xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision d6a4c0e5d3d433ef296f8f417e835329a834a256)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				u64 bytenr, u64 num_bytes, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op,
86 				int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins,
100 				     int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 			  struct btrfs_root *extent_root, u64 flags,
103 			  int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 			 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 			    int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 				       u64 num_bytes, int reserve,
110 				       int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 			       u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 		     u64 bytenr, u64 num_bytes, int reserved);
115 
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 	smp_mb();
120 	return cache->cached == BTRFS_CACHE_FINISHED ||
121 		cache->cached == BTRFS_CACHE_ERROR;
122 }
123 
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 	return (cache->flags & bits) == bits;
127 }
128 
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	atomic_inc(&cache->count);
132 }
133 
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 	if (atomic_dec_and_test(&cache->count)) {
137 		WARN_ON(cache->pinned > 0);
138 		WARN_ON(cache->reserved > 0);
139 		kfree(cache->free_space_ctl);
140 		kfree(cache);
141 	}
142 }
143 
144 /*
145  * this adds the block group to the fs_info rb tree for the block group
146  * cache
147  */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 				struct btrfs_block_group_cache *block_group)
150 {
151 	struct rb_node **p;
152 	struct rb_node *parent = NULL;
153 	struct btrfs_block_group_cache *cache;
154 
155 	spin_lock(&info->block_group_cache_lock);
156 	p = &info->block_group_cache_tree.rb_node;
157 
158 	while (*p) {
159 		parent = *p;
160 		cache = rb_entry(parent, struct btrfs_block_group_cache,
161 				 cache_node);
162 		if (block_group->key.objectid < cache->key.objectid) {
163 			p = &(*p)->rb_left;
164 		} else if (block_group->key.objectid > cache->key.objectid) {
165 			p = &(*p)->rb_right;
166 		} else {
167 			spin_unlock(&info->block_group_cache_lock);
168 			return -EEXIST;
169 		}
170 	}
171 
172 	rb_link_node(&block_group->cache_node, parent, p);
173 	rb_insert_color(&block_group->cache_node,
174 			&info->block_group_cache_tree);
175 
176 	if (info->first_logical_byte > block_group->key.objectid)
177 		info->first_logical_byte = block_group->key.objectid;
178 
179 	spin_unlock(&info->block_group_cache_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * This will return the block group at or after bytenr if contains is 0, else
186  * it will return the block group that contains the bytenr
187  */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 			      int contains)
191 {
192 	struct btrfs_block_group_cache *cache, *ret = NULL;
193 	struct rb_node *n;
194 	u64 end, start;
195 
196 	spin_lock(&info->block_group_cache_lock);
197 	n = info->block_group_cache_tree.rb_node;
198 
199 	while (n) {
200 		cache = rb_entry(n, struct btrfs_block_group_cache,
201 				 cache_node);
202 		end = cache->key.objectid + cache->key.offset - 1;
203 		start = cache->key.objectid;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->key.objectid))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 			info->first_logical_byte = ret->key.objectid;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 static int add_excluded_extent(struct btrfs_root *root,
231 			       u64 start, u64 num_bytes)
232 {
233 	u64 end = start + num_bytes - 1;
234 	set_extent_bits(&root->fs_info->freed_extents[0],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	set_extent_bits(&root->fs_info->freed_extents[1],
237 			start, end, EXTENT_UPTODATE, GFP_NOFS);
238 	return 0;
239 }
240 
241 static void free_excluded_extents(struct btrfs_root *root,
242 				  struct btrfs_block_group_cache *cache)
243 {
244 	u64 start, end;
245 
246 	start = cache->key.objectid;
247 	end = start + cache->key.offset - 1;
248 
249 	clear_extent_bits(&root->fs_info->freed_extents[0],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 	clear_extent_bits(&root->fs_info->freed_extents[1],
252 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254 
255 static int exclude_super_stripes(struct btrfs_root *root,
256 				 struct btrfs_block_group_cache *cache)
257 {
258 	u64 bytenr;
259 	u64 *logical;
260 	int stripe_len;
261 	int i, nr, ret;
262 
263 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 		cache->bytes_super += stripe_len;
266 		ret = add_excluded_extent(root, cache->key.objectid,
267 					  stripe_len);
268 		if (ret)
269 			return ret;
270 	}
271 
272 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 		bytenr = btrfs_sb_offset(i);
274 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 				       cache->key.objectid, bytenr,
276 				       0, &logical, &nr, &stripe_len);
277 		if (ret)
278 			return ret;
279 
280 		while (nr--) {
281 			u64 start, len;
282 
283 			if (logical[nr] > cache->key.objectid +
284 			    cache->key.offset)
285 				continue;
286 
287 			if (logical[nr] + stripe_len <= cache->key.objectid)
288 				continue;
289 
290 			start = logical[nr];
291 			if (start < cache->key.objectid) {
292 				start = cache->key.objectid;
293 				len = (logical[nr] + stripe_len) - start;
294 			} else {
295 				len = min_t(u64, stripe_len,
296 					    cache->key.objectid +
297 					    cache->key.offset - start);
298 			}
299 
300 			cache->bytes_super += len;
301 			ret = add_excluded_extent(root, start, len);
302 			if (ret) {
303 				kfree(logical);
304 				return ret;
305 			}
306 		}
307 
308 		kfree(logical);
309 	}
310 	return 0;
311 }
312 
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 	struct btrfs_caching_control *ctl;
317 
318 	spin_lock(&cache->lock);
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = -ENOMEM;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->commit_root_sem);
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto err;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->commit_root_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->nodesize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->commit_root_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 			caching_thread, NULL, NULL);
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		mutex_lock(&caching_ctl->mutex);
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 			caching_ctl->progress = (u64)-1;
601 		} else {
602 			if (load_cache_only) {
603 				cache->caching_ctl = NULL;
604 				cache->cached = BTRFS_CACHE_NO;
605 			} else {
606 				cache->cached = BTRFS_CACHE_STARTED;
607 				cache->has_caching_ctl = 1;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		mutex_unlock(&caching_ctl->mutex);
612 
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 			cache->has_caching_ctl = 1;
631 		}
632 		spin_unlock(&cache->lock);
633 		wake_up(&caching_ctl->wait);
634 	}
635 
636 	if (load_cache_only) {
637 		put_caching_control(caching_ctl);
638 		return 0;
639 	}
640 
641 	down_write(&fs_info->commit_root_sem);
642 	atomic_inc(&caching_ctl->count);
643 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 	up_write(&fs_info->commit_root_sem);
645 
646 	btrfs_get_block_group(cache);
647 
648 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 
650 	return ret;
651 }
652 
653 /*
654  * return the block group that starts at or after bytenr
655  */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 	struct btrfs_block_group_cache *cache;
660 
661 	cache = block_group_cache_tree_search(info, bytenr, 0);
662 
663 	return cache;
664 }
665 
666 /*
667  * return the block group that contains the given bytenr
668  */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 						 struct btrfs_fs_info *info,
671 						 u64 bytenr)
672 {
673 	struct btrfs_block_group_cache *cache;
674 
675 	cache = block_group_cache_tree_search(info, bytenr, 1);
676 
677 	return cache;
678 }
679 
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 						  u64 flags)
682 {
683 	struct list_head *head = &info->space_info;
684 	struct btrfs_space_info *found;
685 
686 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 
688 	rcu_read_lock();
689 	list_for_each_entry_rcu(found, head, list) {
690 		if (found->flags & flags) {
691 			rcu_read_unlock();
692 			return found;
693 		}
694 	}
695 	rcu_read_unlock();
696 	return NULL;
697 }
698 
699 /*
700  * after adding space to the filesystem, we need to clear the full flags
701  * on all the space infos.
702  */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 	struct list_head *head = &info->space_info;
706 	struct btrfs_space_info *found;
707 
708 	rcu_read_lock();
709 	list_for_each_entry_rcu(found, head, list)
710 		found->full = 0;
711 	rcu_read_unlock();
712 }
713 
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 	int ret;
718 	struct btrfs_key key;
719 	struct btrfs_path *path;
720 
721 	path = btrfs_alloc_path();
722 	if (!path)
723 		return -ENOMEM;
724 
725 	key.objectid = start;
726 	key.offset = len;
727 	key.type = BTRFS_EXTENT_ITEM_KEY;
728 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 				0, 0);
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->nodesize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (!trans) {
772 		path->skip_locking = 1;
773 		path->search_commit_root = 1;
774 	}
775 
776 search_again:
777 	key.objectid = bytenr;
778 	key.offset = offset;
779 	if (metadata)
780 		key.type = BTRFS_METADATA_ITEM_KEY;
781 	else
782 		key.type = BTRFS_EXTENT_ITEM_KEY;
783 
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->nodesize)
797 				ret = 0;
798 		}
799 	}
800 
801 	if (ret == 0) {
802 		leaf = path->nodes[0];
803 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 		if (item_size >= sizeof(*ei)) {
805 			ei = btrfs_item_ptr(leaf, path->slots[0],
806 					    struct btrfs_extent_item);
807 			num_refs = btrfs_extent_refs(leaf, ei);
808 			extent_flags = btrfs_extent_flags(leaf, ei);
809 		} else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 			struct btrfs_extent_item_v0 *ei0;
812 			BUG_ON(item_size != sizeof(*ei0));
813 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 					     struct btrfs_extent_item_v0);
815 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 			/* FIXME: this isn't correct for data */
817 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 			BUG();
820 #endif
821 		}
822 		BUG_ON(num_refs == 0);
823 	} else {
824 		num_refs = 0;
825 		extent_flags = 0;
826 		ret = 0;
827 	}
828 
829 	if (!trans)
830 		goto out;
831 
832 	delayed_refs = &trans->transaction->delayed_refs;
833 	spin_lock(&delayed_refs->lock);
834 	head = btrfs_find_delayed_ref_head(trans, bytenr);
835 	if (head) {
836 		if (!mutex_trylock(&head->mutex)) {
837 			atomic_inc(&head->node.refs);
838 			spin_unlock(&delayed_refs->lock);
839 
840 			btrfs_release_path(path);
841 
842 			/*
843 			 * Mutex was contended, block until it's released and try
844 			 * again
845 			 */
846 			mutex_lock(&head->mutex);
847 			mutex_unlock(&head->mutex);
848 			btrfs_put_delayed_ref(&head->node);
849 			goto search_again;
850 		}
851 		spin_lock(&head->lock);
852 		if (head->extent_op && head->extent_op->update_flags)
853 			extent_flags |= head->extent_op->flags_to_set;
854 		else
855 			BUG_ON(num_refs == 0);
856 
857 		num_refs += head->node.ref_mod;
858 		spin_unlock(&head->lock);
859 		mutex_unlock(&head->mutex);
860 	}
861 	spin_unlock(&delayed_refs->lock);
862 out:
863 	WARN_ON(num_refs == 0);
864 	if (refs)
865 		*refs = num_refs;
866 	if (flags)
867 		*flags = extent_flags;
868 out_free:
869 	btrfs_free_path(path);
870 	return ret;
871 }
872 
873 /*
874  * Back reference rules.  Back refs have three main goals:
875  *
876  * 1) differentiate between all holders of references to an extent so that
877  *    when a reference is dropped we can make sure it was a valid reference
878  *    before freeing the extent.
879  *
880  * 2) Provide enough information to quickly find the holders of an extent
881  *    if we notice a given block is corrupted or bad.
882  *
883  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884  *    maintenance.  This is actually the same as #2, but with a slightly
885  *    different use case.
886  *
887  * There are two kinds of back refs. The implicit back refs is optimized
888  * for pointers in non-shared tree blocks. For a given pointer in a block,
889  * back refs of this kind provide information about the block's owner tree
890  * and the pointer's key. These information allow us to find the block by
891  * b-tree searching. The full back refs is for pointers in tree blocks not
892  * referenced by their owner trees. The location of tree block is recorded
893  * in the back refs. Actually the full back refs is generic, and can be
894  * used in all cases the implicit back refs is used. The major shortcoming
895  * of the full back refs is its overhead. Every time a tree block gets
896  * COWed, we have to update back refs entry for all pointers in it.
897  *
898  * For a newly allocated tree block, we use implicit back refs for
899  * pointers in it. This means most tree related operations only involve
900  * implicit back refs. For a tree block created in old transaction, the
901  * only way to drop a reference to it is COW it. So we can detect the
902  * event that tree block loses its owner tree's reference and do the
903  * back refs conversion.
904  *
905  * When a tree block is COW'd through a tree, there are four cases:
906  *
907  * The reference count of the block is one and the tree is the block's
908  * owner tree. Nothing to do in this case.
909  *
910  * The reference count of the block is one and the tree is not the
911  * block's owner tree. In this case, full back refs is used for pointers
912  * in the block. Remove these full back refs, add implicit back refs for
913  * every pointers in the new block.
914  *
915  * The reference count of the block is greater than one and the tree is
916  * the block's owner tree. In this case, implicit back refs is used for
917  * pointers in the block. Add full back refs for every pointers in the
918  * block, increase lower level extents' reference counts. The original
919  * implicit back refs are entailed to the new block.
920  *
921  * The reference count of the block is greater than one and the tree is
922  * not the block's owner tree. Add implicit back refs for every pointer in
923  * the new block, increase lower level extents' reference count.
924  *
925  * Back Reference Key composing:
926  *
927  * The key objectid corresponds to the first byte in the extent,
928  * The key type is used to differentiate between types of back refs.
929  * There are different meanings of the key offset for different types
930  * of back refs.
931  *
932  * File extents can be referenced by:
933  *
934  * - multiple snapshots, subvolumes, or different generations in one subvol
935  * - different files inside a single subvolume
936  * - different offsets inside a file (bookend extents in file.c)
937  *
938  * The extent ref structure for the implicit back refs has fields for:
939  *
940  * - Objectid of the subvolume root
941  * - objectid of the file holding the reference
942  * - original offset in the file
943  * - how many bookend extents
944  *
945  * The key offset for the implicit back refs is hash of the first
946  * three fields.
947  *
948  * The extent ref structure for the full back refs has field for:
949  *
950  * - number of pointers in the tree leaf
951  *
952  * The key offset for the implicit back refs is the first byte of
953  * the tree leaf
954  *
955  * When a file extent is allocated, The implicit back refs is used.
956  * the fields are filled in:
957  *
958  *     (root_key.objectid, inode objectid, offset in file, 1)
959  *
960  * When a file extent is removed file truncation, we find the
961  * corresponding implicit back refs and check the following fields:
962  *
963  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
964  *
965  * Btree extents can be referenced by:
966  *
967  * - Different subvolumes
968  *
969  * Both the implicit back refs and the full back refs for tree blocks
970  * only consist of key. The key offset for the implicit back refs is
971  * objectid of block's owner tree. The key offset for the full back refs
972  * is the first byte of parent block.
973  *
974  * When implicit back refs is used, information about the lowest key and
975  * level of the tree block are required. These information are stored in
976  * tree block info structure.
977  */
978 
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 				  struct btrfs_root *root,
982 				  struct btrfs_path *path,
983 				  u64 owner, u32 extra_size)
984 {
985 	struct btrfs_extent_item *item;
986 	struct btrfs_extent_item_v0 *ei0;
987 	struct btrfs_extent_ref_v0 *ref0;
988 	struct btrfs_tree_block_info *bi;
989 	struct extent_buffer *leaf;
990 	struct btrfs_key key;
991 	struct btrfs_key found_key;
992 	u32 new_size = sizeof(*item);
993 	u64 refs;
994 	int ret;
995 
996 	leaf = path->nodes[0];
997 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998 
999 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 			     struct btrfs_extent_item_v0);
1002 	refs = btrfs_extent_refs_v0(leaf, ei0);
1003 
1004 	if (owner == (u64)-1) {
1005 		while (1) {
1006 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 				ret = btrfs_next_leaf(root, path);
1008 				if (ret < 0)
1009 					return ret;
1010 				BUG_ON(ret > 0); /* Corruption */
1011 				leaf = path->nodes[0];
1012 			}
1013 			btrfs_item_key_to_cpu(leaf, &found_key,
1014 					      path->slots[0]);
1015 			BUG_ON(key.objectid != found_key.objectid);
1016 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 				path->slots[0]++;
1018 				continue;
1019 			}
1020 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 					      struct btrfs_extent_ref_v0);
1022 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 			break;
1024 		}
1025 	}
1026 	btrfs_release_path(path);
1027 
1028 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 		new_size += sizeof(*bi);
1030 
1031 	new_size -= sizeof(*ei0);
1032 	ret = btrfs_search_slot(trans, root, &key, path,
1033 				new_size + extra_size, 1);
1034 	if (ret < 0)
1035 		return ret;
1036 	BUG_ON(ret); /* Corruption */
1037 
1038 	btrfs_extend_item(root, path, new_size);
1039 
1040 	leaf = path->nodes[0];
1041 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 	btrfs_set_extent_refs(leaf, item, refs);
1043 	/* FIXME: get real generation */
1044 	btrfs_set_extent_generation(leaf, item, 0);
1045 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 		btrfs_set_extent_flags(leaf, item,
1047 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 		bi = (struct btrfs_tree_block_info *)(item + 1);
1050 		/* FIXME: get first key of the block */
1051 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 	} else {
1054 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 	}
1056 	btrfs_mark_buffer_dirty(leaf);
1057 	return 0;
1058 }
1059 #endif
1060 
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	u32 high_crc = ~(u32)0;
1064 	u32 low_crc = ~(u32)0;
1065 	__le64 lenum;
1066 
1067 	lenum = cpu_to_le64(root_objectid);
1068 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 	lenum = cpu_to_le64(owner);
1070 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 	lenum = cpu_to_le64(offset);
1072 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073 
1074 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076 
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 				     struct btrfs_extent_data_ref *ref)
1079 {
1080 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 				    btrfs_extent_data_ref_objectid(leaf, ref),
1082 				    btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084 
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 				 struct btrfs_extent_data_ref *ref,
1087 				 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 		return 0;
1093 	return 1;
1094 }
1095 
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 					   struct btrfs_root *root,
1098 					   struct btrfs_path *path,
1099 					   u64 bytenr, u64 parent,
1100 					   u64 root_objectid,
1101 					   u64 owner, u64 offset)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_extent_data_ref *ref;
1105 	struct extent_buffer *leaf;
1106 	u32 nritems;
1107 	int ret;
1108 	int recow;
1109 	int err = -ENOENT;
1110 
1111 	key.objectid = bytenr;
1112 	if (parent) {
1113 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 		key.offset = parent;
1115 	} else {
1116 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 		key.offset = hash_extent_data_ref(root_objectid,
1118 						  owner, offset);
1119 	}
1120 again:
1121 	recow = 0;
1122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 	if (ret < 0) {
1124 		err = ret;
1125 		goto fail;
1126 	}
1127 
1128 	if (parent) {
1129 		if (!ret)
1130 			return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 		btrfs_release_path(path);
1134 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 		if (ret < 0) {
1136 			err = ret;
1137 			goto fail;
1138 		}
1139 		if (!ret)
1140 			return 0;
1141 #endif
1142 		goto fail;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	nritems = btrfs_header_nritems(leaf);
1147 	while (1) {
1148 		if (path->slots[0] >= nritems) {
1149 			ret = btrfs_next_leaf(root, path);
1150 			if (ret < 0)
1151 				err = ret;
1152 			if (ret)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 			nritems = btrfs_header_nritems(leaf);
1157 			recow = 1;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 		if (key.objectid != bytenr ||
1162 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 			goto fail;
1164 
1165 		ref = btrfs_item_ptr(leaf, path->slots[0],
1166 				     struct btrfs_extent_data_ref);
1167 
1168 		if (match_extent_data_ref(leaf, ref, root_objectid,
1169 					  owner, offset)) {
1170 			if (recow) {
1171 				btrfs_release_path(path);
1172 				goto again;
1173 			}
1174 			err = 0;
1175 			break;
1176 		}
1177 		path->slots[0]++;
1178 	}
1179 fail:
1180 	return err;
1181 }
1182 
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 					   struct btrfs_root *root,
1185 					   struct btrfs_path *path,
1186 					   u64 bytenr, u64 parent,
1187 					   u64 root_objectid, u64 owner,
1188 					   u64 offset, int refs_to_add)
1189 {
1190 	struct btrfs_key key;
1191 	struct extent_buffer *leaf;
1192 	u32 size;
1193 	u32 num_refs;
1194 	int ret;
1195 
1196 	key.objectid = bytenr;
1197 	if (parent) {
1198 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 		key.offset = parent;
1200 		size = sizeof(struct btrfs_shared_data_ref);
1201 	} else {
1202 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 		key.offset = hash_extent_data_ref(root_objectid,
1204 						  owner, offset);
1205 		size = sizeof(struct btrfs_extent_data_ref);
1206 	}
1207 
1208 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 	if (ret && ret != -EEXIST)
1210 		goto fail;
1211 
1212 	leaf = path->nodes[0];
1213 	if (parent) {
1214 		struct btrfs_shared_data_ref *ref;
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_shared_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 		} else {
1220 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 			num_refs += refs_to_add;
1222 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 		}
1224 	} else {
1225 		struct btrfs_extent_data_ref *ref;
1226 		while (ret == -EEXIST) {
1227 			ref = btrfs_item_ptr(leaf, path->slots[0],
1228 					     struct btrfs_extent_data_ref);
1229 			if (match_extent_data_ref(leaf, ref, root_objectid,
1230 						  owner, offset))
1231 				break;
1232 			btrfs_release_path(path);
1233 			key.offset++;
1234 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 						      size);
1236 			if (ret && ret != -EEXIST)
1237 				goto fail;
1238 
1239 			leaf = path->nodes[0];
1240 		}
1241 		ref = btrfs_item_ptr(leaf, path->slots[0],
1242 				     struct btrfs_extent_data_ref);
1243 		if (ret == 0) {
1244 			btrfs_set_extent_data_ref_root(leaf, ref,
1245 						       root_objectid);
1246 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 		} else {
1250 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 			num_refs += refs_to_add;
1252 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 		}
1254 	}
1255 	btrfs_mark_buffer_dirty(leaf);
1256 	ret = 0;
1257 fail:
1258 	btrfs_release_path(path);
1259 	return ret;
1260 }
1261 
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 					   struct btrfs_root *root,
1264 					   struct btrfs_path *path,
1265 					   int refs_to_drop, int *last_ref)
1266 {
1267 	struct btrfs_key key;
1268 	struct btrfs_extent_data_ref *ref1 = NULL;
1269 	struct btrfs_shared_data_ref *ref2 = NULL;
1270 	struct extent_buffer *leaf;
1271 	u32 num_refs = 0;
1272 	int ret = 0;
1273 
1274 	leaf = path->nodes[0];
1275 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276 
1277 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 				      struct btrfs_extent_data_ref);
1280 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 				      struct btrfs_shared_data_ref);
1284 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 		struct btrfs_extent_ref_v0 *ref0;
1288 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 				      struct btrfs_extent_ref_v0);
1290 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 	} else {
1293 		BUG();
1294 	}
1295 
1296 	BUG_ON(num_refs < refs_to_drop);
1297 	num_refs -= refs_to_drop;
1298 
1299 	if (num_refs == 0) {
1300 		ret = btrfs_del_item(trans, root, path);
1301 		*last_ref = 1;
1302 	} else {
1303 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 		else {
1309 			struct btrfs_extent_ref_v0 *ref0;
1310 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 					struct btrfs_extent_ref_v0);
1312 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 		}
1314 #endif
1315 		btrfs_mark_buffer_dirty(leaf);
1316 	}
1317 	return ret;
1318 }
1319 
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 					  struct btrfs_path *path,
1322 					  struct btrfs_extent_inline_ref *iref)
1323 {
1324 	struct btrfs_key key;
1325 	struct extent_buffer *leaf;
1326 	struct btrfs_extent_data_ref *ref1;
1327 	struct btrfs_shared_data_ref *ref2;
1328 	u32 num_refs = 0;
1329 
1330 	leaf = path->nodes[0];
1331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 	if (iref) {
1333 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 		    BTRFS_EXTENT_DATA_REF_KEY) {
1335 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 		} else {
1338 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 		}
1341 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_extent_data_ref);
1344 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_shared_data_ref);
1348 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 		struct btrfs_extent_ref_v0 *ref0;
1352 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_ref_v0);
1354 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 	} else {
1357 		WARN_ON(1);
1358 	}
1359 	return num_refs;
1360 }
1361 
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 					  struct btrfs_root *root,
1364 					  struct btrfs_path *path,
1365 					  u64 bytenr, u64 parent,
1366 					  u64 root_objectid)
1367 {
1368 	struct btrfs_key key;
1369 	int ret;
1370 
1371 	key.objectid = bytenr;
1372 	if (parent) {
1373 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 		key.offset = parent;
1375 	} else {
1376 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 		key.offset = root_objectid;
1378 	}
1379 
1380 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 	if (ret > 0)
1382 		ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 	if (ret == -ENOENT && parent) {
1385 		btrfs_release_path(path);
1386 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 		if (ret > 0)
1389 			ret = -ENOENT;
1390 	}
1391 #endif
1392 	return ret;
1393 }
1394 
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_root *root,
1397 					  struct btrfs_path *path,
1398 					  u64 bytenr, u64 parent,
1399 					  u64 root_objectid)
1400 {
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 	btrfs_release_path(path);
1415 	return ret;
1416 }
1417 
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 	int type;
1421 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 		if (parent > 0)
1423 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 		else
1425 			type = BTRFS_TREE_BLOCK_REF_KEY;
1426 	} else {
1427 		if (parent > 0)
1428 			type = BTRFS_SHARED_DATA_REF_KEY;
1429 		else
1430 			type = BTRFS_EXTENT_DATA_REF_KEY;
1431 	}
1432 	return type;
1433 }
1434 
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 			 struct btrfs_key *key)
1437 
1438 {
1439 	for (; level < BTRFS_MAX_LEVEL; level++) {
1440 		if (!path->nodes[level])
1441 			break;
1442 		if (path->slots[level] + 1 >=
1443 		    btrfs_header_nritems(path->nodes[level]))
1444 			continue;
1445 		if (level == 0)
1446 			btrfs_item_key_to_cpu(path->nodes[level], key,
1447 					      path->slots[level] + 1);
1448 		else
1449 			btrfs_node_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		return 0;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * look for inline back ref. if back ref is found, *ref_ret is set
1458  * to the address of inline back ref, and 0 is returned.
1459  *
1460  * if back ref isn't found, *ref_ret is set to the address where it
1461  * should be inserted, and -ENOENT is returned.
1462  *
1463  * if insert is true and there are too many inline back refs, the path
1464  * points to the extent item, and -EAGAIN is returned.
1465  *
1466  * NOTE: inline back refs are ordered in the same way that back ref
1467  *	 items in the tree are ordered.
1468  */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 				 struct btrfs_root *root,
1472 				 struct btrfs_path *path,
1473 				 struct btrfs_extent_inline_ref **ref_ret,
1474 				 u64 bytenr, u64 num_bytes,
1475 				 u64 parent, u64 root_objectid,
1476 				 u64 owner, u64 offset, int insert)
1477 {
1478 	struct btrfs_key key;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_extent_item *ei;
1481 	struct btrfs_extent_inline_ref *iref;
1482 	u64 flags;
1483 	u64 item_size;
1484 	unsigned long ptr;
1485 	unsigned long end;
1486 	int extra_size;
1487 	int type;
1488 	int want;
1489 	int ret;
1490 	int err = 0;
1491 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 						 SKINNY_METADATA);
1493 
1494 	key.objectid = bytenr;
1495 	key.type = BTRFS_EXTENT_ITEM_KEY;
1496 	key.offset = num_bytes;
1497 
1498 	want = extent_ref_type(parent, owner);
1499 	if (insert) {
1500 		extra_size = btrfs_extent_inline_ref_size(want);
1501 		path->keep_locks = 1;
1502 	} else
1503 		extra_size = -1;
1504 
1505 	/*
1506 	 * Owner is our parent level, so we can just add one to get the level
1507 	 * for the block we are interested in.
1508 	 */
1509 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 		key.type = BTRFS_METADATA_ITEM_KEY;
1511 		key.offset = owner;
1512 	}
1513 
1514 again:
1515 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 	if (ret < 0) {
1517 		err = ret;
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * We may be a newly converted file system which still has the old fat
1523 	 * extent entries for metadata, so try and see if we have one of those.
1524 	 */
1525 	if (ret > 0 && skinny_metadata) {
1526 		skinny_metadata = false;
1527 		if (path->slots[0]) {
1528 			path->slots[0]--;
1529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 					      path->slots[0]);
1531 			if (key.objectid == bytenr &&
1532 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 			    key.offset == num_bytes)
1534 				ret = 0;
1535 		}
1536 		if (ret) {
1537 			key.objectid = bytenr;
1538 			key.type = BTRFS_EXTENT_ITEM_KEY;
1539 			key.offset = num_bytes;
1540 			btrfs_release_path(path);
1541 			goto again;
1542 		}
1543 	}
1544 
1545 	if (ret && !insert) {
1546 		err = -ENOENT;
1547 		goto out;
1548 	} else if (WARN_ON(ret)) {
1549 		err = -EIO;
1550 		goto out;
1551 	}
1552 
1553 	leaf = path->nodes[0];
1554 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 	if (item_size < sizeof(*ei)) {
1557 		if (!insert) {
1558 			err = -ENOENT;
1559 			goto out;
1560 		}
1561 		ret = convert_extent_item_v0(trans, root, path, owner,
1562 					     extra_size);
1563 		if (ret < 0) {
1564 			err = ret;
1565 			goto out;
1566 		}
1567 		leaf = path->nodes[0];
1568 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 	}
1570 #endif
1571 	BUG_ON(item_size < sizeof(*ei));
1572 
1573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 	flags = btrfs_extent_flags(leaf, ei);
1575 
1576 	ptr = (unsigned long)(ei + 1);
1577 	end = (unsigned long)ei + item_size;
1578 
1579 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 		ptr += sizeof(struct btrfs_tree_block_info);
1581 		BUG_ON(ptr > end);
1582 	}
1583 
1584 	err = -ENOENT;
1585 	while (1) {
1586 		if (ptr >= end) {
1587 			WARN_ON(ptr > end);
1588 			break;
1589 		}
1590 		iref = (struct btrfs_extent_inline_ref *)ptr;
1591 		type = btrfs_extent_inline_ref_type(leaf, iref);
1592 		if (want < type)
1593 			break;
1594 		if (want > type) {
1595 			ptr += btrfs_extent_inline_ref_size(type);
1596 			continue;
1597 		}
1598 
1599 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 			struct btrfs_extent_data_ref *dref;
1601 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 			if (match_extent_data_ref(leaf, dref, root_objectid,
1603 						  owner, offset)) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (hash_extent_data_ref_item(leaf, dref) <
1608 			    hash_extent_data_ref(root_objectid, owner, offset))
1609 				break;
1610 		} else {
1611 			u64 ref_offset;
1612 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 			if (parent > 0) {
1614 				if (parent == ref_offset) {
1615 					err = 0;
1616 					break;
1617 				}
1618 				if (ref_offset < parent)
1619 					break;
1620 			} else {
1621 				if (root_objectid == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < root_objectid)
1626 					break;
1627 			}
1628 		}
1629 		ptr += btrfs_extent_inline_ref_size(type);
1630 	}
1631 	if (err == -ENOENT && insert) {
1632 		if (item_size + extra_size >=
1633 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 			err = -EAGAIN;
1635 			goto out;
1636 		}
1637 		/*
1638 		 * To add new inline back ref, we have to make sure
1639 		 * there is no corresponding back ref item.
1640 		 * For simplicity, we just do not add new inline back
1641 		 * ref if there is any kind of item for this block
1642 		 */
1643 		if (find_next_key(path, 0, &key) == 0 &&
1644 		    key.objectid == bytenr &&
1645 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 	}
1650 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 	if (insert) {
1653 		path->keep_locks = 0;
1654 		btrfs_unlock_up_safe(path, 1);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  * helper to add new inline back ref
1661  */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 				 struct btrfs_path *path,
1665 				 struct btrfs_extent_inline_ref *iref,
1666 				 u64 parent, u64 root_objectid,
1667 				 u64 owner, u64 offset, int refs_to_add,
1668 				 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 	struct extent_buffer *leaf;
1671 	struct btrfs_extent_item *ei;
1672 	unsigned long ptr;
1673 	unsigned long end;
1674 	unsigned long item_offset;
1675 	u64 refs;
1676 	int size;
1677 	int type;
1678 
1679 	leaf = path->nodes[0];
1680 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 	item_offset = (unsigned long)iref - (unsigned long)ei;
1682 
1683 	type = extent_ref_type(parent, owner);
1684 	size = btrfs_extent_inline_ref_size(type);
1685 
1686 	btrfs_extend_item(root, path, size);
1687 
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	refs = btrfs_extent_refs(leaf, ei);
1690 	refs += refs_to_add;
1691 	btrfs_set_extent_refs(leaf, ei, refs);
1692 	if (extent_op)
1693 		__run_delayed_extent_op(extent_op, leaf, ei);
1694 
1695 	ptr = (unsigned long)ei + item_offset;
1696 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 	if (ptr < end - size)
1698 		memmove_extent_buffer(leaf, ptr + size, ptr,
1699 				      end - size - ptr);
1700 
1701 	iref = (struct btrfs_extent_inline_ref *)ptr;
1702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 		struct btrfs_extent_data_ref *dref;
1705 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 		struct btrfs_shared_data_ref *sref;
1712 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 	} else {
1718 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 	}
1720 	btrfs_mark_buffer_dirty(leaf);
1721 }
1722 
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref **ref_ret,
1727 				 u64 bytenr, u64 num_bytes, u64 parent,
1728 				 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 	int ret;
1731 
1732 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 					   bytenr, num_bytes, parent,
1734 					   root_objectid, owner, offset, 0);
1735 	if (ret != -ENOENT)
1736 		return ret;
1737 
1738 	btrfs_release_path(path);
1739 	*ref_ret = NULL;
1740 
1741 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 					    root_objectid);
1744 	} else {
1745 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 					     root_objectid, owner, offset);
1747 	}
1748 	return ret;
1749 }
1750 
1751 /*
1752  * helper to update/remove inline back ref
1753  */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 				  struct btrfs_path *path,
1757 				  struct btrfs_extent_inline_ref *iref,
1758 				  int refs_to_mod,
1759 				  struct btrfs_delayed_extent_op *extent_op,
1760 				  int *last_ref)
1761 {
1762 	struct extent_buffer *leaf;
1763 	struct btrfs_extent_item *ei;
1764 	struct btrfs_extent_data_ref *dref = NULL;
1765 	struct btrfs_shared_data_ref *sref = NULL;
1766 	unsigned long ptr;
1767 	unsigned long end;
1768 	u32 item_size;
1769 	int size;
1770 	int type;
1771 	u64 refs;
1772 
1773 	leaf = path->nodes[0];
1774 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 	refs = btrfs_extent_refs(leaf, ei);
1776 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 	refs += refs_to_mod;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	type = btrfs_extent_inline_ref_type(leaf, iref);
1783 
1784 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 		refs = btrfs_extent_data_ref_count(leaf, dref);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 		refs = btrfs_shared_data_ref_count(leaf, sref);
1790 	} else {
1791 		refs = 1;
1792 		BUG_ON(refs_to_mod != -1);
1793 	}
1794 
1795 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 	refs += refs_to_mod;
1797 
1798 	if (refs > 0) {
1799 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 		else
1802 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 	} else {
1804 		*last_ref = 1;
1805 		size =  btrfs_extent_inline_ref_size(type);
1806 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 		ptr = (unsigned long)iref;
1808 		end = (unsigned long)ei + item_size;
1809 		if (ptr + size < end)
1810 			memmove_extent_buffer(leaf, ptr, ptr + size,
1811 					      end - ptr - size);
1812 		item_size -= size;
1813 		btrfs_truncate_item(root, path, item_size, 1);
1814 	}
1815 	btrfs_mark_buffer_dirty(leaf);
1816 }
1817 
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 num_bytes, u64 parent,
1823 				 u64 root_objectid, u64 owner,
1824 				 u64 offset, int refs_to_add,
1825 				 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 	struct btrfs_extent_inline_ref *iref;
1828 	int ret;
1829 
1830 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 					   bytenr, num_bytes, parent,
1832 					   root_objectid, owner, offset, 1);
1833 	if (ret == 0) {
1834 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 		update_inline_extent_backref(root, path, iref,
1836 					     refs_to_add, extent_op, NULL);
1837 	} else if (ret == -ENOENT) {
1838 		setup_inline_extent_backref(root, path, iref, parent,
1839 					    root_objectid, owner, offset,
1840 					    refs_to_add, extent_op);
1841 		ret = 0;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 				 struct btrfs_root *root,
1848 				 struct btrfs_path *path,
1849 				 u64 bytenr, u64 parent, u64 root_objectid,
1850 				 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 	int ret;
1853 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 		BUG_ON(refs_to_add != 1);
1855 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 					    parent, root_objectid);
1857 	} else {
1858 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 					     parent, root_objectid,
1860 					     owner, offset, refs_to_add);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 				 struct btrfs_root *root,
1867 				 struct btrfs_path *path,
1868 				 struct btrfs_extent_inline_ref *iref,
1869 				 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!is_data && refs_to_drop != 1);
1874 	if (iref) {
1875 		update_inline_extent_backref(root, path, iref,
1876 					     -refs_to_drop, NULL, last_ref);
1877 	} else if (is_data) {
1878 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 					     last_ref);
1880 	} else {
1881 		*last_ref = 1;
1882 		ret = btrfs_del_item(trans, root, path);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 				u64 start, u64 len)
1889 {
1890 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892 
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 			 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 	int ret;
1897 	u64 discarded_bytes = 0;
1898 	struct btrfs_bio *bbio = NULL;
1899 
1900 
1901 	/* Tell the block device(s) that the sectors can be discarded */
1902 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 			      bytenr, &num_bytes, &bbio, 0);
1904 	/* Error condition is -ENOMEM */
1905 	if (!ret) {
1906 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 		int i;
1908 
1909 
1910 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 			if (!stripe->dev->can_discard)
1912 				continue;
1913 
1914 			ret = btrfs_issue_discard(stripe->dev->bdev,
1915 						  stripe->physical,
1916 						  stripe->length);
1917 			if (!ret)
1918 				discarded_bytes += stripe->length;
1919 			else if (ret != -EOPNOTSUPP)
1920 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921 
1922 			/*
1923 			 * Just in case we get back EOPNOTSUPP for some reason,
1924 			 * just ignore the return value so we don't screw up
1925 			 * people calling discard_extent.
1926 			 */
1927 			ret = 0;
1928 		}
1929 		btrfs_put_bbio(bbio);
1930 	}
1931 
1932 	if (actual_bytes)
1933 		*actual_bytes = discarded_bytes;
1934 
1935 
1936 	if (ret == -EOPNOTSUPP)
1937 		ret = 0;
1938 	return ret;
1939 }
1940 
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 			 struct btrfs_root *root,
1944 			 u64 bytenr, u64 num_bytes, u64 parent,
1945 			 u64 root_objectid, u64 owner, u64 offset,
1946 			 int no_quota)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  int no_quota,
1974 				  struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 	struct btrfs_fs_info *fs_info = root->fs_info;
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	struct btrfs_key key;
1981 	u64 refs;
1982 	int ret;
1983 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 		goto out;
2001 	/*
2002 	 * Ok we were able to insert an inline extent and it appears to be a new
2003 	 * reference, deal with the qgroup accounting.
2004 	 */
2005 	if (!ret && !no_quota) {
2006 		ASSERT(root->fs_info->quota_enabled);
2007 		leaf = path->nodes[0];
2008 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 		item = btrfs_item_ptr(leaf, path->slots[0],
2010 				      struct btrfs_extent_item);
2011 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 		btrfs_release_path(path);
2014 
2015 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 					      bytenr, num_bytes, type, 0);
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 	 * inline extent ref, so just update the reference count and add a
2023 	 * normal backref.
2024 	 */
2025 	leaf = path->nodes[0];
2026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 	refs = btrfs_extent_refs(leaf, item);
2029 	if (refs)
2030 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 	if (extent_op)
2033 		__run_delayed_extent_op(extent_op, leaf, item);
2034 
2035 	btrfs_mark_buffer_dirty(leaf);
2036 	btrfs_release_path(path);
2037 
2038 	if (!no_quota) {
2039 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 					      bytenr, num_bytes, type, 0);
2041 		if (ret)
2042 			goto out;
2043 	}
2044 
2045 	path->reada = 1;
2046 	path->leave_spinning = 1;
2047 	/* now insert the actual backref */
2048 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 				    path, bytenr, parent, root_objectid,
2050 				    owner, offset, refs_to_add);
2051 	if (ret)
2052 		btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 	btrfs_free_path(path);
2055 	return ret;
2056 }
2057 
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 				struct btrfs_root *root,
2060 				struct btrfs_delayed_ref_node *node,
2061 				struct btrfs_delayed_extent_op *extent_op,
2062 				int insert_reserved)
2063 {
2064 	int ret = 0;
2065 	struct btrfs_delayed_data_ref *ref;
2066 	struct btrfs_key ins;
2067 	u64 parent = 0;
2068 	u64 ref_root = 0;
2069 	u64 flags = 0;
2070 
2071 	ins.objectid = node->bytenr;
2072 	ins.offset = node->num_bytes;
2073 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2074 
2075 	ref = btrfs_delayed_node_to_data_ref(node);
2076 	trace_run_delayed_data_ref(node, ref, node->action);
2077 
2078 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 		parent = ref->parent;
2080 	ref_root = ref->root;
2081 
2082 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 		if (extent_op)
2084 			flags |= extent_op->flags_to_set;
2085 		ret = alloc_reserved_file_extent(trans, root,
2086 						 parent, ref_root, flags,
2087 						 ref->objectid, ref->offset,
2088 						 &ins, node->ref_mod);
2089 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 					     node->num_bytes, parent,
2092 					     ref_root, ref->objectid,
2093 					     ref->offset, node->ref_mod,
2094 					     node->no_quota, extent_op);
2095 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 					  node->num_bytes, parent,
2098 					  ref_root, ref->objectid,
2099 					  ref->offset, node->ref_mod,
2100 					  extent_op, node->no_quota);
2101 	} else {
2102 		BUG();
2103 	}
2104 	return ret;
2105 }
2106 
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 				    struct extent_buffer *leaf,
2109 				    struct btrfs_extent_item *ei)
2110 {
2111 	u64 flags = btrfs_extent_flags(leaf, ei);
2112 	if (extent_op->update_flags) {
2113 		flags |= extent_op->flags_to_set;
2114 		btrfs_set_extent_flags(leaf, ei, flags);
2115 	}
2116 
2117 	if (extent_op->update_key) {
2118 		struct btrfs_tree_block_info *bi;
2119 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 	}
2123 }
2124 
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 				 struct btrfs_root *root,
2127 				 struct btrfs_delayed_ref_node *node,
2128 				 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 	struct btrfs_key key;
2131 	struct btrfs_path *path;
2132 	struct btrfs_extent_item *ei;
2133 	struct extent_buffer *leaf;
2134 	u32 item_size;
2135 	int ret;
2136 	int err = 0;
2137 	int metadata = !extent_op->is_data;
2138 
2139 	if (trans->aborted)
2140 		return 0;
2141 
2142 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 		metadata = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	key.objectid = node->bytenr;
2150 
2151 	if (metadata) {
2152 		key.type = BTRFS_METADATA_ITEM_KEY;
2153 		key.offset = extent_op->level;
2154 	} else {
2155 		key.type = BTRFS_EXTENT_ITEM_KEY;
2156 		key.offset = node->num_bytes;
2157 	}
2158 
2159 again:
2160 	path->reada = 1;
2161 	path->leave_spinning = 1;
2162 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 				path, 0, 1);
2164 	if (ret < 0) {
2165 		err = ret;
2166 		goto out;
2167 	}
2168 	if (ret > 0) {
2169 		if (metadata) {
2170 			if (path->slots[0] > 0) {
2171 				path->slots[0]--;
2172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 						      path->slots[0]);
2174 				if (key.objectid == node->bytenr &&
2175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 				    key.offset == node->num_bytes)
2177 					ret = 0;
2178 			}
2179 			if (ret > 0) {
2180 				btrfs_release_path(path);
2181 				metadata = 0;
2182 
2183 				key.objectid = node->bytenr;
2184 				key.offset = node->num_bytes;
2185 				key.type = BTRFS_EXTENT_ITEM_KEY;
2186 				goto again;
2187 			}
2188 		} else {
2189 			err = -EIO;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	leaf = path->nodes[0];
2195 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 	if (item_size < sizeof(*ei)) {
2198 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 					     path, (u64)-1, 0);
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 		leaf = path->nodes[0];
2205 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 	}
2207 #endif
2208 	BUG_ON(item_size < sizeof(*ei));
2209 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 	__run_delayed_extent_op(extent_op, leaf, ei);
2211 
2212 	btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 	btrfs_free_path(path);
2215 	return err;
2216 }
2217 
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 				struct btrfs_root *root,
2220 				struct btrfs_delayed_ref_node *node,
2221 				struct btrfs_delayed_extent_op *extent_op,
2222 				int insert_reserved)
2223 {
2224 	int ret = 0;
2225 	struct btrfs_delayed_tree_ref *ref;
2226 	struct btrfs_key ins;
2227 	u64 parent = 0;
2228 	u64 ref_root = 0;
2229 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 						 SKINNY_METADATA);
2231 
2232 	ref = btrfs_delayed_node_to_tree_ref(node);
2233 	trace_run_delayed_tree_ref(node, ref, node->action);
2234 
2235 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 		parent = ref->parent;
2237 	ref_root = ref->root;
2238 
2239 	ins.objectid = node->bytenr;
2240 	if (skinny_metadata) {
2241 		ins.offset = ref->level;
2242 		ins.type = BTRFS_METADATA_ITEM_KEY;
2243 	} else {
2244 		ins.offset = node->num_bytes;
2245 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 	}
2247 
2248 	BUG_ON(node->ref_mod != 1);
2249 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 		BUG_ON(!extent_op || !extent_op->update_flags);
2251 		ret = alloc_reserved_tree_block(trans, root,
2252 						parent, ref_root,
2253 						extent_op->flags_to_set,
2254 						&extent_op->key,
2255 						ref->level, &ins,
2256 						node->no_quota);
2257 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 					     node->num_bytes, parent, ref_root,
2260 					     ref->level, 0, 1, node->no_quota,
2261 					     extent_op);
2262 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 					  node->num_bytes, parent, ref_root,
2265 					  ref->level, 0, 1, extent_op,
2266 					  node->no_quota);
2267 	} else {
2268 		BUG();
2269 	}
2270 	return ret;
2271 }
2272 
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 			       struct btrfs_root *root,
2276 			       struct btrfs_delayed_ref_node *node,
2277 			       struct btrfs_delayed_extent_op *extent_op,
2278 			       int insert_reserved)
2279 {
2280 	int ret = 0;
2281 
2282 	if (trans->aborted) {
2283 		if (insert_reserved)
2284 			btrfs_pin_extent(root, node->bytenr,
2285 					 node->num_bytes, 1);
2286 		return 0;
2287 	}
2288 
2289 	if (btrfs_delayed_ref_is_head(node)) {
2290 		struct btrfs_delayed_ref_head *head;
2291 		/*
2292 		 * we've hit the end of the chain and we were supposed
2293 		 * to insert this extent into the tree.  But, it got
2294 		 * deleted before we ever needed to insert it, so all
2295 		 * we have to do is clean up the accounting
2296 		 */
2297 		BUG_ON(extent_op);
2298 		head = btrfs_delayed_node_to_head(node);
2299 		trace_run_delayed_ref_head(node, head, node->action);
2300 
2301 		if (insert_reserved) {
2302 			btrfs_pin_extent(root, node->bytenr,
2303 					 node->num_bytes, 1);
2304 			if (head->is_data) {
2305 				ret = btrfs_del_csums(trans, root,
2306 						      node->bytenr,
2307 						      node->num_bytes);
2308 			}
2309 		}
2310 		return ret;
2311 	}
2312 
2313 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 					   insert_reserved);
2317 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 					   insert_reserved);
2321 	else
2322 		BUG();
2323 	return ret;
2324 }
2325 
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 	struct rb_node *node;
2330 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331 
2332 	/*
2333 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 	 * this prevents ref count from going down to zero when
2335 	 * there still are pending delayed ref.
2336 	 */
2337 	node = rb_first(&head->ref_root);
2338 	while (node) {
2339 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 				rb_node);
2341 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 			return ref;
2343 		else if (last == NULL)
2344 			last = ref;
2345 		node = rb_next(node);
2346 	}
2347 	return last;
2348 }
2349 
2350 /*
2351  * Returns 0 on success or if called with an already aborted transaction.
2352  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353  */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 					     struct btrfs_root *root,
2356 					     unsigned long nr)
2357 {
2358 	struct btrfs_delayed_ref_root *delayed_refs;
2359 	struct btrfs_delayed_ref_node *ref;
2360 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 	struct btrfs_delayed_extent_op *extent_op;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	ktime_t start = ktime_get();
2364 	int ret;
2365 	unsigned long count = 0;
2366 	unsigned long actual_count = 0;
2367 	int must_insert_reserved = 0;
2368 
2369 	delayed_refs = &trans->transaction->delayed_refs;
2370 	while (1) {
2371 		if (!locked_ref) {
2372 			if (count >= nr)
2373 				break;
2374 
2375 			spin_lock(&delayed_refs->lock);
2376 			locked_ref = btrfs_select_ref_head(trans);
2377 			if (!locked_ref) {
2378 				spin_unlock(&delayed_refs->lock);
2379 				break;
2380 			}
2381 
2382 			/* grab the lock that says we are going to process
2383 			 * all the refs for this head */
2384 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 			spin_unlock(&delayed_refs->lock);
2386 			/*
2387 			 * we may have dropped the spin lock to get the head
2388 			 * mutex lock, and that might have given someone else
2389 			 * time to free the head.  If that's true, it has been
2390 			 * removed from our list and we can move on.
2391 			 */
2392 			if (ret == -EAGAIN) {
2393 				locked_ref = NULL;
2394 				count++;
2395 				continue;
2396 			}
2397 		}
2398 
2399 		/*
2400 		 * We need to try and merge add/drops of the same ref since we
2401 		 * can run into issues with relocate dropping the implicit ref
2402 		 * and then it being added back again before the drop can
2403 		 * finish.  If we merged anything we need to re-loop so we can
2404 		 * get a good ref.
2405 		 */
2406 		spin_lock(&locked_ref->lock);
2407 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 					 locked_ref);
2409 
2410 		/*
2411 		 * locked_ref is the head node, so we have to go one
2412 		 * node back for any delayed ref updates
2413 		 */
2414 		ref = select_delayed_ref(locked_ref);
2415 
2416 		if (ref && ref->seq &&
2417 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 			spin_unlock(&locked_ref->lock);
2419 			btrfs_delayed_ref_unlock(locked_ref);
2420 			spin_lock(&delayed_refs->lock);
2421 			locked_ref->processing = 0;
2422 			delayed_refs->num_heads_ready++;
2423 			spin_unlock(&delayed_refs->lock);
2424 			locked_ref = NULL;
2425 			cond_resched();
2426 			count++;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * record the must insert reserved flag before we
2432 		 * drop the spin lock.
2433 		 */
2434 		must_insert_reserved = locked_ref->must_insert_reserved;
2435 		locked_ref->must_insert_reserved = 0;
2436 
2437 		extent_op = locked_ref->extent_op;
2438 		locked_ref->extent_op = NULL;
2439 
2440 		if (!ref) {
2441 
2442 
2443 			/* All delayed refs have been processed, Go ahead
2444 			 * and send the head node to run_one_delayed_ref,
2445 			 * so that any accounting fixes can happen
2446 			 */
2447 			ref = &locked_ref->node;
2448 
2449 			if (extent_op && must_insert_reserved) {
2450 				btrfs_free_delayed_extent_op(extent_op);
2451 				extent_op = NULL;
2452 			}
2453 
2454 			if (extent_op) {
2455 				spin_unlock(&locked_ref->lock);
2456 				ret = run_delayed_extent_op(trans, root,
2457 							    ref, extent_op);
2458 				btrfs_free_delayed_extent_op(extent_op);
2459 
2460 				if (ret) {
2461 					/*
2462 					 * Need to reset must_insert_reserved if
2463 					 * there was an error so the abort stuff
2464 					 * can cleanup the reserved space
2465 					 * properly.
2466 					 */
2467 					if (must_insert_reserved)
2468 						locked_ref->must_insert_reserved = 1;
2469 					locked_ref->processing = 0;
2470 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 					btrfs_delayed_ref_unlock(locked_ref);
2472 					return ret;
2473 				}
2474 				continue;
2475 			}
2476 
2477 			/*
2478 			 * Need to drop our head ref lock and re-aqcuire the
2479 			 * delayed ref lock and then re-check to make sure
2480 			 * nobody got added.
2481 			 */
2482 			spin_unlock(&locked_ref->lock);
2483 			spin_lock(&delayed_refs->lock);
2484 			spin_lock(&locked_ref->lock);
2485 			if (rb_first(&locked_ref->ref_root) ||
2486 			    locked_ref->extent_op) {
2487 				spin_unlock(&locked_ref->lock);
2488 				spin_unlock(&delayed_refs->lock);
2489 				continue;
2490 			}
2491 			ref->in_tree = 0;
2492 			delayed_refs->num_heads--;
2493 			rb_erase(&locked_ref->href_node,
2494 				 &delayed_refs->href_root);
2495 			spin_unlock(&delayed_refs->lock);
2496 		} else {
2497 			actual_count++;
2498 			ref->in_tree = 0;
2499 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 		}
2501 		atomic_dec(&delayed_refs->num_entries);
2502 
2503 		if (!btrfs_delayed_ref_is_head(ref)) {
2504 			/*
2505 			 * when we play the delayed ref, also correct the
2506 			 * ref_mod on head
2507 			 */
2508 			switch (ref->action) {
2509 			case BTRFS_ADD_DELAYED_REF:
2510 			case BTRFS_ADD_DELAYED_EXTENT:
2511 				locked_ref->node.ref_mod -= ref->ref_mod;
2512 				break;
2513 			case BTRFS_DROP_DELAYED_REF:
2514 				locked_ref->node.ref_mod += ref->ref_mod;
2515 				break;
2516 			default:
2517 				WARN_ON(1);
2518 			}
2519 		}
2520 		spin_unlock(&locked_ref->lock);
2521 
2522 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 					  must_insert_reserved);
2524 
2525 		btrfs_free_delayed_extent_op(extent_op);
2526 		if (ret) {
2527 			locked_ref->processing = 0;
2528 			btrfs_delayed_ref_unlock(locked_ref);
2529 			btrfs_put_delayed_ref(ref);
2530 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 			return ret;
2532 		}
2533 
2534 		/*
2535 		 * If this node is a head, that means all the refs in this head
2536 		 * have been dealt with, and we will pick the next head to deal
2537 		 * with, so we must unlock the head and drop it from the cluster
2538 		 * list before we release it.
2539 		 */
2540 		if (btrfs_delayed_ref_is_head(ref)) {
2541 			if (locked_ref->is_data &&
2542 			    locked_ref->total_ref_mod < 0) {
2543 				spin_lock(&delayed_refs->lock);
2544 				delayed_refs->pending_csums -= ref->num_bytes;
2545 				spin_unlock(&delayed_refs->lock);
2546 			}
2547 			btrfs_delayed_ref_unlock(locked_ref);
2548 			locked_ref = NULL;
2549 		}
2550 		btrfs_put_delayed_ref(ref);
2551 		count++;
2552 		cond_resched();
2553 	}
2554 
2555 	/*
2556 	 * We don't want to include ref heads since we can have empty ref heads
2557 	 * and those will drastically skew our runtime down since we just do
2558 	 * accounting, no actual extent tree updates.
2559 	 */
2560 	if (actual_count > 0) {
2561 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 		u64 avg;
2563 
2564 		/*
2565 		 * We weigh the current average higher than our current runtime
2566 		 * to avoid large swings in the average.
2567 		 */
2568 		spin_lock(&delayed_refs->lock);
2569 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2571 		spin_unlock(&delayed_refs->lock);
2572 	}
2573 	return 0;
2574 }
2575 
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578  * Normally delayed refs get processed in ascending bytenr order. This
2579  * correlates in most cases to the order added. To expose dependencies on this
2580  * order, we start to process the tree in the middle instead of the beginning
2581  */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 	struct rb_node *n = root->rb_node;
2585 	struct btrfs_delayed_ref_node *entry;
2586 	int alt = 1;
2587 	u64 middle;
2588 	u64 first = 0, last = 0;
2589 
2590 	n = rb_first(root);
2591 	if (n) {
2592 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 		first = entry->bytenr;
2594 	}
2595 	n = rb_last(root);
2596 	if (n) {
2597 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 		last = entry->bytenr;
2599 	}
2600 	n = root->rb_node;
2601 
2602 	while (n) {
2603 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 		WARN_ON(!entry->in_tree);
2605 
2606 		middle = entry->bytenr;
2607 
2608 		if (alt)
2609 			n = n->rb_left;
2610 		else
2611 			n = n->rb_right;
2612 
2613 		alt = 1 - alt;
2614 	}
2615 	return middle;
2616 }
2617 #endif
2618 
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 	u64 num_bytes;
2622 
2623 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 			     sizeof(struct btrfs_extent_inline_ref));
2625 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627 
2628 	/*
2629 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 	 * closer to what we're really going to want to ouse.
2631 	 */
2632 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634 
2635 /*
2636  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637  * would require to store the csums for that many bytes.
2638  */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 	u64 csum_size;
2642 	u64 num_csums_per_leaf;
2643 	u64 num_csums;
2644 
2645 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 	num_csums_per_leaf = div64_u64(csum_size,
2647 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 	num_csums += num_csums_per_leaf - 1;
2650 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 	return num_csums;
2652 }
2653 
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 				       struct btrfs_root *root)
2656 {
2657 	struct btrfs_block_rsv *global_rsv;
2658 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 	u64 num_bytes, num_dirty_bgs_bytes;
2662 	int ret = 0;
2663 
2664 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 	num_heads = heads_to_leaves(root, num_heads);
2666 	if (num_heads > 1)
2667 		num_bytes += (num_heads - 1) * root->nodesize;
2668 	num_bytes <<= 1;
2669 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 							     num_dirty_bgs);
2672 	global_rsv = &root->fs_info->global_block_rsv;
2673 
2674 	/*
2675 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 	 * wiggle room since running delayed refs can create more delayed refs.
2677 	 */
2678 	if (global_rsv->space_info->full) {
2679 		num_dirty_bgs_bytes <<= 1;
2680 		num_bytes <<= 1;
2681 	}
2682 
2683 	spin_lock(&global_rsv->lock);
2684 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 		ret = 1;
2686 	spin_unlock(&global_rsv->lock);
2687 	return ret;
2688 }
2689 
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 				       struct btrfs_root *root)
2692 {
2693 	struct btrfs_fs_info *fs_info = root->fs_info;
2694 	u64 num_entries =
2695 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 	u64 avg_runtime;
2697 	u64 val;
2698 
2699 	smp_mb();
2700 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 	val = num_entries * avg_runtime;
2702 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 		return 1;
2704 	if (val >= NSEC_PER_SEC / 2)
2705 		return 2;
2706 
2707 	return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709 
2710 struct async_delayed_refs {
2711 	struct btrfs_root *root;
2712 	int count;
2713 	int error;
2714 	int sync;
2715 	struct completion wait;
2716 	struct btrfs_work work;
2717 };
2718 
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 	struct async_delayed_refs *async;
2722 	struct btrfs_trans_handle *trans;
2723 	int ret;
2724 
2725 	async = container_of(work, struct async_delayed_refs, work);
2726 
2727 	trans = btrfs_join_transaction(async->root);
2728 	if (IS_ERR(trans)) {
2729 		async->error = PTR_ERR(trans);
2730 		goto done;
2731 	}
2732 
2733 	/*
2734 	 * trans->sync means that when we call end_transaciton, we won't
2735 	 * wait on delayed refs
2736 	 */
2737 	trans->sync = true;
2738 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 	if (ret)
2740 		async->error = ret;
2741 
2742 	ret = btrfs_end_transaction(trans, async->root);
2743 	if (ret && !async->error)
2744 		async->error = ret;
2745 done:
2746 	if (async->sync)
2747 		complete(&async->wait);
2748 	else
2749 		kfree(async);
2750 }
2751 
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 				 unsigned long count, int wait)
2754 {
2755 	struct async_delayed_refs *async;
2756 	int ret;
2757 
2758 	async = kmalloc(sizeof(*async), GFP_NOFS);
2759 	if (!async)
2760 		return -ENOMEM;
2761 
2762 	async->root = root->fs_info->tree_root;
2763 	async->count = count;
2764 	async->error = 0;
2765 	if (wait)
2766 		async->sync = 1;
2767 	else
2768 		async->sync = 0;
2769 	init_completion(&async->wait);
2770 
2771 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 			delayed_ref_async_start, NULL, NULL);
2773 
2774 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775 
2776 	if (wait) {
2777 		wait_for_completion(&async->wait);
2778 		ret = async->error;
2779 		kfree(async);
2780 		return ret;
2781 	}
2782 	return 0;
2783 }
2784 
2785 /*
2786  * this starts processing the delayed reference count updates and
2787  * extent insertions we have queued up so far.  count can be
2788  * 0, which means to process everything in the tree at the start
2789  * of the run (but not newly added entries), or it can be some target
2790  * number you'd like to process.
2791  *
2792  * Returns 0 on success or if called with an aborted transaction
2793  * Returns <0 on error and aborts the transaction
2794  */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 			   struct btrfs_root *root, unsigned long count)
2797 {
2798 	struct rb_node *node;
2799 	struct btrfs_delayed_ref_root *delayed_refs;
2800 	struct btrfs_delayed_ref_head *head;
2801 	int ret;
2802 	int run_all = count == (unsigned long)-1;
2803 
2804 	/* We'll clean this up in btrfs_cleanup_transaction */
2805 	if (trans->aborted)
2806 		return 0;
2807 
2808 	if (root == root->fs_info->extent_root)
2809 		root = root->fs_info->tree_root;
2810 
2811 	delayed_refs = &trans->transaction->delayed_refs;
2812 	if (count == 0)
2813 		count = atomic_read(&delayed_refs->num_entries) * 2;
2814 
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 	ret = __btrfs_run_delayed_refs(trans, root, count);
2820 	if (ret < 0) {
2821 		btrfs_abort_transaction(trans, root, ret);
2822 		return ret;
2823 	}
2824 
2825 	if (run_all) {
2826 		if (!list_empty(&trans->new_bgs))
2827 			btrfs_create_pending_block_groups(trans, root);
2828 
2829 		spin_lock(&delayed_refs->lock);
2830 		node = rb_first(&delayed_refs->href_root);
2831 		if (!node) {
2832 			spin_unlock(&delayed_refs->lock);
2833 			goto out;
2834 		}
2835 		count = (unsigned long)-1;
2836 
2837 		while (node) {
2838 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 					href_node);
2840 			if (btrfs_delayed_ref_is_head(&head->node)) {
2841 				struct btrfs_delayed_ref_node *ref;
2842 
2843 				ref = &head->node;
2844 				atomic_inc(&ref->refs);
2845 
2846 				spin_unlock(&delayed_refs->lock);
2847 				/*
2848 				 * Mutex was contended, block until it's
2849 				 * released and try again
2850 				 */
2851 				mutex_lock(&head->mutex);
2852 				mutex_unlock(&head->mutex);
2853 
2854 				btrfs_put_delayed_ref(ref);
2855 				cond_resched();
2856 				goto again;
2857 			} else {
2858 				WARN_ON(1);
2859 			}
2860 			node = rb_next(node);
2861 		}
2862 		spin_unlock(&delayed_refs->lock);
2863 		cond_resched();
2864 		goto again;
2865 	}
2866 out:
2867 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 	if (ret)
2869 		return ret;
2870 	assert_qgroups_uptodate(trans);
2871 	return 0;
2872 }
2873 
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 				struct btrfs_root *root,
2876 				u64 bytenr, u64 num_bytes, u64 flags,
2877 				int level, int is_data)
2878 {
2879 	struct btrfs_delayed_extent_op *extent_op;
2880 	int ret;
2881 
2882 	extent_op = btrfs_alloc_delayed_extent_op();
2883 	if (!extent_op)
2884 		return -ENOMEM;
2885 
2886 	extent_op->flags_to_set = flags;
2887 	extent_op->update_flags = 1;
2888 	extent_op->update_key = 0;
2889 	extent_op->is_data = is_data ? 1 : 0;
2890 	extent_op->level = level;
2891 
2892 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 					  num_bytes, extent_op);
2894 	if (ret)
2895 		btrfs_free_delayed_extent_op(extent_op);
2896 	return ret;
2897 }
2898 
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 				      struct btrfs_root *root,
2901 				      struct btrfs_path *path,
2902 				      u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 	struct btrfs_delayed_ref_head *head;
2905 	struct btrfs_delayed_ref_node *ref;
2906 	struct btrfs_delayed_data_ref *data_ref;
2907 	struct btrfs_delayed_ref_root *delayed_refs;
2908 	struct rb_node *node;
2909 	int ret = 0;
2910 
2911 	delayed_refs = &trans->transaction->delayed_refs;
2912 	spin_lock(&delayed_refs->lock);
2913 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 	if (!head) {
2915 		spin_unlock(&delayed_refs->lock);
2916 		return 0;
2917 	}
2918 
2919 	if (!mutex_trylock(&head->mutex)) {
2920 		atomic_inc(&head->node.refs);
2921 		spin_unlock(&delayed_refs->lock);
2922 
2923 		btrfs_release_path(path);
2924 
2925 		/*
2926 		 * Mutex was contended, block until it's released and let
2927 		 * caller try again
2928 		 */
2929 		mutex_lock(&head->mutex);
2930 		mutex_unlock(&head->mutex);
2931 		btrfs_put_delayed_ref(&head->node);
2932 		return -EAGAIN;
2933 	}
2934 	spin_unlock(&delayed_refs->lock);
2935 
2936 	spin_lock(&head->lock);
2937 	node = rb_first(&head->ref_root);
2938 	while (node) {
2939 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 		node = rb_next(node);
2941 
2942 		/* If it's a shared ref we know a cross reference exists */
2943 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 			ret = 1;
2945 			break;
2946 		}
2947 
2948 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2949 
2950 		/*
2951 		 * If our ref doesn't match the one we're currently looking at
2952 		 * then we have a cross reference.
2953 		 */
2954 		if (data_ref->root != root->root_key.objectid ||
2955 		    data_ref->objectid != objectid ||
2956 		    data_ref->offset != offset) {
2957 			ret = 1;
2958 			break;
2959 		}
2960 	}
2961 	spin_unlock(&head->lock);
2962 	mutex_unlock(&head->mutex);
2963 	return ret;
2964 }
2965 
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 					struct btrfs_root *root,
2968 					struct btrfs_path *path,
2969 					u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 	struct extent_buffer *leaf;
2973 	struct btrfs_extent_data_ref *ref;
2974 	struct btrfs_extent_inline_ref *iref;
2975 	struct btrfs_extent_item *ei;
2976 	struct btrfs_key key;
2977 	u32 item_size;
2978 	int ret;
2979 
2980 	key.objectid = bytenr;
2981 	key.offset = (u64)-1;
2982 	key.type = BTRFS_EXTENT_ITEM_KEY;
2983 
2984 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 	if (ret < 0)
2986 		goto out;
2987 	BUG_ON(ret == 0); /* Corruption */
2988 
2989 	ret = -ENOENT;
2990 	if (path->slots[0] == 0)
2991 		goto out;
2992 
2993 	path->slots[0]--;
2994 	leaf = path->nodes[0];
2995 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996 
2997 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 		goto out;
2999 
3000 	ret = 1;
3001 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 	if (item_size < sizeof(*ei)) {
3004 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 		goto out;
3006 	}
3007 #endif
3008 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009 
3010 	if (item_size != sizeof(*ei) +
3011 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 		goto out;
3013 
3014 	if (btrfs_extent_generation(leaf, ei) <=
3015 	    btrfs_root_last_snapshot(&root->root_item))
3016 		goto out;
3017 
3018 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 	    BTRFS_EXTENT_DATA_REF_KEY)
3021 		goto out;
3022 
3023 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 	if (btrfs_extent_refs(leaf, ei) !=
3025 	    btrfs_extent_data_ref_count(leaf, ref) ||
3026 	    btrfs_extent_data_ref_root(leaf, ref) !=
3027 	    root->root_key.objectid ||
3028 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 		goto out;
3031 
3032 	ret = 0;
3033 out:
3034 	return ret;
3035 }
3036 
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 			  struct btrfs_root *root,
3039 			  u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 	struct btrfs_path *path;
3042 	int ret;
3043 	int ret2;
3044 
3045 	path = btrfs_alloc_path();
3046 	if (!path)
3047 		return -ENOENT;
3048 
3049 	do {
3050 		ret = check_committed_ref(trans, root, path, objectid,
3051 					  offset, bytenr);
3052 		if (ret && ret != -ENOENT)
3053 			goto out;
3054 
3055 		ret2 = check_delayed_ref(trans, root, path, objectid,
3056 					 offset, bytenr);
3057 	} while (ret2 == -EAGAIN);
3058 
3059 	if (ret2 && ret2 != -ENOENT) {
3060 		ret = ret2;
3061 		goto out;
3062 	}
3063 
3064 	if (ret != -ENOENT || ret2 != -ENOENT)
3065 		ret = 0;
3066 out:
3067 	btrfs_free_path(path);
3068 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 		WARN_ON(ret > 0);
3070 	return ret;
3071 }
3072 
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 			   struct btrfs_root *root,
3075 			   struct extent_buffer *buf,
3076 			   int full_backref, int inc)
3077 {
3078 	u64 bytenr;
3079 	u64 num_bytes;
3080 	u64 parent;
3081 	u64 ref_root;
3082 	u32 nritems;
3083 	struct btrfs_key key;
3084 	struct btrfs_file_extent_item *fi;
3085 	int i;
3086 	int level;
3087 	int ret = 0;
3088 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 			    u64, u64, u64, u64, u64, u64, int);
3090 
3091 
3092 	if (btrfs_test_is_dummy_root(root))
3093 		return 0;
3094 
3095 	ref_root = btrfs_header_owner(buf);
3096 	nritems = btrfs_header_nritems(buf);
3097 	level = btrfs_header_level(buf);
3098 
3099 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 		return 0;
3101 
3102 	if (inc)
3103 		process_func = btrfs_inc_extent_ref;
3104 	else
3105 		process_func = btrfs_free_extent;
3106 
3107 	if (full_backref)
3108 		parent = buf->start;
3109 	else
3110 		parent = 0;
3111 
3112 	for (i = 0; i < nritems; i++) {
3113 		if (level == 0) {
3114 			btrfs_item_key_to_cpu(buf, &key, i);
3115 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 				continue;
3117 			fi = btrfs_item_ptr(buf, i,
3118 					    struct btrfs_file_extent_item);
3119 			if (btrfs_file_extent_type(buf, fi) ==
3120 			    BTRFS_FILE_EXTENT_INLINE)
3121 				continue;
3122 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 			if (bytenr == 0)
3124 				continue;
3125 
3126 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 			key.offset -= btrfs_file_extent_offset(buf, fi);
3128 			ret = process_func(trans, root, bytenr, num_bytes,
3129 					   parent, ref_root, key.objectid,
3130 					   key.offset, 1);
3131 			if (ret)
3132 				goto fail;
3133 		} else {
3134 			bytenr = btrfs_node_blockptr(buf, i);
3135 			num_bytes = root->nodesize;
3136 			ret = process_func(trans, root, bytenr, num_bytes,
3137 					   parent, ref_root, level - 1, 0,
3138 					   1);
3139 			if (ret)
3140 				goto fail;
3141 		}
3142 	}
3143 	return 0;
3144 fail:
3145 	return ret;
3146 }
3147 
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 		  struct extent_buffer *buf, int full_backref)
3150 {
3151 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153 
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 		  struct extent_buffer *buf, int full_backref)
3156 {
3157 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159 
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 				 struct btrfs_root *root,
3162 				 struct btrfs_path *path,
3163 				 struct btrfs_block_group_cache *cache)
3164 {
3165 	int ret;
3166 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 	unsigned long bi;
3168 	struct extent_buffer *leaf;
3169 
3170 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 	if (ret) {
3172 		if (ret > 0)
3173 			ret = -ENOENT;
3174 		goto fail;
3175 	}
3176 
3177 	leaf = path->nodes[0];
3178 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 	btrfs_mark_buffer_dirty(leaf);
3181 	btrfs_release_path(path);
3182 fail:
3183 	if (ret)
3184 		btrfs_abort_transaction(trans, root, ret);
3185 	return ret;
3186 
3187 }
3188 
3189 static struct btrfs_block_group_cache *
3190 next_block_group(struct btrfs_root *root,
3191 		 struct btrfs_block_group_cache *cache)
3192 {
3193 	struct rb_node *node;
3194 
3195 	spin_lock(&root->fs_info->block_group_cache_lock);
3196 
3197 	/* If our block group was removed, we need a full search. */
3198 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200 
3201 		spin_unlock(&root->fs_info->block_group_cache_lock);
3202 		btrfs_put_block_group(cache);
3203 		cache = btrfs_lookup_first_block_group(root->fs_info,
3204 						       next_bytenr);
3205 		return cache;
3206 	}
3207 	node = rb_next(&cache->cache_node);
3208 	btrfs_put_block_group(cache);
3209 	if (node) {
3210 		cache = rb_entry(node, struct btrfs_block_group_cache,
3211 				 cache_node);
3212 		btrfs_get_block_group(cache);
3213 	} else
3214 		cache = NULL;
3215 	spin_unlock(&root->fs_info->block_group_cache_lock);
3216 	return cache;
3217 }
3218 
3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 			    struct btrfs_trans_handle *trans,
3221 			    struct btrfs_path *path)
3222 {
3223 	struct btrfs_root *root = block_group->fs_info->tree_root;
3224 	struct inode *inode = NULL;
3225 	u64 alloc_hint = 0;
3226 	int dcs = BTRFS_DC_ERROR;
3227 	u64 num_pages = 0;
3228 	int retries = 0;
3229 	int ret = 0;
3230 
3231 	/*
3232 	 * If this block group is smaller than 100 megs don't bother caching the
3233 	 * block group.
3234 	 */
3235 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 		spin_lock(&block_group->lock);
3237 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 		spin_unlock(&block_group->lock);
3239 		return 0;
3240 	}
3241 
3242 	if (trans->aborted)
3243 		return 0;
3244 again:
3245 	inode = lookup_free_space_inode(root, block_group, path);
3246 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 		ret = PTR_ERR(inode);
3248 		btrfs_release_path(path);
3249 		goto out;
3250 	}
3251 
3252 	if (IS_ERR(inode)) {
3253 		BUG_ON(retries);
3254 		retries++;
3255 
3256 		if (block_group->ro)
3257 			goto out_free;
3258 
3259 		ret = create_free_space_inode(root, trans, block_group, path);
3260 		if (ret)
3261 			goto out_free;
3262 		goto again;
3263 	}
3264 
3265 	/* We've already setup this transaction, go ahead and exit */
3266 	if (block_group->cache_generation == trans->transid &&
3267 	    i_size_read(inode)) {
3268 		dcs = BTRFS_DC_SETUP;
3269 		goto out_put;
3270 	}
3271 
3272 	/*
3273 	 * We want to set the generation to 0, that way if anything goes wrong
3274 	 * from here on out we know not to trust this cache when we load up next
3275 	 * time.
3276 	 */
3277 	BTRFS_I(inode)->generation = 0;
3278 	ret = btrfs_update_inode(trans, root, inode);
3279 	if (ret) {
3280 		/*
3281 		 * So theoretically we could recover from this, simply set the
3282 		 * super cache generation to 0 so we know to invalidate the
3283 		 * cache, but then we'd have to keep track of the block groups
3284 		 * that fail this way so we know we _have_ to reset this cache
3285 		 * before the next commit or risk reading stale cache.  So to
3286 		 * limit our exposure to horrible edge cases lets just abort the
3287 		 * transaction, this only happens in really bad situations
3288 		 * anyway.
3289 		 */
3290 		btrfs_abort_transaction(trans, root, ret);
3291 		goto out_put;
3292 	}
3293 	WARN_ON(ret);
3294 
3295 	if (i_size_read(inode) > 0) {
3296 		ret = btrfs_check_trunc_cache_free_space(root,
3297 					&root->fs_info->global_block_rsv);
3298 		if (ret)
3299 			goto out_put;
3300 
3301 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3302 		if (ret)
3303 			goto out_put;
3304 	}
3305 
3306 	spin_lock(&block_group->lock);
3307 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3308 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3309 	    block_group->delalloc_bytes) {
3310 		/*
3311 		 * don't bother trying to write stuff out _if_
3312 		 * a) we're not cached,
3313 		 * b) we're with nospace_cache mount option.
3314 		 */
3315 		dcs = BTRFS_DC_WRITTEN;
3316 		spin_unlock(&block_group->lock);
3317 		goto out_put;
3318 	}
3319 	spin_unlock(&block_group->lock);
3320 
3321 	/*
3322 	 * Try to preallocate enough space based on how big the block group is.
3323 	 * Keep in mind this has to include any pinned space which could end up
3324 	 * taking up quite a bit since it's not folded into the other space
3325 	 * cache.
3326 	 */
3327 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3328 	if (!num_pages)
3329 		num_pages = 1;
3330 
3331 	num_pages *= 16;
3332 	num_pages *= PAGE_CACHE_SIZE;
3333 
3334 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3335 	if (ret)
3336 		goto out_put;
3337 
3338 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3339 					      num_pages, num_pages,
3340 					      &alloc_hint);
3341 	if (!ret)
3342 		dcs = BTRFS_DC_SETUP;
3343 	btrfs_free_reserved_data_space(inode, num_pages);
3344 
3345 out_put:
3346 	iput(inode);
3347 out_free:
3348 	btrfs_release_path(path);
3349 out:
3350 	spin_lock(&block_group->lock);
3351 	if (!ret && dcs == BTRFS_DC_SETUP)
3352 		block_group->cache_generation = trans->transid;
3353 	block_group->disk_cache_state = dcs;
3354 	spin_unlock(&block_group->lock);
3355 
3356 	return ret;
3357 }
3358 
3359 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3360 			    struct btrfs_root *root)
3361 {
3362 	struct btrfs_block_group_cache *cache, *tmp;
3363 	struct btrfs_transaction *cur_trans = trans->transaction;
3364 	struct btrfs_path *path;
3365 
3366 	if (list_empty(&cur_trans->dirty_bgs) ||
3367 	    !btrfs_test_opt(root, SPACE_CACHE))
3368 		return 0;
3369 
3370 	path = btrfs_alloc_path();
3371 	if (!path)
3372 		return -ENOMEM;
3373 
3374 	/* Could add new block groups, use _safe just in case */
3375 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3376 				 dirty_list) {
3377 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3378 			cache_save_setup(cache, trans, path);
3379 	}
3380 
3381 	btrfs_free_path(path);
3382 	return 0;
3383 }
3384 
3385 /*
3386  * transaction commit does final block group cache writeback during a
3387  * critical section where nothing is allowed to change the FS.  This is
3388  * required in order for the cache to actually match the block group,
3389  * but can introduce a lot of latency into the commit.
3390  *
3391  * So, btrfs_start_dirty_block_groups is here to kick off block group
3392  * cache IO.  There's a chance we'll have to redo some of it if the
3393  * block group changes again during the commit, but it greatly reduces
3394  * the commit latency by getting rid of the easy block groups while
3395  * we're still allowing others to join the commit.
3396  */
3397 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3398 				   struct btrfs_root *root)
3399 {
3400 	struct btrfs_block_group_cache *cache;
3401 	struct btrfs_transaction *cur_trans = trans->transaction;
3402 	int ret = 0;
3403 	int should_put;
3404 	struct btrfs_path *path = NULL;
3405 	LIST_HEAD(dirty);
3406 	struct list_head *io = &cur_trans->io_bgs;
3407 	int num_started = 0;
3408 	int loops = 0;
3409 
3410 	spin_lock(&cur_trans->dirty_bgs_lock);
3411 	if (!list_empty(&cur_trans->dirty_bgs)) {
3412 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 	}
3414 	spin_unlock(&cur_trans->dirty_bgs_lock);
3415 
3416 again:
3417 	if (list_empty(&dirty)) {
3418 		btrfs_free_path(path);
3419 		return 0;
3420 	}
3421 
3422 	/*
3423 	 * make sure all the block groups on our dirty list actually
3424 	 * exist
3425 	 */
3426 	btrfs_create_pending_block_groups(trans, root);
3427 
3428 	if (!path) {
3429 		path = btrfs_alloc_path();
3430 		if (!path)
3431 			return -ENOMEM;
3432 	}
3433 
3434 	while (!list_empty(&dirty)) {
3435 		cache = list_first_entry(&dirty,
3436 					 struct btrfs_block_group_cache,
3437 					 dirty_list);
3438 
3439 		/*
3440 		 * cache_write_mutex is here only to save us from balance
3441 		 * deleting this block group while we are writing out the
3442 		 * cache
3443 		 */
3444 		mutex_lock(&trans->transaction->cache_write_mutex);
3445 
3446 		/*
3447 		 * this can happen if something re-dirties a block
3448 		 * group that is already under IO.  Just wait for it to
3449 		 * finish and then do it all again
3450 		 */
3451 		if (!list_empty(&cache->io_list)) {
3452 			list_del_init(&cache->io_list);
3453 			btrfs_wait_cache_io(root, trans, cache,
3454 					    &cache->io_ctl, path,
3455 					    cache->key.objectid);
3456 			btrfs_put_block_group(cache);
3457 		}
3458 
3459 
3460 		/*
3461 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3462 		 * if it should update the cache_state.  Don't delete
3463 		 * until after we wait.
3464 		 *
3465 		 * Since we're not running in the commit critical section
3466 		 * we need the dirty_bgs_lock to protect from update_block_group
3467 		 */
3468 		spin_lock(&cur_trans->dirty_bgs_lock);
3469 		list_del_init(&cache->dirty_list);
3470 		spin_unlock(&cur_trans->dirty_bgs_lock);
3471 
3472 		should_put = 1;
3473 
3474 		cache_save_setup(cache, trans, path);
3475 
3476 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3477 			cache->io_ctl.inode = NULL;
3478 			ret = btrfs_write_out_cache(root, trans, cache, path);
3479 			if (ret == 0 && cache->io_ctl.inode) {
3480 				num_started++;
3481 				should_put = 0;
3482 
3483 				/*
3484 				 * the cache_write_mutex is protecting
3485 				 * the io_list
3486 				 */
3487 				list_add_tail(&cache->io_list, io);
3488 			} else {
3489 				/*
3490 				 * if we failed to write the cache, the
3491 				 * generation will be bad and life goes on
3492 				 */
3493 				ret = 0;
3494 			}
3495 		}
3496 		if (!ret)
3497 			ret = write_one_cache_group(trans, root, path, cache);
3498 		mutex_unlock(&trans->transaction->cache_write_mutex);
3499 
3500 		/* if its not on the io list, we need to put the block group */
3501 		if (should_put)
3502 			btrfs_put_block_group(cache);
3503 
3504 		if (ret)
3505 			break;
3506 	}
3507 
3508 	/*
3509 	 * go through delayed refs for all the stuff we've just kicked off
3510 	 * and then loop back (just once)
3511 	 */
3512 	ret = btrfs_run_delayed_refs(trans, root, 0);
3513 	if (!ret && loops == 0) {
3514 		loops++;
3515 		spin_lock(&cur_trans->dirty_bgs_lock);
3516 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3517 		spin_unlock(&cur_trans->dirty_bgs_lock);
3518 		goto again;
3519 	}
3520 
3521 	btrfs_free_path(path);
3522 	return ret;
3523 }
3524 
3525 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3526 				   struct btrfs_root *root)
3527 {
3528 	struct btrfs_block_group_cache *cache;
3529 	struct btrfs_transaction *cur_trans = trans->transaction;
3530 	int ret = 0;
3531 	int should_put;
3532 	struct btrfs_path *path;
3533 	struct list_head *io = &cur_trans->io_bgs;
3534 	int num_started = 0;
3535 
3536 	path = btrfs_alloc_path();
3537 	if (!path)
3538 		return -ENOMEM;
3539 
3540 	/*
3541 	 * We don't need the lock here since we are protected by the transaction
3542 	 * commit.  We want to do the cache_save_setup first and then run the
3543 	 * delayed refs to make sure we have the best chance at doing this all
3544 	 * in one shot.
3545 	 */
3546 	while (!list_empty(&cur_trans->dirty_bgs)) {
3547 		cache = list_first_entry(&cur_trans->dirty_bgs,
3548 					 struct btrfs_block_group_cache,
3549 					 dirty_list);
3550 
3551 		/*
3552 		 * this can happen if cache_save_setup re-dirties a block
3553 		 * group that is already under IO.  Just wait for it to
3554 		 * finish and then do it all again
3555 		 */
3556 		if (!list_empty(&cache->io_list)) {
3557 			list_del_init(&cache->io_list);
3558 			btrfs_wait_cache_io(root, trans, cache,
3559 					    &cache->io_ctl, path,
3560 					    cache->key.objectid);
3561 			btrfs_put_block_group(cache);
3562 		}
3563 
3564 		/*
3565 		 * don't remove from the dirty list until after we've waited
3566 		 * on any pending IO
3567 		 */
3568 		list_del_init(&cache->dirty_list);
3569 		should_put = 1;
3570 
3571 		cache_save_setup(cache, trans, path);
3572 
3573 		if (!ret)
3574 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3575 
3576 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577 			cache->io_ctl.inode = NULL;
3578 			ret = btrfs_write_out_cache(root, trans, cache, path);
3579 			if (ret == 0 && cache->io_ctl.inode) {
3580 				num_started++;
3581 				should_put = 0;
3582 				list_add_tail(&cache->io_list, io);
3583 			} else {
3584 				/*
3585 				 * if we failed to write the cache, the
3586 				 * generation will be bad and life goes on
3587 				 */
3588 				ret = 0;
3589 			}
3590 		}
3591 		if (!ret)
3592 			ret = write_one_cache_group(trans, root, path, cache);
3593 
3594 		/* if its not on the io list, we need to put the block group */
3595 		if (should_put)
3596 			btrfs_put_block_group(cache);
3597 	}
3598 
3599 	while (!list_empty(io)) {
3600 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3601 					 io_list);
3602 		list_del_init(&cache->io_list);
3603 		btrfs_wait_cache_io(root, trans, cache,
3604 				    &cache->io_ctl, path, cache->key.objectid);
3605 		btrfs_put_block_group(cache);
3606 	}
3607 
3608 	btrfs_free_path(path);
3609 	return ret;
3610 }
3611 
3612 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3613 {
3614 	struct btrfs_block_group_cache *block_group;
3615 	int readonly = 0;
3616 
3617 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3618 	if (!block_group || block_group->ro)
3619 		readonly = 1;
3620 	if (block_group)
3621 		btrfs_put_block_group(block_group);
3622 	return readonly;
3623 }
3624 
3625 static const char *alloc_name(u64 flags)
3626 {
3627 	switch (flags) {
3628 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3629 		return "mixed";
3630 	case BTRFS_BLOCK_GROUP_METADATA:
3631 		return "metadata";
3632 	case BTRFS_BLOCK_GROUP_DATA:
3633 		return "data";
3634 	case BTRFS_BLOCK_GROUP_SYSTEM:
3635 		return "system";
3636 	default:
3637 		WARN_ON(1);
3638 		return "invalid-combination";
3639 	};
3640 }
3641 
3642 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3643 			     u64 total_bytes, u64 bytes_used,
3644 			     struct btrfs_space_info **space_info)
3645 {
3646 	struct btrfs_space_info *found;
3647 	int i;
3648 	int factor;
3649 	int ret;
3650 
3651 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3652 		     BTRFS_BLOCK_GROUP_RAID10))
3653 		factor = 2;
3654 	else
3655 		factor = 1;
3656 
3657 	found = __find_space_info(info, flags);
3658 	if (found) {
3659 		spin_lock(&found->lock);
3660 		found->total_bytes += total_bytes;
3661 		found->disk_total += total_bytes * factor;
3662 		found->bytes_used += bytes_used;
3663 		found->disk_used += bytes_used * factor;
3664 		found->full = 0;
3665 		spin_unlock(&found->lock);
3666 		*space_info = found;
3667 		return 0;
3668 	}
3669 	found = kzalloc(sizeof(*found), GFP_NOFS);
3670 	if (!found)
3671 		return -ENOMEM;
3672 
3673 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3674 	if (ret) {
3675 		kfree(found);
3676 		return ret;
3677 	}
3678 
3679 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3680 		INIT_LIST_HEAD(&found->block_groups[i]);
3681 	init_rwsem(&found->groups_sem);
3682 	spin_lock_init(&found->lock);
3683 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3684 	found->total_bytes = total_bytes;
3685 	found->disk_total = total_bytes * factor;
3686 	found->bytes_used = bytes_used;
3687 	found->disk_used = bytes_used * factor;
3688 	found->bytes_pinned = 0;
3689 	found->bytes_reserved = 0;
3690 	found->bytes_readonly = 0;
3691 	found->bytes_may_use = 0;
3692 	found->full = 0;
3693 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3694 	found->chunk_alloc = 0;
3695 	found->flush = 0;
3696 	init_waitqueue_head(&found->wait);
3697 	INIT_LIST_HEAD(&found->ro_bgs);
3698 
3699 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3700 				    info->space_info_kobj, "%s",
3701 				    alloc_name(found->flags));
3702 	if (ret) {
3703 		kfree(found);
3704 		return ret;
3705 	}
3706 
3707 	*space_info = found;
3708 	list_add_rcu(&found->list, &info->space_info);
3709 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 		info->data_sinfo = found;
3711 
3712 	return ret;
3713 }
3714 
3715 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3716 {
3717 	u64 extra_flags = chunk_to_extended(flags) &
3718 				BTRFS_EXTENDED_PROFILE_MASK;
3719 
3720 	write_seqlock(&fs_info->profiles_lock);
3721 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3722 		fs_info->avail_data_alloc_bits |= extra_flags;
3723 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3724 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3725 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3726 		fs_info->avail_system_alloc_bits |= extra_flags;
3727 	write_sequnlock(&fs_info->profiles_lock);
3728 }
3729 
3730 /*
3731  * returns target flags in extended format or 0 if restripe for this
3732  * chunk_type is not in progress
3733  *
3734  * should be called with either volume_mutex or balance_lock held
3735  */
3736 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3737 {
3738 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3739 	u64 target = 0;
3740 
3741 	if (!bctl)
3742 		return 0;
3743 
3744 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3745 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3746 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3747 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3748 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3749 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3750 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3751 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3753 	}
3754 
3755 	return target;
3756 }
3757 
3758 /*
3759  * @flags: available profiles in extended format (see ctree.h)
3760  *
3761  * Returns reduced profile in chunk format.  If profile changing is in
3762  * progress (either running or paused) picks the target profile (if it's
3763  * already available), otherwise falls back to plain reducing.
3764  */
3765 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3766 {
3767 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3768 	u64 target;
3769 	u64 tmp;
3770 
3771 	/*
3772 	 * see if restripe for this chunk_type is in progress, if so
3773 	 * try to reduce to the target profile
3774 	 */
3775 	spin_lock(&root->fs_info->balance_lock);
3776 	target = get_restripe_target(root->fs_info, flags);
3777 	if (target) {
3778 		/* pick target profile only if it's already available */
3779 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3780 			spin_unlock(&root->fs_info->balance_lock);
3781 			return extended_to_chunk(target);
3782 		}
3783 	}
3784 	spin_unlock(&root->fs_info->balance_lock);
3785 
3786 	/* First, mask out the RAID levels which aren't possible */
3787 	if (num_devices == 1)
3788 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3789 			   BTRFS_BLOCK_GROUP_RAID5);
3790 	if (num_devices < 3)
3791 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3792 	if (num_devices < 4)
3793 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3794 
3795 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3796 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3797 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3798 	flags &= ~tmp;
3799 
3800 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3801 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3802 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3803 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3804 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3805 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3806 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3807 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3808 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3809 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3810 
3811 	return extended_to_chunk(flags | tmp);
3812 }
3813 
3814 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3815 {
3816 	unsigned seq;
3817 	u64 flags;
3818 
3819 	do {
3820 		flags = orig_flags;
3821 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3822 
3823 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3824 			flags |= root->fs_info->avail_data_alloc_bits;
3825 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3826 			flags |= root->fs_info->avail_system_alloc_bits;
3827 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3828 			flags |= root->fs_info->avail_metadata_alloc_bits;
3829 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3830 
3831 	return btrfs_reduce_alloc_profile(root, flags);
3832 }
3833 
3834 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3835 {
3836 	u64 flags;
3837 	u64 ret;
3838 
3839 	if (data)
3840 		flags = BTRFS_BLOCK_GROUP_DATA;
3841 	else if (root == root->fs_info->chunk_root)
3842 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3843 	else
3844 		flags = BTRFS_BLOCK_GROUP_METADATA;
3845 
3846 	ret = get_alloc_profile(root, flags);
3847 	return ret;
3848 }
3849 
3850 /*
3851  * This will check the space that the inode allocates from to make sure we have
3852  * enough space for bytes.
3853  */
3854 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3855 {
3856 	struct btrfs_space_info *data_sinfo;
3857 	struct btrfs_root *root = BTRFS_I(inode)->root;
3858 	struct btrfs_fs_info *fs_info = root->fs_info;
3859 	u64 used;
3860 	int ret = 0;
3861 	int need_commit = 2;
3862 	int have_pinned_space;
3863 
3864 	/* make sure bytes are sectorsize aligned */
3865 	bytes = ALIGN(bytes, root->sectorsize);
3866 
3867 	if (btrfs_is_free_space_inode(inode)) {
3868 		need_commit = 0;
3869 		ASSERT(current->journal_info);
3870 	}
3871 
3872 	data_sinfo = fs_info->data_sinfo;
3873 	if (!data_sinfo)
3874 		goto alloc;
3875 
3876 again:
3877 	/* make sure we have enough space to handle the data first */
3878 	spin_lock(&data_sinfo->lock);
3879 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3880 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3881 		data_sinfo->bytes_may_use;
3882 
3883 	if (used + bytes > data_sinfo->total_bytes) {
3884 		struct btrfs_trans_handle *trans;
3885 
3886 		/*
3887 		 * if we don't have enough free bytes in this space then we need
3888 		 * to alloc a new chunk.
3889 		 */
3890 		if (!data_sinfo->full) {
3891 			u64 alloc_target;
3892 
3893 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3894 			spin_unlock(&data_sinfo->lock);
3895 alloc:
3896 			alloc_target = btrfs_get_alloc_profile(root, 1);
3897 			/*
3898 			 * It is ugly that we don't call nolock join
3899 			 * transaction for the free space inode case here.
3900 			 * But it is safe because we only do the data space
3901 			 * reservation for the free space cache in the
3902 			 * transaction context, the common join transaction
3903 			 * just increase the counter of the current transaction
3904 			 * handler, doesn't try to acquire the trans_lock of
3905 			 * the fs.
3906 			 */
3907 			trans = btrfs_join_transaction(root);
3908 			if (IS_ERR(trans))
3909 				return PTR_ERR(trans);
3910 
3911 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3912 					     alloc_target,
3913 					     CHUNK_ALLOC_NO_FORCE);
3914 			btrfs_end_transaction(trans, root);
3915 			if (ret < 0) {
3916 				if (ret != -ENOSPC)
3917 					return ret;
3918 				else {
3919 					have_pinned_space = 1;
3920 					goto commit_trans;
3921 				}
3922 			}
3923 
3924 			if (!data_sinfo)
3925 				data_sinfo = fs_info->data_sinfo;
3926 
3927 			goto again;
3928 		}
3929 
3930 		/*
3931 		 * If we don't have enough pinned space to deal with this
3932 		 * allocation, and no removed chunk in current transaction,
3933 		 * don't bother committing the transaction.
3934 		 */
3935 		have_pinned_space = percpu_counter_compare(
3936 			&data_sinfo->total_bytes_pinned,
3937 			used + bytes - data_sinfo->total_bytes);
3938 		spin_unlock(&data_sinfo->lock);
3939 
3940 		/* commit the current transaction and try again */
3941 commit_trans:
3942 		if (need_commit &&
3943 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3944 			need_commit--;
3945 
3946 			trans = btrfs_join_transaction(root);
3947 			if (IS_ERR(trans))
3948 				return PTR_ERR(trans);
3949 			if (have_pinned_space >= 0 ||
3950 			    trans->transaction->have_free_bgs ||
3951 			    need_commit > 0) {
3952 				ret = btrfs_commit_transaction(trans, root);
3953 				if (ret)
3954 					return ret;
3955 				/*
3956 				 * make sure that all running delayed iput are
3957 				 * done
3958 				 */
3959 				down_write(&root->fs_info->delayed_iput_sem);
3960 				up_write(&root->fs_info->delayed_iput_sem);
3961 				goto again;
3962 			} else {
3963 				btrfs_end_transaction(trans, root);
3964 			}
3965 		}
3966 
3967 		trace_btrfs_space_reservation(root->fs_info,
3968 					      "space_info:enospc",
3969 					      data_sinfo->flags, bytes, 1);
3970 		return -ENOSPC;
3971 	}
3972 	ret = btrfs_qgroup_reserve(root, write_bytes);
3973 	if (ret)
3974 		goto out;
3975 	data_sinfo->bytes_may_use += bytes;
3976 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3977 				      data_sinfo->flags, bytes, 1);
3978 out:
3979 	spin_unlock(&data_sinfo->lock);
3980 
3981 	return ret;
3982 }
3983 
3984 /*
3985  * Called if we need to clear a data reservation for this inode.
3986  */
3987 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3988 {
3989 	struct btrfs_root *root = BTRFS_I(inode)->root;
3990 	struct btrfs_space_info *data_sinfo;
3991 
3992 	/* make sure bytes are sectorsize aligned */
3993 	bytes = ALIGN(bytes, root->sectorsize);
3994 
3995 	data_sinfo = root->fs_info->data_sinfo;
3996 	spin_lock(&data_sinfo->lock);
3997 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3998 	data_sinfo->bytes_may_use -= bytes;
3999 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4000 				      data_sinfo->flags, bytes, 0);
4001 	spin_unlock(&data_sinfo->lock);
4002 }
4003 
4004 static void force_metadata_allocation(struct btrfs_fs_info *info)
4005 {
4006 	struct list_head *head = &info->space_info;
4007 	struct btrfs_space_info *found;
4008 
4009 	rcu_read_lock();
4010 	list_for_each_entry_rcu(found, head, list) {
4011 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4012 			found->force_alloc = CHUNK_ALLOC_FORCE;
4013 	}
4014 	rcu_read_unlock();
4015 }
4016 
4017 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4018 {
4019 	return (global->size << 1);
4020 }
4021 
4022 static int should_alloc_chunk(struct btrfs_root *root,
4023 			      struct btrfs_space_info *sinfo, int force)
4024 {
4025 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4026 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4027 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4028 	u64 thresh;
4029 
4030 	if (force == CHUNK_ALLOC_FORCE)
4031 		return 1;
4032 
4033 	/*
4034 	 * We need to take into account the global rsv because for all intents
4035 	 * and purposes it's used space.  Don't worry about locking the
4036 	 * global_rsv, it doesn't change except when the transaction commits.
4037 	 */
4038 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4039 		num_allocated += calc_global_rsv_need_space(global_rsv);
4040 
4041 	/*
4042 	 * in limited mode, we want to have some free space up to
4043 	 * about 1% of the FS size.
4044 	 */
4045 	if (force == CHUNK_ALLOC_LIMITED) {
4046 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4047 		thresh = max_t(u64, 64 * 1024 * 1024,
4048 			       div_factor_fine(thresh, 1));
4049 
4050 		if (num_bytes - num_allocated < thresh)
4051 			return 1;
4052 	}
4053 
4054 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4055 		return 0;
4056 	return 1;
4057 }
4058 
4059 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4060 {
4061 	u64 num_dev;
4062 
4063 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4064 		    BTRFS_BLOCK_GROUP_RAID0 |
4065 		    BTRFS_BLOCK_GROUP_RAID5 |
4066 		    BTRFS_BLOCK_GROUP_RAID6))
4067 		num_dev = root->fs_info->fs_devices->rw_devices;
4068 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4069 		num_dev = 2;
4070 	else
4071 		num_dev = 1;	/* DUP or single */
4072 
4073 	/* metadata for updaing devices and chunk tree */
4074 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4075 }
4076 
4077 static void check_system_chunk(struct btrfs_trans_handle *trans,
4078 			       struct btrfs_root *root, u64 type)
4079 {
4080 	struct btrfs_space_info *info;
4081 	u64 left;
4082 	u64 thresh;
4083 
4084 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4085 	spin_lock(&info->lock);
4086 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4087 		info->bytes_reserved - info->bytes_readonly;
4088 	spin_unlock(&info->lock);
4089 
4090 	thresh = get_system_chunk_thresh(root, type);
4091 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4092 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4093 			left, thresh, type);
4094 		dump_space_info(info, 0, 0);
4095 	}
4096 
4097 	if (left < thresh) {
4098 		u64 flags;
4099 
4100 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4101 		btrfs_alloc_chunk(trans, root, flags);
4102 	}
4103 }
4104 
4105 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4106 			  struct btrfs_root *extent_root, u64 flags, int force)
4107 {
4108 	struct btrfs_space_info *space_info;
4109 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4110 	int wait_for_alloc = 0;
4111 	int ret = 0;
4112 
4113 	/* Don't re-enter if we're already allocating a chunk */
4114 	if (trans->allocating_chunk)
4115 		return -ENOSPC;
4116 
4117 	space_info = __find_space_info(extent_root->fs_info, flags);
4118 	if (!space_info) {
4119 		ret = update_space_info(extent_root->fs_info, flags,
4120 					0, 0, &space_info);
4121 		BUG_ON(ret); /* -ENOMEM */
4122 	}
4123 	BUG_ON(!space_info); /* Logic error */
4124 
4125 again:
4126 	spin_lock(&space_info->lock);
4127 	if (force < space_info->force_alloc)
4128 		force = space_info->force_alloc;
4129 	if (space_info->full) {
4130 		if (should_alloc_chunk(extent_root, space_info, force))
4131 			ret = -ENOSPC;
4132 		else
4133 			ret = 0;
4134 		spin_unlock(&space_info->lock);
4135 		return ret;
4136 	}
4137 
4138 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4139 		spin_unlock(&space_info->lock);
4140 		return 0;
4141 	} else if (space_info->chunk_alloc) {
4142 		wait_for_alloc = 1;
4143 	} else {
4144 		space_info->chunk_alloc = 1;
4145 	}
4146 
4147 	spin_unlock(&space_info->lock);
4148 
4149 	mutex_lock(&fs_info->chunk_mutex);
4150 
4151 	/*
4152 	 * The chunk_mutex is held throughout the entirety of a chunk
4153 	 * allocation, so once we've acquired the chunk_mutex we know that the
4154 	 * other guy is done and we need to recheck and see if we should
4155 	 * allocate.
4156 	 */
4157 	if (wait_for_alloc) {
4158 		mutex_unlock(&fs_info->chunk_mutex);
4159 		wait_for_alloc = 0;
4160 		goto again;
4161 	}
4162 
4163 	trans->allocating_chunk = true;
4164 
4165 	/*
4166 	 * If we have mixed data/metadata chunks we want to make sure we keep
4167 	 * allocating mixed chunks instead of individual chunks.
4168 	 */
4169 	if (btrfs_mixed_space_info(space_info))
4170 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4171 
4172 	/*
4173 	 * if we're doing a data chunk, go ahead and make sure that
4174 	 * we keep a reasonable number of metadata chunks allocated in the
4175 	 * FS as well.
4176 	 */
4177 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4178 		fs_info->data_chunk_allocations++;
4179 		if (!(fs_info->data_chunk_allocations %
4180 		      fs_info->metadata_ratio))
4181 			force_metadata_allocation(fs_info);
4182 	}
4183 
4184 	/*
4185 	 * Check if we have enough space in SYSTEM chunk because we may need
4186 	 * to update devices.
4187 	 */
4188 	check_system_chunk(trans, extent_root, flags);
4189 
4190 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4191 	trans->allocating_chunk = false;
4192 
4193 	spin_lock(&space_info->lock);
4194 	if (ret < 0 && ret != -ENOSPC)
4195 		goto out;
4196 	if (ret)
4197 		space_info->full = 1;
4198 	else
4199 		ret = 1;
4200 
4201 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4202 out:
4203 	space_info->chunk_alloc = 0;
4204 	spin_unlock(&space_info->lock);
4205 	mutex_unlock(&fs_info->chunk_mutex);
4206 	return ret;
4207 }
4208 
4209 static int can_overcommit(struct btrfs_root *root,
4210 			  struct btrfs_space_info *space_info, u64 bytes,
4211 			  enum btrfs_reserve_flush_enum flush)
4212 {
4213 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4214 	u64 profile = btrfs_get_alloc_profile(root, 0);
4215 	u64 space_size;
4216 	u64 avail;
4217 	u64 used;
4218 
4219 	used = space_info->bytes_used + space_info->bytes_reserved +
4220 		space_info->bytes_pinned + space_info->bytes_readonly;
4221 
4222 	/*
4223 	 * We only want to allow over committing if we have lots of actual space
4224 	 * free, but if we don't have enough space to handle the global reserve
4225 	 * space then we could end up having a real enospc problem when trying
4226 	 * to allocate a chunk or some other such important allocation.
4227 	 */
4228 	spin_lock(&global_rsv->lock);
4229 	space_size = calc_global_rsv_need_space(global_rsv);
4230 	spin_unlock(&global_rsv->lock);
4231 	if (used + space_size >= space_info->total_bytes)
4232 		return 0;
4233 
4234 	used += space_info->bytes_may_use;
4235 
4236 	spin_lock(&root->fs_info->free_chunk_lock);
4237 	avail = root->fs_info->free_chunk_space;
4238 	spin_unlock(&root->fs_info->free_chunk_lock);
4239 
4240 	/*
4241 	 * If we have dup, raid1 or raid10 then only half of the free
4242 	 * space is actually useable.  For raid56, the space info used
4243 	 * doesn't include the parity drive, so we don't have to
4244 	 * change the math
4245 	 */
4246 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4247 		       BTRFS_BLOCK_GROUP_RAID1 |
4248 		       BTRFS_BLOCK_GROUP_RAID10))
4249 		avail >>= 1;
4250 
4251 	/*
4252 	 * If we aren't flushing all things, let us overcommit up to
4253 	 * 1/2th of the space. If we can flush, don't let us overcommit
4254 	 * too much, let it overcommit up to 1/8 of the space.
4255 	 */
4256 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4257 		avail >>= 3;
4258 	else
4259 		avail >>= 1;
4260 
4261 	if (used + bytes < space_info->total_bytes + avail)
4262 		return 1;
4263 	return 0;
4264 }
4265 
4266 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4267 					 unsigned long nr_pages, int nr_items)
4268 {
4269 	struct super_block *sb = root->fs_info->sb;
4270 
4271 	if (down_read_trylock(&sb->s_umount)) {
4272 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4273 		up_read(&sb->s_umount);
4274 	} else {
4275 		/*
4276 		 * We needn't worry the filesystem going from r/w to r/o though
4277 		 * we don't acquire ->s_umount mutex, because the filesystem
4278 		 * should guarantee the delalloc inodes list be empty after
4279 		 * the filesystem is readonly(all dirty pages are written to
4280 		 * the disk).
4281 		 */
4282 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4283 		if (!current->journal_info)
4284 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4285 	}
4286 }
4287 
4288 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4289 {
4290 	u64 bytes;
4291 	int nr;
4292 
4293 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4294 	nr = (int)div64_u64(to_reclaim, bytes);
4295 	if (!nr)
4296 		nr = 1;
4297 	return nr;
4298 }
4299 
4300 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4301 
4302 /*
4303  * shrink metadata reservation for delalloc
4304  */
4305 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4306 			    bool wait_ordered)
4307 {
4308 	struct btrfs_block_rsv *block_rsv;
4309 	struct btrfs_space_info *space_info;
4310 	struct btrfs_trans_handle *trans;
4311 	u64 delalloc_bytes;
4312 	u64 max_reclaim;
4313 	long time_left;
4314 	unsigned long nr_pages;
4315 	int loops;
4316 	int items;
4317 	enum btrfs_reserve_flush_enum flush;
4318 
4319 	/* Calc the number of the pages we need flush for space reservation */
4320 	items = calc_reclaim_items_nr(root, to_reclaim);
4321 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4322 
4323 	trans = (struct btrfs_trans_handle *)current->journal_info;
4324 	block_rsv = &root->fs_info->delalloc_block_rsv;
4325 	space_info = block_rsv->space_info;
4326 
4327 	delalloc_bytes = percpu_counter_sum_positive(
4328 						&root->fs_info->delalloc_bytes);
4329 	if (delalloc_bytes == 0) {
4330 		if (trans)
4331 			return;
4332 		if (wait_ordered)
4333 			btrfs_wait_ordered_roots(root->fs_info, items);
4334 		return;
4335 	}
4336 
4337 	loops = 0;
4338 	while (delalloc_bytes && loops < 3) {
4339 		max_reclaim = min(delalloc_bytes, to_reclaim);
4340 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4341 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4342 		/*
4343 		 * We need to wait for the async pages to actually start before
4344 		 * we do anything.
4345 		 */
4346 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4347 		if (!max_reclaim)
4348 			goto skip_async;
4349 
4350 		if (max_reclaim <= nr_pages)
4351 			max_reclaim = 0;
4352 		else
4353 			max_reclaim -= nr_pages;
4354 
4355 		wait_event(root->fs_info->async_submit_wait,
4356 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4357 			   (int)max_reclaim);
4358 skip_async:
4359 		if (!trans)
4360 			flush = BTRFS_RESERVE_FLUSH_ALL;
4361 		else
4362 			flush = BTRFS_RESERVE_NO_FLUSH;
4363 		spin_lock(&space_info->lock);
4364 		if (can_overcommit(root, space_info, orig, flush)) {
4365 			spin_unlock(&space_info->lock);
4366 			break;
4367 		}
4368 		spin_unlock(&space_info->lock);
4369 
4370 		loops++;
4371 		if (wait_ordered && !trans) {
4372 			btrfs_wait_ordered_roots(root->fs_info, items);
4373 		} else {
4374 			time_left = schedule_timeout_killable(1);
4375 			if (time_left)
4376 				break;
4377 		}
4378 		delalloc_bytes = percpu_counter_sum_positive(
4379 						&root->fs_info->delalloc_bytes);
4380 	}
4381 }
4382 
4383 /**
4384  * maybe_commit_transaction - possibly commit the transaction if its ok to
4385  * @root - the root we're allocating for
4386  * @bytes - the number of bytes we want to reserve
4387  * @force - force the commit
4388  *
4389  * This will check to make sure that committing the transaction will actually
4390  * get us somewhere and then commit the transaction if it does.  Otherwise it
4391  * will return -ENOSPC.
4392  */
4393 static int may_commit_transaction(struct btrfs_root *root,
4394 				  struct btrfs_space_info *space_info,
4395 				  u64 bytes, int force)
4396 {
4397 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4398 	struct btrfs_trans_handle *trans;
4399 
4400 	trans = (struct btrfs_trans_handle *)current->journal_info;
4401 	if (trans)
4402 		return -EAGAIN;
4403 
4404 	if (force)
4405 		goto commit;
4406 
4407 	/* See if there is enough pinned space to make this reservation */
4408 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4409 				   bytes) >= 0)
4410 		goto commit;
4411 
4412 	/*
4413 	 * See if there is some space in the delayed insertion reservation for
4414 	 * this reservation.
4415 	 */
4416 	if (space_info != delayed_rsv->space_info)
4417 		return -ENOSPC;
4418 
4419 	spin_lock(&delayed_rsv->lock);
4420 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4421 				   bytes - delayed_rsv->size) >= 0) {
4422 		spin_unlock(&delayed_rsv->lock);
4423 		return -ENOSPC;
4424 	}
4425 	spin_unlock(&delayed_rsv->lock);
4426 
4427 commit:
4428 	trans = btrfs_join_transaction(root);
4429 	if (IS_ERR(trans))
4430 		return -ENOSPC;
4431 
4432 	return btrfs_commit_transaction(trans, root);
4433 }
4434 
4435 enum flush_state {
4436 	FLUSH_DELAYED_ITEMS_NR	=	1,
4437 	FLUSH_DELAYED_ITEMS	=	2,
4438 	FLUSH_DELALLOC		=	3,
4439 	FLUSH_DELALLOC_WAIT	=	4,
4440 	ALLOC_CHUNK		=	5,
4441 	COMMIT_TRANS		=	6,
4442 };
4443 
4444 static int flush_space(struct btrfs_root *root,
4445 		       struct btrfs_space_info *space_info, u64 num_bytes,
4446 		       u64 orig_bytes, int state)
4447 {
4448 	struct btrfs_trans_handle *trans;
4449 	int nr;
4450 	int ret = 0;
4451 
4452 	switch (state) {
4453 	case FLUSH_DELAYED_ITEMS_NR:
4454 	case FLUSH_DELAYED_ITEMS:
4455 		if (state == FLUSH_DELAYED_ITEMS_NR)
4456 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4457 		else
4458 			nr = -1;
4459 
4460 		trans = btrfs_join_transaction(root);
4461 		if (IS_ERR(trans)) {
4462 			ret = PTR_ERR(trans);
4463 			break;
4464 		}
4465 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4466 		btrfs_end_transaction(trans, root);
4467 		break;
4468 	case FLUSH_DELALLOC:
4469 	case FLUSH_DELALLOC_WAIT:
4470 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4471 				state == FLUSH_DELALLOC_WAIT);
4472 		break;
4473 	case ALLOC_CHUNK:
4474 		trans = btrfs_join_transaction(root);
4475 		if (IS_ERR(trans)) {
4476 			ret = PTR_ERR(trans);
4477 			break;
4478 		}
4479 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4480 				     btrfs_get_alloc_profile(root, 0),
4481 				     CHUNK_ALLOC_NO_FORCE);
4482 		btrfs_end_transaction(trans, root);
4483 		if (ret == -ENOSPC)
4484 			ret = 0;
4485 		break;
4486 	case COMMIT_TRANS:
4487 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4488 		break;
4489 	default:
4490 		ret = -ENOSPC;
4491 		break;
4492 	}
4493 
4494 	return ret;
4495 }
4496 
4497 static inline u64
4498 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4499 				 struct btrfs_space_info *space_info)
4500 {
4501 	u64 used;
4502 	u64 expected;
4503 	u64 to_reclaim;
4504 
4505 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4506 				16 * 1024 * 1024);
4507 	spin_lock(&space_info->lock);
4508 	if (can_overcommit(root, space_info, to_reclaim,
4509 			   BTRFS_RESERVE_FLUSH_ALL)) {
4510 		to_reclaim = 0;
4511 		goto out;
4512 	}
4513 
4514 	used = space_info->bytes_used + space_info->bytes_reserved +
4515 	       space_info->bytes_pinned + space_info->bytes_readonly +
4516 	       space_info->bytes_may_use;
4517 	if (can_overcommit(root, space_info, 1024 * 1024,
4518 			   BTRFS_RESERVE_FLUSH_ALL))
4519 		expected = div_factor_fine(space_info->total_bytes, 95);
4520 	else
4521 		expected = div_factor_fine(space_info->total_bytes, 90);
4522 
4523 	if (used > expected)
4524 		to_reclaim = used - expected;
4525 	else
4526 		to_reclaim = 0;
4527 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4528 				     space_info->bytes_reserved);
4529 out:
4530 	spin_unlock(&space_info->lock);
4531 
4532 	return to_reclaim;
4533 }
4534 
4535 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4536 					struct btrfs_fs_info *fs_info, u64 used)
4537 {
4538 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4539 
4540 	/* If we're just plain full then async reclaim just slows us down. */
4541 	if (space_info->bytes_used >= thresh)
4542 		return 0;
4543 
4544 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4545 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4546 }
4547 
4548 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4549 				       struct btrfs_fs_info *fs_info,
4550 				       int flush_state)
4551 {
4552 	u64 used;
4553 
4554 	spin_lock(&space_info->lock);
4555 	/*
4556 	 * We run out of space and have not got any free space via flush_space,
4557 	 * so don't bother doing async reclaim.
4558 	 */
4559 	if (flush_state > COMMIT_TRANS && space_info->full) {
4560 		spin_unlock(&space_info->lock);
4561 		return 0;
4562 	}
4563 
4564 	used = space_info->bytes_used + space_info->bytes_reserved +
4565 	       space_info->bytes_pinned + space_info->bytes_readonly +
4566 	       space_info->bytes_may_use;
4567 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4568 		spin_unlock(&space_info->lock);
4569 		return 1;
4570 	}
4571 	spin_unlock(&space_info->lock);
4572 
4573 	return 0;
4574 }
4575 
4576 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4577 {
4578 	struct btrfs_fs_info *fs_info;
4579 	struct btrfs_space_info *space_info;
4580 	u64 to_reclaim;
4581 	int flush_state;
4582 
4583 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4584 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4585 
4586 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4587 						      space_info);
4588 	if (!to_reclaim)
4589 		return;
4590 
4591 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4592 	do {
4593 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4594 			    to_reclaim, flush_state);
4595 		flush_state++;
4596 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4597 						 flush_state))
4598 			return;
4599 	} while (flush_state < COMMIT_TRANS);
4600 }
4601 
4602 void btrfs_init_async_reclaim_work(struct work_struct *work)
4603 {
4604 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4605 }
4606 
4607 /**
4608  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4609  * @root - the root we're allocating for
4610  * @block_rsv - the block_rsv we're allocating for
4611  * @orig_bytes - the number of bytes we want
4612  * @flush - whether or not we can flush to make our reservation
4613  *
4614  * This will reserve orgi_bytes number of bytes from the space info associated
4615  * with the block_rsv.  If there is not enough space it will make an attempt to
4616  * flush out space to make room.  It will do this by flushing delalloc if
4617  * possible or committing the transaction.  If flush is 0 then no attempts to
4618  * regain reservations will be made and this will fail if there is not enough
4619  * space already.
4620  */
4621 static int reserve_metadata_bytes(struct btrfs_root *root,
4622 				  struct btrfs_block_rsv *block_rsv,
4623 				  u64 orig_bytes,
4624 				  enum btrfs_reserve_flush_enum flush)
4625 {
4626 	struct btrfs_space_info *space_info = block_rsv->space_info;
4627 	u64 used;
4628 	u64 num_bytes = orig_bytes;
4629 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4630 	int ret = 0;
4631 	bool flushing = false;
4632 
4633 again:
4634 	ret = 0;
4635 	spin_lock(&space_info->lock);
4636 	/*
4637 	 * We only want to wait if somebody other than us is flushing and we
4638 	 * are actually allowed to flush all things.
4639 	 */
4640 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4641 	       space_info->flush) {
4642 		spin_unlock(&space_info->lock);
4643 		/*
4644 		 * If we have a trans handle we can't wait because the flusher
4645 		 * may have to commit the transaction, which would mean we would
4646 		 * deadlock since we are waiting for the flusher to finish, but
4647 		 * hold the current transaction open.
4648 		 */
4649 		if (current->journal_info)
4650 			return -EAGAIN;
4651 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4652 		/* Must have been killed, return */
4653 		if (ret)
4654 			return -EINTR;
4655 
4656 		spin_lock(&space_info->lock);
4657 	}
4658 
4659 	ret = -ENOSPC;
4660 	used = space_info->bytes_used + space_info->bytes_reserved +
4661 		space_info->bytes_pinned + space_info->bytes_readonly +
4662 		space_info->bytes_may_use;
4663 
4664 	/*
4665 	 * The idea here is that we've not already over-reserved the block group
4666 	 * then we can go ahead and save our reservation first and then start
4667 	 * flushing if we need to.  Otherwise if we've already overcommitted
4668 	 * lets start flushing stuff first and then come back and try to make
4669 	 * our reservation.
4670 	 */
4671 	if (used <= space_info->total_bytes) {
4672 		if (used + orig_bytes <= space_info->total_bytes) {
4673 			space_info->bytes_may_use += orig_bytes;
4674 			trace_btrfs_space_reservation(root->fs_info,
4675 				"space_info", space_info->flags, orig_bytes, 1);
4676 			ret = 0;
4677 		} else {
4678 			/*
4679 			 * Ok set num_bytes to orig_bytes since we aren't
4680 			 * overocmmitted, this way we only try and reclaim what
4681 			 * we need.
4682 			 */
4683 			num_bytes = orig_bytes;
4684 		}
4685 	} else {
4686 		/*
4687 		 * Ok we're over committed, set num_bytes to the overcommitted
4688 		 * amount plus the amount of bytes that we need for this
4689 		 * reservation.
4690 		 */
4691 		num_bytes = used - space_info->total_bytes +
4692 			(orig_bytes * 2);
4693 	}
4694 
4695 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4696 		space_info->bytes_may_use += orig_bytes;
4697 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4698 					      space_info->flags, orig_bytes,
4699 					      1);
4700 		ret = 0;
4701 	}
4702 
4703 	/*
4704 	 * Couldn't make our reservation, save our place so while we're trying
4705 	 * to reclaim space we can actually use it instead of somebody else
4706 	 * stealing it from us.
4707 	 *
4708 	 * We make the other tasks wait for the flush only when we can flush
4709 	 * all things.
4710 	 */
4711 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4712 		flushing = true;
4713 		space_info->flush = 1;
4714 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4715 		used += orig_bytes;
4716 		/*
4717 		 * We will do the space reservation dance during log replay,
4718 		 * which means we won't have fs_info->fs_root set, so don't do
4719 		 * the async reclaim as we will panic.
4720 		 */
4721 		if (!root->fs_info->log_root_recovering &&
4722 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4723 		    !work_busy(&root->fs_info->async_reclaim_work))
4724 			queue_work(system_unbound_wq,
4725 				   &root->fs_info->async_reclaim_work);
4726 	}
4727 	spin_unlock(&space_info->lock);
4728 
4729 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4730 		goto out;
4731 
4732 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4733 			  flush_state);
4734 	flush_state++;
4735 
4736 	/*
4737 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4738 	 * would happen. So skip delalloc flush.
4739 	 */
4740 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4741 	    (flush_state == FLUSH_DELALLOC ||
4742 	     flush_state == FLUSH_DELALLOC_WAIT))
4743 		flush_state = ALLOC_CHUNK;
4744 
4745 	if (!ret)
4746 		goto again;
4747 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4748 		 flush_state < COMMIT_TRANS)
4749 		goto again;
4750 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4751 		 flush_state <= COMMIT_TRANS)
4752 		goto again;
4753 
4754 out:
4755 	if (ret == -ENOSPC &&
4756 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4757 		struct btrfs_block_rsv *global_rsv =
4758 			&root->fs_info->global_block_rsv;
4759 
4760 		if (block_rsv != global_rsv &&
4761 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4762 			ret = 0;
4763 	}
4764 	if (ret == -ENOSPC)
4765 		trace_btrfs_space_reservation(root->fs_info,
4766 					      "space_info:enospc",
4767 					      space_info->flags, orig_bytes, 1);
4768 	if (flushing) {
4769 		spin_lock(&space_info->lock);
4770 		space_info->flush = 0;
4771 		wake_up_all(&space_info->wait);
4772 		spin_unlock(&space_info->lock);
4773 	}
4774 	return ret;
4775 }
4776 
4777 static struct btrfs_block_rsv *get_block_rsv(
4778 					const struct btrfs_trans_handle *trans,
4779 					const struct btrfs_root *root)
4780 {
4781 	struct btrfs_block_rsv *block_rsv = NULL;
4782 
4783 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4784 		block_rsv = trans->block_rsv;
4785 
4786 	if (root == root->fs_info->csum_root && trans->adding_csums)
4787 		block_rsv = trans->block_rsv;
4788 
4789 	if (root == root->fs_info->uuid_root)
4790 		block_rsv = trans->block_rsv;
4791 
4792 	if (!block_rsv)
4793 		block_rsv = root->block_rsv;
4794 
4795 	if (!block_rsv)
4796 		block_rsv = &root->fs_info->empty_block_rsv;
4797 
4798 	return block_rsv;
4799 }
4800 
4801 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4802 			       u64 num_bytes)
4803 {
4804 	int ret = -ENOSPC;
4805 	spin_lock(&block_rsv->lock);
4806 	if (block_rsv->reserved >= num_bytes) {
4807 		block_rsv->reserved -= num_bytes;
4808 		if (block_rsv->reserved < block_rsv->size)
4809 			block_rsv->full = 0;
4810 		ret = 0;
4811 	}
4812 	spin_unlock(&block_rsv->lock);
4813 	return ret;
4814 }
4815 
4816 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4817 				u64 num_bytes, int update_size)
4818 {
4819 	spin_lock(&block_rsv->lock);
4820 	block_rsv->reserved += num_bytes;
4821 	if (update_size)
4822 		block_rsv->size += num_bytes;
4823 	else if (block_rsv->reserved >= block_rsv->size)
4824 		block_rsv->full = 1;
4825 	spin_unlock(&block_rsv->lock);
4826 }
4827 
4828 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4829 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4830 			     int min_factor)
4831 {
4832 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4833 	u64 min_bytes;
4834 
4835 	if (global_rsv->space_info != dest->space_info)
4836 		return -ENOSPC;
4837 
4838 	spin_lock(&global_rsv->lock);
4839 	min_bytes = div_factor(global_rsv->size, min_factor);
4840 	if (global_rsv->reserved < min_bytes + num_bytes) {
4841 		spin_unlock(&global_rsv->lock);
4842 		return -ENOSPC;
4843 	}
4844 	global_rsv->reserved -= num_bytes;
4845 	if (global_rsv->reserved < global_rsv->size)
4846 		global_rsv->full = 0;
4847 	spin_unlock(&global_rsv->lock);
4848 
4849 	block_rsv_add_bytes(dest, num_bytes, 1);
4850 	return 0;
4851 }
4852 
4853 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4854 				    struct btrfs_block_rsv *block_rsv,
4855 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4856 {
4857 	struct btrfs_space_info *space_info = block_rsv->space_info;
4858 
4859 	spin_lock(&block_rsv->lock);
4860 	if (num_bytes == (u64)-1)
4861 		num_bytes = block_rsv->size;
4862 	block_rsv->size -= num_bytes;
4863 	if (block_rsv->reserved >= block_rsv->size) {
4864 		num_bytes = block_rsv->reserved - block_rsv->size;
4865 		block_rsv->reserved = block_rsv->size;
4866 		block_rsv->full = 1;
4867 	} else {
4868 		num_bytes = 0;
4869 	}
4870 	spin_unlock(&block_rsv->lock);
4871 
4872 	if (num_bytes > 0) {
4873 		if (dest) {
4874 			spin_lock(&dest->lock);
4875 			if (!dest->full) {
4876 				u64 bytes_to_add;
4877 
4878 				bytes_to_add = dest->size - dest->reserved;
4879 				bytes_to_add = min(num_bytes, bytes_to_add);
4880 				dest->reserved += bytes_to_add;
4881 				if (dest->reserved >= dest->size)
4882 					dest->full = 1;
4883 				num_bytes -= bytes_to_add;
4884 			}
4885 			spin_unlock(&dest->lock);
4886 		}
4887 		if (num_bytes) {
4888 			spin_lock(&space_info->lock);
4889 			space_info->bytes_may_use -= num_bytes;
4890 			trace_btrfs_space_reservation(fs_info, "space_info",
4891 					space_info->flags, num_bytes, 0);
4892 			spin_unlock(&space_info->lock);
4893 		}
4894 	}
4895 }
4896 
4897 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4898 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4899 {
4900 	int ret;
4901 
4902 	ret = block_rsv_use_bytes(src, num_bytes);
4903 	if (ret)
4904 		return ret;
4905 
4906 	block_rsv_add_bytes(dst, num_bytes, 1);
4907 	return 0;
4908 }
4909 
4910 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4911 {
4912 	memset(rsv, 0, sizeof(*rsv));
4913 	spin_lock_init(&rsv->lock);
4914 	rsv->type = type;
4915 }
4916 
4917 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4918 					      unsigned short type)
4919 {
4920 	struct btrfs_block_rsv *block_rsv;
4921 	struct btrfs_fs_info *fs_info = root->fs_info;
4922 
4923 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4924 	if (!block_rsv)
4925 		return NULL;
4926 
4927 	btrfs_init_block_rsv(block_rsv, type);
4928 	block_rsv->space_info = __find_space_info(fs_info,
4929 						  BTRFS_BLOCK_GROUP_METADATA);
4930 	return block_rsv;
4931 }
4932 
4933 void btrfs_free_block_rsv(struct btrfs_root *root,
4934 			  struct btrfs_block_rsv *rsv)
4935 {
4936 	if (!rsv)
4937 		return;
4938 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4939 	kfree(rsv);
4940 }
4941 
4942 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4943 {
4944 	kfree(rsv);
4945 }
4946 
4947 int btrfs_block_rsv_add(struct btrfs_root *root,
4948 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4949 			enum btrfs_reserve_flush_enum flush)
4950 {
4951 	int ret;
4952 
4953 	if (num_bytes == 0)
4954 		return 0;
4955 
4956 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4957 	if (!ret) {
4958 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4959 		return 0;
4960 	}
4961 
4962 	return ret;
4963 }
4964 
4965 int btrfs_block_rsv_check(struct btrfs_root *root,
4966 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4967 {
4968 	u64 num_bytes = 0;
4969 	int ret = -ENOSPC;
4970 
4971 	if (!block_rsv)
4972 		return 0;
4973 
4974 	spin_lock(&block_rsv->lock);
4975 	num_bytes = div_factor(block_rsv->size, min_factor);
4976 	if (block_rsv->reserved >= num_bytes)
4977 		ret = 0;
4978 	spin_unlock(&block_rsv->lock);
4979 
4980 	return ret;
4981 }
4982 
4983 int btrfs_block_rsv_refill(struct btrfs_root *root,
4984 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4985 			   enum btrfs_reserve_flush_enum flush)
4986 {
4987 	u64 num_bytes = 0;
4988 	int ret = -ENOSPC;
4989 
4990 	if (!block_rsv)
4991 		return 0;
4992 
4993 	spin_lock(&block_rsv->lock);
4994 	num_bytes = min_reserved;
4995 	if (block_rsv->reserved >= num_bytes)
4996 		ret = 0;
4997 	else
4998 		num_bytes -= block_rsv->reserved;
4999 	spin_unlock(&block_rsv->lock);
5000 
5001 	if (!ret)
5002 		return 0;
5003 
5004 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5005 	if (!ret) {
5006 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5007 		return 0;
5008 	}
5009 
5010 	return ret;
5011 }
5012 
5013 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5014 			    struct btrfs_block_rsv *dst_rsv,
5015 			    u64 num_bytes)
5016 {
5017 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5018 }
5019 
5020 void btrfs_block_rsv_release(struct btrfs_root *root,
5021 			     struct btrfs_block_rsv *block_rsv,
5022 			     u64 num_bytes)
5023 {
5024 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5025 	if (global_rsv == block_rsv ||
5026 	    block_rsv->space_info != global_rsv->space_info)
5027 		global_rsv = NULL;
5028 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5029 				num_bytes);
5030 }
5031 
5032 /*
5033  * helper to calculate size of global block reservation.
5034  * the desired value is sum of space used by extent tree,
5035  * checksum tree and root tree
5036  */
5037 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5038 {
5039 	struct btrfs_space_info *sinfo;
5040 	u64 num_bytes;
5041 	u64 meta_used;
5042 	u64 data_used;
5043 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5044 
5045 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5046 	spin_lock(&sinfo->lock);
5047 	data_used = sinfo->bytes_used;
5048 	spin_unlock(&sinfo->lock);
5049 
5050 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5051 	spin_lock(&sinfo->lock);
5052 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5053 		data_used = 0;
5054 	meta_used = sinfo->bytes_used;
5055 	spin_unlock(&sinfo->lock);
5056 
5057 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5058 		    csum_size * 2;
5059 	num_bytes += div_u64(data_used + meta_used, 50);
5060 
5061 	if (num_bytes * 3 > meta_used)
5062 		num_bytes = div_u64(meta_used, 3);
5063 
5064 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5065 }
5066 
5067 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5068 {
5069 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5070 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5071 	u64 num_bytes;
5072 
5073 	num_bytes = calc_global_metadata_size(fs_info);
5074 
5075 	spin_lock(&sinfo->lock);
5076 	spin_lock(&block_rsv->lock);
5077 
5078 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5079 
5080 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5081 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5082 		    sinfo->bytes_may_use;
5083 
5084 	if (sinfo->total_bytes > num_bytes) {
5085 		num_bytes = sinfo->total_bytes - num_bytes;
5086 		block_rsv->reserved += num_bytes;
5087 		sinfo->bytes_may_use += num_bytes;
5088 		trace_btrfs_space_reservation(fs_info, "space_info",
5089 				      sinfo->flags, num_bytes, 1);
5090 	}
5091 
5092 	if (block_rsv->reserved >= block_rsv->size) {
5093 		num_bytes = block_rsv->reserved - block_rsv->size;
5094 		sinfo->bytes_may_use -= num_bytes;
5095 		trace_btrfs_space_reservation(fs_info, "space_info",
5096 				      sinfo->flags, num_bytes, 0);
5097 		block_rsv->reserved = block_rsv->size;
5098 		block_rsv->full = 1;
5099 	}
5100 
5101 	spin_unlock(&block_rsv->lock);
5102 	spin_unlock(&sinfo->lock);
5103 }
5104 
5105 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5106 {
5107 	struct btrfs_space_info *space_info;
5108 
5109 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5110 	fs_info->chunk_block_rsv.space_info = space_info;
5111 
5112 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5113 	fs_info->global_block_rsv.space_info = space_info;
5114 	fs_info->delalloc_block_rsv.space_info = space_info;
5115 	fs_info->trans_block_rsv.space_info = space_info;
5116 	fs_info->empty_block_rsv.space_info = space_info;
5117 	fs_info->delayed_block_rsv.space_info = space_info;
5118 
5119 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5120 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5121 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5122 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5123 	if (fs_info->quota_root)
5124 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5125 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5126 
5127 	update_global_block_rsv(fs_info);
5128 }
5129 
5130 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5131 {
5132 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5133 				(u64)-1);
5134 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5135 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5136 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5137 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5138 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5139 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5140 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5141 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5142 }
5143 
5144 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5145 				  struct btrfs_root *root)
5146 {
5147 	if (!trans->block_rsv)
5148 		return;
5149 
5150 	if (!trans->bytes_reserved)
5151 		return;
5152 
5153 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5154 				      trans->transid, trans->bytes_reserved, 0);
5155 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5156 	trans->bytes_reserved = 0;
5157 }
5158 
5159 /* Can only return 0 or -ENOSPC */
5160 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5161 				  struct inode *inode)
5162 {
5163 	struct btrfs_root *root = BTRFS_I(inode)->root;
5164 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5165 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5166 
5167 	/*
5168 	 * We need to hold space in order to delete our orphan item once we've
5169 	 * added it, so this takes the reservation so we can release it later
5170 	 * when we are truly done with the orphan item.
5171 	 */
5172 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5173 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5174 				      btrfs_ino(inode), num_bytes, 1);
5175 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5176 }
5177 
5178 void btrfs_orphan_release_metadata(struct inode *inode)
5179 {
5180 	struct btrfs_root *root = BTRFS_I(inode)->root;
5181 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5182 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5183 				      btrfs_ino(inode), num_bytes, 0);
5184 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5185 }
5186 
5187 /*
5188  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5189  * root: the root of the parent directory
5190  * rsv: block reservation
5191  * items: the number of items that we need do reservation
5192  * qgroup_reserved: used to return the reserved size in qgroup
5193  *
5194  * This function is used to reserve the space for snapshot/subvolume
5195  * creation and deletion. Those operations are different with the
5196  * common file/directory operations, they change two fs/file trees
5197  * and root tree, the number of items that the qgroup reserves is
5198  * different with the free space reservation. So we can not use
5199  * the space reseravtion mechanism in start_transaction().
5200  */
5201 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5202 				     struct btrfs_block_rsv *rsv,
5203 				     int items,
5204 				     u64 *qgroup_reserved,
5205 				     bool use_global_rsv)
5206 {
5207 	u64 num_bytes;
5208 	int ret;
5209 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5210 
5211 	if (root->fs_info->quota_enabled) {
5212 		/* One for parent inode, two for dir entries */
5213 		num_bytes = 3 * root->nodesize;
5214 		ret = btrfs_qgroup_reserve(root, num_bytes);
5215 		if (ret)
5216 			return ret;
5217 	} else {
5218 		num_bytes = 0;
5219 	}
5220 
5221 	*qgroup_reserved = num_bytes;
5222 
5223 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5224 	rsv->space_info = __find_space_info(root->fs_info,
5225 					    BTRFS_BLOCK_GROUP_METADATA);
5226 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5227 				  BTRFS_RESERVE_FLUSH_ALL);
5228 
5229 	if (ret == -ENOSPC && use_global_rsv)
5230 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5231 
5232 	if (ret) {
5233 		if (*qgroup_reserved)
5234 			btrfs_qgroup_free(root, *qgroup_reserved);
5235 	}
5236 
5237 	return ret;
5238 }
5239 
5240 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5241 				      struct btrfs_block_rsv *rsv,
5242 				      u64 qgroup_reserved)
5243 {
5244 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5245 }
5246 
5247 /**
5248  * drop_outstanding_extent - drop an outstanding extent
5249  * @inode: the inode we're dropping the extent for
5250  * @num_bytes: the number of bytes we're relaseing.
5251  *
5252  * This is called when we are freeing up an outstanding extent, either called
5253  * after an error or after an extent is written.  This will return the number of
5254  * reserved extents that need to be freed.  This must be called with
5255  * BTRFS_I(inode)->lock held.
5256  */
5257 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5258 {
5259 	unsigned drop_inode_space = 0;
5260 	unsigned dropped_extents = 0;
5261 	unsigned num_extents = 0;
5262 
5263 	num_extents = (unsigned)div64_u64(num_bytes +
5264 					  BTRFS_MAX_EXTENT_SIZE - 1,
5265 					  BTRFS_MAX_EXTENT_SIZE);
5266 	ASSERT(num_extents);
5267 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5268 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5269 
5270 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5271 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5272 			       &BTRFS_I(inode)->runtime_flags))
5273 		drop_inode_space = 1;
5274 
5275 	/*
5276 	 * If we have more or the same amount of outsanding extents than we have
5277 	 * reserved then we need to leave the reserved extents count alone.
5278 	 */
5279 	if (BTRFS_I(inode)->outstanding_extents >=
5280 	    BTRFS_I(inode)->reserved_extents)
5281 		return drop_inode_space;
5282 
5283 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5284 		BTRFS_I(inode)->outstanding_extents;
5285 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5286 	return dropped_extents + drop_inode_space;
5287 }
5288 
5289 /**
5290  * calc_csum_metadata_size - return the amount of metada space that must be
5291  *	reserved/free'd for the given bytes.
5292  * @inode: the inode we're manipulating
5293  * @num_bytes: the number of bytes in question
5294  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5295  *
5296  * This adjusts the number of csum_bytes in the inode and then returns the
5297  * correct amount of metadata that must either be reserved or freed.  We
5298  * calculate how many checksums we can fit into one leaf and then divide the
5299  * number of bytes that will need to be checksumed by this value to figure out
5300  * how many checksums will be required.  If we are adding bytes then the number
5301  * may go up and we will return the number of additional bytes that must be
5302  * reserved.  If it is going down we will return the number of bytes that must
5303  * be freed.
5304  *
5305  * This must be called with BTRFS_I(inode)->lock held.
5306  */
5307 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5308 				   int reserve)
5309 {
5310 	struct btrfs_root *root = BTRFS_I(inode)->root;
5311 	u64 old_csums, num_csums;
5312 
5313 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5314 	    BTRFS_I(inode)->csum_bytes == 0)
5315 		return 0;
5316 
5317 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5318 	if (reserve)
5319 		BTRFS_I(inode)->csum_bytes += num_bytes;
5320 	else
5321 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5322 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5323 
5324 	/* No change, no need to reserve more */
5325 	if (old_csums == num_csums)
5326 		return 0;
5327 
5328 	if (reserve)
5329 		return btrfs_calc_trans_metadata_size(root,
5330 						      num_csums - old_csums);
5331 
5332 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5333 }
5334 
5335 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5336 {
5337 	struct btrfs_root *root = BTRFS_I(inode)->root;
5338 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5339 	u64 to_reserve = 0;
5340 	u64 csum_bytes;
5341 	unsigned nr_extents = 0;
5342 	int extra_reserve = 0;
5343 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5344 	int ret = 0;
5345 	bool delalloc_lock = true;
5346 	u64 to_free = 0;
5347 	unsigned dropped;
5348 
5349 	/* If we are a free space inode we need to not flush since we will be in
5350 	 * the middle of a transaction commit.  We also don't need the delalloc
5351 	 * mutex since we won't race with anybody.  We need this mostly to make
5352 	 * lockdep shut its filthy mouth.
5353 	 */
5354 	if (btrfs_is_free_space_inode(inode)) {
5355 		flush = BTRFS_RESERVE_NO_FLUSH;
5356 		delalloc_lock = false;
5357 	}
5358 
5359 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5360 	    btrfs_transaction_in_commit(root->fs_info))
5361 		schedule_timeout(1);
5362 
5363 	if (delalloc_lock)
5364 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5365 
5366 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5367 
5368 	spin_lock(&BTRFS_I(inode)->lock);
5369 	nr_extents = (unsigned)div64_u64(num_bytes +
5370 					 BTRFS_MAX_EXTENT_SIZE - 1,
5371 					 BTRFS_MAX_EXTENT_SIZE);
5372 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5373 	nr_extents = 0;
5374 
5375 	if (BTRFS_I(inode)->outstanding_extents >
5376 	    BTRFS_I(inode)->reserved_extents)
5377 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5378 			BTRFS_I(inode)->reserved_extents;
5379 
5380 	/*
5381 	 * Add an item to reserve for updating the inode when we complete the
5382 	 * delalloc io.
5383 	 */
5384 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5385 		      &BTRFS_I(inode)->runtime_flags)) {
5386 		nr_extents++;
5387 		extra_reserve = 1;
5388 	}
5389 
5390 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5391 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5392 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5393 	spin_unlock(&BTRFS_I(inode)->lock);
5394 
5395 	if (root->fs_info->quota_enabled) {
5396 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5397 		if (ret)
5398 			goto out_fail;
5399 	}
5400 
5401 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5402 	if (unlikely(ret)) {
5403 		if (root->fs_info->quota_enabled)
5404 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5405 		goto out_fail;
5406 	}
5407 
5408 	spin_lock(&BTRFS_I(inode)->lock);
5409 	if (extra_reserve) {
5410 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5411 			&BTRFS_I(inode)->runtime_flags);
5412 		nr_extents--;
5413 	}
5414 	BTRFS_I(inode)->reserved_extents += nr_extents;
5415 	spin_unlock(&BTRFS_I(inode)->lock);
5416 
5417 	if (delalloc_lock)
5418 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5419 
5420 	if (to_reserve)
5421 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5422 					      btrfs_ino(inode), to_reserve, 1);
5423 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5424 
5425 	return 0;
5426 
5427 out_fail:
5428 	spin_lock(&BTRFS_I(inode)->lock);
5429 	dropped = drop_outstanding_extent(inode, num_bytes);
5430 	/*
5431 	 * If the inodes csum_bytes is the same as the original
5432 	 * csum_bytes then we know we haven't raced with any free()ers
5433 	 * so we can just reduce our inodes csum bytes and carry on.
5434 	 */
5435 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5436 		calc_csum_metadata_size(inode, num_bytes, 0);
5437 	} else {
5438 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5439 		u64 bytes;
5440 
5441 		/*
5442 		 * This is tricky, but first we need to figure out how much we
5443 		 * free'd from any free-ers that occured during this
5444 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5445 		 * before we dropped our lock, and then call the free for the
5446 		 * number of bytes that were freed while we were trying our
5447 		 * reservation.
5448 		 */
5449 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5450 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5451 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5452 
5453 
5454 		/*
5455 		 * Now we need to see how much we would have freed had we not
5456 		 * been making this reservation and our ->csum_bytes were not
5457 		 * artificially inflated.
5458 		 */
5459 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5460 		bytes = csum_bytes - orig_csum_bytes;
5461 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5462 
5463 		/*
5464 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5465 		 * more than to_free then we would have free'd more space had we
5466 		 * not had an artificially high ->csum_bytes, so we need to free
5467 		 * the remainder.  If bytes is the same or less then we don't
5468 		 * need to do anything, the other free-ers did the correct
5469 		 * thing.
5470 		 */
5471 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5472 		if (bytes > to_free)
5473 			to_free = bytes - to_free;
5474 		else
5475 			to_free = 0;
5476 	}
5477 	spin_unlock(&BTRFS_I(inode)->lock);
5478 	if (dropped)
5479 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5480 
5481 	if (to_free) {
5482 		btrfs_block_rsv_release(root, block_rsv, to_free);
5483 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5484 					      btrfs_ino(inode), to_free, 0);
5485 	}
5486 	if (delalloc_lock)
5487 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5488 	return ret;
5489 }
5490 
5491 /**
5492  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5493  * @inode: the inode to release the reservation for
5494  * @num_bytes: the number of bytes we're releasing
5495  *
5496  * This will release the metadata reservation for an inode.  This can be called
5497  * once we complete IO for a given set of bytes to release their metadata
5498  * reservations.
5499  */
5500 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5501 {
5502 	struct btrfs_root *root = BTRFS_I(inode)->root;
5503 	u64 to_free = 0;
5504 	unsigned dropped;
5505 
5506 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5507 	spin_lock(&BTRFS_I(inode)->lock);
5508 	dropped = drop_outstanding_extent(inode, num_bytes);
5509 
5510 	if (num_bytes)
5511 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5512 	spin_unlock(&BTRFS_I(inode)->lock);
5513 	if (dropped > 0)
5514 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5515 
5516 	if (btrfs_test_is_dummy_root(root))
5517 		return;
5518 
5519 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5520 				      btrfs_ino(inode), to_free, 0);
5521 
5522 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5523 				to_free);
5524 }
5525 
5526 /**
5527  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5528  * @inode: inode we're writing to
5529  * @num_bytes: the number of bytes we want to allocate
5530  *
5531  * This will do the following things
5532  *
5533  * o reserve space in the data space info for num_bytes
5534  * o reserve space in the metadata space info based on number of outstanding
5535  *   extents and how much csums will be needed
5536  * o add to the inodes ->delalloc_bytes
5537  * o add it to the fs_info's delalloc inodes list.
5538  *
5539  * This will return 0 for success and -ENOSPC if there is no space left.
5540  */
5541 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5542 {
5543 	int ret;
5544 
5545 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5546 	if (ret)
5547 		return ret;
5548 
5549 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5550 	if (ret) {
5551 		btrfs_free_reserved_data_space(inode, num_bytes);
5552 		return ret;
5553 	}
5554 
5555 	return 0;
5556 }
5557 
5558 /**
5559  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5560  * @inode: inode we're releasing space for
5561  * @num_bytes: the number of bytes we want to free up
5562  *
5563  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5564  * called in the case that we don't need the metadata AND data reservations
5565  * anymore.  So if there is an error or we insert an inline extent.
5566  *
5567  * This function will release the metadata space that was not used and will
5568  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5569  * list if there are no delalloc bytes left.
5570  */
5571 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5572 {
5573 	btrfs_delalloc_release_metadata(inode, num_bytes);
5574 	btrfs_free_reserved_data_space(inode, num_bytes);
5575 }
5576 
5577 static int update_block_group(struct btrfs_trans_handle *trans,
5578 			      struct btrfs_root *root, u64 bytenr,
5579 			      u64 num_bytes, int alloc)
5580 {
5581 	struct btrfs_block_group_cache *cache = NULL;
5582 	struct btrfs_fs_info *info = root->fs_info;
5583 	u64 total = num_bytes;
5584 	u64 old_val;
5585 	u64 byte_in_group;
5586 	int factor;
5587 
5588 	/* block accounting for super block */
5589 	spin_lock(&info->delalloc_root_lock);
5590 	old_val = btrfs_super_bytes_used(info->super_copy);
5591 	if (alloc)
5592 		old_val += num_bytes;
5593 	else
5594 		old_val -= num_bytes;
5595 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5596 	spin_unlock(&info->delalloc_root_lock);
5597 
5598 	while (total) {
5599 		cache = btrfs_lookup_block_group(info, bytenr);
5600 		if (!cache)
5601 			return -ENOENT;
5602 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5603 				    BTRFS_BLOCK_GROUP_RAID1 |
5604 				    BTRFS_BLOCK_GROUP_RAID10))
5605 			factor = 2;
5606 		else
5607 			factor = 1;
5608 		/*
5609 		 * If this block group has free space cache written out, we
5610 		 * need to make sure to load it if we are removing space.  This
5611 		 * is because we need the unpinning stage to actually add the
5612 		 * space back to the block group, otherwise we will leak space.
5613 		 */
5614 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5615 			cache_block_group(cache, 1);
5616 
5617 		byte_in_group = bytenr - cache->key.objectid;
5618 		WARN_ON(byte_in_group > cache->key.offset);
5619 
5620 		spin_lock(&cache->space_info->lock);
5621 		spin_lock(&cache->lock);
5622 
5623 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5624 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5625 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5626 
5627 		old_val = btrfs_block_group_used(&cache->item);
5628 		num_bytes = min(total, cache->key.offset - byte_in_group);
5629 		if (alloc) {
5630 			old_val += num_bytes;
5631 			btrfs_set_block_group_used(&cache->item, old_val);
5632 			cache->reserved -= num_bytes;
5633 			cache->space_info->bytes_reserved -= num_bytes;
5634 			cache->space_info->bytes_used += num_bytes;
5635 			cache->space_info->disk_used += num_bytes * factor;
5636 			spin_unlock(&cache->lock);
5637 			spin_unlock(&cache->space_info->lock);
5638 		} else {
5639 			old_val -= num_bytes;
5640 			btrfs_set_block_group_used(&cache->item, old_val);
5641 			cache->pinned += num_bytes;
5642 			cache->space_info->bytes_pinned += num_bytes;
5643 			cache->space_info->bytes_used -= num_bytes;
5644 			cache->space_info->disk_used -= num_bytes * factor;
5645 			spin_unlock(&cache->lock);
5646 			spin_unlock(&cache->space_info->lock);
5647 
5648 			set_extent_dirty(info->pinned_extents,
5649 					 bytenr, bytenr + num_bytes - 1,
5650 					 GFP_NOFS | __GFP_NOFAIL);
5651 			/*
5652 			 * No longer have used bytes in this block group, queue
5653 			 * it for deletion.
5654 			 */
5655 			if (old_val == 0) {
5656 				spin_lock(&info->unused_bgs_lock);
5657 				if (list_empty(&cache->bg_list)) {
5658 					btrfs_get_block_group(cache);
5659 					list_add_tail(&cache->bg_list,
5660 						      &info->unused_bgs);
5661 				}
5662 				spin_unlock(&info->unused_bgs_lock);
5663 			}
5664 		}
5665 
5666 		spin_lock(&trans->transaction->dirty_bgs_lock);
5667 		if (list_empty(&cache->dirty_list)) {
5668 			list_add_tail(&cache->dirty_list,
5669 				      &trans->transaction->dirty_bgs);
5670 				trans->transaction->num_dirty_bgs++;
5671 			btrfs_get_block_group(cache);
5672 		}
5673 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5674 
5675 		btrfs_put_block_group(cache);
5676 		total -= num_bytes;
5677 		bytenr += num_bytes;
5678 	}
5679 	return 0;
5680 }
5681 
5682 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5683 {
5684 	struct btrfs_block_group_cache *cache;
5685 	u64 bytenr;
5686 
5687 	spin_lock(&root->fs_info->block_group_cache_lock);
5688 	bytenr = root->fs_info->first_logical_byte;
5689 	spin_unlock(&root->fs_info->block_group_cache_lock);
5690 
5691 	if (bytenr < (u64)-1)
5692 		return bytenr;
5693 
5694 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5695 	if (!cache)
5696 		return 0;
5697 
5698 	bytenr = cache->key.objectid;
5699 	btrfs_put_block_group(cache);
5700 
5701 	return bytenr;
5702 }
5703 
5704 static int pin_down_extent(struct btrfs_root *root,
5705 			   struct btrfs_block_group_cache *cache,
5706 			   u64 bytenr, u64 num_bytes, int reserved)
5707 {
5708 	spin_lock(&cache->space_info->lock);
5709 	spin_lock(&cache->lock);
5710 	cache->pinned += num_bytes;
5711 	cache->space_info->bytes_pinned += num_bytes;
5712 	if (reserved) {
5713 		cache->reserved -= num_bytes;
5714 		cache->space_info->bytes_reserved -= num_bytes;
5715 	}
5716 	spin_unlock(&cache->lock);
5717 	spin_unlock(&cache->space_info->lock);
5718 
5719 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5720 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5721 	if (reserved)
5722 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5723 	return 0;
5724 }
5725 
5726 /*
5727  * this function must be called within transaction
5728  */
5729 int btrfs_pin_extent(struct btrfs_root *root,
5730 		     u64 bytenr, u64 num_bytes, int reserved)
5731 {
5732 	struct btrfs_block_group_cache *cache;
5733 
5734 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5735 	BUG_ON(!cache); /* Logic error */
5736 
5737 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5738 
5739 	btrfs_put_block_group(cache);
5740 	return 0;
5741 }
5742 
5743 /*
5744  * this function must be called within transaction
5745  */
5746 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5747 				    u64 bytenr, u64 num_bytes)
5748 {
5749 	struct btrfs_block_group_cache *cache;
5750 	int ret;
5751 
5752 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5753 	if (!cache)
5754 		return -EINVAL;
5755 
5756 	/*
5757 	 * pull in the free space cache (if any) so that our pin
5758 	 * removes the free space from the cache.  We have load_only set
5759 	 * to one because the slow code to read in the free extents does check
5760 	 * the pinned extents.
5761 	 */
5762 	cache_block_group(cache, 1);
5763 
5764 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5765 
5766 	/* remove us from the free space cache (if we're there at all) */
5767 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5768 	btrfs_put_block_group(cache);
5769 	return ret;
5770 }
5771 
5772 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5773 {
5774 	int ret;
5775 	struct btrfs_block_group_cache *block_group;
5776 	struct btrfs_caching_control *caching_ctl;
5777 
5778 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5779 	if (!block_group)
5780 		return -EINVAL;
5781 
5782 	cache_block_group(block_group, 0);
5783 	caching_ctl = get_caching_control(block_group);
5784 
5785 	if (!caching_ctl) {
5786 		/* Logic error */
5787 		BUG_ON(!block_group_cache_done(block_group));
5788 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5789 	} else {
5790 		mutex_lock(&caching_ctl->mutex);
5791 
5792 		if (start >= caching_ctl->progress) {
5793 			ret = add_excluded_extent(root, start, num_bytes);
5794 		} else if (start + num_bytes <= caching_ctl->progress) {
5795 			ret = btrfs_remove_free_space(block_group,
5796 						      start, num_bytes);
5797 		} else {
5798 			num_bytes = caching_ctl->progress - start;
5799 			ret = btrfs_remove_free_space(block_group,
5800 						      start, num_bytes);
5801 			if (ret)
5802 				goto out_lock;
5803 
5804 			num_bytes = (start + num_bytes) -
5805 				caching_ctl->progress;
5806 			start = caching_ctl->progress;
5807 			ret = add_excluded_extent(root, start, num_bytes);
5808 		}
5809 out_lock:
5810 		mutex_unlock(&caching_ctl->mutex);
5811 		put_caching_control(caching_ctl);
5812 	}
5813 	btrfs_put_block_group(block_group);
5814 	return ret;
5815 }
5816 
5817 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5818 				 struct extent_buffer *eb)
5819 {
5820 	struct btrfs_file_extent_item *item;
5821 	struct btrfs_key key;
5822 	int found_type;
5823 	int i;
5824 
5825 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5826 		return 0;
5827 
5828 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5829 		btrfs_item_key_to_cpu(eb, &key, i);
5830 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5831 			continue;
5832 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5833 		found_type = btrfs_file_extent_type(eb, item);
5834 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5835 			continue;
5836 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5837 			continue;
5838 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5839 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5840 		__exclude_logged_extent(log, key.objectid, key.offset);
5841 	}
5842 
5843 	return 0;
5844 }
5845 
5846 /**
5847  * btrfs_update_reserved_bytes - update the block_group and space info counters
5848  * @cache:	The cache we are manipulating
5849  * @num_bytes:	The number of bytes in question
5850  * @reserve:	One of the reservation enums
5851  * @delalloc:   The blocks are allocated for the delalloc write
5852  *
5853  * This is called by the allocator when it reserves space, or by somebody who is
5854  * freeing space that was never actually used on disk.  For example if you
5855  * reserve some space for a new leaf in transaction A and before transaction A
5856  * commits you free that leaf, you call this with reserve set to 0 in order to
5857  * clear the reservation.
5858  *
5859  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5860  * ENOSPC accounting.  For data we handle the reservation through clearing the
5861  * delalloc bits in the io_tree.  We have to do this since we could end up
5862  * allocating less disk space for the amount of data we have reserved in the
5863  * case of compression.
5864  *
5865  * If this is a reservation and the block group has become read only we cannot
5866  * make the reservation and return -EAGAIN, otherwise this function always
5867  * succeeds.
5868  */
5869 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5870 				       u64 num_bytes, int reserve, int delalloc)
5871 {
5872 	struct btrfs_space_info *space_info = cache->space_info;
5873 	int ret = 0;
5874 
5875 	spin_lock(&space_info->lock);
5876 	spin_lock(&cache->lock);
5877 	if (reserve != RESERVE_FREE) {
5878 		if (cache->ro) {
5879 			ret = -EAGAIN;
5880 		} else {
5881 			cache->reserved += num_bytes;
5882 			space_info->bytes_reserved += num_bytes;
5883 			if (reserve == RESERVE_ALLOC) {
5884 				trace_btrfs_space_reservation(cache->fs_info,
5885 						"space_info", space_info->flags,
5886 						num_bytes, 0);
5887 				space_info->bytes_may_use -= num_bytes;
5888 			}
5889 
5890 			if (delalloc)
5891 				cache->delalloc_bytes += num_bytes;
5892 		}
5893 	} else {
5894 		if (cache->ro)
5895 			space_info->bytes_readonly += num_bytes;
5896 		cache->reserved -= num_bytes;
5897 		space_info->bytes_reserved -= num_bytes;
5898 
5899 		if (delalloc)
5900 			cache->delalloc_bytes -= num_bytes;
5901 	}
5902 	spin_unlock(&cache->lock);
5903 	spin_unlock(&space_info->lock);
5904 	return ret;
5905 }
5906 
5907 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5908 				struct btrfs_root *root)
5909 {
5910 	struct btrfs_fs_info *fs_info = root->fs_info;
5911 	struct btrfs_caching_control *next;
5912 	struct btrfs_caching_control *caching_ctl;
5913 	struct btrfs_block_group_cache *cache;
5914 
5915 	down_write(&fs_info->commit_root_sem);
5916 
5917 	list_for_each_entry_safe(caching_ctl, next,
5918 				 &fs_info->caching_block_groups, list) {
5919 		cache = caching_ctl->block_group;
5920 		if (block_group_cache_done(cache)) {
5921 			cache->last_byte_to_unpin = (u64)-1;
5922 			list_del_init(&caching_ctl->list);
5923 			put_caching_control(caching_ctl);
5924 		} else {
5925 			cache->last_byte_to_unpin = caching_ctl->progress;
5926 		}
5927 	}
5928 
5929 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5930 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5931 	else
5932 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5933 
5934 	up_write(&fs_info->commit_root_sem);
5935 
5936 	update_global_block_rsv(fs_info);
5937 }
5938 
5939 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5940 			      const bool return_free_space)
5941 {
5942 	struct btrfs_fs_info *fs_info = root->fs_info;
5943 	struct btrfs_block_group_cache *cache = NULL;
5944 	struct btrfs_space_info *space_info;
5945 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5946 	u64 len;
5947 	bool readonly;
5948 
5949 	while (start <= end) {
5950 		readonly = false;
5951 		if (!cache ||
5952 		    start >= cache->key.objectid + cache->key.offset) {
5953 			if (cache)
5954 				btrfs_put_block_group(cache);
5955 			cache = btrfs_lookup_block_group(fs_info, start);
5956 			BUG_ON(!cache); /* Logic error */
5957 		}
5958 
5959 		len = cache->key.objectid + cache->key.offset - start;
5960 		len = min(len, end + 1 - start);
5961 
5962 		if (start < cache->last_byte_to_unpin) {
5963 			len = min(len, cache->last_byte_to_unpin - start);
5964 			if (return_free_space)
5965 				btrfs_add_free_space(cache, start, len);
5966 		}
5967 
5968 		start += len;
5969 		space_info = cache->space_info;
5970 
5971 		spin_lock(&space_info->lock);
5972 		spin_lock(&cache->lock);
5973 		cache->pinned -= len;
5974 		space_info->bytes_pinned -= len;
5975 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5976 		if (cache->ro) {
5977 			space_info->bytes_readonly += len;
5978 			readonly = true;
5979 		}
5980 		spin_unlock(&cache->lock);
5981 		if (!readonly && global_rsv->space_info == space_info) {
5982 			spin_lock(&global_rsv->lock);
5983 			if (!global_rsv->full) {
5984 				len = min(len, global_rsv->size -
5985 					  global_rsv->reserved);
5986 				global_rsv->reserved += len;
5987 				space_info->bytes_may_use += len;
5988 				if (global_rsv->reserved >= global_rsv->size)
5989 					global_rsv->full = 1;
5990 			}
5991 			spin_unlock(&global_rsv->lock);
5992 		}
5993 		spin_unlock(&space_info->lock);
5994 	}
5995 
5996 	if (cache)
5997 		btrfs_put_block_group(cache);
5998 	return 0;
5999 }
6000 
6001 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6002 			       struct btrfs_root *root)
6003 {
6004 	struct btrfs_fs_info *fs_info = root->fs_info;
6005 	struct extent_io_tree *unpin;
6006 	u64 start;
6007 	u64 end;
6008 	int ret;
6009 
6010 	if (trans->aborted)
6011 		return 0;
6012 
6013 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6014 		unpin = &fs_info->freed_extents[1];
6015 	else
6016 		unpin = &fs_info->freed_extents[0];
6017 
6018 	while (1) {
6019 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6020 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6021 					    EXTENT_DIRTY, NULL);
6022 		if (ret) {
6023 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6024 			break;
6025 		}
6026 
6027 		if (btrfs_test_opt(root, DISCARD))
6028 			ret = btrfs_discard_extent(root, start,
6029 						   end + 1 - start, NULL);
6030 
6031 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6032 		unpin_extent_range(root, start, end, true);
6033 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6034 		cond_resched();
6035 	}
6036 
6037 	return 0;
6038 }
6039 
6040 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6041 			     u64 owner, u64 root_objectid)
6042 {
6043 	struct btrfs_space_info *space_info;
6044 	u64 flags;
6045 
6046 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6047 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6048 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6049 		else
6050 			flags = BTRFS_BLOCK_GROUP_METADATA;
6051 	} else {
6052 		flags = BTRFS_BLOCK_GROUP_DATA;
6053 	}
6054 
6055 	space_info = __find_space_info(fs_info, flags);
6056 	BUG_ON(!space_info); /* Logic bug */
6057 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6058 }
6059 
6060 
6061 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6062 				struct btrfs_root *root,
6063 				u64 bytenr, u64 num_bytes, u64 parent,
6064 				u64 root_objectid, u64 owner_objectid,
6065 				u64 owner_offset, int refs_to_drop,
6066 				struct btrfs_delayed_extent_op *extent_op,
6067 				int no_quota)
6068 {
6069 	struct btrfs_key key;
6070 	struct btrfs_path *path;
6071 	struct btrfs_fs_info *info = root->fs_info;
6072 	struct btrfs_root *extent_root = info->extent_root;
6073 	struct extent_buffer *leaf;
6074 	struct btrfs_extent_item *ei;
6075 	struct btrfs_extent_inline_ref *iref;
6076 	int ret;
6077 	int is_data;
6078 	int extent_slot = 0;
6079 	int found_extent = 0;
6080 	int num_to_del = 1;
6081 	u32 item_size;
6082 	u64 refs;
6083 	int last_ref = 0;
6084 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6085 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6086 						 SKINNY_METADATA);
6087 
6088 	if (!info->quota_enabled || !is_fstree(root_objectid))
6089 		no_quota = 1;
6090 
6091 	path = btrfs_alloc_path();
6092 	if (!path)
6093 		return -ENOMEM;
6094 
6095 	path->reada = 1;
6096 	path->leave_spinning = 1;
6097 
6098 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6099 	BUG_ON(!is_data && refs_to_drop != 1);
6100 
6101 	if (is_data)
6102 		skinny_metadata = 0;
6103 
6104 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6105 				    bytenr, num_bytes, parent,
6106 				    root_objectid, owner_objectid,
6107 				    owner_offset);
6108 	if (ret == 0) {
6109 		extent_slot = path->slots[0];
6110 		while (extent_slot >= 0) {
6111 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6112 					      extent_slot);
6113 			if (key.objectid != bytenr)
6114 				break;
6115 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6116 			    key.offset == num_bytes) {
6117 				found_extent = 1;
6118 				break;
6119 			}
6120 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6121 			    key.offset == owner_objectid) {
6122 				found_extent = 1;
6123 				break;
6124 			}
6125 			if (path->slots[0] - extent_slot > 5)
6126 				break;
6127 			extent_slot--;
6128 		}
6129 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6130 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6131 		if (found_extent && item_size < sizeof(*ei))
6132 			found_extent = 0;
6133 #endif
6134 		if (!found_extent) {
6135 			BUG_ON(iref);
6136 			ret = remove_extent_backref(trans, extent_root, path,
6137 						    NULL, refs_to_drop,
6138 						    is_data, &last_ref);
6139 			if (ret) {
6140 				btrfs_abort_transaction(trans, extent_root, ret);
6141 				goto out;
6142 			}
6143 			btrfs_release_path(path);
6144 			path->leave_spinning = 1;
6145 
6146 			key.objectid = bytenr;
6147 			key.type = BTRFS_EXTENT_ITEM_KEY;
6148 			key.offset = num_bytes;
6149 
6150 			if (!is_data && skinny_metadata) {
6151 				key.type = BTRFS_METADATA_ITEM_KEY;
6152 				key.offset = owner_objectid;
6153 			}
6154 
6155 			ret = btrfs_search_slot(trans, extent_root,
6156 						&key, path, -1, 1);
6157 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6158 				/*
6159 				 * Couldn't find our skinny metadata item,
6160 				 * see if we have ye olde extent item.
6161 				 */
6162 				path->slots[0]--;
6163 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6164 						      path->slots[0]);
6165 				if (key.objectid == bytenr &&
6166 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6167 				    key.offset == num_bytes)
6168 					ret = 0;
6169 			}
6170 
6171 			if (ret > 0 && skinny_metadata) {
6172 				skinny_metadata = false;
6173 				key.objectid = bytenr;
6174 				key.type = BTRFS_EXTENT_ITEM_KEY;
6175 				key.offset = num_bytes;
6176 				btrfs_release_path(path);
6177 				ret = btrfs_search_slot(trans, extent_root,
6178 							&key, path, -1, 1);
6179 			}
6180 
6181 			if (ret) {
6182 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6183 					ret, bytenr);
6184 				if (ret > 0)
6185 					btrfs_print_leaf(extent_root,
6186 							 path->nodes[0]);
6187 			}
6188 			if (ret < 0) {
6189 				btrfs_abort_transaction(trans, extent_root, ret);
6190 				goto out;
6191 			}
6192 			extent_slot = path->slots[0];
6193 		}
6194 	} else if (WARN_ON(ret == -ENOENT)) {
6195 		btrfs_print_leaf(extent_root, path->nodes[0]);
6196 		btrfs_err(info,
6197 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6198 			bytenr, parent, root_objectid, owner_objectid,
6199 			owner_offset);
6200 		btrfs_abort_transaction(trans, extent_root, ret);
6201 		goto out;
6202 	} else {
6203 		btrfs_abort_transaction(trans, extent_root, ret);
6204 		goto out;
6205 	}
6206 
6207 	leaf = path->nodes[0];
6208 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6210 	if (item_size < sizeof(*ei)) {
6211 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6212 		ret = convert_extent_item_v0(trans, extent_root, path,
6213 					     owner_objectid, 0);
6214 		if (ret < 0) {
6215 			btrfs_abort_transaction(trans, extent_root, ret);
6216 			goto out;
6217 		}
6218 
6219 		btrfs_release_path(path);
6220 		path->leave_spinning = 1;
6221 
6222 		key.objectid = bytenr;
6223 		key.type = BTRFS_EXTENT_ITEM_KEY;
6224 		key.offset = num_bytes;
6225 
6226 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6227 					-1, 1);
6228 		if (ret) {
6229 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6230 				ret, bytenr);
6231 			btrfs_print_leaf(extent_root, path->nodes[0]);
6232 		}
6233 		if (ret < 0) {
6234 			btrfs_abort_transaction(trans, extent_root, ret);
6235 			goto out;
6236 		}
6237 
6238 		extent_slot = path->slots[0];
6239 		leaf = path->nodes[0];
6240 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6241 	}
6242 #endif
6243 	BUG_ON(item_size < sizeof(*ei));
6244 	ei = btrfs_item_ptr(leaf, extent_slot,
6245 			    struct btrfs_extent_item);
6246 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6247 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6248 		struct btrfs_tree_block_info *bi;
6249 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6250 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6251 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6252 	}
6253 
6254 	refs = btrfs_extent_refs(leaf, ei);
6255 	if (refs < refs_to_drop) {
6256 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6257 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6258 		ret = -EINVAL;
6259 		btrfs_abort_transaction(trans, extent_root, ret);
6260 		goto out;
6261 	}
6262 	refs -= refs_to_drop;
6263 
6264 	if (refs > 0) {
6265 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6266 		if (extent_op)
6267 			__run_delayed_extent_op(extent_op, leaf, ei);
6268 		/*
6269 		 * In the case of inline back ref, reference count will
6270 		 * be updated by remove_extent_backref
6271 		 */
6272 		if (iref) {
6273 			BUG_ON(!found_extent);
6274 		} else {
6275 			btrfs_set_extent_refs(leaf, ei, refs);
6276 			btrfs_mark_buffer_dirty(leaf);
6277 		}
6278 		if (found_extent) {
6279 			ret = remove_extent_backref(trans, extent_root, path,
6280 						    iref, refs_to_drop,
6281 						    is_data, &last_ref);
6282 			if (ret) {
6283 				btrfs_abort_transaction(trans, extent_root, ret);
6284 				goto out;
6285 			}
6286 		}
6287 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6288 				 root_objectid);
6289 	} else {
6290 		if (found_extent) {
6291 			BUG_ON(is_data && refs_to_drop !=
6292 			       extent_data_ref_count(root, path, iref));
6293 			if (iref) {
6294 				BUG_ON(path->slots[0] != extent_slot);
6295 			} else {
6296 				BUG_ON(path->slots[0] != extent_slot + 1);
6297 				path->slots[0] = extent_slot;
6298 				num_to_del = 2;
6299 			}
6300 		}
6301 
6302 		last_ref = 1;
6303 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6304 				      num_to_del);
6305 		if (ret) {
6306 			btrfs_abort_transaction(trans, extent_root, ret);
6307 			goto out;
6308 		}
6309 		btrfs_release_path(path);
6310 
6311 		if (is_data) {
6312 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6313 			if (ret) {
6314 				btrfs_abort_transaction(trans, extent_root, ret);
6315 				goto out;
6316 			}
6317 		}
6318 
6319 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6320 		if (ret) {
6321 			btrfs_abort_transaction(trans, extent_root, ret);
6322 			goto out;
6323 		}
6324 	}
6325 	btrfs_release_path(path);
6326 
6327 	/* Deal with the quota accounting */
6328 	if (!ret && last_ref && !no_quota) {
6329 		int mod_seq = 0;
6330 
6331 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6332 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6333 			mod_seq = 1;
6334 
6335 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6336 					      bytenr, num_bytes, type,
6337 					      mod_seq);
6338 	}
6339 out:
6340 	btrfs_free_path(path);
6341 	return ret;
6342 }
6343 
6344 /*
6345  * when we free an block, it is possible (and likely) that we free the last
6346  * delayed ref for that extent as well.  This searches the delayed ref tree for
6347  * a given extent, and if there are no other delayed refs to be processed, it
6348  * removes it from the tree.
6349  */
6350 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6351 				      struct btrfs_root *root, u64 bytenr)
6352 {
6353 	struct btrfs_delayed_ref_head *head;
6354 	struct btrfs_delayed_ref_root *delayed_refs;
6355 	int ret = 0;
6356 
6357 	delayed_refs = &trans->transaction->delayed_refs;
6358 	spin_lock(&delayed_refs->lock);
6359 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6360 	if (!head)
6361 		goto out_delayed_unlock;
6362 
6363 	spin_lock(&head->lock);
6364 	if (rb_first(&head->ref_root))
6365 		goto out;
6366 
6367 	if (head->extent_op) {
6368 		if (!head->must_insert_reserved)
6369 			goto out;
6370 		btrfs_free_delayed_extent_op(head->extent_op);
6371 		head->extent_op = NULL;
6372 	}
6373 
6374 	/*
6375 	 * waiting for the lock here would deadlock.  If someone else has it
6376 	 * locked they are already in the process of dropping it anyway
6377 	 */
6378 	if (!mutex_trylock(&head->mutex))
6379 		goto out;
6380 
6381 	/*
6382 	 * at this point we have a head with no other entries.  Go
6383 	 * ahead and process it.
6384 	 */
6385 	head->node.in_tree = 0;
6386 	rb_erase(&head->href_node, &delayed_refs->href_root);
6387 
6388 	atomic_dec(&delayed_refs->num_entries);
6389 
6390 	/*
6391 	 * we don't take a ref on the node because we're removing it from the
6392 	 * tree, so we just steal the ref the tree was holding.
6393 	 */
6394 	delayed_refs->num_heads--;
6395 	if (head->processing == 0)
6396 		delayed_refs->num_heads_ready--;
6397 	head->processing = 0;
6398 	spin_unlock(&head->lock);
6399 	spin_unlock(&delayed_refs->lock);
6400 
6401 	BUG_ON(head->extent_op);
6402 	if (head->must_insert_reserved)
6403 		ret = 1;
6404 
6405 	mutex_unlock(&head->mutex);
6406 	btrfs_put_delayed_ref(&head->node);
6407 	return ret;
6408 out:
6409 	spin_unlock(&head->lock);
6410 
6411 out_delayed_unlock:
6412 	spin_unlock(&delayed_refs->lock);
6413 	return 0;
6414 }
6415 
6416 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6417 			   struct btrfs_root *root,
6418 			   struct extent_buffer *buf,
6419 			   u64 parent, int last_ref)
6420 {
6421 	int pin = 1;
6422 	int ret;
6423 
6424 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6425 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6426 					buf->start, buf->len,
6427 					parent, root->root_key.objectid,
6428 					btrfs_header_level(buf),
6429 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6430 		BUG_ON(ret); /* -ENOMEM */
6431 	}
6432 
6433 	if (!last_ref)
6434 		return;
6435 
6436 	if (btrfs_header_generation(buf) == trans->transid) {
6437 		struct btrfs_block_group_cache *cache;
6438 
6439 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6440 			ret = check_ref_cleanup(trans, root, buf->start);
6441 			if (!ret)
6442 				goto out;
6443 		}
6444 
6445 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6446 
6447 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6448 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6449 			btrfs_put_block_group(cache);
6450 			goto out;
6451 		}
6452 
6453 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6454 
6455 		btrfs_add_free_space(cache, buf->start, buf->len);
6456 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6457 		btrfs_put_block_group(cache);
6458 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6459 		pin = 0;
6460 	}
6461 out:
6462 	if (pin)
6463 		add_pinned_bytes(root->fs_info, buf->len,
6464 				 btrfs_header_level(buf),
6465 				 root->root_key.objectid);
6466 
6467 	/*
6468 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6469 	 * anymore.
6470 	 */
6471 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6472 }
6473 
6474 /* Can return -ENOMEM */
6475 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6476 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6477 		      u64 owner, u64 offset, int no_quota)
6478 {
6479 	int ret;
6480 	struct btrfs_fs_info *fs_info = root->fs_info;
6481 
6482 	if (btrfs_test_is_dummy_root(root))
6483 		return 0;
6484 
6485 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6486 
6487 	/*
6488 	 * tree log blocks never actually go into the extent allocation
6489 	 * tree, just update pinning info and exit early.
6490 	 */
6491 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6492 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6493 		/* unlocks the pinned mutex */
6494 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6495 		ret = 0;
6496 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6497 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6498 					num_bytes,
6499 					parent, root_objectid, (int)owner,
6500 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6501 	} else {
6502 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6503 						num_bytes,
6504 						parent, root_objectid, owner,
6505 						offset, BTRFS_DROP_DELAYED_REF,
6506 						NULL, no_quota);
6507 	}
6508 	return ret;
6509 }
6510 
6511 /*
6512  * when we wait for progress in the block group caching, its because
6513  * our allocation attempt failed at least once.  So, we must sleep
6514  * and let some progress happen before we try again.
6515  *
6516  * This function will sleep at least once waiting for new free space to
6517  * show up, and then it will check the block group free space numbers
6518  * for our min num_bytes.  Another option is to have it go ahead
6519  * and look in the rbtree for a free extent of a given size, but this
6520  * is a good start.
6521  *
6522  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6523  * any of the information in this block group.
6524  */
6525 static noinline void
6526 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6527 				u64 num_bytes)
6528 {
6529 	struct btrfs_caching_control *caching_ctl;
6530 
6531 	caching_ctl = get_caching_control(cache);
6532 	if (!caching_ctl)
6533 		return;
6534 
6535 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6536 		   (cache->free_space_ctl->free_space >= num_bytes));
6537 
6538 	put_caching_control(caching_ctl);
6539 }
6540 
6541 static noinline int
6542 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6543 {
6544 	struct btrfs_caching_control *caching_ctl;
6545 	int ret = 0;
6546 
6547 	caching_ctl = get_caching_control(cache);
6548 	if (!caching_ctl)
6549 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6550 
6551 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6552 	if (cache->cached == BTRFS_CACHE_ERROR)
6553 		ret = -EIO;
6554 	put_caching_control(caching_ctl);
6555 	return ret;
6556 }
6557 
6558 int __get_raid_index(u64 flags)
6559 {
6560 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6561 		return BTRFS_RAID_RAID10;
6562 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6563 		return BTRFS_RAID_RAID1;
6564 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6565 		return BTRFS_RAID_DUP;
6566 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6567 		return BTRFS_RAID_RAID0;
6568 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6569 		return BTRFS_RAID_RAID5;
6570 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6571 		return BTRFS_RAID_RAID6;
6572 
6573 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6574 }
6575 
6576 int get_block_group_index(struct btrfs_block_group_cache *cache)
6577 {
6578 	return __get_raid_index(cache->flags);
6579 }
6580 
6581 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6582 	[BTRFS_RAID_RAID10]	= "raid10",
6583 	[BTRFS_RAID_RAID1]	= "raid1",
6584 	[BTRFS_RAID_DUP]	= "dup",
6585 	[BTRFS_RAID_RAID0]	= "raid0",
6586 	[BTRFS_RAID_SINGLE]	= "single",
6587 	[BTRFS_RAID_RAID5]	= "raid5",
6588 	[BTRFS_RAID_RAID6]	= "raid6",
6589 };
6590 
6591 static const char *get_raid_name(enum btrfs_raid_types type)
6592 {
6593 	if (type >= BTRFS_NR_RAID_TYPES)
6594 		return NULL;
6595 
6596 	return btrfs_raid_type_names[type];
6597 }
6598 
6599 enum btrfs_loop_type {
6600 	LOOP_CACHING_NOWAIT = 0,
6601 	LOOP_CACHING_WAIT = 1,
6602 	LOOP_ALLOC_CHUNK = 2,
6603 	LOOP_NO_EMPTY_SIZE = 3,
6604 };
6605 
6606 static inline void
6607 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6608 		       int delalloc)
6609 {
6610 	if (delalloc)
6611 		down_read(&cache->data_rwsem);
6612 }
6613 
6614 static inline void
6615 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6616 		       int delalloc)
6617 {
6618 	btrfs_get_block_group(cache);
6619 	if (delalloc)
6620 		down_read(&cache->data_rwsem);
6621 }
6622 
6623 static struct btrfs_block_group_cache *
6624 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6625 		   struct btrfs_free_cluster *cluster,
6626 		   int delalloc)
6627 {
6628 	struct btrfs_block_group_cache *used_bg;
6629 	bool locked = false;
6630 again:
6631 	spin_lock(&cluster->refill_lock);
6632 	if (locked) {
6633 		if (used_bg == cluster->block_group)
6634 			return used_bg;
6635 
6636 		up_read(&used_bg->data_rwsem);
6637 		btrfs_put_block_group(used_bg);
6638 	}
6639 
6640 	used_bg = cluster->block_group;
6641 	if (!used_bg)
6642 		return NULL;
6643 
6644 	if (used_bg == block_group)
6645 		return used_bg;
6646 
6647 	btrfs_get_block_group(used_bg);
6648 
6649 	if (!delalloc)
6650 		return used_bg;
6651 
6652 	if (down_read_trylock(&used_bg->data_rwsem))
6653 		return used_bg;
6654 
6655 	spin_unlock(&cluster->refill_lock);
6656 	down_read(&used_bg->data_rwsem);
6657 	locked = true;
6658 	goto again;
6659 }
6660 
6661 static inline void
6662 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6663 			 int delalloc)
6664 {
6665 	if (delalloc)
6666 		up_read(&cache->data_rwsem);
6667 	btrfs_put_block_group(cache);
6668 }
6669 
6670 /*
6671  * walks the btree of allocated extents and find a hole of a given size.
6672  * The key ins is changed to record the hole:
6673  * ins->objectid == start position
6674  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6675  * ins->offset == the size of the hole.
6676  * Any available blocks before search_start are skipped.
6677  *
6678  * If there is no suitable free space, we will record the max size of
6679  * the free space extent currently.
6680  */
6681 static noinline int find_free_extent(struct btrfs_root *orig_root,
6682 				     u64 num_bytes, u64 empty_size,
6683 				     u64 hint_byte, struct btrfs_key *ins,
6684 				     u64 flags, int delalloc)
6685 {
6686 	int ret = 0;
6687 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6688 	struct btrfs_free_cluster *last_ptr = NULL;
6689 	struct btrfs_block_group_cache *block_group = NULL;
6690 	u64 search_start = 0;
6691 	u64 max_extent_size = 0;
6692 	int empty_cluster = 2 * 1024 * 1024;
6693 	struct btrfs_space_info *space_info;
6694 	int loop = 0;
6695 	int index = __get_raid_index(flags);
6696 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6697 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6698 	bool failed_cluster_refill = false;
6699 	bool failed_alloc = false;
6700 	bool use_cluster = true;
6701 	bool have_caching_bg = false;
6702 
6703 	WARN_ON(num_bytes < root->sectorsize);
6704 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6705 	ins->objectid = 0;
6706 	ins->offset = 0;
6707 
6708 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6709 
6710 	space_info = __find_space_info(root->fs_info, flags);
6711 	if (!space_info) {
6712 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6713 		return -ENOSPC;
6714 	}
6715 
6716 	/*
6717 	 * If the space info is for both data and metadata it means we have a
6718 	 * small filesystem and we can't use the clustering stuff.
6719 	 */
6720 	if (btrfs_mixed_space_info(space_info))
6721 		use_cluster = false;
6722 
6723 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6724 		last_ptr = &root->fs_info->meta_alloc_cluster;
6725 		if (!btrfs_test_opt(root, SSD))
6726 			empty_cluster = 64 * 1024;
6727 	}
6728 
6729 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6730 	    btrfs_test_opt(root, SSD)) {
6731 		last_ptr = &root->fs_info->data_alloc_cluster;
6732 	}
6733 
6734 	if (last_ptr) {
6735 		spin_lock(&last_ptr->lock);
6736 		if (last_ptr->block_group)
6737 			hint_byte = last_ptr->window_start;
6738 		spin_unlock(&last_ptr->lock);
6739 	}
6740 
6741 	search_start = max(search_start, first_logical_byte(root, 0));
6742 	search_start = max(search_start, hint_byte);
6743 
6744 	if (!last_ptr)
6745 		empty_cluster = 0;
6746 
6747 	if (search_start == hint_byte) {
6748 		block_group = btrfs_lookup_block_group(root->fs_info,
6749 						       search_start);
6750 		/*
6751 		 * we don't want to use the block group if it doesn't match our
6752 		 * allocation bits, or if its not cached.
6753 		 *
6754 		 * However if we are re-searching with an ideal block group
6755 		 * picked out then we don't care that the block group is cached.
6756 		 */
6757 		if (block_group && block_group_bits(block_group, flags) &&
6758 		    block_group->cached != BTRFS_CACHE_NO) {
6759 			down_read(&space_info->groups_sem);
6760 			if (list_empty(&block_group->list) ||
6761 			    block_group->ro) {
6762 				/*
6763 				 * someone is removing this block group,
6764 				 * we can't jump into the have_block_group
6765 				 * target because our list pointers are not
6766 				 * valid
6767 				 */
6768 				btrfs_put_block_group(block_group);
6769 				up_read(&space_info->groups_sem);
6770 			} else {
6771 				index = get_block_group_index(block_group);
6772 				btrfs_lock_block_group(block_group, delalloc);
6773 				goto have_block_group;
6774 			}
6775 		} else if (block_group) {
6776 			btrfs_put_block_group(block_group);
6777 		}
6778 	}
6779 search:
6780 	have_caching_bg = false;
6781 	down_read(&space_info->groups_sem);
6782 	list_for_each_entry(block_group, &space_info->block_groups[index],
6783 			    list) {
6784 		u64 offset;
6785 		int cached;
6786 
6787 		btrfs_grab_block_group(block_group, delalloc);
6788 		search_start = block_group->key.objectid;
6789 
6790 		/*
6791 		 * this can happen if we end up cycling through all the
6792 		 * raid types, but we want to make sure we only allocate
6793 		 * for the proper type.
6794 		 */
6795 		if (!block_group_bits(block_group, flags)) {
6796 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6797 				BTRFS_BLOCK_GROUP_RAID1 |
6798 				BTRFS_BLOCK_GROUP_RAID5 |
6799 				BTRFS_BLOCK_GROUP_RAID6 |
6800 				BTRFS_BLOCK_GROUP_RAID10;
6801 
6802 			/*
6803 			 * if they asked for extra copies and this block group
6804 			 * doesn't provide them, bail.  This does allow us to
6805 			 * fill raid0 from raid1.
6806 			 */
6807 			if ((flags & extra) && !(block_group->flags & extra))
6808 				goto loop;
6809 		}
6810 
6811 have_block_group:
6812 		cached = block_group_cache_done(block_group);
6813 		if (unlikely(!cached)) {
6814 			ret = cache_block_group(block_group, 0);
6815 			BUG_ON(ret < 0);
6816 			ret = 0;
6817 		}
6818 
6819 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6820 			goto loop;
6821 		if (unlikely(block_group->ro))
6822 			goto loop;
6823 
6824 		/*
6825 		 * Ok we want to try and use the cluster allocator, so
6826 		 * lets look there
6827 		 */
6828 		if (last_ptr) {
6829 			struct btrfs_block_group_cache *used_block_group;
6830 			unsigned long aligned_cluster;
6831 			/*
6832 			 * the refill lock keeps out other
6833 			 * people trying to start a new cluster
6834 			 */
6835 			used_block_group = btrfs_lock_cluster(block_group,
6836 							      last_ptr,
6837 							      delalloc);
6838 			if (!used_block_group)
6839 				goto refill_cluster;
6840 
6841 			if (used_block_group != block_group &&
6842 			    (used_block_group->ro ||
6843 			     !block_group_bits(used_block_group, flags)))
6844 				goto release_cluster;
6845 
6846 			offset = btrfs_alloc_from_cluster(used_block_group,
6847 						last_ptr,
6848 						num_bytes,
6849 						used_block_group->key.objectid,
6850 						&max_extent_size);
6851 			if (offset) {
6852 				/* we have a block, we're done */
6853 				spin_unlock(&last_ptr->refill_lock);
6854 				trace_btrfs_reserve_extent_cluster(root,
6855 						used_block_group,
6856 						search_start, num_bytes);
6857 				if (used_block_group != block_group) {
6858 					btrfs_release_block_group(block_group,
6859 								  delalloc);
6860 					block_group = used_block_group;
6861 				}
6862 				goto checks;
6863 			}
6864 
6865 			WARN_ON(last_ptr->block_group != used_block_group);
6866 release_cluster:
6867 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6868 			 * set up a new clusters, so lets just skip it
6869 			 * and let the allocator find whatever block
6870 			 * it can find.  If we reach this point, we
6871 			 * will have tried the cluster allocator
6872 			 * plenty of times and not have found
6873 			 * anything, so we are likely way too
6874 			 * fragmented for the clustering stuff to find
6875 			 * anything.
6876 			 *
6877 			 * However, if the cluster is taken from the
6878 			 * current block group, release the cluster
6879 			 * first, so that we stand a better chance of
6880 			 * succeeding in the unclustered
6881 			 * allocation.  */
6882 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6883 			    used_block_group != block_group) {
6884 				spin_unlock(&last_ptr->refill_lock);
6885 				btrfs_release_block_group(used_block_group,
6886 							  delalloc);
6887 				goto unclustered_alloc;
6888 			}
6889 
6890 			/*
6891 			 * this cluster didn't work out, free it and
6892 			 * start over
6893 			 */
6894 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6895 
6896 			if (used_block_group != block_group)
6897 				btrfs_release_block_group(used_block_group,
6898 							  delalloc);
6899 refill_cluster:
6900 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6901 				spin_unlock(&last_ptr->refill_lock);
6902 				goto unclustered_alloc;
6903 			}
6904 
6905 			aligned_cluster = max_t(unsigned long,
6906 						empty_cluster + empty_size,
6907 					      block_group->full_stripe_len);
6908 
6909 			/* allocate a cluster in this block group */
6910 			ret = btrfs_find_space_cluster(root, block_group,
6911 						       last_ptr, search_start,
6912 						       num_bytes,
6913 						       aligned_cluster);
6914 			if (ret == 0) {
6915 				/*
6916 				 * now pull our allocation out of this
6917 				 * cluster
6918 				 */
6919 				offset = btrfs_alloc_from_cluster(block_group,
6920 							last_ptr,
6921 							num_bytes,
6922 							search_start,
6923 							&max_extent_size);
6924 				if (offset) {
6925 					/* we found one, proceed */
6926 					spin_unlock(&last_ptr->refill_lock);
6927 					trace_btrfs_reserve_extent_cluster(root,
6928 						block_group, search_start,
6929 						num_bytes);
6930 					goto checks;
6931 				}
6932 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6933 				   && !failed_cluster_refill) {
6934 				spin_unlock(&last_ptr->refill_lock);
6935 
6936 				failed_cluster_refill = true;
6937 				wait_block_group_cache_progress(block_group,
6938 				       num_bytes + empty_cluster + empty_size);
6939 				goto have_block_group;
6940 			}
6941 
6942 			/*
6943 			 * at this point we either didn't find a cluster
6944 			 * or we weren't able to allocate a block from our
6945 			 * cluster.  Free the cluster we've been trying
6946 			 * to use, and go to the next block group
6947 			 */
6948 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6949 			spin_unlock(&last_ptr->refill_lock);
6950 			goto loop;
6951 		}
6952 
6953 unclustered_alloc:
6954 		spin_lock(&block_group->free_space_ctl->tree_lock);
6955 		if (cached &&
6956 		    block_group->free_space_ctl->free_space <
6957 		    num_bytes + empty_cluster + empty_size) {
6958 			if (block_group->free_space_ctl->free_space >
6959 			    max_extent_size)
6960 				max_extent_size =
6961 					block_group->free_space_ctl->free_space;
6962 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6963 			goto loop;
6964 		}
6965 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6966 
6967 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6968 						    num_bytes, empty_size,
6969 						    &max_extent_size);
6970 		/*
6971 		 * If we didn't find a chunk, and we haven't failed on this
6972 		 * block group before, and this block group is in the middle of
6973 		 * caching and we are ok with waiting, then go ahead and wait
6974 		 * for progress to be made, and set failed_alloc to true.
6975 		 *
6976 		 * If failed_alloc is true then we've already waited on this
6977 		 * block group once and should move on to the next block group.
6978 		 */
6979 		if (!offset && !failed_alloc && !cached &&
6980 		    loop > LOOP_CACHING_NOWAIT) {
6981 			wait_block_group_cache_progress(block_group,
6982 						num_bytes + empty_size);
6983 			failed_alloc = true;
6984 			goto have_block_group;
6985 		} else if (!offset) {
6986 			if (!cached)
6987 				have_caching_bg = true;
6988 			goto loop;
6989 		}
6990 checks:
6991 		search_start = ALIGN(offset, root->stripesize);
6992 
6993 		/* move on to the next group */
6994 		if (search_start + num_bytes >
6995 		    block_group->key.objectid + block_group->key.offset) {
6996 			btrfs_add_free_space(block_group, offset, num_bytes);
6997 			goto loop;
6998 		}
6999 
7000 		if (offset < search_start)
7001 			btrfs_add_free_space(block_group, offset,
7002 					     search_start - offset);
7003 		BUG_ON(offset > search_start);
7004 
7005 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7006 						  alloc_type, delalloc);
7007 		if (ret == -EAGAIN) {
7008 			btrfs_add_free_space(block_group, offset, num_bytes);
7009 			goto loop;
7010 		}
7011 
7012 		/* we are all good, lets return */
7013 		ins->objectid = search_start;
7014 		ins->offset = num_bytes;
7015 
7016 		trace_btrfs_reserve_extent(orig_root, block_group,
7017 					   search_start, num_bytes);
7018 		btrfs_release_block_group(block_group, delalloc);
7019 		break;
7020 loop:
7021 		failed_cluster_refill = false;
7022 		failed_alloc = false;
7023 		BUG_ON(index != get_block_group_index(block_group));
7024 		btrfs_release_block_group(block_group, delalloc);
7025 	}
7026 	up_read(&space_info->groups_sem);
7027 
7028 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7029 		goto search;
7030 
7031 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7032 		goto search;
7033 
7034 	/*
7035 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7036 	 *			caching kthreads as we move along
7037 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7038 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7039 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7040 	 *			again
7041 	 */
7042 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7043 		index = 0;
7044 		loop++;
7045 		if (loop == LOOP_ALLOC_CHUNK) {
7046 			struct btrfs_trans_handle *trans;
7047 			int exist = 0;
7048 
7049 			trans = current->journal_info;
7050 			if (trans)
7051 				exist = 1;
7052 			else
7053 				trans = btrfs_join_transaction(root);
7054 
7055 			if (IS_ERR(trans)) {
7056 				ret = PTR_ERR(trans);
7057 				goto out;
7058 			}
7059 
7060 			ret = do_chunk_alloc(trans, root, flags,
7061 					     CHUNK_ALLOC_FORCE);
7062 			/*
7063 			 * Do not bail out on ENOSPC since we
7064 			 * can do more things.
7065 			 */
7066 			if (ret < 0 && ret != -ENOSPC)
7067 				btrfs_abort_transaction(trans,
7068 							root, ret);
7069 			else
7070 				ret = 0;
7071 			if (!exist)
7072 				btrfs_end_transaction(trans, root);
7073 			if (ret)
7074 				goto out;
7075 		}
7076 
7077 		if (loop == LOOP_NO_EMPTY_SIZE) {
7078 			empty_size = 0;
7079 			empty_cluster = 0;
7080 		}
7081 
7082 		goto search;
7083 	} else if (!ins->objectid) {
7084 		ret = -ENOSPC;
7085 	} else if (ins->objectid) {
7086 		ret = 0;
7087 	}
7088 out:
7089 	if (ret == -ENOSPC)
7090 		ins->offset = max_extent_size;
7091 	return ret;
7092 }
7093 
7094 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7095 			    int dump_block_groups)
7096 {
7097 	struct btrfs_block_group_cache *cache;
7098 	int index = 0;
7099 
7100 	spin_lock(&info->lock);
7101 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7102 	       info->flags,
7103 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7104 	       info->bytes_reserved - info->bytes_readonly,
7105 	       (info->full) ? "" : "not ");
7106 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7107 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7108 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7109 	       info->bytes_reserved, info->bytes_may_use,
7110 	       info->bytes_readonly);
7111 	spin_unlock(&info->lock);
7112 
7113 	if (!dump_block_groups)
7114 		return;
7115 
7116 	down_read(&info->groups_sem);
7117 again:
7118 	list_for_each_entry(cache, &info->block_groups[index], list) {
7119 		spin_lock(&cache->lock);
7120 		printk(KERN_INFO "BTRFS: "
7121 			   "block group %llu has %llu bytes, "
7122 			   "%llu used %llu pinned %llu reserved %s\n",
7123 		       cache->key.objectid, cache->key.offset,
7124 		       btrfs_block_group_used(&cache->item), cache->pinned,
7125 		       cache->reserved, cache->ro ? "[readonly]" : "");
7126 		btrfs_dump_free_space(cache, bytes);
7127 		spin_unlock(&cache->lock);
7128 	}
7129 	if (++index < BTRFS_NR_RAID_TYPES)
7130 		goto again;
7131 	up_read(&info->groups_sem);
7132 }
7133 
7134 int btrfs_reserve_extent(struct btrfs_root *root,
7135 			 u64 num_bytes, u64 min_alloc_size,
7136 			 u64 empty_size, u64 hint_byte,
7137 			 struct btrfs_key *ins, int is_data, int delalloc)
7138 {
7139 	bool final_tried = false;
7140 	u64 flags;
7141 	int ret;
7142 
7143 	flags = btrfs_get_alloc_profile(root, is_data);
7144 again:
7145 	WARN_ON(num_bytes < root->sectorsize);
7146 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7147 			       flags, delalloc);
7148 
7149 	if (ret == -ENOSPC) {
7150 		if (!final_tried && ins->offset) {
7151 			num_bytes = min(num_bytes >> 1, ins->offset);
7152 			num_bytes = round_down(num_bytes, root->sectorsize);
7153 			num_bytes = max(num_bytes, min_alloc_size);
7154 			if (num_bytes == min_alloc_size)
7155 				final_tried = true;
7156 			goto again;
7157 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7158 			struct btrfs_space_info *sinfo;
7159 
7160 			sinfo = __find_space_info(root->fs_info, flags);
7161 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7162 				flags, num_bytes);
7163 			if (sinfo)
7164 				dump_space_info(sinfo, num_bytes, 1);
7165 		}
7166 	}
7167 
7168 	return ret;
7169 }
7170 
7171 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7172 					u64 start, u64 len,
7173 					int pin, int delalloc)
7174 {
7175 	struct btrfs_block_group_cache *cache;
7176 	int ret = 0;
7177 
7178 	cache = btrfs_lookup_block_group(root->fs_info, start);
7179 	if (!cache) {
7180 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7181 			start);
7182 		return -ENOSPC;
7183 	}
7184 
7185 	if (pin)
7186 		pin_down_extent(root, cache, start, len, 1);
7187 	else {
7188 		if (btrfs_test_opt(root, DISCARD))
7189 			ret = btrfs_discard_extent(root, start, len, NULL);
7190 		btrfs_add_free_space(cache, start, len);
7191 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7192 	}
7193 
7194 	btrfs_put_block_group(cache);
7195 
7196 	trace_btrfs_reserved_extent_free(root, start, len);
7197 
7198 	return ret;
7199 }
7200 
7201 int btrfs_free_reserved_extent(struct btrfs_root *root,
7202 			       u64 start, u64 len, int delalloc)
7203 {
7204 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7205 }
7206 
7207 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7208 				       u64 start, u64 len)
7209 {
7210 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7211 }
7212 
7213 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7214 				      struct btrfs_root *root,
7215 				      u64 parent, u64 root_objectid,
7216 				      u64 flags, u64 owner, u64 offset,
7217 				      struct btrfs_key *ins, int ref_mod)
7218 {
7219 	int ret;
7220 	struct btrfs_fs_info *fs_info = root->fs_info;
7221 	struct btrfs_extent_item *extent_item;
7222 	struct btrfs_extent_inline_ref *iref;
7223 	struct btrfs_path *path;
7224 	struct extent_buffer *leaf;
7225 	int type;
7226 	u32 size;
7227 
7228 	if (parent > 0)
7229 		type = BTRFS_SHARED_DATA_REF_KEY;
7230 	else
7231 		type = BTRFS_EXTENT_DATA_REF_KEY;
7232 
7233 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7234 
7235 	path = btrfs_alloc_path();
7236 	if (!path)
7237 		return -ENOMEM;
7238 
7239 	path->leave_spinning = 1;
7240 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7241 				      ins, size);
7242 	if (ret) {
7243 		btrfs_free_path(path);
7244 		return ret;
7245 	}
7246 
7247 	leaf = path->nodes[0];
7248 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7249 				     struct btrfs_extent_item);
7250 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7251 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7252 	btrfs_set_extent_flags(leaf, extent_item,
7253 			       flags | BTRFS_EXTENT_FLAG_DATA);
7254 
7255 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7256 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7257 	if (parent > 0) {
7258 		struct btrfs_shared_data_ref *ref;
7259 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7260 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7261 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7262 	} else {
7263 		struct btrfs_extent_data_ref *ref;
7264 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7265 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7266 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7267 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7268 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7269 	}
7270 
7271 	btrfs_mark_buffer_dirty(path->nodes[0]);
7272 	btrfs_free_path(path);
7273 
7274 	/* Always set parent to 0 here since its exclusive anyway. */
7275 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7276 				      ins->objectid, ins->offset,
7277 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7278 	if (ret)
7279 		return ret;
7280 
7281 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7282 	if (ret) { /* -ENOENT, logic error */
7283 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7284 			ins->objectid, ins->offset);
7285 		BUG();
7286 	}
7287 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7288 	return ret;
7289 }
7290 
7291 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7292 				     struct btrfs_root *root,
7293 				     u64 parent, u64 root_objectid,
7294 				     u64 flags, struct btrfs_disk_key *key,
7295 				     int level, struct btrfs_key *ins,
7296 				     int no_quota)
7297 {
7298 	int ret;
7299 	struct btrfs_fs_info *fs_info = root->fs_info;
7300 	struct btrfs_extent_item *extent_item;
7301 	struct btrfs_tree_block_info *block_info;
7302 	struct btrfs_extent_inline_ref *iref;
7303 	struct btrfs_path *path;
7304 	struct extent_buffer *leaf;
7305 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7306 	u64 num_bytes = ins->offset;
7307 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7308 						 SKINNY_METADATA);
7309 
7310 	if (!skinny_metadata)
7311 		size += sizeof(*block_info);
7312 
7313 	path = btrfs_alloc_path();
7314 	if (!path) {
7315 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7316 						   root->nodesize);
7317 		return -ENOMEM;
7318 	}
7319 
7320 	path->leave_spinning = 1;
7321 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7322 				      ins, size);
7323 	if (ret) {
7324 		btrfs_free_path(path);
7325 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7326 						   root->nodesize);
7327 		return ret;
7328 	}
7329 
7330 	leaf = path->nodes[0];
7331 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7332 				     struct btrfs_extent_item);
7333 	btrfs_set_extent_refs(leaf, extent_item, 1);
7334 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7335 	btrfs_set_extent_flags(leaf, extent_item,
7336 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7337 
7338 	if (skinny_metadata) {
7339 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7340 		num_bytes = root->nodesize;
7341 	} else {
7342 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7343 		btrfs_set_tree_block_key(leaf, block_info, key);
7344 		btrfs_set_tree_block_level(leaf, block_info, level);
7345 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7346 	}
7347 
7348 	if (parent > 0) {
7349 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7350 		btrfs_set_extent_inline_ref_type(leaf, iref,
7351 						 BTRFS_SHARED_BLOCK_REF_KEY);
7352 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7353 	} else {
7354 		btrfs_set_extent_inline_ref_type(leaf, iref,
7355 						 BTRFS_TREE_BLOCK_REF_KEY);
7356 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7357 	}
7358 
7359 	btrfs_mark_buffer_dirty(leaf);
7360 	btrfs_free_path(path);
7361 
7362 	if (!no_quota) {
7363 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7364 					      ins->objectid, num_bytes,
7365 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7366 		if (ret)
7367 			return ret;
7368 	}
7369 
7370 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7371 				 1);
7372 	if (ret) { /* -ENOENT, logic error */
7373 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7374 			ins->objectid, ins->offset);
7375 		BUG();
7376 	}
7377 
7378 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7379 	return ret;
7380 }
7381 
7382 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7383 				     struct btrfs_root *root,
7384 				     u64 root_objectid, u64 owner,
7385 				     u64 offset, struct btrfs_key *ins)
7386 {
7387 	int ret;
7388 
7389 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7390 
7391 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7392 					 ins->offset, 0,
7393 					 root_objectid, owner, offset,
7394 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7395 	return ret;
7396 }
7397 
7398 /*
7399  * this is used by the tree logging recovery code.  It records that
7400  * an extent has been allocated and makes sure to clear the free
7401  * space cache bits as well
7402  */
7403 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7404 				   struct btrfs_root *root,
7405 				   u64 root_objectid, u64 owner, u64 offset,
7406 				   struct btrfs_key *ins)
7407 {
7408 	int ret;
7409 	struct btrfs_block_group_cache *block_group;
7410 
7411 	/*
7412 	 * Mixed block groups will exclude before processing the log so we only
7413 	 * need to do the exlude dance if this fs isn't mixed.
7414 	 */
7415 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7416 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7417 		if (ret)
7418 			return ret;
7419 	}
7420 
7421 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7422 	if (!block_group)
7423 		return -EINVAL;
7424 
7425 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7426 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7427 	BUG_ON(ret); /* logic error */
7428 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7429 					 0, owner, offset, ins, 1);
7430 	btrfs_put_block_group(block_group);
7431 	return ret;
7432 }
7433 
7434 static struct extent_buffer *
7435 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7436 		      u64 bytenr, int level)
7437 {
7438 	struct extent_buffer *buf;
7439 
7440 	buf = btrfs_find_create_tree_block(root, bytenr);
7441 	if (!buf)
7442 		return ERR_PTR(-ENOMEM);
7443 	btrfs_set_header_generation(buf, trans->transid);
7444 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7445 	btrfs_tree_lock(buf);
7446 	clean_tree_block(trans, root->fs_info, buf);
7447 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7448 
7449 	btrfs_set_lock_blocking(buf);
7450 	btrfs_set_buffer_uptodate(buf);
7451 
7452 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7453 		buf->log_index = root->log_transid % 2;
7454 		/*
7455 		 * we allow two log transactions at a time, use different
7456 		 * EXENT bit to differentiate dirty pages.
7457 		 */
7458 		if (buf->log_index == 0)
7459 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7460 					buf->start + buf->len - 1, GFP_NOFS);
7461 		else
7462 			set_extent_new(&root->dirty_log_pages, buf->start,
7463 					buf->start + buf->len - 1, GFP_NOFS);
7464 	} else {
7465 		buf->log_index = -1;
7466 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7467 			 buf->start + buf->len - 1, GFP_NOFS);
7468 	}
7469 	trans->blocks_used++;
7470 	/* this returns a buffer locked for blocking */
7471 	return buf;
7472 }
7473 
7474 static struct btrfs_block_rsv *
7475 use_block_rsv(struct btrfs_trans_handle *trans,
7476 	      struct btrfs_root *root, u32 blocksize)
7477 {
7478 	struct btrfs_block_rsv *block_rsv;
7479 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7480 	int ret;
7481 	bool global_updated = false;
7482 
7483 	block_rsv = get_block_rsv(trans, root);
7484 
7485 	if (unlikely(block_rsv->size == 0))
7486 		goto try_reserve;
7487 again:
7488 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7489 	if (!ret)
7490 		return block_rsv;
7491 
7492 	if (block_rsv->failfast)
7493 		return ERR_PTR(ret);
7494 
7495 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7496 		global_updated = true;
7497 		update_global_block_rsv(root->fs_info);
7498 		goto again;
7499 	}
7500 
7501 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7502 		static DEFINE_RATELIMIT_STATE(_rs,
7503 				DEFAULT_RATELIMIT_INTERVAL * 10,
7504 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7505 		if (__ratelimit(&_rs))
7506 			WARN(1, KERN_DEBUG
7507 				"BTRFS: block rsv returned %d\n", ret);
7508 	}
7509 try_reserve:
7510 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7511 				     BTRFS_RESERVE_NO_FLUSH);
7512 	if (!ret)
7513 		return block_rsv;
7514 	/*
7515 	 * If we couldn't reserve metadata bytes try and use some from
7516 	 * the global reserve if its space type is the same as the global
7517 	 * reservation.
7518 	 */
7519 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7520 	    block_rsv->space_info == global_rsv->space_info) {
7521 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7522 		if (!ret)
7523 			return global_rsv;
7524 	}
7525 	return ERR_PTR(ret);
7526 }
7527 
7528 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7529 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7530 {
7531 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7532 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7533 }
7534 
7535 /*
7536  * finds a free extent and does all the dirty work required for allocation
7537  * returns the key for the extent through ins, and a tree buffer for
7538  * the first block of the extent through buf.
7539  *
7540  * returns the tree buffer or NULL.
7541  */
7542 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7543 					struct btrfs_root *root,
7544 					u64 parent, u64 root_objectid,
7545 					struct btrfs_disk_key *key, int level,
7546 					u64 hint, u64 empty_size)
7547 {
7548 	struct btrfs_key ins;
7549 	struct btrfs_block_rsv *block_rsv;
7550 	struct extent_buffer *buf;
7551 	u64 flags = 0;
7552 	int ret;
7553 	u32 blocksize = root->nodesize;
7554 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7555 						 SKINNY_METADATA);
7556 
7557 	if (btrfs_test_is_dummy_root(root)) {
7558 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7559 					    level);
7560 		if (!IS_ERR(buf))
7561 			root->alloc_bytenr += blocksize;
7562 		return buf;
7563 	}
7564 
7565 	block_rsv = use_block_rsv(trans, root, blocksize);
7566 	if (IS_ERR(block_rsv))
7567 		return ERR_CAST(block_rsv);
7568 
7569 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7570 				   empty_size, hint, &ins, 0, 0);
7571 	if (ret) {
7572 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7573 		return ERR_PTR(ret);
7574 	}
7575 
7576 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7577 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7578 
7579 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7580 		if (parent == 0)
7581 			parent = ins.objectid;
7582 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7583 	} else
7584 		BUG_ON(parent > 0);
7585 
7586 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7587 		struct btrfs_delayed_extent_op *extent_op;
7588 		extent_op = btrfs_alloc_delayed_extent_op();
7589 		BUG_ON(!extent_op); /* -ENOMEM */
7590 		if (key)
7591 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7592 		else
7593 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7594 		extent_op->flags_to_set = flags;
7595 		if (skinny_metadata)
7596 			extent_op->update_key = 0;
7597 		else
7598 			extent_op->update_key = 1;
7599 		extent_op->update_flags = 1;
7600 		extent_op->is_data = 0;
7601 		extent_op->level = level;
7602 
7603 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7604 					ins.objectid,
7605 					ins.offset, parent, root_objectid,
7606 					level, BTRFS_ADD_DELAYED_EXTENT,
7607 					extent_op, 0);
7608 		BUG_ON(ret); /* -ENOMEM */
7609 	}
7610 	return buf;
7611 }
7612 
7613 struct walk_control {
7614 	u64 refs[BTRFS_MAX_LEVEL];
7615 	u64 flags[BTRFS_MAX_LEVEL];
7616 	struct btrfs_key update_progress;
7617 	int stage;
7618 	int level;
7619 	int shared_level;
7620 	int update_ref;
7621 	int keep_locks;
7622 	int reada_slot;
7623 	int reada_count;
7624 	int for_reloc;
7625 };
7626 
7627 #define DROP_REFERENCE	1
7628 #define UPDATE_BACKREF	2
7629 
7630 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7631 				     struct btrfs_root *root,
7632 				     struct walk_control *wc,
7633 				     struct btrfs_path *path)
7634 {
7635 	u64 bytenr;
7636 	u64 generation;
7637 	u64 refs;
7638 	u64 flags;
7639 	u32 nritems;
7640 	u32 blocksize;
7641 	struct btrfs_key key;
7642 	struct extent_buffer *eb;
7643 	int ret;
7644 	int slot;
7645 	int nread = 0;
7646 
7647 	if (path->slots[wc->level] < wc->reada_slot) {
7648 		wc->reada_count = wc->reada_count * 2 / 3;
7649 		wc->reada_count = max(wc->reada_count, 2);
7650 	} else {
7651 		wc->reada_count = wc->reada_count * 3 / 2;
7652 		wc->reada_count = min_t(int, wc->reada_count,
7653 					BTRFS_NODEPTRS_PER_BLOCK(root));
7654 	}
7655 
7656 	eb = path->nodes[wc->level];
7657 	nritems = btrfs_header_nritems(eb);
7658 	blocksize = root->nodesize;
7659 
7660 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7661 		if (nread >= wc->reada_count)
7662 			break;
7663 
7664 		cond_resched();
7665 		bytenr = btrfs_node_blockptr(eb, slot);
7666 		generation = btrfs_node_ptr_generation(eb, slot);
7667 
7668 		if (slot == path->slots[wc->level])
7669 			goto reada;
7670 
7671 		if (wc->stage == UPDATE_BACKREF &&
7672 		    generation <= root->root_key.offset)
7673 			continue;
7674 
7675 		/* We don't lock the tree block, it's OK to be racy here */
7676 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7677 					       wc->level - 1, 1, &refs,
7678 					       &flags);
7679 		/* We don't care about errors in readahead. */
7680 		if (ret < 0)
7681 			continue;
7682 		BUG_ON(refs == 0);
7683 
7684 		if (wc->stage == DROP_REFERENCE) {
7685 			if (refs == 1)
7686 				goto reada;
7687 
7688 			if (wc->level == 1 &&
7689 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7690 				continue;
7691 			if (!wc->update_ref ||
7692 			    generation <= root->root_key.offset)
7693 				continue;
7694 			btrfs_node_key_to_cpu(eb, &key, slot);
7695 			ret = btrfs_comp_cpu_keys(&key,
7696 						  &wc->update_progress);
7697 			if (ret < 0)
7698 				continue;
7699 		} else {
7700 			if (wc->level == 1 &&
7701 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7702 				continue;
7703 		}
7704 reada:
7705 		readahead_tree_block(root, bytenr);
7706 		nread++;
7707 	}
7708 	wc->reada_slot = slot;
7709 }
7710 
7711 static int account_leaf_items(struct btrfs_trans_handle *trans,
7712 			      struct btrfs_root *root,
7713 			      struct extent_buffer *eb)
7714 {
7715 	int nr = btrfs_header_nritems(eb);
7716 	int i, extent_type, ret;
7717 	struct btrfs_key key;
7718 	struct btrfs_file_extent_item *fi;
7719 	u64 bytenr, num_bytes;
7720 
7721 	for (i = 0; i < nr; i++) {
7722 		btrfs_item_key_to_cpu(eb, &key, i);
7723 
7724 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7725 			continue;
7726 
7727 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7728 		/* filter out non qgroup-accountable extents  */
7729 		extent_type = btrfs_file_extent_type(eb, fi);
7730 
7731 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7732 			continue;
7733 
7734 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7735 		if (!bytenr)
7736 			continue;
7737 
7738 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7739 
7740 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7741 					      root->objectid,
7742 					      bytenr, num_bytes,
7743 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7744 		if (ret)
7745 			return ret;
7746 	}
7747 	return 0;
7748 }
7749 
7750 /*
7751  * Walk up the tree from the bottom, freeing leaves and any interior
7752  * nodes which have had all slots visited. If a node (leaf or
7753  * interior) is freed, the node above it will have it's slot
7754  * incremented. The root node will never be freed.
7755  *
7756  * At the end of this function, we should have a path which has all
7757  * slots incremented to the next position for a search. If we need to
7758  * read a new node it will be NULL and the node above it will have the
7759  * correct slot selected for a later read.
7760  *
7761  * If we increment the root nodes slot counter past the number of
7762  * elements, 1 is returned to signal completion of the search.
7763  */
7764 static int adjust_slots_upwards(struct btrfs_root *root,
7765 				struct btrfs_path *path, int root_level)
7766 {
7767 	int level = 0;
7768 	int nr, slot;
7769 	struct extent_buffer *eb;
7770 
7771 	if (root_level == 0)
7772 		return 1;
7773 
7774 	while (level <= root_level) {
7775 		eb = path->nodes[level];
7776 		nr = btrfs_header_nritems(eb);
7777 		path->slots[level]++;
7778 		slot = path->slots[level];
7779 		if (slot >= nr || level == 0) {
7780 			/*
7781 			 * Don't free the root -  we will detect this
7782 			 * condition after our loop and return a
7783 			 * positive value for caller to stop walking the tree.
7784 			 */
7785 			if (level != root_level) {
7786 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7787 				path->locks[level] = 0;
7788 
7789 				free_extent_buffer(eb);
7790 				path->nodes[level] = NULL;
7791 				path->slots[level] = 0;
7792 			}
7793 		} else {
7794 			/*
7795 			 * We have a valid slot to walk back down
7796 			 * from. Stop here so caller can process these
7797 			 * new nodes.
7798 			 */
7799 			break;
7800 		}
7801 
7802 		level++;
7803 	}
7804 
7805 	eb = path->nodes[root_level];
7806 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7807 		return 1;
7808 
7809 	return 0;
7810 }
7811 
7812 /*
7813  * root_eb is the subtree root and is locked before this function is called.
7814  */
7815 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7816 				  struct btrfs_root *root,
7817 				  struct extent_buffer *root_eb,
7818 				  u64 root_gen,
7819 				  int root_level)
7820 {
7821 	int ret = 0;
7822 	int level;
7823 	struct extent_buffer *eb = root_eb;
7824 	struct btrfs_path *path = NULL;
7825 
7826 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7827 	BUG_ON(root_eb == NULL);
7828 
7829 	if (!root->fs_info->quota_enabled)
7830 		return 0;
7831 
7832 	if (!extent_buffer_uptodate(root_eb)) {
7833 		ret = btrfs_read_buffer(root_eb, root_gen);
7834 		if (ret)
7835 			goto out;
7836 	}
7837 
7838 	if (root_level == 0) {
7839 		ret = account_leaf_items(trans, root, root_eb);
7840 		goto out;
7841 	}
7842 
7843 	path = btrfs_alloc_path();
7844 	if (!path)
7845 		return -ENOMEM;
7846 
7847 	/*
7848 	 * Walk down the tree.  Missing extent blocks are filled in as
7849 	 * we go. Metadata is accounted every time we read a new
7850 	 * extent block.
7851 	 *
7852 	 * When we reach a leaf, we account for file extent items in it,
7853 	 * walk back up the tree (adjusting slot pointers as we go)
7854 	 * and restart the search process.
7855 	 */
7856 	extent_buffer_get(root_eb); /* For path */
7857 	path->nodes[root_level] = root_eb;
7858 	path->slots[root_level] = 0;
7859 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7860 walk_down:
7861 	level = root_level;
7862 	while (level >= 0) {
7863 		if (path->nodes[level] == NULL) {
7864 			int parent_slot;
7865 			u64 child_gen;
7866 			u64 child_bytenr;
7867 
7868 			/* We need to get child blockptr/gen from
7869 			 * parent before we can read it. */
7870 			eb = path->nodes[level + 1];
7871 			parent_slot = path->slots[level + 1];
7872 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7873 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7874 
7875 			eb = read_tree_block(root, child_bytenr, child_gen);
7876 			if (!eb || !extent_buffer_uptodate(eb)) {
7877 				ret = -EIO;
7878 				goto out;
7879 			}
7880 
7881 			path->nodes[level] = eb;
7882 			path->slots[level] = 0;
7883 
7884 			btrfs_tree_read_lock(eb);
7885 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7886 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7887 
7888 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7889 						root->objectid,
7890 						child_bytenr,
7891 						root->nodesize,
7892 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7893 						0);
7894 			if (ret)
7895 				goto out;
7896 
7897 		}
7898 
7899 		if (level == 0) {
7900 			ret = account_leaf_items(trans, root, path->nodes[level]);
7901 			if (ret)
7902 				goto out;
7903 
7904 			/* Nonzero return here means we completed our search */
7905 			ret = adjust_slots_upwards(root, path, root_level);
7906 			if (ret)
7907 				break;
7908 
7909 			/* Restart search with new slots */
7910 			goto walk_down;
7911 		}
7912 
7913 		level--;
7914 	}
7915 
7916 	ret = 0;
7917 out:
7918 	btrfs_free_path(path);
7919 
7920 	return ret;
7921 }
7922 
7923 /*
7924  * helper to process tree block while walking down the tree.
7925  *
7926  * when wc->stage == UPDATE_BACKREF, this function updates
7927  * back refs for pointers in the block.
7928  *
7929  * NOTE: return value 1 means we should stop walking down.
7930  */
7931 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7932 				   struct btrfs_root *root,
7933 				   struct btrfs_path *path,
7934 				   struct walk_control *wc, int lookup_info)
7935 {
7936 	int level = wc->level;
7937 	struct extent_buffer *eb = path->nodes[level];
7938 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7939 	int ret;
7940 
7941 	if (wc->stage == UPDATE_BACKREF &&
7942 	    btrfs_header_owner(eb) != root->root_key.objectid)
7943 		return 1;
7944 
7945 	/*
7946 	 * when reference count of tree block is 1, it won't increase
7947 	 * again. once full backref flag is set, we never clear it.
7948 	 */
7949 	if (lookup_info &&
7950 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7951 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7952 		BUG_ON(!path->locks[level]);
7953 		ret = btrfs_lookup_extent_info(trans, root,
7954 					       eb->start, level, 1,
7955 					       &wc->refs[level],
7956 					       &wc->flags[level]);
7957 		BUG_ON(ret == -ENOMEM);
7958 		if (ret)
7959 			return ret;
7960 		BUG_ON(wc->refs[level] == 0);
7961 	}
7962 
7963 	if (wc->stage == DROP_REFERENCE) {
7964 		if (wc->refs[level] > 1)
7965 			return 1;
7966 
7967 		if (path->locks[level] && !wc->keep_locks) {
7968 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7969 			path->locks[level] = 0;
7970 		}
7971 		return 0;
7972 	}
7973 
7974 	/* wc->stage == UPDATE_BACKREF */
7975 	if (!(wc->flags[level] & flag)) {
7976 		BUG_ON(!path->locks[level]);
7977 		ret = btrfs_inc_ref(trans, root, eb, 1);
7978 		BUG_ON(ret); /* -ENOMEM */
7979 		ret = btrfs_dec_ref(trans, root, eb, 0);
7980 		BUG_ON(ret); /* -ENOMEM */
7981 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7982 						  eb->len, flag,
7983 						  btrfs_header_level(eb), 0);
7984 		BUG_ON(ret); /* -ENOMEM */
7985 		wc->flags[level] |= flag;
7986 	}
7987 
7988 	/*
7989 	 * the block is shared by multiple trees, so it's not good to
7990 	 * keep the tree lock
7991 	 */
7992 	if (path->locks[level] && level > 0) {
7993 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7994 		path->locks[level] = 0;
7995 	}
7996 	return 0;
7997 }
7998 
7999 /*
8000  * helper to process tree block pointer.
8001  *
8002  * when wc->stage == DROP_REFERENCE, this function checks
8003  * reference count of the block pointed to. if the block
8004  * is shared and we need update back refs for the subtree
8005  * rooted at the block, this function changes wc->stage to
8006  * UPDATE_BACKREF. if the block is shared and there is no
8007  * need to update back, this function drops the reference
8008  * to the block.
8009  *
8010  * NOTE: return value 1 means we should stop walking down.
8011  */
8012 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8013 				 struct btrfs_root *root,
8014 				 struct btrfs_path *path,
8015 				 struct walk_control *wc, int *lookup_info)
8016 {
8017 	u64 bytenr;
8018 	u64 generation;
8019 	u64 parent;
8020 	u32 blocksize;
8021 	struct btrfs_key key;
8022 	struct extent_buffer *next;
8023 	int level = wc->level;
8024 	int reada = 0;
8025 	int ret = 0;
8026 	bool need_account = false;
8027 
8028 	generation = btrfs_node_ptr_generation(path->nodes[level],
8029 					       path->slots[level]);
8030 	/*
8031 	 * if the lower level block was created before the snapshot
8032 	 * was created, we know there is no need to update back refs
8033 	 * for the subtree
8034 	 */
8035 	if (wc->stage == UPDATE_BACKREF &&
8036 	    generation <= root->root_key.offset) {
8037 		*lookup_info = 1;
8038 		return 1;
8039 	}
8040 
8041 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8042 	blocksize = root->nodesize;
8043 
8044 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8045 	if (!next) {
8046 		next = btrfs_find_create_tree_block(root, bytenr);
8047 		if (!next)
8048 			return -ENOMEM;
8049 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8050 					       level - 1);
8051 		reada = 1;
8052 	}
8053 	btrfs_tree_lock(next);
8054 	btrfs_set_lock_blocking(next);
8055 
8056 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8057 				       &wc->refs[level - 1],
8058 				       &wc->flags[level - 1]);
8059 	if (ret < 0) {
8060 		btrfs_tree_unlock(next);
8061 		return ret;
8062 	}
8063 
8064 	if (unlikely(wc->refs[level - 1] == 0)) {
8065 		btrfs_err(root->fs_info, "Missing references.");
8066 		BUG();
8067 	}
8068 	*lookup_info = 0;
8069 
8070 	if (wc->stage == DROP_REFERENCE) {
8071 		if (wc->refs[level - 1] > 1) {
8072 			need_account = true;
8073 			if (level == 1 &&
8074 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8075 				goto skip;
8076 
8077 			if (!wc->update_ref ||
8078 			    generation <= root->root_key.offset)
8079 				goto skip;
8080 
8081 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8082 					      path->slots[level]);
8083 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8084 			if (ret < 0)
8085 				goto skip;
8086 
8087 			wc->stage = UPDATE_BACKREF;
8088 			wc->shared_level = level - 1;
8089 		}
8090 	} else {
8091 		if (level == 1 &&
8092 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8093 			goto skip;
8094 	}
8095 
8096 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8097 		btrfs_tree_unlock(next);
8098 		free_extent_buffer(next);
8099 		next = NULL;
8100 		*lookup_info = 1;
8101 	}
8102 
8103 	if (!next) {
8104 		if (reada && level == 1)
8105 			reada_walk_down(trans, root, wc, path);
8106 		next = read_tree_block(root, bytenr, generation);
8107 		if (!next || !extent_buffer_uptodate(next)) {
8108 			free_extent_buffer(next);
8109 			return -EIO;
8110 		}
8111 		btrfs_tree_lock(next);
8112 		btrfs_set_lock_blocking(next);
8113 	}
8114 
8115 	level--;
8116 	BUG_ON(level != btrfs_header_level(next));
8117 	path->nodes[level] = next;
8118 	path->slots[level] = 0;
8119 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8120 	wc->level = level;
8121 	if (wc->level == 1)
8122 		wc->reada_slot = 0;
8123 	return 0;
8124 skip:
8125 	wc->refs[level - 1] = 0;
8126 	wc->flags[level - 1] = 0;
8127 	if (wc->stage == DROP_REFERENCE) {
8128 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8129 			parent = path->nodes[level]->start;
8130 		} else {
8131 			BUG_ON(root->root_key.objectid !=
8132 			       btrfs_header_owner(path->nodes[level]));
8133 			parent = 0;
8134 		}
8135 
8136 		if (need_account) {
8137 			ret = account_shared_subtree(trans, root, next,
8138 						     generation, level - 1);
8139 			if (ret) {
8140 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8141 					"%d accounting shared subtree. Quota "
8142 					"is out of sync, rescan required.\n",
8143 					root->fs_info->sb->s_id, ret);
8144 			}
8145 		}
8146 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8147 				root->root_key.objectid, level - 1, 0, 0);
8148 		BUG_ON(ret); /* -ENOMEM */
8149 	}
8150 	btrfs_tree_unlock(next);
8151 	free_extent_buffer(next);
8152 	*lookup_info = 1;
8153 	return 1;
8154 }
8155 
8156 /*
8157  * helper to process tree block while walking up the tree.
8158  *
8159  * when wc->stage == DROP_REFERENCE, this function drops
8160  * reference count on the block.
8161  *
8162  * when wc->stage == UPDATE_BACKREF, this function changes
8163  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8164  * to UPDATE_BACKREF previously while processing the block.
8165  *
8166  * NOTE: return value 1 means we should stop walking up.
8167  */
8168 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8169 				 struct btrfs_root *root,
8170 				 struct btrfs_path *path,
8171 				 struct walk_control *wc)
8172 {
8173 	int ret;
8174 	int level = wc->level;
8175 	struct extent_buffer *eb = path->nodes[level];
8176 	u64 parent = 0;
8177 
8178 	if (wc->stage == UPDATE_BACKREF) {
8179 		BUG_ON(wc->shared_level < level);
8180 		if (level < wc->shared_level)
8181 			goto out;
8182 
8183 		ret = find_next_key(path, level + 1, &wc->update_progress);
8184 		if (ret > 0)
8185 			wc->update_ref = 0;
8186 
8187 		wc->stage = DROP_REFERENCE;
8188 		wc->shared_level = -1;
8189 		path->slots[level] = 0;
8190 
8191 		/*
8192 		 * check reference count again if the block isn't locked.
8193 		 * we should start walking down the tree again if reference
8194 		 * count is one.
8195 		 */
8196 		if (!path->locks[level]) {
8197 			BUG_ON(level == 0);
8198 			btrfs_tree_lock(eb);
8199 			btrfs_set_lock_blocking(eb);
8200 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8201 
8202 			ret = btrfs_lookup_extent_info(trans, root,
8203 						       eb->start, level, 1,
8204 						       &wc->refs[level],
8205 						       &wc->flags[level]);
8206 			if (ret < 0) {
8207 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8208 				path->locks[level] = 0;
8209 				return ret;
8210 			}
8211 			BUG_ON(wc->refs[level] == 0);
8212 			if (wc->refs[level] == 1) {
8213 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8214 				path->locks[level] = 0;
8215 				return 1;
8216 			}
8217 		}
8218 	}
8219 
8220 	/* wc->stage == DROP_REFERENCE */
8221 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8222 
8223 	if (wc->refs[level] == 1) {
8224 		if (level == 0) {
8225 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8226 				ret = btrfs_dec_ref(trans, root, eb, 1);
8227 			else
8228 				ret = btrfs_dec_ref(trans, root, eb, 0);
8229 			BUG_ON(ret); /* -ENOMEM */
8230 			ret = account_leaf_items(trans, root, eb);
8231 			if (ret) {
8232 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8233 					"%d accounting leaf items. Quota "
8234 					"is out of sync, rescan required.\n",
8235 					root->fs_info->sb->s_id, ret);
8236 			}
8237 		}
8238 		/* make block locked assertion in clean_tree_block happy */
8239 		if (!path->locks[level] &&
8240 		    btrfs_header_generation(eb) == trans->transid) {
8241 			btrfs_tree_lock(eb);
8242 			btrfs_set_lock_blocking(eb);
8243 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8244 		}
8245 		clean_tree_block(trans, root->fs_info, eb);
8246 	}
8247 
8248 	if (eb == root->node) {
8249 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8250 			parent = eb->start;
8251 		else
8252 			BUG_ON(root->root_key.objectid !=
8253 			       btrfs_header_owner(eb));
8254 	} else {
8255 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8256 			parent = path->nodes[level + 1]->start;
8257 		else
8258 			BUG_ON(root->root_key.objectid !=
8259 			       btrfs_header_owner(path->nodes[level + 1]));
8260 	}
8261 
8262 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8263 out:
8264 	wc->refs[level] = 0;
8265 	wc->flags[level] = 0;
8266 	return 0;
8267 }
8268 
8269 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8270 				   struct btrfs_root *root,
8271 				   struct btrfs_path *path,
8272 				   struct walk_control *wc)
8273 {
8274 	int level = wc->level;
8275 	int lookup_info = 1;
8276 	int ret;
8277 
8278 	while (level >= 0) {
8279 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8280 		if (ret > 0)
8281 			break;
8282 
8283 		if (level == 0)
8284 			break;
8285 
8286 		if (path->slots[level] >=
8287 		    btrfs_header_nritems(path->nodes[level]))
8288 			break;
8289 
8290 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8291 		if (ret > 0) {
8292 			path->slots[level]++;
8293 			continue;
8294 		} else if (ret < 0)
8295 			return ret;
8296 		level = wc->level;
8297 	}
8298 	return 0;
8299 }
8300 
8301 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8302 				 struct btrfs_root *root,
8303 				 struct btrfs_path *path,
8304 				 struct walk_control *wc, int max_level)
8305 {
8306 	int level = wc->level;
8307 	int ret;
8308 
8309 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8310 	while (level < max_level && path->nodes[level]) {
8311 		wc->level = level;
8312 		if (path->slots[level] + 1 <
8313 		    btrfs_header_nritems(path->nodes[level])) {
8314 			path->slots[level]++;
8315 			return 0;
8316 		} else {
8317 			ret = walk_up_proc(trans, root, path, wc);
8318 			if (ret > 0)
8319 				return 0;
8320 
8321 			if (path->locks[level]) {
8322 				btrfs_tree_unlock_rw(path->nodes[level],
8323 						     path->locks[level]);
8324 				path->locks[level] = 0;
8325 			}
8326 			free_extent_buffer(path->nodes[level]);
8327 			path->nodes[level] = NULL;
8328 			level++;
8329 		}
8330 	}
8331 	return 1;
8332 }
8333 
8334 /*
8335  * drop a subvolume tree.
8336  *
8337  * this function traverses the tree freeing any blocks that only
8338  * referenced by the tree.
8339  *
8340  * when a shared tree block is found. this function decreases its
8341  * reference count by one. if update_ref is true, this function
8342  * also make sure backrefs for the shared block and all lower level
8343  * blocks are properly updated.
8344  *
8345  * If called with for_reloc == 0, may exit early with -EAGAIN
8346  */
8347 int btrfs_drop_snapshot(struct btrfs_root *root,
8348 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8349 			 int for_reloc)
8350 {
8351 	struct btrfs_path *path;
8352 	struct btrfs_trans_handle *trans;
8353 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8354 	struct btrfs_root_item *root_item = &root->root_item;
8355 	struct walk_control *wc;
8356 	struct btrfs_key key;
8357 	int err = 0;
8358 	int ret;
8359 	int level;
8360 	bool root_dropped = false;
8361 
8362 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8363 
8364 	path = btrfs_alloc_path();
8365 	if (!path) {
8366 		err = -ENOMEM;
8367 		goto out;
8368 	}
8369 
8370 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8371 	if (!wc) {
8372 		btrfs_free_path(path);
8373 		err = -ENOMEM;
8374 		goto out;
8375 	}
8376 
8377 	trans = btrfs_start_transaction(tree_root, 0);
8378 	if (IS_ERR(trans)) {
8379 		err = PTR_ERR(trans);
8380 		goto out_free;
8381 	}
8382 
8383 	if (block_rsv)
8384 		trans->block_rsv = block_rsv;
8385 
8386 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8387 		level = btrfs_header_level(root->node);
8388 		path->nodes[level] = btrfs_lock_root_node(root);
8389 		btrfs_set_lock_blocking(path->nodes[level]);
8390 		path->slots[level] = 0;
8391 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8392 		memset(&wc->update_progress, 0,
8393 		       sizeof(wc->update_progress));
8394 	} else {
8395 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8396 		memcpy(&wc->update_progress, &key,
8397 		       sizeof(wc->update_progress));
8398 
8399 		level = root_item->drop_level;
8400 		BUG_ON(level == 0);
8401 		path->lowest_level = level;
8402 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8403 		path->lowest_level = 0;
8404 		if (ret < 0) {
8405 			err = ret;
8406 			goto out_end_trans;
8407 		}
8408 		WARN_ON(ret > 0);
8409 
8410 		/*
8411 		 * unlock our path, this is safe because only this
8412 		 * function is allowed to delete this snapshot
8413 		 */
8414 		btrfs_unlock_up_safe(path, 0);
8415 
8416 		level = btrfs_header_level(root->node);
8417 		while (1) {
8418 			btrfs_tree_lock(path->nodes[level]);
8419 			btrfs_set_lock_blocking(path->nodes[level]);
8420 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8421 
8422 			ret = btrfs_lookup_extent_info(trans, root,
8423 						path->nodes[level]->start,
8424 						level, 1, &wc->refs[level],
8425 						&wc->flags[level]);
8426 			if (ret < 0) {
8427 				err = ret;
8428 				goto out_end_trans;
8429 			}
8430 			BUG_ON(wc->refs[level] == 0);
8431 
8432 			if (level == root_item->drop_level)
8433 				break;
8434 
8435 			btrfs_tree_unlock(path->nodes[level]);
8436 			path->locks[level] = 0;
8437 			WARN_ON(wc->refs[level] != 1);
8438 			level--;
8439 		}
8440 	}
8441 
8442 	wc->level = level;
8443 	wc->shared_level = -1;
8444 	wc->stage = DROP_REFERENCE;
8445 	wc->update_ref = update_ref;
8446 	wc->keep_locks = 0;
8447 	wc->for_reloc = for_reloc;
8448 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8449 
8450 	while (1) {
8451 
8452 		ret = walk_down_tree(trans, root, path, wc);
8453 		if (ret < 0) {
8454 			err = ret;
8455 			break;
8456 		}
8457 
8458 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8459 		if (ret < 0) {
8460 			err = ret;
8461 			break;
8462 		}
8463 
8464 		if (ret > 0) {
8465 			BUG_ON(wc->stage != DROP_REFERENCE);
8466 			break;
8467 		}
8468 
8469 		if (wc->stage == DROP_REFERENCE) {
8470 			level = wc->level;
8471 			btrfs_node_key(path->nodes[level],
8472 				       &root_item->drop_progress,
8473 				       path->slots[level]);
8474 			root_item->drop_level = level;
8475 		}
8476 
8477 		BUG_ON(wc->level == 0);
8478 		if (btrfs_should_end_transaction(trans, tree_root) ||
8479 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8480 			ret = btrfs_update_root(trans, tree_root,
8481 						&root->root_key,
8482 						root_item);
8483 			if (ret) {
8484 				btrfs_abort_transaction(trans, tree_root, ret);
8485 				err = ret;
8486 				goto out_end_trans;
8487 			}
8488 
8489 			/*
8490 			 * Qgroup update accounting is run from
8491 			 * delayed ref handling. This usually works
8492 			 * out because delayed refs are normally the
8493 			 * only way qgroup updates are added. However,
8494 			 * we may have added updates during our tree
8495 			 * walk so run qgroups here to make sure we
8496 			 * don't lose any updates.
8497 			 */
8498 			ret = btrfs_delayed_qgroup_accounting(trans,
8499 							      root->fs_info);
8500 			if (ret)
8501 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8502 						   "running qgroup updates "
8503 						   "during snapshot delete. "
8504 						   "Quota is out of sync, "
8505 						   "rescan required.\n", ret);
8506 
8507 			btrfs_end_transaction_throttle(trans, tree_root);
8508 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8509 				pr_debug("BTRFS: drop snapshot early exit\n");
8510 				err = -EAGAIN;
8511 				goto out_free;
8512 			}
8513 
8514 			trans = btrfs_start_transaction(tree_root, 0);
8515 			if (IS_ERR(trans)) {
8516 				err = PTR_ERR(trans);
8517 				goto out_free;
8518 			}
8519 			if (block_rsv)
8520 				trans->block_rsv = block_rsv;
8521 		}
8522 	}
8523 	btrfs_release_path(path);
8524 	if (err)
8525 		goto out_end_trans;
8526 
8527 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8528 	if (ret) {
8529 		btrfs_abort_transaction(trans, tree_root, ret);
8530 		goto out_end_trans;
8531 	}
8532 
8533 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8534 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8535 				      NULL, NULL);
8536 		if (ret < 0) {
8537 			btrfs_abort_transaction(trans, tree_root, ret);
8538 			err = ret;
8539 			goto out_end_trans;
8540 		} else if (ret > 0) {
8541 			/* if we fail to delete the orphan item this time
8542 			 * around, it'll get picked up the next time.
8543 			 *
8544 			 * The most common failure here is just -ENOENT.
8545 			 */
8546 			btrfs_del_orphan_item(trans, tree_root,
8547 					      root->root_key.objectid);
8548 		}
8549 	}
8550 
8551 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8552 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8553 	} else {
8554 		free_extent_buffer(root->node);
8555 		free_extent_buffer(root->commit_root);
8556 		btrfs_put_fs_root(root);
8557 	}
8558 	root_dropped = true;
8559 out_end_trans:
8560 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8561 	if (ret)
8562 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8563 				   "running qgroup updates "
8564 				   "during snapshot delete. "
8565 				   "Quota is out of sync, "
8566 				   "rescan required.\n", ret);
8567 
8568 	btrfs_end_transaction_throttle(trans, tree_root);
8569 out_free:
8570 	kfree(wc);
8571 	btrfs_free_path(path);
8572 out:
8573 	/*
8574 	 * So if we need to stop dropping the snapshot for whatever reason we
8575 	 * need to make sure to add it back to the dead root list so that we
8576 	 * keep trying to do the work later.  This also cleans up roots if we
8577 	 * don't have it in the radix (like when we recover after a power fail
8578 	 * or unmount) so we don't leak memory.
8579 	 */
8580 	if (!for_reloc && root_dropped == false)
8581 		btrfs_add_dead_root(root);
8582 	if (err && err != -EAGAIN)
8583 		btrfs_std_error(root->fs_info, err);
8584 	return err;
8585 }
8586 
8587 /*
8588  * drop subtree rooted at tree block 'node'.
8589  *
8590  * NOTE: this function will unlock and release tree block 'node'
8591  * only used by relocation code
8592  */
8593 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8594 			struct btrfs_root *root,
8595 			struct extent_buffer *node,
8596 			struct extent_buffer *parent)
8597 {
8598 	struct btrfs_path *path;
8599 	struct walk_control *wc;
8600 	int level;
8601 	int parent_level;
8602 	int ret = 0;
8603 	int wret;
8604 
8605 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8606 
8607 	path = btrfs_alloc_path();
8608 	if (!path)
8609 		return -ENOMEM;
8610 
8611 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8612 	if (!wc) {
8613 		btrfs_free_path(path);
8614 		return -ENOMEM;
8615 	}
8616 
8617 	btrfs_assert_tree_locked(parent);
8618 	parent_level = btrfs_header_level(parent);
8619 	extent_buffer_get(parent);
8620 	path->nodes[parent_level] = parent;
8621 	path->slots[parent_level] = btrfs_header_nritems(parent);
8622 
8623 	btrfs_assert_tree_locked(node);
8624 	level = btrfs_header_level(node);
8625 	path->nodes[level] = node;
8626 	path->slots[level] = 0;
8627 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8628 
8629 	wc->refs[parent_level] = 1;
8630 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8631 	wc->level = level;
8632 	wc->shared_level = -1;
8633 	wc->stage = DROP_REFERENCE;
8634 	wc->update_ref = 0;
8635 	wc->keep_locks = 1;
8636 	wc->for_reloc = 1;
8637 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8638 
8639 	while (1) {
8640 		wret = walk_down_tree(trans, root, path, wc);
8641 		if (wret < 0) {
8642 			ret = wret;
8643 			break;
8644 		}
8645 
8646 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8647 		if (wret < 0)
8648 			ret = wret;
8649 		if (wret != 0)
8650 			break;
8651 	}
8652 
8653 	kfree(wc);
8654 	btrfs_free_path(path);
8655 	return ret;
8656 }
8657 
8658 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8659 {
8660 	u64 num_devices;
8661 	u64 stripped;
8662 
8663 	/*
8664 	 * if restripe for this chunk_type is on pick target profile and
8665 	 * return, otherwise do the usual balance
8666 	 */
8667 	stripped = get_restripe_target(root->fs_info, flags);
8668 	if (stripped)
8669 		return extended_to_chunk(stripped);
8670 
8671 	num_devices = root->fs_info->fs_devices->rw_devices;
8672 
8673 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8674 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8675 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8676 
8677 	if (num_devices == 1) {
8678 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8679 		stripped = flags & ~stripped;
8680 
8681 		/* turn raid0 into single device chunks */
8682 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8683 			return stripped;
8684 
8685 		/* turn mirroring into duplication */
8686 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8687 			     BTRFS_BLOCK_GROUP_RAID10))
8688 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8689 	} else {
8690 		/* they already had raid on here, just return */
8691 		if (flags & stripped)
8692 			return flags;
8693 
8694 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8695 		stripped = flags & ~stripped;
8696 
8697 		/* switch duplicated blocks with raid1 */
8698 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8699 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8700 
8701 		/* this is drive concat, leave it alone */
8702 	}
8703 
8704 	return flags;
8705 }
8706 
8707 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8708 {
8709 	struct btrfs_space_info *sinfo = cache->space_info;
8710 	u64 num_bytes;
8711 	u64 min_allocable_bytes;
8712 	int ret = -ENOSPC;
8713 
8714 
8715 	/*
8716 	 * We need some metadata space and system metadata space for
8717 	 * allocating chunks in some corner cases until we force to set
8718 	 * it to be readonly.
8719 	 */
8720 	if ((sinfo->flags &
8721 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8722 	    !force)
8723 		min_allocable_bytes = 1 * 1024 * 1024;
8724 	else
8725 		min_allocable_bytes = 0;
8726 
8727 	spin_lock(&sinfo->lock);
8728 	spin_lock(&cache->lock);
8729 
8730 	if (cache->ro) {
8731 		ret = 0;
8732 		goto out;
8733 	}
8734 
8735 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8736 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8737 
8738 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8739 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8740 	    min_allocable_bytes <= sinfo->total_bytes) {
8741 		sinfo->bytes_readonly += num_bytes;
8742 		cache->ro = 1;
8743 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8744 		ret = 0;
8745 	}
8746 out:
8747 	spin_unlock(&cache->lock);
8748 	spin_unlock(&sinfo->lock);
8749 	return ret;
8750 }
8751 
8752 int btrfs_set_block_group_ro(struct btrfs_root *root,
8753 			     struct btrfs_block_group_cache *cache)
8754 
8755 {
8756 	struct btrfs_trans_handle *trans;
8757 	u64 alloc_flags;
8758 	int ret;
8759 
8760 	BUG_ON(cache->ro);
8761 
8762 again:
8763 	trans = btrfs_join_transaction(root);
8764 	if (IS_ERR(trans))
8765 		return PTR_ERR(trans);
8766 
8767 	/*
8768 	 * we're not allowed to set block groups readonly after the dirty
8769 	 * block groups cache has started writing.  If it already started,
8770 	 * back off and let this transaction commit
8771 	 */
8772 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8773 	if (trans->transaction->dirty_bg_run) {
8774 		u64 transid = trans->transid;
8775 
8776 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8777 		btrfs_end_transaction(trans, root);
8778 
8779 		ret = btrfs_wait_for_commit(root, transid);
8780 		if (ret)
8781 			return ret;
8782 		goto again;
8783 	}
8784 
8785 
8786 	ret = set_block_group_ro(cache, 0);
8787 	if (!ret)
8788 		goto out;
8789 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8790 	ret = do_chunk_alloc(trans, root, alloc_flags,
8791 			     CHUNK_ALLOC_FORCE);
8792 	if (ret < 0)
8793 		goto out;
8794 	ret = set_block_group_ro(cache, 0);
8795 out:
8796 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8797 		alloc_flags = update_block_group_flags(root, cache->flags);
8798 		check_system_chunk(trans, root, alloc_flags);
8799 	}
8800 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8801 
8802 	btrfs_end_transaction(trans, root);
8803 	return ret;
8804 }
8805 
8806 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8807 			    struct btrfs_root *root, u64 type)
8808 {
8809 	u64 alloc_flags = get_alloc_profile(root, type);
8810 	return do_chunk_alloc(trans, root, alloc_flags,
8811 			      CHUNK_ALLOC_FORCE);
8812 }
8813 
8814 /*
8815  * helper to account the unused space of all the readonly block group in the
8816  * space_info. takes mirrors into account.
8817  */
8818 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8819 {
8820 	struct btrfs_block_group_cache *block_group;
8821 	u64 free_bytes = 0;
8822 	int factor;
8823 
8824 	/* It's df, we don't care if it's racey */
8825 	if (list_empty(&sinfo->ro_bgs))
8826 		return 0;
8827 
8828 	spin_lock(&sinfo->lock);
8829 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8830 		spin_lock(&block_group->lock);
8831 
8832 		if (!block_group->ro) {
8833 			spin_unlock(&block_group->lock);
8834 			continue;
8835 		}
8836 
8837 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8838 					  BTRFS_BLOCK_GROUP_RAID10 |
8839 					  BTRFS_BLOCK_GROUP_DUP))
8840 			factor = 2;
8841 		else
8842 			factor = 1;
8843 
8844 		free_bytes += (block_group->key.offset -
8845 			       btrfs_block_group_used(&block_group->item)) *
8846 			       factor;
8847 
8848 		spin_unlock(&block_group->lock);
8849 	}
8850 	spin_unlock(&sinfo->lock);
8851 
8852 	return free_bytes;
8853 }
8854 
8855 void btrfs_set_block_group_rw(struct btrfs_root *root,
8856 			      struct btrfs_block_group_cache *cache)
8857 {
8858 	struct btrfs_space_info *sinfo = cache->space_info;
8859 	u64 num_bytes;
8860 
8861 	BUG_ON(!cache->ro);
8862 
8863 	spin_lock(&sinfo->lock);
8864 	spin_lock(&cache->lock);
8865 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8866 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8867 	sinfo->bytes_readonly -= num_bytes;
8868 	cache->ro = 0;
8869 	list_del_init(&cache->ro_list);
8870 	spin_unlock(&cache->lock);
8871 	spin_unlock(&sinfo->lock);
8872 }
8873 
8874 /*
8875  * checks to see if its even possible to relocate this block group.
8876  *
8877  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8878  * ok to go ahead and try.
8879  */
8880 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8881 {
8882 	struct btrfs_block_group_cache *block_group;
8883 	struct btrfs_space_info *space_info;
8884 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8885 	struct btrfs_device *device;
8886 	struct btrfs_trans_handle *trans;
8887 	u64 min_free;
8888 	u64 dev_min = 1;
8889 	u64 dev_nr = 0;
8890 	u64 target;
8891 	int index;
8892 	int full = 0;
8893 	int ret = 0;
8894 
8895 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8896 
8897 	/* odd, couldn't find the block group, leave it alone */
8898 	if (!block_group)
8899 		return -1;
8900 
8901 	min_free = btrfs_block_group_used(&block_group->item);
8902 
8903 	/* no bytes used, we're good */
8904 	if (!min_free)
8905 		goto out;
8906 
8907 	space_info = block_group->space_info;
8908 	spin_lock(&space_info->lock);
8909 
8910 	full = space_info->full;
8911 
8912 	/*
8913 	 * if this is the last block group we have in this space, we can't
8914 	 * relocate it unless we're able to allocate a new chunk below.
8915 	 *
8916 	 * Otherwise, we need to make sure we have room in the space to handle
8917 	 * all of the extents from this block group.  If we can, we're good
8918 	 */
8919 	if ((space_info->total_bytes != block_group->key.offset) &&
8920 	    (space_info->bytes_used + space_info->bytes_reserved +
8921 	     space_info->bytes_pinned + space_info->bytes_readonly +
8922 	     min_free < space_info->total_bytes)) {
8923 		spin_unlock(&space_info->lock);
8924 		goto out;
8925 	}
8926 	spin_unlock(&space_info->lock);
8927 
8928 	/*
8929 	 * ok we don't have enough space, but maybe we have free space on our
8930 	 * devices to allocate new chunks for relocation, so loop through our
8931 	 * alloc devices and guess if we have enough space.  if this block
8932 	 * group is going to be restriped, run checks against the target
8933 	 * profile instead of the current one.
8934 	 */
8935 	ret = -1;
8936 
8937 	/*
8938 	 * index:
8939 	 *      0: raid10
8940 	 *      1: raid1
8941 	 *      2: dup
8942 	 *      3: raid0
8943 	 *      4: single
8944 	 */
8945 	target = get_restripe_target(root->fs_info, block_group->flags);
8946 	if (target) {
8947 		index = __get_raid_index(extended_to_chunk(target));
8948 	} else {
8949 		/*
8950 		 * this is just a balance, so if we were marked as full
8951 		 * we know there is no space for a new chunk
8952 		 */
8953 		if (full)
8954 			goto out;
8955 
8956 		index = get_block_group_index(block_group);
8957 	}
8958 
8959 	if (index == BTRFS_RAID_RAID10) {
8960 		dev_min = 4;
8961 		/* Divide by 2 */
8962 		min_free >>= 1;
8963 	} else if (index == BTRFS_RAID_RAID1) {
8964 		dev_min = 2;
8965 	} else if (index == BTRFS_RAID_DUP) {
8966 		/* Multiply by 2 */
8967 		min_free <<= 1;
8968 	} else if (index == BTRFS_RAID_RAID0) {
8969 		dev_min = fs_devices->rw_devices;
8970 		min_free = div64_u64(min_free, dev_min);
8971 	}
8972 
8973 	/* We need to do this so that we can look at pending chunks */
8974 	trans = btrfs_join_transaction(root);
8975 	if (IS_ERR(trans)) {
8976 		ret = PTR_ERR(trans);
8977 		goto out;
8978 	}
8979 
8980 	mutex_lock(&root->fs_info->chunk_mutex);
8981 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8982 		u64 dev_offset;
8983 
8984 		/*
8985 		 * check to make sure we can actually find a chunk with enough
8986 		 * space to fit our block group in.
8987 		 */
8988 		if (device->total_bytes > device->bytes_used + min_free &&
8989 		    !device->is_tgtdev_for_dev_replace) {
8990 			ret = find_free_dev_extent(trans, device, min_free,
8991 						   &dev_offset, NULL);
8992 			if (!ret)
8993 				dev_nr++;
8994 
8995 			if (dev_nr >= dev_min)
8996 				break;
8997 
8998 			ret = -1;
8999 		}
9000 	}
9001 	mutex_unlock(&root->fs_info->chunk_mutex);
9002 	btrfs_end_transaction(trans, root);
9003 out:
9004 	btrfs_put_block_group(block_group);
9005 	return ret;
9006 }
9007 
9008 static int find_first_block_group(struct btrfs_root *root,
9009 		struct btrfs_path *path, struct btrfs_key *key)
9010 {
9011 	int ret = 0;
9012 	struct btrfs_key found_key;
9013 	struct extent_buffer *leaf;
9014 	int slot;
9015 
9016 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9017 	if (ret < 0)
9018 		goto out;
9019 
9020 	while (1) {
9021 		slot = path->slots[0];
9022 		leaf = path->nodes[0];
9023 		if (slot >= btrfs_header_nritems(leaf)) {
9024 			ret = btrfs_next_leaf(root, path);
9025 			if (ret == 0)
9026 				continue;
9027 			if (ret < 0)
9028 				goto out;
9029 			break;
9030 		}
9031 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9032 
9033 		if (found_key.objectid >= key->objectid &&
9034 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9035 			ret = 0;
9036 			goto out;
9037 		}
9038 		path->slots[0]++;
9039 	}
9040 out:
9041 	return ret;
9042 }
9043 
9044 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9045 {
9046 	struct btrfs_block_group_cache *block_group;
9047 	u64 last = 0;
9048 
9049 	while (1) {
9050 		struct inode *inode;
9051 
9052 		block_group = btrfs_lookup_first_block_group(info, last);
9053 		while (block_group) {
9054 			spin_lock(&block_group->lock);
9055 			if (block_group->iref)
9056 				break;
9057 			spin_unlock(&block_group->lock);
9058 			block_group = next_block_group(info->tree_root,
9059 						       block_group);
9060 		}
9061 		if (!block_group) {
9062 			if (last == 0)
9063 				break;
9064 			last = 0;
9065 			continue;
9066 		}
9067 
9068 		inode = block_group->inode;
9069 		block_group->iref = 0;
9070 		block_group->inode = NULL;
9071 		spin_unlock(&block_group->lock);
9072 		iput(inode);
9073 		last = block_group->key.objectid + block_group->key.offset;
9074 		btrfs_put_block_group(block_group);
9075 	}
9076 }
9077 
9078 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9079 {
9080 	struct btrfs_block_group_cache *block_group;
9081 	struct btrfs_space_info *space_info;
9082 	struct btrfs_caching_control *caching_ctl;
9083 	struct rb_node *n;
9084 
9085 	down_write(&info->commit_root_sem);
9086 	while (!list_empty(&info->caching_block_groups)) {
9087 		caching_ctl = list_entry(info->caching_block_groups.next,
9088 					 struct btrfs_caching_control, list);
9089 		list_del(&caching_ctl->list);
9090 		put_caching_control(caching_ctl);
9091 	}
9092 	up_write(&info->commit_root_sem);
9093 
9094 	spin_lock(&info->unused_bgs_lock);
9095 	while (!list_empty(&info->unused_bgs)) {
9096 		block_group = list_first_entry(&info->unused_bgs,
9097 					       struct btrfs_block_group_cache,
9098 					       bg_list);
9099 		list_del_init(&block_group->bg_list);
9100 		btrfs_put_block_group(block_group);
9101 	}
9102 	spin_unlock(&info->unused_bgs_lock);
9103 
9104 	spin_lock(&info->block_group_cache_lock);
9105 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9106 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9107 				       cache_node);
9108 		rb_erase(&block_group->cache_node,
9109 			 &info->block_group_cache_tree);
9110 		RB_CLEAR_NODE(&block_group->cache_node);
9111 		spin_unlock(&info->block_group_cache_lock);
9112 
9113 		down_write(&block_group->space_info->groups_sem);
9114 		list_del(&block_group->list);
9115 		up_write(&block_group->space_info->groups_sem);
9116 
9117 		if (block_group->cached == BTRFS_CACHE_STARTED)
9118 			wait_block_group_cache_done(block_group);
9119 
9120 		/*
9121 		 * We haven't cached this block group, which means we could
9122 		 * possibly have excluded extents on this block group.
9123 		 */
9124 		if (block_group->cached == BTRFS_CACHE_NO ||
9125 		    block_group->cached == BTRFS_CACHE_ERROR)
9126 			free_excluded_extents(info->extent_root, block_group);
9127 
9128 		btrfs_remove_free_space_cache(block_group);
9129 		btrfs_put_block_group(block_group);
9130 
9131 		spin_lock(&info->block_group_cache_lock);
9132 	}
9133 	spin_unlock(&info->block_group_cache_lock);
9134 
9135 	/* now that all the block groups are freed, go through and
9136 	 * free all the space_info structs.  This is only called during
9137 	 * the final stages of unmount, and so we know nobody is
9138 	 * using them.  We call synchronize_rcu() once before we start,
9139 	 * just to be on the safe side.
9140 	 */
9141 	synchronize_rcu();
9142 
9143 	release_global_block_rsv(info);
9144 
9145 	while (!list_empty(&info->space_info)) {
9146 		int i;
9147 
9148 		space_info = list_entry(info->space_info.next,
9149 					struct btrfs_space_info,
9150 					list);
9151 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9152 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9153 			    space_info->bytes_reserved > 0 ||
9154 			    space_info->bytes_may_use > 0)) {
9155 				dump_space_info(space_info, 0, 0);
9156 			}
9157 		}
9158 		list_del(&space_info->list);
9159 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9160 			struct kobject *kobj;
9161 			kobj = space_info->block_group_kobjs[i];
9162 			space_info->block_group_kobjs[i] = NULL;
9163 			if (kobj) {
9164 				kobject_del(kobj);
9165 				kobject_put(kobj);
9166 			}
9167 		}
9168 		kobject_del(&space_info->kobj);
9169 		kobject_put(&space_info->kobj);
9170 	}
9171 	return 0;
9172 }
9173 
9174 static void __link_block_group(struct btrfs_space_info *space_info,
9175 			       struct btrfs_block_group_cache *cache)
9176 {
9177 	int index = get_block_group_index(cache);
9178 	bool first = false;
9179 
9180 	down_write(&space_info->groups_sem);
9181 	if (list_empty(&space_info->block_groups[index]))
9182 		first = true;
9183 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9184 	up_write(&space_info->groups_sem);
9185 
9186 	if (first) {
9187 		struct raid_kobject *rkobj;
9188 		int ret;
9189 
9190 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9191 		if (!rkobj)
9192 			goto out_err;
9193 		rkobj->raid_type = index;
9194 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9195 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9196 				  "%s", get_raid_name(index));
9197 		if (ret) {
9198 			kobject_put(&rkobj->kobj);
9199 			goto out_err;
9200 		}
9201 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9202 	}
9203 
9204 	return;
9205 out_err:
9206 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9207 }
9208 
9209 static struct btrfs_block_group_cache *
9210 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9211 {
9212 	struct btrfs_block_group_cache *cache;
9213 
9214 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9215 	if (!cache)
9216 		return NULL;
9217 
9218 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9219 					GFP_NOFS);
9220 	if (!cache->free_space_ctl) {
9221 		kfree(cache);
9222 		return NULL;
9223 	}
9224 
9225 	cache->key.objectid = start;
9226 	cache->key.offset = size;
9227 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9228 
9229 	cache->sectorsize = root->sectorsize;
9230 	cache->fs_info = root->fs_info;
9231 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9232 					       &root->fs_info->mapping_tree,
9233 					       start);
9234 	atomic_set(&cache->count, 1);
9235 	spin_lock_init(&cache->lock);
9236 	init_rwsem(&cache->data_rwsem);
9237 	INIT_LIST_HEAD(&cache->list);
9238 	INIT_LIST_HEAD(&cache->cluster_list);
9239 	INIT_LIST_HEAD(&cache->bg_list);
9240 	INIT_LIST_HEAD(&cache->ro_list);
9241 	INIT_LIST_HEAD(&cache->dirty_list);
9242 	INIT_LIST_HEAD(&cache->io_list);
9243 	btrfs_init_free_space_ctl(cache);
9244 	atomic_set(&cache->trimming, 0);
9245 
9246 	return cache;
9247 }
9248 
9249 int btrfs_read_block_groups(struct btrfs_root *root)
9250 {
9251 	struct btrfs_path *path;
9252 	int ret;
9253 	struct btrfs_block_group_cache *cache;
9254 	struct btrfs_fs_info *info = root->fs_info;
9255 	struct btrfs_space_info *space_info;
9256 	struct btrfs_key key;
9257 	struct btrfs_key found_key;
9258 	struct extent_buffer *leaf;
9259 	int need_clear = 0;
9260 	u64 cache_gen;
9261 
9262 	root = info->extent_root;
9263 	key.objectid = 0;
9264 	key.offset = 0;
9265 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9266 	path = btrfs_alloc_path();
9267 	if (!path)
9268 		return -ENOMEM;
9269 	path->reada = 1;
9270 
9271 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9272 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9273 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9274 		need_clear = 1;
9275 	if (btrfs_test_opt(root, CLEAR_CACHE))
9276 		need_clear = 1;
9277 
9278 	while (1) {
9279 		ret = find_first_block_group(root, path, &key);
9280 		if (ret > 0)
9281 			break;
9282 		if (ret != 0)
9283 			goto error;
9284 
9285 		leaf = path->nodes[0];
9286 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9287 
9288 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9289 						       found_key.offset);
9290 		if (!cache) {
9291 			ret = -ENOMEM;
9292 			goto error;
9293 		}
9294 
9295 		if (need_clear) {
9296 			/*
9297 			 * When we mount with old space cache, we need to
9298 			 * set BTRFS_DC_CLEAR and set dirty flag.
9299 			 *
9300 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9301 			 *    truncate the old free space cache inode and
9302 			 *    setup a new one.
9303 			 * b) Setting 'dirty flag' makes sure that we flush
9304 			 *    the new space cache info onto disk.
9305 			 */
9306 			if (btrfs_test_opt(root, SPACE_CACHE))
9307 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9308 		}
9309 
9310 		read_extent_buffer(leaf, &cache->item,
9311 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9312 				   sizeof(cache->item));
9313 		cache->flags = btrfs_block_group_flags(&cache->item);
9314 
9315 		key.objectid = found_key.objectid + found_key.offset;
9316 		btrfs_release_path(path);
9317 
9318 		/*
9319 		 * We need to exclude the super stripes now so that the space
9320 		 * info has super bytes accounted for, otherwise we'll think
9321 		 * we have more space than we actually do.
9322 		 */
9323 		ret = exclude_super_stripes(root, cache);
9324 		if (ret) {
9325 			/*
9326 			 * We may have excluded something, so call this just in
9327 			 * case.
9328 			 */
9329 			free_excluded_extents(root, cache);
9330 			btrfs_put_block_group(cache);
9331 			goto error;
9332 		}
9333 
9334 		/*
9335 		 * check for two cases, either we are full, and therefore
9336 		 * don't need to bother with the caching work since we won't
9337 		 * find any space, or we are empty, and we can just add all
9338 		 * the space in and be done with it.  This saves us _alot_ of
9339 		 * time, particularly in the full case.
9340 		 */
9341 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9342 			cache->last_byte_to_unpin = (u64)-1;
9343 			cache->cached = BTRFS_CACHE_FINISHED;
9344 			free_excluded_extents(root, cache);
9345 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9346 			cache->last_byte_to_unpin = (u64)-1;
9347 			cache->cached = BTRFS_CACHE_FINISHED;
9348 			add_new_free_space(cache, root->fs_info,
9349 					   found_key.objectid,
9350 					   found_key.objectid +
9351 					   found_key.offset);
9352 			free_excluded_extents(root, cache);
9353 		}
9354 
9355 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9356 		if (ret) {
9357 			btrfs_remove_free_space_cache(cache);
9358 			btrfs_put_block_group(cache);
9359 			goto error;
9360 		}
9361 
9362 		ret = update_space_info(info, cache->flags, found_key.offset,
9363 					btrfs_block_group_used(&cache->item),
9364 					&space_info);
9365 		if (ret) {
9366 			btrfs_remove_free_space_cache(cache);
9367 			spin_lock(&info->block_group_cache_lock);
9368 			rb_erase(&cache->cache_node,
9369 				 &info->block_group_cache_tree);
9370 			RB_CLEAR_NODE(&cache->cache_node);
9371 			spin_unlock(&info->block_group_cache_lock);
9372 			btrfs_put_block_group(cache);
9373 			goto error;
9374 		}
9375 
9376 		cache->space_info = space_info;
9377 		spin_lock(&cache->space_info->lock);
9378 		cache->space_info->bytes_readonly += cache->bytes_super;
9379 		spin_unlock(&cache->space_info->lock);
9380 
9381 		__link_block_group(space_info, cache);
9382 
9383 		set_avail_alloc_bits(root->fs_info, cache->flags);
9384 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9385 			set_block_group_ro(cache, 1);
9386 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9387 			spin_lock(&info->unused_bgs_lock);
9388 			/* Should always be true but just in case. */
9389 			if (list_empty(&cache->bg_list)) {
9390 				btrfs_get_block_group(cache);
9391 				list_add_tail(&cache->bg_list,
9392 					      &info->unused_bgs);
9393 			}
9394 			spin_unlock(&info->unused_bgs_lock);
9395 		}
9396 	}
9397 
9398 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9399 		if (!(get_alloc_profile(root, space_info->flags) &
9400 		      (BTRFS_BLOCK_GROUP_RAID10 |
9401 		       BTRFS_BLOCK_GROUP_RAID1 |
9402 		       BTRFS_BLOCK_GROUP_RAID5 |
9403 		       BTRFS_BLOCK_GROUP_RAID6 |
9404 		       BTRFS_BLOCK_GROUP_DUP)))
9405 			continue;
9406 		/*
9407 		 * avoid allocating from un-mirrored block group if there are
9408 		 * mirrored block groups.
9409 		 */
9410 		list_for_each_entry(cache,
9411 				&space_info->block_groups[BTRFS_RAID_RAID0],
9412 				list)
9413 			set_block_group_ro(cache, 1);
9414 		list_for_each_entry(cache,
9415 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9416 				list)
9417 			set_block_group_ro(cache, 1);
9418 	}
9419 
9420 	init_global_block_rsv(info);
9421 	ret = 0;
9422 error:
9423 	btrfs_free_path(path);
9424 	return ret;
9425 }
9426 
9427 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9428 				       struct btrfs_root *root)
9429 {
9430 	struct btrfs_block_group_cache *block_group, *tmp;
9431 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9432 	struct btrfs_block_group_item item;
9433 	struct btrfs_key key;
9434 	int ret = 0;
9435 
9436 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9437 		if (ret)
9438 			goto next;
9439 
9440 		spin_lock(&block_group->lock);
9441 		memcpy(&item, &block_group->item, sizeof(item));
9442 		memcpy(&key, &block_group->key, sizeof(key));
9443 		spin_unlock(&block_group->lock);
9444 
9445 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9446 					sizeof(item));
9447 		if (ret)
9448 			btrfs_abort_transaction(trans, extent_root, ret);
9449 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9450 					       key.objectid, key.offset);
9451 		if (ret)
9452 			btrfs_abort_transaction(trans, extent_root, ret);
9453 next:
9454 		list_del_init(&block_group->bg_list);
9455 	}
9456 }
9457 
9458 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9459 			   struct btrfs_root *root, u64 bytes_used,
9460 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9461 			   u64 size)
9462 {
9463 	int ret;
9464 	struct btrfs_root *extent_root;
9465 	struct btrfs_block_group_cache *cache;
9466 
9467 	extent_root = root->fs_info->extent_root;
9468 
9469 	btrfs_set_log_full_commit(root->fs_info, trans);
9470 
9471 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9472 	if (!cache)
9473 		return -ENOMEM;
9474 
9475 	btrfs_set_block_group_used(&cache->item, bytes_used);
9476 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9477 	btrfs_set_block_group_flags(&cache->item, type);
9478 
9479 	cache->flags = type;
9480 	cache->last_byte_to_unpin = (u64)-1;
9481 	cache->cached = BTRFS_CACHE_FINISHED;
9482 	ret = exclude_super_stripes(root, cache);
9483 	if (ret) {
9484 		/*
9485 		 * We may have excluded something, so call this just in
9486 		 * case.
9487 		 */
9488 		free_excluded_extents(root, cache);
9489 		btrfs_put_block_group(cache);
9490 		return ret;
9491 	}
9492 
9493 	add_new_free_space(cache, root->fs_info, chunk_offset,
9494 			   chunk_offset + size);
9495 
9496 	free_excluded_extents(root, cache);
9497 
9498 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9499 	if (ret) {
9500 		btrfs_remove_free_space_cache(cache);
9501 		btrfs_put_block_group(cache);
9502 		return ret;
9503 	}
9504 
9505 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9506 				&cache->space_info);
9507 	if (ret) {
9508 		btrfs_remove_free_space_cache(cache);
9509 		spin_lock(&root->fs_info->block_group_cache_lock);
9510 		rb_erase(&cache->cache_node,
9511 			 &root->fs_info->block_group_cache_tree);
9512 		RB_CLEAR_NODE(&cache->cache_node);
9513 		spin_unlock(&root->fs_info->block_group_cache_lock);
9514 		btrfs_put_block_group(cache);
9515 		return ret;
9516 	}
9517 	update_global_block_rsv(root->fs_info);
9518 
9519 	spin_lock(&cache->space_info->lock);
9520 	cache->space_info->bytes_readonly += cache->bytes_super;
9521 	spin_unlock(&cache->space_info->lock);
9522 
9523 	__link_block_group(cache->space_info, cache);
9524 
9525 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9526 
9527 	set_avail_alloc_bits(extent_root->fs_info, type);
9528 
9529 	return 0;
9530 }
9531 
9532 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9533 {
9534 	u64 extra_flags = chunk_to_extended(flags) &
9535 				BTRFS_EXTENDED_PROFILE_MASK;
9536 
9537 	write_seqlock(&fs_info->profiles_lock);
9538 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9539 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9540 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9541 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9542 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9543 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9544 	write_sequnlock(&fs_info->profiles_lock);
9545 }
9546 
9547 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9548 			     struct btrfs_root *root, u64 group_start,
9549 			     struct extent_map *em)
9550 {
9551 	struct btrfs_path *path;
9552 	struct btrfs_block_group_cache *block_group;
9553 	struct btrfs_free_cluster *cluster;
9554 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9555 	struct btrfs_key key;
9556 	struct inode *inode;
9557 	struct kobject *kobj = NULL;
9558 	int ret;
9559 	int index;
9560 	int factor;
9561 	struct btrfs_caching_control *caching_ctl = NULL;
9562 	bool remove_em;
9563 
9564 	root = root->fs_info->extent_root;
9565 
9566 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9567 	BUG_ON(!block_group);
9568 	BUG_ON(!block_group->ro);
9569 
9570 	/*
9571 	 * Free the reserved super bytes from this block group before
9572 	 * remove it.
9573 	 */
9574 	free_excluded_extents(root, block_group);
9575 
9576 	memcpy(&key, &block_group->key, sizeof(key));
9577 	index = get_block_group_index(block_group);
9578 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9579 				  BTRFS_BLOCK_GROUP_RAID1 |
9580 				  BTRFS_BLOCK_GROUP_RAID10))
9581 		factor = 2;
9582 	else
9583 		factor = 1;
9584 
9585 	/* make sure this block group isn't part of an allocation cluster */
9586 	cluster = &root->fs_info->data_alloc_cluster;
9587 	spin_lock(&cluster->refill_lock);
9588 	btrfs_return_cluster_to_free_space(block_group, cluster);
9589 	spin_unlock(&cluster->refill_lock);
9590 
9591 	/*
9592 	 * make sure this block group isn't part of a metadata
9593 	 * allocation cluster
9594 	 */
9595 	cluster = &root->fs_info->meta_alloc_cluster;
9596 	spin_lock(&cluster->refill_lock);
9597 	btrfs_return_cluster_to_free_space(block_group, cluster);
9598 	spin_unlock(&cluster->refill_lock);
9599 
9600 	path = btrfs_alloc_path();
9601 	if (!path) {
9602 		ret = -ENOMEM;
9603 		goto out;
9604 	}
9605 
9606 	/*
9607 	 * get the inode first so any iput calls done for the io_list
9608 	 * aren't the final iput (no unlinks allowed now)
9609 	 */
9610 	inode = lookup_free_space_inode(tree_root, block_group, path);
9611 
9612 	mutex_lock(&trans->transaction->cache_write_mutex);
9613 	/*
9614 	 * make sure our free spache cache IO is done before remove the
9615 	 * free space inode
9616 	 */
9617 	spin_lock(&trans->transaction->dirty_bgs_lock);
9618 	if (!list_empty(&block_group->io_list)) {
9619 		list_del_init(&block_group->io_list);
9620 
9621 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9622 
9623 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9624 		btrfs_wait_cache_io(root, trans, block_group,
9625 				    &block_group->io_ctl, path,
9626 				    block_group->key.objectid);
9627 		btrfs_put_block_group(block_group);
9628 		spin_lock(&trans->transaction->dirty_bgs_lock);
9629 	}
9630 
9631 	if (!list_empty(&block_group->dirty_list)) {
9632 		list_del_init(&block_group->dirty_list);
9633 		btrfs_put_block_group(block_group);
9634 	}
9635 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9636 	mutex_unlock(&trans->transaction->cache_write_mutex);
9637 
9638 	if (!IS_ERR(inode)) {
9639 		ret = btrfs_orphan_add(trans, inode);
9640 		if (ret) {
9641 			btrfs_add_delayed_iput(inode);
9642 			goto out;
9643 		}
9644 		clear_nlink(inode);
9645 		/* One for the block groups ref */
9646 		spin_lock(&block_group->lock);
9647 		if (block_group->iref) {
9648 			block_group->iref = 0;
9649 			block_group->inode = NULL;
9650 			spin_unlock(&block_group->lock);
9651 			iput(inode);
9652 		} else {
9653 			spin_unlock(&block_group->lock);
9654 		}
9655 		/* One for our lookup ref */
9656 		btrfs_add_delayed_iput(inode);
9657 	}
9658 
9659 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9660 	key.offset = block_group->key.objectid;
9661 	key.type = 0;
9662 
9663 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9664 	if (ret < 0)
9665 		goto out;
9666 	if (ret > 0)
9667 		btrfs_release_path(path);
9668 	if (ret == 0) {
9669 		ret = btrfs_del_item(trans, tree_root, path);
9670 		if (ret)
9671 			goto out;
9672 		btrfs_release_path(path);
9673 	}
9674 
9675 	spin_lock(&root->fs_info->block_group_cache_lock);
9676 	rb_erase(&block_group->cache_node,
9677 		 &root->fs_info->block_group_cache_tree);
9678 	RB_CLEAR_NODE(&block_group->cache_node);
9679 
9680 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9681 		root->fs_info->first_logical_byte = (u64)-1;
9682 	spin_unlock(&root->fs_info->block_group_cache_lock);
9683 
9684 	down_write(&block_group->space_info->groups_sem);
9685 	/*
9686 	 * we must use list_del_init so people can check to see if they
9687 	 * are still on the list after taking the semaphore
9688 	 */
9689 	list_del_init(&block_group->list);
9690 	if (list_empty(&block_group->space_info->block_groups[index])) {
9691 		kobj = block_group->space_info->block_group_kobjs[index];
9692 		block_group->space_info->block_group_kobjs[index] = NULL;
9693 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9694 	}
9695 	up_write(&block_group->space_info->groups_sem);
9696 	if (kobj) {
9697 		kobject_del(kobj);
9698 		kobject_put(kobj);
9699 	}
9700 
9701 	if (block_group->has_caching_ctl)
9702 		caching_ctl = get_caching_control(block_group);
9703 	if (block_group->cached == BTRFS_CACHE_STARTED)
9704 		wait_block_group_cache_done(block_group);
9705 	if (block_group->has_caching_ctl) {
9706 		down_write(&root->fs_info->commit_root_sem);
9707 		if (!caching_ctl) {
9708 			struct btrfs_caching_control *ctl;
9709 
9710 			list_for_each_entry(ctl,
9711 				    &root->fs_info->caching_block_groups, list)
9712 				if (ctl->block_group == block_group) {
9713 					caching_ctl = ctl;
9714 					atomic_inc(&caching_ctl->count);
9715 					break;
9716 				}
9717 		}
9718 		if (caching_ctl)
9719 			list_del_init(&caching_ctl->list);
9720 		up_write(&root->fs_info->commit_root_sem);
9721 		if (caching_ctl) {
9722 			/* Once for the caching bgs list and once for us. */
9723 			put_caching_control(caching_ctl);
9724 			put_caching_control(caching_ctl);
9725 		}
9726 	}
9727 
9728 	spin_lock(&trans->transaction->dirty_bgs_lock);
9729 	if (!list_empty(&block_group->dirty_list)) {
9730 		WARN_ON(1);
9731 	}
9732 	if (!list_empty(&block_group->io_list)) {
9733 		WARN_ON(1);
9734 	}
9735 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9736 	btrfs_remove_free_space_cache(block_group);
9737 
9738 	spin_lock(&block_group->space_info->lock);
9739 	list_del_init(&block_group->ro_list);
9740 
9741 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9742 		WARN_ON(block_group->space_info->total_bytes
9743 			< block_group->key.offset);
9744 		WARN_ON(block_group->space_info->bytes_readonly
9745 			< block_group->key.offset);
9746 		WARN_ON(block_group->space_info->disk_total
9747 			< block_group->key.offset * factor);
9748 	}
9749 	block_group->space_info->total_bytes -= block_group->key.offset;
9750 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9751 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9752 
9753 	spin_unlock(&block_group->space_info->lock);
9754 
9755 	memcpy(&key, &block_group->key, sizeof(key));
9756 
9757 	lock_chunks(root);
9758 	if (!list_empty(&em->list)) {
9759 		/* We're in the transaction->pending_chunks list. */
9760 		free_extent_map(em);
9761 	}
9762 	spin_lock(&block_group->lock);
9763 	block_group->removed = 1;
9764 	/*
9765 	 * At this point trimming can't start on this block group, because we
9766 	 * removed the block group from the tree fs_info->block_group_cache_tree
9767 	 * so no one can't find it anymore and even if someone already got this
9768 	 * block group before we removed it from the rbtree, they have already
9769 	 * incremented block_group->trimming - if they didn't, they won't find
9770 	 * any free space entries because we already removed them all when we
9771 	 * called btrfs_remove_free_space_cache().
9772 	 *
9773 	 * And we must not remove the extent map from the fs_info->mapping_tree
9774 	 * to prevent the same logical address range and physical device space
9775 	 * ranges from being reused for a new block group. This is because our
9776 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9777 	 * completely transactionless, so while it is trimming a range the
9778 	 * currently running transaction might finish and a new one start,
9779 	 * allowing for new block groups to be created that can reuse the same
9780 	 * physical device locations unless we take this special care.
9781 	 */
9782 	remove_em = (atomic_read(&block_group->trimming) == 0);
9783 	/*
9784 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9785 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9786 	 * before checking block_group->removed).
9787 	 */
9788 	if (!remove_em) {
9789 		/*
9790 		 * Our em might be in trans->transaction->pending_chunks which
9791 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9792 		 * and so is the fs_info->pinned_chunks list.
9793 		 *
9794 		 * So at this point we must be holding the chunk_mutex to avoid
9795 		 * any races with chunk allocation (more specifically at
9796 		 * volumes.c:contains_pending_extent()), to ensure it always
9797 		 * sees the em, either in the pending_chunks list or in the
9798 		 * pinned_chunks list.
9799 		 */
9800 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9801 	}
9802 	spin_unlock(&block_group->lock);
9803 
9804 	if (remove_em) {
9805 		struct extent_map_tree *em_tree;
9806 
9807 		em_tree = &root->fs_info->mapping_tree.map_tree;
9808 		write_lock(&em_tree->lock);
9809 		/*
9810 		 * The em might be in the pending_chunks list, so make sure the
9811 		 * chunk mutex is locked, since remove_extent_mapping() will
9812 		 * delete us from that list.
9813 		 */
9814 		remove_extent_mapping(em_tree, em);
9815 		write_unlock(&em_tree->lock);
9816 		/* once for the tree */
9817 		free_extent_map(em);
9818 	}
9819 
9820 	unlock_chunks(root);
9821 
9822 	btrfs_put_block_group(block_group);
9823 	btrfs_put_block_group(block_group);
9824 
9825 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9826 	if (ret > 0)
9827 		ret = -EIO;
9828 	if (ret < 0)
9829 		goto out;
9830 
9831 	ret = btrfs_del_item(trans, root, path);
9832 out:
9833 	btrfs_free_path(path);
9834 	return ret;
9835 }
9836 
9837 /*
9838  * Process the unused_bgs list and remove any that don't have any allocated
9839  * space inside of them.
9840  */
9841 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9842 {
9843 	struct btrfs_block_group_cache *block_group;
9844 	struct btrfs_space_info *space_info;
9845 	struct btrfs_root *root = fs_info->extent_root;
9846 	struct btrfs_trans_handle *trans;
9847 	int ret = 0;
9848 
9849 	if (!fs_info->open)
9850 		return;
9851 
9852 	spin_lock(&fs_info->unused_bgs_lock);
9853 	while (!list_empty(&fs_info->unused_bgs)) {
9854 		u64 start, end;
9855 
9856 		block_group = list_first_entry(&fs_info->unused_bgs,
9857 					       struct btrfs_block_group_cache,
9858 					       bg_list);
9859 		space_info = block_group->space_info;
9860 		list_del_init(&block_group->bg_list);
9861 		if (ret || btrfs_mixed_space_info(space_info)) {
9862 			btrfs_put_block_group(block_group);
9863 			continue;
9864 		}
9865 		spin_unlock(&fs_info->unused_bgs_lock);
9866 
9867 		/* Don't want to race with allocators so take the groups_sem */
9868 		down_write(&space_info->groups_sem);
9869 		spin_lock(&block_group->lock);
9870 		if (block_group->reserved ||
9871 		    btrfs_block_group_used(&block_group->item) ||
9872 		    block_group->ro) {
9873 			/*
9874 			 * We want to bail if we made new allocations or have
9875 			 * outstanding allocations in this block group.  We do
9876 			 * the ro check in case balance is currently acting on
9877 			 * this block group.
9878 			 */
9879 			spin_unlock(&block_group->lock);
9880 			up_write(&space_info->groups_sem);
9881 			goto next;
9882 		}
9883 		spin_unlock(&block_group->lock);
9884 
9885 		/* We don't want to force the issue, only flip if it's ok. */
9886 		ret = set_block_group_ro(block_group, 0);
9887 		up_write(&space_info->groups_sem);
9888 		if (ret < 0) {
9889 			ret = 0;
9890 			goto next;
9891 		}
9892 
9893 		/*
9894 		 * Want to do this before we do anything else so we can recover
9895 		 * properly if we fail to join the transaction.
9896 		 */
9897 		/* 1 for btrfs_orphan_reserve_metadata() */
9898 		trans = btrfs_start_transaction(root, 1);
9899 		if (IS_ERR(trans)) {
9900 			btrfs_set_block_group_rw(root, block_group);
9901 			ret = PTR_ERR(trans);
9902 			goto next;
9903 		}
9904 
9905 		/*
9906 		 * We could have pending pinned extents for this block group,
9907 		 * just delete them, we don't care about them anymore.
9908 		 */
9909 		start = block_group->key.objectid;
9910 		end = start + block_group->key.offset - 1;
9911 		/*
9912 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9913 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9914 		 * another task might be running finish_extent_commit() for the
9915 		 * previous transaction N - 1, and have seen a range belonging
9916 		 * to the block group in freed_extents[] before we were able to
9917 		 * clear the whole block group range from freed_extents[]. This
9918 		 * means that task can lookup for the block group after we
9919 		 * unpinned it from freed_extents[] and removed it, leading to
9920 		 * a BUG_ON() at btrfs_unpin_extent_range().
9921 		 */
9922 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9923 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9924 				  EXTENT_DIRTY, GFP_NOFS);
9925 		if (ret) {
9926 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9927 			btrfs_set_block_group_rw(root, block_group);
9928 			goto end_trans;
9929 		}
9930 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9931 				  EXTENT_DIRTY, GFP_NOFS);
9932 		if (ret) {
9933 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9934 			btrfs_set_block_group_rw(root, block_group);
9935 			goto end_trans;
9936 		}
9937 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9938 
9939 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9940 		spin_lock(&space_info->lock);
9941 		spin_lock(&block_group->lock);
9942 
9943 		space_info->bytes_pinned -= block_group->pinned;
9944 		space_info->bytes_readonly += block_group->pinned;
9945 		percpu_counter_add(&space_info->total_bytes_pinned,
9946 				   -block_group->pinned);
9947 		block_group->pinned = 0;
9948 
9949 		spin_unlock(&block_group->lock);
9950 		spin_unlock(&space_info->lock);
9951 
9952 		/*
9953 		 * Btrfs_remove_chunk will abort the transaction if things go
9954 		 * horribly wrong.
9955 		 */
9956 		ret = btrfs_remove_chunk(trans, root,
9957 					 block_group->key.objectid);
9958 end_trans:
9959 		btrfs_end_transaction(trans, root);
9960 next:
9961 		btrfs_put_block_group(block_group);
9962 		spin_lock(&fs_info->unused_bgs_lock);
9963 	}
9964 	spin_unlock(&fs_info->unused_bgs_lock);
9965 }
9966 
9967 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9968 {
9969 	struct btrfs_space_info *space_info;
9970 	struct btrfs_super_block *disk_super;
9971 	u64 features;
9972 	u64 flags;
9973 	int mixed = 0;
9974 	int ret;
9975 
9976 	disk_super = fs_info->super_copy;
9977 	if (!btrfs_super_root(disk_super))
9978 		return 1;
9979 
9980 	features = btrfs_super_incompat_flags(disk_super);
9981 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9982 		mixed = 1;
9983 
9984 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9985 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9986 	if (ret)
9987 		goto out;
9988 
9989 	if (mixed) {
9990 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9991 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9992 	} else {
9993 		flags = BTRFS_BLOCK_GROUP_METADATA;
9994 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9995 		if (ret)
9996 			goto out;
9997 
9998 		flags = BTRFS_BLOCK_GROUP_DATA;
9999 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10000 	}
10001 out:
10002 	return ret;
10003 }
10004 
10005 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10006 {
10007 	return unpin_extent_range(root, start, end, false);
10008 }
10009 
10010 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10011 {
10012 	struct btrfs_fs_info *fs_info = root->fs_info;
10013 	struct btrfs_block_group_cache *cache = NULL;
10014 	u64 group_trimmed;
10015 	u64 start;
10016 	u64 end;
10017 	u64 trimmed = 0;
10018 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10019 	int ret = 0;
10020 
10021 	/*
10022 	 * try to trim all FS space, our block group may start from non-zero.
10023 	 */
10024 	if (range->len == total_bytes)
10025 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10026 	else
10027 		cache = btrfs_lookup_block_group(fs_info, range->start);
10028 
10029 	while (cache) {
10030 		if (cache->key.objectid >= (range->start + range->len)) {
10031 			btrfs_put_block_group(cache);
10032 			break;
10033 		}
10034 
10035 		start = max(range->start, cache->key.objectid);
10036 		end = min(range->start + range->len,
10037 				cache->key.objectid + cache->key.offset);
10038 
10039 		if (end - start >= range->minlen) {
10040 			if (!block_group_cache_done(cache)) {
10041 				ret = cache_block_group(cache, 0);
10042 				if (ret) {
10043 					btrfs_put_block_group(cache);
10044 					break;
10045 				}
10046 				ret = wait_block_group_cache_done(cache);
10047 				if (ret) {
10048 					btrfs_put_block_group(cache);
10049 					break;
10050 				}
10051 			}
10052 			ret = btrfs_trim_block_group(cache,
10053 						     &group_trimmed,
10054 						     start,
10055 						     end,
10056 						     range->minlen);
10057 
10058 			trimmed += group_trimmed;
10059 			if (ret) {
10060 				btrfs_put_block_group(cache);
10061 				break;
10062 			}
10063 		}
10064 
10065 		cache = next_block_group(fs_info->tree_root, cache);
10066 	}
10067 
10068 	range->len = trimmed;
10069 	return ret;
10070 }
10071 
10072 /*
10073  * btrfs_{start,end}_write_no_snapshoting() are similar to
10074  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10075  * data into the page cache through nocow before the subvolume is snapshoted,
10076  * but flush the data into disk after the snapshot creation, or to prevent
10077  * operations while snapshoting is ongoing and that cause the snapshot to be
10078  * inconsistent (writes followed by expanding truncates for example).
10079  */
10080 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10081 {
10082 	percpu_counter_dec(&root->subv_writers->counter);
10083 	/*
10084 	 * Make sure counter is updated before we wake up
10085 	 * waiters.
10086 	 */
10087 	smp_mb();
10088 	if (waitqueue_active(&root->subv_writers->wait))
10089 		wake_up(&root->subv_writers->wait);
10090 }
10091 
10092 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10093 {
10094 	if (atomic_read(&root->will_be_snapshoted))
10095 		return 0;
10096 
10097 	percpu_counter_inc(&root->subv_writers->counter);
10098 	/*
10099 	 * Make sure counter is updated before we check for snapshot creation.
10100 	 */
10101 	smp_mb();
10102 	if (atomic_read(&root->will_be_snapshoted)) {
10103 		btrfs_end_write_no_snapshoting(root);
10104 		return 0;
10105 	}
10106 	return 1;
10107 }
10108