1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "tree-log.h" 20 #include "disk-io.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "locking.h" 25 #include "free-space-cache.h" 26 #include "free-space-tree.h" 27 #include "math.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 32 #undef SCRAMBLE_DELAYED_REFS 33 34 /* 35 * control flags for do_chunk_alloc's force field 36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 37 * if we really need one. 38 * 39 * CHUNK_ALLOC_LIMITED means to only try and allocate one 40 * if we have very few chunks already allocated. This is 41 * used as part of the clustering code to help make sure 42 * we have a good pool of storage to cluster in, without 43 * filling the FS with empty chunks 44 * 45 * CHUNK_ALLOC_FORCE means it must try to allocate one 46 * 47 */ 48 enum { 49 CHUNK_ALLOC_NO_FORCE = 0, 50 CHUNK_ALLOC_LIMITED = 1, 51 CHUNK_ALLOC_FORCE = 2, 52 }; 53 54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 55 struct btrfs_fs_info *fs_info, 56 struct btrfs_delayed_ref_node *node, u64 parent, 57 u64 root_objectid, u64 owner_objectid, 58 u64 owner_offset, int refs_to_drop, 59 struct btrfs_delayed_extent_op *extra_op); 60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 61 struct extent_buffer *leaf, 62 struct btrfs_extent_item *ei); 63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 64 struct btrfs_fs_info *fs_info, 65 u64 parent, u64 root_objectid, 66 u64 flags, u64 owner, u64 offset, 67 struct btrfs_key *ins, int ref_mod); 68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 69 struct btrfs_fs_info *fs_info, 70 u64 parent, u64 root_objectid, 71 u64 flags, struct btrfs_disk_key *key, 72 int level, struct btrfs_key *ins); 73 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 74 struct btrfs_fs_info *fs_info, u64 flags, 75 int force); 76 static int find_next_key(struct btrfs_path *path, int level, 77 struct btrfs_key *key); 78 static void dump_space_info(struct btrfs_fs_info *fs_info, 79 struct btrfs_space_info *info, u64 bytes, 80 int dump_block_groups); 81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 82 u64 num_bytes); 83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 84 struct btrfs_space_info *space_info, 85 u64 num_bytes); 86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 87 struct btrfs_space_info *space_info, 88 u64 num_bytes); 89 90 static noinline int 91 block_group_cache_done(struct btrfs_block_group_cache *cache) 92 { 93 smp_mb(); 94 return cache->cached == BTRFS_CACHE_FINISHED || 95 cache->cached == BTRFS_CACHE_ERROR; 96 } 97 98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 99 { 100 return (cache->flags & bits) == bits; 101 } 102 103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 104 { 105 atomic_inc(&cache->count); 106 } 107 108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 109 { 110 if (atomic_dec_and_test(&cache->count)) { 111 WARN_ON(cache->pinned > 0); 112 WARN_ON(cache->reserved > 0); 113 114 /* 115 * If not empty, someone is still holding mutex of 116 * full_stripe_lock, which can only be released by caller. 117 * And it will definitely cause use-after-free when caller 118 * tries to release full stripe lock. 119 * 120 * No better way to resolve, but only to warn. 121 */ 122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 123 kfree(cache->free_space_ctl); 124 kfree(cache); 125 } 126 } 127 128 /* 129 * this adds the block group to the fs_info rb tree for the block group 130 * cache 131 */ 132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 133 struct btrfs_block_group_cache *block_group) 134 { 135 struct rb_node **p; 136 struct rb_node *parent = NULL; 137 struct btrfs_block_group_cache *cache; 138 139 spin_lock(&info->block_group_cache_lock); 140 p = &info->block_group_cache_tree.rb_node; 141 142 while (*p) { 143 parent = *p; 144 cache = rb_entry(parent, struct btrfs_block_group_cache, 145 cache_node); 146 if (block_group->key.objectid < cache->key.objectid) { 147 p = &(*p)->rb_left; 148 } else if (block_group->key.objectid > cache->key.objectid) { 149 p = &(*p)->rb_right; 150 } else { 151 spin_unlock(&info->block_group_cache_lock); 152 return -EEXIST; 153 } 154 } 155 156 rb_link_node(&block_group->cache_node, parent, p); 157 rb_insert_color(&block_group->cache_node, 158 &info->block_group_cache_tree); 159 160 if (info->first_logical_byte > block_group->key.objectid) 161 info->first_logical_byte = block_group->key.objectid; 162 163 spin_unlock(&info->block_group_cache_lock); 164 165 return 0; 166 } 167 168 /* 169 * This will return the block group at or after bytenr if contains is 0, else 170 * it will return the block group that contains the bytenr 171 */ 172 static struct btrfs_block_group_cache * 173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 174 int contains) 175 { 176 struct btrfs_block_group_cache *cache, *ret = NULL; 177 struct rb_node *n; 178 u64 end, start; 179 180 spin_lock(&info->block_group_cache_lock); 181 n = info->block_group_cache_tree.rb_node; 182 183 while (n) { 184 cache = rb_entry(n, struct btrfs_block_group_cache, 185 cache_node); 186 end = cache->key.objectid + cache->key.offset - 1; 187 start = cache->key.objectid; 188 189 if (bytenr < start) { 190 if (!contains && (!ret || start < ret->key.objectid)) 191 ret = cache; 192 n = n->rb_left; 193 } else if (bytenr > start) { 194 if (contains && bytenr <= end) { 195 ret = cache; 196 break; 197 } 198 n = n->rb_right; 199 } else { 200 ret = cache; 201 break; 202 } 203 } 204 if (ret) { 205 btrfs_get_block_group(ret); 206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 207 info->first_logical_byte = ret->key.objectid; 208 } 209 spin_unlock(&info->block_group_cache_lock); 210 211 return ret; 212 } 213 214 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 215 u64 start, u64 num_bytes) 216 { 217 u64 end = start + num_bytes - 1; 218 set_extent_bits(&fs_info->freed_extents[0], 219 start, end, EXTENT_UPTODATE); 220 set_extent_bits(&fs_info->freed_extents[1], 221 start, end, EXTENT_UPTODATE); 222 return 0; 223 } 224 225 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 226 struct btrfs_block_group_cache *cache) 227 { 228 u64 start, end; 229 230 start = cache->key.objectid; 231 end = start + cache->key.offset - 1; 232 233 clear_extent_bits(&fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE); 235 clear_extent_bits(&fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE); 237 } 238 239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 240 struct btrfs_block_group_cache *cache) 241 { 242 u64 bytenr; 243 u64 *logical; 244 int stripe_len; 245 int i, nr, ret; 246 247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 249 cache->bytes_super += stripe_len; 250 ret = add_excluded_extent(fs_info, cache->key.objectid, 251 stripe_len); 252 if (ret) 253 return ret; 254 } 255 256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 257 bytenr = btrfs_sb_offset(i); 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 259 bytenr, 0, &logical, &nr, &stripe_len); 260 if (ret) 261 return ret; 262 263 while (nr--) { 264 u64 start, len; 265 266 if (logical[nr] > cache->key.objectid + 267 cache->key.offset) 268 continue; 269 270 if (logical[nr] + stripe_len <= cache->key.objectid) 271 continue; 272 273 start = logical[nr]; 274 if (start < cache->key.objectid) { 275 start = cache->key.objectid; 276 len = (logical[nr] + stripe_len) - start; 277 } else { 278 len = min_t(u64, stripe_len, 279 cache->key.objectid + 280 cache->key.offset - start); 281 } 282 283 cache->bytes_super += len; 284 ret = add_excluded_extent(fs_info, start, len); 285 if (ret) { 286 kfree(logical); 287 return ret; 288 } 289 } 290 291 kfree(logical); 292 } 293 return 0; 294 } 295 296 static struct btrfs_caching_control * 297 get_caching_control(struct btrfs_block_group_cache *cache) 298 { 299 struct btrfs_caching_control *ctl; 300 301 spin_lock(&cache->lock); 302 if (!cache->caching_ctl) { 303 spin_unlock(&cache->lock); 304 return NULL; 305 } 306 307 ctl = cache->caching_ctl; 308 refcount_inc(&ctl->count); 309 spin_unlock(&cache->lock); 310 return ctl; 311 } 312 313 static void put_caching_control(struct btrfs_caching_control *ctl) 314 { 315 if (refcount_dec_and_test(&ctl->count)) 316 kfree(ctl); 317 } 318 319 #ifdef CONFIG_BTRFS_DEBUG 320 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 321 { 322 struct btrfs_fs_info *fs_info = block_group->fs_info; 323 u64 start = block_group->key.objectid; 324 u64 len = block_group->key.offset; 325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 326 fs_info->nodesize : fs_info->sectorsize; 327 u64 step = chunk << 1; 328 329 while (len > chunk) { 330 btrfs_remove_free_space(block_group, start, chunk); 331 start += step; 332 if (len < step) 333 len = 0; 334 else 335 len -= step; 336 } 337 } 338 #endif 339 340 /* 341 * this is only called by cache_block_group, since we could have freed extents 342 * we need to check the pinned_extents for any extents that can't be used yet 343 * since their free space will be released as soon as the transaction commits. 344 */ 345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 346 struct btrfs_fs_info *info, u64 start, u64 end) 347 { 348 u64 extent_start, extent_end, size, total_added = 0; 349 int ret; 350 351 while (start < end) { 352 ret = find_first_extent_bit(info->pinned_extents, start, 353 &extent_start, &extent_end, 354 EXTENT_DIRTY | EXTENT_UPTODATE, 355 NULL); 356 if (ret) 357 break; 358 359 if (extent_start <= start) { 360 start = extent_end + 1; 361 } else if (extent_start > start && extent_start < end) { 362 size = extent_start - start; 363 total_added += size; 364 ret = btrfs_add_free_space(block_group, start, 365 size); 366 BUG_ON(ret); /* -ENOMEM or logic error */ 367 start = extent_end + 1; 368 } else { 369 break; 370 } 371 } 372 373 if (start < end) { 374 size = end - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, size); 377 BUG_ON(ret); /* -ENOMEM or logic error */ 378 } 379 380 return total_added; 381 } 382 383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 384 { 385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 386 struct btrfs_fs_info *fs_info = block_group->fs_info; 387 struct btrfs_root *extent_root = fs_info->extent_root; 388 struct btrfs_path *path; 389 struct extent_buffer *leaf; 390 struct btrfs_key key; 391 u64 total_found = 0; 392 u64 last = 0; 393 u32 nritems; 394 int ret; 395 bool wakeup = true; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 return -ENOMEM; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 #ifdef CONFIG_BTRFS_DEBUG 404 /* 405 * If we're fragmenting we don't want to make anybody think we can 406 * allocate from this block group until we've had a chance to fragment 407 * the free space. 408 */ 409 if (btrfs_should_fragment_free_space(block_group)) 410 wakeup = false; 411 #endif 412 /* 413 * We don't want to deadlock with somebody trying to allocate a new 414 * extent for the extent root while also trying to search the extent 415 * root to add free space. So we skip locking and search the commit 416 * root, since its read-only 417 */ 418 path->skip_locking = 1; 419 path->search_commit_root = 1; 420 path->reada = READA_FORWARD; 421 422 key.objectid = last; 423 key.offset = 0; 424 key.type = BTRFS_EXTENT_ITEM_KEY; 425 426 next: 427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 428 if (ret < 0) 429 goto out; 430 431 leaf = path->nodes[0]; 432 nritems = btrfs_header_nritems(leaf); 433 434 while (1) { 435 if (btrfs_fs_closing(fs_info) > 1) { 436 last = (u64)-1; 437 break; 438 } 439 440 if (path->slots[0] < nritems) { 441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 442 } else { 443 ret = find_next_key(path, 0, &key); 444 if (ret) 445 break; 446 447 if (need_resched() || 448 rwsem_is_contended(&fs_info->commit_root_sem)) { 449 if (wakeup) 450 caching_ctl->progress = last; 451 btrfs_release_path(path); 452 up_read(&fs_info->commit_root_sem); 453 mutex_unlock(&caching_ctl->mutex); 454 cond_resched(); 455 mutex_lock(&caching_ctl->mutex); 456 down_read(&fs_info->commit_root_sem); 457 goto next; 458 } 459 460 ret = btrfs_next_leaf(extent_root, path); 461 if (ret < 0) 462 goto out; 463 if (ret) 464 break; 465 leaf = path->nodes[0]; 466 nritems = btrfs_header_nritems(leaf); 467 continue; 468 } 469 470 if (key.objectid < last) { 471 key.objectid = last; 472 key.offset = 0; 473 key.type = BTRFS_EXTENT_ITEM_KEY; 474 475 if (wakeup) 476 caching_ctl->progress = last; 477 btrfs_release_path(path); 478 goto next; 479 } 480 481 if (key.objectid < block_group->key.objectid) { 482 path->slots[0]++; 483 continue; 484 } 485 486 if (key.objectid >= block_group->key.objectid + 487 block_group->key.offset) 488 break; 489 490 if (key.type == BTRFS_EXTENT_ITEM_KEY || 491 key.type == BTRFS_METADATA_ITEM_KEY) { 492 total_found += add_new_free_space(block_group, 493 fs_info, last, 494 key.objectid); 495 if (key.type == BTRFS_METADATA_ITEM_KEY) 496 last = key.objectid + 497 fs_info->nodesize; 498 else 499 last = key.objectid + key.offset; 500 501 if (total_found > CACHING_CTL_WAKE_UP) { 502 total_found = 0; 503 if (wakeup) 504 wake_up(&caching_ctl->wait); 505 } 506 } 507 path->slots[0]++; 508 } 509 ret = 0; 510 511 total_found += add_new_free_space(block_group, fs_info, last, 512 block_group->key.objectid + 513 block_group->key.offset); 514 caching_ctl->progress = (u64)-1; 515 516 out: 517 btrfs_free_path(path); 518 return ret; 519 } 520 521 static noinline void caching_thread(struct btrfs_work *work) 522 { 523 struct btrfs_block_group_cache *block_group; 524 struct btrfs_fs_info *fs_info; 525 struct btrfs_caching_control *caching_ctl; 526 int ret; 527 528 caching_ctl = container_of(work, struct btrfs_caching_control, work); 529 block_group = caching_ctl->block_group; 530 fs_info = block_group->fs_info; 531 532 mutex_lock(&caching_ctl->mutex); 533 down_read(&fs_info->commit_root_sem); 534 535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 536 ret = load_free_space_tree(caching_ctl); 537 else 538 ret = load_extent_tree_free(caching_ctl); 539 540 spin_lock(&block_group->lock); 541 block_group->caching_ctl = NULL; 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 543 spin_unlock(&block_group->lock); 544 545 #ifdef CONFIG_BTRFS_DEBUG 546 if (btrfs_should_fragment_free_space(block_group)) { 547 u64 bytes_used; 548 549 spin_lock(&block_group->space_info->lock); 550 spin_lock(&block_group->lock); 551 bytes_used = block_group->key.offset - 552 btrfs_block_group_used(&block_group->item); 553 block_group->space_info->bytes_used += bytes_used >> 1; 554 spin_unlock(&block_group->lock); 555 spin_unlock(&block_group->space_info->lock); 556 fragment_free_space(block_group); 557 } 558 #endif 559 560 caching_ctl->progress = (u64)-1; 561 562 up_read(&fs_info->commit_root_sem); 563 free_excluded_extents(fs_info, block_group); 564 mutex_unlock(&caching_ctl->mutex); 565 566 wake_up(&caching_ctl->wait); 567 568 put_caching_control(caching_ctl); 569 btrfs_put_block_group(block_group); 570 } 571 572 static int cache_block_group(struct btrfs_block_group_cache *cache, 573 int load_cache_only) 574 { 575 DEFINE_WAIT(wait); 576 struct btrfs_fs_info *fs_info = cache->fs_info; 577 struct btrfs_caching_control *caching_ctl; 578 int ret = 0; 579 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 581 if (!caching_ctl) 582 return -ENOMEM; 583 584 INIT_LIST_HEAD(&caching_ctl->list); 585 mutex_init(&caching_ctl->mutex); 586 init_waitqueue_head(&caching_ctl->wait); 587 caching_ctl->block_group = cache; 588 caching_ctl->progress = cache->key.objectid; 589 refcount_set(&caching_ctl->count, 1); 590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 591 caching_thread, NULL, NULL); 592 593 spin_lock(&cache->lock); 594 /* 595 * This should be a rare occasion, but this could happen I think in the 596 * case where one thread starts to load the space cache info, and then 597 * some other thread starts a transaction commit which tries to do an 598 * allocation while the other thread is still loading the space cache 599 * info. The previous loop should have kept us from choosing this block 600 * group, but if we've moved to the state where we will wait on caching 601 * block groups we need to first check if we're doing a fast load here, 602 * so we can wait for it to finish, otherwise we could end up allocating 603 * from a block group who's cache gets evicted for one reason or 604 * another. 605 */ 606 while (cache->cached == BTRFS_CACHE_FAST) { 607 struct btrfs_caching_control *ctl; 608 609 ctl = cache->caching_ctl; 610 refcount_inc(&ctl->count); 611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 612 spin_unlock(&cache->lock); 613 614 schedule(); 615 616 finish_wait(&ctl->wait, &wait); 617 put_caching_control(ctl); 618 spin_lock(&cache->lock); 619 } 620 621 if (cache->cached != BTRFS_CACHE_NO) { 622 spin_unlock(&cache->lock); 623 kfree(caching_ctl); 624 return 0; 625 } 626 WARN_ON(cache->caching_ctl); 627 cache->caching_ctl = caching_ctl; 628 cache->cached = BTRFS_CACHE_FAST; 629 spin_unlock(&cache->lock); 630 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 632 mutex_lock(&caching_ctl->mutex); 633 ret = load_free_space_cache(fs_info, cache); 634 635 spin_lock(&cache->lock); 636 if (ret == 1) { 637 cache->caching_ctl = NULL; 638 cache->cached = BTRFS_CACHE_FINISHED; 639 cache->last_byte_to_unpin = (u64)-1; 640 caching_ctl->progress = (u64)-1; 641 } else { 642 if (load_cache_only) { 643 cache->caching_ctl = NULL; 644 cache->cached = BTRFS_CACHE_NO; 645 } else { 646 cache->cached = BTRFS_CACHE_STARTED; 647 cache->has_caching_ctl = 1; 648 } 649 } 650 spin_unlock(&cache->lock); 651 #ifdef CONFIG_BTRFS_DEBUG 652 if (ret == 1 && 653 btrfs_should_fragment_free_space(cache)) { 654 u64 bytes_used; 655 656 spin_lock(&cache->space_info->lock); 657 spin_lock(&cache->lock); 658 bytes_used = cache->key.offset - 659 btrfs_block_group_used(&cache->item); 660 cache->space_info->bytes_used += bytes_used >> 1; 661 spin_unlock(&cache->lock); 662 spin_unlock(&cache->space_info->lock); 663 fragment_free_space(cache); 664 } 665 #endif 666 mutex_unlock(&caching_ctl->mutex); 667 668 wake_up(&caching_ctl->wait); 669 if (ret == 1) { 670 put_caching_control(caching_ctl); 671 free_excluded_extents(fs_info, cache); 672 return 0; 673 } 674 } else { 675 /* 676 * We're either using the free space tree or no caching at all. 677 * Set cached to the appropriate value and wakeup any waiters. 678 */ 679 spin_lock(&cache->lock); 680 if (load_cache_only) { 681 cache->caching_ctl = NULL; 682 cache->cached = BTRFS_CACHE_NO; 683 } else { 684 cache->cached = BTRFS_CACHE_STARTED; 685 cache->has_caching_ctl = 1; 686 } 687 spin_unlock(&cache->lock); 688 wake_up(&caching_ctl->wait); 689 } 690 691 if (load_cache_only) { 692 put_caching_control(caching_ctl); 693 return 0; 694 } 695 696 down_write(&fs_info->commit_root_sem); 697 refcount_inc(&caching_ctl->count); 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 699 up_write(&fs_info->commit_root_sem); 700 701 btrfs_get_block_group(cache); 702 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 704 705 return ret; 706 } 707 708 /* 709 * return the block group that starts at or after bytenr 710 */ 711 static struct btrfs_block_group_cache * 712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 713 { 714 return block_group_cache_tree_search(info, bytenr, 0); 715 } 716 717 /* 718 * return the block group that contains the given bytenr 719 */ 720 struct btrfs_block_group_cache *btrfs_lookup_block_group( 721 struct btrfs_fs_info *info, 722 u64 bytenr) 723 { 724 return block_group_cache_tree_search(info, bytenr, 1); 725 } 726 727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 728 u64 flags) 729 { 730 struct list_head *head = &info->space_info; 731 struct btrfs_space_info *found; 732 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 734 735 rcu_read_lock(); 736 list_for_each_entry_rcu(found, head, list) { 737 if (found->flags & flags) { 738 rcu_read_unlock(); 739 return found; 740 } 741 } 742 rcu_read_unlock(); 743 return NULL; 744 } 745 746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 747 u64 owner, u64 root_objectid) 748 { 749 struct btrfs_space_info *space_info; 750 u64 flags; 751 752 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 754 flags = BTRFS_BLOCK_GROUP_SYSTEM; 755 else 756 flags = BTRFS_BLOCK_GROUP_METADATA; 757 } else { 758 flags = BTRFS_BLOCK_GROUP_DATA; 759 } 760 761 space_info = __find_space_info(fs_info, flags); 762 ASSERT(space_info); 763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 764 } 765 766 /* 767 * after adding space to the filesystem, we need to clear the full flags 768 * on all the space infos. 769 */ 770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 771 { 772 struct list_head *head = &info->space_info; 773 struct btrfs_space_info *found; 774 775 rcu_read_lock(); 776 list_for_each_entry_rcu(found, head, list) 777 found->full = 0; 778 rcu_read_unlock(); 779 } 780 781 /* simple helper to search for an existing data extent at a given offset */ 782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 783 { 784 int ret; 785 struct btrfs_key key; 786 struct btrfs_path *path; 787 788 path = btrfs_alloc_path(); 789 if (!path) 790 return -ENOMEM; 791 792 key.objectid = start; 793 key.offset = len; 794 key.type = BTRFS_EXTENT_ITEM_KEY; 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 796 btrfs_free_path(path); 797 return ret; 798 } 799 800 /* 801 * helper function to lookup reference count and flags of a tree block. 802 * 803 * the head node for delayed ref is used to store the sum of all the 804 * reference count modifications queued up in the rbtree. the head 805 * node may also store the extent flags to set. This way you can check 806 * to see what the reference count and extent flags would be if all of 807 * the delayed refs are not processed. 808 */ 809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 810 struct btrfs_fs_info *fs_info, u64 bytenr, 811 u64 offset, int metadata, u64 *refs, u64 *flags) 812 { 813 struct btrfs_delayed_ref_head *head; 814 struct btrfs_delayed_ref_root *delayed_refs; 815 struct btrfs_path *path; 816 struct btrfs_extent_item *ei; 817 struct extent_buffer *leaf; 818 struct btrfs_key key; 819 u32 item_size; 820 u64 num_refs; 821 u64 extent_flags; 822 int ret; 823 824 /* 825 * If we don't have skinny metadata, don't bother doing anything 826 * different 827 */ 828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 829 offset = fs_info->nodesize; 830 metadata = 0; 831 } 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return -ENOMEM; 836 837 if (!trans) { 838 path->skip_locking = 1; 839 path->search_commit_root = 1; 840 } 841 842 search_again: 843 key.objectid = bytenr; 844 key.offset = offset; 845 if (metadata) 846 key.type = BTRFS_METADATA_ITEM_KEY; 847 else 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 851 if (ret < 0) 852 goto out_free; 853 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 855 if (path->slots[0]) { 856 path->slots[0]--; 857 btrfs_item_key_to_cpu(path->nodes[0], &key, 858 path->slots[0]); 859 if (key.objectid == bytenr && 860 key.type == BTRFS_EXTENT_ITEM_KEY && 861 key.offset == fs_info->nodesize) 862 ret = 0; 863 } 864 } 865 866 if (ret == 0) { 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (item_size >= sizeof(*ei)) { 870 ei = btrfs_item_ptr(leaf, path->slots[0], 871 struct btrfs_extent_item); 872 num_refs = btrfs_extent_refs(leaf, ei); 873 extent_flags = btrfs_extent_flags(leaf, ei); 874 } else { 875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 876 struct btrfs_extent_item_v0 *ei0; 877 BUG_ON(item_size != sizeof(*ei0)); 878 ei0 = btrfs_item_ptr(leaf, path->slots[0], 879 struct btrfs_extent_item_v0); 880 num_refs = btrfs_extent_refs_v0(leaf, ei0); 881 /* FIXME: this isn't correct for data */ 882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 883 #else 884 BUG(); 885 #endif 886 } 887 BUG_ON(num_refs == 0); 888 } else { 889 num_refs = 0; 890 extent_flags = 0; 891 ret = 0; 892 } 893 894 if (!trans) 895 goto out; 896 897 delayed_refs = &trans->transaction->delayed_refs; 898 spin_lock(&delayed_refs->lock); 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 900 if (head) { 901 if (!mutex_trylock(&head->mutex)) { 902 refcount_inc(&head->refs); 903 spin_unlock(&delayed_refs->lock); 904 905 btrfs_release_path(path); 906 907 /* 908 * Mutex was contended, block until it's released and try 909 * again 910 */ 911 mutex_lock(&head->mutex); 912 mutex_unlock(&head->mutex); 913 btrfs_put_delayed_ref_head(head); 914 goto search_again; 915 } 916 spin_lock(&head->lock); 917 if (head->extent_op && head->extent_op->update_flags) 918 extent_flags |= head->extent_op->flags_to_set; 919 else 920 BUG_ON(num_refs == 0); 921 922 num_refs += head->ref_mod; 923 spin_unlock(&head->lock); 924 mutex_unlock(&head->mutex); 925 } 926 spin_unlock(&delayed_refs->lock); 927 out: 928 WARN_ON(num_refs == 0); 929 if (refs) 930 *refs = num_refs; 931 if (flags) 932 *flags = extent_flags; 933 out_free: 934 btrfs_free_path(path); 935 return ret; 936 } 937 938 /* 939 * Back reference rules. Back refs have three main goals: 940 * 941 * 1) differentiate between all holders of references to an extent so that 942 * when a reference is dropped we can make sure it was a valid reference 943 * before freeing the extent. 944 * 945 * 2) Provide enough information to quickly find the holders of an extent 946 * if we notice a given block is corrupted or bad. 947 * 948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 949 * maintenance. This is actually the same as #2, but with a slightly 950 * different use case. 951 * 952 * There are two kinds of back refs. The implicit back refs is optimized 953 * for pointers in non-shared tree blocks. For a given pointer in a block, 954 * back refs of this kind provide information about the block's owner tree 955 * and the pointer's key. These information allow us to find the block by 956 * b-tree searching. The full back refs is for pointers in tree blocks not 957 * referenced by their owner trees. The location of tree block is recorded 958 * in the back refs. Actually the full back refs is generic, and can be 959 * used in all cases the implicit back refs is used. The major shortcoming 960 * of the full back refs is its overhead. Every time a tree block gets 961 * COWed, we have to update back refs entry for all pointers in it. 962 * 963 * For a newly allocated tree block, we use implicit back refs for 964 * pointers in it. This means most tree related operations only involve 965 * implicit back refs. For a tree block created in old transaction, the 966 * only way to drop a reference to it is COW it. So we can detect the 967 * event that tree block loses its owner tree's reference and do the 968 * back refs conversion. 969 * 970 * When a tree block is COWed through a tree, there are four cases: 971 * 972 * The reference count of the block is one and the tree is the block's 973 * owner tree. Nothing to do in this case. 974 * 975 * The reference count of the block is one and the tree is not the 976 * block's owner tree. In this case, full back refs is used for pointers 977 * in the block. Remove these full back refs, add implicit back refs for 978 * every pointers in the new block. 979 * 980 * The reference count of the block is greater than one and the tree is 981 * the block's owner tree. In this case, implicit back refs is used for 982 * pointers in the block. Add full back refs for every pointers in the 983 * block, increase lower level extents' reference counts. The original 984 * implicit back refs are entailed to the new block. 985 * 986 * The reference count of the block is greater than one and the tree is 987 * not the block's owner tree. Add implicit back refs for every pointer in 988 * the new block, increase lower level extents' reference count. 989 * 990 * Back Reference Key composing: 991 * 992 * The key objectid corresponds to the first byte in the extent, 993 * The key type is used to differentiate between types of back refs. 994 * There are different meanings of the key offset for different types 995 * of back refs. 996 * 997 * File extents can be referenced by: 998 * 999 * - multiple snapshots, subvolumes, or different generations in one subvol 1000 * - different files inside a single subvolume 1001 * - different offsets inside a file (bookend extents in file.c) 1002 * 1003 * The extent ref structure for the implicit back refs has fields for: 1004 * 1005 * - Objectid of the subvolume root 1006 * - objectid of the file holding the reference 1007 * - original offset in the file 1008 * - how many bookend extents 1009 * 1010 * The key offset for the implicit back refs is hash of the first 1011 * three fields. 1012 * 1013 * The extent ref structure for the full back refs has field for: 1014 * 1015 * - number of pointers in the tree leaf 1016 * 1017 * The key offset for the implicit back refs is the first byte of 1018 * the tree leaf 1019 * 1020 * When a file extent is allocated, The implicit back refs is used. 1021 * the fields are filled in: 1022 * 1023 * (root_key.objectid, inode objectid, offset in file, 1) 1024 * 1025 * When a file extent is removed file truncation, we find the 1026 * corresponding implicit back refs and check the following fields: 1027 * 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1029 * 1030 * Btree extents can be referenced by: 1031 * 1032 * - Different subvolumes 1033 * 1034 * Both the implicit back refs and the full back refs for tree blocks 1035 * only consist of key. The key offset for the implicit back refs is 1036 * objectid of block's owner tree. The key offset for the full back refs 1037 * is the first byte of parent block. 1038 * 1039 * When implicit back refs is used, information about the lowest key and 1040 * level of the tree block are required. These information are stored in 1041 * tree block info structure. 1042 */ 1043 1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1046 struct btrfs_fs_info *fs_info, 1047 struct btrfs_path *path, 1048 u64 owner, u32 extra_size) 1049 { 1050 struct btrfs_root *root = fs_info->extent_root; 1051 struct btrfs_extent_item *item; 1052 struct btrfs_extent_item_v0 *ei0; 1053 struct btrfs_extent_ref_v0 *ref0; 1054 struct btrfs_tree_block_info *bi; 1055 struct extent_buffer *leaf; 1056 struct btrfs_key key; 1057 struct btrfs_key found_key; 1058 u32 new_size = sizeof(*item); 1059 u64 refs; 1060 int ret; 1061 1062 leaf = path->nodes[0]; 1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1064 1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1066 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_extent_item_v0); 1068 refs = btrfs_extent_refs_v0(leaf, ei0); 1069 1070 if (owner == (u64)-1) { 1071 while (1) { 1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1073 ret = btrfs_next_leaf(root, path); 1074 if (ret < 0) 1075 return ret; 1076 BUG_ON(ret > 0); /* Corruption */ 1077 leaf = path->nodes[0]; 1078 } 1079 btrfs_item_key_to_cpu(leaf, &found_key, 1080 path->slots[0]); 1081 BUG_ON(key.objectid != found_key.objectid); 1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1083 path->slots[0]++; 1084 continue; 1085 } 1086 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_extent_ref_v0); 1088 owner = btrfs_ref_objectid_v0(leaf, ref0); 1089 break; 1090 } 1091 } 1092 btrfs_release_path(path); 1093 1094 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1095 new_size += sizeof(*bi); 1096 1097 new_size -= sizeof(*ei0); 1098 ret = btrfs_search_slot(trans, root, &key, path, 1099 new_size + extra_size, 1); 1100 if (ret < 0) 1101 return ret; 1102 BUG_ON(ret); /* Corruption */ 1103 1104 btrfs_extend_item(fs_info, path, new_size); 1105 1106 leaf = path->nodes[0]; 1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1108 btrfs_set_extent_refs(leaf, item, refs); 1109 /* FIXME: get real generation */ 1110 btrfs_set_extent_generation(leaf, item, 0); 1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1112 btrfs_set_extent_flags(leaf, item, 1113 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1114 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1115 bi = (struct btrfs_tree_block_info *)(item + 1); 1116 /* FIXME: get first key of the block */ 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1118 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1119 } else { 1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1121 } 1122 btrfs_mark_buffer_dirty(leaf); 1123 return 0; 1124 } 1125 #endif 1126 1127 /* 1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1131 */ 1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1133 struct btrfs_extent_inline_ref *iref, 1134 enum btrfs_inline_ref_type is_data) 1135 { 1136 int type = btrfs_extent_inline_ref_type(eb, iref); 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1138 1139 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1140 type == BTRFS_SHARED_BLOCK_REF_KEY || 1141 type == BTRFS_SHARED_DATA_REF_KEY || 1142 type == BTRFS_EXTENT_DATA_REF_KEY) { 1143 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1145 return type; 1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1147 ASSERT(eb->fs_info); 1148 /* 1149 * Every shared one has parent tree 1150 * block, which must be aligned to 1151 * nodesize. 1152 */ 1153 if (offset && 1154 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1155 return type; 1156 } 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else { 1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1173 return type; 1174 } 1175 } 1176 1177 btrfs_print_leaf((struct extent_buffer *)eb); 1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1179 eb->start, type); 1180 WARN_ON(1); 1181 1182 return BTRFS_REF_TYPE_INVALID; 1183 } 1184 1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1186 { 1187 u32 high_crc = ~(u32)0; 1188 u32 low_crc = ~(u32)0; 1189 __le64 lenum; 1190 1191 lenum = cpu_to_le64(root_objectid); 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1193 lenum = cpu_to_le64(owner); 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1195 lenum = cpu_to_le64(offset); 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1197 1198 return ((u64)high_crc << 31) ^ (u64)low_crc; 1199 } 1200 1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1202 struct btrfs_extent_data_ref *ref) 1203 { 1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1205 btrfs_extent_data_ref_objectid(leaf, ref), 1206 btrfs_extent_data_ref_offset(leaf, ref)); 1207 } 1208 1209 static int match_extent_data_ref(struct extent_buffer *leaf, 1210 struct btrfs_extent_data_ref *ref, 1211 u64 root_objectid, u64 owner, u64 offset) 1212 { 1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1215 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1216 return 0; 1217 return 1; 1218 } 1219 1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1221 struct btrfs_fs_info *fs_info, 1222 struct btrfs_path *path, 1223 u64 bytenr, u64 parent, 1224 u64 root_objectid, 1225 u64 owner, u64 offset) 1226 { 1227 struct btrfs_root *root = fs_info->extent_root; 1228 struct btrfs_key key; 1229 struct btrfs_extent_data_ref *ref; 1230 struct extent_buffer *leaf; 1231 u32 nritems; 1232 int ret; 1233 int recow; 1234 int err = -ENOENT; 1235 1236 key.objectid = bytenr; 1237 if (parent) { 1238 key.type = BTRFS_SHARED_DATA_REF_KEY; 1239 key.offset = parent; 1240 } else { 1241 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1242 key.offset = hash_extent_data_ref(root_objectid, 1243 owner, offset); 1244 } 1245 again: 1246 recow = 0; 1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1248 if (ret < 0) { 1249 err = ret; 1250 goto fail; 1251 } 1252 1253 if (parent) { 1254 if (!ret) 1255 return 0; 1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1257 key.type = BTRFS_EXTENT_REF_V0_KEY; 1258 btrfs_release_path(path); 1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1260 if (ret < 0) { 1261 err = ret; 1262 goto fail; 1263 } 1264 if (!ret) 1265 return 0; 1266 #endif 1267 goto fail; 1268 } 1269 1270 leaf = path->nodes[0]; 1271 nritems = btrfs_header_nritems(leaf); 1272 while (1) { 1273 if (path->slots[0] >= nritems) { 1274 ret = btrfs_next_leaf(root, path); 1275 if (ret < 0) 1276 err = ret; 1277 if (ret) 1278 goto fail; 1279 1280 leaf = path->nodes[0]; 1281 nritems = btrfs_header_nritems(leaf); 1282 recow = 1; 1283 } 1284 1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1286 if (key.objectid != bytenr || 1287 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1288 goto fail; 1289 1290 ref = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_extent_data_ref); 1292 1293 if (match_extent_data_ref(leaf, ref, root_objectid, 1294 owner, offset)) { 1295 if (recow) { 1296 btrfs_release_path(path); 1297 goto again; 1298 } 1299 err = 0; 1300 break; 1301 } 1302 path->slots[0]++; 1303 } 1304 fail: 1305 return err; 1306 } 1307 1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info, 1310 struct btrfs_path *path, 1311 u64 bytenr, u64 parent, 1312 u64 root_objectid, u64 owner, 1313 u64 offset, int refs_to_add) 1314 { 1315 struct btrfs_root *root = fs_info->extent_root; 1316 struct btrfs_key key; 1317 struct extent_buffer *leaf; 1318 u32 size; 1319 u32 num_refs; 1320 int ret; 1321 1322 key.objectid = bytenr; 1323 if (parent) { 1324 key.type = BTRFS_SHARED_DATA_REF_KEY; 1325 key.offset = parent; 1326 size = sizeof(struct btrfs_shared_data_ref); 1327 } else { 1328 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1329 key.offset = hash_extent_data_ref(root_objectid, 1330 owner, offset); 1331 size = sizeof(struct btrfs_extent_data_ref); 1332 } 1333 1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1335 if (ret && ret != -EEXIST) 1336 goto fail; 1337 1338 leaf = path->nodes[0]; 1339 if (parent) { 1340 struct btrfs_shared_data_ref *ref; 1341 ref = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_shared_data_ref); 1343 if (ret == 0) { 1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1345 } else { 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1347 num_refs += refs_to_add; 1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1349 } 1350 } else { 1351 struct btrfs_extent_data_ref *ref; 1352 while (ret == -EEXIST) { 1353 ref = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_extent_data_ref); 1355 if (match_extent_data_ref(leaf, ref, root_objectid, 1356 owner, offset)) 1357 break; 1358 btrfs_release_path(path); 1359 key.offset++; 1360 ret = btrfs_insert_empty_item(trans, root, path, &key, 1361 size); 1362 if (ret && ret != -EEXIST) 1363 goto fail; 1364 1365 leaf = path->nodes[0]; 1366 } 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (ret == 0) { 1370 btrfs_set_extent_data_ref_root(leaf, ref, 1371 root_objectid); 1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1375 } else { 1376 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1377 num_refs += refs_to_add; 1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1379 } 1380 } 1381 btrfs_mark_buffer_dirty(leaf); 1382 ret = 0; 1383 fail: 1384 btrfs_release_path(path); 1385 return ret; 1386 } 1387 1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info, 1390 struct btrfs_path *path, 1391 int refs_to_drop, int *last_ref) 1392 { 1393 struct btrfs_key key; 1394 struct btrfs_extent_data_ref *ref1 = NULL; 1395 struct btrfs_shared_data_ref *ref2 = NULL; 1396 struct extent_buffer *leaf; 1397 u32 num_refs = 0; 1398 int ret = 0; 1399 1400 leaf = path->nodes[0]; 1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1402 1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1404 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1405 struct btrfs_extent_data_ref); 1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1408 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1409 struct btrfs_shared_data_ref); 1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1413 struct btrfs_extent_ref_v0 *ref0; 1414 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1415 struct btrfs_extent_ref_v0); 1416 num_refs = btrfs_ref_count_v0(leaf, ref0); 1417 #endif 1418 } else { 1419 BUG(); 1420 } 1421 1422 BUG_ON(num_refs < refs_to_drop); 1423 num_refs -= refs_to_drop; 1424 1425 if (num_refs == 0) { 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1427 *last_ref = 1; 1428 } else { 1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1434 else { 1435 struct btrfs_extent_ref_v0 *ref0; 1436 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1437 struct btrfs_extent_ref_v0); 1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1439 } 1440 #endif 1441 btrfs_mark_buffer_dirty(leaf); 1442 } 1443 return ret; 1444 } 1445 1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1447 struct btrfs_extent_inline_ref *iref) 1448 { 1449 struct btrfs_key key; 1450 struct extent_buffer *leaf; 1451 struct btrfs_extent_data_ref *ref1; 1452 struct btrfs_shared_data_ref *ref2; 1453 u32 num_refs = 0; 1454 int type; 1455 1456 leaf = path->nodes[0]; 1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1458 if (iref) { 1459 /* 1460 * If type is invalid, we should have bailed out earlier than 1461 * this call. 1462 */ 1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1464 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1468 } else { 1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1471 } 1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1473 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1474 struct btrfs_extent_data_ref); 1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1477 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1478 struct btrfs_shared_data_ref); 1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1482 struct btrfs_extent_ref_v0 *ref0; 1483 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1484 struct btrfs_extent_ref_v0); 1485 num_refs = btrfs_ref_count_v0(leaf, ref0); 1486 #endif 1487 } else { 1488 WARN_ON(1); 1489 } 1490 return num_refs; 1491 } 1492 1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1494 struct btrfs_fs_info *fs_info, 1495 struct btrfs_path *path, 1496 u64 bytenr, u64 parent, 1497 u64 root_objectid) 1498 { 1499 struct btrfs_root *root = fs_info->extent_root; 1500 struct btrfs_key key; 1501 int ret; 1502 1503 key.objectid = bytenr; 1504 if (parent) { 1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1506 key.offset = parent; 1507 } else { 1508 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1509 key.offset = root_objectid; 1510 } 1511 1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1513 if (ret > 0) 1514 ret = -ENOENT; 1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1516 if (ret == -ENOENT && parent) { 1517 btrfs_release_path(path); 1518 key.type = BTRFS_EXTENT_REF_V0_KEY; 1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1520 if (ret > 0) 1521 ret = -ENOENT; 1522 } 1523 #endif 1524 return ret; 1525 } 1526 1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1528 struct btrfs_fs_info *fs_info, 1529 struct btrfs_path *path, 1530 u64 bytenr, u64 parent, 1531 u64 root_objectid) 1532 { 1533 struct btrfs_key key; 1534 int ret; 1535 1536 key.objectid = bytenr; 1537 if (parent) { 1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1539 key.offset = parent; 1540 } else { 1541 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1542 key.offset = root_objectid; 1543 } 1544 1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1546 path, &key, 0); 1547 btrfs_release_path(path); 1548 return ret; 1549 } 1550 1551 static inline int extent_ref_type(u64 parent, u64 owner) 1552 { 1553 int type; 1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1555 if (parent > 0) 1556 type = BTRFS_SHARED_BLOCK_REF_KEY; 1557 else 1558 type = BTRFS_TREE_BLOCK_REF_KEY; 1559 } else { 1560 if (parent > 0) 1561 type = BTRFS_SHARED_DATA_REF_KEY; 1562 else 1563 type = BTRFS_EXTENT_DATA_REF_KEY; 1564 } 1565 return type; 1566 } 1567 1568 static int find_next_key(struct btrfs_path *path, int level, 1569 struct btrfs_key *key) 1570 1571 { 1572 for (; level < BTRFS_MAX_LEVEL; level++) { 1573 if (!path->nodes[level]) 1574 break; 1575 if (path->slots[level] + 1 >= 1576 btrfs_header_nritems(path->nodes[level])) 1577 continue; 1578 if (level == 0) 1579 btrfs_item_key_to_cpu(path->nodes[level], key, 1580 path->slots[level] + 1); 1581 else 1582 btrfs_node_key_to_cpu(path->nodes[level], key, 1583 path->slots[level] + 1); 1584 return 0; 1585 } 1586 return 1; 1587 } 1588 1589 /* 1590 * look for inline back ref. if back ref is found, *ref_ret is set 1591 * to the address of inline back ref, and 0 is returned. 1592 * 1593 * if back ref isn't found, *ref_ret is set to the address where it 1594 * should be inserted, and -ENOENT is returned. 1595 * 1596 * if insert is true and there are too many inline back refs, the path 1597 * points to the extent item, and -EAGAIN is returned. 1598 * 1599 * NOTE: inline back refs are ordered in the same way that back ref 1600 * items in the tree are ordered. 1601 */ 1602 static noinline_for_stack 1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1604 struct btrfs_fs_info *fs_info, 1605 struct btrfs_path *path, 1606 struct btrfs_extent_inline_ref **ref_ret, 1607 u64 bytenr, u64 num_bytes, 1608 u64 parent, u64 root_objectid, 1609 u64 owner, u64 offset, int insert) 1610 { 1611 struct btrfs_root *root = fs_info->extent_root; 1612 struct btrfs_key key; 1613 struct extent_buffer *leaf; 1614 struct btrfs_extent_item *ei; 1615 struct btrfs_extent_inline_ref *iref; 1616 u64 flags; 1617 u64 item_size; 1618 unsigned long ptr; 1619 unsigned long end; 1620 int extra_size; 1621 int type; 1622 int want; 1623 int ret; 1624 int err = 0; 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1626 int needed; 1627 1628 key.objectid = bytenr; 1629 key.type = BTRFS_EXTENT_ITEM_KEY; 1630 key.offset = num_bytes; 1631 1632 want = extent_ref_type(parent, owner); 1633 if (insert) { 1634 extra_size = btrfs_extent_inline_ref_size(want); 1635 path->keep_locks = 1; 1636 } else 1637 extra_size = -1; 1638 1639 /* 1640 * Owner is our parent level, so we can just add one to get the level 1641 * for the block we are interested in. 1642 */ 1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1644 key.type = BTRFS_METADATA_ITEM_KEY; 1645 key.offset = owner; 1646 } 1647 1648 again: 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1650 if (ret < 0) { 1651 err = ret; 1652 goto out; 1653 } 1654 1655 /* 1656 * We may be a newly converted file system which still has the old fat 1657 * extent entries for metadata, so try and see if we have one of those. 1658 */ 1659 if (ret > 0 && skinny_metadata) { 1660 skinny_metadata = false; 1661 if (path->slots[0]) { 1662 path->slots[0]--; 1663 btrfs_item_key_to_cpu(path->nodes[0], &key, 1664 path->slots[0]); 1665 if (key.objectid == bytenr && 1666 key.type == BTRFS_EXTENT_ITEM_KEY && 1667 key.offset == num_bytes) 1668 ret = 0; 1669 } 1670 if (ret) { 1671 key.objectid = bytenr; 1672 key.type = BTRFS_EXTENT_ITEM_KEY; 1673 key.offset = num_bytes; 1674 btrfs_release_path(path); 1675 goto again; 1676 } 1677 } 1678 1679 if (ret && !insert) { 1680 err = -ENOENT; 1681 goto out; 1682 } else if (WARN_ON(ret)) { 1683 err = -EIO; 1684 goto out; 1685 } 1686 1687 leaf = path->nodes[0]; 1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1690 if (item_size < sizeof(*ei)) { 1691 if (!insert) { 1692 err = -ENOENT; 1693 goto out; 1694 } 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1696 extra_size); 1697 if (ret < 0) { 1698 err = ret; 1699 goto out; 1700 } 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 } 1704 #endif 1705 BUG_ON(item_size < sizeof(*ei)); 1706 1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1708 flags = btrfs_extent_flags(leaf, ei); 1709 1710 ptr = (unsigned long)(ei + 1); 1711 end = (unsigned long)ei + item_size; 1712 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1714 ptr += sizeof(struct btrfs_tree_block_info); 1715 BUG_ON(ptr > end); 1716 } 1717 1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1719 needed = BTRFS_REF_TYPE_DATA; 1720 else 1721 needed = BTRFS_REF_TYPE_BLOCK; 1722 1723 err = -ENOENT; 1724 while (1) { 1725 if (ptr >= end) { 1726 WARN_ON(ptr > end); 1727 break; 1728 } 1729 iref = (struct btrfs_extent_inline_ref *)ptr; 1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1731 if (type == BTRFS_REF_TYPE_INVALID) { 1732 err = -EINVAL; 1733 goto out; 1734 } 1735 1736 if (want < type) 1737 break; 1738 if (want > type) { 1739 ptr += btrfs_extent_inline_ref_size(type); 1740 continue; 1741 } 1742 1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1744 struct btrfs_extent_data_ref *dref; 1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1746 if (match_extent_data_ref(leaf, dref, root_objectid, 1747 owner, offset)) { 1748 err = 0; 1749 break; 1750 } 1751 if (hash_extent_data_ref_item(leaf, dref) < 1752 hash_extent_data_ref(root_objectid, owner, offset)) 1753 break; 1754 } else { 1755 u64 ref_offset; 1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1757 if (parent > 0) { 1758 if (parent == ref_offset) { 1759 err = 0; 1760 break; 1761 } 1762 if (ref_offset < parent) 1763 break; 1764 } else { 1765 if (root_objectid == ref_offset) { 1766 err = 0; 1767 break; 1768 } 1769 if (ref_offset < root_objectid) 1770 break; 1771 } 1772 } 1773 ptr += btrfs_extent_inline_ref_size(type); 1774 } 1775 if (err == -ENOENT && insert) { 1776 if (item_size + extra_size >= 1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1778 err = -EAGAIN; 1779 goto out; 1780 } 1781 /* 1782 * To add new inline back ref, we have to make sure 1783 * there is no corresponding back ref item. 1784 * For simplicity, we just do not add new inline back 1785 * ref if there is any kind of item for this block 1786 */ 1787 if (find_next_key(path, 0, &key) == 0 && 1788 key.objectid == bytenr && 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1790 err = -EAGAIN; 1791 goto out; 1792 } 1793 } 1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1795 out: 1796 if (insert) { 1797 path->keep_locks = 0; 1798 btrfs_unlock_up_safe(path, 1); 1799 } 1800 return err; 1801 } 1802 1803 /* 1804 * helper to add new inline back ref 1805 */ 1806 static noinline_for_stack 1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1808 struct btrfs_path *path, 1809 struct btrfs_extent_inline_ref *iref, 1810 u64 parent, u64 root_objectid, 1811 u64 owner, u64 offset, int refs_to_add, 1812 struct btrfs_delayed_extent_op *extent_op) 1813 { 1814 struct extent_buffer *leaf; 1815 struct btrfs_extent_item *ei; 1816 unsigned long ptr; 1817 unsigned long end; 1818 unsigned long item_offset; 1819 u64 refs; 1820 int size; 1821 int type; 1822 1823 leaf = path->nodes[0]; 1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1825 item_offset = (unsigned long)iref - (unsigned long)ei; 1826 1827 type = extent_ref_type(parent, owner); 1828 size = btrfs_extent_inline_ref_size(type); 1829 1830 btrfs_extend_item(fs_info, path, size); 1831 1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1833 refs = btrfs_extent_refs(leaf, ei); 1834 refs += refs_to_add; 1835 btrfs_set_extent_refs(leaf, ei, refs); 1836 if (extent_op) 1837 __run_delayed_extent_op(extent_op, leaf, ei); 1838 1839 ptr = (unsigned long)ei + item_offset; 1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1841 if (ptr < end - size) 1842 memmove_extent_buffer(leaf, ptr + size, ptr, 1843 end - size - ptr); 1844 1845 iref = (struct btrfs_extent_inline_ref *)ptr; 1846 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1848 struct btrfs_extent_data_ref *dref; 1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1855 struct btrfs_shared_data_ref *sref; 1856 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1861 } else { 1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1863 } 1864 btrfs_mark_buffer_dirty(leaf); 1865 } 1866 1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1868 struct btrfs_fs_info *fs_info, 1869 struct btrfs_path *path, 1870 struct btrfs_extent_inline_ref **ref_ret, 1871 u64 bytenr, u64 num_bytes, u64 parent, 1872 u64 root_objectid, u64 owner, u64 offset) 1873 { 1874 int ret; 1875 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1877 bytenr, num_bytes, parent, 1878 root_objectid, owner, offset, 0); 1879 if (ret != -ENOENT) 1880 return ret; 1881 1882 btrfs_release_path(path); 1883 *ref_ret = NULL; 1884 1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1887 parent, root_objectid); 1888 } else { 1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1890 parent, root_objectid, owner, 1891 offset); 1892 } 1893 return ret; 1894 } 1895 1896 /* 1897 * helper to update/remove inline back ref 1898 */ 1899 static noinline_for_stack 1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1901 struct btrfs_path *path, 1902 struct btrfs_extent_inline_ref *iref, 1903 int refs_to_mod, 1904 struct btrfs_delayed_extent_op *extent_op, 1905 int *last_ref) 1906 { 1907 struct extent_buffer *leaf; 1908 struct btrfs_extent_item *ei; 1909 struct btrfs_extent_data_ref *dref = NULL; 1910 struct btrfs_shared_data_ref *sref = NULL; 1911 unsigned long ptr; 1912 unsigned long end; 1913 u32 item_size; 1914 int size; 1915 int type; 1916 u64 refs; 1917 1918 leaf = path->nodes[0]; 1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1920 refs = btrfs_extent_refs(leaf, ei); 1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1922 refs += refs_to_mod; 1923 btrfs_set_extent_refs(leaf, ei, refs); 1924 if (extent_op) 1925 __run_delayed_extent_op(extent_op, leaf, ei); 1926 1927 /* 1928 * If type is invalid, we should have bailed out after 1929 * lookup_inline_extent_backref(). 1930 */ 1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1932 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1933 1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1936 refs = btrfs_extent_data_ref_count(leaf, dref); 1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1938 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1939 refs = btrfs_shared_data_ref_count(leaf, sref); 1940 } else { 1941 refs = 1; 1942 BUG_ON(refs_to_mod != -1); 1943 } 1944 1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1946 refs += refs_to_mod; 1947 1948 if (refs > 0) { 1949 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1950 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1951 else 1952 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1953 } else { 1954 *last_ref = 1; 1955 size = btrfs_extent_inline_ref_size(type); 1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1957 ptr = (unsigned long)iref; 1958 end = (unsigned long)ei + item_size; 1959 if (ptr + size < end) 1960 memmove_extent_buffer(leaf, ptr, ptr + size, 1961 end - ptr - size); 1962 item_size -= size; 1963 btrfs_truncate_item(fs_info, path, item_size, 1); 1964 } 1965 btrfs_mark_buffer_dirty(leaf); 1966 } 1967 1968 static noinline_for_stack 1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1970 struct btrfs_fs_info *fs_info, 1971 struct btrfs_path *path, 1972 u64 bytenr, u64 num_bytes, u64 parent, 1973 u64 root_objectid, u64 owner, 1974 u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_extent_inline_ref *iref; 1978 int ret; 1979 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1981 bytenr, num_bytes, parent, 1982 root_objectid, owner, offset, 1); 1983 if (ret == 0) { 1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1985 update_inline_extent_backref(fs_info, path, iref, 1986 refs_to_add, extent_op, NULL); 1987 } else if (ret == -ENOENT) { 1988 setup_inline_extent_backref(fs_info, path, iref, parent, 1989 root_objectid, owner, offset, 1990 refs_to_add, extent_op); 1991 ret = 0; 1992 } 1993 return ret; 1994 } 1995 1996 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1997 struct btrfs_fs_info *fs_info, 1998 struct btrfs_path *path, 1999 u64 bytenr, u64 parent, u64 root_objectid, 2000 u64 owner, u64 offset, int refs_to_add) 2001 { 2002 int ret; 2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2004 BUG_ON(refs_to_add != 1); 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2006 parent, root_objectid); 2007 } else { 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2009 parent, root_objectid, 2010 owner, offset, refs_to_add); 2011 } 2012 return ret; 2013 } 2014 2015 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2016 struct btrfs_fs_info *fs_info, 2017 struct btrfs_path *path, 2018 struct btrfs_extent_inline_ref *iref, 2019 int refs_to_drop, int is_data, int *last_ref) 2020 { 2021 int ret = 0; 2022 2023 BUG_ON(!is_data && refs_to_drop != 1); 2024 if (iref) { 2025 update_inline_extent_backref(fs_info, path, iref, 2026 -refs_to_drop, NULL, last_ref); 2027 } else if (is_data) { 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2029 last_ref); 2030 } else { 2031 *last_ref = 1; 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2033 } 2034 return ret; 2035 } 2036 2037 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2039 u64 *discarded_bytes) 2040 { 2041 int j, ret = 0; 2042 u64 bytes_left, end; 2043 u64 aligned_start = ALIGN(start, 1 << 9); 2044 2045 if (WARN_ON(start != aligned_start)) { 2046 len -= aligned_start - start; 2047 len = round_down(len, 1 << 9); 2048 start = aligned_start; 2049 } 2050 2051 *discarded_bytes = 0; 2052 2053 if (!len) 2054 return 0; 2055 2056 end = start + len; 2057 bytes_left = len; 2058 2059 /* Skip any superblocks on this device. */ 2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2061 u64 sb_start = btrfs_sb_offset(j); 2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2063 u64 size = sb_start - start; 2064 2065 if (!in_range(sb_start, start, bytes_left) && 2066 !in_range(sb_end, start, bytes_left) && 2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2068 continue; 2069 2070 /* 2071 * Superblock spans beginning of range. Adjust start and 2072 * try again. 2073 */ 2074 if (sb_start <= start) { 2075 start += sb_end - start; 2076 if (start > end) { 2077 bytes_left = 0; 2078 break; 2079 } 2080 bytes_left = end - start; 2081 continue; 2082 } 2083 2084 if (size) { 2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2086 GFP_NOFS, 0); 2087 if (!ret) 2088 *discarded_bytes += size; 2089 else if (ret != -EOPNOTSUPP) 2090 return ret; 2091 } 2092 2093 start = sb_end; 2094 if (start > end) { 2095 bytes_left = 0; 2096 break; 2097 } 2098 bytes_left = end - start; 2099 } 2100 2101 if (bytes_left) { 2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2103 GFP_NOFS, 0); 2104 if (!ret) 2105 *discarded_bytes += bytes_left; 2106 } 2107 return ret; 2108 } 2109 2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2111 u64 num_bytes, u64 *actual_bytes) 2112 { 2113 int ret; 2114 u64 discarded_bytes = 0; 2115 struct btrfs_bio *bbio = NULL; 2116 2117 2118 /* 2119 * Avoid races with device replace and make sure our bbio has devices 2120 * associated to its stripes that don't go away while we are discarding. 2121 */ 2122 btrfs_bio_counter_inc_blocked(fs_info); 2123 /* Tell the block device(s) that the sectors can be discarded */ 2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2125 &bbio, 0); 2126 /* Error condition is -ENOMEM */ 2127 if (!ret) { 2128 struct btrfs_bio_stripe *stripe = bbio->stripes; 2129 int i; 2130 2131 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2133 u64 bytes; 2134 struct request_queue *req_q; 2135 2136 if (!stripe->dev->bdev) { 2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2138 continue; 2139 } 2140 req_q = bdev_get_queue(stripe->dev->bdev); 2141 if (!blk_queue_discard(req_q)) 2142 continue; 2143 2144 ret = btrfs_issue_discard(stripe->dev->bdev, 2145 stripe->physical, 2146 stripe->length, 2147 &bytes); 2148 if (!ret) 2149 discarded_bytes += bytes; 2150 else if (ret != -EOPNOTSUPP) 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2152 2153 /* 2154 * Just in case we get back EOPNOTSUPP for some reason, 2155 * just ignore the return value so we don't screw up 2156 * people calling discard_extent. 2157 */ 2158 ret = 0; 2159 } 2160 btrfs_put_bbio(bbio); 2161 } 2162 btrfs_bio_counter_dec(fs_info); 2163 2164 if (actual_bytes) 2165 *actual_bytes = discarded_bytes; 2166 2167 2168 if (ret == -EOPNOTSUPP) 2169 ret = 0; 2170 return ret; 2171 } 2172 2173 /* Can return -ENOMEM */ 2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2175 struct btrfs_root *root, 2176 u64 bytenr, u64 num_bytes, u64 parent, 2177 u64 root_objectid, u64 owner, u64 offset) 2178 { 2179 struct btrfs_fs_info *fs_info = root->fs_info; 2180 int old_ref_mod, new_ref_mod; 2181 int ret; 2182 2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2184 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2185 2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2187 owner, offset, BTRFS_ADD_DELAYED_REF); 2188 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2191 num_bytes, parent, 2192 root_objectid, (int)owner, 2193 BTRFS_ADD_DELAYED_REF, NULL, 2194 &old_ref_mod, &new_ref_mod); 2195 } else { 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2197 num_bytes, parent, 2198 root_objectid, owner, offset, 2199 0, BTRFS_ADD_DELAYED_REF, 2200 &old_ref_mod, &new_ref_mod); 2201 } 2202 2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2204 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2205 2206 return ret; 2207 } 2208 2209 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2210 struct btrfs_fs_info *fs_info, 2211 struct btrfs_delayed_ref_node *node, 2212 u64 parent, u64 root_objectid, 2213 u64 owner, u64 offset, int refs_to_add, 2214 struct btrfs_delayed_extent_op *extent_op) 2215 { 2216 struct btrfs_path *path; 2217 struct extent_buffer *leaf; 2218 struct btrfs_extent_item *item; 2219 struct btrfs_key key; 2220 u64 bytenr = node->bytenr; 2221 u64 num_bytes = node->num_bytes; 2222 u64 refs; 2223 int ret; 2224 2225 path = btrfs_alloc_path(); 2226 if (!path) 2227 return -ENOMEM; 2228 2229 path->reada = READA_FORWARD; 2230 path->leave_spinning = 1; 2231 /* this will setup the path even if it fails to insert the back ref */ 2232 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2233 num_bytes, parent, root_objectid, 2234 owner, offset, 2235 refs_to_add, extent_op); 2236 if ((ret < 0 && ret != -EAGAIN) || !ret) 2237 goto out; 2238 2239 /* 2240 * Ok we had -EAGAIN which means we didn't have space to insert and 2241 * inline extent ref, so just update the reference count and add a 2242 * normal backref. 2243 */ 2244 leaf = path->nodes[0]; 2245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2247 refs = btrfs_extent_refs(leaf, item); 2248 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2249 if (extent_op) 2250 __run_delayed_extent_op(extent_op, leaf, item); 2251 2252 btrfs_mark_buffer_dirty(leaf); 2253 btrfs_release_path(path); 2254 2255 path->reada = READA_FORWARD; 2256 path->leave_spinning = 1; 2257 /* now insert the actual backref */ 2258 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2259 root_objectid, owner, offset, refs_to_add); 2260 if (ret) 2261 btrfs_abort_transaction(trans, ret); 2262 out: 2263 btrfs_free_path(path); 2264 return ret; 2265 } 2266 2267 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2268 struct btrfs_fs_info *fs_info, 2269 struct btrfs_delayed_ref_node *node, 2270 struct btrfs_delayed_extent_op *extent_op, 2271 int insert_reserved) 2272 { 2273 int ret = 0; 2274 struct btrfs_delayed_data_ref *ref; 2275 struct btrfs_key ins; 2276 u64 parent = 0; 2277 u64 ref_root = 0; 2278 u64 flags = 0; 2279 2280 ins.objectid = node->bytenr; 2281 ins.offset = node->num_bytes; 2282 ins.type = BTRFS_EXTENT_ITEM_KEY; 2283 2284 ref = btrfs_delayed_node_to_data_ref(node); 2285 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2286 2287 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2288 parent = ref->parent; 2289 ref_root = ref->root; 2290 2291 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2292 if (extent_op) 2293 flags |= extent_op->flags_to_set; 2294 ret = alloc_reserved_file_extent(trans, fs_info, 2295 parent, ref_root, flags, 2296 ref->objectid, ref->offset, 2297 &ins, node->ref_mod); 2298 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2299 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2300 ref_root, ref->objectid, 2301 ref->offset, node->ref_mod, 2302 extent_op); 2303 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2304 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2305 ref_root, ref->objectid, 2306 ref->offset, node->ref_mod, 2307 extent_op); 2308 } else { 2309 BUG(); 2310 } 2311 return ret; 2312 } 2313 2314 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2315 struct extent_buffer *leaf, 2316 struct btrfs_extent_item *ei) 2317 { 2318 u64 flags = btrfs_extent_flags(leaf, ei); 2319 if (extent_op->update_flags) { 2320 flags |= extent_op->flags_to_set; 2321 btrfs_set_extent_flags(leaf, ei, flags); 2322 } 2323 2324 if (extent_op->update_key) { 2325 struct btrfs_tree_block_info *bi; 2326 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2327 bi = (struct btrfs_tree_block_info *)(ei + 1); 2328 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2329 } 2330 } 2331 2332 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2333 struct btrfs_fs_info *fs_info, 2334 struct btrfs_delayed_ref_head *head, 2335 struct btrfs_delayed_extent_op *extent_op) 2336 { 2337 struct btrfs_key key; 2338 struct btrfs_path *path; 2339 struct btrfs_extent_item *ei; 2340 struct extent_buffer *leaf; 2341 u32 item_size; 2342 int ret; 2343 int err = 0; 2344 int metadata = !extent_op->is_data; 2345 2346 if (trans->aborted) 2347 return 0; 2348 2349 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2350 metadata = 0; 2351 2352 path = btrfs_alloc_path(); 2353 if (!path) 2354 return -ENOMEM; 2355 2356 key.objectid = head->bytenr; 2357 2358 if (metadata) { 2359 key.type = BTRFS_METADATA_ITEM_KEY; 2360 key.offset = extent_op->level; 2361 } else { 2362 key.type = BTRFS_EXTENT_ITEM_KEY; 2363 key.offset = head->num_bytes; 2364 } 2365 2366 again: 2367 path->reada = READA_FORWARD; 2368 path->leave_spinning = 1; 2369 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2370 if (ret < 0) { 2371 err = ret; 2372 goto out; 2373 } 2374 if (ret > 0) { 2375 if (metadata) { 2376 if (path->slots[0] > 0) { 2377 path->slots[0]--; 2378 btrfs_item_key_to_cpu(path->nodes[0], &key, 2379 path->slots[0]); 2380 if (key.objectid == head->bytenr && 2381 key.type == BTRFS_EXTENT_ITEM_KEY && 2382 key.offset == head->num_bytes) 2383 ret = 0; 2384 } 2385 if (ret > 0) { 2386 btrfs_release_path(path); 2387 metadata = 0; 2388 2389 key.objectid = head->bytenr; 2390 key.offset = head->num_bytes; 2391 key.type = BTRFS_EXTENT_ITEM_KEY; 2392 goto again; 2393 } 2394 } else { 2395 err = -EIO; 2396 goto out; 2397 } 2398 } 2399 2400 leaf = path->nodes[0]; 2401 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2402 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2403 if (item_size < sizeof(*ei)) { 2404 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2405 if (ret < 0) { 2406 err = ret; 2407 goto out; 2408 } 2409 leaf = path->nodes[0]; 2410 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2411 } 2412 #endif 2413 BUG_ON(item_size < sizeof(*ei)); 2414 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2415 __run_delayed_extent_op(extent_op, leaf, ei); 2416 2417 btrfs_mark_buffer_dirty(leaf); 2418 out: 2419 btrfs_free_path(path); 2420 return err; 2421 } 2422 2423 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2424 struct btrfs_fs_info *fs_info, 2425 struct btrfs_delayed_ref_node *node, 2426 struct btrfs_delayed_extent_op *extent_op, 2427 int insert_reserved) 2428 { 2429 int ret = 0; 2430 struct btrfs_delayed_tree_ref *ref; 2431 struct btrfs_key ins; 2432 u64 parent = 0; 2433 u64 ref_root = 0; 2434 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2435 2436 ref = btrfs_delayed_node_to_tree_ref(node); 2437 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2438 2439 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2440 parent = ref->parent; 2441 ref_root = ref->root; 2442 2443 ins.objectid = node->bytenr; 2444 if (skinny_metadata) { 2445 ins.offset = ref->level; 2446 ins.type = BTRFS_METADATA_ITEM_KEY; 2447 } else { 2448 ins.offset = node->num_bytes; 2449 ins.type = BTRFS_EXTENT_ITEM_KEY; 2450 } 2451 2452 if (node->ref_mod != 1) { 2453 btrfs_err(fs_info, 2454 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2455 node->bytenr, node->ref_mod, node->action, ref_root, 2456 parent); 2457 return -EIO; 2458 } 2459 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2460 BUG_ON(!extent_op || !extent_op->update_flags); 2461 ret = alloc_reserved_tree_block(trans, fs_info, 2462 parent, ref_root, 2463 extent_op->flags_to_set, 2464 &extent_op->key, 2465 ref->level, &ins); 2466 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2467 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2468 parent, ref_root, 2469 ref->level, 0, 1, 2470 extent_op); 2471 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2472 ret = __btrfs_free_extent(trans, fs_info, node, 2473 parent, ref_root, 2474 ref->level, 0, 1, extent_op); 2475 } else { 2476 BUG(); 2477 } 2478 return ret; 2479 } 2480 2481 /* helper function to actually process a single delayed ref entry */ 2482 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2483 struct btrfs_fs_info *fs_info, 2484 struct btrfs_delayed_ref_node *node, 2485 struct btrfs_delayed_extent_op *extent_op, 2486 int insert_reserved) 2487 { 2488 int ret = 0; 2489 2490 if (trans->aborted) { 2491 if (insert_reserved) 2492 btrfs_pin_extent(fs_info, node->bytenr, 2493 node->num_bytes, 1); 2494 return 0; 2495 } 2496 2497 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2498 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2499 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2500 insert_reserved); 2501 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2502 node->type == BTRFS_SHARED_DATA_REF_KEY) 2503 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2504 insert_reserved); 2505 else 2506 BUG(); 2507 return ret; 2508 } 2509 2510 static inline struct btrfs_delayed_ref_node * 2511 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2512 { 2513 struct btrfs_delayed_ref_node *ref; 2514 2515 if (RB_EMPTY_ROOT(&head->ref_tree)) 2516 return NULL; 2517 2518 /* 2519 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2520 * This is to prevent a ref count from going down to zero, which deletes 2521 * the extent item from the extent tree, when there still are references 2522 * to add, which would fail because they would not find the extent item. 2523 */ 2524 if (!list_empty(&head->ref_add_list)) 2525 return list_first_entry(&head->ref_add_list, 2526 struct btrfs_delayed_ref_node, add_list); 2527 2528 ref = rb_entry(rb_first(&head->ref_tree), 2529 struct btrfs_delayed_ref_node, ref_node); 2530 ASSERT(list_empty(&ref->add_list)); 2531 return ref; 2532 } 2533 2534 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2535 struct btrfs_delayed_ref_head *head) 2536 { 2537 spin_lock(&delayed_refs->lock); 2538 head->processing = 0; 2539 delayed_refs->num_heads_ready++; 2540 spin_unlock(&delayed_refs->lock); 2541 btrfs_delayed_ref_unlock(head); 2542 } 2543 2544 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2545 struct btrfs_fs_info *fs_info, 2546 struct btrfs_delayed_ref_head *head) 2547 { 2548 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2549 int ret; 2550 2551 if (!extent_op) 2552 return 0; 2553 head->extent_op = NULL; 2554 if (head->must_insert_reserved) { 2555 btrfs_free_delayed_extent_op(extent_op); 2556 return 0; 2557 } 2558 spin_unlock(&head->lock); 2559 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2560 btrfs_free_delayed_extent_op(extent_op); 2561 return ret ? ret : 1; 2562 } 2563 2564 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2565 struct btrfs_fs_info *fs_info, 2566 struct btrfs_delayed_ref_head *head) 2567 { 2568 struct btrfs_delayed_ref_root *delayed_refs; 2569 int ret; 2570 2571 delayed_refs = &trans->transaction->delayed_refs; 2572 2573 ret = cleanup_extent_op(trans, fs_info, head); 2574 if (ret < 0) { 2575 unselect_delayed_ref_head(delayed_refs, head); 2576 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2577 return ret; 2578 } else if (ret) { 2579 return ret; 2580 } 2581 2582 /* 2583 * Need to drop our head ref lock and re-acquire the delayed ref lock 2584 * and then re-check to make sure nobody got added. 2585 */ 2586 spin_unlock(&head->lock); 2587 spin_lock(&delayed_refs->lock); 2588 spin_lock(&head->lock); 2589 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2590 spin_unlock(&head->lock); 2591 spin_unlock(&delayed_refs->lock); 2592 return 1; 2593 } 2594 delayed_refs->num_heads--; 2595 rb_erase(&head->href_node, &delayed_refs->href_root); 2596 RB_CLEAR_NODE(&head->href_node); 2597 spin_unlock(&delayed_refs->lock); 2598 spin_unlock(&head->lock); 2599 atomic_dec(&delayed_refs->num_entries); 2600 2601 trace_run_delayed_ref_head(fs_info, head, 0); 2602 2603 if (head->total_ref_mod < 0) { 2604 struct btrfs_space_info *space_info; 2605 u64 flags; 2606 2607 if (head->is_data) 2608 flags = BTRFS_BLOCK_GROUP_DATA; 2609 else if (head->is_system) 2610 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2611 else 2612 flags = BTRFS_BLOCK_GROUP_METADATA; 2613 space_info = __find_space_info(fs_info, flags); 2614 ASSERT(space_info); 2615 percpu_counter_add(&space_info->total_bytes_pinned, 2616 -head->num_bytes); 2617 2618 if (head->is_data) { 2619 spin_lock(&delayed_refs->lock); 2620 delayed_refs->pending_csums -= head->num_bytes; 2621 spin_unlock(&delayed_refs->lock); 2622 } 2623 } 2624 2625 if (head->must_insert_reserved) { 2626 btrfs_pin_extent(fs_info, head->bytenr, 2627 head->num_bytes, 1); 2628 if (head->is_data) { 2629 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2630 head->num_bytes); 2631 } 2632 } 2633 2634 /* Also free its reserved qgroup space */ 2635 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2636 head->qgroup_reserved); 2637 btrfs_delayed_ref_unlock(head); 2638 btrfs_put_delayed_ref_head(head); 2639 return 0; 2640 } 2641 2642 /* 2643 * Returns 0 on success or if called with an already aborted transaction. 2644 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2645 */ 2646 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2647 unsigned long nr) 2648 { 2649 struct btrfs_fs_info *fs_info = trans->fs_info; 2650 struct btrfs_delayed_ref_root *delayed_refs; 2651 struct btrfs_delayed_ref_node *ref; 2652 struct btrfs_delayed_ref_head *locked_ref = NULL; 2653 struct btrfs_delayed_extent_op *extent_op; 2654 ktime_t start = ktime_get(); 2655 int ret; 2656 unsigned long count = 0; 2657 unsigned long actual_count = 0; 2658 int must_insert_reserved = 0; 2659 2660 delayed_refs = &trans->transaction->delayed_refs; 2661 while (1) { 2662 if (!locked_ref) { 2663 if (count >= nr) 2664 break; 2665 2666 spin_lock(&delayed_refs->lock); 2667 locked_ref = btrfs_select_ref_head(trans); 2668 if (!locked_ref) { 2669 spin_unlock(&delayed_refs->lock); 2670 break; 2671 } 2672 2673 /* grab the lock that says we are going to process 2674 * all the refs for this head */ 2675 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2676 spin_unlock(&delayed_refs->lock); 2677 /* 2678 * we may have dropped the spin lock to get the head 2679 * mutex lock, and that might have given someone else 2680 * time to free the head. If that's true, it has been 2681 * removed from our list and we can move on. 2682 */ 2683 if (ret == -EAGAIN) { 2684 locked_ref = NULL; 2685 count++; 2686 continue; 2687 } 2688 } 2689 2690 /* 2691 * We need to try and merge add/drops of the same ref since we 2692 * can run into issues with relocate dropping the implicit ref 2693 * and then it being added back again before the drop can 2694 * finish. If we merged anything we need to re-loop so we can 2695 * get a good ref. 2696 * Or we can get node references of the same type that weren't 2697 * merged when created due to bumps in the tree mod seq, and 2698 * we need to merge them to prevent adding an inline extent 2699 * backref before dropping it (triggering a BUG_ON at 2700 * insert_inline_extent_backref()). 2701 */ 2702 spin_lock(&locked_ref->lock); 2703 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2704 locked_ref); 2705 2706 /* 2707 * locked_ref is the head node, so we have to go one 2708 * node back for any delayed ref updates 2709 */ 2710 ref = select_delayed_ref(locked_ref); 2711 2712 if (ref && ref->seq && 2713 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2714 spin_unlock(&locked_ref->lock); 2715 unselect_delayed_ref_head(delayed_refs, locked_ref); 2716 locked_ref = NULL; 2717 cond_resched(); 2718 count++; 2719 continue; 2720 } 2721 2722 /* 2723 * We're done processing refs in this ref_head, clean everything 2724 * up and move on to the next ref_head. 2725 */ 2726 if (!ref) { 2727 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2728 if (ret > 0 ) { 2729 /* We dropped our lock, we need to loop. */ 2730 ret = 0; 2731 continue; 2732 } else if (ret) { 2733 return ret; 2734 } 2735 locked_ref = NULL; 2736 count++; 2737 continue; 2738 } 2739 2740 actual_count++; 2741 ref->in_tree = 0; 2742 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2743 RB_CLEAR_NODE(&ref->ref_node); 2744 if (!list_empty(&ref->add_list)) 2745 list_del(&ref->add_list); 2746 /* 2747 * When we play the delayed ref, also correct the ref_mod on 2748 * head 2749 */ 2750 switch (ref->action) { 2751 case BTRFS_ADD_DELAYED_REF: 2752 case BTRFS_ADD_DELAYED_EXTENT: 2753 locked_ref->ref_mod -= ref->ref_mod; 2754 break; 2755 case BTRFS_DROP_DELAYED_REF: 2756 locked_ref->ref_mod += ref->ref_mod; 2757 break; 2758 default: 2759 WARN_ON(1); 2760 } 2761 atomic_dec(&delayed_refs->num_entries); 2762 2763 /* 2764 * Record the must-insert_reserved flag before we drop the spin 2765 * lock. 2766 */ 2767 must_insert_reserved = locked_ref->must_insert_reserved; 2768 locked_ref->must_insert_reserved = 0; 2769 2770 extent_op = locked_ref->extent_op; 2771 locked_ref->extent_op = NULL; 2772 spin_unlock(&locked_ref->lock); 2773 2774 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2775 must_insert_reserved); 2776 2777 btrfs_free_delayed_extent_op(extent_op); 2778 if (ret) { 2779 unselect_delayed_ref_head(delayed_refs, locked_ref); 2780 btrfs_put_delayed_ref(ref); 2781 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2782 ret); 2783 return ret; 2784 } 2785 2786 btrfs_put_delayed_ref(ref); 2787 count++; 2788 cond_resched(); 2789 } 2790 2791 /* 2792 * We don't want to include ref heads since we can have empty ref heads 2793 * and those will drastically skew our runtime down since we just do 2794 * accounting, no actual extent tree updates. 2795 */ 2796 if (actual_count > 0) { 2797 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2798 u64 avg; 2799 2800 /* 2801 * We weigh the current average higher than our current runtime 2802 * to avoid large swings in the average. 2803 */ 2804 spin_lock(&delayed_refs->lock); 2805 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2806 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2807 spin_unlock(&delayed_refs->lock); 2808 } 2809 return 0; 2810 } 2811 2812 #ifdef SCRAMBLE_DELAYED_REFS 2813 /* 2814 * Normally delayed refs get processed in ascending bytenr order. This 2815 * correlates in most cases to the order added. To expose dependencies on this 2816 * order, we start to process the tree in the middle instead of the beginning 2817 */ 2818 static u64 find_middle(struct rb_root *root) 2819 { 2820 struct rb_node *n = root->rb_node; 2821 struct btrfs_delayed_ref_node *entry; 2822 int alt = 1; 2823 u64 middle; 2824 u64 first = 0, last = 0; 2825 2826 n = rb_first(root); 2827 if (n) { 2828 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2829 first = entry->bytenr; 2830 } 2831 n = rb_last(root); 2832 if (n) { 2833 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2834 last = entry->bytenr; 2835 } 2836 n = root->rb_node; 2837 2838 while (n) { 2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2840 WARN_ON(!entry->in_tree); 2841 2842 middle = entry->bytenr; 2843 2844 if (alt) 2845 n = n->rb_left; 2846 else 2847 n = n->rb_right; 2848 2849 alt = 1 - alt; 2850 } 2851 return middle; 2852 } 2853 #endif 2854 2855 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2856 { 2857 u64 num_bytes; 2858 2859 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2860 sizeof(struct btrfs_extent_inline_ref)); 2861 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2862 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2863 2864 /* 2865 * We don't ever fill up leaves all the way so multiply by 2 just to be 2866 * closer to what we're really going to want to use. 2867 */ 2868 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2869 } 2870 2871 /* 2872 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2873 * would require to store the csums for that many bytes. 2874 */ 2875 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2876 { 2877 u64 csum_size; 2878 u64 num_csums_per_leaf; 2879 u64 num_csums; 2880 2881 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2882 num_csums_per_leaf = div64_u64(csum_size, 2883 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2884 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2885 num_csums += num_csums_per_leaf - 1; 2886 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2887 return num_csums; 2888 } 2889 2890 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2891 struct btrfs_fs_info *fs_info) 2892 { 2893 struct btrfs_block_rsv *global_rsv; 2894 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2895 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2896 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2897 u64 num_bytes, num_dirty_bgs_bytes; 2898 int ret = 0; 2899 2900 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2901 num_heads = heads_to_leaves(fs_info, num_heads); 2902 if (num_heads > 1) 2903 num_bytes += (num_heads - 1) * fs_info->nodesize; 2904 num_bytes <<= 1; 2905 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2906 fs_info->nodesize; 2907 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2908 num_dirty_bgs); 2909 global_rsv = &fs_info->global_block_rsv; 2910 2911 /* 2912 * If we can't allocate any more chunks lets make sure we have _lots_ of 2913 * wiggle room since running delayed refs can create more delayed refs. 2914 */ 2915 if (global_rsv->space_info->full) { 2916 num_dirty_bgs_bytes <<= 1; 2917 num_bytes <<= 1; 2918 } 2919 2920 spin_lock(&global_rsv->lock); 2921 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2922 ret = 1; 2923 spin_unlock(&global_rsv->lock); 2924 return ret; 2925 } 2926 2927 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2928 struct btrfs_fs_info *fs_info) 2929 { 2930 u64 num_entries = 2931 atomic_read(&trans->transaction->delayed_refs.num_entries); 2932 u64 avg_runtime; 2933 u64 val; 2934 2935 smp_mb(); 2936 avg_runtime = fs_info->avg_delayed_ref_runtime; 2937 val = num_entries * avg_runtime; 2938 if (val >= NSEC_PER_SEC) 2939 return 1; 2940 if (val >= NSEC_PER_SEC / 2) 2941 return 2; 2942 2943 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2944 } 2945 2946 struct async_delayed_refs { 2947 struct btrfs_root *root; 2948 u64 transid; 2949 int count; 2950 int error; 2951 int sync; 2952 struct completion wait; 2953 struct btrfs_work work; 2954 }; 2955 2956 static inline struct async_delayed_refs * 2957 to_async_delayed_refs(struct btrfs_work *work) 2958 { 2959 return container_of(work, struct async_delayed_refs, work); 2960 } 2961 2962 static void delayed_ref_async_start(struct btrfs_work *work) 2963 { 2964 struct async_delayed_refs *async = to_async_delayed_refs(work); 2965 struct btrfs_trans_handle *trans; 2966 struct btrfs_fs_info *fs_info = async->root->fs_info; 2967 int ret; 2968 2969 /* if the commit is already started, we don't need to wait here */ 2970 if (btrfs_transaction_blocked(fs_info)) 2971 goto done; 2972 2973 trans = btrfs_join_transaction(async->root); 2974 if (IS_ERR(trans)) { 2975 async->error = PTR_ERR(trans); 2976 goto done; 2977 } 2978 2979 /* 2980 * trans->sync means that when we call end_transaction, we won't 2981 * wait on delayed refs 2982 */ 2983 trans->sync = true; 2984 2985 /* Don't bother flushing if we got into a different transaction */ 2986 if (trans->transid > async->transid) 2987 goto end; 2988 2989 ret = btrfs_run_delayed_refs(trans, async->count); 2990 if (ret) 2991 async->error = ret; 2992 end: 2993 ret = btrfs_end_transaction(trans); 2994 if (ret && !async->error) 2995 async->error = ret; 2996 done: 2997 if (async->sync) 2998 complete(&async->wait); 2999 else 3000 kfree(async); 3001 } 3002 3003 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3004 unsigned long count, u64 transid, int wait) 3005 { 3006 struct async_delayed_refs *async; 3007 int ret; 3008 3009 async = kmalloc(sizeof(*async), GFP_NOFS); 3010 if (!async) 3011 return -ENOMEM; 3012 3013 async->root = fs_info->tree_root; 3014 async->count = count; 3015 async->error = 0; 3016 async->transid = transid; 3017 if (wait) 3018 async->sync = 1; 3019 else 3020 async->sync = 0; 3021 init_completion(&async->wait); 3022 3023 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3024 delayed_ref_async_start, NULL, NULL); 3025 3026 btrfs_queue_work(fs_info->extent_workers, &async->work); 3027 3028 if (wait) { 3029 wait_for_completion(&async->wait); 3030 ret = async->error; 3031 kfree(async); 3032 return ret; 3033 } 3034 return 0; 3035 } 3036 3037 /* 3038 * this starts processing the delayed reference count updates and 3039 * extent insertions we have queued up so far. count can be 3040 * 0, which means to process everything in the tree at the start 3041 * of the run (but not newly added entries), or it can be some target 3042 * number you'd like to process. 3043 * 3044 * Returns 0 on success or if called with an aborted transaction 3045 * Returns <0 on error and aborts the transaction 3046 */ 3047 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3048 unsigned long count) 3049 { 3050 struct btrfs_fs_info *fs_info = trans->fs_info; 3051 struct rb_node *node; 3052 struct btrfs_delayed_ref_root *delayed_refs; 3053 struct btrfs_delayed_ref_head *head; 3054 int ret; 3055 int run_all = count == (unsigned long)-1; 3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3057 3058 /* We'll clean this up in btrfs_cleanup_transaction */ 3059 if (trans->aborted) 3060 return 0; 3061 3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3063 return 0; 3064 3065 delayed_refs = &trans->transaction->delayed_refs; 3066 if (count == 0) 3067 count = atomic_read(&delayed_refs->num_entries) * 2; 3068 3069 again: 3070 #ifdef SCRAMBLE_DELAYED_REFS 3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3072 #endif 3073 trans->can_flush_pending_bgs = false; 3074 ret = __btrfs_run_delayed_refs(trans, count); 3075 if (ret < 0) { 3076 btrfs_abort_transaction(trans, ret); 3077 return ret; 3078 } 3079 3080 if (run_all) { 3081 if (!list_empty(&trans->new_bgs)) 3082 btrfs_create_pending_block_groups(trans); 3083 3084 spin_lock(&delayed_refs->lock); 3085 node = rb_first(&delayed_refs->href_root); 3086 if (!node) { 3087 spin_unlock(&delayed_refs->lock); 3088 goto out; 3089 } 3090 head = rb_entry(node, struct btrfs_delayed_ref_head, 3091 href_node); 3092 refcount_inc(&head->refs); 3093 spin_unlock(&delayed_refs->lock); 3094 3095 /* Mutex was contended, block until it's released and retry. */ 3096 mutex_lock(&head->mutex); 3097 mutex_unlock(&head->mutex); 3098 3099 btrfs_put_delayed_ref_head(head); 3100 cond_resched(); 3101 goto again; 3102 } 3103 out: 3104 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3105 return 0; 3106 } 3107 3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3109 struct btrfs_fs_info *fs_info, 3110 u64 bytenr, u64 num_bytes, u64 flags, 3111 int level, int is_data) 3112 { 3113 struct btrfs_delayed_extent_op *extent_op; 3114 int ret; 3115 3116 extent_op = btrfs_alloc_delayed_extent_op(); 3117 if (!extent_op) 3118 return -ENOMEM; 3119 3120 extent_op->flags_to_set = flags; 3121 extent_op->update_flags = true; 3122 extent_op->update_key = false; 3123 extent_op->is_data = is_data ? true : false; 3124 extent_op->level = level; 3125 3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3127 num_bytes, extent_op); 3128 if (ret) 3129 btrfs_free_delayed_extent_op(extent_op); 3130 return ret; 3131 } 3132 3133 static noinline int check_delayed_ref(struct btrfs_root *root, 3134 struct btrfs_path *path, 3135 u64 objectid, u64 offset, u64 bytenr) 3136 { 3137 struct btrfs_delayed_ref_head *head; 3138 struct btrfs_delayed_ref_node *ref; 3139 struct btrfs_delayed_data_ref *data_ref; 3140 struct btrfs_delayed_ref_root *delayed_refs; 3141 struct btrfs_transaction *cur_trans; 3142 struct rb_node *node; 3143 int ret = 0; 3144 3145 spin_lock(&root->fs_info->trans_lock); 3146 cur_trans = root->fs_info->running_transaction; 3147 if (cur_trans) 3148 refcount_inc(&cur_trans->use_count); 3149 spin_unlock(&root->fs_info->trans_lock); 3150 if (!cur_trans) 3151 return 0; 3152 3153 delayed_refs = &cur_trans->delayed_refs; 3154 spin_lock(&delayed_refs->lock); 3155 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3156 if (!head) { 3157 spin_unlock(&delayed_refs->lock); 3158 btrfs_put_transaction(cur_trans); 3159 return 0; 3160 } 3161 3162 if (!mutex_trylock(&head->mutex)) { 3163 refcount_inc(&head->refs); 3164 spin_unlock(&delayed_refs->lock); 3165 3166 btrfs_release_path(path); 3167 3168 /* 3169 * Mutex was contended, block until it's released and let 3170 * caller try again 3171 */ 3172 mutex_lock(&head->mutex); 3173 mutex_unlock(&head->mutex); 3174 btrfs_put_delayed_ref_head(head); 3175 btrfs_put_transaction(cur_trans); 3176 return -EAGAIN; 3177 } 3178 spin_unlock(&delayed_refs->lock); 3179 3180 spin_lock(&head->lock); 3181 /* 3182 * XXX: We should replace this with a proper search function in the 3183 * future. 3184 */ 3185 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3186 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3187 /* If it's a shared ref we know a cross reference exists */ 3188 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3189 ret = 1; 3190 break; 3191 } 3192 3193 data_ref = btrfs_delayed_node_to_data_ref(ref); 3194 3195 /* 3196 * If our ref doesn't match the one we're currently looking at 3197 * then we have a cross reference. 3198 */ 3199 if (data_ref->root != root->root_key.objectid || 3200 data_ref->objectid != objectid || 3201 data_ref->offset != offset) { 3202 ret = 1; 3203 break; 3204 } 3205 } 3206 spin_unlock(&head->lock); 3207 mutex_unlock(&head->mutex); 3208 btrfs_put_transaction(cur_trans); 3209 return ret; 3210 } 3211 3212 static noinline int check_committed_ref(struct btrfs_root *root, 3213 struct btrfs_path *path, 3214 u64 objectid, u64 offset, u64 bytenr) 3215 { 3216 struct btrfs_fs_info *fs_info = root->fs_info; 3217 struct btrfs_root *extent_root = fs_info->extent_root; 3218 struct extent_buffer *leaf; 3219 struct btrfs_extent_data_ref *ref; 3220 struct btrfs_extent_inline_ref *iref; 3221 struct btrfs_extent_item *ei; 3222 struct btrfs_key key; 3223 u32 item_size; 3224 int type; 3225 int ret; 3226 3227 key.objectid = bytenr; 3228 key.offset = (u64)-1; 3229 key.type = BTRFS_EXTENT_ITEM_KEY; 3230 3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3232 if (ret < 0) 3233 goto out; 3234 BUG_ON(ret == 0); /* Corruption */ 3235 3236 ret = -ENOENT; 3237 if (path->slots[0] == 0) 3238 goto out; 3239 3240 path->slots[0]--; 3241 leaf = path->nodes[0]; 3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3243 3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3245 goto out; 3246 3247 ret = 1; 3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3250 if (item_size < sizeof(*ei)) { 3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3252 goto out; 3253 } 3254 #endif 3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3256 3257 if (item_size != sizeof(*ei) + 3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3259 goto out; 3260 3261 if (btrfs_extent_generation(leaf, ei) <= 3262 btrfs_root_last_snapshot(&root->root_item)) 3263 goto out; 3264 3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3266 3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3268 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3269 goto out; 3270 3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3272 if (btrfs_extent_refs(leaf, ei) != 3273 btrfs_extent_data_ref_count(leaf, ref) || 3274 btrfs_extent_data_ref_root(leaf, ref) != 3275 root->root_key.objectid || 3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3277 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3278 goto out; 3279 3280 ret = 0; 3281 out: 3282 return ret; 3283 } 3284 3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3286 u64 bytenr) 3287 { 3288 struct btrfs_path *path; 3289 int ret; 3290 int ret2; 3291 3292 path = btrfs_alloc_path(); 3293 if (!path) 3294 return -ENOENT; 3295 3296 do { 3297 ret = check_committed_ref(root, path, objectid, 3298 offset, bytenr); 3299 if (ret && ret != -ENOENT) 3300 goto out; 3301 3302 ret2 = check_delayed_ref(root, path, objectid, 3303 offset, bytenr); 3304 } while (ret2 == -EAGAIN); 3305 3306 if (ret2 && ret2 != -ENOENT) { 3307 ret = ret2; 3308 goto out; 3309 } 3310 3311 if (ret != -ENOENT || ret2 != -ENOENT) 3312 ret = 0; 3313 out: 3314 btrfs_free_path(path); 3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3316 WARN_ON(ret > 0); 3317 return ret; 3318 } 3319 3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3321 struct btrfs_root *root, 3322 struct extent_buffer *buf, 3323 int full_backref, int inc) 3324 { 3325 struct btrfs_fs_info *fs_info = root->fs_info; 3326 u64 bytenr; 3327 u64 num_bytes; 3328 u64 parent; 3329 u64 ref_root; 3330 u32 nritems; 3331 struct btrfs_key key; 3332 struct btrfs_file_extent_item *fi; 3333 int i; 3334 int level; 3335 int ret = 0; 3336 int (*process_func)(struct btrfs_trans_handle *, 3337 struct btrfs_root *, 3338 u64, u64, u64, u64, u64, u64); 3339 3340 3341 if (btrfs_is_testing(fs_info)) 3342 return 0; 3343 3344 ref_root = btrfs_header_owner(buf); 3345 nritems = btrfs_header_nritems(buf); 3346 level = btrfs_header_level(buf); 3347 3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3349 return 0; 3350 3351 if (inc) 3352 process_func = btrfs_inc_extent_ref; 3353 else 3354 process_func = btrfs_free_extent; 3355 3356 if (full_backref) 3357 parent = buf->start; 3358 else 3359 parent = 0; 3360 3361 for (i = 0; i < nritems; i++) { 3362 if (level == 0) { 3363 btrfs_item_key_to_cpu(buf, &key, i); 3364 if (key.type != BTRFS_EXTENT_DATA_KEY) 3365 continue; 3366 fi = btrfs_item_ptr(buf, i, 3367 struct btrfs_file_extent_item); 3368 if (btrfs_file_extent_type(buf, fi) == 3369 BTRFS_FILE_EXTENT_INLINE) 3370 continue; 3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3372 if (bytenr == 0) 3373 continue; 3374 3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3376 key.offset -= btrfs_file_extent_offset(buf, fi); 3377 ret = process_func(trans, root, bytenr, num_bytes, 3378 parent, ref_root, key.objectid, 3379 key.offset); 3380 if (ret) 3381 goto fail; 3382 } else { 3383 bytenr = btrfs_node_blockptr(buf, i); 3384 num_bytes = fs_info->nodesize; 3385 ret = process_func(trans, root, bytenr, num_bytes, 3386 parent, ref_root, level - 1, 0); 3387 if (ret) 3388 goto fail; 3389 } 3390 } 3391 return 0; 3392 fail: 3393 return ret; 3394 } 3395 3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3397 struct extent_buffer *buf, int full_backref) 3398 { 3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3400 } 3401 3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3403 struct extent_buffer *buf, int full_backref) 3404 { 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3406 } 3407 3408 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3409 struct btrfs_fs_info *fs_info, 3410 struct btrfs_path *path, 3411 struct btrfs_block_group_cache *cache) 3412 { 3413 int ret; 3414 struct btrfs_root *extent_root = fs_info->extent_root; 3415 unsigned long bi; 3416 struct extent_buffer *leaf; 3417 3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3419 if (ret) { 3420 if (ret > 0) 3421 ret = -ENOENT; 3422 goto fail; 3423 } 3424 3425 leaf = path->nodes[0]; 3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3428 btrfs_mark_buffer_dirty(leaf); 3429 fail: 3430 btrfs_release_path(path); 3431 return ret; 3432 3433 } 3434 3435 static struct btrfs_block_group_cache * 3436 next_block_group(struct btrfs_fs_info *fs_info, 3437 struct btrfs_block_group_cache *cache) 3438 { 3439 struct rb_node *node; 3440 3441 spin_lock(&fs_info->block_group_cache_lock); 3442 3443 /* If our block group was removed, we need a full search. */ 3444 if (RB_EMPTY_NODE(&cache->cache_node)) { 3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3446 3447 spin_unlock(&fs_info->block_group_cache_lock); 3448 btrfs_put_block_group(cache); 3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3450 } 3451 node = rb_next(&cache->cache_node); 3452 btrfs_put_block_group(cache); 3453 if (node) { 3454 cache = rb_entry(node, struct btrfs_block_group_cache, 3455 cache_node); 3456 btrfs_get_block_group(cache); 3457 } else 3458 cache = NULL; 3459 spin_unlock(&fs_info->block_group_cache_lock); 3460 return cache; 3461 } 3462 3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3464 struct btrfs_trans_handle *trans, 3465 struct btrfs_path *path) 3466 { 3467 struct btrfs_fs_info *fs_info = block_group->fs_info; 3468 struct btrfs_root *root = fs_info->tree_root; 3469 struct inode *inode = NULL; 3470 struct extent_changeset *data_reserved = NULL; 3471 u64 alloc_hint = 0; 3472 int dcs = BTRFS_DC_ERROR; 3473 u64 num_pages = 0; 3474 int retries = 0; 3475 int ret = 0; 3476 3477 /* 3478 * If this block group is smaller than 100 megs don't bother caching the 3479 * block group. 3480 */ 3481 if (block_group->key.offset < (100 * SZ_1M)) { 3482 spin_lock(&block_group->lock); 3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3484 spin_unlock(&block_group->lock); 3485 return 0; 3486 } 3487 3488 if (trans->aborted) 3489 return 0; 3490 again: 3491 inode = lookup_free_space_inode(fs_info, block_group, path); 3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3493 ret = PTR_ERR(inode); 3494 btrfs_release_path(path); 3495 goto out; 3496 } 3497 3498 if (IS_ERR(inode)) { 3499 BUG_ON(retries); 3500 retries++; 3501 3502 if (block_group->ro) 3503 goto out_free; 3504 3505 ret = create_free_space_inode(fs_info, trans, block_group, 3506 path); 3507 if (ret) 3508 goto out_free; 3509 goto again; 3510 } 3511 3512 /* 3513 * We want to set the generation to 0, that way if anything goes wrong 3514 * from here on out we know not to trust this cache when we load up next 3515 * time. 3516 */ 3517 BTRFS_I(inode)->generation = 0; 3518 ret = btrfs_update_inode(trans, root, inode); 3519 if (ret) { 3520 /* 3521 * So theoretically we could recover from this, simply set the 3522 * super cache generation to 0 so we know to invalidate the 3523 * cache, but then we'd have to keep track of the block groups 3524 * that fail this way so we know we _have_ to reset this cache 3525 * before the next commit or risk reading stale cache. So to 3526 * limit our exposure to horrible edge cases lets just abort the 3527 * transaction, this only happens in really bad situations 3528 * anyway. 3529 */ 3530 btrfs_abort_transaction(trans, ret); 3531 goto out_put; 3532 } 3533 WARN_ON(ret); 3534 3535 /* We've already setup this transaction, go ahead and exit */ 3536 if (block_group->cache_generation == trans->transid && 3537 i_size_read(inode)) { 3538 dcs = BTRFS_DC_SETUP; 3539 goto out_put; 3540 } 3541 3542 if (i_size_read(inode) > 0) { 3543 ret = btrfs_check_trunc_cache_free_space(fs_info, 3544 &fs_info->global_block_rsv); 3545 if (ret) 3546 goto out_put; 3547 3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3549 if (ret) 3550 goto out_put; 3551 } 3552 3553 spin_lock(&block_group->lock); 3554 if (block_group->cached != BTRFS_CACHE_FINISHED || 3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3556 /* 3557 * don't bother trying to write stuff out _if_ 3558 * a) we're not cached, 3559 * b) we're with nospace_cache mount option, 3560 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3561 */ 3562 dcs = BTRFS_DC_WRITTEN; 3563 spin_unlock(&block_group->lock); 3564 goto out_put; 3565 } 3566 spin_unlock(&block_group->lock); 3567 3568 /* 3569 * We hit an ENOSPC when setting up the cache in this transaction, just 3570 * skip doing the setup, we've already cleared the cache so we're safe. 3571 */ 3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3573 ret = -ENOSPC; 3574 goto out_put; 3575 } 3576 3577 /* 3578 * Try to preallocate enough space based on how big the block group is. 3579 * Keep in mind this has to include any pinned space which could end up 3580 * taking up quite a bit since it's not folded into the other space 3581 * cache. 3582 */ 3583 num_pages = div_u64(block_group->key.offset, SZ_256M); 3584 if (!num_pages) 3585 num_pages = 1; 3586 3587 num_pages *= 16; 3588 num_pages *= PAGE_SIZE; 3589 3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3591 if (ret) 3592 goto out_put; 3593 3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3595 num_pages, num_pages, 3596 &alloc_hint); 3597 /* 3598 * Our cache requires contiguous chunks so that we don't modify a bunch 3599 * of metadata or split extents when writing the cache out, which means 3600 * we can enospc if we are heavily fragmented in addition to just normal 3601 * out of space conditions. So if we hit this just skip setting up any 3602 * other block groups for this transaction, maybe we'll unpin enough 3603 * space the next time around. 3604 */ 3605 if (!ret) 3606 dcs = BTRFS_DC_SETUP; 3607 else if (ret == -ENOSPC) 3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3609 3610 out_put: 3611 iput(inode); 3612 out_free: 3613 btrfs_release_path(path); 3614 out: 3615 spin_lock(&block_group->lock); 3616 if (!ret && dcs == BTRFS_DC_SETUP) 3617 block_group->cache_generation = trans->transid; 3618 block_group->disk_cache_state = dcs; 3619 spin_unlock(&block_group->lock); 3620 3621 extent_changeset_free(data_reserved); 3622 return ret; 3623 } 3624 3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3626 struct btrfs_fs_info *fs_info) 3627 { 3628 struct btrfs_block_group_cache *cache, *tmp; 3629 struct btrfs_transaction *cur_trans = trans->transaction; 3630 struct btrfs_path *path; 3631 3632 if (list_empty(&cur_trans->dirty_bgs) || 3633 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3634 return 0; 3635 3636 path = btrfs_alloc_path(); 3637 if (!path) 3638 return -ENOMEM; 3639 3640 /* Could add new block groups, use _safe just in case */ 3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3642 dirty_list) { 3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3644 cache_save_setup(cache, trans, path); 3645 } 3646 3647 btrfs_free_path(path); 3648 return 0; 3649 } 3650 3651 /* 3652 * transaction commit does final block group cache writeback during a 3653 * critical section where nothing is allowed to change the FS. This is 3654 * required in order for the cache to actually match the block group, 3655 * but can introduce a lot of latency into the commit. 3656 * 3657 * So, btrfs_start_dirty_block_groups is here to kick off block group 3658 * cache IO. There's a chance we'll have to redo some of it if the 3659 * block group changes again during the commit, but it greatly reduces 3660 * the commit latency by getting rid of the easy block groups while 3661 * we're still allowing others to join the commit. 3662 */ 3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3664 { 3665 struct btrfs_fs_info *fs_info = trans->fs_info; 3666 struct btrfs_block_group_cache *cache; 3667 struct btrfs_transaction *cur_trans = trans->transaction; 3668 int ret = 0; 3669 int should_put; 3670 struct btrfs_path *path = NULL; 3671 LIST_HEAD(dirty); 3672 struct list_head *io = &cur_trans->io_bgs; 3673 int num_started = 0; 3674 int loops = 0; 3675 3676 spin_lock(&cur_trans->dirty_bgs_lock); 3677 if (list_empty(&cur_trans->dirty_bgs)) { 3678 spin_unlock(&cur_trans->dirty_bgs_lock); 3679 return 0; 3680 } 3681 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3682 spin_unlock(&cur_trans->dirty_bgs_lock); 3683 3684 again: 3685 /* 3686 * make sure all the block groups on our dirty list actually 3687 * exist 3688 */ 3689 btrfs_create_pending_block_groups(trans); 3690 3691 if (!path) { 3692 path = btrfs_alloc_path(); 3693 if (!path) 3694 return -ENOMEM; 3695 } 3696 3697 /* 3698 * cache_write_mutex is here only to save us from balance or automatic 3699 * removal of empty block groups deleting this block group while we are 3700 * writing out the cache 3701 */ 3702 mutex_lock(&trans->transaction->cache_write_mutex); 3703 while (!list_empty(&dirty)) { 3704 cache = list_first_entry(&dirty, 3705 struct btrfs_block_group_cache, 3706 dirty_list); 3707 /* 3708 * this can happen if something re-dirties a block 3709 * group that is already under IO. Just wait for it to 3710 * finish and then do it all again 3711 */ 3712 if (!list_empty(&cache->io_list)) { 3713 list_del_init(&cache->io_list); 3714 btrfs_wait_cache_io(trans, cache, path); 3715 btrfs_put_block_group(cache); 3716 } 3717 3718 3719 /* 3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3721 * if it should update the cache_state. Don't delete 3722 * until after we wait. 3723 * 3724 * Since we're not running in the commit critical section 3725 * we need the dirty_bgs_lock to protect from update_block_group 3726 */ 3727 spin_lock(&cur_trans->dirty_bgs_lock); 3728 list_del_init(&cache->dirty_list); 3729 spin_unlock(&cur_trans->dirty_bgs_lock); 3730 3731 should_put = 1; 3732 3733 cache_save_setup(cache, trans, path); 3734 3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3736 cache->io_ctl.inode = NULL; 3737 ret = btrfs_write_out_cache(fs_info, trans, 3738 cache, path); 3739 if (ret == 0 && cache->io_ctl.inode) { 3740 num_started++; 3741 should_put = 0; 3742 3743 /* 3744 * The cache_write_mutex is protecting the 3745 * io_list, also refer to the definition of 3746 * btrfs_transaction::io_bgs for more details 3747 */ 3748 list_add_tail(&cache->io_list, io); 3749 } else { 3750 /* 3751 * if we failed to write the cache, the 3752 * generation will be bad and life goes on 3753 */ 3754 ret = 0; 3755 } 3756 } 3757 if (!ret) { 3758 ret = write_one_cache_group(trans, fs_info, 3759 path, cache); 3760 /* 3761 * Our block group might still be attached to the list 3762 * of new block groups in the transaction handle of some 3763 * other task (struct btrfs_trans_handle->new_bgs). This 3764 * means its block group item isn't yet in the extent 3765 * tree. If this happens ignore the error, as we will 3766 * try again later in the critical section of the 3767 * transaction commit. 3768 */ 3769 if (ret == -ENOENT) { 3770 ret = 0; 3771 spin_lock(&cur_trans->dirty_bgs_lock); 3772 if (list_empty(&cache->dirty_list)) { 3773 list_add_tail(&cache->dirty_list, 3774 &cur_trans->dirty_bgs); 3775 btrfs_get_block_group(cache); 3776 } 3777 spin_unlock(&cur_trans->dirty_bgs_lock); 3778 } else if (ret) { 3779 btrfs_abort_transaction(trans, ret); 3780 } 3781 } 3782 3783 /* if its not on the io list, we need to put the block group */ 3784 if (should_put) 3785 btrfs_put_block_group(cache); 3786 3787 if (ret) 3788 break; 3789 3790 /* 3791 * Avoid blocking other tasks for too long. It might even save 3792 * us from writing caches for block groups that are going to be 3793 * removed. 3794 */ 3795 mutex_unlock(&trans->transaction->cache_write_mutex); 3796 mutex_lock(&trans->transaction->cache_write_mutex); 3797 } 3798 mutex_unlock(&trans->transaction->cache_write_mutex); 3799 3800 /* 3801 * go through delayed refs for all the stuff we've just kicked off 3802 * and then loop back (just once) 3803 */ 3804 ret = btrfs_run_delayed_refs(trans, 0); 3805 if (!ret && loops == 0) { 3806 loops++; 3807 spin_lock(&cur_trans->dirty_bgs_lock); 3808 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3809 /* 3810 * dirty_bgs_lock protects us from concurrent block group 3811 * deletes too (not just cache_write_mutex). 3812 */ 3813 if (!list_empty(&dirty)) { 3814 spin_unlock(&cur_trans->dirty_bgs_lock); 3815 goto again; 3816 } 3817 spin_unlock(&cur_trans->dirty_bgs_lock); 3818 } else if (ret < 0) { 3819 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3820 } 3821 3822 btrfs_free_path(path); 3823 return ret; 3824 } 3825 3826 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3827 struct btrfs_fs_info *fs_info) 3828 { 3829 struct btrfs_block_group_cache *cache; 3830 struct btrfs_transaction *cur_trans = trans->transaction; 3831 int ret = 0; 3832 int should_put; 3833 struct btrfs_path *path; 3834 struct list_head *io = &cur_trans->io_bgs; 3835 int num_started = 0; 3836 3837 path = btrfs_alloc_path(); 3838 if (!path) 3839 return -ENOMEM; 3840 3841 /* 3842 * Even though we are in the critical section of the transaction commit, 3843 * we can still have concurrent tasks adding elements to this 3844 * transaction's list of dirty block groups. These tasks correspond to 3845 * endio free space workers started when writeback finishes for a 3846 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3847 * allocate new block groups as a result of COWing nodes of the root 3848 * tree when updating the free space inode. The writeback for the space 3849 * caches is triggered by an earlier call to 3850 * btrfs_start_dirty_block_groups() and iterations of the following 3851 * loop. 3852 * Also we want to do the cache_save_setup first and then run the 3853 * delayed refs to make sure we have the best chance at doing this all 3854 * in one shot. 3855 */ 3856 spin_lock(&cur_trans->dirty_bgs_lock); 3857 while (!list_empty(&cur_trans->dirty_bgs)) { 3858 cache = list_first_entry(&cur_trans->dirty_bgs, 3859 struct btrfs_block_group_cache, 3860 dirty_list); 3861 3862 /* 3863 * this can happen if cache_save_setup re-dirties a block 3864 * group that is already under IO. Just wait for it to 3865 * finish and then do it all again 3866 */ 3867 if (!list_empty(&cache->io_list)) { 3868 spin_unlock(&cur_trans->dirty_bgs_lock); 3869 list_del_init(&cache->io_list); 3870 btrfs_wait_cache_io(trans, cache, path); 3871 btrfs_put_block_group(cache); 3872 spin_lock(&cur_trans->dirty_bgs_lock); 3873 } 3874 3875 /* 3876 * don't remove from the dirty list until after we've waited 3877 * on any pending IO 3878 */ 3879 list_del_init(&cache->dirty_list); 3880 spin_unlock(&cur_trans->dirty_bgs_lock); 3881 should_put = 1; 3882 3883 cache_save_setup(cache, trans, path); 3884 3885 if (!ret) 3886 ret = btrfs_run_delayed_refs(trans, 3887 (unsigned long) -1); 3888 3889 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3890 cache->io_ctl.inode = NULL; 3891 ret = btrfs_write_out_cache(fs_info, trans, 3892 cache, path); 3893 if (ret == 0 && cache->io_ctl.inode) { 3894 num_started++; 3895 should_put = 0; 3896 list_add_tail(&cache->io_list, io); 3897 } else { 3898 /* 3899 * if we failed to write the cache, the 3900 * generation will be bad and life goes on 3901 */ 3902 ret = 0; 3903 } 3904 } 3905 if (!ret) { 3906 ret = write_one_cache_group(trans, fs_info, 3907 path, cache); 3908 /* 3909 * One of the free space endio workers might have 3910 * created a new block group while updating a free space 3911 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3912 * and hasn't released its transaction handle yet, in 3913 * which case the new block group is still attached to 3914 * its transaction handle and its creation has not 3915 * finished yet (no block group item in the extent tree 3916 * yet, etc). If this is the case, wait for all free 3917 * space endio workers to finish and retry. This is a 3918 * a very rare case so no need for a more efficient and 3919 * complex approach. 3920 */ 3921 if (ret == -ENOENT) { 3922 wait_event(cur_trans->writer_wait, 3923 atomic_read(&cur_trans->num_writers) == 1); 3924 ret = write_one_cache_group(trans, fs_info, 3925 path, cache); 3926 } 3927 if (ret) 3928 btrfs_abort_transaction(trans, ret); 3929 } 3930 3931 /* if its not on the io list, we need to put the block group */ 3932 if (should_put) 3933 btrfs_put_block_group(cache); 3934 spin_lock(&cur_trans->dirty_bgs_lock); 3935 } 3936 spin_unlock(&cur_trans->dirty_bgs_lock); 3937 3938 /* 3939 * Refer to the definition of io_bgs member for details why it's safe 3940 * to use it without any locking 3941 */ 3942 while (!list_empty(io)) { 3943 cache = list_first_entry(io, struct btrfs_block_group_cache, 3944 io_list); 3945 list_del_init(&cache->io_list); 3946 btrfs_wait_cache_io(trans, cache, path); 3947 btrfs_put_block_group(cache); 3948 } 3949 3950 btrfs_free_path(path); 3951 return ret; 3952 } 3953 3954 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3955 { 3956 struct btrfs_block_group_cache *block_group; 3957 int readonly = 0; 3958 3959 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3960 if (!block_group || block_group->ro) 3961 readonly = 1; 3962 if (block_group) 3963 btrfs_put_block_group(block_group); 3964 return readonly; 3965 } 3966 3967 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3968 { 3969 struct btrfs_block_group_cache *bg; 3970 bool ret = true; 3971 3972 bg = btrfs_lookup_block_group(fs_info, bytenr); 3973 if (!bg) 3974 return false; 3975 3976 spin_lock(&bg->lock); 3977 if (bg->ro) 3978 ret = false; 3979 else 3980 atomic_inc(&bg->nocow_writers); 3981 spin_unlock(&bg->lock); 3982 3983 /* no put on block group, done by btrfs_dec_nocow_writers */ 3984 if (!ret) 3985 btrfs_put_block_group(bg); 3986 3987 return ret; 3988 3989 } 3990 3991 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3992 { 3993 struct btrfs_block_group_cache *bg; 3994 3995 bg = btrfs_lookup_block_group(fs_info, bytenr); 3996 ASSERT(bg); 3997 if (atomic_dec_and_test(&bg->nocow_writers)) 3998 wake_up_var(&bg->nocow_writers); 3999 /* 4000 * Once for our lookup and once for the lookup done by a previous call 4001 * to btrfs_inc_nocow_writers() 4002 */ 4003 btrfs_put_block_group(bg); 4004 btrfs_put_block_group(bg); 4005 } 4006 4007 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4008 { 4009 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 4010 } 4011 4012 static const char *alloc_name(u64 flags) 4013 { 4014 switch (flags) { 4015 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4016 return "mixed"; 4017 case BTRFS_BLOCK_GROUP_METADATA: 4018 return "metadata"; 4019 case BTRFS_BLOCK_GROUP_DATA: 4020 return "data"; 4021 case BTRFS_BLOCK_GROUP_SYSTEM: 4022 return "system"; 4023 default: 4024 WARN_ON(1); 4025 return "invalid-combination"; 4026 }; 4027 } 4028 4029 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4030 struct btrfs_space_info **new) 4031 { 4032 4033 struct btrfs_space_info *space_info; 4034 int i; 4035 int ret; 4036 4037 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4038 if (!space_info) 4039 return -ENOMEM; 4040 4041 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4042 GFP_KERNEL); 4043 if (ret) { 4044 kfree(space_info); 4045 return ret; 4046 } 4047 4048 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4049 INIT_LIST_HEAD(&space_info->block_groups[i]); 4050 init_rwsem(&space_info->groups_sem); 4051 spin_lock_init(&space_info->lock); 4052 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4053 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4054 init_waitqueue_head(&space_info->wait); 4055 INIT_LIST_HEAD(&space_info->ro_bgs); 4056 INIT_LIST_HEAD(&space_info->tickets); 4057 INIT_LIST_HEAD(&space_info->priority_tickets); 4058 4059 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4060 info->space_info_kobj, "%s", 4061 alloc_name(space_info->flags)); 4062 if (ret) { 4063 percpu_counter_destroy(&space_info->total_bytes_pinned); 4064 kfree(space_info); 4065 return ret; 4066 } 4067 4068 *new = space_info; 4069 list_add_rcu(&space_info->list, &info->space_info); 4070 if (flags & BTRFS_BLOCK_GROUP_DATA) 4071 info->data_sinfo = space_info; 4072 4073 return ret; 4074 } 4075 4076 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4077 u64 total_bytes, u64 bytes_used, 4078 u64 bytes_readonly, 4079 struct btrfs_space_info **space_info) 4080 { 4081 struct btrfs_space_info *found; 4082 int factor; 4083 4084 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4085 BTRFS_BLOCK_GROUP_RAID10)) 4086 factor = 2; 4087 else 4088 factor = 1; 4089 4090 found = __find_space_info(info, flags); 4091 ASSERT(found); 4092 spin_lock(&found->lock); 4093 found->total_bytes += total_bytes; 4094 found->disk_total += total_bytes * factor; 4095 found->bytes_used += bytes_used; 4096 found->disk_used += bytes_used * factor; 4097 found->bytes_readonly += bytes_readonly; 4098 if (total_bytes > 0) 4099 found->full = 0; 4100 space_info_add_new_bytes(info, found, total_bytes - 4101 bytes_used - bytes_readonly); 4102 spin_unlock(&found->lock); 4103 *space_info = found; 4104 } 4105 4106 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4107 { 4108 u64 extra_flags = chunk_to_extended(flags) & 4109 BTRFS_EXTENDED_PROFILE_MASK; 4110 4111 write_seqlock(&fs_info->profiles_lock); 4112 if (flags & BTRFS_BLOCK_GROUP_DATA) 4113 fs_info->avail_data_alloc_bits |= extra_flags; 4114 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4115 fs_info->avail_metadata_alloc_bits |= extra_flags; 4116 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4117 fs_info->avail_system_alloc_bits |= extra_flags; 4118 write_sequnlock(&fs_info->profiles_lock); 4119 } 4120 4121 /* 4122 * returns target flags in extended format or 0 if restripe for this 4123 * chunk_type is not in progress 4124 * 4125 * should be called with either volume_mutex or balance_lock held 4126 */ 4127 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4128 { 4129 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4130 u64 target = 0; 4131 4132 if (!bctl) 4133 return 0; 4134 4135 if (flags & BTRFS_BLOCK_GROUP_DATA && 4136 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4137 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4138 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4139 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4140 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4141 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4142 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4143 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4144 } 4145 4146 return target; 4147 } 4148 4149 /* 4150 * @flags: available profiles in extended format (see ctree.h) 4151 * 4152 * Returns reduced profile in chunk format. If profile changing is in 4153 * progress (either running or paused) picks the target profile (if it's 4154 * already available), otherwise falls back to plain reducing. 4155 */ 4156 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4157 { 4158 u64 num_devices = fs_info->fs_devices->rw_devices; 4159 u64 target; 4160 u64 raid_type; 4161 u64 allowed = 0; 4162 4163 /* 4164 * see if restripe for this chunk_type is in progress, if so 4165 * try to reduce to the target profile 4166 */ 4167 spin_lock(&fs_info->balance_lock); 4168 target = get_restripe_target(fs_info, flags); 4169 if (target) { 4170 /* pick target profile only if it's already available */ 4171 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4172 spin_unlock(&fs_info->balance_lock); 4173 return extended_to_chunk(target); 4174 } 4175 } 4176 spin_unlock(&fs_info->balance_lock); 4177 4178 /* First, mask out the RAID levels which aren't possible */ 4179 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4180 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4181 allowed |= btrfs_raid_group[raid_type]; 4182 } 4183 allowed &= flags; 4184 4185 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4186 allowed = BTRFS_BLOCK_GROUP_RAID6; 4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4188 allowed = BTRFS_BLOCK_GROUP_RAID5; 4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4190 allowed = BTRFS_BLOCK_GROUP_RAID10; 4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4192 allowed = BTRFS_BLOCK_GROUP_RAID1; 4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4194 allowed = BTRFS_BLOCK_GROUP_RAID0; 4195 4196 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4197 4198 return extended_to_chunk(flags | allowed); 4199 } 4200 4201 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4202 { 4203 unsigned seq; 4204 u64 flags; 4205 4206 do { 4207 flags = orig_flags; 4208 seq = read_seqbegin(&fs_info->profiles_lock); 4209 4210 if (flags & BTRFS_BLOCK_GROUP_DATA) 4211 flags |= fs_info->avail_data_alloc_bits; 4212 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4213 flags |= fs_info->avail_system_alloc_bits; 4214 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4215 flags |= fs_info->avail_metadata_alloc_bits; 4216 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4217 4218 return btrfs_reduce_alloc_profile(fs_info, flags); 4219 } 4220 4221 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4222 { 4223 struct btrfs_fs_info *fs_info = root->fs_info; 4224 u64 flags; 4225 u64 ret; 4226 4227 if (data) 4228 flags = BTRFS_BLOCK_GROUP_DATA; 4229 else if (root == fs_info->chunk_root) 4230 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4231 else 4232 flags = BTRFS_BLOCK_GROUP_METADATA; 4233 4234 ret = get_alloc_profile(fs_info, flags); 4235 return ret; 4236 } 4237 4238 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4239 { 4240 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4241 } 4242 4243 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4244 { 4245 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4246 } 4247 4248 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4249 { 4250 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4251 } 4252 4253 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4254 bool may_use_included) 4255 { 4256 ASSERT(s_info); 4257 return s_info->bytes_used + s_info->bytes_reserved + 4258 s_info->bytes_pinned + s_info->bytes_readonly + 4259 (may_use_included ? s_info->bytes_may_use : 0); 4260 } 4261 4262 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4263 { 4264 struct btrfs_root *root = inode->root; 4265 struct btrfs_fs_info *fs_info = root->fs_info; 4266 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4267 u64 used; 4268 int ret = 0; 4269 int need_commit = 2; 4270 int have_pinned_space; 4271 4272 /* make sure bytes are sectorsize aligned */ 4273 bytes = ALIGN(bytes, fs_info->sectorsize); 4274 4275 if (btrfs_is_free_space_inode(inode)) { 4276 need_commit = 0; 4277 ASSERT(current->journal_info); 4278 } 4279 4280 again: 4281 /* make sure we have enough space to handle the data first */ 4282 spin_lock(&data_sinfo->lock); 4283 used = btrfs_space_info_used(data_sinfo, true); 4284 4285 if (used + bytes > data_sinfo->total_bytes) { 4286 struct btrfs_trans_handle *trans; 4287 4288 /* 4289 * if we don't have enough free bytes in this space then we need 4290 * to alloc a new chunk. 4291 */ 4292 if (!data_sinfo->full) { 4293 u64 alloc_target; 4294 4295 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4296 spin_unlock(&data_sinfo->lock); 4297 4298 alloc_target = btrfs_data_alloc_profile(fs_info); 4299 /* 4300 * It is ugly that we don't call nolock join 4301 * transaction for the free space inode case here. 4302 * But it is safe because we only do the data space 4303 * reservation for the free space cache in the 4304 * transaction context, the common join transaction 4305 * just increase the counter of the current transaction 4306 * handler, doesn't try to acquire the trans_lock of 4307 * the fs. 4308 */ 4309 trans = btrfs_join_transaction(root); 4310 if (IS_ERR(trans)) 4311 return PTR_ERR(trans); 4312 4313 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4314 CHUNK_ALLOC_NO_FORCE); 4315 btrfs_end_transaction(trans); 4316 if (ret < 0) { 4317 if (ret != -ENOSPC) 4318 return ret; 4319 else { 4320 have_pinned_space = 1; 4321 goto commit_trans; 4322 } 4323 } 4324 4325 goto again; 4326 } 4327 4328 /* 4329 * If we don't have enough pinned space to deal with this 4330 * allocation, and no removed chunk in current transaction, 4331 * don't bother committing the transaction. 4332 */ 4333 have_pinned_space = percpu_counter_compare( 4334 &data_sinfo->total_bytes_pinned, 4335 used + bytes - data_sinfo->total_bytes); 4336 spin_unlock(&data_sinfo->lock); 4337 4338 /* commit the current transaction and try again */ 4339 commit_trans: 4340 if (need_commit) { 4341 need_commit--; 4342 4343 if (need_commit > 0) { 4344 btrfs_start_delalloc_roots(fs_info, 0, -1); 4345 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4346 (u64)-1); 4347 } 4348 4349 trans = btrfs_join_transaction(root); 4350 if (IS_ERR(trans)) 4351 return PTR_ERR(trans); 4352 if (have_pinned_space >= 0 || 4353 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4354 &trans->transaction->flags) || 4355 need_commit > 0) { 4356 ret = btrfs_commit_transaction(trans); 4357 if (ret) 4358 return ret; 4359 /* 4360 * The cleaner kthread might still be doing iput 4361 * operations. Wait for it to finish so that 4362 * more space is released. 4363 */ 4364 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4365 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4366 goto again; 4367 } else { 4368 btrfs_end_transaction(trans); 4369 } 4370 } 4371 4372 trace_btrfs_space_reservation(fs_info, 4373 "space_info:enospc", 4374 data_sinfo->flags, bytes, 1); 4375 return -ENOSPC; 4376 } 4377 data_sinfo->bytes_may_use += bytes; 4378 trace_btrfs_space_reservation(fs_info, "space_info", 4379 data_sinfo->flags, bytes, 1); 4380 spin_unlock(&data_sinfo->lock); 4381 4382 return ret; 4383 } 4384 4385 int btrfs_check_data_free_space(struct inode *inode, 4386 struct extent_changeset **reserved, u64 start, u64 len) 4387 { 4388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4389 int ret; 4390 4391 /* align the range */ 4392 len = round_up(start + len, fs_info->sectorsize) - 4393 round_down(start, fs_info->sectorsize); 4394 start = round_down(start, fs_info->sectorsize); 4395 4396 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4397 if (ret < 0) 4398 return ret; 4399 4400 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4401 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4402 if (ret < 0) 4403 btrfs_free_reserved_data_space_noquota(inode, start, len); 4404 else 4405 ret = 0; 4406 return ret; 4407 } 4408 4409 /* 4410 * Called if we need to clear a data reservation for this inode 4411 * Normally in a error case. 4412 * 4413 * This one will *NOT* use accurate qgroup reserved space API, just for case 4414 * which we can't sleep and is sure it won't affect qgroup reserved space. 4415 * Like clear_bit_hook(). 4416 */ 4417 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4418 u64 len) 4419 { 4420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4421 struct btrfs_space_info *data_sinfo; 4422 4423 /* Make sure the range is aligned to sectorsize */ 4424 len = round_up(start + len, fs_info->sectorsize) - 4425 round_down(start, fs_info->sectorsize); 4426 start = round_down(start, fs_info->sectorsize); 4427 4428 data_sinfo = fs_info->data_sinfo; 4429 spin_lock(&data_sinfo->lock); 4430 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4431 data_sinfo->bytes_may_use = 0; 4432 else 4433 data_sinfo->bytes_may_use -= len; 4434 trace_btrfs_space_reservation(fs_info, "space_info", 4435 data_sinfo->flags, len, 0); 4436 spin_unlock(&data_sinfo->lock); 4437 } 4438 4439 /* 4440 * Called if we need to clear a data reservation for this inode 4441 * Normally in a error case. 4442 * 4443 * This one will handle the per-inode data rsv map for accurate reserved 4444 * space framework. 4445 */ 4446 void btrfs_free_reserved_data_space(struct inode *inode, 4447 struct extent_changeset *reserved, u64 start, u64 len) 4448 { 4449 struct btrfs_root *root = BTRFS_I(inode)->root; 4450 4451 /* Make sure the range is aligned to sectorsize */ 4452 len = round_up(start + len, root->fs_info->sectorsize) - 4453 round_down(start, root->fs_info->sectorsize); 4454 start = round_down(start, root->fs_info->sectorsize); 4455 4456 btrfs_free_reserved_data_space_noquota(inode, start, len); 4457 btrfs_qgroup_free_data(inode, reserved, start, len); 4458 } 4459 4460 static void force_metadata_allocation(struct btrfs_fs_info *info) 4461 { 4462 struct list_head *head = &info->space_info; 4463 struct btrfs_space_info *found; 4464 4465 rcu_read_lock(); 4466 list_for_each_entry_rcu(found, head, list) { 4467 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4468 found->force_alloc = CHUNK_ALLOC_FORCE; 4469 } 4470 rcu_read_unlock(); 4471 } 4472 4473 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4474 { 4475 return (global->size << 1); 4476 } 4477 4478 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4479 struct btrfs_space_info *sinfo, int force) 4480 { 4481 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4482 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4483 u64 thresh; 4484 4485 if (force == CHUNK_ALLOC_FORCE) 4486 return 1; 4487 4488 /* 4489 * We need to take into account the global rsv because for all intents 4490 * and purposes it's used space. Don't worry about locking the 4491 * global_rsv, it doesn't change except when the transaction commits. 4492 */ 4493 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4494 bytes_used += calc_global_rsv_need_space(global_rsv); 4495 4496 /* 4497 * in limited mode, we want to have some free space up to 4498 * about 1% of the FS size. 4499 */ 4500 if (force == CHUNK_ALLOC_LIMITED) { 4501 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4502 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4503 4504 if (sinfo->total_bytes - bytes_used < thresh) 4505 return 1; 4506 } 4507 4508 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4509 return 0; 4510 return 1; 4511 } 4512 4513 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4514 { 4515 u64 num_dev; 4516 4517 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4518 BTRFS_BLOCK_GROUP_RAID0 | 4519 BTRFS_BLOCK_GROUP_RAID5 | 4520 BTRFS_BLOCK_GROUP_RAID6)) 4521 num_dev = fs_info->fs_devices->rw_devices; 4522 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4523 num_dev = 2; 4524 else 4525 num_dev = 1; /* DUP or single */ 4526 4527 return num_dev; 4528 } 4529 4530 /* 4531 * If @is_allocation is true, reserve space in the system space info necessary 4532 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4533 * removing a chunk. 4534 */ 4535 void check_system_chunk(struct btrfs_trans_handle *trans, 4536 struct btrfs_fs_info *fs_info, u64 type) 4537 { 4538 struct btrfs_space_info *info; 4539 u64 left; 4540 u64 thresh; 4541 int ret = 0; 4542 u64 num_devs; 4543 4544 /* 4545 * Needed because we can end up allocating a system chunk and for an 4546 * atomic and race free space reservation in the chunk block reserve. 4547 */ 4548 lockdep_assert_held(&fs_info->chunk_mutex); 4549 4550 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4551 spin_lock(&info->lock); 4552 left = info->total_bytes - btrfs_space_info_used(info, true); 4553 spin_unlock(&info->lock); 4554 4555 num_devs = get_profile_num_devs(fs_info, type); 4556 4557 /* num_devs device items to update and 1 chunk item to add or remove */ 4558 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4559 btrfs_calc_trans_metadata_size(fs_info, 1); 4560 4561 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4562 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4563 left, thresh, type); 4564 dump_space_info(fs_info, info, 0, 0); 4565 } 4566 4567 if (left < thresh) { 4568 u64 flags = btrfs_system_alloc_profile(fs_info); 4569 4570 /* 4571 * Ignore failure to create system chunk. We might end up not 4572 * needing it, as we might not need to COW all nodes/leafs from 4573 * the paths we visit in the chunk tree (they were already COWed 4574 * or created in the current transaction for example). 4575 */ 4576 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4577 } 4578 4579 if (!ret) { 4580 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4581 &fs_info->chunk_block_rsv, 4582 thresh, BTRFS_RESERVE_NO_FLUSH); 4583 if (!ret) 4584 trans->chunk_bytes_reserved += thresh; 4585 } 4586 } 4587 4588 /* 4589 * If force is CHUNK_ALLOC_FORCE: 4590 * - return 1 if it successfully allocates a chunk, 4591 * - return errors including -ENOSPC otherwise. 4592 * If force is NOT CHUNK_ALLOC_FORCE: 4593 * - return 0 if it doesn't need to allocate a new chunk, 4594 * - return 1 if it successfully allocates a chunk, 4595 * - return errors including -ENOSPC otherwise. 4596 */ 4597 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4598 struct btrfs_fs_info *fs_info, u64 flags, int force) 4599 { 4600 struct btrfs_space_info *space_info; 4601 int wait_for_alloc = 0; 4602 int ret = 0; 4603 4604 /* Don't re-enter if we're already allocating a chunk */ 4605 if (trans->allocating_chunk) 4606 return -ENOSPC; 4607 4608 space_info = __find_space_info(fs_info, flags); 4609 ASSERT(space_info); 4610 4611 again: 4612 spin_lock(&space_info->lock); 4613 if (force < space_info->force_alloc) 4614 force = space_info->force_alloc; 4615 if (space_info->full) { 4616 if (should_alloc_chunk(fs_info, space_info, force)) 4617 ret = -ENOSPC; 4618 else 4619 ret = 0; 4620 spin_unlock(&space_info->lock); 4621 return ret; 4622 } 4623 4624 if (!should_alloc_chunk(fs_info, space_info, force)) { 4625 spin_unlock(&space_info->lock); 4626 return 0; 4627 } else if (space_info->chunk_alloc) { 4628 wait_for_alloc = 1; 4629 } else { 4630 space_info->chunk_alloc = 1; 4631 } 4632 4633 spin_unlock(&space_info->lock); 4634 4635 mutex_lock(&fs_info->chunk_mutex); 4636 4637 /* 4638 * The chunk_mutex is held throughout the entirety of a chunk 4639 * allocation, so once we've acquired the chunk_mutex we know that the 4640 * other guy is done and we need to recheck and see if we should 4641 * allocate. 4642 */ 4643 if (wait_for_alloc) { 4644 mutex_unlock(&fs_info->chunk_mutex); 4645 wait_for_alloc = 0; 4646 cond_resched(); 4647 goto again; 4648 } 4649 4650 trans->allocating_chunk = true; 4651 4652 /* 4653 * If we have mixed data/metadata chunks we want to make sure we keep 4654 * allocating mixed chunks instead of individual chunks. 4655 */ 4656 if (btrfs_mixed_space_info(space_info)) 4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4658 4659 /* 4660 * if we're doing a data chunk, go ahead and make sure that 4661 * we keep a reasonable number of metadata chunks allocated in the 4662 * FS as well. 4663 */ 4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4665 fs_info->data_chunk_allocations++; 4666 if (!(fs_info->data_chunk_allocations % 4667 fs_info->metadata_ratio)) 4668 force_metadata_allocation(fs_info); 4669 } 4670 4671 /* 4672 * Check if we have enough space in SYSTEM chunk because we may need 4673 * to update devices. 4674 */ 4675 check_system_chunk(trans, fs_info, flags); 4676 4677 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4678 trans->allocating_chunk = false; 4679 4680 spin_lock(&space_info->lock); 4681 if (ret < 0 && ret != -ENOSPC) 4682 goto out; 4683 if (ret) 4684 space_info->full = 1; 4685 else 4686 ret = 1; 4687 4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4689 out: 4690 space_info->chunk_alloc = 0; 4691 spin_unlock(&space_info->lock); 4692 mutex_unlock(&fs_info->chunk_mutex); 4693 /* 4694 * When we allocate a new chunk we reserve space in the chunk block 4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4696 * add new nodes/leafs to it if we end up needing to do it when 4697 * inserting the chunk item and updating device items as part of the 4698 * second phase of chunk allocation, performed by 4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4700 * large number of new block groups to create in our transaction 4701 * handle's new_bgs list to avoid exhausting the chunk block reserve 4702 * in extreme cases - like having a single transaction create many new 4703 * block groups when starting to write out the free space caches of all 4704 * the block groups that were made dirty during the lifetime of the 4705 * transaction. 4706 */ 4707 if (trans->can_flush_pending_bgs && 4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4709 btrfs_create_pending_block_groups(trans); 4710 btrfs_trans_release_chunk_metadata(trans); 4711 } 4712 return ret; 4713 } 4714 4715 static int can_overcommit(struct btrfs_fs_info *fs_info, 4716 struct btrfs_space_info *space_info, u64 bytes, 4717 enum btrfs_reserve_flush_enum flush, 4718 bool system_chunk) 4719 { 4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4721 u64 profile; 4722 u64 space_size; 4723 u64 avail; 4724 u64 used; 4725 4726 /* Don't overcommit when in mixed mode. */ 4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4728 return 0; 4729 4730 if (system_chunk) 4731 profile = btrfs_system_alloc_profile(fs_info); 4732 else 4733 profile = btrfs_metadata_alloc_profile(fs_info); 4734 4735 used = btrfs_space_info_used(space_info, false); 4736 4737 /* 4738 * We only want to allow over committing if we have lots of actual space 4739 * free, but if we don't have enough space to handle the global reserve 4740 * space then we could end up having a real enospc problem when trying 4741 * to allocate a chunk or some other such important allocation. 4742 */ 4743 spin_lock(&global_rsv->lock); 4744 space_size = calc_global_rsv_need_space(global_rsv); 4745 spin_unlock(&global_rsv->lock); 4746 if (used + space_size >= space_info->total_bytes) 4747 return 0; 4748 4749 used += space_info->bytes_may_use; 4750 4751 avail = atomic64_read(&fs_info->free_chunk_space); 4752 4753 /* 4754 * If we have dup, raid1 or raid10 then only half of the free 4755 * space is actually useable. For raid56, the space info used 4756 * doesn't include the parity drive, so we don't have to 4757 * change the math 4758 */ 4759 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4760 BTRFS_BLOCK_GROUP_RAID1 | 4761 BTRFS_BLOCK_GROUP_RAID10)) 4762 avail >>= 1; 4763 4764 /* 4765 * If we aren't flushing all things, let us overcommit up to 4766 * 1/2th of the space. If we can flush, don't let us overcommit 4767 * too much, let it overcommit up to 1/8 of the space. 4768 */ 4769 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4770 avail >>= 3; 4771 else 4772 avail >>= 1; 4773 4774 if (used + bytes < space_info->total_bytes + avail) 4775 return 1; 4776 return 0; 4777 } 4778 4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4780 unsigned long nr_pages, int nr_items) 4781 { 4782 struct super_block *sb = fs_info->sb; 4783 4784 if (down_read_trylock(&sb->s_umount)) { 4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4786 up_read(&sb->s_umount); 4787 } else { 4788 /* 4789 * We needn't worry the filesystem going from r/w to r/o though 4790 * we don't acquire ->s_umount mutex, because the filesystem 4791 * should guarantee the delalloc inodes list be empty after 4792 * the filesystem is readonly(all dirty pages are written to 4793 * the disk). 4794 */ 4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4796 if (!current->journal_info) 4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4798 } 4799 } 4800 4801 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4802 u64 to_reclaim) 4803 { 4804 u64 bytes; 4805 u64 nr; 4806 4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4808 nr = div64_u64(to_reclaim, bytes); 4809 if (!nr) 4810 nr = 1; 4811 return nr; 4812 } 4813 4814 #define EXTENT_SIZE_PER_ITEM SZ_256K 4815 4816 /* 4817 * shrink metadata reservation for delalloc 4818 */ 4819 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4820 u64 orig, bool wait_ordered) 4821 { 4822 struct btrfs_space_info *space_info; 4823 struct btrfs_trans_handle *trans; 4824 u64 delalloc_bytes; 4825 u64 max_reclaim; 4826 u64 items; 4827 long time_left; 4828 unsigned long nr_pages; 4829 int loops; 4830 4831 /* Calc the number of the pages we need flush for space reservation */ 4832 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4833 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4834 4835 trans = (struct btrfs_trans_handle *)current->journal_info; 4836 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4837 4838 delalloc_bytes = percpu_counter_sum_positive( 4839 &fs_info->delalloc_bytes); 4840 if (delalloc_bytes == 0) { 4841 if (trans) 4842 return; 4843 if (wait_ordered) 4844 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4845 return; 4846 } 4847 4848 loops = 0; 4849 while (delalloc_bytes && loops < 3) { 4850 max_reclaim = min(delalloc_bytes, to_reclaim); 4851 nr_pages = max_reclaim >> PAGE_SHIFT; 4852 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4853 /* 4854 * We need to wait for the async pages to actually start before 4855 * we do anything. 4856 */ 4857 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4858 if (!max_reclaim) 4859 goto skip_async; 4860 4861 if (max_reclaim <= nr_pages) 4862 max_reclaim = 0; 4863 else 4864 max_reclaim -= nr_pages; 4865 4866 wait_event(fs_info->async_submit_wait, 4867 atomic_read(&fs_info->async_delalloc_pages) <= 4868 (int)max_reclaim); 4869 skip_async: 4870 spin_lock(&space_info->lock); 4871 if (list_empty(&space_info->tickets) && 4872 list_empty(&space_info->priority_tickets)) { 4873 spin_unlock(&space_info->lock); 4874 break; 4875 } 4876 spin_unlock(&space_info->lock); 4877 4878 loops++; 4879 if (wait_ordered && !trans) { 4880 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4881 } else { 4882 time_left = schedule_timeout_killable(1); 4883 if (time_left) 4884 break; 4885 } 4886 delalloc_bytes = percpu_counter_sum_positive( 4887 &fs_info->delalloc_bytes); 4888 } 4889 } 4890 4891 struct reserve_ticket { 4892 u64 bytes; 4893 int error; 4894 struct list_head list; 4895 wait_queue_head_t wait; 4896 }; 4897 4898 /** 4899 * maybe_commit_transaction - possibly commit the transaction if its ok to 4900 * @root - the root we're allocating for 4901 * @bytes - the number of bytes we want to reserve 4902 * @force - force the commit 4903 * 4904 * This will check to make sure that committing the transaction will actually 4905 * get us somewhere and then commit the transaction if it does. Otherwise it 4906 * will return -ENOSPC. 4907 */ 4908 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4909 struct btrfs_space_info *space_info) 4910 { 4911 struct reserve_ticket *ticket = NULL; 4912 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4913 struct btrfs_trans_handle *trans; 4914 u64 bytes; 4915 4916 trans = (struct btrfs_trans_handle *)current->journal_info; 4917 if (trans) 4918 return -EAGAIN; 4919 4920 spin_lock(&space_info->lock); 4921 if (!list_empty(&space_info->priority_tickets)) 4922 ticket = list_first_entry(&space_info->priority_tickets, 4923 struct reserve_ticket, list); 4924 else if (!list_empty(&space_info->tickets)) 4925 ticket = list_first_entry(&space_info->tickets, 4926 struct reserve_ticket, list); 4927 bytes = (ticket) ? ticket->bytes : 0; 4928 spin_unlock(&space_info->lock); 4929 4930 if (!bytes) 4931 return 0; 4932 4933 /* See if there is enough pinned space to make this reservation */ 4934 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4935 bytes) >= 0) 4936 goto commit; 4937 4938 /* 4939 * See if there is some space in the delayed insertion reservation for 4940 * this reservation. 4941 */ 4942 if (space_info != delayed_rsv->space_info) 4943 return -ENOSPC; 4944 4945 spin_lock(&delayed_rsv->lock); 4946 if (delayed_rsv->size > bytes) 4947 bytes = 0; 4948 else 4949 bytes -= delayed_rsv->size; 4950 spin_unlock(&delayed_rsv->lock); 4951 4952 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4953 bytes) < 0) { 4954 return -ENOSPC; 4955 } 4956 4957 commit: 4958 trans = btrfs_join_transaction(fs_info->extent_root); 4959 if (IS_ERR(trans)) 4960 return -ENOSPC; 4961 4962 return btrfs_commit_transaction(trans); 4963 } 4964 4965 /* 4966 * Try to flush some data based on policy set by @state. This is only advisory 4967 * and may fail for various reasons. The caller is supposed to examine the 4968 * state of @space_info to detect the outcome. 4969 */ 4970 static void flush_space(struct btrfs_fs_info *fs_info, 4971 struct btrfs_space_info *space_info, u64 num_bytes, 4972 int state) 4973 { 4974 struct btrfs_root *root = fs_info->extent_root; 4975 struct btrfs_trans_handle *trans; 4976 int nr; 4977 int ret = 0; 4978 4979 switch (state) { 4980 case FLUSH_DELAYED_ITEMS_NR: 4981 case FLUSH_DELAYED_ITEMS: 4982 if (state == FLUSH_DELAYED_ITEMS_NR) 4983 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4984 else 4985 nr = -1; 4986 4987 trans = btrfs_join_transaction(root); 4988 if (IS_ERR(trans)) { 4989 ret = PTR_ERR(trans); 4990 break; 4991 } 4992 ret = btrfs_run_delayed_items_nr(trans, nr); 4993 btrfs_end_transaction(trans); 4994 break; 4995 case FLUSH_DELALLOC: 4996 case FLUSH_DELALLOC_WAIT: 4997 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4998 state == FLUSH_DELALLOC_WAIT); 4999 break; 5000 case ALLOC_CHUNK: 5001 trans = btrfs_join_transaction(root); 5002 if (IS_ERR(trans)) { 5003 ret = PTR_ERR(trans); 5004 break; 5005 } 5006 ret = do_chunk_alloc(trans, fs_info, 5007 btrfs_metadata_alloc_profile(fs_info), 5008 CHUNK_ALLOC_NO_FORCE); 5009 btrfs_end_transaction(trans); 5010 if (ret > 0 || ret == -ENOSPC) 5011 ret = 0; 5012 break; 5013 case COMMIT_TRANS: 5014 ret = may_commit_transaction(fs_info, space_info); 5015 break; 5016 default: 5017 ret = -ENOSPC; 5018 break; 5019 } 5020 5021 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5022 ret); 5023 return; 5024 } 5025 5026 static inline u64 5027 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5028 struct btrfs_space_info *space_info, 5029 bool system_chunk) 5030 { 5031 struct reserve_ticket *ticket; 5032 u64 used; 5033 u64 expected; 5034 u64 to_reclaim = 0; 5035 5036 list_for_each_entry(ticket, &space_info->tickets, list) 5037 to_reclaim += ticket->bytes; 5038 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5039 to_reclaim += ticket->bytes; 5040 if (to_reclaim) 5041 return to_reclaim; 5042 5043 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5044 if (can_overcommit(fs_info, space_info, to_reclaim, 5045 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5046 return 0; 5047 5048 used = btrfs_space_info_used(space_info, true); 5049 5050 if (can_overcommit(fs_info, space_info, SZ_1M, 5051 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5052 expected = div_factor_fine(space_info->total_bytes, 95); 5053 else 5054 expected = div_factor_fine(space_info->total_bytes, 90); 5055 5056 if (used > expected) 5057 to_reclaim = used - expected; 5058 else 5059 to_reclaim = 0; 5060 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5061 space_info->bytes_reserved); 5062 return to_reclaim; 5063 } 5064 5065 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5066 struct btrfs_space_info *space_info, 5067 u64 used, bool system_chunk) 5068 { 5069 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5070 5071 /* If we're just plain full then async reclaim just slows us down. */ 5072 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5073 return 0; 5074 5075 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5076 system_chunk)) 5077 return 0; 5078 5079 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5080 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5081 } 5082 5083 static void wake_all_tickets(struct list_head *head) 5084 { 5085 struct reserve_ticket *ticket; 5086 5087 while (!list_empty(head)) { 5088 ticket = list_first_entry(head, struct reserve_ticket, list); 5089 list_del_init(&ticket->list); 5090 ticket->error = -ENOSPC; 5091 wake_up(&ticket->wait); 5092 } 5093 } 5094 5095 /* 5096 * This is for normal flushers, we can wait all goddamned day if we want to. We 5097 * will loop and continuously try to flush as long as we are making progress. 5098 * We count progress as clearing off tickets each time we have to loop. 5099 */ 5100 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5101 { 5102 struct btrfs_fs_info *fs_info; 5103 struct btrfs_space_info *space_info; 5104 u64 to_reclaim; 5105 int flush_state; 5106 int commit_cycles = 0; 5107 u64 last_tickets_id; 5108 5109 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5110 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5111 5112 spin_lock(&space_info->lock); 5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5114 false); 5115 if (!to_reclaim) { 5116 space_info->flush = 0; 5117 spin_unlock(&space_info->lock); 5118 return; 5119 } 5120 last_tickets_id = space_info->tickets_id; 5121 spin_unlock(&space_info->lock); 5122 5123 flush_state = FLUSH_DELAYED_ITEMS_NR; 5124 do { 5125 flush_space(fs_info, space_info, to_reclaim, flush_state); 5126 spin_lock(&space_info->lock); 5127 if (list_empty(&space_info->tickets)) { 5128 space_info->flush = 0; 5129 spin_unlock(&space_info->lock); 5130 return; 5131 } 5132 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5133 space_info, 5134 false); 5135 if (last_tickets_id == space_info->tickets_id) { 5136 flush_state++; 5137 } else { 5138 last_tickets_id = space_info->tickets_id; 5139 flush_state = FLUSH_DELAYED_ITEMS_NR; 5140 if (commit_cycles) 5141 commit_cycles--; 5142 } 5143 5144 if (flush_state > COMMIT_TRANS) { 5145 commit_cycles++; 5146 if (commit_cycles > 2) { 5147 wake_all_tickets(&space_info->tickets); 5148 space_info->flush = 0; 5149 } else { 5150 flush_state = FLUSH_DELAYED_ITEMS_NR; 5151 } 5152 } 5153 spin_unlock(&space_info->lock); 5154 } while (flush_state <= COMMIT_TRANS); 5155 } 5156 5157 void btrfs_init_async_reclaim_work(struct work_struct *work) 5158 { 5159 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5160 } 5161 5162 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5163 struct btrfs_space_info *space_info, 5164 struct reserve_ticket *ticket) 5165 { 5166 u64 to_reclaim; 5167 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5168 5169 spin_lock(&space_info->lock); 5170 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5171 false); 5172 if (!to_reclaim) { 5173 spin_unlock(&space_info->lock); 5174 return; 5175 } 5176 spin_unlock(&space_info->lock); 5177 5178 do { 5179 flush_space(fs_info, space_info, to_reclaim, flush_state); 5180 flush_state++; 5181 spin_lock(&space_info->lock); 5182 if (ticket->bytes == 0) { 5183 spin_unlock(&space_info->lock); 5184 return; 5185 } 5186 spin_unlock(&space_info->lock); 5187 5188 /* 5189 * Priority flushers can't wait on delalloc without 5190 * deadlocking. 5191 */ 5192 if (flush_state == FLUSH_DELALLOC || 5193 flush_state == FLUSH_DELALLOC_WAIT) 5194 flush_state = ALLOC_CHUNK; 5195 } while (flush_state < COMMIT_TRANS); 5196 } 5197 5198 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5199 struct btrfs_space_info *space_info, 5200 struct reserve_ticket *ticket, u64 orig_bytes) 5201 5202 { 5203 DEFINE_WAIT(wait); 5204 int ret = 0; 5205 5206 spin_lock(&space_info->lock); 5207 while (ticket->bytes > 0 && ticket->error == 0) { 5208 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5209 if (ret) { 5210 ret = -EINTR; 5211 break; 5212 } 5213 spin_unlock(&space_info->lock); 5214 5215 schedule(); 5216 5217 finish_wait(&ticket->wait, &wait); 5218 spin_lock(&space_info->lock); 5219 } 5220 if (!ret) 5221 ret = ticket->error; 5222 if (!list_empty(&ticket->list)) 5223 list_del_init(&ticket->list); 5224 if (ticket->bytes && ticket->bytes < orig_bytes) { 5225 u64 num_bytes = orig_bytes - ticket->bytes; 5226 space_info->bytes_may_use -= num_bytes; 5227 trace_btrfs_space_reservation(fs_info, "space_info", 5228 space_info->flags, num_bytes, 0); 5229 } 5230 spin_unlock(&space_info->lock); 5231 5232 return ret; 5233 } 5234 5235 /** 5236 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5237 * @root - the root we're allocating for 5238 * @space_info - the space info we want to allocate from 5239 * @orig_bytes - the number of bytes we want 5240 * @flush - whether or not we can flush to make our reservation 5241 * 5242 * This will reserve orig_bytes number of bytes from the space info associated 5243 * with the block_rsv. If there is not enough space it will make an attempt to 5244 * flush out space to make room. It will do this by flushing delalloc if 5245 * possible or committing the transaction. If flush is 0 then no attempts to 5246 * regain reservations will be made and this will fail if there is not enough 5247 * space already. 5248 */ 5249 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5250 struct btrfs_space_info *space_info, 5251 u64 orig_bytes, 5252 enum btrfs_reserve_flush_enum flush, 5253 bool system_chunk) 5254 { 5255 struct reserve_ticket ticket; 5256 u64 used; 5257 int ret = 0; 5258 5259 ASSERT(orig_bytes); 5260 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5261 5262 spin_lock(&space_info->lock); 5263 ret = -ENOSPC; 5264 used = btrfs_space_info_used(space_info, true); 5265 5266 /* 5267 * If we have enough space then hooray, make our reservation and carry 5268 * on. If not see if we can overcommit, and if we can, hooray carry on. 5269 * If not things get more complicated. 5270 */ 5271 if (used + orig_bytes <= space_info->total_bytes) { 5272 space_info->bytes_may_use += orig_bytes; 5273 trace_btrfs_space_reservation(fs_info, "space_info", 5274 space_info->flags, orig_bytes, 1); 5275 ret = 0; 5276 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5277 system_chunk)) { 5278 space_info->bytes_may_use += orig_bytes; 5279 trace_btrfs_space_reservation(fs_info, "space_info", 5280 space_info->flags, orig_bytes, 1); 5281 ret = 0; 5282 } 5283 5284 /* 5285 * If we couldn't make a reservation then setup our reservation ticket 5286 * and kick the async worker if it's not already running. 5287 * 5288 * If we are a priority flusher then we just need to add our ticket to 5289 * the list and we will do our own flushing further down. 5290 */ 5291 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5292 ticket.bytes = orig_bytes; 5293 ticket.error = 0; 5294 init_waitqueue_head(&ticket.wait); 5295 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5296 list_add_tail(&ticket.list, &space_info->tickets); 5297 if (!space_info->flush) { 5298 space_info->flush = 1; 5299 trace_btrfs_trigger_flush(fs_info, 5300 space_info->flags, 5301 orig_bytes, flush, 5302 "enospc"); 5303 queue_work(system_unbound_wq, 5304 &fs_info->async_reclaim_work); 5305 } 5306 } else { 5307 list_add_tail(&ticket.list, 5308 &space_info->priority_tickets); 5309 } 5310 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5311 used += orig_bytes; 5312 /* 5313 * We will do the space reservation dance during log replay, 5314 * which means we won't have fs_info->fs_root set, so don't do 5315 * the async reclaim as we will panic. 5316 */ 5317 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5318 need_do_async_reclaim(fs_info, space_info, 5319 used, system_chunk) && 5320 !work_busy(&fs_info->async_reclaim_work)) { 5321 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5322 orig_bytes, flush, "preempt"); 5323 queue_work(system_unbound_wq, 5324 &fs_info->async_reclaim_work); 5325 } 5326 } 5327 spin_unlock(&space_info->lock); 5328 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5329 return ret; 5330 5331 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5332 return wait_reserve_ticket(fs_info, space_info, &ticket, 5333 orig_bytes); 5334 5335 ret = 0; 5336 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5337 spin_lock(&space_info->lock); 5338 if (ticket.bytes) { 5339 if (ticket.bytes < orig_bytes) { 5340 u64 num_bytes = orig_bytes - ticket.bytes; 5341 space_info->bytes_may_use -= num_bytes; 5342 trace_btrfs_space_reservation(fs_info, "space_info", 5343 space_info->flags, 5344 num_bytes, 0); 5345 5346 } 5347 list_del_init(&ticket.list); 5348 ret = -ENOSPC; 5349 } 5350 spin_unlock(&space_info->lock); 5351 ASSERT(list_empty(&ticket.list)); 5352 return ret; 5353 } 5354 5355 /** 5356 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5357 * @root - the root we're allocating for 5358 * @block_rsv - the block_rsv we're allocating for 5359 * @orig_bytes - the number of bytes we want 5360 * @flush - whether or not we can flush to make our reservation 5361 * 5362 * This will reserve orgi_bytes number of bytes from the space info associated 5363 * with the block_rsv. If there is not enough space it will make an attempt to 5364 * flush out space to make room. It will do this by flushing delalloc if 5365 * possible or committing the transaction. If flush is 0 then no attempts to 5366 * regain reservations will be made and this will fail if there is not enough 5367 * space already. 5368 */ 5369 static int reserve_metadata_bytes(struct btrfs_root *root, 5370 struct btrfs_block_rsv *block_rsv, 5371 u64 orig_bytes, 5372 enum btrfs_reserve_flush_enum flush) 5373 { 5374 struct btrfs_fs_info *fs_info = root->fs_info; 5375 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5376 int ret; 5377 bool system_chunk = (root == fs_info->chunk_root); 5378 5379 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5380 orig_bytes, flush, system_chunk); 5381 if (ret == -ENOSPC && 5382 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5383 if (block_rsv != global_rsv && 5384 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5385 ret = 0; 5386 } 5387 if (ret == -ENOSPC) { 5388 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5389 block_rsv->space_info->flags, 5390 orig_bytes, 1); 5391 5392 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5393 dump_space_info(fs_info, block_rsv->space_info, 5394 orig_bytes, 0); 5395 } 5396 return ret; 5397 } 5398 5399 static struct btrfs_block_rsv *get_block_rsv( 5400 const struct btrfs_trans_handle *trans, 5401 const struct btrfs_root *root) 5402 { 5403 struct btrfs_fs_info *fs_info = root->fs_info; 5404 struct btrfs_block_rsv *block_rsv = NULL; 5405 5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5407 (root == fs_info->csum_root && trans->adding_csums) || 5408 (root == fs_info->uuid_root)) 5409 block_rsv = trans->block_rsv; 5410 5411 if (!block_rsv) 5412 block_rsv = root->block_rsv; 5413 5414 if (!block_rsv) 5415 block_rsv = &fs_info->empty_block_rsv; 5416 5417 return block_rsv; 5418 } 5419 5420 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5421 u64 num_bytes) 5422 { 5423 int ret = -ENOSPC; 5424 spin_lock(&block_rsv->lock); 5425 if (block_rsv->reserved >= num_bytes) { 5426 block_rsv->reserved -= num_bytes; 5427 if (block_rsv->reserved < block_rsv->size) 5428 block_rsv->full = 0; 5429 ret = 0; 5430 } 5431 spin_unlock(&block_rsv->lock); 5432 return ret; 5433 } 5434 5435 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5436 u64 num_bytes, int update_size) 5437 { 5438 spin_lock(&block_rsv->lock); 5439 block_rsv->reserved += num_bytes; 5440 if (update_size) 5441 block_rsv->size += num_bytes; 5442 else if (block_rsv->reserved >= block_rsv->size) 5443 block_rsv->full = 1; 5444 spin_unlock(&block_rsv->lock); 5445 } 5446 5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5448 struct btrfs_block_rsv *dest, u64 num_bytes, 5449 int min_factor) 5450 { 5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5452 u64 min_bytes; 5453 5454 if (global_rsv->space_info != dest->space_info) 5455 return -ENOSPC; 5456 5457 spin_lock(&global_rsv->lock); 5458 min_bytes = div_factor(global_rsv->size, min_factor); 5459 if (global_rsv->reserved < min_bytes + num_bytes) { 5460 spin_unlock(&global_rsv->lock); 5461 return -ENOSPC; 5462 } 5463 global_rsv->reserved -= num_bytes; 5464 if (global_rsv->reserved < global_rsv->size) 5465 global_rsv->full = 0; 5466 spin_unlock(&global_rsv->lock); 5467 5468 block_rsv_add_bytes(dest, num_bytes, 1); 5469 return 0; 5470 } 5471 5472 /* 5473 * This is for space we already have accounted in space_info->bytes_may_use, so 5474 * basically when we're returning space from block_rsv's. 5475 */ 5476 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5477 struct btrfs_space_info *space_info, 5478 u64 num_bytes) 5479 { 5480 struct reserve_ticket *ticket; 5481 struct list_head *head; 5482 u64 used; 5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5484 bool check_overcommit = false; 5485 5486 spin_lock(&space_info->lock); 5487 head = &space_info->priority_tickets; 5488 5489 /* 5490 * If we are over our limit then we need to check and see if we can 5491 * overcommit, and if we can't then we just need to free up our space 5492 * and not satisfy any requests. 5493 */ 5494 used = btrfs_space_info_used(space_info, true); 5495 if (used - num_bytes >= space_info->total_bytes) 5496 check_overcommit = true; 5497 again: 5498 while (!list_empty(head) && num_bytes) { 5499 ticket = list_first_entry(head, struct reserve_ticket, 5500 list); 5501 /* 5502 * We use 0 bytes because this space is already reserved, so 5503 * adding the ticket space would be a double count. 5504 */ 5505 if (check_overcommit && 5506 !can_overcommit(fs_info, space_info, 0, flush, false)) 5507 break; 5508 if (num_bytes >= ticket->bytes) { 5509 list_del_init(&ticket->list); 5510 num_bytes -= ticket->bytes; 5511 ticket->bytes = 0; 5512 space_info->tickets_id++; 5513 wake_up(&ticket->wait); 5514 } else { 5515 ticket->bytes -= num_bytes; 5516 num_bytes = 0; 5517 } 5518 } 5519 5520 if (num_bytes && head == &space_info->priority_tickets) { 5521 head = &space_info->tickets; 5522 flush = BTRFS_RESERVE_FLUSH_ALL; 5523 goto again; 5524 } 5525 space_info->bytes_may_use -= num_bytes; 5526 trace_btrfs_space_reservation(fs_info, "space_info", 5527 space_info->flags, num_bytes, 0); 5528 spin_unlock(&space_info->lock); 5529 } 5530 5531 /* 5532 * This is for newly allocated space that isn't accounted in 5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5534 * we use this helper. 5535 */ 5536 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5537 struct btrfs_space_info *space_info, 5538 u64 num_bytes) 5539 { 5540 struct reserve_ticket *ticket; 5541 struct list_head *head = &space_info->priority_tickets; 5542 5543 again: 5544 while (!list_empty(head) && num_bytes) { 5545 ticket = list_first_entry(head, struct reserve_ticket, 5546 list); 5547 if (num_bytes >= ticket->bytes) { 5548 trace_btrfs_space_reservation(fs_info, "space_info", 5549 space_info->flags, 5550 ticket->bytes, 1); 5551 list_del_init(&ticket->list); 5552 num_bytes -= ticket->bytes; 5553 space_info->bytes_may_use += ticket->bytes; 5554 ticket->bytes = 0; 5555 space_info->tickets_id++; 5556 wake_up(&ticket->wait); 5557 } else { 5558 trace_btrfs_space_reservation(fs_info, "space_info", 5559 space_info->flags, 5560 num_bytes, 1); 5561 space_info->bytes_may_use += num_bytes; 5562 ticket->bytes -= num_bytes; 5563 num_bytes = 0; 5564 } 5565 } 5566 5567 if (num_bytes && head == &space_info->priority_tickets) { 5568 head = &space_info->tickets; 5569 goto again; 5570 } 5571 } 5572 5573 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5574 struct btrfs_block_rsv *block_rsv, 5575 struct btrfs_block_rsv *dest, u64 num_bytes, 5576 u64 *qgroup_to_release_ret) 5577 { 5578 struct btrfs_space_info *space_info = block_rsv->space_info; 5579 u64 qgroup_to_release = 0; 5580 u64 ret; 5581 5582 spin_lock(&block_rsv->lock); 5583 if (num_bytes == (u64)-1) { 5584 num_bytes = block_rsv->size; 5585 qgroup_to_release = block_rsv->qgroup_rsv_size; 5586 } 5587 block_rsv->size -= num_bytes; 5588 if (block_rsv->reserved >= block_rsv->size) { 5589 num_bytes = block_rsv->reserved - block_rsv->size; 5590 block_rsv->reserved = block_rsv->size; 5591 block_rsv->full = 1; 5592 } else { 5593 num_bytes = 0; 5594 } 5595 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 5596 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 5597 block_rsv->qgroup_rsv_size; 5598 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 5599 } else { 5600 qgroup_to_release = 0; 5601 } 5602 spin_unlock(&block_rsv->lock); 5603 5604 ret = num_bytes; 5605 if (num_bytes > 0) { 5606 if (dest) { 5607 spin_lock(&dest->lock); 5608 if (!dest->full) { 5609 u64 bytes_to_add; 5610 5611 bytes_to_add = dest->size - dest->reserved; 5612 bytes_to_add = min(num_bytes, bytes_to_add); 5613 dest->reserved += bytes_to_add; 5614 if (dest->reserved >= dest->size) 5615 dest->full = 1; 5616 num_bytes -= bytes_to_add; 5617 } 5618 spin_unlock(&dest->lock); 5619 } 5620 if (num_bytes) 5621 space_info_add_old_bytes(fs_info, space_info, 5622 num_bytes); 5623 } 5624 if (qgroup_to_release_ret) 5625 *qgroup_to_release_ret = qgroup_to_release; 5626 return ret; 5627 } 5628 5629 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5630 struct btrfs_block_rsv *dst, u64 num_bytes, 5631 int update_size) 5632 { 5633 int ret; 5634 5635 ret = block_rsv_use_bytes(src, num_bytes); 5636 if (ret) 5637 return ret; 5638 5639 block_rsv_add_bytes(dst, num_bytes, update_size); 5640 return 0; 5641 } 5642 5643 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5644 { 5645 memset(rsv, 0, sizeof(*rsv)); 5646 spin_lock_init(&rsv->lock); 5647 rsv->type = type; 5648 } 5649 5650 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5651 struct btrfs_block_rsv *rsv, 5652 unsigned short type) 5653 { 5654 btrfs_init_block_rsv(rsv, type); 5655 rsv->space_info = __find_space_info(fs_info, 5656 BTRFS_BLOCK_GROUP_METADATA); 5657 } 5658 5659 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5660 unsigned short type) 5661 { 5662 struct btrfs_block_rsv *block_rsv; 5663 5664 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5665 if (!block_rsv) 5666 return NULL; 5667 5668 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5669 return block_rsv; 5670 } 5671 5672 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5673 struct btrfs_block_rsv *rsv) 5674 { 5675 if (!rsv) 5676 return; 5677 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5678 kfree(rsv); 5679 } 5680 5681 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5682 { 5683 kfree(rsv); 5684 } 5685 5686 int btrfs_block_rsv_add(struct btrfs_root *root, 5687 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5688 enum btrfs_reserve_flush_enum flush) 5689 { 5690 int ret; 5691 5692 if (num_bytes == 0) 5693 return 0; 5694 5695 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5696 if (!ret) { 5697 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5698 return 0; 5699 } 5700 5701 return ret; 5702 } 5703 5704 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5705 { 5706 u64 num_bytes = 0; 5707 int ret = -ENOSPC; 5708 5709 if (!block_rsv) 5710 return 0; 5711 5712 spin_lock(&block_rsv->lock); 5713 num_bytes = div_factor(block_rsv->size, min_factor); 5714 if (block_rsv->reserved >= num_bytes) 5715 ret = 0; 5716 spin_unlock(&block_rsv->lock); 5717 5718 return ret; 5719 } 5720 5721 int btrfs_block_rsv_refill(struct btrfs_root *root, 5722 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5723 enum btrfs_reserve_flush_enum flush) 5724 { 5725 u64 num_bytes = 0; 5726 int ret = -ENOSPC; 5727 5728 if (!block_rsv) 5729 return 0; 5730 5731 spin_lock(&block_rsv->lock); 5732 num_bytes = min_reserved; 5733 if (block_rsv->reserved >= num_bytes) 5734 ret = 0; 5735 else 5736 num_bytes -= block_rsv->reserved; 5737 spin_unlock(&block_rsv->lock); 5738 5739 if (!ret) 5740 return 0; 5741 5742 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5743 if (!ret) { 5744 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5745 return 0; 5746 } 5747 5748 return ret; 5749 } 5750 5751 /** 5752 * btrfs_inode_rsv_refill - refill the inode block rsv. 5753 * @inode - the inode we are refilling. 5754 * @flush - the flusing restriction. 5755 * 5756 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5757 * block_rsv->size as the minimum size. We'll either refill the missing amount 5758 * or return if we already have enough space. This will also handle the resreve 5759 * tracepoint for the reserved amount. 5760 */ 5761 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5762 enum btrfs_reserve_flush_enum flush) 5763 { 5764 struct btrfs_root *root = inode->root; 5765 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5766 u64 num_bytes = 0; 5767 u64 qgroup_num_bytes = 0; 5768 int ret = -ENOSPC; 5769 5770 spin_lock(&block_rsv->lock); 5771 if (block_rsv->reserved < block_rsv->size) 5772 num_bytes = block_rsv->size - block_rsv->reserved; 5773 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) 5774 qgroup_num_bytes = block_rsv->qgroup_rsv_size - 5775 block_rsv->qgroup_rsv_reserved; 5776 spin_unlock(&block_rsv->lock); 5777 5778 if (num_bytes == 0) 5779 return 0; 5780 5781 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); 5782 if (ret) 5783 return ret; 5784 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5785 if (!ret) { 5786 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5787 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5788 btrfs_ino(inode), num_bytes, 1); 5789 5790 /* Don't forget to increase qgroup_rsv_reserved */ 5791 spin_lock(&block_rsv->lock); 5792 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; 5793 spin_unlock(&block_rsv->lock); 5794 } else 5795 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 5796 return ret; 5797 } 5798 5799 /** 5800 * btrfs_inode_rsv_release - release any excessive reservation. 5801 * @inode - the inode we need to release from. 5802 * @qgroup_free - free or convert qgroup meta. 5803 * Unlike normal operation, qgroup meta reservation needs to know if we are 5804 * freeing qgroup reservation or just converting it into per-trans. Normally 5805 * @qgroup_free is true for error handling, and false for normal release. 5806 * 5807 * This is the same as btrfs_block_rsv_release, except that it handles the 5808 * tracepoint for the reservation. 5809 */ 5810 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5811 { 5812 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5813 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5814 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5815 u64 released = 0; 5816 u64 qgroup_to_release = 0; 5817 5818 /* 5819 * Since we statically set the block_rsv->size we just want to say we 5820 * are releasing 0 bytes, and then we'll just get the reservation over 5821 * the size free'd. 5822 */ 5823 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, 5824 &qgroup_to_release); 5825 if (released > 0) 5826 trace_btrfs_space_reservation(fs_info, "delalloc", 5827 btrfs_ino(inode), released, 0); 5828 if (qgroup_free) 5829 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 5830 else 5831 btrfs_qgroup_convert_reserved_meta(inode->root, 5832 qgroup_to_release); 5833 } 5834 5835 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5836 struct btrfs_block_rsv *block_rsv, 5837 u64 num_bytes) 5838 { 5839 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5840 5841 if (global_rsv == block_rsv || 5842 block_rsv->space_info != global_rsv->space_info) 5843 global_rsv = NULL; 5844 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); 5845 } 5846 5847 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5848 { 5849 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5850 struct btrfs_space_info *sinfo = block_rsv->space_info; 5851 u64 num_bytes; 5852 5853 /* 5854 * The global block rsv is based on the size of the extent tree, the 5855 * checksum tree and the root tree. If the fs is empty we want to set 5856 * it to a minimal amount for safety. 5857 */ 5858 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5859 btrfs_root_used(&fs_info->csum_root->root_item) + 5860 btrfs_root_used(&fs_info->tree_root->root_item); 5861 num_bytes = max_t(u64, num_bytes, SZ_16M); 5862 5863 spin_lock(&sinfo->lock); 5864 spin_lock(&block_rsv->lock); 5865 5866 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5867 5868 if (block_rsv->reserved < block_rsv->size) { 5869 num_bytes = btrfs_space_info_used(sinfo, true); 5870 if (sinfo->total_bytes > num_bytes) { 5871 num_bytes = sinfo->total_bytes - num_bytes; 5872 num_bytes = min(num_bytes, 5873 block_rsv->size - block_rsv->reserved); 5874 block_rsv->reserved += num_bytes; 5875 sinfo->bytes_may_use += num_bytes; 5876 trace_btrfs_space_reservation(fs_info, "space_info", 5877 sinfo->flags, num_bytes, 5878 1); 5879 } 5880 } else if (block_rsv->reserved > block_rsv->size) { 5881 num_bytes = block_rsv->reserved - block_rsv->size; 5882 sinfo->bytes_may_use -= num_bytes; 5883 trace_btrfs_space_reservation(fs_info, "space_info", 5884 sinfo->flags, num_bytes, 0); 5885 block_rsv->reserved = block_rsv->size; 5886 } 5887 5888 if (block_rsv->reserved == block_rsv->size) 5889 block_rsv->full = 1; 5890 else 5891 block_rsv->full = 0; 5892 5893 spin_unlock(&block_rsv->lock); 5894 spin_unlock(&sinfo->lock); 5895 } 5896 5897 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5898 { 5899 struct btrfs_space_info *space_info; 5900 5901 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5902 fs_info->chunk_block_rsv.space_info = space_info; 5903 5904 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5905 fs_info->global_block_rsv.space_info = space_info; 5906 fs_info->trans_block_rsv.space_info = space_info; 5907 fs_info->empty_block_rsv.space_info = space_info; 5908 fs_info->delayed_block_rsv.space_info = space_info; 5909 5910 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5911 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5912 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5913 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5914 if (fs_info->quota_root) 5915 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5916 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5917 5918 update_global_block_rsv(fs_info); 5919 } 5920 5921 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5922 { 5923 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5924 (u64)-1, NULL); 5925 WARN_ON(fs_info->trans_block_rsv.size > 0); 5926 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5927 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5928 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5929 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5930 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5931 } 5932 5933 5934 /* 5935 * To be called after all the new block groups attached to the transaction 5936 * handle have been created (btrfs_create_pending_block_groups()). 5937 */ 5938 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5939 { 5940 struct btrfs_fs_info *fs_info = trans->fs_info; 5941 5942 if (!trans->chunk_bytes_reserved) 5943 return; 5944 5945 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5946 5947 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5948 trans->chunk_bytes_reserved, NULL); 5949 trans->chunk_bytes_reserved = 0; 5950 } 5951 5952 /* Can only return 0 or -ENOSPC */ 5953 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5954 struct btrfs_inode *inode) 5955 { 5956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5957 struct btrfs_root *root = inode->root; 5958 /* 5959 * We always use trans->block_rsv here as we will have reserved space 5960 * for our orphan when starting the transaction, using get_block_rsv() 5961 * here will sometimes make us choose the wrong block rsv as we could be 5962 * doing a reloc inode for a non refcounted root. 5963 */ 5964 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5965 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5966 5967 /* 5968 * We need to hold space in order to delete our orphan item once we've 5969 * added it, so this takes the reservation so we can release it later 5970 * when we are truly done with the orphan item. 5971 */ 5972 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5973 5974 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5975 num_bytes, 1); 5976 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5977 } 5978 5979 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5980 { 5981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5982 struct btrfs_root *root = inode->root; 5983 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5984 5985 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5986 num_bytes, 0); 5987 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5988 } 5989 5990 /* 5991 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5992 * root: the root of the parent directory 5993 * rsv: block reservation 5994 * items: the number of items that we need do reservation 5995 * qgroup_reserved: used to return the reserved size in qgroup 5996 * 5997 * This function is used to reserve the space for snapshot/subvolume 5998 * creation and deletion. Those operations are different with the 5999 * common file/directory operations, they change two fs/file trees 6000 * and root tree, the number of items that the qgroup reserves is 6001 * different with the free space reservation. So we can not use 6002 * the space reservation mechanism in start_transaction(). 6003 */ 6004 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 6005 struct btrfs_block_rsv *rsv, 6006 int items, 6007 u64 *qgroup_reserved, 6008 bool use_global_rsv) 6009 { 6010 u64 num_bytes; 6011 int ret; 6012 struct btrfs_fs_info *fs_info = root->fs_info; 6013 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6014 6015 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6016 /* One for parent inode, two for dir entries */ 6017 num_bytes = 3 * fs_info->nodesize; 6018 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 6019 if (ret) 6020 return ret; 6021 } else { 6022 num_bytes = 0; 6023 } 6024 6025 *qgroup_reserved = num_bytes; 6026 6027 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6028 rsv->space_info = __find_space_info(fs_info, 6029 BTRFS_BLOCK_GROUP_METADATA); 6030 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6031 BTRFS_RESERVE_FLUSH_ALL); 6032 6033 if (ret == -ENOSPC && use_global_rsv) 6034 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6035 6036 if (ret && *qgroup_reserved) 6037 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved); 6038 6039 return ret; 6040 } 6041 6042 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6043 struct btrfs_block_rsv *rsv) 6044 { 6045 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6046 } 6047 6048 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6049 struct btrfs_inode *inode) 6050 { 6051 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6052 u64 reserve_size = 0; 6053 u64 qgroup_rsv_size = 0; 6054 u64 csum_leaves; 6055 unsigned outstanding_extents; 6056 6057 lockdep_assert_held(&inode->lock); 6058 outstanding_extents = inode->outstanding_extents; 6059 if (outstanding_extents) 6060 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6061 outstanding_extents + 1); 6062 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6063 inode->csum_bytes); 6064 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6065 csum_leaves); 6066 /* 6067 * For qgroup rsv, the calculation is very simple: 6068 * account one nodesize for each outstanding extent 6069 * 6070 * This is overestimating in most cases. 6071 */ 6072 qgroup_rsv_size = outstanding_extents * fs_info->nodesize; 6073 6074 spin_lock(&block_rsv->lock); 6075 block_rsv->size = reserve_size; 6076 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 6077 spin_unlock(&block_rsv->lock); 6078 } 6079 6080 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6081 { 6082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6083 unsigned nr_extents; 6084 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6085 int ret = 0; 6086 bool delalloc_lock = true; 6087 6088 /* If we are a free space inode we need to not flush since we will be in 6089 * the middle of a transaction commit. We also don't need the delalloc 6090 * mutex since we won't race with anybody. We need this mostly to make 6091 * lockdep shut its filthy mouth. 6092 * 6093 * If we have a transaction open (can happen if we call truncate_block 6094 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6095 */ 6096 if (btrfs_is_free_space_inode(inode)) { 6097 flush = BTRFS_RESERVE_NO_FLUSH; 6098 delalloc_lock = false; 6099 } else { 6100 if (current->journal_info) 6101 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6102 6103 if (btrfs_transaction_in_commit(fs_info)) 6104 schedule_timeout(1); 6105 } 6106 6107 if (delalloc_lock) 6108 mutex_lock(&inode->delalloc_mutex); 6109 6110 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6111 6112 /* Add our new extents and calculate the new rsv size. */ 6113 spin_lock(&inode->lock); 6114 nr_extents = count_max_extents(num_bytes); 6115 btrfs_mod_outstanding_extents(inode, nr_extents); 6116 inode->csum_bytes += num_bytes; 6117 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6118 spin_unlock(&inode->lock); 6119 6120 ret = btrfs_inode_rsv_refill(inode, flush); 6121 if (unlikely(ret)) 6122 goto out_fail; 6123 6124 if (delalloc_lock) 6125 mutex_unlock(&inode->delalloc_mutex); 6126 return 0; 6127 6128 out_fail: 6129 spin_lock(&inode->lock); 6130 nr_extents = count_max_extents(num_bytes); 6131 btrfs_mod_outstanding_extents(inode, -nr_extents); 6132 inode->csum_bytes -= num_bytes; 6133 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6134 spin_unlock(&inode->lock); 6135 6136 btrfs_inode_rsv_release(inode, true); 6137 if (delalloc_lock) 6138 mutex_unlock(&inode->delalloc_mutex); 6139 return ret; 6140 } 6141 6142 /** 6143 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6144 * @inode: the inode to release the reservation for. 6145 * @num_bytes: the number of bytes we are releasing. 6146 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 6147 * 6148 * This will release the metadata reservation for an inode. This can be called 6149 * once we complete IO for a given set of bytes to release their metadata 6150 * reservations, or on error for the same reason. 6151 */ 6152 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 6153 bool qgroup_free) 6154 { 6155 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6156 6157 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6158 spin_lock(&inode->lock); 6159 inode->csum_bytes -= num_bytes; 6160 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6161 spin_unlock(&inode->lock); 6162 6163 if (btrfs_is_testing(fs_info)) 6164 return; 6165 6166 btrfs_inode_rsv_release(inode, qgroup_free); 6167 } 6168 6169 /** 6170 * btrfs_delalloc_release_extents - release our outstanding_extents 6171 * @inode: the inode to balance the reservation for. 6172 * @num_bytes: the number of bytes we originally reserved with 6173 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6174 * 6175 * When we reserve space we increase outstanding_extents for the extents we may 6176 * add. Once we've set the range as delalloc or created our ordered extents we 6177 * have outstanding_extents to track the real usage, so we use this to free our 6178 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6179 * with btrfs_delalloc_reserve_metadata. 6180 */ 6181 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6182 bool qgroup_free) 6183 { 6184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6185 unsigned num_extents; 6186 6187 spin_lock(&inode->lock); 6188 num_extents = count_max_extents(num_bytes); 6189 btrfs_mod_outstanding_extents(inode, -num_extents); 6190 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6191 spin_unlock(&inode->lock); 6192 6193 if (btrfs_is_testing(fs_info)) 6194 return; 6195 6196 btrfs_inode_rsv_release(inode, qgroup_free); 6197 } 6198 6199 /** 6200 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6201 * delalloc 6202 * @inode: inode we're writing to 6203 * @start: start range we are writing to 6204 * @len: how long the range we are writing to 6205 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6206 * current reservation. 6207 * 6208 * This will do the following things 6209 * 6210 * o reserve space in data space info for num bytes 6211 * and reserve precious corresponding qgroup space 6212 * (Done in check_data_free_space) 6213 * 6214 * o reserve space for metadata space, based on the number of outstanding 6215 * extents and how much csums will be needed 6216 * also reserve metadata space in a per root over-reserve method. 6217 * o add to the inodes->delalloc_bytes 6218 * o add it to the fs_info's delalloc inodes list. 6219 * (Above 3 all done in delalloc_reserve_metadata) 6220 * 6221 * Return 0 for success 6222 * Return <0 for error(-ENOSPC or -EQUOT) 6223 */ 6224 int btrfs_delalloc_reserve_space(struct inode *inode, 6225 struct extent_changeset **reserved, u64 start, u64 len) 6226 { 6227 int ret; 6228 6229 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6230 if (ret < 0) 6231 return ret; 6232 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6233 if (ret < 0) 6234 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6235 return ret; 6236 } 6237 6238 /** 6239 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6240 * @inode: inode we're releasing space for 6241 * @start: start position of the space already reserved 6242 * @len: the len of the space already reserved 6243 * @release_bytes: the len of the space we consumed or didn't use 6244 * 6245 * This function will release the metadata space that was not used and will 6246 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6247 * list if there are no delalloc bytes left. 6248 * Also it will handle the qgroup reserved space. 6249 */ 6250 void btrfs_delalloc_release_space(struct inode *inode, 6251 struct extent_changeset *reserved, 6252 u64 start, u64 len, bool qgroup_free) 6253 { 6254 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6255 btrfs_free_reserved_data_space(inode, reserved, start, len); 6256 } 6257 6258 static int update_block_group(struct btrfs_trans_handle *trans, 6259 struct btrfs_fs_info *info, u64 bytenr, 6260 u64 num_bytes, int alloc) 6261 { 6262 struct btrfs_block_group_cache *cache = NULL; 6263 u64 total = num_bytes; 6264 u64 old_val; 6265 u64 byte_in_group; 6266 int factor; 6267 6268 /* block accounting for super block */ 6269 spin_lock(&info->delalloc_root_lock); 6270 old_val = btrfs_super_bytes_used(info->super_copy); 6271 if (alloc) 6272 old_val += num_bytes; 6273 else 6274 old_val -= num_bytes; 6275 btrfs_set_super_bytes_used(info->super_copy, old_val); 6276 spin_unlock(&info->delalloc_root_lock); 6277 6278 while (total) { 6279 cache = btrfs_lookup_block_group(info, bytenr); 6280 if (!cache) 6281 return -ENOENT; 6282 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6283 BTRFS_BLOCK_GROUP_RAID1 | 6284 BTRFS_BLOCK_GROUP_RAID10)) 6285 factor = 2; 6286 else 6287 factor = 1; 6288 /* 6289 * If this block group has free space cache written out, we 6290 * need to make sure to load it if we are removing space. This 6291 * is because we need the unpinning stage to actually add the 6292 * space back to the block group, otherwise we will leak space. 6293 */ 6294 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6295 cache_block_group(cache, 1); 6296 6297 byte_in_group = bytenr - cache->key.objectid; 6298 WARN_ON(byte_in_group > cache->key.offset); 6299 6300 spin_lock(&cache->space_info->lock); 6301 spin_lock(&cache->lock); 6302 6303 if (btrfs_test_opt(info, SPACE_CACHE) && 6304 cache->disk_cache_state < BTRFS_DC_CLEAR) 6305 cache->disk_cache_state = BTRFS_DC_CLEAR; 6306 6307 old_val = btrfs_block_group_used(&cache->item); 6308 num_bytes = min(total, cache->key.offset - byte_in_group); 6309 if (alloc) { 6310 old_val += num_bytes; 6311 btrfs_set_block_group_used(&cache->item, old_val); 6312 cache->reserved -= num_bytes; 6313 cache->space_info->bytes_reserved -= num_bytes; 6314 cache->space_info->bytes_used += num_bytes; 6315 cache->space_info->disk_used += num_bytes * factor; 6316 spin_unlock(&cache->lock); 6317 spin_unlock(&cache->space_info->lock); 6318 } else { 6319 old_val -= num_bytes; 6320 btrfs_set_block_group_used(&cache->item, old_val); 6321 cache->pinned += num_bytes; 6322 cache->space_info->bytes_pinned += num_bytes; 6323 cache->space_info->bytes_used -= num_bytes; 6324 cache->space_info->disk_used -= num_bytes * factor; 6325 spin_unlock(&cache->lock); 6326 spin_unlock(&cache->space_info->lock); 6327 6328 trace_btrfs_space_reservation(info, "pinned", 6329 cache->space_info->flags, 6330 num_bytes, 1); 6331 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6332 num_bytes); 6333 set_extent_dirty(info->pinned_extents, 6334 bytenr, bytenr + num_bytes - 1, 6335 GFP_NOFS | __GFP_NOFAIL); 6336 } 6337 6338 spin_lock(&trans->transaction->dirty_bgs_lock); 6339 if (list_empty(&cache->dirty_list)) { 6340 list_add_tail(&cache->dirty_list, 6341 &trans->transaction->dirty_bgs); 6342 trans->transaction->num_dirty_bgs++; 6343 btrfs_get_block_group(cache); 6344 } 6345 spin_unlock(&trans->transaction->dirty_bgs_lock); 6346 6347 /* 6348 * No longer have used bytes in this block group, queue it for 6349 * deletion. We do this after adding the block group to the 6350 * dirty list to avoid races between cleaner kthread and space 6351 * cache writeout. 6352 */ 6353 if (!alloc && old_val == 0) { 6354 spin_lock(&info->unused_bgs_lock); 6355 if (list_empty(&cache->bg_list)) { 6356 btrfs_get_block_group(cache); 6357 list_add_tail(&cache->bg_list, 6358 &info->unused_bgs); 6359 } 6360 spin_unlock(&info->unused_bgs_lock); 6361 } 6362 6363 btrfs_put_block_group(cache); 6364 total -= num_bytes; 6365 bytenr += num_bytes; 6366 } 6367 return 0; 6368 } 6369 6370 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6371 { 6372 struct btrfs_block_group_cache *cache; 6373 u64 bytenr; 6374 6375 spin_lock(&fs_info->block_group_cache_lock); 6376 bytenr = fs_info->first_logical_byte; 6377 spin_unlock(&fs_info->block_group_cache_lock); 6378 6379 if (bytenr < (u64)-1) 6380 return bytenr; 6381 6382 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6383 if (!cache) 6384 return 0; 6385 6386 bytenr = cache->key.objectid; 6387 btrfs_put_block_group(cache); 6388 6389 return bytenr; 6390 } 6391 6392 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6393 struct btrfs_block_group_cache *cache, 6394 u64 bytenr, u64 num_bytes, int reserved) 6395 { 6396 spin_lock(&cache->space_info->lock); 6397 spin_lock(&cache->lock); 6398 cache->pinned += num_bytes; 6399 cache->space_info->bytes_pinned += num_bytes; 6400 if (reserved) { 6401 cache->reserved -= num_bytes; 6402 cache->space_info->bytes_reserved -= num_bytes; 6403 } 6404 spin_unlock(&cache->lock); 6405 spin_unlock(&cache->space_info->lock); 6406 6407 trace_btrfs_space_reservation(fs_info, "pinned", 6408 cache->space_info->flags, num_bytes, 1); 6409 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6410 set_extent_dirty(fs_info->pinned_extents, bytenr, 6411 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6412 return 0; 6413 } 6414 6415 /* 6416 * this function must be called within transaction 6417 */ 6418 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6419 u64 bytenr, u64 num_bytes, int reserved) 6420 { 6421 struct btrfs_block_group_cache *cache; 6422 6423 cache = btrfs_lookup_block_group(fs_info, bytenr); 6424 BUG_ON(!cache); /* Logic error */ 6425 6426 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6427 6428 btrfs_put_block_group(cache); 6429 return 0; 6430 } 6431 6432 /* 6433 * this function must be called within transaction 6434 */ 6435 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6436 u64 bytenr, u64 num_bytes) 6437 { 6438 struct btrfs_block_group_cache *cache; 6439 int ret; 6440 6441 cache = btrfs_lookup_block_group(fs_info, bytenr); 6442 if (!cache) 6443 return -EINVAL; 6444 6445 /* 6446 * pull in the free space cache (if any) so that our pin 6447 * removes the free space from the cache. We have load_only set 6448 * to one because the slow code to read in the free extents does check 6449 * the pinned extents. 6450 */ 6451 cache_block_group(cache, 1); 6452 6453 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6454 6455 /* remove us from the free space cache (if we're there at all) */ 6456 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6457 btrfs_put_block_group(cache); 6458 return ret; 6459 } 6460 6461 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6462 u64 start, u64 num_bytes) 6463 { 6464 int ret; 6465 struct btrfs_block_group_cache *block_group; 6466 struct btrfs_caching_control *caching_ctl; 6467 6468 block_group = btrfs_lookup_block_group(fs_info, start); 6469 if (!block_group) 6470 return -EINVAL; 6471 6472 cache_block_group(block_group, 0); 6473 caching_ctl = get_caching_control(block_group); 6474 6475 if (!caching_ctl) { 6476 /* Logic error */ 6477 BUG_ON(!block_group_cache_done(block_group)); 6478 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6479 } else { 6480 mutex_lock(&caching_ctl->mutex); 6481 6482 if (start >= caching_ctl->progress) { 6483 ret = add_excluded_extent(fs_info, start, num_bytes); 6484 } else if (start + num_bytes <= caching_ctl->progress) { 6485 ret = btrfs_remove_free_space(block_group, 6486 start, num_bytes); 6487 } else { 6488 num_bytes = caching_ctl->progress - start; 6489 ret = btrfs_remove_free_space(block_group, 6490 start, num_bytes); 6491 if (ret) 6492 goto out_lock; 6493 6494 num_bytes = (start + num_bytes) - 6495 caching_ctl->progress; 6496 start = caching_ctl->progress; 6497 ret = add_excluded_extent(fs_info, start, num_bytes); 6498 } 6499 out_lock: 6500 mutex_unlock(&caching_ctl->mutex); 6501 put_caching_control(caching_ctl); 6502 } 6503 btrfs_put_block_group(block_group); 6504 return ret; 6505 } 6506 6507 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6508 struct extent_buffer *eb) 6509 { 6510 struct btrfs_file_extent_item *item; 6511 struct btrfs_key key; 6512 int found_type; 6513 int i; 6514 6515 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6516 return 0; 6517 6518 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6519 btrfs_item_key_to_cpu(eb, &key, i); 6520 if (key.type != BTRFS_EXTENT_DATA_KEY) 6521 continue; 6522 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6523 found_type = btrfs_file_extent_type(eb, item); 6524 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6525 continue; 6526 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6527 continue; 6528 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6529 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6530 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6531 } 6532 6533 return 0; 6534 } 6535 6536 static void 6537 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6538 { 6539 atomic_inc(&bg->reservations); 6540 } 6541 6542 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6543 const u64 start) 6544 { 6545 struct btrfs_block_group_cache *bg; 6546 6547 bg = btrfs_lookup_block_group(fs_info, start); 6548 ASSERT(bg); 6549 if (atomic_dec_and_test(&bg->reservations)) 6550 wake_up_var(&bg->reservations); 6551 btrfs_put_block_group(bg); 6552 } 6553 6554 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6555 { 6556 struct btrfs_space_info *space_info = bg->space_info; 6557 6558 ASSERT(bg->ro); 6559 6560 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6561 return; 6562 6563 /* 6564 * Our block group is read only but before we set it to read only, 6565 * some task might have had allocated an extent from it already, but it 6566 * has not yet created a respective ordered extent (and added it to a 6567 * root's list of ordered extents). 6568 * Therefore wait for any task currently allocating extents, since the 6569 * block group's reservations counter is incremented while a read lock 6570 * on the groups' semaphore is held and decremented after releasing 6571 * the read access on that semaphore and creating the ordered extent. 6572 */ 6573 down_write(&space_info->groups_sem); 6574 up_write(&space_info->groups_sem); 6575 6576 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6577 } 6578 6579 /** 6580 * btrfs_add_reserved_bytes - update the block_group and space info counters 6581 * @cache: The cache we are manipulating 6582 * @ram_bytes: The number of bytes of file content, and will be same to 6583 * @num_bytes except for the compress path. 6584 * @num_bytes: The number of bytes in question 6585 * @delalloc: The blocks are allocated for the delalloc write 6586 * 6587 * This is called by the allocator when it reserves space. If this is a 6588 * reservation and the block group has become read only we cannot make the 6589 * reservation and return -EAGAIN, otherwise this function always succeeds. 6590 */ 6591 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6592 u64 ram_bytes, u64 num_bytes, int delalloc) 6593 { 6594 struct btrfs_space_info *space_info = cache->space_info; 6595 int ret = 0; 6596 6597 spin_lock(&space_info->lock); 6598 spin_lock(&cache->lock); 6599 if (cache->ro) { 6600 ret = -EAGAIN; 6601 } else { 6602 cache->reserved += num_bytes; 6603 space_info->bytes_reserved += num_bytes; 6604 6605 trace_btrfs_space_reservation(cache->fs_info, 6606 "space_info", space_info->flags, 6607 ram_bytes, 0); 6608 space_info->bytes_may_use -= ram_bytes; 6609 if (delalloc) 6610 cache->delalloc_bytes += num_bytes; 6611 } 6612 spin_unlock(&cache->lock); 6613 spin_unlock(&space_info->lock); 6614 return ret; 6615 } 6616 6617 /** 6618 * btrfs_free_reserved_bytes - update the block_group and space info counters 6619 * @cache: The cache we are manipulating 6620 * @num_bytes: The number of bytes in question 6621 * @delalloc: The blocks are allocated for the delalloc write 6622 * 6623 * This is called by somebody who is freeing space that was never actually used 6624 * on disk. For example if you reserve some space for a new leaf in transaction 6625 * A and before transaction A commits you free that leaf, you call this with 6626 * reserve set to 0 in order to clear the reservation. 6627 */ 6628 6629 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6630 u64 num_bytes, int delalloc) 6631 { 6632 struct btrfs_space_info *space_info = cache->space_info; 6633 int ret = 0; 6634 6635 spin_lock(&space_info->lock); 6636 spin_lock(&cache->lock); 6637 if (cache->ro) 6638 space_info->bytes_readonly += num_bytes; 6639 cache->reserved -= num_bytes; 6640 space_info->bytes_reserved -= num_bytes; 6641 6642 if (delalloc) 6643 cache->delalloc_bytes -= num_bytes; 6644 spin_unlock(&cache->lock); 6645 spin_unlock(&space_info->lock); 6646 return ret; 6647 } 6648 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6649 { 6650 struct btrfs_caching_control *next; 6651 struct btrfs_caching_control *caching_ctl; 6652 struct btrfs_block_group_cache *cache; 6653 6654 down_write(&fs_info->commit_root_sem); 6655 6656 list_for_each_entry_safe(caching_ctl, next, 6657 &fs_info->caching_block_groups, list) { 6658 cache = caching_ctl->block_group; 6659 if (block_group_cache_done(cache)) { 6660 cache->last_byte_to_unpin = (u64)-1; 6661 list_del_init(&caching_ctl->list); 6662 put_caching_control(caching_ctl); 6663 } else { 6664 cache->last_byte_to_unpin = caching_ctl->progress; 6665 } 6666 } 6667 6668 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6669 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6670 else 6671 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6672 6673 up_write(&fs_info->commit_root_sem); 6674 6675 update_global_block_rsv(fs_info); 6676 } 6677 6678 /* 6679 * Returns the free cluster for the given space info and sets empty_cluster to 6680 * what it should be based on the mount options. 6681 */ 6682 static struct btrfs_free_cluster * 6683 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6684 struct btrfs_space_info *space_info, u64 *empty_cluster) 6685 { 6686 struct btrfs_free_cluster *ret = NULL; 6687 6688 *empty_cluster = 0; 6689 if (btrfs_mixed_space_info(space_info)) 6690 return ret; 6691 6692 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6693 ret = &fs_info->meta_alloc_cluster; 6694 if (btrfs_test_opt(fs_info, SSD)) 6695 *empty_cluster = SZ_2M; 6696 else 6697 *empty_cluster = SZ_64K; 6698 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6699 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6700 *empty_cluster = SZ_2M; 6701 ret = &fs_info->data_alloc_cluster; 6702 } 6703 6704 return ret; 6705 } 6706 6707 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6708 u64 start, u64 end, 6709 const bool return_free_space) 6710 { 6711 struct btrfs_block_group_cache *cache = NULL; 6712 struct btrfs_space_info *space_info; 6713 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6714 struct btrfs_free_cluster *cluster = NULL; 6715 u64 len; 6716 u64 total_unpinned = 0; 6717 u64 empty_cluster = 0; 6718 bool readonly; 6719 6720 while (start <= end) { 6721 readonly = false; 6722 if (!cache || 6723 start >= cache->key.objectid + cache->key.offset) { 6724 if (cache) 6725 btrfs_put_block_group(cache); 6726 total_unpinned = 0; 6727 cache = btrfs_lookup_block_group(fs_info, start); 6728 BUG_ON(!cache); /* Logic error */ 6729 6730 cluster = fetch_cluster_info(fs_info, 6731 cache->space_info, 6732 &empty_cluster); 6733 empty_cluster <<= 1; 6734 } 6735 6736 len = cache->key.objectid + cache->key.offset - start; 6737 len = min(len, end + 1 - start); 6738 6739 if (start < cache->last_byte_to_unpin) { 6740 len = min(len, cache->last_byte_to_unpin - start); 6741 if (return_free_space) 6742 btrfs_add_free_space(cache, start, len); 6743 } 6744 6745 start += len; 6746 total_unpinned += len; 6747 space_info = cache->space_info; 6748 6749 /* 6750 * If this space cluster has been marked as fragmented and we've 6751 * unpinned enough in this block group to potentially allow a 6752 * cluster to be created inside of it go ahead and clear the 6753 * fragmented check. 6754 */ 6755 if (cluster && cluster->fragmented && 6756 total_unpinned > empty_cluster) { 6757 spin_lock(&cluster->lock); 6758 cluster->fragmented = 0; 6759 spin_unlock(&cluster->lock); 6760 } 6761 6762 spin_lock(&space_info->lock); 6763 spin_lock(&cache->lock); 6764 cache->pinned -= len; 6765 space_info->bytes_pinned -= len; 6766 6767 trace_btrfs_space_reservation(fs_info, "pinned", 6768 space_info->flags, len, 0); 6769 space_info->max_extent_size = 0; 6770 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6771 if (cache->ro) { 6772 space_info->bytes_readonly += len; 6773 readonly = true; 6774 } 6775 spin_unlock(&cache->lock); 6776 if (!readonly && return_free_space && 6777 global_rsv->space_info == space_info) { 6778 u64 to_add = len; 6779 6780 spin_lock(&global_rsv->lock); 6781 if (!global_rsv->full) { 6782 to_add = min(len, global_rsv->size - 6783 global_rsv->reserved); 6784 global_rsv->reserved += to_add; 6785 space_info->bytes_may_use += to_add; 6786 if (global_rsv->reserved >= global_rsv->size) 6787 global_rsv->full = 1; 6788 trace_btrfs_space_reservation(fs_info, 6789 "space_info", 6790 space_info->flags, 6791 to_add, 1); 6792 len -= to_add; 6793 } 6794 spin_unlock(&global_rsv->lock); 6795 /* Add to any tickets we may have */ 6796 if (len) 6797 space_info_add_new_bytes(fs_info, space_info, 6798 len); 6799 } 6800 spin_unlock(&space_info->lock); 6801 } 6802 6803 if (cache) 6804 btrfs_put_block_group(cache); 6805 return 0; 6806 } 6807 6808 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6809 { 6810 struct btrfs_fs_info *fs_info = trans->fs_info; 6811 struct btrfs_block_group_cache *block_group, *tmp; 6812 struct list_head *deleted_bgs; 6813 struct extent_io_tree *unpin; 6814 u64 start; 6815 u64 end; 6816 int ret; 6817 6818 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6819 unpin = &fs_info->freed_extents[1]; 6820 else 6821 unpin = &fs_info->freed_extents[0]; 6822 6823 while (!trans->aborted) { 6824 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6825 ret = find_first_extent_bit(unpin, 0, &start, &end, 6826 EXTENT_DIRTY, NULL); 6827 if (ret) { 6828 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6829 break; 6830 } 6831 6832 if (btrfs_test_opt(fs_info, DISCARD)) 6833 ret = btrfs_discard_extent(fs_info, start, 6834 end + 1 - start, NULL); 6835 6836 clear_extent_dirty(unpin, start, end); 6837 unpin_extent_range(fs_info, start, end, true); 6838 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6839 cond_resched(); 6840 } 6841 6842 /* 6843 * Transaction is finished. We don't need the lock anymore. We 6844 * do need to clean up the block groups in case of a transaction 6845 * abort. 6846 */ 6847 deleted_bgs = &trans->transaction->deleted_bgs; 6848 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6849 u64 trimmed = 0; 6850 6851 ret = -EROFS; 6852 if (!trans->aborted) 6853 ret = btrfs_discard_extent(fs_info, 6854 block_group->key.objectid, 6855 block_group->key.offset, 6856 &trimmed); 6857 6858 list_del_init(&block_group->bg_list); 6859 btrfs_put_block_group_trimming(block_group); 6860 btrfs_put_block_group(block_group); 6861 6862 if (ret) { 6863 const char *errstr = btrfs_decode_error(ret); 6864 btrfs_warn(fs_info, 6865 "discard failed while removing blockgroup: errno=%d %s", 6866 ret, errstr); 6867 } 6868 } 6869 6870 return 0; 6871 } 6872 6873 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6874 struct btrfs_fs_info *info, 6875 struct btrfs_delayed_ref_node *node, u64 parent, 6876 u64 root_objectid, u64 owner_objectid, 6877 u64 owner_offset, int refs_to_drop, 6878 struct btrfs_delayed_extent_op *extent_op) 6879 { 6880 struct btrfs_key key; 6881 struct btrfs_path *path; 6882 struct btrfs_root *extent_root = info->extent_root; 6883 struct extent_buffer *leaf; 6884 struct btrfs_extent_item *ei; 6885 struct btrfs_extent_inline_ref *iref; 6886 int ret; 6887 int is_data; 6888 int extent_slot = 0; 6889 int found_extent = 0; 6890 int num_to_del = 1; 6891 u32 item_size; 6892 u64 refs; 6893 u64 bytenr = node->bytenr; 6894 u64 num_bytes = node->num_bytes; 6895 int last_ref = 0; 6896 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6897 6898 path = btrfs_alloc_path(); 6899 if (!path) 6900 return -ENOMEM; 6901 6902 path->reada = READA_FORWARD; 6903 path->leave_spinning = 1; 6904 6905 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6906 BUG_ON(!is_data && refs_to_drop != 1); 6907 6908 if (is_data) 6909 skinny_metadata = false; 6910 6911 ret = lookup_extent_backref(trans, info, path, &iref, 6912 bytenr, num_bytes, parent, 6913 root_objectid, owner_objectid, 6914 owner_offset); 6915 if (ret == 0) { 6916 extent_slot = path->slots[0]; 6917 while (extent_slot >= 0) { 6918 btrfs_item_key_to_cpu(path->nodes[0], &key, 6919 extent_slot); 6920 if (key.objectid != bytenr) 6921 break; 6922 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6923 key.offset == num_bytes) { 6924 found_extent = 1; 6925 break; 6926 } 6927 if (key.type == BTRFS_METADATA_ITEM_KEY && 6928 key.offset == owner_objectid) { 6929 found_extent = 1; 6930 break; 6931 } 6932 if (path->slots[0] - extent_slot > 5) 6933 break; 6934 extent_slot--; 6935 } 6936 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6937 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6938 if (found_extent && item_size < sizeof(*ei)) 6939 found_extent = 0; 6940 #endif 6941 if (!found_extent) { 6942 BUG_ON(iref); 6943 ret = remove_extent_backref(trans, info, path, NULL, 6944 refs_to_drop, 6945 is_data, &last_ref); 6946 if (ret) { 6947 btrfs_abort_transaction(trans, ret); 6948 goto out; 6949 } 6950 btrfs_release_path(path); 6951 path->leave_spinning = 1; 6952 6953 key.objectid = bytenr; 6954 key.type = BTRFS_EXTENT_ITEM_KEY; 6955 key.offset = num_bytes; 6956 6957 if (!is_data && skinny_metadata) { 6958 key.type = BTRFS_METADATA_ITEM_KEY; 6959 key.offset = owner_objectid; 6960 } 6961 6962 ret = btrfs_search_slot(trans, extent_root, 6963 &key, path, -1, 1); 6964 if (ret > 0 && skinny_metadata && path->slots[0]) { 6965 /* 6966 * Couldn't find our skinny metadata item, 6967 * see if we have ye olde extent item. 6968 */ 6969 path->slots[0]--; 6970 btrfs_item_key_to_cpu(path->nodes[0], &key, 6971 path->slots[0]); 6972 if (key.objectid == bytenr && 6973 key.type == BTRFS_EXTENT_ITEM_KEY && 6974 key.offset == num_bytes) 6975 ret = 0; 6976 } 6977 6978 if (ret > 0 && skinny_metadata) { 6979 skinny_metadata = false; 6980 key.objectid = bytenr; 6981 key.type = BTRFS_EXTENT_ITEM_KEY; 6982 key.offset = num_bytes; 6983 btrfs_release_path(path); 6984 ret = btrfs_search_slot(trans, extent_root, 6985 &key, path, -1, 1); 6986 } 6987 6988 if (ret) { 6989 btrfs_err(info, 6990 "umm, got %d back from search, was looking for %llu", 6991 ret, bytenr); 6992 if (ret > 0) 6993 btrfs_print_leaf(path->nodes[0]); 6994 } 6995 if (ret < 0) { 6996 btrfs_abort_transaction(trans, ret); 6997 goto out; 6998 } 6999 extent_slot = path->slots[0]; 7000 } 7001 } else if (WARN_ON(ret == -ENOENT)) { 7002 btrfs_print_leaf(path->nodes[0]); 7003 btrfs_err(info, 7004 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 7005 bytenr, parent, root_objectid, owner_objectid, 7006 owner_offset); 7007 btrfs_abort_transaction(trans, ret); 7008 goto out; 7009 } else { 7010 btrfs_abort_transaction(trans, ret); 7011 goto out; 7012 } 7013 7014 leaf = path->nodes[0]; 7015 item_size = btrfs_item_size_nr(leaf, extent_slot); 7016 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 7017 if (item_size < sizeof(*ei)) { 7018 BUG_ON(found_extent || extent_slot != path->slots[0]); 7019 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 7020 0); 7021 if (ret < 0) { 7022 btrfs_abort_transaction(trans, ret); 7023 goto out; 7024 } 7025 7026 btrfs_release_path(path); 7027 path->leave_spinning = 1; 7028 7029 key.objectid = bytenr; 7030 key.type = BTRFS_EXTENT_ITEM_KEY; 7031 key.offset = num_bytes; 7032 7033 ret = btrfs_search_slot(trans, extent_root, &key, path, 7034 -1, 1); 7035 if (ret) { 7036 btrfs_err(info, 7037 "umm, got %d back from search, was looking for %llu", 7038 ret, bytenr); 7039 btrfs_print_leaf(path->nodes[0]); 7040 } 7041 if (ret < 0) { 7042 btrfs_abort_transaction(trans, ret); 7043 goto out; 7044 } 7045 7046 extent_slot = path->slots[0]; 7047 leaf = path->nodes[0]; 7048 item_size = btrfs_item_size_nr(leaf, extent_slot); 7049 } 7050 #endif 7051 BUG_ON(item_size < sizeof(*ei)); 7052 ei = btrfs_item_ptr(leaf, extent_slot, 7053 struct btrfs_extent_item); 7054 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7055 key.type == BTRFS_EXTENT_ITEM_KEY) { 7056 struct btrfs_tree_block_info *bi; 7057 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7058 bi = (struct btrfs_tree_block_info *)(ei + 1); 7059 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7060 } 7061 7062 refs = btrfs_extent_refs(leaf, ei); 7063 if (refs < refs_to_drop) { 7064 btrfs_err(info, 7065 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7066 refs_to_drop, refs, bytenr); 7067 ret = -EINVAL; 7068 btrfs_abort_transaction(trans, ret); 7069 goto out; 7070 } 7071 refs -= refs_to_drop; 7072 7073 if (refs > 0) { 7074 if (extent_op) 7075 __run_delayed_extent_op(extent_op, leaf, ei); 7076 /* 7077 * In the case of inline back ref, reference count will 7078 * be updated by remove_extent_backref 7079 */ 7080 if (iref) { 7081 BUG_ON(!found_extent); 7082 } else { 7083 btrfs_set_extent_refs(leaf, ei, refs); 7084 btrfs_mark_buffer_dirty(leaf); 7085 } 7086 if (found_extent) { 7087 ret = remove_extent_backref(trans, info, path, 7088 iref, refs_to_drop, 7089 is_data, &last_ref); 7090 if (ret) { 7091 btrfs_abort_transaction(trans, ret); 7092 goto out; 7093 } 7094 } 7095 } else { 7096 if (found_extent) { 7097 BUG_ON(is_data && refs_to_drop != 7098 extent_data_ref_count(path, iref)); 7099 if (iref) { 7100 BUG_ON(path->slots[0] != extent_slot); 7101 } else { 7102 BUG_ON(path->slots[0] != extent_slot + 1); 7103 path->slots[0] = extent_slot; 7104 num_to_del = 2; 7105 } 7106 } 7107 7108 last_ref = 1; 7109 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7110 num_to_del); 7111 if (ret) { 7112 btrfs_abort_transaction(trans, ret); 7113 goto out; 7114 } 7115 btrfs_release_path(path); 7116 7117 if (is_data) { 7118 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7119 if (ret) { 7120 btrfs_abort_transaction(trans, ret); 7121 goto out; 7122 } 7123 } 7124 7125 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7126 if (ret) { 7127 btrfs_abort_transaction(trans, ret); 7128 goto out; 7129 } 7130 7131 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7132 if (ret) { 7133 btrfs_abort_transaction(trans, ret); 7134 goto out; 7135 } 7136 } 7137 btrfs_release_path(path); 7138 7139 out: 7140 btrfs_free_path(path); 7141 return ret; 7142 } 7143 7144 /* 7145 * when we free an block, it is possible (and likely) that we free the last 7146 * delayed ref for that extent as well. This searches the delayed ref tree for 7147 * a given extent, and if there are no other delayed refs to be processed, it 7148 * removes it from the tree. 7149 */ 7150 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7151 u64 bytenr) 7152 { 7153 struct btrfs_delayed_ref_head *head; 7154 struct btrfs_delayed_ref_root *delayed_refs; 7155 int ret = 0; 7156 7157 delayed_refs = &trans->transaction->delayed_refs; 7158 spin_lock(&delayed_refs->lock); 7159 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7160 if (!head) 7161 goto out_delayed_unlock; 7162 7163 spin_lock(&head->lock); 7164 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7165 goto out; 7166 7167 if (head->extent_op) { 7168 if (!head->must_insert_reserved) 7169 goto out; 7170 btrfs_free_delayed_extent_op(head->extent_op); 7171 head->extent_op = NULL; 7172 } 7173 7174 /* 7175 * waiting for the lock here would deadlock. If someone else has it 7176 * locked they are already in the process of dropping it anyway 7177 */ 7178 if (!mutex_trylock(&head->mutex)) 7179 goto out; 7180 7181 /* 7182 * at this point we have a head with no other entries. Go 7183 * ahead and process it. 7184 */ 7185 rb_erase(&head->href_node, &delayed_refs->href_root); 7186 RB_CLEAR_NODE(&head->href_node); 7187 atomic_dec(&delayed_refs->num_entries); 7188 7189 /* 7190 * we don't take a ref on the node because we're removing it from the 7191 * tree, so we just steal the ref the tree was holding. 7192 */ 7193 delayed_refs->num_heads--; 7194 if (head->processing == 0) 7195 delayed_refs->num_heads_ready--; 7196 head->processing = 0; 7197 spin_unlock(&head->lock); 7198 spin_unlock(&delayed_refs->lock); 7199 7200 BUG_ON(head->extent_op); 7201 if (head->must_insert_reserved) 7202 ret = 1; 7203 7204 mutex_unlock(&head->mutex); 7205 btrfs_put_delayed_ref_head(head); 7206 return ret; 7207 out: 7208 spin_unlock(&head->lock); 7209 7210 out_delayed_unlock: 7211 spin_unlock(&delayed_refs->lock); 7212 return 0; 7213 } 7214 7215 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7216 struct btrfs_root *root, 7217 struct extent_buffer *buf, 7218 u64 parent, int last_ref) 7219 { 7220 struct btrfs_fs_info *fs_info = root->fs_info; 7221 int pin = 1; 7222 int ret; 7223 7224 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7225 int old_ref_mod, new_ref_mod; 7226 7227 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7228 root->root_key.objectid, 7229 btrfs_header_level(buf), 0, 7230 BTRFS_DROP_DELAYED_REF); 7231 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7232 buf->len, parent, 7233 root->root_key.objectid, 7234 btrfs_header_level(buf), 7235 BTRFS_DROP_DELAYED_REF, NULL, 7236 &old_ref_mod, &new_ref_mod); 7237 BUG_ON(ret); /* -ENOMEM */ 7238 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7239 } 7240 7241 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7242 struct btrfs_block_group_cache *cache; 7243 7244 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7245 ret = check_ref_cleanup(trans, buf->start); 7246 if (!ret) 7247 goto out; 7248 } 7249 7250 pin = 0; 7251 cache = btrfs_lookup_block_group(fs_info, buf->start); 7252 7253 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7254 pin_down_extent(fs_info, cache, buf->start, 7255 buf->len, 1); 7256 btrfs_put_block_group(cache); 7257 goto out; 7258 } 7259 7260 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7261 7262 btrfs_add_free_space(cache, buf->start, buf->len); 7263 btrfs_free_reserved_bytes(cache, buf->len, 0); 7264 btrfs_put_block_group(cache); 7265 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7266 } 7267 out: 7268 if (pin) 7269 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7270 root->root_key.objectid); 7271 7272 if (last_ref) { 7273 /* 7274 * Deleting the buffer, clear the corrupt flag since it doesn't 7275 * matter anymore. 7276 */ 7277 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7278 } 7279 } 7280 7281 /* Can return -ENOMEM */ 7282 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7283 struct btrfs_root *root, 7284 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7285 u64 owner, u64 offset) 7286 { 7287 struct btrfs_fs_info *fs_info = root->fs_info; 7288 int old_ref_mod, new_ref_mod; 7289 int ret; 7290 7291 if (btrfs_is_testing(fs_info)) 7292 return 0; 7293 7294 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7295 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7296 root_objectid, owner, offset, 7297 BTRFS_DROP_DELAYED_REF); 7298 7299 /* 7300 * tree log blocks never actually go into the extent allocation 7301 * tree, just update pinning info and exit early. 7302 */ 7303 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7304 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7305 /* unlocks the pinned mutex */ 7306 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7307 old_ref_mod = new_ref_mod = 0; 7308 ret = 0; 7309 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7310 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7311 num_bytes, parent, 7312 root_objectid, (int)owner, 7313 BTRFS_DROP_DELAYED_REF, NULL, 7314 &old_ref_mod, &new_ref_mod); 7315 } else { 7316 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7317 num_bytes, parent, 7318 root_objectid, owner, offset, 7319 0, BTRFS_DROP_DELAYED_REF, 7320 &old_ref_mod, &new_ref_mod); 7321 } 7322 7323 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7324 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7325 7326 return ret; 7327 } 7328 7329 /* 7330 * when we wait for progress in the block group caching, its because 7331 * our allocation attempt failed at least once. So, we must sleep 7332 * and let some progress happen before we try again. 7333 * 7334 * This function will sleep at least once waiting for new free space to 7335 * show up, and then it will check the block group free space numbers 7336 * for our min num_bytes. Another option is to have it go ahead 7337 * and look in the rbtree for a free extent of a given size, but this 7338 * is a good start. 7339 * 7340 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7341 * any of the information in this block group. 7342 */ 7343 static noinline void 7344 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7345 u64 num_bytes) 7346 { 7347 struct btrfs_caching_control *caching_ctl; 7348 7349 caching_ctl = get_caching_control(cache); 7350 if (!caching_ctl) 7351 return; 7352 7353 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7354 (cache->free_space_ctl->free_space >= num_bytes)); 7355 7356 put_caching_control(caching_ctl); 7357 } 7358 7359 static noinline int 7360 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7361 { 7362 struct btrfs_caching_control *caching_ctl; 7363 int ret = 0; 7364 7365 caching_ctl = get_caching_control(cache); 7366 if (!caching_ctl) 7367 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7368 7369 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7370 if (cache->cached == BTRFS_CACHE_ERROR) 7371 ret = -EIO; 7372 put_caching_control(caching_ctl); 7373 return ret; 7374 } 7375 7376 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7377 [BTRFS_RAID_RAID10] = "raid10", 7378 [BTRFS_RAID_RAID1] = "raid1", 7379 [BTRFS_RAID_DUP] = "dup", 7380 [BTRFS_RAID_RAID0] = "raid0", 7381 [BTRFS_RAID_SINGLE] = "single", 7382 [BTRFS_RAID_RAID5] = "raid5", 7383 [BTRFS_RAID_RAID6] = "raid6", 7384 }; 7385 7386 static const char *get_raid_name(enum btrfs_raid_types type) 7387 { 7388 if (type >= BTRFS_NR_RAID_TYPES) 7389 return NULL; 7390 7391 return btrfs_raid_type_names[type]; 7392 } 7393 7394 enum btrfs_loop_type { 7395 LOOP_CACHING_NOWAIT = 0, 7396 LOOP_CACHING_WAIT = 1, 7397 LOOP_ALLOC_CHUNK = 2, 7398 LOOP_NO_EMPTY_SIZE = 3, 7399 }; 7400 7401 static inline void 7402 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7403 int delalloc) 7404 { 7405 if (delalloc) 7406 down_read(&cache->data_rwsem); 7407 } 7408 7409 static inline void 7410 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7411 int delalloc) 7412 { 7413 btrfs_get_block_group(cache); 7414 if (delalloc) 7415 down_read(&cache->data_rwsem); 7416 } 7417 7418 static struct btrfs_block_group_cache * 7419 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7420 struct btrfs_free_cluster *cluster, 7421 int delalloc) 7422 { 7423 struct btrfs_block_group_cache *used_bg = NULL; 7424 7425 spin_lock(&cluster->refill_lock); 7426 while (1) { 7427 used_bg = cluster->block_group; 7428 if (!used_bg) 7429 return NULL; 7430 7431 if (used_bg == block_group) 7432 return used_bg; 7433 7434 btrfs_get_block_group(used_bg); 7435 7436 if (!delalloc) 7437 return used_bg; 7438 7439 if (down_read_trylock(&used_bg->data_rwsem)) 7440 return used_bg; 7441 7442 spin_unlock(&cluster->refill_lock); 7443 7444 /* We should only have one-level nested. */ 7445 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7446 7447 spin_lock(&cluster->refill_lock); 7448 if (used_bg == cluster->block_group) 7449 return used_bg; 7450 7451 up_read(&used_bg->data_rwsem); 7452 btrfs_put_block_group(used_bg); 7453 } 7454 } 7455 7456 static inline void 7457 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7458 int delalloc) 7459 { 7460 if (delalloc) 7461 up_read(&cache->data_rwsem); 7462 btrfs_put_block_group(cache); 7463 } 7464 7465 /* 7466 * walks the btree of allocated extents and find a hole of a given size. 7467 * The key ins is changed to record the hole: 7468 * ins->objectid == start position 7469 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7470 * ins->offset == the size of the hole. 7471 * Any available blocks before search_start are skipped. 7472 * 7473 * If there is no suitable free space, we will record the max size of 7474 * the free space extent currently. 7475 */ 7476 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7477 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7478 u64 hint_byte, struct btrfs_key *ins, 7479 u64 flags, int delalloc) 7480 { 7481 int ret = 0; 7482 struct btrfs_root *root = fs_info->extent_root; 7483 struct btrfs_free_cluster *last_ptr = NULL; 7484 struct btrfs_block_group_cache *block_group = NULL; 7485 u64 search_start = 0; 7486 u64 max_extent_size = 0; 7487 u64 empty_cluster = 0; 7488 struct btrfs_space_info *space_info; 7489 int loop = 0; 7490 int index = btrfs_bg_flags_to_raid_index(flags); 7491 bool failed_cluster_refill = false; 7492 bool failed_alloc = false; 7493 bool use_cluster = true; 7494 bool have_caching_bg = false; 7495 bool orig_have_caching_bg = false; 7496 bool full_search = false; 7497 7498 WARN_ON(num_bytes < fs_info->sectorsize); 7499 ins->type = BTRFS_EXTENT_ITEM_KEY; 7500 ins->objectid = 0; 7501 ins->offset = 0; 7502 7503 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7504 7505 space_info = __find_space_info(fs_info, flags); 7506 if (!space_info) { 7507 btrfs_err(fs_info, "No space info for %llu", flags); 7508 return -ENOSPC; 7509 } 7510 7511 /* 7512 * If our free space is heavily fragmented we may not be able to make 7513 * big contiguous allocations, so instead of doing the expensive search 7514 * for free space, simply return ENOSPC with our max_extent_size so we 7515 * can go ahead and search for a more manageable chunk. 7516 * 7517 * If our max_extent_size is large enough for our allocation simply 7518 * disable clustering since we will likely not be able to find enough 7519 * space to create a cluster and induce latency trying. 7520 */ 7521 if (unlikely(space_info->max_extent_size)) { 7522 spin_lock(&space_info->lock); 7523 if (space_info->max_extent_size && 7524 num_bytes > space_info->max_extent_size) { 7525 ins->offset = space_info->max_extent_size; 7526 spin_unlock(&space_info->lock); 7527 return -ENOSPC; 7528 } else if (space_info->max_extent_size) { 7529 use_cluster = false; 7530 } 7531 spin_unlock(&space_info->lock); 7532 } 7533 7534 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7535 if (last_ptr) { 7536 spin_lock(&last_ptr->lock); 7537 if (last_ptr->block_group) 7538 hint_byte = last_ptr->window_start; 7539 if (last_ptr->fragmented) { 7540 /* 7541 * We still set window_start so we can keep track of the 7542 * last place we found an allocation to try and save 7543 * some time. 7544 */ 7545 hint_byte = last_ptr->window_start; 7546 use_cluster = false; 7547 } 7548 spin_unlock(&last_ptr->lock); 7549 } 7550 7551 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7552 search_start = max(search_start, hint_byte); 7553 if (search_start == hint_byte) { 7554 block_group = btrfs_lookup_block_group(fs_info, search_start); 7555 /* 7556 * we don't want to use the block group if it doesn't match our 7557 * allocation bits, or if its not cached. 7558 * 7559 * However if we are re-searching with an ideal block group 7560 * picked out then we don't care that the block group is cached. 7561 */ 7562 if (block_group && block_group_bits(block_group, flags) && 7563 block_group->cached != BTRFS_CACHE_NO) { 7564 down_read(&space_info->groups_sem); 7565 if (list_empty(&block_group->list) || 7566 block_group->ro) { 7567 /* 7568 * someone is removing this block group, 7569 * we can't jump into the have_block_group 7570 * target because our list pointers are not 7571 * valid 7572 */ 7573 btrfs_put_block_group(block_group); 7574 up_read(&space_info->groups_sem); 7575 } else { 7576 index = btrfs_bg_flags_to_raid_index( 7577 block_group->flags); 7578 btrfs_lock_block_group(block_group, delalloc); 7579 goto have_block_group; 7580 } 7581 } else if (block_group) { 7582 btrfs_put_block_group(block_group); 7583 } 7584 } 7585 search: 7586 have_caching_bg = false; 7587 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7588 full_search = true; 7589 down_read(&space_info->groups_sem); 7590 list_for_each_entry(block_group, &space_info->block_groups[index], 7591 list) { 7592 u64 offset; 7593 int cached; 7594 7595 /* If the block group is read-only, we can skip it entirely. */ 7596 if (unlikely(block_group->ro)) 7597 continue; 7598 7599 btrfs_grab_block_group(block_group, delalloc); 7600 search_start = block_group->key.objectid; 7601 7602 /* 7603 * this can happen if we end up cycling through all the 7604 * raid types, but we want to make sure we only allocate 7605 * for the proper type. 7606 */ 7607 if (!block_group_bits(block_group, flags)) { 7608 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7609 BTRFS_BLOCK_GROUP_RAID1 | 7610 BTRFS_BLOCK_GROUP_RAID5 | 7611 BTRFS_BLOCK_GROUP_RAID6 | 7612 BTRFS_BLOCK_GROUP_RAID10; 7613 7614 /* 7615 * if they asked for extra copies and this block group 7616 * doesn't provide them, bail. This does allow us to 7617 * fill raid0 from raid1. 7618 */ 7619 if ((flags & extra) && !(block_group->flags & extra)) 7620 goto loop; 7621 } 7622 7623 have_block_group: 7624 cached = block_group_cache_done(block_group); 7625 if (unlikely(!cached)) { 7626 have_caching_bg = true; 7627 ret = cache_block_group(block_group, 0); 7628 BUG_ON(ret < 0); 7629 ret = 0; 7630 } 7631 7632 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7633 goto loop; 7634 7635 /* 7636 * Ok we want to try and use the cluster allocator, so 7637 * lets look there 7638 */ 7639 if (last_ptr && use_cluster) { 7640 struct btrfs_block_group_cache *used_block_group; 7641 unsigned long aligned_cluster; 7642 /* 7643 * the refill lock keeps out other 7644 * people trying to start a new cluster 7645 */ 7646 used_block_group = btrfs_lock_cluster(block_group, 7647 last_ptr, 7648 delalloc); 7649 if (!used_block_group) 7650 goto refill_cluster; 7651 7652 if (used_block_group != block_group && 7653 (used_block_group->ro || 7654 !block_group_bits(used_block_group, flags))) 7655 goto release_cluster; 7656 7657 offset = btrfs_alloc_from_cluster(used_block_group, 7658 last_ptr, 7659 num_bytes, 7660 used_block_group->key.objectid, 7661 &max_extent_size); 7662 if (offset) { 7663 /* we have a block, we're done */ 7664 spin_unlock(&last_ptr->refill_lock); 7665 trace_btrfs_reserve_extent_cluster(fs_info, 7666 used_block_group, 7667 search_start, num_bytes); 7668 if (used_block_group != block_group) { 7669 btrfs_release_block_group(block_group, 7670 delalloc); 7671 block_group = used_block_group; 7672 } 7673 goto checks; 7674 } 7675 7676 WARN_ON(last_ptr->block_group != used_block_group); 7677 release_cluster: 7678 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7679 * set up a new clusters, so lets just skip it 7680 * and let the allocator find whatever block 7681 * it can find. If we reach this point, we 7682 * will have tried the cluster allocator 7683 * plenty of times and not have found 7684 * anything, so we are likely way too 7685 * fragmented for the clustering stuff to find 7686 * anything. 7687 * 7688 * However, if the cluster is taken from the 7689 * current block group, release the cluster 7690 * first, so that we stand a better chance of 7691 * succeeding in the unclustered 7692 * allocation. */ 7693 if (loop >= LOOP_NO_EMPTY_SIZE && 7694 used_block_group != block_group) { 7695 spin_unlock(&last_ptr->refill_lock); 7696 btrfs_release_block_group(used_block_group, 7697 delalloc); 7698 goto unclustered_alloc; 7699 } 7700 7701 /* 7702 * this cluster didn't work out, free it and 7703 * start over 7704 */ 7705 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7706 7707 if (used_block_group != block_group) 7708 btrfs_release_block_group(used_block_group, 7709 delalloc); 7710 refill_cluster: 7711 if (loop >= LOOP_NO_EMPTY_SIZE) { 7712 spin_unlock(&last_ptr->refill_lock); 7713 goto unclustered_alloc; 7714 } 7715 7716 aligned_cluster = max_t(unsigned long, 7717 empty_cluster + empty_size, 7718 block_group->full_stripe_len); 7719 7720 /* allocate a cluster in this block group */ 7721 ret = btrfs_find_space_cluster(fs_info, block_group, 7722 last_ptr, search_start, 7723 num_bytes, 7724 aligned_cluster); 7725 if (ret == 0) { 7726 /* 7727 * now pull our allocation out of this 7728 * cluster 7729 */ 7730 offset = btrfs_alloc_from_cluster(block_group, 7731 last_ptr, 7732 num_bytes, 7733 search_start, 7734 &max_extent_size); 7735 if (offset) { 7736 /* we found one, proceed */ 7737 spin_unlock(&last_ptr->refill_lock); 7738 trace_btrfs_reserve_extent_cluster(fs_info, 7739 block_group, search_start, 7740 num_bytes); 7741 goto checks; 7742 } 7743 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7744 && !failed_cluster_refill) { 7745 spin_unlock(&last_ptr->refill_lock); 7746 7747 failed_cluster_refill = true; 7748 wait_block_group_cache_progress(block_group, 7749 num_bytes + empty_cluster + empty_size); 7750 goto have_block_group; 7751 } 7752 7753 /* 7754 * at this point we either didn't find a cluster 7755 * or we weren't able to allocate a block from our 7756 * cluster. Free the cluster we've been trying 7757 * to use, and go to the next block group 7758 */ 7759 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7760 spin_unlock(&last_ptr->refill_lock); 7761 goto loop; 7762 } 7763 7764 unclustered_alloc: 7765 /* 7766 * We are doing an unclustered alloc, set the fragmented flag so 7767 * we don't bother trying to setup a cluster again until we get 7768 * more space. 7769 */ 7770 if (unlikely(last_ptr)) { 7771 spin_lock(&last_ptr->lock); 7772 last_ptr->fragmented = 1; 7773 spin_unlock(&last_ptr->lock); 7774 } 7775 if (cached) { 7776 struct btrfs_free_space_ctl *ctl = 7777 block_group->free_space_ctl; 7778 7779 spin_lock(&ctl->tree_lock); 7780 if (ctl->free_space < 7781 num_bytes + empty_cluster + empty_size) { 7782 if (ctl->free_space > max_extent_size) 7783 max_extent_size = ctl->free_space; 7784 spin_unlock(&ctl->tree_lock); 7785 goto loop; 7786 } 7787 spin_unlock(&ctl->tree_lock); 7788 } 7789 7790 offset = btrfs_find_space_for_alloc(block_group, search_start, 7791 num_bytes, empty_size, 7792 &max_extent_size); 7793 /* 7794 * If we didn't find a chunk, and we haven't failed on this 7795 * block group before, and this block group is in the middle of 7796 * caching and we are ok with waiting, then go ahead and wait 7797 * for progress to be made, and set failed_alloc to true. 7798 * 7799 * If failed_alloc is true then we've already waited on this 7800 * block group once and should move on to the next block group. 7801 */ 7802 if (!offset && !failed_alloc && !cached && 7803 loop > LOOP_CACHING_NOWAIT) { 7804 wait_block_group_cache_progress(block_group, 7805 num_bytes + empty_size); 7806 failed_alloc = true; 7807 goto have_block_group; 7808 } else if (!offset) { 7809 goto loop; 7810 } 7811 checks: 7812 search_start = ALIGN(offset, fs_info->stripesize); 7813 7814 /* move on to the next group */ 7815 if (search_start + num_bytes > 7816 block_group->key.objectid + block_group->key.offset) { 7817 btrfs_add_free_space(block_group, offset, num_bytes); 7818 goto loop; 7819 } 7820 7821 if (offset < search_start) 7822 btrfs_add_free_space(block_group, offset, 7823 search_start - offset); 7824 BUG_ON(offset > search_start); 7825 7826 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7827 num_bytes, delalloc); 7828 if (ret == -EAGAIN) { 7829 btrfs_add_free_space(block_group, offset, num_bytes); 7830 goto loop; 7831 } 7832 btrfs_inc_block_group_reservations(block_group); 7833 7834 /* we are all good, lets return */ 7835 ins->objectid = search_start; 7836 ins->offset = num_bytes; 7837 7838 trace_btrfs_reserve_extent(fs_info, block_group, 7839 search_start, num_bytes); 7840 btrfs_release_block_group(block_group, delalloc); 7841 break; 7842 loop: 7843 failed_cluster_refill = false; 7844 failed_alloc = false; 7845 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7846 index); 7847 btrfs_release_block_group(block_group, delalloc); 7848 cond_resched(); 7849 } 7850 up_read(&space_info->groups_sem); 7851 7852 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7853 && !orig_have_caching_bg) 7854 orig_have_caching_bg = true; 7855 7856 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7857 goto search; 7858 7859 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7860 goto search; 7861 7862 /* 7863 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7864 * caching kthreads as we move along 7865 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7866 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7867 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7868 * again 7869 */ 7870 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7871 index = 0; 7872 if (loop == LOOP_CACHING_NOWAIT) { 7873 /* 7874 * We want to skip the LOOP_CACHING_WAIT step if we 7875 * don't have any uncached bgs and we've already done a 7876 * full search through. 7877 */ 7878 if (orig_have_caching_bg || !full_search) 7879 loop = LOOP_CACHING_WAIT; 7880 else 7881 loop = LOOP_ALLOC_CHUNK; 7882 } else { 7883 loop++; 7884 } 7885 7886 if (loop == LOOP_ALLOC_CHUNK) { 7887 struct btrfs_trans_handle *trans; 7888 int exist = 0; 7889 7890 trans = current->journal_info; 7891 if (trans) 7892 exist = 1; 7893 else 7894 trans = btrfs_join_transaction(root); 7895 7896 if (IS_ERR(trans)) { 7897 ret = PTR_ERR(trans); 7898 goto out; 7899 } 7900 7901 ret = do_chunk_alloc(trans, fs_info, flags, 7902 CHUNK_ALLOC_FORCE); 7903 7904 /* 7905 * If we can't allocate a new chunk we've already looped 7906 * through at least once, move on to the NO_EMPTY_SIZE 7907 * case. 7908 */ 7909 if (ret == -ENOSPC) 7910 loop = LOOP_NO_EMPTY_SIZE; 7911 7912 /* 7913 * Do not bail out on ENOSPC since we 7914 * can do more things. 7915 */ 7916 if (ret < 0 && ret != -ENOSPC) 7917 btrfs_abort_transaction(trans, ret); 7918 else 7919 ret = 0; 7920 if (!exist) 7921 btrfs_end_transaction(trans); 7922 if (ret) 7923 goto out; 7924 } 7925 7926 if (loop == LOOP_NO_EMPTY_SIZE) { 7927 /* 7928 * Don't loop again if we already have no empty_size and 7929 * no empty_cluster. 7930 */ 7931 if (empty_size == 0 && 7932 empty_cluster == 0) { 7933 ret = -ENOSPC; 7934 goto out; 7935 } 7936 empty_size = 0; 7937 empty_cluster = 0; 7938 } 7939 7940 goto search; 7941 } else if (!ins->objectid) { 7942 ret = -ENOSPC; 7943 } else if (ins->objectid) { 7944 if (!use_cluster && last_ptr) { 7945 spin_lock(&last_ptr->lock); 7946 last_ptr->window_start = ins->objectid; 7947 spin_unlock(&last_ptr->lock); 7948 } 7949 ret = 0; 7950 } 7951 out: 7952 if (ret == -ENOSPC) { 7953 spin_lock(&space_info->lock); 7954 space_info->max_extent_size = max_extent_size; 7955 spin_unlock(&space_info->lock); 7956 ins->offset = max_extent_size; 7957 } 7958 return ret; 7959 } 7960 7961 static void dump_space_info(struct btrfs_fs_info *fs_info, 7962 struct btrfs_space_info *info, u64 bytes, 7963 int dump_block_groups) 7964 { 7965 struct btrfs_block_group_cache *cache; 7966 int index = 0; 7967 7968 spin_lock(&info->lock); 7969 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7970 info->flags, 7971 info->total_bytes - btrfs_space_info_used(info, true), 7972 info->full ? "" : "not "); 7973 btrfs_info(fs_info, 7974 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7975 info->total_bytes, info->bytes_used, info->bytes_pinned, 7976 info->bytes_reserved, info->bytes_may_use, 7977 info->bytes_readonly); 7978 spin_unlock(&info->lock); 7979 7980 if (!dump_block_groups) 7981 return; 7982 7983 down_read(&info->groups_sem); 7984 again: 7985 list_for_each_entry(cache, &info->block_groups[index], list) { 7986 spin_lock(&cache->lock); 7987 btrfs_info(fs_info, 7988 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7989 cache->key.objectid, cache->key.offset, 7990 btrfs_block_group_used(&cache->item), cache->pinned, 7991 cache->reserved, cache->ro ? "[readonly]" : ""); 7992 btrfs_dump_free_space(cache, bytes); 7993 spin_unlock(&cache->lock); 7994 } 7995 if (++index < BTRFS_NR_RAID_TYPES) 7996 goto again; 7997 up_read(&info->groups_sem); 7998 } 7999 8000 /* 8001 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 8002 * hole that is at least as big as @num_bytes. 8003 * 8004 * @root - The root that will contain this extent 8005 * 8006 * @ram_bytes - The amount of space in ram that @num_bytes take. This 8007 * is used for accounting purposes. This value differs 8008 * from @num_bytes only in the case of compressed extents. 8009 * 8010 * @num_bytes - Number of bytes to allocate on-disk. 8011 * 8012 * @min_alloc_size - Indicates the minimum amount of space that the 8013 * allocator should try to satisfy. In some cases 8014 * @num_bytes may be larger than what is required and if 8015 * the filesystem is fragmented then allocation fails. 8016 * However, the presence of @min_alloc_size gives a 8017 * chance to try and satisfy the smaller allocation. 8018 * 8019 * @empty_size - A hint that you plan on doing more COW. This is the 8020 * size in bytes the allocator should try to find free 8021 * next to the block it returns. This is just a hint and 8022 * may be ignored by the allocator. 8023 * 8024 * @hint_byte - Hint to the allocator to start searching above the byte 8025 * address passed. It might be ignored. 8026 * 8027 * @ins - This key is modified to record the found hole. It will 8028 * have the following values: 8029 * ins->objectid == start position 8030 * ins->flags = BTRFS_EXTENT_ITEM_KEY 8031 * ins->offset == the size of the hole. 8032 * 8033 * @is_data - Boolean flag indicating whether an extent is 8034 * allocated for data (true) or metadata (false) 8035 * 8036 * @delalloc - Boolean flag indicating whether this allocation is for 8037 * delalloc or not. If 'true' data_rwsem of block groups 8038 * is going to be acquired. 8039 * 8040 * 8041 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 8042 * case -ENOSPC is returned then @ins->offset will contain the size of the 8043 * largest available hole the allocator managed to find. 8044 */ 8045 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8046 u64 num_bytes, u64 min_alloc_size, 8047 u64 empty_size, u64 hint_byte, 8048 struct btrfs_key *ins, int is_data, int delalloc) 8049 { 8050 struct btrfs_fs_info *fs_info = root->fs_info; 8051 bool final_tried = num_bytes == min_alloc_size; 8052 u64 flags; 8053 int ret; 8054 8055 flags = get_alloc_profile_by_root(root, is_data); 8056 again: 8057 WARN_ON(num_bytes < fs_info->sectorsize); 8058 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8059 hint_byte, ins, flags, delalloc); 8060 if (!ret && !is_data) { 8061 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8062 } else if (ret == -ENOSPC) { 8063 if (!final_tried && ins->offset) { 8064 num_bytes = min(num_bytes >> 1, ins->offset); 8065 num_bytes = round_down(num_bytes, 8066 fs_info->sectorsize); 8067 num_bytes = max(num_bytes, min_alloc_size); 8068 ram_bytes = num_bytes; 8069 if (num_bytes == min_alloc_size) 8070 final_tried = true; 8071 goto again; 8072 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8073 struct btrfs_space_info *sinfo; 8074 8075 sinfo = __find_space_info(fs_info, flags); 8076 btrfs_err(fs_info, 8077 "allocation failed flags %llu, wanted %llu", 8078 flags, num_bytes); 8079 if (sinfo) 8080 dump_space_info(fs_info, sinfo, num_bytes, 1); 8081 } 8082 } 8083 8084 return ret; 8085 } 8086 8087 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8088 u64 start, u64 len, 8089 int pin, int delalloc) 8090 { 8091 struct btrfs_block_group_cache *cache; 8092 int ret = 0; 8093 8094 cache = btrfs_lookup_block_group(fs_info, start); 8095 if (!cache) { 8096 btrfs_err(fs_info, "Unable to find block group for %llu", 8097 start); 8098 return -ENOSPC; 8099 } 8100 8101 if (pin) 8102 pin_down_extent(fs_info, cache, start, len, 1); 8103 else { 8104 if (btrfs_test_opt(fs_info, DISCARD)) 8105 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8106 btrfs_add_free_space(cache, start, len); 8107 btrfs_free_reserved_bytes(cache, len, delalloc); 8108 trace_btrfs_reserved_extent_free(fs_info, start, len); 8109 } 8110 8111 btrfs_put_block_group(cache); 8112 return ret; 8113 } 8114 8115 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8116 u64 start, u64 len, int delalloc) 8117 { 8118 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8119 } 8120 8121 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8122 u64 start, u64 len) 8123 { 8124 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8125 } 8126 8127 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8128 struct btrfs_fs_info *fs_info, 8129 u64 parent, u64 root_objectid, 8130 u64 flags, u64 owner, u64 offset, 8131 struct btrfs_key *ins, int ref_mod) 8132 { 8133 int ret; 8134 struct btrfs_extent_item *extent_item; 8135 struct btrfs_extent_inline_ref *iref; 8136 struct btrfs_path *path; 8137 struct extent_buffer *leaf; 8138 int type; 8139 u32 size; 8140 8141 if (parent > 0) 8142 type = BTRFS_SHARED_DATA_REF_KEY; 8143 else 8144 type = BTRFS_EXTENT_DATA_REF_KEY; 8145 8146 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8147 8148 path = btrfs_alloc_path(); 8149 if (!path) 8150 return -ENOMEM; 8151 8152 path->leave_spinning = 1; 8153 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8154 ins, size); 8155 if (ret) { 8156 btrfs_free_path(path); 8157 return ret; 8158 } 8159 8160 leaf = path->nodes[0]; 8161 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8162 struct btrfs_extent_item); 8163 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8164 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8165 btrfs_set_extent_flags(leaf, extent_item, 8166 flags | BTRFS_EXTENT_FLAG_DATA); 8167 8168 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8169 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8170 if (parent > 0) { 8171 struct btrfs_shared_data_ref *ref; 8172 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8173 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8174 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8175 } else { 8176 struct btrfs_extent_data_ref *ref; 8177 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8178 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8179 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8180 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8181 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8182 } 8183 8184 btrfs_mark_buffer_dirty(path->nodes[0]); 8185 btrfs_free_path(path); 8186 8187 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8188 ins->offset); 8189 if (ret) 8190 return ret; 8191 8192 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8193 if (ret) { /* -ENOENT, logic error */ 8194 btrfs_err(fs_info, "update block group failed for %llu %llu", 8195 ins->objectid, ins->offset); 8196 BUG(); 8197 } 8198 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8199 return ret; 8200 } 8201 8202 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8203 struct btrfs_fs_info *fs_info, 8204 u64 parent, u64 root_objectid, 8205 u64 flags, struct btrfs_disk_key *key, 8206 int level, struct btrfs_key *ins) 8207 { 8208 int ret; 8209 struct btrfs_extent_item *extent_item; 8210 struct btrfs_tree_block_info *block_info; 8211 struct btrfs_extent_inline_ref *iref; 8212 struct btrfs_path *path; 8213 struct extent_buffer *leaf; 8214 u32 size = sizeof(*extent_item) + sizeof(*iref); 8215 u64 num_bytes = ins->offset; 8216 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8217 8218 if (!skinny_metadata) 8219 size += sizeof(*block_info); 8220 8221 path = btrfs_alloc_path(); 8222 if (!path) { 8223 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8224 fs_info->nodesize); 8225 return -ENOMEM; 8226 } 8227 8228 path->leave_spinning = 1; 8229 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8230 ins, size); 8231 if (ret) { 8232 btrfs_free_path(path); 8233 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8234 fs_info->nodesize); 8235 return ret; 8236 } 8237 8238 leaf = path->nodes[0]; 8239 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8240 struct btrfs_extent_item); 8241 btrfs_set_extent_refs(leaf, extent_item, 1); 8242 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8243 btrfs_set_extent_flags(leaf, extent_item, 8244 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8245 8246 if (skinny_metadata) { 8247 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8248 num_bytes = fs_info->nodesize; 8249 } else { 8250 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8251 btrfs_set_tree_block_key(leaf, block_info, key); 8252 btrfs_set_tree_block_level(leaf, block_info, level); 8253 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8254 } 8255 8256 if (parent > 0) { 8257 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8258 btrfs_set_extent_inline_ref_type(leaf, iref, 8259 BTRFS_SHARED_BLOCK_REF_KEY); 8260 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8261 } else { 8262 btrfs_set_extent_inline_ref_type(leaf, iref, 8263 BTRFS_TREE_BLOCK_REF_KEY); 8264 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8265 } 8266 8267 btrfs_mark_buffer_dirty(leaf); 8268 btrfs_free_path(path); 8269 8270 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8271 num_bytes); 8272 if (ret) 8273 return ret; 8274 8275 ret = update_block_group(trans, fs_info, ins->objectid, 8276 fs_info->nodesize, 1); 8277 if (ret) { /* -ENOENT, logic error */ 8278 btrfs_err(fs_info, "update block group failed for %llu %llu", 8279 ins->objectid, ins->offset); 8280 BUG(); 8281 } 8282 8283 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8284 fs_info->nodesize); 8285 return ret; 8286 } 8287 8288 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8289 struct btrfs_root *root, u64 owner, 8290 u64 offset, u64 ram_bytes, 8291 struct btrfs_key *ins) 8292 { 8293 struct btrfs_fs_info *fs_info = root->fs_info; 8294 int ret; 8295 8296 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8297 8298 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8299 root->root_key.objectid, owner, offset, 8300 BTRFS_ADD_DELAYED_EXTENT); 8301 8302 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8303 ins->offset, 0, 8304 root->root_key.objectid, owner, 8305 offset, ram_bytes, 8306 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8307 return ret; 8308 } 8309 8310 /* 8311 * this is used by the tree logging recovery code. It records that 8312 * an extent has been allocated and makes sure to clear the free 8313 * space cache bits as well 8314 */ 8315 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8316 struct btrfs_fs_info *fs_info, 8317 u64 root_objectid, u64 owner, u64 offset, 8318 struct btrfs_key *ins) 8319 { 8320 int ret; 8321 struct btrfs_block_group_cache *block_group; 8322 struct btrfs_space_info *space_info; 8323 8324 /* 8325 * Mixed block groups will exclude before processing the log so we only 8326 * need to do the exclude dance if this fs isn't mixed. 8327 */ 8328 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8329 ret = __exclude_logged_extent(fs_info, ins->objectid, 8330 ins->offset); 8331 if (ret) 8332 return ret; 8333 } 8334 8335 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8336 if (!block_group) 8337 return -EINVAL; 8338 8339 space_info = block_group->space_info; 8340 spin_lock(&space_info->lock); 8341 spin_lock(&block_group->lock); 8342 space_info->bytes_reserved += ins->offset; 8343 block_group->reserved += ins->offset; 8344 spin_unlock(&block_group->lock); 8345 spin_unlock(&space_info->lock); 8346 8347 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8348 0, owner, offset, ins, 1); 8349 btrfs_put_block_group(block_group); 8350 return ret; 8351 } 8352 8353 static struct extent_buffer * 8354 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8355 u64 bytenr, int level) 8356 { 8357 struct btrfs_fs_info *fs_info = root->fs_info; 8358 struct extent_buffer *buf; 8359 8360 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8361 if (IS_ERR(buf)) 8362 return buf; 8363 8364 btrfs_set_header_generation(buf, trans->transid); 8365 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8366 btrfs_tree_lock(buf); 8367 clean_tree_block(fs_info, buf); 8368 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8369 8370 btrfs_set_lock_blocking(buf); 8371 set_extent_buffer_uptodate(buf); 8372 8373 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8374 buf->log_index = root->log_transid % 2; 8375 /* 8376 * we allow two log transactions at a time, use different 8377 * EXENT bit to differentiate dirty pages. 8378 */ 8379 if (buf->log_index == 0) 8380 set_extent_dirty(&root->dirty_log_pages, buf->start, 8381 buf->start + buf->len - 1, GFP_NOFS); 8382 else 8383 set_extent_new(&root->dirty_log_pages, buf->start, 8384 buf->start + buf->len - 1); 8385 } else { 8386 buf->log_index = -1; 8387 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8388 buf->start + buf->len - 1, GFP_NOFS); 8389 } 8390 trans->dirty = true; 8391 /* this returns a buffer locked for blocking */ 8392 return buf; 8393 } 8394 8395 static struct btrfs_block_rsv * 8396 use_block_rsv(struct btrfs_trans_handle *trans, 8397 struct btrfs_root *root, u32 blocksize) 8398 { 8399 struct btrfs_fs_info *fs_info = root->fs_info; 8400 struct btrfs_block_rsv *block_rsv; 8401 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8402 int ret; 8403 bool global_updated = false; 8404 8405 block_rsv = get_block_rsv(trans, root); 8406 8407 if (unlikely(block_rsv->size == 0)) 8408 goto try_reserve; 8409 again: 8410 ret = block_rsv_use_bytes(block_rsv, blocksize); 8411 if (!ret) 8412 return block_rsv; 8413 8414 if (block_rsv->failfast) 8415 return ERR_PTR(ret); 8416 8417 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8418 global_updated = true; 8419 update_global_block_rsv(fs_info); 8420 goto again; 8421 } 8422 8423 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8424 static DEFINE_RATELIMIT_STATE(_rs, 8425 DEFAULT_RATELIMIT_INTERVAL * 10, 8426 /*DEFAULT_RATELIMIT_BURST*/ 1); 8427 if (__ratelimit(&_rs)) 8428 WARN(1, KERN_DEBUG 8429 "BTRFS: block rsv returned %d\n", ret); 8430 } 8431 try_reserve: 8432 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8433 BTRFS_RESERVE_NO_FLUSH); 8434 if (!ret) 8435 return block_rsv; 8436 /* 8437 * If we couldn't reserve metadata bytes try and use some from 8438 * the global reserve if its space type is the same as the global 8439 * reservation. 8440 */ 8441 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8442 block_rsv->space_info == global_rsv->space_info) { 8443 ret = block_rsv_use_bytes(global_rsv, blocksize); 8444 if (!ret) 8445 return global_rsv; 8446 } 8447 return ERR_PTR(ret); 8448 } 8449 8450 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8451 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8452 { 8453 block_rsv_add_bytes(block_rsv, blocksize, 0); 8454 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); 8455 } 8456 8457 /* 8458 * finds a free extent and does all the dirty work required for allocation 8459 * returns the tree buffer or an ERR_PTR on error. 8460 */ 8461 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8462 struct btrfs_root *root, 8463 u64 parent, u64 root_objectid, 8464 const struct btrfs_disk_key *key, 8465 int level, u64 hint, 8466 u64 empty_size) 8467 { 8468 struct btrfs_fs_info *fs_info = root->fs_info; 8469 struct btrfs_key ins; 8470 struct btrfs_block_rsv *block_rsv; 8471 struct extent_buffer *buf; 8472 struct btrfs_delayed_extent_op *extent_op; 8473 u64 flags = 0; 8474 int ret; 8475 u32 blocksize = fs_info->nodesize; 8476 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8477 8478 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8479 if (btrfs_is_testing(fs_info)) { 8480 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8481 level); 8482 if (!IS_ERR(buf)) 8483 root->alloc_bytenr += blocksize; 8484 return buf; 8485 } 8486 #endif 8487 8488 block_rsv = use_block_rsv(trans, root, blocksize); 8489 if (IS_ERR(block_rsv)) 8490 return ERR_CAST(block_rsv); 8491 8492 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8493 empty_size, hint, &ins, 0, 0); 8494 if (ret) 8495 goto out_unuse; 8496 8497 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8498 if (IS_ERR(buf)) { 8499 ret = PTR_ERR(buf); 8500 goto out_free_reserved; 8501 } 8502 8503 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8504 if (parent == 0) 8505 parent = ins.objectid; 8506 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8507 } else 8508 BUG_ON(parent > 0); 8509 8510 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8511 extent_op = btrfs_alloc_delayed_extent_op(); 8512 if (!extent_op) { 8513 ret = -ENOMEM; 8514 goto out_free_buf; 8515 } 8516 if (key) 8517 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8518 else 8519 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8520 extent_op->flags_to_set = flags; 8521 extent_op->update_key = skinny_metadata ? false : true; 8522 extent_op->update_flags = true; 8523 extent_op->is_data = false; 8524 extent_op->level = level; 8525 8526 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8527 root_objectid, level, 0, 8528 BTRFS_ADD_DELAYED_EXTENT); 8529 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8530 ins.offset, parent, 8531 root_objectid, level, 8532 BTRFS_ADD_DELAYED_EXTENT, 8533 extent_op, NULL, NULL); 8534 if (ret) 8535 goto out_free_delayed; 8536 } 8537 return buf; 8538 8539 out_free_delayed: 8540 btrfs_free_delayed_extent_op(extent_op); 8541 out_free_buf: 8542 free_extent_buffer(buf); 8543 out_free_reserved: 8544 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8545 out_unuse: 8546 unuse_block_rsv(fs_info, block_rsv, blocksize); 8547 return ERR_PTR(ret); 8548 } 8549 8550 struct walk_control { 8551 u64 refs[BTRFS_MAX_LEVEL]; 8552 u64 flags[BTRFS_MAX_LEVEL]; 8553 struct btrfs_key update_progress; 8554 int stage; 8555 int level; 8556 int shared_level; 8557 int update_ref; 8558 int keep_locks; 8559 int reada_slot; 8560 int reada_count; 8561 int for_reloc; 8562 }; 8563 8564 #define DROP_REFERENCE 1 8565 #define UPDATE_BACKREF 2 8566 8567 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8568 struct btrfs_root *root, 8569 struct walk_control *wc, 8570 struct btrfs_path *path) 8571 { 8572 struct btrfs_fs_info *fs_info = root->fs_info; 8573 u64 bytenr; 8574 u64 generation; 8575 u64 refs; 8576 u64 flags; 8577 u32 nritems; 8578 struct btrfs_key key; 8579 struct extent_buffer *eb; 8580 int ret; 8581 int slot; 8582 int nread = 0; 8583 8584 if (path->slots[wc->level] < wc->reada_slot) { 8585 wc->reada_count = wc->reada_count * 2 / 3; 8586 wc->reada_count = max(wc->reada_count, 2); 8587 } else { 8588 wc->reada_count = wc->reada_count * 3 / 2; 8589 wc->reada_count = min_t(int, wc->reada_count, 8590 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8591 } 8592 8593 eb = path->nodes[wc->level]; 8594 nritems = btrfs_header_nritems(eb); 8595 8596 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8597 if (nread >= wc->reada_count) 8598 break; 8599 8600 cond_resched(); 8601 bytenr = btrfs_node_blockptr(eb, slot); 8602 generation = btrfs_node_ptr_generation(eb, slot); 8603 8604 if (slot == path->slots[wc->level]) 8605 goto reada; 8606 8607 if (wc->stage == UPDATE_BACKREF && 8608 generation <= root->root_key.offset) 8609 continue; 8610 8611 /* We don't lock the tree block, it's OK to be racy here */ 8612 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8613 wc->level - 1, 1, &refs, 8614 &flags); 8615 /* We don't care about errors in readahead. */ 8616 if (ret < 0) 8617 continue; 8618 BUG_ON(refs == 0); 8619 8620 if (wc->stage == DROP_REFERENCE) { 8621 if (refs == 1) 8622 goto reada; 8623 8624 if (wc->level == 1 && 8625 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8626 continue; 8627 if (!wc->update_ref || 8628 generation <= root->root_key.offset) 8629 continue; 8630 btrfs_node_key_to_cpu(eb, &key, slot); 8631 ret = btrfs_comp_cpu_keys(&key, 8632 &wc->update_progress); 8633 if (ret < 0) 8634 continue; 8635 } else { 8636 if (wc->level == 1 && 8637 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8638 continue; 8639 } 8640 reada: 8641 readahead_tree_block(fs_info, bytenr); 8642 nread++; 8643 } 8644 wc->reada_slot = slot; 8645 } 8646 8647 /* 8648 * helper to process tree block while walking down the tree. 8649 * 8650 * when wc->stage == UPDATE_BACKREF, this function updates 8651 * back refs for pointers in the block. 8652 * 8653 * NOTE: return value 1 means we should stop walking down. 8654 */ 8655 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8656 struct btrfs_root *root, 8657 struct btrfs_path *path, 8658 struct walk_control *wc, int lookup_info) 8659 { 8660 struct btrfs_fs_info *fs_info = root->fs_info; 8661 int level = wc->level; 8662 struct extent_buffer *eb = path->nodes[level]; 8663 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8664 int ret; 8665 8666 if (wc->stage == UPDATE_BACKREF && 8667 btrfs_header_owner(eb) != root->root_key.objectid) 8668 return 1; 8669 8670 /* 8671 * when reference count of tree block is 1, it won't increase 8672 * again. once full backref flag is set, we never clear it. 8673 */ 8674 if (lookup_info && 8675 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8676 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8677 BUG_ON(!path->locks[level]); 8678 ret = btrfs_lookup_extent_info(trans, fs_info, 8679 eb->start, level, 1, 8680 &wc->refs[level], 8681 &wc->flags[level]); 8682 BUG_ON(ret == -ENOMEM); 8683 if (ret) 8684 return ret; 8685 BUG_ON(wc->refs[level] == 0); 8686 } 8687 8688 if (wc->stage == DROP_REFERENCE) { 8689 if (wc->refs[level] > 1) 8690 return 1; 8691 8692 if (path->locks[level] && !wc->keep_locks) { 8693 btrfs_tree_unlock_rw(eb, path->locks[level]); 8694 path->locks[level] = 0; 8695 } 8696 return 0; 8697 } 8698 8699 /* wc->stage == UPDATE_BACKREF */ 8700 if (!(wc->flags[level] & flag)) { 8701 BUG_ON(!path->locks[level]); 8702 ret = btrfs_inc_ref(trans, root, eb, 1); 8703 BUG_ON(ret); /* -ENOMEM */ 8704 ret = btrfs_dec_ref(trans, root, eb, 0); 8705 BUG_ON(ret); /* -ENOMEM */ 8706 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8707 eb->len, flag, 8708 btrfs_header_level(eb), 0); 8709 BUG_ON(ret); /* -ENOMEM */ 8710 wc->flags[level] |= flag; 8711 } 8712 8713 /* 8714 * the block is shared by multiple trees, so it's not good to 8715 * keep the tree lock 8716 */ 8717 if (path->locks[level] && level > 0) { 8718 btrfs_tree_unlock_rw(eb, path->locks[level]); 8719 path->locks[level] = 0; 8720 } 8721 return 0; 8722 } 8723 8724 /* 8725 * helper to process tree block pointer. 8726 * 8727 * when wc->stage == DROP_REFERENCE, this function checks 8728 * reference count of the block pointed to. if the block 8729 * is shared and we need update back refs for the subtree 8730 * rooted at the block, this function changes wc->stage to 8731 * UPDATE_BACKREF. if the block is shared and there is no 8732 * need to update back, this function drops the reference 8733 * to the block. 8734 * 8735 * NOTE: return value 1 means we should stop walking down. 8736 */ 8737 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8738 struct btrfs_root *root, 8739 struct btrfs_path *path, 8740 struct walk_control *wc, int *lookup_info) 8741 { 8742 struct btrfs_fs_info *fs_info = root->fs_info; 8743 u64 bytenr; 8744 u64 generation; 8745 u64 parent; 8746 u32 blocksize; 8747 struct btrfs_key key; 8748 struct btrfs_key first_key; 8749 struct extent_buffer *next; 8750 int level = wc->level; 8751 int reada = 0; 8752 int ret = 0; 8753 bool need_account = false; 8754 8755 generation = btrfs_node_ptr_generation(path->nodes[level], 8756 path->slots[level]); 8757 /* 8758 * if the lower level block was created before the snapshot 8759 * was created, we know there is no need to update back refs 8760 * for the subtree 8761 */ 8762 if (wc->stage == UPDATE_BACKREF && 8763 generation <= root->root_key.offset) { 8764 *lookup_info = 1; 8765 return 1; 8766 } 8767 8768 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8769 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8770 path->slots[level]); 8771 blocksize = fs_info->nodesize; 8772 8773 next = find_extent_buffer(fs_info, bytenr); 8774 if (!next) { 8775 next = btrfs_find_create_tree_block(fs_info, bytenr); 8776 if (IS_ERR(next)) 8777 return PTR_ERR(next); 8778 8779 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8780 level - 1); 8781 reada = 1; 8782 } 8783 btrfs_tree_lock(next); 8784 btrfs_set_lock_blocking(next); 8785 8786 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8787 &wc->refs[level - 1], 8788 &wc->flags[level - 1]); 8789 if (ret < 0) 8790 goto out_unlock; 8791 8792 if (unlikely(wc->refs[level - 1] == 0)) { 8793 btrfs_err(fs_info, "Missing references."); 8794 ret = -EIO; 8795 goto out_unlock; 8796 } 8797 *lookup_info = 0; 8798 8799 if (wc->stage == DROP_REFERENCE) { 8800 if (wc->refs[level - 1] > 1) { 8801 need_account = true; 8802 if (level == 1 && 8803 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8804 goto skip; 8805 8806 if (!wc->update_ref || 8807 generation <= root->root_key.offset) 8808 goto skip; 8809 8810 btrfs_node_key_to_cpu(path->nodes[level], &key, 8811 path->slots[level]); 8812 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8813 if (ret < 0) 8814 goto skip; 8815 8816 wc->stage = UPDATE_BACKREF; 8817 wc->shared_level = level - 1; 8818 } 8819 } else { 8820 if (level == 1 && 8821 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8822 goto skip; 8823 } 8824 8825 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8826 btrfs_tree_unlock(next); 8827 free_extent_buffer(next); 8828 next = NULL; 8829 *lookup_info = 1; 8830 } 8831 8832 if (!next) { 8833 if (reada && level == 1) 8834 reada_walk_down(trans, root, wc, path); 8835 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8836 &first_key); 8837 if (IS_ERR(next)) { 8838 return PTR_ERR(next); 8839 } else if (!extent_buffer_uptodate(next)) { 8840 free_extent_buffer(next); 8841 return -EIO; 8842 } 8843 btrfs_tree_lock(next); 8844 btrfs_set_lock_blocking(next); 8845 } 8846 8847 level--; 8848 ASSERT(level == btrfs_header_level(next)); 8849 if (level != btrfs_header_level(next)) { 8850 btrfs_err(root->fs_info, "mismatched level"); 8851 ret = -EIO; 8852 goto out_unlock; 8853 } 8854 path->nodes[level] = next; 8855 path->slots[level] = 0; 8856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8857 wc->level = level; 8858 if (wc->level == 1) 8859 wc->reada_slot = 0; 8860 return 0; 8861 skip: 8862 wc->refs[level - 1] = 0; 8863 wc->flags[level - 1] = 0; 8864 if (wc->stage == DROP_REFERENCE) { 8865 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8866 parent = path->nodes[level]->start; 8867 } else { 8868 ASSERT(root->root_key.objectid == 8869 btrfs_header_owner(path->nodes[level])); 8870 if (root->root_key.objectid != 8871 btrfs_header_owner(path->nodes[level])) { 8872 btrfs_err(root->fs_info, 8873 "mismatched block owner"); 8874 ret = -EIO; 8875 goto out_unlock; 8876 } 8877 parent = 0; 8878 } 8879 8880 if (need_account) { 8881 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8882 generation, level - 1); 8883 if (ret) { 8884 btrfs_err_rl(fs_info, 8885 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8886 ret); 8887 } 8888 } 8889 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8890 parent, root->root_key.objectid, 8891 level - 1, 0); 8892 if (ret) 8893 goto out_unlock; 8894 } 8895 8896 *lookup_info = 1; 8897 ret = 1; 8898 8899 out_unlock: 8900 btrfs_tree_unlock(next); 8901 free_extent_buffer(next); 8902 8903 return ret; 8904 } 8905 8906 /* 8907 * helper to process tree block while walking up the tree. 8908 * 8909 * when wc->stage == DROP_REFERENCE, this function drops 8910 * reference count on the block. 8911 * 8912 * when wc->stage == UPDATE_BACKREF, this function changes 8913 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8914 * to UPDATE_BACKREF previously while processing the block. 8915 * 8916 * NOTE: return value 1 means we should stop walking up. 8917 */ 8918 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8919 struct btrfs_root *root, 8920 struct btrfs_path *path, 8921 struct walk_control *wc) 8922 { 8923 struct btrfs_fs_info *fs_info = root->fs_info; 8924 int ret; 8925 int level = wc->level; 8926 struct extent_buffer *eb = path->nodes[level]; 8927 u64 parent = 0; 8928 8929 if (wc->stage == UPDATE_BACKREF) { 8930 BUG_ON(wc->shared_level < level); 8931 if (level < wc->shared_level) 8932 goto out; 8933 8934 ret = find_next_key(path, level + 1, &wc->update_progress); 8935 if (ret > 0) 8936 wc->update_ref = 0; 8937 8938 wc->stage = DROP_REFERENCE; 8939 wc->shared_level = -1; 8940 path->slots[level] = 0; 8941 8942 /* 8943 * check reference count again if the block isn't locked. 8944 * we should start walking down the tree again if reference 8945 * count is one. 8946 */ 8947 if (!path->locks[level]) { 8948 BUG_ON(level == 0); 8949 btrfs_tree_lock(eb); 8950 btrfs_set_lock_blocking(eb); 8951 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8952 8953 ret = btrfs_lookup_extent_info(trans, fs_info, 8954 eb->start, level, 1, 8955 &wc->refs[level], 8956 &wc->flags[level]); 8957 if (ret < 0) { 8958 btrfs_tree_unlock_rw(eb, path->locks[level]); 8959 path->locks[level] = 0; 8960 return ret; 8961 } 8962 BUG_ON(wc->refs[level] == 0); 8963 if (wc->refs[level] == 1) { 8964 btrfs_tree_unlock_rw(eb, path->locks[level]); 8965 path->locks[level] = 0; 8966 return 1; 8967 } 8968 } 8969 } 8970 8971 /* wc->stage == DROP_REFERENCE */ 8972 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8973 8974 if (wc->refs[level] == 1) { 8975 if (level == 0) { 8976 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8977 ret = btrfs_dec_ref(trans, root, eb, 1); 8978 else 8979 ret = btrfs_dec_ref(trans, root, eb, 0); 8980 BUG_ON(ret); /* -ENOMEM */ 8981 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8982 if (ret) { 8983 btrfs_err_rl(fs_info, 8984 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8985 ret); 8986 } 8987 } 8988 /* make block locked assertion in clean_tree_block happy */ 8989 if (!path->locks[level] && 8990 btrfs_header_generation(eb) == trans->transid) { 8991 btrfs_tree_lock(eb); 8992 btrfs_set_lock_blocking(eb); 8993 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8994 } 8995 clean_tree_block(fs_info, eb); 8996 } 8997 8998 if (eb == root->node) { 8999 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9000 parent = eb->start; 9001 else 9002 BUG_ON(root->root_key.objectid != 9003 btrfs_header_owner(eb)); 9004 } else { 9005 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9006 parent = path->nodes[level + 1]->start; 9007 else 9008 BUG_ON(root->root_key.objectid != 9009 btrfs_header_owner(path->nodes[level + 1])); 9010 } 9011 9012 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9013 out: 9014 wc->refs[level] = 0; 9015 wc->flags[level] = 0; 9016 return 0; 9017 } 9018 9019 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9020 struct btrfs_root *root, 9021 struct btrfs_path *path, 9022 struct walk_control *wc) 9023 { 9024 int level = wc->level; 9025 int lookup_info = 1; 9026 int ret; 9027 9028 while (level >= 0) { 9029 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9030 if (ret > 0) 9031 break; 9032 9033 if (level == 0) 9034 break; 9035 9036 if (path->slots[level] >= 9037 btrfs_header_nritems(path->nodes[level])) 9038 break; 9039 9040 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9041 if (ret > 0) { 9042 path->slots[level]++; 9043 continue; 9044 } else if (ret < 0) 9045 return ret; 9046 level = wc->level; 9047 } 9048 return 0; 9049 } 9050 9051 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9052 struct btrfs_root *root, 9053 struct btrfs_path *path, 9054 struct walk_control *wc, int max_level) 9055 { 9056 int level = wc->level; 9057 int ret; 9058 9059 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9060 while (level < max_level && path->nodes[level]) { 9061 wc->level = level; 9062 if (path->slots[level] + 1 < 9063 btrfs_header_nritems(path->nodes[level])) { 9064 path->slots[level]++; 9065 return 0; 9066 } else { 9067 ret = walk_up_proc(trans, root, path, wc); 9068 if (ret > 0) 9069 return 0; 9070 9071 if (path->locks[level]) { 9072 btrfs_tree_unlock_rw(path->nodes[level], 9073 path->locks[level]); 9074 path->locks[level] = 0; 9075 } 9076 free_extent_buffer(path->nodes[level]); 9077 path->nodes[level] = NULL; 9078 level++; 9079 } 9080 } 9081 return 1; 9082 } 9083 9084 /* 9085 * drop a subvolume tree. 9086 * 9087 * this function traverses the tree freeing any blocks that only 9088 * referenced by the tree. 9089 * 9090 * when a shared tree block is found. this function decreases its 9091 * reference count by one. if update_ref is true, this function 9092 * also make sure backrefs for the shared block and all lower level 9093 * blocks are properly updated. 9094 * 9095 * If called with for_reloc == 0, may exit early with -EAGAIN 9096 */ 9097 int btrfs_drop_snapshot(struct btrfs_root *root, 9098 struct btrfs_block_rsv *block_rsv, int update_ref, 9099 int for_reloc) 9100 { 9101 struct btrfs_fs_info *fs_info = root->fs_info; 9102 struct btrfs_path *path; 9103 struct btrfs_trans_handle *trans; 9104 struct btrfs_root *tree_root = fs_info->tree_root; 9105 struct btrfs_root_item *root_item = &root->root_item; 9106 struct walk_control *wc; 9107 struct btrfs_key key; 9108 int err = 0; 9109 int ret; 9110 int level; 9111 bool root_dropped = false; 9112 9113 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9114 9115 path = btrfs_alloc_path(); 9116 if (!path) { 9117 err = -ENOMEM; 9118 goto out; 9119 } 9120 9121 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9122 if (!wc) { 9123 btrfs_free_path(path); 9124 err = -ENOMEM; 9125 goto out; 9126 } 9127 9128 trans = btrfs_start_transaction(tree_root, 0); 9129 if (IS_ERR(trans)) { 9130 err = PTR_ERR(trans); 9131 goto out_free; 9132 } 9133 9134 if (block_rsv) 9135 trans->block_rsv = block_rsv; 9136 9137 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9138 level = btrfs_header_level(root->node); 9139 path->nodes[level] = btrfs_lock_root_node(root); 9140 btrfs_set_lock_blocking(path->nodes[level]); 9141 path->slots[level] = 0; 9142 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9143 memset(&wc->update_progress, 0, 9144 sizeof(wc->update_progress)); 9145 } else { 9146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9147 memcpy(&wc->update_progress, &key, 9148 sizeof(wc->update_progress)); 9149 9150 level = root_item->drop_level; 9151 BUG_ON(level == 0); 9152 path->lowest_level = level; 9153 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9154 path->lowest_level = 0; 9155 if (ret < 0) { 9156 err = ret; 9157 goto out_end_trans; 9158 } 9159 WARN_ON(ret > 0); 9160 9161 /* 9162 * unlock our path, this is safe because only this 9163 * function is allowed to delete this snapshot 9164 */ 9165 btrfs_unlock_up_safe(path, 0); 9166 9167 level = btrfs_header_level(root->node); 9168 while (1) { 9169 btrfs_tree_lock(path->nodes[level]); 9170 btrfs_set_lock_blocking(path->nodes[level]); 9171 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9172 9173 ret = btrfs_lookup_extent_info(trans, fs_info, 9174 path->nodes[level]->start, 9175 level, 1, &wc->refs[level], 9176 &wc->flags[level]); 9177 if (ret < 0) { 9178 err = ret; 9179 goto out_end_trans; 9180 } 9181 BUG_ON(wc->refs[level] == 0); 9182 9183 if (level == root_item->drop_level) 9184 break; 9185 9186 btrfs_tree_unlock(path->nodes[level]); 9187 path->locks[level] = 0; 9188 WARN_ON(wc->refs[level] != 1); 9189 level--; 9190 } 9191 } 9192 9193 wc->level = level; 9194 wc->shared_level = -1; 9195 wc->stage = DROP_REFERENCE; 9196 wc->update_ref = update_ref; 9197 wc->keep_locks = 0; 9198 wc->for_reloc = for_reloc; 9199 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9200 9201 while (1) { 9202 9203 ret = walk_down_tree(trans, root, path, wc); 9204 if (ret < 0) { 9205 err = ret; 9206 break; 9207 } 9208 9209 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9210 if (ret < 0) { 9211 err = ret; 9212 break; 9213 } 9214 9215 if (ret > 0) { 9216 BUG_ON(wc->stage != DROP_REFERENCE); 9217 break; 9218 } 9219 9220 if (wc->stage == DROP_REFERENCE) { 9221 level = wc->level; 9222 btrfs_node_key(path->nodes[level], 9223 &root_item->drop_progress, 9224 path->slots[level]); 9225 root_item->drop_level = level; 9226 } 9227 9228 BUG_ON(wc->level == 0); 9229 if (btrfs_should_end_transaction(trans) || 9230 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9231 ret = btrfs_update_root(trans, tree_root, 9232 &root->root_key, 9233 root_item); 9234 if (ret) { 9235 btrfs_abort_transaction(trans, ret); 9236 err = ret; 9237 goto out_end_trans; 9238 } 9239 9240 btrfs_end_transaction_throttle(trans); 9241 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9242 btrfs_debug(fs_info, 9243 "drop snapshot early exit"); 9244 err = -EAGAIN; 9245 goto out_free; 9246 } 9247 9248 trans = btrfs_start_transaction(tree_root, 0); 9249 if (IS_ERR(trans)) { 9250 err = PTR_ERR(trans); 9251 goto out_free; 9252 } 9253 if (block_rsv) 9254 trans->block_rsv = block_rsv; 9255 } 9256 } 9257 btrfs_release_path(path); 9258 if (err) 9259 goto out_end_trans; 9260 9261 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9262 if (ret) { 9263 btrfs_abort_transaction(trans, ret); 9264 err = ret; 9265 goto out_end_trans; 9266 } 9267 9268 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9269 ret = btrfs_find_root(tree_root, &root->root_key, path, 9270 NULL, NULL); 9271 if (ret < 0) { 9272 btrfs_abort_transaction(trans, ret); 9273 err = ret; 9274 goto out_end_trans; 9275 } else if (ret > 0) { 9276 /* if we fail to delete the orphan item this time 9277 * around, it'll get picked up the next time. 9278 * 9279 * The most common failure here is just -ENOENT. 9280 */ 9281 btrfs_del_orphan_item(trans, tree_root, 9282 root->root_key.objectid); 9283 } 9284 } 9285 9286 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9287 btrfs_add_dropped_root(trans, root); 9288 } else { 9289 free_extent_buffer(root->node); 9290 free_extent_buffer(root->commit_root); 9291 btrfs_put_fs_root(root); 9292 } 9293 root_dropped = true; 9294 out_end_trans: 9295 btrfs_end_transaction_throttle(trans); 9296 out_free: 9297 kfree(wc); 9298 btrfs_free_path(path); 9299 out: 9300 /* 9301 * So if we need to stop dropping the snapshot for whatever reason we 9302 * need to make sure to add it back to the dead root list so that we 9303 * keep trying to do the work later. This also cleans up roots if we 9304 * don't have it in the radix (like when we recover after a power fail 9305 * or unmount) so we don't leak memory. 9306 */ 9307 if (!for_reloc && !root_dropped) 9308 btrfs_add_dead_root(root); 9309 if (err && err != -EAGAIN) 9310 btrfs_handle_fs_error(fs_info, err, NULL); 9311 return err; 9312 } 9313 9314 /* 9315 * drop subtree rooted at tree block 'node'. 9316 * 9317 * NOTE: this function will unlock and release tree block 'node' 9318 * only used by relocation code 9319 */ 9320 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9321 struct btrfs_root *root, 9322 struct extent_buffer *node, 9323 struct extent_buffer *parent) 9324 { 9325 struct btrfs_fs_info *fs_info = root->fs_info; 9326 struct btrfs_path *path; 9327 struct walk_control *wc; 9328 int level; 9329 int parent_level; 9330 int ret = 0; 9331 int wret; 9332 9333 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9334 9335 path = btrfs_alloc_path(); 9336 if (!path) 9337 return -ENOMEM; 9338 9339 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9340 if (!wc) { 9341 btrfs_free_path(path); 9342 return -ENOMEM; 9343 } 9344 9345 btrfs_assert_tree_locked(parent); 9346 parent_level = btrfs_header_level(parent); 9347 extent_buffer_get(parent); 9348 path->nodes[parent_level] = parent; 9349 path->slots[parent_level] = btrfs_header_nritems(parent); 9350 9351 btrfs_assert_tree_locked(node); 9352 level = btrfs_header_level(node); 9353 path->nodes[level] = node; 9354 path->slots[level] = 0; 9355 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9356 9357 wc->refs[parent_level] = 1; 9358 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9359 wc->level = level; 9360 wc->shared_level = -1; 9361 wc->stage = DROP_REFERENCE; 9362 wc->update_ref = 0; 9363 wc->keep_locks = 1; 9364 wc->for_reloc = 1; 9365 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9366 9367 while (1) { 9368 wret = walk_down_tree(trans, root, path, wc); 9369 if (wret < 0) { 9370 ret = wret; 9371 break; 9372 } 9373 9374 wret = walk_up_tree(trans, root, path, wc, parent_level); 9375 if (wret < 0) 9376 ret = wret; 9377 if (wret != 0) 9378 break; 9379 } 9380 9381 kfree(wc); 9382 btrfs_free_path(path); 9383 return ret; 9384 } 9385 9386 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9387 { 9388 u64 num_devices; 9389 u64 stripped; 9390 9391 /* 9392 * if restripe for this chunk_type is on pick target profile and 9393 * return, otherwise do the usual balance 9394 */ 9395 stripped = get_restripe_target(fs_info, flags); 9396 if (stripped) 9397 return extended_to_chunk(stripped); 9398 9399 num_devices = fs_info->fs_devices->rw_devices; 9400 9401 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9402 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9403 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9404 9405 if (num_devices == 1) { 9406 stripped |= BTRFS_BLOCK_GROUP_DUP; 9407 stripped = flags & ~stripped; 9408 9409 /* turn raid0 into single device chunks */ 9410 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9411 return stripped; 9412 9413 /* turn mirroring into duplication */ 9414 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9415 BTRFS_BLOCK_GROUP_RAID10)) 9416 return stripped | BTRFS_BLOCK_GROUP_DUP; 9417 } else { 9418 /* they already had raid on here, just return */ 9419 if (flags & stripped) 9420 return flags; 9421 9422 stripped |= BTRFS_BLOCK_GROUP_DUP; 9423 stripped = flags & ~stripped; 9424 9425 /* switch duplicated blocks with raid1 */ 9426 if (flags & BTRFS_BLOCK_GROUP_DUP) 9427 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9428 9429 /* this is drive concat, leave it alone */ 9430 } 9431 9432 return flags; 9433 } 9434 9435 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9436 { 9437 struct btrfs_space_info *sinfo = cache->space_info; 9438 u64 num_bytes; 9439 u64 min_allocable_bytes; 9440 int ret = -ENOSPC; 9441 9442 /* 9443 * We need some metadata space and system metadata space for 9444 * allocating chunks in some corner cases until we force to set 9445 * it to be readonly. 9446 */ 9447 if ((sinfo->flags & 9448 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9449 !force) 9450 min_allocable_bytes = SZ_1M; 9451 else 9452 min_allocable_bytes = 0; 9453 9454 spin_lock(&sinfo->lock); 9455 spin_lock(&cache->lock); 9456 9457 if (cache->ro) { 9458 cache->ro++; 9459 ret = 0; 9460 goto out; 9461 } 9462 9463 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9464 cache->bytes_super - btrfs_block_group_used(&cache->item); 9465 9466 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9467 min_allocable_bytes <= sinfo->total_bytes) { 9468 sinfo->bytes_readonly += num_bytes; 9469 cache->ro++; 9470 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9471 ret = 0; 9472 } 9473 out: 9474 spin_unlock(&cache->lock); 9475 spin_unlock(&sinfo->lock); 9476 return ret; 9477 } 9478 9479 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9480 struct btrfs_block_group_cache *cache) 9481 9482 { 9483 struct btrfs_trans_handle *trans; 9484 u64 alloc_flags; 9485 int ret; 9486 9487 again: 9488 trans = btrfs_join_transaction(fs_info->extent_root); 9489 if (IS_ERR(trans)) 9490 return PTR_ERR(trans); 9491 9492 /* 9493 * we're not allowed to set block groups readonly after the dirty 9494 * block groups cache has started writing. If it already started, 9495 * back off and let this transaction commit 9496 */ 9497 mutex_lock(&fs_info->ro_block_group_mutex); 9498 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9499 u64 transid = trans->transid; 9500 9501 mutex_unlock(&fs_info->ro_block_group_mutex); 9502 btrfs_end_transaction(trans); 9503 9504 ret = btrfs_wait_for_commit(fs_info, transid); 9505 if (ret) 9506 return ret; 9507 goto again; 9508 } 9509 9510 /* 9511 * if we are changing raid levels, try to allocate a corresponding 9512 * block group with the new raid level. 9513 */ 9514 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9515 if (alloc_flags != cache->flags) { 9516 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9517 CHUNK_ALLOC_FORCE); 9518 /* 9519 * ENOSPC is allowed here, we may have enough space 9520 * already allocated at the new raid level to 9521 * carry on 9522 */ 9523 if (ret == -ENOSPC) 9524 ret = 0; 9525 if (ret < 0) 9526 goto out; 9527 } 9528 9529 ret = inc_block_group_ro(cache, 0); 9530 if (!ret) 9531 goto out; 9532 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9533 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9534 CHUNK_ALLOC_FORCE); 9535 if (ret < 0) 9536 goto out; 9537 ret = inc_block_group_ro(cache, 0); 9538 out: 9539 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9540 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9541 mutex_lock(&fs_info->chunk_mutex); 9542 check_system_chunk(trans, fs_info, alloc_flags); 9543 mutex_unlock(&fs_info->chunk_mutex); 9544 } 9545 mutex_unlock(&fs_info->ro_block_group_mutex); 9546 9547 btrfs_end_transaction(trans); 9548 return ret; 9549 } 9550 9551 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9552 struct btrfs_fs_info *fs_info, u64 type) 9553 { 9554 u64 alloc_flags = get_alloc_profile(fs_info, type); 9555 9556 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9557 } 9558 9559 /* 9560 * helper to account the unused space of all the readonly block group in the 9561 * space_info. takes mirrors into account. 9562 */ 9563 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9564 { 9565 struct btrfs_block_group_cache *block_group; 9566 u64 free_bytes = 0; 9567 int factor; 9568 9569 /* It's df, we don't care if it's racy */ 9570 if (list_empty(&sinfo->ro_bgs)) 9571 return 0; 9572 9573 spin_lock(&sinfo->lock); 9574 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9575 spin_lock(&block_group->lock); 9576 9577 if (!block_group->ro) { 9578 spin_unlock(&block_group->lock); 9579 continue; 9580 } 9581 9582 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9583 BTRFS_BLOCK_GROUP_RAID10 | 9584 BTRFS_BLOCK_GROUP_DUP)) 9585 factor = 2; 9586 else 9587 factor = 1; 9588 9589 free_bytes += (block_group->key.offset - 9590 btrfs_block_group_used(&block_group->item)) * 9591 factor; 9592 9593 spin_unlock(&block_group->lock); 9594 } 9595 spin_unlock(&sinfo->lock); 9596 9597 return free_bytes; 9598 } 9599 9600 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9601 { 9602 struct btrfs_space_info *sinfo = cache->space_info; 9603 u64 num_bytes; 9604 9605 BUG_ON(!cache->ro); 9606 9607 spin_lock(&sinfo->lock); 9608 spin_lock(&cache->lock); 9609 if (!--cache->ro) { 9610 num_bytes = cache->key.offset - cache->reserved - 9611 cache->pinned - cache->bytes_super - 9612 btrfs_block_group_used(&cache->item); 9613 sinfo->bytes_readonly -= num_bytes; 9614 list_del_init(&cache->ro_list); 9615 } 9616 spin_unlock(&cache->lock); 9617 spin_unlock(&sinfo->lock); 9618 } 9619 9620 /* 9621 * checks to see if its even possible to relocate this block group. 9622 * 9623 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9624 * ok to go ahead and try. 9625 */ 9626 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9627 { 9628 struct btrfs_root *root = fs_info->extent_root; 9629 struct btrfs_block_group_cache *block_group; 9630 struct btrfs_space_info *space_info; 9631 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9632 struct btrfs_device *device; 9633 struct btrfs_trans_handle *trans; 9634 u64 min_free; 9635 u64 dev_min = 1; 9636 u64 dev_nr = 0; 9637 u64 target; 9638 int debug; 9639 int index; 9640 int full = 0; 9641 int ret = 0; 9642 9643 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9644 9645 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9646 9647 /* odd, couldn't find the block group, leave it alone */ 9648 if (!block_group) { 9649 if (debug) 9650 btrfs_warn(fs_info, 9651 "can't find block group for bytenr %llu", 9652 bytenr); 9653 return -1; 9654 } 9655 9656 min_free = btrfs_block_group_used(&block_group->item); 9657 9658 /* no bytes used, we're good */ 9659 if (!min_free) 9660 goto out; 9661 9662 space_info = block_group->space_info; 9663 spin_lock(&space_info->lock); 9664 9665 full = space_info->full; 9666 9667 /* 9668 * if this is the last block group we have in this space, we can't 9669 * relocate it unless we're able to allocate a new chunk below. 9670 * 9671 * Otherwise, we need to make sure we have room in the space to handle 9672 * all of the extents from this block group. If we can, we're good 9673 */ 9674 if ((space_info->total_bytes != block_group->key.offset) && 9675 (btrfs_space_info_used(space_info, false) + min_free < 9676 space_info->total_bytes)) { 9677 spin_unlock(&space_info->lock); 9678 goto out; 9679 } 9680 spin_unlock(&space_info->lock); 9681 9682 /* 9683 * ok we don't have enough space, but maybe we have free space on our 9684 * devices to allocate new chunks for relocation, so loop through our 9685 * alloc devices and guess if we have enough space. if this block 9686 * group is going to be restriped, run checks against the target 9687 * profile instead of the current one. 9688 */ 9689 ret = -1; 9690 9691 /* 9692 * index: 9693 * 0: raid10 9694 * 1: raid1 9695 * 2: dup 9696 * 3: raid0 9697 * 4: single 9698 */ 9699 target = get_restripe_target(fs_info, block_group->flags); 9700 if (target) { 9701 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9702 } else { 9703 /* 9704 * this is just a balance, so if we were marked as full 9705 * we know there is no space for a new chunk 9706 */ 9707 if (full) { 9708 if (debug) 9709 btrfs_warn(fs_info, 9710 "no space to alloc new chunk for block group %llu", 9711 block_group->key.objectid); 9712 goto out; 9713 } 9714 9715 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9716 } 9717 9718 if (index == BTRFS_RAID_RAID10) { 9719 dev_min = 4; 9720 /* Divide by 2 */ 9721 min_free >>= 1; 9722 } else if (index == BTRFS_RAID_RAID1) { 9723 dev_min = 2; 9724 } else if (index == BTRFS_RAID_DUP) { 9725 /* Multiply by 2 */ 9726 min_free <<= 1; 9727 } else if (index == BTRFS_RAID_RAID0) { 9728 dev_min = fs_devices->rw_devices; 9729 min_free = div64_u64(min_free, dev_min); 9730 } 9731 9732 /* We need to do this so that we can look at pending chunks */ 9733 trans = btrfs_join_transaction(root); 9734 if (IS_ERR(trans)) { 9735 ret = PTR_ERR(trans); 9736 goto out; 9737 } 9738 9739 mutex_lock(&fs_info->chunk_mutex); 9740 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9741 u64 dev_offset; 9742 9743 /* 9744 * check to make sure we can actually find a chunk with enough 9745 * space to fit our block group in. 9746 */ 9747 if (device->total_bytes > device->bytes_used + min_free && 9748 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9749 ret = find_free_dev_extent(trans, device, min_free, 9750 &dev_offset, NULL); 9751 if (!ret) 9752 dev_nr++; 9753 9754 if (dev_nr >= dev_min) 9755 break; 9756 9757 ret = -1; 9758 } 9759 } 9760 if (debug && ret == -1) 9761 btrfs_warn(fs_info, 9762 "no space to allocate a new chunk for block group %llu", 9763 block_group->key.objectid); 9764 mutex_unlock(&fs_info->chunk_mutex); 9765 btrfs_end_transaction(trans); 9766 out: 9767 btrfs_put_block_group(block_group); 9768 return ret; 9769 } 9770 9771 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9772 struct btrfs_path *path, 9773 struct btrfs_key *key) 9774 { 9775 struct btrfs_root *root = fs_info->extent_root; 9776 int ret = 0; 9777 struct btrfs_key found_key; 9778 struct extent_buffer *leaf; 9779 int slot; 9780 9781 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9782 if (ret < 0) 9783 goto out; 9784 9785 while (1) { 9786 slot = path->slots[0]; 9787 leaf = path->nodes[0]; 9788 if (slot >= btrfs_header_nritems(leaf)) { 9789 ret = btrfs_next_leaf(root, path); 9790 if (ret == 0) 9791 continue; 9792 if (ret < 0) 9793 goto out; 9794 break; 9795 } 9796 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9797 9798 if (found_key.objectid >= key->objectid && 9799 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9800 struct extent_map_tree *em_tree; 9801 struct extent_map *em; 9802 9803 em_tree = &root->fs_info->mapping_tree.map_tree; 9804 read_lock(&em_tree->lock); 9805 em = lookup_extent_mapping(em_tree, found_key.objectid, 9806 found_key.offset); 9807 read_unlock(&em_tree->lock); 9808 if (!em) { 9809 btrfs_err(fs_info, 9810 "logical %llu len %llu found bg but no related chunk", 9811 found_key.objectid, found_key.offset); 9812 ret = -ENOENT; 9813 } else { 9814 ret = 0; 9815 } 9816 free_extent_map(em); 9817 goto out; 9818 } 9819 path->slots[0]++; 9820 } 9821 out: 9822 return ret; 9823 } 9824 9825 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9826 { 9827 struct btrfs_block_group_cache *block_group; 9828 u64 last = 0; 9829 9830 while (1) { 9831 struct inode *inode; 9832 9833 block_group = btrfs_lookup_first_block_group(info, last); 9834 while (block_group) { 9835 spin_lock(&block_group->lock); 9836 if (block_group->iref) 9837 break; 9838 spin_unlock(&block_group->lock); 9839 block_group = next_block_group(info, block_group); 9840 } 9841 if (!block_group) { 9842 if (last == 0) 9843 break; 9844 last = 0; 9845 continue; 9846 } 9847 9848 inode = block_group->inode; 9849 block_group->iref = 0; 9850 block_group->inode = NULL; 9851 spin_unlock(&block_group->lock); 9852 ASSERT(block_group->io_ctl.inode == NULL); 9853 iput(inode); 9854 last = block_group->key.objectid + block_group->key.offset; 9855 btrfs_put_block_group(block_group); 9856 } 9857 } 9858 9859 /* 9860 * Must be called only after stopping all workers, since we could have block 9861 * group caching kthreads running, and therefore they could race with us if we 9862 * freed the block groups before stopping them. 9863 */ 9864 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9865 { 9866 struct btrfs_block_group_cache *block_group; 9867 struct btrfs_space_info *space_info; 9868 struct btrfs_caching_control *caching_ctl; 9869 struct rb_node *n; 9870 9871 down_write(&info->commit_root_sem); 9872 while (!list_empty(&info->caching_block_groups)) { 9873 caching_ctl = list_entry(info->caching_block_groups.next, 9874 struct btrfs_caching_control, list); 9875 list_del(&caching_ctl->list); 9876 put_caching_control(caching_ctl); 9877 } 9878 up_write(&info->commit_root_sem); 9879 9880 spin_lock(&info->unused_bgs_lock); 9881 while (!list_empty(&info->unused_bgs)) { 9882 block_group = list_first_entry(&info->unused_bgs, 9883 struct btrfs_block_group_cache, 9884 bg_list); 9885 list_del_init(&block_group->bg_list); 9886 btrfs_put_block_group(block_group); 9887 } 9888 spin_unlock(&info->unused_bgs_lock); 9889 9890 spin_lock(&info->block_group_cache_lock); 9891 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9892 block_group = rb_entry(n, struct btrfs_block_group_cache, 9893 cache_node); 9894 rb_erase(&block_group->cache_node, 9895 &info->block_group_cache_tree); 9896 RB_CLEAR_NODE(&block_group->cache_node); 9897 spin_unlock(&info->block_group_cache_lock); 9898 9899 down_write(&block_group->space_info->groups_sem); 9900 list_del(&block_group->list); 9901 up_write(&block_group->space_info->groups_sem); 9902 9903 /* 9904 * We haven't cached this block group, which means we could 9905 * possibly have excluded extents on this block group. 9906 */ 9907 if (block_group->cached == BTRFS_CACHE_NO || 9908 block_group->cached == BTRFS_CACHE_ERROR) 9909 free_excluded_extents(info, block_group); 9910 9911 btrfs_remove_free_space_cache(block_group); 9912 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9913 ASSERT(list_empty(&block_group->dirty_list)); 9914 ASSERT(list_empty(&block_group->io_list)); 9915 ASSERT(list_empty(&block_group->bg_list)); 9916 ASSERT(atomic_read(&block_group->count) == 1); 9917 btrfs_put_block_group(block_group); 9918 9919 spin_lock(&info->block_group_cache_lock); 9920 } 9921 spin_unlock(&info->block_group_cache_lock); 9922 9923 /* now that all the block groups are freed, go through and 9924 * free all the space_info structs. This is only called during 9925 * the final stages of unmount, and so we know nobody is 9926 * using them. We call synchronize_rcu() once before we start, 9927 * just to be on the safe side. 9928 */ 9929 synchronize_rcu(); 9930 9931 release_global_block_rsv(info); 9932 9933 while (!list_empty(&info->space_info)) { 9934 int i; 9935 9936 space_info = list_entry(info->space_info.next, 9937 struct btrfs_space_info, 9938 list); 9939 9940 /* 9941 * Do not hide this behind enospc_debug, this is actually 9942 * important and indicates a real bug if this happens. 9943 */ 9944 if (WARN_ON(space_info->bytes_pinned > 0 || 9945 space_info->bytes_reserved > 0 || 9946 space_info->bytes_may_use > 0)) 9947 dump_space_info(info, space_info, 0, 0); 9948 list_del(&space_info->list); 9949 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9950 struct kobject *kobj; 9951 kobj = space_info->block_group_kobjs[i]; 9952 space_info->block_group_kobjs[i] = NULL; 9953 if (kobj) { 9954 kobject_del(kobj); 9955 kobject_put(kobj); 9956 } 9957 } 9958 kobject_del(&space_info->kobj); 9959 kobject_put(&space_info->kobj); 9960 } 9961 return 0; 9962 } 9963 9964 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9965 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9966 { 9967 struct btrfs_space_info *space_info; 9968 struct raid_kobject *rkobj; 9969 LIST_HEAD(list); 9970 int index; 9971 int ret = 0; 9972 9973 spin_lock(&fs_info->pending_raid_kobjs_lock); 9974 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9975 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9976 9977 list_for_each_entry(rkobj, &list, list) { 9978 space_info = __find_space_info(fs_info, rkobj->flags); 9979 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9980 9981 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9982 "%s", get_raid_name(index)); 9983 if (ret) { 9984 kobject_put(&rkobj->kobj); 9985 break; 9986 } 9987 } 9988 if (ret) 9989 btrfs_warn(fs_info, 9990 "failed to add kobject for block cache, ignoring"); 9991 } 9992 9993 static void link_block_group(struct btrfs_block_group_cache *cache) 9994 { 9995 struct btrfs_space_info *space_info = cache->space_info; 9996 struct btrfs_fs_info *fs_info = cache->fs_info; 9997 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9998 bool first = false; 9999 10000 down_write(&space_info->groups_sem); 10001 if (list_empty(&space_info->block_groups[index])) 10002 first = true; 10003 list_add_tail(&cache->list, &space_info->block_groups[index]); 10004 up_write(&space_info->groups_sem); 10005 10006 if (first) { 10007 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 10008 if (!rkobj) { 10009 btrfs_warn(cache->fs_info, 10010 "couldn't alloc memory for raid level kobject"); 10011 return; 10012 } 10013 rkobj->flags = cache->flags; 10014 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10015 10016 spin_lock(&fs_info->pending_raid_kobjs_lock); 10017 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 10018 spin_unlock(&fs_info->pending_raid_kobjs_lock); 10019 space_info->block_group_kobjs[index] = &rkobj->kobj; 10020 } 10021 } 10022 10023 static struct btrfs_block_group_cache * 10024 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 10025 u64 start, u64 size) 10026 { 10027 struct btrfs_block_group_cache *cache; 10028 10029 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10030 if (!cache) 10031 return NULL; 10032 10033 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10034 GFP_NOFS); 10035 if (!cache->free_space_ctl) { 10036 kfree(cache); 10037 return NULL; 10038 } 10039 10040 cache->key.objectid = start; 10041 cache->key.offset = size; 10042 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10043 10044 cache->fs_info = fs_info; 10045 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 10046 set_free_space_tree_thresholds(cache); 10047 10048 atomic_set(&cache->count, 1); 10049 spin_lock_init(&cache->lock); 10050 init_rwsem(&cache->data_rwsem); 10051 INIT_LIST_HEAD(&cache->list); 10052 INIT_LIST_HEAD(&cache->cluster_list); 10053 INIT_LIST_HEAD(&cache->bg_list); 10054 INIT_LIST_HEAD(&cache->ro_list); 10055 INIT_LIST_HEAD(&cache->dirty_list); 10056 INIT_LIST_HEAD(&cache->io_list); 10057 btrfs_init_free_space_ctl(cache); 10058 atomic_set(&cache->trimming, 0); 10059 mutex_init(&cache->free_space_lock); 10060 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10061 10062 return cache; 10063 } 10064 10065 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10066 { 10067 struct btrfs_path *path; 10068 int ret; 10069 struct btrfs_block_group_cache *cache; 10070 struct btrfs_space_info *space_info; 10071 struct btrfs_key key; 10072 struct btrfs_key found_key; 10073 struct extent_buffer *leaf; 10074 int need_clear = 0; 10075 u64 cache_gen; 10076 u64 feature; 10077 int mixed; 10078 10079 feature = btrfs_super_incompat_flags(info->super_copy); 10080 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10081 10082 key.objectid = 0; 10083 key.offset = 0; 10084 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10085 path = btrfs_alloc_path(); 10086 if (!path) 10087 return -ENOMEM; 10088 path->reada = READA_FORWARD; 10089 10090 cache_gen = btrfs_super_cache_generation(info->super_copy); 10091 if (btrfs_test_opt(info, SPACE_CACHE) && 10092 btrfs_super_generation(info->super_copy) != cache_gen) 10093 need_clear = 1; 10094 if (btrfs_test_opt(info, CLEAR_CACHE)) 10095 need_clear = 1; 10096 10097 while (1) { 10098 ret = find_first_block_group(info, path, &key); 10099 if (ret > 0) 10100 break; 10101 if (ret != 0) 10102 goto error; 10103 10104 leaf = path->nodes[0]; 10105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10106 10107 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10108 found_key.offset); 10109 if (!cache) { 10110 ret = -ENOMEM; 10111 goto error; 10112 } 10113 10114 if (need_clear) { 10115 /* 10116 * When we mount with old space cache, we need to 10117 * set BTRFS_DC_CLEAR and set dirty flag. 10118 * 10119 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10120 * truncate the old free space cache inode and 10121 * setup a new one. 10122 * b) Setting 'dirty flag' makes sure that we flush 10123 * the new space cache info onto disk. 10124 */ 10125 if (btrfs_test_opt(info, SPACE_CACHE)) 10126 cache->disk_cache_state = BTRFS_DC_CLEAR; 10127 } 10128 10129 read_extent_buffer(leaf, &cache->item, 10130 btrfs_item_ptr_offset(leaf, path->slots[0]), 10131 sizeof(cache->item)); 10132 cache->flags = btrfs_block_group_flags(&cache->item); 10133 if (!mixed && 10134 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10135 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10136 btrfs_err(info, 10137 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10138 cache->key.objectid); 10139 ret = -EINVAL; 10140 goto error; 10141 } 10142 10143 key.objectid = found_key.objectid + found_key.offset; 10144 btrfs_release_path(path); 10145 10146 /* 10147 * We need to exclude the super stripes now so that the space 10148 * info has super bytes accounted for, otherwise we'll think 10149 * we have more space than we actually do. 10150 */ 10151 ret = exclude_super_stripes(info, cache); 10152 if (ret) { 10153 /* 10154 * We may have excluded something, so call this just in 10155 * case. 10156 */ 10157 free_excluded_extents(info, cache); 10158 btrfs_put_block_group(cache); 10159 goto error; 10160 } 10161 10162 /* 10163 * check for two cases, either we are full, and therefore 10164 * don't need to bother with the caching work since we won't 10165 * find any space, or we are empty, and we can just add all 10166 * the space in and be done with it. This saves us _alot_ of 10167 * time, particularly in the full case. 10168 */ 10169 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10170 cache->last_byte_to_unpin = (u64)-1; 10171 cache->cached = BTRFS_CACHE_FINISHED; 10172 free_excluded_extents(info, cache); 10173 } else if (btrfs_block_group_used(&cache->item) == 0) { 10174 cache->last_byte_to_unpin = (u64)-1; 10175 cache->cached = BTRFS_CACHE_FINISHED; 10176 add_new_free_space(cache, info, 10177 found_key.objectid, 10178 found_key.objectid + 10179 found_key.offset); 10180 free_excluded_extents(info, cache); 10181 } 10182 10183 ret = btrfs_add_block_group_cache(info, cache); 10184 if (ret) { 10185 btrfs_remove_free_space_cache(cache); 10186 btrfs_put_block_group(cache); 10187 goto error; 10188 } 10189 10190 trace_btrfs_add_block_group(info, cache, 0); 10191 update_space_info(info, cache->flags, found_key.offset, 10192 btrfs_block_group_used(&cache->item), 10193 cache->bytes_super, &space_info); 10194 10195 cache->space_info = space_info; 10196 10197 link_block_group(cache); 10198 10199 set_avail_alloc_bits(info, cache->flags); 10200 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10201 inc_block_group_ro(cache, 1); 10202 } else if (btrfs_block_group_used(&cache->item) == 0) { 10203 spin_lock(&info->unused_bgs_lock); 10204 /* Should always be true but just in case. */ 10205 if (list_empty(&cache->bg_list)) { 10206 btrfs_get_block_group(cache); 10207 list_add_tail(&cache->bg_list, 10208 &info->unused_bgs); 10209 } 10210 spin_unlock(&info->unused_bgs_lock); 10211 } 10212 } 10213 10214 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10215 if (!(get_alloc_profile(info, space_info->flags) & 10216 (BTRFS_BLOCK_GROUP_RAID10 | 10217 BTRFS_BLOCK_GROUP_RAID1 | 10218 BTRFS_BLOCK_GROUP_RAID5 | 10219 BTRFS_BLOCK_GROUP_RAID6 | 10220 BTRFS_BLOCK_GROUP_DUP))) 10221 continue; 10222 /* 10223 * avoid allocating from un-mirrored block group if there are 10224 * mirrored block groups. 10225 */ 10226 list_for_each_entry(cache, 10227 &space_info->block_groups[BTRFS_RAID_RAID0], 10228 list) 10229 inc_block_group_ro(cache, 1); 10230 list_for_each_entry(cache, 10231 &space_info->block_groups[BTRFS_RAID_SINGLE], 10232 list) 10233 inc_block_group_ro(cache, 1); 10234 } 10235 10236 btrfs_add_raid_kobjects(info); 10237 init_global_block_rsv(info); 10238 ret = 0; 10239 error: 10240 btrfs_free_path(path); 10241 return ret; 10242 } 10243 10244 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10245 { 10246 struct btrfs_fs_info *fs_info = trans->fs_info; 10247 struct btrfs_block_group_cache *block_group, *tmp; 10248 struct btrfs_root *extent_root = fs_info->extent_root; 10249 struct btrfs_block_group_item item; 10250 struct btrfs_key key; 10251 int ret = 0; 10252 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10253 10254 trans->can_flush_pending_bgs = false; 10255 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10256 if (ret) 10257 goto next; 10258 10259 spin_lock(&block_group->lock); 10260 memcpy(&item, &block_group->item, sizeof(item)); 10261 memcpy(&key, &block_group->key, sizeof(key)); 10262 spin_unlock(&block_group->lock); 10263 10264 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10265 sizeof(item)); 10266 if (ret) 10267 btrfs_abort_transaction(trans, ret); 10268 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10269 key.offset); 10270 if (ret) 10271 btrfs_abort_transaction(trans, ret); 10272 add_block_group_free_space(trans, fs_info, block_group); 10273 /* already aborted the transaction if it failed. */ 10274 next: 10275 list_del_init(&block_group->bg_list); 10276 } 10277 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10278 } 10279 10280 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10281 struct btrfs_fs_info *fs_info, u64 bytes_used, 10282 u64 type, u64 chunk_offset, u64 size) 10283 { 10284 struct btrfs_block_group_cache *cache; 10285 int ret; 10286 10287 btrfs_set_log_full_commit(fs_info, trans); 10288 10289 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10290 if (!cache) 10291 return -ENOMEM; 10292 10293 btrfs_set_block_group_used(&cache->item, bytes_used); 10294 btrfs_set_block_group_chunk_objectid(&cache->item, 10295 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10296 btrfs_set_block_group_flags(&cache->item, type); 10297 10298 cache->flags = type; 10299 cache->last_byte_to_unpin = (u64)-1; 10300 cache->cached = BTRFS_CACHE_FINISHED; 10301 cache->needs_free_space = 1; 10302 ret = exclude_super_stripes(fs_info, cache); 10303 if (ret) { 10304 /* 10305 * We may have excluded something, so call this just in 10306 * case. 10307 */ 10308 free_excluded_extents(fs_info, cache); 10309 btrfs_put_block_group(cache); 10310 return ret; 10311 } 10312 10313 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10314 10315 free_excluded_extents(fs_info, cache); 10316 10317 #ifdef CONFIG_BTRFS_DEBUG 10318 if (btrfs_should_fragment_free_space(cache)) { 10319 u64 new_bytes_used = size - bytes_used; 10320 10321 bytes_used += new_bytes_used >> 1; 10322 fragment_free_space(cache); 10323 } 10324 #endif 10325 /* 10326 * Ensure the corresponding space_info object is created and 10327 * assigned to our block group. We want our bg to be added to the rbtree 10328 * with its ->space_info set. 10329 */ 10330 cache->space_info = __find_space_info(fs_info, cache->flags); 10331 ASSERT(cache->space_info); 10332 10333 ret = btrfs_add_block_group_cache(fs_info, cache); 10334 if (ret) { 10335 btrfs_remove_free_space_cache(cache); 10336 btrfs_put_block_group(cache); 10337 return ret; 10338 } 10339 10340 /* 10341 * Now that our block group has its ->space_info set and is inserted in 10342 * the rbtree, update the space info's counters. 10343 */ 10344 trace_btrfs_add_block_group(fs_info, cache, 1); 10345 update_space_info(fs_info, cache->flags, size, bytes_used, 10346 cache->bytes_super, &cache->space_info); 10347 update_global_block_rsv(fs_info); 10348 10349 link_block_group(cache); 10350 10351 list_add_tail(&cache->bg_list, &trans->new_bgs); 10352 10353 set_avail_alloc_bits(fs_info, type); 10354 return 0; 10355 } 10356 10357 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10358 { 10359 u64 extra_flags = chunk_to_extended(flags) & 10360 BTRFS_EXTENDED_PROFILE_MASK; 10361 10362 write_seqlock(&fs_info->profiles_lock); 10363 if (flags & BTRFS_BLOCK_GROUP_DATA) 10364 fs_info->avail_data_alloc_bits &= ~extra_flags; 10365 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10366 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10367 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10368 fs_info->avail_system_alloc_bits &= ~extra_flags; 10369 write_sequnlock(&fs_info->profiles_lock); 10370 } 10371 10372 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10373 struct btrfs_fs_info *fs_info, u64 group_start, 10374 struct extent_map *em) 10375 { 10376 struct btrfs_root *root = fs_info->extent_root; 10377 struct btrfs_path *path; 10378 struct btrfs_block_group_cache *block_group; 10379 struct btrfs_free_cluster *cluster; 10380 struct btrfs_root *tree_root = fs_info->tree_root; 10381 struct btrfs_key key; 10382 struct inode *inode; 10383 struct kobject *kobj = NULL; 10384 int ret; 10385 int index; 10386 int factor; 10387 struct btrfs_caching_control *caching_ctl = NULL; 10388 bool remove_em; 10389 10390 block_group = btrfs_lookup_block_group(fs_info, group_start); 10391 BUG_ON(!block_group); 10392 BUG_ON(!block_group->ro); 10393 10394 /* 10395 * Free the reserved super bytes from this block group before 10396 * remove it. 10397 */ 10398 free_excluded_extents(fs_info, block_group); 10399 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10400 block_group->key.offset); 10401 10402 memcpy(&key, &block_group->key, sizeof(key)); 10403 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10404 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10405 BTRFS_BLOCK_GROUP_RAID1 | 10406 BTRFS_BLOCK_GROUP_RAID10)) 10407 factor = 2; 10408 else 10409 factor = 1; 10410 10411 /* make sure this block group isn't part of an allocation cluster */ 10412 cluster = &fs_info->data_alloc_cluster; 10413 spin_lock(&cluster->refill_lock); 10414 btrfs_return_cluster_to_free_space(block_group, cluster); 10415 spin_unlock(&cluster->refill_lock); 10416 10417 /* 10418 * make sure this block group isn't part of a metadata 10419 * allocation cluster 10420 */ 10421 cluster = &fs_info->meta_alloc_cluster; 10422 spin_lock(&cluster->refill_lock); 10423 btrfs_return_cluster_to_free_space(block_group, cluster); 10424 spin_unlock(&cluster->refill_lock); 10425 10426 path = btrfs_alloc_path(); 10427 if (!path) { 10428 ret = -ENOMEM; 10429 goto out; 10430 } 10431 10432 /* 10433 * get the inode first so any iput calls done for the io_list 10434 * aren't the final iput (no unlinks allowed now) 10435 */ 10436 inode = lookup_free_space_inode(fs_info, block_group, path); 10437 10438 mutex_lock(&trans->transaction->cache_write_mutex); 10439 /* 10440 * make sure our free spache cache IO is done before remove the 10441 * free space inode 10442 */ 10443 spin_lock(&trans->transaction->dirty_bgs_lock); 10444 if (!list_empty(&block_group->io_list)) { 10445 list_del_init(&block_group->io_list); 10446 10447 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10448 10449 spin_unlock(&trans->transaction->dirty_bgs_lock); 10450 btrfs_wait_cache_io(trans, block_group, path); 10451 btrfs_put_block_group(block_group); 10452 spin_lock(&trans->transaction->dirty_bgs_lock); 10453 } 10454 10455 if (!list_empty(&block_group->dirty_list)) { 10456 list_del_init(&block_group->dirty_list); 10457 btrfs_put_block_group(block_group); 10458 } 10459 spin_unlock(&trans->transaction->dirty_bgs_lock); 10460 mutex_unlock(&trans->transaction->cache_write_mutex); 10461 10462 if (!IS_ERR(inode)) { 10463 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10464 if (ret) { 10465 btrfs_add_delayed_iput(inode); 10466 goto out; 10467 } 10468 clear_nlink(inode); 10469 /* One for the block groups ref */ 10470 spin_lock(&block_group->lock); 10471 if (block_group->iref) { 10472 block_group->iref = 0; 10473 block_group->inode = NULL; 10474 spin_unlock(&block_group->lock); 10475 iput(inode); 10476 } else { 10477 spin_unlock(&block_group->lock); 10478 } 10479 /* One for our lookup ref */ 10480 btrfs_add_delayed_iput(inode); 10481 } 10482 10483 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10484 key.offset = block_group->key.objectid; 10485 key.type = 0; 10486 10487 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10488 if (ret < 0) 10489 goto out; 10490 if (ret > 0) 10491 btrfs_release_path(path); 10492 if (ret == 0) { 10493 ret = btrfs_del_item(trans, tree_root, path); 10494 if (ret) 10495 goto out; 10496 btrfs_release_path(path); 10497 } 10498 10499 spin_lock(&fs_info->block_group_cache_lock); 10500 rb_erase(&block_group->cache_node, 10501 &fs_info->block_group_cache_tree); 10502 RB_CLEAR_NODE(&block_group->cache_node); 10503 10504 if (fs_info->first_logical_byte == block_group->key.objectid) 10505 fs_info->first_logical_byte = (u64)-1; 10506 spin_unlock(&fs_info->block_group_cache_lock); 10507 10508 down_write(&block_group->space_info->groups_sem); 10509 /* 10510 * we must use list_del_init so people can check to see if they 10511 * are still on the list after taking the semaphore 10512 */ 10513 list_del_init(&block_group->list); 10514 if (list_empty(&block_group->space_info->block_groups[index])) { 10515 kobj = block_group->space_info->block_group_kobjs[index]; 10516 block_group->space_info->block_group_kobjs[index] = NULL; 10517 clear_avail_alloc_bits(fs_info, block_group->flags); 10518 } 10519 up_write(&block_group->space_info->groups_sem); 10520 if (kobj) { 10521 kobject_del(kobj); 10522 kobject_put(kobj); 10523 } 10524 10525 if (block_group->has_caching_ctl) 10526 caching_ctl = get_caching_control(block_group); 10527 if (block_group->cached == BTRFS_CACHE_STARTED) 10528 wait_block_group_cache_done(block_group); 10529 if (block_group->has_caching_ctl) { 10530 down_write(&fs_info->commit_root_sem); 10531 if (!caching_ctl) { 10532 struct btrfs_caching_control *ctl; 10533 10534 list_for_each_entry(ctl, 10535 &fs_info->caching_block_groups, list) 10536 if (ctl->block_group == block_group) { 10537 caching_ctl = ctl; 10538 refcount_inc(&caching_ctl->count); 10539 break; 10540 } 10541 } 10542 if (caching_ctl) 10543 list_del_init(&caching_ctl->list); 10544 up_write(&fs_info->commit_root_sem); 10545 if (caching_ctl) { 10546 /* Once for the caching bgs list and once for us. */ 10547 put_caching_control(caching_ctl); 10548 put_caching_control(caching_ctl); 10549 } 10550 } 10551 10552 spin_lock(&trans->transaction->dirty_bgs_lock); 10553 if (!list_empty(&block_group->dirty_list)) { 10554 WARN_ON(1); 10555 } 10556 if (!list_empty(&block_group->io_list)) { 10557 WARN_ON(1); 10558 } 10559 spin_unlock(&trans->transaction->dirty_bgs_lock); 10560 btrfs_remove_free_space_cache(block_group); 10561 10562 spin_lock(&block_group->space_info->lock); 10563 list_del_init(&block_group->ro_list); 10564 10565 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10566 WARN_ON(block_group->space_info->total_bytes 10567 < block_group->key.offset); 10568 WARN_ON(block_group->space_info->bytes_readonly 10569 < block_group->key.offset); 10570 WARN_ON(block_group->space_info->disk_total 10571 < block_group->key.offset * factor); 10572 } 10573 block_group->space_info->total_bytes -= block_group->key.offset; 10574 block_group->space_info->bytes_readonly -= block_group->key.offset; 10575 block_group->space_info->disk_total -= block_group->key.offset * factor; 10576 10577 spin_unlock(&block_group->space_info->lock); 10578 10579 memcpy(&key, &block_group->key, sizeof(key)); 10580 10581 mutex_lock(&fs_info->chunk_mutex); 10582 if (!list_empty(&em->list)) { 10583 /* We're in the transaction->pending_chunks list. */ 10584 free_extent_map(em); 10585 } 10586 spin_lock(&block_group->lock); 10587 block_group->removed = 1; 10588 /* 10589 * At this point trimming can't start on this block group, because we 10590 * removed the block group from the tree fs_info->block_group_cache_tree 10591 * so no one can't find it anymore and even if someone already got this 10592 * block group before we removed it from the rbtree, they have already 10593 * incremented block_group->trimming - if they didn't, they won't find 10594 * any free space entries because we already removed them all when we 10595 * called btrfs_remove_free_space_cache(). 10596 * 10597 * And we must not remove the extent map from the fs_info->mapping_tree 10598 * to prevent the same logical address range and physical device space 10599 * ranges from being reused for a new block group. This is because our 10600 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10601 * completely transactionless, so while it is trimming a range the 10602 * currently running transaction might finish and a new one start, 10603 * allowing for new block groups to be created that can reuse the same 10604 * physical device locations unless we take this special care. 10605 * 10606 * There may also be an implicit trim operation if the file system 10607 * is mounted with -odiscard. The same protections must remain 10608 * in place until the extents have been discarded completely when 10609 * the transaction commit has completed. 10610 */ 10611 remove_em = (atomic_read(&block_group->trimming) == 0); 10612 /* 10613 * Make sure a trimmer task always sees the em in the pinned_chunks list 10614 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10615 * before checking block_group->removed). 10616 */ 10617 if (!remove_em) { 10618 /* 10619 * Our em might be in trans->transaction->pending_chunks which 10620 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10621 * and so is the fs_info->pinned_chunks list. 10622 * 10623 * So at this point we must be holding the chunk_mutex to avoid 10624 * any races with chunk allocation (more specifically at 10625 * volumes.c:contains_pending_extent()), to ensure it always 10626 * sees the em, either in the pending_chunks list or in the 10627 * pinned_chunks list. 10628 */ 10629 list_move_tail(&em->list, &fs_info->pinned_chunks); 10630 } 10631 spin_unlock(&block_group->lock); 10632 10633 if (remove_em) { 10634 struct extent_map_tree *em_tree; 10635 10636 em_tree = &fs_info->mapping_tree.map_tree; 10637 write_lock(&em_tree->lock); 10638 /* 10639 * The em might be in the pending_chunks list, so make sure the 10640 * chunk mutex is locked, since remove_extent_mapping() will 10641 * delete us from that list. 10642 */ 10643 remove_extent_mapping(em_tree, em); 10644 write_unlock(&em_tree->lock); 10645 /* once for the tree */ 10646 free_extent_map(em); 10647 } 10648 10649 mutex_unlock(&fs_info->chunk_mutex); 10650 10651 ret = remove_block_group_free_space(trans, fs_info, block_group); 10652 if (ret) 10653 goto out; 10654 10655 btrfs_put_block_group(block_group); 10656 btrfs_put_block_group(block_group); 10657 10658 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10659 if (ret > 0) 10660 ret = -EIO; 10661 if (ret < 0) 10662 goto out; 10663 10664 ret = btrfs_del_item(trans, root, path); 10665 out: 10666 btrfs_free_path(path); 10667 return ret; 10668 } 10669 10670 struct btrfs_trans_handle * 10671 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10672 const u64 chunk_offset) 10673 { 10674 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10675 struct extent_map *em; 10676 struct map_lookup *map; 10677 unsigned int num_items; 10678 10679 read_lock(&em_tree->lock); 10680 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10681 read_unlock(&em_tree->lock); 10682 ASSERT(em && em->start == chunk_offset); 10683 10684 /* 10685 * We need to reserve 3 + N units from the metadata space info in order 10686 * to remove a block group (done at btrfs_remove_chunk() and at 10687 * btrfs_remove_block_group()), which are used for: 10688 * 10689 * 1 unit for adding the free space inode's orphan (located in the tree 10690 * of tree roots). 10691 * 1 unit for deleting the block group item (located in the extent 10692 * tree). 10693 * 1 unit for deleting the free space item (located in tree of tree 10694 * roots). 10695 * N units for deleting N device extent items corresponding to each 10696 * stripe (located in the device tree). 10697 * 10698 * In order to remove a block group we also need to reserve units in the 10699 * system space info in order to update the chunk tree (update one or 10700 * more device items and remove one chunk item), but this is done at 10701 * btrfs_remove_chunk() through a call to check_system_chunk(). 10702 */ 10703 map = em->map_lookup; 10704 num_items = 3 + map->num_stripes; 10705 free_extent_map(em); 10706 10707 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10708 num_items, 1); 10709 } 10710 10711 /* 10712 * Process the unused_bgs list and remove any that don't have any allocated 10713 * space inside of them. 10714 */ 10715 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10716 { 10717 struct btrfs_block_group_cache *block_group; 10718 struct btrfs_space_info *space_info; 10719 struct btrfs_trans_handle *trans; 10720 int ret = 0; 10721 10722 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10723 return; 10724 10725 spin_lock(&fs_info->unused_bgs_lock); 10726 while (!list_empty(&fs_info->unused_bgs)) { 10727 u64 start, end; 10728 int trimming; 10729 10730 block_group = list_first_entry(&fs_info->unused_bgs, 10731 struct btrfs_block_group_cache, 10732 bg_list); 10733 list_del_init(&block_group->bg_list); 10734 10735 space_info = block_group->space_info; 10736 10737 if (ret || btrfs_mixed_space_info(space_info)) { 10738 btrfs_put_block_group(block_group); 10739 continue; 10740 } 10741 spin_unlock(&fs_info->unused_bgs_lock); 10742 10743 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10744 10745 /* Don't want to race with allocators so take the groups_sem */ 10746 down_write(&space_info->groups_sem); 10747 spin_lock(&block_group->lock); 10748 if (block_group->reserved || 10749 btrfs_block_group_used(&block_group->item) || 10750 block_group->ro || 10751 list_is_singular(&block_group->list)) { 10752 /* 10753 * We want to bail if we made new allocations or have 10754 * outstanding allocations in this block group. We do 10755 * the ro check in case balance is currently acting on 10756 * this block group. 10757 */ 10758 spin_unlock(&block_group->lock); 10759 up_write(&space_info->groups_sem); 10760 goto next; 10761 } 10762 spin_unlock(&block_group->lock); 10763 10764 /* We don't want to force the issue, only flip if it's ok. */ 10765 ret = inc_block_group_ro(block_group, 0); 10766 up_write(&space_info->groups_sem); 10767 if (ret < 0) { 10768 ret = 0; 10769 goto next; 10770 } 10771 10772 /* 10773 * Want to do this before we do anything else so we can recover 10774 * properly if we fail to join the transaction. 10775 */ 10776 trans = btrfs_start_trans_remove_block_group(fs_info, 10777 block_group->key.objectid); 10778 if (IS_ERR(trans)) { 10779 btrfs_dec_block_group_ro(block_group); 10780 ret = PTR_ERR(trans); 10781 goto next; 10782 } 10783 10784 /* 10785 * We could have pending pinned extents for this block group, 10786 * just delete them, we don't care about them anymore. 10787 */ 10788 start = block_group->key.objectid; 10789 end = start + block_group->key.offset - 1; 10790 /* 10791 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10792 * btrfs_finish_extent_commit(). If we are at transaction N, 10793 * another task might be running finish_extent_commit() for the 10794 * previous transaction N - 1, and have seen a range belonging 10795 * to the block group in freed_extents[] before we were able to 10796 * clear the whole block group range from freed_extents[]. This 10797 * means that task can lookup for the block group after we 10798 * unpinned it from freed_extents[] and removed it, leading to 10799 * a BUG_ON() at btrfs_unpin_extent_range(). 10800 */ 10801 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10802 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10803 EXTENT_DIRTY); 10804 if (ret) { 10805 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10806 btrfs_dec_block_group_ro(block_group); 10807 goto end_trans; 10808 } 10809 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10810 EXTENT_DIRTY); 10811 if (ret) { 10812 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10813 btrfs_dec_block_group_ro(block_group); 10814 goto end_trans; 10815 } 10816 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10817 10818 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10819 spin_lock(&space_info->lock); 10820 spin_lock(&block_group->lock); 10821 10822 space_info->bytes_pinned -= block_group->pinned; 10823 space_info->bytes_readonly += block_group->pinned; 10824 percpu_counter_add(&space_info->total_bytes_pinned, 10825 -block_group->pinned); 10826 block_group->pinned = 0; 10827 10828 spin_unlock(&block_group->lock); 10829 spin_unlock(&space_info->lock); 10830 10831 /* DISCARD can flip during remount */ 10832 trimming = btrfs_test_opt(fs_info, DISCARD); 10833 10834 /* Implicit trim during transaction commit. */ 10835 if (trimming) 10836 btrfs_get_block_group_trimming(block_group); 10837 10838 /* 10839 * Btrfs_remove_chunk will abort the transaction if things go 10840 * horribly wrong. 10841 */ 10842 ret = btrfs_remove_chunk(trans, fs_info, 10843 block_group->key.objectid); 10844 10845 if (ret) { 10846 if (trimming) 10847 btrfs_put_block_group_trimming(block_group); 10848 goto end_trans; 10849 } 10850 10851 /* 10852 * If we're not mounted with -odiscard, we can just forget 10853 * about this block group. Otherwise we'll need to wait 10854 * until transaction commit to do the actual discard. 10855 */ 10856 if (trimming) { 10857 spin_lock(&fs_info->unused_bgs_lock); 10858 /* 10859 * A concurrent scrub might have added us to the list 10860 * fs_info->unused_bgs, so use a list_move operation 10861 * to add the block group to the deleted_bgs list. 10862 */ 10863 list_move(&block_group->bg_list, 10864 &trans->transaction->deleted_bgs); 10865 spin_unlock(&fs_info->unused_bgs_lock); 10866 btrfs_get_block_group(block_group); 10867 } 10868 end_trans: 10869 btrfs_end_transaction(trans); 10870 next: 10871 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10872 btrfs_put_block_group(block_group); 10873 spin_lock(&fs_info->unused_bgs_lock); 10874 } 10875 spin_unlock(&fs_info->unused_bgs_lock); 10876 } 10877 10878 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10879 { 10880 struct btrfs_space_info *space_info; 10881 struct btrfs_super_block *disk_super; 10882 u64 features; 10883 u64 flags; 10884 int mixed = 0; 10885 int ret; 10886 10887 disk_super = fs_info->super_copy; 10888 if (!btrfs_super_root(disk_super)) 10889 return -EINVAL; 10890 10891 features = btrfs_super_incompat_flags(disk_super); 10892 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10893 mixed = 1; 10894 10895 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10896 ret = create_space_info(fs_info, flags, &space_info); 10897 if (ret) 10898 goto out; 10899 10900 if (mixed) { 10901 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10902 ret = create_space_info(fs_info, flags, &space_info); 10903 } else { 10904 flags = BTRFS_BLOCK_GROUP_METADATA; 10905 ret = create_space_info(fs_info, flags, &space_info); 10906 if (ret) 10907 goto out; 10908 10909 flags = BTRFS_BLOCK_GROUP_DATA; 10910 ret = create_space_info(fs_info, flags, &space_info); 10911 } 10912 out: 10913 return ret; 10914 } 10915 10916 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10917 u64 start, u64 end) 10918 { 10919 return unpin_extent_range(fs_info, start, end, false); 10920 } 10921 10922 /* 10923 * It used to be that old block groups would be left around forever. 10924 * Iterating over them would be enough to trim unused space. Since we 10925 * now automatically remove them, we also need to iterate over unallocated 10926 * space. 10927 * 10928 * We don't want a transaction for this since the discard may take a 10929 * substantial amount of time. We don't require that a transaction be 10930 * running, but we do need to take a running transaction into account 10931 * to ensure that we're not discarding chunks that were released in 10932 * the current transaction. 10933 * 10934 * Holding the chunks lock will prevent other threads from allocating 10935 * or releasing chunks, but it won't prevent a running transaction 10936 * from committing and releasing the memory that the pending chunks 10937 * list head uses. For that, we need to take a reference to the 10938 * transaction. 10939 */ 10940 static int btrfs_trim_free_extents(struct btrfs_device *device, 10941 u64 minlen, u64 *trimmed) 10942 { 10943 u64 start = 0, len = 0; 10944 int ret; 10945 10946 *trimmed = 0; 10947 10948 /* Not writeable = nothing to do. */ 10949 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10950 return 0; 10951 10952 /* No free space = nothing to do. */ 10953 if (device->total_bytes <= device->bytes_used) 10954 return 0; 10955 10956 ret = 0; 10957 10958 while (1) { 10959 struct btrfs_fs_info *fs_info = device->fs_info; 10960 struct btrfs_transaction *trans; 10961 u64 bytes; 10962 10963 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10964 if (ret) 10965 return ret; 10966 10967 down_read(&fs_info->commit_root_sem); 10968 10969 spin_lock(&fs_info->trans_lock); 10970 trans = fs_info->running_transaction; 10971 if (trans) 10972 refcount_inc(&trans->use_count); 10973 spin_unlock(&fs_info->trans_lock); 10974 10975 ret = find_free_dev_extent_start(trans, device, minlen, start, 10976 &start, &len); 10977 if (trans) 10978 btrfs_put_transaction(trans); 10979 10980 if (ret) { 10981 up_read(&fs_info->commit_root_sem); 10982 mutex_unlock(&fs_info->chunk_mutex); 10983 if (ret == -ENOSPC) 10984 ret = 0; 10985 break; 10986 } 10987 10988 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10989 up_read(&fs_info->commit_root_sem); 10990 mutex_unlock(&fs_info->chunk_mutex); 10991 10992 if (ret) 10993 break; 10994 10995 start += len; 10996 *trimmed += bytes; 10997 10998 if (fatal_signal_pending(current)) { 10999 ret = -ERESTARTSYS; 11000 break; 11001 } 11002 11003 cond_resched(); 11004 } 11005 11006 return ret; 11007 } 11008 11009 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 11010 { 11011 struct btrfs_block_group_cache *cache = NULL; 11012 struct btrfs_device *device; 11013 struct list_head *devices; 11014 u64 group_trimmed; 11015 u64 start; 11016 u64 end; 11017 u64 trimmed = 0; 11018 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11019 int ret = 0; 11020 11021 /* 11022 * try to trim all FS space, our block group may start from non-zero. 11023 */ 11024 if (range->len == total_bytes) 11025 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11026 else 11027 cache = btrfs_lookup_block_group(fs_info, range->start); 11028 11029 while (cache) { 11030 if (cache->key.objectid >= (range->start + range->len)) { 11031 btrfs_put_block_group(cache); 11032 break; 11033 } 11034 11035 start = max(range->start, cache->key.objectid); 11036 end = min(range->start + range->len, 11037 cache->key.objectid + cache->key.offset); 11038 11039 if (end - start >= range->minlen) { 11040 if (!block_group_cache_done(cache)) { 11041 ret = cache_block_group(cache, 0); 11042 if (ret) { 11043 btrfs_put_block_group(cache); 11044 break; 11045 } 11046 ret = wait_block_group_cache_done(cache); 11047 if (ret) { 11048 btrfs_put_block_group(cache); 11049 break; 11050 } 11051 } 11052 ret = btrfs_trim_block_group(cache, 11053 &group_trimmed, 11054 start, 11055 end, 11056 range->minlen); 11057 11058 trimmed += group_trimmed; 11059 if (ret) { 11060 btrfs_put_block_group(cache); 11061 break; 11062 } 11063 } 11064 11065 cache = next_block_group(fs_info, cache); 11066 } 11067 11068 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11069 devices = &fs_info->fs_devices->alloc_list; 11070 list_for_each_entry(device, devices, dev_alloc_list) { 11071 ret = btrfs_trim_free_extents(device, range->minlen, 11072 &group_trimmed); 11073 if (ret) 11074 break; 11075 11076 trimmed += group_trimmed; 11077 } 11078 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11079 11080 range->len = trimmed; 11081 return ret; 11082 } 11083 11084 /* 11085 * btrfs_{start,end}_write_no_snapshotting() are similar to 11086 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11087 * data into the page cache through nocow before the subvolume is snapshoted, 11088 * but flush the data into disk after the snapshot creation, or to prevent 11089 * operations while snapshotting is ongoing and that cause the snapshot to be 11090 * inconsistent (writes followed by expanding truncates for example). 11091 */ 11092 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11093 { 11094 percpu_counter_dec(&root->subv_writers->counter); 11095 /* 11096 * Make sure counter is updated before we wake up waiters. 11097 */ 11098 smp_mb(); 11099 if (waitqueue_active(&root->subv_writers->wait)) 11100 wake_up(&root->subv_writers->wait); 11101 } 11102 11103 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11104 { 11105 if (atomic_read(&root->will_be_snapshotted)) 11106 return 0; 11107 11108 percpu_counter_inc(&root->subv_writers->counter); 11109 /* 11110 * Make sure counter is updated before we check for snapshot creation. 11111 */ 11112 smp_mb(); 11113 if (atomic_read(&root->will_be_snapshotted)) { 11114 btrfs_end_write_no_snapshotting(root); 11115 return 0; 11116 } 11117 return 1; 11118 } 11119 11120 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11121 { 11122 while (true) { 11123 int ret; 11124 11125 ret = btrfs_start_write_no_snapshotting(root); 11126 if (ret) 11127 break; 11128 wait_var_event(&root->will_be_snapshotted, 11129 !atomic_read(&root->will_be_snapshotted)); 11130 } 11131 } 11132