xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision d5e7cafd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				u64 bytenr, u64 num_bytes, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op,
86 				int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins,
100 				     int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 			  struct btrfs_root *extent_root, u64 flags,
103 			  int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 			 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 			    int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 				       u64 num_bytes, int reserve,
110 				       int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 			       u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 		     u64 bytenr, u64 num_bytes, int reserved);
115 
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 	smp_mb();
120 	return cache->cached == BTRFS_CACHE_FINISHED ||
121 		cache->cached == BTRFS_CACHE_ERROR;
122 }
123 
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 	return (cache->flags & bits) == bits;
127 }
128 
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	atomic_inc(&cache->count);
132 }
133 
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 	if (atomic_dec_and_test(&cache->count)) {
137 		WARN_ON(cache->pinned > 0);
138 		WARN_ON(cache->reserved > 0);
139 		kfree(cache->free_space_ctl);
140 		kfree(cache);
141 	}
142 }
143 
144 /*
145  * this adds the block group to the fs_info rb tree for the block group
146  * cache
147  */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 				struct btrfs_block_group_cache *block_group)
150 {
151 	struct rb_node **p;
152 	struct rb_node *parent = NULL;
153 	struct btrfs_block_group_cache *cache;
154 
155 	spin_lock(&info->block_group_cache_lock);
156 	p = &info->block_group_cache_tree.rb_node;
157 
158 	while (*p) {
159 		parent = *p;
160 		cache = rb_entry(parent, struct btrfs_block_group_cache,
161 				 cache_node);
162 		if (block_group->key.objectid < cache->key.objectid) {
163 			p = &(*p)->rb_left;
164 		} else if (block_group->key.objectid > cache->key.objectid) {
165 			p = &(*p)->rb_right;
166 		} else {
167 			spin_unlock(&info->block_group_cache_lock);
168 			return -EEXIST;
169 		}
170 	}
171 
172 	rb_link_node(&block_group->cache_node, parent, p);
173 	rb_insert_color(&block_group->cache_node,
174 			&info->block_group_cache_tree);
175 
176 	if (info->first_logical_byte > block_group->key.objectid)
177 		info->first_logical_byte = block_group->key.objectid;
178 
179 	spin_unlock(&info->block_group_cache_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * This will return the block group at or after bytenr if contains is 0, else
186  * it will return the block group that contains the bytenr
187  */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 			      int contains)
191 {
192 	struct btrfs_block_group_cache *cache, *ret = NULL;
193 	struct rb_node *n;
194 	u64 end, start;
195 
196 	spin_lock(&info->block_group_cache_lock);
197 	n = info->block_group_cache_tree.rb_node;
198 
199 	while (n) {
200 		cache = rb_entry(n, struct btrfs_block_group_cache,
201 				 cache_node);
202 		end = cache->key.objectid + cache->key.offset - 1;
203 		start = cache->key.objectid;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->key.objectid))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 			info->first_logical_byte = ret->key.objectid;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 static int add_excluded_extent(struct btrfs_root *root,
231 			       u64 start, u64 num_bytes)
232 {
233 	u64 end = start + num_bytes - 1;
234 	set_extent_bits(&root->fs_info->freed_extents[0],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	set_extent_bits(&root->fs_info->freed_extents[1],
237 			start, end, EXTENT_UPTODATE, GFP_NOFS);
238 	return 0;
239 }
240 
241 static void free_excluded_extents(struct btrfs_root *root,
242 				  struct btrfs_block_group_cache *cache)
243 {
244 	u64 start, end;
245 
246 	start = cache->key.objectid;
247 	end = start + cache->key.offset - 1;
248 
249 	clear_extent_bits(&root->fs_info->freed_extents[0],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 	clear_extent_bits(&root->fs_info->freed_extents[1],
252 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254 
255 static int exclude_super_stripes(struct btrfs_root *root,
256 				 struct btrfs_block_group_cache *cache)
257 {
258 	u64 bytenr;
259 	u64 *logical;
260 	int stripe_len;
261 	int i, nr, ret;
262 
263 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 		cache->bytes_super += stripe_len;
266 		ret = add_excluded_extent(root, cache->key.objectid,
267 					  stripe_len);
268 		if (ret)
269 			return ret;
270 	}
271 
272 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 		bytenr = btrfs_sb_offset(i);
274 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 				       cache->key.objectid, bytenr,
276 				       0, &logical, &nr, &stripe_len);
277 		if (ret)
278 			return ret;
279 
280 		while (nr--) {
281 			u64 start, len;
282 
283 			if (logical[nr] > cache->key.objectid +
284 			    cache->key.offset)
285 				continue;
286 
287 			if (logical[nr] + stripe_len <= cache->key.objectid)
288 				continue;
289 
290 			start = logical[nr];
291 			if (start < cache->key.objectid) {
292 				start = cache->key.objectid;
293 				len = (logical[nr] + stripe_len) - start;
294 			} else {
295 				len = min_t(u64, stripe_len,
296 					    cache->key.objectid +
297 					    cache->key.offset - start);
298 			}
299 
300 			cache->bytes_super += len;
301 			ret = add_excluded_extent(root, start, len);
302 			if (ret) {
303 				kfree(logical);
304 				return ret;
305 			}
306 		}
307 
308 		kfree(logical);
309 	}
310 	return 0;
311 }
312 
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 	struct btrfs_caching_control *ctl;
317 
318 	spin_lock(&cache->lock);
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = -ENOMEM;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->commit_root_sem);
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto err;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->commit_root_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->nodesize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->commit_root_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 			caching_thread, NULL, NULL);
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		mutex_lock(&caching_ctl->mutex);
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 			caching_ctl->progress = (u64)-1;
601 		} else {
602 			if (load_cache_only) {
603 				cache->caching_ctl = NULL;
604 				cache->cached = BTRFS_CACHE_NO;
605 			} else {
606 				cache->cached = BTRFS_CACHE_STARTED;
607 				cache->has_caching_ctl = 1;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		mutex_unlock(&caching_ctl->mutex);
612 
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 			cache->has_caching_ctl = 1;
631 		}
632 		spin_unlock(&cache->lock);
633 		wake_up(&caching_ctl->wait);
634 	}
635 
636 	if (load_cache_only) {
637 		put_caching_control(caching_ctl);
638 		return 0;
639 	}
640 
641 	down_write(&fs_info->commit_root_sem);
642 	atomic_inc(&caching_ctl->count);
643 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 	up_write(&fs_info->commit_root_sem);
645 
646 	btrfs_get_block_group(cache);
647 
648 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 
650 	return ret;
651 }
652 
653 /*
654  * return the block group that starts at or after bytenr
655  */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 	struct btrfs_block_group_cache *cache;
660 
661 	cache = block_group_cache_tree_search(info, bytenr, 0);
662 
663 	return cache;
664 }
665 
666 /*
667  * return the block group that contains the given bytenr
668  */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 						 struct btrfs_fs_info *info,
671 						 u64 bytenr)
672 {
673 	struct btrfs_block_group_cache *cache;
674 
675 	cache = block_group_cache_tree_search(info, bytenr, 1);
676 
677 	return cache;
678 }
679 
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 						  u64 flags)
682 {
683 	struct list_head *head = &info->space_info;
684 	struct btrfs_space_info *found;
685 
686 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 
688 	rcu_read_lock();
689 	list_for_each_entry_rcu(found, head, list) {
690 		if (found->flags & flags) {
691 			rcu_read_unlock();
692 			return found;
693 		}
694 	}
695 	rcu_read_unlock();
696 	return NULL;
697 }
698 
699 /*
700  * after adding space to the filesystem, we need to clear the full flags
701  * on all the space infos.
702  */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 	struct list_head *head = &info->space_info;
706 	struct btrfs_space_info *found;
707 
708 	rcu_read_lock();
709 	list_for_each_entry_rcu(found, head, list)
710 		found->full = 0;
711 	rcu_read_unlock();
712 }
713 
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 	int ret;
718 	struct btrfs_key key;
719 	struct btrfs_path *path;
720 
721 	path = btrfs_alloc_path();
722 	if (!path)
723 		return -ENOMEM;
724 
725 	key.objectid = start;
726 	key.offset = len;
727 	key.type = BTRFS_EXTENT_ITEM_KEY;
728 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 				0, 0);
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->nodesize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (!trans) {
772 		path->skip_locking = 1;
773 		path->search_commit_root = 1;
774 	}
775 
776 search_again:
777 	key.objectid = bytenr;
778 	key.offset = offset;
779 	if (metadata)
780 		key.type = BTRFS_METADATA_ITEM_KEY;
781 	else
782 		key.type = BTRFS_EXTENT_ITEM_KEY;
783 
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->nodesize)
797 				ret = 0;
798 		}
799 	}
800 
801 	if (ret == 0) {
802 		leaf = path->nodes[0];
803 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 		if (item_size >= sizeof(*ei)) {
805 			ei = btrfs_item_ptr(leaf, path->slots[0],
806 					    struct btrfs_extent_item);
807 			num_refs = btrfs_extent_refs(leaf, ei);
808 			extent_flags = btrfs_extent_flags(leaf, ei);
809 		} else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 			struct btrfs_extent_item_v0 *ei0;
812 			BUG_ON(item_size != sizeof(*ei0));
813 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 					     struct btrfs_extent_item_v0);
815 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 			/* FIXME: this isn't correct for data */
817 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 			BUG();
820 #endif
821 		}
822 		BUG_ON(num_refs == 0);
823 	} else {
824 		num_refs = 0;
825 		extent_flags = 0;
826 		ret = 0;
827 	}
828 
829 	if (!trans)
830 		goto out;
831 
832 	delayed_refs = &trans->transaction->delayed_refs;
833 	spin_lock(&delayed_refs->lock);
834 	head = btrfs_find_delayed_ref_head(trans, bytenr);
835 	if (head) {
836 		if (!mutex_trylock(&head->mutex)) {
837 			atomic_inc(&head->node.refs);
838 			spin_unlock(&delayed_refs->lock);
839 
840 			btrfs_release_path(path);
841 
842 			/*
843 			 * Mutex was contended, block until it's released and try
844 			 * again
845 			 */
846 			mutex_lock(&head->mutex);
847 			mutex_unlock(&head->mutex);
848 			btrfs_put_delayed_ref(&head->node);
849 			goto search_again;
850 		}
851 		spin_lock(&head->lock);
852 		if (head->extent_op && head->extent_op->update_flags)
853 			extent_flags |= head->extent_op->flags_to_set;
854 		else
855 			BUG_ON(num_refs == 0);
856 
857 		num_refs += head->node.ref_mod;
858 		spin_unlock(&head->lock);
859 		mutex_unlock(&head->mutex);
860 	}
861 	spin_unlock(&delayed_refs->lock);
862 out:
863 	WARN_ON(num_refs == 0);
864 	if (refs)
865 		*refs = num_refs;
866 	if (flags)
867 		*flags = extent_flags;
868 out_free:
869 	btrfs_free_path(path);
870 	return ret;
871 }
872 
873 /*
874  * Back reference rules.  Back refs have three main goals:
875  *
876  * 1) differentiate between all holders of references to an extent so that
877  *    when a reference is dropped we can make sure it was a valid reference
878  *    before freeing the extent.
879  *
880  * 2) Provide enough information to quickly find the holders of an extent
881  *    if we notice a given block is corrupted or bad.
882  *
883  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884  *    maintenance.  This is actually the same as #2, but with a slightly
885  *    different use case.
886  *
887  * There are two kinds of back refs. The implicit back refs is optimized
888  * for pointers in non-shared tree blocks. For a given pointer in a block,
889  * back refs of this kind provide information about the block's owner tree
890  * and the pointer's key. These information allow us to find the block by
891  * b-tree searching. The full back refs is for pointers in tree blocks not
892  * referenced by their owner trees. The location of tree block is recorded
893  * in the back refs. Actually the full back refs is generic, and can be
894  * used in all cases the implicit back refs is used. The major shortcoming
895  * of the full back refs is its overhead. Every time a tree block gets
896  * COWed, we have to update back refs entry for all pointers in it.
897  *
898  * For a newly allocated tree block, we use implicit back refs for
899  * pointers in it. This means most tree related operations only involve
900  * implicit back refs. For a tree block created in old transaction, the
901  * only way to drop a reference to it is COW it. So we can detect the
902  * event that tree block loses its owner tree's reference and do the
903  * back refs conversion.
904  *
905  * When a tree block is COW'd through a tree, there are four cases:
906  *
907  * The reference count of the block is one and the tree is the block's
908  * owner tree. Nothing to do in this case.
909  *
910  * The reference count of the block is one and the tree is not the
911  * block's owner tree. In this case, full back refs is used for pointers
912  * in the block. Remove these full back refs, add implicit back refs for
913  * every pointers in the new block.
914  *
915  * The reference count of the block is greater than one and the tree is
916  * the block's owner tree. In this case, implicit back refs is used for
917  * pointers in the block. Add full back refs for every pointers in the
918  * block, increase lower level extents' reference counts. The original
919  * implicit back refs are entailed to the new block.
920  *
921  * The reference count of the block is greater than one and the tree is
922  * not the block's owner tree. Add implicit back refs for every pointer in
923  * the new block, increase lower level extents' reference count.
924  *
925  * Back Reference Key composing:
926  *
927  * The key objectid corresponds to the first byte in the extent,
928  * The key type is used to differentiate between types of back refs.
929  * There are different meanings of the key offset for different types
930  * of back refs.
931  *
932  * File extents can be referenced by:
933  *
934  * - multiple snapshots, subvolumes, or different generations in one subvol
935  * - different files inside a single subvolume
936  * - different offsets inside a file (bookend extents in file.c)
937  *
938  * The extent ref structure for the implicit back refs has fields for:
939  *
940  * - Objectid of the subvolume root
941  * - objectid of the file holding the reference
942  * - original offset in the file
943  * - how many bookend extents
944  *
945  * The key offset for the implicit back refs is hash of the first
946  * three fields.
947  *
948  * The extent ref structure for the full back refs has field for:
949  *
950  * - number of pointers in the tree leaf
951  *
952  * The key offset for the implicit back refs is the first byte of
953  * the tree leaf
954  *
955  * When a file extent is allocated, The implicit back refs is used.
956  * the fields are filled in:
957  *
958  *     (root_key.objectid, inode objectid, offset in file, 1)
959  *
960  * When a file extent is removed file truncation, we find the
961  * corresponding implicit back refs and check the following fields:
962  *
963  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
964  *
965  * Btree extents can be referenced by:
966  *
967  * - Different subvolumes
968  *
969  * Both the implicit back refs and the full back refs for tree blocks
970  * only consist of key. The key offset for the implicit back refs is
971  * objectid of block's owner tree. The key offset for the full back refs
972  * is the first byte of parent block.
973  *
974  * When implicit back refs is used, information about the lowest key and
975  * level of the tree block are required. These information are stored in
976  * tree block info structure.
977  */
978 
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 				  struct btrfs_root *root,
982 				  struct btrfs_path *path,
983 				  u64 owner, u32 extra_size)
984 {
985 	struct btrfs_extent_item *item;
986 	struct btrfs_extent_item_v0 *ei0;
987 	struct btrfs_extent_ref_v0 *ref0;
988 	struct btrfs_tree_block_info *bi;
989 	struct extent_buffer *leaf;
990 	struct btrfs_key key;
991 	struct btrfs_key found_key;
992 	u32 new_size = sizeof(*item);
993 	u64 refs;
994 	int ret;
995 
996 	leaf = path->nodes[0];
997 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998 
999 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 			     struct btrfs_extent_item_v0);
1002 	refs = btrfs_extent_refs_v0(leaf, ei0);
1003 
1004 	if (owner == (u64)-1) {
1005 		while (1) {
1006 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 				ret = btrfs_next_leaf(root, path);
1008 				if (ret < 0)
1009 					return ret;
1010 				BUG_ON(ret > 0); /* Corruption */
1011 				leaf = path->nodes[0];
1012 			}
1013 			btrfs_item_key_to_cpu(leaf, &found_key,
1014 					      path->slots[0]);
1015 			BUG_ON(key.objectid != found_key.objectid);
1016 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 				path->slots[0]++;
1018 				continue;
1019 			}
1020 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 					      struct btrfs_extent_ref_v0);
1022 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 			break;
1024 		}
1025 	}
1026 	btrfs_release_path(path);
1027 
1028 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 		new_size += sizeof(*bi);
1030 
1031 	new_size -= sizeof(*ei0);
1032 	ret = btrfs_search_slot(trans, root, &key, path,
1033 				new_size + extra_size, 1);
1034 	if (ret < 0)
1035 		return ret;
1036 	BUG_ON(ret); /* Corruption */
1037 
1038 	btrfs_extend_item(root, path, new_size);
1039 
1040 	leaf = path->nodes[0];
1041 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 	btrfs_set_extent_refs(leaf, item, refs);
1043 	/* FIXME: get real generation */
1044 	btrfs_set_extent_generation(leaf, item, 0);
1045 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 		btrfs_set_extent_flags(leaf, item,
1047 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 		bi = (struct btrfs_tree_block_info *)(item + 1);
1050 		/* FIXME: get first key of the block */
1051 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 	} else {
1054 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 	}
1056 	btrfs_mark_buffer_dirty(leaf);
1057 	return 0;
1058 }
1059 #endif
1060 
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	u32 high_crc = ~(u32)0;
1064 	u32 low_crc = ~(u32)0;
1065 	__le64 lenum;
1066 
1067 	lenum = cpu_to_le64(root_objectid);
1068 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 	lenum = cpu_to_le64(owner);
1070 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 	lenum = cpu_to_le64(offset);
1072 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073 
1074 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076 
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 				     struct btrfs_extent_data_ref *ref)
1079 {
1080 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 				    btrfs_extent_data_ref_objectid(leaf, ref),
1082 				    btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084 
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 				 struct btrfs_extent_data_ref *ref,
1087 				 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 		return 0;
1093 	return 1;
1094 }
1095 
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 					   struct btrfs_root *root,
1098 					   struct btrfs_path *path,
1099 					   u64 bytenr, u64 parent,
1100 					   u64 root_objectid,
1101 					   u64 owner, u64 offset)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_extent_data_ref *ref;
1105 	struct extent_buffer *leaf;
1106 	u32 nritems;
1107 	int ret;
1108 	int recow;
1109 	int err = -ENOENT;
1110 
1111 	key.objectid = bytenr;
1112 	if (parent) {
1113 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 		key.offset = parent;
1115 	} else {
1116 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 		key.offset = hash_extent_data_ref(root_objectid,
1118 						  owner, offset);
1119 	}
1120 again:
1121 	recow = 0;
1122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 	if (ret < 0) {
1124 		err = ret;
1125 		goto fail;
1126 	}
1127 
1128 	if (parent) {
1129 		if (!ret)
1130 			return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 		btrfs_release_path(path);
1134 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 		if (ret < 0) {
1136 			err = ret;
1137 			goto fail;
1138 		}
1139 		if (!ret)
1140 			return 0;
1141 #endif
1142 		goto fail;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	nritems = btrfs_header_nritems(leaf);
1147 	while (1) {
1148 		if (path->slots[0] >= nritems) {
1149 			ret = btrfs_next_leaf(root, path);
1150 			if (ret < 0)
1151 				err = ret;
1152 			if (ret)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 			nritems = btrfs_header_nritems(leaf);
1157 			recow = 1;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 		if (key.objectid != bytenr ||
1162 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 			goto fail;
1164 
1165 		ref = btrfs_item_ptr(leaf, path->slots[0],
1166 				     struct btrfs_extent_data_ref);
1167 
1168 		if (match_extent_data_ref(leaf, ref, root_objectid,
1169 					  owner, offset)) {
1170 			if (recow) {
1171 				btrfs_release_path(path);
1172 				goto again;
1173 			}
1174 			err = 0;
1175 			break;
1176 		}
1177 		path->slots[0]++;
1178 	}
1179 fail:
1180 	return err;
1181 }
1182 
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 					   struct btrfs_root *root,
1185 					   struct btrfs_path *path,
1186 					   u64 bytenr, u64 parent,
1187 					   u64 root_objectid, u64 owner,
1188 					   u64 offset, int refs_to_add)
1189 {
1190 	struct btrfs_key key;
1191 	struct extent_buffer *leaf;
1192 	u32 size;
1193 	u32 num_refs;
1194 	int ret;
1195 
1196 	key.objectid = bytenr;
1197 	if (parent) {
1198 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 		key.offset = parent;
1200 		size = sizeof(struct btrfs_shared_data_ref);
1201 	} else {
1202 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 		key.offset = hash_extent_data_ref(root_objectid,
1204 						  owner, offset);
1205 		size = sizeof(struct btrfs_extent_data_ref);
1206 	}
1207 
1208 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 	if (ret && ret != -EEXIST)
1210 		goto fail;
1211 
1212 	leaf = path->nodes[0];
1213 	if (parent) {
1214 		struct btrfs_shared_data_ref *ref;
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_shared_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 		} else {
1220 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 			num_refs += refs_to_add;
1222 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 		}
1224 	} else {
1225 		struct btrfs_extent_data_ref *ref;
1226 		while (ret == -EEXIST) {
1227 			ref = btrfs_item_ptr(leaf, path->slots[0],
1228 					     struct btrfs_extent_data_ref);
1229 			if (match_extent_data_ref(leaf, ref, root_objectid,
1230 						  owner, offset))
1231 				break;
1232 			btrfs_release_path(path);
1233 			key.offset++;
1234 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 						      size);
1236 			if (ret && ret != -EEXIST)
1237 				goto fail;
1238 
1239 			leaf = path->nodes[0];
1240 		}
1241 		ref = btrfs_item_ptr(leaf, path->slots[0],
1242 				     struct btrfs_extent_data_ref);
1243 		if (ret == 0) {
1244 			btrfs_set_extent_data_ref_root(leaf, ref,
1245 						       root_objectid);
1246 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 		} else {
1250 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 			num_refs += refs_to_add;
1252 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 		}
1254 	}
1255 	btrfs_mark_buffer_dirty(leaf);
1256 	ret = 0;
1257 fail:
1258 	btrfs_release_path(path);
1259 	return ret;
1260 }
1261 
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 					   struct btrfs_root *root,
1264 					   struct btrfs_path *path,
1265 					   int refs_to_drop, int *last_ref)
1266 {
1267 	struct btrfs_key key;
1268 	struct btrfs_extent_data_ref *ref1 = NULL;
1269 	struct btrfs_shared_data_ref *ref2 = NULL;
1270 	struct extent_buffer *leaf;
1271 	u32 num_refs = 0;
1272 	int ret = 0;
1273 
1274 	leaf = path->nodes[0];
1275 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276 
1277 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 				      struct btrfs_extent_data_ref);
1280 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 				      struct btrfs_shared_data_ref);
1284 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 		struct btrfs_extent_ref_v0 *ref0;
1288 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 				      struct btrfs_extent_ref_v0);
1290 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 	} else {
1293 		BUG();
1294 	}
1295 
1296 	BUG_ON(num_refs < refs_to_drop);
1297 	num_refs -= refs_to_drop;
1298 
1299 	if (num_refs == 0) {
1300 		ret = btrfs_del_item(trans, root, path);
1301 		*last_ref = 1;
1302 	} else {
1303 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 		else {
1309 			struct btrfs_extent_ref_v0 *ref0;
1310 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 					struct btrfs_extent_ref_v0);
1312 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 		}
1314 #endif
1315 		btrfs_mark_buffer_dirty(leaf);
1316 	}
1317 	return ret;
1318 }
1319 
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 					  struct btrfs_path *path,
1322 					  struct btrfs_extent_inline_ref *iref)
1323 {
1324 	struct btrfs_key key;
1325 	struct extent_buffer *leaf;
1326 	struct btrfs_extent_data_ref *ref1;
1327 	struct btrfs_shared_data_ref *ref2;
1328 	u32 num_refs = 0;
1329 
1330 	leaf = path->nodes[0];
1331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 	if (iref) {
1333 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 		    BTRFS_EXTENT_DATA_REF_KEY) {
1335 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 		} else {
1338 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 		}
1341 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_extent_data_ref);
1344 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_shared_data_ref);
1348 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 		struct btrfs_extent_ref_v0 *ref0;
1352 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_ref_v0);
1354 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 	} else {
1357 		WARN_ON(1);
1358 	}
1359 	return num_refs;
1360 }
1361 
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 					  struct btrfs_root *root,
1364 					  struct btrfs_path *path,
1365 					  u64 bytenr, u64 parent,
1366 					  u64 root_objectid)
1367 {
1368 	struct btrfs_key key;
1369 	int ret;
1370 
1371 	key.objectid = bytenr;
1372 	if (parent) {
1373 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 		key.offset = parent;
1375 	} else {
1376 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 		key.offset = root_objectid;
1378 	}
1379 
1380 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 	if (ret > 0)
1382 		ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 	if (ret == -ENOENT && parent) {
1385 		btrfs_release_path(path);
1386 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 		if (ret > 0)
1389 			ret = -ENOENT;
1390 	}
1391 #endif
1392 	return ret;
1393 }
1394 
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_root *root,
1397 					  struct btrfs_path *path,
1398 					  u64 bytenr, u64 parent,
1399 					  u64 root_objectid)
1400 {
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 	btrfs_release_path(path);
1415 	return ret;
1416 }
1417 
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 	int type;
1421 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 		if (parent > 0)
1423 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 		else
1425 			type = BTRFS_TREE_BLOCK_REF_KEY;
1426 	} else {
1427 		if (parent > 0)
1428 			type = BTRFS_SHARED_DATA_REF_KEY;
1429 		else
1430 			type = BTRFS_EXTENT_DATA_REF_KEY;
1431 	}
1432 	return type;
1433 }
1434 
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 			 struct btrfs_key *key)
1437 
1438 {
1439 	for (; level < BTRFS_MAX_LEVEL; level++) {
1440 		if (!path->nodes[level])
1441 			break;
1442 		if (path->slots[level] + 1 >=
1443 		    btrfs_header_nritems(path->nodes[level]))
1444 			continue;
1445 		if (level == 0)
1446 			btrfs_item_key_to_cpu(path->nodes[level], key,
1447 					      path->slots[level] + 1);
1448 		else
1449 			btrfs_node_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		return 0;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * look for inline back ref. if back ref is found, *ref_ret is set
1458  * to the address of inline back ref, and 0 is returned.
1459  *
1460  * if back ref isn't found, *ref_ret is set to the address where it
1461  * should be inserted, and -ENOENT is returned.
1462  *
1463  * if insert is true and there are too many inline back refs, the path
1464  * points to the extent item, and -EAGAIN is returned.
1465  *
1466  * NOTE: inline back refs are ordered in the same way that back ref
1467  *	 items in the tree are ordered.
1468  */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 				 struct btrfs_root *root,
1472 				 struct btrfs_path *path,
1473 				 struct btrfs_extent_inline_ref **ref_ret,
1474 				 u64 bytenr, u64 num_bytes,
1475 				 u64 parent, u64 root_objectid,
1476 				 u64 owner, u64 offset, int insert)
1477 {
1478 	struct btrfs_key key;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_extent_item *ei;
1481 	struct btrfs_extent_inline_ref *iref;
1482 	u64 flags;
1483 	u64 item_size;
1484 	unsigned long ptr;
1485 	unsigned long end;
1486 	int extra_size;
1487 	int type;
1488 	int want;
1489 	int ret;
1490 	int err = 0;
1491 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 						 SKINNY_METADATA);
1493 
1494 	key.objectid = bytenr;
1495 	key.type = BTRFS_EXTENT_ITEM_KEY;
1496 	key.offset = num_bytes;
1497 
1498 	want = extent_ref_type(parent, owner);
1499 	if (insert) {
1500 		extra_size = btrfs_extent_inline_ref_size(want);
1501 		path->keep_locks = 1;
1502 	} else
1503 		extra_size = -1;
1504 
1505 	/*
1506 	 * Owner is our parent level, so we can just add one to get the level
1507 	 * for the block we are interested in.
1508 	 */
1509 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 		key.type = BTRFS_METADATA_ITEM_KEY;
1511 		key.offset = owner;
1512 	}
1513 
1514 again:
1515 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 	if (ret < 0) {
1517 		err = ret;
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * We may be a newly converted file system which still has the old fat
1523 	 * extent entries for metadata, so try and see if we have one of those.
1524 	 */
1525 	if (ret > 0 && skinny_metadata) {
1526 		skinny_metadata = false;
1527 		if (path->slots[0]) {
1528 			path->slots[0]--;
1529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 					      path->slots[0]);
1531 			if (key.objectid == bytenr &&
1532 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 			    key.offset == num_bytes)
1534 				ret = 0;
1535 		}
1536 		if (ret) {
1537 			key.objectid = bytenr;
1538 			key.type = BTRFS_EXTENT_ITEM_KEY;
1539 			key.offset = num_bytes;
1540 			btrfs_release_path(path);
1541 			goto again;
1542 		}
1543 	}
1544 
1545 	if (ret && !insert) {
1546 		err = -ENOENT;
1547 		goto out;
1548 	} else if (WARN_ON(ret)) {
1549 		err = -EIO;
1550 		goto out;
1551 	}
1552 
1553 	leaf = path->nodes[0];
1554 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 	if (item_size < sizeof(*ei)) {
1557 		if (!insert) {
1558 			err = -ENOENT;
1559 			goto out;
1560 		}
1561 		ret = convert_extent_item_v0(trans, root, path, owner,
1562 					     extra_size);
1563 		if (ret < 0) {
1564 			err = ret;
1565 			goto out;
1566 		}
1567 		leaf = path->nodes[0];
1568 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 	}
1570 #endif
1571 	BUG_ON(item_size < sizeof(*ei));
1572 
1573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 	flags = btrfs_extent_flags(leaf, ei);
1575 
1576 	ptr = (unsigned long)(ei + 1);
1577 	end = (unsigned long)ei + item_size;
1578 
1579 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 		ptr += sizeof(struct btrfs_tree_block_info);
1581 		BUG_ON(ptr > end);
1582 	}
1583 
1584 	err = -ENOENT;
1585 	while (1) {
1586 		if (ptr >= end) {
1587 			WARN_ON(ptr > end);
1588 			break;
1589 		}
1590 		iref = (struct btrfs_extent_inline_ref *)ptr;
1591 		type = btrfs_extent_inline_ref_type(leaf, iref);
1592 		if (want < type)
1593 			break;
1594 		if (want > type) {
1595 			ptr += btrfs_extent_inline_ref_size(type);
1596 			continue;
1597 		}
1598 
1599 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 			struct btrfs_extent_data_ref *dref;
1601 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 			if (match_extent_data_ref(leaf, dref, root_objectid,
1603 						  owner, offset)) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (hash_extent_data_ref_item(leaf, dref) <
1608 			    hash_extent_data_ref(root_objectid, owner, offset))
1609 				break;
1610 		} else {
1611 			u64 ref_offset;
1612 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 			if (parent > 0) {
1614 				if (parent == ref_offset) {
1615 					err = 0;
1616 					break;
1617 				}
1618 				if (ref_offset < parent)
1619 					break;
1620 			} else {
1621 				if (root_objectid == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < root_objectid)
1626 					break;
1627 			}
1628 		}
1629 		ptr += btrfs_extent_inline_ref_size(type);
1630 	}
1631 	if (err == -ENOENT && insert) {
1632 		if (item_size + extra_size >=
1633 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 			err = -EAGAIN;
1635 			goto out;
1636 		}
1637 		/*
1638 		 * To add new inline back ref, we have to make sure
1639 		 * there is no corresponding back ref item.
1640 		 * For simplicity, we just do not add new inline back
1641 		 * ref if there is any kind of item for this block
1642 		 */
1643 		if (find_next_key(path, 0, &key) == 0 &&
1644 		    key.objectid == bytenr &&
1645 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 	}
1650 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 	if (insert) {
1653 		path->keep_locks = 0;
1654 		btrfs_unlock_up_safe(path, 1);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  * helper to add new inline back ref
1661  */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 				 struct btrfs_path *path,
1665 				 struct btrfs_extent_inline_ref *iref,
1666 				 u64 parent, u64 root_objectid,
1667 				 u64 owner, u64 offset, int refs_to_add,
1668 				 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 	struct extent_buffer *leaf;
1671 	struct btrfs_extent_item *ei;
1672 	unsigned long ptr;
1673 	unsigned long end;
1674 	unsigned long item_offset;
1675 	u64 refs;
1676 	int size;
1677 	int type;
1678 
1679 	leaf = path->nodes[0];
1680 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 	item_offset = (unsigned long)iref - (unsigned long)ei;
1682 
1683 	type = extent_ref_type(parent, owner);
1684 	size = btrfs_extent_inline_ref_size(type);
1685 
1686 	btrfs_extend_item(root, path, size);
1687 
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	refs = btrfs_extent_refs(leaf, ei);
1690 	refs += refs_to_add;
1691 	btrfs_set_extent_refs(leaf, ei, refs);
1692 	if (extent_op)
1693 		__run_delayed_extent_op(extent_op, leaf, ei);
1694 
1695 	ptr = (unsigned long)ei + item_offset;
1696 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 	if (ptr < end - size)
1698 		memmove_extent_buffer(leaf, ptr + size, ptr,
1699 				      end - size - ptr);
1700 
1701 	iref = (struct btrfs_extent_inline_ref *)ptr;
1702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 		struct btrfs_extent_data_ref *dref;
1705 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 		struct btrfs_shared_data_ref *sref;
1712 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 	} else {
1718 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 	}
1720 	btrfs_mark_buffer_dirty(leaf);
1721 }
1722 
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref **ref_ret,
1727 				 u64 bytenr, u64 num_bytes, u64 parent,
1728 				 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 	int ret;
1731 
1732 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 					   bytenr, num_bytes, parent,
1734 					   root_objectid, owner, offset, 0);
1735 	if (ret != -ENOENT)
1736 		return ret;
1737 
1738 	btrfs_release_path(path);
1739 	*ref_ret = NULL;
1740 
1741 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 					    root_objectid);
1744 	} else {
1745 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 					     root_objectid, owner, offset);
1747 	}
1748 	return ret;
1749 }
1750 
1751 /*
1752  * helper to update/remove inline back ref
1753  */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 				  struct btrfs_path *path,
1757 				  struct btrfs_extent_inline_ref *iref,
1758 				  int refs_to_mod,
1759 				  struct btrfs_delayed_extent_op *extent_op,
1760 				  int *last_ref)
1761 {
1762 	struct extent_buffer *leaf;
1763 	struct btrfs_extent_item *ei;
1764 	struct btrfs_extent_data_ref *dref = NULL;
1765 	struct btrfs_shared_data_ref *sref = NULL;
1766 	unsigned long ptr;
1767 	unsigned long end;
1768 	u32 item_size;
1769 	int size;
1770 	int type;
1771 	u64 refs;
1772 
1773 	leaf = path->nodes[0];
1774 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 	refs = btrfs_extent_refs(leaf, ei);
1776 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 	refs += refs_to_mod;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	type = btrfs_extent_inline_ref_type(leaf, iref);
1783 
1784 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 		refs = btrfs_extent_data_ref_count(leaf, dref);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 		refs = btrfs_shared_data_ref_count(leaf, sref);
1790 	} else {
1791 		refs = 1;
1792 		BUG_ON(refs_to_mod != -1);
1793 	}
1794 
1795 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 	refs += refs_to_mod;
1797 
1798 	if (refs > 0) {
1799 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 		else
1802 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 	} else {
1804 		*last_ref = 1;
1805 		size =  btrfs_extent_inline_ref_size(type);
1806 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 		ptr = (unsigned long)iref;
1808 		end = (unsigned long)ei + item_size;
1809 		if (ptr + size < end)
1810 			memmove_extent_buffer(leaf, ptr, ptr + size,
1811 					      end - ptr - size);
1812 		item_size -= size;
1813 		btrfs_truncate_item(root, path, item_size, 1);
1814 	}
1815 	btrfs_mark_buffer_dirty(leaf);
1816 }
1817 
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 num_bytes, u64 parent,
1823 				 u64 root_objectid, u64 owner,
1824 				 u64 offset, int refs_to_add,
1825 				 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 	struct btrfs_extent_inline_ref *iref;
1828 	int ret;
1829 
1830 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 					   bytenr, num_bytes, parent,
1832 					   root_objectid, owner, offset, 1);
1833 	if (ret == 0) {
1834 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 		update_inline_extent_backref(root, path, iref,
1836 					     refs_to_add, extent_op, NULL);
1837 	} else if (ret == -ENOENT) {
1838 		setup_inline_extent_backref(root, path, iref, parent,
1839 					    root_objectid, owner, offset,
1840 					    refs_to_add, extent_op);
1841 		ret = 0;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 				 struct btrfs_root *root,
1848 				 struct btrfs_path *path,
1849 				 u64 bytenr, u64 parent, u64 root_objectid,
1850 				 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 	int ret;
1853 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 		BUG_ON(refs_to_add != 1);
1855 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 					    parent, root_objectid);
1857 	} else {
1858 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 					     parent, root_objectid,
1860 					     owner, offset, refs_to_add);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 				 struct btrfs_root *root,
1867 				 struct btrfs_path *path,
1868 				 struct btrfs_extent_inline_ref *iref,
1869 				 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!is_data && refs_to_drop != 1);
1874 	if (iref) {
1875 		update_inline_extent_backref(root, path, iref,
1876 					     -refs_to_drop, NULL, last_ref);
1877 	} else if (is_data) {
1878 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 					     last_ref);
1880 	} else {
1881 		*last_ref = 1;
1882 		ret = btrfs_del_item(trans, root, path);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 				u64 start, u64 len)
1889 {
1890 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892 
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 			 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 	int ret;
1897 	u64 discarded_bytes = 0;
1898 	struct btrfs_bio *bbio = NULL;
1899 
1900 
1901 	/* Tell the block device(s) that the sectors can be discarded */
1902 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 			      bytenr, &num_bytes, &bbio, 0);
1904 	/* Error condition is -ENOMEM */
1905 	if (!ret) {
1906 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 		int i;
1908 
1909 
1910 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 			if (!stripe->dev->can_discard)
1912 				continue;
1913 
1914 			ret = btrfs_issue_discard(stripe->dev->bdev,
1915 						  stripe->physical,
1916 						  stripe->length);
1917 			if (!ret)
1918 				discarded_bytes += stripe->length;
1919 			else if (ret != -EOPNOTSUPP)
1920 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921 
1922 			/*
1923 			 * Just in case we get back EOPNOTSUPP for some reason,
1924 			 * just ignore the return value so we don't screw up
1925 			 * people calling discard_extent.
1926 			 */
1927 			ret = 0;
1928 		}
1929 		btrfs_put_bbio(bbio);
1930 	}
1931 
1932 	if (actual_bytes)
1933 		*actual_bytes = discarded_bytes;
1934 
1935 
1936 	if (ret == -EOPNOTSUPP)
1937 		ret = 0;
1938 	return ret;
1939 }
1940 
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 			 struct btrfs_root *root,
1944 			 u64 bytenr, u64 num_bytes, u64 parent,
1945 			 u64 root_objectid, u64 owner, u64 offset,
1946 			 int no_quota)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  int no_quota,
1974 				  struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 	struct btrfs_fs_info *fs_info = root->fs_info;
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	struct btrfs_key key;
1981 	u64 refs;
1982 	int ret;
1983 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 		goto out;
2001 	/*
2002 	 * Ok we were able to insert an inline extent and it appears to be a new
2003 	 * reference, deal with the qgroup accounting.
2004 	 */
2005 	if (!ret && !no_quota) {
2006 		ASSERT(root->fs_info->quota_enabled);
2007 		leaf = path->nodes[0];
2008 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 		item = btrfs_item_ptr(leaf, path->slots[0],
2010 				      struct btrfs_extent_item);
2011 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 		btrfs_release_path(path);
2014 
2015 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 					      bytenr, num_bytes, type, 0);
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 	 * inline extent ref, so just update the reference count and add a
2023 	 * normal backref.
2024 	 */
2025 	leaf = path->nodes[0];
2026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 	refs = btrfs_extent_refs(leaf, item);
2029 	if (refs)
2030 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 	if (extent_op)
2033 		__run_delayed_extent_op(extent_op, leaf, item);
2034 
2035 	btrfs_mark_buffer_dirty(leaf);
2036 	btrfs_release_path(path);
2037 
2038 	if (!no_quota) {
2039 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 					      bytenr, num_bytes, type, 0);
2041 		if (ret)
2042 			goto out;
2043 	}
2044 
2045 	path->reada = 1;
2046 	path->leave_spinning = 1;
2047 	/* now insert the actual backref */
2048 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 				    path, bytenr, parent, root_objectid,
2050 				    owner, offset, refs_to_add);
2051 	if (ret)
2052 		btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 	btrfs_free_path(path);
2055 	return ret;
2056 }
2057 
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 				struct btrfs_root *root,
2060 				struct btrfs_delayed_ref_node *node,
2061 				struct btrfs_delayed_extent_op *extent_op,
2062 				int insert_reserved)
2063 {
2064 	int ret = 0;
2065 	struct btrfs_delayed_data_ref *ref;
2066 	struct btrfs_key ins;
2067 	u64 parent = 0;
2068 	u64 ref_root = 0;
2069 	u64 flags = 0;
2070 
2071 	ins.objectid = node->bytenr;
2072 	ins.offset = node->num_bytes;
2073 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2074 
2075 	ref = btrfs_delayed_node_to_data_ref(node);
2076 	trace_run_delayed_data_ref(node, ref, node->action);
2077 
2078 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 		parent = ref->parent;
2080 	ref_root = ref->root;
2081 
2082 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 		if (extent_op)
2084 			flags |= extent_op->flags_to_set;
2085 		ret = alloc_reserved_file_extent(trans, root,
2086 						 parent, ref_root, flags,
2087 						 ref->objectid, ref->offset,
2088 						 &ins, node->ref_mod);
2089 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 					     node->num_bytes, parent,
2092 					     ref_root, ref->objectid,
2093 					     ref->offset, node->ref_mod,
2094 					     node->no_quota, extent_op);
2095 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 					  node->num_bytes, parent,
2098 					  ref_root, ref->objectid,
2099 					  ref->offset, node->ref_mod,
2100 					  extent_op, node->no_quota);
2101 	} else {
2102 		BUG();
2103 	}
2104 	return ret;
2105 }
2106 
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 				    struct extent_buffer *leaf,
2109 				    struct btrfs_extent_item *ei)
2110 {
2111 	u64 flags = btrfs_extent_flags(leaf, ei);
2112 	if (extent_op->update_flags) {
2113 		flags |= extent_op->flags_to_set;
2114 		btrfs_set_extent_flags(leaf, ei, flags);
2115 	}
2116 
2117 	if (extent_op->update_key) {
2118 		struct btrfs_tree_block_info *bi;
2119 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 	}
2123 }
2124 
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 				 struct btrfs_root *root,
2127 				 struct btrfs_delayed_ref_node *node,
2128 				 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 	struct btrfs_key key;
2131 	struct btrfs_path *path;
2132 	struct btrfs_extent_item *ei;
2133 	struct extent_buffer *leaf;
2134 	u32 item_size;
2135 	int ret;
2136 	int err = 0;
2137 	int metadata = !extent_op->is_data;
2138 
2139 	if (trans->aborted)
2140 		return 0;
2141 
2142 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 		metadata = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	key.objectid = node->bytenr;
2150 
2151 	if (metadata) {
2152 		key.type = BTRFS_METADATA_ITEM_KEY;
2153 		key.offset = extent_op->level;
2154 	} else {
2155 		key.type = BTRFS_EXTENT_ITEM_KEY;
2156 		key.offset = node->num_bytes;
2157 	}
2158 
2159 again:
2160 	path->reada = 1;
2161 	path->leave_spinning = 1;
2162 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 				path, 0, 1);
2164 	if (ret < 0) {
2165 		err = ret;
2166 		goto out;
2167 	}
2168 	if (ret > 0) {
2169 		if (metadata) {
2170 			if (path->slots[0] > 0) {
2171 				path->slots[0]--;
2172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 						      path->slots[0]);
2174 				if (key.objectid == node->bytenr &&
2175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 				    key.offset == node->num_bytes)
2177 					ret = 0;
2178 			}
2179 			if (ret > 0) {
2180 				btrfs_release_path(path);
2181 				metadata = 0;
2182 
2183 				key.objectid = node->bytenr;
2184 				key.offset = node->num_bytes;
2185 				key.type = BTRFS_EXTENT_ITEM_KEY;
2186 				goto again;
2187 			}
2188 		} else {
2189 			err = -EIO;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	leaf = path->nodes[0];
2195 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 	if (item_size < sizeof(*ei)) {
2198 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 					     path, (u64)-1, 0);
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 		leaf = path->nodes[0];
2205 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 	}
2207 #endif
2208 	BUG_ON(item_size < sizeof(*ei));
2209 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 	__run_delayed_extent_op(extent_op, leaf, ei);
2211 
2212 	btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 	btrfs_free_path(path);
2215 	return err;
2216 }
2217 
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 				struct btrfs_root *root,
2220 				struct btrfs_delayed_ref_node *node,
2221 				struct btrfs_delayed_extent_op *extent_op,
2222 				int insert_reserved)
2223 {
2224 	int ret = 0;
2225 	struct btrfs_delayed_tree_ref *ref;
2226 	struct btrfs_key ins;
2227 	u64 parent = 0;
2228 	u64 ref_root = 0;
2229 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 						 SKINNY_METADATA);
2231 
2232 	ref = btrfs_delayed_node_to_tree_ref(node);
2233 	trace_run_delayed_tree_ref(node, ref, node->action);
2234 
2235 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 		parent = ref->parent;
2237 	ref_root = ref->root;
2238 
2239 	ins.objectid = node->bytenr;
2240 	if (skinny_metadata) {
2241 		ins.offset = ref->level;
2242 		ins.type = BTRFS_METADATA_ITEM_KEY;
2243 	} else {
2244 		ins.offset = node->num_bytes;
2245 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 	}
2247 
2248 	BUG_ON(node->ref_mod != 1);
2249 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 		BUG_ON(!extent_op || !extent_op->update_flags);
2251 		ret = alloc_reserved_tree_block(trans, root,
2252 						parent, ref_root,
2253 						extent_op->flags_to_set,
2254 						&extent_op->key,
2255 						ref->level, &ins,
2256 						node->no_quota);
2257 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 					     node->num_bytes, parent, ref_root,
2260 					     ref->level, 0, 1, node->no_quota,
2261 					     extent_op);
2262 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 					  node->num_bytes, parent, ref_root,
2265 					  ref->level, 0, 1, extent_op,
2266 					  node->no_quota);
2267 	} else {
2268 		BUG();
2269 	}
2270 	return ret;
2271 }
2272 
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 			       struct btrfs_root *root,
2276 			       struct btrfs_delayed_ref_node *node,
2277 			       struct btrfs_delayed_extent_op *extent_op,
2278 			       int insert_reserved)
2279 {
2280 	int ret = 0;
2281 
2282 	if (trans->aborted) {
2283 		if (insert_reserved)
2284 			btrfs_pin_extent(root, node->bytenr,
2285 					 node->num_bytes, 1);
2286 		return 0;
2287 	}
2288 
2289 	if (btrfs_delayed_ref_is_head(node)) {
2290 		struct btrfs_delayed_ref_head *head;
2291 		/*
2292 		 * we've hit the end of the chain and we were supposed
2293 		 * to insert this extent into the tree.  But, it got
2294 		 * deleted before we ever needed to insert it, so all
2295 		 * we have to do is clean up the accounting
2296 		 */
2297 		BUG_ON(extent_op);
2298 		head = btrfs_delayed_node_to_head(node);
2299 		trace_run_delayed_ref_head(node, head, node->action);
2300 
2301 		if (insert_reserved) {
2302 			btrfs_pin_extent(root, node->bytenr,
2303 					 node->num_bytes, 1);
2304 			if (head->is_data) {
2305 				ret = btrfs_del_csums(trans, root,
2306 						      node->bytenr,
2307 						      node->num_bytes);
2308 			}
2309 		}
2310 		return ret;
2311 	}
2312 
2313 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 					   insert_reserved);
2317 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 					   insert_reserved);
2321 	else
2322 		BUG();
2323 	return ret;
2324 }
2325 
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 	struct rb_node *node;
2330 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331 
2332 	/*
2333 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 	 * this prevents ref count from going down to zero when
2335 	 * there still are pending delayed ref.
2336 	 */
2337 	node = rb_first(&head->ref_root);
2338 	while (node) {
2339 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 				rb_node);
2341 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 			return ref;
2343 		else if (last == NULL)
2344 			last = ref;
2345 		node = rb_next(node);
2346 	}
2347 	return last;
2348 }
2349 
2350 /*
2351  * Returns 0 on success or if called with an already aborted transaction.
2352  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353  */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 					     struct btrfs_root *root,
2356 					     unsigned long nr)
2357 {
2358 	struct btrfs_delayed_ref_root *delayed_refs;
2359 	struct btrfs_delayed_ref_node *ref;
2360 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 	struct btrfs_delayed_extent_op *extent_op;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	ktime_t start = ktime_get();
2364 	int ret;
2365 	unsigned long count = 0;
2366 	unsigned long actual_count = 0;
2367 	int must_insert_reserved = 0;
2368 
2369 	delayed_refs = &trans->transaction->delayed_refs;
2370 	while (1) {
2371 		if (!locked_ref) {
2372 			if (count >= nr)
2373 				break;
2374 
2375 			spin_lock(&delayed_refs->lock);
2376 			locked_ref = btrfs_select_ref_head(trans);
2377 			if (!locked_ref) {
2378 				spin_unlock(&delayed_refs->lock);
2379 				break;
2380 			}
2381 
2382 			/* grab the lock that says we are going to process
2383 			 * all the refs for this head */
2384 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 			spin_unlock(&delayed_refs->lock);
2386 			/*
2387 			 * we may have dropped the spin lock to get the head
2388 			 * mutex lock, and that might have given someone else
2389 			 * time to free the head.  If that's true, it has been
2390 			 * removed from our list and we can move on.
2391 			 */
2392 			if (ret == -EAGAIN) {
2393 				locked_ref = NULL;
2394 				count++;
2395 				continue;
2396 			}
2397 		}
2398 
2399 		/*
2400 		 * We need to try and merge add/drops of the same ref since we
2401 		 * can run into issues with relocate dropping the implicit ref
2402 		 * and then it being added back again before the drop can
2403 		 * finish.  If we merged anything we need to re-loop so we can
2404 		 * get a good ref.
2405 		 */
2406 		spin_lock(&locked_ref->lock);
2407 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 					 locked_ref);
2409 
2410 		/*
2411 		 * locked_ref is the head node, so we have to go one
2412 		 * node back for any delayed ref updates
2413 		 */
2414 		ref = select_delayed_ref(locked_ref);
2415 
2416 		if (ref && ref->seq &&
2417 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 			spin_unlock(&locked_ref->lock);
2419 			btrfs_delayed_ref_unlock(locked_ref);
2420 			spin_lock(&delayed_refs->lock);
2421 			locked_ref->processing = 0;
2422 			delayed_refs->num_heads_ready++;
2423 			spin_unlock(&delayed_refs->lock);
2424 			locked_ref = NULL;
2425 			cond_resched();
2426 			count++;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * record the must insert reserved flag before we
2432 		 * drop the spin lock.
2433 		 */
2434 		must_insert_reserved = locked_ref->must_insert_reserved;
2435 		locked_ref->must_insert_reserved = 0;
2436 
2437 		extent_op = locked_ref->extent_op;
2438 		locked_ref->extent_op = NULL;
2439 
2440 		if (!ref) {
2441 
2442 
2443 			/* All delayed refs have been processed, Go ahead
2444 			 * and send the head node to run_one_delayed_ref,
2445 			 * so that any accounting fixes can happen
2446 			 */
2447 			ref = &locked_ref->node;
2448 
2449 			if (extent_op && must_insert_reserved) {
2450 				btrfs_free_delayed_extent_op(extent_op);
2451 				extent_op = NULL;
2452 			}
2453 
2454 			if (extent_op) {
2455 				spin_unlock(&locked_ref->lock);
2456 				ret = run_delayed_extent_op(trans, root,
2457 							    ref, extent_op);
2458 				btrfs_free_delayed_extent_op(extent_op);
2459 
2460 				if (ret) {
2461 					/*
2462 					 * Need to reset must_insert_reserved if
2463 					 * there was an error so the abort stuff
2464 					 * can cleanup the reserved space
2465 					 * properly.
2466 					 */
2467 					if (must_insert_reserved)
2468 						locked_ref->must_insert_reserved = 1;
2469 					locked_ref->processing = 0;
2470 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 					btrfs_delayed_ref_unlock(locked_ref);
2472 					return ret;
2473 				}
2474 				continue;
2475 			}
2476 
2477 			/*
2478 			 * Need to drop our head ref lock and re-aqcuire the
2479 			 * delayed ref lock and then re-check to make sure
2480 			 * nobody got added.
2481 			 */
2482 			spin_unlock(&locked_ref->lock);
2483 			spin_lock(&delayed_refs->lock);
2484 			spin_lock(&locked_ref->lock);
2485 			if (rb_first(&locked_ref->ref_root) ||
2486 			    locked_ref->extent_op) {
2487 				spin_unlock(&locked_ref->lock);
2488 				spin_unlock(&delayed_refs->lock);
2489 				continue;
2490 			}
2491 			ref->in_tree = 0;
2492 			delayed_refs->num_heads--;
2493 			rb_erase(&locked_ref->href_node,
2494 				 &delayed_refs->href_root);
2495 			spin_unlock(&delayed_refs->lock);
2496 		} else {
2497 			actual_count++;
2498 			ref->in_tree = 0;
2499 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 		}
2501 		atomic_dec(&delayed_refs->num_entries);
2502 
2503 		if (!btrfs_delayed_ref_is_head(ref)) {
2504 			/*
2505 			 * when we play the delayed ref, also correct the
2506 			 * ref_mod on head
2507 			 */
2508 			switch (ref->action) {
2509 			case BTRFS_ADD_DELAYED_REF:
2510 			case BTRFS_ADD_DELAYED_EXTENT:
2511 				locked_ref->node.ref_mod -= ref->ref_mod;
2512 				break;
2513 			case BTRFS_DROP_DELAYED_REF:
2514 				locked_ref->node.ref_mod += ref->ref_mod;
2515 				break;
2516 			default:
2517 				WARN_ON(1);
2518 			}
2519 		}
2520 		spin_unlock(&locked_ref->lock);
2521 
2522 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 					  must_insert_reserved);
2524 
2525 		btrfs_free_delayed_extent_op(extent_op);
2526 		if (ret) {
2527 			locked_ref->processing = 0;
2528 			btrfs_delayed_ref_unlock(locked_ref);
2529 			btrfs_put_delayed_ref(ref);
2530 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 			return ret;
2532 		}
2533 
2534 		/*
2535 		 * If this node is a head, that means all the refs in this head
2536 		 * have been dealt with, and we will pick the next head to deal
2537 		 * with, so we must unlock the head and drop it from the cluster
2538 		 * list before we release it.
2539 		 */
2540 		if (btrfs_delayed_ref_is_head(ref)) {
2541 			btrfs_delayed_ref_unlock(locked_ref);
2542 			locked_ref = NULL;
2543 		}
2544 		btrfs_put_delayed_ref(ref);
2545 		count++;
2546 		cond_resched();
2547 	}
2548 
2549 	/*
2550 	 * We don't want to include ref heads since we can have empty ref heads
2551 	 * and those will drastically skew our runtime down since we just do
2552 	 * accounting, no actual extent tree updates.
2553 	 */
2554 	if (actual_count > 0) {
2555 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 		u64 avg;
2557 
2558 		/*
2559 		 * We weigh the current average higher than our current runtime
2560 		 * to avoid large swings in the average.
2561 		 */
2562 		spin_lock(&delayed_refs->lock);
2563 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 		avg = div64_u64(avg, 4);
2565 		fs_info->avg_delayed_ref_runtime = avg;
2566 		spin_unlock(&delayed_refs->lock);
2567 	}
2568 	return 0;
2569 }
2570 
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573  * Normally delayed refs get processed in ascending bytenr order. This
2574  * correlates in most cases to the order added. To expose dependencies on this
2575  * order, we start to process the tree in the middle instead of the beginning
2576  */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 	struct rb_node *n = root->rb_node;
2580 	struct btrfs_delayed_ref_node *entry;
2581 	int alt = 1;
2582 	u64 middle;
2583 	u64 first = 0, last = 0;
2584 
2585 	n = rb_first(root);
2586 	if (n) {
2587 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 		first = entry->bytenr;
2589 	}
2590 	n = rb_last(root);
2591 	if (n) {
2592 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 		last = entry->bytenr;
2594 	}
2595 	n = root->rb_node;
2596 
2597 	while (n) {
2598 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 		WARN_ON(!entry->in_tree);
2600 
2601 		middle = entry->bytenr;
2602 
2603 		if (alt)
2604 			n = n->rb_left;
2605 		else
2606 			n = n->rb_right;
2607 
2608 		alt = 1 - alt;
2609 	}
2610 	return middle;
2611 }
2612 #endif
2613 
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 	u64 num_bytes;
2617 
2618 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 			     sizeof(struct btrfs_extent_inline_ref));
2620 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622 
2623 	/*
2624 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 	 * closer to what we're really going to want to ouse.
2626 	 */
2627 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629 
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 				       struct btrfs_root *root)
2632 {
2633 	struct btrfs_block_rsv *global_rsv;
2634 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 	u64 num_bytes;
2636 	int ret = 0;
2637 
2638 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 	num_heads = heads_to_leaves(root, num_heads);
2640 	if (num_heads > 1)
2641 		num_bytes += (num_heads - 1) * root->nodesize;
2642 	num_bytes <<= 1;
2643 	global_rsv = &root->fs_info->global_block_rsv;
2644 
2645 	/*
2646 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 	 * wiggle room since running delayed refs can create more delayed refs.
2648 	 */
2649 	if (global_rsv->space_info->full)
2650 		num_bytes <<= 1;
2651 
2652 	spin_lock(&global_rsv->lock);
2653 	if (global_rsv->reserved <= num_bytes)
2654 		ret = 1;
2655 	spin_unlock(&global_rsv->lock);
2656 	return ret;
2657 }
2658 
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 				       struct btrfs_root *root)
2661 {
2662 	struct btrfs_fs_info *fs_info = root->fs_info;
2663 	u64 num_entries =
2664 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 	u64 avg_runtime;
2666 	u64 val;
2667 
2668 	smp_mb();
2669 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 	val = num_entries * avg_runtime;
2671 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 		return 1;
2673 	if (val >= NSEC_PER_SEC / 2)
2674 		return 2;
2675 
2676 	return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678 
2679 struct async_delayed_refs {
2680 	struct btrfs_root *root;
2681 	int count;
2682 	int error;
2683 	int sync;
2684 	struct completion wait;
2685 	struct btrfs_work work;
2686 };
2687 
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 	struct async_delayed_refs *async;
2691 	struct btrfs_trans_handle *trans;
2692 	int ret;
2693 
2694 	async = container_of(work, struct async_delayed_refs, work);
2695 
2696 	trans = btrfs_join_transaction(async->root);
2697 	if (IS_ERR(trans)) {
2698 		async->error = PTR_ERR(trans);
2699 		goto done;
2700 	}
2701 
2702 	/*
2703 	 * trans->sync means that when we call end_transaciton, we won't
2704 	 * wait on delayed refs
2705 	 */
2706 	trans->sync = true;
2707 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 	if (ret)
2709 		async->error = ret;
2710 
2711 	ret = btrfs_end_transaction(trans, async->root);
2712 	if (ret && !async->error)
2713 		async->error = ret;
2714 done:
2715 	if (async->sync)
2716 		complete(&async->wait);
2717 	else
2718 		kfree(async);
2719 }
2720 
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 				 unsigned long count, int wait)
2723 {
2724 	struct async_delayed_refs *async;
2725 	int ret;
2726 
2727 	async = kmalloc(sizeof(*async), GFP_NOFS);
2728 	if (!async)
2729 		return -ENOMEM;
2730 
2731 	async->root = root->fs_info->tree_root;
2732 	async->count = count;
2733 	async->error = 0;
2734 	if (wait)
2735 		async->sync = 1;
2736 	else
2737 		async->sync = 0;
2738 	init_completion(&async->wait);
2739 
2740 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 			delayed_ref_async_start, NULL, NULL);
2742 
2743 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744 
2745 	if (wait) {
2746 		wait_for_completion(&async->wait);
2747 		ret = async->error;
2748 		kfree(async);
2749 		return ret;
2750 	}
2751 	return 0;
2752 }
2753 
2754 /*
2755  * this starts processing the delayed reference count updates and
2756  * extent insertions we have queued up so far.  count can be
2757  * 0, which means to process everything in the tree at the start
2758  * of the run (but not newly added entries), or it can be some target
2759  * number you'd like to process.
2760  *
2761  * Returns 0 on success or if called with an aborted transaction
2762  * Returns <0 on error and aborts the transaction
2763  */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 			   struct btrfs_root *root, unsigned long count)
2766 {
2767 	struct rb_node *node;
2768 	struct btrfs_delayed_ref_root *delayed_refs;
2769 	struct btrfs_delayed_ref_head *head;
2770 	int ret;
2771 	int run_all = count == (unsigned long)-1;
2772 
2773 	/* We'll clean this up in btrfs_cleanup_transaction */
2774 	if (trans->aborted)
2775 		return 0;
2776 
2777 	if (root == root->fs_info->extent_root)
2778 		root = root->fs_info->tree_root;
2779 
2780 	delayed_refs = &trans->transaction->delayed_refs;
2781 	if (count == 0)
2782 		count = atomic_read(&delayed_refs->num_entries) * 2;
2783 
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 	ret = __btrfs_run_delayed_refs(trans, root, count);
2789 	if (ret < 0) {
2790 		btrfs_abort_transaction(trans, root, ret);
2791 		return ret;
2792 	}
2793 
2794 	if (run_all) {
2795 		if (!list_empty(&trans->new_bgs))
2796 			btrfs_create_pending_block_groups(trans, root);
2797 
2798 		spin_lock(&delayed_refs->lock);
2799 		node = rb_first(&delayed_refs->href_root);
2800 		if (!node) {
2801 			spin_unlock(&delayed_refs->lock);
2802 			goto out;
2803 		}
2804 		count = (unsigned long)-1;
2805 
2806 		while (node) {
2807 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 					href_node);
2809 			if (btrfs_delayed_ref_is_head(&head->node)) {
2810 				struct btrfs_delayed_ref_node *ref;
2811 
2812 				ref = &head->node;
2813 				atomic_inc(&ref->refs);
2814 
2815 				spin_unlock(&delayed_refs->lock);
2816 				/*
2817 				 * Mutex was contended, block until it's
2818 				 * released and try again
2819 				 */
2820 				mutex_lock(&head->mutex);
2821 				mutex_unlock(&head->mutex);
2822 
2823 				btrfs_put_delayed_ref(ref);
2824 				cond_resched();
2825 				goto again;
2826 			} else {
2827 				WARN_ON(1);
2828 			}
2829 			node = rb_next(node);
2830 		}
2831 		spin_unlock(&delayed_refs->lock);
2832 		cond_resched();
2833 		goto again;
2834 	}
2835 out:
2836 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 	if (ret)
2838 		return ret;
2839 	assert_qgroups_uptodate(trans);
2840 	return 0;
2841 }
2842 
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 				struct btrfs_root *root,
2845 				u64 bytenr, u64 num_bytes, u64 flags,
2846 				int level, int is_data)
2847 {
2848 	struct btrfs_delayed_extent_op *extent_op;
2849 	int ret;
2850 
2851 	extent_op = btrfs_alloc_delayed_extent_op();
2852 	if (!extent_op)
2853 		return -ENOMEM;
2854 
2855 	extent_op->flags_to_set = flags;
2856 	extent_op->update_flags = 1;
2857 	extent_op->update_key = 0;
2858 	extent_op->is_data = is_data ? 1 : 0;
2859 	extent_op->level = level;
2860 
2861 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 					  num_bytes, extent_op);
2863 	if (ret)
2864 		btrfs_free_delayed_extent_op(extent_op);
2865 	return ret;
2866 }
2867 
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 				      struct btrfs_root *root,
2870 				      struct btrfs_path *path,
2871 				      u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 	struct btrfs_delayed_ref_head *head;
2874 	struct btrfs_delayed_ref_node *ref;
2875 	struct btrfs_delayed_data_ref *data_ref;
2876 	struct btrfs_delayed_ref_root *delayed_refs;
2877 	struct rb_node *node;
2878 	int ret = 0;
2879 
2880 	delayed_refs = &trans->transaction->delayed_refs;
2881 	spin_lock(&delayed_refs->lock);
2882 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 	if (!head) {
2884 		spin_unlock(&delayed_refs->lock);
2885 		return 0;
2886 	}
2887 
2888 	if (!mutex_trylock(&head->mutex)) {
2889 		atomic_inc(&head->node.refs);
2890 		spin_unlock(&delayed_refs->lock);
2891 
2892 		btrfs_release_path(path);
2893 
2894 		/*
2895 		 * Mutex was contended, block until it's released and let
2896 		 * caller try again
2897 		 */
2898 		mutex_lock(&head->mutex);
2899 		mutex_unlock(&head->mutex);
2900 		btrfs_put_delayed_ref(&head->node);
2901 		return -EAGAIN;
2902 	}
2903 	spin_unlock(&delayed_refs->lock);
2904 
2905 	spin_lock(&head->lock);
2906 	node = rb_first(&head->ref_root);
2907 	while (node) {
2908 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 		node = rb_next(node);
2910 
2911 		/* If it's a shared ref we know a cross reference exists */
2912 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 			ret = 1;
2914 			break;
2915 		}
2916 
2917 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2918 
2919 		/*
2920 		 * If our ref doesn't match the one we're currently looking at
2921 		 * then we have a cross reference.
2922 		 */
2923 		if (data_ref->root != root->root_key.objectid ||
2924 		    data_ref->objectid != objectid ||
2925 		    data_ref->offset != offset) {
2926 			ret = 1;
2927 			break;
2928 		}
2929 	}
2930 	spin_unlock(&head->lock);
2931 	mutex_unlock(&head->mutex);
2932 	return ret;
2933 }
2934 
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 					struct btrfs_root *root,
2937 					struct btrfs_path *path,
2938 					u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 	struct extent_buffer *leaf;
2942 	struct btrfs_extent_data_ref *ref;
2943 	struct btrfs_extent_inline_ref *iref;
2944 	struct btrfs_extent_item *ei;
2945 	struct btrfs_key key;
2946 	u32 item_size;
2947 	int ret;
2948 
2949 	key.objectid = bytenr;
2950 	key.offset = (u64)-1;
2951 	key.type = BTRFS_EXTENT_ITEM_KEY;
2952 
2953 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 	if (ret < 0)
2955 		goto out;
2956 	BUG_ON(ret == 0); /* Corruption */
2957 
2958 	ret = -ENOENT;
2959 	if (path->slots[0] == 0)
2960 		goto out;
2961 
2962 	path->slots[0]--;
2963 	leaf = path->nodes[0];
2964 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965 
2966 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 		goto out;
2968 
2969 	ret = 1;
2970 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 	if (item_size < sizeof(*ei)) {
2973 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 		goto out;
2975 	}
2976 #endif
2977 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978 
2979 	if (item_size != sizeof(*ei) +
2980 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 		goto out;
2982 
2983 	if (btrfs_extent_generation(leaf, ei) <=
2984 	    btrfs_root_last_snapshot(&root->root_item))
2985 		goto out;
2986 
2987 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 	    BTRFS_EXTENT_DATA_REF_KEY)
2990 		goto out;
2991 
2992 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 	if (btrfs_extent_refs(leaf, ei) !=
2994 	    btrfs_extent_data_ref_count(leaf, ref) ||
2995 	    btrfs_extent_data_ref_root(leaf, ref) !=
2996 	    root->root_key.objectid ||
2997 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 		goto out;
3000 
3001 	ret = 0;
3002 out:
3003 	return ret;
3004 }
3005 
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 			  struct btrfs_root *root,
3008 			  u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 	struct btrfs_path *path;
3011 	int ret;
3012 	int ret2;
3013 
3014 	path = btrfs_alloc_path();
3015 	if (!path)
3016 		return -ENOENT;
3017 
3018 	do {
3019 		ret = check_committed_ref(trans, root, path, objectid,
3020 					  offset, bytenr);
3021 		if (ret && ret != -ENOENT)
3022 			goto out;
3023 
3024 		ret2 = check_delayed_ref(trans, root, path, objectid,
3025 					 offset, bytenr);
3026 	} while (ret2 == -EAGAIN);
3027 
3028 	if (ret2 && ret2 != -ENOENT) {
3029 		ret = ret2;
3030 		goto out;
3031 	}
3032 
3033 	if (ret != -ENOENT || ret2 != -ENOENT)
3034 		ret = 0;
3035 out:
3036 	btrfs_free_path(path);
3037 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 		WARN_ON(ret > 0);
3039 	return ret;
3040 }
3041 
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 			   struct btrfs_root *root,
3044 			   struct extent_buffer *buf,
3045 			   int full_backref, int inc)
3046 {
3047 	u64 bytenr;
3048 	u64 num_bytes;
3049 	u64 parent;
3050 	u64 ref_root;
3051 	u32 nritems;
3052 	struct btrfs_key key;
3053 	struct btrfs_file_extent_item *fi;
3054 	int i;
3055 	int level;
3056 	int ret = 0;
3057 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 			    u64, u64, u64, u64, u64, u64, int);
3059 
3060 
3061 	if (btrfs_test_is_dummy_root(root))
3062 		return 0;
3063 
3064 	ref_root = btrfs_header_owner(buf);
3065 	nritems = btrfs_header_nritems(buf);
3066 	level = btrfs_header_level(buf);
3067 
3068 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 		return 0;
3070 
3071 	if (inc)
3072 		process_func = btrfs_inc_extent_ref;
3073 	else
3074 		process_func = btrfs_free_extent;
3075 
3076 	if (full_backref)
3077 		parent = buf->start;
3078 	else
3079 		parent = 0;
3080 
3081 	for (i = 0; i < nritems; i++) {
3082 		if (level == 0) {
3083 			btrfs_item_key_to_cpu(buf, &key, i);
3084 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 				continue;
3086 			fi = btrfs_item_ptr(buf, i,
3087 					    struct btrfs_file_extent_item);
3088 			if (btrfs_file_extent_type(buf, fi) ==
3089 			    BTRFS_FILE_EXTENT_INLINE)
3090 				continue;
3091 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 			if (bytenr == 0)
3093 				continue;
3094 
3095 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 			key.offset -= btrfs_file_extent_offset(buf, fi);
3097 			ret = process_func(trans, root, bytenr, num_bytes,
3098 					   parent, ref_root, key.objectid,
3099 					   key.offset, 1);
3100 			if (ret)
3101 				goto fail;
3102 		} else {
3103 			bytenr = btrfs_node_blockptr(buf, i);
3104 			num_bytes = root->nodesize;
3105 			ret = process_func(trans, root, bytenr, num_bytes,
3106 					   parent, ref_root, level - 1, 0,
3107 					   1);
3108 			if (ret)
3109 				goto fail;
3110 		}
3111 	}
3112 	return 0;
3113 fail:
3114 	return ret;
3115 }
3116 
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 		  struct extent_buffer *buf, int full_backref)
3119 {
3120 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122 
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 		  struct extent_buffer *buf, int full_backref)
3125 {
3126 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128 
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 				 struct btrfs_root *root,
3131 				 struct btrfs_path *path,
3132 				 struct btrfs_block_group_cache *cache)
3133 {
3134 	int ret;
3135 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 	unsigned long bi;
3137 	struct extent_buffer *leaf;
3138 
3139 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 	if (ret) {
3141 		if (ret > 0)
3142 			ret = -ENOENT;
3143 		goto fail;
3144 	}
3145 
3146 	leaf = path->nodes[0];
3147 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 	btrfs_mark_buffer_dirty(leaf);
3150 	btrfs_release_path(path);
3151 fail:
3152 	if (ret)
3153 		btrfs_abort_transaction(trans, root, ret);
3154 	return ret;
3155 
3156 }
3157 
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 		 struct btrfs_block_group_cache *cache)
3161 {
3162 	struct rb_node *node;
3163 
3164 	spin_lock(&root->fs_info->block_group_cache_lock);
3165 
3166 	/* If our block group was removed, we need a full search. */
3167 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169 
3170 		spin_unlock(&root->fs_info->block_group_cache_lock);
3171 		btrfs_put_block_group(cache);
3172 		cache = btrfs_lookup_first_block_group(root->fs_info,
3173 						       next_bytenr);
3174 		return cache;
3175 	}
3176 	node = rb_next(&cache->cache_node);
3177 	btrfs_put_block_group(cache);
3178 	if (node) {
3179 		cache = rb_entry(node, struct btrfs_block_group_cache,
3180 				 cache_node);
3181 		btrfs_get_block_group(cache);
3182 	} else
3183 		cache = NULL;
3184 	spin_unlock(&root->fs_info->block_group_cache_lock);
3185 	return cache;
3186 }
3187 
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 			    struct btrfs_trans_handle *trans,
3190 			    struct btrfs_path *path)
3191 {
3192 	struct btrfs_root *root = block_group->fs_info->tree_root;
3193 	struct inode *inode = NULL;
3194 	u64 alloc_hint = 0;
3195 	int dcs = BTRFS_DC_ERROR;
3196 	int num_pages = 0;
3197 	int retries = 0;
3198 	int ret = 0;
3199 
3200 	/*
3201 	 * If this block group is smaller than 100 megs don't bother caching the
3202 	 * block group.
3203 	 */
3204 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 		spin_lock(&block_group->lock);
3206 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 		spin_unlock(&block_group->lock);
3208 		return 0;
3209 	}
3210 
3211 	if (trans->aborted)
3212 		return 0;
3213 again:
3214 	inode = lookup_free_space_inode(root, block_group, path);
3215 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 		ret = PTR_ERR(inode);
3217 		btrfs_release_path(path);
3218 		goto out;
3219 	}
3220 
3221 	if (IS_ERR(inode)) {
3222 		BUG_ON(retries);
3223 		retries++;
3224 
3225 		if (block_group->ro)
3226 			goto out_free;
3227 
3228 		ret = create_free_space_inode(root, trans, block_group, path);
3229 		if (ret)
3230 			goto out_free;
3231 		goto again;
3232 	}
3233 
3234 	/* We've already setup this transaction, go ahead and exit */
3235 	if (block_group->cache_generation == trans->transid &&
3236 	    i_size_read(inode)) {
3237 		dcs = BTRFS_DC_SETUP;
3238 		goto out_put;
3239 	}
3240 
3241 	/*
3242 	 * We want to set the generation to 0, that way if anything goes wrong
3243 	 * from here on out we know not to trust this cache when we load up next
3244 	 * time.
3245 	 */
3246 	BTRFS_I(inode)->generation = 0;
3247 	ret = btrfs_update_inode(trans, root, inode);
3248 	if (ret) {
3249 		/*
3250 		 * So theoretically we could recover from this, simply set the
3251 		 * super cache generation to 0 so we know to invalidate the
3252 		 * cache, but then we'd have to keep track of the block groups
3253 		 * that fail this way so we know we _have_ to reset this cache
3254 		 * before the next commit or risk reading stale cache.  So to
3255 		 * limit our exposure to horrible edge cases lets just abort the
3256 		 * transaction, this only happens in really bad situations
3257 		 * anyway.
3258 		 */
3259 		btrfs_abort_transaction(trans, root, ret);
3260 		goto out_put;
3261 	}
3262 	WARN_ON(ret);
3263 
3264 	if (i_size_read(inode) > 0) {
3265 		ret = btrfs_check_trunc_cache_free_space(root,
3266 					&root->fs_info->global_block_rsv);
3267 		if (ret)
3268 			goto out_put;
3269 
3270 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3271 		if (ret)
3272 			goto out_put;
3273 	}
3274 
3275 	spin_lock(&block_group->lock);
3276 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3277 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3278 	    block_group->delalloc_bytes) {
3279 		/*
3280 		 * don't bother trying to write stuff out _if_
3281 		 * a) we're not cached,
3282 		 * b) we're with nospace_cache mount option.
3283 		 */
3284 		dcs = BTRFS_DC_WRITTEN;
3285 		spin_unlock(&block_group->lock);
3286 		goto out_put;
3287 	}
3288 	spin_unlock(&block_group->lock);
3289 
3290 	/*
3291 	 * Try to preallocate enough space based on how big the block group is.
3292 	 * Keep in mind this has to include any pinned space which could end up
3293 	 * taking up quite a bit since it's not folded into the other space
3294 	 * cache.
3295 	 */
3296 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3297 	if (!num_pages)
3298 		num_pages = 1;
3299 
3300 	num_pages *= 16;
3301 	num_pages *= PAGE_CACHE_SIZE;
3302 
3303 	ret = btrfs_check_data_free_space(inode, num_pages);
3304 	if (ret)
3305 		goto out_put;
3306 
3307 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3308 					      num_pages, num_pages,
3309 					      &alloc_hint);
3310 	if (!ret)
3311 		dcs = BTRFS_DC_SETUP;
3312 	btrfs_free_reserved_data_space(inode, num_pages);
3313 
3314 out_put:
3315 	iput(inode);
3316 out_free:
3317 	btrfs_release_path(path);
3318 out:
3319 	spin_lock(&block_group->lock);
3320 	if (!ret && dcs == BTRFS_DC_SETUP)
3321 		block_group->cache_generation = trans->transid;
3322 	block_group->disk_cache_state = dcs;
3323 	spin_unlock(&block_group->lock);
3324 
3325 	return ret;
3326 }
3327 
3328 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3329 				   struct btrfs_root *root)
3330 {
3331 	struct btrfs_block_group_cache *cache;
3332 	struct btrfs_transaction *cur_trans = trans->transaction;
3333 	int ret = 0;
3334 	struct btrfs_path *path;
3335 
3336 	if (list_empty(&cur_trans->dirty_bgs))
3337 		return 0;
3338 
3339 	path = btrfs_alloc_path();
3340 	if (!path)
3341 		return -ENOMEM;
3342 
3343 	/*
3344 	 * We don't need the lock here since we are protected by the transaction
3345 	 * commit.  We want to do the cache_save_setup first and then run the
3346 	 * delayed refs to make sure we have the best chance at doing this all
3347 	 * in one shot.
3348 	 */
3349 	while (!list_empty(&cur_trans->dirty_bgs)) {
3350 		cache = list_first_entry(&cur_trans->dirty_bgs,
3351 					 struct btrfs_block_group_cache,
3352 					 dirty_list);
3353 		list_del_init(&cache->dirty_list);
3354 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3355 			cache_save_setup(cache, trans, path);
3356 		if (!ret)
3357 			ret = btrfs_run_delayed_refs(trans, root,
3358 						     (unsigned long) -1);
3359 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3360 			btrfs_write_out_cache(root, trans, cache, path);
3361 		if (!ret)
3362 			ret = write_one_cache_group(trans, root, path, cache);
3363 		btrfs_put_block_group(cache);
3364 	}
3365 
3366 	btrfs_free_path(path);
3367 	return ret;
3368 }
3369 
3370 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3371 {
3372 	struct btrfs_block_group_cache *block_group;
3373 	int readonly = 0;
3374 
3375 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3376 	if (!block_group || block_group->ro)
3377 		readonly = 1;
3378 	if (block_group)
3379 		btrfs_put_block_group(block_group);
3380 	return readonly;
3381 }
3382 
3383 static const char *alloc_name(u64 flags)
3384 {
3385 	switch (flags) {
3386 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3387 		return "mixed";
3388 	case BTRFS_BLOCK_GROUP_METADATA:
3389 		return "metadata";
3390 	case BTRFS_BLOCK_GROUP_DATA:
3391 		return "data";
3392 	case BTRFS_BLOCK_GROUP_SYSTEM:
3393 		return "system";
3394 	default:
3395 		WARN_ON(1);
3396 		return "invalid-combination";
3397 	};
3398 }
3399 
3400 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3401 			     u64 total_bytes, u64 bytes_used,
3402 			     struct btrfs_space_info **space_info)
3403 {
3404 	struct btrfs_space_info *found;
3405 	int i;
3406 	int factor;
3407 	int ret;
3408 
3409 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3410 		     BTRFS_BLOCK_GROUP_RAID10))
3411 		factor = 2;
3412 	else
3413 		factor = 1;
3414 
3415 	found = __find_space_info(info, flags);
3416 	if (found) {
3417 		spin_lock(&found->lock);
3418 		found->total_bytes += total_bytes;
3419 		found->disk_total += total_bytes * factor;
3420 		found->bytes_used += bytes_used;
3421 		found->disk_used += bytes_used * factor;
3422 		found->full = 0;
3423 		spin_unlock(&found->lock);
3424 		*space_info = found;
3425 		return 0;
3426 	}
3427 	found = kzalloc(sizeof(*found), GFP_NOFS);
3428 	if (!found)
3429 		return -ENOMEM;
3430 
3431 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3432 	if (ret) {
3433 		kfree(found);
3434 		return ret;
3435 	}
3436 
3437 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3438 		INIT_LIST_HEAD(&found->block_groups[i]);
3439 	init_rwsem(&found->groups_sem);
3440 	spin_lock_init(&found->lock);
3441 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3442 	found->total_bytes = total_bytes;
3443 	found->disk_total = total_bytes * factor;
3444 	found->bytes_used = bytes_used;
3445 	found->disk_used = bytes_used * factor;
3446 	found->bytes_pinned = 0;
3447 	found->bytes_reserved = 0;
3448 	found->bytes_readonly = 0;
3449 	found->bytes_may_use = 0;
3450 	found->full = 0;
3451 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3452 	found->chunk_alloc = 0;
3453 	found->flush = 0;
3454 	init_waitqueue_head(&found->wait);
3455 	INIT_LIST_HEAD(&found->ro_bgs);
3456 
3457 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3458 				    info->space_info_kobj, "%s",
3459 				    alloc_name(found->flags));
3460 	if (ret) {
3461 		kfree(found);
3462 		return ret;
3463 	}
3464 
3465 	*space_info = found;
3466 	list_add_rcu(&found->list, &info->space_info);
3467 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3468 		info->data_sinfo = found;
3469 
3470 	return ret;
3471 }
3472 
3473 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3474 {
3475 	u64 extra_flags = chunk_to_extended(flags) &
3476 				BTRFS_EXTENDED_PROFILE_MASK;
3477 
3478 	write_seqlock(&fs_info->profiles_lock);
3479 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3480 		fs_info->avail_data_alloc_bits |= extra_flags;
3481 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3482 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3483 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3484 		fs_info->avail_system_alloc_bits |= extra_flags;
3485 	write_sequnlock(&fs_info->profiles_lock);
3486 }
3487 
3488 /*
3489  * returns target flags in extended format or 0 if restripe for this
3490  * chunk_type is not in progress
3491  *
3492  * should be called with either volume_mutex or balance_lock held
3493  */
3494 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3495 {
3496 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497 	u64 target = 0;
3498 
3499 	if (!bctl)
3500 		return 0;
3501 
3502 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3503 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3504 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3505 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3506 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3507 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3508 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3509 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3510 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3511 	}
3512 
3513 	return target;
3514 }
3515 
3516 /*
3517  * @flags: available profiles in extended format (see ctree.h)
3518  *
3519  * Returns reduced profile in chunk format.  If profile changing is in
3520  * progress (either running or paused) picks the target profile (if it's
3521  * already available), otherwise falls back to plain reducing.
3522  */
3523 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3524 {
3525 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3526 	u64 target;
3527 	u64 tmp;
3528 
3529 	/*
3530 	 * see if restripe for this chunk_type is in progress, if so
3531 	 * try to reduce to the target profile
3532 	 */
3533 	spin_lock(&root->fs_info->balance_lock);
3534 	target = get_restripe_target(root->fs_info, flags);
3535 	if (target) {
3536 		/* pick target profile only if it's already available */
3537 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3538 			spin_unlock(&root->fs_info->balance_lock);
3539 			return extended_to_chunk(target);
3540 		}
3541 	}
3542 	spin_unlock(&root->fs_info->balance_lock);
3543 
3544 	/* First, mask out the RAID levels which aren't possible */
3545 	if (num_devices == 1)
3546 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3547 			   BTRFS_BLOCK_GROUP_RAID5);
3548 	if (num_devices < 3)
3549 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3550 	if (num_devices < 4)
3551 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3552 
3553 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3554 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3555 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3556 	flags &= ~tmp;
3557 
3558 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3559 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3560 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3561 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3562 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3563 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3564 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3565 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3566 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3567 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3568 
3569 	return extended_to_chunk(flags | tmp);
3570 }
3571 
3572 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3573 {
3574 	unsigned seq;
3575 	u64 flags;
3576 
3577 	do {
3578 		flags = orig_flags;
3579 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3580 
3581 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3582 			flags |= root->fs_info->avail_data_alloc_bits;
3583 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3584 			flags |= root->fs_info->avail_system_alloc_bits;
3585 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3586 			flags |= root->fs_info->avail_metadata_alloc_bits;
3587 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3588 
3589 	return btrfs_reduce_alloc_profile(root, flags);
3590 }
3591 
3592 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3593 {
3594 	u64 flags;
3595 	u64 ret;
3596 
3597 	if (data)
3598 		flags = BTRFS_BLOCK_GROUP_DATA;
3599 	else if (root == root->fs_info->chunk_root)
3600 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3601 	else
3602 		flags = BTRFS_BLOCK_GROUP_METADATA;
3603 
3604 	ret = get_alloc_profile(root, flags);
3605 	return ret;
3606 }
3607 
3608 /*
3609  * This will check the space that the inode allocates from to make sure we have
3610  * enough space for bytes.
3611  */
3612 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3613 {
3614 	struct btrfs_space_info *data_sinfo;
3615 	struct btrfs_root *root = BTRFS_I(inode)->root;
3616 	struct btrfs_fs_info *fs_info = root->fs_info;
3617 	u64 used;
3618 	int ret = 0, committed = 0, alloc_chunk = 1;
3619 
3620 	/* make sure bytes are sectorsize aligned */
3621 	bytes = ALIGN(bytes, root->sectorsize);
3622 
3623 	if (btrfs_is_free_space_inode(inode)) {
3624 		committed = 1;
3625 		ASSERT(current->journal_info);
3626 	}
3627 
3628 	data_sinfo = fs_info->data_sinfo;
3629 	if (!data_sinfo)
3630 		goto alloc;
3631 
3632 again:
3633 	/* make sure we have enough space to handle the data first */
3634 	spin_lock(&data_sinfo->lock);
3635 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3636 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3637 		data_sinfo->bytes_may_use;
3638 
3639 	if (used + bytes > data_sinfo->total_bytes) {
3640 		struct btrfs_trans_handle *trans;
3641 
3642 		/*
3643 		 * if we don't have enough free bytes in this space then we need
3644 		 * to alloc a new chunk.
3645 		 */
3646 		if (!data_sinfo->full && alloc_chunk) {
3647 			u64 alloc_target;
3648 
3649 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3650 			spin_unlock(&data_sinfo->lock);
3651 alloc:
3652 			alloc_target = btrfs_get_alloc_profile(root, 1);
3653 			/*
3654 			 * It is ugly that we don't call nolock join
3655 			 * transaction for the free space inode case here.
3656 			 * But it is safe because we only do the data space
3657 			 * reservation for the free space cache in the
3658 			 * transaction context, the common join transaction
3659 			 * just increase the counter of the current transaction
3660 			 * handler, doesn't try to acquire the trans_lock of
3661 			 * the fs.
3662 			 */
3663 			trans = btrfs_join_transaction(root);
3664 			if (IS_ERR(trans))
3665 				return PTR_ERR(trans);
3666 
3667 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3668 					     alloc_target,
3669 					     CHUNK_ALLOC_NO_FORCE);
3670 			btrfs_end_transaction(trans, root);
3671 			if (ret < 0) {
3672 				if (ret != -ENOSPC)
3673 					return ret;
3674 				else
3675 					goto commit_trans;
3676 			}
3677 
3678 			if (!data_sinfo)
3679 				data_sinfo = fs_info->data_sinfo;
3680 
3681 			goto again;
3682 		}
3683 
3684 		/*
3685 		 * If we don't have enough pinned space to deal with this
3686 		 * allocation don't bother committing the transaction.
3687 		 */
3688 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3689 					   bytes) < 0)
3690 			committed = 1;
3691 		spin_unlock(&data_sinfo->lock);
3692 
3693 		/* commit the current transaction and try again */
3694 commit_trans:
3695 		if (!committed &&
3696 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3697 			committed = 1;
3698 
3699 			trans = btrfs_join_transaction(root);
3700 			if (IS_ERR(trans))
3701 				return PTR_ERR(trans);
3702 			ret = btrfs_commit_transaction(trans, root);
3703 			if (ret)
3704 				return ret;
3705 			goto again;
3706 		}
3707 
3708 		trace_btrfs_space_reservation(root->fs_info,
3709 					      "space_info:enospc",
3710 					      data_sinfo->flags, bytes, 1);
3711 		return -ENOSPC;
3712 	}
3713 	data_sinfo->bytes_may_use += bytes;
3714 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3715 				      data_sinfo->flags, bytes, 1);
3716 	spin_unlock(&data_sinfo->lock);
3717 
3718 	return 0;
3719 }
3720 
3721 /*
3722  * Called if we need to clear a data reservation for this inode.
3723  */
3724 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3725 {
3726 	struct btrfs_root *root = BTRFS_I(inode)->root;
3727 	struct btrfs_space_info *data_sinfo;
3728 
3729 	/* make sure bytes are sectorsize aligned */
3730 	bytes = ALIGN(bytes, root->sectorsize);
3731 
3732 	data_sinfo = root->fs_info->data_sinfo;
3733 	spin_lock(&data_sinfo->lock);
3734 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3735 	data_sinfo->bytes_may_use -= bytes;
3736 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3737 				      data_sinfo->flags, bytes, 0);
3738 	spin_unlock(&data_sinfo->lock);
3739 }
3740 
3741 static void force_metadata_allocation(struct btrfs_fs_info *info)
3742 {
3743 	struct list_head *head = &info->space_info;
3744 	struct btrfs_space_info *found;
3745 
3746 	rcu_read_lock();
3747 	list_for_each_entry_rcu(found, head, list) {
3748 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 			found->force_alloc = CHUNK_ALLOC_FORCE;
3750 	}
3751 	rcu_read_unlock();
3752 }
3753 
3754 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3755 {
3756 	return (global->size << 1);
3757 }
3758 
3759 static int should_alloc_chunk(struct btrfs_root *root,
3760 			      struct btrfs_space_info *sinfo, int force)
3761 {
3762 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3763 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3764 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3765 	u64 thresh;
3766 
3767 	if (force == CHUNK_ALLOC_FORCE)
3768 		return 1;
3769 
3770 	/*
3771 	 * We need to take into account the global rsv because for all intents
3772 	 * and purposes it's used space.  Don't worry about locking the
3773 	 * global_rsv, it doesn't change except when the transaction commits.
3774 	 */
3775 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3776 		num_allocated += calc_global_rsv_need_space(global_rsv);
3777 
3778 	/*
3779 	 * in limited mode, we want to have some free space up to
3780 	 * about 1% of the FS size.
3781 	 */
3782 	if (force == CHUNK_ALLOC_LIMITED) {
3783 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3784 		thresh = max_t(u64, 64 * 1024 * 1024,
3785 			       div_factor_fine(thresh, 1));
3786 
3787 		if (num_bytes - num_allocated < thresh)
3788 			return 1;
3789 	}
3790 
3791 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3792 		return 0;
3793 	return 1;
3794 }
3795 
3796 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3797 {
3798 	u64 num_dev;
3799 
3800 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3801 		    BTRFS_BLOCK_GROUP_RAID0 |
3802 		    BTRFS_BLOCK_GROUP_RAID5 |
3803 		    BTRFS_BLOCK_GROUP_RAID6))
3804 		num_dev = root->fs_info->fs_devices->rw_devices;
3805 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3806 		num_dev = 2;
3807 	else
3808 		num_dev = 1;	/* DUP or single */
3809 
3810 	/* metadata for updaing devices and chunk tree */
3811 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3812 }
3813 
3814 static void check_system_chunk(struct btrfs_trans_handle *trans,
3815 			       struct btrfs_root *root, u64 type)
3816 {
3817 	struct btrfs_space_info *info;
3818 	u64 left;
3819 	u64 thresh;
3820 
3821 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3822 	spin_lock(&info->lock);
3823 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3824 		info->bytes_reserved - info->bytes_readonly;
3825 	spin_unlock(&info->lock);
3826 
3827 	thresh = get_system_chunk_thresh(root, type);
3828 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3829 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3830 			left, thresh, type);
3831 		dump_space_info(info, 0, 0);
3832 	}
3833 
3834 	if (left < thresh) {
3835 		u64 flags;
3836 
3837 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3838 		btrfs_alloc_chunk(trans, root, flags);
3839 	}
3840 }
3841 
3842 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3843 			  struct btrfs_root *extent_root, u64 flags, int force)
3844 {
3845 	struct btrfs_space_info *space_info;
3846 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3847 	int wait_for_alloc = 0;
3848 	int ret = 0;
3849 
3850 	/* Don't re-enter if we're already allocating a chunk */
3851 	if (trans->allocating_chunk)
3852 		return -ENOSPC;
3853 
3854 	space_info = __find_space_info(extent_root->fs_info, flags);
3855 	if (!space_info) {
3856 		ret = update_space_info(extent_root->fs_info, flags,
3857 					0, 0, &space_info);
3858 		BUG_ON(ret); /* -ENOMEM */
3859 	}
3860 	BUG_ON(!space_info); /* Logic error */
3861 
3862 again:
3863 	spin_lock(&space_info->lock);
3864 	if (force < space_info->force_alloc)
3865 		force = space_info->force_alloc;
3866 	if (space_info->full) {
3867 		if (should_alloc_chunk(extent_root, space_info, force))
3868 			ret = -ENOSPC;
3869 		else
3870 			ret = 0;
3871 		spin_unlock(&space_info->lock);
3872 		return ret;
3873 	}
3874 
3875 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3876 		spin_unlock(&space_info->lock);
3877 		return 0;
3878 	} else if (space_info->chunk_alloc) {
3879 		wait_for_alloc = 1;
3880 	} else {
3881 		space_info->chunk_alloc = 1;
3882 	}
3883 
3884 	spin_unlock(&space_info->lock);
3885 
3886 	mutex_lock(&fs_info->chunk_mutex);
3887 
3888 	/*
3889 	 * The chunk_mutex is held throughout the entirety of a chunk
3890 	 * allocation, so once we've acquired the chunk_mutex we know that the
3891 	 * other guy is done and we need to recheck and see if we should
3892 	 * allocate.
3893 	 */
3894 	if (wait_for_alloc) {
3895 		mutex_unlock(&fs_info->chunk_mutex);
3896 		wait_for_alloc = 0;
3897 		goto again;
3898 	}
3899 
3900 	trans->allocating_chunk = true;
3901 
3902 	/*
3903 	 * If we have mixed data/metadata chunks we want to make sure we keep
3904 	 * allocating mixed chunks instead of individual chunks.
3905 	 */
3906 	if (btrfs_mixed_space_info(space_info))
3907 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3908 
3909 	/*
3910 	 * if we're doing a data chunk, go ahead and make sure that
3911 	 * we keep a reasonable number of metadata chunks allocated in the
3912 	 * FS as well.
3913 	 */
3914 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3915 		fs_info->data_chunk_allocations++;
3916 		if (!(fs_info->data_chunk_allocations %
3917 		      fs_info->metadata_ratio))
3918 			force_metadata_allocation(fs_info);
3919 	}
3920 
3921 	/*
3922 	 * Check if we have enough space in SYSTEM chunk because we may need
3923 	 * to update devices.
3924 	 */
3925 	check_system_chunk(trans, extent_root, flags);
3926 
3927 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3928 	trans->allocating_chunk = false;
3929 
3930 	spin_lock(&space_info->lock);
3931 	if (ret < 0 && ret != -ENOSPC)
3932 		goto out;
3933 	if (ret)
3934 		space_info->full = 1;
3935 	else
3936 		ret = 1;
3937 
3938 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3939 out:
3940 	space_info->chunk_alloc = 0;
3941 	spin_unlock(&space_info->lock);
3942 	mutex_unlock(&fs_info->chunk_mutex);
3943 	return ret;
3944 }
3945 
3946 static int can_overcommit(struct btrfs_root *root,
3947 			  struct btrfs_space_info *space_info, u64 bytes,
3948 			  enum btrfs_reserve_flush_enum flush)
3949 {
3950 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3951 	u64 profile = btrfs_get_alloc_profile(root, 0);
3952 	u64 space_size;
3953 	u64 avail;
3954 	u64 used;
3955 
3956 	used = space_info->bytes_used + space_info->bytes_reserved +
3957 		space_info->bytes_pinned + space_info->bytes_readonly;
3958 
3959 	/*
3960 	 * We only want to allow over committing if we have lots of actual space
3961 	 * free, but if we don't have enough space to handle the global reserve
3962 	 * space then we could end up having a real enospc problem when trying
3963 	 * to allocate a chunk or some other such important allocation.
3964 	 */
3965 	spin_lock(&global_rsv->lock);
3966 	space_size = calc_global_rsv_need_space(global_rsv);
3967 	spin_unlock(&global_rsv->lock);
3968 	if (used + space_size >= space_info->total_bytes)
3969 		return 0;
3970 
3971 	used += space_info->bytes_may_use;
3972 
3973 	spin_lock(&root->fs_info->free_chunk_lock);
3974 	avail = root->fs_info->free_chunk_space;
3975 	spin_unlock(&root->fs_info->free_chunk_lock);
3976 
3977 	/*
3978 	 * If we have dup, raid1 or raid10 then only half of the free
3979 	 * space is actually useable.  For raid56, the space info used
3980 	 * doesn't include the parity drive, so we don't have to
3981 	 * change the math
3982 	 */
3983 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3984 		       BTRFS_BLOCK_GROUP_RAID1 |
3985 		       BTRFS_BLOCK_GROUP_RAID10))
3986 		avail >>= 1;
3987 
3988 	/*
3989 	 * If we aren't flushing all things, let us overcommit up to
3990 	 * 1/2th of the space. If we can flush, don't let us overcommit
3991 	 * too much, let it overcommit up to 1/8 of the space.
3992 	 */
3993 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3994 		avail >>= 3;
3995 	else
3996 		avail >>= 1;
3997 
3998 	if (used + bytes < space_info->total_bytes + avail)
3999 		return 1;
4000 	return 0;
4001 }
4002 
4003 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4004 					 unsigned long nr_pages, int nr_items)
4005 {
4006 	struct super_block *sb = root->fs_info->sb;
4007 
4008 	if (down_read_trylock(&sb->s_umount)) {
4009 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4010 		up_read(&sb->s_umount);
4011 	} else {
4012 		/*
4013 		 * We needn't worry the filesystem going from r/w to r/o though
4014 		 * we don't acquire ->s_umount mutex, because the filesystem
4015 		 * should guarantee the delalloc inodes list be empty after
4016 		 * the filesystem is readonly(all dirty pages are written to
4017 		 * the disk).
4018 		 */
4019 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4020 		if (!current->journal_info)
4021 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4022 	}
4023 }
4024 
4025 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4026 {
4027 	u64 bytes;
4028 	int nr;
4029 
4030 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4031 	nr = (int)div64_u64(to_reclaim, bytes);
4032 	if (!nr)
4033 		nr = 1;
4034 	return nr;
4035 }
4036 
4037 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4038 
4039 /*
4040  * shrink metadata reservation for delalloc
4041  */
4042 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4043 			    bool wait_ordered)
4044 {
4045 	struct btrfs_block_rsv *block_rsv;
4046 	struct btrfs_space_info *space_info;
4047 	struct btrfs_trans_handle *trans;
4048 	u64 delalloc_bytes;
4049 	u64 max_reclaim;
4050 	long time_left;
4051 	unsigned long nr_pages;
4052 	int loops;
4053 	int items;
4054 	enum btrfs_reserve_flush_enum flush;
4055 
4056 	/* Calc the number of the pages we need flush for space reservation */
4057 	items = calc_reclaim_items_nr(root, to_reclaim);
4058 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4059 
4060 	trans = (struct btrfs_trans_handle *)current->journal_info;
4061 	block_rsv = &root->fs_info->delalloc_block_rsv;
4062 	space_info = block_rsv->space_info;
4063 
4064 	delalloc_bytes = percpu_counter_sum_positive(
4065 						&root->fs_info->delalloc_bytes);
4066 	if (delalloc_bytes == 0) {
4067 		if (trans)
4068 			return;
4069 		if (wait_ordered)
4070 			btrfs_wait_ordered_roots(root->fs_info, items);
4071 		return;
4072 	}
4073 
4074 	loops = 0;
4075 	while (delalloc_bytes && loops < 3) {
4076 		max_reclaim = min(delalloc_bytes, to_reclaim);
4077 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4078 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4079 		/*
4080 		 * We need to wait for the async pages to actually start before
4081 		 * we do anything.
4082 		 */
4083 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4084 		if (!max_reclaim)
4085 			goto skip_async;
4086 
4087 		if (max_reclaim <= nr_pages)
4088 			max_reclaim = 0;
4089 		else
4090 			max_reclaim -= nr_pages;
4091 
4092 		wait_event(root->fs_info->async_submit_wait,
4093 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4094 			   (int)max_reclaim);
4095 skip_async:
4096 		if (!trans)
4097 			flush = BTRFS_RESERVE_FLUSH_ALL;
4098 		else
4099 			flush = BTRFS_RESERVE_NO_FLUSH;
4100 		spin_lock(&space_info->lock);
4101 		if (can_overcommit(root, space_info, orig, flush)) {
4102 			spin_unlock(&space_info->lock);
4103 			break;
4104 		}
4105 		spin_unlock(&space_info->lock);
4106 
4107 		loops++;
4108 		if (wait_ordered && !trans) {
4109 			btrfs_wait_ordered_roots(root->fs_info, items);
4110 		} else {
4111 			time_left = schedule_timeout_killable(1);
4112 			if (time_left)
4113 				break;
4114 		}
4115 		delalloc_bytes = percpu_counter_sum_positive(
4116 						&root->fs_info->delalloc_bytes);
4117 	}
4118 }
4119 
4120 /**
4121  * maybe_commit_transaction - possibly commit the transaction if its ok to
4122  * @root - the root we're allocating for
4123  * @bytes - the number of bytes we want to reserve
4124  * @force - force the commit
4125  *
4126  * This will check to make sure that committing the transaction will actually
4127  * get us somewhere and then commit the transaction if it does.  Otherwise it
4128  * will return -ENOSPC.
4129  */
4130 static int may_commit_transaction(struct btrfs_root *root,
4131 				  struct btrfs_space_info *space_info,
4132 				  u64 bytes, int force)
4133 {
4134 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4135 	struct btrfs_trans_handle *trans;
4136 
4137 	trans = (struct btrfs_trans_handle *)current->journal_info;
4138 	if (trans)
4139 		return -EAGAIN;
4140 
4141 	if (force)
4142 		goto commit;
4143 
4144 	/* See if there is enough pinned space to make this reservation */
4145 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4146 				   bytes) >= 0)
4147 		goto commit;
4148 
4149 	/*
4150 	 * See if there is some space in the delayed insertion reservation for
4151 	 * this reservation.
4152 	 */
4153 	if (space_info != delayed_rsv->space_info)
4154 		return -ENOSPC;
4155 
4156 	spin_lock(&delayed_rsv->lock);
4157 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4158 				   bytes - delayed_rsv->size) >= 0) {
4159 		spin_unlock(&delayed_rsv->lock);
4160 		return -ENOSPC;
4161 	}
4162 	spin_unlock(&delayed_rsv->lock);
4163 
4164 commit:
4165 	trans = btrfs_join_transaction(root);
4166 	if (IS_ERR(trans))
4167 		return -ENOSPC;
4168 
4169 	return btrfs_commit_transaction(trans, root);
4170 }
4171 
4172 enum flush_state {
4173 	FLUSH_DELAYED_ITEMS_NR	=	1,
4174 	FLUSH_DELAYED_ITEMS	=	2,
4175 	FLUSH_DELALLOC		=	3,
4176 	FLUSH_DELALLOC_WAIT	=	4,
4177 	ALLOC_CHUNK		=	5,
4178 	COMMIT_TRANS		=	6,
4179 };
4180 
4181 static int flush_space(struct btrfs_root *root,
4182 		       struct btrfs_space_info *space_info, u64 num_bytes,
4183 		       u64 orig_bytes, int state)
4184 {
4185 	struct btrfs_trans_handle *trans;
4186 	int nr;
4187 	int ret = 0;
4188 
4189 	switch (state) {
4190 	case FLUSH_DELAYED_ITEMS_NR:
4191 	case FLUSH_DELAYED_ITEMS:
4192 		if (state == FLUSH_DELAYED_ITEMS_NR)
4193 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4194 		else
4195 			nr = -1;
4196 
4197 		trans = btrfs_join_transaction(root);
4198 		if (IS_ERR(trans)) {
4199 			ret = PTR_ERR(trans);
4200 			break;
4201 		}
4202 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4203 		btrfs_end_transaction(trans, root);
4204 		break;
4205 	case FLUSH_DELALLOC:
4206 	case FLUSH_DELALLOC_WAIT:
4207 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4208 				state == FLUSH_DELALLOC_WAIT);
4209 		break;
4210 	case ALLOC_CHUNK:
4211 		trans = btrfs_join_transaction(root);
4212 		if (IS_ERR(trans)) {
4213 			ret = PTR_ERR(trans);
4214 			break;
4215 		}
4216 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4217 				     btrfs_get_alloc_profile(root, 0),
4218 				     CHUNK_ALLOC_NO_FORCE);
4219 		btrfs_end_transaction(trans, root);
4220 		if (ret == -ENOSPC)
4221 			ret = 0;
4222 		break;
4223 	case COMMIT_TRANS:
4224 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4225 		break;
4226 	default:
4227 		ret = -ENOSPC;
4228 		break;
4229 	}
4230 
4231 	return ret;
4232 }
4233 
4234 static inline u64
4235 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4236 				 struct btrfs_space_info *space_info)
4237 {
4238 	u64 used;
4239 	u64 expected;
4240 	u64 to_reclaim;
4241 
4242 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4243 				16 * 1024 * 1024);
4244 	spin_lock(&space_info->lock);
4245 	if (can_overcommit(root, space_info, to_reclaim,
4246 			   BTRFS_RESERVE_FLUSH_ALL)) {
4247 		to_reclaim = 0;
4248 		goto out;
4249 	}
4250 
4251 	used = space_info->bytes_used + space_info->bytes_reserved +
4252 	       space_info->bytes_pinned + space_info->bytes_readonly +
4253 	       space_info->bytes_may_use;
4254 	if (can_overcommit(root, space_info, 1024 * 1024,
4255 			   BTRFS_RESERVE_FLUSH_ALL))
4256 		expected = div_factor_fine(space_info->total_bytes, 95);
4257 	else
4258 		expected = div_factor_fine(space_info->total_bytes, 90);
4259 
4260 	if (used > expected)
4261 		to_reclaim = used - expected;
4262 	else
4263 		to_reclaim = 0;
4264 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4265 				     space_info->bytes_reserved);
4266 out:
4267 	spin_unlock(&space_info->lock);
4268 
4269 	return to_reclaim;
4270 }
4271 
4272 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4273 					struct btrfs_fs_info *fs_info, u64 used)
4274 {
4275 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4276 		!btrfs_fs_closing(fs_info) &&
4277 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4278 }
4279 
4280 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4281 				       struct btrfs_fs_info *fs_info,
4282 				       int flush_state)
4283 {
4284 	u64 used;
4285 
4286 	spin_lock(&space_info->lock);
4287 	/*
4288 	 * We run out of space and have not got any free space via flush_space,
4289 	 * so don't bother doing async reclaim.
4290 	 */
4291 	if (flush_state > COMMIT_TRANS && space_info->full) {
4292 		spin_unlock(&space_info->lock);
4293 		return 0;
4294 	}
4295 
4296 	used = space_info->bytes_used + space_info->bytes_reserved +
4297 	       space_info->bytes_pinned + space_info->bytes_readonly +
4298 	       space_info->bytes_may_use;
4299 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4300 		spin_unlock(&space_info->lock);
4301 		return 1;
4302 	}
4303 	spin_unlock(&space_info->lock);
4304 
4305 	return 0;
4306 }
4307 
4308 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4309 {
4310 	struct btrfs_fs_info *fs_info;
4311 	struct btrfs_space_info *space_info;
4312 	u64 to_reclaim;
4313 	int flush_state;
4314 
4315 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4316 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4317 
4318 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4319 						      space_info);
4320 	if (!to_reclaim)
4321 		return;
4322 
4323 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4324 	do {
4325 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4326 			    to_reclaim, flush_state);
4327 		flush_state++;
4328 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4329 						 flush_state))
4330 			return;
4331 	} while (flush_state <= COMMIT_TRANS);
4332 
4333 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4334 		queue_work(system_unbound_wq, work);
4335 }
4336 
4337 void btrfs_init_async_reclaim_work(struct work_struct *work)
4338 {
4339 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4340 }
4341 
4342 /**
4343  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4344  * @root - the root we're allocating for
4345  * @block_rsv - the block_rsv we're allocating for
4346  * @orig_bytes - the number of bytes we want
4347  * @flush - whether or not we can flush to make our reservation
4348  *
4349  * This will reserve orgi_bytes number of bytes from the space info associated
4350  * with the block_rsv.  If there is not enough space it will make an attempt to
4351  * flush out space to make room.  It will do this by flushing delalloc if
4352  * possible or committing the transaction.  If flush is 0 then no attempts to
4353  * regain reservations will be made and this will fail if there is not enough
4354  * space already.
4355  */
4356 static int reserve_metadata_bytes(struct btrfs_root *root,
4357 				  struct btrfs_block_rsv *block_rsv,
4358 				  u64 orig_bytes,
4359 				  enum btrfs_reserve_flush_enum flush)
4360 {
4361 	struct btrfs_space_info *space_info = block_rsv->space_info;
4362 	u64 used;
4363 	u64 num_bytes = orig_bytes;
4364 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4365 	int ret = 0;
4366 	bool flushing = false;
4367 
4368 again:
4369 	ret = 0;
4370 	spin_lock(&space_info->lock);
4371 	/*
4372 	 * We only want to wait if somebody other than us is flushing and we
4373 	 * are actually allowed to flush all things.
4374 	 */
4375 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4376 	       space_info->flush) {
4377 		spin_unlock(&space_info->lock);
4378 		/*
4379 		 * If we have a trans handle we can't wait because the flusher
4380 		 * may have to commit the transaction, which would mean we would
4381 		 * deadlock since we are waiting for the flusher to finish, but
4382 		 * hold the current transaction open.
4383 		 */
4384 		if (current->journal_info)
4385 			return -EAGAIN;
4386 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4387 		/* Must have been killed, return */
4388 		if (ret)
4389 			return -EINTR;
4390 
4391 		spin_lock(&space_info->lock);
4392 	}
4393 
4394 	ret = -ENOSPC;
4395 	used = space_info->bytes_used + space_info->bytes_reserved +
4396 		space_info->bytes_pinned + space_info->bytes_readonly +
4397 		space_info->bytes_may_use;
4398 
4399 	/*
4400 	 * The idea here is that we've not already over-reserved the block group
4401 	 * then we can go ahead and save our reservation first and then start
4402 	 * flushing if we need to.  Otherwise if we've already overcommitted
4403 	 * lets start flushing stuff first and then come back and try to make
4404 	 * our reservation.
4405 	 */
4406 	if (used <= space_info->total_bytes) {
4407 		if (used + orig_bytes <= space_info->total_bytes) {
4408 			space_info->bytes_may_use += orig_bytes;
4409 			trace_btrfs_space_reservation(root->fs_info,
4410 				"space_info", space_info->flags, orig_bytes, 1);
4411 			ret = 0;
4412 		} else {
4413 			/*
4414 			 * Ok set num_bytes to orig_bytes since we aren't
4415 			 * overocmmitted, this way we only try and reclaim what
4416 			 * we need.
4417 			 */
4418 			num_bytes = orig_bytes;
4419 		}
4420 	} else {
4421 		/*
4422 		 * Ok we're over committed, set num_bytes to the overcommitted
4423 		 * amount plus the amount of bytes that we need for this
4424 		 * reservation.
4425 		 */
4426 		num_bytes = used - space_info->total_bytes +
4427 			(orig_bytes * 2);
4428 	}
4429 
4430 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4431 		space_info->bytes_may_use += orig_bytes;
4432 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4433 					      space_info->flags, orig_bytes,
4434 					      1);
4435 		ret = 0;
4436 	}
4437 
4438 	/*
4439 	 * Couldn't make our reservation, save our place so while we're trying
4440 	 * to reclaim space we can actually use it instead of somebody else
4441 	 * stealing it from us.
4442 	 *
4443 	 * We make the other tasks wait for the flush only when we can flush
4444 	 * all things.
4445 	 */
4446 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4447 		flushing = true;
4448 		space_info->flush = 1;
4449 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4450 		used += orig_bytes;
4451 		/*
4452 		 * We will do the space reservation dance during log replay,
4453 		 * which means we won't have fs_info->fs_root set, so don't do
4454 		 * the async reclaim as we will panic.
4455 		 */
4456 		if (!root->fs_info->log_root_recovering &&
4457 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4458 		    !work_busy(&root->fs_info->async_reclaim_work))
4459 			queue_work(system_unbound_wq,
4460 				   &root->fs_info->async_reclaim_work);
4461 	}
4462 	spin_unlock(&space_info->lock);
4463 
4464 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4465 		goto out;
4466 
4467 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4468 			  flush_state);
4469 	flush_state++;
4470 
4471 	/*
4472 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4473 	 * would happen. So skip delalloc flush.
4474 	 */
4475 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4476 	    (flush_state == FLUSH_DELALLOC ||
4477 	     flush_state == FLUSH_DELALLOC_WAIT))
4478 		flush_state = ALLOC_CHUNK;
4479 
4480 	if (!ret)
4481 		goto again;
4482 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4483 		 flush_state < COMMIT_TRANS)
4484 		goto again;
4485 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4486 		 flush_state <= COMMIT_TRANS)
4487 		goto again;
4488 
4489 out:
4490 	if (ret == -ENOSPC &&
4491 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4492 		struct btrfs_block_rsv *global_rsv =
4493 			&root->fs_info->global_block_rsv;
4494 
4495 		if (block_rsv != global_rsv &&
4496 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4497 			ret = 0;
4498 	}
4499 	if (ret == -ENOSPC)
4500 		trace_btrfs_space_reservation(root->fs_info,
4501 					      "space_info:enospc",
4502 					      space_info->flags, orig_bytes, 1);
4503 	if (flushing) {
4504 		spin_lock(&space_info->lock);
4505 		space_info->flush = 0;
4506 		wake_up_all(&space_info->wait);
4507 		spin_unlock(&space_info->lock);
4508 	}
4509 	return ret;
4510 }
4511 
4512 static struct btrfs_block_rsv *get_block_rsv(
4513 					const struct btrfs_trans_handle *trans,
4514 					const struct btrfs_root *root)
4515 {
4516 	struct btrfs_block_rsv *block_rsv = NULL;
4517 
4518 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4519 		block_rsv = trans->block_rsv;
4520 
4521 	if (root == root->fs_info->csum_root && trans->adding_csums)
4522 		block_rsv = trans->block_rsv;
4523 
4524 	if (root == root->fs_info->uuid_root)
4525 		block_rsv = trans->block_rsv;
4526 
4527 	if (!block_rsv)
4528 		block_rsv = root->block_rsv;
4529 
4530 	if (!block_rsv)
4531 		block_rsv = &root->fs_info->empty_block_rsv;
4532 
4533 	return block_rsv;
4534 }
4535 
4536 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4537 			       u64 num_bytes)
4538 {
4539 	int ret = -ENOSPC;
4540 	spin_lock(&block_rsv->lock);
4541 	if (block_rsv->reserved >= num_bytes) {
4542 		block_rsv->reserved -= num_bytes;
4543 		if (block_rsv->reserved < block_rsv->size)
4544 			block_rsv->full = 0;
4545 		ret = 0;
4546 	}
4547 	spin_unlock(&block_rsv->lock);
4548 	return ret;
4549 }
4550 
4551 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4552 				u64 num_bytes, int update_size)
4553 {
4554 	spin_lock(&block_rsv->lock);
4555 	block_rsv->reserved += num_bytes;
4556 	if (update_size)
4557 		block_rsv->size += num_bytes;
4558 	else if (block_rsv->reserved >= block_rsv->size)
4559 		block_rsv->full = 1;
4560 	spin_unlock(&block_rsv->lock);
4561 }
4562 
4563 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4564 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4565 			     int min_factor)
4566 {
4567 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4568 	u64 min_bytes;
4569 
4570 	if (global_rsv->space_info != dest->space_info)
4571 		return -ENOSPC;
4572 
4573 	spin_lock(&global_rsv->lock);
4574 	min_bytes = div_factor(global_rsv->size, min_factor);
4575 	if (global_rsv->reserved < min_bytes + num_bytes) {
4576 		spin_unlock(&global_rsv->lock);
4577 		return -ENOSPC;
4578 	}
4579 	global_rsv->reserved -= num_bytes;
4580 	if (global_rsv->reserved < global_rsv->size)
4581 		global_rsv->full = 0;
4582 	spin_unlock(&global_rsv->lock);
4583 
4584 	block_rsv_add_bytes(dest, num_bytes, 1);
4585 	return 0;
4586 }
4587 
4588 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4589 				    struct btrfs_block_rsv *block_rsv,
4590 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4591 {
4592 	struct btrfs_space_info *space_info = block_rsv->space_info;
4593 
4594 	spin_lock(&block_rsv->lock);
4595 	if (num_bytes == (u64)-1)
4596 		num_bytes = block_rsv->size;
4597 	block_rsv->size -= num_bytes;
4598 	if (block_rsv->reserved >= block_rsv->size) {
4599 		num_bytes = block_rsv->reserved - block_rsv->size;
4600 		block_rsv->reserved = block_rsv->size;
4601 		block_rsv->full = 1;
4602 	} else {
4603 		num_bytes = 0;
4604 	}
4605 	spin_unlock(&block_rsv->lock);
4606 
4607 	if (num_bytes > 0) {
4608 		if (dest) {
4609 			spin_lock(&dest->lock);
4610 			if (!dest->full) {
4611 				u64 bytes_to_add;
4612 
4613 				bytes_to_add = dest->size - dest->reserved;
4614 				bytes_to_add = min(num_bytes, bytes_to_add);
4615 				dest->reserved += bytes_to_add;
4616 				if (dest->reserved >= dest->size)
4617 					dest->full = 1;
4618 				num_bytes -= bytes_to_add;
4619 			}
4620 			spin_unlock(&dest->lock);
4621 		}
4622 		if (num_bytes) {
4623 			spin_lock(&space_info->lock);
4624 			space_info->bytes_may_use -= num_bytes;
4625 			trace_btrfs_space_reservation(fs_info, "space_info",
4626 					space_info->flags, num_bytes, 0);
4627 			spin_unlock(&space_info->lock);
4628 		}
4629 	}
4630 }
4631 
4632 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4633 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4634 {
4635 	int ret;
4636 
4637 	ret = block_rsv_use_bytes(src, num_bytes);
4638 	if (ret)
4639 		return ret;
4640 
4641 	block_rsv_add_bytes(dst, num_bytes, 1);
4642 	return 0;
4643 }
4644 
4645 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4646 {
4647 	memset(rsv, 0, sizeof(*rsv));
4648 	spin_lock_init(&rsv->lock);
4649 	rsv->type = type;
4650 }
4651 
4652 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4653 					      unsigned short type)
4654 {
4655 	struct btrfs_block_rsv *block_rsv;
4656 	struct btrfs_fs_info *fs_info = root->fs_info;
4657 
4658 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4659 	if (!block_rsv)
4660 		return NULL;
4661 
4662 	btrfs_init_block_rsv(block_rsv, type);
4663 	block_rsv->space_info = __find_space_info(fs_info,
4664 						  BTRFS_BLOCK_GROUP_METADATA);
4665 	return block_rsv;
4666 }
4667 
4668 void btrfs_free_block_rsv(struct btrfs_root *root,
4669 			  struct btrfs_block_rsv *rsv)
4670 {
4671 	if (!rsv)
4672 		return;
4673 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4674 	kfree(rsv);
4675 }
4676 
4677 int btrfs_block_rsv_add(struct btrfs_root *root,
4678 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4679 			enum btrfs_reserve_flush_enum flush)
4680 {
4681 	int ret;
4682 
4683 	if (num_bytes == 0)
4684 		return 0;
4685 
4686 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4687 	if (!ret) {
4688 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4689 		return 0;
4690 	}
4691 
4692 	return ret;
4693 }
4694 
4695 int btrfs_block_rsv_check(struct btrfs_root *root,
4696 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4697 {
4698 	u64 num_bytes = 0;
4699 	int ret = -ENOSPC;
4700 
4701 	if (!block_rsv)
4702 		return 0;
4703 
4704 	spin_lock(&block_rsv->lock);
4705 	num_bytes = div_factor(block_rsv->size, min_factor);
4706 	if (block_rsv->reserved >= num_bytes)
4707 		ret = 0;
4708 	spin_unlock(&block_rsv->lock);
4709 
4710 	return ret;
4711 }
4712 
4713 int btrfs_block_rsv_refill(struct btrfs_root *root,
4714 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4715 			   enum btrfs_reserve_flush_enum flush)
4716 {
4717 	u64 num_bytes = 0;
4718 	int ret = -ENOSPC;
4719 
4720 	if (!block_rsv)
4721 		return 0;
4722 
4723 	spin_lock(&block_rsv->lock);
4724 	num_bytes = min_reserved;
4725 	if (block_rsv->reserved >= num_bytes)
4726 		ret = 0;
4727 	else
4728 		num_bytes -= block_rsv->reserved;
4729 	spin_unlock(&block_rsv->lock);
4730 
4731 	if (!ret)
4732 		return 0;
4733 
4734 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4735 	if (!ret) {
4736 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4737 		return 0;
4738 	}
4739 
4740 	return ret;
4741 }
4742 
4743 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4744 			    struct btrfs_block_rsv *dst_rsv,
4745 			    u64 num_bytes)
4746 {
4747 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4748 }
4749 
4750 void btrfs_block_rsv_release(struct btrfs_root *root,
4751 			     struct btrfs_block_rsv *block_rsv,
4752 			     u64 num_bytes)
4753 {
4754 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4755 	if (global_rsv == block_rsv ||
4756 	    block_rsv->space_info != global_rsv->space_info)
4757 		global_rsv = NULL;
4758 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4759 				num_bytes);
4760 }
4761 
4762 /*
4763  * helper to calculate size of global block reservation.
4764  * the desired value is sum of space used by extent tree,
4765  * checksum tree and root tree
4766  */
4767 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4768 {
4769 	struct btrfs_space_info *sinfo;
4770 	u64 num_bytes;
4771 	u64 meta_used;
4772 	u64 data_used;
4773 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4774 
4775 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4776 	spin_lock(&sinfo->lock);
4777 	data_used = sinfo->bytes_used;
4778 	spin_unlock(&sinfo->lock);
4779 
4780 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4781 	spin_lock(&sinfo->lock);
4782 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4783 		data_used = 0;
4784 	meta_used = sinfo->bytes_used;
4785 	spin_unlock(&sinfo->lock);
4786 
4787 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4788 		    csum_size * 2;
4789 	num_bytes += div64_u64(data_used + meta_used, 50);
4790 
4791 	if (num_bytes * 3 > meta_used)
4792 		num_bytes = div64_u64(meta_used, 3);
4793 
4794 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4795 }
4796 
4797 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4798 {
4799 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4800 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4801 	u64 num_bytes;
4802 
4803 	num_bytes = calc_global_metadata_size(fs_info);
4804 
4805 	spin_lock(&sinfo->lock);
4806 	spin_lock(&block_rsv->lock);
4807 
4808 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4809 
4810 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4811 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4812 		    sinfo->bytes_may_use;
4813 
4814 	if (sinfo->total_bytes > num_bytes) {
4815 		num_bytes = sinfo->total_bytes - num_bytes;
4816 		block_rsv->reserved += num_bytes;
4817 		sinfo->bytes_may_use += num_bytes;
4818 		trace_btrfs_space_reservation(fs_info, "space_info",
4819 				      sinfo->flags, num_bytes, 1);
4820 	}
4821 
4822 	if (block_rsv->reserved >= block_rsv->size) {
4823 		num_bytes = block_rsv->reserved - block_rsv->size;
4824 		sinfo->bytes_may_use -= num_bytes;
4825 		trace_btrfs_space_reservation(fs_info, "space_info",
4826 				      sinfo->flags, num_bytes, 0);
4827 		block_rsv->reserved = block_rsv->size;
4828 		block_rsv->full = 1;
4829 	}
4830 
4831 	spin_unlock(&block_rsv->lock);
4832 	spin_unlock(&sinfo->lock);
4833 }
4834 
4835 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4836 {
4837 	struct btrfs_space_info *space_info;
4838 
4839 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4840 	fs_info->chunk_block_rsv.space_info = space_info;
4841 
4842 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4843 	fs_info->global_block_rsv.space_info = space_info;
4844 	fs_info->delalloc_block_rsv.space_info = space_info;
4845 	fs_info->trans_block_rsv.space_info = space_info;
4846 	fs_info->empty_block_rsv.space_info = space_info;
4847 	fs_info->delayed_block_rsv.space_info = space_info;
4848 
4849 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4850 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4851 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4852 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4853 	if (fs_info->quota_root)
4854 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4855 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4856 
4857 	update_global_block_rsv(fs_info);
4858 }
4859 
4860 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4861 {
4862 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4863 				(u64)-1);
4864 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4865 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4866 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4867 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4868 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4869 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4870 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4871 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4872 }
4873 
4874 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4875 				  struct btrfs_root *root)
4876 {
4877 	if (!trans->block_rsv)
4878 		return;
4879 
4880 	if (!trans->bytes_reserved)
4881 		return;
4882 
4883 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4884 				      trans->transid, trans->bytes_reserved, 0);
4885 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4886 	trans->bytes_reserved = 0;
4887 }
4888 
4889 /* Can only return 0 or -ENOSPC */
4890 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4891 				  struct inode *inode)
4892 {
4893 	struct btrfs_root *root = BTRFS_I(inode)->root;
4894 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4895 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4896 
4897 	/*
4898 	 * We need to hold space in order to delete our orphan item once we've
4899 	 * added it, so this takes the reservation so we can release it later
4900 	 * when we are truly done with the orphan item.
4901 	 */
4902 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4903 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4904 				      btrfs_ino(inode), num_bytes, 1);
4905 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4906 }
4907 
4908 void btrfs_orphan_release_metadata(struct inode *inode)
4909 {
4910 	struct btrfs_root *root = BTRFS_I(inode)->root;
4911 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4912 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4913 				      btrfs_ino(inode), num_bytes, 0);
4914 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4915 }
4916 
4917 /*
4918  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4919  * root: the root of the parent directory
4920  * rsv: block reservation
4921  * items: the number of items that we need do reservation
4922  * qgroup_reserved: used to return the reserved size in qgroup
4923  *
4924  * This function is used to reserve the space for snapshot/subvolume
4925  * creation and deletion. Those operations are different with the
4926  * common file/directory operations, they change two fs/file trees
4927  * and root tree, the number of items that the qgroup reserves is
4928  * different with the free space reservation. So we can not use
4929  * the space reseravtion mechanism in start_transaction().
4930  */
4931 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4932 				     struct btrfs_block_rsv *rsv,
4933 				     int items,
4934 				     u64 *qgroup_reserved,
4935 				     bool use_global_rsv)
4936 {
4937 	u64 num_bytes;
4938 	int ret;
4939 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4940 
4941 	if (root->fs_info->quota_enabled) {
4942 		/* One for parent inode, two for dir entries */
4943 		num_bytes = 3 * root->nodesize;
4944 		ret = btrfs_qgroup_reserve(root, num_bytes);
4945 		if (ret)
4946 			return ret;
4947 	} else {
4948 		num_bytes = 0;
4949 	}
4950 
4951 	*qgroup_reserved = num_bytes;
4952 
4953 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4954 	rsv->space_info = __find_space_info(root->fs_info,
4955 					    BTRFS_BLOCK_GROUP_METADATA);
4956 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4957 				  BTRFS_RESERVE_FLUSH_ALL);
4958 
4959 	if (ret == -ENOSPC && use_global_rsv)
4960 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4961 
4962 	if (ret) {
4963 		if (*qgroup_reserved)
4964 			btrfs_qgroup_free(root, *qgroup_reserved);
4965 	}
4966 
4967 	return ret;
4968 }
4969 
4970 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4971 				      struct btrfs_block_rsv *rsv,
4972 				      u64 qgroup_reserved)
4973 {
4974 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4975 	if (qgroup_reserved)
4976 		btrfs_qgroup_free(root, qgroup_reserved);
4977 }
4978 
4979 /**
4980  * drop_outstanding_extent - drop an outstanding extent
4981  * @inode: the inode we're dropping the extent for
4982  * @num_bytes: the number of bytes we're relaseing.
4983  *
4984  * This is called when we are freeing up an outstanding extent, either called
4985  * after an error or after an extent is written.  This will return the number of
4986  * reserved extents that need to be freed.  This must be called with
4987  * BTRFS_I(inode)->lock held.
4988  */
4989 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
4990 {
4991 	unsigned drop_inode_space = 0;
4992 	unsigned dropped_extents = 0;
4993 	unsigned num_extents = 0;
4994 
4995 	num_extents = (unsigned)div64_u64(num_bytes +
4996 					  BTRFS_MAX_EXTENT_SIZE - 1,
4997 					  BTRFS_MAX_EXTENT_SIZE);
4998 	ASSERT(num_extents);
4999 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5000 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5001 
5002 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5003 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5004 			       &BTRFS_I(inode)->runtime_flags))
5005 		drop_inode_space = 1;
5006 
5007 	/*
5008 	 * If we have more or the same amount of outsanding extents than we have
5009 	 * reserved then we need to leave the reserved extents count alone.
5010 	 */
5011 	if (BTRFS_I(inode)->outstanding_extents >=
5012 	    BTRFS_I(inode)->reserved_extents)
5013 		return drop_inode_space;
5014 
5015 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5016 		BTRFS_I(inode)->outstanding_extents;
5017 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5018 	return dropped_extents + drop_inode_space;
5019 }
5020 
5021 /**
5022  * calc_csum_metadata_size - return the amount of metada space that must be
5023  *	reserved/free'd for the given bytes.
5024  * @inode: the inode we're manipulating
5025  * @num_bytes: the number of bytes in question
5026  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5027  *
5028  * This adjusts the number of csum_bytes in the inode and then returns the
5029  * correct amount of metadata that must either be reserved or freed.  We
5030  * calculate how many checksums we can fit into one leaf and then divide the
5031  * number of bytes that will need to be checksumed by this value to figure out
5032  * how many checksums will be required.  If we are adding bytes then the number
5033  * may go up and we will return the number of additional bytes that must be
5034  * reserved.  If it is going down we will return the number of bytes that must
5035  * be freed.
5036  *
5037  * This must be called with BTRFS_I(inode)->lock held.
5038  */
5039 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5040 				   int reserve)
5041 {
5042 	struct btrfs_root *root = BTRFS_I(inode)->root;
5043 	u64 csum_size;
5044 	int num_csums_per_leaf;
5045 	int num_csums;
5046 	int old_csums;
5047 
5048 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5049 	    BTRFS_I(inode)->csum_bytes == 0)
5050 		return 0;
5051 
5052 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5053 	if (reserve)
5054 		BTRFS_I(inode)->csum_bytes += num_bytes;
5055 	else
5056 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5057 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5058 	num_csums_per_leaf = (int)div64_u64(csum_size,
5059 					    sizeof(struct btrfs_csum_item) +
5060 					    sizeof(struct btrfs_disk_key));
5061 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5062 	num_csums = num_csums + num_csums_per_leaf - 1;
5063 	num_csums = num_csums / num_csums_per_leaf;
5064 
5065 	old_csums = old_csums + num_csums_per_leaf - 1;
5066 	old_csums = old_csums / num_csums_per_leaf;
5067 
5068 	/* No change, no need to reserve more */
5069 	if (old_csums == num_csums)
5070 		return 0;
5071 
5072 	if (reserve)
5073 		return btrfs_calc_trans_metadata_size(root,
5074 						      num_csums - old_csums);
5075 
5076 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5077 }
5078 
5079 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5080 {
5081 	struct btrfs_root *root = BTRFS_I(inode)->root;
5082 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5083 	u64 to_reserve = 0;
5084 	u64 csum_bytes;
5085 	unsigned nr_extents = 0;
5086 	int extra_reserve = 0;
5087 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5088 	int ret = 0;
5089 	bool delalloc_lock = true;
5090 	u64 to_free = 0;
5091 	unsigned dropped;
5092 
5093 	/* If we are a free space inode we need to not flush since we will be in
5094 	 * the middle of a transaction commit.  We also don't need the delalloc
5095 	 * mutex since we won't race with anybody.  We need this mostly to make
5096 	 * lockdep shut its filthy mouth.
5097 	 */
5098 	if (btrfs_is_free_space_inode(inode)) {
5099 		flush = BTRFS_RESERVE_NO_FLUSH;
5100 		delalloc_lock = false;
5101 	}
5102 
5103 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5104 	    btrfs_transaction_in_commit(root->fs_info))
5105 		schedule_timeout(1);
5106 
5107 	if (delalloc_lock)
5108 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5109 
5110 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5111 
5112 	spin_lock(&BTRFS_I(inode)->lock);
5113 	BTRFS_I(inode)->outstanding_extents++;
5114 
5115 	if (BTRFS_I(inode)->outstanding_extents >
5116 	    BTRFS_I(inode)->reserved_extents)
5117 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5118 			BTRFS_I(inode)->reserved_extents;
5119 
5120 	/*
5121 	 * Add an item to reserve for updating the inode when we complete the
5122 	 * delalloc io.
5123 	 */
5124 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5125 		      &BTRFS_I(inode)->runtime_flags)) {
5126 		nr_extents++;
5127 		extra_reserve = 1;
5128 	}
5129 
5130 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5131 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5132 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5133 	spin_unlock(&BTRFS_I(inode)->lock);
5134 
5135 	if (root->fs_info->quota_enabled) {
5136 		ret = btrfs_qgroup_reserve(root, num_bytes +
5137 					   nr_extents * root->nodesize);
5138 		if (ret)
5139 			goto out_fail;
5140 	}
5141 
5142 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5143 	if (unlikely(ret)) {
5144 		if (root->fs_info->quota_enabled)
5145 			btrfs_qgroup_free(root, num_bytes +
5146 						nr_extents * root->nodesize);
5147 		goto out_fail;
5148 	}
5149 
5150 	spin_lock(&BTRFS_I(inode)->lock);
5151 	if (extra_reserve) {
5152 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5153 			&BTRFS_I(inode)->runtime_flags);
5154 		nr_extents--;
5155 	}
5156 	BTRFS_I(inode)->reserved_extents += nr_extents;
5157 	spin_unlock(&BTRFS_I(inode)->lock);
5158 
5159 	if (delalloc_lock)
5160 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5161 
5162 	if (to_reserve)
5163 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5164 					      btrfs_ino(inode), to_reserve, 1);
5165 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5166 
5167 	return 0;
5168 
5169 out_fail:
5170 	spin_lock(&BTRFS_I(inode)->lock);
5171 	dropped = drop_outstanding_extent(inode, num_bytes);
5172 	/*
5173 	 * If the inodes csum_bytes is the same as the original
5174 	 * csum_bytes then we know we haven't raced with any free()ers
5175 	 * so we can just reduce our inodes csum bytes and carry on.
5176 	 */
5177 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5178 		calc_csum_metadata_size(inode, num_bytes, 0);
5179 	} else {
5180 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5181 		u64 bytes;
5182 
5183 		/*
5184 		 * This is tricky, but first we need to figure out how much we
5185 		 * free'd from any free-ers that occured during this
5186 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5187 		 * before we dropped our lock, and then call the free for the
5188 		 * number of bytes that were freed while we were trying our
5189 		 * reservation.
5190 		 */
5191 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5192 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5193 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5194 
5195 
5196 		/*
5197 		 * Now we need to see how much we would have freed had we not
5198 		 * been making this reservation and our ->csum_bytes were not
5199 		 * artificially inflated.
5200 		 */
5201 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5202 		bytes = csum_bytes - orig_csum_bytes;
5203 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5204 
5205 		/*
5206 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5207 		 * more than to_free then we would have free'd more space had we
5208 		 * not had an artificially high ->csum_bytes, so we need to free
5209 		 * the remainder.  If bytes is the same or less then we don't
5210 		 * need to do anything, the other free-ers did the correct
5211 		 * thing.
5212 		 */
5213 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5214 		if (bytes > to_free)
5215 			to_free = bytes - to_free;
5216 		else
5217 			to_free = 0;
5218 	}
5219 	spin_unlock(&BTRFS_I(inode)->lock);
5220 	if (dropped)
5221 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5222 
5223 	if (to_free) {
5224 		btrfs_block_rsv_release(root, block_rsv, to_free);
5225 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5226 					      btrfs_ino(inode), to_free, 0);
5227 	}
5228 	if (delalloc_lock)
5229 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5230 	return ret;
5231 }
5232 
5233 /**
5234  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5235  * @inode: the inode to release the reservation for
5236  * @num_bytes: the number of bytes we're releasing
5237  *
5238  * This will release the metadata reservation for an inode.  This can be called
5239  * once we complete IO for a given set of bytes to release their metadata
5240  * reservations.
5241  */
5242 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5243 {
5244 	struct btrfs_root *root = BTRFS_I(inode)->root;
5245 	u64 to_free = 0;
5246 	unsigned dropped;
5247 
5248 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5249 	spin_lock(&BTRFS_I(inode)->lock);
5250 	dropped = drop_outstanding_extent(inode, num_bytes);
5251 
5252 	if (num_bytes)
5253 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5254 	spin_unlock(&BTRFS_I(inode)->lock);
5255 	if (dropped > 0)
5256 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5257 
5258 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5259 				      btrfs_ino(inode), to_free, 0);
5260 	if (root->fs_info->quota_enabled) {
5261 		btrfs_qgroup_free(root, num_bytes +
5262 					dropped * root->nodesize);
5263 	}
5264 
5265 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5266 				to_free);
5267 }
5268 
5269 /**
5270  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5271  * @inode: inode we're writing to
5272  * @num_bytes: the number of bytes we want to allocate
5273  *
5274  * This will do the following things
5275  *
5276  * o reserve space in the data space info for num_bytes
5277  * o reserve space in the metadata space info based on number of outstanding
5278  *   extents and how much csums will be needed
5279  * o add to the inodes ->delalloc_bytes
5280  * o add it to the fs_info's delalloc inodes list.
5281  *
5282  * This will return 0 for success and -ENOSPC if there is no space left.
5283  */
5284 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5285 {
5286 	int ret;
5287 
5288 	ret = btrfs_check_data_free_space(inode, num_bytes);
5289 	if (ret)
5290 		return ret;
5291 
5292 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5293 	if (ret) {
5294 		btrfs_free_reserved_data_space(inode, num_bytes);
5295 		return ret;
5296 	}
5297 
5298 	return 0;
5299 }
5300 
5301 /**
5302  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5303  * @inode: inode we're releasing space for
5304  * @num_bytes: the number of bytes we want to free up
5305  *
5306  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5307  * called in the case that we don't need the metadata AND data reservations
5308  * anymore.  So if there is an error or we insert an inline extent.
5309  *
5310  * This function will release the metadata space that was not used and will
5311  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5312  * list if there are no delalloc bytes left.
5313  */
5314 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5315 {
5316 	btrfs_delalloc_release_metadata(inode, num_bytes);
5317 	btrfs_free_reserved_data_space(inode, num_bytes);
5318 }
5319 
5320 static int update_block_group(struct btrfs_trans_handle *trans,
5321 			      struct btrfs_root *root, u64 bytenr,
5322 			      u64 num_bytes, int alloc)
5323 {
5324 	struct btrfs_block_group_cache *cache = NULL;
5325 	struct btrfs_fs_info *info = root->fs_info;
5326 	u64 total = num_bytes;
5327 	u64 old_val;
5328 	u64 byte_in_group;
5329 	int factor;
5330 
5331 	/* block accounting for super block */
5332 	spin_lock(&info->delalloc_root_lock);
5333 	old_val = btrfs_super_bytes_used(info->super_copy);
5334 	if (alloc)
5335 		old_val += num_bytes;
5336 	else
5337 		old_val -= num_bytes;
5338 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5339 	spin_unlock(&info->delalloc_root_lock);
5340 
5341 	while (total) {
5342 		cache = btrfs_lookup_block_group(info, bytenr);
5343 		if (!cache)
5344 			return -ENOENT;
5345 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5346 				    BTRFS_BLOCK_GROUP_RAID1 |
5347 				    BTRFS_BLOCK_GROUP_RAID10))
5348 			factor = 2;
5349 		else
5350 			factor = 1;
5351 		/*
5352 		 * If this block group has free space cache written out, we
5353 		 * need to make sure to load it if we are removing space.  This
5354 		 * is because we need the unpinning stage to actually add the
5355 		 * space back to the block group, otherwise we will leak space.
5356 		 */
5357 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5358 			cache_block_group(cache, 1);
5359 
5360 		spin_lock(&trans->transaction->dirty_bgs_lock);
5361 		if (list_empty(&cache->dirty_list)) {
5362 			list_add_tail(&cache->dirty_list,
5363 				      &trans->transaction->dirty_bgs);
5364 			btrfs_get_block_group(cache);
5365 		}
5366 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5367 
5368 		byte_in_group = bytenr - cache->key.objectid;
5369 		WARN_ON(byte_in_group > cache->key.offset);
5370 
5371 		spin_lock(&cache->space_info->lock);
5372 		spin_lock(&cache->lock);
5373 
5374 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5375 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5376 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5377 
5378 		old_val = btrfs_block_group_used(&cache->item);
5379 		num_bytes = min(total, cache->key.offset - byte_in_group);
5380 		if (alloc) {
5381 			old_val += num_bytes;
5382 			btrfs_set_block_group_used(&cache->item, old_val);
5383 			cache->reserved -= num_bytes;
5384 			cache->space_info->bytes_reserved -= num_bytes;
5385 			cache->space_info->bytes_used += num_bytes;
5386 			cache->space_info->disk_used += num_bytes * factor;
5387 			spin_unlock(&cache->lock);
5388 			spin_unlock(&cache->space_info->lock);
5389 		} else {
5390 			old_val -= num_bytes;
5391 			btrfs_set_block_group_used(&cache->item, old_val);
5392 			cache->pinned += num_bytes;
5393 			cache->space_info->bytes_pinned += num_bytes;
5394 			cache->space_info->bytes_used -= num_bytes;
5395 			cache->space_info->disk_used -= num_bytes * factor;
5396 			spin_unlock(&cache->lock);
5397 			spin_unlock(&cache->space_info->lock);
5398 
5399 			set_extent_dirty(info->pinned_extents,
5400 					 bytenr, bytenr + num_bytes - 1,
5401 					 GFP_NOFS | __GFP_NOFAIL);
5402 			/*
5403 			 * No longer have used bytes in this block group, queue
5404 			 * it for deletion.
5405 			 */
5406 			if (old_val == 0) {
5407 				spin_lock(&info->unused_bgs_lock);
5408 				if (list_empty(&cache->bg_list)) {
5409 					btrfs_get_block_group(cache);
5410 					list_add_tail(&cache->bg_list,
5411 						      &info->unused_bgs);
5412 				}
5413 				spin_unlock(&info->unused_bgs_lock);
5414 			}
5415 		}
5416 		btrfs_put_block_group(cache);
5417 		total -= num_bytes;
5418 		bytenr += num_bytes;
5419 	}
5420 	return 0;
5421 }
5422 
5423 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5424 {
5425 	struct btrfs_block_group_cache *cache;
5426 	u64 bytenr;
5427 
5428 	spin_lock(&root->fs_info->block_group_cache_lock);
5429 	bytenr = root->fs_info->first_logical_byte;
5430 	spin_unlock(&root->fs_info->block_group_cache_lock);
5431 
5432 	if (bytenr < (u64)-1)
5433 		return bytenr;
5434 
5435 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5436 	if (!cache)
5437 		return 0;
5438 
5439 	bytenr = cache->key.objectid;
5440 	btrfs_put_block_group(cache);
5441 
5442 	return bytenr;
5443 }
5444 
5445 static int pin_down_extent(struct btrfs_root *root,
5446 			   struct btrfs_block_group_cache *cache,
5447 			   u64 bytenr, u64 num_bytes, int reserved)
5448 {
5449 	spin_lock(&cache->space_info->lock);
5450 	spin_lock(&cache->lock);
5451 	cache->pinned += num_bytes;
5452 	cache->space_info->bytes_pinned += num_bytes;
5453 	if (reserved) {
5454 		cache->reserved -= num_bytes;
5455 		cache->space_info->bytes_reserved -= num_bytes;
5456 	}
5457 	spin_unlock(&cache->lock);
5458 	spin_unlock(&cache->space_info->lock);
5459 
5460 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5461 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5462 	if (reserved)
5463 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5464 	return 0;
5465 }
5466 
5467 /*
5468  * this function must be called within transaction
5469  */
5470 int btrfs_pin_extent(struct btrfs_root *root,
5471 		     u64 bytenr, u64 num_bytes, int reserved)
5472 {
5473 	struct btrfs_block_group_cache *cache;
5474 
5475 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5476 	BUG_ON(!cache); /* Logic error */
5477 
5478 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5479 
5480 	btrfs_put_block_group(cache);
5481 	return 0;
5482 }
5483 
5484 /*
5485  * this function must be called within transaction
5486  */
5487 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5488 				    u64 bytenr, u64 num_bytes)
5489 {
5490 	struct btrfs_block_group_cache *cache;
5491 	int ret;
5492 
5493 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5494 	if (!cache)
5495 		return -EINVAL;
5496 
5497 	/*
5498 	 * pull in the free space cache (if any) so that our pin
5499 	 * removes the free space from the cache.  We have load_only set
5500 	 * to one because the slow code to read in the free extents does check
5501 	 * the pinned extents.
5502 	 */
5503 	cache_block_group(cache, 1);
5504 
5505 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5506 
5507 	/* remove us from the free space cache (if we're there at all) */
5508 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5509 	btrfs_put_block_group(cache);
5510 	return ret;
5511 }
5512 
5513 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5514 {
5515 	int ret;
5516 	struct btrfs_block_group_cache *block_group;
5517 	struct btrfs_caching_control *caching_ctl;
5518 
5519 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5520 	if (!block_group)
5521 		return -EINVAL;
5522 
5523 	cache_block_group(block_group, 0);
5524 	caching_ctl = get_caching_control(block_group);
5525 
5526 	if (!caching_ctl) {
5527 		/* Logic error */
5528 		BUG_ON(!block_group_cache_done(block_group));
5529 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5530 	} else {
5531 		mutex_lock(&caching_ctl->mutex);
5532 
5533 		if (start >= caching_ctl->progress) {
5534 			ret = add_excluded_extent(root, start, num_bytes);
5535 		} else if (start + num_bytes <= caching_ctl->progress) {
5536 			ret = btrfs_remove_free_space(block_group,
5537 						      start, num_bytes);
5538 		} else {
5539 			num_bytes = caching_ctl->progress - start;
5540 			ret = btrfs_remove_free_space(block_group,
5541 						      start, num_bytes);
5542 			if (ret)
5543 				goto out_lock;
5544 
5545 			num_bytes = (start + num_bytes) -
5546 				caching_ctl->progress;
5547 			start = caching_ctl->progress;
5548 			ret = add_excluded_extent(root, start, num_bytes);
5549 		}
5550 out_lock:
5551 		mutex_unlock(&caching_ctl->mutex);
5552 		put_caching_control(caching_ctl);
5553 	}
5554 	btrfs_put_block_group(block_group);
5555 	return ret;
5556 }
5557 
5558 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5559 				 struct extent_buffer *eb)
5560 {
5561 	struct btrfs_file_extent_item *item;
5562 	struct btrfs_key key;
5563 	int found_type;
5564 	int i;
5565 
5566 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5567 		return 0;
5568 
5569 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5570 		btrfs_item_key_to_cpu(eb, &key, i);
5571 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5572 			continue;
5573 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5574 		found_type = btrfs_file_extent_type(eb, item);
5575 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5576 			continue;
5577 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5578 			continue;
5579 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5580 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5581 		__exclude_logged_extent(log, key.objectid, key.offset);
5582 	}
5583 
5584 	return 0;
5585 }
5586 
5587 /**
5588  * btrfs_update_reserved_bytes - update the block_group and space info counters
5589  * @cache:	The cache we are manipulating
5590  * @num_bytes:	The number of bytes in question
5591  * @reserve:	One of the reservation enums
5592  * @delalloc:   The blocks are allocated for the delalloc write
5593  *
5594  * This is called by the allocator when it reserves space, or by somebody who is
5595  * freeing space that was never actually used on disk.  For example if you
5596  * reserve some space for a new leaf in transaction A and before transaction A
5597  * commits you free that leaf, you call this with reserve set to 0 in order to
5598  * clear the reservation.
5599  *
5600  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5601  * ENOSPC accounting.  For data we handle the reservation through clearing the
5602  * delalloc bits in the io_tree.  We have to do this since we could end up
5603  * allocating less disk space for the amount of data we have reserved in the
5604  * case of compression.
5605  *
5606  * If this is a reservation and the block group has become read only we cannot
5607  * make the reservation and return -EAGAIN, otherwise this function always
5608  * succeeds.
5609  */
5610 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5611 				       u64 num_bytes, int reserve, int delalloc)
5612 {
5613 	struct btrfs_space_info *space_info = cache->space_info;
5614 	int ret = 0;
5615 
5616 	spin_lock(&space_info->lock);
5617 	spin_lock(&cache->lock);
5618 	if (reserve != RESERVE_FREE) {
5619 		if (cache->ro) {
5620 			ret = -EAGAIN;
5621 		} else {
5622 			cache->reserved += num_bytes;
5623 			space_info->bytes_reserved += num_bytes;
5624 			if (reserve == RESERVE_ALLOC) {
5625 				trace_btrfs_space_reservation(cache->fs_info,
5626 						"space_info", space_info->flags,
5627 						num_bytes, 0);
5628 				space_info->bytes_may_use -= num_bytes;
5629 			}
5630 
5631 			if (delalloc)
5632 				cache->delalloc_bytes += num_bytes;
5633 		}
5634 	} else {
5635 		if (cache->ro)
5636 			space_info->bytes_readonly += num_bytes;
5637 		cache->reserved -= num_bytes;
5638 		space_info->bytes_reserved -= num_bytes;
5639 
5640 		if (delalloc)
5641 			cache->delalloc_bytes -= num_bytes;
5642 	}
5643 	spin_unlock(&cache->lock);
5644 	spin_unlock(&space_info->lock);
5645 	return ret;
5646 }
5647 
5648 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5649 				struct btrfs_root *root)
5650 {
5651 	struct btrfs_fs_info *fs_info = root->fs_info;
5652 	struct btrfs_caching_control *next;
5653 	struct btrfs_caching_control *caching_ctl;
5654 	struct btrfs_block_group_cache *cache;
5655 
5656 	down_write(&fs_info->commit_root_sem);
5657 
5658 	list_for_each_entry_safe(caching_ctl, next,
5659 				 &fs_info->caching_block_groups, list) {
5660 		cache = caching_ctl->block_group;
5661 		if (block_group_cache_done(cache)) {
5662 			cache->last_byte_to_unpin = (u64)-1;
5663 			list_del_init(&caching_ctl->list);
5664 			put_caching_control(caching_ctl);
5665 		} else {
5666 			cache->last_byte_to_unpin = caching_ctl->progress;
5667 		}
5668 	}
5669 
5670 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5671 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5672 	else
5673 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5674 
5675 	up_write(&fs_info->commit_root_sem);
5676 
5677 	update_global_block_rsv(fs_info);
5678 }
5679 
5680 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5681 			      const bool return_free_space)
5682 {
5683 	struct btrfs_fs_info *fs_info = root->fs_info;
5684 	struct btrfs_block_group_cache *cache = NULL;
5685 	struct btrfs_space_info *space_info;
5686 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5687 	u64 len;
5688 	bool readonly;
5689 
5690 	while (start <= end) {
5691 		readonly = false;
5692 		if (!cache ||
5693 		    start >= cache->key.objectid + cache->key.offset) {
5694 			if (cache)
5695 				btrfs_put_block_group(cache);
5696 			cache = btrfs_lookup_block_group(fs_info, start);
5697 			BUG_ON(!cache); /* Logic error */
5698 		}
5699 
5700 		len = cache->key.objectid + cache->key.offset - start;
5701 		len = min(len, end + 1 - start);
5702 
5703 		if (start < cache->last_byte_to_unpin) {
5704 			len = min(len, cache->last_byte_to_unpin - start);
5705 			if (return_free_space)
5706 				btrfs_add_free_space(cache, start, len);
5707 		}
5708 
5709 		start += len;
5710 		space_info = cache->space_info;
5711 
5712 		spin_lock(&space_info->lock);
5713 		spin_lock(&cache->lock);
5714 		cache->pinned -= len;
5715 		space_info->bytes_pinned -= len;
5716 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5717 		if (cache->ro) {
5718 			space_info->bytes_readonly += len;
5719 			readonly = true;
5720 		}
5721 		spin_unlock(&cache->lock);
5722 		if (!readonly && global_rsv->space_info == space_info) {
5723 			spin_lock(&global_rsv->lock);
5724 			if (!global_rsv->full) {
5725 				len = min(len, global_rsv->size -
5726 					  global_rsv->reserved);
5727 				global_rsv->reserved += len;
5728 				space_info->bytes_may_use += len;
5729 				if (global_rsv->reserved >= global_rsv->size)
5730 					global_rsv->full = 1;
5731 			}
5732 			spin_unlock(&global_rsv->lock);
5733 		}
5734 		spin_unlock(&space_info->lock);
5735 	}
5736 
5737 	if (cache)
5738 		btrfs_put_block_group(cache);
5739 	return 0;
5740 }
5741 
5742 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5743 			       struct btrfs_root *root)
5744 {
5745 	struct btrfs_fs_info *fs_info = root->fs_info;
5746 	struct extent_io_tree *unpin;
5747 	u64 start;
5748 	u64 end;
5749 	int ret;
5750 
5751 	if (trans->aborted)
5752 		return 0;
5753 
5754 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5755 		unpin = &fs_info->freed_extents[1];
5756 	else
5757 		unpin = &fs_info->freed_extents[0];
5758 
5759 	while (1) {
5760 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5761 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5762 					    EXTENT_DIRTY, NULL);
5763 		if (ret) {
5764 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5765 			break;
5766 		}
5767 
5768 		if (btrfs_test_opt(root, DISCARD))
5769 			ret = btrfs_discard_extent(root, start,
5770 						   end + 1 - start, NULL);
5771 
5772 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5773 		unpin_extent_range(root, start, end, true);
5774 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5775 		cond_resched();
5776 	}
5777 
5778 	return 0;
5779 }
5780 
5781 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5782 			     u64 owner, u64 root_objectid)
5783 {
5784 	struct btrfs_space_info *space_info;
5785 	u64 flags;
5786 
5787 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5788 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5789 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5790 		else
5791 			flags = BTRFS_BLOCK_GROUP_METADATA;
5792 	} else {
5793 		flags = BTRFS_BLOCK_GROUP_DATA;
5794 	}
5795 
5796 	space_info = __find_space_info(fs_info, flags);
5797 	BUG_ON(!space_info); /* Logic bug */
5798 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5799 }
5800 
5801 
5802 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5803 				struct btrfs_root *root,
5804 				u64 bytenr, u64 num_bytes, u64 parent,
5805 				u64 root_objectid, u64 owner_objectid,
5806 				u64 owner_offset, int refs_to_drop,
5807 				struct btrfs_delayed_extent_op *extent_op,
5808 				int no_quota)
5809 {
5810 	struct btrfs_key key;
5811 	struct btrfs_path *path;
5812 	struct btrfs_fs_info *info = root->fs_info;
5813 	struct btrfs_root *extent_root = info->extent_root;
5814 	struct extent_buffer *leaf;
5815 	struct btrfs_extent_item *ei;
5816 	struct btrfs_extent_inline_ref *iref;
5817 	int ret;
5818 	int is_data;
5819 	int extent_slot = 0;
5820 	int found_extent = 0;
5821 	int num_to_del = 1;
5822 	u32 item_size;
5823 	u64 refs;
5824 	int last_ref = 0;
5825 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5826 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5827 						 SKINNY_METADATA);
5828 
5829 	if (!info->quota_enabled || !is_fstree(root_objectid))
5830 		no_quota = 1;
5831 
5832 	path = btrfs_alloc_path();
5833 	if (!path)
5834 		return -ENOMEM;
5835 
5836 	path->reada = 1;
5837 	path->leave_spinning = 1;
5838 
5839 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5840 	BUG_ON(!is_data && refs_to_drop != 1);
5841 
5842 	if (is_data)
5843 		skinny_metadata = 0;
5844 
5845 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5846 				    bytenr, num_bytes, parent,
5847 				    root_objectid, owner_objectid,
5848 				    owner_offset);
5849 	if (ret == 0) {
5850 		extent_slot = path->slots[0];
5851 		while (extent_slot >= 0) {
5852 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5853 					      extent_slot);
5854 			if (key.objectid != bytenr)
5855 				break;
5856 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5857 			    key.offset == num_bytes) {
5858 				found_extent = 1;
5859 				break;
5860 			}
5861 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5862 			    key.offset == owner_objectid) {
5863 				found_extent = 1;
5864 				break;
5865 			}
5866 			if (path->slots[0] - extent_slot > 5)
5867 				break;
5868 			extent_slot--;
5869 		}
5870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5871 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5872 		if (found_extent && item_size < sizeof(*ei))
5873 			found_extent = 0;
5874 #endif
5875 		if (!found_extent) {
5876 			BUG_ON(iref);
5877 			ret = remove_extent_backref(trans, extent_root, path,
5878 						    NULL, refs_to_drop,
5879 						    is_data, &last_ref);
5880 			if (ret) {
5881 				btrfs_abort_transaction(trans, extent_root, ret);
5882 				goto out;
5883 			}
5884 			btrfs_release_path(path);
5885 			path->leave_spinning = 1;
5886 
5887 			key.objectid = bytenr;
5888 			key.type = BTRFS_EXTENT_ITEM_KEY;
5889 			key.offset = num_bytes;
5890 
5891 			if (!is_data && skinny_metadata) {
5892 				key.type = BTRFS_METADATA_ITEM_KEY;
5893 				key.offset = owner_objectid;
5894 			}
5895 
5896 			ret = btrfs_search_slot(trans, extent_root,
5897 						&key, path, -1, 1);
5898 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5899 				/*
5900 				 * Couldn't find our skinny metadata item,
5901 				 * see if we have ye olde extent item.
5902 				 */
5903 				path->slots[0]--;
5904 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5905 						      path->slots[0]);
5906 				if (key.objectid == bytenr &&
5907 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5908 				    key.offset == num_bytes)
5909 					ret = 0;
5910 			}
5911 
5912 			if (ret > 0 && skinny_metadata) {
5913 				skinny_metadata = false;
5914 				key.objectid = bytenr;
5915 				key.type = BTRFS_EXTENT_ITEM_KEY;
5916 				key.offset = num_bytes;
5917 				btrfs_release_path(path);
5918 				ret = btrfs_search_slot(trans, extent_root,
5919 							&key, path, -1, 1);
5920 			}
5921 
5922 			if (ret) {
5923 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5924 					ret, bytenr);
5925 				if (ret > 0)
5926 					btrfs_print_leaf(extent_root,
5927 							 path->nodes[0]);
5928 			}
5929 			if (ret < 0) {
5930 				btrfs_abort_transaction(trans, extent_root, ret);
5931 				goto out;
5932 			}
5933 			extent_slot = path->slots[0];
5934 		}
5935 	} else if (WARN_ON(ret == -ENOENT)) {
5936 		btrfs_print_leaf(extent_root, path->nodes[0]);
5937 		btrfs_err(info,
5938 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5939 			bytenr, parent, root_objectid, owner_objectid,
5940 			owner_offset);
5941 		btrfs_abort_transaction(trans, extent_root, ret);
5942 		goto out;
5943 	} else {
5944 		btrfs_abort_transaction(trans, extent_root, ret);
5945 		goto out;
5946 	}
5947 
5948 	leaf = path->nodes[0];
5949 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5951 	if (item_size < sizeof(*ei)) {
5952 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5953 		ret = convert_extent_item_v0(trans, extent_root, path,
5954 					     owner_objectid, 0);
5955 		if (ret < 0) {
5956 			btrfs_abort_transaction(trans, extent_root, ret);
5957 			goto out;
5958 		}
5959 
5960 		btrfs_release_path(path);
5961 		path->leave_spinning = 1;
5962 
5963 		key.objectid = bytenr;
5964 		key.type = BTRFS_EXTENT_ITEM_KEY;
5965 		key.offset = num_bytes;
5966 
5967 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5968 					-1, 1);
5969 		if (ret) {
5970 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5971 				ret, bytenr);
5972 			btrfs_print_leaf(extent_root, path->nodes[0]);
5973 		}
5974 		if (ret < 0) {
5975 			btrfs_abort_transaction(trans, extent_root, ret);
5976 			goto out;
5977 		}
5978 
5979 		extent_slot = path->slots[0];
5980 		leaf = path->nodes[0];
5981 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5982 	}
5983 #endif
5984 	BUG_ON(item_size < sizeof(*ei));
5985 	ei = btrfs_item_ptr(leaf, extent_slot,
5986 			    struct btrfs_extent_item);
5987 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5988 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5989 		struct btrfs_tree_block_info *bi;
5990 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5991 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5992 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5993 	}
5994 
5995 	refs = btrfs_extent_refs(leaf, ei);
5996 	if (refs < refs_to_drop) {
5997 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5998 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
5999 		ret = -EINVAL;
6000 		btrfs_abort_transaction(trans, extent_root, ret);
6001 		goto out;
6002 	}
6003 	refs -= refs_to_drop;
6004 
6005 	if (refs > 0) {
6006 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6007 		if (extent_op)
6008 			__run_delayed_extent_op(extent_op, leaf, ei);
6009 		/*
6010 		 * In the case of inline back ref, reference count will
6011 		 * be updated by remove_extent_backref
6012 		 */
6013 		if (iref) {
6014 			BUG_ON(!found_extent);
6015 		} else {
6016 			btrfs_set_extent_refs(leaf, ei, refs);
6017 			btrfs_mark_buffer_dirty(leaf);
6018 		}
6019 		if (found_extent) {
6020 			ret = remove_extent_backref(trans, extent_root, path,
6021 						    iref, refs_to_drop,
6022 						    is_data, &last_ref);
6023 			if (ret) {
6024 				btrfs_abort_transaction(trans, extent_root, ret);
6025 				goto out;
6026 			}
6027 		}
6028 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6029 				 root_objectid);
6030 	} else {
6031 		if (found_extent) {
6032 			BUG_ON(is_data && refs_to_drop !=
6033 			       extent_data_ref_count(root, path, iref));
6034 			if (iref) {
6035 				BUG_ON(path->slots[0] != extent_slot);
6036 			} else {
6037 				BUG_ON(path->slots[0] != extent_slot + 1);
6038 				path->slots[0] = extent_slot;
6039 				num_to_del = 2;
6040 			}
6041 		}
6042 
6043 		last_ref = 1;
6044 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6045 				      num_to_del);
6046 		if (ret) {
6047 			btrfs_abort_transaction(trans, extent_root, ret);
6048 			goto out;
6049 		}
6050 		btrfs_release_path(path);
6051 
6052 		if (is_data) {
6053 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6054 			if (ret) {
6055 				btrfs_abort_transaction(trans, extent_root, ret);
6056 				goto out;
6057 			}
6058 		}
6059 
6060 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6061 		if (ret) {
6062 			btrfs_abort_transaction(trans, extent_root, ret);
6063 			goto out;
6064 		}
6065 	}
6066 	btrfs_release_path(path);
6067 
6068 	/* Deal with the quota accounting */
6069 	if (!ret && last_ref && !no_quota) {
6070 		int mod_seq = 0;
6071 
6072 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6073 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6074 			mod_seq = 1;
6075 
6076 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6077 					      bytenr, num_bytes, type,
6078 					      mod_seq);
6079 	}
6080 out:
6081 	btrfs_free_path(path);
6082 	return ret;
6083 }
6084 
6085 /*
6086  * when we free an block, it is possible (and likely) that we free the last
6087  * delayed ref for that extent as well.  This searches the delayed ref tree for
6088  * a given extent, and if there are no other delayed refs to be processed, it
6089  * removes it from the tree.
6090  */
6091 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6092 				      struct btrfs_root *root, u64 bytenr)
6093 {
6094 	struct btrfs_delayed_ref_head *head;
6095 	struct btrfs_delayed_ref_root *delayed_refs;
6096 	int ret = 0;
6097 
6098 	delayed_refs = &trans->transaction->delayed_refs;
6099 	spin_lock(&delayed_refs->lock);
6100 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6101 	if (!head)
6102 		goto out_delayed_unlock;
6103 
6104 	spin_lock(&head->lock);
6105 	if (rb_first(&head->ref_root))
6106 		goto out;
6107 
6108 	if (head->extent_op) {
6109 		if (!head->must_insert_reserved)
6110 			goto out;
6111 		btrfs_free_delayed_extent_op(head->extent_op);
6112 		head->extent_op = NULL;
6113 	}
6114 
6115 	/*
6116 	 * waiting for the lock here would deadlock.  If someone else has it
6117 	 * locked they are already in the process of dropping it anyway
6118 	 */
6119 	if (!mutex_trylock(&head->mutex))
6120 		goto out;
6121 
6122 	/*
6123 	 * at this point we have a head with no other entries.  Go
6124 	 * ahead and process it.
6125 	 */
6126 	head->node.in_tree = 0;
6127 	rb_erase(&head->href_node, &delayed_refs->href_root);
6128 
6129 	atomic_dec(&delayed_refs->num_entries);
6130 
6131 	/*
6132 	 * we don't take a ref on the node because we're removing it from the
6133 	 * tree, so we just steal the ref the tree was holding.
6134 	 */
6135 	delayed_refs->num_heads--;
6136 	if (head->processing == 0)
6137 		delayed_refs->num_heads_ready--;
6138 	head->processing = 0;
6139 	spin_unlock(&head->lock);
6140 	spin_unlock(&delayed_refs->lock);
6141 
6142 	BUG_ON(head->extent_op);
6143 	if (head->must_insert_reserved)
6144 		ret = 1;
6145 
6146 	mutex_unlock(&head->mutex);
6147 	btrfs_put_delayed_ref(&head->node);
6148 	return ret;
6149 out:
6150 	spin_unlock(&head->lock);
6151 
6152 out_delayed_unlock:
6153 	spin_unlock(&delayed_refs->lock);
6154 	return 0;
6155 }
6156 
6157 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6158 			   struct btrfs_root *root,
6159 			   struct extent_buffer *buf,
6160 			   u64 parent, int last_ref)
6161 {
6162 	int pin = 1;
6163 	int ret;
6164 
6165 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6166 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6167 					buf->start, buf->len,
6168 					parent, root->root_key.objectid,
6169 					btrfs_header_level(buf),
6170 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6171 		BUG_ON(ret); /* -ENOMEM */
6172 	}
6173 
6174 	if (!last_ref)
6175 		return;
6176 
6177 	if (btrfs_header_generation(buf) == trans->transid) {
6178 		struct btrfs_block_group_cache *cache;
6179 
6180 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6181 			ret = check_ref_cleanup(trans, root, buf->start);
6182 			if (!ret)
6183 				goto out;
6184 		}
6185 
6186 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6187 
6188 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6189 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6190 			btrfs_put_block_group(cache);
6191 			goto out;
6192 		}
6193 
6194 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6195 
6196 		btrfs_add_free_space(cache, buf->start, buf->len);
6197 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6198 		btrfs_put_block_group(cache);
6199 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6200 		pin = 0;
6201 	}
6202 out:
6203 	if (pin)
6204 		add_pinned_bytes(root->fs_info, buf->len,
6205 				 btrfs_header_level(buf),
6206 				 root->root_key.objectid);
6207 
6208 	/*
6209 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6210 	 * anymore.
6211 	 */
6212 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6213 }
6214 
6215 /* Can return -ENOMEM */
6216 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6217 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6218 		      u64 owner, u64 offset, int no_quota)
6219 {
6220 	int ret;
6221 	struct btrfs_fs_info *fs_info = root->fs_info;
6222 
6223 	if (btrfs_test_is_dummy_root(root))
6224 		return 0;
6225 
6226 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6227 
6228 	/*
6229 	 * tree log blocks never actually go into the extent allocation
6230 	 * tree, just update pinning info and exit early.
6231 	 */
6232 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6233 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6234 		/* unlocks the pinned mutex */
6235 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6236 		ret = 0;
6237 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6238 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6239 					num_bytes,
6240 					parent, root_objectid, (int)owner,
6241 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6242 	} else {
6243 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6244 						num_bytes,
6245 						parent, root_objectid, owner,
6246 						offset, BTRFS_DROP_DELAYED_REF,
6247 						NULL, no_quota);
6248 	}
6249 	return ret;
6250 }
6251 
6252 /*
6253  * when we wait for progress in the block group caching, its because
6254  * our allocation attempt failed at least once.  So, we must sleep
6255  * and let some progress happen before we try again.
6256  *
6257  * This function will sleep at least once waiting for new free space to
6258  * show up, and then it will check the block group free space numbers
6259  * for our min num_bytes.  Another option is to have it go ahead
6260  * and look in the rbtree for a free extent of a given size, but this
6261  * is a good start.
6262  *
6263  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6264  * any of the information in this block group.
6265  */
6266 static noinline void
6267 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6268 				u64 num_bytes)
6269 {
6270 	struct btrfs_caching_control *caching_ctl;
6271 
6272 	caching_ctl = get_caching_control(cache);
6273 	if (!caching_ctl)
6274 		return;
6275 
6276 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6277 		   (cache->free_space_ctl->free_space >= num_bytes));
6278 
6279 	put_caching_control(caching_ctl);
6280 }
6281 
6282 static noinline int
6283 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6284 {
6285 	struct btrfs_caching_control *caching_ctl;
6286 	int ret = 0;
6287 
6288 	caching_ctl = get_caching_control(cache);
6289 	if (!caching_ctl)
6290 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6291 
6292 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6293 	if (cache->cached == BTRFS_CACHE_ERROR)
6294 		ret = -EIO;
6295 	put_caching_control(caching_ctl);
6296 	return ret;
6297 }
6298 
6299 int __get_raid_index(u64 flags)
6300 {
6301 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6302 		return BTRFS_RAID_RAID10;
6303 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6304 		return BTRFS_RAID_RAID1;
6305 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6306 		return BTRFS_RAID_DUP;
6307 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6308 		return BTRFS_RAID_RAID0;
6309 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6310 		return BTRFS_RAID_RAID5;
6311 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6312 		return BTRFS_RAID_RAID6;
6313 
6314 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6315 }
6316 
6317 int get_block_group_index(struct btrfs_block_group_cache *cache)
6318 {
6319 	return __get_raid_index(cache->flags);
6320 }
6321 
6322 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6323 	[BTRFS_RAID_RAID10]	= "raid10",
6324 	[BTRFS_RAID_RAID1]	= "raid1",
6325 	[BTRFS_RAID_DUP]	= "dup",
6326 	[BTRFS_RAID_RAID0]	= "raid0",
6327 	[BTRFS_RAID_SINGLE]	= "single",
6328 	[BTRFS_RAID_RAID5]	= "raid5",
6329 	[BTRFS_RAID_RAID6]	= "raid6",
6330 };
6331 
6332 static const char *get_raid_name(enum btrfs_raid_types type)
6333 {
6334 	if (type >= BTRFS_NR_RAID_TYPES)
6335 		return NULL;
6336 
6337 	return btrfs_raid_type_names[type];
6338 }
6339 
6340 enum btrfs_loop_type {
6341 	LOOP_CACHING_NOWAIT = 0,
6342 	LOOP_CACHING_WAIT = 1,
6343 	LOOP_ALLOC_CHUNK = 2,
6344 	LOOP_NO_EMPTY_SIZE = 3,
6345 };
6346 
6347 static inline void
6348 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6349 		       int delalloc)
6350 {
6351 	if (delalloc)
6352 		down_read(&cache->data_rwsem);
6353 }
6354 
6355 static inline void
6356 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6357 		       int delalloc)
6358 {
6359 	btrfs_get_block_group(cache);
6360 	if (delalloc)
6361 		down_read(&cache->data_rwsem);
6362 }
6363 
6364 static struct btrfs_block_group_cache *
6365 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6366 		   struct btrfs_free_cluster *cluster,
6367 		   int delalloc)
6368 {
6369 	struct btrfs_block_group_cache *used_bg;
6370 	bool locked = false;
6371 again:
6372 	spin_lock(&cluster->refill_lock);
6373 	if (locked) {
6374 		if (used_bg == cluster->block_group)
6375 			return used_bg;
6376 
6377 		up_read(&used_bg->data_rwsem);
6378 		btrfs_put_block_group(used_bg);
6379 	}
6380 
6381 	used_bg = cluster->block_group;
6382 	if (!used_bg)
6383 		return NULL;
6384 
6385 	if (used_bg == block_group)
6386 		return used_bg;
6387 
6388 	btrfs_get_block_group(used_bg);
6389 
6390 	if (!delalloc)
6391 		return used_bg;
6392 
6393 	if (down_read_trylock(&used_bg->data_rwsem))
6394 		return used_bg;
6395 
6396 	spin_unlock(&cluster->refill_lock);
6397 	down_read(&used_bg->data_rwsem);
6398 	locked = true;
6399 	goto again;
6400 }
6401 
6402 static inline void
6403 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6404 			 int delalloc)
6405 {
6406 	if (delalloc)
6407 		up_read(&cache->data_rwsem);
6408 	btrfs_put_block_group(cache);
6409 }
6410 
6411 /*
6412  * walks the btree of allocated extents and find a hole of a given size.
6413  * The key ins is changed to record the hole:
6414  * ins->objectid == start position
6415  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6416  * ins->offset == the size of the hole.
6417  * Any available blocks before search_start are skipped.
6418  *
6419  * If there is no suitable free space, we will record the max size of
6420  * the free space extent currently.
6421  */
6422 static noinline int find_free_extent(struct btrfs_root *orig_root,
6423 				     u64 num_bytes, u64 empty_size,
6424 				     u64 hint_byte, struct btrfs_key *ins,
6425 				     u64 flags, int delalloc)
6426 {
6427 	int ret = 0;
6428 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6429 	struct btrfs_free_cluster *last_ptr = NULL;
6430 	struct btrfs_block_group_cache *block_group = NULL;
6431 	u64 search_start = 0;
6432 	u64 max_extent_size = 0;
6433 	int empty_cluster = 2 * 1024 * 1024;
6434 	struct btrfs_space_info *space_info;
6435 	int loop = 0;
6436 	int index = __get_raid_index(flags);
6437 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6438 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6439 	bool failed_cluster_refill = false;
6440 	bool failed_alloc = false;
6441 	bool use_cluster = true;
6442 	bool have_caching_bg = false;
6443 
6444 	WARN_ON(num_bytes < root->sectorsize);
6445 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6446 	ins->objectid = 0;
6447 	ins->offset = 0;
6448 
6449 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6450 
6451 	space_info = __find_space_info(root->fs_info, flags);
6452 	if (!space_info) {
6453 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6454 		return -ENOSPC;
6455 	}
6456 
6457 	/*
6458 	 * If the space info is for both data and metadata it means we have a
6459 	 * small filesystem and we can't use the clustering stuff.
6460 	 */
6461 	if (btrfs_mixed_space_info(space_info))
6462 		use_cluster = false;
6463 
6464 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6465 		last_ptr = &root->fs_info->meta_alloc_cluster;
6466 		if (!btrfs_test_opt(root, SSD))
6467 			empty_cluster = 64 * 1024;
6468 	}
6469 
6470 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6471 	    btrfs_test_opt(root, SSD)) {
6472 		last_ptr = &root->fs_info->data_alloc_cluster;
6473 	}
6474 
6475 	if (last_ptr) {
6476 		spin_lock(&last_ptr->lock);
6477 		if (last_ptr->block_group)
6478 			hint_byte = last_ptr->window_start;
6479 		spin_unlock(&last_ptr->lock);
6480 	}
6481 
6482 	search_start = max(search_start, first_logical_byte(root, 0));
6483 	search_start = max(search_start, hint_byte);
6484 
6485 	if (!last_ptr)
6486 		empty_cluster = 0;
6487 
6488 	if (search_start == hint_byte) {
6489 		block_group = btrfs_lookup_block_group(root->fs_info,
6490 						       search_start);
6491 		/*
6492 		 * we don't want to use the block group if it doesn't match our
6493 		 * allocation bits, or if its not cached.
6494 		 *
6495 		 * However if we are re-searching with an ideal block group
6496 		 * picked out then we don't care that the block group is cached.
6497 		 */
6498 		if (block_group && block_group_bits(block_group, flags) &&
6499 		    block_group->cached != BTRFS_CACHE_NO) {
6500 			down_read(&space_info->groups_sem);
6501 			if (list_empty(&block_group->list) ||
6502 			    block_group->ro) {
6503 				/*
6504 				 * someone is removing this block group,
6505 				 * we can't jump into the have_block_group
6506 				 * target because our list pointers are not
6507 				 * valid
6508 				 */
6509 				btrfs_put_block_group(block_group);
6510 				up_read(&space_info->groups_sem);
6511 			} else {
6512 				index = get_block_group_index(block_group);
6513 				btrfs_lock_block_group(block_group, delalloc);
6514 				goto have_block_group;
6515 			}
6516 		} else if (block_group) {
6517 			btrfs_put_block_group(block_group);
6518 		}
6519 	}
6520 search:
6521 	have_caching_bg = false;
6522 	down_read(&space_info->groups_sem);
6523 	list_for_each_entry(block_group, &space_info->block_groups[index],
6524 			    list) {
6525 		u64 offset;
6526 		int cached;
6527 
6528 		btrfs_grab_block_group(block_group, delalloc);
6529 		search_start = block_group->key.objectid;
6530 
6531 		/*
6532 		 * this can happen if we end up cycling through all the
6533 		 * raid types, but we want to make sure we only allocate
6534 		 * for the proper type.
6535 		 */
6536 		if (!block_group_bits(block_group, flags)) {
6537 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6538 				BTRFS_BLOCK_GROUP_RAID1 |
6539 				BTRFS_BLOCK_GROUP_RAID5 |
6540 				BTRFS_BLOCK_GROUP_RAID6 |
6541 				BTRFS_BLOCK_GROUP_RAID10;
6542 
6543 			/*
6544 			 * if they asked for extra copies and this block group
6545 			 * doesn't provide them, bail.  This does allow us to
6546 			 * fill raid0 from raid1.
6547 			 */
6548 			if ((flags & extra) && !(block_group->flags & extra))
6549 				goto loop;
6550 		}
6551 
6552 have_block_group:
6553 		cached = block_group_cache_done(block_group);
6554 		if (unlikely(!cached)) {
6555 			ret = cache_block_group(block_group, 0);
6556 			BUG_ON(ret < 0);
6557 			ret = 0;
6558 		}
6559 
6560 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6561 			goto loop;
6562 		if (unlikely(block_group->ro))
6563 			goto loop;
6564 
6565 		/*
6566 		 * Ok we want to try and use the cluster allocator, so
6567 		 * lets look there
6568 		 */
6569 		if (last_ptr) {
6570 			struct btrfs_block_group_cache *used_block_group;
6571 			unsigned long aligned_cluster;
6572 			/*
6573 			 * the refill lock keeps out other
6574 			 * people trying to start a new cluster
6575 			 */
6576 			used_block_group = btrfs_lock_cluster(block_group,
6577 							      last_ptr,
6578 							      delalloc);
6579 			if (!used_block_group)
6580 				goto refill_cluster;
6581 
6582 			if (used_block_group != block_group &&
6583 			    (used_block_group->ro ||
6584 			     !block_group_bits(used_block_group, flags)))
6585 				goto release_cluster;
6586 
6587 			offset = btrfs_alloc_from_cluster(used_block_group,
6588 						last_ptr,
6589 						num_bytes,
6590 						used_block_group->key.objectid,
6591 						&max_extent_size);
6592 			if (offset) {
6593 				/* we have a block, we're done */
6594 				spin_unlock(&last_ptr->refill_lock);
6595 				trace_btrfs_reserve_extent_cluster(root,
6596 						used_block_group,
6597 						search_start, num_bytes);
6598 				if (used_block_group != block_group) {
6599 					btrfs_release_block_group(block_group,
6600 								  delalloc);
6601 					block_group = used_block_group;
6602 				}
6603 				goto checks;
6604 			}
6605 
6606 			WARN_ON(last_ptr->block_group != used_block_group);
6607 release_cluster:
6608 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6609 			 * set up a new clusters, so lets just skip it
6610 			 * and let the allocator find whatever block
6611 			 * it can find.  If we reach this point, we
6612 			 * will have tried the cluster allocator
6613 			 * plenty of times and not have found
6614 			 * anything, so we are likely way too
6615 			 * fragmented for the clustering stuff to find
6616 			 * anything.
6617 			 *
6618 			 * However, if the cluster is taken from the
6619 			 * current block group, release the cluster
6620 			 * first, so that we stand a better chance of
6621 			 * succeeding in the unclustered
6622 			 * allocation.  */
6623 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6624 			    used_block_group != block_group) {
6625 				spin_unlock(&last_ptr->refill_lock);
6626 				btrfs_release_block_group(used_block_group,
6627 							  delalloc);
6628 				goto unclustered_alloc;
6629 			}
6630 
6631 			/*
6632 			 * this cluster didn't work out, free it and
6633 			 * start over
6634 			 */
6635 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6636 
6637 			if (used_block_group != block_group)
6638 				btrfs_release_block_group(used_block_group,
6639 							  delalloc);
6640 refill_cluster:
6641 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6642 				spin_unlock(&last_ptr->refill_lock);
6643 				goto unclustered_alloc;
6644 			}
6645 
6646 			aligned_cluster = max_t(unsigned long,
6647 						empty_cluster + empty_size,
6648 					      block_group->full_stripe_len);
6649 
6650 			/* allocate a cluster in this block group */
6651 			ret = btrfs_find_space_cluster(root, block_group,
6652 						       last_ptr, search_start,
6653 						       num_bytes,
6654 						       aligned_cluster);
6655 			if (ret == 0) {
6656 				/*
6657 				 * now pull our allocation out of this
6658 				 * cluster
6659 				 */
6660 				offset = btrfs_alloc_from_cluster(block_group,
6661 							last_ptr,
6662 							num_bytes,
6663 							search_start,
6664 							&max_extent_size);
6665 				if (offset) {
6666 					/* we found one, proceed */
6667 					spin_unlock(&last_ptr->refill_lock);
6668 					trace_btrfs_reserve_extent_cluster(root,
6669 						block_group, search_start,
6670 						num_bytes);
6671 					goto checks;
6672 				}
6673 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6674 				   && !failed_cluster_refill) {
6675 				spin_unlock(&last_ptr->refill_lock);
6676 
6677 				failed_cluster_refill = true;
6678 				wait_block_group_cache_progress(block_group,
6679 				       num_bytes + empty_cluster + empty_size);
6680 				goto have_block_group;
6681 			}
6682 
6683 			/*
6684 			 * at this point we either didn't find a cluster
6685 			 * or we weren't able to allocate a block from our
6686 			 * cluster.  Free the cluster we've been trying
6687 			 * to use, and go to the next block group
6688 			 */
6689 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6690 			spin_unlock(&last_ptr->refill_lock);
6691 			goto loop;
6692 		}
6693 
6694 unclustered_alloc:
6695 		spin_lock(&block_group->free_space_ctl->tree_lock);
6696 		if (cached &&
6697 		    block_group->free_space_ctl->free_space <
6698 		    num_bytes + empty_cluster + empty_size) {
6699 			if (block_group->free_space_ctl->free_space >
6700 			    max_extent_size)
6701 				max_extent_size =
6702 					block_group->free_space_ctl->free_space;
6703 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6704 			goto loop;
6705 		}
6706 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6707 
6708 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6709 						    num_bytes, empty_size,
6710 						    &max_extent_size);
6711 		/*
6712 		 * If we didn't find a chunk, and we haven't failed on this
6713 		 * block group before, and this block group is in the middle of
6714 		 * caching and we are ok with waiting, then go ahead and wait
6715 		 * for progress to be made, and set failed_alloc to true.
6716 		 *
6717 		 * If failed_alloc is true then we've already waited on this
6718 		 * block group once and should move on to the next block group.
6719 		 */
6720 		if (!offset && !failed_alloc && !cached &&
6721 		    loop > LOOP_CACHING_NOWAIT) {
6722 			wait_block_group_cache_progress(block_group,
6723 						num_bytes + empty_size);
6724 			failed_alloc = true;
6725 			goto have_block_group;
6726 		} else if (!offset) {
6727 			if (!cached)
6728 				have_caching_bg = true;
6729 			goto loop;
6730 		}
6731 checks:
6732 		search_start = ALIGN(offset, root->stripesize);
6733 
6734 		/* move on to the next group */
6735 		if (search_start + num_bytes >
6736 		    block_group->key.objectid + block_group->key.offset) {
6737 			btrfs_add_free_space(block_group, offset, num_bytes);
6738 			goto loop;
6739 		}
6740 
6741 		if (offset < search_start)
6742 			btrfs_add_free_space(block_group, offset,
6743 					     search_start - offset);
6744 		BUG_ON(offset > search_start);
6745 
6746 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6747 						  alloc_type, delalloc);
6748 		if (ret == -EAGAIN) {
6749 			btrfs_add_free_space(block_group, offset, num_bytes);
6750 			goto loop;
6751 		}
6752 
6753 		/* we are all good, lets return */
6754 		ins->objectid = search_start;
6755 		ins->offset = num_bytes;
6756 
6757 		trace_btrfs_reserve_extent(orig_root, block_group,
6758 					   search_start, num_bytes);
6759 		btrfs_release_block_group(block_group, delalloc);
6760 		break;
6761 loop:
6762 		failed_cluster_refill = false;
6763 		failed_alloc = false;
6764 		BUG_ON(index != get_block_group_index(block_group));
6765 		btrfs_release_block_group(block_group, delalloc);
6766 	}
6767 	up_read(&space_info->groups_sem);
6768 
6769 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6770 		goto search;
6771 
6772 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6773 		goto search;
6774 
6775 	/*
6776 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6777 	 *			caching kthreads as we move along
6778 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6779 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6780 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6781 	 *			again
6782 	 */
6783 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6784 		index = 0;
6785 		loop++;
6786 		if (loop == LOOP_ALLOC_CHUNK) {
6787 			struct btrfs_trans_handle *trans;
6788 			int exist = 0;
6789 
6790 			trans = current->journal_info;
6791 			if (trans)
6792 				exist = 1;
6793 			else
6794 				trans = btrfs_join_transaction(root);
6795 
6796 			if (IS_ERR(trans)) {
6797 				ret = PTR_ERR(trans);
6798 				goto out;
6799 			}
6800 
6801 			ret = do_chunk_alloc(trans, root, flags,
6802 					     CHUNK_ALLOC_FORCE);
6803 			/*
6804 			 * Do not bail out on ENOSPC since we
6805 			 * can do more things.
6806 			 */
6807 			if (ret < 0 && ret != -ENOSPC)
6808 				btrfs_abort_transaction(trans,
6809 							root, ret);
6810 			else
6811 				ret = 0;
6812 			if (!exist)
6813 				btrfs_end_transaction(trans, root);
6814 			if (ret)
6815 				goto out;
6816 		}
6817 
6818 		if (loop == LOOP_NO_EMPTY_SIZE) {
6819 			empty_size = 0;
6820 			empty_cluster = 0;
6821 		}
6822 
6823 		goto search;
6824 	} else if (!ins->objectid) {
6825 		ret = -ENOSPC;
6826 	} else if (ins->objectid) {
6827 		ret = 0;
6828 	}
6829 out:
6830 	if (ret == -ENOSPC)
6831 		ins->offset = max_extent_size;
6832 	return ret;
6833 }
6834 
6835 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6836 			    int dump_block_groups)
6837 {
6838 	struct btrfs_block_group_cache *cache;
6839 	int index = 0;
6840 
6841 	spin_lock(&info->lock);
6842 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6843 	       info->flags,
6844 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6845 	       info->bytes_reserved - info->bytes_readonly,
6846 	       (info->full) ? "" : "not ");
6847 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6848 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6849 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6850 	       info->bytes_reserved, info->bytes_may_use,
6851 	       info->bytes_readonly);
6852 	spin_unlock(&info->lock);
6853 
6854 	if (!dump_block_groups)
6855 		return;
6856 
6857 	down_read(&info->groups_sem);
6858 again:
6859 	list_for_each_entry(cache, &info->block_groups[index], list) {
6860 		spin_lock(&cache->lock);
6861 		printk(KERN_INFO "BTRFS: "
6862 			   "block group %llu has %llu bytes, "
6863 			   "%llu used %llu pinned %llu reserved %s\n",
6864 		       cache->key.objectid, cache->key.offset,
6865 		       btrfs_block_group_used(&cache->item), cache->pinned,
6866 		       cache->reserved, cache->ro ? "[readonly]" : "");
6867 		btrfs_dump_free_space(cache, bytes);
6868 		spin_unlock(&cache->lock);
6869 	}
6870 	if (++index < BTRFS_NR_RAID_TYPES)
6871 		goto again;
6872 	up_read(&info->groups_sem);
6873 }
6874 
6875 int btrfs_reserve_extent(struct btrfs_root *root,
6876 			 u64 num_bytes, u64 min_alloc_size,
6877 			 u64 empty_size, u64 hint_byte,
6878 			 struct btrfs_key *ins, int is_data, int delalloc)
6879 {
6880 	bool final_tried = false;
6881 	u64 flags;
6882 	int ret;
6883 
6884 	flags = btrfs_get_alloc_profile(root, is_data);
6885 again:
6886 	WARN_ON(num_bytes < root->sectorsize);
6887 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6888 			       flags, delalloc);
6889 
6890 	if (ret == -ENOSPC) {
6891 		if (!final_tried && ins->offset) {
6892 			num_bytes = min(num_bytes >> 1, ins->offset);
6893 			num_bytes = round_down(num_bytes, root->sectorsize);
6894 			num_bytes = max(num_bytes, min_alloc_size);
6895 			if (num_bytes == min_alloc_size)
6896 				final_tried = true;
6897 			goto again;
6898 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6899 			struct btrfs_space_info *sinfo;
6900 
6901 			sinfo = __find_space_info(root->fs_info, flags);
6902 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6903 				flags, num_bytes);
6904 			if (sinfo)
6905 				dump_space_info(sinfo, num_bytes, 1);
6906 		}
6907 	}
6908 
6909 	return ret;
6910 }
6911 
6912 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6913 					u64 start, u64 len,
6914 					int pin, int delalloc)
6915 {
6916 	struct btrfs_block_group_cache *cache;
6917 	int ret = 0;
6918 
6919 	cache = btrfs_lookup_block_group(root->fs_info, start);
6920 	if (!cache) {
6921 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6922 			start);
6923 		return -ENOSPC;
6924 	}
6925 
6926 	if (btrfs_test_opt(root, DISCARD))
6927 		ret = btrfs_discard_extent(root, start, len, NULL);
6928 
6929 	if (pin)
6930 		pin_down_extent(root, cache, start, len, 1);
6931 	else {
6932 		btrfs_add_free_space(cache, start, len);
6933 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6934 	}
6935 	btrfs_put_block_group(cache);
6936 
6937 	trace_btrfs_reserved_extent_free(root, start, len);
6938 
6939 	return ret;
6940 }
6941 
6942 int btrfs_free_reserved_extent(struct btrfs_root *root,
6943 			       u64 start, u64 len, int delalloc)
6944 {
6945 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6946 }
6947 
6948 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6949 				       u64 start, u64 len)
6950 {
6951 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6952 }
6953 
6954 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6955 				      struct btrfs_root *root,
6956 				      u64 parent, u64 root_objectid,
6957 				      u64 flags, u64 owner, u64 offset,
6958 				      struct btrfs_key *ins, int ref_mod)
6959 {
6960 	int ret;
6961 	struct btrfs_fs_info *fs_info = root->fs_info;
6962 	struct btrfs_extent_item *extent_item;
6963 	struct btrfs_extent_inline_ref *iref;
6964 	struct btrfs_path *path;
6965 	struct extent_buffer *leaf;
6966 	int type;
6967 	u32 size;
6968 
6969 	if (parent > 0)
6970 		type = BTRFS_SHARED_DATA_REF_KEY;
6971 	else
6972 		type = BTRFS_EXTENT_DATA_REF_KEY;
6973 
6974 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6975 
6976 	path = btrfs_alloc_path();
6977 	if (!path)
6978 		return -ENOMEM;
6979 
6980 	path->leave_spinning = 1;
6981 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6982 				      ins, size);
6983 	if (ret) {
6984 		btrfs_free_path(path);
6985 		return ret;
6986 	}
6987 
6988 	leaf = path->nodes[0];
6989 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6990 				     struct btrfs_extent_item);
6991 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6992 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6993 	btrfs_set_extent_flags(leaf, extent_item,
6994 			       flags | BTRFS_EXTENT_FLAG_DATA);
6995 
6996 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6997 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6998 	if (parent > 0) {
6999 		struct btrfs_shared_data_ref *ref;
7000 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7001 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7002 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7003 	} else {
7004 		struct btrfs_extent_data_ref *ref;
7005 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7006 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7007 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7008 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7009 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7010 	}
7011 
7012 	btrfs_mark_buffer_dirty(path->nodes[0]);
7013 	btrfs_free_path(path);
7014 
7015 	/* Always set parent to 0 here since its exclusive anyway. */
7016 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7017 				      ins->objectid, ins->offset,
7018 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7019 	if (ret)
7020 		return ret;
7021 
7022 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7023 	if (ret) { /* -ENOENT, logic error */
7024 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7025 			ins->objectid, ins->offset);
7026 		BUG();
7027 	}
7028 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7029 	return ret;
7030 }
7031 
7032 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7033 				     struct btrfs_root *root,
7034 				     u64 parent, u64 root_objectid,
7035 				     u64 flags, struct btrfs_disk_key *key,
7036 				     int level, struct btrfs_key *ins,
7037 				     int no_quota)
7038 {
7039 	int ret;
7040 	struct btrfs_fs_info *fs_info = root->fs_info;
7041 	struct btrfs_extent_item *extent_item;
7042 	struct btrfs_tree_block_info *block_info;
7043 	struct btrfs_extent_inline_ref *iref;
7044 	struct btrfs_path *path;
7045 	struct extent_buffer *leaf;
7046 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7047 	u64 num_bytes = ins->offset;
7048 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7049 						 SKINNY_METADATA);
7050 
7051 	if (!skinny_metadata)
7052 		size += sizeof(*block_info);
7053 
7054 	path = btrfs_alloc_path();
7055 	if (!path) {
7056 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7057 						   root->nodesize);
7058 		return -ENOMEM;
7059 	}
7060 
7061 	path->leave_spinning = 1;
7062 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7063 				      ins, size);
7064 	if (ret) {
7065 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7066 						   root->nodesize);
7067 		btrfs_free_path(path);
7068 		return ret;
7069 	}
7070 
7071 	leaf = path->nodes[0];
7072 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7073 				     struct btrfs_extent_item);
7074 	btrfs_set_extent_refs(leaf, extent_item, 1);
7075 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7076 	btrfs_set_extent_flags(leaf, extent_item,
7077 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7078 
7079 	if (skinny_metadata) {
7080 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7081 		num_bytes = root->nodesize;
7082 	} else {
7083 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7084 		btrfs_set_tree_block_key(leaf, block_info, key);
7085 		btrfs_set_tree_block_level(leaf, block_info, level);
7086 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7087 	}
7088 
7089 	if (parent > 0) {
7090 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7091 		btrfs_set_extent_inline_ref_type(leaf, iref,
7092 						 BTRFS_SHARED_BLOCK_REF_KEY);
7093 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7094 	} else {
7095 		btrfs_set_extent_inline_ref_type(leaf, iref,
7096 						 BTRFS_TREE_BLOCK_REF_KEY);
7097 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7098 	}
7099 
7100 	btrfs_mark_buffer_dirty(leaf);
7101 	btrfs_free_path(path);
7102 
7103 	if (!no_quota) {
7104 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7105 					      ins->objectid, num_bytes,
7106 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7107 		if (ret)
7108 			return ret;
7109 	}
7110 
7111 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7112 				 1);
7113 	if (ret) { /* -ENOENT, logic error */
7114 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7115 			ins->objectid, ins->offset);
7116 		BUG();
7117 	}
7118 
7119 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7120 	return ret;
7121 }
7122 
7123 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7124 				     struct btrfs_root *root,
7125 				     u64 root_objectid, u64 owner,
7126 				     u64 offset, struct btrfs_key *ins)
7127 {
7128 	int ret;
7129 
7130 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7131 
7132 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7133 					 ins->offset, 0,
7134 					 root_objectid, owner, offset,
7135 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7136 	return ret;
7137 }
7138 
7139 /*
7140  * this is used by the tree logging recovery code.  It records that
7141  * an extent has been allocated and makes sure to clear the free
7142  * space cache bits as well
7143  */
7144 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7145 				   struct btrfs_root *root,
7146 				   u64 root_objectid, u64 owner, u64 offset,
7147 				   struct btrfs_key *ins)
7148 {
7149 	int ret;
7150 	struct btrfs_block_group_cache *block_group;
7151 
7152 	/*
7153 	 * Mixed block groups will exclude before processing the log so we only
7154 	 * need to do the exlude dance if this fs isn't mixed.
7155 	 */
7156 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7157 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7158 		if (ret)
7159 			return ret;
7160 	}
7161 
7162 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7163 	if (!block_group)
7164 		return -EINVAL;
7165 
7166 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7167 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7168 	BUG_ON(ret); /* logic error */
7169 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7170 					 0, owner, offset, ins, 1);
7171 	btrfs_put_block_group(block_group);
7172 	return ret;
7173 }
7174 
7175 static struct extent_buffer *
7176 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7177 		      u64 bytenr, int level)
7178 {
7179 	struct extent_buffer *buf;
7180 
7181 	buf = btrfs_find_create_tree_block(root, bytenr);
7182 	if (!buf)
7183 		return ERR_PTR(-ENOMEM);
7184 	btrfs_set_header_generation(buf, trans->transid);
7185 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7186 	btrfs_tree_lock(buf);
7187 	clean_tree_block(trans, root, buf);
7188 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7189 
7190 	btrfs_set_lock_blocking(buf);
7191 	btrfs_set_buffer_uptodate(buf);
7192 
7193 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7194 		buf->log_index = root->log_transid % 2;
7195 		/*
7196 		 * we allow two log transactions at a time, use different
7197 		 * EXENT bit to differentiate dirty pages.
7198 		 */
7199 		if (buf->log_index == 0)
7200 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7201 					buf->start + buf->len - 1, GFP_NOFS);
7202 		else
7203 			set_extent_new(&root->dirty_log_pages, buf->start,
7204 					buf->start + buf->len - 1, GFP_NOFS);
7205 	} else {
7206 		buf->log_index = -1;
7207 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7208 			 buf->start + buf->len - 1, GFP_NOFS);
7209 	}
7210 	trans->blocks_used++;
7211 	/* this returns a buffer locked for blocking */
7212 	return buf;
7213 }
7214 
7215 static struct btrfs_block_rsv *
7216 use_block_rsv(struct btrfs_trans_handle *trans,
7217 	      struct btrfs_root *root, u32 blocksize)
7218 {
7219 	struct btrfs_block_rsv *block_rsv;
7220 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7221 	int ret;
7222 	bool global_updated = false;
7223 
7224 	block_rsv = get_block_rsv(trans, root);
7225 
7226 	if (unlikely(block_rsv->size == 0))
7227 		goto try_reserve;
7228 again:
7229 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7230 	if (!ret)
7231 		return block_rsv;
7232 
7233 	if (block_rsv->failfast)
7234 		return ERR_PTR(ret);
7235 
7236 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7237 		global_updated = true;
7238 		update_global_block_rsv(root->fs_info);
7239 		goto again;
7240 	}
7241 
7242 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7243 		static DEFINE_RATELIMIT_STATE(_rs,
7244 				DEFAULT_RATELIMIT_INTERVAL * 10,
7245 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7246 		if (__ratelimit(&_rs))
7247 			WARN(1, KERN_DEBUG
7248 				"BTRFS: block rsv returned %d\n", ret);
7249 	}
7250 try_reserve:
7251 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7252 				     BTRFS_RESERVE_NO_FLUSH);
7253 	if (!ret)
7254 		return block_rsv;
7255 	/*
7256 	 * If we couldn't reserve metadata bytes try and use some from
7257 	 * the global reserve if its space type is the same as the global
7258 	 * reservation.
7259 	 */
7260 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7261 	    block_rsv->space_info == global_rsv->space_info) {
7262 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7263 		if (!ret)
7264 			return global_rsv;
7265 	}
7266 	return ERR_PTR(ret);
7267 }
7268 
7269 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7270 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7271 {
7272 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7273 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7274 }
7275 
7276 /*
7277  * finds a free extent and does all the dirty work required for allocation
7278  * returns the key for the extent through ins, and a tree buffer for
7279  * the first block of the extent through buf.
7280  *
7281  * returns the tree buffer or NULL.
7282  */
7283 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7284 					struct btrfs_root *root,
7285 					u64 parent, u64 root_objectid,
7286 					struct btrfs_disk_key *key, int level,
7287 					u64 hint, u64 empty_size)
7288 {
7289 	struct btrfs_key ins;
7290 	struct btrfs_block_rsv *block_rsv;
7291 	struct extent_buffer *buf;
7292 	u64 flags = 0;
7293 	int ret;
7294 	u32 blocksize = root->nodesize;
7295 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7296 						 SKINNY_METADATA);
7297 
7298 	if (btrfs_test_is_dummy_root(root)) {
7299 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7300 					    level);
7301 		if (!IS_ERR(buf))
7302 			root->alloc_bytenr += blocksize;
7303 		return buf;
7304 	}
7305 
7306 	block_rsv = use_block_rsv(trans, root, blocksize);
7307 	if (IS_ERR(block_rsv))
7308 		return ERR_CAST(block_rsv);
7309 
7310 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7311 				   empty_size, hint, &ins, 0, 0);
7312 	if (ret) {
7313 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7314 		return ERR_PTR(ret);
7315 	}
7316 
7317 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7318 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7319 
7320 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7321 		if (parent == 0)
7322 			parent = ins.objectid;
7323 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7324 	} else
7325 		BUG_ON(parent > 0);
7326 
7327 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7328 		struct btrfs_delayed_extent_op *extent_op;
7329 		extent_op = btrfs_alloc_delayed_extent_op();
7330 		BUG_ON(!extent_op); /* -ENOMEM */
7331 		if (key)
7332 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7333 		else
7334 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7335 		extent_op->flags_to_set = flags;
7336 		if (skinny_metadata)
7337 			extent_op->update_key = 0;
7338 		else
7339 			extent_op->update_key = 1;
7340 		extent_op->update_flags = 1;
7341 		extent_op->is_data = 0;
7342 		extent_op->level = level;
7343 
7344 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7345 					ins.objectid,
7346 					ins.offset, parent, root_objectid,
7347 					level, BTRFS_ADD_DELAYED_EXTENT,
7348 					extent_op, 0);
7349 		BUG_ON(ret); /* -ENOMEM */
7350 	}
7351 	return buf;
7352 }
7353 
7354 struct walk_control {
7355 	u64 refs[BTRFS_MAX_LEVEL];
7356 	u64 flags[BTRFS_MAX_LEVEL];
7357 	struct btrfs_key update_progress;
7358 	int stage;
7359 	int level;
7360 	int shared_level;
7361 	int update_ref;
7362 	int keep_locks;
7363 	int reada_slot;
7364 	int reada_count;
7365 	int for_reloc;
7366 };
7367 
7368 #define DROP_REFERENCE	1
7369 #define UPDATE_BACKREF	2
7370 
7371 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7372 				     struct btrfs_root *root,
7373 				     struct walk_control *wc,
7374 				     struct btrfs_path *path)
7375 {
7376 	u64 bytenr;
7377 	u64 generation;
7378 	u64 refs;
7379 	u64 flags;
7380 	u32 nritems;
7381 	u32 blocksize;
7382 	struct btrfs_key key;
7383 	struct extent_buffer *eb;
7384 	int ret;
7385 	int slot;
7386 	int nread = 0;
7387 
7388 	if (path->slots[wc->level] < wc->reada_slot) {
7389 		wc->reada_count = wc->reada_count * 2 / 3;
7390 		wc->reada_count = max(wc->reada_count, 2);
7391 	} else {
7392 		wc->reada_count = wc->reada_count * 3 / 2;
7393 		wc->reada_count = min_t(int, wc->reada_count,
7394 					BTRFS_NODEPTRS_PER_BLOCK(root));
7395 	}
7396 
7397 	eb = path->nodes[wc->level];
7398 	nritems = btrfs_header_nritems(eb);
7399 	blocksize = root->nodesize;
7400 
7401 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7402 		if (nread >= wc->reada_count)
7403 			break;
7404 
7405 		cond_resched();
7406 		bytenr = btrfs_node_blockptr(eb, slot);
7407 		generation = btrfs_node_ptr_generation(eb, slot);
7408 
7409 		if (slot == path->slots[wc->level])
7410 			goto reada;
7411 
7412 		if (wc->stage == UPDATE_BACKREF &&
7413 		    generation <= root->root_key.offset)
7414 			continue;
7415 
7416 		/* We don't lock the tree block, it's OK to be racy here */
7417 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7418 					       wc->level - 1, 1, &refs,
7419 					       &flags);
7420 		/* We don't care about errors in readahead. */
7421 		if (ret < 0)
7422 			continue;
7423 		BUG_ON(refs == 0);
7424 
7425 		if (wc->stage == DROP_REFERENCE) {
7426 			if (refs == 1)
7427 				goto reada;
7428 
7429 			if (wc->level == 1 &&
7430 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7431 				continue;
7432 			if (!wc->update_ref ||
7433 			    generation <= root->root_key.offset)
7434 				continue;
7435 			btrfs_node_key_to_cpu(eb, &key, slot);
7436 			ret = btrfs_comp_cpu_keys(&key,
7437 						  &wc->update_progress);
7438 			if (ret < 0)
7439 				continue;
7440 		} else {
7441 			if (wc->level == 1 &&
7442 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7443 				continue;
7444 		}
7445 reada:
7446 		readahead_tree_block(root, bytenr);
7447 		nread++;
7448 	}
7449 	wc->reada_slot = slot;
7450 }
7451 
7452 static int account_leaf_items(struct btrfs_trans_handle *trans,
7453 			      struct btrfs_root *root,
7454 			      struct extent_buffer *eb)
7455 {
7456 	int nr = btrfs_header_nritems(eb);
7457 	int i, extent_type, ret;
7458 	struct btrfs_key key;
7459 	struct btrfs_file_extent_item *fi;
7460 	u64 bytenr, num_bytes;
7461 
7462 	for (i = 0; i < nr; i++) {
7463 		btrfs_item_key_to_cpu(eb, &key, i);
7464 
7465 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7466 			continue;
7467 
7468 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7469 		/* filter out non qgroup-accountable extents  */
7470 		extent_type = btrfs_file_extent_type(eb, fi);
7471 
7472 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7473 			continue;
7474 
7475 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7476 		if (!bytenr)
7477 			continue;
7478 
7479 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7480 
7481 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7482 					      root->objectid,
7483 					      bytenr, num_bytes,
7484 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7485 		if (ret)
7486 			return ret;
7487 	}
7488 	return 0;
7489 }
7490 
7491 /*
7492  * Walk up the tree from the bottom, freeing leaves and any interior
7493  * nodes which have had all slots visited. If a node (leaf or
7494  * interior) is freed, the node above it will have it's slot
7495  * incremented. The root node will never be freed.
7496  *
7497  * At the end of this function, we should have a path which has all
7498  * slots incremented to the next position for a search. If we need to
7499  * read a new node it will be NULL and the node above it will have the
7500  * correct slot selected for a later read.
7501  *
7502  * If we increment the root nodes slot counter past the number of
7503  * elements, 1 is returned to signal completion of the search.
7504  */
7505 static int adjust_slots_upwards(struct btrfs_root *root,
7506 				struct btrfs_path *path, int root_level)
7507 {
7508 	int level = 0;
7509 	int nr, slot;
7510 	struct extent_buffer *eb;
7511 
7512 	if (root_level == 0)
7513 		return 1;
7514 
7515 	while (level <= root_level) {
7516 		eb = path->nodes[level];
7517 		nr = btrfs_header_nritems(eb);
7518 		path->slots[level]++;
7519 		slot = path->slots[level];
7520 		if (slot >= nr || level == 0) {
7521 			/*
7522 			 * Don't free the root -  we will detect this
7523 			 * condition after our loop and return a
7524 			 * positive value for caller to stop walking the tree.
7525 			 */
7526 			if (level != root_level) {
7527 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7528 				path->locks[level] = 0;
7529 
7530 				free_extent_buffer(eb);
7531 				path->nodes[level] = NULL;
7532 				path->slots[level] = 0;
7533 			}
7534 		} else {
7535 			/*
7536 			 * We have a valid slot to walk back down
7537 			 * from. Stop here so caller can process these
7538 			 * new nodes.
7539 			 */
7540 			break;
7541 		}
7542 
7543 		level++;
7544 	}
7545 
7546 	eb = path->nodes[root_level];
7547 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7548 		return 1;
7549 
7550 	return 0;
7551 }
7552 
7553 /*
7554  * root_eb is the subtree root and is locked before this function is called.
7555  */
7556 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7557 				  struct btrfs_root *root,
7558 				  struct extent_buffer *root_eb,
7559 				  u64 root_gen,
7560 				  int root_level)
7561 {
7562 	int ret = 0;
7563 	int level;
7564 	struct extent_buffer *eb = root_eb;
7565 	struct btrfs_path *path = NULL;
7566 
7567 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7568 	BUG_ON(root_eb == NULL);
7569 
7570 	if (!root->fs_info->quota_enabled)
7571 		return 0;
7572 
7573 	if (!extent_buffer_uptodate(root_eb)) {
7574 		ret = btrfs_read_buffer(root_eb, root_gen);
7575 		if (ret)
7576 			goto out;
7577 	}
7578 
7579 	if (root_level == 0) {
7580 		ret = account_leaf_items(trans, root, root_eb);
7581 		goto out;
7582 	}
7583 
7584 	path = btrfs_alloc_path();
7585 	if (!path)
7586 		return -ENOMEM;
7587 
7588 	/*
7589 	 * Walk down the tree.  Missing extent blocks are filled in as
7590 	 * we go. Metadata is accounted every time we read a new
7591 	 * extent block.
7592 	 *
7593 	 * When we reach a leaf, we account for file extent items in it,
7594 	 * walk back up the tree (adjusting slot pointers as we go)
7595 	 * and restart the search process.
7596 	 */
7597 	extent_buffer_get(root_eb); /* For path */
7598 	path->nodes[root_level] = root_eb;
7599 	path->slots[root_level] = 0;
7600 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7601 walk_down:
7602 	level = root_level;
7603 	while (level >= 0) {
7604 		if (path->nodes[level] == NULL) {
7605 			int parent_slot;
7606 			u64 child_gen;
7607 			u64 child_bytenr;
7608 
7609 			/* We need to get child blockptr/gen from
7610 			 * parent before we can read it. */
7611 			eb = path->nodes[level + 1];
7612 			parent_slot = path->slots[level + 1];
7613 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7614 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7615 
7616 			eb = read_tree_block(root, child_bytenr, child_gen);
7617 			if (!eb || !extent_buffer_uptodate(eb)) {
7618 				ret = -EIO;
7619 				goto out;
7620 			}
7621 
7622 			path->nodes[level] = eb;
7623 			path->slots[level] = 0;
7624 
7625 			btrfs_tree_read_lock(eb);
7626 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7627 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7628 
7629 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7630 						root->objectid,
7631 						child_bytenr,
7632 						root->nodesize,
7633 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7634 						0);
7635 			if (ret)
7636 				goto out;
7637 
7638 		}
7639 
7640 		if (level == 0) {
7641 			ret = account_leaf_items(trans, root, path->nodes[level]);
7642 			if (ret)
7643 				goto out;
7644 
7645 			/* Nonzero return here means we completed our search */
7646 			ret = adjust_slots_upwards(root, path, root_level);
7647 			if (ret)
7648 				break;
7649 
7650 			/* Restart search with new slots */
7651 			goto walk_down;
7652 		}
7653 
7654 		level--;
7655 	}
7656 
7657 	ret = 0;
7658 out:
7659 	btrfs_free_path(path);
7660 
7661 	return ret;
7662 }
7663 
7664 /*
7665  * helper to process tree block while walking down the tree.
7666  *
7667  * when wc->stage == UPDATE_BACKREF, this function updates
7668  * back refs for pointers in the block.
7669  *
7670  * NOTE: return value 1 means we should stop walking down.
7671  */
7672 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7673 				   struct btrfs_root *root,
7674 				   struct btrfs_path *path,
7675 				   struct walk_control *wc, int lookup_info)
7676 {
7677 	int level = wc->level;
7678 	struct extent_buffer *eb = path->nodes[level];
7679 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7680 	int ret;
7681 
7682 	if (wc->stage == UPDATE_BACKREF &&
7683 	    btrfs_header_owner(eb) != root->root_key.objectid)
7684 		return 1;
7685 
7686 	/*
7687 	 * when reference count of tree block is 1, it won't increase
7688 	 * again. once full backref flag is set, we never clear it.
7689 	 */
7690 	if (lookup_info &&
7691 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7692 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7693 		BUG_ON(!path->locks[level]);
7694 		ret = btrfs_lookup_extent_info(trans, root,
7695 					       eb->start, level, 1,
7696 					       &wc->refs[level],
7697 					       &wc->flags[level]);
7698 		BUG_ON(ret == -ENOMEM);
7699 		if (ret)
7700 			return ret;
7701 		BUG_ON(wc->refs[level] == 0);
7702 	}
7703 
7704 	if (wc->stage == DROP_REFERENCE) {
7705 		if (wc->refs[level] > 1)
7706 			return 1;
7707 
7708 		if (path->locks[level] && !wc->keep_locks) {
7709 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7710 			path->locks[level] = 0;
7711 		}
7712 		return 0;
7713 	}
7714 
7715 	/* wc->stage == UPDATE_BACKREF */
7716 	if (!(wc->flags[level] & flag)) {
7717 		BUG_ON(!path->locks[level]);
7718 		ret = btrfs_inc_ref(trans, root, eb, 1);
7719 		BUG_ON(ret); /* -ENOMEM */
7720 		ret = btrfs_dec_ref(trans, root, eb, 0);
7721 		BUG_ON(ret); /* -ENOMEM */
7722 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7723 						  eb->len, flag,
7724 						  btrfs_header_level(eb), 0);
7725 		BUG_ON(ret); /* -ENOMEM */
7726 		wc->flags[level] |= flag;
7727 	}
7728 
7729 	/*
7730 	 * the block is shared by multiple trees, so it's not good to
7731 	 * keep the tree lock
7732 	 */
7733 	if (path->locks[level] && level > 0) {
7734 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7735 		path->locks[level] = 0;
7736 	}
7737 	return 0;
7738 }
7739 
7740 /*
7741  * helper to process tree block pointer.
7742  *
7743  * when wc->stage == DROP_REFERENCE, this function checks
7744  * reference count of the block pointed to. if the block
7745  * is shared and we need update back refs for the subtree
7746  * rooted at the block, this function changes wc->stage to
7747  * UPDATE_BACKREF. if the block is shared and there is no
7748  * need to update back, this function drops the reference
7749  * to the block.
7750  *
7751  * NOTE: return value 1 means we should stop walking down.
7752  */
7753 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7754 				 struct btrfs_root *root,
7755 				 struct btrfs_path *path,
7756 				 struct walk_control *wc, int *lookup_info)
7757 {
7758 	u64 bytenr;
7759 	u64 generation;
7760 	u64 parent;
7761 	u32 blocksize;
7762 	struct btrfs_key key;
7763 	struct extent_buffer *next;
7764 	int level = wc->level;
7765 	int reada = 0;
7766 	int ret = 0;
7767 	bool need_account = false;
7768 
7769 	generation = btrfs_node_ptr_generation(path->nodes[level],
7770 					       path->slots[level]);
7771 	/*
7772 	 * if the lower level block was created before the snapshot
7773 	 * was created, we know there is no need to update back refs
7774 	 * for the subtree
7775 	 */
7776 	if (wc->stage == UPDATE_BACKREF &&
7777 	    generation <= root->root_key.offset) {
7778 		*lookup_info = 1;
7779 		return 1;
7780 	}
7781 
7782 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7783 	blocksize = root->nodesize;
7784 
7785 	next = btrfs_find_tree_block(root, bytenr);
7786 	if (!next) {
7787 		next = btrfs_find_create_tree_block(root, bytenr);
7788 		if (!next)
7789 			return -ENOMEM;
7790 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7791 					       level - 1);
7792 		reada = 1;
7793 	}
7794 	btrfs_tree_lock(next);
7795 	btrfs_set_lock_blocking(next);
7796 
7797 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7798 				       &wc->refs[level - 1],
7799 				       &wc->flags[level - 1]);
7800 	if (ret < 0) {
7801 		btrfs_tree_unlock(next);
7802 		return ret;
7803 	}
7804 
7805 	if (unlikely(wc->refs[level - 1] == 0)) {
7806 		btrfs_err(root->fs_info, "Missing references.");
7807 		BUG();
7808 	}
7809 	*lookup_info = 0;
7810 
7811 	if (wc->stage == DROP_REFERENCE) {
7812 		if (wc->refs[level - 1] > 1) {
7813 			need_account = true;
7814 			if (level == 1 &&
7815 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7816 				goto skip;
7817 
7818 			if (!wc->update_ref ||
7819 			    generation <= root->root_key.offset)
7820 				goto skip;
7821 
7822 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7823 					      path->slots[level]);
7824 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7825 			if (ret < 0)
7826 				goto skip;
7827 
7828 			wc->stage = UPDATE_BACKREF;
7829 			wc->shared_level = level - 1;
7830 		}
7831 	} else {
7832 		if (level == 1 &&
7833 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7834 			goto skip;
7835 	}
7836 
7837 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7838 		btrfs_tree_unlock(next);
7839 		free_extent_buffer(next);
7840 		next = NULL;
7841 		*lookup_info = 1;
7842 	}
7843 
7844 	if (!next) {
7845 		if (reada && level == 1)
7846 			reada_walk_down(trans, root, wc, path);
7847 		next = read_tree_block(root, bytenr, generation);
7848 		if (!next || !extent_buffer_uptodate(next)) {
7849 			free_extent_buffer(next);
7850 			return -EIO;
7851 		}
7852 		btrfs_tree_lock(next);
7853 		btrfs_set_lock_blocking(next);
7854 	}
7855 
7856 	level--;
7857 	BUG_ON(level != btrfs_header_level(next));
7858 	path->nodes[level] = next;
7859 	path->slots[level] = 0;
7860 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7861 	wc->level = level;
7862 	if (wc->level == 1)
7863 		wc->reada_slot = 0;
7864 	return 0;
7865 skip:
7866 	wc->refs[level - 1] = 0;
7867 	wc->flags[level - 1] = 0;
7868 	if (wc->stage == DROP_REFERENCE) {
7869 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7870 			parent = path->nodes[level]->start;
7871 		} else {
7872 			BUG_ON(root->root_key.objectid !=
7873 			       btrfs_header_owner(path->nodes[level]));
7874 			parent = 0;
7875 		}
7876 
7877 		if (need_account) {
7878 			ret = account_shared_subtree(trans, root, next,
7879 						     generation, level - 1);
7880 			if (ret) {
7881 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7882 					"%d accounting shared subtree. Quota "
7883 					"is out of sync, rescan required.\n",
7884 					root->fs_info->sb->s_id, ret);
7885 			}
7886 		}
7887 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7888 				root->root_key.objectid, level - 1, 0, 0);
7889 		BUG_ON(ret); /* -ENOMEM */
7890 	}
7891 	btrfs_tree_unlock(next);
7892 	free_extent_buffer(next);
7893 	*lookup_info = 1;
7894 	return 1;
7895 }
7896 
7897 /*
7898  * helper to process tree block while walking up the tree.
7899  *
7900  * when wc->stage == DROP_REFERENCE, this function drops
7901  * reference count on the block.
7902  *
7903  * when wc->stage == UPDATE_BACKREF, this function changes
7904  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7905  * to UPDATE_BACKREF previously while processing the block.
7906  *
7907  * NOTE: return value 1 means we should stop walking up.
7908  */
7909 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7910 				 struct btrfs_root *root,
7911 				 struct btrfs_path *path,
7912 				 struct walk_control *wc)
7913 {
7914 	int ret;
7915 	int level = wc->level;
7916 	struct extent_buffer *eb = path->nodes[level];
7917 	u64 parent = 0;
7918 
7919 	if (wc->stage == UPDATE_BACKREF) {
7920 		BUG_ON(wc->shared_level < level);
7921 		if (level < wc->shared_level)
7922 			goto out;
7923 
7924 		ret = find_next_key(path, level + 1, &wc->update_progress);
7925 		if (ret > 0)
7926 			wc->update_ref = 0;
7927 
7928 		wc->stage = DROP_REFERENCE;
7929 		wc->shared_level = -1;
7930 		path->slots[level] = 0;
7931 
7932 		/*
7933 		 * check reference count again if the block isn't locked.
7934 		 * we should start walking down the tree again if reference
7935 		 * count is one.
7936 		 */
7937 		if (!path->locks[level]) {
7938 			BUG_ON(level == 0);
7939 			btrfs_tree_lock(eb);
7940 			btrfs_set_lock_blocking(eb);
7941 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7942 
7943 			ret = btrfs_lookup_extent_info(trans, root,
7944 						       eb->start, level, 1,
7945 						       &wc->refs[level],
7946 						       &wc->flags[level]);
7947 			if (ret < 0) {
7948 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7949 				path->locks[level] = 0;
7950 				return ret;
7951 			}
7952 			BUG_ON(wc->refs[level] == 0);
7953 			if (wc->refs[level] == 1) {
7954 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7955 				path->locks[level] = 0;
7956 				return 1;
7957 			}
7958 		}
7959 	}
7960 
7961 	/* wc->stage == DROP_REFERENCE */
7962 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7963 
7964 	if (wc->refs[level] == 1) {
7965 		if (level == 0) {
7966 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7967 				ret = btrfs_dec_ref(trans, root, eb, 1);
7968 			else
7969 				ret = btrfs_dec_ref(trans, root, eb, 0);
7970 			BUG_ON(ret); /* -ENOMEM */
7971 			ret = account_leaf_items(trans, root, eb);
7972 			if (ret) {
7973 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7974 					"%d accounting leaf items. Quota "
7975 					"is out of sync, rescan required.\n",
7976 					root->fs_info->sb->s_id, ret);
7977 			}
7978 		}
7979 		/* make block locked assertion in clean_tree_block happy */
7980 		if (!path->locks[level] &&
7981 		    btrfs_header_generation(eb) == trans->transid) {
7982 			btrfs_tree_lock(eb);
7983 			btrfs_set_lock_blocking(eb);
7984 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7985 		}
7986 		clean_tree_block(trans, root, eb);
7987 	}
7988 
7989 	if (eb == root->node) {
7990 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7991 			parent = eb->start;
7992 		else
7993 			BUG_ON(root->root_key.objectid !=
7994 			       btrfs_header_owner(eb));
7995 	} else {
7996 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7997 			parent = path->nodes[level + 1]->start;
7998 		else
7999 			BUG_ON(root->root_key.objectid !=
8000 			       btrfs_header_owner(path->nodes[level + 1]));
8001 	}
8002 
8003 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8004 out:
8005 	wc->refs[level] = 0;
8006 	wc->flags[level] = 0;
8007 	return 0;
8008 }
8009 
8010 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8011 				   struct btrfs_root *root,
8012 				   struct btrfs_path *path,
8013 				   struct walk_control *wc)
8014 {
8015 	int level = wc->level;
8016 	int lookup_info = 1;
8017 	int ret;
8018 
8019 	while (level >= 0) {
8020 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8021 		if (ret > 0)
8022 			break;
8023 
8024 		if (level == 0)
8025 			break;
8026 
8027 		if (path->slots[level] >=
8028 		    btrfs_header_nritems(path->nodes[level]))
8029 			break;
8030 
8031 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8032 		if (ret > 0) {
8033 			path->slots[level]++;
8034 			continue;
8035 		} else if (ret < 0)
8036 			return ret;
8037 		level = wc->level;
8038 	}
8039 	return 0;
8040 }
8041 
8042 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8043 				 struct btrfs_root *root,
8044 				 struct btrfs_path *path,
8045 				 struct walk_control *wc, int max_level)
8046 {
8047 	int level = wc->level;
8048 	int ret;
8049 
8050 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8051 	while (level < max_level && path->nodes[level]) {
8052 		wc->level = level;
8053 		if (path->slots[level] + 1 <
8054 		    btrfs_header_nritems(path->nodes[level])) {
8055 			path->slots[level]++;
8056 			return 0;
8057 		} else {
8058 			ret = walk_up_proc(trans, root, path, wc);
8059 			if (ret > 0)
8060 				return 0;
8061 
8062 			if (path->locks[level]) {
8063 				btrfs_tree_unlock_rw(path->nodes[level],
8064 						     path->locks[level]);
8065 				path->locks[level] = 0;
8066 			}
8067 			free_extent_buffer(path->nodes[level]);
8068 			path->nodes[level] = NULL;
8069 			level++;
8070 		}
8071 	}
8072 	return 1;
8073 }
8074 
8075 /*
8076  * drop a subvolume tree.
8077  *
8078  * this function traverses the tree freeing any blocks that only
8079  * referenced by the tree.
8080  *
8081  * when a shared tree block is found. this function decreases its
8082  * reference count by one. if update_ref is true, this function
8083  * also make sure backrefs for the shared block and all lower level
8084  * blocks are properly updated.
8085  *
8086  * If called with for_reloc == 0, may exit early with -EAGAIN
8087  */
8088 int btrfs_drop_snapshot(struct btrfs_root *root,
8089 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8090 			 int for_reloc)
8091 {
8092 	struct btrfs_path *path;
8093 	struct btrfs_trans_handle *trans;
8094 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8095 	struct btrfs_root_item *root_item = &root->root_item;
8096 	struct walk_control *wc;
8097 	struct btrfs_key key;
8098 	int err = 0;
8099 	int ret;
8100 	int level;
8101 	bool root_dropped = false;
8102 
8103 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8104 
8105 	path = btrfs_alloc_path();
8106 	if (!path) {
8107 		err = -ENOMEM;
8108 		goto out;
8109 	}
8110 
8111 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8112 	if (!wc) {
8113 		btrfs_free_path(path);
8114 		err = -ENOMEM;
8115 		goto out;
8116 	}
8117 
8118 	trans = btrfs_start_transaction(tree_root, 0);
8119 	if (IS_ERR(trans)) {
8120 		err = PTR_ERR(trans);
8121 		goto out_free;
8122 	}
8123 
8124 	if (block_rsv)
8125 		trans->block_rsv = block_rsv;
8126 
8127 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8128 		level = btrfs_header_level(root->node);
8129 		path->nodes[level] = btrfs_lock_root_node(root);
8130 		btrfs_set_lock_blocking(path->nodes[level]);
8131 		path->slots[level] = 0;
8132 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8133 		memset(&wc->update_progress, 0,
8134 		       sizeof(wc->update_progress));
8135 	} else {
8136 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8137 		memcpy(&wc->update_progress, &key,
8138 		       sizeof(wc->update_progress));
8139 
8140 		level = root_item->drop_level;
8141 		BUG_ON(level == 0);
8142 		path->lowest_level = level;
8143 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8144 		path->lowest_level = 0;
8145 		if (ret < 0) {
8146 			err = ret;
8147 			goto out_end_trans;
8148 		}
8149 		WARN_ON(ret > 0);
8150 
8151 		/*
8152 		 * unlock our path, this is safe because only this
8153 		 * function is allowed to delete this snapshot
8154 		 */
8155 		btrfs_unlock_up_safe(path, 0);
8156 
8157 		level = btrfs_header_level(root->node);
8158 		while (1) {
8159 			btrfs_tree_lock(path->nodes[level]);
8160 			btrfs_set_lock_blocking(path->nodes[level]);
8161 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8162 
8163 			ret = btrfs_lookup_extent_info(trans, root,
8164 						path->nodes[level]->start,
8165 						level, 1, &wc->refs[level],
8166 						&wc->flags[level]);
8167 			if (ret < 0) {
8168 				err = ret;
8169 				goto out_end_trans;
8170 			}
8171 			BUG_ON(wc->refs[level] == 0);
8172 
8173 			if (level == root_item->drop_level)
8174 				break;
8175 
8176 			btrfs_tree_unlock(path->nodes[level]);
8177 			path->locks[level] = 0;
8178 			WARN_ON(wc->refs[level] != 1);
8179 			level--;
8180 		}
8181 	}
8182 
8183 	wc->level = level;
8184 	wc->shared_level = -1;
8185 	wc->stage = DROP_REFERENCE;
8186 	wc->update_ref = update_ref;
8187 	wc->keep_locks = 0;
8188 	wc->for_reloc = for_reloc;
8189 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8190 
8191 	while (1) {
8192 
8193 		ret = walk_down_tree(trans, root, path, wc);
8194 		if (ret < 0) {
8195 			err = ret;
8196 			break;
8197 		}
8198 
8199 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8200 		if (ret < 0) {
8201 			err = ret;
8202 			break;
8203 		}
8204 
8205 		if (ret > 0) {
8206 			BUG_ON(wc->stage != DROP_REFERENCE);
8207 			break;
8208 		}
8209 
8210 		if (wc->stage == DROP_REFERENCE) {
8211 			level = wc->level;
8212 			btrfs_node_key(path->nodes[level],
8213 				       &root_item->drop_progress,
8214 				       path->slots[level]);
8215 			root_item->drop_level = level;
8216 		}
8217 
8218 		BUG_ON(wc->level == 0);
8219 		if (btrfs_should_end_transaction(trans, tree_root) ||
8220 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8221 			ret = btrfs_update_root(trans, tree_root,
8222 						&root->root_key,
8223 						root_item);
8224 			if (ret) {
8225 				btrfs_abort_transaction(trans, tree_root, ret);
8226 				err = ret;
8227 				goto out_end_trans;
8228 			}
8229 
8230 			/*
8231 			 * Qgroup update accounting is run from
8232 			 * delayed ref handling. This usually works
8233 			 * out because delayed refs are normally the
8234 			 * only way qgroup updates are added. However,
8235 			 * we may have added updates during our tree
8236 			 * walk so run qgroups here to make sure we
8237 			 * don't lose any updates.
8238 			 */
8239 			ret = btrfs_delayed_qgroup_accounting(trans,
8240 							      root->fs_info);
8241 			if (ret)
8242 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8243 						   "running qgroup updates "
8244 						   "during snapshot delete. "
8245 						   "Quota is out of sync, "
8246 						   "rescan required.\n", ret);
8247 
8248 			btrfs_end_transaction_throttle(trans, tree_root);
8249 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8250 				pr_debug("BTRFS: drop snapshot early exit\n");
8251 				err = -EAGAIN;
8252 				goto out_free;
8253 			}
8254 
8255 			trans = btrfs_start_transaction(tree_root, 0);
8256 			if (IS_ERR(trans)) {
8257 				err = PTR_ERR(trans);
8258 				goto out_free;
8259 			}
8260 			if (block_rsv)
8261 				trans->block_rsv = block_rsv;
8262 		}
8263 	}
8264 	btrfs_release_path(path);
8265 	if (err)
8266 		goto out_end_trans;
8267 
8268 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8269 	if (ret) {
8270 		btrfs_abort_transaction(trans, tree_root, ret);
8271 		goto out_end_trans;
8272 	}
8273 
8274 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8275 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8276 				      NULL, NULL);
8277 		if (ret < 0) {
8278 			btrfs_abort_transaction(trans, tree_root, ret);
8279 			err = ret;
8280 			goto out_end_trans;
8281 		} else if (ret > 0) {
8282 			/* if we fail to delete the orphan item this time
8283 			 * around, it'll get picked up the next time.
8284 			 *
8285 			 * The most common failure here is just -ENOENT.
8286 			 */
8287 			btrfs_del_orphan_item(trans, tree_root,
8288 					      root->root_key.objectid);
8289 		}
8290 	}
8291 
8292 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8293 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8294 	} else {
8295 		free_extent_buffer(root->node);
8296 		free_extent_buffer(root->commit_root);
8297 		btrfs_put_fs_root(root);
8298 	}
8299 	root_dropped = true;
8300 out_end_trans:
8301 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8302 	if (ret)
8303 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8304 				   "running qgroup updates "
8305 				   "during snapshot delete. "
8306 				   "Quota is out of sync, "
8307 				   "rescan required.\n", ret);
8308 
8309 	btrfs_end_transaction_throttle(trans, tree_root);
8310 out_free:
8311 	kfree(wc);
8312 	btrfs_free_path(path);
8313 out:
8314 	/*
8315 	 * So if we need to stop dropping the snapshot for whatever reason we
8316 	 * need to make sure to add it back to the dead root list so that we
8317 	 * keep trying to do the work later.  This also cleans up roots if we
8318 	 * don't have it in the radix (like when we recover after a power fail
8319 	 * or unmount) so we don't leak memory.
8320 	 */
8321 	if (!for_reloc && root_dropped == false)
8322 		btrfs_add_dead_root(root);
8323 	if (err && err != -EAGAIN)
8324 		btrfs_std_error(root->fs_info, err);
8325 	return err;
8326 }
8327 
8328 /*
8329  * drop subtree rooted at tree block 'node'.
8330  *
8331  * NOTE: this function will unlock and release tree block 'node'
8332  * only used by relocation code
8333  */
8334 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8335 			struct btrfs_root *root,
8336 			struct extent_buffer *node,
8337 			struct extent_buffer *parent)
8338 {
8339 	struct btrfs_path *path;
8340 	struct walk_control *wc;
8341 	int level;
8342 	int parent_level;
8343 	int ret = 0;
8344 	int wret;
8345 
8346 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8347 
8348 	path = btrfs_alloc_path();
8349 	if (!path)
8350 		return -ENOMEM;
8351 
8352 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8353 	if (!wc) {
8354 		btrfs_free_path(path);
8355 		return -ENOMEM;
8356 	}
8357 
8358 	btrfs_assert_tree_locked(parent);
8359 	parent_level = btrfs_header_level(parent);
8360 	extent_buffer_get(parent);
8361 	path->nodes[parent_level] = parent;
8362 	path->slots[parent_level] = btrfs_header_nritems(parent);
8363 
8364 	btrfs_assert_tree_locked(node);
8365 	level = btrfs_header_level(node);
8366 	path->nodes[level] = node;
8367 	path->slots[level] = 0;
8368 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8369 
8370 	wc->refs[parent_level] = 1;
8371 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8372 	wc->level = level;
8373 	wc->shared_level = -1;
8374 	wc->stage = DROP_REFERENCE;
8375 	wc->update_ref = 0;
8376 	wc->keep_locks = 1;
8377 	wc->for_reloc = 1;
8378 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8379 
8380 	while (1) {
8381 		wret = walk_down_tree(trans, root, path, wc);
8382 		if (wret < 0) {
8383 			ret = wret;
8384 			break;
8385 		}
8386 
8387 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8388 		if (wret < 0)
8389 			ret = wret;
8390 		if (wret != 0)
8391 			break;
8392 	}
8393 
8394 	kfree(wc);
8395 	btrfs_free_path(path);
8396 	return ret;
8397 }
8398 
8399 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8400 {
8401 	u64 num_devices;
8402 	u64 stripped;
8403 
8404 	/*
8405 	 * if restripe for this chunk_type is on pick target profile and
8406 	 * return, otherwise do the usual balance
8407 	 */
8408 	stripped = get_restripe_target(root->fs_info, flags);
8409 	if (stripped)
8410 		return extended_to_chunk(stripped);
8411 
8412 	num_devices = root->fs_info->fs_devices->rw_devices;
8413 
8414 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8415 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8416 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8417 
8418 	if (num_devices == 1) {
8419 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8420 		stripped = flags & ~stripped;
8421 
8422 		/* turn raid0 into single device chunks */
8423 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8424 			return stripped;
8425 
8426 		/* turn mirroring into duplication */
8427 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8428 			     BTRFS_BLOCK_GROUP_RAID10))
8429 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8430 	} else {
8431 		/* they already had raid on here, just return */
8432 		if (flags & stripped)
8433 			return flags;
8434 
8435 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8436 		stripped = flags & ~stripped;
8437 
8438 		/* switch duplicated blocks with raid1 */
8439 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8440 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8441 
8442 		/* this is drive concat, leave it alone */
8443 	}
8444 
8445 	return flags;
8446 }
8447 
8448 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8449 {
8450 	struct btrfs_space_info *sinfo = cache->space_info;
8451 	u64 num_bytes;
8452 	u64 min_allocable_bytes;
8453 	int ret = -ENOSPC;
8454 
8455 
8456 	/*
8457 	 * We need some metadata space and system metadata space for
8458 	 * allocating chunks in some corner cases until we force to set
8459 	 * it to be readonly.
8460 	 */
8461 	if ((sinfo->flags &
8462 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8463 	    !force)
8464 		min_allocable_bytes = 1 * 1024 * 1024;
8465 	else
8466 		min_allocable_bytes = 0;
8467 
8468 	spin_lock(&sinfo->lock);
8469 	spin_lock(&cache->lock);
8470 
8471 	if (cache->ro) {
8472 		ret = 0;
8473 		goto out;
8474 	}
8475 
8476 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8477 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8478 
8479 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8480 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8481 	    min_allocable_bytes <= sinfo->total_bytes) {
8482 		sinfo->bytes_readonly += num_bytes;
8483 		cache->ro = 1;
8484 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8485 		ret = 0;
8486 	}
8487 out:
8488 	spin_unlock(&cache->lock);
8489 	spin_unlock(&sinfo->lock);
8490 	return ret;
8491 }
8492 
8493 int btrfs_set_block_group_ro(struct btrfs_root *root,
8494 			     struct btrfs_block_group_cache *cache)
8495 
8496 {
8497 	struct btrfs_trans_handle *trans;
8498 	u64 alloc_flags;
8499 	int ret;
8500 
8501 	BUG_ON(cache->ro);
8502 
8503 	trans = btrfs_join_transaction(root);
8504 	if (IS_ERR(trans))
8505 		return PTR_ERR(trans);
8506 
8507 	ret = set_block_group_ro(cache, 0);
8508 	if (!ret)
8509 		goto out;
8510 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8511 	ret = do_chunk_alloc(trans, root, alloc_flags,
8512 			     CHUNK_ALLOC_FORCE);
8513 	if (ret < 0)
8514 		goto out;
8515 	ret = set_block_group_ro(cache, 0);
8516 out:
8517 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8518 		alloc_flags = update_block_group_flags(root, cache->flags);
8519 		check_system_chunk(trans, root, alloc_flags);
8520 	}
8521 
8522 	btrfs_end_transaction(trans, root);
8523 	return ret;
8524 }
8525 
8526 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8527 			    struct btrfs_root *root, u64 type)
8528 {
8529 	u64 alloc_flags = get_alloc_profile(root, type);
8530 	return do_chunk_alloc(trans, root, alloc_flags,
8531 			      CHUNK_ALLOC_FORCE);
8532 }
8533 
8534 /*
8535  * helper to account the unused space of all the readonly block group in the
8536  * space_info. takes mirrors into account.
8537  */
8538 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8539 {
8540 	struct btrfs_block_group_cache *block_group;
8541 	u64 free_bytes = 0;
8542 	int factor;
8543 
8544 	/* It's df, we don't care if it's racey */
8545 	if (list_empty(&sinfo->ro_bgs))
8546 		return 0;
8547 
8548 	spin_lock(&sinfo->lock);
8549 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8550 		spin_lock(&block_group->lock);
8551 
8552 		if (!block_group->ro) {
8553 			spin_unlock(&block_group->lock);
8554 			continue;
8555 		}
8556 
8557 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8558 					  BTRFS_BLOCK_GROUP_RAID10 |
8559 					  BTRFS_BLOCK_GROUP_DUP))
8560 			factor = 2;
8561 		else
8562 			factor = 1;
8563 
8564 		free_bytes += (block_group->key.offset -
8565 			       btrfs_block_group_used(&block_group->item)) *
8566 			       factor;
8567 
8568 		spin_unlock(&block_group->lock);
8569 	}
8570 	spin_unlock(&sinfo->lock);
8571 
8572 	return free_bytes;
8573 }
8574 
8575 void btrfs_set_block_group_rw(struct btrfs_root *root,
8576 			      struct btrfs_block_group_cache *cache)
8577 {
8578 	struct btrfs_space_info *sinfo = cache->space_info;
8579 	u64 num_bytes;
8580 
8581 	BUG_ON(!cache->ro);
8582 
8583 	spin_lock(&sinfo->lock);
8584 	spin_lock(&cache->lock);
8585 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8586 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8587 	sinfo->bytes_readonly -= num_bytes;
8588 	cache->ro = 0;
8589 	list_del_init(&cache->ro_list);
8590 	spin_unlock(&cache->lock);
8591 	spin_unlock(&sinfo->lock);
8592 }
8593 
8594 /*
8595  * checks to see if its even possible to relocate this block group.
8596  *
8597  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8598  * ok to go ahead and try.
8599  */
8600 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8601 {
8602 	struct btrfs_block_group_cache *block_group;
8603 	struct btrfs_space_info *space_info;
8604 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8605 	struct btrfs_device *device;
8606 	struct btrfs_trans_handle *trans;
8607 	u64 min_free;
8608 	u64 dev_min = 1;
8609 	u64 dev_nr = 0;
8610 	u64 target;
8611 	int index;
8612 	int full = 0;
8613 	int ret = 0;
8614 
8615 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8616 
8617 	/* odd, couldn't find the block group, leave it alone */
8618 	if (!block_group)
8619 		return -1;
8620 
8621 	min_free = btrfs_block_group_used(&block_group->item);
8622 
8623 	/* no bytes used, we're good */
8624 	if (!min_free)
8625 		goto out;
8626 
8627 	space_info = block_group->space_info;
8628 	spin_lock(&space_info->lock);
8629 
8630 	full = space_info->full;
8631 
8632 	/*
8633 	 * if this is the last block group we have in this space, we can't
8634 	 * relocate it unless we're able to allocate a new chunk below.
8635 	 *
8636 	 * Otherwise, we need to make sure we have room in the space to handle
8637 	 * all of the extents from this block group.  If we can, we're good
8638 	 */
8639 	if ((space_info->total_bytes != block_group->key.offset) &&
8640 	    (space_info->bytes_used + space_info->bytes_reserved +
8641 	     space_info->bytes_pinned + space_info->bytes_readonly +
8642 	     min_free < space_info->total_bytes)) {
8643 		spin_unlock(&space_info->lock);
8644 		goto out;
8645 	}
8646 	spin_unlock(&space_info->lock);
8647 
8648 	/*
8649 	 * ok we don't have enough space, but maybe we have free space on our
8650 	 * devices to allocate new chunks for relocation, so loop through our
8651 	 * alloc devices and guess if we have enough space.  if this block
8652 	 * group is going to be restriped, run checks against the target
8653 	 * profile instead of the current one.
8654 	 */
8655 	ret = -1;
8656 
8657 	/*
8658 	 * index:
8659 	 *      0: raid10
8660 	 *      1: raid1
8661 	 *      2: dup
8662 	 *      3: raid0
8663 	 *      4: single
8664 	 */
8665 	target = get_restripe_target(root->fs_info, block_group->flags);
8666 	if (target) {
8667 		index = __get_raid_index(extended_to_chunk(target));
8668 	} else {
8669 		/*
8670 		 * this is just a balance, so if we were marked as full
8671 		 * we know there is no space for a new chunk
8672 		 */
8673 		if (full)
8674 			goto out;
8675 
8676 		index = get_block_group_index(block_group);
8677 	}
8678 
8679 	if (index == BTRFS_RAID_RAID10) {
8680 		dev_min = 4;
8681 		/* Divide by 2 */
8682 		min_free >>= 1;
8683 	} else if (index == BTRFS_RAID_RAID1) {
8684 		dev_min = 2;
8685 	} else if (index == BTRFS_RAID_DUP) {
8686 		/* Multiply by 2 */
8687 		min_free <<= 1;
8688 	} else if (index == BTRFS_RAID_RAID0) {
8689 		dev_min = fs_devices->rw_devices;
8690 		do_div(min_free, dev_min);
8691 	}
8692 
8693 	/* We need to do this so that we can look at pending chunks */
8694 	trans = btrfs_join_transaction(root);
8695 	if (IS_ERR(trans)) {
8696 		ret = PTR_ERR(trans);
8697 		goto out;
8698 	}
8699 
8700 	mutex_lock(&root->fs_info->chunk_mutex);
8701 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8702 		u64 dev_offset;
8703 
8704 		/*
8705 		 * check to make sure we can actually find a chunk with enough
8706 		 * space to fit our block group in.
8707 		 */
8708 		if (device->total_bytes > device->bytes_used + min_free &&
8709 		    !device->is_tgtdev_for_dev_replace) {
8710 			ret = find_free_dev_extent(trans, device, min_free,
8711 						   &dev_offset, NULL);
8712 			if (!ret)
8713 				dev_nr++;
8714 
8715 			if (dev_nr >= dev_min)
8716 				break;
8717 
8718 			ret = -1;
8719 		}
8720 	}
8721 	mutex_unlock(&root->fs_info->chunk_mutex);
8722 	btrfs_end_transaction(trans, root);
8723 out:
8724 	btrfs_put_block_group(block_group);
8725 	return ret;
8726 }
8727 
8728 static int find_first_block_group(struct btrfs_root *root,
8729 		struct btrfs_path *path, struct btrfs_key *key)
8730 {
8731 	int ret = 0;
8732 	struct btrfs_key found_key;
8733 	struct extent_buffer *leaf;
8734 	int slot;
8735 
8736 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8737 	if (ret < 0)
8738 		goto out;
8739 
8740 	while (1) {
8741 		slot = path->slots[0];
8742 		leaf = path->nodes[0];
8743 		if (slot >= btrfs_header_nritems(leaf)) {
8744 			ret = btrfs_next_leaf(root, path);
8745 			if (ret == 0)
8746 				continue;
8747 			if (ret < 0)
8748 				goto out;
8749 			break;
8750 		}
8751 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8752 
8753 		if (found_key.objectid >= key->objectid &&
8754 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8755 			ret = 0;
8756 			goto out;
8757 		}
8758 		path->slots[0]++;
8759 	}
8760 out:
8761 	return ret;
8762 }
8763 
8764 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8765 {
8766 	struct btrfs_block_group_cache *block_group;
8767 	u64 last = 0;
8768 
8769 	while (1) {
8770 		struct inode *inode;
8771 
8772 		block_group = btrfs_lookup_first_block_group(info, last);
8773 		while (block_group) {
8774 			spin_lock(&block_group->lock);
8775 			if (block_group->iref)
8776 				break;
8777 			spin_unlock(&block_group->lock);
8778 			block_group = next_block_group(info->tree_root,
8779 						       block_group);
8780 		}
8781 		if (!block_group) {
8782 			if (last == 0)
8783 				break;
8784 			last = 0;
8785 			continue;
8786 		}
8787 
8788 		inode = block_group->inode;
8789 		block_group->iref = 0;
8790 		block_group->inode = NULL;
8791 		spin_unlock(&block_group->lock);
8792 		iput(inode);
8793 		last = block_group->key.objectid + block_group->key.offset;
8794 		btrfs_put_block_group(block_group);
8795 	}
8796 }
8797 
8798 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8799 {
8800 	struct btrfs_block_group_cache *block_group;
8801 	struct btrfs_space_info *space_info;
8802 	struct btrfs_caching_control *caching_ctl;
8803 	struct rb_node *n;
8804 
8805 	down_write(&info->commit_root_sem);
8806 	while (!list_empty(&info->caching_block_groups)) {
8807 		caching_ctl = list_entry(info->caching_block_groups.next,
8808 					 struct btrfs_caching_control, list);
8809 		list_del(&caching_ctl->list);
8810 		put_caching_control(caching_ctl);
8811 	}
8812 	up_write(&info->commit_root_sem);
8813 
8814 	spin_lock(&info->unused_bgs_lock);
8815 	while (!list_empty(&info->unused_bgs)) {
8816 		block_group = list_first_entry(&info->unused_bgs,
8817 					       struct btrfs_block_group_cache,
8818 					       bg_list);
8819 		list_del_init(&block_group->bg_list);
8820 		btrfs_put_block_group(block_group);
8821 	}
8822 	spin_unlock(&info->unused_bgs_lock);
8823 
8824 	spin_lock(&info->block_group_cache_lock);
8825 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8826 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8827 				       cache_node);
8828 		rb_erase(&block_group->cache_node,
8829 			 &info->block_group_cache_tree);
8830 		RB_CLEAR_NODE(&block_group->cache_node);
8831 		spin_unlock(&info->block_group_cache_lock);
8832 
8833 		down_write(&block_group->space_info->groups_sem);
8834 		list_del(&block_group->list);
8835 		up_write(&block_group->space_info->groups_sem);
8836 
8837 		if (block_group->cached == BTRFS_CACHE_STARTED)
8838 			wait_block_group_cache_done(block_group);
8839 
8840 		/*
8841 		 * We haven't cached this block group, which means we could
8842 		 * possibly have excluded extents on this block group.
8843 		 */
8844 		if (block_group->cached == BTRFS_CACHE_NO ||
8845 		    block_group->cached == BTRFS_CACHE_ERROR)
8846 			free_excluded_extents(info->extent_root, block_group);
8847 
8848 		btrfs_remove_free_space_cache(block_group);
8849 		btrfs_put_block_group(block_group);
8850 
8851 		spin_lock(&info->block_group_cache_lock);
8852 	}
8853 	spin_unlock(&info->block_group_cache_lock);
8854 
8855 	/* now that all the block groups are freed, go through and
8856 	 * free all the space_info structs.  This is only called during
8857 	 * the final stages of unmount, and so we know nobody is
8858 	 * using them.  We call synchronize_rcu() once before we start,
8859 	 * just to be on the safe side.
8860 	 */
8861 	synchronize_rcu();
8862 
8863 	release_global_block_rsv(info);
8864 
8865 	while (!list_empty(&info->space_info)) {
8866 		int i;
8867 
8868 		space_info = list_entry(info->space_info.next,
8869 					struct btrfs_space_info,
8870 					list);
8871 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8872 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8873 			    space_info->bytes_reserved > 0 ||
8874 			    space_info->bytes_may_use > 0)) {
8875 				dump_space_info(space_info, 0, 0);
8876 			}
8877 		}
8878 		list_del(&space_info->list);
8879 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8880 			struct kobject *kobj;
8881 			kobj = space_info->block_group_kobjs[i];
8882 			space_info->block_group_kobjs[i] = NULL;
8883 			if (kobj) {
8884 				kobject_del(kobj);
8885 				kobject_put(kobj);
8886 			}
8887 		}
8888 		kobject_del(&space_info->kobj);
8889 		kobject_put(&space_info->kobj);
8890 	}
8891 	return 0;
8892 }
8893 
8894 static void __link_block_group(struct btrfs_space_info *space_info,
8895 			       struct btrfs_block_group_cache *cache)
8896 {
8897 	int index = get_block_group_index(cache);
8898 	bool first = false;
8899 
8900 	down_write(&space_info->groups_sem);
8901 	if (list_empty(&space_info->block_groups[index]))
8902 		first = true;
8903 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8904 	up_write(&space_info->groups_sem);
8905 
8906 	if (first) {
8907 		struct raid_kobject *rkobj;
8908 		int ret;
8909 
8910 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8911 		if (!rkobj)
8912 			goto out_err;
8913 		rkobj->raid_type = index;
8914 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8915 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8916 				  "%s", get_raid_name(index));
8917 		if (ret) {
8918 			kobject_put(&rkobj->kobj);
8919 			goto out_err;
8920 		}
8921 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8922 	}
8923 
8924 	return;
8925 out_err:
8926 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8927 }
8928 
8929 static struct btrfs_block_group_cache *
8930 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8931 {
8932 	struct btrfs_block_group_cache *cache;
8933 
8934 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8935 	if (!cache)
8936 		return NULL;
8937 
8938 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8939 					GFP_NOFS);
8940 	if (!cache->free_space_ctl) {
8941 		kfree(cache);
8942 		return NULL;
8943 	}
8944 
8945 	cache->key.objectid = start;
8946 	cache->key.offset = size;
8947 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8948 
8949 	cache->sectorsize = root->sectorsize;
8950 	cache->fs_info = root->fs_info;
8951 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8952 					       &root->fs_info->mapping_tree,
8953 					       start);
8954 	atomic_set(&cache->count, 1);
8955 	spin_lock_init(&cache->lock);
8956 	init_rwsem(&cache->data_rwsem);
8957 	INIT_LIST_HEAD(&cache->list);
8958 	INIT_LIST_HEAD(&cache->cluster_list);
8959 	INIT_LIST_HEAD(&cache->bg_list);
8960 	INIT_LIST_HEAD(&cache->ro_list);
8961 	INIT_LIST_HEAD(&cache->dirty_list);
8962 	btrfs_init_free_space_ctl(cache);
8963 	atomic_set(&cache->trimming, 0);
8964 
8965 	return cache;
8966 }
8967 
8968 int btrfs_read_block_groups(struct btrfs_root *root)
8969 {
8970 	struct btrfs_path *path;
8971 	int ret;
8972 	struct btrfs_block_group_cache *cache;
8973 	struct btrfs_fs_info *info = root->fs_info;
8974 	struct btrfs_space_info *space_info;
8975 	struct btrfs_key key;
8976 	struct btrfs_key found_key;
8977 	struct extent_buffer *leaf;
8978 	int need_clear = 0;
8979 	u64 cache_gen;
8980 
8981 	root = info->extent_root;
8982 	key.objectid = 0;
8983 	key.offset = 0;
8984 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8985 	path = btrfs_alloc_path();
8986 	if (!path)
8987 		return -ENOMEM;
8988 	path->reada = 1;
8989 
8990 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8991 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8992 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8993 		need_clear = 1;
8994 	if (btrfs_test_opt(root, CLEAR_CACHE))
8995 		need_clear = 1;
8996 
8997 	while (1) {
8998 		ret = find_first_block_group(root, path, &key);
8999 		if (ret > 0)
9000 			break;
9001 		if (ret != 0)
9002 			goto error;
9003 
9004 		leaf = path->nodes[0];
9005 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9006 
9007 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9008 						       found_key.offset);
9009 		if (!cache) {
9010 			ret = -ENOMEM;
9011 			goto error;
9012 		}
9013 
9014 		if (need_clear) {
9015 			/*
9016 			 * When we mount with old space cache, we need to
9017 			 * set BTRFS_DC_CLEAR and set dirty flag.
9018 			 *
9019 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9020 			 *    truncate the old free space cache inode and
9021 			 *    setup a new one.
9022 			 * b) Setting 'dirty flag' makes sure that we flush
9023 			 *    the new space cache info onto disk.
9024 			 */
9025 			if (btrfs_test_opt(root, SPACE_CACHE))
9026 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9027 		}
9028 
9029 		read_extent_buffer(leaf, &cache->item,
9030 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9031 				   sizeof(cache->item));
9032 		cache->flags = btrfs_block_group_flags(&cache->item);
9033 
9034 		key.objectid = found_key.objectid + found_key.offset;
9035 		btrfs_release_path(path);
9036 
9037 		/*
9038 		 * We need to exclude the super stripes now so that the space
9039 		 * info has super bytes accounted for, otherwise we'll think
9040 		 * we have more space than we actually do.
9041 		 */
9042 		ret = exclude_super_stripes(root, cache);
9043 		if (ret) {
9044 			/*
9045 			 * We may have excluded something, so call this just in
9046 			 * case.
9047 			 */
9048 			free_excluded_extents(root, cache);
9049 			btrfs_put_block_group(cache);
9050 			goto error;
9051 		}
9052 
9053 		/*
9054 		 * check for two cases, either we are full, and therefore
9055 		 * don't need to bother with the caching work since we won't
9056 		 * find any space, or we are empty, and we can just add all
9057 		 * the space in and be done with it.  This saves us _alot_ of
9058 		 * time, particularly in the full case.
9059 		 */
9060 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9061 			cache->last_byte_to_unpin = (u64)-1;
9062 			cache->cached = BTRFS_CACHE_FINISHED;
9063 			free_excluded_extents(root, cache);
9064 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9065 			cache->last_byte_to_unpin = (u64)-1;
9066 			cache->cached = BTRFS_CACHE_FINISHED;
9067 			add_new_free_space(cache, root->fs_info,
9068 					   found_key.objectid,
9069 					   found_key.objectid +
9070 					   found_key.offset);
9071 			free_excluded_extents(root, cache);
9072 		}
9073 
9074 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9075 		if (ret) {
9076 			btrfs_remove_free_space_cache(cache);
9077 			btrfs_put_block_group(cache);
9078 			goto error;
9079 		}
9080 
9081 		ret = update_space_info(info, cache->flags, found_key.offset,
9082 					btrfs_block_group_used(&cache->item),
9083 					&space_info);
9084 		if (ret) {
9085 			btrfs_remove_free_space_cache(cache);
9086 			spin_lock(&info->block_group_cache_lock);
9087 			rb_erase(&cache->cache_node,
9088 				 &info->block_group_cache_tree);
9089 			RB_CLEAR_NODE(&cache->cache_node);
9090 			spin_unlock(&info->block_group_cache_lock);
9091 			btrfs_put_block_group(cache);
9092 			goto error;
9093 		}
9094 
9095 		cache->space_info = space_info;
9096 		spin_lock(&cache->space_info->lock);
9097 		cache->space_info->bytes_readonly += cache->bytes_super;
9098 		spin_unlock(&cache->space_info->lock);
9099 
9100 		__link_block_group(space_info, cache);
9101 
9102 		set_avail_alloc_bits(root->fs_info, cache->flags);
9103 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9104 			set_block_group_ro(cache, 1);
9105 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9106 			spin_lock(&info->unused_bgs_lock);
9107 			/* Should always be true but just in case. */
9108 			if (list_empty(&cache->bg_list)) {
9109 				btrfs_get_block_group(cache);
9110 				list_add_tail(&cache->bg_list,
9111 					      &info->unused_bgs);
9112 			}
9113 			spin_unlock(&info->unused_bgs_lock);
9114 		}
9115 	}
9116 
9117 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9118 		if (!(get_alloc_profile(root, space_info->flags) &
9119 		      (BTRFS_BLOCK_GROUP_RAID10 |
9120 		       BTRFS_BLOCK_GROUP_RAID1 |
9121 		       BTRFS_BLOCK_GROUP_RAID5 |
9122 		       BTRFS_BLOCK_GROUP_RAID6 |
9123 		       BTRFS_BLOCK_GROUP_DUP)))
9124 			continue;
9125 		/*
9126 		 * avoid allocating from un-mirrored block group if there are
9127 		 * mirrored block groups.
9128 		 */
9129 		list_for_each_entry(cache,
9130 				&space_info->block_groups[BTRFS_RAID_RAID0],
9131 				list)
9132 			set_block_group_ro(cache, 1);
9133 		list_for_each_entry(cache,
9134 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9135 				list)
9136 			set_block_group_ro(cache, 1);
9137 	}
9138 
9139 	init_global_block_rsv(info);
9140 	ret = 0;
9141 error:
9142 	btrfs_free_path(path);
9143 	return ret;
9144 }
9145 
9146 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9147 				       struct btrfs_root *root)
9148 {
9149 	struct btrfs_block_group_cache *block_group, *tmp;
9150 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9151 	struct btrfs_block_group_item item;
9152 	struct btrfs_key key;
9153 	int ret = 0;
9154 
9155 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9156 		if (ret)
9157 			goto next;
9158 
9159 		spin_lock(&block_group->lock);
9160 		memcpy(&item, &block_group->item, sizeof(item));
9161 		memcpy(&key, &block_group->key, sizeof(key));
9162 		spin_unlock(&block_group->lock);
9163 
9164 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9165 					sizeof(item));
9166 		if (ret)
9167 			btrfs_abort_transaction(trans, extent_root, ret);
9168 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9169 					       key.objectid, key.offset);
9170 		if (ret)
9171 			btrfs_abort_transaction(trans, extent_root, ret);
9172 next:
9173 		list_del_init(&block_group->bg_list);
9174 	}
9175 }
9176 
9177 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9178 			   struct btrfs_root *root, u64 bytes_used,
9179 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9180 			   u64 size)
9181 {
9182 	int ret;
9183 	struct btrfs_root *extent_root;
9184 	struct btrfs_block_group_cache *cache;
9185 
9186 	extent_root = root->fs_info->extent_root;
9187 
9188 	btrfs_set_log_full_commit(root->fs_info, trans);
9189 
9190 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9191 	if (!cache)
9192 		return -ENOMEM;
9193 
9194 	btrfs_set_block_group_used(&cache->item, bytes_used);
9195 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9196 	btrfs_set_block_group_flags(&cache->item, type);
9197 
9198 	cache->flags = type;
9199 	cache->last_byte_to_unpin = (u64)-1;
9200 	cache->cached = BTRFS_CACHE_FINISHED;
9201 	ret = exclude_super_stripes(root, cache);
9202 	if (ret) {
9203 		/*
9204 		 * We may have excluded something, so call this just in
9205 		 * case.
9206 		 */
9207 		free_excluded_extents(root, cache);
9208 		btrfs_put_block_group(cache);
9209 		return ret;
9210 	}
9211 
9212 	add_new_free_space(cache, root->fs_info, chunk_offset,
9213 			   chunk_offset + size);
9214 
9215 	free_excluded_extents(root, cache);
9216 
9217 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9218 	if (ret) {
9219 		btrfs_remove_free_space_cache(cache);
9220 		btrfs_put_block_group(cache);
9221 		return ret;
9222 	}
9223 
9224 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9225 				&cache->space_info);
9226 	if (ret) {
9227 		btrfs_remove_free_space_cache(cache);
9228 		spin_lock(&root->fs_info->block_group_cache_lock);
9229 		rb_erase(&cache->cache_node,
9230 			 &root->fs_info->block_group_cache_tree);
9231 		RB_CLEAR_NODE(&cache->cache_node);
9232 		spin_unlock(&root->fs_info->block_group_cache_lock);
9233 		btrfs_put_block_group(cache);
9234 		return ret;
9235 	}
9236 	update_global_block_rsv(root->fs_info);
9237 
9238 	spin_lock(&cache->space_info->lock);
9239 	cache->space_info->bytes_readonly += cache->bytes_super;
9240 	spin_unlock(&cache->space_info->lock);
9241 
9242 	__link_block_group(cache->space_info, cache);
9243 
9244 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9245 
9246 	set_avail_alloc_bits(extent_root->fs_info, type);
9247 
9248 	return 0;
9249 }
9250 
9251 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9252 {
9253 	u64 extra_flags = chunk_to_extended(flags) &
9254 				BTRFS_EXTENDED_PROFILE_MASK;
9255 
9256 	write_seqlock(&fs_info->profiles_lock);
9257 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9258 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9259 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9260 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9261 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9262 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9263 	write_sequnlock(&fs_info->profiles_lock);
9264 }
9265 
9266 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9267 			     struct btrfs_root *root, u64 group_start,
9268 			     struct extent_map *em)
9269 {
9270 	struct btrfs_path *path;
9271 	struct btrfs_block_group_cache *block_group;
9272 	struct btrfs_free_cluster *cluster;
9273 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9274 	struct btrfs_key key;
9275 	struct inode *inode;
9276 	struct kobject *kobj = NULL;
9277 	int ret;
9278 	int index;
9279 	int factor;
9280 	struct btrfs_caching_control *caching_ctl = NULL;
9281 	bool remove_em;
9282 
9283 	root = root->fs_info->extent_root;
9284 
9285 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9286 	BUG_ON(!block_group);
9287 	BUG_ON(!block_group->ro);
9288 
9289 	/*
9290 	 * Free the reserved super bytes from this block group before
9291 	 * remove it.
9292 	 */
9293 	free_excluded_extents(root, block_group);
9294 
9295 	memcpy(&key, &block_group->key, sizeof(key));
9296 	index = get_block_group_index(block_group);
9297 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9298 				  BTRFS_BLOCK_GROUP_RAID1 |
9299 				  BTRFS_BLOCK_GROUP_RAID10))
9300 		factor = 2;
9301 	else
9302 		factor = 1;
9303 
9304 	/* make sure this block group isn't part of an allocation cluster */
9305 	cluster = &root->fs_info->data_alloc_cluster;
9306 	spin_lock(&cluster->refill_lock);
9307 	btrfs_return_cluster_to_free_space(block_group, cluster);
9308 	spin_unlock(&cluster->refill_lock);
9309 
9310 	/*
9311 	 * make sure this block group isn't part of a metadata
9312 	 * allocation cluster
9313 	 */
9314 	cluster = &root->fs_info->meta_alloc_cluster;
9315 	spin_lock(&cluster->refill_lock);
9316 	btrfs_return_cluster_to_free_space(block_group, cluster);
9317 	spin_unlock(&cluster->refill_lock);
9318 
9319 	path = btrfs_alloc_path();
9320 	if (!path) {
9321 		ret = -ENOMEM;
9322 		goto out;
9323 	}
9324 
9325 	inode = lookup_free_space_inode(tree_root, block_group, path);
9326 	if (!IS_ERR(inode)) {
9327 		ret = btrfs_orphan_add(trans, inode);
9328 		if (ret) {
9329 			btrfs_add_delayed_iput(inode);
9330 			goto out;
9331 		}
9332 		clear_nlink(inode);
9333 		/* One for the block groups ref */
9334 		spin_lock(&block_group->lock);
9335 		if (block_group->iref) {
9336 			block_group->iref = 0;
9337 			block_group->inode = NULL;
9338 			spin_unlock(&block_group->lock);
9339 			iput(inode);
9340 		} else {
9341 			spin_unlock(&block_group->lock);
9342 		}
9343 		/* One for our lookup ref */
9344 		btrfs_add_delayed_iput(inode);
9345 	}
9346 
9347 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9348 	key.offset = block_group->key.objectid;
9349 	key.type = 0;
9350 
9351 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9352 	if (ret < 0)
9353 		goto out;
9354 	if (ret > 0)
9355 		btrfs_release_path(path);
9356 	if (ret == 0) {
9357 		ret = btrfs_del_item(trans, tree_root, path);
9358 		if (ret)
9359 			goto out;
9360 		btrfs_release_path(path);
9361 	}
9362 
9363 	spin_lock(&root->fs_info->block_group_cache_lock);
9364 	rb_erase(&block_group->cache_node,
9365 		 &root->fs_info->block_group_cache_tree);
9366 	RB_CLEAR_NODE(&block_group->cache_node);
9367 
9368 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9369 		root->fs_info->first_logical_byte = (u64)-1;
9370 	spin_unlock(&root->fs_info->block_group_cache_lock);
9371 
9372 	down_write(&block_group->space_info->groups_sem);
9373 	/*
9374 	 * we must use list_del_init so people can check to see if they
9375 	 * are still on the list after taking the semaphore
9376 	 */
9377 	list_del_init(&block_group->list);
9378 	if (list_empty(&block_group->space_info->block_groups[index])) {
9379 		kobj = block_group->space_info->block_group_kobjs[index];
9380 		block_group->space_info->block_group_kobjs[index] = NULL;
9381 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9382 	}
9383 	up_write(&block_group->space_info->groups_sem);
9384 	if (kobj) {
9385 		kobject_del(kobj);
9386 		kobject_put(kobj);
9387 	}
9388 
9389 	if (block_group->has_caching_ctl)
9390 		caching_ctl = get_caching_control(block_group);
9391 	if (block_group->cached == BTRFS_CACHE_STARTED)
9392 		wait_block_group_cache_done(block_group);
9393 	if (block_group->has_caching_ctl) {
9394 		down_write(&root->fs_info->commit_root_sem);
9395 		if (!caching_ctl) {
9396 			struct btrfs_caching_control *ctl;
9397 
9398 			list_for_each_entry(ctl,
9399 				    &root->fs_info->caching_block_groups, list)
9400 				if (ctl->block_group == block_group) {
9401 					caching_ctl = ctl;
9402 					atomic_inc(&caching_ctl->count);
9403 					break;
9404 				}
9405 		}
9406 		if (caching_ctl)
9407 			list_del_init(&caching_ctl->list);
9408 		up_write(&root->fs_info->commit_root_sem);
9409 		if (caching_ctl) {
9410 			/* Once for the caching bgs list and once for us. */
9411 			put_caching_control(caching_ctl);
9412 			put_caching_control(caching_ctl);
9413 		}
9414 	}
9415 
9416 	spin_lock(&trans->transaction->dirty_bgs_lock);
9417 	if (!list_empty(&block_group->dirty_list)) {
9418 		list_del_init(&block_group->dirty_list);
9419 		btrfs_put_block_group(block_group);
9420 	}
9421 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9422 
9423 	btrfs_remove_free_space_cache(block_group);
9424 
9425 	spin_lock(&block_group->space_info->lock);
9426 	list_del_init(&block_group->ro_list);
9427 	block_group->space_info->total_bytes -= block_group->key.offset;
9428 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9429 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9430 	spin_unlock(&block_group->space_info->lock);
9431 
9432 	memcpy(&key, &block_group->key, sizeof(key));
9433 
9434 	lock_chunks(root);
9435 	if (!list_empty(&em->list)) {
9436 		/* We're in the transaction->pending_chunks list. */
9437 		free_extent_map(em);
9438 	}
9439 	spin_lock(&block_group->lock);
9440 	block_group->removed = 1;
9441 	/*
9442 	 * At this point trimming can't start on this block group, because we
9443 	 * removed the block group from the tree fs_info->block_group_cache_tree
9444 	 * so no one can't find it anymore and even if someone already got this
9445 	 * block group before we removed it from the rbtree, they have already
9446 	 * incremented block_group->trimming - if they didn't, they won't find
9447 	 * any free space entries because we already removed them all when we
9448 	 * called btrfs_remove_free_space_cache().
9449 	 *
9450 	 * And we must not remove the extent map from the fs_info->mapping_tree
9451 	 * to prevent the same logical address range and physical device space
9452 	 * ranges from being reused for a new block group. This is because our
9453 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9454 	 * completely transactionless, so while it is trimming a range the
9455 	 * currently running transaction might finish and a new one start,
9456 	 * allowing for new block groups to be created that can reuse the same
9457 	 * physical device locations unless we take this special care.
9458 	 */
9459 	remove_em = (atomic_read(&block_group->trimming) == 0);
9460 	/*
9461 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9462 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9463 	 * before checking block_group->removed).
9464 	 */
9465 	if (!remove_em) {
9466 		/*
9467 		 * Our em might be in trans->transaction->pending_chunks which
9468 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9469 		 * and so is the fs_info->pinned_chunks list.
9470 		 *
9471 		 * So at this point we must be holding the chunk_mutex to avoid
9472 		 * any races with chunk allocation (more specifically at
9473 		 * volumes.c:contains_pending_extent()), to ensure it always
9474 		 * sees the em, either in the pending_chunks list or in the
9475 		 * pinned_chunks list.
9476 		 */
9477 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9478 	}
9479 	spin_unlock(&block_group->lock);
9480 
9481 	if (remove_em) {
9482 		struct extent_map_tree *em_tree;
9483 
9484 		em_tree = &root->fs_info->mapping_tree.map_tree;
9485 		write_lock(&em_tree->lock);
9486 		/*
9487 		 * The em might be in the pending_chunks list, so make sure the
9488 		 * chunk mutex is locked, since remove_extent_mapping() will
9489 		 * delete us from that list.
9490 		 */
9491 		remove_extent_mapping(em_tree, em);
9492 		write_unlock(&em_tree->lock);
9493 		/* once for the tree */
9494 		free_extent_map(em);
9495 	}
9496 
9497 	unlock_chunks(root);
9498 
9499 	btrfs_put_block_group(block_group);
9500 	btrfs_put_block_group(block_group);
9501 
9502 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9503 	if (ret > 0)
9504 		ret = -EIO;
9505 	if (ret < 0)
9506 		goto out;
9507 
9508 	ret = btrfs_del_item(trans, root, path);
9509 out:
9510 	btrfs_free_path(path);
9511 	return ret;
9512 }
9513 
9514 /*
9515  * Process the unused_bgs list and remove any that don't have any allocated
9516  * space inside of them.
9517  */
9518 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9519 {
9520 	struct btrfs_block_group_cache *block_group;
9521 	struct btrfs_space_info *space_info;
9522 	struct btrfs_root *root = fs_info->extent_root;
9523 	struct btrfs_trans_handle *trans;
9524 	int ret = 0;
9525 
9526 	if (!fs_info->open)
9527 		return;
9528 
9529 	spin_lock(&fs_info->unused_bgs_lock);
9530 	while (!list_empty(&fs_info->unused_bgs)) {
9531 		u64 start, end;
9532 
9533 		block_group = list_first_entry(&fs_info->unused_bgs,
9534 					       struct btrfs_block_group_cache,
9535 					       bg_list);
9536 		space_info = block_group->space_info;
9537 		list_del_init(&block_group->bg_list);
9538 		if (ret || btrfs_mixed_space_info(space_info)) {
9539 			btrfs_put_block_group(block_group);
9540 			continue;
9541 		}
9542 		spin_unlock(&fs_info->unused_bgs_lock);
9543 
9544 		/* Don't want to race with allocators so take the groups_sem */
9545 		down_write(&space_info->groups_sem);
9546 		spin_lock(&block_group->lock);
9547 		if (block_group->reserved ||
9548 		    btrfs_block_group_used(&block_group->item) ||
9549 		    block_group->ro) {
9550 			/*
9551 			 * We want to bail if we made new allocations or have
9552 			 * outstanding allocations in this block group.  We do
9553 			 * the ro check in case balance is currently acting on
9554 			 * this block group.
9555 			 */
9556 			spin_unlock(&block_group->lock);
9557 			up_write(&space_info->groups_sem);
9558 			goto next;
9559 		}
9560 		spin_unlock(&block_group->lock);
9561 
9562 		/* We don't want to force the issue, only flip if it's ok. */
9563 		ret = set_block_group_ro(block_group, 0);
9564 		up_write(&space_info->groups_sem);
9565 		if (ret < 0) {
9566 			ret = 0;
9567 			goto next;
9568 		}
9569 
9570 		/*
9571 		 * Want to do this before we do anything else so we can recover
9572 		 * properly if we fail to join the transaction.
9573 		 */
9574 		/* 1 for btrfs_orphan_reserve_metadata() */
9575 		trans = btrfs_start_transaction(root, 1);
9576 		if (IS_ERR(trans)) {
9577 			btrfs_set_block_group_rw(root, block_group);
9578 			ret = PTR_ERR(trans);
9579 			goto next;
9580 		}
9581 
9582 		/*
9583 		 * We could have pending pinned extents for this block group,
9584 		 * just delete them, we don't care about them anymore.
9585 		 */
9586 		start = block_group->key.objectid;
9587 		end = start + block_group->key.offset - 1;
9588 		/*
9589 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9590 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9591 		 * another task might be running finish_extent_commit() for the
9592 		 * previous transaction N - 1, and have seen a range belonging
9593 		 * to the block group in freed_extents[] before we were able to
9594 		 * clear the whole block group range from freed_extents[]. This
9595 		 * means that task can lookup for the block group after we
9596 		 * unpinned it from freed_extents[] and removed it, leading to
9597 		 * a BUG_ON() at btrfs_unpin_extent_range().
9598 		 */
9599 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9600 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9601 				  EXTENT_DIRTY, GFP_NOFS);
9602 		if (ret) {
9603 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9604 			btrfs_set_block_group_rw(root, block_group);
9605 			goto end_trans;
9606 		}
9607 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9608 				  EXTENT_DIRTY, GFP_NOFS);
9609 		if (ret) {
9610 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9611 			btrfs_set_block_group_rw(root, block_group);
9612 			goto end_trans;
9613 		}
9614 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9615 
9616 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9617 		block_group->pinned = 0;
9618 
9619 		/*
9620 		 * Btrfs_remove_chunk will abort the transaction if things go
9621 		 * horribly wrong.
9622 		 */
9623 		ret = btrfs_remove_chunk(trans, root,
9624 					 block_group->key.objectid);
9625 end_trans:
9626 		btrfs_end_transaction(trans, root);
9627 next:
9628 		btrfs_put_block_group(block_group);
9629 		spin_lock(&fs_info->unused_bgs_lock);
9630 	}
9631 	spin_unlock(&fs_info->unused_bgs_lock);
9632 }
9633 
9634 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9635 {
9636 	struct btrfs_space_info *space_info;
9637 	struct btrfs_super_block *disk_super;
9638 	u64 features;
9639 	u64 flags;
9640 	int mixed = 0;
9641 	int ret;
9642 
9643 	disk_super = fs_info->super_copy;
9644 	if (!btrfs_super_root(disk_super))
9645 		return 1;
9646 
9647 	features = btrfs_super_incompat_flags(disk_super);
9648 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9649 		mixed = 1;
9650 
9651 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9652 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9653 	if (ret)
9654 		goto out;
9655 
9656 	if (mixed) {
9657 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9658 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9659 	} else {
9660 		flags = BTRFS_BLOCK_GROUP_METADATA;
9661 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9662 		if (ret)
9663 			goto out;
9664 
9665 		flags = BTRFS_BLOCK_GROUP_DATA;
9666 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9667 	}
9668 out:
9669 	return ret;
9670 }
9671 
9672 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9673 {
9674 	return unpin_extent_range(root, start, end, false);
9675 }
9676 
9677 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9678 {
9679 	struct btrfs_fs_info *fs_info = root->fs_info;
9680 	struct btrfs_block_group_cache *cache = NULL;
9681 	u64 group_trimmed;
9682 	u64 start;
9683 	u64 end;
9684 	u64 trimmed = 0;
9685 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9686 	int ret = 0;
9687 
9688 	/*
9689 	 * try to trim all FS space, our block group may start from non-zero.
9690 	 */
9691 	if (range->len == total_bytes)
9692 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9693 	else
9694 		cache = btrfs_lookup_block_group(fs_info, range->start);
9695 
9696 	while (cache) {
9697 		if (cache->key.objectid >= (range->start + range->len)) {
9698 			btrfs_put_block_group(cache);
9699 			break;
9700 		}
9701 
9702 		start = max(range->start, cache->key.objectid);
9703 		end = min(range->start + range->len,
9704 				cache->key.objectid + cache->key.offset);
9705 
9706 		if (end - start >= range->minlen) {
9707 			if (!block_group_cache_done(cache)) {
9708 				ret = cache_block_group(cache, 0);
9709 				if (ret) {
9710 					btrfs_put_block_group(cache);
9711 					break;
9712 				}
9713 				ret = wait_block_group_cache_done(cache);
9714 				if (ret) {
9715 					btrfs_put_block_group(cache);
9716 					break;
9717 				}
9718 			}
9719 			ret = btrfs_trim_block_group(cache,
9720 						     &group_trimmed,
9721 						     start,
9722 						     end,
9723 						     range->minlen);
9724 
9725 			trimmed += group_trimmed;
9726 			if (ret) {
9727 				btrfs_put_block_group(cache);
9728 				break;
9729 			}
9730 		}
9731 
9732 		cache = next_block_group(fs_info->tree_root, cache);
9733 	}
9734 
9735 	range->len = trimmed;
9736 	return ret;
9737 }
9738 
9739 /*
9740  * btrfs_{start,end}_write_no_snapshoting() are similar to
9741  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9742  * data into the page cache through nocow before the subvolume is snapshoted,
9743  * but flush the data into disk after the snapshot creation, or to prevent
9744  * operations while snapshoting is ongoing and that cause the snapshot to be
9745  * inconsistent (writes followed by expanding truncates for example).
9746  */
9747 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9748 {
9749 	percpu_counter_dec(&root->subv_writers->counter);
9750 	/*
9751 	 * Make sure counter is updated before we wake up
9752 	 * waiters.
9753 	 */
9754 	smp_mb();
9755 	if (waitqueue_active(&root->subv_writers->wait))
9756 		wake_up(&root->subv_writers->wait);
9757 }
9758 
9759 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9760 {
9761 	if (atomic_read(&root->will_be_snapshoted))
9762 		return 0;
9763 
9764 	percpu_counter_inc(&root->subv_writers->counter);
9765 	/*
9766 	 * Make sure counter is updated before we check for snapshot creation.
9767 	 */
9768 	smp_mb();
9769 	if (atomic_read(&root->will_be_snapshoted)) {
9770 		btrfs_end_write_no_snapshoting(root);
9771 		return 0;
9772 	}
9773 	return 1;
9774 }
9775