xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 			       struct btrfs_fs_info *fs_info,
56 				struct btrfs_delayed_ref_node *node, u64 parent,
57 				u64 root_objectid, u64 owner_objectid,
58 				u64 owner_offset, int refs_to_drop,
59 				struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 				    struct extent_buffer *leaf,
62 				    struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 				      struct btrfs_fs_info *fs_info,
65 				      u64 parent, u64 root_objectid,
66 				      u64 flags, u64 owner, u64 offset,
67 				      struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 				     struct btrfs_fs_info *fs_info,
70 				     u64 parent, u64 root_objectid,
71 				     u64 flags, struct btrfs_disk_key *key,
72 				     int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74 			  struct btrfs_fs_info *fs_info, u64 flags,
75 			  int force);
76 static int find_next_key(struct btrfs_path *path, int level,
77 			 struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79 			    struct btrfs_space_info *info, u64 bytes,
80 			    int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 			       u64 num_bytes);
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 				     struct btrfs_space_info *space_info,
85 				     u64 num_bytes);
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 				     struct btrfs_space_info *space_info,
88 				     u64 num_bytes);
89 
90 static noinline int
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 {
93 	smp_mb();
94 	return cache->cached == BTRFS_CACHE_FINISHED ||
95 		cache->cached == BTRFS_CACHE_ERROR;
96 }
97 
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99 {
100 	return (cache->flags & bits) == bits;
101 }
102 
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104 {
105 	atomic_inc(&cache->count);
106 }
107 
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109 {
110 	if (atomic_dec_and_test(&cache->count)) {
111 		WARN_ON(cache->pinned > 0);
112 		WARN_ON(cache->reserved > 0);
113 
114 		/*
115 		 * If not empty, someone is still holding mutex of
116 		 * full_stripe_lock, which can only be released by caller.
117 		 * And it will definitely cause use-after-free when caller
118 		 * tries to release full stripe lock.
119 		 *
120 		 * No better way to resolve, but only to warn.
121 		 */
122 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123 		kfree(cache->free_space_ctl);
124 		kfree(cache);
125 	}
126 }
127 
128 /*
129  * this adds the block group to the fs_info rb tree for the block group
130  * cache
131  */
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133 				struct btrfs_block_group_cache *block_group)
134 {
135 	struct rb_node **p;
136 	struct rb_node *parent = NULL;
137 	struct btrfs_block_group_cache *cache;
138 
139 	spin_lock(&info->block_group_cache_lock);
140 	p = &info->block_group_cache_tree.rb_node;
141 
142 	while (*p) {
143 		parent = *p;
144 		cache = rb_entry(parent, struct btrfs_block_group_cache,
145 				 cache_node);
146 		if (block_group->key.objectid < cache->key.objectid) {
147 			p = &(*p)->rb_left;
148 		} else if (block_group->key.objectid > cache->key.objectid) {
149 			p = &(*p)->rb_right;
150 		} else {
151 			spin_unlock(&info->block_group_cache_lock);
152 			return -EEXIST;
153 		}
154 	}
155 
156 	rb_link_node(&block_group->cache_node, parent, p);
157 	rb_insert_color(&block_group->cache_node,
158 			&info->block_group_cache_tree);
159 
160 	if (info->first_logical_byte > block_group->key.objectid)
161 		info->first_logical_byte = block_group->key.objectid;
162 
163 	spin_unlock(&info->block_group_cache_lock);
164 
165 	return 0;
166 }
167 
168 /*
169  * This will return the block group at or after bytenr if contains is 0, else
170  * it will return the block group that contains the bytenr
171  */
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 			      int contains)
175 {
176 	struct btrfs_block_group_cache *cache, *ret = NULL;
177 	struct rb_node *n;
178 	u64 end, start;
179 
180 	spin_lock(&info->block_group_cache_lock);
181 	n = info->block_group_cache_tree.rb_node;
182 
183 	while (n) {
184 		cache = rb_entry(n, struct btrfs_block_group_cache,
185 				 cache_node);
186 		end = cache->key.objectid + cache->key.offset - 1;
187 		start = cache->key.objectid;
188 
189 		if (bytenr < start) {
190 			if (!contains && (!ret || start < ret->key.objectid))
191 				ret = cache;
192 			n = n->rb_left;
193 		} else if (bytenr > start) {
194 			if (contains && bytenr <= end) {
195 				ret = cache;
196 				break;
197 			}
198 			n = n->rb_right;
199 		} else {
200 			ret = cache;
201 			break;
202 		}
203 	}
204 	if (ret) {
205 		btrfs_get_block_group(ret);
206 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 			info->first_logical_byte = ret->key.objectid;
208 	}
209 	spin_unlock(&info->block_group_cache_lock);
210 
211 	return ret;
212 }
213 
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215 			       u64 start, u64 num_bytes)
216 {
217 	u64 end = start + num_bytes - 1;
218 	set_extent_bits(&fs_info->freed_extents[0],
219 			start, end, EXTENT_UPTODATE);
220 	set_extent_bits(&fs_info->freed_extents[1],
221 			start, end, EXTENT_UPTODATE);
222 	return 0;
223 }
224 
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226 				  struct btrfs_block_group_cache *cache)
227 {
228 	u64 start, end;
229 
230 	start = cache->key.objectid;
231 	end = start + cache->key.offset - 1;
232 
233 	clear_extent_bits(&fs_info->freed_extents[0],
234 			  start, end, EXTENT_UPTODATE);
235 	clear_extent_bits(&fs_info->freed_extents[1],
236 			  start, end, EXTENT_UPTODATE);
237 }
238 
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240 				 struct btrfs_block_group_cache *cache)
241 {
242 	u64 bytenr;
243 	u64 *logical;
244 	int stripe_len;
245 	int i, nr, ret;
246 
247 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 		cache->bytes_super += stripe_len;
250 		ret = add_excluded_extent(fs_info, cache->key.objectid,
251 					  stripe_len);
252 		if (ret)
253 			return ret;
254 	}
255 
256 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 		bytenr = btrfs_sb_offset(i);
258 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259 				       bytenr, 0, &logical, &nr, &stripe_len);
260 		if (ret)
261 			return ret;
262 
263 		while (nr--) {
264 			u64 start, len;
265 
266 			if (logical[nr] > cache->key.objectid +
267 			    cache->key.offset)
268 				continue;
269 
270 			if (logical[nr] + stripe_len <= cache->key.objectid)
271 				continue;
272 
273 			start = logical[nr];
274 			if (start < cache->key.objectid) {
275 				start = cache->key.objectid;
276 				len = (logical[nr] + stripe_len) - start;
277 			} else {
278 				len = min_t(u64, stripe_len,
279 					    cache->key.objectid +
280 					    cache->key.offset - start);
281 			}
282 
283 			cache->bytes_super += len;
284 			ret = add_excluded_extent(fs_info, start, len);
285 			if (ret) {
286 				kfree(logical);
287 				return ret;
288 			}
289 		}
290 
291 		kfree(logical);
292 	}
293 	return 0;
294 }
295 
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
298 {
299 	struct btrfs_caching_control *ctl;
300 
301 	spin_lock(&cache->lock);
302 	if (!cache->caching_ctl) {
303 		spin_unlock(&cache->lock);
304 		return NULL;
305 	}
306 
307 	ctl = cache->caching_ctl;
308 	refcount_inc(&ctl->count);
309 	spin_unlock(&cache->lock);
310 	return ctl;
311 }
312 
313 static void put_caching_control(struct btrfs_caching_control *ctl)
314 {
315 	if (refcount_dec_and_test(&ctl->count))
316 		kfree(ctl);
317 }
318 
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321 {
322 	struct btrfs_fs_info *fs_info = block_group->fs_info;
323 	u64 start = block_group->key.objectid;
324 	u64 len = block_group->key.offset;
325 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326 		fs_info->nodesize : fs_info->sectorsize;
327 	u64 step = chunk << 1;
328 
329 	while (len > chunk) {
330 		btrfs_remove_free_space(block_group, start, chunk);
331 		start += step;
332 		if (len < step)
333 			len = 0;
334 		else
335 			len -= step;
336 	}
337 }
338 #endif
339 
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 		       struct btrfs_fs_info *info, u64 start, u64 end)
347 {
348 	u64 extent_start, extent_end, size, total_added = 0;
349 	int ret;
350 
351 	while (start < end) {
352 		ret = find_first_extent_bit(info->pinned_extents, start,
353 					    &extent_start, &extent_end,
354 					    EXTENT_DIRTY | EXTENT_UPTODATE,
355 					    NULL);
356 		if (ret)
357 			break;
358 
359 		if (extent_start <= start) {
360 			start = extent_end + 1;
361 		} else if (extent_start > start && extent_start < end) {
362 			size = extent_start - start;
363 			total_added += size;
364 			ret = btrfs_add_free_space(block_group, start,
365 						   size);
366 			BUG_ON(ret); /* -ENOMEM or logic error */
367 			start = extent_end + 1;
368 		} else {
369 			break;
370 		}
371 	}
372 
373 	if (start < end) {
374 		size = end - start;
375 		total_added += size;
376 		ret = btrfs_add_free_space(block_group, start, size);
377 		BUG_ON(ret); /* -ENOMEM or logic error */
378 	}
379 
380 	return total_added;
381 }
382 
383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384 {
385 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 	struct btrfs_fs_info *fs_info = block_group->fs_info;
387 	struct btrfs_root *extent_root = fs_info->extent_root;
388 	struct btrfs_path *path;
389 	struct extent_buffer *leaf;
390 	struct btrfs_key key;
391 	u64 total_found = 0;
392 	u64 last = 0;
393 	u32 nritems;
394 	int ret;
395 	bool wakeup = true;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		return -ENOMEM;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 #ifdef CONFIG_BTRFS_DEBUG
404 	/*
405 	 * If we're fragmenting we don't want to make anybody think we can
406 	 * allocate from this block group until we've had a chance to fragment
407 	 * the free space.
408 	 */
409 	if (btrfs_should_fragment_free_space(block_group))
410 		wakeup = false;
411 #endif
412 	/*
413 	 * We don't want to deadlock with somebody trying to allocate a new
414 	 * extent for the extent root while also trying to search the extent
415 	 * root to add free space.  So we skip locking and search the commit
416 	 * root, since its read-only
417 	 */
418 	path->skip_locking = 1;
419 	path->search_commit_root = 1;
420 	path->reada = READA_FORWARD;
421 
422 	key.objectid = last;
423 	key.offset = 0;
424 	key.type = BTRFS_EXTENT_ITEM_KEY;
425 
426 next:
427 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428 	if (ret < 0)
429 		goto out;
430 
431 	leaf = path->nodes[0];
432 	nritems = btrfs_header_nritems(leaf);
433 
434 	while (1) {
435 		if (btrfs_fs_closing(fs_info) > 1) {
436 			last = (u64)-1;
437 			break;
438 		}
439 
440 		if (path->slots[0] < nritems) {
441 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 		} else {
443 			ret = find_next_key(path, 0, &key);
444 			if (ret)
445 				break;
446 
447 			if (need_resched() ||
448 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
449 				if (wakeup)
450 					caching_ctl->progress = last;
451 				btrfs_release_path(path);
452 				up_read(&fs_info->commit_root_sem);
453 				mutex_unlock(&caching_ctl->mutex);
454 				cond_resched();
455 				mutex_lock(&caching_ctl->mutex);
456 				down_read(&fs_info->commit_root_sem);
457 				goto next;
458 			}
459 
460 			ret = btrfs_next_leaf(extent_root, path);
461 			if (ret < 0)
462 				goto out;
463 			if (ret)
464 				break;
465 			leaf = path->nodes[0];
466 			nritems = btrfs_header_nritems(leaf);
467 			continue;
468 		}
469 
470 		if (key.objectid < last) {
471 			key.objectid = last;
472 			key.offset = 0;
473 			key.type = BTRFS_EXTENT_ITEM_KEY;
474 
475 			if (wakeup)
476 				caching_ctl->progress = last;
477 			btrfs_release_path(path);
478 			goto next;
479 		}
480 
481 		if (key.objectid < block_group->key.objectid) {
482 			path->slots[0]++;
483 			continue;
484 		}
485 
486 		if (key.objectid >= block_group->key.objectid +
487 		    block_group->key.offset)
488 			break;
489 
490 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 		    key.type == BTRFS_METADATA_ITEM_KEY) {
492 			total_found += add_new_free_space(block_group,
493 							  fs_info, last,
494 							  key.objectid);
495 			if (key.type == BTRFS_METADATA_ITEM_KEY)
496 				last = key.objectid +
497 					fs_info->nodesize;
498 			else
499 				last = key.objectid + key.offset;
500 
501 			if (total_found > CACHING_CTL_WAKE_UP) {
502 				total_found = 0;
503 				if (wakeup)
504 					wake_up(&caching_ctl->wait);
505 			}
506 		}
507 		path->slots[0]++;
508 	}
509 	ret = 0;
510 
511 	total_found += add_new_free_space(block_group, fs_info, last,
512 					  block_group->key.objectid +
513 					  block_group->key.offset);
514 	caching_ctl->progress = (u64)-1;
515 
516 out:
517 	btrfs_free_path(path);
518 	return ret;
519 }
520 
521 static noinline void caching_thread(struct btrfs_work *work)
522 {
523 	struct btrfs_block_group_cache *block_group;
524 	struct btrfs_fs_info *fs_info;
525 	struct btrfs_caching_control *caching_ctl;
526 	int ret;
527 
528 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 	block_group = caching_ctl->block_group;
530 	fs_info = block_group->fs_info;
531 
532 	mutex_lock(&caching_ctl->mutex);
533 	down_read(&fs_info->commit_root_sem);
534 
535 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 		ret = load_free_space_tree(caching_ctl);
537 	else
538 		ret = load_extent_tree_free(caching_ctl);
539 
540 	spin_lock(&block_group->lock);
541 	block_group->caching_ctl = NULL;
542 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543 	spin_unlock(&block_group->lock);
544 
545 #ifdef CONFIG_BTRFS_DEBUG
546 	if (btrfs_should_fragment_free_space(block_group)) {
547 		u64 bytes_used;
548 
549 		spin_lock(&block_group->space_info->lock);
550 		spin_lock(&block_group->lock);
551 		bytes_used = block_group->key.offset -
552 			btrfs_block_group_used(&block_group->item);
553 		block_group->space_info->bytes_used += bytes_used >> 1;
554 		spin_unlock(&block_group->lock);
555 		spin_unlock(&block_group->space_info->lock);
556 		fragment_free_space(block_group);
557 	}
558 #endif
559 
560 	caching_ctl->progress = (u64)-1;
561 
562 	up_read(&fs_info->commit_root_sem);
563 	free_excluded_extents(fs_info, block_group);
564 	mutex_unlock(&caching_ctl->mutex);
565 
566 	wake_up(&caching_ctl->wait);
567 
568 	put_caching_control(caching_ctl);
569 	btrfs_put_block_group(block_group);
570 }
571 
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
573 			     int load_cache_only)
574 {
575 	DEFINE_WAIT(wait);
576 	struct btrfs_fs_info *fs_info = cache->fs_info;
577 	struct btrfs_caching_control *caching_ctl;
578 	int ret = 0;
579 
580 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581 	if (!caching_ctl)
582 		return -ENOMEM;
583 
584 	INIT_LIST_HEAD(&caching_ctl->list);
585 	mutex_init(&caching_ctl->mutex);
586 	init_waitqueue_head(&caching_ctl->wait);
587 	caching_ctl->block_group = cache;
588 	caching_ctl->progress = cache->key.objectid;
589 	refcount_set(&caching_ctl->count, 1);
590 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 			caching_thread, NULL, NULL);
592 
593 	spin_lock(&cache->lock);
594 	/*
595 	 * This should be a rare occasion, but this could happen I think in the
596 	 * case where one thread starts to load the space cache info, and then
597 	 * some other thread starts a transaction commit which tries to do an
598 	 * allocation while the other thread is still loading the space cache
599 	 * info.  The previous loop should have kept us from choosing this block
600 	 * group, but if we've moved to the state where we will wait on caching
601 	 * block groups we need to first check if we're doing a fast load here,
602 	 * so we can wait for it to finish, otherwise we could end up allocating
603 	 * from a block group who's cache gets evicted for one reason or
604 	 * another.
605 	 */
606 	while (cache->cached == BTRFS_CACHE_FAST) {
607 		struct btrfs_caching_control *ctl;
608 
609 		ctl = cache->caching_ctl;
610 		refcount_inc(&ctl->count);
611 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 		spin_unlock(&cache->lock);
613 
614 		schedule();
615 
616 		finish_wait(&ctl->wait, &wait);
617 		put_caching_control(ctl);
618 		spin_lock(&cache->lock);
619 	}
620 
621 	if (cache->cached != BTRFS_CACHE_NO) {
622 		spin_unlock(&cache->lock);
623 		kfree(caching_ctl);
624 		return 0;
625 	}
626 	WARN_ON(cache->caching_ctl);
627 	cache->caching_ctl = caching_ctl;
628 	cache->cached = BTRFS_CACHE_FAST;
629 	spin_unlock(&cache->lock);
630 
631 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632 		mutex_lock(&caching_ctl->mutex);
633 		ret = load_free_space_cache(fs_info, cache);
634 
635 		spin_lock(&cache->lock);
636 		if (ret == 1) {
637 			cache->caching_ctl = NULL;
638 			cache->cached = BTRFS_CACHE_FINISHED;
639 			cache->last_byte_to_unpin = (u64)-1;
640 			caching_ctl->progress = (u64)-1;
641 		} else {
642 			if (load_cache_only) {
643 				cache->caching_ctl = NULL;
644 				cache->cached = BTRFS_CACHE_NO;
645 			} else {
646 				cache->cached = BTRFS_CACHE_STARTED;
647 				cache->has_caching_ctl = 1;
648 			}
649 		}
650 		spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
652 		if (ret == 1 &&
653 		    btrfs_should_fragment_free_space(cache)) {
654 			u64 bytes_used;
655 
656 			spin_lock(&cache->space_info->lock);
657 			spin_lock(&cache->lock);
658 			bytes_used = cache->key.offset -
659 				btrfs_block_group_used(&cache->item);
660 			cache->space_info->bytes_used += bytes_used >> 1;
661 			spin_unlock(&cache->lock);
662 			spin_unlock(&cache->space_info->lock);
663 			fragment_free_space(cache);
664 		}
665 #endif
666 		mutex_unlock(&caching_ctl->mutex);
667 
668 		wake_up(&caching_ctl->wait);
669 		if (ret == 1) {
670 			put_caching_control(caching_ctl);
671 			free_excluded_extents(fs_info, cache);
672 			return 0;
673 		}
674 	} else {
675 		/*
676 		 * We're either using the free space tree or no caching at all.
677 		 * Set cached to the appropriate value and wakeup any waiters.
678 		 */
679 		spin_lock(&cache->lock);
680 		if (load_cache_only) {
681 			cache->caching_ctl = NULL;
682 			cache->cached = BTRFS_CACHE_NO;
683 		} else {
684 			cache->cached = BTRFS_CACHE_STARTED;
685 			cache->has_caching_ctl = 1;
686 		}
687 		spin_unlock(&cache->lock);
688 		wake_up(&caching_ctl->wait);
689 	}
690 
691 	if (load_cache_only) {
692 		put_caching_control(caching_ctl);
693 		return 0;
694 	}
695 
696 	down_write(&fs_info->commit_root_sem);
697 	refcount_inc(&caching_ctl->count);
698 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699 	up_write(&fs_info->commit_root_sem);
700 
701 	btrfs_get_block_group(cache);
702 
703 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 
705 	return ret;
706 }
707 
708 /*
709  * return the block group that starts at or after bytenr
710  */
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713 {
714 	return block_group_cache_tree_search(info, bytenr, 0);
715 }
716 
717 /*
718  * return the block group that contains the given bytenr
719  */
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 						 struct btrfs_fs_info *info,
722 						 u64 bytenr)
723 {
724 	return block_group_cache_tree_search(info, bytenr, 1);
725 }
726 
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 						  u64 flags)
729 {
730 	struct list_head *head = &info->space_info;
731 	struct btrfs_space_info *found;
732 
733 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734 
735 	rcu_read_lock();
736 	list_for_each_entry_rcu(found, head, list) {
737 		if (found->flags & flags) {
738 			rcu_read_unlock();
739 			return found;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return NULL;
744 }
745 
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 			     u64 owner, u64 root_objectid)
748 {
749 	struct btrfs_space_info *space_info;
750 	u64 flags;
751 
752 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
753 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 		else
756 			flags = BTRFS_BLOCK_GROUP_METADATA;
757 	} else {
758 		flags = BTRFS_BLOCK_GROUP_DATA;
759 	}
760 
761 	space_info = __find_space_info(fs_info, flags);
762 	ASSERT(space_info);
763 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764 }
765 
766 /*
767  * after adding space to the filesystem, we need to clear the full flags
768  * on all the space infos.
769  */
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 {
772 	struct list_head *head = &info->space_info;
773 	struct btrfs_space_info *found;
774 
775 	rcu_read_lock();
776 	list_for_each_entry_rcu(found, head, list)
777 		found->full = 0;
778 	rcu_read_unlock();
779 }
780 
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 {
784 	int ret;
785 	struct btrfs_key key;
786 	struct btrfs_path *path;
787 
788 	path = btrfs_alloc_path();
789 	if (!path)
790 		return -ENOMEM;
791 
792 	key.objectid = start;
793 	key.offset = len;
794 	key.type = BTRFS_EXTENT_ITEM_KEY;
795 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796 	btrfs_free_path(path);
797 	return ret;
798 }
799 
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 			     struct btrfs_fs_info *fs_info, u64 bytenr,
811 			     u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 	struct btrfs_delayed_ref_head *head;
814 	struct btrfs_delayed_ref_root *delayed_refs;
815 	struct btrfs_path *path;
816 	struct btrfs_extent_item *ei;
817 	struct extent_buffer *leaf;
818 	struct btrfs_key key;
819 	u32 item_size;
820 	u64 num_refs;
821 	u64 extent_flags;
822 	int ret;
823 
824 	/*
825 	 * If we don't have skinny metadata, don't bother doing anything
826 	 * different
827 	 */
828 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 		offset = fs_info->nodesize;
830 		metadata = 0;
831 	}
832 
833 	path = btrfs_alloc_path();
834 	if (!path)
835 		return -ENOMEM;
836 
837 	if (!trans) {
838 		path->skip_locking = 1;
839 		path->search_commit_root = 1;
840 	}
841 
842 search_again:
843 	key.objectid = bytenr;
844 	key.offset = offset;
845 	if (metadata)
846 		key.type = BTRFS_METADATA_ITEM_KEY;
847 	else
848 		key.type = BTRFS_EXTENT_ITEM_KEY;
849 
850 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851 	if (ret < 0)
852 		goto out_free;
853 
854 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855 		if (path->slots[0]) {
856 			path->slots[0]--;
857 			btrfs_item_key_to_cpu(path->nodes[0], &key,
858 					      path->slots[0]);
859 			if (key.objectid == bytenr &&
860 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
861 			    key.offset == fs_info->nodesize)
862 				ret = 0;
863 		}
864 	}
865 
866 	if (ret == 0) {
867 		leaf = path->nodes[0];
868 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 		if (item_size >= sizeof(*ei)) {
870 			ei = btrfs_item_ptr(leaf, path->slots[0],
871 					    struct btrfs_extent_item);
872 			num_refs = btrfs_extent_refs(leaf, ei);
873 			extent_flags = btrfs_extent_flags(leaf, ei);
874 		} else {
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 			struct btrfs_extent_item_v0 *ei0;
877 			BUG_ON(item_size != sizeof(*ei0));
878 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 					     struct btrfs_extent_item_v0);
880 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 			/* FIXME: this isn't correct for data */
882 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 #else
884 			BUG();
885 #endif
886 		}
887 		BUG_ON(num_refs == 0);
888 	} else {
889 		num_refs = 0;
890 		extent_flags = 0;
891 		ret = 0;
892 	}
893 
894 	if (!trans)
895 		goto out;
896 
897 	delayed_refs = &trans->transaction->delayed_refs;
898 	spin_lock(&delayed_refs->lock);
899 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900 	if (head) {
901 		if (!mutex_trylock(&head->mutex)) {
902 			refcount_inc(&head->refs);
903 			spin_unlock(&delayed_refs->lock);
904 
905 			btrfs_release_path(path);
906 
907 			/*
908 			 * Mutex was contended, block until it's released and try
909 			 * again
910 			 */
911 			mutex_lock(&head->mutex);
912 			mutex_unlock(&head->mutex);
913 			btrfs_put_delayed_ref_head(head);
914 			goto search_again;
915 		}
916 		spin_lock(&head->lock);
917 		if (head->extent_op && head->extent_op->update_flags)
918 			extent_flags |= head->extent_op->flags_to_set;
919 		else
920 			BUG_ON(num_refs == 0);
921 
922 		num_refs += head->ref_mod;
923 		spin_unlock(&head->lock);
924 		mutex_unlock(&head->mutex);
925 	}
926 	spin_unlock(&delayed_refs->lock);
927 out:
928 	WARN_ON(num_refs == 0);
929 	if (refs)
930 		*refs = num_refs;
931 	if (flags)
932 		*flags = extent_flags;
933 out_free:
934 	btrfs_free_path(path);
935 	return ret;
936 }
937 
938 /*
939  * Back reference rules.  Back refs have three main goals:
940  *
941  * 1) differentiate between all holders of references to an extent so that
942  *    when a reference is dropped we can make sure it was a valid reference
943  *    before freeing the extent.
944  *
945  * 2) Provide enough information to quickly find the holders of an extent
946  *    if we notice a given block is corrupted or bad.
947  *
948  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949  *    maintenance.  This is actually the same as #2, but with a slightly
950  *    different use case.
951  *
952  * There are two kinds of back refs. The implicit back refs is optimized
953  * for pointers in non-shared tree blocks. For a given pointer in a block,
954  * back refs of this kind provide information about the block's owner tree
955  * and the pointer's key. These information allow us to find the block by
956  * b-tree searching. The full back refs is for pointers in tree blocks not
957  * referenced by their owner trees. The location of tree block is recorded
958  * in the back refs. Actually the full back refs is generic, and can be
959  * used in all cases the implicit back refs is used. The major shortcoming
960  * of the full back refs is its overhead. Every time a tree block gets
961  * COWed, we have to update back refs entry for all pointers in it.
962  *
963  * For a newly allocated tree block, we use implicit back refs for
964  * pointers in it. This means most tree related operations only involve
965  * implicit back refs. For a tree block created in old transaction, the
966  * only way to drop a reference to it is COW it. So we can detect the
967  * event that tree block loses its owner tree's reference and do the
968  * back refs conversion.
969  *
970  * When a tree block is COWed through a tree, there are four cases:
971  *
972  * The reference count of the block is one and the tree is the block's
973  * owner tree. Nothing to do in this case.
974  *
975  * The reference count of the block is one and the tree is not the
976  * block's owner tree. In this case, full back refs is used for pointers
977  * in the block. Remove these full back refs, add implicit back refs for
978  * every pointers in the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * the block's owner tree. In this case, implicit back refs is used for
982  * pointers in the block. Add full back refs for every pointers in the
983  * block, increase lower level extents' reference counts. The original
984  * implicit back refs are entailed to the new block.
985  *
986  * The reference count of the block is greater than one and the tree is
987  * not the block's owner tree. Add implicit back refs for every pointer in
988  * the new block, increase lower level extents' reference count.
989  *
990  * Back Reference Key composing:
991  *
992  * The key objectid corresponds to the first byte in the extent,
993  * The key type is used to differentiate between types of back refs.
994  * There are different meanings of the key offset for different types
995  * of back refs.
996  *
997  * File extents can be referenced by:
998  *
999  * - multiple snapshots, subvolumes, or different generations in one subvol
1000  * - different files inside a single subvolume
1001  * - different offsets inside a file (bookend extents in file.c)
1002  *
1003  * The extent ref structure for the implicit back refs has fields for:
1004  *
1005  * - Objectid of the subvolume root
1006  * - objectid of the file holding the reference
1007  * - original offset in the file
1008  * - how many bookend extents
1009  *
1010  * The key offset for the implicit back refs is hash of the first
1011  * three fields.
1012  *
1013  * The extent ref structure for the full back refs has field for:
1014  *
1015  * - number of pointers in the tree leaf
1016  *
1017  * The key offset for the implicit back refs is the first byte of
1018  * the tree leaf
1019  *
1020  * When a file extent is allocated, The implicit back refs is used.
1021  * the fields are filled in:
1022  *
1023  *     (root_key.objectid, inode objectid, offset in file, 1)
1024  *
1025  * When a file extent is removed file truncation, we find the
1026  * corresponding implicit back refs and check the following fields:
1027  *
1028  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1029  *
1030  * Btree extents can be referenced by:
1031  *
1032  * - Different subvolumes
1033  *
1034  * Both the implicit back refs and the full back refs for tree blocks
1035  * only consist of key. The key offset for the implicit back refs is
1036  * objectid of block's owner tree. The key offset for the full back refs
1037  * is the first byte of parent block.
1038  *
1039  * When implicit back refs is used, information about the lowest key and
1040  * level of the tree block are required. These information are stored in
1041  * tree block info structure.
1042  */
1043 
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046 				  struct btrfs_fs_info *fs_info,
1047 				  struct btrfs_path *path,
1048 				  u64 owner, u32 extra_size)
1049 {
1050 	struct btrfs_root *root = fs_info->extent_root;
1051 	struct btrfs_extent_item *item;
1052 	struct btrfs_extent_item_v0 *ei0;
1053 	struct btrfs_extent_ref_v0 *ref0;
1054 	struct btrfs_tree_block_info *bi;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_key key;
1057 	struct btrfs_key found_key;
1058 	u32 new_size = sizeof(*item);
1059 	u64 refs;
1060 	int ret;
1061 
1062 	leaf = path->nodes[0];
1063 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064 
1065 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 			     struct btrfs_extent_item_v0);
1068 	refs = btrfs_extent_refs_v0(leaf, ei0);
1069 
1070 	if (owner == (u64)-1) {
1071 		while (1) {
1072 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 				ret = btrfs_next_leaf(root, path);
1074 				if (ret < 0)
1075 					return ret;
1076 				BUG_ON(ret > 0); /* Corruption */
1077 				leaf = path->nodes[0];
1078 			}
1079 			btrfs_item_key_to_cpu(leaf, &found_key,
1080 					      path->slots[0]);
1081 			BUG_ON(key.objectid != found_key.objectid);
1082 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 				path->slots[0]++;
1084 				continue;
1085 			}
1086 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 					      struct btrfs_extent_ref_v0);
1088 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 			break;
1090 		}
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 		new_size += sizeof(*bi);
1096 
1097 	new_size -= sizeof(*ei0);
1098 	ret = btrfs_search_slot(trans, root, &key, path,
1099 				new_size + extra_size, 1);
1100 	if (ret < 0)
1101 		return ret;
1102 	BUG_ON(ret); /* Corruption */
1103 
1104 	btrfs_extend_item(fs_info, path, new_size);
1105 
1106 	leaf = path->nodes[0];
1107 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 	btrfs_set_extent_refs(leaf, item, refs);
1109 	/* FIXME: get real generation */
1110 	btrfs_set_extent_generation(leaf, item, 0);
1111 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 		btrfs_set_extent_flags(leaf, item,
1113 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 		bi = (struct btrfs_tree_block_info *)(item + 1);
1116 		/* FIXME: get first key of the block */
1117 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 	} else {
1120 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 	}
1122 	btrfs_mark_buffer_dirty(leaf);
1123 	return 0;
1124 }
1125 #endif
1126 
1127 /*
1128  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131  */
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 				     struct btrfs_extent_inline_ref *iref,
1134 				     enum btrfs_inline_ref_type is_data)
1135 {
1136 	int type = btrfs_extent_inline_ref_type(eb, iref);
1137 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138 
1139 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1142 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145 				return type;
1146 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 				ASSERT(eb->fs_info);
1148 				/*
1149 				 * Every shared one has parent tree
1150 				 * block, which must be aligned to
1151 				 * nodesize.
1152 				 */
1153 				if (offset &&
1154 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 					return type;
1156 			}
1157 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1158 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else {
1172 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 			return type;
1174 		}
1175 	}
1176 
1177 	btrfs_print_leaf((struct extent_buffer *)eb);
1178 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 		  eb->start, type);
1180 	WARN_ON(1);
1181 
1182 	return BTRFS_REF_TYPE_INVALID;
1183 }
1184 
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186 {
1187 	u32 high_crc = ~(u32)0;
1188 	u32 low_crc = ~(u32)0;
1189 	__le64 lenum;
1190 
1191 	lenum = cpu_to_le64(root_objectid);
1192 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193 	lenum = cpu_to_le64(owner);
1194 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195 	lenum = cpu_to_le64(offset);
1196 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197 
1198 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 }
1200 
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 				     struct btrfs_extent_data_ref *ref)
1203 {
1204 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 				    btrfs_extent_data_ref_objectid(leaf, ref),
1206 				    btrfs_extent_data_ref_offset(leaf, ref));
1207 }
1208 
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210 				 struct btrfs_extent_data_ref *ref,
1211 				 u64 root_objectid, u64 owner, u64 offset)
1212 {
1213 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 		return 0;
1217 	return 1;
1218 }
1219 
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221 					   struct btrfs_fs_info *fs_info,
1222 					   struct btrfs_path *path,
1223 					   u64 bytenr, u64 parent,
1224 					   u64 root_objectid,
1225 					   u64 owner, u64 offset)
1226 {
1227 	struct btrfs_root *root = fs_info->extent_root;
1228 	struct btrfs_key key;
1229 	struct btrfs_extent_data_ref *ref;
1230 	struct extent_buffer *leaf;
1231 	u32 nritems;
1232 	int ret;
1233 	int recow;
1234 	int err = -ENOENT;
1235 
1236 	key.objectid = bytenr;
1237 	if (parent) {
1238 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 		key.offset = parent;
1240 	} else {
1241 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 		key.offset = hash_extent_data_ref(root_objectid,
1243 						  owner, offset);
1244 	}
1245 again:
1246 	recow = 0;
1247 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 	if (ret < 0) {
1249 		err = ret;
1250 		goto fail;
1251 	}
1252 
1253 	if (parent) {
1254 		if (!ret)
1255 			return 0;
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1258 		btrfs_release_path(path);
1259 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 		if (ret < 0) {
1261 			err = ret;
1262 			goto fail;
1263 		}
1264 		if (!ret)
1265 			return 0;
1266 #endif
1267 		goto fail;
1268 	}
1269 
1270 	leaf = path->nodes[0];
1271 	nritems = btrfs_header_nritems(leaf);
1272 	while (1) {
1273 		if (path->slots[0] >= nritems) {
1274 			ret = btrfs_next_leaf(root, path);
1275 			if (ret < 0)
1276 				err = ret;
1277 			if (ret)
1278 				goto fail;
1279 
1280 			leaf = path->nodes[0];
1281 			nritems = btrfs_header_nritems(leaf);
1282 			recow = 1;
1283 		}
1284 
1285 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 		if (key.objectid != bytenr ||
1287 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 			goto fail;
1289 
1290 		ref = btrfs_item_ptr(leaf, path->slots[0],
1291 				     struct btrfs_extent_data_ref);
1292 
1293 		if (match_extent_data_ref(leaf, ref, root_objectid,
1294 					  owner, offset)) {
1295 			if (recow) {
1296 				btrfs_release_path(path);
1297 				goto again;
1298 			}
1299 			err = 0;
1300 			break;
1301 		}
1302 		path->slots[0]++;
1303 	}
1304 fail:
1305 	return err;
1306 }
1307 
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309 					   struct btrfs_fs_info *fs_info,
1310 					   struct btrfs_path *path,
1311 					   u64 bytenr, u64 parent,
1312 					   u64 root_objectid, u64 owner,
1313 					   u64 offset, int refs_to_add)
1314 {
1315 	struct btrfs_root *root = fs_info->extent_root;
1316 	struct btrfs_key key;
1317 	struct extent_buffer *leaf;
1318 	u32 size;
1319 	u32 num_refs;
1320 	int ret;
1321 
1322 	key.objectid = bytenr;
1323 	if (parent) {
1324 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 		key.offset = parent;
1326 		size = sizeof(struct btrfs_shared_data_ref);
1327 	} else {
1328 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 		key.offset = hash_extent_data_ref(root_objectid,
1330 						  owner, offset);
1331 		size = sizeof(struct btrfs_extent_data_ref);
1332 	}
1333 
1334 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 	if (ret && ret != -EEXIST)
1336 		goto fail;
1337 
1338 	leaf = path->nodes[0];
1339 	if (parent) {
1340 		struct btrfs_shared_data_ref *ref;
1341 		ref = btrfs_item_ptr(leaf, path->slots[0],
1342 				     struct btrfs_shared_data_ref);
1343 		if (ret == 0) {
1344 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 		} else {
1346 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 			num_refs += refs_to_add;
1348 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349 		}
1350 	} else {
1351 		struct btrfs_extent_data_ref *ref;
1352 		while (ret == -EEXIST) {
1353 			ref = btrfs_item_ptr(leaf, path->slots[0],
1354 					     struct btrfs_extent_data_ref);
1355 			if (match_extent_data_ref(leaf, ref, root_objectid,
1356 						  owner, offset))
1357 				break;
1358 			btrfs_release_path(path);
1359 			key.offset++;
1360 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 						      size);
1362 			if (ret && ret != -EEXIST)
1363 				goto fail;
1364 
1365 			leaf = path->nodes[0];
1366 		}
1367 		ref = btrfs_item_ptr(leaf, path->slots[0],
1368 				     struct btrfs_extent_data_ref);
1369 		if (ret == 0) {
1370 			btrfs_set_extent_data_ref_root(leaf, ref,
1371 						       root_objectid);
1372 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 		} else {
1376 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 			num_refs += refs_to_add;
1378 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379 		}
1380 	}
1381 	btrfs_mark_buffer_dirty(leaf);
1382 	ret = 0;
1383 fail:
1384 	btrfs_release_path(path);
1385 	return ret;
1386 }
1387 
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389 					   struct btrfs_fs_info *fs_info,
1390 					   struct btrfs_path *path,
1391 					   int refs_to_drop, int *last_ref)
1392 {
1393 	struct btrfs_key key;
1394 	struct btrfs_extent_data_ref *ref1 = NULL;
1395 	struct btrfs_shared_data_ref *ref2 = NULL;
1396 	struct extent_buffer *leaf;
1397 	u32 num_refs = 0;
1398 	int ret = 0;
1399 
1400 	leaf = path->nodes[0];
1401 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 
1403 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 				      struct btrfs_extent_data_ref);
1406 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 				      struct btrfs_shared_data_ref);
1410 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 		struct btrfs_extent_ref_v0 *ref0;
1414 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 				      struct btrfs_extent_ref_v0);
1416 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418 	} else {
1419 		BUG();
1420 	}
1421 
1422 	BUG_ON(num_refs < refs_to_drop);
1423 	num_refs -= refs_to_drop;
1424 
1425 	if (num_refs == 0) {
1426 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427 		*last_ref = 1;
1428 	} else {
1429 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 		else {
1435 			struct btrfs_extent_ref_v0 *ref0;
1436 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 					struct btrfs_extent_ref_v0);
1438 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 		}
1440 #endif
1441 		btrfs_mark_buffer_dirty(leaf);
1442 	}
1443 	return ret;
1444 }
1445 
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447 					  struct btrfs_extent_inline_ref *iref)
1448 {
1449 	struct btrfs_key key;
1450 	struct extent_buffer *leaf;
1451 	struct btrfs_extent_data_ref *ref1;
1452 	struct btrfs_shared_data_ref *ref2;
1453 	u32 num_refs = 0;
1454 	int type;
1455 
1456 	leaf = path->nodes[0];
1457 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 	if (iref) {
1459 		/*
1460 		 * If type is invalid, we should have bailed out earlier than
1461 		 * this call.
1462 		 */
1463 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 		} else {
1469 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 		}
1472 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 				      struct btrfs_extent_data_ref);
1475 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 				      struct btrfs_shared_data_ref);
1479 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 		struct btrfs_extent_ref_v0 *ref0;
1483 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 				      struct btrfs_extent_ref_v0);
1485 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1486 #endif
1487 	} else {
1488 		WARN_ON(1);
1489 	}
1490 	return num_refs;
1491 }
1492 
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494 					  struct btrfs_fs_info *fs_info,
1495 					  struct btrfs_path *path,
1496 					  u64 bytenr, u64 parent,
1497 					  u64 root_objectid)
1498 {
1499 	struct btrfs_root *root = fs_info->extent_root;
1500 	struct btrfs_key key;
1501 	int ret;
1502 
1503 	key.objectid = bytenr;
1504 	if (parent) {
1505 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 		key.offset = parent;
1507 	} else {
1508 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 		key.offset = root_objectid;
1510 	}
1511 
1512 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 	if (ret > 0)
1514 		ret = -ENOENT;
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 	if (ret == -ENOENT && parent) {
1517 		btrfs_release_path(path);
1518 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 		if (ret > 0)
1521 			ret = -ENOENT;
1522 	}
1523 #endif
1524 	return ret;
1525 }
1526 
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528 					  struct btrfs_fs_info *fs_info,
1529 					  struct btrfs_path *path,
1530 					  u64 bytenr, u64 parent,
1531 					  u64 root_objectid)
1532 {
1533 	struct btrfs_key key;
1534 	int ret;
1535 
1536 	key.objectid = bytenr;
1537 	if (parent) {
1538 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 		key.offset = parent;
1540 	} else {
1541 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 		key.offset = root_objectid;
1543 	}
1544 
1545 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 				      path, &key, 0);
1547 	btrfs_release_path(path);
1548 	return ret;
1549 }
1550 
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1552 {
1553 	int type;
1554 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 		if (parent > 0)
1556 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 		else
1558 			type = BTRFS_TREE_BLOCK_REF_KEY;
1559 	} else {
1560 		if (parent > 0)
1561 			type = BTRFS_SHARED_DATA_REF_KEY;
1562 		else
1563 			type = BTRFS_EXTENT_DATA_REF_KEY;
1564 	}
1565 	return type;
1566 }
1567 
1568 static int find_next_key(struct btrfs_path *path, int level,
1569 			 struct btrfs_key *key)
1570 
1571 {
1572 	for (; level < BTRFS_MAX_LEVEL; level++) {
1573 		if (!path->nodes[level])
1574 			break;
1575 		if (path->slots[level] + 1 >=
1576 		    btrfs_header_nritems(path->nodes[level]))
1577 			continue;
1578 		if (level == 0)
1579 			btrfs_item_key_to_cpu(path->nodes[level], key,
1580 					      path->slots[level] + 1);
1581 		else
1582 			btrfs_node_key_to_cpu(path->nodes[level], key,
1583 					      path->slots[level] + 1);
1584 		return 0;
1585 	}
1586 	return 1;
1587 }
1588 
1589 /*
1590  * look for inline back ref. if back ref is found, *ref_ret is set
1591  * to the address of inline back ref, and 0 is returned.
1592  *
1593  * if back ref isn't found, *ref_ret is set to the address where it
1594  * should be inserted, and -ENOENT is returned.
1595  *
1596  * if insert is true and there are too many inline back refs, the path
1597  * points to the extent item, and -EAGAIN is returned.
1598  *
1599  * NOTE: inline back refs are ordered in the same way that back ref
1600  *	 items in the tree are ordered.
1601  */
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604 				 struct btrfs_fs_info *fs_info,
1605 				 struct btrfs_path *path,
1606 				 struct btrfs_extent_inline_ref **ref_ret,
1607 				 u64 bytenr, u64 num_bytes,
1608 				 u64 parent, u64 root_objectid,
1609 				 u64 owner, u64 offset, int insert)
1610 {
1611 	struct btrfs_root *root = fs_info->extent_root;
1612 	struct btrfs_key key;
1613 	struct extent_buffer *leaf;
1614 	struct btrfs_extent_item *ei;
1615 	struct btrfs_extent_inline_ref *iref;
1616 	u64 flags;
1617 	u64 item_size;
1618 	unsigned long ptr;
1619 	unsigned long end;
1620 	int extra_size;
1621 	int type;
1622 	int want;
1623 	int ret;
1624 	int err = 0;
1625 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626 	int needed;
1627 
1628 	key.objectid = bytenr;
1629 	key.type = BTRFS_EXTENT_ITEM_KEY;
1630 	key.offset = num_bytes;
1631 
1632 	want = extent_ref_type(parent, owner);
1633 	if (insert) {
1634 		extra_size = btrfs_extent_inline_ref_size(want);
1635 		path->keep_locks = 1;
1636 	} else
1637 		extra_size = -1;
1638 
1639 	/*
1640 	 * Owner is our parent level, so we can just add one to get the level
1641 	 * for the block we are interested in.
1642 	 */
1643 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 		key.type = BTRFS_METADATA_ITEM_KEY;
1645 		key.offset = owner;
1646 	}
1647 
1648 again:
1649 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650 	if (ret < 0) {
1651 		err = ret;
1652 		goto out;
1653 	}
1654 
1655 	/*
1656 	 * We may be a newly converted file system which still has the old fat
1657 	 * extent entries for metadata, so try and see if we have one of those.
1658 	 */
1659 	if (ret > 0 && skinny_metadata) {
1660 		skinny_metadata = false;
1661 		if (path->slots[0]) {
1662 			path->slots[0]--;
1663 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 					      path->slots[0]);
1665 			if (key.objectid == bytenr &&
1666 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 			    key.offset == num_bytes)
1668 				ret = 0;
1669 		}
1670 		if (ret) {
1671 			key.objectid = bytenr;
1672 			key.type = BTRFS_EXTENT_ITEM_KEY;
1673 			key.offset = num_bytes;
1674 			btrfs_release_path(path);
1675 			goto again;
1676 		}
1677 	}
1678 
1679 	if (ret && !insert) {
1680 		err = -ENOENT;
1681 		goto out;
1682 	} else if (WARN_ON(ret)) {
1683 		err = -EIO;
1684 		goto out;
1685 	}
1686 
1687 	leaf = path->nodes[0];
1688 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 	if (item_size < sizeof(*ei)) {
1691 		if (!insert) {
1692 			err = -ENOENT;
1693 			goto out;
1694 		}
1695 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696 					     extra_size);
1697 		if (ret < 0) {
1698 			err = ret;
1699 			goto out;
1700 		}
1701 		leaf = path->nodes[0];
1702 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 	}
1704 #endif
1705 	BUG_ON(item_size < sizeof(*ei));
1706 
1707 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 	flags = btrfs_extent_flags(leaf, ei);
1709 
1710 	ptr = (unsigned long)(ei + 1);
1711 	end = (unsigned long)ei + item_size;
1712 
1713 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714 		ptr += sizeof(struct btrfs_tree_block_info);
1715 		BUG_ON(ptr > end);
1716 	}
1717 
1718 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 		needed = BTRFS_REF_TYPE_DATA;
1720 	else
1721 		needed = BTRFS_REF_TYPE_BLOCK;
1722 
1723 	err = -ENOENT;
1724 	while (1) {
1725 		if (ptr >= end) {
1726 			WARN_ON(ptr > end);
1727 			break;
1728 		}
1729 		iref = (struct btrfs_extent_inline_ref *)ptr;
1730 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 		if (type == BTRFS_REF_TYPE_INVALID) {
1732 			err = -EINVAL;
1733 			goto out;
1734 		}
1735 
1736 		if (want < type)
1737 			break;
1738 		if (want > type) {
1739 			ptr += btrfs_extent_inline_ref_size(type);
1740 			continue;
1741 		}
1742 
1743 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 			struct btrfs_extent_data_ref *dref;
1745 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 			if (match_extent_data_ref(leaf, dref, root_objectid,
1747 						  owner, offset)) {
1748 				err = 0;
1749 				break;
1750 			}
1751 			if (hash_extent_data_ref_item(leaf, dref) <
1752 			    hash_extent_data_ref(root_objectid, owner, offset))
1753 				break;
1754 		} else {
1755 			u64 ref_offset;
1756 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 			if (parent > 0) {
1758 				if (parent == ref_offset) {
1759 					err = 0;
1760 					break;
1761 				}
1762 				if (ref_offset < parent)
1763 					break;
1764 			} else {
1765 				if (root_objectid == ref_offset) {
1766 					err = 0;
1767 					break;
1768 				}
1769 				if (ref_offset < root_objectid)
1770 					break;
1771 			}
1772 		}
1773 		ptr += btrfs_extent_inline_ref_size(type);
1774 	}
1775 	if (err == -ENOENT && insert) {
1776 		if (item_size + extra_size >=
1777 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 			err = -EAGAIN;
1779 			goto out;
1780 		}
1781 		/*
1782 		 * To add new inline back ref, we have to make sure
1783 		 * there is no corresponding back ref item.
1784 		 * For simplicity, we just do not add new inline back
1785 		 * ref if there is any kind of item for this block
1786 		 */
1787 		if (find_next_key(path, 0, &key) == 0 &&
1788 		    key.objectid == bytenr &&
1789 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790 			err = -EAGAIN;
1791 			goto out;
1792 		}
1793 	}
1794 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795 out:
1796 	if (insert) {
1797 		path->keep_locks = 0;
1798 		btrfs_unlock_up_safe(path, 1);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  * helper to add new inline back ref
1805  */
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808 				 struct btrfs_path *path,
1809 				 struct btrfs_extent_inline_ref *iref,
1810 				 u64 parent, u64 root_objectid,
1811 				 u64 owner, u64 offset, int refs_to_add,
1812 				 struct btrfs_delayed_extent_op *extent_op)
1813 {
1814 	struct extent_buffer *leaf;
1815 	struct btrfs_extent_item *ei;
1816 	unsigned long ptr;
1817 	unsigned long end;
1818 	unsigned long item_offset;
1819 	u64 refs;
1820 	int size;
1821 	int type;
1822 
1823 	leaf = path->nodes[0];
1824 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 	item_offset = (unsigned long)iref - (unsigned long)ei;
1826 
1827 	type = extent_ref_type(parent, owner);
1828 	size = btrfs_extent_inline_ref_size(type);
1829 
1830 	btrfs_extend_item(fs_info, path, size);
1831 
1832 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 	refs = btrfs_extent_refs(leaf, ei);
1834 	refs += refs_to_add;
1835 	btrfs_set_extent_refs(leaf, ei, refs);
1836 	if (extent_op)
1837 		__run_delayed_extent_op(extent_op, leaf, ei);
1838 
1839 	ptr = (unsigned long)ei + item_offset;
1840 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 	if (ptr < end - size)
1842 		memmove_extent_buffer(leaf, ptr + size, ptr,
1843 				      end - size - ptr);
1844 
1845 	iref = (struct btrfs_extent_inline_ref *)ptr;
1846 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 		struct btrfs_extent_data_ref *dref;
1849 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 		struct btrfs_shared_data_ref *sref;
1856 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 	} else {
1862 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 	}
1864 	btrfs_mark_buffer_dirty(leaf);
1865 }
1866 
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868 				 struct btrfs_fs_info *fs_info,
1869 				 struct btrfs_path *path,
1870 				 struct btrfs_extent_inline_ref **ref_ret,
1871 				 u64 bytenr, u64 num_bytes, u64 parent,
1872 				 u64 root_objectid, u64 owner, u64 offset)
1873 {
1874 	int ret;
1875 
1876 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877 					   bytenr, num_bytes, parent,
1878 					   root_objectid, owner, offset, 0);
1879 	if (ret != -ENOENT)
1880 		return ret;
1881 
1882 	btrfs_release_path(path);
1883 	*ref_ret = NULL;
1884 
1885 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 					    parent, root_objectid);
1888 	} else {
1889 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 					     parent, root_objectid, owner,
1891 					     offset);
1892 	}
1893 	return ret;
1894 }
1895 
1896 /*
1897  * helper to update/remove inline back ref
1898  */
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901 				  struct btrfs_path *path,
1902 				  struct btrfs_extent_inline_ref *iref,
1903 				  int refs_to_mod,
1904 				  struct btrfs_delayed_extent_op *extent_op,
1905 				  int *last_ref)
1906 {
1907 	struct extent_buffer *leaf;
1908 	struct btrfs_extent_item *ei;
1909 	struct btrfs_extent_data_ref *dref = NULL;
1910 	struct btrfs_shared_data_ref *sref = NULL;
1911 	unsigned long ptr;
1912 	unsigned long end;
1913 	u32 item_size;
1914 	int size;
1915 	int type;
1916 	u64 refs;
1917 
1918 	leaf = path->nodes[0];
1919 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 	refs = btrfs_extent_refs(leaf, ei);
1921 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 	refs += refs_to_mod;
1923 	btrfs_set_extent_refs(leaf, ei, refs);
1924 	if (extent_op)
1925 		__run_delayed_extent_op(extent_op, leaf, ei);
1926 
1927 	/*
1928 	 * If type is invalid, we should have bailed out after
1929 	 * lookup_inline_extent_backref().
1930 	 */
1931 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933 
1934 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 		refs = btrfs_extent_data_ref_count(leaf, dref);
1937 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 		refs = btrfs_shared_data_ref_count(leaf, sref);
1940 	} else {
1941 		refs = 1;
1942 		BUG_ON(refs_to_mod != -1);
1943 	}
1944 
1945 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 	refs += refs_to_mod;
1947 
1948 	if (refs > 0) {
1949 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 		else
1952 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 	} else {
1954 		*last_ref = 1;
1955 		size =  btrfs_extent_inline_ref_size(type);
1956 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 		ptr = (unsigned long)iref;
1958 		end = (unsigned long)ei + item_size;
1959 		if (ptr + size < end)
1960 			memmove_extent_buffer(leaf, ptr, ptr + size,
1961 					      end - ptr - size);
1962 		item_size -= size;
1963 		btrfs_truncate_item(fs_info, path, item_size, 1);
1964 	}
1965 	btrfs_mark_buffer_dirty(leaf);
1966 }
1967 
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970 				 struct btrfs_fs_info *fs_info,
1971 				 struct btrfs_path *path,
1972 				 u64 bytenr, u64 num_bytes, u64 parent,
1973 				 u64 root_objectid, u64 owner,
1974 				 u64 offset, int refs_to_add,
1975 				 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_extent_inline_ref *iref;
1978 	int ret;
1979 
1980 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981 					   bytenr, num_bytes, parent,
1982 					   root_objectid, owner, offset, 1);
1983 	if (ret == 0) {
1984 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985 		update_inline_extent_backref(fs_info, path, iref,
1986 					     refs_to_add, extent_op, NULL);
1987 	} else if (ret == -ENOENT) {
1988 		setup_inline_extent_backref(fs_info, path, iref, parent,
1989 					    root_objectid, owner, offset,
1990 					    refs_to_add, extent_op);
1991 		ret = 0;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997 				 struct btrfs_fs_info *fs_info,
1998 				 struct btrfs_path *path,
1999 				 u64 bytenr, u64 parent, u64 root_objectid,
2000 				 u64 owner, u64 offset, int refs_to_add)
2001 {
2002 	int ret;
2003 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 		BUG_ON(refs_to_add != 1);
2005 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006 					    parent, root_objectid);
2007 	} else {
2008 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009 					     parent, root_objectid,
2010 					     owner, offset, refs_to_add);
2011 	}
2012 	return ret;
2013 }
2014 
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016 				 struct btrfs_fs_info *fs_info,
2017 				 struct btrfs_path *path,
2018 				 struct btrfs_extent_inline_ref *iref,
2019 				 int refs_to_drop, int is_data, int *last_ref)
2020 {
2021 	int ret = 0;
2022 
2023 	BUG_ON(!is_data && refs_to_drop != 1);
2024 	if (iref) {
2025 		update_inline_extent_backref(fs_info, path, iref,
2026 					     -refs_to_drop, NULL, last_ref);
2027 	} else if (is_data) {
2028 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029 					     last_ref);
2030 	} else {
2031 		*last_ref = 1;
2032 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033 	}
2034 	return ret;
2035 }
2036 
2037 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 			       u64 *discarded_bytes)
2040 {
2041 	int j, ret = 0;
2042 	u64 bytes_left, end;
2043 	u64 aligned_start = ALIGN(start, 1 << 9);
2044 
2045 	if (WARN_ON(start != aligned_start)) {
2046 		len -= aligned_start - start;
2047 		len = round_down(len, 1 << 9);
2048 		start = aligned_start;
2049 	}
2050 
2051 	*discarded_bytes = 0;
2052 
2053 	if (!len)
2054 		return 0;
2055 
2056 	end = start + len;
2057 	bytes_left = len;
2058 
2059 	/* Skip any superblocks on this device. */
2060 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 		u64 sb_start = btrfs_sb_offset(j);
2062 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 		u64 size = sb_start - start;
2064 
2065 		if (!in_range(sb_start, start, bytes_left) &&
2066 		    !in_range(sb_end, start, bytes_left) &&
2067 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 			continue;
2069 
2070 		/*
2071 		 * Superblock spans beginning of range.  Adjust start and
2072 		 * try again.
2073 		 */
2074 		if (sb_start <= start) {
2075 			start += sb_end - start;
2076 			if (start > end) {
2077 				bytes_left = 0;
2078 				break;
2079 			}
2080 			bytes_left = end - start;
2081 			continue;
2082 		}
2083 
2084 		if (size) {
2085 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 						   GFP_NOFS, 0);
2087 			if (!ret)
2088 				*discarded_bytes += size;
2089 			else if (ret != -EOPNOTSUPP)
2090 				return ret;
2091 		}
2092 
2093 		start = sb_end;
2094 		if (start > end) {
2095 			bytes_left = 0;
2096 			break;
2097 		}
2098 		bytes_left = end - start;
2099 	}
2100 
2101 	if (bytes_left) {
2102 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103 					   GFP_NOFS, 0);
2104 		if (!ret)
2105 			*discarded_bytes += bytes_left;
2106 	}
2107 	return ret;
2108 }
2109 
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111 			 u64 num_bytes, u64 *actual_bytes)
2112 {
2113 	int ret;
2114 	u64 discarded_bytes = 0;
2115 	struct btrfs_bio *bbio = NULL;
2116 
2117 
2118 	/*
2119 	 * Avoid races with device replace and make sure our bbio has devices
2120 	 * associated to its stripes that don't go away while we are discarding.
2121 	 */
2122 	btrfs_bio_counter_inc_blocked(fs_info);
2123 	/* Tell the block device(s) that the sectors can be discarded */
2124 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 			      &bbio, 0);
2126 	/* Error condition is -ENOMEM */
2127 	if (!ret) {
2128 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2129 		int i;
2130 
2131 
2132 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133 			u64 bytes;
2134 			struct request_queue *req_q;
2135 
2136 			if (!stripe->dev->bdev) {
2137 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 				continue;
2139 			}
2140 			req_q = bdev_get_queue(stripe->dev->bdev);
2141 			if (!blk_queue_discard(req_q))
2142 				continue;
2143 
2144 			ret = btrfs_issue_discard(stripe->dev->bdev,
2145 						  stripe->physical,
2146 						  stripe->length,
2147 						  &bytes);
2148 			if (!ret)
2149 				discarded_bytes += bytes;
2150 			else if (ret != -EOPNOTSUPP)
2151 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152 
2153 			/*
2154 			 * Just in case we get back EOPNOTSUPP for some reason,
2155 			 * just ignore the return value so we don't screw up
2156 			 * people calling discard_extent.
2157 			 */
2158 			ret = 0;
2159 		}
2160 		btrfs_put_bbio(bbio);
2161 	}
2162 	btrfs_bio_counter_dec(fs_info);
2163 
2164 	if (actual_bytes)
2165 		*actual_bytes = discarded_bytes;
2166 
2167 
2168 	if (ret == -EOPNOTSUPP)
2169 		ret = 0;
2170 	return ret;
2171 }
2172 
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175 			 struct btrfs_root *root,
2176 			 u64 bytenr, u64 num_bytes, u64 parent,
2177 			 u64 root_objectid, u64 owner, u64 offset)
2178 {
2179 	struct btrfs_fs_info *fs_info = root->fs_info;
2180 	int old_ref_mod, new_ref_mod;
2181 	int ret;
2182 
2183 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185 
2186 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2188 
2189 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191 						 num_bytes, parent,
2192 						 root_objectid, (int)owner,
2193 						 BTRFS_ADD_DELAYED_REF, NULL,
2194 						 &old_ref_mod, &new_ref_mod);
2195 	} else {
2196 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197 						 num_bytes, parent,
2198 						 root_objectid, owner, offset,
2199 						 0, BTRFS_ADD_DELAYED_REF,
2200 						 &old_ref_mod, &new_ref_mod);
2201 	}
2202 
2203 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2204 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2205 
2206 	return ret;
2207 }
2208 
2209 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2210 				  struct btrfs_fs_info *fs_info,
2211 				  struct btrfs_delayed_ref_node *node,
2212 				  u64 parent, u64 root_objectid,
2213 				  u64 owner, u64 offset, int refs_to_add,
2214 				  struct btrfs_delayed_extent_op *extent_op)
2215 {
2216 	struct btrfs_path *path;
2217 	struct extent_buffer *leaf;
2218 	struct btrfs_extent_item *item;
2219 	struct btrfs_key key;
2220 	u64 bytenr = node->bytenr;
2221 	u64 num_bytes = node->num_bytes;
2222 	u64 refs;
2223 	int ret;
2224 
2225 	path = btrfs_alloc_path();
2226 	if (!path)
2227 		return -ENOMEM;
2228 
2229 	path->reada = READA_FORWARD;
2230 	path->leave_spinning = 1;
2231 	/* this will setup the path even if it fails to insert the back ref */
2232 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2233 					   num_bytes, parent, root_objectid,
2234 					   owner, offset,
2235 					   refs_to_add, extent_op);
2236 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2237 		goto out;
2238 
2239 	/*
2240 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2241 	 * inline extent ref, so just update the reference count and add a
2242 	 * normal backref.
2243 	 */
2244 	leaf = path->nodes[0];
2245 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2246 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2247 	refs = btrfs_extent_refs(leaf, item);
2248 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2249 	if (extent_op)
2250 		__run_delayed_extent_op(extent_op, leaf, item);
2251 
2252 	btrfs_mark_buffer_dirty(leaf);
2253 	btrfs_release_path(path);
2254 
2255 	path->reada = READA_FORWARD;
2256 	path->leave_spinning = 1;
2257 	/* now insert the actual backref */
2258 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2259 				    root_objectid, owner, offset, refs_to_add);
2260 	if (ret)
2261 		btrfs_abort_transaction(trans, ret);
2262 out:
2263 	btrfs_free_path(path);
2264 	return ret;
2265 }
2266 
2267 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2268 				struct btrfs_fs_info *fs_info,
2269 				struct btrfs_delayed_ref_node *node,
2270 				struct btrfs_delayed_extent_op *extent_op,
2271 				int insert_reserved)
2272 {
2273 	int ret = 0;
2274 	struct btrfs_delayed_data_ref *ref;
2275 	struct btrfs_key ins;
2276 	u64 parent = 0;
2277 	u64 ref_root = 0;
2278 	u64 flags = 0;
2279 
2280 	ins.objectid = node->bytenr;
2281 	ins.offset = node->num_bytes;
2282 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2283 
2284 	ref = btrfs_delayed_node_to_data_ref(node);
2285 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2286 
2287 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2288 		parent = ref->parent;
2289 	ref_root = ref->root;
2290 
2291 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2292 		if (extent_op)
2293 			flags |= extent_op->flags_to_set;
2294 		ret = alloc_reserved_file_extent(trans, fs_info,
2295 						 parent, ref_root, flags,
2296 						 ref->objectid, ref->offset,
2297 						 &ins, node->ref_mod);
2298 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2299 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2300 					     ref_root, ref->objectid,
2301 					     ref->offset, node->ref_mod,
2302 					     extent_op);
2303 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2304 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2305 					  ref_root, ref->objectid,
2306 					  ref->offset, node->ref_mod,
2307 					  extent_op);
2308 	} else {
2309 		BUG();
2310 	}
2311 	return ret;
2312 }
2313 
2314 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2315 				    struct extent_buffer *leaf,
2316 				    struct btrfs_extent_item *ei)
2317 {
2318 	u64 flags = btrfs_extent_flags(leaf, ei);
2319 	if (extent_op->update_flags) {
2320 		flags |= extent_op->flags_to_set;
2321 		btrfs_set_extent_flags(leaf, ei, flags);
2322 	}
2323 
2324 	if (extent_op->update_key) {
2325 		struct btrfs_tree_block_info *bi;
2326 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2327 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2328 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2329 	}
2330 }
2331 
2332 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2333 				 struct btrfs_fs_info *fs_info,
2334 				 struct btrfs_delayed_ref_head *head,
2335 				 struct btrfs_delayed_extent_op *extent_op)
2336 {
2337 	struct btrfs_key key;
2338 	struct btrfs_path *path;
2339 	struct btrfs_extent_item *ei;
2340 	struct extent_buffer *leaf;
2341 	u32 item_size;
2342 	int ret;
2343 	int err = 0;
2344 	int metadata = !extent_op->is_data;
2345 
2346 	if (trans->aborted)
2347 		return 0;
2348 
2349 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2350 		metadata = 0;
2351 
2352 	path = btrfs_alloc_path();
2353 	if (!path)
2354 		return -ENOMEM;
2355 
2356 	key.objectid = head->bytenr;
2357 
2358 	if (metadata) {
2359 		key.type = BTRFS_METADATA_ITEM_KEY;
2360 		key.offset = extent_op->level;
2361 	} else {
2362 		key.type = BTRFS_EXTENT_ITEM_KEY;
2363 		key.offset = head->num_bytes;
2364 	}
2365 
2366 again:
2367 	path->reada = READA_FORWARD;
2368 	path->leave_spinning = 1;
2369 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2370 	if (ret < 0) {
2371 		err = ret;
2372 		goto out;
2373 	}
2374 	if (ret > 0) {
2375 		if (metadata) {
2376 			if (path->slots[0] > 0) {
2377 				path->slots[0]--;
2378 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2379 						      path->slots[0]);
2380 				if (key.objectid == head->bytenr &&
2381 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2382 				    key.offset == head->num_bytes)
2383 					ret = 0;
2384 			}
2385 			if (ret > 0) {
2386 				btrfs_release_path(path);
2387 				metadata = 0;
2388 
2389 				key.objectid = head->bytenr;
2390 				key.offset = head->num_bytes;
2391 				key.type = BTRFS_EXTENT_ITEM_KEY;
2392 				goto again;
2393 			}
2394 		} else {
2395 			err = -EIO;
2396 			goto out;
2397 		}
2398 	}
2399 
2400 	leaf = path->nodes[0];
2401 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2402 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2403 	if (item_size < sizeof(*ei)) {
2404 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2405 		if (ret < 0) {
2406 			err = ret;
2407 			goto out;
2408 		}
2409 		leaf = path->nodes[0];
2410 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2411 	}
2412 #endif
2413 	BUG_ON(item_size < sizeof(*ei));
2414 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2415 	__run_delayed_extent_op(extent_op, leaf, ei);
2416 
2417 	btrfs_mark_buffer_dirty(leaf);
2418 out:
2419 	btrfs_free_path(path);
2420 	return err;
2421 }
2422 
2423 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2424 				struct btrfs_fs_info *fs_info,
2425 				struct btrfs_delayed_ref_node *node,
2426 				struct btrfs_delayed_extent_op *extent_op,
2427 				int insert_reserved)
2428 {
2429 	int ret = 0;
2430 	struct btrfs_delayed_tree_ref *ref;
2431 	struct btrfs_key ins;
2432 	u64 parent = 0;
2433 	u64 ref_root = 0;
2434 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2435 
2436 	ref = btrfs_delayed_node_to_tree_ref(node);
2437 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2438 
2439 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2440 		parent = ref->parent;
2441 	ref_root = ref->root;
2442 
2443 	ins.objectid = node->bytenr;
2444 	if (skinny_metadata) {
2445 		ins.offset = ref->level;
2446 		ins.type = BTRFS_METADATA_ITEM_KEY;
2447 	} else {
2448 		ins.offset = node->num_bytes;
2449 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2450 	}
2451 
2452 	if (node->ref_mod != 1) {
2453 		btrfs_err(fs_info,
2454 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2455 			  node->bytenr, node->ref_mod, node->action, ref_root,
2456 			  parent);
2457 		return -EIO;
2458 	}
2459 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2460 		BUG_ON(!extent_op || !extent_op->update_flags);
2461 		ret = alloc_reserved_tree_block(trans, fs_info,
2462 						parent, ref_root,
2463 						extent_op->flags_to_set,
2464 						&extent_op->key,
2465 						ref->level, &ins);
2466 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2467 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2468 					     parent, ref_root,
2469 					     ref->level, 0, 1,
2470 					     extent_op);
2471 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2472 		ret = __btrfs_free_extent(trans, fs_info, node,
2473 					  parent, ref_root,
2474 					  ref->level, 0, 1, extent_op);
2475 	} else {
2476 		BUG();
2477 	}
2478 	return ret;
2479 }
2480 
2481 /* helper function to actually process a single delayed ref entry */
2482 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2483 			       struct btrfs_fs_info *fs_info,
2484 			       struct btrfs_delayed_ref_node *node,
2485 			       struct btrfs_delayed_extent_op *extent_op,
2486 			       int insert_reserved)
2487 {
2488 	int ret = 0;
2489 
2490 	if (trans->aborted) {
2491 		if (insert_reserved)
2492 			btrfs_pin_extent(fs_info, node->bytenr,
2493 					 node->num_bytes, 1);
2494 		return 0;
2495 	}
2496 
2497 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2498 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2499 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2500 					   insert_reserved);
2501 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2502 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2503 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2504 					   insert_reserved);
2505 	else
2506 		BUG();
2507 	return ret;
2508 }
2509 
2510 static inline struct btrfs_delayed_ref_node *
2511 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2512 {
2513 	struct btrfs_delayed_ref_node *ref;
2514 
2515 	if (RB_EMPTY_ROOT(&head->ref_tree))
2516 		return NULL;
2517 
2518 	/*
2519 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2520 	 * This is to prevent a ref count from going down to zero, which deletes
2521 	 * the extent item from the extent tree, when there still are references
2522 	 * to add, which would fail because they would not find the extent item.
2523 	 */
2524 	if (!list_empty(&head->ref_add_list))
2525 		return list_first_entry(&head->ref_add_list,
2526 				struct btrfs_delayed_ref_node, add_list);
2527 
2528 	ref = rb_entry(rb_first(&head->ref_tree),
2529 		       struct btrfs_delayed_ref_node, ref_node);
2530 	ASSERT(list_empty(&ref->add_list));
2531 	return ref;
2532 }
2533 
2534 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2535 				      struct btrfs_delayed_ref_head *head)
2536 {
2537 	spin_lock(&delayed_refs->lock);
2538 	head->processing = 0;
2539 	delayed_refs->num_heads_ready++;
2540 	spin_unlock(&delayed_refs->lock);
2541 	btrfs_delayed_ref_unlock(head);
2542 }
2543 
2544 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2545 			     struct btrfs_fs_info *fs_info,
2546 			     struct btrfs_delayed_ref_head *head)
2547 {
2548 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2549 	int ret;
2550 
2551 	if (!extent_op)
2552 		return 0;
2553 	head->extent_op = NULL;
2554 	if (head->must_insert_reserved) {
2555 		btrfs_free_delayed_extent_op(extent_op);
2556 		return 0;
2557 	}
2558 	spin_unlock(&head->lock);
2559 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2560 	btrfs_free_delayed_extent_op(extent_op);
2561 	return ret ? ret : 1;
2562 }
2563 
2564 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2565 			    struct btrfs_fs_info *fs_info,
2566 			    struct btrfs_delayed_ref_head *head)
2567 {
2568 	struct btrfs_delayed_ref_root *delayed_refs;
2569 	int ret;
2570 
2571 	delayed_refs = &trans->transaction->delayed_refs;
2572 
2573 	ret = cleanup_extent_op(trans, fs_info, head);
2574 	if (ret < 0) {
2575 		unselect_delayed_ref_head(delayed_refs, head);
2576 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2577 		return ret;
2578 	} else if (ret) {
2579 		return ret;
2580 	}
2581 
2582 	/*
2583 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2584 	 * and then re-check to make sure nobody got added.
2585 	 */
2586 	spin_unlock(&head->lock);
2587 	spin_lock(&delayed_refs->lock);
2588 	spin_lock(&head->lock);
2589 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2590 		spin_unlock(&head->lock);
2591 		spin_unlock(&delayed_refs->lock);
2592 		return 1;
2593 	}
2594 	delayed_refs->num_heads--;
2595 	rb_erase(&head->href_node, &delayed_refs->href_root);
2596 	RB_CLEAR_NODE(&head->href_node);
2597 	spin_unlock(&delayed_refs->lock);
2598 	spin_unlock(&head->lock);
2599 	atomic_dec(&delayed_refs->num_entries);
2600 
2601 	trace_run_delayed_ref_head(fs_info, head, 0);
2602 
2603 	if (head->total_ref_mod < 0) {
2604 		struct btrfs_space_info *space_info;
2605 		u64 flags;
2606 
2607 		if (head->is_data)
2608 			flags = BTRFS_BLOCK_GROUP_DATA;
2609 		else if (head->is_system)
2610 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2611 		else
2612 			flags = BTRFS_BLOCK_GROUP_METADATA;
2613 		space_info = __find_space_info(fs_info, flags);
2614 		ASSERT(space_info);
2615 		percpu_counter_add(&space_info->total_bytes_pinned,
2616 				   -head->num_bytes);
2617 
2618 		if (head->is_data) {
2619 			spin_lock(&delayed_refs->lock);
2620 			delayed_refs->pending_csums -= head->num_bytes;
2621 			spin_unlock(&delayed_refs->lock);
2622 		}
2623 	}
2624 
2625 	if (head->must_insert_reserved) {
2626 		btrfs_pin_extent(fs_info, head->bytenr,
2627 				 head->num_bytes, 1);
2628 		if (head->is_data) {
2629 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2630 					      head->num_bytes);
2631 		}
2632 	}
2633 
2634 	/* Also free its reserved qgroup space */
2635 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2636 				      head->qgroup_reserved);
2637 	btrfs_delayed_ref_unlock(head);
2638 	btrfs_put_delayed_ref_head(head);
2639 	return 0;
2640 }
2641 
2642 /*
2643  * Returns 0 on success or if called with an already aborted transaction.
2644  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2645  */
2646 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2647 					     unsigned long nr)
2648 {
2649 	struct btrfs_fs_info *fs_info = trans->fs_info;
2650 	struct btrfs_delayed_ref_root *delayed_refs;
2651 	struct btrfs_delayed_ref_node *ref;
2652 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2653 	struct btrfs_delayed_extent_op *extent_op;
2654 	ktime_t start = ktime_get();
2655 	int ret;
2656 	unsigned long count = 0;
2657 	unsigned long actual_count = 0;
2658 	int must_insert_reserved = 0;
2659 
2660 	delayed_refs = &trans->transaction->delayed_refs;
2661 	while (1) {
2662 		if (!locked_ref) {
2663 			if (count >= nr)
2664 				break;
2665 
2666 			spin_lock(&delayed_refs->lock);
2667 			locked_ref = btrfs_select_ref_head(trans);
2668 			if (!locked_ref) {
2669 				spin_unlock(&delayed_refs->lock);
2670 				break;
2671 			}
2672 
2673 			/* grab the lock that says we are going to process
2674 			 * all the refs for this head */
2675 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2676 			spin_unlock(&delayed_refs->lock);
2677 			/*
2678 			 * we may have dropped the spin lock to get the head
2679 			 * mutex lock, and that might have given someone else
2680 			 * time to free the head.  If that's true, it has been
2681 			 * removed from our list and we can move on.
2682 			 */
2683 			if (ret == -EAGAIN) {
2684 				locked_ref = NULL;
2685 				count++;
2686 				continue;
2687 			}
2688 		}
2689 
2690 		/*
2691 		 * We need to try and merge add/drops of the same ref since we
2692 		 * can run into issues with relocate dropping the implicit ref
2693 		 * and then it being added back again before the drop can
2694 		 * finish.  If we merged anything we need to re-loop so we can
2695 		 * get a good ref.
2696 		 * Or we can get node references of the same type that weren't
2697 		 * merged when created due to bumps in the tree mod seq, and
2698 		 * we need to merge them to prevent adding an inline extent
2699 		 * backref before dropping it (triggering a BUG_ON at
2700 		 * insert_inline_extent_backref()).
2701 		 */
2702 		spin_lock(&locked_ref->lock);
2703 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2704 					 locked_ref);
2705 
2706 		/*
2707 		 * locked_ref is the head node, so we have to go one
2708 		 * node back for any delayed ref updates
2709 		 */
2710 		ref = select_delayed_ref(locked_ref);
2711 
2712 		if (ref && ref->seq &&
2713 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2714 			spin_unlock(&locked_ref->lock);
2715 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2716 			locked_ref = NULL;
2717 			cond_resched();
2718 			count++;
2719 			continue;
2720 		}
2721 
2722 		/*
2723 		 * We're done processing refs in this ref_head, clean everything
2724 		 * up and move on to the next ref_head.
2725 		 */
2726 		if (!ref) {
2727 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2728 			if (ret > 0 ) {
2729 				/* We dropped our lock, we need to loop. */
2730 				ret = 0;
2731 				continue;
2732 			} else if (ret) {
2733 				return ret;
2734 			}
2735 			locked_ref = NULL;
2736 			count++;
2737 			continue;
2738 		}
2739 
2740 		actual_count++;
2741 		ref->in_tree = 0;
2742 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2743 		RB_CLEAR_NODE(&ref->ref_node);
2744 		if (!list_empty(&ref->add_list))
2745 			list_del(&ref->add_list);
2746 		/*
2747 		 * When we play the delayed ref, also correct the ref_mod on
2748 		 * head
2749 		 */
2750 		switch (ref->action) {
2751 		case BTRFS_ADD_DELAYED_REF:
2752 		case BTRFS_ADD_DELAYED_EXTENT:
2753 			locked_ref->ref_mod -= ref->ref_mod;
2754 			break;
2755 		case BTRFS_DROP_DELAYED_REF:
2756 			locked_ref->ref_mod += ref->ref_mod;
2757 			break;
2758 		default:
2759 			WARN_ON(1);
2760 		}
2761 		atomic_dec(&delayed_refs->num_entries);
2762 
2763 		/*
2764 		 * Record the must-insert_reserved flag before we drop the spin
2765 		 * lock.
2766 		 */
2767 		must_insert_reserved = locked_ref->must_insert_reserved;
2768 		locked_ref->must_insert_reserved = 0;
2769 
2770 		extent_op = locked_ref->extent_op;
2771 		locked_ref->extent_op = NULL;
2772 		spin_unlock(&locked_ref->lock);
2773 
2774 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2775 					  must_insert_reserved);
2776 
2777 		btrfs_free_delayed_extent_op(extent_op);
2778 		if (ret) {
2779 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2780 			btrfs_put_delayed_ref(ref);
2781 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2782 				    ret);
2783 			return ret;
2784 		}
2785 
2786 		btrfs_put_delayed_ref(ref);
2787 		count++;
2788 		cond_resched();
2789 	}
2790 
2791 	/*
2792 	 * We don't want to include ref heads since we can have empty ref heads
2793 	 * and those will drastically skew our runtime down since we just do
2794 	 * accounting, no actual extent tree updates.
2795 	 */
2796 	if (actual_count > 0) {
2797 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2798 		u64 avg;
2799 
2800 		/*
2801 		 * We weigh the current average higher than our current runtime
2802 		 * to avoid large swings in the average.
2803 		 */
2804 		spin_lock(&delayed_refs->lock);
2805 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2806 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2807 		spin_unlock(&delayed_refs->lock);
2808 	}
2809 	return 0;
2810 }
2811 
2812 #ifdef SCRAMBLE_DELAYED_REFS
2813 /*
2814  * Normally delayed refs get processed in ascending bytenr order. This
2815  * correlates in most cases to the order added. To expose dependencies on this
2816  * order, we start to process the tree in the middle instead of the beginning
2817  */
2818 static u64 find_middle(struct rb_root *root)
2819 {
2820 	struct rb_node *n = root->rb_node;
2821 	struct btrfs_delayed_ref_node *entry;
2822 	int alt = 1;
2823 	u64 middle;
2824 	u64 first = 0, last = 0;
2825 
2826 	n = rb_first(root);
2827 	if (n) {
2828 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2829 		first = entry->bytenr;
2830 	}
2831 	n = rb_last(root);
2832 	if (n) {
2833 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2834 		last = entry->bytenr;
2835 	}
2836 	n = root->rb_node;
2837 
2838 	while (n) {
2839 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 		WARN_ON(!entry->in_tree);
2841 
2842 		middle = entry->bytenr;
2843 
2844 		if (alt)
2845 			n = n->rb_left;
2846 		else
2847 			n = n->rb_right;
2848 
2849 		alt = 1 - alt;
2850 	}
2851 	return middle;
2852 }
2853 #endif
2854 
2855 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2856 {
2857 	u64 num_bytes;
2858 
2859 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2860 			     sizeof(struct btrfs_extent_inline_ref));
2861 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2863 
2864 	/*
2865 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2866 	 * closer to what we're really going to want to use.
2867 	 */
2868 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2869 }
2870 
2871 /*
2872  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2873  * would require to store the csums for that many bytes.
2874  */
2875 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2876 {
2877 	u64 csum_size;
2878 	u64 num_csums_per_leaf;
2879 	u64 num_csums;
2880 
2881 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2882 	num_csums_per_leaf = div64_u64(csum_size,
2883 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2884 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2885 	num_csums += num_csums_per_leaf - 1;
2886 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2887 	return num_csums;
2888 }
2889 
2890 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2891 				       struct btrfs_fs_info *fs_info)
2892 {
2893 	struct btrfs_block_rsv *global_rsv;
2894 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2895 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2896 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2897 	u64 num_bytes, num_dirty_bgs_bytes;
2898 	int ret = 0;
2899 
2900 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2901 	num_heads = heads_to_leaves(fs_info, num_heads);
2902 	if (num_heads > 1)
2903 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2904 	num_bytes <<= 1;
2905 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2906 							fs_info->nodesize;
2907 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2908 							     num_dirty_bgs);
2909 	global_rsv = &fs_info->global_block_rsv;
2910 
2911 	/*
2912 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2913 	 * wiggle room since running delayed refs can create more delayed refs.
2914 	 */
2915 	if (global_rsv->space_info->full) {
2916 		num_dirty_bgs_bytes <<= 1;
2917 		num_bytes <<= 1;
2918 	}
2919 
2920 	spin_lock(&global_rsv->lock);
2921 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2922 		ret = 1;
2923 	spin_unlock(&global_rsv->lock);
2924 	return ret;
2925 }
2926 
2927 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2928 				       struct btrfs_fs_info *fs_info)
2929 {
2930 	u64 num_entries =
2931 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2932 	u64 avg_runtime;
2933 	u64 val;
2934 
2935 	smp_mb();
2936 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2937 	val = num_entries * avg_runtime;
2938 	if (val >= NSEC_PER_SEC)
2939 		return 1;
2940 	if (val >= NSEC_PER_SEC / 2)
2941 		return 2;
2942 
2943 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2944 }
2945 
2946 struct async_delayed_refs {
2947 	struct btrfs_root *root;
2948 	u64 transid;
2949 	int count;
2950 	int error;
2951 	int sync;
2952 	struct completion wait;
2953 	struct btrfs_work work;
2954 };
2955 
2956 static inline struct async_delayed_refs *
2957 to_async_delayed_refs(struct btrfs_work *work)
2958 {
2959 	return container_of(work, struct async_delayed_refs, work);
2960 }
2961 
2962 static void delayed_ref_async_start(struct btrfs_work *work)
2963 {
2964 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2965 	struct btrfs_trans_handle *trans;
2966 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2967 	int ret;
2968 
2969 	/* if the commit is already started, we don't need to wait here */
2970 	if (btrfs_transaction_blocked(fs_info))
2971 		goto done;
2972 
2973 	trans = btrfs_join_transaction(async->root);
2974 	if (IS_ERR(trans)) {
2975 		async->error = PTR_ERR(trans);
2976 		goto done;
2977 	}
2978 
2979 	/*
2980 	 * trans->sync means that when we call end_transaction, we won't
2981 	 * wait on delayed refs
2982 	 */
2983 	trans->sync = true;
2984 
2985 	/* Don't bother flushing if we got into a different transaction */
2986 	if (trans->transid > async->transid)
2987 		goto end;
2988 
2989 	ret = btrfs_run_delayed_refs(trans, async->count);
2990 	if (ret)
2991 		async->error = ret;
2992 end:
2993 	ret = btrfs_end_transaction(trans);
2994 	if (ret && !async->error)
2995 		async->error = ret;
2996 done:
2997 	if (async->sync)
2998 		complete(&async->wait);
2999 	else
3000 		kfree(async);
3001 }
3002 
3003 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3004 				 unsigned long count, u64 transid, int wait)
3005 {
3006 	struct async_delayed_refs *async;
3007 	int ret;
3008 
3009 	async = kmalloc(sizeof(*async), GFP_NOFS);
3010 	if (!async)
3011 		return -ENOMEM;
3012 
3013 	async->root = fs_info->tree_root;
3014 	async->count = count;
3015 	async->error = 0;
3016 	async->transid = transid;
3017 	if (wait)
3018 		async->sync = 1;
3019 	else
3020 		async->sync = 0;
3021 	init_completion(&async->wait);
3022 
3023 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3024 			delayed_ref_async_start, NULL, NULL);
3025 
3026 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3027 
3028 	if (wait) {
3029 		wait_for_completion(&async->wait);
3030 		ret = async->error;
3031 		kfree(async);
3032 		return ret;
3033 	}
3034 	return 0;
3035 }
3036 
3037 /*
3038  * this starts processing the delayed reference count updates and
3039  * extent insertions we have queued up so far.  count can be
3040  * 0, which means to process everything in the tree at the start
3041  * of the run (but not newly added entries), or it can be some target
3042  * number you'd like to process.
3043  *
3044  * Returns 0 on success or if called with an aborted transaction
3045  * Returns <0 on error and aborts the transaction
3046  */
3047 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3048 			   unsigned long count)
3049 {
3050 	struct btrfs_fs_info *fs_info = trans->fs_info;
3051 	struct rb_node *node;
3052 	struct btrfs_delayed_ref_root *delayed_refs;
3053 	struct btrfs_delayed_ref_head *head;
3054 	int ret;
3055 	int run_all = count == (unsigned long)-1;
3056 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057 
3058 	/* We'll clean this up in btrfs_cleanup_transaction */
3059 	if (trans->aborted)
3060 		return 0;
3061 
3062 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063 		return 0;
3064 
3065 	delayed_refs = &trans->transaction->delayed_refs;
3066 	if (count == 0)
3067 		count = atomic_read(&delayed_refs->num_entries) * 2;
3068 
3069 again:
3070 #ifdef SCRAMBLE_DELAYED_REFS
3071 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072 #endif
3073 	trans->can_flush_pending_bgs = false;
3074 	ret = __btrfs_run_delayed_refs(trans, count);
3075 	if (ret < 0) {
3076 		btrfs_abort_transaction(trans, ret);
3077 		return ret;
3078 	}
3079 
3080 	if (run_all) {
3081 		if (!list_empty(&trans->new_bgs))
3082 			btrfs_create_pending_block_groups(trans);
3083 
3084 		spin_lock(&delayed_refs->lock);
3085 		node = rb_first(&delayed_refs->href_root);
3086 		if (!node) {
3087 			spin_unlock(&delayed_refs->lock);
3088 			goto out;
3089 		}
3090 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 				href_node);
3092 		refcount_inc(&head->refs);
3093 		spin_unlock(&delayed_refs->lock);
3094 
3095 		/* Mutex was contended, block until it's released and retry. */
3096 		mutex_lock(&head->mutex);
3097 		mutex_unlock(&head->mutex);
3098 
3099 		btrfs_put_delayed_ref_head(head);
3100 		cond_resched();
3101 		goto again;
3102 	}
3103 out:
3104 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105 	return 0;
3106 }
3107 
3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109 				struct btrfs_fs_info *fs_info,
3110 				u64 bytenr, u64 num_bytes, u64 flags,
3111 				int level, int is_data)
3112 {
3113 	struct btrfs_delayed_extent_op *extent_op;
3114 	int ret;
3115 
3116 	extent_op = btrfs_alloc_delayed_extent_op();
3117 	if (!extent_op)
3118 		return -ENOMEM;
3119 
3120 	extent_op->flags_to_set = flags;
3121 	extent_op->update_flags = true;
3122 	extent_op->update_key = false;
3123 	extent_op->is_data = is_data ? true : false;
3124 	extent_op->level = level;
3125 
3126 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127 					  num_bytes, extent_op);
3128 	if (ret)
3129 		btrfs_free_delayed_extent_op(extent_op);
3130 	return ret;
3131 }
3132 
3133 static noinline int check_delayed_ref(struct btrfs_root *root,
3134 				      struct btrfs_path *path,
3135 				      u64 objectid, u64 offset, u64 bytenr)
3136 {
3137 	struct btrfs_delayed_ref_head *head;
3138 	struct btrfs_delayed_ref_node *ref;
3139 	struct btrfs_delayed_data_ref *data_ref;
3140 	struct btrfs_delayed_ref_root *delayed_refs;
3141 	struct btrfs_transaction *cur_trans;
3142 	struct rb_node *node;
3143 	int ret = 0;
3144 
3145 	spin_lock(&root->fs_info->trans_lock);
3146 	cur_trans = root->fs_info->running_transaction;
3147 	if (cur_trans)
3148 		refcount_inc(&cur_trans->use_count);
3149 	spin_unlock(&root->fs_info->trans_lock);
3150 	if (!cur_trans)
3151 		return 0;
3152 
3153 	delayed_refs = &cur_trans->delayed_refs;
3154 	spin_lock(&delayed_refs->lock);
3155 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3156 	if (!head) {
3157 		spin_unlock(&delayed_refs->lock);
3158 		btrfs_put_transaction(cur_trans);
3159 		return 0;
3160 	}
3161 
3162 	if (!mutex_trylock(&head->mutex)) {
3163 		refcount_inc(&head->refs);
3164 		spin_unlock(&delayed_refs->lock);
3165 
3166 		btrfs_release_path(path);
3167 
3168 		/*
3169 		 * Mutex was contended, block until it's released and let
3170 		 * caller try again
3171 		 */
3172 		mutex_lock(&head->mutex);
3173 		mutex_unlock(&head->mutex);
3174 		btrfs_put_delayed_ref_head(head);
3175 		btrfs_put_transaction(cur_trans);
3176 		return -EAGAIN;
3177 	}
3178 	spin_unlock(&delayed_refs->lock);
3179 
3180 	spin_lock(&head->lock);
3181 	/*
3182 	 * XXX: We should replace this with a proper search function in the
3183 	 * future.
3184 	 */
3185 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3186 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3187 		/* If it's a shared ref we know a cross reference exists */
3188 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3189 			ret = 1;
3190 			break;
3191 		}
3192 
3193 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3194 
3195 		/*
3196 		 * If our ref doesn't match the one we're currently looking at
3197 		 * then we have a cross reference.
3198 		 */
3199 		if (data_ref->root != root->root_key.objectid ||
3200 		    data_ref->objectid != objectid ||
3201 		    data_ref->offset != offset) {
3202 			ret = 1;
3203 			break;
3204 		}
3205 	}
3206 	spin_unlock(&head->lock);
3207 	mutex_unlock(&head->mutex);
3208 	btrfs_put_transaction(cur_trans);
3209 	return ret;
3210 }
3211 
3212 static noinline int check_committed_ref(struct btrfs_root *root,
3213 					struct btrfs_path *path,
3214 					u64 objectid, u64 offset, u64 bytenr)
3215 {
3216 	struct btrfs_fs_info *fs_info = root->fs_info;
3217 	struct btrfs_root *extent_root = fs_info->extent_root;
3218 	struct extent_buffer *leaf;
3219 	struct btrfs_extent_data_ref *ref;
3220 	struct btrfs_extent_inline_ref *iref;
3221 	struct btrfs_extent_item *ei;
3222 	struct btrfs_key key;
3223 	u32 item_size;
3224 	int type;
3225 	int ret;
3226 
3227 	key.objectid = bytenr;
3228 	key.offset = (u64)-1;
3229 	key.type = BTRFS_EXTENT_ITEM_KEY;
3230 
3231 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 	if (ret < 0)
3233 		goto out;
3234 	BUG_ON(ret == 0); /* Corruption */
3235 
3236 	ret = -ENOENT;
3237 	if (path->slots[0] == 0)
3238 		goto out;
3239 
3240 	path->slots[0]--;
3241 	leaf = path->nodes[0];
3242 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3243 
3244 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245 		goto out;
3246 
3247 	ret = 1;
3248 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 	if (item_size < sizeof(*ei)) {
3251 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 		goto out;
3253 	}
3254 #endif
3255 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3256 
3257 	if (item_size != sizeof(*ei) +
3258 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 		goto out;
3260 
3261 	if (btrfs_extent_generation(leaf, ei) <=
3262 	    btrfs_root_last_snapshot(&root->root_item))
3263 		goto out;
3264 
3265 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3266 
3267 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269 		goto out;
3270 
3271 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 	if (btrfs_extent_refs(leaf, ei) !=
3273 	    btrfs_extent_data_ref_count(leaf, ref) ||
3274 	    btrfs_extent_data_ref_root(leaf, ref) !=
3275 	    root->root_key.objectid ||
3276 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 		goto out;
3279 
3280 	ret = 0;
3281 out:
3282 	return ret;
3283 }
3284 
3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 			  u64 bytenr)
3287 {
3288 	struct btrfs_path *path;
3289 	int ret;
3290 	int ret2;
3291 
3292 	path = btrfs_alloc_path();
3293 	if (!path)
3294 		return -ENOENT;
3295 
3296 	do {
3297 		ret = check_committed_ref(root, path, objectid,
3298 					  offset, bytenr);
3299 		if (ret && ret != -ENOENT)
3300 			goto out;
3301 
3302 		ret2 = check_delayed_ref(root, path, objectid,
3303 					 offset, bytenr);
3304 	} while (ret2 == -EAGAIN);
3305 
3306 	if (ret2 && ret2 != -ENOENT) {
3307 		ret = ret2;
3308 		goto out;
3309 	}
3310 
3311 	if (ret != -ENOENT || ret2 != -ENOENT)
3312 		ret = 0;
3313 out:
3314 	btrfs_free_path(path);
3315 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 		WARN_ON(ret > 0);
3317 	return ret;
3318 }
3319 
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321 			   struct btrfs_root *root,
3322 			   struct extent_buffer *buf,
3323 			   int full_backref, int inc)
3324 {
3325 	struct btrfs_fs_info *fs_info = root->fs_info;
3326 	u64 bytenr;
3327 	u64 num_bytes;
3328 	u64 parent;
3329 	u64 ref_root;
3330 	u32 nritems;
3331 	struct btrfs_key key;
3332 	struct btrfs_file_extent_item *fi;
3333 	int i;
3334 	int level;
3335 	int ret = 0;
3336 	int (*process_func)(struct btrfs_trans_handle *,
3337 			    struct btrfs_root *,
3338 			    u64, u64, u64, u64, u64, u64);
3339 
3340 
3341 	if (btrfs_is_testing(fs_info))
3342 		return 0;
3343 
3344 	ref_root = btrfs_header_owner(buf);
3345 	nritems = btrfs_header_nritems(buf);
3346 	level = btrfs_header_level(buf);
3347 
3348 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349 		return 0;
3350 
3351 	if (inc)
3352 		process_func = btrfs_inc_extent_ref;
3353 	else
3354 		process_func = btrfs_free_extent;
3355 
3356 	if (full_backref)
3357 		parent = buf->start;
3358 	else
3359 		parent = 0;
3360 
3361 	for (i = 0; i < nritems; i++) {
3362 		if (level == 0) {
3363 			btrfs_item_key_to_cpu(buf, &key, i);
3364 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3365 				continue;
3366 			fi = btrfs_item_ptr(buf, i,
3367 					    struct btrfs_file_extent_item);
3368 			if (btrfs_file_extent_type(buf, fi) ==
3369 			    BTRFS_FILE_EXTENT_INLINE)
3370 				continue;
3371 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 			if (bytenr == 0)
3373 				continue;
3374 
3375 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 			key.offset -= btrfs_file_extent_offset(buf, fi);
3377 			ret = process_func(trans, root, bytenr, num_bytes,
3378 					   parent, ref_root, key.objectid,
3379 					   key.offset);
3380 			if (ret)
3381 				goto fail;
3382 		} else {
3383 			bytenr = btrfs_node_blockptr(buf, i);
3384 			num_bytes = fs_info->nodesize;
3385 			ret = process_func(trans, root, bytenr, num_bytes,
3386 					   parent, ref_root, level - 1, 0);
3387 			if (ret)
3388 				goto fail;
3389 		}
3390 	}
3391 	return 0;
3392 fail:
3393 	return ret;
3394 }
3395 
3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397 		  struct extent_buffer *buf, int full_backref)
3398 {
3399 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3400 }
3401 
3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403 		  struct extent_buffer *buf, int full_backref)
3404 {
3405 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3406 }
3407 
3408 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409 				 struct btrfs_fs_info *fs_info,
3410 				 struct btrfs_path *path,
3411 				 struct btrfs_block_group_cache *cache)
3412 {
3413 	int ret;
3414 	struct btrfs_root *extent_root = fs_info->extent_root;
3415 	unsigned long bi;
3416 	struct extent_buffer *leaf;
3417 
3418 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419 	if (ret) {
3420 		if (ret > 0)
3421 			ret = -ENOENT;
3422 		goto fail;
3423 	}
3424 
3425 	leaf = path->nodes[0];
3426 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 	btrfs_mark_buffer_dirty(leaf);
3429 fail:
3430 	btrfs_release_path(path);
3431 	return ret;
3432 
3433 }
3434 
3435 static struct btrfs_block_group_cache *
3436 next_block_group(struct btrfs_fs_info *fs_info,
3437 		 struct btrfs_block_group_cache *cache)
3438 {
3439 	struct rb_node *node;
3440 
3441 	spin_lock(&fs_info->block_group_cache_lock);
3442 
3443 	/* If our block group was removed, we need a full search. */
3444 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446 
3447 		spin_unlock(&fs_info->block_group_cache_lock);
3448 		btrfs_put_block_group(cache);
3449 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3450 	}
3451 	node = rb_next(&cache->cache_node);
3452 	btrfs_put_block_group(cache);
3453 	if (node) {
3454 		cache = rb_entry(node, struct btrfs_block_group_cache,
3455 				 cache_node);
3456 		btrfs_get_block_group(cache);
3457 	} else
3458 		cache = NULL;
3459 	spin_unlock(&fs_info->block_group_cache_lock);
3460 	return cache;
3461 }
3462 
3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 			    struct btrfs_trans_handle *trans,
3465 			    struct btrfs_path *path)
3466 {
3467 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 	struct btrfs_root *root = fs_info->tree_root;
3469 	struct inode *inode = NULL;
3470 	struct extent_changeset *data_reserved = NULL;
3471 	u64 alloc_hint = 0;
3472 	int dcs = BTRFS_DC_ERROR;
3473 	u64 num_pages = 0;
3474 	int retries = 0;
3475 	int ret = 0;
3476 
3477 	/*
3478 	 * If this block group is smaller than 100 megs don't bother caching the
3479 	 * block group.
3480 	 */
3481 	if (block_group->key.offset < (100 * SZ_1M)) {
3482 		spin_lock(&block_group->lock);
3483 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 		spin_unlock(&block_group->lock);
3485 		return 0;
3486 	}
3487 
3488 	if (trans->aborted)
3489 		return 0;
3490 again:
3491 	inode = lookup_free_space_inode(fs_info, block_group, path);
3492 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 		ret = PTR_ERR(inode);
3494 		btrfs_release_path(path);
3495 		goto out;
3496 	}
3497 
3498 	if (IS_ERR(inode)) {
3499 		BUG_ON(retries);
3500 		retries++;
3501 
3502 		if (block_group->ro)
3503 			goto out_free;
3504 
3505 		ret = create_free_space_inode(fs_info, trans, block_group,
3506 					      path);
3507 		if (ret)
3508 			goto out_free;
3509 		goto again;
3510 	}
3511 
3512 	/*
3513 	 * We want to set the generation to 0, that way if anything goes wrong
3514 	 * from here on out we know not to trust this cache when we load up next
3515 	 * time.
3516 	 */
3517 	BTRFS_I(inode)->generation = 0;
3518 	ret = btrfs_update_inode(trans, root, inode);
3519 	if (ret) {
3520 		/*
3521 		 * So theoretically we could recover from this, simply set the
3522 		 * super cache generation to 0 so we know to invalidate the
3523 		 * cache, but then we'd have to keep track of the block groups
3524 		 * that fail this way so we know we _have_ to reset this cache
3525 		 * before the next commit or risk reading stale cache.  So to
3526 		 * limit our exposure to horrible edge cases lets just abort the
3527 		 * transaction, this only happens in really bad situations
3528 		 * anyway.
3529 		 */
3530 		btrfs_abort_transaction(trans, ret);
3531 		goto out_put;
3532 	}
3533 	WARN_ON(ret);
3534 
3535 	/* We've already setup this transaction, go ahead and exit */
3536 	if (block_group->cache_generation == trans->transid &&
3537 	    i_size_read(inode)) {
3538 		dcs = BTRFS_DC_SETUP;
3539 		goto out_put;
3540 	}
3541 
3542 	if (i_size_read(inode) > 0) {
3543 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3544 					&fs_info->global_block_rsv);
3545 		if (ret)
3546 			goto out_put;
3547 
3548 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549 		if (ret)
3550 			goto out_put;
3551 	}
3552 
3553 	spin_lock(&block_group->lock);
3554 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3556 		/*
3557 		 * don't bother trying to write stuff out _if_
3558 		 * a) we're not cached,
3559 		 * b) we're with nospace_cache mount option,
3560 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3561 		 */
3562 		dcs = BTRFS_DC_WRITTEN;
3563 		spin_unlock(&block_group->lock);
3564 		goto out_put;
3565 	}
3566 	spin_unlock(&block_group->lock);
3567 
3568 	/*
3569 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 	 * skip doing the setup, we've already cleared the cache so we're safe.
3571 	 */
3572 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 		ret = -ENOSPC;
3574 		goto out_put;
3575 	}
3576 
3577 	/*
3578 	 * Try to preallocate enough space based on how big the block group is.
3579 	 * Keep in mind this has to include any pinned space which could end up
3580 	 * taking up quite a bit since it's not folded into the other space
3581 	 * cache.
3582 	 */
3583 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3584 	if (!num_pages)
3585 		num_pages = 1;
3586 
3587 	num_pages *= 16;
3588 	num_pages *= PAGE_SIZE;
3589 
3590 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591 	if (ret)
3592 		goto out_put;
3593 
3594 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 					      num_pages, num_pages,
3596 					      &alloc_hint);
3597 	/*
3598 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 	 * of metadata or split extents when writing the cache out, which means
3600 	 * we can enospc if we are heavily fragmented in addition to just normal
3601 	 * out of space conditions.  So if we hit this just skip setting up any
3602 	 * other block groups for this transaction, maybe we'll unpin enough
3603 	 * space the next time around.
3604 	 */
3605 	if (!ret)
3606 		dcs = BTRFS_DC_SETUP;
3607 	else if (ret == -ENOSPC)
3608 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3609 
3610 out_put:
3611 	iput(inode);
3612 out_free:
3613 	btrfs_release_path(path);
3614 out:
3615 	spin_lock(&block_group->lock);
3616 	if (!ret && dcs == BTRFS_DC_SETUP)
3617 		block_group->cache_generation = trans->transid;
3618 	block_group->disk_cache_state = dcs;
3619 	spin_unlock(&block_group->lock);
3620 
3621 	extent_changeset_free(data_reserved);
3622 	return ret;
3623 }
3624 
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626 			    struct btrfs_fs_info *fs_info)
3627 {
3628 	struct btrfs_block_group_cache *cache, *tmp;
3629 	struct btrfs_transaction *cur_trans = trans->transaction;
3630 	struct btrfs_path *path;
3631 
3632 	if (list_empty(&cur_trans->dirty_bgs) ||
3633 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3634 		return 0;
3635 
3636 	path = btrfs_alloc_path();
3637 	if (!path)
3638 		return -ENOMEM;
3639 
3640 	/* Could add new block groups, use _safe just in case */
3641 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 				 dirty_list) {
3643 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 			cache_save_setup(cache, trans, path);
3645 	}
3646 
3647 	btrfs_free_path(path);
3648 	return 0;
3649 }
3650 
3651 /*
3652  * transaction commit does final block group cache writeback during a
3653  * critical section where nothing is allowed to change the FS.  This is
3654  * required in order for the cache to actually match the block group,
3655  * but can introduce a lot of latency into the commit.
3656  *
3657  * So, btrfs_start_dirty_block_groups is here to kick off block group
3658  * cache IO.  There's a chance we'll have to redo some of it if the
3659  * block group changes again during the commit, but it greatly reduces
3660  * the commit latency by getting rid of the easy block groups while
3661  * we're still allowing others to join the commit.
3662  */
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3664 {
3665 	struct btrfs_fs_info *fs_info = trans->fs_info;
3666 	struct btrfs_block_group_cache *cache;
3667 	struct btrfs_transaction *cur_trans = trans->transaction;
3668 	int ret = 0;
3669 	int should_put;
3670 	struct btrfs_path *path = NULL;
3671 	LIST_HEAD(dirty);
3672 	struct list_head *io = &cur_trans->io_bgs;
3673 	int num_started = 0;
3674 	int loops = 0;
3675 
3676 	spin_lock(&cur_trans->dirty_bgs_lock);
3677 	if (list_empty(&cur_trans->dirty_bgs)) {
3678 		spin_unlock(&cur_trans->dirty_bgs_lock);
3679 		return 0;
3680 	}
3681 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682 	spin_unlock(&cur_trans->dirty_bgs_lock);
3683 
3684 again:
3685 	/*
3686 	 * make sure all the block groups on our dirty list actually
3687 	 * exist
3688 	 */
3689 	btrfs_create_pending_block_groups(trans);
3690 
3691 	if (!path) {
3692 		path = btrfs_alloc_path();
3693 		if (!path)
3694 			return -ENOMEM;
3695 	}
3696 
3697 	/*
3698 	 * cache_write_mutex is here only to save us from balance or automatic
3699 	 * removal of empty block groups deleting this block group while we are
3700 	 * writing out the cache
3701 	 */
3702 	mutex_lock(&trans->transaction->cache_write_mutex);
3703 	while (!list_empty(&dirty)) {
3704 		cache = list_first_entry(&dirty,
3705 					 struct btrfs_block_group_cache,
3706 					 dirty_list);
3707 		/*
3708 		 * this can happen if something re-dirties a block
3709 		 * group that is already under IO.  Just wait for it to
3710 		 * finish and then do it all again
3711 		 */
3712 		if (!list_empty(&cache->io_list)) {
3713 			list_del_init(&cache->io_list);
3714 			btrfs_wait_cache_io(trans, cache, path);
3715 			btrfs_put_block_group(cache);
3716 		}
3717 
3718 
3719 		/*
3720 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 		 * if it should update the cache_state.  Don't delete
3722 		 * until after we wait.
3723 		 *
3724 		 * Since we're not running in the commit critical section
3725 		 * we need the dirty_bgs_lock to protect from update_block_group
3726 		 */
3727 		spin_lock(&cur_trans->dirty_bgs_lock);
3728 		list_del_init(&cache->dirty_list);
3729 		spin_unlock(&cur_trans->dirty_bgs_lock);
3730 
3731 		should_put = 1;
3732 
3733 		cache_save_setup(cache, trans, path);
3734 
3735 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 			cache->io_ctl.inode = NULL;
3737 			ret = btrfs_write_out_cache(fs_info, trans,
3738 						    cache, path);
3739 			if (ret == 0 && cache->io_ctl.inode) {
3740 				num_started++;
3741 				should_put = 0;
3742 
3743 				/*
3744 				 * The cache_write_mutex is protecting the
3745 				 * io_list, also refer to the definition of
3746 				 * btrfs_transaction::io_bgs for more details
3747 				 */
3748 				list_add_tail(&cache->io_list, io);
3749 			} else {
3750 				/*
3751 				 * if we failed to write the cache, the
3752 				 * generation will be bad and life goes on
3753 				 */
3754 				ret = 0;
3755 			}
3756 		}
3757 		if (!ret) {
3758 			ret = write_one_cache_group(trans, fs_info,
3759 						    path, cache);
3760 			/*
3761 			 * Our block group might still be attached to the list
3762 			 * of new block groups in the transaction handle of some
3763 			 * other task (struct btrfs_trans_handle->new_bgs). This
3764 			 * means its block group item isn't yet in the extent
3765 			 * tree. If this happens ignore the error, as we will
3766 			 * try again later in the critical section of the
3767 			 * transaction commit.
3768 			 */
3769 			if (ret == -ENOENT) {
3770 				ret = 0;
3771 				spin_lock(&cur_trans->dirty_bgs_lock);
3772 				if (list_empty(&cache->dirty_list)) {
3773 					list_add_tail(&cache->dirty_list,
3774 						      &cur_trans->dirty_bgs);
3775 					btrfs_get_block_group(cache);
3776 				}
3777 				spin_unlock(&cur_trans->dirty_bgs_lock);
3778 			} else if (ret) {
3779 				btrfs_abort_transaction(trans, ret);
3780 			}
3781 		}
3782 
3783 		/* if its not on the io list, we need to put the block group */
3784 		if (should_put)
3785 			btrfs_put_block_group(cache);
3786 
3787 		if (ret)
3788 			break;
3789 
3790 		/*
3791 		 * Avoid blocking other tasks for too long. It might even save
3792 		 * us from writing caches for block groups that are going to be
3793 		 * removed.
3794 		 */
3795 		mutex_unlock(&trans->transaction->cache_write_mutex);
3796 		mutex_lock(&trans->transaction->cache_write_mutex);
3797 	}
3798 	mutex_unlock(&trans->transaction->cache_write_mutex);
3799 
3800 	/*
3801 	 * go through delayed refs for all the stuff we've just kicked off
3802 	 * and then loop back (just once)
3803 	 */
3804 	ret = btrfs_run_delayed_refs(trans, 0);
3805 	if (!ret && loops == 0) {
3806 		loops++;
3807 		spin_lock(&cur_trans->dirty_bgs_lock);
3808 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3809 		/*
3810 		 * dirty_bgs_lock protects us from concurrent block group
3811 		 * deletes too (not just cache_write_mutex).
3812 		 */
3813 		if (!list_empty(&dirty)) {
3814 			spin_unlock(&cur_trans->dirty_bgs_lock);
3815 			goto again;
3816 		}
3817 		spin_unlock(&cur_trans->dirty_bgs_lock);
3818 	} else if (ret < 0) {
3819 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3820 	}
3821 
3822 	btrfs_free_path(path);
3823 	return ret;
3824 }
3825 
3826 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3827 				   struct btrfs_fs_info *fs_info)
3828 {
3829 	struct btrfs_block_group_cache *cache;
3830 	struct btrfs_transaction *cur_trans = trans->transaction;
3831 	int ret = 0;
3832 	int should_put;
3833 	struct btrfs_path *path;
3834 	struct list_head *io = &cur_trans->io_bgs;
3835 	int num_started = 0;
3836 
3837 	path = btrfs_alloc_path();
3838 	if (!path)
3839 		return -ENOMEM;
3840 
3841 	/*
3842 	 * Even though we are in the critical section of the transaction commit,
3843 	 * we can still have concurrent tasks adding elements to this
3844 	 * transaction's list of dirty block groups. These tasks correspond to
3845 	 * endio free space workers started when writeback finishes for a
3846 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3847 	 * allocate new block groups as a result of COWing nodes of the root
3848 	 * tree when updating the free space inode. The writeback for the space
3849 	 * caches is triggered by an earlier call to
3850 	 * btrfs_start_dirty_block_groups() and iterations of the following
3851 	 * loop.
3852 	 * Also we want to do the cache_save_setup first and then run the
3853 	 * delayed refs to make sure we have the best chance at doing this all
3854 	 * in one shot.
3855 	 */
3856 	spin_lock(&cur_trans->dirty_bgs_lock);
3857 	while (!list_empty(&cur_trans->dirty_bgs)) {
3858 		cache = list_first_entry(&cur_trans->dirty_bgs,
3859 					 struct btrfs_block_group_cache,
3860 					 dirty_list);
3861 
3862 		/*
3863 		 * this can happen if cache_save_setup re-dirties a block
3864 		 * group that is already under IO.  Just wait for it to
3865 		 * finish and then do it all again
3866 		 */
3867 		if (!list_empty(&cache->io_list)) {
3868 			spin_unlock(&cur_trans->dirty_bgs_lock);
3869 			list_del_init(&cache->io_list);
3870 			btrfs_wait_cache_io(trans, cache, path);
3871 			btrfs_put_block_group(cache);
3872 			spin_lock(&cur_trans->dirty_bgs_lock);
3873 		}
3874 
3875 		/*
3876 		 * don't remove from the dirty list until after we've waited
3877 		 * on any pending IO
3878 		 */
3879 		list_del_init(&cache->dirty_list);
3880 		spin_unlock(&cur_trans->dirty_bgs_lock);
3881 		should_put = 1;
3882 
3883 		cache_save_setup(cache, trans, path);
3884 
3885 		if (!ret)
3886 			ret = btrfs_run_delayed_refs(trans,
3887 						     (unsigned long) -1);
3888 
3889 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3890 			cache->io_ctl.inode = NULL;
3891 			ret = btrfs_write_out_cache(fs_info, trans,
3892 						    cache, path);
3893 			if (ret == 0 && cache->io_ctl.inode) {
3894 				num_started++;
3895 				should_put = 0;
3896 				list_add_tail(&cache->io_list, io);
3897 			} else {
3898 				/*
3899 				 * if we failed to write the cache, the
3900 				 * generation will be bad and life goes on
3901 				 */
3902 				ret = 0;
3903 			}
3904 		}
3905 		if (!ret) {
3906 			ret = write_one_cache_group(trans, fs_info,
3907 						    path, cache);
3908 			/*
3909 			 * One of the free space endio workers might have
3910 			 * created a new block group while updating a free space
3911 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3912 			 * and hasn't released its transaction handle yet, in
3913 			 * which case the new block group is still attached to
3914 			 * its transaction handle and its creation has not
3915 			 * finished yet (no block group item in the extent tree
3916 			 * yet, etc). If this is the case, wait for all free
3917 			 * space endio workers to finish and retry. This is a
3918 			 * a very rare case so no need for a more efficient and
3919 			 * complex approach.
3920 			 */
3921 			if (ret == -ENOENT) {
3922 				wait_event(cur_trans->writer_wait,
3923 				   atomic_read(&cur_trans->num_writers) == 1);
3924 				ret = write_one_cache_group(trans, fs_info,
3925 							    path, cache);
3926 			}
3927 			if (ret)
3928 				btrfs_abort_transaction(trans, ret);
3929 		}
3930 
3931 		/* if its not on the io list, we need to put the block group */
3932 		if (should_put)
3933 			btrfs_put_block_group(cache);
3934 		spin_lock(&cur_trans->dirty_bgs_lock);
3935 	}
3936 	spin_unlock(&cur_trans->dirty_bgs_lock);
3937 
3938 	/*
3939 	 * Refer to the definition of io_bgs member for details why it's safe
3940 	 * to use it without any locking
3941 	 */
3942 	while (!list_empty(io)) {
3943 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3944 					 io_list);
3945 		list_del_init(&cache->io_list);
3946 		btrfs_wait_cache_io(trans, cache, path);
3947 		btrfs_put_block_group(cache);
3948 	}
3949 
3950 	btrfs_free_path(path);
3951 	return ret;
3952 }
3953 
3954 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3955 {
3956 	struct btrfs_block_group_cache *block_group;
3957 	int readonly = 0;
3958 
3959 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3960 	if (!block_group || block_group->ro)
3961 		readonly = 1;
3962 	if (block_group)
3963 		btrfs_put_block_group(block_group);
3964 	return readonly;
3965 }
3966 
3967 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3968 {
3969 	struct btrfs_block_group_cache *bg;
3970 	bool ret = true;
3971 
3972 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3973 	if (!bg)
3974 		return false;
3975 
3976 	spin_lock(&bg->lock);
3977 	if (bg->ro)
3978 		ret = false;
3979 	else
3980 		atomic_inc(&bg->nocow_writers);
3981 	spin_unlock(&bg->lock);
3982 
3983 	/* no put on block group, done by btrfs_dec_nocow_writers */
3984 	if (!ret)
3985 		btrfs_put_block_group(bg);
3986 
3987 	return ret;
3988 
3989 }
3990 
3991 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3992 {
3993 	struct btrfs_block_group_cache *bg;
3994 
3995 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3996 	ASSERT(bg);
3997 	if (atomic_dec_and_test(&bg->nocow_writers))
3998 		wake_up_var(&bg->nocow_writers);
3999 	/*
4000 	 * Once for our lookup and once for the lookup done by a previous call
4001 	 * to btrfs_inc_nocow_writers()
4002 	 */
4003 	btrfs_put_block_group(bg);
4004 	btrfs_put_block_group(bg);
4005 }
4006 
4007 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4008 {
4009 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4010 }
4011 
4012 static const char *alloc_name(u64 flags)
4013 {
4014 	switch (flags) {
4015 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4016 		return "mixed";
4017 	case BTRFS_BLOCK_GROUP_METADATA:
4018 		return "metadata";
4019 	case BTRFS_BLOCK_GROUP_DATA:
4020 		return "data";
4021 	case BTRFS_BLOCK_GROUP_SYSTEM:
4022 		return "system";
4023 	default:
4024 		WARN_ON(1);
4025 		return "invalid-combination";
4026 	};
4027 }
4028 
4029 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4030 			     struct btrfs_space_info **new)
4031 {
4032 
4033 	struct btrfs_space_info *space_info;
4034 	int i;
4035 	int ret;
4036 
4037 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4038 	if (!space_info)
4039 		return -ENOMEM;
4040 
4041 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4042 				 GFP_KERNEL);
4043 	if (ret) {
4044 		kfree(space_info);
4045 		return ret;
4046 	}
4047 
4048 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4049 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4050 	init_rwsem(&space_info->groups_sem);
4051 	spin_lock_init(&space_info->lock);
4052 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4053 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4054 	init_waitqueue_head(&space_info->wait);
4055 	INIT_LIST_HEAD(&space_info->ro_bgs);
4056 	INIT_LIST_HEAD(&space_info->tickets);
4057 	INIT_LIST_HEAD(&space_info->priority_tickets);
4058 
4059 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4060 				    info->space_info_kobj, "%s",
4061 				    alloc_name(space_info->flags));
4062 	if (ret) {
4063 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4064 		kfree(space_info);
4065 		return ret;
4066 	}
4067 
4068 	*new = space_info;
4069 	list_add_rcu(&space_info->list, &info->space_info);
4070 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4071 		info->data_sinfo = space_info;
4072 
4073 	return ret;
4074 }
4075 
4076 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4077 			     u64 total_bytes, u64 bytes_used,
4078 			     u64 bytes_readonly,
4079 			     struct btrfs_space_info **space_info)
4080 {
4081 	struct btrfs_space_info *found;
4082 	int factor;
4083 
4084 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4085 		     BTRFS_BLOCK_GROUP_RAID10))
4086 		factor = 2;
4087 	else
4088 		factor = 1;
4089 
4090 	found = __find_space_info(info, flags);
4091 	ASSERT(found);
4092 	spin_lock(&found->lock);
4093 	found->total_bytes += total_bytes;
4094 	found->disk_total += total_bytes * factor;
4095 	found->bytes_used += bytes_used;
4096 	found->disk_used += bytes_used * factor;
4097 	found->bytes_readonly += bytes_readonly;
4098 	if (total_bytes > 0)
4099 		found->full = 0;
4100 	space_info_add_new_bytes(info, found, total_bytes -
4101 				 bytes_used - bytes_readonly);
4102 	spin_unlock(&found->lock);
4103 	*space_info = found;
4104 }
4105 
4106 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4107 {
4108 	u64 extra_flags = chunk_to_extended(flags) &
4109 				BTRFS_EXTENDED_PROFILE_MASK;
4110 
4111 	write_seqlock(&fs_info->profiles_lock);
4112 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4113 		fs_info->avail_data_alloc_bits |= extra_flags;
4114 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4115 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4116 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4117 		fs_info->avail_system_alloc_bits |= extra_flags;
4118 	write_sequnlock(&fs_info->profiles_lock);
4119 }
4120 
4121 /*
4122  * returns target flags in extended format or 0 if restripe for this
4123  * chunk_type is not in progress
4124  *
4125  * should be called with either volume_mutex or balance_lock held
4126  */
4127 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4128 {
4129 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4130 	u64 target = 0;
4131 
4132 	if (!bctl)
4133 		return 0;
4134 
4135 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4136 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4137 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4138 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4139 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4141 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4142 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4143 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4144 	}
4145 
4146 	return target;
4147 }
4148 
4149 /*
4150  * @flags: available profiles in extended format (see ctree.h)
4151  *
4152  * Returns reduced profile in chunk format.  If profile changing is in
4153  * progress (either running or paused) picks the target profile (if it's
4154  * already available), otherwise falls back to plain reducing.
4155  */
4156 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4157 {
4158 	u64 num_devices = fs_info->fs_devices->rw_devices;
4159 	u64 target;
4160 	u64 raid_type;
4161 	u64 allowed = 0;
4162 
4163 	/*
4164 	 * see if restripe for this chunk_type is in progress, if so
4165 	 * try to reduce to the target profile
4166 	 */
4167 	spin_lock(&fs_info->balance_lock);
4168 	target = get_restripe_target(fs_info, flags);
4169 	if (target) {
4170 		/* pick target profile only if it's already available */
4171 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4172 			spin_unlock(&fs_info->balance_lock);
4173 			return extended_to_chunk(target);
4174 		}
4175 	}
4176 	spin_unlock(&fs_info->balance_lock);
4177 
4178 	/* First, mask out the RAID levels which aren't possible */
4179 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4180 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4181 			allowed |= btrfs_raid_group[raid_type];
4182 	}
4183 	allowed &= flags;
4184 
4185 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4186 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4187 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4188 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4189 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4190 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4191 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4192 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4193 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4194 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4195 
4196 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4197 
4198 	return extended_to_chunk(flags | allowed);
4199 }
4200 
4201 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4202 {
4203 	unsigned seq;
4204 	u64 flags;
4205 
4206 	do {
4207 		flags = orig_flags;
4208 		seq = read_seqbegin(&fs_info->profiles_lock);
4209 
4210 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4211 			flags |= fs_info->avail_data_alloc_bits;
4212 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4213 			flags |= fs_info->avail_system_alloc_bits;
4214 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4215 			flags |= fs_info->avail_metadata_alloc_bits;
4216 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4217 
4218 	return btrfs_reduce_alloc_profile(fs_info, flags);
4219 }
4220 
4221 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4222 {
4223 	struct btrfs_fs_info *fs_info = root->fs_info;
4224 	u64 flags;
4225 	u64 ret;
4226 
4227 	if (data)
4228 		flags = BTRFS_BLOCK_GROUP_DATA;
4229 	else if (root == fs_info->chunk_root)
4230 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4231 	else
4232 		flags = BTRFS_BLOCK_GROUP_METADATA;
4233 
4234 	ret = get_alloc_profile(fs_info, flags);
4235 	return ret;
4236 }
4237 
4238 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4239 {
4240 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4241 }
4242 
4243 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4244 {
4245 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4246 }
4247 
4248 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4249 {
4250 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4251 }
4252 
4253 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4254 				 bool may_use_included)
4255 {
4256 	ASSERT(s_info);
4257 	return s_info->bytes_used + s_info->bytes_reserved +
4258 		s_info->bytes_pinned + s_info->bytes_readonly +
4259 		(may_use_included ? s_info->bytes_may_use : 0);
4260 }
4261 
4262 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4263 {
4264 	struct btrfs_root *root = inode->root;
4265 	struct btrfs_fs_info *fs_info = root->fs_info;
4266 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4267 	u64 used;
4268 	int ret = 0;
4269 	int need_commit = 2;
4270 	int have_pinned_space;
4271 
4272 	/* make sure bytes are sectorsize aligned */
4273 	bytes = ALIGN(bytes, fs_info->sectorsize);
4274 
4275 	if (btrfs_is_free_space_inode(inode)) {
4276 		need_commit = 0;
4277 		ASSERT(current->journal_info);
4278 	}
4279 
4280 again:
4281 	/* make sure we have enough space to handle the data first */
4282 	spin_lock(&data_sinfo->lock);
4283 	used = btrfs_space_info_used(data_sinfo, true);
4284 
4285 	if (used + bytes > data_sinfo->total_bytes) {
4286 		struct btrfs_trans_handle *trans;
4287 
4288 		/*
4289 		 * if we don't have enough free bytes in this space then we need
4290 		 * to alloc a new chunk.
4291 		 */
4292 		if (!data_sinfo->full) {
4293 			u64 alloc_target;
4294 
4295 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4296 			spin_unlock(&data_sinfo->lock);
4297 
4298 			alloc_target = btrfs_data_alloc_profile(fs_info);
4299 			/*
4300 			 * It is ugly that we don't call nolock join
4301 			 * transaction for the free space inode case here.
4302 			 * But it is safe because we only do the data space
4303 			 * reservation for the free space cache in the
4304 			 * transaction context, the common join transaction
4305 			 * just increase the counter of the current transaction
4306 			 * handler, doesn't try to acquire the trans_lock of
4307 			 * the fs.
4308 			 */
4309 			trans = btrfs_join_transaction(root);
4310 			if (IS_ERR(trans))
4311 				return PTR_ERR(trans);
4312 
4313 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4314 					     CHUNK_ALLOC_NO_FORCE);
4315 			btrfs_end_transaction(trans);
4316 			if (ret < 0) {
4317 				if (ret != -ENOSPC)
4318 					return ret;
4319 				else {
4320 					have_pinned_space = 1;
4321 					goto commit_trans;
4322 				}
4323 			}
4324 
4325 			goto again;
4326 		}
4327 
4328 		/*
4329 		 * If we don't have enough pinned space to deal with this
4330 		 * allocation, and no removed chunk in current transaction,
4331 		 * don't bother committing the transaction.
4332 		 */
4333 		have_pinned_space = percpu_counter_compare(
4334 			&data_sinfo->total_bytes_pinned,
4335 			used + bytes - data_sinfo->total_bytes);
4336 		spin_unlock(&data_sinfo->lock);
4337 
4338 		/* commit the current transaction and try again */
4339 commit_trans:
4340 		if (need_commit) {
4341 			need_commit--;
4342 
4343 			if (need_commit > 0) {
4344 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4345 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4346 							 (u64)-1);
4347 			}
4348 
4349 			trans = btrfs_join_transaction(root);
4350 			if (IS_ERR(trans))
4351 				return PTR_ERR(trans);
4352 			if (have_pinned_space >= 0 ||
4353 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4354 				     &trans->transaction->flags) ||
4355 			    need_commit > 0) {
4356 				ret = btrfs_commit_transaction(trans);
4357 				if (ret)
4358 					return ret;
4359 				/*
4360 				 * The cleaner kthread might still be doing iput
4361 				 * operations. Wait for it to finish so that
4362 				 * more space is released.
4363 				 */
4364 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4365 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4366 				goto again;
4367 			} else {
4368 				btrfs_end_transaction(trans);
4369 			}
4370 		}
4371 
4372 		trace_btrfs_space_reservation(fs_info,
4373 					      "space_info:enospc",
4374 					      data_sinfo->flags, bytes, 1);
4375 		return -ENOSPC;
4376 	}
4377 	data_sinfo->bytes_may_use += bytes;
4378 	trace_btrfs_space_reservation(fs_info, "space_info",
4379 				      data_sinfo->flags, bytes, 1);
4380 	spin_unlock(&data_sinfo->lock);
4381 
4382 	return ret;
4383 }
4384 
4385 int btrfs_check_data_free_space(struct inode *inode,
4386 			struct extent_changeset **reserved, u64 start, u64 len)
4387 {
4388 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4389 	int ret;
4390 
4391 	/* align the range */
4392 	len = round_up(start + len, fs_info->sectorsize) -
4393 	      round_down(start, fs_info->sectorsize);
4394 	start = round_down(start, fs_info->sectorsize);
4395 
4396 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4397 	if (ret < 0)
4398 		return ret;
4399 
4400 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4401 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4402 	if (ret < 0)
4403 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4404 	else
4405 		ret = 0;
4406 	return ret;
4407 }
4408 
4409 /*
4410  * Called if we need to clear a data reservation for this inode
4411  * Normally in a error case.
4412  *
4413  * This one will *NOT* use accurate qgroup reserved space API, just for case
4414  * which we can't sleep and is sure it won't affect qgroup reserved space.
4415  * Like clear_bit_hook().
4416  */
4417 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4418 					    u64 len)
4419 {
4420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4421 	struct btrfs_space_info *data_sinfo;
4422 
4423 	/* Make sure the range is aligned to sectorsize */
4424 	len = round_up(start + len, fs_info->sectorsize) -
4425 	      round_down(start, fs_info->sectorsize);
4426 	start = round_down(start, fs_info->sectorsize);
4427 
4428 	data_sinfo = fs_info->data_sinfo;
4429 	spin_lock(&data_sinfo->lock);
4430 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4431 		data_sinfo->bytes_may_use = 0;
4432 	else
4433 		data_sinfo->bytes_may_use -= len;
4434 	trace_btrfs_space_reservation(fs_info, "space_info",
4435 				      data_sinfo->flags, len, 0);
4436 	spin_unlock(&data_sinfo->lock);
4437 }
4438 
4439 /*
4440  * Called if we need to clear a data reservation for this inode
4441  * Normally in a error case.
4442  *
4443  * This one will handle the per-inode data rsv map for accurate reserved
4444  * space framework.
4445  */
4446 void btrfs_free_reserved_data_space(struct inode *inode,
4447 			struct extent_changeset *reserved, u64 start, u64 len)
4448 {
4449 	struct btrfs_root *root = BTRFS_I(inode)->root;
4450 
4451 	/* Make sure the range is aligned to sectorsize */
4452 	len = round_up(start + len, root->fs_info->sectorsize) -
4453 	      round_down(start, root->fs_info->sectorsize);
4454 	start = round_down(start, root->fs_info->sectorsize);
4455 
4456 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4457 	btrfs_qgroup_free_data(inode, reserved, start, len);
4458 }
4459 
4460 static void force_metadata_allocation(struct btrfs_fs_info *info)
4461 {
4462 	struct list_head *head = &info->space_info;
4463 	struct btrfs_space_info *found;
4464 
4465 	rcu_read_lock();
4466 	list_for_each_entry_rcu(found, head, list) {
4467 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4468 			found->force_alloc = CHUNK_ALLOC_FORCE;
4469 	}
4470 	rcu_read_unlock();
4471 }
4472 
4473 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4474 {
4475 	return (global->size << 1);
4476 }
4477 
4478 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4479 			      struct btrfs_space_info *sinfo, int force)
4480 {
4481 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4482 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4483 	u64 thresh;
4484 
4485 	if (force == CHUNK_ALLOC_FORCE)
4486 		return 1;
4487 
4488 	/*
4489 	 * We need to take into account the global rsv because for all intents
4490 	 * and purposes it's used space.  Don't worry about locking the
4491 	 * global_rsv, it doesn't change except when the transaction commits.
4492 	 */
4493 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4494 		bytes_used += calc_global_rsv_need_space(global_rsv);
4495 
4496 	/*
4497 	 * in limited mode, we want to have some free space up to
4498 	 * about 1% of the FS size.
4499 	 */
4500 	if (force == CHUNK_ALLOC_LIMITED) {
4501 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4502 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4503 
4504 		if (sinfo->total_bytes - bytes_used < thresh)
4505 			return 1;
4506 	}
4507 
4508 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4509 		return 0;
4510 	return 1;
4511 }
4512 
4513 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4514 {
4515 	u64 num_dev;
4516 
4517 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4518 		    BTRFS_BLOCK_GROUP_RAID0 |
4519 		    BTRFS_BLOCK_GROUP_RAID5 |
4520 		    BTRFS_BLOCK_GROUP_RAID6))
4521 		num_dev = fs_info->fs_devices->rw_devices;
4522 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4523 		num_dev = 2;
4524 	else
4525 		num_dev = 1;	/* DUP or single */
4526 
4527 	return num_dev;
4528 }
4529 
4530 /*
4531  * If @is_allocation is true, reserve space in the system space info necessary
4532  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4533  * removing a chunk.
4534  */
4535 void check_system_chunk(struct btrfs_trans_handle *trans,
4536 			struct btrfs_fs_info *fs_info, u64 type)
4537 {
4538 	struct btrfs_space_info *info;
4539 	u64 left;
4540 	u64 thresh;
4541 	int ret = 0;
4542 	u64 num_devs;
4543 
4544 	/*
4545 	 * Needed because we can end up allocating a system chunk and for an
4546 	 * atomic and race free space reservation in the chunk block reserve.
4547 	 */
4548 	lockdep_assert_held(&fs_info->chunk_mutex);
4549 
4550 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4551 	spin_lock(&info->lock);
4552 	left = info->total_bytes - btrfs_space_info_used(info, true);
4553 	spin_unlock(&info->lock);
4554 
4555 	num_devs = get_profile_num_devs(fs_info, type);
4556 
4557 	/* num_devs device items to update and 1 chunk item to add or remove */
4558 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4559 		btrfs_calc_trans_metadata_size(fs_info, 1);
4560 
4561 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4562 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4563 			   left, thresh, type);
4564 		dump_space_info(fs_info, info, 0, 0);
4565 	}
4566 
4567 	if (left < thresh) {
4568 		u64 flags = btrfs_system_alloc_profile(fs_info);
4569 
4570 		/*
4571 		 * Ignore failure to create system chunk. We might end up not
4572 		 * needing it, as we might not need to COW all nodes/leafs from
4573 		 * the paths we visit in the chunk tree (they were already COWed
4574 		 * or created in the current transaction for example).
4575 		 */
4576 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4577 	}
4578 
4579 	if (!ret) {
4580 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4581 					  &fs_info->chunk_block_rsv,
4582 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4583 		if (!ret)
4584 			trans->chunk_bytes_reserved += thresh;
4585 	}
4586 }
4587 
4588 /*
4589  * If force is CHUNK_ALLOC_FORCE:
4590  *    - return 1 if it successfully allocates a chunk,
4591  *    - return errors including -ENOSPC otherwise.
4592  * If force is NOT CHUNK_ALLOC_FORCE:
4593  *    - return 0 if it doesn't need to allocate a new chunk,
4594  *    - return 1 if it successfully allocates a chunk,
4595  *    - return errors including -ENOSPC otherwise.
4596  */
4597 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4598 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4599 {
4600 	struct btrfs_space_info *space_info;
4601 	int wait_for_alloc = 0;
4602 	int ret = 0;
4603 
4604 	/* Don't re-enter if we're already allocating a chunk */
4605 	if (trans->allocating_chunk)
4606 		return -ENOSPC;
4607 
4608 	space_info = __find_space_info(fs_info, flags);
4609 	ASSERT(space_info);
4610 
4611 again:
4612 	spin_lock(&space_info->lock);
4613 	if (force < space_info->force_alloc)
4614 		force = space_info->force_alloc;
4615 	if (space_info->full) {
4616 		if (should_alloc_chunk(fs_info, space_info, force))
4617 			ret = -ENOSPC;
4618 		else
4619 			ret = 0;
4620 		spin_unlock(&space_info->lock);
4621 		return ret;
4622 	}
4623 
4624 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4625 		spin_unlock(&space_info->lock);
4626 		return 0;
4627 	} else if (space_info->chunk_alloc) {
4628 		wait_for_alloc = 1;
4629 	} else {
4630 		space_info->chunk_alloc = 1;
4631 	}
4632 
4633 	spin_unlock(&space_info->lock);
4634 
4635 	mutex_lock(&fs_info->chunk_mutex);
4636 
4637 	/*
4638 	 * The chunk_mutex is held throughout the entirety of a chunk
4639 	 * allocation, so once we've acquired the chunk_mutex we know that the
4640 	 * other guy is done and we need to recheck and see if we should
4641 	 * allocate.
4642 	 */
4643 	if (wait_for_alloc) {
4644 		mutex_unlock(&fs_info->chunk_mutex);
4645 		wait_for_alloc = 0;
4646 		cond_resched();
4647 		goto again;
4648 	}
4649 
4650 	trans->allocating_chunk = true;
4651 
4652 	/*
4653 	 * If we have mixed data/metadata chunks we want to make sure we keep
4654 	 * allocating mixed chunks instead of individual chunks.
4655 	 */
4656 	if (btrfs_mixed_space_info(space_info))
4657 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658 
4659 	/*
4660 	 * if we're doing a data chunk, go ahead and make sure that
4661 	 * we keep a reasonable number of metadata chunks allocated in the
4662 	 * FS as well.
4663 	 */
4664 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4665 		fs_info->data_chunk_allocations++;
4666 		if (!(fs_info->data_chunk_allocations %
4667 		      fs_info->metadata_ratio))
4668 			force_metadata_allocation(fs_info);
4669 	}
4670 
4671 	/*
4672 	 * Check if we have enough space in SYSTEM chunk because we may need
4673 	 * to update devices.
4674 	 */
4675 	check_system_chunk(trans, fs_info, flags);
4676 
4677 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4678 	trans->allocating_chunk = false;
4679 
4680 	spin_lock(&space_info->lock);
4681 	if (ret < 0 && ret != -ENOSPC)
4682 		goto out;
4683 	if (ret)
4684 		space_info->full = 1;
4685 	else
4686 		ret = 1;
4687 
4688 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4689 out:
4690 	space_info->chunk_alloc = 0;
4691 	spin_unlock(&space_info->lock);
4692 	mutex_unlock(&fs_info->chunk_mutex);
4693 	/*
4694 	 * When we allocate a new chunk we reserve space in the chunk block
4695 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 	 * add new nodes/leafs to it if we end up needing to do it when
4697 	 * inserting the chunk item and updating device items as part of the
4698 	 * second phase of chunk allocation, performed by
4699 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 	 * large number of new block groups to create in our transaction
4701 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 	 * in extreme cases - like having a single transaction create many new
4703 	 * block groups when starting to write out the free space caches of all
4704 	 * the block groups that were made dirty during the lifetime of the
4705 	 * transaction.
4706 	 */
4707 	if (trans->can_flush_pending_bgs &&
4708 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4709 		btrfs_create_pending_block_groups(trans);
4710 		btrfs_trans_release_chunk_metadata(trans);
4711 	}
4712 	return ret;
4713 }
4714 
4715 static int can_overcommit(struct btrfs_fs_info *fs_info,
4716 			  struct btrfs_space_info *space_info, u64 bytes,
4717 			  enum btrfs_reserve_flush_enum flush,
4718 			  bool system_chunk)
4719 {
4720 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4721 	u64 profile;
4722 	u64 space_size;
4723 	u64 avail;
4724 	u64 used;
4725 
4726 	/* Don't overcommit when in mixed mode. */
4727 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 		return 0;
4729 
4730 	if (system_chunk)
4731 		profile = btrfs_system_alloc_profile(fs_info);
4732 	else
4733 		profile = btrfs_metadata_alloc_profile(fs_info);
4734 
4735 	used = btrfs_space_info_used(space_info, false);
4736 
4737 	/*
4738 	 * We only want to allow over committing if we have lots of actual space
4739 	 * free, but if we don't have enough space to handle the global reserve
4740 	 * space then we could end up having a real enospc problem when trying
4741 	 * to allocate a chunk or some other such important allocation.
4742 	 */
4743 	spin_lock(&global_rsv->lock);
4744 	space_size = calc_global_rsv_need_space(global_rsv);
4745 	spin_unlock(&global_rsv->lock);
4746 	if (used + space_size >= space_info->total_bytes)
4747 		return 0;
4748 
4749 	used += space_info->bytes_may_use;
4750 
4751 	avail = atomic64_read(&fs_info->free_chunk_space);
4752 
4753 	/*
4754 	 * If we have dup, raid1 or raid10 then only half of the free
4755 	 * space is actually useable.  For raid56, the space info used
4756 	 * doesn't include the parity drive, so we don't have to
4757 	 * change the math
4758 	 */
4759 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 		       BTRFS_BLOCK_GROUP_RAID1 |
4761 		       BTRFS_BLOCK_GROUP_RAID10))
4762 		avail >>= 1;
4763 
4764 	/*
4765 	 * If we aren't flushing all things, let us overcommit up to
4766 	 * 1/2th of the space. If we can flush, don't let us overcommit
4767 	 * too much, let it overcommit up to 1/8 of the space.
4768 	 */
4769 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4770 		avail >>= 3;
4771 	else
4772 		avail >>= 1;
4773 
4774 	if (used + bytes < space_info->total_bytes + avail)
4775 		return 1;
4776 	return 0;
4777 }
4778 
4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4780 					 unsigned long nr_pages, int nr_items)
4781 {
4782 	struct super_block *sb = fs_info->sb;
4783 
4784 	if (down_read_trylock(&sb->s_umount)) {
4785 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 		up_read(&sb->s_umount);
4787 	} else {
4788 		/*
4789 		 * We needn't worry the filesystem going from r/w to r/o though
4790 		 * we don't acquire ->s_umount mutex, because the filesystem
4791 		 * should guarantee the delalloc inodes list be empty after
4792 		 * the filesystem is readonly(all dirty pages are written to
4793 		 * the disk).
4794 		 */
4795 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4796 		if (!current->journal_info)
4797 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4798 	}
4799 }
4800 
4801 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4802 					u64 to_reclaim)
4803 {
4804 	u64 bytes;
4805 	u64 nr;
4806 
4807 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4808 	nr = div64_u64(to_reclaim, bytes);
4809 	if (!nr)
4810 		nr = 1;
4811 	return nr;
4812 }
4813 
4814 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4815 
4816 /*
4817  * shrink metadata reservation for delalloc
4818  */
4819 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 			    u64 orig, bool wait_ordered)
4821 {
4822 	struct btrfs_space_info *space_info;
4823 	struct btrfs_trans_handle *trans;
4824 	u64 delalloc_bytes;
4825 	u64 max_reclaim;
4826 	u64 items;
4827 	long time_left;
4828 	unsigned long nr_pages;
4829 	int loops;
4830 
4831 	/* Calc the number of the pages we need flush for space reservation */
4832 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4833 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4834 
4835 	trans = (struct btrfs_trans_handle *)current->journal_info;
4836 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4837 
4838 	delalloc_bytes = percpu_counter_sum_positive(
4839 						&fs_info->delalloc_bytes);
4840 	if (delalloc_bytes == 0) {
4841 		if (trans)
4842 			return;
4843 		if (wait_ordered)
4844 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4845 		return;
4846 	}
4847 
4848 	loops = 0;
4849 	while (delalloc_bytes && loops < 3) {
4850 		max_reclaim = min(delalloc_bytes, to_reclaim);
4851 		nr_pages = max_reclaim >> PAGE_SHIFT;
4852 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4853 		/*
4854 		 * We need to wait for the async pages to actually start before
4855 		 * we do anything.
4856 		 */
4857 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4858 		if (!max_reclaim)
4859 			goto skip_async;
4860 
4861 		if (max_reclaim <= nr_pages)
4862 			max_reclaim = 0;
4863 		else
4864 			max_reclaim -= nr_pages;
4865 
4866 		wait_event(fs_info->async_submit_wait,
4867 			   atomic_read(&fs_info->async_delalloc_pages) <=
4868 			   (int)max_reclaim);
4869 skip_async:
4870 		spin_lock(&space_info->lock);
4871 		if (list_empty(&space_info->tickets) &&
4872 		    list_empty(&space_info->priority_tickets)) {
4873 			spin_unlock(&space_info->lock);
4874 			break;
4875 		}
4876 		spin_unlock(&space_info->lock);
4877 
4878 		loops++;
4879 		if (wait_ordered && !trans) {
4880 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4881 		} else {
4882 			time_left = schedule_timeout_killable(1);
4883 			if (time_left)
4884 				break;
4885 		}
4886 		delalloc_bytes = percpu_counter_sum_positive(
4887 						&fs_info->delalloc_bytes);
4888 	}
4889 }
4890 
4891 struct reserve_ticket {
4892 	u64 bytes;
4893 	int error;
4894 	struct list_head list;
4895 	wait_queue_head_t wait;
4896 };
4897 
4898 /**
4899  * maybe_commit_transaction - possibly commit the transaction if its ok to
4900  * @root - the root we're allocating for
4901  * @bytes - the number of bytes we want to reserve
4902  * @force - force the commit
4903  *
4904  * This will check to make sure that committing the transaction will actually
4905  * get us somewhere and then commit the transaction if it does.  Otherwise it
4906  * will return -ENOSPC.
4907  */
4908 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4909 				  struct btrfs_space_info *space_info)
4910 {
4911 	struct reserve_ticket *ticket = NULL;
4912 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4913 	struct btrfs_trans_handle *trans;
4914 	u64 bytes;
4915 
4916 	trans = (struct btrfs_trans_handle *)current->journal_info;
4917 	if (trans)
4918 		return -EAGAIN;
4919 
4920 	spin_lock(&space_info->lock);
4921 	if (!list_empty(&space_info->priority_tickets))
4922 		ticket = list_first_entry(&space_info->priority_tickets,
4923 					  struct reserve_ticket, list);
4924 	else if (!list_empty(&space_info->tickets))
4925 		ticket = list_first_entry(&space_info->tickets,
4926 					  struct reserve_ticket, list);
4927 	bytes = (ticket) ? ticket->bytes : 0;
4928 	spin_unlock(&space_info->lock);
4929 
4930 	if (!bytes)
4931 		return 0;
4932 
4933 	/* See if there is enough pinned space to make this reservation */
4934 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4935 				   bytes) >= 0)
4936 		goto commit;
4937 
4938 	/*
4939 	 * See if there is some space in the delayed insertion reservation for
4940 	 * this reservation.
4941 	 */
4942 	if (space_info != delayed_rsv->space_info)
4943 		return -ENOSPC;
4944 
4945 	spin_lock(&delayed_rsv->lock);
4946 	if (delayed_rsv->size > bytes)
4947 		bytes = 0;
4948 	else
4949 		bytes -= delayed_rsv->size;
4950 	spin_unlock(&delayed_rsv->lock);
4951 
4952 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4953 				   bytes) < 0) {
4954 		return -ENOSPC;
4955 	}
4956 
4957 commit:
4958 	trans = btrfs_join_transaction(fs_info->extent_root);
4959 	if (IS_ERR(trans))
4960 		return -ENOSPC;
4961 
4962 	return btrfs_commit_transaction(trans);
4963 }
4964 
4965 /*
4966  * Try to flush some data based on policy set by @state. This is only advisory
4967  * and may fail for various reasons. The caller is supposed to examine the
4968  * state of @space_info to detect the outcome.
4969  */
4970 static void flush_space(struct btrfs_fs_info *fs_info,
4971 		       struct btrfs_space_info *space_info, u64 num_bytes,
4972 		       int state)
4973 {
4974 	struct btrfs_root *root = fs_info->extent_root;
4975 	struct btrfs_trans_handle *trans;
4976 	int nr;
4977 	int ret = 0;
4978 
4979 	switch (state) {
4980 	case FLUSH_DELAYED_ITEMS_NR:
4981 	case FLUSH_DELAYED_ITEMS:
4982 		if (state == FLUSH_DELAYED_ITEMS_NR)
4983 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4984 		else
4985 			nr = -1;
4986 
4987 		trans = btrfs_join_transaction(root);
4988 		if (IS_ERR(trans)) {
4989 			ret = PTR_ERR(trans);
4990 			break;
4991 		}
4992 		ret = btrfs_run_delayed_items_nr(trans, nr);
4993 		btrfs_end_transaction(trans);
4994 		break;
4995 	case FLUSH_DELALLOC:
4996 	case FLUSH_DELALLOC_WAIT:
4997 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4998 				state == FLUSH_DELALLOC_WAIT);
4999 		break;
5000 	case ALLOC_CHUNK:
5001 		trans = btrfs_join_transaction(root);
5002 		if (IS_ERR(trans)) {
5003 			ret = PTR_ERR(trans);
5004 			break;
5005 		}
5006 		ret = do_chunk_alloc(trans, fs_info,
5007 				     btrfs_metadata_alloc_profile(fs_info),
5008 				     CHUNK_ALLOC_NO_FORCE);
5009 		btrfs_end_transaction(trans);
5010 		if (ret > 0 || ret == -ENOSPC)
5011 			ret = 0;
5012 		break;
5013 	case COMMIT_TRANS:
5014 		ret = may_commit_transaction(fs_info, space_info);
5015 		break;
5016 	default:
5017 		ret = -ENOSPC;
5018 		break;
5019 	}
5020 
5021 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5022 				ret);
5023 	return;
5024 }
5025 
5026 static inline u64
5027 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5028 				 struct btrfs_space_info *space_info,
5029 				 bool system_chunk)
5030 {
5031 	struct reserve_ticket *ticket;
5032 	u64 used;
5033 	u64 expected;
5034 	u64 to_reclaim = 0;
5035 
5036 	list_for_each_entry(ticket, &space_info->tickets, list)
5037 		to_reclaim += ticket->bytes;
5038 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5039 		to_reclaim += ticket->bytes;
5040 	if (to_reclaim)
5041 		return to_reclaim;
5042 
5043 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5044 	if (can_overcommit(fs_info, space_info, to_reclaim,
5045 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5046 		return 0;
5047 
5048 	used = btrfs_space_info_used(space_info, true);
5049 
5050 	if (can_overcommit(fs_info, space_info, SZ_1M,
5051 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5052 		expected = div_factor_fine(space_info->total_bytes, 95);
5053 	else
5054 		expected = div_factor_fine(space_info->total_bytes, 90);
5055 
5056 	if (used > expected)
5057 		to_reclaim = used - expected;
5058 	else
5059 		to_reclaim = 0;
5060 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5061 				     space_info->bytes_reserved);
5062 	return to_reclaim;
5063 }
5064 
5065 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5066 					struct btrfs_space_info *space_info,
5067 					u64 used, bool system_chunk)
5068 {
5069 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5070 
5071 	/* If we're just plain full then async reclaim just slows us down. */
5072 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5073 		return 0;
5074 
5075 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5076 					      system_chunk))
5077 		return 0;
5078 
5079 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5080 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5081 }
5082 
5083 static void wake_all_tickets(struct list_head *head)
5084 {
5085 	struct reserve_ticket *ticket;
5086 
5087 	while (!list_empty(head)) {
5088 		ticket = list_first_entry(head, struct reserve_ticket, list);
5089 		list_del_init(&ticket->list);
5090 		ticket->error = -ENOSPC;
5091 		wake_up(&ticket->wait);
5092 	}
5093 }
5094 
5095 /*
5096  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5097  * will loop and continuously try to flush as long as we are making progress.
5098  * We count progress as clearing off tickets each time we have to loop.
5099  */
5100 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5101 {
5102 	struct btrfs_fs_info *fs_info;
5103 	struct btrfs_space_info *space_info;
5104 	u64 to_reclaim;
5105 	int flush_state;
5106 	int commit_cycles = 0;
5107 	u64 last_tickets_id;
5108 
5109 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5110 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5111 
5112 	spin_lock(&space_info->lock);
5113 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 						      false);
5115 	if (!to_reclaim) {
5116 		space_info->flush = 0;
5117 		spin_unlock(&space_info->lock);
5118 		return;
5119 	}
5120 	last_tickets_id = space_info->tickets_id;
5121 	spin_unlock(&space_info->lock);
5122 
5123 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5124 	do {
5125 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5126 		spin_lock(&space_info->lock);
5127 		if (list_empty(&space_info->tickets)) {
5128 			space_info->flush = 0;
5129 			spin_unlock(&space_info->lock);
5130 			return;
5131 		}
5132 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5133 							      space_info,
5134 							      false);
5135 		if (last_tickets_id == space_info->tickets_id) {
5136 			flush_state++;
5137 		} else {
5138 			last_tickets_id = space_info->tickets_id;
5139 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5140 			if (commit_cycles)
5141 				commit_cycles--;
5142 		}
5143 
5144 		if (flush_state > COMMIT_TRANS) {
5145 			commit_cycles++;
5146 			if (commit_cycles > 2) {
5147 				wake_all_tickets(&space_info->tickets);
5148 				space_info->flush = 0;
5149 			} else {
5150 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5151 			}
5152 		}
5153 		spin_unlock(&space_info->lock);
5154 	} while (flush_state <= COMMIT_TRANS);
5155 }
5156 
5157 void btrfs_init_async_reclaim_work(struct work_struct *work)
5158 {
5159 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5160 }
5161 
5162 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5163 					    struct btrfs_space_info *space_info,
5164 					    struct reserve_ticket *ticket)
5165 {
5166 	u64 to_reclaim;
5167 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5168 
5169 	spin_lock(&space_info->lock);
5170 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5171 						      false);
5172 	if (!to_reclaim) {
5173 		spin_unlock(&space_info->lock);
5174 		return;
5175 	}
5176 	spin_unlock(&space_info->lock);
5177 
5178 	do {
5179 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5180 		flush_state++;
5181 		spin_lock(&space_info->lock);
5182 		if (ticket->bytes == 0) {
5183 			spin_unlock(&space_info->lock);
5184 			return;
5185 		}
5186 		spin_unlock(&space_info->lock);
5187 
5188 		/*
5189 		 * Priority flushers can't wait on delalloc without
5190 		 * deadlocking.
5191 		 */
5192 		if (flush_state == FLUSH_DELALLOC ||
5193 		    flush_state == FLUSH_DELALLOC_WAIT)
5194 			flush_state = ALLOC_CHUNK;
5195 	} while (flush_state < COMMIT_TRANS);
5196 }
5197 
5198 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5199 			       struct btrfs_space_info *space_info,
5200 			       struct reserve_ticket *ticket, u64 orig_bytes)
5201 
5202 {
5203 	DEFINE_WAIT(wait);
5204 	int ret = 0;
5205 
5206 	spin_lock(&space_info->lock);
5207 	while (ticket->bytes > 0 && ticket->error == 0) {
5208 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5209 		if (ret) {
5210 			ret = -EINTR;
5211 			break;
5212 		}
5213 		spin_unlock(&space_info->lock);
5214 
5215 		schedule();
5216 
5217 		finish_wait(&ticket->wait, &wait);
5218 		spin_lock(&space_info->lock);
5219 	}
5220 	if (!ret)
5221 		ret = ticket->error;
5222 	if (!list_empty(&ticket->list))
5223 		list_del_init(&ticket->list);
5224 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5225 		u64 num_bytes = orig_bytes - ticket->bytes;
5226 		space_info->bytes_may_use -= num_bytes;
5227 		trace_btrfs_space_reservation(fs_info, "space_info",
5228 					      space_info->flags, num_bytes, 0);
5229 	}
5230 	spin_unlock(&space_info->lock);
5231 
5232 	return ret;
5233 }
5234 
5235 /**
5236  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5237  * @root - the root we're allocating for
5238  * @space_info - the space info we want to allocate from
5239  * @orig_bytes - the number of bytes we want
5240  * @flush - whether or not we can flush to make our reservation
5241  *
5242  * This will reserve orig_bytes number of bytes from the space info associated
5243  * with the block_rsv.  If there is not enough space it will make an attempt to
5244  * flush out space to make room.  It will do this by flushing delalloc if
5245  * possible or committing the transaction.  If flush is 0 then no attempts to
5246  * regain reservations will be made and this will fail if there is not enough
5247  * space already.
5248  */
5249 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5250 				    struct btrfs_space_info *space_info,
5251 				    u64 orig_bytes,
5252 				    enum btrfs_reserve_flush_enum flush,
5253 				    bool system_chunk)
5254 {
5255 	struct reserve_ticket ticket;
5256 	u64 used;
5257 	int ret = 0;
5258 
5259 	ASSERT(orig_bytes);
5260 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5261 
5262 	spin_lock(&space_info->lock);
5263 	ret = -ENOSPC;
5264 	used = btrfs_space_info_used(space_info, true);
5265 
5266 	/*
5267 	 * If we have enough space then hooray, make our reservation and carry
5268 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5269 	 * If not things get more complicated.
5270 	 */
5271 	if (used + orig_bytes <= space_info->total_bytes) {
5272 		space_info->bytes_may_use += orig_bytes;
5273 		trace_btrfs_space_reservation(fs_info, "space_info",
5274 					      space_info->flags, orig_bytes, 1);
5275 		ret = 0;
5276 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5277 				  system_chunk)) {
5278 		space_info->bytes_may_use += orig_bytes;
5279 		trace_btrfs_space_reservation(fs_info, "space_info",
5280 					      space_info->flags, orig_bytes, 1);
5281 		ret = 0;
5282 	}
5283 
5284 	/*
5285 	 * If we couldn't make a reservation then setup our reservation ticket
5286 	 * and kick the async worker if it's not already running.
5287 	 *
5288 	 * If we are a priority flusher then we just need to add our ticket to
5289 	 * the list and we will do our own flushing further down.
5290 	 */
5291 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5292 		ticket.bytes = orig_bytes;
5293 		ticket.error = 0;
5294 		init_waitqueue_head(&ticket.wait);
5295 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5296 			list_add_tail(&ticket.list, &space_info->tickets);
5297 			if (!space_info->flush) {
5298 				space_info->flush = 1;
5299 				trace_btrfs_trigger_flush(fs_info,
5300 							  space_info->flags,
5301 							  orig_bytes, flush,
5302 							  "enospc");
5303 				queue_work(system_unbound_wq,
5304 					   &fs_info->async_reclaim_work);
5305 			}
5306 		} else {
5307 			list_add_tail(&ticket.list,
5308 				      &space_info->priority_tickets);
5309 		}
5310 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5311 		used += orig_bytes;
5312 		/*
5313 		 * We will do the space reservation dance during log replay,
5314 		 * which means we won't have fs_info->fs_root set, so don't do
5315 		 * the async reclaim as we will panic.
5316 		 */
5317 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5318 		    need_do_async_reclaim(fs_info, space_info,
5319 					  used, system_chunk) &&
5320 		    !work_busy(&fs_info->async_reclaim_work)) {
5321 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5322 						  orig_bytes, flush, "preempt");
5323 			queue_work(system_unbound_wq,
5324 				   &fs_info->async_reclaim_work);
5325 		}
5326 	}
5327 	spin_unlock(&space_info->lock);
5328 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5329 		return ret;
5330 
5331 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5332 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5333 					   orig_bytes);
5334 
5335 	ret = 0;
5336 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5337 	spin_lock(&space_info->lock);
5338 	if (ticket.bytes) {
5339 		if (ticket.bytes < orig_bytes) {
5340 			u64 num_bytes = orig_bytes - ticket.bytes;
5341 			space_info->bytes_may_use -= num_bytes;
5342 			trace_btrfs_space_reservation(fs_info, "space_info",
5343 						      space_info->flags,
5344 						      num_bytes, 0);
5345 
5346 		}
5347 		list_del_init(&ticket.list);
5348 		ret = -ENOSPC;
5349 	}
5350 	spin_unlock(&space_info->lock);
5351 	ASSERT(list_empty(&ticket.list));
5352 	return ret;
5353 }
5354 
5355 /**
5356  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5357  * @root - the root we're allocating for
5358  * @block_rsv - the block_rsv we're allocating for
5359  * @orig_bytes - the number of bytes we want
5360  * @flush - whether or not we can flush to make our reservation
5361  *
5362  * This will reserve orgi_bytes number of bytes from the space info associated
5363  * with the block_rsv.  If there is not enough space it will make an attempt to
5364  * flush out space to make room.  It will do this by flushing delalloc if
5365  * possible or committing the transaction.  If flush is 0 then no attempts to
5366  * regain reservations will be made and this will fail if there is not enough
5367  * space already.
5368  */
5369 static int reserve_metadata_bytes(struct btrfs_root *root,
5370 				  struct btrfs_block_rsv *block_rsv,
5371 				  u64 orig_bytes,
5372 				  enum btrfs_reserve_flush_enum flush)
5373 {
5374 	struct btrfs_fs_info *fs_info = root->fs_info;
5375 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5376 	int ret;
5377 	bool system_chunk = (root == fs_info->chunk_root);
5378 
5379 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5380 				       orig_bytes, flush, system_chunk);
5381 	if (ret == -ENOSPC &&
5382 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5383 		if (block_rsv != global_rsv &&
5384 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5385 			ret = 0;
5386 	}
5387 	if (ret == -ENOSPC) {
5388 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5389 					      block_rsv->space_info->flags,
5390 					      orig_bytes, 1);
5391 
5392 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5393 			dump_space_info(fs_info, block_rsv->space_info,
5394 					orig_bytes, 0);
5395 	}
5396 	return ret;
5397 }
5398 
5399 static struct btrfs_block_rsv *get_block_rsv(
5400 					const struct btrfs_trans_handle *trans,
5401 					const struct btrfs_root *root)
5402 {
5403 	struct btrfs_fs_info *fs_info = root->fs_info;
5404 	struct btrfs_block_rsv *block_rsv = NULL;
5405 
5406 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5407 	    (root == fs_info->csum_root && trans->adding_csums) ||
5408 	    (root == fs_info->uuid_root))
5409 		block_rsv = trans->block_rsv;
5410 
5411 	if (!block_rsv)
5412 		block_rsv = root->block_rsv;
5413 
5414 	if (!block_rsv)
5415 		block_rsv = &fs_info->empty_block_rsv;
5416 
5417 	return block_rsv;
5418 }
5419 
5420 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 			       u64 num_bytes)
5422 {
5423 	int ret = -ENOSPC;
5424 	spin_lock(&block_rsv->lock);
5425 	if (block_rsv->reserved >= num_bytes) {
5426 		block_rsv->reserved -= num_bytes;
5427 		if (block_rsv->reserved < block_rsv->size)
5428 			block_rsv->full = 0;
5429 		ret = 0;
5430 	}
5431 	spin_unlock(&block_rsv->lock);
5432 	return ret;
5433 }
5434 
5435 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 				u64 num_bytes, int update_size)
5437 {
5438 	spin_lock(&block_rsv->lock);
5439 	block_rsv->reserved += num_bytes;
5440 	if (update_size)
5441 		block_rsv->size += num_bytes;
5442 	else if (block_rsv->reserved >= block_rsv->size)
5443 		block_rsv->full = 1;
5444 	spin_unlock(&block_rsv->lock);
5445 }
5446 
5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5449 			     int min_factor)
5450 {
5451 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 	u64 min_bytes;
5453 
5454 	if (global_rsv->space_info != dest->space_info)
5455 		return -ENOSPC;
5456 
5457 	spin_lock(&global_rsv->lock);
5458 	min_bytes = div_factor(global_rsv->size, min_factor);
5459 	if (global_rsv->reserved < min_bytes + num_bytes) {
5460 		spin_unlock(&global_rsv->lock);
5461 		return -ENOSPC;
5462 	}
5463 	global_rsv->reserved -= num_bytes;
5464 	if (global_rsv->reserved < global_rsv->size)
5465 		global_rsv->full = 0;
5466 	spin_unlock(&global_rsv->lock);
5467 
5468 	block_rsv_add_bytes(dest, num_bytes, 1);
5469 	return 0;
5470 }
5471 
5472 /*
5473  * This is for space we already have accounted in space_info->bytes_may_use, so
5474  * basically when we're returning space from block_rsv's.
5475  */
5476 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 				     struct btrfs_space_info *space_info,
5478 				     u64 num_bytes)
5479 {
5480 	struct reserve_ticket *ticket;
5481 	struct list_head *head;
5482 	u64 used;
5483 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 	bool check_overcommit = false;
5485 
5486 	spin_lock(&space_info->lock);
5487 	head = &space_info->priority_tickets;
5488 
5489 	/*
5490 	 * If we are over our limit then we need to check and see if we can
5491 	 * overcommit, and if we can't then we just need to free up our space
5492 	 * and not satisfy any requests.
5493 	 */
5494 	used = btrfs_space_info_used(space_info, true);
5495 	if (used - num_bytes >= space_info->total_bytes)
5496 		check_overcommit = true;
5497 again:
5498 	while (!list_empty(head) && num_bytes) {
5499 		ticket = list_first_entry(head, struct reserve_ticket,
5500 					  list);
5501 		/*
5502 		 * We use 0 bytes because this space is already reserved, so
5503 		 * adding the ticket space would be a double count.
5504 		 */
5505 		if (check_overcommit &&
5506 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5507 			break;
5508 		if (num_bytes >= ticket->bytes) {
5509 			list_del_init(&ticket->list);
5510 			num_bytes -= ticket->bytes;
5511 			ticket->bytes = 0;
5512 			space_info->tickets_id++;
5513 			wake_up(&ticket->wait);
5514 		} else {
5515 			ticket->bytes -= num_bytes;
5516 			num_bytes = 0;
5517 		}
5518 	}
5519 
5520 	if (num_bytes && head == &space_info->priority_tickets) {
5521 		head = &space_info->tickets;
5522 		flush = BTRFS_RESERVE_FLUSH_ALL;
5523 		goto again;
5524 	}
5525 	space_info->bytes_may_use -= num_bytes;
5526 	trace_btrfs_space_reservation(fs_info, "space_info",
5527 				      space_info->flags, num_bytes, 0);
5528 	spin_unlock(&space_info->lock);
5529 }
5530 
5531 /*
5532  * This is for newly allocated space that isn't accounted in
5533  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5534  * we use this helper.
5535  */
5536 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 				     struct btrfs_space_info *space_info,
5538 				     u64 num_bytes)
5539 {
5540 	struct reserve_ticket *ticket;
5541 	struct list_head *head = &space_info->priority_tickets;
5542 
5543 again:
5544 	while (!list_empty(head) && num_bytes) {
5545 		ticket = list_first_entry(head, struct reserve_ticket,
5546 					  list);
5547 		if (num_bytes >= ticket->bytes) {
5548 			trace_btrfs_space_reservation(fs_info, "space_info",
5549 						      space_info->flags,
5550 						      ticket->bytes, 1);
5551 			list_del_init(&ticket->list);
5552 			num_bytes -= ticket->bytes;
5553 			space_info->bytes_may_use += ticket->bytes;
5554 			ticket->bytes = 0;
5555 			space_info->tickets_id++;
5556 			wake_up(&ticket->wait);
5557 		} else {
5558 			trace_btrfs_space_reservation(fs_info, "space_info",
5559 						      space_info->flags,
5560 						      num_bytes, 1);
5561 			space_info->bytes_may_use += num_bytes;
5562 			ticket->bytes -= num_bytes;
5563 			num_bytes = 0;
5564 		}
5565 	}
5566 
5567 	if (num_bytes && head == &space_info->priority_tickets) {
5568 		head = &space_info->tickets;
5569 		goto again;
5570 	}
5571 }
5572 
5573 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5574 				    struct btrfs_block_rsv *block_rsv,
5575 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5576 				    u64 *qgroup_to_release_ret)
5577 {
5578 	struct btrfs_space_info *space_info = block_rsv->space_info;
5579 	u64 qgroup_to_release = 0;
5580 	u64 ret;
5581 
5582 	spin_lock(&block_rsv->lock);
5583 	if (num_bytes == (u64)-1) {
5584 		num_bytes = block_rsv->size;
5585 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5586 	}
5587 	block_rsv->size -= num_bytes;
5588 	if (block_rsv->reserved >= block_rsv->size) {
5589 		num_bytes = block_rsv->reserved - block_rsv->size;
5590 		block_rsv->reserved = block_rsv->size;
5591 		block_rsv->full = 1;
5592 	} else {
5593 		num_bytes = 0;
5594 	}
5595 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5596 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5597 				    block_rsv->qgroup_rsv_size;
5598 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5599 	} else {
5600 		qgroup_to_release = 0;
5601 	}
5602 	spin_unlock(&block_rsv->lock);
5603 
5604 	ret = num_bytes;
5605 	if (num_bytes > 0) {
5606 		if (dest) {
5607 			spin_lock(&dest->lock);
5608 			if (!dest->full) {
5609 				u64 bytes_to_add;
5610 
5611 				bytes_to_add = dest->size - dest->reserved;
5612 				bytes_to_add = min(num_bytes, bytes_to_add);
5613 				dest->reserved += bytes_to_add;
5614 				if (dest->reserved >= dest->size)
5615 					dest->full = 1;
5616 				num_bytes -= bytes_to_add;
5617 			}
5618 			spin_unlock(&dest->lock);
5619 		}
5620 		if (num_bytes)
5621 			space_info_add_old_bytes(fs_info, space_info,
5622 						 num_bytes);
5623 	}
5624 	if (qgroup_to_release_ret)
5625 		*qgroup_to_release_ret = qgroup_to_release;
5626 	return ret;
5627 }
5628 
5629 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5630 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5631 			    int update_size)
5632 {
5633 	int ret;
5634 
5635 	ret = block_rsv_use_bytes(src, num_bytes);
5636 	if (ret)
5637 		return ret;
5638 
5639 	block_rsv_add_bytes(dst, num_bytes, update_size);
5640 	return 0;
5641 }
5642 
5643 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5644 {
5645 	memset(rsv, 0, sizeof(*rsv));
5646 	spin_lock_init(&rsv->lock);
5647 	rsv->type = type;
5648 }
5649 
5650 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5651 				   struct btrfs_block_rsv *rsv,
5652 				   unsigned short type)
5653 {
5654 	btrfs_init_block_rsv(rsv, type);
5655 	rsv->space_info = __find_space_info(fs_info,
5656 					    BTRFS_BLOCK_GROUP_METADATA);
5657 }
5658 
5659 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5660 					      unsigned short type)
5661 {
5662 	struct btrfs_block_rsv *block_rsv;
5663 
5664 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5665 	if (!block_rsv)
5666 		return NULL;
5667 
5668 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5669 	return block_rsv;
5670 }
5671 
5672 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5673 			  struct btrfs_block_rsv *rsv)
5674 {
5675 	if (!rsv)
5676 		return;
5677 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5678 	kfree(rsv);
5679 }
5680 
5681 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5682 {
5683 	kfree(rsv);
5684 }
5685 
5686 int btrfs_block_rsv_add(struct btrfs_root *root,
5687 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5688 			enum btrfs_reserve_flush_enum flush)
5689 {
5690 	int ret;
5691 
5692 	if (num_bytes == 0)
5693 		return 0;
5694 
5695 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5696 	if (!ret) {
5697 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5698 		return 0;
5699 	}
5700 
5701 	return ret;
5702 }
5703 
5704 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5705 {
5706 	u64 num_bytes = 0;
5707 	int ret = -ENOSPC;
5708 
5709 	if (!block_rsv)
5710 		return 0;
5711 
5712 	spin_lock(&block_rsv->lock);
5713 	num_bytes = div_factor(block_rsv->size, min_factor);
5714 	if (block_rsv->reserved >= num_bytes)
5715 		ret = 0;
5716 	spin_unlock(&block_rsv->lock);
5717 
5718 	return ret;
5719 }
5720 
5721 int btrfs_block_rsv_refill(struct btrfs_root *root,
5722 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5723 			   enum btrfs_reserve_flush_enum flush)
5724 {
5725 	u64 num_bytes = 0;
5726 	int ret = -ENOSPC;
5727 
5728 	if (!block_rsv)
5729 		return 0;
5730 
5731 	spin_lock(&block_rsv->lock);
5732 	num_bytes = min_reserved;
5733 	if (block_rsv->reserved >= num_bytes)
5734 		ret = 0;
5735 	else
5736 		num_bytes -= block_rsv->reserved;
5737 	spin_unlock(&block_rsv->lock);
5738 
5739 	if (!ret)
5740 		return 0;
5741 
5742 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5743 	if (!ret) {
5744 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5745 		return 0;
5746 	}
5747 
5748 	return ret;
5749 }
5750 
5751 /**
5752  * btrfs_inode_rsv_refill - refill the inode block rsv.
5753  * @inode - the inode we are refilling.
5754  * @flush - the flusing restriction.
5755  *
5756  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5757  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5758  * or return if we already have enough space.  This will also handle the resreve
5759  * tracepoint for the reserved amount.
5760  */
5761 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5762 				  enum btrfs_reserve_flush_enum flush)
5763 {
5764 	struct btrfs_root *root = inode->root;
5765 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5766 	u64 num_bytes = 0;
5767 	u64 qgroup_num_bytes = 0;
5768 	int ret = -ENOSPC;
5769 
5770 	spin_lock(&block_rsv->lock);
5771 	if (block_rsv->reserved < block_rsv->size)
5772 		num_bytes = block_rsv->size - block_rsv->reserved;
5773 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5774 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5775 				   block_rsv->qgroup_rsv_reserved;
5776 	spin_unlock(&block_rsv->lock);
5777 
5778 	if (num_bytes == 0)
5779 		return 0;
5780 
5781 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5782 	if (ret)
5783 		return ret;
5784 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5785 	if (!ret) {
5786 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5787 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5788 					      btrfs_ino(inode), num_bytes, 1);
5789 
5790 		/* Don't forget to increase qgroup_rsv_reserved */
5791 		spin_lock(&block_rsv->lock);
5792 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5793 		spin_unlock(&block_rsv->lock);
5794 	} else
5795 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5796 	return ret;
5797 }
5798 
5799 /**
5800  * btrfs_inode_rsv_release - release any excessive reservation.
5801  * @inode - the inode we need to release from.
5802  * @qgroup_free - free or convert qgroup meta.
5803  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5804  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5805  *   @qgroup_free is true for error handling, and false for normal release.
5806  *
5807  * This is the same as btrfs_block_rsv_release, except that it handles the
5808  * tracepoint for the reservation.
5809  */
5810 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5811 {
5812 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5813 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5814 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5815 	u64 released = 0;
5816 	u64 qgroup_to_release = 0;
5817 
5818 	/*
5819 	 * Since we statically set the block_rsv->size we just want to say we
5820 	 * are releasing 0 bytes, and then we'll just get the reservation over
5821 	 * the size free'd.
5822 	 */
5823 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5824 					   &qgroup_to_release);
5825 	if (released > 0)
5826 		trace_btrfs_space_reservation(fs_info, "delalloc",
5827 					      btrfs_ino(inode), released, 0);
5828 	if (qgroup_free)
5829 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5830 	else
5831 		btrfs_qgroup_convert_reserved_meta(inode->root,
5832 						   qgroup_to_release);
5833 }
5834 
5835 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5836 			     struct btrfs_block_rsv *block_rsv,
5837 			     u64 num_bytes)
5838 {
5839 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5840 
5841 	if (global_rsv == block_rsv ||
5842 	    block_rsv->space_info != global_rsv->space_info)
5843 		global_rsv = NULL;
5844 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5845 }
5846 
5847 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5848 {
5849 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5850 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5851 	u64 num_bytes;
5852 
5853 	/*
5854 	 * The global block rsv is based on the size of the extent tree, the
5855 	 * checksum tree and the root tree.  If the fs is empty we want to set
5856 	 * it to a minimal amount for safety.
5857 	 */
5858 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5859 		btrfs_root_used(&fs_info->csum_root->root_item) +
5860 		btrfs_root_used(&fs_info->tree_root->root_item);
5861 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5862 
5863 	spin_lock(&sinfo->lock);
5864 	spin_lock(&block_rsv->lock);
5865 
5866 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5867 
5868 	if (block_rsv->reserved < block_rsv->size) {
5869 		num_bytes = btrfs_space_info_used(sinfo, true);
5870 		if (sinfo->total_bytes > num_bytes) {
5871 			num_bytes = sinfo->total_bytes - num_bytes;
5872 			num_bytes = min(num_bytes,
5873 					block_rsv->size - block_rsv->reserved);
5874 			block_rsv->reserved += num_bytes;
5875 			sinfo->bytes_may_use += num_bytes;
5876 			trace_btrfs_space_reservation(fs_info, "space_info",
5877 						      sinfo->flags, num_bytes,
5878 						      1);
5879 		}
5880 	} else if (block_rsv->reserved > block_rsv->size) {
5881 		num_bytes = block_rsv->reserved - block_rsv->size;
5882 		sinfo->bytes_may_use -= num_bytes;
5883 		trace_btrfs_space_reservation(fs_info, "space_info",
5884 				      sinfo->flags, num_bytes, 0);
5885 		block_rsv->reserved = block_rsv->size;
5886 	}
5887 
5888 	if (block_rsv->reserved == block_rsv->size)
5889 		block_rsv->full = 1;
5890 	else
5891 		block_rsv->full = 0;
5892 
5893 	spin_unlock(&block_rsv->lock);
5894 	spin_unlock(&sinfo->lock);
5895 }
5896 
5897 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5898 {
5899 	struct btrfs_space_info *space_info;
5900 
5901 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5902 	fs_info->chunk_block_rsv.space_info = space_info;
5903 
5904 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5905 	fs_info->global_block_rsv.space_info = space_info;
5906 	fs_info->trans_block_rsv.space_info = space_info;
5907 	fs_info->empty_block_rsv.space_info = space_info;
5908 	fs_info->delayed_block_rsv.space_info = space_info;
5909 
5910 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5911 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5912 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5913 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5914 	if (fs_info->quota_root)
5915 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5916 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5917 
5918 	update_global_block_rsv(fs_info);
5919 }
5920 
5921 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5922 {
5923 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5924 				(u64)-1, NULL);
5925 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5926 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5927 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5928 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5929 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5930 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5931 }
5932 
5933 
5934 /*
5935  * To be called after all the new block groups attached to the transaction
5936  * handle have been created (btrfs_create_pending_block_groups()).
5937  */
5938 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5939 {
5940 	struct btrfs_fs_info *fs_info = trans->fs_info;
5941 
5942 	if (!trans->chunk_bytes_reserved)
5943 		return;
5944 
5945 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5946 
5947 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5948 				trans->chunk_bytes_reserved, NULL);
5949 	trans->chunk_bytes_reserved = 0;
5950 }
5951 
5952 /* Can only return 0 or -ENOSPC */
5953 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5954 				  struct btrfs_inode *inode)
5955 {
5956 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5957 	struct btrfs_root *root = inode->root;
5958 	/*
5959 	 * We always use trans->block_rsv here as we will have reserved space
5960 	 * for our orphan when starting the transaction, using get_block_rsv()
5961 	 * here will sometimes make us choose the wrong block rsv as we could be
5962 	 * doing a reloc inode for a non refcounted root.
5963 	 */
5964 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5965 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5966 
5967 	/*
5968 	 * We need to hold space in order to delete our orphan item once we've
5969 	 * added it, so this takes the reservation so we can release it later
5970 	 * when we are truly done with the orphan item.
5971 	 */
5972 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5973 
5974 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5975 			num_bytes, 1);
5976 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5977 }
5978 
5979 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5980 {
5981 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5982 	struct btrfs_root *root = inode->root;
5983 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5984 
5985 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5986 			num_bytes, 0);
5987 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5988 }
5989 
5990 /*
5991  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5992  * root: the root of the parent directory
5993  * rsv: block reservation
5994  * items: the number of items that we need do reservation
5995  * qgroup_reserved: used to return the reserved size in qgroup
5996  *
5997  * This function is used to reserve the space for snapshot/subvolume
5998  * creation and deletion. Those operations are different with the
5999  * common file/directory operations, they change two fs/file trees
6000  * and root tree, the number of items that the qgroup reserves is
6001  * different with the free space reservation. So we can not use
6002  * the space reservation mechanism in start_transaction().
6003  */
6004 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6005 				     struct btrfs_block_rsv *rsv,
6006 				     int items,
6007 				     u64 *qgroup_reserved,
6008 				     bool use_global_rsv)
6009 {
6010 	u64 num_bytes;
6011 	int ret;
6012 	struct btrfs_fs_info *fs_info = root->fs_info;
6013 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6014 
6015 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6016 		/* One for parent inode, two for dir entries */
6017 		num_bytes = 3 * fs_info->nodesize;
6018 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
6019 		if (ret)
6020 			return ret;
6021 	} else {
6022 		num_bytes = 0;
6023 	}
6024 
6025 	*qgroup_reserved = num_bytes;
6026 
6027 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6028 	rsv->space_info = __find_space_info(fs_info,
6029 					    BTRFS_BLOCK_GROUP_METADATA);
6030 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6031 				  BTRFS_RESERVE_FLUSH_ALL);
6032 
6033 	if (ret == -ENOSPC && use_global_rsv)
6034 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6035 
6036 	if (ret && *qgroup_reserved)
6037 		btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6038 
6039 	return ret;
6040 }
6041 
6042 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6043 				      struct btrfs_block_rsv *rsv)
6044 {
6045 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6046 }
6047 
6048 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6049 						 struct btrfs_inode *inode)
6050 {
6051 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6052 	u64 reserve_size = 0;
6053 	u64 qgroup_rsv_size = 0;
6054 	u64 csum_leaves;
6055 	unsigned outstanding_extents;
6056 
6057 	lockdep_assert_held(&inode->lock);
6058 	outstanding_extents = inode->outstanding_extents;
6059 	if (outstanding_extents)
6060 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6061 						outstanding_extents + 1);
6062 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6063 						 inode->csum_bytes);
6064 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6065 						       csum_leaves);
6066 	/*
6067 	 * For qgroup rsv, the calculation is very simple:
6068 	 * account one nodesize for each outstanding extent
6069 	 *
6070 	 * This is overestimating in most cases.
6071 	 */
6072 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6073 
6074 	spin_lock(&block_rsv->lock);
6075 	block_rsv->size = reserve_size;
6076 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6077 	spin_unlock(&block_rsv->lock);
6078 }
6079 
6080 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6081 {
6082 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6083 	unsigned nr_extents;
6084 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6085 	int ret = 0;
6086 	bool delalloc_lock = true;
6087 
6088 	/* If we are a free space inode we need to not flush since we will be in
6089 	 * the middle of a transaction commit.  We also don't need the delalloc
6090 	 * mutex since we won't race with anybody.  We need this mostly to make
6091 	 * lockdep shut its filthy mouth.
6092 	 *
6093 	 * If we have a transaction open (can happen if we call truncate_block
6094 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6095 	 */
6096 	if (btrfs_is_free_space_inode(inode)) {
6097 		flush = BTRFS_RESERVE_NO_FLUSH;
6098 		delalloc_lock = false;
6099 	} else {
6100 		if (current->journal_info)
6101 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6102 
6103 		if (btrfs_transaction_in_commit(fs_info))
6104 			schedule_timeout(1);
6105 	}
6106 
6107 	if (delalloc_lock)
6108 		mutex_lock(&inode->delalloc_mutex);
6109 
6110 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6111 
6112 	/* Add our new extents and calculate the new rsv size. */
6113 	spin_lock(&inode->lock);
6114 	nr_extents = count_max_extents(num_bytes);
6115 	btrfs_mod_outstanding_extents(inode, nr_extents);
6116 	inode->csum_bytes += num_bytes;
6117 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6118 	spin_unlock(&inode->lock);
6119 
6120 	ret = btrfs_inode_rsv_refill(inode, flush);
6121 	if (unlikely(ret))
6122 		goto out_fail;
6123 
6124 	if (delalloc_lock)
6125 		mutex_unlock(&inode->delalloc_mutex);
6126 	return 0;
6127 
6128 out_fail:
6129 	spin_lock(&inode->lock);
6130 	nr_extents = count_max_extents(num_bytes);
6131 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6132 	inode->csum_bytes -= num_bytes;
6133 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6134 	spin_unlock(&inode->lock);
6135 
6136 	btrfs_inode_rsv_release(inode, true);
6137 	if (delalloc_lock)
6138 		mutex_unlock(&inode->delalloc_mutex);
6139 	return ret;
6140 }
6141 
6142 /**
6143  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6144  * @inode: the inode to release the reservation for.
6145  * @num_bytes: the number of bytes we are releasing.
6146  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6147  *
6148  * This will release the metadata reservation for an inode.  This can be called
6149  * once we complete IO for a given set of bytes to release their metadata
6150  * reservations, or on error for the same reason.
6151  */
6152 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6153 				     bool qgroup_free)
6154 {
6155 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6156 
6157 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6158 	spin_lock(&inode->lock);
6159 	inode->csum_bytes -= num_bytes;
6160 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6161 	spin_unlock(&inode->lock);
6162 
6163 	if (btrfs_is_testing(fs_info))
6164 		return;
6165 
6166 	btrfs_inode_rsv_release(inode, qgroup_free);
6167 }
6168 
6169 /**
6170  * btrfs_delalloc_release_extents - release our outstanding_extents
6171  * @inode: the inode to balance the reservation for.
6172  * @num_bytes: the number of bytes we originally reserved with
6173  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6174  *
6175  * When we reserve space we increase outstanding_extents for the extents we may
6176  * add.  Once we've set the range as delalloc or created our ordered extents we
6177  * have outstanding_extents to track the real usage, so we use this to free our
6178  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6179  * with btrfs_delalloc_reserve_metadata.
6180  */
6181 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6182 				    bool qgroup_free)
6183 {
6184 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6185 	unsigned num_extents;
6186 
6187 	spin_lock(&inode->lock);
6188 	num_extents = count_max_extents(num_bytes);
6189 	btrfs_mod_outstanding_extents(inode, -num_extents);
6190 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6191 	spin_unlock(&inode->lock);
6192 
6193 	if (btrfs_is_testing(fs_info))
6194 		return;
6195 
6196 	btrfs_inode_rsv_release(inode, qgroup_free);
6197 }
6198 
6199 /**
6200  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6201  * delalloc
6202  * @inode: inode we're writing to
6203  * @start: start range we are writing to
6204  * @len: how long the range we are writing to
6205  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6206  * 	      current reservation.
6207  *
6208  * This will do the following things
6209  *
6210  * o reserve space in data space info for num bytes
6211  *   and reserve precious corresponding qgroup space
6212  *   (Done in check_data_free_space)
6213  *
6214  * o reserve space for metadata space, based on the number of outstanding
6215  *   extents and how much csums will be needed
6216  *   also reserve metadata space in a per root over-reserve method.
6217  * o add to the inodes->delalloc_bytes
6218  * o add it to the fs_info's delalloc inodes list.
6219  *   (Above 3 all done in delalloc_reserve_metadata)
6220  *
6221  * Return 0 for success
6222  * Return <0 for error(-ENOSPC or -EQUOT)
6223  */
6224 int btrfs_delalloc_reserve_space(struct inode *inode,
6225 			struct extent_changeset **reserved, u64 start, u64 len)
6226 {
6227 	int ret;
6228 
6229 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6230 	if (ret < 0)
6231 		return ret;
6232 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6233 	if (ret < 0)
6234 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6235 	return ret;
6236 }
6237 
6238 /**
6239  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6240  * @inode: inode we're releasing space for
6241  * @start: start position of the space already reserved
6242  * @len: the len of the space already reserved
6243  * @release_bytes: the len of the space we consumed or didn't use
6244  *
6245  * This function will release the metadata space that was not used and will
6246  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6247  * list if there are no delalloc bytes left.
6248  * Also it will handle the qgroup reserved space.
6249  */
6250 void btrfs_delalloc_release_space(struct inode *inode,
6251 				  struct extent_changeset *reserved,
6252 				  u64 start, u64 len, bool qgroup_free)
6253 {
6254 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6255 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6256 }
6257 
6258 static int update_block_group(struct btrfs_trans_handle *trans,
6259 			      struct btrfs_fs_info *info, u64 bytenr,
6260 			      u64 num_bytes, int alloc)
6261 {
6262 	struct btrfs_block_group_cache *cache = NULL;
6263 	u64 total = num_bytes;
6264 	u64 old_val;
6265 	u64 byte_in_group;
6266 	int factor;
6267 
6268 	/* block accounting for super block */
6269 	spin_lock(&info->delalloc_root_lock);
6270 	old_val = btrfs_super_bytes_used(info->super_copy);
6271 	if (alloc)
6272 		old_val += num_bytes;
6273 	else
6274 		old_val -= num_bytes;
6275 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6276 	spin_unlock(&info->delalloc_root_lock);
6277 
6278 	while (total) {
6279 		cache = btrfs_lookup_block_group(info, bytenr);
6280 		if (!cache)
6281 			return -ENOENT;
6282 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6283 				    BTRFS_BLOCK_GROUP_RAID1 |
6284 				    BTRFS_BLOCK_GROUP_RAID10))
6285 			factor = 2;
6286 		else
6287 			factor = 1;
6288 		/*
6289 		 * If this block group has free space cache written out, we
6290 		 * need to make sure to load it if we are removing space.  This
6291 		 * is because we need the unpinning stage to actually add the
6292 		 * space back to the block group, otherwise we will leak space.
6293 		 */
6294 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6295 			cache_block_group(cache, 1);
6296 
6297 		byte_in_group = bytenr - cache->key.objectid;
6298 		WARN_ON(byte_in_group > cache->key.offset);
6299 
6300 		spin_lock(&cache->space_info->lock);
6301 		spin_lock(&cache->lock);
6302 
6303 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6304 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6305 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6306 
6307 		old_val = btrfs_block_group_used(&cache->item);
6308 		num_bytes = min(total, cache->key.offset - byte_in_group);
6309 		if (alloc) {
6310 			old_val += num_bytes;
6311 			btrfs_set_block_group_used(&cache->item, old_val);
6312 			cache->reserved -= num_bytes;
6313 			cache->space_info->bytes_reserved -= num_bytes;
6314 			cache->space_info->bytes_used += num_bytes;
6315 			cache->space_info->disk_used += num_bytes * factor;
6316 			spin_unlock(&cache->lock);
6317 			spin_unlock(&cache->space_info->lock);
6318 		} else {
6319 			old_val -= num_bytes;
6320 			btrfs_set_block_group_used(&cache->item, old_val);
6321 			cache->pinned += num_bytes;
6322 			cache->space_info->bytes_pinned += num_bytes;
6323 			cache->space_info->bytes_used -= num_bytes;
6324 			cache->space_info->disk_used -= num_bytes * factor;
6325 			spin_unlock(&cache->lock);
6326 			spin_unlock(&cache->space_info->lock);
6327 
6328 			trace_btrfs_space_reservation(info, "pinned",
6329 						      cache->space_info->flags,
6330 						      num_bytes, 1);
6331 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6332 					   num_bytes);
6333 			set_extent_dirty(info->pinned_extents,
6334 					 bytenr, bytenr + num_bytes - 1,
6335 					 GFP_NOFS | __GFP_NOFAIL);
6336 		}
6337 
6338 		spin_lock(&trans->transaction->dirty_bgs_lock);
6339 		if (list_empty(&cache->dirty_list)) {
6340 			list_add_tail(&cache->dirty_list,
6341 				      &trans->transaction->dirty_bgs);
6342 				trans->transaction->num_dirty_bgs++;
6343 			btrfs_get_block_group(cache);
6344 		}
6345 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6346 
6347 		/*
6348 		 * No longer have used bytes in this block group, queue it for
6349 		 * deletion. We do this after adding the block group to the
6350 		 * dirty list to avoid races between cleaner kthread and space
6351 		 * cache writeout.
6352 		 */
6353 		if (!alloc && old_val == 0) {
6354 			spin_lock(&info->unused_bgs_lock);
6355 			if (list_empty(&cache->bg_list)) {
6356 				btrfs_get_block_group(cache);
6357 				list_add_tail(&cache->bg_list,
6358 					      &info->unused_bgs);
6359 			}
6360 			spin_unlock(&info->unused_bgs_lock);
6361 		}
6362 
6363 		btrfs_put_block_group(cache);
6364 		total -= num_bytes;
6365 		bytenr += num_bytes;
6366 	}
6367 	return 0;
6368 }
6369 
6370 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6371 {
6372 	struct btrfs_block_group_cache *cache;
6373 	u64 bytenr;
6374 
6375 	spin_lock(&fs_info->block_group_cache_lock);
6376 	bytenr = fs_info->first_logical_byte;
6377 	spin_unlock(&fs_info->block_group_cache_lock);
6378 
6379 	if (bytenr < (u64)-1)
6380 		return bytenr;
6381 
6382 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6383 	if (!cache)
6384 		return 0;
6385 
6386 	bytenr = cache->key.objectid;
6387 	btrfs_put_block_group(cache);
6388 
6389 	return bytenr;
6390 }
6391 
6392 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6393 			   struct btrfs_block_group_cache *cache,
6394 			   u64 bytenr, u64 num_bytes, int reserved)
6395 {
6396 	spin_lock(&cache->space_info->lock);
6397 	spin_lock(&cache->lock);
6398 	cache->pinned += num_bytes;
6399 	cache->space_info->bytes_pinned += num_bytes;
6400 	if (reserved) {
6401 		cache->reserved -= num_bytes;
6402 		cache->space_info->bytes_reserved -= num_bytes;
6403 	}
6404 	spin_unlock(&cache->lock);
6405 	spin_unlock(&cache->space_info->lock);
6406 
6407 	trace_btrfs_space_reservation(fs_info, "pinned",
6408 				      cache->space_info->flags, num_bytes, 1);
6409 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6410 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6411 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6412 	return 0;
6413 }
6414 
6415 /*
6416  * this function must be called within transaction
6417  */
6418 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6419 		     u64 bytenr, u64 num_bytes, int reserved)
6420 {
6421 	struct btrfs_block_group_cache *cache;
6422 
6423 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6424 	BUG_ON(!cache); /* Logic error */
6425 
6426 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6427 
6428 	btrfs_put_block_group(cache);
6429 	return 0;
6430 }
6431 
6432 /*
6433  * this function must be called within transaction
6434  */
6435 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6436 				    u64 bytenr, u64 num_bytes)
6437 {
6438 	struct btrfs_block_group_cache *cache;
6439 	int ret;
6440 
6441 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6442 	if (!cache)
6443 		return -EINVAL;
6444 
6445 	/*
6446 	 * pull in the free space cache (if any) so that our pin
6447 	 * removes the free space from the cache.  We have load_only set
6448 	 * to one because the slow code to read in the free extents does check
6449 	 * the pinned extents.
6450 	 */
6451 	cache_block_group(cache, 1);
6452 
6453 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6454 
6455 	/* remove us from the free space cache (if we're there at all) */
6456 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6457 	btrfs_put_block_group(cache);
6458 	return ret;
6459 }
6460 
6461 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6462 				   u64 start, u64 num_bytes)
6463 {
6464 	int ret;
6465 	struct btrfs_block_group_cache *block_group;
6466 	struct btrfs_caching_control *caching_ctl;
6467 
6468 	block_group = btrfs_lookup_block_group(fs_info, start);
6469 	if (!block_group)
6470 		return -EINVAL;
6471 
6472 	cache_block_group(block_group, 0);
6473 	caching_ctl = get_caching_control(block_group);
6474 
6475 	if (!caching_ctl) {
6476 		/* Logic error */
6477 		BUG_ON(!block_group_cache_done(block_group));
6478 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6479 	} else {
6480 		mutex_lock(&caching_ctl->mutex);
6481 
6482 		if (start >= caching_ctl->progress) {
6483 			ret = add_excluded_extent(fs_info, start, num_bytes);
6484 		} else if (start + num_bytes <= caching_ctl->progress) {
6485 			ret = btrfs_remove_free_space(block_group,
6486 						      start, num_bytes);
6487 		} else {
6488 			num_bytes = caching_ctl->progress - start;
6489 			ret = btrfs_remove_free_space(block_group,
6490 						      start, num_bytes);
6491 			if (ret)
6492 				goto out_lock;
6493 
6494 			num_bytes = (start + num_bytes) -
6495 				caching_ctl->progress;
6496 			start = caching_ctl->progress;
6497 			ret = add_excluded_extent(fs_info, start, num_bytes);
6498 		}
6499 out_lock:
6500 		mutex_unlock(&caching_ctl->mutex);
6501 		put_caching_control(caching_ctl);
6502 	}
6503 	btrfs_put_block_group(block_group);
6504 	return ret;
6505 }
6506 
6507 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6508 				 struct extent_buffer *eb)
6509 {
6510 	struct btrfs_file_extent_item *item;
6511 	struct btrfs_key key;
6512 	int found_type;
6513 	int i;
6514 
6515 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6516 		return 0;
6517 
6518 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6519 		btrfs_item_key_to_cpu(eb, &key, i);
6520 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6521 			continue;
6522 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6523 		found_type = btrfs_file_extent_type(eb, item);
6524 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6525 			continue;
6526 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6527 			continue;
6528 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6529 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6530 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6531 	}
6532 
6533 	return 0;
6534 }
6535 
6536 static void
6537 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6538 {
6539 	atomic_inc(&bg->reservations);
6540 }
6541 
6542 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6543 					const u64 start)
6544 {
6545 	struct btrfs_block_group_cache *bg;
6546 
6547 	bg = btrfs_lookup_block_group(fs_info, start);
6548 	ASSERT(bg);
6549 	if (atomic_dec_and_test(&bg->reservations))
6550 		wake_up_var(&bg->reservations);
6551 	btrfs_put_block_group(bg);
6552 }
6553 
6554 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6555 {
6556 	struct btrfs_space_info *space_info = bg->space_info;
6557 
6558 	ASSERT(bg->ro);
6559 
6560 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6561 		return;
6562 
6563 	/*
6564 	 * Our block group is read only but before we set it to read only,
6565 	 * some task might have had allocated an extent from it already, but it
6566 	 * has not yet created a respective ordered extent (and added it to a
6567 	 * root's list of ordered extents).
6568 	 * Therefore wait for any task currently allocating extents, since the
6569 	 * block group's reservations counter is incremented while a read lock
6570 	 * on the groups' semaphore is held and decremented after releasing
6571 	 * the read access on that semaphore and creating the ordered extent.
6572 	 */
6573 	down_write(&space_info->groups_sem);
6574 	up_write(&space_info->groups_sem);
6575 
6576 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6577 }
6578 
6579 /**
6580  * btrfs_add_reserved_bytes - update the block_group and space info counters
6581  * @cache:	The cache we are manipulating
6582  * @ram_bytes:  The number of bytes of file content, and will be same to
6583  *              @num_bytes except for the compress path.
6584  * @num_bytes:	The number of bytes in question
6585  * @delalloc:   The blocks are allocated for the delalloc write
6586  *
6587  * This is called by the allocator when it reserves space. If this is a
6588  * reservation and the block group has become read only we cannot make the
6589  * reservation and return -EAGAIN, otherwise this function always succeeds.
6590  */
6591 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6592 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6593 {
6594 	struct btrfs_space_info *space_info = cache->space_info;
6595 	int ret = 0;
6596 
6597 	spin_lock(&space_info->lock);
6598 	spin_lock(&cache->lock);
6599 	if (cache->ro) {
6600 		ret = -EAGAIN;
6601 	} else {
6602 		cache->reserved += num_bytes;
6603 		space_info->bytes_reserved += num_bytes;
6604 
6605 		trace_btrfs_space_reservation(cache->fs_info,
6606 				"space_info", space_info->flags,
6607 				ram_bytes, 0);
6608 		space_info->bytes_may_use -= ram_bytes;
6609 		if (delalloc)
6610 			cache->delalloc_bytes += num_bytes;
6611 	}
6612 	spin_unlock(&cache->lock);
6613 	spin_unlock(&space_info->lock);
6614 	return ret;
6615 }
6616 
6617 /**
6618  * btrfs_free_reserved_bytes - update the block_group and space info counters
6619  * @cache:      The cache we are manipulating
6620  * @num_bytes:  The number of bytes in question
6621  * @delalloc:   The blocks are allocated for the delalloc write
6622  *
6623  * This is called by somebody who is freeing space that was never actually used
6624  * on disk.  For example if you reserve some space for a new leaf in transaction
6625  * A and before transaction A commits you free that leaf, you call this with
6626  * reserve set to 0 in order to clear the reservation.
6627  */
6628 
6629 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6630 				     u64 num_bytes, int delalloc)
6631 {
6632 	struct btrfs_space_info *space_info = cache->space_info;
6633 	int ret = 0;
6634 
6635 	spin_lock(&space_info->lock);
6636 	spin_lock(&cache->lock);
6637 	if (cache->ro)
6638 		space_info->bytes_readonly += num_bytes;
6639 	cache->reserved -= num_bytes;
6640 	space_info->bytes_reserved -= num_bytes;
6641 
6642 	if (delalloc)
6643 		cache->delalloc_bytes -= num_bytes;
6644 	spin_unlock(&cache->lock);
6645 	spin_unlock(&space_info->lock);
6646 	return ret;
6647 }
6648 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6649 {
6650 	struct btrfs_caching_control *next;
6651 	struct btrfs_caching_control *caching_ctl;
6652 	struct btrfs_block_group_cache *cache;
6653 
6654 	down_write(&fs_info->commit_root_sem);
6655 
6656 	list_for_each_entry_safe(caching_ctl, next,
6657 				 &fs_info->caching_block_groups, list) {
6658 		cache = caching_ctl->block_group;
6659 		if (block_group_cache_done(cache)) {
6660 			cache->last_byte_to_unpin = (u64)-1;
6661 			list_del_init(&caching_ctl->list);
6662 			put_caching_control(caching_ctl);
6663 		} else {
6664 			cache->last_byte_to_unpin = caching_ctl->progress;
6665 		}
6666 	}
6667 
6668 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6669 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6670 	else
6671 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6672 
6673 	up_write(&fs_info->commit_root_sem);
6674 
6675 	update_global_block_rsv(fs_info);
6676 }
6677 
6678 /*
6679  * Returns the free cluster for the given space info and sets empty_cluster to
6680  * what it should be based on the mount options.
6681  */
6682 static struct btrfs_free_cluster *
6683 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6684 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6685 {
6686 	struct btrfs_free_cluster *ret = NULL;
6687 
6688 	*empty_cluster = 0;
6689 	if (btrfs_mixed_space_info(space_info))
6690 		return ret;
6691 
6692 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6693 		ret = &fs_info->meta_alloc_cluster;
6694 		if (btrfs_test_opt(fs_info, SSD))
6695 			*empty_cluster = SZ_2M;
6696 		else
6697 			*empty_cluster = SZ_64K;
6698 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6699 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6700 		*empty_cluster = SZ_2M;
6701 		ret = &fs_info->data_alloc_cluster;
6702 	}
6703 
6704 	return ret;
6705 }
6706 
6707 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6708 			      u64 start, u64 end,
6709 			      const bool return_free_space)
6710 {
6711 	struct btrfs_block_group_cache *cache = NULL;
6712 	struct btrfs_space_info *space_info;
6713 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6714 	struct btrfs_free_cluster *cluster = NULL;
6715 	u64 len;
6716 	u64 total_unpinned = 0;
6717 	u64 empty_cluster = 0;
6718 	bool readonly;
6719 
6720 	while (start <= end) {
6721 		readonly = false;
6722 		if (!cache ||
6723 		    start >= cache->key.objectid + cache->key.offset) {
6724 			if (cache)
6725 				btrfs_put_block_group(cache);
6726 			total_unpinned = 0;
6727 			cache = btrfs_lookup_block_group(fs_info, start);
6728 			BUG_ON(!cache); /* Logic error */
6729 
6730 			cluster = fetch_cluster_info(fs_info,
6731 						     cache->space_info,
6732 						     &empty_cluster);
6733 			empty_cluster <<= 1;
6734 		}
6735 
6736 		len = cache->key.objectid + cache->key.offset - start;
6737 		len = min(len, end + 1 - start);
6738 
6739 		if (start < cache->last_byte_to_unpin) {
6740 			len = min(len, cache->last_byte_to_unpin - start);
6741 			if (return_free_space)
6742 				btrfs_add_free_space(cache, start, len);
6743 		}
6744 
6745 		start += len;
6746 		total_unpinned += len;
6747 		space_info = cache->space_info;
6748 
6749 		/*
6750 		 * If this space cluster has been marked as fragmented and we've
6751 		 * unpinned enough in this block group to potentially allow a
6752 		 * cluster to be created inside of it go ahead and clear the
6753 		 * fragmented check.
6754 		 */
6755 		if (cluster && cluster->fragmented &&
6756 		    total_unpinned > empty_cluster) {
6757 			spin_lock(&cluster->lock);
6758 			cluster->fragmented = 0;
6759 			spin_unlock(&cluster->lock);
6760 		}
6761 
6762 		spin_lock(&space_info->lock);
6763 		spin_lock(&cache->lock);
6764 		cache->pinned -= len;
6765 		space_info->bytes_pinned -= len;
6766 
6767 		trace_btrfs_space_reservation(fs_info, "pinned",
6768 					      space_info->flags, len, 0);
6769 		space_info->max_extent_size = 0;
6770 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6771 		if (cache->ro) {
6772 			space_info->bytes_readonly += len;
6773 			readonly = true;
6774 		}
6775 		spin_unlock(&cache->lock);
6776 		if (!readonly && return_free_space &&
6777 		    global_rsv->space_info == space_info) {
6778 			u64 to_add = len;
6779 
6780 			spin_lock(&global_rsv->lock);
6781 			if (!global_rsv->full) {
6782 				to_add = min(len, global_rsv->size -
6783 					     global_rsv->reserved);
6784 				global_rsv->reserved += to_add;
6785 				space_info->bytes_may_use += to_add;
6786 				if (global_rsv->reserved >= global_rsv->size)
6787 					global_rsv->full = 1;
6788 				trace_btrfs_space_reservation(fs_info,
6789 							      "space_info",
6790 							      space_info->flags,
6791 							      to_add, 1);
6792 				len -= to_add;
6793 			}
6794 			spin_unlock(&global_rsv->lock);
6795 			/* Add to any tickets we may have */
6796 			if (len)
6797 				space_info_add_new_bytes(fs_info, space_info,
6798 							 len);
6799 		}
6800 		spin_unlock(&space_info->lock);
6801 	}
6802 
6803 	if (cache)
6804 		btrfs_put_block_group(cache);
6805 	return 0;
6806 }
6807 
6808 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6809 {
6810 	struct btrfs_fs_info *fs_info = trans->fs_info;
6811 	struct btrfs_block_group_cache *block_group, *tmp;
6812 	struct list_head *deleted_bgs;
6813 	struct extent_io_tree *unpin;
6814 	u64 start;
6815 	u64 end;
6816 	int ret;
6817 
6818 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6819 		unpin = &fs_info->freed_extents[1];
6820 	else
6821 		unpin = &fs_info->freed_extents[0];
6822 
6823 	while (!trans->aborted) {
6824 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6825 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6826 					    EXTENT_DIRTY, NULL);
6827 		if (ret) {
6828 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6829 			break;
6830 		}
6831 
6832 		if (btrfs_test_opt(fs_info, DISCARD))
6833 			ret = btrfs_discard_extent(fs_info, start,
6834 						   end + 1 - start, NULL);
6835 
6836 		clear_extent_dirty(unpin, start, end);
6837 		unpin_extent_range(fs_info, start, end, true);
6838 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6839 		cond_resched();
6840 	}
6841 
6842 	/*
6843 	 * Transaction is finished.  We don't need the lock anymore.  We
6844 	 * do need to clean up the block groups in case of a transaction
6845 	 * abort.
6846 	 */
6847 	deleted_bgs = &trans->transaction->deleted_bgs;
6848 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6849 		u64 trimmed = 0;
6850 
6851 		ret = -EROFS;
6852 		if (!trans->aborted)
6853 			ret = btrfs_discard_extent(fs_info,
6854 						   block_group->key.objectid,
6855 						   block_group->key.offset,
6856 						   &trimmed);
6857 
6858 		list_del_init(&block_group->bg_list);
6859 		btrfs_put_block_group_trimming(block_group);
6860 		btrfs_put_block_group(block_group);
6861 
6862 		if (ret) {
6863 			const char *errstr = btrfs_decode_error(ret);
6864 			btrfs_warn(fs_info,
6865 			   "discard failed while removing blockgroup: errno=%d %s",
6866 				   ret, errstr);
6867 		}
6868 	}
6869 
6870 	return 0;
6871 }
6872 
6873 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6874 				struct btrfs_fs_info *info,
6875 				struct btrfs_delayed_ref_node *node, u64 parent,
6876 				u64 root_objectid, u64 owner_objectid,
6877 				u64 owner_offset, int refs_to_drop,
6878 				struct btrfs_delayed_extent_op *extent_op)
6879 {
6880 	struct btrfs_key key;
6881 	struct btrfs_path *path;
6882 	struct btrfs_root *extent_root = info->extent_root;
6883 	struct extent_buffer *leaf;
6884 	struct btrfs_extent_item *ei;
6885 	struct btrfs_extent_inline_ref *iref;
6886 	int ret;
6887 	int is_data;
6888 	int extent_slot = 0;
6889 	int found_extent = 0;
6890 	int num_to_del = 1;
6891 	u32 item_size;
6892 	u64 refs;
6893 	u64 bytenr = node->bytenr;
6894 	u64 num_bytes = node->num_bytes;
6895 	int last_ref = 0;
6896 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6897 
6898 	path = btrfs_alloc_path();
6899 	if (!path)
6900 		return -ENOMEM;
6901 
6902 	path->reada = READA_FORWARD;
6903 	path->leave_spinning = 1;
6904 
6905 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6906 	BUG_ON(!is_data && refs_to_drop != 1);
6907 
6908 	if (is_data)
6909 		skinny_metadata = false;
6910 
6911 	ret = lookup_extent_backref(trans, info, path, &iref,
6912 				    bytenr, num_bytes, parent,
6913 				    root_objectid, owner_objectid,
6914 				    owner_offset);
6915 	if (ret == 0) {
6916 		extent_slot = path->slots[0];
6917 		while (extent_slot >= 0) {
6918 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6919 					      extent_slot);
6920 			if (key.objectid != bytenr)
6921 				break;
6922 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6923 			    key.offset == num_bytes) {
6924 				found_extent = 1;
6925 				break;
6926 			}
6927 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6928 			    key.offset == owner_objectid) {
6929 				found_extent = 1;
6930 				break;
6931 			}
6932 			if (path->slots[0] - extent_slot > 5)
6933 				break;
6934 			extent_slot--;
6935 		}
6936 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6937 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6938 		if (found_extent && item_size < sizeof(*ei))
6939 			found_extent = 0;
6940 #endif
6941 		if (!found_extent) {
6942 			BUG_ON(iref);
6943 			ret = remove_extent_backref(trans, info, path, NULL,
6944 						    refs_to_drop,
6945 						    is_data, &last_ref);
6946 			if (ret) {
6947 				btrfs_abort_transaction(trans, ret);
6948 				goto out;
6949 			}
6950 			btrfs_release_path(path);
6951 			path->leave_spinning = 1;
6952 
6953 			key.objectid = bytenr;
6954 			key.type = BTRFS_EXTENT_ITEM_KEY;
6955 			key.offset = num_bytes;
6956 
6957 			if (!is_data && skinny_metadata) {
6958 				key.type = BTRFS_METADATA_ITEM_KEY;
6959 				key.offset = owner_objectid;
6960 			}
6961 
6962 			ret = btrfs_search_slot(trans, extent_root,
6963 						&key, path, -1, 1);
6964 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6965 				/*
6966 				 * Couldn't find our skinny metadata item,
6967 				 * see if we have ye olde extent item.
6968 				 */
6969 				path->slots[0]--;
6970 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6971 						      path->slots[0]);
6972 				if (key.objectid == bytenr &&
6973 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6974 				    key.offset == num_bytes)
6975 					ret = 0;
6976 			}
6977 
6978 			if (ret > 0 && skinny_metadata) {
6979 				skinny_metadata = false;
6980 				key.objectid = bytenr;
6981 				key.type = BTRFS_EXTENT_ITEM_KEY;
6982 				key.offset = num_bytes;
6983 				btrfs_release_path(path);
6984 				ret = btrfs_search_slot(trans, extent_root,
6985 							&key, path, -1, 1);
6986 			}
6987 
6988 			if (ret) {
6989 				btrfs_err(info,
6990 					  "umm, got %d back from search, was looking for %llu",
6991 					  ret, bytenr);
6992 				if (ret > 0)
6993 					btrfs_print_leaf(path->nodes[0]);
6994 			}
6995 			if (ret < 0) {
6996 				btrfs_abort_transaction(trans, ret);
6997 				goto out;
6998 			}
6999 			extent_slot = path->slots[0];
7000 		}
7001 	} else if (WARN_ON(ret == -ENOENT)) {
7002 		btrfs_print_leaf(path->nodes[0]);
7003 		btrfs_err(info,
7004 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7005 			bytenr, parent, root_objectid, owner_objectid,
7006 			owner_offset);
7007 		btrfs_abort_transaction(trans, ret);
7008 		goto out;
7009 	} else {
7010 		btrfs_abort_transaction(trans, ret);
7011 		goto out;
7012 	}
7013 
7014 	leaf = path->nodes[0];
7015 	item_size = btrfs_item_size_nr(leaf, extent_slot);
7016 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7017 	if (item_size < sizeof(*ei)) {
7018 		BUG_ON(found_extent || extent_slot != path->slots[0]);
7019 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7020 					     0);
7021 		if (ret < 0) {
7022 			btrfs_abort_transaction(trans, ret);
7023 			goto out;
7024 		}
7025 
7026 		btrfs_release_path(path);
7027 		path->leave_spinning = 1;
7028 
7029 		key.objectid = bytenr;
7030 		key.type = BTRFS_EXTENT_ITEM_KEY;
7031 		key.offset = num_bytes;
7032 
7033 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7034 					-1, 1);
7035 		if (ret) {
7036 			btrfs_err(info,
7037 				  "umm, got %d back from search, was looking for %llu",
7038 				ret, bytenr);
7039 			btrfs_print_leaf(path->nodes[0]);
7040 		}
7041 		if (ret < 0) {
7042 			btrfs_abort_transaction(trans, ret);
7043 			goto out;
7044 		}
7045 
7046 		extent_slot = path->slots[0];
7047 		leaf = path->nodes[0];
7048 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7049 	}
7050 #endif
7051 	BUG_ON(item_size < sizeof(*ei));
7052 	ei = btrfs_item_ptr(leaf, extent_slot,
7053 			    struct btrfs_extent_item);
7054 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7055 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7056 		struct btrfs_tree_block_info *bi;
7057 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7058 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7059 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7060 	}
7061 
7062 	refs = btrfs_extent_refs(leaf, ei);
7063 	if (refs < refs_to_drop) {
7064 		btrfs_err(info,
7065 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7066 			  refs_to_drop, refs, bytenr);
7067 		ret = -EINVAL;
7068 		btrfs_abort_transaction(trans, ret);
7069 		goto out;
7070 	}
7071 	refs -= refs_to_drop;
7072 
7073 	if (refs > 0) {
7074 		if (extent_op)
7075 			__run_delayed_extent_op(extent_op, leaf, ei);
7076 		/*
7077 		 * In the case of inline back ref, reference count will
7078 		 * be updated by remove_extent_backref
7079 		 */
7080 		if (iref) {
7081 			BUG_ON(!found_extent);
7082 		} else {
7083 			btrfs_set_extent_refs(leaf, ei, refs);
7084 			btrfs_mark_buffer_dirty(leaf);
7085 		}
7086 		if (found_extent) {
7087 			ret = remove_extent_backref(trans, info, path,
7088 						    iref, refs_to_drop,
7089 						    is_data, &last_ref);
7090 			if (ret) {
7091 				btrfs_abort_transaction(trans, ret);
7092 				goto out;
7093 			}
7094 		}
7095 	} else {
7096 		if (found_extent) {
7097 			BUG_ON(is_data && refs_to_drop !=
7098 			       extent_data_ref_count(path, iref));
7099 			if (iref) {
7100 				BUG_ON(path->slots[0] != extent_slot);
7101 			} else {
7102 				BUG_ON(path->slots[0] != extent_slot + 1);
7103 				path->slots[0] = extent_slot;
7104 				num_to_del = 2;
7105 			}
7106 		}
7107 
7108 		last_ref = 1;
7109 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7110 				      num_to_del);
7111 		if (ret) {
7112 			btrfs_abort_transaction(trans, ret);
7113 			goto out;
7114 		}
7115 		btrfs_release_path(path);
7116 
7117 		if (is_data) {
7118 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7119 			if (ret) {
7120 				btrfs_abort_transaction(trans, ret);
7121 				goto out;
7122 			}
7123 		}
7124 
7125 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7126 		if (ret) {
7127 			btrfs_abort_transaction(trans, ret);
7128 			goto out;
7129 		}
7130 
7131 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7132 		if (ret) {
7133 			btrfs_abort_transaction(trans, ret);
7134 			goto out;
7135 		}
7136 	}
7137 	btrfs_release_path(path);
7138 
7139 out:
7140 	btrfs_free_path(path);
7141 	return ret;
7142 }
7143 
7144 /*
7145  * when we free an block, it is possible (and likely) that we free the last
7146  * delayed ref for that extent as well.  This searches the delayed ref tree for
7147  * a given extent, and if there are no other delayed refs to be processed, it
7148  * removes it from the tree.
7149  */
7150 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7151 				      u64 bytenr)
7152 {
7153 	struct btrfs_delayed_ref_head *head;
7154 	struct btrfs_delayed_ref_root *delayed_refs;
7155 	int ret = 0;
7156 
7157 	delayed_refs = &trans->transaction->delayed_refs;
7158 	spin_lock(&delayed_refs->lock);
7159 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7160 	if (!head)
7161 		goto out_delayed_unlock;
7162 
7163 	spin_lock(&head->lock);
7164 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7165 		goto out;
7166 
7167 	if (head->extent_op) {
7168 		if (!head->must_insert_reserved)
7169 			goto out;
7170 		btrfs_free_delayed_extent_op(head->extent_op);
7171 		head->extent_op = NULL;
7172 	}
7173 
7174 	/*
7175 	 * waiting for the lock here would deadlock.  If someone else has it
7176 	 * locked they are already in the process of dropping it anyway
7177 	 */
7178 	if (!mutex_trylock(&head->mutex))
7179 		goto out;
7180 
7181 	/*
7182 	 * at this point we have a head with no other entries.  Go
7183 	 * ahead and process it.
7184 	 */
7185 	rb_erase(&head->href_node, &delayed_refs->href_root);
7186 	RB_CLEAR_NODE(&head->href_node);
7187 	atomic_dec(&delayed_refs->num_entries);
7188 
7189 	/*
7190 	 * we don't take a ref on the node because we're removing it from the
7191 	 * tree, so we just steal the ref the tree was holding.
7192 	 */
7193 	delayed_refs->num_heads--;
7194 	if (head->processing == 0)
7195 		delayed_refs->num_heads_ready--;
7196 	head->processing = 0;
7197 	spin_unlock(&head->lock);
7198 	spin_unlock(&delayed_refs->lock);
7199 
7200 	BUG_ON(head->extent_op);
7201 	if (head->must_insert_reserved)
7202 		ret = 1;
7203 
7204 	mutex_unlock(&head->mutex);
7205 	btrfs_put_delayed_ref_head(head);
7206 	return ret;
7207 out:
7208 	spin_unlock(&head->lock);
7209 
7210 out_delayed_unlock:
7211 	spin_unlock(&delayed_refs->lock);
7212 	return 0;
7213 }
7214 
7215 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7216 			   struct btrfs_root *root,
7217 			   struct extent_buffer *buf,
7218 			   u64 parent, int last_ref)
7219 {
7220 	struct btrfs_fs_info *fs_info = root->fs_info;
7221 	int pin = 1;
7222 	int ret;
7223 
7224 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225 		int old_ref_mod, new_ref_mod;
7226 
7227 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7228 				   root->root_key.objectid,
7229 				   btrfs_header_level(buf), 0,
7230 				   BTRFS_DROP_DELAYED_REF);
7231 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7232 						 buf->len, parent,
7233 						 root->root_key.objectid,
7234 						 btrfs_header_level(buf),
7235 						 BTRFS_DROP_DELAYED_REF, NULL,
7236 						 &old_ref_mod, &new_ref_mod);
7237 		BUG_ON(ret); /* -ENOMEM */
7238 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7239 	}
7240 
7241 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7242 		struct btrfs_block_group_cache *cache;
7243 
7244 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7245 			ret = check_ref_cleanup(trans, buf->start);
7246 			if (!ret)
7247 				goto out;
7248 		}
7249 
7250 		pin = 0;
7251 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7252 
7253 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7254 			pin_down_extent(fs_info, cache, buf->start,
7255 					buf->len, 1);
7256 			btrfs_put_block_group(cache);
7257 			goto out;
7258 		}
7259 
7260 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7261 
7262 		btrfs_add_free_space(cache, buf->start, buf->len);
7263 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7264 		btrfs_put_block_group(cache);
7265 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7266 	}
7267 out:
7268 	if (pin)
7269 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7270 				 root->root_key.objectid);
7271 
7272 	if (last_ref) {
7273 		/*
7274 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7275 		 * matter anymore.
7276 		 */
7277 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7278 	}
7279 }
7280 
7281 /* Can return -ENOMEM */
7282 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7283 		      struct btrfs_root *root,
7284 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7285 		      u64 owner, u64 offset)
7286 {
7287 	struct btrfs_fs_info *fs_info = root->fs_info;
7288 	int old_ref_mod, new_ref_mod;
7289 	int ret;
7290 
7291 	if (btrfs_is_testing(fs_info))
7292 		return 0;
7293 
7294 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7295 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7296 				   root_objectid, owner, offset,
7297 				   BTRFS_DROP_DELAYED_REF);
7298 
7299 	/*
7300 	 * tree log blocks never actually go into the extent allocation
7301 	 * tree, just update pinning info and exit early.
7302 	 */
7303 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7304 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7305 		/* unlocks the pinned mutex */
7306 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7307 		old_ref_mod = new_ref_mod = 0;
7308 		ret = 0;
7309 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7310 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7311 						 num_bytes, parent,
7312 						 root_objectid, (int)owner,
7313 						 BTRFS_DROP_DELAYED_REF, NULL,
7314 						 &old_ref_mod, &new_ref_mod);
7315 	} else {
7316 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7317 						 num_bytes, parent,
7318 						 root_objectid, owner, offset,
7319 						 0, BTRFS_DROP_DELAYED_REF,
7320 						 &old_ref_mod, &new_ref_mod);
7321 	}
7322 
7323 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7324 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7325 
7326 	return ret;
7327 }
7328 
7329 /*
7330  * when we wait for progress in the block group caching, its because
7331  * our allocation attempt failed at least once.  So, we must sleep
7332  * and let some progress happen before we try again.
7333  *
7334  * This function will sleep at least once waiting for new free space to
7335  * show up, and then it will check the block group free space numbers
7336  * for our min num_bytes.  Another option is to have it go ahead
7337  * and look in the rbtree for a free extent of a given size, but this
7338  * is a good start.
7339  *
7340  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7341  * any of the information in this block group.
7342  */
7343 static noinline void
7344 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7345 				u64 num_bytes)
7346 {
7347 	struct btrfs_caching_control *caching_ctl;
7348 
7349 	caching_ctl = get_caching_control(cache);
7350 	if (!caching_ctl)
7351 		return;
7352 
7353 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7354 		   (cache->free_space_ctl->free_space >= num_bytes));
7355 
7356 	put_caching_control(caching_ctl);
7357 }
7358 
7359 static noinline int
7360 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7361 {
7362 	struct btrfs_caching_control *caching_ctl;
7363 	int ret = 0;
7364 
7365 	caching_ctl = get_caching_control(cache);
7366 	if (!caching_ctl)
7367 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7368 
7369 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7370 	if (cache->cached == BTRFS_CACHE_ERROR)
7371 		ret = -EIO;
7372 	put_caching_control(caching_ctl);
7373 	return ret;
7374 }
7375 
7376 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7377 	[BTRFS_RAID_RAID10]	= "raid10",
7378 	[BTRFS_RAID_RAID1]	= "raid1",
7379 	[BTRFS_RAID_DUP]	= "dup",
7380 	[BTRFS_RAID_RAID0]	= "raid0",
7381 	[BTRFS_RAID_SINGLE]	= "single",
7382 	[BTRFS_RAID_RAID5]	= "raid5",
7383 	[BTRFS_RAID_RAID6]	= "raid6",
7384 };
7385 
7386 static const char *get_raid_name(enum btrfs_raid_types type)
7387 {
7388 	if (type >= BTRFS_NR_RAID_TYPES)
7389 		return NULL;
7390 
7391 	return btrfs_raid_type_names[type];
7392 }
7393 
7394 enum btrfs_loop_type {
7395 	LOOP_CACHING_NOWAIT = 0,
7396 	LOOP_CACHING_WAIT = 1,
7397 	LOOP_ALLOC_CHUNK = 2,
7398 	LOOP_NO_EMPTY_SIZE = 3,
7399 };
7400 
7401 static inline void
7402 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7403 		       int delalloc)
7404 {
7405 	if (delalloc)
7406 		down_read(&cache->data_rwsem);
7407 }
7408 
7409 static inline void
7410 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7411 		       int delalloc)
7412 {
7413 	btrfs_get_block_group(cache);
7414 	if (delalloc)
7415 		down_read(&cache->data_rwsem);
7416 }
7417 
7418 static struct btrfs_block_group_cache *
7419 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7420 		   struct btrfs_free_cluster *cluster,
7421 		   int delalloc)
7422 {
7423 	struct btrfs_block_group_cache *used_bg = NULL;
7424 
7425 	spin_lock(&cluster->refill_lock);
7426 	while (1) {
7427 		used_bg = cluster->block_group;
7428 		if (!used_bg)
7429 			return NULL;
7430 
7431 		if (used_bg == block_group)
7432 			return used_bg;
7433 
7434 		btrfs_get_block_group(used_bg);
7435 
7436 		if (!delalloc)
7437 			return used_bg;
7438 
7439 		if (down_read_trylock(&used_bg->data_rwsem))
7440 			return used_bg;
7441 
7442 		spin_unlock(&cluster->refill_lock);
7443 
7444 		/* We should only have one-level nested. */
7445 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7446 
7447 		spin_lock(&cluster->refill_lock);
7448 		if (used_bg == cluster->block_group)
7449 			return used_bg;
7450 
7451 		up_read(&used_bg->data_rwsem);
7452 		btrfs_put_block_group(used_bg);
7453 	}
7454 }
7455 
7456 static inline void
7457 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7458 			 int delalloc)
7459 {
7460 	if (delalloc)
7461 		up_read(&cache->data_rwsem);
7462 	btrfs_put_block_group(cache);
7463 }
7464 
7465 /*
7466  * walks the btree of allocated extents and find a hole of a given size.
7467  * The key ins is changed to record the hole:
7468  * ins->objectid == start position
7469  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7470  * ins->offset == the size of the hole.
7471  * Any available blocks before search_start are skipped.
7472  *
7473  * If there is no suitable free space, we will record the max size of
7474  * the free space extent currently.
7475  */
7476 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7477 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7478 				u64 hint_byte, struct btrfs_key *ins,
7479 				u64 flags, int delalloc)
7480 {
7481 	int ret = 0;
7482 	struct btrfs_root *root = fs_info->extent_root;
7483 	struct btrfs_free_cluster *last_ptr = NULL;
7484 	struct btrfs_block_group_cache *block_group = NULL;
7485 	u64 search_start = 0;
7486 	u64 max_extent_size = 0;
7487 	u64 empty_cluster = 0;
7488 	struct btrfs_space_info *space_info;
7489 	int loop = 0;
7490 	int index = btrfs_bg_flags_to_raid_index(flags);
7491 	bool failed_cluster_refill = false;
7492 	bool failed_alloc = false;
7493 	bool use_cluster = true;
7494 	bool have_caching_bg = false;
7495 	bool orig_have_caching_bg = false;
7496 	bool full_search = false;
7497 
7498 	WARN_ON(num_bytes < fs_info->sectorsize);
7499 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7500 	ins->objectid = 0;
7501 	ins->offset = 0;
7502 
7503 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7504 
7505 	space_info = __find_space_info(fs_info, flags);
7506 	if (!space_info) {
7507 		btrfs_err(fs_info, "No space info for %llu", flags);
7508 		return -ENOSPC;
7509 	}
7510 
7511 	/*
7512 	 * If our free space is heavily fragmented we may not be able to make
7513 	 * big contiguous allocations, so instead of doing the expensive search
7514 	 * for free space, simply return ENOSPC with our max_extent_size so we
7515 	 * can go ahead and search for a more manageable chunk.
7516 	 *
7517 	 * If our max_extent_size is large enough for our allocation simply
7518 	 * disable clustering since we will likely not be able to find enough
7519 	 * space to create a cluster and induce latency trying.
7520 	 */
7521 	if (unlikely(space_info->max_extent_size)) {
7522 		spin_lock(&space_info->lock);
7523 		if (space_info->max_extent_size &&
7524 		    num_bytes > space_info->max_extent_size) {
7525 			ins->offset = space_info->max_extent_size;
7526 			spin_unlock(&space_info->lock);
7527 			return -ENOSPC;
7528 		} else if (space_info->max_extent_size) {
7529 			use_cluster = false;
7530 		}
7531 		spin_unlock(&space_info->lock);
7532 	}
7533 
7534 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7535 	if (last_ptr) {
7536 		spin_lock(&last_ptr->lock);
7537 		if (last_ptr->block_group)
7538 			hint_byte = last_ptr->window_start;
7539 		if (last_ptr->fragmented) {
7540 			/*
7541 			 * We still set window_start so we can keep track of the
7542 			 * last place we found an allocation to try and save
7543 			 * some time.
7544 			 */
7545 			hint_byte = last_ptr->window_start;
7546 			use_cluster = false;
7547 		}
7548 		spin_unlock(&last_ptr->lock);
7549 	}
7550 
7551 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7552 	search_start = max(search_start, hint_byte);
7553 	if (search_start == hint_byte) {
7554 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7555 		/*
7556 		 * we don't want to use the block group if it doesn't match our
7557 		 * allocation bits, or if its not cached.
7558 		 *
7559 		 * However if we are re-searching with an ideal block group
7560 		 * picked out then we don't care that the block group is cached.
7561 		 */
7562 		if (block_group && block_group_bits(block_group, flags) &&
7563 		    block_group->cached != BTRFS_CACHE_NO) {
7564 			down_read(&space_info->groups_sem);
7565 			if (list_empty(&block_group->list) ||
7566 			    block_group->ro) {
7567 				/*
7568 				 * someone is removing this block group,
7569 				 * we can't jump into the have_block_group
7570 				 * target because our list pointers are not
7571 				 * valid
7572 				 */
7573 				btrfs_put_block_group(block_group);
7574 				up_read(&space_info->groups_sem);
7575 			} else {
7576 				index = btrfs_bg_flags_to_raid_index(
7577 						block_group->flags);
7578 				btrfs_lock_block_group(block_group, delalloc);
7579 				goto have_block_group;
7580 			}
7581 		} else if (block_group) {
7582 			btrfs_put_block_group(block_group);
7583 		}
7584 	}
7585 search:
7586 	have_caching_bg = false;
7587 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7588 		full_search = true;
7589 	down_read(&space_info->groups_sem);
7590 	list_for_each_entry(block_group, &space_info->block_groups[index],
7591 			    list) {
7592 		u64 offset;
7593 		int cached;
7594 
7595 		/* If the block group is read-only, we can skip it entirely. */
7596 		if (unlikely(block_group->ro))
7597 			continue;
7598 
7599 		btrfs_grab_block_group(block_group, delalloc);
7600 		search_start = block_group->key.objectid;
7601 
7602 		/*
7603 		 * this can happen if we end up cycling through all the
7604 		 * raid types, but we want to make sure we only allocate
7605 		 * for the proper type.
7606 		 */
7607 		if (!block_group_bits(block_group, flags)) {
7608 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7609 				BTRFS_BLOCK_GROUP_RAID1 |
7610 				BTRFS_BLOCK_GROUP_RAID5 |
7611 				BTRFS_BLOCK_GROUP_RAID6 |
7612 				BTRFS_BLOCK_GROUP_RAID10;
7613 
7614 			/*
7615 			 * if they asked for extra copies and this block group
7616 			 * doesn't provide them, bail.  This does allow us to
7617 			 * fill raid0 from raid1.
7618 			 */
7619 			if ((flags & extra) && !(block_group->flags & extra))
7620 				goto loop;
7621 		}
7622 
7623 have_block_group:
7624 		cached = block_group_cache_done(block_group);
7625 		if (unlikely(!cached)) {
7626 			have_caching_bg = true;
7627 			ret = cache_block_group(block_group, 0);
7628 			BUG_ON(ret < 0);
7629 			ret = 0;
7630 		}
7631 
7632 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7633 			goto loop;
7634 
7635 		/*
7636 		 * Ok we want to try and use the cluster allocator, so
7637 		 * lets look there
7638 		 */
7639 		if (last_ptr && use_cluster) {
7640 			struct btrfs_block_group_cache *used_block_group;
7641 			unsigned long aligned_cluster;
7642 			/*
7643 			 * the refill lock keeps out other
7644 			 * people trying to start a new cluster
7645 			 */
7646 			used_block_group = btrfs_lock_cluster(block_group,
7647 							      last_ptr,
7648 							      delalloc);
7649 			if (!used_block_group)
7650 				goto refill_cluster;
7651 
7652 			if (used_block_group != block_group &&
7653 			    (used_block_group->ro ||
7654 			     !block_group_bits(used_block_group, flags)))
7655 				goto release_cluster;
7656 
7657 			offset = btrfs_alloc_from_cluster(used_block_group,
7658 						last_ptr,
7659 						num_bytes,
7660 						used_block_group->key.objectid,
7661 						&max_extent_size);
7662 			if (offset) {
7663 				/* we have a block, we're done */
7664 				spin_unlock(&last_ptr->refill_lock);
7665 				trace_btrfs_reserve_extent_cluster(fs_info,
7666 						used_block_group,
7667 						search_start, num_bytes);
7668 				if (used_block_group != block_group) {
7669 					btrfs_release_block_group(block_group,
7670 								  delalloc);
7671 					block_group = used_block_group;
7672 				}
7673 				goto checks;
7674 			}
7675 
7676 			WARN_ON(last_ptr->block_group != used_block_group);
7677 release_cluster:
7678 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7679 			 * set up a new clusters, so lets just skip it
7680 			 * and let the allocator find whatever block
7681 			 * it can find.  If we reach this point, we
7682 			 * will have tried the cluster allocator
7683 			 * plenty of times and not have found
7684 			 * anything, so we are likely way too
7685 			 * fragmented for the clustering stuff to find
7686 			 * anything.
7687 			 *
7688 			 * However, if the cluster is taken from the
7689 			 * current block group, release the cluster
7690 			 * first, so that we stand a better chance of
7691 			 * succeeding in the unclustered
7692 			 * allocation.  */
7693 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7694 			    used_block_group != block_group) {
7695 				spin_unlock(&last_ptr->refill_lock);
7696 				btrfs_release_block_group(used_block_group,
7697 							  delalloc);
7698 				goto unclustered_alloc;
7699 			}
7700 
7701 			/*
7702 			 * this cluster didn't work out, free it and
7703 			 * start over
7704 			 */
7705 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7706 
7707 			if (used_block_group != block_group)
7708 				btrfs_release_block_group(used_block_group,
7709 							  delalloc);
7710 refill_cluster:
7711 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7712 				spin_unlock(&last_ptr->refill_lock);
7713 				goto unclustered_alloc;
7714 			}
7715 
7716 			aligned_cluster = max_t(unsigned long,
7717 						empty_cluster + empty_size,
7718 					      block_group->full_stripe_len);
7719 
7720 			/* allocate a cluster in this block group */
7721 			ret = btrfs_find_space_cluster(fs_info, block_group,
7722 						       last_ptr, search_start,
7723 						       num_bytes,
7724 						       aligned_cluster);
7725 			if (ret == 0) {
7726 				/*
7727 				 * now pull our allocation out of this
7728 				 * cluster
7729 				 */
7730 				offset = btrfs_alloc_from_cluster(block_group,
7731 							last_ptr,
7732 							num_bytes,
7733 							search_start,
7734 							&max_extent_size);
7735 				if (offset) {
7736 					/* we found one, proceed */
7737 					spin_unlock(&last_ptr->refill_lock);
7738 					trace_btrfs_reserve_extent_cluster(fs_info,
7739 						block_group, search_start,
7740 						num_bytes);
7741 					goto checks;
7742 				}
7743 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7744 				   && !failed_cluster_refill) {
7745 				spin_unlock(&last_ptr->refill_lock);
7746 
7747 				failed_cluster_refill = true;
7748 				wait_block_group_cache_progress(block_group,
7749 				       num_bytes + empty_cluster + empty_size);
7750 				goto have_block_group;
7751 			}
7752 
7753 			/*
7754 			 * at this point we either didn't find a cluster
7755 			 * or we weren't able to allocate a block from our
7756 			 * cluster.  Free the cluster we've been trying
7757 			 * to use, and go to the next block group
7758 			 */
7759 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7760 			spin_unlock(&last_ptr->refill_lock);
7761 			goto loop;
7762 		}
7763 
7764 unclustered_alloc:
7765 		/*
7766 		 * We are doing an unclustered alloc, set the fragmented flag so
7767 		 * we don't bother trying to setup a cluster again until we get
7768 		 * more space.
7769 		 */
7770 		if (unlikely(last_ptr)) {
7771 			spin_lock(&last_ptr->lock);
7772 			last_ptr->fragmented = 1;
7773 			spin_unlock(&last_ptr->lock);
7774 		}
7775 		if (cached) {
7776 			struct btrfs_free_space_ctl *ctl =
7777 				block_group->free_space_ctl;
7778 
7779 			spin_lock(&ctl->tree_lock);
7780 			if (ctl->free_space <
7781 			    num_bytes + empty_cluster + empty_size) {
7782 				if (ctl->free_space > max_extent_size)
7783 					max_extent_size = ctl->free_space;
7784 				spin_unlock(&ctl->tree_lock);
7785 				goto loop;
7786 			}
7787 			spin_unlock(&ctl->tree_lock);
7788 		}
7789 
7790 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7791 						    num_bytes, empty_size,
7792 						    &max_extent_size);
7793 		/*
7794 		 * If we didn't find a chunk, and we haven't failed on this
7795 		 * block group before, and this block group is in the middle of
7796 		 * caching and we are ok with waiting, then go ahead and wait
7797 		 * for progress to be made, and set failed_alloc to true.
7798 		 *
7799 		 * If failed_alloc is true then we've already waited on this
7800 		 * block group once and should move on to the next block group.
7801 		 */
7802 		if (!offset && !failed_alloc && !cached &&
7803 		    loop > LOOP_CACHING_NOWAIT) {
7804 			wait_block_group_cache_progress(block_group,
7805 						num_bytes + empty_size);
7806 			failed_alloc = true;
7807 			goto have_block_group;
7808 		} else if (!offset) {
7809 			goto loop;
7810 		}
7811 checks:
7812 		search_start = ALIGN(offset, fs_info->stripesize);
7813 
7814 		/* move on to the next group */
7815 		if (search_start + num_bytes >
7816 		    block_group->key.objectid + block_group->key.offset) {
7817 			btrfs_add_free_space(block_group, offset, num_bytes);
7818 			goto loop;
7819 		}
7820 
7821 		if (offset < search_start)
7822 			btrfs_add_free_space(block_group, offset,
7823 					     search_start - offset);
7824 		BUG_ON(offset > search_start);
7825 
7826 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7827 				num_bytes, delalloc);
7828 		if (ret == -EAGAIN) {
7829 			btrfs_add_free_space(block_group, offset, num_bytes);
7830 			goto loop;
7831 		}
7832 		btrfs_inc_block_group_reservations(block_group);
7833 
7834 		/* we are all good, lets return */
7835 		ins->objectid = search_start;
7836 		ins->offset = num_bytes;
7837 
7838 		trace_btrfs_reserve_extent(fs_info, block_group,
7839 					   search_start, num_bytes);
7840 		btrfs_release_block_group(block_group, delalloc);
7841 		break;
7842 loop:
7843 		failed_cluster_refill = false;
7844 		failed_alloc = false;
7845 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7846 		       index);
7847 		btrfs_release_block_group(block_group, delalloc);
7848 		cond_resched();
7849 	}
7850 	up_read(&space_info->groups_sem);
7851 
7852 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7853 		&& !orig_have_caching_bg)
7854 		orig_have_caching_bg = true;
7855 
7856 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7857 		goto search;
7858 
7859 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7860 		goto search;
7861 
7862 	/*
7863 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7864 	 *			caching kthreads as we move along
7865 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7866 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7867 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7868 	 *			again
7869 	 */
7870 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7871 		index = 0;
7872 		if (loop == LOOP_CACHING_NOWAIT) {
7873 			/*
7874 			 * We want to skip the LOOP_CACHING_WAIT step if we
7875 			 * don't have any uncached bgs and we've already done a
7876 			 * full search through.
7877 			 */
7878 			if (orig_have_caching_bg || !full_search)
7879 				loop = LOOP_CACHING_WAIT;
7880 			else
7881 				loop = LOOP_ALLOC_CHUNK;
7882 		} else {
7883 			loop++;
7884 		}
7885 
7886 		if (loop == LOOP_ALLOC_CHUNK) {
7887 			struct btrfs_trans_handle *trans;
7888 			int exist = 0;
7889 
7890 			trans = current->journal_info;
7891 			if (trans)
7892 				exist = 1;
7893 			else
7894 				trans = btrfs_join_transaction(root);
7895 
7896 			if (IS_ERR(trans)) {
7897 				ret = PTR_ERR(trans);
7898 				goto out;
7899 			}
7900 
7901 			ret = do_chunk_alloc(trans, fs_info, flags,
7902 					     CHUNK_ALLOC_FORCE);
7903 
7904 			/*
7905 			 * If we can't allocate a new chunk we've already looped
7906 			 * through at least once, move on to the NO_EMPTY_SIZE
7907 			 * case.
7908 			 */
7909 			if (ret == -ENOSPC)
7910 				loop = LOOP_NO_EMPTY_SIZE;
7911 
7912 			/*
7913 			 * Do not bail out on ENOSPC since we
7914 			 * can do more things.
7915 			 */
7916 			if (ret < 0 && ret != -ENOSPC)
7917 				btrfs_abort_transaction(trans, ret);
7918 			else
7919 				ret = 0;
7920 			if (!exist)
7921 				btrfs_end_transaction(trans);
7922 			if (ret)
7923 				goto out;
7924 		}
7925 
7926 		if (loop == LOOP_NO_EMPTY_SIZE) {
7927 			/*
7928 			 * Don't loop again if we already have no empty_size and
7929 			 * no empty_cluster.
7930 			 */
7931 			if (empty_size == 0 &&
7932 			    empty_cluster == 0) {
7933 				ret = -ENOSPC;
7934 				goto out;
7935 			}
7936 			empty_size = 0;
7937 			empty_cluster = 0;
7938 		}
7939 
7940 		goto search;
7941 	} else if (!ins->objectid) {
7942 		ret = -ENOSPC;
7943 	} else if (ins->objectid) {
7944 		if (!use_cluster && last_ptr) {
7945 			spin_lock(&last_ptr->lock);
7946 			last_ptr->window_start = ins->objectid;
7947 			spin_unlock(&last_ptr->lock);
7948 		}
7949 		ret = 0;
7950 	}
7951 out:
7952 	if (ret == -ENOSPC) {
7953 		spin_lock(&space_info->lock);
7954 		space_info->max_extent_size = max_extent_size;
7955 		spin_unlock(&space_info->lock);
7956 		ins->offset = max_extent_size;
7957 	}
7958 	return ret;
7959 }
7960 
7961 static void dump_space_info(struct btrfs_fs_info *fs_info,
7962 			    struct btrfs_space_info *info, u64 bytes,
7963 			    int dump_block_groups)
7964 {
7965 	struct btrfs_block_group_cache *cache;
7966 	int index = 0;
7967 
7968 	spin_lock(&info->lock);
7969 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7970 		   info->flags,
7971 		   info->total_bytes - btrfs_space_info_used(info, true),
7972 		   info->full ? "" : "not ");
7973 	btrfs_info(fs_info,
7974 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7975 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7976 		info->bytes_reserved, info->bytes_may_use,
7977 		info->bytes_readonly);
7978 	spin_unlock(&info->lock);
7979 
7980 	if (!dump_block_groups)
7981 		return;
7982 
7983 	down_read(&info->groups_sem);
7984 again:
7985 	list_for_each_entry(cache, &info->block_groups[index], list) {
7986 		spin_lock(&cache->lock);
7987 		btrfs_info(fs_info,
7988 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7989 			cache->key.objectid, cache->key.offset,
7990 			btrfs_block_group_used(&cache->item), cache->pinned,
7991 			cache->reserved, cache->ro ? "[readonly]" : "");
7992 		btrfs_dump_free_space(cache, bytes);
7993 		spin_unlock(&cache->lock);
7994 	}
7995 	if (++index < BTRFS_NR_RAID_TYPES)
7996 		goto again;
7997 	up_read(&info->groups_sem);
7998 }
7999 
8000 /*
8001  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8002  *			  hole that is at least as big as @num_bytes.
8003  *
8004  * @root           -	The root that will contain this extent
8005  *
8006  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
8007  *			is used for accounting purposes. This value differs
8008  *			from @num_bytes only in the case of compressed extents.
8009  *
8010  * @num_bytes      -	Number of bytes to allocate on-disk.
8011  *
8012  * @min_alloc_size -	Indicates the minimum amount of space that the
8013  *			allocator should try to satisfy. In some cases
8014  *			@num_bytes may be larger than what is required and if
8015  *			the filesystem is fragmented then allocation fails.
8016  *			However, the presence of @min_alloc_size gives a
8017  *			chance to try and satisfy the smaller allocation.
8018  *
8019  * @empty_size     -	A hint that you plan on doing more COW. This is the
8020  *			size in bytes the allocator should try to find free
8021  *			next to the block it returns.  This is just a hint and
8022  *			may be ignored by the allocator.
8023  *
8024  * @hint_byte      -	Hint to the allocator to start searching above the byte
8025  *			address passed. It might be ignored.
8026  *
8027  * @ins            -	This key is modified to record the found hole. It will
8028  *			have the following values:
8029  *			ins->objectid == start position
8030  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
8031  *			ins->offset == the size of the hole.
8032  *
8033  * @is_data        -	Boolean flag indicating whether an extent is
8034  *			allocated for data (true) or metadata (false)
8035  *
8036  * @delalloc       -	Boolean flag indicating whether this allocation is for
8037  *			delalloc or not. If 'true' data_rwsem of block groups
8038  *			is going to be acquired.
8039  *
8040  *
8041  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8042  * case -ENOSPC is returned then @ins->offset will contain the size of the
8043  * largest available hole the allocator managed to find.
8044  */
8045 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8046 			 u64 num_bytes, u64 min_alloc_size,
8047 			 u64 empty_size, u64 hint_byte,
8048 			 struct btrfs_key *ins, int is_data, int delalloc)
8049 {
8050 	struct btrfs_fs_info *fs_info = root->fs_info;
8051 	bool final_tried = num_bytes == min_alloc_size;
8052 	u64 flags;
8053 	int ret;
8054 
8055 	flags = get_alloc_profile_by_root(root, is_data);
8056 again:
8057 	WARN_ON(num_bytes < fs_info->sectorsize);
8058 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8059 			       hint_byte, ins, flags, delalloc);
8060 	if (!ret && !is_data) {
8061 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8062 	} else if (ret == -ENOSPC) {
8063 		if (!final_tried && ins->offset) {
8064 			num_bytes = min(num_bytes >> 1, ins->offset);
8065 			num_bytes = round_down(num_bytes,
8066 					       fs_info->sectorsize);
8067 			num_bytes = max(num_bytes, min_alloc_size);
8068 			ram_bytes = num_bytes;
8069 			if (num_bytes == min_alloc_size)
8070 				final_tried = true;
8071 			goto again;
8072 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8073 			struct btrfs_space_info *sinfo;
8074 
8075 			sinfo = __find_space_info(fs_info, flags);
8076 			btrfs_err(fs_info,
8077 				  "allocation failed flags %llu, wanted %llu",
8078 				  flags, num_bytes);
8079 			if (sinfo)
8080 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8081 		}
8082 	}
8083 
8084 	return ret;
8085 }
8086 
8087 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8088 					u64 start, u64 len,
8089 					int pin, int delalloc)
8090 {
8091 	struct btrfs_block_group_cache *cache;
8092 	int ret = 0;
8093 
8094 	cache = btrfs_lookup_block_group(fs_info, start);
8095 	if (!cache) {
8096 		btrfs_err(fs_info, "Unable to find block group for %llu",
8097 			  start);
8098 		return -ENOSPC;
8099 	}
8100 
8101 	if (pin)
8102 		pin_down_extent(fs_info, cache, start, len, 1);
8103 	else {
8104 		if (btrfs_test_opt(fs_info, DISCARD))
8105 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8106 		btrfs_add_free_space(cache, start, len);
8107 		btrfs_free_reserved_bytes(cache, len, delalloc);
8108 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8109 	}
8110 
8111 	btrfs_put_block_group(cache);
8112 	return ret;
8113 }
8114 
8115 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8116 			       u64 start, u64 len, int delalloc)
8117 {
8118 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8119 }
8120 
8121 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8122 				       u64 start, u64 len)
8123 {
8124 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8125 }
8126 
8127 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8128 				      struct btrfs_fs_info *fs_info,
8129 				      u64 parent, u64 root_objectid,
8130 				      u64 flags, u64 owner, u64 offset,
8131 				      struct btrfs_key *ins, int ref_mod)
8132 {
8133 	int ret;
8134 	struct btrfs_extent_item *extent_item;
8135 	struct btrfs_extent_inline_ref *iref;
8136 	struct btrfs_path *path;
8137 	struct extent_buffer *leaf;
8138 	int type;
8139 	u32 size;
8140 
8141 	if (parent > 0)
8142 		type = BTRFS_SHARED_DATA_REF_KEY;
8143 	else
8144 		type = BTRFS_EXTENT_DATA_REF_KEY;
8145 
8146 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8147 
8148 	path = btrfs_alloc_path();
8149 	if (!path)
8150 		return -ENOMEM;
8151 
8152 	path->leave_spinning = 1;
8153 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8154 				      ins, size);
8155 	if (ret) {
8156 		btrfs_free_path(path);
8157 		return ret;
8158 	}
8159 
8160 	leaf = path->nodes[0];
8161 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8162 				     struct btrfs_extent_item);
8163 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8164 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8165 	btrfs_set_extent_flags(leaf, extent_item,
8166 			       flags | BTRFS_EXTENT_FLAG_DATA);
8167 
8168 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8169 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8170 	if (parent > 0) {
8171 		struct btrfs_shared_data_ref *ref;
8172 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8173 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8174 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8175 	} else {
8176 		struct btrfs_extent_data_ref *ref;
8177 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8178 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8179 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8180 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8181 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8182 	}
8183 
8184 	btrfs_mark_buffer_dirty(path->nodes[0]);
8185 	btrfs_free_path(path);
8186 
8187 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8188 					  ins->offset);
8189 	if (ret)
8190 		return ret;
8191 
8192 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8193 	if (ret) { /* -ENOENT, logic error */
8194 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8195 			ins->objectid, ins->offset);
8196 		BUG();
8197 	}
8198 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8199 	return ret;
8200 }
8201 
8202 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8203 				     struct btrfs_fs_info *fs_info,
8204 				     u64 parent, u64 root_objectid,
8205 				     u64 flags, struct btrfs_disk_key *key,
8206 				     int level, struct btrfs_key *ins)
8207 {
8208 	int ret;
8209 	struct btrfs_extent_item *extent_item;
8210 	struct btrfs_tree_block_info *block_info;
8211 	struct btrfs_extent_inline_ref *iref;
8212 	struct btrfs_path *path;
8213 	struct extent_buffer *leaf;
8214 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8215 	u64 num_bytes = ins->offset;
8216 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8217 
8218 	if (!skinny_metadata)
8219 		size += sizeof(*block_info);
8220 
8221 	path = btrfs_alloc_path();
8222 	if (!path) {
8223 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8224 						   fs_info->nodesize);
8225 		return -ENOMEM;
8226 	}
8227 
8228 	path->leave_spinning = 1;
8229 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8230 				      ins, size);
8231 	if (ret) {
8232 		btrfs_free_path(path);
8233 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8234 						   fs_info->nodesize);
8235 		return ret;
8236 	}
8237 
8238 	leaf = path->nodes[0];
8239 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8240 				     struct btrfs_extent_item);
8241 	btrfs_set_extent_refs(leaf, extent_item, 1);
8242 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8243 	btrfs_set_extent_flags(leaf, extent_item,
8244 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8245 
8246 	if (skinny_metadata) {
8247 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8248 		num_bytes = fs_info->nodesize;
8249 	} else {
8250 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8251 		btrfs_set_tree_block_key(leaf, block_info, key);
8252 		btrfs_set_tree_block_level(leaf, block_info, level);
8253 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8254 	}
8255 
8256 	if (parent > 0) {
8257 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8258 		btrfs_set_extent_inline_ref_type(leaf, iref,
8259 						 BTRFS_SHARED_BLOCK_REF_KEY);
8260 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8261 	} else {
8262 		btrfs_set_extent_inline_ref_type(leaf, iref,
8263 						 BTRFS_TREE_BLOCK_REF_KEY);
8264 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8265 	}
8266 
8267 	btrfs_mark_buffer_dirty(leaf);
8268 	btrfs_free_path(path);
8269 
8270 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8271 					  num_bytes);
8272 	if (ret)
8273 		return ret;
8274 
8275 	ret = update_block_group(trans, fs_info, ins->objectid,
8276 				 fs_info->nodesize, 1);
8277 	if (ret) { /* -ENOENT, logic error */
8278 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8279 			ins->objectid, ins->offset);
8280 		BUG();
8281 	}
8282 
8283 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8284 					  fs_info->nodesize);
8285 	return ret;
8286 }
8287 
8288 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8289 				     struct btrfs_root *root, u64 owner,
8290 				     u64 offset, u64 ram_bytes,
8291 				     struct btrfs_key *ins)
8292 {
8293 	struct btrfs_fs_info *fs_info = root->fs_info;
8294 	int ret;
8295 
8296 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8297 
8298 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8299 			   root->root_key.objectid, owner, offset,
8300 			   BTRFS_ADD_DELAYED_EXTENT);
8301 
8302 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8303 					 ins->offset, 0,
8304 					 root->root_key.objectid, owner,
8305 					 offset, ram_bytes,
8306 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8307 	return ret;
8308 }
8309 
8310 /*
8311  * this is used by the tree logging recovery code.  It records that
8312  * an extent has been allocated and makes sure to clear the free
8313  * space cache bits as well
8314  */
8315 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8316 				   struct btrfs_fs_info *fs_info,
8317 				   u64 root_objectid, u64 owner, u64 offset,
8318 				   struct btrfs_key *ins)
8319 {
8320 	int ret;
8321 	struct btrfs_block_group_cache *block_group;
8322 	struct btrfs_space_info *space_info;
8323 
8324 	/*
8325 	 * Mixed block groups will exclude before processing the log so we only
8326 	 * need to do the exclude dance if this fs isn't mixed.
8327 	 */
8328 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8329 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8330 					      ins->offset);
8331 		if (ret)
8332 			return ret;
8333 	}
8334 
8335 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8336 	if (!block_group)
8337 		return -EINVAL;
8338 
8339 	space_info = block_group->space_info;
8340 	spin_lock(&space_info->lock);
8341 	spin_lock(&block_group->lock);
8342 	space_info->bytes_reserved += ins->offset;
8343 	block_group->reserved += ins->offset;
8344 	spin_unlock(&block_group->lock);
8345 	spin_unlock(&space_info->lock);
8346 
8347 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8348 					 0, owner, offset, ins, 1);
8349 	btrfs_put_block_group(block_group);
8350 	return ret;
8351 }
8352 
8353 static struct extent_buffer *
8354 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8355 		      u64 bytenr, int level)
8356 {
8357 	struct btrfs_fs_info *fs_info = root->fs_info;
8358 	struct extent_buffer *buf;
8359 
8360 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8361 	if (IS_ERR(buf))
8362 		return buf;
8363 
8364 	btrfs_set_header_generation(buf, trans->transid);
8365 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8366 	btrfs_tree_lock(buf);
8367 	clean_tree_block(fs_info, buf);
8368 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8369 
8370 	btrfs_set_lock_blocking(buf);
8371 	set_extent_buffer_uptodate(buf);
8372 
8373 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8374 		buf->log_index = root->log_transid % 2;
8375 		/*
8376 		 * we allow two log transactions at a time, use different
8377 		 * EXENT bit to differentiate dirty pages.
8378 		 */
8379 		if (buf->log_index == 0)
8380 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8381 					buf->start + buf->len - 1, GFP_NOFS);
8382 		else
8383 			set_extent_new(&root->dirty_log_pages, buf->start,
8384 					buf->start + buf->len - 1);
8385 	} else {
8386 		buf->log_index = -1;
8387 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8388 			 buf->start + buf->len - 1, GFP_NOFS);
8389 	}
8390 	trans->dirty = true;
8391 	/* this returns a buffer locked for blocking */
8392 	return buf;
8393 }
8394 
8395 static struct btrfs_block_rsv *
8396 use_block_rsv(struct btrfs_trans_handle *trans,
8397 	      struct btrfs_root *root, u32 blocksize)
8398 {
8399 	struct btrfs_fs_info *fs_info = root->fs_info;
8400 	struct btrfs_block_rsv *block_rsv;
8401 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8402 	int ret;
8403 	bool global_updated = false;
8404 
8405 	block_rsv = get_block_rsv(trans, root);
8406 
8407 	if (unlikely(block_rsv->size == 0))
8408 		goto try_reserve;
8409 again:
8410 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8411 	if (!ret)
8412 		return block_rsv;
8413 
8414 	if (block_rsv->failfast)
8415 		return ERR_PTR(ret);
8416 
8417 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8418 		global_updated = true;
8419 		update_global_block_rsv(fs_info);
8420 		goto again;
8421 	}
8422 
8423 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8424 		static DEFINE_RATELIMIT_STATE(_rs,
8425 				DEFAULT_RATELIMIT_INTERVAL * 10,
8426 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8427 		if (__ratelimit(&_rs))
8428 			WARN(1, KERN_DEBUG
8429 				"BTRFS: block rsv returned %d\n", ret);
8430 	}
8431 try_reserve:
8432 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8433 				     BTRFS_RESERVE_NO_FLUSH);
8434 	if (!ret)
8435 		return block_rsv;
8436 	/*
8437 	 * If we couldn't reserve metadata bytes try and use some from
8438 	 * the global reserve if its space type is the same as the global
8439 	 * reservation.
8440 	 */
8441 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8442 	    block_rsv->space_info == global_rsv->space_info) {
8443 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8444 		if (!ret)
8445 			return global_rsv;
8446 	}
8447 	return ERR_PTR(ret);
8448 }
8449 
8450 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8451 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8452 {
8453 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8454 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8455 }
8456 
8457 /*
8458  * finds a free extent and does all the dirty work required for allocation
8459  * returns the tree buffer or an ERR_PTR on error.
8460  */
8461 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8462 					     struct btrfs_root *root,
8463 					     u64 parent, u64 root_objectid,
8464 					     const struct btrfs_disk_key *key,
8465 					     int level, u64 hint,
8466 					     u64 empty_size)
8467 {
8468 	struct btrfs_fs_info *fs_info = root->fs_info;
8469 	struct btrfs_key ins;
8470 	struct btrfs_block_rsv *block_rsv;
8471 	struct extent_buffer *buf;
8472 	struct btrfs_delayed_extent_op *extent_op;
8473 	u64 flags = 0;
8474 	int ret;
8475 	u32 blocksize = fs_info->nodesize;
8476 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8477 
8478 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8479 	if (btrfs_is_testing(fs_info)) {
8480 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8481 					    level);
8482 		if (!IS_ERR(buf))
8483 			root->alloc_bytenr += blocksize;
8484 		return buf;
8485 	}
8486 #endif
8487 
8488 	block_rsv = use_block_rsv(trans, root, blocksize);
8489 	if (IS_ERR(block_rsv))
8490 		return ERR_CAST(block_rsv);
8491 
8492 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8493 				   empty_size, hint, &ins, 0, 0);
8494 	if (ret)
8495 		goto out_unuse;
8496 
8497 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8498 	if (IS_ERR(buf)) {
8499 		ret = PTR_ERR(buf);
8500 		goto out_free_reserved;
8501 	}
8502 
8503 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8504 		if (parent == 0)
8505 			parent = ins.objectid;
8506 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8507 	} else
8508 		BUG_ON(parent > 0);
8509 
8510 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8511 		extent_op = btrfs_alloc_delayed_extent_op();
8512 		if (!extent_op) {
8513 			ret = -ENOMEM;
8514 			goto out_free_buf;
8515 		}
8516 		if (key)
8517 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8518 		else
8519 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8520 		extent_op->flags_to_set = flags;
8521 		extent_op->update_key = skinny_metadata ? false : true;
8522 		extent_op->update_flags = true;
8523 		extent_op->is_data = false;
8524 		extent_op->level = level;
8525 
8526 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8527 				   root_objectid, level, 0,
8528 				   BTRFS_ADD_DELAYED_EXTENT);
8529 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8530 						 ins.offset, parent,
8531 						 root_objectid, level,
8532 						 BTRFS_ADD_DELAYED_EXTENT,
8533 						 extent_op, NULL, NULL);
8534 		if (ret)
8535 			goto out_free_delayed;
8536 	}
8537 	return buf;
8538 
8539 out_free_delayed:
8540 	btrfs_free_delayed_extent_op(extent_op);
8541 out_free_buf:
8542 	free_extent_buffer(buf);
8543 out_free_reserved:
8544 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8545 out_unuse:
8546 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8547 	return ERR_PTR(ret);
8548 }
8549 
8550 struct walk_control {
8551 	u64 refs[BTRFS_MAX_LEVEL];
8552 	u64 flags[BTRFS_MAX_LEVEL];
8553 	struct btrfs_key update_progress;
8554 	int stage;
8555 	int level;
8556 	int shared_level;
8557 	int update_ref;
8558 	int keep_locks;
8559 	int reada_slot;
8560 	int reada_count;
8561 	int for_reloc;
8562 };
8563 
8564 #define DROP_REFERENCE	1
8565 #define UPDATE_BACKREF	2
8566 
8567 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8568 				     struct btrfs_root *root,
8569 				     struct walk_control *wc,
8570 				     struct btrfs_path *path)
8571 {
8572 	struct btrfs_fs_info *fs_info = root->fs_info;
8573 	u64 bytenr;
8574 	u64 generation;
8575 	u64 refs;
8576 	u64 flags;
8577 	u32 nritems;
8578 	struct btrfs_key key;
8579 	struct extent_buffer *eb;
8580 	int ret;
8581 	int slot;
8582 	int nread = 0;
8583 
8584 	if (path->slots[wc->level] < wc->reada_slot) {
8585 		wc->reada_count = wc->reada_count * 2 / 3;
8586 		wc->reada_count = max(wc->reada_count, 2);
8587 	} else {
8588 		wc->reada_count = wc->reada_count * 3 / 2;
8589 		wc->reada_count = min_t(int, wc->reada_count,
8590 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8591 	}
8592 
8593 	eb = path->nodes[wc->level];
8594 	nritems = btrfs_header_nritems(eb);
8595 
8596 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8597 		if (nread >= wc->reada_count)
8598 			break;
8599 
8600 		cond_resched();
8601 		bytenr = btrfs_node_blockptr(eb, slot);
8602 		generation = btrfs_node_ptr_generation(eb, slot);
8603 
8604 		if (slot == path->slots[wc->level])
8605 			goto reada;
8606 
8607 		if (wc->stage == UPDATE_BACKREF &&
8608 		    generation <= root->root_key.offset)
8609 			continue;
8610 
8611 		/* We don't lock the tree block, it's OK to be racy here */
8612 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8613 					       wc->level - 1, 1, &refs,
8614 					       &flags);
8615 		/* We don't care about errors in readahead. */
8616 		if (ret < 0)
8617 			continue;
8618 		BUG_ON(refs == 0);
8619 
8620 		if (wc->stage == DROP_REFERENCE) {
8621 			if (refs == 1)
8622 				goto reada;
8623 
8624 			if (wc->level == 1 &&
8625 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8626 				continue;
8627 			if (!wc->update_ref ||
8628 			    generation <= root->root_key.offset)
8629 				continue;
8630 			btrfs_node_key_to_cpu(eb, &key, slot);
8631 			ret = btrfs_comp_cpu_keys(&key,
8632 						  &wc->update_progress);
8633 			if (ret < 0)
8634 				continue;
8635 		} else {
8636 			if (wc->level == 1 &&
8637 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8638 				continue;
8639 		}
8640 reada:
8641 		readahead_tree_block(fs_info, bytenr);
8642 		nread++;
8643 	}
8644 	wc->reada_slot = slot;
8645 }
8646 
8647 /*
8648  * helper to process tree block while walking down the tree.
8649  *
8650  * when wc->stage == UPDATE_BACKREF, this function updates
8651  * back refs for pointers in the block.
8652  *
8653  * NOTE: return value 1 means we should stop walking down.
8654  */
8655 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8656 				   struct btrfs_root *root,
8657 				   struct btrfs_path *path,
8658 				   struct walk_control *wc, int lookup_info)
8659 {
8660 	struct btrfs_fs_info *fs_info = root->fs_info;
8661 	int level = wc->level;
8662 	struct extent_buffer *eb = path->nodes[level];
8663 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8664 	int ret;
8665 
8666 	if (wc->stage == UPDATE_BACKREF &&
8667 	    btrfs_header_owner(eb) != root->root_key.objectid)
8668 		return 1;
8669 
8670 	/*
8671 	 * when reference count of tree block is 1, it won't increase
8672 	 * again. once full backref flag is set, we never clear it.
8673 	 */
8674 	if (lookup_info &&
8675 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8676 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8677 		BUG_ON(!path->locks[level]);
8678 		ret = btrfs_lookup_extent_info(trans, fs_info,
8679 					       eb->start, level, 1,
8680 					       &wc->refs[level],
8681 					       &wc->flags[level]);
8682 		BUG_ON(ret == -ENOMEM);
8683 		if (ret)
8684 			return ret;
8685 		BUG_ON(wc->refs[level] == 0);
8686 	}
8687 
8688 	if (wc->stage == DROP_REFERENCE) {
8689 		if (wc->refs[level] > 1)
8690 			return 1;
8691 
8692 		if (path->locks[level] && !wc->keep_locks) {
8693 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8694 			path->locks[level] = 0;
8695 		}
8696 		return 0;
8697 	}
8698 
8699 	/* wc->stage == UPDATE_BACKREF */
8700 	if (!(wc->flags[level] & flag)) {
8701 		BUG_ON(!path->locks[level]);
8702 		ret = btrfs_inc_ref(trans, root, eb, 1);
8703 		BUG_ON(ret); /* -ENOMEM */
8704 		ret = btrfs_dec_ref(trans, root, eb, 0);
8705 		BUG_ON(ret); /* -ENOMEM */
8706 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8707 						  eb->len, flag,
8708 						  btrfs_header_level(eb), 0);
8709 		BUG_ON(ret); /* -ENOMEM */
8710 		wc->flags[level] |= flag;
8711 	}
8712 
8713 	/*
8714 	 * the block is shared by multiple trees, so it's not good to
8715 	 * keep the tree lock
8716 	 */
8717 	if (path->locks[level] && level > 0) {
8718 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8719 		path->locks[level] = 0;
8720 	}
8721 	return 0;
8722 }
8723 
8724 /*
8725  * helper to process tree block pointer.
8726  *
8727  * when wc->stage == DROP_REFERENCE, this function checks
8728  * reference count of the block pointed to. if the block
8729  * is shared and we need update back refs for the subtree
8730  * rooted at the block, this function changes wc->stage to
8731  * UPDATE_BACKREF. if the block is shared and there is no
8732  * need to update back, this function drops the reference
8733  * to the block.
8734  *
8735  * NOTE: return value 1 means we should stop walking down.
8736  */
8737 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8738 				 struct btrfs_root *root,
8739 				 struct btrfs_path *path,
8740 				 struct walk_control *wc, int *lookup_info)
8741 {
8742 	struct btrfs_fs_info *fs_info = root->fs_info;
8743 	u64 bytenr;
8744 	u64 generation;
8745 	u64 parent;
8746 	u32 blocksize;
8747 	struct btrfs_key key;
8748 	struct btrfs_key first_key;
8749 	struct extent_buffer *next;
8750 	int level = wc->level;
8751 	int reada = 0;
8752 	int ret = 0;
8753 	bool need_account = false;
8754 
8755 	generation = btrfs_node_ptr_generation(path->nodes[level],
8756 					       path->slots[level]);
8757 	/*
8758 	 * if the lower level block was created before the snapshot
8759 	 * was created, we know there is no need to update back refs
8760 	 * for the subtree
8761 	 */
8762 	if (wc->stage == UPDATE_BACKREF &&
8763 	    generation <= root->root_key.offset) {
8764 		*lookup_info = 1;
8765 		return 1;
8766 	}
8767 
8768 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8769 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8770 			      path->slots[level]);
8771 	blocksize = fs_info->nodesize;
8772 
8773 	next = find_extent_buffer(fs_info, bytenr);
8774 	if (!next) {
8775 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8776 		if (IS_ERR(next))
8777 			return PTR_ERR(next);
8778 
8779 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8780 					       level - 1);
8781 		reada = 1;
8782 	}
8783 	btrfs_tree_lock(next);
8784 	btrfs_set_lock_blocking(next);
8785 
8786 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8787 				       &wc->refs[level - 1],
8788 				       &wc->flags[level - 1]);
8789 	if (ret < 0)
8790 		goto out_unlock;
8791 
8792 	if (unlikely(wc->refs[level - 1] == 0)) {
8793 		btrfs_err(fs_info, "Missing references.");
8794 		ret = -EIO;
8795 		goto out_unlock;
8796 	}
8797 	*lookup_info = 0;
8798 
8799 	if (wc->stage == DROP_REFERENCE) {
8800 		if (wc->refs[level - 1] > 1) {
8801 			need_account = true;
8802 			if (level == 1 &&
8803 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8804 				goto skip;
8805 
8806 			if (!wc->update_ref ||
8807 			    generation <= root->root_key.offset)
8808 				goto skip;
8809 
8810 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8811 					      path->slots[level]);
8812 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8813 			if (ret < 0)
8814 				goto skip;
8815 
8816 			wc->stage = UPDATE_BACKREF;
8817 			wc->shared_level = level - 1;
8818 		}
8819 	} else {
8820 		if (level == 1 &&
8821 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8822 			goto skip;
8823 	}
8824 
8825 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8826 		btrfs_tree_unlock(next);
8827 		free_extent_buffer(next);
8828 		next = NULL;
8829 		*lookup_info = 1;
8830 	}
8831 
8832 	if (!next) {
8833 		if (reada && level == 1)
8834 			reada_walk_down(trans, root, wc, path);
8835 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8836 				       &first_key);
8837 		if (IS_ERR(next)) {
8838 			return PTR_ERR(next);
8839 		} else if (!extent_buffer_uptodate(next)) {
8840 			free_extent_buffer(next);
8841 			return -EIO;
8842 		}
8843 		btrfs_tree_lock(next);
8844 		btrfs_set_lock_blocking(next);
8845 	}
8846 
8847 	level--;
8848 	ASSERT(level == btrfs_header_level(next));
8849 	if (level != btrfs_header_level(next)) {
8850 		btrfs_err(root->fs_info, "mismatched level");
8851 		ret = -EIO;
8852 		goto out_unlock;
8853 	}
8854 	path->nodes[level] = next;
8855 	path->slots[level] = 0;
8856 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8857 	wc->level = level;
8858 	if (wc->level == 1)
8859 		wc->reada_slot = 0;
8860 	return 0;
8861 skip:
8862 	wc->refs[level - 1] = 0;
8863 	wc->flags[level - 1] = 0;
8864 	if (wc->stage == DROP_REFERENCE) {
8865 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8866 			parent = path->nodes[level]->start;
8867 		} else {
8868 			ASSERT(root->root_key.objectid ==
8869 			       btrfs_header_owner(path->nodes[level]));
8870 			if (root->root_key.objectid !=
8871 			    btrfs_header_owner(path->nodes[level])) {
8872 				btrfs_err(root->fs_info,
8873 						"mismatched block owner");
8874 				ret = -EIO;
8875 				goto out_unlock;
8876 			}
8877 			parent = 0;
8878 		}
8879 
8880 		if (need_account) {
8881 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8882 							 generation, level - 1);
8883 			if (ret) {
8884 				btrfs_err_rl(fs_info,
8885 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8886 					     ret);
8887 			}
8888 		}
8889 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8890 					parent, root->root_key.objectid,
8891 					level - 1, 0);
8892 		if (ret)
8893 			goto out_unlock;
8894 	}
8895 
8896 	*lookup_info = 1;
8897 	ret = 1;
8898 
8899 out_unlock:
8900 	btrfs_tree_unlock(next);
8901 	free_extent_buffer(next);
8902 
8903 	return ret;
8904 }
8905 
8906 /*
8907  * helper to process tree block while walking up the tree.
8908  *
8909  * when wc->stage == DROP_REFERENCE, this function drops
8910  * reference count on the block.
8911  *
8912  * when wc->stage == UPDATE_BACKREF, this function changes
8913  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8914  * to UPDATE_BACKREF previously while processing the block.
8915  *
8916  * NOTE: return value 1 means we should stop walking up.
8917  */
8918 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8919 				 struct btrfs_root *root,
8920 				 struct btrfs_path *path,
8921 				 struct walk_control *wc)
8922 {
8923 	struct btrfs_fs_info *fs_info = root->fs_info;
8924 	int ret;
8925 	int level = wc->level;
8926 	struct extent_buffer *eb = path->nodes[level];
8927 	u64 parent = 0;
8928 
8929 	if (wc->stage == UPDATE_BACKREF) {
8930 		BUG_ON(wc->shared_level < level);
8931 		if (level < wc->shared_level)
8932 			goto out;
8933 
8934 		ret = find_next_key(path, level + 1, &wc->update_progress);
8935 		if (ret > 0)
8936 			wc->update_ref = 0;
8937 
8938 		wc->stage = DROP_REFERENCE;
8939 		wc->shared_level = -1;
8940 		path->slots[level] = 0;
8941 
8942 		/*
8943 		 * check reference count again if the block isn't locked.
8944 		 * we should start walking down the tree again if reference
8945 		 * count is one.
8946 		 */
8947 		if (!path->locks[level]) {
8948 			BUG_ON(level == 0);
8949 			btrfs_tree_lock(eb);
8950 			btrfs_set_lock_blocking(eb);
8951 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8952 
8953 			ret = btrfs_lookup_extent_info(trans, fs_info,
8954 						       eb->start, level, 1,
8955 						       &wc->refs[level],
8956 						       &wc->flags[level]);
8957 			if (ret < 0) {
8958 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8959 				path->locks[level] = 0;
8960 				return ret;
8961 			}
8962 			BUG_ON(wc->refs[level] == 0);
8963 			if (wc->refs[level] == 1) {
8964 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8965 				path->locks[level] = 0;
8966 				return 1;
8967 			}
8968 		}
8969 	}
8970 
8971 	/* wc->stage == DROP_REFERENCE */
8972 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8973 
8974 	if (wc->refs[level] == 1) {
8975 		if (level == 0) {
8976 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8977 				ret = btrfs_dec_ref(trans, root, eb, 1);
8978 			else
8979 				ret = btrfs_dec_ref(trans, root, eb, 0);
8980 			BUG_ON(ret); /* -ENOMEM */
8981 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8982 			if (ret) {
8983 				btrfs_err_rl(fs_info,
8984 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8985 					     ret);
8986 			}
8987 		}
8988 		/* make block locked assertion in clean_tree_block happy */
8989 		if (!path->locks[level] &&
8990 		    btrfs_header_generation(eb) == trans->transid) {
8991 			btrfs_tree_lock(eb);
8992 			btrfs_set_lock_blocking(eb);
8993 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8994 		}
8995 		clean_tree_block(fs_info, eb);
8996 	}
8997 
8998 	if (eb == root->node) {
8999 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9000 			parent = eb->start;
9001 		else
9002 			BUG_ON(root->root_key.objectid !=
9003 			       btrfs_header_owner(eb));
9004 	} else {
9005 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9006 			parent = path->nodes[level + 1]->start;
9007 		else
9008 			BUG_ON(root->root_key.objectid !=
9009 			       btrfs_header_owner(path->nodes[level + 1]));
9010 	}
9011 
9012 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9013 out:
9014 	wc->refs[level] = 0;
9015 	wc->flags[level] = 0;
9016 	return 0;
9017 }
9018 
9019 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9020 				   struct btrfs_root *root,
9021 				   struct btrfs_path *path,
9022 				   struct walk_control *wc)
9023 {
9024 	int level = wc->level;
9025 	int lookup_info = 1;
9026 	int ret;
9027 
9028 	while (level >= 0) {
9029 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9030 		if (ret > 0)
9031 			break;
9032 
9033 		if (level == 0)
9034 			break;
9035 
9036 		if (path->slots[level] >=
9037 		    btrfs_header_nritems(path->nodes[level]))
9038 			break;
9039 
9040 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9041 		if (ret > 0) {
9042 			path->slots[level]++;
9043 			continue;
9044 		} else if (ret < 0)
9045 			return ret;
9046 		level = wc->level;
9047 	}
9048 	return 0;
9049 }
9050 
9051 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9052 				 struct btrfs_root *root,
9053 				 struct btrfs_path *path,
9054 				 struct walk_control *wc, int max_level)
9055 {
9056 	int level = wc->level;
9057 	int ret;
9058 
9059 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9060 	while (level < max_level && path->nodes[level]) {
9061 		wc->level = level;
9062 		if (path->slots[level] + 1 <
9063 		    btrfs_header_nritems(path->nodes[level])) {
9064 			path->slots[level]++;
9065 			return 0;
9066 		} else {
9067 			ret = walk_up_proc(trans, root, path, wc);
9068 			if (ret > 0)
9069 				return 0;
9070 
9071 			if (path->locks[level]) {
9072 				btrfs_tree_unlock_rw(path->nodes[level],
9073 						     path->locks[level]);
9074 				path->locks[level] = 0;
9075 			}
9076 			free_extent_buffer(path->nodes[level]);
9077 			path->nodes[level] = NULL;
9078 			level++;
9079 		}
9080 	}
9081 	return 1;
9082 }
9083 
9084 /*
9085  * drop a subvolume tree.
9086  *
9087  * this function traverses the tree freeing any blocks that only
9088  * referenced by the tree.
9089  *
9090  * when a shared tree block is found. this function decreases its
9091  * reference count by one. if update_ref is true, this function
9092  * also make sure backrefs for the shared block and all lower level
9093  * blocks are properly updated.
9094  *
9095  * If called with for_reloc == 0, may exit early with -EAGAIN
9096  */
9097 int btrfs_drop_snapshot(struct btrfs_root *root,
9098 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9099 			 int for_reloc)
9100 {
9101 	struct btrfs_fs_info *fs_info = root->fs_info;
9102 	struct btrfs_path *path;
9103 	struct btrfs_trans_handle *trans;
9104 	struct btrfs_root *tree_root = fs_info->tree_root;
9105 	struct btrfs_root_item *root_item = &root->root_item;
9106 	struct walk_control *wc;
9107 	struct btrfs_key key;
9108 	int err = 0;
9109 	int ret;
9110 	int level;
9111 	bool root_dropped = false;
9112 
9113 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9114 
9115 	path = btrfs_alloc_path();
9116 	if (!path) {
9117 		err = -ENOMEM;
9118 		goto out;
9119 	}
9120 
9121 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9122 	if (!wc) {
9123 		btrfs_free_path(path);
9124 		err = -ENOMEM;
9125 		goto out;
9126 	}
9127 
9128 	trans = btrfs_start_transaction(tree_root, 0);
9129 	if (IS_ERR(trans)) {
9130 		err = PTR_ERR(trans);
9131 		goto out_free;
9132 	}
9133 
9134 	if (block_rsv)
9135 		trans->block_rsv = block_rsv;
9136 
9137 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9138 		level = btrfs_header_level(root->node);
9139 		path->nodes[level] = btrfs_lock_root_node(root);
9140 		btrfs_set_lock_blocking(path->nodes[level]);
9141 		path->slots[level] = 0;
9142 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9143 		memset(&wc->update_progress, 0,
9144 		       sizeof(wc->update_progress));
9145 	} else {
9146 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9147 		memcpy(&wc->update_progress, &key,
9148 		       sizeof(wc->update_progress));
9149 
9150 		level = root_item->drop_level;
9151 		BUG_ON(level == 0);
9152 		path->lowest_level = level;
9153 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9154 		path->lowest_level = 0;
9155 		if (ret < 0) {
9156 			err = ret;
9157 			goto out_end_trans;
9158 		}
9159 		WARN_ON(ret > 0);
9160 
9161 		/*
9162 		 * unlock our path, this is safe because only this
9163 		 * function is allowed to delete this snapshot
9164 		 */
9165 		btrfs_unlock_up_safe(path, 0);
9166 
9167 		level = btrfs_header_level(root->node);
9168 		while (1) {
9169 			btrfs_tree_lock(path->nodes[level]);
9170 			btrfs_set_lock_blocking(path->nodes[level]);
9171 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9172 
9173 			ret = btrfs_lookup_extent_info(trans, fs_info,
9174 						path->nodes[level]->start,
9175 						level, 1, &wc->refs[level],
9176 						&wc->flags[level]);
9177 			if (ret < 0) {
9178 				err = ret;
9179 				goto out_end_trans;
9180 			}
9181 			BUG_ON(wc->refs[level] == 0);
9182 
9183 			if (level == root_item->drop_level)
9184 				break;
9185 
9186 			btrfs_tree_unlock(path->nodes[level]);
9187 			path->locks[level] = 0;
9188 			WARN_ON(wc->refs[level] != 1);
9189 			level--;
9190 		}
9191 	}
9192 
9193 	wc->level = level;
9194 	wc->shared_level = -1;
9195 	wc->stage = DROP_REFERENCE;
9196 	wc->update_ref = update_ref;
9197 	wc->keep_locks = 0;
9198 	wc->for_reloc = for_reloc;
9199 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9200 
9201 	while (1) {
9202 
9203 		ret = walk_down_tree(trans, root, path, wc);
9204 		if (ret < 0) {
9205 			err = ret;
9206 			break;
9207 		}
9208 
9209 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9210 		if (ret < 0) {
9211 			err = ret;
9212 			break;
9213 		}
9214 
9215 		if (ret > 0) {
9216 			BUG_ON(wc->stage != DROP_REFERENCE);
9217 			break;
9218 		}
9219 
9220 		if (wc->stage == DROP_REFERENCE) {
9221 			level = wc->level;
9222 			btrfs_node_key(path->nodes[level],
9223 				       &root_item->drop_progress,
9224 				       path->slots[level]);
9225 			root_item->drop_level = level;
9226 		}
9227 
9228 		BUG_ON(wc->level == 0);
9229 		if (btrfs_should_end_transaction(trans) ||
9230 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9231 			ret = btrfs_update_root(trans, tree_root,
9232 						&root->root_key,
9233 						root_item);
9234 			if (ret) {
9235 				btrfs_abort_transaction(trans, ret);
9236 				err = ret;
9237 				goto out_end_trans;
9238 			}
9239 
9240 			btrfs_end_transaction_throttle(trans);
9241 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9242 				btrfs_debug(fs_info,
9243 					    "drop snapshot early exit");
9244 				err = -EAGAIN;
9245 				goto out_free;
9246 			}
9247 
9248 			trans = btrfs_start_transaction(tree_root, 0);
9249 			if (IS_ERR(trans)) {
9250 				err = PTR_ERR(trans);
9251 				goto out_free;
9252 			}
9253 			if (block_rsv)
9254 				trans->block_rsv = block_rsv;
9255 		}
9256 	}
9257 	btrfs_release_path(path);
9258 	if (err)
9259 		goto out_end_trans;
9260 
9261 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9262 	if (ret) {
9263 		btrfs_abort_transaction(trans, ret);
9264 		err = ret;
9265 		goto out_end_trans;
9266 	}
9267 
9268 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9269 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9270 				      NULL, NULL);
9271 		if (ret < 0) {
9272 			btrfs_abort_transaction(trans, ret);
9273 			err = ret;
9274 			goto out_end_trans;
9275 		} else if (ret > 0) {
9276 			/* if we fail to delete the orphan item this time
9277 			 * around, it'll get picked up the next time.
9278 			 *
9279 			 * The most common failure here is just -ENOENT.
9280 			 */
9281 			btrfs_del_orphan_item(trans, tree_root,
9282 					      root->root_key.objectid);
9283 		}
9284 	}
9285 
9286 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9287 		btrfs_add_dropped_root(trans, root);
9288 	} else {
9289 		free_extent_buffer(root->node);
9290 		free_extent_buffer(root->commit_root);
9291 		btrfs_put_fs_root(root);
9292 	}
9293 	root_dropped = true;
9294 out_end_trans:
9295 	btrfs_end_transaction_throttle(trans);
9296 out_free:
9297 	kfree(wc);
9298 	btrfs_free_path(path);
9299 out:
9300 	/*
9301 	 * So if we need to stop dropping the snapshot for whatever reason we
9302 	 * need to make sure to add it back to the dead root list so that we
9303 	 * keep trying to do the work later.  This also cleans up roots if we
9304 	 * don't have it in the radix (like when we recover after a power fail
9305 	 * or unmount) so we don't leak memory.
9306 	 */
9307 	if (!for_reloc && !root_dropped)
9308 		btrfs_add_dead_root(root);
9309 	if (err && err != -EAGAIN)
9310 		btrfs_handle_fs_error(fs_info, err, NULL);
9311 	return err;
9312 }
9313 
9314 /*
9315  * drop subtree rooted at tree block 'node'.
9316  *
9317  * NOTE: this function will unlock and release tree block 'node'
9318  * only used by relocation code
9319  */
9320 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9321 			struct btrfs_root *root,
9322 			struct extent_buffer *node,
9323 			struct extent_buffer *parent)
9324 {
9325 	struct btrfs_fs_info *fs_info = root->fs_info;
9326 	struct btrfs_path *path;
9327 	struct walk_control *wc;
9328 	int level;
9329 	int parent_level;
9330 	int ret = 0;
9331 	int wret;
9332 
9333 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9334 
9335 	path = btrfs_alloc_path();
9336 	if (!path)
9337 		return -ENOMEM;
9338 
9339 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9340 	if (!wc) {
9341 		btrfs_free_path(path);
9342 		return -ENOMEM;
9343 	}
9344 
9345 	btrfs_assert_tree_locked(parent);
9346 	parent_level = btrfs_header_level(parent);
9347 	extent_buffer_get(parent);
9348 	path->nodes[parent_level] = parent;
9349 	path->slots[parent_level] = btrfs_header_nritems(parent);
9350 
9351 	btrfs_assert_tree_locked(node);
9352 	level = btrfs_header_level(node);
9353 	path->nodes[level] = node;
9354 	path->slots[level] = 0;
9355 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9356 
9357 	wc->refs[parent_level] = 1;
9358 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9359 	wc->level = level;
9360 	wc->shared_level = -1;
9361 	wc->stage = DROP_REFERENCE;
9362 	wc->update_ref = 0;
9363 	wc->keep_locks = 1;
9364 	wc->for_reloc = 1;
9365 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9366 
9367 	while (1) {
9368 		wret = walk_down_tree(trans, root, path, wc);
9369 		if (wret < 0) {
9370 			ret = wret;
9371 			break;
9372 		}
9373 
9374 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9375 		if (wret < 0)
9376 			ret = wret;
9377 		if (wret != 0)
9378 			break;
9379 	}
9380 
9381 	kfree(wc);
9382 	btrfs_free_path(path);
9383 	return ret;
9384 }
9385 
9386 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9387 {
9388 	u64 num_devices;
9389 	u64 stripped;
9390 
9391 	/*
9392 	 * if restripe for this chunk_type is on pick target profile and
9393 	 * return, otherwise do the usual balance
9394 	 */
9395 	stripped = get_restripe_target(fs_info, flags);
9396 	if (stripped)
9397 		return extended_to_chunk(stripped);
9398 
9399 	num_devices = fs_info->fs_devices->rw_devices;
9400 
9401 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9402 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9403 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9404 
9405 	if (num_devices == 1) {
9406 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9407 		stripped = flags & ~stripped;
9408 
9409 		/* turn raid0 into single device chunks */
9410 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9411 			return stripped;
9412 
9413 		/* turn mirroring into duplication */
9414 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9415 			     BTRFS_BLOCK_GROUP_RAID10))
9416 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9417 	} else {
9418 		/* they already had raid on here, just return */
9419 		if (flags & stripped)
9420 			return flags;
9421 
9422 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9423 		stripped = flags & ~stripped;
9424 
9425 		/* switch duplicated blocks with raid1 */
9426 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9427 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9428 
9429 		/* this is drive concat, leave it alone */
9430 	}
9431 
9432 	return flags;
9433 }
9434 
9435 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9436 {
9437 	struct btrfs_space_info *sinfo = cache->space_info;
9438 	u64 num_bytes;
9439 	u64 min_allocable_bytes;
9440 	int ret = -ENOSPC;
9441 
9442 	/*
9443 	 * We need some metadata space and system metadata space for
9444 	 * allocating chunks in some corner cases until we force to set
9445 	 * it to be readonly.
9446 	 */
9447 	if ((sinfo->flags &
9448 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9449 	    !force)
9450 		min_allocable_bytes = SZ_1M;
9451 	else
9452 		min_allocable_bytes = 0;
9453 
9454 	spin_lock(&sinfo->lock);
9455 	spin_lock(&cache->lock);
9456 
9457 	if (cache->ro) {
9458 		cache->ro++;
9459 		ret = 0;
9460 		goto out;
9461 	}
9462 
9463 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9464 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9465 
9466 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9467 	    min_allocable_bytes <= sinfo->total_bytes) {
9468 		sinfo->bytes_readonly += num_bytes;
9469 		cache->ro++;
9470 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9471 		ret = 0;
9472 	}
9473 out:
9474 	spin_unlock(&cache->lock);
9475 	spin_unlock(&sinfo->lock);
9476 	return ret;
9477 }
9478 
9479 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9480 			     struct btrfs_block_group_cache *cache)
9481 
9482 {
9483 	struct btrfs_trans_handle *trans;
9484 	u64 alloc_flags;
9485 	int ret;
9486 
9487 again:
9488 	trans = btrfs_join_transaction(fs_info->extent_root);
9489 	if (IS_ERR(trans))
9490 		return PTR_ERR(trans);
9491 
9492 	/*
9493 	 * we're not allowed to set block groups readonly after the dirty
9494 	 * block groups cache has started writing.  If it already started,
9495 	 * back off and let this transaction commit
9496 	 */
9497 	mutex_lock(&fs_info->ro_block_group_mutex);
9498 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9499 		u64 transid = trans->transid;
9500 
9501 		mutex_unlock(&fs_info->ro_block_group_mutex);
9502 		btrfs_end_transaction(trans);
9503 
9504 		ret = btrfs_wait_for_commit(fs_info, transid);
9505 		if (ret)
9506 			return ret;
9507 		goto again;
9508 	}
9509 
9510 	/*
9511 	 * if we are changing raid levels, try to allocate a corresponding
9512 	 * block group with the new raid level.
9513 	 */
9514 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9515 	if (alloc_flags != cache->flags) {
9516 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9517 				     CHUNK_ALLOC_FORCE);
9518 		/*
9519 		 * ENOSPC is allowed here, we may have enough space
9520 		 * already allocated at the new raid level to
9521 		 * carry on
9522 		 */
9523 		if (ret == -ENOSPC)
9524 			ret = 0;
9525 		if (ret < 0)
9526 			goto out;
9527 	}
9528 
9529 	ret = inc_block_group_ro(cache, 0);
9530 	if (!ret)
9531 		goto out;
9532 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9533 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9534 			     CHUNK_ALLOC_FORCE);
9535 	if (ret < 0)
9536 		goto out;
9537 	ret = inc_block_group_ro(cache, 0);
9538 out:
9539 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9540 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9541 		mutex_lock(&fs_info->chunk_mutex);
9542 		check_system_chunk(trans, fs_info, alloc_flags);
9543 		mutex_unlock(&fs_info->chunk_mutex);
9544 	}
9545 	mutex_unlock(&fs_info->ro_block_group_mutex);
9546 
9547 	btrfs_end_transaction(trans);
9548 	return ret;
9549 }
9550 
9551 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9552 			    struct btrfs_fs_info *fs_info, u64 type)
9553 {
9554 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9555 
9556 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9557 }
9558 
9559 /*
9560  * helper to account the unused space of all the readonly block group in the
9561  * space_info. takes mirrors into account.
9562  */
9563 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9564 {
9565 	struct btrfs_block_group_cache *block_group;
9566 	u64 free_bytes = 0;
9567 	int factor;
9568 
9569 	/* It's df, we don't care if it's racy */
9570 	if (list_empty(&sinfo->ro_bgs))
9571 		return 0;
9572 
9573 	spin_lock(&sinfo->lock);
9574 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9575 		spin_lock(&block_group->lock);
9576 
9577 		if (!block_group->ro) {
9578 			spin_unlock(&block_group->lock);
9579 			continue;
9580 		}
9581 
9582 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9583 					  BTRFS_BLOCK_GROUP_RAID10 |
9584 					  BTRFS_BLOCK_GROUP_DUP))
9585 			factor = 2;
9586 		else
9587 			factor = 1;
9588 
9589 		free_bytes += (block_group->key.offset -
9590 			       btrfs_block_group_used(&block_group->item)) *
9591 			       factor;
9592 
9593 		spin_unlock(&block_group->lock);
9594 	}
9595 	spin_unlock(&sinfo->lock);
9596 
9597 	return free_bytes;
9598 }
9599 
9600 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9601 {
9602 	struct btrfs_space_info *sinfo = cache->space_info;
9603 	u64 num_bytes;
9604 
9605 	BUG_ON(!cache->ro);
9606 
9607 	spin_lock(&sinfo->lock);
9608 	spin_lock(&cache->lock);
9609 	if (!--cache->ro) {
9610 		num_bytes = cache->key.offset - cache->reserved -
9611 			    cache->pinned - cache->bytes_super -
9612 			    btrfs_block_group_used(&cache->item);
9613 		sinfo->bytes_readonly -= num_bytes;
9614 		list_del_init(&cache->ro_list);
9615 	}
9616 	spin_unlock(&cache->lock);
9617 	spin_unlock(&sinfo->lock);
9618 }
9619 
9620 /*
9621  * checks to see if its even possible to relocate this block group.
9622  *
9623  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9624  * ok to go ahead and try.
9625  */
9626 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9627 {
9628 	struct btrfs_root *root = fs_info->extent_root;
9629 	struct btrfs_block_group_cache *block_group;
9630 	struct btrfs_space_info *space_info;
9631 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9632 	struct btrfs_device *device;
9633 	struct btrfs_trans_handle *trans;
9634 	u64 min_free;
9635 	u64 dev_min = 1;
9636 	u64 dev_nr = 0;
9637 	u64 target;
9638 	int debug;
9639 	int index;
9640 	int full = 0;
9641 	int ret = 0;
9642 
9643 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9644 
9645 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9646 
9647 	/* odd, couldn't find the block group, leave it alone */
9648 	if (!block_group) {
9649 		if (debug)
9650 			btrfs_warn(fs_info,
9651 				   "can't find block group for bytenr %llu",
9652 				   bytenr);
9653 		return -1;
9654 	}
9655 
9656 	min_free = btrfs_block_group_used(&block_group->item);
9657 
9658 	/* no bytes used, we're good */
9659 	if (!min_free)
9660 		goto out;
9661 
9662 	space_info = block_group->space_info;
9663 	spin_lock(&space_info->lock);
9664 
9665 	full = space_info->full;
9666 
9667 	/*
9668 	 * if this is the last block group we have in this space, we can't
9669 	 * relocate it unless we're able to allocate a new chunk below.
9670 	 *
9671 	 * Otherwise, we need to make sure we have room in the space to handle
9672 	 * all of the extents from this block group.  If we can, we're good
9673 	 */
9674 	if ((space_info->total_bytes != block_group->key.offset) &&
9675 	    (btrfs_space_info_used(space_info, false) + min_free <
9676 	     space_info->total_bytes)) {
9677 		spin_unlock(&space_info->lock);
9678 		goto out;
9679 	}
9680 	spin_unlock(&space_info->lock);
9681 
9682 	/*
9683 	 * ok we don't have enough space, but maybe we have free space on our
9684 	 * devices to allocate new chunks for relocation, so loop through our
9685 	 * alloc devices and guess if we have enough space.  if this block
9686 	 * group is going to be restriped, run checks against the target
9687 	 * profile instead of the current one.
9688 	 */
9689 	ret = -1;
9690 
9691 	/*
9692 	 * index:
9693 	 *      0: raid10
9694 	 *      1: raid1
9695 	 *      2: dup
9696 	 *      3: raid0
9697 	 *      4: single
9698 	 */
9699 	target = get_restripe_target(fs_info, block_group->flags);
9700 	if (target) {
9701 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9702 	} else {
9703 		/*
9704 		 * this is just a balance, so if we were marked as full
9705 		 * we know there is no space for a new chunk
9706 		 */
9707 		if (full) {
9708 			if (debug)
9709 				btrfs_warn(fs_info,
9710 					   "no space to alloc new chunk for block group %llu",
9711 					   block_group->key.objectid);
9712 			goto out;
9713 		}
9714 
9715 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9716 	}
9717 
9718 	if (index == BTRFS_RAID_RAID10) {
9719 		dev_min = 4;
9720 		/* Divide by 2 */
9721 		min_free >>= 1;
9722 	} else if (index == BTRFS_RAID_RAID1) {
9723 		dev_min = 2;
9724 	} else if (index == BTRFS_RAID_DUP) {
9725 		/* Multiply by 2 */
9726 		min_free <<= 1;
9727 	} else if (index == BTRFS_RAID_RAID0) {
9728 		dev_min = fs_devices->rw_devices;
9729 		min_free = div64_u64(min_free, dev_min);
9730 	}
9731 
9732 	/* We need to do this so that we can look at pending chunks */
9733 	trans = btrfs_join_transaction(root);
9734 	if (IS_ERR(trans)) {
9735 		ret = PTR_ERR(trans);
9736 		goto out;
9737 	}
9738 
9739 	mutex_lock(&fs_info->chunk_mutex);
9740 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9741 		u64 dev_offset;
9742 
9743 		/*
9744 		 * check to make sure we can actually find a chunk with enough
9745 		 * space to fit our block group in.
9746 		 */
9747 		if (device->total_bytes > device->bytes_used + min_free &&
9748 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9749 			ret = find_free_dev_extent(trans, device, min_free,
9750 						   &dev_offset, NULL);
9751 			if (!ret)
9752 				dev_nr++;
9753 
9754 			if (dev_nr >= dev_min)
9755 				break;
9756 
9757 			ret = -1;
9758 		}
9759 	}
9760 	if (debug && ret == -1)
9761 		btrfs_warn(fs_info,
9762 			   "no space to allocate a new chunk for block group %llu",
9763 			   block_group->key.objectid);
9764 	mutex_unlock(&fs_info->chunk_mutex);
9765 	btrfs_end_transaction(trans);
9766 out:
9767 	btrfs_put_block_group(block_group);
9768 	return ret;
9769 }
9770 
9771 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9772 				  struct btrfs_path *path,
9773 				  struct btrfs_key *key)
9774 {
9775 	struct btrfs_root *root = fs_info->extent_root;
9776 	int ret = 0;
9777 	struct btrfs_key found_key;
9778 	struct extent_buffer *leaf;
9779 	int slot;
9780 
9781 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9782 	if (ret < 0)
9783 		goto out;
9784 
9785 	while (1) {
9786 		slot = path->slots[0];
9787 		leaf = path->nodes[0];
9788 		if (slot >= btrfs_header_nritems(leaf)) {
9789 			ret = btrfs_next_leaf(root, path);
9790 			if (ret == 0)
9791 				continue;
9792 			if (ret < 0)
9793 				goto out;
9794 			break;
9795 		}
9796 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9797 
9798 		if (found_key.objectid >= key->objectid &&
9799 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9800 			struct extent_map_tree *em_tree;
9801 			struct extent_map *em;
9802 
9803 			em_tree = &root->fs_info->mapping_tree.map_tree;
9804 			read_lock(&em_tree->lock);
9805 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9806 						   found_key.offset);
9807 			read_unlock(&em_tree->lock);
9808 			if (!em) {
9809 				btrfs_err(fs_info,
9810 			"logical %llu len %llu found bg but no related chunk",
9811 					  found_key.objectid, found_key.offset);
9812 				ret = -ENOENT;
9813 			} else {
9814 				ret = 0;
9815 			}
9816 			free_extent_map(em);
9817 			goto out;
9818 		}
9819 		path->slots[0]++;
9820 	}
9821 out:
9822 	return ret;
9823 }
9824 
9825 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9826 {
9827 	struct btrfs_block_group_cache *block_group;
9828 	u64 last = 0;
9829 
9830 	while (1) {
9831 		struct inode *inode;
9832 
9833 		block_group = btrfs_lookup_first_block_group(info, last);
9834 		while (block_group) {
9835 			spin_lock(&block_group->lock);
9836 			if (block_group->iref)
9837 				break;
9838 			spin_unlock(&block_group->lock);
9839 			block_group = next_block_group(info, block_group);
9840 		}
9841 		if (!block_group) {
9842 			if (last == 0)
9843 				break;
9844 			last = 0;
9845 			continue;
9846 		}
9847 
9848 		inode = block_group->inode;
9849 		block_group->iref = 0;
9850 		block_group->inode = NULL;
9851 		spin_unlock(&block_group->lock);
9852 		ASSERT(block_group->io_ctl.inode == NULL);
9853 		iput(inode);
9854 		last = block_group->key.objectid + block_group->key.offset;
9855 		btrfs_put_block_group(block_group);
9856 	}
9857 }
9858 
9859 /*
9860  * Must be called only after stopping all workers, since we could have block
9861  * group caching kthreads running, and therefore they could race with us if we
9862  * freed the block groups before stopping them.
9863  */
9864 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9865 {
9866 	struct btrfs_block_group_cache *block_group;
9867 	struct btrfs_space_info *space_info;
9868 	struct btrfs_caching_control *caching_ctl;
9869 	struct rb_node *n;
9870 
9871 	down_write(&info->commit_root_sem);
9872 	while (!list_empty(&info->caching_block_groups)) {
9873 		caching_ctl = list_entry(info->caching_block_groups.next,
9874 					 struct btrfs_caching_control, list);
9875 		list_del(&caching_ctl->list);
9876 		put_caching_control(caching_ctl);
9877 	}
9878 	up_write(&info->commit_root_sem);
9879 
9880 	spin_lock(&info->unused_bgs_lock);
9881 	while (!list_empty(&info->unused_bgs)) {
9882 		block_group = list_first_entry(&info->unused_bgs,
9883 					       struct btrfs_block_group_cache,
9884 					       bg_list);
9885 		list_del_init(&block_group->bg_list);
9886 		btrfs_put_block_group(block_group);
9887 	}
9888 	spin_unlock(&info->unused_bgs_lock);
9889 
9890 	spin_lock(&info->block_group_cache_lock);
9891 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9892 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9893 				       cache_node);
9894 		rb_erase(&block_group->cache_node,
9895 			 &info->block_group_cache_tree);
9896 		RB_CLEAR_NODE(&block_group->cache_node);
9897 		spin_unlock(&info->block_group_cache_lock);
9898 
9899 		down_write(&block_group->space_info->groups_sem);
9900 		list_del(&block_group->list);
9901 		up_write(&block_group->space_info->groups_sem);
9902 
9903 		/*
9904 		 * We haven't cached this block group, which means we could
9905 		 * possibly have excluded extents on this block group.
9906 		 */
9907 		if (block_group->cached == BTRFS_CACHE_NO ||
9908 		    block_group->cached == BTRFS_CACHE_ERROR)
9909 			free_excluded_extents(info, block_group);
9910 
9911 		btrfs_remove_free_space_cache(block_group);
9912 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9913 		ASSERT(list_empty(&block_group->dirty_list));
9914 		ASSERT(list_empty(&block_group->io_list));
9915 		ASSERT(list_empty(&block_group->bg_list));
9916 		ASSERT(atomic_read(&block_group->count) == 1);
9917 		btrfs_put_block_group(block_group);
9918 
9919 		spin_lock(&info->block_group_cache_lock);
9920 	}
9921 	spin_unlock(&info->block_group_cache_lock);
9922 
9923 	/* now that all the block groups are freed, go through and
9924 	 * free all the space_info structs.  This is only called during
9925 	 * the final stages of unmount, and so we know nobody is
9926 	 * using them.  We call synchronize_rcu() once before we start,
9927 	 * just to be on the safe side.
9928 	 */
9929 	synchronize_rcu();
9930 
9931 	release_global_block_rsv(info);
9932 
9933 	while (!list_empty(&info->space_info)) {
9934 		int i;
9935 
9936 		space_info = list_entry(info->space_info.next,
9937 					struct btrfs_space_info,
9938 					list);
9939 
9940 		/*
9941 		 * Do not hide this behind enospc_debug, this is actually
9942 		 * important and indicates a real bug if this happens.
9943 		 */
9944 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9945 			    space_info->bytes_reserved > 0 ||
9946 			    space_info->bytes_may_use > 0))
9947 			dump_space_info(info, space_info, 0, 0);
9948 		list_del(&space_info->list);
9949 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9950 			struct kobject *kobj;
9951 			kobj = space_info->block_group_kobjs[i];
9952 			space_info->block_group_kobjs[i] = NULL;
9953 			if (kobj) {
9954 				kobject_del(kobj);
9955 				kobject_put(kobj);
9956 			}
9957 		}
9958 		kobject_del(&space_info->kobj);
9959 		kobject_put(&space_info->kobj);
9960 	}
9961 	return 0;
9962 }
9963 
9964 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9965 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9966 {
9967 	struct btrfs_space_info *space_info;
9968 	struct raid_kobject *rkobj;
9969 	LIST_HEAD(list);
9970 	int index;
9971 	int ret = 0;
9972 
9973 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9974 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9975 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9976 
9977 	list_for_each_entry(rkobj, &list, list) {
9978 		space_info = __find_space_info(fs_info, rkobj->flags);
9979 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9980 
9981 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9982 				  "%s", get_raid_name(index));
9983 		if (ret) {
9984 			kobject_put(&rkobj->kobj);
9985 			break;
9986 		}
9987 	}
9988 	if (ret)
9989 		btrfs_warn(fs_info,
9990 			   "failed to add kobject for block cache, ignoring");
9991 }
9992 
9993 static void link_block_group(struct btrfs_block_group_cache *cache)
9994 {
9995 	struct btrfs_space_info *space_info = cache->space_info;
9996 	struct btrfs_fs_info *fs_info = cache->fs_info;
9997 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9998 	bool first = false;
9999 
10000 	down_write(&space_info->groups_sem);
10001 	if (list_empty(&space_info->block_groups[index]))
10002 		first = true;
10003 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10004 	up_write(&space_info->groups_sem);
10005 
10006 	if (first) {
10007 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10008 		if (!rkobj) {
10009 			btrfs_warn(cache->fs_info,
10010 				"couldn't alloc memory for raid level kobject");
10011 			return;
10012 		}
10013 		rkobj->flags = cache->flags;
10014 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10015 
10016 		spin_lock(&fs_info->pending_raid_kobjs_lock);
10017 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10018 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
10019 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10020 	}
10021 }
10022 
10023 static struct btrfs_block_group_cache *
10024 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10025 			       u64 start, u64 size)
10026 {
10027 	struct btrfs_block_group_cache *cache;
10028 
10029 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10030 	if (!cache)
10031 		return NULL;
10032 
10033 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10034 					GFP_NOFS);
10035 	if (!cache->free_space_ctl) {
10036 		kfree(cache);
10037 		return NULL;
10038 	}
10039 
10040 	cache->key.objectid = start;
10041 	cache->key.offset = size;
10042 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10043 
10044 	cache->fs_info = fs_info;
10045 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10046 	set_free_space_tree_thresholds(cache);
10047 
10048 	atomic_set(&cache->count, 1);
10049 	spin_lock_init(&cache->lock);
10050 	init_rwsem(&cache->data_rwsem);
10051 	INIT_LIST_HEAD(&cache->list);
10052 	INIT_LIST_HEAD(&cache->cluster_list);
10053 	INIT_LIST_HEAD(&cache->bg_list);
10054 	INIT_LIST_HEAD(&cache->ro_list);
10055 	INIT_LIST_HEAD(&cache->dirty_list);
10056 	INIT_LIST_HEAD(&cache->io_list);
10057 	btrfs_init_free_space_ctl(cache);
10058 	atomic_set(&cache->trimming, 0);
10059 	mutex_init(&cache->free_space_lock);
10060 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10061 
10062 	return cache;
10063 }
10064 
10065 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10066 {
10067 	struct btrfs_path *path;
10068 	int ret;
10069 	struct btrfs_block_group_cache *cache;
10070 	struct btrfs_space_info *space_info;
10071 	struct btrfs_key key;
10072 	struct btrfs_key found_key;
10073 	struct extent_buffer *leaf;
10074 	int need_clear = 0;
10075 	u64 cache_gen;
10076 	u64 feature;
10077 	int mixed;
10078 
10079 	feature = btrfs_super_incompat_flags(info->super_copy);
10080 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10081 
10082 	key.objectid = 0;
10083 	key.offset = 0;
10084 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10085 	path = btrfs_alloc_path();
10086 	if (!path)
10087 		return -ENOMEM;
10088 	path->reada = READA_FORWARD;
10089 
10090 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10091 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10092 	    btrfs_super_generation(info->super_copy) != cache_gen)
10093 		need_clear = 1;
10094 	if (btrfs_test_opt(info, CLEAR_CACHE))
10095 		need_clear = 1;
10096 
10097 	while (1) {
10098 		ret = find_first_block_group(info, path, &key);
10099 		if (ret > 0)
10100 			break;
10101 		if (ret != 0)
10102 			goto error;
10103 
10104 		leaf = path->nodes[0];
10105 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10106 
10107 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10108 						       found_key.offset);
10109 		if (!cache) {
10110 			ret = -ENOMEM;
10111 			goto error;
10112 		}
10113 
10114 		if (need_clear) {
10115 			/*
10116 			 * When we mount with old space cache, we need to
10117 			 * set BTRFS_DC_CLEAR and set dirty flag.
10118 			 *
10119 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10120 			 *    truncate the old free space cache inode and
10121 			 *    setup a new one.
10122 			 * b) Setting 'dirty flag' makes sure that we flush
10123 			 *    the new space cache info onto disk.
10124 			 */
10125 			if (btrfs_test_opt(info, SPACE_CACHE))
10126 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10127 		}
10128 
10129 		read_extent_buffer(leaf, &cache->item,
10130 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10131 				   sizeof(cache->item));
10132 		cache->flags = btrfs_block_group_flags(&cache->item);
10133 		if (!mixed &&
10134 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10135 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10136 			btrfs_err(info,
10137 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10138 				  cache->key.objectid);
10139 			ret = -EINVAL;
10140 			goto error;
10141 		}
10142 
10143 		key.objectid = found_key.objectid + found_key.offset;
10144 		btrfs_release_path(path);
10145 
10146 		/*
10147 		 * We need to exclude the super stripes now so that the space
10148 		 * info has super bytes accounted for, otherwise we'll think
10149 		 * we have more space than we actually do.
10150 		 */
10151 		ret = exclude_super_stripes(info, cache);
10152 		if (ret) {
10153 			/*
10154 			 * We may have excluded something, so call this just in
10155 			 * case.
10156 			 */
10157 			free_excluded_extents(info, cache);
10158 			btrfs_put_block_group(cache);
10159 			goto error;
10160 		}
10161 
10162 		/*
10163 		 * check for two cases, either we are full, and therefore
10164 		 * don't need to bother with the caching work since we won't
10165 		 * find any space, or we are empty, and we can just add all
10166 		 * the space in and be done with it.  This saves us _alot_ of
10167 		 * time, particularly in the full case.
10168 		 */
10169 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10170 			cache->last_byte_to_unpin = (u64)-1;
10171 			cache->cached = BTRFS_CACHE_FINISHED;
10172 			free_excluded_extents(info, cache);
10173 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10174 			cache->last_byte_to_unpin = (u64)-1;
10175 			cache->cached = BTRFS_CACHE_FINISHED;
10176 			add_new_free_space(cache, info,
10177 					   found_key.objectid,
10178 					   found_key.objectid +
10179 					   found_key.offset);
10180 			free_excluded_extents(info, cache);
10181 		}
10182 
10183 		ret = btrfs_add_block_group_cache(info, cache);
10184 		if (ret) {
10185 			btrfs_remove_free_space_cache(cache);
10186 			btrfs_put_block_group(cache);
10187 			goto error;
10188 		}
10189 
10190 		trace_btrfs_add_block_group(info, cache, 0);
10191 		update_space_info(info, cache->flags, found_key.offset,
10192 				  btrfs_block_group_used(&cache->item),
10193 				  cache->bytes_super, &space_info);
10194 
10195 		cache->space_info = space_info;
10196 
10197 		link_block_group(cache);
10198 
10199 		set_avail_alloc_bits(info, cache->flags);
10200 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10201 			inc_block_group_ro(cache, 1);
10202 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10203 			spin_lock(&info->unused_bgs_lock);
10204 			/* Should always be true but just in case. */
10205 			if (list_empty(&cache->bg_list)) {
10206 				btrfs_get_block_group(cache);
10207 				list_add_tail(&cache->bg_list,
10208 					      &info->unused_bgs);
10209 			}
10210 			spin_unlock(&info->unused_bgs_lock);
10211 		}
10212 	}
10213 
10214 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10215 		if (!(get_alloc_profile(info, space_info->flags) &
10216 		      (BTRFS_BLOCK_GROUP_RAID10 |
10217 		       BTRFS_BLOCK_GROUP_RAID1 |
10218 		       BTRFS_BLOCK_GROUP_RAID5 |
10219 		       BTRFS_BLOCK_GROUP_RAID6 |
10220 		       BTRFS_BLOCK_GROUP_DUP)))
10221 			continue;
10222 		/*
10223 		 * avoid allocating from un-mirrored block group if there are
10224 		 * mirrored block groups.
10225 		 */
10226 		list_for_each_entry(cache,
10227 				&space_info->block_groups[BTRFS_RAID_RAID0],
10228 				list)
10229 			inc_block_group_ro(cache, 1);
10230 		list_for_each_entry(cache,
10231 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10232 				list)
10233 			inc_block_group_ro(cache, 1);
10234 	}
10235 
10236 	btrfs_add_raid_kobjects(info);
10237 	init_global_block_rsv(info);
10238 	ret = 0;
10239 error:
10240 	btrfs_free_path(path);
10241 	return ret;
10242 }
10243 
10244 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10245 {
10246 	struct btrfs_fs_info *fs_info = trans->fs_info;
10247 	struct btrfs_block_group_cache *block_group, *tmp;
10248 	struct btrfs_root *extent_root = fs_info->extent_root;
10249 	struct btrfs_block_group_item item;
10250 	struct btrfs_key key;
10251 	int ret = 0;
10252 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10253 
10254 	trans->can_flush_pending_bgs = false;
10255 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10256 		if (ret)
10257 			goto next;
10258 
10259 		spin_lock(&block_group->lock);
10260 		memcpy(&item, &block_group->item, sizeof(item));
10261 		memcpy(&key, &block_group->key, sizeof(key));
10262 		spin_unlock(&block_group->lock);
10263 
10264 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10265 					sizeof(item));
10266 		if (ret)
10267 			btrfs_abort_transaction(trans, ret);
10268 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10269 					       key.offset);
10270 		if (ret)
10271 			btrfs_abort_transaction(trans, ret);
10272 		add_block_group_free_space(trans, fs_info, block_group);
10273 		/* already aborted the transaction if it failed. */
10274 next:
10275 		list_del_init(&block_group->bg_list);
10276 	}
10277 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10278 }
10279 
10280 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10281 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10282 			   u64 type, u64 chunk_offset, u64 size)
10283 {
10284 	struct btrfs_block_group_cache *cache;
10285 	int ret;
10286 
10287 	btrfs_set_log_full_commit(fs_info, trans);
10288 
10289 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10290 	if (!cache)
10291 		return -ENOMEM;
10292 
10293 	btrfs_set_block_group_used(&cache->item, bytes_used);
10294 	btrfs_set_block_group_chunk_objectid(&cache->item,
10295 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10296 	btrfs_set_block_group_flags(&cache->item, type);
10297 
10298 	cache->flags = type;
10299 	cache->last_byte_to_unpin = (u64)-1;
10300 	cache->cached = BTRFS_CACHE_FINISHED;
10301 	cache->needs_free_space = 1;
10302 	ret = exclude_super_stripes(fs_info, cache);
10303 	if (ret) {
10304 		/*
10305 		 * We may have excluded something, so call this just in
10306 		 * case.
10307 		 */
10308 		free_excluded_extents(fs_info, cache);
10309 		btrfs_put_block_group(cache);
10310 		return ret;
10311 	}
10312 
10313 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10314 
10315 	free_excluded_extents(fs_info, cache);
10316 
10317 #ifdef CONFIG_BTRFS_DEBUG
10318 	if (btrfs_should_fragment_free_space(cache)) {
10319 		u64 new_bytes_used = size - bytes_used;
10320 
10321 		bytes_used += new_bytes_used >> 1;
10322 		fragment_free_space(cache);
10323 	}
10324 #endif
10325 	/*
10326 	 * Ensure the corresponding space_info object is created and
10327 	 * assigned to our block group. We want our bg to be added to the rbtree
10328 	 * with its ->space_info set.
10329 	 */
10330 	cache->space_info = __find_space_info(fs_info, cache->flags);
10331 	ASSERT(cache->space_info);
10332 
10333 	ret = btrfs_add_block_group_cache(fs_info, cache);
10334 	if (ret) {
10335 		btrfs_remove_free_space_cache(cache);
10336 		btrfs_put_block_group(cache);
10337 		return ret;
10338 	}
10339 
10340 	/*
10341 	 * Now that our block group has its ->space_info set and is inserted in
10342 	 * the rbtree, update the space info's counters.
10343 	 */
10344 	trace_btrfs_add_block_group(fs_info, cache, 1);
10345 	update_space_info(fs_info, cache->flags, size, bytes_used,
10346 				cache->bytes_super, &cache->space_info);
10347 	update_global_block_rsv(fs_info);
10348 
10349 	link_block_group(cache);
10350 
10351 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10352 
10353 	set_avail_alloc_bits(fs_info, type);
10354 	return 0;
10355 }
10356 
10357 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10358 {
10359 	u64 extra_flags = chunk_to_extended(flags) &
10360 				BTRFS_EXTENDED_PROFILE_MASK;
10361 
10362 	write_seqlock(&fs_info->profiles_lock);
10363 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10364 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10365 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10366 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10367 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10368 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10369 	write_sequnlock(&fs_info->profiles_lock);
10370 }
10371 
10372 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10373 			     struct btrfs_fs_info *fs_info, u64 group_start,
10374 			     struct extent_map *em)
10375 {
10376 	struct btrfs_root *root = fs_info->extent_root;
10377 	struct btrfs_path *path;
10378 	struct btrfs_block_group_cache *block_group;
10379 	struct btrfs_free_cluster *cluster;
10380 	struct btrfs_root *tree_root = fs_info->tree_root;
10381 	struct btrfs_key key;
10382 	struct inode *inode;
10383 	struct kobject *kobj = NULL;
10384 	int ret;
10385 	int index;
10386 	int factor;
10387 	struct btrfs_caching_control *caching_ctl = NULL;
10388 	bool remove_em;
10389 
10390 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10391 	BUG_ON(!block_group);
10392 	BUG_ON(!block_group->ro);
10393 
10394 	/*
10395 	 * Free the reserved super bytes from this block group before
10396 	 * remove it.
10397 	 */
10398 	free_excluded_extents(fs_info, block_group);
10399 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10400 				  block_group->key.offset);
10401 
10402 	memcpy(&key, &block_group->key, sizeof(key));
10403 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10404 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10405 				  BTRFS_BLOCK_GROUP_RAID1 |
10406 				  BTRFS_BLOCK_GROUP_RAID10))
10407 		factor = 2;
10408 	else
10409 		factor = 1;
10410 
10411 	/* make sure this block group isn't part of an allocation cluster */
10412 	cluster = &fs_info->data_alloc_cluster;
10413 	spin_lock(&cluster->refill_lock);
10414 	btrfs_return_cluster_to_free_space(block_group, cluster);
10415 	spin_unlock(&cluster->refill_lock);
10416 
10417 	/*
10418 	 * make sure this block group isn't part of a metadata
10419 	 * allocation cluster
10420 	 */
10421 	cluster = &fs_info->meta_alloc_cluster;
10422 	spin_lock(&cluster->refill_lock);
10423 	btrfs_return_cluster_to_free_space(block_group, cluster);
10424 	spin_unlock(&cluster->refill_lock);
10425 
10426 	path = btrfs_alloc_path();
10427 	if (!path) {
10428 		ret = -ENOMEM;
10429 		goto out;
10430 	}
10431 
10432 	/*
10433 	 * get the inode first so any iput calls done for the io_list
10434 	 * aren't the final iput (no unlinks allowed now)
10435 	 */
10436 	inode = lookup_free_space_inode(fs_info, block_group, path);
10437 
10438 	mutex_lock(&trans->transaction->cache_write_mutex);
10439 	/*
10440 	 * make sure our free spache cache IO is done before remove the
10441 	 * free space inode
10442 	 */
10443 	spin_lock(&trans->transaction->dirty_bgs_lock);
10444 	if (!list_empty(&block_group->io_list)) {
10445 		list_del_init(&block_group->io_list);
10446 
10447 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10448 
10449 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10450 		btrfs_wait_cache_io(trans, block_group, path);
10451 		btrfs_put_block_group(block_group);
10452 		spin_lock(&trans->transaction->dirty_bgs_lock);
10453 	}
10454 
10455 	if (!list_empty(&block_group->dirty_list)) {
10456 		list_del_init(&block_group->dirty_list);
10457 		btrfs_put_block_group(block_group);
10458 	}
10459 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10460 	mutex_unlock(&trans->transaction->cache_write_mutex);
10461 
10462 	if (!IS_ERR(inode)) {
10463 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10464 		if (ret) {
10465 			btrfs_add_delayed_iput(inode);
10466 			goto out;
10467 		}
10468 		clear_nlink(inode);
10469 		/* One for the block groups ref */
10470 		spin_lock(&block_group->lock);
10471 		if (block_group->iref) {
10472 			block_group->iref = 0;
10473 			block_group->inode = NULL;
10474 			spin_unlock(&block_group->lock);
10475 			iput(inode);
10476 		} else {
10477 			spin_unlock(&block_group->lock);
10478 		}
10479 		/* One for our lookup ref */
10480 		btrfs_add_delayed_iput(inode);
10481 	}
10482 
10483 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10484 	key.offset = block_group->key.objectid;
10485 	key.type = 0;
10486 
10487 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10488 	if (ret < 0)
10489 		goto out;
10490 	if (ret > 0)
10491 		btrfs_release_path(path);
10492 	if (ret == 0) {
10493 		ret = btrfs_del_item(trans, tree_root, path);
10494 		if (ret)
10495 			goto out;
10496 		btrfs_release_path(path);
10497 	}
10498 
10499 	spin_lock(&fs_info->block_group_cache_lock);
10500 	rb_erase(&block_group->cache_node,
10501 		 &fs_info->block_group_cache_tree);
10502 	RB_CLEAR_NODE(&block_group->cache_node);
10503 
10504 	if (fs_info->first_logical_byte == block_group->key.objectid)
10505 		fs_info->first_logical_byte = (u64)-1;
10506 	spin_unlock(&fs_info->block_group_cache_lock);
10507 
10508 	down_write(&block_group->space_info->groups_sem);
10509 	/*
10510 	 * we must use list_del_init so people can check to see if they
10511 	 * are still on the list after taking the semaphore
10512 	 */
10513 	list_del_init(&block_group->list);
10514 	if (list_empty(&block_group->space_info->block_groups[index])) {
10515 		kobj = block_group->space_info->block_group_kobjs[index];
10516 		block_group->space_info->block_group_kobjs[index] = NULL;
10517 		clear_avail_alloc_bits(fs_info, block_group->flags);
10518 	}
10519 	up_write(&block_group->space_info->groups_sem);
10520 	if (kobj) {
10521 		kobject_del(kobj);
10522 		kobject_put(kobj);
10523 	}
10524 
10525 	if (block_group->has_caching_ctl)
10526 		caching_ctl = get_caching_control(block_group);
10527 	if (block_group->cached == BTRFS_CACHE_STARTED)
10528 		wait_block_group_cache_done(block_group);
10529 	if (block_group->has_caching_ctl) {
10530 		down_write(&fs_info->commit_root_sem);
10531 		if (!caching_ctl) {
10532 			struct btrfs_caching_control *ctl;
10533 
10534 			list_for_each_entry(ctl,
10535 				    &fs_info->caching_block_groups, list)
10536 				if (ctl->block_group == block_group) {
10537 					caching_ctl = ctl;
10538 					refcount_inc(&caching_ctl->count);
10539 					break;
10540 				}
10541 		}
10542 		if (caching_ctl)
10543 			list_del_init(&caching_ctl->list);
10544 		up_write(&fs_info->commit_root_sem);
10545 		if (caching_ctl) {
10546 			/* Once for the caching bgs list and once for us. */
10547 			put_caching_control(caching_ctl);
10548 			put_caching_control(caching_ctl);
10549 		}
10550 	}
10551 
10552 	spin_lock(&trans->transaction->dirty_bgs_lock);
10553 	if (!list_empty(&block_group->dirty_list)) {
10554 		WARN_ON(1);
10555 	}
10556 	if (!list_empty(&block_group->io_list)) {
10557 		WARN_ON(1);
10558 	}
10559 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10560 	btrfs_remove_free_space_cache(block_group);
10561 
10562 	spin_lock(&block_group->space_info->lock);
10563 	list_del_init(&block_group->ro_list);
10564 
10565 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10566 		WARN_ON(block_group->space_info->total_bytes
10567 			< block_group->key.offset);
10568 		WARN_ON(block_group->space_info->bytes_readonly
10569 			< block_group->key.offset);
10570 		WARN_ON(block_group->space_info->disk_total
10571 			< block_group->key.offset * factor);
10572 	}
10573 	block_group->space_info->total_bytes -= block_group->key.offset;
10574 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10575 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10576 
10577 	spin_unlock(&block_group->space_info->lock);
10578 
10579 	memcpy(&key, &block_group->key, sizeof(key));
10580 
10581 	mutex_lock(&fs_info->chunk_mutex);
10582 	if (!list_empty(&em->list)) {
10583 		/* We're in the transaction->pending_chunks list. */
10584 		free_extent_map(em);
10585 	}
10586 	spin_lock(&block_group->lock);
10587 	block_group->removed = 1;
10588 	/*
10589 	 * At this point trimming can't start on this block group, because we
10590 	 * removed the block group from the tree fs_info->block_group_cache_tree
10591 	 * so no one can't find it anymore and even if someone already got this
10592 	 * block group before we removed it from the rbtree, they have already
10593 	 * incremented block_group->trimming - if they didn't, they won't find
10594 	 * any free space entries because we already removed them all when we
10595 	 * called btrfs_remove_free_space_cache().
10596 	 *
10597 	 * And we must not remove the extent map from the fs_info->mapping_tree
10598 	 * to prevent the same logical address range and physical device space
10599 	 * ranges from being reused for a new block group. This is because our
10600 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10601 	 * completely transactionless, so while it is trimming a range the
10602 	 * currently running transaction might finish and a new one start,
10603 	 * allowing for new block groups to be created that can reuse the same
10604 	 * physical device locations unless we take this special care.
10605 	 *
10606 	 * There may also be an implicit trim operation if the file system
10607 	 * is mounted with -odiscard. The same protections must remain
10608 	 * in place until the extents have been discarded completely when
10609 	 * the transaction commit has completed.
10610 	 */
10611 	remove_em = (atomic_read(&block_group->trimming) == 0);
10612 	/*
10613 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10614 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10615 	 * before checking block_group->removed).
10616 	 */
10617 	if (!remove_em) {
10618 		/*
10619 		 * Our em might be in trans->transaction->pending_chunks which
10620 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10621 		 * and so is the fs_info->pinned_chunks list.
10622 		 *
10623 		 * So at this point we must be holding the chunk_mutex to avoid
10624 		 * any races with chunk allocation (more specifically at
10625 		 * volumes.c:contains_pending_extent()), to ensure it always
10626 		 * sees the em, either in the pending_chunks list or in the
10627 		 * pinned_chunks list.
10628 		 */
10629 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10630 	}
10631 	spin_unlock(&block_group->lock);
10632 
10633 	if (remove_em) {
10634 		struct extent_map_tree *em_tree;
10635 
10636 		em_tree = &fs_info->mapping_tree.map_tree;
10637 		write_lock(&em_tree->lock);
10638 		/*
10639 		 * The em might be in the pending_chunks list, so make sure the
10640 		 * chunk mutex is locked, since remove_extent_mapping() will
10641 		 * delete us from that list.
10642 		 */
10643 		remove_extent_mapping(em_tree, em);
10644 		write_unlock(&em_tree->lock);
10645 		/* once for the tree */
10646 		free_extent_map(em);
10647 	}
10648 
10649 	mutex_unlock(&fs_info->chunk_mutex);
10650 
10651 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10652 	if (ret)
10653 		goto out;
10654 
10655 	btrfs_put_block_group(block_group);
10656 	btrfs_put_block_group(block_group);
10657 
10658 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10659 	if (ret > 0)
10660 		ret = -EIO;
10661 	if (ret < 0)
10662 		goto out;
10663 
10664 	ret = btrfs_del_item(trans, root, path);
10665 out:
10666 	btrfs_free_path(path);
10667 	return ret;
10668 }
10669 
10670 struct btrfs_trans_handle *
10671 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10672 				     const u64 chunk_offset)
10673 {
10674 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10675 	struct extent_map *em;
10676 	struct map_lookup *map;
10677 	unsigned int num_items;
10678 
10679 	read_lock(&em_tree->lock);
10680 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10681 	read_unlock(&em_tree->lock);
10682 	ASSERT(em && em->start == chunk_offset);
10683 
10684 	/*
10685 	 * We need to reserve 3 + N units from the metadata space info in order
10686 	 * to remove a block group (done at btrfs_remove_chunk() and at
10687 	 * btrfs_remove_block_group()), which are used for:
10688 	 *
10689 	 * 1 unit for adding the free space inode's orphan (located in the tree
10690 	 * of tree roots).
10691 	 * 1 unit for deleting the block group item (located in the extent
10692 	 * tree).
10693 	 * 1 unit for deleting the free space item (located in tree of tree
10694 	 * roots).
10695 	 * N units for deleting N device extent items corresponding to each
10696 	 * stripe (located in the device tree).
10697 	 *
10698 	 * In order to remove a block group we also need to reserve units in the
10699 	 * system space info in order to update the chunk tree (update one or
10700 	 * more device items and remove one chunk item), but this is done at
10701 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10702 	 */
10703 	map = em->map_lookup;
10704 	num_items = 3 + map->num_stripes;
10705 	free_extent_map(em);
10706 
10707 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10708 							   num_items, 1);
10709 }
10710 
10711 /*
10712  * Process the unused_bgs list and remove any that don't have any allocated
10713  * space inside of them.
10714  */
10715 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10716 {
10717 	struct btrfs_block_group_cache *block_group;
10718 	struct btrfs_space_info *space_info;
10719 	struct btrfs_trans_handle *trans;
10720 	int ret = 0;
10721 
10722 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10723 		return;
10724 
10725 	spin_lock(&fs_info->unused_bgs_lock);
10726 	while (!list_empty(&fs_info->unused_bgs)) {
10727 		u64 start, end;
10728 		int trimming;
10729 
10730 		block_group = list_first_entry(&fs_info->unused_bgs,
10731 					       struct btrfs_block_group_cache,
10732 					       bg_list);
10733 		list_del_init(&block_group->bg_list);
10734 
10735 		space_info = block_group->space_info;
10736 
10737 		if (ret || btrfs_mixed_space_info(space_info)) {
10738 			btrfs_put_block_group(block_group);
10739 			continue;
10740 		}
10741 		spin_unlock(&fs_info->unused_bgs_lock);
10742 
10743 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10744 
10745 		/* Don't want to race with allocators so take the groups_sem */
10746 		down_write(&space_info->groups_sem);
10747 		spin_lock(&block_group->lock);
10748 		if (block_group->reserved ||
10749 		    btrfs_block_group_used(&block_group->item) ||
10750 		    block_group->ro ||
10751 		    list_is_singular(&block_group->list)) {
10752 			/*
10753 			 * We want to bail if we made new allocations or have
10754 			 * outstanding allocations in this block group.  We do
10755 			 * the ro check in case balance is currently acting on
10756 			 * this block group.
10757 			 */
10758 			spin_unlock(&block_group->lock);
10759 			up_write(&space_info->groups_sem);
10760 			goto next;
10761 		}
10762 		spin_unlock(&block_group->lock);
10763 
10764 		/* We don't want to force the issue, only flip if it's ok. */
10765 		ret = inc_block_group_ro(block_group, 0);
10766 		up_write(&space_info->groups_sem);
10767 		if (ret < 0) {
10768 			ret = 0;
10769 			goto next;
10770 		}
10771 
10772 		/*
10773 		 * Want to do this before we do anything else so we can recover
10774 		 * properly if we fail to join the transaction.
10775 		 */
10776 		trans = btrfs_start_trans_remove_block_group(fs_info,
10777 						     block_group->key.objectid);
10778 		if (IS_ERR(trans)) {
10779 			btrfs_dec_block_group_ro(block_group);
10780 			ret = PTR_ERR(trans);
10781 			goto next;
10782 		}
10783 
10784 		/*
10785 		 * We could have pending pinned extents for this block group,
10786 		 * just delete them, we don't care about them anymore.
10787 		 */
10788 		start = block_group->key.objectid;
10789 		end = start + block_group->key.offset - 1;
10790 		/*
10791 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10792 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10793 		 * another task might be running finish_extent_commit() for the
10794 		 * previous transaction N - 1, and have seen a range belonging
10795 		 * to the block group in freed_extents[] before we were able to
10796 		 * clear the whole block group range from freed_extents[]. This
10797 		 * means that task can lookup for the block group after we
10798 		 * unpinned it from freed_extents[] and removed it, leading to
10799 		 * a BUG_ON() at btrfs_unpin_extent_range().
10800 		 */
10801 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10802 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10803 				  EXTENT_DIRTY);
10804 		if (ret) {
10805 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10806 			btrfs_dec_block_group_ro(block_group);
10807 			goto end_trans;
10808 		}
10809 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10810 				  EXTENT_DIRTY);
10811 		if (ret) {
10812 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10813 			btrfs_dec_block_group_ro(block_group);
10814 			goto end_trans;
10815 		}
10816 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10817 
10818 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10819 		spin_lock(&space_info->lock);
10820 		spin_lock(&block_group->lock);
10821 
10822 		space_info->bytes_pinned -= block_group->pinned;
10823 		space_info->bytes_readonly += block_group->pinned;
10824 		percpu_counter_add(&space_info->total_bytes_pinned,
10825 				   -block_group->pinned);
10826 		block_group->pinned = 0;
10827 
10828 		spin_unlock(&block_group->lock);
10829 		spin_unlock(&space_info->lock);
10830 
10831 		/* DISCARD can flip during remount */
10832 		trimming = btrfs_test_opt(fs_info, DISCARD);
10833 
10834 		/* Implicit trim during transaction commit. */
10835 		if (trimming)
10836 			btrfs_get_block_group_trimming(block_group);
10837 
10838 		/*
10839 		 * Btrfs_remove_chunk will abort the transaction if things go
10840 		 * horribly wrong.
10841 		 */
10842 		ret = btrfs_remove_chunk(trans, fs_info,
10843 					 block_group->key.objectid);
10844 
10845 		if (ret) {
10846 			if (trimming)
10847 				btrfs_put_block_group_trimming(block_group);
10848 			goto end_trans;
10849 		}
10850 
10851 		/*
10852 		 * If we're not mounted with -odiscard, we can just forget
10853 		 * about this block group. Otherwise we'll need to wait
10854 		 * until transaction commit to do the actual discard.
10855 		 */
10856 		if (trimming) {
10857 			spin_lock(&fs_info->unused_bgs_lock);
10858 			/*
10859 			 * A concurrent scrub might have added us to the list
10860 			 * fs_info->unused_bgs, so use a list_move operation
10861 			 * to add the block group to the deleted_bgs list.
10862 			 */
10863 			list_move(&block_group->bg_list,
10864 				  &trans->transaction->deleted_bgs);
10865 			spin_unlock(&fs_info->unused_bgs_lock);
10866 			btrfs_get_block_group(block_group);
10867 		}
10868 end_trans:
10869 		btrfs_end_transaction(trans);
10870 next:
10871 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10872 		btrfs_put_block_group(block_group);
10873 		spin_lock(&fs_info->unused_bgs_lock);
10874 	}
10875 	spin_unlock(&fs_info->unused_bgs_lock);
10876 }
10877 
10878 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10879 {
10880 	struct btrfs_space_info *space_info;
10881 	struct btrfs_super_block *disk_super;
10882 	u64 features;
10883 	u64 flags;
10884 	int mixed = 0;
10885 	int ret;
10886 
10887 	disk_super = fs_info->super_copy;
10888 	if (!btrfs_super_root(disk_super))
10889 		return -EINVAL;
10890 
10891 	features = btrfs_super_incompat_flags(disk_super);
10892 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10893 		mixed = 1;
10894 
10895 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10896 	ret = create_space_info(fs_info, flags, &space_info);
10897 	if (ret)
10898 		goto out;
10899 
10900 	if (mixed) {
10901 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10902 		ret = create_space_info(fs_info, flags, &space_info);
10903 	} else {
10904 		flags = BTRFS_BLOCK_GROUP_METADATA;
10905 		ret = create_space_info(fs_info, flags, &space_info);
10906 		if (ret)
10907 			goto out;
10908 
10909 		flags = BTRFS_BLOCK_GROUP_DATA;
10910 		ret = create_space_info(fs_info, flags, &space_info);
10911 	}
10912 out:
10913 	return ret;
10914 }
10915 
10916 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10917 				   u64 start, u64 end)
10918 {
10919 	return unpin_extent_range(fs_info, start, end, false);
10920 }
10921 
10922 /*
10923  * It used to be that old block groups would be left around forever.
10924  * Iterating over them would be enough to trim unused space.  Since we
10925  * now automatically remove them, we also need to iterate over unallocated
10926  * space.
10927  *
10928  * We don't want a transaction for this since the discard may take a
10929  * substantial amount of time.  We don't require that a transaction be
10930  * running, but we do need to take a running transaction into account
10931  * to ensure that we're not discarding chunks that were released in
10932  * the current transaction.
10933  *
10934  * Holding the chunks lock will prevent other threads from allocating
10935  * or releasing chunks, but it won't prevent a running transaction
10936  * from committing and releasing the memory that the pending chunks
10937  * list head uses.  For that, we need to take a reference to the
10938  * transaction.
10939  */
10940 static int btrfs_trim_free_extents(struct btrfs_device *device,
10941 				   u64 minlen, u64 *trimmed)
10942 {
10943 	u64 start = 0, len = 0;
10944 	int ret;
10945 
10946 	*trimmed = 0;
10947 
10948 	/* Not writeable = nothing to do. */
10949 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10950 		return 0;
10951 
10952 	/* No free space = nothing to do. */
10953 	if (device->total_bytes <= device->bytes_used)
10954 		return 0;
10955 
10956 	ret = 0;
10957 
10958 	while (1) {
10959 		struct btrfs_fs_info *fs_info = device->fs_info;
10960 		struct btrfs_transaction *trans;
10961 		u64 bytes;
10962 
10963 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10964 		if (ret)
10965 			return ret;
10966 
10967 		down_read(&fs_info->commit_root_sem);
10968 
10969 		spin_lock(&fs_info->trans_lock);
10970 		trans = fs_info->running_transaction;
10971 		if (trans)
10972 			refcount_inc(&trans->use_count);
10973 		spin_unlock(&fs_info->trans_lock);
10974 
10975 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10976 						 &start, &len);
10977 		if (trans)
10978 			btrfs_put_transaction(trans);
10979 
10980 		if (ret) {
10981 			up_read(&fs_info->commit_root_sem);
10982 			mutex_unlock(&fs_info->chunk_mutex);
10983 			if (ret == -ENOSPC)
10984 				ret = 0;
10985 			break;
10986 		}
10987 
10988 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10989 		up_read(&fs_info->commit_root_sem);
10990 		mutex_unlock(&fs_info->chunk_mutex);
10991 
10992 		if (ret)
10993 			break;
10994 
10995 		start += len;
10996 		*trimmed += bytes;
10997 
10998 		if (fatal_signal_pending(current)) {
10999 			ret = -ERESTARTSYS;
11000 			break;
11001 		}
11002 
11003 		cond_resched();
11004 	}
11005 
11006 	return ret;
11007 }
11008 
11009 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11010 {
11011 	struct btrfs_block_group_cache *cache = NULL;
11012 	struct btrfs_device *device;
11013 	struct list_head *devices;
11014 	u64 group_trimmed;
11015 	u64 start;
11016 	u64 end;
11017 	u64 trimmed = 0;
11018 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11019 	int ret = 0;
11020 
11021 	/*
11022 	 * try to trim all FS space, our block group may start from non-zero.
11023 	 */
11024 	if (range->len == total_bytes)
11025 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11026 	else
11027 		cache = btrfs_lookup_block_group(fs_info, range->start);
11028 
11029 	while (cache) {
11030 		if (cache->key.objectid >= (range->start + range->len)) {
11031 			btrfs_put_block_group(cache);
11032 			break;
11033 		}
11034 
11035 		start = max(range->start, cache->key.objectid);
11036 		end = min(range->start + range->len,
11037 				cache->key.objectid + cache->key.offset);
11038 
11039 		if (end - start >= range->minlen) {
11040 			if (!block_group_cache_done(cache)) {
11041 				ret = cache_block_group(cache, 0);
11042 				if (ret) {
11043 					btrfs_put_block_group(cache);
11044 					break;
11045 				}
11046 				ret = wait_block_group_cache_done(cache);
11047 				if (ret) {
11048 					btrfs_put_block_group(cache);
11049 					break;
11050 				}
11051 			}
11052 			ret = btrfs_trim_block_group(cache,
11053 						     &group_trimmed,
11054 						     start,
11055 						     end,
11056 						     range->minlen);
11057 
11058 			trimmed += group_trimmed;
11059 			if (ret) {
11060 				btrfs_put_block_group(cache);
11061 				break;
11062 			}
11063 		}
11064 
11065 		cache = next_block_group(fs_info, cache);
11066 	}
11067 
11068 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11069 	devices = &fs_info->fs_devices->alloc_list;
11070 	list_for_each_entry(device, devices, dev_alloc_list) {
11071 		ret = btrfs_trim_free_extents(device, range->minlen,
11072 					      &group_trimmed);
11073 		if (ret)
11074 			break;
11075 
11076 		trimmed += group_trimmed;
11077 	}
11078 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11079 
11080 	range->len = trimmed;
11081 	return ret;
11082 }
11083 
11084 /*
11085  * btrfs_{start,end}_write_no_snapshotting() are similar to
11086  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11087  * data into the page cache through nocow before the subvolume is snapshoted,
11088  * but flush the data into disk after the snapshot creation, or to prevent
11089  * operations while snapshotting is ongoing and that cause the snapshot to be
11090  * inconsistent (writes followed by expanding truncates for example).
11091  */
11092 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11093 {
11094 	percpu_counter_dec(&root->subv_writers->counter);
11095 	/*
11096 	 * Make sure counter is updated before we wake up waiters.
11097 	 */
11098 	smp_mb();
11099 	if (waitqueue_active(&root->subv_writers->wait))
11100 		wake_up(&root->subv_writers->wait);
11101 }
11102 
11103 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11104 {
11105 	if (atomic_read(&root->will_be_snapshotted))
11106 		return 0;
11107 
11108 	percpu_counter_inc(&root->subv_writers->counter);
11109 	/*
11110 	 * Make sure counter is updated before we check for snapshot creation.
11111 	 */
11112 	smp_mb();
11113 	if (atomic_read(&root->will_be_snapshotted)) {
11114 		btrfs_end_write_no_snapshotting(root);
11115 		return 0;
11116 	}
11117 	return 1;
11118 }
11119 
11120 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11121 {
11122 	while (true) {
11123 		int ret;
11124 
11125 		ret = btrfs_start_write_no_snapshotting(root);
11126 		if (ret)
11127 			break;
11128 		wait_var_event(&root->will_be_snapshotted,
11129 			       !atomic_read(&root->will_be_snapshotted));
11130 	}
11131 }
11132