			spin_unlock(&block_group->lock);
9323 			iput(inode);
9324 		} else {
9325 			spin_unlock(&block_group->lock);
9326 		}
9327 		/* One for our lookup ref */
9328 		btrfs_add_delayed_iput(inode);
9329 	}
9330 
9331 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9332 	key.offset = block_group->key.objectid;
9333 	key.type = 0;
9334 
9335 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9336 	if (ret < 0)
9337 		goto out;
9338 	if (ret > 0)
9339 		btrfs_release_path(path);
9340 	if (ret == 0) {
9341 		ret = btrfs_del_item(trans, tree_root, path);
9342 		if (ret)
9343 			goto out;
9344 		btrfs_release_path(path);
9345 	}
9346 
9347 	spin_lock(&root->fs_info->block_group_cache_lock);
9348 	rb_erase(&block_group->cache_node,
9349 		 &root->fs_info->block_group_cache_tree);
9350 	RB_CLEAR_NODE(&block_group->cache_node);
9351 
9352 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9353 		root->fs_info->first_logical_byte = (u64)-1;
9354 	spin_unlock(&root->fs_info->block_group_cache_lock);
9355 
9356 	down_write(&block_group->space_info->groups_sem);
9357 	/*
9358 	 * we must use list_del_init so people can check to see if they
9359 	 * are still on the list after taking the semaphore
9360 	 */
9361 	list_del_init(&block_group->list);
9362 	if (list_empty(&block_group->space_info->block_groups[index])) {
9363 		kobj = block_group->space_info->block_group_kobjs[index];
9364 		block_group->space_info->block_group_kobjs[index] = NULL;
9365 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9366 	}
9367 	up_write(&block_group->space_info->groups_sem);
9368 	if (kobj) {
9369 		kobject_del(kobj);
9370 		kobject_put(kobj);
9371 	}
9372 
9373 	if (block_group->has_caching_ctl)
9374 		caching_ctl = get_caching_control(block_group);
9375 	if (block_group->cached == BTRFS_CACHE_STARTED)
9376 		wait_block_group_cache_done(block_group);
9377 	if (block_group->has_caching_ctl) {
9378 		down_write(&root->fs_info->commit_root_sem);
9379 		if (!caching_ctl) {
9380 			struct btrfs_caching_control *ctl;
9381 
9382 			list_for_each_entry(ctl,
9383 				    &root->fs_info->caching_block_groups, list)
9384 				if (ctl->block_group == block_group) {
9385 					caching_ctl = ctl;
9386 					atomic_inc(&caching_ctl->count);
9387 					break;
9388 				}
9389 		}
9390 		if (caching_ctl)
9391 			list_del_init(&caching_ctl->list);
9392 		up_write(&root->fs_info->commit_root_sem);
9393 		if (caching_ctl) {
9394 			/* Once for the caching bgs list and once for us. */
9395 			put_caching_control(caching_ctl);
9396 			put_caching_control(caching_ctl);
9397 		}
9398 	}
9399 
9400 	spin_lock(&trans->transaction->dirty_bgs_lock);
9401 	if (!list_empty(&block_group->dirty_list)) {
9402 		list_del_init(&block_group->dirty_list);
9403 		btrfs_put_block_group(block_group);
9404 	}
9405 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9406 
9407 	btrfs_remove_free_space_cache(block_group);
9408 
9409 	spin_lock(&block_group->space_info->lock);
9410 	list_del_init(&block_group->ro_list);
9411 	block_group->space_info->total_bytes -= block_group->key.offset;
9412 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9413 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9414 	spin_unlock(&block_group->space_info->lock);
9415 
9416 	memcpy(&key, &block_group->key, sizeof(key));
9417 
9418 	lock_chunks(root);
9419 	if (!list_empty(&em->list)) {
9420 		/* We're in the transaction->pending_chunks list. */
9421 		free_extent_map(em);
9422 	}
9423 	spin_lock(&block_group->lock);
9424 	block_group->removed = 1;
9425 	/*
9426 	 * At this point trimming can't start on this block group, because we
9427 	 * removed the block group from the tree fs_info->block_group_cache_tree
9428 	 * so no one can't find it anymore and even if someone already got this
9429 	 * block group before we removed it from the rbtree, they have already
9430 	 * incremented block_group->trimming - if they didn't, they won't find
9431 	 * any free space entries because we already removed them all when we
9432 	 * called btrfs_remove_free_space_cache().
9433 	 *
9434 	 * And we must not remove the extent map from the fs_info->mapping_tree
9435 	 * to prevent the same logical address range and physical device space
9436 	 * ranges from being reused for a new block group. This is because our
9437 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9438 	 * completely transactionless, so while it is trimming a range the
9439 	 * currently running transaction might finish and a new one start,
9440 	 * allowing for new block groups to be created that can reuse the same
9441 	 * physical device locations unless we take this special care.
9442 	 */
9443 	remove_em = (atomic_read(&block_group->trimming) == 0);
9444 	/*
9445 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9446 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9447 	 * before checking block_group->removed).
9448 	 */
9449 	if (!remove_em) {
9450 		/*
9451 		 * Our em might be in trans->transaction->pending_chunks which
9452 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9453 		 * and so is the fs_info->pinned_chunks list.
9454 		 *
9455 		 * So at this point we must be holding the chunk_mutex to avoid
9456 		 * any races with chunk allocation (more specifically at
9457 		 * volumes.c:contains_pending_extent()), to ensure it always
9458 		 * sees the em, either in the pending_chunks list or in the
9459 		 * pinned_chunks list.
9460 		 */
9461 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9462 	}
9463 	spin_unlock(&block_group->lock);
9464 
9465 	if (remove_em) {
9466 		struct extent_map_tree *em_tree;
9467 
9468 		em_tree = &root->fs_info->mapping_tree.map_tree;
9469 		write_lock(&em_tree->lock);
9470 		/*
9471 		 * The em might be in the pending_chunks list, so make sure the
9472 		 * chunk mutex is locked, since remove_extent_mapping() will
9473 		 * delete us from that list.
9474 		 */
9475 		remove_extent_mapping(em_tree, em);
9476 		write_unlock(&em_tree->lock);
9477 		/* once for the tree */
9478 		free_extent_map(em);
9479 	}
9480 
9481 	unlock_chunks(root);
9482 
9483 	btrfs_put_block_group(block_group);
9484 	btrfs_put_block_group(block_group);
9485 
9486 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9487 	if (ret > 0)
9488 		ret = -EIO;
9489 	if (ret < 0)
9490 		goto out;
9491 
9492 	ret = btrfs_del_item(trans, root, path);
9493 out:
9494 	btrfs_free_path(path);
9495 	return ret;
9496 }
9497 
9498 /*
9499  * Process the unused_bgs list and remove any that don't have any allocated
9500  * space inside of them.
9501  */
9502 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9503 {
9504 	struct btrfs_block_group_cache *block_group;
9505 	struct btrfs_space_info *space_info;
9506 	struct btrfs_root *root = fs_info->extent_root;
9507 	struct btrfs_trans_handle *trans;
9508 	int ret = 0;
9509 
9510 	if (!fs_info->open)
9511 		return;
9512 
9513 	spin_lock(&fs_info->unused_bgs_lock);
9514 	while (!list_empty(&fs_info->unused_bgs)) {
9515 		u64 start, end;
9516 
9517 		block_group = list_first_entry(&fs_info->unused_bgs,
9518 					       struct btrfs_block_group_cache,
9519 					       bg_list);
9520 		space_info = block_group->space_info;
9521 		list_del_init(&block_group->bg_list);
9522 		if (ret || btrfs_mixed_space_info(space_info)) {
9523 			btrfs_put_block_group(block_group);
9524 			continue;
9525 		}
9526 		spin_unlock(&fs_info->unused_bgs_lock);
9527 
9528 		/* Don't want to race with allocators so take the groups_sem */
9529 		down_write(&space_info->groups_sem);
9530 		spin_lock(&block_group->lock);
9531 		if (block_group->reserved ||
9532 		    btrfs_block_group_used(&block_group->item) ||
9533 		    block_group->ro) {
9534 			/*
9535 			 * We want to bail if we made new allocations or have
9536 			 * outstanding allocations in this block group.  We do
9537 			 * the ro check in case balance is currently acting on
9538 			 * this block group.
9539 			 */
9540 			spin_unlock(&block_group->lock);
9541 			up_write(&space_info->groups_sem);
9542 			goto next;
9543 		}
9544 		spin_unlock(&block_group->lock);
9545 
9546 		/* We don't want to force the issue, only flip if it's ok. */
9547 		ret = set_block_group_ro(block_group, 0);
9548 		up_write(&space_info->groups_sem);
9549 		if (ret < 0) {
9550 			ret = 0;
9551 			goto next;
9552 		}
9553 
9554 		/*
9555 		 * Want to do this before we do anything else so we can recover
9556 		 * properly if we fail to join the transaction.
9557 		 */
9558 		/* 1 for btrfs_orphan_reserve_metadata() */
9559 		trans = btrfs_start_transaction(root, 1);
9560 		if (IS_ERR(trans)) {
9561 			btrfs_set_block_group_rw(root, block_group);
9562 			ret = PTR_ERR(trans);
9563 			goto next;
9564 		}
9565 
9566 		/*
9567 		 * We could have pending pinned extents for this block group,
9568 		 * just delete them, we don't care about them anymore.
9569 		 */
9570 		start = block_group->key.objectid;
9571 		end = start + block_group->key.offset - 1;
9572 		/*
9573 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9574 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9575 		 * another task might be running finish_extent_commit() for the
9576 		 * previous transaction N - 1, and have seen a range belonging
9577 		 * to the block group in freed_extents[] before we were able to
9578 		 * clear the whole block group range from freed_extents[]. This
9579 		 * means that task can lookup for the block group after we
9580 		 * unpinned it from freed_extents[] and removed it, leading to
9581 		 * a BUG_ON() at btrfs_unpin_extent_range().
9582 		 */
9583 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9584 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9585 				  EXTENT_DIRTY, GFP_NOFS);
9586 		if (ret) {
9587 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9588 			btrfs_set_block_group_rw(root, block_group);
9589 			goto end_trans;
9590 		}
9591 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9592 				  EXTENT_DIRTY, GFP_NOFS);
9593 		if (ret) {
9594 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9595 			btrfs_set_block_group_rw(root, block_group);
9596 			goto end_trans;
9597 		}
9598 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9599 
9600 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9601 		block_group->pinned = 0;
9602 
9603 		/*
9604 		 * Btrfs_remove_chunk will abort the transaction if things go
9605 		 * horribly wrong.
9606 		 */
9607 		ret = btrfs_remove_chunk(trans, root,
9608 					 block_group->key.objectid);
9609 end_trans:
9610 		btrfs_end_transaction(trans, root);
9611 next:
9612 		btrfs_put_block_group(block_group);
9613 		spin_lock(&fs_info->unused_bgs_lock);
9614 	}
9615 	spin_unlock(&fs_info->unused_bgs_lock);
9616 }
9617 
9618 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9619 {
9620 	struct btrfs_space_info *space_info;
9621 	struct btrfs_super_block *disk_super;
9622 	u64 features;
9623 	u64 flags;
9624 	int mixed = 0;
9625 	int ret;
9626 
9627 	disk_super = fs_info->super_copy;
9628 	if (!btrfs_super_root(disk_super))
9629 		return 1;
9630 
9631 	features = btrfs_super_incompat_flags(disk_super);
9632 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9633 		mixed = 1;
9634 
9635 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9636 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9637 	if (ret)
9638 		goto out;
9639 
9640 	if (mixed) {
9641 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9642 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9643 	} else {
9644 		flags = BTRFS_BLOCK_GROUP_METADATA;
9645 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9646 		if (ret)
9647 			goto out;
9648 
9649 		flags = BTRFS_BLOCK_GROUP_DATA;
9650 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9651 	}
9652 out:
9653 	return ret;
9654 }
9655 
9656 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9657 {
9658 	return unpin_extent_range(root, start, end, false);
9659 }
9660 
9661 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9662 {
9663 	struct btrfs_fs_info *fs_info = root->fs_info;
9664 	struct btrfs_block_group_cache *cache = NULL;
9665 	u64 group_trimmed;
9666 	u64 start;
9667 	u64 end;
9668 	u64 trimmed = 0;
9669 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9670 	int ret = 0;
9671 
9672 	/*
9673 	 * try to trim all FS space, our block group may start from non-zero.
9674 	 */
9675 	if (range->len == total_bytes)
9676 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9677 	else
9678 		cache = btrfs_lookup_block_group(fs_info, range->start);
9679 
9680 	while (cache) {
9681 		if (cache->key.objectid >= (range->start + range->len)) {
9682 			btrfs_put_block_group(cache);
9683 			break;
9684 		}
9685 
9686 		start = max(range->start, cache->key.objectid);
9687 		end = min(range->start + range->len,
9688 				cache->key.objectid + cache->key.offset);
9689 
9690 		if (end - start >= range->minlen) {
9691 			if (!block_group_cache_done(cache)) {
9692 				ret = cache_block_group(cache, 0);
9693 				if (ret) {
9694 					btrfs_put_block_group(cache);
9695 					break;
9696 				}
9697 				ret = wait_block_group_cache_done(cache);
9698 				if (ret) {
9699 					btrfs_put_block_group(cache);
9700 					break;
9701 				}
9702 			}
9703 			ret = btrfs_trim_block_group(cache,
9704 						     &group_trimmed,
9705 						     start,
9706 						     end,
9707 						     range->minlen);
9708 
9709 			trimmed += group_trimmed;
9710 			if (ret) {
9711 				btrfs_put_block_group(cache);
9712 				break;
9713 			}
9714 		}
9715 
9716 		cache = next_block_group(fs_info->tree_root, cache);
9717 	}
9718 
9719 	range->len = trimmed;
9720 	return ret;
9721 }
9722 
9723 /*
9724  * btrfs_{start,end}_write_no_snapshoting() are similar to
9725  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9726  * data into the page cache through nocow before the subvolume is snapshoted,
9727  * but flush the data into disk after the snapshot creation, or to prevent
9728  * operations while snapshoting is ongoing and that cause the snapshot to be
9729  * inconsistent (writes followed by expanding truncates for example).
9730  */
9731 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9732 {
9733 	percpu_counter_dec(&root->subv_writers->counter);
9734 	/*
9735 	 * Make sure counter is updated before we wake up
9736 	 * waiters.
9737 	 */
9738 	smp_mb();
9739 	if (waitqueue_active(&root->subv_writers->wait))
9740 		wake_up(&root->subv_writers->wait);
9741 }
9742 
9743 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9744 {
9745 	if (atomic_read(&root->will_be_snapshoted))
9746 		return 0;
9747 
9748 	percpu_counter_inc(&root->subv_writers->counter);
9749 	/*
9750 	 * Make sure counter is updated before we check for snapshot creation.
9751 	 */
9752 	smp_mb();
9753 	if (atomic_read(&root->will_be_snapshoted)) {
9754 		btrfs_end_write_no_snapshoting(root);
9755 		return 0;
9756 	}
9757 	return 1;
9758 }
9759