xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision d4295e12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 			       struct btrfs_delayed_ref_node *node, u64 parent,
56 			       u64 root_objectid, u64 owner_objectid,
57 			       u64 owner_offset, int refs_to_drop,
58 			       struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 				    struct extent_buffer *leaf,
61 				    struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 				      u64 parent, u64 root_objectid,
64 				      u64 flags, u64 owner, u64 offset,
65 				      struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 				     struct btrfs_delayed_ref_node *node,
68 				     struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 			  int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 			 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 			    struct btrfs_space_info *info, u64 bytes,
75 			    int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 			       u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 				     struct btrfs_space_info *space_info,
80 				     u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 				     struct btrfs_space_info *space_info,
83 				     u64 num_bytes);
84 
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 	smp_mb();
89 	return cache->cached == BTRFS_CACHE_FINISHED ||
90 		cache->cached == BTRFS_CACHE_ERROR;
91 }
92 
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 	return (cache->flags & bits) == bits;
96 }
97 
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 	atomic_inc(&cache->count);
101 }
102 
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 	if (atomic_dec_and_test(&cache->count)) {
106 		WARN_ON(cache->pinned > 0);
107 		WARN_ON(cache->reserved > 0);
108 
109 		/*
110 		 * If not empty, someone is still holding mutex of
111 		 * full_stripe_lock, which can only be released by caller.
112 		 * And it will definitely cause use-after-free when caller
113 		 * tries to release full stripe lock.
114 		 *
115 		 * No better way to resolve, but only to warn.
116 		 */
117 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 		kfree(cache->free_space_ctl);
119 		kfree(cache);
120 	}
121 }
122 
123 /*
124  * this adds the block group to the fs_info rb tree for the block group
125  * cache
126  */
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 				struct btrfs_block_group_cache *block_group)
129 {
130 	struct rb_node **p;
131 	struct rb_node *parent = NULL;
132 	struct btrfs_block_group_cache *cache;
133 
134 	spin_lock(&info->block_group_cache_lock);
135 	p = &info->block_group_cache_tree.rb_node;
136 
137 	while (*p) {
138 		parent = *p;
139 		cache = rb_entry(parent, struct btrfs_block_group_cache,
140 				 cache_node);
141 		if (block_group->key.objectid < cache->key.objectid) {
142 			p = &(*p)->rb_left;
143 		} else if (block_group->key.objectid > cache->key.objectid) {
144 			p = &(*p)->rb_right;
145 		} else {
146 			spin_unlock(&info->block_group_cache_lock);
147 			return -EEXIST;
148 		}
149 	}
150 
151 	rb_link_node(&block_group->cache_node, parent, p);
152 	rb_insert_color(&block_group->cache_node,
153 			&info->block_group_cache_tree);
154 
155 	if (info->first_logical_byte > block_group->key.objectid)
156 		info->first_logical_byte = block_group->key.objectid;
157 
158 	spin_unlock(&info->block_group_cache_lock);
159 
160 	return 0;
161 }
162 
163 /*
164  * This will return the block group at or after bytenr if contains is 0, else
165  * it will return the block group that contains the bytenr
166  */
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 			      int contains)
170 {
171 	struct btrfs_block_group_cache *cache, *ret = NULL;
172 	struct rb_node *n;
173 	u64 end, start;
174 
175 	spin_lock(&info->block_group_cache_lock);
176 	n = info->block_group_cache_tree.rb_node;
177 
178 	while (n) {
179 		cache = rb_entry(n, struct btrfs_block_group_cache,
180 				 cache_node);
181 		end = cache->key.objectid + cache->key.offset - 1;
182 		start = cache->key.objectid;
183 
184 		if (bytenr < start) {
185 			if (!contains && (!ret || start < ret->key.objectid))
186 				ret = cache;
187 			n = n->rb_left;
188 		} else if (bytenr > start) {
189 			if (contains && bytenr <= end) {
190 				ret = cache;
191 				break;
192 			}
193 			n = n->rb_right;
194 		} else {
195 			ret = cache;
196 			break;
197 		}
198 	}
199 	if (ret) {
200 		btrfs_get_block_group(ret);
201 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 			info->first_logical_byte = ret->key.objectid;
203 	}
204 	spin_unlock(&info->block_group_cache_lock);
205 
206 	return ret;
207 }
208 
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 			       u64 start, u64 num_bytes)
211 {
212 	u64 end = start + num_bytes - 1;
213 	set_extent_bits(&fs_info->freed_extents[0],
214 			start, end, EXTENT_UPTODATE);
215 	set_extent_bits(&fs_info->freed_extents[1],
216 			start, end, EXTENT_UPTODATE);
217 	return 0;
218 }
219 
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 	struct btrfs_fs_info *fs_info = cache->fs_info;
223 	u64 start, end;
224 
225 	start = cache->key.objectid;
226 	end = start + cache->key.offset - 1;
227 
228 	clear_extent_bits(&fs_info->freed_extents[0],
229 			  start, end, EXTENT_UPTODATE);
230 	clear_extent_bits(&fs_info->freed_extents[1],
231 			  start, end, EXTENT_UPTODATE);
232 }
233 
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 	struct btrfs_fs_info *fs_info = cache->fs_info;
237 	u64 bytenr;
238 	u64 *logical;
239 	int stripe_len;
240 	int i, nr, ret;
241 
242 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 		cache->bytes_super += stripe_len;
245 		ret = add_excluded_extent(fs_info, cache->key.objectid,
246 					  stripe_len);
247 		if (ret)
248 			return ret;
249 	}
250 
251 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 		bytenr = btrfs_sb_offset(i);
253 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 				       bytenr, &logical, &nr, &stripe_len);
255 		if (ret)
256 			return ret;
257 
258 		while (nr--) {
259 			u64 start, len;
260 
261 			if (logical[nr] > cache->key.objectid +
262 			    cache->key.offset)
263 				continue;
264 
265 			if (logical[nr] + stripe_len <= cache->key.objectid)
266 				continue;
267 
268 			start = logical[nr];
269 			if (start < cache->key.objectid) {
270 				start = cache->key.objectid;
271 				len = (logical[nr] + stripe_len) - start;
272 			} else {
273 				len = min_t(u64, stripe_len,
274 					    cache->key.objectid +
275 					    cache->key.offset - start);
276 			}
277 
278 			cache->bytes_super += len;
279 			ret = add_excluded_extent(fs_info, start, len);
280 			if (ret) {
281 				kfree(logical);
282 				return ret;
283 			}
284 		}
285 
286 		kfree(logical);
287 	}
288 	return 0;
289 }
290 
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 	struct btrfs_caching_control *ctl;
295 
296 	spin_lock(&cache->lock);
297 	if (!cache->caching_ctl) {
298 		spin_unlock(&cache->lock);
299 		return NULL;
300 	}
301 
302 	ctl = cache->caching_ctl;
303 	refcount_inc(&ctl->count);
304 	spin_unlock(&cache->lock);
305 	return ctl;
306 }
307 
308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 	if (refcount_dec_and_test(&ctl->count))
311 		kfree(ctl);
312 }
313 
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 	struct btrfs_fs_info *fs_info = block_group->fs_info;
318 	u64 start = block_group->key.objectid;
319 	u64 len = block_group->key.offset;
320 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 		fs_info->nodesize : fs_info->sectorsize;
322 	u64 step = chunk << 1;
323 
324 	while (len > chunk) {
325 		btrfs_remove_free_space(block_group, start, chunk);
326 		start += step;
327 		if (len < step)
328 			len = 0;
329 		else
330 			len -= step;
331 	}
332 }
333 #endif
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 		       u64 start, u64 end)
342 {
343 	struct btrfs_fs_info *info = block_group->fs_info;
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 	struct btrfs_fs_info *fs_info = block_group->fs_info;
383 	struct btrfs_root *extent_root = fs_info->extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret;
391 	bool wakeup = true;
392 
393 	path = btrfs_alloc_path();
394 	if (!path)
395 		return -ENOMEM;
396 
397 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398 
399 #ifdef CONFIG_BTRFS_DEBUG
400 	/*
401 	 * If we're fragmenting we don't want to make anybody think we can
402 	 * allocate from this block group until we've had a chance to fragment
403 	 * the free space.
404 	 */
405 	if (btrfs_should_fragment_free_space(block_group))
406 		wakeup = false;
407 #endif
408 	/*
409 	 * We don't want to deadlock with somebody trying to allocate a new
410 	 * extent for the extent root while also trying to search the extent
411 	 * root to add free space.  So we skip locking and search the commit
412 	 * root, since its read-only
413 	 */
414 	path->skip_locking = 1;
415 	path->search_commit_root = 1;
416 	path->reada = READA_FORWARD;
417 
418 	key.objectid = last;
419 	key.offset = 0;
420 	key.type = BTRFS_EXTENT_ITEM_KEY;
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto out;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				if (wakeup)
446 					caching_ctl->progress = last;
447 				btrfs_release_path(path);
448 				up_read(&fs_info->commit_root_sem);
449 				mutex_unlock(&caching_ctl->mutex);
450 				cond_resched();
451 				mutex_lock(&caching_ctl->mutex);
452 				down_read(&fs_info->commit_root_sem);
453 				goto next;
454 			}
455 
456 			ret = btrfs_next_leaf(extent_root, path);
457 			if (ret < 0)
458 				goto out;
459 			if (ret)
460 				break;
461 			leaf = path->nodes[0];
462 			nritems = btrfs_header_nritems(leaf);
463 			continue;
464 		}
465 
466 		if (key.objectid < last) {
467 			key.objectid = last;
468 			key.offset = 0;
469 			key.type = BTRFS_EXTENT_ITEM_KEY;
470 
471 			if (wakeup)
472 				caching_ctl->progress = last;
473 			btrfs_release_path(path);
474 			goto next;
475 		}
476 
477 		if (key.objectid < block_group->key.objectid) {
478 			path->slots[0]++;
479 			continue;
480 		}
481 
482 		if (key.objectid >= block_group->key.objectid +
483 		    block_group->key.offset)
484 			break;
485 
486 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 		    key.type == BTRFS_METADATA_ITEM_KEY) {
488 			total_found += add_new_free_space(block_group, last,
489 							  key.objectid);
490 			if (key.type == BTRFS_METADATA_ITEM_KEY)
491 				last = key.objectid +
492 					fs_info->nodesize;
493 			else
494 				last = key.objectid + key.offset;
495 
496 			if (total_found > CACHING_CTL_WAKE_UP) {
497 				total_found = 0;
498 				if (wakeup)
499 					wake_up(&caching_ctl->wait);
500 			}
501 		}
502 		path->slots[0]++;
503 	}
504 	ret = 0;
505 
506 	total_found += add_new_free_space(block_group, last,
507 					  block_group->key.objectid +
508 					  block_group->key.offset);
509 	caching_ctl->progress = (u64)-1;
510 
511 out:
512 	btrfs_free_path(path);
513 	return ret;
514 }
515 
516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 	struct btrfs_block_group_cache *block_group;
519 	struct btrfs_fs_info *fs_info;
520 	struct btrfs_caching_control *caching_ctl;
521 	int ret;
522 
523 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 	block_group = caching_ctl->block_group;
525 	fs_info = block_group->fs_info;
526 
527 	mutex_lock(&caching_ctl->mutex);
528 	down_read(&fs_info->commit_root_sem);
529 
530 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 		ret = load_free_space_tree(caching_ctl);
532 	else
533 		ret = load_extent_tree_free(caching_ctl);
534 
535 	spin_lock(&block_group->lock);
536 	block_group->caching_ctl = NULL;
537 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 	spin_unlock(&block_group->lock);
539 
540 #ifdef CONFIG_BTRFS_DEBUG
541 	if (btrfs_should_fragment_free_space(block_group)) {
542 		u64 bytes_used;
543 
544 		spin_lock(&block_group->space_info->lock);
545 		spin_lock(&block_group->lock);
546 		bytes_used = block_group->key.offset -
547 			btrfs_block_group_used(&block_group->item);
548 		block_group->space_info->bytes_used += bytes_used >> 1;
549 		spin_unlock(&block_group->lock);
550 		spin_unlock(&block_group->space_info->lock);
551 		fragment_free_space(block_group);
552 	}
553 #endif
554 
555 	caching_ctl->progress = (u64)-1;
556 
557 	up_read(&fs_info->commit_root_sem);
558 	free_excluded_extents(block_group);
559 	mutex_unlock(&caching_ctl->mutex);
560 
561 	wake_up(&caching_ctl->wait);
562 
563 	put_caching_control(caching_ctl);
564 	btrfs_put_block_group(block_group);
565 }
566 
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 			     int load_cache_only)
569 {
570 	DEFINE_WAIT(wait);
571 	struct btrfs_fs_info *fs_info = cache->fs_info;
572 	struct btrfs_caching_control *caching_ctl;
573 	int ret = 0;
574 
575 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 	if (!caching_ctl)
577 		return -ENOMEM;
578 
579 	INIT_LIST_HEAD(&caching_ctl->list);
580 	mutex_init(&caching_ctl->mutex);
581 	init_waitqueue_head(&caching_ctl->wait);
582 	caching_ctl->block_group = cache;
583 	caching_ctl->progress = cache->key.objectid;
584 	refcount_set(&caching_ctl->count, 1);
585 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 			caching_thread, NULL, NULL);
587 
588 	spin_lock(&cache->lock);
589 	/*
590 	 * This should be a rare occasion, but this could happen I think in the
591 	 * case where one thread starts to load the space cache info, and then
592 	 * some other thread starts a transaction commit which tries to do an
593 	 * allocation while the other thread is still loading the space cache
594 	 * info.  The previous loop should have kept us from choosing this block
595 	 * group, but if we've moved to the state where we will wait on caching
596 	 * block groups we need to first check if we're doing a fast load here,
597 	 * so we can wait for it to finish, otherwise we could end up allocating
598 	 * from a block group who's cache gets evicted for one reason or
599 	 * another.
600 	 */
601 	while (cache->cached == BTRFS_CACHE_FAST) {
602 		struct btrfs_caching_control *ctl;
603 
604 		ctl = cache->caching_ctl;
605 		refcount_inc(&ctl->count);
606 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 		spin_unlock(&cache->lock);
608 
609 		schedule();
610 
611 		finish_wait(&ctl->wait, &wait);
612 		put_caching_control(ctl);
613 		spin_lock(&cache->lock);
614 	}
615 
616 	if (cache->cached != BTRFS_CACHE_NO) {
617 		spin_unlock(&cache->lock);
618 		kfree(caching_ctl);
619 		return 0;
620 	}
621 	WARN_ON(cache->caching_ctl);
622 	cache->caching_ctl = caching_ctl;
623 	cache->cached = BTRFS_CACHE_FAST;
624 	spin_unlock(&cache->lock);
625 
626 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 		mutex_lock(&caching_ctl->mutex);
628 		ret = load_free_space_cache(fs_info, cache);
629 
630 		spin_lock(&cache->lock);
631 		if (ret == 1) {
632 			cache->caching_ctl = NULL;
633 			cache->cached = BTRFS_CACHE_FINISHED;
634 			cache->last_byte_to_unpin = (u64)-1;
635 			caching_ctl->progress = (u64)-1;
636 		} else {
637 			if (load_cache_only) {
638 				cache->caching_ctl = NULL;
639 				cache->cached = BTRFS_CACHE_NO;
640 			} else {
641 				cache->cached = BTRFS_CACHE_STARTED;
642 				cache->has_caching_ctl = 1;
643 			}
644 		}
645 		spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 		if (ret == 1 &&
648 		    btrfs_should_fragment_free_space(cache)) {
649 			u64 bytes_used;
650 
651 			spin_lock(&cache->space_info->lock);
652 			spin_lock(&cache->lock);
653 			bytes_used = cache->key.offset -
654 				btrfs_block_group_used(&cache->item);
655 			cache->space_info->bytes_used += bytes_used >> 1;
656 			spin_unlock(&cache->lock);
657 			spin_unlock(&cache->space_info->lock);
658 			fragment_free_space(cache);
659 		}
660 #endif
661 		mutex_unlock(&caching_ctl->mutex);
662 
663 		wake_up(&caching_ctl->wait);
664 		if (ret == 1) {
665 			put_caching_control(caching_ctl);
666 			free_excluded_extents(cache);
667 			return 0;
668 		}
669 	} else {
670 		/*
671 		 * We're either using the free space tree or no caching at all.
672 		 * Set cached to the appropriate value and wakeup any waiters.
673 		 */
674 		spin_lock(&cache->lock);
675 		if (load_cache_only) {
676 			cache->caching_ctl = NULL;
677 			cache->cached = BTRFS_CACHE_NO;
678 		} else {
679 			cache->cached = BTRFS_CACHE_STARTED;
680 			cache->has_caching_ctl = 1;
681 		}
682 		spin_unlock(&cache->lock);
683 		wake_up(&caching_ctl->wait);
684 	}
685 
686 	if (load_cache_only) {
687 		put_caching_control(caching_ctl);
688 		return 0;
689 	}
690 
691 	down_write(&fs_info->commit_root_sem);
692 	refcount_inc(&caching_ctl->count);
693 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 	up_write(&fs_info->commit_root_sem);
695 
696 	btrfs_get_block_group(cache);
697 
698 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699 
700 	return ret;
701 }
702 
703 /*
704  * return the block group that starts at or after bytenr
705  */
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 	return block_group_cache_tree_search(info, bytenr, 0);
710 }
711 
712 /*
713  * return the block group that contains the given bytenr
714  */
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 						 struct btrfs_fs_info *info,
717 						 u64 bytenr)
718 {
719 	return block_group_cache_tree_search(info, bytenr, 1);
720 }
721 
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 						  u64 flags)
724 {
725 	struct list_head *head = &info->space_info;
726 	struct btrfs_space_info *found;
727 
728 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729 
730 	rcu_read_lock();
731 	list_for_each_entry_rcu(found, head, list) {
732 		if (found->flags & flags) {
733 			rcu_read_unlock();
734 			return found;
735 		}
736 	}
737 	rcu_read_unlock();
738 	return NULL;
739 }
740 
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 			     bool metadata, u64 root_objectid)
743 {
744 	struct btrfs_space_info *space_info;
745 	u64 flags;
746 
747 	if (metadata) {
748 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 		else
751 			flags = BTRFS_BLOCK_GROUP_METADATA;
752 	} else {
753 		flags = BTRFS_BLOCK_GROUP_DATA;
754 	}
755 
756 	space_info = __find_space_info(fs_info, flags);
757 	ASSERT(space_info);
758 	percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761 
762 /*
763  * after adding space to the filesystem, we need to clear the full flags
764  * on all the space infos.
765  */
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 	struct list_head *head = &info->space_info;
769 	struct btrfs_space_info *found;
770 
771 	rcu_read_lock();
772 	list_for_each_entry_rcu(found, head, list)
773 		found->full = 0;
774 	rcu_read_unlock();
775 }
776 
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 	int ret;
781 	struct btrfs_key key;
782 	struct btrfs_path *path;
783 
784 	path = btrfs_alloc_path();
785 	if (!path)
786 		return -ENOMEM;
787 
788 	key.objectid = start;
789 	key.offset = len;
790 	key.type = BTRFS_EXTENT_ITEM_KEY;
791 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 	btrfs_free_path(path);
793 	return ret;
794 }
795 
796 /*
797  * helper function to lookup reference count and flags of a tree block.
798  *
799  * the head node for delayed ref is used to store the sum of all the
800  * reference count modifications queued up in the rbtree. the head
801  * node may also store the extent flags to set. This way you can check
802  * to see what the reference count and extent flags would be if all of
803  * the delayed refs are not processed.
804  */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 			     struct btrfs_fs_info *fs_info, u64 bytenr,
807 			     u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 	struct btrfs_delayed_ref_head *head;
810 	struct btrfs_delayed_ref_root *delayed_refs;
811 	struct btrfs_path *path;
812 	struct btrfs_extent_item *ei;
813 	struct extent_buffer *leaf;
814 	struct btrfs_key key;
815 	u32 item_size;
816 	u64 num_refs;
817 	u64 extent_flags;
818 	int ret;
819 
820 	/*
821 	 * If we don't have skinny metadata, don't bother doing anything
822 	 * different
823 	 */
824 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 		offset = fs_info->nodesize;
826 		metadata = 0;
827 	}
828 
829 	path = btrfs_alloc_path();
830 	if (!path)
831 		return -ENOMEM;
832 
833 	if (!trans) {
834 		path->skip_locking = 1;
835 		path->search_commit_root = 1;
836 	}
837 
838 search_again:
839 	key.objectid = bytenr;
840 	key.offset = offset;
841 	if (metadata)
842 		key.type = BTRFS_METADATA_ITEM_KEY;
843 	else
844 		key.type = BTRFS_EXTENT_ITEM_KEY;
845 
846 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 	if (ret < 0)
848 		goto out_free;
849 
850 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 		if (path->slots[0]) {
852 			path->slots[0]--;
853 			btrfs_item_key_to_cpu(path->nodes[0], &key,
854 					      path->slots[0]);
855 			if (key.objectid == bytenr &&
856 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
857 			    key.offset == fs_info->nodesize)
858 				ret = 0;
859 		}
860 	}
861 
862 	if (ret == 0) {
863 		leaf = path->nodes[0];
864 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 		if (item_size >= sizeof(*ei)) {
866 			ei = btrfs_item_ptr(leaf, path->slots[0],
867 					    struct btrfs_extent_item);
868 			num_refs = btrfs_extent_refs(leaf, ei);
869 			extent_flags = btrfs_extent_flags(leaf, ei);
870 		} else {
871 			ret = -EINVAL;
872 			btrfs_print_v0_err(fs_info);
873 			if (trans)
874 				btrfs_abort_transaction(trans, ret);
875 			else
876 				btrfs_handle_fs_error(fs_info, ret, NULL);
877 
878 			goto out_free;
879 		}
880 
881 		BUG_ON(num_refs == 0);
882 	} else {
883 		num_refs = 0;
884 		extent_flags = 0;
885 		ret = 0;
886 	}
887 
888 	if (!trans)
889 		goto out;
890 
891 	delayed_refs = &trans->transaction->delayed_refs;
892 	spin_lock(&delayed_refs->lock);
893 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 	if (head) {
895 		if (!mutex_trylock(&head->mutex)) {
896 			refcount_inc(&head->refs);
897 			spin_unlock(&delayed_refs->lock);
898 
899 			btrfs_release_path(path);
900 
901 			/*
902 			 * Mutex was contended, block until it's released and try
903 			 * again
904 			 */
905 			mutex_lock(&head->mutex);
906 			mutex_unlock(&head->mutex);
907 			btrfs_put_delayed_ref_head(head);
908 			goto search_again;
909 		}
910 		spin_lock(&head->lock);
911 		if (head->extent_op && head->extent_op->update_flags)
912 			extent_flags |= head->extent_op->flags_to_set;
913 		else
914 			BUG_ON(num_refs == 0);
915 
916 		num_refs += head->ref_mod;
917 		spin_unlock(&head->lock);
918 		mutex_unlock(&head->mutex);
919 	}
920 	spin_unlock(&delayed_refs->lock);
921 out:
922 	WARN_ON(num_refs == 0);
923 	if (refs)
924 		*refs = num_refs;
925 	if (flags)
926 		*flags = extent_flags;
927 out_free:
928 	btrfs_free_path(path);
929 	return ret;
930 }
931 
932 /*
933  * Back reference rules.  Back refs have three main goals:
934  *
935  * 1) differentiate between all holders of references to an extent so that
936  *    when a reference is dropped we can make sure it was a valid reference
937  *    before freeing the extent.
938  *
939  * 2) Provide enough information to quickly find the holders of an extent
940  *    if we notice a given block is corrupted or bad.
941  *
942  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943  *    maintenance.  This is actually the same as #2, but with a slightly
944  *    different use case.
945  *
946  * There are two kinds of back refs. The implicit back refs is optimized
947  * for pointers in non-shared tree blocks. For a given pointer in a block,
948  * back refs of this kind provide information about the block's owner tree
949  * and the pointer's key. These information allow us to find the block by
950  * b-tree searching. The full back refs is for pointers in tree blocks not
951  * referenced by their owner trees. The location of tree block is recorded
952  * in the back refs. Actually the full back refs is generic, and can be
953  * used in all cases the implicit back refs is used. The major shortcoming
954  * of the full back refs is its overhead. Every time a tree block gets
955  * COWed, we have to update back refs entry for all pointers in it.
956  *
957  * For a newly allocated tree block, we use implicit back refs for
958  * pointers in it. This means most tree related operations only involve
959  * implicit back refs. For a tree block created in old transaction, the
960  * only way to drop a reference to it is COW it. So we can detect the
961  * event that tree block loses its owner tree's reference and do the
962  * back refs conversion.
963  *
964  * When a tree block is COWed through a tree, there are four cases:
965  *
966  * The reference count of the block is one and the tree is the block's
967  * owner tree. Nothing to do in this case.
968  *
969  * The reference count of the block is one and the tree is not the
970  * block's owner tree. In this case, full back refs is used for pointers
971  * in the block. Remove these full back refs, add implicit back refs for
972  * every pointers in the new block.
973  *
974  * The reference count of the block is greater than one and the tree is
975  * the block's owner tree. In this case, implicit back refs is used for
976  * pointers in the block. Add full back refs for every pointers in the
977  * block, increase lower level extents' reference counts. The original
978  * implicit back refs are entailed to the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * not the block's owner tree. Add implicit back refs for every pointer in
982  * the new block, increase lower level extents' reference count.
983  *
984  * Back Reference Key composing:
985  *
986  * The key objectid corresponds to the first byte in the extent,
987  * The key type is used to differentiate between types of back refs.
988  * There are different meanings of the key offset for different types
989  * of back refs.
990  *
991  * File extents can be referenced by:
992  *
993  * - multiple snapshots, subvolumes, or different generations in one subvol
994  * - different files inside a single subvolume
995  * - different offsets inside a file (bookend extents in file.c)
996  *
997  * The extent ref structure for the implicit back refs has fields for:
998  *
999  * - Objectid of the subvolume root
1000  * - objectid of the file holding the reference
1001  * - original offset in the file
1002  * - how many bookend extents
1003  *
1004  * The key offset for the implicit back refs is hash of the first
1005  * three fields.
1006  *
1007  * The extent ref structure for the full back refs has field for:
1008  *
1009  * - number of pointers in the tree leaf
1010  *
1011  * The key offset for the implicit back refs is the first byte of
1012  * the tree leaf
1013  *
1014  * When a file extent is allocated, The implicit back refs is used.
1015  * the fields are filled in:
1016  *
1017  *     (root_key.objectid, inode objectid, offset in file, 1)
1018  *
1019  * When a file extent is removed file truncation, we find the
1020  * corresponding implicit back refs and check the following fields:
1021  *
1022  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1023  *
1024  * Btree extents can be referenced by:
1025  *
1026  * - Different subvolumes
1027  *
1028  * Both the implicit back refs and the full back refs for tree blocks
1029  * only consist of key. The key offset for the implicit back refs is
1030  * objectid of block's owner tree. The key offset for the full back refs
1031  * is the first byte of parent block.
1032  *
1033  * When implicit back refs is used, information about the lowest key and
1034  * level of the tree block are required. These information are stored in
1035  * tree block info structure.
1036  */
1037 
1038 /*
1039  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042  */
1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 				     struct btrfs_extent_inline_ref *iref,
1045 				     enum btrfs_inline_ref_type is_data)
1046 {
1047 	int type = btrfs_extent_inline_ref_type(eb, iref);
1048 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049 
1050 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1053 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 				return type;
1057 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 				ASSERT(eb->fs_info);
1059 				/*
1060 				 * Every shared one has parent tree
1061 				 * block, which must be aligned to
1062 				 * nodesize.
1063 				 */
1064 				if (offset &&
1065 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 					return type;
1067 			}
1068 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 				return type;
1071 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 				ASSERT(eb->fs_info);
1073 				/*
1074 				 * Every shared one has parent tree
1075 				 * block, which must be aligned to
1076 				 * nodesize.
1077 				 */
1078 				if (offset &&
1079 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 					return type;
1081 			}
1082 		} else {
1083 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 			return type;
1085 		}
1086 	}
1087 
1088 	btrfs_print_leaf((struct extent_buffer *)eb);
1089 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 		  eb->start, type);
1091 	WARN_ON(1);
1092 
1093 	return BTRFS_REF_TYPE_INVALID;
1094 }
1095 
1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 	u32 high_crc = ~(u32)0;
1099 	u32 low_crc = ~(u32)0;
1100 	__le64 lenum;
1101 
1102 	lenum = cpu_to_le64(root_objectid);
1103 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 	lenum = cpu_to_le64(owner);
1105 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 	lenum = cpu_to_le64(offset);
1107 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108 
1109 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1110 }
1111 
1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 				     struct btrfs_extent_data_ref *ref)
1114 {
1115 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 				    btrfs_extent_data_ref_objectid(leaf, ref),
1117 				    btrfs_extent_data_ref_offset(leaf, ref));
1118 }
1119 
1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 				 struct btrfs_extent_data_ref *ref,
1122 				 u64 root_objectid, u64 owner, u64 offset)
1123 {
1124 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 		return 0;
1128 	return 1;
1129 }
1130 
1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 					   struct btrfs_path *path,
1133 					   u64 bytenr, u64 parent,
1134 					   u64 root_objectid,
1135 					   u64 owner, u64 offset)
1136 {
1137 	struct btrfs_root *root = trans->fs_info->extent_root;
1138 	struct btrfs_key key;
1139 	struct btrfs_extent_data_ref *ref;
1140 	struct extent_buffer *leaf;
1141 	u32 nritems;
1142 	int ret;
1143 	int recow;
1144 	int err = -ENOENT;
1145 
1146 	key.objectid = bytenr;
1147 	if (parent) {
1148 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 		key.offset = parent;
1150 	} else {
1151 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 		key.offset = hash_extent_data_ref(root_objectid,
1153 						  owner, offset);
1154 	}
1155 again:
1156 	recow = 0;
1157 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 	if (ret < 0) {
1159 		err = ret;
1160 		goto fail;
1161 	}
1162 
1163 	if (parent) {
1164 		if (!ret)
1165 			return 0;
1166 		goto fail;
1167 	}
1168 
1169 	leaf = path->nodes[0];
1170 	nritems = btrfs_header_nritems(leaf);
1171 	while (1) {
1172 		if (path->slots[0] >= nritems) {
1173 			ret = btrfs_next_leaf(root, path);
1174 			if (ret < 0)
1175 				err = ret;
1176 			if (ret)
1177 				goto fail;
1178 
1179 			leaf = path->nodes[0];
1180 			nritems = btrfs_header_nritems(leaf);
1181 			recow = 1;
1182 		}
1183 
1184 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 		if (key.objectid != bytenr ||
1186 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 			goto fail;
1188 
1189 		ref = btrfs_item_ptr(leaf, path->slots[0],
1190 				     struct btrfs_extent_data_ref);
1191 
1192 		if (match_extent_data_ref(leaf, ref, root_objectid,
1193 					  owner, offset)) {
1194 			if (recow) {
1195 				btrfs_release_path(path);
1196 				goto again;
1197 			}
1198 			err = 0;
1199 			break;
1200 		}
1201 		path->slots[0]++;
1202 	}
1203 fail:
1204 	return err;
1205 }
1206 
1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 					   struct btrfs_path *path,
1209 					   u64 bytenr, u64 parent,
1210 					   u64 root_objectid, u64 owner,
1211 					   u64 offset, int refs_to_add)
1212 {
1213 	struct btrfs_root *root = trans->fs_info->extent_root;
1214 	struct btrfs_key key;
1215 	struct extent_buffer *leaf;
1216 	u32 size;
1217 	u32 num_refs;
1218 	int ret;
1219 
1220 	key.objectid = bytenr;
1221 	if (parent) {
1222 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 		key.offset = parent;
1224 		size = sizeof(struct btrfs_shared_data_ref);
1225 	} else {
1226 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 		key.offset = hash_extent_data_ref(root_objectid,
1228 						  owner, offset);
1229 		size = sizeof(struct btrfs_extent_data_ref);
1230 	}
1231 
1232 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 	if (ret && ret != -EEXIST)
1234 		goto fail;
1235 
1236 	leaf = path->nodes[0];
1237 	if (parent) {
1238 		struct btrfs_shared_data_ref *ref;
1239 		ref = btrfs_item_ptr(leaf, path->slots[0],
1240 				     struct btrfs_shared_data_ref);
1241 		if (ret == 0) {
1242 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 		} else {
1244 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 			num_refs += refs_to_add;
1246 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1247 		}
1248 	} else {
1249 		struct btrfs_extent_data_ref *ref;
1250 		while (ret == -EEXIST) {
1251 			ref = btrfs_item_ptr(leaf, path->slots[0],
1252 					     struct btrfs_extent_data_ref);
1253 			if (match_extent_data_ref(leaf, ref, root_objectid,
1254 						  owner, offset))
1255 				break;
1256 			btrfs_release_path(path);
1257 			key.offset++;
1258 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 						      size);
1260 			if (ret && ret != -EEXIST)
1261 				goto fail;
1262 
1263 			leaf = path->nodes[0];
1264 		}
1265 		ref = btrfs_item_ptr(leaf, path->slots[0],
1266 				     struct btrfs_extent_data_ref);
1267 		if (ret == 0) {
1268 			btrfs_set_extent_data_ref_root(leaf, ref,
1269 						       root_objectid);
1270 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 		} else {
1274 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 			num_refs += refs_to_add;
1276 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1277 		}
1278 	}
1279 	btrfs_mark_buffer_dirty(leaf);
1280 	ret = 0;
1281 fail:
1282 	btrfs_release_path(path);
1283 	return ret;
1284 }
1285 
1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 					   struct btrfs_path *path,
1288 					   int refs_to_drop, int *last_ref)
1289 {
1290 	struct btrfs_key key;
1291 	struct btrfs_extent_data_ref *ref1 = NULL;
1292 	struct btrfs_shared_data_ref *ref2 = NULL;
1293 	struct extent_buffer *leaf;
1294 	u32 num_refs = 0;
1295 	int ret = 0;
1296 
1297 	leaf = path->nodes[0];
1298 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299 
1300 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 				      struct btrfs_extent_data_ref);
1303 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 				      struct btrfs_shared_data_ref);
1307 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 		btrfs_print_v0_err(trans->fs_info);
1310 		btrfs_abort_transaction(trans, -EINVAL);
1311 		return -EINVAL;
1312 	} else {
1313 		BUG();
1314 	}
1315 
1316 	BUG_ON(num_refs < refs_to_drop);
1317 	num_refs -= refs_to_drop;
1318 
1319 	if (num_refs == 0) {
1320 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1321 		*last_ref = 1;
1322 	} else {
1323 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 		btrfs_mark_buffer_dirty(leaf);
1328 	}
1329 	return ret;
1330 }
1331 
1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 					  struct btrfs_extent_inline_ref *iref)
1334 {
1335 	struct btrfs_key key;
1336 	struct extent_buffer *leaf;
1337 	struct btrfs_extent_data_ref *ref1;
1338 	struct btrfs_shared_data_ref *ref2;
1339 	u32 num_refs = 0;
1340 	int type;
1341 
1342 	leaf = path->nodes[0];
1343 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 
1345 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1346 	if (iref) {
1347 		/*
1348 		 * If type is invalid, we should have bailed out earlier than
1349 		 * this call.
1350 		 */
1351 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 		} else {
1357 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 		}
1360 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 				      struct btrfs_extent_data_ref);
1363 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 				      struct btrfs_shared_data_ref);
1367 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1368 	} else {
1369 		WARN_ON(1);
1370 	}
1371 	return num_refs;
1372 }
1373 
1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 					  struct btrfs_path *path,
1376 					  u64 bytenr, u64 parent,
1377 					  u64 root_objectid)
1378 {
1379 	struct btrfs_root *root = trans->fs_info->extent_root;
1380 	struct btrfs_key key;
1381 	int ret;
1382 
1383 	key.objectid = bytenr;
1384 	if (parent) {
1385 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 		key.offset = parent;
1387 	} else {
1388 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 		key.offset = root_objectid;
1390 	}
1391 
1392 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 	if (ret > 0)
1394 		ret = -ENOENT;
1395 	return ret;
1396 }
1397 
1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 					  struct btrfs_path *path,
1400 					  u64 bytenr, u64 parent,
1401 					  u64 root_objectid)
1402 {
1403 	struct btrfs_key key;
1404 	int ret;
1405 
1406 	key.objectid = bytenr;
1407 	if (parent) {
1408 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 		key.offset = parent;
1410 	} else {
1411 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 		key.offset = root_objectid;
1413 	}
1414 
1415 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 				      path, &key, 0);
1417 	btrfs_release_path(path);
1418 	return ret;
1419 }
1420 
1421 static inline int extent_ref_type(u64 parent, u64 owner)
1422 {
1423 	int type;
1424 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 		if (parent > 0)
1426 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 		else
1428 			type = BTRFS_TREE_BLOCK_REF_KEY;
1429 	} else {
1430 		if (parent > 0)
1431 			type = BTRFS_SHARED_DATA_REF_KEY;
1432 		else
1433 			type = BTRFS_EXTENT_DATA_REF_KEY;
1434 	}
1435 	return type;
1436 }
1437 
1438 static int find_next_key(struct btrfs_path *path, int level,
1439 			 struct btrfs_key *key)
1440 
1441 {
1442 	for (; level < BTRFS_MAX_LEVEL; level++) {
1443 		if (!path->nodes[level])
1444 			break;
1445 		if (path->slots[level] + 1 >=
1446 		    btrfs_header_nritems(path->nodes[level]))
1447 			continue;
1448 		if (level == 0)
1449 			btrfs_item_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		else
1452 			btrfs_node_key_to_cpu(path->nodes[level], key,
1453 					      path->slots[level] + 1);
1454 		return 0;
1455 	}
1456 	return 1;
1457 }
1458 
1459 /*
1460  * look for inline back ref. if back ref is found, *ref_ret is set
1461  * to the address of inline back ref, and 0 is returned.
1462  *
1463  * if back ref isn't found, *ref_ret is set to the address where it
1464  * should be inserted, and -ENOENT is returned.
1465  *
1466  * if insert is true and there are too many inline back refs, the path
1467  * points to the extent item, and -EAGAIN is returned.
1468  *
1469  * NOTE: inline back refs are ordered in the same way that back ref
1470  *	 items in the tree are ordered.
1471  */
1472 static noinline_for_stack
1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 				 struct btrfs_path *path,
1475 				 struct btrfs_extent_inline_ref **ref_ret,
1476 				 u64 bytenr, u64 num_bytes,
1477 				 u64 parent, u64 root_objectid,
1478 				 u64 owner, u64 offset, int insert)
1479 {
1480 	struct btrfs_fs_info *fs_info = trans->fs_info;
1481 	struct btrfs_root *root = fs_info->extent_root;
1482 	struct btrfs_key key;
1483 	struct extent_buffer *leaf;
1484 	struct btrfs_extent_item *ei;
1485 	struct btrfs_extent_inline_ref *iref;
1486 	u64 flags;
1487 	u64 item_size;
1488 	unsigned long ptr;
1489 	unsigned long end;
1490 	int extra_size;
1491 	int type;
1492 	int want;
1493 	int ret;
1494 	int err = 0;
1495 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1496 	int needed;
1497 
1498 	key.objectid = bytenr;
1499 	key.type = BTRFS_EXTENT_ITEM_KEY;
1500 	key.offset = num_bytes;
1501 
1502 	want = extent_ref_type(parent, owner);
1503 	if (insert) {
1504 		extra_size = btrfs_extent_inline_ref_size(want);
1505 		path->keep_locks = 1;
1506 	} else
1507 		extra_size = -1;
1508 
1509 	/*
1510 	 * Owner is our level, so we can just add one to get the level for the
1511 	 * block we are interested in.
1512 	 */
1513 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 		key.type = BTRFS_METADATA_ITEM_KEY;
1515 		key.offset = owner;
1516 	}
1517 
1518 again:
1519 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 	if (ret < 0) {
1521 		err = ret;
1522 		goto out;
1523 	}
1524 
1525 	/*
1526 	 * We may be a newly converted file system which still has the old fat
1527 	 * extent entries for metadata, so try and see if we have one of those.
1528 	 */
1529 	if (ret > 0 && skinny_metadata) {
1530 		skinny_metadata = false;
1531 		if (path->slots[0]) {
1532 			path->slots[0]--;
1533 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 					      path->slots[0]);
1535 			if (key.objectid == bytenr &&
1536 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 			    key.offset == num_bytes)
1538 				ret = 0;
1539 		}
1540 		if (ret) {
1541 			key.objectid = bytenr;
1542 			key.type = BTRFS_EXTENT_ITEM_KEY;
1543 			key.offset = num_bytes;
1544 			btrfs_release_path(path);
1545 			goto again;
1546 		}
1547 	}
1548 
1549 	if (ret && !insert) {
1550 		err = -ENOENT;
1551 		goto out;
1552 	} else if (WARN_ON(ret)) {
1553 		err = -EIO;
1554 		goto out;
1555 	}
1556 
1557 	leaf = path->nodes[0];
1558 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 	if (unlikely(item_size < sizeof(*ei))) {
1560 		err = -EINVAL;
1561 		btrfs_print_v0_err(fs_info);
1562 		btrfs_abort_transaction(trans, err);
1563 		goto out;
1564 	}
1565 
1566 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 	flags = btrfs_extent_flags(leaf, ei);
1568 
1569 	ptr = (unsigned long)(ei + 1);
1570 	end = (unsigned long)ei + item_size;
1571 
1572 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 		ptr += sizeof(struct btrfs_tree_block_info);
1574 		BUG_ON(ptr > end);
1575 	}
1576 
1577 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 		needed = BTRFS_REF_TYPE_DATA;
1579 	else
1580 		needed = BTRFS_REF_TYPE_BLOCK;
1581 
1582 	err = -ENOENT;
1583 	while (1) {
1584 		if (ptr >= end) {
1585 			WARN_ON(ptr > end);
1586 			break;
1587 		}
1588 		iref = (struct btrfs_extent_inline_ref *)ptr;
1589 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 		if (type == BTRFS_REF_TYPE_INVALID) {
1591 			err = -EUCLEAN;
1592 			goto out;
1593 		}
1594 
1595 		if (want < type)
1596 			break;
1597 		if (want > type) {
1598 			ptr += btrfs_extent_inline_ref_size(type);
1599 			continue;
1600 		}
1601 
1602 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 			struct btrfs_extent_data_ref *dref;
1604 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 			if (match_extent_data_ref(leaf, dref, root_objectid,
1606 						  owner, offset)) {
1607 				err = 0;
1608 				break;
1609 			}
1610 			if (hash_extent_data_ref_item(leaf, dref) <
1611 			    hash_extent_data_ref(root_objectid, owner, offset))
1612 				break;
1613 		} else {
1614 			u64 ref_offset;
1615 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 			if (parent > 0) {
1617 				if (parent == ref_offset) {
1618 					err = 0;
1619 					break;
1620 				}
1621 				if (ref_offset < parent)
1622 					break;
1623 			} else {
1624 				if (root_objectid == ref_offset) {
1625 					err = 0;
1626 					break;
1627 				}
1628 				if (ref_offset < root_objectid)
1629 					break;
1630 			}
1631 		}
1632 		ptr += btrfs_extent_inline_ref_size(type);
1633 	}
1634 	if (err == -ENOENT && insert) {
1635 		if (item_size + extra_size >=
1636 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 			err = -EAGAIN;
1638 			goto out;
1639 		}
1640 		/*
1641 		 * To add new inline back ref, we have to make sure
1642 		 * there is no corresponding back ref item.
1643 		 * For simplicity, we just do not add new inline back
1644 		 * ref if there is any kind of item for this block
1645 		 */
1646 		if (find_next_key(path, 0, &key) == 0 &&
1647 		    key.objectid == bytenr &&
1648 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 			err = -EAGAIN;
1650 			goto out;
1651 		}
1652 	}
1653 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 	if (insert) {
1656 		path->keep_locks = 0;
1657 		btrfs_unlock_up_safe(path, 1);
1658 	}
1659 	return err;
1660 }
1661 
1662 /*
1663  * helper to add new inline back ref
1664  */
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 				 struct btrfs_path *path,
1668 				 struct btrfs_extent_inline_ref *iref,
1669 				 u64 parent, u64 root_objectid,
1670 				 u64 owner, u64 offset, int refs_to_add,
1671 				 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 	struct extent_buffer *leaf;
1674 	struct btrfs_extent_item *ei;
1675 	unsigned long ptr;
1676 	unsigned long end;
1677 	unsigned long item_offset;
1678 	u64 refs;
1679 	int size;
1680 	int type;
1681 
1682 	leaf = path->nodes[0];
1683 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 	item_offset = (unsigned long)iref - (unsigned long)ei;
1685 
1686 	type = extent_ref_type(parent, owner);
1687 	size = btrfs_extent_inline_ref_size(type);
1688 
1689 	btrfs_extend_item(fs_info, path, size);
1690 
1691 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 	refs = btrfs_extent_refs(leaf, ei);
1693 	refs += refs_to_add;
1694 	btrfs_set_extent_refs(leaf, ei, refs);
1695 	if (extent_op)
1696 		__run_delayed_extent_op(extent_op, leaf, ei);
1697 
1698 	ptr = (unsigned long)ei + item_offset;
1699 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 	if (ptr < end - size)
1701 		memmove_extent_buffer(leaf, ptr + size, ptr,
1702 				      end - size - ptr);
1703 
1704 	iref = (struct btrfs_extent_inline_ref *)ptr;
1705 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 		struct btrfs_extent_data_ref *dref;
1708 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 		struct btrfs_shared_data_ref *sref;
1715 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 	} else {
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 	}
1723 	btrfs_mark_buffer_dirty(leaf);
1724 }
1725 
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 				 struct btrfs_path *path,
1728 				 struct btrfs_extent_inline_ref **ref_ret,
1729 				 u64 bytenr, u64 num_bytes, u64 parent,
1730 				 u64 root_objectid, u64 owner, u64 offset)
1731 {
1732 	int ret;
1733 
1734 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 					   num_bytes, parent, root_objectid,
1736 					   owner, offset, 0);
1737 	if (ret != -ENOENT)
1738 		return ret;
1739 
1740 	btrfs_release_path(path);
1741 	*ref_ret = NULL;
1742 
1743 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 					    root_objectid);
1746 	} else {
1747 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 					     root_objectid, owner, offset);
1749 	}
1750 	return ret;
1751 }
1752 
1753 /*
1754  * helper to update/remove inline back ref
1755  */
1756 static noinline_for_stack
1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 				  struct btrfs_extent_inline_ref *iref,
1759 				  int refs_to_mod,
1760 				  struct btrfs_delayed_extent_op *extent_op,
1761 				  int *last_ref)
1762 {
1763 	struct extent_buffer *leaf = path->nodes[0];
1764 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 	struct btrfs_extent_item *ei;
1766 	struct btrfs_extent_data_ref *dref = NULL;
1767 	struct btrfs_shared_data_ref *sref = NULL;
1768 	unsigned long ptr;
1769 	unsigned long end;
1770 	u32 item_size;
1771 	int size;
1772 	int type;
1773 	u64 refs;
1774 
1775 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 	refs = btrfs_extent_refs(leaf, ei);
1777 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 	refs += refs_to_mod;
1779 	btrfs_set_extent_refs(leaf, ei, refs);
1780 	if (extent_op)
1781 		__run_delayed_extent_op(extent_op, leaf, ei);
1782 
1783 	/*
1784 	 * If type is invalid, we should have bailed out after
1785 	 * lookup_inline_extent_backref().
1786 	 */
1787 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		*last_ref = 1;
1811 		size =  btrfs_extent_inline_ref_size(type);
1812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 		ptr = (unsigned long)iref;
1814 		end = (unsigned long)ei + item_size;
1815 		if (ptr + size < end)
1816 			memmove_extent_buffer(leaf, ptr, ptr + size,
1817 					      end - ptr - size);
1818 		item_size -= size;
1819 		btrfs_truncate_item(fs_info, path, item_size, 1);
1820 	}
1821 	btrfs_mark_buffer_dirty(leaf);
1822 }
1823 
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 					   num_bytes, parent, root_objectid,
1837 					   owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(path, iref, refs_to_add,
1841 					     extent_op, NULL);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_path *path,
1853 				 u64 bytenr, u64 parent, u64 root_objectid,
1854 				 u64 owner, u64 offset, int refs_to_add)
1855 {
1856 	int ret;
1857 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 		BUG_ON(refs_to_add != 1);
1859 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 					    root_objectid);
1861 	} else {
1862 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 					     root_objectid, owner, offset,
1864 					     refs_to_add);
1865 	}
1866 	return ret;
1867 }
1868 
1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 				 struct btrfs_path *path,
1871 				 struct btrfs_extent_inline_ref *iref,
1872 				 int refs_to_drop, int is_data, int *last_ref)
1873 {
1874 	int ret = 0;
1875 
1876 	BUG_ON(!is_data && refs_to_drop != 1);
1877 	if (iref) {
1878 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 					     last_ref);
1880 	} else if (is_data) {
1881 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1882 					     last_ref);
1883 	} else {
1884 		*last_ref = 1;
1885 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 			       u64 *discarded_bytes)
1893 {
1894 	int j, ret = 0;
1895 	u64 bytes_left, end;
1896 	u64 aligned_start = ALIGN(start, 1 << 9);
1897 
1898 	if (WARN_ON(start != aligned_start)) {
1899 		len -= aligned_start - start;
1900 		len = round_down(len, 1 << 9);
1901 		start = aligned_start;
1902 	}
1903 
1904 	*discarded_bytes = 0;
1905 
1906 	if (!len)
1907 		return 0;
1908 
1909 	end = start + len;
1910 	bytes_left = len;
1911 
1912 	/* Skip any superblocks on this device. */
1913 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 		u64 sb_start = btrfs_sb_offset(j);
1915 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 		u64 size = sb_start - start;
1917 
1918 		if (!in_range(sb_start, start, bytes_left) &&
1919 		    !in_range(sb_end, start, bytes_left) &&
1920 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 			continue;
1922 
1923 		/*
1924 		 * Superblock spans beginning of range.  Adjust start and
1925 		 * try again.
1926 		 */
1927 		if (sb_start <= start) {
1928 			start += sb_end - start;
1929 			if (start > end) {
1930 				bytes_left = 0;
1931 				break;
1932 			}
1933 			bytes_left = end - start;
1934 			continue;
1935 		}
1936 
1937 		if (size) {
1938 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 						   GFP_NOFS, 0);
1940 			if (!ret)
1941 				*discarded_bytes += size;
1942 			else if (ret != -EOPNOTSUPP)
1943 				return ret;
1944 		}
1945 
1946 		start = sb_end;
1947 		if (start > end) {
1948 			bytes_left = 0;
1949 			break;
1950 		}
1951 		bytes_left = end - start;
1952 	}
1953 
1954 	if (bytes_left) {
1955 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1956 					   GFP_NOFS, 0);
1957 		if (!ret)
1958 			*discarded_bytes += bytes_left;
1959 	}
1960 	return ret;
1961 }
1962 
1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 			 u64 num_bytes, u64 *actual_bytes)
1965 {
1966 	int ret;
1967 	u64 discarded_bytes = 0;
1968 	struct btrfs_bio *bbio = NULL;
1969 
1970 
1971 	/*
1972 	 * Avoid races with device replace and make sure our bbio has devices
1973 	 * associated to its stripes that don't go away while we are discarding.
1974 	 */
1975 	btrfs_bio_counter_inc_blocked(fs_info);
1976 	/* Tell the block device(s) that the sectors can be discarded */
1977 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 			      &bbio, 0);
1979 	/* Error condition is -ENOMEM */
1980 	if (!ret) {
1981 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1982 		int i;
1983 
1984 
1985 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 			u64 bytes;
1987 			struct request_queue *req_q;
1988 
1989 			if (!stripe->dev->bdev) {
1990 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 				continue;
1992 			}
1993 			req_q = bdev_get_queue(stripe->dev->bdev);
1994 			if (!blk_queue_discard(req_q))
1995 				continue;
1996 
1997 			ret = btrfs_issue_discard(stripe->dev->bdev,
1998 						  stripe->physical,
1999 						  stripe->length,
2000 						  &bytes);
2001 			if (!ret)
2002 				discarded_bytes += bytes;
2003 			else if (ret != -EOPNOTSUPP)
2004 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2005 
2006 			/*
2007 			 * Just in case we get back EOPNOTSUPP for some reason,
2008 			 * just ignore the return value so we don't screw up
2009 			 * people calling discard_extent.
2010 			 */
2011 			ret = 0;
2012 		}
2013 		btrfs_put_bbio(bbio);
2014 	}
2015 	btrfs_bio_counter_dec(fs_info);
2016 
2017 	if (actual_bytes)
2018 		*actual_bytes = discarded_bytes;
2019 
2020 
2021 	if (ret == -EOPNOTSUPP)
2022 		ret = 0;
2023 	return ret;
2024 }
2025 
2026 /* Can return -ENOMEM */
2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 			 struct btrfs_root *root,
2029 			 u64 bytenr, u64 num_bytes, u64 parent,
2030 			 u64 root_objectid, u64 owner, u64 offset)
2031 {
2032 	struct btrfs_fs_info *fs_info = root->fs_info;
2033 	int old_ref_mod, new_ref_mod;
2034 	int ret;
2035 
2036 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038 
2039 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2041 
2042 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2044 						 num_bytes, parent,
2045 						 root_objectid, (int)owner,
2046 						 BTRFS_ADD_DELAYED_REF, NULL,
2047 						 &old_ref_mod, &new_ref_mod);
2048 	} else {
2049 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
2050 						 num_bytes, parent,
2051 						 root_objectid, owner, offset,
2052 						 0, BTRFS_ADD_DELAYED_REF,
2053 						 &old_ref_mod, &new_ref_mod);
2054 	}
2055 
2056 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058 
2059 		add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 	}
2061 
2062 	return ret;
2063 }
2064 
2065 /*
2066  * __btrfs_inc_extent_ref - insert backreference for a given extent
2067  *
2068  * @trans:	    Handle of transaction
2069  *
2070  * @node:	    The delayed ref node used to get the bytenr/length for
2071  *		    extent whose references are incremented.
2072  *
2073  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075  *		    bytenr of the parent block. Since new extents are always
2076  *		    created with indirect references, this will only be the case
2077  *		    when relocating a shared extent. In that case, root_objectid
2078  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079  *		    be 0
2080  *
2081  * @root_objectid:  The id of the root where this modification has originated,
2082  *		    this can be either one of the well-known metadata trees or
2083  *		    the subvolume id which references this extent.
2084  *
2085  * @owner:	    For data extents it is the inode number of the owning file.
2086  *		    For metadata extents this parameter holds the level in the
2087  *		    tree of the extent.
2088  *
2089  * @offset:	    For metadata extents the offset is ignored and is currently
2090  *		    always passed as 0. For data extents it is the fileoffset
2091  *		    this extent belongs to.
2092  *
2093  * @refs_to_add     Number of references to add
2094  *
2095  * @extent_op       Pointer to a structure, holding information necessary when
2096  *                  updating a tree block's flags
2097  *
2098  */
2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 				  struct btrfs_delayed_ref_node *node,
2101 				  u64 parent, u64 root_objectid,
2102 				  u64 owner, u64 offset, int refs_to_add,
2103 				  struct btrfs_delayed_extent_op *extent_op)
2104 {
2105 	struct btrfs_path *path;
2106 	struct extent_buffer *leaf;
2107 	struct btrfs_extent_item *item;
2108 	struct btrfs_key key;
2109 	u64 bytenr = node->bytenr;
2110 	u64 num_bytes = node->num_bytes;
2111 	u64 refs;
2112 	int ret;
2113 
2114 	path = btrfs_alloc_path();
2115 	if (!path)
2116 		return -ENOMEM;
2117 
2118 	path->reada = READA_FORWARD;
2119 	path->leave_spinning = 1;
2120 	/* this will setup the path even if it fails to insert the back ref */
2121 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 					   parent, root_objectid, owner,
2123 					   offset, refs_to_add, extent_op);
2124 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 		goto out;
2126 
2127 	/*
2128 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 	 * inline extent ref, so just update the reference count and add a
2130 	 * normal backref.
2131 	 */
2132 	leaf = path->nodes[0];
2133 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 	refs = btrfs_extent_refs(leaf, item);
2136 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 	if (extent_op)
2138 		__run_delayed_extent_op(extent_op, leaf, item);
2139 
2140 	btrfs_mark_buffer_dirty(leaf);
2141 	btrfs_release_path(path);
2142 
2143 	path->reada = READA_FORWARD;
2144 	path->leave_spinning = 1;
2145 	/* now insert the actual backref */
2146 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 				    owner, offset, refs_to_add);
2148 	if (ret)
2149 		btrfs_abort_transaction(trans, ret);
2150 out:
2151 	btrfs_free_path(path);
2152 	return ret;
2153 }
2154 
2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 				struct btrfs_delayed_ref_node *node,
2157 				struct btrfs_delayed_extent_op *extent_op,
2158 				int insert_reserved)
2159 {
2160 	int ret = 0;
2161 	struct btrfs_delayed_data_ref *ref;
2162 	struct btrfs_key ins;
2163 	u64 parent = 0;
2164 	u64 ref_root = 0;
2165 	u64 flags = 0;
2166 
2167 	ins.objectid = node->bytenr;
2168 	ins.offset = node->num_bytes;
2169 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2170 
2171 	ref = btrfs_delayed_node_to_data_ref(node);
2172 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2173 
2174 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 		parent = ref->parent;
2176 	ref_root = ref->root;
2177 
2178 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2179 		if (extent_op)
2180 			flags |= extent_op->flags_to_set;
2181 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 						 flags, ref->objectid,
2183 						 ref->offset, &ins,
2184 						 node->ref_mod);
2185 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 					     ref->objectid, ref->offset,
2188 					     node->ref_mod, extent_op);
2189 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 		ret = __btrfs_free_extent(trans, node, parent,
2191 					  ref_root, ref->objectid,
2192 					  ref->offset, node->ref_mod,
2193 					  extent_op);
2194 	} else {
2195 		BUG();
2196 	}
2197 	return ret;
2198 }
2199 
2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 				    struct extent_buffer *leaf,
2202 				    struct btrfs_extent_item *ei)
2203 {
2204 	u64 flags = btrfs_extent_flags(leaf, ei);
2205 	if (extent_op->update_flags) {
2206 		flags |= extent_op->flags_to_set;
2207 		btrfs_set_extent_flags(leaf, ei, flags);
2208 	}
2209 
2210 	if (extent_op->update_key) {
2211 		struct btrfs_tree_block_info *bi;
2212 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 	}
2216 }
2217 
2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 				 struct btrfs_delayed_ref_head *head,
2220 				 struct btrfs_delayed_extent_op *extent_op)
2221 {
2222 	struct btrfs_fs_info *fs_info = trans->fs_info;
2223 	struct btrfs_key key;
2224 	struct btrfs_path *path;
2225 	struct btrfs_extent_item *ei;
2226 	struct extent_buffer *leaf;
2227 	u32 item_size;
2228 	int ret;
2229 	int err = 0;
2230 	int metadata = !extent_op->is_data;
2231 
2232 	if (trans->aborted)
2233 		return 0;
2234 
2235 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2236 		metadata = 0;
2237 
2238 	path = btrfs_alloc_path();
2239 	if (!path)
2240 		return -ENOMEM;
2241 
2242 	key.objectid = head->bytenr;
2243 
2244 	if (metadata) {
2245 		key.type = BTRFS_METADATA_ITEM_KEY;
2246 		key.offset = extent_op->level;
2247 	} else {
2248 		key.type = BTRFS_EXTENT_ITEM_KEY;
2249 		key.offset = head->num_bytes;
2250 	}
2251 
2252 again:
2253 	path->reada = READA_FORWARD;
2254 	path->leave_spinning = 1;
2255 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2256 	if (ret < 0) {
2257 		err = ret;
2258 		goto out;
2259 	}
2260 	if (ret > 0) {
2261 		if (metadata) {
2262 			if (path->slots[0] > 0) {
2263 				path->slots[0]--;
2264 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 						      path->slots[0]);
2266 				if (key.objectid == head->bytenr &&
2267 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 				    key.offset == head->num_bytes)
2269 					ret = 0;
2270 			}
2271 			if (ret > 0) {
2272 				btrfs_release_path(path);
2273 				metadata = 0;
2274 
2275 				key.objectid = head->bytenr;
2276 				key.offset = head->num_bytes;
2277 				key.type = BTRFS_EXTENT_ITEM_KEY;
2278 				goto again;
2279 			}
2280 		} else {
2281 			err = -EIO;
2282 			goto out;
2283 		}
2284 	}
2285 
2286 	leaf = path->nodes[0];
2287 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2288 
2289 	if (unlikely(item_size < sizeof(*ei))) {
2290 		err = -EINVAL;
2291 		btrfs_print_v0_err(fs_info);
2292 		btrfs_abort_transaction(trans, err);
2293 		goto out;
2294 	}
2295 
2296 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 	__run_delayed_extent_op(extent_op, leaf, ei);
2298 
2299 	btrfs_mark_buffer_dirty(leaf);
2300 out:
2301 	btrfs_free_path(path);
2302 	return err;
2303 }
2304 
2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 				struct btrfs_delayed_ref_node *node,
2307 				struct btrfs_delayed_extent_op *extent_op,
2308 				int insert_reserved)
2309 {
2310 	int ret = 0;
2311 	struct btrfs_delayed_tree_ref *ref;
2312 	u64 parent = 0;
2313 	u64 ref_root = 0;
2314 
2315 	ref = btrfs_delayed_node_to_tree_ref(node);
2316 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2317 
2318 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 		parent = ref->parent;
2320 	ref_root = ref->root;
2321 
2322 	if (node->ref_mod != 1) {
2323 		btrfs_err(trans->fs_info,
2324 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 			  node->bytenr, node->ref_mod, node->action, ref_root,
2326 			  parent);
2327 		return -EIO;
2328 	}
2329 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 		BUG_ON(!extent_op || !extent_op->update_flags);
2331 		ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 					     ref->level, 0, 1, extent_op);
2335 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 					  ref->level, 0, 1, extent_op);
2338 	} else {
2339 		BUG();
2340 	}
2341 	return ret;
2342 }
2343 
2344 /* helper function to actually process a single delayed ref entry */
2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 			       struct btrfs_delayed_ref_node *node,
2347 			       struct btrfs_delayed_extent_op *extent_op,
2348 			       int insert_reserved)
2349 {
2350 	int ret = 0;
2351 
2352 	if (trans->aborted) {
2353 		if (insert_reserved)
2354 			btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 					 node->num_bytes, 1);
2356 		return 0;
2357 	}
2358 
2359 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 		ret = run_delayed_tree_ref(trans, node, extent_op,
2362 					   insert_reserved);
2363 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 		ret = run_delayed_data_ref(trans, node, extent_op,
2366 					   insert_reserved);
2367 	else
2368 		BUG();
2369 	if (ret && insert_reserved)
2370 		btrfs_pin_extent(trans->fs_info, node->bytenr,
2371 				 node->num_bytes, 1);
2372 	return ret;
2373 }
2374 
2375 static inline struct btrfs_delayed_ref_node *
2376 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2377 {
2378 	struct btrfs_delayed_ref_node *ref;
2379 
2380 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2381 		return NULL;
2382 
2383 	/*
2384 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2385 	 * This is to prevent a ref count from going down to zero, which deletes
2386 	 * the extent item from the extent tree, when there still are references
2387 	 * to add, which would fail because they would not find the extent item.
2388 	 */
2389 	if (!list_empty(&head->ref_add_list))
2390 		return list_first_entry(&head->ref_add_list,
2391 				struct btrfs_delayed_ref_node, add_list);
2392 
2393 	ref = rb_entry(rb_first_cached(&head->ref_tree),
2394 		       struct btrfs_delayed_ref_node, ref_node);
2395 	ASSERT(list_empty(&ref->add_list));
2396 	return ref;
2397 }
2398 
2399 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2400 				      struct btrfs_delayed_ref_head *head)
2401 {
2402 	spin_lock(&delayed_refs->lock);
2403 	head->processing = 0;
2404 	delayed_refs->num_heads_ready++;
2405 	spin_unlock(&delayed_refs->lock);
2406 	btrfs_delayed_ref_unlock(head);
2407 }
2408 
2409 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2410 			     struct btrfs_delayed_ref_head *head)
2411 {
2412 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2413 	int ret;
2414 
2415 	if (!extent_op)
2416 		return 0;
2417 	head->extent_op = NULL;
2418 	if (head->must_insert_reserved) {
2419 		btrfs_free_delayed_extent_op(extent_op);
2420 		return 0;
2421 	}
2422 	spin_unlock(&head->lock);
2423 	ret = run_delayed_extent_op(trans, head, extent_op);
2424 	btrfs_free_delayed_extent_op(extent_op);
2425 	return ret ? ret : 1;
2426 }
2427 
2428 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2429 			    struct btrfs_delayed_ref_head *head)
2430 {
2431 
2432 	struct btrfs_fs_info *fs_info = trans->fs_info;
2433 	struct btrfs_delayed_ref_root *delayed_refs;
2434 	int ret;
2435 
2436 	delayed_refs = &trans->transaction->delayed_refs;
2437 
2438 	ret = cleanup_extent_op(trans, head);
2439 	if (ret < 0) {
2440 		unselect_delayed_ref_head(delayed_refs, head);
2441 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2442 		return ret;
2443 	} else if (ret) {
2444 		return ret;
2445 	}
2446 
2447 	/*
2448 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2449 	 * and then re-check to make sure nobody got added.
2450 	 */
2451 	spin_unlock(&head->lock);
2452 	spin_lock(&delayed_refs->lock);
2453 	spin_lock(&head->lock);
2454 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2455 		spin_unlock(&head->lock);
2456 		spin_unlock(&delayed_refs->lock);
2457 		return 1;
2458 	}
2459 	delayed_refs->num_heads--;
2460 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
2461 	RB_CLEAR_NODE(&head->href_node);
2462 	spin_unlock(&head->lock);
2463 	spin_unlock(&delayed_refs->lock);
2464 	atomic_dec(&delayed_refs->num_entries);
2465 
2466 	trace_run_delayed_ref_head(fs_info, head, 0);
2467 
2468 	if (head->total_ref_mod < 0) {
2469 		struct btrfs_space_info *space_info;
2470 		u64 flags;
2471 
2472 		if (head->is_data)
2473 			flags = BTRFS_BLOCK_GROUP_DATA;
2474 		else if (head->is_system)
2475 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2476 		else
2477 			flags = BTRFS_BLOCK_GROUP_METADATA;
2478 		space_info = __find_space_info(fs_info, flags);
2479 		ASSERT(space_info);
2480 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2481 				   -head->num_bytes,
2482 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2483 
2484 		if (head->is_data) {
2485 			spin_lock(&delayed_refs->lock);
2486 			delayed_refs->pending_csums -= head->num_bytes;
2487 			spin_unlock(&delayed_refs->lock);
2488 		}
2489 	}
2490 
2491 	if (head->must_insert_reserved) {
2492 		btrfs_pin_extent(fs_info, head->bytenr,
2493 				 head->num_bytes, 1);
2494 		if (head->is_data) {
2495 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2496 					      head->num_bytes);
2497 		}
2498 	}
2499 
2500 	/* Also free its reserved qgroup space */
2501 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2502 				      head->qgroup_reserved);
2503 	btrfs_delayed_ref_unlock(head);
2504 	btrfs_put_delayed_ref_head(head);
2505 	return 0;
2506 }
2507 
2508 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2509 					struct btrfs_trans_handle *trans)
2510 {
2511 	struct btrfs_delayed_ref_root *delayed_refs =
2512 		&trans->transaction->delayed_refs;
2513 	struct btrfs_delayed_ref_head *head = NULL;
2514 	int ret;
2515 
2516 	spin_lock(&delayed_refs->lock);
2517 	head = btrfs_select_ref_head(delayed_refs);
2518 	if (!head) {
2519 		spin_unlock(&delayed_refs->lock);
2520 		return head;
2521 	}
2522 
2523 	/*
2524 	 * Grab the lock that says we are going to process all the refs for
2525 	 * this head
2526 	 */
2527 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
2528 	spin_unlock(&delayed_refs->lock);
2529 
2530 	/*
2531 	 * We may have dropped the spin lock to get the head mutex lock, and
2532 	 * that might have given someone else time to free the head.  If that's
2533 	 * true, it has been removed from our list and we can move on.
2534 	 */
2535 	if (ret == -EAGAIN)
2536 		head = ERR_PTR(-EAGAIN);
2537 
2538 	return head;
2539 }
2540 
2541 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2542 				    struct btrfs_delayed_ref_head *locked_ref,
2543 				    unsigned long *run_refs)
2544 {
2545 	struct btrfs_fs_info *fs_info = trans->fs_info;
2546 	struct btrfs_delayed_ref_root *delayed_refs;
2547 	struct btrfs_delayed_extent_op *extent_op;
2548 	struct btrfs_delayed_ref_node *ref;
2549 	int must_insert_reserved = 0;
2550 	int ret;
2551 
2552 	delayed_refs = &trans->transaction->delayed_refs;
2553 
2554 	lockdep_assert_held(&locked_ref->mutex);
2555 	lockdep_assert_held(&locked_ref->lock);
2556 
2557 	while ((ref = select_delayed_ref(locked_ref))) {
2558 		if (ref->seq &&
2559 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2560 			spin_unlock(&locked_ref->lock);
2561 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2562 			return -EAGAIN;
2563 		}
2564 
2565 		(*run_refs)++;
2566 		ref->in_tree = 0;
2567 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2568 		RB_CLEAR_NODE(&ref->ref_node);
2569 		if (!list_empty(&ref->add_list))
2570 			list_del(&ref->add_list);
2571 		/*
2572 		 * When we play the delayed ref, also correct the ref_mod on
2573 		 * head
2574 		 */
2575 		switch (ref->action) {
2576 		case BTRFS_ADD_DELAYED_REF:
2577 		case BTRFS_ADD_DELAYED_EXTENT:
2578 			locked_ref->ref_mod -= ref->ref_mod;
2579 			break;
2580 		case BTRFS_DROP_DELAYED_REF:
2581 			locked_ref->ref_mod += ref->ref_mod;
2582 			break;
2583 		default:
2584 			WARN_ON(1);
2585 		}
2586 		atomic_dec(&delayed_refs->num_entries);
2587 
2588 		/*
2589 		 * Record the must_insert_reserved flag before we drop the
2590 		 * spin lock.
2591 		 */
2592 		must_insert_reserved = locked_ref->must_insert_reserved;
2593 		locked_ref->must_insert_reserved = 0;
2594 
2595 		extent_op = locked_ref->extent_op;
2596 		locked_ref->extent_op = NULL;
2597 		spin_unlock(&locked_ref->lock);
2598 
2599 		ret = run_one_delayed_ref(trans, ref, extent_op,
2600 					  must_insert_reserved);
2601 
2602 		btrfs_free_delayed_extent_op(extent_op);
2603 		if (ret) {
2604 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2605 			btrfs_put_delayed_ref(ref);
2606 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2607 				    ret);
2608 			return ret;
2609 		}
2610 
2611 		btrfs_put_delayed_ref(ref);
2612 		cond_resched();
2613 
2614 		spin_lock(&locked_ref->lock);
2615 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 /*
2622  * Returns 0 on success or if called with an already aborted transaction.
2623  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2624  */
2625 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2626 					     unsigned long nr)
2627 {
2628 	struct btrfs_fs_info *fs_info = trans->fs_info;
2629 	struct btrfs_delayed_ref_root *delayed_refs;
2630 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2631 	ktime_t start = ktime_get();
2632 	int ret;
2633 	unsigned long count = 0;
2634 	unsigned long actual_count = 0;
2635 
2636 	delayed_refs = &trans->transaction->delayed_refs;
2637 	do {
2638 		if (!locked_ref) {
2639 			locked_ref = btrfs_obtain_ref_head(trans);
2640 			if (IS_ERR_OR_NULL(locked_ref)) {
2641 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2642 					continue;
2643 				} else {
2644 					break;
2645 				}
2646 			}
2647 			count++;
2648 		}
2649 		/*
2650 		 * We need to try and merge add/drops of the same ref since we
2651 		 * can run into issues with relocate dropping the implicit ref
2652 		 * and then it being added back again before the drop can
2653 		 * finish.  If we merged anything we need to re-loop so we can
2654 		 * get a good ref.
2655 		 * Or we can get node references of the same type that weren't
2656 		 * merged when created due to bumps in the tree mod seq, and
2657 		 * we need to merge them to prevent adding an inline extent
2658 		 * backref before dropping it (triggering a BUG_ON at
2659 		 * insert_inline_extent_backref()).
2660 		 */
2661 		spin_lock(&locked_ref->lock);
2662 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2663 
2664 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2665 						      &actual_count);
2666 		if (ret < 0 && ret != -EAGAIN) {
2667 			/*
2668 			 * Error, btrfs_run_delayed_refs_for_head already
2669 			 * unlocked everything so just bail out
2670 			 */
2671 			return ret;
2672 		} else if (!ret) {
2673 			/*
2674 			 * Success, perform the usual cleanup of a processed
2675 			 * head
2676 			 */
2677 			ret = cleanup_ref_head(trans, locked_ref);
2678 			if (ret > 0 ) {
2679 				/* We dropped our lock, we need to loop. */
2680 				ret = 0;
2681 				continue;
2682 			} else if (ret) {
2683 				return ret;
2684 			}
2685 		}
2686 
2687 		/*
2688 		 * Either success case or btrfs_run_delayed_refs_for_head
2689 		 * returned -EAGAIN, meaning we need to select another head
2690 		 */
2691 
2692 		locked_ref = NULL;
2693 		cond_resched();
2694 	} while ((nr != -1 && count < nr) || locked_ref);
2695 
2696 	/*
2697 	 * We don't want to include ref heads since we can have empty ref heads
2698 	 * and those will drastically skew our runtime down since we just do
2699 	 * accounting, no actual extent tree updates.
2700 	 */
2701 	if (actual_count > 0) {
2702 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2703 		u64 avg;
2704 
2705 		/*
2706 		 * We weigh the current average higher than our current runtime
2707 		 * to avoid large swings in the average.
2708 		 */
2709 		spin_lock(&delayed_refs->lock);
2710 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2711 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2712 		spin_unlock(&delayed_refs->lock);
2713 	}
2714 	return 0;
2715 }
2716 
2717 #ifdef SCRAMBLE_DELAYED_REFS
2718 /*
2719  * Normally delayed refs get processed in ascending bytenr order. This
2720  * correlates in most cases to the order added. To expose dependencies on this
2721  * order, we start to process the tree in the middle instead of the beginning
2722  */
2723 static u64 find_middle(struct rb_root *root)
2724 {
2725 	struct rb_node *n = root->rb_node;
2726 	struct btrfs_delayed_ref_node *entry;
2727 	int alt = 1;
2728 	u64 middle;
2729 	u64 first = 0, last = 0;
2730 
2731 	n = rb_first(root);
2732 	if (n) {
2733 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 		first = entry->bytenr;
2735 	}
2736 	n = rb_last(root);
2737 	if (n) {
2738 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2739 		last = entry->bytenr;
2740 	}
2741 	n = root->rb_node;
2742 
2743 	while (n) {
2744 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2745 		WARN_ON(!entry->in_tree);
2746 
2747 		middle = entry->bytenr;
2748 
2749 		if (alt)
2750 			n = n->rb_left;
2751 		else
2752 			n = n->rb_right;
2753 
2754 		alt = 1 - alt;
2755 	}
2756 	return middle;
2757 }
2758 #endif
2759 
2760 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2761 {
2762 	u64 num_bytes;
2763 
2764 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2765 			     sizeof(struct btrfs_extent_inline_ref));
2766 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2767 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2768 
2769 	/*
2770 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2771 	 * closer to what we're really going to want to use.
2772 	 */
2773 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2774 }
2775 
2776 /*
2777  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2778  * would require to store the csums for that many bytes.
2779  */
2780 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2781 {
2782 	u64 csum_size;
2783 	u64 num_csums_per_leaf;
2784 	u64 num_csums;
2785 
2786 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2787 	num_csums_per_leaf = div64_u64(csum_size,
2788 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2789 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2790 	num_csums += num_csums_per_leaf - 1;
2791 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2792 	return num_csums;
2793 }
2794 
2795 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans)
2796 {
2797 	struct btrfs_fs_info *fs_info = trans->fs_info;
2798 	struct btrfs_block_rsv *global_rsv;
2799 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2800 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2801 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2802 	u64 num_bytes, num_dirty_bgs_bytes;
2803 	int ret = 0;
2804 
2805 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2806 	num_heads = heads_to_leaves(fs_info, num_heads);
2807 	if (num_heads > 1)
2808 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2809 	num_bytes <<= 1;
2810 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2811 							fs_info->nodesize;
2812 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2813 							     num_dirty_bgs);
2814 	global_rsv = &fs_info->global_block_rsv;
2815 
2816 	/*
2817 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2818 	 * wiggle room since running delayed refs can create more delayed refs.
2819 	 */
2820 	if (global_rsv->space_info->full) {
2821 		num_dirty_bgs_bytes <<= 1;
2822 		num_bytes <<= 1;
2823 	}
2824 
2825 	spin_lock(&global_rsv->lock);
2826 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2827 		ret = 1;
2828 	spin_unlock(&global_rsv->lock);
2829 	return ret;
2830 }
2831 
2832 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2833 {
2834 	u64 num_entries =
2835 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2836 	u64 avg_runtime;
2837 	u64 val;
2838 
2839 	smp_mb();
2840 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2841 	val = num_entries * avg_runtime;
2842 	if (val >= NSEC_PER_SEC)
2843 		return 1;
2844 	if (val >= NSEC_PER_SEC / 2)
2845 		return 2;
2846 
2847 	return btrfs_check_space_for_delayed_refs(trans);
2848 }
2849 
2850 struct async_delayed_refs {
2851 	struct btrfs_root *root;
2852 	u64 transid;
2853 	int count;
2854 	int error;
2855 	int sync;
2856 	struct completion wait;
2857 	struct btrfs_work work;
2858 };
2859 
2860 static inline struct async_delayed_refs *
2861 to_async_delayed_refs(struct btrfs_work *work)
2862 {
2863 	return container_of(work, struct async_delayed_refs, work);
2864 }
2865 
2866 static void delayed_ref_async_start(struct btrfs_work *work)
2867 {
2868 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2869 	struct btrfs_trans_handle *trans;
2870 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2871 	int ret;
2872 
2873 	/* if the commit is already started, we don't need to wait here */
2874 	if (btrfs_transaction_blocked(fs_info))
2875 		goto done;
2876 
2877 	trans = btrfs_join_transaction(async->root);
2878 	if (IS_ERR(trans)) {
2879 		async->error = PTR_ERR(trans);
2880 		goto done;
2881 	}
2882 
2883 	/*
2884 	 * trans->sync means that when we call end_transaction, we won't
2885 	 * wait on delayed refs
2886 	 */
2887 	trans->sync = true;
2888 
2889 	/* Don't bother flushing if we got into a different transaction */
2890 	if (trans->transid > async->transid)
2891 		goto end;
2892 
2893 	ret = btrfs_run_delayed_refs(trans, async->count);
2894 	if (ret)
2895 		async->error = ret;
2896 end:
2897 	ret = btrfs_end_transaction(trans);
2898 	if (ret && !async->error)
2899 		async->error = ret;
2900 done:
2901 	if (async->sync)
2902 		complete(&async->wait);
2903 	else
2904 		kfree(async);
2905 }
2906 
2907 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2908 				 unsigned long count, u64 transid, int wait)
2909 {
2910 	struct async_delayed_refs *async;
2911 	int ret;
2912 
2913 	async = kmalloc(sizeof(*async), GFP_NOFS);
2914 	if (!async)
2915 		return -ENOMEM;
2916 
2917 	async->root = fs_info->tree_root;
2918 	async->count = count;
2919 	async->error = 0;
2920 	async->transid = transid;
2921 	if (wait)
2922 		async->sync = 1;
2923 	else
2924 		async->sync = 0;
2925 	init_completion(&async->wait);
2926 
2927 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2928 			delayed_ref_async_start, NULL, NULL);
2929 
2930 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2931 
2932 	if (wait) {
2933 		wait_for_completion(&async->wait);
2934 		ret = async->error;
2935 		kfree(async);
2936 		return ret;
2937 	}
2938 	return 0;
2939 }
2940 
2941 /*
2942  * this starts processing the delayed reference count updates and
2943  * extent insertions we have queued up so far.  count can be
2944  * 0, which means to process everything in the tree at the start
2945  * of the run (but not newly added entries), or it can be some target
2946  * number you'd like to process.
2947  *
2948  * Returns 0 on success or if called with an aborted transaction
2949  * Returns <0 on error and aborts the transaction
2950  */
2951 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2952 			   unsigned long count)
2953 {
2954 	struct btrfs_fs_info *fs_info = trans->fs_info;
2955 	struct rb_node *node;
2956 	struct btrfs_delayed_ref_root *delayed_refs;
2957 	struct btrfs_delayed_ref_head *head;
2958 	int ret;
2959 	int run_all = count == (unsigned long)-1;
2960 
2961 	/* We'll clean this up in btrfs_cleanup_transaction */
2962 	if (trans->aborted)
2963 		return 0;
2964 
2965 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2966 		return 0;
2967 
2968 	delayed_refs = &trans->transaction->delayed_refs;
2969 	if (count == 0)
2970 		count = atomic_read(&delayed_refs->num_entries) * 2;
2971 
2972 again:
2973 #ifdef SCRAMBLE_DELAYED_REFS
2974 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2975 #endif
2976 	ret = __btrfs_run_delayed_refs(trans, count);
2977 	if (ret < 0) {
2978 		btrfs_abort_transaction(trans, ret);
2979 		return ret;
2980 	}
2981 
2982 	if (run_all) {
2983 		if (!list_empty(&trans->new_bgs))
2984 			btrfs_create_pending_block_groups(trans);
2985 
2986 		spin_lock(&delayed_refs->lock);
2987 		node = rb_first_cached(&delayed_refs->href_root);
2988 		if (!node) {
2989 			spin_unlock(&delayed_refs->lock);
2990 			goto out;
2991 		}
2992 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2993 				href_node);
2994 		refcount_inc(&head->refs);
2995 		spin_unlock(&delayed_refs->lock);
2996 
2997 		/* Mutex was contended, block until it's released and retry. */
2998 		mutex_lock(&head->mutex);
2999 		mutex_unlock(&head->mutex);
3000 
3001 		btrfs_put_delayed_ref_head(head);
3002 		cond_resched();
3003 		goto again;
3004 	}
3005 out:
3006 	return 0;
3007 }
3008 
3009 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3010 				struct btrfs_fs_info *fs_info,
3011 				u64 bytenr, u64 num_bytes, u64 flags,
3012 				int level, int is_data)
3013 {
3014 	struct btrfs_delayed_extent_op *extent_op;
3015 	int ret;
3016 
3017 	extent_op = btrfs_alloc_delayed_extent_op();
3018 	if (!extent_op)
3019 		return -ENOMEM;
3020 
3021 	extent_op->flags_to_set = flags;
3022 	extent_op->update_flags = true;
3023 	extent_op->update_key = false;
3024 	extent_op->is_data = is_data ? true : false;
3025 	extent_op->level = level;
3026 
3027 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3028 					  num_bytes, extent_op);
3029 	if (ret)
3030 		btrfs_free_delayed_extent_op(extent_op);
3031 	return ret;
3032 }
3033 
3034 static noinline int check_delayed_ref(struct btrfs_root *root,
3035 				      struct btrfs_path *path,
3036 				      u64 objectid, u64 offset, u64 bytenr)
3037 {
3038 	struct btrfs_delayed_ref_head *head;
3039 	struct btrfs_delayed_ref_node *ref;
3040 	struct btrfs_delayed_data_ref *data_ref;
3041 	struct btrfs_delayed_ref_root *delayed_refs;
3042 	struct btrfs_transaction *cur_trans;
3043 	struct rb_node *node;
3044 	int ret = 0;
3045 
3046 	spin_lock(&root->fs_info->trans_lock);
3047 	cur_trans = root->fs_info->running_transaction;
3048 	if (cur_trans)
3049 		refcount_inc(&cur_trans->use_count);
3050 	spin_unlock(&root->fs_info->trans_lock);
3051 	if (!cur_trans)
3052 		return 0;
3053 
3054 	delayed_refs = &cur_trans->delayed_refs;
3055 	spin_lock(&delayed_refs->lock);
3056 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3057 	if (!head) {
3058 		spin_unlock(&delayed_refs->lock);
3059 		btrfs_put_transaction(cur_trans);
3060 		return 0;
3061 	}
3062 
3063 	if (!mutex_trylock(&head->mutex)) {
3064 		refcount_inc(&head->refs);
3065 		spin_unlock(&delayed_refs->lock);
3066 
3067 		btrfs_release_path(path);
3068 
3069 		/*
3070 		 * Mutex was contended, block until it's released and let
3071 		 * caller try again
3072 		 */
3073 		mutex_lock(&head->mutex);
3074 		mutex_unlock(&head->mutex);
3075 		btrfs_put_delayed_ref_head(head);
3076 		btrfs_put_transaction(cur_trans);
3077 		return -EAGAIN;
3078 	}
3079 	spin_unlock(&delayed_refs->lock);
3080 
3081 	spin_lock(&head->lock);
3082 	/*
3083 	 * XXX: We should replace this with a proper search function in the
3084 	 * future.
3085 	 */
3086 	for (node = rb_first_cached(&head->ref_tree); node;
3087 	     node = rb_next(node)) {
3088 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3089 		/* If it's a shared ref we know a cross reference exists */
3090 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3091 			ret = 1;
3092 			break;
3093 		}
3094 
3095 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3096 
3097 		/*
3098 		 * If our ref doesn't match the one we're currently looking at
3099 		 * then we have a cross reference.
3100 		 */
3101 		if (data_ref->root != root->root_key.objectid ||
3102 		    data_ref->objectid != objectid ||
3103 		    data_ref->offset != offset) {
3104 			ret = 1;
3105 			break;
3106 		}
3107 	}
3108 	spin_unlock(&head->lock);
3109 	mutex_unlock(&head->mutex);
3110 	btrfs_put_transaction(cur_trans);
3111 	return ret;
3112 }
3113 
3114 static noinline int check_committed_ref(struct btrfs_root *root,
3115 					struct btrfs_path *path,
3116 					u64 objectid, u64 offset, u64 bytenr)
3117 {
3118 	struct btrfs_fs_info *fs_info = root->fs_info;
3119 	struct btrfs_root *extent_root = fs_info->extent_root;
3120 	struct extent_buffer *leaf;
3121 	struct btrfs_extent_data_ref *ref;
3122 	struct btrfs_extent_inline_ref *iref;
3123 	struct btrfs_extent_item *ei;
3124 	struct btrfs_key key;
3125 	u32 item_size;
3126 	int type;
3127 	int ret;
3128 
3129 	key.objectid = bytenr;
3130 	key.offset = (u64)-1;
3131 	key.type = BTRFS_EXTENT_ITEM_KEY;
3132 
3133 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3134 	if (ret < 0)
3135 		goto out;
3136 	BUG_ON(ret == 0); /* Corruption */
3137 
3138 	ret = -ENOENT;
3139 	if (path->slots[0] == 0)
3140 		goto out;
3141 
3142 	path->slots[0]--;
3143 	leaf = path->nodes[0];
3144 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3145 
3146 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3147 		goto out;
3148 
3149 	ret = 1;
3150 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3151 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3152 
3153 	if (item_size != sizeof(*ei) +
3154 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3155 		goto out;
3156 
3157 	if (btrfs_extent_generation(leaf, ei) <=
3158 	    btrfs_root_last_snapshot(&root->root_item))
3159 		goto out;
3160 
3161 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3162 
3163 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3164 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3165 		goto out;
3166 
3167 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3168 	if (btrfs_extent_refs(leaf, ei) !=
3169 	    btrfs_extent_data_ref_count(leaf, ref) ||
3170 	    btrfs_extent_data_ref_root(leaf, ref) !=
3171 	    root->root_key.objectid ||
3172 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3173 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3174 		goto out;
3175 
3176 	ret = 0;
3177 out:
3178 	return ret;
3179 }
3180 
3181 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3182 			  u64 bytenr)
3183 {
3184 	struct btrfs_path *path;
3185 	int ret;
3186 
3187 	path = btrfs_alloc_path();
3188 	if (!path)
3189 		return -ENOMEM;
3190 
3191 	do {
3192 		ret = check_committed_ref(root, path, objectid,
3193 					  offset, bytenr);
3194 		if (ret && ret != -ENOENT)
3195 			goto out;
3196 
3197 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3198 	} while (ret == -EAGAIN);
3199 
3200 out:
3201 	btrfs_free_path(path);
3202 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3203 		WARN_ON(ret > 0);
3204 	return ret;
3205 }
3206 
3207 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3208 			   struct btrfs_root *root,
3209 			   struct extent_buffer *buf,
3210 			   int full_backref, int inc)
3211 {
3212 	struct btrfs_fs_info *fs_info = root->fs_info;
3213 	u64 bytenr;
3214 	u64 num_bytes;
3215 	u64 parent;
3216 	u64 ref_root;
3217 	u32 nritems;
3218 	struct btrfs_key key;
3219 	struct btrfs_file_extent_item *fi;
3220 	int i;
3221 	int level;
3222 	int ret = 0;
3223 	int (*process_func)(struct btrfs_trans_handle *,
3224 			    struct btrfs_root *,
3225 			    u64, u64, u64, u64, u64, u64);
3226 
3227 
3228 	if (btrfs_is_testing(fs_info))
3229 		return 0;
3230 
3231 	ref_root = btrfs_header_owner(buf);
3232 	nritems = btrfs_header_nritems(buf);
3233 	level = btrfs_header_level(buf);
3234 
3235 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3236 		return 0;
3237 
3238 	if (inc)
3239 		process_func = btrfs_inc_extent_ref;
3240 	else
3241 		process_func = btrfs_free_extent;
3242 
3243 	if (full_backref)
3244 		parent = buf->start;
3245 	else
3246 		parent = 0;
3247 
3248 	for (i = 0; i < nritems; i++) {
3249 		if (level == 0) {
3250 			btrfs_item_key_to_cpu(buf, &key, i);
3251 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3252 				continue;
3253 			fi = btrfs_item_ptr(buf, i,
3254 					    struct btrfs_file_extent_item);
3255 			if (btrfs_file_extent_type(buf, fi) ==
3256 			    BTRFS_FILE_EXTENT_INLINE)
3257 				continue;
3258 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3259 			if (bytenr == 0)
3260 				continue;
3261 
3262 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3263 			key.offset -= btrfs_file_extent_offset(buf, fi);
3264 			ret = process_func(trans, root, bytenr, num_bytes,
3265 					   parent, ref_root, key.objectid,
3266 					   key.offset);
3267 			if (ret)
3268 				goto fail;
3269 		} else {
3270 			bytenr = btrfs_node_blockptr(buf, i);
3271 			num_bytes = fs_info->nodesize;
3272 			ret = process_func(trans, root, bytenr, num_bytes,
3273 					   parent, ref_root, level - 1, 0);
3274 			if (ret)
3275 				goto fail;
3276 		}
3277 	}
3278 	return 0;
3279 fail:
3280 	return ret;
3281 }
3282 
3283 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3284 		  struct extent_buffer *buf, int full_backref)
3285 {
3286 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3287 }
3288 
3289 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3290 		  struct extent_buffer *buf, int full_backref)
3291 {
3292 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3293 }
3294 
3295 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3296 				 struct btrfs_fs_info *fs_info,
3297 				 struct btrfs_path *path,
3298 				 struct btrfs_block_group_cache *cache)
3299 {
3300 	int ret;
3301 	struct btrfs_root *extent_root = fs_info->extent_root;
3302 	unsigned long bi;
3303 	struct extent_buffer *leaf;
3304 
3305 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3306 	if (ret) {
3307 		if (ret > 0)
3308 			ret = -ENOENT;
3309 		goto fail;
3310 	}
3311 
3312 	leaf = path->nodes[0];
3313 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3314 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3315 	btrfs_mark_buffer_dirty(leaf);
3316 fail:
3317 	btrfs_release_path(path);
3318 	return ret;
3319 
3320 }
3321 
3322 static struct btrfs_block_group_cache *
3323 next_block_group(struct btrfs_fs_info *fs_info,
3324 		 struct btrfs_block_group_cache *cache)
3325 {
3326 	struct rb_node *node;
3327 
3328 	spin_lock(&fs_info->block_group_cache_lock);
3329 
3330 	/* If our block group was removed, we need a full search. */
3331 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3332 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3333 
3334 		spin_unlock(&fs_info->block_group_cache_lock);
3335 		btrfs_put_block_group(cache);
3336 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3337 	}
3338 	node = rb_next(&cache->cache_node);
3339 	btrfs_put_block_group(cache);
3340 	if (node) {
3341 		cache = rb_entry(node, struct btrfs_block_group_cache,
3342 				 cache_node);
3343 		btrfs_get_block_group(cache);
3344 	} else
3345 		cache = NULL;
3346 	spin_unlock(&fs_info->block_group_cache_lock);
3347 	return cache;
3348 }
3349 
3350 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3351 			    struct btrfs_trans_handle *trans,
3352 			    struct btrfs_path *path)
3353 {
3354 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3355 	struct btrfs_root *root = fs_info->tree_root;
3356 	struct inode *inode = NULL;
3357 	struct extent_changeset *data_reserved = NULL;
3358 	u64 alloc_hint = 0;
3359 	int dcs = BTRFS_DC_ERROR;
3360 	u64 num_pages = 0;
3361 	int retries = 0;
3362 	int ret = 0;
3363 
3364 	/*
3365 	 * If this block group is smaller than 100 megs don't bother caching the
3366 	 * block group.
3367 	 */
3368 	if (block_group->key.offset < (100 * SZ_1M)) {
3369 		spin_lock(&block_group->lock);
3370 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3371 		spin_unlock(&block_group->lock);
3372 		return 0;
3373 	}
3374 
3375 	if (trans->aborted)
3376 		return 0;
3377 again:
3378 	inode = lookup_free_space_inode(fs_info, block_group, path);
3379 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3380 		ret = PTR_ERR(inode);
3381 		btrfs_release_path(path);
3382 		goto out;
3383 	}
3384 
3385 	if (IS_ERR(inode)) {
3386 		BUG_ON(retries);
3387 		retries++;
3388 
3389 		if (block_group->ro)
3390 			goto out_free;
3391 
3392 		ret = create_free_space_inode(fs_info, trans, block_group,
3393 					      path);
3394 		if (ret)
3395 			goto out_free;
3396 		goto again;
3397 	}
3398 
3399 	/*
3400 	 * We want to set the generation to 0, that way if anything goes wrong
3401 	 * from here on out we know not to trust this cache when we load up next
3402 	 * time.
3403 	 */
3404 	BTRFS_I(inode)->generation = 0;
3405 	ret = btrfs_update_inode(trans, root, inode);
3406 	if (ret) {
3407 		/*
3408 		 * So theoretically we could recover from this, simply set the
3409 		 * super cache generation to 0 so we know to invalidate the
3410 		 * cache, but then we'd have to keep track of the block groups
3411 		 * that fail this way so we know we _have_ to reset this cache
3412 		 * before the next commit or risk reading stale cache.  So to
3413 		 * limit our exposure to horrible edge cases lets just abort the
3414 		 * transaction, this only happens in really bad situations
3415 		 * anyway.
3416 		 */
3417 		btrfs_abort_transaction(trans, ret);
3418 		goto out_put;
3419 	}
3420 	WARN_ON(ret);
3421 
3422 	/* We've already setup this transaction, go ahead and exit */
3423 	if (block_group->cache_generation == trans->transid &&
3424 	    i_size_read(inode)) {
3425 		dcs = BTRFS_DC_SETUP;
3426 		goto out_put;
3427 	}
3428 
3429 	if (i_size_read(inode) > 0) {
3430 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3431 					&fs_info->global_block_rsv);
3432 		if (ret)
3433 			goto out_put;
3434 
3435 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3436 		if (ret)
3437 			goto out_put;
3438 	}
3439 
3440 	spin_lock(&block_group->lock);
3441 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3442 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3443 		/*
3444 		 * don't bother trying to write stuff out _if_
3445 		 * a) we're not cached,
3446 		 * b) we're with nospace_cache mount option,
3447 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3448 		 */
3449 		dcs = BTRFS_DC_WRITTEN;
3450 		spin_unlock(&block_group->lock);
3451 		goto out_put;
3452 	}
3453 	spin_unlock(&block_group->lock);
3454 
3455 	/*
3456 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3457 	 * skip doing the setup, we've already cleared the cache so we're safe.
3458 	 */
3459 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3460 		ret = -ENOSPC;
3461 		goto out_put;
3462 	}
3463 
3464 	/*
3465 	 * Try to preallocate enough space based on how big the block group is.
3466 	 * Keep in mind this has to include any pinned space which could end up
3467 	 * taking up quite a bit since it's not folded into the other space
3468 	 * cache.
3469 	 */
3470 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3471 	if (!num_pages)
3472 		num_pages = 1;
3473 
3474 	num_pages *= 16;
3475 	num_pages *= PAGE_SIZE;
3476 
3477 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3478 	if (ret)
3479 		goto out_put;
3480 
3481 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3482 					      num_pages, num_pages,
3483 					      &alloc_hint);
3484 	/*
3485 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3486 	 * of metadata or split extents when writing the cache out, which means
3487 	 * we can enospc if we are heavily fragmented in addition to just normal
3488 	 * out of space conditions.  So if we hit this just skip setting up any
3489 	 * other block groups for this transaction, maybe we'll unpin enough
3490 	 * space the next time around.
3491 	 */
3492 	if (!ret)
3493 		dcs = BTRFS_DC_SETUP;
3494 	else if (ret == -ENOSPC)
3495 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3496 
3497 out_put:
3498 	iput(inode);
3499 out_free:
3500 	btrfs_release_path(path);
3501 out:
3502 	spin_lock(&block_group->lock);
3503 	if (!ret && dcs == BTRFS_DC_SETUP)
3504 		block_group->cache_generation = trans->transid;
3505 	block_group->disk_cache_state = dcs;
3506 	spin_unlock(&block_group->lock);
3507 
3508 	extent_changeset_free(data_reserved);
3509 	return ret;
3510 }
3511 
3512 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3513 			    struct btrfs_fs_info *fs_info)
3514 {
3515 	struct btrfs_block_group_cache *cache, *tmp;
3516 	struct btrfs_transaction *cur_trans = trans->transaction;
3517 	struct btrfs_path *path;
3518 
3519 	if (list_empty(&cur_trans->dirty_bgs) ||
3520 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3521 		return 0;
3522 
3523 	path = btrfs_alloc_path();
3524 	if (!path)
3525 		return -ENOMEM;
3526 
3527 	/* Could add new block groups, use _safe just in case */
3528 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3529 				 dirty_list) {
3530 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3531 			cache_save_setup(cache, trans, path);
3532 	}
3533 
3534 	btrfs_free_path(path);
3535 	return 0;
3536 }
3537 
3538 /*
3539  * transaction commit does final block group cache writeback during a
3540  * critical section where nothing is allowed to change the FS.  This is
3541  * required in order for the cache to actually match the block group,
3542  * but can introduce a lot of latency into the commit.
3543  *
3544  * So, btrfs_start_dirty_block_groups is here to kick off block group
3545  * cache IO.  There's a chance we'll have to redo some of it if the
3546  * block group changes again during the commit, but it greatly reduces
3547  * the commit latency by getting rid of the easy block groups while
3548  * we're still allowing others to join the commit.
3549  */
3550 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3551 {
3552 	struct btrfs_fs_info *fs_info = trans->fs_info;
3553 	struct btrfs_block_group_cache *cache;
3554 	struct btrfs_transaction *cur_trans = trans->transaction;
3555 	int ret = 0;
3556 	int should_put;
3557 	struct btrfs_path *path = NULL;
3558 	LIST_HEAD(dirty);
3559 	struct list_head *io = &cur_trans->io_bgs;
3560 	int num_started = 0;
3561 	int loops = 0;
3562 
3563 	spin_lock(&cur_trans->dirty_bgs_lock);
3564 	if (list_empty(&cur_trans->dirty_bgs)) {
3565 		spin_unlock(&cur_trans->dirty_bgs_lock);
3566 		return 0;
3567 	}
3568 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3569 	spin_unlock(&cur_trans->dirty_bgs_lock);
3570 
3571 again:
3572 	/*
3573 	 * make sure all the block groups on our dirty list actually
3574 	 * exist
3575 	 */
3576 	btrfs_create_pending_block_groups(trans);
3577 
3578 	if (!path) {
3579 		path = btrfs_alloc_path();
3580 		if (!path)
3581 			return -ENOMEM;
3582 	}
3583 
3584 	/*
3585 	 * cache_write_mutex is here only to save us from balance or automatic
3586 	 * removal of empty block groups deleting this block group while we are
3587 	 * writing out the cache
3588 	 */
3589 	mutex_lock(&trans->transaction->cache_write_mutex);
3590 	while (!list_empty(&dirty)) {
3591 		cache = list_first_entry(&dirty,
3592 					 struct btrfs_block_group_cache,
3593 					 dirty_list);
3594 		/*
3595 		 * this can happen if something re-dirties a block
3596 		 * group that is already under IO.  Just wait for it to
3597 		 * finish and then do it all again
3598 		 */
3599 		if (!list_empty(&cache->io_list)) {
3600 			list_del_init(&cache->io_list);
3601 			btrfs_wait_cache_io(trans, cache, path);
3602 			btrfs_put_block_group(cache);
3603 		}
3604 
3605 
3606 		/*
3607 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3608 		 * if it should update the cache_state.  Don't delete
3609 		 * until after we wait.
3610 		 *
3611 		 * Since we're not running in the commit critical section
3612 		 * we need the dirty_bgs_lock to protect from update_block_group
3613 		 */
3614 		spin_lock(&cur_trans->dirty_bgs_lock);
3615 		list_del_init(&cache->dirty_list);
3616 		spin_unlock(&cur_trans->dirty_bgs_lock);
3617 
3618 		should_put = 1;
3619 
3620 		cache_save_setup(cache, trans, path);
3621 
3622 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3623 			cache->io_ctl.inode = NULL;
3624 			ret = btrfs_write_out_cache(fs_info, trans,
3625 						    cache, path);
3626 			if (ret == 0 && cache->io_ctl.inode) {
3627 				num_started++;
3628 				should_put = 0;
3629 
3630 				/*
3631 				 * The cache_write_mutex is protecting the
3632 				 * io_list, also refer to the definition of
3633 				 * btrfs_transaction::io_bgs for more details
3634 				 */
3635 				list_add_tail(&cache->io_list, io);
3636 			} else {
3637 				/*
3638 				 * if we failed to write the cache, the
3639 				 * generation will be bad and life goes on
3640 				 */
3641 				ret = 0;
3642 			}
3643 		}
3644 		if (!ret) {
3645 			ret = write_one_cache_group(trans, fs_info,
3646 						    path, cache);
3647 			/*
3648 			 * Our block group might still be attached to the list
3649 			 * of new block groups in the transaction handle of some
3650 			 * other task (struct btrfs_trans_handle->new_bgs). This
3651 			 * means its block group item isn't yet in the extent
3652 			 * tree. If this happens ignore the error, as we will
3653 			 * try again later in the critical section of the
3654 			 * transaction commit.
3655 			 */
3656 			if (ret == -ENOENT) {
3657 				ret = 0;
3658 				spin_lock(&cur_trans->dirty_bgs_lock);
3659 				if (list_empty(&cache->dirty_list)) {
3660 					list_add_tail(&cache->dirty_list,
3661 						      &cur_trans->dirty_bgs);
3662 					btrfs_get_block_group(cache);
3663 				}
3664 				spin_unlock(&cur_trans->dirty_bgs_lock);
3665 			} else if (ret) {
3666 				btrfs_abort_transaction(trans, ret);
3667 			}
3668 		}
3669 
3670 		/* if its not on the io list, we need to put the block group */
3671 		if (should_put)
3672 			btrfs_put_block_group(cache);
3673 
3674 		if (ret)
3675 			break;
3676 
3677 		/*
3678 		 * Avoid blocking other tasks for too long. It might even save
3679 		 * us from writing caches for block groups that are going to be
3680 		 * removed.
3681 		 */
3682 		mutex_unlock(&trans->transaction->cache_write_mutex);
3683 		mutex_lock(&trans->transaction->cache_write_mutex);
3684 	}
3685 	mutex_unlock(&trans->transaction->cache_write_mutex);
3686 
3687 	/*
3688 	 * go through delayed refs for all the stuff we've just kicked off
3689 	 * and then loop back (just once)
3690 	 */
3691 	ret = btrfs_run_delayed_refs(trans, 0);
3692 	if (!ret && loops == 0) {
3693 		loops++;
3694 		spin_lock(&cur_trans->dirty_bgs_lock);
3695 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3696 		/*
3697 		 * dirty_bgs_lock protects us from concurrent block group
3698 		 * deletes too (not just cache_write_mutex).
3699 		 */
3700 		if (!list_empty(&dirty)) {
3701 			spin_unlock(&cur_trans->dirty_bgs_lock);
3702 			goto again;
3703 		}
3704 		spin_unlock(&cur_trans->dirty_bgs_lock);
3705 	} else if (ret < 0) {
3706 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3707 	}
3708 
3709 	btrfs_free_path(path);
3710 	return ret;
3711 }
3712 
3713 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3714 				   struct btrfs_fs_info *fs_info)
3715 {
3716 	struct btrfs_block_group_cache *cache;
3717 	struct btrfs_transaction *cur_trans = trans->transaction;
3718 	int ret = 0;
3719 	int should_put;
3720 	struct btrfs_path *path;
3721 	struct list_head *io = &cur_trans->io_bgs;
3722 	int num_started = 0;
3723 
3724 	path = btrfs_alloc_path();
3725 	if (!path)
3726 		return -ENOMEM;
3727 
3728 	/*
3729 	 * Even though we are in the critical section of the transaction commit,
3730 	 * we can still have concurrent tasks adding elements to this
3731 	 * transaction's list of dirty block groups. These tasks correspond to
3732 	 * endio free space workers started when writeback finishes for a
3733 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3734 	 * allocate new block groups as a result of COWing nodes of the root
3735 	 * tree when updating the free space inode. The writeback for the space
3736 	 * caches is triggered by an earlier call to
3737 	 * btrfs_start_dirty_block_groups() and iterations of the following
3738 	 * loop.
3739 	 * Also we want to do the cache_save_setup first and then run the
3740 	 * delayed refs to make sure we have the best chance at doing this all
3741 	 * in one shot.
3742 	 */
3743 	spin_lock(&cur_trans->dirty_bgs_lock);
3744 	while (!list_empty(&cur_trans->dirty_bgs)) {
3745 		cache = list_first_entry(&cur_trans->dirty_bgs,
3746 					 struct btrfs_block_group_cache,
3747 					 dirty_list);
3748 
3749 		/*
3750 		 * this can happen if cache_save_setup re-dirties a block
3751 		 * group that is already under IO.  Just wait for it to
3752 		 * finish and then do it all again
3753 		 */
3754 		if (!list_empty(&cache->io_list)) {
3755 			spin_unlock(&cur_trans->dirty_bgs_lock);
3756 			list_del_init(&cache->io_list);
3757 			btrfs_wait_cache_io(trans, cache, path);
3758 			btrfs_put_block_group(cache);
3759 			spin_lock(&cur_trans->dirty_bgs_lock);
3760 		}
3761 
3762 		/*
3763 		 * don't remove from the dirty list until after we've waited
3764 		 * on any pending IO
3765 		 */
3766 		list_del_init(&cache->dirty_list);
3767 		spin_unlock(&cur_trans->dirty_bgs_lock);
3768 		should_put = 1;
3769 
3770 		cache_save_setup(cache, trans, path);
3771 
3772 		if (!ret)
3773 			ret = btrfs_run_delayed_refs(trans,
3774 						     (unsigned long) -1);
3775 
3776 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3777 			cache->io_ctl.inode = NULL;
3778 			ret = btrfs_write_out_cache(fs_info, trans,
3779 						    cache, path);
3780 			if (ret == 0 && cache->io_ctl.inode) {
3781 				num_started++;
3782 				should_put = 0;
3783 				list_add_tail(&cache->io_list, io);
3784 			} else {
3785 				/*
3786 				 * if we failed to write the cache, the
3787 				 * generation will be bad and life goes on
3788 				 */
3789 				ret = 0;
3790 			}
3791 		}
3792 		if (!ret) {
3793 			ret = write_one_cache_group(trans, fs_info,
3794 						    path, cache);
3795 			/*
3796 			 * One of the free space endio workers might have
3797 			 * created a new block group while updating a free space
3798 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3799 			 * and hasn't released its transaction handle yet, in
3800 			 * which case the new block group is still attached to
3801 			 * its transaction handle and its creation has not
3802 			 * finished yet (no block group item in the extent tree
3803 			 * yet, etc). If this is the case, wait for all free
3804 			 * space endio workers to finish and retry. This is a
3805 			 * a very rare case so no need for a more efficient and
3806 			 * complex approach.
3807 			 */
3808 			if (ret == -ENOENT) {
3809 				wait_event(cur_trans->writer_wait,
3810 				   atomic_read(&cur_trans->num_writers) == 1);
3811 				ret = write_one_cache_group(trans, fs_info,
3812 							    path, cache);
3813 			}
3814 			if (ret)
3815 				btrfs_abort_transaction(trans, ret);
3816 		}
3817 
3818 		/* if its not on the io list, we need to put the block group */
3819 		if (should_put)
3820 			btrfs_put_block_group(cache);
3821 		spin_lock(&cur_trans->dirty_bgs_lock);
3822 	}
3823 	spin_unlock(&cur_trans->dirty_bgs_lock);
3824 
3825 	/*
3826 	 * Refer to the definition of io_bgs member for details why it's safe
3827 	 * to use it without any locking
3828 	 */
3829 	while (!list_empty(io)) {
3830 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3831 					 io_list);
3832 		list_del_init(&cache->io_list);
3833 		btrfs_wait_cache_io(trans, cache, path);
3834 		btrfs_put_block_group(cache);
3835 	}
3836 
3837 	btrfs_free_path(path);
3838 	return ret;
3839 }
3840 
3841 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3842 {
3843 	struct btrfs_block_group_cache *block_group;
3844 	int readonly = 0;
3845 
3846 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3847 	if (!block_group || block_group->ro)
3848 		readonly = 1;
3849 	if (block_group)
3850 		btrfs_put_block_group(block_group);
3851 	return readonly;
3852 }
3853 
3854 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3855 {
3856 	struct btrfs_block_group_cache *bg;
3857 	bool ret = true;
3858 
3859 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3860 	if (!bg)
3861 		return false;
3862 
3863 	spin_lock(&bg->lock);
3864 	if (bg->ro)
3865 		ret = false;
3866 	else
3867 		atomic_inc(&bg->nocow_writers);
3868 	spin_unlock(&bg->lock);
3869 
3870 	/* no put on block group, done by btrfs_dec_nocow_writers */
3871 	if (!ret)
3872 		btrfs_put_block_group(bg);
3873 
3874 	return ret;
3875 
3876 }
3877 
3878 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3879 {
3880 	struct btrfs_block_group_cache *bg;
3881 
3882 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3883 	ASSERT(bg);
3884 	if (atomic_dec_and_test(&bg->nocow_writers))
3885 		wake_up_var(&bg->nocow_writers);
3886 	/*
3887 	 * Once for our lookup and once for the lookup done by a previous call
3888 	 * to btrfs_inc_nocow_writers()
3889 	 */
3890 	btrfs_put_block_group(bg);
3891 	btrfs_put_block_group(bg);
3892 }
3893 
3894 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3895 {
3896 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3897 }
3898 
3899 static const char *alloc_name(u64 flags)
3900 {
3901 	switch (flags) {
3902 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3903 		return "mixed";
3904 	case BTRFS_BLOCK_GROUP_METADATA:
3905 		return "metadata";
3906 	case BTRFS_BLOCK_GROUP_DATA:
3907 		return "data";
3908 	case BTRFS_BLOCK_GROUP_SYSTEM:
3909 		return "system";
3910 	default:
3911 		WARN_ON(1);
3912 		return "invalid-combination";
3913 	};
3914 }
3915 
3916 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3917 {
3918 
3919 	struct btrfs_space_info *space_info;
3920 	int i;
3921 	int ret;
3922 
3923 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3924 	if (!space_info)
3925 		return -ENOMEM;
3926 
3927 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3928 				 GFP_KERNEL);
3929 	if (ret) {
3930 		kfree(space_info);
3931 		return ret;
3932 	}
3933 
3934 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3935 		INIT_LIST_HEAD(&space_info->block_groups[i]);
3936 	init_rwsem(&space_info->groups_sem);
3937 	spin_lock_init(&space_info->lock);
3938 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3939 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3940 	init_waitqueue_head(&space_info->wait);
3941 	INIT_LIST_HEAD(&space_info->ro_bgs);
3942 	INIT_LIST_HEAD(&space_info->tickets);
3943 	INIT_LIST_HEAD(&space_info->priority_tickets);
3944 
3945 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3946 				    info->space_info_kobj, "%s",
3947 				    alloc_name(space_info->flags));
3948 	if (ret) {
3949 		percpu_counter_destroy(&space_info->total_bytes_pinned);
3950 		kfree(space_info);
3951 		return ret;
3952 	}
3953 
3954 	list_add_rcu(&space_info->list, &info->space_info);
3955 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3956 		info->data_sinfo = space_info;
3957 
3958 	return ret;
3959 }
3960 
3961 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3962 			     u64 total_bytes, u64 bytes_used,
3963 			     u64 bytes_readonly,
3964 			     struct btrfs_space_info **space_info)
3965 {
3966 	struct btrfs_space_info *found;
3967 	int factor;
3968 
3969 	factor = btrfs_bg_type_to_factor(flags);
3970 
3971 	found = __find_space_info(info, flags);
3972 	ASSERT(found);
3973 	spin_lock(&found->lock);
3974 	found->total_bytes += total_bytes;
3975 	found->disk_total += total_bytes * factor;
3976 	found->bytes_used += bytes_used;
3977 	found->disk_used += bytes_used * factor;
3978 	found->bytes_readonly += bytes_readonly;
3979 	if (total_bytes > 0)
3980 		found->full = 0;
3981 	space_info_add_new_bytes(info, found, total_bytes -
3982 				 bytes_used - bytes_readonly);
3983 	spin_unlock(&found->lock);
3984 	*space_info = found;
3985 }
3986 
3987 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3988 {
3989 	u64 extra_flags = chunk_to_extended(flags) &
3990 				BTRFS_EXTENDED_PROFILE_MASK;
3991 
3992 	write_seqlock(&fs_info->profiles_lock);
3993 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3994 		fs_info->avail_data_alloc_bits |= extra_flags;
3995 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3996 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3997 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3998 		fs_info->avail_system_alloc_bits |= extra_flags;
3999 	write_sequnlock(&fs_info->profiles_lock);
4000 }
4001 
4002 /*
4003  * returns target flags in extended format or 0 if restripe for this
4004  * chunk_type is not in progress
4005  *
4006  * should be called with balance_lock held
4007  */
4008 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4009 {
4010 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4011 	u64 target = 0;
4012 
4013 	if (!bctl)
4014 		return 0;
4015 
4016 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4017 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4018 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4019 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4020 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4021 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4022 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4023 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4024 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4025 	}
4026 
4027 	return target;
4028 }
4029 
4030 /*
4031  * @flags: available profiles in extended format (see ctree.h)
4032  *
4033  * Returns reduced profile in chunk format.  If profile changing is in
4034  * progress (either running or paused) picks the target profile (if it's
4035  * already available), otherwise falls back to plain reducing.
4036  */
4037 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4038 {
4039 	u64 num_devices = fs_info->fs_devices->rw_devices;
4040 	u64 target;
4041 	u64 raid_type;
4042 	u64 allowed = 0;
4043 
4044 	/*
4045 	 * see if restripe for this chunk_type is in progress, if so
4046 	 * try to reduce to the target profile
4047 	 */
4048 	spin_lock(&fs_info->balance_lock);
4049 	target = get_restripe_target(fs_info, flags);
4050 	if (target) {
4051 		/* pick target profile only if it's already available */
4052 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4053 			spin_unlock(&fs_info->balance_lock);
4054 			return extended_to_chunk(target);
4055 		}
4056 	}
4057 	spin_unlock(&fs_info->balance_lock);
4058 
4059 	/* First, mask out the RAID levels which aren't possible */
4060 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4061 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4062 			allowed |= btrfs_raid_array[raid_type].bg_flag;
4063 	}
4064 	allowed &= flags;
4065 
4066 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4067 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4068 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4069 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4070 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4071 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4072 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4073 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4074 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4075 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4076 
4077 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4078 
4079 	return extended_to_chunk(flags | allowed);
4080 }
4081 
4082 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4083 {
4084 	unsigned seq;
4085 	u64 flags;
4086 
4087 	do {
4088 		flags = orig_flags;
4089 		seq = read_seqbegin(&fs_info->profiles_lock);
4090 
4091 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4092 			flags |= fs_info->avail_data_alloc_bits;
4093 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4094 			flags |= fs_info->avail_system_alloc_bits;
4095 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4096 			flags |= fs_info->avail_metadata_alloc_bits;
4097 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4098 
4099 	return btrfs_reduce_alloc_profile(fs_info, flags);
4100 }
4101 
4102 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4103 {
4104 	struct btrfs_fs_info *fs_info = root->fs_info;
4105 	u64 flags;
4106 	u64 ret;
4107 
4108 	if (data)
4109 		flags = BTRFS_BLOCK_GROUP_DATA;
4110 	else if (root == fs_info->chunk_root)
4111 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4112 	else
4113 		flags = BTRFS_BLOCK_GROUP_METADATA;
4114 
4115 	ret = get_alloc_profile(fs_info, flags);
4116 	return ret;
4117 }
4118 
4119 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4120 {
4121 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4122 }
4123 
4124 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4125 {
4126 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4127 }
4128 
4129 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4130 {
4131 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4132 }
4133 
4134 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4135 				 bool may_use_included)
4136 {
4137 	ASSERT(s_info);
4138 	return s_info->bytes_used + s_info->bytes_reserved +
4139 		s_info->bytes_pinned + s_info->bytes_readonly +
4140 		(may_use_included ? s_info->bytes_may_use : 0);
4141 }
4142 
4143 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4144 {
4145 	struct btrfs_root *root = inode->root;
4146 	struct btrfs_fs_info *fs_info = root->fs_info;
4147 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4148 	u64 used;
4149 	int ret = 0;
4150 	int need_commit = 2;
4151 	int have_pinned_space;
4152 
4153 	/* make sure bytes are sectorsize aligned */
4154 	bytes = ALIGN(bytes, fs_info->sectorsize);
4155 
4156 	if (btrfs_is_free_space_inode(inode)) {
4157 		need_commit = 0;
4158 		ASSERT(current->journal_info);
4159 	}
4160 
4161 again:
4162 	/* make sure we have enough space to handle the data first */
4163 	spin_lock(&data_sinfo->lock);
4164 	used = btrfs_space_info_used(data_sinfo, true);
4165 
4166 	if (used + bytes > data_sinfo->total_bytes) {
4167 		struct btrfs_trans_handle *trans;
4168 
4169 		/*
4170 		 * if we don't have enough free bytes in this space then we need
4171 		 * to alloc a new chunk.
4172 		 */
4173 		if (!data_sinfo->full) {
4174 			u64 alloc_target;
4175 
4176 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4177 			spin_unlock(&data_sinfo->lock);
4178 
4179 			alloc_target = btrfs_data_alloc_profile(fs_info);
4180 			/*
4181 			 * It is ugly that we don't call nolock join
4182 			 * transaction for the free space inode case here.
4183 			 * But it is safe because we only do the data space
4184 			 * reservation for the free space cache in the
4185 			 * transaction context, the common join transaction
4186 			 * just increase the counter of the current transaction
4187 			 * handler, doesn't try to acquire the trans_lock of
4188 			 * the fs.
4189 			 */
4190 			trans = btrfs_join_transaction(root);
4191 			if (IS_ERR(trans))
4192 				return PTR_ERR(trans);
4193 
4194 			ret = do_chunk_alloc(trans, alloc_target,
4195 					     CHUNK_ALLOC_NO_FORCE);
4196 			btrfs_end_transaction(trans);
4197 			if (ret < 0) {
4198 				if (ret != -ENOSPC)
4199 					return ret;
4200 				else {
4201 					have_pinned_space = 1;
4202 					goto commit_trans;
4203 				}
4204 			}
4205 
4206 			goto again;
4207 		}
4208 
4209 		/*
4210 		 * If we don't have enough pinned space to deal with this
4211 		 * allocation, and no removed chunk in current transaction,
4212 		 * don't bother committing the transaction.
4213 		 */
4214 		have_pinned_space = __percpu_counter_compare(
4215 			&data_sinfo->total_bytes_pinned,
4216 			used + bytes - data_sinfo->total_bytes,
4217 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
4218 		spin_unlock(&data_sinfo->lock);
4219 
4220 		/* commit the current transaction and try again */
4221 commit_trans:
4222 		if (need_commit) {
4223 			need_commit--;
4224 
4225 			if (need_commit > 0) {
4226 				btrfs_start_delalloc_roots(fs_info, -1);
4227 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4228 							 (u64)-1);
4229 			}
4230 
4231 			trans = btrfs_join_transaction(root);
4232 			if (IS_ERR(trans))
4233 				return PTR_ERR(trans);
4234 			if (have_pinned_space >= 0 ||
4235 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4236 				     &trans->transaction->flags) ||
4237 			    need_commit > 0) {
4238 				ret = btrfs_commit_transaction(trans);
4239 				if (ret)
4240 					return ret;
4241 				/*
4242 				 * The cleaner kthread might still be doing iput
4243 				 * operations. Wait for it to finish so that
4244 				 * more space is released.
4245 				 */
4246 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4247 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4248 				goto again;
4249 			} else {
4250 				btrfs_end_transaction(trans);
4251 			}
4252 		}
4253 
4254 		trace_btrfs_space_reservation(fs_info,
4255 					      "space_info:enospc",
4256 					      data_sinfo->flags, bytes, 1);
4257 		return -ENOSPC;
4258 	}
4259 	data_sinfo->bytes_may_use += bytes;
4260 	trace_btrfs_space_reservation(fs_info, "space_info",
4261 				      data_sinfo->flags, bytes, 1);
4262 	spin_unlock(&data_sinfo->lock);
4263 
4264 	return 0;
4265 }
4266 
4267 int btrfs_check_data_free_space(struct inode *inode,
4268 			struct extent_changeset **reserved, u64 start, u64 len)
4269 {
4270 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4271 	int ret;
4272 
4273 	/* align the range */
4274 	len = round_up(start + len, fs_info->sectorsize) -
4275 	      round_down(start, fs_info->sectorsize);
4276 	start = round_down(start, fs_info->sectorsize);
4277 
4278 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4279 	if (ret < 0)
4280 		return ret;
4281 
4282 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4283 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4284 	if (ret < 0)
4285 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4286 	else
4287 		ret = 0;
4288 	return ret;
4289 }
4290 
4291 /*
4292  * Called if we need to clear a data reservation for this inode
4293  * Normally in a error case.
4294  *
4295  * This one will *NOT* use accurate qgroup reserved space API, just for case
4296  * which we can't sleep and is sure it won't affect qgroup reserved space.
4297  * Like clear_bit_hook().
4298  */
4299 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4300 					    u64 len)
4301 {
4302 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4303 	struct btrfs_space_info *data_sinfo;
4304 
4305 	/* Make sure the range is aligned to sectorsize */
4306 	len = round_up(start + len, fs_info->sectorsize) -
4307 	      round_down(start, fs_info->sectorsize);
4308 	start = round_down(start, fs_info->sectorsize);
4309 
4310 	data_sinfo = fs_info->data_sinfo;
4311 	spin_lock(&data_sinfo->lock);
4312 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4313 		data_sinfo->bytes_may_use = 0;
4314 	else
4315 		data_sinfo->bytes_may_use -= len;
4316 	trace_btrfs_space_reservation(fs_info, "space_info",
4317 				      data_sinfo->flags, len, 0);
4318 	spin_unlock(&data_sinfo->lock);
4319 }
4320 
4321 /*
4322  * Called if we need to clear a data reservation for this inode
4323  * Normally in a error case.
4324  *
4325  * This one will handle the per-inode data rsv map for accurate reserved
4326  * space framework.
4327  */
4328 void btrfs_free_reserved_data_space(struct inode *inode,
4329 			struct extent_changeset *reserved, u64 start, u64 len)
4330 {
4331 	struct btrfs_root *root = BTRFS_I(inode)->root;
4332 
4333 	/* Make sure the range is aligned to sectorsize */
4334 	len = round_up(start + len, root->fs_info->sectorsize) -
4335 	      round_down(start, root->fs_info->sectorsize);
4336 	start = round_down(start, root->fs_info->sectorsize);
4337 
4338 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4339 	btrfs_qgroup_free_data(inode, reserved, start, len);
4340 }
4341 
4342 static void force_metadata_allocation(struct btrfs_fs_info *info)
4343 {
4344 	struct list_head *head = &info->space_info;
4345 	struct btrfs_space_info *found;
4346 
4347 	rcu_read_lock();
4348 	list_for_each_entry_rcu(found, head, list) {
4349 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4350 			found->force_alloc = CHUNK_ALLOC_FORCE;
4351 	}
4352 	rcu_read_unlock();
4353 }
4354 
4355 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4356 {
4357 	return (global->size << 1);
4358 }
4359 
4360 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4361 			      struct btrfs_space_info *sinfo, int force)
4362 {
4363 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4364 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4365 	u64 thresh;
4366 
4367 	if (force == CHUNK_ALLOC_FORCE)
4368 		return 1;
4369 
4370 	/*
4371 	 * We need to take into account the global rsv because for all intents
4372 	 * and purposes it's used space.  Don't worry about locking the
4373 	 * global_rsv, it doesn't change except when the transaction commits.
4374 	 */
4375 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4376 		bytes_used += calc_global_rsv_need_space(global_rsv);
4377 
4378 	/*
4379 	 * in limited mode, we want to have some free space up to
4380 	 * about 1% of the FS size.
4381 	 */
4382 	if (force == CHUNK_ALLOC_LIMITED) {
4383 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4384 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4385 
4386 		if (sinfo->total_bytes - bytes_used < thresh)
4387 			return 1;
4388 	}
4389 
4390 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4391 		return 0;
4392 	return 1;
4393 }
4394 
4395 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4396 {
4397 	u64 num_dev;
4398 
4399 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4400 		    BTRFS_BLOCK_GROUP_RAID0 |
4401 		    BTRFS_BLOCK_GROUP_RAID5 |
4402 		    BTRFS_BLOCK_GROUP_RAID6))
4403 		num_dev = fs_info->fs_devices->rw_devices;
4404 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4405 		num_dev = 2;
4406 	else
4407 		num_dev = 1;	/* DUP or single */
4408 
4409 	return num_dev;
4410 }
4411 
4412 /*
4413  * If @is_allocation is true, reserve space in the system space info necessary
4414  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4415  * removing a chunk.
4416  */
4417 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4418 {
4419 	struct btrfs_fs_info *fs_info = trans->fs_info;
4420 	struct btrfs_space_info *info;
4421 	u64 left;
4422 	u64 thresh;
4423 	int ret = 0;
4424 	u64 num_devs;
4425 
4426 	/*
4427 	 * Needed because we can end up allocating a system chunk and for an
4428 	 * atomic and race free space reservation in the chunk block reserve.
4429 	 */
4430 	lockdep_assert_held(&fs_info->chunk_mutex);
4431 
4432 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4433 	spin_lock(&info->lock);
4434 	left = info->total_bytes - btrfs_space_info_used(info, true);
4435 	spin_unlock(&info->lock);
4436 
4437 	num_devs = get_profile_num_devs(fs_info, type);
4438 
4439 	/* num_devs device items to update and 1 chunk item to add or remove */
4440 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4441 		btrfs_calc_trans_metadata_size(fs_info, 1);
4442 
4443 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4444 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4445 			   left, thresh, type);
4446 		dump_space_info(fs_info, info, 0, 0);
4447 	}
4448 
4449 	if (left < thresh) {
4450 		u64 flags = btrfs_system_alloc_profile(fs_info);
4451 
4452 		/*
4453 		 * Ignore failure to create system chunk. We might end up not
4454 		 * needing it, as we might not need to COW all nodes/leafs from
4455 		 * the paths we visit in the chunk tree (they were already COWed
4456 		 * or created in the current transaction for example).
4457 		 */
4458 		ret = btrfs_alloc_chunk(trans, flags);
4459 	}
4460 
4461 	if (!ret) {
4462 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4463 					  &fs_info->chunk_block_rsv,
4464 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4465 		if (!ret)
4466 			trans->chunk_bytes_reserved += thresh;
4467 	}
4468 }
4469 
4470 /*
4471  * If force is CHUNK_ALLOC_FORCE:
4472  *    - return 1 if it successfully allocates a chunk,
4473  *    - return errors including -ENOSPC otherwise.
4474  * If force is NOT CHUNK_ALLOC_FORCE:
4475  *    - return 0 if it doesn't need to allocate a new chunk,
4476  *    - return 1 if it successfully allocates a chunk,
4477  *    - return errors including -ENOSPC otherwise.
4478  */
4479 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4480 			  int force)
4481 {
4482 	struct btrfs_fs_info *fs_info = trans->fs_info;
4483 	struct btrfs_space_info *space_info;
4484 	bool wait_for_alloc = false;
4485 	bool should_alloc = false;
4486 	int ret = 0;
4487 
4488 	/* Don't re-enter if we're already allocating a chunk */
4489 	if (trans->allocating_chunk)
4490 		return -ENOSPC;
4491 
4492 	space_info = __find_space_info(fs_info, flags);
4493 	ASSERT(space_info);
4494 
4495 	do {
4496 		spin_lock(&space_info->lock);
4497 		if (force < space_info->force_alloc)
4498 			force = space_info->force_alloc;
4499 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4500 		if (space_info->full) {
4501 			/* No more free physical space */
4502 			if (should_alloc)
4503 				ret = -ENOSPC;
4504 			else
4505 				ret = 0;
4506 			spin_unlock(&space_info->lock);
4507 			return ret;
4508 		} else if (!should_alloc) {
4509 			spin_unlock(&space_info->lock);
4510 			return 0;
4511 		} else if (space_info->chunk_alloc) {
4512 			/*
4513 			 * Someone is already allocating, so we need to block
4514 			 * until this someone is finished and then loop to
4515 			 * recheck if we should continue with our allocation
4516 			 * attempt.
4517 			 */
4518 			wait_for_alloc = true;
4519 			spin_unlock(&space_info->lock);
4520 			mutex_lock(&fs_info->chunk_mutex);
4521 			mutex_unlock(&fs_info->chunk_mutex);
4522 		} else {
4523 			/* Proceed with allocation */
4524 			space_info->chunk_alloc = 1;
4525 			wait_for_alloc = false;
4526 			spin_unlock(&space_info->lock);
4527 		}
4528 
4529 		cond_resched();
4530 	} while (wait_for_alloc);
4531 
4532 	mutex_lock(&fs_info->chunk_mutex);
4533 	trans->allocating_chunk = true;
4534 
4535 	/*
4536 	 * If we have mixed data/metadata chunks we want to make sure we keep
4537 	 * allocating mixed chunks instead of individual chunks.
4538 	 */
4539 	if (btrfs_mixed_space_info(space_info))
4540 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4541 
4542 	/*
4543 	 * if we're doing a data chunk, go ahead and make sure that
4544 	 * we keep a reasonable number of metadata chunks allocated in the
4545 	 * FS as well.
4546 	 */
4547 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4548 		fs_info->data_chunk_allocations++;
4549 		if (!(fs_info->data_chunk_allocations %
4550 		      fs_info->metadata_ratio))
4551 			force_metadata_allocation(fs_info);
4552 	}
4553 
4554 	/*
4555 	 * Check if we have enough space in SYSTEM chunk because we may need
4556 	 * to update devices.
4557 	 */
4558 	check_system_chunk(trans, flags);
4559 
4560 	ret = btrfs_alloc_chunk(trans, flags);
4561 	trans->allocating_chunk = false;
4562 
4563 	spin_lock(&space_info->lock);
4564 	if (ret < 0) {
4565 		if (ret == -ENOSPC)
4566 			space_info->full = 1;
4567 		else
4568 			goto out;
4569 	} else {
4570 		ret = 1;
4571 		space_info->max_extent_size = 0;
4572 	}
4573 
4574 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4575 out:
4576 	space_info->chunk_alloc = 0;
4577 	spin_unlock(&space_info->lock);
4578 	mutex_unlock(&fs_info->chunk_mutex);
4579 	/*
4580 	 * When we allocate a new chunk we reserve space in the chunk block
4581 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4582 	 * add new nodes/leafs to it if we end up needing to do it when
4583 	 * inserting the chunk item and updating device items as part of the
4584 	 * second phase of chunk allocation, performed by
4585 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4586 	 * large number of new block groups to create in our transaction
4587 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4588 	 * in extreme cases - like having a single transaction create many new
4589 	 * block groups when starting to write out the free space caches of all
4590 	 * the block groups that were made dirty during the lifetime of the
4591 	 * transaction.
4592 	 */
4593 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4594 		btrfs_create_pending_block_groups(trans);
4595 
4596 	return ret;
4597 }
4598 
4599 static int can_overcommit(struct btrfs_fs_info *fs_info,
4600 			  struct btrfs_space_info *space_info, u64 bytes,
4601 			  enum btrfs_reserve_flush_enum flush,
4602 			  bool system_chunk)
4603 {
4604 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4605 	u64 profile;
4606 	u64 space_size;
4607 	u64 avail;
4608 	u64 used;
4609 	int factor;
4610 
4611 	/* Don't overcommit when in mixed mode. */
4612 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4613 		return 0;
4614 
4615 	if (system_chunk)
4616 		profile = btrfs_system_alloc_profile(fs_info);
4617 	else
4618 		profile = btrfs_metadata_alloc_profile(fs_info);
4619 
4620 	used = btrfs_space_info_used(space_info, false);
4621 
4622 	/*
4623 	 * We only want to allow over committing if we have lots of actual space
4624 	 * free, but if we don't have enough space to handle the global reserve
4625 	 * space then we could end up having a real enospc problem when trying
4626 	 * to allocate a chunk or some other such important allocation.
4627 	 */
4628 	spin_lock(&global_rsv->lock);
4629 	space_size = calc_global_rsv_need_space(global_rsv);
4630 	spin_unlock(&global_rsv->lock);
4631 	if (used + space_size >= space_info->total_bytes)
4632 		return 0;
4633 
4634 	used += space_info->bytes_may_use;
4635 
4636 	avail = atomic64_read(&fs_info->free_chunk_space);
4637 
4638 	/*
4639 	 * If we have dup, raid1 or raid10 then only half of the free
4640 	 * space is actually useable.  For raid56, the space info used
4641 	 * doesn't include the parity drive, so we don't have to
4642 	 * change the math
4643 	 */
4644 	factor = btrfs_bg_type_to_factor(profile);
4645 	avail = div_u64(avail, factor);
4646 
4647 	/*
4648 	 * If we aren't flushing all things, let us overcommit up to
4649 	 * 1/2th of the space. If we can flush, don't let us overcommit
4650 	 * too much, let it overcommit up to 1/8 of the space.
4651 	 */
4652 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4653 		avail >>= 3;
4654 	else
4655 		avail >>= 1;
4656 
4657 	if (used + bytes < space_info->total_bytes + avail)
4658 		return 1;
4659 	return 0;
4660 }
4661 
4662 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4663 					 unsigned long nr_pages, int nr_items)
4664 {
4665 	struct super_block *sb = fs_info->sb;
4666 
4667 	if (down_read_trylock(&sb->s_umount)) {
4668 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4669 		up_read(&sb->s_umount);
4670 	} else {
4671 		/*
4672 		 * We needn't worry the filesystem going from r/w to r/o though
4673 		 * we don't acquire ->s_umount mutex, because the filesystem
4674 		 * should guarantee the delalloc inodes list be empty after
4675 		 * the filesystem is readonly(all dirty pages are written to
4676 		 * the disk).
4677 		 */
4678 		btrfs_start_delalloc_roots(fs_info, nr_items);
4679 		if (!current->journal_info)
4680 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4681 	}
4682 }
4683 
4684 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4685 					u64 to_reclaim)
4686 {
4687 	u64 bytes;
4688 	u64 nr;
4689 
4690 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4691 	nr = div64_u64(to_reclaim, bytes);
4692 	if (!nr)
4693 		nr = 1;
4694 	return nr;
4695 }
4696 
4697 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4698 
4699 /*
4700  * shrink metadata reservation for delalloc
4701  */
4702 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4703 			    u64 orig, bool wait_ordered)
4704 {
4705 	struct btrfs_space_info *space_info;
4706 	struct btrfs_trans_handle *trans;
4707 	u64 delalloc_bytes;
4708 	u64 max_reclaim;
4709 	u64 items;
4710 	long time_left;
4711 	unsigned long nr_pages;
4712 	int loops;
4713 
4714 	/* Calc the number of the pages we need flush for space reservation */
4715 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4716 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4717 
4718 	trans = (struct btrfs_trans_handle *)current->journal_info;
4719 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4720 
4721 	delalloc_bytes = percpu_counter_sum_positive(
4722 						&fs_info->delalloc_bytes);
4723 	if (delalloc_bytes == 0) {
4724 		if (trans)
4725 			return;
4726 		if (wait_ordered)
4727 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4728 		return;
4729 	}
4730 
4731 	loops = 0;
4732 	while (delalloc_bytes && loops < 3) {
4733 		max_reclaim = min(delalloc_bytes, to_reclaim);
4734 		nr_pages = max_reclaim >> PAGE_SHIFT;
4735 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4736 		/*
4737 		 * We need to wait for the async pages to actually start before
4738 		 * we do anything.
4739 		 */
4740 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4741 		if (!max_reclaim)
4742 			goto skip_async;
4743 
4744 		if (max_reclaim <= nr_pages)
4745 			max_reclaim = 0;
4746 		else
4747 			max_reclaim -= nr_pages;
4748 
4749 		wait_event(fs_info->async_submit_wait,
4750 			   atomic_read(&fs_info->async_delalloc_pages) <=
4751 			   (int)max_reclaim);
4752 skip_async:
4753 		spin_lock(&space_info->lock);
4754 		if (list_empty(&space_info->tickets) &&
4755 		    list_empty(&space_info->priority_tickets)) {
4756 			spin_unlock(&space_info->lock);
4757 			break;
4758 		}
4759 		spin_unlock(&space_info->lock);
4760 
4761 		loops++;
4762 		if (wait_ordered && !trans) {
4763 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4764 		} else {
4765 			time_left = schedule_timeout_killable(1);
4766 			if (time_left)
4767 				break;
4768 		}
4769 		delalloc_bytes = percpu_counter_sum_positive(
4770 						&fs_info->delalloc_bytes);
4771 	}
4772 }
4773 
4774 struct reserve_ticket {
4775 	u64 bytes;
4776 	int error;
4777 	struct list_head list;
4778 	wait_queue_head_t wait;
4779 };
4780 
4781 /**
4782  * maybe_commit_transaction - possibly commit the transaction if its ok to
4783  * @root - the root we're allocating for
4784  * @bytes - the number of bytes we want to reserve
4785  * @force - force the commit
4786  *
4787  * This will check to make sure that committing the transaction will actually
4788  * get us somewhere and then commit the transaction if it does.  Otherwise it
4789  * will return -ENOSPC.
4790  */
4791 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4792 				  struct btrfs_space_info *space_info)
4793 {
4794 	struct reserve_ticket *ticket = NULL;
4795 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4796 	struct btrfs_trans_handle *trans;
4797 	u64 bytes;
4798 
4799 	trans = (struct btrfs_trans_handle *)current->journal_info;
4800 	if (trans)
4801 		return -EAGAIN;
4802 
4803 	spin_lock(&space_info->lock);
4804 	if (!list_empty(&space_info->priority_tickets))
4805 		ticket = list_first_entry(&space_info->priority_tickets,
4806 					  struct reserve_ticket, list);
4807 	else if (!list_empty(&space_info->tickets))
4808 		ticket = list_first_entry(&space_info->tickets,
4809 					  struct reserve_ticket, list);
4810 	bytes = (ticket) ? ticket->bytes : 0;
4811 	spin_unlock(&space_info->lock);
4812 
4813 	if (!bytes)
4814 		return 0;
4815 
4816 	/* See if there is enough pinned space to make this reservation */
4817 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4818 				   bytes,
4819 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4820 		goto commit;
4821 
4822 	/*
4823 	 * See if there is some space in the delayed insertion reservation for
4824 	 * this reservation.
4825 	 */
4826 	if (space_info != delayed_rsv->space_info)
4827 		return -ENOSPC;
4828 
4829 	spin_lock(&delayed_rsv->lock);
4830 	if (delayed_rsv->size > bytes)
4831 		bytes = 0;
4832 	else
4833 		bytes -= delayed_rsv->size;
4834 	spin_unlock(&delayed_rsv->lock);
4835 
4836 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4837 				   bytes,
4838 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4839 		return -ENOSPC;
4840 	}
4841 
4842 commit:
4843 	trans = btrfs_join_transaction(fs_info->extent_root);
4844 	if (IS_ERR(trans))
4845 		return -ENOSPC;
4846 
4847 	return btrfs_commit_transaction(trans);
4848 }
4849 
4850 /*
4851  * Try to flush some data based on policy set by @state. This is only advisory
4852  * and may fail for various reasons. The caller is supposed to examine the
4853  * state of @space_info to detect the outcome.
4854  */
4855 static void flush_space(struct btrfs_fs_info *fs_info,
4856 		       struct btrfs_space_info *space_info, u64 num_bytes,
4857 		       int state)
4858 {
4859 	struct btrfs_root *root = fs_info->extent_root;
4860 	struct btrfs_trans_handle *trans;
4861 	int nr;
4862 	int ret = 0;
4863 
4864 	switch (state) {
4865 	case FLUSH_DELAYED_ITEMS_NR:
4866 	case FLUSH_DELAYED_ITEMS:
4867 		if (state == FLUSH_DELAYED_ITEMS_NR)
4868 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4869 		else
4870 			nr = -1;
4871 
4872 		trans = btrfs_join_transaction(root);
4873 		if (IS_ERR(trans)) {
4874 			ret = PTR_ERR(trans);
4875 			break;
4876 		}
4877 		ret = btrfs_run_delayed_items_nr(trans, nr);
4878 		btrfs_end_transaction(trans);
4879 		break;
4880 	case FLUSH_DELALLOC:
4881 	case FLUSH_DELALLOC_WAIT:
4882 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4883 				state == FLUSH_DELALLOC_WAIT);
4884 		break;
4885 	case ALLOC_CHUNK:
4886 		trans = btrfs_join_transaction(root);
4887 		if (IS_ERR(trans)) {
4888 			ret = PTR_ERR(trans);
4889 			break;
4890 		}
4891 		ret = do_chunk_alloc(trans,
4892 				     btrfs_metadata_alloc_profile(fs_info),
4893 				     CHUNK_ALLOC_NO_FORCE);
4894 		btrfs_end_transaction(trans);
4895 		if (ret > 0 || ret == -ENOSPC)
4896 			ret = 0;
4897 		break;
4898 	case COMMIT_TRANS:
4899 		ret = may_commit_transaction(fs_info, space_info);
4900 		break;
4901 	default:
4902 		ret = -ENOSPC;
4903 		break;
4904 	}
4905 
4906 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4907 				ret);
4908 	return;
4909 }
4910 
4911 static inline u64
4912 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4913 				 struct btrfs_space_info *space_info,
4914 				 bool system_chunk)
4915 {
4916 	struct reserve_ticket *ticket;
4917 	u64 used;
4918 	u64 expected;
4919 	u64 to_reclaim = 0;
4920 
4921 	list_for_each_entry(ticket, &space_info->tickets, list)
4922 		to_reclaim += ticket->bytes;
4923 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4924 		to_reclaim += ticket->bytes;
4925 	if (to_reclaim)
4926 		return to_reclaim;
4927 
4928 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4929 	if (can_overcommit(fs_info, space_info, to_reclaim,
4930 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4931 		return 0;
4932 
4933 	used = btrfs_space_info_used(space_info, true);
4934 
4935 	if (can_overcommit(fs_info, space_info, SZ_1M,
4936 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4937 		expected = div_factor_fine(space_info->total_bytes, 95);
4938 	else
4939 		expected = div_factor_fine(space_info->total_bytes, 90);
4940 
4941 	if (used > expected)
4942 		to_reclaim = used - expected;
4943 	else
4944 		to_reclaim = 0;
4945 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4946 				     space_info->bytes_reserved);
4947 	return to_reclaim;
4948 }
4949 
4950 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4951 					struct btrfs_space_info *space_info,
4952 					u64 used, bool system_chunk)
4953 {
4954 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4955 
4956 	/* If we're just plain full then async reclaim just slows us down. */
4957 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4958 		return 0;
4959 
4960 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4961 					      system_chunk))
4962 		return 0;
4963 
4964 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4965 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4966 }
4967 
4968 static void wake_all_tickets(struct list_head *head)
4969 {
4970 	struct reserve_ticket *ticket;
4971 
4972 	while (!list_empty(head)) {
4973 		ticket = list_first_entry(head, struct reserve_ticket, list);
4974 		list_del_init(&ticket->list);
4975 		ticket->error = -ENOSPC;
4976 		wake_up(&ticket->wait);
4977 	}
4978 }
4979 
4980 /*
4981  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4982  * will loop and continuously try to flush as long as we are making progress.
4983  * We count progress as clearing off tickets each time we have to loop.
4984  */
4985 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4986 {
4987 	struct btrfs_fs_info *fs_info;
4988 	struct btrfs_space_info *space_info;
4989 	u64 to_reclaim;
4990 	int flush_state;
4991 	int commit_cycles = 0;
4992 	u64 last_tickets_id;
4993 
4994 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4995 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4996 
4997 	spin_lock(&space_info->lock);
4998 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4999 						      false);
5000 	if (!to_reclaim) {
5001 		space_info->flush = 0;
5002 		spin_unlock(&space_info->lock);
5003 		return;
5004 	}
5005 	last_tickets_id = space_info->tickets_id;
5006 	spin_unlock(&space_info->lock);
5007 
5008 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5009 	do {
5010 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5011 		spin_lock(&space_info->lock);
5012 		if (list_empty(&space_info->tickets)) {
5013 			space_info->flush = 0;
5014 			spin_unlock(&space_info->lock);
5015 			return;
5016 		}
5017 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5018 							      space_info,
5019 							      false);
5020 		if (last_tickets_id == space_info->tickets_id) {
5021 			flush_state++;
5022 		} else {
5023 			last_tickets_id = space_info->tickets_id;
5024 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 			if (commit_cycles)
5026 				commit_cycles--;
5027 		}
5028 
5029 		if (flush_state > COMMIT_TRANS) {
5030 			commit_cycles++;
5031 			if (commit_cycles > 2) {
5032 				wake_all_tickets(&space_info->tickets);
5033 				space_info->flush = 0;
5034 			} else {
5035 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 			}
5037 		}
5038 		spin_unlock(&space_info->lock);
5039 	} while (flush_state <= COMMIT_TRANS);
5040 }
5041 
5042 void btrfs_init_async_reclaim_work(struct work_struct *work)
5043 {
5044 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5045 }
5046 
5047 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5048 					    struct btrfs_space_info *space_info,
5049 					    struct reserve_ticket *ticket)
5050 {
5051 	u64 to_reclaim;
5052 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5053 
5054 	spin_lock(&space_info->lock);
5055 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5056 						      false);
5057 	if (!to_reclaim) {
5058 		spin_unlock(&space_info->lock);
5059 		return;
5060 	}
5061 	spin_unlock(&space_info->lock);
5062 
5063 	do {
5064 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5065 		flush_state++;
5066 		spin_lock(&space_info->lock);
5067 		if (ticket->bytes == 0) {
5068 			spin_unlock(&space_info->lock);
5069 			return;
5070 		}
5071 		spin_unlock(&space_info->lock);
5072 
5073 		/*
5074 		 * Priority flushers can't wait on delalloc without
5075 		 * deadlocking.
5076 		 */
5077 		if (flush_state == FLUSH_DELALLOC ||
5078 		    flush_state == FLUSH_DELALLOC_WAIT)
5079 			flush_state = ALLOC_CHUNK;
5080 	} while (flush_state < COMMIT_TRANS);
5081 }
5082 
5083 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5084 			       struct btrfs_space_info *space_info,
5085 			       struct reserve_ticket *ticket, u64 orig_bytes)
5086 
5087 {
5088 	DEFINE_WAIT(wait);
5089 	int ret = 0;
5090 
5091 	spin_lock(&space_info->lock);
5092 	while (ticket->bytes > 0 && ticket->error == 0) {
5093 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5094 		if (ret) {
5095 			ret = -EINTR;
5096 			break;
5097 		}
5098 		spin_unlock(&space_info->lock);
5099 
5100 		schedule();
5101 
5102 		finish_wait(&ticket->wait, &wait);
5103 		spin_lock(&space_info->lock);
5104 	}
5105 	if (!ret)
5106 		ret = ticket->error;
5107 	if (!list_empty(&ticket->list))
5108 		list_del_init(&ticket->list);
5109 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5110 		u64 num_bytes = orig_bytes - ticket->bytes;
5111 		space_info->bytes_may_use -= num_bytes;
5112 		trace_btrfs_space_reservation(fs_info, "space_info",
5113 					      space_info->flags, num_bytes, 0);
5114 	}
5115 	spin_unlock(&space_info->lock);
5116 
5117 	return ret;
5118 }
5119 
5120 /**
5121  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5122  * @root - the root we're allocating for
5123  * @space_info - the space info we want to allocate from
5124  * @orig_bytes - the number of bytes we want
5125  * @flush - whether or not we can flush to make our reservation
5126  *
5127  * This will reserve orig_bytes number of bytes from the space info associated
5128  * with the block_rsv.  If there is not enough space it will make an attempt to
5129  * flush out space to make room.  It will do this by flushing delalloc if
5130  * possible or committing the transaction.  If flush is 0 then no attempts to
5131  * regain reservations will be made and this will fail if there is not enough
5132  * space already.
5133  */
5134 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5135 				    struct btrfs_space_info *space_info,
5136 				    u64 orig_bytes,
5137 				    enum btrfs_reserve_flush_enum flush,
5138 				    bool system_chunk)
5139 {
5140 	struct reserve_ticket ticket;
5141 	u64 used;
5142 	int ret = 0;
5143 
5144 	ASSERT(orig_bytes);
5145 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5146 
5147 	spin_lock(&space_info->lock);
5148 	ret = -ENOSPC;
5149 	used = btrfs_space_info_used(space_info, true);
5150 
5151 	/*
5152 	 * If we have enough space then hooray, make our reservation and carry
5153 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5154 	 * If not things get more complicated.
5155 	 */
5156 	if (used + orig_bytes <= space_info->total_bytes) {
5157 		space_info->bytes_may_use += orig_bytes;
5158 		trace_btrfs_space_reservation(fs_info, "space_info",
5159 					      space_info->flags, orig_bytes, 1);
5160 		ret = 0;
5161 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5162 				  system_chunk)) {
5163 		space_info->bytes_may_use += orig_bytes;
5164 		trace_btrfs_space_reservation(fs_info, "space_info",
5165 					      space_info->flags, orig_bytes, 1);
5166 		ret = 0;
5167 	}
5168 
5169 	/*
5170 	 * If we couldn't make a reservation then setup our reservation ticket
5171 	 * and kick the async worker if it's not already running.
5172 	 *
5173 	 * If we are a priority flusher then we just need to add our ticket to
5174 	 * the list and we will do our own flushing further down.
5175 	 */
5176 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5177 		ticket.bytes = orig_bytes;
5178 		ticket.error = 0;
5179 		init_waitqueue_head(&ticket.wait);
5180 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5181 			list_add_tail(&ticket.list, &space_info->tickets);
5182 			if (!space_info->flush) {
5183 				space_info->flush = 1;
5184 				trace_btrfs_trigger_flush(fs_info,
5185 							  space_info->flags,
5186 							  orig_bytes, flush,
5187 							  "enospc");
5188 				queue_work(system_unbound_wq,
5189 					   &fs_info->async_reclaim_work);
5190 			}
5191 		} else {
5192 			list_add_tail(&ticket.list,
5193 				      &space_info->priority_tickets);
5194 		}
5195 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5196 		used += orig_bytes;
5197 		/*
5198 		 * We will do the space reservation dance during log replay,
5199 		 * which means we won't have fs_info->fs_root set, so don't do
5200 		 * the async reclaim as we will panic.
5201 		 */
5202 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5203 		    need_do_async_reclaim(fs_info, space_info,
5204 					  used, system_chunk) &&
5205 		    !work_busy(&fs_info->async_reclaim_work)) {
5206 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5207 						  orig_bytes, flush, "preempt");
5208 			queue_work(system_unbound_wq,
5209 				   &fs_info->async_reclaim_work);
5210 		}
5211 	}
5212 	spin_unlock(&space_info->lock);
5213 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5214 		return ret;
5215 
5216 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5217 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5218 					   orig_bytes);
5219 
5220 	ret = 0;
5221 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5222 	spin_lock(&space_info->lock);
5223 	if (ticket.bytes) {
5224 		if (ticket.bytes < orig_bytes) {
5225 			u64 num_bytes = orig_bytes - ticket.bytes;
5226 			space_info->bytes_may_use -= num_bytes;
5227 			trace_btrfs_space_reservation(fs_info, "space_info",
5228 						      space_info->flags,
5229 						      num_bytes, 0);
5230 
5231 		}
5232 		list_del_init(&ticket.list);
5233 		ret = -ENOSPC;
5234 	}
5235 	spin_unlock(&space_info->lock);
5236 	ASSERT(list_empty(&ticket.list));
5237 	return ret;
5238 }
5239 
5240 /**
5241  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242  * @root - the root we're allocating for
5243  * @block_rsv - the block_rsv we're allocating for
5244  * @orig_bytes - the number of bytes we want
5245  * @flush - whether or not we can flush to make our reservation
5246  *
5247  * This will reserve orgi_bytes number of bytes from the space info associated
5248  * with the block_rsv.  If there is not enough space it will make an attempt to
5249  * flush out space to make room.  It will do this by flushing delalloc if
5250  * possible or committing the transaction.  If flush is 0 then no attempts to
5251  * regain reservations will be made and this will fail if there is not enough
5252  * space already.
5253  */
5254 static int reserve_metadata_bytes(struct btrfs_root *root,
5255 				  struct btrfs_block_rsv *block_rsv,
5256 				  u64 orig_bytes,
5257 				  enum btrfs_reserve_flush_enum flush)
5258 {
5259 	struct btrfs_fs_info *fs_info = root->fs_info;
5260 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5261 	int ret;
5262 	bool system_chunk = (root == fs_info->chunk_root);
5263 
5264 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5265 				       orig_bytes, flush, system_chunk);
5266 	if (ret == -ENOSPC &&
5267 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5268 		if (block_rsv != global_rsv &&
5269 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5270 			ret = 0;
5271 	}
5272 	if (ret == -ENOSPC) {
5273 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5274 					      block_rsv->space_info->flags,
5275 					      orig_bytes, 1);
5276 
5277 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5278 			dump_space_info(fs_info, block_rsv->space_info,
5279 					orig_bytes, 0);
5280 	}
5281 	return ret;
5282 }
5283 
5284 static struct btrfs_block_rsv *get_block_rsv(
5285 					const struct btrfs_trans_handle *trans,
5286 					const struct btrfs_root *root)
5287 {
5288 	struct btrfs_fs_info *fs_info = root->fs_info;
5289 	struct btrfs_block_rsv *block_rsv = NULL;
5290 
5291 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5292 	    (root == fs_info->csum_root && trans->adding_csums) ||
5293 	    (root == fs_info->uuid_root))
5294 		block_rsv = trans->block_rsv;
5295 
5296 	if (!block_rsv)
5297 		block_rsv = root->block_rsv;
5298 
5299 	if (!block_rsv)
5300 		block_rsv = &fs_info->empty_block_rsv;
5301 
5302 	return block_rsv;
5303 }
5304 
5305 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5306 			       u64 num_bytes)
5307 {
5308 	int ret = -ENOSPC;
5309 	spin_lock(&block_rsv->lock);
5310 	if (block_rsv->reserved >= num_bytes) {
5311 		block_rsv->reserved -= num_bytes;
5312 		if (block_rsv->reserved < block_rsv->size)
5313 			block_rsv->full = 0;
5314 		ret = 0;
5315 	}
5316 	spin_unlock(&block_rsv->lock);
5317 	return ret;
5318 }
5319 
5320 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5321 				u64 num_bytes, bool update_size)
5322 {
5323 	spin_lock(&block_rsv->lock);
5324 	block_rsv->reserved += num_bytes;
5325 	if (update_size)
5326 		block_rsv->size += num_bytes;
5327 	else if (block_rsv->reserved >= block_rsv->size)
5328 		block_rsv->full = 1;
5329 	spin_unlock(&block_rsv->lock);
5330 }
5331 
5332 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5333 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5334 			     int min_factor)
5335 {
5336 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5337 	u64 min_bytes;
5338 
5339 	if (global_rsv->space_info != dest->space_info)
5340 		return -ENOSPC;
5341 
5342 	spin_lock(&global_rsv->lock);
5343 	min_bytes = div_factor(global_rsv->size, min_factor);
5344 	if (global_rsv->reserved < min_bytes + num_bytes) {
5345 		spin_unlock(&global_rsv->lock);
5346 		return -ENOSPC;
5347 	}
5348 	global_rsv->reserved -= num_bytes;
5349 	if (global_rsv->reserved < global_rsv->size)
5350 		global_rsv->full = 0;
5351 	spin_unlock(&global_rsv->lock);
5352 
5353 	block_rsv_add_bytes(dest, num_bytes, true);
5354 	return 0;
5355 }
5356 
5357 /*
5358  * This is for space we already have accounted in space_info->bytes_may_use, so
5359  * basically when we're returning space from block_rsv's.
5360  */
5361 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5362 				     struct btrfs_space_info *space_info,
5363 				     u64 num_bytes)
5364 {
5365 	struct reserve_ticket *ticket;
5366 	struct list_head *head;
5367 	u64 used;
5368 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5369 	bool check_overcommit = false;
5370 
5371 	spin_lock(&space_info->lock);
5372 	head = &space_info->priority_tickets;
5373 
5374 	/*
5375 	 * If we are over our limit then we need to check and see if we can
5376 	 * overcommit, and if we can't then we just need to free up our space
5377 	 * and not satisfy any requests.
5378 	 */
5379 	used = btrfs_space_info_used(space_info, true);
5380 	if (used - num_bytes >= space_info->total_bytes)
5381 		check_overcommit = true;
5382 again:
5383 	while (!list_empty(head) && num_bytes) {
5384 		ticket = list_first_entry(head, struct reserve_ticket,
5385 					  list);
5386 		/*
5387 		 * We use 0 bytes because this space is already reserved, so
5388 		 * adding the ticket space would be a double count.
5389 		 */
5390 		if (check_overcommit &&
5391 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5392 			break;
5393 		if (num_bytes >= ticket->bytes) {
5394 			list_del_init(&ticket->list);
5395 			num_bytes -= ticket->bytes;
5396 			ticket->bytes = 0;
5397 			space_info->tickets_id++;
5398 			wake_up(&ticket->wait);
5399 		} else {
5400 			ticket->bytes -= num_bytes;
5401 			num_bytes = 0;
5402 		}
5403 	}
5404 
5405 	if (num_bytes && head == &space_info->priority_tickets) {
5406 		head = &space_info->tickets;
5407 		flush = BTRFS_RESERVE_FLUSH_ALL;
5408 		goto again;
5409 	}
5410 	space_info->bytes_may_use -= num_bytes;
5411 	trace_btrfs_space_reservation(fs_info, "space_info",
5412 				      space_info->flags, num_bytes, 0);
5413 	spin_unlock(&space_info->lock);
5414 }
5415 
5416 /*
5417  * This is for newly allocated space that isn't accounted in
5418  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5419  * we use this helper.
5420  */
5421 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5422 				     struct btrfs_space_info *space_info,
5423 				     u64 num_bytes)
5424 {
5425 	struct reserve_ticket *ticket;
5426 	struct list_head *head = &space_info->priority_tickets;
5427 
5428 again:
5429 	while (!list_empty(head) && num_bytes) {
5430 		ticket = list_first_entry(head, struct reserve_ticket,
5431 					  list);
5432 		if (num_bytes >= ticket->bytes) {
5433 			trace_btrfs_space_reservation(fs_info, "space_info",
5434 						      space_info->flags,
5435 						      ticket->bytes, 1);
5436 			list_del_init(&ticket->list);
5437 			num_bytes -= ticket->bytes;
5438 			space_info->bytes_may_use += ticket->bytes;
5439 			ticket->bytes = 0;
5440 			space_info->tickets_id++;
5441 			wake_up(&ticket->wait);
5442 		} else {
5443 			trace_btrfs_space_reservation(fs_info, "space_info",
5444 						      space_info->flags,
5445 						      num_bytes, 1);
5446 			space_info->bytes_may_use += num_bytes;
5447 			ticket->bytes -= num_bytes;
5448 			num_bytes = 0;
5449 		}
5450 	}
5451 
5452 	if (num_bytes && head == &space_info->priority_tickets) {
5453 		head = &space_info->tickets;
5454 		goto again;
5455 	}
5456 }
5457 
5458 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5459 				    struct btrfs_block_rsv *block_rsv,
5460 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5461 				    u64 *qgroup_to_release_ret)
5462 {
5463 	struct btrfs_space_info *space_info = block_rsv->space_info;
5464 	u64 qgroup_to_release = 0;
5465 	u64 ret;
5466 
5467 	spin_lock(&block_rsv->lock);
5468 	if (num_bytes == (u64)-1) {
5469 		num_bytes = block_rsv->size;
5470 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5471 	}
5472 	block_rsv->size -= num_bytes;
5473 	if (block_rsv->reserved >= block_rsv->size) {
5474 		num_bytes = block_rsv->reserved - block_rsv->size;
5475 		block_rsv->reserved = block_rsv->size;
5476 		block_rsv->full = 1;
5477 	} else {
5478 		num_bytes = 0;
5479 	}
5480 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5481 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5482 				    block_rsv->qgroup_rsv_size;
5483 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5484 	} else {
5485 		qgroup_to_release = 0;
5486 	}
5487 	spin_unlock(&block_rsv->lock);
5488 
5489 	ret = num_bytes;
5490 	if (num_bytes > 0) {
5491 		if (dest) {
5492 			spin_lock(&dest->lock);
5493 			if (!dest->full) {
5494 				u64 bytes_to_add;
5495 
5496 				bytes_to_add = dest->size - dest->reserved;
5497 				bytes_to_add = min(num_bytes, bytes_to_add);
5498 				dest->reserved += bytes_to_add;
5499 				if (dest->reserved >= dest->size)
5500 					dest->full = 1;
5501 				num_bytes -= bytes_to_add;
5502 			}
5503 			spin_unlock(&dest->lock);
5504 		}
5505 		if (num_bytes)
5506 			space_info_add_old_bytes(fs_info, space_info,
5507 						 num_bytes);
5508 	}
5509 	if (qgroup_to_release_ret)
5510 		*qgroup_to_release_ret = qgroup_to_release;
5511 	return ret;
5512 }
5513 
5514 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5515 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5516 			    bool update_size)
5517 {
5518 	int ret;
5519 
5520 	ret = block_rsv_use_bytes(src, num_bytes);
5521 	if (ret)
5522 		return ret;
5523 
5524 	block_rsv_add_bytes(dst, num_bytes, update_size);
5525 	return 0;
5526 }
5527 
5528 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5529 {
5530 	memset(rsv, 0, sizeof(*rsv));
5531 	spin_lock_init(&rsv->lock);
5532 	rsv->type = type;
5533 }
5534 
5535 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5536 				   struct btrfs_block_rsv *rsv,
5537 				   unsigned short type)
5538 {
5539 	btrfs_init_block_rsv(rsv, type);
5540 	rsv->space_info = __find_space_info(fs_info,
5541 					    BTRFS_BLOCK_GROUP_METADATA);
5542 }
5543 
5544 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5545 					      unsigned short type)
5546 {
5547 	struct btrfs_block_rsv *block_rsv;
5548 
5549 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5550 	if (!block_rsv)
5551 		return NULL;
5552 
5553 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5554 	return block_rsv;
5555 }
5556 
5557 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5558 			  struct btrfs_block_rsv *rsv)
5559 {
5560 	if (!rsv)
5561 		return;
5562 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5563 	kfree(rsv);
5564 }
5565 
5566 int btrfs_block_rsv_add(struct btrfs_root *root,
5567 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5568 			enum btrfs_reserve_flush_enum flush)
5569 {
5570 	int ret;
5571 
5572 	if (num_bytes == 0)
5573 		return 0;
5574 
5575 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5576 	if (!ret)
5577 		block_rsv_add_bytes(block_rsv, num_bytes, true);
5578 
5579 	return ret;
5580 }
5581 
5582 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5583 {
5584 	u64 num_bytes = 0;
5585 	int ret = -ENOSPC;
5586 
5587 	if (!block_rsv)
5588 		return 0;
5589 
5590 	spin_lock(&block_rsv->lock);
5591 	num_bytes = div_factor(block_rsv->size, min_factor);
5592 	if (block_rsv->reserved >= num_bytes)
5593 		ret = 0;
5594 	spin_unlock(&block_rsv->lock);
5595 
5596 	return ret;
5597 }
5598 
5599 int btrfs_block_rsv_refill(struct btrfs_root *root,
5600 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5601 			   enum btrfs_reserve_flush_enum flush)
5602 {
5603 	u64 num_bytes = 0;
5604 	int ret = -ENOSPC;
5605 
5606 	if (!block_rsv)
5607 		return 0;
5608 
5609 	spin_lock(&block_rsv->lock);
5610 	num_bytes = min_reserved;
5611 	if (block_rsv->reserved >= num_bytes)
5612 		ret = 0;
5613 	else
5614 		num_bytes -= block_rsv->reserved;
5615 	spin_unlock(&block_rsv->lock);
5616 
5617 	if (!ret)
5618 		return 0;
5619 
5620 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5621 	if (!ret) {
5622 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5623 		return 0;
5624 	}
5625 
5626 	return ret;
5627 }
5628 
5629 /**
5630  * btrfs_inode_rsv_refill - refill the inode block rsv.
5631  * @inode - the inode we are refilling.
5632  * @flush - the flusing restriction.
5633  *
5634  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5635  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5636  * or return if we already have enough space.  This will also handle the resreve
5637  * tracepoint for the reserved amount.
5638  */
5639 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5640 				  enum btrfs_reserve_flush_enum flush)
5641 {
5642 	struct btrfs_root *root = inode->root;
5643 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5644 	u64 num_bytes = 0;
5645 	u64 qgroup_num_bytes = 0;
5646 	int ret = -ENOSPC;
5647 
5648 	spin_lock(&block_rsv->lock);
5649 	if (block_rsv->reserved < block_rsv->size)
5650 		num_bytes = block_rsv->size - block_rsv->reserved;
5651 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5652 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5653 				   block_rsv->qgroup_rsv_reserved;
5654 	spin_unlock(&block_rsv->lock);
5655 
5656 	if (num_bytes == 0)
5657 		return 0;
5658 
5659 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5660 	if (ret)
5661 		return ret;
5662 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5663 	if (!ret) {
5664 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5665 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5666 					      btrfs_ino(inode), num_bytes, 1);
5667 
5668 		/* Don't forget to increase qgroup_rsv_reserved */
5669 		spin_lock(&block_rsv->lock);
5670 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5671 		spin_unlock(&block_rsv->lock);
5672 	} else
5673 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5674 	return ret;
5675 }
5676 
5677 /**
5678  * btrfs_inode_rsv_release - release any excessive reservation.
5679  * @inode - the inode we need to release from.
5680  * @qgroup_free - free or convert qgroup meta.
5681  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5682  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5683  *   @qgroup_free is true for error handling, and false for normal release.
5684  *
5685  * This is the same as btrfs_block_rsv_release, except that it handles the
5686  * tracepoint for the reservation.
5687  */
5688 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5689 {
5690 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5691 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5692 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5693 	u64 released = 0;
5694 	u64 qgroup_to_release = 0;
5695 
5696 	/*
5697 	 * Since we statically set the block_rsv->size we just want to say we
5698 	 * are releasing 0 bytes, and then we'll just get the reservation over
5699 	 * the size free'd.
5700 	 */
5701 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5702 					   &qgroup_to_release);
5703 	if (released > 0)
5704 		trace_btrfs_space_reservation(fs_info, "delalloc",
5705 					      btrfs_ino(inode), released, 0);
5706 	if (qgroup_free)
5707 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5708 	else
5709 		btrfs_qgroup_convert_reserved_meta(inode->root,
5710 						   qgroup_to_release);
5711 }
5712 
5713 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5714 			     struct btrfs_block_rsv *block_rsv,
5715 			     u64 num_bytes)
5716 {
5717 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5718 
5719 	if (global_rsv == block_rsv ||
5720 	    block_rsv->space_info != global_rsv->space_info)
5721 		global_rsv = NULL;
5722 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5723 }
5724 
5725 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5726 {
5727 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5728 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5729 	u64 num_bytes;
5730 
5731 	/*
5732 	 * The global block rsv is based on the size of the extent tree, the
5733 	 * checksum tree and the root tree.  If the fs is empty we want to set
5734 	 * it to a minimal amount for safety.
5735 	 */
5736 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5737 		btrfs_root_used(&fs_info->csum_root->root_item) +
5738 		btrfs_root_used(&fs_info->tree_root->root_item);
5739 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5740 
5741 	spin_lock(&sinfo->lock);
5742 	spin_lock(&block_rsv->lock);
5743 
5744 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5745 
5746 	if (block_rsv->reserved < block_rsv->size) {
5747 		num_bytes = btrfs_space_info_used(sinfo, true);
5748 		if (sinfo->total_bytes > num_bytes) {
5749 			num_bytes = sinfo->total_bytes - num_bytes;
5750 			num_bytes = min(num_bytes,
5751 					block_rsv->size - block_rsv->reserved);
5752 			block_rsv->reserved += num_bytes;
5753 			sinfo->bytes_may_use += num_bytes;
5754 			trace_btrfs_space_reservation(fs_info, "space_info",
5755 						      sinfo->flags, num_bytes,
5756 						      1);
5757 		}
5758 	} else if (block_rsv->reserved > block_rsv->size) {
5759 		num_bytes = block_rsv->reserved - block_rsv->size;
5760 		sinfo->bytes_may_use -= num_bytes;
5761 		trace_btrfs_space_reservation(fs_info, "space_info",
5762 				      sinfo->flags, num_bytes, 0);
5763 		block_rsv->reserved = block_rsv->size;
5764 	}
5765 
5766 	if (block_rsv->reserved == block_rsv->size)
5767 		block_rsv->full = 1;
5768 	else
5769 		block_rsv->full = 0;
5770 
5771 	spin_unlock(&block_rsv->lock);
5772 	spin_unlock(&sinfo->lock);
5773 }
5774 
5775 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5776 {
5777 	struct btrfs_space_info *space_info;
5778 
5779 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5780 	fs_info->chunk_block_rsv.space_info = space_info;
5781 
5782 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5783 	fs_info->global_block_rsv.space_info = space_info;
5784 	fs_info->trans_block_rsv.space_info = space_info;
5785 	fs_info->empty_block_rsv.space_info = space_info;
5786 	fs_info->delayed_block_rsv.space_info = space_info;
5787 
5788 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5789 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5790 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5791 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5792 	if (fs_info->quota_root)
5793 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5794 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5795 
5796 	update_global_block_rsv(fs_info);
5797 }
5798 
5799 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5800 {
5801 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5802 				(u64)-1, NULL);
5803 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5804 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5805 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5806 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5807 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5808 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5809 }
5810 
5811 
5812 /*
5813  * To be called after all the new block groups attached to the transaction
5814  * handle have been created (btrfs_create_pending_block_groups()).
5815  */
5816 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5817 {
5818 	struct btrfs_fs_info *fs_info = trans->fs_info;
5819 
5820 	if (!trans->chunk_bytes_reserved)
5821 		return;
5822 
5823 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5824 
5825 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5826 				trans->chunk_bytes_reserved, NULL);
5827 	trans->chunk_bytes_reserved = 0;
5828 }
5829 
5830 /*
5831  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5832  * root: the root of the parent directory
5833  * rsv: block reservation
5834  * items: the number of items that we need do reservation
5835  * use_global_rsv: allow fallback to the global block reservation
5836  *
5837  * This function is used to reserve the space for snapshot/subvolume
5838  * creation and deletion. Those operations are different with the
5839  * common file/directory operations, they change two fs/file trees
5840  * and root tree, the number of items that the qgroup reserves is
5841  * different with the free space reservation. So we can not use
5842  * the space reservation mechanism in start_transaction().
5843  */
5844 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5845 				     struct btrfs_block_rsv *rsv, int items,
5846 				     bool use_global_rsv)
5847 {
5848 	u64 qgroup_num_bytes = 0;
5849 	u64 num_bytes;
5850 	int ret;
5851 	struct btrfs_fs_info *fs_info = root->fs_info;
5852 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5853 
5854 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5855 		/* One for parent inode, two for dir entries */
5856 		qgroup_num_bytes = 3 * fs_info->nodesize;
5857 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
5858 				qgroup_num_bytes, true);
5859 		if (ret)
5860 			return ret;
5861 	}
5862 
5863 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5864 	rsv->space_info = __find_space_info(fs_info,
5865 					    BTRFS_BLOCK_GROUP_METADATA);
5866 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5867 				  BTRFS_RESERVE_FLUSH_ALL);
5868 
5869 	if (ret == -ENOSPC && use_global_rsv)
5870 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
5871 
5872 	if (ret && qgroup_num_bytes)
5873 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5874 
5875 	return ret;
5876 }
5877 
5878 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5879 				      struct btrfs_block_rsv *rsv)
5880 {
5881 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5882 }
5883 
5884 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5885 						 struct btrfs_inode *inode)
5886 {
5887 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5888 	u64 reserve_size = 0;
5889 	u64 qgroup_rsv_size = 0;
5890 	u64 csum_leaves;
5891 	unsigned outstanding_extents;
5892 
5893 	lockdep_assert_held(&inode->lock);
5894 	outstanding_extents = inode->outstanding_extents;
5895 	if (outstanding_extents)
5896 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5897 						outstanding_extents + 1);
5898 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5899 						 inode->csum_bytes);
5900 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5901 						       csum_leaves);
5902 	/*
5903 	 * For qgroup rsv, the calculation is very simple:
5904 	 * account one nodesize for each outstanding extent
5905 	 *
5906 	 * This is overestimating in most cases.
5907 	 */
5908 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
5909 
5910 	spin_lock(&block_rsv->lock);
5911 	block_rsv->size = reserve_size;
5912 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5913 	spin_unlock(&block_rsv->lock);
5914 }
5915 
5916 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5917 {
5918 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5919 	unsigned nr_extents;
5920 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5921 	int ret = 0;
5922 	bool delalloc_lock = true;
5923 
5924 	/* If we are a free space inode we need to not flush since we will be in
5925 	 * the middle of a transaction commit.  We also don't need the delalloc
5926 	 * mutex since we won't race with anybody.  We need this mostly to make
5927 	 * lockdep shut its filthy mouth.
5928 	 *
5929 	 * If we have a transaction open (can happen if we call truncate_block
5930 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5931 	 */
5932 	if (btrfs_is_free_space_inode(inode)) {
5933 		flush = BTRFS_RESERVE_NO_FLUSH;
5934 		delalloc_lock = false;
5935 	} else {
5936 		if (current->journal_info)
5937 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
5938 
5939 		if (btrfs_transaction_in_commit(fs_info))
5940 			schedule_timeout(1);
5941 	}
5942 
5943 	if (delalloc_lock)
5944 		mutex_lock(&inode->delalloc_mutex);
5945 
5946 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5947 
5948 	/* Add our new extents and calculate the new rsv size. */
5949 	spin_lock(&inode->lock);
5950 	nr_extents = count_max_extents(num_bytes);
5951 	btrfs_mod_outstanding_extents(inode, nr_extents);
5952 	inode->csum_bytes += num_bytes;
5953 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5954 	spin_unlock(&inode->lock);
5955 
5956 	ret = btrfs_inode_rsv_refill(inode, flush);
5957 	if (unlikely(ret))
5958 		goto out_fail;
5959 
5960 	if (delalloc_lock)
5961 		mutex_unlock(&inode->delalloc_mutex);
5962 	return 0;
5963 
5964 out_fail:
5965 	spin_lock(&inode->lock);
5966 	nr_extents = count_max_extents(num_bytes);
5967 	btrfs_mod_outstanding_extents(inode, -nr_extents);
5968 	inode->csum_bytes -= num_bytes;
5969 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5970 	spin_unlock(&inode->lock);
5971 
5972 	btrfs_inode_rsv_release(inode, true);
5973 	if (delalloc_lock)
5974 		mutex_unlock(&inode->delalloc_mutex);
5975 	return ret;
5976 }
5977 
5978 /**
5979  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5980  * @inode: the inode to release the reservation for.
5981  * @num_bytes: the number of bytes we are releasing.
5982  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5983  *
5984  * This will release the metadata reservation for an inode.  This can be called
5985  * once we complete IO for a given set of bytes to release their metadata
5986  * reservations, or on error for the same reason.
5987  */
5988 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5989 				     bool qgroup_free)
5990 {
5991 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5992 
5993 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5994 	spin_lock(&inode->lock);
5995 	inode->csum_bytes -= num_bytes;
5996 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5997 	spin_unlock(&inode->lock);
5998 
5999 	if (btrfs_is_testing(fs_info))
6000 		return;
6001 
6002 	btrfs_inode_rsv_release(inode, qgroup_free);
6003 }
6004 
6005 /**
6006  * btrfs_delalloc_release_extents - release our outstanding_extents
6007  * @inode: the inode to balance the reservation for.
6008  * @num_bytes: the number of bytes we originally reserved with
6009  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6010  *
6011  * When we reserve space we increase outstanding_extents for the extents we may
6012  * add.  Once we've set the range as delalloc or created our ordered extents we
6013  * have outstanding_extents to track the real usage, so we use this to free our
6014  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6015  * with btrfs_delalloc_reserve_metadata.
6016  */
6017 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6018 				    bool qgroup_free)
6019 {
6020 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6021 	unsigned num_extents;
6022 
6023 	spin_lock(&inode->lock);
6024 	num_extents = count_max_extents(num_bytes);
6025 	btrfs_mod_outstanding_extents(inode, -num_extents);
6026 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6027 	spin_unlock(&inode->lock);
6028 
6029 	if (btrfs_is_testing(fs_info))
6030 		return;
6031 
6032 	btrfs_inode_rsv_release(inode, qgroup_free);
6033 }
6034 
6035 /**
6036  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6037  * delalloc
6038  * @inode: inode we're writing to
6039  * @start: start range we are writing to
6040  * @len: how long the range we are writing to
6041  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6042  * 	      current reservation.
6043  *
6044  * This will do the following things
6045  *
6046  * o reserve space in data space info for num bytes
6047  *   and reserve precious corresponding qgroup space
6048  *   (Done in check_data_free_space)
6049  *
6050  * o reserve space for metadata space, based on the number of outstanding
6051  *   extents and how much csums will be needed
6052  *   also reserve metadata space in a per root over-reserve method.
6053  * o add to the inodes->delalloc_bytes
6054  * o add it to the fs_info's delalloc inodes list.
6055  *   (Above 3 all done in delalloc_reserve_metadata)
6056  *
6057  * Return 0 for success
6058  * Return <0 for error(-ENOSPC or -EQUOT)
6059  */
6060 int btrfs_delalloc_reserve_space(struct inode *inode,
6061 			struct extent_changeset **reserved, u64 start, u64 len)
6062 {
6063 	int ret;
6064 
6065 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6066 	if (ret < 0)
6067 		return ret;
6068 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6069 	if (ret < 0)
6070 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6071 	return ret;
6072 }
6073 
6074 /**
6075  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6076  * @inode: inode we're releasing space for
6077  * @start: start position of the space already reserved
6078  * @len: the len of the space already reserved
6079  * @release_bytes: the len of the space we consumed or didn't use
6080  *
6081  * This function will release the metadata space that was not used and will
6082  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6083  * list if there are no delalloc bytes left.
6084  * Also it will handle the qgroup reserved space.
6085  */
6086 void btrfs_delalloc_release_space(struct inode *inode,
6087 				  struct extent_changeset *reserved,
6088 				  u64 start, u64 len, bool qgroup_free)
6089 {
6090 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6091 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6092 }
6093 
6094 static int update_block_group(struct btrfs_trans_handle *trans,
6095 			      struct btrfs_fs_info *info, u64 bytenr,
6096 			      u64 num_bytes, int alloc)
6097 {
6098 	struct btrfs_block_group_cache *cache = NULL;
6099 	u64 total = num_bytes;
6100 	u64 old_val;
6101 	u64 byte_in_group;
6102 	int factor;
6103 
6104 	/* block accounting for super block */
6105 	spin_lock(&info->delalloc_root_lock);
6106 	old_val = btrfs_super_bytes_used(info->super_copy);
6107 	if (alloc)
6108 		old_val += num_bytes;
6109 	else
6110 		old_val -= num_bytes;
6111 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6112 	spin_unlock(&info->delalloc_root_lock);
6113 
6114 	while (total) {
6115 		cache = btrfs_lookup_block_group(info, bytenr);
6116 		if (!cache)
6117 			return -ENOENT;
6118 		factor = btrfs_bg_type_to_factor(cache->flags);
6119 
6120 		/*
6121 		 * If this block group has free space cache written out, we
6122 		 * need to make sure to load it if we are removing space.  This
6123 		 * is because we need the unpinning stage to actually add the
6124 		 * space back to the block group, otherwise we will leak space.
6125 		 */
6126 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6127 			cache_block_group(cache, 1);
6128 
6129 		byte_in_group = bytenr - cache->key.objectid;
6130 		WARN_ON(byte_in_group > cache->key.offset);
6131 
6132 		spin_lock(&cache->space_info->lock);
6133 		spin_lock(&cache->lock);
6134 
6135 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6136 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6137 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6138 
6139 		old_val = btrfs_block_group_used(&cache->item);
6140 		num_bytes = min(total, cache->key.offset - byte_in_group);
6141 		if (alloc) {
6142 			old_val += num_bytes;
6143 			btrfs_set_block_group_used(&cache->item, old_val);
6144 			cache->reserved -= num_bytes;
6145 			cache->space_info->bytes_reserved -= num_bytes;
6146 			cache->space_info->bytes_used += num_bytes;
6147 			cache->space_info->disk_used += num_bytes * factor;
6148 			spin_unlock(&cache->lock);
6149 			spin_unlock(&cache->space_info->lock);
6150 		} else {
6151 			old_val -= num_bytes;
6152 			btrfs_set_block_group_used(&cache->item, old_val);
6153 			cache->pinned += num_bytes;
6154 			cache->space_info->bytes_pinned += num_bytes;
6155 			cache->space_info->bytes_used -= num_bytes;
6156 			cache->space_info->disk_used -= num_bytes * factor;
6157 			spin_unlock(&cache->lock);
6158 			spin_unlock(&cache->space_info->lock);
6159 
6160 			trace_btrfs_space_reservation(info, "pinned",
6161 						      cache->space_info->flags,
6162 						      num_bytes, 1);
6163 			percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6164 					   num_bytes,
6165 					   BTRFS_TOTAL_BYTES_PINNED_BATCH);
6166 			set_extent_dirty(info->pinned_extents,
6167 					 bytenr, bytenr + num_bytes - 1,
6168 					 GFP_NOFS | __GFP_NOFAIL);
6169 		}
6170 
6171 		spin_lock(&trans->transaction->dirty_bgs_lock);
6172 		if (list_empty(&cache->dirty_list)) {
6173 			list_add_tail(&cache->dirty_list,
6174 				      &trans->transaction->dirty_bgs);
6175 			trans->transaction->num_dirty_bgs++;
6176 			btrfs_get_block_group(cache);
6177 		}
6178 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6179 
6180 		/*
6181 		 * No longer have used bytes in this block group, queue it for
6182 		 * deletion. We do this after adding the block group to the
6183 		 * dirty list to avoid races between cleaner kthread and space
6184 		 * cache writeout.
6185 		 */
6186 		if (!alloc && old_val == 0)
6187 			btrfs_mark_bg_unused(cache);
6188 
6189 		btrfs_put_block_group(cache);
6190 		total -= num_bytes;
6191 		bytenr += num_bytes;
6192 	}
6193 	return 0;
6194 }
6195 
6196 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6197 {
6198 	struct btrfs_block_group_cache *cache;
6199 	u64 bytenr;
6200 
6201 	spin_lock(&fs_info->block_group_cache_lock);
6202 	bytenr = fs_info->first_logical_byte;
6203 	spin_unlock(&fs_info->block_group_cache_lock);
6204 
6205 	if (bytenr < (u64)-1)
6206 		return bytenr;
6207 
6208 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6209 	if (!cache)
6210 		return 0;
6211 
6212 	bytenr = cache->key.objectid;
6213 	btrfs_put_block_group(cache);
6214 
6215 	return bytenr;
6216 }
6217 
6218 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6219 			   struct btrfs_block_group_cache *cache,
6220 			   u64 bytenr, u64 num_bytes, int reserved)
6221 {
6222 	spin_lock(&cache->space_info->lock);
6223 	spin_lock(&cache->lock);
6224 	cache->pinned += num_bytes;
6225 	cache->space_info->bytes_pinned += num_bytes;
6226 	if (reserved) {
6227 		cache->reserved -= num_bytes;
6228 		cache->space_info->bytes_reserved -= num_bytes;
6229 	}
6230 	spin_unlock(&cache->lock);
6231 	spin_unlock(&cache->space_info->lock);
6232 
6233 	trace_btrfs_space_reservation(fs_info, "pinned",
6234 				      cache->space_info->flags, num_bytes, 1);
6235 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6236 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6237 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6238 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6239 	return 0;
6240 }
6241 
6242 /*
6243  * this function must be called within transaction
6244  */
6245 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6246 		     u64 bytenr, u64 num_bytes, int reserved)
6247 {
6248 	struct btrfs_block_group_cache *cache;
6249 
6250 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6251 	BUG_ON(!cache); /* Logic error */
6252 
6253 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6254 
6255 	btrfs_put_block_group(cache);
6256 	return 0;
6257 }
6258 
6259 /*
6260  * this function must be called within transaction
6261  */
6262 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6263 				    u64 bytenr, u64 num_bytes)
6264 {
6265 	struct btrfs_block_group_cache *cache;
6266 	int ret;
6267 
6268 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6269 	if (!cache)
6270 		return -EINVAL;
6271 
6272 	/*
6273 	 * pull in the free space cache (if any) so that our pin
6274 	 * removes the free space from the cache.  We have load_only set
6275 	 * to one because the slow code to read in the free extents does check
6276 	 * the pinned extents.
6277 	 */
6278 	cache_block_group(cache, 1);
6279 
6280 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6281 
6282 	/* remove us from the free space cache (if we're there at all) */
6283 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6284 	btrfs_put_block_group(cache);
6285 	return ret;
6286 }
6287 
6288 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6289 				   u64 start, u64 num_bytes)
6290 {
6291 	int ret;
6292 	struct btrfs_block_group_cache *block_group;
6293 	struct btrfs_caching_control *caching_ctl;
6294 
6295 	block_group = btrfs_lookup_block_group(fs_info, start);
6296 	if (!block_group)
6297 		return -EINVAL;
6298 
6299 	cache_block_group(block_group, 0);
6300 	caching_ctl = get_caching_control(block_group);
6301 
6302 	if (!caching_ctl) {
6303 		/* Logic error */
6304 		BUG_ON(!block_group_cache_done(block_group));
6305 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6306 	} else {
6307 		mutex_lock(&caching_ctl->mutex);
6308 
6309 		if (start >= caching_ctl->progress) {
6310 			ret = add_excluded_extent(fs_info, start, num_bytes);
6311 		} else if (start + num_bytes <= caching_ctl->progress) {
6312 			ret = btrfs_remove_free_space(block_group,
6313 						      start, num_bytes);
6314 		} else {
6315 			num_bytes = caching_ctl->progress - start;
6316 			ret = btrfs_remove_free_space(block_group,
6317 						      start, num_bytes);
6318 			if (ret)
6319 				goto out_lock;
6320 
6321 			num_bytes = (start + num_bytes) -
6322 				caching_ctl->progress;
6323 			start = caching_ctl->progress;
6324 			ret = add_excluded_extent(fs_info, start, num_bytes);
6325 		}
6326 out_lock:
6327 		mutex_unlock(&caching_ctl->mutex);
6328 		put_caching_control(caching_ctl);
6329 	}
6330 	btrfs_put_block_group(block_group);
6331 	return ret;
6332 }
6333 
6334 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6335 				 struct extent_buffer *eb)
6336 {
6337 	struct btrfs_file_extent_item *item;
6338 	struct btrfs_key key;
6339 	int found_type;
6340 	int i;
6341 	int ret = 0;
6342 
6343 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6344 		return 0;
6345 
6346 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6347 		btrfs_item_key_to_cpu(eb, &key, i);
6348 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6349 			continue;
6350 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6351 		found_type = btrfs_file_extent_type(eb, item);
6352 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6353 			continue;
6354 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6355 			continue;
6356 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6357 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6358 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6359 		if (ret)
6360 			break;
6361 	}
6362 
6363 	return ret;
6364 }
6365 
6366 static void
6367 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6368 {
6369 	atomic_inc(&bg->reservations);
6370 }
6371 
6372 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6373 					const u64 start)
6374 {
6375 	struct btrfs_block_group_cache *bg;
6376 
6377 	bg = btrfs_lookup_block_group(fs_info, start);
6378 	ASSERT(bg);
6379 	if (atomic_dec_and_test(&bg->reservations))
6380 		wake_up_var(&bg->reservations);
6381 	btrfs_put_block_group(bg);
6382 }
6383 
6384 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6385 {
6386 	struct btrfs_space_info *space_info = bg->space_info;
6387 
6388 	ASSERT(bg->ro);
6389 
6390 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6391 		return;
6392 
6393 	/*
6394 	 * Our block group is read only but before we set it to read only,
6395 	 * some task might have had allocated an extent from it already, but it
6396 	 * has not yet created a respective ordered extent (and added it to a
6397 	 * root's list of ordered extents).
6398 	 * Therefore wait for any task currently allocating extents, since the
6399 	 * block group's reservations counter is incremented while a read lock
6400 	 * on the groups' semaphore is held and decremented after releasing
6401 	 * the read access on that semaphore and creating the ordered extent.
6402 	 */
6403 	down_write(&space_info->groups_sem);
6404 	up_write(&space_info->groups_sem);
6405 
6406 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6407 }
6408 
6409 /**
6410  * btrfs_add_reserved_bytes - update the block_group and space info counters
6411  * @cache:	The cache we are manipulating
6412  * @ram_bytes:  The number of bytes of file content, and will be same to
6413  *              @num_bytes except for the compress path.
6414  * @num_bytes:	The number of bytes in question
6415  * @delalloc:   The blocks are allocated for the delalloc write
6416  *
6417  * This is called by the allocator when it reserves space. If this is a
6418  * reservation and the block group has become read only we cannot make the
6419  * reservation and return -EAGAIN, otherwise this function always succeeds.
6420  */
6421 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6422 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6423 {
6424 	struct btrfs_space_info *space_info = cache->space_info;
6425 	int ret = 0;
6426 
6427 	spin_lock(&space_info->lock);
6428 	spin_lock(&cache->lock);
6429 	if (cache->ro) {
6430 		ret = -EAGAIN;
6431 	} else {
6432 		cache->reserved += num_bytes;
6433 		space_info->bytes_reserved += num_bytes;
6434 		space_info->bytes_may_use -= ram_bytes;
6435 		if (delalloc)
6436 			cache->delalloc_bytes += num_bytes;
6437 	}
6438 	spin_unlock(&cache->lock);
6439 	spin_unlock(&space_info->lock);
6440 	return ret;
6441 }
6442 
6443 /**
6444  * btrfs_free_reserved_bytes - update the block_group and space info counters
6445  * @cache:      The cache we are manipulating
6446  * @num_bytes:  The number of bytes in question
6447  * @delalloc:   The blocks are allocated for the delalloc write
6448  *
6449  * This is called by somebody who is freeing space that was never actually used
6450  * on disk.  For example if you reserve some space for a new leaf in transaction
6451  * A and before transaction A commits you free that leaf, you call this with
6452  * reserve set to 0 in order to clear the reservation.
6453  */
6454 
6455 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6456 				      u64 num_bytes, int delalloc)
6457 {
6458 	struct btrfs_space_info *space_info = cache->space_info;
6459 
6460 	spin_lock(&space_info->lock);
6461 	spin_lock(&cache->lock);
6462 	if (cache->ro)
6463 		space_info->bytes_readonly += num_bytes;
6464 	cache->reserved -= num_bytes;
6465 	space_info->bytes_reserved -= num_bytes;
6466 	space_info->max_extent_size = 0;
6467 
6468 	if (delalloc)
6469 		cache->delalloc_bytes -= num_bytes;
6470 	spin_unlock(&cache->lock);
6471 	spin_unlock(&space_info->lock);
6472 }
6473 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6474 {
6475 	struct btrfs_caching_control *next;
6476 	struct btrfs_caching_control *caching_ctl;
6477 	struct btrfs_block_group_cache *cache;
6478 
6479 	down_write(&fs_info->commit_root_sem);
6480 
6481 	list_for_each_entry_safe(caching_ctl, next,
6482 				 &fs_info->caching_block_groups, list) {
6483 		cache = caching_ctl->block_group;
6484 		if (block_group_cache_done(cache)) {
6485 			cache->last_byte_to_unpin = (u64)-1;
6486 			list_del_init(&caching_ctl->list);
6487 			put_caching_control(caching_ctl);
6488 		} else {
6489 			cache->last_byte_to_unpin = caching_ctl->progress;
6490 		}
6491 	}
6492 
6493 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6494 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6495 	else
6496 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6497 
6498 	up_write(&fs_info->commit_root_sem);
6499 
6500 	update_global_block_rsv(fs_info);
6501 }
6502 
6503 /*
6504  * Returns the free cluster for the given space info and sets empty_cluster to
6505  * what it should be based on the mount options.
6506  */
6507 static struct btrfs_free_cluster *
6508 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6509 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6510 {
6511 	struct btrfs_free_cluster *ret = NULL;
6512 
6513 	*empty_cluster = 0;
6514 	if (btrfs_mixed_space_info(space_info))
6515 		return ret;
6516 
6517 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6518 		ret = &fs_info->meta_alloc_cluster;
6519 		if (btrfs_test_opt(fs_info, SSD))
6520 			*empty_cluster = SZ_2M;
6521 		else
6522 			*empty_cluster = SZ_64K;
6523 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6524 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6525 		*empty_cluster = SZ_2M;
6526 		ret = &fs_info->data_alloc_cluster;
6527 	}
6528 
6529 	return ret;
6530 }
6531 
6532 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6533 			      u64 start, u64 end,
6534 			      const bool return_free_space)
6535 {
6536 	struct btrfs_block_group_cache *cache = NULL;
6537 	struct btrfs_space_info *space_info;
6538 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6539 	struct btrfs_free_cluster *cluster = NULL;
6540 	u64 len;
6541 	u64 total_unpinned = 0;
6542 	u64 empty_cluster = 0;
6543 	bool readonly;
6544 
6545 	while (start <= end) {
6546 		readonly = false;
6547 		if (!cache ||
6548 		    start >= cache->key.objectid + cache->key.offset) {
6549 			if (cache)
6550 				btrfs_put_block_group(cache);
6551 			total_unpinned = 0;
6552 			cache = btrfs_lookup_block_group(fs_info, start);
6553 			BUG_ON(!cache); /* Logic error */
6554 
6555 			cluster = fetch_cluster_info(fs_info,
6556 						     cache->space_info,
6557 						     &empty_cluster);
6558 			empty_cluster <<= 1;
6559 		}
6560 
6561 		len = cache->key.objectid + cache->key.offset - start;
6562 		len = min(len, end + 1 - start);
6563 
6564 		if (start < cache->last_byte_to_unpin) {
6565 			len = min(len, cache->last_byte_to_unpin - start);
6566 			if (return_free_space)
6567 				btrfs_add_free_space(cache, start, len);
6568 		}
6569 
6570 		start += len;
6571 		total_unpinned += len;
6572 		space_info = cache->space_info;
6573 
6574 		/*
6575 		 * If this space cluster has been marked as fragmented and we've
6576 		 * unpinned enough in this block group to potentially allow a
6577 		 * cluster to be created inside of it go ahead and clear the
6578 		 * fragmented check.
6579 		 */
6580 		if (cluster && cluster->fragmented &&
6581 		    total_unpinned > empty_cluster) {
6582 			spin_lock(&cluster->lock);
6583 			cluster->fragmented = 0;
6584 			spin_unlock(&cluster->lock);
6585 		}
6586 
6587 		spin_lock(&space_info->lock);
6588 		spin_lock(&cache->lock);
6589 		cache->pinned -= len;
6590 		space_info->bytes_pinned -= len;
6591 
6592 		trace_btrfs_space_reservation(fs_info, "pinned",
6593 					      space_info->flags, len, 0);
6594 		space_info->max_extent_size = 0;
6595 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
6596 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6597 		if (cache->ro) {
6598 			space_info->bytes_readonly += len;
6599 			readonly = true;
6600 		}
6601 		spin_unlock(&cache->lock);
6602 		if (!readonly && return_free_space &&
6603 		    global_rsv->space_info == space_info) {
6604 			u64 to_add = len;
6605 
6606 			spin_lock(&global_rsv->lock);
6607 			if (!global_rsv->full) {
6608 				to_add = min(len, global_rsv->size -
6609 					     global_rsv->reserved);
6610 				global_rsv->reserved += to_add;
6611 				space_info->bytes_may_use += to_add;
6612 				if (global_rsv->reserved >= global_rsv->size)
6613 					global_rsv->full = 1;
6614 				trace_btrfs_space_reservation(fs_info,
6615 							      "space_info",
6616 							      space_info->flags,
6617 							      to_add, 1);
6618 				len -= to_add;
6619 			}
6620 			spin_unlock(&global_rsv->lock);
6621 			/* Add to any tickets we may have */
6622 			if (len)
6623 				space_info_add_new_bytes(fs_info, space_info,
6624 							 len);
6625 		}
6626 		spin_unlock(&space_info->lock);
6627 	}
6628 
6629 	if (cache)
6630 		btrfs_put_block_group(cache);
6631 	return 0;
6632 }
6633 
6634 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6635 {
6636 	struct btrfs_fs_info *fs_info = trans->fs_info;
6637 	struct btrfs_block_group_cache *block_group, *tmp;
6638 	struct list_head *deleted_bgs;
6639 	struct extent_io_tree *unpin;
6640 	u64 start;
6641 	u64 end;
6642 	int ret;
6643 
6644 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6645 		unpin = &fs_info->freed_extents[1];
6646 	else
6647 		unpin = &fs_info->freed_extents[0];
6648 
6649 	while (!trans->aborted) {
6650 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6651 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6652 					    EXTENT_DIRTY, NULL);
6653 		if (ret) {
6654 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6655 			break;
6656 		}
6657 
6658 		if (btrfs_test_opt(fs_info, DISCARD))
6659 			ret = btrfs_discard_extent(fs_info, start,
6660 						   end + 1 - start, NULL);
6661 
6662 		clear_extent_dirty(unpin, start, end);
6663 		unpin_extent_range(fs_info, start, end, true);
6664 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6665 		cond_resched();
6666 	}
6667 
6668 	/*
6669 	 * Transaction is finished.  We don't need the lock anymore.  We
6670 	 * do need to clean up the block groups in case of a transaction
6671 	 * abort.
6672 	 */
6673 	deleted_bgs = &trans->transaction->deleted_bgs;
6674 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6675 		u64 trimmed = 0;
6676 
6677 		ret = -EROFS;
6678 		if (!trans->aborted)
6679 			ret = btrfs_discard_extent(fs_info,
6680 						   block_group->key.objectid,
6681 						   block_group->key.offset,
6682 						   &trimmed);
6683 
6684 		list_del_init(&block_group->bg_list);
6685 		btrfs_put_block_group_trimming(block_group);
6686 		btrfs_put_block_group(block_group);
6687 
6688 		if (ret) {
6689 			const char *errstr = btrfs_decode_error(ret);
6690 			btrfs_warn(fs_info,
6691 			   "discard failed while removing blockgroup: errno=%d %s",
6692 				   ret, errstr);
6693 		}
6694 	}
6695 
6696 	return 0;
6697 }
6698 
6699 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6700 			       struct btrfs_delayed_ref_node *node, u64 parent,
6701 			       u64 root_objectid, u64 owner_objectid,
6702 			       u64 owner_offset, int refs_to_drop,
6703 			       struct btrfs_delayed_extent_op *extent_op)
6704 {
6705 	struct btrfs_fs_info *info = trans->fs_info;
6706 	struct btrfs_key key;
6707 	struct btrfs_path *path;
6708 	struct btrfs_root *extent_root = info->extent_root;
6709 	struct extent_buffer *leaf;
6710 	struct btrfs_extent_item *ei;
6711 	struct btrfs_extent_inline_ref *iref;
6712 	int ret;
6713 	int is_data;
6714 	int extent_slot = 0;
6715 	int found_extent = 0;
6716 	int num_to_del = 1;
6717 	u32 item_size;
6718 	u64 refs;
6719 	u64 bytenr = node->bytenr;
6720 	u64 num_bytes = node->num_bytes;
6721 	int last_ref = 0;
6722 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6723 
6724 	path = btrfs_alloc_path();
6725 	if (!path)
6726 		return -ENOMEM;
6727 
6728 	path->reada = READA_FORWARD;
6729 	path->leave_spinning = 1;
6730 
6731 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6732 	BUG_ON(!is_data && refs_to_drop != 1);
6733 
6734 	if (is_data)
6735 		skinny_metadata = false;
6736 
6737 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6738 				    parent, root_objectid, owner_objectid,
6739 				    owner_offset);
6740 	if (ret == 0) {
6741 		extent_slot = path->slots[0];
6742 		while (extent_slot >= 0) {
6743 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6744 					      extent_slot);
6745 			if (key.objectid != bytenr)
6746 				break;
6747 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6748 			    key.offset == num_bytes) {
6749 				found_extent = 1;
6750 				break;
6751 			}
6752 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6753 			    key.offset == owner_objectid) {
6754 				found_extent = 1;
6755 				break;
6756 			}
6757 			if (path->slots[0] - extent_slot > 5)
6758 				break;
6759 			extent_slot--;
6760 		}
6761 
6762 		if (!found_extent) {
6763 			BUG_ON(iref);
6764 			ret = remove_extent_backref(trans, path, NULL,
6765 						    refs_to_drop,
6766 						    is_data, &last_ref);
6767 			if (ret) {
6768 				btrfs_abort_transaction(trans, ret);
6769 				goto out;
6770 			}
6771 			btrfs_release_path(path);
6772 			path->leave_spinning = 1;
6773 
6774 			key.objectid = bytenr;
6775 			key.type = BTRFS_EXTENT_ITEM_KEY;
6776 			key.offset = num_bytes;
6777 
6778 			if (!is_data && skinny_metadata) {
6779 				key.type = BTRFS_METADATA_ITEM_KEY;
6780 				key.offset = owner_objectid;
6781 			}
6782 
6783 			ret = btrfs_search_slot(trans, extent_root,
6784 						&key, path, -1, 1);
6785 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6786 				/*
6787 				 * Couldn't find our skinny metadata item,
6788 				 * see if we have ye olde extent item.
6789 				 */
6790 				path->slots[0]--;
6791 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6792 						      path->slots[0]);
6793 				if (key.objectid == bytenr &&
6794 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6795 				    key.offset == num_bytes)
6796 					ret = 0;
6797 			}
6798 
6799 			if (ret > 0 && skinny_metadata) {
6800 				skinny_metadata = false;
6801 				key.objectid = bytenr;
6802 				key.type = BTRFS_EXTENT_ITEM_KEY;
6803 				key.offset = num_bytes;
6804 				btrfs_release_path(path);
6805 				ret = btrfs_search_slot(trans, extent_root,
6806 							&key, path, -1, 1);
6807 			}
6808 
6809 			if (ret) {
6810 				btrfs_err(info,
6811 					  "umm, got %d back from search, was looking for %llu",
6812 					  ret, bytenr);
6813 				if (ret > 0)
6814 					btrfs_print_leaf(path->nodes[0]);
6815 			}
6816 			if (ret < 0) {
6817 				btrfs_abort_transaction(trans, ret);
6818 				goto out;
6819 			}
6820 			extent_slot = path->slots[0];
6821 		}
6822 	} else if (WARN_ON(ret == -ENOENT)) {
6823 		btrfs_print_leaf(path->nodes[0]);
6824 		btrfs_err(info,
6825 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6826 			bytenr, parent, root_objectid, owner_objectid,
6827 			owner_offset);
6828 		btrfs_abort_transaction(trans, ret);
6829 		goto out;
6830 	} else {
6831 		btrfs_abort_transaction(trans, ret);
6832 		goto out;
6833 	}
6834 
6835 	leaf = path->nodes[0];
6836 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6837 	if (unlikely(item_size < sizeof(*ei))) {
6838 		ret = -EINVAL;
6839 		btrfs_print_v0_err(info);
6840 		btrfs_abort_transaction(trans, ret);
6841 		goto out;
6842 	}
6843 	ei = btrfs_item_ptr(leaf, extent_slot,
6844 			    struct btrfs_extent_item);
6845 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6846 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6847 		struct btrfs_tree_block_info *bi;
6848 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6849 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6850 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6851 	}
6852 
6853 	refs = btrfs_extent_refs(leaf, ei);
6854 	if (refs < refs_to_drop) {
6855 		btrfs_err(info,
6856 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6857 			  refs_to_drop, refs, bytenr);
6858 		ret = -EINVAL;
6859 		btrfs_abort_transaction(trans, ret);
6860 		goto out;
6861 	}
6862 	refs -= refs_to_drop;
6863 
6864 	if (refs > 0) {
6865 		if (extent_op)
6866 			__run_delayed_extent_op(extent_op, leaf, ei);
6867 		/*
6868 		 * In the case of inline back ref, reference count will
6869 		 * be updated by remove_extent_backref
6870 		 */
6871 		if (iref) {
6872 			BUG_ON(!found_extent);
6873 		} else {
6874 			btrfs_set_extent_refs(leaf, ei, refs);
6875 			btrfs_mark_buffer_dirty(leaf);
6876 		}
6877 		if (found_extent) {
6878 			ret = remove_extent_backref(trans, path, iref,
6879 						    refs_to_drop, is_data,
6880 						    &last_ref);
6881 			if (ret) {
6882 				btrfs_abort_transaction(trans, ret);
6883 				goto out;
6884 			}
6885 		}
6886 	} else {
6887 		if (found_extent) {
6888 			BUG_ON(is_data && refs_to_drop !=
6889 			       extent_data_ref_count(path, iref));
6890 			if (iref) {
6891 				BUG_ON(path->slots[0] != extent_slot);
6892 			} else {
6893 				BUG_ON(path->slots[0] != extent_slot + 1);
6894 				path->slots[0] = extent_slot;
6895 				num_to_del = 2;
6896 			}
6897 		}
6898 
6899 		last_ref = 1;
6900 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6901 				      num_to_del);
6902 		if (ret) {
6903 			btrfs_abort_transaction(trans, ret);
6904 			goto out;
6905 		}
6906 		btrfs_release_path(path);
6907 
6908 		if (is_data) {
6909 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
6910 			if (ret) {
6911 				btrfs_abort_transaction(trans, ret);
6912 				goto out;
6913 			}
6914 		}
6915 
6916 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6917 		if (ret) {
6918 			btrfs_abort_transaction(trans, ret);
6919 			goto out;
6920 		}
6921 
6922 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6923 		if (ret) {
6924 			btrfs_abort_transaction(trans, ret);
6925 			goto out;
6926 		}
6927 	}
6928 	btrfs_release_path(path);
6929 
6930 out:
6931 	btrfs_free_path(path);
6932 	return ret;
6933 }
6934 
6935 /*
6936  * when we free an block, it is possible (and likely) that we free the last
6937  * delayed ref for that extent as well.  This searches the delayed ref tree for
6938  * a given extent, and if there are no other delayed refs to be processed, it
6939  * removes it from the tree.
6940  */
6941 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6942 				      u64 bytenr)
6943 {
6944 	struct btrfs_delayed_ref_head *head;
6945 	struct btrfs_delayed_ref_root *delayed_refs;
6946 	int ret = 0;
6947 
6948 	delayed_refs = &trans->transaction->delayed_refs;
6949 	spin_lock(&delayed_refs->lock);
6950 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6951 	if (!head)
6952 		goto out_delayed_unlock;
6953 
6954 	spin_lock(&head->lock);
6955 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
6956 		goto out;
6957 
6958 	if (head->extent_op) {
6959 		if (!head->must_insert_reserved)
6960 			goto out;
6961 		btrfs_free_delayed_extent_op(head->extent_op);
6962 		head->extent_op = NULL;
6963 	}
6964 
6965 	/*
6966 	 * waiting for the lock here would deadlock.  If someone else has it
6967 	 * locked they are already in the process of dropping it anyway
6968 	 */
6969 	if (!mutex_trylock(&head->mutex))
6970 		goto out;
6971 
6972 	/*
6973 	 * at this point we have a head with no other entries.  Go
6974 	 * ahead and process it.
6975 	 */
6976 	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
6977 	RB_CLEAR_NODE(&head->href_node);
6978 	atomic_dec(&delayed_refs->num_entries);
6979 
6980 	/*
6981 	 * we don't take a ref on the node because we're removing it from the
6982 	 * tree, so we just steal the ref the tree was holding.
6983 	 */
6984 	delayed_refs->num_heads--;
6985 	if (head->processing == 0)
6986 		delayed_refs->num_heads_ready--;
6987 	head->processing = 0;
6988 	spin_unlock(&head->lock);
6989 	spin_unlock(&delayed_refs->lock);
6990 
6991 	BUG_ON(head->extent_op);
6992 	if (head->must_insert_reserved)
6993 		ret = 1;
6994 
6995 	mutex_unlock(&head->mutex);
6996 	btrfs_put_delayed_ref_head(head);
6997 	return ret;
6998 out:
6999 	spin_unlock(&head->lock);
7000 
7001 out_delayed_unlock:
7002 	spin_unlock(&delayed_refs->lock);
7003 	return 0;
7004 }
7005 
7006 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7007 			   struct btrfs_root *root,
7008 			   struct extent_buffer *buf,
7009 			   u64 parent, int last_ref)
7010 {
7011 	struct btrfs_fs_info *fs_info = root->fs_info;
7012 	int pin = 1;
7013 	int ret;
7014 
7015 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7016 		int old_ref_mod, new_ref_mod;
7017 
7018 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7019 				   root->root_key.objectid,
7020 				   btrfs_header_level(buf), 0,
7021 				   BTRFS_DROP_DELAYED_REF);
7022 		ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7023 						 buf->len, parent,
7024 						 root->root_key.objectid,
7025 						 btrfs_header_level(buf),
7026 						 BTRFS_DROP_DELAYED_REF, NULL,
7027 						 &old_ref_mod, &new_ref_mod);
7028 		BUG_ON(ret); /* -ENOMEM */
7029 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7030 	}
7031 
7032 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7033 		struct btrfs_block_group_cache *cache;
7034 
7035 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7036 			ret = check_ref_cleanup(trans, buf->start);
7037 			if (!ret)
7038 				goto out;
7039 		}
7040 
7041 		pin = 0;
7042 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7043 
7044 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7045 			pin_down_extent(fs_info, cache, buf->start,
7046 					buf->len, 1);
7047 			btrfs_put_block_group(cache);
7048 			goto out;
7049 		}
7050 
7051 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7052 
7053 		btrfs_add_free_space(cache, buf->start, buf->len);
7054 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7055 		btrfs_put_block_group(cache);
7056 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7057 	}
7058 out:
7059 	if (pin)
7060 		add_pinned_bytes(fs_info, buf->len, true,
7061 				 root->root_key.objectid);
7062 
7063 	if (last_ref) {
7064 		/*
7065 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7066 		 * matter anymore.
7067 		 */
7068 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7069 	}
7070 }
7071 
7072 /* Can return -ENOMEM */
7073 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7074 		      struct btrfs_root *root,
7075 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7076 		      u64 owner, u64 offset)
7077 {
7078 	struct btrfs_fs_info *fs_info = root->fs_info;
7079 	int old_ref_mod, new_ref_mod;
7080 	int ret;
7081 
7082 	if (btrfs_is_testing(fs_info))
7083 		return 0;
7084 
7085 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7086 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7087 				   root_objectid, owner, offset,
7088 				   BTRFS_DROP_DELAYED_REF);
7089 
7090 	/*
7091 	 * tree log blocks never actually go into the extent allocation
7092 	 * tree, just update pinning info and exit early.
7093 	 */
7094 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7095 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7096 		/* unlocks the pinned mutex */
7097 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7098 		old_ref_mod = new_ref_mod = 0;
7099 		ret = 0;
7100 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7101 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7102 						 num_bytes, parent,
7103 						 root_objectid, (int)owner,
7104 						 BTRFS_DROP_DELAYED_REF, NULL,
7105 						 &old_ref_mod, &new_ref_mod);
7106 	} else {
7107 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
7108 						 num_bytes, parent,
7109 						 root_objectid, owner, offset,
7110 						 0, BTRFS_DROP_DELAYED_REF,
7111 						 &old_ref_mod, &new_ref_mod);
7112 	}
7113 
7114 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7115 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7116 
7117 		add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7118 	}
7119 
7120 	return ret;
7121 }
7122 
7123 /*
7124  * when we wait for progress in the block group caching, its because
7125  * our allocation attempt failed at least once.  So, we must sleep
7126  * and let some progress happen before we try again.
7127  *
7128  * This function will sleep at least once waiting for new free space to
7129  * show up, and then it will check the block group free space numbers
7130  * for our min num_bytes.  Another option is to have it go ahead
7131  * and look in the rbtree for a free extent of a given size, but this
7132  * is a good start.
7133  *
7134  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7135  * any of the information in this block group.
7136  */
7137 static noinline void
7138 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7139 				u64 num_bytes)
7140 {
7141 	struct btrfs_caching_control *caching_ctl;
7142 
7143 	caching_ctl = get_caching_control(cache);
7144 	if (!caching_ctl)
7145 		return;
7146 
7147 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7148 		   (cache->free_space_ctl->free_space >= num_bytes));
7149 
7150 	put_caching_control(caching_ctl);
7151 }
7152 
7153 static noinline int
7154 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7155 {
7156 	struct btrfs_caching_control *caching_ctl;
7157 	int ret = 0;
7158 
7159 	caching_ctl = get_caching_control(cache);
7160 	if (!caching_ctl)
7161 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7162 
7163 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7164 	if (cache->cached == BTRFS_CACHE_ERROR)
7165 		ret = -EIO;
7166 	put_caching_control(caching_ctl);
7167 	return ret;
7168 }
7169 
7170 enum btrfs_loop_type {
7171 	LOOP_CACHING_NOWAIT = 0,
7172 	LOOP_CACHING_WAIT = 1,
7173 	LOOP_ALLOC_CHUNK = 2,
7174 	LOOP_NO_EMPTY_SIZE = 3,
7175 };
7176 
7177 static inline void
7178 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7179 		       int delalloc)
7180 {
7181 	if (delalloc)
7182 		down_read(&cache->data_rwsem);
7183 }
7184 
7185 static inline void
7186 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7187 		       int delalloc)
7188 {
7189 	btrfs_get_block_group(cache);
7190 	if (delalloc)
7191 		down_read(&cache->data_rwsem);
7192 }
7193 
7194 static struct btrfs_block_group_cache *
7195 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7196 		   struct btrfs_free_cluster *cluster,
7197 		   int delalloc)
7198 {
7199 	struct btrfs_block_group_cache *used_bg = NULL;
7200 
7201 	spin_lock(&cluster->refill_lock);
7202 	while (1) {
7203 		used_bg = cluster->block_group;
7204 		if (!used_bg)
7205 			return NULL;
7206 
7207 		if (used_bg == block_group)
7208 			return used_bg;
7209 
7210 		btrfs_get_block_group(used_bg);
7211 
7212 		if (!delalloc)
7213 			return used_bg;
7214 
7215 		if (down_read_trylock(&used_bg->data_rwsem))
7216 			return used_bg;
7217 
7218 		spin_unlock(&cluster->refill_lock);
7219 
7220 		/* We should only have one-level nested. */
7221 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7222 
7223 		spin_lock(&cluster->refill_lock);
7224 		if (used_bg == cluster->block_group)
7225 			return used_bg;
7226 
7227 		up_read(&used_bg->data_rwsem);
7228 		btrfs_put_block_group(used_bg);
7229 	}
7230 }
7231 
7232 static inline void
7233 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7234 			 int delalloc)
7235 {
7236 	if (delalloc)
7237 		up_read(&cache->data_rwsem);
7238 	btrfs_put_block_group(cache);
7239 }
7240 
7241 /*
7242  * walks the btree of allocated extents and find a hole of a given size.
7243  * The key ins is changed to record the hole:
7244  * ins->objectid == start position
7245  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7246  * ins->offset == the size of the hole.
7247  * Any available blocks before search_start are skipped.
7248  *
7249  * If there is no suitable free space, we will record the max size of
7250  * the free space extent currently.
7251  */
7252 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7253 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7254 				u64 hint_byte, struct btrfs_key *ins,
7255 				u64 flags, int delalloc)
7256 {
7257 	int ret = 0;
7258 	struct btrfs_root *root = fs_info->extent_root;
7259 	struct btrfs_free_cluster *last_ptr = NULL;
7260 	struct btrfs_block_group_cache *block_group = NULL;
7261 	u64 search_start = 0;
7262 	u64 max_extent_size = 0;
7263 	u64 max_free_space = 0;
7264 	u64 empty_cluster = 0;
7265 	struct btrfs_space_info *space_info;
7266 	int loop = 0;
7267 	int index = btrfs_bg_flags_to_raid_index(flags);
7268 	bool failed_cluster_refill = false;
7269 	bool failed_alloc = false;
7270 	bool use_cluster = true;
7271 	bool have_caching_bg = false;
7272 	bool orig_have_caching_bg = false;
7273 	bool full_search = false;
7274 
7275 	WARN_ON(num_bytes < fs_info->sectorsize);
7276 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7277 	ins->objectid = 0;
7278 	ins->offset = 0;
7279 
7280 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7281 
7282 	space_info = __find_space_info(fs_info, flags);
7283 	if (!space_info) {
7284 		btrfs_err(fs_info, "No space info for %llu", flags);
7285 		return -ENOSPC;
7286 	}
7287 
7288 	/*
7289 	 * If our free space is heavily fragmented we may not be able to make
7290 	 * big contiguous allocations, so instead of doing the expensive search
7291 	 * for free space, simply return ENOSPC with our max_extent_size so we
7292 	 * can go ahead and search for a more manageable chunk.
7293 	 *
7294 	 * If our max_extent_size is large enough for our allocation simply
7295 	 * disable clustering since we will likely not be able to find enough
7296 	 * space to create a cluster and induce latency trying.
7297 	 */
7298 	if (unlikely(space_info->max_extent_size)) {
7299 		spin_lock(&space_info->lock);
7300 		if (space_info->max_extent_size &&
7301 		    num_bytes > space_info->max_extent_size) {
7302 			ins->offset = space_info->max_extent_size;
7303 			spin_unlock(&space_info->lock);
7304 			return -ENOSPC;
7305 		} else if (space_info->max_extent_size) {
7306 			use_cluster = false;
7307 		}
7308 		spin_unlock(&space_info->lock);
7309 	}
7310 
7311 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7312 	if (last_ptr) {
7313 		spin_lock(&last_ptr->lock);
7314 		if (last_ptr->block_group)
7315 			hint_byte = last_ptr->window_start;
7316 		if (last_ptr->fragmented) {
7317 			/*
7318 			 * We still set window_start so we can keep track of the
7319 			 * last place we found an allocation to try and save
7320 			 * some time.
7321 			 */
7322 			hint_byte = last_ptr->window_start;
7323 			use_cluster = false;
7324 		}
7325 		spin_unlock(&last_ptr->lock);
7326 	}
7327 
7328 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7329 	search_start = max(search_start, hint_byte);
7330 	if (search_start == hint_byte) {
7331 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7332 		/*
7333 		 * we don't want to use the block group if it doesn't match our
7334 		 * allocation bits, or if its not cached.
7335 		 *
7336 		 * However if we are re-searching with an ideal block group
7337 		 * picked out then we don't care that the block group is cached.
7338 		 */
7339 		if (block_group && block_group_bits(block_group, flags) &&
7340 		    block_group->cached != BTRFS_CACHE_NO) {
7341 			down_read(&space_info->groups_sem);
7342 			if (list_empty(&block_group->list) ||
7343 			    block_group->ro) {
7344 				/*
7345 				 * someone is removing this block group,
7346 				 * we can't jump into the have_block_group
7347 				 * target because our list pointers are not
7348 				 * valid
7349 				 */
7350 				btrfs_put_block_group(block_group);
7351 				up_read(&space_info->groups_sem);
7352 			} else {
7353 				index = btrfs_bg_flags_to_raid_index(
7354 						block_group->flags);
7355 				btrfs_lock_block_group(block_group, delalloc);
7356 				goto have_block_group;
7357 			}
7358 		} else if (block_group) {
7359 			btrfs_put_block_group(block_group);
7360 		}
7361 	}
7362 search:
7363 	have_caching_bg = false;
7364 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7365 		full_search = true;
7366 	down_read(&space_info->groups_sem);
7367 	list_for_each_entry(block_group, &space_info->block_groups[index],
7368 			    list) {
7369 		u64 offset;
7370 		int cached;
7371 
7372 		/* If the block group is read-only, we can skip it entirely. */
7373 		if (unlikely(block_group->ro))
7374 			continue;
7375 
7376 		btrfs_grab_block_group(block_group, delalloc);
7377 		search_start = block_group->key.objectid;
7378 
7379 		/*
7380 		 * this can happen if we end up cycling through all the
7381 		 * raid types, but we want to make sure we only allocate
7382 		 * for the proper type.
7383 		 */
7384 		if (!block_group_bits(block_group, flags)) {
7385 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
7386 				BTRFS_BLOCK_GROUP_RAID1 |
7387 				BTRFS_BLOCK_GROUP_RAID5 |
7388 				BTRFS_BLOCK_GROUP_RAID6 |
7389 				BTRFS_BLOCK_GROUP_RAID10;
7390 
7391 			/*
7392 			 * if they asked for extra copies and this block group
7393 			 * doesn't provide them, bail.  This does allow us to
7394 			 * fill raid0 from raid1.
7395 			 */
7396 			if ((flags & extra) && !(block_group->flags & extra))
7397 				goto loop;
7398 		}
7399 
7400 have_block_group:
7401 		cached = block_group_cache_done(block_group);
7402 		if (unlikely(!cached)) {
7403 			have_caching_bg = true;
7404 			ret = cache_block_group(block_group, 0);
7405 			BUG_ON(ret < 0);
7406 			ret = 0;
7407 		}
7408 
7409 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7410 			goto loop;
7411 
7412 		/*
7413 		 * Ok we want to try and use the cluster allocator, so
7414 		 * lets look there
7415 		 */
7416 		if (last_ptr && use_cluster) {
7417 			struct btrfs_block_group_cache *used_block_group;
7418 			unsigned long aligned_cluster;
7419 			/*
7420 			 * the refill lock keeps out other
7421 			 * people trying to start a new cluster
7422 			 */
7423 			used_block_group = btrfs_lock_cluster(block_group,
7424 							      last_ptr,
7425 							      delalloc);
7426 			if (!used_block_group)
7427 				goto refill_cluster;
7428 
7429 			if (used_block_group != block_group &&
7430 			    (used_block_group->ro ||
7431 			     !block_group_bits(used_block_group, flags)))
7432 				goto release_cluster;
7433 
7434 			offset = btrfs_alloc_from_cluster(used_block_group,
7435 						last_ptr,
7436 						num_bytes,
7437 						used_block_group->key.objectid,
7438 						&max_extent_size);
7439 			if (offset) {
7440 				/* we have a block, we're done */
7441 				spin_unlock(&last_ptr->refill_lock);
7442 				trace_btrfs_reserve_extent_cluster(
7443 						used_block_group,
7444 						search_start, num_bytes);
7445 				if (used_block_group != block_group) {
7446 					btrfs_release_block_group(block_group,
7447 								  delalloc);
7448 					block_group = used_block_group;
7449 				}
7450 				goto checks;
7451 			}
7452 
7453 			WARN_ON(last_ptr->block_group != used_block_group);
7454 release_cluster:
7455 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7456 			 * set up a new clusters, so lets just skip it
7457 			 * and let the allocator find whatever block
7458 			 * it can find.  If we reach this point, we
7459 			 * will have tried the cluster allocator
7460 			 * plenty of times and not have found
7461 			 * anything, so we are likely way too
7462 			 * fragmented for the clustering stuff to find
7463 			 * anything.
7464 			 *
7465 			 * However, if the cluster is taken from the
7466 			 * current block group, release the cluster
7467 			 * first, so that we stand a better chance of
7468 			 * succeeding in the unclustered
7469 			 * allocation.  */
7470 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7471 			    used_block_group != block_group) {
7472 				spin_unlock(&last_ptr->refill_lock);
7473 				btrfs_release_block_group(used_block_group,
7474 							  delalloc);
7475 				goto unclustered_alloc;
7476 			}
7477 
7478 			/*
7479 			 * this cluster didn't work out, free it and
7480 			 * start over
7481 			 */
7482 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7483 
7484 			if (used_block_group != block_group)
7485 				btrfs_release_block_group(used_block_group,
7486 							  delalloc);
7487 refill_cluster:
7488 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7489 				spin_unlock(&last_ptr->refill_lock);
7490 				goto unclustered_alloc;
7491 			}
7492 
7493 			aligned_cluster = max_t(unsigned long,
7494 						empty_cluster + empty_size,
7495 					      block_group->full_stripe_len);
7496 
7497 			/* allocate a cluster in this block group */
7498 			ret = btrfs_find_space_cluster(fs_info, block_group,
7499 						       last_ptr, search_start,
7500 						       num_bytes,
7501 						       aligned_cluster);
7502 			if (ret == 0) {
7503 				/*
7504 				 * now pull our allocation out of this
7505 				 * cluster
7506 				 */
7507 				offset = btrfs_alloc_from_cluster(block_group,
7508 							last_ptr,
7509 							num_bytes,
7510 							search_start,
7511 							&max_extent_size);
7512 				if (offset) {
7513 					/* we found one, proceed */
7514 					spin_unlock(&last_ptr->refill_lock);
7515 					trace_btrfs_reserve_extent_cluster(
7516 						block_group, search_start,
7517 						num_bytes);
7518 					goto checks;
7519 				}
7520 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7521 				   && !failed_cluster_refill) {
7522 				spin_unlock(&last_ptr->refill_lock);
7523 
7524 				failed_cluster_refill = true;
7525 				wait_block_group_cache_progress(block_group,
7526 				       num_bytes + empty_cluster + empty_size);
7527 				goto have_block_group;
7528 			}
7529 
7530 			/*
7531 			 * at this point we either didn't find a cluster
7532 			 * or we weren't able to allocate a block from our
7533 			 * cluster.  Free the cluster we've been trying
7534 			 * to use, and go to the next block group
7535 			 */
7536 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7537 			spin_unlock(&last_ptr->refill_lock);
7538 			goto loop;
7539 		}
7540 
7541 unclustered_alloc:
7542 		/*
7543 		 * We are doing an unclustered alloc, set the fragmented flag so
7544 		 * we don't bother trying to setup a cluster again until we get
7545 		 * more space.
7546 		 */
7547 		if (unlikely(last_ptr)) {
7548 			spin_lock(&last_ptr->lock);
7549 			last_ptr->fragmented = 1;
7550 			spin_unlock(&last_ptr->lock);
7551 		}
7552 		if (cached) {
7553 			struct btrfs_free_space_ctl *ctl =
7554 				block_group->free_space_ctl;
7555 
7556 			spin_lock(&ctl->tree_lock);
7557 			if (ctl->free_space <
7558 			    num_bytes + empty_cluster + empty_size) {
7559 				max_free_space = max(max_free_space,
7560 						     ctl->free_space);
7561 				spin_unlock(&ctl->tree_lock);
7562 				goto loop;
7563 			}
7564 			spin_unlock(&ctl->tree_lock);
7565 		}
7566 
7567 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7568 						    num_bytes, empty_size,
7569 						    &max_extent_size);
7570 		/*
7571 		 * If we didn't find a chunk, and we haven't failed on this
7572 		 * block group before, and this block group is in the middle of
7573 		 * caching and we are ok with waiting, then go ahead and wait
7574 		 * for progress to be made, and set failed_alloc to true.
7575 		 *
7576 		 * If failed_alloc is true then we've already waited on this
7577 		 * block group once and should move on to the next block group.
7578 		 */
7579 		if (!offset && !failed_alloc && !cached &&
7580 		    loop > LOOP_CACHING_NOWAIT) {
7581 			wait_block_group_cache_progress(block_group,
7582 						num_bytes + empty_size);
7583 			failed_alloc = true;
7584 			goto have_block_group;
7585 		} else if (!offset) {
7586 			goto loop;
7587 		}
7588 checks:
7589 		search_start = round_up(offset, fs_info->stripesize);
7590 
7591 		/* move on to the next group */
7592 		if (search_start + num_bytes >
7593 		    block_group->key.objectid + block_group->key.offset) {
7594 			btrfs_add_free_space(block_group, offset, num_bytes);
7595 			goto loop;
7596 		}
7597 
7598 		if (offset < search_start)
7599 			btrfs_add_free_space(block_group, offset,
7600 					     search_start - offset);
7601 
7602 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7603 				num_bytes, delalloc);
7604 		if (ret == -EAGAIN) {
7605 			btrfs_add_free_space(block_group, offset, num_bytes);
7606 			goto loop;
7607 		}
7608 		btrfs_inc_block_group_reservations(block_group);
7609 
7610 		/* we are all good, lets return */
7611 		ins->objectid = search_start;
7612 		ins->offset = num_bytes;
7613 
7614 		trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7615 		btrfs_release_block_group(block_group, delalloc);
7616 		break;
7617 loop:
7618 		failed_cluster_refill = false;
7619 		failed_alloc = false;
7620 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7621 		       index);
7622 		btrfs_release_block_group(block_group, delalloc);
7623 		cond_resched();
7624 	}
7625 	up_read(&space_info->groups_sem);
7626 
7627 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7628 		&& !orig_have_caching_bg)
7629 		orig_have_caching_bg = true;
7630 
7631 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7632 		goto search;
7633 
7634 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7635 		goto search;
7636 
7637 	/*
7638 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7639 	 *			caching kthreads as we move along
7640 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7641 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7642 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7643 	 *			again
7644 	 */
7645 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7646 		index = 0;
7647 		if (loop == LOOP_CACHING_NOWAIT) {
7648 			/*
7649 			 * We want to skip the LOOP_CACHING_WAIT step if we
7650 			 * don't have any uncached bgs and we've already done a
7651 			 * full search through.
7652 			 */
7653 			if (orig_have_caching_bg || !full_search)
7654 				loop = LOOP_CACHING_WAIT;
7655 			else
7656 				loop = LOOP_ALLOC_CHUNK;
7657 		} else {
7658 			loop++;
7659 		}
7660 
7661 		if (loop == LOOP_ALLOC_CHUNK) {
7662 			struct btrfs_trans_handle *trans;
7663 			int exist = 0;
7664 
7665 			trans = current->journal_info;
7666 			if (trans)
7667 				exist = 1;
7668 			else
7669 				trans = btrfs_join_transaction(root);
7670 
7671 			if (IS_ERR(trans)) {
7672 				ret = PTR_ERR(trans);
7673 				goto out;
7674 			}
7675 
7676 			ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7677 
7678 			/*
7679 			 * If we can't allocate a new chunk we've already looped
7680 			 * through at least once, move on to the NO_EMPTY_SIZE
7681 			 * case.
7682 			 */
7683 			if (ret == -ENOSPC)
7684 				loop = LOOP_NO_EMPTY_SIZE;
7685 
7686 			/*
7687 			 * Do not bail out on ENOSPC since we
7688 			 * can do more things.
7689 			 */
7690 			if (ret < 0 && ret != -ENOSPC)
7691 				btrfs_abort_transaction(trans, ret);
7692 			else
7693 				ret = 0;
7694 			if (!exist)
7695 				btrfs_end_transaction(trans);
7696 			if (ret)
7697 				goto out;
7698 		}
7699 
7700 		if (loop == LOOP_NO_EMPTY_SIZE) {
7701 			/*
7702 			 * Don't loop again if we already have no empty_size and
7703 			 * no empty_cluster.
7704 			 */
7705 			if (empty_size == 0 &&
7706 			    empty_cluster == 0) {
7707 				ret = -ENOSPC;
7708 				goto out;
7709 			}
7710 			empty_size = 0;
7711 			empty_cluster = 0;
7712 		}
7713 
7714 		goto search;
7715 	} else if (!ins->objectid) {
7716 		ret = -ENOSPC;
7717 	} else if (ins->objectid) {
7718 		if (!use_cluster && last_ptr) {
7719 			spin_lock(&last_ptr->lock);
7720 			last_ptr->window_start = ins->objectid;
7721 			spin_unlock(&last_ptr->lock);
7722 		}
7723 		ret = 0;
7724 	}
7725 out:
7726 	if (ret == -ENOSPC) {
7727 		if (!max_extent_size)
7728 			max_extent_size = max_free_space;
7729 		spin_lock(&space_info->lock);
7730 		space_info->max_extent_size = max_extent_size;
7731 		spin_unlock(&space_info->lock);
7732 		ins->offset = max_extent_size;
7733 	}
7734 	return ret;
7735 }
7736 
7737 static void dump_space_info(struct btrfs_fs_info *fs_info,
7738 			    struct btrfs_space_info *info, u64 bytes,
7739 			    int dump_block_groups)
7740 {
7741 	struct btrfs_block_group_cache *cache;
7742 	int index = 0;
7743 
7744 	spin_lock(&info->lock);
7745 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7746 		   info->flags,
7747 		   info->total_bytes - btrfs_space_info_used(info, true),
7748 		   info->full ? "" : "not ");
7749 	btrfs_info(fs_info,
7750 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7751 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7752 		info->bytes_reserved, info->bytes_may_use,
7753 		info->bytes_readonly);
7754 	spin_unlock(&info->lock);
7755 
7756 	if (!dump_block_groups)
7757 		return;
7758 
7759 	down_read(&info->groups_sem);
7760 again:
7761 	list_for_each_entry(cache, &info->block_groups[index], list) {
7762 		spin_lock(&cache->lock);
7763 		btrfs_info(fs_info,
7764 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7765 			cache->key.objectid, cache->key.offset,
7766 			btrfs_block_group_used(&cache->item), cache->pinned,
7767 			cache->reserved, cache->ro ? "[readonly]" : "");
7768 		btrfs_dump_free_space(cache, bytes);
7769 		spin_unlock(&cache->lock);
7770 	}
7771 	if (++index < BTRFS_NR_RAID_TYPES)
7772 		goto again;
7773 	up_read(&info->groups_sem);
7774 }
7775 
7776 /*
7777  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7778  *			  hole that is at least as big as @num_bytes.
7779  *
7780  * @root           -	The root that will contain this extent
7781  *
7782  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
7783  *			is used for accounting purposes. This value differs
7784  *			from @num_bytes only in the case of compressed extents.
7785  *
7786  * @num_bytes      -	Number of bytes to allocate on-disk.
7787  *
7788  * @min_alloc_size -	Indicates the minimum amount of space that the
7789  *			allocator should try to satisfy. In some cases
7790  *			@num_bytes may be larger than what is required and if
7791  *			the filesystem is fragmented then allocation fails.
7792  *			However, the presence of @min_alloc_size gives a
7793  *			chance to try and satisfy the smaller allocation.
7794  *
7795  * @empty_size     -	A hint that you plan on doing more COW. This is the
7796  *			size in bytes the allocator should try to find free
7797  *			next to the block it returns.  This is just a hint and
7798  *			may be ignored by the allocator.
7799  *
7800  * @hint_byte      -	Hint to the allocator to start searching above the byte
7801  *			address passed. It might be ignored.
7802  *
7803  * @ins            -	This key is modified to record the found hole. It will
7804  *			have the following values:
7805  *			ins->objectid == start position
7806  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
7807  *			ins->offset == the size of the hole.
7808  *
7809  * @is_data        -	Boolean flag indicating whether an extent is
7810  *			allocated for data (true) or metadata (false)
7811  *
7812  * @delalloc       -	Boolean flag indicating whether this allocation is for
7813  *			delalloc or not. If 'true' data_rwsem of block groups
7814  *			is going to be acquired.
7815  *
7816  *
7817  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7818  * case -ENOSPC is returned then @ins->offset will contain the size of the
7819  * largest available hole the allocator managed to find.
7820  */
7821 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7822 			 u64 num_bytes, u64 min_alloc_size,
7823 			 u64 empty_size, u64 hint_byte,
7824 			 struct btrfs_key *ins, int is_data, int delalloc)
7825 {
7826 	struct btrfs_fs_info *fs_info = root->fs_info;
7827 	bool final_tried = num_bytes == min_alloc_size;
7828 	u64 flags;
7829 	int ret;
7830 
7831 	flags = get_alloc_profile_by_root(root, is_data);
7832 again:
7833 	WARN_ON(num_bytes < fs_info->sectorsize);
7834 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7835 			       hint_byte, ins, flags, delalloc);
7836 	if (!ret && !is_data) {
7837 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7838 	} else if (ret == -ENOSPC) {
7839 		if (!final_tried && ins->offset) {
7840 			num_bytes = min(num_bytes >> 1, ins->offset);
7841 			num_bytes = round_down(num_bytes,
7842 					       fs_info->sectorsize);
7843 			num_bytes = max(num_bytes, min_alloc_size);
7844 			ram_bytes = num_bytes;
7845 			if (num_bytes == min_alloc_size)
7846 				final_tried = true;
7847 			goto again;
7848 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7849 			struct btrfs_space_info *sinfo;
7850 
7851 			sinfo = __find_space_info(fs_info, flags);
7852 			btrfs_err(fs_info,
7853 				  "allocation failed flags %llu, wanted %llu",
7854 				  flags, num_bytes);
7855 			if (sinfo)
7856 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7857 		}
7858 	}
7859 
7860 	return ret;
7861 }
7862 
7863 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7864 					u64 start, u64 len,
7865 					int pin, int delalloc)
7866 {
7867 	struct btrfs_block_group_cache *cache;
7868 	int ret = 0;
7869 
7870 	cache = btrfs_lookup_block_group(fs_info, start);
7871 	if (!cache) {
7872 		btrfs_err(fs_info, "Unable to find block group for %llu",
7873 			  start);
7874 		return -ENOSPC;
7875 	}
7876 
7877 	if (pin)
7878 		pin_down_extent(fs_info, cache, start, len, 1);
7879 	else {
7880 		if (btrfs_test_opt(fs_info, DISCARD))
7881 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
7882 		btrfs_add_free_space(cache, start, len);
7883 		btrfs_free_reserved_bytes(cache, len, delalloc);
7884 		trace_btrfs_reserved_extent_free(fs_info, start, len);
7885 	}
7886 
7887 	btrfs_put_block_group(cache);
7888 	return ret;
7889 }
7890 
7891 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7892 			       u64 start, u64 len, int delalloc)
7893 {
7894 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7895 }
7896 
7897 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7898 				       u64 start, u64 len)
7899 {
7900 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7901 }
7902 
7903 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7904 				      u64 parent, u64 root_objectid,
7905 				      u64 flags, u64 owner, u64 offset,
7906 				      struct btrfs_key *ins, int ref_mod)
7907 {
7908 	struct btrfs_fs_info *fs_info = trans->fs_info;
7909 	int ret;
7910 	struct btrfs_extent_item *extent_item;
7911 	struct btrfs_extent_inline_ref *iref;
7912 	struct btrfs_path *path;
7913 	struct extent_buffer *leaf;
7914 	int type;
7915 	u32 size;
7916 
7917 	if (parent > 0)
7918 		type = BTRFS_SHARED_DATA_REF_KEY;
7919 	else
7920 		type = BTRFS_EXTENT_DATA_REF_KEY;
7921 
7922 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7923 
7924 	path = btrfs_alloc_path();
7925 	if (!path)
7926 		return -ENOMEM;
7927 
7928 	path->leave_spinning = 1;
7929 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7930 				      ins, size);
7931 	if (ret) {
7932 		btrfs_free_path(path);
7933 		return ret;
7934 	}
7935 
7936 	leaf = path->nodes[0];
7937 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7938 				     struct btrfs_extent_item);
7939 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7940 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7941 	btrfs_set_extent_flags(leaf, extent_item,
7942 			       flags | BTRFS_EXTENT_FLAG_DATA);
7943 
7944 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7945 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7946 	if (parent > 0) {
7947 		struct btrfs_shared_data_ref *ref;
7948 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7949 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7950 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7951 	} else {
7952 		struct btrfs_extent_data_ref *ref;
7953 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7954 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7955 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7956 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7957 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7958 	}
7959 
7960 	btrfs_mark_buffer_dirty(path->nodes[0]);
7961 	btrfs_free_path(path);
7962 
7963 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7964 	if (ret)
7965 		return ret;
7966 
7967 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7968 	if (ret) { /* -ENOENT, logic error */
7969 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7970 			ins->objectid, ins->offset);
7971 		BUG();
7972 	}
7973 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7974 	return ret;
7975 }
7976 
7977 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7978 				     struct btrfs_delayed_ref_node *node,
7979 				     struct btrfs_delayed_extent_op *extent_op)
7980 {
7981 	struct btrfs_fs_info *fs_info = trans->fs_info;
7982 	int ret;
7983 	struct btrfs_extent_item *extent_item;
7984 	struct btrfs_key extent_key;
7985 	struct btrfs_tree_block_info *block_info;
7986 	struct btrfs_extent_inline_ref *iref;
7987 	struct btrfs_path *path;
7988 	struct extent_buffer *leaf;
7989 	struct btrfs_delayed_tree_ref *ref;
7990 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7991 	u64 num_bytes;
7992 	u64 flags = extent_op->flags_to_set;
7993 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7994 
7995 	ref = btrfs_delayed_node_to_tree_ref(node);
7996 
7997 	extent_key.objectid = node->bytenr;
7998 	if (skinny_metadata) {
7999 		extent_key.offset = ref->level;
8000 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
8001 		num_bytes = fs_info->nodesize;
8002 	} else {
8003 		extent_key.offset = node->num_bytes;
8004 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8005 		size += sizeof(*block_info);
8006 		num_bytes = node->num_bytes;
8007 	}
8008 
8009 	path = btrfs_alloc_path();
8010 	if (!path)
8011 		return -ENOMEM;
8012 
8013 	path->leave_spinning = 1;
8014 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8015 				      &extent_key, size);
8016 	if (ret) {
8017 		btrfs_free_path(path);
8018 		return ret;
8019 	}
8020 
8021 	leaf = path->nodes[0];
8022 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8023 				     struct btrfs_extent_item);
8024 	btrfs_set_extent_refs(leaf, extent_item, 1);
8025 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8026 	btrfs_set_extent_flags(leaf, extent_item,
8027 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8028 
8029 	if (skinny_metadata) {
8030 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8031 	} else {
8032 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8033 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8034 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
8035 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8036 	}
8037 
8038 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8039 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8040 		btrfs_set_extent_inline_ref_type(leaf, iref,
8041 						 BTRFS_SHARED_BLOCK_REF_KEY);
8042 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8043 	} else {
8044 		btrfs_set_extent_inline_ref_type(leaf, iref,
8045 						 BTRFS_TREE_BLOCK_REF_KEY);
8046 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8047 	}
8048 
8049 	btrfs_mark_buffer_dirty(leaf);
8050 	btrfs_free_path(path);
8051 
8052 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
8053 					  num_bytes);
8054 	if (ret)
8055 		return ret;
8056 
8057 	ret = update_block_group(trans, fs_info, extent_key.objectid,
8058 				 fs_info->nodesize, 1);
8059 	if (ret) { /* -ENOENT, logic error */
8060 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8061 			extent_key.objectid, extent_key.offset);
8062 		BUG();
8063 	}
8064 
8065 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8066 					  fs_info->nodesize);
8067 	return ret;
8068 }
8069 
8070 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8071 				     struct btrfs_root *root, u64 owner,
8072 				     u64 offset, u64 ram_bytes,
8073 				     struct btrfs_key *ins)
8074 {
8075 	int ret;
8076 
8077 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8078 
8079 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8080 			   root->root_key.objectid, owner, offset,
8081 			   BTRFS_ADD_DELAYED_EXTENT);
8082 
8083 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8084 					 ins->offset, 0,
8085 					 root->root_key.objectid, owner,
8086 					 offset, ram_bytes,
8087 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8088 	return ret;
8089 }
8090 
8091 /*
8092  * this is used by the tree logging recovery code.  It records that
8093  * an extent has been allocated and makes sure to clear the free
8094  * space cache bits as well
8095  */
8096 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8097 				   u64 root_objectid, u64 owner, u64 offset,
8098 				   struct btrfs_key *ins)
8099 {
8100 	struct btrfs_fs_info *fs_info = trans->fs_info;
8101 	int ret;
8102 	struct btrfs_block_group_cache *block_group;
8103 	struct btrfs_space_info *space_info;
8104 
8105 	/*
8106 	 * Mixed block groups will exclude before processing the log so we only
8107 	 * need to do the exclude dance if this fs isn't mixed.
8108 	 */
8109 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8110 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8111 					      ins->offset);
8112 		if (ret)
8113 			return ret;
8114 	}
8115 
8116 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8117 	if (!block_group)
8118 		return -EINVAL;
8119 
8120 	space_info = block_group->space_info;
8121 	spin_lock(&space_info->lock);
8122 	spin_lock(&block_group->lock);
8123 	space_info->bytes_reserved += ins->offset;
8124 	block_group->reserved += ins->offset;
8125 	spin_unlock(&block_group->lock);
8126 	spin_unlock(&space_info->lock);
8127 
8128 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8129 					 offset, ins, 1);
8130 	btrfs_put_block_group(block_group);
8131 	return ret;
8132 }
8133 
8134 static struct extent_buffer *
8135 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8136 		      u64 bytenr, int level, u64 owner)
8137 {
8138 	struct btrfs_fs_info *fs_info = root->fs_info;
8139 	struct extent_buffer *buf;
8140 
8141 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8142 	if (IS_ERR(buf))
8143 		return buf;
8144 
8145 	/*
8146 	 * Extra safety check in case the extent tree is corrupted and extent
8147 	 * allocator chooses to use a tree block which is already used and
8148 	 * locked.
8149 	 */
8150 	if (buf->lock_owner == current->pid) {
8151 		btrfs_err_rl(fs_info,
8152 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8153 			buf->start, btrfs_header_owner(buf), current->pid);
8154 		free_extent_buffer(buf);
8155 		return ERR_PTR(-EUCLEAN);
8156 	}
8157 
8158 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8159 	btrfs_tree_lock(buf);
8160 	clean_tree_block(fs_info, buf);
8161 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8162 
8163 	btrfs_set_lock_blocking(buf);
8164 	set_extent_buffer_uptodate(buf);
8165 
8166 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8167 	btrfs_set_header_level(buf, level);
8168 	btrfs_set_header_bytenr(buf, buf->start);
8169 	btrfs_set_header_generation(buf, trans->transid);
8170 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8171 	btrfs_set_header_owner(buf, owner);
8172 	write_extent_buffer_fsid(buf, fs_info->fsid);
8173 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8174 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8175 		buf->log_index = root->log_transid % 2;
8176 		/*
8177 		 * we allow two log transactions at a time, use different
8178 		 * EXENT bit to differentiate dirty pages.
8179 		 */
8180 		if (buf->log_index == 0)
8181 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8182 					buf->start + buf->len - 1, GFP_NOFS);
8183 		else
8184 			set_extent_new(&root->dirty_log_pages, buf->start,
8185 					buf->start + buf->len - 1);
8186 	} else {
8187 		buf->log_index = -1;
8188 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8189 			 buf->start + buf->len - 1, GFP_NOFS);
8190 	}
8191 	trans->dirty = true;
8192 	/* this returns a buffer locked for blocking */
8193 	return buf;
8194 }
8195 
8196 static struct btrfs_block_rsv *
8197 use_block_rsv(struct btrfs_trans_handle *trans,
8198 	      struct btrfs_root *root, u32 blocksize)
8199 {
8200 	struct btrfs_fs_info *fs_info = root->fs_info;
8201 	struct btrfs_block_rsv *block_rsv;
8202 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8203 	int ret;
8204 	bool global_updated = false;
8205 
8206 	block_rsv = get_block_rsv(trans, root);
8207 
8208 	if (unlikely(block_rsv->size == 0))
8209 		goto try_reserve;
8210 again:
8211 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8212 	if (!ret)
8213 		return block_rsv;
8214 
8215 	if (block_rsv->failfast)
8216 		return ERR_PTR(ret);
8217 
8218 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8219 		global_updated = true;
8220 		update_global_block_rsv(fs_info);
8221 		goto again;
8222 	}
8223 
8224 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8225 		static DEFINE_RATELIMIT_STATE(_rs,
8226 				DEFAULT_RATELIMIT_INTERVAL * 10,
8227 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8228 		if (__ratelimit(&_rs))
8229 			WARN(1, KERN_DEBUG
8230 				"BTRFS: block rsv returned %d\n", ret);
8231 	}
8232 try_reserve:
8233 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8234 				     BTRFS_RESERVE_NO_FLUSH);
8235 	if (!ret)
8236 		return block_rsv;
8237 	/*
8238 	 * If we couldn't reserve metadata bytes try and use some from
8239 	 * the global reserve if its space type is the same as the global
8240 	 * reservation.
8241 	 */
8242 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8243 	    block_rsv->space_info == global_rsv->space_info) {
8244 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8245 		if (!ret)
8246 			return global_rsv;
8247 	}
8248 	return ERR_PTR(ret);
8249 }
8250 
8251 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8252 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8253 {
8254 	block_rsv_add_bytes(block_rsv, blocksize, false);
8255 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8256 }
8257 
8258 /*
8259  * finds a free extent and does all the dirty work required for allocation
8260  * returns the tree buffer or an ERR_PTR on error.
8261  */
8262 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8263 					     struct btrfs_root *root,
8264 					     u64 parent, u64 root_objectid,
8265 					     const struct btrfs_disk_key *key,
8266 					     int level, u64 hint,
8267 					     u64 empty_size)
8268 {
8269 	struct btrfs_fs_info *fs_info = root->fs_info;
8270 	struct btrfs_key ins;
8271 	struct btrfs_block_rsv *block_rsv;
8272 	struct extent_buffer *buf;
8273 	struct btrfs_delayed_extent_op *extent_op;
8274 	u64 flags = 0;
8275 	int ret;
8276 	u32 blocksize = fs_info->nodesize;
8277 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8278 
8279 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8280 	if (btrfs_is_testing(fs_info)) {
8281 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8282 					    level, root_objectid);
8283 		if (!IS_ERR(buf))
8284 			root->alloc_bytenr += blocksize;
8285 		return buf;
8286 	}
8287 #endif
8288 
8289 	block_rsv = use_block_rsv(trans, root, blocksize);
8290 	if (IS_ERR(block_rsv))
8291 		return ERR_CAST(block_rsv);
8292 
8293 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8294 				   empty_size, hint, &ins, 0, 0);
8295 	if (ret)
8296 		goto out_unuse;
8297 
8298 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8299 				    root_objectid);
8300 	if (IS_ERR(buf)) {
8301 		ret = PTR_ERR(buf);
8302 		goto out_free_reserved;
8303 	}
8304 
8305 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8306 		if (parent == 0)
8307 			parent = ins.objectid;
8308 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8309 	} else
8310 		BUG_ON(parent > 0);
8311 
8312 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8313 		extent_op = btrfs_alloc_delayed_extent_op();
8314 		if (!extent_op) {
8315 			ret = -ENOMEM;
8316 			goto out_free_buf;
8317 		}
8318 		if (key)
8319 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8320 		else
8321 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8322 		extent_op->flags_to_set = flags;
8323 		extent_op->update_key = skinny_metadata ? false : true;
8324 		extent_op->update_flags = true;
8325 		extent_op->is_data = false;
8326 		extent_op->level = level;
8327 
8328 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8329 				   root_objectid, level, 0,
8330 				   BTRFS_ADD_DELAYED_EXTENT);
8331 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8332 						 ins.offset, parent,
8333 						 root_objectid, level,
8334 						 BTRFS_ADD_DELAYED_EXTENT,
8335 						 extent_op, NULL, NULL);
8336 		if (ret)
8337 			goto out_free_delayed;
8338 	}
8339 	return buf;
8340 
8341 out_free_delayed:
8342 	btrfs_free_delayed_extent_op(extent_op);
8343 out_free_buf:
8344 	free_extent_buffer(buf);
8345 out_free_reserved:
8346 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8347 out_unuse:
8348 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8349 	return ERR_PTR(ret);
8350 }
8351 
8352 struct walk_control {
8353 	u64 refs[BTRFS_MAX_LEVEL];
8354 	u64 flags[BTRFS_MAX_LEVEL];
8355 	struct btrfs_key update_progress;
8356 	int stage;
8357 	int level;
8358 	int shared_level;
8359 	int update_ref;
8360 	int keep_locks;
8361 	int reada_slot;
8362 	int reada_count;
8363 };
8364 
8365 #define DROP_REFERENCE	1
8366 #define UPDATE_BACKREF	2
8367 
8368 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8369 				     struct btrfs_root *root,
8370 				     struct walk_control *wc,
8371 				     struct btrfs_path *path)
8372 {
8373 	struct btrfs_fs_info *fs_info = root->fs_info;
8374 	u64 bytenr;
8375 	u64 generation;
8376 	u64 refs;
8377 	u64 flags;
8378 	u32 nritems;
8379 	struct btrfs_key key;
8380 	struct extent_buffer *eb;
8381 	int ret;
8382 	int slot;
8383 	int nread = 0;
8384 
8385 	if (path->slots[wc->level] < wc->reada_slot) {
8386 		wc->reada_count = wc->reada_count * 2 / 3;
8387 		wc->reada_count = max(wc->reada_count, 2);
8388 	} else {
8389 		wc->reada_count = wc->reada_count * 3 / 2;
8390 		wc->reada_count = min_t(int, wc->reada_count,
8391 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8392 	}
8393 
8394 	eb = path->nodes[wc->level];
8395 	nritems = btrfs_header_nritems(eb);
8396 
8397 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8398 		if (nread >= wc->reada_count)
8399 			break;
8400 
8401 		cond_resched();
8402 		bytenr = btrfs_node_blockptr(eb, slot);
8403 		generation = btrfs_node_ptr_generation(eb, slot);
8404 
8405 		if (slot == path->slots[wc->level])
8406 			goto reada;
8407 
8408 		if (wc->stage == UPDATE_BACKREF &&
8409 		    generation <= root->root_key.offset)
8410 			continue;
8411 
8412 		/* We don't lock the tree block, it's OK to be racy here */
8413 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8414 					       wc->level - 1, 1, &refs,
8415 					       &flags);
8416 		/* We don't care about errors in readahead. */
8417 		if (ret < 0)
8418 			continue;
8419 		BUG_ON(refs == 0);
8420 
8421 		if (wc->stage == DROP_REFERENCE) {
8422 			if (refs == 1)
8423 				goto reada;
8424 
8425 			if (wc->level == 1 &&
8426 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8427 				continue;
8428 			if (!wc->update_ref ||
8429 			    generation <= root->root_key.offset)
8430 				continue;
8431 			btrfs_node_key_to_cpu(eb, &key, slot);
8432 			ret = btrfs_comp_cpu_keys(&key,
8433 						  &wc->update_progress);
8434 			if (ret < 0)
8435 				continue;
8436 		} else {
8437 			if (wc->level == 1 &&
8438 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8439 				continue;
8440 		}
8441 reada:
8442 		readahead_tree_block(fs_info, bytenr);
8443 		nread++;
8444 	}
8445 	wc->reada_slot = slot;
8446 }
8447 
8448 /*
8449  * helper to process tree block while walking down the tree.
8450  *
8451  * when wc->stage == UPDATE_BACKREF, this function updates
8452  * back refs for pointers in the block.
8453  *
8454  * NOTE: return value 1 means we should stop walking down.
8455  */
8456 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8457 				   struct btrfs_root *root,
8458 				   struct btrfs_path *path,
8459 				   struct walk_control *wc, int lookup_info)
8460 {
8461 	struct btrfs_fs_info *fs_info = root->fs_info;
8462 	int level = wc->level;
8463 	struct extent_buffer *eb = path->nodes[level];
8464 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8465 	int ret;
8466 
8467 	if (wc->stage == UPDATE_BACKREF &&
8468 	    btrfs_header_owner(eb) != root->root_key.objectid)
8469 		return 1;
8470 
8471 	/*
8472 	 * when reference count of tree block is 1, it won't increase
8473 	 * again. once full backref flag is set, we never clear it.
8474 	 */
8475 	if (lookup_info &&
8476 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8477 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8478 		BUG_ON(!path->locks[level]);
8479 		ret = btrfs_lookup_extent_info(trans, fs_info,
8480 					       eb->start, level, 1,
8481 					       &wc->refs[level],
8482 					       &wc->flags[level]);
8483 		BUG_ON(ret == -ENOMEM);
8484 		if (ret)
8485 			return ret;
8486 		BUG_ON(wc->refs[level] == 0);
8487 	}
8488 
8489 	if (wc->stage == DROP_REFERENCE) {
8490 		if (wc->refs[level] > 1)
8491 			return 1;
8492 
8493 		if (path->locks[level] && !wc->keep_locks) {
8494 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8495 			path->locks[level] = 0;
8496 		}
8497 		return 0;
8498 	}
8499 
8500 	/* wc->stage == UPDATE_BACKREF */
8501 	if (!(wc->flags[level] & flag)) {
8502 		BUG_ON(!path->locks[level]);
8503 		ret = btrfs_inc_ref(trans, root, eb, 1);
8504 		BUG_ON(ret); /* -ENOMEM */
8505 		ret = btrfs_dec_ref(trans, root, eb, 0);
8506 		BUG_ON(ret); /* -ENOMEM */
8507 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8508 						  eb->len, flag,
8509 						  btrfs_header_level(eb), 0);
8510 		BUG_ON(ret); /* -ENOMEM */
8511 		wc->flags[level] |= flag;
8512 	}
8513 
8514 	/*
8515 	 * the block is shared by multiple trees, so it's not good to
8516 	 * keep the tree lock
8517 	 */
8518 	if (path->locks[level] && level > 0) {
8519 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8520 		path->locks[level] = 0;
8521 	}
8522 	return 0;
8523 }
8524 
8525 /*
8526  * helper to process tree block pointer.
8527  *
8528  * when wc->stage == DROP_REFERENCE, this function checks
8529  * reference count of the block pointed to. if the block
8530  * is shared and we need update back refs for the subtree
8531  * rooted at the block, this function changes wc->stage to
8532  * UPDATE_BACKREF. if the block is shared and there is no
8533  * need to update back, this function drops the reference
8534  * to the block.
8535  *
8536  * NOTE: return value 1 means we should stop walking down.
8537  */
8538 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8539 				 struct btrfs_root *root,
8540 				 struct btrfs_path *path,
8541 				 struct walk_control *wc, int *lookup_info)
8542 {
8543 	struct btrfs_fs_info *fs_info = root->fs_info;
8544 	u64 bytenr;
8545 	u64 generation;
8546 	u64 parent;
8547 	u32 blocksize;
8548 	struct btrfs_key key;
8549 	struct btrfs_key first_key;
8550 	struct extent_buffer *next;
8551 	int level = wc->level;
8552 	int reada = 0;
8553 	int ret = 0;
8554 	bool need_account = false;
8555 
8556 	generation = btrfs_node_ptr_generation(path->nodes[level],
8557 					       path->slots[level]);
8558 	/*
8559 	 * if the lower level block was created before the snapshot
8560 	 * was created, we know there is no need to update back refs
8561 	 * for the subtree
8562 	 */
8563 	if (wc->stage == UPDATE_BACKREF &&
8564 	    generation <= root->root_key.offset) {
8565 		*lookup_info = 1;
8566 		return 1;
8567 	}
8568 
8569 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8570 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8571 			      path->slots[level]);
8572 	blocksize = fs_info->nodesize;
8573 
8574 	next = find_extent_buffer(fs_info, bytenr);
8575 	if (!next) {
8576 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8577 		if (IS_ERR(next))
8578 			return PTR_ERR(next);
8579 
8580 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8581 					       level - 1);
8582 		reada = 1;
8583 	}
8584 	btrfs_tree_lock(next);
8585 	btrfs_set_lock_blocking(next);
8586 
8587 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8588 				       &wc->refs[level - 1],
8589 				       &wc->flags[level - 1]);
8590 	if (ret < 0)
8591 		goto out_unlock;
8592 
8593 	if (unlikely(wc->refs[level - 1] == 0)) {
8594 		btrfs_err(fs_info, "Missing references.");
8595 		ret = -EIO;
8596 		goto out_unlock;
8597 	}
8598 	*lookup_info = 0;
8599 
8600 	if (wc->stage == DROP_REFERENCE) {
8601 		if (wc->refs[level - 1] > 1) {
8602 			need_account = true;
8603 			if (level == 1 &&
8604 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8605 				goto skip;
8606 
8607 			if (!wc->update_ref ||
8608 			    generation <= root->root_key.offset)
8609 				goto skip;
8610 
8611 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8612 					      path->slots[level]);
8613 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8614 			if (ret < 0)
8615 				goto skip;
8616 
8617 			wc->stage = UPDATE_BACKREF;
8618 			wc->shared_level = level - 1;
8619 		}
8620 	} else {
8621 		if (level == 1 &&
8622 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8623 			goto skip;
8624 	}
8625 
8626 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8627 		btrfs_tree_unlock(next);
8628 		free_extent_buffer(next);
8629 		next = NULL;
8630 		*lookup_info = 1;
8631 	}
8632 
8633 	if (!next) {
8634 		if (reada && level == 1)
8635 			reada_walk_down(trans, root, wc, path);
8636 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8637 				       &first_key);
8638 		if (IS_ERR(next)) {
8639 			return PTR_ERR(next);
8640 		} else if (!extent_buffer_uptodate(next)) {
8641 			free_extent_buffer(next);
8642 			return -EIO;
8643 		}
8644 		btrfs_tree_lock(next);
8645 		btrfs_set_lock_blocking(next);
8646 	}
8647 
8648 	level--;
8649 	ASSERT(level == btrfs_header_level(next));
8650 	if (level != btrfs_header_level(next)) {
8651 		btrfs_err(root->fs_info, "mismatched level");
8652 		ret = -EIO;
8653 		goto out_unlock;
8654 	}
8655 	path->nodes[level] = next;
8656 	path->slots[level] = 0;
8657 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8658 	wc->level = level;
8659 	if (wc->level == 1)
8660 		wc->reada_slot = 0;
8661 	return 0;
8662 skip:
8663 	wc->refs[level - 1] = 0;
8664 	wc->flags[level - 1] = 0;
8665 	if (wc->stage == DROP_REFERENCE) {
8666 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8667 			parent = path->nodes[level]->start;
8668 		} else {
8669 			ASSERT(root->root_key.objectid ==
8670 			       btrfs_header_owner(path->nodes[level]));
8671 			if (root->root_key.objectid !=
8672 			    btrfs_header_owner(path->nodes[level])) {
8673 				btrfs_err(root->fs_info,
8674 						"mismatched block owner");
8675 				ret = -EIO;
8676 				goto out_unlock;
8677 			}
8678 			parent = 0;
8679 		}
8680 
8681 		/*
8682 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
8683 		 * already accounted them at merge time (replace_path),
8684 		 * thus we could skip expensive subtree trace here.
8685 		 */
8686 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
8687 		    need_account) {
8688 			ret = btrfs_qgroup_trace_subtree(trans, next,
8689 							 generation, level - 1);
8690 			if (ret) {
8691 				btrfs_err_rl(fs_info,
8692 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8693 					     ret);
8694 			}
8695 		}
8696 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8697 					parent, root->root_key.objectid,
8698 					level - 1, 0);
8699 		if (ret)
8700 			goto out_unlock;
8701 	}
8702 
8703 	*lookup_info = 1;
8704 	ret = 1;
8705 
8706 out_unlock:
8707 	btrfs_tree_unlock(next);
8708 	free_extent_buffer(next);
8709 
8710 	return ret;
8711 }
8712 
8713 /*
8714  * helper to process tree block while walking up the tree.
8715  *
8716  * when wc->stage == DROP_REFERENCE, this function drops
8717  * reference count on the block.
8718  *
8719  * when wc->stage == UPDATE_BACKREF, this function changes
8720  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8721  * to UPDATE_BACKREF previously while processing the block.
8722  *
8723  * NOTE: return value 1 means we should stop walking up.
8724  */
8725 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8726 				 struct btrfs_root *root,
8727 				 struct btrfs_path *path,
8728 				 struct walk_control *wc)
8729 {
8730 	struct btrfs_fs_info *fs_info = root->fs_info;
8731 	int ret;
8732 	int level = wc->level;
8733 	struct extent_buffer *eb = path->nodes[level];
8734 	u64 parent = 0;
8735 
8736 	if (wc->stage == UPDATE_BACKREF) {
8737 		BUG_ON(wc->shared_level < level);
8738 		if (level < wc->shared_level)
8739 			goto out;
8740 
8741 		ret = find_next_key(path, level + 1, &wc->update_progress);
8742 		if (ret > 0)
8743 			wc->update_ref = 0;
8744 
8745 		wc->stage = DROP_REFERENCE;
8746 		wc->shared_level = -1;
8747 		path->slots[level] = 0;
8748 
8749 		/*
8750 		 * check reference count again if the block isn't locked.
8751 		 * we should start walking down the tree again if reference
8752 		 * count is one.
8753 		 */
8754 		if (!path->locks[level]) {
8755 			BUG_ON(level == 0);
8756 			btrfs_tree_lock(eb);
8757 			btrfs_set_lock_blocking(eb);
8758 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8759 
8760 			ret = btrfs_lookup_extent_info(trans, fs_info,
8761 						       eb->start, level, 1,
8762 						       &wc->refs[level],
8763 						       &wc->flags[level]);
8764 			if (ret < 0) {
8765 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8766 				path->locks[level] = 0;
8767 				return ret;
8768 			}
8769 			BUG_ON(wc->refs[level] == 0);
8770 			if (wc->refs[level] == 1) {
8771 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8772 				path->locks[level] = 0;
8773 				return 1;
8774 			}
8775 		}
8776 	}
8777 
8778 	/* wc->stage == DROP_REFERENCE */
8779 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8780 
8781 	if (wc->refs[level] == 1) {
8782 		if (level == 0) {
8783 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8784 				ret = btrfs_dec_ref(trans, root, eb, 1);
8785 			else
8786 				ret = btrfs_dec_ref(trans, root, eb, 0);
8787 			BUG_ON(ret); /* -ENOMEM */
8788 			ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8789 			if (ret) {
8790 				btrfs_err_rl(fs_info,
8791 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8792 					     ret);
8793 			}
8794 		}
8795 		/* make block locked assertion in clean_tree_block happy */
8796 		if (!path->locks[level] &&
8797 		    btrfs_header_generation(eb) == trans->transid) {
8798 			btrfs_tree_lock(eb);
8799 			btrfs_set_lock_blocking(eb);
8800 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8801 		}
8802 		clean_tree_block(fs_info, eb);
8803 	}
8804 
8805 	if (eb == root->node) {
8806 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8807 			parent = eb->start;
8808 		else if (root->root_key.objectid != btrfs_header_owner(eb))
8809 			goto owner_mismatch;
8810 	} else {
8811 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8812 			parent = path->nodes[level + 1]->start;
8813 		else if (root->root_key.objectid !=
8814 			 btrfs_header_owner(path->nodes[level + 1]))
8815 			goto owner_mismatch;
8816 	}
8817 
8818 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8819 out:
8820 	wc->refs[level] = 0;
8821 	wc->flags[level] = 0;
8822 	return 0;
8823 
8824 owner_mismatch:
8825 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8826 		     btrfs_header_owner(eb), root->root_key.objectid);
8827 	return -EUCLEAN;
8828 }
8829 
8830 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8831 				   struct btrfs_root *root,
8832 				   struct btrfs_path *path,
8833 				   struct walk_control *wc)
8834 {
8835 	int level = wc->level;
8836 	int lookup_info = 1;
8837 	int ret;
8838 
8839 	while (level >= 0) {
8840 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8841 		if (ret > 0)
8842 			break;
8843 
8844 		if (level == 0)
8845 			break;
8846 
8847 		if (path->slots[level] >=
8848 		    btrfs_header_nritems(path->nodes[level]))
8849 			break;
8850 
8851 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8852 		if (ret > 0) {
8853 			path->slots[level]++;
8854 			continue;
8855 		} else if (ret < 0)
8856 			return ret;
8857 		level = wc->level;
8858 	}
8859 	return 0;
8860 }
8861 
8862 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8863 				 struct btrfs_root *root,
8864 				 struct btrfs_path *path,
8865 				 struct walk_control *wc, int max_level)
8866 {
8867 	int level = wc->level;
8868 	int ret;
8869 
8870 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8871 	while (level < max_level && path->nodes[level]) {
8872 		wc->level = level;
8873 		if (path->slots[level] + 1 <
8874 		    btrfs_header_nritems(path->nodes[level])) {
8875 			path->slots[level]++;
8876 			return 0;
8877 		} else {
8878 			ret = walk_up_proc(trans, root, path, wc);
8879 			if (ret > 0)
8880 				return 0;
8881 			if (ret < 0)
8882 				return ret;
8883 
8884 			if (path->locks[level]) {
8885 				btrfs_tree_unlock_rw(path->nodes[level],
8886 						     path->locks[level]);
8887 				path->locks[level] = 0;
8888 			}
8889 			free_extent_buffer(path->nodes[level]);
8890 			path->nodes[level] = NULL;
8891 			level++;
8892 		}
8893 	}
8894 	return 1;
8895 }
8896 
8897 /*
8898  * drop a subvolume tree.
8899  *
8900  * this function traverses the tree freeing any blocks that only
8901  * referenced by the tree.
8902  *
8903  * when a shared tree block is found. this function decreases its
8904  * reference count by one. if update_ref is true, this function
8905  * also make sure backrefs for the shared block and all lower level
8906  * blocks are properly updated.
8907  *
8908  * If called with for_reloc == 0, may exit early with -EAGAIN
8909  */
8910 int btrfs_drop_snapshot(struct btrfs_root *root,
8911 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8912 			 int for_reloc)
8913 {
8914 	struct btrfs_fs_info *fs_info = root->fs_info;
8915 	struct btrfs_path *path;
8916 	struct btrfs_trans_handle *trans;
8917 	struct btrfs_root *tree_root = fs_info->tree_root;
8918 	struct btrfs_root_item *root_item = &root->root_item;
8919 	struct walk_control *wc;
8920 	struct btrfs_key key;
8921 	int err = 0;
8922 	int ret;
8923 	int level;
8924 	bool root_dropped = false;
8925 
8926 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
8927 
8928 	path = btrfs_alloc_path();
8929 	if (!path) {
8930 		err = -ENOMEM;
8931 		goto out;
8932 	}
8933 
8934 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8935 	if (!wc) {
8936 		btrfs_free_path(path);
8937 		err = -ENOMEM;
8938 		goto out;
8939 	}
8940 
8941 	trans = btrfs_start_transaction(tree_root, 0);
8942 	if (IS_ERR(trans)) {
8943 		err = PTR_ERR(trans);
8944 		goto out_free;
8945 	}
8946 
8947 	if (block_rsv)
8948 		trans->block_rsv = block_rsv;
8949 
8950 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8951 		level = btrfs_header_level(root->node);
8952 		path->nodes[level] = btrfs_lock_root_node(root);
8953 		btrfs_set_lock_blocking(path->nodes[level]);
8954 		path->slots[level] = 0;
8955 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8956 		memset(&wc->update_progress, 0,
8957 		       sizeof(wc->update_progress));
8958 	} else {
8959 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8960 		memcpy(&wc->update_progress, &key,
8961 		       sizeof(wc->update_progress));
8962 
8963 		level = root_item->drop_level;
8964 		BUG_ON(level == 0);
8965 		path->lowest_level = level;
8966 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8967 		path->lowest_level = 0;
8968 		if (ret < 0) {
8969 			err = ret;
8970 			goto out_end_trans;
8971 		}
8972 		WARN_ON(ret > 0);
8973 
8974 		/*
8975 		 * unlock our path, this is safe because only this
8976 		 * function is allowed to delete this snapshot
8977 		 */
8978 		btrfs_unlock_up_safe(path, 0);
8979 
8980 		level = btrfs_header_level(root->node);
8981 		while (1) {
8982 			btrfs_tree_lock(path->nodes[level]);
8983 			btrfs_set_lock_blocking(path->nodes[level]);
8984 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8985 
8986 			ret = btrfs_lookup_extent_info(trans, fs_info,
8987 						path->nodes[level]->start,
8988 						level, 1, &wc->refs[level],
8989 						&wc->flags[level]);
8990 			if (ret < 0) {
8991 				err = ret;
8992 				goto out_end_trans;
8993 			}
8994 			BUG_ON(wc->refs[level] == 0);
8995 
8996 			if (level == root_item->drop_level)
8997 				break;
8998 
8999 			btrfs_tree_unlock(path->nodes[level]);
9000 			path->locks[level] = 0;
9001 			WARN_ON(wc->refs[level] != 1);
9002 			level--;
9003 		}
9004 	}
9005 
9006 	wc->level = level;
9007 	wc->shared_level = -1;
9008 	wc->stage = DROP_REFERENCE;
9009 	wc->update_ref = update_ref;
9010 	wc->keep_locks = 0;
9011 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9012 
9013 	while (1) {
9014 
9015 		ret = walk_down_tree(trans, root, path, wc);
9016 		if (ret < 0) {
9017 			err = ret;
9018 			break;
9019 		}
9020 
9021 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9022 		if (ret < 0) {
9023 			err = ret;
9024 			break;
9025 		}
9026 
9027 		if (ret > 0) {
9028 			BUG_ON(wc->stage != DROP_REFERENCE);
9029 			break;
9030 		}
9031 
9032 		if (wc->stage == DROP_REFERENCE) {
9033 			level = wc->level;
9034 			btrfs_node_key(path->nodes[level],
9035 				       &root_item->drop_progress,
9036 				       path->slots[level]);
9037 			root_item->drop_level = level;
9038 		}
9039 
9040 		BUG_ON(wc->level == 0);
9041 		if (btrfs_should_end_transaction(trans) ||
9042 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9043 			ret = btrfs_update_root(trans, tree_root,
9044 						&root->root_key,
9045 						root_item);
9046 			if (ret) {
9047 				btrfs_abort_transaction(trans, ret);
9048 				err = ret;
9049 				goto out_end_trans;
9050 			}
9051 
9052 			btrfs_end_transaction_throttle(trans);
9053 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9054 				btrfs_debug(fs_info,
9055 					    "drop snapshot early exit");
9056 				err = -EAGAIN;
9057 				goto out_free;
9058 			}
9059 
9060 			trans = btrfs_start_transaction(tree_root, 0);
9061 			if (IS_ERR(trans)) {
9062 				err = PTR_ERR(trans);
9063 				goto out_free;
9064 			}
9065 			if (block_rsv)
9066 				trans->block_rsv = block_rsv;
9067 		}
9068 	}
9069 	btrfs_release_path(path);
9070 	if (err)
9071 		goto out_end_trans;
9072 
9073 	ret = btrfs_del_root(trans, &root->root_key);
9074 	if (ret) {
9075 		btrfs_abort_transaction(trans, ret);
9076 		err = ret;
9077 		goto out_end_trans;
9078 	}
9079 
9080 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9081 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9082 				      NULL, NULL);
9083 		if (ret < 0) {
9084 			btrfs_abort_transaction(trans, ret);
9085 			err = ret;
9086 			goto out_end_trans;
9087 		} else if (ret > 0) {
9088 			/* if we fail to delete the orphan item this time
9089 			 * around, it'll get picked up the next time.
9090 			 *
9091 			 * The most common failure here is just -ENOENT.
9092 			 */
9093 			btrfs_del_orphan_item(trans, tree_root,
9094 					      root->root_key.objectid);
9095 		}
9096 	}
9097 
9098 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9099 		btrfs_add_dropped_root(trans, root);
9100 	} else {
9101 		free_extent_buffer(root->node);
9102 		free_extent_buffer(root->commit_root);
9103 		btrfs_put_fs_root(root);
9104 	}
9105 	root_dropped = true;
9106 out_end_trans:
9107 	btrfs_end_transaction_throttle(trans);
9108 out_free:
9109 	kfree(wc);
9110 	btrfs_free_path(path);
9111 out:
9112 	/*
9113 	 * So if we need to stop dropping the snapshot for whatever reason we
9114 	 * need to make sure to add it back to the dead root list so that we
9115 	 * keep trying to do the work later.  This also cleans up roots if we
9116 	 * don't have it in the radix (like when we recover after a power fail
9117 	 * or unmount) so we don't leak memory.
9118 	 */
9119 	if (!for_reloc && !root_dropped)
9120 		btrfs_add_dead_root(root);
9121 	if (err && err != -EAGAIN)
9122 		btrfs_handle_fs_error(fs_info, err, NULL);
9123 	return err;
9124 }
9125 
9126 /*
9127  * drop subtree rooted at tree block 'node'.
9128  *
9129  * NOTE: this function will unlock and release tree block 'node'
9130  * only used by relocation code
9131  */
9132 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9133 			struct btrfs_root *root,
9134 			struct extent_buffer *node,
9135 			struct extent_buffer *parent)
9136 {
9137 	struct btrfs_fs_info *fs_info = root->fs_info;
9138 	struct btrfs_path *path;
9139 	struct walk_control *wc;
9140 	int level;
9141 	int parent_level;
9142 	int ret = 0;
9143 	int wret;
9144 
9145 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9146 
9147 	path = btrfs_alloc_path();
9148 	if (!path)
9149 		return -ENOMEM;
9150 
9151 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9152 	if (!wc) {
9153 		btrfs_free_path(path);
9154 		return -ENOMEM;
9155 	}
9156 
9157 	btrfs_assert_tree_locked(parent);
9158 	parent_level = btrfs_header_level(parent);
9159 	extent_buffer_get(parent);
9160 	path->nodes[parent_level] = parent;
9161 	path->slots[parent_level] = btrfs_header_nritems(parent);
9162 
9163 	btrfs_assert_tree_locked(node);
9164 	level = btrfs_header_level(node);
9165 	path->nodes[level] = node;
9166 	path->slots[level] = 0;
9167 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9168 
9169 	wc->refs[parent_level] = 1;
9170 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9171 	wc->level = level;
9172 	wc->shared_level = -1;
9173 	wc->stage = DROP_REFERENCE;
9174 	wc->update_ref = 0;
9175 	wc->keep_locks = 1;
9176 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9177 
9178 	while (1) {
9179 		wret = walk_down_tree(trans, root, path, wc);
9180 		if (wret < 0) {
9181 			ret = wret;
9182 			break;
9183 		}
9184 
9185 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9186 		if (wret < 0)
9187 			ret = wret;
9188 		if (wret != 0)
9189 			break;
9190 	}
9191 
9192 	kfree(wc);
9193 	btrfs_free_path(path);
9194 	return ret;
9195 }
9196 
9197 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9198 {
9199 	u64 num_devices;
9200 	u64 stripped;
9201 
9202 	/*
9203 	 * if restripe for this chunk_type is on pick target profile and
9204 	 * return, otherwise do the usual balance
9205 	 */
9206 	stripped = get_restripe_target(fs_info, flags);
9207 	if (stripped)
9208 		return extended_to_chunk(stripped);
9209 
9210 	num_devices = fs_info->fs_devices->rw_devices;
9211 
9212 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9213 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9214 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9215 
9216 	if (num_devices == 1) {
9217 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9218 		stripped = flags & ~stripped;
9219 
9220 		/* turn raid0 into single device chunks */
9221 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9222 			return stripped;
9223 
9224 		/* turn mirroring into duplication */
9225 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9226 			     BTRFS_BLOCK_GROUP_RAID10))
9227 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9228 	} else {
9229 		/* they already had raid on here, just return */
9230 		if (flags & stripped)
9231 			return flags;
9232 
9233 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9234 		stripped = flags & ~stripped;
9235 
9236 		/* switch duplicated blocks with raid1 */
9237 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9238 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9239 
9240 		/* this is drive concat, leave it alone */
9241 	}
9242 
9243 	return flags;
9244 }
9245 
9246 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9247 {
9248 	struct btrfs_space_info *sinfo = cache->space_info;
9249 	u64 num_bytes;
9250 	u64 min_allocable_bytes;
9251 	int ret = -ENOSPC;
9252 
9253 	/*
9254 	 * We need some metadata space and system metadata space for
9255 	 * allocating chunks in some corner cases until we force to set
9256 	 * it to be readonly.
9257 	 */
9258 	if ((sinfo->flags &
9259 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9260 	    !force)
9261 		min_allocable_bytes = SZ_1M;
9262 	else
9263 		min_allocable_bytes = 0;
9264 
9265 	spin_lock(&sinfo->lock);
9266 	spin_lock(&cache->lock);
9267 
9268 	if (cache->ro) {
9269 		cache->ro++;
9270 		ret = 0;
9271 		goto out;
9272 	}
9273 
9274 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9275 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9276 
9277 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9278 	    min_allocable_bytes <= sinfo->total_bytes) {
9279 		sinfo->bytes_readonly += num_bytes;
9280 		cache->ro++;
9281 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9282 		ret = 0;
9283 	}
9284 out:
9285 	spin_unlock(&cache->lock);
9286 	spin_unlock(&sinfo->lock);
9287 	return ret;
9288 }
9289 
9290 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9291 
9292 {
9293 	struct btrfs_fs_info *fs_info = cache->fs_info;
9294 	struct btrfs_trans_handle *trans;
9295 	u64 alloc_flags;
9296 	int ret;
9297 
9298 again:
9299 	trans = btrfs_join_transaction(fs_info->extent_root);
9300 	if (IS_ERR(trans))
9301 		return PTR_ERR(trans);
9302 
9303 	/*
9304 	 * we're not allowed to set block groups readonly after the dirty
9305 	 * block groups cache has started writing.  If it already started,
9306 	 * back off and let this transaction commit
9307 	 */
9308 	mutex_lock(&fs_info->ro_block_group_mutex);
9309 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9310 		u64 transid = trans->transid;
9311 
9312 		mutex_unlock(&fs_info->ro_block_group_mutex);
9313 		btrfs_end_transaction(trans);
9314 
9315 		ret = btrfs_wait_for_commit(fs_info, transid);
9316 		if (ret)
9317 			return ret;
9318 		goto again;
9319 	}
9320 
9321 	/*
9322 	 * if we are changing raid levels, try to allocate a corresponding
9323 	 * block group with the new raid level.
9324 	 */
9325 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9326 	if (alloc_flags != cache->flags) {
9327 		ret = do_chunk_alloc(trans, alloc_flags,
9328 				     CHUNK_ALLOC_FORCE);
9329 		/*
9330 		 * ENOSPC is allowed here, we may have enough space
9331 		 * already allocated at the new raid level to
9332 		 * carry on
9333 		 */
9334 		if (ret == -ENOSPC)
9335 			ret = 0;
9336 		if (ret < 0)
9337 			goto out;
9338 	}
9339 
9340 	ret = inc_block_group_ro(cache, 0);
9341 	if (!ret)
9342 		goto out;
9343 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9344 	ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9345 	if (ret < 0)
9346 		goto out;
9347 	ret = inc_block_group_ro(cache, 0);
9348 out:
9349 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9350 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9351 		mutex_lock(&fs_info->chunk_mutex);
9352 		check_system_chunk(trans, alloc_flags);
9353 		mutex_unlock(&fs_info->chunk_mutex);
9354 	}
9355 	mutex_unlock(&fs_info->ro_block_group_mutex);
9356 
9357 	btrfs_end_transaction(trans);
9358 	return ret;
9359 }
9360 
9361 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9362 {
9363 	u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9364 
9365 	return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9366 }
9367 
9368 /*
9369  * helper to account the unused space of all the readonly block group in the
9370  * space_info. takes mirrors into account.
9371  */
9372 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9373 {
9374 	struct btrfs_block_group_cache *block_group;
9375 	u64 free_bytes = 0;
9376 	int factor;
9377 
9378 	/* It's df, we don't care if it's racy */
9379 	if (list_empty(&sinfo->ro_bgs))
9380 		return 0;
9381 
9382 	spin_lock(&sinfo->lock);
9383 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9384 		spin_lock(&block_group->lock);
9385 
9386 		if (!block_group->ro) {
9387 			spin_unlock(&block_group->lock);
9388 			continue;
9389 		}
9390 
9391 		factor = btrfs_bg_type_to_factor(block_group->flags);
9392 		free_bytes += (block_group->key.offset -
9393 			       btrfs_block_group_used(&block_group->item)) *
9394 			       factor;
9395 
9396 		spin_unlock(&block_group->lock);
9397 	}
9398 	spin_unlock(&sinfo->lock);
9399 
9400 	return free_bytes;
9401 }
9402 
9403 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9404 {
9405 	struct btrfs_space_info *sinfo = cache->space_info;
9406 	u64 num_bytes;
9407 
9408 	BUG_ON(!cache->ro);
9409 
9410 	spin_lock(&sinfo->lock);
9411 	spin_lock(&cache->lock);
9412 	if (!--cache->ro) {
9413 		num_bytes = cache->key.offset - cache->reserved -
9414 			    cache->pinned - cache->bytes_super -
9415 			    btrfs_block_group_used(&cache->item);
9416 		sinfo->bytes_readonly -= num_bytes;
9417 		list_del_init(&cache->ro_list);
9418 	}
9419 	spin_unlock(&cache->lock);
9420 	spin_unlock(&sinfo->lock);
9421 }
9422 
9423 /*
9424  * checks to see if its even possible to relocate this block group.
9425  *
9426  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9427  * ok to go ahead and try.
9428  */
9429 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9430 {
9431 	struct btrfs_root *root = fs_info->extent_root;
9432 	struct btrfs_block_group_cache *block_group;
9433 	struct btrfs_space_info *space_info;
9434 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9435 	struct btrfs_device *device;
9436 	struct btrfs_trans_handle *trans;
9437 	u64 min_free;
9438 	u64 dev_min = 1;
9439 	u64 dev_nr = 0;
9440 	u64 target;
9441 	int debug;
9442 	int index;
9443 	int full = 0;
9444 	int ret = 0;
9445 
9446 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9447 
9448 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9449 
9450 	/* odd, couldn't find the block group, leave it alone */
9451 	if (!block_group) {
9452 		if (debug)
9453 			btrfs_warn(fs_info,
9454 				   "can't find block group for bytenr %llu",
9455 				   bytenr);
9456 		return -1;
9457 	}
9458 
9459 	min_free = btrfs_block_group_used(&block_group->item);
9460 
9461 	/* no bytes used, we're good */
9462 	if (!min_free)
9463 		goto out;
9464 
9465 	space_info = block_group->space_info;
9466 	spin_lock(&space_info->lock);
9467 
9468 	full = space_info->full;
9469 
9470 	/*
9471 	 * if this is the last block group we have in this space, we can't
9472 	 * relocate it unless we're able to allocate a new chunk below.
9473 	 *
9474 	 * Otherwise, we need to make sure we have room in the space to handle
9475 	 * all of the extents from this block group.  If we can, we're good
9476 	 */
9477 	if ((space_info->total_bytes != block_group->key.offset) &&
9478 	    (btrfs_space_info_used(space_info, false) + min_free <
9479 	     space_info->total_bytes)) {
9480 		spin_unlock(&space_info->lock);
9481 		goto out;
9482 	}
9483 	spin_unlock(&space_info->lock);
9484 
9485 	/*
9486 	 * ok we don't have enough space, but maybe we have free space on our
9487 	 * devices to allocate new chunks for relocation, so loop through our
9488 	 * alloc devices and guess if we have enough space.  if this block
9489 	 * group is going to be restriped, run checks against the target
9490 	 * profile instead of the current one.
9491 	 */
9492 	ret = -1;
9493 
9494 	/*
9495 	 * index:
9496 	 *      0: raid10
9497 	 *      1: raid1
9498 	 *      2: dup
9499 	 *      3: raid0
9500 	 *      4: single
9501 	 */
9502 	target = get_restripe_target(fs_info, block_group->flags);
9503 	if (target) {
9504 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9505 	} else {
9506 		/*
9507 		 * this is just a balance, so if we were marked as full
9508 		 * we know there is no space for a new chunk
9509 		 */
9510 		if (full) {
9511 			if (debug)
9512 				btrfs_warn(fs_info,
9513 					   "no space to alloc new chunk for block group %llu",
9514 					   block_group->key.objectid);
9515 			goto out;
9516 		}
9517 
9518 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9519 	}
9520 
9521 	if (index == BTRFS_RAID_RAID10) {
9522 		dev_min = 4;
9523 		/* Divide by 2 */
9524 		min_free >>= 1;
9525 	} else if (index == BTRFS_RAID_RAID1) {
9526 		dev_min = 2;
9527 	} else if (index == BTRFS_RAID_DUP) {
9528 		/* Multiply by 2 */
9529 		min_free <<= 1;
9530 	} else if (index == BTRFS_RAID_RAID0) {
9531 		dev_min = fs_devices->rw_devices;
9532 		min_free = div64_u64(min_free, dev_min);
9533 	}
9534 
9535 	/* We need to do this so that we can look at pending chunks */
9536 	trans = btrfs_join_transaction(root);
9537 	if (IS_ERR(trans)) {
9538 		ret = PTR_ERR(trans);
9539 		goto out;
9540 	}
9541 
9542 	mutex_lock(&fs_info->chunk_mutex);
9543 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9544 		u64 dev_offset;
9545 
9546 		/*
9547 		 * check to make sure we can actually find a chunk with enough
9548 		 * space to fit our block group in.
9549 		 */
9550 		if (device->total_bytes > device->bytes_used + min_free &&
9551 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9552 			ret = find_free_dev_extent(trans, device, min_free,
9553 						   &dev_offset, NULL);
9554 			if (!ret)
9555 				dev_nr++;
9556 
9557 			if (dev_nr >= dev_min)
9558 				break;
9559 
9560 			ret = -1;
9561 		}
9562 	}
9563 	if (debug && ret == -1)
9564 		btrfs_warn(fs_info,
9565 			   "no space to allocate a new chunk for block group %llu",
9566 			   block_group->key.objectid);
9567 	mutex_unlock(&fs_info->chunk_mutex);
9568 	btrfs_end_transaction(trans);
9569 out:
9570 	btrfs_put_block_group(block_group);
9571 	return ret;
9572 }
9573 
9574 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9575 				  struct btrfs_path *path,
9576 				  struct btrfs_key *key)
9577 {
9578 	struct btrfs_root *root = fs_info->extent_root;
9579 	int ret = 0;
9580 	struct btrfs_key found_key;
9581 	struct extent_buffer *leaf;
9582 	struct btrfs_block_group_item bg;
9583 	u64 flags;
9584 	int slot;
9585 
9586 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9587 	if (ret < 0)
9588 		goto out;
9589 
9590 	while (1) {
9591 		slot = path->slots[0];
9592 		leaf = path->nodes[0];
9593 		if (slot >= btrfs_header_nritems(leaf)) {
9594 			ret = btrfs_next_leaf(root, path);
9595 			if (ret == 0)
9596 				continue;
9597 			if (ret < 0)
9598 				goto out;
9599 			break;
9600 		}
9601 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9602 
9603 		if (found_key.objectid >= key->objectid &&
9604 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9605 			struct extent_map_tree *em_tree;
9606 			struct extent_map *em;
9607 
9608 			em_tree = &root->fs_info->mapping_tree.map_tree;
9609 			read_lock(&em_tree->lock);
9610 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9611 						   found_key.offset);
9612 			read_unlock(&em_tree->lock);
9613 			if (!em) {
9614 				btrfs_err(fs_info,
9615 			"logical %llu len %llu found bg but no related chunk",
9616 					  found_key.objectid, found_key.offset);
9617 				ret = -ENOENT;
9618 			} else if (em->start != found_key.objectid ||
9619 				   em->len != found_key.offset) {
9620 				btrfs_err(fs_info,
9621 		"block group %llu len %llu mismatch with chunk %llu len %llu",
9622 					  found_key.objectid, found_key.offset,
9623 					  em->start, em->len);
9624 				ret = -EUCLEAN;
9625 			} else {
9626 				read_extent_buffer(leaf, &bg,
9627 					btrfs_item_ptr_offset(leaf, slot),
9628 					sizeof(bg));
9629 				flags = btrfs_block_group_flags(&bg) &
9630 					BTRFS_BLOCK_GROUP_TYPE_MASK;
9631 
9632 				if (flags != (em->map_lookup->type &
9633 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9634 					btrfs_err(fs_info,
9635 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9636 						found_key.objectid,
9637 						found_key.offset, flags,
9638 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
9639 						 em->map_lookup->type));
9640 					ret = -EUCLEAN;
9641 				} else {
9642 					ret = 0;
9643 				}
9644 			}
9645 			free_extent_map(em);
9646 			goto out;
9647 		}
9648 		path->slots[0]++;
9649 	}
9650 out:
9651 	return ret;
9652 }
9653 
9654 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9655 {
9656 	struct btrfs_block_group_cache *block_group;
9657 	u64 last = 0;
9658 
9659 	while (1) {
9660 		struct inode *inode;
9661 
9662 		block_group = btrfs_lookup_first_block_group(info, last);
9663 		while (block_group) {
9664 			wait_block_group_cache_done(block_group);
9665 			spin_lock(&block_group->lock);
9666 			if (block_group->iref)
9667 				break;
9668 			spin_unlock(&block_group->lock);
9669 			block_group = next_block_group(info, block_group);
9670 		}
9671 		if (!block_group) {
9672 			if (last == 0)
9673 				break;
9674 			last = 0;
9675 			continue;
9676 		}
9677 
9678 		inode = block_group->inode;
9679 		block_group->iref = 0;
9680 		block_group->inode = NULL;
9681 		spin_unlock(&block_group->lock);
9682 		ASSERT(block_group->io_ctl.inode == NULL);
9683 		iput(inode);
9684 		last = block_group->key.objectid + block_group->key.offset;
9685 		btrfs_put_block_group(block_group);
9686 	}
9687 }
9688 
9689 /*
9690  * Must be called only after stopping all workers, since we could have block
9691  * group caching kthreads running, and therefore they could race with us if we
9692  * freed the block groups before stopping them.
9693  */
9694 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9695 {
9696 	struct btrfs_block_group_cache *block_group;
9697 	struct btrfs_space_info *space_info;
9698 	struct btrfs_caching_control *caching_ctl;
9699 	struct rb_node *n;
9700 
9701 	down_write(&info->commit_root_sem);
9702 	while (!list_empty(&info->caching_block_groups)) {
9703 		caching_ctl = list_entry(info->caching_block_groups.next,
9704 					 struct btrfs_caching_control, list);
9705 		list_del(&caching_ctl->list);
9706 		put_caching_control(caching_ctl);
9707 	}
9708 	up_write(&info->commit_root_sem);
9709 
9710 	spin_lock(&info->unused_bgs_lock);
9711 	while (!list_empty(&info->unused_bgs)) {
9712 		block_group = list_first_entry(&info->unused_bgs,
9713 					       struct btrfs_block_group_cache,
9714 					       bg_list);
9715 		list_del_init(&block_group->bg_list);
9716 		btrfs_put_block_group(block_group);
9717 	}
9718 	spin_unlock(&info->unused_bgs_lock);
9719 
9720 	spin_lock(&info->block_group_cache_lock);
9721 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9722 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9723 				       cache_node);
9724 		rb_erase(&block_group->cache_node,
9725 			 &info->block_group_cache_tree);
9726 		RB_CLEAR_NODE(&block_group->cache_node);
9727 		spin_unlock(&info->block_group_cache_lock);
9728 
9729 		down_write(&block_group->space_info->groups_sem);
9730 		list_del(&block_group->list);
9731 		up_write(&block_group->space_info->groups_sem);
9732 
9733 		/*
9734 		 * We haven't cached this block group, which means we could
9735 		 * possibly have excluded extents on this block group.
9736 		 */
9737 		if (block_group->cached == BTRFS_CACHE_NO ||
9738 		    block_group->cached == BTRFS_CACHE_ERROR)
9739 			free_excluded_extents(block_group);
9740 
9741 		btrfs_remove_free_space_cache(block_group);
9742 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9743 		ASSERT(list_empty(&block_group->dirty_list));
9744 		ASSERT(list_empty(&block_group->io_list));
9745 		ASSERT(list_empty(&block_group->bg_list));
9746 		ASSERT(atomic_read(&block_group->count) == 1);
9747 		btrfs_put_block_group(block_group);
9748 
9749 		spin_lock(&info->block_group_cache_lock);
9750 	}
9751 	spin_unlock(&info->block_group_cache_lock);
9752 
9753 	/* now that all the block groups are freed, go through and
9754 	 * free all the space_info structs.  This is only called during
9755 	 * the final stages of unmount, and so we know nobody is
9756 	 * using them.  We call synchronize_rcu() once before we start,
9757 	 * just to be on the safe side.
9758 	 */
9759 	synchronize_rcu();
9760 
9761 	release_global_block_rsv(info);
9762 
9763 	while (!list_empty(&info->space_info)) {
9764 		int i;
9765 
9766 		space_info = list_entry(info->space_info.next,
9767 					struct btrfs_space_info,
9768 					list);
9769 
9770 		/*
9771 		 * Do not hide this behind enospc_debug, this is actually
9772 		 * important and indicates a real bug if this happens.
9773 		 */
9774 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9775 			    space_info->bytes_reserved > 0 ||
9776 			    space_info->bytes_may_use > 0))
9777 			dump_space_info(info, space_info, 0, 0);
9778 		list_del(&space_info->list);
9779 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9780 			struct kobject *kobj;
9781 			kobj = space_info->block_group_kobjs[i];
9782 			space_info->block_group_kobjs[i] = NULL;
9783 			if (kobj) {
9784 				kobject_del(kobj);
9785 				kobject_put(kobj);
9786 			}
9787 		}
9788 		kobject_del(&space_info->kobj);
9789 		kobject_put(&space_info->kobj);
9790 	}
9791 	return 0;
9792 }
9793 
9794 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9795 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9796 {
9797 	struct btrfs_space_info *space_info;
9798 	struct raid_kobject *rkobj;
9799 	LIST_HEAD(list);
9800 	int index;
9801 	int ret = 0;
9802 
9803 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9804 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9805 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9806 
9807 	list_for_each_entry(rkobj, &list, list) {
9808 		space_info = __find_space_info(fs_info, rkobj->flags);
9809 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9810 
9811 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9812 				  "%s", get_raid_name(index));
9813 		if (ret) {
9814 			kobject_put(&rkobj->kobj);
9815 			break;
9816 		}
9817 	}
9818 	if (ret)
9819 		btrfs_warn(fs_info,
9820 			   "failed to add kobject for block cache, ignoring");
9821 }
9822 
9823 static void link_block_group(struct btrfs_block_group_cache *cache)
9824 {
9825 	struct btrfs_space_info *space_info = cache->space_info;
9826 	struct btrfs_fs_info *fs_info = cache->fs_info;
9827 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9828 	bool first = false;
9829 
9830 	down_write(&space_info->groups_sem);
9831 	if (list_empty(&space_info->block_groups[index]))
9832 		first = true;
9833 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9834 	up_write(&space_info->groups_sem);
9835 
9836 	if (first) {
9837 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9838 		if (!rkobj) {
9839 			btrfs_warn(cache->fs_info,
9840 				"couldn't alloc memory for raid level kobject");
9841 			return;
9842 		}
9843 		rkobj->flags = cache->flags;
9844 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9845 
9846 		spin_lock(&fs_info->pending_raid_kobjs_lock);
9847 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9848 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
9849 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9850 	}
9851 }
9852 
9853 static struct btrfs_block_group_cache *
9854 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9855 			       u64 start, u64 size)
9856 {
9857 	struct btrfs_block_group_cache *cache;
9858 
9859 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9860 	if (!cache)
9861 		return NULL;
9862 
9863 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9864 					GFP_NOFS);
9865 	if (!cache->free_space_ctl) {
9866 		kfree(cache);
9867 		return NULL;
9868 	}
9869 
9870 	cache->key.objectid = start;
9871 	cache->key.offset = size;
9872 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9873 
9874 	cache->fs_info = fs_info;
9875 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9876 	set_free_space_tree_thresholds(cache);
9877 
9878 	atomic_set(&cache->count, 1);
9879 	spin_lock_init(&cache->lock);
9880 	init_rwsem(&cache->data_rwsem);
9881 	INIT_LIST_HEAD(&cache->list);
9882 	INIT_LIST_HEAD(&cache->cluster_list);
9883 	INIT_LIST_HEAD(&cache->bg_list);
9884 	INIT_LIST_HEAD(&cache->ro_list);
9885 	INIT_LIST_HEAD(&cache->dirty_list);
9886 	INIT_LIST_HEAD(&cache->io_list);
9887 	btrfs_init_free_space_ctl(cache);
9888 	atomic_set(&cache->trimming, 0);
9889 	mutex_init(&cache->free_space_lock);
9890 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9891 
9892 	return cache;
9893 }
9894 
9895 
9896 /*
9897  * Iterate all chunks and verify that each of them has the corresponding block
9898  * group
9899  */
9900 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9901 {
9902 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9903 	struct extent_map *em;
9904 	struct btrfs_block_group_cache *bg;
9905 	u64 start = 0;
9906 	int ret = 0;
9907 
9908 	while (1) {
9909 		read_lock(&map_tree->map_tree.lock);
9910 		/*
9911 		 * lookup_extent_mapping will return the first extent map
9912 		 * intersecting the range, so setting @len to 1 is enough to
9913 		 * get the first chunk.
9914 		 */
9915 		em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9916 		read_unlock(&map_tree->map_tree.lock);
9917 		if (!em)
9918 			break;
9919 
9920 		bg = btrfs_lookup_block_group(fs_info, em->start);
9921 		if (!bg) {
9922 			btrfs_err(fs_info,
9923 	"chunk start=%llu len=%llu doesn't have corresponding block group",
9924 				     em->start, em->len);
9925 			ret = -EUCLEAN;
9926 			free_extent_map(em);
9927 			break;
9928 		}
9929 		if (bg->key.objectid != em->start ||
9930 		    bg->key.offset != em->len ||
9931 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9932 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9933 			btrfs_err(fs_info,
9934 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9935 				em->start, em->len,
9936 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9937 				bg->key.objectid, bg->key.offset,
9938 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9939 			ret = -EUCLEAN;
9940 			free_extent_map(em);
9941 			btrfs_put_block_group(bg);
9942 			break;
9943 		}
9944 		start = em->start + em->len;
9945 		free_extent_map(em);
9946 		btrfs_put_block_group(bg);
9947 	}
9948 	return ret;
9949 }
9950 
9951 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9952 {
9953 	struct btrfs_path *path;
9954 	int ret;
9955 	struct btrfs_block_group_cache *cache;
9956 	struct btrfs_space_info *space_info;
9957 	struct btrfs_key key;
9958 	struct btrfs_key found_key;
9959 	struct extent_buffer *leaf;
9960 	int need_clear = 0;
9961 	u64 cache_gen;
9962 	u64 feature;
9963 	int mixed;
9964 
9965 	feature = btrfs_super_incompat_flags(info->super_copy);
9966 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9967 
9968 	key.objectid = 0;
9969 	key.offset = 0;
9970 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9971 	path = btrfs_alloc_path();
9972 	if (!path)
9973 		return -ENOMEM;
9974 	path->reada = READA_FORWARD;
9975 
9976 	cache_gen = btrfs_super_cache_generation(info->super_copy);
9977 	if (btrfs_test_opt(info, SPACE_CACHE) &&
9978 	    btrfs_super_generation(info->super_copy) != cache_gen)
9979 		need_clear = 1;
9980 	if (btrfs_test_opt(info, CLEAR_CACHE))
9981 		need_clear = 1;
9982 
9983 	while (1) {
9984 		ret = find_first_block_group(info, path, &key);
9985 		if (ret > 0)
9986 			break;
9987 		if (ret != 0)
9988 			goto error;
9989 
9990 		leaf = path->nodes[0];
9991 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9992 
9993 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
9994 						       found_key.offset);
9995 		if (!cache) {
9996 			ret = -ENOMEM;
9997 			goto error;
9998 		}
9999 
10000 		if (need_clear) {
10001 			/*
10002 			 * When we mount with old space cache, we need to
10003 			 * set BTRFS_DC_CLEAR and set dirty flag.
10004 			 *
10005 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10006 			 *    truncate the old free space cache inode and
10007 			 *    setup a new one.
10008 			 * b) Setting 'dirty flag' makes sure that we flush
10009 			 *    the new space cache info onto disk.
10010 			 */
10011 			if (btrfs_test_opt(info, SPACE_CACHE))
10012 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10013 		}
10014 
10015 		read_extent_buffer(leaf, &cache->item,
10016 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10017 				   sizeof(cache->item));
10018 		cache->flags = btrfs_block_group_flags(&cache->item);
10019 		if (!mixed &&
10020 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10021 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10022 			btrfs_err(info,
10023 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10024 				  cache->key.objectid);
10025 			ret = -EINVAL;
10026 			goto error;
10027 		}
10028 
10029 		key.objectid = found_key.objectid + found_key.offset;
10030 		btrfs_release_path(path);
10031 
10032 		/*
10033 		 * We need to exclude the super stripes now so that the space
10034 		 * info has super bytes accounted for, otherwise we'll think
10035 		 * we have more space than we actually do.
10036 		 */
10037 		ret = exclude_super_stripes(cache);
10038 		if (ret) {
10039 			/*
10040 			 * We may have excluded something, so call this just in
10041 			 * case.
10042 			 */
10043 			free_excluded_extents(cache);
10044 			btrfs_put_block_group(cache);
10045 			goto error;
10046 		}
10047 
10048 		/*
10049 		 * check for two cases, either we are full, and therefore
10050 		 * don't need to bother with the caching work since we won't
10051 		 * find any space, or we are empty, and we can just add all
10052 		 * the space in and be done with it.  This saves us _alot_ of
10053 		 * time, particularly in the full case.
10054 		 */
10055 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10056 			cache->last_byte_to_unpin = (u64)-1;
10057 			cache->cached = BTRFS_CACHE_FINISHED;
10058 			free_excluded_extents(cache);
10059 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10060 			cache->last_byte_to_unpin = (u64)-1;
10061 			cache->cached = BTRFS_CACHE_FINISHED;
10062 			add_new_free_space(cache, found_key.objectid,
10063 					   found_key.objectid +
10064 					   found_key.offset);
10065 			free_excluded_extents(cache);
10066 		}
10067 
10068 		ret = btrfs_add_block_group_cache(info, cache);
10069 		if (ret) {
10070 			btrfs_remove_free_space_cache(cache);
10071 			btrfs_put_block_group(cache);
10072 			goto error;
10073 		}
10074 
10075 		trace_btrfs_add_block_group(info, cache, 0);
10076 		update_space_info(info, cache->flags, found_key.offset,
10077 				  btrfs_block_group_used(&cache->item),
10078 				  cache->bytes_super, &space_info);
10079 
10080 		cache->space_info = space_info;
10081 
10082 		link_block_group(cache);
10083 
10084 		set_avail_alloc_bits(info, cache->flags);
10085 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10086 			inc_block_group_ro(cache, 1);
10087 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10088 			ASSERT(list_empty(&cache->bg_list));
10089 			btrfs_mark_bg_unused(cache);
10090 		}
10091 	}
10092 
10093 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10094 		if (!(get_alloc_profile(info, space_info->flags) &
10095 		      (BTRFS_BLOCK_GROUP_RAID10 |
10096 		       BTRFS_BLOCK_GROUP_RAID1 |
10097 		       BTRFS_BLOCK_GROUP_RAID5 |
10098 		       BTRFS_BLOCK_GROUP_RAID6 |
10099 		       BTRFS_BLOCK_GROUP_DUP)))
10100 			continue;
10101 		/*
10102 		 * avoid allocating from un-mirrored block group if there are
10103 		 * mirrored block groups.
10104 		 */
10105 		list_for_each_entry(cache,
10106 				&space_info->block_groups[BTRFS_RAID_RAID0],
10107 				list)
10108 			inc_block_group_ro(cache, 1);
10109 		list_for_each_entry(cache,
10110 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10111 				list)
10112 			inc_block_group_ro(cache, 1);
10113 	}
10114 
10115 	btrfs_add_raid_kobjects(info);
10116 	init_global_block_rsv(info);
10117 	ret = check_chunk_block_group_mappings(info);
10118 error:
10119 	btrfs_free_path(path);
10120 	return ret;
10121 }
10122 
10123 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10124 {
10125 	struct btrfs_fs_info *fs_info = trans->fs_info;
10126 	struct btrfs_block_group_cache *block_group;
10127 	struct btrfs_root *extent_root = fs_info->extent_root;
10128 	struct btrfs_block_group_item item;
10129 	struct btrfs_key key;
10130 	int ret = 0;
10131 
10132 	if (!trans->can_flush_pending_bgs)
10133 		return;
10134 
10135 	while (!list_empty(&trans->new_bgs)) {
10136 		block_group = list_first_entry(&trans->new_bgs,
10137 					       struct btrfs_block_group_cache,
10138 					       bg_list);
10139 		if (ret)
10140 			goto next;
10141 
10142 		spin_lock(&block_group->lock);
10143 		memcpy(&item, &block_group->item, sizeof(item));
10144 		memcpy(&key, &block_group->key, sizeof(key));
10145 		spin_unlock(&block_group->lock);
10146 
10147 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10148 					sizeof(item));
10149 		if (ret)
10150 			btrfs_abort_transaction(trans, ret);
10151 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10152 		if (ret)
10153 			btrfs_abort_transaction(trans, ret);
10154 		add_block_group_free_space(trans, block_group);
10155 		/* already aborted the transaction if it failed. */
10156 next:
10157 		list_del_init(&block_group->bg_list);
10158 	}
10159 	btrfs_trans_release_chunk_metadata(trans);
10160 }
10161 
10162 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10163 			   u64 type, u64 chunk_offset, u64 size)
10164 {
10165 	struct btrfs_fs_info *fs_info = trans->fs_info;
10166 	struct btrfs_block_group_cache *cache;
10167 	int ret;
10168 
10169 	btrfs_set_log_full_commit(fs_info, trans);
10170 
10171 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10172 	if (!cache)
10173 		return -ENOMEM;
10174 
10175 	btrfs_set_block_group_used(&cache->item, bytes_used);
10176 	btrfs_set_block_group_chunk_objectid(&cache->item,
10177 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10178 	btrfs_set_block_group_flags(&cache->item, type);
10179 
10180 	cache->flags = type;
10181 	cache->last_byte_to_unpin = (u64)-1;
10182 	cache->cached = BTRFS_CACHE_FINISHED;
10183 	cache->needs_free_space = 1;
10184 	ret = exclude_super_stripes(cache);
10185 	if (ret) {
10186 		/*
10187 		 * We may have excluded something, so call this just in
10188 		 * case.
10189 		 */
10190 		free_excluded_extents(cache);
10191 		btrfs_put_block_group(cache);
10192 		return ret;
10193 	}
10194 
10195 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
10196 
10197 	free_excluded_extents(cache);
10198 
10199 #ifdef CONFIG_BTRFS_DEBUG
10200 	if (btrfs_should_fragment_free_space(cache)) {
10201 		u64 new_bytes_used = size - bytes_used;
10202 
10203 		bytes_used += new_bytes_used >> 1;
10204 		fragment_free_space(cache);
10205 	}
10206 #endif
10207 	/*
10208 	 * Ensure the corresponding space_info object is created and
10209 	 * assigned to our block group. We want our bg to be added to the rbtree
10210 	 * with its ->space_info set.
10211 	 */
10212 	cache->space_info = __find_space_info(fs_info, cache->flags);
10213 	ASSERT(cache->space_info);
10214 
10215 	ret = btrfs_add_block_group_cache(fs_info, cache);
10216 	if (ret) {
10217 		btrfs_remove_free_space_cache(cache);
10218 		btrfs_put_block_group(cache);
10219 		return ret;
10220 	}
10221 
10222 	/*
10223 	 * Now that our block group has its ->space_info set and is inserted in
10224 	 * the rbtree, update the space info's counters.
10225 	 */
10226 	trace_btrfs_add_block_group(fs_info, cache, 1);
10227 	update_space_info(fs_info, cache->flags, size, bytes_used,
10228 				cache->bytes_super, &cache->space_info);
10229 	update_global_block_rsv(fs_info);
10230 
10231 	link_block_group(cache);
10232 
10233 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10234 
10235 	set_avail_alloc_bits(fs_info, type);
10236 	return 0;
10237 }
10238 
10239 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10240 {
10241 	u64 extra_flags = chunk_to_extended(flags) &
10242 				BTRFS_EXTENDED_PROFILE_MASK;
10243 
10244 	write_seqlock(&fs_info->profiles_lock);
10245 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10246 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10247 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10248 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10249 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10250 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10251 	write_sequnlock(&fs_info->profiles_lock);
10252 }
10253 
10254 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10255 			     u64 group_start, struct extent_map *em)
10256 {
10257 	struct btrfs_fs_info *fs_info = trans->fs_info;
10258 	struct btrfs_root *root = fs_info->extent_root;
10259 	struct btrfs_path *path;
10260 	struct btrfs_block_group_cache *block_group;
10261 	struct btrfs_free_cluster *cluster;
10262 	struct btrfs_root *tree_root = fs_info->tree_root;
10263 	struct btrfs_key key;
10264 	struct inode *inode;
10265 	struct kobject *kobj = NULL;
10266 	int ret;
10267 	int index;
10268 	int factor;
10269 	struct btrfs_caching_control *caching_ctl = NULL;
10270 	bool remove_em;
10271 
10272 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10273 	BUG_ON(!block_group);
10274 	BUG_ON(!block_group->ro);
10275 
10276 	trace_btrfs_remove_block_group(block_group);
10277 	/*
10278 	 * Free the reserved super bytes from this block group before
10279 	 * remove it.
10280 	 */
10281 	free_excluded_extents(block_group);
10282 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10283 				  block_group->key.offset);
10284 
10285 	memcpy(&key, &block_group->key, sizeof(key));
10286 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10287 	factor = btrfs_bg_type_to_factor(block_group->flags);
10288 
10289 	/* make sure this block group isn't part of an allocation cluster */
10290 	cluster = &fs_info->data_alloc_cluster;
10291 	spin_lock(&cluster->refill_lock);
10292 	btrfs_return_cluster_to_free_space(block_group, cluster);
10293 	spin_unlock(&cluster->refill_lock);
10294 
10295 	/*
10296 	 * make sure this block group isn't part of a metadata
10297 	 * allocation cluster
10298 	 */
10299 	cluster = &fs_info->meta_alloc_cluster;
10300 	spin_lock(&cluster->refill_lock);
10301 	btrfs_return_cluster_to_free_space(block_group, cluster);
10302 	spin_unlock(&cluster->refill_lock);
10303 
10304 	path = btrfs_alloc_path();
10305 	if (!path) {
10306 		ret = -ENOMEM;
10307 		goto out;
10308 	}
10309 
10310 	/*
10311 	 * get the inode first so any iput calls done for the io_list
10312 	 * aren't the final iput (no unlinks allowed now)
10313 	 */
10314 	inode = lookup_free_space_inode(fs_info, block_group, path);
10315 
10316 	mutex_lock(&trans->transaction->cache_write_mutex);
10317 	/*
10318 	 * make sure our free spache cache IO is done before remove the
10319 	 * free space inode
10320 	 */
10321 	spin_lock(&trans->transaction->dirty_bgs_lock);
10322 	if (!list_empty(&block_group->io_list)) {
10323 		list_del_init(&block_group->io_list);
10324 
10325 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10326 
10327 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10328 		btrfs_wait_cache_io(trans, block_group, path);
10329 		btrfs_put_block_group(block_group);
10330 		spin_lock(&trans->transaction->dirty_bgs_lock);
10331 	}
10332 
10333 	if (!list_empty(&block_group->dirty_list)) {
10334 		list_del_init(&block_group->dirty_list);
10335 		btrfs_put_block_group(block_group);
10336 	}
10337 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10338 	mutex_unlock(&trans->transaction->cache_write_mutex);
10339 
10340 	if (!IS_ERR(inode)) {
10341 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10342 		if (ret) {
10343 			btrfs_add_delayed_iput(inode);
10344 			goto out;
10345 		}
10346 		clear_nlink(inode);
10347 		/* One for the block groups ref */
10348 		spin_lock(&block_group->lock);
10349 		if (block_group->iref) {
10350 			block_group->iref = 0;
10351 			block_group->inode = NULL;
10352 			spin_unlock(&block_group->lock);
10353 			iput(inode);
10354 		} else {
10355 			spin_unlock(&block_group->lock);
10356 		}
10357 		/* One for our lookup ref */
10358 		btrfs_add_delayed_iput(inode);
10359 	}
10360 
10361 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10362 	key.offset = block_group->key.objectid;
10363 	key.type = 0;
10364 
10365 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10366 	if (ret < 0)
10367 		goto out;
10368 	if (ret > 0)
10369 		btrfs_release_path(path);
10370 	if (ret == 0) {
10371 		ret = btrfs_del_item(trans, tree_root, path);
10372 		if (ret)
10373 			goto out;
10374 		btrfs_release_path(path);
10375 	}
10376 
10377 	spin_lock(&fs_info->block_group_cache_lock);
10378 	rb_erase(&block_group->cache_node,
10379 		 &fs_info->block_group_cache_tree);
10380 	RB_CLEAR_NODE(&block_group->cache_node);
10381 
10382 	if (fs_info->first_logical_byte == block_group->key.objectid)
10383 		fs_info->first_logical_byte = (u64)-1;
10384 	spin_unlock(&fs_info->block_group_cache_lock);
10385 
10386 	down_write(&block_group->space_info->groups_sem);
10387 	/*
10388 	 * we must use list_del_init so people can check to see if they
10389 	 * are still on the list after taking the semaphore
10390 	 */
10391 	list_del_init(&block_group->list);
10392 	if (list_empty(&block_group->space_info->block_groups[index])) {
10393 		kobj = block_group->space_info->block_group_kobjs[index];
10394 		block_group->space_info->block_group_kobjs[index] = NULL;
10395 		clear_avail_alloc_bits(fs_info, block_group->flags);
10396 	}
10397 	up_write(&block_group->space_info->groups_sem);
10398 	if (kobj) {
10399 		kobject_del(kobj);
10400 		kobject_put(kobj);
10401 	}
10402 
10403 	if (block_group->has_caching_ctl)
10404 		caching_ctl = get_caching_control(block_group);
10405 	if (block_group->cached == BTRFS_CACHE_STARTED)
10406 		wait_block_group_cache_done(block_group);
10407 	if (block_group->has_caching_ctl) {
10408 		down_write(&fs_info->commit_root_sem);
10409 		if (!caching_ctl) {
10410 			struct btrfs_caching_control *ctl;
10411 
10412 			list_for_each_entry(ctl,
10413 				    &fs_info->caching_block_groups, list)
10414 				if (ctl->block_group == block_group) {
10415 					caching_ctl = ctl;
10416 					refcount_inc(&caching_ctl->count);
10417 					break;
10418 				}
10419 		}
10420 		if (caching_ctl)
10421 			list_del_init(&caching_ctl->list);
10422 		up_write(&fs_info->commit_root_sem);
10423 		if (caching_ctl) {
10424 			/* Once for the caching bgs list and once for us. */
10425 			put_caching_control(caching_ctl);
10426 			put_caching_control(caching_ctl);
10427 		}
10428 	}
10429 
10430 	spin_lock(&trans->transaction->dirty_bgs_lock);
10431 	if (!list_empty(&block_group->dirty_list)) {
10432 		WARN_ON(1);
10433 	}
10434 	if (!list_empty(&block_group->io_list)) {
10435 		WARN_ON(1);
10436 	}
10437 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10438 	btrfs_remove_free_space_cache(block_group);
10439 
10440 	spin_lock(&block_group->space_info->lock);
10441 	list_del_init(&block_group->ro_list);
10442 
10443 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10444 		WARN_ON(block_group->space_info->total_bytes
10445 			< block_group->key.offset);
10446 		WARN_ON(block_group->space_info->bytes_readonly
10447 			< block_group->key.offset);
10448 		WARN_ON(block_group->space_info->disk_total
10449 			< block_group->key.offset * factor);
10450 	}
10451 	block_group->space_info->total_bytes -= block_group->key.offset;
10452 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10453 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10454 
10455 	spin_unlock(&block_group->space_info->lock);
10456 
10457 	memcpy(&key, &block_group->key, sizeof(key));
10458 
10459 	mutex_lock(&fs_info->chunk_mutex);
10460 	if (!list_empty(&em->list)) {
10461 		/* We're in the transaction->pending_chunks list. */
10462 		free_extent_map(em);
10463 	}
10464 	spin_lock(&block_group->lock);
10465 	block_group->removed = 1;
10466 	/*
10467 	 * At this point trimming can't start on this block group, because we
10468 	 * removed the block group from the tree fs_info->block_group_cache_tree
10469 	 * so no one can't find it anymore and even if someone already got this
10470 	 * block group before we removed it from the rbtree, they have already
10471 	 * incremented block_group->trimming - if they didn't, they won't find
10472 	 * any free space entries because we already removed them all when we
10473 	 * called btrfs_remove_free_space_cache().
10474 	 *
10475 	 * And we must not remove the extent map from the fs_info->mapping_tree
10476 	 * to prevent the same logical address range and physical device space
10477 	 * ranges from being reused for a new block group. This is because our
10478 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10479 	 * completely transactionless, so while it is trimming a range the
10480 	 * currently running transaction might finish and a new one start,
10481 	 * allowing for new block groups to be created that can reuse the same
10482 	 * physical device locations unless we take this special care.
10483 	 *
10484 	 * There may also be an implicit trim operation if the file system
10485 	 * is mounted with -odiscard. The same protections must remain
10486 	 * in place until the extents have been discarded completely when
10487 	 * the transaction commit has completed.
10488 	 */
10489 	remove_em = (atomic_read(&block_group->trimming) == 0);
10490 	/*
10491 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10492 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10493 	 * before checking block_group->removed).
10494 	 */
10495 	if (!remove_em) {
10496 		/*
10497 		 * Our em might be in trans->transaction->pending_chunks which
10498 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10499 		 * and so is the fs_info->pinned_chunks list.
10500 		 *
10501 		 * So at this point we must be holding the chunk_mutex to avoid
10502 		 * any races with chunk allocation (more specifically at
10503 		 * volumes.c:contains_pending_extent()), to ensure it always
10504 		 * sees the em, either in the pending_chunks list or in the
10505 		 * pinned_chunks list.
10506 		 */
10507 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10508 	}
10509 	spin_unlock(&block_group->lock);
10510 
10511 	if (remove_em) {
10512 		struct extent_map_tree *em_tree;
10513 
10514 		em_tree = &fs_info->mapping_tree.map_tree;
10515 		write_lock(&em_tree->lock);
10516 		/*
10517 		 * The em might be in the pending_chunks list, so make sure the
10518 		 * chunk mutex is locked, since remove_extent_mapping() will
10519 		 * delete us from that list.
10520 		 */
10521 		remove_extent_mapping(em_tree, em);
10522 		write_unlock(&em_tree->lock);
10523 		/* once for the tree */
10524 		free_extent_map(em);
10525 	}
10526 
10527 	mutex_unlock(&fs_info->chunk_mutex);
10528 
10529 	ret = remove_block_group_free_space(trans, block_group);
10530 	if (ret)
10531 		goto out;
10532 
10533 	btrfs_put_block_group(block_group);
10534 	btrfs_put_block_group(block_group);
10535 
10536 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10537 	if (ret > 0)
10538 		ret = -EIO;
10539 	if (ret < 0)
10540 		goto out;
10541 
10542 	ret = btrfs_del_item(trans, root, path);
10543 out:
10544 	btrfs_free_path(path);
10545 	return ret;
10546 }
10547 
10548 struct btrfs_trans_handle *
10549 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10550 				     const u64 chunk_offset)
10551 {
10552 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10553 	struct extent_map *em;
10554 	struct map_lookup *map;
10555 	unsigned int num_items;
10556 
10557 	read_lock(&em_tree->lock);
10558 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10559 	read_unlock(&em_tree->lock);
10560 	ASSERT(em && em->start == chunk_offset);
10561 
10562 	/*
10563 	 * We need to reserve 3 + N units from the metadata space info in order
10564 	 * to remove a block group (done at btrfs_remove_chunk() and at
10565 	 * btrfs_remove_block_group()), which are used for:
10566 	 *
10567 	 * 1 unit for adding the free space inode's orphan (located in the tree
10568 	 * of tree roots).
10569 	 * 1 unit for deleting the block group item (located in the extent
10570 	 * tree).
10571 	 * 1 unit for deleting the free space item (located in tree of tree
10572 	 * roots).
10573 	 * N units for deleting N device extent items corresponding to each
10574 	 * stripe (located in the device tree).
10575 	 *
10576 	 * In order to remove a block group we also need to reserve units in the
10577 	 * system space info in order to update the chunk tree (update one or
10578 	 * more device items and remove one chunk item), but this is done at
10579 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10580 	 */
10581 	map = em->map_lookup;
10582 	num_items = 3 + map->num_stripes;
10583 	free_extent_map(em);
10584 
10585 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10586 							   num_items, 1);
10587 }
10588 
10589 /*
10590  * Process the unused_bgs list and remove any that don't have any allocated
10591  * space inside of them.
10592  */
10593 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10594 {
10595 	struct btrfs_block_group_cache *block_group;
10596 	struct btrfs_space_info *space_info;
10597 	struct btrfs_trans_handle *trans;
10598 	int ret = 0;
10599 
10600 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10601 		return;
10602 
10603 	spin_lock(&fs_info->unused_bgs_lock);
10604 	while (!list_empty(&fs_info->unused_bgs)) {
10605 		u64 start, end;
10606 		int trimming;
10607 
10608 		block_group = list_first_entry(&fs_info->unused_bgs,
10609 					       struct btrfs_block_group_cache,
10610 					       bg_list);
10611 		list_del_init(&block_group->bg_list);
10612 
10613 		space_info = block_group->space_info;
10614 
10615 		if (ret || btrfs_mixed_space_info(space_info)) {
10616 			btrfs_put_block_group(block_group);
10617 			continue;
10618 		}
10619 		spin_unlock(&fs_info->unused_bgs_lock);
10620 
10621 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10622 
10623 		/* Don't want to race with allocators so take the groups_sem */
10624 		down_write(&space_info->groups_sem);
10625 		spin_lock(&block_group->lock);
10626 		if (block_group->reserved || block_group->pinned ||
10627 		    btrfs_block_group_used(&block_group->item) ||
10628 		    block_group->ro ||
10629 		    list_is_singular(&block_group->list)) {
10630 			/*
10631 			 * We want to bail if we made new allocations or have
10632 			 * outstanding allocations in this block group.  We do
10633 			 * the ro check in case balance is currently acting on
10634 			 * this block group.
10635 			 */
10636 			trace_btrfs_skip_unused_block_group(block_group);
10637 			spin_unlock(&block_group->lock);
10638 			up_write(&space_info->groups_sem);
10639 			goto next;
10640 		}
10641 		spin_unlock(&block_group->lock);
10642 
10643 		/* We don't want to force the issue, only flip if it's ok. */
10644 		ret = inc_block_group_ro(block_group, 0);
10645 		up_write(&space_info->groups_sem);
10646 		if (ret < 0) {
10647 			ret = 0;
10648 			goto next;
10649 		}
10650 
10651 		/*
10652 		 * Want to do this before we do anything else so we can recover
10653 		 * properly if we fail to join the transaction.
10654 		 */
10655 		trans = btrfs_start_trans_remove_block_group(fs_info,
10656 						     block_group->key.objectid);
10657 		if (IS_ERR(trans)) {
10658 			btrfs_dec_block_group_ro(block_group);
10659 			ret = PTR_ERR(trans);
10660 			goto next;
10661 		}
10662 
10663 		/*
10664 		 * We could have pending pinned extents for this block group,
10665 		 * just delete them, we don't care about them anymore.
10666 		 */
10667 		start = block_group->key.objectid;
10668 		end = start + block_group->key.offset - 1;
10669 		/*
10670 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10671 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10672 		 * another task might be running finish_extent_commit() for the
10673 		 * previous transaction N - 1, and have seen a range belonging
10674 		 * to the block group in freed_extents[] before we were able to
10675 		 * clear the whole block group range from freed_extents[]. This
10676 		 * means that task can lookup for the block group after we
10677 		 * unpinned it from freed_extents[] and removed it, leading to
10678 		 * a BUG_ON() at btrfs_unpin_extent_range().
10679 		 */
10680 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10681 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10682 				  EXTENT_DIRTY);
10683 		if (ret) {
10684 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10685 			btrfs_dec_block_group_ro(block_group);
10686 			goto end_trans;
10687 		}
10688 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10689 				  EXTENT_DIRTY);
10690 		if (ret) {
10691 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10692 			btrfs_dec_block_group_ro(block_group);
10693 			goto end_trans;
10694 		}
10695 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10696 
10697 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10698 		spin_lock(&space_info->lock);
10699 		spin_lock(&block_group->lock);
10700 
10701 		space_info->bytes_pinned -= block_group->pinned;
10702 		space_info->bytes_readonly += block_group->pinned;
10703 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
10704 				   -block_group->pinned,
10705 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
10706 		block_group->pinned = 0;
10707 
10708 		spin_unlock(&block_group->lock);
10709 		spin_unlock(&space_info->lock);
10710 
10711 		/* DISCARD can flip during remount */
10712 		trimming = btrfs_test_opt(fs_info, DISCARD);
10713 
10714 		/* Implicit trim during transaction commit. */
10715 		if (trimming)
10716 			btrfs_get_block_group_trimming(block_group);
10717 
10718 		/*
10719 		 * Btrfs_remove_chunk will abort the transaction if things go
10720 		 * horribly wrong.
10721 		 */
10722 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10723 
10724 		if (ret) {
10725 			if (trimming)
10726 				btrfs_put_block_group_trimming(block_group);
10727 			goto end_trans;
10728 		}
10729 
10730 		/*
10731 		 * If we're not mounted with -odiscard, we can just forget
10732 		 * about this block group. Otherwise we'll need to wait
10733 		 * until transaction commit to do the actual discard.
10734 		 */
10735 		if (trimming) {
10736 			spin_lock(&fs_info->unused_bgs_lock);
10737 			/*
10738 			 * A concurrent scrub might have added us to the list
10739 			 * fs_info->unused_bgs, so use a list_move operation
10740 			 * to add the block group to the deleted_bgs list.
10741 			 */
10742 			list_move(&block_group->bg_list,
10743 				  &trans->transaction->deleted_bgs);
10744 			spin_unlock(&fs_info->unused_bgs_lock);
10745 			btrfs_get_block_group(block_group);
10746 		}
10747 end_trans:
10748 		btrfs_end_transaction(trans);
10749 next:
10750 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10751 		btrfs_put_block_group(block_group);
10752 		spin_lock(&fs_info->unused_bgs_lock);
10753 	}
10754 	spin_unlock(&fs_info->unused_bgs_lock);
10755 }
10756 
10757 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10758 {
10759 	struct btrfs_super_block *disk_super;
10760 	u64 features;
10761 	u64 flags;
10762 	int mixed = 0;
10763 	int ret;
10764 
10765 	disk_super = fs_info->super_copy;
10766 	if (!btrfs_super_root(disk_super))
10767 		return -EINVAL;
10768 
10769 	features = btrfs_super_incompat_flags(disk_super);
10770 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10771 		mixed = 1;
10772 
10773 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10774 	ret = create_space_info(fs_info, flags);
10775 	if (ret)
10776 		goto out;
10777 
10778 	if (mixed) {
10779 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10780 		ret = create_space_info(fs_info, flags);
10781 	} else {
10782 		flags = BTRFS_BLOCK_GROUP_METADATA;
10783 		ret = create_space_info(fs_info, flags);
10784 		if (ret)
10785 			goto out;
10786 
10787 		flags = BTRFS_BLOCK_GROUP_DATA;
10788 		ret = create_space_info(fs_info, flags);
10789 	}
10790 out:
10791 	return ret;
10792 }
10793 
10794 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10795 				   u64 start, u64 end)
10796 {
10797 	return unpin_extent_range(fs_info, start, end, false);
10798 }
10799 
10800 /*
10801  * It used to be that old block groups would be left around forever.
10802  * Iterating over them would be enough to trim unused space.  Since we
10803  * now automatically remove them, we also need to iterate over unallocated
10804  * space.
10805  *
10806  * We don't want a transaction for this since the discard may take a
10807  * substantial amount of time.  We don't require that a transaction be
10808  * running, but we do need to take a running transaction into account
10809  * to ensure that we're not discarding chunks that were released or
10810  * allocated in the current transaction.
10811  *
10812  * Holding the chunks lock will prevent other threads from allocating
10813  * or releasing chunks, but it won't prevent a running transaction
10814  * from committing and releasing the memory that the pending chunks
10815  * list head uses.  For that, we need to take a reference to the
10816  * transaction and hold the commit root sem.  We only need to hold
10817  * it while performing the free space search since we have already
10818  * held back allocations.
10819  */
10820 static int btrfs_trim_free_extents(struct btrfs_device *device,
10821 				   u64 minlen, u64 *trimmed)
10822 {
10823 	u64 start = 0, len = 0;
10824 	int ret;
10825 
10826 	*trimmed = 0;
10827 
10828 	/* Discard not supported = nothing to do. */
10829 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10830 		return 0;
10831 
10832 	/* Not writeable = nothing to do. */
10833 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10834 		return 0;
10835 
10836 	/* No free space = nothing to do. */
10837 	if (device->total_bytes <= device->bytes_used)
10838 		return 0;
10839 
10840 	ret = 0;
10841 
10842 	while (1) {
10843 		struct btrfs_fs_info *fs_info = device->fs_info;
10844 		struct btrfs_transaction *trans;
10845 		u64 bytes;
10846 
10847 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10848 		if (ret)
10849 			break;
10850 
10851 		ret = down_read_killable(&fs_info->commit_root_sem);
10852 		if (ret) {
10853 			mutex_unlock(&fs_info->chunk_mutex);
10854 			break;
10855 		}
10856 
10857 		spin_lock(&fs_info->trans_lock);
10858 		trans = fs_info->running_transaction;
10859 		if (trans)
10860 			refcount_inc(&trans->use_count);
10861 		spin_unlock(&fs_info->trans_lock);
10862 
10863 		if (!trans)
10864 			up_read(&fs_info->commit_root_sem);
10865 
10866 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10867 						 &start, &len);
10868 		if (trans) {
10869 			up_read(&fs_info->commit_root_sem);
10870 			btrfs_put_transaction(trans);
10871 		}
10872 
10873 		if (ret) {
10874 			mutex_unlock(&fs_info->chunk_mutex);
10875 			if (ret == -ENOSPC)
10876 				ret = 0;
10877 			break;
10878 		}
10879 
10880 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10881 		mutex_unlock(&fs_info->chunk_mutex);
10882 
10883 		if (ret)
10884 			break;
10885 
10886 		start += len;
10887 		*trimmed += bytes;
10888 
10889 		if (fatal_signal_pending(current)) {
10890 			ret = -ERESTARTSYS;
10891 			break;
10892 		}
10893 
10894 		cond_resched();
10895 	}
10896 
10897 	return ret;
10898 }
10899 
10900 /*
10901  * Trim the whole filesystem by:
10902  * 1) trimming the free space in each block group
10903  * 2) trimming the unallocated space on each device
10904  *
10905  * This will also continue trimming even if a block group or device encounters
10906  * an error.  The return value will be the last error, or 0 if nothing bad
10907  * happens.
10908  */
10909 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10910 {
10911 	struct btrfs_block_group_cache *cache = NULL;
10912 	struct btrfs_device *device;
10913 	struct list_head *devices;
10914 	u64 group_trimmed;
10915 	u64 start;
10916 	u64 end;
10917 	u64 trimmed = 0;
10918 	u64 bg_failed = 0;
10919 	u64 dev_failed = 0;
10920 	int bg_ret = 0;
10921 	int dev_ret = 0;
10922 	int ret = 0;
10923 
10924 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
10925 	for (; cache; cache = next_block_group(fs_info, cache)) {
10926 		if (cache->key.objectid >= (range->start + range->len)) {
10927 			btrfs_put_block_group(cache);
10928 			break;
10929 		}
10930 
10931 		start = max(range->start, cache->key.objectid);
10932 		end = min(range->start + range->len,
10933 				cache->key.objectid + cache->key.offset);
10934 
10935 		if (end - start >= range->minlen) {
10936 			if (!block_group_cache_done(cache)) {
10937 				ret = cache_block_group(cache, 0);
10938 				if (ret) {
10939 					bg_failed++;
10940 					bg_ret = ret;
10941 					continue;
10942 				}
10943 				ret = wait_block_group_cache_done(cache);
10944 				if (ret) {
10945 					bg_failed++;
10946 					bg_ret = ret;
10947 					continue;
10948 				}
10949 			}
10950 			ret = btrfs_trim_block_group(cache,
10951 						     &group_trimmed,
10952 						     start,
10953 						     end,
10954 						     range->minlen);
10955 
10956 			trimmed += group_trimmed;
10957 			if (ret) {
10958 				bg_failed++;
10959 				bg_ret = ret;
10960 				continue;
10961 			}
10962 		}
10963 	}
10964 
10965 	if (bg_failed)
10966 		btrfs_warn(fs_info,
10967 			"failed to trim %llu block group(s), last error %d",
10968 			bg_failed, bg_ret);
10969 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10970 	devices = &fs_info->fs_devices->devices;
10971 	list_for_each_entry(device, devices, dev_list) {
10972 		ret = btrfs_trim_free_extents(device, range->minlen,
10973 					      &group_trimmed);
10974 		if (ret) {
10975 			dev_failed++;
10976 			dev_ret = ret;
10977 			break;
10978 		}
10979 
10980 		trimmed += group_trimmed;
10981 	}
10982 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10983 
10984 	if (dev_failed)
10985 		btrfs_warn(fs_info,
10986 			"failed to trim %llu device(s), last error %d",
10987 			dev_failed, dev_ret);
10988 	range->len = trimmed;
10989 	if (bg_ret)
10990 		return bg_ret;
10991 	return dev_ret;
10992 }
10993 
10994 /*
10995  * btrfs_{start,end}_write_no_snapshotting() are similar to
10996  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10997  * data into the page cache through nocow before the subvolume is snapshoted,
10998  * but flush the data into disk after the snapshot creation, or to prevent
10999  * operations while snapshotting is ongoing and that cause the snapshot to be
11000  * inconsistent (writes followed by expanding truncates for example).
11001  */
11002 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11003 {
11004 	percpu_counter_dec(&root->subv_writers->counter);
11005 	cond_wake_up(&root->subv_writers->wait);
11006 }
11007 
11008 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11009 {
11010 	if (atomic_read(&root->will_be_snapshotted))
11011 		return 0;
11012 
11013 	percpu_counter_inc(&root->subv_writers->counter);
11014 	/*
11015 	 * Make sure counter is updated before we check for snapshot creation.
11016 	 */
11017 	smp_mb();
11018 	if (atomic_read(&root->will_be_snapshotted)) {
11019 		btrfs_end_write_no_snapshotting(root);
11020 		return 0;
11021 	}
11022 	return 1;
11023 }
11024 
11025 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11026 {
11027 	while (true) {
11028 		int ret;
11029 
11030 		ret = btrfs_start_write_no_snapshotting(root);
11031 		if (ret)
11032 			break;
11033 		wait_var_event(&root->will_be_snapshotted,
11034 			       !atomic_read(&root->will_be_snapshotted));
11035 	}
11036 }
11037 
11038 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11039 {
11040 	struct btrfs_fs_info *fs_info = bg->fs_info;
11041 
11042 	spin_lock(&fs_info->unused_bgs_lock);
11043 	if (list_empty(&bg->bg_list)) {
11044 		btrfs_get_block_group(bg);
11045 		trace_btrfs_add_unused_block_group(bg);
11046 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11047 	}
11048 	spin_unlock(&fs_info->unused_bgs_lock);
11049 }
11050