xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op,
85 				int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 			      struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 	u64 extent_start, extent_end, size, total_added = 0;
344 	int ret;
345 
346 	while (start < end) {
347 		ret = find_first_extent_bit(info->pinned_extents, start,
348 					    &extent_start, &extent_end,
349 					    EXTENT_DIRTY | EXTENT_UPTODATE,
350 					    NULL);
351 		if (ret)
352 			break;
353 
354 		if (extent_start <= start) {
355 			start = extent_end + 1;
356 		} else if (extent_start > start && extent_start < end) {
357 			size = extent_start - start;
358 			total_added += size;
359 			ret = btrfs_add_free_space(block_group, start,
360 						   size);
361 			BUG_ON(ret); /* -ENOMEM or logic error */
362 			start = extent_end + 1;
363 		} else {
364 			break;
365 		}
366 	}
367 
368 	if (start < end) {
369 		size = end - start;
370 		total_added += size;
371 		ret = btrfs_add_free_space(block_group, start, size);
372 		BUG_ON(ret); /* -ENOMEM or logic error */
373 	}
374 
375 	return total_added;
376 }
377 
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 	struct btrfs_block_group_cache *block_group;
381 	struct btrfs_fs_info *fs_info;
382 	struct btrfs_caching_control *caching_ctl;
383 	struct btrfs_root *extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret = -ENOMEM;
391 
392 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 	block_group = caching_ctl->block_group;
394 	fs_info = block_group->fs_info;
395 	extent_root = fs_info->extent_root;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		goto out;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 	/*
404 	 * We don't want to deadlock with somebody trying to allocate a new
405 	 * extent for the extent root while also trying to search the extent
406 	 * root to add free space.  So we skip locking and search the commit
407 	 * root, since its read-only
408 	 */
409 	path->skip_locking = 1;
410 	path->search_commit_root = 1;
411 	path->reada = 1;
412 
413 	key.objectid = last;
414 	key.offset = 0;
415 	key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 	mutex_lock(&caching_ctl->mutex);
418 	/* need to make sure the commit_root doesn't disappear */
419 	down_read(&fs_info->commit_root_sem);
420 
421 next:
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched() ||
443 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
444 				caching_ctl->progress = last;
445 				btrfs_release_path(path);
446 				up_read(&fs_info->commit_root_sem);
447 				mutex_unlock(&caching_ctl->mutex);
448 				cond_resched();
449 				goto again;
450 			}
451 
452 			ret = btrfs_next_leaf(extent_root, path);
453 			if (ret < 0)
454 				goto err;
455 			if (ret)
456 				break;
457 			leaf = path->nodes[0];
458 			nritems = btrfs_header_nritems(leaf);
459 			continue;
460 		}
461 
462 		if (key.objectid < last) {
463 			key.objectid = last;
464 			key.offset = 0;
465 			key.type = BTRFS_EXTENT_ITEM_KEY;
466 
467 			caching_ctl->progress = last;
468 			btrfs_release_path(path);
469 			goto next;
470 		}
471 
472 		if (key.objectid < block_group->key.objectid) {
473 			path->slots[0]++;
474 			continue;
475 		}
476 
477 		if (key.objectid >= block_group->key.objectid +
478 		    block_group->key.offset)
479 			break;
480 
481 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 		    key.type == BTRFS_METADATA_ITEM_KEY) {
483 			total_found += add_new_free_space(block_group,
484 							  fs_info, last,
485 							  key.objectid);
486 			if (key.type == BTRFS_METADATA_ITEM_KEY)
487 				last = key.objectid +
488 					fs_info->tree_root->nodesize;
489 			else
490 				last = key.objectid + key.offset;
491 
492 			if (total_found > (1024 * 1024 * 2)) {
493 				total_found = 0;
494 				wake_up(&caching_ctl->wait);
495 			}
496 		}
497 		path->slots[0]++;
498 	}
499 	ret = 0;
500 
501 	total_found += add_new_free_space(block_group, fs_info, last,
502 					  block_group->key.objectid +
503 					  block_group->key.offset);
504 	caching_ctl->progress = (u64)-1;
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 err:
512 	btrfs_free_path(path);
513 	up_read(&fs_info->commit_root_sem);
514 
515 	free_excluded_extents(extent_root, block_group);
516 
517 	mutex_unlock(&caching_ctl->mutex);
518 out:
519 	if (ret) {
520 		spin_lock(&block_group->lock);
521 		block_group->caching_ctl = NULL;
522 		block_group->cached = BTRFS_CACHE_ERROR;
523 		spin_unlock(&block_group->lock);
524 	}
525 	wake_up(&caching_ctl->wait);
526 
527 	put_caching_control(caching_ctl);
528 	btrfs_put_block_group(block_group);
529 }
530 
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 			     int load_cache_only)
533 {
534 	DEFINE_WAIT(wait);
535 	struct btrfs_fs_info *fs_info = cache->fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	int ret = 0;
538 
539 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 	if (!caching_ctl)
541 		return -ENOMEM;
542 
543 	INIT_LIST_HEAD(&caching_ctl->list);
544 	mutex_init(&caching_ctl->mutex);
545 	init_waitqueue_head(&caching_ctl->wait);
546 	caching_ctl->block_group = cache;
547 	caching_ctl->progress = cache->key.objectid;
548 	atomic_set(&caching_ctl->count, 1);
549 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 			caching_thread, NULL, NULL);
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		mutex_lock(&caching_ctl->mutex);
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 			caching_ctl->progress = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 				cache->has_caching_ctl = 1;
607 			}
608 		}
609 		spin_unlock(&cache->lock);
610 		mutex_unlock(&caching_ctl->mutex);
611 
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 			cache->has_caching_ctl = 1;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->nodesize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 				&key, path, 0, 0);
785 	if (ret < 0)
786 		goto out_free;
787 
788 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 		if (path->slots[0]) {
790 			path->slots[0]--;
791 			btrfs_item_key_to_cpu(path->nodes[0], &key,
792 					      path->slots[0]);
793 			if (key.objectid == bytenr &&
794 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
795 			    key.offset == root->nodesize)
796 				ret = 0;
797 		}
798 	}
799 
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 		if (item_size >= sizeof(*ei)) {
804 			ei = btrfs_item_ptr(leaf, path->slots[0],
805 					    struct btrfs_extent_item);
806 			num_refs = btrfs_extent_refs(leaf, ei);
807 			extent_flags = btrfs_extent_flags(leaf, ei);
808 		} else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 			struct btrfs_extent_item_v0 *ei0;
811 			BUG_ON(item_size != sizeof(*ei0));
812 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 					     struct btrfs_extent_item_v0);
814 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 			/* FIXME: this isn't correct for data */
816 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 			BUG();
819 #endif
820 		}
821 		BUG_ON(num_refs == 0);
822 	} else {
823 		num_refs = 0;
824 		extent_flags = 0;
825 		ret = 0;
826 	}
827 
828 	if (!trans)
829 		goto out;
830 
831 	delayed_refs = &trans->transaction->delayed_refs;
832 	spin_lock(&delayed_refs->lock);
833 	head = btrfs_find_delayed_ref_head(trans, bytenr);
834 	if (head) {
835 		if (!mutex_trylock(&head->mutex)) {
836 			atomic_inc(&head->node.refs);
837 			spin_unlock(&delayed_refs->lock);
838 
839 			btrfs_release_path(path);
840 
841 			/*
842 			 * Mutex was contended, block until it's released and try
843 			 * again
844 			 */
845 			mutex_lock(&head->mutex);
846 			mutex_unlock(&head->mutex);
847 			btrfs_put_delayed_ref(&head->node);
848 			goto search_again;
849 		}
850 		spin_lock(&head->lock);
851 		if (head->extent_op && head->extent_op->update_flags)
852 			extent_flags |= head->extent_op->flags_to_set;
853 		else
854 			BUG_ON(num_refs == 0);
855 
856 		num_refs += head->node.ref_mod;
857 		spin_unlock(&head->lock);
858 		mutex_unlock(&head->mutex);
859 	}
860 	spin_unlock(&delayed_refs->lock);
861 out:
862 	WARN_ON(num_refs == 0);
863 	if (refs)
864 		*refs = num_refs;
865 	if (flags)
866 		*flags = extent_flags;
867 out_free:
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 /*
873  * Back reference rules.  Back refs have three main goals:
874  *
875  * 1) differentiate between all holders of references to an extent so that
876  *    when a reference is dropped we can make sure it was a valid reference
877  *    before freeing the extent.
878  *
879  * 2) Provide enough information to quickly find the holders of an extent
880  *    if we notice a given block is corrupted or bad.
881  *
882  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883  *    maintenance.  This is actually the same as #2, but with a slightly
884  *    different use case.
885  *
886  * There are two kinds of back refs. The implicit back refs is optimized
887  * for pointers in non-shared tree blocks. For a given pointer in a block,
888  * back refs of this kind provide information about the block's owner tree
889  * and the pointer's key. These information allow us to find the block by
890  * b-tree searching. The full back refs is for pointers in tree blocks not
891  * referenced by their owner trees. The location of tree block is recorded
892  * in the back refs. Actually the full back refs is generic, and can be
893  * used in all cases the implicit back refs is used. The major shortcoming
894  * of the full back refs is its overhead. Every time a tree block gets
895  * COWed, we have to update back refs entry for all pointers in it.
896  *
897  * For a newly allocated tree block, we use implicit back refs for
898  * pointers in it. This means most tree related operations only involve
899  * implicit back refs. For a tree block created in old transaction, the
900  * only way to drop a reference to it is COW it. So we can detect the
901  * event that tree block loses its owner tree's reference and do the
902  * back refs conversion.
903  *
904  * When a tree block is COW'd through a tree, there are four cases:
905  *
906  * The reference count of the block is one and the tree is the block's
907  * owner tree. Nothing to do in this case.
908  *
909  * The reference count of the block is one and the tree is not the
910  * block's owner tree. In this case, full back refs is used for pointers
911  * in the block. Remove these full back refs, add implicit back refs for
912  * every pointers in the new block.
913  *
914  * The reference count of the block is greater than one and the tree is
915  * the block's owner tree. In this case, implicit back refs is used for
916  * pointers in the block. Add full back refs for every pointers in the
917  * block, increase lower level extents' reference counts. The original
918  * implicit back refs are entailed to the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * not the block's owner tree. Add implicit back refs for every pointer in
922  * the new block, increase lower level extents' reference count.
923  *
924  * Back Reference Key composing:
925  *
926  * The key objectid corresponds to the first byte in the extent,
927  * The key type is used to differentiate between types of back refs.
928  * There are different meanings of the key offset for different types
929  * of back refs.
930  *
931  * File extents can be referenced by:
932  *
933  * - multiple snapshots, subvolumes, or different generations in one subvol
934  * - different files inside a single subvolume
935  * - different offsets inside a file (bookend extents in file.c)
936  *
937  * The extent ref structure for the implicit back refs has fields for:
938  *
939  * - Objectid of the subvolume root
940  * - objectid of the file holding the reference
941  * - original offset in the file
942  * - how many bookend extents
943  *
944  * The key offset for the implicit back refs is hash of the first
945  * three fields.
946  *
947  * The extent ref structure for the full back refs has field for:
948  *
949  * - number of pointers in the tree leaf
950  *
951  * The key offset for the implicit back refs is the first byte of
952  * the tree leaf
953  *
954  * When a file extent is allocated, The implicit back refs is used.
955  * the fields are filled in:
956  *
957  *     (root_key.objectid, inode objectid, offset in file, 1)
958  *
959  * When a file extent is removed file truncation, we find the
960  * corresponding implicit back refs and check the following fields:
961  *
962  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
963  *
964  * Btree extents can be referenced by:
965  *
966  * - Different subvolumes
967  *
968  * Both the implicit back refs and the full back refs for tree blocks
969  * only consist of key. The key offset for the implicit back refs is
970  * objectid of block's owner tree. The key offset for the full back refs
971  * is the first byte of parent block.
972  *
973  * When implicit back refs is used, information about the lowest key and
974  * level of the tree block are required. These information are stored in
975  * tree block info structure.
976  */
977 
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  u64 owner, u32 extra_size)
983 {
984 	struct btrfs_extent_item *item;
985 	struct btrfs_extent_item_v0 *ei0;
986 	struct btrfs_extent_ref_v0 *ref0;
987 	struct btrfs_tree_block_info *bi;
988 	struct extent_buffer *leaf;
989 	struct btrfs_key key;
990 	struct btrfs_key found_key;
991 	u32 new_size = sizeof(*item);
992 	u64 refs;
993 	int ret;
994 
995 	leaf = path->nodes[0];
996 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997 
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 			     struct btrfs_extent_item_v0);
1001 	refs = btrfs_extent_refs_v0(leaf, ei0);
1002 
1003 	if (owner == (u64)-1) {
1004 		while (1) {
1005 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 				ret = btrfs_next_leaf(root, path);
1007 				if (ret < 0)
1008 					return ret;
1009 				BUG_ON(ret > 0); /* Corruption */
1010 				leaf = path->nodes[0];
1011 			}
1012 			btrfs_item_key_to_cpu(leaf, &found_key,
1013 					      path->slots[0]);
1014 			BUG_ON(key.objectid != found_key.objectid);
1015 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 				path->slots[0]++;
1017 				continue;
1018 			}
1019 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 					      struct btrfs_extent_ref_v0);
1021 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 			break;
1023 		}
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 		new_size += sizeof(*bi);
1029 
1030 	new_size -= sizeof(*ei0);
1031 	ret = btrfs_search_slot(trans, root, &key, path,
1032 				new_size + extra_size, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 	BUG_ON(ret); /* Corruption */
1036 
1037 	btrfs_extend_item(root, path, new_size);
1038 
1039 	leaf = path->nodes[0];
1040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 	btrfs_set_extent_refs(leaf, item, refs);
1042 	/* FIXME: get real generation */
1043 	btrfs_set_extent_generation(leaf, item, 0);
1044 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 		btrfs_set_extent_flags(leaf, item,
1046 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 		bi = (struct btrfs_tree_block_info *)(item + 1);
1049 		/* FIXME: get first key of the block */
1050 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 	} else {
1053 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 	}
1055 	btrfs_mark_buffer_dirty(leaf);
1056 	return 0;
1057 }
1058 #endif
1059 
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	u32 high_crc = ~(u32)0;
1063 	u32 low_crc = ~(u32)0;
1064 	__le64 lenum;
1065 
1066 	lenum = cpu_to_le64(root_objectid);
1067 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 	lenum = cpu_to_le64(owner);
1069 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 	lenum = cpu_to_le64(offset);
1071 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 
1073 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075 
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 				     struct btrfs_extent_data_ref *ref)
1078 {
1079 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 				    btrfs_extent_data_ref_objectid(leaf, ref),
1081 				    btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083 
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 				 struct btrfs_extent_data_ref *ref,
1086 				 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 		return 0;
1092 	return 1;
1093 }
1094 
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 					   struct btrfs_root *root,
1097 					   struct btrfs_path *path,
1098 					   u64 bytenr, u64 parent,
1099 					   u64 root_objectid,
1100 					   u64 owner, u64 offset)
1101 {
1102 	struct btrfs_key key;
1103 	struct btrfs_extent_data_ref *ref;
1104 	struct extent_buffer *leaf;
1105 	u32 nritems;
1106 	int ret;
1107 	int recow;
1108 	int err = -ENOENT;
1109 
1110 	key.objectid = bytenr;
1111 	if (parent) {
1112 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 		key.offset = parent;
1114 	} else {
1115 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 		key.offset = hash_extent_data_ref(root_objectid,
1117 						  owner, offset);
1118 	}
1119 again:
1120 	recow = 0;
1121 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 	if (ret < 0) {
1123 		err = ret;
1124 		goto fail;
1125 	}
1126 
1127 	if (parent) {
1128 		if (!ret)
1129 			return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 		btrfs_release_path(path);
1133 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 		if (ret < 0) {
1135 			err = ret;
1136 			goto fail;
1137 		}
1138 		if (!ret)
1139 			return 0;
1140 #endif
1141 		goto fail;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	nritems = btrfs_header_nritems(leaf);
1146 	while (1) {
1147 		if (path->slots[0] >= nritems) {
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret < 0)
1150 				err = ret;
1151 			if (ret)
1152 				goto fail;
1153 
1154 			leaf = path->nodes[0];
1155 			nritems = btrfs_header_nritems(leaf);
1156 			recow = 1;
1157 		}
1158 
1159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 		if (key.objectid != bytenr ||
1161 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 			goto fail;
1163 
1164 		ref = btrfs_item_ptr(leaf, path->slots[0],
1165 				     struct btrfs_extent_data_ref);
1166 
1167 		if (match_extent_data_ref(leaf, ref, root_objectid,
1168 					  owner, offset)) {
1169 			if (recow) {
1170 				btrfs_release_path(path);
1171 				goto again;
1172 			}
1173 			err = 0;
1174 			break;
1175 		}
1176 		path->slots[0]++;
1177 	}
1178 fail:
1179 	return err;
1180 }
1181 
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 					   struct btrfs_root *root,
1184 					   struct btrfs_path *path,
1185 					   u64 bytenr, u64 parent,
1186 					   u64 root_objectid, u64 owner,
1187 					   u64 offset, int refs_to_add)
1188 {
1189 	struct btrfs_key key;
1190 	struct extent_buffer *leaf;
1191 	u32 size;
1192 	u32 num_refs;
1193 	int ret;
1194 
1195 	key.objectid = bytenr;
1196 	if (parent) {
1197 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 		key.offset = parent;
1199 		size = sizeof(struct btrfs_shared_data_ref);
1200 	} else {
1201 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 		key.offset = hash_extent_data_ref(root_objectid,
1203 						  owner, offset);
1204 		size = sizeof(struct btrfs_extent_data_ref);
1205 	}
1206 
1207 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 	if (ret && ret != -EEXIST)
1209 		goto fail;
1210 
1211 	leaf = path->nodes[0];
1212 	if (parent) {
1213 		struct btrfs_shared_data_ref *ref;
1214 		ref = btrfs_item_ptr(leaf, path->slots[0],
1215 				     struct btrfs_shared_data_ref);
1216 		if (ret == 0) {
1217 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 		} else {
1219 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 			num_refs += refs_to_add;
1221 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 		}
1223 	} else {
1224 		struct btrfs_extent_data_ref *ref;
1225 		while (ret == -EEXIST) {
1226 			ref = btrfs_item_ptr(leaf, path->slots[0],
1227 					     struct btrfs_extent_data_ref);
1228 			if (match_extent_data_ref(leaf, ref, root_objectid,
1229 						  owner, offset))
1230 				break;
1231 			btrfs_release_path(path);
1232 			key.offset++;
1233 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 						      size);
1235 			if (ret && ret != -EEXIST)
1236 				goto fail;
1237 
1238 			leaf = path->nodes[0];
1239 		}
1240 		ref = btrfs_item_ptr(leaf, path->slots[0],
1241 				     struct btrfs_extent_data_ref);
1242 		if (ret == 0) {
1243 			btrfs_set_extent_data_ref_root(leaf, ref,
1244 						       root_objectid);
1245 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 		} else {
1249 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 			num_refs += refs_to_add;
1251 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 		}
1253 	}
1254 	btrfs_mark_buffer_dirty(leaf);
1255 	ret = 0;
1256 fail:
1257 	btrfs_release_path(path);
1258 	return ret;
1259 }
1260 
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   int refs_to_drop, int *last_ref)
1265 {
1266 	struct btrfs_key key;
1267 	struct btrfs_extent_data_ref *ref1 = NULL;
1268 	struct btrfs_shared_data_ref *ref2 = NULL;
1269 	struct extent_buffer *leaf;
1270 	u32 num_refs = 0;
1271 	int ret = 0;
1272 
1273 	leaf = path->nodes[0];
1274 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275 
1276 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 				      struct btrfs_extent_data_ref);
1279 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 				      struct btrfs_shared_data_ref);
1283 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 		struct btrfs_extent_ref_v0 *ref0;
1287 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_ref_v0);
1289 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 	} else {
1292 		BUG();
1293 	}
1294 
1295 	BUG_ON(num_refs < refs_to_drop);
1296 	num_refs -= refs_to_drop;
1297 
1298 	if (num_refs == 0) {
1299 		ret = btrfs_del_item(trans, root, path);
1300 		*last_ref = 1;
1301 	} else {
1302 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 		else {
1308 			struct btrfs_extent_ref_v0 *ref0;
1309 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 					struct btrfs_extent_ref_v0);
1311 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 		}
1313 #endif
1314 		btrfs_mark_buffer_dirty(leaf);
1315 	}
1316 	return ret;
1317 }
1318 
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 					  struct btrfs_path *path,
1321 					  struct btrfs_extent_inline_ref *iref)
1322 {
1323 	struct btrfs_key key;
1324 	struct extent_buffer *leaf;
1325 	struct btrfs_extent_data_ref *ref1;
1326 	struct btrfs_shared_data_ref *ref2;
1327 	u32 num_refs = 0;
1328 
1329 	leaf = path->nodes[0];
1330 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 	if (iref) {
1332 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 		    BTRFS_EXTENT_DATA_REF_KEY) {
1334 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 		} else {
1337 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 		}
1340 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 				      struct btrfs_extent_data_ref);
1343 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 				      struct btrfs_shared_data_ref);
1347 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 		struct btrfs_extent_ref_v0 *ref0;
1351 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 				      struct btrfs_extent_ref_v0);
1353 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 	} else {
1356 		WARN_ON(1);
1357 	}
1358 	return num_refs;
1359 }
1360 
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 					  struct btrfs_root *root,
1363 					  struct btrfs_path *path,
1364 					  u64 bytenr, u64 parent,
1365 					  u64 root_objectid)
1366 {
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	key.objectid = bytenr;
1371 	if (parent) {
1372 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 		key.offset = parent;
1374 	} else {
1375 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 		key.offset = root_objectid;
1377 	}
1378 
1379 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 	if (ret > 0)
1381 		ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 	if (ret == -ENOENT && parent) {
1384 		btrfs_release_path(path);
1385 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 		if (ret > 0)
1388 			ret = -ENOENT;
1389 	}
1390 #endif
1391 	return ret;
1392 }
1393 
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 					  struct btrfs_root *root,
1396 					  struct btrfs_path *path,
1397 					  u64 bytenr, u64 parent,
1398 					  u64 root_objectid)
1399 {
1400 	struct btrfs_key key;
1401 	int ret;
1402 
1403 	key.objectid = bytenr;
1404 	if (parent) {
1405 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 		key.offset = parent;
1407 	} else {
1408 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 		key.offset = root_objectid;
1410 	}
1411 
1412 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 	btrfs_release_path(path);
1414 	return ret;
1415 }
1416 
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 	int type;
1420 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 		if (parent > 0)
1422 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 		else
1424 			type = BTRFS_TREE_BLOCK_REF_KEY;
1425 	} else {
1426 		if (parent > 0)
1427 			type = BTRFS_SHARED_DATA_REF_KEY;
1428 		else
1429 			type = BTRFS_EXTENT_DATA_REF_KEY;
1430 	}
1431 	return type;
1432 }
1433 
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 			 struct btrfs_key *key)
1436 
1437 {
1438 	for (; level < BTRFS_MAX_LEVEL; level++) {
1439 		if (!path->nodes[level])
1440 			break;
1441 		if (path->slots[level] + 1 >=
1442 		    btrfs_header_nritems(path->nodes[level]))
1443 			continue;
1444 		if (level == 0)
1445 			btrfs_item_key_to_cpu(path->nodes[level], key,
1446 					      path->slots[level] + 1);
1447 		else
1448 			btrfs_node_key_to_cpu(path->nodes[level], key,
1449 					      path->slots[level] + 1);
1450 		return 0;
1451 	}
1452 	return 1;
1453 }
1454 
1455 /*
1456  * look for inline back ref. if back ref is found, *ref_ret is set
1457  * to the address of inline back ref, and 0 is returned.
1458  *
1459  * if back ref isn't found, *ref_ret is set to the address where it
1460  * should be inserted, and -ENOENT is returned.
1461  *
1462  * if insert is true and there are too many inline back refs, the path
1463  * points to the extent item, and -EAGAIN is returned.
1464  *
1465  * NOTE: inline back refs are ordered in the same way that back ref
1466  *	 items in the tree are ordered.
1467  */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 				 struct btrfs_root *root,
1471 				 struct btrfs_path *path,
1472 				 struct btrfs_extent_inline_ref **ref_ret,
1473 				 u64 bytenr, u64 num_bytes,
1474 				 u64 parent, u64 root_objectid,
1475 				 u64 owner, u64 offset, int insert)
1476 {
1477 	struct btrfs_key key;
1478 	struct extent_buffer *leaf;
1479 	struct btrfs_extent_item *ei;
1480 	struct btrfs_extent_inline_ref *iref;
1481 	u64 flags;
1482 	u64 item_size;
1483 	unsigned long ptr;
1484 	unsigned long end;
1485 	int extra_size;
1486 	int type;
1487 	int want;
1488 	int ret;
1489 	int err = 0;
1490 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 						 SKINNY_METADATA);
1492 
1493 	key.objectid = bytenr;
1494 	key.type = BTRFS_EXTENT_ITEM_KEY;
1495 	key.offset = num_bytes;
1496 
1497 	want = extent_ref_type(parent, owner);
1498 	if (insert) {
1499 		extra_size = btrfs_extent_inline_ref_size(want);
1500 		path->keep_locks = 1;
1501 	} else
1502 		extra_size = -1;
1503 
1504 	/*
1505 	 * Owner is our parent level, so we can just add one to get the level
1506 	 * for the block we are interested in.
1507 	 */
1508 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		key.type = BTRFS_METADATA_ITEM_KEY;
1510 		key.offset = owner;
1511 	}
1512 
1513 again:
1514 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 	if (ret < 0) {
1516 		err = ret;
1517 		goto out;
1518 	}
1519 
1520 	/*
1521 	 * We may be a newly converted file system which still has the old fat
1522 	 * extent entries for metadata, so try and see if we have one of those.
1523 	 */
1524 	if (ret > 0 && skinny_metadata) {
1525 		skinny_metadata = false;
1526 		if (path->slots[0]) {
1527 			path->slots[0]--;
1528 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 					      path->slots[0]);
1530 			if (key.objectid == bytenr &&
1531 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 			    key.offset == num_bytes)
1533 				ret = 0;
1534 		}
1535 		if (ret) {
1536 			key.objectid = bytenr;
1537 			key.type = BTRFS_EXTENT_ITEM_KEY;
1538 			key.offset = num_bytes;
1539 			btrfs_release_path(path);
1540 			goto again;
1541 		}
1542 	}
1543 
1544 	if (ret && !insert) {
1545 		err = -ENOENT;
1546 		goto out;
1547 	} else if (WARN_ON(ret)) {
1548 		err = -EIO;
1549 		goto out;
1550 	}
1551 
1552 	leaf = path->nodes[0];
1553 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 	if (item_size < sizeof(*ei)) {
1556 		if (!insert) {
1557 			err = -ENOENT;
1558 			goto out;
1559 		}
1560 		ret = convert_extent_item_v0(trans, root, path, owner,
1561 					     extra_size);
1562 		if (ret < 0) {
1563 			err = ret;
1564 			goto out;
1565 		}
1566 		leaf = path->nodes[0];
1567 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 	}
1569 #endif
1570 	BUG_ON(item_size < sizeof(*ei));
1571 
1572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 	flags = btrfs_extent_flags(leaf, ei);
1574 
1575 	ptr = (unsigned long)(ei + 1);
1576 	end = (unsigned long)ei + item_size;
1577 
1578 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 		ptr += sizeof(struct btrfs_tree_block_info);
1580 		BUG_ON(ptr > end);
1581 	}
1582 
1583 	err = -ENOENT;
1584 	while (1) {
1585 		if (ptr >= end) {
1586 			WARN_ON(ptr > end);
1587 			break;
1588 		}
1589 		iref = (struct btrfs_extent_inline_ref *)ptr;
1590 		type = btrfs_extent_inline_ref_type(leaf, iref);
1591 		if (want < type)
1592 			break;
1593 		if (want > type) {
1594 			ptr += btrfs_extent_inline_ref_size(type);
1595 			continue;
1596 		}
1597 
1598 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 			struct btrfs_extent_data_ref *dref;
1600 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 			if (match_extent_data_ref(leaf, dref, root_objectid,
1602 						  owner, offset)) {
1603 				err = 0;
1604 				break;
1605 			}
1606 			if (hash_extent_data_ref_item(leaf, dref) <
1607 			    hash_extent_data_ref(root_objectid, owner, offset))
1608 				break;
1609 		} else {
1610 			u64 ref_offset;
1611 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 			if (parent > 0) {
1613 				if (parent == ref_offset) {
1614 					err = 0;
1615 					break;
1616 				}
1617 				if (ref_offset < parent)
1618 					break;
1619 			} else {
1620 				if (root_objectid == ref_offset) {
1621 					err = 0;
1622 					break;
1623 				}
1624 				if (ref_offset < root_objectid)
1625 					break;
1626 			}
1627 		}
1628 		ptr += btrfs_extent_inline_ref_size(type);
1629 	}
1630 	if (err == -ENOENT && insert) {
1631 		if (item_size + extra_size >=
1632 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 			err = -EAGAIN;
1634 			goto out;
1635 		}
1636 		/*
1637 		 * To add new inline back ref, we have to make sure
1638 		 * there is no corresponding back ref item.
1639 		 * For simplicity, we just do not add new inline back
1640 		 * ref if there is any kind of item for this block
1641 		 */
1642 		if (find_next_key(path, 0, &key) == 0 &&
1643 		    key.objectid == bytenr &&
1644 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 			err = -EAGAIN;
1646 			goto out;
1647 		}
1648 	}
1649 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 	if (insert) {
1652 		path->keep_locks = 0;
1653 		btrfs_unlock_up_safe(path, 1);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  * helper to add new inline back ref
1660  */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 				 struct btrfs_path *path,
1664 				 struct btrfs_extent_inline_ref *iref,
1665 				 u64 parent, u64 root_objectid,
1666 				 u64 owner, u64 offset, int refs_to_add,
1667 				 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 	struct extent_buffer *leaf;
1670 	struct btrfs_extent_item *ei;
1671 	unsigned long ptr;
1672 	unsigned long end;
1673 	unsigned long item_offset;
1674 	u64 refs;
1675 	int size;
1676 	int type;
1677 
1678 	leaf = path->nodes[0];
1679 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 	item_offset = (unsigned long)iref - (unsigned long)ei;
1681 
1682 	type = extent_ref_type(parent, owner);
1683 	size = btrfs_extent_inline_ref_size(type);
1684 
1685 	btrfs_extend_item(root, path, size);
1686 
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	refs = btrfs_extent_refs(leaf, ei);
1689 	refs += refs_to_add;
1690 	btrfs_set_extent_refs(leaf, ei, refs);
1691 	if (extent_op)
1692 		__run_delayed_extent_op(extent_op, leaf, ei);
1693 
1694 	ptr = (unsigned long)ei + item_offset;
1695 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 	if (ptr < end - size)
1697 		memmove_extent_buffer(leaf, ptr + size, ptr,
1698 				      end - size - ptr);
1699 
1700 	iref = (struct btrfs_extent_inline_ref *)ptr;
1701 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 		struct btrfs_extent_data_ref *dref;
1704 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		struct btrfs_shared_data_ref *sref;
1711 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 	} else {
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 	}
1719 	btrfs_mark_buffer_dirty(leaf);
1720 }
1721 
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 				 struct btrfs_root *root,
1724 				 struct btrfs_path *path,
1725 				 struct btrfs_extent_inline_ref **ref_ret,
1726 				 u64 bytenr, u64 num_bytes, u64 parent,
1727 				 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 	int ret;
1730 
1731 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 					   bytenr, num_bytes, parent,
1733 					   root_objectid, owner, offset, 0);
1734 	if (ret != -ENOENT)
1735 		return ret;
1736 
1737 	btrfs_release_path(path);
1738 	*ref_ret = NULL;
1739 
1740 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 					    root_objectid);
1743 	} else {
1744 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 					     root_objectid, owner, offset);
1746 	}
1747 	return ret;
1748 }
1749 
1750 /*
1751  * helper to update/remove inline back ref
1752  */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 				  struct btrfs_path *path,
1756 				  struct btrfs_extent_inline_ref *iref,
1757 				  int refs_to_mod,
1758 				  struct btrfs_delayed_extent_op *extent_op,
1759 				  int *last_ref)
1760 {
1761 	struct extent_buffer *leaf;
1762 	struct btrfs_extent_item *ei;
1763 	struct btrfs_extent_data_ref *dref = NULL;
1764 	struct btrfs_shared_data_ref *sref = NULL;
1765 	unsigned long ptr;
1766 	unsigned long end;
1767 	u32 item_size;
1768 	int size;
1769 	int type;
1770 	u64 refs;
1771 
1772 	leaf = path->nodes[0];
1773 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 	refs = btrfs_extent_refs(leaf, ei);
1775 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 	refs += refs_to_mod;
1777 	btrfs_set_extent_refs(leaf, ei, refs);
1778 	if (extent_op)
1779 		__run_delayed_extent_op(extent_op, leaf, ei);
1780 
1781 	type = btrfs_extent_inline_ref_type(leaf, iref);
1782 
1783 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 		refs = btrfs_extent_data_ref_count(leaf, dref);
1786 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 		refs = btrfs_shared_data_ref_count(leaf, sref);
1789 	} else {
1790 		refs = 1;
1791 		BUG_ON(refs_to_mod != -1);
1792 	}
1793 
1794 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 	refs += refs_to_mod;
1796 
1797 	if (refs > 0) {
1798 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 		else
1801 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 	} else {
1803 		*last_ref = 1;
1804 		size =  btrfs_extent_inline_ref_size(type);
1805 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 		ptr = (unsigned long)iref;
1807 		end = (unsigned long)ei + item_size;
1808 		if (ptr + size < end)
1809 			memmove_extent_buffer(leaf, ptr, ptr + size,
1810 					      end - ptr - size);
1811 		item_size -= size;
1812 		btrfs_truncate_item(root, path, item_size, 1);
1813 	}
1814 	btrfs_mark_buffer_dirty(leaf);
1815 }
1816 
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 				 struct btrfs_root *root,
1820 				 struct btrfs_path *path,
1821 				 u64 bytenr, u64 num_bytes, u64 parent,
1822 				 u64 root_objectid, u64 owner,
1823 				 u64 offset, int refs_to_add,
1824 				 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 	struct btrfs_extent_inline_ref *iref;
1827 	int ret;
1828 
1829 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 					   bytenr, num_bytes, parent,
1831 					   root_objectid, owner, offset, 1);
1832 	if (ret == 0) {
1833 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 		update_inline_extent_backref(root, path, iref,
1835 					     refs_to_add, extent_op, NULL);
1836 	} else if (ret == -ENOENT) {
1837 		setup_inline_extent_backref(root, path, iref, parent,
1838 					    root_objectid, owner, offset,
1839 					    refs_to_add, extent_op);
1840 		ret = 0;
1841 	}
1842 	return ret;
1843 }
1844 
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 				 struct btrfs_root *root,
1847 				 struct btrfs_path *path,
1848 				 u64 bytenr, u64 parent, u64 root_objectid,
1849 				 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 	int ret;
1852 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 		BUG_ON(refs_to_add != 1);
1854 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 					    parent, root_objectid);
1856 	} else {
1857 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 					     parent, root_objectid,
1859 					     owner, offset, refs_to_add);
1860 	}
1861 	return ret;
1862 }
1863 
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 				 struct btrfs_root *root,
1866 				 struct btrfs_path *path,
1867 				 struct btrfs_extent_inline_ref *iref,
1868 				 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 	int ret = 0;
1871 
1872 	BUG_ON(!is_data && refs_to_drop != 1);
1873 	if (iref) {
1874 		update_inline_extent_backref(root, path, iref,
1875 					     -refs_to_drop, NULL, last_ref);
1876 	} else if (is_data) {
1877 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 					     last_ref);
1879 	} else {
1880 		*last_ref = 1;
1881 		ret = btrfs_del_item(trans, root, path);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 				u64 start, u64 len)
1888 {
1889 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891 
1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 			 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 	int ret;
1896 	u64 discarded_bytes = 0;
1897 	struct btrfs_bio *bbio = NULL;
1898 
1899 
1900 	/* Tell the block device(s) that the sectors can be discarded */
1901 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 			      bytenr, &num_bytes, &bbio, 0);
1903 	/* Error condition is -ENOMEM */
1904 	if (!ret) {
1905 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 		int i;
1907 
1908 
1909 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 			if (!stripe->dev->can_discard)
1911 				continue;
1912 
1913 			ret = btrfs_issue_discard(stripe->dev->bdev,
1914 						  stripe->physical,
1915 						  stripe->length);
1916 			if (!ret)
1917 				discarded_bytes += stripe->length;
1918 			else if (ret != -EOPNOTSUPP)
1919 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920 
1921 			/*
1922 			 * Just in case we get back EOPNOTSUPP for some reason,
1923 			 * just ignore the return value so we don't screw up
1924 			 * people calling discard_extent.
1925 			 */
1926 			ret = 0;
1927 		}
1928 		kfree(bbio);
1929 	}
1930 
1931 	if (actual_bytes)
1932 		*actual_bytes = discarded_bytes;
1933 
1934 
1935 	if (ret == -EOPNOTSUPP)
1936 		ret = 0;
1937 	return ret;
1938 }
1939 
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 			 struct btrfs_root *root,
1943 			 u64 bytenr, u64 num_bytes, u64 parent,
1944 			 u64 root_objectid, u64 owner, u64 offset,
1945 			 int no_quota)
1946 {
1947 	int ret;
1948 	struct btrfs_fs_info *fs_info = root->fs_info;
1949 
1950 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952 
1953 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 					num_bytes,
1956 					parent, root_objectid, (int)owner,
1957 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 	} else {
1959 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 					num_bytes,
1961 					parent, root_objectid, owner, offset,
1962 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 	}
1964 	return ret;
1965 }
1966 
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 				  struct btrfs_root *root,
1969 				  u64 bytenr, u64 num_bytes,
1970 				  u64 parent, u64 root_objectid,
1971 				  u64 owner, u64 offset, int refs_to_add,
1972 				  int no_quota,
1973 				  struct btrfs_delayed_extent_op *extent_op)
1974 {
1975 	struct btrfs_fs_info *fs_info = root->fs_info;
1976 	struct btrfs_path *path;
1977 	struct extent_buffer *leaf;
1978 	struct btrfs_extent_item *item;
1979 	struct btrfs_key key;
1980 	u64 refs;
1981 	int ret;
1982 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1983 
1984 	path = btrfs_alloc_path();
1985 	if (!path)
1986 		return -ENOMEM;
1987 
1988 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1989 		no_quota = 1;
1990 
1991 	path->reada = 1;
1992 	path->leave_spinning = 1;
1993 	/* this will setup the path even if it fails to insert the back ref */
1994 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1995 					   bytenr, num_bytes, parent,
1996 					   root_objectid, owner, offset,
1997 					   refs_to_add, extent_op);
1998 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
1999 		goto out;
2000 	/*
2001 	 * Ok we were able to insert an inline extent and it appears to be a new
2002 	 * reference, deal with the qgroup accounting.
2003 	 */
2004 	if (!ret && !no_quota) {
2005 		ASSERT(root->fs_info->quota_enabled);
2006 		leaf = path->nodes[0];
2007 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2008 		item = btrfs_item_ptr(leaf, path->slots[0],
2009 				      struct btrfs_extent_item);
2010 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2011 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2012 		btrfs_release_path(path);
2013 
2014 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2015 					      bytenr, num_bytes, type, 0);
2016 		goto out;
2017 	}
2018 
2019 	/*
2020 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2021 	 * inline extent ref, so just update the reference count and add a
2022 	 * normal backref.
2023 	 */
2024 	leaf = path->nodes[0];
2025 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2026 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2027 	refs = btrfs_extent_refs(leaf, item);
2028 	if (refs)
2029 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2030 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2031 	if (extent_op)
2032 		__run_delayed_extent_op(extent_op, leaf, item);
2033 
2034 	btrfs_mark_buffer_dirty(leaf);
2035 	btrfs_release_path(path);
2036 
2037 	if (!no_quota) {
2038 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2039 					      bytenr, num_bytes, type, 0);
2040 		if (ret)
2041 			goto out;
2042 	}
2043 
2044 	path->reada = 1;
2045 	path->leave_spinning = 1;
2046 	/* now insert the actual backref */
2047 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2048 				    path, bytenr, parent, root_objectid,
2049 				    owner, offset, refs_to_add);
2050 	if (ret)
2051 		btrfs_abort_transaction(trans, root, ret);
2052 out:
2053 	btrfs_free_path(path);
2054 	return ret;
2055 }
2056 
2057 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2058 				struct btrfs_root *root,
2059 				struct btrfs_delayed_ref_node *node,
2060 				struct btrfs_delayed_extent_op *extent_op,
2061 				int insert_reserved)
2062 {
2063 	int ret = 0;
2064 	struct btrfs_delayed_data_ref *ref;
2065 	struct btrfs_key ins;
2066 	u64 parent = 0;
2067 	u64 ref_root = 0;
2068 	u64 flags = 0;
2069 
2070 	ins.objectid = node->bytenr;
2071 	ins.offset = node->num_bytes;
2072 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2073 
2074 	ref = btrfs_delayed_node_to_data_ref(node);
2075 	trace_run_delayed_data_ref(node, ref, node->action);
2076 
2077 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2078 		parent = ref->parent;
2079 	ref_root = ref->root;
2080 
2081 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2082 		if (extent_op)
2083 			flags |= extent_op->flags_to_set;
2084 		ret = alloc_reserved_file_extent(trans, root,
2085 						 parent, ref_root, flags,
2086 						 ref->objectid, ref->offset,
2087 						 &ins, node->ref_mod);
2088 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2089 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2090 					     node->num_bytes, parent,
2091 					     ref_root, ref->objectid,
2092 					     ref->offset, node->ref_mod,
2093 					     node->no_quota, extent_op);
2094 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2095 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2096 					  node->num_bytes, parent,
2097 					  ref_root, ref->objectid,
2098 					  ref->offset, node->ref_mod,
2099 					  extent_op, node->no_quota);
2100 	} else {
2101 		BUG();
2102 	}
2103 	return ret;
2104 }
2105 
2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2107 				    struct extent_buffer *leaf,
2108 				    struct btrfs_extent_item *ei)
2109 {
2110 	u64 flags = btrfs_extent_flags(leaf, ei);
2111 	if (extent_op->update_flags) {
2112 		flags |= extent_op->flags_to_set;
2113 		btrfs_set_extent_flags(leaf, ei, flags);
2114 	}
2115 
2116 	if (extent_op->update_key) {
2117 		struct btrfs_tree_block_info *bi;
2118 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2119 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2120 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2121 	}
2122 }
2123 
2124 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2125 				 struct btrfs_root *root,
2126 				 struct btrfs_delayed_ref_node *node,
2127 				 struct btrfs_delayed_extent_op *extent_op)
2128 {
2129 	struct btrfs_key key;
2130 	struct btrfs_path *path;
2131 	struct btrfs_extent_item *ei;
2132 	struct extent_buffer *leaf;
2133 	u32 item_size;
2134 	int ret;
2135 	int err = 0;
2136 	int metadata = !extent_op->is_data;
2137 
2138 	if (trans->aborted)
2139 		return 0;
2140 
2141 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2142 		metadata = 0;
2143 
2144 	path = btrfs_alloc_path();
2145 	if (!path)
2146 		return -ENOMEM;
2147 
2148 	key.objectid = node->bytenr;
2149 
2150 	if (metadata) {
2151 		key.type = BTRFS_METADATA_ITEM_KEY;
2152 		key.offset = extent_op->level;
2153 	} else {
2154 		key.type = BTRFS_EXTENT_ITEM_KEY;
2155 		key.offset = node->num_bytes;
2156 	}
2157 
2158 again:
2159 	path->reada = 1;
2160 	path->leave_spinning = 1;
2161 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2162 				path, 0, 1);
2163 	if (ret < 0) {
2164 		err = ret;
2165 		goto out;
2166 	}
2167 	if (ret > 0) {
2168 		if (metadata) {
2169 			if (path->slots[0] > 0) {
2170 				path->slots[0]--;
2171 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2172 						      path->slots[0]);
2173 				if (key.objectid == node->bytenr &&
2174 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2175 				    key.offset == node->num_bytes)
2176 					ret = 0;
2177 			}
2178 			if (ret > 0) {
2179 				btrfs_release_path(path);
2180 				metadata = 0;
2181 
2182 				key.objectid = node->bytenr;
2183 				key.offset = node->num_bytes;
2184 				key.type = BTRFS_EXTENT_ITEM_KEY;
2185 				goto again;
2186 			}
2187 		} else {
2188 			err = -EIO;
2189 			goto out;
2190 		}
2191 	}
2192 
2193 	leaf = path->nodes[0];
2194 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 	if (item_size < sizeof(*ei)) {
2197 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2198 					     path, (u64)-1, 0);
2199 		if (ret < 0) {
2200 			err = ret;
2201 			goto out;
2202 		}
2203 		leaf = path->nodes[0];
2204 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2205 	}
2206 #endif
2207 	BUG_ON(item_size < sizeof(*ei));
2208 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2209 	__run_delayed_extent_op(extent_op, leaf, ei);
2210 
2211 	btrfs_mark_buffer_dirty(leaf);
2212 out:
2213 	btrfs_free_path(path);
2214 	return err;
2215 }
2216 
2217 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2218 				struct btrfs_root *root,
2219 				struct btrfs_delayed_ref_node *node,
2220 				struct btrfs_delayed_extent_op *extent_op,
2221 				int insert_reserved)
2222 {
2223 	int ret = 0;
2224 	struct btrfs_delayed_tree_ref *ref;
2225 	struct btrfs_key ins;
2226 	u64 parent = 0;
2227 	u64 ref_root = 0;
2228 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2229 						 SKINNY_METADATA);
2230 
2231 	ref = btrfs_delayed_node_to_tree_ref(node);
2232 	trace_run_delayed_tree_ref(node, ref, node->action);
2233 
2234 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2235 		parent = ref->parent;
2236 	ref_root = ref->root;
2237 
2238 	ins.objectid = node->bytenr;
2239 	if (skinny_metadata) {
2240 		ins.offset = ref->level;
2241 		ins.type = BTRFS_METADATA_ITEM_KEY;
2242 	} else {
2243 		ins.offset = node->num_bytes;
2244 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2245 	}
2246 
2247 	BUG_ON(node->ref_mod != 1);
2248 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2249 		BUG_ON(!extent_op || !extent_op->update_flags);
2250 		ret = alloc_reserved_tree_block(trans, root,
2251 						parent, ref_root,
2252 						extent_op->flags_to_set,
2253 						&extent_op->key,
2254 						ref->level, &ins,
2255 						node->no_quota);
2256 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2257 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2258 					     node->num_bytes, parent, ref_root,
2259 					     ref->level, 0, 1, node->no_quota,
2260 					     extent_op);
2261 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2262 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2263 					  node->num_bytes, parent, ref_root,
2264 					  ref->level, 0, 1, extent_op,
2265 					  node->no_quota);
2266 	} else {
2267 		BUG();
2268 	}
2269 	return ret;
2270 }
2271 
2272 /* helper function to actually process a single delayed ref entry */
2273 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2274 			       struct btrfs_root *root,
2275 			       struct btrfs_delayed_ref_node *node,
2276 			       struct btrfs_delayed_extent_op *extent_op,
2277 			       int insert_reserved)
2278 {
2279 	int ret = 0;
2280 
2281 	if (trans->aborted) {
2282 		if (insert_reserved)
2283 			btrfs_pin_extent(root, node->bytenr,
2284 					 node->num_bytes, 1);
2285 		return 0;
2286 	}
2287 
2288 	if (btrfs_delayed_ref_is_head(node)) {
2289 		struct btrfs_delayed_ref_head *head;
2290 		/*
2291 		 * we've hit the end of the chain and we were supposed
2292 		 * to insert this extent into the tree.  But, it got
2293 		 * deleted before we ever needed to insert it, so all
2294 		 * we have to do is clean up the accounting
2295 		 */
2296 		BUG_ON(extent_op);
2297 		head = btrfs_delayed_node_to_head(node);
2298 		trace_run_delayed_ref_head(node, head, node->action);
2299 
2300 		if (insert_reserved) {
2301 			btrfs_pin_extent(root, node->bytenr,
2302 					 node->num_bytes, 1);
2303 			if (head->is_data) {
2304 				ret = btrfs_del_csums(trans, root,
2305 						      node->bytenr,
2306 						      node->num_bytes);
2307 			}
2308 		}
2309 		return ret;
2310 	}
2311 
2312 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2313 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2314 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2315 					   insert_reserved);
2316 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2317 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2318 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2319 					   insert_reserved);
2320 	else
2321 		BUG();
2322 	return ret;
2323 }
2324 
2325 static noinline struct btrfs_delayed_ref_node *
2326 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2327 {
2328 	struct rb_node *node;
2329 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2330 
2331 	/*
2332 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2333 	 * this prevents ref count from going down to zero when
2334 	 * there still are pending delayed ref.
2335 	 */
2336 	node = rb_first(&head->ref_root);
2337 	while (node) {
2338 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2339 				rb_node);
2340 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2341 			return ref;
2342 		else if (last == NULL)
2343 			last = ref;
2344 		node = rb_next(node);
2345 	}
2346 	return last;
2347 }
2348 
2349 /*
2350  * Returns 0 on success or if called with an already aborted transaction.
2351  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2352  */
2353 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2354 					     struct btrfs_root *root,
2355 					     unsigned long nr)
2356 {
2357 	struct btrfs_delayed_ref_root *delayed_refs;
2358 	struct btrfs_delayed_ref_node *ref;
2359 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2360 	struct btrfs_delayed_extent_op *extent_op;
2361 	struct btrfs_fs_info *fs_info = root->fs_info;
2362 	ktime_t start = ktime_get();
2363 	int ret;
2364 	unsigned long count = 0;
2365 	unsigned long actual_count = 0;
2366 	int must_insert_reserved = 0;
2367 
2368 	delayed_refs = &trans->transaction->delayed_refs;
2369 	while (1) {
2370 		if (!locked_ref) {
2371 			if (count >= nr)
2372 				break;
2373 
2374 			spin_lock(&delayed_refs->lock);
2375 			locked_ref = btrfs_select_ref_head(trans);
2376 			if (!locked_ref) {
2377 				spin_unlock(&delayed_refs->lock);
2378 				break;
2379 			}
2380 
2381 			/* grab the lock that says we are going to process
2382 			 * all the refs for this head */
2383 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2384 			spin_unlock(&delayed_refs->lock);
2385 			/*
2386 			 * we may have dropped the spin lock to get the head
2387 			 * mutex lock, and that might have given someone else
2388 			 * time to free the head.  If that's true, it has been
2389 			 * removed from our list and we can move on.
2390 			 */
2391 			if (ret == -EAGAIN) {
2392 				locked_ref = NULL;
2393 				count++;
2394 				continue;
2395 			}
2396 		}
2397 
2398 		/*
2399 		 * We need to try and merge add/drops of the same ref since we
2400 		 * can run into issues with relocate dropping the implicit ref
2401 		 * and then it being added back again before the drop can
2402 		 * finish.  If we merged anything we need to re-loop so we can
2403 		 * get a good ref.
2404 		 */
2405 		spin_lock(&locked_ref->lock);
2406 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2407 					 locked_ref);
2408 
2409 		/*
2410 		 * locked_ref is the head node, so we have to go one
2411 		 * node back for any delayed ref updates
2412 		 */
2413 		ref = select_delayed_ref(locked_ref);
2414 
2415 		if (ref && ref->seq &&
2416 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2417 			spin_unlock(&locked_ref->lock);
2418 			btrfs_delayed_ref_unlock(locked_ref);
2419 			spin_lock(&delayed_refs->lock);
2420 			locked_ref->processing = 0;
2421 			delayed_refs->num_heads_ready++;
2422 			spin_unlock(&delayed_refs->lock);
2423 			locked_ref = NULL;
2424 			cond_resched();
2425 			count++;
2426 			continue;
2427 		}
2428 
2429 		/*
2430 		 * record the must insert reserved flag before we
2431 		 * drop the spin lock.
2432 		 */
2433 		must_insert_reserved = locked_ref->must_insert_reserved;
2434 		locked_ref->must_insert_reserved = 0;
2435 
2436 		extent_op = locked_ref->extent_op;
2437 		locked_ref->extent_op = NULL;
2438 
2439 		if (!ref) {
2440 
2441 
2442 			/* All delayed refs have been processed, Go ahead
2443 			 * and send the head node to run_one_delayed_ref,
2444 			 * so that any accounting fixes can happen
2445 			 */
2446 			ref = &locked_ref->node;
2447 
2448 			if (extent_op && must_insert_reserved) {
2449 				btrfs_free_delayed_extent_op(extent_op);
2450 				extent_op = NULL;
2451 			}
2452 
2453 			if (extent_op) {
2454 				spin_unlock(&locked_ref->lock);
2455 				ret = run_delayed_extent_op(trans, root,
2456 							    ref, extent_op);
2457 				btrfs_free_delayed_extent_op(extent_op);
2458 
2459 				if (ret) {
2460 					/*
2461 					 * Need to reset must_insert_reserved if
2462 					 * there was an error so the abort stuff
2463 					 * can cleanup the reserved space
2464 					 * properly.
2465 					 */
2466 					if (must_insert_reserved)
2467 						locked_ref->must_insert_reserved = 1;
2468 					locked_ref->processing = 0;
2469 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2470 					btrfs_delayed_ref_unlock(locked_ref);
2471 					return ret;
2472 				}
2473 				continue;
2474 			}
2475 
2476 			/*
2477 			 * Need to drop our head ref lock and re-aqcuire the
2478 			 * delayed ref lock and then re-check to make sure
2479 			 * nobody got added.
2480 			 */
2481 			spin_unlock(&locked_ref->lock);
2482 			spin_lock(&delayed_refs->lock);
2483 			spin_lock(&locked_ref->lock);
2484 			if (rb_first(&locked_ref->ref_root) ||
2485 			    locked_ref->extent_op) {
2486 				spin_unlock(&locked_ref->lock);
2487 				spin_unlock(&delayed_refs->lock);
2488 				continue;
2489 			}
2490 			ref->in_tree = 0;
2491 			delayed_refs->num_heads--;
2492 			rb_erase(&locked_ref->href_node,
2493 				 &delayed_refs->href_root);
2494 			spin_unlock(&delayed_refs->lock);
2495 		} else {
2496 			actual_count++;
2497 			ref->in_tree = 0;
2498 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2499 		}
2500 		atomic_dec(&delayed_refs->num_entries);
2501 
2502 		if (!btrfs_delayed_ref_is_head(ref)) {
2503 			/*
2504 			 * when we play the delayed ref, also correct the
2505 			 * ref_mod on head
2506 			 */
2507 			switch (ref->action) {
2508 			case BTRFS_ADD_DELAYED_REF:
2509 			case BTRFS_ADD_DELAYED_EXTENT:
2510 				locked_ref->node.ref_mod -= ref->ref_mod;
2511 				break;
2512 			case BTRFS_DROP_DELAYED_REF:
2513 				locked_ref->node.ref_mod += ref->ref_mod;
2514 				break;
2515 			default:
2516 				WARN_ON(1);
2517 			}
2518 		}
2519 		spin_unlock(&locked_ref->lock);
2520 
2521 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2522 					  must_insert_reserved);
2523 
2524 		btrfs_free_delayed_extent_op(extent_op);
2525 		if (ret) {
2526 			locked_ref->processing = 0;
2527 			btrfs_delayed_ref_unlock(locked_ref);
2528 			btrfs_put_delayed_ref(ref);
2529 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2530 			return ret;
2531 		}
2532 
2533 		/*
2534 		 * If this node is a head, that means all the refs in this head
2535 		 * have been dealt with, and we will pick the next head to deal
2536 		 * with, so we must unlock the head and drop it from the cluster
2537 		 * list before we release it.
2538 		 */
2539 		if (btrfs_delayed_ref_is_head(ref)) {
2540 			btrfs_delayed_ref_unlock(locked_ref);
2541 			locked_ref = NULL;
2542 		}
2543 		btrfs_put_delayed_ref(ref);
2544 		count++;
2545 		cond_resched();
2546 	}
2547 
2548 	/*
2549 	 * We don't want to include ref heads since we can have empty ref heads
2550 	 * and those will drastically skew our runtime down since we just do
2551 	 * accounting, no actual extent tree updates.
2552 	 */
2553 	if (actual_count > 0) {
2554 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2555 		u64 avg;
2556 
2557 		/*
2558 		 * We weigh the current average higher than our current runtime
2559 		 * to avoid large swings in the average.
2560 		 */
2561 		spin_lock(&delayed_refs->lock);
2562 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2563 		avg = div64_u64(avg, 4);
2564 		fs_info->avg_delayed_ref_runtime = avg;
2565 		spin_unlock(&delayed_refs->lock);
2566 	}
2567 	return 0;
2568 }
2569 
2570 #ifdef SCRAMBLE_DELAYED_REFS
2571 /*
2572  * Normally delayed refs get processed in ascending bytenr order. This
2573  * correlates in most cases to the order added. To expose dependencies on this
2574  * order, we start to process the tree in the middle instead of the beginning
2575  */
2576 static u64 find_middle(struct rb_root *root)
2577 {
2578 	struct rb_node *n = root->rb_node;
2579 	struct btrfs_delayed_ref_node *entry;
2580 	int alt = 1;
2581 	u64 middle;
2582 	u64 first = 0, last = 0;
2583 
2584 	n = rb_first(root);
2585 	if (n) {
2586 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2587 		first = entry->bytenr;
2588 	}
2589 	n = rb_last(root);
2590 	if (n) {
2591 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2592 		last = entry->bytenr;
2593 	}
2594 	n = root->rb_node;
2595 
2596 	while (n) {
2597 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 		WARN_ON(!entry->in_tree);
2599 
2600 		middle = entry->bytenr;
2601 
2602 		if (alt)
2603 			n = n->rb_left;
2604 		else
2605 			n = n->rb_right;
2606 
2607 		alt = 1 - alt;
2608 	}
2609 	return middle;
2610 }
2611 #endif
2612 
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614 {
2615 	u64 num_bytes;
2616 
2617 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 			     sizeof(struct btrfs_extent_inline_ref));
2619 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621 
2622 	/*
2623 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 	 * closer to what we're really going to want to ouse.
2625 	 */
2626 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627 }
2628 
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 				       struct btrfs_root *root)
2631 {
2632 	struct btrfs_block_rsv *global_rsv;
2633 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 	u64 num_bytes;
2635 	int ret = 0;
2636 
2637 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 	num_heads = heads_to_leaves(root, num_heads);
2639 	if (num_heads > 1)
2640 		num_bytes += (num_heads - 1) * root->nodesize;
2641 	num_bytes <<= 1;
2642 	global_rsv = &root->fs_info->global_block_rsv;
2643 
2644 	/*
2645 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 	 * wiggle room since running delayed refs can create more delayed refs.
2647 	 */
2648 	if (global_rsv->space_info->full)
2649 		num_bytes <<= 1;
2650 
2651 	spin_lock(&global_rsv->lock);
2652 	if (global_rsv->reserved <= num_bytes)
2653 		ret = 1;
2654 	spin_unlock(&global_rsv->lock);
2655 	return ret;
2656 }
2657 
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 				       struct btrfs_root *root)
2660 {
2661 	struct btrfs_fs_info *fs_info = root->fs_info;
2662 	u64 num_entries =
2663 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 	u64 avg_runtime;
2665 	u64 val;
2666 
2667 	smp_mb();
2668 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2669 	val = num_entries * avg_runtime;
2670 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2671 		return 1;
2672 	if (val >= NSEC_PER_SEC / 2)
2673 		return 2;
2674 
2675 	return btrfs_check_space_for_delayed_refs(trans, root);
2676 }
2677 
2678 struct async_delayed_refs {
2679 	struct btrfs_root *root;
2680 	int count;
2681 	int error;
2682 	int sync;
2683 	struct completion wait;
2684 	struct btrfs_work work;
2685 };
2686 
2687 static void delayed_ref_async_start(struct btrfs_work *work)
2688 {
2689 	struct async_delayed_refs *async;
2690 	struct btrfs_trans_handle *trans;
2691 	int ret;
2692 
2693 	async = container_of(work, struct async_delayed_refs, work);
2694 
2695 	trans = btrfs_join_transaction(async->root);
2696 	if (IS_ERR(trans)) {
2697 		async->error = PTR_ERR(trans);
2698 		goto done;
2699 	}
2700 
2701 	/*
2702 	 * trans->sync means that when we call end_transaciton, we won't
2703 	 * wait on delayed refs
2704 	 */
2705 	trans->sync = true;
2706 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2707 	if (ret)
2708 		async->error = ret;
2709 
2710 	ret = btrfs_end_transaction(trans, async->root);
2711 	if (ret && !async->error)
2712 		async->error = ret;
2713 done:
2714 	if (async->sync)
2715 		complete(&async->wait);
2716 	else
2717 		kfree(async);
2718 }
2719 
2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2721 				 unsigned long count, int wait)
2722 {
2723 	struct async_delayed_refs *async;
2724 	int ret;
2725 
2726 	async = kmalloc(sizeof(*async), GFP_NOFS);
2727 	if (!async)
2728 		return -ENOMEM;
2729 
2730 	async->root = root->fs_info->tree_root;
2731 	async->count = count;
2732 	async->error = 0;
2733 	if (wait)
2734 		async->sync = 1;
2735 	else
2736 		async->sync = 0;
2737 	init_completion(&async->wait);
2738 
2739 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2740 			delayed_ref_async_start, NULL, NULL);
2741 
2742 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2743 
2744 	if (wait) {
2745 		wait_for_completion(&async->wait);
2746 		ret = async->error;
2747 		kfree(async);
2748 		return ret;
2749 	}
2750 	return 0;
2751 }
2752 
2753 /*
2754  * this starts processing the delayed reference count updates and
2755  * extent insertions we have queued up so far.  count can be
2756  * 0, which means to process everything in the tree at the start
2757  * of the run (but not newly added entries), or it can be some target
2758  * number you'd like to process.
2759  *
2760  * Returns 0 on success or if called with an aborted transaction
2761  * Returns <0 on error and aborts the transaction
2762  */
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2764 			   struct btrfs_root *root, unsigned long count)
2765 {
2766 	struct rb_node *node;
2767 	struct btrfs_delayed_ref_root *delayed_refs;
2768 	struct btrfs_delayed_ref_head *head;
2769 	int ret;
2770 	int run_all = count == (unsigned long)-1;
2771 	int run_most = 0;
2772 
2773 	/* We'll clean this up in btrfs_cleanup_transaction */
2774 	if (trans->aborted)
2775 		return 0;
2776 
2777 	if (root == root->fs_info->extent_root)
2778 		root = root->fs_info->tree_root;
2779 
2780 	delayed_refs = &trans->transaction->delayed_refs;
2781 	if (count == 0) {
2782 		count = atomic_read(&delayed_refs->num_entries) * 2;
2783 		run_most = 1;
2784 	}
2785 
2786 again:
2787 #ifdef SCRAMBLE_DELAYED_REFS
2788 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2789 #endif
2790 	ret = __btrfs_run_delayed_refs(trans, root, count);
2791 	if (ret < 0) {
2792 		btrfs_abort_transaction(trans, root, ret);
2793 		return ret;
2794 	}
2795 
2796 	if (run_all) {
2797 		if (!list_empty(&trans->new_bgs))
2798 			btrfs_create_pending_block_groups(trans, root);
2799 
2800 		spin_lock(&delayed_refs->lock);
2801 		node = rb_first(&delayed_refs->href_root);
2802 		if (!node) {
2803 			spin_unlock(&delayed_refs->lock);
2804 			goto out;
2805 		}
2806 		count = (unsigned long)-1;
2807 
2808 		while (node) {
2809 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2810 					href_node);
2811 			if (btrfs_delayed_ref_is_head(&head->node)) {
2812 				struct btrfs_delayed_ref_node *ref;
2813 
2814 				ref = &head->node;
2815 				atomic_inc(&ref->refs);
2816 
2817 				spin_unlock(&delayed_refs->lock);
2818 				/*
2819 				 * Mutex was contended, block until it's
2820 				 * released and try again
2821 				 */
2822 				mutex_lock(&head->mutex);
2823 				mutex_unlock(&head->mutex);
2824 
2825 				btrfs_put_delayed_ref(ref);
2826 				cond_resched();
2827 				goto again;
2828 			} else {
2829 				WARN_ON(1);
2830 			}
2831 			node = rb_next(node);
2832 		}
2833 		spin_unlock(&delayed_refs->lock);
2834 		cond_resched();
2835 		goto again;
2836 	}
2837 out:
2838 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2839 	if (ret)
2840 		return ret;
2841 	assert_qgroups_uptodate(trans);
2842 	return 0;
2843 }
2844 
2845 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2846 				struct btrfs_root *root,
2847 				u64 bytenr, u64 num_bytes, u64 flags,
2848 				int level, int is_data)
2849 {
2850 	struct btrfs_delayed_extent_op *extent_op;
2851 	int ret;
2852 
2853 	extent_op = btrfs_alloc_delayed_extent_op();
2854 	if (!extent_op)
2855 		return -ENOMEM;
2856 
2857 	extent_op->flags_to_set = flags;
2858 	extent_op->update_flags = 1;
2859 	extent_op->update_key = 0;
2860 	extent_op->is_data = is_data ? 1 : 0;
2861 	extent_op->level = level;
2862 
2863 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2864 					  num_bytes, extent_op);
2865 	if (ret)
2866 		btrfs_free_delayed_extent_op(extent_op);
2867 	return ret;
2868 }
2869 
2870 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2871 				      struct btrfs_root *root,
2872 				      struct btrfs_path *path,
2873 				      u64 objectid, u64 offset, u64 bytenr)
2874 {
2875 	struct btrfs_delayed_ref_head *head;
2876 	struct btrfs_delayed_ref_node *ref;
2877 	struct btrfs_delayed_data_ref *data_ref;
2878 	struct btrfs_delayed_ref_root *delayed_refs;
2879 	struct rb_node *node;
2880 	int ret = 0;
2881 
2882 	delayed_refs = &trans->transaction->delayed_refs;
2883 	spin_lock(&delayed_refs->lock);
2884 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2885 	if (!head) {
2886 		spin_unlock(&delayed_refs->lock);
2887 		return 0;
2888 	}
2889 
2890 	if (!mutex_trylock(&head->mutex)) {
2891 		atomic_inc(&head->node.refs);
2892 		spin_unlock(&delayed_refs->lock);
2893 
2894 		btrfs_release_path(path);
2895 
2896 		/*
2897 		 * Mutex was contended, block until it's released and let
2898 		 * caller try again
2899 		 */
2900 		mutex_lock(&head->mutex);
2901 		mutex_unlock(&head->mutex);
2902 		btrfs_put_delayed_ref(&head->node);
2903 		return -EAGAIN;
2904 	}
2905 	spin_unlock(&delayed_refs->lock);
2906 
2907 	spin_lock(&head->lock);
2908 	node = rb_first(&head->ref_root);
2909 	while (node) {
2910 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2911 		node = rb_next(node);
2912 
2913 		/* If it's a shared ref we know a cross reference exists */
2914 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2915 			ret = 1;
2916 			break;
2917 		}
2918 
2919 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2920 
2921 		/*
2922 		 * If our ref doesn't match the one we're currently looking at
2923 		 * then we have a cross reference.
2924 		 */
2925 		if (data_ref->root != root->root_key.objectid ||
2926 		    data_ref->objectid != objectid ||
2927 		    data_ref->offset != offset) {
2928 			ret = 1;
2929 			break;
2930 		}
2931 	}
2932 	spin_unlock(&head->lock);
2933 	mutex_unlock(&head->mutex);
2934 	return ret;
2935 }
2936 
2937 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2938 					struct btrfs_root *root,
2939 					struct btrfs_path *path,
2940 					u64 objectid, u64 offset, u64 bytenr)
2941 {
2942 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2943 	struct extent_buffer *leaf;
2944 	struct btrfs_extent_data_ref *ref;
2945 	struct btrfs_extent_inline_ref *iref;
2946 	struct btrfs_extent_item *ei;
2947 	struct btrfs_key key;
2948 	u32 item_size;
2949 	int ret;
2950 
2951 	key.objectid = bytenr;
2952 	key.offset = (u64)-1;
2953 	key.type = BTRFS_EXTENT_ITEM_KEY;
2954 
2955 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2956 	if (ret < 0)
2957 		goto out;
2958 	BUG_ON(ret == 0); /* Corruption */
2959 
2960 	ret = -ENOENT;
2961 	if (path->slots[0] == 0)
2962 		goto out;
2963 
2964 	path->slots[0]--;
2965 	leaf = path->nodes[0];
2966 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2967 
2968 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2969 		goto out;
2970 
2971 	ret = 1;
2972 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2974 	if (item_size < sizeof(*ei)) {
2975 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2976 		goto out;
2977 	}
2978 #endif
2979 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2980 
2981 	if (item_size != sizeof(*ei) +
2982 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2983 		goto out;
2984 
2985 	if (btrfs_extent_generation(leaf, ei) <=
2986 	    btrfs_root_last_snapshot(&root->root_item))
2987 		goto out;
2988 
2989 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2990 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2991 	    BTRFS_EXTENT_DATA_REF_KEY)
2992 		goto out;
2993 
2994 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2995 	if (btrfs_extent_refs(leaf, ei) !=
2996 	    btrfs_extent_data_ref_count(leaf, ref) ||
2997 	    btrfs_extent_data_ref_root(leaf, ref) !=
2998 	    root->root_key.objectid ||
2999 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3000 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3001 		goto out;
3002 
3003 	ret = 0;
3004 out:
3005 	return ret;
3006 }
3007 
3008 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3009 			  struct btrfs_root *root,
3010 			  u64 objectid, u64 offset, u64 bytenr)
3011 {
3012 	struct btrfs_path *path;
3013 	int ret;
3014 	int ret2;
3015 
3016 	path = btrfs_alloc_path();
3017 	if (!path)
3018 		return -ENOENT;
3019 
3020 	do {
3021 		ret = check_committed_ref(trans, root, path, objectid,
3022 					  offset, bytenr);
3023 		if (ret && ret != -ENOENT)
3024 			goto out;
3025 
3026 		ret2 = check_delayed_ref(trans, root, path, objectid,
3027 					 offset, bytenr);
3028 	} while (ret2 == -EAGAIN);
3029 
3030 	if (ret2 && ret2 != -ENOENT) {
3031 		ret = ret2;
3032 		goto out;
3033 	}
3034 
3035 	if (ret != -ENOENT || ret2 != -ENOENT)
3036 		ret = 0;
3037 out:
3038 	btrfs_free_path(path);
3039 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3040 		WARN_ON(ret > 0);
3041 	return ret;
3042 }
3043 
3044 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3045 			   struct btrfs_root *root,
3046 			   struct extent_buffer *buf,
3047 			   int full_backref, int inc)
3048 {
3049 	u64 bytenr;
3050 	u64 num_bytes;
3051 	u64 parent;
3052 	u64 ref_root;
3053 	u32 nritems;
3054 	struct btrfs_key key;
3055 	struct btrfs_file_extent_item *fi;
3056 	int i;
3057 	int level;
3058 	int ret = 0;
3059 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3060 			    u64, u64, u64, u64, u64, u64, int);
3061 
3062 
3063 	if (btrfs_test_is_dummy_root(root))
3064 		return 0;
3065 
3066 	ref_root = btrfs_header_owner(buf);
3067 	nritems = btrfs_header_nritems(buf);
3068 	level = btrfs_header_level(buf);
3069 
3070 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3071 		return 0;
3072 
3073 	if (inc)
3074 		process_func = btrfs_inc_extent_ref;
3075 	else
3076 		process_func = btrfs_free_extent;
3077 
3078 	if (full_backref)
3079 		parent = buf->start;
3080 	else
3081 		parent = 0;
3082 
3083 	for (i = 0; i < nritems; i++) {
3084 		if (level == 0) {
3085 			btrfs_item_key_to_cpu(buf, &key, i);
3086 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3087 				continue;
3088 			fi = btrfs_item_ptr(buf, i,
3089 					    struct btrfs_file_extent_item);
3090 			if (btrfs_file_extent_type(buf, fi) ==
3091 			    BTRFS_FILE_EXTENT_INLINE)
3092 				continue;
3093 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3094 			if (bytenr == 0)
3095 				continue;
3096 
3097 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3098 			key.offset -= btrfs_file_extent_offset(buf, fi);
3099 			ret = process_func(trans, root, bytenr, num_bytes,
3100 					   parent, ref_root, key.objectid,
3101 					   key.offset, 1);
3102 			if (ret)
3103 				goto fail;
3104 		} else {
3105 			bytenr = btrfs_node_blockptr(buf, i);
3106 			num_bytes = root->nodesize;
3107 			ret = process_func(trans, root, bytenr, num_bytes,
3108 					   parent, ref_root, level - 1, 0,
3109 					   1);
3110 			if (ret)
3111 				goto fail;
3112 		}
3113 	}
3114 	return 0;
3115 fail:
3116 	return ret;
3117 }
3118 
3119 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3120 		  struct extent_buffer *buf, int full_backref)
3121 {
3122 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3123 }
3124 
3125 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3126 		  struct extent_buffer *buf, int full_backref)
3127 {
3128 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3129 }
3130 
3131 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3132 				 struct btrfs_root *root,
3133 				 struct btrfs_path *path,
3134 				 struct btrfs_block_group_cache *cache)
3135 {
3136 	int ret;
3137 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3138 	unsigned long bi;
3139 	struct extent_buffer *leaf;
3140 
3141 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3142 	if (ret) {
3143 		if (ret > 0)
3144 			ret = -ENOENT;
3145 		goto fail;
3146 	}
3147 
3148 	leaf = path->nodes[0];
3149 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3150 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3151 	btrfs_mark_buffer_dirty(leaf);
3152 	btrfs_release_path(path);
3153 fail:
3154 	if (ret)
3155 		btrfs_abort_transaction(trans, root, ret);
3156 	return ret;
3157 
3158 }
3159 
3160 static struct btrfs_block_group_cache *
3161 next_block_group(struct btrfs_root *root,
3162 		 struct btrfs_block_group_cache *cache)
3163 {
3164 	struct rb_node *node;
3165 
3166 	spin_lock(&root->fs_info->block_group_cache_lock);
3167 
3168 	/* If our block group was removed, we need a full search. */
3169 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3170 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3171 
3172 		spin_unlock(&root->fs_info->block_group_cache_lock);
3173 		btrfs_put_block_group(cache);
3174 		cache = btrfs_lookup_first_block_group(root->fs_info,
3175 						       next_bytenr);
3176 		return cache;
3177 	}
3178 	node = rb_next(&cache->cache_node);
3179 	btrfs_put_block_group(cache);
3180 	if (node) {
3181 		cache = rb_entry(node, struct btrfs_block_group_cache,
3182 				 cache_node);
3183 		btrfs_get_block_group(cache);
3184 	} else
3185 		cache = NULL;
3186 	spin_unlock(&root->fs_info->block_group_cache_lock);
3187 	return cache;
3188 }
3189 
3190 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3191 			    struct btrfs_trans_handle *trans,
3192 			    struct btrfs_path *path)
3193 {
3194 	struct btrfs_root *root = block_group->fs_info->tree_root;
3195 	struct inode *inode = NULL;
3196 	u64 alloc_hint = 0;
3197 	int dcs = BTRFS_DC_ERROR;
3198 	int num_pages = 0;
3199 	int retries = 0;
3200 	int ret = 0;
3201 
3202 	/*
3203 	 * If this block group is smaller than 100 megs don't bother caching the
3204 	 * block group.
3205 	 */
3206 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3207 		spin_lock(&block_group->lock);
3208 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3209 		spin_unlock(&block_group->lock);
3210 		return 0;
3211 	}
3212 
3213 again:
3214 	inode = lookup_free_space_inode(root, block_group, path);
3215 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 		ret = PTR_ERR(inode);
3217 		btrfs_release_path(path);
3218 		goto out;
3219 	}
3220 
3221 	if (IS_ERR(inode)) {
3222 		BUG_ON(retries);
3223 		retries++;
3224 
3225 		if (block_group->ro)
3226 			goto out_free;
3227 
3228 		ret = create_free_space_inode(root, trans, block_group, path);
3229 		if (ret)
3230 			goto out_free;
3231 		goto again;
3232 	}
3233 
3234 	/* We've already setup this transaction, go ahead and exit */
3235 	if (block_group->cache_generation == trans->transid &&
3236 	    i_size_read(inode)) {
3237 		dcs = BTRFS_DC_SETUP;
3238 		goto out_put;
3239 	}
3240 
3241 	/*
3242 	 * We want to set the generation to 0, that way if anything goes wrong
3243 	 * from here on out we know not to trust this cache when we load up next
3244 	 * time.
3245 	 */
3246 	BTRFS_I(inode)->generation = 0;
3247 	ret = btrfs_update_inode(trans, root, inode);
3248 	WARN_ON(ret);
3249 
3250 	if (i_size_read(inode) > 0) {
3251 		ret = btrfs_check_trunc_cache_free_space(root,
3252 					&root->fs_info->global_block_rsv);
3253 		if (ret)
3254 			goto out_put;
3255 
3256 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3257 		if (ret)
3258 			goto out_put;
3259 	}
3260 
3261 	spin_lock(&block_group->lock);
3262 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3263 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3264 	    block_group->delalloc_bytes) {
3265 		/*
3266 		 * don't bother trying to write stuff out _if_
3267 		 * a) we're not cached,
3268 		 * b) we're with nospace_cache mount option.
3269 		 */
3270 		dcs = BTRFS_DC_WRITTEN;
3271 		spin_unlock(&block_group->lock);
3272 		goto out_put;
3273 	}
3274 	spin_unlock(&block_group->lock);
3275 
3276 	/*
3277 	 * Try to preallocate enough space based on how big the block group is.
3278 	 * Keep in mind this has to include any pinned space which could end up
3279 	 * taking up quite a bit since it's not folded into the other space
3280 	 * cache.
3281 	 */
3282 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3283 	if (!num_pages)
3284 		num_pages = 1;
3285 
3286 	num_pages *= 16;
3287 	num_pages *= PAGE_CACHE_SIZE;
3288 
3289 	ret = btrfs_check_data_free_space(inode, num_pages);
3290 	if (ret)
3291 		goto out_put;
3292 
3293 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3294 					      num_pages, num_pages,
3295 					      &alloc_hint);
3296 	if (!ret)
3297 		dcs = BTRFS_DC_SETUP;
3298 	btrfs_free_reserved_data_space(inode, num_pages);
3299 
3300 out_put:
3301 	iput(inode);
3302 out_free:
3303 	btrfs_release_path(path);
3304 out:
3305 	spin_lock(&block_group->lock);
3306 	if (!ret && dcs == BTRFS_DC_SETUP)
3307 		block_group->cache_generation = trans->transid;
3308 	block_group->disk_cache_state = dcs;
3309 	spin_unlock(&block_group->lock);
3310 
3311 	return ret;
3312 }
3313 
3314 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3315 				   struct btrfs_root *root)
3316 {
3317 	struct btrfs_block_group_cache *cache;
3318 	int err = 0;
3319 	struct btrfs_path *path;
3320 	u64 last = 0;
3321 
3322 	path = btrfs_alloc_path();
3323 	if (!path)
3324 		return -ENOMEM;
3325 
3326 again:
3327 	while (1) {
3328 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3329 		while (cache) {
3330 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3331 				break;
3332 			cache = next_block_group(root, cache);
3333 		}
3334 		if (!cache) {
3335 			if (last == 0)
3336 				break;
3337 			last = 0;
3338 			continue;
3339 		}
3340 		err = cache_save_setup(cache, trans, path);
3341 		last = cache->key.objectid + cache->key.offset;
3342 		btrfs_put_block_group(cache);
3343 	}
3344 
3345 	while (1) {
3346 		if (last == 0) {
3347 			err = btrfs_run_delayed_refs(trans, root,
3348 						     (unsigned long)-1);
3349 			if (err) /* File system offline */
3350 				goto out;
3351 		}
3352 
3353 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3354 		while (cache) {
3355 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3356 				btrfs_put_block_group(cache);
3357 				goto again;
3358 			}
3359 
3360 			if (cache->dirty)
3361 				break;
3362 			cache = next_block_group(root, cache);
3363 		}
3364 		if (!cache) {
3365 			if (last == 0)
3366 				break;
3367 			last = 0;
3368 			continue;
3369 		}
3370 
3371 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3372 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3373 		cache->dirty = 0;
3374 		last = cache->key.objectid + cache->key.offset;
3375 
3376 		err = write_one_cache_group(trans, root, path, cache);
3377 		btrfs_put_block_group(cache);
3378 		if (err) /* File system offline */
3379 			goto out;
3380 	}
3381 
3382 	while (1) {
3383 		/*
3384 		 * I don't think this is needed since we're just marking our
3385 		 * preallocated extent as written, but just in case it can't
3386 		 * hurt.
3387 		 */
3388 		if (last == 0) {
3389 			err = btrfs_run_delayed_refs(trans, root,
3390 						     (unsigned long)-1);
3391 			if (err) /* File system offline */
3392 				goto out;
3393 		}
3394 
3395 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3396 		while (cache) {
3397 			/*
3398 			 * Really this shouldn't happen, but it could if we
3399 			 * couldn't write the entire preallocated extent and
3400 			 * splitting the extent resulted in a new block.
3401 			 */
3402 			if (cache->dirty) {
3403 				btrfs_put_block_group(cache);
3404 				goto again;
3405 			}
3406 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3407 				break;
3408 			cache = next_block_group(root, cache);
3409 		}
3410 		if (!cache) {
3411 			if (last == 0)
3412 				break;
3413 			last = 0;
3414 			continue;
3415 		}
3416 
3417 		err = btrfs_write_out_cache(root, trans, cache, path);
3418 
3419 		/*
3420 		 * If we didn't have an error then the cache state is still
3421 		 * NEED_WRITE, so we can set it to WRITTEN.
3422 		 */
3423 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3424 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3425 		last = cache->key.objectid + cache->key.offset;
3426 		btrfs_put_block_group(cache);
3427 	}
3428 out:
3429 
3430 	btrfs_free_path(path);
3431 	return err;
3432 }
3433 
3434 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3435 {
3436 	struct btrfs_block_group_cache *block_group;
3437 	int readonly = 0;
3438 
3439 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3440 	if (!block_group || block_group->ro)
3441 		readonly = 1;
3442 	if (block_group)
3443 		btrfs_put_block_group(block_group);
3444 	return readonly;
3445 }
3446 
3447 static const char *alloc_name(u64 flags)
3448 {
3449 	switch (flags) {
3450 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3451 		return "mixed";
3452 	case BTRFS_BLOCK_GROUP_METADATA:
3453 		return "metadata";
3454 	case BTRFS_BLOCK_GROUP_DATA:
3455 		return "data";
3456 	case BTRFS_BLOCK_GROUP_SYSTEM:
3457 		return "system";
3458 	default:
3459 		WARN_ON(1);
3460 		return "invalid-combination";
3461 	};
3462 }
3463 
3464 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3465 			     u64 total_bytes, u64 bytes_used,
3466 			     struct btrfs_space_info **space_info)
3467 {
3468 	struct btrfs_space_info *found;
3469 	int i;
3470 	int factor;
3471 	int ret;
3472 
3473 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3474 		     BTRFS_BLOCK_GROUP_RAID10))
3475 		factor = 2;
3476 	else
3477 		factor = 1;
3478 
3479 	found = __find_space_info(info, flags);
3480 	if (found) {
3481 		spin_lock(&found->lock);
3482 		found->total_bytes += total_bytes;
3483 		found->disk_total += total_bytes * factor;
3484 		found->bytes_used += bytes_used;
3485 		found->disk_used += bytes_used * factor;
3486 		found->full = 0;
3487 		spin_unlock(&found->lock);
3488 		*space_info = found;
3489 		return 0;
3490 	}
3491 	found = kzalloc(sizeof(*found), GFP_NOFS);
3492 	if (!found)
3493 		return -ENOMEM;
3494 
3495 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3496 	if (ret) {
3497 		kfree(found);
3498 		return ret;
3499 	}
3500 
3501 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3502 		INIT_LIST_HEAD(&found->block_groups[i]);
3503 	init_rwsem(&found->groups_sem);
3504 	spin_lock_init(&found->lock);
3505 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3506 	found->total_bytes = total_bytes;
3507 	found->disk_total = total_bytes * factor;
3508 	found->bytes_used = bytes_used;
3509 	found->disk_used = bytes_used * factor;
3510 	found->bytes_pinned = 0;
3511 	found->bytes_reserved = 0;
3512 	found->bytes_readonly = 0;
3513 	found->bytes_may_use = 0;
3514 	found->full = 0;
3515 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3516 	found->chunk_alloc = 0;
3517 	found->flush = 0;
3518 	init_waitqueue_head(&found->wait);
3519 	INIT_LIST_HEAD(&found->ro_bgs);
3520 
3521 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3522 				    info->space_info_kobj, "%s",
3523 				    alloc_name(found->flags));
3524 	if (ret) {
3525 		kfree(found);
3526 		return ret;
3527 	}
3528 
3529 	*space_info = found;
3530 	list_add_rcu(&found->list, &info->space_info);
3531 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3532 		info->data_sinfo = found;
3533 
3534 	return ret;
3535 }
3536 
3537 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3538 {
3539 	u64 extra_flags = chunk_to_extended(flags) &
3540 				BTRFS_EXTENDED_PROFILE_MASK;
3541 
3542 	write_seqlock(&fs_info->profiles_lock);
3543 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3544 		fs_info->avail_data_alloc_bits |= extra_flags;
3545 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3546 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3547 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3548 		fs_info->avail_system_alloc_bits |= extra_flags;
3549 	write_sequnlock(&fs_info->profiles_lock);
3550 }
3551 
3552 /*
3553  * returns target flags in extended format or 0 if restripe for this
3554  * chunk_type is not in progress
3555  *
3556  * should be called with either volume_mutex or balance_lock held
3557  */
3558 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3559 {
3560 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3561 	u64 target = 0;
3562 
3563 	if (!bctl)
3564 		return 0;
3565 
3566 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3567 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3568 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3569 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3570 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3571 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3572 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3573 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3574 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3575 	}
3576 
3577 	return target;
3578 }
3579 
3580 /*
3581  * @flags: available profiles in extended format (see ctree.h)
3582  *
3583  * Returns reduced profile in chunk format.  If profile changing is in
3584  * progress (either running or paused) picks the target profile (if it's
3585  * already available), otherwise falls back to plain reducing.
3586  */
3587 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3588 {
3589 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3590 	u64 target;
3591 	u64 tmp;
3592 
3593 	/*
3594 	 * see if restripe for this chunk_type is in progress, if so
3595 	 * try to reduce to the target profile
3596 	 */
3597 	spin_lock(&root->fs_info->balance_lock);
3598 	target = get_restripe_target(root->fs_info, flags);
3599 	if (target) {
3600 		/* pick target profile only if it's already available */
3601 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3602 			spin_unlock(&root->fs_info->balance_lock);
3603 			return extended_to_chunk(target);
3604 		}
3605 	}
3606 	spin_unlock(&root->fs_info->balance_lock);
3607 
3608 	/* First, mask out the RAID levels which aren't possible */
3609 	if (num_devices == 1)
3610 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3611 			   BTRFS_BLOCK_GROUP_RAID5);
3612 	if (num_devices < 3)
3613 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3614 	if (num_devices < 4)
3615 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3616 
3617 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3618 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3619 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3620 	flags &= ~tmp;
3621 
3622 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3623 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3624 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3625 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3626 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3627 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3628 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3629 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3630 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3631 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3632 
3633 	return extended_to_chunk(flags | tmp);
3634 }
3635 
3636 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3637 {
3638 	unsigned seq;
3639 	u64 flags;
3640 
3641 	do {
3642 		flags = orig_flags;
3643 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3644 
3645 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3646 			flags |= root->fs_info->avail_data_alloc_bits;
3647 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3648 			flags |= root->fs_info->avail_system_alloc_bits;
3649 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3650 			flags |= root->fs_info->avail_metadata_alloc_bits;
3651 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3652 
3653 	return btrfs_reduce_alloc_profile(root, flags);
3654 }
3655 
3656 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3657 {
3658 	u64 flags;
3659 	u64 ret;
3660 
3661 	if (data)
3662 		flags = BTRFS_BLOCK_GROUP_DATA;
3663 	else if (root == root->fs_info->chunk_root)
3664 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3665 	else
3666 		flags = BTRFS_BLOCK_GROUP_METADATA;
3667 
3668 	ret = get_alloc_profile(root, flags);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * This will check the space that the inode allocates from to make sure we have
3674  * enough space for bytes.
3675  */
3676 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3677 {
3678 	struct btrfs_space_info *data_sinfo;
3679 	struct btrfs_root *root = BTRFS_I(inode)->root;
3680 	struct btrfs_fs_info *fs_info = root->fs_info;
3681 	u64 used;
3682 	int ret = 0, committed = 0, alloc_chunk = 1;
3683 
3684 	/* make sure bytes are sectorsize aligned */
3685 	bytes = ALIGN(bytes, root->sectorsize);
3686 
3687 	if (btrfs_is_free_space_inode(inode)) {
3688 		committed = 1;
3689 		ASSERT(current->journal_info);
3690 	}
3691 
3692 	data_sinfo = fs_info->data_sinfo;
3693 	if (!data_sinfo)
3694 		goto alloc;
3695 
3696 again:
3697 	/* make sure we have enough space to handle the data first */
3698 	spin_lock(&data_sinfo->lock);
3699 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3700 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3701 		data_sinfo->bytes_may_use;
3702 
3703 	if (used + bytes > data_sinfo->total_bytes) {
3704 		struct btrfs_trans_handle *trans;
3705 
3706 		/*
3707 		 * if we don't have enough free bytes in this space then we need
3708 		 * to alloc a new chunk.
3709 		 */
3710 		if (!data_sinfo->full && alloc_chunk) {
3711 			u64 alloc_target;
3712 
3713 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3714 			spin_unlock(&data_sinfo->lock);
3715 alloc:
3716 			alloc_target = btrfs_get_alloc_profile(root, 1);
3717 			/*
3718 			 * It is ugly that we don't call nolock join
3719 			 * transaction for the free space inode case here.
3720 			 * But it is safe because we only do the data space
3721 			 * reservation for the free space cache in the
3722 			 * transaction context, the common join transaction
3723 			 * just increase the counter of the current transaction
3724 			 * handler, doesn't try to acquire the trans_lock of
3725 			 * the fs.
3726 			 */
3727 			trans = btrfs_join_transaction(root);
3728 			if (IS_ERR(trans))
3729 				return PTR_ERR(trans);
3730 
3731 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3732 					     alloc_target,
3733 					     CHUNK_ALLOC_NO_FORCE);
3734 			btrfs_end_transaction(trans, root);
3735 			if (ret < 0) {
3736 				if (ret != -ENOSPC)
3737 					return ret;
3738 				else
3739 					goto commit_trans;
3740 			}
3741 
3742 			if (!data_sinfo)
3743 				data_sinfo = fs_info->data_sinfo;
3744 
3745 			goto again;
3746 		}
3747 
3748 		/*
3749 		 * If we don't have enough pinned space to deal with this
3750 		 * allocation don't bother committing the transaction.
3751 		 */
3752 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3753 					   bytes) < 0)
3754 			committed = 1;
3755 		spin_unlock(&data_sinfo->lock);
3756 
3757 		/* commit the current transaction and try again */
3758 commit_trans:
3759 		if (!committed &&
3760 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3761 			committed = 1;
3762 
3763 			trans = btrfs_join_transaction(root);
3764 			if (IS_ERR(trans))
3765 				return PTR_ERR(trans);
3766 			ret = btrfs_commit_transaction(trans, root);
3767 			if (ret)
3768 				return ret;
3769 			goto again;
3770 		}
3771 
3772 		trace_btrfs_space_reservation(root->fs_info,
3773 					      "space_info:enospc",
3774 					      data_sinfo->flags, bytes, 1);
3775 		return -ENOSPC;
3776 	}
3777 	data_sinfo->bytes_may_use += bytes;
3778 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3779 				      data_sinfo->flags, bytes, 1);
3780 	spin_unlock(&data_sinfo->lock);
3781 
3782 	return 0;
3783 }
3784 
3785 /*
3786  * Called if we need to clear a data reservation for this inode.
3787  */
3788 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3789 {
3790 	struct btrfs_root *root = BTRFS_I(inode)->root;
3791 	struct btrfs_space_info *data_sinfo;
3792 
3793 	/* make sure bytes are sectorsize aligned */
3794 	bytes = ALIGN(bytes, root->sectorsize);
3795 
3796 	data_sinfo = root->fs_info->data_sinfo;
3797 	spin_lock(&data_sinfo->lock);
3798 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3799 	data_sinfo->bytes_may_use -= bytes;
3800 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3801 				      data_sinfo->flags, bytes, 0);
3802 	spin_unlock(&data_sinfo->lock);
3803 }
3804 
3805 static void force_metadata_allocation(struct btrfs_fs_info *info)
3806 {
3807 	struct list_head *head = &info->space_info;
3808 	struct btrfs_space_info *found;
3809 
3810 	rcu_read_lock();
3811 	list_for_each_entry_rcu(found, head, list) {
3812 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3813 			found->force_alloc = CHUNK_ALLOC_FORCE;
3814 	}
3815 	rcu_read_unlock();
3816 }
3817 
3818 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3819 {
3820 	return (global->size << 1);
3821 }
3822 
3823 static int should_alloc_chunk(struct btrfs_root *root,
3824 			      struct btrfs_space_info *sinfo, int force)
3825 {
3826 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3827 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3828 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3829 	u64 thresh;
3830 
3831 	if (force == CHUNK_ALLOC_FORCE)
3832 		return 1;
3833 
3834 	/*
3835 	 * We need to take into account the global rsv because for all intents
3836 	 * and purposes it's used space.  Don't worry about locking the
3837 	 * global_rsv, it doesn't change except when the transaction commits.
3838 	 */
3839 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3840 		num_allocated += calc_global_rsv_need_space(global_rsv);
3841 
3842 	/*
3843 	 * in limited mode, we want to have some free space up to
3844 	 * about 1% of the FS size.
3845 	 */
3846 	if (force == CHUNK_ALLOC_LIMITED) {
3847 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3848 		thresh = max_t(u64, 64 * 1024 * 1024,
3849 			       div_factor_fine(thresh, 1));
3850 
3851 		if (num_bytes - num_allocated < thresh)
3852 			return 1;
3853 	}
3854 
3855 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3856 		return 0;
3857 	return 1;
3858 }
3859 
3860 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3861 {
3862 	u64 num_dev;
3863 
3864 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3865 		    BTRFS_BLOCK_GROUP_RAID0 |
3866 		    BTRFS_BLOCK_GROUP_RAID5 |
3867 		    BTRFS_BLOCK_GROUP_RAID6))
3868 		num_dev = root->fs_info->fs_devices->rw_devices;
3869 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3870 		num_dev = 2;
3871 	else
3872 		num_dev = 1;	/* DUP or single */
3873 
3874 	/* metadata for updaing devices and chunk tree */
3875 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3876 }
3877 
3878 static void check_system_chunk(struct btrfs_trans_handle *trans,
3879 			       struct btrfs_root *root, u64 type)
3880 {
3881 	struct btrfs_space_info *info;
3882 	u64 left;
3883 	u64 thresh;
3884 
3885 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3886 	spin_lock(&info->lock);
3887 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3888 		info->bytes_reserved - info->bytes_readonly;
3889 	spin_unlock(&info->lock);
3890 
3891 	thresh = get_system_chunk_thresh(root, type);
3892 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3893 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3894 			left, thresh, type);
3895 		dump_space_info(info, 0, 0);
3896 	}
3897 
3898 	if (left < thresh) {
3899 		u64 flags;
3900 
3901 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3902 		btrfs_alloc_chunk(trans, root, flags);
3903 	}
3904 }
3905 
3906 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3907 			  struct btrfs_root *extent_root, u64 flags, int force)
3908 {
3909 	struct btrfs_space_info *space_info;
3910 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3911 	int wait_for_alloc = 0;
3912 	int ret = 0;
3913 
3914 	/* Don't re-enter if we're already allocating a chunk */
3915 	if (trans->allocating_chunk)
3916 		return -ENOSPC;
3917 
3918 	space_info = __find_space_info(extent_root->fs_info, flags);
3919 	if (!space_info) {
3920 		ret = update_space_info(extent_root->fs_info, flags,
3921 					0, 0, &space_info);
3922 		BUG_ON(ret); /* -ENOMEM */
3923 	}
3924 	BUG_ON(!space_info); /* Logic error */
3925 
3926 again:
3927 	spin_lock(&space_info->lock);
3928 	if (force < space_info->force_alloc)
3929 		force = space_info->force_alloc;
3930 	if (space_info->full) {
3931 		if (should_alloc_chunk(extent_root, space_info, force))
3932 			ret = -ENOSPC;
3933 		else
3934 			ret = 0;
3935 		spin_unlock(&space_info->lock);
3936 		return ret;
3937 	}
3938 
3939 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3940 		spin_unlock(&space_info->lock);
3941 		return 0;
3942 	} else if (space_info->chunk_alloc) {
3943 		wait_for_alloc = 1;
3944 	} else {
3945 		space_info->chunk_alloc = 1;
3946 	}
3947 
3948 	spin_unlock(&space_info->lock);
3949 
3950 	mutex_lock(&fs_info->chunk_mutex);
3951 
3952 	/*
3953 	 * The chunk_mutex is held throughout the entirety of a chunk
3954 	 * allocation, so once we've acquired the chunk_mutex we know that the
3955 	 * other guy is done and we need to recheck and see if we should
3956 	 * allocate.
3957 	 */
3958 	if (wait_for_alloc) {
3959 		mutex_unlock(&fs_info->chunk_mutex);
3960 		wait_for_alloc = 0;
3961 		goto again;
3962 	}
3963 
3964 	trans->allocating_chunk = true;
3965 
3966 	/*
3967 	 * If we have mixed data/metadata chunks we want to make sure we keep
3968 	 * allocating mixed chunks instead of individual chunks.
3969 	 */
3970 	if (btrfs_mixed_space_info(space_info))
3971 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3972 
3973 	/*
3974 	 * if we're doing a data chunk, go ahead and make sure that
3975 	 * we keep a reasonable number of metadata chunks allocated in the
3976 	 * FS as well.
3977 	 */
3978 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3979 		fs_info->data_chunk_allocations++;
3980 		if (!(fs_info->data_chunk_allocations %
3981 		      fs_info->metadata_ratio))
3982 			force_metadata_allocation(fs_info);
3983 	}
3984 
3985 	/*
3986 	 * Check if we have enough space in SYSTEM chunk because we may need
3987 	 * to update devices.
3988 	 */
3989 	check_system_chunk(trans, extent_root, flags);
3990 
3991 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3992 	trans->allocating_chunk = false;
3993 
3994 	spin_lock(&space_info->lock);
3995 	if (ret < 0 && ret != -ENOSPC)
3996 		goto out;
3997 	if (ret)
3998 		space_info->full = 1;
3999 	else
4000 		ret = 1;
4001 
4002 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4003 out:
4004 	space_info->chunk_alloc = 0;
4005 	spin_unlock(&space_info->lock);
4006 	mutex_unlock(&fs_info->chunk_mutex);
4007 	return ret;
4008 }
4009 
4010 static int can_overcommit(struct btrfs_root *root,
4011 			  struct btrfs_space_info *space_info, u64 bytes,
4012 			  enum btrfs_reserve_flush_enum flush)
4013 {
4014 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4015 	u64 profile = btrfs_get_alloc_profile(root, 0);
4016 	u64 space_size;
4017 	u64 avail;
4018 	u64 used;
4019 
4020 	used = space_info->bytes_used + space_info->bytes_reserved +
4021 		space_info->bytes_pinned + space_info->bytes_readonly;
4022 
4023 	/*
4024 	 * We only want to allow over committing if we have lots of actual space
4025 	 * free, but if we don't have enough space to handle the global reserve
4026 	 * space then we could end up having a real enospc problem when trying
4027 	 * to allocate a chunk or some other such important allocation.
4028 	 */
4029 	spin_lock(&global_rsv->lock);
4030 	space_size = calc_global_rsv_need_space(global_rsv);
4031 	spin_unlock(&global_rsv->lock);
4032 	if (used + space_size >= space_info->total_bytes)
4033 		return 0;
4034 
4035 	used += space_info->bytes_may_use;
4036 
4037 	spin_lock(&root->fs_info->free_chunk_lock);
4038 	avail = root->fs_info->free_chunk_space;
4039 	spin_unlock(&root->fs_info->free_chunk_lock);
4040 
4041 	/*
4042 	 * If we have dup, raid1 or raid10 then only half of the free
4043 	 * space is actually useable.  For raid56, the space info used
4044 	 * doesn't include the parity drive, so we don't have to
4045 	 * change the math
4046 	 */
4047 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4048 		       BTRFS_BLOCK_GROUP_RAID1 |
4049 		       BTRFS_BLOCK_GROUP_RAID10))
4050 		avail >>= 1;
4051 
4052 	/*
4053 	 * If we aren't flushing all things, let us overcommit up to
4054 	 * 1/2th of the space. If we can flush, don't let us overcommit
4055 	 * too much, let it overcommit up to 1/8 of the space.
4056 	 */
4057 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4058 		avail >>= 3;
4059 	else
4060 		avail >>= 1;
4061 
4062 	if (used + bytes < space_info->total_bytes + avail)
4063 		return 1;
4064 	return 0;
4065 }
4066 
4067 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4068 					 unsigned long nr_pages, int nr_items)
4069 {
4070 	struct super_block *sb = root->fs_info->sb;
4071 
4072 	if (down_read_trylock(&sb->s_umount)) {
4073 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4074 		up_read(&sb->s_umount);
4075 	} else {
4076 		/*
4077 		 * We needn't worry the filesystem going from r/w to r/o though
4078 		 * we don't acquire ->s_umount mutex, because the filesystem
4079 		 * should guarantee the delalloc inodes list be empty after
4080 		 * the filesystem is readonly(all dirty pages are written to
4081 		 * the disk).
4082 		 */
4083 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4084 		if (!current->journal_info)
4085 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4086 	}
4087 }
4088 
4089 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4090 {
4091 	u64 bytes;
4092 	int nr;
4093 
4094 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4095 	nr = (int)div64_u64(to_reclaim, bytes);
4096 	if (!nr)
4097 		nr = 1;
4098 	return nr;
4099 }
4100 
4101 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4102 
4103 /*
4104  * shrink metadata reservation for delalloc
4105  */
4106 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4107 			    bool wait_ordered)
4108 {
4109 	struct btrfs_block_rsv *block_rsv;
4110 	struct btrfs_space_info *space_info;
4111 	struct btrfs_trans_handle *trans;
4112 	u64 delalloc_bytes;
4113 	u64 max_reclaim;
4114 	long time_left;
4115 	unsigned long nr_pages;
4116 	int loops;
4117 	int items;
4118 	enum btrfs_reserve_flush_enum flush;
4119 
4120 	/* Calc the number of the pages we need flush for space reservation */
4121 	items = calc_reclaim_items_nr(root, to_reclaim);
4122 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4123 
4124 	trans = (struct btrfs_trans_handle *)current->journal_info;
4125 	block_rsv = &root->fs_info->delalloc_block_rsv;
4126 	space_info = block_rsv->space_info;
4127 
4128 	delalloc_bytes = percpu_counter_sum_positive(
4129 						&root->fs_info->delalloc_bytes);
4130 	if (delalloc_bytes == 0) {
4131 		if (trans)
4132 			return;
4133 		if (wait_ordered)
4134 			btrfs_wait_ordered_roots(root->fs_info, items);
4135 		return;
4136 	}
4137 
4138 	loops = 0;
4139 	while (delalloc_bytes && loops < 3) {
4140 		max_reclaim = min(delalloc_bytes, to_reclaim);
4141 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4142 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4143 		/*
4144 		 * We need to wait for the async pages to actually start before
4145 		 * we do anything.
4146 		 */
4147 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4148 		if (!max_reclaim)
4149 			goto skip_async;
4150 
4151 		if (max_reclaim <= nr_pages)
4152 			max_reclaim = 0;
4153 		else
4154 			max_reclaim -= nr_pages;
4155 
4156 		wait_event(root->fs_info->async_submit_wait,
4157 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4158 			   (int)max_reclaim);
4159 skip_async:
4160 		if (!trans)
4161 			flush = BTRFS_RESERVE_FLUSH_ALL;
4162 		else
4163 			flush = BTRFS_RESERVE_NO_FLUSH;
4164 		spin_lock(&space_info->lock);
4165 		if (can_overcommit(root, space_info, orig, flush)) {
4166 			spin_unlock(&space_info->lock);
4167 			break;
4168 		}
4169 		spin_unlock(&space_info->lock);
4170 
4171 		loops++;
4172 		if (wait_ordered && !trans) {
4173 			btrfs_wait_ordered_roots(root->fs_info, items);
4174 		} else {
4175 			time_left = schedule_timeout_killable(1);
4176 			if (time_left)
4177 				break;
4178 		}
4179 		delalloc_bytes = percpu_counter_sum_positive(
4180 						&root->fs_info->delalloc_bytes);
4181 	}
4182 }
4183 
4184 /**
4185  * maybe_commit_transaction - possibly commit the transaction if its ok to
4186  * @root - the root we're allocating for
4187  * @bytes - the number of bytes we want to reserve
4188  * @force - force the commit
4189  *
4190  * This will check to make sure that committing the transaction will actually
4191  * get us somewhere and then commit the transaction if it does.  Otherwise it
4192  * will return -ENOSPC.
4193  */
4194 static int may_commit_transaction(struct btrfs_root *root,
4195 				  struct btrfs_space_info *space_info,
4196 				  u64 bytes, int force)
4197 {
4198 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4199 	struct btrfs_trans_handle *trans;
4200 
4201 	trans = (struct btrfs_trans_handle *)current->journal_info;
4202 	if (trans)
4203 		return -EAGAIN;
4204 
4205 	if (force)
4206 		goto commit;
4207 
4208 	/* See if there is enough pinned space to make this reservation */
4209 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4210 				   bytes) >= 0)
4211 		goto commit;
4212 
4213 	/*
4214 	 * See if there is some space in the delayed insertion reservation for
4215 	 * this reservation.
4216 	 */
4217 	if (space_info != delayed_rsv->space_info)
4218 		return -ENOSPC;
4219 
4220 	spin_lock(&delayed_rsv->lock);
4221 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4222 				   bytes - delayed_rsv->size) >= 0) {
4223 		spin_unlock(&delayed_rsv->lock);
4224 		return -ENOSPC;
4225 	}
4226 	spin_unlock(&delayed_rsv->lock);
4227 
4228 commit:
4229 	trans = btrfs_join_transaction(root);
4230 	if (IS_ERR(trans))
4231 		return -ENOSPC;
4232 
4233 	return btrfs_commit_transaction(trans, root);
4234 }
4235 
4236 enum flush_state {
4237 	FLUSH_DELAYED_ITEMS_NR	=	1,
4238 	FLUSH_DELAYED_ITEMS	=	2,
4239 	FLUSH_DELALLOC		=	3,
4240 	FLUSH_DELALLOC_WAIT	=	4,
4241 	ALLOC_CHUNK		=	5,
4242 	COMMIT_TRANS		=	6,
4243 };
4244 
4245 static int flush_space(struct btrfs_root *root,
4246 		       struct btrfs_space_info *space_info, u64 num_bytes,
4247 		       u64 orig_bytes, int state)
4248 {
4249 	struct btrfs_trans_handle *trans;
4250 	int nr;
4251 	int ret = 0;
4252 
4253 	switch (state) {
4254 	case FLUSH_DELAYED_ITEMS_NR:
4255 	case FLUSH_DELAYED_ITEMS:
4256 		if (state == FLUSH_DELAYED_ITEMS_NR)
4257 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4258 		else
4259 			nr = -1;
4260 
4261 		trans = btrfs_join_transaction(root);
4262 		if (IS_ERR(trans)) {
4263 			ret = PTR_ERR(trans);
4264 			break;
4265 		}
4266 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4267 		btrfs_end_transaction(trans, root);
4268 		break;
4269 	case FLUSH_DELALLOC:
4270 	case FLUSH_DELALLOC_WAIT:
4271 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4272 				state == FLUSH_DELALLOC_WAIT);
4273 		break;
4274 	case ALLOC_CHUNK:
4275 		trans = btrfs_join_transaction(root);
4276 		if (IS_ERR(trans)) {
4277 			ret = PTR_ERR(trans);
4278 			break;
4279 		}
4280 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4281 				     btrfs_get_alloc_profile(root, 0),
4282 				     CHUNK_ALLOC_NO_FORCE);
4283 		btrfs_end_transaction(trans, root);
4284 		if (ret == -ENOSPC)
4285 			ret = 0;
4286 		break;
4287 	case COMMIT_TRANS:
4288 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4289 		break;
4290 	default:
4291 		ret = -ENOSPC;
4292 		break;
4293 	}
4294 
4295 	return ret;
4296 }
4297 
4298 static inline u64
4299 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4300 				 struct btrfs_space_info *space_info)
4301 {
4302 	u64 used;
4303 	u64 expected;
4304 	u64 to_reclaim;
4305 
4306 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4307 				16 * 1024 * 1024);
4308 	spin_lock(&space_info->lock);
4309 	if (can_overcommit(root, space_info, to_reclaim,
4310 			   BTRFS_RESERVE_FLUSH_ALL)) {
4311 		to_reclaim = 0;
4312 		goto out;
4313 	}
4314 
4315 	used = space_info->bytes_used + space_info->bytes_reserved +
4316 	       space_info->bytes_pinned + space_info->bytes_readonly +
4317 	       space_info->bytes_may_use;
4318 	if (can_overcommit(root, space_info, 1024 * 1024,
4319 			   BTRFS_RESERVE_FLUSH_ALL))
4320 		expected = div_factor_fine(space_info->total_bytes, 95);
4321 	else
4322 		expected = div_factor_fine(space_info->total_bytes, 90);
4323 
4324 	if (used > expected)
4325 		to_reclaim = used - expected;
4326 	else
4327 		to_reclaim = 0;
4328 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4329 				     space_info->bytes_reserved);
4330 out:
4331 	spin_unlock(&space_info->lock);
4332 
4333 	return to_reclaim;
4334 }
4335 
4336 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4337 					struct btrfs_fs_info *fs_info, u64 used)
4338 {
4339 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4340 		!btrfs_fs_closing(fs_info) &&
4341 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4342 }
4343 
4344 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4345 				       struct btrfs_fs_info *fs_info,
4346 				       int flush_state)
4347 {
4348 	u64 used;
4349 
4350 	spin_lock(&space_info->lock);
4351 	/*
4352 	 * We run out of space and have not got any free space via flush_space,
4353 	 * so don't bother doing async reclaim.
4354 	 */
4355 	if (flush_state > COMMIT_TRANS && space_info->full) {
4356 		spin_unlock(&space_info->lock);
4357 		return 0;
4358 	}
4359 
4360 	used = space_info->bytes_used + space_info->bytes_reserved +
4361 	       space_info->bytes_pinned + space_info->bytes_readonly +
4362 	       space_info->bytes_may_use;
4363 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4364 		spin_unlock(&space_info->lock);
4365 		return 1;
4366 	}
4367 	spin_unlock(&space_info->lock);
4368 
4369 	return 0;
4370 }
4371 
4372 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4373 {
4374 	struct btrfs_fs_info *fs_info;
4375 	struct btrfs_space_info *space_info;
4376 	u64 to_reclaim;
4377 	int flush_state;
4378 
4379 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4380 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4381 
4382 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4383 						      space_info);
4384 	if (!to_reclaim)
4385 		return;
4386 
4387 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4388 	do {
4389 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4390 			    to_reclaim, flush_state);
4391 		flush_state++;
4392 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4393 						 flush_state))
4394 			return;
4395 	} while (flush_state <= COMMIT_TRANS);
4396 
4397 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4398 		queue_work(system_unbound_wq, work);
4399 }
4400 
4401 void btrfs_init_async_reclaim_work(struct work_struct *work)
4402 {
4403 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4404 }
4405 
4406 /**
4407  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4408  * @root - the root we're allocating for
4409  * @block_rsv - the block_rsv we're allocating for
4410  * @orig_bytes - the number of bytes we want
4411  * @flush - whether or not we can flush to make our reservation
4412  *
4413  * This will reserve orgi_bytes number of bytes from the space info associated
4414  * with the block_rsv.  If there is not enough space it will make an attempt to
4415  * flush out space to make room.  It will do this by flushing delalloc if
4416  * possible or committing the transaction.  If flush is 0 then no attempts to
4417  * regain reservations will be made and this will fail if there is not enough
4418  * space already.
4419  */
4420 static int reserve_metadata_bytes(struct btrfs_root *root,
4421 				  struct btrfs_block_rsv *block_rsv,
4422 				  u64 orig_bytes,
4423 				  enum btrfs_reserve_flush_enum flush)
4424 {
4425 	struct btrfs_space_info *space_info = block_rsv->space_info;
4426 	u64 used;
4427 	u64 num_bytes = orig_bytes;
4428 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4429 	int ret = 0;
4430 	bool flushing = false;
4431 
4432 again:
4433 	ret = 0;
4434 	spin_lock(&space_info->lock);
4435 	/*
4436 	 * We only want to wait if somebody other than us is flushing and we
4437 	 * are actually allowed to flush all things.
4438 	 */
4439 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4440 	       space_info->flush) {
4441 		spin_unlock(&space_info->lock);
4442 		/*
4443 		 * If we have a trans handle we can't wait because the flusher
4444 		 * may have to commit the transaction, which would mean we would
4445 		 * deadlock since we are waiting for the flusher to finish, but
4446 		 * hold the current transaction open.
4447 		 */
4448 		if (current->journal_info)
4449 			return -EAGAIN;
4450 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4451 		/* Must have been killed, return */
4452 		if (ret)
4453 			return -EINTR;
4454 
4455 		spin_lock(&space_info->lock);
4456 	}
4457 
4458 	ret = -ENOSPC;
4459 	used = space_info->bytes_used + space_info->bytes_reserved +
4460 		space_info->bytes_pinned + space_info->bytes_readonly +
4461 		space_info->bytes_may_use;
4462 
4463 	/*
4464 	 * The idea here is that we've not already over-reserved the block group
4465 	 * then we can go ahead and save our reservation first and then start
4466 	 * flushing if we need to.  Otherwise if we've already overcommitted
4467 	 * lets start flushing stuff first and then come back and try to make
4468 	 * our reservation.
4469 	 */
4470 	if (used <= space_info->total_bytes) {
4471 		if (used + orig_bytes <= space_info->total_bytes) {
4472 			space_info->bytes_may_use += orig_bytes;
4473 			trace_btrfs_space_reservation(root->fs_info,
4474 				"space_info", space_info->flags, orig_bytes, 1);
4475 			ret = 0;
4476 		} else {
4477 			/*
4478 			 * Ok set num_bytes to orig_bytes since we aren't
4479 			 * overocmmitted, this way we only try and reclaim what
4480 			 * we need.
4481 			 */
4482 			num_bytes = orig_bytes;
4483 		}
4484 	} else {
4485 		/*
4486 		 * Ok we're over committed, set num_bytes to the overcommitted
4487 		 * amount plus the amount of bytes that we need for this
4488 		 * reservation.
4489 		 */
4490 		num_bytes = used - space_info->total_bytes +
4491 			(orig_bytes * 2);
4492 	}
4493 
4494 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4495 		space_info->bytes_may_use += orig_bytes;
4496 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4497 					      space_info->flags, orig_bytes,
4498 					      1);
4499 		ret = 0;
4500 	}
4501 
4502 	/*
4503 	 * Couldn't make our reservation, save our place so while we're trying
4504 	 * to reclaim space we can actually use it instead of somebody else
4505 	 * stealing it from us.
4506 	 *
4507 	 * We make the other tasks wait for the flush only when we can flush
4508 	 * all things.
4509 	 */
4510 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4511 		flushing = true;
4512 		space_info->flush = 1;
4513 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4514 		used += orig_bytes;
4515 		/*
4516 		 * We will do the space reservation dance during log replay,
4517 		 * which means we won't have fs_info->fs_root set, so don't do
4518 		 * the async reclaim as we will panic.
4519 		 */
4520 		if (!root->fs_info->log_root_recovering &&
4521 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4522 		    !work_busy(&root->fs_info->async_reclaim_work))
4523 			queue_work(system_unbound_wq,
4524 				   &root->fs_info->async_reclaim_work);
4525 	}
4526 	spin_unlock(&space_info->lock);
4527 
4528 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4529 		goto out;
4530 
4531 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4532 			  flush_state);
4533 	flush_state++;
4534 
4535 	/*
4536 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4537 	 * would happen. So skip delalloc flush.
4538 	 */
4539 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4540 	    (flush_state == FLUSH_DELALLOC ||
4541 	     flush_state == FLUSH_DELALLOC_WAIT))
4542 		flush_state = ALLOC_CHUNK;
4543 
4544 	if (!ret)
4545 		goto again;
4546 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4547 		 flush_state < COMMIT_TRANS)
4548 		goto again;
4549 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4550 		 flush_state <= COMMIT_TRANS)
4551 		goto again;
4552 
4553 out:
4554 	if (ret == -ENOSPC &&
4555 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4556 		struct btrfs_block_rsv *global_rsv =
4557 			&root->fs_info->global_block_rsv;
4558 
4559 		if (block_rsv != global_rsv &&
4560 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4561 			ret = 0;
4562 	}
4563 	if (ret == -ENOSPC)
4564 		trace_btrfs_space_reservation(root->fs_info,
4565 					      "space_info:enospc",
4566 					      space_info->flags, orig_bytes, 1);
4567 	if (flushing) {
4568 		spin_lock(&space_info->lock);
4569 		space_info->flush = 0;
4570 		wake_up_all(&space_info->wait);
4571 		spin_unlock(&space_info->lock);
4572 	}
4573 	return ret;
4574 }
4575 
4576 static struct btrfs_block_rsv *get_block_rsv(
4577 					const struct btrfs_trans_handle *trans,
4578 					const struct btrfs_root *root)
4579 {
4580 	struct btrfs_block_rsv *block_rsv = NULL;
4581 
4582 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4583 		block_rsv = trans->block_rsv;
4584 
4585 	if (root == root->fs_info->csum_root && trans->adding_csums)
4586 		block_rsv = trans->block_rsv;
4587 
4588 	if (root == root->fs_info->uuid_root)
4589 		block_rsv = trans->block_rsv;
4590 
4591 	if (!block_rsv)
4592 		block_rsv = root->block_rsv;
4593 
4594 	if (!block_rsv)
4595 		block_rsv = &root->fs_info->empty_block_rsv;
4596 
4597 	return block_rsv;
4598 }
4599 
4600 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4601 			       u64 num_bytes)
4602 {
4603 	int ret = -ENOSPC;
4604 	spin_lock(&block_rsv->lock);
4605 	if (block_rsv->reserved >= num_bytes) {
4606 		block_rsv->reserved -= num_bytes;
4607 		if (block_rsv->reserved < block_rsv->size)
4608 			block_rsv->full = 0;
4609 		ret = 0;
4610 	}
4611 	spin_unlock(&block_rsv->lock);
4612 	return ret;
4613 }
4614 
4615 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4616 				u64 num_bytes, int update_size)
4617 {
4618 	spin_lock(&block_rsv->lock);
4619 	block_rsv->reserved += num_bytes;
4620 	if (update_size)
4621 		block_rsv->size += num_bytes;
4622 	else if (block_rsv->reserved >= block_rsv->size)
4623 		block_rsv->full = 1;
4624 	spin_unlock(&block_rsv->lock);
4625 }
4626 
4627 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4628 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4629 			     int min_factor)
4630 {
4631 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4632 	u64 min_bytes;
4633 
4634 	if (global_rsv->space_info != dest->space_info)
4635 		return -ENOSPC;
4636 
4637 	spin_lock(&global_rsv->lock);
4638 	min_bytes = div_factor(global_rsv->size, min_factor);
4639 	if (global_rsv->reserved < min_bytes + num_bytes) {
4640 		spin_unlock(&global_rsv->lock);
4641 		return -ENOSPC;
4642 	}
4643 	global_rsv->reserved -= num_bytes;
4644 	if (global_rsv->reserved < global_rsv->size)
4645 		global_rsv->full = 0;
4646 	spin_unlock(&global_rsv->lock);
4647 
4648 	block_rsv_add_bytes(dest, num_bytes, 1);
4649 	return 0;
4650 }
4651 
4652 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4653 				    struct btrfs_block_rsv *block_rsv,
4654 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4655 {
4656 	struct btrfs_space_info *space_info = block_rsv->space_info;
4657 
4658 	spin_lock(&block_rsv->lock);
4659 	if (num_bytes == (u64)-1)
4660 		num_bytes = block_rsv->size;
4661 	block_rsv->size -= num_bytes;
4662 	if (block_rsv->reserved >= block_rsv->size) {
4663 		num_bytes = block_rsv->reserved - block_rsv->size;
4664 		block_rsv->reserved = block_rsv->size;
4665 		block_rsv->full = 1;
4666 	} else {
4667 		num_bytes = 0;
4668 	}
4669 	spin_unlock(&block_rsv->lock);
4670 
4671 	if (num_bytes > 0) {
4672 		if (dest) {
4673 			spin_lock(&dest->lock);
4674 			if (!dest->full) {
4675 				u64 bytes_to_add;
4676 
4677 				bytes_to_add = dest->size - dest->reserved;
4678 				bytes_to_add = min(num_bytes, bytes_to_add);
4679 				dest->reserved += bytes_to_add;
4680 				if (dest->reserved >= dest->size)
4681 					dest->full = 1;
4682 				num_bytes -= bytes_to_add;
4683 			}
4684 			spin_unlock(&dest->lock);
4685 		}
4686 		if (num_bytes) {
4687 			spin_lock(&space_info->lock);
4688 			space_info->bytes_may_use -= num_bytes;
4689 			trace_btrfs_space_reservation(fs_info, "space_info",
4690 					space_info->flags, num_bytes, 0);
4691 			spin_unlock(&space_info->lock);
4692 		}
4693 	}
4694 }
4695 
4696 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4697 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4698 {
4699 	int ret;
4700 
4701 	ret = block_rsv_use_bytes(src, num_bytes);
4702 	if (ret)
4703 		return ret;
4704 
4705 	block_rsv_add_bytes(dst, num_bytes, 1);
4706 	return 0;
4707 }
4708 
4709 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4710 {
4711 	memset(rsv, 0, sizeof(*rsv));
4712 	spin_lock_init(&rsv->lock);
4713 	rsv->type = type;
4714 }
4715 
4716 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4717 					      unsigned short type)
4718 {
4719 	struct btrfs_block_rsv *block_rsv;
4720 	struct btrfs_fs_info *fs_info = root->fs_info;
4721 
4722 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4723 	if (!block_rsv)
4724 		return NULL;
4725 
4726 	btrfs_init_block_rsv(block_rsv, type);
4727 	block_rsv->space_info = __find_space_info(fs_info,
4728 						  BTRFS_BLOCK_GROUP_METADATA);
4729 	return block_rsv;
4730 }
4731 
4732 void btrfs_free_block_rsv(struct btrfs_root *root,
4733 			  struct btrfs_block_rsv *rsv)
4734 {
4735 	if (!rsv)
4736 		return;
4737 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4738 	kfree(rsv);
4739 }
4740 
4741 int btrfs_block_rsv_add(struct btrfs_root *root,
4742 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4743 			enum btrfs_reserve_flush_enum flush)
4744 {
4745 	int ret;
4746 
4747 	if (num_bytes == 0)
4748 		return 0;
4749 
4750 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4751 	if (!ret) {
4752 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4753 		return 0;
4754 	}
4755 
4756 	return ret;
4757 }
4758 
4759 int btrfs_block_rsv_check(struct btrfs_root *root,
4760 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4761 {
4762 	u64 num_bytes = 0;
4763 	int ret = -ENOSPC;
4764 
4765 	if (!block_rsv)
4766 		return 0;
4767 
4768 	spin_lock(&block_rsv->lock);
4769 	num_bytes = div_factor(block_rsv->size, min_factor);
4770 	if (block_rsv->reserved >= num_bytes)
4771 		ret = 0;
4772 	spin_unlock(&block_rsv->lock);
4773 
4774 	return ret;
4775 }
4776 
4777 int btrfs_block_rsv_refill(struct btrfs_root *root,
4778 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4779 			   enum btrfs_reserve_flush_enum flush)
4780 {
4781 	u64 num_bytes = 0;
4782 	int ret = -ENOSPC;
4783 
4784 	if (!block_rsv)
4785 		return 0;
4786 
4787 	spin_lock(&block_rsv->lock);
4788 	num_bytes = min_reserved;
4789 	if (block_rsv->reserved >= num_bytes)
4790 		ret = 0;
4791 	else
4792 		num_bytes -= block_rsv->reserved;
4793 	spin_unlock(&block_rsv->lock);
4794 
4795 	if (!ret)
4796 		return 0;
4797 
4798 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4799 	if (!ret) {
4800 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4801 		return 0;
4802 	}
4803 
4804 	return ret;
4805 }
4806 
4807 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4808 			    struct btrfs_block_rsv *dst_rsv,
4809 			    u64 num_bytes)
4810 {
4811 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4812 }
4813 
4814 void btrfs_block_rsv_release(struct btrfs_root *root,
4815 			     struct btrfs_block_rsv *block_rsv,
4816 			     u64 num_bytes)
4817 {
4818 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4819 	if (global_rsv == block_rsv ||
4820 	    block_rsv->space_info != global_rsv->space_info)
4821 		global_rsv = NULL;
4822 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4823 				num_bytes);
4824 }
4825 
4826 /*
4827  * helper to calculate size of global block reservation.
4828  * the desired value is sum of space used by extent tree,
4829  * checksum tree and root tree
4830  */
4831 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4832 {
4833 	struct btrfs_space_info *sinfo;
4834 	u64 num_bytes;
4835 	u64 meta_used;
4836 	u64 data_used;
4837 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4838 
4839 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4840 	spin_lock(&sinfo->lock);
4841 	data_used = sinfo->bytes_used;
4842 	spin_unlock(&sinfo->lock);
4843 
4844 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4845 	spin_lock(&sinfo->lock);
4846 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4847 		data_used = 0;
4848 	meta_used = sinfo->bytes_used;
4849 	spin_unlock(&sinfo->lock);
4850 
4851 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4852 		    csum_size * 2;
4853 	num_bytes += div64_u64(data_used + meta_used, 50);
4854 
4855 	if (num_bytes * 3 > meta_used)
4856 		num_bytes = div64_u64(meta_used, 3);
4857 
4858 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4859 }
4860 
4861 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4862 {
4863 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4864 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4865 	u64 num_bytes;
4866 
4867 	num_bytes = calc_global_metadata_size(fs_info);
4868 
4869 	spin_lock(&sinfo->lock);
4870 	spin_lock(&block_rsv->lock);
4871 
4872 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4873 
4874 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4875 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4876 		    sinfo->bytes_may_use;
4877 
4878 	if (sinfo->total_bytes > num_bytes) {
4879 		num_bytes = sinfo->total_bytes - num_bytes;
4880 		block_rsv->reserved += num_bytes;
4881 		sinfo->bytes_may_use += num_bytes;
4882 		trace_btrfs_space_reservation(fs_info, "space_info",
4883 				      sinfo->flags, num_bytes, 1);
4884 	}
4885 
4886 	if (block_rsv->reserved >= block_rsv->size) {
4887 		num_bytes = block_rsv->reserved - block_rsv->size;
4888 		sinfo->bytes_may_use -= num_bytes;
4889 		trace_btrfs_space_reservation(fs_info, "space_info",
4890 				      sinfo->flags, num_bytes, 0);
4891 		block_rsv->reserved = block_rsv->size;
4892 		block_rsv->full = 1;
4893 	}
4894 
4895 	spin_unlock(&block_rsv->lock);
4896 	spin_unlock(&sinfo->lock);
4897 }
4898 
4899 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4900 {
4901 	struct btrfs_space_info *space_info;
4902 
4903 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4904 	fs_info->chunk_block_rsv.space_info = space_info;
4905 
4906 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4907 	fs_info->global_block_rsv.space_info = space_info;
4908 	fs_info->delalloc_block_rsv.space_info = space_info;
4909 	fs_info->trans_block_rsv.space_info = space_info;
4910 	fs_info->empty_block_rsv.space_info = space_info;
4911 	fs_info->delayed_block_rsv.space_info = space_info;
4912 
4913 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4914 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4915 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4916 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4917 	if (fs_info->quota_root)
4918 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4919 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4920 
4921 	update_global_block_rsv(fs_info);
4922 }
4923 
4924 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4925 {
4926 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4927 				(u64)-1);
4928 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4929 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4930 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4931 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4932 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4933 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4934 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4935 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4936 }
4937 
4938 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4939 				  struct btrfs_root *root)
4940 {
4941 	if (!trans->block_rsv)
4942 		return;
4943 
4944 	if (!trans->bytes_reserved)
4945 		return;
4946 
4947 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4948 				      trans->transid, trans->bytes_reserved, 0);
4949 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4950 	trans->bytes_reserved = 0;
4951 }
4952 
4953 /* Can only return 0 or -ENOSPC */
4954 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4955 				  struct inode *inode)
4956 {
4957 	struct btrfs_root *root = BTRFS_I(inode)->root;
4958 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4959 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4960 
4961 	/*
4962 	 * We need to hold space in order to delete our orphan item once we've
4963 	 * added it, so this takes the reservation so we can release it later
4964 	 * when we are truly done with the orphan item.
4965 	 */
4966 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4967 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4968 				      btrfs_ino(inode), num_bytes, 1);
4969 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4970 }
4971 
4972 void btrfs_orphan_release_metadata(struct inode *inode)
4973 {
4974 	struct btrfs_root *root = BTRFS_I(inode)->root;
4975 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4976 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4977 				      btrfs_ino(inode), num_bytes, 0);
4978 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4979 }
4980 
4981 /*
4982  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4983  * root: the root of the parent directory
4984  * rsv: block reservation
4985  * items: the number of items that we need do reservation
4986  * qgroup_reserved: used to return the reserved size in qgroup
4987  *
4988  * This function is used to reserve the space for snapshot/subvolume
4989  * creation and deletion. Those operations are different with the
4990  * common file/directory operations, they change two fs/file trees
4991  * and root tree, the number of items that the qgroup reserves is
4992  * different with the free space reservation. So we can not use
4993  * the space reseravtion mechanism in start_transaction().
4994  */
4995 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4996 				     struct btrfs_block_rsv *rsv,
4997 				     int items,
4998 				     u64 *qgroup_reserved,
4999 				     bool use_global_rsv)
5000 {
5001 	u64 num_bytes;
5002 	int ret;
5003 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5004 
5005 	if (root->fs_info->quota_enabled) {
5006 		/* One for parent inode, two for dir entries */
5007 		num_bytes = 3 * root->nodesize;
5008 		ret = btrfs_qgroup_reserve(root, num_bytes);
5009 		if (ret)
5010 			return ret;
5011 	} else {
5012 		num_bytes = 0;
5013 	}
5014 
5015 	*qgroup_reserved = num_bytes;
5016 
5017 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5018 	rsv->space_info = __find_space_info(root->fs_info,
5019 					    BTRFS_BLOCK_GROUP_METADATA);
5020 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5021 				  BTRFS_RESERVE_FLUSH_ALL);
5022 
5023 	if (ret == -ENOSPC && use_global_rsv)
5024 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5025 
5026 	if (ret) {
5027 		if (*qgroup_reserved)
5028 			btrfs_qgroup_free(root, *qgroup_reserved);
5029 	}
5030 
5031 	return ret;
5032 }
5033 
5034 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5035 				      struct btrfs_block_rsv *rsv,
5036 				      u64 qgroup_reserved)
5037 {
5038 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5039 	if (qgroup_reserved)
5040 		btrfs_qgroup_free(root, qgroup_reserved);
5041 }
5042 
5043 /**
5044  * drop_outstanding_extent - drop an outstanding extent
5045  * @inode: the inode we're dropping the extent for
5046  *
5047  * This is called when we are freeing up an outstanding extent, either called
5048  * after an error or after an extent is written.  This will return the number of
5049  * reserved extents that need to be freed.  This must be called with
5050  * BTRFS_I(inode)->lock held.
5051  */
5052 static unsigned drop_outstanding_extent(struct inode *inode)
5053 {
5054 	unsigned drop_inode_space = 0;
5055 	unsigned dropped_extents = 0;
5056 
5057 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5058 	BTRFS_I(inode)->outstanding_extents--;
5059 
5060 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5061 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5062 			       &BTRFS_I(inode)->runtime_flags))
5063 		drop_inode_space = 1;
5064 
5065 	/*
5066 	 * If we have more or the same amount of outsanding extents than we have
5067 	 * reserved then we need to leave the reserved extents count alone.
5068 	 */
5069 	if (BTRFS_I(inode)->outstanding_extents >=
5070 	    BTRFS_I(inode)->reserved_extents)
5071 		return drop_inode_space;
5072 
5073 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5074 		BTRFS_I(inode)->outstanding_extents;
5075 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5076 	return dropped_extents + drop_inode_space;
5077 }
5078 
5079 /**
5080  * calc_csum_metadata_size - return the amount of metada space that must be
5081  *	reserved/free'd for the given bytes.
5082  * @inode: the inode we're manipulating
5083  * @num_bytes: the number of bytes in question
5084  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5085  *
5086  * This adjusts the number of csum_bytes in the inode and then returns the
5087  * correct amount of metadata that must either be reserved or freed.  We
5088  * calculate how many checksums we can fit into one leaf and then divide the
5089  * number of bytes that will need to be checksumed by this value to figure out
5090  * how many checksums will be required.  If we are adding bytes then the number
5091  * may go up and we will return the number of additional bytes that must be
5092  * reserved.  If it is going down we will return the number of bytes that must
5093  * be freed.
5094  *
5095  * This must be called with BTRFS_I(inode)->lock held.
5096  */
5097 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5098 				   int reserve)
5099 {
5100 	struct btrfs_root *root = BTRFS_I(inode)->root;
5101 	u64 csum_size;
5102 	int num_csums_per_leaf;
5103 	int num_csums;
5104 	int old_csums;
5105 
5106 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5107 	    BTRFS_I(inode)->csum_bytes == 0)
5108 		return 0;
5109 
5110 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5111 	if (reserve)
5112 		BTRFS_I(inode)->csum_bytes += num_bytes;
5113 	else
5114 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5115 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5116 	num_csums_per_leaf = (int)div64_u64(csum_size,
5117 					    sizeof(struct btrfs_csum_item) +
5118 					    sizeof(struct btrfs_disk_key));
5119 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5120 	num_csums = num_csums + num_csums_per_leaf - 1;
5121 	num_csums = num_csums / num_csums_per_leaf;
5122 
5123 	old_csums = old_csums + num_csums_per_leaf - 1;
5124 	old_csums = old_csums / num_csums_per_leaf;
5125 
5126 	/* No change, no need to reserve more */
5127 	if (old_csums == num_csums)
5128 		return 0;
5129 
5130 	if (reserve)
5131 		return btrfs_calc_trans_metadata_size(root,
5132 						      num_csums - old_csums);
5133 
5134 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5135 }
5136 
5137 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5138 {
5139 	struct btrfs_root *root = BTRFS_I(inode)->root;
5140 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5141 	u64 to_reserve = 0;
5142 	u64 csum_bytes;
5143 	unsigned nr_extents = 0;
5144 	int extra_reserve = 0;
5145 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5146 	int ret = 0;
5147 	bool delalloc_lock = true;
5148 	u64 to_free = 0;
5149 	unsigned dropped;
5150 
5151 	/* If we are a free space inode we need to not flush since we will be in
5152 	 * the middle of a transaction commit.  We also don't need the delalloc
5153 	 * mutex since we won't race with anybody.  We need this mostly to make
5154 	 * lockdep shut its filthy mouth.
5155 	 */
5156 	if (btrfs_is_free_space_inode(inode)) {
5157 		flush = BTRFS_RESERVE_NO_FLUSH;
5158 		delalloc_lock = false;
5159 	}
5160 
5161 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5162 	    btrfs_transaction_in_commit(root->fs_info))
5163 		schedule_timeout(1);
5164 
5165 	if (delalloc_lock)
5166 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5167 
5168 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5169 
5170 	spin_lock(&BTRFS_I(inode)->lock);
5171 	BTRFS_I(inode)->outstanding_extents++;
5172 
5173 	if (BTRFS_I(inode)->outstanding_extents >
5174 	    BTRFS_I(inode)->reserved_extents)
5175 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5176 			BTRFS_I(inode)->reserved_extents;
5177 
5178 	/*
5179 	 * Add an item to reserve for updating the inode when we complete the
5180 	 * delalloc io.
5181 	 */
5182 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5183 		      &BTRFS_I(inode)->runtime_flags)) {
5184 		nr_extents++;
5185 		extra_reserve = 1;
5186 	}
5187 
5188 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5189 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5190 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5191 	spin_unlock(&BTRFS_I(inode)->lock);
5192 
5193 	if (root->fs_info->quota_enabled) {
5194 		ret = btrfs_qgroup_reserve(root, num_bytes +
5195 					   nr_extents * root->nodesize);
5196 		if (ret)
5197 			goto out_fail;
5198 	}
5199 
5200 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5201 	if (unlikely(ret)) {
5202 		if (root->fs_info->quota_enabled)
5203 			btrfs_qgroup_free(root, num_bytes +
5204 						nr_extents * root->nodesize);
5205 		goto out_fail;
5206 	}
5207 
5208 	spin_lock(&BTRFS_I(inode)->lock);
5209 	if (extra_reserve) {
5210 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5211 			&BTRFS_I(inode)->runtime_flags);
5212 		nr_extents--;
5213 	}
5214 	BTRFS_I(inode)->reserved_extents += nr_extents;
5215 	spin_unlock(&BTRFS_I(inode)->lock);
5216 
5217 	if (delalloc_lock)
5218 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5219 
5220 	if (to_reserve)
5221 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5222 					      btrfs_ino(inode), to_reserve, 1);
5223 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5224 
5225 	return 0;
5226 
5227 out_fail:
5228 	spin_lock(&BTRFS_I(inode)->lock);
5229 	dropped = drop_outstanding_extent(inode);
5230 	/*
5231 	 * If the inodes csum_bytes is the same as the original
5232 	 * csum_bytes then we know we haven't raced with any free()ers
5233 	 * so we can just reduce our inodes csum bytes and carry on.
5234 	 */
5235 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5236 		calc_csum_metadata_size(inode, num_bytes, 0);
5237 	} else {
5238 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5239 		u64 bytes;
5240 
5241 		/*
5242 		 * This is tricky, but first we need to figure out how much we
5243 		 * free'd from any free-ers that occured during this
5244 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5245 		 * before we dropped our lock, and then call the free for the
5246 		 * number of bytes that were freed while we were trying our
5247 		 * reservation.
5248 		 */
5249 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5250 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5251 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5252 
5253 
5254 		/*
5255 		 * Now we need to see how much we would have freed had we not
5256 		 * been making this reservation and our ->csum_bytes were not
5257 		 * artificially inflated.
5258 		 */
5259 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5260 		bytes = csum_bytes - orig_csum_bytes;
5261 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5262 
5263 		/*
5264 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5265 		 * more than to_free then we would have free'd more space had we
5266 		 * not had an artificially high ->csum_bytes, so we need to free
5267 		 * the remainder.  If bytes is the same or less then we don't
5268 		 * need to do anything, the other free-ers did the correct
5269 		 * thing.
5270 		 */
5271 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5272 		if (bytes > to_free)
5273 			to_free = bytes - to_free;
5274 		else
5275 			to_free = 0;
5276 	}
5277 	spin_unlock(&BTRFS_I(inode)->lock);
5278 	if (dropped)
5279 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5280 
5281 	if (to_free) {
5282 		btrfs_block_rsv_release(root, block_rsv, to_free);
5283 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5284 					      btrfs_ino(inode), to_free, 0);
5285 	}
5286 	if (delalloc_lock)
5287 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5288 	return ret;
5289 }
5290 
5291 /**
5292  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5293  * @inode: the inode to release the reservation for
5294  * @num_bytes: the number of bytes we're releasing
5295  *
5296  * This will release the metadata reservation for an inode.  This can be called
5297  * once we complete IO for a given set of bytes to release their metadata
5298  * reservations.
5299  */
5300 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5301 {
5302 	struct btrfs_root *root = BTRFS_I(inode)->root;
5303 	u64 to_free = 0;
5304 	unsigned dropped;
5305 
5306 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5307 	spin_lock(&BTRFS_I(inode)->lock);
5308 	dropped = drop_outstanding_extent(inode);
5309 
5310 	if (num_bytes)
5311 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5312 	spin_unlock(&BTRFS_I(inode)->lock);
5313 	if (dropped > 0)
5314 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5315 
5316 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5317 				      btrfs_ino(inode), to_free, 0);
5318 	if (root->fs_info->quota_enabled) {
5319 		btrfs_qgroup_free(root, num_bytes +
5320 					dropped * root->nodesize);
5321 	}
5322 
5323 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5324 				to_free);
5325 }
5326 
5327 /**
5328  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5329  * @inode: inode we're writing to
5330  * @num_bytes: the number of bytes we want to allocate
5331  *
5332  * This will do the following things
5333  *
5334  * o reserve space in the data space info for num_bytes
5335  * o reserve space in the metadata space info based on number of outstanding
5336  *   extents and how much csums will be needed
5337  * o add to the inodes ->delalloc_bytes
5338  * o add it to the fs_info's delalloc inodes list.
5339  *
5340  * This will return 0 for success and -ENOSPC if there is no space left.
5341  */
5342 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5343 {
5344 	int ret;
5345 
5346 	ret = btrfs_check_data_free_space(inode, num_bytes);
5347 	if (ret)
5348 		return ret;
5349 
5350 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5351 	if (ret) {
5352 		btrfs_free_reserved_data_space(inode, num_bytes);
5353 		return ret;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 /**
5360  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5361  * @inode: inode we're releasing space for
5362  * @num_bytes: the number of bytes we want to free up
5363  *
5364  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5365  * called in the case that we don't need the metadata AND data reservations
5366  * anymore.  So if there is an error or we insert an inline extent.
5367  *
5368  * This function will release the metadata space that was not used and will
5369  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5370  * list if there are no delalloc bytes left.
5371  */
5372 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5373 {
5374 	btrfs_delalloc_release_metadata(inode, num_bytes);
5375 	btrfs_free_reserved_data_space(inode, num_bytes);
5376 }
5377 
5378 static int update_block_group(struct btrfs_root *root,
5379 			      u64 bytenr, u64 num_bytes, int alloc)
5380 {
5381 	struct btrfs_block_group_cache *cache = NULL;
5382 	struct btrfs_fs_info *info = root->fs_info;
5383 	u64 total = num_bytes;
5384 	u64 old_val;
5385 	u64 byte_in_group;
5386 	int factor;
5387 
5388 	/* block accounting for super block */
5389 	spin_lock(&info->delalloc_root_lock);
5390 	old_val = btrfs_super_bytes_used(info->super_copy);
5391 	if (alloc)
5392 		old_val += num_bytes;
5393 	else
5394 		old_val -= num_bytes;
5395 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5396 	spin_unlock(&info->delalloc_root_lock);
5397 
5398 	while (total) {
5399 		cache = btrfs_lookup_block_group(info, bytenr);
5400 		if (!cache)
5401 			return -ENOENT;
5402 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5403 				    BTRFS_BLOCK_GROUP_RAID1 |
5404 				    BTRFS_BLOCK_GROUP_RAID10))
5405 			factor = 2;
5406 		else
5407 			factor = 1;
5408 		/*
5409 		 * If this block group has free space cache written out, we
5410 		 * need to make sure to load it if we are removing space.  This
5411 		 * is because we need the unpinning stage to actually add the
5412 		 * space back to the block group, otherwise we will leak space.
5413 		 */
5414 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5415 			cache_block_group(cache, 1);
5416 
5417 		byte_in_group = bytenr - cache->key.objectid;
5418 		WARN_ON(byte_in_group > cache->key.offset);
5419 
5420 		spin_lock(&cache->space_info->lock);
5421 		spin_lock(&cache->lock);
5422 
5423 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5424 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5425 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5426 
5427 		cache->dirty = 1;
5428 		old_val = btrfs_block_group_used(&cache->item);
5429 		num_bytes = min(total, cache->key.offset - byte_in_group);
5430 		if (alloc) {
5431 			old_val += num_bytes;
5432 			btrfs_set_block_group_used(&cache->item, old_val);
5433 			cache->reserved -= num_bytes;
5434 			cache->space_info->bytes_reserved -= num_bytes;
5435 			cache->space_info->bytes_used += num_bytes;
5436 			cache->space_info->disk_used += num_bytes * factor;
5437 			spin_unlock(&cache->lock);
5438 			spin_unlock(&cache->space_info->lock);
5439 		} else {
5440 			old_val -= num_bytes;
5441 			btrfs_set_block_group_used(&cache->item, old_val);
5442 			cache->pinned += num_bytes;
5443 			cache->space_info->bytes_pinned += num_bytes;
5444 			cache->space_info->bytes_used -= num_bytes;
5445 			cache->space_info->disk_used -= num_bytes * factor;
5446 			spin_unlock(&cache->lock);
5447 			spin_unlock(&cache->space_info->lock);
5448 
5449 			set_extent_dirty(info->pinned_extents,
5450 					 bytenr, bytenr + num_bytes - 1,
5451 					 GFP_NOFS | __GFP_NOFAIL);
5452 			/*
5453 			 * No longer have used bytes in this block group, queue
5454 			 * it for deletion.
5455 			 */
5456 			if (old_val == 0) {
5457 				spin_lock(&info->unused_bgs_lock);
5458 				if (list_empty(&cache->bg_list)) {
5459 					btrfs_get_block_group(cache);
5460 					list_add_tail(&cache->bg_list,
5461 						      &info->unused_bgs);
5462 				}
5463 				spin_unlock(&info->unused_bgs_lock);
5464 			}
5465 		}
5466 		btrfs_put_block_group(cache);
5467 		total -= num_bytes;
5468 		bytenr += num_bytes;
5469 	}
5470 	return 0;
5471 }
5472 
5473 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5474 {
5475 	struct btrfs_block_group_cache *cache;
5476 	u64 bytenr;
5477 
5478 	spin_lock(&root->fs_info->block_group_cache_lock);
5479 	bytenr = root->fs_info->first_logical_byte;
5480 	spin_unlock(&root->fs_info->block_group_cache_lock);
5481 
5482 	if (bytenr < (u64)-1)
5483 		return bytenr;
5484 
5485 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5486 	if (!cache)
5487 		return 0;
5488 
5489 	bytenr = cache->key.objectid;
5490 	btrfs_put_block_group(cache);
5491 
5492 	return bytenr;
5493 }
5494 
5495 static int pin_down_extent(struct btrfs_root *root,
5496 			   struct btrfs_block_group_cache *cache,
5497 			   u64 bytenr, u64 num_bytes, int reserved)
5498 {
5499 	spin_lock(&cache->space_info->lock);
5500 	spin_lock(&cache->lock);
5501 	cache->pinned += num_bytes;
5502 	cache->space_info->bytes_pinned += num_bytes;
5503 	if (reserved) {
5504 		cache->reserved -= num_bytes;
5505 		cache->space_info->bytes_reserved -= num_bytes;
5506 	}
5507 	spin_unlock(&cache->lock);
5508 	spin_unlock(&cache->space_info->lock);
5509 
5510 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5511 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5512 	if (reserved)
5513 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5514 	return 0;
5515 }
5516 
5517 /*
5518  * this function must be called within transaction
5519  */
5520 int btrfs_pin_extent(struct btrfs_root *root,
5521 		     u64 bytenr, u64 num_bytes, int reserved)
5522 {
5523 	struct btrfs_block_group_cache *cache;
5524 
5525 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5526 	BUG_ON(!cache); /* Logic error */
5527 
5528 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5529 
5530 	btrfs_put_block_group(cache);
5531 	return 0;
5532 }
5533 
5534 /*
5535  * this function must be called within transaction
5536  */
5537 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5538 				    u64 bytenr, u64 num_bytes)
5539 {
5540 	struct btrfs_block_group_cache *cache;
5541 	int ret;
5542 
5543 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5544 	if (!cache)
5545 		return -EINVAL;
5546 
5547 	/*
5548 	 * pull in the free space cache (if any) so that our pin
5549 	 * removes the free space from the cache.  We have load_only set
5550 	 * to one because the slow code to read in the free extents does check
5551 	 * the pinned extents.
5552 	 */
5553 	cache_block_group(cache, 1);
5554 
5555 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5556 
5557 	/* remove us from the free space cache (if we're there at all) */
5558 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5559 	btrfs_put_block_group(cache);
5560 	return ret;
5561 }
5562 
5563 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5564 {
5565 	int ret;
5566 	struct btrfs_block_group_cache *block_group;
5567 	struct btrfs_caching_control *caching_ctl;
5568 
5569 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5570 	if (!block_group)
5571 		return -EINVAL;
5572 
5573 	cache_block_group(block_group, 0);
5574 	caching_ctl = get_caching_control(block_group);
5575 
5576 	if (!caching_ctl) {
5577 		/* Logic error */
5578 		BUG_ON(!block_group_cache_done(block_group));
5579 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5580 	} else {
5581 		mutex_lock(&caching_ctl->mutex);
5582 
5583 		if (start >= caching_ctl->progress) {
5584 			ret = add_excluded_extent(root, start, num_bytes);
5585 		} else if (start + num_bytes <= caching_ctl->progress) {
5586 			ret = btrfs_remove_free_space(block_group,
5587 						      start, num_bytes);
5588 		} else {
5589 			num_bytes = caching_ctl->progress - start;
5590 			ret = btrfs_remove_free_space(block_group,
5591 						      start, num_bytes);
5592 			if (ret)
5593 				goto out_lock;
5594 
5595 			num_bytes = (start + num_bytes) -
5596 				caching_ctl->progress;
5597 			start = caching_ctl->progress;
5598 			ret = add_excluded_extent(root, start, num_bytes);
5599 		}
5600 out_lock:
5601 		mutex_unlock(&caching_ctl->mutex);
5602 		put_caching_control(caching_ctl);
5603 	}
5604 	btrfs_put_block_group(block_group);
5605 	return ret;
5606 }
5607 
5608 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5609 				 struct extent_buffer *eb)
5610 {
5611 	struct btrfs_file_extent_item *item;
5612 	struct btrfs_key key;
5613 	int found_type;
5614 	int i;
5615 
5616 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5617 		return 0;
5618 
5619 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5620 		btrfs_item_key_to_cpu(eb, &key, i);
5621 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5622 			continue;
5623 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5624 		found_type = btrfs_file_extent_type(eb, item);
5625 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5626 			continue;
5627 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5628 			continue;
5629 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5630 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5631 		__exclude_logged_extent(log, key.objectid, key.offset);
5632 	}
5633 
5634 	return 0;
5635 }
5636 
5637 /**
5638  * btrfs_update_reserved_bytes - update the block_group and space info counters
5639  * @cache:	The cache we are manipulating
5640  * @num_bytes:	The number of bytes in question
5641  * @reserve:	One of the reservation enums
5642  * @delalloc:   The blocks are allocated for the delalloc write
5643  *
5644  * This is called by the allocator when it reserves space, or by somebody who is
5645  * freeing space that was never actually used on disk.  For example if you
5646  * reserve some space for a new leaf in transaction A and before transaction A
5647  * commits you free that leaf, you call this with reserve set to 0 in order to
5648  * clear the reservation.
5649  *
5650  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5651  * ENOSPC accounting.  For data we handle the reservation through clearing the
5652  * delalloc bits in the io_tree.  We have to do this since we could end up
5653  * allocating less disk space for the amount of data we have reserved in the
5654  * case of compression.
5655  *
5656  * If this is a reservation and the block group has become read only we cannot
5657  * make the reservation and return -EAGAIN, otherwise this function always
5658  * succeeds.
5659  */
5660 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5661 				       u64 num_bytes, int reserve, int delalloc)
5662 {
5663 	struct btrfs_space_info *space_info = cache->space_info;
5664 	int ret = 0;
5665 
5666 	spin_lock(&space_info->lock);
5667 	spin_lock(&cache->lock);
5668 	if (reserve != RESERVE_FREE) {
5669 		if (cache->ro) {
5670 			ret = -EAGAIN;
5671 		} else {
5672 			cache->reserved += num_bytes;
5673 			space_info->bytes_reserved += num_bytes;
5674 			if (reserve == RESERVE_ALLOC) {
5675 				trace_btrfs_space_reservation(cache->fs_info,
5676 						"space_info", space_info->flags,
5677 						num_bytes, 0);
5678 				space_info->bytes_may_use -= num_bytes;
5679 			}
5680 
5681 			if (delalloc)
5682 				cache->delalloc_bytes += num_bytes;
5683 		}
5684 	} else {
5685 		if (cache->ro)
5686 			space_info->bytes_readonly += num_bytes;
5687 		cache->reserved -= num_bytes;
5688 		space_info->bytes_reserved -= num_bytes;
5689 
5690 		if (delalloc)
5691 			cache->delalloc_bytes -= num_bytes;
5692 	}
5693 	spin_unlock(&cache->lock);
5694 	spin_unlock(&space_info->lock);
5695 	return ret;
5696 }
5697 
5698 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5699 				struct btrfs_root *root)
5700 {
5701 	struct btrfs_fs_info *fs_info = root->fs_info;
5702 	struct btrfs_caching_control *next;
5703 	struct btrfs_caching_control *caching_ctl;
5704 	struct btrfs_block_group_cache *cache;
5705 
5706 	down_write(&fs_info->commit_root_sem);
5707 
5708 	list_for_each_entry_safe(caching_ctl, next,
5709 				 &fs_info->caching_block_groups, list) {
5710 		cache = caching_ctl->block_group;
5711 		if (block_group_cache_done(cache)) {
5712 			cache->last_byte_to_unpin = (u64)-1;
5713 			list_del_init(&caching_ctl->list);
5714 			put_caching_control(caching_ctl);
5715 		} else {
5716 			cache->last_byte_to_unpin = caching_ctl->progress;
5717 		}
5718 	}
5719 
5720 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5721 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5722 	else
5723 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5724 
5725 	up_write(&fs_info->commit_root_sem);
5726 
5727 	update_global_block_rsv(fs_info);
5728 }
5729 
5730 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5731 			      const bool return_free_space)
5732 {
5733 	struct btrfs_fs_info *fs_info = root->fs_info;
5734 	struct btrfs_block_group_cache *cache = NULL;
5735 	struct btrfs_space_info *space_info;
5736 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5737 	u64 len;
5738 	bool readonly;
5739 
5740 	while (start <= end) {
5741 		readonly = false;
5742 		if (!cache ||
5743 		    start >= cache->key.objectid + cache->key.offset) {
5744 			if (cache)
5745 				btrfs_put_block_group(cache);
5746 			cache = btrfs_lookup_block_group(fs_info, start);
5747 			BUG_ON(!cache); /* Logic error */
5748 		}
5749 
5750 		len = cache->key.objectid + cache->key.offset - start;
5751 		len = min(len, end + 1 - start);
5752 
5753 		if (start < cache->last_byte_to_unpin) {
5754 			len = min(len, cache->last_byte_to_unpin - start);
5755 			if (return_free_space)
5756 				btrfs_add_free_space(cache, start, len);
5757 		}
5758 
5759 		start += len;
5760 		space_info = cache->space_info;
5761 
5762 		spin_lock(&space_info->lock);
5763 		spin_lock(&cache->lock);
5764 		cache->pinned -= len;
5765 		space_info->bytes_pinned -= len;
5766 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5767 		if (cache->ro) {
5768 			space_info->bytes_readonly += len;
5769 			readonly = true;
5770 		}
5771 		spin_unlock(&cache->lock);
5772 		if (!readonly && global_rsv->space_info == space_info) {
5773 			spin_lock(&global_rsv->lock);
5774 			if (!global_rsv->full) {
5775 				len = min(len, global_rsv->size -
5776 					  global_rsv->reserved);
5777 				global_rsv->reserved += len;
5778 				space_info->bytes_may_use += len;
5779 				if (global_rsv->reserved >= global_rsv->size)
5780 					global_rsv->full = 1;
5781 			}
5782 			spin_unlock(&global_rsv->lock);
5783 		}
5784 		spin_unlock(&space_info->lock);
5785 	}
5786 
5787 	if (cache)
5788 		btrfs_put_block_group(cache);
5789 	return 0;
5790 }
5791 
5792 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5793 			       struct btrfs_root *root)
5794 {
5795 	struct btrfs_fs_info *fs_info = root->fs_info;
5796 	struct extent_io_tree *unpin;
5797 	u64 start;
5798 	u64 end;
5799 	int ret;
5800 
5801 	if (trans->aborted)
5802 		return 0;
5803 
5804 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5805 		unpin = &fs_info->freed_extents[1];
5806 	else
5807 		unpin = &fs_info->freed_extents[0];
5808 
5809 	while (1) {
5810 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5811 					    EXTENT_DIRTY, NULL);
5812 		if (ret)
5813 			break;
5814 
5815 		if (btrfs_test_opt(root, DISCARD))
5816 			ret = btrfs_discard_extent(root, start,
5817 						   end + 1 - start, NULL);
5818 
5819 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5820 		unpin_extent_range(root, start, end, true);
5821 		cond_resched();
5822 	}
5823 
5824 	return 0;
5825 }
5826 
5827 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5828 			     u64 owner, u64 root_objectid)
5829 {
5830 	struct btrfs_space_info *space_info;
5831 	u64 flags;
5832 
5833 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5834 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5835 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5836 		else
5837 			flags = BTRFS_BLOCK_GROUP_METADATA;
5838 	} else {
5839 		flags = BTRFS_BLOCK_GROUP_DATA;
5840 	}
5841 
5842 	space_info = __find_space_info(fs_info, flags);
5843 	BUG_ON(!space_info); /* Logic bug */
5844 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5845 }
5846 
5847 
5848 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5849 				struct btrfs_root *root,
5850 				u64 bytenr, u64 num_bytes, u64 parent,
5851 				u64 root_objectid, u64 owner_objectid,
5852 				u64 owner_offset, int refs_to_drop,
5853 				struct btrfs_delayed_extent_op *extent_op,
5854 				int no_quota)
5855 {
5856 	struct btrfs_key key;
5857 	struct btrfs_path *path;
5858 	struct btrfs_fs_info *info = root->fs_info;
5859 	struct btrfs_root *extent_root = info->extent_root;
5860 	struct extent_buffer *leaf;
5861 	struct btrfs_extent_item *ei;
5862 	struct btrfs_extent_inline_ref *iref;
5863 	int ret;
5864 	int is_data;
5865 	int extent_slot = 0;
5866 	int found_extent = 0;
5867 	int num_to_del = 1;
5868 	u32 item_size;
5869 	u64 refs;
5870 	int last_ref = 0;
5871 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5872 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5873 						 SKINNY_METADATA);
5874 
5875 	if (!info->quota_enabled || !is_fstree(root_objectid))
5876 		no_quota = 1;
5877 
5878 	path = btrfs_alloc_path();
5879 	if (!path)
5880 		return -ENOMEM;
5881 
5882 	path->reada = 1;
5883 	path->leave_spinning = 1;
5884 
5885 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5886 	BUG_ON(!is_data && refs_to_drop != 1);
5887 
5888 	if (is_data)
5889 		skinny_metadata = 0;
5890 
5891 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5892 				    bytenr, num_bytes, parent,
5893 				    root_objectid, owner_objectid,
5894 				    owner_offset);
5895 	if (ret == 0) {
5896 		extent_slot = path->slots[0];
5897 		while (extent_slot >= 0) {
5898 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5899 					      extent_slot);
5900 			if (key.objectid != bytenr)
5901 				break;
5902 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5903 			    key.offset == num_bytes) {
5904 				found_extent = 1;
5905 				break;
5906 			}
5907 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5908 			    key.offset == owner_objectid) {
5909 				found_extent = 1;
5910 				break;
5911 			}
5912 			if (path->slots[0] - extent_slot > 5)
5913 				break;
5914 			extent_slot--;
5915 		}
5916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5917 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5918 		if (found_extent && item_size < sizeof(*ei))
5919 			found_extent = 0;
5920 #endif
5921 		if (!found_extent) {
5922 			BUG_ON(iref);
5923 			ret = remove_extent_backref(trans, extent_root, path,
5924 						    NULL, refs_to_drop,
5925 						    is_data, &last_ref);
5926 			if (ret) {
5927 				btrfs_abort_transaction(trans, extent_root, ret);
5928 				goto out;
5929 			}
5930 			btrfs_release_path(path);
5931 			path->leave_spinning = 1;
5932 
5933 			key.objectid = bytenr;
5934 			key.type = BTRFS_EXTENT_ITEM_KEY;
5935 			key.offset = num_bytes;
5936 
5937 			if (!is_data && skinny_metadata) {
5938 				key.type = BTRFS_METADATA_ITEM_KEY;
5939 				key.offset = owner_objectid;
5940 			}
5941 
5942 			ret = btrfs_search_slot(trans, extent_root,
5943 						&key, path, -1, 1);
5944 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5945 				/*
5946 				 * Couldn't find our skinny metadata item,
5947 				 * see if we have ye olde extent item.
5948 				 */
5949 				path->slots[0]--;
5950 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5951 						      path->slots[0]);
5952 				if (key.objectid == bytenr &&
5953 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5954 				    key.offset == num_bytes)
5955 					ret = 0;
5956 			}
5957 
5958 			if (ret > 0 && skinny_metadata) {
5959 				skinny_metadata = false;
5960 				key.objectid = bytenr;
5961 				key.type = BTRFS_EXTENT_ITEM_KEY;
5962 				key.offset = num_bytes;
5963 				btrfs_release_path(path);
5964 				ret = btrfs_search_slot(trans, extent_root,
5965 							&key, path, -1, 1);
5966 			}
5967 
5968 			if (ret) {
5969 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5970 					ret, bytenr);
5971 				if (ret > 0)
5972 					btrfs_print_leaf(extent_root,
5973 							 path->nodes[0]);
5974 			}
5975 			if (ret < 0) {
5976 				btrfs_abort_transaction(trans, extent_root, ret);
5977 				goto out;
5978 			}
5979 			extent_slot = path->slots[0];
5980 		}
5981 	} else if (WARN_ON(ret == -ENOENT)) {
5982 		btrfs_print_leaf(extent_root, path->nodes[0]);
5983 		btrfs_err(info,
5984 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5985 			bytenr, parent, root_objectid, owner_objectid,
5986 			owner_offset);
5987 		btrfs_abort_transaction(trans, extent_root, ret);
5988 		goto out;
5989 	} else {
5990 		btrfs_abort_transaction(trans, extent_root, ret);
5991 		goto out;
5992 	}
5993 
5994 	leaf = path->nodes[0];
5995 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5997 	if (item_size < sizeof(*ei)) {
5998 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5999 		ret = convert_extent_item_v0(trans, extent_root, path,
6000 					     owner_objectid, 0);
6001 		if (ret < 0) {
6002 			btrfs_abort_transaction(trans, extent_root, ret);
6003 			goto out;
6004 		}
6005 
6006 		btrfs_release_path(path);
6007 		path->leave_spinning = 1;
6008 
6009 		key.objectid = bytenr;
6010 		key.type = BTRFS_EXTENT_ITEM_KEY;
6011 		key.offset = num_bytes;
6012 
6013 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6014 					-1, 1);
6015 		if (ret) {
6016 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6017 				ret, bytenr);
6018 			btrfs_print_leaf(extent_root, path->nodes[0]);
6019 		}
6020 		if (ret < 0) {
6021 			btrfs_abort_transaction(trans, extent_root, ret);
6022 			goto out;
6023 		}
6024 
6025 		extent_slot = path->slots[0];
6026 		leaf = path->nodes[0];
6027 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6028 	}
6029 #endif
6030 	BUG_ON(item_size < sizeof(*ei));
6031 	ei = btrfs_item_ptr(leaf, extent_slot,
6032 			    struct btrfs_extent_item);
6033 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6034 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6035 		struct btrfs_tree_block_info *bi;
6036 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6037 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6038 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6039 	}
6040 
6041 	refs = btrfs_extent_refs(leaf, ei);
6042 	if (refs < refs_to_drop) {
6043 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6044 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6045 		ret = -EINVAL;
6046 		btrfs_abort_transaction(trans, extent_root, ret);
6047 		goto out;
6048 	}
6049 	refs -= refs_to_drop;
6050 
6051 	if (refs > 0) {
6052 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6053 		if (extent_op)
6054 			__run_delayed_extent_op(extent_op, leaf, ei);
6055 		/*
6056 		 * In the case of inline back ref, reference count will
6057 		 * be updated by remove_extent_backref
6058 		 */
6059 		if (iref) {
6060 			BUG_ON(!found_extent);
6061 		} else {
6062 			btrfs_set_extent_refs(leaf, ei, refs);
6063 			btrfs_mark_buffer_dirty(leaf);
6064 		}
6065 		if (found_extent) {
6066 			ret = remove_extent_backref(trans, extent_root, path,
6067 						    iref, refs_to_drop,
6068 						    is_data, &last_ref);
6069 			if (ret) {
6070 				btrfs_abort_transaction(trans, extent_root, ret);
6071 				goto out;
6072 			}
6073 		}
6074 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6075 				 root_objectid);
6076 	} else {
6077 		if (found_extent) {
6078 			BUG_ON(is_data && refs_to_drop !=
6079 			       extent_data_ref_count(root, path, iref));
6080 			if (iref) {
6081 				BUG_ON(path->slots[0] != extent_slot);
6082 			} else {
6083 				BUG_ON(path->slots[0] != extent_slot + 1);
6084 				path->slots[0] = extent_slot;
6085 				num_to_del = 2;
6086 			}
6087 		}
6088 
6089 		last_ref = 1;
6090 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6091 				      num_to_del);
6092 		if (ret) {
6093 			btrfs_abort_transaction(trans, extent_root, ret);
6094 			goto out;
6095 		}
6096 		btrfs_release_path(path);
6097 
6098 		if (is_data) {
6099 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6100 			if (ret) {
6101 				btrfs_abort_transaction(trans, extent_root, ret);
6102 				goto out;
6103 			}
6104 		}
6105 
6106 		ret = update_block_group(root, bytenr, num_bytes, 0);
6107 		if (ret) {
6108 			btrfs_abort_transaction(trans, extent_root, ret);
6109 			goto out;
6110 		}
6111 	}
6112 	btrfs_release_path(path);
6113 
6114 	/* Deal with the quota accounting */
6115 	if (!ret && last_ref && !no_quota) {
6116 		int mod_seq = 0;
6117 
6118 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6119 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6120 			mod_seq = 1;
6121 
6122 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6123 					      bytenr, num_bytes, type,
6124 					      mod_seq);
6125 	}
6126 out:
6127 	btrfs_free_path(path);
6128 	return ret;
6129 }
6130 
6131 /*
6132  * when we free an block, it is possible (and likely) that we free the last
6133  * delayed ref for that extent as well.  This searches the delayed ref tree for
6134  * a given extent, and if there are no other delayed refs to be processed, it
6135  * removes it from the tree.
6136  */
6137 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6138 				      struct btrfs_root *root, u64 bytenr)
6139 {
6140 	struct btrfs_delayed_ref_head *head;
6141 	struct btrfs_delayed_ref_root *delayed_refs;
6142 	int ret = 0;
6143 
6144 	delayed_refs = &trans->transaction->delayed_refs;
6145 	spin_lock(&delayed_refs->lock);
6146 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6147 	if (!head)
6148 		goto out_delayed_unlock;
6149 
6150 	spin_lock(&head->lock);
6151 	if (rb_first(&head->ref_root))
6152 		goto out;
6153 
6154 	if (head->extent_op) {
6155 		if (!head->must_insert_reserved)
6156 			goto out;
6157 		btrfs_free_delayed_extent_op(head->extent_op);
6158 		head->extent_op = NULL;
6159 	}
6160 
6161 	/*
6162 	 * waiting for the lock here would deadlock.  If someone else has it
6163 	 * locked they are already in the process of dropping it anyway
6164 	 */
6165 	if (!mutex_trylock(&head->mutex))
6166 		goto out;
6167 
6168 	/*
6169 	 * at this point we have a head with no other entries.  Go
6170 	 * ahead and process it.
6171 	 */
6172 	head->node.in_tree = 0;
6173 	rb_erase(&head->href_node, &delayed_refs->href_root);
6174 
6175 	atomic_dec(&delayed_refs->num_entries);
6176 
6177 	/*
6178 	 * we don't take a ref on the node because we're removing it from the
6179 	 * tree, so we just steal the ref the tree was holding.
6180 	 */
6181 	delayed_refs->num_heads--;
6182 	if (head->processing == 0)
6183 		delayed_refs->num_heads_ready--;
6184 	head->processing = 0;
6185 	spin_unlock(&head->lock);
6186 	spin_unlock(&delayed_refs->lock);
6187 
6188 	BUG_ON(head->extent_op);
6189 	if (head->must_insert_reserved)
6190 		ret = 1;
6191 
6192 	mutex_unlock(&head->mutex);
6193 	btrfs_put_delayed_ref(&head->node);
6194 	return ret;
6195 out:
6196 	spin_unlock(&head->lock);
6197 
6198 out_delayed_unlock:
6199 	spin_unlock(&delayed_refs->lock);
6200 	return 0;
6201 }
6202 
6203 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6204 			   struct btrfs_root *root,
6205 			   struct extent_buffer *buf,
6206 			   u64 parent, int last_ref)
6207 {
6208 	struct btrfs_block_group_cache *cache = NULL;
6209 	int pin = 1;
6210 	int ret;
6211 
6212 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6213 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6214 					buf->start, buf->len,
6215 					parent, root->root_key.objectid,
6216 					btrfs_header_level(buf),
6217 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6218 		BUG_ON(ret); /* -ENOMEM */
6219 	}
6220 
6221 	if (!last_ref)
6222 		return;
6223 
6224 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6225 
6226 	if (btrfs_header_generation(buf) == trans->transid) {
6227 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6228 			ret = check_ref_cleanup(trans, root, buf->start);
6229 			if (!ret)
6230 				goto out;
6231 		}
6232 
6233 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6234 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6235 			goto out;
6236 		}
6237 
6238 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6239 
6240 		btrfs_add_free_space(cache, buf->start, buf->len);
6241 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6242 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6243 		pin = 0;
6244 	}
6245 out:
6246 	if (pin)
6247 		add_pinned_bytes(root->fs_info, buf->len,
6248 				 btrfs_header_level(buf),
6249 				 root->root_key.objectid);
6250 
6251 	/*
6252 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6253 	 * anymore.
6254 	 */
6255 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6256 	btrfs_put_block_group(cache);
6257 }
6258 
6259 /* Can return -ENOMEM */
6260 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6261 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6262 		      u64 owner, u64 offset, int no_quota)
6263 {
6264 	int ret;
6265 	struct btrfs_fs_info *fs_info = root->fs_info;
6266 
6267 	if (btrfs_test_is_dummy_root(root))
6268 		return 0;
6269 
6270 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6271 
6272 	/*
6273 	 * tree log blocks never actually go into the extent allocation
6274 	 * tree, just update pinning info and exit early.
6275 	 */
6276 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6277 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6278 		/* unlocks the pinned mutex */
6279 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6280 		ret = 0;
6281 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6282 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6283 					num_bytes,
6284 					parent, root_objectid, (int)owner,
6285 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6286 	} else {
6287 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6288 						num_bytes,
6289 						parent, root_objectid, owner,
6290 						offset, BTRFS_DROP_DELAYED_REF,
6291 						NULL, no_quota);
6292 	}
6293 	return ret;
6294 }
6295 
6296 /*
6297  * when we wait for progress in the block group caching, its because
6298  * our allocation attempt failed at least once.  So, we must sleep
6299  * and let some progress happen before we try again.
6300  *
6301  * This function will sleep at least once waiting for new free space to
6302  * show up, and then it will check the block group free space numbers
6303  * for our min num_bytes.  Another option is to have it go ahead
6304  * and look in the rbtree for a free extent of a given size, but this
6305  * is a good start.
6306  *
6307  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6308  * any of the information in this block group.
6309  */
6310 static noinline void
6311 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6312 				u64 num_bytes)
6313 {
6314 	struct btrfs_caching_control *caching_ctl;
6315 
6316 	caching_ctl = get_caching_control(cache);
6317 	if (!caching_ctl)
6318 		return;
6319 
6320 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6321 		   (cache->free_space_ctl->free_space >= num_bytes));
6322 
6323 	put_caching_control(caching_ctl);
6324 }
6325 
6326 static noinline int
6327 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6328 {
6329 	struct btrfs_caching_control *caching_ctl;
6330 	int ret = 0;
6331 
6332 	caching_ctl = get_caching_control(cache);
6333 	if (!caching_ctl)
6334 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6335 
6336 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6337 	if (cache->cached == BTRFS_CACHE_ERROR)
6338 		ret = -EIO;
6339 	put_caching_control(caching_ctl);
6340 	return ret;
6341 }
6342 
6343 int __get_raid_index(u64 flags)
6344 {
6345 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6346 		return BTRFS_RAID_RAID10;
6347 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6348 		return BTRFS_RAID_RAID1;
6349 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6350 		return BTRFS_RAID_DUP;
6351 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6352 		return BTRFS_RAID_RAID0;
6353 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6354 		return BTRFS_RAID_RAID5;
6355 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6356 		return BTRFS_RAID_RAID6;
6357 
6358 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6359 }
6360 
6361 int get_block_group_index(struct btrfs_block_group_cache *cache)
6362 {
6363 	return __get_raid_index(cache->flags);
6364 }
6365 
6366 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6367 	[BTRFS_RAID_RAID10]	= "raid10",
6368 	[BTRFS_RAID_RAID1]	= "raid1",
6369 	[BTRFS_RAID_DUP]	= "dup",
6370 	[BTRFS_RAID_RAID0]	= "raid0",
6371 	[BTRFS_RAID_SINGLE]	= "single",
6372 	[BTRFS_RAID_RAID5]	= "raid5",
6373 	[BTRFS_RAID_RAID6]	= "raid6",
6374 };
6375 
6376 static const char *get_raid_name(enum btrfs_raid_types type)
6377 {
6378 	if (type >= BTRFS_NR_RAID_TYPES)
6379 		return NULL;
6380 
6381 	return btrfs_raid_type_names[type];
6382 }
6383 
6384 enum btrfs_loop_type {
6385 	LOOP_CACHING_NOWAIT = 0,
6386 	LOOP_CACHING_WAIT = 1,
6387 	LOOP_ALLOC_CHUNK = 2,
6388 	LOOP_NO_EMPTY_SIZE = 3,
6389 };
6390 
6391 static inline void
6392 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6393 		       int delalloc)
6394 {
6395 	if (delalloc)
6396 		down_read(&cache->data_rwsem);
6397 }
6398 
6399 static inline void
6400 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6401 		       int delalloc)
6402 {
6403 	btrfs_get_block_group(cache);
6404 	if (delalloc)
6405 		down_read(&cache->data_rwsem);
6406 }
6407 
6408 static struct btrfs_block_group_cache *
6409 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6410 		   struct btrfs_free_cluster *cluster,
6411 		   int delalloc)
6412 {
6413 	struct btrfs_block_group_cache *used_bg;
6414 	bool locked = false;
6415 again:
6416 	spin_lock(&cluster->refill_lock);
6417 	if (locked) {
6418 		if (used_bg == cluster->block_group)
6419 			return used_bg;
6420 
6421 		up_read(&used_bg->data_rwsem);
6422 		btrfs_put_block_group(used_bg);
6423 	}
6424 
6425 	used_bg = cluster->block_group;
6426 	if (!used_bg)
6427 		return NULL;
6428 
6429 	if (used_bg == block_group)
6430 		return used_bg;
6431 
6432 	btrfs_get_block_group(used_bg);
6433 
6434 	if (!delalloc)
6435 		return used_bg;
6436 
6437 	if (down_read_trylock(&used_bg->data_rwsem))
6438 		return used_bg;
6439 
6440 	spin_unlock(&cluster->refill_lock);
6441 	down_read(&used_bg->data_rwsem);
6442 	locked = true;
6443 	goto again;
6444 }
6445 
6446 static inline void
6447 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6448 			 int delalloc)
6449 {
6450 	if (delalloc)
6451 		up_read(&cache->data_rwsem);
6452 	btrfs_put_block_group(cache);
6453 }
6454 
6455 /*
6456  * walks the btree of allocated extents and find a hole of a given size.
6457  * The key ins is changed to record the hole:
6458  * ins->objectid == start position
6459  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6460  * ins->offset == the size of the hole.
6461  * Any available blocks before search_start are skipped.
6462  *
6463  * If there is no suitable free space, we will record the max size of
6464  * the free space extent currently.
6465  */
6466 static noinline int find_free_extent(struct btrfs_root *orig_root,
6467 				     u64 num_bytes, u64 empty_size,
6468 				     u64 hint_byte, struct btrfs_key *ins,
6469 				     u64 flags, int delalloc)
6470 {
6471 	int ret = 0;
6472 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6473 	struct btrfs_free_cluster *last_ptr = NULL;
6474 	struct btrfs_block_group_cache *block_group = NULL;
6475 	u64 search_start = 0;
6476 	u64 max_extent_size = 0;
6477 	int empty_cluster = 2 * 1024 * 1024;
6478 	struct btrfs_space_info *space_info;
6479 	int loop = 0;
6480 	int index = __get_raid_index(flags);
6481 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6482 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6483 	bool failed_cluster_refill = false;
6484 	bool failed_alloc = false;
6485 	bool use_cluster = true;
6486 	bool have_caching_bg = false;
6487 
6488 	WARN_ON(num_bytes < root->sectorsize);
6489 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6490 	ins->objectid = 0;
6491 	ins->offset = 0;
6492 
6493 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6494 
6495 	space_info = __find_space_info(root->fs_info, flags);
6496 	if (!space_info) {
6497 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6498 		return -ENOSPC;
6499 	}
6500 
6501 	/*
6502 	 * If the space info is for both data and metadata it means we have a
6503 	 * small filesystem and we can't use the clustering stuff.
6504 	 */
6505 	if (btrfs_mixed_space_info(space_info))
6506 		use_cluster = false;
6507 
6508 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6509 		last_ptr = &root->fs_info->meta_alloc_cluster;
6510 		if (!btrfs_test_opt(root, SSD))
6511 			empty_cluster = 64 * 1024;
6512 	}
6513 
6514 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6515 	    btrfs_test_opt(root, SSD)) {
6516 		last_ptr = &root->fs_info->data_alloc_cluster;
6517 	}
6518 
6519 	if (last_ptr) {
6520 		spin_lock(&last_ptr->lock);
6521 		if (last_ptr->block_group)
6522 			hint_byte = last_ptr->window_start;
6523 		spin_unlock(&last_ptr->lock);
6524 	}
6525 
6526 	search_start = max(search_start, first_logical_byte(root, 0));
6527 	search_start = max(search_start, hint_byte);
6528 
6529 	if (!last_ptr)
6530 		empty_cluster = 0;
6531 
6532 	if (search_start == hint_byte) {
6533 		block_group = btrfs_lookup_block_group(root->fs_info,
6534 						       search_start);
6535 		/*
6536 		 * we don't want to use the block group if it doesn't match our
6537 		 * allocation bits, or if its not cached.
6538 		 *
6539 		 * However if we are re-searching with an ideal block group
6540 		 * picked out then we don't care that the block group is cached.
6541 		 */
6542 		if (block_group && block_group_bits(block_group, flags) &&
6543 		    block_group->cached != BTRFS_CACHE_NO) {
6544 			down_read(&space_info->groups_sem);
6545 			if (list_empty(&block_group->list) ||
6546 			    block_group->ro) {
6547 				/*
6548 				 * someone is removing this block group,
6549 				 * we can't jump into the have_block_group
6550 				 * target because our list pointers are not
6551 				 * valid
6552 				 */
6553 				btrfs_put_block_group(block_group);
6554 				up_read(&space_info->groups_sem);
6555 			} else {
6556 				index = get_block_group_index(block_group);
6557 				btrfs_lock_block_group(block_group, delalloc);
6558 				goto have_block_group;
6559 			}
6560 		} else if (block_group) {
6561 			btrfs_put_block_group(block_group);
6562 		}
6563 	}
6564 search:
6565 	have_caching_bg = false;
6566 	down_read(&space_info->groups_sem);
6567 	list_for_each_entry(block_group, &space_info->block_groups[index],
6568 			    list) {
6569 		u64 offset;
6570 		int cached;
6571 
6572 		btrfs_grab_block_group(block_group, delalloc);
6573 		search_start = block_group->key.objectid;
6574 
6575 		/*
6576 		 * this can happen if we end up cycling through all the
6577 		 * raid types, but we want to make sure we only allocate
6578 		 * for the proper type.
6579 		 */
6580 		if (!block_group_bits(block_group, flags)) {
6581 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6582 				BTRFS_BLOCK_GROUP_RAID1 |
6583 				BTRFS_BLOCK_GROUP_RAID5 |
6584 				BTRFS_BLOCK_GROUP_RAID6 |
6585 				BTRFS_BLOCK_GROUP_RAID10;
6586 
6587 			/*
6588 			 * if they asked for extra copies and this block group
6589 			 * doesn't provide them, bail.  This does allow us to
6590 			 * fill raid0 from raid1.
6591 			 */
6592 			if ((flags & extra) && !(block_group->flags & extra))
6593 				goto loop;
6594 		}
6595 
6596 have_block_group:
6597 		cached = block_group_cache_done(block_group);
6598 		if (unlikely(!cached)) {
6599 			ret = cache_block_group(block_group, 0);
6600 			BUG_ON(ret < 0);
6601 			ret = 0;
6602 		}
6603 
6604 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6605 			goto loop;
6606 		if (unlikely(block_group->ro))
6607 			goto loop;
6608 
6609 		/*
6610 		 * Ok we want to try and use the cluster allocator, so
6611 		 * lets look there
6612 		 */
6613 		if (last_ptr) {
6614 			struct btrfs_block_group_cache *used_block_group;
6615 			unsigned long aligned_cluster;
6616 			/*
6617 			 * the refill lock keeps out other
6618 			 * people trying to start a new cluster
6619 			 */
6620 			used_block_group = btrfs_lock_cluster(block_group,
6621 							      last_ptr,
6622 							      delalloc);
6623 			if (!used_block_group)
6624 				goto refill_cluster;
6625 
6626 			if (used_block_group != block_group &&
6627 			    (used_block_group->ro ||
6628 			     !block_group_bits(used_block_group, flags)))
6629 				goto release_cluster;
6630 
6631 			offset = btrfs_alloc_from_cluster(used_block_group,
6632 						last_ptr,
6633 						num_bytes,
6634 						used_block_group->key.objectid,
6635 						&max_extent_size);
6636 			if (offset) {
6637 				/* we have a block, we're done */
6638 				spin_unlock(&last_ptr->refill_lock);
6639 				trace_btrfs_reserve_extent_cluster(root,
6640 						used_block_group,
6641 						search_start, num_bytes);
6642 				if (used_block_group != block_group) {
6643 					btrfs_release_block_group(block_group,
6644 								  delalloc);
6645 					block_group = used_block_group;
6646 				}
6647 				goto checks;
6648 			}
6649 
6650 			WARN_ON(last_ptr->block_group != used_block_group);
6651 release_cluster:
6652 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6653 			 * set up a new clusters, so lets just skip it
6654 			 * and let the allocator find whatever block
6655 			 * it can find.  If we reach this point, we
6656 			 * will have tried the cluster allocator
6657 			 * plenty of times and not have found
6658 			 * anything, so we are likely way too
6659 			 * fragmented for the clustering stuff to find
6660 			 * anything.
6661 			 *
6662 			 * However, if the cluster is taken from the
6663 			 * current block group, release the cluster
6664 			 * first, so that we stand a better chance of
6665 			 * succeeding in the unclustered
6666 			 * allocation.  */
6667 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6668 			    used_block_group != block_group) {
6669 				spin_unlock(&last_ptr->refill_lock);
6670 				btrfs_release_block_group(used_block_group,
6671 							  delalloc);
6672 				goto unclustered_alloc;
6673 			}
6674 
6675 			/*
6676 			 * this cluster didn't work out, free it and
6677 			 * start over
6678 			 */
6679 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6680 
6681 			if (used_block_group != block_group)
6682 				btrfs_release_block_group(used_block_group,
6683 							  delalloc);
6684 refill_cluster:
6685 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6686 				spin_unlock(&last_ptr->refill_lock);
6687 				goto unclustered_alloc;
6688 			}
6689 
6690 			aligned_cluster = max_t(unsigned long,
6691 						empty_cluster + empty_size,
6692 					      block_group->full_stripe_len);
6693 
6694 			/* allocate a cluster in this block group */
6695 			ret = btrfs_find_space_cluster(root, block_group,
6696 						       last_ptr, search_start,
6697 						       num_bytes,
6698 						       aligned_cluster);
6699 			if (ret == 0) {
6700 				/*
6701 				 * now pull our allocation out of this
6702 				 * cluster
6703 				 */
6704 				offset = btrfs_alloc_from_cluster(block_group,
6705 							last_ptr,
6706 							num_bytes,
6707 							search_start,
6708 							&max_extent_size);
6709 				if (offset) {
6710 					/* we found one, proceed */
6711 					spin_unlock(&last_ptr->refill_lock);
6712 					trace_btrfs_reserve_extent_cluster(root,
6713 						block_group, search_start,
6714 						num_bytes);
6715 					goto checks;
6716 				}
6717 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6718 				   && !failed_cluster_refill) {
6719 				spin_unlock(&last_ptr->refill_lock);
6720 
6721 				failed_cluster_refill = true;
6722 				wait_block_group_cache_progress(block_group,
6723 				       num_bytes + empty_cluster + empty_size);
6724 				goto have_block_group;
6725 			}
6726 
6727 			/*
6728 			 * at this point we either didn't find a cluster
6729 			 * or we weren't able to allocate a block from our
6730 			 * cluster.  Free the cluster we've been trying
6731 			 * to use, and go to the next block group
6732 			 */
6733 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6734 			spin_unlock(&last_ptr->refill_lock);
6735 			goto loop;
6736 		}
6737 
6738 unclustered_alloc:
6739 		spin_lock(&block_group->free_space_ctl->tree_lock);
6740 		if (cached &&
6741 		    block_group->free_space_ctl->free_space <
6742 		    num_bytes + empty_cluster + empty_size) {
6743 			if (block_group->free_space_ctl->free_space >
6744 			    max_extent_size)
6745 				max_extent_size =
6746 					block_group->free_space_ctl->free_space;
6747 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6748 			goto loop;
6749 		}
6750 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6751 
6752 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6753 						    num_bytes, empty_size,
6754 						    &max_extent_size);
6755 		/*
6756 		 * If we didn't find a chunk, and we haven't failed on this
6757 		 * block group before, and this block group is in the middle of
6758 		 * caching and we are ok with waiting, then go ahead and wait
6759 		 * for progress to be made, and set failed_alloc to true.
6760 		 *
6761 		 * If failed_alloc is true then we've already waited on this
6762 		 * block group once and should move on to the next block group.
6763 		 */
6764 		if (!offset && !failed_alloc && !cached &&
6765 		    loop > LOOP_CACHING_NOWAIT) {
6766 			wait_block_group_cache_progress(block_group,
6767 						num_bytes + empty_size);
6768 			failed_alloc = true;
6769 			goto have_block_group;
6770 		} else if (!offset) {
6771 			if (!cached)
6772 				have_caching_bg = true;
6773 			goto loop;
6774 		}
6775 checks:
6776 		search_start = ALIGN(offset, root->stripesize);
6777 
6778 		/* move on to the next group */
6779 		if (search_start + num_bytes >
6780 		    block_group->key.objectid + block_group->key.offset) {
6781 			btrfs_add_free_space(block_group, offset, num_bytes);
6782 			goto loop;
6783 		}
6784 
6785 		if (offset < search_start)
6786 			btrfs_add_free_space(block_group, offset,
6787 					     search_start - offset);
6788 		BUG_ON(offset > search_start);
6789 
6790 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6791 						  alloc_type, delalloc);
6792 		if (ret == -EAGAIN) {
6793 			btrfs_add_free_space(block_group, offset, num_bytes);
6794 			goto loop;
6795 		}
6796 
6797 		/* we are all good, lets return */
6798 		ins->objectid = search_start;
6799 		ins->offset = num_bytes;
6800 
6801 		trace_btrfs_reserve_extent(orig_root, block_group,
6802 					   search_start, num_bytes);
6803 		btrfs_release_block_group(block_group, delalloc);
6804 		break;
6805 loop:
6806 		failed_cluster_refill = false;
6807 		failed_alloc = false;
6808 		BUG_ON(index != get_block_group_index(block_group));
6809 		btrfs_release_block_group(block_group, delalloc);
6810 	}
6811 	up_read(&space_info->groups_sem);
6812 
6813 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6814 		goto search;
6815 
6816 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6817 		goto search;
6818 
6819 	/*
6820 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6821 	 *			caching kthreads as we move along
6822 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6823 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6824 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6825 	 *			again
6826 	 */
6827 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6828 		index = 0;
6829 		loop++;
6830 		if (loop == LOOP_ALLOC_CHUNK) {
6831 			struct btrfs_trans_handle *trans;
6832 			int exist = 0;
6833 
6834 			trans = current->journal_info;
6835 			if (trans)
6836 				exist = 1;
6837 			else
6838 				trans = btrfs_join_transaction(root);
6839 
6840 			if (IS_ERR(trans)) {
6841 				ret = PTR_ERR(trans);
6842 				goto out;
6843 			}
6844 
6845 			ret = do_chunk_alloc(trans, root, flags,
6846 					     CHUNK_ALLOC_FORCE);
6847 			/*
6848 			 * Do not bail out on ENOSPC since we
6849 			 * can do more things.
6850 			 */
6851 			if (ret < 0 && ret != -ENOSPC)
6852 				btrfs_abort_transaction(trans,
6853 							root, ret);
6854 			else
6855 				ret = 0;
6856 			if (!exist)
6857 				btrfs_end_transaction(trans, root);
6858 			if (ret)
6859 				goto out;
6860 		}
6861 
6862 		if (loop == LOOP_NO_EMPTY_SIZE) {
6863 			empty_size = 0;
6864 			empty_cluster = 0;
6865 		}
6866 
6867 		goto search;
6868 	} else if (!ins->objectid) {
6869 		ret = -ENOSPC;
6870 	} else if (ins->objectid) {
6871 		ret = 0;
6872 	}
6873 out:
6874 	if (ret == -ENOSPC)
6875 		ins->offset = max_extent_size;
6876 	return ret;
6877 }
6878 
6879 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6880 			    int dump_block_groups)
6881 {
6882 	struct btrfs_block_group_cache *cache;
6883 	int index = 0;
6884 
6885 	spin_lock(&info->lock);
6886 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6887 	       info->flags,
6888 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6889 	       info->bytes_reserved - info->bytes_readonly,
6890 	       (info->full) ? "" : "not ");
6891 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6892 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6893 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6894 	       info->bytes_reserved, info->bytes_may_use,
6895 	       info->bytes_readonly);
6896 	spin_unlock(&info->lock);
6897 
6898 	if (!dump_block_groups)
6899 		return;
6900 
6901 	down_read(&info->groups_sem);
6902 again:
6903 	list_for_each_entry(cache, &info->block_groups[index], list) {
6904 		spin_lock(&cache->lock);
6905 		printk(KERN_INFO "BTRFS: "
6906 			   "block group %llu has %llu bytes, "
6907 			   "%llu used %llu pinned %llu reserved %s\n",
6908 		       cache->key.objectid, cache->key.offset,
6909 		       btrfs_block_group_used(&cache->item), cache->pinned,
6910 		       cache->reserved, cache->ro ? "[readonly]" : "");
6911 		btrfs_dump_free_space(cache, bytes);
6912 		spin_unlock(&cache->lock);
6913 	}
6914 	if (++index < BTRFS_NR_RAID_TYPES)
6915 		goto again;
6916 	up_read(&info->groups_sem);
6917 }
6918 
6919 int btrfs_reserve_extent(struct btrfs_root *root,
6920 			 u64 num_bytes, u64 min_alloc_size,
6921 			 u64 empty_size, u64 hint_byte,
6922 			 struct btrfs_key *ins, int is_data, int delalloc)
6923 {
6924 	bool final_tried = false;
6925 	u64 flags;
6926 	int ret;
6927 
6928 	flags = btrfs_get_alloc_profile(root, is_data);
6929 again:
6930 	WARN_ON(num_bytes < root->sectorsize);
6931 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6932 			       flags, delalloc);
6933 
6934 	if (ret == -ENOSPC) {
6935 		if (!final_tried && ins->offset) {
6936 			num_bytes = min(num_bytes >> 1, ins->offset);
6937 			num_bytes = round_down(num_bytes, root->sectorsize);
6938 			num_bytes = max(num_bytes, min_alloc_size);
6939 			if (num_bytes == min_alloc_size)
6940 				final_tried = true;
6941 			goto again;
6942 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 			struct btrfs_space_info *sinfo;
6944 
6945 			sinfo = __find_space_info(root->fs_info, flags);
6946 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6947 				flags, num_bytes);
6948 			if (sinfo)
6949 				dump_space_info(sinfo, num_bytes, 1);
6950 		}
6951 	}
6952 
6953 	return ret;
6954 }
6955 
6956 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6957 					u64 start, u64 len,
6958 					int pin, int delalloc)
6959 {
6960 	struct btrfs_block_group_cache *cache;
6961 	int ret = 0;
6962 
6963 	cache = btrfs_lookup_block_group(root->fs_info, start);
6964 	if (!cache) {
6965 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6966 			start);
6967 		return -ENOSPC;
6968 	}
6969 
6970 	if (btrfs_test_opt(root, DISCARD))
6971 		ret = btrfs_discard_extent(root, start, len, NULL);
6972 
6973 	if (pin)
6974 		pin_down_extent(root, cache, start, len, 1);
6975 	else {
6976 		btrfs_add_free_space(cache, start, len);
6977 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6978 	}
6979 	btrfs_put_block_group(cache);
6980 
6981 	trace_btrfs_reserved_extent_free(root, start, len);
6982 
6983 	return ret;
6984 }
6985 
6986 int btrfs_free_reserved_extent(struct btrfs_root *root,
6987 			       u64 start, u64 len, int delalloc)
6988 {
6989 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6990 }
6991 
6992 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6993 				       u64 start, u64 len)
6994 {
6995 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6996 }
6997 
6998 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6999 				      struct btrfs_root *root,
7000 				      u64 parent, u64 root_objectid,
7001 				      u64 flags, u64 owner, u64 offset,
7002 				      struct btrfs_key *ins, int ref_mod)
7003 {
7004 	int ret;
7005 	struct btrfs_fs_info *fs_info = root->fs_info;
7006 	struct btrfs_extent_item *extent_item;
7007 	struct btrfs_extent_inline_ref *iref;
7008 	struct btrfs_path *path;
7009 	struct extent_buffer *leaf;
7010 	int type;
7011 	u32 size;
7012 
7013 	if (parent > 0)
7014 		type = BTRFS_SHARED_DATA_REF_KEY;
7015 	else
7016 		type = BTRFS_EXTENT_DATA_REF_KEY;
7017 
7018 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7019 
7020 	path = btrfs_alloc_path();
7021 	if (!path)
7022 		return -ENOMEM;
7023 
7024 	path->leave_spinning = 1;
7025 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7026 				      ins, size);
7027 	if (ret) {
7028 		btrfs_free_path(path);
7029 		return ret;
7030 	}
7031 
7032 	leaf = path->nodes[0];
7033 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7034 				     struct btrfs_extent_item);
7035 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7036 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7037 	btrfs_set_extent_flags(leaf, extent_item,
7038 			       flags | BTRFS_EXTENT_FLAG_DATA);
7039 
7040 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7041 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7042 	if (parent > 0) {
7043 		struct btrfs_shared_data_ref *ref;
7044 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7046 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7047 	} else {
7048 		struct btrfs_extent_data_ref *ref;
7049 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7050 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7051 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7052 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7053 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7054 	}
7055 
7056 	btrfs_mark_buffer_dirty(path->nodes[0]);
7057 	btrfs_free_path(path);
7058 
7059 	/* Always set parent to 0 here since its exclusive anyway. */
7060 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7061 				      ins->objectid, ins->offset,
7062 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7063 	if (ret)
7064 		return ret;
7065 
7066 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
7067 	if (ret) { /* -ENOENT, logic error */
7068 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7069 			ins->objectid, ins->offset);
7070 		BUG();
7071 	}
7072 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7073 	return ret;
7074 }
7075 
7076 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7077 				     struct btrfs_root *root,
7078 				     u64 parent, u64 root_objectid,
7079 				     u64 flags, struct btrfs_disk_key *key,
7080 				     int level, struct btrfs_key *ins,
7081 				     int no_quota)
7082 {
7083 	int ret;
7084 	struct btrfs_fs_info *fs_info = root->fs_info;
7085 	struct btrfs_extent_item *extent_item;
7086 	struct btrfs_tree_block_info *block_info;
7087 	struct btrfs_extent_inline_ref *iref;
7088 	struct btrfs_path *path;
7089 	struct extent_buffer *leaf;
7090 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7091 	u64 num_bytes = ins->offset;
7092 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7093 						 SKINNY_METADATA);
7094 
7095 	if (!skinny_metadata)
7096 		size += sizeof(*block_info);
7097 
7098 	path = btrfs_alloc_path();
7099 	if (!path) {
7100 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7101 						   root->nodesize);
7102 		return -ENOMEM;
7103 	}
7104 
7105 	path->leave_spinning = 1;
7106 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7107 				      ins, size);
7108 	if (ret) {
7109 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7110 						   root->nodesize);
7111 		btrfs_free_path(path);
7112 		return ret;
7113 	}
7114 
7115 	leaf = path->nodes[0];
7116 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7117 				     struct btrfs_extent_item);
7118 	btrfs_set_extent_refs(leaf, extent_item, 1);
7119 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7120 	btrfs_set_extent_flags(leaf, extent_item,
7121 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7122 
7123 	if (skinny_metadata) {
7124 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7125 		num_bytes = root->nodesize;
7126 	} else {
7127 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7128 		btrfs_set_tree_block_key(leaf, block_info, key);
7129 		btrfs_set_tree_block_level(leaf, block_info, level);
7130 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7131 	}
7132 
7133 	if (parent > 0) {
7134 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7135 		btrfs_set_extent_inline_ref_type(leaf, iref,
7136 						 BTRFS_SHARED_BLOCK_REF_KEY);
7137 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7138 	} else {
7139 		btrfs_set_extent_inline_ref_type(leaf, iref,
7140 						 BTRFS_TREE_BLOCK_REF_KEY);
7141 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7142 	}
7143 
7144 	btrfs_mark_buffer_dirty(leaf);
7145 	btrfs_free_path(path);
7146 
7147 	if (!no_quota) {
7148 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7149 					      ins->objectid, num_bytes,
7150 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7151 		if (ret)
7152 			return ret;
7153 	}
7154 
7155 	ret = update_block_group(root, ins->objectid, root->nodesize, 1);
7156 	if (ret) { /* -ENOENT, logic error */
7157 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7158 			ins->objectid, ins->offset);
7159 		BUG();
7160 	}
7161 
7162 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7163 	return ret;
7164 }
7165 
7166 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7167 				     struct btrfs_root *root,
7168 				     u64 root_objectid, u64 owner,
7169 				     u64 offset, struct btrfs_key *ins)
7170 {
7171 	int ret;
7172 
7173 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7174 
7175 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7176 					 ins->offset, 0,
7177 					 root_objectid, owner, offset,
7178 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7179 	return ret;
7180 }
7181 
7182 /*
7183  * this is used by the tree logging recovery code.  It records that
7184  * an extent has been allocated and makes sure to clear the free
7185  * space cache bits as well
7186  */
7187 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7188 				   struct btrfs_root *root,
7189 				   u64 root_objectid, u64 owner, u64 offset,
7190 				   struct btrfs_key *ins)
7191 {
7192 	int ret;
7193 	struct btrfs_block_group_cache *block_group;
7194 
7195 	/*
7196 	 * Mixed block groups will exclude before processing the log so we only
7197 	 * need to do the exlude dance if this fs isn't mixed.
7198 	 */
7199 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7200 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7201 		if (ret)
7202 			return ret;
7203 	}
7204 
7205 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7206 	if (!block_group)
7207 		return -EINVAL;
7208 
7209 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7210 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7211 	BUG_ON(ret); /* logic error */
7212 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7213 					 0, owner, offset, ins, 1);
7214 	btrfs_put_block_group(block_group);
7215 	return ret;
7216 }
7217 
7218 static struct extent_buffer *
7219 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7220 		      u64 bytenr, u32 blocksize, int level)
7221 {
7222 	struct extent_buffer *buf;
7223 
7224 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7225 	if (!buf)
7226 		return ERR_PTR(-ENOMEM);
7227 	btrfs_set_header_generation(buf, trans->transid);
7228 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7229 	btrfs_tree_lock(buf);
7230 	clean_tree_block(trans, root, buf);
7231 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7232 
7233 	btrfs_set_lock_blocking(buf);
7234 	btrfs_set_buffer_uptodate(buf);
7235 
7236 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7237 		buf->log_index = root->log_transid % 2;
7238 		/*
7239 		 * we allow two log transactions at a time, use different
7240 		 * EXENT bit to differentiate dirty pages.
7241 		 */
7242 		if (buf->log_index == 0)
7243 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7244 					buf->start + buf->len - 1, GFP_NOFS);
7245 		else
7246 			set_extent_new(&root->dirty_log_pages, buf->start,
7247 					buf->start + buf->len - 1, GFP_NOFS);
7248 	} else {
7249 		buf->log_index = -1;
7250 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7251 			 buf->start + buf->len - 1, GFP_NOFS);
7252 	}
7253 	trans->blocks_used++;
7254 	/* this returns a buffer locked for blocking */
7255 	return buf;
7256 }
7257 
7258 static struct btrfs_block_rsv *
7259 use_block_rsv(struct btrfs_trans_handle *trans,
7260 	      struct btrfs_root *root, u32 blocksize)
7261 {
7262 	struct btrfs_block_rsv *block_rsv;
7263 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7264 	int ret;
7265 	bool global_updated = false;
7266 
7267 	block_rsv = get_block_rsv(trans, root);
7268 
7269 	if (unlikely(block_rsv->size == 0))
7270 		goto try_reserve;
7271 again:
7272 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7273 	if (!ret)
7274 		return block_rsv;
7275 
7276 	if (block_rsv->failfast)
7277 		return ERR_PTR(ret);
7278 
7279 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7280 		global_updated = true;
7281 		update_global_block_rsv(root->fs_info);
7282 		goto again;
7283 	}
7284 
7285 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7286 		static DEFINE_RATELIMIT_STATE(_rs,
7287 				DEFAULT_RATELIMIT_INTERVAL * 10,
7288 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7289 		if (__ratelimit(&_rs))
7290 			WARN(1, KERN_DEBUG
7291 				"BTRFS: block rsv returned %d\n", ret);
7292 	}
7293 try_reserve:
7294 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7295 				     BTRFS_RESERVE_NO_FLUSH);
7296 	if (!ret)
7297 		return block_rsv;
7298 	/*
7299 	 * If we couldn't reserve metadata bytes try and use some from
7300 	 * the global reserve if its space type is the same as the global
7301 	 * reservation.
7302 	 */
7303 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7304 	    block_rsv->space_info == global_rsv->space_info) {
7305 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7306 		if (!ret)
7307 			return global_rsv;
7308 	}
7309 	return ERR_PTR(ret);
7310 }
7311 
7312 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7313 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7314 {
7315 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7316 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7317 }
7318 
7319 /*
7320  * finds a free extent and does all the dirty work required for allocation
7321  * returns the key for the extent through ins, and a tree buffer for
7322  * the first block of the extent through buf.
7323  *
7324  * returns the tree buffer or NULL.
7325  */
7326 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7327 					struct btrfs_root *root,
7328 					u64 parent, u64 root_objectid,
7329 					struct btrfs_disk_key *key, int level,
7330 					u64 hint, u64 empty_size)
7331 {
7332 	struct btrfs_key ins;
7333 	struct btrfs_block_rsv *block_rsv;
7334 	struct extent_buffer *buf;
7335 	u64 flags = 0;
7336 	int ret;
7337 	u32 blocksize = root->nodesize;
7338 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7339 						 SKINNY_METADATA);
7340 
7341 	if (btrfs_test_is_dummy_root(root)) {
7342 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7343 					    blocksize, level);
7344 		if (!IS_ERR(buf))
7345 			root->alloc_bytenr += blocksize;
7346 		return buf;
7347 	}
7348 
7349 	block_rsv = use_block_rsv(trans, root, blocksize);
7350 	if (IS_ERR(block_rsv))
7351 		return ERR_CAST(block_rsv);
7352 
7353 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7354 				   empty_size, hint, &ins, 0, 0);
7355 	if (ret) {
7356 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7357 		return ERR_PTR(ret);
7358 	}
7359 
7360 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7361 				    blocksize, level);
7362 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7363 
7364 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7365 		if (parent == 0)
7366 			parent = ins.objectid;
7367 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7368 	} else
7369 		BUG_ON(parent > 0);
7370 
7371 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7372 		struct btrfs_delayed_extent_op *extent_op;
7373 		extent_op = btrfs_alloc_delayed_extent_op();
7374 		BUG_ON(!extent_op); /* -ENOMEM */
7375 		if (key)
7376 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7377 		else
7378 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7379 		extent_op->flags_to_set = flags;
7380 		if (skinny_metadata)
7381 			extent_op->update_key = 0;
7382 		else
7383 			extent_op->update_key = 1;
7384 		extent_op->update_flags = 1;
7385 		extent_op->is_data = 0;
7386 		extent_op->level = level;
7387 
7388 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7389 					ins.objectid,
7390 					ins.offset, parent, root_objectid,
7391 					level, BTRFS_ADD_DELAYED_EXTENT,
7392 					extent_op, 0);
7393 		BUG_ON(ret); /* -ENOMEM */
7394 	}
7395 	return buf;
7396 }
7397 
7398 struct walk_control {
7399 	u64 refs[BTRFS_MAX_LEVEL];
7400 	u64 flags[BTRFS_MAX_LEVEL];
7401 	struct btrfs_key update_progress;
7402 	int stage;
7403 	int level;
7404 	int shared_level;
7405 	int update_ref;
7406 	int keep_locks;
7407 	int reada_slot;
7408 	int reada_count;
7409 	int for_reloc;
7410 };
7411 
7412 #define DROP_REFERENCE	1
7413 #define UPDATE_BACKREF	2
7414 
7415 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7416 				     struct btrfs_root *root,
7417 				     struct walk_control *wc,
7418 				     struct btrfs_path *path)
7419 {
7420 	u64 bytenr;
7421 	u64 generation;
7422 	u64 refs;
7423 	u64 flags;
7424 	u32 nritems;
7425 	u32 blocksize;
7426 	struct btrfs_key key;
7427 	struct extent_buffer *eb;
7428 	int ret;
7429 	int slot;
7430 	int nread = 0;
7431 
7432 	if (path->slots[wc->level] < wc->reada_slot) {
7433 		wc->reada_count = wc->reada_count * 2 / 3;
7434 		wc->reada_count = max(wc->reada_count, 2);
7435 	} else {
7436 		wc->reada_count = wc->reada_count * 3 / 2;
7437 		wc->reada_count = min_t(int, wc->reada_count,
7438 					BTRFS_NODEPTRS_PER_BLOCK(root));
7439 	}
7440 
7441 	eb = path->nodes[wc->level];
7442 	nritems = btrfs_header_nritems(eb);
7443 	blocksize = root->nodesize;
7444 
7445 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7446 		if (nread >= wc->reada_count)
7447 			break;
7448 
7449 		cond_resched();
7450 		bytenr = btrfs_node_blockptr(eb, slot);
7451 		generation = btrfs_node_ptr_generation(eb, slot);
7452 
7453 		if (slot == path->slots[wc->level])
7454 			goto reada;
7455 
7456 		if (wc->stage == UPDATE_BACKREF &&
7457 		    generation <= root->root_key.offset)
7458 			continue;
7459 
7460 		/* We don't lock the tree block, it's OK to be racy here */
7461 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7462 					       wc->level - 1, 1, &refs,
7463 					       &flags);
7464 		/* We don't care about errors in readahead. */
7465 		if (ret < 0)
7466 			continue;
7467 		BUG_ON(refs == 0);
7468 
7469 		if (wc->stage == DROP_REFERENCE) {
7470 			if (refs == 1)
7471 				goto reada;
7472 
7473 			if (wc->level == 1 &&
7474 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7475 				continue;
7476 			if (!wc->update_ref ||
7477 			    generation <= root->root_key.offset)
7478 				continue;
7479 			btrfs_node_key_to_cpu(eb, &key, slot);
7480 			ret = btrfs_comp_cpu_keys(&key,
7481 						  &wc->update_progress);
7482 			if (ret < 0)
7483 				continue;
7484 		} else {
7485 			if (wc->level == 1 &&
7486 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7487 				continue;
7488 		}
7489 reada:
7490 		readahead_tree_block(root, bytenr, blocksize);
7491 		nread++;
7492 	}
7493 	wc->reada_slot = slot;
7494 }
7495 
7496 static int account_leaf_items(struct btrfs_trans_handle *trans,
7497 			      struct btrfs_root *root,
7498 			      struct extent_buffer *eb)
7499 {
7500 	int nr = btrfs_header_nritems(eb);
7501 	int i, extent_type, ret;
7502 	struct btrfs_key key;
7503 	struct btrfs_file_extent_item *fi;
7504 	u64 bytenr, num_bytes;
7505 
7506 	for (i = 0; i < nr; i++) {
7507 		btrfs_item_key_to_cpu(eb, &key, i);
7508 
7509 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7510 			continue;
7511 
7512 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7513 		/* filter out non qgroup-accountable extents  */
7514 		extent_type = btrfs_file_extent_type(eb, fi);
7515 
7516 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7517 			continue;
7518 
7519 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7520 		if (!bytenr)
7521 			continue;
7522 
7523 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7524 
7525 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7526 					      root->objectid,
7527 					      bytenr, num_bytes,
7528 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7529 		if (ret)
7530 			return ret;
7531 	}
7532 	return 0;
7533 }
7534 
7535 /*
7536  * Walk up the tree from the bottom, freeing leaves and any interior
7537  * nodes which have had all slots visited. If a node (leaf or
7538  * interior) is freed, the node above it will have it's slot
7539  * incremented. The root node will never be freed.
7540  *
7541  * At the end of this function, we should have a path which has all
7542  * slots incremented to the next position for a search. If we need to
7543  * read a new node it will be NULL and the node above it will have the
7544  * correct slot selected for a later read.
7545  *
7546  * If we increment the root nodes slot counter past the number of
7547  * elements, 1 is returned to signal completion of the search.
7548  */
7549 static int adjust_slots_upwards(struct btrfs_root *root,
7550 				struct btrfs_path *path, int root_level)
7551 {
7552 	int level = 0;
7553 	int nr, slot;
7554 	struct extent_buffer *eb;
7555 
7556 	if (root_level == 0)
7557 		return 1;
7558 
7559 	while (level <= root_level) {
7560 		eb = path->nodes[level];
7561 		nr = btrfs_header_nritems(eb);
7562 		path->slots[level]++;
7563 		slot = path->slots[level];
7564 		if (slot >= nr || level == 0) {
7565 			/*
7566 			 * Don't free the root -  we will detect this
7567 			 * condition after our loop and return a
7568 			 * positive value for caller to stop walking the tree.
7569 			 */
7570 			if (level != root_level) {
7571 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7572 				path->locks[level] = 0;
7573 
7574 				free_extent_buffer(eb);
7575 				path->nodes[level] = NULL;
7576 				path->slots[level] = 0;
7577 			}
7578 		} else {
7579 			/*
7580 			 * We have a valid slot to walk back down
7581 			 * from. Stop here so caller can process these
7582 			 * new nodes.
7583 			 */
7584 			break;
7585 		}
7586 
7587 		level++;
7588 	}
7589 
7590 	eb = path->nodes[root_level];
7591 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7592 		return 1;
7593 
7594 	return 0;
7595 }
7596 
7597 /*
7598  * root_eb is the subtree root and is locked before this function is called.
7599  */
7600 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7601 				  struct btrfs_root *root,
7602 				  struct extent_buffer *root_eb,
7603 				  u64 root_gen,
7604 				  int root_level)
7605 {
7606 	int ret = 0;
7607 	int level;
7608 	struct extent_buffer *eb = root_eb;
7609 	struct btrfs_path *path = NULL;
7610 
7611 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7612 	BUG_ON(root_eb == NULL);
7613 
7614 	if (!root->fs_info->quota_enabled)
7615 		return 0;
7616 
7617 	if (!extent_buffer_uptodate(root_eb)) {
7618 		ret = btrfs_read_buffer(root_eb, root_gen);
7619 		if (ret)
7620 			goto out;
7621 	}
7622 
7623 	if (root_level == 0) {
7624 		ret = account_leaf_items(trans, root, root_eb);
7625 		goto out;
7626 	}
7627 
7628 	path = btrfs_alloc_path();
7629 	if (!path)
7630 		return -ENOMEM;
7631 
7632 	/*
7633 	 * Walk down the tree.  Missing extent blocks are filled in as
7634 	 * we go. Metadata is accounted every time we read a new
7635 	 * extent block.
7636 	 *
7637 	 * When we reach a leaf, we account for file extent items in it,
7638 	 * walk back up the tree (adjusting slot pointers as we go)
7639 	 * and restart the search process.
7640 	 */
7641 	extent_buffer_get(root_eb); /* For path */
7642 	path->nodes[root_level] = root_eb;
7643 	path->slots[root_level] = 0;
7644 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7645 walk_down:
7646 	level = root_level;
7647 	while (level >= 0) {
7648 		if (path->nodes[level] == NULL) {
7649 			int parent_slot;
7650 			u64 child_gen;
7651 			u64 child_bytenr;
7652 
7653 			/* We need to get child blockptr/gen from
7654 			 * parent before we can read it. */
7655 			eb = path->nodes[level + 1];
7656 			parent_slot = path->slots[level + 1];
7657 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7658 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7659 
7660 			eb = read_tree_block(root, child_bytenr, child_gen);
7661 			if (!eb || !extent_buffer_uptodate(eb)) {
7662 				ret = -EIO;
7663 				goto out;
7664 			}
7665 
7666 			path->nodes[level] = eb;
7667 			path->slots[level] = 0;
7668 
7669 			btrfs_tree_read_lock(eb);
7670 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7671 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7672 
7673 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7674 						root->objectid,
7675 						child_bytenr,
7676 						root->nodesize,
7677 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7678 						0);
7679 			if (ret)
7680 				goto out;
7681 
7682 		}
7683 
7684 		if (level == 0) {
7685 			ret = account_leaf_items(trans, root, path->nodes[level]);
7686 			if (ret)
7687 				goto out;
7688 
7689 			/* Nonzero return here means we completed our search */
7690 			ret = adjust_slots_upwards(root, path, root_level);
7691 			if (ret)
7692 				break;
7693 
7694 			/* Restart search with new slots */
7695 			goto walk_down;
7696 		}
7697 
7698 		level--;
7699 	}
7700 
7701 	ret = 0;
7702 out:
7703 	btrfs_free_path(path);
7704 
7705 	return ret;
7706 }
7707 
7708 /*
7709  * helper to process tree block while walking down the tree.
7710  *
7711  * when wc->stage == UPDATE_BACKREF, this function updates
7712  * back refs for pointers in the block.
7713  *
7714  * NOTE: return value 1 means we should stop walking down.
7715  */
7716 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7717 				   struct btrfs_root *root,
7718 				   struct btrfs_path *path,
7719 				   struct walk_control *wc, int lookup_info)
7720 {
7721 	int level = wc->level;
7722 	struct extent_buffer *eb = path->nodes[level];
7723 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7724 	int ret;
7725 
7726 	if (wc->stage == UPDATE_BACKREF &&
7727 	    btrfs_header_owner(eb) != root->root_key.objectid)
7728 		return 1;
7729 
7730 	/*
7731 	 * when reference count of tree block is 1, it won't increase
7732 	 * again. once full backref flag is set, we never clear it.
7733 	 */
7734 	if (lookup_info &&
7735 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7736 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7737 		BUG_ON(!path->locks[level]);
7738 		ret = btrfs_lookup_extent_info(trans, root,
7739 					       eb->start, level, 1,
7740 					       &wc->refs[level],
7741 					       &wc->flags[level]);
7742 		BUG_ON(ret == -ENOMEM);
7743 		if (ret)
7744 			return ret;
7745 		BUG_ON(wc->refs[level] == 0);
7746 	}
7747 
7748 	if (wc->stage == DROP_REFERENCE) {
7749 		if (wc->refs[level] > 1)
7750 			return 1;
7751 
7752 		if (path->locks[level] && !wc->keep_locks) {
7753 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7754 			path->locks[level] = 0;
7755 		}
7756 		return 0;
7757 	}
7758 
7759 	/* wc->stage == UPDATE_BACKREF */
7760 	if (!(wc->flags[level] & flag)) {
7761 		BUG_ON(!path->locks[level]);
7762 		ret = btrfs_inc_ref(trans, root, eb, 1);
7763 		BUG_ON(ret); /* -ENOMEM */
7764 		ret = btrfs_dec_ref(trans, root, eb, 0);
7765 		BUG_ON(ret); /* -ENOMEM */
7766 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7767 						  eb->len, flag,
7768 						  btrfs_header_level(eb), 0);
7769 		BUG_ON(ret); /* -ENOMEM */
7770 		wc->flags[level] |= flag;
7771 	}
7772 
7773 	/*
7774 	 * the block is shared by multiple trees, so it's not good to
7775 	 * keep the tree lock
7776 	 */
7777 	if (path->locks[level] && level > 0) {
7778 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7779 		path->locks[level] = 0;
7780 	}
7781 	return 0;
7782 }
7783 
7784 /*
7785  * helper to process tree block pointer.
7786  *
7787  * when wc->stage == DROP_REFERENCE, this function checks
7788  * reference count of the block pointed to. if the block
7789  * is shared and we need update back refs for the subtree
7790  * rooted at the block, this function changes wc->stage to
7791  * UPDATE_BACKREF. if the block is shared and there is no
7792  * need to update back, this function drops the reference
7793  * to the block.
7794  *
7795  * NOTE: return value 1 means we should stop walking down.
7796  */
7797 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7798 				 struct btrfs_root *root,
7799 				 struct btrfs_path *path,
7800 				 struct walk_control *wc, int *lookup_info)
7801 {
7802 	u64 bytenr;
7803 	u64 generation;
7804 	u64 parent;
7805 	u32 blocksize;
7806 	struct btrfs_key key;
7807 	struct extent_buffer *next;
7808 	int level = wc->level;
7809 	int reada = 0;
7810 	int ret = 0;
7811 	bool need_account = false;
7812 
7813 	generation = btrfs_node_ptr_generation(path->nodes[level],
7814 					       path->slots[level]);
7815 	/*
7816 	 * if the lower level block was created before the snapshot
7817 	 * was created, we know there is no need to update back refs
7818 	 * for the subtree
7819 	 */
7820 	if (wc->stage == UPDATE_BACKREF &&
7821 	    generation <= root->root_key.offset) {
7822 		*lookup_info = 1;
7823 		return 1;
7824 	}
7825 
7826 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7827 	blocksize = root->nodesize;
7828 
7829 	next = btrfs_find_tree_block(root, bytenr);
7830 	if (!next) {
7831 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7832 		if (!next)
7833 			return -ENOMEM;
7834 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7835 					       level - 1);
7836 		reada = 1;
7837 	}
7838 	btrfs_tree_lock(next);
7839 	btrfs_set_lock_blocking(next);
7840 
7841 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7842 				       &wc->refs[level - 1],
7843 				       &wc->flags[level - 1]);
7844 	if (ret < 0) {
7845 		btrfs_tree_unlock(next);
7846 		return ret;
7847 	}
7848 
7849 	if (unlikely(wc->refs[level - 1] == 0)) {
7850 		btrfs_err(root->fs_info, "Missing references.");
7851 		BUG();
7852 	}
7853 	*lookup_info = 0;
7854 
7855 	if (wc->stage == DROP_REFERENCE) {
7856 		if (wc->refs[level - 1] > 1) {
7857 			need_account = true;
7858 			if (level == 1 &&
7859 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7860 				goto skip;
7861 
7862 			if (!wc->update_ref ||
7863 			    generation <= root->root_key.offset)
7864 				goto skip;
7865 
7866 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7867 					      path->slots[level]);
7868 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7869 			if (ret < 0)
7870 				goto skip;
7871 
7872 			wc->stage = UPDATE_BACKREF;
7873 			wc->shared_level = level - 1;
7874 		}
7875 	} else {
7876 		if (level == 1 &&
7877 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7878 			goto skip;
7879 	}
7880 
7881 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7882 		btrfs_tree_unlock(next);
7883 		free_extent_buffer(next);
7884 		next = NULL;
7885 		*lookup_info = 1;
7886 	}
7887 
7888 	if (!next) {
7889 		if (reada && level == 1)
7890 			reada_walk_down(trans, root, wc, path);
7891 		next = read_tree_block(root, bytenr, generation);
7892 		if (!next || !extent_buffer_uptodate(next)) {
7893 			free_extent_buffer(next);
7894 			return -EIO;
7895 		}
7896 		btrfs_tree_lock(next);
7897 		btrfs_set_lock_blocking(next);
7898 	}
7899 
7900 	level--;
7901 	BUG_ON(level != btrfs_header_level(next));
7902 	path->nodes[level] = next;
7903 	path->slots[level] = 0;
7904 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7905 	wc->level = level;
7906 	if (wc->level == 1)
7907 		wc->reada_slot = 0;
7908 	return 0;
7909 skip:
7910 	wc->refs[level - 1] = 0;
7911 	wc->flags[level - 1] = 0;
7912 	if (wc->stage == DROP_REFERENCE) {
7913 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7914 			parent = path->nodes[level]->start;
7915 		} else {
7916 			BUG_ON(root->root_key.objectid !=
7917 			       btrfs_header_owner(path->nodes[level]));
7918 			parent = 0;
7919 		}
7920 
7921 		if (need_account) {
7922 			ret = account_shared_subtree(trans, root, next,
7923 						     generation, level - 1);
7924 			if (ret) {
7925 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7926 					"%d accounting shared subtree. Quota "
7927 					"is out of sync, rescan required.\n",
7928 					root->fs_info->sb->s_id, ret);
7929 			}
7930 		}
7931 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7932 				root->root_key.objectid, level - 1, 0, 0);
7933 		BUG_ON(ret); /* -ENOMEM */
7934 	}
7935 	btrfs_tree_unlock(next);
7936 	free_extent_buffer(next);
7937 	*lookup_info = 1;
7938 	return 1;
7939 }
7940 
7941 /*
7942  * helper to process tree block while walking up the tree.
7943  *
7944  * when wc->stage == DROP_REFERENCE, this function drops
7945  * reference count on the block.
7946  *
7947  * when wc->stage == UPDATE_BACKREF, this function changes
7948  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7949  * to UPDATE_BACKREF previously while processing the block.
7950  *
7951  * NOTE: return value 1 means we should stop walking up.
7952  */
7953 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7954 				 struct btrfs_root *root,
7955 				 struct btrfs_path *path,
7956 				 struct walk_control *wc)
7957 {
7958 	int ret;
7959 	int level = wc->level;
7960 	struct extent_buffer *eb = path->nodes[level];
7961 	u64 parent = 0;
7962 
7963 	if (wc->stage == UPDATE_BACKREF) {
7964 		BUG_ON(wc->shared_level < level);
7965 		if (level < wc->shared_level)
7966 			goto out;
7967 
7968 		ret = find_next_key(path, level + 1, &wc->update_progress);
7969 		if (ret > 0)
7970 			wc->update_ref = 0;
7971 
7972 		wc->stage = DROP_REFERENCE;
7973 		wc->shared_level = -1;
7974 		path->slots[level] = 0;
7975 
7976 		/*
7977 		 * check reference count again if the block isn't locked.
7978 		 * we should start walking down the tree again if reference
7979 		 * count is one.
7980 		 */
7981 		if (!path->locks[level]) {
7982 			BUG_ON(level == 0);
7983 			btrfs_tree_lock(eb);
7984 			btrfs_set_lock_blocking(eb);
7985 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7986 
7987 			ret = btrfs_lookup_extent_info(trans, root,
7988 						       eb->start, level, 1,
7989 						       &wc->refs[level],
7990 						       &wc->flags[level]);
7991 			if (ret < 0) {
7992 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7993 				path->locks[level] = 0;
7994 				return ret;
7995 			}
7996 			BUG_ON(wc->refs[level] == 0);
7997 			if (wc->refs[level] == 1) {
7998 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7999 				path->locks[level] = 0;
8000 				return 1;
8001 			}
8002 		}
8003 	}
8004 
8005 	/* wc->stage == DROP_REFERENCE */
8006 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8007 
8008 	if (wc->refs[level] == 1) {
8009 		if (level == 0) {
8010 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8011 				ret = btrfs_dec_ref(trans, root, eb, 1);
8012 			else
8013 				ret = btrfs_dec_ref(trans, root, eb, 0);
8014 			BUG_ON(ret); /* -ENOMEM */
8015 			ret = account_leaf_items(trans, root, eb);
8016 			if (ret) {
8017 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8018 					"%d accounting leaf items. Quota "
8019 					"is out of sync, rescan required.\n",
8020 					root->fs_info->sb->s_id, ret);
8021 			}
8022 		}
8023 		/* make block locked assertion in clean_tree_block happy */
8024 		if (!path->locks[level] &&
8025 		    btrfs_header_generation(eb) == trans->transid) {
8026 			btrfs_tree_lock(eb);
8027 			btrfs_set_lock_blocking(eb);
8028 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8029 		}
8030 		clean_tree_block(trans, root, eb);
8031 	}
8032 
8033 	if (eb == root->node) {
8034 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8035 			parent = eb->start;
8036 		else
8037 			BUG_ON(root->root_key.objectid !=
8038 			       btrfs_header_owner(eb));
8039 	} else {
8040 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8041 			parent = path->nodes[level + 1]->start;
8042 		else
8043 			BUG_ON(root->root_key.objectid !=
8044 			       btrfs_header_owner(path->nodes[level + 1]));
8045 	}
8046 
8047 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8048 out:
8049 	wc->refs[level] = 0;
8050 	wc->flags[level] = 0;
8051 	return 0;
8052 }
8053 
8054 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8055 				   struct btrfs_root *root,
8056 				   struct btrfs_path *path,
8057 				   struct walk_control *wc)
8058 {
8059 	int level = wc->level;
8060 	int lookup_info = 1;
8061 	int ret;
8062 
8063 	while (level >= 0) {
8064 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8065 		if (ret > 0)
8066 			break;
8067 
8068 		if (level == 0)
8069 			break;
8070 
8071 		if (path->slots[level] >=
8072 		    btrfs_header_nritems(path->nodes[level]))
8073 			break;
8074 
8075 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8076 		if (ret > 0) {
8077 			path->slots[level]++;
8078 			continue;
8079 		} else if (ret < 0)
8080 			return ret;
8081 		level = wc->level;
8082 	}
8083 	return 0;
8084 }
8085 
8086 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8087 				 struct btrfs_root *root,
8088 				 struct btrfs_path *path,
8089 				 struct walk_control *wc, int max_level)
8090 {
8091 	int level = wc->level;
8092 	int ret;
8093 
8094 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8095 	while (level < max_level && path->nodes[level]) {
8096 		wc->level = level;
8097 		if (path->slots[level] + 1 <
8098 		    btrfs_header_nritems(path->nodes[level])) {
8099 			path->slots[level]++;
8100 			return 0;
8101 		} else {
8102 			ret = walk_up_proc(trans, root, path, wc);
8103 			if (ret > 0)
8104 				return 0;
8105 
8106 			if (path->locks[level]) {
8107 				btrfs_tree_unlock_rw(path->nodes[level],
8108 						     path->locks[level]);
8109 				path->locks[level] = 0;
8110 			}
8111 			free_extent_buffer(path->nodes[level]);
8112 			path->nodes[level] = NULL;
8113 			level++;
8114 		}
8115 	}
8116 	return 1;
8117 }
8118 
8119 /*
8120  * drop a subvolume tree.
8121  *
8122  * this function traverses the tree freeing any blocks that only
8123  * referenced by the tree.
8124  *
8125  * when a shared tree block is found. this function decreases its
8126  * reference count by one. if update_ref is true, this function
8127  * also make sure backrefs for the shared block and all lower level
8128  * blocks are properly updated.
8129  *
8130  * If called with for_reloc == 0, may exit early with -EAGAIN
8131  */
8132 int btrfs_drop_snapshot(struct btrfs_root *root,
8133 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8134 			 int for_reloc)
8135 {
8136 	struct btrfs_path *path;
8137 	struct btrfs_trans_handle *trans;
8138 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8139 	struct btrfs_root_item *root_item = &root->root_item;
8140 	struct walk_control *wc;
8141 	struct btrfs_key key;
8142 	int err = 0;
8143 	int ret;
8144 	int level;
8145 	bool root_dropped = false;
8146 
8147 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8148 
8149 	path = btrfs_alloc_path();
8150 	if (!path) {
8151 		err = -ENOMEM;
8152 		goto out;
8153 	}
8154 
8155 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8156 	if (!wc) {
8157 		btrfs_free_path(path);
8158 		err = -ENOMEM;
8159 		goto out;
8160 	}
8161 
8162 	trans = btrfs_start_transaction(tree_root, 0);
8163 	if (IS_ERR(trans)) {
8164 		err = PTR_ERR(trans);
8165 		goto out_free;
8166 	}
8167 
8168 	if (block_rsv)
8169 		trans->block_rsv = block_rsv;
8170 
8171 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8172 		level = btrfs_header_level(root->node);
8173 		path->nodes[level] = btrfs_lock_root_node(root);
8174 		btrfs_set_lock_blocking(path->nodes[level]);
8175 		path->slots[level] = 0;
8176 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8177 		memset(&wc->update_progress, 0,
8178 		       sizeof(wc->update_progress));
8179 	} else {
8180 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8181 		memcpy(&wc->update_progress, &key,
8182 		       sizeof(wc->update_progress));
8183 
8184 		level = root_item->drop_level;
8185 		BUG_ON(level == 0);
8186 		path->lowest_level = level;
8187 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8188 		path->lowest_level = 0;
8189 		if (ret < 0) {
8190 			err = ret;
8191 			goto out_end_trans;
8192 		}
8193 		WARN_ON(ret > 0);
8194 
8195 		/*
8196 		 * unlock our path, this is safe because only this
8197 		 * function is allowed to delete this snapshot
8198 		 */
8199 		btrfs_unlock_up_safe(path, 0);
8200 
8201 		level = btrfs_header_level(root->node);
8202 		while (1) {
8203 			btrfs_tree_lock(path->nodes[level]);
8204 			btrfs_set_lock_blocking(path->nodes[level]);
8205 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8206 
8207 			ret = btrfs_lookup_extent_info(trans, root,
8208 						path->nodes[level]->start,
8209 						level, 1, &wc->refs[level],
8210 						&wc->flags[level]);
8211 			if (ret < 0) {
8212 				err = ret;
8213 				goto out_end_trans;
8214 			}
8215 			BUG_ON(wc->refs[level] == 0);
8216 
8217 			if (level == root_item->drop_level)
8218 				break;
8219 
8220 			btrfs_tree_unlock(path->nodes[level]);
8221 			path->locks[level] = 0;
8222 			WARN_ON(wc->refs[level] != 1);
8223 			level--;
8224 		}
8225 	}
8226 
8227 	wc->level = level;
8228 	wc->shared_level = -1;
8229 	wc->stage = DROP_REFERENCE;
8230 	wc->update_ref = update_ref;
8231 	wc->keep_locks = 0;
8232 	wc->for_reloc = for_reloc;
8233 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8234 
8235 	while (1) {
8236 
8237 		ret = walk_down_tree(trans, root, path, wc);
8238 		if (ret < 0) {
8239 			err = ret;
8240 			break;
8241 		}
8242 
8243 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8244 		if (ret < 0) {
8245 			err = ret;
8246 			break;
8247 		}
8248 
8249 		if (ret > 0) {
8250 			BUG_ON(wc->stage != DROP_REFERENCE);
8251 			break;
8252 		}
8253 
8254 		if (wc->stage == DROP_REFERENCE) {
8255 			level = wc->level;
8256 			btrfs_node_key(path->nodes[level],
8257 				       &root_item->drop_progress,
8258 				       path->slots[level]);
8259 			root_item->drop_level = level;
8260 		}
8261 
8262 		BUG_ON(wc->level == 0);
8263 		if (btrfs_should_end_transaction(trans, tree_root) ||
8264 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8265 			ret = btrfs_update_root(trans, tree_root,
8266 						&root->root_key,
8267 						root_item);
8268 			if (ret) {
8269 				btrfs_abort_transaction(trans, tree_root, ret);
8270 				err = ret;
8271 				goto out_end_trans;
8272 			}
8273 
8274 			/*
8275 			 * Qgroup update accounting is run from
8276 			 * delayed ref handling. This usually works
8277 			 * out because delayed refs are normally the
8278 			 * only way qgroup updates are added. However,
8279 			 * we may have added updates during our tree
8280 			 * walk so run qgroups here to make sure we
8281 			 * don't lose any updates.
8282 			 */
8283 			ret = btrfs_delayed_qgroup_accounting(trans,
8284 							      root->fs_info);
8285 			if (ret)
8286 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8287 						   "running qgroup updates "
8288 						   "during snapshot delete. "
8289 						   "Quota is out of sync, "
8290 						   "rescan required.\n", ret);
8291 
8292 			btrfs_end_transaction_throttle(trans, tree_root);
8293 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8294 				pr_debug("BTRFS: drop snapshot early exit\n");
8295 				err = -EAGAIN;
8296 				goto out_free;
8297 			}
8298 
8299 			trans = btrfs_start_transaction(tree_root, 0);
8300 			if (IS_ERR(trans)) {
8301 				err = PTR_ERR(trans);
8302 				goto out_free;
8303 			}
8304 			if (block_rsv)
8305 				trans->block_rsv = block_rsv;
8306 		}
8307 	}
8308 	btrfs_release_path(path);
8309 	if (err)
8310 		goto out_end_trans;
8311 
8312 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8313 	if (ret) {
8314 		btrfs_abort_transaction(trans, tree_root, ret);
8315 		goto out_end_trans;
8316 	}
8317 
8318 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8319 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8320 				      NULL, NULL);
8321 		if (ret < 0) {
8322 			btrfs_abort_transaction(trans, tree_root, ret);
8323 			err = ret;
8324 			goto out_end_trans;
8325 		} else if (ret > 0) {
8326 			/* if we fail to delete the orphan item this time
8327 			 * around, it'll get picked up the next time.
8328 			 *
8329 			 * The most common failure here is just -ENOENT.
8330 			 */
8331 			btrfs_del_orphan_item(trans, tree_root,
8332 					      root->root_key.objectid);
8333 		}
8334 	}
8335 
8336 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8337 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8338 	} else {
8339 		free_extent_buffer(root->node);
8340 		free_extent_buffer(root->commit_root);
8341 		btrfs_put_fs_root(root);
8342 	}
8343 	root_dropped = true;
8344 out_end_trans:
8345 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8346 	if (ret)
8347 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8348 				   "running qgroup updates "
8349 				   "during snapshot delete. "
8350 				   "Quota is out of sync, "
8351 				   "rescan required.\n", ret);
8352 
8353 	btrfs_end_transaction_throttle(trans, tree_root);
8354 out_free:
8355 	kfree(wc);
8356 	btrfs_free_path(path);
8357 out:
8358 	/*
8359 	 * So if we need to stop dropping the snapshot for whatever reason we
8360 	 * need to make sure to add it back to the dead root list so that we
8361 	 * keep trying to do the work later.  This also cleans up roots if we
8362 	 * don't have it in the radix (like when we recover after a power fail
8363 	 * or unmount) so we don't leak memory.
8364 	 */
8365 	if (!for_reloc && root_dropped == false)
8366 		btrfs_add_dead_root(root);
8367 	if (err && err != -EAGAIN)
8368 		btrfs_std_error(root->fs_info, err);
8369 	return err;
8370 }
8371 
8372 /*
8373  * drop subtree rooted at tree block 'node'.
8374  *
8375  * NOTE: this function will unlock and release tree block 'node'
8376  * only used by relocation code
8377  */
8378 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8379 			struct btrfs_root *root,
8380 			struct extent_buffer *node,
8381 			struct extent_buffer *parent)
8382 {
8383 	struct btrfs_path *path;
8384 	struct walk_control *wc;
8385 	int level;
8386 	int parent_level;
8387 	int ret = 0;
8388 	int wret;
8389 
8390 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8391 
8392 	path = btrfs_alloc_path();
8393 	if (!path)
8394 		return -ENOMEM;
8395 
8396 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8397 	if (!wc) {
8398 		btrfs_free_path(path);
8399 		return -ENOMEM;
8400 	}
8401 
8402 	btrfs_assert_tree_locked(parent);
8403 	parent_level = btrfs_header_level(parent);
8404 	extent_buffer_get(parent);
8405 	path->nodes[parent_level] = parent;
8406 	path->slots[parent_level] = btrfs_header_nritems(parent);
8407 
8408 	btrfs_assert_tree_locked(node);
8409 	level = btrfs_header_level(node);
8410 	path->nodes[level] = node;
8411 	path->slots[level] = 0;
8412 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8413 
8414 	wc->refs[parent_level] = 1;
8415 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8416 	wc->level = level;
8417 	wc->shared_level = -1;
8418 	wc->stage = DROP_REFERENCE;
8419 	wc->update_ref = 0;
8420 	wc->keep_locks = 1;
8421 	wc->for_reloc = 1;
8422 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8423 
8424 	while (1) {
8425 		wret = walk_down_tree(trans, root, path, wc);
8426 		if (wret < 0) {
8427 			ret = wret;
8428 			break;
8429 		}
8430 
8431 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8432 		if (wret < 0)
8433 			ret = wret;
8434 		if (wret != 0)
8435 			break;
8436 	}
8437 
8438 	kfree(wc);
8439 	btrfs_free_path(path);
8440 	return ret;
8441 }
8442 
8443 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8444 {
8445 	u64 num_devices;
8446 	u64 stripped;
8447 
8448 	/*
8449 	 * if restripe for this chunk_type is on pick target profile and
8450 	 * return, otherwise do the usual balance
8451 	 */
8452 	stripped = get_restripe_target(root->fs_info, flags);
8453 	if (stripped)
8454 		return extended_to_chunk(stripped);
8455 
8456 	num_devices = root->fs_info->fs_devices->rw_devices;
8457 
8458 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8459 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8460 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8461 
8462 	if (num_devices == 1) {
8463 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8464 		stripped = flags & ~stripped;
8465 
8466 		/* turn raid0 into single device chunks */
8467 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8468 			return stripped;
8469 
8470 		/* turn mirroring into duplication */
8471 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8472 			     BTRFS_BLOCK_GROUP_RAID10))
8473 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8474 	} else {
8475 		/* they already had raid on here, just return */
8476 		if (flags & stripped)
8477 			return flags;
8478 
8479 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8480 		stripped = flags & ~stripped;
8481 
8482 		/* switch duplicated blocks with raid1 */
8483 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8484 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8485 
8486 		/* this is drive concat, leave it alone */
8487 	}
8488 
8489 	return flags;
8490 }
8491 
8492 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8493 {
8494 	struct btrfs_space_info *sinfo = cache->space_info;
8495 	u64 num_bytes;
8496 	u64 min_allocable_bytes;
8497 	int ret = -ENOSPC;
8498 
8499 
8500 	/*
8501 	 * We need some metadata space and system metadata space for
8502 	 * allocating chunks in some corner cases until we force to set
8503 	 * it to be readonly.
8504 	 */
8505 	if ((sinfo->flags &
8506 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8507 	    !force)
8508 		min_allocable_bytes = 1 * 1024 * 1024;
8509 	else
8510 		min_allocable_bytes = 0;
8511 
8512 	spin_lock(&sinfo->lock);
8513 	spin_lock(&cache->lock);
8514 
8515 	if (cache->ro) {
8516 		ret = 0;
8517 		goto out;
8518 	}
8519 
8520 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8521 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8522 
8523 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8524 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8525 	    min_allocable_bytes <= sinfo->total_bytes) {
8526 		sinfo->bytes_readonly += num_bytes;
8527 		cache->ro = 1;
8528 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8529 		ret = 0;
8530 	}
8531 out:
8532 	spin_unlock(&cache->lock);
8533 	spin_unlock(&sinfo->lock);
8534 	return ret;
8535 }
8536 
8537 int btrfs_set_block_group_ro(struct btrfs_root *root,
8538 			     struct btrfs_block_group_cache *cache)
8539 
8540 {
8541 	struct btrfs_trans_handle *trans;
8542 	u64 alloc_flags;
8543 	int ret;
8544 
8545 	BUG_ON(cache->ro);
8546 
8547 	trans = btrfs_join_transaction(root);
8548 	if (IS_ERR(trans))
8549 		return PTR_ERR(trans);
8550 
8551 	alloc_flags = update_block_group_flags(root, cache->flags);
8552 	if (alloc_flags != cache->flags) {
8553 		ret = do_chunk_alloc(trans, root, alloc_flags,
8554 				     CHUNK_ALLOC_FORCE);
8555 		if (ret < 0)
8556 			goto out;
8557 	}
8558 
8559 	ret = set_block_group_ro(cache, 0);
8560 	if (!ret)
8561 		goto out;
8562 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8563 	ret = do_chunk_alloc(trans, root, alloc_flags,
8564 			     CHUNK_ALLOC_FORCE);
8565 	if (ret < 0)
8566 		goto out;
8567 	ret = set_block_group_ro(cache, 0);
8568 out:
8569 	btrfs_end_transaction(trans, root);
8570 	return ret;
8571 }
8572 
8573 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8574 			    struct btrfs_root *root, u64 type)
8575 {
8576 	u64 alloc_flags = get_alloc_profile(root, type);
8577 	return do_chunk_alloc(trans, root, alloc_flags,
8578 			      CHUNK_ALLOC_FORCE);
8579 }
8580 
8581 /*
8582  * helper to account the unused space of all the readonly block group in the
8583  * space_info. takes mirrors into account.
8584  */
8585 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8586 {
8587 	struct btrfs_block_group_cache *block_group;
8588 	u64 free_bytes = 0;
8589 	int factor;
8590 
8591 	/* It's df, we don't care if it's racey */
8592 	if (list_empty(&sinfo->ro_bgs))
8593 		return 0;
8594 
8595 	spin_lock(&sinfo->lock);
8596 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8597 		spin_lock(&block_group->lock);
8598 
8599 		if (!block_group->ro) {
8600 			spin_unlock(&block_group->lock);
8601 			continue;
8602 		}
8603 
8604 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8605 					  BTRFS_BLOCK_GROUP_RAID10 |
8606 					  BTRFS_BLOCK_GROUP_DUP))
8607 			factor = 2;
8608 		else
8609 			factor = 1;
8610 
8611 		free_bytes += (block_group->key.offset -
8612 			       btrfs_block_group_used(&block_group->item)) *
8613 			       factor;
8614 
8615 		spin_unlock(&block_group->lock);
8616 	}
8617 	spin_unlock(&sinfo->lock);
8618 
8619 	return free_bytes;
8620 }
8621 
8622 void btrfs_set_block_group_rw(struct btrfs_root *root,
8623 			      struct btrfs_block_group_cache *cache)
8624 {
8625 	struct btrfs_space_info *sinfo = cache->space_info;
8626 	u64 num_bytes;
8627 
8628 	BUG_ON(!cache->ro);
8629 
8630 	spin_lock(&sinfo->lock);
8631 	spin_lock(&cache->lock);
8632 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8633 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8634 	sinfo->bytes_readonly -= num_bytes;
8635 	cache->ro = 0;
8636 	list_del_init(&cache->ro_list);
8637 	spin_unlock(&cache->lock);
8638 	spin_unlock(&sinfo->lock);
8639 }
8640 
8641 /*
8642  * checks to see if its even possible to relocate this block group.
8643  *
8644  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8645  * ok to go ahead and try.
8646  */
8647 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8648 {
8649 	struct btrfs_block_group_cache *block_group;
8650 	struct btrfs_space_info *space_info;
8651 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8652 	struct btrfs_device *device;
8653 	struct btrfs_trans_handle *trans;
8654 	u64 min_free;
8655 	u64 dev_min = 1;
8656 	u64 dev_nr = 0;
8657 	u64 target;
8658 	int index;
8659 	int full = 0;
8660 	int ret = 0;
8661 
8662 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8663 
8664 	/* odd, couldn't find the block group, leave it alone */
8665 	if (!block_group)
8666 		return -1;
8667 
8668 	min_free = btrfs_block_group_used(&block_group->item);
8669 
8670 	/* no bytes used, we're good */
8671 	if (!min_free)
8672 		goto out;
8673 
8674 	space_info = block_group->space_info;
8675 	spin_lock(&space_info->lock);
8676 
8677 	full = space_info->full;
8678 
8679 	/*
8680 	 * if this is the last block group we have in this space, we can't
8681 	 * relocate it unless we're able to allocate a new chunk below.
8682 	 *
8683 	 * Otherwise, we need to make sure we have room in the space to handle
8684 	 * all of the extents from this block group.  If we can, we're good
8685 	 */
8686 	if ((space_info->total_bytes != block_group->key.offset) &&
8687 	    (space_info->bytes_used + space_info->bytes_reserved +
8688 	     space_info->bytes_pinned + space_info->bytes_readonly +
8689 	     min_free < space_info->total_bytes)) {
8690 		spin_unlock(&space_info->lock);
8691 		goto out;
8692 	}
8693 	spin_unlock(&space_info->lock);
8694 
8695 	/*
8696 	 * ok we don't have enough space, but maybe we have free space on our
8697 	 * devices to allocate new chunks for relocation, so loop through our
8698 	 * alloc devices and guess if we have enough space.  if this block
8699 	 * group is going to be restriped, run checks against the target
8700 	 * profile instead of the current one.
8701 	 */
8702 	ret = -1;
8703 
8704 	/*
8705 	 * index:
8706 	 *      0: raid10
8707 	 *      1: raid1
8708 	 *      2: dup
8709 	 *      3: raid0
8710 	 *      4: single
8711 	 */
8712 	target = get_restripe_target(root->fs_info, block_group->flags);
8713 	if (target) {
8714 		index = __get_raid_index(extended_to_chunk(target));
8715 	} else {
8716 		/*
8717 		 * this is just a balance, so if we were marked as full
8718 		 * we know there is no space for a new chunk
8719 		 */
8720 		if (full)
8721 			goto out;
8722 
8723 		index = get_block_group_index(block_group);
8724 	}
8725 
8726 	if (index == BTRFS_RAID_RAID10) {
8727 		dev_min = 4;
8728 		/* Divide by 2 */
8729 		min_free >>= 1;
8730 	} else if (index == BTRFS_RAID_RAID1) {
8731 		dev_min = 2;
8732 	} else if (index == BTRFS_RAID_DUP) {
8733 		/* Multiply by 2 */
8734 		min_free <<= 1;
8735 	} else if (index == BTRFS_RAID_RAID0) {
8736 		dev_min = fs_devices->rw_devices;
8737 		do_div(min_free, dev_min);
8738 	}
8739 
8740 	/* We need to do this so that we can look at pending chunks */
8741 	trans = btrfs_join_transaction(root);
8742 	if (IS_ERR(trans)) {
8743 		ret = PTR_ERR(trans);
8744 		goto out;
8745 	}
8746 
8747 	mutex_lock(&root->fs_info->chunk_mutex);
8748 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8749 		u64 dev_offset;
8750 
8751 		/*
8752 		 * check to make sure we can actually find a chunk with enough
8753 		 * space to fit our block group in.
8754 		 */
8755 		if (device->total_bytes > device->bytes_used + min_free &&
8756 		    !device->is_tgtdev_for_dev_replace) {
8757 			ret = find_free_dev_extent(trans, device, min_free,
8758 						   &dev_offset, NULL);
8759 			if (!ret)
8760 				dev_nr++;
8761 
8762 			if (dev_nr >= dev_min)
8763 				break;
8764 
8765 			ret = -1;
8766 		}
8767 	}
8768 	mutex_unlock(&root->fs_info->chunk_mutex);
8769 	btrfs_end_transaction(trans, root);
8770 out:
8771 	btrfs_put_block_group(block_group);
8772 	return ret;
8773 }
8774 
8775 static int find_first_block_group(struct btrfs_root *root,
8776 		struct btrfs_path *path, struct btrfs_key *key)
8777 {
8778 	int ret = 0;
8779 	struct btrfs_key found_key;
8780 	struct extent_buffer *leaf;
8781 	int slot;
8782 
8783 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8784 	if (ret < 0)
8785 		goto out;
8786 
8787 	while (1) {
8788 		slot = path->slots[0];
8789 		leaf = path->nodes[0];
8790 		if (slot >= btrfs_header_nritems(leaf)) {
8791 			ret = btrfs_next_leaf(root, path);
8792 			if (ret == 0)
8793 				continue;
8794 			if (ret < 0)
8795 				goto out;
8796 			break;
8797 		}
8798 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8799 
8800 		if (found_key.objectid >= key->objectid &&
8801 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8802 			ret = 0;
8803 			goto out;
8804 		}
8805 		path->slots[0]++;
8806 	}
8807 out:
8808 	return ret;
8809 }
8810 
8811 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8812 {
8813 	struct btrfs_block_group_cache *block_group;
8814 	u64 last = 0;
8815 
8816 	while (1) {
8817 		struct inode *inode;
8818 
8819 		block_group = btrfs_lookup_first_block_group(info, last);
8820 		while (block_group) {
8821 			spin_lock(&block_group->lock);
8822 			if (block_group->iref)
8823 				break;
8824 			spin_unlock(&block_group->lock);
8825 			block_group = next_block_group(info->tree_root,
8826 						       block_group);
8827 		}
8828 		if (!block_group) {
8829 			if (last == 0)
8830 				break;
8831 			last = 0;
8832 			continue;
8833 		}
8834 
8835 		inode = block_group->inode;
8836 		block_group->iref = 0;
8837 		block_group->inode = NULL;
8838 		spin_unlock(&block_group->lock);
8839 		iput(inode);
8840 		last = block_group->key.objectid + block_group->key.offset;
8841 		btrfs_put_block_group(block_group);
8842 	}
8843 }
8844 
8845 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8846 {
8847 	struct btrfs_block_group_cache *block_group;
8848 	struct btrfs_space_info *space_info;
8849 	struct btrfs_caching_control *caching_ctl;
8850 	struct rb_node *n;
8851 
8852 	down_write(&info->commit_root_sem);
8853 	while (!list_empty(&info->caching_block_groups)) {
8854 		caching_ctl = list_entry(info->caching_block_groups.next,
8855 					 struct btrfs_caching_control, list);
8856 		list_del(&caching_ctl->list);
8857 		put_caching_control(caching_ctl);
8858 	}
8859 	up_write(&info->commit_root_sem);
8860 
8861 	spin_lock(&info->unused_bgs_lock);
8862 	while (!list_empty(&info->unused_bgs)) {
8863 		block_group = list_first_entry(&info->unused_bgs,
8864 					       struct btrfs_block_group_cache,
8865 					       bg_list);
8866 		list_del_init(&block_group->bg_list);
8867 		btrfs_put_block_group(block_group);
8868 	}
8869 	spin_unlock(&info->unused_bgs_lock);
8870 
8871 	spin_lock(&info->block_group_cache_lock);
8872 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8873 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8874 				       cache_node);
8875 		rb_erase(&block_group->cache_node,
8876 			 &info->block_group_cache_tree);
8877 		RB_CLEAR_NODE(&block_group->cache_node);
8878 		spin_unlock(&info->block_group_cache_lock);
8879 
8880 		down_write(&block_group->space_info->groups_sem);
8881 		list_del(&block_group->list);
8882 		up_write(&block_group->space_info->groups_sem);
8883 
8884 		if (block_group->cached == BTRFS_CACHE_STARTED)
8885 			wait_block_group_cache_done(block_group);
8886 
8887 		/*
8888 		 * We haven't cached this block group, which means we could
8889 		 * possibly have excluded extents on this block group.
8890 		 */
8891 		if (block_group->cached == BTRFS_CACHE_NO ||
8892 		    block_group->cached == BTRFS_CACHE_ERROR)
8893 			free_excluded_extents(info->extent_root, block_group);
8894 
8895 		btrfs_remove_free_space_cache(block_group);
8896 		btrfs_put_block_group(block_group);
8897 
8898 		spin_lock(&info->block_group_cache_lock);
8899 	}
8900 	spin_unlock(&info->block_group_cache_lock);
8901 
8902 	/* now that all the block groups are freed, go through and
8903 	 * free all the space_info structs.  This is only called during
8904 	 * the final stages of unmount, and so we know nobody is
8905 	 * using them.  We call synchronize_rcu() once before we start,
8906 	 * just to be on the safe side.
8907 	 */
8908 	synchronize_rcu();
8909 
8910 	release_global_block_rsv(info);
8911 
8912 	while (!list_empty(&info->space_info)) {
8913 		int i;
8914 
8915 		space_info = list_entry(info->space_info.next,
8916 					struct btrfs_space_info,
8917 					list);
8918 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8919 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8920 			    space_info->bytes_reserved > 0 ||
8921 			    space_info->bytes_may_use > 0)) {
8922 				dump_space_info(space_info, 0, 0);
8923 			}
8924 		}
8925 		list_del(&space_info->list);
8926 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8927 			struct kobject *kobj;
8928 			kobj = space_info->block_group_kobjs[i];
8929 			space_info->block_group_kobjs[i] = NULL;
8930 			if (kobj) {
8931 				kobject_del(kobj);
8932 				kobject_put(kobj);
8933 			}
8934 		}
8935 		kobject_del(&space_info->kobj);
8936 		kobject_put(&space_info->kobj);
8937 	}
8938 	return 0;
8939 }
8940 
8941 static void __link_block_group(struct btrfs_space_info *space_info,
8942 			       struct btrfs_block_group_cache *cache)
8943 {
8944 	int index = get_block_group_index(cache);
8945 	bool first = false;
8946 
8947 	down_write(&space_info->groups_sem);
8948 	if (list_empty(&space_info->block_groups[index]))
8949 		first = true;
8950 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8951 	up_write(&space_info->groups_sem);
8952 
8953 	if (first) {
8954 		struct raid_kobject *rkobj;
8955 		int ret;
8956 
8957 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8958 		if (!rkobj)
8959 			goto out_err;
8960 		rkobj->raid_type = index;
8961 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8962 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8963 				  "%s", get_raid_name(index));
8964 		if (ret) {
8965 			kobject_put(&rkobj->kobj);
8966 			goto out_err;
8967 		}
8968 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8969 	}
8970 
8971 	return;
8972 out_err:
8973 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8974 }
8975 
8976 static struct btrfs_block_group_cache *
8977 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8978 {
8979 	struct btrfs_block_group_cache *cache;
8980 
8981 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8982 	if (!cache)
8983 		return NULL;
8984 
8985 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8986 					GFP_NOFS);
8987 	if (!cache->free_space_ctl) {
8988 		kfree(cache);
8989 		return NULL;
8990 	}
8991 
8992 	cache->key.objectid = start;
8993 	cache->key.offset = size;
8994 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8995 
8996 	cache->sectorsize = root->sectorsize;
8997 	cache->fs_info = root->fs_info;
8998 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8999 					       &root->fs_info->mapping_tree,
9000 					       start);
9001 	atomic_set(&cache->count, 1);
9002 	spin_lock_init(&cache->lock);
9003 	init_rwsem(&cache->data_rwsem);
9004 	INIT_LIST_HEAD(&cache->list);
9005 	INIT_LIST_HEAD(&cache->cluster_list);
9006 	INIT_LIST_HEAD(&cache->bg_list);
9007 	INIT_LIST_HEAD(&cache->ro_list);
9008 	btrfs_init_free_space_ctl(cache);
9009 	atomic_set(&cache->trimming, 0);
9010 
9011 	return cache;
9012 }
9013 
9014 int btrfs_read_block_groups(struct btrfs_root *root)
9015 {
9016 	struct btrfs_path *path;
9017 	int ret;
9018 	struct btrfs_block_group_cache *cache;
9019 	struct btrfs_fs_info *info = root->fs_info;
9020 	struct btrfs_space_info *space_info;
9021 	struct btrfs_key key;
9022 	struct btrfs_key found_key;
9023 	struct extent_buffer *leaf;
9024 	int need_clear = 0;
9025 	u64 cache_gen;
9026 
9027 	root = info->extent_root;
9028 	key.objectid = 0;
9029 	key.offset = 0;
9030 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9031 	path = btrfs_alloc_path();
9032 	if (!path)
9033 		return -ENOMEM;
9034 	path->reada = 1;
9035 
9036 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9037 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9038 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9039 		need_clear = 1;
9040 	if (btrfs_test_opt(root, CLEAR_CACHE))
9041 		need_clear = 1;
9042 
9043 	while (1) {
9044 		ret = find_first_block_group(root, path, &key);
9045 		if (ret > 0)
9046 			break;
9047 		if (ret != 0)
9048 			goto error;
9049 
9050 		leaf = path->nodes[0];
9051 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9052 
9053 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9054 						       found_key.offset);
9055 		if (!cache) {
9056 			ret = -ENOMEM;
9057 			goto error;
9058 		}
9059 
9060 		if (need_clear) {
9061 			/*
9062 			 * When we mount with old space cache, we need to
9063 			 * set BTRFS_DC_CLEAR and set dirty flag.
9064 			 *
9065 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9066 			 *    truncate the old free space cache inode and
9067 			 *    setup a new one.
9068 			 * b) Setting 'dirty flag' makes sure that we flush
9069 			 *    the new space cache info onto disk.
9070 			 */
9071 			cache->disk_cache_state = BTRFS_DC_CLEAR;
9072 			if (btrfs_test_opt(root, SPACE_CACHE))
9073 				cache->dirty = 1;
9074 		}
9075 
9076 		read_extent_buffer(leaf, &cache->item,
9077 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9078 				   sizeof(cache->item));
9079 		cache->flags = btrfs_block_group_flags(&cache->item);
9080 
9081 		key.objectid = found_key.objectid + found_key.offset;
9082 		btrfs_release_path(path);
9083 
9084 		/*
9085 		 * We need to exclude the super stripes now so that the space
9086 		 * info has super bytes accounted for, otherwise we'll think
9087 		 * we have more space than we actually do.
9088 		 */
9089 		ret = exclude_super_stripes(root, cache);
9090 		if (ret) {
9091 			/*
9092 			 * We may have excluded something, so call this just in
9093 			 * case.
9094 			 */
9095 			free_excluded_extents(root, cache);
9096 			btrfs_put_block_group(cache);
9097 			goto error;
9098 		}
9099 
9100 		/*
9101 		 * check for two cases, either we are full, and therefore
9102 		 * don't need to bother with the caching work since we won't
9103 		 * find any space, or we are empty, and we can just add all
9104 		 * the space in and be done with it.  This saves us _alot_ of
9105 		 * time, particularly in the full case.
9106 		 */
9107 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9108 			cache->last_byte_to_unpin = (u64)-1;
9109 			cache->cached = BTRFS_CACHE_FINISHED;
9110 			free_excluded_extents(root, cache);
9111 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9112 			cache->last_byte_to_unpin = (u64)-1;
9113 			cache->cached = BTRFS_CACHE_FINISHED;
9114 			add_new_free_space(cache, root->fs_info,
9115 					   found_key.objectid,
9116 					   found_key.objectid +
9117 					   found_key.offset);
9118 			free_excluded_extents(root, cache);
9119 		}
9120 
9121 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9122 		if (ret) {
9123 			btrfs_remove_free_space_cache(cache);
9124 			btrfs_put_block_group(cache);
9125 			goto error;
9126 		}
9127 
9128 		ret = update_space_info(info, cache->flags, found_key.offset,
9129 					btrfs_block_group_used(&cache->item),
9130 					&space_info);
9131 		if (ret) {
9132 			btrfs_remove_free_space_cache(cache);
9133 			spin_lock(&info->block_group_cache_lock);
9134 			rb_erase(&cache->cache_node,
9135 				 &info->block_group_cache_tree);
9136 			RB_CLEAR_NODE(&cache->cache_node);
9137 			spin_unlock(&info->block_group_cache_lock);
9138 			btrfs_put_block_group(cache);
9139 			goto error;
9140 		}
9141 
9142 		cache->space_info = space_info;
9143 		spin_lock(&cache->space_info->lock);
9144 		cache->space_info->bytes_readonly += cache->bytes_super;
9145 		spin_unlock(&cache->space_info->lock);
9146 
9147 		__link_block_group(space_info, cache);
9148 
9149 		set_avail_alloc_bits(root->fs_info, cache->flags);
9150 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9151 			set_block_group_ro(cache, 1);
9152 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9153 			spin_lock(&info->unused_bgs_lock);
9154 			/* Should always be true but just in case. */
9155 			if (list_empty(&cache->bg_list)) {
9156 				btrfs_get_block_group(cache);
9157 				list_add_tail(&cache->bg_list,
9158 					      &info->unused_bgs);
9159 			}
9160 			spin_unlock(&info->unused_bgs_lock);
9161 		}
9162 	}
9163 
9164 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9165 		if (!(get_alloc_profile(root, space_info->flags) &
9166 		      (BTRFS_BLOCK_GROUP_RAID10 |
9167 		       BTRFS_BLOCK_GROUP_RAID1 |
9168 		       BTRFS_BLOCK_GROUP_RAID5 |
9169 		       BTRFS_BLOCK_GROUP_RAID6 |
9170 		       BTRFS_BLOCK_GROUP_DUP)))
9171 			continue;
9172 		/*
9173 		 * avoid allocating from un-mirrored block group if there are
9174 		 * mirrored block groups.
9175 		 */
9176 		list_for_each_entry(cache,
9177 				&space_info->block_groups[BTRFS_RAID_RAID0],
9178 				list)
9179 			set_block_group_ro(cache, 1);
9180 		list_for_each_entry(cache,
9181 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9182 				list)
9183 			set_block_group_ro(cache, 1);
9184 	}
9185 
9186 	init_global_block_rsv(info);
9187 	ret = 0;
9188 error:
9189 	btrfs_free_path(path);
9190 	return ret;
9191 }
9192 
9193 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9194 				       struct btrfs_root *root)
9195 {
9196 	struct btrfs_block_group_cache *block_group, *tmp;
9197 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9198 	struct btrfs_block_group_item item;
9199 	struct btrfs_key key;
9200 	int ret = 0;
9201 
9202 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9203 		if (ret)
9204 			goto next;
9205 
9206 		spin_lock(&block_group->lock);
9207 		memcpy(&item, &block_group->item, sizeof(item));
9208 		memcpy(&key, &block_group->key, sizeof(key));
9209 		spin_unlock(&block_group->lock);
9210 
9211 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9212 					sizeof(item));
9213 		if (ret)
9214 			btrfs_abort_transaction(trans, extent_root, ret);
9215 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9216 					       key.objectid, key.offset);
9217 		if (ret)
9218 			btrfs_abort_transaction(trans, extent_root, ret);
9219 next:
9220 		list_del_init(&block_group->bg_list);
9221 	}
9222 }
9223 
9224 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9225 			   struct btrfs_root *root, u64 bytes_used,
9226 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9227 			   u64 size)
9228 {
9229 	int ret;
9230 	struct btrfs_root *extent_root;
9231 	struct btrfs_block_group_cache *cache;
9232 
9233 	extent_root = root->fs_info->extent_root;
9234 
9235 	btrfs_set_log_full_commit(root->fs_info, trans);
9236 
9237 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9238 	if (!cache)
9239 		return -ENOMEM;
9240 
9241 	btrfs_set_block_group_used(&cache->item, bytes_used);
9242 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9243 	btrfs_set_block_group_flags(&cache->item, type);
9244 
9245 	cache->flags = type;
9246 	cache->last_byte_to_unpin = (u64)-1;
9247 	cache->cached = BTRFS_CACHE_FINISHED;
9248 	ret = exclude_super_stripes(root, cache);
9249 	if (ret) {
9250 		/*
9251 		 * We may have excluded something, so call this just in
9252 		 * case.
9253 		 */
9254 		free_excluded_extents(root, cache);
9255 		btrfs_put_block_group(cache);
9256 		return ret;
9257 	}
9258 
9259 	add_new_free_space(cache, root->fs_info, chunk_offset,
9260 			   chunk_offset + size);
9261 
9262 	free_excluded_extents(root, cache);
9263 
9264 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9265 	if (ret) {
9266 		btrfs_remove_free_space_cache(cache);
9267 		btrfs_put_block_group(cache);
9268 		return ret;
9269 	}
9270 
9271 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9272 				&cache->space_info);
9273 	if (ret) {
9274 		btrfs_remove_free_space_cache(cache);
9275 		spin_lock(&root->fs_info->block_group_cache_lock);
9276 		rb_erase(&cache->cache_node,
9277 			 &root->fs_info->block_group_cache_tree);
9278 		RB_CLEAR_NODE(&cache->cache_node);
9279 		spin_unlock(&root->fs_info->block_group_cache_lock);
9280 		btrfs_put_block_group(cache);
9281 		return ret;
9282 	}
9283 	update_global_block_rsv(root->fs_info);
9284 
9285 	spin_lock(&cache->space_info->lock);
9286 	cache->space_info->bytes_readonly += cache->bytes_super;
9287 	spin_unlock(&cache->space_info->lock);
9288 
9289 	__link_block_group(cache->space_info, cache);
9290 
9291 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9292 
9293 	set_avail_alloc_bits(extent_root->fs_info, type);
9294 
9295 	return 0;
9296 }
9297 
9298 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9299 {
9300 	u64 extra_flags = chunk_to_extended(flags) &
9301 				BTRFS_EXTENDED_PROFILE_MASK;
9302 
9303 	write_seqlock(&fs_info->profiles_lock);
9304 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9305 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9306 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9307 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9308 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9309 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9310 	write_sequnlock(&fs_info->profiles_lock);
9311 }
9312 
9313 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9314 			     struct btrfs_root *root, u64 group_start,
9315 			     struct extent_map *em)
9316 {
9317 	struct btrfs_path *path;
9318 	struct btrfs_block_group_cache *block_group;
9319 	struct btrfs_free_cluster *cluster;
9320 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9321 	struct btrfs_key key;
9322 	struct inode *inode;
9323 	struct kobject *kobj = NULL;
9324 	int ret;
9325 	int index;
9326 	int factor;
9327 	struct btrfs_caching_control *caching_ctl = NULL;
9328 	bool remove_em;
9329 
9330 	root = root->fs_info->extent_root;
9331 
9332 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9333 	BUG_ON(!block_group);
9334 	BUG_ON(!block_group->ro);
9335 
9336 	/*
9337 	 * Free the reserved super bytes from this block group before
9338 	 * remove it.
9339 	 */
9340 	free_excluded_extents(root, block_group);
9341 
9342 	memcpy(&key, &block_group->key, sizeof(key));
9343 	index = get_block_group_index(block_group);
9344 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9345 				  BTRFS_BLOCK_GROUP_RAID1 |
9346 				  BTRFS_BLOCK_GROUP_RAID10))
9347 		factor = 2;
9348 	else
9349 		factor = 1;
9350 
9351 	/* make sure this block group isn't part of an allocation cluster */
9352 	cluster = &root->fs_info->data_alloc_cluster;
9353 	spin_lock(&cluster->refill_lock);
9354 	btrfs_return_cluster_to_free_space(block_group, cluster);
9355 	spin_unlock(&cluster->refill_lock);
9356 
9357 	/*
9358 	 * make sure this block group isn't part of a metadata
9359 	 * allocation cluster
9360 	 */
9361 	cluster = &root->fs_info->meta_alloc_cluster;
9362 	spin_lock(&cluster->refill_lock);
9363 	btrfs_return_cluster_to_free_space(block_group, cluster);
9364 	spin_unlock(&cluster->refill_lock);
9365 
9366 	path = btrfs_alloc_path();
9367 	if (!path) {
9368 		ret = -ENOMEM;
9369 		goto out;
9370 	}
9371 
9372 	inode = lookup_free_space_inode(tree_root, block_group, path);
9373 	if (!IS_ERR(inode)) {
9374 		ret = btrfs_orphan_add(trans, inode);
9375 		if (ret) {
9376 			btrfs_add_delayed_iput(inode);
9377 			goto out;
9378 		}
9379 		clear_nlink(inode);
9380 		/* One for the block groups ref */
9381 		spin_lock(&block_group->lock);
9382 		if (block_group->iref) {
9383 			block_group->iref = 0;
9384 			block_group->inode = NULL;
9385 			spin_unlock(&block_group->lock);
9386 			iput(inode);
9387 		} else {
9388 			spin_unlock(&block_group->lock);
9389 		}
9390 		/* One for our lookup ref */
9391 		btrfs_add_delayed_iput(inode);
9392 	}
9393 
9394 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9395 	key.offset = block_group->key.objectid;
9396 	key.type = 0;
9397 
9398 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9399 	if (ret < 0)
9400 		goto out;
9401 	if (ret > 0)
9402 		btrfs_release_path(path);
9403 	if (ret == 0) {
9404 		ret = btrfs_del_item(trans, tree_root, path);
9405 		if (ret)
9406 			goto out;
9407 		btrfs_release_path(path);
9408 	}
9409 
9410 	spin_lock(&root->fs_info->block_group_cache_lock);
9411 	rb_erase(&block_group->cache_node,
9412 		 &root->fs_info->block_group_cache_tree);
9413 	RB_CLEAR_NODE(&block_group->cache_node);
9414 
9415 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9416 		root->fs_info->first_logical_byte = (u64)-1;
9417 	spin_unlock(&root->fs_info->block_group_cache_lock);
9418 
9419 	down_write(&block_group->space_info->groups_sem);
9420 	/*
9421 	 * we must use list_del_init so people can check to see if they
9422 	 * are still on the list after taking the semaphore
9423 	 */
9424 	list_del_init(&block_group->list);
9425 	if (list_empty(&block_group->space_info->block_groups[index])) {
9426 		kobj = block_group->space_info->block_group_kobjs[index];
9427 		block_group->space_info->block_group_kobjs[index] = NULL;
9428 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9429 	}
9430 	up_write(&block_group->space_info->groups_sem);
9431 	if (kobj) {
9432 		kobject_del(kobj);
9433 		kobject_put(kobj);
9434 	}
9435 
9436 	if (block_group->has_caching_ctl)
9437 		caching_ctl = get_caching_control(block_group);
9438 	if (block_group->cached == BTRFS_CACHE_STARTED)
9439 		wait_block_group_cache_done(block_group);
9440 	if (block_group->has_caching_ctl) {
9441 		down_write(&root->fs_info->commit_root_sem);
9442 		if (!caching_ctl) {
9443 			struct btrfs_caching_control *ctl;
9444 
9445 			list_for_each_entry(ctl,
9446 				    &root->fs_info->caching_block_groups, list)
9447 				if (ctl->block_group == block_group) {
9448 					caching_ctl = ctl;
9449 					atomic_inc(&caching_ctl->count);
9450 					break;
9451 				}
9452 		}
9453 		if (caching_ctl)
9454 			list_del_init(&caching_ctl->list);
9455 		up_write(&root->fs_info->commit_root_sem);
9456 		if (caching_ctl) {
9457 			/* Once for the caching bgs list and once for us. */
9458 			put_caching_control(caching_ctl);
9459 			put_caching_control(caching_ctl);
9460 		}
9461 	}
9462 
9463 	btrfs_remove_free_space_cache(block_group);
9464 
9465 	spin_lock(&block_group->space_info->lock);
9466 	list_del_init(&block_group->ro_list);
9467 	block_group->space_info->total_bytes -= block_group->key.offset;
9468 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9469 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9470 	spin_unlock(&block_group->space_info->lock);
9471 
9472 	memcpy(&key, &block_group->key, sizeof(key));
9473 
9474 	lock_chunks(root);
9475 	if (!list_empty(&em->list)) {
9476 		/* We're in the transaction->pending_chunks list. */
9477 		free_extent_map(em);
9478 	}
9479 	spin_lock(&block_group->lock);
9480 	block_group->removed = 1;
9481 	/*
9482 	 * At this point trimming can't start on this block group, because we
9483 	 * removed the block group from the tree fs_info->block_group_cache_tree
9484 	 * so no one can't find it anymore and even if someone already got this
9485 	 * block group before we removed it from the rbtree, they have already
9486 	 * incremented block_group->trimming - if they didn't, they won't find
9487 	 * any free space entries because we already removed them all when we
9488 	 * called btrfs_remove_free_space_cache().
9489 	 *
9490 	 * And we must not remove the extent map from the fs_info->mapping_tree
9491 	 * to prevent the same logical address range and physical device space
9492 	 * ranges from being reused for a new block group. This is because our
9493 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9494 	 * completely transactionless, so while it is trimming a range the
9495 	 * currently running transaction might finish and a new one start,
9496 	 * allowing for new block groups to be created that can reuse the same
9497 	 * physical device locations unless we take this special care.
9498 	 */
9499 	remove_em = (atomic_read(&block_group->trimming) == 0);
9500 	/*
9501 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9502 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9503 	 * before checking block_group->removed).
9504 	 */
9505 	if (!remove_em) {
9506 		/*
9507 		 * Our em might be in trans->transaction->pending_chunks which
9508 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9509 		 * and so is the fs_info->pinned_chunks list.
9510 		 *
9511 		 * So at this point we must be holding the chunk_mutex to avoid
9512 		 * any races with chunk allocation (more specifically at
9513 		 * volumes.c:contains_pending_extent()), to ensure it always
9514 		 * sees the em, either in the pending_chunks list or in the
9515 		 * pinned_chunks list.
9516 		 */
9517 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9518 	}
9519 	spin_unlock(&block_group->lock);
9520 
9521 	if (remove_em) {
9522 		struct extent_map_tree *em_tree;
9523 
9524 		em_tree = &root->fs_info->mapping_tree.map_tree;
9525 		write_lock(&em_tree->lock);
9526 		/*
9527 		 * The em might be in the pending_chunks list, so make sure the
9528 		 * chunk mutex is locked, since remove_extent_mapping() will
9529 		 * delete us from that list.
9530 		 */
9531 		remove_extent_mapping(em_tree, em);
9532 		write_unlock(&em_tree->lock);
9533 		/* once for the tree */
9534 		free_extent_map(em);
9535 	}
9536 
9537 	unlock_chunks(root);
9538 
9539 	btrfs_put_block_group(block_group);
9540 	btrfs_put_block_group(block_group);
9541 
9542 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9543 	if (ret > 0)
9544 		ret = -EIO;
9545 	if (ret < 0)
9546 		goto out;
9547 
9548 	ret = btrfs_del_item(trans, root, path);
9549 out:
9550 	btrfs_free_path(path);
9551 	return ret;
9552 }
9553 
9554 /*
9555  * Process the unused_bgs list and remove any that don't have any allocated
9556  * space inside of them.
9557  */
9558 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9559 {
9560 	struct btrfs_block_group_cache *block_group;
9561 	struct btrfs_space_info *space_info;
9562 	struct btrfs_root *root = fs_info->extent_root;
9563 	struct btrfs_trans_handle *trans;
9564 	int ret = 0;
9565 
9566 	if (!fs_info->open)
9567 		return;
9568 
9569 	spin_lock(&fs_info->unused_bgs_lock);
9570 	while (!list_empty(&fs_info->unused_bgs)) {
9571 		u64 start, end;
9572 
9573 		block_group = list_first_entry(&fs_info->unused_bgs,
9574 					       struct btrfs_block_group_cache,
9575 					       bg_list);
9576 		space_info = block_group->space_info;
9577 		list_del_init(&block_group->bg_list);
9578 		if (ret || btrfs_mixed_space_info(space_info)) {
9579 			btrfs_put_block_group(block_group);
9580 			continue;
9581 		}
9582 		spin_unlock(&fs_info->unused_bgs_lock);
9583 
9584 		/* Don't want to race with allocators so take the groups_sem */
9585 		down_write(&space_info->groups_sem);
9586 		spin_lock(&block_group->lock);
9587 		if (block_group->reserved ||
9588 		    btrfs_block_group_used(&block_group->item) ||
9589 		    block_group->ro) {
9590 			/*
9591 			 * We want to bail if we made new allocations or have
9592 			 * outstanding allocations in this block group.  We do
9593 			 * the ro check in case balance is currently acting on
9594 			 * this block group.
9595 			 */
9596 			spin_unlock(&block_group->lock);
9597 			up_write(&space_info->groups_sem);
9598 			goto next;
9599 		}
9600 		spin_unlock(&block_group->lock);
9601 
9602 		/* We don't want to force the issue, only flip if it's ok. */
9603 		ret = set_block_group_ro(block_group, 0);
9604 		up_write(&space_info->groups_sem);
9605 		if (ret < 0) {
9606 			ret = 0;
9607 			goto next;
9608 		}
9609 
9610 		/*
9611 		 * Want to do this before we do anything else so we can recover
9612 		 * properly if we fail to join the transaction.
9613 		 */
9614 		trans = btrfs_join_transaction(root);
9615 		if (IS_ERR(trans)) {
9616 			btrfs_set_block_group_rw(root, block_group);
9617 			ret = PTR_ERR(trans);
9618 			goto next;
9619 		}
9620 
9621 		/*
9622 		 * We could have pending pinned extents for this block group,
9623 		 * just delete them, we don't care about them anymore.
9624 		 */
9625 		start = block_group->key.objectid;
9626 		end = start + block_group->key.offset - 1;
9627 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9628 				  EXTENT_DIRTY, GFP_NOFS);
9629 		if (ret) {
9630 			btrfs_set_block_group_rw(root, block_group);
9631 			goto end_trans;
9632 		}
9633 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9634 				  EXTENT_DIRTY, GFP_NOFS);
9635 		if (ret) {
9636 			btrfs_set_block_group_rw(root, block_group);
9637 			goto end_trans;
9638 		}
9639 
9640 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9641 		block_group->pinned = 0;
9642 
9643 		/*
9644 		 * Btrfs_remove_chunk will abort the transaction if things go
9645 		 * horribly wrong.
9646 		 */
9647 		ret = btrfs_remove_chunk(trans, root,
9648 					 block_group->key.objectid);
9649 end_trans:
9650 		btrfs_end_transaction(trans, root);
9651 next:
9652 		btrfs_put_block_group(block_group);
9653 		spin_lock(&fs_info->unused_bgs_lock);
9654 	}
9655 	spin_unlock(&fs_info->unused_bgs_lock);
9656 }
9657 
9658 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9659 {
9660 	struct btrfs_space_info *space_info;
9661 	struct btrfs_super_block *disk_super;
9662 	u64 features;
9663 	u64 flags;
9664 	int mixed = 0;
9665 	int ret;
9666 
9667 	disk_super = fs_info->super_copy;
9668 	if (!btrfs_super_root(disk_super))
9669 		return 1;
9670 
9671 	features = btrfs_super_incompat_flags(disk_super);
9672 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9673 		mixed = 1;
9674 
9675 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9676 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9677 	if (ret)
9678 		goto out;
9679 
9680 	if (mixed) {
9681 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9682 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9683 	} else {
9684 		flags = BTRFS_BLOCK_GROUP_METADATA;
9685 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9686 		if (ret)
9687 			goto out;
9688 
9689 		flags = BTRFS_BLOCK_GROUP_DATA;
9690 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9691 	}
9692 out:
9693 	return ret;
9694 }
9695 
9696 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9697 {
9698 	return unpin_extent_range(root, start, end, false);
9699 }
9700 
9701 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9702 {
9703 	struct btrfs_fs_info *fs_info = root->fs_info;
9704 	struct btrfs_block_group_cache *cache = NULL;
9705 	u64 group_trimmed;
9706 	u64 start;
9707 	u64 end;
9708 	u64 trimmed = 0;
9709 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9710 	int ret = 0;
9711 
9712 	/*
9713 	 * try to trim all FS space, our block group may start from non-zero.
9714 	 */
9715 	if (range->len == total_bytes)
9716 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9717 	else
9718 		cache = btrfs_lookup_block_group(fs_info, range->start);
9719 
9720 	while (cache) {
9721 		if (cache->key.objectid >= (range->start + range->len)) {
9722 			btrfs_put_block_group(cache);
9723 			break;
9724 		}
9725 
9726 		start = max(range->start, cache->key.objectid);
9727 		end = min(range->start + range->len,
9728 				cache->key.objectid + cache->key.offset);
9729 
9730 		if (end - start >= range->minlen) {
9731 			if (!block_group_cache_done(cache)) {
9732 				ret = cache_block_group(cache, 0);
9733 				if (ret) {
9734 					btrfs_put_block_group(cache);
9735 					break;
9736 				}
9737 				ret = wait_block_group_cache_done(cache);
9738 				if (ret) {
9739 					btrfs_put_block_group(cache);
9740 					break;
9741 				}
9742 			}
9743 			ret = btrfs_trim_block_group(cache,
9744 						     &group_trimmed,
9745 						     start,
9746 						     end,
9747 						     range->minlen);
9748 
9749 			trimmed += group_trimmed;
9750 			if (ret) {
9751 				btrfs_put_block_group(cache);
9752 				break;
9753 			}
9754 		}
9755 
9756 		cache = next_block_group(fs_info->tree_root, cache);
9757 	}
9758 
9759 	range->len = trimmed;
9760 	return ret;
9761 }
9762 
9763 /*
9764  * btrfs_{start,end}_write_no_snapshoting() are similar to
9765  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9766  * data into the page cache through nocow before the subvolume is snapshoted,
9767  * but flush the data into disk after the snapshot creation, or to prevent
9768  * operations while snapshoting is ongoing and that cause the snapshot to be
9769  * inconsistent (writes followed by expanding truncates for example).
9770  */
9771 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9772 {
9773 	percpu_counter_dec(&root->subv_writers->counter);
9774 	/*
9775 	 * Make sure counter is updated before we wake up
9776 	 * waiters.
9777 	 */
9778 	smp_mb();
9779 	if (waitqueue_active(&root->subv_writers->wait))
9780 		wake_up(&root->subv_writers->wait);
9781 }
9782 
9783 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9784 {
9785 	if (atomic_read(&root->will_be_snapshoted))
9786 		return 0;
9787 
9788 	percpu_counter_inc(&root->subv_writers->counter);
9789 	/*
9790 	 * Make sure counter is updated before we check for snapshot creation.
9791 	 */
9792 	smp_mb();
9793 	if (atomic_read(&root->will_be_snapshoted)) {
9794 		btrfs_end_write_no_snapshoting(root);
9795 		return 0;
9796 	}
9797 	return 1;
9798 }
9799