1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 bytenr, u64 num_bytes, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op, 86 int no_quota); 87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins, 100 int no_quota); 101 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 102 struct btrfs_root *extent_root, u64 flags, 103 int force); 104 static int find_next_key(struct btrfs_path *path, int level, 105 struct btrfs_key *key); 106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 107 int dump_block_groups); 108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 109 u64 num_bytes, int reserve, 110 int delalloc); 111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 112 u64 num_bytes); 113 int btrfs_pin_extent(struct btrfs_root *root, 114 u64 bytenr, u64 num_bytes, int reserved); 115 116 static noinline int 117 block_group_cache_done(struct btrfs_block_group_cache *cache) 118 { 119 smp_mb(); 120 return cache->cached == BTRFS_CACHE_FINISHED || 121 cache->cached == BTRFS_CACHE_ERROR; 122 } 123 124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 125 { 126 return (cache->flags & bits) == bits; 127 } 128 129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 130 { 131 atomic_inc(&cache->count); 132 } 133 134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 135 { 136 if (atomic_dec_and_test(&cache->count)) { 137 WARN_ON(cache->pinned > 0); 138 WARN_ON(cache->reserved > 0); 139 kfree(cache->free_space_ctl); 140 kfree(cache); 141 } 142 } 143 144 /* 145 * this adds the block group to the fs_info rb tree for the block group 146 * cache 147 */ 148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 149 struct btrfs_block_group_cache *block_group) 150 { 151 struct rb_node **p; 152 struct rb_node *parent = NULL; 153 struct btrfs_block_group_cache *cache; 154 155 spin_lock(&info->block_group_cache_lock); 156 p = &info->block_group_cache_tree.rb_node; 157 158 while (*p) { 159 parent = *p; 160 cache = rb_entry(parent, struct btrfs_block_group_cache, 161 cache_node); 162 if (block_group->key.objectid < cache->key.objectid) { 163 p = &(*p)->rb_left; 164 } else if (block_group->key.objectid > cache->key.objectid) { 165 p = &(*p)->rb_right; 166 } else { 167 spin_unlock(&info->block_group_cache_lock); 168 return -EEXIST; 169 } 170 } 171 172 rb_link_node(&block_group->cache_node, parent, p); 173 rb_insert_color(&block_group->cache_node, 174 &info->block_group_cache_tree); 175 176 if (info->first_logical_byte > block_group->key.objectid) 177 info->first_logical_byte = block_group->key.objectid; 178 179 spin_unlock(&info->block_group_cache_lock); 180 181 return 0; 182 } 183 184 /* 185 * This will return the block group at or after bytenr if contains is 0, else 186 * it will return the block group that contains the bytenr 187 */ 188 static struct btrfs_block_group_cache * 189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 190 int contains) 191 { 192 struct btrfs_block_group_cache *cache, *ret = NULL; 193 struct rb_node *n; 194 u64 end, start; 195 196 spin_lock(&info->block_group_cache_lock); 197 n = info->block_group_cache_tree.rb_node; 198 199 while (n) { 200 cache = rb_entry(n, struct btrfs_block_group_cache, 201 cache_node); 202 end = cache->key.objectid + cache->key.offset - 1; 203 start = cache->key.objectid; 204 205 if (bytenr < start) { 206 if (!contains && (!ret || start < ret->key.objectid)) 207 ret = cache; 208 n = n->rb_left; 209 } else if (bytenr > start) { 210 if (contains && bytenr <= end) { 211 ret = cache; 212 break; 213 } 214 n = n->rb_right; 215 } else { 216 ret = cache; 217 break; 218 } 219 } 220 if (ret) { 221 btrfs_get_block_group(ret); 222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 223 info->first_logical_byte = ret->key.objectid; 224 } 225 spin_unlock(&info->block_group_cache_lock); 226 227 return ret; 228 } 229 230 static int add_excluded_extent(struct btrfs_root *root, 231 u64 start, u64 num_bytes) 232 { 233 u64 end = start + num_bytes - 1; 234 set_extent_bits(&root->fs_info->freed_extents[0], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 set_extent_bits(&root->fs_info->freed_extents[1], 237 start, end, EXTENT_UPTODATE, GFP_NOFS); 238 return 0; 239 } 240 241 static void free_excluded_extents(struct btrfs_root *root, 242 struct btrfs_block_group_cache *cache) 243 { 244 u64 start, end; 245 246 start = cache->key.objectid; 247 end = start + cache->key.offset - 1; 248 249 clear_extent_bits(&root->fs_info->freed_extents[0], 250 start, end, EXTENT_UPTODATE, GFP_NOFS); 251 clear_extent_bits(&root->fs_info->freed_extents[1], 252 start, end, EXTENT_UPTODATE, GFP_NOFS); 253 } 254 255 static int exclude_super_stripes(struct btrfs_root *root, 256 struct btrfs_block_group_cache *cache) 257 { 258 u64 bytenr; 259 u64 *logical; 260 int stripe_len; 261 int i, nr, ret; 262 263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 265 cache->bytes_super += stripe_len; 266 ret = add_excluded_extent(root, cache->key.objectid, 267 stripe_len); 268 if (ret) 269 return ret; 270 } 271 272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 273 bytenr = btrfs_sb_offset(i); 274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 275 cache->key.objectid, bytenr, 276 0, &logical, &nr, &stripe_len); 277 if (ret) 278 return ret; 279 280 while (nr--) { 281 u64 start, len; 282 283 if (logical[nr] > cache->key.objectid + 284 cache->key.offset) 285 continue; 286 287 if (logical[nr] + stripe_len <= cache->key.objectid) 288 continue; 289 290 start = logical[nr]; 291 if (start < cache->key.objectid) { 292 start = cache->key.objectid; 293 len = (logical[nr] + stripe_len) - start; 294 } else { 295 len = min_t(u64, stripe_len, 296 cache->key.objectid + 297 cache->key.offset - start); 298 } 299 300 cache->bytes_super += len; 301 ret = add_excluded_extent(root, start, len); 302 if (ret) { 303 kfree(logical); 304 return ret; 305 } 306 } 307 308 kfree(logical); 309 } 310 return 0; 311 } 312 313 static struct btrfs_caching_control * 314 get_caching_control(struct btrfs_block_group_cache *cache) 315 { 316 struct btrfs_caching_control *ctl; 317 318 spin_lock(&cache->lock); 319 if (!cache->caching_ctl) { 320 spin_unlock(&cache->lock); 321 return NULL; 322 } 323 324 ctl = cache->caching_ctl; 325 atomic_inc(&ctl->count); 326 spin_unlock(&cache->lock); 327 return ctl; 328 } 329 330 static void put_caching_control(struct btrfs_caching_control *ctl) 331 { 332 if (atomic_dec_and_test(&ctl->count)) 333 kfree(ctl); 334 } 335 336 /* 337 * this is only called by cache_block_group, since we could have freed extents 338 * we need to check the pinned_extents for any extents that can't be used yet 339 * since their free space will be released as soon as the transaction commits. 340 */ 341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 342 struct btrfs_fs_info *info, u64 start, u64 end) 343 { 344 u64 extent_start, extent_end, size, total_added = 0; 345 int ret; 346 347 while (start < end) { 348 ret = find_first_extent_bit(info->pinned_extents, start, 349 &extent_start, &extent_end, 350 EXTENT_DIRTY | EXTENT_UPTODATE, 351 NULL); 352 if (ret) 353 break; 354 355 if (extent_start <= start) { 356 start = extent_end + 1; 357 } else if (extent_start > start && extent_start < end) { 358 size = extent_start - start; 359 total_added += size; 360 ret = btrfs_add_free_space(block_group, start, 361 size); 362 BUG_ON(ret); /* -ENOMEM or logic error */ 363 start = extent_end + 1; 364 } else { 365 break; 366 } 367 } 368 369 if (start < end) { 370 size = end - start; 371 total_added += size; 372 ret = btrfs_add_free_space(block_group, start, size); 373 BUG_ON(ret); /* -ENOMEM or logic error */ 374 } 375 376 return total_added; 377 } 378 379 static noinline void caching_thread(struct btrfs_work *work) 380 { 381 struct btrfs_block_group_cache *block_group; 382 struct btrfs_fs_info *fs_info; 383 struct btrfs_caching_control *caching_ctl; 384 struct btrfs_root *extent_root; 385 struct btrfs_path *path; 386 struct extent_buffer *leaf; 387 struct btrfs_key key; 388 u64 total_found = 0; 389 u64 last = 0; 390 u32 nritems; 391 int ret = -ENOMEM; 392 393 caching_ctl = container_of(work, struct btrfs_caching_control, work); 394 block_group = caching_ctl->block_group; 395 fs_info = block_group->fs_info; 396 extent_root = fs_info->extent_root; 397 398 path = btrfs_alloc_path(); 399 if (!path) 400 goto out; 401 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 403 404 /* 405 * We don't want to deadlock with somebody trying to allocate a new 406 * extent for the extent root while also trying to search the extent 407 * root to add free space. So we skip locking and search the commit 408 * root, since its read-only 409 */ 410 path->skip_locking = 1; 411 path->search_commit_root = 1; 412 path->reada = 1; 413 414 key.objectid = last; 415 key.offset = 0; 416 key.type = BTRFS_EXTENT_ITEM_KEY; 417 again: 418 mutex_lock(&caching_ctl->mutex); 419 /* need to make sure the commit_root doesn't disappear */ 420 down_read(&fs_info->commit_root_sem); 421 422 next: 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 424 if (ret < 0) 425 goto err; 426 427 leaf = path->nodes[0]; 428 nritems = btrfs_header_nritems(leaf); 429 430 while (1) { 431 if (btrfs_fs_closing(fs_info) > 1) { 432 last = (u64)-1; 433 break; 434 } 435 436 if (path->slots[0] < nritems) { 437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 438 } else { 439 ret = find_next_key(path, 0, &key); 440 if (ret) 441 break; 442 443 if (need_resched() || 444 rwsem_is_contended(&fs_info->commit_root_sem)) { 445 caching_ctl->progress = last; 446 btrfs_release_path(path); 447 up_read(&fs_info->commit_root_sem); 448 mutex_unlock(&caching_ctl->mutex); 449 cond_resched(); 450 goto again; 451 } 452 453 ret = btrfs_next_leaf(extent_root, path); 454 if (ret < 0) 455 goto err; 456 if (ret) 457 break; 458 leaf = path->nodes[0]; 459 nritems = btrfs_header_nritems(leaf); 460 continue; 461 } 462 463 if (key.objectid < last) { 464 key.objectid = last; 465 key.offset = 0; 466 key.type = BTRFS_EXTENT_ITEM_KEY; 467 468 caching_ctl->progress = last; 469 btrfs_release_path(path); 470 goto next; 471 } 472 473 if (key.objectid < block_group->key.objectid) { 474 path->slots[0]++; 475 continue; 476 } 477 478 if (key.objectid >= block_group->key.objectid + 479 block_group->key.offset) 480 break; 481 482 if (key.type == BTRFS_EXTENT_ITEM_KEY || 483 key.type == BTRFS_METADATA_ITEM_KEY) { 484 total_found += add_new_free_space(block_group, 485 fs_info, last, 486 key.objectid); 487 if (key.type == BTRFS_METADATA_ITEM_KEY) 488 last = key.objectid + 489 fs_info->tree_root->nodesize; 490 else 491 last = key.objectid + key.offset; 492 493 if (total_found > (1024 * 1024 * 2)) { 494 total_found = 0; 495 wake_up(&caching_ctl->wait); 496 } 497 } 498 path->slots[0]++; 499 } 500 ret = 0; 501 502 total_found += add_new_free_space(block_group, fs_info, last, 503 block_group->key.objectid + 504 block_group->key.offset); 505 caching_ctl->progress = (u64)-1; 506 507 spin_lock(&block_group->lock); 508 block_group->caching_ctl = NULL; 509 block_group->cached = BTRFS_CACHE_FINISHED; 510 spin_unlock(&block_group->lock); 511 512 err: 513 btrfs_free_path(path); 514 up_read(&fs_info->commit_root_sem); 515 516 free_excluded_extents(extent_root, block_group); 517 518 mutex_unlock(&caching_ctl->mutex); 519 out: 520 if (ret) { 521 spin_lock(&block_group->lock); 522 block_group->caching_ctl = NULL; 523 block_group->cached = BTRFS_CACHE_ERROR; 524 spin_unlock(&block_group->lock); 525 } 526 wake_up(&caching_ctl->wait); 527 528 put_caching_control(caching_ctl); 529 btrfs_put_block_group(block_group); 530 } 531 532 static int cache_block_group(struct btrfs_block_group_cache *cache, 533 int load_cache_only) 534 { 535 DEFINE_WAIT(wait); 536 struct btrfs_fs_info *fs_info = cache->fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 int ret = 0; 539 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 541 if (!caching_ctl) 542 return -ENOMEM; 543 544 INIT_LIST_HEAD(&caching_ctl->list); 545 mutex_init(&caching_ctl->mutex); 546 init_waitqueue_head(&caching_ctl->wait); 547 caching_ctl->block_group = cache; 548 caching_ctl->progress = cache->key.objectid; 549 atomic_set(&caching_ctl->count, 1); 550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 551 caching_thread, NULL, NULL); 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 mutex_lock(&caching_ctl->mutex); 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 caching_ctl->progress = (u64)-1; 601 } else { 602 if (load_cache_only) { 603 cache->caching_ctl = NULL; 604 cache->cached = BTRFS_CACHE_NO; 605 } else { 606 cache->cached = BTRFS_CACHE_STARTED; 607 cache->has_caching_ctl = 1; 608 } 609 } 610 spin_unlock(&cache->lock); 611 mutex_unlock(&caching_ctl->mutex); 612 613 wake_up(&caching_ctl->wait); 614 if (ret == 1) { 615 put_caching_control(caching_ctl); 616 free_excluded_extents(fs_info->extent_root, cache); 617 return 0; 618 } 619 } else { 620 /* 621 * We are not going to do the fast caching, set cached to the 622 * appropriate value and wakeup any waiters. 623 */ 624 spin_lock(&cache->lock); 625 if (load_cache_only) { 626 cache->caching_ctl = NULL; 627 cache->cached = BTRFS_CACHE_NO; 628 } else { 629 cache->cached = BTRFS_CACHE_STARTED; 630 cache->has_caching_ctl = 1; 631 } 632 spin_unlock(&cache->lock); 633 wake_up(&caching_ctl->wait); 634 } 635 636 if (load_cache_only) { 637 put_caching_control(caching_ctl); 638 return 0; 639 } 640 641 down_write(&fs_info->commit_root_sem); 642 atomic_inc(&caching_ctl->count); 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 644 up_write(&fs_info->commit_root_sem); 645 646 btrfs_get_block_group(cache); 647 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 649 650 return ret; 651 } 652 653 /* 654 * return the block group that starts at or after bytenr 655 */ 656 static struct btrfs_block_group_cache * 657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 658 { 659 struct btrfs_block_group_cache *cache; 660 661 cache = block_group_cache_tree_search(info, bytenr, 0); 662 663 return cache; 664 } 665 666 /* 667 * return the block group that contains the given bytenr 668 */ 669 struct btrfs_block_group_cache *btrfs_lookup_block_group( 670 struct btrfs_fs_info *info, 671 u64 bytenr) 672 { 673 struct btrfs_block_group_cache *cache; 674 675 cache = block_group_cache_tree_search(info, bytenr, 1); 676 677 return cache; 678 } 679 680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 681 u64 flags) 682 { 683 struct list_head *head = &info->space_info; 684 struct btrfs_space_info *found; 685 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 687 688 rcu_read_lock(); 689 list_for_each_entry_rcu(found, head, list) { 690 if (found->flags & flags) { 691 rcu_read_unlock(); 692 return found; 693 } 694 } 695 rcu_read_unlock(); 696 return NULL; 697 } 698 699 /* 700 * after adding space to the filesystem, we need to clear the full flags 701 * on all the space infos. 702 */ 703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 704 { 705 struct list_head *head = &info->space_info; 706 struct btrfs_space_info *found; 707 708 rcu_read_lock(); 709 list_for_each_entry_rcu(found, head, list) 710 found->full = 0; 711 rcu_read_unlock(); 712 } 713 714 /* simple helper to search for an existing data extent at a given offset */ 715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 716 { 717 int ret; 718 struct btrfs_key key; 719 struct btrfs_path *path; 720 721 path = btrfs_alloc_path(); 722 if (!path) 723 return -ENOMEM; 724 725 key.objectid = start; 726 key.offset = len; 727 key.type = BTRFS_EXTENT_ITEM_KEY; 728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 729 0, 0); 730 btrfs_free_path(path); 731 return ret; 732 } 733 734 /* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746 { 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->nodesize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (!trans) { 772 path->skip_locking = 1; 773 path->search_commit_root = 1; 774 } 775 776 search_again: 777 key.objectid = bytenr; 778 key.offset = offset; 779 if (metadata) 780 key.type = BTRFS_METADATA_ITEM_KEY; 781 else 782 key.type = BTRFS_EXTENT_ITEM_KEY; 783 784 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 785 &key, path, 0, 0); 786 if (ret < 0) 787 goto out_free; 788 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 790 if (path->slots[0]) { 791 path->slots[0]--; 792 btrfs_item_key_to_cpu(path->nodes[0], &key, 793 path->slots[0]); 794 if (key.objectid == bytenr && 795 key.type == BTRFS_EXTENT_ITEM_KEY && 796 key.offset == root->nodesize) 797 ret = 0; 798 } 799 } 800 801 if (ret == 0) { 802 leaf = path->nodes[0]; 803 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 804 if (item_size >= sizeof(*ei)) { 805 ei = btrfs_item_ptr(leaf, path->slots[0], 806 struct btrfs_extent_item); 807 num_refs = btrfs_extent_refs(leaf, ei); 808 extent_flags = btrfs_extent_flags(leaf, ei); 809 } else { 810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 struct btrfs_extent_item_v0 *ei0; 812 BUG_ON(item_size != sizeof(*ei0)); 813 ei0 = btrfs_item_ptr(leaf, path->slots[0], 814 struct btrfs_extent_item_v0); 815 num_refs = btrfs_extent_refs_v0(leaf, ei0); 816 /* FIXME: this isn't correct for data */ 817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 818 #else 819 BUG(); 820 #endif 821 } 822 BUG_ON(num_refs == 0); 823 } else { 824 num_refs = 0; 825 extent_flags = 0; 826 ret = 0; 827 } 828 829 if (!trans) 830 goto out; 831 832 delayed_refs = &trans->transaction->delayed_refs; 833 spin_lock(&delayed_refs->lock); 834 head = btrfs_find_delayed_ref_head(trans, bytenr); 835 if (head) { 836 if (!mutex_trylock(&head->mutex)) { 837 atomic_inc(&head->node.refs); 838 spin_unlock(&delayed_refs->lock); 839 840 btrfs_release_path(path); 841 842 /* 843 * Mutex was contended, block until it's released and try 844 * again 845 */ 846 mutex_lock(&head->mutex); 847 mutex_unlock(&head->mutex); 848 btrfs_put_delayed_ref(&head->node); 849 goto search_again; 850 } 851 spin_lock(&head->lock); 852 if (head->extent_op && head->extent_op->update_flags) 853 extent_flags |= head->extent_op->flags_to_set; 854 else 855 BUG_ON(num_refs == 0); 856 857 num_refs += head->node.ref_mod; 858 spin_unlock(&head->lock); 859 mutex_unlock(&head->mutex); 860 } 861 spin_unlock(&delayed_refs->lock); 862 out: 863 WARN_ON(num_refs == 0); 864 if (refs) 865 *refs = num_refs; 866 if (flags) 867 *flags = extent_flags; 868 out_free: 869 btrfs_free_path(path); 870 return ret; 871 } 872 873 /* 874 * Back reference rules. Back refs have three main goals: 875 * 876 * 1) differentiate between all holders of references to an extent so that 877 * when a reference is dropped we can make sure it was a valid reference 878 * before freeing the extent. 879 * 880 * 2) Provide enough information to quickly find the holders of an extent 881 * if we notice a given block is corrupted or bad. 882 * 883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 884 * maintenance. This is actually the same as #2, but with a slightly 885 * different use case. 886 * 887 * There are two kinds of back refs. The implicit back refs is optimized 888 * for pointers in non-shared tree blocks. For a given pointer in a block, 889 * back refs of this kind provide information about the block's owner tree 890 * and the pointer's key. These information allow us to find the block by 891 * b-tree searching. The full back refs is for pointers in tree blocks not 892 * referenced by their owner trees. The location of tree block is recorded 893 * in the back refs. Actually the full back refs is generic, and can be 894 * used in all cases the implicit back refs is used. The major shortcoming 895 * of the full back refs is its overhead. Every time a tree block gets 896 * COWed, we have to update back refs entry for all pointers in it. 897 * 898 * For a newly allocated tree block, we use implicit back refs for 899 * pointers in it. This means most tree related operations only involve 900 * implicit back refs. For a tree block created in old transaction, the 901 * only way to drop a reference to it is COW it. So we can detect the 902 * event that tree block loses its owner tree's reference and do the 903 * back refs conversion. 904 * 905 * When a tree block is COW'd through a tree, there are four cases: 906 * 907 * The reference count of the block is one and the tree is the block's 908 * owner tree. Nothing to do in this case. 909 * 910 * The reference count of the block is one and the tree is not the 911 * block's owner tree. In this case, full back refs is used for pointers 912 * in the block. Remove these full back refs, add implicit back refs for 913 * every pointers in the new block. 914 * 915 * The reference count of the block is greater than one and the tree is 916 * the block's owner tree. In this case, implicit back refs is used for 917 * pointers in the block. Add full back refs for every pointers in the 918 * block, increase lower level extents' reference counts. The original 919 * implicit back refs are entailed to the new block. 920 * 921 * The reference count of the block is greater than one and the tree is 922 * not the block's owner tree. Add implicit back refs for every pointer in 923 * the new block, increase lower level extents' reference count. 924 * 925 * Back Reference Key composing: 926 * 927 * The key objectid corresponds to the first byte in the extent, 928 * The key type is used to differentiate between types of back refs. 929 * There are different meanings of the key offset for different types 930 * of back refs. 931 * 932 * File extents can be referenced by: 933 * 934 * - multiple snapshots, subvolumes, or different generations in one subvol 935 * - different files inside a single subvolume 936 * - different offsets inside a file (bookend extents in file.c) 937 * 938 * The extent ref structure for the implicit back refs has fields for: 939 * 940 * - Objectid of the subvolume root 941 * - objectid of the file holding the reference 942 * - original offset in the file 943 * - how many bookend extents 944 * 945 * The key offset for the implicit back refs is hash of the first 946 * three fields. 947 * 948 * The extent ref structure for the full back refs has field for: 949 * 950 * - number of pointers in the tree leaf 951 * 952 * The key offset for the implicit back refs is the first byte of 953 * the tree leaf 954 * 955 * When a file extent is allocated, The implicit back refs is used. 956 * the fields are filled in: 957 * 958 * (root_key.objectid, inode objectid, offset in file, 1) 959 * 960 * When a file extent is removed file truncation, we find the 961 * corresponding implicit back refs and check the following fields: 962 * 963 * (btrfs_header_owner(leaf), inode objectid, offset in file) 964 * 965 * Btree extents can be referenced by: 966 * 967 * - Different subvolumes 968 * 969 * Both the implicit back refs and the full back refs for tree blocks 970 * only consist of key. The key offset for the implicit back refs is 971 * objectid of block's owner tree. The key offset for the full back refs 972 * is the first byte of parent block. 973 * 974 * When implicit back refs is used, information about the lowest key and 975 * level of the tree block are required. These information are stored in 976 * tree block info structure. 977 */ 978 979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct btrfs_path *path, 983 u64 owner, u32 extra_size) 984 { 985 struct btrfs_extent_item *item; 986 struct btrfs_extent_item_v0 *ei0; 987 struct btrfs_extent_ref_v0 *ref0; 988 struct btrfs_tree_block_info *bi; 989 struct extent_buffer *leaf; 990 struct btrfs_key key; 991 struct btrfs_key found_key; 992 u32 new_size = sizeof(*item); 993 u64 refs; 994 int ret; 995 996 leaf = path->nodes[0]; 997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 998 999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1000 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_extent_item_v0); 1002 refs = btrfs_extent_refs_v0(leaf, ei0); 1003 1004 if (owner == (u64)-1) { 1005 while (1) { 1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1007 ret = btrfs_next_leaf(root, path); 1008 if (ret < 0) 1009 return ret; 1010 BUG_ON(ret > 0); /* Corruption */ 1011 leaf = path->nodes[0]; 1012 } 1013 btrfs_item_key_to_cpu(leaf, &found_key, 1014 path->slots[0]); 1015 BUG_ON(key.objectid != found_key.objectid); 1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1017 path->slots[0]++; 1018 continue; 1019 } 1020 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_extent_ref_v0); 1022 owner = btrfs_ref_objectid_v0(leaf, ref0); 1023 break; 1024 } 1025 } 1026 btrfs_release_path(path); 1027 1028 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1029 new_size += sizeof(*bi); 1030 1031 new_size -= sizeof(*ei0); 1032 ret = btrfs_search_slot(trans, root, &key, path, 1033 new_size + extra_size, 1); 1034 if (ret < 0) 1035 return ret; 1036 BUG_ON(ret); /* Corruption */ 1037 1038 btrfs_extend_item(root, path, new_size); 1039 1040 leaf = path->nodes[0]; 1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1042 btrfs_set_extent_refs(leaf, item, refs); 1043 /* FIXME: get real generation */ 1044 btrfs_set_extent_generation(leaf, item, 0); 1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1046 btrfs_set_extent_flags(leaf, item, 1047 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1048 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1049 bi = (struct btrfs_tree_block_info *)(item + 1); 1050 /* FIXME: get first key of the block */ 1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1052 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1053 } else { 1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1055 } 1056 btrfs_mark_buffer_dirty(leaf); 1057 return 0; 1058 } 1059 #endif 1060 1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1062 { 1063 u32 high_crc = ~(u32)0; 1064 u32 low_crc = ~(u32)0; 1065 __le64 lenum; 1066 1067 lenum = cpu_to_le64(root_objectid); 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1069 lenum = cpu_to_le64(owner); 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1071 lenum = cpu_to_le64(offset); 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1073 1074 return ((u64)high_crc << 31) ^ (u64)low_crc; 1075 } 1076 1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1078 struct btrfs_extent_data_ref *ref) 1079 { 1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1081 btrfs_extent_data_ref_objectid(leaf, ref), 1082 btrfs_extent_data_ref_offset(leaf, ref)); 1083 } 1084 1085 static int match_extent_data_ref(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref, 1087 u64 root_objectid, u64 owner, u64 offset) 1088 { 1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1091 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1092 return 0; 1093 return 1; 1094 } 1095 1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1097 struct btrfs_root *root, 1098 struct btrfs_path *path, 1099 u64 bytenr, u64 parent, 1100 u64 root_objectid, 1101 u64 owner, u64 offset) 1102 { 1103 struct btrfs_key key; 1104 struct btrfs_extent_data_ref *ref; 1105 struct extent_buffer *leaf; 1106 u32 nritems; 1107 int ret; 1108 int recow; 1109 int err = -ENOENT; 1110 1111 key.objectid = bytenr; 1112 if (parent) { 1113 key.type = BTRFS_SHARED_DATA_REF_KEY; 1114 key.offset = parent; 1115 } else { 1116 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1117 key.offset = hash_extent_data_ref(root_objectid, 1118 owner, offset); 1119 } 1120 again: 1121 recow = 0; 1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1123 if (ret < 0) { 1124 err = ret; 1125 goto fail; 1126 } 1127 1128 if (parent) { 1129 if (!ret) 1130 return 0; 1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1132 key.type = BTRFS_EXTENT_REF_V0_KEY; 1133 btrfs_release_path(path); 1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1135 if (ret < 0) { 1136 err = ret; 1137 goto fail; 1138 } 1139 if (!ret) 1140 return 0; 1141 #endif 1142 goto fail; 1143 } 1144 1145 leaf = path->nodes[0]; 1146 nritems = btrfs_header_nritems(leaf); 1147 while (1) { 1148 if (path->slots[0] >= nritems) { 1149 ret = btrfs_next_leaf(root, path); 1150 if (ret < 0) 1151 err = ret; 1152 if (ret) 1153 goto fail; 1154 1155 leaf = path->nodes[0]; 1156 nritems = btrfs_header_nritems(leaf); 1157 recow = 1; 1158 } 1159 1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1161 if (key.objectid != bytenr || 1162 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1163 goto fail; 1164 1165 ref = btrfs_item_ptr(leaf, path->slots[0], 1166 struct btrfs_extent_data_ref); 1167 1168 if (match_extent_data_ref(leaf, ref, root_objectid, 1169 owner, offset)) { 1170 if (recow) { 1171 btrfs_release_path(path); 1172 goto again; 1173 } 1174 err = 0; 1175 break; 1176 } 1177 path->slots[0]++; 1178 } 1179 fail: 1180 return err; 1181 } 1182 1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1184 struct btrfs_root *root, 1185 struct btrfs_path *path, 1186 u64 bytenr, u64 parent, 1187 u64 root_objectid, u64 owner, 1188 u64 offset, int refs_to_add) 1189 { 1190 struct btrfs_key key; 1191 struct extent_buffer *leaf; 1192 u32 size; 1193 u32 num_refs; 1194 int ret; 1195 1196 key.objectid = bytenr; 1197 if (parent) { 1198 key.type = BTRFS_SHARED_DATA_REF_KEY; 1199 key.offset = parent; 1200 size = sizeof(struct btrfs_shared_data_ref); 1201 } else { 1202 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1203 key.offset = hash_extent_data_ref(root_objectid, 1204 owner, offset); 1205 size = sizeof(struct btrfs_extent_data_ref); 1206 } 1207 1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1209 if (ret && ret != -EEXIST) 1210 goto fail; 1211 1212 leaf = path->nodes[0]; 1213 if (parent) { 1214 struct btrfs_shared_data_ref *ref; 1215 ref = btrfs_item_ptr(leaf, path->slots[0], 1216 struct btrfs_shared_data_ref); 1217 if (ret == 0) { 1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1219 } else { 1220 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1221 num_refs += refs_to_add; 1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1223 } 1224 } else { 1225 struct btrfs_extent_data_ref *ref; 1226 while (ret == -EEXIST) { 1227 ref = btrfs_item_ptr(leaf, path->slots[0], 1228 struct btrfs_extent_data_ref); 1229 if (match_extent_data_ref(leaf, ref, root_objectid, 1230 owner, offset)) 1231 break; 1232 btrfs_release_path(path); 1233 key.offset++; 1234 ret = btrfs_insert_empty_item(trans, root, path, &key, 1235 size); 1236 if (ret && ret != -EEXIST) 1237 goto fail; 1238 1239 leaf = path->nodes[0]; 1240 } 1241 ref = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_extent_data_ref); 1243 if (ret == 0) { 1244 btrfs_set_extent_data_ref_root(leaf, ref, 1245 root_objectid); 1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1249 } else { 1250 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1251 num_refs += refs_to_add; 1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1253 } 1254 } 1255 btrfs_mark_buffer_dirty(leaf); 1256 ret = 0; 1257 fail: 1258 btrfs_release_path(path); 1259 return ret; 1260 } 1261 1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1263 struct btrfs_root *root, 1264 struct btrfs_path *path, 1265 int refs_to_drop, int *last_ref) 1266 { 1267 struct btrfs_key key; 1268 struct btrfs_extent_data_ref *ref1 = NULL; 1269 struct btrfs_shared_data_ref *ref2 = NULL; 1270 struct extent_buffer *leaf; 1271 u32 num_refs = 0; 1272 int ret = 0; 1273 1274 leaf = path->nodes[0]; 1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1276 1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1278 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1279 struct btrfs_extent_data_ref); 1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1282 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1283 struct btrfs_shared_data_ref); 1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1287 struct btrfs_extent_ref_v0 *ref0; 1288 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_extent_ref_v0); 1290 num_refs = btrfs_ref_count_v0(leaf, ref0); 1291 #endif 1292 } else { 1293 BUG(); 1294 } 1295 1296 BUG_ON(num_refs < refs_to_drop); 1297 num_refs -= refs_to_drop; 1298 1299 if (num_refs == 0) { 1300 ret = btrfs_del_item(trans, root, path); 1301 *last_ref = 1; 1302 } else { 1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1308 else { 1309 struct btrfs_extent_ref_v0 *ref0; 1310 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_extent_ref_v0); 1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1313 } 1314 #endif 1315 btrfs_mark_buffer_dirty(leaf); 1316 } 1317 return ret; 1318 } 1319 1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1321 struct btrfs_path *path, 1322 struct btrfs_extent_inline_ref *iref) 1323 { 1324 struct btrfs_key key; 1325 struct extent_buffer *leaf; 1326 struct btrfs_extent_data_ref *ref1; 1327 struct btrfs_shared_data_ref *ref2; 1328 u32 num_refs = 0; 1329 1330 leaf = path->nodes[0]; 1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1332 if (iref) { 1333 if (btrfs_extent_inline_ref_type(leaf, iref) == 1334 BTRFS_EXTENT_DATA_REF_KEY) { 1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1337 } else { 1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1340 } 1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1343 struct btrfs_extent_data_ref); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1346 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1347 struct btrfs_shared_data_ref); 1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1351 struct btrfs_extent_ref_v0 *ref0; 1352 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_extent_ref_v0); 1354 num_refs = btrfs_ref_count_v0(leaf, ref0); 1355 #endif 1356 } else { 1357 WARN_ON(1); 1358 } 1359 return num_refs; 1360 } 1361 1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root, 1364 struct btrfs_path *path, 1365 u64 bytenr, u64 parent, 1366 u64 root_objectid) 1367 { 1368 struct btrfs_key key; 1369 int ret; 1370 1371 key.objectid = bytenr; 1372 if (parent) { 1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1374 key.offset = parent; 1375 } else { 1376 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1377 key.offset = root_objectid; 1378 } 1379 1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1381 if (ret > 0) 1382 ret = -ENOENT; 1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1384 if (ret == -ENOENT && parent) { 1385 btrfs_release_path(path); 1386 key.type = BTRFS_EXTENT_REF_V0_KEY; 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 } 1391 #endif 1392 return ret; 1393 } 1394 1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root, 1397 struct btrfs_path *path, 1398 u64 bytenr, u64 parent, 1399 u64 root_objectid) 1400 { 1401 struct btrfs_key key; 1402 int ret; 1403 1404 key.objectid = bytenr; 1405 if (parent) { 1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1407 key.offset = parent; 1408 } else { 1409 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1410 key.offset = root_objectid; 1411 } 1412 1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1414 btrfs_release_path(path); 1415 return ret; 1416 } 1417 1418 static inline int extent_ref_type(u64 parent, u64 owner) 1419 { 1420 int type; 1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1422 if (parent > 0) 1423 type = BTRFS_SHARED_BLOCK_REF_KEY; 1424 else 1425 type = BTRFS_TREE_BLOCK_REF_KEY; 1426 } else { 1427 if (parent > 0) 1428 type = BTRFS_SHARED_DATA_REF_KEY; 1429 else 1430 type = BTRFS_EXTENT_DATA_REF_KEY; 1431 } 1432 return type; 1433 } 1434 1435 static int find_next_key(struct btrfs_path *path, int level, 1436 struct btrfs_key *key) 1437 1438 { 1439 for (; level < BTRFS_MAX_LEVEL; level++) { 1440 if (!path->nodes[level]) 1441 break; 1442 if (path->slots[level] + 1 >= 1443 btrfs_header_nritems(path->nodes[level])) 1444 continue; 1445 if (level == 0) 1446 btrfs_item_key_to_cpu(path->nodes[level], key, 1447 path->slots[level] + 1); 1448 else 1449 btrfs_node_key_to_cpu(path->nodes[level], key, 1450 path->slots[level] + 1); 1451 return 0; 1452 } 1453 return 1; 1454 } 1455 1456 /* 1457 * look for inline back ref. if back ref is found, *ref_ret is set 1458 * to the address of inline back ref, and 0 is returned. 1459 * 1460 * if back ref isn't found, *ref_ret is set to the address where it 1461 * should be inserted, and -ENOENT is returned. 1462 * 1463 * if insert is true and there are too many inline back refs, the path 1464 * points to the extent item, and -EAGAIN is returned. 1465 * 1466 * NOTE: inline back refs are ordered in the same way that back ref 1467 * items in the tree are ordered. 1468 */ 1469 static noinline_for_stack 1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1471 struct btrfs_root *root, 1472 struct btrfs_path *path, 1473 struct btrfs_extent_inline_ref **ref_ret, 1474 u64 bytenr, u64 num_bytes, 1475 u64 parent, u64 root_objectid, 1476 u64 owner, u64 offset, int insert) 1477 { 1478 struct btrfs_key key; 1479 struct extent_buffer *leaf; 1480 struct btrfs_extent_item *ei; 1481 struct btrfs_extent_inline_ref *iref; 1482 u64 flags; 1483 u64 item_size; 1484 unsigned long ptr; 1485 unsigned long end; 1486 int extra_size; 1487 int type; 1488 int want; 1489 int ret; 1490 int err = 0; 1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1492 SKINNY_METADATA); 1493 1494 key.objectid = bytenr; 1495 key.type = BTRFS_EXTENT_ITEM_KEY; 1496 key.offset = num_bytes; 1497 1498 want = extent_ref_type(parent, owner); 1499 if (insert) { 1500 extra_size = btrfs_extent_inline_ref_size(want); 1501 path->keep_locks = 1; 1502 } else 1503 extra_size = -1; 1504 1505 /* 1506 * Owner is our parent level, so we can just add one to get the level 1507 * for the block we are interested in. 1508 */ 1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1510 key.type = BTRFS_METADATA_ITEM_KEY; 1511 key.offset = owner; 1512 } 1513 1514 again: 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1516 if (ret < 0) { 1517 err = ret; 1518 goto out; 1519 } 1520 1521 /* 1522 * We may be a newly converted file system which still has the old fat 1523 * extent entries for metadata, so try and see if we have one of those. 1524 */ 1525 if (ret > 0 && skinny_metadata) { 1526 skinny_metadata = false; 1527 if (path->slots[0]) { 1528 path->slots[0]--; 1529 btrfs_item_key_to_cpu(path->nodes[0], &key, 1530 path->slots[0]); 1531 if (key.objectid == bytenr && 1532 key.type == BTRFS_EXTENT_ITEM_KEY && 1533 key.offset == num_bytes) 1534 ret = 0; 1535 } 1536 if (ret) { 1537 key.objectid = bytenr; 1538 key.type = BTRFS_EXTENT_ITEM_KEY; 1539 key.offset = num_bytes; 1540 btrfs_release_path(path); 1541 goto again; 1542 } 1543 } 1544 1545 if (ret && !insert) { 1546 err = -ENOENT; 1547 goto out; 1548 } else if (WARN_ON(ret)) { 1549 err = -EIO; 1550 goto out; 1551 } 1552 1553 leaf = path->nodes[0]; 1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1556 if (item_size < sizeof(*ei)) { 1557 if (!insert) { 1558 err = -ENOENT; 1559 goto out; 1560 } 1561 ret = convert_extent_item_v0(trans, root, path, owner, 1562 extra_size); 1563 if (ret < 0) { 1564 err = ret; 1565 goto out; 1566 } 1567 leaf = path->nodes[0]; 1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1569 } 1570 #endif 1571 BUG_ON(item_size < sizeof(*ei)); 1572 1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1574 flags = btrfs_extent_flags(leaf, ei); 1575 1576 ptr = (unsigned long)(ei + 1); 1577 end = (unsigned long)ei + item_size; 1578 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1580 ptr += sizeof(struct btrfs_tree_block_info); 1581 BUG_ON(ptr > end); 1582 } 1583 1584 err = -ENOENT; 1585 while (1) { 1586 if (ptr >= end) { 1587 WARN_ON(ptr > end); 1588 break; 1589 } 1590 iref = (struct btrfs_extent_inline_ref *)ptr; 1591 type = btrfs_extent_inline_ref_type(leaf, iref); 1592 if (want < type) 1593 break; 1594 if (want > type) { 1595 ptr += btrfs_extent_inline_ref_size(type); 1596 continue; 1597 } 1598 1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1600 struct btrfs_extent_data_ref *dref; 1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1602 if (match_extent_data_ref(leaf, dref, root_objectid, 1603 owner, offset)) { 1604 err = 0; 1605 break; 1606 } 1607 if (hash_extent_data_ref_item(leaf, dref) < 1608 hash_extent_data_ref(root_objectid, owner, offset)) 1609 break; 1610 } else { 1611 u64 ref_offset; 1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1613 if (parent > 0) { 1614 if (parent == ref_offset) { 1615 err = 0; 1616 break; 1617 } 1618 if (ref_offset < parent) 1619 break; 1620 } else { 1621 if (root_objectid == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < root_objectid) 1626 break; 1627 } 1628 } 1629 ptr += btrfs_extent_inline_ref_size(type); 1630 } 1631 if (err == -ENOENT && insert) { 1632 if (item_size + extra_size >= 1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1634 err = -EAGAIN; 1635 goto out; 1636 } 1637 /* 1638 * To add new inline back ref, we have to make sure 1639 * there is no corresponding back ref item. 1640 * For simplicity, we just do not add new inline back 1641 * ref if there is any kind of item for this block 1642 */ 1643 if (find_next_key(path, 0, &key) == 0 && 1644 key.objectid == bytenr && 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1646 err = -EAGAIN; 1647 goto out; 1648 } 1649 } 1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1651 out: 1652 if (insert) { 1653 path->keep_locks = 0; 1654 btrfs_unlock_up_safe(path, 1); 1655 } 1656 return err; 1657 } 1658 1659 /* 1660 * helper to add new inline back ref 1661 */ 1662 static noinline_for_stack 1663 void setup_inline_extent_backref(struct btrfs_root *root, 1664 struct btrfs_path *path, 1665 struct btrfs_extent_inline_ref *iref, 1666 u64 parent, u64 root_objectid, 1667 u64 owner, u64 offset, int refs_to_add, 1668 struct btrfs_delayed_extent_op *extent_op) 1669 { 1670 struct extent_buffer *leaf; 1671 struct btrfs_extent_item *ei; 1672 unsigned long ptr; 1673 unsigned long end; 1674 unsigned long item_offset; 1675 u64 refs; 1676 int size; 1677 int type; 1678 1679 leaf = path->nodes[0]; 1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1681 item_offset = (unsigned long)iref - (unsigned long)ei; 1682 1683 type = extent_ref_type(parent, owner); 1684 size = btrfs_extent_inline_ref_size(type); 1685 1686 btrfs_extend_item(root, path, size); 1687 1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1689 refs = btrfs_extent_refs(leaf, ei); 1690 refs += refs_to_add; 1691 btrfs_set_extent_refs(leaf, ei, refs); 1692 if (extent_op) 1693 __run_delayed_extent_op(extent_op, leaf, ei); 1694 1695 ptr = (unsigned long)ei + item_offset; 1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1697 if (ptr < end - size) 1698 memmove_extent_buffer(leaf, ptr + size, ptr, 1699 end - size - ptr); 1700 1701 iref = (struct btrfs_extent_inline_ref *)ptr; 1702 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1704 struct btrfs_extent_data_ref *dref; 1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1711 struct btrfs_shared_data_ref *sref; 1712 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1717 } else { 1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1719 } 1720 btrfs_mark_buffer_dirty(leaf); 1721 } 1722 1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref **ref_ret, 1727 u64 bytenr, u64 num_bytes, u64 parent, 1728 u64 root_objectid, u64 owner, u64 offset) 1729 { 1730 int ret; 1731 1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1733 bytenr, num_bytes, parent, 1734 root_objectid, owner, offset, 0); 1735 if (ret != -ENOENT) 1736 return ret; 1737 1738 btrfs_release_path(path); 1739 *ref_ret = NULL; 1740 1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1743 root_objectid); 1744 } else { 1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1746 root_objectid, owner, offset); 1747 } 1748 return ret; 1749 } 1750 1751 /* 1752 * helper to update/remove inline back ref 1753 */ 1754 static noinline_for_stack 1755 void update_inline_extent_backref(struct btrfs_root *root, 1756 struct btrfs_path *path, 1757 struct btrfs_extent_inline_ref *iref, 1758 int refs_to_mod, 1759 struct btrfs_delayed_extent_op *extent_op, 1760 int *last_ref) 1761 { 1762 struct extent_buffer *leaf; 1763 struct btrfs_extent_item *ei; 1764 struct btrfs_extent_data_ref *dref = NULL; 1765 struct btrfs_shared_data_ref *sref = NULL; 1766 unsigned long ptr; 1767 unsigned long end; 1768 u32 item_size; 1769 int size; 1770 int type; 1771 u64 refs; 1772 1773 leaf = path->nodes[0]; 1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1775 refs = btrfs_extent_refs(leaf, ei); 1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1777 refs += refs_to_mod; 1778 btrfs_set_extent_refs(leaf, ei, refs); 1779 if (extent_op) 1780 __run_delayed_extent_op(extent_op, leaf, ei); 1781 1782 type = btrfs_extent_inline_ref_type(leaf, iref); 1783 1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1786 refs = btrfs_extent_data_ref_count(leaf, dref); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1789 refs = btrfs_shared_data_ref_count(leaf, sref); 1790 } else { 1791 refs = 1; 1792 BUG_ON(refs_to_mod != -1); 1793 } 1794 1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1796 refs += refs_to_mod; 1797 1798 if (refs > 0) { 1799 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1800 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1801 else 1802 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1803 } else { 1804 *last_ref = 1; 1805 size = btrfs_extent_inline_ref_size(type); 1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1807 ptr = (unsigned long)iref; 1808 end = (unsigned long)ei + item_size; 1809 if (ptr + size < end) 1810 memmove_extent_buffer(leaf, ptr, ptr + size, 1811 end - ptr - size); 1812 item_size -= size; 1813 btrfs_truncate_item(root, path, item_size, 1); 1814 } 1815 btrfs_mark_buffer_dirty(leaf); 1816 } 1817 1818 static noinline_for_stack 1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1820 struct btrfs_root *root, 1821 struct btrfs_path *path, 1822 u64 bytenr, u64 num_bytes, u64 parent, 1823 u64 root_objectid, u64 owner, 1824 u64 offset, int refs_to_add, 1825 struct btrfs_delayed_extent_op *extent_op) 1826 { 1827 struct btrfs_extent_inline_ref *iref; 1828 int ret; 1829 1830 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1831 bytenr, num_bytes, parent, 1832 root_objectid, owner, offset, 1); 1833 if (ret == 0) { 1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1835 update_inline_extent_backref(root, path, iref, 1836 refs_to_add, extent_op, NULL); 1837 } else if (ret == -ENOENT) { 1838 setup_inline_extent_backref(root, path, iref, parent, 1839 root_objectid, owner, offset, 1840 refs_to_add, extent_op); 1841 ret = 0; 1842 } 1843 return ret; 1844 } 1845 1846 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1847 struct btrfs_root *root, 1848 struct btrfs_path *path, 1849 u64 bytenr, u64 parent, u64 root_objectid, 1850 u64 owner, u64 offset, int refs_to_add) 1851 { 1852 int ret; 1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1854 BUG_ON(refs_to_add != 1); 1855 ret = insert_tree_block_ref(trans, root, path, bytenr, 1856 parent, root_objectid); 1857 } else { 1858 ret = insert_extent_data_ref(trans, root, path, bytenr, 1859 parent, root_objectid, 1860 owner, offset, refs_to_add); 1861 } 1862 return ret; 1863 } 1864 1865 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1866 struct btrfs_root *root, 1867 struct btrfs_path *path, 1868 struct btrfs_extent_inline_ref *iref, 1869 int refs_to_drop, int is_data, int *last_ref) 1870 { 1871 int ret = 0; 1872 1873 BUG_ON(!is_data && refs_to_drop != 1); 1874 if (iref) { 1875 update_inline_extent_backref(root, path, iref, 1876 -refs_to_drop, NULL, last_ref); 1877 } else if (is_data) { 1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1879 last_ref); 1880 } else { 1881 *last_ref = 1; 1882 ret = btrfs_del_item(trans, root, path); 1883 } 1884 return ret; 1885 } 1886 1887 static int btrfs_issue_discard(struct block_device *bdev, 1888 u64 start, u64 len) 1889 { 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1891 } 1892 1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1894 u64 num_bytes, u64 *actual_bytes) 1895 { 1896 int ret; 1897 u64 discarded_bytes = 0; 1898 struct btrfs_bio *bbio = NULL; 1899 1900 1901 /* Tell the block device(s) that the sectors can be discarded */ 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1903 bytenr, &num_bytes, &bbio, 0); 1904 /* Error condition is -ENOMEM */ 1905 if (!ret) { 1906 struct btrfs_bio_stripe *stripe = bbio->stripes; 1907 int i; 1908 1909 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1911 if (!stripe->dev->can_discard) 1912 continue; 1913 1914 ret = btrfs_issue_discard(stripe->dev->bdev, 1915 stripe->physical, 1916 stripe->length); 1917 if (!ret) 1918 discarded_bytes += stripe->length; 1919 else if (ret != -EOPNOTSUPP) 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1921 1922 /* 1923 * Just in case we get back EOPNOTSUPP for some reason, 1924 * just ignore the return value so we don't screw up 1925 * people calling discard_extent. 1926 */ 1927 ret = 0; 1928 } 1929 btrfs_put_bbio(bbio); 1930 } 1931 1932 if (actual_bytes) 1933 *actual_bytes = discarded_bytes; 1934 1935 1936 if (ret == -EOPNOTSUPP) 1937 ret = 0; 1938 return ret; 1939 } 1940 1941 /* Can return -ENOMEM */ 1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 u64 bytenr, u64 num_bytes, u64 parent, 1945 u64 root_objectid, u64 owner, u64 offset, 1946 int no_quota) 1947 { 1948 int ret; 1949 struct btrfs_fs_info *fs_info = root->fs_info; 1950 1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1952 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1953 1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1956 num_bytes, 1957 parent, root_objectid, (int)owner, 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1959 } else { 1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1961 num_bytes, 1962 parent, root_objectid, owner, offset, 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1964 } 1965 return ret; 1966 } 1967 1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1969 struct btrfs_root *root, 1970 u64 bytenr, u64 num_bytes, 1971 u64 parent, u64 root_objectid, 1972 u64 owner, u64 offset, int refs_to_add, 1973 int no_quota, 1974 struct btrfs_delayed_extent_op *extent_op) 1975 { 1976 struct btrfs_fs_info *fs_info = root->fs_info; 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 struct btrfs_key key; 1981 u64 refs; 1982 int ret; 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota)) 2000 goto out; 2001 /* 2002 * Ok we were able to insert an inline extent and it appears to be a new 2003 * reference, deal with the qgroup accounting. 2004 */ 2005 if (!ret && !no_quota) { 2006 ASSERT(root->fs_info->quota_enabled); 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], 2010 struct btrfs_extent_item); 2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add) 2012 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2013 btrfs_release_path(path); 2014 2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2016 bytenr, num_bytes, type, 0); 2017 goto out; 2018 } 2019 2020 /* 2021 * Ok we had -EAGAIN which means we didn't have space to insert and 2022 * inline extent ref, so just update the reference count and add a 2023 * normal backref. 2024 */ 2025 leaf = path->nodes[0]; 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2028 refs = btrfs_extent_refs(leaf, item); 2029 if (refs) 2030 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2032 if (extent_op) 2033 __run_delayed_extent_op(extent_op, leaf, item); 2034 2035 btrfs_mark_buffer_dirty(leaf); 2036 btrfs_release_path(path); 2037 2038 if (!no_quota) { 2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2040 bytenr, num_bytes, type, 0); 2041 if (ret) 2042 goto out; 2043 } 2044 2045 path->reada = 1; 2046 path->leave_spinning = 1; 2047 /* now insert the actual backref */ 2048 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2049 path, bytenr, parent, root_objectid, 2050 owner, offset, refs_to_add); 2051 if (ret) 2052 btrfs_abort_transaction(trans, root, ret); 2053 out: 2054 btrfs_free_path(path); 2055 return ret; 2056 } 2057 2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2059 struct btrfs_root *root, 2060 struct btrfs_delayed_ref_node *node, 2061 struct btrfs_delayed_extent_op *extent_op, 2062 int insert_reserved) 2063 { 2064 int ret = 0; 2065 struct btrfs_delayed_data_ref *ref; 2066 struct btrfs_key ins; 2067 u64 parent = 0; 2068 u64 ref_root = 0; 2069 u64 flags = 0; 2070 2071 ins.objectid = node->bytenr; 2072 ins.offset = node->num_bytes; 2073 ins.type = BTRFS_EXTENT_ITEM_KEY; 2074 2075 ref = btrfs_delayed_node_to_data_ref(node); 2076 trace_run_delayed_data_ref(node, ref, node->action); 2077 2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2079 parent = ref->parent; 2080 ref_root = ref->root; 2081 2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2083 if (extent_op) 2084 flags |= extent_op->flags_to_set; 2085 ret = alloc_reserved_file_extent(trans, root, 2086 parent, ref_root, flags, 2087 ref->objectid, ref->offset, 2088 &ins, node->ref_mod); 2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2091 node->num_bytes, parent, 2092 ref_root, ref->objectid, 2093 ref->offset, node->ref_mod, 2094 node->no_quota, extent_op); 2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2096 ret = __btrfs_free_extent(trans, root, node->bytenr, 2097 node->num_bytes, parent, 2098 ref_root, ref->objectid, 2099 ref->offset, node->ref_mod, 2100 extent_op, node->no_quota); 2101 } else { 2102 BUG(); 2103 } 2104 return ret; 2105 } 2106 2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2108 struct extent_buffer *leaf, 2109 struct btrfs_extent_item *ei) 2110 { 2111 u64 flags = btrfs_extent_flags(leaf, ei); 2112 if (extent_op->update_flags) { 2113 flags |= extent_op->flags_to_set; 2114 btrfs_set_extent_flags(leaf, ei, flags); 2115 } 2116 2117 if (extent_op->update_key) { 2118 struct btrfs_tree_block_info *bi; 2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2120 bi = (struct btrfs_tree_block_info *)(ei + 1); 2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2122 } 2123 } 2124 2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root, 2127 struct btrfs_delayed_ref_node *node, 2128 struct btrfs_delayed_extent_op *extent_op) 2129 { 2130 struct btrfs_key key; 2131 struct btrfs_path *path; 2132 struct btrfs_extent_item *ei; 2133 struct extent_buffer *leaf; 2134 u32 item_size; 2135 int ret; 2136 int err = 0; 2137 int metadata = !extent_op->is_data; 2138 2139 if (trans->aborted) 2140 return 0; 2141 2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2143 metadata = 0; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 2149 key.objectid = node->bytenr; 2150 2151 if (metadata) { 2152 key.type = BTRFS_METADATA_ITEM_KEY; 2153 key.offset = extent_op->level; 2154 } else { 2155 key.type = BTRFS_EXTENT_ITEM_KEY; 2156 key.offset = node->num_bytes; 2157 } 2158 2159 again: 2160 path->reada = 1; 2161 path->leave_spinning = 1; 2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2163 path, 0, 1); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 if (ret > 0) { 2169 if (metadata) { 2170 if (path->slots[0] > 0) { 2171 path->slots[0]--; 2172 btrfs_item_key_to_cpu(path->nodes[0], &key, 2173 path->slots[0]); 2174 if (key.objectid == node->bytenr && 2175 key.type == BTRFS_EXTENT_ITEM_KEY && 2176 key.offset == node->num_bytes) 2177 ret = 0; 2178 } 2179 if (ret > 0) { 2180 btrfs_release_path(path); 2181 metadata = 0; 2182 2183 key.objectid = node->bytenr; 2184 key.offset = node->num_bytes; 2185 key.type = BTRFS_EXTENT_ITEM_KEY; 2186 goto again; 2187 } 2188 } else { 2189 err = -EIO; 2190 goto out; 2191 } 2192 } 2193 2194 leaf = path->nodes[0]; 2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2197 if (item_size < sizeof(*ei)) { 2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2199 path, (u64)-1, 0); 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 leaf = path->nodes[0]; 2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2206 } 2207 #endif 2208 BUG_ON(item_size < sizeof(*ei)); 2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2210 __run_delayed_extent_op(extent_op, leaf, ei); 2211 2212 btrfs_mark_buffer_dirty(leaf); 2213 out: 2214 btrfs_free_path(path); 2215 return err; 2216 } 2217 2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2219 struct btrfs_root *root, 2220 struct btrfs_delayed_ref_node *node, 2221 struct btrfs_delayed_extent_op *extent_op, 2222 int insert_reserved) 2223 { 2224 int ret = 0; 2225 struct btrfs_delayed_tree_ref *ref; 2226 struct btrfs_key ins; 2227 u64 parent = 0; 2228 u64 ref_root = 0; 2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2230 SKINNY_METADATA); 2231 2232 ref = btrfs_delayed_node_to_tree_ref(node); 2233 trace_run_delayed_tree_ref(node, ref, node->action); 2234 2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2236 parent = ref->parent; 2237 ref_root = ref->root; 2238 2239 ins.objectid = node->bytenr; 2240 if (skinny_metadata) { 2241 ins.offset = ref->level; 2242 ins.type = BTRFS_METADATA_ITEM_KEY; 2243 } else { 2244 ins.offset = node->num_bytes; 2245 ins.type = BTRFS_EXTENT_ITEM_KEY; 2246 } 2247 2248 BUG_ON(node->ref_mod != 1); 2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2250 BUG_ON(!extent_op || !extent_op->update_flags); 2251 ret = alloc_reserved_tree_block(trans, root, 2252 parent, ref_root, 2253 extent_op->flags_to_set, 2254 &extent_op->key, 2255 ref->level, &ins, 2256 node->no_quota); 2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2259 node->num_bytes, parent, ref_root, 2260 ref->level, 0, 1, node->no_quota, 2261 extent_op); 2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2263 ret = __btrfs_free_extent(trans, root, node->bytenr, 2264 node->num_bytes, parent, ref_root, 2265 ref->level, 0, 1, extent_op, 2266 node->no_quota); 2267 } else { 2268 BUG(); 2269 } 2270 return ret; 2271 } 2272 2273 /* helper function to actually process a single delayed ref entry */ 2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2275 struct btrfs_root *root, 2276 struct btrfs_delayed_ref_node *node, 2277 struct btrfs_delayed_extent_op *extent_op, 2278 int insert_reserved) 2279 { 2280 int ret = 0; 2281 2282 if (trans->aborted) { 2283 if (insert_reserved) 2284 btrfs_pin_extent(root, node->bytenr, 2285 node->num_bytes, 1); 2286 return 0; 2287 } 2288 2289 if (btrfs_delayed_ref_is_head(node)) { 2290 struct btrfs_delayed_ref_head *head; 2291 /* 2292 * we've hit the end of the chain and we were supposed 2293 * to insert this extent into the tree. But, it got 2294 * deleted before we ever needed to insert it, so all 2295 * we have to do is clean up the accounting 2296 */ 2297 BUG_ON(extent_op); 2298 head = btrfs_delayed_node_to_head(node); 2299 trace_run_delayed_ref_head(node, head, node->action); 2300 2301 if (insert_reserved) { 2302 btrfs_pin_extent(root, node->bytenr, 2303 node->num_bytes, 1); 2304 if (head->is_data) { 2305 ret = btrfs_del_csums(trans, root, 2306 node->bytenr, 2307 node->num_bytes); 2308 } 2309 } 2310 return ret; 2311 } 2312 2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2315 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2316 insert_reserved); 2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2318 node->type == BTRFS_SHARED_DATA_REF_KEY) 2319 ret = run_delayed_data_ref(trans, root, node, extent_op, 2320 insert_reserved); 2321 else 2322 BUG(); 2323 return ret; 2324 } 2325 2326 static noinline struct btrfs_delayed_ref_node * 2327 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2328 { 2329 struct rb_node *node; 2330 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2331 2332 /* 2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2334 * this prevents ref count from going down to zero when 2335 * there still are pending delayed ref. 2336 */ 2337 node = rb_first(&head->ref_root); 2338 while (node) { 2339 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2340 rb_node); 2341 if (ref->action == BTRFS_ADD_DELAYED_REF) 2342 return ref; 2343 else if (last == NULL) 2344 last = ref; 2345 node = rb_next(node); 2346 } 2347 return last; 2348 } 2349 2350 /* 2351 * Returns 0 on success or if called with an already aborted transaction. 2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2353 */ 2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2355 struct btrfs_root *root, 2356 unsigned long nr) 2357 { 2358 struct btrfs_delayed_ref_root *delayed_refs; 2359 struct btrfs_delayed_ref_node *ref; 2360 struct btrfs_delayed_ref_head *locked_ref = NULL; 2361 struct btrfs_delayed_extent_op *extent_op; 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 ktime_t start = ktime_get(); 2364 int ret; 2365 unsigned long count = 0; 2366 unsigned long actual_count = 0; 2367 int must_insert_reserved = 0; 2368 2369 delayed_refs = &trans->transaction->delayed_refs; 2370 while (1) { 2371 if (!locked_ref) { 2372 if (count >= nr) 2373 break; 2374 2375 spin_lock(&delayed_refs->lock); 2376 locked_ref = btrfs_select_ref_head(trans); 2377 if (!locked_ref) { 2378 spin_unlock(&delayed_refs->lock); 2379 break; 2380 } 2381 2382 /* grab the lock that says we are going to process 2383 * all the refs for this head */ 2384 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2385 spin_unlock(&delayed_refs->lock); 2386 /* 2387 * we may have dropped the spin lock to get the head 2388 * mutex lock, and that might have given someone else 2389 * time to free the head. If that's true, it has been 2390 * removed from our list and we can move on. 2391 */ 2392 if (ret == -EAGAIN) { 2393 locked_ref = NULL; 2394 count++; 2395 continue; 2396 } 2397 } 2398 2399 /* 2400 * We need to try and merge add/drops of the same ref since we 2401 * can run into issues with relocate dropping the implicit ref 2402 * and then it being added back again before the drop can 2403 * finish. If we merged anything we need to re-loop so we can 2404 * get a good ref. 2405 */ 2406 spin_lock(&locked_ref->lock); 2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2408 locked_ref); 2409 2410 /* 2411 * locked_ref is the head node, so we have to go one 2412 * node back for any delayed ref updates 2413 */ 2414 ref = select_delayed_ref(locked_ref); 2415 2416 if (ref && ref->seq && 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2418 spin_unlock(&locked_ref->lock); 2419 btrfs_delayed_ref_unlock(locked_ref); 2420 spin_lock(&delayed_refs->lock); 2421 locked_ref->processing = 0; 2422 delayed_refs->num_heads_ready++; 2423 spin_unlock(&delayed_refs->lock); 2424 locked_ref = NULL; 2425 cond_resched(); 2426 count++; 2427 continue; 2428 } 2429 2430 /* 2431 * record the must insert reserved flag before we 2432 * drop the spin lock. 2433 */ 2434 must_insert_reserved = locked_ref->must_insert_reserved; 2435 locked_ref->must_insert_reserved = 0; 2436 2437 extent_op = locked_ref->extent_op; 2438 locked_ref->extent_op = NULL; 2439 2440 if (!ref) { 2441 2442 2443 /* All delayed refs have been processed, Go ahead 2444 * and send the head node to run_one_delayed_ref, 2445 * so that any accounting fixes can happen 2446 */ 2447 ref = &locked_ref->node; 2448 2449 if (extent_op && must_insert_reserved) { 2450 btrfs_free_delayed_extent_op(extent_op); 2451 extent_op = NULL; 2452 } 2453 2454 if (extent_op) { 2455 spin_unlock(&locked_ref->lock); 2456 ret = run_delayed_extent_op(trans, root, 2457 ref, extent_op); 2458 btrfs_free_delayed_extent_op(extent_op); 2459 2460 if (ret) { 2461 /* 2462 * Need to reset must_insert_reserved if 2463 * there was an error so the abort stuff 2464 * can cleanup the reserved space 2465 * properly. 2466 */ 2467 if (must_insert_reserved) 2468 locked_ref->must_insert_reserved = 1; 2469 locked_ref->processing = 0; 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2471 btrfs_delayed_ref_unlock(locked_ref); 2472 return ret; 2473 } 2474 continue; 2475 } 2476 2477 /* 2478 * Need to drop our head ref lock and re-aqcuire the 2479 * delayed ref lock and then re-check to make sure 2480 * nobody got added. 2481 */ 2482 spin_unlock(&locked_ref->lock); 2483 spin_lock(&delayed_refs->lock); 2484 spin_lock(&locked_ref->lock); 2485 if (rb_first(&locked_ref->ref_root) || 2486 locked_ref->extent_op) { 2487 spin_unlock(&locked_ref->lock); 2488 spin_unlock(&delayed_refs->lock); 2489 continue; 2490 } 2491 ref->in_tree = 0; 2492 delayed_refs->num_heads--; 2493 rb_erase(&locked_ref->href_node, 2494 &delayed_refs->href_root); 2495 spin_unlock(&delayed_refs->lock); 2496 } else { 2497 actual_count++; 2498 ref->in_tree = 0; 2499 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2500 } 2501 atomic_dec(&delayed_refs->num_entries); 2502 2503 if (!btrfs_delayed_ref_is_head(ref)) { 2504 /* 2505 * when we play the delayed ref, also correct the 2506 * ref_mod on head 2507 */ 2508 switch (ref->action) { 2509 case BTRFS_ADD_DELAYED_REF: 2510 case BTRFS_ADD_DELAYED_EXTENT: 2511 locked_ref->node.ref_mod -= ref->ref_mod; 2512 break; 2513 case BTRFS_DROP_DELAYED_REF: 2514 locked_ref->node.ref_mod += ref->ref_mod; 2515 break; 2516 default: 2517 WARN_ON(1); 2518 } 2519 } 2520 spin_unlock(&locked_ref->lock); 2521 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2523 must_insert_reserved); 2524 2525 btrfs_free_delayed_extent_op(extent_op); 2526 if (ret) { 2527 locked_ref->processing = 0; 2528 btrfs_delayed_ref_unlock(locked_ref); 2529 btrfs_put_delayed_ref(ref); 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2531 return ret; 2532 } 2533 2534 /* 2535 * If this node is a head, that means all the refs in this head 2536 * have been dealt with, and we will pick the next head to deal 2537 * with, so we must unlock the head and drop it from the cluster 2538 * list before we release it. 2539 */ 2540 if (btrfs_delayed_ref_is_head(ref)) { 2541 if (locked_ref->is_data && 2542 locked_ref->total_ref_mod < 0) { 2543 spin_lock(&delayed_refs->lock); 2544 delayed_refs->pending_csums -= ref->num_bytes; 2545 spin_unlock(&delayed_refs->lock); 2546 } 2547 btrfs_delayed_ref_unlock(locked_ref); 2548 locked_ref = NULL; 2549 } 2550 btrfs_put_delayed_ref(ref); 2551 count++; 2552 cond_resched(); 2553 } 2554 2555 /* 2556 * We don't want to include ref heads since we can have empty ref heads 2557 * and those will drastically skew our runtime down since we just do 2558 * accounting, no actual extent tree updates. 2559 */ 2560 if (actual_count > 0) { 2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2562 u64 avg; 2563 2564 /* 2565 * We weigh the current average higher than our current runtime 2566 * to avoid large swings in the average. 2567 */ 2568 spin_lock(&delayed_refs->lock); 2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2571 spin_unlock(&delayed_refs->lock); 2572 } 2573 return 0; 2574 } 2575 2576 #ifdef SCRAMBLE_DELAYED_REFS 2577 /* 2578 * Normally delayed refs get processed in ascending bytenr order. This 2579 * correlates in most cases to the order added. To expose dependencies on this 2580 * order, we start to process the tree in the middle instead of the beginning 2581 */ 2582 static u64 find_middle(struct rb_root *root) 2583 { 2584 struct rb_node *n = root->rb_node; 2585 struct btrfs_delayed_ref_node *entry; 2586 int alt = 1; 2587 u64 middle; 2588 u64 first = 0, last = 0; 2589 2590 n = rb_first(root); 2591 if (n) { 2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2593 first = entry->bytenr; 2594 } 2595 n = rb_last(root); 2596 if (n) { 2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2598 last = entry->bytenr; 2599 } 2600 n = root->rb_node; 2601 2602 while (n) { 2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2604 WARN_ON(!entry->in_tree); 2605 2606 middle = entry->bytenr; 2607 2608 if (alt) 2609 n = n->rb_left; 2610 else 2611 n = n->rb_right; 2612 2613 alt = 1 - alt; 2614 } 2615 return middle; 2616 } 2617 #endif 2618 2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2620 { 2621 u64 num_bytes; 2622 2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2624 sizeof(struct btrfs_extent_inline_ref)); 2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2627 2628 /* 2629 * We don't ever fill up leaves all the way so multiply by 2 just to be 2630 * closer to what we're really going to want to ouse. 2631 */ 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2633 } 2634 2635 /* 2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2637 * would require to store the csums for that many bytes. 2638 */ 2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2640 { 2641 u64 csum_size; 2642 u64 num_csums_per_leaf; 2643 u64 num_csums; 2644 2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2646 num_csums_per_leaf = div64_u64(csum_size, 2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2648 num_csums = div64_u64(csum_bytes, root->sectorsize); 2649 num_csums += num_csums_per_leaf - 1; 2650 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2651 return num_csums; 2652 } 2653 2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2655 struct btrfs_root *root) 2656 { 2657 struct btrfs_block_rsv *global_rsv; 2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2661 u64 num_bytes, num_dirty_bgs_bytes; 2662 int ret = 0; 2663 2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2665 num_heads = heads_to_leaves(root, num_heads); 2666 if (num_heads > 1) 2667 num_bytes += (num_heads - 1) * root->nodesize; 2668 num_bytes <<= 1; 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2671 num_dirty_bgs); 2672 global_rsv = &root->fs_info->global_block_rsv; 2673 2674 /* 2675 * If we can't allocate any more chunks lets make sure we have _lots_ of 2676 * wiggle room since running delayed refs can create more delayed refs. 2677 */ 2678 if (global_rsv->space_info->full) { 2679 num_dirty_bgs_bytes <<= 1; 2680 num_bytes <<= 1; 2681 } 2682 2683 spin_lock(&global_rsv->lock); 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2685 ret = 1; 2686 spin_unlock(&global_rsv->lock); 2687 return ret; 2688 } 2689 2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2691 struct btrfs_root *root) 2692 { 2693 struct btrfs_fs_info *fs_info = root->fs_info; 2694 u64 num_entries = 2695 atomic_read(&trans->transaction->delayed_refs.num_entries); 2696 u64 avg_runtime; 2697 u64 val; 2698 2699 smp_mb(); 2700 avg_runtime = fs_info->avg_delayed_ref_runtime; 2701 val = num_entries * avg_runtime; 2702 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2703 return 1; 2704 if (val >= NSEC_PER_SEC / 2) 2705 return 2; 2706 2707 return btrfs_check_space_for_delayed_refs(trans, root); 2708 } 2709 2710 struct async_delayed_refs { 2711 struct btrfs_root *root; 2712 int count; 2713 int error; 2714 int sync; 2715 struct completion wait; 2716 struct btrfs_work work; 2717 }; 2718 2719 static void delayed_ref_async_start(struct btrfs_work *work) 2720 { 2721 struct async_delayed_refs *async; 2722 struct btrfs_trans_handle *trans; 2723 int ret; 2724 2725 async = container_of(work, struct async_delayed_refs, work); 2726 2727 trans = btrfs_join_transaction(async->root); 2728 if (IS_ERR(trans)) { 2729 async->error = PTR_ERR(trans); 2730 goto done; 2731 } 2732 2733 /* 2734 * trans->sync means that when we call end_transaciton, we won't 2735 * wait on delayed refs 2736 */ 2737 trans->sync = true; 2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2739 if (ret) 2740 async->error = ret; 2741 2742 ret = btrfs_end_transaction(trans, async->root); 2743 if (ret && !async->error) 2744 async->error = ret; 2745 done: 2746 if (async->sync) 2747 complete(&async->wait); 2748 else 2749 kfree(async); 2750 } 2751 2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2753 unsigned long count, int wait) 2754 { 2755 struct async_delayed_refs *async; 2756 int ret; 2757 2758 async = kmalloc(sizeof(*async), GFP_NOFS); 2759 if (!async) 2760 return -ENOMEM; 2761 2762 async->root = root->fs_info->tree_root; 2763 async->count = count; 2764 async->error = 0; 2765 if (wait) 2766 async->sync = 1; 2767 else 2768 async->sync = 0; 2769 init_completion(&async->wait); 2770 2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2772 delayed_ref_async_start, NULL, NULL); 2773 2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2775 2776 if (wait) { 2777 wait_for_completion(&async->wait); 2778 ret = async->error; 2779 kfree(async); 2780 return ret; 2781 } 2782 return 0; 2783 } 2784 2785 /* 2786 * this starts processing the delayed reference count updates and 2787 * extent insertions we have queued up so far. count can be 2788 * 0, which means to process everything in the tree at the start 2789 * of the run (but not newly added entries), or it can be some target 2790 * number you'd like to process. 2791 * 2792 * Returns 0 on success or if called with an aborted transaction 2793 * Returns <0 on error and aborts the transaction 2794 */ 2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2796 struct btrfs_root *root, unsigned long count) 2797 { 2798 struct rb_node *node; 2799 struct btrfs_delayed_ref_root *delayed_refs; 2800 struct btrfs_delayed_ref_head *head; 2801 int ret; 2802 int run_all = count == (unsigned long)-1; 2803 2804 /* We'll clean this up in btrfs_cleanup_transaction */ 2805 if (trans->aborted) 2806 return 0; 2807 2808 if (root == root->fs_info->extent_root) 2809 root = root->fs_info->tree_root; 2810 2811 delayed_refs = &trans->transaction->delayed_refs; 2812 if (count == 0) 2813 count = atomic_read(&delayed_refs->num_entries) * 2; 2814 2815 again: 2816 #ifdef SCRAMBLE_DELAYED_REFS 2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2818 #endif 2819 ret = __btrfs_run_delayed_refs(trans, root, count); 2820 if (ret < 0) { 2821 btrfs_abort_transaction(trans, root, ret); 2822 return ret; 2823 } 2824 2825 if (run_all) { 2826 if (!list_empty(&trans->new_bgs)) 2827 btrfs_create_pending_block_groups(trans, root); 2828 2829 spin_lock(&delayed_refs->lock); 2830 node = rb_first(&delayed_refs->href_root); 2831 if (!node) { 2832 spin_unlock(&delayed_refs->lock); 2833 goto out; 2834 } 2835 count = (unsigned long)-1; 2836 2837 while (node) { 2838 head = rb_entry(node, struct btrfs_delayed_ref_head, 2839 href_node); 2840 if (btrfs_delayed_ref_is_head(&head->node)) { 2841 struct btrfs_delayed_ref_node *ref; 2842 2843 ref = &head->node; 2844 atomic_inc(&ref->refs); 2845 2846 spin_unlock(&delayed_refs->lock); 2847 /* 2848 * Mutex was contended, block until it's 2849 * released and try again 2850 */ 2851 mutex_lock(&head->mutex); 2852 mutex_unlock(&head->mutex); 2853 2854 btrfs_put_delayed_ref(ref); 2855 cond_resched(); 2856 goto again; 2857 } else { 2858 WARN_ON(1); 2859 } 2860 node = rb_next(node); 2861 } 2862 spin_unlock(&delayed_refs->lock); 2863 cond_resched(); 2864 goto again; 2865 } 2866 out: 2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info); 2868 if (ret) 2869 return ret; 2870 assert_qgroups_uptodate(trans); 2871 return 0; 2872 } 2873 2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2875 struct btrfs_root *root, 2876 u64 bytenr, u64 num_bytes, u64 flags, 2877 int level, int is_data) 2878 { 2879 struct btrfs_delayed_extent_op *extent_op; 2880 int ret; 2881 2882 extent_op = btrfs_alloc_delayed_extent_op(); 2883 if (!extent_op) 2884 return -ENOMEM; 2885 2886 extent_op->flags_to_set = flags; 2887 extent_op->update_flags = 1; 2888 extent_op->update_key = 0; 2889 extent_op->is_data = is_data ? 1 : 0; 2890 extent_op->level = level; 2891 2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2893 num_bytes, extent_op); 2894 if (ret) 2895 btrfs_free_delayed_extent_op(extent_op); 2896 return ret; 2897 } 2898 2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 struct btrfs_path *path, 2902 u64 objectid, u64 offset, u64 bytenr) 2903 { 2904 struct btrfs_delayed_ref_head *head; 2905 struct btrfs_delayed_ref_node *ref; 2906 struct btrfs_delayed_data_ref *data_ref; 2907 struct btrfs_delayed_ref_root *delayed_refs; 2908 struct rb_node *node; 2909 int ret = 0; 2910 2911 delayed_refs = &trans->transaction->delayed_refs; 2912 spin_lock(&delayed_refs->lock); 2913 head = btrfs_find_delayed_ref_head(trans, bytenr); 2914 if (!head) { 2915 spin_unlock(&delayed_refs->lock); 2916 return 0; 2917 } 2918 2919 if (!mutex_trylock(&head->mutex)) { 2920 atomic_inc(&head->node.refs); 2921 spin_unlock(&delayed_refs->lock); 2922 2923 btrfs_release_path(path); 2924 2925 /* 2926 * Mutex was contended, block until it's released and let 2927 * caller try again 2928 */ 2929 mutex_lock(&head->mutex); 2930 mutex_unlock(&head->mutex); 2931 btrfs_put_delayed_ref(&head->node); 2932 return -EAGAIN; 2933 } 2934 spin_unlock(&delayed_refs->lock); 2935 2936 spin_lock(&head->lock); 2937 node = rb_first(&head->ref_root); 2938 while (node) { 2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2940 node = rb_next(node); 2941 2942 /* If it's a shared ref we know a cross reference exists */ 2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2944 ret = 1; 2945 break; 2946 } 2947 2948 data_ref = btrfs_delayed_node_to_data_ref(ref); 2949 2950 /* 2951 * If our ref doesn't match the one we're currently looking at 2952 * then we have a cross reference. 2953 */ 2954 if (data_ref->root != root->root_key.objectid || 2955 data_ref->objectid != objectid || 2956 data_ref->offset != offset) { 2957 ret = 1; 2958 break; 2959 } 2960 } 2961 spin_unlock(&head->lock); 2962 mutex_unlock(&head->mutex); 2963 return ret; 2964 } 2965 2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, 2968 struct btrfs_path *path, 2969 u64 objectid, u64 offset, u64 bytenr) 2970 { 2971 struct btrfs_root *extent_root = root->fs_info->extent_root; 2972 struct extent_buffer *leaf; 2973 struct btrfs_extent_data_ref *ref; 2974 struct btrfs_extent_inline_ref *iref; 2975 struct btrfs_extent_item *ei; 2976 struct btrfs_key key; 2977 u32 item_size; 2978 int ret; 2979 2980 key.objectid = bytenr; 2981 key.offset = (u64)-1; 2982 key.type = BTRFS_EXTENT_ITEM_KEY; 2983 2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2985 if (ret < 0) 2986 goto out; 2987 BUG_ON(ret == 0); /* Corruption */ 2988 2989 ret = -ENOENT; 2990 if (path->slots[0] == 0) 2991 goto out; 2992 2993 path->slots[0]--; 2994 leaf = path->nodes[0]; 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2996 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2998 goto out; 2999 3000 ret = 1; 3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3003 if (item_size < sizeof(*ei)) { 3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3005 goto out; 3006 } 3007 #endif 3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3009 3010 if (item_size != sizeof(*ei) + 3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3012 goto out; 3013 3014 if (btrfs_extent_generation(leaf, ei) <= 3015 btrfs_root_last_snapshot(&root->root_item)) 3016 goto out; 3017 3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3019 if (btrfs_extent_inline_ref_type(leaf, iref) != 3020 BTRFS_EXTENT_DATA_REF_KEY) 3021 goto out; 3022 3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3024 if (btrfs_extent_refs(leaf, ei) != 3025 btrfs_extent_data_ref_count(leaf, ref) || 3026 btrfs_extent_data_ref_root(leaf, ref) != 3027 root->root_key.objectid || 3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3029 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3030 goto out; 3031 3032 ret = 0; 3033 out: 3034 return ret; 3035 } 3036 3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3038 struct btrfs_root *root, 3039 u64 objectid, u64 offset, u64 bytenr) 3040 { 3041 struct btrfs_path *path; 3042 int ret; 3043 int ret2; 3044 3045 path = btrfs_alloc_path(); 3046 if (!path) 3047 return -ENOENT; 3048 3049 do { 3050 ret = check_committed_ref(trans, root, path, objectid, 3051 offset, bytenr); 3052 if (ret && ret != -ENOENT) 3053 goto out; 3054 3055 ret2 = check_delayed_ref(trans, root, path, objectid, 3056 offset, bytenr); 3057 } while (ret2 == -EAGAIN); 3058 3059 if (ret2 && ret2 != -ENOENT) { 3060 ret = ret2; 3061 goto out; 3062 } 3063 3064 if (ret != -ENOENT || ret2 != -ENOENT) 3065 ret = 0; 3066 out: 3067 btrfs_free_path(path); 3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3069 WARN_ON(ret > 0); 3070 return ret; 3071 } 3072 3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3074 struct btrfs_root *root, 3075 struct extent_buffer *buf, 3076 int full_backref, int inc) 3077 { 3078 u64 bytenr; 3079 u64 num_bytes; 3080 u64 parent; 3081 u64 ref_root; 3082 u32 nritems; 3083 struct btrfs_key key; 3084 struct btrfs_file_extent_item *fi; 3085 int i; 3086 int level; 3087 int ret = 0; 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3089 u64, u64, u64, u64, u64, u64, int); 3090 3091 3092 if (btrfs_test_is_dummy_root(root)) 3093 return 0; 3094 3095 ref_root = btrfs_header_owner(buf); 3096 nritems = btrfs_header_nritems(buf); 3097 level = btrfs_header_level(buf); 3098 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3100 return 0; 3101 3102 if (inc) 3103 process_func = btrfs_inc_extent_ref; 3104 else 3105 process_func = btrfs_free_extent; 3106 3107 if (full_backref) 3108 parent = buf->start; 3109 else 3110 parent = 0; 3111 3112 for (i = 0; i < nritems; i++) { 3113 if (level == 0) { 3114 btrfs_item_key_to_cpu(buf, &key, i); 3115 if (key.type != BTRFS_EXTENT_DATA_KEY) 3116 continue; 3117 fi = btrfs_item_ptr(buf, i, 3118 struct btrfs_file_extent_item); 3119 if (btrfs_file_extent_type(buf, fi) == 3120 BTRFS_FILE_EXTENT_INLINE) 3121 continue; 3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3123 if (bytenr == 0) 3124 continue; 3125 3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3127 key.offset -= btrfs_file_extent_offset(buf, fi); 3128 ret = process_func(trans, root, bytenr, num_bytes, 3129 parent, ref_root, key.objectid, 3130 key.offset, 1); 3131 if (ret) 3132 goto fail; 3133 } else { 3134 bytenr = btrfs_node_blockptr(buf, i); 3135 num_bytes = root->nodesize; 3136 ret = process_func(trans, root, bytenr, num_bytes, 3137 parent, ref_root, level - 1, 0, 3138 1); 3139 if (ret) 3140 goto fail; 3141 } 3142 } 3143 return 0; 3144 fail: 3145 return ret; 3146 } 3147 3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3149 struct extent_buffer *buf, int full_backref) 3150 { 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3152 } 3153 3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3155 struct extent_buffer *buf, int full_backref) 3156 { 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3158 } 3159 3160 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3161 struct btrfs_root *root, 3162 struct btrfs_path *path, 3163 struct btrfs_block_group_cache *cache) 3164 { 3165 int ret; 3166 struct btrfs_root *extent_root = root->fs_info->extent_root; 3167 unsigned long bi; 3168 struct extent_buffer *leaf; 3169 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3171 if (ret) { 3172 if (ret > 0) 3173 ret = -ENOENT; 3174 goto fail; 3175 } 3176 3177 leaf = path->nodes[0]; 3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3180 btrfs_mark_buffer_dirty(leaf); 3181 btrfs_release_path(path); 3182 fail: 3183 if (ret) 3184 btrfs_abort_transaction(trans, root, ret); 3185 return ret; 3186 3187 } 3188 3189 static struct btrfs_block_group_cache * 3190 next_block_group(struct btrfs_root *root, 3191 struct btrfs_block_group_cache *cache) 3192 { 3193 struct rb_node *node; 3194 3195 spin_lock(&root->fs_info->block_group_cache_lock); 3196 3197 /* If our block group was removed, we need a full search. */ 3198 if (RB_EMPTY_NODE(&cache->cache_node)) { 3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3200 3201 spin_unlock(&root->fs_info->block_group_cache_lock); 3202 btrfs_put_block_group(cache); 3203 cache = btrfs_lookup_first_block_group(root->fs_info, 3204 next_bytenr); 3205 return cache; 3206 } 3207 node = rb_next(&cache->cache_node); 3208 btrfs_put_block_group(cache); 3209 if (node) { 3210 cache = rb_entry(node, struct btrfs_block_group_cache, 3211 cache_node); 3212 btrfs_get_block_group(cache); 3213 } else 3214 cache = NULL; 3215 spin_unlock(&root->fs_info->block_group_cache_lock); 3216 return cache; 3217 } 3218 3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3220 struct btrfs_trans_handle *trans, 3221 struct btrfs_path *path) 3222 { 3223 struct btrfs_root *root = block_group->fs_info->tree_root; 3224 struct inode *inode = NULL; 3225 u64 alloc_hint = 0; 3226 int dcs = BTRFS_DC_ERROR; 3227 u64 num_pages = 0; 3228 int retries = 0; 3229 int ret = 0; 3230 3231 /* 3232 * If this block group is smaller than 100 megs don't bother caching the 3233 * block group. 3234 */ 3235 if (block_group->key.offset < (100 * 1024 * 1024)) { 3236 spin_lock(&block_group->lock); 3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3238 spin_unlock(&block_group->lock); 3239 return 0; 3240 } 3241 3242 if (trans->aborted) 3243 return 0; 3244 again: 3245 inode = lookup_free_space_inode(root, block_group, path); 3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3247 ret = PTR_ERR(inode); 3248 btrfs_release_path(path); 3249 goto out; 3250 } 3251 3252 if (IS_ERR(inode)) { 3253 BUG_ON(retries); 3254 retries++; 3255 3256 if (block_group->ro) 3257 goto out_free; 3258 3259 ret = create_free_space_inode(root, trans, block_group, path); 3260 if (ret) 3261 goto out_free; 3262 goto again; 3263 } 3264 3265 /* We've already setup this transaction, go ahead and exit */ 3266 if (block_group->cache_generation == trans->transid && 3267 i_size_read(inode)) { 3268 dcs = BTRFS_DC_SETUP; 3269 goto out_put; 3270 } 3271 3272 /* 3273 * We want to set the generation to 0, that way if anything goes wrong 3274 * from here on out we know not to trust this cache when we load up next 3275 * time. 3276 */ 3277 BTRFS_I(inode)->generation = 0; 3278 ret = btrfs_update_inode(trans, root, inode); 3279 if (ret) { 3280 /* 3281 * So theoretically we could recover from this, simply set the 3282 * super cache generation to 0 so we know to invalidate the 3283 * cache, but then we'd have to keep track of the block groups 3284 * that fail this way so we know we _have_ to reset this cache 3285 * before the next commit or risk reading stale cache. So to 3286 * limit our exposure to horrible edge cases lets just abort the 3287 * transaction, this only happens in really bad situations 3288 * anyway. 3289 */ 3290 btrfs_abort_transaction(trans, root, ret); 3291 goto out_put; 3292 } 3293 WARN_ON(ret); 3294 3295 if (i_size_read(inode) > 0) { 3296 ret = btrfs_check_trunc_cache_free_space(root, 3297 &root->fs_info->global_block_rsv); 3298 if (ret) 3299 goto out_put; 3300 3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3302 if (ret) 3303 goto out_put; 3304 } 3305 3306 spin_lock(&block_group->lock); 3307 if (block_group->cached != BTRFS_CACHE_FINISHED || 3308 !btrfs_test_opt(root, SPACE_CACHE) || 3309 block_group->delalloc_bytes) { 3310 /* 3311 * don't bother trying to write stuff out _if_ 3312 * a) we're not cached, 3313 * b) we're with nospace_cache mount option. 3314 */ 3315 dcs = BTRFS_DC_WRITTEN; 3316 spin_unlock(&block_group->lock); 3317 goto out_put; 3318 } 3319 spin_unlock(&block_group->lock); 3320 3321 /* 3322 * Try to preallocate enough space based on how big the block group is. 3323 * Keep in mind this has to include any pinned space which could end up 3324 * taking up quite a bit since it's not folded into the other space 3325 * cache. 3326 */ 3327 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3328 if (!num_pages) 3329 num_pages = 1; 3330 3331 num_pages *= 16; 3332 num_pages *= PAGE_CACHE_SIZE; 3333 3334 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3335 if (ret) 3336 goto out_put; 3337 3338 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3339 num_pages, num_pages, 3340 &alloc_hint); 3341 if (!ret) 3342 dcs = BTRFS_DC_SETUP; 3343 btrfs_free_reserved_data_space(inode, num_pages); 3344 3345 out_put: 3346 iput(inode); 3347 out_free: 3348 btrfs_release_path(path); 3349 out: 3350 spin_lock(&block_group->lock); 3351 if (!ret && dcs == BTRFS_DC_SETUP) 3352 block_group->cache_generation = trans->transid; 3353 block_group->disk_cache_state = dcs; 3354 spin_unlock(&block_group->lock); 3355 3356 return ret; 3357 } 3358 3359 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3360 struct btrfs_root *root) 3361 { 3362 struct btrfs_block_group_cache *cache, *tmp; 3363 struct btrfs_transaction *cur_trans = trans->transaction; 3364 struct btrfs_path *path; 3365 3366 if (list_empty(&cur_trans->dirty_bgs) || 3367 !btrfs_test_opt(root, SPACE_CACHE)) 3368 return 0; 3369 3370 path = btrfs_alloc_path(); 3371 if (!path) 3372 return -ENOMEM; 3373 3374 /* Could add new block groups, use _safe just in case */ 3375 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3376 dirty_list) { 3377 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3378 cache_save_setup(cache, trans, path); 3379 } 3380 3381 btrfs_free_path(path); 3382 return 0; 3383 } 3384 3385 /* 3386 * transaction commit does final block group cache writeback during a 3387 * critical section where nothing is allowed to change the FS. This is 3388 * required in order for the cache to actually match the block group, 3389 * but can introduce a lot of latency into the commit. 3390 * 3391 * So, btrfs_start_dirty_block_groups is here to kick off block group 3392 * cache IO. There's a chance we'll have to redo some of it if the 3393 * block group changes again during the commit, but it greatly reduces 3394 * the commit latency by getting rid of the easy block groups while 3395 * we're still allowing others to join the commit. 3396 */ 3397 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3398 struct btrfs_root *root) 3399 { 3400 struct btrfs_block_group_cache *cache; 3401 struct btrfs_transaction *cur_trans = trans->transaction; 3402 int ret = 0; 3403 int should_put; 3404 struct btrfs_path *path = NULL; 3405 LIST_HEAD(dirty); 3406 struct list_head *io = &cur_trans->io_bgs; 3407 int num_started = 0; 3408 int loops = 0; 3409 3410 spin_lock(&cur_trans->dirty_bgs_lock); 3411 if (!list_empty(&cur_trans->dirty_bgs)) { 3412 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3413 } 3414 spin_unlock(&cur_trans->dirty_bgs_lock); 3415 3416 again: 3417 if (list_empty(&dirty)) { 3418 btrfs_free_path(path); 3419 return 0; 3420 } 3421 3422 /* 3423 * make sure all the block groups on our dirty list actually 3424 * exist 3425 */ 3426 btrfs_create_pending_block_groups(trans, root); 3427 3428 if (!path) { 3429 path = btrfs_alloc_path(); 3430 if (!path) 3431 return -ENOMEM; 3432 } 3433 3434 while (!list_empty(&dirty)) { 3435 cache = list_first_entry(&dirty, 3436 struct btrfs_block_group_cache, 3437 dirty_list); 3438 3439 /* 3440 * cache_write_mutex is here only to save us from balance 3441 * deleting this block group while we are writing out the 3442 * cache 3443 */ 3444 mutex_lock(&trans->transaction->cache_write_mutex); 3445 3446 /* 3447 * this can happen if something re-dirties a block 3448 * group that is already under IO. Just wait for it to 3449 * finish and then do it all again 3450 */ 3451 if (!list_empty(&cache->io_list)) { 3452 list_del_init(&cache->io_list); 3453 btrfs_wait_cache_io(root, trans, cache, 3454 &cache->io_ctl, path, 3455 cache->key.objectid); 3456 btrfs_put_block_group(cache); 3457 } 3458 3459 3460 /* 3461 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3462 * if it should update the cache_state. Don't delete 3463 * until after we wait. 3464 * 3465 * Since we're not running in the commit critical section 3466 * we need the dirty_bgs_lock to protect from update_block_group 3467 */ 3468 spin_lock(&cur_trans->dirty_bgs_lock); 3469 list_del_init(&cache->dirty_list); 3470 spin_unlock(&cur_trans->dirty_bgs_lock); 3471 3472 should_put = 1; 3473 3474 cache_save_setup(cache, trans, path); 3475 3476 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3477 cache->io_ctl.inode = NULL; 3478 ret = btrfs_write_out_cache(root, trans, cache, path); 3479 if (ret == 0 && cache->io_ctl.inode) { 3480 num_started++; 3481 should_put = 0; 3482 3483 /* 3484 * the cache_write_mutex is protecting 3485 * the io_list 3486 */ 3487 list_add_tail(&cache->io_list, io); 3488 } else { 3489 /* 3490 * if we failed to write the cache, the 3491 * generation will be bad and life goes on 3492 */ 3493 ret = 0; 3494 } 3495 } 3496 if (!ret) 3497 ret = write_one_cache_group(trans, root, path, cache); 3498 mutex_unlock(&trans->transaction->cache_write_mutex); 3499 3500 /* if its not on the io list, we need to put the block group */ 3501 if (should_put) 3502 btrfs_put_block_group(cache); 3503 3504 if (ret) 3505 break; 3506 } 3507 3508 /* 3509 * go through delayed refs for all the stuff we've just kicked off 3510 * and then loop back (just once) 3511 */ 3512 ret = btrfs_run_delayed_refs(trans, root, 0); 3513 if (!ret && loops == 0) { 3514 loops++; 3515 spin_lock(&cur_trans->dirty_bgs_lock); 3516 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3517 spin_unlock(&cur_trans->dirty_bgs_lock); 3518 goto again; 3519 } 3520 3521 btrfs_free_path(path); 3522 return ret; 3523 } 3524 3525 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3526 struct btrfs_root *root) 3527 { 3528 struct btrfs_block_group_cache *cache; 3529 struct btrfs_transaction *cur_trans = trans->transaction; 3530 int ret = 0; 3531 int should_put; 3532 struct btrfs_path *path; 3533 struct list_head *io = &cur_trans->io_bgs; 3534 int num_started = 0; 3535 3536 path = btrfs_alloc_path(); 3537 if (!path) 3538 return -ENOMEM; 3539 3540 /* 3541 * We don't need the lock here since we are protected by the transaction 3542 * commit. We want to do the cache_save_setup first and then run the 3543 * delayed refs to make sure we have the best chance at doing this all 3544 * in one shot. 3545 */ 3546 while (!list_empty(&cur_trans->dirty_bgs)) { 3547 cache = list_first_entry(&cur_trans->dirty_bgs, 3548 struct btrfs_block_group_cache, 3549 dirty_list); 3550 3551 /* 3552 * this can happen if cache_save_setup re-dirties a block 3553 * group that is already under IO. Just wait for it to 3554 * finish and then do it all again 3555 */ 3556 if (!list_empty(&cache->io_list)) { 3557 list_del_init(&cache->io_list); 3558 btrfs_wait_cache_io(root, trans, cache, 3559 &cache->io_ctl, path, 3560 cache->key.objectid); 3561 btrfs_put_block_group(cache); 3562 } 3563 3564 /* 3565 * don't remove from the dirty list until after we've waited 3566 * on any pending IO 3567 */ 3568 list_del_init(&cache->dirty_list); 3569 should_put = 1; 3570 3571 cache_save_setup(cache, trans, path); 3572 3573 if (!ret) 3574 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3575 3576 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3577 cache->io_ctl.inode = NULL; 3578 ret = btrfs_write_out_cache(root, trans, cache, path); 3579 if (ret == 0 && cache->io_ctl.inode) { 3580 num_started++; 3581 should_put = 0; 3582 list_add_tail(&cache->io_list, io); 3583 } else { 3584 /* 3585 * if we failed to write the cache, the 3586 * generation will be bad and life goes on 3587 */ 3588 ret = 0; 3589 } 3590 } 3591 if (!ret) 3592 ret = write_one_cache_group(trans, root, path, cache); 3593 3594 /* if its not on the io list, we need to put the block group */ 3595 if (should_put) 3596 btrfs_put_block_group(cache); 3597 } 3598 3599 while (!list_empty(io)) { 3600 cache = list_first_entry(io, struct btrfs_block_group_cache, 3601 io_list); 3602 list_del_init(&cache->io_list); 3603 btrfs_wait_cache_io(root, trans, cache, 3604 &cache->io_ctl, path, cache->key.objectid); 3605 btrfs_put_block_group(cache); 3606 } 3607 3608 btrfs_free_path(path); 3609 return ret; 3610 } 3611 3612 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3613 { 3614 struct btrfs_block_group_cache *block_group; 3615 int readonly = 0; 3616 3617 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3618 if (!block_group || block_group->ro) 3619 readonly = 1; 3620 if (block_group) 3621 btrfs_put_block_group(block_group); 3622 return readonly; 3623 } 3624 3625 static const char *alloc_name(u64 flags) 3626 { 3627 switch (flags) { 3628 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3629 return "mixed"; 3630 case BTRFS_BLOCK_GROUP_METADATA: 3631 return "metadata"; 3632 case BTRFS_BLOCK_GROUP_DATA: 3633 return "data"; 3634 case BTRFS_BLOCK_GROUP_SYSTEM: 3635 return "system"; 3636 default: 3637 WARN_ON(1); 3638 return "invalid-combination"; 3639 }; 3640 } 3641 3642 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3643 u64 total_bytes, u64 bytes_used, 3644 struct btrfs_space_info **space_info) 3645 { 3646 struct btrfs_space_info *found; 3647 int i; 3648 int factor; 3649 int ret; 3650 3651 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3652 BTRFS_BLOCK_GROUP_RAID10)) 3653 factor = 2; 3654 else 3655 factor = 1; 3656 3657 found = __find_space_info(info, flags); 3658 if (found) { 3659 spin_lock(&found->lock); 3660 found->total_bytes += total_bytes; 3661 found->disk_total += total_bytes * factor; 3662 found->bytes_used += bytes_used; 3663 found->disk_used += bytes_used * factor; 3664 found->full = 0; 3665 spin_unlock(&found->lock); 3666 *space_info = found; 3667 return 0; 3668 } 3669 found = kzalloc(sizeof(*found), GFP_NOFS); 3670 if (!found) 3671 return -ENOMEM; 3672 3673 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3674 if (ret) { 3675 kfree(found); 3676 return ret; 3677 } 3678 3679 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3680 INIT_LIST_HEAD(&found->block_groups[i]); 3681 init_rwsem(&found->groups_sem); 3682 spin_lock_init(&found->lock); 3683 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3684 found->total_bytes = total_bytes; 3685 found->disk_total = total_bytes * factor; 3686 found->bytes_used = bytes_used; 3687 found->disk_used = bytes_used * factor; 3688 found->bytes_pinned = 0; 3689 found->bytes_reserved = 0; 3690 found->bytes_readonly = 0; 3691 found->bytes_may_use = 0; 3692 found->full = 0; 3693 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3694 found->chunk_alloc = 0; 3695 found->flush = 0; 3696 init_waitqueue_head(&found->wait); 3697 INIT_LIST_HEAD(&found->ro_bgs); 3698 3699 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3700 info->space_info_kobj, "%s", 3701 alloc_name(found->flags)); 3702 if (ret) { 3703 kfree(found); 3704 return ret; 3705 } 3706 3707 *space_info = found; 3708 list_add_rcu(&found->list, &info->space_info); 3709 if (flags & BTRFS_BLOCK_GROUP_DATA) 3710 info->data_sinfo = found; 3711 3712 return ret; 3713 } 3714 3715 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3716 { 3717 u64 extra_flags = chunk_to_extended(flags) & 3718 BTRFS_EXTENDED_PROFILE_MASK; 3719 3720 write_seqlock(&fs_info->profiles_lock); 3721 if (flags & BTRFS_BLOCK_GROUP_DATA) 3722 fs_info->avail_data_alloc_bits |= extra_flags; 3723 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3724 fs_info->avail_metadata_alloc_bits |= extra_flags; 3725 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3726 fs_info->avail_system_alloc_bits |= extra_flags; 3727 write_sequnlock(&fs_info->profiles_lock); 3728 } 3729 3730 /* 3731 * returns target flags in extended format or 0 if restripe for this 3732 * chunk_type is not in progress 3733 * 3734 * should be called with either volume_mutex or balance_lock held 3735 */ 3736 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3737 { 3738 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3739 u64 target = 0; 3740 3741 if (!bctl) 3742 return 0; 3743 3744 if (flags & BTRFS_BLOCK_GROUP_DATA && 3745 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3746 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3747 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3748 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3749 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3750 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3751 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3752 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3753 } 3754 3755 return target; 3756 } 3757 3758 /* 3759 * @flags: available profiles in extended format (see ctree.h) 3760 * 3761 * Returns reduced profile in chunk format. If profile changing is in 3762 * progress (either running or paused) picks the target profile (if it's 3763 * already available), otherwise falls back to plain reducing. 3764 */ 3765 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3766 { 3767 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3768 u64 target; 3769 u64 tmp; 3770 3771 /* 3772 * see if restripe for this chunk_type is in progress, if so 3773 * try to reduce to the target profile 3774 */ 3775 spin_lock(&root->fs_info->balance_lock); 3776 target = get_restripe_target(root->fs_info, flags); 3777 if (target) { 3778 /* pick target profile only if it's already available */ 3779 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3780 spin_unlock(&root->fs_info->balance_lock); 3781 return extended_to_chunk(target); 3782 } 3783 } 3784 spin_unlock(&root->fs_info->balance_lock); 3785 3786 /* First, mask out the RAID levels which aren't possible */ 3787 if (num_devices == 1) 3788 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3789 BTRFS_BLOCK_GROUP_RAID5); 3790 if (num_devices < 3) 3791 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3792 if (num_devices < 4) 3793 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3794 3795 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3797 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3798 flags &= ~tmp; 3799 3800 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3801 tmp = BTRFS_BLOCK_GROUP_RAID6; 3802 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3803 tmp = BTRFS_BLOCK_GROUP_RAID5; 3804 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3805 tmp = BTRFS_BLOCK_GROUP_RAID10; 3806 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3807 tmp = BTRFS_BLOCK_GROUP_RAID1; 3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3809 tmp = BTRFS_BLOCK_GROUP_RAID0; 3810 3811 return extended_to_chunk(flags | tmp); 3812 } 3813 3814 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3815 { 3816 unsigned seq; 3817 u64 flags; 3818 3819 do { 3820 flags = orig_flags; 3821 seq = read_seqbegin(&root->fs_info->profiles_lock); 3822 3823 if (flags & BTRFS_BLOCK_GROUP_DATA) 3824 flags |= root->fs_info->avail_data_alloc_bits; 3825 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3826 flags |= root->fs_info->avail_system_alloc_bits; 3827 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3828 flags |= root->fs_info->avail_metadata_alloc_bits; 3829 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3830 3831 return btrfs_reduce_alloc_profile(root, flags); 3832 } 3833 3834 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3835 { 3836 u64 flags; 3837 u64 ret; 3838 3839 if (data) 3840 flags = BTRFS_BLOCK_GROUP_DATA; 3841 else if (root == root->fs_info->chunk_root) 3842 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3843 else 3844 flags = BTRFS_BLOCK_GROUP_METADATA; 3845 3846 ret = get_alloc_profile(root, flags); 3847 return ret; 3848 } 3849 3850 /* 3851 * This will check the space that the inode allocates from to make sure we have 3852 * enough space for bytes. 3853 */ 3854 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3855 { 3856 struct btrfs_space_info *data_sinfo; 3857 struct btrfs_root *root = BTRFS_I(inode)->root; 3858 struct btrfs_fs_info *fs_info = root->fs_info; 3859 u64 used; 3860 int ret = 0; 3861 int need_commit = 2; 3862 int have_pinned_space; 3863 3864 /* make sure bytes are sectorsize aligned */ 3865 bytes = ALIGN(bytes, root->sectorsize); 3866 3867 if (btrfs_is_free_space_inode(inode)) { 3868 need_commit = 0; 3869 ASSERT(current->journal_info); 3870 } 3871 3872 data_sinfo = fs_info->data_sinfo; 3873 if (!data_sinfo) 3874 goto alloc; 3875 3876 again: 3877 /* make sure we have enough space to handle the data first */ 3878 spin_lock(&data_sinfo->lock); 3879 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3880 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3881 data_sinfo->bytes_may_use; 3882 3883 if (used + bytes > data_sinfo->total_bytes) { 3884 struct btrfs_trans_handle *trans; 3885 3886 /* 3887 * if we don't have enough free bytes in this space then we need 3888 * to alloc a new chunk. 3889 */ 3890 if (!data_sinfo->full) { 3891 u64 alloc_target; 3892 3893 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3894 spin_unlock(&data_sinfo->lock); 3895 alloc: 3896 alloc_target = btrfs_get_alloc_profile(root, 1); 3897 /* 3898 * It is ugly that we don't call nolock join 3899 * transaction for the free space inode case here. 3900 * But it is safe because we only do the data space 3901 * reservation for the free space cache in the 3902 * transaction context, the common join transaction 3903 * just increase the counter of the current transaction 3904 * handler, doesn't try to acquire the trans_lock of 3905 * the fs. 3906 */ 3907 trans = btrfs_join_transaction(root); 3908 if (IS_ERR(trans)) 3909 return PTR_ERR(trans); 3910 3911 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3912 alloc_target, 3913 CHUNK_ALLOC_NO_FORCE); 3914 btrfs_end_transaction(trans, root); 3915 if (ret < 0) { 3916 if (ret != -ENOSPC) 3917 return ret; 3918 else { 3919 have_pinned_space = 1; 3920 goto commit_trans; 3921 } 3922 } 3923 3924 if (!data_sinfo) 3925 data_sinfo = fs_info->data_sinfo; 3926 3927 goto again; 3928 } 3929 3930 /* 3931 * If we don't have enough pinned space to deal with this 3932 * allocation, and no removed chunk in current transaction, 3933 * don't bother committing the transaction. 3934 */ 3935 have_pinned_space = percpu_counter_compare( 3936 &data_sinfo->total_bytes_pinned, 3937 used + bytes - data_sinfo->total_bytes); 3938 spin_unlock(&data_sinfo->lock); 3939 3940 /* commit the current transaction and try again */ 3941 commit_trans: 3942 if (need_commit && 3943 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3944 need_commit--; 3945 3946 trans = btrfs_join_transaction(root); 3947 if (IS_ERR(trans)) 3948 return PTR_ERR(trans); 3949 if (have_pinned_space >= 0 || 3950 trans->transaction->have_free_bgs || 3951 need_commit > 0) { 3952 ret = btrfs_commit_transaction(trans, root); 3953 if (ret) 3954 return ret; 3955 /* 3956 * make sure that all running delayed iput are 3957 * done 3958 */ 3959 down_write(&root->fs_info->delayed_iput_sem); 3960 up_write(&root->fs_info->delayed_iput_sem); 3961 goto again; 3962 } else { 3963 btrfs_end_transaction(trans, root); 3964 } 3965 } 3966 3967 trace_btrfs_space_reservation(root->fs_info, 3968 "space_info:enospc", 3969 data_sinfo->flags, bytes, 1); 3970 return -ENOSPC; 3971 } 3972 ret = btrfs_qgroup_reserve(root, write_bytes); 3973 if (ret) 3974 goto out; 3975 data_sinfo->bytes_may_use += bytes; 3976 trace_btrfs_space_reservation(root->fs_info, "space_info", 3977 data_sinfo->flags, bytes, 1); 3978 out: 3979 spin_unlock(&data_sinfo->lock); 3980 3981 return ret; 3982 } 3983 3984 /* 3985 * Called if we need to clear a data reservation for this inode. 3986 */ 3987 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3988 { 3989 struct btrfs_root *root = BTRFS_I(inode)->root; 3990 struct btrfs_space_info *data_sinfo; 3991 3992 /* make sure bytes are sectorsize aligned */ 3993 bytes = ALIGN(bytes, root->sectorsize); 3994 3995 data_sinfo = root->fs_info->data_sinfo; 3996 spin_lock(&data_sinfo->lock); 3997 WARN_ON(data_sinfo->bytes_may_use < bytes); 3998 data_sinfo->bytes_may_use -= bytes; 3999 trace_btrfs_space_reservation(root->fs_info, "space_info", 4000 data_sinfo->flags, bytes, 0); 4001 spin_unlock(&data_sinfo->lock); 4002 } 4003 4004 static void force_metadata_allocation(struct btrfs_fs_info *info) 4005 { 4006 struct list_head *head = &info->space_info; 4007 struct btrfs_space_info *found; 4008 4009 rcu_read_lock(); 4010 list_for_each_entry_rcu(found, head, list) { 4011 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4012 found->force_alloc = CHUNK_ALLOC_FORCE; 4013 } 4014 rcu_read_unlock(); 4015 } 4016 4017 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4018 { 4019 return (global->size << 1); 4020 } 4021 4022 static int should_alloc_chunk(struct btrfs_root *root, 4023 struct btrfs_space_info *sinfo, int force) 4024 { 4025 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4026 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4027 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4028 u64 thresh; 4029 4030 if (force == CHUNK_ALLOC_FORCE) 4031 return 1; 4032 4033 /* 4034 * We need to take into account the global rsv because for all intents 4035 * and purposes it's used space. Don't worry about locking the 4036 * global_rsv, it doesn't change except when the transaction commits. 4037 */ 4038 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4039 num_allocated += calc_global_rsv_need_space(global_rsv); 4040 4041 /* 4042 * in limited mode, we want to have some free space up to 4043 * about 1% of the FS size. 4044 */ 4045 if (force == CHUNK_ALLOC_LIMITED) { 4046 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4047 thresh = max_t(u64, 64 * 1024 * 1024, 4048 div_factor_fine(thresh, 1)); 4049 4050 if (num_bytes - num_allocated < thresh) 4051 return 1; 4052 } 4053 4054 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4055 return 0; 4056 return 1; 4057 } 4058 4059 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 4060 { 4061 u64 num_dev; 4062 4063 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4064 BTRFS_BLOCK_GROUP_RAID0 | 4065 BTRFS_BLOCK_GROUP_RAID5 | 4066 BTRFS_BLOCK_GROUP_RAID6)) 4067 num_dev = root->fs_info->fs_devices->rw_devices; 4068 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4069 num_dev = 2; 4070 else 4071 num_dev = 1; /* DUP or single */ 4072 4073 /* metadata for updaing devices and chunk tree */ 4074 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 4075 } 4076 4077 static void check_system_chunk(struct btrfs_trans_handle *trans, 4078 struct btrfs_root *root, u64 type) 4079 { 4080 struct btrfs_space_info *info; 4081 u64 left; 4082 u64 thresh; 4083 4084 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4085 spin_lock(&info->lock); 4086 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4087 info->bytes_reserved - info->bytes_readonly; 4088 spin_unlock(&info->lock); 4089 4090 thresh = get_system_chunk_thresh(root, type); 4091 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4092 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4093 left, thresh, type); 4094 dump_space_info(info, 0, 0); 4095 } 4096 4097 if (left < thresh) { 4098 u64 flags; 4099 4100 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4101 btrfs_alloc_chunk(trans, root, flags); 4102 } 4103 } 4104 4105 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4106 struct btrfs_root *extent_root, u64 flags, int force) 4107 { 4108 struct btrfs_space_info *space_info; 4109 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4110 int wait_for_alloc = 0; 4111 int ret = 0; 4112 4113 /* Don't re-enter if we're already allocating a chunk */ 4114 if (trans->allocating_chunk) 4115 return -ENOSPC; 4116 4117 space_info = __find_space_info(extent_root->fs_info, flags); 4118 if (!space_info) { 4119 ret = update_space_info(extent_root->fs_info, flags, 4120 0, 0, &space_info); 4121 BUG_ON(ret); /* -ENOMEM */ 4122 } 4123 BUG_ON(!space_info); /* Logic error */ 4124 4125 again: 4126 spin_lock(&space_info->lock); 4127 if (force < space_info->force_alloc) 4128 force = space_info->force_alloc; 4129 if (space_info->full) { 4130 if (should_alloc_chunk(extent_root, space_info, force)) 4131 ret = -ENOSPC; 4132 else 4133 ret = 0; 4134 spin_unlock(&space_info->lock); 4135 return ret; 4136 } 4137 4138 if (!should_alloc_chunk(extent_root, space_info, force)) { 4139 spin_unlock(&space_info->lock); 4140 return 0; 4141 } else if (space_info->chunk_alloc) { 4142 wait_for_alloc = 1; 4143 } else { 4144 space_info->chunk_alloc = 1; 4145 } 4146 4147 spin_unlock(&space_info->lock); 4148 4149 mutex_lock(&fs_info->chunk_mutex); 4150 4151 /* 4152 * The chunk_mutex is held throughout the entirety of a chunk 4153 * allocation, so once we've acquired the chunk_mutex we know that the 4154 * other guy is done and we need to recheck and see if we should 4155 * allocate. 4156 */ 4157 if (wait_for_alloc) { 4158 mutex_unlock(&fs_info->chunk_mutex); 4159 wait_for_alloc = 0; 4160 goto again; 4161 } 4162 4163 trans->allocating_chunk = true; 4164 4165 /* 4166 * If we have mixed data/metadata chunks we want to make sure we keep 4167 * allocating mixed chunks instead of individual chunks. 4168 */ 4169 if (btrfs_mixed_space_info(space_info)) 4170 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4171 4172 /* 4173 * if we're doing a data chunk, go ahead and make sure that 4174 * we keep a reasonable number of metadata chunks allocated in the 4175 * FS as well. 4176 */ 4177 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4178 fs_info->data_chunk_allocations++; 4179 if (!(fs_info->data_chunk_allocations % 4180 fs_info->metadata_ratio)) 4181 force_metadata_allocation(fs_info); 4182 } 4183 4184 /* 4185 * Check if we have enough space in SYSTEM chunk because we may need 4186 * to update devices. 4187 */ 4188 check_system_chunk(trans, extent_root, flags); 4189 4190 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4191 trans->allocating_chunk = false; 4192 4193 spin_lock(&space_info->lock); 4194 if (ret < 0 && ret != -ENOSPC) 4195 goto out; 4196 if (ret) 4197 space_info->full = 1; 4198 else 4199 ret = 1; 4200 4201 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4202 out: 4203 space_info->chunk_alloc = 0; 4204 spin_unlock(&space_info->lock); 4205 mutex_unlock(&fs_info->chunk_mutex); 4206 return ret; 4207 } 4208 4209 static int can_overcommit(struct btrfs_root *root, 4210 struct btrfs_space_info *space_info, u64 bytes, 4211 enum btrfs_reserve_flush_enum flush) 4212 { 4213 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4214 u64 profile = btrfs_get_alloc_profile(root, 0); 4215 u64 space_size; 4216 u64 avail; 4217 u64 used; 4218 4219 used = space_info->bytes_used + space_info->bytes_reserved + 4220 space_info->bytes_pinned + space_info->bytes_readonly; 4221 4222 /* 4223 * We only want to allow over committing if we have lots of actual space 4224 * free, but if we don't have enough space to handle the global reserve 4225 * space then we could end up having a real enospc problem when trying 4226 * to allocate a chunk or some other such important allocation. 4227 */ 4228 spin_lock(&global_rsv->lock); 4229 space_size = calc_global_rsv_need_space(global_rsv); 4230 spin_unlock(&global_rsv->lock); 4231 if (used + space_size >= space_info->total_bytes) 4232 return 0; 4233 4234 used += space_info->bytes_may_use; 4235 4236 spin_lock(&root->fs_info->free_chunk_lock); 4237 avail = root->fs_info->free_chunk_space; 4238 spin_unlock(&root->fs_info->free_chunk_lock); 4239 4240 /* 4241 * If we have dup, raid1 or raid10 then only half of the free 4242 * space is actually useable. For raid56, the space info used 4243 * doesn't include the parity drive, so we don't have to 4244 * change the math 4245 */ 4246 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4247 BTRFS_BLOCK_GROUP_RAID1 | 4248 BTRFS_BLOCK_GROUP_RAID10)) 4249 avail >>= 1; 4250 4251 /* 4252 * If we aren't flushing all things, let us overcommit up to 4253 * 1/2th of the space. If we can flush, don't let us overcommit 4254 * too much, let it overcommit up to 1/8 of the space. 4255 */ 4256 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4257 avail >>= 3; 4258 else 4259 avail >>= 1; 4260 4261 if (used + bytes < space_info->total_bytes + avail) 4262 return 1; 4263 return 0; 4264 } 4265 4266 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4267 unsigned long nr_pages, int nr_items) 4268 { 4269 struct super_block *sb = root->fs_info->sb; 4270 4271 if (down_read_trylock(&sb->s_umount)) { 4272 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4273 up_read(&sb->s_umount); 4274 } else { 4275 /* 4276 * We needn't worry the filesystem going from r/w to r/o though 4277 * we don't acquire ->s_umount mutex, because the filesystem 4278 * should guarantee the delalloc inodes list be empty after 4279 * the filesystem is readonly(all dirty pages are written to 4280 * the disk). 4281 */ 4282 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4283 if (!current->journal_info) 4284 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4285 } 4286 } 4287 4288 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4289 { 4290 u64 bytes; 4291 int nr; 4292 4293 bytes = btrfs_calc_trans_metadata_size(root, 1); 4294 nr = (int)div64_u64(to_reclaim, bytes); 4295 if (!nr) 4296 nr = 1; 4297 return nr; 4298 } 4299 4300 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4301 4302 /* 4303 * shrink metadata reservation for delalloc 4304 */ 4305 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4306 bool wait_ordered) 4307 { 4308 struct btrfs_block_rsv *block_rsv; 4309 struct btrfs_space_info *space_info; 4310 struct btrfs_trans_handle *trans; 4311 u64 delalloc_bytes; 4312 u64 max_reclaim; 4313 long time_left; 4314 unsigned long nr_pages; 4315 int loops; 4316 int items; 4317 enum btrfs_reserve_flush_enum flush; 4318 4319 /* Calc the number of the pages we need flush for space reservation */ 4320 items = calc_reclaim_items_nr(root, to_reclaim); 4321 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4322 4323 trans = (struct btrfs_trans_handle *)current->journal_info; 4324 block_rsv = &root->fs_info->delalloc_block_rsv; 4325 space_info = block_rsv->space_info; 4326 4327 delalloc_bytes = percpu_counter_sum_positive( 4328 &root->fs_info->delalloc_bytes); 4329 if (delalloc_bytes == 0) { 4330 if (trans) 4331 return; 4332 if (wait_ordered) 4333 btrfs_wait_ordered_roots(root->fs_info, items); 4334 return; 4335 } 4336 4337 loops = 0; 4338 while (delalloc_bytes && loops < 3) { 4339 max_reclaim = min(delalloc_bytes, to_reclaim); 4340 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4341 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4342 /* 4343 * We need to wait for the async pages to actually start before 4344 * we do anything. 4345 */ 4346 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4347 if (!max_reclaim) 4348 goto skip_async; 4349 4350 if (max_reclaim <= nr_pages) 4351 max_reclaim = 0; 4352 else 4353 max_reclaim -= nr_pages; 4354 4355 wait_event(root->fs_info->async_submit_wait, 4356 atomic_read(&root->fs_info->async_delalloc_pages) <= 4357 (int)max_reclaim); 4358 skip_async: 4359 if (!trans) 4360 flush = BTRFS_RESERVE_FLUSH_ALL; 4361 else 4362 flush = BTRFS_RESERVE_NO_FLUSH; 4363 spin_lock(&space_info->lock); 4364 if (can_overcommit(root, space_info, orig, flush)) { 4365 spin_unlock(&space_info->lock); 4366 break; 4367 } 4368 spin_unlock(&space_info->lock); 4369 4370 loops++; 4371 if (wait_ordered && !trans) { 4372 btrfs_wait_ordered_roots(root->fs_info, items); 4373 } else { 4374 time_left = schedule_timeout_killable(1); 4375 if (time_left) 4376 break; 4377 } 4378 delalloc_bytes = percpu_counter_sum_positive( 4379 &root->fs_info->delalloc_bytes); 4380 } 4381 } 4382 4383 /** 4384 * maybe_commit_transaction - possibly commit the transaction if its ok to 4385 * @root - the root we're allocating for 4386 * @bytes - the number of bytes we want to reserve 4387 * @force - force the commit 4388 * 4389 * This will check to make sure that committing the transaction will actually 4390 * get us somewhere and then commit the transaction if it does. Otherwise it 4391 * will return -ENOSPC. 4392 */ 4393 static int may_commit_transaction(struct btrfs_root *root, 4394 struct btrfs_space_info *space_info, 4395 u64 bytes, int force) 4396 { 4397 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4398 struct btrfs_trans_handle *trans; 4399 4400 trans = (struct btrfs_trans_handle *)current->journal_info; 4401 if (trans) 4402 return -EAGAIN; 4403 4404 if (force) 4405 goto commit; 4406 4407 /* See if there is enough pinned space to make this reservation */ 4408 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4409 bytes) >= 0) 4410 goto commit; 4411 4412 /* 4413 * See if there is some space in the delayed insertion reservation for 4414 * this reservation. 4415 */ 4416 if (space_info != delayed_rsv->space_info) 4417 return -ENOSPC; 4418 4419 spin_lock(&delayed_rsv->lock); 4420 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4421 bytes - delayed_rsv->size) >= 0) { 4422 spin_unlock(&delayed_rsv->lock); 4423 return -ENOSPC; 4424 } 4425 spin_unlock(&delayed_rsv->lock); 4426 4427 commit: 4428 trans = btrfs_join_transaction(root); 4429 if (IS_ERR(trans)) 4430 return -ENOSPC; 4431 4432 return btrfs_commit_transaction(trans, root); 4433 } 4434 4435 enum flush_state { 4436 FLUSH_DELAYED_ITEMS_NR = 1, 4437 FLUSH_DELAYED_ITEMS = 2, 4438 FLUSH_DELALLOC = 3, 4439 FLUSH_DELALLOC_WAIT = 4, 4440 ALLOC_CHUNK = 5, 4441 COMMIT_TRANS = 6, 4442 }; 4443 4444 static int flush_space(struct btrfs_root *root, 4445 struct btrfs_space_info *space_info, u64 num_bytes, 4446 u64 orig_bytes, int state) 4447 { 4448 struct btrfs_trans_handle *trans; 4449 int nr; 4450 int ret = 0; 4451 4452 switch (state) { 4453 case FLUSH_DELAYED_ITEMS_NR: 4454 case FLUSH_DELAYED_ITEMS: 4455 if (state == FLUSH_DELAYED_ITEMS_NR) 4456 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4457 else 4458 nr = -1; 4459 4460 trans = btrfs_join_transaction(root); 4461 if (IS_ERR(trans)) { 4462 ret = PTR_ERR(trans); 4463 break; 4464 } 4465 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4466 btrfs_end_transaction(trans, root); 4467 break; 4468 case FLUSH_DELALLOC: 4469 case FLUSH_DELALLOC_WAIT: 4470 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4471 state == FLUSH_DELALLOC_WAIT); 4472 break; 4473 case ALLOC_CHUNK: 4474 trans = btrfs_join_transaction(root); 4475 if (IS_ERR(trans)) { 4476 ret = PTR_ERR(trans); 4477 break; 4478 } 4479 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4480 btrfs_get_alloc_profile(root, 0), 4481 CHUNK_ALLOC_NO_FORCE); 4482 btrfs_end_transaction(trans, root); 4483 if (ret == -ENOSPC) 4484 ret = 0; 4485 break; 4486 case COMMIT_TRANS: 4487 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4488 break; 4489 default: 4490 ret = -ENOSPC; 4491 break; 4492 } 4493 4494 return ret; 4495 } 4496 4497 static inline u64 4498 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4499 struct btrfs_space_info *space_info) 4500 { 4501 u64 used; 4502 u64 expected; 4503 u64 to_reclaim; 4504 4505 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4506 16 * 1024 * 1024); 4507 spin_lock(&space_info->lock); 4508 if (can_overcommit(root, space_info, to_reclaim, 4509 BTRFS_RESERVE_FLUSH_ALL)) { 4510 to_reclaim = 0; 4511 goto out; 4512 } 4513 4514 used = space_info->bytes_used + space_info->bytes_reserved + 4515 space_info->bytes_pinned + space_info->bytes_readonly + 4516 space_info->bytes_may_use; 4517 if (can_overcommit(root, space_info, 1024 * 1024, 4518 BTRFS_RESERVE_FLUSH_ALL)) 4519 expected = div_factor_fine(space_info->total_bytes, 95); 4520 else 4521 expected = div_factor_fine(space_info->total_bytes, 90); 4522 4523 if (used > expected) 4524 to_reclaim = used - expected; 4525 else 4526 to_reclaim = 0; 4527 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4528 space_info->bytes_reserved); 4529 out: 4530 spin_unlock(&space_info->lock); 4531 4532 return to_reclaim; 4533 } 4534 4535 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4536 struct btrfs_fs_info *fs_info, u64 used) 4537 { 4538 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4539 4540 /* If we're just plain full then async reclaim just slows us down. */ 4541 if (space_info->bytes_used >= thresh) 4542 return 0; 4543 4544 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4545 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4546 } 4547 4548 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4549 struct btrfs_fs_info *fs_info, 4550 int flush_state) 4551 { 4552 u64 used; 4553 4554 spin_lock(&space_info->lock); 4555 /* 4556 * We run out of space and have not got any free space via flush_space, 4557 * so don't bother doing async reclaim. 4558 */ 4559 if (flush_state > COMMIT_TRANS && space_info->full) { 4560 spin_unlock(&space_info->lock); 4561 return 0; 4562 } 4563 4564 used = space_info->bytes_used + space_info->bytes_reserved + 4565 space_info->bytes_pinned + space_info->bytes_readonly + 4566 space_info->bytes_may_use; 4567 if (need_do_async_reclaim(space_info, fs_info, used)) { 4568 spin_unlock(&space_info->lock); 4569 return 1; 4570 } 4571 spin_unlock(&space_info->lock); 4572 4573 return 0; 4574 } 4575 4576 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4577 { 4578 struct btrfs_fs_info *fs_info; 4579 struct btrfs_space_info *space_info; 4580 u64 to_reclaim; 4581 int flush_state; 4582 4583 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4584 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4585 4586 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4587 space_info); 4588 if (!to_reclaim) 4589 return; 4590 4591 flush_state = FLUSH_DELAYED_ITEMS_NR; 4592 do { 4593 flush_space(fs_info->fs_root, space_info, to_reclaim, 4594 to_reclaim, flush_state); 4595 flush_state++; 4596 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4597 flush_state)) 4598 return; 4599 } while (flush_state < COMMIT_TRANS); 4600 } 4601 4602 void btrfs_init_async_reclaim_work(struct work_struct *work) 4603 { 4604 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4605 } 4606 4607 /** 4608 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4609 * @root - the root we're allocating for 4610 * @block_rsv - the block_rsv we're allocating for 4611 * @orig_bytes - the number of bytes we want 4612 * @flush - whether or not we can flush to make our reservation 4613 * 4614 * This will reserve orgi_bytes number of bytes from the space info associated 4615 * with the block_rsv. If there is not enough space it will make an attempt to 4616 * flush out space to make room. It will do this by flushing delalloc if 4617 * possible or committing the transaction. If flush is 0 then no attempts to 4618 * regain reservations will be made and this will fail if there is not enough 4619 * space already. 4620 */ 4621 static int reserve_metadata_bytes(struct btrfs_root *root, 4622 struct btrfs_block_rsv *block_rsv, 4623 u64 orig_bytes, 4624 enum btrfs_reserve_flush_enum flush) 4625 { 4626 struct btrfs_space_info *space_info = block_rsv->space_info; 4627 u64 used; 4628 u64 num_bytes = orig_bytes; 4629 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4630 int ret = 0; 4631 bool flushing = false; 4632 4633 again: 4634 ret = 0; 4635 spin_lock(&space_info->lock); 4636 /* 4637 * We only want to wait if somebody other than us is flushing and we 4638 * are actually allowed to flush all things. 4639 */ 4640 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4641 space_info->flush) { 4642 spin_unlock(&space_info->lock); 4643 /* 4644 * If we have a trans handle we can't wait because the flusher 4645 * may have to commit the transaction, which would mean we would 4646 * deadlock since we are waiting for the flusher to finish, but 4647 * hold the current transaction open. 4648 */ 4649 if (current->journal_info) 4650 return -EAGAIN; 4651 ret = wait_event_killable(space_info->wait, !space_info->flush); 4652 /* Must have been killed, return */ 4653 if (ret) 4654 return -EINTR; 4655 4656 spin_lock(&space_info->lock); 4657 } 4658 4659 ret = -ENOSPC; 4660 used = space_info->bytes_used + space_info->bytes_reserved + 4661 space_info->bytes_pinned + space_info->bytes_readonly + 4662 space_info->bytes_may_use; 4663 4664 /* 4665 * The idea here is that we've not already over-reserved the block group 4666 * then we can go ahead and save our reservation first and then start 4667 * flushing if we need to. Otherwise if we've already overcommitted 4668 * lets start flushing stuff first and then come back and try to make 4669 * our reservation. 4670 */ 4671 if (used <= space_info->total_bytes) { 4672 if (used + orig_bytes <= space_info->total_bytes) { 4673 space_info->bytes_may_use += orig_bytes; 4674 trace_btrfs_space_reservation(root->fs_info, 4675 "space_info", space_info->flags, orig_bytes, 1); 4676 ret = 0; 4677 } else { 4678 /* 4679 * Ok set num_bytes to orig_bytes since we aren't 4680 * overocmmitted, this way we only try and reclaim what 4681 * we need. 4682 */ 4683 num_bytes = orig_bytes; 4684 } 4685 } else { 4686 /* 4687 * Ok we're over committed, set num_bytes to the overcommitted 4688 * amount plus the amount of bytes that we need for this 4689 * reservation. 4690 */ 4691 num_bytes = used - space_info->total_bytes + 4692 (orig_bytes * 2); 4693 } 4694 4695 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4696 space_info->bytes_may_use += orig_bytes; 4697 trace_btrfs_space_reservation(root->fs_info, "space_info", 4698 space_info->flags, orig_bytes, 4699 1); 4700 ret = 0; 4701 } 4702 4703 /* 4704 * Couldn't make our reservation, save our place so while we're trying 4705 * to reclaim space we can actually use it instead of somebody else 4706 * stealing it from us. 4707 * 4708 * We make the other tasks wait for the flush only when we can flush 4709 * all things. 4710 */ 4711 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4712 flushing = true; 4713 space_info->flush = 1; 4714 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4715 used += orig_bytes; 4716 /* 4717 * We will do the space reservation dance during log replay, 4718 * which means we won't have fs_info->fs_root set, so don't do 4719 * the async reclaim as we will panic. 4720 */ 4721 if (!root->fs_info->log_root_recovering && 4722 need_do_async_reclaim(space_info, root->fs_info, used) && 4723 !work_busy(&root->fs_info->async_reclaim_work)) 4724 queue_work(system_unbound_wq, 4725 &root->fs_info->async_reclaim_work); 4726 } 4727 spin_unlock(&space_info->lock); 4728 4729 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4730 goto out; 4731 4732 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4733 flush_state); 4734 flush_state++; 4735 4736 /* 4737 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4738 * would happen. So skip delalloc flush. 4739 */ 4740 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4741 (flush_state == FLUSH_DELALLOC || 4742 flush_state == FLUSH_DELALLOC_WAIT)) 4743 flush_state = ALLOC_CHUNK; 4744 4745 if (!ret) 4746 goto again; 4747 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4748 flush_state < COMMIT_TRANS) 4749 goto again; 4750 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4751 flush_state <= COMMIT_TRANS) 4752 goto again; 4753 4754 out: 4755 if (ret == -ENOSPC && 4756 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4757 struct btrfs_block_rsv *global_rsv = 4758 &root->fs_info->global_block_rsv; 4759 4760 if (block_rsv != global_rsv && 4761 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4762 ret = 0; 4763 } 4764 if (ret == -ENOSPC) 4765 trace_btrfs_space_reservation(root->fs_info, 4766 "space_info:enospc", 4767 space_info->flags, orig_bytes, 1); 4768 if (flushing) { 4769 spin_lock(&space_info->lock); 4770 space_info->flush = 0; 4771 wake_up_all(&space_info->wait); 4772 spin_unlock(&space_info->lock); 4773 } 4774 return ret; 4775 } 4776 4777 static struct btrfs_block_rsv *get_block_rsv( 4778 const struct btrfs_trans_handle *trans, 4779 const struct btrfs_root *root) 4780 { 4781 struct btrfs_block_rsv *block_rsv = NULL; 4782 4783 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4784 block_rsv = trans->block_rsv; 4785 4786 if (root == root->fs_info->csum_root && trans->adding_csums) 4787 block_rsv = trans->block_rsv; 4788 4789 if (root == root->fs_info->uuid_root) 4790 block_rsv = trans->block_rsv; 4791 4792 if (!block_rsv) 4793 block_rsv = root->block_rsv; 4794 4795 if (!block_rsv) 4796 block_rsv = &root->fs_info->empty_block_rsv; 4797 4798 return block_rsv; 4799 } 4800 4801 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4802 u64 num_bytes) 4803 { 4804 int ret = -ENOSPC; 4805 spin_lock(&block_rsv->lock); 4806 if (block_rsv->reserved >= num_bytes) { 4807 block_rsv->reserved -= num_bytes; 4808 if (block_rsv->reserved < block_rsv->size) 4809 block_rsv->full = 0; 4810 ret = 0; 4811 } 4812 spin_unlock(&block_rsv->lock); 4813 return ret; 4814 } 4815 4816 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4817 u64 num_bytes, int update_size) 4818 { 4819 spin_lock(&block_rsv->lock); 4820 block_rsv->reserved += num_bytes; 4821 if (update_size) 4822 block_rsv->size += num_bytes; 4823 else if (block_rsv->reserved >= block_rsv->size) 4824 block_rsv->full = 1; 4825 spin_unlock(&block_rsv->lock); 4826 } 4827 4828 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4829 struct btrfs_block_rsv *dest, u64 num_bytes, 4830 int min_factor) 4831 { 4832 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4833 u64 min_bytes; 4834 4835 if (global_rsv->space_info != dest->space_info) 4836 return -ENOSPC; 4837 4838 spin_lock(&global_rsv->lock); 4839 min_bytes = div_factor(global_rsv->size, min_factor); 4840 if (global_rsv->reserved < min_bytes + num_bytes) { 4841 spin_unlock(&global_rsv->lock); 4842 return -ENOSPC; 4843 } 4844 global_rsv->reserved -= num_bytes; 4845 if (global_rsv->reserved < global_rsv->size) 4846 global_rsv->full = 0; 4847 spin_unlock(&global_rsv->lock); 4848 4849 block_rsv_add_bytes(dest, num_bytes, 1); 4850 return 0; 4851 } 4852 4853 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4854 struct btrfs_block_rsv *block_rsv, 4855 struct btrfs_block_rsv *dest, u64 num_bytes) 4856 { 4857 struct btrfs_space_info *space_info = block_rsv->space_info; 4858 4859 spin_lock(&block_rsv->lock); 4860 if (num_bytes == (u64)-1) 4861 num_bytes = block_rsv->size; 4862 block_rsv->size -= num_bytes; 4863 if (block_rsv->reserved >= block_rsv->size) { 4864 num_bytes = block_rsv->reserved - block_rsv->size; 4865 block_rsv->reserved = block_rsv->size; 4866 block_rsv->full = 1; 4867 } else { 4868 num_bytes = 0; 4869 } 4870 spin_unlock(&block_rsv->lock); 4871 4872 if (num_bytes > 0) { 4873 if (dest) { 4874 spin_lock(&dest->lock); 4875 if (!dest->full) { 4876 u64 bytes_to_add; 4877 4878 bytes_to_add = dest->size - dest->reserved; 4879 bytes_to_add = min(num_bytes, bytes_to_add); 4880 dest->reserved += bytes_to_add; 4881 if (dest->reserved >= dest->size) 4882 dest->full = 1; 4883 num_bytes -= bytes_to_add; 4884 } 4885 spin_unlock(&dest->lock); 4886 } 4887 if (num_bytes) { 4888 spin_lock(&space_info->lock); 4889 space_info->bytes_may_use -= num_bytes; 4890 trace_btrfs_space_reservation(fs_info, "space_info", 4891 space_info->flags, num_bytes, 0); 4892 spin_unlock(&space_info->lock); 4893 } 4894 } 4895 } 4896 4897 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4898 struct btrfs_block_rsv *dst, u64 num_bytes) 4899 { 4900 int ret; 4901 4902 ret = block_rsv_use_bytes(src, num_bytes); 4903 if (ret) 4904 return ret; 4905 4906 block_rsv_add_bytes(dst, num_bytes, 1); 4907 return 0; 4908 } 4909 4910 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4911 { 4912 memset(rsv, 0, sizeof(*rsv)); 4913 spin_lock_init(&rsv->lock); 4914 rsv->type = type; 4915 } 4916 4917 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4918 unsigned short type) 4919 { 4920 struct btrfs_block_rsv *block_rsv; 4921 struct btrfs_fs_info *fs_info = root->fs_info; 4922 4923 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4924 if (!block_rsv) 4925 return NULL; 4926 4927 btrfs_init_block_rsv(block_rsv, type); 4928 block_rsv->space_info = __find_space_info(fs_info, 4929 BTRFS_BLOCK_GROUP_METADATA); 4930 return block_rsv; 4931 } 4932 4933 void btrfs_free_block_rsv(struct btrfs_root *root, 4934 struct btrfs_block_rsv *rsv) 4935 { 4936 if (!rsv) 4937 return; 4938 btrfs_block_rsv_release(root, rsv, (u64)-1); 4939 kfree(rsv); 4940 } 4941 4942 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4943 { 4944 kfree(rsv); 4945 } 4946 4947 int btrfs_block_rsv_add(struct btrfs_root *root, 4948 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4949 enum btrfs_reserve_flush_enum flush) 4950 { 4951 int ret; 4952 4953 if (num_bytes == 0) 4954 return 0; 4955 4956 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4957 if (!ret) { 4958 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4959 return 0; 4960 } 4961 4962 return ret; 4963 } 4964 4965 int btrfs_block_rsv_check(struct btrfs_root *root, 4966 struct btrfs_block_rsv *block_rsv, int min_factor) 4967 { 4968 u64 num_bytes = 0; 4969 int ret = -ENOSPC; 4970 4971 if (!block_rsv) 4972 return 0; 4973 4974 spin_lock(&block_rsv->lock); 4975 num_bytes = div_factor(block_rsv->size, min_factor); 4976 if (block_rsv->reserved >= num_bytes) 4977 ret = 0; 4978 spin_unlock(&block_rsv->lock); 4979 4980 return ret; 4981 } 4982 4983 int btrfs_block_rsv_refill(struct btrfs_root *root, 4984 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4985 enum btrfs_reserve_flush_enum flush) 4986 { 4987 u64 num_bytes = 0; 4988 int ret = -ENOSPC; 4989 4990 if (!block_rsv) 4991 return 0; 4992 4993 spin_lock(&block_rsv->lock); 4994 num_bytes = min_reserved; 4995 if (block_rsv->reserved >= num_bytes) 4996 ret = 0; 4997 else 4998 num_bytes -= block_rsv->reserved; 4999 spin_unlock(&block_rsv->lock); 5000 5001 if (!ret) 5002 return 0; 5003 5004 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5005 if (!ret) { 5006 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5007 return 0; 5008 } 5009 5010 return ret; 5011 } 5012 5013 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5014 struct btrfs_block_rsv *dst_rsv, 5015 u64 num_bytes) 5016 { 5017 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5018 } 5019 5020 void btrfs_block_rsv_release(struct btrfs_root *root, 5021 struct btrfs_block_rsv *block_rsv, 5022 u64 num_bytes) 5023 { 5024 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5025 if (global_rsv == block_rsv || 5026 block_rsv->space_info != global_rsv->space_info) 5027 global_rsv = NULL; 5028 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5029 num_bytes); 5030 } 5031 5032 /* 5033 * helper to calculate size of global block reservation. 5034 * the desired value is sum of space used by extent tree, 5035 * checksum tree and root tree 5036 */ 5037 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5038 { 5039 struct btrfs_space_info *sinfo; 5040 u64 num_bytes; 5041 u64 meta_used; 5042 u64 data_used; 5043 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5044 5045 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5046 spin_lock(&sinfo->lock); 5047 data_used = sinfo->bytes_used; 5048 spin_unlock(&sinfo->lock); 5049 5050 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5051 spin_lock(&sinfo->lock); 5052 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5053 data_used = 0; 5054 meta_used = sinfo->bytes_used; 5055 spin_unlock(&sinfo->lock); 5056 5057 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5058 csum_size * 2; 5059 num_bytes += div_u64(data_used + meta_used, 50); 5060 5061 if (num_bytes * 3 > meta_used) 5062 num_bytes = div_u64(meta_used, 3); 5063 5064 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5065 } 5066 5067 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5068 { 5069 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5070 struct btrfs_space_info *sinfo = block_rsv->space_info; 5071 u64 num_bytes; 5072 5073 num_bytes = calc_global_metadata_size(fs_info); 5074 5075 spin_lock(&sinfo->lock); 5076 spin_lock(&block_rsv->lock); 5077 5078 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5079 5080 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5081 sinfo->bytes_reserved + sinfo->bytes_readonly + 5082 sinfo->bytes_may_use; 5083 5084 if (sinfo->total_bytes > num_bytes) { 5085 num_bytes = sinfo->total_bytes - num_bytes; 5086 block_rsv->reserved += num_bytes; 5087 sinfo->bytes_may_use += num_bytes; 5088 trace_btrfs_space_reservation(fs_info, "space_info", 5089 sinfo->flags, num_bytes, 1); 5090 } 5091 5092 if (block_rsv->reserved >= block_rsv->size) { 5093 num_bytes = block_rsv->reserved - block_rsv->size; 5094 sinfo->bytes_may_use -= num_bytes; 5095 trace_btrfs_space_reservation(fs_info, "space_info", 5096 sinfo->flags, num_bytes, 0); 5097 block_rsv->reserved = block_rsv->size; 5098 block_rsv->full = 1; 5099 } 5100 5101 spin_unlock(&block_rsv->lock); 5102 spin_unlock(&sinfo->lock); 5103 } 5104 5105 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5106 { 5107 struct btrfs_space_info *space_info; 5108 5109 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5110 fs_info->chunk_block_rsv.space_info = space_info; 5111 5112 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5113 fs_info->global_block_rsv.space_info = space_info; 5114 fs_info->delalloc_block_rsv.space_info = space_info; 5115 fs_info->trans_block_rsv.space_info = space_info; 5116 fs_info->empty_block_rsv.space_info = space_info; 5117 fs_info->delayed_block_rsv.space_info = space_info; 5118 5119 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5120 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5121 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5122 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5123 if (fs_info->quota_root) 5124 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5125 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5126 5127 update_global_block_rsv(fs_info); 5128 } 5129 5130 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5131 { 5132 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5133 (u64)-1); 5134 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5135 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5136 WARN_ON(fs_info->trans_block_rsv.size > 0); 5137 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5138 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5139 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5140 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5141 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5142 } 5143 5144 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5145 struct btrfs_root *root) 5146 { 5147 if (!trans->block_rsv) 5148 return; 5149 5150 if (!trans->bytes_reserved) 5151 return; 5152 5153 trace_btrfs_space_reservation(root->fs_info, "transaction", 5154 trans->transid, trans->bytes_reserved, 0); 5155 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5156 trans->bytes_reserved = 0; 5157 } 5158 5159 /* Can only return 0 or -ENOSPC */ 5160 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5161 struct inode *inode) 5162 { 5163 struct btrfs_root *root = BTRFS_I(inode)->root; 5164 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5165 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5166 5167 /* 5168 * We need to hold space in order to delete our orphan item once we've 5169 * added it, so this takes the reservation so we can release it later 5170 * when we are truly done with the orphan item. 5171 */ 5172 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5173 trace_btrfs_space_reservation(root->fs_info, "orphan", 5174 btrfs_ino(inode), num_bytes, 1); 5175 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5176 } 5177 5178 void btrfs_orphan_release_metadata(struct inode *inode) 5179 { 5180 struct btrfs_root *root = BTRFS_I(inode)->root; 5181 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5182 trace_btrfs_space_reservation(root->fs_info, "orphan", 5183 btrfs_ino(inode), num_bytes, 0); 5184 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5185 } 5186 5187 /* 5188 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5189 * root: the root of the parent directory 5190 * rsv: block reservation 5191 * items: the number of items that we need do reservation 5192 * qgroup_reserved: used to return the reserved size in qgroup 5193 * 5194 * This function is used to reserve the space for snapshot/subvolume 5195 * creation and deletion. Those operations are different with the 5196 * common file/directory operations, they change two fs/file trees 5197 * and root tree, the number of items that the qgroup reserves is 5198 * different with the free space reservation. So we can not use 5199 * the space reseravtion mechanism in start_transaction(). 5200 */ 5201 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5202 struct btrfs_block_rsv *rsv, 5203 int items, 5204 u64 *qgroup_reserved, 5205 bool use_global_rsv) 5206 { 5207 u64 num_bytes; 5208 int ret; 5209 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5210 5211 if (root->fs_info->quota_enabled) { 5212 /* One for parent inode, two for dir entries */ 5213 num_bytes = 3 * root->nodesize; 5214 ret = btrfs_qgroup_reserve(root, num_bytes); 5215 if (ret) 5216 return ret; 5217 } else { 5218 num_bytes = 0; 5219 } 5220 5221 *qgroup_reserved = num_bytes; 5222 5223 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5224 rsv->space_info = __find_space_info(root->fs_info, 5225 BTRFS_BLOCK_GROUP_METADATA); 5226 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5227 BTRFS_RESERVE_FLUSH_ALL); 5228 5229 if (ret == -ENOSPC && use_global_rsv) 5230 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5231 5232 if (ret) { 5233 if (*qgroup_reserved) 5234 btrfs_qgroup_free(root, *qgroup_reserved); 5235 } 5236 5237 return ret; 5238 } 5239 5240 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5241 struct btrfs_block_rsv *rsv, 5242 u64 qgroup_reserved) 5243 { 5244 btrfs_block_rsv_release(root, rsv, (u64)-1); 5245 } 5246 5247 /** 5248 * drop_outstanding_extent - drop an outstanding extent 5249 * @inode: the inode we're dropping the extent for 5250 * @num_bytes: the number of bytes we're relaseing. 5251 * 5252 * This is called when we are freeing up an outstanding extent, either called 5253 * after an error or after an extent is written. This will return the number of 5254 * reserved extents that need to be freed. This must be called with 5255 * BTRFS_I(inode)->lock held. 5256 */ 5257 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5258 { 5259 unsigned drop_inode_space = 0; 5260 unsigned dropped_extents = 0; 5261 unsigned num_extents = 0; 5262 5263 num_extents = (unsigned)div64_u64(num_bytes + 5264 BTRFS_MAX_EXTENT_SIZE - 1, 5265 BTRFS_MAX_EXTENT_SIZE); 5266 ASSERT(num_extents); 5267 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5268 BTRFS_I(inode)->outstanding_extents -= num_extents; 5269 5270 if (BTRFS_I(inode)->outstanding_extents == 0 && 5271 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5272 &BTRFS_I(inode)->runtime_flags)) 5273 drop_inode_space = 1; 5274 5275 /* 5276 * If we have more or the same amount of outsanding extents than we have 5277 * reserved then we need to leave the reserved extents count alone. 5278 */ 5279 if (BTRFS_I(inode)->outstanding_extents >= 5280 BTRFS_I(inode)->reserved_extents) 5281 return drop_inode_space; 5282 5283 dropped_extents = BTRFS_I(inode)->reserved_extents - 5284 BTRFS_I(inode)->outstanding_extents; 5285 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5286 return dropped_extents + drop_inode_space; 5287 } 5288 5289 /** 5290 * calc_csum_metadata_size - return the amount of metada space that must be 5291 * reserved/free'd for the given bytes. 5292 * @inode: the inode we're manipulating 5293 * @num_bytes: the number of bytes in question 5294 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5295 * 5296 * This adjusts the number of csum_bytes in the inode and then returns the 5297 * correct amount of metadata that must either be reserved or freed. We 5298 * calculate how many checksums we can fit into one leaf and then divide the 5299 * number of bytes that will need to be checksumed by this value to figure out 5300 * how many checksums will be required. If we are adding bytes then the number 5301 * may go up and we will return the number of additional bytes that must be 5302 * reserved. If it is going down we will return the number of bytes that must 5303 * be freed. 5304 * 5305 * This must be called with BTRFS_I(inode)->lock held. 5306 */ 5307 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5308 int reserve) 5309 { 5310 struct btrfs_root *root = BTRFS_I(inode)->root; 5311 u64 old_csums, num_csums; 5312 5313 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5314 BTRFS_I(inode)->csum_bytes == 0) 5315 return 0; 5316 5317 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5318 if (reserve) 5319 BTRFS_I(inode)->csum_bytes += num_bytes; 5320 else 5321 BTRFS_I(inode)->csum_bytes -= num_bytes; 5322 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5323 5324 /* No change, no need to reserve more */ 5325 if (old_csums == num_csums) 5326 return 0; 5327 5328 if (reserve) 5329 return btrfs_calc_trans_metadata_size(root, 5330 num_csums - old_csums); 5331 5332 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5333 } 5334 5335 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5336 { 5337 struct btrfs_root *root = BTRFS_I(inode)->root; 5338 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5339 u64 to_reserve = 0; 5340 u64 csum_bytes; 5341 unsigned nr_extents = 0; 5342 int extra_reserve = 0; 5343 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5344 int ret = 0; 5345 bool delalloc_lock = true; 5346 u64 to_free = 0; 5347 unsigned dropped; 5348 5349 /* If we are a free space inode we need to not flush since we will be in 5350 * the middle of a transaction commit. We also don't need the delalloc 5351 * mutex since we won't race with anybody. We need this mostly to make 5352 * lockdep shut its filthy mouth. 5353 */ 5354 if (btrfs_is_free_space_inode(inode)) { 5355 flush = BTRFS_RESERVE_NO_FLUSH; 5356 delalloc_lock = false; 5357 } 5358 5359 if (flush != BTRFS_RESERVE_NO_FLUSH && 5360 btrfs_transaction_in_commit(root->fs_info)) 5361 schedule_timeout(1); 5362 5363 if (delalloc_lock) 5364 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5365 5366 num_bytes = ALIGN(num_bytes, root->sectorsize); 5367 5368 spin_lock(&BTRFS_I(inode)->lock); 5369 nr_extents = (unsigned)div64_u64(num_bytes + 5370 BTRFS_MAX_EXTENT_SIZE - 1, 5371 BTRFS_MAX_EXTENT_SIZE); 5372 BTRFS_I(inode)->outstanding_extents += nr_extents; 5373 nr_extents = 0; 5374 5375 if (BTRFS_I(inode)->outstanding_extents > 5376 BTRFS_I(inode)->reserved_extents) 5377 nr_extents = BTRFS_I(inode)->outstanding_extents - 5378 BTRFS_I(inode)->reserved_extents; 5379 5380 /* 5381 * Add an item to reserve for updating the inode when we complete the 5382 * delalloc io. 5383 */ 5384 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5385 &BTRFS_I(inode)->runtime_flags)) { 5386 nr_extents++; 5387 extra_reserve = 1; 5388 } 5389 5390 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5391 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5392 csum_bytes = BTRFS_I(inode)->csum_bytes; 5393 spin_unlock(&BTRFS_I(inode)->lock); 5394 5395 if (root->fs_info->quota_enabled) { 5396 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5397 if (ret) 5398 goto out_fail; 5399 } 5400 5401 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5402 if (unlikely(ret)) { 5403 if (root->fs_info->quota_enabled) 5404 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5405 goto out_fail; 5406 } 5407 5408 spin_lock(&BTRFS_I(inode)->lock); 5409 if (extra_reserve) { 5410 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5411 &BTRFS_I(inode)->runtime_flags); 5412 nr_extents--; 5413 } 5414 BTRFS_I(inode)->reserved_extents += nr_extents; 5415 spin_unlock(&BTRFS_I(inode)->lock); 5416 5417 if (delalloc_lock) 5418 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5419 5420 if (to_reserve) 5421 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5422 btrfs_ino(inode), to_reserve, 1); 5423 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5424 5425 return 0; 5426 5427 out_fail: 5428 spin_lock(&BTRFS_I(inode)->lock); 5429 dropped = drop_outstanding_extent(inode, num_bytes); 5430 /* 5431 * If the inodes csum_bytes is the same as the original 5432 * csum_bytes then we know we haven't raced with any free()ers 5433 * so we can just reduce our inodes csum bytes and carry on. 5434 */ 5435 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5436 calc_csum_metadata_size(inode, num_bytes, 0); 5437 } else { 5438 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5439 u64 bytes; 5440 5441 /* 5442 * This is tricky, but first we need to figure out how much we 5443 * free'd from any free-ers that occured during this 5444 * reservation, so we reset ->csum_bytes to the csum_bytes 5445 * before we dropped our lock, and then call the free for the 5446 * number of bytes that were freed while we were trying our 5447 * reservation. 5448 */ 5449 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5450 BTRFS_I(inode)->csum_bytes = csum_bytes; 5451 to_free = calc_csum_metadata_size(inode, bytes, 0); 5452 5453 5454 /* 5455 * Now we need to see how much we would have freed had we not 5456 * been making this reservation and our ->csum_bytes were not 5457 * artificially inflated. 5458 */ 5459 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5460 bytes = csum_bytes - orig_csum_bytes; 5461 bytes = calc_csum_metadata_size(inode, bytes, 0); 5462 5463 /* 5464 * Now reset ->csum_bytes to what it should be. If bytes is 5465 * more than to_free then we would have free'd more space had we 5466 * not had an artificially high ->csum_bytes, so we need to free 5467 * the remainder. If bytes is the same or less then we don't 5468 * need to do anything, the other free-ers did the correct 5469 * thing. 5470 */ 5471 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5472 if (bytes > to_free) 5473 to_free = bytes - to_free; 5474 else 5475 to_free = 0; 5476 } 5477 spin_unlock(&BTRFS_I(inode)->lock); 5478 if (dropped) 5479 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5480 5481 if (to_free) { 5482 btrfs_block_rsv_release(root, block_rsv, to_free); 5483 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5484 btrfs_ino(inode), to_free, 0); 5485 } 5486 if (delalloc_lock) 5487 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5488 return ret; 5489 } 5490 5491 /** 5492 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5493 * @inode: the inode to release the reservation for 5494 * @num_bytes: the number of bytes we're releasing 5495 * 5496 * This will release the metadata reservation for an inode. This can be called 5497 * once we complete IO for a given set of bytes to release their metadata 5498 * reservations. 5499 */ 5500 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5501 { 5502 struct btrfs_root *root = BTRFS_I(inode)->root; 5503 u64 to_free = 0; 5504 unsigned dropped; 5505 5506 num_bytes = ALIGN(num_bytes, root->sectorsize); 5507 spin_lock(&BTRFS_I(inode)->lock); 5508 dropped = drop_outstanding_extent(inode, num_bytes); 5509 5510 if (num_bytes) 5511 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5512 spin_unlock(&BTRFS_I(inode)->lock); 5513 if (dropped > 0) 5514 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5515 5516 if (btrfs_test_is_dummy_root(root)) 5517 return; 5518 5519 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5520 btrfs_ino(inode), to_free, 0); 5521 5522 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5523 to_free); 5524 } 5525 5526 /** 5527 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5528 * @inode: inode we're writing to 5529 * @num_bytes: the number of bytes we want to allocate 5530 * 5531 * This will do the following things 5532 * 5533 * o reserve space in the data space info for num_bytes 5534 * o reserve space in the metadata space info based on number of outstanding 5535 * extents and how much csums will be needed 5536 * o add to the inodes ->delalloc_bytes 5537 * o add it to the fs_info's delalloc inodes list. 5538 * 5539 * This will return 0 for success and -ENOSPC if there is no space left. 5540 */ 5541 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5542 { 5543 int ret; 5544 5545 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5546 if (ret) 5547 return ret; 5548 5549 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5550 if (ret) { 5551 btrfs_free_reserved_data_space(inode, num_bytes); 5552 return ret; 5553 } 5554 5555 return 0; 5556 } 5557 5558 /** 5559 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5560 * @inode: inode we're releasing space for 5561 * @num_bytes: the number of bytes we want to free up 5562 * 5563 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5564 * called in the case that we don't need the metadata AND data reservations 5565 * anymore. So if there is an error or we insert an inline extent. 5566 * 5567 * This function will release the metadata space that was not used and will 5568 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5569 * list if there are no delalloc bytes left. 5570 */ 5571 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5572 { 5573 btrfs_delalloc_release_metadata(inode, num_bytes); 5574 btrfs_free_reserved_data_space(inode, num_bytes); 5575 } 5576 5577 static int update_block_group(struct btrfs_trans_handle *trans, 5578 struct btrfs_root *root, u64 bytenr, 5579 u64 num_bytes, int alloc) 5580 { 5581 struct btrfs_block_group_cache *cache = NULL; 5582 struct btrfs_fs_info *info = root->fs_info; 5583 u64 total = num_bytes; 5584 u64 old_val; 5585 u64 byte_in_group; 5586 int factor; 5587 5588 /* block accounting for super block */ 5589 spin_lock(&info->delalloc_root_lock); 5590 old_val = btrfs_super_bytes_used(info->super_copy); 5591 if (alloc) 5592 old_val += num_bytes; 5593 else 5594 old_val -= num_bytes; 5595 btrfs_set_super_bytes_used(info->super_copy, old_val); 5596 spin_unlock(&info->delalloc_root_lock); 5597 5598 while (total) { 5599 cache = btrfs_lookup_block_group(info, bytenr); 5600 if (!cache) 5601 return -ENOENT; 5602 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5603 BTRFS_BLOCK_GROUP_RAID1 | 5604 BTRFS_BLOCK_GROUP_RAID10)) 5605 factor = 2; 5606 else 5607 factor = 1; 5608 /* 5609 * If this block group has free space cache written out, we 5610 * need to make sure to load it if we are removing space. This 5611 * is because we need the unpinning stage to actually add the 5612 * space back to the block group, otherwise we will leak space. 5613 */ 5614 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5615 cache_block_group(cache, 1); 5616 5617 byte_in_group = bytenr - cache->key.objectid; 5618 WARN_ON(byte_in_group > cache->key.offset); 5619 5620 spin_lock(&cache->space_info->lock); 5621 spin_lock(&cache->lock); 5622 5623 if (btrfs_test_opt(root, SPACE_CACHE) && 5624 cache->disk_cache_state < BTRFS_DC_CLEAR) 5625 cache->disk_cache_state = BTRFS_DC_CLEAR; 5626 5627 old_val = btrfs_block_group_used(&cache->item); 5628 num_bytes = min(total, cache->key.offset - byte_in_group); 5629 if (alloc) { 5630 old_val += num_bytes; 5631 btrfs_set_block_group_used(&cache->item, old_val); 5632 cache->reserved -= num_bytes; 5633 cache->space_info->bytes_reserved -= num_bytes; 5634 cache->space_info->bytes_used += num_bytes; 5635 cache->space_info->disk_used += num_bytes * factor; 5636 spin_unlock(&cache->lock); 5637 spin_unlock(&cache->space_info->lock); 5638 } else { 5639 old_val -= num_bytes; 5640 btrfs_set_block_group_used(&cache->item, old_val); 5641 cache->pinned += num_bytes; 5642 cache->space_info->bytes_pinned += num_bytes; 5643 cache->space_info->bytes_used -= num_bytes; 5644 cache->space_info->disk_used -= num_bytes * factor; 5645 spin_unlock(&cache->lock); 5646 spin_unlock(&cache->space_info->lock); 5647 5648 set_extent_dirty(info->pinned_extents, 5649 bytenr, bytenr + num_bytes - 1, 5650 GFP_NOFS | __GFP_NOFAIL); 5651 /* 5652 * No longer have used bytes in this block group, queue 5653 * it for deletion. 5654 */ 5655 if (old_val == 0) { 5656 spin_lock(&info->unused_bgs_lock); 5657 if (list_empty(&cache->bg_list)) { 5658 btrfs_get_block_group(cache); 5659 list_add_tail(&cache->bg_list, 5660 &info->unused_bgs); 5661 } 5662 spin_unlock(&info->unused_bgs_lock); 5663 } 5664 } 5665 5666 spin_lock(&trans->transaction->dirty_bgs_lock); 5667 if (list_empty(&cache->dirty_list)) { 5668 list_add_tail(&cache->dirty_list, 5669 &trans->transaction->dirty_bgs); 5670 trans->transaction->num_dirty_bgs++; 5671 btrfs_get_block_group(cache); 5672 } 5673 spin_unlock(&trans->transaction->dirty_bgs_lock); 5674 5675 btrfs_put_block_group(cache); 5676 total -= num_bytes; 5677 bytenr += num_bytes; 5678 } 5679 return 0; 5680 } 5681 5682 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5683 { 5684 struct btrfs_block_group_cache *cache; 5685 u64 bytenr; 5686 5687 spin_lock(&root->fs_info->block_group_cache_lock); 5688 bytenr = root->fs_info->first_logical_byte; 5689 spin_unlock(&root->fs_info->block_group_cache_lock); 5690 5691 if (bytenr < (u64)-1) 5692 return bytenr; 5693 5694 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5695 if (!cache) 5696 return 0; 5697 5698 bytenr = cache->key.objectid; 5699 btrfs_put_block_group(cache); 5700 5701 return bytenr; 5702 } 5703 5704 static int pin_down_extent(struct btrfs_root *root, 5705 struct btrfs_block_group_cache *cache, 5706 u64 bytenr, u64 num_bytes, int reserved) 5707 { 5708 spin_lock(&cache->space_info->lock); 5709 spin_lock(&cache->lock); 5710 cache->pinned += num_bytes; 5711 cache->space_info->bytes_pinned += num_bytes; 5712 if (reserved) { 5713 cache->reserved -= num_bytes; 5714 cache->space_info->bytes_reserved -= num_bytes; 5715 } 5716 spin_unlock(&cache->lock); 5717 spin_unlock(&cache->space_info->lock); 5718 5719 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5720 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5721 if (reserved) 5722 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5723 return 0; 5724 } 5725 5726 /* 5727 * this function must be called within transaction 5728 */ 5729 int btrfs_pin_extent(struct btrfs_root *root, 5730 u64 bytenr, u64 num_bytes, int reserved) 5731 { 5732 struct btrfs_block_group_cache *cache; 5733 5734 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5735 BUG_ON(!cache); /* Logic error */ 5736 5737 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5738 5739 btrfs_put_block_group(cache); 5740 return 0; 5741 } 5742 5743 /* 5744 * this function must be called within transaction 5745 */ 5746 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5747 u64 bytenr, u64 num_bytes) 5748 { 5749 struct btrfs_block_group_cache *cache; 5750 int ret; 5751 5752 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5753 if (!cache) 5754 return -EINVAL; 5755 5756 /* 5757 * pull in the free space cache (if any) so that our pin 5758 * removes the free space from the cache. We have load_only set 5759 * to one because the slow code to read in the free extents does check 5760 * the pinned extents. 5761 */ 5762 cache_block_group(cache, 1); 5763 5764 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5765 5766 /* remove us from the free space cache (if we're there at all) */ 5767 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5768 btrfs_put_block_group(cache); 5769 return ret; 5770 } 5771 5772 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5773 { 5774 int ret; 5775 struct btrfs_block_group_cache *block_group; 5776 struct btrfs_caching_control *caching_ctl; 5777 5778 block_group = btrfs_lookup_block_group(root->fs_info, start); 5779 if (!block_group) 5780 return -EINVAL; 5781 5782 cache_block_group(block_group, 0); 5783 caching_ctl = get_caching_control(block_group); 5784 5785 if (!caching_ctl) { 5786 /* Logic error */ 5787 BUG_ON(!block_group_cache_done(block_group)); 5788 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5789 } else { 5790 mutex_lock(&caching_ctl->mutex); 5791 5792 if (start >= caching_ctl->progress) { 5793 ret = add_excluded_extent(root, start, num_bytes); 5794 } else if (start + num_bytes <= caching_ctl->progress) { 5795 ret = btrfs_remove_free_space(block_group, 5796 start, num_bytes); 5797 } else { 5798 num_bytes = caching_ctl->progress - start; 5799 ret = btrfs_remove_free_space(block_group, 5800 start, num_bytes); 5801 if (ret) 5802 goto out_lock; 5803 5804 num_bytes = (start + num_bytes) - 5805 caching_ctl->progress; 5806 start = caching_ctl->progress; 5807 ret = add_excluded_extent(root, start, num_bytes); 5808 } 5809 out_lock: 5810 mutex_unlock(&caching_ctl->mutex); 5811 put_caching_control(caching_ctl); 5812 } 5813 btrfs_put_block_group(block_group); 5814 return ret; 5815 } 5816 5817 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5818 struct extent_buffer *eb) 5819 { 5820 struct btrfs_file_extent_item *item; 5821 struct btrfs_key key; 5822 int found_type; 5823 int i; 5824 5825 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5826 return 0; 5827 5828 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5829 btrfs_item_key_to_cpu(eb, &key, i); 5830 if (key.type != BTRFS_EXTENT_DATA_KEY) 5831 continue; 5832 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5833 found_type = btrfs_file_extent_type(eb, item); 5834 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5835 continue; 5836 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5837 continue; 5838 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5839 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5840 __exclude_logged_extent(log, key.objectid, key.offset); 5841 } 5842 5843 return 0; 5844 } 5845 5846 /** 5847 * btrfs_update_reserved_bytes - update the block_group and space info counters 5848 * @cache: The cache we are manipulating 5849 * @num_bytes: The number of bytes in question 5850 * @reserve: One of the reservation enums 5851 * @delalloc: The blocks are allocated for the delalloc write 5852 * 5853 * This is called by the allocator when it reserves space, or by somebody who is 5854 * freeing space that was never actually used on disk. For example if you 5855 * reserve some space for a new leaf in transaction A and before transaction A 5856 * commits you free that leaf, you call this with reserve set to 0 in order to 5857 * clear the reservation. 5858 * 5859 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5860 * ENOSPC accounting. For data we handle the reservation through clearing the 5861 * delalloc bits in the io_tree. We have to do this since we could end up 5862 * allocating less disk space for the amount of data we have reserved in the 5863 * case of compression. 5864 * 5865 * If this is a reservation and the block group has become read only we cannot 5866 * make the reservation and return -EAGAIN, otherwise this function always 5867 * succeeds. 5868 */ 5869 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5870 u64 num_bytes, int reserve, int delalloc) 5871 { 5872 struct btrfs_space_info *space_info = cache->space_info; 5873 int ret = 0; 5874 5875 spin_lock(&space_info->lock); 5876 spin_lock(&cache->lock); 5877 if (reserve != RESERVE_FREE) { 5878 if (cache->ro) { 5879 ret = -EAGAIN; 5880 } else { 5881 cache->reserved += num_bytes; 5882 space_info->bytes_reserved += num_bytes; 5883 if (reserve == RESERVE_ALLOC) { 5884 trace_btrfs_space_reservation(cache->fs_info, 5885 "space_info", space_info->flags, 5886 num_bytes, 0); 5887 space_info->bytes_may_use -= num_bytes; 5888 } 5889 5890 if (delalloc) 5891 cache->delalloc_bytes += num_bytes; 5892 } 5893 } else { 5894 if (cache->ro) 5895 space_info->bytes_readonly += num_bytes; 5896 cache->reserved -= num_bytes; 5897 space_info->bytes_reserved -= num_bytes; 5898 5899 if (delalloc) 5900 cache->delalloc_bytes -= num_bytes; 5901 } 5902 spin_unlock(&cache->lock); 5903 spin_unlock(&space_info->lock); 5904 return ret; 5905 } 5906 5907 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5908 struct btrfs_root *root) 5909 { 5910 struct btrfs_fs_info *fs_info = root->fs_info; 5911 struct btrfs_caching_control *next; 5912 struct btrfs_caching_control *caching_ctl; 5913 struct btrfs_block_group_cache *cache; 5914 5915 down_write(&fs_info->commit_root_sem); 5916 5917 list_for_each_entry_safe(caching_ctl, next, 5918 &fs_info->caching_block_groups, list) { 5919 cache = caching_ctl->block_group; 5920 if (block_group_cache_done(cache)) { 5921 cache->last_byte_to_unpin = (u64)-1; 5922 list_del_init(&caching_ctl->list); 5923 put_caching_control(caching_ctl); 5924 } else { 5925 cache->last_byte_to_unpin = caching_ctl->progress; 5926 } 5927 } 5928 5929 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5930 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5931 else 5932 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5933 5934 up_write(&fs_info->commit_root_sem); 5935 5936 update_global_block_rsv(fs_info); 5937 } 5938 5939 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 5940 const bool return_free_space) 5941 { 5942 struct btrfs_fs_info *fs_info = root->fs_info; 5943 struct btrfs_block_group_cache *cache = NULL; 5944 struct btrfs_space_info *space_info; 5945 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5946 u64 len; 5947 bool readonly; 5948 5949 while (start <= end) { 5950 readonly = false; 5951 if (!cache || 5952 start >= cache->key.objectid + cache->key.offset) { 5953 if (cache) 5954 btrfs_put_block_group(cache); 5955 cache = btrfs_lookup_block_group(fs_info, start); 5956 BUG_ON(!cache); /* Logic error */ 5957 } 5958 5959 len = cache->key.objectid + cache->key.offset - start; 5960 len = min(len, end + 1 - start); 5961 5962 if (start < cache->last_byte_to_unpin) { 5963 len = min(len, cache->last_byte_to_unpin - start); 5964 if (return_free_space) 5965 btrfs_add_free_space(cache, start, len); 5966 } 5967 5968 start += len; 5969 space_info = cache->space_info; 5970 5971 spin_lock(&space_info->lock); 5972 spin_lock(&cache->lock); 5973 cache->pinned -= len; 5974 space_info->bytes_pinned -= len; 5975 percpu_counter_add(&space_info->total_bytes_pinned, -len); 5976 if (cache->ro) { 5977 space_info->bytes_readonly += len; 5978 readonly = true; 5979 } 5980 spin_unlock(&cache->lock); 5981 if (!readonly && global_rsv->space_info == space_info) { 5982 spin_lock(&global_rsv->lock); 5983 if (!global_rsv->full) { 5984 len = min(len, global_rsv->size - 5985 global_rsv->reserved); 5986 global_rsv->reserved += len; 5987 space_info->bytes_may_use += len; 5988 if (global_rsv->reserved >= global_rsv->size) 5989 global_rsv->full = 1; 5990 } 5991 spin_unlock(&global_rsv->lock); 5992 } 5993 spin_unlock(&space_info->lock); 5994 } 5995 5996 if (cache) 5997 btrfs_put_block_group(cache); 5998 return 0; 5999 } 6000 6001 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6002 struct btrfs_root *root) 6003 { 6004 struct btrfs_fs_info *fs_info = root->fs_info; 6005 struct extent_io_tree *unpin; 6006 u64 start; 6007 u64 end; 6008 int ret; 6009 6010 if (trans->aborted) 6011 return 0; 6012 6013 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6014 unpin = &fs_info->freed_extents[1]; 6015 else 6016 unpin = &fs_info->freed_extents[0]; 6017 6018 while (1) { 6019 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6020 ret = find_first_extent_bit(unpin, 0, &start, &end, 6021 EXTENT_DIRTY, NULL); 6022 if (ret) { 6023 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6024 break; 6025 } 6026 6027 if (btrfs_test_opt(root, DISCARD)) 6028 ret = btrfs_discard_extent(root, start, 6029 end + 1 - start, NULL); 6030 6031 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6032 unpin_extent_range(root, start, end, true); 6033 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6034 cond_resched(); 6035 } 6036 6037 return 0; 6038 } 6039 6040 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6041 u64 owner, u64 root_objectid) 6042 { 6043 struct btrfs_space_info *space_info; 6044 u64 flags; 6045 6046 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6047 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6048 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6049 else 6050 flags = BTRFS_BLOCK_GROUP_METADATA; 6051 } else { 6052 flags = BTRFS_BLOCK_GROUP_DATA; 6053 } 6054 6055 space_info = __find_space_info(fs_info, flags); 6056 BUG_ON(!space_info); /* Logic bug */ 6057 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6058 } 6059 6060 6061 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6062 struct btrfs_root *root, 6063 u64 bytenr, u64 num_bytes, u64 parent, 6064 u64 root_objectid, u64 owner_objectid, 6065 u64 owner_offset, int refs_to_drop, 6066 struct btrfs_delayed_extent_op *extent_op, 6067 int no_quota) 6068 { 6069 struct btrfs_key key; 6070 struct btrfs_path *path; 6071 struct btrfs_fs_info *info = root->fs_info; 6072 struct btrfs_root *extent_root = info->extent_root; 6073 struct extent_buffer *leaf; 6074 struct btrfs_extent_item *ei; 6075 struct btrfs_extent_inline_ref *iref; 6076 int ret; 6077 int is_data; 6078 int extent_slot = 0; 6079 int found_extent = 0; 6080 int num_to_del = 1; 6081 u32 item_size; 6082 u64 refs; 6083 int last_ref = 0; 6084 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL; 6085 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6086 SKINNY_METADATA); 6087 6088 if (!info->quota_enabled || !is_fstree(root_objectid)) 6089 no_quota = 1; 6090 6091 path = btrfs_alloc_path(); 6092 if (!path) 6093 return -ENOMEM; 6094 6095 path->reada = 1; 6096 path->leave_spinning = 1; 6097 6098 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6099 BUG_ON(!is_data && refs_to_drop != 1); 6100 6101 if (is_data) 6102 skinny_metadata = 0; 6103 6104 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6105 bytenr, num_bytes, parent, 6106 root_objectid, owner_objectid, 6107 owner_offset); 6108 if (ret == 0) { 6109 extent_slot = path->slots[0]; 6110 while (extent_slot >= 0) { 6111 btrfs_item_key_to_cpu(path->nodes[0], &key, 6112 extent_slot); 6113 if (key.objectid != bytenr) 6114 break; 6115 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6116 key.offset == num_bytes) { 6117 found_extent = 1; 6118 break; 6119 } 6120 if (key.type == BTRFS_METADATA_ITEM_KEY && 6121 key.offset == owner_objectid) { 6122 found_extent = 1; 6123 break; 6124 } 6125 if (path->slots[0] - extent_slot > 5) 6126 break; 6127 extent_slot--; 6128 } 6129 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6130 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6131 if (found_extent && item_size < sizeof(*ei)) 6132 found_extent = 0; 6133 #endif 6134 if (!found_extent) { 6135 BUG_ON(iref); 6136 ret = remove_extent_backref(trans, extent_root, path, 6137 NULL, refs_to_drop, 6138 is_data, &last_ref); 6139 if (ret) { 6140 btrfs_abort_transaction(trans, extent_root, ret); 6141 goto out; 6142 } 6143 btrfs_release_path(path); 6144 path->leave_spinning = 1; 6145 6146 key.objectid = bytenr; 6147 key.type = BTRFS_EXTENT_ITEM_KEY; 6148 key.offset = num_bytes; 6149 6150 if (!is_data && skinny_metadata) { 6151 key.type = BTRFS_METADATA_ITEM_KEY; 6152 key.offset = owner_objectid; 6153 } 6154 6155 ret = btrfs_search_slot(trans, extent_root, 6156 &key, path, -1, 1); 6157 if (ret > 0 && skinny_metadata && path->slots[0]) { 6158 /* 6159 * Couldn't find our skinny metadata item, 6160 * see if we have ye olde extent item. 6161 */ 6162 path->slots[0]--; 6163 btrfs_item_key_to_cpu(path->nodes[0], &key, 6164 path->slots[0]); 6165 if (key.objectid == bytenr && 6166 key.type == BTRFS_EXTENT_ITEM_KEY && 6167 key.offset == num_bytes) 6168 ret = 0; 6169 } 6170 6171 if (ret > 0 && skinny_metadata) { 6172 skinny_metadata = false; 6173 key.objectid = bytenr; 6174 key.type = BTRFS_EXTENT_ITEM_KEY; 6175 key.offset = num_bytes; 6176 btrfs_release_path(path); 6177 ret = btrfs_search_slot(trans, extent_root, 6178 &key, path, -1, 1); 6179 } 6180 6181 if (ret) { 6182 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6183 ret, bytenr); 6184 if (ret > 0) 6185 btrfs_print_leaf(extent_root, 6186 path->nodes[0]); 6187 } 6188 if (ret < 0) { 6189 btrfs_abort_transaction(trans, extent_root, ret); 6190 goto out; 6191 } 6192 extent_slot = path->slots[0]; 6193 } 6194 } else if (WARN_ON(ret == -ENOENT)) { 6195 btrfs_print_leaf(extent_root, path->nodes[0]); 6196 btrfs_err(info, 6197 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6198 bytenr, parent, root_objectid, owner_objectid, 6199 owner_offset); 6200 btrfs_abort_transaction(trans, extent_root, ret); 6201 goto out; 6202 } else { 6203 btrfs_abort_transaction(trans, extent_root, ret); 6204 goto out; 6205 } 6206 6207 leaf = path->nodes[0]; 6208 item_size = btrfs_item_size_nr(leaf, extent_slot); 6209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6210 if (item_size < sizeof(*ei)) { 6211 BUG_ON(found_extent || extent_slot != path->slots[0]); 6212 ret = convert_extent_item_v0(trans, extent_root, path, 6213 owner_objectid, 0); 6214 if (ret < 0) { 6215 btrfs_abort_transaction(trans, extent_root, ret); 6216 goto out; 6217 } 6218 6219 btrfs_release_path(path); 6220 path->leave_spinning = 1; 6221 6222 key.objectid = bytenr; 6223 key.type = BTRFS_EXTENT_ITEM_KEY; 6224 key.offset = num_bytes; 6225 6226 ret = btrfs_search_slot(trans, extent_root, &key, path, 6227 -1, 1); 6228 if (ret) { 6229 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6230 ret, bytenr); 6231 btrfs_print_leaf(extent_root, path->nodes[0]); 6232 } 6233 if (ret < 0) { 6234 btrfs_abort_transaction(trans, extent_root, ret); 6235 goto out; 6236 } 6237 6238 extent_slot = path->slots[0]; 6239 leaf = path->nodes[0]; 6240 item_size = btrfs_item_size_nr(leaf, extent_slot); 6241 } 6242 #endif 6243 BUG_ON(item_size < sizeof(*ei)); 6244 ei = btrfs_item_ptr(leaf, extent_slot, 6245 struct btrfs_extent_item); 6246 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6247 key.type == BTRFS_EXTENT_ITEM_KEY) { 6248 struct btrfs_tree_block_info *bi; 6249 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6250 bi = (struct btrfs_tree_block_info *)(ei + 1); 6251 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6252 } 6253 6254 refs = btrfs_extent_refs(leaf, ei); 6255 if (refs < refs_to_drop) { 6256 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6257 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6258 ret = -EINVAL; 6259 btrfs_abort_transaction(trans, extent_root, ret); 6260 goto out; 6261 } 6262 refs -= refs_to_drop; 6263 6264 if (refs > 0) { 6265 type = BTRFS_QGROUP_OPER_SUB_SHARED; 6266 if (extent_op) 6267 __run_delayed_extent_op(extent_op, leaf, ei); 6268 /* 6269 * In the case of inline back ref, reference count will 6270 * be updated by remove_extent_backref 6271 */ 6272 if (iref) { 6273 BUG_ON(!found_extent); 6274 } else { 6275 btrfs_set_extent_refs(leaf, ei, refs); 6276 btrfs_mark_buffer_dirty(leaf); 6277 } 6278 if (found_extent) { 6279 ret = remove_extent_backref(trans, extent_root, path, 6280 iref, refs_to_drop, 6281 is_data, &last_ref); 6282 if (ret) { 6283 btrfs_abort_transaction(trans, extent_root, ret); 6284 goto out; 6285 } 6286 } 6287 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6288 root_objectid); 6289 } else { 6290 if (found_extent) { 6291 BUG_ON(is_data && refs_to_drop != 6292 extent_data_ref_count(root, path, iref)); 6293 if (iref) { 6294 BUG_ON(path->slots[0] != extent_slot); 6295 } else { 6296 BUG_ON(path->slots[0] != extent_slot + 1); 6297 path->slots[0] = extent_slot; 6298 num_to_del = 2; 6299 } 6300 } 6301 6302 last_ref = 1; 6303 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6304 num_to_del); 6305 if (ret) { 6306 btrfs_abort_transaction(trans, extent_root, ret); 6307 goto out; 6308 } 6309 btrfs_release_path(path); 6310 6311 if (is_data) { 6312 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6313 if (ret) { 6314 btrfs_abort_transaction(trans, extent_root, ret); 6315 goto out; 6316 } 6317 } 6318 6319 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6320 if (ret) { 6321 btrfs_abort_transaction(trans, extent_root, ret); 6322 goto out; 6323 } 6324 } 6325 btrfs_release_path(path); 6326 6327 /* Deal with the quota accounting */ 6328 if (!ret && last_ref && !no_quota) { 6329 int mod_seq = 0; 6330 6331 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID && 6332 type == BTRFS_QGROUP_OPER_SUB_SHARED) 6333 mod_seq = 1; 6334 6335 ret = btrfs_qgroup_record_ref(trans, info, root_objectid, 6336 bytenr, num_bytes, type, 6337 mod_seq); 6338 } 6339 out: 6340 btrfs_free_path(path); 6341 return ret; 6342 } 6343 6344 /* 6345 * when we free an block, it is possible (and likely) that we free the last 6346 * delayed ref for that extent as well. This searches the delayed ref tree for 6347 * a given extent, and if there are no other delayed refs to be processed, it 6348 * removes it from the tree. 6349 */ 6350 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6351 struct btrfs_root *root, u64 bytenr) 6352 { 6353 struct btrfs_delayed_ref_head *head; 6354 struct btrfs_delayed_ref_root *delayed_refs; 6355 int ret = 0; 6356 6357 delayed_refs = &trans->transaction->delayed_refs; 6358 spin_lock(&delayed_refs->lock); 6359 head = btrfs_find_delayed_ref_head(trans, bytenr); 6360 if (!head) 6361 goto out_delayed_unlock; 6362 6363 spin_lock(&head->lock); 6364 if (rb_first(&head->ref_root)) 6365 goto out; 6366 6367 if (head->extent_op) { 6368 if (!head->must_insert_reserved) 6369 goto out; 6370 btrfs_free_delayed_extent_op(head->extent_op); 6371 head->extent_op = NULL; 6372 } 6373 6374 /* 6375 * waiting for the lock here would deadlock. If someone else has it 6376 * locked they are already in the process of dropping it anyway 6377 */ 6378 if (!mutex_trylock(&head->mutex)) 6379 goto out; 6380 6381 /* 6382 * at this point we have a head with no other entries. Go 6383 * ahead and process it. 6384 */ 6385 head->node.in_tree = 0; 6386 rb_erase(&head->href_node, &delayed_refs->href_root); 6387 6388 atomic_dec(&delayed_refs->num_entries); 6389 6390 /* 6391 * we don't take a ref on the node because we're removing it from the 6392 * tree, so we just steal the ref the tree was holding. 6393 */ 6394 delayed_refs->num_heads--; 6395 if (head->processing == 0) 6396 delayed_refs->num_heads_ready--; 6397 head->processing = 0; 6398 spin_unlock(&head->lock); 6399 spin_unlock(&delayed_refs->lock); 6400 6401 BUG_ON(head->extent_op); 6402 if (head->must_insert_reserved) 6403 ret = 1; 6404 6405 mutex_unlock(&head->mutex); 6406 btrfs_put_delayed_ref(&head->node); 6407 return ret; 6408 out: 6409 spin_unlock(&head->lock); 6410 6411 out_delayed_unlock: 6412 spin_unlock(&delayed_refs->lock); 6413 return 0; 6414 } 6415 6416 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6417 struct btrfs_root *root, 6418 struct extent_buffer *buf, 6419 u64 parent, int last_ref) 6420 { 6421 int pin = 1; 6422 int ret; 6423 6424 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6425 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6426 buf->start, buf->len, 6427 parent, root->root_key.objectid, 6428 btrfs_header_level(buf), 6429 BTRFS_DROP_DELAYED_REF, NULL, 0); 6430 BUG_ON(ret); /* -ENOMEM */ 6431 } 6432 6433 if (!last_ref) 6434 return; 6435 6436 if (btrfs_header_generation(buf) == trans->transid) { 6437 struct btrfs_block_group_cache *cache; 6438 6439 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6440 ret = check_ref_cleanup(trans, root, buf->start); 6441 if (!ret) 6442 goto out; 6443 } 6444 6445 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6446 6447 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6448 pin_down_extent(root, cache, buf->start, buf->len, 1); 6449 btrfs_put_block_group(cache); 6450 goto out; 6451 } 6452 6453 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6454 6455 btrfs_add_free_space(cache, buf->start, buf->len); 6456 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6457 btrfs_put_block_group(cache); 6458 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6459 pin = 0; 6460 } 6461 out: 6462 if (pin) 6463 add_pinned_bytes(root->fs_info, buf->len, 6464 btrfs_header_level(buf), 6465 root->root_key.objectid); 6466 6467 /* 6468 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6469 * anymore. 6470 */ 6471 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6472 } 6473 6474 /* Can return -ENOMEM */ 6475 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6476 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6477 u64 owner, u64 offset, int no_quota) 6478 { 6479 int ret; 6480 struct btrfs_fs_info *fs_info = root->fs_info; 6481 6482 if (btrfs_test_is_dummy_root(root)) 6483 return 0; 6484 6485 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6486 6487 /* 6488 * tree log blocks never actually go into the extent allocation 6489 * tree, just update pinning info and exit early. 6490 */ 6491 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6492 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6493 /* unlocks the pinned mutex */ 6494 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6495 ret = 0; 6496 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6497 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6498 num_bytes, 6499 parent, root_objectid, (int)owner, 6500 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6501 } else { 6502 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6503 num_bytes, 6504 parent, root_objectid, owner, 6505 offset, BTRFS_DROP_DELAYED_REF, 6506 NULL, no_quota); 6507 } 6508 return ret; 6509 } 6510 6511 /* 6512 * when we wait for progress in the block group caching, its because 6513 * our allocation attempt failed at least once. So, we must sleep 6514 * and let some progress happen before we try again. 6515 * 6516 * This function will sleep at least once waiting for new free space to 6517 * show up, and then it will check the block group free space numbers 6518 * for our min num_bytes. Another option is to have it go ahead 6519 * and look in the rbtree for a free extent of a given size, but this 6520 * is a good start. 6521 * 6522 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6523 * any of the information in this block group. 6524 */ 6525 static noinline void 6526 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6527 u64 num_bytes) 6528 { 6529 struct btrfs_caching_control *caching_ctl; 6530 6531 caching_ctl = get_caching_control(cache); 6532 if (!caching_ctl) 6533 return; 6534 6535 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6536 (cache->free_space_ctl->free_space >= num_bytes)); 6537 6538 put_caching_control(caching_ctl); 6539 } 6540 6541 static noinline int 6542 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6543 { 6544 struct btrfs_caching_control *caching_ctl; 6545 int ret = 0; 6546 6547 caching_ctl = get_caching_control(cache); 6548 if (!caching_ctl) 6549 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6550 6551 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6552 if (cache->cached == BTRFS_CACHE_ERROR) 6553 ret = -EIO; 6554 put_caching_control(caching_ctl); 6555 return ret; 6556 } 6557 6558 int __get_raid_index(u64 flags) 6559 { 6560 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6561 return BTRFS_RAID_RAID10; 6562 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6563 return BTRFS_RAID_RAID1; 6564 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6565 return BTRFS_RAID_DUP; 6566 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6567 return BTRFS_RAID_RAID0; 6568 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6569 return BTRFS_RAID_RAID5; 6570 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6571 return BTRFS_RAID_RAID6; 6572 6573 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6574 } 6575 6576 int get_block_group_index(struct btrfs_block_group_cache *cache) 6577 { 6578 return __get_raid_index(cache->flags); 6579 } 6580 6581 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6582 [BTRFS_RAID_RAID10] = "raid10", 6583 [BTRFS_RAID_RAID1] = "raid1", 6584 [BTRFS_RAID_DUP] = "dup", 6585 [BTRFS_RAID_RAID0] = "raid0", 6586 [BTRFS_RAID_SINGLE] = "single", 6587 [BTRFS_RAID_RAID5] = "raid5", 6588 [BTRFS_RAID_RAID6] = "raid6", 6589 }; 6590 6591 static const char *get_raid_name(enum btrfs_raid_types type) 6592 { 6593 if (type >= BTRFS_NR_RAID_TYPES) 6594 return NULL; 6595 6596 return btrfs_raid_type_names[type]; 6597 } 6598 6599 enum btrfs_loop_type { 6600 LOOP_CACHING_NOWAIT = 0, 6601 LOOP_CACHING_WAIT = 1, 6602 LOOP_ALLOC_CHUNK = 2, 6603 LOOP_NO_EMPTY_SIZE = 3, 6604 }; 6605 6606 static inline void 6607 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6608 int delalloc) 6609 { 6610 if (delalloc) 6611 down_read(&cache->data_rwsem); 6612 } 6613 6614 static inline void 6615 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6616 int delalloc) 6617 { 6618 btrfs_get_block_group(cache); 6619 if (delalloc) 6620 down_read(&cache->data_rwsem); 6621 } 6622 6623 static struct btrfs_block_group_cache * 6624 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6625 struct btrfs_free_cluster *cluster, 6626 int delalloc) 6627 { 6628 struct btrfs_block_group_cache *used_bg; 6629 bool locked = false; 6630 again: 6631 spin_lock(&cluster->refill_lock); 6632 if (locked) { 6633 if (used_bg == cluster->block_group) 6634 return used_bg; 6635 6636 up_read(&used_bg->data_rwsem); 6637 btrfs_put_block_group(used_bg); 6638 } 6639 6640 used_bg = cluster->block_group; 6641 if (!used_bg) 6642 return NULL; 6643 6644 if (used_bg == block_group) 6645 return used_bg; 6646 6647 btrfs_get_block_group(used_bg); 6648 6649 if (!delalloc) 6650 return used_bg; 6651 6652 if (down_read_trylock(&used_bg->data_rwsem)) 6653 return used_bg; 6654 6655 spin_unlock(&cluster->refill_lock); 6656 down_read(&used_bg->data_rwsem); 6657 locked = true; 6658 goto again; 6659 } 6660 6661 static inline void 6662 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6663 int delalloc) 6664 { 6665 if (delalloc) 6666 up_read(&cache->data_rwsem); 6667 btrfs_put_block_group(cache); 6668 } 6669 6670 /* 6671 * walks the btree of allocated extents and find a hole of a given size. 6672 * The key ins is changed to record the hole: 6673 * ins->objectid == start position 6674 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6675 * ins->offset == the size of the hole. 6676 * Any available blocks before search_start are skipped. 6677 * 6678 * If there is no suitable free space, we will record the max size of 6679 * the free space extent currently. 6680 */ 6681 static noinline int find_free_extent(struct btrfs_root *orig_root, 6682 u64 num_bytes, u64 empty_size, 6683 u64 hint_byte, struct btrfs_key *ins, 6684 u64 flags, int delalloc) 6685 { 6686 int ret = 0; 6687 struct btrfs_root *root = orig_root->fs_info->extent_root; 6688 struct btrfs_free_cluster *last_ptr = NULL; 6689 struct btrfs_block_group_cache *block_group = NULL; 6690 u64 search_start = 0; 6691 u64 max_extent_size = 0; 6692 int empty_cluster = 2 * 1024 * 1024; 6693 struct btrfs_space_info *space_info; 6694 int loop = 0; 6695 int index = __get_raid_index(flags); 6696 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6697 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6698 bool failed_cluster_refill = false; 6699 bool failed_alloc = false; 6700 bool use_cluster = true; 6701 bool have_caching_bg = false; 6702 6703 WARN_ON(num_bytes < root->sectorsize); 6704 ins->type = BTRFS_EXTENT_ITEM_KEY; 6705 ins->objectid = 0; 6706 ins->offset = 0; 6707 6708 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6709 6710 space_info = __find_space_info(root->fs_info, flags); 6711 if (!space_info) { 6712 btrfs_err(root->fs_info, "No space info for %llu", flags); 6713 return -ENOSPC; 6714 } 6715 6716 /* 6717 * If the space info is for both data and metadata it means we have a 6718 * small filesystem and we can't use the clustering stuff. 6719 */ 6720 if (btrfs_mixed_space_info(space_info)) 6721 use_cluster = false; 6722 6723 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6724 last_ptr = &root->fs_info->meta_alloc_cluster; 6725 if (!btrfs_test_opt(root, SSD)) 6726 empty_cluster = 64 * 1024; 6727 } 6728 6729 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6730 btrfs_test_opt(root, SSD)) { 6731 last_ptr = &root->fs_info->data_alloc_cluster; 6732 } 6733 6734 if (last_ptr) { 6735 spin_lock(&last_ptr->lock); 6736 if (last_ptr->block_group) 6737 hint_byte = last_ptr->window_start; 6738 spin_unlock(&last_ptr->lock); 6739 } 6740 6741 search_start = max(search_start, first_logical_byte(root, 0)); 6742 search_start = max(search_start, hint_byte); 6743 6744 if (!last_ptr) 6745 empty_cluster = 0; 6746 6747 if (search_start == hint_byte) { 6748 block_group = btrfs_lookup_block_group(root->fs_info, 6749 search_start); 6750 /* 6751 * we don't want to use the block group if it doesn't match our 6752 * allocation bits, or if its not cached. 6753 * 6754 * However if we are re-searching with an ideal block group 6755 * picked out then we don't care that the block group is cached. 6756 */ 6757 if (block_group && block_group_bits(block_group, flags) && 6758 block_group->cached != BTRFS_CACHE_NO) { 6759 down_read(&space_info->groups_sem); 6760 if (list_empty(&block_group->list) || 6761 block_group->ro) { 6762 /* 6763 * someone is removing this block group, 6764 * we can't jump into the have_block_group 6765 * target because our list pointers are not 6766 * valid 6767 */ 6768 btrfs_put_block_group(block_group); 6769 up_read(&space_info->groups_sem); 6770 } else { 6771 index = get_block_group_index(block_group); 6772 btrfs_lock_block_group(block_group, delalloc); 6773 goto have_block_group; 6774 } 6775 } else if (block_group) { 6776 btrfs_put_block_group(block_group); 6777 } 6778 } 6779 search: 6780 have_caching_bg = false; 6781 down_read(&space_info->groups_sem); 6782 list_for_each_entry(block_group, &space_info->block_groups[index], 6783 list) { 6784 u64 offset; 6785 int cached; 6786 6787 btrfs_grab_block_group(block_group, delalloc); 6788 search_start = block_group->key.objectid; 6789 6790 /* 6791 * this can happen if we end up cycling through all the 6792 * raid types, but we want to make sure we only allocate 6793 * for the proper type. 6794 */ 6795 if (!block_group_bits(block_group, flags)) { 6796 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6797 BTRFS_BLOCK_GROUP_RAID1 | 6798 BTRFS_BLOCK_GROUP_RAID5 | 6799 BTRFS_BLOCK_GROUP_RAID6 | 6800 BTRFS_BLOCK_GROUP_RAID10; 6801 6802 /* 6803 * if they asked for extra copies and this block group 6804 * doesn't provide them, bail. This does allow us to 6805 * fill raid0 from raid1. 6806 */ 6807 if ((flags & extra) && !(block_group->flags & extra)) 6808 goto loop; 6809 } 6810 6811 have_block_group: 6812 cached = block_group_cache_done(block_group); 6813 if (unlikely(!cached)) { 6814 ret = cache_block_group(block_group, 0); 6815 BUG_ON(ret < 0); 6816 ret = 0; 6817 } 6818 6819 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6820 goto loop; 6821 if (unlikely(block_group->ro)) 6822 goto loop; 6823 6824 /* 6825 * Ok we want to try and use the cluster allocator, so 6826 * lets look there 6827 */ 6828 if (last_ptr) { 6829 struct btrfs_block_group_cache *used_block_group; 6830 unsigned long aligned_cluster; 6831 /* 6832 * the refill lock keeps out other 6833 * people trying to start a new cluster 6834 */ 6835 used_block_group = btrfs_lock_cluster(block_group, 6836 last_ptr, 6837 delalloc); 6838 if (!used_block_group) 6839 goto refill_cluster; 6840 6841 if (used_block_group != block_group && 6842 (used_block_group->ro || 6843 !block_group_bits(used_block_group, flags))) 6844 goto release_cluster; 6845 6846 offset = btrfs_alloc_from_cluster(used_block_group, 6847 last_ptr, 6848 num_bytes, 6849 used_block_group->key.objectid, 6850 &max_extent_size); 6851 if (offset) { 6852 /* we have a block, we're done */ 6853 spin_unlock(&last_ptr->refill_lock); 6854 trace_btrfs_reserve_extent_cluster(root, 6855 used_block_group, 6856 search_start, num_bytes); 6857 if (used_block_group != block_group) { 6858 btrfs_release_block_group(block_group, 6859 delalloc); 6860 block_group = used_block_group; 6861 } 6862 goto checks; 6863 } 6864 6865 WARN_ON(last_ptr->block_group != used_block_group); 6866 release_cluster: 6867 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6868 * set up a new clusters, so lets just skip it 6869 * and let the allocator find whatever block 6870 * it can find. If we reach this point, we 6871 * will have tried the cluster allocator 6872 * plenty of times and not have found 6873 * anything, so we are likely way too 6874 * fragmented for the clustering stuff to find 6875 * anything. 6876 * 6877 * However, if the cluster is taken from the 6878 * current block group, release the cluster 6879 * first, so that we stand a better chance of 6880 * succeeding in the unclustered 6881 * allocation. */ 6882 if (loop >= LOOP_NO_EMPTY_SIZE && 6883 used_block_group != block_group) { 6884 spin_unlock(&last_ptr->refill_lock); 6885 btrfs_release_block_group(used_block_group, 6886 delalloc); 6887 goto unclustered_alloc; 6888 } 6889 6890 /* 6891 * this cluster didn't work out, free it and 6892 * start over 6893 */ 6894 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6895 6896 if (used_block_group != block_group) 6897 btrfs_release_block_group(used_block_group, 6898 delalloc); 6899 refill_cluster: 6900 if (loop >= LOOP_NO_EMPTY_SIZE) { 6901 spin_unlock(&last_ptr->refill_lock); 6902 goto unclustered_alloc; 6903 } 6904 6905 aligned_cluster = max_t(unsigned long, 6906 empty_cluster + empty_size, 6907 block_group->full_stripe_len); 6908 6909 /* allocate a cluster in this block group */ 6910 ret = btrfs_find_space_cluster(root, block_group, 6911 last_ptr, search_start, 6912 num_bytes, 6913 aligned_cluster); 6914 if (ret == 0) { 6915 /* 6916 * now pull our allocation out of this 6917 * cluster 6918 */ 6919 offset = btrfs_alloc_from_cluster(block_group, 6920 last_ptr, 6921 num_bytes, 6922 search_start, 6923 &max_extent_size); 6924 if (offset) { 6925 /* we found one, proceed */ 6926 spin_unlock(&last_ptr->refill_lock); 6927 trace_btrfs_reserve_extent_cluster(root, 6928 block_group, search_start, 6929 num_bytes); 6930 goto checks; 6931 } 6932 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6933 && !failed_cluster_refill) { 6934 spin_unlock(&last_ptr->refill_lock); 6935 6936 failed_cluster_refill = true; 6937 wait_block_group_cache_progress(block_group, 6938 num_bytes + empty_cluster + empty_size); 6939 goto have_block_group; 6940 } 6941 6942 /* 6943 * at this point we either didn't find a cluster 6944 * or we weren't able to allocate a block from our 6945 * cluster. Free the cluster we've been trying 6946 * to use, and go to the next block group 6947 */ 6948 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6949 spin_unlock(&last_ptr->refill_lock); 6950 goto loop; 6951 } 6952 6953 unclustered_alloc: 6954 spin_lock(&block_group->free_space_ctl->tree_lock); 6955 if (cached && 6956 block_group->free_space_ctl->free_space < 6957 num_bytes + empty_cluster + empty_size) { 6958 if (block_group->free_space_ctl->free_space > 6959 max_extent_size) 6960 max_extent_size = 6961 block_group->free_space_ctl->free_space; 6962 spin_unlock(&block_group->free_space_ctl->tree_lock); 6963 goto loop; 6964 } 6965 spin_unlock(&block_group->free_space_ctl->tree_lock); 6966 6967 offset = btrfs_find_space_for_alloc(block_group, search_start, 6968 num_bytes, empty_size, 6969 &max_extent_size); 6970 /* 6971 * If we didn't find a chunk, and we haven't failed on this 6972 * block group before, and this block group is in the middle of 6973 * caching and we are ok with waiting, then go ahead and wait 6974 * for progress to be made, and set failed_alloc to true. 6975 * 6976 * If failed_alloc is true then we've already waited on this 6977 * block group once and should move on to the next block group. 6978 */ 6979 if (!offset && !failed_alloc && !cached && 6980 loop > LOOP_CACHING_NOWAIT) { 6981 wait_block_group_cache_progress(block_group, 6982 num_bytes + empty_size); 6983 failed_alloc = true; 6984 goto have_block_group; 6985 } else if (!offset) { 6986 if (!cached) 6987 have_caching_bg = true; 6988 goto loop; 6989 } 6990 checks: 6991 search_start = ALIGN(offset, root->stripesize); 6992 6993 /* move on to the next group */ 6994 if (search_start + num_bytes > 6995 block_group->key.objectid + block_group->key.offset) { 6996 btrfs_add_free_space(block_group, offset, num_bytes); 6997 goto loop; 6998 } 6999 7000 if (offset < search_start) 7001 btrfs_add_free_space(block_group, offset, 7002 search_start - offset); 7003 BUG_ON(offset > search_start); 7004 7005 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7006 alloc_type, delalloc); 7007 if (ret == -EAGAIN) { 7008 btrfs_add_free_space(block_group, offset, num_bytes); 7009 goto loop; 7010 } 7011 7012 /* we are all good, lets return */ 7013 ins->objectid = search_start; 7014 ins->offset = num_bytes; 7015 7016 trace_btrfs_reserve_extent(orig_root, block_group, 7017 search_start, num_bytes); 7018 btrfs_release_block_group(block_group, delalloc); 7019 break; 7020 loop: 7021 failed_cluster_refill = false; 7022 failed_alloc = false; 7023 BUG_ON(index != get_block_group_index(block_group)); 7024 btrfs_release_block_group(block_group, delalloc); 7025 } 7026 up_read(&space_info->groups_sem); 7027 7028 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7029 goto search; 7030 7031 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7032 goto search; 7033 7034 /* 7035 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7036 * caching kthreads as we move along 7037 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7038 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7039 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7040 * again 7041 */ 7042 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7043 index = 0; 7044 loop++; 7045 if (loop == LOOP_ALLOC_CHUNK) { 7046 struct btrfs_trans_handle *trans; 7047 int exist = 0; 7048 7049 trans = current->journal_info; 7050 if (trans) 7051 exist = 1; 7052 else 7053 trans = btrfs_join_transaction(root); 7054 7055 if (IS_ERR(trans)) { 7056 ret = PTR_ERR(trans); 7057 goto out; 7058 } 7059 7060 ret = do_chunk_alloc(trans, root, flags, 7061 CHUNK_ALLOC_FORCE); 7062 /* 7063 * Do not bail out on ENOSPC since we 7064 * can do more things. 7065 */ 7066 if (ret < 0 && ret != -ENOSPC) 7067 btrfs_abort_transaction(trans, 7068 root, ret); 7069 else 7070 ret = 0; 7071 if (!exist) 7072 btrfs_end_transaction(trans, root); 7073 if (ret) 7074 goto out; 7075 } 7076 7077 if (loop == LOOP_NO_EMPTY_SIZE) { 7078 empty_size = 0; 7079 empty_cluster = 0; 7080 } 7081 7082 goto search; 7083 } else if (!ins->objectid) { 7084 ret = -ENOSPC; 7085 } else if (ins->objectid) { 7086 ret = 0; 7087 } 7088 out: 7089 if (ret == -ENOSPC) 7090 ins->offset = max_extent_size; 7091 return ret; 7092 } 7093 7094 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7095 int dump_block_groups) 7096 { 7097 struct btrfs_block_group_cache *cache; 7098 int index = 0; 7099 7100 spin_lock(&info->lock); 7101 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7102 info->flags, 7103 info->total_bytes - info->bytes_used - info->bytes_pinned - 7104 info->bytes_reserved - info->bytes_readonly, 7105 (info->full) ? "" : "not "); 7106 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7107 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7108 info->total_bytes, info->bytes_used, info->bytes_pinned, 7109 info->bytes_reserved, info->bytes_may_use, 7110 info->bytes_readonly); 7111 spin_unlock(&info->lock); 7112 7113 if (!dump_block_groups) 7114 return; 7115 7116 down_read(&info->groups_sem); 7117 again: 7118 list_for_each_entry(cache, &info->block_groups[index], list) { 7119 spin_lock(&cache->lock); 7120 printk(KERN_INFO "BTRFS: " 7121 "block group %llu has %llu bytes, " 7122 "%llu used %llu pinned %llu reserved %s\n", 7123 cache->key.objectid, cache->key.offset, 7124 btrfs_block_group_used(&cache->item), cache->pinned, 7125 cache->reserved, cache->ro ? "[readonly]" : ""); 7126 btrfs_dump_free_space(cache, bytes); 7127 spin_unlock(&cache->lock); 7128 } 7129 if (++index < BTRFS_NR_RAID_TYPES) 7130 goto again; 7131 up_read(&info->groups_sem); 7132 } 7133 7134 int btrfs_reserve_extent(struct btrfs_root *root, 7135 u64 num_bytes, u64 min_alloc_size, 7136 u64 empty_size, u64 hint_byte, 7137 struct btrfs_key *ins, int is_data, int delalloc) 7138 { 7139 bool final_tried = false; 7140 u64 flags; 7141 int ret; 7142 7143 flags = btrfs_get_alloc_profile(root, is_data); 7144 again: 7145 WARN_ON(num_bytes < root->sectorsize); 7146 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7147 flags, delalloc); 7148 7149 if (ret == -ENOSPC) { 7150 if (!final_tried && ins->offset) { 7151 num_bytes = min(num_bytes >> 1, ins->offset); 7152 num_bytes = round_down(num_bytes, root->sectorsize); 7153 num_bytes = max(num_bytes, min_alloc_size); 7154 if (num_bytes == min_alloc_size) 7155 final_tried = true; 7156 goto again; 7157 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7158 struct btrfs_space_info *sinfo; 7159 7160 sinfo = __find_space_info(root->fs_info, flags); 7161 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7162 flags, num_bytes); 7163 if (sinfo) 7164 dump_space_info(sinfo, num_bytes, 1); 7165 } 7166 } 7167 7168 return ret; 7169 } 7170 7171 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7172 u64 start, u64 len, 7173 int pin, int delalloc) 7174 { 7175 struct btrfs_block_group_cache *cache; 7176 int ret = 0; 7177 7178 cache = btrfs_lookup_block_group(root->fs_info, start); 7179 if (!cache) { 7180 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7181 start); 7182 return -ENOSPC; 7183 } 7184 7185 if (pin) 7186 pin_down_extent(root, cache, start, len, 1); 7187 else { 7188 if (btrfs_test_opt(root, DISCARD)) 7189 ret = btrfs_discard_extent(root, start, len, NULL); 7190 btrfs_add_free_space(cache, start, len); 7191 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7192 } 7193 7194 btrfs_put_block_group(cache); 7195 7196 trace_btrfs_reserved_extent_free(root, start, len); 7197 7198 return ret; 7199 } 7200 7201 int btrfs_free_reserved_extent(struct btrfs_root *root, 7202 u64 start, u64 len, int delalloc) 7203 { 7204 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7205 } 7206 7207 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7208 u64 start, u64 len) 7209 { 7210 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7211 } 7212 7213 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7214 struct btrfs_root *root, 7215 u64 parent, u64 root_objectid, 7216 u64 flags, u64 owner, u64 offset, 7217 struct btrfs_key *ins, int ref_mod) 7218 { 7219 int ret; 7220 struct btrfs_fs_info *fs_info = root->fs_info; 7221 struct btrfs_extent_item *extent_item; 7222 struct btrfs_extent_inline_ref *iref; 7223 struct btrfs_path *path; 7224 struct extent_buffer *leaf; 7225 int type; 7226 u32 size; 7227 7228 if (parent > 0) 7229 type = BTRFS_SHARED_DATA_REF_KEY; 7230 else 7231 type = BTRFS_EXTENT_DATA_REF_KEY; 7232 7233 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7234 7235 path = btrfs_alloc_path(); 7236 if (!path) 7237 return -ENOMEM; 7238 7239 path->leave_spinning = 1; 7240 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7241 ins, size); 7242 if (ret) { 7243 btrfs_free_path(path); 7244 return ret; 7245 } 7246 7247 leaf = path->nodes[0]; 7248 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7249 struct btrfs_extent_item); 7250 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7251 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7252 btrfs_set_extent_flags(leaf, extent_item, 7253 flags | BTRFS_EXTENT_FLAG_DATA); 7254 7255 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7256 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7257 if (parent > 0) { 7258 struct btrfs_shared_data_ref *ref; 7259 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7260 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7261 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7262 } else { 7263 struct btrfs_extent_data_ref *ref; 7264 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7265 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7266 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7267 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7268 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7269 } 7270 7271 btrfs_mark_buffer_dirty(path->nodes[0]); 7272 btrfs_free_path(path); 7273 7274 /* Always set parent to 0 here since its exclusive anyway. */ 7275 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7276 ins->objectid, ins->offset, 7277 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7278 if (ret) 7279 return ret; 7280 7281 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7282 if (ret) { /* -ENOENT, logic error */ 7283 btrfs_err(fs_info, "update block group failed for %llu %llu", 7284 ins->objectid, ins->offset); 7285 BUG(); 7286 } 7287 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7288 return ret; 7289 } 7290 7291 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7292 struct btrfs_root *root, 7293 u64 parent, u64 root_objectid, 7294 u64 flags, struct btrfs_disk_key *key, 7295 int level, struct btrfs_key *ins, 7296 int no_quota) 7297 { 7298 int ret; 7299 struct btrfs_fs_info *fs_info = root->fs_info; 7300 struct btrfs_extent_item *extent_item; 7301 struct btrfs_tree_block_info *block_info; 7302 struct btrfs_extent_inline_ref *iref; 7303 struct btrfs_path *path; 7304 struct extent_buffer *leaf; 7305 u32 size = sizeof(*extent_item) + sizeof(*iref); 7306 u64 num_bytes = ins->offset; 7307 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7308 SKINNY_METADATA); 7309 7310 if (!skinny_metadata) 7311 size += sizeof(*block_info); 7312 7313 path = btrfs_alloc_path(); 7314 if (!path) { 7315 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7316 root->nodesize); 7317 return -ENOMEM; 7318 } 7319 7320 path->leave_spinning = 1; 7321 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7322 ins, size); 7323 if (ret) { 7324 btrfs_free_path(path); 7325 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7326 root->nodesize); 7327 return ret; 7328 } 7329 7330 leaf = path->nodes[0]; 7331 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7332 struct btrfs_extent_item); 7333 btrfs_set_extent_refs(leaf, extent_item, 1); 7334 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7335 btrfs_set_extent_flags(leaf, extent_item, 7336 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7337 7338 if (skinny_metadata) { 7339 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7340 num_bytes = root->nodesize; 7341 } else { 7342 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7343 btrfs_set_tree_block_key(leaf, block_info, key); 7344 btrfs_set_tree_block_level(leaf, block_info, level); 7345 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7346 } 7347 7348 if (parent > 0) { 7349 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7350 btrfs_set_extent_inline_ref_type(leaf, iref, 7351 BTRFS_SHARED_BLOCK_REF_KEY); 7352 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7353 } else { 7354 btrfs_set_extent_inline_ref_type(leaf, iref, 7355 BTRFS_TREE_BLOCK_REF_KEY); 7356 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7357 } 7358 7359 btrfs_mark_buffer_dirty(leaf); 7360 btrfs_free_path(path); 7361 7362 if (!no_quota) { 7363 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7364 ins->objectid, num_bytes, 7365 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7366 if (ret) 7367 return ret; 7368 } 7369 7370 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7371 1); 7372 if (ret) { /* -ENOENT, logic error */ 7373 btrfs_err(fs_info, "update block group failed for %llu %llu", 7374 ins->objectid, ins->offset); 7375 BUG(); 7376 } 7377 7378 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7379 return ret; 7380 } 7381 7382 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7383 struct btrfs_root *root, 7384 u64 root_objectid, u64 owner, 7385 u64 offset, struct btrfs_key *ins) 7386 { 7387 int ret; 7388 7389 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7390 7391 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7392 ins->offset, 0, 7393 root_objectid, owner, offset, 7394 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7395 return ret; 7396 } 7397 7398 /* 7399 * this is used by the tree logging recovery code. It records that 7400 * an extent has been allocated and makes sure to clear the free 7401 * space cache bits as well 7402 */ 7403 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7404 struct btrfs_root *root, 7405 u64 root_objectid, u64 owner, u64 offset, 7406 struct btrfs_key *ins) 7407 { 7408 int ret; 7409 struct btrfs_block_group_cache *block_group; 7410 7411 /* 7412 * Mixed block groups will exclude before processing the log so we only 7413 * need to do the exlude dance if this fs isn't mixed. 7414 */ 7415 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7416 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7417 if (ret) 7418 return ret; 7419 } 7420 7421 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7422 if (!block_group) 7423 return -EINVAL; 7424 7425 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7426 RESERVE_ALLOC_NO_ACCOUNT, 0); 7427 BUG_ON(ret); /* logic error */ 7428 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7429 0, owner, offset, ins, 1); 7430 btrfs_put_block_group(block_group); 7431 return ret; 7432 } 7433 7434 static struct extent_buffer * 7435 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7436 u64 bytenr, int level) 7437 { 7438 struct extent_buffer *buf; 7439 7440 buf = btrfs_find_create_tree_block(root, bytenr); 7441 if (!buf) 7442 return ERR_PTR(-ENOMEM); 7443 btrfs_set_header_generation(buf, trans->transid); 7444 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7445 btrfs_tree_lock(buf); 7446 clean_tree_block(trans, root->fs_info, buf); 7447 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7448 7449 btrfs_set_lock_blocking(buf); 7450 btrfs_set_buffer_uptodate(buf); 7451 7452 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7453 buf->log_index = root->log_transid % 2; 7454 /* 7455 * we allow two log transactions at a time, use different 7456 * EXENT bit to differentiate dirty pages. 7457 */ 7458 if (buf->log_index == 0) 7459 set_extent_dirty(&root->dirty_log_pages, buf->start, 7460 buf->start + buf->len - 1, GFP_NOFS); 7461 else 7462 set_extent_new(&root->dirty_log_pages, buf->start, 7463 buf->start + buf->len - 1, GFP_NOFS); 7464 } else { 7465 buf->log_index = -1; 7466 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7467 buf->start + buf->len - 1, GFP_NOFS); 7468 } 7469 trans->blocks_used++; 7470 /* this returns a buffer locked for blocking */ 7471 return buf; 7472 } 7473 7474 static struct btrfs_block_rsv * 7475 use_block_rsv(struct btrfs_trans_handle *trans, 7476 struct btrfs_root *root, u32 blocksize) 7477 { 7478 struct btrfs_block_rsv *block_rsv; 7479 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7480 int ret; 7481 bool global_updated = false; 7482 7483 block_rsv = get_block_rsv(trans, root); 7484 7485 if (unlikely(block_rsv->size == 0)) 7486 goto try_reserve; 7487 again: 7488 ret = block_rsv_use_bytes(block_rsv, blocksize); 7489 if (!ret) 7490 return block_rsv; 7491 7492 if (block_rsv->failfast) 7493 return ERR_PTR(ret); 7494 7495 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7496 global_updated = true; 7497 update_global_block_rsv(root->fs_info); 7498 goto again; 7499 } 7500 7501 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7502 static DEFINE_RATELIMIT_STATE(_rs, 7503 DEFAULT_RATELIMIT_INTERVAL * 10, 7504 /*DEFAULT_RATELIMIT_BURST*/ 1); 7505 if (__ratelimit(&_rs)) 7506 WARN(1, KERN_DEBUG 7507 "BTRFS: block rsv returned %d\n", ret); 7508 } 7509 try_reserve: 7510 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7511 BTRFS_RESERVE_NO_FLUSH); 7512 if (!ret) 7513 return block_rsv; 7514 /* 7515 * If we couldn't reserve metadata bytes try and use some from 7516 * the global reserve if its space type is the same as the global 7517 * reservation. 7518 */ 7519 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7520 block_rsv->space_info == global_rsv->space_info) { 7521 ret = block_rsv_use_bytes(global_rsv, blocksize); 7522 if (!ret) 7523 return global_rsv; 7524 } 7525 return ERR_PTR(ret); 7526 } 7527 7528 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7529 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7530 { 7531 block_rsv_add_bytes(block_rsv, blocksize, 0); 7532 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7533 } 7534 7535 /* 7536 * finds a free extent and does all the dirty work required for allocation 7537 * returns the key for the extent through ins, and a tree buffer for 7538 * the first block of the extent through buf. 7539 * 7540 * returns the tree buffer or NULL. 7541 */ 7542 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7543 struct btrfs_root *root, 7544 u64 parent, u64 root_objectid, 7545 struct btrfs_disk_key *key, int level, 7546 u64 hint, u64 empty_size) 7547 { 7548 struct btrfs_key ins; 7549 struct btrfs_block_rsv *block_rsv; 7550 struct extent_buffer *buf; 7551 u64 flags = 0; 7552 int ret; 7553 u32 blocksize = root->nodesize; 7554 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7555 SKINNY_METADATA); 7556 7557 if (btrfs_test_is_dummy_root(root)) { 7558 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7559 level); 7560 if (!IS_ERR(buf)) 7561 root->alloc_bytenr += blocksize; 7562 return buf; 7563 } 7564 7565 block_rsv = use_block_rsv(trans, root, blocksize); 7566 if (IS_ERR(block_rsv)) 7567 return ERR_CAST(block_rsv); 7568 7569 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7570 empty_size, hint, &ins, 0, 0); 7571 if (ret) { 7572 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7573 return ERR_PTR(ret); 7574 } 7575 7576 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7577 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7578 7579 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7580 if (parent == 0) 7581 parent = ins.objectid; 7582 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7583 } else 7584 BUG_ON(parent > 0); 7585 7586 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7587 struct btrfs_delayed_extent_op *extent_op; 7588 extent_op = btrfs_alloc_delayed_extent_op(); 7589 BUG_ON(!extent_op); /* -ENOMEM */ 7590 if (key) 7591 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7592 else 7593 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7594 extent_op->flags_to_set = flags; 7595 if (skinny_metadata) 7596 extent_op->update_key = 0; 7597 else 7598 extent_op->update_key = 1; 7599 extent_op->update_flags = 1; 7600 extent_op->is_data = 0; 7601 extent_op->level = level; 7602 7603 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7604 ins.objectid, 7605 ins.offset, parent, root_objectid, 7606 level, BTRFS_ADD_DELAYED_EXTENT, 7607 extent_op, 0); 7608 BUG_ON(ret); /* -ENOMEM */ 7609 } 7610 return buf; 7611 } 7612 7613 struct walk_control { 7614 u64 refs[BTRFS_MAX_LEVEL]; 7615 u64 flags[BTRFS_MAX_LEVEL]; 7616 struct btrfs_key update_progress; 7617 int stage; 7618 int level; 7619 int shared_level; 7620 int update_ref; 7621 int keep_locks; 7622 int reada_slot; 7623 int reada_count; 7624 int for_reloc; 7625 }; 7626 7627 #define DROP_REFERENCE 1 7628 #define UPDATE_BACKREF 2 7629 7630 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7631 struct btrfs_root *root, 7632 struct walk_control *wc, 7633 struct btrfs_path *path) 7634 { 7635 u64 bytenr; 7636 u64 generation; 7637 u64 refs; 7638 u64 flags; 7639 u32 nritems; 7640 u32 blocksize; 7641 struct btrfs_key key; 7642 struct extent_buffer *eb; 7643 int ret; 7644 int slot; 7645 int nread = 0; 7646 7647 if (path->slots[wc->level] < wc->reada_slot) { 7648 wc->reada_count = wc->reada_count * 2 / 3; 7649 wc->reada_count = max(wc->reada_count, 2); 7650 } else { 7651 wc->reada_count = wc->reada_count * 3 / 2; 7652 wc->reada_count = min_t(int, wc->reada_count, 7653 BTRFS_NODEPTRS_PER_BLOCK(root)); 7654 } 7655 7656 eb = path->nodes[wc->level]; 7657 nritems = btrfs_header_nritems(eb); 7658 blocksize = root->nodesize; 7659 7660 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7661 if (nread >= wc->reada_count) 7662 break; 7663 7664 cond_resched(); 7665 bytenr = btrfs_node_blockptr(eb, slot); 7666 generation = btrfs_node_ptr_generation(eb, slot); 7667 7668 if (slot == path->slots[wc->level]) 7669 goto reada; 7670 7671 if (wc->stage == UPDATE_BACKREF && 7672 generation <= root->root_key.offset) 7673 continue; 7674 7675 /* We don't lock the tree block, it's OK to be racy here */ 7676 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7677 wc->level - 1, 1, &refs, 7678 &flags); 7679 /* We don't care about errors in readahead. */ 7680 if (ret < 0) 7681 continue; 7682 BUG_ON(refs == 0); 7683 7684 if (wc->stage == DROP_REFERENCE) { 7685 if (refs == 1) 7686 goto reada; 7687 7688 if (wc->level == 1 && 7689 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7690 continue; 7691 if (!wc->update_ref || 7692 generation <= root->root_key.offset) 7693 continue; 7694 btrfs_node_key_to_cpu(eb, &key, slot); 7695 ret = btrfs_comp_cpu_keys(&key, 7696 &wc->update_progress); 7697 if (ret < 0) 7698 continue; 7699 } else { 7700 if (wc->level == 1 && 7701 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7702 continue; 7703 } 7704 reada: 7705 readahead_tree_block(root, bytenr); 7706 nread++; 7707 } 7708 wc->reada_slot = slot; 7709 } 7710 7711 static int account_leaf_items(struct btrfs_trans_handle *trans, 7712 struct btrfs_root *root, 7713 struct extent_buffer *eb) 7714 { 7715 int nr = btrfs_header_nritems(eb); 7716 int i, extent_type, ret; 7717 struct btrfs_key key; 7718 struct btrfs_file_extent_item *fi; 7719 u64 bytenr, num_bytes; 7720 7721 for (i = 0; i < nr; i++) { 7722 btrfs_item_key_to_cpu(eb, &key, i); 7723 7724 if (key.type != BTRFS_EXTENT_DATA_KEY) 7725 continue; 7726 7727 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7728 /* filter out non qgroup-accountable extents */ 7729 extent_type = btrfs_file_extent_type(eb, fi); 7730 7731 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7732 continue; 7733 7734 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7735 if (!bytenr) 7736 continue; 7737 7738 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7739 7740 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7741 root->objectid, 7742 bytenr, num_bytes, 7743 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0); 7744 if (ret) 7745 return ret; 7746 } 7747 return 0; 7748 } 7749 7750 /* 7751 * Walk up the tree from the bottom, freeing leaves and any interior 7752 * nodes which have had all slots visited. If a node (leaf or 7753 * interior) is freed, the node above it will have it's slot 7754 * incremented. The root node will never be freed. 7755 * 7756 * At the end of this function, we should have a path which has all 7757 * slots incremented to the next position for a search. If we need to 7758 * read a new node it will be NULL and the node above it will have the 7759 * correct slot selected for a later read. 7760 * 7761 * If we increment the root nodes slot counter past the number of 7762 * elements, 1 is returned to signal completion of the search. 7763 */ 7764 static int adjust_slots_upwards(struct btrfs_root *root, 7765 struct btrfs_path *path, int root_level) 7766 { 7767 int level = 0; 7768 int nr, slot; 7769 struct extent_buffer *eb; 7770 7771 if (root_level == 0) 7772 return 1; 7773 7774 while (level <= root_level) { 7775 eb = path->nodes[level]; 7776 nr = btrfs_header_nritems(eb); 7777 path->slots[level]++; 7778 slot = path->slots[level]; 7779 if (slot >= nr || level == 0) { 7780 /* 7781 * Don't free the root - we will detect this 7782 * condition after our loop and return a 7783 * positive value for caller to stop walking the tree. 7784 */ 7785 if (level != root_level) { 7786 btrfs_tree_unlock_rw(eb, path->locks[level]); 7787 path->locks[level] = 0; 7788 7789 free_extent_buffer(eb); 7790 path->nodes[level] = NULL; 7791 path->slots[level] = 0; 7792 } 7793 } else { 7794 /* 7795 * We have a valid slot to walk back down 7796 * from. Stop here so caller can process these 7797 * new nodes. 7798 */ 7799 break; 7800 } 7801 7802 level++; 7803 } 7804 7805 eb = path->nodes[root_level]; 7806 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7807 return 1; 7808 7809 return 0; 7810 } 7811 7812 /* 7813 * root_eb is the subtree root and is locked before this function is called. 7814 */ 7815 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7816 struct btrfs_root *root, 7817 struct extent_buffer *root_eb, 7818 u64 root_gen, 7819 int root_level) 7820 { 7821 int ret = 0; 7822 int level; 7823 struct extent_buffer *eb = root_eb; 7824 struct btrfs_path *path = NULL; 7825 7826 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7827 BUG_ON(root_eb == NULL); 7828 7829 if (!root->fs_info->quota_enabled) 7830 return 0; 7831 7832 if (!extent_buffer_uptodate(root_eb)) { 7833 ret = btrfs_read_buffer(root_eb, root_gen); 7834 if (ret) 7835 goto out; 7836 } 7837 7838 if (root_level == 0) { 7839 ret = account_leaf_items(trans, root, root_eb); 7840 goto out; 7841 } 7842 7843 path = btrfs_alloc_path(); 7844 if (!path) 7845 return -ENOMEM; 7846 7847 /* 7848 * Walk down the tree. Missing extent blocks are filled in as 7849 * we go. Metadata is accounted every time we read a new 7850 * extent block. 7851 * 7852 * When we reach a leaf, we account for file extent items in it, 7853 * walk back up the tree (adjusting slot pointers as we go) 7854 * and restart the search process. 7855 */ 7856 extent_buffer_get(root_eb); /* For path */ 7857 path->nodes[root_level] = root_eb; 7858 path->slots[root_level] = 0; 7859 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7860 walk_down: 7861 level = root_level; 7862 while (level >= 0) { 7863 if (path->nodes[level] == NULL) { 7864 int parent_slot; 7865 u64 child_gen; 7866 u64 child_bytenr; 7867 7868 /* We need to get child blockptr/gen from 7869 * parent before we can read it. */ 7870 eb = path->nodes[level + 1]; 7871 parent_slot = path->slots[level + 1]; 7872 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7873 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7874 7875 eb = read_tree_block(root, child_bytenr, child_gen); 7876 if (!eb || !extent_buffer_uptodate(eb)) { 7877 ret = -EIO; 7878 goto out; 7879 } 7880 7881 path->nodes[level] = eb; 7882 path->slots[level] = 0; 7883 7884 btrfs_tree_read_lock(eb); 7885 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7886 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7887 7888 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7889 root->objectid, 7890 child_bytenr, 7891 root->nodesize, 7892 BTRFS_QGROUP_OPER_SUB_SUBTREE, 7893 0); 7894 if (ret) 7895 goto out; 7896 7897 } 7898 7899 if (level == 0) { 7900 ret = account_leaf_items(trans, root, path->nodes[level]); 7901 if (ret) 7902 goto out; 7903 7904 /* Nonzero return here means we completed our search */ 7905 ret = adjust_slots_upwards(root, path, root_level); 7906 if (ret) 7907 break; 7908 7909 /* Restart search with new slots */ 7910 goto walk_down; 7911 } 7912 7913 level--; 7914 } 7915 7916 ret = 0; 7917 out: 7918 btrfs_free_path(path); 7919 7920 return ret; 7921 } 7922 7923 /* 7924 * helper to process tree block while walking down the tree. 7925 * 7926 * when wc->stage == UPDATE_BACKREF, this function updates 7927 * back refs for pointers in the block. 7928 * 7929 * NOTE: return value 1 means we should stop walking down. 7930 */ 7931 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7932 struct btrfs_root *root, 7933 struct btrfs_path *path, 7934 struct walk_control *wc, int lookup_info) 7935 { 7936 int level = wc->level; 7937 struct extent_buffer *eb = path->nodes[level]; 7938 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7939 int ret; 7940 7941 if (wc->stage == UPDATE_BACKREF && 7942 btrfs_header_owner(eb) != root->root_key.objectid) 7943 return 1; 7944 7945 /* 7946 * when reference count of tree block is 1, it won't increase 7947 * again. once full backref flag is set, we never clear it. 7948 */ 7949 if (lookup_info && 7950 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7951 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7952 BUG_ON(!path->locks[level]); 7953 ret = btrfs_lookup_extent_info(trans, root, 7954 eb->start, level, 1, 7955 &wc->refs[level], 7956 &wc->flags[level]); 7957 BUG_ON(ret == -ENOMEM); 7958 if (ret) 7959 return ret; 7960 BUG_ON(wc->refs[level] == 0); 7961 } 7962 7963 if (wc->stage == DROP_REFERENCE) { 7964 if (wc->refs[level] > 1) 7965 return 1; 7966 7967 if (path->locks[level] && !wc->keep_locks) { 7968 btrfs_tree_unlock_rw(eb, path->locks[level]); 7969 path->locks[level] = 0; 7970 } 7971 return 0; 7972 } 7973 7974 /* wc->stage == UPDATE_BACKREF */ 7975 if (!(wc->flags[level] & flag)) { 7976 BUG_ON(!path->locks[level]); 7977 ret = btrfs_inc_ref(trans, root, eb, 1); 7978 BUG_ON(ret); /* -ENOMEM */ 7979 ret = btrfs_dec_ref(trans, root, eb, 0); 7980 BUG_ON(ret); /* -ENOMEM */ 7981 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7982 eb->len, flag, 7983 btrfs_header_level(eb), 0); 7984 BUG_ON(ret); /* -ENOMEM */ 7985 wc->flags[level] |= flag; 7986 } 7987 7988 /* 7989 * the block is shared by multiple trees, so it's not good to 7990 * keep the tree lock 7991 */ 7992 if (path->locks[level] && level > 0) { 7993 btrfs_tree_unlock_rw(eb, path->locks[level]); 7994 path->locks[level] = 0; 7995 } 7996 return 0; 7997 } 7998 7999 /* 8000 * helper to process tree block pointer. 8001 * 8002 * when wc->stage == DROP_REFERENCE, this function checks 8003 * reference count of the block pointed to. if the block 8004 * is shared and we need update back refs for the subtree 8005 * rooted at the block, this function changes wc->stage to 8006 * UPDATE_BACKREF. if the block is shared and there is no 8007 * need to update back, this function drops the reference 8008 * to the block. 8009 * 8010 * NOTE: return value 1 means we should stop walking down. 8011 */ 8012 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8013 struct btrfs_root *root, 8014 struct btrfs_path *path, 8015 struct walk_control *wc, int *lookup_info) 8016 { 8017 u64 bytenr; 8018 u64 generation; 8019 u64 parent; 8020 u32 blocksize; 8021 struct btrfs_key key; 8022 struct extent_buffer *next; 8023 int level = wc->level; 8024 int reada = 0; 8025 int ret = 0; 8026 bool need_account = false; 8027 8028 generation = btrfs_node_ptr_generation(path->nodes[level], 8029 path->slots[level]); 8030 /* 8031 * if the lower level block was created before the snapshot 8032 * was created, we know there is no need to update back refs 8033 * for the subtree 8034 */ 8035 if (wc->stage == UPDATE_BACKREF && 8036 generation <= root->root_key.offset) { 8037 *lookup_info = 1; 8038 return 1; 8039 } 8040 8041 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8042 blocksize = root->nodesize; 8043 8044 next = btrfs_find_tree_block(root->fs_info, bytenr); 8045 if (!next) { 8046 next = btrfs_find_create_tree_block(root, bytenr); 8047 if (!next) 8048 return -ENOMEM; 8049 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8050 level - 1); 8051 reada = 1; 8052 } 8053 btrfs_tree_lock(next); 8054 btrfs_set_lock_blocking(next); 8055 8056 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8057 &wc->refs[level - 1], 8058 &wc->flags[level - 1]); 8059 if (ret < 0) { 8060 btrfs_tree_unlock(next); 8061 return ret; 8062 } 8063 8064 if (unlikely(wc->refs[level - 1] == 0)) { 8065 btrfs_err(root->fs_info, "Missing references."); 8066 BUG(); 8067 } 8068 *lookup_info = 0; 8069 8070 if (wc->stage == DROP_REFERENCE) { 8071 if (wc->refs[level - 1] > 1) { 8072 need_account = true; 8073 if (level == 1 && 8074 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8075 goto skip; 8076 8077 if (!wc->update_ref || 8078 generation <= root->root_key.offset) 8079 goto skip; 8080 8081 btrfs_node_key_to_cpu(path->nodes[level], &key, 8082 path->slots[level]); 8083 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8084 if (ret < 0) 8085 goto skip; 8086 8087 wc->stage = UPDATE_BACKREF; 8088 wc->shared_level = level - 1; 8089 } 8090 } else { 8091 if (level == 1 && 8092 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8093 goto skip; 8094 } 8095 8096 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8097 btrfs_tree_unlock(next); 8098 free_extent_buffer(next); 8099 next = NULL; 8100 *lookup_info = 1; 8101 } 8102 8103 if (!next) { 8104 if (reada && level == 1) 8105 reada_walk_down(trans, root, wc, path); 8106 next = read_tree_block(root, bytenr, generation); 8107 if (!next || !extent_buffer_uptodate(next)) { 8108 free_extent_buffer(next); 8109 return -EIO; 8110 } 8111 btrfs_tree_lock(next); 8112 btrfs_set_lock_blocking(next); 8113 } 8114 8115 level--; 8116 BUG_ON(level != btrfs_header_level(next)); 8117 path->nodes[level] = next; 8118 path->slots[level] = 0; 8119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8120 wc->level = level; 8121 if (wc->level == 1) 8122 wc->reada_slot = 0; 8123 return 0; 8124 skip: 8125 wc->refs[level - 1] = 0; 8126 wc->flags[level - 1] = 0; 8127 if (wc->stage == DROP_REFERENCE) { 8128 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8129 parent = path->nodes[level]->start; 8130 } else { 8131 BUG_ON(root->root_key.objectid != 8132 btrfs_header_owner(path->nodes[level])); 8133 parent = 0; 8134 } 8135 8136 if (need_account) { 8137 ret = account_shared_subtree(trans, root, next, 8138 generation, level - 1); 8139 if (ret) { 8140 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8141 "%d accounting shared subtree. Quota " 8142 "is out of sync, rescan required.\n", 8143 root->fs_info->sb->s_id, ret); 8144 } 8145 } 8146 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8147 root->root_key.objectid, level - 1, 0, 0); 8148 BUG_ON(ret); /* -ENOMEM */ 8149 } 8150 btrfs_tree_unlock(next); 8151 free_extent_buffer(next); 8152 *lookup_info = 1; 8153 return 1; 8154 } 8155 8156 /* 8157 * helper to process tree block while walking up the tree. 8158 * 8159 * when wc->stage == DROP_REFERENCE, this function drops 8160 * reference count on the block. 8161 * 8162 * when wc->stage == UPDATE_BACKREF, this function changes 8163 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8164 * to UPDATE_BACKREF previously while processing the block. 8165 * 8166 * NOTE: return value 1 means we should stop walking up. 8167 */ 8168 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8169 struct btrfs_root *root, 8170 struct btrfs_path *path, 8171 struct walk_control *wc) 8172 { 8173 int ret; 8174 int level = wc->level; 8175 struct extent_buffer *eb = path->nodes[level]; 8176 u64 parent = 0; 8177 8178 if (wc->stage == UPDATE_BACKREF) { 8179 BUG_ON(wc->shared_level < level); 8180 if (level < wc->shared_level) 8181 goto out; 8182 8183 ret = find_next_key(path, level + 1, &wc->update_progress); 8184 if (ret > 0) 8185 wc->update_ref = 0; 8186 8187 wc->stage = DROP_REFERENCE; 8188 wc->shared_level = -1; 8189 path->slots[level] = 0; 8190 8191 /* 8192 * check reference count again if the block isn't locked. 8193 * we should start walking down the tree again if reference 8194 * count is one. 8195 */ 8196 if (!path->locks[level]) { 8197 BUG_ON(level == 0); 8198 btrfs_tree_lock(eb); 8199 btrfs_set_lock_blocking(eb); 8200 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8201 8202 ret = btrfs_lookup_extent_info(trans, root, 8203 eb->start, level, 1, 8204 &wc->refs[level], 8205 &wc->flags[level]); 8206 if (ret < 0) { 8207 btrfs_tree_unlock_rw(eb, path->locks[level]); 8208 path->locks[level] = 0; 8209 return ret; 8210 } 8211 BUG_ON(wc->refs[level] == 0); 8212 if (wc->refs[level] == 1) { 8213 btrfs_tree_unlock_rw(eb, path->locks[level]); 8214 path->locks[level] = 0; 8215 return 1; 8216 } 8217 } 8218 } 8219 8220 /* wc->stage == DROP_REFERENCE */ 8221 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8222 8223 if (wc->refs[level] == 1) { 8224 if (level == 0) { 8225 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8226 ret = btrfs_dec_ref(trans, root, eb, 1); 8227 else 8228 ret = btrfs_dec_ref(trans, root, eb, 0); 8229 BUG_ON(ret); /* -ENOMEM */ 8230 ret = account_leaf_items(trans, root, eb); 8231 if (ret) { 8232 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8233 "%d accounting leaf items. Quota " 8234 "is out of sync, rescan required.\n", 8235 root->fs_info->sb->s_id, ret); 8236 } 8237 } 8238 /* make block locked assertion in clean_tree_block happy */ 8239 if (!path->locks[level] && 8240 btrfs_header_generation(eb) == trans->transid) { 8241 btrfs_tree_lock(eb); 8242 btrfs_set_lock_blocking(eb); 8243 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8244 } 8245 clean_tree_block(trans, root->fs_info, eb); 8246 } 8247 8248 if (eb == root->node) { 8249 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8250 parent = eb->start; 8251 else 8252 BUG_ON(root->root_key.objectid != 8253 btrfs_header_owner(eb)); 8254 } else { 8255 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8256 parent = path->nodes[level + 1]->start; 8257 else 8258 BUG_ON(root->root_key.objectid != 8259 btrfs_header_owner(path->nodes[level + 1])); 8260 } 8261 8262 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8263 out: 8264 wc->refs[level] = 0; 8265 wc->flags[level] = 0; 8266 return 0; 8267 } 8268 8269 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8270 struct btrfs_root *root, 8271 struct btrfs_path *path, 8272 struct walk_control *wc) 8273 { 8274 int level = wc->level; 8275 int lookup_info = 1; 8276 int ret; 8277 8278 while (level >= 0) { 8279 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8280 if (ret > 0) 8281 break; 8282 8283 if (level == 0) 8284 break; 8285 8286 if (path->slots[level] >= 8287 btrfs_header_nritems(path->nodes[level])) 8288 break; 8289 8290 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8291 if (ret > 0) { 8292 path->slots[level]++; 8293 continue; 8294 } else if (ret < 0) 8295 return ret; 8296 level = wc->level; 8297 } 8298 return 0; 8299 } 8300 8301 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8302 struct btrfs_root *root, 8303 struct btrfs_path *path, 8304 struct walk_control *wc, int max_level) 8305 { 8306 int level = wc->level; 8307 int ret; 8308 8309 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8310 while (level < max_level && path->nodes[level]) { 8311 wc->level = level; 8312 if (path->slots[level] + 1 < 8313 btrfs_header_nritems(path->nodes[level])) { 8314 path->slots[level]++; 8315 return 0; 8316 } else { 8317 ret = walk_up_proc(trans, root, path, wc); 8318 if (ret > 0) 8319 return 0; 8320 8321 if (path->locks[level]) { 8322 btrfs_tree_unlock_rw(path->nodes[level], 8323 path->locks[level]); 8324 path->locks[level] = 0; 8325 } 8326 free_extent_buffer(path->nodes[level]); 8327 path->nodes[level] = NULL; 8328 level++; 8329 } 8330 } 8331 return 1; 8332 } 8333 8334 /* 8335 * drop a subvolume tree. 8336 * 8337 * this function traverses the tree freeing any blocks that only 8338 * referenced by the tree. 8339 * 8340 * when a shared tree block is found. this function decreases its 8341 * reference count by one. if update_ref is true, this function 8342 * also make sure backrefs for the shared block and all lower level 8343 * blocks are properly updated. 8344 * 8345 * If called with for_reloc == 0, may exit early with -EAGAIN 8346 */ 8347 int btrfs_drop_snapshot(struct btrfs_root *root, 8348 struct btrfs_block_rsv *block_rsv, int update_ref, 8349 int for_reloc) 8350 { 8351 struct btrfs_path *path; 8352 struct btrfs_trans_handle *trans; 8353 struct btrfs_root *tree_root = root->fs_info->tree_root; 8354 struct btrfs_root_item *root_item = &root->root_item; 8355 struct walk_control *wc; 8356 struct btrfs_key key; 8357 int err = 0; 8358 int ret; 8359 int level; 8360 bool root_dropped = false; 8361 8362 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8363 8364 path = btrfs_alloc_path(); 8365 if (!path) { 8366 err = -ENOMEM; 8367 goto out; 8368 } 8369 8370 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8371 if (!wc) { 8372 btrfs_free_path(path); 8373 err = -ENOMEM; 8374 goto out; 8375 } 8376 8377 trans = btrfs_start_transaction(tree_root, 0); 8378 if (IS_ERR(trans)) { 8379 err = PTR_ERR(trans); 8380 goto out_free; 8381 } 8382 8383 if (block_rsv) 8384 trans->block_rsv = block_rsv; 8385 8386 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8387 level = btrfs_header_level(root->node); 8388 path->nodes[level] = btrfs_lock_root_node(root); 8389 btrfs_set_lock_blocking(path->nodes[level]); 8390 path->slots[level] = 0; 8391 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8392 memset(&wc->update_progress, 0, 8393 sizeof(wc->update_progress)); 8394 } else { 8395 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8396 memcpy(&wc->update_progress, &key, 8397 sizeof(wc->update_progress)); 8398 8399 level = root_item->drop_level; 8400 BUG_ON(level == 0); 8401 path->lowest_level = level; 8402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8403 path->lowest_level = 0; 8404 if (ret < 0) { 8405 err = ret; 8406 goto out_end_trans; 8407 } 8408 WARN_ON(ret > 0); 8409 8410 /* 8411 * unlock our path, this is safe because only this 8412 * function is allowed to delete this snapshot 8413 */ 8414 btrfs_unlock_up_safe(path, 0); 8415 8416 level = btrfs_header_level(root->node); 8417 while (1) { 8418 btrfs_tree_lock(path->nodes[level]); 8419 btrfs_set_lock_blocking(path->nodes[level]); 8420 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8421 8422 ret = btrfs_lookup_extent_info(trans, root, 8423 path->nodes[level]->start, 8424 level, 1, &wc->refs[level], 8425 &wc->flags[level]); 8426 if (ret < 0) { 8427 err = ret; 8428 goto out_end_trans; 8429 } 8430 BUG_ON(wc->refs[level] == 0); 8431 8432 if (level == root_item->drop_level) 8433 break; 8434 8435 btrfs_tree_unlock(path->nodes[level]); 8436 path->locks[level] = 0; 8437 WARN_ON(wc->refs[level] != 1); 8438 level--; 8439 } 8440 } 8441 8442 wc->level = level; 8443 wc->shared_level = -1; 8444 wc->stage = DROP_REFERENCE; 8445 wc->update_ref = update_ref; 8446 wc->keep_locks = 0; 8447 wc->for_reloc = for_reloc; 8448 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8449 8450 while (1) { 8451 8452 ret = walk_down_tree(trans, root, path, wc); 8453 if (ret < 0) { 8454 err = ret; 8455 break; 8456 } 8457 8458 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8459 if (ret < 0) { 8460 err = ret; 8461 break; 8462 } 8463 8464 if (ret > 0) { 8465 BUG_ON(wc->stage != DROP_REFERENCE); 8466 break; 8467 } 8468 8469 if (wc->stage == DROP_REFERENCE) { 8470 level = wc->level; 8471 btrfs_node_key(path->nodes[level], 8472 &root_item->drop_progress, 8473 path->slots[level]); 8474 root_item->drop_level = level; 8475 } 8476 8477 BUG_ON(wc->level == 0); 8478 if (btrfs_should_end_transaction(trans, tree_root) || 8479 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8480 ret = btrfs_update_root(trans, tree_root, 8481 &root->root_key, 8482 root_item); 8483 if (ret) { 8484 btrfs_abort_transaction(trans, tree_root, ret); 8485 err = ret; 8486 goto out_end_trans; 8487 } 8488 8489 /* 8490 * Qgroup update accounting is run from 8491 * delayed ref handling. This usually works 8492 * out because delayed refs are normally the 8493 * only way qgroup updates are added. However, 8494 * we may have added updates during our tree 8495 * walk so run qgroups here to make sure we 8496 * don't lose any updates. 8497 */ 8498 ret = btrfs_delayed_qgroup_accounting(trans, 8499 root->fs_info); 8500 if (ret) 8501 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8502 "running qgroup updates " 8503 "during snapshot delete. " 8504 "Quota is out of sync, " 8505 "rescan required.\n", ret); 8506 8507 btrfs_end_transaction_throttle(trans, tree_root); 8508 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8509 pr_debug("BTRFS: drop snapshot early exit\n"); 8510 err = -EAGAIN; 8511 goto out_free; 8512 } 8513 8514 trans = btrfs_start_transaction(tree_root, 0); 8515 if (IS_ERR(trans)) { 8516 err = PTR_ERR(trans); 8517 goto out_free; 8518 } 8519 if (block_rsv) 8520 trans->block_rsv = block_rsv; 8521 } 8522 } 8523 btrfs_release_path(path); 8524 if (err) 8525 goto out_end_trans; 8526 8527 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8528 if (ret) { 8529 btrfs_abort_transaction(trans, tree_root, ret); 8530 goto out_end_trans; 8531 } 8532 8533 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8534 ret = btrfs_find_root(tree_root, &root->root_key, path, 8535 NULL, NULL); 8536 if (ret < 0) { 8537 btrfs_abort_transaction(trans, tree_root, ret); 8538 err = ret; 8539 goto out_end_trans; 8540 } else if (ret > 0) { 8541 /* if we fail to delete the orphan item this time 8542 * around, it'll get picked up the next time. 8543 * 8544 * The most common failure here is just -ENOENT. 8545 */ 8546 btrfs_del_orphan_item(trans, tree_root, 8547 root->root_key.objectid); 8548 } 8549 } 8550 8551 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8552 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8553 } else { 8554 free_extent_buffer(root->node); 8555 free_extent_buffer(root->commit_root); 8556 btrfs_put_fs_root(root); 8557 } 8558 root_dropped = true; 8559 out_end_trans: 8560 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info); 8561 if (ret) 8562 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8563 "running qgroup updates " 8564 "during snapshot delete. " 8565 "Quota is out of sync, " 8566 "rescan required.\n", ret); 8567 8568 btrfs_end_transaction_throttle(trans, tree_root); 8569 out_free: 8570 kfree(wc); 8571 btrfs_free_path(path); 8572 out: 8573 /* 8574 * So if we need to stop dropping the snapshot for whatever reason we 8575 * need to make sure to add it back to the dead root list so that we 8576 * keep trying to do the work later. This also cleans up roots if we 8577 * don't have it in the radix (like when we recover after a power fail 8578 * or unmount) so we don't leak memory. 8579 */ 8580 if (!for_reloc && root_dropped == false) 8581 btrfs_add_dead_root(root); 8582 if (err && err != -EAGAIN) 8583 btrfs_std_error(root->fs_info, err); 8584 return err; 8585 } 8586 8587 /* 8588 * drop subtree rooted at tree block 'node'. 8589 * 8590 * NOTE: this function will unlock and release tree block 'node' 8591 * only used by relocation code 8592 */ 8593 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8594 struct btrfs_root *root, 8595 struct extent_buffer *node, 8596 struct extent_buffer *parent) 8597 { 8598 struct btrfs_path *path; 8599 struct walk_control *wc; 8600 int level; 8601 int parent_level; 8602 int ret = 0; 8603 int wret; 8604 8605 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8606 8607 path = btrfs_alloc_path(); 8608 if (!path) 8609 return -ENOMEM; 8610 8611 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8612 if (!wc) { 8613 btrfs_free_path(path); 8614 return -ENOMEM; 8615 } 8616 8617 btrfs_assert_tree_locked(parent); 8618 parent_level = btrfs_header_level(parent); 8619 extent_buffer_get(parent); 8620 path->nodes[parent_level] = parent; 8621 path->slots[parent_level] = btrfs_header_nritems(parent); 8622 8623 btrfs_assert_tree_locked(node); 8624 level = btrfs_header_level(node); 8625 path->nodes[level] = node; 8626 path->slots[level] = 0; 8627 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8628 8629 wc->refs[parent_level] = 1; 8630 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8631 wc->level = level; 8632 wc->shared_level = -1; 8633 wc->stage = DROP_REFERENCE; 8634 wc->update_ref = 0; 8635 wc->keep_locks = 1; 8636 wc->for_reloc = 1; 8637 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8638 8639 while (1) { 8640 wret = walk_down_tree(trans, root, path, wc); 8641 if (wret < 0) { 8642 ret = wret; 8643 break; 8644 } 8645 8646 wret = walk_up_tree(trans, root, path, wc, parent_level); 8647 if (wret < 0) 8648 ret = wret; 8649 if (wret != 0) 8650 break; 8651 } 8652 8653 kfree(wc); 8654 btrfs_free_path(path); 8655 return ret; 8656 } 8657 8658 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8659 { 8660 u64 num_devices; 8661 u64 stripped; 8662 8663 /* 8664 * if restripe for this chunk_type is on pick target profile and 8665 * return, otherwise do the usual balance 8666 */ 8667 stripped = get_restripe_target(root->fs_info, flags); 8668 if (stripped) 8669 return extended_to_chunk(stripped); 8670 8671 num_devices = root->fs_info->fs_devices->rw_devices; 8672 8673 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8674 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8675 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8676 8677 if (num_devices == 1) { 8678 stripped |= BTRFS_BLOCK_GROUP_DUP; 8679 stripped = flags & ~stripped; 8680 8681 /* turn raid0 into single device chunks */ 8682 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8683 return stripped; 8684 8685 /* turn mirroring into duplication */ 8686 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8687 BTRFS_BLOCK_GROUP_RAID10)) 8688 return stripped | BTRFS_BLOCK_GROUP_DUP; 8689 } else { 8690 /* they already had raid on here, just return */ 8691 if (flags & stripped) 8692 return flags; 8693 8694 stripped |= BTRFS_BLOCK_GROUP_DUP; 8695 stripped = flags & ~stripped; 8696 8697 /* switch duplicated blocks with raid1 */ 8698 if (flags & BTRFS_BLOCK_GROUP_DUP) 8699 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8700 8701 /* this is drive concat, leave it alone */ 8702 } 8703 8704 return flags; 8705 } 8706 8707 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8708 { 8709 struct btrfs_space_info *sinfo = cache->space_info; 8710 u64 num_bytes; 8711 u64 min_allocable_bytes; 8712 int ret = -ENOSPC; 8713 8714 8715 /* 8716 * We need some metadata space and system metadata space for 8717 * allocating chunks in some corner cases until we force to set 8718 * it to be readonly. 8719 */ 8720 if ((sinfo->flags & 8721 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8722 !force) 8723 min_allocable_bytes = 1 * 1024 * 1024; 8724 else 8725 min_allocable_bytes = 0; 8726 8727 spin_lock(&sinfo->lock); 8728 spin_lock(&cache->lock); 8729 8730 if (cache->ro) { 8731 ret = 0; 8732 goto out; 8733 } 8734 8735 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8736 cache->bytes_super - btrfs_block_group_used(&cache->item); 8737 8738 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8739 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8740 min_allocable_bytes <= sinfo->total_bytes) { 8741 sinfo->bytes_readonly += num_bytes; 8742 cache->ro = 1; 8743 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8744 ret = 0; 8745 } 8746 out: 8747 spin_unlock(&cache->lock); 8748 spin_unlock(&sinfo->lock); 8749 return ret; 8750 } 8751 8752 int btrfs_set_block_group_ro(struct btrfs_root *root, 8753 struct btrfs_block_group_cache *cache) 8754 8755 { 8756 struct btrfs_trans_handle *trans; 8757 u64 alloc_flags; 8758 int ret; 8759 8760 BUG_ON(cache->ro); 8761 8762 again: 8763 trans = btrfs_join_transaction(root); 8764 if (IS_ERR(trans)) 8765 return PTR_ERR(trans); 8766 8767 /* 8768 * we're not allowed to set block groups readonly after the dirty 8769 * block groups cache has started writing. If it already started, 8770 * back off and let this transaction commit 8771 */ 8772 mutex_lock(&root->fs_info->ro_block_group_mutex); 8773 if (trans->transaction->dirty_bg_run) { 8774 u64 transid = trans->transid; 8775 8776 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8777 btrfs_end_transaction(trans, root); 8778 8779 ret = btrfs_wait_for_commit(root, transid); 8780 if (ret) 8781 return ret; 8782 goto again; 8783 } 8784 8785 8786 ret = set_block_group_ro(cache, 0); 8787 if (!ret) 8788 goto out; 8789 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8790 ret = do_chunk_alloc(trans, root, alloc_flags, 8791 CHUNK_ALLOC_FORCE); 8792 if (ret < 0) 8793 goto out; 8794 ret = set_block_group_ro(cache, 0); 8795 out: 8796 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8797 alloc_flags = update_block_group_flags(root, cache->flags); 8798 check_system_chunk(trans, root, alloc_flags); 8799 } 8800 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8801 8802 btrfs_end_transaction(trans, root); 8803 return ret; 8804 } 8805 8806 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8807 struct btrfs_root *root, u64 type) 8808 { 8809 u64 alloc_flags = get_alloc_profile(root, type); 8810 return do_chunk_alloc(trans, root, alloc_flags, 8811 CHUNK_ALLOC_FORCE); 8812 } 8813 8814 /* 8815 * helper to account the unused space of all the readonly block group in the 8816 * space_info. takes mirrors into account. 8817 */ 8818 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8819 { 8820 struct btrfs_block_group_cache *block_group; 8821 u64 free_bytes = 0; 8822 int factor; 8823 8824 /* It's df, we don't care if it's racey */ 8825 if (list_empty(&sinfo->ro_bgs)) 8826 return 0; 8827 8828 spin_lock(&sinfo->lock); 8829 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8830 spin_lock(&block_group->lock); 8831 8832 if (!block_group->ro) { 8833 spin_unlock(&block_group->lock); 8834 continue; 8835 } 8836 8837 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8838 BTRFS_BLOCK_GROUP_RAID10 | 8839 BTRFS_BLOCK_GROUP_DUP)) 8840 factor = 2; 8841 else 8842 factor = 1; 8843 8844 free_bytes += (block_group->key.offset - 8845 btrfs_block_group_used(&block_group->item)) * 8846 factor; 8847 8848 spin_unlock(&block_group->lock); 8849 } 8850 spin_unlock(&sinfo->lock); 8851 8852 return free_bytes; 8853 } 8854 8855 void btrfs_set_block_group_rw(struct btrfs_root *root, 8856 struct btrfs_block_group_cache *cache) 8857 { 8858 struct btrfs_space_info *sinfo = cache->space_info; 8859 u64 num_bytes; 8860 8861 BUG_ON(!cache->ro); 8862 8863 spin_lock(&sinfo->lock); 8864 spin_lock(&cache->lock); 8865 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8866 cache->bytes_super - btrfs_block_group_used(&cache->item); 8867 sinfo->bytes_readonly -= num_bytes; 8868 cache->ro = 0; 8869 list_del_init(&cache->ro_list); 8870 spin_unlock(&cache->lock); 8871 spin_unlock(&sinfo->lock); 8872 } 8873 8874 /* 8875 * checks to see if its even possible to relocate this block group. 8876 * 8877 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8878 * ok to go ahead and try. 8879 */ 8880 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8881 { 8882 struct btrfs_block_group_cache *block_group; 8883 struct btrfs_space_info *space_info; 8884 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8885 struct btrfs_device *device; 8886 struct btrfs_trans_handle *trans; 8887 u64 min_free; 8888 u64 dev_min = 1; 8889 u64 dev_nr = 0; 8890 u64 target; 8891 int index; 8892 int full = 0; 8893 int ret = 0; 8894 8895 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8896 8897 /* odd, couldn't find the block group, leave it alone */ 8898 if (!block_group) 8899 return -1; 8900 8901 min_free = btrfs_block_group_used(&block_group->item); 8902 8903 /* no bytes used, we're good */ 8904 if (!min_free) 8905 goto out; 8906 8907 space_info = block_group->space_info; 8908 spin_lock(&space_info->lock); 8909 8910 full = space_info->full; 8911 8912 /* 8913 * if this is the last block group we have in this space, we can't 8914 * relocate it unless we're able to allocate a new chunk below. 8915 * 8916 * Otherwise, we need to make sure we have room in the space to handle 8917 * all of the extents from this block group. If we can, we're good 8918 */ 8919 if ((space_info->total_bytes != block_group->key.offset) && 8920 (space_info->bytes_used + space_info->bytes_reserved + 8921 space_info->bytes_pinned + space_info->bytes_readonly + 8922 min_free < space_info->total_bytes)) { 8923 spin_unlock(&space_info->lock); 8924 goto out; 8925 } 8926 spin_unlock(&space_info->lock); 8927 8928 /* 8929 * ok we don't have enough space, but maybe we have free space on our 8930 * devices to allocate new chunks for relocation, so loop through our 8931 * alloc devices and guess if we have enough space. if this block 8932 * group is going to be restriped, run checks against the target 8933 * profile instead of the current one. 8934 */ 8935 ret = -1; 8936 8937 /* 8938 * index: 8939 * 0: raid10 8940 * 1: raid1 8941 * 2: dup 8942 * 3: raid0 8943 * 4: single 8944 */ 8945 target = get_restripe_target(root->fs_info, block_group->flags); 8946 if (target) { 8947 index = __get_raid_index(extended_to_chunk(target)); 8948 } else { 8949 /* 8950 * this is just a balance, so if we were marked as full 8951 * we know there is no space for a new chunk 8952 */ 8953 if (full) 8954 goto out; 8955 8956 index = get_block_group_index(block_group); 8957 } 8958 8959 if (index == BTRFS_RAID_RAID10) { 8960 dev_min = 4; 8961 /* Divide by 2 */ 8962 min_free >>= 1; 8963 } else if (index == BTRFS_RAID_RAID1) { 8964 dev_min = 2; 8965 } else if (index == BTRFS_RAID_DUP) { 8966 /* Multiply by 2 */ 8967 min_free <<= 1; 8968 } else if (index == BTRFS_RAID_RAID0) { 8969 dev_min = fs_devices->rw_devices; 8970 min_free = div64_u64(min_free, dev_min); 8971 } 8972 8973 /* We need to do this so that we can look at pending chunks */ 8974 trans = btrfs_join_transaction(root); 8975 if (IS_ERR(trans)) { 8976 ret = PTR_ERR(trans); 8977 goto out; 8978 } 8979 8980 mutex_lock(&root->fs_info->chunk_mutex); 8981 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8982 u64 dev_offset; 8983 8984 /* 8985 * check to make sure we can actually find a chunk with enough 8986 * space to fit our block group in. 8987 */ 8988 if (device->total_bytes > device->bytes_used + min_free && 8989 !device->is_tgtdev_for_dev_replace) { 8990 ret = find_free_dev_extent(trans, device, min_free, 8991 &dev_offset, NULL); 8992 if (!ret) 8993 dev_nr++; 8994 8995 if (dev_nr >= dev_min) 8996 break; 8997 8998 ret = -1; 8999 } 9000 } 9001 mutex_unlock(&root->fs_info->chunk_mutex); 9002 btrfs_end_transaction(trans, root); 9003 out: 9004 btrfs_put_block_group(block_group); 9005 return ret; 9006 } 9007 9008 static int find_first_block_group(struct btrfs_root *root, 9009 struct btrfs_path *path, struct btrfs_key *key) 9010 { 9011 int ret = 0; 9012 struct btrfs_key found_key; 9013 struct extent_buffer *leaf; 9014 int slot; 9015 9016 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9017 if (ret < 0) 9018 goto out; 9019 9020 while (1) { 9021 slot = path->slots[0]; 9022 leaf = path->nodes[0]; 9023 if (slot >= btrfs_header_nritems(leaf)) { 9024 ret = btrfs_next_leaf(root, path); 9025 if (ret == 0) 9026 continue; 9027 if (ret < 0) 9028 goto out; 9029 break; 9030 } 9031 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9032 9033 if (found_key.objectid >= key->objectid && 9034 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9035 ret = 0; 9036 goto out; 9037 } 9038 path->slots[0]++; 9039 } 9040 out: 9041 return ret; 9042 } 9043 9044 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9045 { 9046 struct btrfs_block_group_cache *block_group; 9047 u64 last = 0; 9048 9049 while (1) { 9050 struct inode *inode; 9051 9052 block_group = btrfs_lookup_first_block_group(info, last); 9053 while (block_group) { 9054 spin_lock(&block_group->lock); 9055 if (block_group->iref) 9056 break; 9057 spin_unlock(&block_group->lock); 9058 block_group = next_block_group(info->tree_root, 9059 block_group); 9060 } 9061 if (!block_group) { 9062 if (last == 0) 9063 break; 9064 last = 0; 9065 continue; 9066 } 9067 9068 inode = block_group->inode; 9069 block_group->iref = 0; 9070 block_group->inode = NULL; 9071 spin_unlock(&block_group->lock); 9072 iput(inode); 9073 last = block_group->key.objectid + block_group->key.offset; 9074 btrfs_put_block_group(block_group); 9075 } 9076 } 9077 9078 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9079 { 9080 struct btrfs_block_group_cache *block_group; 9081 struct btrfs_space_info *space_info; 9082 struct btrfs_caching_control *caching_ctl; 9083 struct rb_node *n; 9084 9085 down_write(&info->commit_root_sem); 9086 while (!list_empty(&info->caching_block_groups)) { 9087 caching_ctl = list_entry(info->caching_block_groups.next, 9088 struct btrfs_caching_control, list); 9089 list_del(&caching_ctl->list); 9090 put_caching_control(caching_ctl); 9091 } 9092 up_write(&info->commit_root_sem); 9093 9094 spin_lock(&info->unused_bgs_lock); 9095 while (!list_empty(&info->unused_bgs)) { 9096 block_group = list_first_entry(&info->unused_bgs, 9097 struct btrfs_block_group_cache, 9098 bg_list); 9099 list_del_init(&block_group->bg_list); 9100 btrfs_put_block_group(block_group); 9101 } 9102 spin_unlock(&info->unused_bgs_lock); 9103 9104 spin_lock(&info->block_group_cache_lock); 9105 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9106 block_group = rb_entry(n, struct btrfs_block_group_cache, 9107 cache_node); 9108 rb_erase(&block_group->cache_node, 9109 &info->block_group_cache_tree); 9110 RB_CLEAR_NODE(&block_group->cache_node); 9111 spin_unlock(&info->block_group_cache_lock); 9112 9113 down_write(&block_group->space_info->groups_sem); 9114 list_del(&block_group->list); 9115 up_write(&block_group->space_info->groups_sem); 9116 9117 if (block_group->cached == BTRFS_CACHE_STARTED) 9118 wait_block_group_cache_done(block_group); 9119 9120 /* 9121 * We haven't cached this block group, which means we could 9122 * possibly have excluded extents on this block group. 9123 */ 9124 if (block_group->cached == BTRFS_CACHE_NO || 9125 block_group->cached == BTRFS_CACHE_ERROR) 9126 free_excluded_extents(info->extent_root, block_group); 9127 9128 btrfs_remove_free_space_cache(block_group); 9129 btrfs_put_block_group(block_group); 9130 9131 spin_lock(&info->block_group_cache_lock); 9132 } 9133 spin_unlock(&info->block_group_cache_lock); 9134 9135 /* now that all the block groups are freed, go through and 9136 * free all the space_info structs. This is only called during 9137 * the final stages of unmount, and so we know nobody is 9138 * using them. We call synchronize_rcu() once before we start, 9139 * just to be on the safe side. 9140 */ 9141 synchronize_rcu(); 9142 9143 release_global_block_rsv(info); 9144 9145 while (!list_empty(&info->space_info)) { 9146 int i; 9147 9148 space_info = list_entry(info->space_info.next, 9149 struct btrfs_space_info, 9150 list); 9151 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9152 if (WARN_ON(space_info->bytes_pinned > 0 || 9153 space_info->bytes_reserved > 0 || 9154 space_info->bytes_may_use > 0)) { 9155 dump_space_info(space_info, 0, 0); 9156 } 9157 } 9158 list_del(&space_info->list); 9159 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9160 struct kobject *kobj; 9161 kobj = space_info->block_group_kobjs[i]; 9162 space_info->block_group_kobjs[i] = NULL; 9163 if (kobj) { 9164 kobject_del(kobj); 9165 kobject_put(kobj); 9166 } 9167 } 9168 kobject_del(&space_info->kobj); 9169 kobject_put(&space_info->kobj); 9170 } 9171 return 0; 9172 } 9173 9174 static void __link_block_group(struct btrfs_space_info *space_info, 9175 struct btrfs_block_group_cache *cache) 9176 { 9177 int index = get_block_group_index(cache); 9178 bool first = false; 9179 9180 down_write(&space_info->groups_sem); 9181 if (list_empty(&space_info->block_groups[index])) 9182 first = true; 9183 list_add_tail(&cache->list, &space_info->block_groups[index]); 9184 up_write(&space_info->groups_sem); 9185 9186 if (first) { 9187 struct raid_kobject *rkobj; 9188 int ret; 9189 9190 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9191 if (!rkobj) 9192 goto out_err; 9193 rkobj->raid_type = index; 9194 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9195 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9196 "%s", get_raid_name(index)); 9197 if (ret) { 9198 kobject_put(&rkobj->kobj); 9199 goto out_err; 9200 } 9201 space_info->block_group_kobjs[index] = &rkobj->kobj; 9202 } 9203 9204 return; 9205 out_err: 9206 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9207 } 9208 9209 static struct btrfs_block_group_cache * 9210 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9211 { 9212 struct btrfs_block_group_cache *cache; 9213 9214 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9215 if (!cache) 9216 return NULL; 9217 9218 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9219 GFP_NOFS); 9220 if (!cache->free_space_ctl) { 9221 kfree(cache); 9222 return NULL; 9223 } 9224 9225 cache->key.objectid = start; 9226 cache->key.offset = size; 9227 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9228 9229 cache->sectorsize = root->sectorsize; 9230 cache->fs_info = root->fs_info; 9231 cache->full_stripe_len = btrfs_full_stripe_len(root, 9232 &root->fs_info->mapping_tree, 9233 start); 9234 atomic_set(&cache->count, 1); 9235 spin_lock_init(&cache->lock); 9236 init_rwsem(&cache->data_rwsem); 9237 INIT_LIST_HEAD(&cache->list); 9238 INIT_LIST_HEAD(&cache->cluster_list); 9239 INIT_LIST_HEAD(&cache->bg_list); 9240 INIT_LIST_HEAD(&cache->ro_list); 9241 INIT_LIST_HEAD(&cache->dirty_list); 9242 INIT_LIST_HEAD(&cache->io_list); 9243 btrfs_init_free_space_ctl(cache); 9244 atomic_set(&cache->trimming, 0); 9245 9246 return cache; 9247 } 9248 9249 int btrfs_read_block_groups(struct btrfs_root *root) 9250 { 9251 struct btrfs_path *path; 9252 int ret; 9253 struct btrfs_block_group_cache *cache; 9254 struct btrfs_fs_info *info = root->fs_info; 9255 struct btrfs_space_info *space_info; 9256 struct btrfs_key key; 9257 struct btrfs_key found_key; 9258 struct extent_buffer *leaf; 9259 int need_clear = 0; 9260 u64 cache_gen; 9261 9262 root = info->extent_root; 9263 key.objectid = 0; 9264 key.offset = 0; 9265 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9266 path = btrfs_alloc_path(); 9267 if (!path) 9268 return -ENOMEM; 9269 path->reada = 1; 9270 9271 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9272 if (btrfs_test_opt(root, SPACE_CACHE) && 9273 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9274 need_clear = 1; 9275 if (btrfs_test_opt(root, CLEAR_CACHE)) 9276 need_clear = 1; 9277 9278 while (1) { 9279 ret = find_first_block_group(root, path, &key); 9280 if (ret > 0) 9281 break; 9282 if (ret != 0) 9283 goto error; 9284 9285 leaf = path->nodes[0]; 9286 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9287 9288 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9289 found_key.offset); 9290 if (!cache) { 9291 ret = -ENOMEM; 9292 goto error; 9293 } 9294 9295 if (need_clear) { 9296 /* 9297 * When we mount with old space cache, we need to 9298 * set BTRFS_DC_CLEAR and set dirty flag. 9299 * 9300 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9301 * truncate the old free space cache inode and 9302 * setup a new one. 9303 * b) Setting 'dirty flag' makes sure that we flush 9304 * the new space cache info onto disk. 9305 */ 9306 if (btrfs_test_opt(root, SPACE_CACHE)) 9307 cache->disk_cache_state = BTRFS_DC_CLEAR; 9308 } 9309 9310 read_extent_buffer(leaf, &cache->item, 9311 btrfs_item_ptr_offset(leaf, path->slots[0]), 9312 sizeof(cache->item)); 9313 cache->flags = btrfs_block_group_flags(&cache->item); 9314 9315 key.objectid = found_key.objectid + found_key.offset; 9316 btrfs_release_path(path); 9317 9318 /* 9319 * We need to exclude the super stripes now so that the space 9320 * info has super bytes accounted for, otherwise we'll think 9321 * we have more space than we actually do. 9322 */ 9323 ret = exclude_super_stripes(root, cache); 9324 if (ret) { 9325 /* 9326 * We may have excluded something, so call this just in 9327 * case. 9328 */ 9329 free_excluded_extents(root, cache); 9330 btrfs_put_block_group(cache); 9331 goto error; 9332 } 9333 9334 /* 9335 * check for two cases, either we are full, and therefore 9336 * don't need to bother with the caching work since we won't 9337 * find any space, or we are empty, and we can just add all 9338 * the space in and be done with it. This saves us _alot_ of 9339 * time, particularly in the full case. 9340 */ 9341 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9342 cache->last_byte_to_unpin = (u64)-1; 9343 cache->cached = BTRFS_CACHE_FINISHED; 9344 free_excluded_extents(root, cache); 9345 } else if (btrfs_block_group_used(&cache->item) == 0) { 9346 cache->last_byte_to_unpin = (u64)-1; 9347 cache->cached = BTRFS_CACHE_FINISHED; 9348 add_new_free_space(cache, root->fs_info, 9349 found_key.objectid, 9350 found_key.objectid + 9351 found_key.offset); 9352 free_excluded_extents(root, cache); 9353 } 9354 9355 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9356 if (ret) { 9357 btrfs_remove_free_space_cache(cache); 9358 btrfs_put_block_group(cache); 9359 goto error; 9360 } 9361 9362 ret = update_space_info(info, cache->flags, found_key.offset, 9363 btrfs_block_group_used(&cache->item), 9364 &space_info); 9365 if (ret) { 9366 btrfs_remove_free_space_cache(cache); 9367 spin_lock(&info->block_group_cache_lock); 9368 rb_erase(&cache->cache_node, 9369 &info->block_group_cache_tree); 9370 RB_CLEAR_NODE(&cache->cache_node); 9371 spin_unlock(&info->block_group_cache_lock); 9372 btrfs_put_block_group(cache); 9373 goto error; 9374 } 9375 9376 cache->space_info = space_info; 9377 spin_lock(&cache->space_info->lock); 9378 cache->space_info->bytes_readonly += cache->bytes_super; 9379 spin_unlock(&cache->space_info->lock); 9380 9381 __link_block_group(space_info, cache); 9382 9383 set_avail_alloc_bits(root->fs_info, cache->flags); 9384 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9385 set_block_group_ro(cache, 1); 9386 } else if (btrfs_block_group_used(&cache->item) == 0) { 9387 spin_lock(&info->unused_bgs_lock); 9388 /* Should always be true but just in case. */ 9389 if (list_empty(&cache->bg_list)) { 9390 btrfs_get_block_group(cache); 9391 list_add_tail(&cache->bg_list, 9392 &info->unused_bgs); 9393 } 9394 spin_unlock(&info->unused_bgs_lock); 9395 } 9396 } 9397 9398 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9399 if (!(get_alloc_profile(root, space_info->flags) & 9400 (BTRFS_BLOCK_GROUP_RAID10 | 9401 BTRFS_BLOCK_GROUP_RAID1 | 9402 BTRFS_BLOCK_GROUP_RAID5 | 9403 BTRFS_BLOCK_GROUP_RAID6 | 9404 BTRFS_BLOCK_GROUP_DUP))) 9405 continue; 9406 /* 9407 * avoid allocating from un-mirrored block group if there are 9408 * mirrored block groups. 9409 */ 9410 list_for_each_entry(cache, 9411 &space_info->block_groups[BTRFS_RAID_RAID0], 9412 list) 9413 set_block_group_ro(cache, 1); 9414 list_for_each_entry(cache, 9415 &space_info->block_groups[BTRFS_RAID_SINGLE], 9416 list) 9417 set_block_group_ro(cache, 1); 9418 } 9419 9420 init_global_block_rsv(info); 9421 ret = 0; 9422 error: 9423 btrfs_free_path(path); 9424 return ret; 9425 } 9426 9427 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9428 struct btrfs_root *root) 9429 { 9430 struct btrfs_block_group_cache *block_group, *tmp; 9431 struct btrfs_root *extent_root = root->fs_info->extent_root; 9432 struct btrfs_block_group_item item; 9433 struct btrfs_key key; 9434 int ret = 0; 9435 9436 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9437 if (ret) 9438 goto next; 9439 9440 spin_lock(&block_group->lock); 9441 memcpy(&item, &block_group->item, sizeof(item)); 9442 memcpy(&key, &block_group->key, sizeof(key)); 9443 spin_unlock(&block_group->lock); 9444 9445 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9446 sizeof(item)); 9447 if (ret) 9448 btrfs_abort_transaction(trans, extent_root, ret); 9449 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9450 key.objectid, key.offset); 9451 if (ret) 9452 btrfs_abort_transaction(trans, extent_root, ret); 9453 next: 9454 list_del_init(&block_group->bg_list); 9455 } 9456 } 9457 9458 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9459 struct btrfs_root *root, u64 bytes_used, 9460 u64 type, u64 chunk_objectid, u64 chunk_offset, 9461 u64 size) 9462 { 9463 int ret; 9464 struct btrfs_root *extent_root; 9465 struct btrfs_block_group_cache *cache; 9466 9467 extent_root = root->fs_info->extent_root; 9468 9469 btrfs_set_log_full_commit(root->fs_info, trans); 9470 9471 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9472 if (!cache) 9473 return -ENOMEM; 9474 9475 btrfs_set_block_group_used(&cache->item, bytes_used); 9476 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9477 btrfs_set_block_group_flags(&cache->item, type); 9478 9479 cache->flags = type; 9480 cache->last_byte_to_unpin = (u64)-1; 9481 cache->cached = BTRFS_CACHE_FINISHED; 9482 ret = exclude_super_stripes(root, cache); 9483 if (ret) { 9484 /* 9485 * We may have excluded something, so call this just in 9486 * case. 9487 */ 9488 free_excluded_extents(root, cache); 9489 btrfs_put_block_group(cache); 9490 return ret; 9491 } 9492 9493 add_new_free_space(cache, root->fs_info, chunk_offset, 9494 chunk_offset + size); 9495 9496 free_excluded_extents(root, cache); 9497 9498 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9499 if (ret) { 9500 btrfs_remove_free_space_cache(cache); 9501 btrfs_put_block_group(cache); 9502 return ret; 9503 } 9504 9505 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9506 &cache->space_info); 9507 if (ret) { 9508 btrfs_remove_free_space_cache(cache); 9509 spin_lock(&root->fs_info->block_group_cache_lock); 9510 rb_erase(&cache->cache_node, 9511 &root->fs_info->block_group_cache_tree); 9512 RB_CLEAR_NODE(&cache->cache_node); 9513 spin_unlock(&root->fs_info->block_group_cache_lock); 9514 btrfs_put_block_group(cache); 9515 return ret; 9516 } 9517 update_global_block_rsv(root->fs_info); 9518 9519 spin_lock(&cache->space_info->lock); 9520 cache->space_info->bytes_readonly += cache->bytes_super; 9521 spin_unlock(&cache->space_info->lock); 9522 9523 __link_block_group(cache->space_info, cache); 9524 9525 list_add_tail(&cache->bg_list, &trans->new_bgs); 9526 9527 set_avail_alloc_bits(extent_root->fs_info, type); 9528 9529 return 0; 9530 } 9531 9532 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9533 { 9534 u64 extra_flags = chunk_to_extended(flags) & 9535 BTRFS_EXTENDED_PROFILE_MASK; 9536 9537 write_seqlock(&fs_info->profiles_lock); 9538 if (flags & BTRFS_BLOCK_GROUP_DATA) 9539 fs_info->avail_data_alloc_bits &= ~extra_flags; 9540 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9541 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9542 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9543 fs_info->avail_system_alloc_bits &= ~extra_flags; 9544 write_sequnlock(&fs_info->profiles_lock); 9545 } 9546 9547 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9548 struct btrfs_root *root, u64 group_start, 9549 struct extent_map *em) 9550 { 9551 struct btrfs_path *path; 9552 struct btrfs_block_group_cache *block_group; 9553 struct btrfs_free_cluster *cluster; 9554 struct btrfs_root *tree_root = root->fs_info->tree_root; 9555 struct btrfs_key key; 9556 struct inode *inode; 9557 struct kobject *kobj = NULL; 9558 int ret; 9559 int index; 9560 int factor; 9561 struct btrfs_caching_control *caching_ctl = NULL; 9562 bool remove_em; 9563 9564 root = root->fs_info->extent_root; 9565 9566 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9567 BUG_ON(!block_group); 9568 BUG_ON(!block_group->ro); 9569 9570 /* 9571 * Free the reserved super bytes from this block group before 9572 * remove it. 9573 */ 9574 free_excluded_extents(root, block_group); 9575 9576 memcpy(&key, &block_group->key, sizeof(key)); 9577 index = get_block_group_index(block_group); 9578 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9579 BTRFS_BLOCK_GROUP_RAID1 | 9580 BTRFS_BLOCK_GROUP_RAID10)) 9581 factor = 2; 9582 else 9583 factor = 1; 9584 9585 /* make sure this block group isn't part of an allocation cluster */ 9586 cluster = &root->fs_info->data_alloc_cluster; 9587 spin_lock(&cluster->refill_lock); 9588 btrfs_return_cluster_to_free_space(block_group, cluster); 9589 spin_unlock(&cluster->refill_lock); 9590 9591 /* 9592 * make sure this block group isn't part of a metadata 9593 * allocation cluster 9594 */ 9595 cluster = &root->fs_info->meta_alloc_cluster; 9596 spin_lock(&cluster->refill_lock); 9597 btrfs_return_cluster_to_free_space(block_group, cluster); 9598 spin_unlock(&cluster->refill_lock); 9599 9600 path = btrfs_alloc_path(); 9601 if (!path) { 9602 ret = -ENOMEM; 9603 goto out; 9604 } 9605 9606 /* 9607 * get the inode first so any iput calls done for the io_list 9608 * aren't the final iput (no unlinks allowed now) 9609 */ 9610 inode = lookup_free_space_inode(tree_root, block_group, path); 9611 9612 mutex_lock(&trans->transaction->cache_write_mutex); 9613 /* 9614 * make sure our free spache cache IO is done before remove the 9615 * free space inode 9616 */ 9617 spin_lock(&trans->transaction->dirty_bgs_lock); 9618 if (!list_empty(&block_group->io_list)) { 9619 list_del_init(&block_group->io_list); 9620 9621 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9622 9623 spin_unlock(&trans->transaction->dirty_bgs_lock); 9624 btrfs_wait_cache_io(root, trans, block_group, 9625 &block_group->io_ctl, path, 9626 block_group->key.objectid); 9627 btrfs_put_block_group(block_group); 9628 spin_lock(&trans->transaction->dirty_bgs_lock); 9629 } 9630 9631 if (!list_empty(&block_group->dirty_list)) { 9632 list_del_init(&block_group->dirty_list); 9633 btrfs_put_block_group(block_group); 9634 } 9635 spin_unlock(&trans->transaction->dirty_bgs_lock); 9636 mutex_unlock(&trans->transaction->cache_write_mutex); 9637 9638 if (!IS_ERR(inode)) { 9639 ret = btrfs_orphan_add(trans, inode); 9640 if (ret) { 9641 btrfs_add_delayed_iput(inode); 9642 goto out; 9643 } 9644 clear_nlink(inode); 9645 /* One for the block groups ref */ 9646 spin_lock(&block_group->lock); 9647 if (block_group->iref) { 9648 block_group->iref = 0; 9649 block_group->inode = NULL; 9650 spin_unlock(&block_group->lock); 9651 iput(inode); 9652 } else { 9653 spin_unlock(&block_group->lock); 9654 } 9655 /* One for our lookup ref */ 9656 btrfs_add_delayed_iput(inode); 9657 } 9658 9659 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9660 key.offset = block_group->key.objectid; 9661 key.type = 0; 9662 9663 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9664 if (ret < 0) 9665 goto out; 9666 if (ret > 0) 9667 btrfs_release_path(path); 9668 if (ret == 0) { 9669 ret = btrfs_del_item(trans, tree_root, path); 9670 if (ret) 9671 goto out; 9672 btrfs_release_path(path); 9673 } 9674 9675 spin_lock(&root->fs_info->block_group_cache_lock); 9676 rb_erase(&block_group->cache_node, 9677 &root->fs_info->block_group_cache_tree); 9678 RB_CLEAR_NODE(&block_group->cache_node); 9679 9680 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9681 root->fs_info->first_logical_byte = (u64)-1; 9682 spin_unlock(&root->fs_info->block_group_cache_lock); 9683 9684 down_write(&block_group->space_info->groups_sem); 9685 /* 9686 * we must use list_del_init so people can check to see if they 9687 * are still on the list after taking the semaphore 9688 */ 9689 list_del_init(&block_group->list); 9690 if (list_empty(&block_group->space_info->block_groups[index])) { 9691 kobj = block_group->space_info->block_group_kobjs[index]; 9692 block_group->space_info->block_group_kobjs[index] = NULL; 9693 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9694 } 9695 up_write(&block_group->space_info->groups_sem); 9696 if (kobj) { 9697 kobject_del(kobj); 9698 kobject_put(kobj); 9699 } 9700 9701 if (block_group->has_caching_ctl) 9702 caching_ctl = get_caching_control(block_group); 9703 if (block_group->cached == BTRFS_CACHE_STARTED) 9704 wait_block_group_cache_done(block_group); 9705 if (block_group->has_caching_ctl) { 9706 down_write(&root->fs_info->commit_root_sem); 9707 if (!caching_ctl) { 9708 struct btrfs_caching_control *ctl; 9709 9710 list_for_each_entry(ctl, 9711 &root->fs_info->caching_block_groups, list) 9712 if (ctl->block_group == block_group) { 9713 caching_ctl = ctl; 9714 atomic_inc(&caching_ctl->count); 9715 break; 9716 } 9717 } 9718 if (caching_ctl) 9719 list_del_init(&caching_ctl->list); 9720 up_write(&root->fs_info->commit_root_sem); 9721 if (caching_ctl) { 9722 /* Once for the caching bgs list and once for us. */ 9723 put_caching_control(caching_ctl); 9724 put_caching_control(caching_ctl); 9725 } 9726 } 9727 9728 spin_lock(&trans->transaction->dirty_bgs_lock); 9729 if (!list_empty(&block_group->dirty_list)) { 9730 WARN_ON(1); 9731 } 9732 if (!list_empty(&block_group->io_list)) { 9733 WARN_ON(1); 9734 } 9735 spin_unlock(&trans->transaction->dirty_bgs_lock); 9736 btrfs_remove_free_space_cache(block_group); 9737 9738 spin_lock(&block_group->space_info->lock); 9739 list_del_init(&block_group->ro_list); 9740 9741 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9742 WARN_ON(block_group->space_info->total_bytes 9743 < block_group->key.offset); 9744 WARN_ON(block_group->space_info->bytes_readonly 9745 < block_group->key.offset); 9746 WARN_ON(block_group->space_info->disk_total 9747 < block_group->key.offset * factor); 9748 } 9749 block_group->space_info->total_bytes -= block_group->key.offset; 9750 block_group->space_info->bytes_readonly -= block_group->key.offset; 9751 block_group->space_info->disk_total -= block_group->key.offset * factor; 9752 9753 spin_unlock(&block_group->space_info->lock); 9754 9755 memcpy(&key, &block_group->key, sizeof(key)); 9756 9757 lock_chunks(root); 9758 if (!list_empty(&em->list)) { 9759 /* We're in the transaction->pending_chunks list. */ 9760 free_extent_map(em); 9761 } 9762 spin_lock(&block_group->lock); 9763 block_group->removed = 1; 9764 /* 9765 * At this point trimming can't start on this block group, because we 9766 * removed the block group from the tree fs_info->block_group_cache_tree 9767 * so no one can't find it anymore and even if someone already got this 9768 * block group before we removed it from the rbtree, they have already 9769 * incremented block_group->trimming - if they didn't, they won't find 9770 * any free space entries because we already removed them all when we 9771 * called btrfs_remove_free_space_cache(). 9772 * 9773 * And we must not remove the extent map from the fs_info->mapping_tree 9774 * to prevent the same logical address range and physical device space 9775 * ranges from being reused for a new block group. This is because our 9776 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9777 * completely transactionless, so while it is trimming a range the 9778 * currently running transaction might finish and a new one start, 9779 * allowing for new block groups to be created that can reuse the same 9780 * physical device locations unless we take this special care. 9781 */ 9782 remove_em = (atomic_read(&block_group->trimming) == 0); 9783 /* 9784 * Make sure a trimmer task always sees the em in the pinned_chunks list 9785 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9786 * before checking block_group->removed). 9787 */ 9788 if (!remove_em) { 9789 /* 9790 * Our em might be in trans->transaction->pending_chunks which 9791 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9792 * and so is the fs_info->pinned_chunks list. 9793 * 9794 * So at this point we must be holding the chunk_mutex to avoid 9795 * any races with chunk allocation (more specifically at 9796 * volumes.c:contains_pending_extent()), to ensure it always 9797 * sees the em, either in the pending_chunks list or in the 9798 * pinned_chunks list. 9799 */ 9800 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9801 } 9802 spin_unlock(&block_group->lock); 9803 9804 if (remove_em) { 9805 struct extent_map_tree *em_tree; 9806 9807 em_tree = &root->fs_info->mapping_tree.map_tree; 9808 write_lock(&em_tree->lock); 9809 /* 9810 * The em might be in the pending_chunks list, so make sure the 9811 * chunk mutex is locked, since remove_extent_mapping() will 9812 * delete us from that list. 9813 */ 9814 remove_extent_mapping(em_tree, em); 9815 write_unlock(&em_tree->lock); 9816 /* once for the tree */ 9817 free_extent_map(em); 9818 } 9819 9820 unlock_chunks(root); 9821 9822 btrfs_put_block_group(block_group); 9823 btrfs_put_block_group(block_group); 9824 9825 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9826 if (ret > 0) 9827 ret = -EIO; 9828 if (ret < 0) 9829 goto out; 9830 9831 ret = btrfs_del_item(trans, root, path); 9832 out: 9833 btrfs_free_path(path); 9834 return ret; 9835 } 9836 9837 /* 9838 * Process the unused_bgs list and remove any that don't have any allocated 9839 * space inside of them. 9840 */ 9841 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9842 { 9843 struct btrfs_block_group_cache *block_group; 9844 struct btrfs_space_info *space_info; 9845 struct btrfs_root *root = fs_info->extent_root; 9846 struct btrfs_trans_handle *trans; 9847 int ret = 0; 9848 9849 if (!fs_info->open) 9850 return; 9851 9852 spin_lock(&fs_info->unused_bgs_lock); 9853 while (!list_empty(&fs_info->unused_bgs)) { 9854 u64 start, end; 9855 9856 block_group = list_first_entry(&fs_info->unused_bgs, 9857 struct btrfs_block_group_cache, 9858 bg_list); 9859 space_info = block_group->space_info; 9860 list_del_init(&block_group->bg_list); 9861 if (ret || btrfs_mixed_space_info(space_info)) { 9862 btrfs_put_block_group(block_group); 9863 continue; 9864 } 9865 spin_unlock(&fs_info->unused_bgs_lock); 9866 9867 /* Don't want to race with allocators so take the groups_sem */ 9868 down_write(&space_info->groups_sem); 9869 spin_lock(&block_group->lock); 9870 if (block_group->reserved || 9871 btrfs_block_group_used(&block_group->item) || 9872 block_group->ro) { 9873 /* 9874 * We want to bail if we made new allocations or have 9875 * outstanding allocations in this block group. We do 9876 * the ro check in case balance is currently acting on 9877 * this block group. 9878 */ 9879 spin_unlock(&block_group->lock); 9880 up_write(&space_info->groups_sem); 9881 goto next; 9882 } 9883 spin_unlock(&block_group->lock); 9884 9885 /* We don't want to force the issue, only flip if it's ok. */ 9886 ret = set_block_group_ro(block_group, 0); 9887 up_write(&space_info->groups_sem); 9888 if (ret < 0) { 9889 ret = 0; 9890 goto next; 9891 } 9892 9893 /* 9894 * Want to do this before we do anything else so we can recover 9895 * properly if we fail to join the transaction. 9896 */ 9897 /* 1 for btrfs_orphan_reserve_metadata() */ 9898 trans = btrfs_start_transaction(root, 1); 9899 if (IS_ERR(trans)) { 9900 btrfs_set_block_group_rw(root, block_group); 9901 ret = PTR_ERR(trans); 9902 goto next; 9903 } 9904 9905 /* 9906 * We could have pending pinned extents for this block group, 9907 * just delete them, we don't care about them anymore. 9908 */ 9909 start = block_group->key.objectid; 9910 end = start + block_group->key.offset - 1; 9911 /* 9912 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9913 * btrfs_finish_extent_commit(). If we are at transaction N, 9914 * another task might be running finish_extent_commit() for the 9915 * previous transaction N - 1, and have seen a range belonging 9916 * to the block group in freed_extents[] before we were able to 9917 * clear the whole block group range from freed_extents[]. This 9918 * means that task can lookup for the block group after we 9919 * unpinned it from freed_extents[] and removed it, leading to 9920 * a BUG_ON() at btrfs_unpin_extent_range(). 9921 */ 9922 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9923 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9924 EXTENT_DIRTY, GFP_NOFS); 9925 if (ret) { 9926 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9927 btrfs_set_block_group_rw(root, block_group); 9928 goto end_trans; 9929 } 9930 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 9931 EXTENT_DIRTY, GFP_NOFS); 9932 if (ret) { 9933 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9934 btrfs_set_block_group_rw(root, block_group); 9935 goto end_trans; 9936 } 9937 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9938 9939 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9940 spin_lock(&space_info->lock); 9941 spin_lock(&block_group->lock); 9942 9943 space_info->bytes_pinned -= block_group->pinned; 9944 space_info->bytes_readonly += block_group->pinned; 9945 percpu_counter_add(&space_info->total_bytes_pinned, 9946 -block_group->pinned); 9947 block_group->pinned = 0; 9948 9949 spin_unlock(&block_group->lock); 9950 spin_unlock(&space_info->lock); 9951 9952 /* 9953 * Btrfs_remove_chunk will abort the transaction if things go 9954 * horribly wrong. 9955 */ 9956 ret = btrfs_remove_chunk(trans, root, 9957 block_group->key.objectid); 9958 end_trans: 9959 btrfs_end_transaction(trans, root); 9960 next: 9961 btrfs_put_block_group(block_group); 9962 spin_lock(&fs_info->unused_bgs_lock); 9963 } 9964 spin_unlock(&fs_info->unused_bgs_lock); 9965 } 9966 9967 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 9968 { 9969 struct btrfs_space_info *space_info; 9970 struct btrfs_super_block *disk_super; 9971 u64 features; 9972 u64 flags; 9973 int mixed = 0; 9974 int ret; 9975 9976 disk_super = fs_info->super_copy; 9977 if (!btrfs_super_root(disk_super)) 9978 return 1; 9979 9980 features = btrfs_super_incompat_flags(disk_super); 9981 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 9982 mixed = 1; 9983 9984 flags = BTRFS_BLOCK_GROUP_SYSTEM; 9985 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9986 if (ret) 9987 goto out; 9988 9989 if (mixed) { 9990 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 9991 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9992 } else { 9993 flags = BTRFS_BLOCK_GROUP_METADATA; 9994 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9995 if (ret) 9996 goto out; 9997 9998 flags = BTRFS_BLOCK_GROUP_DATA; 9999 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10000 } 10001 out: 10002 return ret; 10003 } 10004 10005 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10006 { 10007 return unpin_extent_range(root, start, end, false); 10008 } 10009 10010 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10011 { 10012 struct btrfs_fs_info *fs_info = root->fs_info; 10013 struct btrfs_block_group_cache *cache = NULL; 10014 u64 group_trimmed; 10015 u64 start; 10016 u64 end; 10017 u64 trimmed = 0; 10018 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10019 int ret = 0; 10020 10021 /* 10022 * try to trim all FS space, our block group may start from non-zero. 10023 */ 10024 if (range->len == total_bytes) 10025 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10026 else 10027 cache = btrfs_lookup_block_group(fs_info, range->start); 10028 10029 while (cache) { 10030 if (cache->key.objectid >= (range->start + range->len)) { 10031 btrfs_put_block_group(cache); 10032 break; 10033 } 10034 10035 start = max(range->start, cache->key.objectid); 10036 end = min(range->start + range->len, 10037 cache->key.objectid + cache->key.offset); 10038 10039 if (end - start >= range->minlen) { 10040 if (!block_group_cache_done(cache)) { 10041 ret = cache_block_group(cache, 0); 10042 if (ret) { 10043 btrfs_put_block_group(cache); 10044 break; 10045 } 10046 ret = wait_block_group_cache_done(cache); 10047 if (ret) { 10048 btrfs_put_block_group(cache); 10049 break; 10050 } 10051 } 10052 ret = btrfs_trim_block_group(cache, 10053 &group_trimmed, 10054 start, 10055 end, 10056 range->minlen); 10057 10058 trimmed += group_trimmed; 10059 if (ret) { 10060 btrfs_put_block_group(cache); 10061 break; 10062 } 10063 } 10064 10065 cache = next_block_group(fs_info->tree_root, cache); 10066 } 10067 10068 range->len = trimmed; 10069 return ret; 10070 } 10071 10072 /* 10073 * btrfs_{start,end}_write_no_snapshoting() are similar to 10074 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10075 * data into the page cache through nocow before the subvolume is snapshoted, 10076 * but flush the data into disk after the snapshot creation, or to prevent 10077 * operations while snapshoting is ongoing and that cause the snapshot to be 10078 * inconsistent (writes followed by expanding truncates for example). 10079 */ 10080 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10081 { 10082 percpu_counter_dec(&root->subv_writers->counter); 10083 /* 10084 * Make sure counter is updated before we wake up 10085 * waiters. 10086 */ 10087 smp_mb(); 10088 if (waitqueue_active(&root->subv_writers->wait)) 10089 wake_up(&root->subv_writers->wait); 10090 } 10091 10092 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10093 { 10094 if (atomic_read(&root->will_be_snapshoted)) 10095 return 0; 10096 10097 percpu_counter_inc(&root->subv_writers->counter); 10098 /* 10099 * Make sure counter is updated before we check for snapshot creation. 10100 */ 10101 smp_mb(); 10102 if (atomic_read(&root->will_be_snapshoted)) { 10103 btrfs_end_write_no_snapshoting(root); 10104 return 0; 10105 } 10106 return 1; 10107 } 10108