xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op,
85 				int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (cache->cached != BTRFS_CACHE_STARTED) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	/* We're loading it the fast way, so we don't have a caching_ctl. */
324 	if (!cache->caching_ctl) {
325 		spin_unlock(&cache->lock);
326 		return NULL;
327 	}
328 
329 	ctl = cache->caching_ctl;
330 	atomic_inc(&ctl->count);
331 	spin_unlock(&cache->lock);
332 	return ctl;
333 }
334 
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 	if (atomic_dec_and_test(&ctl->count))
338 		kfree(ctl);
339 }
340 
341 /*
342  * this is only called by cache_block_group, since we could have freed extents
343  * we need to check the pinned_extents for any extents that can't be used yet
344  * since their free space will be released as soon as the transaction commits.
345  */
346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 			      struct btrfs_fs_info *info, u64 start, u64 end)
348 {
349 	u64 extent_start, extent_end, size, total_added = 0;
350 	int ret;
351 
352 	while (start < end) {
353 		ret = find_first_extent_bit(info->pinned_extents, start,
354 					    &extent_start, &extent_end,
355 					    EXTENT_DIRTY | EXTENT_UPTODATE,
356 					    NULL);
357 		if (ret)
358 			break;
359 
360 		if (extent_start <= start) {
361 			start = extent_end + 1;
362 		} else if (extent_start > start && extent_start < end) {
363 			size = extent_start - start;
364 			total_added += size;
365 			ret = btrfs_add_free_space(block_group, start,
366 						   size);
367 			BUG_ON(ret); /* -ENOMEM or logic error */
368 			start = extent_end + 1;
369 		} else {
370 			break;
371 		}
372 	}
373 
374 	if (start < end) {
375 		size = end - start;
376 		total_added += size;
377 		ret = btrfs_add_free_space(block_group, start, size);
378 		BUG_ON(ret); /* -ENOMEM or logic error */
379 	}
380 
381 	return total_added;
382 }
383 
384 static noinline void caching_thread(struct btrfs_work *work)
385 {
386 	struct btrfs_block_group_cache *block_group;
387 	struct btrfs_fs_info *fs_info;
388 	struct btrfs_caching_control *caching_ctl;
389 	struct btrfs_root *extent_root;
390 	struct btrfs_path *path;
391 	struct extent_buffer *leaf;
392 	struct btrfs_key key;
393 	u64 total_found = 0;
394 	u64 last = 0;
395 	u32 nritems;
396 	int ret = -ENOMEM;
397 
398 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 	block_group = caching_ctl->block_group;
400 	fs_info = block_group->fs_info;
401 	extent_root = fs_info->extent_root;
402 
403 	path = btrfs_alloc_path();
404 	if (!path)
405 		goto out;
406 
407 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
408 
409 	/*
410 	 * We don't want to deadlock with somebody trying to allocate a new
411 	 * extent for the extent root while also trying to search the extent
412 	 * root to add free space.  So we skip locking and search the commit
413 	 * root, since its read-only
414 	 */
415 	path->skip_locking = 1;
416 	path->search_commit_root = 1;
417 	path->reada = 1;
418 
419 	key.objectid = last;
420 	key.offset = 0;
421 	key.type = BTRFS_EXTENT_ITEM_KEY;
422 again:
423 	mutex_lock(&caching_ctl->mutex);
424 	/* need to make sure the commit_root doesn't disappear */
425 	down_read(&fs_info->commit_root_sem);
426 
427 next:
428 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 	if (ret < 0)
430 		goto err;
431 
432 	leaf = path->nodes[0];
433 	nritems = btrfs_header_nritems(leaf);
434 
435 	while (1) {
436 		if (btrfs_fs_closing(fs_info) > 1) {
437 			last = (u64)-1;
438 			break;
439 		}
440 
441 		if (path->slots[0] < nritems) {
442 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 		} else {
444 			ret = find_next_key(path, 0, &key);
445 			if (ret)
446 				break;
447 
448 			if (need_resched() ||
449 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
450 				caching_ctl->progress = last;
451 				btrfs_release_path(path);
452 				up_read(&fs_info->commit_root_sem);
453 				mutex_unlock(&caching_ctl->mutex);
454 				cond_resched();
455 				goto again;
456 			}
457 
458 			ret = btrfs_next_leaf(extent_root, path);
459 			if (ret < 0)
460 				goto err;
461 			if (ret)
462 				break;
463 			leaf = path->nodes[0];
464 			nritems = btrfs_header_nritems(leaf);
465 			continue;
466 		}
467 
468 		if (key.objectid < last) {
469 			key.objectid = last;
470 			key.offset = 0;
471 			key.type = BTRFS_EXTENT_ITEM_KEY;
472 
473 			caching_ctl->progress = last;
474 			btrfs_release_path(path);
475 			goto next;
476 		}
477 
478 		if (key.objectid < block_group->key.objectid) {
479 			path->slots[0]++;
480 			continue;
481 		}
482 
483 		if (key.objectid >= block_group->key.objectid +
484 		    block_group->key.offset)
485 			break;
486 
487 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 		    key.type == BTRFS_METADATA_ITEM_KEY) {
489 			total_found += add_new_free_space(block_group,
490 							  fs_info, last,
491 							  key.objectid);
492 			if (key.type == BTRFS_METADATA_ITEM_KEY)
493 				last = key.objectid +
494 					fs_info->tree_root->leafsize;
495 			else
496 				last = key.objectid + key.offset;
497 
498 			if (total_found > (1024 * 1024 * 2)) {
499 				total_found = 0;
500 				wake_up(&caching_ctl->wait);
501 			}
502 		}
503 		path->slots[0]++;
504 	}
505 	ret = 0;
506 
507 	total_found += add_new_free_space(block_group, fs_info, last,
508 					  block_group->key.objectid +
509 					  block_group->key.offset);
510 	caching_ctl->progress = (u64)-1;
511 
512 	spin_lock(&block_group->lock);
513 	block_group->caching_ctl = NULL;
514 	block_group->cached = BTRFS_CACHE_FINISHED;
515 	spin_unlock(&block_group->lock);
516 
517 err:
518 	btrfs_free_path(path);
519 	up_read(&fs_info->commit_root_sem);
520 
521 	free_excluded_extents(extent_root, block_group);
522 
523 	mutex_unlock(&caching_ctl->mutex);
524 out:
525 	if (ret) {
526 		spin_lock(&block_group->lock);
527 		block_group->caching_ctl = NULL;
528 		block_group->cached = BTRFS_CACHE_ERROR;
529 		spin_unlock(&block_group->lock);
530 	}
531 	wake_up(&caching_ctl->wait);
532 
533 	put_caching_control(caching_ctl);
534 	btrfs_put_block_group(block_group);
535 }
536 
537 static int cache_block_group(struct btrfs_block_group_cache *cache,
538 			     int load_cache_only)
539 {
540 	DEFINE_WAIT(wait);
541 	struct btrfs_fs_info *fs_info = cache->fs_info;
542 	struct btrfs_caching_control *caching_ctl;
543 	int ret = 0;
544 
545 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 	if (!caching_ctl)
547 		return -ENOMEM;
548 
549 	INIT_LIST_HEAD(&caching_ctl->list);
550 	mutex_init(&caching_ctl->mutex);
551 	init_waitqueue_head(&caching_ctl->wait);
552 	caching_ctl->block_group = cache;
553 	caching_ctl->progress = cache->key.objectid;
554 	atomic_set(&caching_ctl->count, 1);
555 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
556 
557 	spin_lock(&cache->lock);
558 	/*
559 	 * This should be a rare occasion, but this could happen I think in the
560 	 * case where one thread starts to load the space cache info, and then
561 	 * some other thread starts a transaction commit which tries to do an
562 	 * allocation while the other thread is still loading the space cache
563 	 * info.  The previous loop should have kept us from choosing this block
564 	 * group, but if we've moved to the state where we will wait on caching
565 	 * block groups we need to first check if we're doing a fast load here,
566 	 * so we can wait for it to finish, otherwise we could end up allocating
567 	 * from a block group who's cache gets evicted for one reason or
568 	 * another.
569 	 */
570 	while (cache->cached == BTRFS_CACHE_FAST) {
571 		struct btrfs_caching_control *ctl;
572 
573 		ctl = cache->caching_ctl;
574 		atomic_inc(&ctl->count);
575 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
576 		spin_unlock(&cache->lock);
577 
578 		schedule();
579 
580 		finish_wait(&ctl->wait, &wait);
581 		put_caching_control(ctl);
582 		spin_lock(&cache->lock);
583 	}
584 
585 	if (cache->cached != BTRFS_CACHE_NO) {
586 		spin_unlock(&cache->lock);
587 		kfree(caching_ctl);
588 		return 0;
589 	}
590 	WARN_ON(cache->caching_ctl);
591 	cache->caching_ctl = caching_ctl;
592 	cache->cached = BTRFS_CACHE_FAST;
593 	spin_unlock(&cache->lock);
594 
595 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
596 		ret = load_free_space_cache(fs_info, cache);
597 
598 		spin_lock(&cache->lock);
599 		if (ret == 1) {
600 			cache->caching_ctl = NULL;
601 			cache->cached = BTRFS_CACHE_FINISHED;
602 			cache->last_byte_to_unpin = (u64)-1;
603 		} else {
604 			if (load_cache_only) {
605 				cache->caching_ctl = NULL;
606 				cache->cached = BTRFS_CACHE_NO;
607 			} else {
608 				cache->cached = BTRFS_CACHE_STARTED;
609 			}
610 		}
611 		spin_unlock(&cache->lock);
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 		}
630 		spin_unlock(&cache->lock);
631 		wake_up(&caching_ctl->wait);
632 	}
633 
634 	if (load_cache_only) {
635 		put_caching_control(caching_ctl);
636 		return 0;
637 	}
638 
639 	down_write(&fs_info->commit_root_sem);
640 	atomic_inc(&caching_ctl->count);
641 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
642 	up_write(&fs_info->commit_root_sem);
643 
644 	btrfs_get_block_group(cache);
645 
646 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
647 
648 	return ret;
649 }
650 
651 /*
652  * return the block group that starts at or after bytenr
653  */
654 static struct btrfs_block_group_cache *
655 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
656 {
657 	struct btrfs_block_group_cache *cache;
658 
659 	cache = block_group_cache_tree_search(info, bytenr, 0);
660 
661 	return cache;
662 }
663 
664 /*
665  * return the block group that contains the given bytenr
666  */
667 struct btrfs_block_group_cache *btrfs_lookup_block_group(
668 						 struct btrfs_fs_info *info,
669 						 u64 bytenr)
670 {
671 	struct btrfs_block_group_cache *cache;
672 
673 	cache = block_group_cache_tree_search(info, bytenr, 1);
674 
675 	return cache;
676 }
677 
678 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
679 						  u64 flags)
680 {
681 	struct list_head *head = &info->space_info;
682 	struct btrfs_space_info *found;
683 
684 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
685 
686 	rcu_read_lock();
687 	list_for_each_entry_rcu(found, head, list) {
688 		if (found->flags & flags) {
689 			rcu_read_unlock();
690 			return found;
691 		}
692 	}
693 	rcu_read_unlock();
694 	return NULL;
695 }
696 
697 /*
698  * after adding space to the filesystem, we need to clear the full flags
699  * on all the space infos.
700  */
701 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
702 {
703 	struct list_head *head = &info->space_info;
704 	struct btrfs_space_info *found;
705 
706 	rcu_read_lock();
707 	list_for_each_entry_rcu(found, head, list)
708 		found->full = 0;
709 	rcu_read_unlock();
710 }
711 
712 /* simple helper to search for an existing extent at a given offset */
713 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
714 {
715 	int ret;
716 	struct btrfs_key key;
717 	struct btrfs_path *path;
718 
719 	path = btrfs_alloc_path();
720 	if (!path)
721 		return -ENOMEM;
722 
723 	key.objectid = start;
724 	key.offset = len;
725 	key.type = BTRFS_EXTENT_ITEM_KEY;
726 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
727 				0, 0);
728 	if (ret > 0) {
729 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
730 		if (key.objectid == start &&
731 		    key.type == BTRFS_METADATA_ITEM_KEY)
732 			ret = 0;
733 	}
734 	btrfs_free_path(path);
735 	return ret;
736 }
737 
738 /*
739  * helper function to lookup reference count and flags of a tree block.
740  *
741  * the head node for delayed ref is used to store the sum of all the
742  * reference count modifications queued up in the rbtree. the head
743  * node may also store the extent flags to set. This way you can check
744  * to see what the reference count and extent flags would be if all of
745  * the delayed refs are not processed.
746  */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 			     struct btrfs_root *root, u64 bytenr,
749 			     u64 offset, int metadata, u64 *refs, u64 *flags)
750 {
751 	struct btrfs_delayed_ref_head *head;
752 	struct btrfs_delayed_ref_root *delayed_refs;
753 	struct btrfs_path *path;
754 	struct btrfs_extent_item *ei;
755 	struct extent_buffer *leaf;
756 	struct btrfs_key key;
757 	u32 item_size;
758 	u64 num_refs;
759 	u64 extent_flags;
760 	int ret;
761 
762 	/*
763 	 * If we don't have skinny metadata, don't bother doing anything
764 	 * different
765 	 */
766 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
767 		offset = root->leafsize;
768 		metadata = 0;
769 	}
770 
771 	path = btrfs_alloc_path();
772 	if (!path)
773 		return -ENOMEM;
774 
775 	if (!trans) {
776 		path->skip_locking = 1;
777 		path->search_commit_root = 1;
778 	}
779 
780 search_again:
781 	key.objectid = bytenr;
782 	key.offset = offset;
783 	if (metadata)
784 		key.type = BTRFS_METADATA_ITEM_KEY;
785 	else
786 		key.type = BTRFS_EXTENT_ITEM_KEY;
787 
788 again:
789 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
790 				&key, path, 0, 0);
791 	if (ret < 0)
792 		goto out_free;
793 
794 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
795 		if (path->slots[0]) {
796 			path->slots[0]--;
797 			btrfs_item_key_to_cpu(path->nodes[0], &key,
798 					      path->slots[0]);
799 			if (key.objectid == bytenr &&
800 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
801 			    key.offset == root->leafsize)
802 				ret = 0;
803 		}
804 		if (ret) {
805 			key.objectid = bytenr;
806 			key.type = BTRFS_EXTENT_ITEM_KEY;
807 			key.offset = root->leafsize;
808 			btrfs_release_path(path);
809 			goto again;
810 		}
811 	}
812 
813 	if (ret == 0) {
814 		leaf = path->nodes[0];
815 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
816 		if (item_size >= sizeof(*ei)) {
817 			ei = btrfs_item_ptr(leaf, path->slots[0],
818 					    struct btrfs_extent_item);
819 			num_refs = btrfs_extent_refs(leaf, ei);
820 			extent_flags = btrfs_extent_flags(leaf, ei);
821 		} else {
822 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
823 			struct btrfs_extent_item_v0 *ei0;
824 			BUG_ON(item_size != sizeof(*ei0));
825 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
826 					     struct btrfs_extent_item_v0);
827 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
828 			/* FIXME: this isn't correct for data */
829 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
830 #else
831 			BUG();
832 #endif
833 		}
834 		BUG_ON(num_refs == 0);
835 	} else {
836 		num_refs = 0;
837 		extent_flags = 0;
838 		ret = 0;
839 	}
840 
841 	if (!trans)
842 		goto out;
843 
844 	delayed_refs = &trans->transaction->delayed_refs;
845 	spin_lock(&delayed_refs->lock);
846 	head = btrfs_find_delayed_ref_head(trans, bytenr);
847 	if (head) {
848 		if (!mutex_trylock(&head->mutex)) {
849 			atomic_inc(&head->node.refs);
850 			spin_unlock(&delayed_refs->lock);
851 
852 			btrfs_release_path(path);
853 
854 			/*
855 			 * Mutex was contended, block until it's released and try
856 			 * again
857 			 */
858 			mutex_lock(&head->mutex);
859 			mutex_unlock(&head->mutex);
860 			btrfs_put_delayed_ref(&head->node);
861 			goto search_again;
862 		}
863 		spin_lock(&head->lock);
864 		if (head->extent_op && head->extent_op->update_flags)
865 			extent_flags |= head->extent_op->flags_to_set;
866 		else
867 			BUG_ON(num_refs == 0);
868 
869 		num_refs += head->node.ref_mod;
870 		spin_unlock(&head->lock);
871 		mutex_unlock(&head->mutex);
872 	}
873 	spin_unlock(&delayed_refs->lock);
874 out:
875 	WARN_ON(num_refs == 0);
876 	if (refs)
877 		*refs = num_refs;
878 	if (flags)
879 		*flags = extent_flags;
880 out_free:
881 	btrfs_free_path(path);
882 	return ret;
883 }
884 
885 /*
886  * Back reference rules.  Back refs have three main goals:
887  *
888  * 1) differentiate between all holders of references to an extent so that
889  *    when a reference is dropped we can make sure it was a valid reference
890  *    before freeing the extent.
891  *
892  * 2) Provide enough information to quickly find the holders of an extent
893  *    if we notice a given block is corrupted or bad.
894  *
895  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
896  *    maintenance.  This is actually the same as #2, but with a slightly
897  *    different use case.
898  *
899  * There are two kinds of back refs. The implicit back refs is optimized
900  * for pointers in non-shared tree blocks. For a given pointer in a block,
901  * back refs of this kind provide information about the block's owner tree
902  * and the pointer's key. These information allow us to find the block by
903  * b-tree searching. The full back refs is for pointers in tree blocks not
904  * referenced by their owner trees. The location of tree block is recorded
905  * in the back refs. Actually the full back refs is generic, and can be
906  * used in all cases the implicit back refs is used. The major shortcoming
907  * of the full back refs is its overhead. Every time a tree block gets
908  * COWed, we have to update back refs entry for all pointers in it.
909  *
910  * For a newly allocated tree block, we use implicit back refs for
911  * pointers in it. This means most tree related operations only involve
912  * implicit back refs. For a tree block created in old transaction, the
913  * only way to drop a reference to it is COW it. So we can detect the
914  * event that tree block loses its owner tree's reference and do the
915  * back refs conversion.
916  *
917  * When a tree block is COW'd through a tree, there are four cases:
918  *
919  * The reference count of the block is one and the tree is the block's
920  * owner tree. Nothing to do in this case.
921  *
922  * The reference count of the block is one and the tree is not the
923  * block's owner tree. In this case, full back refs is used for pointers
924  * in the block. Remove these full back refs, add implicit back refs for
925  * every pointers in the new block.
926  *
927  * The reference count of the block is greater than one and the tree is
928  * the block's owner tree. In this case, implicit back refs is used for
929  * pointers in the block. Add full back refs for every pointers in the
930  * block, increase lower level extents' reference counts. The original
931  * implicit back refs are entailed to the new block.
932  *
933  * The reference count of the block is greater than one and the tree is
934  * not the block's owner tree. Add implicit back refs for every pointer in
935  * the new block, increase lower level extents' reference count.
936  *
937  * Back Reference Key composing:
938  *
939  * The key objectid corresponds to the first byte in the extent,
940  * The key type is used to differentiate between types of back refs.
941  * There are different meanings of the key offset for different types
942  * of back refs.
943  *
944  * File extents can be referenced by:
945  *
946  * - multiple snapshots, subvolumes, or different generations in one subvol
947  * - different files inside a single subvolume
948  * - different offsets inside a file (bookend extents in file.c)
949  *
950  * The extent ref structure for the implicit back refs has fields for:
951  *
952  * - Objectid of the subvolume root
953  * - objectid of the file holding the reference
954  * - original offset in the file
955  * - how many bookend extents
956  *
957  * The key offset for the implicit back refs is hash of the first
958  * three fields.
959  *
960  * The extent ref structure for the full back refs has field for:
961  *
962  * - number of pointers in the tree leaf
963  *
964  * The key offset for the implicit back refs is the first byte of
965  * the tree leaf
966  *
967  * When a file extent is allocated, The implicit back refs is used.
968  * the fields are filled in:
969  *
970  *     (root_key.objectid, inode objectid, offset in file, 1)
971  *
972  * When a file extent is removed file truncation, we find the
973  * corresponding implicit back refs and check the following fields:
974  *
975  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
976  *
977  * Btree extents can be referenced by:
978  *
979  * - Different subvolumes
980  *
981  * Both the implicit back refs and the full back refs for tree blocks
982  * only consist of key. The key offset for the implicit back refs is
983  * objectid of block's owner tree. The key offset for the full back refs
984  * is the first byte of parent block.
985  *
986  * When implicit back refs is used, information about the lowest key and
987  * level of the tree block are required. These information are stored in
988  * tree block info structure.
989  */
990 
991 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
992 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
993 				  struct btrfs_root *root,
994 				  struct btrfs_path *path,
995 				  u64 owner, u32 extra_size)
996 {
997 	struct btrfs_extent_item *item;
998 	struct btrfs_extent_item_v0 *ei0;
999 	struct btrfs_extent_ref_v0 *ref0;
1000 	struct btrfs_tree_block_info *bi;
1001 	struct extent_buffer *leaf;
1002 	struct btrfs_key key;
1003 	struct btrfs_key found_key;
1004 	u32 new_size = sizeof(*item);
1005 	u64 refs;
1006 	int ret;
1007 
1008 	leaf = path->nodes[0];
1009 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1010 
1011 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1012 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1013 			     struct btrfs_extent_item_v0);
1014 	refs = btrfs_extent_refs_v0(leaf, ei0);
1015 
1016 	if (owner == (u64)-1) {
1017 		while (1) {
1018 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1019 				ret = btrfs_next_leaf(root, path);
1020 				if (ret < 0)
1021 					return ret;
1022 				BUG_ON(ret > 0); /* Corruption */
1023 				leaf = path->nodes[0];
1024 			}
1025 			btrfs_item_key_to_cpu(leaf, &found_key,
1026 					      path->slots[0]);
1027 			BUG_ON(key.objectid != found_key.objectid);
1028 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1029 				path->slots[0]++;
1030 				continue;
1031 			}
1032 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1033 					      struct btrfs_extent_ref_v0);
1034 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1035 			break;
1036 		}
1037 	}
1038 	btrfs_release_path(path);
1039 
1040 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1041 		new_size += sizeof(*bi);
1042 
1043 	new_size -= sizeof(*ei0);
1044 	ret = btrfs_search_slot(trans, root, &key, path,
1045 				new_size + extra_size, 1);
1046 	if (ret < 0)
1047 		return ret;
1048 	BUG_ON(ret); /* Corruption */
1049 
1050 	btrfs_extend_item(root, path, new_size);
1051 
1052 	leaf = path->nodes[0];
1053 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1054 	btrfs_set_extent_refs(leaf, item, refs);
1055 	/* FIXME: get real generation */
1056 	btrfs_set_extent_generation(leaf, item, 0);
1057 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1058 		btrfs_set_extent_flags(leaf, item,
1059 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1060 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1061 		bi = (struct btrfs_tree_block_info *)(item + 1);
1062 		/* FIXME: get first key of the block */
1063 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1064 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1065 	} else {
1066 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1067 	}
1068 	btrfs_mark_buffer_dirty(leaf);
1069 	return 0;
1070 }
1071 #endif
1072 
1073 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1074 {
1075 	u32 high_crc = ~(u32)0;
1076 	u32 low_crc = ~(u32)0;
1077 	__le64 lenum;
1078 
1079 	lenum = cpu_to_le64(root_objectid);
1080 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1081 	lenum = cpu_to_le64(owner);
1082 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1083 	lenum = cpu_to_le64(offset);
1084 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1085 
1086 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1087 }
1088 
1089 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1090 				     struct btrfs_extent_data_ref *ref)
1091 {
1092 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1093 				    btrfs_extent_data_ref_objectid(leaf, ref),
1094 				    btrfs_extent_data_ref_offset(leaf, ref));
1095 }
1096 
1097 static int match_extent_data_ref(struct extent_buffer *leaf,
1098 				 struct btrfs_extent_data_ref *ref,
1099 				 u64 root_objectid, u64 owner, u64 offset)
1100 {
1101 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1102 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1103 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1104 		return 0;
1105 	return 1;
1106 }
1107 
1108 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1109 					   struct btrfs_root *root,
1110 					   struct btrfs_path *path,
1111 					   u64 bytenr, u64 parent,
1112 					   u64 root_objectid,
1113 					   u64 owner, u64 offset)
1114 {
1115 	struct btrfs_key key;
1116 	struct btrfs_extent_data_ref *ref;
1117 	struct extent_buffer *leaf;
1118 	u32 nritems;
1119 	int ret;
1120 	int recow;
1121 	int err = -ENOENT;
1122 
1123 	key.objectid = bytenr;
1124 	if (parent) {
1125 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1126 		key.offset = parent;
1127 	} else {
1128 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1129 		key.offset = hash_extent_data_ref(root_objectid,
1130 						  owner, offset);
1131 	}
1132 again:
1133 	recow = 0;
1134 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 	if (ret < 0) {
1136 		err = ret;
1137 		goto fail;
1138 	}
1139 
1140 	if (parent) {
1141 		if (!ret)
1142 			return 0;
1143 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1144 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1145 		btrfs_release_path(path);
1146 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1147 		if (ret < 0) {
1148 			err = ret;
1149 			goto fail;
1150 		}
1151 		if (!ret)
1152 			return 0;
1153 #endif
1154 		goto fail;
1155 	}
1156 
1157 	leaf = path->nodes[0];
1158 	nritems = btrfs_header_nritems(leaf);
1159 	while (1) {
1160 		if (path->slots[0] >= nritems) {
1161 			ret = btrfs_next_leaf(root, path);
1162 			if (ret < 0)
1163 				err = ret;
1164 			if (ret)
1165 				goto fail;
1166 
1167 			leaf = path->nodes[0];
1168 			nritems = btrfs_header_nritems(leaf);
1169 			recow = 1;
1170 		}
1171 
1172 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173 		if (key.objectid != bytenr ||
1174 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1175 			goto fail;
1176 
1177 		ref = btrfs_item_ptr(leaf, path->slots[0],
1178 				     struct btrfs_extent_data_ref);
1179 
1180 		if (match_extent_data_ref(leaf, ref, root_objectid,
1181 					  owner, offset)) {
1182 			if (recow) {
1183 				btrfs_release_path(path);
1184 				goto again;
1185 			}
1186 			err = 0;
1187 			break;
1188 		}
1189 		path->slots[0]++;
1190 	}
1191 fail:
1192 	return err;
1193 }
1194 
1195 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1196 					   struct btrfs_root *root,
1197 					   struct btrfs_path *path,
1198 					   u64 bytenr, u64 parent,
1199 					   u64 root_objectid, u64 owner,
1200 					   u64 offset, int refs_to_add)
1201 {
1202 	struct btrfs_key key;
1203 	struct extent_buffer *leaf;
1204 	u32 size;
1205 	u32 num_refs;
1206 	int ret;
1207 
1208 	key.objectid = bytenr;
1209 	if (parent) {
1210 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1211 		key.offset = parent;
1212 		size = sizeof(struct btrfs_shared_data_ref);
1213 	} else {
1214 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1215 		key.offset = hash_extent_data_ref(root_objectid,
1216 						  owner, offset);
1217 		size = sizeof(struct btrfs_extent_data_ref);
1218 	}
1219 
1220 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1221 	if (ret && ret != -EEXIST)
1222 		goto fail;
1223 
1224 	leaf = path->nodes[0];
1225 	if (parent) {
1226 		struct btrfs_shared_data_ref *ref;
1227 		ref = btrfs_item_ptr(leaf, path->slots[0],
1228 				     struct btrfs_shared_data_ref);
1229 		if (ret == 0) {
1230 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1231 		} else {
1232 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1233 			num_refs += refs_to_add;
1234 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1235 		}
1236 	} else {
1237 		struct btrfs_extent_data_ref *ref;
1238 		while (ret == -EEXIST) {
1239 			ref = btrfs_item_ptr(leaf, path->slots[0],
1240 					     struct btrfs_extent_data_ref);
1241 			if (match_extent_data_ref(leaf, ref, root_objectid,
1242 						  owner, offset))
1243 				break;
1244 			btrfs_release_path(path);
1245 			key.offset++;
1246 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1247 						      size);
1248 			if (ret && ret != -EEXIST)
1249 				goto fail;
1250 
1251 			leaf = path->nodes[0];
1252 		}
1253 		ref = btrfs_item_ptr(leaf, path->slots[0],
1254 				     struct btrfs_extent_data_ref);
1255 		if (ret == 0) {
1256 			btrfs_set_extent_data_ref_root(leaf, ref,
1257 						       root_objectid);
1258 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1259 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1260 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1261 		} else {
1262 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1263 			num_refs += refs_to_add;
1264 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1265 		}
1266 	}
1267 	btrfs_mark_buffer_dirty(leaf);
1268 	ret = 0;
1269 fail:
1270 	btrfs_release_path(path);
1271 	return ret;
1272 }
1273 
1274 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1275 					   struct btrfs_root *root,
1276 					   struct btrfs_path *path,
1277 					   int refs_to_drop, int *last_ref)
1278 {
1279 	struct btrfs_key key;
1280 	struct btrfs_extent_data_ref *ref1 = NULL;
1281 	struct btrfs_shared_data_ref *ref2 = NULL;
1282 	struct extent_buffer *leaf;
1283 	u32 num_refs = 0;
1284 	int ret = 0;
1285 
1286 	leaf = path->nodes[0];
1287 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1288 
1289 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1290 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1291 				      struct btrfs_extent_data_ref);
1292 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1293 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1294 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1295 				      struct btrfs_shared_data_ref);
1296 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1297 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1298 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1299 		struct btrfs_extent_ref_v0 *ref0;
1300 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1301 				      struct btrfs_extent_ref_v0);
1302 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1303 #endif
1304 	} else {
1305 		BUG();
1306 	}
1307 
1308 	BUG_ON(num_refs < refs_to_drop);
1309 	num_refs -= refs_to_drop;
1310 
1311 	if (num_refs == 0) {
1312 		ret = btrfs_del_item(trans, root, path);
1313 		*last_ref = 1;
1314 	} else {
1315 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1316 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1317 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1318 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1319 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1320 		else {
1321 			struct btrfs_extent_ref_v0 *ref0;
1322 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1323 					struct btrfs_extent_ref_v0);
1324 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1325 		}
1326 #endif
1327 		btrfs_mark_buffer_dirty(leaf);
1328 	}
1329 	return ret;
1330 }
1331 
1332 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1333 					  struct btrfs_path *path,
1334 					  struct btrfs_extent_inline_ref *iref)
1335 {
1336 	struct btrfs_key key;
1337 	struct extent_buffer *leaf;
1338 	struct btrfs_extent_data_ref *ref1;
1339 	struct btrfs_shared_data_ref *ref2;
1340 	u32 num_refs = 0;
1341 
1342 	leaf = path->nodes[0];
1343 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 	if (iref) {
1345 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1346 		    BTRFS_EXTENT_DATA_REF_KEY) {
1347 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1348 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1349 		} else {
1350 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1351 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1352 		}
1353 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_extent_data_ref);
1356 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1357 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1358 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1359 				      struct btrfs_shared_data_ref);
1360 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1361 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1362 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1363 		struct btrfs_extent_ref_v0 *ref0;
1364 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1365 				      struct btrfs_extent_ref_v0);
1366 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1367 #endif
1368 	} else {
1369 		WARN_ON(1);
1370 	}
1371 	return num_refs;
1372 }
1373 
1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 					  struct btrfs_root *root,
1376 					  struct btrfs_path *path,
1377 					  u64 bytenr, u64 parent,
1378 					  u64 root_objectid)
1379 {
1380 	struct btrfs_key key;
1381 	int ret;
1382 
1383 	key.objectid = bytenr;
1384 	if (parent) {
1385 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 		key.offset = parent;
1387 	} else {
1388 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 		key.offset = root_objectid;
1390 	}
1391 
1392 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 	if (ret > 0)
1394 		ret = -ENOENT;
1395 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1396 	if (ret == -ENOENT && parent) {
1397 		btrfs_release_path(path);
1398 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1399 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1400 		if (ret > 0)
1401 			ret = -ENOENT;
1402 	}
1403 #endif
1404 	return ret;
1405 }
1406 
1407 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1408 					  struct btrfs_root *root,
1409 					  struct btrfs_path *path,
1410 					  u64 bytenr, u64 parent,
1411 					  u64 root_objectid)
1412 {
1413 	struct btrfs_key key;
1414 	int ret;
1415 
1416 	key.objectid = bytenr;
1417 	if (parent) {
1418 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1419 		key.offset = parent;
1420 	} else {
1421 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1422 		key.offset = root_objectid;
1423 	}
1424 
1425 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1426 	btrfs_release_path(path);
1427 	return ret;
1428 }
1429 
1430 static inline int extent_ref_type(u64 parent, u64 owner)
1431 {
1432 	int type;
1433 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1434 		if (parent > 0)
1435 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1436 		else
1437 			type = BTRFS_TREE_BLOCK_REF_KEY;
1438 	} else {
1439 		if (parent > 0)
1440 			type = BTRFS_SHARED_DATA_REF_KEY;
1441 		else
1442 			type = BTRFS_EXTENT_DATA_REF_KEY;
1443 	}
1444 	return type;
1445 }
1446 
1447 static int find_next_key(struct btrfs_path *path, int level,
1448 			 struct btrfs_key *key)
1449 
1450 {
1451 	for (; level < BTRFS_MAX_LEVEL; level++) {
1452 		if (!path->nodes[level])
1453 			break;
1454 		if (path->slots[level] + 1 >=
1455 		    btrfs_header_nritems(path->nodes[level]))
1456 			continue;
1457 		if (level == 0)
1458 			btrfs_item_key_to_cpu(path->nodes[level], key,
1459 					      path->slots[level] + 1);
1460 		else
1461 			btrfs_node_key_to_cpu(path->nodes[level], key,
1462 					      path->slots[level] + 1);
1463 		return 0;
1464 	}
1465 	return 1;
1466 }
1467 
1468 /*
1469  * look for inline back ref. if back ref is found, *ref_ret is set
1470  * to the address of inline back ref, and 0 is returned.
1471  *
1472  * if back ref isn't found, *ref_ret is set to the address where it
1473  * should be inserted, and -ENOENT is returned.
1474  *
1475  * if insert is true and there are too many inline back refs, the path
1476  * points to the extent item, and -EAGAIN is returned.
1477  *
1478  * NOTE: inline back refs are ordered in the same way that back ref
1479  *	 items in the tree are ordered.
1480  */
1481 static noinline_for_stack
1482 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1483 				 struct btrfs_root *root,
1484 				 struct btrfs_path *path,
1485 				 struct btrfs_extent_inline_ref **ref_ret,
1486 				 u64 bytenr, u64 num_bytes,
1487 				 u64 parent, u64 root_objectid,
1488 				 u64 owner, u64 offset, int insert)
1489 {
1490 	struct btrfs_key key;
1491 	struct extent_buffer *leaf;
1492 	struct btrfs_extent_item *ei;
1493 	struct btrfs_extent_inline_ref *iref;
1494 	u64 flags;
1495 	u64 item_size;
1496 	unsigned long ptr;
1497 	unsigned long end;
1498 	int extra_size;
1499 	int type;
1500 	int want;
1501 	int ret;
1502 	int err = 0;
1503 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1504 						 SKINNY_METADATA);
1505 
1506 	key.objectid = bytenr;
1507 	key.type = BTRFS_EXTENT_ITEM_KEY;
1508 	key.offset = num_bytes;
1509 
1510 	want = extent_ref_type(parent, owner);
1511 	if (insert) {
1512 		extra_size = btrfs_extent_inline_ref_size(want);
1513 		path->keep_locks = 1;
1514 	} else
1515 		extra_size = -1;
1516 
1517 	/*
1518 	 * Owner is our parent level, so we can just add one to get the level
1519 	 * for the block we are interested in.
1520 	 */
1521 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1522 		key.type = BTRFS_METADATA_ITEM_KEY;
1523 		key.offset = owner;
1524 	}
1525 
1526 again:
1527 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1528 	if (ret < 0) {
1529 		err = ret;
1530 		goto out;
1531 	}
1532 
1533 	/*
1534 	 * We may be a newly converted file system which still has the old fat
1535 	 * extent entries for metadata, so try and see if we have one of those.
1536 	 */
1537 	if (ret > 0 && skinny_metadata) {
1538 		skinny_metadata = false;
1539 		if (path->slots[0]) {
1540 			path->slots[0]--;
1541 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1542 					      path->slots[0]);
1543 			if (key.objectid == bytenr &&
1544 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1545 			    key.offset == num_bytes)
1546 				ret = 0;
1547 		}
1548 		if (ret) {
1549 			key.objectid = bytenr;
1550 			key.type = BTRFS_EXTENT_ITEM_KEY;
1551 			key.offset = num_bytes;
1552 			btrfs_release_path(path);
1553 			goto again;
1554 		}
1555 	}
1556 
1557 	if (ret && !insert) {
1558 		err = -ENOENT;
1559 		goto out;
1560 	} else if (WARN_ON(ret)) {
1561 		err = -EIO;
1562 		goto out;
1563 	}
1564 
1565 	leaf = path->nodes[0];
1566 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1568 	if (item_size < sizeof(*ei)) {
1569 		if (!insert) {
1570 			err = -ENOENT;
1571 			goto out;
1572 		}
1573 		ret = convert_extent_item_v0(trans, root, path, owner,
1574 					     extra_size);
1575 		if (ret < 0) {
1576 			err = ret;
1577 			goto out;
1578 		}
1579 		leaf = path->nodes[0];
1580 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1581 	}
1582 #endif
1583 	BUG_ON(item_size < sizeof(*ei));
1584 
1585 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1586 	flags = btrfs_extent_flags(leaf, ei);
1587 
1588 	ptr = (unsigned long)(ei + 1);
1589 	end = (unsigned long)ei + item_size;
1590 
1591 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1592 		ptr += sizeof(struct btrfs_tree_block_info);
1593 		BUG_ON(ptr > end);
1594 	}
1595 
1596 	err = -ENOENT;
1597 	while (1) {
1598 		if (ptr >= end) {
1599 			WARN_ON(ptr > end);
1600 			break;
1601 		}
1602 		iref = (struct btrfs_extent_inline_ref *)ptr;
1603 		type = btrfs_extent_inline_ref_type(leaf, iref);
1604 		if (want < type)
1605 			break;
1606 		if (want > type) {
1607 			ptr += btrfs_extent_inline_ref_size(type);
1608 			continue;
1609 		}
1610 
1611 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1612 			struct btrfs_extent_data_ref *dref;
1613 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1614 			if (match_extent_data_ref(leaf, dref, root_objectid,
1615 						  owner, offset)) {
1616 				err = 0;
1617 				break;
1618 			}
1619 			if (hash_extent_data_ref_item(leaf, dref) <
1620 			    hash_extent_data_ref(root_objectid, owner, offset))
1621 				break;
1622 		} else {
1623 			u64 ref_offset;
1624 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1625 			if (parent > 0) {
1626 				if (parent == ref_offset) {
1627 					err = 0;
1628 					break;
1629 				}
1630 				if (ref_offset < parent)
1631 					break;
1632 			} else {
1633 				if (root_objectid == ref_offset) {
1634 					err = 0;
1635 					break;
1636 				}
1637 				if (ref_offset < root_objectid)
1638 					break;
1639 			}
1640 		}
1641 		ptr += btrfs_extent_inline_ref_size(type);
1642 	}
1643 	if (err == -ENOENT && insert) {
1644 		if (item_size + extra_size >=
1645 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 		/*
1650 		 * To add new inline back ref, we have to make sure
1651 		 * there is no corresponding back ref item.
1652 		 * For simplicity, we just do not add new inline back
1653 		 * ref if there is any kind of item for this block
1654 		 */
1655 		if (find_next_key(path, 0, &key) == 0 &&
1656 		    key.objectid == bytenr &&
1657 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1658 			err = -EAGAIN;
1659 			goto out;
1660 		}
1661 	}
1662 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1663 out:
1664 	if (insert) {
1665 		path->keep_locks = 0;
1666 		btrfs_unlock_up_safe(path, 1);
1667 	}
1668 	return err;
1669 }
1670 
1671 /*
1672  * helper to add new inline back ref
1673  */
1674 static noinline_for_stack
1675 void setup_inline_extent_backref(struct btrfs_root *root,
1676 				 struct btrfs_path *path,
1677 				 struct btrfs_extent_inline_ref *iref,
1678 				 u64 parent, u64 root_objectid,
1679 				 u64 owner, u64 offset, int refs_to_add,
1680 				 struct btrfs_delayed_extent_op *extent_op)
1681 {
1682 	struct extent_buffer *leaf;
1683 	struct btrfs_extent_item *ei;
1684 	unsigned long ptr;
1685 	unsigned long end;
1686 	unsigned long item_offset;
1687 	u64 refs;
1688 	int size;
1689 	int type;
1690 
1691 	leaf = path->nodes[0];
1692 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1693 	item_offset = (unsigned long)iref - (unsigned long)ei;
1694 
1695 	type = extent_ref_type(parent, owner);
1696 	size = btrfs_extent_inline_ref_size(type);
1697 
1698 	btrfs_extend_item(root, path, size);
1699 
1700 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1701 	refs = btrfs_extent_refs(leaf, ei);
1702 	refs += refs_to_add;
1703 	btrfs_set_extent_refs(leaf, ei, refs);
1704 	if (extent_op)
1705 		__run_delayed_extent_op(extent_op, leaf, ei);
1706 
1707 	ptr = (unsigned long)ei + item_offset;
1708 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1709 	if (ptr < end - size)
1710 		memmove_extent_buffer(leaf, ptr + size, ptr,
1711 				      end - size - ptr);
1712 
1713 	iref = (struct btrfs_extent_inline_ref *)ptr;
1714 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1715 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1716 		struct btrfs_extent_data_ref *dref;
1717 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1718 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1719 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1720 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1721 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1722 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1723 		struct btrfs_shared_data_ref *sref;
1724 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1726 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1727 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1728 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1729 	} else {
1730 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1731 	}
1732 	btrfs_mark_buffer_dirty(leaf);
1733 }
1734 
1735 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1736 				 struct btrfs_root *root,
1737 				 struct btrfs_path *path,
1738 				 struct btrfs_extent_inline_ref **ref_ret,
1739 				 u64 bytenr, u64 num_bytes, u64 parent,
1740 				 u64 root_objectid, u64 owner, u64 offset)
1741 {
1742 	int ret;
1743 
1744 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1745 					   bytenr, num_bytes, parent,
1746 					   root_objectid, owner, offset, 0);
1747 	if (ret != -ENOENT)
1748 		return ret;
1749 
1750 	btrfs_release_path(path);
1751 	*ref_ret = NULL;
1752 
1753 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1754 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1755 					    root_objectid);
1756 	} else {
1757 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1758 					     root_objectid, owner, offset);
1759 	}
1760 	return ret;
1761 }
1762 
1763 /*
1764  * helper to update/remove inline back ref
1765  */
1766 static noinline_for_stack
1767 void update_inline_extent_backref(struct btrfs_root *root,
1768 				  struct btrfs_path *path,
1769 				  struct btrfs_extent_inline_ref *iref,
1770 				  int refs_to_mod,
1771 				  struct btrfs_delayed_extent_op *extent_op,
1772 				  int *last_ref)
1773 {
1774 	struct extent_buffer *leaf;
1775 	struct btrfs_extent_item *ei;
1776 	struct btrfs_extent_data_ref *dref = NULL;
1777 	struct btrfs_shared_data_ref *sref = NULL;
1778 	unsigned long ptr;
1779 	unsigned long end;
1780 	u32 item_size;
1781 	int size;
1782 	int type;
1783 	u64 refs;
1784 
1785 	leaf = path->nodes[0];
1786 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1787 	refs = btrfs_extent_refs(leaf, ei);
1788 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1789 	refs += refs_to_mod;
1790 	btrfs_set_extent_refs(leaf, ei, refs);
1791 	if (extent_op)
1792 		__run_delayed_extent_op(extent_op, leaf, ei);
1793 
1794 	type = btrfs_extent_inline_ref_type(leaf, iref);
1795 
1796 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1798 		refs = btrfs_extent_data_ref_count(leaf, dref);
1799 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1800 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1801 		refs = btrfs_shared_data_ref_count(leaf, sref);
1802 	} else {
1803 		refs = 1;
1804 		BUG_ON(refs_to_mod != -1);
1805 	}
1806 
1807 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1808 	refs += refs_to_mod;
1809 
1810 	if (refs > 0) {
1811 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1812 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1813 		else
1814 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1815 	} else {
1816 		*last_ref = 1;
1817 		size =  btrfs_extent_inline_ref_size(type);
1818 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1819 		ptr = (unsigned long)iref;
1820 		end = (unsigned long)ei + item_size;
1821 		if (ptr + size < end)
1822 			memmove_extent_buffer(leaf, ptr, ptr + size,
1823 					      end - ptr - size);
1824 		item_size -= size;
1825 		btrfs_truncate_item(root, path, item_size, 1);
1826 	}
1827 	btrfs_mark_buffer_dirty(leaf);
1828 }
1829 
1830 static noinline_for_stack
1831 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1832 				 struct btrfs_root *root,
1833 				 struct btrfs_path *path,
1834 				 u64 bytenr, u64 num_bytes, u64 parent,
1835 				 u64 root_objectid, u64 owner,
1836 				 u64 offset, int refs_to_add,
1837 				 struct btrfs_delayed_extent_op *extent_op)
1838 {
1839 	struct btrfs_extent_inline_ref *iref;
1840 	int ret;
1841 
1842 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1843 					   bytenr, num_bytes, parent,
1844 					   root_objectid, owner, offset, 1);
1845 	if (ret == 0) {
1846 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1847 		update_inline_extent_backref(root, path, iref,
1848 					     refs_to_add, extent_op, NULL);
1849 	} else if (ret == -ENOENT) {
1850 		setup_inline_extent_backref(root, path, iref, parent,
1851 					    root_objectid, owner, offset,
1852 					    refs_to_add, extent_op);
1853 		ret = 0;
1854 	}
1855 	return ret;
1856 }
1857 
1858 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1859 				 struct btrfs_root *root,
1860 				 struct btrfs_path *path,
1861 				 u64 bytenr, u64 parent, u64 root_objectid,
1862 				 u64 owner, u64 offset, int refs_to_add)
1863 {
1864 	int ret;
1865 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1866 		BUG_ON(refs_to_add != 1);
1867 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1868 					    parent, root_objectid);
1869 	} else {
1870 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1871 					     parent, root_objectid,
1872 					     owner, offset, refs_to_add);
1873 	}
1874 	return ret;
1875 }
1876 
1877 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1878 				 struct btrfs_root *root,
1879 				 struct btrfs_path *path,
1880 				 struct btrfs_extent_inline_ref *iref,
1881 				 int refs_to_drop, int is_data, int *last_ref)
1882 {
1883 	int ret = 0;
1884 
1885 	BUG_ON(!is_data && refs_to_drop != 1);
1886 	if (iref) {
1887 		update_inline_extent_backref(root, path, iref,
1888 					     -refs_to_drop, NULL, last_ref);
1889 	} else if (is_data) {
1890 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1891 					     last_ref);
1892 	} else {
1893 		*last_ref = 1;
1894 		ret = btrfs_del_item(trans, root, path);
1895 	}
1896 	return ret;
1897 }
1898 
1899 static int btrfs_issue_discard(struct block_device *bdev,
1900 				u64 start, u64 len)
1901 {
1902 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1903 }
1904 
1905 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1906 				u64 num_bytes, u64 *actual_bytes)
1907 {
1908 	int ret;
1909 	u64 discarded_bytes = 0;
1910 	struct btrfs_bio *bbio = NULL;
1911 
1912 
1913 	/* Tell the block device(s) that the sectors can be discarded */
1914 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1915 			      bytenr, &num_bytes, &bbio, 0);
1916 	/* Error condition is -ENOMEM */
1917 	if (!ret) {
1918 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1919 		int i;
1920 
1921 
1922 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1923 			if (!stripe->dev->can_discard)
1924 				continue;
1925 
1926 			ret = btrfs_issue_discard(stripe->dev->bdev,
1927 						  stripe->physical,
1928 						  stripe->length);
1929 			if (!ret)
1930 				discarded_bytes += stripe->length;
1931 			else if (ret != -EOPNOTSUPP)
1932 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1933 
1934 			/*
1935 			 * Just in case we get back EOPNOTSUPP for some reason,
1936 			 * just ignore the return value so we don't screw up
1937 			 * people calling discard_extent.
1938 			 */
1939 			ret = 0;
1940 		}
1941 		kfree(bbio);
1942 	}
1943 
1944 	if (actual_bytes)
1945 		*actual_bytes = discarded_bytes;
1946 
1947 
1948 	if (ret == -EOPNOTSUPP)
1949 		ret = 0;
1950 	return ret;
1951 }
1952 
1953 /* Can return -ENOMEM */
1954 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1955 			 struct btrfs_root *root,
1956 			 u64 bytenr, u64 num_bytes, u64 parent,
1957 			 u64 root_objectid, u64 owner, u64 offset,
1958 			 int no_quota)
1959 {
1960 	int ret;
1961 	struct btrfs_fs_info *fs_info = root->fs_info;
1962 
1963 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1964 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1965 
1966 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1967 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1968 					num_bytes,
1969 					parent, root_objectid, (int)owner,
1970 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1971 	} else {
1972 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1973 					num_bytes,
1974 					parent, root_objectid, owner, offset,
1975 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1976 	}
1977 	return ret;
1978 }
1979 
1980 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1981 				  struct btrfs_root *root,
1982 				  u64 bytenr, u64 num_bytes,
1983 				  u64 parent, u64 root_objectid,
1984 				  u64 owner, u64 offset, int refs_to_add,
1985 				  int no_quota,
1986 				  struct btrfs_delayed_extent_op *extent_op)
1987 {
1988 	struct btrfs_fs_info *fs_info = root->fs_info;
1989 	struct btrfs_path *path;
1990 	struct extent_buffer *leaf;
1991 	struct btrfs_extent_item *item;
1992 	struct btrfs_key key;
1993 	u64 refs;
1994 	int ret;
1995 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1996 
1997 	path = btrfs_alloc_path();
1998 	if (!path)
1999 		return -ENOMEM;
2000 
2001 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2002 		no_quota = 1;
2003 
2004 	path->reada = 1;
2005 	path->leave_spinning = 1;
2006 	/* this will setup the path even if it fails to insert the back ref */
2007 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2008 					   bytenr, num_bytes, parent,
2009 					   root_objectid, owner, offset,
2010 					   refs_to_add, extent_op);
2011 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2012 		goto out;
2013 	/*
2014 	 * Ok we were able to insert an inline extent and it appears to be a new
2015 	 * reference, deal with the qgroup accounting.
2016 	 */
2017 	if (!ret && !no_quota) {
2018 		ASSERT(root->fs_info->quota_enabled);
2019 		leaf = path->nodes[0];
2020 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2021 		item = btrfs_item_ptr(leaf, path->slots[0],
2022 				      struct btrfs_extent_item);
2023 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2024 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2025 		btrfs_release_path(path);
2026 
2027 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2028 					      bytenr, num_bytes, type, 0);
2029 		goto out;
2030 	}
2031 
2032 	/*
2033 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2034 	 * inline extent ref, so just update the reference count and add a
2035 	 * normal backref.
2036 	 */
2037 	leaf = path->nodes[0];
2038 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2039 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2040 	refs = btrfs_extent_refs(leaf, item);
2041 	if (refs)
2042 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2043 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2044 	if (extent_op)
2045 		__run_delayed_extent_op(extent_op, leaf, item);
2046 
2047 	btrfs_mark_buffer_dirty(leaf);
2048 	btrfs_release_path(path);
2049 
2050 	if (!no_quota) {
2051 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2052 					      bytenr, num_bytes, type, 0);
2053 		if (ret)
2054 			goto out;
2055 	}
2056 
2057 	path->reada = 1;
2058 	path->leave_spinning = 1;
2059 	/* now insert the actual backref */
2060 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2061 				    path, bytenr, parent, root_objectid,
2062 				    owner, offset, refs_to_add);
2063 	if (ret)
2064 		btrfs_abort_transaction(trans, root, ret);
2065 out:
2066 	btrfs_free_path(path);
2067 	return ret;
2068 }
2069 
2070 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2071 				struct btrfs_root *root,
2072 				struct btrfs_delayed_ref_node *node,
2073 				struct btrfs_delayed_extent_op *extent_op,
2074 				int insert_reserved)
2075 {
2076 	int ret = 0;
2077 	struct btrfs_delayed_data_ref *ref;
2078 	struct btrfs_key ins;
2079 	u64 parent = 0;
2080 	u64 ref_root = 0;
2081 	u64 flags = 0;
2082 
2083 	ins.objectid = node->bytenr;
2084 	ins.offset = node->num_bytes;
2085 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2086 
2087 	ref = btrfs_delayed_node_to_data_ref(node);
2088 	trace_run_delayed_data_ref(node, ref, node->action);
2089 
2090 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2091 		parent = ref->parent;
2092 	ref_root = ref->root;
2093 
2094 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2095 		if (extent_op)
2096 			flags |= extent_op->flags_to_set;
2097 		ret = alloc_reserved_file_extent(trans, root,
2098 						 parent, ref_root, flags,
2099 						 ref->objectid, ref->offset,
2100 						 &ins, node->ref_mod);
2101 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2102 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2103 					     node->num_bytes, parent,
2104 					     ref_root, ref->objectid,
2105 					     ref->offset, node->ref_mod,
2106 					     node->no_quota, extent_op);
2107 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2108 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2109 					  node->num_bytes, parent,
2110 					  ref_root, ref->objectid,
2111 					  ref->offset, node->ref_mod,
2112 					  extent_op, node->no_quota);
2113 	} else {
2114 		BUG();
2115 	}
2116 	return ret;
2117 }
2118 
2119 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2120 				    struct extent_buffer *leaf,
2121 				    struct btrfs_extent_item *ei)
2122 {
2123 	u64 flags = btrfs_extent_flags(leaf, ei);
2124 	if (extent_op->update_flags) {
2125 		flags |= extent_op->flags_to_set;
2126 		btrfs_set_extent_flags(leaf, ei, flags);
2127 	}
2128 
2129 	if (extent_op->update_key) {
2130 		struct btrfs_tree_block_info *bi;
2131 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2132 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2133 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2134 	}
2135 }
2136 
2137 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2138 				 struct btrfs_root *root,
2139 				 struct btrfs_delayed_ref_node *node,
2140 				 struct btrfs_delayed_extent_op *extent_op)
2141 {
2142 	struct btrfs_key key;
2143 	struct btrfs_path *path;
2144 	struct btrfs_extent_item *ei;
2145 	struct extent_buffer *leaf;
2146 	u32 item_size;
2147 	int ret;
2148 	int err = 0;
2149 	int metadata = !extent_op->is_data;
2150 
2151 	if (trans->aborted)
2152 		return 0;
2153 
2154 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2155 		metadata = 0;
2156 
2157 	path = btrfs_alloc_path();
2158 	if (!path)
2159 		return -ENOMEM;
2160 
2161 	key.objectid = node->bytenr;
2162 
2163 	if (metadata) {
2164 		key.type = BTRFS_METADATA_ITEM_KEY;
2165 		key.offset = extent_op->level;
2166 	} else {
2167 		key.type = BTRFS_EXTENT_ITEM_KEY;
2168 		key.offset = node->num_bytes;
2169 	}
2170 
2171 again:
2172 	path->reada = 1;
2173 	path->leave_spinning = 1;
2174 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2175 				path, 0, 1);
2176 	if (ret < 0) {
2177 		err = ret;
2178 		goto out;
2179 	}
2180 	if (ret > 0) {
2181 		if (metadata) {
2182 			if (path->slots[0] > 0) {
2183 				path->slots[0]--;
2184 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2185 						      path->slots[0]);
2186 				if (key.objectid == node->bytenr &&
2187 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2188 				    key.offset == node->num_bytes)
2189 					ret = 0;
2190 			}
2191 			if (ret > 0) {
2192 				btrfs_release_path(path);
2193 				metadata = 0;
2194 
2195 				key.objectid = node->bytenr;
2196 				key.offset = node->num_bytes;
2197 				key.type = BTRFS_EXTENT_ITEM_KEY;
2198 				goto again;
2199 			}
2200 		} else {
2201 			err = -EIO;
2202 			goto out;
2203 		}
2204 	}
2205 
2206 	leaf = path->nodes[0];
2207 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2208 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2209 	if (item_size < sizeof(*ei)) {
2210 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2211 					     path, (u64)-1, 0);
2212 		if (ret < 0) {
2213 			err = ret;
2214 			goto out;
2215 		}
2216 		leaf = path->nodes[0];
2217 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2218 	}
2219 #endif
2220 	BUG_ON(item_size < sizeof(*ei));
2221 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2222 	__run_delayed_extent_op(extent_op, leaf, ei);
2223 
2224 	btrfs_mark_buffer_dirty(leaf);
2225 out:
2226 	btrfs_free_path(path);
2227 	return err;
2228 }
2229 
2230 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2231 				struct btrfs_root *root,
2232 				struct btrfs_delayed_ref_node *node,
2233 				struct btrfs_delayed_extent_op *extent_op,
2234 				int insert_reserved)
2235 {
2236 	int ret = 0;
2237 	struct btrfs_delayed_tree_ref *ref;
2238 	struct btrfs_key ins;
2239 	u64 parent = 0;
2240 	u64 ref_root = 0;
2241 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2242 						 SKINNY_METADATA);
2243 
2244 	ref = btrfs_delayed_node_to_tree_ref(node);
2245 	trace_run_delayed_tree_ref(node, ref, node->action);
2246 
2247 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2248 		parent = ref->parent;
2249 	ref_root = ref->root;
2250 
2251 	ins.objectid = node->bytenr;
2252 	if (skinny_metadata) {
2253 		ins.offset = ref->level;
2254 		ins.type = BTRFS_METADATA_ITEM_KEY;
2255 	} else {
2256 		ins.offset = node->num_bytes;
2257 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2258 	}
2259 
2260 	BUG_ON(node->ref_mod != 1);
2261 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2262 		BUG_ON(!extent_op || !extent_op->update_flags);
2263 		ret = alloc_reserved_tree_block(trans, root,
2264 						parent, ref_root,
2265 						extent_op->flags_to_set,
2266 						&extent_op->key,
2267 						ref->level, &ins,
2268 						node->no_quota);
2269 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2270 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2271 					     node->num_bytes, parent, ref_root,
2272 					     ref->level, 0, 1, node->no_quota,
2273 					     extent_op);
2274 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2275 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2276 					  node->num_bytes, parent, ref_root,
2277 					  ref->level, 0, 1, extent_op,
2278 					  node->no_quota);
2279 	} else {
2280 		BUG();
2281 	}
2282 	return ret;
2283 }
2284 
2285 /* helper function to actually process a single delayed ref entry */
2286 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2287 			       struct btrfs_root *root,
2288 			       struct btrfs_delayed_ref_node *node,
2289 			       struct btrfs_delayed_extent_op *extent_op,
2290 			       int insert_reserved)
2291 {
2292 	int ret = 0;
2293 
2294 	if (trans->aborted) {
2295 		if (insert_reserved)
2296 			btrfs_pin_extent(root, node->bytenr,
2297 					 node->num_bytes, 1);
2298 		return 0;
2299 	}
2300 
2301 	if (btrfs_delayed_ref_is_head(node)) {
2302 		struct btrfs_delayed_ref_head *head;
2303 		/*
2304 		 * we've hit the end of the chain and we were supposed
2305 		 * to insert this extent into the tree.  But, it got
2306 		 * deleted before we ever needed to insert it, so all
2307 		 * we have to do is clean up the accounting
2308 		 */
2309 		BUG_ON(extent_op);
2310 		head = btrfs_delayed_node_to_head(node);
2311 		trace_run_delayed_ref_head(node, head, node->action);
2312 
2313 		if (insert_reserved) {
2314 			btrfs_pin_extent(root, node->bytenr,
2315 					 node->num_bytes, 1);
2316 			if (head->is_data) {
2317 				ret = btrfs_del_csums(trans, root,
2318 						      node->bytenr,
2319 						      node->num_bytes);
2320 			}
2321 		}
2322 		return ret;
2323 	}
2324 
2325 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2326 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2327 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2328 					   insert_reserved);
2329 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2330 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2331 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2332 					   insert_reserved);
2333 	else
2334 		BUG();
2335 	return ret;
2336 }
2337 
2338 static noinline struct btrfs_delayed_ref_node *
2339 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2340 {
2341 	struct rb_node *node;
2342 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2343 
2344 	/*
2345 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2346 	 * this prevents ref count from going down to zero when
2347 	 * there still are pending delayed ref.
2348 	 */
2349 	node = rb_first(&head->ref_root);
2350 	while (node) {
2351 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2352 				rb_node);
2353 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2354 			return ref;
2355 		else if (last == NULL)
2356 			last = ref;
2357 		node = rb_next(node);
2358 	}
2359 	return last;
2360 }
2361 
2362 /*
2363  * Returns 0 on success or if called with an already aborted transaction.
2364  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2365  */
2366 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2367 					     struct btrfs_root *root,
2368 					     unsigned long nr)
2369 {
2370 	struct btrfs_delayed_ref_root *delayed_refs;
2371 	struct btrfs_delayed_ref_node *ref;
2372 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2373 	struct btrfs_delayed_extent_op *extent_op;
2374 	struct btrfs_fs_info *fs_info = root->fs_info;
2375 	ktime_t start = ktime_get();
2376 	int ret;
2377 	unsigned long count = 0;
2378 	unsigned long actual_count = 0;
2379 	int must_insert_reserved = 0;
2380 
2381 	delayed_refs = &trans->transaction->delayed_refs;
2382 	while (1) {
2383 		if (!locked_ref) {
2384 			if (count >= nr)
2385 				break;
2386 
2387 			spin_lock(&delayed_refs->lock);
2388 			locked_ref = btrfs_select_ref_head(trans);
2389 			if (!locked_ref) {
2390 				spin_unlock(&delayed_refs->lock);
2391 				break;
2392 			}
2393 
2394 			/* grab the lock that says we are going to process
2395 			 * all the refs for this head */
2396 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2397 			spin_unlock(&delayed_refs->lock);
2398 			/*
2399 			 * we may have dropped the spin lock to get the head
2400 			 * mutex lock, and that might have given someone else
2401 			 * time to free the head.  If that's true, it has been
2402 			 * removed from our list and we can move on.
2403 			 */
2404 			if (ret == -EAGAIN) {
2405 				locked_ref = NULL;
2406 				count++;
2407 				continue;
2408 			}
2409 		}
2410 
2411 		/*
2412 		 * We need to try and merge add/drops of the same ref since we
2413 		 * can run into issues with relocate dropping the implicit ref
2414 		 * and then it being added back again before the drop can
2415 		 * finish.  If we merged anything we need to re-loop so we can
2416 		 * get a good ref.
2417 		 */
2418 		spin_lock(&locked_ref->lock);
2419 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2420 					 locked_ref);
2421 
2422 		/*
2423 		 * locked_ref is the head node, so we have to go one
2424 		 * node back for any delayed ref updates
2425 		 */
2426 		ref = select_delayed_ref(locked_ref);
2427 
2428 		if (ref && ref->seq &&
2429 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2430 			spin_unlock(&locked_ref->lock);
2431 			btrfs_delayed_ref_unlock(locked_ref);
2432 			spin_lock(&delayed_refs->lock);
2433 			locked_ref->processing = 0;
2434 			delayed_refs->num_heads_ready++;
2435 			spin_unlock(&delayed_refs->lock);
2436 			locked_ref = NULL;
2437 			cond_resched();
2438 			count++;
2439 			continue;
2440 		}
2441 
2442 		/*
2443 		 * record the must insert reserved flag before we
2444 		 * drop the spin lock.
2445 		 */
2446 		must_insert_reserved = locked_ref->must_insert_reserved;
2447 		locked_ref->must_insert_reserved = 0;
2448 
2449 		extent_op = locked_ref->extent_op;
2450 		locked_ref->extent_op = NULL;
2451 
2452 		if (!ref) {
2453 
2454 
2455 			/* All delayed refs have been processed, Go ahead
2456 			 * and send the head node to run_one_delayed_ref,
2457 			 * so that any accounting fixes can happen
2458 			 */
2459 			ref = &locked_ref->node;
2460 
2461 			if (extent_op && must_insert_reserved) {
2462 				btrfs_free_delayed_extent_op(extent_op);
2463 				extent_op = NULL;
2464 			}
2465 
2466 			if (extent_op) {
2467 				spin_unlock(&locked_ref->lock);
2468 				ret = run_delayed_extent_op(trans, root,
2469 							    ref, extent_op);
2470 				btrfs_free_delayed_extent_op(extent_op);
2471 
2472 				if (ret) {
2473 					/*
2474 					 * Need to reset must_insert_reserved if
2475 					 * there was an error so the abort stuff
2476 					 * can cleanup the reserved space
2477 					 * properly.
2478 					 */
2479 					if (must_insert_reserved)
2480 						locked_ref->must_insert_reserved = 1;
2481 					locked_ref->processing = 0;
2482 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2483 					btrfs_delayed_ref_unlock(locked_ref);
2484 					return ret;
2485 				}
2486 				continue;
2487 			}
2488 
2489 			/*
2490 			 * Need to drop our head ref lock and re-aqcuire the
2491 			 * delayed ref lock and then re-check to make sure
2492 			 * nobody got added.
2493 			 */
2494 			spin_unlock(&locked_ref->lock);
2495 			spin_lock(&delayed_refs->lock);
2496 			spin_lock(&locked_ref->lock);
2497 			if (rb_first(&locked_ref->ref_root) ||
2498 			    locked_ref->extent_op) {
2499 				spin_unlock(&locked_ref->lock);
2500 				spin_unlock(&delayed_refs->lock);
2501 				continue;
2502 			}
2503 			ref->in_tree = 0;
2504 			delayed_refs->num_heads--;
2505 			rb_erase(&locked_ref->href_node,
2506 				 &delayed_refs->href_root);
2507 			spin_unlock(&delayed_refs->lock);
2508 		} else {
2509 			actual_count++;
2510 			ref->in_tree = 0;
2511 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2512 		}
2513 		atomic_dec(&delayed_refs->num_entries);
2514 
2515 		if (!btrfs_delayed_ref_is_head(ref)) {
2516 			/*
2517 			 * when we play the delayed ref, also correct the
2518 			 * ref_mod on head
2519 			 */
2520 			switch (ref->action) {
2521 			case BTRFS_ADD_DELAYED_REF:
2522 			case BTRFS_ADD_DELAYED_EXTENT:
2523 				locked_ref->node.ref_mod -= ref->ref_mod;
2524 				break;
2525 			case BTRFS_DROP_DELAYED_REF:
2526 				locked_ref->node.ref_mod += ref->ref_mod;
2527 				break;
2528 			default:
2529 				WARN_ON(1);
2530 			}
2531 		}
2532 		spin_unlock(&locked_ref->lock);
2533 
2534 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2535 					  must_insert_reserved);
2536 
2537 		btrfs_free_delayed_extent_op(extent_op);
2538 		if (ret) {
2539 			locked_ref->processing = 0;
2540 			btrfs_delayed_ref_unlock(locked_ref);
2541 			btrfs_put_delayed_ref(ref);
2542 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2543 			return ret;
2544 		}
2545 
2546 		/*
2547 		 * If this node is a head, that means all the refs in this head
2548 		 * have been dealt with, and we will pick the next head to deal
2549 		 * with, so we must unlock the head and drop it from the cluster
2550 		 * list before we release it.
2551 		 */
2552 		if (btrfs_delayed_ref_is_head(ref)) {
2553 			btrfs_delayed_ref_unlock(locked_ref);
2554 			locked_ref = NULL;
2555 		}
2556 		btrfs_put_delayed_ref(ref);
2557 		count++;
2558 		cond_resched();
2559 	}
2560 
2561 	/*
2562 	 * We don't want to include ref heads since we can have empty ref heads
2563 	 * and those will drastically skew our runtime down since we just do
2564 	 * accounting, no actual extent tree updates.
2565 	 */
2566 	if (actual_count > 0) {
2567 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2568 		u64 avg;
2569 
2570 		/*
2571 		 * We weigh the current average higher than our current runtime
2572 		 * to avoid large swings in the average.
2573 		 */
2574 		spin_lock(&delayed_refs->lock);
2575 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2576 		avg = div64_u64(avg, 4);
2577 		fs_info->avg_delayed_ref_runtime = avg;
2578 		spin_unlock(&delayed_refs->lock);
2579 	}
2580 	return 0;
2581 }
2582 
2583 #ifdef SCRAMBLE_DELAYED_REFS
2584 /*
2585  * Normally delayed refs get processed in ascending bytenr order. This
2586  * correlates in most cases to the order added. To expose dependencies on this
2587  * order, we start to process the tree in the middle instead of the beginning
2588  */
2589 static u64 find_middle(struct rb_root *root)
2590 {
2591 	struct rb_node *n = root->rb_node;
2592 	struct btrfs_delayed_ref_node *entry;
2593 	int alt = 1;
2594 	u64 middle;
2595 	u64 first = 0, last = 0;
2596 
2597 	n = rb_first(root);
2598 	if (n) {
2599 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2600 		first = entry->bytenr;
2601 	}
2602 	n = rb_last(root);
2603 	if (n) {
2604 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2605 		last = entry->bytenr;
2606 	}
2607 	n = root->rb_node;
2608 
2609 	while (n) {
2610 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2611 		WARN_ON(!entry->in_tree);
2612 
2613 		middle = entry->bytenr;
2614 
2615 		if (alt)
2616 			n = n->rb_left;
2617 		else
2618 			n = n->rb_right;
2619 
2620 		alt = 1 - alt;
2621 	}
2622 	return middle;
2623 }
2624 #endif
2625 
2626 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2627 {
2628 	u64 num_bytes;
2629 
2630 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2631 			     sizeof(struct btrfs_extent_inline_ref));
2632 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2633 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2634 
2635 	/*
2636 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2637 	 * closer to what we're really going to want to ouse.
2638 	 */
2639 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2640 }
2641 
2642 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2643 				       struct btrfs_root *root)
2644 {
2645 	struct btrfs_block_rsv *global_rsv;
2646 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2647 	u64 num_bytes;
2648 	int ret = 0;
2649 
2650 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2651 	num_heads = heads_to_leaves(root, num_heads);
2652 	if (num_heads > 1)
2653 		num_bytes += (num_heads - 1) * root->leafsize;
2654 	num_bytes <<= 1;
2655 	global_rsv = &root->fs_info->global_block_rsv;
2656 
2657 	/*
2658 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2659 	 * wiggle room since running delayed refs can create more delayed refs.
2660 	 */
2661 	if (global_rsv->space_info->full)
2662 		num_bytes <<= 1;
2663 
2664 	spin_lock(&global_rsv->lock);
2665 	if (global_rsv->reserved <= num_bytes)
2666 		ret = 1;
2667 	spin_unlock(&global_rsv->lock);
2668 	return ret;
2669 }
2670 
2671 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2672 				       struct btrfs_root *root)
2673 {
2674 	struct btrfs_fs_info *fs_info = root->fs_info;
2675 	u64 num_entries =
2676 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2677 	u64 avg_runtime;
2678 	u64 val;
2679 
2680 	smp_mb();
2681 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2682 	val = num_entries * avg_runtime;
2683 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2684 		return 1;
2685 	if (val >= NSEC_PER_SEC / 2)
2686 		return 2;
2687 
2688 	return btrfs_check_space_for_delayed_refs(trans, root);
2689 }
2690 
2691 struct async_delayed_refs {
2692 	struct btrfs_root *root;
2693 	int count;
2694 	int error;
2695 	int sync;
2696 	struct completion wait;
2697 	struct btrfs_work work;
2698 };
2699 
2700 static void delayed_ref_async_start(struct btrfs_work *work)
2701 {
2702 	struct async_delayed_refs *async;
2703 	struct btrfs_trans_handle *trans;
2704 	int ret;
2705 
2706 	async = container_of(work, struct async_delayed_refs, work);
2707 
2708 	trans = btrfs_join_transaction(async->root);
2709 	if (IS_ERR(trans)) {
2710 		async->error = PTR_ERR(trans);
2711 		goto done;
2712 	}
2713 
2714 	/*
2715 	 * trans->sync means that when we call end_transaciton, we won't
2716 	 * wait on delayed refs
2717 	 */
2718 	trans->sync = true;
2719 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2720 	if (ret)
2721 		async->error = ret;
2722 
2723 	ret = btrfs_end_transaction(trans, async->root);
2724 	if (ret && !async->error)
2725 		async->error = ret;
2726 done:
2727 	if (async->sync)
2728 		complete(&async->wait);
2729 	else
2730 		kfree(async);
2731 }
2732 
2733 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2734 				 unsigned long count, int wait)
2735 {
2736 	struct async_delayed_refs *async;
2737 	int ret;
2738 
2739 	async = kmalloc(sizeof(*async), GFP_NOFS);
2740 	if (!async)
2741 		return -ENOMEM;
2742 
2743 	async->root = root->fs_info->tree_root;
2744 	async->count = count;
2745 	async->error = 0;
2746 	if (wait)
2747 		async->sync = 1;
2748 	else
2749 		async->sync = 0;
2750 	init_completion(&async->wait);
2751 
2752 	btrfs_init_work(&async->work, delayed_ref_async_start,
2753 			NULL, NULL);
2754 
2755 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2756 
2757 	if (wait) {
2758 		wait_for_completion(&async->wait);
2759 		ret = async->error;
2760 		kfree(async);
2761 		return ret;
2762 	}
2763 	return 0;
2764 }
2765 
2766 /*
2767  * this starts processing the delayed reference count updates and
2768  * extent insertions we have queued up so far.  count can be
2769  * 0, which means to process everything in the tree at the start
2770  * of the run (but not newly added entries), or it can be some target
2771  * number you'd like to process.
2772  *
2773  * Returns 0 on success or if called with an aborted transaction
2774  * Returns <0 on error and aborts the transaction
2775  */
2776 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2777 			   struct btrfs_root *root, unsigned long count)
2778 {
2779 	struct rb_node *node;
2780 	struct btrfs_delayed_ref_root *delayed_refs;
2781 	struct btrfs_delayed_ref_head *head;
2782 	int ret;
2783 	int run_all = count == (unsigned long)-1;
2784 	int run_most = 0;
2785 
2786 	/* We'll clean this up in btrfs_cleanup_transaction */
2787 	if (trans->aborted)
2788 		return 0;
2789 
2790 	if (root == root->fs_info->extent_root)
2791 		root = root->fs_info->tree_root;
2792 
2793 	delayed_refs = &trans->transaction->delayed_refs;
2794 	if (count == 0) {
2795 		count = atomic_read(&delayed_refs->num_entries) * 2;
2796 		run_most = 1;
2797 	}
2798 
2799 again:
2800 #ifdef SCRAMBLE_DELAYED_REFS
2801 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2802 #endif
2803 	ret = __btrfs_run_delayed_refs(trans, root, count);
2804 	if (ret < 0) {
2805 		btrfs_abort_transaction(trans, root, ret);
2806 		return ret;
2807 	}
2808 
2809 	if (run_all) {
2810 		if (!list_empty(&trans->new_bgs))
2811 			btrfs_create_pending_block_groups(trans, root);
2812 
2813 		spin_lock(&delayed_refs->lock);
2814 		node = rb_first(&delayed_refs->href_root);
2815 		if (!node) {
2816 			spin_unlock(&delayed_refs->lock);
2817 			goto out;
2818 		}
2819 		count = (unsigned long)-1;
2820 
2821 		while (node) {
2822 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2823 					href_node);
2824 			if (btrfs_delayed_ref_is_head(&head->node)) {
2825 				struct btrfs_delayed_ref_node *ref;
2826 
2827 				ref = &head->node;
2828 				atomic_inc(&ref->refs);
2829 
2830 				spin_unlock(&delayed_refs->lock);
2831 				/*
2832 				 * Mutex was contended, block until it's
2833 				 * released and try again
2834 				 */
2835 				mutex_lock(&head->mutex);
2836 				mutex_unlock(&head->mutex);
2837 
2838 				btrfs_put_delayed_ref(ref);
2839 				cond_resched();
2840 				goto again;
2841 			} else {
2842 				WARN_ON(1);
2843 			}
2844 			node = rb_next(node);
2845 		}
2846 		spin_unlock(&delayed_refs->lock);
2847 		cond_resched();
2848 		goto again;
2849 	}
2850 out:
2851 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2852 	if (ret)
2853 		return ret;
2854 	assert_qgroups_uptodate(trans);
2855 	return 0;
2856 }
2857 
2858 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2859 				struct btrfs_root *root,
2860 				u64 bytenr, u64 num_bytes, u64 flags,
2861 				int level, int is_data)
2862 {
2863 	struct btrfs_delayed_extent_op *extent_op;
2864 	int ret;
2865 
2866 	extent_op = btrfs_alloc_delayed_extent_op();
2867 	if (!extent_op)
2868 		return -ENOMEM;
2869 
2870 	extent_op->flags_to_set = flags;
2871 	extent_op->update_flags = 1;
2872 	extent_op->update_key = 0;
2873 	extent_op->is_data = is_data ? 1 : 0;
2874 	extent_op->level = level;
2875 
2876 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2877 					  num_bytes, extent_op);
2878 	if (ret)
2879 		btrfs_free_delayed_extent_op(extent_op);
2880 	return ret;
2881 }
2882 
2883 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2884 				      struct btrfs_root *root,
2885 				      struct btrfs_path *path,
2886 				      u64 objectid, u64 offset, u64 bytenr)
2887 {
2888 	struct btrfs_delayed_ref_head *head;
2889 	struct btrfs_delayed_ref_node *ref;
2890 	struct btrfs_delayed_data_ref *data_ref;
2891 	struct btrfs_delayed_ref_root *delayed_refs;
2892 	struct rb_node *node;
2893 	int ret = 0;
2894 
2895 	delayed_refs = &trans->transaction->delayed_refs;
2896 	spin_lock(&delayed_refs->lock);
2897 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2898 	if (!head) {
2899 		spin_unlock(&delayed_refs->lock);
2900 		return 0;
2901 	}
2902 
2903 	if (!mutex_trylock(&head->mutex)) {
2904 		atomic_inc(&head->node.refs);
2905 		spin_unlock(&delayed_refs->lock);
2906 
2907 		btrfs_release_path(path);
2908 
2909 		/*
2910 		 * Mutex was contended, block until it's released and let
2911 		 * caller try again
2912 		 */
2913 		mutex_lock(&head->mutex);
2914 		mutex_unlock(&head->mutex);
2915 		btrfs_put_delayed_ref(&head->node);
2916 		return -EAGAIN;
2917 	}
2918 	spin_unlock(&delayed_refs->lock);
2919 
2920 	spin_lock(&head->lock);
2921 	node = rb_first(&head->ref_root);
2922 	while (node) {
2923 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2924 		node = rb_next(node);
2925 
2926 		/* If it's a shared ref we know a cross reference exists */
2927 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2928 			ret = 1;
2929 			break;
2930 		}
2931 
2932 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2933 
2934 		/*
2935 		 * If our ref doesn't match the one we're currently looking at
2936 		 * then we have a cross reference.
2937 		 */
2938 		if (data_ref->root != root->root_key.objectid ||
2939 		    data_ref->objectid != objectid ||
2940 		    data_ref->offset != offset) {
2941 			ret = 1;
2942 			break;
2943 		}
2944 	}
2945 	spin_unlock(&head->lock);
2946 	mutex_unlock(&head->mutex);
2947 	return ret;
2948 }
2949 
2950 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2951 					struct btrfs_root *root,
2952 					struct btrfs_path *path,
2953 					u64 objectid, u64 offset, u64 bytenr)
2954 {
2955 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2956 	struct extent_buffer *leaf;
2957 	struct btrfs_extent_data_ref *ref;
2958 	struct btrfs_extent_inline_ref *iref;
2959 	struct btrfs_extent_item *ei;
2960 	struct btrfs_key key;
2961 	u32 item_size;
2962 	int ret;
2963 
2964 	key.objectid = bytenr;
2965 	key.offset = (u64)-1;
2966 	key.type = BTRFS_EXTENT_ITEM_KEY;
2967 
2968 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2969 	if (ret < 0)
2970 		goto out;
2971 	BUG_ON(ret == 0); /* Corruption */
2972 
2973 	ret = -ENOENT;
2974 	if (path->slots[0] == 0)
2975 		goto out;
2976 
2977 	path->slots[0]--;
2978 	leaf = path->nodes[0];
2979 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2980 
2981 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2982 		goto out;
2983 
2984 	ret = 1;
2985 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2986 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2987 	if (item_size < sizeof(*ei)) {
2988 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2989 		goto out;
2990 	}
2991 #endif
2992 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2993 
2994 	if (item_size != sizeof(*ei) +
2995 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2996 		goto out;
2997 
2998 	if (btrfs_extent_generation(leaf, ei) <=
2999 	    btrfs_root_last_snapshot(&root->root_item))
3000 		goto out;
3001 
3002 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3003 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3004 	    BTRFS_EXTENT_DATA_REF_KEY)
3005 		goto out;
3006 
3007 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3008 	if (btrfs_extent_refs(leaf, ei) !=
3009 	    btrfs_extent_data_ref_count(leaf, ref) ||
3010 	    btrfs_extent_data_ref_root(leaf, ref) !=
3011 	    root->root_key.objectid ||
3012 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3013 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3014 		goto out;
3015 
3016 	ret = 0;
3017 out:
3018 	return ret;
3019 }
3020 
3021 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3022 			  struct btrfs_root *root,
3023 			  u64 objectid, u64 offset, u64 bytenr)
3024 {
3025 	struct btrfs_path *path;
3026 	int ret;
3027 	int ret2;
3028 
3029 	path = btrfs_alloc_path();
3030 	if (!path)
3031 		return -ENOENT;
3032 
3033 	do {
3034 		ret = check_committed_ref(trans, root, path, objectid,
3035 					  offset, bytenr);
3036 		if (ret && ret != -ENOENT)
3037 			goto out;
3038 
3039 		ret2 = check_delayed_ref(trans, root, path, objectid,
3040 					 offset, bytenr);
3041 	} while (ret2 == -EAGAIN);
3042 
3043 	if (ret2 && ret2 != -ENOENT) {
3044 		ret = ret2;
3045 		goto out;
3046 	}
3047 
3048 	if (ret != -ENOENT || ret2 != -ENOENT)
3049 		ret = 0;
3050 out:
3051 	btrfs_free_path(path);
3052 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3053 		WARN_ON(ret > 0);
3054 	return ret;
3055 }
3056 
3057 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3058 			   struct btrfs_root *root,
3059 			   struct extent_buffer *buf,
3060 			   int full_backref, int inc, int no_quota)
3061 {
3062 	u64 bytenr;
3063 	u64 num_bytes;
3064 	u64 parent;
3065 	u64 ref_root;
3066 	u32 nritems;
3067 	struct btrfs_key key;
3068 	struct btrfs_file_extent_item *fi;
3069 	int i;
3070 	int level;
3071 	int ret = 0;
3072 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3073 			    u64, u64, u64, u64, u64, u64, int);
3074 
3075 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3076 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
3077 		return 0;
3078 #endif
3079 	ref_root = btrfs_header_owner(buf);
3080 	nritems = btrfs_header_nritems(buf);
3081 	level = btrfs_header_level(buf);
3082 
3083 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3084 		return 0;
3085 
3086 	if (inc)
3087 		process_func = btrfs_inc_extent_ref;
3088 	else
3089 		process_func = btrfs_free_extent;
3090 
3091 	if (full_backref)
3092 		parent = buf->start;
3093 	else
3094 		parent = 0;
3095 
3096 	for (i = 0; i < nritems; i++) {
3097 		if (level == 0) {
3098 			btrfs_item_key_to_cpu(buf, &key, i);
3099 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3100 				continue;
3101 			fi = btrfs_item_ptr(buf, i,
3102 					    struct btrfs_file_extent_item);
3103 			if (btrfs_file_extent_type(buf, fi) ==
3104 			    BTRFS_FILE_EXTENT_INLINE)
3105 				continue;
3106 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3107 			if (bytenr == 0)
3108 				continue;
3109 
3110 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3111 			key.offset -= btrfs_file_extent_offset(buf, fi);
3112 			ret = process_func(trans, root, bytenr, num_bytes,
3113 					   parent, ref_root, key.objectid,
3114 					   key.offset, no_quota);
3115 			if (ret)
3116 				goto fail;
3117 		} else {
3118 			bytenr = btrfs_node_blockptr(buf, i);
3119 			num_bytes = btrfs_level_size(root, level - 1);
3120 			ret = process_func(trans, root, bytenr, num_bytes,
3121 					   parent, ref_root, level - 1, 0,
3122 					   no_quota);
3123 			if (ret)
3124 				goto fail;
3125 		}
3126 	}
3127 	return 0;
3128 fail:
3129 	return ret;
3130 }
3131 
3132 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3133 		  struct extent_buffer *buf, int full_backref, int no_quota)
3134 {
3135 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, no_quota);
3136 }
3137 
3138 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3139 		  struct extent_buffer *buf, int full_backref, int no_quota)
3140 {
3141 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, no_quota);
3142 }
3143 
3144 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3145 				 struct btrfs_root *root,
3146 				 struct btrfs_path *path,
3147 				 struct btrfs_block_group_cache *cache)
3148 {
3149 	int ret;
3150 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3151 	unsigned long bi;
3152 	struct extent_buffer *leaf;
3153 
3154 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3155 	if (ret < 0)
3156 		goto fail;
3157 	BUG_ON(ret); /* Corruption */
3158 
3159 	leaf = path->nodes[0];
3160 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3161 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3162 	btrfs_mark_buffer_dirty(leaf);
3163 	btrfs_release_path(path);
3164 fail:
3165 	if (ret) {
3166 		btrfs_abort_transaction(trans, root, ret);
3167 		return ret;
3168 	}
3169 	return 0;
3170 
3171 }
3172 
3173 static struct btrfs_block_group_cache *
3174 next_block_group(struct btrfs_root *root,
3175 		 struct btrfs_block_group_cache *cache)
3176 {
3177 	struct rb_node *node;
3178 	spin_lock(&root->fs_info->block_group_cache_lock);
3179 	node = rb_next(&cache->cache_node);
3180 	btrfs_put_block_group(cache);
3181 	if (node) {
3182 		cache = rb_entry(node, struct btrfs_block_group_cache,
3183 				 cache_node);
3184 		btrfs_get_block_group(cache);
3185 	} else
3186 		cache = NULL;
3187 	spin_unlock(&root->fs_info->block_group_cache_lock);
3188 	return cache;
3189 }
3190 
3191 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3192 			    struct btrfs_trans_handle *trans,
3193 			    struct btrfs_path *path)
3194 {
3195 	struct btrfs_root *root = block_group->fs_info->tree_root;
3196 	struct inode *inode = NULL;
3197 	u64 alloc_hint = 0;
3198 	int dcs = BTRFS_DC_ERROR;
3199 	int num_pages = 0;
3200 	int retries = 0;
3201 	int ret = 0;
3202 
3203 	/*
3204 	 * If this block group is smaller than 100 megs don't bother caching the
3205 	 * block group.
3206 	 */
3207 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3208 		spin_lock(&block_group->lock);
3209 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3210 		spin_unlock(&block_group->lock);
3211 		return 0;
3212 	}
3213 
3214 again:
3215 	inode = lookup_free_space_inode(root, block_group, path);
3216 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3217 		ret = PTR_ERR(inode);
3218 		btrfs_release_path(path);
3219 		goto out;
3220 	}
3221 
3222 	if (IS_ERR(inode)) {
3223 		BUG_ON(retries);
3224 		retries++;
3225 
3226 		if (block_group->ro)
3227 			goto out_free;
3228 
3229 		ret = create_free_space_inode(root, trans, block_group, path);
3230 		if (ret)
3231 			goto out_free;
3232 		goto again;
3233 	}
3234 
3235 	/* We've already setup this transaction, go ahead and exit */
3236 	if (block_group->cache_generation == trans->transid &&
3237 	    i_size_read(inode)) {
3238 		dcs = BTRFS_DC_SETUP;
3239 		goto out_put;
3240 	}
3241 
3242 	/*
3243 	 * We want to set the generation to 0, that way if anything goes wrong
3244 	 * from here on out we know not to trust this cache when we load up next
3245 	 * time.
3246 	 */
3247 	BTRFS_I(inode)->generation = 0;
3248 	ret = btrfs_update_inode(trans, root, inode);
3249 	WARN_ON(ret);
3250 
3251 	if (i_size_read(inode) > 0) {
3252 		ret = btrfs_check_trunc_cache_free_space(root,
3253 					&root->fs_info->global_block_rsv);
3254 		if (ret)
3255 			goto out_put;
3256 
3257 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3258 		if (ret)
3259 			goto out_put;
3260 	}
3261 
3262 	spin_lock(&block_group->lock);
3263 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3264 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3265 	    block_group->delalloc_bytes) {
3266 		/*
3267 		 * don't bother trying to write stuff out _if_
3268 		 * a) we're not cached,
3269 		 * b) we're with nospace_cache mount option.
3270 		 */
3271 		dcs = BTRFS_DC_WRITTEN;
3272 		spin_unlock(&block_group->lock);
3273 		goto out_put;
3274 	}
3275 	spin_unlock(&block_group->lock);
3276 
3277 	/*
3278 	 * Try to preallocate enough space based on how big the block group is.
3279 	 * Keep in mind this has to include any pinned space which could end up
3280 	 * taking up quite a bit since it's not folded into the other space
3281 	 * cache.
3282 	 */
3283 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3284 	if (!num_pages)
3285 		num_pages = 1;
3286 
3287 	num_pages *= 16;
3288 	num_pages *= PAGE_CACHE_SIZE;
3289 
3290 	ret = btrfs_check_data_free_space(inode, num_pages);
3291 	if (ret)
3292 		goto out_put;
3293 
3294 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3295 					      num_pages, num_pages,
3296 					      &alloc_hint);
3297 	if (!ret)
3298 		dcs = BTRFS_DC_SETUP;
3299 	btrfs_free_reserved_data_space(inode, num_pages);
3300 
3301 out_put:
3302 	iput(inode);
3303 out_free:
3304 	btrfs_release_path(path);
3305 out:
3306 	spin_lock(&block_group->lock);
3307 	if (!ret && dcs == BTRFS_DC_SETUP)
3308 		block_group->cache_generation = trans->transid;
3309 	block_group->disk_cache_state = dcs;
3310 	spin_unlock(&block_group->lock);
3311 
3312 	return ret;
3313 }
3314 
3315 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3316 				   struct btrfs_root *root)
3317 {
3318 	struct btrfs_block_group_cache *cache;
3319 	int err = 0;
3320 	struct btrfs_path *path;
3321 	u64 last = 0;
3322 
3323 	path = btrfs_alloc_path();
3324 	if (!path)
3325 		return -ENOMEM;
3326 
3327 again:
3328 	while (1) {
3329 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3330 		while (cache) {
3331 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3332 				break;
3333 			cache = next_block_group(root, cache);
3334 		}
3335 		if (!cache) {
3336 			if (last == 0)
3337 				break;
3338 			last = 0;
3339 			continue;
3340 		}
3341 		err = cache_save_setup(cache, trans, path);
3342 		last = cache->key.objectid + cache->key.offset;
3343 		btrfs_put_block_group(cache);
3344 	}
3345 
3346 	while (1) {
3347 		if (last == 0) {
3348 			err = btrfs_run_delayed_refs(trans, root,
3349 						     (unsigned long)-1);
3350 			if (err) /* File system offline */
3351 				goto out;
3352 		}
3353 
3354 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3355 		while (cache) {
3356 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3357 				btrfs_put_block_group(cache);
3358 				goto again;
3359 			}
3360 
3361 			if (cache->dirty)
3362 				break;
3363 			cache = next_block_group(root, cache);
3364 		}
3365 		if (!cache) {
3366 			if (last == 0)
3367 				break;
3368 			last = 0;
3369 			continue;
3370 		}
3371 
3372 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3373 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3374 		cache->dirty = 0;
3375 		last = cache->key.objectid + cache->key.offset;
3376 
3377 		err = write_one_cache_group(trans, root, path, cache);
3378 		btrfs_put_block_group(cache);
3379 		if (err) /* File system offline */
3380 			goto out;
3381 	}
3382 
3383 	while (1) {
3384 		/*
3385 		 * I don't think this is needed since we're just marking our
3386 		 * preallocated extent as written, but just in case it can't
3387 		 * hurt.
3388 		 */
3389 		if (last == 0) {
3390 			err = btrfs_run_delayed_refs(trans, root,
3391 						     (unsigned long)-1);
3392 			if (err) /* File system offline */
3393 				goto out;
3394 		}
3395 
3396 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3397 		while (cache) {
3398 			/*
3399 			 * Really this shouldn't happen, but it could if we
3400 			 * couldn't write the entire preallocated extent and
3401 			 * splitting the extent resulted in a new block.
3402 			 */
3403 			if (cache->dirty) {
3404 				btrfs_put_block_group(cache);
3405 				goto again;
3406 			}
3407 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3408 				break;
3409 			cache = next_block_group(root, cache);
3410 		}
3411 		if (!cache) {
3412 			if (last == 0)
3413 				break;
3414 			last = 0;
3415 			continue;
3416 		}
3417 
3418 		err = btrfs_write_out_cache(root, trans, cache, path);
3419 
3420 		/*
3421 		 * If we didn't have an error then the cache state is still
3422 		 * NEED_WRITE, so we can set it to WRITTEN.
3423 		 */
3424 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3425 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3426 		last = cache->key.objectid + cache->key.offset;
3427 		btrfs_put_block_group(cache);
3428 	}
3429 out:
3430 
3431 	btrfs_free_path(path);
3432 	return err;
3433 }
3434 
3435 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3436 {
3437 	struct btrfs_block_group_cache *block_group;
3438 	int readonly = 0;
3439 
3440 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3441 	if (!block_group || block_group->ro)
3442 		readonly = 1;
3443 	if (block_group)
3444 		btrfs_put_block_group(block_group);
3445 	return readonly;
3446 }
3447 
3448 static const char *alloc_name(u64 flags)
3449 {
3450 	switch (flags) {
3451 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3452 		return "mixed";
3453 	case BTRFS_BLOCK_GROUP_METADATA:
3454 		return "metadata";
3455 	case BTRFS_BLOCK_GROUP_DATA:
3456 		return "data";
3457 	case BTRFS_BLOCK_GROUP_SYSTEM:
3458 		return "system";
3459 	default:
3460 		WARN_ON(1);
3461 		return "invalid-combination";
3462 	};
3463 }
3464 
3465 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3466 			     u64 total_bytes, u64 bytes_used,
3467 			     struct btrfs_space_info **space_info)
3468 {
3469 	struct btrfs_space_info *found;
3470 	int i;
3471 	int factor;
3472 	int ret;
3473 
3474 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3475 		     BTRFS_BLOCK_GROUP_RAID10))
3476 		factor = 2;
3477 	else
3478 		factor = 1;
3479 
3480 	found = __find_space_info(info, flags);
3481 	if (found) {
3482 		spin_lock(&found->lock);
3483 		found->total_bytes += total_bytes;
3484 		found->disk_total += total_bytes * factor;
3485 		found->bytes_used += bytes_used;
3486 		found->disk_used += bytes_used * factor;
3487 		found->full = 0;
3488 		spin_unlock(&found->lock);
3489 		*space_info = found;
3490 		return 0;
3491 	}
3492 	found = kzalloc(sizeof(*found), GFP_NOFS);
3493 	if (!found)
3494 		return -ENOMEM;
3495 
3496 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3497 	if (ret) {
3498 		kfree(found);
3499 		return ret;
3500 	}
3501 
3502 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3503 		INIT_LIST_HEAD(&found->block_groups[i]);
3504 	init_rwsem(&found->groups_sem);
3505 	spin_lock_init(&found->lock);
3506 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3507 	found->total_bytes = total_bytes;
3508 	found->disk_total = total_bytes * factor;
3509 	found->bytes_used = bytes_used;
3510 	found->disk_used = bytes_used * factor;
3511 	found->bytes_pinned = 0;
3512 	found->bytes_reserved = 0;
3513 	found->bytes_readonly = 0;
3514 	found->bytes_may_use = 0;
3515 	found->full = 0;
3516 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3517 	found->chunk_alloc = 0;
3518 	found->flush = 0;
3519 	init_waitqueue_head(&found->wait);
3520 
3521 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3522 				    info->space_info_kobj, "%s",
3523 				    alloc_name(found->flags));
3524 	if (ret) {
3525 		kfree(found);
3526 		return ret;
3527 	}
3528 
3529 	*space_info = found;
3530 	list_add_rcu(&found->list, &info->space_info);
3531 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3532 		info->data_sinfo = found;
3533 
3534 	return ret;
3535 }
3536 
3537 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3538 {
3539 	u64 extra_flags = chunk_to_extended(flags) &
3540 				BTRFS_EXTENDED_PROFILE_MASK;
3541 
3542 	write_seqlock(&fs_info->profiles_lock);
3543 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3544 		fs_info->avail_data_alloc_bits |= extra_flags;
3545 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3546 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3547 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3548 		fs_info->avail_system_alloc_bits |= extra_flags;
3549 	write_sequnlock(&fs_info->profiles_lock);
3550 }
3551 
3552 /*
3553  * returns target flags in extended format or 0 if restripe for this
3554  * chunk_type is not in progress
3555  *
3556  * should be called with either volume_mutex or balance_lock held
3557  */
3558 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3559 {
3560 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3561 	u64 target = 0;
3562 
3563 	if (!bctl)
3564 		return 0;
3565 
3566 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3567 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3568 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3569 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3570 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3571 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3572 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3573 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3574 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3575 	}
3576 
3577 	return target;
3578 }
3579 
3580 /*
3581  * @flags: available profiles in extended format (see ctree.h)
3582  *
3583  * Returns reduced profile in chunk format.  If profile changing is in
3584  * progress (either running or paused) picks the target profile (if it's
3585  * already available), otherwise falls back to plain reducing.
3586  */
3587 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3588 {
3589 	/*
3590 	 * we add in the count of missing devices because we want
3591 	 * to make sure that any RAID levels on a degraded FS
3592 	 * continue to be honored.
3593 	 */
3594 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3595 		root->fs_info->fs_devices->missing_devices;
3596 	u64 target;
3597 	u64 tmp;
3598 
3599 	/*
3600 	 * see if restripe for this chunk_type is in progress, if so
3601 	 * try to reduce to the target profile
3602 	 */
3603 	spin_lock(&root->fs_info->balance_lock);
3604 	target = get_restripe_target(root->fs_info, flags);
3605 	if (target) {
3606 		/* pick target profile only if it's already available */
3607 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3608 			spin_unlock(&root->fs_info->balance_lock);
3609 			return extended_to_chunk(target);
3610 		}
3611 	}
3612 	spin_unlock(&root->fs_info->balance_lock);
3613 
3614 	/* First, mask out the RAID levels which aren't possible */
3615 	if (num_devices == 1)
3616 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3617 			   BTRFS_BLOCK_GROUP_RAID5);
3618 	if (num_devices < 3)
3619 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3620 	if (num_devices < 4)
3621 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3622 
3623 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3624 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3625 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3626 	flags &= ~tmp;
3627 
3628 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3629 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3630 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3631 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3632 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3633 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3634 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3635 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3636 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3637 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3638 
3639 	return extended_to_chunk(flags | tmp);
3640 }
3641 
3642 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3643 {
3644 	unsigned seq;
3645 	u64 flags;
3646 
3647 	do {
3648 		flags = orig_flags;
3649 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3650 
3651 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3652 			flags |= root->fs_info->avail_data_alloc_bits;
3653 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3654 			flags |= root->fs_info->avail_system_alloc_bits;
3655 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3656 			flags |= root->fs_info->avail_metadata_alloc_bits;
3657 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3658 
3659 	return btrfs_reduce_alloc_profile(root, flags);
3660 }
3661 
3662 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3663 {
3664 	u64 flags;
3665 	u64 ret;
3666 
3667 	if (data)
3668 		flags = BTRFS_BLOCK_GROUP_DATA;
3669 	else if (root == root->fs_info->chunk_root)
3670 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3671 	else
3672 		flags = BTRFS_BLOCK_GROUP_METADATA;
3673 
3674 	ret = get_alloc_profile(root, flags);
3675 	return ret;
3676 }
3677 
3678 /*
3679  * This will check the space that the inode allocates from to make sure we have
3680  * enough space for bytes.
3681  */
3682 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3683 {
3684 	struct btrfs_space_info *data_sinfo;
3685 	struct btrfs_root *root = BTRFS_I(inode)->root;
3686 	struct btrfs_fs_info *fs_info = root->fs_info;
3687 	u64 used;
3688 	int ret = 0, committed = 0, alloc_chunk = 1;
3689 
3690 	/* make sure bytes are sectorsize aligned */
3691 	bytes = ALIGN(bytes, root->sectorsize);
3692 
3693 	if (btrfs_is_free_space_inode(inode)) {
3694 		committed = 1;
3695 		ASSERT(current->journal_info);
3696 	}
3697 
3698 	data_sinfo = fs_info->data_sinfo;
3699 	if (!data_sinfo)
3700 		goto alloc;
3701 
3702 again:
3703 	/* make sure we have enough space to handle the data first */
3704 	spin_lock(&data_sinfo->lock);
3705 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3706 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3707 		data_sinfo->bytes_may_use;
3708 
3709 	if (used + bytes > data_sinfo->total_bytes) {
3710 		struct btrfs_trans_handle *trans;
3711 
3712 		/*
3713 		 * if we don't have enough free bytes in this space then we need
3714 		 * to alloc a new chunk.
3715 		 */
3716 		if (!data_sinfo->full && alloc_chunk) {
3717 			u64 alloc_target;
3718 
3719 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3720 			spin_unlock(&data_sinfo->lock);
3721 alloc:
3722 			alloc_target = btrfs_get_alloc_profile(root, 1);
3723 			/*
3724 			 * It is ugly that we don't call nolock join
3725 			 * transaction for the free space inode case here.
3726 			 * But it is safe because we only do the data space
3727 			 * reservation for the free space cache in the
3728 			 * transaction context, the common join transaction
3729 			 * just increase the counter of the current transaction
3730 			 * handler, doesn't try to acquire the trans_lock of
3731 			 * the fs.
3732 			 */
3733 			trans = btrfs_join_transaction(root);
3734 			if (IS_ERR(trans))
3735 				return PTR_ERR(trans);
3736 
3737 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3738 					     alloc_target,
3739 					     CHUNK_ALLOC_NO_FORCE);
3740 			btrfs_end_transaction(trans, root);
3741 			if (ret < 0) {
3742 				if (ret != -ENOSPC)
3743 					return ret;
3744 				else
3745 					goto commit_trans;
3746 			}
3747 
3748 			if (!data_sinfo)
3749 				data_sinfo = fs_info->data_sinfo;
3750 
3751 			goto again;
3752 		}
3753 
3754 		/*
3755 		 * If we don't have enough pinned space to deal with this
3756 		 * allocation don't bother committing the transaction.
3757 		 */
3758 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3759 					   bytes) < 0)
3760 			committed = 1;
3761 		spin_unlock(&data_sinfo->lock);
3762 
3763 		/* commit the current transaction and try again */
3764 commit_trans:
3765 		if (!committed &&
3766 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3767 			committed = 1;
3768 
3769 			trans = btrfs_join_transaction(root);
3770 			if (IS_ERR(trans))
3771 				return PTR_ERR(trans);
3772 			ret = btrfs_commit_transaction(trans, root);
3773 			if (ret)
3774 				return ret;
3775 			goto again;
3776 		}
3777 
3778 		trace_btrfs_space_reservation(root->fs_info,
3779 					      "space_info:enospc",
3780 					      data_sinfo->flags, bytes, 1);
3781 		return -ENOSPC;
3782 	}
3783 	data_sinfo->bytes_may_use += bytes;
3784 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3785 				      data_sinfo->flags, bytes, 1);
3786 	spin_unlock(&data_sinfo->lock);
3787 
3788 	return 0;
3789 }
3790 
3791 /*
3792  * Called if we need to clear a data reservation for this inode.
3793  */
3794 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3795 {
3796 	struct btrfs_root *root = BTRFS_I(inode)->root;
3797 	struct btrfs_space_info *data_sinfo;
3798 
3799 	/* make sure bytes are sectorsize aligned */
3800 	bytes = ALIGN(bytes, root->sectorsize);
3801 
3802 	data_sinfo = root->fs_info->data_sinfo;
3803 	spin_lock(&data_sinfo->lock);
3804 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3805 	data_sinfo->bytes_may_use -= bytes;
3806 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3807 				      data_sinfo->flags, bytes, 0);
3808 	spin_unlock(&data_sinfo->lock);
3809 }
3810 
3811 static void force_metadata_allocation(struct btrfs_fs_info *info)
3812 {
3813 	struct list_head *head = &info->space_info;
3814 	struct btrfs_space_info *found;
3815 
3816 	rcu_read_lock();
3817 	list_for_each_entry_rcu(found, head, list) {
3818 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3819 			found->force_alloc = CHUNK_ALLOC_FORCE;
3820 	}
3821 	rcu_read_unlock();
3822 }
3823 
3824 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3825 {
3826 	return (global->size << 1);
3827 }
3828 
3829 static int should_alloc_chunk(struct btrfs_root *root,
3830 			      struct btrfs_space_info *sinfo, int force)
3831 {
3832 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3833 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3834 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3835 	u64 thresh;
3836 
3837 	if (force == CHUNK_ALLOC_FORCE)
3838 		return 1;
3839 
3840 	/*
3841 	 * We need to take into account the global rsv because for all intents
3842 	 * and purposes it's used space.  Don't worry about locking the
3843 	 * global_rsv, it doesn't change except when the transaction commits.
3844 	 */
3845 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3846 		num_allocated += calc_global_rsv_need_space(global_rsv);
3847 
3848 	/*
3849 	 * in limited mode, we want to have some free space up to
3850 	 * about 1% of the FS size.
3851 	 */
3852 	if (force == CHUNK_ALLOC_LIMITED) {
3853 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3854 		thresh = max_t(u64, 64 * 1024 * 1024,
3855 			       div_factor_fine(thresh, 1));
3856 
3857 		if (num_bytes - num_allocated < thresh)
3858 			return 1;
3859 	}
3860 
3861 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3862 		return 0;
3863 	return 1;
3864 }
3865 
3866 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3867 {
3868 	u64 num_dev;
3869 
3870 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3871 		    BTRFS_BLOCK_GROUP_RAID0 |
3872 		    BTRFS_BLOCK_GROUP_RAID5 |
3873 		    BTRFS_BLOCK_GROUP_RAID6))
3874 		num_dev = root->fs_info->fs_devices->rw_devices;
3875 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3876 		num_dev = 2;
3877 	else
3878 		num_dev = 1;	/* DUP or single */
3879 
3880 	/* metadata for updaing devices and chunk tree */
3881 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3882 }
3883 
3884 static void check_system_chunk(struct btrfs_trans_handle *trans,
3885 			       struct btrfs_root *root, u64 type)
3886 {
3887 	struct btrfs_space_info *info;
3888 	u64 left;
3889 	u64 thresh;
3890 
3891 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3892 	spin_lock(&info->lock);
3893 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3894 		info->bytes_reserved - info->bytes_readonly;
3895 	spin_unlock(&info->lock);
3896 
3897 	thresh = get_system_chunk_thresh(root, type);
3898 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3899 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3900 			left, thresh, type);
3901 		dump_space_info(info, 0, 0);
3902 	}
3903 
3904 	if (left < thresh) {
3905 		u64 flags;
3906 
3907 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3908 		btrfs_alloc_chunk(trans, root, flags);
3909 	}
3910 }
3911 
3912 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3913 			  struct btrfs_root *extent_root, u64 flags, int force)
3914 {
3915 	struct btrfs_space_info *space_info;
3916 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3917 	int wait_for_alloc = 0;
3918 	int ret = 0;
3919 
3920 	/* Don't re-enter if we're already allocating a chunk */
3921 	if (trans->allocating_chunk)
3922 		return -ENOSPC;
3923 
3924 	space_info = __find_space_info(extent_root->fs_info, flags);
3925 	if (!space_info) {
3926 		ret = update_space_info(extent_root->fs_info, flags,
3927 					0, 0, &space_info);
3928 		BUG_ON(ret); /* -ENOMEM */
3929 	}
3930 	BUG_ON(!space_info); /* Logic error */
3931 
3932 again:
3933 	spin_lock(&space_info->lock);
3934 	if (force < space_info->force_alloc)
3935 		force = space_info->force_alloc;
3936 	if (space_info->full) {
3937 		if (should_alloc_chunk(extent_root, space_info, force))
3938 			ret = -ENOSPC;
3939 		else
3940 			ret = 0;
3941 		spin_unlock(&space_info->lock);
3942 		return ret;
3943 	}
3944 
3945 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3946 		spin_unlock(&space_info->lock);
3947 		return 0;
3948 	} else if (space_info->chunk_alloc) {
3949 		wait_for_alloc = 1;
3950 	} else {
3951 		space_info->chunk_alloc = 1;
3952 	}
3953 
3954 	spin_unlock(&space_info->lock);
3955 
3956 	mutex_lock(&fs_info->chunk_mutex);
3957 
3958 	/*
3959 	 * The chunk_mutex is held throughout the entirety of a chunk
3960 	 * allocation, so once we've acquired the chunk_mutex we know that the
3961 	 * other guy is done and we need to recheck and see if we should
3962 	 * allocate.
3963 	 */
3964 	if (wait_for_alloc) {
3965 		mutex_unlock(&fs_info->chunk_mutex);
3966 		wait_for_alloc = 0;
3967 		goto again;
3968 	}
3969 
3970 	trans->allocating_chunk = true;
3971 
3972 	/*
3973 	 * If we have mixed data/metadata chunks we want to make sure we keep
3974 	 * allocating mixed chunks instead of individual chunks.
3975 	 */
3976 	if (btrfs_mixed_space_info(space_info))
3977 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3978 
3979 	/*
3980 	 * if we're doing a data chunk, go ahead and make sure that
3981 	 * we keep a reasonable number of metadata chunks allocated in the
3982 	 * FS as well.
3983 	 */
3984 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3985 		fs_info->data_chunk_allocations++;
3986 		if (!(fs_info->data_chunk_allocations %
3987 		      fs_info->metadata_ratio))
3988 			force_metadata_allocation(fs_info);
3989 	}
3990 
3991 	/*
3992 	 * Check if we have enough space in SYSTEM chunk because we may need
3993 	 * to update devices.
3994 	 */
3995 	check_system_chunk(trans, extent_root, flags);
3996 
3997 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3998 	trans->allocating_chunk = false;
3999 
4000 	spin_lock(&space_info->lock);
4001 	if (ret < 0 && ret != -ENOSPC)
4002 		goto out;
4003 	if (ret)
4004 		space_info->full = 1;
4005 	else
4006 		ret = 1;
4007 
4008 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4009 out:
4010 	space_info->chunk_alloc = 0;
4011 	spin_unlock(&space_info->lock);
4012 	mutex_unlock(&fs_info->chunk_mutex);
4013 	return ret;
4014 }
4015 
4016 static int can_overcommit(struct btrfs_root *root,
4017 			  struct btrfs_space_info *space_info, u64 bytes,
4018 			  enum btrfs_reserve_flush_enum flush)
4019 {
4020 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4021 	u64 profile = btrfs_get_alloc_profile(root, 0);
4022 	u64 space_size;
4023 	u64 avail;
4024 	u64 used;
4025 
4026 	used = space_info->bytes_used + space_info->bytes_reserved +
4027 		space_info->bytes_pinned + space_info->bytes_readonly;
4028 
4029 	/*
4030 	 * We only want to allow over committing if we have lots of actual space
4031 	 * free, but if we don't have enough space to handle the global reserve
4032 	 * space then we could end up having a real enospc problem when trying
4033 	 * to allocate a chunk or some other such important allocation.
4034 	 */
4035 	spin_lock(&global_rsv->lock);
4036 	space_size = calc_global_rsv_need_space(global_rsv);
4037 	spin_unlock(&global_rsv->lock);
4038 	if (used + space_size >= space_info->total_bytes)
4039 		return 0;
4040 
4041 	used += space_info->bytes_may_use;
4042 
4043 	spin_lock(&root->fs_info->free_chunk_lock);
4044 	avail = root->fs_info->free_chunk_space;
4045 	spin_unlock(&root->fs_info->free_chunk_lock);
4046 
4047 	/*
4048 	 * If we have dup, raid1 or raid10 then only half of the free
4049 	 * space is actually useable.  For raid56, the space info used
4050 	 * doesn't include the parity drive, so we don't have to
4051 	 * change the math
4052 	 */
4053 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4054 		       BTRFS_BLOCK_GROUP_RAID1 |
4055 		       BTRFS_BLOCK_GROUP_RAID10))
4056 		avail >>= 1;
4057 
4058 	/*
4059 	 * If we aren't flushing all things, let us overcommit up to
4060 	 * 1/2th of the space. If we can flush, don't let us overcommit
4061 	 * too much, let it overcommit up to 1/8 of the space.
4062 	 */
4063 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4064 		avail >>= 3;
4065 	else
4066 		avail >>= 1;
4067 
4068 	if (used + bytes < space_info->total_bytes + avail)
4069 		return 1;
4070 	return 0;
4071 }
4072 
4073 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4074 					 unsigned long nr_pages, int nr_items)
4075 {
4076 	struct super_block *sb = root->fs_info->sb;
4077 
4078 	if (down_read_trylock(&sb->s_umount)) {
4079 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4080 		up_read(&sb->s_umount);
4081 	} else {
4082 		/*
4083 		 * We needn't worry the filesystem going from r/w to r/o though
4084 		 * we don't acquire ->s_umount mutex, because the filesystem
4085 		 * should guarantee the delalloc inodes list be empty after
4086 		 * the filesystem is readonly(all dirty pages are written to
4087 		 * the disk).
4088 		 */
4089 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4090 		if (!current->journal_info)
4091 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4092 	}
4093 }
4094 
4095 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4096 {
4097 	u64 bytes;
4098 	int nr;
4099 
4100 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4101 	nr = (int)div64_u64(to_reclaim, bytes);
4102 	if (!nr)
4103 		nr = 1;
4104 	return nr;
4105 }
4106 
4107 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4108 
4109 /*
4110  * shrink metadata reservation for delalloc
4111  */
4112 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4113 			    bool wait_ordered)
4114 {
4115 	struct btrfs_block_rsv *block_rsv;
4116 	struct btrfs_space_info *space_info;
4117 	struct btrfs_trans_handle *trans;
4118 	u64 delalloc_bytes;
4119 	u64 max_reclaim;
4120 	long time_left;
4121 	unsigned long nr_pages;
4122 	int loops;
4123 	int items;
4124 	enum btrfs_reserve_flush_enum flush;
4125 
4126 	/* Calc the number of the pages we need flush for space reservation */
4127 	items = calc_reclaim_items_nr(root, to_reclaim);
4128 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4129 
4130 	trans = (struct btrfs_trans_handle *)current->journal_info;
4131 	block_rsv = &root->fs_info->delalloc_block_rsv;
4132 	space_info = block_rsv->space_info;
4133 
4134 	delalloc_bytes = percpu_counter_sum_positive(
4135 						&root->fs_info->delalloc_bytes);
4136 	if (delalloc_bytes == 0) {
4137 		if (trans)
4138 			return;
4139 		if (wait_ordered)
4140 			btrfs_wait_ordered_roots(root->fs_info, items);
4141 		return;
4142 	}
4143 
4144 	loops = 0;
4145 	while (delalloc_bytes && loops < 3) {
4146 		max_reclaim = min(delalloc_bytes, to_reclaim);
4147 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4148 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4149 		/*
4150 		 * We need to wait for the async pages to actually start before
4151 		 * we do anything.
4152 		 */
4153 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4154 		if (!max_reclaim)
4155 			goto skip_async;
4156 
4157 		if (max_reclaim <= nr_pages)
4158 			max_reclaim = 0;
4159 		else
4160 			max_reclaim -= nr_pages;
4161 
4162 		wait_event(root->fs_info->async_submit_wait,
4163 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4164 			   (int)max_reclaim);
4165 skip_async:
4166 		if (!trans)
4167 			flush = BTRFS_RESERVE_FLUSH_ALL;
4168 		else
4169 			flush = BTRFS_RESERVE_NO_FLUSH;
4170 		spin_lock(&space_info->lock);
4171 		if (can_overcommit(root, space_info, orig, flush)) {
4172 			spin_unlock(&space_info->lock);
4173 			break;
4174 		}
4175 		spin_unlock(&space_info->lock);
4176 
4177 		loops++;
4178 		if (wait_ordered && !trans) {
4179 			btrfs_wait_ordered_roots(root->fs_info, items);
4180 		} else {
4181 			time_left = schedule_timeout_killable(1);
4182 			if (time_left)
4183 				break;
4184 		}
4185 		delalloc_bytes = percpu_counter_sum_positive(
4186 						&root->fs_info->delalloc_bytes);
4187 	}
4188 }
4189 
4190 /**
4191  * maybe_commit_transaction - possibly commit the transaction if its ok to
4192  * @root - the root we're allocating for
4193  * @bytes - the number of bytes we want to reserve
4194  * @force - force the commit
4195  *
4196  * This will check to make sure that committing the transaction will actually
4197  * get us somewhere and then commit the transaction if it does.  Otherwise it
4198  * will return -ENOSPC.
4199  */
4200 static int may_commit_transaction(struct btrfs_root *root,
4201 				  struct btrfs_space_info *space_info,
4202 				  u64 bytes, int force)
4203 {
4204 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4205 	struct btrfs_trans_handle *trans;
4206 
4207 	trans = (struct btrfs_trans_handle *)current->journal_info;
4208 	if (trans)
4209 		return -EAGAIN;
4210 
4211 	if (force)
4212 		goto commit;
4213 
4214 	/* See if there is enough pinned space to make this reservation */
4215 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4216 				   bytes) >= 0)
4217 		goto commit;
4218 
4219 	/*
4220 	 * See if there is some space in the delayed insertion reservation for
4221 	 * this reservation.
4222 	 */
4223 	if (space_info != delayed_rsv->space_info)
4224 		return -ENOSPC;
4225 
4226 	spin_lock(&delayed_rsv->lock);
4227 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4228 				   bytes - delayed_rsv->size) >= 0) {
4229 		spin_unlock(&delayed_rsv->lock);
4230 		return -ENOSPC;
4231 	}
4232 	spin_unlock(&delayed_rsv->lock);
4233 
4234 commit:
4235 	trans = btrfs_join_transaction(root);
4236 	if (IS_ERR(trans))
4237 		return -ENOSPC;
4238 
4239 	return btrfs_commit_transaction(trans, root);
4240 }
4241 
4242 enum flush_state {
4243 	FLUSH_DELAYED_ITEMS_NR	=	1,
4244 	FLUSH_DELAYED_ITEMS	=	2,
4245 	FLUSH_DELALLOC		=	3,
4246 	FLUSH_DELALLOC_WAIT	=	4,
4247 	ALLOC_CHUNK		=	5,
4248 	COMMIT_TRANS		=	6,
4249 };
4250 
4251 static int flush_space(struct btrfs_root *root,
4252 		       struct btrfs_space_info *space_info, u64 num_bytes,
4253 		       u64 orig_bytes, int state)
4254 {
4255 	struct btrfs_trans_handle *trans;
4256 	int nr;
4257 	int ret = 0;
4258 
4259 	switch (state) {
4260 	case FLUSH_DELAYED_ITEMS_NR:
4261 	case FLUSH_DELAYED_ITEMS:
4262 		if (state == FLUSH_DELAYED_ITEMS_NR)
4263 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4264 		else
4265 			nr = -1;
4266 
4267 		trans = btrfs_join_transaction(root);
4268 		if (IS_ERR(trans)) {
4269 			ret = PTR_ERR(trans);
4270 			break;
4271 		}
4272 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4273 		btrfs_end_transaction(trans, root);
4274 		break;
4275 	case FLUSH_DELALLOC:
4276 	case FLUSH_DELALLOC_WAIT:
4277 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4278 				state == FLUSH_DELALLOC_WAIT);
4279 		break;
4280 	case ALLOC_CHUNK:
4281 		trans = btrfs_join_transaction(root);
4282 		if (IS_ERR(trans)) {
4283 			ret = PTR_ERR(trans);
4284 			break;
4285 		}
4286 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4287 				     btrfs_get_alloc_profile(root, 0),
4288 				     CHUNK_ALLOC_NO_FORCE);
4289 		btrfs_end_transaction(trans, root);
4290 		if (ret == -ENOSPC)
4291 			ret = 0;
4292 		break;
4293 	case COMMIT_TRANS:
4294 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4295 		break;
4296 	default:
4297 		ret = -ENOSPC;
4298 		break;
4299 	}
4300 
4301 	return ret;
4302 }
4303 
4304 static inline u64
4305 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4306 				 struct btrfs_space_info *space_info)
4307 {
4308 	u64 used;
4309 	u64 expected;
4310 	u64 to_reclaim;
4311 
4312 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4313 				16 * 1024 * 1024);
4314 	spin_lock(&space_info->lock);
4315 	if (can_overcommit(root, space_info, to_reclaim,
4316 			   BTRFS_RESERVE_FLUSH_ALL)) {
4317 		to_reclaim = 0;
4318 		goto out;
4319 	}
4320 
4321 	used = space_info->bytes_used + space_info->bytes_reserved +
4322 	       space_info->bytes_pinned + space_info->bytes_readonly +
4323 	       space_info->bytes_may_use;
4324 	if (can_overcommit(root, space_info, 1024 * 1024,
4325 			   BTRFS_RESERVE_FLUSH_ALL))
4326 		expected = div_factor_fine(space_info->total_bytes, 95);
4327 	else
4328 		expected = div_factor_fine(space_info->total_bytes, 90);
4329 
4330 	if (used > expected)
4331 		to_reclaim = used - expected;
4332 	else
4333 		to_reclaim = 0;
4334 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4335 				     space_info->bytes_reserved);
4336 out:
4337 	spin_unlock(&space_info->lock);
4338 
4339 	return to_reclaim;
4340 }
4341 
4342 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4343 					struct btrfs_fs_info *fs_info, u64 used)
4344 {
4345 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4346 		!btrfs_fs_closing(fs_info) &&
4347 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4348 }
4349 
4350 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4351 				       struct btrfs_fs_info *fs_info)
4352 {
4353 	u64 used;
4354 
4355 	spin_lock(&space_info->lock);
4356 	used = space_info->bytes_used + space_info->bytes_reserved +
4357 	       space_info->bytes_pinned + space_info->bytes_readonly +
4358 	       space_info->bytes_may_use;
4359 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4360 		spin_unlock(&space_info->lock);
4361 		return 1;
4362 	}
4363 	spin_unlock(&space_info->lock);
4364 
4365 	return 0;
4366 }
4367 
4368 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4369 {
4370 	struct btrfs_fs_info *fs_info;
4371 	struct btrfs_space_info *space_info;
4372 	u64 to_reclaim;
4373 	int flush_state;
4374 
4375 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4376 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4377 
4378 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4379 						      space_info);
4380 	if (!to_reclaim)
4381 		return;
4382 
4383 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4384 	do {
4385 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4386 			    to_reclaim, flush_state);
4387 		flush_state++;
4388 		if (!btrfs_need_do_async_reclaim(space_info, fs_info))
4389 			return;
4390 	} while (flush_state <= COMMIT_TRANS);
4391 
4392 	if (btrfs_need_do_async_reclaim(space_info, fs_info))
4393 		queue_work(system_unbound_wq, work);
4394 }
4395 
4396 void btrfs_init_async_reclaim_work(struct work_struct *work)
4397 {
4398 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4399 }
4400 
4401 /**
4402  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4403  * @root - the root we're allocating for
4404  * @block_rsv - the block_rsv we're allocating for
4405  * @orig_bytes - the number of bytes we want
4406  * @flush - whether or not we can flush to make our reservation
4407  *
4408  * This will reserve orgi_bytes number of bytes from the space info associated
4409  * with the block_rsv.  If there is not enough space it will make an attempt to
4410  * flush out space to make room.  It will do this by flushing delalloc if
4411  * possible or committing the transaction.  If flush is 0 then no attempts to
4412  * regain reservations will be made and this will fail if there is not enough
4413  * space already.
4414  */
4415 static int reserve_metadata_bytes(struct btrfs_root *root,
4416 				  struct btrfs_block_rsv *block_rsv,
4417 				  u64 orig_bytes,
4418 				  enum btrfs_reserve_flush_enum flush)
4419 {
4420 	struct btrfs_space_info *space_info = block_rsv->space_info;
4421 	u64 used;
4422 	u64 num_bytes = orig_bytes;
4423 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4424 	int ret = 0;
4425 	bool flushing = false;
4426 
4427 again:
4428 	ret = 0;
4429 	spin_lock(&space_info->lock);
4430 	/*
4431 	 * We only want to wait if somebody other than us is flushing and we
4432 	 * are actually allowed to flush all things.
4433 	 */
4434 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4435 	       space_info->flush) {
4436 		spin_unlock(&space_info->lock);
4437 		/*
4438 		 * If we have a trans handle we can't wait because the flusher
4439 		 * may have to commit the transaction, which would mean we would
4440 		 * deadlock since we are waiting for the flusher to finish, but
4441 		 * hold the current transaction open.
4442 		 */
4443 		if (current->journal_info)
4444 			return -EAGAIN;
4445 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4446 		/* Must have been killed, return */
4447 		if (ret)
4448 			return -EINTR;
4449 
4450 		spin_lock(&space_info->lock);
4451 	}
4452 
4453 	ret = -ENOSPC;
4454 	used = space_info->bytes_used + space_info->bytes_reserved +
4455 		space_info->bytes_pinned + space_info->bytes_readonly +
4456 		space_info->bytes_may_use;
4457 
4458 	/*
4459 	 * The idea here is that we've not already over-reserved the block group
4460 	 * then we can go ahead and save our reservation first and then start
4461 	 * flushing if we need to.  Otherwise if we've already overcommitted
4462 	 * lets start flushing stuff first and then come back and try to make
4463 	 * our reservation.
4464 	 */
4465 	if (used <= space_info->total_bytes) {
4466 		if (used + orig_bytes <= space_info->total_bytes) {
4467 			space_info->bytes_may_use += orig_bytes;
4468 			trace_btrfs_space_reservation(root->fs_info,
4469 				"space_info", space_info->flags, orig_bytes, 1);
4470 			ret = 0;
4471 		} else {
4472 			/*
4473 			 * Ok set num_bytes to orig_bytes since we aren't
4474 			 * overocmmitted, this way we only try and reclaim what
4475 			 * we need.
4476 			 */
4477 			num_bytes = orig_bytes;
4478 		}
4479 	} else {
4480 		/*
4481 		 * Ok we're over committed, set num_bytes to the overcommitted
4482 		 * amount plus the amount of bytes that we need for this
4483 		 * reservation.
4484 		 */
4485 		num_bytes = used - space_info->total_bytes +
4486 			(orig_bytes * 2);
4487 	}
4488 
4489 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4490 		space_info->bytes_may_use += orig_bytes;
4491 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4492 					      space_info->flags, orig_bytes,
4493 					      1);
4494 		ret = 0;
4495 	}
4496 
4497 	/*
4498 	 * Couldn't make our reservation, save our place so while we're trying
4499 	 * to reclaim space we can actually use it instead of somebody else
4500 	 * stealing it from us.
4501 	 *
4502 	 * We make the other tasks wait for the flush only when we can flush
4503 	 * all things.
4504 	 */
4505 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4506 		flushing = true;
4507 		space_info->flush = 1;
4508 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4509 		used += orig_bytes;
4510 		if (need_do_async_reclaim(space_info, root->fs_info, used) &&
4511 		    !work_busy(&root->fs_info->async_reclaim_work))
4512 			queue_work(system_unbound_wq,
4513 				   &root->fs_info->async_reclaim_work);
4514 	}
4515 	spin_unlock(&space_info->lock);
4516 
4517 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4518 		goto out;
4519 
4520 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4521 			  flush_state);
4522 	flush_state++;
4523 
4524 	/*
4525 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4526 	 * would happen. So skip delalloc flush.
4527 	 */
4528 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4529 	    (flush_state == FLUSH_DELALLOC ||
4530 	     flush_state == FLUSH_DELALLOC_WAIT))
4531 		flush_state = ALLOC_CHUNK;
4532 
4533 	if (!ret)
4534 		goto again;
4535 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4536 		 flush_state < COMMIT_TRANS)
4537 		goto again;
4538 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4539 		 flush_state <= COMMIT_TRANS)
4540 		goto again;
4541 
4542 out:
4543 	if (ret == -ENOSPC &&
4544 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4545 		struct btrfs_block_rsv *global_rsv =
4546 			&root->fs_info->global_block_rsv;
4547 
4548 		if (block_rsv != global_rsv &&
4549 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4550 			ret = 0;
4551 	}
4552 	if (ret == -ENOSPC)
4553 		trace_btrfs_space_reservation(root->fs_info,
4554 					      "space_info:enospc",
4555 					      space_info->flags, orig_bytes, 1);
4556 	if (flushing) {
4557 		spin_lock(&space_info->lock);
4558 		space_info->flush = 0;
4559 		wake_up_all(&space_info->wait);
4560 		spin_unlock(&space_info->lock);
4561 	}
4562 	return ret;
4563 }
4564 
4565 static struct btrfs_block_rsv *get_block_rsv(
4566 					const struct btrfs_trans_handle *trans,
4567 					const struct btrfs_root *root)
4568 {
4569 	struct btrfs_block_rsv *block_rsv = NULL;
4570 
4571 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4572 		block_rsv = trans->block_rsv;
4573 
4574 	if (root == root->fs_info->csum_root && trans->adding_csums)
4575 		block_rsv = trans->block_rsv;
4576 
4577 	if (root == root->fs_info->uuid_root)
4578 		block_rsv = trans->block_rsv;
4579 
4580 	if (!block_rsv)
4581 		block_rsv = root->block_rsv;
4582 
4583 	if (!block_rsv)
4584 		block_rsv = &root->fs_info->empty_block_rsv;
4585 
4586 	return block_rsv;
4587 }
4588 
4589 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4590 			       u64 num_bytes)
4591 {
4592 	int ret = -ENOSPC;
4593 	spin_lock(&block_rsv->lock);
4594 	if (block_rsv->reserved >= num_bytes) {
4595 		block_rsv->reserved -= num_bytes;
4596 		if (block_rsv->reserved < block_rsv->size)
4597 			block_rsv->full = 0;
4598 		ret = 0;
4599 	}
4600 	spin_unlock(&block_rsv->lock);
4601 	return ret;
4602 }
4603 
4604 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4605 				u64 num_bytes, int update_size)
4606 {
4607 	spin_lock(&block_rsv->lock);
4608 	block_rsv->reserved += num_bytes;
4609 	if (update_size)
4610 		block_rsv->size += num_bytes;
4611 	else if (block_rsv->reserved >= block_rsv->size)
4612 		block_rsv->full = 1;
4613 	spin_unlock(&block_rsv->lock);
4614 }
4615 
4616 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4617 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4618 			     int min_factor)
4619 {
4620 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4621 	u64 min_bytes;
4622 
4623 	if (global_rsv->space_info != dest->space_info)
4624 		return -ENOSPC;
4625 
4626 	spin_lock(&global_rsv->lock);
4627 	min_bytes = div_factor(global_rsv->size, min_factor);
4628 	if (global_rsv->reserved < min_bytes + num_bytes) {
4629 		spin_unlock(&global_rsv->lock);
4630 		return -ENOSPC;
4631 	}
4632 	global_rsv->reserved -= num_bytes;
4633 	if (global_rsv->reserved < global_rsv->size)
4634 		global_rsv->full = 0;
4635 	spin_unlock(&global_rsv->lock);
4636 
4637 	block_rsv_add_bytes(dest, num_bytes, 1);
4638 	return 0;
4639 }
4640 
4641 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4642 				    struct btrfs_block_rsv *block_rsv,
4643 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4644 {
4645 	struct btrfs_space_info *space_info = block_rsv->space_info;
4646 
4647 	spin_lock(&block_rsv->lock);
4648 	if (num_bytes == (u64)-1)
4649 		num_bytes = block_rsv->size;
4650 	block_rsv->size -= num_bytes;
4651 	if (block_rsv->reserved >= block_rsv->size) {
4652 		num_bytes = block_rsv->reserved - block_rsv->size;
4653 		block_rsv->reserved = block_rsv->size;
4654 		block_rsv->full = 1;
4655 	} else {
4656 		num_bytes = 0;
4657 	}
4658 	spin_unlock(&block_rsv->lock);
4659 
4660 	if (num_bytes > 0) {
4661 		if (dest) {
4662 			spin_lock(&dest->lock);
4663 			if (!dest->full) {
4664 				u64 bytes_to_add;
4665 
4666 				bytes_to_add = dest->size - dest->reserved;
4667 				bytes_to_add = min(num_bytes, bytes_to_add);
4668 				dest->reserved += bytes_to_add;
4669 				if (dest->reserved >= dest->size)
4670 					dest->full = 1;
4671 				num_bytes -= bytes_to_add;
4672 			}
4673 			spin_unlock(&dest->lock);
4674 		}
4675 		if (num_bytes) {
4676 			spin_lock(&space_info->lock);
4677 			space_info->bytes_may_use -= num_bytes;
4678 			trace_btrfs_space_reservation(fs_info, "space_info",
4679 					space_info->flags, num_bytes, 0);
4680 			spin_unlock(&space_info->lock);
4681 		}
4682 	}
4683 }
4684 
4685 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4686 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4687 {
4688 	int ret;
4689 
4690 	ret = block_rsv_use_bytes(src, num_bytes);
4691 	if (ret)
4692 		return ret;
4693 
4694 	block_rsv_add_bytes(dst, num_bytes, 1);
4695 	return 0;
4696 }
4697 
4698 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4699 {
4700 	memset(rsv, 0, sizeof(*rsv));
4701 	spin_lock_init(&rsv->lock);
4702 	rsv->type = type;
4703 }
4704 
4705 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4706 					      unsigned short type)
4707 {
4708 	struct btrfs_block_rsv *block_rsv;
4709 	struct btrfs_fs_info *fs_info = root->fs_info;
4710 
4711 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4712 	if (!block_rsv)
4713 		return NULL;
4714 
4715 	btrfs_init_block_rsv(block_rsv, type);
4716 	block_rsv->space_info = __find_space_info(fs_info,
4717 						  BTRFS_BLOCK_GROUP_METADATA);
4718 	return block_rsv;
4719 }
4720 
4721 void btrfs_free_block_rsv(struct btrfs_root *root,
4722 			  struct btrfs_block_rsv *rsv)
4723 {
4724 	if (!rsv)
4725 		return;
4726 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4727 	kfree(rsv);
4728 }
4729 
4730 int btrfs_block_rsv_add(struct btrfs_root *root,
4731 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4732 			enum btrfs_reserve_flush_enum flush)
4733 {
4734 	int ret;
4735 
4736 	if (num_bytes == 0)
4737 		return 0;
4738 
4739 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4740 	if (!ret) {
4741 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4742 		return 0;
4743 	}
4744 
4745 	return ret;
4746 }
4747 
4748 int btrfs_block_rsv_check(struct btrfs_root *root,
4749 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4750 {
4751 	u64 num_bytes = 0;
4752 	int ret = -ENOSPC;
4753 
4754 	if (!block_rsv)
4755 		return 0;
4756 
4757 	spin_lock(&block_rsv->lock);
4758 	num_bytes = div_factor(block_rsv->size, min_factor);
4759 	if (block_rsv->reserved >= num_bytes)
4760 		ret = 0;
4761 	spin_unlock(&block_rsv->lock);
4762 
4763 	return ret;
4764 }
4765 
4766 int btrfs_block_rsv_refill(struct btrfs_root *root,
4767 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4768 			   enum btrfs_reserve_flush_enum flush)
4769 {
4770 	u64 num_bytes = 0;
4771 	int ret = -ENOSPC;
4772 
4773 	if (!block_rsv)
4774 		return 0;
4775 
4776 	spin_lock(&block_rsv->lock);
4777 	num_bytes = min_reserved;
4778 	if (block_rsv->reserved >= num_bytes)
4779 		ret = 0;
4780 	else
4781 		num_bytes -= block_rsv->reserved;
4782 	spin_unlock(&block_rsv->lock);
4783 
4784 	if (!ret)
4785 		return 0;
4786 
4787 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4788 	if (!ret) {
4789 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4790 		return 0;
4791 	}
4792 
4793 	return ret;
4794 }
4795 
4796 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4797 			    struct btrfs_block_rsv *dst_rsv,
4798 			    u64 num_bytes)
4799 {
4800 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4801 }
4802 
4803 void btrfs_block_rsv_release(struct btrfs_root *root,
4804 			     struct btrfs_block_rsv *block_rsv,
4805 			     u64 num_bytes)
4806 {
4807 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4808 	if (global_rsv == block_rsv ||
4809 	    block_rsv->space_info != global_rsv->space_info)
4810 		global_rsv = NULL;
4811 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4812 				num_bytes);
4813 }
4814 
4815 /*
4816  * helper to calculate size of global block reservation.
4817  * the desired value is sum of space used by extent tree,
4818  * checksum tree and root tree
4819  */
4820 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4821 {
4822 	struct btrfs_space_info *sinfo;
4823 	u64 num_bytes;
4824 	u64 meta_used;
4825 	u64 data_used;
4826 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4827 
4828 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4829 	spin_lock(&sinfo->lock);
4830 	data_used = sinfo->bytes_used;
4831 	spin_unlock(&sinfo->lock);
4832 
4833 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4834 	spin_lock(&sinfo->lock);
4835 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4836 		data_used = 0;
4837 	meta_used = sinfo->bytes_used;
4838 	spin_unlock(&sinfo->lock);
4839 
4840 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4841 		    csum_size * 2;
4842 	num_bytes += div64_u64(data_used + meta_used, 50);
4843 
4844 	if (num_bytes * 3 > meta_used)
4845 		num_bytes = div64_u64(meta_used, 3);
4846 
4847 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4848 }
4849 
4850 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4851 {
4852 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4853 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4854 	u64 num_bytes;
4855 
4856 	num_bytes = calc_global_metadata_size(fs_info);
4857 
4858 	spin_lock(&sinfo->lock);
4859 	spin_lock(&block_rsv->lock);
4860 
4861 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4862 
4863 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4864 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4865 		    sinfo->bytes_may_use;
4866 
4867 	if (sinfo->total_bytes > num_bytes) {
4868 		num_bytes = sinfo->total_bytes - num_bytes;
4869 		block_rsv->reserved += num_bytes;
4870 		sinfo->bytes_may_use += num_bytes;
4871 		trace_btrfs_space_reservation(fs_info, "space_info",
4872 				      sinfo->flags, num_bytes, 1);
4873 	}
4874 
4875 	if (block_rsv->reserved >= block_rsv->size) {
4876 		num_bytes = block_rsv->reserved - block_rsv->size;
4877 		sinfo->bytes_may_use -= num_bytes;
4878 		trace_btrfs_space_reservation(fs_info, "space_info",
4879 				      sinfo->flags, num_bytes, 0);
4880 		block_rsv->reserved = block_rsv->size;
4881 		block_rsv->full = 1;
4882 	}
4883 
4884 	spin_unlock(&block_rsv->lock);
4885 	spin_unlock(&sinfo->lock);
4886 }
4887 
4888 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4889 {
4890 	struct btrfs_space_info *space_info;
4891 
4892 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4893 	fs_info->chunk_block_rsv.space_info = space_info;
4894 
4895 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4896 	fs_info->global_block_rsv.space_info = space_info;
4897 	fs_info->delalloc_block_rsv.space_info = space_info;
4898 	fs_info->trans_block_rsv.space_info = space_info;
4899 	fs_info->empty_block_rsv.space_info = space_info;
4900 	fs_info->delayed_block_rsv.space_info = space_info;
4901 
4902 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4903 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4904 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4905 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4906 	if (fs_info->quota_root)
4907 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4908 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4909 
4910 	update_global_block_rsv(fs_info);
4911 }
4912 
4913 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4914 {
4915 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4916 				(u64)-1);
4917 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4918 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4919 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4920 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4921 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4922 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4923 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4924 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4925 }
4926 
4927 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4928 				  struct btrfs_root *root)
4929 {
4930 	if (!trans->block_rsv)
4931 		return;
4932 
4933 	if (!trans->bytes_reserved)
4934 		return;
4935 
4936 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4937 				      trans->transid, trans->bytes_reserved, 0);
4938 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4939 	trans->bytes_reserved = 0;
4940 }
4941 
4942 /* Can only return 0 or -ENOSPC */
4943 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4944 				  struct inode *inode)
4945 {
4946 	struct btrfs_root *root = BTRFS_I(inode)->root;
4947 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4948 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4949 
4950 	/*
4951 	 * We need to hold space in order to delete our orphan item once we've
4952 	 * added it, so this takes the reservation so we can release it later
4953 	 * when we are truly done with the orphan item.
4954 	 */
4955 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4956 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4957 				      btrfs_ino(inode), num_bytes, 1);
4958 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4959 }
4960 
4961 void btrfs_orphan_release_metadata(struct inode *inode)
4962 {
4963 	struct btrfs_root *root = BTRFS_I(inode)->root;
4964 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4965 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4966 				      btrfs_ino(inode), num_bytes, 0);
4967 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4968 }
4969 
4970 /*
4971  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4972  * root: the root of the parent directory
4973  * rsv: block reservation
4974  * items: the number of items that we need do reservation
4975  * qgroup_reserved: used to return the reserved size in qgroup
4976  *
4977  * This function is used to reserve the space for snapshot/subvolume
4978  * creation and deletion. Those operations are different with the
4979  * common file/directory operations, they change two fs/file trees
4980  * and root tree, the number of items that the qgroup reserves is
4981  * different with the free space reservation. So we can not use
4982  * the space reseravtion mechanism in start_transaction().
4983  */
4984 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4985 				     struct btrfs_block_rsv *rsv,
4986 				     int items,
4987 				     u64 *qgroup_reserved,
4988 				     bool use_global_rsv)
4989 {
4990 	u64 num_bytes;
4991 	int ret;
4992 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4993 
4994 	if (root->fs_info->quota_enabled) {
4995 		/* One for parent inode, two for dir entries */
4996 		num_bytes = 3 * root->leafsize;
4997 		ret = btrfs_qgroup_reserve(root, num_bytes);
4998 		if (ret)
4999 			return ret;
5000 	} else {
5001 		num_bytes = 0;
5002 	}
5003 
5004 	*qgroup_reserved = num_bytes;
5005 
5006 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5007 	rsv->space_info = __find_space_info(root->fs_info,
5008 					    BTRFS_BLOCK_GROUP_METADATA);
5009 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5010 				  BTRFS_RESERVE_FLUSH_ALL);
5011 
5012 	if (ret == -ENOSPC && use_global_rsv)
5013 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5014 
5015 	if (ret) {
5016 		if (*qgroup_reserved)
5017 			btrfs_qgroup_free(root, *qgroup_reserved);
5018 	}
5019 
5020 	return ret;
5021 }
5022 
5023 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5024 				      struct btrfs_block_rsv *rsv,
5025 				      u64 qgroup_reserved)
5026 {
5027 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5028 	if (qgroup_reserved)
5029 		btrfs_qgroup_free(root, qgroup_reserved);
5030 }
5031 
5032 /**
5033  * drop_outstanding_extent - drop an outstanding extent
5034  * @inode: the inode we're dropping the extent for
5035  *
5036  * This is called when we are freeing up an outstanding extent, either called
5037  * after an error or after an extent is written.  This will return the number of
5038  * reserved extents that need to be freed.  This must be called with
5039  * BTRFS_I(inode)->lock held.
5040  */
5041 static unsigned drop_outstanding_extent(struct inode *inode)
5042 {
5043 	unsigned drop_inode_space = 0;
5044 	unsigned dropped_extents = 0;
5045 
5046 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5047 	BTRFS_I(inode)->outstanding_extents--;
5048 
5049 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5050 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5051 			       &BTRFS_I(inode)->runtime_flags))
5052 		drop_inode_space = 1;
5053 
5054 	/*
5055 	 * If we have more or the same amount of outsanding extents than we have
5056 	 * reserved then we need to leave the reserved extents count alone.
5057 	 */
5058 	if (BTRFS_I(inode)->outstanding_extents >=
5059 	    BTRFS_I(inode)->reserved_extents)
5060 		return drop_inode_space;
5061 
5062 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5063 		BTRFS_I(inode)->outstanding_extents;
5064 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5065 	return dropped_extents + drop_inode_space;
5066 }
5067 
5068 /**
5069  * calc_csum_metadata_size - return the amount of metada space that must be
5070  *	reserved/free'd for the given bytes.
5071  * @inode: the inode we're manipulating
5072  * @num_bytes: the number of bytes in question
5073  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5074  *
5075  * This adjusts the number of csum_bytes in the inode and then returns the
5076  * correct amount of metadata that must either be reserved or freed.  We
5077  * calculate how many checksums we can fit into one leaf and then divide the
5078  * number of bytes that will need to be checksumed by this value to figure out
5079  * how many checksums will be required.  If we are adding bytes then the number
5080  * may go up and we will return the number of additional bytes that must be
5081  * reserved.  If it is going down we will return the number of bytes that must
5082  * be freed.
5083  *
5084  * This must be called with BTRFS_I(inode)->lock held.
5085  */
5086 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5087 				   int reserve)
5088 {
5089 	struct btrfs_root *root = BTRFS_I(inode)->root;
5090 	u64 csum_size;
5091 	int num_csums_per_leaf;
5092 	int num_csums;
5093 	int old_csums;
5094 
5095 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5096 	    BTRFS_I(inode)->csum_bytes == 0)
5097 		return 0;
5098 
5099 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5100 	if (reserve)
5101 		BTRFS_I(inode)->csum_bytes += num_bytes;
5102 	else
5103 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5104 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5105 	num_csums_per_leaf = (int)div64_u64(csum_size,
5106 					    sizeof(struct btrfs_csum_item) +
5107 					    sizeof(struct btrfs_disk_key));
5108 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5109 	num_csums = num_csums + num_csums_per_leaf - 1;
5110 	num_csums = num_csums / num_csums_per_leaf;
5111 
5112 	old_csums = old_csums + num_csums_per_leaf - 1;
5113 	old_csums = old_csums / num_csums_per_leaf;
5114 
5115 	/* No change, no need to reserve more */
5116 	if (old_csums == num_csums)
5117 		return 0;
5118 
5119 	if (reserve)
5120 		return btrfs_calc_trans_metadata_size(root,
5121 						      num_csums - old_csums);
5122 
5123 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5124 }
5125 
5126 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5127 {
5128 	struct btrfs_root *root = BTRFS_I(inode)->root;
5129 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5130 	u64 to_reserve = 0;
5131 	u64 csum_bytes;
5132 	unsigned nr_extents = 0;
5133 	int extra_reserve = 0;
5134 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5135 	int ret = 0;
5136 	bool delalloc_lock = true;
5137 	u64 to_free = 0;
5138 	unsigned dropped;
5139 
5140 	/* If we are a free space inode we need to not flush since we will be in
5141 	 * the middle of a transaction commit.  We also don't need the delalloc
5142 	 * mutex since we won't race with anybody.  We need this mostly to make
5143 	 * lockdep shut its filthy mouth.
5144 	 */
5145 	if (btrfs_is_free_space_inode(inode)) {
5146 		flush = BTRFS_RESERVE_NO_FLUSH;
5147 		delalloc_lock = false;
5148 	}
5149 
5150 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5151 	    btrfs_transaction_in_commit(root->fs_info))
5152 		schedule_timeout(1);
5153 
5154 	if (delalloc_lock)
5155 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5156 
5157 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5158 
5159 	spin_lock(&BTRFS_I(inode)->lock);
5160 	BTRFS_I(inode)->outstanding_extents++;
5161 
5162 	if (BTRFS_I(inode)->outstanding_extents >
5163 	    BTRFS_I(inode)->reserved_extents)
5164 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5165 			BTRFS_I(inode)->reserved_extents;
5166 
5167 	/*
5168 	 * Add an item to reserve for updating the inode when we complete the
5169 	 * delalloc io.
5170 	 */
5171 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5172 		      &BTRFS_I(inode)->runtime_flags)) {
5173 		nr_extents++;
5174 		extra_reserve = 1;
5175 	}
5176 
5177 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5178 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5179 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5180 	spin_unlock(&BTRFS_I(inode)->lock);
5181 
5182 	if (root->fs_info->quota_enabled) {
5183 		ret = btrfs_qgroup_reserve(root, num_bytes +
5184 					   nr_extents * root->leafsize);
5185 		if (ret)
5186 			goto out_fail;
5187 	}
5188 
5189 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5190 	if (unlikely(ret)) {
5191 		if (root->fs_info->quota_enabled)
5192 			btrfs_qgroup_free(root, num_bytes +
5193 						nr_extents * root->leafsize);
5194 		goto out_fail;
5195 	}
5196 
5197 	spin_lock(&BTRFS_I(inode)->lock);
5198 	if (extra_reserve) {
5199 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5200 			&BTRFS_I(inode)->runtime_flags);
5201 		nr_extents--;
5202 	}
5203 	BTRFS_I(inode)->reserved_extents += nr_extents;
5204 	spin_unlock(&BTRFS_I(inode)->lock);
5205 
5206 	if (delalloc_lock)
5207 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5208 
5209 	if (to_reserve)
5210 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5211 					      btrfs_ino(inode), to_reserve, 1);
5212 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5213 
5214 	return 0;
5215 
5216 out_fail:
5217 	spin_lock(&BTRFS_I(inode)->lock);
5218 	dropped = drop_outstanding_extent(inode);
5219 	/*
5220 	 * If the inodes csum_bytes is the same as the original
5221 	 * csum_bytes then we know we haven't raced with any free()ers
5222 	 * so we can just reduce our inodes csum bytes and carry on.
5223 	 */
5224 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5225 		calc_csum_metadata_size(inode, num_bytes, 0);
5226 	} else {
5227 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5228 		u64 bytes;
5229 
5230 		/*
5231 		 * This is tricky, but first we need to figure out how much we
5232 		 * free'd from any free-ers that occured during this
5233 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5234 		 * before we dropped our lock, and then call the free for the
5235 		 * number of bytes that were freed while we were trying our
5236 		 * reservation.
5237 		 */
5238 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5239 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5240 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5241 
5242 
5243 		/*
5244 		 * Now we need to see how much we would have freed had we not
5245 		 * been making this reservation and our ->csum_bytes were not
5246 		 * artificially inflated.
5247 		 */
5248 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5249 		bytes = csum_bytes - orig_csum_bytes;
5250 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5251 
5252 		/*
5253 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5254 		 * more than to_free then we would have free'd more space had we
5255 		 * not had an artificially high ->csum_bytes, so we need to free
5256 		 * the remainder.  If bytes is the same or less then we don't
5257 		 * need to do anything, the other free-ers did the correct
5258 		 * thing.
5259 		 */
5260 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5261 		if (bytes > to_free)
5262 			to_free = bytes - to_free;
5263 		else
5264 			to_free = 0;
5265 	}
5266 	spin_unlock(&BTRFS_I(inode)->lock);
5267 	if (dropped)
5268 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5269 
5270 	if (to_free) {
5271 		btrfs_block_rsv_release(root, block_rsv, to_free);
5272 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5273 					      btrfs_ino(inode), to_free, 0);
5274 	}
5275 	if (delalloc_lock)
5276 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5277 	return ret;
5278 }
5279 
5280 /**
5281  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5282  * @inode: the inode to release the reservation for
5283  * @num_bytes: the number of bytes we're releasing
5284  *
5285  * This will release the metadata reservation for an inode.  This can be called
5286  * once we complete IO for a given set of bytes to release their metadata
5287  * reservations.
5288  */
5289 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5290 {
5291 	struct btrfs_root *root = BTRFS_I(inode)->root;
5292 	u64 to_free = 0;
5293 	unsigned dropped;
5294 
5295 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5296 	spin_lock(&BTRFS_I(inode)->lock);
5297 	dropped = drop_outstanding_extent(inode);
5298 
5299 	if (num_bytes)
5300 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5301 	spin_unlock(&BTRFS_I(inode)->lock);
5302 	if (dropped > 0)
5303 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5304 
5305 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5306 				      btrfs_ino(inode), to_free, 0);
5307 	if (root->fs_info->quota_enabled) {
5308 		btrfs_qgroup_free(root, num_bytes +
5309 					dropped * root->leafsize);
5310 	}
5311 
5312 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5313 				to_free);
5314 }
5315 
5316 /**
5317  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5318  * @inode: inode we're writing to
5319  * @num_bytes: the number of bytes we want to allocate
5320  *
5321  * This will do the following things
5322  *
5323  * o reserve space in the data space info for num_bytes
5324  * o reserve space in the metadata space info based on number of outstanding
5325  *   extents and how much csums will be needed
5326  * o add to the inodes ->delalloc_bytes
5327  * o add it to the fs_info's delalloc inodes list.
5328  *
5329  * This will return 0 for success and -ENOSPC if there is no space left.
5330  */
5331 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5332 {
5333 	int ret;
5334 
5335 	ret = btrfs_check_data_free_space(inode, num_bytes);
5336 	if (ret)
5337 		return ret;
5338 
5339 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5340 	if (ret) {
5341 		btrfs_free_reserved_data_space(inode, num_bytes);
5342 		return ret;
5343 	}
5344 
5345 	return 0;
5346 }
5347 
5348 /**
5349  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5350  * @inode: inode we're releasing space for
5351  * @num_bytes: the number of bytes we want to free up
5352  *
5353  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5354  * called in the case that we don't need the metadata AND data reservations
5355  * anymore.  So if there is an error or we insert an inline extent.
5356  *
5357  * This function will release the metadata space that was not used and will
5358  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5359  * list if there are no delalloc bytes left.
5360  */
5361 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5362 {
5363 	btrfs_delalloc_release_metadata(inode, num_bytes);
5364 	btrfs_free_reserved_data_space(inode, num_bytes);
5365 }
5366 
5367 static int update_block_group(struct btrfs_root *root,
5368 			      u64 bytenr, u64 num_bytes, int alloc)
5369 {
5370 	struct btrfs_block_group_cache *cache = NULL;
5371 	struct btrfs_fs_info *info = root->fs_info;
5372 	u64 total = num_bytes;
5373 	u64 old_val;
5374 	u64 byte_in_group;
5375 	int factor;
5376 
5377 	/* block accounting for super block */
5378 	spin_lock(&info->delalloc_root_lock);
5379 	old_val = btrfs_super_bytes_used(info->super_copy);
5380 	if (alloc)
5381 		old_val += num_bytes;
5382 	else
5383 		old_val -= num_bytes;
5384 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5385 	spin_unlock(&info->delalloc_root_lock);
5386 
5387 	while (total) {
5388 		cache = btrfs_lookup_block_group(info, bytenr);
5389 		if (!cache)
5390 			return -ENOENT;
5391 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5392 				    BTRFS_BLOCK_GROUP_RAID1 |
5393 				    BTRFS_BLOCK_GROUP_RAID10))
5394 			factor = 2;
5395 		else
5396 			factor = 1;
5397 		/*
5398 		 * If this block group has free space cache written out, we
5399 		 * need to make sure to load it if we are removing space.  This
5400 		 * is because we need the unpinning stage to actually add the
5401 		 * space back to the block group, otherwise we will leak space.
5402 		 */
5403 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5404 			cache_block_group(cache, 1);
5405 
5406 		byte_in_group = bytenr - cache->key.objectid;
5407 		WARN_ON(byte_in_group > cache->key.offset);
5408 
5409 		spin_lock(&cache->space_info->lock);
5410 		spin_lock(&cache->lock);
5411 
5412 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5413 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5414 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5415 
5416 		cache->dirty = 1;
5417 		old_val = btrfs_block_group_used(&cache->item);
5418 		num_bytes = min(total, cache->key.offset - byte_in_group);
5419 		if (alloc) {
5420 			old_val += num_bytes;
5421 			btrfs_set_block_group_used(&cache->item, old_val);
5422 			cache->reserved -= num_bytes;
5423 			cache->space_info->bytes_reserved -= num_bytes;
5424 			cache->space_info->bytes_used += num_bytes;
5425 			cache->space_info->disk_used += num_bytes * factor;
5426 			spin_unlock(&cache->lock);
5427 			spin_unlock(&cache->space_info->lock);
5428 		} else {
5429 			old_val -= num_bytes;
5430 			btrfs_set_block_group_used(&cache->item, old_val);
5431 			cache->pinned += num_bytes;
5432 			cache->space_info->bytes_pinned += num_bytes;
5433 			cache->space_info->bytes_used -= num_bytes;
5434 			cache->space_info->disk_used -= num_bytes * factor;
5435 			spin_unlock(&cache->lock);
5436 			spin_unlock(&cache->space_info->lock);
5437 
5438 			set_extent_dirty(info->pinned_extents,
5439 					 bytenr, bytenr + num_bytes - 1,
5440 					 GFP_NOFS | __GFP_NOFAIL);
5441 		}
5442 		btrfs_put_block_group(cache);
5443 		total -= num_bytes;
5444 		bytenr += num_bytes;
5445 	}
5446 	return 0;
5447 }
5448 
5449 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5450 {
5451 	struct btrfs_block_group_cache *cache;
5452 	u64 bytenr;
5453 
5454 	spin_lock(&root->fs_info->block_group_cache_lock);
5455 	bytenr = root->fs_info->first_logical_byte;
5456 	spin_unlock(&root->fs_info->block_group_cache_lock);
5457 
5458 	if (bytenr < (u64)-1)
5459 		return bytenr;
5460 
5461 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5462 	if (!cache)
5463 		return 0;
5464 
5465 	bytenr = cache->key.objectid;
5466 	btrfs_put_block_group(cache);
5467 
5468 	return bytenr;
5469 }
5470 
5471 static int pin_down_extent(struct btrfs_root *root,
5472 			   struct btrfs_block_group_cache *cache,
5473 			   u64 bytenr, u64 num_bytes, int reserved)
5474 {
5475 	spin_lock(&cache->space_info->lock);
5476 	spin_lock(&cache->lock);
5477 	cache->pinned += num_bytes;
5478 	cache->space_info->bytes_pinned += num_bytes;
5479 	if (reserved) {
5480 		cache->reserved -= num_bytes;
5481 		cache->space_info->bytes_reserved -= num_bytes;
5482 	}
5483 	spin_unlock(&cache->lock);
5484 	spin_unlock(&cache->space_info->lock);
5485 
5486 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5487 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5488 	if (reserved)
5489 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5490 	return 0;
5491 }
5492 
5493 /*
5494  * this function must be called within transaction
5495  */
5496 int btrfs_pin_extent(struct btrfs_root *root,
5497 		     u64 bytenr, u64 num_bytes, int reserved)
5498 {
5499 	struct btrfs_block_group_cache *cache;
5500 
5501 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5502 	BUG_ON(!cache); /* Logic error */
5503 
5504 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5505 
5506 	btrfs_put_block_group(cache);
5507 	return 0;
5508 }
5509 
5510 /*
5511  * this function must be called within transaction
5512  */
5513 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5514 				    u64 bytenr, u64 num_bytes)
5515 {
5516 	struct btrfs_block_group_cache *cache;
5517 	int ret;
5518 
5519 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5520 	if (!cache)
5521 		return -EINVAL;
5522 
5523 	/*
5524 	 * pull in the free space cache (if any) so that our pin
5525 	 * removes the free space from the cache.  We have load_only set
5526 	 * to one because the slow code to read in the free extents does check
5527 	 * the pinned extents.
5528 	 */
5529 	cache_block_group(cache, 1);
5530 
5531 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5532 
5533 	/* remove us from the free space cache (if we're there at all) */
5534 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5535 	btrfs_put_block_group(cache);
5536 	return ret;
5537 }
5538 
5539 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5540 {
5541 	int ret;
5542 	struct btrfs_block_group_cache *block_group;
5543 	struct btrfs_caching_control *caching_ctl;
5544 
5545 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5546 	if (!block_group)
5547 		return -EINVAL;
5548 
5549 	cache_block_group(block_group, 0);
5550 	caching_ctl = get_caching_control(block_group);
5551 
5552 	if (!caching_ctl) {
5553 		/* Logic error */
5554 		BUG_ON(!block_group_cache_done(block_group));
5555 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5556 	} else {
5557 		mutex_lock(&caching_ctl->mutex);
5558 
5559 		if (start >= caching_ctl->progress) {
5560 			ret = add_excluded_extent(root, start, num_bytes);
5561 		} else if (start + num_bytes <= caching_ctl->progress) {
5562 			ret = btrfs_remove_free_space(block_group,
5563 						      start, num_bytes);
5564 		} else {
5565 			num_bytes = caching_ctl->progress - start;
5566 			ret = btrfs_remove_free_space(block_group,
5567 						      start, num_bytes);
5568 			if (ret)
5569 				goto out_lock;
5570 
5571 			num_bytes = (start + num_bytes) -
5572 				caching_ctl->progress;
5573 			start = caching_ctl->progress;
5574 			ret = add_excluded_extent(root, start, num_bytes);
5575 		}
5576 out_lock:
5577 		mutex_unlock(&caching_ctl->mutex);
5578 		put_caching_control(caching_ctl);
5579 	}
5580 	btrfs_put_block_group(block_group);
5581 	return ret;
5582 }
5583 
5584 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5585 				 struct extent_buffer *eb)
5586 {
5587 	struct btrfs_file_extent_item *item;
5588 	struct btrfs_key key;
5589 	int found_type;
5590 	int i;
5591 
5592 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5593 		return 0;
5594 
5595 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5596 		btrfs_item_key_to_cpu(eb, &key, i);
5597 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5598 			continue;
5599 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5600 		found_type = btrfs_file_extent_type(eb, item);
5601 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5602 			continue;
5603 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5604 			continue;
5605 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5606 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5607 		__exclude_logged_extent(log, key.objectid, key.offset);
5608 	}
5609 
5610 	return 0;
5611 }
5612 
5613 /**
5614  * btrfs_update_reserved_bytes - update the block_group and space info counters
5615  * @cache:	The cache we are manipulating
5616  * @num_bytes:	The number of bytes in question
5617  * @reserve:	One of the reservation enums
5618  * @delalloc:   The blocks are allocated for the delalloc write
5619  *
5620  * This is called by the allocator when it reserves space, or by somebody who is
5621  * freeing space that was never actually used on disk.  For example if you
5622  * reserve some space for a new leaf in transaction A and before transaction A
5623  * commits you free that leaf, you call this with reserve set to 0 in order to
5624  * clear the reservation.
5625  *
5626  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5627  * ENOSPC accounting.  For data we handle the reservation through clearing the
5628  * delalloc bits in the io_tree.  We have to do this since we could end up
5629  * allocating less disk space for the amount of data we have reserved in the
5630  * case of compression.
5631  *
5632  * If this is a reservation and the block group has become read only we cannot
5633  * make the reservation and return -EAGAIN, otherwise this function always
5634  * succeeds.
5635  */
5636 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5637 				       u64 num_bytes, int reserve, int delalloc)
5638 {
5639 	struct btrfs_space_info *space_info = cache->space_info;
5640 	int ret = 0;
5641 
5642 	spin_lock(&space_info->lock);
5643 	spin_lock(&cache->lock);
5644 	if (reserve != RESERVE_FREE) {
5645 		if (cache->ro) {
5646 			ret = -EAGAIN;
5647 		} else {
5648 			cache->reserved += num_bytes;
5649 			space_info->bytes_reserved += num_bytes;
5650 			if (reserve == RESERVE_ALLOC) {
5651 				trace_btrfs_space_reservation(cache->fs_info,
5652 						"space_info", space_info->flags,
5653 						num_bytes, 0);
5654 				space_info->bytes_may_use -= num_bytes;
5655 			}
5656 
5657 			if (delalloc)
5658 				cache->delalloc_bytes += num_bytes;
5659 		}
5660 	} else {
5661 		if (cache->ro)
5662 			space_info->bytes_readonly += num_bytes;
5663 		cache->reserved -= num_bytes;
5664 		space_info->bytes_reserved -= num_bytes;
5665 
5666 		if (delalloc)
5667 			cache->delalloc_bytes -= num_bytes;
5668 	}
5669 	spin_unlock(&cache->lock);
5670 	spin_unlock(&space_info->lock);
5671 	return ret;
5672 }
5673 
5674 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5675 				struct btrfs_root *root)
5676 {
5677 	struct btrfs_fs_info *fs_info = root->fs_info;
5678 	struct btrfs_caching_control *next;
5679 	struct btrfs_caching_control *caching_ctl;
5680 	struct btrfs_block_group_cache *cache;
5681 	struct btrfs_space_info *space_info;
5682 
5683 	down_write(&fs_info->commit_root_sem);
5684 
5685 	list_for_each_entry_safe(caching_ctl, next,
5686 				 &fs_info->caching_block_groups, list) {
5687 		cache = caching_ctl->block_group;
5688 		if (block_group_cache_done(cache)) {
5689 			cache->last_byte_to_unpin = (u64)-1;
5690 			list_del_init(&caching_ctl->list);
5691 			put_caching_control(caching_ctl);
5692 		} else {
5693 			cache->last_byte_to_unpin = caching_ctl->progress;
5694 		}
5695 	}
5696 
5697 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5698 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5699 	else
5700 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5701 
5702 	up_write(&fs_info->commit_root_sem);
5703 
5704 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5705 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5706 
5707 	update_global_block_rsv(fs_info);
5708 }
5709 
5710 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5711 {
5712 	struct btrfs_fs_info *fs_info = root->fs_info;
5713 	struct btrfs_block_group_cache *cache = NULL;
5714 	struct btrfs_space_info *space_info;
5715 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5716 	u64 len;
5717 	bool readonly;
5718 
5719 	while (start <= end) {
5720 		readonly = false;
5721 		if (!cache ||
5722 		    start >= cache->key.objectid + cache->key.offset) {
5723 			if (cache)
5724 				btrfs_put_block_group(cache);
5725 			cache = btrfs_lookup_block_group(fs_info, start);
5726 			BUG_ON(!cache); /* Logic error */
5727 		}
5728 
5729 		len = cache->key.objectid + cache->key.offset - start;
5730 		len = min(len, end + 1 - start);
5731 
5732 		if (start < cache->last_byte_to_unpin) {
5733 			len = min(len, cache->last_byte_to_unpin - start);
5734 			btrfs_add_free_space(cache, start, len);
5735 		}
5736 
5737 		start += len;
5738 		space_info = cache->space_info;
5739 
5740 		spin_lock(&space_info->lock);
5741 		spin_lock(&cache->lock);
5742 		cache->pinned -= len;
5743 		space_info->bytes_pinned -= len;
5744 		if (cache->ro) {
5745 			space_info->bytes_readonly += len;
5746 			readonly = true;
5747 		}
5748 		spin_unlock(&cache->lock);
5749 		if (!readonly && global_rsv->space_info == space_info) {
5750 			spin_lock(&global_rsv->lock);
5751 			if (!global_rsv->full) {
5752 				len = min(len, global_rsv->size -
5753 					  global_rsv->reserved);
5754 				global_rsv->reserved += len;
5755 				space_info->bytes_may_use += len;
5756 				if (global_rsv->reserved >= global_rsv->size)
5757 					global_rsv->full = 1;
5758 			}
5759 			spin_unlock(&global_rsv->lock);
5760 		}
5761 		spin_unlock(&space_info->lock);
5762 	}
5763 
5764 	if (cache)
5765 		btrfs_put_block_group(cache);
5766 	return 0;
5767 }
5768 
5769 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5770 			       struct btrfs_root *root)
5771 {
5772 	struct btrfs_fs_info *fs_info = root->fs_info;
5773 	struct extent_io_tree *unpin;
5774 	u64 start;
5775 	u64 end;
5776 	int ret;
5777 
5778 	if (trans->aborted)
5779 		return 0;
5780 
5781 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5782 		unpin = &fs_info->freed_extents[1];
5783 	else
5784 		unpin = &fs_info->freed_extents[0];
5785 
5786 	while (1) {
5787 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5788 					    EXTENT_DIRTY, NULL);
5789 		if (ret)
5790 			break;
5791 
5792 		if (btrfs_test_opt(root, DISCARD))
5793 			ret = btrfs_discard_extent(root, start,
5794 						   end + 1 - start, NULL);
5795 
5796 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5797 		unpin_extent_range(root, start, end);
5798 		cond_resched();
5799 	}
5800 
5801 	return 0;
5802 }
5803 
5804 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5805 			     u64 owner, u64 root_objectid)
5806 {
5807 	struct btrfs_space_info *space_info;
5808 	u64 flags;
5809 
5810 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5811 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5812 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5813 		else
5814 			flags = BTRFS_BLOCK_GROUP_METADATA;
5815 	} else {
5816 		flags = BTRFS_BLOCK_GROUP_DATA;
5817 	}
5818 
5819 	space_info = __find_space_info(fs_info, flags);
5820 	BUG_ON(!space_info); /* Logic bug */
5821 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5822 }
5823 
5824 
5825 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5826 				struct btrfs_root *root,
5827 				u64 bytenr, u64 num_bytes, u64 parent,
5828 				u64 root_objectid, u64 owner_objectid,
5829 				u64 owner_offset, int refs_to_drop,
5830 				struct btrfs_delayed_extent_op *extent_op,
5831 				int no_quota)
5832 {
5833 	struct btrfs_key key;
5834 	struct btrfs_path *path;
5835 	struct btrfs_fs_info *info = root->fs_info;
5836 	struct btrfs_root *extent_root = info->extent_root;
5837 	struct extent_buffer *leaf;
5838 	struct btrfs_extent_item *ei;
5839 	struct btrfs_extent_inline_ref *iref;
5840 	int ret;
5841 	int is_data;
5842 	int extent_slot = 0;
5843 	int found_extent = 0;
5844 	int num_to_del = 1;
5845 	u32 item_size;
5846 	u64 refs;
5847 	int last_ref = 0;
5848 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5849 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5850 						 SKINNY_METADATA);
5851 
5852 	if (!info->quota_enabled || !is_fstree(root_objectid))
5853 		no_quota = 1;
5854 
5855 	path = btrfs_alloc_path();
5856 	if (!path)
5857 		return -ENOMEM;
5858 
5859 	path->reada = 1;
5860 	path->leave_spinning = 1;
5861 
5862 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5863 	BUG_ON(!is_data && refs_to_drop != 1);
5864 
5865 	if (is_data)
5866 		skinny_metadata = 0;
5867 
5868 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5869 				    bytenr, num_bytes, parent,
5870 				    root_objectid, owner_objectid,
5871 				    owner_offset);
5872 	if (ret == 0) {
5873 		extent_slot = path->slots[0];
5874 		while (extent_slot >= 0) {
5875 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5876 					      extent_slot);
5877 			if (key.objectid != bytenr)
5878 				break;
5879 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5880 			    key.offset == num_bytes) {
5881 				found_extent = 1;
5882 				break;
5883 			}
5884 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5885 			    key.offset == owner_objectid) {
5886 				found_extent = 1;
5887 				break;
5888 			}
5889 			if (path->slots[0] - extent_slot > 5)
5890 				break;
5891 			extent_slot--;
5892 		}
5893 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5894 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5895 		if (found_extent && item_size < sizeof(*ei))
5896 			found_extent = 0;
5897 #endif
5898 		if (!found_extent) {
5899 			BUG_ON(iref);
5900 			ret = remove_extent_backref(trans, extent_root, path,
5901 						    NULL, refs_to_drop,
5902 						    is_data, &last_ref);
5903 			if (ret) {
5904 				btrfs_abort_transaction(trans, extent_root, ret);
5905 				goto out;
5906 			}
5907 			btrfs_release_path(path);
5908 			path->leave_spinning = 1;
5909 
5910 			key.objectid = bytenr;
5911 			key.type = BTRFS_EXTENT_ITEM_KEY;
5912 			key.offset = num_bytes;
5913 
5914 			if (!is_data && skinny_metadata) {
5915 				key.type = BTRFS_METADATA_ITEM_KEY;
5916 				key.offset = owner_objectid;
5917 			}
5918 
5919 			ret = btrfs_search_slot(trans, extent_root,
5920 						&key, path, -1, 1);
5921 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5922 				/*
5923 				 * Couldn't find our skinny metadata item,
5924 				 * see if we have ye olde extent item.
5925 				 */
5926 				path->slots[0]--;
5927 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5928 						      path->slots[0]);
5929 				if (key.objectid == bytenr &&
5930 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5931 				    key.offset == num_bytes)
5932 					ret = 0;
5933 			}
5934 
5935 			if (ret > 0 && skinny_metadata) {
5936 				skinny_metadata = false;
5937 				key.objectid = bytenr;
5938 				key.type = BTRFS_EXTENT_ITEM_KEY;
5939 				key.offset = num_bytes;
5940 				btrfs_release_path(path);
5941 				ret = btrfs_search_slot(trans, extent_root,
5942 							&key, path, -1, 1);
5943 			}
5944 
5945 			if (ret) {
5946 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5947 					ret, bytenr);
5948 				if (ret > 0)
5949 					btrfs_print_leaf(extent_root,
5950 							 path->nodes[0]);
5951 			}
5952 			if (ret < 0) {
5953 				btrfs_abort_transaction(trans, extent_root, ret);
5954 				goto out;
5955 			}
5956 			extent_slot = path->slots[0];
5957 		}
5958 	} else if (WARN_ON(ret == -ENOENT)) {
5959 		btrfs_print_leaf(extent_root, path->nodes[0]);
5960 		btrfs_err(info,
5961 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5962 			bytenr, parent, root_objectid, owner_objectid,
5963 			owner_offset);
5964 		btrfs_abort_transaction(trans, extent_root, ret);
5965 		goto out;
5966 	} else {
5967 		btrfs_abort_transaction(trans, extent_root, ret);
5968 		goto out;
5969 	}
5970 
5971 	leaf = path->nodes[0];
5972 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5974 	if (item_size < sizeof(*ei)) {
5975 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5976 		ret = convert_extent_item_v0(trans, extent_root, path,
5977 					     owner_objectid, 0);
5978 		if (ret < 0) {
5979 			btrfs_abort_transaction(trans, extent_root, ret);
5980 			goto out;
5981 		}
5982 
5983 		btrfs_release_path(path);
5984 		path->leave_spinning = 1;
5985 
5986 		key.objectid = bytenr;
5987 		key.type = BTRFS_EXTENT_ITEM_KEY;
5988 		key.offset = num_bytes;
5989 
5990 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5991 					-1, 1);
5992 		if (ret) {
5993 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5994 				ret, bytenr);
5995 			btrfs_print_leaf(extent_root, path->nodes[0]);
5996 		}
5997 		if (ret < 0) {
5998 			btrfs_abort_transaction(trans, extent_root, ret);
5999 			goto out;
6000 		}
6001 
6002 		extent_slot = path->slots[0];
6003 		leaf = path->nodes[0];
6004 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6005 	}
6006 #endif
6007 	BUG_ON(item_size < sizeof(*ei));
6008 	ei = btrfs_item_ptr(leaf, extent_slot,
6009 			    struct btrfs_extent_item);
6010 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6011 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6012 		struct btrfs_tree_block_info *bi;
6013 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6014 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6015 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6016 	}
6017 
6018 	refs = btrfs_extent_refs(leaf, ei);
6019 	if (refs < refs_to_drop) {
6020 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6021 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6022 		ret = -EINVAL;
6023 		btrfs_abort_transaction(trans, extent_root, ret);
6024 		goto out;
6025 	}
6026 	refs -= refs_to_drop;
6027 
6028 	if (refs > 0) {
6029 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6030 		if (extent_op)
6031 			__run_delayed_extent_op(extent_op, leaf, ei);
6032 		/*
6033 		 * In the case of inline back ref, reference count will
6034 		 * be updated by remove_extent_backref
6035 		 */
6036 		if (iref) {
6037 			BUG_ON(!found_extent);
6038 		} else {
6039 			btrfs_set_extent_refs(leaf, ei, refs);
6040 			btrfs_mark_buffer_dirty(leaf);
6041 		}
6042 		if (found_extent) {
6043 			ret = remove_extent_backref(trans, extent_root, path,
6044 						    iref, refs_to_drop,
6045 						    is_data, &last_ref);
6046 			if (ret) {
6047 				btrfs_abort_transaction(trans, extent_root, ret);
6048 				goto out;
6049 			}
6050 		}
6051 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6052 				 root_objectid);
6053 	} else {
6054 		if (found_extent) {
6055 			BUG_ON(is_data && refs_to_drop !=
6056 			       extent_data_ref_count(root, path, iref));
6057 			if (iref) {
6058 				BUG_ON(path->slots[0] != extent_slot);
6059 			} else {
6060 				BUG_ON(path->slots[0] != extent_slot + 1);
6061 				path->slots[0] = extent_slot;
6062 				num_to_del = 2;
6063 			}
6064 		}
6065 
6066 		last_ref = 1;
6067 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6068 				      num_to_del);
6069 		if (ret) {
6070 			btrfs_abort_transaction(trans, extent_root, ret);
6071 			goto out;
6072 		}
6073 		btrfs_release_path(path);
6074 
6075 		if (is_data) {
6076 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6077 			if (ret) {
6078 				btrfs_abort_transaction(trans, extent_root, ret);
6079 				goto out;
6080 			}
6081 		}
6082 
6083 		ret = update_block_group(root, bytenr, num_bytes, 0);
6084 		if (ret) {
6085 			btrfs_abort_transaction(trans, extent_root, ret);
6086 			goto out;
6087 		}
6088 	}
6089 	btrfs_release_path(path);
6090 
6091 	/* Deal with the quota accounting */
6092 	if (!ret && last_ref && !no_quota) {
6093 		int mod_seq = 0;
6094 
6095 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6096 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6097 			mod_seq = 1;
6098 
6099 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6100 					      bytenr, num_bytes, type,
6101 					      mod_seq);
6102 	}
6103 out:
6104 	btrfs_free_path(path);
6105 	return ret;
6106 }
6107 
6108 /*
6109  * when we free an block, it is possible (and likely) that we free the last
6110  * delayed ref for that extent as well.  This searches the delayed ref tree for
6111  * a given extent, and if there are no other delayed refs to be processed, it
6112  * removes it from the tree.
6113  */
6114 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6115 				      struct btrfs_root *root, u64 bytenr)
6116 {
6117 	struct btrfs_delayed_ref_head *head;
6118 	struct btrfs_delayed_ref_root *delayed_refs;
6119 	int ret = 0;
6120 
6121 	delayed_refs = &trans->transaction->delayed_refs;
6122 	spin_lock(&delayed_refs->lock);
6123 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6124 	if (!head)
6125 		goto out_delayed_unlock;
6126 
6127 	spin_lock(&head->lock);
6128 	if (rb_first(&head->ref_root))
6129 		goto out;
6130 
6131 	if (head->extent_op) {
6132 		if (!head->must_insert_reserved)
6133 			goto out;
6134 		btrfs_free_delayed_extent_op(head->extent_op);
6135 		head->extent_op = NULL;
6136 	}
6137 
6138 	/*
6139 	 * waiting for the lock here would deadlock.  If someone else has it
6140 	 * locked they are already in the process of dropping it anyway
6141 	 */
6142 	if (!mutex_trylock(&head->mutex))
6143 		goto out;
6144 
6145 	/*
6146 	 * at this point we have a head with no other entries.  Go
6147 	 * ahead and process it.
6148 	 */
6149 	head->node.in_tree = 0;
6150 	rb_erase(&head->href_node, &delayed_refs->href_root);
6151 
6152 	atomic_dec(&delayed_refs->num_entries);
6153 
6154 	/*
6155 	 * we don't take a ref on the node because we're removing it from the
6156 	 * tree, so we just steal the ref the tree was holding.
6157 	 */
6158 	delayed_refs->num_heads--;
6159 	if (head->processing == 0)
6160 		delayed_refs->num_heads_ready--;
6161 	head->processing = 0;
6162 	spin_unlock(&head->lock);
6163 	spin_unlock(&delayed_refs->lock);
6164 
6165 	BUG_ON(head->extent_op);
6166 	if (head->must_insert_reserved)
6167 		ret = 1;
6168 
6169 	mutex_unlock(&head->mutex);
6170 	btrfs_put_delayed_ref(&head->node);
6171 	return ret;
6172 out:
6173 	spin_unlock(&head->lock);
6174 
6175 out_delayed_unlock:
6176 	spin_unlock(&delayed_refs->lock);
6177 	return 0;
6178 }
6179 
6180 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6181 			   struct btrfs_root *root,
6182 			   struct extent_buffer *buf,
6183 			   u64 parent, int last_ref)
6184 {
6185 	struct btrfs_block_group_cache *cache = NULL;
6186 	int pin = 1;
6187 	int ret;
6188 
6189 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6190 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6191 					buf->start, buf->len,
6192 					parent, root->root_key.objectid,
6193 					btrfs_header_level(buf),
6194 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6195 		BUG_ON(ret); /* -ENOMEM */
6196 	}
6197 
6198 	if (!last_ref)
6199 		return;
6200 
6201 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6202 
6203 	if (btrfs_header_generation(buf) == trans->transid) {
6204 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6205 			ret = check_ref_cleanup(trans, root, buf->start);
6206 			if (!ret)
6207 				goto out;
6208 		}
6209 
6210 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6211 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6212 			goto out;
6213 		}
6214 
6215 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6216 
6217 		btrfs_add_free_space(cache, buf->start, buf->len);
6218 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6220 		pin = 0;
6221 	}
6222 out:
6223 	if (pin)
6224 		add_pinned_bytes(root->fs_info, buf->len,
6225 				 btrfs_header_level(buf),
6226 				 root->root_key.objectid);
6227 
6228 	/*
6229 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6230 	 * anymore.
6231 	 */
6232 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6233 	btrfs_put_block_group(cache);
6234 }
6235 
6236 /* Can return -ENOMEM */
6237 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6238 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6239 		      u64 owner, u64 offset, int no_quota)
6240 {
6241 	int ret;
6242 	struct btrfs_fs_info *fs_info = root->fs_info;
6243 
6244 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6245 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
6246 		return 0;
6247 #endif
6248 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6249 
6250 	/*
6251 	 * tree log blocks never actually go into the extent allocation
6252 	 * tree, just update pinning info and exit early.
6253 	 */
6254 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6255 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6256 		/* unlocks the pinned mutex */
6257 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6258 		ret = 0;
6259 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6260 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6261 					num_bytes,
6262 					parent, root_objectid, (int)owner,
6263 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6264 	} else {
6265 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6266 						num_bytes,
6267 						parent, root_objectid, owner,
6268 						offset, BTRFS_DROP_DELAYED_REF,
6269 						NULL, no_quota);
6270 	}
6271 	return ret;
6272 }
6273 
6274 static u64 stripe_align(struct btrfs_root *root,
6275 			struct btrfs_block_group_cache *cache,
6276 			u64 val, u64 num_bytes)
6277 {
6278 	u64 ret = ALIGN(val, root->stripesize);
6279 	return ret;
6280 }
6281 
6282 /*
6283  * when we wait for progress in the block group caching, its because
6284  * our allocation attempt failed at least once.  So, we must sleep
6285  * and let some progress happen before we try again.
6286  *
6287  * This function will sleep at least once waiting for new free space to
6288  * show up, and then it will check the block group free space numbers
6289  * for our min num_bytes.  Another option is to have it go ahead
6290  * and look in the rbtree for a free extent of a given size, but this
6291  * is a good start.
6292  *
6293  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6294  * any of the information in this block group.
6295  */
6296 static noinline void
6297 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6298 				u64 num_bytes)
6299 {
6300 	struct btrfs_caching_control *caching_ctl;
6301 
6302 	caching_ctl = get_caching_control(cache);
6303 	if (!caching_ctl)
6304 		return;
6305 
6306 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6307 		   (cache->free_space_ctl->free_space >= num_bytes));
6308 
6309 	put_caching_control(caching_ctl);
6310 }
6311 
6312 static noinline int
6313 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6314 {
6315 	struct btrfs_caching_control *caching_ctl;
6316 	int ret = 0;
6317 
6318 	caching_ctl = get_caching_control(cache);
6319 	if (!caching_ctl)
6320 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6321 
6322 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6323 	if (cache->cached == BTRFS_CACHE_ERROR)
6324 		ret = -EIO;
6325 	put_caching_control(caching_ctl);
6326 	return ret;
6327 }
6328 
6329 int __get_raid_index(u64 flags)
6330 {
6331 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6332 		return BTRFS_RAID_RAID10;
6333 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6334 		return BTRFS_RAID_RAID1;
6335 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6336 		return BTRFS_RAID_DUP;
6337 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6338 		return BTRFS_RAID_RAID0;
6339 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6340 		return BTRFS_RAID_RAID5;
6341 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6342 		return BTRFS_RAID_RAID6;
6343 
6344 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6345 }
6346 
6347 int get_block_group_index(struct btrfs_block_group_cache *cache)
6348 {
6349 	return __get_raid_index(cache->flags);
6350 }
6351 
6352 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6353 	[BTRFS_RAID_RAID10]	= "raid10",
6354 	[BTRFS_RAID_RAID1]	= "raid1",
6355 	[BTRFS_RAID_DUP]	= "dup",
6356 	[BTRFS_RAID_RAID0]	= "raid0",
6357 	[BTRFS_RAID_SINGLE]	= "single",
6358 	[BTRFS_RAID_RAID5]	= "raid5",
6359 	[BTRFS_RAID_RAID6]	= "raid6",
6360 };
6361 
6362 static const char *get_raid_name(enum btrfs_raid_types type)
6363 {
6364 	if (type >= BTRFS_NR_RAID_TYPES)
6365 		return NULL;
6366 
6367 	return btrfs_raid_type_names[type];
6368 }
6369 
6370 enum btrfs_loop_type {
6371 	LOOP_CACHING_NOWAIT = 0,
6372 	LOOP_CACHING_WAIT = 1,
6373 	LOOP_ALLOC_CHUNK = 2,
6374 	LOOP_NO_EMPTY_SIZE = 3,
6375 };
6376 
6377 static inline void
6378 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6379 		       int delalloc)
6380 {
6381 	if (delalloc)
6382 		down_read(&cache->data_rwsem);
6383 }
6384 
6385 static inline void
6386 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6387 		       int delalloc)
6388 {
6389 	btrfs_get_block_group(cache);
6390 	if (delalloc)
6391 		down_read(&cache->data_rwsem);
6392 }
6393 
6394 static struct btrfs_block_group_cache *
6395 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6396 		   struct btrfs_free_cluster *cluster,
6397 		   int delalloc)
6398 {
6399 	struct btrfs_block_group_cache *used_bg;
6400 	bool locked = false;
6401 again:
6402 	spin_lock(&cluster->refill_lock);
6403 	if (locked) {
6404 		if (used_bg == cluster->block_group)
6405 			return used_bg;
6406 
6407 		up_read(&used_bg->data_rwsem);
6408 		btrfs_put_block_group(used_bg);
6409 	}
6410 
6411 	used_bg = cluster->block_group;
6412 	if (!used_bg)
6413 		return NULL;
6414 
6415 	if (used_bg == block_group)
6416 		return used_bg;
6417 
6418 	btrfs_get_block_group(used_bg);
6419 
6420 	if (!delalloc)
6421 		return used_bg;
6422 
6423 	if (down_read_trylock(&used_bg->data_rwsem))
6424 		return used_bg;
6425 
6426 	spin_unlock(&cluster->refill_lock);
6427 	down_read(&used_bg->data_rwsem);
6428 	locked = true;
6429 	goto again;
6430 }
6431 
6432 static inline void
6433 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6434 			 int delalloc)
6435 {
6436 	if (delalloc)
6437 		up_read(&cache->data_rwsem);
6438 	btrfs_put_block_group(cache);
6439 }
6440 
6441 /*
6442  * walks the btree of allocated extents and find a hole of a given size.
6443  * The key ins is changed to record the hole:
6444  * ins->objectid == start position
6445  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6446  * ins->offset == the size of the hole.
6447  * Any available blocks before search_start are skipped.
6448  *
6449  * If there is no suitable free space, we will record the max size of
6450  * the free space extent currently.
6451  */
6452 static noinline int find_free_extent(struct btrfs_root *orig_root,
6453 				     u64 num_bytes, u64 empty_size,
6454 				     u64 hint_byte, struct btrfs_key *ins,
6455 				     u64 flags, int delalloc)
6456 {
6457 	int ret = 0;
6458 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6459 	struct btrfs_free_cluster *last_ptr = NULL;
6460 	struct btrfs_block_group_cache *block_group = NULL;
6461 	u64 search_start = 0;
6462 	u64 max_extent_size = 0;
6463 	int empty_cluster = 2 * 1024 * 1024;
6464 	struct btrfs_space_info *space_info;
6465 	int loop = 0;
6466 	int index = __get_raid_index(flags);
6467 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6468 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6469 	bool failed_cluster_refill = false;
6470 	bool failed_alloc = false;
6471 	bool use_cluster = true;
6472 	bool have_caching_bg = false;
6473 
6474 	WARN_ON(num_bytes < root->sectorsize);
6475 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6476 	ins->objectid = 0;
6477 	ins->offset = 0;
6478 
6479 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6480 
6481 	space_info = __find_space_info(root->fs_info, flags);
6482 	if (!space_info) {
6483 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6484 		return -ENOSPC;
6485 	}
6486 
6487 	/*
6488 	 * If the space info is for both data and metadata it means we have a
6489 	 * small filesystem and we can't use the clustering stuff.
6490 	 */
6491 	if (btrfs_mixed_space_info(space_info))
6492 		use_cluster = false;
6493 
6494 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6495 		last_ptr = &root->fs_info->meta_alloc_cluster;
6496 		if (!btrfs_test_opt(root, SSD))
6497 			empty_cluster = 64 * 1024;
6498 	}
6499 
6500 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6501 	    btrfs_test_opt(root, SSD)) {
6502 		last_ptr = &root->fs_info->data_alloc_cluster;
6503 	}
6504 
6505 	if (last_ptr) {
6506 		spin_lock(&last_ptr->lock);
6507 		if (last_ptr->block_group)
6508 			hint_byte = last_ptr->window_start;
6509 		spin_unlock(&last_ptr->lock);
6510 	}
6511 
6512 	search_start = max(search_start, first_logical_byte(root, 0));
6513 	search_start = max(search_start, hint_byte);
6514 
6515 	if (!last_ptr)
6516 		empty_cluster = 0;
6517 
6518 	if (search_start == hint_byte) {
6519 		block_group = btrfs_lookup_block_group(root->fs_info,
6520 						       search_start);
6521 		/*
6522 		 * we don't want to use the block group if it doesn't match our
6523 		 * allocation bits, or if its not cached.
6524 		 *
6525 		 * However if we are re-searching with an ideal block group
6526 		 * picked out then we don't care that the block group is cached.
6527 		 */
6528 		if (block_group && block_group_bits(block_group, flags) &&
6529 		    block_group->cached != BTRFS_CACHE_NO) {
6530 			down_read(&space_info->groups_sem);
6531 			if (list_empty(&block_group->list) ||
6532 			    block_group->ro) {
6533 				/*
6534 				 * someone is removing this block group,
6535 				 * we can't jump into the have_block_group
6536 				 * target because our list pointers are not
6537 				 * valid
6538 				 */
6539 				btrfs_put_block_group(block_group);
6540 				up_read(&space_info->groups_sem);
6541 			} else {
6542 				index = get_block_group_index(block_group);
6543 				btrfs_lock_block_group(block_group, delalloc);
6544 				goto have_block_group;
6545 			}
6546 		} else if (block_group) {
6547 			btrfs_put_block_group(block_group);
6548 		}
6549 	}
6550 search:
6551 	have_caching_bg = false;
6552 	down_read(&space_info->groups_sem);
6553 	list_for_each_entry(block_group, &space_info->block_groups[index],
6554 			    list) {
6555 		u64 offset;
6556 		int cached;
6557 
6558 		btrfs_grab_block_group(block_group, delalloc);
6559 		search_start = block_group->key.objectid;
6560 
6561 		/*
6562 		 * this can happen if we end up cycling through all the
6563 		 * raid types, but we want to make sure we only allocate
6564 		 * for the proper type.
6565 		 */
6566 		if (!block_group_bits(block_group, flags)) {
6567 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6568 				BTRFS_BLOCK_GROUP_RAID1 |
6569 				BTRFS_BLOCK_GROUP_RAID5 |
6570 				BTRFS_BLOCK_GROUP_RAID6 |
6571 				BTRFS_BLOCK_GROUP_RAID10;
6572 
6573 			/*
6574 			 * if they asked for extra copies and this block group
6575 			 * doesn't provide them, bail.  This does allow us to
6576 			 * fill raid0 from raid1.
6577 			 */
6578 			if ((flags & extra) && !(block_group->flags & extra))
6579 				goto loop;
6580 		}
6581 
6582 have_block_group:
6583 		cached = block_group_cache_done(block_group);
6584 		if (unlikely(!cached)) {
6585 			ret = cache_block_group(block_group, 0);
6586 			BUG_ON(ret < 0);
6587 			ret = 0;
6588 		}
6589 
6590 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6591 			goto loop;
6592 		if (unlikely(block_group->ro))
6593 			goto loop;
6594 
6595 		/*
6596 		 * Ok we want to try and use the cluster allocator, so
6597 		 * lets look there
6598 		 */
6599 		if (last_ptr) {
6600 			struct btrfs_block_group_cache *used_block_group;
6601 			unsigned long aligned_cluster;
6602 			/*
6603 			 * the refill lock keeps out other
6604 			 * people trying to start a new cluster
6605 			 */
6606 			used_block_group = btrfs_lock_cluster(block_group,
6607 							      last_ptr,
6608 							      delalloc);
6609 			if (!used_block_group)
6610 				goto refill_cluster;
6611 
6612 			if (used_block_group != block_group &&
6613 			    (used_block_group->ro ||
6614 			     !block_group_bits(used_block_group, flags)))
6615 				goto release_cluster;
6616 
6617 			offset = btrfs_alloc_from_cluster(used_block_group,
6618 						last_ptr,
6619 						num_bytes,
6620 						used_block_group->key.objectid,
6621 						&max_extent_size);
6622 			if (offset) {
6623 				/* we have a block, we're done */
6624 				spin_unlock(&last_ptr->refill_lock);
6625 				trace_btrfs_reserve_extent_cluster(root,
6626 						used_block_group,
6627 						search_start, num_bytes);
6628 				if (used_block_group != block_group) {
6629 					btrfs_release_block_group(block_group,
6630 								  delalloc);
6631 					block_group = used_block_group;
6632 				}
6633 				goto checks;
6634 			}
6635 
6636 			WARN_ON(last_ptr->block_group != used_block_group);
6637 release_cluster:
6638 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6639 			 * set up a new clusters, so lets just skip it
6640 			 * and let the allocator find whatever block
6641 			 * it can find.  If we reach this point, we
6642 			 * will have tried the cluster allocator
6643 			 * plenty of times and not have found
6644 			 * anything, so we are likely way too
6645 			 * fragmented for the clustering stuff to find
6646 			 * anything.
6647 			 *
6648 			 * However, if the cluster is taken from the
6649 			 * current block group, release the cluster
6650 			 * first, so that we stand a better chance of
6651 			 * succeeding in the unclustered
6652 			 * allocation.  */
6653 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6654 			    used_block_group != block_group) {
6655 				spin_unlock(&last_ptr->refill_lock);
6656 				btrfs_release_block_group(used_block_group,
6657 							  delalloc);
6658 				goto unclustered_alloc;
6659 			}
6660 
6661 			/*
6662 			 * this cluster didn't work out, free it and
6663 			 * start over
6664 			 */
6665 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6666 
6667 			if (used_block_group != block_group)
6668 				btrfs_release_block_group(used_block_group,
6669 							  delalloc);
6670 refill_cluster:
6671 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6672 				spin_unlock(&last_ptr->refill_lock);
6673 				goto unclustered_alloc;
6674 			}
6675 
6676 			aligned_cluster = max_t(unsigned long,
6677 						empty_cluster + empty_size,
6678 					      block_group->full_stripe_len);
6679 
6680 			/* allocate a cluster in this block group */
6681 			ret = btrfs_find_space_cluster(root, block_group,
6682 						       last_ptr, search_start,
6683 						       num_bytes,
6684 						       aligned_cluster);
6685 			if (ret == 0) {
6686 				/*
6687 				 * now pull our allocation out of this
6688 				 * cluster
6689 				 */
6690 				offset = btrfs_alloc_from_cluster(block_group,
6691 							last_ptr,
6692 							num_bytes,
6693 							search_start,
6694 							&max_extent_size);
6695 				if (offset) {
6696 					/* we found one, proceed */
6697 					spin_unlock(&last_ptr->refill_lock);
6698 					trace_btrfs_reserve_extent_cluster(root,
6699 						block_group, search_start,
6700 						num_bytes);
6701 					goto checks;
6702 				}
6703 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6704 				   && !failed_cluster_refill) {
6705 				spin_unlock(&last_ptr->refill_lock);
6706 
6707 				failed_cluster_refill = true;
6708 				wait_block_group_cache_progress(block_group,
6709 				       num_bytes + empty_cluster + empty_size);
6710 				goto have_block_group;
6711 			}
6712 
6713 			/*
6714 			 * at this point we either didn't find a cluster
6715 			 * or we weren't able to allocate a block from our
6716 			 * cluster.  Free the cluster we've been trying
6717 			 * to use, and go to the next block group
6718 			 */
6719 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6720 			spin_unlock(&last_ptr->refill_lock);
6721 			goto loop;
6722 		}
6723 
6724 unclustered_alloc:
6725 		spin_lock(&block_group->free_space_ctl->tree_lock);
6726 		if (cached &&
6727 		    block_group->free_space_ctl->free_space <
6728 		    num_bytes + empty_cluster + empty_size) {
6729 			if (block_group->free_space_ctl->free_space >
6730 			    max_extent_size)
6731 				max_extent_size =
6732 					block_group->free_space_ctl->free_space;
6733 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6734 			goto loop;
6735 		}
6736 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6737 
6738 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6739 						    num_bytes, empty_size,
6740 						    &max_extent_size);
6741 		/*
6742 		 * If we didn't find a chunk, and we haven't failed on this
6743 		 * block group before, and this block group is in the middle of
6744 		 * caching and we are ok with waiting, then go ahead and wait
6745 		 * for progress to be made, and set failed_alloc to true.
6746 		 *
6747 		 * If failed_alloc is true then we've already waited on this
6748 		 * block group once and should move on to the next block group.
6749 		 */
6750 		if (!offset && !failed_alloc && !cached &&
6751 		    loop > LOOP_CACHING_NOWAIT) {
6752 			wait_block_group_cache_progress(block_group,
6753 						num_bytes + empty_size);
6754 			failed_alloc = true;
6755 			goto have_block_group;
6756 		} else if (!offset) {
6757 			if (!cached)
6758 				have_caching_bg = true;
6759 			goto loop;
6760 		}
6761 checks:
6762 		search_start = stripe_align(root, block_group,
6763 					    offset, num_bytes);
6764 
6765 		/* move on to the next group */
6766 		if (search_start + num_bytes >
6767 		    block_group->key.objectid + block_group->key.offset) {
6768 			btrfs_add_free_space(block_group, offset, num_bytes);
6769 			goto loop;
6770 		}
6771 
6772 		if (offset < search_start)
6773 			btrfs_add_free_space(block_group, offset,
6774 					     search_start - offset);
6775 		BUG_ON(offset > search_start);
6776 
6777 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6778 						  alloc_type, delalloc);
6779 		if (ret == -EAGAIN) {
6780 			btrfs_add_free_space(block_group, offset, num_bytes);
6781 			goto loop;
6782 		}
6783 
6784 		/* we are all good, lets return */
6785 		ins->objectid = search_start;
6786 		ins->offset = num_bytes;
6787 
6788 		trace_btrfs_reserve_extent(orig_root, block_group,
6789 					   search_start, num_bytes);
6790 		btrfs_release_block_group(block_group, delalloc);
6791 		break;
6792 loop:
6793 		failed_cluster_refill = false;
6794 		failed_alloc = false;
6795 		BUG_ON(index != get_block_group_index(block_group));
6796 		btrfs_release_block_group(block_group, delalloc);
6797 	}
6798 	up_read(&space_info->groups_sem);
6799 
6800 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6801 		goto search;
6802 
6803 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6804 		goto search;
6805 
6806 	/*
6807 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6808 	 *			caching kthreads as we move along
6809 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6810 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6811 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6812 	 *			again
6813 	 */
6814 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6815 		index = 0;
6816 		loop++;
6817 		if (loop == LOOP_ALLOC_CHUNK) {
6818 			struct btrfs_trans_handle *trans;
6819 			int exist = 0;
6820 
6821 			trans = current->journal_info;
6822 			if (trans)
6823 				exist = 1;
6824 			else
6825 				trans = btrfs_join_transaction(root);
6826 
6827 			if (IS_ERR(trans)) {
6828 				ret = PTR_ERR(trans);
6829 				goto out;
6830 			}
6831 
6832 			ret = do_chunk_alloc(trans, root, flags,
6833 					     CHUNK_ALLOC_FORCE);
6834 			/*
6835 			 * Do not bail out on ENOSPC since we
6836 			 * can do more things.
6837 			 */
6838 			if (ret < 0 && ret != -ENOSPC)
6839 				btrfs_abort_transaction(trans,
6840 							root, ret);
6841 			else
6842 				ret = 0;
6843 			if (!exist)
6844 				btrfs_end_transaction(trans, root);
6845 			if (ret)
6846 				goto out;
6847 		}
6848 
6849 		if (loop == LOOP_NO_EMPTY_SIZE) {
6850 			empty_size = 0;
6851 			empty_cluster = 0;
6852 		}
6853 
6854 		goto search;
6855 	} else if (!ins->objectid) {
6856 		ret = -ENOSPC;
6857 	} else if (ins->objectid) {
6858 		ret = 0;
6859 	}
6860 out:
6861 	if (ret == -ENOSPC)
6862 		ins->offset = max_extent_size;
6863 	return ret;
6864 }
6865 
6866 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6867 			    int dump_block_groups)
6868 {
6869 	struct btrfs_block_group_cache *cache;
6870 	int index = 0;
6871 
6872 	spin_lock(&info->lock);
6873 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6874 	       info->flags,
6875 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6876 	       info->bytes_reserved - info->bytes_readonly,
6877 	       (info->full) ? "" : "not ");
6878 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6879 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6880 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6881 	       info->bytes_reserved, info->bytes_may_use,
6882 	       info->bytes_readonly);
6883 	spin_unlock(&info->lock);
6884 
6885 	if (!dump_block_groups)
6886 		return;
6887 
6888 	down_read(&info->groups_sem);
6889 again:
6890 	list_for_each_entry(cache, &info->block_groups[index], list) {
6891 		spin_lock(&cache->lock);
6892 		printk(KERN_INFO "BTRFS: "
6893 			   "block group %llu has %llu bytes, "
6894 			   "%llu used %llu pinned %llu reserved %s\n",
6895 		       cache->key.objectid, cache->key.offset,
6896 		       btrfs_block_group_used(&cache->item), cache->pinned,
6897 		       cache->reserved, cache->ro ? "[readonly]" : "");
6898 		btrfs_dump_free_space(cache, bytes);
6899 		spin_unlock(&cache->lock);
6900 	}
6901 	if (++index < BTRFS_NR_RAID_TYPES)
6902 		goto again;
6903 	up_read(&info->groups_sem);
6904 }
6905 
6906 int btrfs_reserve_extent(struct btrfs_root *root,
6907 			 u64 num_bytes, u64 min_alloc_size,
6908 			 u64 empty_size, u64 hint_byte,
6909 			 struct btrfs_key *ins, int is_data, int delalloc)
6910 {
6911 	bool final_tried = false;
6912 	u64 flags;
6913 	int ret;
6914 
6915 	flags = btrfs_get_alloc_profile(root, is_data);
6916 again:
6917 	WARN_ON(num_bytes < root->sectorsize);
6918 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6919 			       flags, delalloc);
6920 
6921 	if (ret == -ENOSPC) {
6922 		if (!final_tried && ins->offset) {
6923 			num_bytes = min(num_bytes >> 1, ins->offset);
6924 			num_bytes = round_down(num_bytes, root->sectorsize);
6925 			num_bytes = max(num_bytes, min_alloc_size);
6926 			if (num_bytes == min_alloc_size)
6927 				final_tried = true;
6928 			goto again;
6929 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6930 			struct btrfs_space_info *sinfo;
6931 
6932 			sinfo = __find_space_info(root->fs_info, flags);
6933 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6934 				flags, num_bytes);
6935 			if (sinfo)
6936 				dump_space_info(sinfo, num_bytes, 1);
6937 		}
6938 	}
6939 
6940 	return ret;
6941 }
6942 
6943 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6944 					u64 start, u64 len,
6945 					int pin, int delalloc)
6946 {
6947 	struct btrfs_block_group_cache *cache;
6948 	int ret = 0;
6949 
6950 	cache = btrfs_lookup_block_group(root->fs_info, start);
6951 	if (!cache) {
6952 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6953 			start);
6954 		return -ENOSPC;
6955 	}
6956 
6957 	if (btrfs_test_opt(root, DISCARD))
6958 		ret = btrfs_discard_extent(root, start, len, NULL);
6959 
6960 	if (pin)
6961 		pin_down_extent(root, cache, start, len, 1);
6962 	else {
6963 		btrfs_add_free_space(cache, start, len);
6964 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6965 	}
6966 	btrfs_put_block_group(cache);
6967 
6968 	trace_btrfs_reserved_extent_free(root, start, len);
6969 
6970 	return ret;
6971 }
6972 
6973 int btrfs_free_reserved_extent(struct btrfs_root *root,
6974 			       u64 start, u64 len, int delalloc)
6975 {
6976 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6977 }
6978 
6979 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6980 				       u64 start, u64 len)
6981 {
6982 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6983 }
6984 
6985 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6986 				      struct btrfs_root *root,
6987 				      u64 parent, u64 root_objectid,
6988 				      u64 flags, u64 owner, u64 offset,
6989 				      struct btrfs_key *ins, int ref_mod)
6990 {
6991 	int ret;
6992 	struct btrfs_fs_info *fs_info = root->fs_info;
6993 	struct btrfs_extent_item *extent_item;
6994 	struct btrfs_extent_inline_ref *iref;
6995 	struct btrfs_path *path;
6996 	struct extent_buffer *leaf;
6997 	int type;
6998 	u32 size;
6999 
7000 	if (parent > 0)
7001 		type = BTRFS_SHARED_DATA_REF_KEY;
7002 	else
7003 		type = BTRFS_EXTENT_DATA_REF_KEY;
7004 
7005 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7006 
7007 	path = btrfs_alloc_path();
7008 	if (!path)
7009 		return -ENOMEM;
7010 
7011 	path->leave_spinning = 1;
7012 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7013 				      ins, size);
7014 	if (ret) {
7015 		btrfs_free_path(path);
7016 		return ret;
7017 	}
7018 
7019 	leaf = path->nodes[0];
7020 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7021 				     struct btrfs_extent_item);
7022 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7023 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7024 	btrfs_set_extent_flags(leaf, extent_item,
7025 			       flags | BTRFS_EXTENT_FLAG_DATA);
7026 
7027 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7028 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7029 	if (parent > 0) {
7030 		struct btrfs_shared_data_ref *ref;
7031 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7032 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7033 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7034 	} else {
7035 		struct btrfs_extent_data_ref *ref;
7036 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7037 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7038 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7039 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7040 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7041 	}
7042 
7043 	btrfs_mark_buffer_dirty(path->nodes[0]);
7044 	btrfs_free_path(path);
7045 
7046 	/* Always set parent to 0 here since its exclusive anyway. */
7047 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7048 				      ins->objectid, ins->offset,
7049 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7050 	if (ret)
7051 		return ret;
7052 
7053 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
7054 	if (ret) { /* -ENOENT, logic error */
7055 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7056 			ins->objectid, ins->offset);
7057 		BUG();
7058 	}
7059 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7060 	return ret;
7061 }
7062 
7063 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7064 				     struct btrfs_root *root,
7065 				     u64 parent, u64 root_objectid,
7066 				     u64 flags, struct btrfs_disk_key *key,
7067 				     int level, struct btrfs_key *ins,
7068 				     int no_quota)
7069 {
7070 	int ret;
7071 	struct btrfs_fs_info *fs_info = root->fs_info;
7072 	struct btrfs_extent_item *extent_item;
7073 	struct btrfs_tree_block_info *block_info;
7074 	struct btrfs_extent_inline_ref *iref;
7075 	struct btrfs_path *path;
7076 	struct extent_buffer *leaf;
7077 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7078 	u64 num_bytes = ins->offset;
7079 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7080 						 SKINNY_METADATA);
7081 
7082 	if (!skinny_metadata)
7083 		size += sizeof(*block_info);
7084 
7085 	path = btrfs_alloc_path();
7086 	if (!path) {
7087 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7088 						   root->leafsize);
7089 		return -ENOMEM;
7090 	}
7091 
7092 	path->leave_spinning = 1;
7093 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7094 				      ins, size);
7095 	if (ret) {
7096 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7097 						   root->leafsize);
7098 		btrfs_free_path(path);
7099 		return ret;
7100 	}
7101 
7102 	leaf = path->nodes[0];
7103 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7104 				     struct btrfs_extent_item);
7105 	btrfs_set_extent_refs(leaf, extent_item, 1);
7106 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7107 	btrfs_set_extent_flags(leaf, extent_item,
7108 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7109 
7110 	if (skinny_metadata) {
7111 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7112 		num_bytes = root->leafsize;
7113 	} else {
7114 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7115 		btrfs_set_tree_block_key(leaf, block_info, key);
7116 		btrfs_set_tree_block_level(leaf, block_info, level);
7117 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7118 	}
7119 
7120 	if (parent > 0) {
7121 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7122 		btrfs_set_extent_inline_ref_type(leaf, iref,
7123 						 BTRFS_SHARED_BLOCK_REF_KEY);
7124 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7125 	} else {
7126 		btrfs_set_extent_inline_ref_type(leaf, iref,
7127 						 BTRFS_TREE_BLOCK_REF_KEY);
7128 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7129 	}
7130 
7131 	btrfs_mark_buffer_dirty(leaf);
7132 	btrfs_free_path(path);
7133 
7134 	if (!no_quota) {
7135 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7136 					      ins->objectid, num_bytes,
7137 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7138 		if (ret)
7139 			return ret;
7140 	}
7141 
7142 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
7143 	if (ret) { /* -ENOENT, logic error */
7144 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7145 			ins->objectid, ins->offset);
7146 		BUG();
7147 	}
7148 
7149 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
7150 	return ret;
7151 }
7152 
7153 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7154 				     struct btrfs_root *root,
7155 				     u64 root_objectid, u64 owner,
7156 				     u64 offset, struct btrfs_key *ins)
7157 {
7158 	int ret;
7159 
7160 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7161 
7162 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7163 					 ins->offset, 0,
7164 					 root_objectid, owner, offset,
7165 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7166 	return ret;
7167 }
7168 
7169 /*
7170  * this is used by the tree logging recovery code.  It records that
7171  * an extent has been allocated and makes sure to clear the free
7172  * space cache bits as well
7173  */
7174 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7175 				   struct btrfs_root *root,
7176 				   u64 root_objectid, u64 owner, u64 offset,
7177 				   struct btrfs_key *ins)
7178 {
7179 	int ret;
7180 	struct btrfs_block_group_cache *block_group;
7181 
7182 	/*
7183 	 * Mixed block groups will exclude before processing the log so we only
7184 	 * need to do the exlude dance if this fs isn't mixed.
7185 	 */
7186 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7187 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7188 		if (ret)
7189 			return ret;
7190 	}
7191 
7192 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7193 	if (!block_group)
7194 		return -EINVAL;
7195 
7196 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7197 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7198 	BUG_ON(ret); /* logic error */
7199 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7200 					 0, owner, offset, ins, 1);
7201 	btrfs_put_block_group(block_group);
7202 	return ret;
7203 }
7204 
7205 static struct extent_buffer *
7206 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7207 		      u64 bytenr, u32 blocksize, int level)
7208 {
7209 	struct extent_buffer *buf;
7210 
7211 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7212 	if (!buf)
7213 		return ERR_PTR(-ENOMEM);
7214 	btrfs_set_header_generation(buf, trans->transid);
7215 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7216 	btrfs_tree_lock(buf);
7217 	clean_tree_block(trans, root, buf);
7218 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7219 
7220 	btrfs_set_lock_blocking(buf);
7221 	btrfs_set_buffer_uptodate(buf);
7222 
7223 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7224 		/*
7225 		 * we allow two log transactions at a time, use different
7226 		 * EXENT bit to differentiate dirty pages.
7227 		 */
7228 		if (root->log_transid % 2 == 0)
7229 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7230 					buf->start + buf->len - 1, GFP_NOFS);
7231 		else
7232 			set_extent_new(&root->dirty_log_pages, buf->start,
7233 					buf->start + buf->len - 1, GFP_NOFS);
7234 	} else {
7235 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7236 			 buf->start + buf->len - 1, GFP_NOFS);
7237 	}
7238 	trans->blocks_used++;
7239 	/* this returns a buffer locked for blocking */
7240 	return buf;
7241 }
7242 
7243 static struct btrfs_block_rsv *
7244 use_block_rsv(struct btrfs_trans_handle *trans,
7245 	      struct btrfs_root *root, u32 blocksize)
7246 {
7247 	struct btrfs_block_rsv *block_rsv;
7248 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7249 	int ret;
7250 	bool global_updated = false;
7251 
7252 	block_rsv = get_block_rsv(trans, root);
7253 
7254 	if (unlikely(block_rsv->size == 0))
7255 		goto try_reserve;
7256 again:
7257 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7258 	if (!ret)
7259 		return block_rsv;
7260 
7261 	if (block_rsv->failfast)
7262 		return ERR_PTR(ret);
7263 
7264 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7265 		global_updated = true;
7266 		update_global_block_rsv(root->fs_info);
7267 		goto again;
7268 	}
7269 
7270 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7271 		static DEFINE_RATELIMIT_STATE(_rs,
7272 				DEFAULT_RATELIMIT_INTERVAL * 10,
7273 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7274 		if (__ratelimit(&_rs))
7275 			WARN(1, KERN_DEBUG
7276 				"BTRFS: block rsv returned %d\n", ret);
7277 	}
7278 try_reserve:
7279 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7280 				     BTRFS_RESERVE_NO_FLUSH);
7281 	if (!ret)
7282 		return block_rsv;
7283 	/*
7284 	 * If we couldn't reserve metadata bytes try and use some from
7285 	 * the global reserve if its space type is the same as the global
7286 	 * reservation.
7287 	 */
7288 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7289 	    block_rsv->space_info == global_rsv->space_info) {
7290 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7291 		if (!ret)
7292 			return global_rsv;
7293 	}
7294 	return ERR_PTR(ret);
7295 }
7296 
7297 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7298 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7299 {
7300 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7301 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7302 }
7303 
7304 /*
7305  * finds a free extent and does all the dirty work required for allocation
7306  * returns the key for the extent through ins, and a tree buffer for
7307  * the first block of the extent through buf.
7308  *
7309  * returns the tree buffer or NULL.
7310  */
7311 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7312 					struct btrfs_root *root, u32 blocksize,
7313 					u64 parent, u64 root_objectid,
7314 					struct btrfs_disk_key *key, int level,
7315 					u64 hint, u64 empty_size)
7316 {
7317 	struct btrfs_key ins;
7318 	struct btrfs_block_rsv *block_rsv;
7319 	struct extent_buffer *buf;
7320 	u64 flags = 0;
7321 	int ret;
7322 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7323 						 SKINNY_METADATA);
7324 
7325 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7326 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) {
7327 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7328 					    blocksize, level);
7329 		if (!IS_ERR(buf))
7330 			root->alloc_bytenr += blocksize;
7331 		return buf;
7332 	}
7333 #endif
7334 	block_rsv = use_block_rsv(trans, root, blocksize);
7335 	if (IS_ERR(block_rsv))
7336 		return ERR_CAST(block_rsv);
7337 
7338 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7339 				   empty_size, hint, &ins, 0, 0);
7340 	if (ret) {
7341 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7342 		return ERR_PTR(ret);
7343 	}
7344 
7345 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7346 				    blocksize, level);
7347 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7348 
7349 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7350 		if (parent == 0)
7351 			parent = ins.objectid;
7352 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7353 	} else
7354 		BUG_ON(parent > 0);
7355 
7356 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7357 		struct btrfs_delayed_extent_op *extent_op;
7358 		extent_op = btrfs_alloc_delayed_extent_op();
7359 		BUG_ON(!extent_op); /* -ENOMEM */
7360 		if (key)
7361 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7362 		else
7363 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7364 		extent_op->flags_to_set = flags;
7365 		if (skinny_metadata)
7366 			extent_op->update_key = 0;
7367 		else
7368 			extent_op->update_key = 1;
7369 		extent_op->update_flags = 1;
7370 		extent_op->is_data = 0;
7371 		extent_op->level = level;
7372 
7373 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7374 					ins.objectid,
7375 					ins.offset, parent, root_objectid,
7376 					level, BTRFS_ADD_DELAYED_EXTENT,
7377 					extent_op, 0);
7378 		BUG_ON(ret); /* -ENOMEM */
7379 	}
7380 	return buf;
7381 }
7382 
7383 struct walk_control {
7384 	u64 refs[BTRFS_MAX_LEVEL];
7385 	u64 flags[BTRFS_MAX_LEVEL];
7386 	struct btrfs_key update_progress;
7387 	int stage;
7388 	int level;
7389 	int shared_level;
7390 	int update_ref;
7391 	int keep_locks;
7392 	int reada_slot;
7393 	int reada_count;
7394 	int for_reloc;
7395 };
7396 
7397 #define DROP_REFERENCE	1
7398 #define UPDATE_BACKREF	2
7399 
7400 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7401 				     struct btrfs_root *root,
7402 				     struct walk_control *wc,
7403 				     struct btrfs_path *path)
7404 {
7405 	u64 bytenr;
7406 	u64 generation;
7407 	u64 refs;
7408 	u64 flags;
7409 	u32 nritems;
7410 	u32 blocksize;
7411 	struct btrfs_key key;
7412 	struct extent_buffer *eb;
7413 	int ret;
7414 	int slot;
7415 	int nread = 0;
7416 
7417 	if (path->slots[wc->level] < wc->reada_slot) {
7418 		wc->reada_count = wc->reada_count * 2 / 3;
7419 		wc->reada_count = max(wc->reada_count, 2);
7420 	} else {
7421 		wc->reada_count = wc->reada_count * 3 / 2;
7422 		wc->reada_count = min_t(int, wc->reada_count,
7423 					BTRFS_NODEPTRS_PER_BLOCK(root));
7424 	}
7425 
7426 	eb = path->nodes[wc->level];
7427 	nritems = btrfs_header_nritems(eb);
7428 	blocksize = btrfs_level_size(root, wc->level - 1);
7429 
7430 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7431 		if (nread >= wc->reada_count)
7432 			break;
7433 
7434 		cond_resched();
7435 		bytenr = btrfs_node_blockptr(eb, slot);
7436 		generation = btrfs_node_ptr_generation(eb, slot);
7437 
7438 		if (slot == path->slots[wc->level])
7439 			goto reada;
7440 
7441 		if (wc->stage == UPDATE_BACKREF &&
7442 		    generation <= root->root_key.offset)
7443 			continue;
7444 
7445 		/* We don't lock the tree block, it's OK to be racy here */
7446 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7447 					       wc->level - 1, 1, &refs,
7448 					       &flags);
7449 		/* We don't care about errors in readahead. */
7450 		if (ret < 0)
7451 			continue;
7452 		BUG_ON(refs == 0);
7453 
7454 		if (wc->stage == DROP_REFERENCE) {
7455 			if (refs == 1)
7456 				goto reada;
7457 
7458 			if (wc->level == 1 &&
7459 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7460 				continue;
7461 			if (!wc->update_ref ||
7462 			    generation <= root->root_key.offset)
7463 				continue;
7464 			btrfs_node_key_to_cpu(eb, &key, slot);
7465 			ret = btrfs_comp_cpu_keys(&key,
7466 						  &wc->update_progress);
7467 			if (ret < 0)
7468 				continue;
7469 		} else {
7470 			if (wc->level == 1 &&
7471 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7472 				continue;
7473 		}
7474 reada:
7475 		ret = readahead_tree_block(root, bytenr, blocksize,
7476 					   generation);
7477 		if (ret)
7478 			break;
7479 		nread++;
7480 	}
7481 	wc->reada_slot = slot;
7482 }
7483 
7484 /*
7485  * helper to process tree block while walking down the tree.
7486  *
7487  * when wc->stage == UPDATE_BACKREF, this function updates
7488  * back refs for pointers in the block.
7489  *
7490  * NOTE: return value 1 means we should stop walking down.
7491  */
7492 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7493 				   struct btrfs_root *root,
7494 				   struct btrfs_path *path,
7495 				   struct walk_control *wc, int lookup_info)
7496 {
7497 	int level = wc->level;
7498 	struct extent_buffer *eb = path->nodes[level];
7499 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7500 	int ret;
7501 
7502 	if (wc->stage == UPDATE_BACKREF &&
7503 	    btrfs_header_owner(eb) != root->root_key.objectid)
7504 		return 1;
7505 
7506 	/*
7507 	 * when reference count of tree block is 1, it won't increase
7508 	 * again. once full backref flag is set, we never clear it.
7509 	 */
7510 	if (lookup_info &&
7511 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7512 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7513 		BUG_ON(!path->locks[level]);
7514 		ret = btrfs_lookup_extent_info(trans, root,
7515 					       eb->start, level, 1,
7516 					       &wc->refs[level],
7517 					       &wc->flags[level]);
7518 		BUG_ON(ret == -ENOMEM);
7519 		if (ret)
7520 			return ret;
7521 		BUG_ON(wc->refs[level] == 0);
7522 	}
7523 
7524 	if (wc->stage == DROP_REFERENCE) {
7525 		if (wc->refs[level] > 1)
7526 			return 1;
7527 
7528 		if (path->locks[level] && !wc->keep_locks) {
7529 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7530 			path->locks[level] = 0;
7531 		}
7532 		return 0;
7533 	}
7534 
7535 	/* wc->stage == UPDATE_BACKREF */
7536 	if (!(wc->flags[level] & flag)) {
7537 		BUG_ON(!path->locks[level]);
7538 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7539 		BUG_ON(ret); /* -ENOMEM */
7540 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7541 		BUG_ON(ret); /* -ENOMEM */
7542 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7543 						  eb->len, flag,
7544 						  btrfs_header_level(eb), 0);
7545 		BUG_ON(ret); /* -ENOMEM */
7546 		wc->flags[level] |= flag;
7547 	}
7548 
7549 	/*
7550 	 * the block is shared by multiple trees, so it's not good to
7551 	 * keep the tree lock
7552 	 */
7553 	if (path->locks[level] && level > 0) {
7554 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7555 		path->locks[level] = 0;
7556 	}
7557 	return 0;
7558 }
7559 
7560 /*
7561  * helper to process tree block pointer.
7562  *
7563  * when wc->stage == DROP_REFERENCE, this function checks
7564  * reference count of the block pointed to. if the block
7565  * is shared and we need update back refs for the subtree
7566  * rooted at the block, this function changes wc->stage to
7567  * UPDATE_BACKREF. if the block is shared and there is no
7568  * need to update back, this function drops the reference
7569  * to the block.
7570  *
7571  * NOTE: return value 1 means we should stop walking down.
7572  */
7573 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7574 				 struct btrfs_root *root,
7575 				 struct btrfs_path *path,
7576 				 struct walk_control *wc, int *lookup_info)
7577 {
7578 	u64 bytenr;
7579 	u64 generation;
7580 	u64 parent;
7581 	u32 blocksize;
7582 	struct btrfs_key key;
7583 	struct extent_buffer *next;
7584 	int level = wc->level;
7585 	int reada = 0;
7586 	int ret = 0;
7587 
7588 	generation = btrfs_node_ptr_generation(path->nodes[level],
7589 					       path->slots[level]);
7590 	/*
7591 	 * if the lower level block was created before the snapshot
7592 	 * was created, we know there is no need to update back refs
7593 	 * for the subtree
7594 	 */
7595 	if (wc->stage == UPDATE_BACKREF &&
7596 	    generation <= root->root_key.offset) {
7597 		*lookup_info = 1;
7598 		return 1;
7599 	}
7600 
7601 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7602 	blocksize = btrfs_level_size(root, level - 1);
7603 
7604 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7605 	if (!next) {
7606 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7607 		if (!next)
7608 			return -ENOMEM;
7609 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7610 					       level - 1);
7611 		reada = 1;
7612 	}
7613 	btrfs_tree_lock(next);
7614 	btrfs_set_lock_blocking(next);
7615 
7616 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7617 				       &wc->refs[level - 1],
7618 				       &wc->flags[level - 1]);
7619 	if (ret < 0) {
7620 		btrfs_tree_unlock(next);
7621 		return ret;
7622 	}
7623 
7624 	if (unlikely(wc->refs[level - 1] == 0)) {
7625 		btrfs_err(root->fs_info, "Missing references.");
7626 		BUG();
7627 	}
7628 	*lookup_info = 0;
7629 
7630 	if (wc->stage == DROP_REFERENCE) {
7631 		if (wc->refs[level - 1] > 1) {
7632 			if (level == 1 &&
7633 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7634 				goto skip;
7635 
7636 			if (!wc->update_ref ||
7637 			    generation <= root->root_key.offset)
7638 				goto skip;
7639 
7640 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7641 					      path->slots[level]);
7642 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7643 			if (ret < 0)
7644 				goto skip;
7645 
7646 			wc->stage = UPDATE_BACKREF;
7647 			wc->shared_level = level - 1;
7648 		}
7649 	} else {
7650 		if (level == 1 &&
7651 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7652 			goto skip;
7653 	}
7654 
7655 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7656 		btrfs_tree_unlock(next);
7657 		free_extent_buffer(next);
7658 		next = NULL;
7659 		*lookup_info = 1;
7660 	}
7661 
7662 	if (!next) {
7663 		if (reada && level == 1)
7664 			reada_walk_down(trans, root, wc, path);
7665 		next = read_tree_block(root, bytenr, blocksize, generation);
7666 		if (!next || !extent_buffer_uptodate(next)) {
7667 			free_extent_buffer(next);
7668 			return -EIO;
7669 		}
7670 		btrfs_tree_lock(next);
7671 		btrfs_set_lock_blocking(next);
7672 	}
7673 
7674 	level--;
7675 	BUG_ON(level != btrfs_header_level(next));
7676 	path->nodes[level] = next;
7677 	path->slots[level] = 0;
7678 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7679 	wc->level = level;
7680 	if (wc->level == 1)
7681 		wc->reada_slot = 0;
7682 	return 0;
7683 skip:
7684 	wc->refs[level - 1] = 0;
7685 	wc->flags[level - 1] = 0;
7686 	if (wc->stage == DROP_REFERENCE) {
7687 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7688 			parent = path->nodes[level]->start;
7689 		} else {
7690 			BUG_ON(root->root_key.objectid !=
7691 			       btrfs_header_owner(path->nodes[level]));
7692 			parent = 0;
7693 		}
7694 
7695 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7696 				root->root_key.objectid, level - 1, 0, 0);
7697 		BUG_ON(ret); /* -ENOMEM */
7698 	}
7699 	btrfs_tree_unlock(next);
7700 	free_extent_buffer(next);
7701 	*lookup_info = 1;
7702 	return 1;
7703 }
7704 
7705 /*
7706  * helper to process tree block while walking up the tree.
7707  *
7708  * when wc->stage == DROP_REFERENCE, this function drops
7709  * reference count on the block.
7710  *
7711  * when wc->stage == UPDATE_BACKREF, this function changes
7712  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7713  * to UPDATE_BACKREF previously while processing the block.
7714  *
7715  * NOTE: return value 1 means we should stop walking up.
7716  */
7717 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7718 				 struct btrfs_root *root,
7719 				 struct btrfs_path *path,
7720 				 struct walk_control *wc)
7721 {
7722 	int ret;
7723 	int level = wc->level;
7724 	struct extent_buffer *eb = path->nodes[level];
7725 	u64 parent = 0;
7726 
7727 	if (wc->stage == UPDATE_BACKREF) {
7728 		BUG_ON(wc->shared_level < level);
7729 		if (level < wc->shared_level)
7730 			goto out;
7731 
7732 		ret = find_next_key(path, level + 1, &wc->update_progress);
7733 		if (ret > 0)
7734 			wc->update_ref = 0;
7735 
7736 		wc->stage = DROP_REFERENCE;
7737 		wc->shared_level = -1;
7738 		path->slots[level] = 0;
7739 
7740 		/*
7741 		 * check reference count again if the block isn't locked.
7742 		 * we should start walking down the tree again if reference
7743 		 * count is one.
7744 		 */
7745 		if (!path->locks[level]) {
7746 			BUG_ON(level == 0);
7747 			btrfs_tree_lock(eb);
7748 			btrfs_set_lock_blocking(eb);
7749 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7750 
7751 			ret = btrfs_lookup_extent_info(trans, root,
7752 						       eb->start, level, 1,
7753 						       &wc->refs[level],
7754 						       &wc->flags[level]);
7755 			if (ret < 0) {
7756 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7757 				path->locks[level] = 0;
7758 				return ret;
7759 			}
7760 			BUG_ON(wc->refs[level] == 0);
7761 			if (wc->refs[level] == 1) {
7762 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7763 				path->locks[level] = 0;
7764 				return 1;
7765 			}
7766 		}
7767 	}
7768 
7769 	/* wc->stage == DROP_REFERENCE */
7770 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7771 
7772 	if (wc->refs[level] == 1) {
7773 		if (level == 0) {
7774 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7775 				ret = btrfs_dec_ref(trans, root, eb, 1,
7776 						    wc->for_reloc);
7777 			else
7778 				ret = btrfs_dec_ref(trans, root, eb, 0,
7779 						    wc->for_reloc);
7780 			BUG_ON(ret); /* -ENOMEM */
7781 		}
7782 		/* make block locked assertion in clean_tree_block happy */
7783 		if (!path->locks[level] &&
7784 		    btrfs_header_generation(eb) == trans->transid) {
7785 			btrfs_tree_lock(eb);
7786 			btrfs_set_lock_blocking(eb);
7787 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7788 		}
7789 		clean_tree_block(trans, root, eb);
7790 	}
7791 
7792 	if (eb == root->node) {
7793 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7794 			parent = eb->start;
7795 		else
7796 			BUG_ON(root->root_key.objectid !=
7797 			       btrfs_header_owner(eb));
7798 	} else {
7799 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7800 			parent = path->nodes[level + 1]->start;
7801 		else
7802 			BUG_ON(root->root_key.objectid !=
7803 			       btrfs_header_owner(path->nodes[level + 1]));
7804 	}
7805 
7806 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7807 out:
7808 	wc->refs[level] = 0;
7809 	wc->flags[level] = 0;
7810 	return 0;
7811 }
7812 
7813 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7814 				   struct btrfs_root *root,
7815 				   struct btrfs_path *path,
7816 				   struct walk_control *wc)
7817 {
7818 	int level = wc->level;
7819 	int lookup_info = 1;
7820 	int ret;
7821 
7822 	while (level >= 0) {
7823 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7824 		if (ret > 0)
7825 			break;
7826 
7827 		if (level == 0)
7828 			break;
7829 
7830 		if (path->slots[level] >=
7831 		    btrfs_header_nritems(path->nodes[level]))
7832 			break;
7833 
7834 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7835 		if (ret > 0) {
7836 			path->slots[level]++;
7837 			continue;
7838 		} else if (ret < 0)
7839 			return ret;
7840 		level = wc->level;
7841 	}
7842 	return 0;
7843 }
7844 
7845 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7846 				 struct btrfs_root *root,
7847 				 struct btrfs_path *path,
7848 				 struct walk_control *wc, int max_level)
7849 {
7850 	int level = wc->level;
7851 	int ret;
7852 
7853 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7854 	while (level < max_level && path->nodes[level]) {
7855 		wc->level = level;
7856 		if (path->slots[level] + 1 <
7857 		    btrfs_header_nritems(path->nodes[level])) {
7858 			path->slots[level]++;
7859 			return 0;
7860 		} else {
7861 			ret = walk_up_proc(trans, root, path, wc);
7862 			if (ret > 0)
7863 				return 0;
7864 
7865 			if (path->locks[level]) {
7866 				btrfs_tree_unlock_rw(path->nodes[level],
7867 						     path->locks[level]);
7868 				path->locks[level] = 0;
7869 			}
7870 			free_extent_buffer(path->nodes[level]);
7871 			path->nodes[level] = NULL;
7872 			level++;
7873 		}
7874 	}
7875 	return 1;
7876 }
7877 
7878 /*
7879  * drop a subvolume tree.
7880  *
7881  * this function traverses the tree freeing any blocks that only
7882  * referenced by the tree.
7883  *
7884  * when a shared tree block is found. this function decreases its
7885  * reference count by one. if update_ref is true, this function
7886  * also make sure backrefs for the shared block and all lower level
7887  * blocks are properly updated.
7888  *
7889  * If called with for_reloc == 0, may exit early with -EAGAIN
7890  */
7891 int btrfs_drop_snapshot(struct btrfs_root *root,
7892 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7893 			 int for_reloc)
7894 {
7895 	struct btrfs_path *path;
7896 	struct btrfs_trans_handle *trans;
7897 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7898 	struct btrfs_root_item *root_item = &root->root_item;
7899 	struct walk_control *wc;
7900 	struct btrfs_key key;
7901 	int err = 0;
7902 	int ret;
7903 	int level;
7904 	bool root_dropped = false;
7905 
7906 	path = btrfs_alloc_path();
7907 	if (!path) {
7908 		err = -ENOMEM;
7909 		goto out;
7910 	}
7911 
7912 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7913 	if (!wc) {
7914 		btrfs_free_path(path);
7915 		err = -ENOMEM;
7916 		goto out;
7917 	}
7918 
7919 	trans = btrfs_start_transaction(tree_root, 0);
7920 	if (IS_ERR(trans)) {
7921 		err = PTR_ERR(trans);
7922 		goto out_free;
7923 	}
7924 
7925 	if (block_rsv)
7926 		trans->block_rsv = block_rsv;
7927 
7928 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7929 		level = btrfs_header_level(root->node);
7930 		path->nodes[level] = btrfs_lock_root_node(root);
7931 		btrfs_set_lock_blocking(path->nodes[level]);
7932 		path->slots[level] = 0;
7933 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7934 		memset(&wc->update_progress, 0,
7935 		       sizeof(wc->update_progress));
7936 	} else {
7937 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7938 		memcpy(&wc->update_progress, &key,
7939 		       sizeof(wc->update_progress));
7940 
7941 		level = root_item->drop_level;
7942 		BUG_ON(level == 0);
7943 		path->lowest_level = level;
7944 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7945 		path->lowest_level = 0;
7946 		if (ret < 0) {
7947 			err = ret;
7948 			goto out_end_trans;
7949 		}
7950 		WARN_ON(ret > 0);
7951 
7952 		/*
7953 		 * unlock our path, this is safe because only this
7954 		 * function is allowed to delete this snapshot
7955 		 */
7956 		btrfs_unlock_up_safe(path, 0);
7957 
7958 		level = btrfs_header_level(root->node);
7959 		while (1) {
7960 			btrfs_tree_lock(path->nodes[level]);
7961 			btrfs_set_lock_blocking(path->nodes[level]);
7962 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7963 
7964 			ret = btrfs_lookup_extent_info(trans, root,
7965 						path->nodes[level]->start,
7966 						level, 1, &wc->refs[level],
7967 						&wc->flags[level]);
7968 			if (ret < 0) {
7969 				err = ret;
7970 				goto out_end_trans;
7971 			}
7972 			BUG_ON(wc->refs[level] == 0);
7973 
7974 			if (level == root_item->drop_level)
7975 				break;
7976 
7977 			btrfs_tree_unlock(path->nodes[level]);
7978 			path->locks[level] = 0;
7979 			WARN_ON(wc->refs[level] != 1);
7980 			level--;
7981 		}
7982 	}
7983 
7984 	wc->level = level;
7985 	wc->shared_level = -1;
7986 	wc->stage = DROP_REFERENCE;
7987 	wc->update_ref = update_ref;
7988 	wc->keep_locks = 0;
7989 	wc->for_reloc = for_reloc;
7990 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7991 
7992 	while (1) {
7993 
7994 		ret = walk_down_tree(trans, root, path, wc);
7995 		if (ret < 0) {
7996 			err = ret;
7997 			break;
7998 		}
7999 
8000 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8001 		if (ret < 0) {
8002 			err = ret;
8003 			break;
8004 		}
8005 
8006 		if (ret > 0) {
8007 			BUG_ON(wc->stage != DROP_REFERENCE);
8008 			break;
8009 		}
8010 
8011 		if (wc->stage == DROP_REFERENCE) {
8012 			level = wc->level;
8013 			btrfs_node_key(path->nodes[level],
8014 				       &root_item->drop_progress,
8015 				       path->slots[level]);
8016 			root_item->drop_level = level;
8017 		}
8018 
8019 		BUG_ON(wc->level == 0);
8020 		if (btrfs_should_end_transaction(trans, tree_root) ||
8021 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8022 			ret = btrfs_update_root(trans, tree_root,
8023 						&root->root_key,
8024 						root_item);
8025 			if (ret) {
8026 				btrfs_abort_transaction(trans, tree_root, ret);
8027 				err = ret;
8028 				goto out_end_trans;
8029 			}
8030 
8031 			btrfs_end_transaction_throttle(trans, tree_root);
8032 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8033 				pr_debug("BTRFS: drop snapshot early exit\n");
8034 				err = -EAGAIN;
8035 				goto out_free;
8036 			}
8037 
8038 			trans = btrfs_start_transaction(tree_root, 0);
8039 			if (IS_ERR(trans)) {
8040 				err = PTR_ERR(trans);
8041 				goto out_free;
8042 			}
8043 			if (block_rsv)
8044 				trans->block_rsv = block_rsv;
8045 		}
8046 	}
8047 	btrfs_release_path(path);
8048 	if (err)
8049 		goto out_end_trans;
8050 
8051 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8052 	if (ret) {
8053 		btrfs_abort_transaction(trans, tree_root, ret);
8054 		goto out_end_trans;
8055 	}
8056 
8057 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8058 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8059 				      NULL, NULL);
8060 		if (ret < 0) {
8061 			btrfs_abort_transaction(trans, tree_root, ret);
8062 			err = ret;
8063 			goto out_end_trans;
8064 		} else if (ret > 0) {
8065 			/* if we fail to delete the orphan item this time
8066 			 * around, it'll get picked up the next time.
8067 			 *
8068 			 * The most common failure here is just -ENOENT.
8069 			 */
8070 			btrfs_del_orphan_item(trans, tree_root,
8071 					      root->root_key.objectid);
8072 		}
8073 	}
8074 
8075 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8076 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8077 	} else {
8078 		free_extent_buffer(root->node);
8079 		free_extent_buffer(root->commit_root);
8080 		btrfs_put_fs_root(root);
8081 	}
8082 	root_dropped = true;
8083 out_end_trans:
8084 	btrfs_end_transaction_throttle(trans, tree_root);
8085 out_free:
8086 	kfree(wc);
8087 	btrfs_free_path(path);
8088 out:
8089 	/*
8090 	 * So if we need to stop dropping the snapshot for whatever reason we
8091 	 * need to make sure to add it back to the dead root list so that we
8092 	 * keep trying to do the work later.  This also cleans up roots if we
8093 	 * don't have it in the radix (like when we recover after a power fail
8094 	 * or unmount) so we don't leak memory.
8095 	 */
8096 	if (!for_reloc && root_dropped == false)
8097 		btrfs_add_dead_root(root);
8098 	if (err && err != -EAGAIN)
8099 		btrfs_std_error(root->fs_info, err);
8100 	return err;
8101 }
8102 
8103 /*
8104  * drop subtree rooted at tree block 'node'.
8105  *
8106  * NOTE: this function will unlock and release tree block 'node'
8107  * only used by relocation code
8108  */
8109 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8110 			struct btrfs_root *root,
8111 			struct extent_buffer *node,
8112 			struct extent_buffer *parent)
8113 {
8114 	struct btrfs_path *path;
8115 	struct walk_control *wc;
8116 	int level;
8117 	int parent_level;
8118 	int ret = 0;
8119 	int wret;
8120 
8121 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8122 
8123 	path = btrfs_alloc_path();
8124 	if (!path)
8125 		return -ENOMEM;
8126 
8127 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8128 	if (!wc) {
8129 		btrfs_free_path(path);
8130 		return -ENOMEM;
8131 	}
8132 
8133 	btrfs_assert_tree_locked(parent);
8134 	parent_level = btrfs_header_level(parent);
8135 	extent_buffer_get(parent);
8136 	path->nodes[parent_level] = parent;
8137 	path->slots[parent_level] = btrfs_header_nritems(parent);
8138 
8139 	btrfs_assert_tree_locked(node);
8140 	level = btrfs_header_level(node);
8141 	path->nodes[level] = node;
8142 	path->slots[level] = 0;
8143 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8144 
8145 	wc->refs[parent_level] = 1;
8146 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8147 	wc->level = level;
8148 	wc->shared_level = -1;
8149 	wc->stage = DROP_REFERENCE;
8150 	wc->update_ref = 0;
8151 	wc->keep_locks = 1;
8152 	wc->for_reloc = 1;
8153 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8154 
8155 	while (1) {
8156 		wret = walk_down_tree(trans, root, path, wc);
8157 		if (wret < 0) {
8158 			ret = wret;
8159 			break;
8160 		}
8161 
8162 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8163 		if (wret < 0)
8164 			ret = wret;
8165 		if (wret != 0)
8166 			break;
8167 	}
8168 
8169 	kfree(wc);
8170 	btrfs_free_path(path);
8171 	return ret;
8172 }
8173 
8174 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8175 {
8176 	u64 num_devices;
8177 	u64 stripped;
8178 
8179 	/*
8180 	 * if restripe for this chunk_type is on pick target profile and
8181 	 * return, otherwise do the usual balance
8182 	 */
8183 	stripped = get_restripe_target(root->fs_info, flags);
8184 	if (stripped)
8185 		return extended_to_chunk(stripped);
8186 
8187 	/*
8188 	 * we add in the count of missing devices because we want
8189 	 * to make sure that any RAID levels on a degraded FS
8190 	 * continue to be honored.
8191 	 */
8192 	num_devices = root->fs_info->fs_devices->rw_devices +
8193 		root->fs_info->fs_devices->missing_devices;
8194 
8195 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8196 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8197 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8198 
8199 	if (num_devices == 1) {
8200 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8201 		stripped = flags & ~stripped;
8202 
8203 		/* turn raid0 into single device chunks */
8204 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8205 			return stripped;
8206 
8207 		/* turn mirroring into duplication */
8208 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8209 			     BTRFS_BLOCK_GROUP_RAID10))
8210 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8211 	} else {
8212 		/* they already had raid on here, just return */
8213 		if (flags & stripped)
8214 			return flags;
8215 
8216 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8217 		stripped = flags & ~stripped;
8218 
8219 		/* switch duplicated blocks with raid1 */
8220 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8221 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8222 
8223 		/* this is drive concat, leave it alone */
8224 	}
8225 
8226 	return flags;
8227 }
8228 
8229 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8230 {
8231 	struct btrfs_space_info *sinfo = cache->space_info;
8232 	u64 num_bytes;
8233 	u64 min_allocable_bytes;
8234 	int ret = -ENOSPC;
8235 
8236 
8237 	/*
8238 	 * We need some metadata space and system metadata space for
8239 	 * allocating chunks in some corner cases until we force to set
8240 	 * it to be readonly.
8241 	 */
8242 	if ((sinfo->flags &
8243 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8244 	    !force)
8245 		min_allocable_bytes = 1 * 1024 * 1024;
8246 	else
8247 		min_allocable_bytes = 0;
8248 
8249 	spin_lock(&sinfo->lock);
8250 	spin_lock(&cache->lock);
8251 
8252 	if (cache->ro) {
8253 		ret = 0;
8254 		goto out;
8255 	}
8256 
8257 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8258 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8259 
8260 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8261 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8262 	    min_allocable_bytes <= sinfo->total_bytes) {
8263 		sinfo->bytes_readonly += num_bytes;
8264 		cache->ro = 1;
8265 		ret = 0;
8266 	}
8267 out:
8268 	spin_unlock(&cache->lock);
8269 	spin_unlock(&sinfo->lock);
8270 	return ret;
8271 }
8272 
8273 int btrfs_set_block_group_ro(struct btrfs_root *root,
8274 			     struct btrfs_block_group_cache *cache)
8275 
8276 {
8277 	struct btrfs_trans_handle *trans;
8278 	u64 alloc_flags;
8279 	int ret;
8280 
8281 	BUG_ON(cache->ro);
8282 
8283 	trans = btrfs_join_transaction(root);
8284 	if (IS_ERR(trans))
8285 		return PTR_ERR(trans);
8286 
8287 	alloc_flags = update_block_group_flags(root, cache->flags);
8288 	if (alloc_flags != cache->flags) {
8289 		ret = do_chunk_alloc(trans, root, alloc_flags,
8290 				     CHUNK_ALLOC_FORCE);
8291 		if (ret < 0)
8292 			goto out;
8293 	}
8294 
8295 	ret = set_block_group_ro(cache, 0);
8296 	if (!ret)
8297 		goto out;
8298 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8299 	ret = do_chunk_alloc(trans, root, alloc_flags,
8300 			     CHUNK_ALLOC_FORCE);
8301 	if (ret < 0)
8302 		goto out;
8303 	ret = set_block_group_ro(cache, 0);
8304 out:
8305 	btrfs_end_transaction(trans, root);
8306 	return ret;
8307 }
8308 
8309 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8310 			    struct btrfs_root *root, u64 type)
8311 {
8312 	u64 alloc_flags = get_alloc_profile(root, type);
8313 	return do_chunk_alloc(trans, root, alloc_flags,
8314 			      CHUNK_ALLOC_FORCE);
8315 }
8316 
8317 /*
8318  * helper to account the unused space of all the readonly block group in the
8319  * list. takes mirrors into account.
8320  */
8321 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8322 {
8323 	struct btrfs_block_group_cache *block_group;
8324 	u64 free_bytes = 0;
8325 	int factor;
8326 
8327 	list_for_each_entry(block_group, groups_list, list) {
8328 		spin_lock(&block_group->lock);
8329 
8330 		if (!block_group->ro) {
8331 			spin_unlock(&block_group->lock);
8332 			continue;
8333 		}
8334 
8335 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8336 					  BTRFS_BLOCK_GROUP_RAID10 |
8337 					  BTRFS_BLOCK_GROUP_DUP))
8338 			factor = 2;
8339 		else
8340 			factor = 1;
8341 
8342 		free_bytes += (block_group->key.offset -
8343 			       btrfs_block_group_used(&block_group->item)) *
8344 			       factor;
8345 
8346 		spin_unlock(&block_group->lock);
8347 	}
8348 
8349 	return free_bytes;
8350 }
8351 
8352 /*
8353  * helper to account the unused space of all the readonly block group in the
8354  * space_info. takes mirrors into account.
8355  */
8356 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8357 {
8358 	int i;
8359 	u64 free_bytes = 0;
8360 
8361 	spin_lock(&sinfo->lock);
8362 
8363 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8364 		if (!list_empty(&sinfo->block_groups[i]))
8365 			free_bytes += __btrfs_get_ro_block_group_free_space(
8366 						&sinfo->block_groups[i]);
8367 
8368 	spin_unlock(&sinfo->lock);
8369 
8370 	return free_bytes;
8371 }
8372 
8373 void btrfs_set_block_group_rw(struct btrfs_root *root,
8374 			      struct btrfs_block_group_cache *cache)
8375 {
8376 	struct btrfs_space_info *sinfo = cache->space_info;
8377 	u64 num_bytes;
8378 
8379 	BUG_ON(!cache->ro);
8380 
8381 	spin_lock(&sinfo->lock);
8382 	spin_lock(&cache->lock);
8383 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8384 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8385 	sinfo->bytes_readonly -= num_bytes;
8386 	cache->ro = 0;
8387 	spin_unlock(&cache->lock);
8388 	spin_unlock(&sinfo->lock);
8389 }
8390 
8391 /*
8392  * checks to see if its even possible to relocate this block group.
8393  *
8394  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8395  * ok to go ahead and try.
8396  */
8397 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8398 {
8399 	struct btrfs_block_group_cache *block_group;
8400 	struct btrfs_space_info *space_info;
8401 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8402 	struct btrfs_device *device;
8403 	struct btrfs_trans_handle *trans;
8404 	u64 min_free;
8405 	u64 dev_min = 1;
8406 	u64 dev_nr = 0;
8407 	u64 target;
8408 	int index;
8409 	int full = 0;
8410 	int ret = 0;
8411 
8412 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8413 
8414 	/* odd, couldn't find the block group, leave it alone */
8415 	if (!block_group)
8416 		return -1;
8417 
8418 	min_free = btrfs_block_group_used(&block_group->item);
8419 
8420 	/* no bytes used, we're good */
8421 	if (!min_free)
8422 		goto out;
8423 
8424 	space_info = block_group->space_info;
8425 	spin_lock(&space_info->lock);
8426 
8427 	full = space_info->full;
8428 
8429 	/*
8430 	 * if this is the last block group we have in this space, we can't
8431 	 * relocate it unless we're able to allocate a new chunk below.
8432 	 *
8433 	 * Otherwise, we need to make sure we have room in the space to handle
8434 	 * all of the extents from this block group.  If we can, we're good
8435 	 */
8436 	if ((space_info->total_bytes != block_group->key.offset) &&
8437 	    (space_info->bytes_used + space_info->bytes_reserved +
8438 	     space_info->bytes_pinned + space_info->bytes_readonly +
8439 	     min_free < space_info->total_bytes)) {
8440 		spin_unlock(&space_info->lock);
8441 		goto out;
8442 	}
8443 	spin_unlock(&space_info->lock);
8444 
8445 	/*
8446 	 * ok we don't have enough space, but maybe we have free space on our
8447 	 * devices to allocate new chunks for relocation, so loop through our
8448 	 * alloc devices and guess if we have enough space.  if this block
8449 	 * group is going to be restriped, run checks against the target
8450 	 * profile instead of the current one.
8451 	 */
8452 	ret = -1;
8453 
8454 	/*
8455 	 * index:
8456 	 *      0: raid10
8457 	 *      1: raid1
8458 	 *      2: dup
8459 	 *      3: raid0
8460 	 *      4: single
8461 	 */
8462 	target = get_restripe_target(root->fs_info, block_group->flags);
8463 	if (target) {
8464 		index = __get_raid_index(extended_to_chunk(target));
8465 	} else {
8466 		/*
8467 		 * this is just a balance, so if we were marked as full
8468 		 * we know there is no space for a new chunk
8469 		 */
8470 		if (full)
8471 			goto out;
8472 
8473 		index = get_block_group_index(block_group);
8474 	}
8475 
8476 	if (index == BTRFS_RAID_RAID10) {
8477 		dev_min = 4;
8478 		/* Divide by 2 */
8479 		min_free >>= 1;
8480 	} else if (index == BTRFS_RAID_RAID1) {
8481 		dev_min = 2;
8482 	} else if (index == BTRFS_RAID_DUP) {
8483 		/* Multiply by 2 */
8484 		min_free <<= 1;
8485 	} else if (index == BTRFS_RAID_RAID0) {
8486 		dev_min = fs_devices->rw_devices;
8487 		do_div(min_free, dev_min);
8488 	}
8489 
8490 	/* We need to do this so that we can look at pending chunks */
8491 	trans = btrfs_join_transaction(root);
8492 	if (IS_ERR(trans)) {
8493 		ret = PTR_ERR(trans);
8494 		goto out;
8495 	}
8496 
8497 	mutex_lock(&root->fs_info->chunk_mutex);
8498 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8499 		u64 dev_offset;
8500 
8501 		/*
8502 		 * check to make sure we can actually find a chunk with enough
8503 		 * space to fit our block group in.
8504 		 */
8505 		if (device->total_bytes > device->bytes_used + min_free &&
8506 		    !device->is_tgtdev_for_dev_replace) {
8507 			ret = find_free_dev_extent(trans, device, min_free,
8508 						   &dev_offset, NULL);
8509 			if (!ret)
8510 				dev_nr++;
8511 
8512 			if (dev_nr >= dev_min)
8513 				break;
8514 
8515 			ret = -1;
8516 		}
8517 	}
8518 	mutex_unlock(&root->fs_info->chunk_mutex);
8519 	btrfs_end_transaction(trans, root);
8520 out:
8521 	btrfs_put_block_group(block_group);
8522 	return ret;
8523 }
8524 
8525 static int find_first_block_group(struct btrfs_root *root,
8526 		struct btrfs_path *path, struct btrfs_key *key)
8527 {
8528 	int ret = 0;
8529 	struct btrfs_key found_key;
8530 	struct extent_buffer *leaf;
8531 	int slot;
8532 
8533 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8534 	if (ret < 0)
8535 		goto out;
8536 
8537 	while (1) {
8538 		slot = path->slots[0];
8539 		leaf = path->nodes[0];
8540 		if (slot >= btrfs_header_nritems(leaf)) {
8541 			ret = btrfs_next_leaf(root, path);
8542 			if (ret == 0)
8543 				continue;
8544 			if (ret < 0)
8545 				goto out;
8546 			break;
8547 		}
8548 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8549 
8550 		if (found_key.objectid >= key->objectid &&
8551 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8552 			ret = 0;
8553 			goto out;
8554 		}
8555 		path->slots[0]++;
8556 	}
8557 out:
8558 	return ret;
8559 }
8560 
8561 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8562 {
8563 	struct btrfs_block_group_cache *block_group;
8564 	u64 last = 0;
8565 
8566 	while (1) {
8567 		struct inode *inode;
8568 
8569 		block_group = btrfs_lookup_first_block_group(info, last);
8570 		while (block_group) {
8571 			spin_lock(&block_group->lock);
8572 			if (block_group->iref)
8573 				break;
8574 			spin_unlock(&block_group->lock);
8575 			block_group = next_block_group(info->tree_root,
8576 						       block_group);
8577 		}
8578 		if (!block_group) {
8579 			if (last == 0)
8580 				break;
8581 			last = 0;
8582 			continue;
8583 		}
8584 
8585 		inode = block_group->inode;
8586 		block_group->iref = 0;
8587 		block_group->inode = NULL;
8588 		spin_unlock(&block_group->lock);
8589 		iput(inode);
8590 		last = block_group->key.objectid + block_group->key.offset;
8591 		btrfs_put_block_group(block_group);
8592 	}
8593 }
8594 
8595 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8596 {
8597 	struct btrfs_block_group_cache *block_group;
8598 	struct btrfs_space_info *space_info;
8599 	struct btrfs_caching_control *caching_ctl;
8600 	struct rb_node *n;
8601 
8602 	down_write(&info->commit_root_sem);
8603 	while (!list_empty(&info->caching_block_groups)) {
8604 		caching_ctl = list_entry(info->caching_block_groups.next,
8605 					 struct btrfs_caching_control, list);
8606 		list_del(&caching_ctl->list);
8607 		put_caching_control(caching_ctl);
8608 	}
8609 	up_write(&info->commit_root_sem);
8610 
8611 	spin_lock(&info->block_group_cache_lock);
8612 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8613 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8614 				       cache_node);
8615 		rb_erase(&block_group->cache_node,
8616 			 &info->block_group_cache_tree);
8617 		spin_unlock(&info->block_group_cache_lock);
8618 
8619 		down_write(&block_group->space_info->groups_sem);
8620 		list_del(&block_group->list);
8621 		up_write(&block_group->space_info->groups_sem);
8622 
8623 		if (block_group->cached == BTRFS_CACHE_STARTED)
8624 			wait_block_group_cache_done(block_group);
8625 
8626 		/*
8627 		 * We haven't cached this block group, which means we could
8628 		 * possibly have excluded extents on this block group.
8629 		 */
8630 		if (block_group->cached == BTRFS_CACHE_NO ||
8631 		    block_group->cached == BTRFS_CACHE_ERROR)
8632 			free_excluded_extents(info->extent_root, block_group);
8633 
8634 		btrfs_remove_free_space_cache(block_group);
8635 		btrfs_put_block_group(block_group);
8636 
8637 		spin_lock(&info->block_group_cache_lock);
8638 	}
8639 	spin_unlock(&info->block_group_cache_lock);
8640 
8641 	/* now that all the block groups are freed, go through and
8642 	 * free all the space_info structs.  This is only called during
8643 	 * the final stages of unmount, and so we know nobody is
8644 	 * using them.  We call synchronize_rcu() once before we start,
8645 	 * just to be on the safe side.
8646 	 */
8647 	synchronize_rcu();
8648 
8649 	release_global_block_rsv(info);
8650 
8651 	while (!list_empty(&info->space_info)) {
8652 		int i;
8653 
8654 		space_info = list_entry(info->space_info.next,
8655 					struct btrfs_space_info,
8656 					list);
8657 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8658 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8659 			    space_info->bytes_reserved > 0 ||
8660 			    space_info->bytes_may_use > 0)) {
8661 				dump_space_info(space_info, 0, 0);
8662 			}
8663 		}
8664 		list_del(&space_info->list);
8665 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8666 			struct kobject *kobj;
8667 			kobj = space_info->block_group_kobjs[i];
8668 			space_info->block_group_kobjs[i] = NULL;
8669 			if (kobj) {
8670 				kobject_del(kobj);
8671 				kobject_put(kobj);
8672 			}
8673 		}
8674 		kobject_del(&space_info->kobj);
8675 		kobject_put(&space_info->kobj);
8676 	}
8677 	return 0;
8678 }
8679 
8680 static void __link_block_group(struct btrfs_space_info *space_info,
8681 			       struct btrfs_block_group_cache *cache)
8682 {
8683 	int index = get_block_group_index(cache);
8684 	bool first = false;
8685 
8686 	down_write(&space_info->groups_sem);
8687 	if (list_empty(&space_info->block_groups[index]))
8688 		first = true;
8689 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8690 	up_write(&space_info->groups_sem);
8691 
8692 	if (first) {
8693 		struct raid_kobject *rkobj;
8694 		int ret;
8695 
8696 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8697 		if (!rkobj)
8698 			goto out_err;
8699 		rkobj->raid_type = index;
8700 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8701 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8702 				  "%s", get_raid_name(index));
8703 		if (ret) {
8704 			kobject_put(&rkobj->kobj);
8705 			goto out_err;
8706 		}
8707 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8708 	}
8709 
8710 	return;
8711 out_err:
8712 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8713 }
8714 
8715 static struct btrfs_block_group_cache *
8716 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8717 {
8718 	struct btrfs_block_group_cache *cache;
8719 
8720 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8721 	if (!cache)
8722 		return NULL;
8723 
8724 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8725 					GFP_NOFS);
8726 	if (!cache->free_space_ctl) {
8727 		kfree(cache);
8728 		return NULL;
8729 	}
8730 
8731 	cache->key.objectid = start;
8732 	cache->key.offset = size;
8733 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8734 
8735 	cache->sectorsize = root->sectorsize;
8736 	cache->fs_info = root->fs_info;
8737 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8738 					       &root->fs_info->mapping_tree,
8739 					       start);
8740 	atomic_set(&cache->count, 1);
8741 	spin_lock_init(&cache->lock);
8742 	init_rwsem(&cache->data_rwsem);
8743 	INIT_LIST_HEAD(&cache->list);
8744 	INIT_LIST_HEAD(&cache->cluster_list);
8745 	INIT_LIST_HEAD(&cache->new_bg_list);
8746 	btrfs_init_free_space_ctl(cache);
8747 
8748 	return cache;
8749 }
8750 
8751 int btrfs_read_block_groups(struct btrfs_root *root)
8752 {
8753 	struct btrfs_path *path;
8754 	int ret;
8755 	struct btrfs_block_group_cache *cache;
8756 	struct btrfs_fs_info *info = root->fs_info;
8757 	struct btrfs_space_info *space_info;
8758 	struct btrfs_key key;
8759 	struct btrfs_key found_key;
8760 	struct extent_buffer *leaf;
8761 	int need_clear = 0;
8762 	u64 cache_gen;
8763 
8764 	root = info->extent_root;
8765 	key.objectid = 0;
8766 	key.offset = 0;
8767 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8768 	path = btrfs_alloc_path();
8769 	if (!path)
8770 		return -ENOMEM;
8771 	path->reada = 1;
8772 
8773 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8774 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8775 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8776 		need_clear = 1;
8777 	if (btrfs_test_opt(root, CLEAR_CACHE))
8778 		need_clear = 1;
8779 
8780 	while (1) {
8781 		ret = find_first_block_group(root, path, &key);
8782 		if (ret > 0)
8783 			break;
8784 		if (ret != 0)
8785 			goto error;
8786 
8787 		leaf = path->nodes[0];
8788 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8789 
8790 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8791 						       found_key.offset);
8792 		if (!cache) {
8793 			ret = -ENOMEM;
8794 			goto error;
8795 		}
8796 
8797 		if (need_clear) {
8798 			/*
8799 			 * When we mount with old space cache, we need to
8800 			 * set BTRFS_DC_CLEAR and set dirty flag.
8801 			 *
8802 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8803 			 *    truncate the old free space cache inode and
8804 			 *    setup a new one.
8805 			 * b) Setting 'dirty flag' makes sure that we flush
8806 			 *    the new space cache info onto disk.
8807 			 */
8808 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8809 			if (btrfs_test_opt(root, SPACE_CACHE))
8810 				cache->dirty = 1;
8811 		}
8812 
8813 		read_extent_buffer(leaf, &cache->item,
8814 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8815 				   sizeof(cache->item));
8816 		cache->flags = btrfs_block_group_flags(&cache->item);
8817 
8818 		key.objectid = found_key.objectid + found_key.offset;
8819 		btrfs_release_path(path);
8820 
8821 		/*
8822 		 * We need to exclude the super stripes now so that the space
8823 		 * info has super bytes accounted for, otherwise we'll think
8824 		 * we have more space than we actually do.
8825 		 */
8826 		ret = exclude_super_stripes(root, cache);
8827 		if (ret) {
8828 			/*
8829 			 * We may have excluded something, so call this just in
8830 			 * case.
8831 			 */
8832 			free_excluded_extents(root, cache);
8833 			btrfs_put_block_group(cache);
8834 			goto error;
8835 		}
8836 
8837 		/*
8838 		 * check for two cases, either we are full, and therefore
8839 		 * don't need to bother with the caching work since we won't
8840 		 * find any space, or we are empty, and we can just add all
8841 		 * the space in and be done with it.  This saves us _alot_ of
8842 		 * time, particularly in the full case.
8843 		 */
8844 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8845 			cache->last_byte_to_unpin = (u64)-1;
8846 			cache->cached = BTRFS_CACHE_FINISHED;
8847 			free_excluded_extents(root, cache);
8848 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8849 			cache->last_byte_to_unpin = (u64)-1;
8850 			cache->cached = BTRFS_CACHE_FINISHED;
8851 			add_new_free_space(cache, root->fs_info,
8852 					   found_key.objectid,
8853 					   found_key.objectid +
8854 					   found_key.offset);
8855 			free_excluded_extents(root, cache);
8856 		}
8857 
8858 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8859 		if (ret) {
8860 			btrfs_remove_free_space_cache(cache);
8861 			btrfs_put_block_group(cache);
8862 			goto error;
8863 		}
8864 
8865 		ret = update_space_info(info, cache->flags, found_key.offset,
8866 					btrfs_block_group_used(&cache->item),
8867 					&space_info);
8868 		if (ret) {
8869 			btrfs_remove_free_space_cache(cache);
8870 			spin_lock(&info->block_group_cache_lock);
8871 			rb_erase(&cache->cache_node,
8872 				 &info->block_group_cache_tree);
8873 			spin_unlock(&info->block_group_cache_lock);
8874 			btrfs_put_block_group(cache);
8875 			goto error;
8876 		}
8877 
8878 		cache->space_info = space_info;
8879 		spin_lock(&cache->space_info->lock);
8880 		cache->space_info->bytes_readonly += cache->bytes_super;
8881 		spin_unlock(&cache->space_info->lock);
8882 
8883 		__link_block_group(space_info, cache);
8884 
8885 		set_avail_alloc_bits(root->fs_info, cache->flags);
8886 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8887 			set_block_group_ro(cache, 1);
8888 	}
8889 
8890 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8891 		if (!(get_alloc_profile(root, space_info->flags) &
8892 		      (BTRFS_BLOCK_GROUP_RAID10 |
8893 		       BTRFS_BLOCK_GROUP_RAID1 |
8894 		       BTRFS_BLOCK_GROUP_RAID5 |
8895 		       BTRFS_BLOCK_GROUP_RAID6 |
8896 		       BTRFS_BLOCK_GROUP_DUP)))
8897 			continue;
8898 		/*
8899 		 * avoid allocating from un-mirrored block group if there are
8900 		 * mirrored block groups.
8901 		 */
8902 		list_for_each_entry(cache,
8903 				&space_info->block_groups[BTRFS_RAID_RAID0],
8904 				list)
8905 			set_block_group_ro(cache, 1);
8906 		list_for_each_entry(cache,
8907 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8908 				list)
8909 			set_block_group_ro(cache, 1);
8910 	}
8911 
8912 	init_global_block_rsv(info);
8913 	ret = 0;
8914 error:
8915 	btrfs_free_path(path);
8916 	return ret;
8917 }
8918 
8919 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8920 				       struct btrfs_root *root)
8921 {
8922 	struct btrfs_block_group_cache *block_group, *tmp;
8923 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8924 	struct btrfs_block_group_item item;
8925 	struct btrfs_key key;
8926 	int ret = 0;
8927 
8928 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8929 				 new_bg_list) {
8930 		list_del_init(&block_group->new_bg_list);
8931 
8932 		if (ret)
8933 			continue;
8934 
8935 		spin_lock(&block_group->lock);
8936 		memcpy(&item, &block_group->item, sizeof(item));
8937 		memcpy(&key, &block_group->key, sizeof(key));
8938 		spin_unlock(&block_group->lock);
8939 
8940 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8941 					sizeof(item));
8942 		if (ret)
8943 			btrfs_abort_transaction(trans, extent_root, ret);
8944 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8945 					       key.objectid, key.offset);
8946 		if (ret)
8947 			btrfs_abort_transaction(trans, extent_root, ret);
8948 	}
8949 }
8950 
8951 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8952 			   struct btrfs_root *root, u64 bytes_used,
8953 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8954 			   u64 size)
8955 {
8956 	int ret;
8957 	struct btrfs_root *extent_root;
8958 	struct btrfs_block_group_cache *cache;
8959 
8960 	extent_root = root->fs_info->extent_root;
8961 
8962 	btrfs_set_log_full_commit(root->fs_info, trans);
8963 
8964 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8965 	if (!cache)
8966 		return -ENOMEM;
8967 
8968 	btrfs_set_block_group_used(&cache->item, bytes_used);
8969 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8970 	btrfs_set_block_group_flags(&cache->item, type);
8971 
8972 	cache->flags = type;
8973 	cache->last_byte_to_unpin = (u64)-1;
8974 	cache->cached = BTRFS_CACHE_FINISHED;
8975 	ret = exclude_super_stripes(root, cache);
8976 	if (ret) {
8977 		/*
8978 		 * We may have excluded something, so call this just in
8979 		 * case.
8980 		 */
8981 		free_excluded_extents(root, cache);
8982 		btrfs_put_block_group(cache);
8983 		return ret;
8984 	}
8985 
8986 	add_new_free_space(cache, root->fs_info, chunk_offset,
8987 			   chunk_offset + size);
8988 
8989 	free_excluded_extents(root, cache);
8990 
8991 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8992 	if (ret) {
8993 		btrfs_remove_free_space_cache(cache);
8994 		btrfs_put_block_group(cache);
8995 		return ret;
8996 	}
8997 
8998 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8999 				&cache->space_info);
9000 	if (ret) {
9001 		btrfs_remove_free_space_cache(cache);
9002 		spin_lock(&root->fs_info->block_group_cache_lock);
9003 		rb_erase(&cache->cache_node,
9004 			 &root->fs_info->block_group_cache_tree);
9005 		spin_unlock(&root->fs_info->block_group_cache_lock);
9006 		btrfs_put_block_group(cache);
9007 		return ret;
9008 	}
9009 	update_global_block_rsv(root->fs_info);
9010 
9011 	spin_lock(&cache->space_info->lock);
9012 	cache->space_info->bytes_readonly += cache->bytes_super;
9013 	spin_unlock(&cache->space_info->lock);
9014 
9015 	__link_block_group(cache->space_info, cache);
9016 
9017 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
9018 
9019 	set_avail_alloc_bits(extent_root->fs_info, type);
9020 
9021 	return 0;
9022 }
9023 
9024 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9025 {
9026 	u64 extra_flags = chunk_to_extended(flags) &
9027 				BTRFS_EXTENDED_PROFILE_MASK;
9028 
9029 	write_seqlock(&fs_info->profiles_lock);
9030 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9031 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9032 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9033 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9034 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9035 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9036 	write_sequnlock(&fs_info->profiles_lock);
9037 }
9038 
9039 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9040 			     struct btrfs_root *root, u64 group_start)
9041 {
9042 	struct btrfs_path *path;
9043 	struct btrfs_block_group_cache *block_group;
9044 	struct btrfs_free_cluster *cluster;
9045 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9046 	struct btrfs_key key;
9047 	struct inode *inode;
9048 	struct kobject *kobj = NULL;
9049 	int ret;
9050 	int index;
9051 	int factor;
9052 
9053 	root = root->fs_info->extent_root;
9054 
9055 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9056 	BUG_ON(!block_group);
9057 	BUG_ON(!block_group->ro);
9058 
9059 	/*
9060 	 * Free the reserved super bytes from this block group before
9061 	 * remove it.
9062 	 */
9063 	free_excluded_extents(root, block_group);
9064 
9065 	memcpy(&key, &block_group->key, sizeof(key));
9066 	index = get_block_group_index(block_group);
9067 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9068 				  BTRFS_BLOCK_GROUP_RAID1 |
9069 				  BTRFS_BLOCK_GROUP_RAID10))
9070 		factor = 2;
9071 	else
9072 		factor = 1;
9073 
9074 	/* make sure this block group isn't part of an allocation cluster */
9075 	cluster = &root->fs_info->data_alloc_cluster;
9076 	spin_lock(&cluster->refill_lock);
9077 	btrfs_return_cluster_to_free_space(block_group, cluster);
9078 	spin_unlock(&cluster->refill_lock);
9079 
9080 	/*
9081 	 * make sure this block group isn't part of a metadata
9082 	 * allocation cluster
9083 	 */
9084 	cluster = &root->fs_info->meta_alloc_cluster;
9085 	spin_lock(&cluster->refill_lock);
9086 	btrfs_return_cluster_to_free_space(block_group, cluster);
9087 	spin_unlock(&cluster->refill_lock);
9088 
9089 	path = btrfs_alloc_path();
9090 	if (!path) {
9091 		ret = -ENOMEM;
9092 		goto out;
9093 	}
9094 
9095 	inode = lookup_free_space_inode(tree_root, block_group, path);
9096 	if (!IS_ERR(inode)) {
9097 		ret = btrfs_orphan_add(trans, inode);
9098 		if (ret) {
9099 			btrfs_add_delayed_iput(inode);
9100 			goto out;
9101 		}
9102 		clear_nlink(inode);
9103 		/* One for the block groups ref */
9104 		spin_lock(&block_group->lock);
9105 		if (block_group->iref) {
9106 			block_group->iref = 0;
9107 			block_group->inode = NULL;
9108 			spin_unlock(&block_group->lock);
9109 			iput(inode);
9110 		} else {
9111 			spin_unlock(&block_group->lock);
9112 		}
9113 		/* One for our lookup ref */
9114 		btrfs_add_delayed_iput(inode);
9115 	}
9116 
9117 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9118 	key.offset = block_group->key.objectid;
9119 	key.type = 0;
9120 
9121 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9122 	if (ret < 0)
9123 		goto out;
9124 	if (ret > 0)
9125 		btrfs_release_path(path);
9126 	if (ret == 0) {
9127 		ret = btrfs_del_item(trans, tree_root, path);
9128 		if (ret)
9129 			goto out;
9130 		btrfs_release_path(path);
9131 	}
9132 
9133 	spin_lock(&root->fs_info->block_group_cache_lock);
9134 	rb_erase(&block_group->cache_node,
9135 		 &root->fs_info->block_group_cache_tree);
9136 
9137 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9138 		root->fs_info->first_logical_byte = (u64)-1;
9139 	spin_unlock(&root->fs_info->block_group_cache_lock);
9140 
9141 	down_write(&block_group->space_info->groups_sem);
9142 	/*
9143 	 * we must use list_del_init so people can check to see if they
9144 	 * are still on the list after taking the semaphore
9145 	 */
9146 	list_del_init(&block_group->list);
9147 	if (list_empty(&block_group->space_info->block_groups[index])) {
9148 		kobj = block_group->space_info->block_group_kobjs[index];
9149 		block_group->space_info->block_group_kobjs[index] = NULL;
9150 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9151 	}
9152 	up_write(&block_group->space_info->groups_sem);
9153 	if (kobj) {
9154 		kobject_del(kobj);
9155 		kobject_put(kobj);
9156 	}
9157 
9158 	if (block_group->cached == BTRFS_CACHE_STARTED)
9159 		wait_block_group_cache_done(block_group);
9160 
9161 	btrfs_remove_free_space_cache(block_group);
9162 
9163 	spin_lock(&block_group->space_info->lock);
9164 	block_group->space_info->total_bytes -= block_group->key.offset;
9165 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9166 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9167 	spin_unlock(&block_group->space_info->lock);
9168 
9169 	memcpy(&key, &block_group->key, sizeof(key));
9170 
9171 	btrfs_clear_space_info_full(root->fs_info);
9172 
9173 	btrfs_put_block_group(block_group);
9174 	btrfs_put_block_group(block_group);
9175 
9176 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9177 	if (ret > 0)
9178 		ret = -EIO;
9179 	if (ret < 0)
9180 		goto out;
9181 
9182 	ret = btrfs_del_item(trans, root, path);
9183 out:
9184 	btrfs_free_path(path);
9185 	return ret;
9186 }
9187 
9188 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9189 {
9190 	struct btrfs_space_info *space_info;
9191 	struct btrfs_super_block *disk_super;
9192 	u64 features;
9193 	u64 flags;
9194 	int mixed = 0;
9195 	int ret;
9196 
9197 	disk_super = fs_info->super_copy;
9198 	if (!btrfs_super_root(disk_super))
9199 		return 1;
9200 
9201 	features = btrfs_super_incompat_flags(disk_super);
9202 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9203 		mixed = 1;
9204 
9205 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9206 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9207 	if (ret)
9208 		goto out;
9209 
9210 	if (mixed) {
9211 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9212 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9213 	} else {
9214 		flags = BTRFS_BLOCK_GROUP_METADATA;
9215 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9216 		if (ret)
9217 			goto out;
9218 
9219 		flags = BTRFS_BLOCK_GROUP_DATA;
9220 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9221 	}
9222 out:
9223 	return ret;
9224 }
9225 
9226 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9227 {
9228 	return unpin_extent_range(root, start, end);
9229 }
9230 
9231 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9232 			       u64 num_bytes, u64 *actual_bytes)
9233 {
9234 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9235 }
9236 
9237 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9238 {
9239 	struct btrfs_fs_info *fs_info = root->fs_info;
9240 	struct btrfs_block_group_cache *cache = NULL;
9241 	u64 group_trimmed;
9242 	u64 start;
9243 	u64 end;
9244 	u64 trimmed = 0;
9245 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9246 	int ret = 0;
9247 
9248 	/*
9249 	 * try to trim all FS space, our block group may start from non-zero.
9250 	 */
9251 	if (range->len == total_bytes)
9252 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9253 	else
9254 		cache = btrfs_lookup_block_group(fs_info, range->start);
9255 
9256 	while (cache) {
9257 		if (cache->key.objectid >= (range->start + range->len)) {
9258 			btrfs_put_block_group(cache);
9259 			break;
9260 		}
9261 
9262 		start = max(range->start, cache->key.objectid);
9263 		end = min(range->start + range->len,
9264 				cache->key.objectid + cache->key.offset);
9265 
9266 		if (end - start >= range->minlen) {
9267 			if (!block_group_cache_done(cache)) {
9268 				ret = cache_block_group(cache, 0);
9269 				if (ret) {
9270 					btrfs_put_block_group(cache);
9271 					break;
9272 				}
9273 				ret = wait_block_group_cache_done(cache);
9274 				if (ret) {
9275 					btrfs_put_block_group(cache);
9276 					break;
9277 				}
9278 			}
9279 			ret = btrfs_trim_block_group(cache,
9280 						     &group_trimmed,
9281 						     start,
9282 						     end,
9283 						     range->minlen);
9284 
9285 			trimmed += group_trimmed;
9286 			if (ret) {
9287 				btrfs_put_block_group(cache);
9288 				break;
9289 			}
9290 		}
9291 
9292 		cache = next_block_group(fs_info->tree_root, cache);
9293 	}
9294 
9295 	range->len = trimmed;
9296 	return ret;
9297 }
9298 
9299 /*
9300  * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9301  * they are used to prevent the some tasks writing data into the page cache
9302  * by nocow before the subvolume is snapshoted, but flush the data into
9303  * the disk after the snapshot creation.
9304  */
9305 void btrfs_end_nocow_write(struct btrfs_root *root)
9306 {
9307 	percpu_counter_dec(&root->subv_writers->counter);
9308 	/*
9309 	 * Make sure counter is updated before we wake up
9310 	 * waiters.
9311 	 */
9312 	smp_mb();
9313 	if (waitqueue_active(&root->subv_writers->wait))
9314 		wake_up(&root->subv_writers->wait);
9315 }
9316 
9317 int btrfs_start_nocow_write(struct btrfs_root *root)
9318 {
9319 	if (unlikely(atomic_read(&root->will_be_snapshoted)))
9320 		return 0;
9321 
9322 	percpu_counter_inc(&root->subv_writers->counter);
9323 	/*
9324 	 * Make sure counter is updated before we check for snapshot creation.
9325 	 */
9326 	smp_mb();
9327 	if (unlikely(atomic_read(&root->will_be_snapshoted))) {
9328 		btrfs_end_nocow_write(root);
9329 		return 0;
9330 	}
9331 	return 1;
9332 }
9333