1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include "hash.h" 30 #include "tree-log.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "free-space-tree.h" 38 #include "math.h" 39 #include "sysfs.h" 40 #include "qgroup.h" 41 42 #undef SCRAMBLE_DELAYED_REFS 43 44 /* 45 * control flags for do_chunk_alloc's force field 46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 47 * if we really need one. 48 * 49 * CHUNK_ALLOC_LIMITED means to only try and allocate one 50 * if we have very few chunks already allocated. This is 51 * used as part of the clustering code to help make sure 52 * we have a good pool of storage to cluster in, without 53 * filling the FS with empty chunks 54 * 55 * CHUNK_ALLOC_FORCE means it must try to allocate one 56 * 57 */ 58 enum { 59 CHUNK_ALLOC_NO_FORCE = 0, 60 CHUNK_ALLOC_LIMITED = 1, 61 CHUNK_ALLOC_FORCE = 2, 62 }; 63 64 static int update_block_group(struct btrfs_trans_handle *trans, 65 struct btrfs_fs_info *fs_info, u64 bytenr, 66 u64 num_bytes, int alloc); 67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 68 struct btrfs_fs_info *fs_info, 69 struct btrfs_delayed_ref_node *node, u64 parent, 70 u64 root_objectid, u64 owner_objectid, 71 u64 owner_offset, int refs_to_drop, 72 struct btrfs_delayed_extent_op *extra_op); 73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 74 struct extent_buffer *leaf, 75 struct btrfs_extent_item *ei); 76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 77 struct btrfs_fs_info *fs_info, 78 u64 parent, u64 root_objectid, 79 u64 flags, u64 owner, u64 offset, 80 struct btrfs_key *ins, int ref_mod); 81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 82 struct btrfs_fs_info *fs_info, 83 u64 parent, u64 root_objectid, 84 u64 flags, struct btrfs_disk_key *key, 85 int level, struct btrfs_key *ins); 86 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 87 struct btrfs_fs_info *fs_info, u64 flags, 88 int force); 89 static int find_next_key(struct btrfs_path *path, int level, 90 struct btrfs_key *key); 91 static void dump_space_info(struct btrfs_fs_info *fs_info, 92 struct btrfs_space_info *info, u64 bytes, 93 int dump_block_groups); 94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 95 u64 ram_bytes, u64 num_bytes, int delalloc); 96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 97 u64 num_bytes, int delalloc); 98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 99 u64 num_bytes); 100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 101 struct btrfs_space_info *space_info, 102 u64 orig_bytes, 103 enum btrfs_reserve_flush_enum flush, 104 bool system_chunk); 105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_space_info *space_info, 107 u64 num_bytes); 108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_space_info *space_info, 110 u64 num_bytes); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 136 /* 137 * If not empty, someone is still holding mutex of 138 * full_stripe_lock, which can only be released by caller. 139 * And it will definitely cause use-after-free when caller 140 * tries to release full stripe lock. 141 * 142 * No better way to resolve, but only to warn. 143 */ 144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 145 kfree(cache->free_space_ctl); 146 kfree(cache); 147 } 148 } 149 150 /* 151 * this adds the block group to the fs_info rb tree for the block group 152 * cache 153 */ 154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 155 struct btrfs_block_group_cache *block_group) 156 { 157 struct rb_node **p; 158 struct rb_node *parent = NULL; 159 struct btrfs_block_group_cache *cache; 160 161 spin_lock(&info->block_group_cache_lock); 162 p = &info->block_group_cache_tree.rb_node; 163 164 while (*p) { 165 parent = *p; 166 cache = rb_entry(parent, struct btrfs_block_group_cache, 167 cache_node); 168 if (block_group->key.objectid < cache->key.objectid) { 169 p = &(*p)->rb_left; 170 } else if (block_group->key.objectid > cache->key.objectid) { 171 p = &(*p)->rb_right; 172 } else { 173 spin_unlock(&info->block_group_cache_lock); 174 return -EEXIST; 175 } 176 } 177 178 rb_link_node(&block_group->cache_node, parent, p); 179 rb_insert_color(&block_group->cache_node, 180 &info->block_group_cache_tree); 181 182 if (info->first_logical_byte > block_group->key.objectid) 183 info->first_logical_byte = block_group->key.objectid; 184 185 spin_unlock(&info->block_group_cache_lock); 186 187 return 0; 188 } 189 190 /* 191 * This will return the block group at or after bytenr if contains is 0, else 192 * it will return the block group that contains the bytenr 193 */ 194 static struct btrfs_block_group_cache * 195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 196 int contains) 197 { 198 struct btrfs_block_group_cache *cache, *ret = NULL; 199 struct rb_node *n; 200 u64 end, start; 201 202 spin_lock(&info->block_group_cache_lock); 203 n = info->block_group_cache_tree.rb_node; 204 205 while (n) { 206 cache = rb_entry(n, struct btrfs_block_group_cache, 207 cache_node); 208 end = cache->key.objectid + cache->key.offset - 1; 209 start = cache->key.objectid; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->key.objectid)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 229 info->first_logical_byte = ret->key.objectid; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 237 u64 start, u64 num_bytes) 238 { 239 u64 end = start + num_bytes - 1; 240 set_extent_bits(&fs_info->freed_extents[0], 241 start, end, EXTENT_UPTODATE); 242 set_extent_bits(&fs_info->freed_extents[1], 243 start, end, EXTENT_UPTODATE); 244 return 0; 245 } 246 247 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 248 struct btrfs_block_group_cache *cache) 249 { 250 u64 start, end; 251 252 start = cache->key.objectid; 253 end = start + cache->key.offset - 1; 254 255 clear_extent_bits(&fs_info->freed_extents[0], 256 start, end, EXTENT_UPTODATE); 257 clear_extent_bits(&fs_info->freed_extents[1], 258 start, end, EXTENT_UPTODATE); 259 } 260 261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 262 struct btrfs_block_group_cache *cache) 263 { 264 u64 bytenr; 265 u64 *logical; 266 int stripe_len; 267 int i, nr, ret; 268 269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 271 cache->bytes_super += stripe_len; 272 ret = add_excluded_extent(fs_info, cache->key.objectid, 273 stripe_len); 274 if (ret) 275 return ret; 276 } 277 278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 279 bytenr = btrfs_sb_offset(i); 280 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 281 bytenr, 0, &logical, &nr, &stripe_len); 282 if (ret) 283 return ret; 284 285 while (nr--) { 286 u64 start, len; 287 288 if (logical[nr] > cache->key.objectid + 289 cache->key.offset) 290 continue; 291 292 if (logical[nr] + stripe_len <= cache->key.objectid) 293 continue; 294 295 start = logical[nr]; 296 if (start < cache->key.objectid) { 297 start = cache->key.objectid; 298 len = (logical[nr] + stripe_len) - start; 299 } else { 300 len = min_t(u64, stripe_len, 301 cache->key.objectid + 302 cache->key.offset - start); 303 } 304 305 cache->bytes_super += len; 306 ret = add_excluded_extent(fs_info, start, len); 307 if (ret) { 308 kfree(logical); 309 return ret; 310 } 311 } 312 313 kfree(logical); 314 } 315 return 0; 316 } 317 318 static struct btrfs_caching_control * 319 get_caching_control(struct btrfs_block_group_cache *cache) 320 { 321 struct btrfs_caching_control *ctl; 322 323 spin_lock(&cache->lock); 324 if (!cache->caching_ctl) { 325 spin_unlock(&cache->lock); 326 return NULL; 327 } 328 329 ctl = cache->caching_ctl; 330 refcount_inc(&ctl->count); 331 spin_unlock(&cache->lock); 332 return ctl; 333 } 334 335 static void put_caching_control(struct btrfs_caching_control *ctl) 336 { 337 if (refcount_dec_and_test(&ctl->count)) 338 kfree(ctl); 339 } 340 341 #ifdef CONFIG_BTRFS_DEBUG 342 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 343 { 344 struct btrfs_fs_info *fs_info = block_group->fs_info; 345 u64 start = block_group->key.objectid; 346 u64 len = block_group->key.offset; 347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 348 fs_info->nodesize : fs_info->sectorsize; 349 u64 step = chunk << 1; 350 351 while (len > chunk) { 352 btrfs_remove_free_space(block_group, start, chunk); 353 start += step; 354 if (len < step) 355 len = 0; 356 else 357 len -= step; 358 } 359 } 360 #endif 361 362 /* 363 * this is only called by cache_block_group, since we could have freed extents 364 * we need to check the pinned_extents for any extents that can't be used yet 365 * since their free space will be released as soon as the transaction commits. 366 */ 367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 368 struct btrfs_fs_info *info, u64 start, u64 end) 369 { 370 u64 extent_start, extent_end, size, total_added = 0; 371 int ret; 372 373 while (start < end) { 374 ret = find_first_extent_bit(info->pinned_extents, start, 375 &extent_start, &extent_end, 376 EXTENT_DIRTY | EXTENT_UPTODATE, 377 NULL); 378 if (ret) 379 break; 380 381 if (extent_start <= start) { 382 start = extent_end + 1; 383 } else if (extent_start > start && extent_start < end) { 384 size = extent_start - start; 385 total_added += size; 386 ret = btrfs_add_free_space(block_group, start, 387 size); 388 BUG_ON(ret); /* -ENOMEM or logic error */ 389 start = extent_end + 1; 390 } else { 391 break; 392 } 393 } 394 395 if (start < end) { 396 size = end - start; 397 total_added += size; 398 ret = btrfs_add_free_space(block_group, start, size); 399 BUG_ON(ret); /* -ENOMEM or logic error */ 400 } 401 402 return total_added; 403 } 404 405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 406 { 407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 408 struct btrfs_fs_info *fs_info = block_group->fs_info; 409 struct btrfs_root *extent_root = fs_info->extent_root; 410 struct btrfs_path *path; 411 struct extent_buffer *leaf; 412 struct btrfs_key key; 413 u64 total_found = 0; 414 u64 last = 0; 415 u32 nritems; 416 int ret; 417 bool wakeup = true; 418 419 path = btrfs_alloc_path(); 420 if (!path) 421 return -ENOMEM; 422 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 424 425 #ifdef CONFIG_BTRFS_DEBUG 426 /* 427 * If we're fragmenting we don't want to make anybody think we can 428 * allocate from this block group until we've had a chance to fragment 429 * the free space. 430 */ 431 if (btrfs_should_fragment_free_space(block_group)) 432 wakeup = false; 433 #endif 434 /* 435 * We don't want to deadlock with somebody trying to allocate a new 436 * extent for the extent root while also trying to search the extent 437 * root to add free space. So we skip locking and search the commit 438 * root, since its read-only 439 */ 440 path->skip_locking = 1; 441 path->search_commit_root = 1; 442 path->reada = READA_FORWARD; 443 444 key.objectid = last; 445 key.offset = 0; 446 key.type = BTRFS_EXTENT_ITEM_KEY; 447 448 next: 449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 450 if (ret < 0) 451 goto out; 452 453 leaf = path->nodes[0]; 454 nritems = btrfs_header_nritems(leaf); 455 456 while (1) { 457 if (btrfs_fs_closing(fs_info) > 1) { 458 last = (u64)-1; 459 break; 460 } 461 462 if (path->slots[0] < nritems) { 463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 464 } else { 465 ret = find_next_key(path, 0, &key); 466 if (ret) 467 break; 468 469 if (need_resched() || 470 rwsem_is_contended(&fs_info->commit_root_sem)) { 471 if (wakeup) 472 caching_ctl->progress = last; 473 btrfs_release_path(path); 474 up_read(&fs_info->commit_root_sem); 475 mutex_unlock(&caching_ctl->mutex); 476 cond_resched(); 477 mutex_lock(&caching_ctl->mutex); 478 down_read(&fs_info->commit_root_sem); 479 goto next; 480 } 481 482 ret = btrfs_next_leaf(extent_root, path); 483 if (ret < 0) 484 goto out; 485 if (ret) 486 break; 487 leaf = path->nodes[0]; 488 nritems = btrfs_header_nritems(leaf); 489 continue; 490 } 491 492 if (key.objectid < last) { 493 key.objectid = last; 494 key.offset = 0; 495 key.type = BTRFS_EXTENT_ITEM_KEY; 496 497 if (wakeup) 498 caching_ctl->progress = last; 499 btrfs_release_path(path); 500 goto next; 501 } 502 503 if (key.objectid < block_group->key.objectid) { 504 path->slots[0]++; 505 continue; 506 } 507 508 if (key.objectid >= block_group->key.objectid + 509 block_group->key.offset) 510 break; 511 512 if (key.type == BTRFS_EXTENT_ITEM_KEY || 513 key.type == BTRFS_METADATA_ITEM_KEY) { 514 total_found += add_new_free_space(block_group, 515 fs_info, last, 516 key.objectid); 517 if (key.type == BTRFS_METADATA_ITEM_KEY) 518 last = key.objectid + 519 fs_info->nodesize; 520 else 521 last = key.objectid + key.offset; 522 523 if (total_found > CACHING_CTL_WAKE_UP) { 524 total_found = 0; 525 if (wakeup) 526 wake_up(&caching_ctl->wait); 527 } 528 } 529 path->slots[0]++; 530 } 531 ret = 0; 532 533 total_found += add_new_free_space(block_group, fs_info, last, 534 block_group->key.objectid + 535 block_group->key.offset); 536 caching_ctl->progress = (u64)-1; 537 538 out: 539 btrfs_free_path(path); 540 return ret; 541 } 542 543 static noinline void caching_thread(struct btrfs_work *work) 544 { 545 struct btrfs_block_group_cache *block_group; 546 struct btrfs_fs_info *fs_info; 547 struct btrfs_caching_control *caching_ctl; 548 struct btrfs_root *extent_root; 549 int ret; 550 551 caching_ctl = container_of(work, struct btrfs_caching_control, work); 552 block_group = caching_ctl->block_group; 553 fs_info = block_group->fs_info; 554 extent_root = fs_info->extent_root; 555 556 mutex_lock(&caching_ctl->mutex); 557 down_read(&fs_info->commit_root_sem); 558 559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 560 ret = load_free_space_tree(caching_ctl); 561 else 562 ret = load_extent_tree_free(caching_ctl); 563 564 spin_lock(&block_group->lock); 565 block_group->caching_ctl = NULL; 566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 567 spin_unlock(&block_group->lock); 568 569 #ifdef CONFIG_BTRFS_DEBUG 570 if (btrfs_should_fragment_free_space(block_group)) { 571 u64 bytes_used; 572 573 spin_lock(&block_group->space_info->lock); 574 spin_lock(&block_group->lock); 575 bytes_used = block_group->key.offset - 576 btrfs_block_group_used(&block_group->item); 577 block_group->space_info->bytes_used += bytes_used >> 1; 578 spin_unlock(&block_group->lock); 579 spin_unlock(&block_group->space_info->lock); 580 fragment_free_space(block_group); 581 } 582 #endif 583 584 caching_ctl->progress = (u64)-1; 585 586 up_read(&fs_info->commit_root_sem); 587 free_excluded_extents(fs_info, block_group); 588 mutex_unlock(&caching_ctl->mutex); 589 590 wake_up(&caching_ctl->wait); 591 592 put_caching_control(caching_ctl); 593 btrfs_put_block_group(block_group); 594 } 595 596 static int cache_block_group(struct btrfs_block_group_cache *cache, 597 int load_cache_only) 598 { 599 DEFINE_WAIT(wait); 600 struct btrfs_fs_info *fs_info = cache->fs_info; 601 struct btrfs_caching_control *caching_ctl; 602 int ret = 0; 603 604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 605 if (!caching_ctl) 606 return -ENOMEM; 607 608 INIT_LIST_HEAD(&caching_ctl->list); 609 mutex_init(&caching_ctl->mutex); 610 init_waitqueue_head(&caching_ctl->wait); 611 caching_ctl->block_group = cache; 612 caching_ctl->progress = cache->key.objectid; 613 refcount_set(&caching_ctl->count, 1); 614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 615 caching_thread, NULL, NULL); 616 617 spin_lock(&cache->lock); 618 /* 619 * This should be a rare occasion, but this could happen I think in the 620 * case where one thread starts to load the space cache info, and then 621 * some other thread starts a transaction commit which tries to do an 622 * allocation while the other thread is still loading the space cache 623 * info. The previous loop should have kept us from choosing this block 624 * group, but if we've moved to the state where we will wait on caching 625 * block groups we need to first check if we're doing a fast load here, 626 * so we can wait for it to finish, otherwise we could end up allocating 627 * from a block group who's cache gets evicted for one reason or 628 * another. 629 */ 630 while (cache->cached == BTRFS_CACHE_FAST) { 631 struct btrfs_caching_control *ctl; 632 633 ctl = cache->caching_ctl; 634 refcount_inc(&ctl->count); 635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 636 spin_unlock(&cache->lock); 637 638 schedule(); 639 640 finish_wait(&ctl->wait, &wait); 641 put_caching_control(ctl); 642 spin_lock(&cache->lock); 643 } 644 645 if (cache->cached != BTRFS_CACHE_NO) { 646 spin_unlock(&cache->lock); 647 kfree(caching_ctl); 648 return 0; 649 } 650 WARN_ON(cache->caching_ctl); 651 cache->caching_ctl = caching_ctl; 652 cache->cached = BTRFS_CACHE_FAST; 653 spin_unlock(&cache->lock); 654 655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 656 mutex_lock(&caching_ctl->mutex); 657 ret = load_free_space_cache(fs_info, cache); 658 659 spin_lock(&cache->lock); 660 if (ret == 1) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_FINISHED; 663 cache->last_byte_to_unpin = (u64)-1; 664 caching_ctl->progress = (u64)-1; 665 } else { 666 if (load_cache_only) { 667 cache->caching_ctl = NULL; 668 cache->cached = BTRFS_CACHE_NO; 669 } else { 670 cache->cached = BTRFS_CACHE_STARTED; 671 cache->has_caching_ctl = 1; 672 } 673 } 674 spin_unlock(&cache->lock); 675 #ifdef CONFIG_BTRFS_DEBUG 676 if (ret == 1 && 677 btrfs_should_fragment_free_space(cache)) { 678 u64 bytes_used; 679 680 spin_lock(&cache->space_info->lock); 681 spin_lock(&cache->lock); 682 bytes_used = cache->key.offset - 683 btrfs_block_group_used(&cache->item); 684 cache->space_info->bytes_used += bytes_used >> 1; 685 spin_unlock(&cache->lock); 686 spin_unlock(&cache->space_info->lock); 687 fragment_free_space(cache); 688 } 689 #endif 690 mutex_unlock(&caching_ctl->mutex); 691 692 wake_up(&caching_ctl->wait); 693 if (ret == 1) { 694 put_caching_control(caching_ctl); 695 free_excluded_extents(fs_info, cache); 696 return 0; 697 } 698 } else { 699 /* 700 * We're either using the free space tree or no caching at all. 701 * Set cached to the appropriate value and wakeup any waiters. 702 */ 703 spin_lock(&cache->lock); 704 if (load_cache_only) { 705 cache->caching_ctl = NULL; 706 cache->cached = BTRFS_CACHE_NO; 707 } else { 708 cache->cached = BTRFS_CACHE_STARTED; 709 cache->has_caching_ctl = 1; 710 } 711 spin_unlock(&cache->lock); 712 wake_up(&caching_ctl->wait); 713 } 714 715 if (load_cache_only) { 716 put_caching_control(caching_ctl); 717 return 0; 718 } 719 720 down_write(&fs_info->commit_root_sem); 721 refcount_inc(&caching_ctl->count); 722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 723 up_write(&fs_info->commit_root_sem); 724 725 btrfs_get_block_group(cache); 726 727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 728 729 return ret; 730 } 731 732 /* 733 * return the block group that starts at or after bytenr 734 */ 735 static struct btrfs_block_group_cache * 736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 737 { 738 return block_group_cache_tree_search(info, bytenr, 0); 739 } 740 741 /* 742 * return the block group that contains the given bytenr 743 */ 744 struct btrfs_block_group_cache *btrfs_lookup_block_group( 745 struct btrfs_fs_info *info, 746 u64 bytenr) 747 { 748 return block_group_cache_tree_search(info, bytenr, 1); 749 } 750 751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 752 u64 flags) 753 { 754 struct list_head *head = &info->space_info; 755 struct btrfs_space_info *found; 756 757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 758 759 rcu_read_lock(); 760 list_for_each_entry_rcu(found, head, list) { 761 if (found->flags & flags) { 762 rcu_read_unlock(); 763 return found; 764 } 765 } 766 rcu_read_unlock(); 767 return NULL; 768 } 769 770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 771 u64 owner, u64 root_objectid) 772 { 773 struct btrfs_space_info *space_info; 774 u64 flags; 775 776 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 778 flags = BTRFS_BLOCK_GROUP_SYSTEM; 779 else 780 flags = BTRFS_BLOCK_GROUP_METADATA; 781 } else { 782 flags = BTRFS_BLOCK_GROUP_DATA; 783 } 784 785 space_info = __find_space_info(fs_info, flags); 786 ASSERT(space_info); 787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 788 } 789 790 /* 791 * after adding space to the filesystem, we need to clear the full flags 792 * on all the space infos. 793 */ 794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 795 { 796 struct list_head *head = &info->space_info; 797 struct btrfs_space_info *found; 798 799 rcu_read_lock(); 800 list_for_each_entry_rcu(found, head, list) 801 found->full = 0; 802 rcu_read_unlock(); 803 } 804 805 /* simple helper to search for an existing data extent at a given offset */ 806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 807 { 808 int ret; 809 struct btrfs_key key; 810 struct btrfs_path *path; 811 812 path = btrfs_alloc_path(); 813 if (!path) 814 return -ENOMEM; 815 816 key.objectid = start; 817 key.offset = len; 818 key.type = BTRFS_EXTENT_ITEM_KEY; 819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 820 btrfs_free_path(path); 821 return ret; 822 } 823 824 /* 825 * helper function to lookup reference count and flags of a tree block. 826 * 827 * the head node for delayed ref is used to store the sum of all the 828 * reference count modifications queued up in the rbtree. the head 829 * node may also store the extent flags to set. This way you can check 830 * to see what the reference count and extent flags would be if all of 831 * the delayed refs are not processed. 832 */ 833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 834 struct btrfs_fs_info *fs_info, u64 bytenr, 835 u64 offset, int metadata, u64 *refs, u64 *flags) 836 { 837 struct btrfs_delayed_ref_head *head; 838 struct btrfs_delayed_ref_root *delayed_refs; 839 struct btrfs_path *path; 840 struct btrfs_extent_item *ei; 841 struct extent_buffer *leaf; 842 struct btrfs_key key; 843 u32 item_size; 844 u64 num_refs; 845 u64 extent_flags; 846 int ret; 847 848 /* 849 * If we don't have skinny metadata, don't bother doing anything 850 * different 851 */ 852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 853 offset = fs_info->nodesize; 854 metadata = 0; 855 } 856 857 path = btrfs_alloc_path(); 858 if (!path) 859 return -ENOMEM; 860 861 if (!trans) { 862 path->skip_locking = 1; 863 path->search_commit_root = 1; 864 } 865 866 search_again: 867 key.objectid = bytenr; 868 key.offset = offset; 869 if (metadata) 870 key.type = BTRFS_METADATA_ITEM_KEY; 871 else 872 key.type = BTRFS_EXTENT_ITEM_KEY; 873 874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 875 if (ret < 0) 876 goto out_free; 877 878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 879 if (path->slots[0]) { 880 path->slots[0]--; 881 btrfs_item_key_to_cpu(path->nodes[0], &key, 882 path->slots[0]); 883 if (key.objectid == bytenr && 884 key.type == BTRFS_EXTENT_ITEM_KEY && 885 key.offset == fs_info->nodesize) 886 ret = 0; 887 } 888 } 889 890 if (ret == 0) { 891 leaf = path->nodes[0]; 892 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 893 if (item_size >= sizeof(*ei)) { 894 ei = btrfs_item_ptr(leaf, path->slots[0], 895 struct btrfs_extent_item); 896 num_refs = btrfs_extent_refs(leaf, ei); 897 extent_flags = btrfs_extent_flags(leaf, ei); 898 } else { 899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 900 struct btrfs_extent_item_v0 *ei0; 901 BUG_ON(item_size != sizeof(*ei0)); 902 ei0 = btrfs_item_ptr(leaf, path->slots[0], 903 struct btrfs_extent_item_v0); 904 num_refs = btrfs_extent_refs_v0(leaf, ei0); 905 /* FIXME: this isn't correct for data */ 906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 907 #else 908 BUG(); 909 #endif 910 } 911 BUG_ON(num_refs == 0); 912 } else { 913 num_refs = 0; 914 extent_flags = 0; 915 ret = 0; 916 } 917 918 if (!trans) 919 goto out; 920 921 delayed_refs = &trans->transaction->delayed_refs; 922 spin_lock(&delayed_refs->lock); 923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 924 if (head) { 925 if (!mutex_trylock(&head->mutex)) { 926 refcount_inc(&head->node.refs); 927 spin_unlock(&delayed_refs->lock); 928 929 btrfs_release_path(path); 930 931 /* 932 * Mutex was contended, block until it's released and try 933 * again 934 */ 935 mutex_lock(&head->mutex); 936 mutex_unlock(&head->mutex); 937 btrfs_put_delayed_ref(&head->node); 938 goto search_again; 939 } 940 spin_lock(&head->lock); 941 if (head->extent_op && head->extent_op->update_flags) 942 extent_flags |= head->extent_op->flags_to_set; 943 else 944 BUG_ON(num_refs == 0); 945 946 num_refs += head->node.ref_mod; 947 spin_unlock(&head->lock); 948 mutex_unlock(&head->mutex); 949 } 950 spin_unlock(&delayed_refs->lock); 951 out: 952 WARN_ON(num_refs == 0); 953 if (refs) 954 *refs = num_refs; 955 if (flags) 956 *flags = extent_flags; 957 out_free: 958 btrfs_free_path(path); 959 return ret; 960 } 961 962 /* 963 * Back reference rules. Back refs have three main goals: 964 * 965 * 1) differentiate between all holders of references to an extent so that 966 * when a reference is dropped we can make sure it was a valid reference 967 * before freeing the extent. 968 * 969 * 2) Provide enough information to quickly find the holders of an extent 970 * if we notice a given block is corrupted or bad. 971 * 972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 973 * maintenance. This is actually the same as #2, but with a slightly 974 * different use case. 975 * 976 * There are two kinds of back refs. The implicit back refs is optimized 977 * for pointers in non-shared tree blocks. For a given pointer in a block, 978 * back refs of this kind provide information about the block's owner tree 979 * and the pointer's key. These information allow us to find the block by 980 * b-tree searching. The full back refs is for pointers in tree blocks not 981 * referenced by their owner trees. The location of tree block is recorded 982 * in the back refs. Actually the full back refs is generic, and can be 983 * used in all cases the implicit back refs is used. The major shortcoming 984 * of the full back refs is its overhead. Every time a tree block gets 985 * COWed, we have to update back refs entry for all pointers in it. 986 * 987 * For a newly allocated tree block, we use implicit back refs for 988 * pointers in it. This means most tree related operations only involve 989 * implicit back refs. For a tree block created in old transaction, the 990 * only way to drop a reference to it is COW it. So we can detect the 991 * event that tree block loses its owner tree's reference and do the 992 * back refs conversion. 993 * 994 * When a tree block is COWed through a tree, there are four cases: 995 * 996 * The reference count of the block is one and the tree is the block's 997 * owner tree. Nothing to do in this case. 998 * 999 * The reference count of the block is one and the tree is not the 1000 * block's owner tree. In this case, full back refs is used for pointers 1001 * in the block. Remove these full back refs, add implicit back refs for 1002 * every pointers in the new block. 1003 * 1004 * The reference count of the block is greater than one and the tree is 1005 * the block's owner tree. In this case, implicit back refs is used for 1006 * pointers in the block. Add full back refs for every pointers in the 1007 * block, increase lower level extents' reference counts. The original 1008 * implicit back refs are entailed to the new block. 1009 * 1010 * The reference count of the block is greater than one and the tree is 1011 * not the block's owner tree. Add implicit back refs for every pointer in 1012 * the new block, increase lower level extents' reference count. 1013 * 1014 * Back Reference Key composing: 1015 * 1016 * The key objectid corresponds to the first byte in the extent, 1017 * The key type is used to differentiate between types of back refs. 1018 * There are different meanings of the key offset for different types 1019 * of back refs. 1020 * 1021 * File extents can be referenced by: 1022 * 1023 * - multiple snapshots, subvolumes, or different generations in one subvol 1024 * - different files inside a single subvolume 1025 * - different offsets inside a file (bookend extents in file.c) 1026 * 1027 * The extent ref structure for the implicit back refs has fields for: 1028 * 1029 * - Objectid of the subvolume root 1030 * - objectid of the file holding the reference 1031 * - original offset in the file 1032 * - how many bookend extents 1033 * 1034 * The key offset for the implicit back refs is hash of the first 1035 * three fields. 1036 * 1037 * The extent ref structure for the full back refs has field for: 1038 * 1039 * - number of pointers in the tree leaf 1040 * 1041 * The key offset for the implicit back refs is the first byte of 1042 * the tree leaf 1043 * 1044 * When a file extent is allocated, The implicit back refs is used. 1045 * the fields are filled in: 1046 * 1047 * (root_key.objectid, inode objectid, offset in file, 1) 1048 * 1049 * When a file extent is removed file truncation, we find the 1050 * corresponding implicit back refs and check the following fields: 1051 * 1052 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1053 * 1054 * Btree extents can be referenced by: 1055 * 1056 * - Different subvolumes 1057 * 1058 * Both the implicit back refs and the full back refs for tree blocks 1059 * only consist of key. The key offset for the implicit back refs is 1060 * objectid of block's owner tree. The key offset for the full back refs 1061 * is the first byte of parent block. 1062 * 1063 * When implicit back refs is used, information about the lowest key and 1064 * level of the tree block are required. These information are stored in 1065 * tree block info structure. 1066 */ 1067 1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1070 struct btrfs_fs_info *fs_info, 1071 struct btrfs_path *path, 1072 u64 owner, u32 extra_size) 1073 { 1074 struct btrfs_root *root = fs_info->extent_root; 1075 struct btrfs_extent_item *item; 1076 struct btrfs_extent_item_v0 *ei0; 1077 struct btrfs_extent_ref_v0 *ref0; 1078 struct btrfs_tree_block_info *bi; 1079 struct extent_buffer *leaf; 1080 struct btrfs_key key; 1081 struct btrfs_key found_key; 1082 u32 new_size = sizeof(*item); 1083 u64 refs; 1084 int ret; 1085 1086 leaf = path->nodes[0]; 1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1088 1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1090 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1091 struct btrfs_extent_item_v0); 1092 refs = btrfs_extent_refs_v0(leaf, ei0); 1093 1094 if (owner == (u64)-1) { 1095 while (1) { 1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1097 ret = btrfs_next_leaf(root, path); 1098 if (ret < 0) 1099 return ret; 1100 BUG_ON(ret > 0); /* Corruption */ 1101 leaf = path->nodes[0]; 1102 } 1103 btrfs_item_key_to_cpu(leaf, &found_key, 1104 path->slots[0]); 1105 BUG_ON(key.objectid != found_key.objectid); 1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1107 path->slots[0]++; 1108 continue; 1109 } 1110 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_extent_ref_v0); 1112 owner = btrfs_ref_objectid_v0(leaf, ref0); 1113 break; 1114 } 1115 } 1116 btrfs_release_path(path); 1117 1118 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1119 new_size += sizeof(*bi); 1120 1121 new_size -= sizeof(*ei0); 1122 ret = btrfs_search_slot(trans, root, &key, path, 1123 new_size + extra_size, 1); 1124 if (ret < 0) 1125 return ret; 1126 BUG_ON(ret); /* Corruption */ 1127 1128 btrfs_extend_item(fs_info, path, new_size); 1129 1130 leaf = path->nodes[0]; 1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1132 btrfs_set_extent_refs(leaf, item, refs); 1133 /* FIXME: get real generation */ 1134 btrfs_set_extent_generation(leaf, item, 0); 1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1136 btrfs_set_extent_flags(leaf, item, 1137 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1138 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1139 bi = (struct btrfs_tree_block_info *)(item + 1); 1140 /* FIXME: get first key of the block */ 1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1142 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1143 } else { 1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1145 } 1146 btrfs_mark_buffer_dirty(leaf); 1147 return 0; 1148 } 1149 #endif 1150 1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1152 { 1153 u32 high_crc = ~(u32)0; 1154 u32 low_crc = ~(u32)0; 1155 __le64 lenum; 1156 1157 lenum = cpu_to_le64(root_objectid); 1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1159 lenum = cpu_to_le64(owner); 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1161 lenum = cpu_to_le64(offset); 1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1163 1164 return ((u64)high_crc << 31) ^ (u64)low_crc; 1165 } 1166 1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1168 struct btrfs_extent_data_ref *ref) 1169 { 1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1171 btrfs_extent_data_ref_objectid(leaf, ref), 1172 btrfs_extent_data_ref_offset(leaf, ref)); 1173 } 1174 1175 static int match_extent_data_ref(struct extent_buffer *leaf, 1176 struct btrfs_extent_data_ref *ref, 1177 u64 root_objectid, u64 owner, u64 offset) 1178 { 1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1181 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1182 return 0; 1183 return 1; 1184 } 1185 1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1187 struct btrfs_fs_info *fs_info, 1188 struct btrfs_path *path, 1189 u64 bytenr, u64 parent, 1190 u64 root_objectid, 1191 u64 owner, u64 offset) 1192 { 1193 struct btrfs_root *root = fs_info->extent_root; 1194 struct btrfs_key key; 1195 struct btrfs_extent_data_ref *ref; 1196 struct extent_buffer *leaf; 1197 u32 nritems; 1198 int ret; 1199 int recow; 1200 int err = -ENOENT; 1201 1202 key.objectid = bytenr; 1203 if (parent) { 1204 key.type = BTRFS_SHARED_DATA_REF_KEY; 1205 key.offset = parent; 1206 } else { 1207 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1208 key.offset = hash_extent_data_ref(root_objectid, 1209 owner, offset); 1210 } 1211 again: 1212 recow = 0; 1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1214 if (ret < 0) { 1215 err = ret; 1216 goto fail; 1217 } 1218 1219 if (parent) { 1220 if (!ret) 1221 return 0; 1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1223 key.type = BTRFS_EXTENT_REF_V0_KEY; 1224 btrfs_release_path(path); 1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1226 if (ret < 0) { 1227 err = ret; 1228 goto fail; 1229 } 1230 if (!ret) 1231 return 0; 1232 #endif 1233 goto fail; 1234 } 1235 1236 leaf = path->nodes[0]; 1237 nritems = btrfs_header_nritems(leaf); 1238 while (1) { 1239 if (path->slots[0] >= nritems) { 1240 ret = btrfs_next_leaf(root, path); 1241 if (ret < 0) 1242 err = ret; 1243 if (ret) 1244 goto fail; 1245 1246 leaf = path->nodes[0]; 1247 nritems = btrfs_header_nritems(leaf); 1248 recow = 1; 1249 } 1250 1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1252 if (key.objectid != bytenr || 1253 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1254 goto fail; 1255 1256 ref = btrfs_item_ptr(leaf, path->slots[0], 1257 struct btrfs_extent_data_ref); 1258 1259 if (match_extent_data_ref(leaf, ref, root_objectid, 1260 owner, offset)) { 1261 if (recow) { 1262 btrfs_release_path(path); 1263 goto again; 1264 } 1265 err = 0; 1266 break; 1267 } 1268 path->slots[0]++; 1269 } 1270 fail: 1271 return err; 1272 } 1273 1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1275 struct btrfs_fs_info *fs_info, 1276 struct btrfs_path *path, 1277 u64 bytenr, u64 parent, 1278 u64 root_objectid, u64 owner, 1279 u64 offset, int refs_to_add) 1280 { 1281 struct btrfs_root *root = fs_info->extent_root; 1282 struct btrfs_key key; 1283 struct extent_buffer *leaf; 1284 u32 size; 1285 u32 num_refs; 1286 int ret; 1287 1288 key.objectid = bytenr; 1289 if (parent) { 1290 key.type = BTRFS_SHARED_DATA_REF_KEY; 1291 key.offset = parent; 1292 size = sizeof(struct btrfs_shared_data_ref); 1293 } else { 1294 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1295 key.offset = hash_extent_data_ref(root_objectid, 1296 owner, offset); 1297 size = sizeof(struct btrfs_extent_data_ref); 1298 } 1299 1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1301 if (ret && ret != -EEXIST) 1302 goto fail; 1303 1304 leaf = path->nodes[0]; 1305 if (parent) { 1306 struct btrfs_shared_data_ref *ref; 1307 ref = btrfs_item_ptr(leaf, path->slots[0], 1308 struct btrfs_shared_data_ref); 1309 if (ret == 0) { 1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1311 } else { 1312 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1313 num_refs += refs_to_add; 1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1315 } 1316 } else { 1317 struct btrfs_extent_data_ref *ref; 1318 while (ret == -EEXIST) { 1319 ref = btrfs_item_ptr(leaf, path->slots[0], 1320 struct btrfs_extent_data_ref); 1321 if (match_extent_data_ref(leaf, ref, root_objectid, 1322 owner, offset)) 1323 break; 1324 btrfs_release_path(path); 1325 key.offset++; 1326 ret = btrfs_insert_empty_item(trans, root, path, &key, 1327 size); 1328 if (ret && ret != -EEXIST) 1329 goto fail; 1330 1331 leaf = path->nodes[0]; 1332 } 1333 ref = btrfs_item_ptr(leaf, path->slots[0], 1334 struct btrfs_extent_data_ref); 1335 if (ret == 0) { 1336 btrfs_set_extent_data_ref_root(leaf, ref, 1337 root_objectid); 1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1341 } else { 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1343 num_refs += refs_to_add; 1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1345 } 1346 } 1347 btrfs_mark_buffer_dirty(leaf); 1348 ret = 0; 1349 fail: 1350 btrfs_release_path(path); 1351 return ret; 1352 } 1353 1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1355 struct btrfs_fs_info *fs_info, 1356 struct btrfs_path *path, 1357 int refs_to_drop, int *last_ref) 1358 { 1359 struct btrfs_key key; 1360 struct btrfs_extent_data_ref *ref1 = NULL; 1361 struct btrfs_shared_data_ref *ref2 = NULL; 1362 struct extent_buffer *leaf; 1363 u32 num_refs = 0; 1364 int ret = 0; 1365 1366 leaf = path->nodes[0]; 1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1368 1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1370 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1371 struct btrfs_extent_data_ref); 1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1374 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1375 struct btrfs_shared_data_ref); 1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1379 struct btrfs_extent_ref_v0 *ref0; 1380 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1381 struct btrfs_extent_ref_v0); 1382 num_refs = btrfs_ref_count_v0(leaf, ref0); 1383 #endif 1384 } else { 1385 BUG(); 1386 } 1387 1388 BUG_ON(num_refs < refs_to_drop); 1389 num_refs -= refs_to_drop; 1390 1391 if (num_refs == 0) { 1392 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1393 *last_ref = 1; 1394 } else { 1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1400 else { 1401 struct btrfs_extent_ref_v0 *ref0; 1402 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1403 struct btrfs_extent_ref_v0); 1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1405 } 1406 #endif 1407 btrfs_mark_buffer_dirty(leaf); 1408 } 1409 return ret; 1410 } 1411 1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1413 struct btrfs_extent_inline_ref *iref) 1414 { 1415 struct btrfs_key key; 1416 struct extent_buffer *leaf; 1417 struct btrfs_extent_data_ref *ref1; 1418 struct btrfs_shared_data_ref *ref2; 1419 u32 num_refs = 0; 1420 1421 leaf = path->nodes[0]; 1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1423 if (iref) { 1424 if (btrfs_extent_inline_ref_type(leaf, iref) == 1425 BTRFS_EXTENT_DATA_REF_KEY) { 1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1428 } else { 1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1431 } 1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1433 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1434 struct btrfs_extent_data_ref); 1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1437 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1438 struct btrfs_shared_data_ref); 1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1442 struct btrfs_extent_ref_v0 *ref0; 1443 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1444 struct btrfs_extent_ref_v0); 1445 num_refs = btrfs_ref_count_v0(leaf, ref0); 1446 #endif 1447 } else { 1448 WARN_ON(1); 1449 } 1450 return num_refs; 1451 } 1452 1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1454 struct btrfs_fs_info *fs_info, 1455 struct btrfs_path *path, 1456 u64 bytenr, u64 parent, 1457 u64 root_objectid) 1458 { 1459 struct btrfs_root *root = fs_info->extent_root; 1460 struct btrfs_key key; 1461 int ret; 1462 1463 key.objectid = bytenr; 1464 if (parent) { 1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1466 key.offset = parent; 1467 } else { 1468 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1469 key.offset = root_objectid; 1470 } 1471 1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1473 if (ret > 0) 1474 ret = -ENOENT; 1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1476 if (ret == -ENOENT && parent) { 1477 btrfs_release_path(path); 1478 key.type = BTRFS_EXTENT_REF_V0_KEY; 1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1480 if (ret > 0) 1481 ret = -ENOENT; 1482 } 1483 #endif 1484 return ret; 1485 } 1486 1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1488 struct btrfs_fs_info *fs_info, 1489 struct btrfs_path *path, 1490 u64 bytenr, u64 parent, 1491 u64 root_objectid) 1492 { 1493 struct btrfs_key key; 1494 int ret; 1495 1496 key.objectid = bytenr; 1497 if (parent) { 1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1499 key.offset = parent; 1500 } else { 1501 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1502 key.offset = root_objectid; 1503 } 1504 1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1506 path, &key, 0); 1507 btrfs_release_path(path); 1508 return ret; 1509 } 1510 1511 static inline int extent_ref_type(u64 parent, u64 owner) 1512 { 1513 int type; 1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1515 if (parent > 0) 1516 type = BTRFS_SHARED_BLOCK_REF_KEY; 1517 else 1518 type = BTRFS_TREE_BLOCK_REF_KEY; 1519 } else { 1520 if (parent > 0) 1521 type = BTRFS_SHARED_DATA_REF_KEY; 1522 else 1523 type = BTRFS_EXTENT_DATA_REF_KEY; 1524 } 1525 return type; 1526 } 1527 1528 static int find_next_key(struct btrfs_path *path, int level, 1529 struct btrfs_key *key) 1530 1531 { 1532 for (; level < BTRFS_MAX_LEVEL; level++) { 1533 if (!path->nodes[level]) 1534 break; 1535 if (path->slots[level] + 1 >= 1536 btrfs_header_nritems(path->nodes[level])) 1537 continue; 1538 if (level == 0) 1539 btrfs_item_key_to_cpu(path->nodes[level], key, 1540 path->slots[level] + 1); 1541 else 1542 btrfs_node_key_to_cpu(path->nodes[level], key, 1543 path->slots[level] + 1); 1544 return 0; 1545 } 1546 return 1; 1547 } 1548 1549 /* 1550 * look for inline back ref. if back ref is found, *ref_ret is set 1551 * to the address of inline back ref, and 0 is returned. 1552 * 1553 * if back ref isn't found, *ref_ret is set to the address where it 1554 * should be inserted, and -ENOENT is returned. 1555 * 1556 * if insert is true and there are too many inline back refs, the path 1557 * points to the extent item, and -EAGAIN is returned. 1558 * 1559 * NOTE: inline back refs are ordered in the same way that back ref 1560 * items in the tree are ordered. 1561 */ 1562 static noinline_for_stack 1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1564 struct btrfs_fs_info *fs_info, 1565 struct btrfs_path *path, 1566 struct btrfs_extent_inline_ref **ref_ret, 1567 u64 bytenr, u64 num_bytes, 1568 u64 parent, u64 root_objectid, 1569 u64 owner, u64 offset, int insert) 1570 { 1571 struct btrfs_root *root = fs_info->extent_root; 1572 struct btrfs_key key; 1573 struct extent_buffer *leaf; 1574 struct btrfs_extent_item *ei; 1575 struct btrfs_extent_inline_ref *iref; 1576 u64 flags; 1577 u64 item_size; 1578 unsigned long ptr; 1579 unsigned long end; 1580 int extra_size; 1581 int type; 1582 int want; 1583 int ret; 1584 int err = 0; 1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1586 1587 key.objectid = bytenr; 1588 key.type = BTRFS_EXTENT_ITEM_KEY; 1589 key.offset = num_bytes; 1590 1591 want = extent_ref_type(parent, owner); 1592 if (insert) { 1593 extra_size = btrfs_extent_inline_ref_size(want); 1594 path->keep_locks = 1; 1595 } else 1596 extra_size = -1; 1597 1598 /* 1599 * Owner is our parent level, so we can just add one to get the level 1600 * for the block we are interested in. 1601 */ 1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1603 key.type = BTRFS_METADATA_ITEM_KEY; 1604 key.offset = owner; 1605 } 1606 1607 again: 1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1609 if (ret < 0) { 1610 err = ret; 1611 goto out; 1612 } 1613 1614 /* 1615 * We may be a newly converted file system which still has the old fat 1616 * extent entries for metadata, so try and see if we have one of those. 1617 */ 1618 if (ret > 0 && skinny_metadata) { 1619 skinny_metadata = false; 1620 if (path->slots[0]) { 1621 path->slots[0]--; 1622 btrfs_item_key_to_cpu(path->nodes[0], &key, 1623 path->slots[0]); 1624 if (key.objectid == bytenr && 1625 key.type == BTRFS_EXTENT_ITEM_KEY && 1626 key.offset == num_bytes) 1627 ret = 0; 1628 } 1629 if (ret) { 1630 key.objectid = bytenr; 1631 key.type = BTRFS_EXTENT_ITEM_KEY; 1632 key.offset = num_bytes; 1633 btrfs_release_path(path); 1634 goto again; 1635 } 1636 } 1637 1638 if (ret && !insert) { 1639 err = -ENOENT; 1640 goto out; 1641 } else if (WARN_ON(ret)) { 1642 err = -EIO; 1643 goto out; 1644 } 1645 1646 leaf = path->nodes[0]; 1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1649 if (item_size < sizeof(*ei)) { 1650 if (!insert) { 1651 err = -ENOENT; 1652 goto out; 1653 } 1654 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1655 extra_size); 1656 if (ret < 0) { 1657 err = ret; 1658 goto out; 1659 } 1660 leaf = path->nodes[0]; 1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1662 } 1663 #endif 1664 BUG_ON(item_size < sizeof(*ei)); 1665 1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1667 flags = btrfs_extent_flags(leaf, ei); 1668 1669 ptr = (unsigned long)(ei + 1); 1670 end = (unsigned long)ei + item_size; 1671 1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1673 ptr += sizeof(struct btrfs_tree_block_info); 1674 BUG_ON(ptr > end); 1675 } 1676 1677 err = -ENOENT; 1678 while (1) { 1679 if (ptr >= end) { 1680 WARN_ON(ptr > end); 1681 break; 1682 } 1683 iref = (struct btrfs_extent_inline_ref *)ptr; 1684 type = btrfs_extent_inline_ref_type(leaf, iref); 1685 if (want < type) 1686 break; 1687 if (want > type) { 1688 ptr += btrfs_extent_inline_ref_size(type); 1689 continue; 1690 } 1691 1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1693 struct btrfs_extent_data_ref *dref; 1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1695 if (match_extent_data_ref(leaf, dref, root_objectid, 1696 owner, offset)) { 1697 err = 0; 1698 break; 1699 } 1700 if (hash_extent_data_ref_item(leaf, dref) < 1701 hash_extent_data_ref(root_objectid, owner, offset)) 1702 break; 1703 } else { 1704 u64 ref_offset; 1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1706 if (parent > 0) { 1707 if (parent == ref_offset) { 1708 err = 0; 1709 break; 1710 } 1711 if (ref_offset < parent) 1712 break; 1713 } else { 1714 if (root_objectid == ref_offset) { 1715 err = 0; 1716 break; 1717 } 1718 if (ref_offset < root_objectid) 1719 break; 1720 } 1721 } 1722 ptr += btrfs_extent_inline_ref_size(type); 1723 } 1724 if (err == -ENOENT && insert) { 1725 if (item_size + extra_size >= 1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1727 err = -EAGAIN; 1728 goto out; 1729 } 1730 /* 1731 * To add new inline back ref, we have to make sure 1732 * there is no corresponding back ref item. 1733 * For simplicity, we just do not add new inline back 1734 * ref if there is any kind of item for this block 1735 */ 1736 if (find_next_key(path, 0, &key) == 0 && 1737 key.objectid == bytenr && 1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1739 err = -EAGAIN; 1740 goto out; 1741 } 1742 } 1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1744 out: 1745 if (insert) { 1746 path->keep_locks = 0; 1747 btrfs_unlock_up_safe(path, 1); 1748 } 1749 return err; 1750 } 1751 1752 /* 1753 * helper to add new inline back ref 1754 */ 1755 static noinline_for_stack 1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1757 struct btrfs_path *path, 1758 struct btrfs_extent_inline_ref *iref, 1759 u64 parent, u64 root_objectid, 1760 u64 owner, u64 offset, int refs_to_add, 1761 struct btrfs_delayed_extent_op *extent_op) 1762 { 1763 struct extent_buffer *leaf; 1764 struct btrfs_extent_item *ei; 1765 unsigned long ptr; 1766 unsigned long end; 1767 unsigned long item_offset; 1768 u64 refs; 1769 int size; 1770 int type; 1771 1772 leaf = path->nodes[0]; 1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1774 item_offset = (unsigned long)iref - (unsigned long)ei; 1775 1776 type = extent_ref_type(parent, owner); 1777 size = btrfs_extent_inline_ref_size(type); 1778 1779 btrfs_extend_item(fs_info, path, size); 1780 1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1782 refs = btrfs_extent_refs(leaf, ei); 1783 refs += refs_to_add; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 ptr = (unsigned long)ei + item_offset; 1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1790 if (ptr < end - size) 1791 memmove_extent_buffer(leaf, ptr + size, ptr, 1792 end - size - ptr); 1793 1794 iref = (struct btrfs_extent_inline_ref *)ptr; 1795 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1797 struct btrfs_extent_data_ref *dref; 1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1804 struct btrfs_shared_data_ref *sref; 1805 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1810 } else { 1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1812 } 1813 btrfs_mark_buffer_dirty(leaf); 1814 } 1815 1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1817 struct btrfs_fs_info *fs_info, 1818 struct btrfs_path *path, 1819 struct btrfs_extent_inline_ref **ref_ret, 1820 u64 bytenr, u64 num_bytes, u64 parent, 1821 u64 root_objectid, u64 owner, u64 offset) 1822 { 1823 int ret; 1824 1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1826 bytenr, num_bytes, parent, 1827 root_objectid, owner, offset, 0); 1828 if (ret != -ENOENT) 1829 return ret; 1830 1831 btrfs_release_path(path); 1832 *ref_ret = NULL; 1833 1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1836 parent, root_objectid); 1837 } else { 1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1839 parent, root_objectid, owner, 1840 offset); 1841 } 1842 return ret; 1843 } 1844 1845 /* 1846 * helper to update/remove inline back ref 1847 */ 1848 static noinline_for_stack 1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1850 struct btrfs_path *path, 1851 struct btrfs_extent_inline_ref *iref, 1852 int refs_to_mod, 1853 struct btrfs_delayed_extent_op *extent_op, 1854 int *last_ref) 1855 { 1856 struct extent_buffer *leaf; 1857 struct btrfs_extent_item *ei; 1858 struct btrfs_extent_data_ref *dref = NULL; 1859 struct btrfs_shared_data_ref *sref = NULL; 1860 unsigned long ptr; 1861 unsigned long end; 1862 u32 item_size; 1863 int size; 1864 int type; 1865 u64 refs; 1866 1867 leaf = path->nodes[0]; 1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1869 refs = btrfs_extent_refs(leaf, ei); 1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1871 refs += refs_to_mod; 1872 btrfs_set_extent_refs(leaf, ei, refs); 1873 if (extent_op) 1874 __run_delayed_extent_op(extent_op, leaf, ei); 1875 1876 type = btrfs_extent_inline_ref_type(leaf, iref); 1877 1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1880 refs = btrfs_extent_data_ref_count(leaf, dref); 1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1882 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1883 refs = btrfs_shared_data_ref_count(leaf, sref); 1884 } else { 1885 refs = 1; 1886 BUG_ON(refs_to_mod != -1); 1887 } 1888 1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1890 refs += refs_to_mod; 1891 1892 if (refs > 0) { 1893 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1894 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1895 else 1896 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1897 } else { 1898 *last_ref = 1; 1899 size = btrfs_extent_inline_ref_size(type); 1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1901 ptr = (unsigned long)iref; 1902 end = (unsigned long)ei + item_size; 1903 if (ptr + size < end) 1904 memmove_extent_buffer(leaf, ptr, ptr + size, 1905 end - ptr - size); 1906 item_size -= size; 1907 btrfs_truncate_item(fs_info, path, item_size, 1); 1908 } 1909 btrfs_mark_buffer_dirty(leaf); 1910 } 1911 1912 static noinline_for_stack 1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1914 struct btrfs_fs_info *fs_info, 1915 struct btrfs_path *path, 1916 u64 bytenr, u64 num_bytes, u64 parent, 1917 u64 root_objectid, u64 owner, 1918 u64 offset, int refs_to_add, 1919 struct btrfs_delayed_extent_op *extent_op) 1920 { 1921 struct btrfs_extent_inline_ref *iref; 1922 int ret; 1923 1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1925 bytenr, num_bytes, parent, 1926 root_objectid, owner, offset, 1); 1927 if (ret == 0) { 1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1929 update_inline_extent_backref(fs_info, path, iref, 1930 refs_to_add, extent_op, NULL); 1931 } else if (ret == -ENOENT) { 1932 setup_inline_extent_backref(fs_info, path, iref, parent, 1933 root_objectid, owner, offset, 1934 refs_to_add, extent_op); 1935 ret = 0; 1936 } 1937 return ret; 1938 } 1939 1940 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1941 struct btrfs_fs_info *fs_info, 1942 struct btrfs_path *path, 1943 u64 bytenr, u64 parent, u64 root_objectid, 1944 u64 owner, u64 offset, int refs_to_add) 1945 { 1946 int ret; 1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1948 BUG_ON(refs_to_add != 1); 1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 1950 parent, root_objectid); 1951 } else { 1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 1953 parent, root_objectid, 1954 owner, offset, refs_to_add); 1955 } 1956 return ret; 1957 } 1958 1959 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1960 struct btrfs_fs_info *fs_info, 1961 struct btrfs_path *path, 1962 struct btrfs_extent_inline_ref *iref, 1963 int refs_to_drop, int is_data, int *last_ref) 1964 { 1965 int ret = 0; 1966 1967 BUG_ON(!is_data && refs_to_drop != 1); 1968 if (iref) { 1969 update_inline_extent_backref(fs_info, path, iref, 1970 -refs_to_drop, NULL, last_ref); 1971 } else if (is_data) { 1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 1973 last_ref); 1974 } else { 1975 *last_ref = 1; 1976 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1977 } 1978 return ret; 1979 } 1980 1981 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1983 u64 *discarded_bytes) 1984 { 1985 int j, ret = 0; 1986 u64 bytes_left, end; 1987 u64 aligned_start = ALIGN(start, 1 << 9); 1988 1989 if (WARN_ON(start != aligned_start)) { 1990 len -= aligned_start - start; 1991 len = round_down(len, 1 << 9); 1992 start = aligned_start; 1993 } 1994 1995 *discarded_bytes = 0; 1996 1997 if (!len) 1998 return 0; 1999 2000 end = start + len; 2001 bytes_left = len; 2002 2003 /* Skip any superblocks on this device. */ 2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2005 u64 sb_start = btrfs_sb_offset(j); 2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2007 u64 size = sb_start - start; 2008 2009 if (!in_range(sb_start, start, bytes_left) && 2010 !in_range(sb_end, start, bytes_left) && 2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2012 continue; 2013 2014 /* 2015 * Superblock spans beginning of range. Adjust start and 2016 * try again. 2017 */ 2018 if (sb_start <= start) { 2019 start += sb_end - start; 2020 if (start > end) { 2021 bytes_left = 0; 2022 break; 2023 } 2024 bytes_left = end - start; 2025 continue; 2026 } 2027 2028 if (size) { 2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2030 GFP_NOFS, 0); 2031 if (!ret) 2032 *discarded_bytes += size; 2033 else if (ret != -EOPNOTSUPP) 2034 return ret; 2035 } 2036 2037 start = sb_end; 2038 if (start > end) { 2039 bytes_left = 0; 2040 break; 2041 } 2042 bytes_left = end - start; 2043 } 2044 2045 if (bytes_left) { 2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2047 GFP_NOFS, 0); 2048 if (!ret) 2049 *discarded_bytes += bytes_left; 2050 } 2051 return ret; 2052 } 2053 2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2055 u64 num_bytes, u64 *actual_bytes) 2056 { 2057 int ret; 2058 u64 discarded_bytes = 0; 2059 struct btrfs_bio *bbio = NULL; 2060 2061 2062 /* 2063 * Avoid races with device replace and make sure our bbio has devices 2064 * associated to its stripes that don't go away while we are discarding. 2065 */ 2066 btrfs_bio_counter_inc_blocked(fs_info); 2067 /* Tell the block device(s) that the sectors can be discarded */ 2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2069 &bbio, 0); 2070 /* Error condition is -ENOMEM */ 2071 if (!ret) { 2072 struct btrfs_bio_stripe *stripe = bbio->stripes; 2073 int i; 2074 2075 2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2077 u64 bytes; 2078 if (!stripe->dev->can_discard) 2079 continue; 2080 2081 ret = btrfs_issue_discard(stripe->dev->bdev, 2082 stripe->physical, 2083 stripe->length, 2084 &bytes); 2085 if (!ret) 2086 discarded_bytes += bytes; 2087 else if (ret != -EOPNOTSUPP) 2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2089 2090 /* 2091 * Just in case we get back EOPNOTSUPP for some reason, 2092 * just ignore the return value so we don't screw up 2093 * people calling discard_extent. 2094 */ 2095 ret = 0; 2096 } 2097 btrfs_put_bbio(bbio); 2098 } 2099 btrfs_bio_counter_dec(fs_info); 2100 2101 if (actual_bytes) 2102 *actual_bytes = discarded_bytes; 2103 2104 2105 if (ret == -EOPNOTSUPP) 2106 ret = 0; 2107 return ret; 2108 } 2109 2110 /* Can return -ENOMEM */ 2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2112 struct btrfs_fs_info *fs_info, 2113 u64 bytenr, u64 num_bytes, u64 parent, 2114 u64 root_objectid, u64 owner, u64 offset) 2115 { 2116 int old_ref_mod, new_ref_mod; 2117 int ret; 2118 2119 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2120 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2121 2122 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2123 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2124 num_bytes, parent, 2125 root_objectid, (int)owner, 2126 BTRFS_ADD_DELAYED_REF, NULL, 2127 &old_ref_mod, &new_ref_mod); 2128 } else { 2129 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2130 num_bytes, parent, 2131 root_objectid, owner, offset, 2132 0, BTRFS_ADD_DELAYED_REF, 2133 &old_ref_mod, &new_ref_mod); 2134 } 2135 2136 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2137 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2138 2139 return ret; 2140 } 2141 2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2143 struct btrfs_fs_info *fs_info, 2144 struct btrfs_delayed_ref_node *node, 2145 u64 parent, u64 root_objectid, 2146 u64 owner, u64 offset, int refs_to_add, 2147 struct btrfs_delayed_extent_op *extent_op) 2148 { 2149 struct btrfs_path *path; 2150 struct extent_buffer *leaf; 2151 struct btrfs_extent_item *item; 2152 struct btrfs_key key; 2153 u64 bytenr = node->bytenr; 2154 u64 num_bytes = node->num_bytes; 2155 u64 refs; 2156 int ret; 2157 2158 path = btrfs_alloc_path(); 2159 if (!path) 2160 return -ENOMEM; 2161 2162 path->reada = READA_FORWARD; 2163 path->leave_spinning = 1; 2164 /* this will setup the path even if it fails to insert the back ref */ 2165 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2166 num_bytes, parent, root_objectid, 2167 owner, offset, 2168 refs_to_add, extent_op); 2169 if ((ret < 0 && ret != -EAGAIN) || !ret) 2170 goto out; 2171 2172 /* 2173 * Ok we had -EAGAIN which means we didn't have space to insert and 2174 * inline extent ref, so just update the reference count and add a 2175 * normal backref. 2176 */ 2177 leaf = path->nodes[0]; 2178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2180 refs = btrfs_extent_refs(leaf, item); 2181 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2182 if (extent_op) 2183 __run_delayed_extent_op(extent_op, leaf, item); 2184 2185 btrfs_mark_buffer_dirty(leaf); 2186 btrfs_release_path(path); 2187 2188 path->reada = READA_FORWARD; 2189 path->leave_spinning = 1; 2190 /* now insert the actual backref */ 2191 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2192 root_objectid, owner, offset, refs_to_add); 2193 if (ret) 2194 btrfs_abort_transaction(trans, ret); 2195 out: 2196 btrfs_free_path(path); 2197 return ret; 2198 } 2199 2200 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2201 struct btrfs_fs_info *fs_info, 2202 struct btrfs_delayed_ref_node *node, 2203 struct btrfs_delayed_extent_op *extent_op, 2204 int insert_reserved) 2205 { 2206 int ret = 0; 2207 struct btrfs_delayed_data_ref *ref; 2208 struct btrfs_key ins; 2209 u64 parent = 0; 2210 u64 ref_root = 0; 2211 u64 flags = 0; 2212 2213 ins.objectid = node->bytenr; 2214 ins.offset = node->num_bytes; 2215 ins.type = BTRFS_EXTENT_ITEM_KEY; 2216 2217 ref = btrfs_delayed_node_to_data_ref(node); 2218 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2219 2220 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2221 parent = ref->parent; 2222 ref_root = ref->root; 2223 2224 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2225 if (extent_op) 2226 flags |= extent_op->flags_to_set; 2227 ret = alloc_reserved_file_extent(trans, fs_info, 2228 parent, ref_root, flags, 2229 ref->objectid, ref->offset, 2230 &ins, node->ref_mod); 2231 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2232 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2233 ref_root, ref->objectid, 2234 ref->offset, node->ref_mod, 2235 extent_op); 2236 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2237 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2238 ref_root, ref->objectid, 2239 ref->offset, node->ref_mod, 2240 extent_op); 2241 } else { 2242 BUG(); 2243 } 2244 return ret; 2245 } 2246 2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2248 struct extent_buffer *leaf, 2249 struct btrfs_extent_item *ei) 2250 { 2251 u64 flags = btrfs_extent_flags(leaf, ei); 2252 if (extent_op->update_flags) { 2253 flags |= extent_op->flags_to_set; 2254 btrfs_set_extent_flags(leaf, ei, flags); 2255 } 2256 2257 if (extent_op->update_key) { 2258 struct btrfs_tree_block_info *bi; 2259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2260 bi = (struct btrfs_tree_block_info *)(ei + 1); 2261 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2262 } 2263 } 2264 2265 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2266 struct btrfs_fs_info *fs_info, 2267 struct btrfs_delayed_ref_node *node, 2268 struct btrfs_delayed_extent_op *extent_op) 2269 { 2270 struct btrfs_key key; 2271 struct btrfs_path *path; 2272 struct btrfs_extent_item *ei; 2273 struct extent_buffer *leaf; 2274 u32 item_size; 2275 int ret; 2276 int err = 0; 2277 int metadata = !extent_op->is_data; 2278 2279 if (trans->aborted) 2280 return 0; 2281 2282 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2283 metadata = 0; 2284 2285 path = btrfs_alloc_path(); 2286 if (!path) 2287 return -ENOMEM; 2288 2289 key.objectid = node->bytenr; 2290 2291 if (metadata) { 2292 key.type = BTRFS_METADATA_ITEM_KEY; 2293 key.offset = extent_op->level; 2294 } else { 2295 key.type = BTRFS_EXTENT_ITEM_KEY; 2296 key.offset = node->num_bytes; 2297 } 2298 2299 again: 2300 path->reada = READA_FORWARD; 2301 path->leave_spinning = 1; 2302 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2303 if (ret < 0) { 2304 err = ret; 2305 goto out; 2306 } 2307 if (ret > 0) { 2308 if (metadata) { 2309 if (path->slots[0] > 0) { 2310 path->slots[0]--; 2311 btrfs_item_key_to_cpu(path->nodes[0], &key, 2312 path->slots[0]); 2313 if (key.objectid == node->bytenr && 2314 key.type == BTRFS_EXTENT_ITEM_KEY && 2315 key.offset == node->num_bytes) 2316 ret = 0; 2317 } 2318 if (ret > 0) { 2319 btrfs_release_path(path); 2320 metadata = 0; 2321 2322 key.objectid = node->bytenr; 2323 key.offset = node->num_bytes; 2324 key.type = BTRFS_EXTENT_ITEM_KEY; 2325 goto again; 2326 } 2327 } else { 2328 err = -EIO; 2329 goto out; 2330 } 2331 } 2332 2333 leaf = path->nodes[0]; 2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2336 if (item_size < sizeof(*ei)) { 2337 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2338 if (ret < 0) { 2339 err = ret; 2340 goto out; 2341 } 2342 leaf = path->nodes[0]; 2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2344 } 2345 #endif 2346 BUG_ON(item_size < sizeof(*ei)); 2347 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2348 __run_delayed_extent_op(extent_op, leaf, ei); 2349 2350 btrfs_mark_buffer_dirty(leaf); 2351 out: 2352 btrfs_free_path(path); 2353 return err; 2354 } 2355 2356 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2357 struct btrfs_fs_info *fs_info, 2358 struct btrfs_delayed_ref_node *node, 2359 struct btrfs_delayed_extent_op *extent_op, 2360 int insert_reserved) 2361 { 2362 int ret = 0; 2363 struct btrfs_delayed_tree_ref *ref; 2364 struct btrfs_key ins; 2365 u64 parent = 0; 2366 u64 ref_root = 0; 2367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2368 2369 ref = btrfs_delayed_node_to_tree_ref(node); 2370 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2371 2372 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2373 parent = ref->parent; 2374 ref_root = ref->root; 2375 2376 ins.objectid = node->bytenr; 2377 if (skinny_metadata) { 2378 ins.offset = ref->level; 2379 ins.type = BTRFS_METADATA_ITEM_KEY; 2380 } else { 2381 ins.offset = node->num_bytes; 2382 ins.type = BTRFS_EXTENT_ITEM_KEY; 2383 } 2384 2385 if (node->ref_mod != 1) { 2386 btrfs_err(fs_info, 2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2388 node->bytenr, node->ref_mod, node->action, ref_root, 2389 parent); 2390 return -EIO; 2391 } 2392 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2393 BUG_ON(!extent_op || !extent_op->update_flags); 2394 ret = alloc_reserved_tree_block(trans, fs_info, 2395 parent, ref_root, 2396 extent_op->flags_to_set, 2397 &extent_op->key, 2398 ref->level, &ins); 2399 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2400 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2401 parent, ref_root, 2402 ref->level, 0, 1, 2403 extent_op); 2404 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2405 ret = __btrfs_free_extent(trans, fs_info, node, 2406 parent, ref_root, 2407 ref->level, 0, 1, extent_op); 2408 } else { 2409 BUG(); 2410 } 2411 return ret; 2412 } 2413 2414 /* helper function to actually process a single delayed ref entry */ 2415 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2416 struct btrfs_fs_info *fs_info, 2417 struct btrfs_delayed_ref_node *node, 2418 struct btrfs_delayed_extent_op *extent_op, 2419 int insert_reserved) 2420 { 2421 int ret = 0; 2422 2423 if (trans->aborted) { 2424 if (insert_reserved) 2425 btrfs_pin_extent(fs_info, node->bytenr, 2426 node->num_bytes, 1); 2427 return 0; 2428 } 2429 2430 if (btrfs_delayed_ref_is_head(node)) { 2431 struct btrfs_delayed_ref_head *head; 2432 /* 2433 * we've hit the end of the chain and we were supposed 2434 * to insert this extent into the tree. But, it got 2435 * deleted before we ever needed to insert it, so all 2436 * we have to do is clean up the accounting 2437 */ 2438 BUG_ON(extent_op); 2439 head = btrfs_delayed_node_to_head(node); 2440 trace_run_delayed_ref_head(fs_info, node, head, node->action); 2441 2442 if (head->total_ref_mod < 0) { 2443 struct btrfs_block_group_cache *cache; 2444 2445 cache = btrfs_lookup_block_group(fs_info, node->bytenr); 2446 ASSERT(cache); 2447 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2448 -node->num_bytes); 2449 btrfs_put_block_group(cache); 2450 } 2451 2452 if (insert_reserved) { 2453 btrfs_pin_extent(fs_info, node->bytenr, 2454 node->num_bytes, 1); 2455 if (head->is_data) { 2456 ret = btrfs_del_csums(trans, fs_info, 2457 node->bytenr, 2458 node->num_bytes); 2459 } 2460 } 2461 2462 /* Also free its reserved qgroup space */ 2463 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2464 head->qgroup_reserved); 2465 return ret; 2466 } 2467 2468 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2469 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2470 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2471 insert_reserved); 2472 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2473 node->type == BTRFS_SHARED_DATA_REF_KEY) 2474 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2475 insert_reserved); 2476 else 2477 BUG(); 2478 return ret; 2479 } 2480 2481 static inline struct btrfs_delayed_ref_node * 2482 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2483 { 2484 struct btrfs_delayed_ref_node *ref; 2485 2486 if (list_empty(&head->ref_list)) 2487 return NULL; 2488 2489 /* 2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2491 * This is to prevent a ref count from going down to zero, which deletes 2492 * the extent item from the extent tree, when there still are references 2493 * to add, which would fail because they would not find the extent item. 2494 */ 2495 if (!list_empty(&head->ref_add_list)) 2496 return list_first_entry(&head->ref_add_list, 2497 struct btrfs_delayed_ref_node, add_list); 2498 2499 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, 2500 list); 2501 ASSERT(list_empty(&ref->add_list)); 2502 return ref; 2503 } 2504 2505 /* 2506 * Returns 0 on success or if called with an already aborted transaction. 2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2508 */ 2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2510 struct btrfs_fs_info *fs_info, 2511 unsigned long nr) 2512 { 2513 struct btrfs_delayed_ref_root *delayed_refs; 2514 struct btrfs_delayed_ref_node *ref; 2515 struct btrfs_delayed_ref_head *locked_ref = NULL; 2516 struct btrfs_delayed_extent_op *extent_op; 2517 ktime_t start = ktime_get(); 2518 int ret; 2519 unsigned long count = 0; 2520 unsigned long actual_count = 0; 2521 int must_insert_reserved = 0; 2522 2523 delayed_refs = &trans->transaction->delayed_refs; 2524 while (1) { 2525 if (!locked_ref) { 2526 if (count >= nr) 2527 break; 2528 2529 spin_lock(&delayed_refs->lock); 2530 locked_ref = btrfs_select_ref_head(trans); 2531 if (!locked_ref) { 2532 spin_unlock(&delayed_refs->lock); 2533 break; 2534 } 2535 2536 /* grab the lock that says we are going to process 2537 * all the refs for this head */ 2538 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2539 spin_unlock(&delayed_refs->lock); 2540 /* 2541 * we may have dropped the spin lock to get the head 2542 * mutex lock, and that might have given someone else 2543 * time to free the head. If that's true, it has been 2544 * removed from our list and we can move on. 2545 */ 2546 if (ret == -EAGAIN) { 2547 locked_ref = NULL; 2548 count++; 2549 continue; 2550 } 2551 } 2552 2553 /* 2554 * We need to try and merge add/drops of the same ref since we 2555 * can run into issues with relocate dropping the implicit ref 2556 * and then it being added back again before the drop can 2557 * finish. If we merged anything we need to re-loop so we can 2558 * get a good ref. 2559 * Or we can get node references of the same type that weren't 2560 * merged when created due to bumps in the tree mod seq, and 2561 * we need to merge them to prevent adding an inline extent 2562 * backref before dropping it (triggering a BUG_ON at 2563 * insert_inline_extent_backref()). 2564 */ 2565 spin_lock(&locked_ref->lock); 2566 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2567 locked_ref); 2568 2569 /* 2570 * locked_ref is the head node, so we have to go one 2571 * node back for any delayed ref updates 2572 */ 2573 ref = select_delayed_ref(locked_ref); 2574 2575 if (ref && ref->seq && 2576 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2577 spin_unlock(&locked_ref->lock); 2578 spin_lock(&delayed_refs->lock); 2579 locked_ref->processing = 0; 2580 delayed_refs->num_heads_ready++; 2581 spin_unlock(&delayed_refs->lock); 2582 btrfs_delayed_ref_unlock(locked_ref); 2583 locked_ref = NULL; 2584 cond_resched(); 2585 count++; 2586 continue; 2587 } 2588 2589 /* 2590 * record the must insert reserved flag before we 2591 * drop the spin lock. 2592 */ 2593 must_insert_reserved = locked_ref->must_insert_reserved; 2594 locked_ref->must_insert_reserved = 0; 2595 2596 extent_op = locked_ref->extent_op; 2597 locked_ref->extent_op = NULL; 2598 2599 if (!ref) { 2600 2601 2602 /* All delayed refs have been processed, Go ahead 2603 * and send the head node to run_one_delayed_ref, 2604 * so that any accounting fixes can happen 2605 */ 2606 ref = &locked_ref->node; 2607 2608 if (extent_op && must_insert_reserved) { 2609 btrfs_free_delayed_extent_op(extent_op); 2610 extent_op = NULL; 2611 } 2612 2613 if (extent_op) { 2614 spin_unlock(&locked_ref->lock); 2615 ret = run_delayed_extent_op(trans, fs_info, 2616 ref, extent_op); 2617 btrfs_free_delayed_extent_op(extent_op); 2618 2619 if (ret) { 2620 /* 2621 * Need to reset must_insert_reserved if 2622 * there was an error so the abort stuff 2623 * can cleanup the reserved space 2624 * properly. 2625 */ 2626 if (must_insert_reserved) 2627 locked_ref->must_insert_reserved = 1; 2628 spin_lock(&delayed_refs->lock); 2629 locked_ref->processing = 0; 2630 delayed_refs->num_heads_ready++; 2631 spin_unlock(&delayed_refs->lock); 2632 btrfs_debug(fs_info, 2633 "run_delayed_extent_op returned %d", 2634 ret); 2635 btrfs_delayed_ref_unlock(locked_ref); 2636 return ret; 2637 } 2638 continue; 2639 } 2640 2641 /* 2642 * Need to drop our head ref lock and re-acquire the 2643 * delayed ref lock and then re-check to make sure 2644 * nobody got added. 2645 */ 2646 spin_unlock(&locked_ref->lock); 2647 spin_lock(&delayed_refs->lock); 2648 spin_lock(&locked_ref->lock); 2649 if (!list_empty(&locked_ref->ref_list) || 2650 locked_ref->extent_op) { 2651 spin_unlock(&locked_ref->lock); 2652 spin_unlock(&delayed_refs->lock); 2653 continue; 2654 } 2655 ref->in_tree = 0; 2656 delayed_refs->num_heads--; 2657 rb_erase(&locked_ref->href_node, 2658 &delayed_refs->href_root); 2659 spin_unlock(&delayed_refs->lock); 2660 } else { 2661 actual_count++; 2662 ref->in_tree = 0; 2663 list_del(&ref->list); 2664 if (!list_empty(&ref->add_list)) 2665 list_del(&ref->add_list); 2666 } 2667 atomic_dec(&delayed_refs->num_entries); 2668 2669 if (!btrfs_delayed_ref_is_head(ref)) { 2670 /* 2671 * when we play the delayed ref, also correct the 2672 * ref_mod on head 2673 */ 2674 switch (ref->action) { 2675 case BTRFS_ADD_DELAYED_REF: 2676 case BTRFS_ADD_DELAYED_EXTENT: 2677 locked_ref->node.ref_mod -= ref->ref_mod; 2678 break; 2679 case BTRFS_DROP_DELAYED_REF: 2680 locked_ref->node.ref_mod += ref->ref_mod; 2681 break; 2682 default: 2683 WARN_ON(1); 2684 } 2685 } 2686 spin_unlock(&locked_ref->lock); 2687 2688 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2689 must_insert_reserved); 2690 2691 btrfs_free_delayed_extent_op(extent_op); 2692 if (ret) { 2693 spin_lock(&delayed_refs->lock); 2694 locked_ref->processing = 0; 2695 delayed_refs->num_heads_ready++; 2696 spin_unlock(&delayed_refs->lock); 2697 btrfs_delayed_ref_unlock(locked_ref); 2698 btrfs_put_delayed_ref(ref); 2699 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2700 ret); 2701 return ret; 2702 } 2703 2704 /* 2705 * If this node is a head, that means all the refs in this head 2706 * have been dealt with, and we will pick the next head to deal 2707 * with, so we must unlock the head and drop it from the cluster 2708 * list before we release it. 2709 */ 2710 if (btrfs_delayed_ref_is_head(ref)) { 2711 if (locked_ref->is_data && 2712 locked_ref->total_ref_mod < 0) { 2713 spin_lock(&delayed_refs->lock); 2714 delayed_refs->pending_csums -= ref->num_bytes; 2715 spin_unlock(&delayed_refs->lock); 2716 } 2717 btrfs_delayed_ref_unlock(locked_ref); 2718 locked_ref = NULL; 2719 } 2720 btrfs_put_delayed_ref(ref); 2721 count++; 2722 cond_resched(); 2723 } 2724 2725 /* 2726 * We don't want to include ref heads since we can have empty ref heads 2727 * and those will drastically skew our runtime down since we just do 2728 * accounting, no actual extent tree updates. 2729 */ 2730 if (actual_count > 0) { 2731 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2732 u64 avg; 2733 2734 /* 2735 * We weigh the current average higher than our current runtime 2736 * to avoid large swings in the average. 2737 */ 2738 spin_lock(&delayed_refs->lock); 2739 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2740 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2741 spin_unlock(&delayed_refs->lock); 2742 } 2743 return 0; 2744 } 2745 2746 #ifdef SCRAMBLE_DELAYED_REFS 2747 /* 2748 * Normally delayed refs get processed in ascending bytenr order. This 2749 * correlates in most cases to the order added. To expose dependencies on this 2750 * order, we start to process the tree in the middle instead of the beginning 2751 */ 2752 static u64 find_middle(struct rb_root *root) 2753 { 2754 struct rb_node *n = root->rb_node; 2755 struct btrfs_delayed_ref_node *entry; 2756 int alt = 1; 2757 u64 middle; 2758 u64 first = 0, last = 0; 2759 2760 n = rb_first(root); 2761 if (n) { 2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2763 first = entry->bytenr; 2764 } 2765 n = rb_last(root); 2766 if (n) { 2767 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2768 last = entry->bytenr; 2769 } 2770 n = root->rb_node; 2771 2772 while (n) { 2773 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2774 WARN_ON(!entry->in_tree); 2775 2776 middle = entry->bytenr; 2777 2778 if (alt) 2779 n = n->rb_left; 2780 else 2781 n = n->rb_right; 2782 2783 alt = 1 - alt; 2784 } 2785 return middle; 2786 } 2787 #endif 2788 2789 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2790 { 2791 u64 num_bytes; 2792 2793 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2794 sizeof(struct btrfs_extent_inline_ref)); 2795 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2796 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2797 2798 /* 2799 * We don't ever fill up leaves all the way so multiply by 2 just to be 2800 * closer to what we're really going to want to use. 2801 */ 2802 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2803 } 2804 2805 /* 2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2807 * would require to store the csums for that many bytes. 2808 */ 2809 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2810 { 2811 u64 csum_size; 2812 u64 num_csums_per_leaf; 2813 u64 num_csums; 2814 2815 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2816 num_csums_per_leaf = div64_u64(csum_size, 2817 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2818 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2819 num_csums += num_csums_per_leaf - 1; 2820 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2821 return num_csums; 2822 } 2823 2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2825 struct btrfs_fs_info *fs_info) 2826 { 2827 struct btrfs_block_rsv *global_rsv; 2828 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2829 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2830 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2831 u64 num_bytes, num_dirty_bgs_bytes; 2832 int ret = 0; 2833 2834 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2835 num_heads = heads_to_leaves(fs_info, num_heads); 2836 if (num_heads > 1) 2837 num_bytes += (num_heads - 1) * fs_info->nodesize; 2838 num_bytes <<= 1; 2839 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2840 fs_info->nodesize; 2841 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2842 num_dirty_bgs); 2843 global_rsv = &fs_info->global_block_rsv; 2844 2845 /* 2846 * If we can't allocate any more chunks lets make sure we have _lots_ of 2847 * wiggle room since running delayed refs can create more delayed refs. 2848 */ 2849 if (global_rsv->space_info->full) { 2850 num_dirty_bgs_bytes <<= 1; 2851 num_bytes <<= 1; 2852 } 2853 2854 spin_lock(&global_rsv->lock); 2855 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2856 ret = 1; 2857 spin_unlock(&global_rsv->lock); 2858 return ret; 2859 } 2860 2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2862 struct btrfs_fs_info *fs_info) 2863 { 2864 u64 num_entries = 2865 atomic_read(&trans->transaction->delayed_refs.num_entries); 2866 u64 avg_runtime; 2867 u64 val; 2868 2869 smp_mb(); 2870 avg_runtime = fs_info->avg_delayed_ref_runtime; 2871 val = num_entries * avg_runtime; 2872 if (val >= NSEC_PER_SEC) 2873 return 1; 2874 if (val >= NSEC_PER_SEC / 2) 2875 return 2; 2876 2877 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2878 } 2879 2880 struct async_delayed_refs { 2881 struct btrfs_root *root; 2882 u64 transid; 2883 int count; 2884 int error; 2885 int sync; 2886 struct completion wait; 2887 struct btrfs_work work; 2888 }; 2889 2890 static inline struct async_delayed_refs * 2891 to_async_delayed_refs(struct btrfs_work *work) 2892 { 2893 return container_of(work, struct async_delayed_refs, work); 2894 } 2895 2896 static void delayed_ref_async_start(struct btrfs_work *work) 2897 { 2898 struct async_delayed_refs *async = to_async_delayed_refs(work); 2899 struct btrfs_trans_handle *trans; 2900 struct btrfs_fs_info *fs_info = async->root->fs_info; 2901 int ret; 2902 2903 /* if the commit is already started, we don't need to wait here */ 2904 if (btrfs_transaction_blocked(fs_info)) 2905 goto done; 2906 2907 trans = btrfs_join_transaction(async->root); 2908 if (IS_ERR(trans)) { 2909 async->error = PTR_ERR(trans); 2910 goto done; 2911 } 2912 2913 /* 2914 * trans->sync means that when we call end_transaction, we won't 2915 * wait on delayed refs 2916 */ 2917 trans->sync = true; 2918 2919 /* Don't bother flushing if we got into a different transaction */ 2920 if (trans->transid > async->transid) 2921 goto end; 2922 2923 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 2924 if (ret) 2925 async->error = ret; 2926 end: 2927 ret = btrfs_end_transaction(trans); 2928 if (ret && !async->error) 2929 async->error = ret; 2930 done: 2931 if (async->sync) 2932 complete(&async->wait); 2933 else 2934 kfree(async); 2935 } 2936 2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 2938 unsigned long count, u64 transid, int wait) 2939 { 2940 struct async_delayed_refs *async; 2941 int ret; 2942 2943 async = kmalloc(sizeof(*async), GFP_NOFS); 2944 if (!async) 2945 return -ENOMEM; 2946 2947 async->root = fs_info->tree_root; 2948 async->count = count; 2949 async->error = 0; 2950 async->transid = transid; 2951 if (wait) 2952 async->sync = 1; 2953 else 2954 async->sync = 0; 2955 init_completion(&async->wait); 2956 2957 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2958 delayed_ref_async_start, NULL, NULL); 2959 2960 btrfs_queue_work(fs_info->extent_workers, &async->work); 2961 2962 if (wait) { 2963 wait_for_completion(&async->wait); 2964 ret = async->error; 2965 kfree(async); 2966 return ret; 2967 } 2968 return 0; 2969 } 2970 2971 /* 2972 * this starts processing the delayed reference count updates and 2973 * extent insertions we have queued up so far. count can be 2974 * 0, which means to process everything in the tree at the start 2975 * of the run (but not newly added entries), or it can be some target 2976 * number you'd like to process. 2977 * 2978 * Returns 0 on success or if called with an aborted transaction 2979 * Returns <0 on error and aborts the transaction 2980 */ 2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2982 struct btrfs_fs_info *fs_info, unsigned long count) 2983 { 2984 struct rb_node *node; 2985 struct btrfs_delayed_ref_root *delayed_refs; 2986 struct btrfs_delayed_ref_head *head; 2987 int ret; 2988 int run_all = count == (unsigned long)-1; 2989 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2990 2991 /* We'll clean this up in btrfs_cleanup_transaction */ 2992 if (trans->aborted) 2993 return 0; 2994 2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2996 return 0; 2997 2998 delayed_refs = &trans->transaction->delayed_refs; 2999 if (count == 0) 3000 count = atomic_read(&delayed_refs->num_entries) * 2; 3001 3002 again: 3003 #ifdef SCRAMBLE_DELAYED_REFS 3004 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3005 #endif 3006 trans->can_flush_pending_bgs = false; 3007 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 3008 if (ret < 0) { 3009 btrfs_abort_transaction(trans, ret); 3010 return ret; 3011 } 3012 3013 if (run_all) { 3014 if (!list_empty(&trans->new_bgs)) 3015 btrfs_create_pending_block_groups(trans, fs_info); 3016 3017 spin_lock(&delayed_refs->lock); 3018 node = rb_first(&delayed_refs->href_root); 3019 if (!node) { 3020 spin_unlock(&delayed_refs->lock); 3021 goto out; 3022 } 3023 3024 while (node) { 3025 head = rb_entry(node, struct btrfs_delayed_ref_head, 3026 href_node); 3027 if (btrfs_delayed_ref_is_head(&head->node)) { 3028 struct btrfs_delayed_ref_node *ref; 3029 3030 ref = &head->node; 3031 refcount_inc(&ref->refs); 3032 3033 spin_unlock(&delayed_refs->lock); 3034 /* 3035 * Mutex was contended, block until it's 3036 * released and try again 3037 */ 3038 mutex_lock(&head->mutex); 3039 mutex_unlock(&head->mutex); 3040 3041 btrfs_put_delayed_ref(ref); 3042 cond_resched(); 3043 goto again; 3044 } else { 3045 WARN_ON(1); 3046 } 3047 node = rb_next(node); 3048 } 3049 spin_unlock(&delayed_refs->lock); 3050 cond_resched(); 3051 goto again; 3052 } 3053 out: 3054 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3055 return 0; 3056 } 3057 3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3059 struct btrfs_fs_info *fs_info, 3060 u64 bytenr, u64 num_bytes, u64 flags, 3061 int level, int is_data) 3062 { 3063 struct btrfs_delayed_extent_op *extent_op; 3064 int ret; 3065 3066 extent_op = btrfs_alloc_delayed_extent_op(); 3067 if (!extent_op) 3068 return -ENOMEM; 3069 3070 extent_op->flags_to_set = flags; 3071 extent_op->update_flags = true; 3072 extent_op->update_key = false; 3073 extent_op->is_data = is_data ? true : false; 3074 extent_op->level = level; 3075 3076 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3077 num_bytes, extent_op); 3078 if (ret) 3079 btrfs_free_delayed_extent_op(extent_op); 3080 return ret; 3081 } 3082 3083 static noinline int check_delayed_ref(struct btrfs_root *root, 3084 struct btrfs_path *path, 3085 u64 objectid, u64 offset, u64 bytenr) 3086 { 3087 struct btrfs_delayed_ref_head *head; 3088 struct btrfs_delayed_ref_node *ref; 3089 struct btrfs_delayed_data_ref *data_ref; 3090 struct btrfs_delayed_ref_root *delayed_refs; 3091 struct btrfs_transaction *cur_trans; 3092 int ret = 0; 3093 3094 cur_trans = root->fs_info->running_transaction; 3095 if (!cur_trans) 3096 return 0; 3097 3098 delayed_refs = &cur_trans->delayed_refs; 3099 spin_lock(&delayed_refs->lock); 3100 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3101 if (!head) { 3102 spin_unlock(&delayed_refs->lock); 3103 return 0; 3104 } 3105 3106 if (!mutex_trylock(&head->mutex)) { 3107 refcount_inc(&head->node.refs); 3108 spin_unlock(&delayed_refs->lock); 3109 3110 btrfs_release_path(path); 3111 3112 /* 3113 * Mutex was contended, block until it's released and let 3114 * caller try again 3115 */ 3116 mutex_lock(&head->mutex); 3117 mutex_unlock(&head->mutex); 3118 btrfs_put_delayed_ref(&head->node); 3119 return -EAGAIN; 3120 } 3121 spin_unlock(&delayed_refs->lock); 3122 3123 spin_lock(&head->lock); 3124 list_for_each_entry(ref, &head->ref_list, list) { 3125 /* If it's a shared ref we know a cross reference exists */ 3126 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3127 ret = 1; 3128 break; 3129 } 3130 3131 data_ref = btrfs_delayed_node_to_data_ref(ref); 3132 3133 /* 3134 * If our ref doesn't match the one we're currently looking at 3135 * then we have a cross reference. 3136 */ 3137 if (data_ref->root != root->root_key.objectid || 3138 data_ref->objectid != objectid || 3139 data_ref->offset != offset) { 3140 ret = 1; 3141 break; 3142 } 3143 } 3144 spin_unlock(&head->lock); 3145 mutex_unlock(&head->mutex); 3146 return ret; 3147 } 3148 3149 static noinline int check_committed_ref(struct btrfs_root *root, 3150 struct btrfs_path *path, 3151 u64 objectid, u64 offset, u64 bytenr) 3152 { 3153 struct btrfs_fs_info *fs_info = root->fs_info; 3154 struct btrfs_root *extent_root = fs_info->extent_root; 3155 struct extent_buffer *leaf; 3156 struct btrfs_extent_data_ref *ref; 3157 struct btrfs_extent_inline_ref *iref; 3158 struct btrfs_extent_item *ei; 3159 struct btrfs_key key; 3160 u32 item_size; 3161 int ret; 3162 3163 key.objectid = bytenr; 3164 key.offset = (u64)-1; 3165 key.type = BTRFS_EXTENT_ITEM_KEY; 3166 3167 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3168 if (ret < 0) 3169 goto out; 3170 BUG_ON(ret == 0); /* Corruption */ 3171 3172 ret = -ENOENT; 3173 if (path->slots[0] == 0) 3174 goto out; 3175 3176 path->slots[0]--; 3177 leaf = path->nodes[0]; 3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3179 3180 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3181 goto out; 3182 3183 ret = 1; 3184 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3186 if (item_size < sizeof(*ei)) { 3187 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3188 goto out; 3189 } 3190 #endif 3191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3192 3193 if (item_size != sizeof(*ei) + 3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3195 goto out; 3196 3197 if (btrfs_extent_generation(leaf, ei) <= 3198 btrfs_root_last_snapshot(&root->root_item)) 3199 goto out; 3200 3201 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3202 if (btrfs_extent_inline_ref_type(leaf, iref) != 3203 BTRFS_EXTENT_DATA_REF_KEY) 3204 goto out; 3205 3206 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3207 if (btrfs_extent_refs(leaf, ei) != 3208 btrfs_extent_data_ref_count(leaf, ref) || 3209 btrfs_extent_data_ref_root(leaf, ref) != 3210 root->root_key.objectid || 3211 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3212 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3213 goto out; 3214 3215 ret = 0; 3216 out: 3217 return ret; 3218 } 3219 3220 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3221 u64 bytenr) 3222 { 3223 struct btrfs_path *path; 3224 int ret; 3225 int ret2; 3226 3227 path = btrfs_alloc_path(); 3228 if (!path) 3229 return -ENOENT; 3230 3231 do { 3232 ret = check_committed_ref(root, path, objectid, 3233 offset, bytenr); 3234 if (ret && ret != -ENOENT) 3235 goto out; 3236 3237 ret2 = check_delayed_ref(root, path, objectid, 3238 offset, bytenr); 3239 } while (ret2 == -EAGAIN); 3240 3241 if (ret2 && ret2 != -ENOENT) { 3242 ret = ret2; 3243 goto out; 3244 } 3245 3246 if (ret != -ENOENT || ret2 != -ENOENT) 3247 ret = 0; 3248 out: 3249 btrfs_free_path(path); 3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3251 WARN_ON(ret > 0); 3252 return ret; 3253 } 3254 3255 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3256 struct btrfs_root *root, 3257 struct extent_buffer *buf, 3258 int full_backref, int inc) 3259 { 3260 struct btrfs_fs_info *fs_info = root->fs_info; 3261 u64 bytenr; 3262 u64 num_bytes; 3263 u64 parent; 3264 u64 ref_root; 3265 u32 nritems; 3266 struct btrfs_key key; 3267 struct btrfs_file_extent_item *fi; 3268 int i; 3269 int level; 3270 int ret = 0; 3271 int (*process_func)(struct btrfs_trans_handle *, 3272 struct btrfs_fs_info *, 3273 u64, u64, u64, u64, u64, u64); 3274 3275 3276 if (btrfs_is_testing(fs_info)) 3277 return 0; 3278 3279 ref_root = btrfs_header_owner(buf); 3280 nritems = btrfs_header_nritems(buf); 3281 level = btrfs_header_level(buf); 3282 3283 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3284 return 0; 3285 3286 if (inc) 3287 process_func = btrfs_inc_extent_ref; 3288 else 3289 process_func = btrfs_free_extent; 3290 3291 if (full_backref) 3292 parent = buf->start; 3293 else 3294 parent = 0; 3295 3296 for (i = 0; i < nritems; i++) { 3297 if (level == 0) { 3298 btrfs_item_key_to_cpu(buf, &key, i); 3299 if (key.type != BTRFS_EXTENT_DATA_KEY) 3300 continue; 3301 fi = btrfs_item_ptr(buf, i, 3302 struct btrfs_file_extent_item); 3303 if (btrfs_file_extent_type(buf, fi) == 3304 BTRFS_FILE_EXTENT_INLINE) 3305 continue; 3306 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3307 if (bytenr == 0) 3308 continue; 3309 3310 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3311 key.offset -= btrfs_file_extent_offset(buf, fi); 3312 ret = process_func(trans, fs_info, bytenr, num_bytes, 3313 parent, ref_root, key.objectid, 3314 key.offset); 3315 if (ret) 3316 goto fail; 3317 } else { 3318 bytenr = btrfs_node_blockptr(buf, i); 3319 num_bytes = fs_info->nodesize; 3320 ret = process_func(trans, fs_info, bytenr, num_bytes, 3321 parent, ref_root, level - 1, 0); 3322 if (ret) 3323 goto fail; 3324 } 3325 } 3326 return 0; 3327 fail: 3328 return ret; 3329 } 3330 3331 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3332 struct extent_buffer *buf, int full_backref) 3333 { 3334 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3335 } 3336 3337 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3338 struct extent_buffer *buf, int full_backref) 3339 { 3340 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3341 } 3342 3343 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3344 struct btrfs_fs_info *fs_info, 3345 struct btrfs_path *path, 3346 struct btrfs_block_group_cache *cache) 3347 { 3348 int ret; 3349 struct btrfs_root *extent_root = fs_info->extent_root; 3350 unsigned long bi; 3351 struct extent_buffer *leaf; 3352 3353 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3354 if (ret) { 3355 if (ret > 0) 3356 ret = -ENOENT; 3357 goto fail; 3358 } 3359 3360 leaf = path->nodes[0]; 3361 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3362 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3363 btrfs_mark_buffer_dirty(leaf); 3364 fail: 3365 btrfs_release_path(path); 3366 return ret; 3367 3368 } 3369 3370 static struct btrfs_block_group_cache * 3371 next_block_group(struct btrfs_fs_info *fs_info, 3372 struct btrfs_block_group_cache *cache) 3373 { 3374 struct rb_node *node; 3375 3376 spin_lock(&fs_info->block_group_cache_lock); 3377 3378 /* If our block group was removed, we need a full search. */ 3379 if (RB_EMPTY_NODE(&cache->cache_node)) { 3380 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3381 3382 spin_unlock(&fs_info->block_group_cache_lock); 3383 btrfs_put_block_group(cache); 3384 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3385 } 3386 node = rb_next(&cache->cache_node); 3387 btrfs_put_block_group(cache); 3388 if (node) { 3389 cache = rb_entry(node, struct btrfs_block_group_cache, 3390 cache_node); 3391 btrfs_get_block_group(cache); 3392 } else 3393 cache = NULL; 3394 spin_unlock(&fs_info->block_group_cache_lock); 3395 return cache; 3396 } 3397 3398 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3399 struct btrfs_trans_handle *trans, 3400 struct btrfs_path *path) 3401 { 3402 struct btrfs_fs_info *fs_info = block_group->fs_info; 3403 struct btrfs_root *root = fs_info->tree_root; 3404 struct inode *inode = NULL; 3405 struct extent_changeset *data_reserved = NULL; 3406 u64 alloc_hint = 0; 3407 int dcs = BTRFS_DC_ERROR; 3408 u64 num_pages = 0; 3409 int retries = 0; 3410 int ret = 0; 3411 3412 /* 3413 * If this block group is smaller than 100 megs don't bother caching the 3414 * block group. 3415 */ 3416 if (block_group->key.offset < (100 * SZ_1M)) { 3417 spin_lock(&block_group->lock); 3418 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3419 spin_unlock(&block_group->lock); 3420 return 0; 3421 } 3422 3423 if (trans->aborted) 3424 return 0; 3425 again: 3426 inode = lookup_free_space_inode(fs_info, block_group, path); 3427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3428 ret = PTR_ERR(inode); 3429 btrfs_release_path(path); 3430 goto out; 3431 } 3432 3433 if (IS_ERR(inode)) { 3434 BUG_ON(retries); 3435 retries++; 3436 3437 if (block_group->ro) 3438 goto out_free; 3439 3440 ret = create_free_space_inode(fs_info, trans, block_group, 3441 path); 3442 if (ret) 3443 goto out_free; 3444 goto again; 3445 } 3446 3447 /* We've already setup this transaction, go ahead and exit */ 3448 if (block_group->cache_generation == trans->transid && 3449 i_size_read(inode)) { 3450 dcs = BTRFS_DC_SETUP; 3451 goto out_put; 3452 } 3453 3454 /* 3455 * We want to set the generation to 0, that way if anything goes wrong 3456 * from here on out we know not to trust this cache when we load up next 3457 * time. 3458 */ 3459 BTRFS_I(inode)->generation = 0; 3460 ret = btrfs_update_inode(trans, root, inode); 3461 if (ret) { 3462 /* 3463 * So theoretically we could recover from this, simply set the 3464 * super cache generation to 0 so we know to invalidate the 3465 * cache, but then we'd have to keep track of the block groups 3466 * that fail this way so we know we _have_ to reset this cache 3467 * before the next commit or risk reading stale cache. So to 3468 * limit our exposure to horrible edge cases lets just abort the 3469 * transaction, this only happens in really bad situations 3470 * anyway. 3471 */ 3472 btrfs_abort_transaction(trans, ret); 3473 goto out_put; 3474 } 3475 WARN_ON(ret); 3476 3477 if (i_size_read(inode) > 0) { 3478 ret = btrfs_check_trunc_cache_free_space(fs_info, 3479 &fs_info->global_block_rsv); 3480 if (ret) 3481 goto out_put; 3482 3483 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3484 if (ret) 3485 goto out_put; 3486 } 3487 3488 spin_lock(&block_group->lock); 3489 if (block_group->cached != BTRFS_CACHE_FINISHED || 3490 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3491 /* 3492 * don't bother trying to write stuff out _if_ 3493 * a) we're not cached, 3494 * b) we're with nospace_cache mount option, 3495 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3496 */ 3497 dcs = BTRFS_DC_WRITTEN; 3498 spin_unlock(&block_group->lock); 3499 goto out_put; 3500 } 3501 spin_unlock(&block_group->lock); 3502 3503 /* 3504 * We hit an ENOSPC when setting up the cache in this transaction, just 3505 * skip doing the setup, we've already cleared the cache so we're safe. 3506 */ 3507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3508 ret = -ENOSPC; 3509 goto out_put; 3510 } 3511 3512 /* 3513 * Try to preallocate enough space based on how big the block group is. 3514 * Keep in mind this has to include any pinned space which could end up 3515 * taking up quite a bit since it's not folded into the other space 3516 * cache. 3517 */ 3518 num_pages = div_u64(block_group->key.offset, SZ_256M); 3519 if (!num_pages) 3520 num_pages = 1; 3521 3522 num_pages *= 16; 3523 num_pages *= PAGE_SIZE; 3524 3525 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3526 if (ret) 3527 goto out_put; 3528 3529 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3530 num_pages, num_pages, 3531 &alloc_hint); 3532 /* 3533 * Our cache requires contiguous chunks so that we don't modify a bunch 3534 * of metadata or split extents when writing the cache out, which means 3535 * we can enospc if we are heavily fragmented in addition to just normal 3536 * out of space conditions. So if we hit this just skip setting up any 3537 * other block groups for this transaction, maybe we'll unpin enough 3538 * space the next time around. 3539 */ 3540 if (!ret) 3541 dcs = BTRFS_DC_SETUP; 3542 else if (ret == -ENOSPC) 3543 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3544 3545 out_put: 3546 iput(inode); 3547 out_free: 3548 btrfs_release_path(path); 3549 out: 3550 spin_lock(&block_group->lock); 3551 if (!ret && dcs == BTRFS_DC_SETUP) 3552 block_group->cache_generation = trans->transid; 3553 block_group->disk_cache_state = dcs; 3554 spin_unlock(&block_group->lock); 3555 3556 extent_changeset_free(data_reserved); 3557 return ret; 3558 } 3559 3560 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3561 struct btrfs_fs_info *fs_info) 3562 { 3563 struct btrfs_block_group_cache *cache, *tmp; 3564 struct btrfs_transaction *cur_trans = trans->transaction; 3565 struct btrfs_path *path; 3566 3567 if (list_empty(&cur_trans->dirty_bgs) || 3568 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3569 return 0; 3570 3571 path = btrfs_alloc_path(); 3572 if (!path) 3573 return -ENOMEM; 3574 3575 /* Could add new block groups, use _safe just in case */ 3576 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3577 dirty_list) { 3578 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3579 cache_save_setup(cache, trans, path); 3580 } 3581 3582 btrfs_free_path(path); 3583 return 0; 3584 } 3585 3586 /* 3587 * transaction commit does final block group cache writeback during a 3588 * critical section where nothing is allowed to change the FS. This is 3589 * required in order for the cache to actually match the block group, 3590 * but can introduce a lot of latency into the commit. 3591 * 3592 * So, btrfs_start_dirty_block_groups is here to kick off block group 3593 * cache IO. There's a chance we'll have to redo some of it if the 3594 * block group changes again during the commit, but it greatly reduces 3595 * the commit latency by getting rid of the easy block groups while 3596 * we're still allowing others to join the commit. 3597 */ 3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3599 struct btrfs_fs_info *fs_info) 3600 { 3601 struct btrfs_block_group_cache *cache; 3602 struct btrfs_transaction *cur_trans = trans->transaction; 3603 int ret = 0; 3604 int should_put; 3605 struct btrfs_path *path = NULL; 3606 LIST_HEAD(dirty); 3607 struct list_head *io = &cur_trans->io_bgs; 3608 int num_started = 0; 3609 int loops = 0; 3610 3611 spin_lock(&cur_trans->dirty_bgs_lock); 3612 if (list_empty(&cur_trans->dirty_bgs)) { 3613 spin_unlock(&cur_trans->dirty_bgs_lock); 3614 return 0; 3615 } 3616 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3617 spin_unlock(&cur_trans->dirty_bgs_lock); 3618 3619 again: 3620 /* 3621 * make sure all the block groups on our dirty list actually 3622 * exist 3623 */ 3624 btrfs_create_pending_block_groups(trans, fs_info); 3625 3626 if (!path) { 3627 path = btrfs_alloc_path(); 3628 if (!path) 3629 return -ENOMEM; 3630 } 3631 3632 /* 3633 * cache_write_mutex is here only to save us from balance or automatic 3634 * removal of empty block groups deleting this block group while we are 3635 * writing out the cache 3636 */ 3637 mutex_lock(&trans->transaction->cache_write_mutex); 3638 while (!list_empty(&dirty)) { 3639 cache = list_first_entry(&dirty, 3640 struct btrfs_block_group_cache, 3641 dirty_list); 3642 /* 3643 * this can happen if something re-dirties a block 3644 * group that is already under IO. Just wait for it to 3645 * finish and then do it all again 3646 */ 3647 if (!list_empty(&cache->io_list)) { 3648 list_del_init(&cache->io_list); 3649 btrfs_wait_cache_io(trans, cache, path); 3650 btrfs_put_block_group(cache); 3651 } 3652 3653 3654 /* 3655 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3656 * if it should update the cache_state. Don't delete 3657 * until after we wait. 3658 * 3659 * Since we're not running in the commit critical section 3660 * we need the dirty_bgs_lock to protect from update_block_group 3661 */ 3662 spin_lock(&cur_trans->dirty_bgs_lock); 3663 list_del_init(&cache->dirty_list); 3664 spin_unlock(&cur_trans->dirty_bgs_lock); 3665 3666 should_put = 1; 3667 3668 cache_save_setup(cache, trans, path); 3669 3670 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3671 cache->io_ctl.inode = NULL; 3672 ret = btrfs_write_out_cache(fs_info, trans, 3673 cache, path); 3674 if (ret == 0 && cache->io_ctl.inode) { 3675 num_started++; 3676 should_put = 0; 3677 3678 /* 3679 * the cache_write_mutex is protecting 3680 * the io_list 3681 */ 3682 list_add_tail(&cache->io_list, io); 3683 } else { 3684 /* 3685 * if we failed to write the cache, the 3686 * generation will be bad and life goes on 3687 */ 3688 ret = 0; 3689 } 3690 } 3691 if (!ret) { 3692 ret = write_one_cache_group(trans, fs_info, 3693 path, cache); 3694 /* 3695 * Our block group might still be attached to the list 3696 * of new block groups in the transaction handle of some 3697 * other task (struct btrfs_trans_handle->new_bgs). This 3698 * means its block group item isn't yet in the extent 3699 * tree. If this happens ignore the error, as we will 3700 * try again later in the critical section of the 3701 * transaction commit. 3702 */ 3703 if (ret == -ENOENT) { 3704 ret = 0; 3705 spin_lock(&cur_trans->dirty_bgs_lock); 3706 if (list_empty(&cache->dirty_list)) { 3707 list_add_tail(&cache->dirty_list, 3708 &cur_trans->dirty_bgs); 3709 btrfs_get_block_group(cache); 3710 } 3711 spin_unlock(&cur_trans->dirty_bgs_lock); 3712 } else if (ret) { 3713 btrfs_abort_transaction(trans, ret); 3714 } 3715 } 3716 3717 /* if its not on the io list, we need to put the block group */ 3718 if (should_put) 3719 btrfs_put_block_group(cache); 3720 3721 if (ret) 3722 break; 3723 3724 /* 3725 * Avoid blocking other tasks for too long. It might even save 3726 * us from writing caches for block groups that are going to be 3727 * removed. 3728 */ 3729 mutex_unlock(&trans->transaction->cache_write_mutex); 3730 mutex_lock(&trans->transaction->cache_write_mutex); 3731 } 3732 mutex_unlock(&trans->transaction->cache_write_mutex); 3733 3734 /* 3735 * go through delayed refs for all the stuff we've just kicked off 3736 * and then loop back (just once) 3737 */ 3738 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3739 if (!ret && loops == 0) { 3740 loops++; 3741 spin_lock(&cur_trans->dirty_bgs_lock); 3742 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3743 /* 3744 * dirty_bgs_lock protects us from concurrent block group 3745 * deletes too (not just cache_write_mutex). 3746 */ 3747 if (!list_empty(&dirty)) { 3748 spin_unlock(&cur_trans->dirty_bgs_lock); 3749 goto again; 3750 } 3751 spin_unlock(&cur_trans->dirty_bgs_lock); 3752 } else if (ret < 0) { 3753 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3754 } 3755 3756 btrfs_free_path(path); 3757 return ret; 3758 } 3759 3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3761 struct btrfs_fs_info *fs_info) 3762 { 3763 struct btrfs_block_group_cache *cache; 3764 struct btrfs_transaction *cur_trans = trans->transaction; 3765 int ret = 0; 3766 int should_put; 3767 struct btrfs_path *path; 3768 struct list_head *io = &cur_trans->io_bgs; 3769 int num_started = 0; 3770 3771 path = btrfs_alloc_path(); 3772 if (!path) 3773 return -ENOMEM; 3774 3775 /* 3776 * Even though we are in the critical section of the transaction commit, 3777 * we can still have concurrent tasks adding elements to this 3778 * transaction's list of dirty block groups. These tasks correspond to 3779 * endio free space workers started when writeback finishes for a 3780 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3781 * allocate new block groups as a result of COWing nodes of the root 3782 * tree when updating the free space inode. The writeback for the space 3783 * caches is triggered by an earlier call to 3784 * btrfs_start_dirty_block_groups() and iterations of the following 3785 * loop. 3786 * Also we want to do the cache_save_setup first and then run the 3787 * delayed refs to make sure we have the best chance at doing this all 3788 * in one shot. 3789 */ 3790 spin_lock(&cur_trans->dirty_bgs_lock); 3791 while (!list_empty(&cur_trans->dirty_bgs)) { 3792 cache = list_first_entry(&cur_trans->dirty_bgs, 3793 struct btrfs_block_group_cache, 3794 dirty_list); 3795 3796 /* 3797 * this can happen if cache_save_setup re-dirties a block 3798 * group that is already under IO. Just wait for it to 3799 * finish and then do it all again 3800 */ 3801 if (!list_empty(&cache->io_list)) { 3802 spin_unlock(&cur_trans->dirty_bgs_lock); 3803 list_del_init(&cache->io_list); 3804 btrfs_wait_cache_io(trans, cache, path); 3805 btrfs_put_block_group(cache); 3806 spin_lock(&cur_trans->dirty_bgs_lock); 3807 } 3808 3809 /* 3810 * don't remove from the dirty list until after we've waited 3811 * on any pending IO 3812 */ 3813 list_del_init(&cache->dirty_list); 3814 spin_unlock(&cur_trans->dirty_bgs_lock); 3815 should_put = 1; 3816 3817 cache_save_setup(cache, trans, path); 3818 3819 if (!ret) 3820 ret = btrfs_run_delayed_refs(trans, fs_info, 3821 (unsigned long) -1); 3822 3823 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3824 cache->io_ctl.inode = NULL; 3825 ret = btrfs_write_out_cache(fs_info, trans, 3826 cache, path); 3827 if (ret == 0 && cache->io_ctl.inode) { 3828 num_started++; 3829 should_put = 0; 3830 list_add_tail(&cache->io_list, io); 3831 } else { 3832 /* 3833 * if we failed to write the cache, the 3834 * generation will be bad and life goes on 3835 */ 3836 ret = 0; 3837 } 3838 } 3839 if (!ret) { 3840 ret = write_one_cache_group(trans, fs_info, 3841 path, cache); 3842 /* 3843 * One of the free space endio workers might have 3844 * created a new block group while updating a free space 3845 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3846 * and hasn't released its transaction handle yet, in 3847 * which case the new block group is still attached to 3848 * its transaction handle and its creation has not 3849 * finished yet (no block group item in the extent tree 3850 * yet, etc). If this is the case, wait for all free 3851 * space endio workers to finish and retry. This is a 3852 * a very rare case so no need for a more efficient and 3853 * complex approach. 3854 */ 3855 if (ret == -ENOENT) { 3856 wait_event(cur_trans->writer_wait, 3857 atomic_read(&cur_trans->num_writers) == 1); 3858 ret = write_one_cache_group(trans, fs_info, 3859 path, cache); 3860 } 3861 if (ret) 3862 btrfs_abort_transaction(trans, ret); 3863 } 3864 3865 /* if its not on the io list, we need to put the block group */ 3866 if (should_put) 3867 btrfs_put_block_group(cache); 3868 spin_lock(&cur_trans->dirty_bgs_lock); 3869 } 3870 spin_unlock(&cur_trans->dirty_bgs_lock); 3871 3872 while (!list_empty(io)) { 3873 cache = list_first_entry(io, struct btrfs_block_group_cache, 3874 io_list); 3875 list_del_init(&cache->io_list); 3876 btrfs_wait_cache_io(trans, cache, path); 3877 btrfs_put_block_group(cache); 3878 } 3879 3880 btrfs_free_path(path); 3881 return ret; 3882 } 3883 3884 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3885 { 3886 struct btrfs_block_group_cache *block_group; 3887 int readonly = 0; 3888 3889 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3890 if (!block_group || block_group->ro) 3891 readonly = 1; 3892 if (block_group) 3893 btrfs_put_block_group(block_group); 3894 return readonly; 3895 } 3896 3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3898 { 3899 struct btrfs_block_group_cache *bg; 3900 bool ret = true; 3901 3902 bg = btrfs_lookup_block_group(fs_info, bytenr); 3903 if (!bg) 3904 return false; 3905 3906 spin_lock(&bg->lock); 3907 if (bg->ro) 3908 ret = false; 3909 else 3910 atomic_inc(&bg->nocow_writers); 3911 spin_unlock(&bg->lock); 3912 3913 /* no put on block group, done by btrfs_dec_nocow_writers */ 3914 if (!ret) 3915 btrfs_put_block_group(bg); 3916 3917 return ret; 3918 3919 } 3920 3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3922 { 3923 struct btrfs_block_group_cache *bg; 3924 3925 bg = btrfs_lookup_block_group(fs_info, bytenr); 3926 ASSERT(bg); 3927 if (atomic_dec_and_test(&bg->nocow_writers)) 3928 wake_up_atomic_t(&bg->nocow_writers); 3929 /* 3930 * Once for our lookup and once for the lookup done by a previous call 3931 * to btrfs_inc_nocow_writers() 3932 */ 3933 btrfs_put_block_group(bg); 3934 btrfs_put_block_group(bg); 3935 } 3936 3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3938 { 3939 schedule(); 3940 return 0; 3941 } 3942 3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3944 { 3945 wait_on_atomic_t(&bg->nocow_writers, 3946 btrfs_wait_nocow_writers_atomic_t, 3947 TASK_UNINTERRUPTIBLE); 3948 } 3949 3950 static const char *alloc_name(u64 flags) 3951 { 3952 switch (flags) { 3953 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3954 return "mixed"; 3955 case BTRFS_BLOCK_GROUP_METADATA: 3956 return "metadata"; 3957 case BTRFS_BLOCK_GROUP_DATA: 3958 return "data"; 3959 case BTRFS_BLOCK_GROUP_SYSTEM: 3960 return "system"; 3961 default: 3962 WARN_ON(1); 3963 return "invalid-combination"; 3964 }; 3965 } 3966 3967 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 3968 struct btrfs_space_info **new) 3969 { 3970 3971 struct btrfs_space_info *space_info; 3972 int i; 3973 int ret; 3974 3975 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 3976 if (!space_info) 3977 return -ENOMEM; 3978 3979 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 3980 GFP_KERNEL); 3981 if (ret) { 3982 kfree(space_info); 3983 return ret; 3984 } 3985 3986 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3987 INIT_LIST_HEAD(&space_info->block_groups[i]); 3988 init_rwsem(&space_info->groups_sem); 3989 spin_lock_init(&space_info->lock); 3990 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3991 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3992 init_waitqueue_head(&space_info->wait); 3993 INIT_LIST_HEAD(&space_info->ro_bgs); 3994 INIT_LIST_HEAD(&space_info->tickets); 3995 INIT_LIST_HEAD(&space_info->priority_tickets); 3996 3997 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 3998 info->space_info_kobj, "%s", 3999 alloc_name(space_info->flags)); 4000 if (ret) { 4001 percpu_counter_destroy(&space_info->total_bytes_pinned); 4002 kfree(space_info); 4003 return ret; 4004 } 4005 4006 *new = space_info; 4007 list_add_rcu(&space_info->list, &info->space_info); 4008 if (flags & BTRFS_BLOCK_GROUP_DATA) 4009 info->data_sinfo = space_info; 4010 4011 return ret; 4012 } 4013 4014 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4015 u64 total_bytes, u64 bytes_used, 4016 u64 bytes_readonly, 4017 struct btrfs_space_info **space_info) 4018 { 4019 struct btrfs_space_info *found; 4020 int factor; 4021 4022 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4023 BTRFS_BLOCK_GROUP_RAID10)) 4024 factor = 2; 4025 else 4026 factor = 1; 4027 4028 found = __find_space_info(info, flags); 4029 ASSERT(found); 4030 spin_lock(&found->lock); 4031 found->total_bytes += total_bytes; 4032 found->disk_total += total_bytes * factor; 4033 found->bytes_used += bytes_used; 4034 found->disk_used += bytes_used * factor; 4035 found->bytes_readonly += bytes_readonly; 4036 if (total_bytes > 0) 4037 found->full = 0; 4038 space_info_add_new_bytes(info, found, total_bytes - 4039 bytes_used - bytes_readonly); 4040 spin_unlock(&found->lock); 4041 *space_info = found; 4042 } 4043 4044 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4045 { 4046 u64 extra_flags = chunk_to_extended(flags) & 4047 BTRFS_EXTENDED_PROFILE_MASK; 4048 4049 write_seqlock(&fs_info->profiles_lock); 4050 if (flags & BTRFS_BLOCK_GROUP_DATA) 4051 fs_info->avail_data_alloc_bits |= extra_flags; 4052 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4053 fs_info->avail_metadata_alloc_bits |= extra_flags; 4054 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4055 fs_info->avail_system_alloc_bits |= extra_flags; 4056 write_sequnlock(&fs_info->profiles_lock); 4057 } 4058 4059 /* 4060 * returns target flags in extended format or 0 if restripe for this 4061 * chunk_type is not in progress 4062 * 4063 * should be called with either volume_mutex or balance_lock held 4064 */ 4065 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4066 { 4067 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4068 u64 target = 0; 4069 4070 if (!bctl) 4071 return 0; 4072 4073 if (flags & BTRFS_BLOCK_GROUP_DATA && 4074 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4075 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4076 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4077 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4078 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4079 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4080 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4081 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4082 } 4083 4084 return target; 4085 } 4086 4087 /* 4088 * @flags: available profiles in extended format (see ctree.h) 4089 * 4090 * Returns reduced profile in chunk format. If profile changing is in 4091 * progress (either running or paused) picks the target profile (if it's 4092 * already available), otherwise falls back to plain reducing. 4093 */ 4094 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4095 { 4096 u64 num_devices = fs_info->fs_devices->rw_devices; 4097 u64 target; 4098 u64 raid_type; 4099 u64 allowed = 0; 4100 4101 /* 4102 * see if restripe for this chunk_type is in progress, if so 4103 * try to reduce to the target profile 4104 */ 4105 spin_lock(&fs_info->balance_lock); 4106 target = get_restripe_target(fs_info, flags); 4107 if (target) { 4108 /* pick target profile only if it's already available */ 4109 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4110 spin_unlock(&fs_info->balance_lock); 4111 return extended_to_chunk(target); 4112 } 4113 } 4114 spin_unlock(&fs_info->balance_lock); 4115 4116 /* First, mask out the RAID levels which aren't possible */ 4117 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4118 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4119 allowed |= btrfs_raid_group[raid_type]; 4120 } 4121 allowed &= flags; 4122 4123 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4124 allowed = BTRFS_BLOCK_GROUP_RAID6; 4125 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4126 allowed = BTRFS_BLOCK_GROUP_RAID5; 4127 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4128 allowed = BTRFS_BLOCK_GROUP_RAID10; 4129 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4130 allowed = BTRFS_BLOCK_GROUP_RAID1; 4131 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4132 allowed = BTRFS_BLOCK_GROUP_RAID0; 4133 4134 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4135 4136 return extended_to_chunk(flags | allowed); 4137 } 4138 4139 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4140 { 4141 unsigned seq; 4142 u64 flags; 4143 4144 do { 4145 flags = orig_flags; 4146 seq = read_seqbegin(&fs_info->profiles_lock); 4147 4148 if (flags & BTRFS_BLOCK_GROUP_DATA) 4149 flags |= fs_info->avail_data_alloc_bits; 4150 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4151 flags |= fs_info->avail_system_alloc_bits; 4152 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4153 flags |= fs_info->avail_metadata_alloc_bits; 4154 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4155 4156 return btrfs_reduce_alloc_profile(fs_info, flags); 4157 } 4158 4159 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4160 { 4161 struct btrfs_fs_info *fs_info = root->fs_info; 4162 u64 flags; 4163 u64 ret; 4164 4165 if (data) 4166 flags = BTRFS_BLOCK_GROUP_DATA; 4167 else if (root == fs_info->chunk_root) 4168 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4169 else 4170 flags = BTRFS_BLOCK_GROUP_METADATA; 4171 4172 ret = get_alloc_profile(fs_info, flags); 4173 return ret; 4174 } 4175 4176 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4177 { 4178 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4179 } 4180 4181 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4182 { 4183 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4184 } 4185 4186 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4187 { 4188 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4189 } 4190 4191 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4192 bool may_use_included) 4193 { 4194 ASSERT(s_info); 4195 return s_info->bytes_used + s_info->bytes_reserved + 4196 s_info->bytes_pinned + s_info->bytes_readonly + 4197 (may_use_included ? s_info->bytes_may_use : 0); 4198 } 4199 4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4201 { 4202 struct btrfs_space_info *data_sinfo; 4203 struct btrfs_root *root = inode->root; 4204 struct btrfs_fs_info *fs_info = root->fs_info; 4205 u64 used; 4206 int ret = 0; 4207 int need_commit = 2; 4208 int have_pinned_space; 4209 4210 /* make sure bytes are sectorsize aligned */ 4211 bytes = ALIGN(bytes, fs_info->sectorsize); 4212 4213 if (btrfs_is_free_space_inode(inode)) { 4214 need_commit = 0; 4215 ASSERT(current->journal_info); 4216 } 4217 4218 data_sinfo = fs_info->data_sinfo; 4219 if (!data_sinfo) 4220 goto alloc; 4221 4222 again: 4223 /* make sure we have enough space to handle the data first */ 4224 spin_lock(&data_sinfo->lock); 4225 used = btrfs_space_info_used(data_sinfo, true); 4226 4227 if (used + bytes > data_sinfo->total_bytes) { 4228 struct btrfs_trans_handle *trans; 4229 4230 /* 4231 * if we don't have enough free bytes in this space then we need 4232 * to alloc a new chunk. 4233 */ 4234 if (!data_sinfo->full) { 4235 u64 alloc_target; 4236 4237 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4238 spin_unlock(&data_sinfo->lock); 4239 alloc: 4240 alloc_target = btrfs_data_alloc_profile(fs_info); 4241 /* 4242 * It is ugly that we don't call nolock join 4243 * transaction for the free space inode case here. 4244 * But it is safe because we only do the data space 4245 * reservation for the free space cache in the 4246 * transaction context, the common join transaction 4247 * just increase the counter of the current transaction 4248 * handler, doesn't try to acquire the trans_lock of 4249 * the fs. 4250 */ 4251 trans = btrfs_join_transaction(root); 4252 if (IS_ERR(trans)) 4253 return PTR_ERR(trans); 4254 4255 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4256 CHUNK_ALLOC_NO_FORCE); 4257 btrfs_end_transaction(trans); 4258 if (ret < 0) { 4259 if (ret != -ENOSPC) 4260 return ret; 4261 else { 4262 have_pinned_space = 1; 4263 goto commit_trans; 4264 } 4265 } 4266 4267 if (!data_sinfo) 4268 data_sinfo = fs_info->data_sinfo; 4269 4270 goto again; 4271 } 4272 4273 /* 4274 * If we don't have enough pinned space to deal with this 4275 * allocation, and no removed chunk in current transaction, 4276 * don't bother committing the transaction. 4277 */ 4278 have_pinned_space = percpu_counter_compare( 4279 &data_sinfo->total_bytes_pinned, 4280 used + bytes - data_sinfo->total_bytes); 4281 spin_unlock(&data_sinfo->lock); 4282 4283 /* commit the current transaction and try again */ 4284 commit_trans: 4285 if (need_commit && 4286 !atomic_read(&fs_info->open_ioctl_trans)) { 4287 need_commit--; 4288 4289 if (need_commit > 0) { 4290 btrfs_start_delalloc_roots(fs_info, 0, -1); 4291 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4292 (u64)-1); 4293 } 4294 4295 trans = btrfs_join_transaction(root); 4296 if (IS_ERR(trans)) 4297 return PTR_ERR(trans); 4298 if (have_pinned_space >= 0 || 4299 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4300 &trans->transaction->flags) || 4301 need_commit > 0) { 4302 ret = btrfs_commit_transaction(trans); 4303 if (ret) 4304 return ret; 4305 /* 4306 * The cleaner kthread might still be doing iput 4307 * operations. Wait for it to finish so that 4308 * more space is released. 4309 */ 4310 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4311 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4312 goto again; 4313 } else { 4314 btrfs_end_transaction(trans); 4315 } 4316 } 4317 4318 trace_btrfs_space_reservation(fs_info, 4319 "space_info:enospc", 4320 data_sinfo->flags, bytes, 1); 4321 return -ENOSPC; 4322 } 4323 data_sinfo->bytes_may_use += bytes; 4324 trace_btrfs_space_reservation(fs_info, "space_info", 4325 data_sinfo->flags, bytes, 1); 4326 spin_unlock(&data_sinfo->lock); 4327 4328 return ret; 4329 } 4330 4331 int btrfs_check_data_free_space(struct inode *inode, 4332 struct extent_changeset **reserved, u64 start, u64 len) 4333 { 4334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4335 int ret; 4336 4337 /* align the range */ 4338 len = round_up(start + len, fs_info->sectorsize) - 4339 round_down(start, fs_info->sectorsize); 4340 start = round_down(start, fs_info->sectorsize); 4341 4342 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4343 if (ret < 0) 4344 return ret; 4345 4346 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4347 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4348 if (ret < 0) 4349 btrfs_free_reserved_data_space_noquota(inode, start, len); 4350 else 4351 ret = 0; 4352 return ret; 4353 } 4354 4355 /* 4356 * Called if we need to clear a data reservation for this inode 4357 * Normally in a error case. 4358 * 4359 * This one will *NOT* use accurate qgroup reserved space API, just for case 4360 * which we can't sleep and is sure it won't affect qgroup reserved space. 4361 * Like clear_bit_hook(). 4362 */ 4363 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4364 u64 len) 4365 { 4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4367 struct btrfs_space_info *data_sinfo; 4368 4369 /* Make sure the range is aligned to sectorsize */ 4370 len = round_up(start + len, fs_info->sectorsize) - 4371 round_down(start, fs_info->sectorsize); 4372 start = round_down(start, fs_info->sectorsize); 4373 4374 data_sinfo = fs_info->data_sinfo; 4375 spin_lock(&data_sinfo->lock); 4376 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4377 data_sinfo->bytes_may_use = 0; 4378 else 4379 data_sinfo->bytes_may_use -= len; 4380 trace_btrfs_space_reservation(fs_info, "space_info", 4381 data_sinfo->flags, len, 0); 4382 spin_unlock(&data_sinfo->lock); 4383 } 4384 4385 /* 4386 * Called if we need to clear a data reservation for this inode 4387 * Normally in a error case. 4388 * 4389 * This one will handle the per-inode data rsv map for accurate reserved 4390 * space framework. 4391 */ 4392 void btrfs_free_reserved_data_space(struct inode *inode, 4393 struct extent_changeset *reserved, u64 start, u64 len) 4394 { 4395 struct btrfs_root *root = BTRFS_I(inode)->root; 4396 4397 /* Make sure the range is aligned to sectorsize */ 4398 len = round_up(start + len, root->fs_info->sectorsize) - 4399 round_down(start, root->fs_info->sectorsize); 4400 start = round_down(start, root->fs_info->sectorsize); 4401 4402 btrfs_free_reserved_data_space_noquota(inode, start, len); 4403 btrfs_qgroup_free_data(inode, reserved, start, len); 4404 } 4405 4406 static void force_metadata_allocation(struct btrfs_fs_info *info) 4407 { 4408 struct list_head *head = &info->space_info; 4409 struct btrfs_space_info *found; 4410 4411 rcu_read_lock(); 4412 list_for_each_entry_rcu(found, head, list) { 4413 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4414 found->force_alloc = CHUNK_ALLOC_FORCE; 4415 } 4416 rcu_read_unlock(); 4417 } 4418 4419 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4420 { 4421 return (global->size << 1); 4422 } 4423 4424 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4425 struct btrfs_space_info *sinfo, int force) 4426 { 4427 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4428 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4429 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4430 u64 thresh; 4431 4432 if (force == CHUNK_ALLOC_FORCE) 4433 return 1; 4434 4435 /* 4436 * We need to take into account the global rsv because for all intents 4437 * and purposes it's used space. Don't worry about locking the 4438 * global_rsv, it doesn't change except when the transaction commits. 4439 */ 4440 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4441 num_allocated += calc_global_rsv_need_space(global_rsv); 4442 4443 /* 4444 * in limited mode, we want to have some free space up to 4445 * about 1% of the FS size. 4446 */ 4447 if (force == CHUNK_ALLOC_LIMITED) { 4448 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4449 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4450 4451 if (num_bytes - num_allocated < thresh) 4452 return 1; 4453 } 4454 4455 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4456 return 0; 4457 return 1; 4458 } 4459 4460 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4461 { 4462 u64 num_dev; 4463 4464 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4465 BTRFS_BLOCK_GROUP_RAID0 | 4466 BTRFS_BLOCK_GROUP_RAID5 | 4467 BTRFS_BLOCK_GROUP_RAID6)) 4468 num_dev = fs_info->fs_devices->rw_devices; 4469 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4470 num_dev = 2; 4471 else 4472 num_dev = 1; /* DUP or single */ 4473 4474 return num_dev; 4475 } 4476 4477 /* 4478 * If @is_allocation is true, reserve space in the system space info necessary 4479 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4480 * removing a chunk. 4481 */ 4482 void check_system_chunk(struct btrfs_trans_handle *trans, 4483 struct btrfs_fs_info *fs_info, u64 type) 4484 { 4485 struct btrfs_space_info *info; 4486 u64 left; 4487 u64 thresh; 4488 int ret = 0; 4489 u64 num_devs; 4490 4491 /* 4492 * Needed because we can end up allocating a system chunk and for an 4493 * atomic and race free space reservation in the chunk block reserve. 4494 */ 4495 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4496 4497 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4498 spin_lock(&info->lock); 4499 left = info->total_bytes - btrfs_space_info_used(info, true); 4500 spin_unlock(&info->lock); 4501 4502 num_devs = get_profile_num_devs(fs_info, type); 4503 4504 /* num_devs device items to update and 1 chunk item to add or remove */ 4505 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4506 btrfs_calc_trans_metadata_size(fs_info, 1); 4507 4508 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4509 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4510 left, thresh, type); 4511 dump_space_info(fs_info, info, 0, 0); 4512 } 4513 4514 if (left < thresh) { 4515 u64 flags = btrfs_system_alloc_profile(fs_info); 4516 4517 /* 4518 * Ignore failure to create system chunk. We might end up not 4519 * needing it, as we might not need to COW all nodes/leafs from 4520 * the paths we visit in the chunk tree (they were already COWed 4521 * or created in the current transaction for example). 4522 */ 4523 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4524 } 4525 4526 if (!ret) { 4527 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4528 &fs_info->chunk_block_rsv, 4529 thresh, BTRFS_RESERVE_NO_FLUSH); 4530 if (!ret) 4531 trans->chunk_bytes_reserved += thresh; 4532 } 4533 } 4534 4535 /* 4536 * If force is CHUNK_ALLOC_FORCE: 4537 * - return 1 if it successfully allocates a chunk, 4538 * - return errors including -ENOSPC otherwise. 4539 * If force is NOT CHUNK_ALLOC_FORCE: 4540 * - return 0 if it doesn't need to allocate a new chunk, 4541 * - return 1 if it successfully allocates a chunk, 4542 * - return errors including -ENOSPC otherwise. 4543 */ 4544 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4545 struct btrfs_fs_info *fs_info, u64 flags, int force) 4546 { 4547 struct btrfs_space_info *space_info; 4548 int wait_for_alloc = 0; 4549 int ret = 0; 4550 4551 /* Don't re-enter if we're already allocating a chunk */ 4552 if (trans->allocating_chunk) 4553 return -ENOSPC; 4554 4555 space_info = __find_space_info(fs_info, flags); 4556 if (!space_info) { 4557 ret = create_space_info(fs_info, flags, &space_info); 4558 if (ret) 4559 return ret; 4560 } 4561 4562 again: 4563 spin_lock(&space_info->lock); 4564 if (force < space_info->force_alloc) 4565 force = space_info->force_alloc; 4566 if (space_info->full) { 4567 if (should_alloc_chunk(fs_info, space_info, force)) 4568 ret = -ENOSPC; 4569 else 4570 ret = 0; 4571 spin_unlock(&space_info->lock); 4572 return ret; 4573 } 4574 4575 if (!should_alloc_chunk(fs_info, space_info, force)) { 4576 spin_unlock(&space_info->lock); 4577 return 0; 4578 } else if (space_info->chunk_alloc) { 4579 wait_for_alloc = 1; 4580 } else { 4581 space_info->chunk_alloc = 1; 4582 } 4583 4584 spin_unlock(&space_info->lock); 4585 4586 mutex_lock(&fs_info->chunk_mutex); 4587 4588 /* 4589 * The chunk_mutex is held throughout the entirety of a chunk 4590 * allocation, so once we've acquired the chunk_mutex we know that the 4591 * other guy is done and we need to recheck and see if we should 4592 * allocate. 4593 */ 4594 if (wait_for_alloc) { 4595 mutex_unlock(&fs_info->chunk_mutex); 4596 wait_for_alloc = 0; 4597 goto again; 4598 } 4599 4600 trans->allocating_chunk = true; 4601 4602 /* 4603 * If we have mixed data/metadata chunks we want to make sure we keep 4604 * allocating mixed chunks instead of individual chunks. 4605 */ 4606 if (btrfs_mixed_space_info(space_info)) 4607 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4608 4609 /* 4610 * if we're doing a data chunk, go ahead and make sure that 4611 * we keep a reasonable number of metadata chunks allocated in the 4612 * FS as well. 4613 */ 4614 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4615 fs_info->data_chunk_allocations++; 4616 if (!(fs_info->data_chunk_allocations % 4617 fs_info->metadata_ratio)) 4618 force_metadata_allocation(fs_info); 4619 } 4620 4621 /* 4622 * Check if we have enough space in SYSTEM chunk because we may need 4623 * to update devices. 4624 */ 4625 check_system_chunk(trans, fs_info, flags); 4626 4627 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4628 trans->allocating_chunk = false; 4629 4630 spin_lock(&space_info->lock); 4631 if (ret < 0 && ret != -ENOSPC) 4632 goto out; 4633 if (ret) 4634 space_info->full = 1; 4635 else 4636 ret = 1; 4637 4638 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4639 out: 4640 space_info->chunk_alloc = 0; 4641 spin_unlock(&space_info->lock); 4642 mutex_unlock(&fs_info->chunk_mutex); 4643 /* 4644 * When we allocate a new chunk we reserve space in the chunk block 4645 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4646 * add new nodes/leafs to it if we end up needing to do it when 4647 * inserting the chunk item and updating device items as part of the 4648 * second phase of chunk allocation, performed by 4649 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4650 * large number of new block groups to create in our transaction 4651 * handle's new_bgs list to avoid exhausting the chunk block reserve 4652 * in extreme cases - like having a single transaction create many new 4653 * block groups when starting to write out the free space caches of all 4654 * the block groups that were made dirty during the lifetime of the 4655 * transaction. 4656 */ 4657 if (trans->can_flush_pending_bgs && 4658 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4659 btrfs_create_pending_block_groups(trans, fs_info); 4660 btrfs_trans_release_chunk_metadata(trans); 4661 } 4662 return ret; 4663 } 4664 4665 static int can_overcommit(struct btrfs_fs_info *fs_info, 4666 struct btrfs_space_info *space_info, u64 bytes, 4667 enum btrfs_reserve_flush_enum flush, 4668 bool system_chunk) 4669 { 4670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4671 u64 profile; 4672 u64 space_size; 4673 u64 avail; 4674 u64 used; 4675 4676 /* Don't overcommit when in mixed mode. */ 4677 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4678 return 0; 4679 4680 if (system_chunk) 4681 profile = btrfs_system_alloc_profile(fs_info); 4682 else 4683 profile = btrfs_metadata_alloc_profile(fs_info); 4684 4685 used = btrfs_space_info_used(space_info, false); 4686 4687 /* 4688 * We only want to allow over committing if we have lots of actual space 4689 * free, but if we don't have enough space to handle the global reserve 4690 * space then we could end up having a real enospc problem when trying 4691 * to allocate a chunk or some other such important allocation. 4692 */ 4693 spin_lock(&global_rsv->lock); 4694 space_size = calc_global_rsv_need_space(global_rsv); 4695 spin_unlock(&global_rsv->lock); 4696 if (used + space_size >= space_info->total_bytes) 4697 return 0; 4698 4699 used += space_info->bytes_may_use; 4700 4701 avail = atomic64_read(&fs_info->free_chunk_space); 4702 4703 /* 4704 * If we have dup, raid1 or raid10 then only half of the free 4705 * space is actually useable. For raid56, the space info used 4706 * doesn't include the parity drive, so we don't have to 4707 * change the math 4708 */ 4709 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4710 BTRFS_BLOCK_GROUP_RAID1 | 4711 BTRFS_BLOCK_GROUP_RAID10)) 4712 avail >>= 1; 4713 4714 /* 4715 * If we aren't flushing all things, let us overcommit up to 4716 * 1/2th of the space. If we can flush, don't let us overcommit 4717 * too much, let it overcommit up to 1/8 of the space. 4718 */ 4719 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4720 avail >>= 3; 4721 else 4722 avail >>= 1; 4723 4724 if (used + bytes < space_info->total_bytes + avail) 4725 return 1; 4726 return 0; 4727 } 4728 4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4730 unsigned long nr_pages, int nr_items) 4731 { 4732 struct super_block *sb = fs_info->sb; 4733 4734 if (down_read_trylock(&sb->s_umount)) { 4735 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4736 up_read(&sb->s_umount); 4737 } else { 4738 /* 4739 * We needn't worry the filesystem going from r/w to r/o though 4740 * we don't acquire ->s_umount mutex, because the filesystem 4741 * should guarantee the delalloc inodes list be empty after 4742 * the filesystem is readonly(all dirty pages are written to 4743 * the disk). 4744 */ 4745 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4746 if (!current->journal_info) 4747 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4748 } 4749 } 4750 4751 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4752 u64 to_reclaim) 4753 { 4754 u64 bytes; 4755 u64 nr; 4756 4757 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4758 nr = div64_u64(to_reclaim, bytes); 4759 if (!nr) 4760 nr = 1; 4761 return nr; 4762 } 4763 4764 #define EXTENT_SIZE_PER_ITEM SZ_256K 4765 4766 /* 4767 * shrink metadata reservation for delalloc 4768 */ 4769 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4770 u64 orig, bool wait_ordered) 4771 { 4772 struct btrfs_block_rsv *block_rsv; 4773 struct btrfs_space_info *space_info; 4774 struct btrfs_trans_handle *trans; 4775 u64 delalloc_bytes; 4776 u64 max_reclaim; 4777 u64 items; 4778 long time_left; 4779 unsigned long nr_pages; 4780 int loops; 4781 enum btrfs_reserve_flush_enum flush; 4782 4783 /* Calc the number of the pages we need flush for space reservation */ 4784 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4785 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4786 4787 trans = (struct btrfs_trans_handle *)current->journal_info; 4788 block_rsv = &fs_info->delalloc_block_rsv; 4789 space_info = block_rsv->space_info; 4790 4791 delalloc_bytes = percpu_counter_sum_positive( 4792 &fs_info->delalloc_bytes); 4793 if (delalloc_bytes == 0) { 4794 if (trans) 4795 return; 4796 if (wait_ordered) 4797 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4798 return; 4799 } 4800 4801 loops = 0; 4802 while (delalloc_bytes && loops < 3) { 4803 max_reclaim = min(delalloc_bytes, to_reclaim); 4804 nr_pages = max_reclaim >> PAGE_SHIFT; 4805 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4806 /* 4807 * We need to wait for the async pages to actually start before 4808 * we do anything. 4809 */ 4810 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4811 if (!max_reclaim) 4812 goto skip_async; 4813 4814 if (max_reclaim <= nr_pages) 4815 max_reclaim = 0; 4816 else 4817 max_reclaim -= nr_pages; 4818 4819 wait_event(fs_info->async_submit_wait, 4820 atomic_read(&fs_info->async_delalloc_pages) <= 4821 (int)max_reclaim); 4822 skip_async: 4823 if (!trans) 4824 flush = BTRFS_RESERVE_FLUSH_ALL; 4825 else 4826 flush = BTRFS_RESERVE_NO_FLUSH; 4827 spin_lock(&space_info->lock); 4828 if (list_empty(&space_info->tickets) && 4829 list_empty(&space_info->priority_tickets)) { 4830 spin_unlock(&space_info->lock); 4831 break; 4832 } 4833 spin_unlock(&space_info->lock); 4834 4835 loops++; 4836 if (wait_ordered && !trans) { 4837 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4838 } else { 4839 time_left = schedule_timeout_killable(1); 4840 if (time_left) 4841 break; 4842 } 4843 delalloc_bytes = percpu_counter_sum_positive( 4844 &fs_info->delalloc_bytes); 4845 } 4846 } 4847 4848 /** 4849 * maybe_commit_transaction - possibly commit the transaction if its ok to 4850 * @root - the root we're allocating for 4851 * @bytes - the number of bytes we want to reserve 4852 * @force - force the commit 4853 * 4854 * This will check to make sure that committing the transaction will actually 4855 * get us somewhere and then commit the transaction if it does. Otherwise it 4856 * will return -ENOSPC. 4857 */ 4858 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4859 struct btrfs_space_info *space_info, 4860 u64 bytes, int force) 4861 { 4862 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4863 struct btrfs_trans_handle *trans; 4864 4865 trans = (struct btrfs_trans_handle *)current->journal_info; 4866 if (trans) 4867 return -EAGAIN; 4868 4869 if (force) 4870 goto commit; 4871 4872 /* See if there is enough pinned space to make this reservation */ 4873 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4874 bytes) >= 0) 4875 goto commit; 4876 4877 /* 4878 * See if there is some space in the delayed insertion reservation for 4879 * this reservation. 4880 */ 4881 if (space_info != delayed_rsv->space_info) 4882 return -ENOSPC; 4883 4884 spin_lock(&delayed_rsv->lock); 4885 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4886 bytes - delayed_rsv->size) < 0) { 4887 spin_unlock(&delayed_rsv->lock); 4888 return -ENOSPC; 4889 } 4890 spin_unlock(&delayed_rsv->lock); 4891 4892 commit: 4893 trans = btrfs_join_transaction(fs_info->extent_root); 4894 if (IS_ERR(trans)) 4895 return -ENOSPC; 4896 4897 return btrfs_commit_transaction(trans); 4898 } 4899 4900 struct reserve_ticket { 4901 u64 bytes; 4902 int error; 4903 struct list_head list; 4904 wait_queue_head_t wait; 4905 }; 4906 4907 static int flush_space(struct btrfs_fs_info *fs_info, 4908 struct btrfs_space_info *space_info, u64 num_bytes, 4909 u64 orig_bytes, int state) 4910 { 4911 struct btrfs_root *root = fs_info->extent_root; 4912 struct btrfs_trans_handle *trans; 4913 int nr; 4914 int ret = 0; 4915 4916 switch (state) { 4917 case FLUSH_DELAYED_ITEMS_NR: 4918 case FLUSH_DELAYED_ITEMS: 4919 if (state == FLUSH_DELAYED_ITEMS_NR) 4920 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4921 else 4922 nr = -1; 4923 4924 trans = btrfs_join_transaction(root); 4925 if (IS_ERR(trans)) { 4926 ret = PTR_ERR(trans); 4927 break; 4928 } 4929 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 4930 btrfs_end_transaction(trans); 4931 break; 4932 case FLUSH_DELALLOC: 4933 case FLUSH_DELALLOC_WAIT: 4934 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes, 4935 state == FLUSH_DELALLOC_WAIT); 4936 break; 4937 case ALLOC_CHUNK: 4938 trans = btrfs_join_transaction(root); 4939 if (IS_ERR(trans)) { 4940 ret = PTR_ERR(trans); 4941 break; 4942 } 4943 ret = do_chunk_alloc(trans, fs_info, 4944 btrfs_metadata_alloc_profile(fs_info), 4945 CHUNK_ALLOC_NO_FORCE); 4946 btrfs_end_transaction(trans); 4947 if (ret > 0 || ret == -ENOSPC) 4948 ret = 0; 4949 break; 4950 case COMMIT_TRANS: 4951 ret = may_commit_transaction(fs_info, space_info, 4952 orig_bytes, 0); 4953 break; 4954 default: 4955 ret = -ENOSPC; 4956 break; 4957 } 4958 4959 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, 4960 orig_bytes, state, ret); 4961 return ret; 4962 } 4963 4964 static inline u64 4965 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 4966 struct btrfs_space_info *space_info, 4967 bool system_chunk) 4968 { 4969 struct reserve_ticket *ticket; 4970 u64 used; 4971 u64 expected; 4972 u64 to_reclaim = 0; 4973 4974 list_for_each_entry(ticket, &space_info->tickets, list) 4975 to_reclaim += ticket->bytes; 4976 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4977 to_reclaim += ticket->bytes; 4978 if (to_reclaim) 4979 return to_reclaim; 4980 4981 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4982 if (can_overcommit(fs_info, space_info, to_reclaim, 4983 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 4984 return 0; 4985 4986 used = btrfs_space_info_used(space_info, true); 4987 4988 if (can_overcommit(fs_info, space_info, SZ_1M, 4989 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 4990 expected = div_factor_fine(space_info->total_bytes, 95); 4991 else 4992 expected = div_factor_fine(space_info->total_bytes, 90); 4993 4994 if (used > expected) 4995 to_reclaim = used - expected; 4996 else 4997 to_reclaim = 0; 4998 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4999 space_info->bytes_reserved); 5000 return to_reclaim; 5001 } 5002 5003 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5004 struct btrfs_space_info *space_info, 5005 u64 used, bool system_chunk) 5006 { 5007 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5008 5009 /* If we're just plain full then async reclaim just slows us down. */ 5010 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5011 return 0; 5012 5013 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5014 system_chunk)) 5015 return 0; 5016 5017 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5018 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5019 } 5020 5021 static void wake_all_tickets(struct list_head *head) 5022 { 5023 struct reserve_ticket *ticket; 5024 5025 while (!list_empty(head)) { 5026 ticket = list_first_entry(head, struct reserve_ticket, list); 5027 list_del_init(&ticket->list); 5028 ticket->error = -ENOSPC; 5029 wake_up(&ticket->wait); 5030 } 5031 } 5032 5033 /* 5034 * This is for normal flushers, we can wait all goddamned day if we want to. We 5035 * will loop and continuously try to flush as long as we are making progress. 5036 * We count progress as clearing off tickets each time we have to loop. 5037 */ 5038 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5039 { 5040 struct btrfs_fs_info *fs_info; 5041 struct btrfs_space_info *space_info; 5042 u64 to_reclaim; 5043 int flush_state; 5044 int commit_cycles = 0; 5045 u64 last_tickets_id; 5046 5047 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5048 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5049 5050 spin_lock(&space_info->lock); 5051 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5052 false); 5053 if (!to_reclaim) { 5054 space_info->flush = 0; 5055 spin_unlock(&space_info->lock); 5056 return; 5057 } 5058 last_tickets_id = space_info->tickets_id; 5059 spin_unlock(&space_info->lock); 5060 5061 flush_state = FLUSH_DELAYED_ITEMS_NR; 5062 do { 5063 struct reserve_ticket *ticket; 5064 int ret; 5065 5066 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim, 5067 flush_state); 5068 spin_lock(&space_info->lock); 5069 if (list_empty(&space_info->tickets)) { 5070 space_info->flush = 0; 5071 spin_unlock(&space_info->lock); 5072 return; 5073 } 5074 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5075 space_info, 5076 false); 5077 ticket = list_first_entry(&space_info->tickets, 5078 struct reserve_ticket, list); 5079 if (last_tickets_id == space_info->tickets_id) { 5080 flush_state++; 5081 } else { 5082 last_tickets_id = space_info->tickets_id; 5083 flush_state = FLUSH_DELAYED_ITEMS_NR; 5084 if (commit_cycles) 5085 commit_cycles--; 5086 } 5087 5088 if (flush_state > COMMIT_TRANS) { 5089 commit_cycles++; 5090 if (commit_cycles > 2) { 5091 wake_all_tickets(&space_info->tickets); 5092 space_info->flush = 0; 5093 } else { 5094 flush_state = FLUSH_DELAYED_ITEMS_NR; 5095 } 5096 } 5097 spin_unlock(&space_info->lock); 5098 } while (flush_state <= COMMIT_TRANS); 5099 } 5100 5101 void btrfs_init_async_reclaim_work(struct work_struct *work) 5102 { 5103 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5104 } 5105 5106 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5107 struct btrfs_space_info *space_info, 5108 struct reserve_ticket *ticket) 5109 { 5110 u64 to_reclaim; 5111 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5112 5113 spin_lock(&space_info->lock); 5114 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5115 false); 5116 if (!to_reclaim) { 5117 spin_unlock(&space_info->lock); 5118 return; 5119 } 5120 spin_unlock(&space_info->lock); 5121 5122 do { 5123 flush_space(fs_info, space_info, to_reclaim, to_reclaim, 5124 flush_state); 5125 flush_state++; 5126 spin_lock(&space_info->lock); 5127 if (ticket->bytes == 0) { 5128 spin_unlock(&space_info->lock); 5129 return; 5130 } 5131 spin_unlock(&space_info->lock); 5132 5133 /* 5134 * Priority flushers can't wait on delalloc without 5135 * deadlocking. 5136 */ 5137 if (flush_state == FLUSH_DELALLOC || 5138 flush_state == FLUSH_DELALLOC_WAIT) 5139 flush_state = ALLOC_CHUNK; 5140 } while (flush_state < COMMIT_TRANS); 5141 } 5142 5143 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5144 struct btrfs_space_info *space_info, 5145 struct reserve_ticket *ticket, u64 orig_bytes) 5146 5147 { 5148 DEFINE_WAIT(wait); 5149 int ret = 0; 5150 5151 spin_lock(&space_info->lock); 5152 while (ticket->bytes > 0 && ticket->error == 0) { 5153 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5154 if (ret) { 5155 ret = -EINTR; 5156 break; 5157 } 5158 spin_unlock(&space_info->lock); 5159 5160 schedule(); 5161 5162 finish_wait(&ticket->wait, &wait); 5163 spin_lock(&space_info->lock); 5164 } 5165 if (!ret) 5166 ret = ticket->error; 5167 if (!list_empty(&ticket->list)) 5168 list_del_init(&ticket->list); 5169 if (ticket->bytes && ticket->bytes < orig_bytes) { 5170 u64 num_bytes = orig_bytes - ticket->bytes; 5171 space_info->bytes_may_use -= num_bytes; 5172 trace_btrfs_space_reservation(fs_info, "space_info", 5173 space_info->flags, num_bytes, 0); 5174 } 5175 spin_unlock(&space_info->lock); 5176 5177 return ret; 5178 } 5179 5180 /** 5181 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5182 * @root - the root we're allocating for 5183 * @space_info - the space info we want to allocate from 5184 * @orig_bytes - the number of bytes we want 5185 * @flush - whether or not we can flush to make our reservation 5186 * 5187 * This will reserve orig_bytes number of bytes from the space info associated 5188 * with the block_rsv. If there is not enough space it will make an attempt to 5189 * flush out space to make room. It will do this by flushing delalloc if 5190 * possible or committing the transaction. If flush is 0 then no attempts to 5191 * regain reservations will be made and this will fail if there is not enough 5192 * space already. 5193 */ 5194 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5195 struct btrfs_space_info *space_info, 5196 u64 orig_bytes, 5197 enum btrfs_reserve_flush_enum flush, 5198 bool system_chunk) 5199 { 5200 struct reserve_ticket ticket; 5201 u64 used; 5202 int ret = 0; 5203 5204 ASSERT(orig_bytes); 5205 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5206 5207 spin_lock(&space_info->lock); 5208 ret = -ENOSPC; 5209 used = btrfs_space_info_used(space_info, true); 5210 5211 /* 5212 * If we have enough space then hooray, make our reservation and carry 5213 * on. If not see if we can overcommit, and if we can, hooray carry on. 5214 * If not things get more complicated. 5215 */ 5216 if (used + orig_bytes <= space_info->total_bytes) { 5217 space_info->bytes_may_use += orig_bytes; 5218 trace_btrfs_space_reservation(fs_info, "space_info", 5219 space_info->flags, orig_bytes, 1); 5220 ret = 0; 5221 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5222 system_chunk)) { 5223 space_info->bytes_may_use += orig_bytes; 5224 trace_btrfs_space_reservation(fs_info, "space_info", 5225 space_info->flags, orig_bytes, 1); 5226 ret = 0; 5227 } 5228 5229 /* 5230 * If we couldn't make a reservation then setup our reservation ticket 5231 * and kick the async worker if it's not already running. 5232 * 5233 * If we are a priority flusher then we just need to add our ticket to 5234 * the list and we will do our own flushing further down. 5235 */ 5236 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5237 ticket.bytes = orig_bytes; 5238 ticket.error = 0; 5239 init_waitqueue_head(&ticket.wait); 5240 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5241 list_add_tail(&ticket.list, &space_info->tickets); 5242 if (!space_info->flush) { 5243 space_info->flush = 1; 5244 trace_btrfs_trigger_flush(fs_info, 5245 space_info->flags, 5246 orig_bytes, flush, 5247 "enospc"); 5248 queue_work(system_unbound_wq, 5249 &fs_info->async_reclaim_work); 5250 } 5251 } else { 5252 list_add_tail(&ticket.list, 5253 &space_info->priority_tickets); 5254 } 5255 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5256 used += orig_bytes; 5257 /* 5258 * We will do the space reservation dance during log replay, 5259 * which means we won't have fs_info->fs_root set, so don't do 5260 * the async reclaim as we will panic. 5261 */ 5262 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5263 need_do_async_reclaim(fs_info, space_info, 5264 used, system_chunk) && 5265 !work_busy(&fs_info->async_reclaim_work)) { 5266 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5267 orig_bytes, flush, "preempt"); 5268 queue_work(system_unbound_wq, 5269 &fs_info->async_reclaim_work); 5270 } 5271 } 5272 spin_unlock(&space_info->lock); 5273 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5274 return ret; 5275 5276 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5277 return wait_reserve_ticket(fs_info, space_info, &ticket, 5278 orig_bytes); 5279 5280 ret = 0; 5281 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5282 spin_lock(&space_info->lock); 5283 if (ticket.bytes) { 5284 if (ticket.bytes < orig_bytes) { 5285 u64 num_bytes = orig_bytes - ticket.bytes; 5286 space_info->bytes_may_use -= num_bytes; 5287 trace_btrfs_space_reservation(fs_info, "space_info", 5288 space_info->flags, 5289 num_bytes, 0); 5290 5291 } 5292 list_del_init(&ticket.list); 5293 ret = -ENOSPC; 5294 } 5295 spin_unlock(&space_info->lock); 5296 ASSERT(list_empty(&ticket.list)); 5297 return ret; 5298 } 5299 5300 /** 5301 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5302 * @root - the root we're allocating for 5303 * @block_rsv - the block_rsv we're allocating for 5304 * @orig_bytes - the number of bytes we want 5305 * @flush - whether or not we can flush to make our reservation 5306 * 5307 * This will reserve orgi_bytes number of bytes from the space info associated 5308 * with the block_rsv. If there is not enough space it will make an attempt to 5309 * flush out space to make room. It will do this by flushing delalloc if 5310 * possible or committing the transaction. If flush is 0 then no attempts to 5311 * regain reservations will be made and this will fail if there is not enough 5312 * space already. 5313 */ 5314 static int reserve_metadata_bytes(struct btrfs_root *root, 5315 struct btrfs_block_rsv *block_rsv, 5316 u64 orig_bytes, 5317 enum btrfs_reserve_flush_enum flush) 5318 { 5319 struct btrfs_fs_info *fs_info = root->fs_info; 5320 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5321 int ret; 5322 bool system_chunk = (root == fs_info->chunk_root); 5323 5324 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5325 orig_bytes, flush, system_chunk); 5326 if (ret == -ENOSPC && 5327 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5328 if (block_rsv != global_rsv && 5329 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5330 ret = 0; 5331 } 5332 if (ret == -ENOSPC) 5333 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5334 block_rsv->space_info->flags, 5335 orig_bytes, 1); 5336 return ret; 5337 } 5338 5339 static struct btrfs_block_rsv *get_block_rsv( 5340 const struct btrfs_trans_handle *trans, 5341 const struct btrfs_root *root) 5342 { 5343 struct btrfs_fs_info *fs_info = root->fs_info; 5344 struct btrfs_block_rsv *block_rsv = NULL; 5345 5346 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5347 (root == fs_info->csum_root && trans->adding_csums) || 5348 (root == fs_info->uuid_root)) 5349 block_rsv = trans->block_rsv; 5350 5351 if (!block_rsv) 5352 block_rsv = root->block_rsv; 5353 5354 if (!block_rsv) 5355 block_rsv = &fs_info->empty_block_rsv; 5356 5357 return block_rsv; 5358 } 5359 5360 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5361 u64 num_bytes) 5362 { 5363 int ret = -ENOSPC; 5364 spin_lock(&block_rsv->lock); 5365 if (block_rsv->reserved >= num_bytes) { 5366 block_rsv->reserved -= num_bytes; 5367 if (block_rsv->reserved < block_rsv->size) 5368 block_rsv->full = 0; 5369 ret = 0; 5370 } 5371 spin_unlock(&block_rsv->lock); 5372 return ret; 5373 } 5374 5375 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5376 u64 num_bytes, int update_size) 5377 { 5378 spin_lock(&block_rsv->lock); 5379 block_rsv->reserved += num_bytes; 5380 if (update_size) 5381 block_rsv->size += num_bytes; 5382 else if (block_rsv->reserved >= block_rsv->size) 5383 block_rsv->full = 1; 5384 spin_unlock(&block_rsv->lock); 5385 } 5386 5387 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5388 struct btrfs_block_rsv *dest, u64 num_bytes, 5389 int min_factor) 5390 { 5391 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5392 u64 min_bytes; 5393 5394 if (global_rsv->space_info != dest->space_info) 5395 return -ENOSPC; 5396 5397 spin_lock(&global_rsv->lock); 5398 min_bytes = div_factor(global_rsv->size, min_factor); 5399 if (global_rsv->reserved < min_bytes + num_bytes) { 5400 spin_unlock(&global_rsv->lock); 5401 return -ENOSPC; 5402 } 5403 global_rsv->reserved -= num_bytes; 5404 if (global_rsv->reserved < global_rsv->size) 5405 global_rsv->full = 0; 5406 spin_unlock(&global_rsv->lock); 5407 5408 block_rsv_add_bytes(dest, num_bytes, 1); 5409 return 0; 5410 } 5411 5412 /* 5413 * This is for space we already have accounted in space_info->bytes_may_use, so 5414 * basically when we're returning space from block_rsv's. 5415 */ 5416 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5417 struct btrfs_space_info *space_info, 5418 u64 num_bytes) 5419 { 5420 struct reserve_ticket *ticket; 5421 struct list_head *head; 5422 u64 used; 5423 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5424 bool check_overcommit = false; 5425 5426 spin_lock(&space_info->lock); 5427 head = &space_info->priority_tickets; 5428 5429 /* 5430 * If we are over our limit then we need to check and see if we can 5431 * overcommit, and if we can't then we just need to free up our space 5432 * and not satisfy any requests. 5433 */ 5434 used = btrfs_space_info_used(space_info, true); 5435 if (used - num_bytes >= space_info->total_bytes) 5436 check_overcommit = true; 5437 again: 5438 while (!list_empty(head) && num_bytes) { 5439 ticket = list_first_entry(head, struct reserve_ticket, 5440 list); 5441 /* 5442 * We use 0 bytes because this space is already reserved, so 5443 * adding the ticket space would be a double count. 5444 */ 5445 if (check_overcommit && 5446 !can_overcommit(fs_info, space_info, 0, flush, false)) 5447 break; 5448 if (num_bytes >= ticket->bytes) { 5449 list_del_init(&ticket->list); 5450 num_bytes -= ticket->bytes; 5451 ticket->bytes = 0; 5452 space_info->tickets_id++; 5453 wake_up(&ticket->wait); 5454 } else { 5455 ticket->bytes -= num_bytes; 5456 num_bytes = 0; 5457 } 5458 } 5459 5460 if (num_bytes && head == &space_info->priority_tickets) { 5461 head = &space_info->tickets; 5462 flush = BTRFS_RESERVE_FLUSH_ALL; 5463 goto again; 5464 } 5465 space_info->bytes_may_use -= num_bytes; 5466 trace_btrfs_space_reservation(fs_info, "space_info", 5467 space_info->flags, num_bytes, 0); 5468 spin_unlock(&space_info->lock); 5469 } 5470 5471 /* 5472 * This is for newly allocated space that isn't accounted in 5473 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5474 * we use this helper. 5475 */ 5476 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5477 struct btrfs_space_info *space_info, 5478 u64 num_bytes) 5479 { 5480 struct reserve_ticket *ticket; 5481 struct list_head *head = &space_info->priority_tickets; 5482 5483 again: 5484 while (!list_empty(head) && num_bytes) { 5485 ticket = list_first_entry(head, struct reserve_ticket, 5486 list); 5487 if (num_bytes >= ticket->bytes) { 5488 trace_btrfs_space_reservation(fs_info, "space_info", 5489 space_info->flags, 5490 ticket->bytes, 1); 5491 list_del_init(&ticket->list); 5492 num_bytes -= ticket->bytes; 5493 space_info->bytes_may_use += ticket->bytes; 5494 ticket->bytes = 0; 5495 space_info->tickets_id++; 5496 wake_up(&ticket->wait); 5497 } else { 5498 trace_btrfs_space_reservation(fs_info, "space_info", 5499 space_info->flags, 5500 num_bytes, 1); 5501 space_info->bytes_may_use += num_bytes; 5502 ticket->bytes -= num_bytes; 5503 num_bytes = 0; 5504 } 5505 } 5506 5507 if (num_bytes && head == &space_info->priority_tickets) { 5508 head = &space_info->tickets; 5509 goto again; 5510 } 5511 } 5512 5513 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5514 struct btrfs_block_rsv *block_rsv, 5515 struct btrfs_block_rsv *dest, u64 num_bytes) 5516 { 5517 struct btrfs_space_info *space_info = block_rsv->space_info; 5518 5519 spin_lock(&block_rsv->lock); 5520 if (num_bytes == (u64)-1) 5521 num_bytes = block_rsv->size; 5522 block_rsv->size -= num_bytes; 5523 if (block_rsv->reserved >= block_rsv->size) { 5524 num_bytes = block_rsv->reserved - block_rsv->size; 5525 block_rsv->reserved = block_rsv->size; 5526 block_rsv->full = 1; 5527 } else { 5528 num_bytes = 0; 5529 } 5530 spin_unlock(&block_rsv->lock); 5531 5532 if (num_bytes > 0) { 5533 if (dest) { 5534 spin_lock(&dest->lock); 5535 if (!dest->full) { 5536 u64 bytes_to_add; 5537 5538 bytes_to_add = dest->size - dest->reserved; 5539 bytes_to_add = min(num_bytes, bytes_to_add); 5540 dest->reserved += bytes_to_add; 5541 if (dest->reserved >= dest->size) 5542 dest->full = 1; 5543 num_bytes -= bytes_to_add; 5544 } 5545 spin_unlock(&dest->lock); 5546 } 5547 if (num_bytes) 5548 space_info_add_old_bytes(fs_info, space_info, 5549 num_bytes); 5550 } 5551 } 5552 5553 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5554 struct btrfs_block_rsv *dst, u64 num_bytes, 5555 int update_size) 5556 { 5557 int ret; 5558 5559 ret = block_rsv_use_bytes(src, num_bytes); 5560 if (ret) 5561 return ret; 5562 5563 block_rsv_add_bytes(dst, num_bytes, update_size); 5564 return 0; 5565 } 5566 5567 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5568 { 5569 memset(rsv, 0, sizeof(*rsv)); 5570 spin_lock_init(&rsv->lock); 5571 rsv->type = type; 5572 } 5573 5574 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5575 unsigned short type) 5576 { 5577 struct btrfs_block_rsv *block_rsv; 5578 5579 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5580 if (!block_rsv) 5581 return NULL; 5582 5583 btrfs_init_block_rsv(block_rsv, type); 5584 block_rsv->space_info = __find_space_info(fs_info, 5585 BTRFS_BLOCK_GROUP_METADATA); 5586 return block_rsv; 5587 } 5588 5589 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5590 struct btrfs_block_rsv *rsv) 5591 { 5592 if (!rsv) 5593 return; 5594 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5595 kfree(rsv); 5596 } 5597 5598 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5599 { 5600 kfree(rsv); 5601 } 5602 5603 int btrfs_block_rsv_add(struct btrfs_root *root, 5604 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5605 enum btrfs_reserve_flush_enum flush) 5606 { 5607 int ret; 5608 5609 if (num_bytes == 0) 5610 return 0; 5611 5612 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5613 if (!ret) { 5614 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5615 return 0; 5616 } 5617 5618 return ret; 5619 } 5620 5621 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5622 { 5623 u64 num_bytes = 0; 5624 int ret = -ENOSPC; 5625 5626 if (!block_rsv) 5627 return 0; 5628 5629 spin_lock(&block_rsv->lock); 5630 num_bytes = div_factor(block_rsv->size, min_factor); 5631 if (block_rsv->reserved >= num_bytes) 5632 ret = 0; 5633 spin_unlock(&block_rsv->lock); 5634 5635 return ret; 5636 } 5637 5638 int btrfs_block_rsv_refill(struct btrfs_root *root, 5639 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5640 enum btrfs_reserve_flush_enum flush) 5641 { 5642 u64 num_bytes = 0; 5643 int ret = -ENOSPC; 5644 5645 if (!block_rsv) 5646 return 0; 5647 5648 spin_lock(&block_rsv->lock); 5649 num_bytes = min_reserved; 5650 if (block_rsv->reserved >= num_bytes) 5651 ret = 0; 5652 else 5653 num_bytes -= block_rsv->reserved; 5654 spin_unlock(&block_rsv->lock); 5655 5656 if (!ret) 5657 return 0; 5658 5659 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5660 if (!ret) { 5661 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5662 return 0; 5663 } 5664 5665 return ret; 5666 } 5667 5668 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5669 struct btrfs_block_rsv *block_rsv, 5670 u64 num_bytes) 5671 { 5672 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5673 5674 if (global_rsv == block_rsv || 5675 block_rsv->space_info != global_rsv->space_info) 5676 global_rsv = NULL; 5677 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5678 } 5679 5680 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5681 { 5682 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5683 struct btrfs_space_info *sinfo = block_rsv->space_info; 5684 u64 num_bytes; 5685 5686 /* 5687 * The global block rsv is based on the size of the extent tree, the 5688 * checksum tree and the root tree. If the fs is empty we want to set 5689 * it to a minimal amount for safety. 5690 */ 5691 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5692 btrfs_root_used(&fs_info->csum_root->root_item) + 5693 btrfs_root_used(&fs_info->tree_root->root_item); 5694 num_bytes = max_t(u64, num_bytes, SZ_16M); 5695 5696 spin_lock(&sinfo->lock); 5697 spin_lock(&block_rsv->lock); 5698 5699 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5700 5701 if (block_rsv->reserved < block_rsv->size) { 5702 num_bytes = btrfs_space_info_used(sinfo, true); 5703 if (sinfo->total_bytes > num_bytes) { 5704 num_bytes = sinfo->total_bytes - num_bytes; 5705 num_bytes = min(num_bytes, 5706 block_rsv->size - block_rsv->reserved); 5707 block_rsv->reserved += num_bytes; 5708 sinfo->bytes_may_use += num_bytes; 5709 trace_btrfs_space_reservation(fs_info, "space_info", 5710 sinfo->flags, num_bytes, 5711 1); 5712 } 5713 } else if (block_rsv->reserved > block_rsv->size) { 5714 num_bytes = block_rsv->reserved - block_rsv->size; 5715 sinfo->bytes_may_use -= num_bytes; 5716 trace_btrfs_space_reservation(fs_info, "space_info", 5717 sinfo->flags, num_bytes, 0); 5718 block_rsv->reserved = block_rsv->size; 5719 } 5720 5721 if (block_rsv->reserved == block_rsv->size) 5722 block_rsv->full = 1; 5723 else 5724 block_rsv->full = 0; 5725 5726 spin_unlock(&block_rsv->lock); 5727 spin_unlock(&sinfo->lock); 5728 } 5729 5730 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5731 { 5732 struct btrfs_space_info *space_info; 5733 5734 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5735 fs_info->chunk_block_rsv.space_info = space_info; 5736 5737 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5738 fs_info->global_block_rsv.space_info = space_info; 5739 fs_info->delalloc_block_rsv.space_info = space_info; 5740 fs_info->trans_block_rsv.space_info = space_info; 5741 fs_info->empty_block_rsv.space_info = space_info; 5742 fs_info->delayed_block_rsv.space_info = space_info; 5743 5744 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5745 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5746 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5747 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5748 if (fs_info->quota_root) 5749 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5750 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5751 5752 update_global_block_rsv(fs_info); 5753 } 5754 5755 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5756 { 5757 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5758 (u64)-1); 5759 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5760 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5761 WARN_ON(fs_info->trans_block_rsv.size > 0); 5762 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5763 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5764 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5765 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5766 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5767 } 5768 5769 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5770 struct btrfs_fs_info *fs_info) 5771 { 5772 if (!trans->block_rsv) 5773 return; 5774 5775 if (!trans->bytes_reserved) 5776 return; 5777 5778 trace_btrfs_space_reservation(fs_info, "transaction", 5779 trans->transid, trans->bytes_reserved, 0); 5780 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5781 trans->bytes_reserved); 5782 trans->bytes_reserved = 0; 5783 } 5784 5785 /* 5786 * To be called after all the new block groups attached to the transaction 5787 * handle have been created (btrfs_create_pending_block_groups()). 5788 */ 5789 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5790 { 5791 struct btrfs_fs_info *fs_info = trans->fs_info; 5792 5793 if (!trans->chunk_bytes_reserved) 5794 return; 5795 5796 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5797 5798 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5799 trans->chunk_bytes_reserved); 5800 trans->chunk_bytes_reserved = 0; 5801 } 5802 5803 /* Can only return 0 or -ENOSPC */ 5804 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5805 struct btrfs_inode *inode) 5806 { 5807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5808 struct btrfs_root *root = inode->root; 5809 /* 5810 * We always use trans->block_rsv here as we will have reserved space 5811 * for our orphan when starting the transaction, using get_block_rsv() 5812 * here will sometimes make us choose the wrong block rsv as we could be 5813 * doing a reloc inode for a non refcounted root. 5814 */ 5815 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5816 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5817 5818 /* 5819 * We need to hold space in order to delete our orphan item once we've 5820 * added it, so this takes the reservation so we can release it later 5821 * when we are truly done with the orphan item. 5822 */ 5823 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5824 5825 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5826 num_bytes, 1); 5827 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5828 } 5829 5830 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5831 { 5832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5833 struct btrfs_root *root = inode->root; 5834 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5835 5836 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5837 num_bytes, 0); 5838 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5839 } 5840 5841 /* 5842 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5843 * root: the root of the parent directory 5844 * rsv: block reservation 5845 * items: the number of items that we need do reservation 5846 * qgroup_reserved: used to return the reserved size in qgroup 5847 * 5848 * This function is used to reserve the space for snapshot/subvolume 5849 * creation and deletion. Those operations are different with the 5850 * common file/directory operations, they change two fs/file trees 5851 * and root tree, the number of items that the qgroup reserves is 5852 * different with the free space reservation. So we can not use 5853 * the space reservation mechanism in start_transaction(). 5854 */ 5855 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5856 struct btrfs_block_rsv *rsv, 5857 int items, 5858 u64 *qgroup_reserved, 5859 bool use_global_rsv) 5860 { 5861 u64 num_bytes; 5862 int ret; 5863 struct btrfs_fs_info *fs_info = root->fs_info; 5864 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5865 5866 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5867 /* One for parent inode, two for dir entries */ 5868 num_bytes = 3 * fs_info->nodesize; 5869 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true); 5870 if (ret) 5871 return ret; 5872 } else { 5873 num_bytes = 0; 5874 } 5875 5876 *qgroup_reserved = num_bytes; 5877 5878 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5879 rsv->space_info = __find_space_info(fs_info, 5880 BTRFS_BLOCK_GROUP_METADATA); 5881 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5882 BTRFS_RESERVE_FLUSH_ALL); 5883 5884 if (ret == -ENOSPC && use_global_rsv) 5885 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5886 5887 if (ret && *qgroup_reserved) 5888 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5889 5890 return ret; 5891 } 5892 5893 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 5894 struct btrfs_block_rsv *rsv) 5895 { 5896 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5897 } 5898 5899 /** 5900 * drop_outstanding_extent - drop an outstanding extent 5901 * @inode: the inode we're dropping the extent for 5902 * @num_bytes: the number of bytes we're releasing. 5903 * 5904 * This is called when we are freeing up an outstanding extent, either called 5905 * after an error or after an extent is written. This will return the number of 5906 * reserved extents that need to be freed. This must be called with 5907 * BTRFS_I(inode)->lock held. 5908 */ 5909 static unsigned drop_outstanding_extent(struct btrfs_inode *inode, 5910 u64 num_bytes) 5911 { 5912 unsigned drop_inode_space = 0; 5913 unsigned dropped_extents = 0; 5914 unsigned num_extents; 5915 5916 num_extents = count_max_extents(num_bytes); 5917 ASSERT(num_extents); 5918 ASSERT(inode->outstanding_extents >= num_extents); 5919 inode->outstanding_extents -= num_extents; 5920 5921 if (inode->outstanding_extents == 0 && 5922 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5923 &inode->runtime_flags)) 5924 drop_inode_space = 1; 5925 5926 /* 5927 * If we have more or the same amount of outstanding extents than we have 5928 * reserved then we need to leave the reserved extents count alone. 5929 */ 5930 if (inode->outstanding_extents >= inode->reserved_extents) 5931 return drop_inode_space; 5932 5933 dropped_extents = inode->reserved_extents - inode->outstanding_extents; 5934 inode->reserved_extents -= dropped_extents; 5935 return dropped_extents + drop_inode_space; 5936 } 5937 5938 /** 5939 * calc_csum_metadata_size - return the amount of metadata space that must be 5940 * reserved/freed for the given bytes. 5941 * @inode: the inode we're manipulating 5942 * @num_bytes: the number of bytes in question 5943 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5944 * 5945 * This adjusts the number of csum_bytes in the inode and then returns the 5946 * correct amount of metadata that must either be reserved or freed. We 5947 * calculate how many checksums we can fit into one leaf and then divide the 5948 * number of bytes that will need to be checksumed by this value to figure out 5949 * how many checksums will be required. If we are adding bytes then the number 5950 * may go up and we will return the number of additional bytes that must be 5951 * reserved. If it is going down we will return the number of bytes that must 5952 * be freed. 5953 * 5954 * This must be called with BTRFS_I(inode)->lock held. 5955 */ 5956 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes, 5957 int reserve) 5958 { 5959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5960 u64 old_csums, num_csums; 5961 5962 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0) 5963 return 0; 5964 5965 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 5966 if (reserve) 5967 inode->csum_bytes += num_bytes; 5968 else 5969 inode->csum_bytes -= num_bytes; 5970 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 5971 5972 /* No change, no need to reserve more */ 5973 if (old_csums == num_csums) 5974 return 0; 5975 5976 if (reserve) 5977 return btrfs_calc_trans_metadata_size(fs_info, 5978 num_csums - old_csums); 5979 5980 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums); 5981 } 5982 5983 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 5984 { 5985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5986 struct btrfs_root *root = inode->root; 5987 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv; 5988 u64 to_reserve = 0; 5989 u64 csum_bytes; 5990 unsigned nr_extents; 5991 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5992 int ret = 0; 5993 bool delalloc_lock = true; 5994 u64 to_free = 0; 5995 unsigned dropped; 5996 bool release_extra = false; 5997 5998 /* If we are a free space inode we need to not flush since we will be in 5999 * the middle of a transaction commit. We also don't need the delalloc 6000 * mutex since we won't race with anybody. We need this mostly to make 6001 * lockdep shut its filthy mouth. 6002 * 6003 * If we have a transaction open (can happen if we call truncate_block 6004 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6005 */ 6006 if (btrfs_is_free_space_inode(inode)) { 6007 flush = BTRFS_RESERVE_NO_FLUSH; 6008 delalloc_lock = false; 6009 } else if (current->journal_info) { 6010 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6011 } 6012 6013 if (flush != BTRFS_RESERVE_NO_FLUSH && 6014 btrfs_transaction_in_commit(fs_info)) 6015 schedule_timeout(1); 6016 6017 if (delalloc_lock) 6018 mutex_lock(&inode->delalloc_mutex); 6019 6020 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6021 6022 spin_lock(&inode->lock); 6023 nr_extents = count_max_extents(num_bytes); 6024 inode->outstanding_extents += nr_extents; 6025 6026 nr_extents = 0; 6027 if (inode->outstanding_extents > inode->reserved_extents) 6028 nr_extents += inode->outstanding_extents - 6029 inode->reserved_extents; 6030 6031 /* We always want to reserve a slot for updating the inode. */ 6032 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1); 6033 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 6034 csum_bytes = inode->csum_bytes; 6035 spin_unlock(&inode->lock); 6036 6037 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6038 ret = btrfs_qgroup_reserve_meta(root, 6039 nr_extents * fs_info->nodesize, true); 6040 if (ret) 6041 goto out_fail; 6042 } 6043 6044 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 6045 if (unlikely(ret)) { 6046 btrfs_qgroup_free_meta(root, 6047 nr_extents * fs_info->nodesize); 6048 goto out_fail; 6049 } 6050 6051 spin_lock(&inode->lock); 6052 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 6053 &inode->runtime_flags)) { 6054 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1); 6055 release_extra = true; 6056 } 6057 inode->reserved_extents += nr_extents; 6058 spin_unlock(&inode->lock); 6059 6060 if (delalloc_lock) 6061 mutex_unlock(&inode->delalloc_mutex); 6062 6063 if (to_reserve) 6064 trace_btrfs_space_reservation(fs_info, "delalloc", 6065 btrfs_ino(inode), to_reserve, 1); 6066 if (release_extra) 6067 btrfs_block_rsv_release(fs_info, block_rsv, 6068 btrfs_calc_trans_metadata_size(fs_info, 1)); 6069 return 0; 6070 6071 out_fail: 6072 spin_lock(&inode->lock); 6073 dropped = drop_outstanding_extent(inode, num_bytes); 6074 /* 6075 * If the inodes csum_bytes is the same as the original 6076 * csum_bytes then we know we haven't raced with any free()ers 6077 * so we can just reduce our inodes csum bytes and carry on. 6078 */ 6079 if (inode->csum_bytes == csum_bytes) { 6080 calc_csum_metadata_size(inode, num_bytes, 0); 6081 } else { 6082 u64 orig_csum_bytes = inode->csum_bytes; 6083 u64 bytes; 6084 6085 /* 6086 * This is tricky, but first we need to figure out how much we 6087 * freed from any free-ers that occurred during this 6088 * reservation, so we reset ->csum_bytes to the csum_bytes 6089 * before we dropped our lock, and then call the free for the 6090 * number of bytes that were freed while we were trying our 6091 * reservation. 6092 */ 6093 bytes = csum_bytes - inode->csum_bytes; 6094 inode->csum_bytes = csum_bytes; 6095 to_free = calc_csum_metadata_size(inode, bytes, 0); 6096 6097 6098 /* 6099 * Now we need to see how much we would have freed had we not 6100 * been making this reservation and our ->csum_bytes were not 6101 * artificially inflated. 6102 */ 6103 inode->csum_bytes = csum_bytes - num_bytes; 6104 bytes = csum_bytes - orig_csum_bytes; 6105 bytes = calc_csum_metadata_size(inode, bytes, 0); 6106 6107 /* 6108 * Now reset ->csum_bytes to what it should be. If bytes is 6109 * more than to_free then we would have freed more space had we 6110 * not had an artificially high ->csum_bytes, so we need to free 6111 * the remainder. If bytes is the same or less then we don't 6112 * need to do anything, the other free-ers did the correct 6113 * thing. 6114 */ 6115 inode->csum_bytes = orig_csum_bytes - num_bytes; 6116 if (bytes > to_free) 6117 to_free = bytes - to_free; 6118 else 6119 to_free = 0; 6120 } 6121 spin_unlock(&inode->lock); 6122 if (dropped) 6123 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6124 6125 if (to_free) { 6126 btrfs_block_rsv_release(fs_info, block_rsv, to_free); 6127 trace_btrfs_space_reservation(fs_info, "delalloc", 6128 btrfs_ino(inode), to_free, 0); 6129 } 6130 if (delalloc_lock) 6131 mutex_unlock(&inode->delalloc_mutex); 6132 return ret; 6133 } 6134 6135 /** 6136 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6137 * @inode: the inode to release the reservation for 6138 * @num_bytes: the number of bytes we're releasing 6139 * 6140 * This will release the metadata reservation for an inode. This can be called 6141 * once we complete IO for a given set of bytes to release their metadata 6142 * reservations. 6143 */ 6144 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes) 6145 { 6146 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6147 u64 to_free = 0; 6148 unsigned dropped; 6149 6150 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6151 spin_lock(&inode->lock); 6152 dropped = drop_outstanding_extent(inode, num_bytes); 6153 6154 if (num_bytes) 6155 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6156 spin_unlock(&inode->lock); 6157 if (dropped > 0) 6158 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6159 6160 if (btrfs_is_testing(fs_info)) 6161 return; 6162 6163 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode), 6164 to_free, 0); 6165 6166 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free); 6167 } 6168 6169 /** 6170 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6171 * delalloc 6172 * @inode: inode we're writing to 6173 * @start: start range we are writing to 6174 * @len: how long the range we are writing to 6175 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6176 * current reservation. 6177 * 6178 * This will do the following things 6179 * 6180 * o reserve space in data space info for num bytes 6181 * and reserve precious corresponding qgroup space 6182 * (Done in check_data_free_space) 6183 * 6184 * o reserve space for metadata space, based on the number of outstanding 6185 * extents and how much csums will be needed 6186 * also reserve metadata space in a per root over-reserve method. 6187 * o add to the inodes->delalloc_bytes 6188 * o add it to the fs_info's delalloc inodes list. 6189 * (Above 3 all done in delalloc_reserve_metadata) 6190 * 6191 * Return 0 for success 6192 * Return <0 for error(-ENOSPC or -EQUOT) 6193 */ 6194 int btrfs_delalloc_reserve_space(struct inode *inode, 6195 struct extent_changeset **reserved, u64 start, u64 len) 6196 { 6197 int ret; 6198 6199 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6200 if (ret < 0) 6201 return ret; 6202 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6203 if (ret < 0) 6204 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6205 return ret; 6206 } 6207 6208 /** 6209 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6210 * @inode: inode we're releasing space for 6211 * @start: start position of the space already reserved 6212 * @len: the len of the space already reserved 6213 * 6214 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6215 * called in the case that we don't need the metadata AND data reservations 6216 * anymore. So if there is an error or we insert an inline extent. 6217 * 6218 * This function will release the metadata space that was not used and will 6219 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6220 * list if there are no delalloc bytes left. 6221 * Also it will handle the qgroup reserved space. 6222 */ 6223 void btrfs_delalloc_release_space(struct inode *inode, 6224 struct extent_changeset *reserved, u64 start, u64 len) 6225 { 6226 btrfs_delalloc_release_metadata(BTRFS_I(inode), len); 6227 btrfs_free_reserved_data_space(inode, reserved, start, len); 6228 } 6229 6230 static int update_block_group(struct btrfs_trans_handle *trans, 6231 struct btrfs_fs_info *info, u64 bytenr, 6232 u64 num_bytes, int alloc) 6233 { 6234 struct btrfs_block_group_cache *cache = NULL; 6235 u64 total = num_bytes; 6236 u64 old_val; 6237 u64 byte_in_group; 6238 int factor; 6239 6240 /* block accounting for super block */ 6241 spin_lock(&info->delalloc_root_lock); 6242 old_val = btrfs_super_bytes_used(info->super_copy); 6243 if (alloc) 6244 old_val += num_bytes; 6245 else 6246 old_val -= num_bytes; 6247 btrfs_set_super_bytes_used(info->super_copy, old_val); 6248 spin_unlock(&info->delalloc_root_lock); 6249 6250 while (total) { 6251 cache = btrfs_lookup_block_group(info, bytenr); 6252 if (!cache) 6253 return -ENOENT; 6254 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6255 BTRFS_BLOCK_GROUP_RAID1 | 6256 BTRFS_BLOCK_GROUP_RAID10)) 6257 factor = 2; 6258 else 6259 factor = 1; 6260 /* 6261 * If this block group has free space cache written out, we 6262 * need to make sure to load it if we are removing space. This 6263 * is because we need the unpinning stage to actually add the 6264 * space back to the block group, otherwise we will leak space. 6265 */ 6266 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6267 cache_block_group(cache, 1); 6268 6269 byte_in_group = bytenr - cache->key.objectid; 6270 WARN_ON(byte_in_group > cache->key.offset); 6271 6272 spin_lock(&cache->space_info->lock); 6273 spin_lock(&cache->lock); 6274 6275 if (btrfs_test_opt(info, SPACE_CACHE) && 6276 cache->disk_cache_state < BTRFS_DC_CLEAR) 6277 cache->disk_cache_state = BTRFS_DC_CLEAR; 6278 6279 old_val = btrfs_block_group_used(&cache->item); 6280 num_bytes = min(total, cache->key.offset - byte_in_group); 6281 if (alloc) { 6282 old_val += num_bytes; 6283 btrfs_set_block_group_used(&cache->item, old_val); 6284 cache->reserved -= num_bytes; 6285 cache->space_info->bytes_reserved -= num_bytes; 6286 cache->space_info->bytes_used += num_bytes; 6287 cache->space_info->disk_used += num_bytes * factor; 6288 spin_unlock(&cache->lock); 6289 spin_unlock(&cache->space_info->lock); 6290 } else { 6291 old_val -= num_bytes; 6292 btrfs_set_block_group_used(&cache->item, old_val); 6293 cache->pinned += num_bytes; 6294 cache->space_info->bytes_pinned += num_bytes; 6295 cache->space_info->bytes_used -= num_bytes; 6296 cache->space_info->disk_used -= num_bytes * factor; 6297 spin_unlock(&cache->lock); 6298 spin_unlock(&cache->space_info->lock); 6299 6300 trace_btrfs_space_reservation(info, "pinned", 6301 cache->space_info->flags, 6302 num_bytes, 1); 6303 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6304 num_bytes); 6305 set_extent_dirty(info->pinned_extents, 6306 bytenr, bytenr + num_bytes - 1, 6307 GFP_NOFS | __GFP_NOFAIL); 6308 } 6309 6310 spin_lock(&trans->transaction->dirty_bgs_lock); 6311 if (list_empty(&cache->dirty_list)) { 6312 list_add_tail(&cache->dirty_list, 6313 &trans->transaction->dirty_bgs); 6314 trans->transaction->num_dirty_bgs++; 6315 btrfs_get_block_group(cache); 6316 } 6317 spin_unlock(&trans->transaction->dirty_bgs_lock); 6318 6319 /* 6320 * No longer have used bytes in this block group, queue it for 6321 * deletion. We do this after adding the block group to the 6322 * dirty list to avoid races between cleaner kthread and space 6323 * cache writeout. 6324 */ 6325 if (!alloc && old_val == 0) { 6326 spin_lock(&info->unused_bgs_lock); 6327 if (list_empty(&cache->bg_list)) { 6328 btrfs_get_block_group(cache); 6329 list_add_tail(&cache->bg_list, 6330 &info->unused_bgs); 6331 } 6332 spin_unlock(&info->unused_bgs_lock); 6333 } 6334 6335 btrfs_put_block_group(cache); 6336 total -= num_bytes; 6337 bytenr += num_bytes; 6338 } 6339 return 0; 6340 } 6341 6342 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6343 { 6344 struct btrfs_block_group_cache *cache; 6345 u64 bytenr; 6346 6347 spin_lock(&fs_info->block_group_cache_lock); 6348 bytenr = fs_info->first_logical_byte; 6349 spin_unlock(&fs_info->block_group_cache_lock); 6350 6351 if (bytenr < (u64)-1) 6352 return bytenr; 6353 6354 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6355 if (!cache) 6356 return 0; 6357 6358 bytenr = cache->key.objectid; 6359 btrfs_put_block_group(cache); 6360 6361 return bytenr; 6362 } 6363 6364 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6365 struct btrfs_block_group_cache *cache, 6366 u64 bytenr, u64 num_bytes, int reserved) 6367 { 6368 spin_lock(&cache->space_info->lock); 6369 spin_lock(&cache->lock); 6370 cache->pinned += num_bytes; 6371 cache->space_info->bytes_pinned += num_bytes; 6372 if (reserved) { 6373 cache->reserved -= num_bytes; 6374 cache->space_info->bytes_reserved -= num_bytes; 6375 } 6376 spin_unlock(&cache->lock); 6377 spin_unlock(&cache->space_info->lock); 6378 6379 trace_btrfs_space_reservation(fs_info, "pinned", 6380 cache->space_info->flags, num_bytes, 1); 6381 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6382 set_extent_dirty(fs_info->pinned_extents, bytenr, 6383 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6384 return 0; 6385 } 6386 6387 /* 6388 * this function must be called within transaction 6389 */ 6390 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6391 u64 bytenr, u64 num_bytes, int reserved) 6392 { 6393 struct btrfs_block_group_cache *cache; 6394 6395 cache = btrfs_lookup_block_group(fs_info, bytenr); 6396 BUG_ON(!cache); /* Logic error */ 6397 6398 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6399 6400 btrfs_put_block_group(cache); 6401 return 0; 6402 } 6403 6404 /* 6405 * this function must be called within transaction 6406 */ 6407 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6408 u64 bytenr, u64 num_bytes) 6409 { 6410 struct btrfs_block_group_cache *cache; 6411 int ret; 6412 6413 cache = btrfs_lookup_block_group(fs_info, bytenr); 6414 if (!cache) 6415 return -EINVAL; 6416 6417 /* 6418 * pull in the free space cache (if any) so that our pin 6419 * removes the free space from the cache. We have load_only set 6420 * to one because the slow code to read in the free extents does check 6421 * the pinned extents. 6422 */ 6423 cache_block_group(cache, 1); 6424 6425 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6426 6427 /* remove us from the free space cache (if we're there at all) */ 6428 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6429 btrfs_put_block_group(cache); 6430 return ret; 6431 } 6432 6433 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6434 u64 start, u64 num_bytes) 6435 { 6436 int ret; 6437 struct btrfs_block_group_cache *block_group; 6438 struct btrfs_caching_control *caching_ctl; 6439 6440 block_group = btrfs_lookup_block_group(fs_info, start); 6441 if (!block_group) 6442 return -EINVAL; 6443 6444 cache_block_group(block_group, 0); 6445 caching_ctl = get_caching_control(block_group); 6446 6447 if (!caching_ctl) { 6448 /* Logic error */ 6449 BUG_ON(!block_group_cache_done(block_group)); 6450 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6451 } else { 6452 mutex_lock(&caching_ctl->mutex); 6453 6454 if (start >= caching_ctl->progress) { 6455 ret = add_excluded_extent(fs_info, start, num_bytes); 6456 } else if (start + num_bytes <= caching_ctl->progress) { 6457 ret = btrfs_remove_free_space(block_group, 6458 start, num_bytes); 6459 } else { 6460 num_bytes = caching_ctl->progress - start; 6461 ret = btrfs_remove_free_space(block_group, 6462 start, num_bytes); 6463 if (ret) 6464 goto out_lock; 6465 6466 num_bytes = (start + num_bytes) - 6467 caching_ctl->progress; 6468 start = caching_ctl->progress; 6469 ret = add_excluded_extent(fs_info, start, num_bytes); 6470 } 6471 out_lock: 6472 mutex_unlock(&caching_ctl->mutex); 6473 put_caching_control(caching_ctl); 6474 } 6475 btrfs_put_block_group(block_group); 6476 return ret; 6477 } 6478 6479 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6480 struct extent_buffer *eb) 6481 { 6482 struct btrfs_file_extent_item *item; 6483 struct btrfs_key key; 6484 int found_type; 6485 int i; 6486 6487 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6488 return 0; 6489 6490 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6491 btrfs_item_key_to_cpu(eb, &key, i); 6492 if (key.type != BTRFS_EXTENT_DATA_KEY) 6493 continue; 6494 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6495 found_type = btrfs_file_extent_type(eb, item); 6496 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6497 continue; 6498 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6499 continue; 6500 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6501 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6502 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6503 } 6504 6505 return 0; 6506 } 6507 6508 static void 6509 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6510 { 6511 atomic_inc(&bg->reservations); 6512 } 6513 6514 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6515 const u64 start) 6516 { 6517 struct btrfs_block_group_cache *bg; 6518 6519 bg = btrfs_lookup_block_group(fs_info, start); 6520 ASSERT(bg); 6521 if (atomic_dec_and_test(&bg->reservations)) 6522 wake_up_atomic_t(&bg->reservations); 6523 btrfs_put_block_group(bg); 6524 } 6525 6526 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6527 { 6528 schedule(); 6529 return 0; 6530 } 6531 6532 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6533 { 6534 struct btrfs_space_info *space_info = bg->space_info; 6535 6536 ASSERT(bg->ro); 6537 6538 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6539 return; 6540 6541 /* 6542 * Our block group is read only but before we set it to read only, 6543 * some task might have had allocated an extent from it already, but it 6544 * has not yet created a respective ordered extent (and added it to a 6545 * root's list of ordered extents). 6546 * Therefore wait for any task currently allocating extents, since the 6547 * block group's reservations counter is incremented while a read lock 6548 * on the groups' semaphore is held and decremented after releasing 6549 * the read access on that semaphore and creating the ordered extent. 6550 */ 6551 down_write(&space_info->groups_sem); 6552 up_write(&space_info->groups_sem); 6553 6554 wait_on_atomic_t(&bg->reservations, 6555 btrfs_wait_bg_reservations_atomic_t, 6556 TASK_UNINTERRUPTIBLE); 6557 } 6558 6559 /** 6560 * btrfs_add_reserved_bytes - update the block_group and space info counters 6561 * @cache: The cache we are manipulating 6562 * @ram_bytes: The number of bytes of file content, and will be same to 6563 * @num_bytes except for the compress path. 6564 * @num_bytes: The number of bytes in question 6565 * @delalloc: The blocks are allocated for the delalloc write 6566 * 6567 * This is called by the allocator when it reserves space. If this is a 6568 * reservation and the block group has become read only we cannot make the 6569 * reservation and return -EAGAIN, otherwise this function always succeeds. 6570 */ 6571 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6572 u64 ram_bytes, u64 num_bytes, int delalloc) 6573 { 6574 struct btrfs_space_info *space_info = cache->space_info; 6575 int ret = 0; 6576 6577 spin_lock(&space_info->lock); 6578 spin_lock(&cache->lock); 6579 if (cache->ro) { 6580 ret = -EAGAIN; 6581 } else { 6582 cache->reserved += num_bytes; 6583 space_info->bytes_reserved += num_bytes; 6584 6585 trace_btrfs_space_reservation(cache->fs_info, 6586 "space_info", space_info->flags, 6587 ram_bytes, 0); 6588 space_info->bytes_may_use -= ram_bytes; 6589 if (delalloc) 6590 cache->delalloc_bytes += num_bytes; 6591 } 6592 spin_unlock(&cache->lock); 6593 spin_unlock(&space_info->lock); 6594 return ret; 6595 } 6596 6597 /** 6598 * btrfs_free_reserved_bytes - update the block_group and space info counters 6599 * @cache: The cache we are manipulating 6600 * @num_bytes: The number of bytes in question 6601 * @delalloc: The blocks are allocated for the delalloc write 6602 * 6603 * This is called by somebody who is freeing space that was never actually used 6604 * on disk. For example if you reserve some space for a new leaf in transaction 6605 * A and before transaction A commits you free that leaf, you call this with 6606 * reserve set to 0 in order to clear the reservation. 6607 */ 6608 6609 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6610 u64 num_bytes, int delalloc) 6611 { 6612 struct btrfs_space_info *space_info = cache->space_info; 6613 int ret = 0; 6614 6615 spin_lock(&space_info->lock); 6616 spin_lock(&cache->lock); 6617 if (cache->ro) 6618 space_info->bytes_readonly += num_bytes; 6619 cache->reserved -= num_bytes; 6620 space_info->bytes_reserved -= num_bytes; 6621 6622 if (delalloc) 6623 cache->delalloc_bytes -= num_bytes; 6624 spin_unlock(&cache->lock); 6625 spin_unlock(&space_info->lock); 6626 return ret; 6627 } 6628 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6629 { 6630 struct btrfs_caching_control *next; 6631 struct btrfs_caching_control *caching_ctl; 6632 struct btrfs_block_group_cache *cache; 6633 6634 down_write(&fs_info->commit_root_sem); 6635 6636 list_for_each_entry_safe(caching_ctl, next, 6637 &fs_info->caching_block_groups, list) { 6638 cache = caching_ctl->block_group; 6639 if (block_group_cache_done(cache)) { 6640 cache->last_byte_to_unpin = (u64)-1; 6641 list_del_init(&caching_ctl->list); 6642 put_caching_control(caching_ctl); 6643 } else { 6644 cache->last_byte_to_unpin = caching_ctl->progress; 6645 } 6646 } 6647 6648 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6649 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6650 else 6651 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6652 6653 up_write(&fs_info->commit_root_sem); 6654 6655 update_global_block_rsv(fs_info); 6656 } 6657 6658 /* 6659 * Returns the free cluster for the given space info and sets empty_cluster to 6660 * what it should be based on the mount options. 6661 */ 6662 static struct btrfs_free_cluster * 6663 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6664 struct btrfs_space_info *space_info, u64 *empty_cluster) 6665 { 6666 struct btrfs_free_cluster *ret = NULL; 6667 bool ssd = btrfs_test_opt(fs_info, SSD); 6668 6669 *empty_cluster = 0; 6670 if (btrfs_mixed_space_info(space_info)) 6671 return ret; 6672 6673 if (ssd) 6674 *empty_cluster = SZ_2M; 6675 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6676 ret = &fs_info->meta_alloc_cluster; 6677 if (!ssd) 6678 *empty_cluster = SZ_64K; 6679 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6680 ret = &fs_info->data_alloc_cluster; 6681 } 6682 6683 return ret; 6684 } 6685 6686 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6687 u64 start, u64 end, 6688 const bool return_free_space) 6689 { 6690 struct btrfs_block_group_cache *cache = NULL; 6691 struct btrfs_space_info *space_info; 6692 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6693 struct btrfs_free_cluster *cluster = NULL; 6694 u64 len; 6695 u64 total_unpinned = 0; 6696 u64 empty_cluster = 0; 6697 bool readonly; 6698 6699 while (start <= end) { 6700 readonly = false; 6701 if (!cache || 6702 start >= cache->key.objectid + cache->key.offset) { 6703 if (cache) 6704 btrfs_put_block_group(cache); 6705 total_unpinned = 0; 6706 cache = btrfs_lookup_block_group(fs_info, start); 6707 BUG_ON(!cache); /* Logic error */ 6708 6709 cluster = fetch_cluster_info(fs_info, 6710 cache->space_info, 6711 &empty_cluster); 6712 empty_cluster <<= 1; 6713 } 6714 6715 len = cache->key.objectid + cache->key.offset - start; 6716 len = min(len, end + 1 - start); 6717 6718 if (start < cache->last_byte_to_unpin) { 6719 len = min(len, cache->last_byte_to_unpin - start); 6720 if (return_free_space) 6721 btrfs_add_free_space(cache, start, len); 6722 } 6723 6724 start += len; 6725 total_unpinned += len; 6726 space_info = cache->space_info; 6727 6728 /* 6729 * If this space cluster has been marked as fragmented and we've 6730 * unpinned enough in this block group to potentially allow a 6731 * cluster to be created inside of it go ahead and clear the 6732 * fragmented check. 6733 */ 6734 if (cluster && cluster->fragmented && 6735 total_unpinned > empty_cluster) { 6736 spin_lock(&cluster->lock); 6737 cluster->fragmented = 0; 6738 spin_unlock(&cluster->lock); 6739 } 6740 6741 spin_lock(&space_info->lock); 6742 spin_lock(&cache->lock); 6743 cache->pinned -= len; 6744 space_info->bytes_pinned -= len; 6745 6746 trace_btrfs_space_reservation(fs_info, "pinned", 6747 space_info->flags, len, 0); 6748 space_info->max_extent_size = 0; 6749 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6750 if (cache->ro) { 6751 space_info->bytes_readonly += len; 6752 readonly = true; 6753 } 6754 spin_unlock(&cache->lock); 6755 if (!readonly && return_free_space && 6756 global_rsv->space_info == space_info) { 6757 u64 to_add = len; 6758 WARN_ON(!return_free_space); 6759 spin_lock(&global_rsv->lock); 6760 if (!global_rsv->full) { 6761 to_add = min(len, global_rsv->size - 6762 global_rsv->reserved); 6763 global_rsv->reserved += to_add; 6764 space_info->bytes_may_use += to_add; 6765 if (global_rsv->reserved >= global_rsv->size) 6766 global_rsv->full = 1; 6767 trace_btrfs_space_reservation(fs_info, 6768 "space_info", 6769 space_info->flags, 6770 to_add, 1); 6771 len -= to_add; 6772 } 6773 spin_unlock(&global_rsv->lock); 6774 /* Add to any tickets we may have */ 6775 if (len) 6776 space_info_add_new_bytes(fs_info, space_info, 6777 len); 6778 } 6779 spin_unlock(&space_info->lock); 6780 } 6781 6782 if (cache) 6783 btrfs_put_block_group(cache); 6784 return 0; 6785 } 6786 6787 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6788 struct btrfs_fs_info *fs_info) 6789 { 6790 struct btrfs_block_group_cache *block_group, *tmp; 6791 struct list_head *deleted_bgs; 6792 struct extent_io_tree *unpin; 6793 u64 start; 6794 u64 end; 6795 int ret; 6796 6797 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6798 unpin = &fs_info->freed_extents[1]; 6799 else 6800 unpin = &fs_info->freed_extents[0]; 6801 6802 while (!trans->aborted) { 6803 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6804 ret = find_first_extent_bit(unpin, 0, &start, &end, 6805 EXTENT_DIRTY, NULL); 6806 if (ret) { 6807 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6808 break; 6809 } 6810 6811 if (btrfs_test_opt(fs_info, DISCARD)) 6812 ret = btrfs_discard_extent(fs_info, start, 6813 end + 1 - start, NULL); 6814 6815 clear_extent_dirty(unpin, start, end); 6816 unpin_extent_range(fs_info, start, end, true); 6817 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6818 cond_resched(); 6819 } 6820 6821 /* 6822 * Transaction is finished. We don't need the lock anymore. We 6823 * do need to clean up the block groups in case of a transaction 6824 * abort. 6825 */ 6826 deleted_bgs = &trans->transaction->deleted_bgs; 6827 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6828 u64 trimmed = 0; 6829 6830 ret = -EROFS; 6831 if (!trans->aborted) 6832 ret = btrfs_discard_extent(fs_info, 6833 block_group->key.objectid, 6834 block_group->key.offset, 6835 &trimmed); 6836 6837 list_del_init(&block_group->bg_list); 6838 btrfs_put_block_group_trimming(block_group); 6839 btrfs_put_block_group(block_group); 6840 6841 if (ret) { 6842 const char *errstr = btrfs_decode_error(ret); 6843 btrfs_warn(fs_info, 6844 "Discard failed while removing blockgroup: errno=%d %s\n", 6845 ret, errstr); 6846 } 6847 } 6848 6849 return 0; 6850 } 6851 6852 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6853 struct btrfs_fs_info *info, 6854 struct btrfs_delayed_ref_node *node, u64 parent, 6855 u64 root_objectid, u64 owner_objectid, 6856 u64 owner_offset, int refs_to_drop, 6857 struct btrfs_delayed_extent_op *extent_op) 6858 { 6859 struct btrfs_key key; 6860 struct btrfs_path *path; 6861 struct btrfs_root *extent_root = info->extent_root; 6862 struct extent_buffer *leaf; 6863 struct btrfs_extent_item *ei; 6864 struct btrfs_extent_inline_ref *iref; 6865 int ret; 6866 int is_data; 6867 int extent_slot = 0; 6868 int found_extent = 0; 6869 int num_to_del = 1; 6870 u32 item_size; 6871 u64 refs; 6872 u64 bytenr = node->bytenr; 6873 u64 num_bytes = node->num_bytes; 6874 int last_ref = 0; 6875 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6876 6877 path = btrfs_alloc_path(); 6878 if (!path) 6879 return -ENOMEM; 6880 6881 path->reada = READA_FORWARD; 6882 path->leave_spinning = 1; 6883 6884 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6885 BUG_ON(!is_data && refs_to_drop != 1); 6886 6887 if (is_data) 6888 skinny_metadata = 0; 6889 6890 ret = lookup_extent_backref(trans, info, path, &iref, 6891 bytenr, num_bytes, parent, 6892 root_objectid, owner_objectid, 6893 owner_offset); 6894 if (ret == 0) { 6895 extent_slot = path->slots[0]; 6896 while (extent_slot >= 0) { 6897 btrfs_item_key_to_cpu(path->nodes[0], &key, 6898 extent_slot); 6899 if (key.objectid != bytenr) 6900 break; 6901 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6902 key.offset == num_bytes) { 6903 found_extent = 1; 6904 break; 6905 } 6906 if (key.type == BTRFS_METADATA_ITEM_KEY && 6907 key.offset == owner_objectid) { 6908 found_extent = 1; 6909 break; 6910 } 6911 if (path->slots[0] - extent_slot > 5) 6912 break; 6913 extent_slot--; 6914 } 6915 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6916 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6917 if (found_extent && item_size < sizeof(*ei)) 6918 found_extent = 0; 6919 #endif 6920 if (!found_extent) { 6921 BUG_ON(iref); 6922 ret = remove_extent_backref(trans, info, path, NULL, 6923 refs_to_drop, 6924 is_data, &last_ref); 6925 if (ret) { 6926 btrfs_abort_transaction(trans, ret); 6927 goto out; 6928 } 6929 btrfs_release_path(path); 6930 path->leave_spinning = 1; 6931 6932 key.objectid = bytenr; 6933 key.type = BTRFS_EXTENT_ITEM_KEY; 6934 key.offset = num_bytes; 6935 6936 if (!is_data && skinny_metadata) { 6937 key.type = BTRFS_METADATA_ITEM_KEY; 6938 key.offset = owner_objectid; 6939 } 6940 6941 ret = btrfs_search_slot(trans, extent_root, 6942 &key, path, -1, 1); 6943 if (ret > 0 && skinny_metadata && path->slots[0]) { 6944 /* 6945 * Couldn't find our skinny metadata item, 6946 * see if we have ye olde extent item. 6947 */ 6948 path->slots[0]--; 6949 btrfs_item_key_to_cpu(path->nodes[0], &key, 6950 path->slots[0]); 6951 if (key.objectid == bytenr && 6952 key.type == BTRFS_EXTENT_ITEM_KEY && 6953 key.offset == num_bytes) 6954 ret = 0; 6955 } 6956 6957 if (ret > 0 && skinny_metadata) { 6958 skinny_metadata = false; 6959 key.objectid = bytenr; 6960 key.type = BTRFS_EXTENT_ITEM_KEY; 6961 key.offset = num_bytes; 6962 btrfs_release_path(path); 6963 ret = btrfs_search_slot(trans, extent_root, 6964 &key, path, -1, 1); 6965 } 6966 6967 if (ret) { 6968 btrfs_err(info, 6969 "umm, got %d back from search, was looking for %llu", 6970 ret, bytenr); 6971 if (ret > 0) 6972 btrfs_print_leaf(info, path->nodes[0]); 6973 } 6974 if (ret < 0) { 6975 btrfs_abort_transaction(trans, ret); 6976 goto out; 6977 } 6978 extent_slot = path->slots[0]; 6979 } 6980 } else if (WARN_ON(ret == -ENOENT)) { 6981 btrfs_print_leaf(info, path->nodes[0]); 6982 btrfs_err(info, 6983 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6984 bytenr, parent, root_objectid, owner_objectid, 6985 owner_offset); 6986 btrfs_abort_transaction(trans, ret); 6987 goto out; 6988 } else { 6989 btrfs_abort_transaction(trans, ret); 6990 goto out; 6991 } 6992 6993 leaf = path->nodes[0]; 6994 item_size = btrfs_item_size_nr(leaf, extent_slot); 6995 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6996 if (item_size < sizeof(*ei)) { 6997 BUG_ON(found_extent || extent_slot != path->slots[0]); 6998 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 6999 0); 7000 if (ret < 0) { 7001 btrfs_abort_transaction(trans, ret); 7002 goto out; 7003 } 7004 7005 btrfs_release_path(path); 7006 path->leave_spinning = 1; 7007 7008 key.objectid = bytenr; 7009 key.type = BTRFS_EXTENT_ITEM_KEY; 7010 key.offset = num_bytes; 7011 7012 ret = btrfs_search_slot(trans, extent_root, &key, path, 7013 -1, 1); 7014 if (ret) { 7015 btrfs_err(info, 7016 "umm, got %d back from search, was looking for %llu", 7017 ret, bytenr); 7018 btrfs_print_leaf(info, path->nodes[0]); 7019 } 7020 if (ret < 0) { 7021 btrfs_abort_transaction(trans, ret); 7022 goto out; 7023 } 7024 7025 extent_slot = path->slots[0]; 7026 leaf = path->nodes[0]; 7027 item_size = btrfs_item_size_nr(leaf, extent_slot); 7028 } 7029 #endif 7030 BUG_ON(item_size < sizeof(*ei)); 7031 ei = btrfs_item_ptr(leaf, extent_slot, 7032 struct btrfs_extent_item); 7033 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7034 key.type == BTRFS_EXTENT_ITEM_KEY) { 7035 struct btrfs_tree_block_info *bi; 7036 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7037 bi = (struct btrfs_tree_block_info *)(ei + 1); 7038 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7039 } 7040 7041 refs = btrfs_extent_refs(leaf, ei); 7042 if (refs < refs_to_drop) { 7043 btrfs_err(info, 7044 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7045 refs_to_drop, refs, bytenr); 7046 ret = -EINVAL; 7047 btrfs_abort_transaction(trans, ret); 7048 goto out; 7049 } 7050 refs -= refs_to_drop; 7051 7052 if (refs > 0) { 7053 if (extent_op) 7054 __run_delayed_extent_op(extent_op, leaf, ei); 7055 /* 7056 * In the case of inline back ref, reference count will 7057 * be updated by remove_extent_backref 7058 */ 7059 if (iref) { 7060 BUG_ON(!found_extent); 7061 } else { 7062 btrfs_set_extent_refs(leaf, ei, refs); 7063 btrfs_mark_buffer_dirty(leaf); 7064 } 7065 if (found_extent) { 7066 ret = remove_extent_backref(trans, info, path, 7067 iref, refs_to_drop, 7068 is_data, &last_ref); 7069 if (ret) { 7070 btrfs_abort_transaction(trans, ret); 7071 goto out; 7072 } 7073 } 7074 } else { 7075 if (found_extent) { 7076 BUG_ON(is_data && refs_to_drop != 7077 extent_data_ref_count(path, iref)); 7078 if (iref) { 7079 BUG_ON(path->slots[0] != extent_slot); 7080 } else { 7081 BUG_ON(path->slots[0] != extent_slot + 1); 7082 path->slots[0] = extent_slot; 7083 num_to_del = 2; 7084 } 7085 } 7086 7087 last_ref = 1; 7088 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7089 num_to_del); 7090 if (ret) { 7091 btrfs_abort_transaction(trans, ret); 7092 goto out; 7093 } 7094 btrfs_release_path(path); 7095 7096 if (is_data) { 7097 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7098 if (ret) { 7099 btrfs_abort_transaction(trans, ret); 7100 goto out; 7101 } 7102 } 7103 7104 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7105 if (ret) { 7106 btrfs_abort_transaction(trans, ret); 7107 goto out; 7108 } 7109 7110 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7111 if (ret) { 7112 btrfs_abort_transaction(trans, ret); 7113 goto out; 7114 } 7115 } 7116 btrfs_release_path(path); 7117 7118 out: 7119 btrfs_free_path(path); 7120 return ret; 7121 } 7122 7123 /* 7124 * when we free an block, it is possible (and likely) that we free the last 7125 * delayed ref for that extent as well. This searches the delayed ref tree for 7126 * a given extent, and if there are no other delayed refs to be processed, it 7127 * removes it from the tree. 7128 */ 7129 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7130 u64 bytenr) 7131 { 7132 struct btrfs_delayed_ref_head *head; 7133 struct btrfs_delayed_ref_root *delayed_refs; 7134 int ret = 0; 7135 7136 delayed_refs = &trans->transaction->delayed_refs; 7137 spin_lock(&delayed_refs->lock); 7138 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7139 if (!head) 7140 goto out_delayed_unlock; 7141 7142 spin_lock(&head->lock); 7143 if (!list_empty(&head->ref_list)) 7144 goto out; 7145 7146 if (head->extent_op) { 7147 if (!head->must_insert_reserved) 7148 goto out; 7149 btrfs_free_delayed_extent_op(head->extent_op); 7150 head->extent_op = NULL; 7151 } 7152 7153 /* 7154 * waiting for the lock here would deadlock. If someone else has it 7155 * locked they are already in the process of dropping it anyway 7156 */ 7157 if (!mutex_trylock(&head->mutex)) 7158 goto out; 7159 7160 /* 7161 * at this point we have a head with no other entries. Go 7162 * ahead and process it. 7163 */ 7164 head->node.in_tree = 0; 7165 rb_erase(&head->href_node, &delayed_refs->href_root); 7166 7167 atomic_dec(&delayed_refs->num_entries); 7168 7169 /* 7170 * we don't take a ref on the node because we're removing it from the 7171 * tree, so we just steal the ref the tree was holding. 7172 */ 7173 delayed_refs->num_heads--; 7174 if (head->processing == 0) 7175 delayed_refs->num_heads_ready--; 7176 head->processing = 0; 7177 spin_unlock(&head->lock); 7178 spin_unlock(&delayed_refs->lock); 7179 7180 BUG_ON(head->extent_op); 7181 if (head->must_insert_reserved) 7182 ret = 1; 7183 7184 mutex_unlock(&head->mutex); 7185 btrfs_put_delayed_ref(&head->node); 7186 return ret; 7187 out: 7188 spin_unlock(&head->lock); 7189 7190 out_delayed_unlock: 7191 spin_unlock(&delayed_refs->lock); 7192 return 0; 7193 } 7194 7195 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7196 struct btrfs_root *root, 7197 struct extent_buffer *buf, 7198 u64 parent, int last_ref) 7199 { 7200 struct btrfs_fs_info *fs_info = root->fs_info; 7201 int pin = 1; 7202 int ret; 7203 7204 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7205 int old_ref_mod, new_ref_mod; 7206 7207 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7208 buf->len, parent, 7209 root->root_key.objectid, 7210 btrfs_header_level(buf), 7211 BTRFS_DROP_DELAYED_REF, NULL, 7212 &old_ref_mod, &new_ref_mod); 7213 BUG_ON(ret); /* -ENOMEM */ 7214 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7215 } 7216 7217 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7218 struct btrfs_block_group_cache *cache; 7219 7220 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7221 ret = check_ref_cleanup(trans, buf->start); 7222 if (!ret) 7223 goto out; 7224 } 7225 7226 pin = 0; 7227 cache = btrfs_lookup_block_group(fs_info, buf->start); 7228 7229 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7230 pin_down_extent(fs_info, cache, buf->start, 7231 buf->len, 1); 7232 btrfs_put_block_group(cache); 7233 goto out; 7234 } 7235 7236 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7237 7238 btrfs_add_free_space(cache, buf->start, buf->len); 7239 btrfs_free_reserved_bytes(cache, buf->len, 0); 7240 btrfs_put_block_group(cache); 7241 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7242 } 7243 out: 7244 if (pin) 7245 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7246 root->root_key.objectid); 7247 7248 if (last_ref) { 7249 /* 7250 * Deleting the buffer, clear the corrupt flag since it doesn't 7251 * matter anymore. 7252 */ 7253 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7254 } 7255 } 7256 7257 /* Can return -ENOMEM */ 7258 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7259 struct btrfs_fs_info *fs_info, 7260 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7261 u64 owner, u64 offset) 7262 { 7263 int old_ref_mod, new_ref_mod; 7264 int ret; 7265 7266 if (btrfs_is_testing(fs_info)) 7267 return 0; 7268 7269 7270 /* 7271 * tree log blocks never actually go into the extent allocation 7272 * tree, just update pinning info and exit early. 7273 */ 7274 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7275 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7276 /* unlocks the pinned mutex */ 7277 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7278 old_ref_mod = new_ref_mod = 0; 7279 ret = 0; 7280 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7281 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7282 num_bytes, parent, 7283 root_objectid, (int)owner, 7284 BTRFS_DROP_DELAYED_REF, NULL, 7285 &old_ref_mod, &new_ref_mod); 7286 } else { 7287 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7288 num_bytes, parent, 7289 root_objectid, owner, offset, 7290 0, BTRFS_DROP_DELAYED_REF, 7291 &old_ref_mod, &new_ref_mod); 7292 } 7293 7294 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7295 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7296 7297 return ret; 7298 } 7299 7300 /* 7301 * when we wait for progress in the block group caching, its because 7302 * our allocation attempt failed at least once. So, we must sleep 7303 * and let some progress happen before we try again. 7304 * 7305 * This function will sleep at least once waiting for new free space to 7306 * show up, and then it will check the block group free space numbers 7307 * for our min num_bytes. Another option is to have it go ahead 7308 * and look in the rbtree for a free extent of a given size, but this 7309 * is a good start. 7310 * 7311 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7312 * any of the information in this block group. 7313 */ 7314 static noinline void 7315 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7316 u64 num_bytes) 7317 { 7318 struct btrfs_caching_control *caching_ctl; 7319 7320 caching_ctl = get_caching_control(cache); 7321 if (!caching_ctl) 7322 return; 7323 7324 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7325 (cache->free_space_ctl->free_space >= num_bytes)); 7326 7327 put_caching_control(caching_ctl); 7328 } 7329 7330 static noinline int 7331 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7332 { 7333 struct btrfs_caching_control *caching_ctl; 7334 int ret = 0; 7335 7336 caching_ctl = get_caching_control(cache); 7337 if (!caching_ctl) 7338 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7339 7340 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7341 if (cache->cached == BTRFS_CACHE_ERROR) 7342 ret = -EIO; 7343 put_caching_control(caching_ctl); 7344 return ret; 7345 } 7346 7347 int __get_raid_index(u64 flags) 7348 { 7349 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7350 return BTRFS_RAID_RAID10; 7351 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7352 return BTRFS_RAID_RAID1; 7353 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7354 return BTRFS_RAID_DUP; 7355 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7356 return BTRFS_RAID_RAID0; 7357 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7358 return BTRFS_RAID_RAID5; 7359 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7360 return BTRFS_RAID_RAID6; 7361 7362 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7363 } 7364 7365 int get_block_group_index(struct btrfs_block_group_cache *cache) 7366 { 7367 return __get_raid_index(cache->flags); 7368 } 7369 7370 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7371 [BTRFS_RAID_RAID10] = "raid10", 7372 [BTRFS_RAID_RAID1] = "raid1", 7373 [BTRFS_RAID_DUP] = "dup", 7374 [BTRFS_RAID_RAID0] = "raid0", 7375 [BTRFS_RAID_SINGLE] = "single", 7376 [BTRFS_RAID_RAID5] = "raid5", 7377 [BTRFS_RAID_RAID6] = "raid6", 7378 }; 7379 7380 static const char *get_raid_name(enum btrfs_raid_types type) 7381 { 7382 if (type >= BTRFS_NR_RAID_TYPES) 7383 return NULL; 7384 7385 return btrfs_raid_type_names[type]; 7386 } 7387 7388 enum btrfs_loop_type { 7389 LOOP_CACHING_NOWAIT = 0, 7390 LOOP_CACHING_WAIT = 1, 7391 LOOP_ALLOC_CHUNK = 2, 7392 LOOP_NO_EMPTY_SIZE = 3, 7393 }; 7394 7395 static inline void 7396 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7397 int delalloc) 7398 { 7399 if (delalloc) 7400 down_read(&cache->data_rwsem); 7401 } 7402 7403 static inline void 7404 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7405 int delalloc) 7406 { 7407 btrfs_get_block_group(cache); 7408 if (delalloc) 7409 down_read(&cache->data_rwsem); 7410 } 7411 7412 static struct btrfs_block_group_cache * 7413 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7414 struct btrfs_free_cluster *cluster, 7415 int delalloc) 7416 { 7417 struct btrfs_block_group_cache *used_bg = NULL; 7418 7419 spin_lock(&cluster->refill_lock); 7420 while (1) { 7421 used_bg = cluster->block_group; 7422 if (!used_bg) 7423 return NULL; 7424 7425 if (used_bg == block_group) 7426 return used_bg; 7427 7428 btrfs_get_block_group(used_bg); 7429 7430 if (!delalloc) 7431 return used_bg; 7432 7433 if (down_read_trylock(&used_bg->data_rwsem)) 7434 return used_bg; 7435 7436 spin_unlock(&cluster->refill_lock); 7437 7438 /* We should only have one-level nested. */ 7439 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7440 7441 spin_lock(&cluster->refill_lock); 7442 if (used_bg == cluster->block_group) 7443 return used_bg; 7444 7445 up_read(&used_bg->data_rwsem); 7446 btrfs_put_block_group(used_bg); 7447 } 7448 } 7449 7450 static inline void 7451 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7452 int delalloc) 7453 { 7454 if (delalloc) 7455 up_read(&cache->data_rwsem); 7456 btrfs_put_block_group(cache); 7457 } 7458 7459 /* 7460 * walks the btree of allocated extents and find a hole of a given size. 7461 * The key ins is changed to record the hole: 7462 * ins->objectid == start position 7463 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7464 * ins->offset == the size of the hole. 7465 * Any available blocks before search_start are skipped. 7466 * 7467 * If there is no suitable free space, we will record the max size of 7468 * the free space extent currently. 7469 */ 7470 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7471 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7472 u64 hint_byte, struct btrfs_key *ins, 7473 u64 flags, int delalloc) 7474 { 7475 int ret = 0; 7476 struct btrfs_root *root = fs_info->extent_root; 7477 struct btrfs_free_cluster *last_ptr = NULL; 7478 struct btrfs_block_group_cache *block_group = NULL; 7479 u64 search_start = 0; 7480 u64 max_extent_size = 0; 7481 u64 empty_cluster = 0; 7482 struct btrfs_space_info *space_info; 7483 int loop = 0; 7484 int index = __get_raid_index(flags); 7485 bool failed_cluster_refill = false; 7486 bool failed_alloc = false; 7487 bool use_cluster = true; 7488 bool have_caching_bg = false; 7489 bool orig_have_caching_bg = false; 7490 bool full_search = false; 7491 7492 WARN_ON(num_bytes < fs_info->sectorsize); 7493 ins->type = BTRFS_EXTENT_ITEM_KEY; 7494 ins->objectid = 0; 7495 ins->offset = 0; 7496 7497 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7498 7499 space_info = __find_space_info(fs_info, flags); 7500 if (!space_info) { 7501 btrfs_err(fs_info, "No space info for %llu", flags); 7502 return -ENOSPC; 7503 } 7504 7505 /* 7506 * If our free space is heavily fragmented we may not be able to make 7507 * big contiguous allocations, so instead of doing the expensive search 7508 * for free space, simply return ENOSPC with our max_extent_size so we 7509 * can go ahead and search for a more manageable chunk. 7510 * 7511 * If our max_extent_size is large enough for our allocation simply 7512 * disable clustering since we will likely not be able to find enough 7513 * space to create a cluster and induce latency trying. 7514 */ 7515 if (unlikely(space_info->max_extent_size)) { 7516 spin_lock(&space_info->lock); 7517 if (space_info->max_extent_size && 7518 num_bytes > space_info->max_extent_size) { 7519 ins->offset = space_info->max_extent_size; 7520 spin_unlock(&space_info->lock); 7521 return -ENOSPC; 7522 } else if (space_info->max_extent_size) { 7523 use_cluster = false; 7524 } 7525 spin_unlock(&space_info->lock); 7526 } 7527 7528 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7529 if (last_ptr) { 7530 spin_lock(&last_ptr->lock); 7531 if (last_ptr->block_group) 7532 hint_byte = last_ptr->window_start; 7533 if (last_ptr->fragmented) { 7534 /* 7535 * We still set window_start so we can keep track of the 7536 * last place we found an allocation to try and save 7537 * some time. 7538 */ 7539 hint_byte = last_ptr->window_start; 7540 use_cluster = false; 7541 } 7542 spin_unlock(&last_ptr->lock); 7543 } 7544 7545 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7546 search_start = max(search_start, hint_byte); 7547 if (search_start == hint_byte) { 7548 block_group = btrfs_lookup_block_group(fs_info, search_start); 7549 /* 7550 * we don't want to use the block group if it doesn't match our 7551 * allocation bits, or if its not cached. 7552 * 7553 * However if we are re-searching with an ideal block group 7554 * picked out then we don't care that the block group is cached. 7555 */ 7556 if (block_group && block_group_bits(block_group, flags) && 7557 block_group->cached != BTRFS_CACHE_NO) { 7558 down_read(&space_info->groups_sem); 7559 if (list_empty(&block_group->list) || 7560 block_group->ro) { 7561 /* 7562 * someone is removing this block group, 7563 * we can't jump into the have_block_group 7564 * target because our list pointers are not 7565 * valid 7566 */ 7567 btrfs_put_block_group(block_group); 7568 up_read(&space_info->groups_sem); 7569 } else { 7570 index = get_block_group_index(block_group); 7571 btrfs_lock_block_group(block_group, delalloc); 7572 goto have_block_group; 7573 } 7574 } else if (block_group) { 7575 btrfs_put_block_group(block_group); 7576 } 7577 } 7578 search: 7579 have_caching_bg = false; 7580 if (index == 0 || index == __get_raid_index(flags)) 7581 full_search = true; 7582 down_read(&space_info->groups_sem); 7583 list_for_each_entry(block_group, &space_info->block_groups[index], 7584 list) { 7585 u64 offset; 7586 int cached; 7587 7588 /* If the block group is read-only, we can skip it entirely. */ 7589 if (unlikely(block_group->ro)) 7590 continue; 7591 7592 btrfs_grab_block_group(block_group, delalloc); 7593 search_start = block_group->key.objectid; 7594 7595 /* 7596 * this can happen if we end up cycling through all the 7597 * raid types, but we want to make sure we only allocate 7598 * for the proper type. 7599 */ 7600 if (!block_group_bits(block_group, flags)) { 7601 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7602 BTRFS_BLOCK_GROUP_RAID1 | 7603 BTRFS_BLOCK_GROUP_RAID5 | 7604 BTRFS_BLOCK_GROUP_RAID6 | 7605 BTRFS_BLOCK_GROUP_RAID10; 7606 7607 /* 7608 * if they asked for extra copies and this block group 7609 * doesn't provide them, bail. This does allow us to 7610 * fill raid0 from raid1. 7611 */ 7612 if ((flags & extra) && !(block_group->flags & extra)) 7613 goto loop; 7614 } 7615 7616 have_block_group: 7617 cached = block_group_cache_done(block_group); 7618 if (unlikely(!cached)) { 7619 have_caching_bg = true; 7620 ret = cache_block_group(block_group, 0); 7621 BUG_ON(ret < 0); 7622 ret = 0; 7623 } 7624 7625 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7626 goto loop; 7627 7628 /* 7629 * Ok we want to try and use the cluster allocator, so 7630 * lets look there 7631 */ 7632 if (last_ptr && use_cluster) { 7633 struct btrfs_block_group_cache *used_block_group; 7634 unsigned long aligned_cluster; 7635 /* 7636 * the refill lock keeps out other 7637 * people trying to start a new cluster 7638 */ 7639 used_block_group = btrfs_lock_cluster(block_group, 7640 last_ptr, 7641 delalloc); 7642 if (!used_block_group) 7643 goto refill_cluster; 7644 7645 if (used_block_group != block_group && 7646 (used_block_group->ro || 7647 !block_group_bits(used_block_group, flags))) 7648 goto release_cluster; 7649 7650 offset = btrfs_alloc_from_cluster(used_block_group, 7651 last_ptr, 7652 num_bytes, 7653 used_block_group->key.objectid, 7654 &max_extent_size); 7655 if (offset) { 7656 /* we have a block, we're done */ 7657 spin_unlock(&last_ptr->refill_lock); 7658 trace_btrfs_reserve_extent_cluster(fs_info, 7659 used_block_group, 7660 search_start, num_bytes); 7661 if (used_block_group != block_group) { 7662 btrfs_release_block_group(block_group, 7663 delalloc); 7664 block_group = used_block_group; 7665 } 7666 goto checks; 7667 } 7668 7669 WARN_ON(last_ptr->block_group != used_block_group); 7670 release_cluster: 7671 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7672 * set up a new clusters, so lets just skip it 7673 * and let the allocator find whatever block 7674 * it can find. If we reach this point, we 7675 * will have tried the cluster allocator 7676 * plenty of times and not have found 7677 * anything, so we are likely way too 7678 * fragmented for the clustering stuff to find 7679 * anything. 7680 * 7681 * However, if the cluster is taken from the 7682 * current block group, release the cluster 7683 * first, so that we stand a better chance of 7684 * succeeding in the unclustered 7685 * allocation. */ 7686 if (loop >= LOOP_NO_EMPTY_SIZE && 7687 used_block_group != block_group) { 7688 spin_unlock(&last_ptr->refill_lock); 7689 btrfs_release_block_group(used_block_group, 7690 delalloc); 7691 goto unclustered_alloc; 7692 } 7693 7694 /* 7695 * this cluster didn't work out, free it and 7696 * start over 7697 */ 7698 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7699 7700 if (used_block_group != block_group) 7701 btrfs_release_block_group(used_block_group, 7702 delalloc); 7703 refill_cluster: 7704 if (loop >= LOOP_NO_EMPTY_SIZE) { 7705 spin_unlock(&last_ptr->refill_lock); 7706 goto unclustered_alloc; 7707 } 7708 7709 aligned_cluster = max_t(unsigned long, 7710 empty_cluster + empty_size, 7711 block_group->full_stripe_len); 7712 7713 /* allocate a cluster in this block group */ 7714 ret = btrfs_find_space_cluster(fs_info, block_group, 7715 last_ptr, search_start, 7716 num_bytes, 7717 aligned_cluster); 7718 if (ret == 0) { 7719 /* 7720 * now pull our allocation out of this 7721 * cluster 7722 */ 7723 offset = btrfs_alloc_from_cluster(block_group, 7724 last_ptr, 7725 num_bytes, 7726 search_start, 7727 &max_extent_size); 7728 if (offset) { 7729 /* we found one, proceed */ 7730 spin_unlock(&last_ptr->refill_lock); 7731 trace_btrfs_reserve_extent_cluster(fs_info, 7732 block_group, search_start, 7733 num_bytes); 7734 goto checks; 7735 } 7736 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7737 && !failed_cluster_refill) { 7738 spin_unlock(&last_ptr->refill_lock); 7739 7740 failed_cluster_refill = true; 7741 wait_block_group_cache_progress(block_group, 7742 num_bytes + empty_cluster + empty_size); 7743 goto have_block_group; 7744 } 7745 7746 /* 7747 * at this point we either didn't find a cluster 7748 * or we weren't able to allocate a block from our 7749 * cluster. Free the cluster we've been trying 7750 * to use, and go to the next block group 7751 */ 7752 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7753 spin_unlock(&last_ptr->refill_lock); 7754 goto loop; 7755 } 7756 7757 unclustered_alloc: 7758 /* 7759 * We are doing an unclustered alloc, set the fragmented flag so 7760 * we don't bother trying to setup a cluster again until we get 7761 * more space. 7762 */ 7763 if (unlikely(last_ptr)) { 7764 spin_lock(&last_ptr->lock); 7765 last_ptr->fragmented = 1; 7766 spin_unlock(&last_ptr->lock); 7767 } 7768 if (cached) { 7769 struct btrfs_free_space_ctl *ctl = 7770 block_group->free_space_ctl; 7771 7772 spin_lock(&ctl->tree_lock); 7773 if (ctl->free_space < 7774 num_bytes + empty_cluster + empty_size) { 7775 if (ctl->free_space > max_extent_size) 7776 max_extent_size = ctl->free_space; 7777 spin_unlock(&ctl->tree_lock); 7778 goto loop; 7779 } 7780 spin_unlock(&ctl->tree_lock); 7781 } 7782 7783 offset = btrfs_find_space_for_alloc(block_group, search_start, 7784 num_bytes, empty_size, 7785 &max_extent_size); 7786 /* 7787 * If we didn't find a chunk, and we haven't failed on this 7788 * block group before, and this block group is in the middle of 7789 * caching and we are ok with waiting, then go ahead and wait 7790 * for progress to be made, and set failed_alloc to true. 7791 * 7792 * If failed_alloc is true then we've already waited on this 7793 * block group once and should move on to the next block group. 7794 */ 7795 if (!offset && !failed_alloc && !cached && 7796 loop > LOOP_CACHING_NOWAIT) { 7797 wait_block_group_cache_progress(block_group, 7798 num_bytes + empty_size); 7799 failed_alloc = true; 7800 goto have_block_group; 7801 } else if (!offset) { 7802 goto loop; 7803 } 7804 checks: 7805 search_start = ALIGN(offset, fs_info->stripesize); 7806 7807 /* move on to the next group */ 7808 if (search_start + num_bytes > 7809 block_group->key.objectid + block_group->key.offset) { 7810 btrfs_add_free_space(block_group, offset, num_bytes); 7811 goto loop; 7812 } 7813 7814 if (offset < search_start) 7815 btrfs_add_free_space(block_group, offset, 7816 search_start - offset); 7817 BUG_ON(offset > search_start); 7818 7819 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7820 num_bytes, delalloc); 7821 if (ret == -EAGAIN) { 7822 btrfs_add_free_space(block_group, offset, num_bytes); 7823 goto loop; 7824 } 7825 btrfs_inc_block_group_reservations(block_group); 7826 7827 /* we are all good, lets return */ 7828 ins->objectid = search_start; 7829 ins->offset = num_bytes; 7830 7831 trace_btrfs_reserve_extent(fs_info, block_group, 7832 search_start, num_bytes); 7833 btrfs_release_block_group(block_group, delalloc); 7834 break; 7835 loop: 7836 failed_cluster_refill = false; 7837 failed_alloc = false; 7838 BUG_ON(index != get_block_group_index(block_group)); 7839 btrfs_release_block_group(block_group, delalloc); 7840 cond_resched(); 7841 } 7842 up_read(&space_info->groups_sem); 7843 7844 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7845 && !orig_have_caching_bg) 7846 orig_have_caching_bg = true; 7847 7848 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7849 goto search; 7850 7851 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7852 goto search; 7853 7854 /* 7855 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7856 * caching kthreads as we move along 7857 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7858 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7859 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7860 * again 7861 */ 7862 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7863 index = 0; 7864 if (loop == LOOP_CACHING_NOWAIT) { 7865 /* 7866 * We want to skip the LOOP_CACHING_WAIT step if we 7867 * don't have any uncached bgs and we've already done a 7868 * full search through. 7869 */ 7870 if (orig_have_caching_bg || !full_search) 7871 loop = LOOP_CACHING_WAIT; 7872 else 7873 loop = LOOP_ALLOC_CHUNK; 7874 } else { 7875 loop++; 7876 } 7877 7878 if (loop == LOOP_ALLOC_CHUNK) { 7879 struct btrfs_trans_handle *trans; 7880 int exist = 0; 7881 7882 trans = current->journal_info; 7883 if (trans) 7884 exist = 1; 7885 else 7886 trans = btrfs_join_transaction(root); 7887 7888 if (IS_ERR(trans)) { 7889 ret = PTR_ERR(trans); 7890 goto out; 7891 } 7892 7893 ret = do_chunk_alloc(trans, fs_info, flags, 7894 CHUNK_ALLOC_FORCE); 7895 7896 /* 7897 * If we can't allocate a new chunk we've already looped 7898 * through at least once, move on to the NO_EMPTY_SIZE 7899 * case. 7900 */ 7901 if (ret == -ENOSPC) 7902 loop = LOOP_NO_EMPTY_SIZE; 7903 7904 /* 7905 * Do not bail out on ENOSPC since we 7906 * can do more things. 7907 */ 7908 if (ret < 0 && ret != -ENOSPC) 7909 btrfs_abort_transaction(trans, ret); 7910 else 7911 ret = 0; 7912 if (!exist) 7913 btrfs_end_transaction(trans); 7914 if (ret) 7915 goto out; 7916 } 7917 7918 if (loop == LOOP_NO_EMPTY_SIZE) { 7919 /* 7920 * Don't loop again if we already have no empty_size and 7921 * no empty_cluster. 7922 */ 7923 if (empty_size == 0 && 7924 empty_cluster == 0) { 7925 ret = -ENOSPC; 7926 goto out; 7927 } 7928 empty_size = 0; 7929 empty_cluster = 0; 7930 } 7931 7932 goto search; 7933 } else if (!ins->objectid) { 7934 ret = -ENOSPC; 7935 } else if (ins->objectid) { 7936 if (!use_cluster && last_ptr) { 7937 spin_lock(&last_ptr->lock); 7938 last_ptr->window_start = ins->objectid; 7939 spin_unlock(&last_ptr->lock); 7940 } 7941 ret = 0; 7942 } 7943 out: 7944 if (ret == -ENOSPC) { 7945 spin_lock(&space_info->lock); 7946 space_info->max_extent_size = max_extent_size; 7947 spin_unlock(&space_info->lock); 7948 ins->offset = max_extent_size; 7949 } 7950 return ret; 7951 } 7952 7953 static void dump_space_info(struct btrfs_fs_info *fs_info, 7954 struct btrfs_space_info *info, u64 bytes, 7955 int dump_block_groups) 7956 { 7957 struct btrfs_block_group_cache *cache; 7958 int index = 0; 7959 7960 spin_lock(&info->lock); 7961 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7962 info->flags, 7963 info->total_bytes - btrfs_space_info_used(info, true), 7964 info->full ? "" : "not "); 7965 btrfs_info(fs_info, 7966 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7967 info->total_bytes, info->bytes_used, info->bytes_pinned, 7968 info->bytes_reserved, info->bytes_may_use, 7969 info->bytes_readonly); 7970 spin_unlock(&info->lock); 7971 7972 if (!dump_block_groups) 7973 return; 7974 7975 down_read(&info->groups_sem); 7976 again: 7977 list_for_each_entry(cache, &info->block_groups[index], list) { 7978 spin_lock(&cache->lock); 7979 btrfs_info(fs_info, 7980 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7981 cache->key.objectid, cache->key.offset, 7982 btrfs_block_group_used(&cache->item), cache->pinned, 7983 cache->reserved, cache->ro ? "[readonly]" : ""); 7984 btrfs_dump_free_space(cache, bytes); 7985 spin_unlock(&cache->lock); 7986 } 7987 if (++index < BTRFS_NR_RAID_TYPES) 7988 goto again; 7989 up_read(&info->groups_sem); 7990 } 7991 7992 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7993 u64 num_bytes, u64 min_alloc_size, 7994 u64 empty_size, u64 hint_byte, 7995 struct btrfs_key *ins, int is_data, int delalloc) 7996 { 7997 struct btrfs_fs_info *fs_info = root->fs_info; 7998 bool final_tried = num_bytes == min_alloc_size; 7999 u64 flags; 8000 int ret; 8001 8002 flags = get_alloc_profile_by_root(root, is_data); 8003 again: 8004 WARN_ON(num_bytes < fs_info->sectorsize); 8005 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8006 hint_byte, ins, flags, delalloc); 8007 if (!ret && !is_data) { 8008 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8009 } else if (ret == -ENOSPC) { 8010 if (!final_tried && ins->offset) { 8011 num_bytes = min(num_bytes >> 1, ins->offset); 8012 num_bytes = round_down(num_bytes, 8013 fs_info->sectorsize); 8014 num_bytes = max(num_bytes, min_alloc_size); 8015 ram_bytes = num_bytes; 8016 if (num_bytes == min_alloc_size) 8017 final_tried = true; 8018 goto again; 8019 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8020 struct btrfs_space_info *sinfo; 8021 8022 sinfo = __find_space_info(fs_info, flags); 8023 btrfs_err(fs_info, 8024 "allocation failed flags %llu, wanted %llu", 8025 flags, num_bytes); 8026 if (sinfo) 8027 dump_space_info(fs_info, sinfo, num_bytes, 1); 8028 } 8029 } 8030 8031 return ret; 8032 } 8033 8034 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8035 u64 start, u64 len, 8036 int pin, int delalloc) 8037 { 8038 struct btrfs_block_group_cache *cache; 8039 int ret = 0; 8040 8041 cache = btrfs_lookup_block_group(fs_info, start); 8042 if (!cache) { 8043 btrfs_err(fs_info, "Unable to find block group for %llu", 8044 start); 8045 return -ENOSPC; 8046 } 8047 8048 if (pin) 8049 pin_down_extent(fs_info, cache, start, len, 1); 8050 else { 8051 if (btrfs_test_opt(fs_info, DISCARD)) 8052 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8053 btrfs_add_free_space(cache, start, len); 8054 btrfs_free_reserved_bytes(cache, len, delalloc); 8055 trace_btrfs_reserved_extent_free(fs_info, start, len); 8056 } 8057 8058 btrfs_put_block_group(cache); 8059 return ret; 8060 } 8061 8062 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8063 u64 start, u64 len, int delalloc) 8064 { 8065 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8066 } 8067 8068 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8069 u64 start, u64 len) 8070 { 8071 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8072 } 8073 8074 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8075 struct btrfs_fs_info *fs_info, 8076 u64 parent, u64 root_objectid, 8077 u64 flags, u64 owner, u64 offset, 8078 struct btrfs_key *ins, int ref_mod) 8079 { 8080 int ret; 8081 struct btrfs_extent_item *extent_item; 8082 struct btrfs_extent_inline_ref *iref; 8083 struct btrfs_path *path; 8084 struct extent_buffer *leaf; 8085 int type; 8086 u32 size; 8087 8088 if (parent > 0) 8089 type = BTRFS_SHARED_DATA_REF_KEY; 8090 else 8091 type = BTRFS_EXTENT_DATA_REF_KEY; 8092 8093 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8094 8095 path = btrfs_alloc_path(); 8096 if (!path) 8097 return -ENOMEM; 8098 8099 path->leave_spinning = 1; 8100 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8101 ins, size); 8102 if (ret) { 8103 btrfs_free_path(path); 8104 return ret; 8105 } 8106 8107 leaf = path->nodes[0]; 8108 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8109 struct btrfs_extent_item); 8110 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8111 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8112 btrfs_set_extent_flags(leaf, extent_item, 8113 flags | BTRFS_EXTENT_FLAG_DATA); 8114 8115 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8116 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8117 if (parent > 0) { 8118 struct btrfs_shared_data_ref *ref; 8119 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8120 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8121 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8122 } else { 8123 struct btrfs_extent_data_ref *ref; 8124 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8125 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8126 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8127 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8128 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8129 } 8130 8131 btrfs_mark_buffer_dirty(path->nodes[0]); 8132 btrfs_free_path(path); 8133 8134 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8135 ins->offset); 8136 if (ret) 8137 return ret; 8138 8139 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8140 if (ret) { /* -ENOENT, logic error */ 8141 btrfs_err(fs_info, "update block group failed for %llu %llu", 8142 ins->objectid, ins->offset); 8143 BUG(); 8144 } 8145 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8146 return ret; 8147 } 8148 8149 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8150 struct btrfs_fs_info *fs_info, 8151 u64 parent, u64 root_objectid, 8152 u64 flags, struct btrfs_disk_key *key, 8153 int level, struct btrfs_key *ins) 8154 { 8155 int ret; 8156 struct btrfs_extent_item *extent_item; 8157 struct btrfs_tree_block_info *block_info; 8158 struct btrfs_extent_inline_ref *iref; 8159 struct btrfs_path *path; 8160 struct extent_buffer *leaf; 8161 u32 size = sizeof(*extent_item) + sizeof(*iref); 8162 u64 num_bytes = ins->offset; 8163 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8164 8165 if (!skinny_metadata) 8166 size += sizeof(*block_info); 8167 8168 path = btrfs_alloc_path(); 8169 if (!path) { 8170 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8171 fs_info->nodesize); 8172 return -ENOMEM; 8173 } 8174 8175 path->leave_spinning = 1; 8176 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8177 ins, size); 8178 if (ret) { 8179 btrfs_free_path(path); 8180 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8181 fs_info->nodesize); 8182 return ret; 8183 } 8184 8185 leaf = path->nodes[0]; 8186 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8187 struct btrfs_extent_item); 8188 btrfs_set_extent_refs(leaf, extent_item, 1); 8189 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8190 btrfs_set_extent_flags(leaf, extent_item, 8191 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8192 8193 if (skinny_metadata) { 8194 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8195 num_bytes = fs_info->nodesize; 8196 } else { 8197 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8198 btrfs_set_tree_block_key(leaf, block_info, key); 8199 btrfs_set_tree_block_level(leaf, block_info, level); 8200 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8201 } 8202 8203 if (parent > 0) { 8204 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8205 btrfs_set_extent_inline_ref_type(leaf, iref, 8206 BTRFS_SHARED_BLOCK_REF_KEY); 8207 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8208 } else { 8209 btrfs_set_extent_inline_ref_type(leaf, iref, 8210 BTRFS_TREE_BLOCK_REF_KEY); 8211 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8212 } 8213 8214 btrfs_mark_buffer_dirty(leaf); 8215 btrfs_free_path(path); 8216 8217 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8218 num_bytes); 8219 if (ret) 8220 return ret; 8221 8222 ret = update_block_group(trans, fs_info, ins->objectid, 8223 fs_info->nodesize, 1); 8224 if (ret) { /* -ENOENT, logic error */ 8225 btrfs_err(fs_info, "update block group failed for %llu %llu", 8226 ins->objectid, ins->offset); 8227 BUG(); 8228 } 8229 8230 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8231 fs_info->nodesize); 8232 return ret; 8233 } 8234 8235 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8236 u64 root_objectid, u64 owner, 8237 u64 offset, u64 ram_bytes, 8238 struct btrfs_key *ins) 8239 { 8240 struct btrfs_fs_info *fs_info = trans->fs_info; 8241 int ret; 8242 8243 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8244 8245 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8246 ins->offset, 0, root_objectid, owner, 8247 offset, ram_bytes, 8248 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8249 return ret; 8250 } 8251 8252 /* 8253 * this is used by the tree logging recovery code. It records that 8254 * an extent has been allocated and makes sure to clear the free 8255 * space cache bits as well 8256 */ 8257 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8258 struct btrfs_fs_info *fs_info, 8259 u64 root_objectid, u64 owner, u64 offset, 8260 struct btrfs_key *ins) 8261 { 8262 int ret; 8263 struct btrfs_block_group_cache *block_group; 8264 struct btrfs_space_info *space_info; 8265 8266 /* 8267 * Mixed block groups will exclude before processing the log so we only 8268 * need to do the exclude dance if this fs isn't mixed. 8269 */ 8270 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8271 ret = __exclude_logged_extent(fs_info, ins->objectid, 8272 ins->offset); 8273 if (ret) 8274 return ret; 8275 } 8276 8277 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8278 if (!block_group) 8279 return -EINVAL; 8280 8281 space_info = block_group->space_info; 8282 spin_lock(&space_info->lock); 8283 spin_lock(&block_group->lock); 8284 space_info->bytes_reserved += ins->offset; 8285 block_group->reserved += ins->offset; 8286 spin_unlock(&block_group->lock); 8287 spin_unlock(&space_info->lock); 8288 8289 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8290 0, owner, offset, ins, 1); 8291 btrfs_put_block_group(block_group); 8292 return ret; 8293 } 8294 8295 static struct extent_buffer * 8296 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8297 u64 bytenr, int level) 8298 { 8299 struct btrfs_fs_info *fs_info = root->fs_info; 8300 struct extent_buffer *buf; 8301 8302 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8303 if (IS_ERR(buf)) 8304 return buf; 8305 8306 btrfs_set_header_generation(buf, trans->transid); 8307 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8308 btrfs_tree_lock(buf); 8309 clean_tree_block(fs_info, buf); 8310 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8311 8312 btrfs_set_lock_blocking(buf); 8313 set_extent_buffer_uptodate(buf); 8314 8315 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8316 buf->log_index = root->log_transid % 2; 8317 /* 8318 * we allow two log transactions at a time, use different 8319 * EXENT bit to differentiate dirty pages. 8320 */ 8321 if (buf->log_index == 0) 8322 set_extent_dirty(&root->dirty_log_pages, buf->start, 8323 buf->start + buf->len - 1, GFP_NOFS); 8324 else 8325 set_extent_new(&root->dirty_log_pages, buf->start, 8326 buf->start + buf->len - 1); 8327 } else { 8328 buf->log_index = -1; 8329 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8330 buf->start + buf->len - 1, GFP_NOFS); 8331 } 8332 trans->dirty = true; 8333 /* this returns a buffer locked for blocking */ 8334 return buf; 8335 } 8336 8337 static struct btrfs_block_rsv * 8338 use_block_rsv(struct btrfs_trans_handle *trans, 8339 struct btrfs_root *root, u32 blocksize) 8340 { 8341 struct btrfs_fs_info *fs_info = root->fs_info; 8342 struct btrfs_block_rsv *block_rsv; 8343 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8344 int ret; 8345 bool global_updated = false; 8346 8347 block_rsv = get_block_rsv(trans, root); 8348 8349 if (unlikely(block_rsv->size == 0)) 8350 goto try_reserve; 8351 again: 8352 ret = block_rsv_use_bytes(block_rsv, blocksize); 8353 if (!ret) 8354 return block_rsv; 8355 8356 if (block_rsv->failfast) 8357 return ERR_PTR(ret); 8358 8359 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8360 global_updated = true; 8361 update_global_block_rsv(fs_info); 8362 goto again; 8363 } 8364 8365 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8366 static DEFINE_RATELIMIT_STATE(_rs, 8367 DEFAULT_RATELIMIT_INTERVAL * 10, 8368 /*DEFAULT_RATELIMIT_BURST*/ 1); 8369 if (__ratelimit(&_rs)) 8370 WARN(1, KERN_DEBUG 8371 "BTRFS: block rsv returned %d\n", ret); 8372 } 8373 try_reserve: 8374 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8375 BTRFS_RESERVE_NO_FLUSH); 8376 if (!ret) 8377 return block_rsv; 8378 /* 8379 * If we couldn't reserve metadata bytes try and use some from 8380 * the global reserve if its space type is the same as the global 8381 * reservation. 8382 */ 8383 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8384 block_rsv->space_info == global_rsv->space_info) { 8385 ret = block_rsv_use_bytes(global_rsv, blocksize); 8386 if (!ret) 8387 return global_rsv; 8388 } 8389 return ERR_PTR(ret); 8390 } 8391 8392 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8393 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8394 { 8395 block_rsv_add_bytes(block_rsv, blocksize, 0); 8396 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8397 } 8398 8399 /* 8400 * finds a free extent and does all the dirty work required for allocation 8401 * returns the tree buffer or an ERR_PTR on error. 8402 */ 8403 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8404 struct btrfs_root *root, 8405 u64 parent, u64 root_objectid, 8406 const struct btrfs_disk_key *key, 8407 int level, u64 hint, 8408 u64 empty_size) 8409 { 8410 struct btrfs_fs_info *fs_info = root->fs_info; 8411 struct btrfs_key ins; 8412 struct btrfs_block_rsv *block_rsv; 8413 struct extent_buffer *buf; 8414 struct btrfs_delayed_extent_op *extent_op; 8415 u64 flags = 0; 8416 int ret; 8417 u32 blocksize = fs_info->nodesize; 8418 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8419 8420 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8421 if (btrfs_is_testing(fs_info)) { 8422 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8423 level); 8424 if (!IS_ERR(buf)) 8425 root->alloc_bytenr += blocksize; 8426 return buf; 8427 } 8428 #endif 8429 8430 block_rsv = use_block_rsv(trans, root, blocksize); 8431 if (IS_ERR(block_rsv)) 8432 return ERR_CAST(block_rsv); 8433 8434 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8435 empty_size, hint, &ins, 0, 0); 8436 if (ret) 8437 goto out_unuse; 8438 8439 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8440 if (IS_ERR(buf)) { 8441 ret = PTR_ERR(buf); 8442 goto out_free_reserved; 8443 } 8444 8445 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8446 if (parent == 0) 8447 parent = ins.objectid; 8448 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8449 } else 8450 BUG_ON(parent > 0); 8451 8452 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8453 extent_op = btrfs_alloc_delayed_extent_op(); 8454 if (!extent_op) { 8455 ret = -ENOMEM; 8456 goto out_free_buf; 8457 } 8458 if (key) 8459 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8460 else 8461 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8462 extent_op->flags_to_set = flags; 8463 extent_op->update_key = skinny_metadata ? false : true; 8464 extent_op->update_flags = true; 8465 extent_op->is_data = false; 8466 extent_op->level = level; 8467 8468 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8469 ins.offset, parent, 8470 root_objectid, level, 8471 BTRFS_ADD_DELAYED_EXTENT, 8472 extent_op, NULL, NULL); 8473 if (ret) 8474 goto out_free_delayed; 8475 } 8476 return buf; 8477 8478 out_free_delayed: 8479 btrfs_free_delayed_extent_op(extent_op); 8480 out_free_buf: 8481 free_extent_buffer(buf); 8482 out_free_reserved: 8483 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8484 out_unuse: 8485 unuse_block_rsv(fs_info, block_rsv, blocksize); 8486 return ERR_PTR(ret); 8487 } 8488 8489 struct walk_control { 8490 u64 refs[BTRFS_MAX_LEVEL]; 8491 u64 flags[BTRFS_MAX_LEVEL]; 8492 struct btrfs_key update_progress; 8493 int stage; 8494 int level; 8495 int shared_level; 8496 int update_ref; 8497 int keep_locks; 8498 int reada_slot; 8499 int reada_count; 8500 int for_reloc; 8501 }; 8502 8503 #define DROP_REFERENCE 1 8504 #define UPDATE_BACKREF 2 8505 8506 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8507 struct btrfs_root *root, 8508 struct walk_control *wc, 8509 struct btrfs_path *path) 8510 { 8511 struct btrfs_fs_info *fs_info = root->fs_info; 8512 u64 bytenr; 8513 u64 generation; 8514 u64 refs; 8515 u64 flags; 8516 u32 nritems; 8517 struct btrfs_key key; 8518 struct extent_buffer *eb; 8519 int ret; 8520 int slot; 8521 int nread = 0; 8522 8523 if (path->slots[wc->level] < wc->reada_slot) { 8524 wc->reada_count = wc->reada_count * 2 / 3; 8525 wc->reada_count = max(wc->reada_count, 2); 8526 } else { 8527 wc->reada_count = wc->reada_count * 3 / 2; 8528 wc->reada_count = min_t(int, wc->reada_count, 8529 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8530 } 8531 8532 eb = path->nodes[wc->level]; 8533 nritems = btrfs_header_nritems(eb); 8534 8535 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8536 if (nread >= wc->reada_count) 8537 break; 8538 8539 cond_resched(); 8540 bytenr = btrfs_node_blockptr(eb, slot); 8541 generation = btrfs_node_ptr_generation(eb, slot); 8542 8543 if (slot == path->slots[wc->level]) 8544 goto reada; 8545 8546 if (wc->stage == UPDATE_BACKREF && 8547 generation <= root->root_key.offset) 8548 continue; 8549 8550 /* We don't lock the tree block, it's OK to be racy here */ 8551 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8552 wc->level - 1, 1, &refs, 8553 &flags); 8554 /* We don't care about errors in readahead. */ 8555 if (ret < 0) 8556 continue; 8557 BUG_ON(refs == 0); 8558 8559 if (wc->stage == DROP_REFERENCE) { 8560 if (refs == 1) 8561 goto reada; 8562 8563 if (wc->level == 1 && 8564 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8565 continue; 8566 if (!wc->update_ref || 8567 generation <= root->root_key.offset) 8568 continue; 8569 btrfs_node_key_to_cpu(eb, &key, slot); 8570 ret = btrfs_comp_cpu_keys(&key, 8571 &wc->update_progress); 8572 if (ret < 0) 8573 continue; 8574 } else { 8575 if (wc->level == 1 && 8576 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8577 continue; 8578 } 8579 reada: 8580 readahead_tree_block(fs_info, bytenr); 8581 nread++; 8582 } 8583 wc->reada_slot = slot; 8584 } 8585 8586 /* 8587 * helper to process tree block while walking down the tree. 8588 * 8589 * when wc->stage == UPDATE_BACKREF, this function updates 8590 * back refs for pointers in the block. 8591 * 8592 * NOTE: return value 1 means we should stop walking down. 8593 */ 8594 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8595 struct btrfs_root *root, 8596 struct btrfs_path *path, 8597 struct walk_control *wc, int lookup_info) 8598 { 8599 struct btrfs_fs_info *fs_info = root->fs_info; 8600 int level = wc->level; 8601 struct extent_buffer *eb = path->nodes[level]; 8602 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8603 int ret; 8604 8605 if (wc->stage == UPDATE_BACKREF && 8606 btrfs_header_owner(eb) != root->root_key.objectid) 8607 return 1; 8608 8609 /* 8610 * when reference count of tree block is 1, it won't increase 8611 * again. once full backref flag is set, we never clear it. 8612 */ 8613 if (lookup_info && 8614 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8615 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8616 BUG_ON(!path->locks[level]); 8617 ret = btrfs_lookup_extent_info(trans, fs_info, 8618 eb->start, level, 1, 8619 &wc->refs[level], 8620 &wc->flags[level]); 8621 BUG_ON(ret == -ENOMEM); 8622 if (ret) 8623 return ret; 8624 BUG_ON(wc->refs[level] == 0); 8625 } 8626 8627 if (wc->stage == DROP_REFERENCE) { 8628 if (wc->refs[level] > 1) 8629 return 1; 8630 8631 if (path->locks[level] && !wc->keep_locks) { 8632 btrfs_tree_unlock_rw(eb, path->locks[level]); 8633 path->locks[level] = 0; 8634 } 8635 return 0; 8636 } 8637 8638 /* wc->stage == UPDATE_BACKREF */ 8639 if (!(wc->flags[level] & flag)) { 8640 BUG_ON(!path->locks[level]); 8641 ret = btrfs_inc_ref(trans, root, eb, 1); 8642 BUG_ON(ret); /* -ENOMEM */ 8643 ret = btrfs_dec_ref(trans, root, eb, 0); 8644 BUG_ON(ret); /* -ENOMEM */ 8645 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8646 eb->len, flag, 8647 btrfs_header_level(eb), 0); 8648 BUG_ON(ret); /* -ENOMEM */ 8649 wc->flags[level] |= flag; 8650 } 8651 8652 /* 8653 * the block is shared by multiple trees, so it's not good to 8654 * keep the tree lock 8655 */ 8656 if (path->locks[level] && level > 0) { 8657 btrfs_tree_unlock_rw(eb, path->locks[level]); 8658 path->locks[level] = 0; 8659 } 8660 return 0; 8661 } 8662 8663 /* 8664 * helper to process tree block pointer. 8665 * 8666 * when wc->stage == DROP_REFERENCE, this function checks 8667 * reference count of the block pointed to. if the block 8668 * is shared and we need update back refs for the subtree 8669 * rooted at the block, this function changes wc->stage to 8670 * UPDATE_BACKREF. if the block is shared and there is no 8671 * need to update back, this function drops the reference 8672 * to the block. 8673 * 8674 * NOTE: return value 1 means we should stop walking down. 8675 */ 8676 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8677 struct btrfs_root *root, 8678 struct btrfs_path *path, 8679 struct walk_control *wc, int *lookup_info) 8680 { 8681 struct btrfs_fs_info *fs_info = root->fs_info; 8682 u64 bytenr; 8683 u64 generation; 8684 u64 parent; 8685 u32 blocksize; 8686 struct btrfs_key key; 8687 struct extent_buffer *next; 8688 int level = wc->level; 8689 int reada = 0; 8690 int ret = 0; 8691 bool need_account = false; 8692 8693 generation = btrfs_node_ptr_generation(path->nodes[level], 8694 path->slots[level]); 8695 /* 8696 * if the lower level block was created before the snapshot 8697 * was created, we know there is no need to update back refs 8698 * for the subtree 8699 */ 8700 if (wc->stage == UPDATE_BACKREF && 8701 generation <= root->root_key.offset) { 8702 *lookup_info = 1; 8703 return 1; 8704 } 8705 8706 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8707 blocksize = fs_info->nodesize; 8708 8709 next = find_extent_buffer(fs_info, bytenr); 8710 if (!next) { 8711 next = btrfs_find_create_tree_block(fs_info, bytenr); 8712 if (IS_ERR(next)) 8713 return PTR_ERR(next); 8714 8715 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8716 level - 1); 8717 reada = 1; 8718 } 8719 btrfs_tree_lock(next); 8720 btrfs_set_lock_blocking(next); 8721 8722 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8723 &wc->refs[level - 1], 8724 &wc->flags[level - 1]); 8725 if (ret < 0) 8726 goto out_unlock; 8727 8728 if (unlikely(wc->refs[level - 1] == 0)) { 8729 btrfs_err(fs_info, "Missing references."); 8730 ret = -EIO; 8731 goto out_unlock; 8732 } 8733 *lookup_info = 0; 8734 8735 if (wc->stage == DROP_REFERENCE) { 8736 if (wc->refs[level - 1] > 1) { 8737 need_account = true; 8738 if (level == 1 && 8739 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8740 goto skip; 8741 8742 if (!wc->update_ref || 8743 generation <= root->root_key.offset) 8744 goto skip; 8745 8746 btrfs_node_key_to_cpu(path->nodes[level], &key, 8747 path->slots[level]); 8748 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8749 if (ret < 0) 8750 goto skip; 8751 8752 wc->stage = UPDATE_BACKREF; 8753 wc->shared_level = level - 1; 8754 } 8755 } else { 8756 if (level == 1 && 8757 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8758 goto skip; 8759 } 8760 8761 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8762 btrfs_tree_unlock(next); 8763 free_extent_buffer(next); 8764 next = NULL; 8765 *lookup_info = 1; 8766 } 8767 8768 if (!next) { 8769 if (reada && level == 1) 8770 reada_walk_down(trans, root, wc, path); 8771 next = read_tree_block(fs_info, bytenr, generation); 8772 if (IS_ERR(next)) { 8773 return PTR_ERR(next); 8774 } else if (!extent_buffer_uptodate(next)) { 8775 free_extent_buffer(next); 8776 return -EIO; 8777 } 8778 btrfs_tree_lock(next); 8779 btrfs_set_lock_blocking(next); 8780 } 8781 8782 level--; 8783 ASSERT(level == btrfs_header_level(next)); 8784 if (level != btrfs_header_level(next)) { 8785 btrfs_err(root->fs_info, "mismatched level"); 8786 ret = -EIO; 8787 goto out_unlock; 8788 } 8789 path->nodes[level] = next; 8790 path->slots[level] = 0; 8791 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8792 wc->level = level; 8793 if (wc->level == 1) 8794 wc->reada_slot = 0; 8795 return 0; 8796 skip: 8797 wc->refs[level - 1] = 0; 8798 wc->flags[level - 1] = 0; 8799 if (wc->stage == DROP_REFERENCE) { 8800 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8801 parent = path->nodes[level]->start; 8802 } else { 8803 ASSERT(root->root_key.objectid == 8804 btrfs_header_owner(path->nodes[level])); 8805 if (root->root_key.objectid != 8806 btrfs_header_owner(path->nodes[level])) { 8807 btrfs_err(root->fs_info, 8808 "mismatched block owner"); 8809 ret = -EIO; 8810 goto out_unlock; 8811 } 8812 parent = 0; 8813 } 8814 8815 if (need_account) { 8816 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8817 generation, level - 1); 8818 if (ret) { 8819 btrfs_err_rl(fs_info, 8820 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8821 ret); 8822 } 8823 } 8824 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize, 8825 parent, root->root_key.objectid, 8826 level - 1, 0); 8827 if (ret) 8828 goto out_unlock; 8829 } 8830 8831 *lookup_info = 1; 8832 ret = 1; 8833 8834 out_unlock: 8835 btrfs_tree_unlock(next); 8836 free_extent_buffer(next); 8837 8838 return ret; 8839 } 8840 8841 /* 8842 * helper to process tree block while walking up the tree. 8843 * 8844 * when wc->stage == DROP_REFERENCE, this function drops 8845 * reference count on the block. 8846 * 8847 * when wc->stage == UPDATE_BACKREF, this function changes 8848 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8849 * to UPDATE_BACKREF previously while processing the block. 8850 * 8851 * NOTE: return value 1 means we should stop walking up. 8852 */ 8853 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8854 struct btrfs_root *root, 8855 struct btrfs_path *path, 8856 struct walk_control *wc) 8857 { 8858 struct btrfs_fs_info *fs_info = root->fs_info; 8859 int ret; 8860 int level = wc->level; 8861 struct extent_buffer *eb = path->nodes[level]; 8862 u64 parent = 0; 8863 8864 if (wc->stage == UPDATE_BACKREF) { 8865 BUG_ON(wc->shared_level < level); 8866 if (level < wc->shared_level) 8867 goto out; 8868 8869 ret = find_next_key(path, level + 1, &wc->update_progress); 8870 if (ret > 0) 8871 wc->update_ref = 0; 8872 8873 wc->stage = DROP_REFERENCE; 8874 wc->shared_level = -1; 8875 path->slots[level] = 0; 8876 8877 /* 8878 * check reference count again if the block isn't locked. 8879 * we should start walking down the tree again if reference 8880 * count is one. 8881 */ 8882 if (!path->locks[level]) { 8883 BUG_ON(level == 0); 8884 btrfs_tree_lock(eb); 8885 btrfs_set_lock_blocking(eb); 8886 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8887 8888 ret = btrfs_lookup_extent_info(trans, fs_info, 8889 eb->start, level, 1, 8890 &wc->refs[level], 8891 &wc->flags[level]); 8892 if (ret < 0) { 8893 btrfs_tree_unlock_rw(eb, path->locks[level]); 8894 path->locks[level] = 0; 8895 return ret; 8896 } 8897 BUG_ON(wc->refs[level] == 0); 8898 if (wc->refs[level] == 1) { 8899 btrfs_tree_unlock_rw(eb, path->locks[level]); 8900 path->locks[level] = 0; 8901 return 1; 8902 } 8903 } 8904 } 8905 8906 /* wc->stage == DROP_REFERENCE */ 8907 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8908 8909 if (wc->refs[level] == 1) { 8910 if (level == 0) { 8911 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8912 ret = btrfs_dec_ref(trans, root, eb, 1); 8913 else 8914 ret = btrfs_dec_ref(trans, root, eb, 0); 8915 BUG_ON(ret); /* -ENOMEM */ 8916 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8917 if (ret) { 8918 btrfs_err_rl(fs_info, 8919 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8920 ret); 8921 } 8922 } 8923 /* make block locked assertion in clean_tree_block happy */ 8924 if (!path->locks[level] && 8925 btrfs_header_generation(eb) == trans->transid) { 8926 btrfs_tree_lock(eb); 8927 btrfs_set_lock_blocking(eb); 8928 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8929 } 8930 clean_tree_block(fs_info, eb); 8931 } 8932 8933 if (eb == root->node) { 8934 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8935 parent = eb->start; 8936 else 8937 BUG_ON(root->root_key.objectid != 8938 btrfs_header_owner(eb)); 8939 } else { 8940 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8941 parent = path->nodes[level + 1]->start; 8942 else 8943 BUG_ON(root->root_key.objectid != 8944 btrfs_header_owner(path->nodes[level + 1])); 8945 } 8946 8947 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8948 out: 8949 wc->refs[level] = 0; 8950 wc->flags[level] = 0; 8951 return 0; 8952 } 8953 8954 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8955 struct btrfs_root *root, 8956 struct btrfs_path *path, 8957 struct walk_control *wc) 8958 { 8959 int level = wc->level; 8960 int lookup_info = 1; 8961 int ret; 8962 8963 while (level >= 0) { 8964 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8965 if (ret > 0) 8966 break; 8967 8968 if (level == 0) 8969 break; 8970 8971 if (path->slots[level] >= 8972 btrfs_header_nritems(path->nodes[level])) 8973 break; 8974 8975 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8976 if (ret > 0) { 8977 path->slots[level]++; 8978 continue; 8979 } else if (ret < 0) 8980 return ret; 8981 level = wc->level; 8982 } 8983 return 0; 8984 } 8985 8986 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8987 struct btrfs_root *root, 8988 struct btrfs_path *path, 8989 struct walk_control *wc, int max_level) 8990 { 8991 int level = wc->level; 8992 int ret; 8993 8994 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8995 while (level < max_level && path->nodes[level]) { 8996 wc->level = level; 8997 if (path->slots[level] + 1 < 8998 btrfs_header_nritems(path->nodes[level])) { 8999 path->slots[level]++; 9000 return 0; 9001 } else { 9002 ret = walk_up_proc(trans, root, path, wc); 9003 if (ret > 0) 9004 return 0; 9005 9006 if (path->locks[level]) { 9007 btrfs_tree_unlock_rw(path->nodes[level], 9008 path->locks[level]); 9009 path->locks[level] = 0; 9010 } 9011 free_extent_buffer(path->nodes[level]); 9012 path->nodes[level] = NULL; 9013 level++; 9014 } 9015 } 9016 return 1; 9017 } 9018 9019 /* 9020 * drop a subvolume tree. 9021 * 9022 * this function traverses the tree freeing any blocks that only 9023 * referenced by the tree. 9024 * 9025 * when a shared tree block is found. this function decreases its 9026 * reference count by one. if update_ref is true, this function 9027 * also make sure backrefs for the shared block and all lower level 9028 * blocks are properly updated. 9029 * 9030 * If called with for_reloc == 0, may exit early with -EAGAIN 9031 */ 9032 int btrfs_drop_snapshot(struct btrfs_root *root, 9033 struct btrfs_block_rsv *block_rsv, int update_ref, 9034 int for_reloc) 9035 { 9036 struct btrfs_fs_info *fs_info = root->fs_info; 9037 struct btrfs_path *path; 9038 struct btrfs_trans_handle *trans; 9039 struct btrfs_root *tree_root = fs_info->tree_root; 9040 struct btrfs_root_item *root_item = &root->root_item; 9041 struct walk_control *wc; 9042 struct btrfs_key key; 9043 int err = 0; 9044 int ret; 9045 int level; 9046 bool root_dropped = false; 9047 9048 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9049 9050 path = btrfs_alloc_path(); 9051 if (!path) { 9052 err = -ENOMEM; 9053 goto out; 9054 } 9055 9056 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9057 if (!wc) { 9058 btrfs_free_path(path); 9059 err = -ENOMEM; 9060 goto out; 9061 } 9062 9063 trans = btrfs_start_transaction(tree_root, 0); 9064 if (IS_ERR(trans)) { 9065 err = PTR_ERR(trans); 9066 goto out_free; 9067 } 9068 9069 if (block_rsv) 9070 trans->block_rsv = block_rsv; 9071 9072 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9073 level = btrfs_header_level(root->node); 9074 path->nodes[level] = btrfs_lock_root_node(root); 9075 btrfs_set_lock_blocking(path->nodes[level]); 9076 path->slots[level] = 0; 9077 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9078 memset(&wc->update_progress, 0, 9079 sizeof(wc->update_progress)); 9080 } else { 9081 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9082 memcpy(&wc->update_progress, &key, 9083 sizeof(wc->update_progress)); 9084 9085 level = root_item->drop_level; 9086 BUG_ON(level == 0); 9087 path->lowest_level = level; 9088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9089 path->lowest_level = 0; 9090 if (ret < 0) { 9091 err = ret; 9092 goto out_end_trans; 9093 } 9094 WARN_ON(ret > 0); 9095 9096 /* 9097 * unlock our path, this is safe because only this 9098 * function is allowed to delete this snapshot 9099 */ 9100 btrfs_unlock_up_safe(path, 0); 9101 9102 level = btrfs_header_level(root->node); 9103 while (1) { 9104 btrfs_tree_lock(path->nodes[level]); 9105 btrfs_set_lock_blocking(path->nodes[level]); 9106 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9107 9108 ret = btrfs_lookup_extent_info(trans, fs_info, 9109 path->nodes[level]->start, 9110 level, 1, &wc->refs[level], 9111 &wc->flags[level]); 9112 if (ret < 0) { 9113 err = ret; 9114 goto out_end_trans; 9115 } 9116 BUG_ON(wc->refs[level] == 0); 9117 9118 if (level == root_item->drop_level) 9119 break; 9120 9121 btrfs_tree_unlock(path->nodes[level]); 9122 path->locks[level] = 0; 9123 WARN_ON(wc->refs[level] != 1); 9124 level--; 9125 } 9126 } 9127 9128 wc->level = level; 9129 wc->shared_level = -1; 9130 wc->stage = DROP_REFERENCE; 9131 wc->update_ref = update_ref; 9132 wc->keep_locks = 0; 9133 wc->for_reloc = for_reloc; 9134 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9135 9136 while (1) { 9137 9138 ret = walk_down_tree(trans, root, path, wc); 9139 if (ret < 0) { 9140 err = ret; 9141 break; 9142 } 9143 9144 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9145 if (ret < 0) { 9146 err = ret; 9147 break; 9148 } 9149 9150 if (ret > 0) { 9151 BUG_ON(wc->stage != DROP_REFERENCE); 9152 break; 9153 } 9154 9155 if (wc->stage == DROP_REFERENCE) { 9156 level = wc->level; 9157 btrfs_node_key(path->nodes[level], 9158 &root_item->drop_progress, 9159 path->slots[level]); 9160 root_item->drop_level = level; 9161 } 9162 9163 BUG_ON(wc->level == 0); 9164 if (btrfs_should_end_transaction(trans) || 9165 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9166 ret = btrfs_update_root(trans, tree_root, 9167 &root->root_key, 9168 root_item); 9169 if (ret) { 9170 btrfs_abort_transaction(trans, ret); 9171 err = ret; 9172 goto out_end_trans; 9173 } 9174 9175 btrfs_end_transaction_throttle(trans); 9176 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9177 btrfs_debug(fs_info, 9178 "drop snapshot early exit"); 9179 err = -EAGAIN; 9180 goto out_free; 9181 } 9182 9183 trans = btrfs_start_transaction(tree_root, 0); 9184 if (IS_ERR(trans)) { 9185 err = PTR_ERR(trans); 9186 goto out_free; 9187 } 9188 if (block_rsv) 9189 trans->block_rsv = block_rsv; 9190 } 9191 } 9192 btrfs_release_path(path); 9193 if (err) 9194 goto out_end_trans; 9195 9196 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9197 if (ret) { 9198 btrfs_abort_transaction(trans, ret); 9199 goto out_end_trans; 9200 } 9201 9202 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9203 ret = btrfs_find_root(tree_root, &root->root_key, path, 9204 NULL, NULL); 9205 if (ret < 0) { 9206 btrfs_abort_transaction(trans, ret); 9207 err = ret; 9208 goto out_end_trans; 9209 } else if (ret > 0) { 9210 /* if we fail to delete the orphan item this time 9211 * around, it'll get picked up the next time. 9212 * 9213 * The most common failure here is just -ENOENT. 9214 */ 9215 btrfs_del_orphan_item(trans, tree_root, 9216 root->root_key.objectid); 9217 } 9218 } 9219 9220 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9221 btrfs_add_dropped_root(trans, root); 9222 } else { 9223 free_extent_buffer(root->node); 9224 free_extent_buffer(root->commit_root); 9225 btrfs_put_fs_root(root); 9226 } 9227 root_dropped = true; 9228 out_end_trans: 9229 btrfs_end_transaction_throttle(trans); 9230 out_free: 9231 kfree(wc); 9232 btrfs_free_path(path); 9233 out: 9234 /* 9235 * So if we need to stop dropping the snapshot for whatever reason we 9236 * need to make sure to add it back to the dead root list so that we 9237 * keep trying to do the work later. This also cleans up roots if we 9238 * don't have it in the radix (like when we recover after a power fail 9239 * or unmount) so we don't leak memory. 9240 */ 9241 if (!for_reloc && root_dropped == false) 9242 btrfs_add_dead_root(root); 9243 if (err && err != -EAGAIN) 9244 btrfs_handle_fs_error(fs_info, err, NULL); 9245 return err; 9246 } 9247 9248 /* 9249 * drop subtree rooted at tree block 'node'. 9250 * 9251 * NOTE: this function will unlock and release tree block 'node' 9252 * only used by relocation code 9253 */ 9254 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9255 struct btrfs_root *root, 9256 struct extent_buffer *node, 9257 struct extent_buffer *parent) 9258 { 9259 struct btrfs_fs_info *fs_info = root->fs_info; 9260 struct btrfs_path *path; 9261 struct walk_control *wc; 9262 int level; 9263 int parent_level; 9264 int ret = 0; 9265 int wret; 9266 9267 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9268 9269 path = btrfs_alloc_path(); 9270 if (!path) 9271 return -ENOMEM; 9272 9273 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9274 if (!wc) { 9275 btrfs_free_path(path); 9276 return -ENOMEM; 9277 } 9278 9279 btrfs_assert_tree_locked(parent); 9280 parent_level = btrfs_header_level(parent); 9281 extent_buffer_get(parent); 9282 path->nodes[parent_level] = parent; 9283 path->slots[parent_level] = btrfs_header_nritems(parent); 9284 9285 btrfs_assert_tree_locked(node); 9286 level = btrfs_header_level(node); 9287 path->nodes[level] = node; 9288 path->slots[level] = 0; 9289 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9290 9291 wc->refs[parent_level] = 1; 9292 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9293 wc->level = level; 9294 wc->shared_level = -1; 9295 wc->stage = DROP_REFERENCE; 9296 wc->update_ref = 0; 9297 wc->keep_locks = 1; 9298 wc->for_reloc = 1; 9299 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9300 9301 while (1) { 9302 wret = walk_down_tree(trans, root, path, wc); 9303 if (wret < 0) { 9304 ret = wret; 9305 break; 9306 } 9307 9308 wret = walk_up_tree(trans, root, path, wc, parent_level); 9309 if (wret < 0) 9310 ret = wret; 9311 if (wret != 0) 9312 break; 9313 } 9314 9315 kfree(wc); 9316 btrfs_free_path(path); 9317 return ret; 9318 } 9319 9320 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9321 { 9322 u64 num_devices; 9323 u64 stripped; 9324 9325 /* 9326 * if restripe for this chunk_type is on pick target profile and 9327 * return, otherwise do the usual balance 9328 */ 9329 stripped = get_restripe_target(fs_info, flags); 9330 if (stripped) 9331 return extended_to_chunk(stripped); 9332 9333 num_devices = fs_info->fs_devices->rw_devices; 9334 9335 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9336 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9337 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9338 9339 if (num_devices == 1) { 9340 stripped |= BTRFS_BLOCK_GROUP_DUP; 9341 stripped = flags & ~stripped; 9342 9343 /* turn raid0 into single device chunks */ 9344 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9345 return stripped; 9346 9347 /* turn mirroring into duplication */ 9348 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9349 BTRFS_BLOCK_GROUP_RAID10)) 9350 return stripped | BTRFS_BLOCK_GROUP_DUP; 9351 } else { 9352 /* they already had raid on here, just return */ 9353 if (flags & stripped) 9354 return flags; 9355 9356 stripped |= BTRFS_BLOCK_GROUP_DUP; 9357 stripped = flags & ~stripped; 9358 9359 /* switch duplicated blocks with raid1 */ 9360 if (flags & BTRFS_BLOCK_GROUP_DUP) 9361 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9362 9363 /* this is drive concat, leave it alone */ 9364 } 9365 9366 return flags; 9367 } 9368 9369 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9370 { 9371 struct btrfs_space_info *sinfo = cache->space_info; 9372 u64 num_bytes; 9373 u64 min_allocable_bytes; 9374 int ret = -ENOSPC; 9375 9376 /* 9377 * We need some metadata space and system metadata space for 9378 * allocating chunks in some corner cases until we force to set 9379 * it to be readonly. 9380 */ 9381 if ((sinfo->flags & 9382 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9383 !force) 9384 min_allocable_bytes = SZ_1M; 9385 else 9386 min_allocable_bytes = 0; 9387 9388 spin_lock(&sinfo->lock); 9389 spin_lock(&cache->lock); 9390 9391 if (cache->ro) { 9392 cache->ro++; 9393 ret = 0; 9394 goto out; 9395 } 9396 9397 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9398 cache->bytes_super - btrfs_block_group_used(&cache->item); 9399 9400 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9401 min_allocable_bytes <= sinfo->total_bytes) { 9402 sinfo->bytes_readonly += num_bytes; 9403 cache->ro++; 9404 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9405 ret = 0; 9406 } 9407 out: 9408 spin_unlock(&cache->lock); 9409 spin_unlock(&sinfo->lock); 9410 return ret; 9411 } 9412 9413 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9414 struct btrfs_block_group_cache *cache) 9415 9416 { 9417 struct btrfs_trans_handle *trans; 9418 u64 alloc_flags; 9419 int ret; 9420 9421 again: 9422 trans = btrfs_join_transaction(fs_info->extent_root); 9423 if (IS_ERR(trans)) 9424 return PTR_ERR(trans); 9425 9426 /* 9427 * we're not allowed to set block groups readonly after the dirty 9428 * block groups cache has started writing. If it already started, 9429 * back off and let this transaction commit 9430 */ 9431 mutex_lock(&fs_info->ro_block_group_mutex); 9432 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9433 u64 transid = trans->transid; 9434 9435 mutex_unlock(&fs_info->ro_block_group_mutex); 9436 btrfs_end_transaction(trans); 9437 9438 ret = btrfs_wait_for_commit(fs_info, transid); 9439 if (ret) 9440 return ret; 9441 goto again; 9442 } 9443 9444 /* 9445 * if we are changing raid levels, try to allocate a corresponding 9446 * block group with the new raid level. 9447 */ 9448 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9449 if (alloc_flags != cache->flags) { 9450 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9451 CHUNK_ALLOC_FORCE); 9452 /* 9453 * ENOSPC is allowed here, we may have enough space 9454 * already allocated at the new raid level to 9455 * carry on 9456 */ 9457 if (ret == -ENOSPC) 9458 ret = 0; 9459 if (ret < 0) 9460 goto out; 9461 } 9462 9463 ret = inc_block_group_ro(cache, 0); 9464 if (!ret) 9465 goto out; 9466 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9467 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9468 CHUNK_ALLOC_FORCE); 9469 if (ret < 0) 9470 goto out; 9471 ret = inc_block_group_ro(cache, 0); 9472 out: 9473 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9474 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9475 mutex_lock(&fs_info->chunk_mutex); 9476 check_system_chunk(trans, fs_info, alloc_flags); 9477 mutex_unlock(&fs_info->chunk_mutex); 9478 } 9479 mutex_unlock(&fs_info->ro_block_group_mutex); 9480 9481 btrfs_end_transaction(trans); 9482 return ret; 9483 } 9484 9485 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9486 struct btrfs_fs_info *fs_info, u64 type) 9487 { 9488 u64 alloc_flags = get_alloc_profile(fs_info, type); 9489 9490 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9491 } 9492 9493 /* 9494 * helper to account the unused space of all the readonly block group in the 9495 * space_info. takes mirrors into account. 9496 */ 9497 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9498 { 9499 struct btrfs_block_group_cache *block_group; 9500 u64 free_bytes = 0; 9501 int factor; 9502 9503 /* It's df, we don't care if it's racy */ 9504 if (list_empty(&sinfo->ro_bgs)) 9505 return 0; 9506 9507 spin_lock(&sinfo->lock); 9508 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9509 spin_lock(&block_group->lock); 9510 9511 if (!block_group->ro) { 9512 spin_unlock(&block_group->lock); 9513 continue; 9514 } 9515 9516 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9517 BTRFS_BLOCK_GROUP_RAID10 | 9518 BTRFS_BLOCK_GROUP_DUP)) 9519 factor = 2; 9520 else 9521 factor = 1; 9522 9523 free_bytes += (block_group->key.offset - 9524 btrfs_block_group_used(&block_group->item)) * 9525 factor; 9526 9527 spin_unlock(&block_group->lock); 9528 } 9529 spin_unlock(&sinfo->lock); 9530 9531 return free_bytes; 9532 } 9533 9534 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9535 { 9536 struct btrfs_space_info *sinfo = cache->space_info; 9537 u64 num_bytes; 9538 9539 BUG_ON(!cache->ro); 9540 9541 spin_lock(&sinfo->lock); 9542 spin_lock(&cache->lock); 9543 if (!--cache->ro) { 9544 num_bytes = cache->key.offset - cache->reserved - 9545 cache->pinned - cache->bytes_super - 9546 btrfs_block_group_used(&cache->item); 9547 sinfo->bytes_readonly -= num_bytes; 9548 list_del_init(&cache->ro_list); 9549 } 9550 spin_unlock(&cache->lock); 9551 spin_unlock(&sinfo->lock); 9552 } 9553 9554 /* 9555 * checks to see if its even possible to relocate this block group. 9556 * 9557 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9558 * ok to go ahead and try. 9559 */ 9560 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9561 { 9562 struct btrfs_root *root = fs_info->extent_root; 9563 struct btrfs_block_group_cache *block_group; 9564 struct btrfs_space_info *space_info; 9565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9566 struct btrfs_device *device; 9567 struct btrfs_trans_handle *trans; 9568 u64 min_free; 9569 u64 dev_min = 1; 9570 u64 dev_nr = 0; 9571 u64 target; 9572 int debug; 9573 int index; 9574 int full = 0; 9575 int ret = 0; 9576 9577 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9578 9579 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9580 9581 /* odd, couldn't find the block group, leave it alone */ 9582 if (!block_group) { 9583 if (debug) 9584 btrfs_warn(fs_info, 9585 "can't find block group for bytenr %llu", 9586 bytenr); 9587 return -1; 9588 } 9589 9590 min_free = btrfs_block_group_used(&block_group->item); 9591 9592 /* no bytes used, we're good */ 9593 if (!min_free) 9594 goto out; 9595 9596 space_info = block_group->space_info; 9597 spin_lock(&space_info->lock); 9598 9599 full = space_info->full; 9600 9601 /* 9602 * if this is the last block group we have in this space, we can't 9603 * relocate it unless we're able to allocate a new chunk below. 9604 * 9605 * Otherwise, we need to make sure we have room in the space to handle 9606 * all of the extents from this block group. If we can, we're good 9607 */ 9608 if ((space_info->total_bytes != block_group->key.offset) && 9609 (btrfs_space_info_used(space_info, false) + min_free < 9610 space_info->total_bytes)) { 9611 spin_unlock(&space_info->lock); 9612 goto out; 9613 } 9614 spin_unlock(&space_info->lock); 9615 9616 /* 9617 * ok we don't have enough space, but maybe we have free space on our 9618 * devices to allocate new chunks for relocation, so loop through our 9619 * alloc devices and guess if we have enough space. if this block 9620 * group is going to be restriped, run checks against the target 9621 * profile instead of the current one. 9622 */ 9623 ret = -1; 9624 9625 /* 9626 * index: 9627 * 0: raid10 9628 * 1: raid1 9629 * 2: dup 9630 * 3: raid0 9631 * 4: single 9632 */ 9633 target = get_restripe_target(fs_info, block_group->flags); 9634 if (target) { 9635 index = __get_raid_index(extended_to_chunk(target)); 9636 } else { 9637 /* 9638 * this is just a balance, so if we were marked as full 9639 * we know there is no space for a new chunk 9640 */ 9641 if (full) { 9642 if (debug) 9643 btrfs_warn(fs_info, 9644 "no space to alloc new chunk for block group %llu", 9645 block_group->key.objectid); 9646 goto out; 9647 } 9648 9649 index = get_block_group_index(block_group); 9650 } 9651 9652 if (index == BTRFS_RAID_RAID10) { 9653 dev_min = 4; 9654 /* Divide by 2 */ 9655 min_free >>= 1; 9656 } else if (index == BTRFS_RAID_RAID1) { 9657 dev_min = 2; 9658 } else if (index == BTRFS_RAID_DUP) { 9659 /* Multiply by 2 */ 9660 min_free <<= 1; 9661 } else if (index == BTRFS_RAID_RAID0) { 9662 dev_min = fs_devices->rw_devices; 9663 min_free = div64_u64(min_free, dev_min); 9664 } 9665 9666 /* We need to do this so that we can look at pending chunks */ 9667 trans = btrfs_join_transaction(root); 9668 if (IS_ERR(trans)) { 9669 ret = PTR_ERR(trans); 9670 goto out; 9671 } 9672 9673 mutex_lock(&fs_info->chunk_mutex); 9674 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9675 u64 dev_offset; 9676 9677 /* 9678 * check to make sure we can actually find a chunk with enough 9679 * space to fit our block group in. 9680 */ 9681 if (device->total_bytes > device->bytes_used + min_free && 9682 !device->is_tgtdev_for_dev_replace) { 9683 ret = find_free_dev_extent(trans, device, min_free, 9684 &dev_offset, NULL); 9685 if (!ret) 9686 dev_nr++; 9687 9688 if (dev_nr >= dev_min) 9689 break; 9690 9691 ret = -1; 9692 } 9693 } 9694 if (debug && ret == -1) 9695 btrfs_warn(fs_info, 9696 "no space to allocate a new chunk for block group %llu", 9697 block_group->key.objectid); 9698 mutex_unlock(&fs_info->chunk_mutex); 9699 btrfs_end_transaction(trans); 9700 out: 9701 btrfs_put_block_group(block_group); 9702 return ret; 9703 } 9704 9705 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9706 struct btrfs_path *path, 9707 struct btrfs_key *key) 9708 { 9709 struct btrfs_root *root = fs_info->extent_root; 9710 int ret = 0; 9711 struct btrfs_key found_key; 9712 struct extent_buffer *leaf; 9713 int slot; 9714 9715 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9716 if (ret < 0) 9717 goto out; 9718 9719 while (1) { 9720 slot = path->slots[0]; 9721 leaf = path->nodes[0]; 9722 if (slot >= btrfs_header_nritems(leaf)) { 9723 ret = btrfs_next_leaf(root, path); 9724 if (ret == 0) 9725 continue; 9726 if (ret < 0) 9727 goto out; 9728 break; 9729 } 9730 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9731 9732 if (found_key.objectid >= key->objectid && 9733 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9734 struct extent_map_tree *em_tree; 9735 struct extent_map *em; 9736 9737 em_tree = &root->fs_info->mapping_tree.map_tree; 9738 read_lock(&em_tree->lock); 9739 em = lookup_extent_mapping(em_tree, found_key.objectid, 9740 found_key.offset); 9741 read_unlock(&em_tree->lock); 9742 if (!em) { 9743 btrfs_err(fs_info, 9744 "logical %llu len %llu found bg but no related chunk", 9745 found_key.objectid, found_key.offset); 9746 ret = -ENOENT; 9747 } else { 9748 ret = 0; 9749 } 9750 free_extent_map(em); 9751 goto out; 9752 } 9753 path->slots[0]++; 9754 } 9755 out: 9756 return ret; 9757 } 9758 9759 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9760 { 9761 struct btrfs_block_group_cache *block_group; 9762 u64 last = 0; 9763 9764 while (1) { 9765 struct inode *inode; 9766 9767 block_group = btrfs_lookup_first_block_group(info, last); 9768 while (block_group) { 9769 spin_lock(&block_group->lock); 9770 if (block_group->iref) 9771 break; 9772 spin_unlock(&block_group->lock); 9773 block_group = next_block_group(info, block_group); 9774 } 9775 if (!block_group) { 9776 if (last == 0) 9777 break; 9778 last = 0; 9779 continue; 9780 } 9781 9782 inode = block_group->inode; 9783 block_group->iref = 0; 9784 block_group->inode = NULL; 9785 spin_unlock(&block_group->lock); 9786 ASSERT(block_group->io_ctl.inode == NULL); 9787 iput(inode); 9788 last = block_group->key.objectid + block_group->key.offset; 9789 btrfs_put_block_group(block_group); 9790 } 9791 } 9792 9793 /* 9794 * Must be called only after stopping all workers, since we could have block 9795 * group caching kthreads running, and therefore they could race with us if we 9796 * freed the block groups before stopping them. 9797 */ 9798 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9799 { 9800 struct btrfs_block_group_cache *block_group; 9801 struct btrfs_space_info *space_info; 9802 struct btrfs_caching_control *caching_ctl; 9803 struct rb_node *n; 9804 9805 down_write(&info->commit_root_sem); 9806 while (!list_empty(&info->caching_block_groups)) { 9807 caching_ctl = list_entry(info->caching_block_groups.next, 9808 struct btrfs_caching_control, list); 9809 list_del(&caching_ctl->list); 9810 put_caching_control(caching_ctl); 9811 } 9812 up_write(&info->commit_root_sem); 9813 9814 spin_lock(&info->unused_bgs_lock); 9815 while (!list_empty(&info->unused_bgs)) { 9816 block_group = list_first_entry(&info->unused_bgs, 9817 struct btrfs_block_group_cache, 9818 bg_list); 9819 list_del_init(&block_group->bg_list); 9820 btrfs_put_block_group(block_group); 9821 } 9822 spin_unlock(&info->unused_bgs_lock); 9823 9824 spin_lock(&info->block_group_cache_lock); 9825 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9826 block_group = rb_entry(n, struct btrfs_block_group_cache, 9827 cache_node); 9828 rb_erase(&block_group->cache_node, 9829 &info->block_group_cache_tree); 9830 RB_CLEAR_NODE(&block_group->cache_node); 9831 spin_unlock(&info->block_group_cache_lock); 9832 9833 down_write(&block_group->space_info->groups_sem); 9834 list_del(&block_group->list); 9835 up_write(&block_group->space_info->groups_sem); 9836 9837 /* 9838 * We haven't cached this block group, which means we could 9839 * possibly have excluded extents on this block group. 9840 */ 9841 if (block_group->cached == BTRFS_CACHE_NO || 9842 block_group->cached == BTRFS_CACHE_ERROR) 9843 free_excluded_extents(info, block_group); 9844 9845 btrfs_remove_free_space_cache(block_group); 9846 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9847 ASSERT(list_empty(&block_group->dirty_list)); 9848 ASSERT(list_empty(&block_group->io_list)); 9849 ASSERT(list_empty(&block_group->bg_list)); 9850 ASSERT(atomic_read(&block_group->count) == 1); 9851 btrfs_put_block_group(block_group); 9852 9853 spin_lock(&info->block_group_cache_lock); 9854 } 9855 spin_unlock(&info->block_group_cache_lock); 9856 9857 /* now that all the block groups are freed, go through and 9858 * free all the space_info structs. This is only called during 9859 * the final stages of unmount, and so we know nobody is 9860 * using them. We call synchronize_rcu() once before we start, 9861 * just to be on the safe side. 9862 */ 9863 synchronize_rcu(); 9864 9865 release_global_block_rsv(info); 9866 9867 while (!list_empty(&info->space_info)) { 9868 int i; 9869 9870 space_info = list_entry(info->space_info.next, 9871 struct btrfs_space_info, 9872 list); 9873 9874 /* 9875 * Do not hide this behind enospc_debug, this is actually 9876 * important and indicates a real bug if this happens. 9877 */ 9878 if (WARN_ON(space_info->bytes_pinned > 0 || 9879 space_info->bytes_reserved > 0 || 9880 space_info->bytes_may_use > 0)) 9881 dump_space_info(info, space_info, 0, 0); 9882 list_del(&space_info->list); 9883 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9884 struct kobject *kobj; 9885 kobj = space_info->block_group_kobjs[i]; 9886 space_info->block_group_kobjs[i] = NULL; 9887 if (kobj) { 9888 kobject_del(kobj); 9889 kobject_put(kobj); 9890 } 9891 } 9892 kobject_del(&space_info->kobj); 9893 kobject_put(&space_info->kobj); 9894 } 9895 return 0; 9896 } 9897 9898 static void __link_block_group(struct btrfs_space_info *space_info, 9899 struct btrfs_block_group_cache *cache) 9900 { 9901 int index = get_block_group_index(cache); 9902 bool first = false; 9903 9904 down_write(&space_info->groups_sem); 9905 if (list_empty(&space_info->block_groups[index])) 9906 first = true; 9907 list_add_tail(&cache->list, &space_info->block_groups[index]); 9908 up_write(&space_info->groups_sem); 9909 9910 if (first) { 9911 struct raid_kobject *rkobj; 9912 int ret; 9913 9914 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9915 if (!rkobj) 9916 goto out_err; 9917 rkobj->raid_type = index; 9918 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9919 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9920 "%s", get_raid_name(index)); 9921 if (ret) { 9922 kobject_put(&rkobj->kobj); 9923 goto out_err; 9924 } 9925 space_info->block_group_kobjs[index] = &rkobj->kobj; 9926 } 9927 9928 return; 9929 out_err: 9930 btrfs_warn(cache->fs_info, 9931 "failed to add kobject for block cache, ignoring"); 9932 } 9933 9934 static struct btrfs_block_group_cache * 9935 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9936 u64 start, u64 size) 9937 { 9938 struct btrfs_block_group_cache *cache; 9939 9940 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9941 if (!cache) 9942 return NULL; 9943 9944 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9945 GFP_NOFS); 9946 if (!cache->free_space_ctl) { 9947 kfree(cache); 9948 return NULL; 9949 } 9950 9951 cache->key.objectid = start; 9952 cache->key.offset = size; 9953 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9954 9955 cache->sectorsize = fs_info->sectorsize; 9956 cache->fs_info = fs_info; 9957 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, 9958 &fs_info->mapping_tree, 9959 start); 9960 set_free_space_tree_thresholds(cache); 9961 9962 atomic_set(&cache->count, 1); 9963 spin_lock_init(&cache->lock); 9964 init_rwsem(&cache->data_rwsem); 9965 INIT_LIST_HEAD(&cache->list); 9966 INIT_LIST_HEAD(&cache->cluster_list); 9967 INIT_LIST_HEAD(&cache->bg_list); 9968 INIT_LIST_HEAD(&cache->ro_list); 9969 INIT_LIST_HEAD(&cache->dirty_list); 9970 INIT_LIST_HEAD(&cache->io_list); 9971 btrfs_init_free_space_ctl(cache); 9972 atomic_set(&cache->trimming, 0); 9973 mutex_init(&cache->free_space_lock); 9974 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 9975 9976 return cache; 9977 } 9978 9979 int btrfs_read_block_groups(struct btrfs_fs_info *info) 9980 { 9981 struct btrfs_path *path; 9982 int ret; 9983 struct btrfs_block_group_cache *cache; 9984 struct btrfs_space_info *space_info; 9985 struct btrfs_key key; 9986 struct btrfs_key found_key; 9987 struct extent_buffer *leaf; 9988 int need_clear = 0; 9989 u64 cache_gen; 9990 u64 feature; 9991 int mixed; 9992 9993 feature = btrfs_super_incompat_flags(info->super_copy); 9994 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 9995 9996 key.objectid = 0; 9997 key.offset = 0; 9998 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9999 path = btrfs_alloc_path(); 10000 if (!path) 10001 return -ENOMEM; 10002 path->reada = READA_FORWARD; 10003 10004 cache_gen = btrfs_super_cache_generation(info->super_copy); 10005 if (btrfs_test_opt(info, SPACE_CACHE) && 10006 btrfs_super_generation(info->super_copy) != cache_gen) 10007 need_clear = 1; 10008 if (btrfs_test_opt(info, CLEAR_CACHE)) 10009 need_clear = 1; 10010 10011 while (1) { 10012 ret = find_first_block_group(info, path, &key); 10013 if (ret > 0) 10014 break; 10015 if (ret != 0) 10016 goto error; 10017 10018 leaf = path->nodes[0]; 10019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10020 10021 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10022 found_key.offset); 10023 if (!cache) { 10024 ret = -ENOMEM; 10025 goto error; 10026 } 10027 10028 if (need_clear) { 10029 /* 10030 * When we mount with old space cache, we need to 10031 * set BTRFS_DC_CLEAR and set dirty flag. 10032 * 10033 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10034 * truncate the old free space cache inode and 10035 * setup a new one. 10036 * b) Setting 'dirty flag' makes sure that we flush 10037 * the new space cache info onto disk. 10038 */ 10039 if (btrfs_test_opt(info, SPACE_CACHE)) 10040 cache->disk_cache_state = BTRFS_DC_CLEAR; 10041 } 10042 10043 read_extent_buffer(leaf, &cache->item, 10044 btrfs_item_ptr_offset(leaf, path->slots[0]), 10045 sizeof(cache->item)); 10046 cache->flags = btrfs_block_group_flags(&cache->item); 10047 if (!mixed && 10048 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10049 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10050 btrfs_err(info, 10051 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10052 cache->key.objectid); 10053 ret = -EINVAL; 10054 goto error; 10055 } 10056 10057 key.objectid = found_key.objectid + found_key.offset; 10058 btrfs_release_path(path); 10059 10060 /* 10061 * We need to exclude the super stripes now so that the space 10062 * info has super bytes accounted for, otherwise we'll think 10063 * we have more space than we actually do. 10064 */ 10065 ret = exclude_super_stripes(info, cache); 10066 if (ret) { 10067 /* 10068 * We may have excluded something, so call this just in 10069 * case. 10070 */ 10071 free_excluded_extents(info, cache); 10072 btrfs_put_block_group(cache); 10073 goto error; 10074 } 10075 10076 /* 10077 * check for two cases, either we are full, and therefore 10078 * don't need to bother with the caching work since we won't 10079 * find any space, or we are empty, and we can just add all 10080 * the space in and be done with it. This saves us _alot_ of 10081 * time, particularly in the full case. 10082 */ 10083 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10084 cache->last_byte_to_unpin = (u64)-1; 10085 cache->cached = BTRFS_CACHE_FINISHED; 10086 free_excluded_extents(info, cache); 10087 } else if (btrfs_block_group_used(&cache->item) == 0) { 10088 cache->last_byte_to_unpin = (u64)-1; 10089 cache->cached = BTRFS_CACHE_FINISHED; 10090 add_new_free_space(cache, info, 10091 found_key.objectid, 10092 found_key.objectid + 10093 found_key.offset); 10094 free_excluded_extents(info, cache); 10095 } 10096 10097 ret = btrfs_add_block_group_cache(info, cache); 10098 if (ret) { 10099 btrfs_remove_free_space_cache(cache); 10100 btrfs_put_block_group(cache); 10101 goto error; 10102 } 10103 10104 trace_btrfs_add_block_group(info, cache, 0); 10105 update_space_info(info, cache->flags, found_key.offset, 10106 btrfs_block_group_used(&cache->item), 10107 cache->bytes_super, &space_info); 10108 10109 cache->space_info = space_info; 10110 10111 __link_block_group(space_info, cache); 10112 10113 set_avail_alloc_bits(info, cache->flags); 10114 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10115 inc_block_group_ro(cache, 1); 10116 } else if (btrfs_block_group_used(&cache->item) == 0) { 10117 spin_lock(&info->unused_bgs_lock); 10118 /* Should always be true but just in case. */ 10119 if (list_empty(&cache->bg_list)) { 10120 btrfs_get_block_group(cache); 10121 list_add_tail(&cache->bg_list, 10122 &info->unused_bgs); 10123 } 10124 spin_unlock(&info->unused_bgs_lock); 10125 } 10126 } 10127 10128 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10129 if (!(get_alloc_profile(info, space_info->flags) & 10130 (BTRFS_BLOCK_GROUP_RAID10 | 10131 BTRFS_BLOCK_GROUP_RAID1 | 10132 BTRFS_BLOCK_GROUP_RAID5 | 10133 BTRFS_BLOCK_GROUP_RAID6 | 10134 BTRFS_BLOCK_GROUP_DUP))) 10135 continue; 10136 /* 10137 * avoid allocating from un-mirrored block group if there are 10138 * mirrored block groups. 10139 */ 10140 list_for_each_entry(cache, 10141 &space_info->block_groups[BTRFS_RAID_RAID0], 10142 list) 10143 inc_block_group_ro(cache, 1); 10144 list_for_each_entry(cache, 10145 &space_info->block_groups[BTRFS_RAID_SINGLE], 10146 list) 10147 inc_block_group_ro(cache, 1); 10148 } 10149 10150 init_global_block_rsv(info); 10151 ret = 0; 10152 error: 10153 btrfs_free_path(path); 10154 return ret; 10155 } 10156 10157 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10158 struct btrfs_fs_info *fs_info) 10159 { 10160 struct btrfs_block_group_cache *block_group, *tmp; 10161 struct btrfs_root *extent_root = fs_info->extent_root; 10162 struct btrfs_block_group_item item; 10163 struct btrfs_key key; 10164 int ret = 0; 10165 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10166 10167 trans->can_flush_pending_bgs = false; 10168 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10169 if (ret) 10170 goto next; 10171 10172 spin_lock(&block_group->lock); 10173 memcpy(&item, &block_group->item, sizeof(item)); 10174 memcpy(&key, &block_group->key, sizeof(key)); 10175 spin_unlock(&block_group->lock); 10176 10177 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10178 sizeof(item)); 10179 if (ret) 10180 btrfs_abort_transaction(trans, ret); 10181 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10182 key.offset); 10183 if (ret) 10184 btrfs_abort_transaction(trans, ret); 10185 add_block_group_free_space(trans, fs_info, block_group); 10186 /* already aborted the transaction if it failed. */ 10187 next: 10188 list_del_init(&block_group->bg_list); 10189 } 10190 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10191 } 10192 10193 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10194 struct btrfs_fs_info *fs_info, u64 bytes_used, 10195 u64 type, u64 chunk_objectid, u64 chunk_offset, 10196 u64 size) 10197 { 10198 struct btrfs_block_group_cache *cache; 10199 int ret; 10200 10201 btrfs_set_log_full_commit(fs_info, trans); 10202 10203 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10204 if (!cache) 10205 return -ENOMEM; 10206 10207 btrfs_set_block_group_used(&cache->item, bytes_used); 10208 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10209 btrfs_set_block_group_flags(&cache->item, type); 10210 10211 cache->flags = type; 10212 cache->last_byte_to_unpin = (u64)-1; 10213 cache->cached = BTRFS_CACHE_FINISHED; 10214 cache->needs_free_space = 1; 10215 ret = exclude_super_stripes(fs_info, cache); 10216 if (ret) { 10217 /* 10218 * We may have excluded something, so call this just in 10219 * case. 10220 */ 10221 free_excluded_extents(fs_info, cache); 10222 btrfs_put_block_group(cache); 10223 return ret; 10224 } 10225 10226 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10227 10228 free_excluded_extents(fs_info, cache); 10229 10230 #ifdef CONFIG_BTRFS_DEBUG 10231 if (btrfs_should_fragment_free_space(cache)) { 10232 u64 new_bytes_used = size - bytes_used; 10233 10234 bytes_used += new_bytes_used >> 1; 10235 fragment_free_space(cache); 10236 } 10237 #endif 10238 /* 10239 * Ensure the corresponding space_info object is created and 10240 * assigned to our block group. We want our bg to be added to the rbtree 10241 * with its ->space_info set. 10242 */ 10243 cache->space_info = __find_space_info(fs_info, cache->flags); 10244 if (!cache->space_info) { 10245 ret = create_space_info(fs_info, cache->flags, 10246 &cache->space_info); 10247 if (ret) { 10248 btrfs_remove_free_space_cache(cache); 10249 btrfs_put_block_group(cache); 10250 return ret; 10251 } 10252 } 10253 10254 ret = btrfs_add_block_group_cache(fs_info, cache); 10255 if (ret) { 10256 btrfs_remove_free_space_cache(cache); 10257 btrfs_put_block_group(cache); 10258 return ret; 10259 } 10260 10261 /* 10262 * Now that our block group has its ->space_info set and is inserted in 10263 * the rbtree, update the space info's counters. 10264 */ 10265 trace_btrfs_add_block_group(fs_info, cache, 1); 10266 update_space_info(fs_info, cache->flags, size, bytes_used, 10267 cache->bytes_super, &cache->space_info); 10268 update_global_block_rsv(fs_info); 10269 10270 __link_block_group(cache->space_info, cache); 10271 10272 list_add_tail(&cache->bg_list, &trans->new_bgs); 10273 10274 set_avail_alloc_bits(fs_info, type); 10275 return 0; 10276 } 10277 10278 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10279 { 10280 u64 extra_flags = chunk_to_extended(flags) & 10281 BTRFS_EXTENDED_PROFILE_MASK; 10282 10283 write_seqlock(&fs_info->profiles_lock); 10284 if (flags & BTRFS_BLOCK_GROUP_DATA) 10285 fs_info->avail_data_alloc_bits &= ~extra_flags; 10286 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10287 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10288 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10289 fs_info->avail_system_alloc_bits &= ~extra_flags; 10290 write_sequnlock(&fs_info->profiles_lock); 10291 } 10292 10293 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10294 struct btrfs_fs_info *fs_info, u64 group_start, 10295 struct extent_map *em) 10296 { 10297 struct btrfs_root *root = fs_info->extent_root; 10298 struct btrfs_path *path; 10299 struct btrfs_block_group_cache *block_group; 10300 struct btrfs_free_cluster *cluster; 10301 struct btrfs_root *tree_root = fs_info->tree_root; 10302 struct btrfs_key key; 10303 struct inode *inode; 10304 struct kobject *kobj = NULL; 10305 int ret; 10306 int index; 10307 int factor; 10308 struct btrfs_caching_control *caching_ctl = NULL; 10309 bool remove_em; 10310 10311 block_group = btrfs_lookup_block_group(fs_info, group_start); 10312 BUG_ON(!block_group); 10313 BUG_ON(!block_group->ro); 10314 10315 /* 10316 * Free the reserved super bytes from this block group before 10317 * remove it. 10318 */ 10319 free_excluded_extents(fs_info, block_group); 10320 10321 memcpy(&key, &block_group->key, sizeof(key)); 10322 index = get_block_group_index(block_group); 10323 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10324 BTRFS_BLOCK_GROUP_RAID1 | 10325 BTRFS_BLOCK_GROUP_RAID10)) 10326 factor = 2; 10327 else 10328 factor = 1; 10329 10330 /* make sure this block group isn't part of an allocation cluster */ 10331 cluster = &fs_info->data_alloc_cluster; 10332 spin_lock(&cluster->refill_lock); 10333 btrfs_return_cluster_to_free_space(block_group, cluster); 10334 spin_unlock(&cluster->refill_lock); 10335 10336 /* 10337 * make sure this block group isn't part of a metadata 10338 * allocation cluster 10339 */ 10340 cluster = &fs_info->meta_alloc_cluster; 10341 spin_lock(&cluster->refill_lock); 10342 btrfs_return_cluster_to_free_space(block_group, cluster); 10343 spin_unlock(&cluster->refill_lock); 10344 10345 path = btrfs_alloc_path(); 10346 if (!path) { 10347 ret = -ENOMEM; 10348 goto out; 10349 } 10350 10351 /* 10352 * get the inode first so any iput calls done for the io_list 10353 * aren't the final iput (no unlinks allowed now) 10354 */ 10355 inode = lookup_free_space_inode(fs_info, block_group, path); 10356 10357 mutex_lock(&trans->transaction->cache_write_mutex); 10358 /* 10359 * make sure our free spache cache IO is done before remove the 10360 * free space inode 10361 */ 10362 spin_lock(&trans->transaction->dirty_bgs_lock); 10363 if (!list_empty(&block_group->io_list)) { 10364 list_del_init(&block_group->io_list); 10365 10366 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10367 10368 spin_unlock(&trans->transaction->dirty_bgs_lock); 10369 btrfs_wait_cache_io(trans, block_group, path); 10370 btrfs_put_block_group(block_group); 10371 spin_lock(&trans->transaction->dirty_bgs_lock); 10372 } 10373 10374 if (!list_empty(&block_group->dirty_list)) { 10375 list_del_init(&block_group->dirty_list); 10376 btrfs_put_block_group(block_group); 10377 } 10378 spin_unlock(&trans->transaction->dirty_bgs_lock); 10379 mutex_unlock(&trans->transaction->cache_write_mutex); 10380 10381 if (!IS_ERR(inode)) { 10382 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10383 if (ret) { 10384 btrfs_add_delayed_iput(inode); 10385 goto out; 10386 } 10387 clear_nlink(inode); 10388 /* One for the block groups ref */ 10389 spin_lock(&block_group->lock); 10390 if (block_group->iref) { 10391 block_group->iref = 0; 10392 block_group->inode = NULL; 10393 spin_unlock(&block_group->lock); 10394 iput(inode); 10395 } else { 10396 spin_unlock(&block_group->lock); 10397 } 10398 /* One for our lookup ref */ 10399 btrfs_add_delayed_iput(inode); 10400 } 10401 10402 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10403 key.offset = block_group->key.objectid; 10404 key.type = 0; 10405 10406 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10407 if (ret < 0) 10408 goto out; 10409 if (ret > 0) 10410 btrfs_release_path(path); 10411 if (ret == 0) { 10412 ret = btrfs_del_item(trans, tree_root, path); 10413 if (ret) 10414 goto out; 10415 btrfs_release_path(path); 10416 } 10417 10418 spin_lock(&fs_info->block_group_cache_lock); 10419 rb_erase(&block_group->cache_node, 10420 &fs_info->block_group_cache_tree); 10421 RB_CLEAR_NODE(&block_group->cache_node); 10422 10423 if (fs_info->first_logical_byte == block_group->key.objectid) 10424 fs_info->first_logical_byte = (u64)-1; 10425 spin_unlock(&fs_info->block_group_cache_lock); 10426 10427 down_write(&block_group->space_info->groups_sem); 10428 /* 10429 * we must use list_del_init so people can check to see if they 10430 * are still on the list after taking the semaphore 10431 */ 10432 list_del_init(&block_group->list); 10433 if (list_empty(&block_group->space_info->block_groups[index])) { 10434 kobj = block_group->space_info->block_group_kobjs[index]; 10435 block_group->space_info->block_group_kobjs[index] = NULL; 10436 clear_avail_alloc_bits(fs_info, block_group->flags); 10437 } 10438 up_write(&block_group->space_info->groups_sem); 10439 if (kobj) { 10440 kobject_del(kobj); 10441 kobject_put(kobj); 10442 } 10443 10444 if (block_group->has_caching_ctl) 10445 caching_ctl = get_caching_control(block_group); 10446 if (block_group->cached == BTRFS_CACHE_STARTED) 10447 wait_block_group_cache_done(block_group); 10448 if (block_group->has_caching_ctl) { 10449 down_write(&fs_info->commit_root_sem); 10450 if (!caching_ctl) { 10451 struct btrfs_caching_control *ctl; 10452 10453 list_for_each_entry(ctl, 10454 &fs_info->caching_block_groups, list) 10455 if (ctl->block_group == block_group) { 10456 caching_ctl = ctl; 10457 refcount_inc(&caching_ctl->count); 10458 break; 10459 } 10460 } 10461 if (caching_ctl) 10462 list_del_init(&caching_ctl->list); 10463 up_write(&fs_info->commit_root_sem); 10464 if (caching_ctl) { 10465 /* Once for the caching bgs list and once for us. */ 10466 put_caching_control(caching_ctl); 10467 put_caching_control(caching_ctl); 10468 } 10469 } 10470 10471 spin_lock(&trans->transaction->dirty_bgs_lock); 10472 if (!list_empty(&block_group->dirty_list)) { 10473 WARN_ON(1); 10474 } 10475 if (!list_empty(&block_group->io_list)) { 10476 WARN_ON(1); 10477 } 10478 spin_unlock(&trans->transaction->dirty_bgs_lock); 10479 btrfs_remove_free_space_cache(block_group); 10480 10481 spin_lock(&block_group->space_info->lock); 10482 list_del_init(&block_group->ro_list); 10483 10484 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10485 WARN_ON(block_group->space_info->total_bytes 10486 < block_group->key.offset); 10487 WARN_ON(block_group->space_info->bytes_readonly 10488 < block_group->key.offset); 10489 WARN_ON(block_group->space_info->disk_total 10490 < block_group->key.offset * factor); 10491 } 10492 block_group->space_info->total_bytes -= block_group->key.offset; 10493 block_group->space_info->bytes_readonly -= block_group->key.offset; 10494 block_group->space_info->disk_total -= block_group->key.offset * factor; 10495 10496 spin_unlock(&block_group->space_info->lock); 10497 10498 memcpy(&key, &block_group->key, sizeof(key)); 10499 10500 mutex_lock(&fs_info->chunk_mutex); 10501 if (!list_empty(&em->list)) { 10502 /* We're in the transaction->pending_chunks list. */ 10503 free_extent_map(em); 10504 } 10505 spin_lock(&block_group->lock); 10506 block_group->removed = 1; 10507 /* 10508 * At this point trimming can't start on this block group, because we 10509 * removed the block group from the tree fs_info->block_group_cache_tree 10510 * so no one can't find it anymore and even if someone already got this 10511 * block group before we removed it from the rbtree, they have already 10512 * incremented block_group->trimming - if they didn't, they won't find 10513 * any free space entries because we already removed them all when we 10514 * called btrfs_remove_free_space_cache(). 10515 * 10516 * And we must not remove the extent map from the fs_info->mapping_tree 10517 * to prevent the same logical address range and physical device space 10518 * ranges from being reused for a new block group. This is because our 10519 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10520 * completely transactionless, so while it is trimming a range the 10521 * currently running transaction might finish and a new one start, 10522 * allowing for new block groups to be created that can reuse the same 10523 * physical device locations unless we take this special care. 10524 * 10525 * There may also be an implicit trim operation if the file system 10526 * is mounted with -odiscard. The same protections must remain 10527 * in place until the extents have been discarded completely when 10528 * the transaction commit has completed. 10529 */ 10530 remove_em = (atomic_read(&block_group->trimming) == 0); 10531 /* 10532 * Make sure a trimmer task always sees the em in the pinned_chunks list 10533 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10534 * before checking block_group->removed). 10535 */ 10536 if (!remove_em) { 10537 /* 10538 * Our em might be in trans->transaction->pending_chunks which 10539 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10540 * and so is the fs_info->pinned_chunks list. 10541 * 10542 * So at this point we must be holding the chunk_mutex to avoid 10543 * any races with chunk allocation (more specifically at 10544 * volumes.c:contains_pending_extent()), to ensure it always 10545 * sees the em, either in the pending_chunks list or in the 10546 * pinned_chunks list. 10547 */ 10548 list_move_tail(&em->list, &fs_info->pinned_chunks); 10549 } 10550 spin_unlock(&block_group->lock); 10551 10552 if (remove_em) { 10553 struct extent_map_tree *em_tree; 10554 10555 em_tree = &fs_info->mapping_tree.map_tree; 10556 write_lock(&em_tree->lock); 10557 /* 10558 * The em might be in the pending_chunks list, so make sure the 10559 * chunk mutex is locked, since remove_extent_mapping() will 10560 * delete us from that list. 10561 */ 10562 remove_extent_mapping(em_tree, em); 10563 write_unlock(&em_tree->lock); 10564 /* once for the tree */ 10565 free_extent_map(em); 10566 } 10567 10568 mutex_unlock(&fs_info->chunk_mutex); 10569 10570 ret = remove_block_group_free_space(trans, fs_info, block_group); 10571 if (ret) 10572 goto out; 10573 10574 btrfs_put_block_group(block_group); 10575 btrfs_put_block_group(block_group); 10576 10577 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10578 if (ret > 0) 10579 ret = -EIO; 10580 if (ret < 0) 10581 goto out; 10582 10583 ret = btrfs_del_item(trans, root, path); 10584 out: 10585 btrfs_free_path(path); 10586 return ret; 10587 } 10588 10589 struct btrfs_trans_handle * 10590 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10591 const u64 chunk_offset) 10592 { 10593 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10594 struct extent_map *em; 10595 struct map_lookup *map; 10596 unsigned int num_items; 10597 10598 read_lock(&em_tree->lock); 10599 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10600 read_unlock(&em_tree->lock); 10601 ASSERT(em && em->start == chunk_offset); 10602 10603 /* 10604 * We need to reserve 3 + N units from the metadata space info in order 10605 * to remove a block group (done at btrfs_remove_chunk() and at 10606 * btrfs_remove_block_group()), which are used for: 10607 * 10608 * 1 unit for adding the free space inode's orphan (located in the tree 10609 * of tree roots). 10610 * 1 unit for deleting the block group item (located in the extent 10611 * tree). 10612 * 1 unit for deleting the free space item (located in tree of tree 10613 * roots). 10614 * N units for deleting N device extent items corresponding to each 10615 * stripe (located in the device tree). 10616 * 10617 * In order to remove a block group we also need to reserve units in the 10618 * system space info in order to update the chunk tree (update one or 10619 * more device items and remove one chunk item), but this is done at 10620 * btrfs_remove_chunk() through a call to check_system_chunk(). 10621 */ 10622 map = em->map_lookup; 10623 num_items = 3 + map->num_stripes; 10624 free_extent_map(em); 10625 10626 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10627 num_items, 1); 10628 } 10629 10630 /* 10631 * Process the unused_bgs list and remove any that don't have any allocated 10632 * space inside of them. 10633 */ 10634 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10635 { 10636 struct btrfs_block_group_cache *block_group; 10637 struct btrfs_space_info *space_info; 10638 struct btrfs_trans_handle *trans; 10639 int ret = 0; 10640 10641 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10642 return; 10643 10644 spin_lock(&fs_info->unused_bgs_lock); 10645 while (!list_empty(&fs_info->unused_bgs)) { 10646 u64 start, end; 10647 int trimming; 10648 10649 block_group = list_first_entry(&fs_info->unused_bgs, 10650 struct btrfs_block_group_cache, 10651 bg_list); 10652 list_del_init(&block_group->bg_list); 10653 10654 space_info = block_group->space_info; 10655 10656 if (ret || btrfs_mixed_space_info(space_info)) { 10657 btrfs_put_block_group(block_group); 10658 continue; 10659 } 10660 spin_unlock(&fs_info->unused_bgs_lock); 10661 10662 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10663 10664 /* Don't want to race with allocators so take the groups_sem */ 10665 down_write(&space_info->groups_sem); 10666 spin_lock(&block_group->lock); 10667 if (block_group->reserved || 10668 btrfs_block_group_used(&block_group->item) || 10669 block_group->ro || 10670 list_is_singular(&block_group->list)) { 10671 /* 10672 * We want to bail if we made new allocations or have 10673 * outstanding allocations in this block group. We do 10674 * the ro check in case balance is currently acting on 10675 * this block group. 10676 */ 10677 spin_unlock(&block_group->lock); 10678 up_write(&space_info->groups_sem); 10679 goto next; 10680 } 10681 spin_unlock(&block_group->lock); 10682 10683 /* We don't want to force the issue, only flip if it's ok. */ 10684 ret = inc_block_group_ro(block_group, 0); 10685 up_write(&space_info->groups_sem); 10686 if (ret < 0) { 10687 ret = 0; 10688 goto next; 10689 } 10690 10691 /* 10692 * Want to do this before we do anything else so we can recover 10693 * properly if we fail to join the transaction. 10694 */ 10695 trans = btrfs_start_trans_remove_block_group(fs_info, 10696 block_group->key.objectid); 10697 if (IS_ERR(trans)) { 10698 btrfs_dec_block_group_ro(block_group); 10699 ret = PTR_ERR(trans); 10700 goto next; 10701 } 10702 10703 /* 10704 * We could have pending pinned extents for this block group, 10705 * just delete them, we don't care about them anymore. 10706 */ 10707 start = block_group->key.objectid; 10708 end = start + block_group->key.offset - 1; 10709 /* 10710 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10711 * btrfs_finish_extent_commit(). If we are at transaction N, 10712 * another task might be running finish_extent_commit() for the 10713 * previous transaction N - 1, and have seen a range belonging 10714 * to the block group in freed_extents[] before we were able to 10715 * clear the whole block group range from freed_extents[]. This 10716 * means that task can lookup for the block group after we 10717 * unpinned it from freed_extents[] and removed it, leading to 10718 * a BUG_ON() at btrfs_unpin_extent_range(). 10719 */ 10720 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10721 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10722 EXTENT_DIRTY); 10723 if (ret) { 10724 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10725 btrfs_dec_block_group_ro(block_group); 10726 goto end_trans; 10727 } 10728 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10729 EXTENT_DIRTY); 10730 if (ret) { 10731 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10732 btrfs_dec_block_group_ro(block_group); 10733 goto end_trans; 10734 } 10735 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10736 10737 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10738 spin_lock(&space_info->lock); 10739 spin_lock(&block_group->lock); 10740 10741 space_info->bytes_pinned -= block_group->pinned; 10742 space_info->bytes_readonly += block_group->pinned; 10743 percpu_counter_add(&space_info->total_bytes_pinned, 10744 -block_group->pinned); 10745 block_group->pinned = 0; 10746 10747 spin_unlock(&block_group->lock); 10748 spin_unlock(&space_info->lock); 10749 10750 /* DISCARD can flip during remount */ 10751 trimming = btrfs_test_opt(fs_info, DISCARD); 10752 10753 /* Implicit trim during transaction commit. */ 10754 if (trimming) 10755 btrfs_get_block_group_trimming(block_group); 10756 10757 /* 10758 * Btrfs_remove_chunk will abort the transaction if things go 10759 * horribly wrong. 10760 */ 10761 ret = btrfs_remove_chunk(trans, fs_info, 10762 block_group->key.objectid); 10763 10764 if (ret) { 10765 if (trimming) 10766 btrfs_put_block_group_trimming(block_group); 10767 goto end_trans; 10768 } 10769 10770 /* 10771 * If we're not mounted with -odiscard, we can just forget 10772 * about this block group. Otherwise we'll need to wait 10773 * until transaction commit to do the actual discard. 10774 */ 10775 if (trimming) { 10776 spin_lock(&fs_info->unused_bgs_lock); 10777 /* 10778 * A concurrent scrub might have added us to the list 10779 * fs_info->unused_bgs, so use a list_move operation 10780 * to add the block group to the deleted_bgs list. 10781 */ 10782 list_move(&block_group->bg_list, 10783 &trans->transaction->deleted_bgs); 10784 spin_unlock(&fs_info->unused_bgs_lock); 10785 btrfs_get_block_group(block_group); 10786 } 10787 end_trans: 10788 btrfs_end_transaction(trans); 10789 next: 10790 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10791 btrfs_put_block_group(block_group); 10792 spin_lock(&fs_info->unused_bgs_lock); 10793 } 10794 spin_unlock(&fs_info->unused_bgs_lock); 10795 } 10796 10797 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10798 { 10799 struct btrfs_space_info *space_info; 10800 struct btrfs_super_block *disk_super; 10801 u64 features; 10802 u64 flags; 10803 int mixed = 0; 10804 int ret; 10805 10806 disk_super = fs_info->super_copy; 10807 if (!btrfs_super_root(disk_super)) 10808 return -EINVAL; 10809 10810 features = btrfs_super_incompat_flags(disk_super); 10811 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10812 mixed = 1; 10813 10814 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10815 ret = create_space_info(fs_info, flags, &space_info); 10816 if (ret) 10817 goto out; 10818 10819 if (mixed) { 10820 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10821 ret = create_space_info(fs_info, flags, &space_info); 10822 } else { 10823 flags = BTRFS_BLOCK_GROUP_METADATA; 10824 ret = create_space_info(fs_info, flags, &space_info); 10825 if (ret) 10826 goto out; 10827 10828 flags = BTRFS_BLOCK_GROUP_DATA; 10829 ret = create_space_info(fs_info, flags, &space_info); 10830 } 10831 out: 10832 return ret; 10833 } 10834 10835 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10836 u64 start, u64 end) 10837 { 10838 return unpin_extent_range(fs_info, start, end, false); 10839 } 10840 10841 /* 10842 * It used to be that old block groups would be left around forever. 10843 * Iterating over them would be enough to trim unused space. Since we 10844 * now automatically remove them, we also need to iterate over unallocated 10845 * space. 10846 * 10847 * We don't want a transaction for this since the discard may take a 10848 * substantial amount of time. We don't require that a transaction be 10849 * running, but we do need to take a running transaction into account 10850 * to ensure that we're not discarding chunks that were released in 10851 * the current transaction. 10852 * 10853 * Holding the chunks lock will prevent other threads from allocating 10854 * or releasing chunks, but it won't prevent a running transaction 10855 * from committing and releasing the memory that the pending chunks 10856 * list head uses. For that, we need to take a reference to the 10857 * transaction. 10858 */ 10859 static int btrfs_trim_free_extents(struct btrfs_device *device, 10860 u64 minlen, u64 *trimmed) 10861 { 10862 u64 start = 0, len = 0; 10863 int ret; 10864 10865 *trimmed = 0; 10866 10867 /* Not writeable = nothing to do. */ 10868 if (!device->writeable) 10869 return 0; 10870 10871 /* No free space = nothing to do. */ 10872 if (device->total_bytes <= device->bytes_used) 10873 return 0; 10874 10875 ret = 0; 10876 10877 while (1) { 10878 struct btrfs_fs_info *fs_info = device->fs_info; 10879 struct btrfs_transaction *trans; 10880 u64 bytes; 10881 10882 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10883 if (ret) 10884 return ret; 10885 10886 down_read(&fs_info->commit_root_sem); 10887 10888 spin_lock(&fs_info->trans_lock); 10889 trans = fs_info->running_transaction; 10890 if (trans) 10891 refcount_inc(&trans->use_count); 10892 spin_unlock(&fs_info->trans_lock); 10893 10894 ret = find_free_dev_extent_start(trans, device, minlen, start, 10895 &start, &len); 10896 if (trans) 10897 btrfs_put_transaction(trans); 10898 10899 if (ret) { 10900 up_read(&fs_info->commit_root_sem); 10901 mutex_unlock(&fs_info->chunk_mutex); 10902 if (ret == -ENOSPC) 10903 ret = 0; 10904 break; 10905 } 10906 10907 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10908 up_read(&fs_info->commit_root_sem); 10909 mutex_unlock(&fs_info->chunk_mutex); 10910 10911 if (ret) 10912 break; 10913 10914 start += len; 10915 *trimmed += bytes; 10916 10917 if (fatal_signal_pending(current)) { 10918 ret = -ERESTARTSYS; 10919 break; 10920 } 10921 10922 cond_resched(); 10923 } 10924 10925 return ret; 10926 } 10927 10928 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10929 { 10930 struct btrfs_block_group_cache *cache = NULL; 10931 struct btrfs_device *device; 10932 struct list_head *devices; 10933 u64 group_trimmed; 10934 u64 start; 10935 u64 end; 10936 u64 trimmed = 0; 10937 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10938 int ret = 0; 10939 10940 /* 10941 * try to trim all FS space, our block group may start from non-zero. 10942 */ 10943 if (range->len == total_bytes) 10944 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10945 else 10946 cache = btrfs_lookup_block_group(fs_info, range->start); 10947 10948 while (cache) { 10949 if (cache->key.objectid >= (range->start + range->len)) { 10950 btrfs_put_block_group(cache); 10951 break; 10952 } 10953 10954 start = max(range->start, cache->key.objectid); 10955 end = min(range->start + range->len, 10956 cache->key.objectid + cache->key.offset); 10957 10958 if (end - start >= range->minlen) { 10959 if (!block_group_cache_done(cache)) { 10960 ret = cache_block_group(cache, 0); 10961 if (ret) { 10962 btrfs_put_block_group(cache); 10963 break; 10964 } 10965 ret = wait_block_group_cache_done(cache); 10966 if (ret) { 10967 btrfs_put_block_group(cache); 10968 break; 10969 } 10970 } 10971 ret = btrfs_trim_block_group(cache, 10972 &group_trimmed, 10973 start, 10974 end, 10975 range->minlen); 10976 10977 trimmed += group_trimmed; 10978 if (ret) { 10979 btrfs_put_block_group(cache); 10980 break; 10981 } 10982 } 10983 10984 cache = next_block_group(fs_info, cache); 10985 } 10986 10987 mutex_lock(&fs_info->fs_devices->device_list_mutex); 10988 devices = &fs_info->fs_devices->alloc_list; 10989 list_for_each_entry(device, devices, dev_alloc_list) { 10990 ret = btrfs_trim_free_extents(device, range->minlen, 10991 &group_trimmed); 10992 if (ret) 10993 break; 10994 10995 trimmed += group_trimmed; 10996 } 10997 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 10998 10999 range->len = trimmed; 11000 return ret; 11001 } 11002 11003 /* 11004 * btrfs_{start,end}_write_no_snapshoting() are similar to 11005 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11006 * data into the page cache through nocow before the subvolume is snapshoted, 11007 * but flush the data into disk after the snapshot creation, or to prevent 11008 * operations while snapshoting is ongoing and that cause the snapshot to be 11009 * inconsistent (writes followed by expanding truncates for example). 11010 */ 11011 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 11012 { 11013 percpu_counter_dec(&root->subv_writers->counter); 11014 /* 11015 * Make sure counter is updated before we wake up waiters. 11016 */ 11017 smp_mb(); 11018 if (waitqueue_active(&root->subv_writers->wait)) 11019 wake_up(&root->subv_writers->wait); 11020 } 11021 11022 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 11023 { 11024 if (atomic_read(&root->will_be_snapshoted)) 11025 return 0; 11026 11027 percpu_counter_inc(&root->subv_writers->counter); 11028 /* 11029 * Make sure counter is updated before we check for snapshot creation. 11030 */ 11031 smp_mb(); 11032 if (atomic_read(&root->will_be_snapshoted)) { 11033 btrfs_end_write_no_snapshoting(root); 11034 return 0; 11035 } 11036 return 1; 11037 } 11038 11039 static int wait_snapshoting_atomic_t(atomic_t *a) 11040 { 11041 schedule(); 11042 return 0; 11043 } 11044 11045 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11046 { 11047 while (true) { 11048 int ret; 11049 11050 ret = btrfs_start_write_no_snapshoting(root); 11051 if (ret) 11052 break; 11053 wait_on_atomic_t(&root->will_be_snapshoted, 11054 wait_snapshoting_atomic_t, 11055 TASK_UNINTERRUPTIBLE); 11056 } 11057 } 11058