xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 			       struct btrfs_delayed_ref_node *node, u64 parent,
43 			       u64 root_objectid, u64 owner_objectid,
44 			       u64 owner_offset, int refs_to_drop,
45 			       struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 				    struct extent_buffer *leaf,
48 				    struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 				      u64 parent, u64 root_objectid,
51 				      u64 flags, u64 owner, u64 offset,
52 				      struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 				     struct btrfs_delayed_ref_node *node,
55 				     struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 			 struct btrfs_key *key);
58 
59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 	return (cache->flags & bits) == bits;
62 }
63 
64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 			      u64 start, u64 num_bytes)
66 {
67 	u64 end = start + num_bytes - 1;
68 	set_extent_bits(&fs_info->excluded_extents, start, end,
69 			EXTENT_UPTODATE);
70 	return 0;
71 }
72 
73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 	struct btrfs_fs_info *fs_info = cache->fs_info;
76 	u64 start, end;
77 
78 	start = cache->start;
79 	end = start + cache->length - 1;
80 
81 	clear_extent_bits(&fs_info->excluded_extents, start, end,
82 			  EXTENT_UPTODATE);
83 }
84 
85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
86 {
87 	if (ref->type == BTRFS_REF_METADATA) {
88 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
89 			return BTRFS_BLOCK_GROUP_SYSTEM;
90 		else
91 			return BTRFS_BLOCK_GROUP_METADATA;
92 	}
93 	return BTRFS_BLOCK_GROUP_DATA;
94 }
95 
96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
97 			     struct btrfs_ref *ref)
98 {
99 	struct btrfs_space_info *space_info;
100 	u64 flags = generic_ref_to_space_flags(ref);
101 
102 	space_info = btrfs_find_space_info(fs_info, flags);
103 	ASSERT(space_info);
104 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
105 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
106 }
107 
108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
109 			     struct btrfs_ref *ref)
110 {
111 	struct btrfs_space_info *space_info;
112 	u64 flags = generic_ref_to_space_flags(ref);
113 
114 	space_info = btrfs_find_space_info(fs_info, flags);
115 	ASSERT(space_info);
116 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
117 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
118 }
119 
120 /* simple helper to search for an existing data extent at a given offset */
121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
122 {
123 	int ret;
124 	struct btrfs_key key;
125 	struct btrfs_path *path;
126 
127 	path = btrfs_alloc_path();
128 	if (!path)
129 		return -ENOMEM;
130 
131 	key.objectid = start;
132 	key.offset = len;
133 	key.type = BTRFS_EXTENT_ITEM_KEY;
134 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
135 	btrfs_free_path(path);
136 	return ret;
137 }
138 
139 /*
140  * helper function to lookup reference count and flags of a tree block.
141  *
142  * the head node for delayed ref is used to store the sum of all the
143  * reference count modifications queued up in the rbtree. the head
144  * node may also store the extent flags to set. This way you can check
145  * to see what the reference count and extent flags would be if all of
146  * the delayed refs are not processed.
147  */
148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
149 			     struct btrfs_fs_info *fs_info, u64 bytenr,
150 			     u64 offset, int metadata, u64 *refs, u64 *flags)
151 {
152 	struct btrfs_delayed_ref_head *head;
153 	struct btrfs_delayed_ref_root *delayed_refs;
154 	struct btrfs_path *path;
155 	struct btrfs_extent_item *ei;
156 	struct extent_buffer *leaf;
157 	struct btrfs_key key;
158 	u32 item_size;
159 	u64 num_refs;
160 	u64 extent_flags;
161 	int ret;
162 
163 	/*
164 	 * If we don't have skinny metadata, don't bother doing anything
165 	 * different
166 	 */
167 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
168 		offset = fs_info->nodesize;
169 		metadata = 0;
170 	}
171 
172 	path = btrfs_alloc_path();
173 	if (!path)
174 		return -ENOMEM;
175 
176 	if (!trans) {
177 		path->skip_locking = 1;
178 		path->search_commit_root = 1;
179 	}
180 
181 search_again:
182 	key.objectid = bytenr;
183 	key.offset = offset;
184 	if (metadata)
185 		key.type = BTRFS_METADATA_ITEM_KEY;
186 	else
187 		key.type = BTRFS_EXTENT_ITEM_KEY;
188 
189 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
190 	if (ret < 0)
191 		goto out_free;
192 
193 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
194 		if (path->slots[0]) {
195 			path->slots[0]--;
196 			btrfs_item_key_to_cpu(path->nodes[0], &key,
197 					      path->slots[0]);
198 			if (key.objectid == bytenr &&
199 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
200 			    key.offset == fs_info->nodesize)
201 				ret = 0;
202 		}
203 	}
204 
205 	if (ret == 0) {
206 		leaf = path->nodes[0];
207 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
208 		if (item_size >= sizeof(*ei)) {
209 			ei = btrfs_item_ptr(leaf, path->slots[0],
210 					    struct btrfs_extent_item);
211 			num_refs = btrfs_extent_refs(leaf, ei);
212 			extent_flags = btrfs_extent_flags(leaf, ei);
213 		} else {
214 			ret = -EINVAL;
215 			btrfs_print_v0_err(fs_info);
216 			if (trans)
217 				btrfs_abort_transaction(trans, ret);
218 			else
219 				btrfs_handle_fs_error(fs_info, ret, NULL);
220 
221 			goto out_free;
222 		}
223 
224 		BUG_ON(num_refs == 0);
225 	} else {
226 		num_refs = 0;
227 		extent_flags = 0;
228 		ret = 0;
229 	}
230 
231 	if (!trans)
232 		goto out;
233 
234 	delayed_refs = &trans->transaction->delayed_refs;
235 	spin_lock(&delayed_refs->lock);
236 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
237 	if (head) {
238 		if (!mutex_trylock(&head->mutex)) {
239 			refcount_inc(&head->refs);
240 			spin_unlock(&delayed_refs->lock);
241 
242 			btrfs_release_path(path);
243 
244 			/*
245 			 * Mutex was contended, block until it's released and try
246 			 * again
247 			 */
248 			mutex_lock(&head->mutex);
249 			mutex_unlock(&head->mutex);
250 			btrfs_put_delayed_ref_head(head);
251 			goto search_again;
252 		}
253 		spin_lock(&head->lock);
254 		if (head->extent_op && head->extent_op->update_flags)
255 			extent_flags |= head->extent_op->flags_to_set;
256 		else
257 			BUG_ON(num_refs == 0);
258 
259 		num_refs += head->ref_mod;
260 		spin_unlock(&head->lock);
261 		mutex_unlock(&head->mutex);
262 	}
263 	spin_unlock(&delayed_refs->lock);
264 out:
265 	WARN_ON(num_refs == 0);
266 	if (refs)
267 		*refs = num_refs;
268 	if (flags)
269 		*flags = extent_flags;
270 out_free:
271 	btrfs_free_path(path);
272 	return ret;
273 }
274 
275 /*
276  * Back reference rules.  Back refs have three main goals:
277  *
278  * 1) differentiate between all holders of references to an extent so that
279  *    when a reference is dropped we can make sure it was a valid reference
280  *    before freeing the extent.
281  *
282  * 2) Provide enough information to quickly find the holders of an extent
283  *    if we notice a given block is corrupted or bad.
284  *
285  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
286  *    maintenance.  This is actually the same as #2, but with a slightly
287  *    different use case.
288  *
289  * There are two kinds of back refs. The implicit back refs is optimized
290  * for pointers in non-shared tree blocks. For a given pointer in a block,
291  * back refs of this kind provide information about the block's owner tree
292  * and the pointer's key. These information allow us to find the block by
293  * b-tree searching. The full back refs is for pointers in tree blocks not
294  * referenced by their owner trees. The location of tree block is recorded
295  * in the back refs. Actually the full back refs is generic, and can be
296  * used in all cases the implicit back refs is used. The major shortcoming
297  * of the full back refs is its overhead. Every time a tree block gets
298  * COWed, we have to update back refs entry for all pointers in it.
299  *
300  * For a newly allocated tree block, we use implicit back refs for
301  * pointers in it. This means most tree related operations only involve
302  * implicit back refs. For a tree block created in old transaction, the
303  * only way to drop a reference to it is COW it. So we can detect the
304  * event that tree block loses its owner tree's reference and do the
305  * back refs conversion.
306  *
307  * When a tree block is COWed through a tree, there are four cases:
308  *
309  * The reference count of the block is one and the tree is the block's
310  * owner tree. Nothing to do in this case.
311  *
312  * The reference count of the block is one and the tree is not the
313  * block's owner tree. In this case, full back refs is used for pointers
314  * in the block. Remove these full back refs, add implicit back refs for
315  * every pointers in the new block.
316  *
317  * The reference count of the block is greater than one and the tree is
318  * the block's owner tree. In this case, implicit back refs is used for
319  * pointers in the block. Add full back refs for every pointers in the
320  * block, increase lower level extents' reference counts. The original
321  * implicit back refs are entailed to the new block.
322  *
323  * The reference count of the block is greater than one and the tree is
324  * not the block's owner tree. Add implicit back refs for every pointer in
325  * the new block, increase lower level extents' reference count.
326  *
327  * Back Reference Key composing:
328  *
329  * The key objectid corresponds to the first byte in the extent,
330  * The key type is used to differentiate between types of back refs.
331  * There are different meanings of the key offset for different types
332  * of back refs.
333  *
334  * File extents can be referenced by:
335  *
336  * - multiple snapshots, subvolumes, or different generations in one subvol
337  * - different files inside a single subvolume
338  * - different offsets inside a file (bookend extents in file.c)
339  *
340  * The extent ref structure for the implicit back refs has fields for:
341  *
342  * - Objectid of the subvolume root
343  * - objectid of the file holding the reference
344  * - original offset in the file
345  * - how many bookend extents
346  *
347  * The key offset for the implicit back refs is hash of the first
348  * three fields.
349  *
350  * The extent ref structure for the full back refs has field for:
351  *
352  * - number of pointers in the tree leaf
353  *
354  * The key offset for the implicit back refs is the first byte of
355  * the tree leaf
356  *
357  * When a file extent is allocated, The implicit back refs is used.
358  * the fields are filled in:
359  *
360  *     (root_key.objectid, inode objectid, offset in file, 1)
361  *
362  * When a file extent is removed file truncation, we find the
363  * corresponding implicit back refs and check the following fields:
364  *
365  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
366  *
367  * Btree extents can be referenced by:
368  *
369  * - Different subvolumes
370  *
371  * Both the implicit back refs and the full back refs for tree blocks
372  * only consist of key. The key offset for the implicit back refs is
373  * objectid of block's owner tree. The key offset for the full back refs
374  * is the first byte of parent block.
375  *
376  * When implicit back refs is used, information about the lowest key and
377  * level of the tree block are required. These information are stored in
378  * tree block info structure.
379  */
380 
381 /*
382  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
383  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
384  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
385  */
386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
387 				     struct btrfs_extent_inline_ref *iref,
388 				     enum btrfs_inline_ref_type is_data)
389 {
390 	int type = btrfs_extent_inline_ref_type(eb, iref);
391 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
392 
393 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
394 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
395 	    type == BTRFS_SHARED_DATA_REF_KEY ||
396 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
397 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
398 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
399 				return type;
400 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
401 				ASSERT(eb->fs_info);
402 				/*
403 				 * Every shared one has parent tree block,
404 				 * which must be aligned to sector size.
405 				 */
406 				if (offset &&
407 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
408 					return type;
409 			}
410 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
411 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 				return type;
413 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 				ASSERT(eb->fs_info);
415 				/*
416 				 * Every shared one has parent tree block,
417 				 * which must be aligned to sector size.
418 				 */
419 				if (offset &&
420 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
421 					return type;
422 			}
423 		} else {
424 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
425 			return type;
426 		}
427 	}
428 
429 	btrfs_print_leaf((struct extent_buffer *)eb);
430 	btrfs_err(eb->fs_info,
431 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
432 		  eb->start, (unsigned long)iref, type);
433 	WARN_ON(1);
434 
435 	return BTRFS_REF_TYPE_INVALID;
436 }
437 
438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439 {
440 	u32 high_crc = ~(u32)0;
441 	u32 low_crc = ~(u32)0;
442 	__le64 lenum;
443 
444 	lenum = cpu_to_le64(root_objectid);
445 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 	lenum = cpu_to_le64(owner);
447 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 	lenum = cpu_to_le64(offset);
449 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450 
451 	return ((u64)high_crc << 31) ^ (u64)low_crc;
452 }
453 
454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 				     struct btrfs_extent_data_ref *ref)
456 {
457 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 				    btrfs_extent_data_ref_objectid(leaf, ref),
459 				    btrfs_extent_data_ref_offset(leaf, ref));
460 }
461 
462 static int match_extent_data_ref(struct extent_buffer *leaf,
463 				 struct btrfs_extent_data_ref *ref,
464 				 u64 root_objectid, u64 owner, u64 offset)
465 {
466 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 		return 0;
470 	return 1;
471 }
472 
473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 					   struct btrfs_path *path,
475 					   u64 bytenr, u64 parent,
476 					   u64 root_objectid,
477 					   u64 owner, u64 offset)
478 {
479 	struct btrfs_root *root = trans->fs_info->extent_root;
480 	struct btrfs_key key;
481 	struct btrfs_extent_data_ref *ref;
482 	struct extent_buffer *leaf;
483 	u32 nritems;
484 	int ret;
485 	int recow;
486 	int err = -ENOENT;
487 
488 	key.objectid = bytenr;
489 	if (parent) {
490 		key.type = BTRFS_SHARED_DATA_REF_KEY;
491 		key.offset = parent;
492 	} else {
493 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 		key.offset = hash_extent_data_ref(root_objectid,
495 						  owner, offset);
496 	}
497 again:
498 	recow = 0;
499 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 	if (ret < 0) {
501 		err = ret;
502 		goto fail;
503 	}
504 
505 	if (parent) {
506 		if (!ret)
507 			return 0;
508 		goto fail;
509 	}
510 
511 	leaf = path->nodes[0];
512 	nritems = btrfs_header_nritems(leaf);
513 	while (1) {
514 		if (path->slots[0] >= nritems) {
515 			ret = btrfs_next_leaf(root, path);
516 			if (ret < 0)
517 				err = ret;
518 			if (ret)
519 				goto fail;
520 
521 			leaf = path->nodes[0];
522 			nritems = btrfs_header_nritems(leaf);
523 			recow = 1;
524 		}
525 
526 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 		if (key.objectid != bytenr ||
528 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 			goto fail;
530 
531 		ref = btrfs_item_ptr(leaf, path->slots[0],
532 				     struct btrfs_extent_data_ref);
533 
534 		if (match_extent_data_ref(leaf, ref, root_objectid,
535 					  owner, offset)) {
536 			if (recow) {
537 				btrfs_release_path(path);
538 				goto again;
539 			}
540 			err = 0;
541 			break;
542 		}
543 		path->slots[0]++;
544 	}
545 fail:
546 	return err;
547 }
548 
549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 					   struct btrfs_path *path,
551 					   u64 bytenr, u64 parent,
552 					   u64 root_objectid, u64 owner,
553 					   u64 offset, int refs_to_add)
554 {
555 	struct btrfs_root *root = trans->fs_info->extent_root;
556 	struct btrfs_key key;
557 	struct extent_buffer *leaf;
558 	u32 size;
559 	u32 num_refs;
560 	int ret;
561 
562 	key.objectid = bytenr;
563 	if (parent) {
564 		key.type = BTRFS_SHARED_DATA_REF_KEY;
565 		key.offset = parent;
566 		size = sizeof(struct btrfs_shared_data_ref);
567 	} else {
568 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 		key.offset = hash_extent_data_ref(root_objectid,
570 						  owner, offset);
571 		size = sizeof(struct btrfs_extent_data_ref);
572 	}
573 
574 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 	if (ret && ret != -EEXIST)
576 		goto fail;
577 
578 	leaf = path->nodes[0];
579 	if (parent) {
580 		struct btrfs_shared_data_ref *ref;
581 		ref = btrfs_item_ptr(leaf, path->slots[0],
582 				     struct btrfs_shared_data_ref);
583 		if (ret == 0) {
584 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 		}
590 	} else {
591 		struct btrfs_extent_data_ref *ref;
592 		while (ret == -EEXIST) {
593 			ref = btrfs_item_ptr(leaf, path->slots[0],
594 					     struct btrfs_extent_data_ref);
595 			if (match_extent_data_ref(leaf, ref, root_objectid,
596 						  owner, offset))
597 				break;
598 			btrfs_release_path(path);
599 			key.offset++;
600 			ret = btrfs_insert_empty_item(trans, root, path, &key,
601 						      size);
602 			if (ret && ret != -EEXIST)
603 				goto fail;
604 
605 			leaf = path->nodes[0];
606 		}
607 		ref = btrfs_item_ptr(leaf, path->slots[0],
608 				     struct btrfs_extent_data_ref);
609 		if (ret == 0) {
610 			btrfs_set_extent_data_ref_root(leaf, ref,
611 						       root_objectid);
612 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 		} else {
616 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 			num_refs += refs_to_add;
618 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 		}
620 	}
621 	btrfs_mark_buffer_dirty(leaf);
622 	ret = 0;
623 fail:
624 	btrfs_release_path(path);
625 	return ret;
626 }
627 
628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 					   struct btrfs_path *path,
630 					   int refs_to_drop, int *last_ref)
631 {
632 	struct btrfs_key key;
633 	struct btrfs_extent_data_ref *ref1 = NULL;
634 	struct btrfs_shared_data_ref *ref2 = NULL;
635 	struct extent_buffer *leaf;
636 	u32 num_refs = 0;
637 	int ret = 0;
638 
639 	leaf = path->nodes[0];
640 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 
642 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 				      struct btrfs_extent_data_ref);
645 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 				      struct btrfs_shared_data_ref);
649 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 		btrfs_print_v0_err(trans->fs_info);
652 		btrfs_abort_transaction(trans, -EINVAL);
653 		return -EINVAL;
654 	} else {
655 		BUG();
656 	}
657 
658 	BUG_ON(num_refs < refs_to_drop);
659 	num_refs -= refs_to_drop;
660 
661 	if (num_refs == 0) {
662 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 		*last_ref = 1;
664 	} else {
665 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 		btrfs_mark_buffer_dirty(leaf);
670 	}
671 	return ret;
672 }
673 
674 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 					  struct btrfs_extent_inline_ref *iref)
676 {
677 	struct btrfs_key key;
678 	struct extent_buffer *leaf;
679 	struct btrfs_extent_data_ref *ref1;
680 	struct btrfs_shared_data_ref *ref2;
681 	u32 num_refs = 0;
682 	int type;
683 
684 	leaf = path->nodes[0];
685 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686 
687 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 	if (iref) {
689 		/*
690 		 * If type is invalid, we should have bailed out earlier than
691 		 * this call.
692 		 */
693 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 		} else {
699 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 		}
702 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 				      struct btrfs_extent_data_ref);
705 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 				      struct btrfs_shared_data_ref);
709 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 	} else {
711 		WARN_ON(1);
712 	}
713 	return num_refs;
714 }
715 
716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = trans->fs_info->extent_root;
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 	if (ret > 0)
736 		ret = -ENOENT;
737 	return ret;
738 }
739 
740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 					  struct btrfs_path *path,
742 					  u64 bytenr, u64 parent,
743 					  u64 root_objectid)
744 {
745 	struct btrfs_key key;
746 	int ret;
747 
748 	key.objectid = bytenr;
749 	if (parent) {
750 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 		key.offset = parent;
752 	} else {
753 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 		key.offset = root_objectid;
755 	}
756 
757 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 				      path, &key, 0);
759 	btrfs_release_path(path);
760 	return ret;
761 }
762 
763 static inline int extent_ref_type(u64 parent, u64 owner)
764 {
765 	int type;
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (parent > 0)
768 			type = BTRFS_SHARED_BLOCK_REF_KEY;
769 		else
770 			type = BTRFS_TREE_BLOCK_REF_KEY;
771 	} else {
772 		if (parent > 0)
773 			type = BTRFS_SHARED_DATA_REF_KEY;
774 		else
775 			type = BTRFS_EXTENT_DATA_REF_KEY;
776 	}
777 	return type;
778 }
779 
780 static int find_next_key(struct btrfs_path *path, int level,
781 			 struct btrfs_key *key)
782 
783 {
784 	for (; level < BTRFS_MAX_LEVEL; level++) {
785 		if (!path->nodes[level])
786 			break;
787 		if (path->slots[level] + 1 >=
788 		    btrfs_header_nritems(path->nodes[level]))
789 			continue;
790 		if (level == 0)
791 			btrfs_item_key_to_cpu(path->nodes[level], key,
792 					      path->slots[level] + 1);
793 		else
794 			btrfs_node_key_to_cpu(path->nodes[level], key,
795 					      path->slots[level] + 1);
796 		return 0;
797 	}
798 	return 1;
799 }
800 
801 /*
802  * look for inline back ref. if back ref is found, *ref_ret is set
803  * to the address of inline back ref, and 0 is returned.
804  *
805  * if back ref isn't found, *ref_ret is set to the address where it
806  * should be inserted, and -ENOENT is returned.
807  *
808  * if insert is true and there are too many inline back refs, the path
809  * points to the extent item, and -EAGAIN is returned.
810  *
811  * NOTE: inline back refs are ordered in the same way that back ref
812  *	 items in the tree are ordered.
813  */
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 				 struct btrfs_path *path,
817 				 struct btrfs_extent_inline_ref **ref_ret,
818 				 u64 bytenr, u64 num_bytes,
819 				 u64 parent, u64 root_objectid,
820 				 u64 owner, u64 offset, int insert)
821 {
822 	struct btrfs_fs_info *fs_info = trans->fs_info;
823 	struct btrfs_root *root = fs_info->extent_root;
824 	struct btrfs_key key;
825 	struct extent_buffer *leaf;
826 	struct btrfs_extent_item *ei;
827 	struct btrfs_extent_inline_ref *iref;
828 	u64 flags;
829 	u64 item_size;
830 	unsigned long ptr;
831 	unsigned long end;
832 	int extra_size;
833 	int type;
834 	int want;
835 	int ret;
836 	int err = 0;
837 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 	int needed;
839 
840 	key.objectid = bytenr;
841 	key.type = BTRFS_EXTENT_ITEM_KEY;
842 	key.offset = num_bytes;
843 
844 	want = extent_ref_type(parent, owner);
845 	if (insert) {
846 		extra_size = btrfs_extent_inline_ref_size(want);
847 		path->search_for_extension = 1;
848 		path->keep_locks = 1;
849 	} else
850 		extra_size = -1;
851 
852 	/*
853 	 * Owner is our level, so we can just add one to get the level for the
854 	 * block we are interested in.
855 	 */
856 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
857 		key.type = BTRFS_METADATA_ITEM_KEY;
858 		key.offset = owner;
859 	}
860 
861 again:
862 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
863 	if (ret < 0) {
864 		err = ret;
865 		goto out;
866 	}
867 
868 	/*
869 	 * We may be a newly converted file system which still has the old fat
870 	 * extent entries for metadata, so try and see if we have one of those.
871 	 */
872 	if (ret > 0 && skinny_metadata) {
873 		skinny_metadata = false;
874 		if (path->slots[0]) {
875 			path->slots[0]--;
876 			btrfs_item_key_to_cpu(path->nodes[0], &key,
877 					      path->slots[0]);
878 			if (key.objectid == bytenr &&
879 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
880 			    key.offset == num_bytes)
881 				ret = 0;
882 		}
883 		if (ret) {
884 			key.objectid = bytenr;
885 			key.type = BTRFS_EXTENT_ITEM_KEY;
886 			key.offset = num_bytes;
887 			btrfs_release_path(path);
888 			goto again;
889 		}
890 	}
891 
892 	if (ret && !insert) {
893 		err = -ENOENT;
894 		goto out;
895 	} else if (WARN_ON(ret)) {
896 		err = -EIO;
897 		goto out;
898 	}
899 
900 	leaf = path->nodes[0];
901 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
902 	if (unlikely(item_size < sizeof(*ei))) {
903 		err = -EINVAL;
904 		btrfs_print_v0_err(fs_info);
905 		btrfs_abort_transaction(trans, err);
906 		goto out;
907 	}
908 
909 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
910 	flags = btrfs_extent_flags(leaf, ei);
911 
912 	ptr = (unsigned long)(ei + 1);
913 	end = (unsigned long)ei + item_size;
914 
915 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
916 		ptr += sizeof(struct btrfs_tree_block_info);
917 		BUG_ON(ptr > end);
918 	}
919 
920 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
921 		needed = BTRFS_REF_TYPE_DATA;
922 	else
923 		needed = BTRFS_REF_TYPE_BLOCK;
924 
925 	err = -ENOENT;
926 	while (1) {
927 		if (ptr >= end) {
928 			WARN_ON(ptr > end);
929 			break;
930 		}
931 		iref = (struct btrfs_extent_inline_ref *)ptr;
932 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
933 		if (type == BTRFS_REF_TYPE_INVALID) {
934 			err = -EUCLEAN;
935 			goto out;
936 		}
937 
938 		if (want < type)
939 			break;
940 		if (want > type) {
941 			ptr += btrfs_extent_inline_ref_size(type);
942 			continue;
943 		}
944 
945 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
946 			struct btrfs_extent_data_ref *dref;
947 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
948 			if (match_extent_data_ref(leaf, dref, root_objectid,
949 						  owner, offset)) {
950 				err = 0;
951 				break;
952 			}
953 			if (hash_extent_data_ref_item(leaf, dref) <
954 			    hash_extent_data_ref(root_objectid, owner, offset))
955 				break;
956 		} else {
957 			u64 ref_offset;
958 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
959 			if (parent > 0) {
960 				if (parent == ref_offset) {
961 					err = 0;
962 					break;
963 				}
964 				if (ref_offset < parent)
965 					break;
966 			} else {
967 				if (root_objectid == ref_offset) {
968 					err = 0;
969 					break;
970 				}
971 				if (ref_offset < root_objectid)
972 					break;
973 			}
974 		}
975 		ptr += btrfs_extent_inline_ref_size(type);
976 	}
977 	if (err == -ENOENT && insert) {
978 		if (item_size + extra_size >=
979 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
980 			err = -EAGAIN;
981 			goto out;
982 		}
983 		/*
984 		 * To add new inline back ref, we have to make sure
985 		 * there is no corresponding back ref item.
986 		 * For simplicity, we just do not add new inline back
987 		 * ref if there is any kind of item for this block
988 		 */
989 		if (find_next_key(path, 0, &key) == 0 &&
990 		    key.objectid == bytenr &&
991 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
992 			err = -EAGAIN;
993 			goto out;
994 		}
995 	}
996 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
997 out:
998 	if (insert) {
999 		path->keep_locks = 0;
1000 		path->search_for_extension = 0;
1001 		btrfs_unlock_up_safe(path, 1);
1002 	}
1003 	return err;
1004 }
1005 
1006 /*
1007  * helper to add new inline back ref
1008  */
1009 static noinline_for_stack
1010 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1011 				 struct btrfs_path *path,
1012 				 struct btrfs_extent_inline_ref *iref,
1013 				 u64 parent, u64 root_objectid,
1014 				 u64 owner, u64 offset, int refs_to_add,
1015 				 struct btrfs_delayed_extent_op *extent_op)
1016 {
1017 	struct extent_buffer *leaf;
1018 	struct btrfs_extent_item *ei;
1019 	unsigned long ptr;
1020 	unsigned long end;
1021 	unsigned long item_offset;
1022 	u64 refs;
1023 	int size;
1024 	int type;
1025 
1026 	leaf = path->nodes[0];
1027 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1028 	item_offset = (unsigned long)iref - (unsigned long)ei;
1029 
1030 	type = extent_ref_type(parent, owner);
1031 	size = btrfs_extent_inline_ref_size(type);
1032 
1033 	btrfs_extend_item(path, size);
1034 
1035 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1036 	refs = btrfs_extent_refs(leaf, ei);
1037 	refs += refs_to_add;
1038 	btrfs_set_extent_refs(leaf, ei, refs);
1039 	if (extent_op)
1040 		__run_delayed_extent_op(extent_op, leaf, ei);
1041 
1042 	ptr = (unsigned long)ei + item_offset;
1043 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1044 	if (ptr < end - size)
1045 		memmove_extent_buffer(leaf, ptr + size, ptr,
1046 				      end - size - ptr);
1047 
1048 	iref = (struct btrfs_extent_inline_ref *)ptr;
1049 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1050 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1051 		struct btrfs_extent_data_ref *dref;
1052 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1053 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1054 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1055 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1056 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1057 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1058 		struct btrfs_shared_data_ref *sref;
1059 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1060 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1061 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1063 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1064 	} else {
1065 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1066 	}
1067 	btrfs_mark_buffer_dirty(leaf);
1068 }
1069 
1070 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1071 				 struct btrfs_path *path,
1072 				 struct btrfs_extent_inline_ref **ref_ret,
1073 				 u64 bytenr, u64 num_bytes, u64 parent,
1074 				 u64 root_objectid, u64 owner, u64 offset)
1075 {
1076 	int ret;
1077 
1078 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1079 					   num_bytes, parent, root_objectid,
1080 					   owner, offset, 0);
1081 	if (ret != -ENOENT)
1082 		return ret;
1083 
1084 	btrfs_release_path(path);
1085 	*ref_ret = NULL;
1086 
1087 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1088 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1089 					    root_objectid);
1090 	} else {
1091 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1092 					     root_objectid, owner, offset);
1093 	}
1094 	return ret;
1095 }
1096 
1097 /*
1098  * helper to update/remove inline back ref
1099  */
1100 static noinline_for_stack
1101 void update_inline_extent_backref(struct btrfs_path *path,
1102 				  struct btrfs_extent_inline_ref *iref,
1103 				  int refs_to_mod,
1104 				  struct btrfs_delayed_extent_op *extent_op,
1105 				  int *last_ref)
1106 {
1107 	struct extent_buffer *leaf = path->nodes[0];
1108 	struct btrfs_extent_item *ei;
1109 	struct btrfs_extent_data_ref *dref = NULL;
1110 	struct btrfs_shared_data_ref *sref = NULL;
1111 	unsigned long ptr;
1112 	unsigned long end;
1113 	u32 item_size;
1114 	int size;
1115 	int type;
1116 	u64 refs;
1117 
1118 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1119 	refs = btrfs_extent_refs(leaf, ei);
1120 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1121 	refs += refs_to_mod;
1122 	btrfs_set_extent_refs(leaf, ei, refs);
1123 	if (extent_op)
1124 		__run_delayed_extent_op(extent_op, leaf, ei);
1125 
1126 	/*
1127 	 * If type is invalid, we should have bailed out after
1128 	 * lookup_inline_extent_backref().
1129 	 */
1130 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1131 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1132 
1133 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 		refs = btrfs_extent_data_ref_count(leaf, dref);
1136 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 		refs = btrfs_shared_data_ref_count(leaf, sref);
1139 	} else {
1140 		refs = 1;
1141 		BUG_ON(refs_to_mod != -1);
1142 	}
1143 
1144 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1145 	refs += refs_to_mod;
1146 
1147 	if (refs > 0) {
1148 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1149 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1150 		else
1151 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1152 	} else {
1153 		*last_ref = 1;
1154 		size =  btrfs_extent_inline_ref_size(type);
1155 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1156 		ptr = (unsigned long)iref;
1157 		end = (unsigned long)ei + item_size;
1158 		if (ptr + size < end)
1159 			memmove_extent_buffer(leaf, ptr, ptr + size,
1160 					      end - ptr - size);
1161 		item_size -= size;
1162 		btrfs_truncate_item(path, item_size, 1);
1163 	}
1164 	btrfs_mark_buffer_dirty(leaf);
1165 }
1166 
1167 static noinline_for_stack
1168 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1169 				 struct btrfs_path *path,
1170 				 u64 bytenr, u64 num_bytes, u64 parent,
1171 				 u64 root_objectid, u64 owner,
1172 				 u64 offset, int refs_to_add,
1173 				 struct btrfs_delayed_extent_op *extent_op)
1174 {
1175 	struct btrfs_extent_inline_ref *iref;
1176 	int ret;
1177 
1178 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1179 					   num_bytes, parent, root_objectid,
1180 					   owner, offset, 1);
1181 	if (ret == 0) {
1182 		/*
1183 		 * We're adding refs to a tree block we already own, this
1184 		 * should not happen at all.
1185 		 */
1186 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1187 			btrfs_crit(trans->fs_info,
1188 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1189 				   bytenr, num_bytes, root_objectid);
1190 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1191 				WARN_ON(1);
1192 				btrfs_crit(trans->fs_info,
1193 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1194 				btrfs_print_leaf(path->nodes[0]);
1195 			}
1196 			return -EUCLEAN;
1197 		}
1198 		update_inline_extent_backref(path, iref, refs_to_add,
1199 					     extent_op, NULL);
1200 	} else if (ret == -ENOENT) {
1201 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1202 					    root_objectid, owner, offset,
1203 					    refs_to_add, extent_op);
1204 		ret = 0;
1205 	}
1206 	return ret;
1207 }
1208 
1209 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1210 				 struct btrfs_path *path,
1211 				 struct btrfs_extent_inline_ref *iref,
1212 				 int refs_to_drop, int is_data, int *last_ref)
1213 {
1214 	int ret = 0;
1215 
1216 	BUG_ON(!is_data && refs_to_drop != 1);
1217 	if (iref) {
1218 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1219 					     last_ref);
1220 	} else if (is_data) {
1221 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1222 					     last_ref);
1223 	} else {
1224 		*last_ref = 1;
1225 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1226 	}
1227 	return ret;
1228 }
1229 
1230 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1231 			       u64 *discarded_bytes)
1232 {
1233 	int j, ret = 0;
1234 	u64 bytes_left, end;
1235 	u64 aligned_start = ALIGN(start, 1 << 9);
1236 
1237 	if (WARN_ON(start != aligned_start)) {
1238 		len -= aligned_start - start;
1239 		len = round_down(len, 1 << 9);
1240 		start = aligned_start;
1241 	}
1242 
1243 	*discarded_bytes = 0;
1244 
1245 	if (!len)
1246 		return 0;
1247 
1248 	end = start + len;
1249 	bytes_left = len;
1250 
1251 	/* Skip any superblocks on this device. */
1252 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1253 		u64 sb_start = btrfs_sb_offset(j);
1254 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1255 		u64 size = sb_start - start;
1256 
1257 		if (!in_range(sb_start, start, bytes_left) &&
1258 		    !in_range(sb_end, start, bytes_left) &&
1259 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1260 			continue;
1261 
1262 		/*
1263 		 * Superblock spans beginning of range.  Adjust start and
1264 		 * try again.
1265 		 */
1266 		if (sb_start <= start) {
1267 			start += sb_end - start;
1268 			if (start > end) {
1269 				bytes_left = 0;
1270 				break;
1271 			}
1272 			bytes_left = end - start;
1273 			continue;
1274 		}
1275 
1276 		if (size) {
1277 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1278 						   GFP_NOFS, 0);
1279 			if (!ret)
1280 				*discarded_bytes += size;
1281 			else if (ret != -EOPNOTSUPP)
1282 				return ret;
1283 		}
1284 
1285 		start = sb_end;
1286 		if (start > end) {
1287 			bytes_left = 0;
1288 			break;
1289 		}
1290 		bytes_left = end - start;
1291 	}
1292 
1293 	if (bytes_left) {
1294 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1295 					   GFP_NOFS, 0);
1296 		if (!ret)
1297 			*discarded_bytes += bytes_left;
1298 	}
1299 	return ret;
1300 }
1301 
1302 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1303 			 u64 num_bytes, u64 *actual_bytes)
1304 {
1305 	int ret = 0;
1306 	u64 discarded_bytes = 0;
1307 	u64 end = bytenr + num_bytes;
1308 	u64 cur = bytenr;
1309 	struct btrfs_bio *bbio = NULL;
1310 
1311 
1312 	/*
1313 	 * Avoid races with device replace and make sure our bbio has devices
1314 	 * associated to its stripes that don't go away while we are discarding.
1315 	 */
1316 	btrfs_bio_counter_inc_blocked(fs_info);
1317 	while (cur < end) {
1318 		struct btrfs_bio_stripe *stripe;
1319 		int i;
1320 
1321 		num_bytes = end - cur;
1322 		/* Tell the block device(s) that the sectors can be discarded */
1323 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1324 				      &num_bytes, &bbio, 0);
1325 		/*
1326 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1327 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1328 		 * thus we can't continue anyway.
1329 		 */
1330 		if (ret < 0)
1331 			goto out;
1332 
1333 		stripe = bbio->stripes;
1334 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1335 			u64 bytes;
1336 			struct request_queue *req_q;
1337 
1338 			if (!stripe->dev->bdev) {
1339 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1340 				continue;
1341 			}
1342 			req_q = bdev_get_queue(stripe->dev->bdev);
1343 			if (!blk_queue_discard(req_q))
1344 				continue;
1345 
1346 			ret = btrfs_issue_discard(stripe->dev->bdev,
1347 						  stripe->physical,
1348 						  stripe->length,
1349 						  &bytes);
1350 			if (!ret) {
1351 				discarded_bytes += bytes;
1352 			} else if (ret != -EOPNOTSUPP) {
1353 				/*
1354 				 * Logic errors or -ENOMEM, or -EIO, but
1355 				 * unlikely to happen.
1356 				 *
1357 				 * And since there are two loops, explicitly
1358 				 * go to out to avoid confusion.
1359 				 */
1360 				btrfs_put_bbio(bbio);
1361 				goto out;
1362 			}
1363 
1364 			/*
1365 			 * Just in case we get back EOPNOTSUPP for some reason,
1366 			 * just ignore the return value so we don't screw up
1367 			 * people calling discard_extent.
1368 			 */
1369 			ret = 0;
1370 		}
1371 		btrfs_put_bbio(bbio);
1372 		cur += num_bytes;
1373 	}
1374 out:
1375 	btrfs_bio_counter_dec(fs_info);
1376 
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 
1380 
1381 	if (ret == -EOPNOTSUPP)
1382 		ret = 0;
1383 	return ret;
1384 }
1385 
1386 /* Can return -ENOMEM */
1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1388 			 struct btrfs_ref *generic_ref)
1389 {
1390 	struct btrfs_fs_info *fs_info = trans->fs_info;
1391 	int old_ref_mod, new_ref_mod;
1392 	int ret;
1393 
1394 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1395 	       generic_ref->action);
1396 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1397 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1398 
1399 	if (generic_ref->type == BTRFS_REF_METADATA)
1400 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1401 				NULL, &old_ref_mod, &new_ref_mod);
1402 	else
1403 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1404 						 &old_ref_mod, &new_ref_mod);
1405 
1406 	btrfs_ref_tree_mod(fs_info, generic_ref);
1407 
1408 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1409 		sub_pinned_bytes(fs_info, generic_ref);
1410 
1411 	return ret;
1412 }
1413 
1414 /*
1415  * __btrfs_inc_extent_ref - insert backreference for a given extent
1416  *
1417  * The counterpart is in __btrfs_free_extent(), with examples and more details
1418  * how it works.
1419  *
1420  * @trans:	    Handle of transaction
1421  *
1422  * @node:	    The delayed ref node used to get the bytenr/length for
1423  *		    extent whose references are incremented.
1424  *
1425  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1426  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1427  *		    bytenr of the parent block. Since new extents are always
1428  *		    created with indirect references, this will only be the case
1429  *		    when relocating a shared extent. In that case, root_objectid
1430  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1431  *		    be 0
1432  *
1433  * @root_objectid:  The id of the root where this modification has originated,
1434  *		    this can be either one of the well-known metadata trees or
1435  *		    the subvolume id which references this extent.
1436  *
1437  * @owner:	    For data extents it is the inode number of the owning file.
1438  *		    For metadata extents this parameter holds the level in the
1439  *		    tree of the extent.
1440  *
1441  * @offset:	    For metadata extents the offset is ignored and is currently
1442  *		    always passed as 0. For data extents it is the fileoffset
1443  *		    this extent belongs to.
1444  *
1445  * @refs_to_add     Number of references to add
1446  *
1447  * @extent_op       Pointer to a structure, holding information necessary when
1448  *                  updating a tree block's flags
1449  *
1450  */
1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1452 				  struct btrfs_delayed_ref_node *node,
1453 				  u64 parent, u64 root_objectid,
1454 				  u64 owner, u64 offset, int refs_to_add,
1455 				  struct btrfs_delayed_extent_op *extent_op)
1456 {
1457 	struct btrfs_path *path;
1458 	struct extent_buffer *leaf;
1459 	struct btrfs_extent_item *item;
1460 	struct btrfs_key key;
1461 	u64 bytenr = node->bytenr;
1462 	u64 num_bytes = node->num_bytes;
1463 	u64 refs;
1464 	int ret;
1465 
1466 	path = btrfs_alloc_path();
1467 	if (!path)
1468 		return -ENOMEM;
1469 
1470 	/* this will setup the path even if it fails to insert the back ref */
1471 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1472 					   parent, root_objectid, owner,
1473 					   offset, refs_to_add, extent_op);
1474 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1475 		goto out;
1476 
1477 	/*
1478 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1479 	 * inline extent ref, so just update the reference count and add a
1480 	 * normal backref.
1481 	 */
1482 	leaf = path->nodes[0];
1483 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1484 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1485 	refs = btrfs_extent_refs(leaf, item);
1486 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1487 	if (extent_op)
1488 		__run_delayed_extent_op(extent_op, leaf, item);
1489 
1490 	btrfs_mark_buffer_dirty(leaf);
1491 	btrfs_release_path(path);
1492 
1493 	/* now insert the actual backref */
1494 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 		BUG_ON(refs_to_add != 1);
1496 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1497 					    root_objectid);
1498 	} else {
1499 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1500 					     root_objectid, owner, offset,
1501 					     refs_to_add);
1502 	}
1503 	if (ret)
1504 		btrfs_abort_transaction(trans, ret);
1505 out:
1506 	btrfs_free_path(path);
1507 	return ret;
1508 }
1509 
1510 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1511 				struct btrfs_delayed_ref_node *node,
1512 				struct btrfs_delayed_extent_op *extent_op,
1513 				int insert_reserved)
1514 {
1515 	int ret = 0;
1516 	struct btrfs_delayed_data_ref *ref;
1517 	struct btrfs_key ins;
1518 	u64 parent = 0;
1519 	u64 ref_root = 0;
1520 	u64 flags = 0;
1521 
1522 	ins.objectid = node->bytenr;
1523 	ins.offset = node->num_bytes;
1524 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1525 
1526 	ref = btrfs_delayed_node_to_data_ref(node);
1527 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1528 
1529 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1530 		parent = ref->parent;
1531 	ref_root = ref->root;
1532 
1533 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1534 		if (extent_op)
1535 			flags |= extent_op->flags_to_set;
1536 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1537 						 flags, ref->objectid,
1538 						 ref->offset, &ins,
1539 						 node->ref_mod);
1540 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1541 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1542 					     ref->objectid, ref->offset,
1543 					     node->ref_mod, extent_op);
1544 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1545 		ret = __btrfs_free_extent(trans, node, parent,
1546 					  ref_root, ref->objectid,
1547 					  ref->offset, node->ref_mod,
1548 					  extent_op);
1549 	} else {
1550 		BUG();
1551 	}
1552 	return ret;
1553 }
1554 
1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1556 				    struct extent_buffer *leaf,
1557 				    struct btrfs_extent_item *ei)
1558 {
1559 	u64 flags = btrfs_extent_flags(leaf, ei);
1560 	if (extent_op->update_flags) {
1561 		flags |= extent_op->flags_to_set;
1562 		btrfs_set_extent_flags(leaf, ei, flags);
1563 	}
1564 
1565 	if (extent_op->update_key) {
1566 		struct btrfs_tree_block_info *bi;
1567 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1568 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1569 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1570 	}
1571 }
1572 
1573 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1574 				 struct btrfs_delayed_ref_head *head,
1575 				 struct btrfs_delayed_extent_op *extent_op)
1576 {
1577 	struct btrfs_fs_info *fs_info = trans->fs_info;
1578 	struct btrfs_key key;
1579 	struct btrfs_path *path;
1580 	struct btrfs_extent_item *ei;
1581 	struct extent_buffer *leaf;
1582 	u32 item_size;
1583 	int ret;
1584 	int err = 0;
1585 	int metadata = !extent_op->is_data;
1586 
1587 	if (TRANS_ABORTED(trans))
1588 		return 0;
1589 
1590 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1591 		metadata = 0;
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path)
1595 		return -ENOMEM;
1596 
1597 	key.objectid = head->bytenr;
1598 
1599 	if (metadata) {
1600 		key.type = BTRFS_METADATA_ITEM_KEY;
1601 		key.offset = extent_op->level;
1602 	} else {
1603 		key.type = BTRFS_EXTENT_ITEM_KEY;
1604 		key.offset = head->num_bytes;
1605 	}
1606 
1607 again:
1608 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1609 	if (ret < 0) {
1610 		err = ret;
1611 		goto out;
1612 	}
1613 	if (ret > 0) {
1614 		if (metadata) {
1615 			if (path->slots[0] > 0) {
1616 				path->slots[0]--;
1617 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1618 						      path->slots[0]);
1619 				if (key.objectid == head->bytenr &&
1620 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1621 				    key.offset == head->num_bytes)
1622 					ret = 0;
1623 			}
1624 			if (ret > 0) {
1625 				btrfs_release_path(path);
1626 				metadata = 0;
1627 
1628 				key.objectid = head->bytenr;
1629 				key.offset = head->num_bytes;
1630 				key.type = BTRFS_EXTENT_ITEM_KEY;
1631 				goto again;
1632 			}
1633 		} else {
1634 			err = -EIO;
1635 			goto out;
1636 		}
1637 	}
1638 
1639 	leaf = path->nodes[0];
1640 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 
1642 	if (unlikely(item_size < sizeof(*ei))) {
1643 		err = -EINVAL;
1644 		btrfs_print_v0_err(fs_info);
1645 		btrfs_abort_transaction(trans, err);
1646 		goto out;
1647 	}
1648 
1649 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1650 	__run_delayed_extent_op(extent_op, leaf, ei);
1651 
1652 	btrfs_mark_buffer_dirty(leaf);
1653 out:
1654 	btrfs_free_path(path);
1655 	return err;
1656 }
1657 
1658 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1659 				struct btrfs_delayed_ref_node *node,
1660 				struct btrfs_delayed_extent_op *extent_op,
1661 				int insert_reserved)
1662 {
1663 	int ret = 0;
1664 	struct btrfs_delayed_tree_ref *ref;
1665 	u64 parent = 0;
1666 	u64 ref_root = 0;
1667 
1668 	ref = btrfs_delayed_node_to_tree_ref(node);
1669 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1670 
1671 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1672 		parent = ref->parent;
1673 	ref_root = ref->root;
1674 
1675 	if (node->ref_mod != 1) {
1676 		btrfs_err(trans->fs_info,
1677 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1678 			  node->bytenr, node->ref_mod, node->action, ref_root,
1679 			  parent);
1680 		return -EIO;
1681 	}
1682 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1683 		BUG_ON(!extent_op || !extent_op->update_flags);
1684 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1685 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1686 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1687 					     ref->level, 0, 1, extent_op);
1688 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1689 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1690 					  ref->level, 0, 1, extent_op);
1691 	} else {
1692 		BUG();
1693 	}
1694 	return ret;
1695 }
1696 
1697 /* helper function to actually process a single delayed ref entry */
1698 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1699 			       struct btrfs_delayed_ref_node *node,
1700 			       struct btrfs_delayed_extent_op *extent_op,
1701 			       int insert_reserved)
1702 {
1703 	int ret = 0;
1704 
1705 	if (TRANS_ABORTED(trans)) {
1706 		if (insert_reserved)
1707 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1708 		return 0;
1709 	}
1710 
1711 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1712 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1713 		ret = run_delayed_tree_ref(trans, node, extent_op,
1714 					   insert_reserved);
1715 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1716 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1717 		ret = run_delayed_data_ref(trans, node, extent_op,
1718 					   insert_reserved);
1719 	else
1720 		BUG();
1721 	if (ret && insert_reserved)
1722 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1723 	return ret;
1724 }
1725 
1726 static inline struct btrfs_delayed_ref_node *
1727 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1728 {
1729 	struct btrfs_delayed_ref_node *ref;
1730 
1731 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1732 		return NULL;
1733 
1734 	/*
1735 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1736 	 * This is to prevent a ref count from going down to zero, which deletes
1737 	 * the extent item from the extent tree, when there still are references
1738 	 * to add, which would fail because they would not find the extent item.
1739 	 */
1740 	if (!list_empty(&head->ref_add_list))
1741 		return list_first_entry(&head->ref_add_list,
1742 				struct btrfs_delayed_ref_node, add_list);
1743 
1744 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1745 		       struct btrfs_delayed_ref_node, ref_node);
1746 	ASSERT(list_empty(&ref->add_list));
1747 	return ref;
1748 }
1749 
1750 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1751 				      struct btrfs_delayed_ref_head *head)
1752 {
1753 	spin_lock(&delayed_refs->lock);
1754 	head->processing = 0;
1755 	delayed_refs->num_heads_ready++;
1756 	spin_unlock(&delayed_refs->lock);
1757 	btrfs_delayed_ref_unlock(head);
1758 }
1759 
1760 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1761 				struct btrfs_delayed_ref_head *head)
1762 {
1763 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1764 
1765 	if (!extent_op)
1766 		return NULL;
1767 
1768 	if (head->must_insert_reserved) {
1769 		head->extent_op = NULL;
1770 		btrfs_free_delayed_extent_op(extent_op);
1771 		return NULL;
1772 	}
1773 	return extent_op;
1774 }
1775 
1776 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1777 				     struct btrfs_delayed_ref_head *head)
1778 {
1779 	struct btrfs_delayed_extent_op *extent_op;
1780 	int ret;
1781 
1782 	extent_op = cleanup_extent_op(head);
1783 	if (!extent_op)
1784 		return 0;
1785 	head->extent_op = NULL;
1786 	spin_unlock(&head->lock);
1787 	ret = run_delayed_extent_op(trans, head, extent_op);
1788 	btrfs_free_delayed_extent_op(extent_op);
1789 	return ret ? ret : 1;
1790 }
1791 
1792 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1793 				  struct btrfs_delayed_ref_root *delayed_refs,
1794 				  struct btrfs_delayed_ref_head *head)
1795 {
1796 	int nr_items = 1;	/* Dropping this ref head update. */
1797 
1798 	if (head->total_ref_mod < 0) {
1799 		struct btrfs_space_info *space_info;
1800 		u64 flags;
1801 
1802 		if (head->is_data)
1803 			flags = BTRFS_BLOCK_GROUP_DATA;
1804 		else if (head->is_system)
1805 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1806 		else
1807 			flags = BTRFS_BLOCK_GROUP_METADATA;
1808 		space_info = btrfs_find_space_info(fs_info, flags);
1809 		ASSERT(space_info);
1810 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1811 				   -head->num_bytes,
1812 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1813 
1814 		/*
1815 		 * We had csum deletions accounted for in our delayed refs rsv,
1816 		 * we need to drop the csum leaves for this update from our
1817 		 * delayed_refs_rsv.
1818 		 */
1819 		if (head->is_data) {
1820 			spin_lock(&delayed_refs->lock);
1821 			delayed_refs->pending_csums -= head->num_bytes;
1822 			spin_unlock(&delayed_refs->lock);
1823 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1824 				head->num_bytes);
1825 		}
1826 	}
1827 
1828 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1829 }
1830 
1831 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1832 			    struct btrfs_delayed_ref_head *head)
1833 {
1834 
1835 	struct btrfs_fs_info *fs_info = trans->fs_info;
1836 	struct btrfs_delayed_ref_root *delayed_refs;
1837 	int ret;
1838 
1839 	delayed_refs = &trans->transaction->delayed_refs;
1840 
1841 	ret = run_and_cleanup_extent_op(trans, head);
1842 	if (ret < 0) {
1843 		unselect_delayed_ref_head(delayed_refs, head);
1844 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1845 		return ret;
1846 	} else if (ret) {
1847 		return ret;
1848 	}
1849 
1850 	/*
1851 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1852 	 * and then re-check to make sure nobody got added.
1853 	 */
1854 	spin_unlock(&head->lock);
1855 	spin_lock(&delayed_refs->lock);
1856 	spin_lock(&head->lock);
1857 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1858 		spin_unlock(&head->lock);
1859 		spin_unlock(&delayed_refs->lock);
1860 		return 1;
1861 	}
1862 	btrfs_delete_ref_head(delayed_refs, head);
1863 	spin_unlock(&head->lock);
1864 	spin_unlock(&delayed_refs->lock);
1865 
1866 	if (head->must_insert_reserved) {
1867 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1868 		if (head->is_data) {
1869 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1870 					      head->bytenr, head->num_bytes);
1871 		}
1872 	}
1873 
1874 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1875 
1876 	trace_run_delayed_ref_head(fs_info, head, 0);
1877 	btrfs_delayed_ref_unlock(head);
1878 	btrfs_put_delayed_ref_head(head);
1879 	return 0;
1880 }
1881 
1882 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1883 					struct btrfs_trans_handle *trans)
1884 {
1885 	struct btrfs_delayed_ref_root *delayed_refs =
1886 		&trans->transaction->delayed_refs;
1887 	struct btrfs_delayed_ref_head *head = NULL;
1888 	int ret;
1889 
1890 	spin_lock(&delayed_refs->lock);
1891 	head = btrfs_select_ref_head(delayed_refs);
1892 	if (!head) {
1893 		spin_unlock(&delayed_refs->lock);
1894 		return head;
1895 	}
1896 
1897 	/*
1898 	 * Grab the lock that says we are going to process all the refs for
1899 	 * this head
1900 	 */
1901 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1902 	spin_unlock(&delayed_refs->lock);
1903 
1904 	/*
1905 	 * We may have dropped the spin lock to get the head mutex lock, and
1906 	 * that might have given someone else time to free the head.  If that's
1907 	 * true, it has been removed from our list and we can move on.
1908 	 */
1909 	if (ret == -EAGAIN)
1910 		head = ERR_PTR(-EAGAIN);
1911 
1912 	return head;
1913 }
1914 
1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1916 				    struct btrfs_delayed_ref_head *locked_ref,
1917 				    unsigned long *run_refs)
1918 {
1919 	struct btrfs_fs_info *fs_info = trans->fs_info;
1920 	struct btrfs_delayed_ref_root *delayed_refs;
1921 	struct btrfs_delayed_extent_op *extent_op;
1922 	struct btrfs_delayed_ref_node *ref;
1923 	int must_insert_reserved = 0;
1924 	int ret;
1925 
1926 	delayed_refs = &trans->transaction->delayed_refs;
1927 
1928 	lockdep_assert_held(&locked_ref->mutex);
1929 	lockdep_assert_held(&locked_ref->lock);
1930 
1931 	while ((ref = select_delayed_ref(locked_ref))) {
1932 		if (ref->seq &&
1933 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1934 			spin_unlock(&locked_ref->lock);
1935 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1936 			return -EAGAIN;
1937 		}
1938 
1939 		(*run_refs)++;
1940 		ref->in_tree = 0;
1941 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1942 		RB_CLEAR_NODE(&ref->ref_node);
1943 		if (!list_empty(&ref->add_list))
1944 			list_del(&ref->add_list);
1945 		/*
1946 		 * When we play the delayed ref, also correct the ref_mod on
1947 		 * head
1948 		 */
1949 		switch (ref->action) {
1950 		case BTRFS_ADD_DELAYED_REF:
1951 		case BTRFS_ADD_DELAYED_EXTENT:
1952 			locked_ref->ref_mod -= ref->ref_mod;
1953 			break;
1954 		case BTRFS_DROP_DELAYED_REF:
1955 			locked_ref->ref_mod += ref->ref_mod;
1956 			break;
1957 		default:
1958 			WARN_ON(1);
1959 		}
1960 		atomic_dec(&delayed_refs->num_entries);
1961 
1962 		/*
1963 		 * Record the must_insert_reserved flag before we drop the
1964 		 * spin lock.
1965 		 */
1966 		must_insert_reserved = locked_ref->must_insert_reserved;
1967 		locked_ref->must_insert_reserved = 0;
1968 
1969 		extent_op = locked_ref->extent_op;
1970 		locked_ref->extent_op = NULL;
1971 		spin_unlock(&locked_ref->lock);
1972 
1973 		ret = run_one_delayed_ref(trans, ref, extent_op,
1974 					  must_insert_reserved);
1975 
1976 		btrfs_free_delayed_extent_op(extent_op);
1977 		if (ret) {
1978 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1979 			btrfs_put_delayed_ref(ref);
1980 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1981 				    ret);
1982 			return ret;
1983 		}
1984 
1985 		btrfs_put_delayed_ref(ref);
1986 		cond_resched();
1987 
1988 		spin_lock(&locked_ref->lock);
1989 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * Returns 0 on success or if called with an already aborted transaction.
1997  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1998  */
1999 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2000 					     unsigned long nr)
2001 {
2002 	struct btrfs_fs_info *fs_info = trans->fs_info;
2003 	struct btrfs_delayed_ref_root *delayed_refs;
2004 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2005 	ktime_t start = ktime_get();
2006 	int ret;
2007 	unsigned long count = 0;
2008 	unsigned long actual_count = 0;
2009 
2010 	delayed_refs = &trans->transaction->delayed_refs;
2011 	do {
2012 		if (!locked_ref) {
2013 			locked_ref = btrfs_obtain_ref_head(trans);
2014 			if (IS_ERR_OR_NULL(locked_ref)) {
2015 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2016 					continue;
2017 				} else {
2018 					break;
2019 				}
2020 			}
2021 			count++;
2022 		}
2023 		/*
2024 		 * We need to try and merge add/drops of the same ref since we
2025 		 * can run into issues with relocate dropping the implicit ref
2026 		 * and then it being added back again before the drop can
2027 		 * finish.  If we merged anything we need to re-loop so we can
2028 		 * get a good ref.
2029 		 * Or we can get node references of the same type that weren't
2030 		 * merged when created due to bumps in the tree mod seq, and
2031 		 * we need to merge them to prevent adding an inline extent
2032 		 * backref before dropping it (triggering a BUG_ON at
2033 		 * insert_inline_extent_backref()).
2034 		 */
2035 		spin_lock(&locked_ref->lock);
2036 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2037 
2038 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2039 						      &actual_count);
2040 		if (ret < 0 && ret != -EAGAIN) {
2041 			/*
2042 			 * Error, btrfs_run_delayed_refs_for_head already
2043 			 * unlocked everything so just bail out
2044 			 */
2045 			return ret;
2046 		} else if (!ret) {
2047 			/*
2048 			 * Success, perform the usual cleanup of a processed
2049 			 * head
2050 			 */
2051 			ret = cleanup_ref_head(trans, locked_ref);
2052 			if (ret > 0 ) {
2053 				/* We dropped our lock, we need to loop. */
2054 				ret = 0;
2055 				continue;
2056 			} else if (ret) {
2057 				return ret;
2058 			}
2059 		}
2060 
2061 		/*
2062 		 * Either success case or btrfs_run_delayed_refs_for_head
2063 		 * returned -EAGAIN, meaning we need to select another head
2064 		 */
2065 
2066 		locked_ref = NULL;
2067 		cond_resched();
2068 	} while ((nr != -1 && count < nr) || locked_ref);
2069 
2070 	/*
2071 	 * We don't want to include ref heads since we can have empty ref heads
2072 	 * and those will drastically skew our runtime down since we just do
2073 	 * accounting, no actual extent tree updates.
2074 	 */
2075 	if (actual_count > 0) {
2076 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2077 		u64 avg;
2078 
2079 		/*
2080 		 * We weigh the current average higher than our current runtime
2081 		 * to avoid large swings in the average.
2082 		 */
2083 		spin_lock(&delayed_refs->lock);
2084 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2085 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2086 		spin_unlock(&delayed_refs->lock);
2087 	}
2088 	return 0;
2089 }
2090 
2091 #ifdef SCRAMBLE_DELAYED_REFS
2092 /*
2093  * Normally delayed refs get processed in ascending bytenr order. This
2094  * correlates in most cases to the order added. To expose dependencies on this
2095  * order, we start to process the tree in the middle instead of the beginning
2096  */
2097 static u64 find_middle(struct rb_root *root)
2098 {
2099 	struct rb_node *n = root->rb_node;
2100 	struct btrfs_delayed_ref_node *entry;
2101 	int alt = 1;
2102 	u64 middle;
2103 	u64 first = 0, last = 0;
2104 
2105 	n = rb_first(root);
2106 	if (n) {
2107 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2108 		first = entry->bytenr;
2109 	}
2110 	n = rb_last(root);
2111 	if (n) {
2112 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2113 		last = entry->bytenr;
2114 	}
2115 	n = root->rb_node;
2116 
2117 	while (n) {
2118 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2119 		WARN_ON(!entry->in_tree);
2120 
2121 		middle = entry->bytenr;
2122 
2123 		if (alt)
2124 			n = n->rb_left;
2125 		else
2126 			n = n->rb_right;
2127 
2128 		alt = 1 - alt;
2129 	}
2130 	return middle;
2131 }
2132 #endif
2133 
2134 /*
2135  * this starts processing the delayed reference count updates and
2136  * extent insertions we have queued up so far.  count can be
2137  * 0, which means to process everything in the tree at the start
2138  * of the run (but not newly added entries), or it can be some target
2139  * number you'd like to process.
2140  *
2141  * Returns 0 on success or if called with an aborted transaction
2142  * Returns <0 on error and aborts the transaction
2143  */
2144 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2145 			   unsigned long count)
2146 {
2147 	struct btrfs_fs_info *fs_info = trans->fs_info;
2148 	struct rb_node *node;
2149 	struct btrfs_delayed_ref_root *delayed_refs;
2150 	struct btrfs_delayed_ref_head *head;
2151 	int ret;
2152 	int run_all = count == (unsigned long)-1;
2153 
2154 	/* We'll clean this up in btrfs_cleanup_transaction */
2155 	if (TRANS_ABORTED(trans))
2156 		return 0;
2157 
2158 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2159 		return 0;
2160 
2161 	delayed_refs = &trans->transaction->delayed_refs;
2162 	if (count == 0)
2163 		count = atomic_read(&delayed_refs->num_entries) * 2;
2164 
2165 again:
2166 #ifdef SCRAMBLE_DELAYED_REFS
2167 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2168 #endif
2169 	ret = __btrfs_run_delayed_refs(trans, count);
2170 	if (ret < 0) {
2171 		btrfs_abort_transaction(trans, ret);
2172 		return ret;
2173 	}
2174 
2175 	if (run_all) {
2176 		btrfs_create_pending_block_groups(trans);
2177 
2178 		spin_lock(&delayed_refs->lock);
2179 		node = rb_first_cached(&delayed_refs->href_root);
2180 		if (!node) {
2181 			spin_unlock(&delayed_refs->lock);
2182 			goto out;
2183 		}
2184 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2185 				href_node);
2186 		refcount_inc(&head->refs);
2187 		spin_unlock(&delayed_refs->lock);
2188 
2189 		/* Mutex was contended, block until it's released and retry. */
2190 		mutex_lock(&head->mutex);
2191 		mutex_unlock(&head->mutex);
2192 
2193 		btrfs_put_delayed_ref_head(head);
2194 		cond_resched();
2195 		goto again;
2196 	}
2197 out:
2198 	return 0;
2199 }
2200 
2201 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2202 				struct extent_buffer *eb, u64 flags,
2203 				int level, int is_data)
2204 {
2205 	struct btrfs_delayed_extent_op *extent_op;
2206 	int ret;
2207 
2208 	extent_op = btrfs_alloc_delayed_extent_op();
2209 	if (!extent_op)
2210 		return -ENOMEM;
2211 
2212 	extent_op->flags_to_set = flags;
2213 	extent_op->update_flags = true;
2214 	extent_op->update_key = false;
2215 	extent_op->is_data = is_data ? true : false;
2216 	extent_op->level = level;
2217 
2218 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2219 	if (ret)
2220 		btrfs_free_delayed_extent_op(extent_op);
2221 	return ret;
2222 }
2223 
2224 static noinline int check_delayed_ref(struct btrfs_root *root,
2225 				      struct btrfs_path *path,
2226 				      u64 objectid, u64 offset, u64 bytenr)
2227 {
2228 	struct btrfs_delayed_ref_head *head;
2229 	struct btrfs_delayed_ref_node *ref;
2230 	struct btrfs_delayed_data_ref *data_ref;
2231 	struct btrfs_delayed_ref_root *delayed_refs;
2232 	struct btrfs_transaction *cur_trans;
2233 	struct rb_node *node;
2234 	int ret = 0;
2235 
2236 	spin_lock(&root->fs_info->trans_lock);
2237 	cur_trans = root->fs_info->running_transaction;
2238 	if (cur_trans)
2239 		refcount_inc(&cur_trans->use_count);
2240 	spin_unlock(&root->fs_info->trans_lock);
2241 	if (!cur_trans)
2242 		return 0;
2243 
2244 	delayed_refs = &cur_trans->delayed_refs;
2245 	spin_lock(&delayed_refs->lock);
2246 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2247 	if (!head) {
2248 		spin_unlock(&delayed_refs->lock);
2249 		btrfs_put_transaction(cur_trans);
2250 		return 0;
2251 	}
2252 
2253 	if (!mutex_trylock(&head->mutex)) {
2254 		refcount_inc(&head->refs);
2255 		spin_unlock(&delayed_refs->lock);
2256 
2257 		btrfs_release_path(path);
2258 
2259 		/*
2260 		 * Mutex was contended, block until it's released and let
2261 		 * caller try again
2262 		 */
2263 		mutex_lock(&head->mutex);
2264 		mutex_unlock(&head->mutex);
2265 		btrfs_put_delayed_ref_head(head);
2266 		btrfs_put_transaction(cur_trans);
2267 		return -EAGAIN;
2268 	}
2269 	spin_unlock(&delayed_refs->lock);
2270 
2271 	spin_lock(&head->lock);
2272 	/*
2273 	 * XXX: We should replace this with a proper search function in the
2274 	 * future.
2275 	 */
2276 	for (node = rb_first_cached(&head->ref_tree); node;
2277 	     node = rb_next(node)) {
2278 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2279 		/* If it's a shared ref we know a cross reference exists */
2280 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2281 			ret = 1;
2282 			break;
2283 		}
2284 
2285 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2286 
2287 		/*
2288 		 * If our ref doesn't match the one we're currently looking at
2289 		 * then we have a cross reference.
2290 		 */
2291 		if (data_ref->root != root->root_key.objectid ||
2292 		    data_ref->objectid != objectid ||
2293 		    data_ref->offset != offset) {
2294 			ret = 1;
2295 			break;
2296 		}
2297 	}
2298 	spin_unlock(&head->lock);
2299 	mutex_unlock(&head->mutex);
2300 	btrfs_put_transaction(cur_trans);
2301 	return ret;
2302 }
2303 
2304 static noinline int check_committed_ref(struct btrfs_root *root,
2305 					struct btrfs_path *path,
2306 					u64 objectid, u64 offset, u64 bytenr,
2307 					bool strict)
2308 {
2309 	struct btrfs_fs_info *fs_info = root->fs_info;
2310 	struct btrfs_root *extent_root = fs_info->extent_root;
2311 	struct extent_buffer *leaf;
2312 	struct btrfs_extent_data_ref *ref;
2313 	struct btrfs_extent_inline_ref *iref;
2314 	struct btrfs_extent_item *ei;
2315 	struct btrfs_key key;
2316 	u32 item_size;
2317 	int type;
2318 	int ret;
2319 
2320 	key.objectid = bytenr;
2321 	key.offset = (u64)-1;
2322 	key.type = BTRFS_EXTENT_ITEM_KEY;
2323 
2324 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2325 	if (ret < 0)
2326 		goto out;
2327 	BUG_ON(ret == 0); /* Corruption */
2328 
2329 	ret = -ENOENT;
2330 	if (path->slots[0] == 0)
2331 		goto out;
2332 
2333 	path->slots[0]--;
2334 	leaf = path->nodes[0];
2335 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336 
2337 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2338 		goto out;
2339 
2340 	ret = 1;
2341 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2342 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2343 
2344 	/* If extent item has more than 1 inline ref then it's shared */
2345 	if (item_size != sizeof(*ei) +
2346 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2347 		goto out;
2348 
2349 	/*
2350 	 * If extent created before last snapshot => it's shared unless the
2351 	 * snapshot has been deleted. Use the heuristic if strict is false.
2352 	 */
2353 	if (!strict &&
2354 	    (btrfs_extent_generation(leaf, ei) <=
2355 	     btrfs_root_last_snapshot(&root->root_item)))
2356 		goto out;
2357 
2358 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2359 
2360 	/* If this extent has SHARED_DATA_REF then it's shared */
2361 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2362 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2363 		goto out;
2364 
2365 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2366 	if (btrfs_extent_refs(leaf, ei) !=
2367 	    btrfs_extent_data_ref_count(leaf, ref) ||
2368 	    btrfs_extent_data_ref_root(leaf, ref) !=
2369 	    root->root_key.objectid ||
2370 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2371 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2372 		goto out;
2373 
2374 	ret = 0;
2375 out:
2376 	return ret;
2377 }
2378 
2379 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2380 			  u64 bytenr, bool strict)
2381 {
2382 	struct btrfs_path *path;
2383 	int ret;
2384 
2385 	path = btrfs_alloc_path();
2386 	if (!path)
2387 		return -ENOMEM;
2388 
2389 	do {
2390 		ret = check_committed_ref(root, path, objectid,
2391 					  offset, bytenr, strict);
2392 		if (ret && ret != -ENOENT)
2393 			goto out;
2394 
2395 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2396 	} while (ret == -EAGAIN);
2397 
2398 out:
2399 	btrfs_free_path(path);
2400 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2401 		WARN_ON(ret > 0);
2402 	return ret;
2403 }
2404 
2405 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2406 			   struct btrfs_root *root,
2407 			   struct extent_buffer *buf,
2408 			   int full_backref, int inc)
2409 {
2410 	struct btrfs_fs_info *fs_info = root->fs_info;
2411 	u64 bytenr;
2412 	u64 num_bytes;
2413 	u64 parent;
2414 	u64 ref_root;
2415 	u32 nritems;
2416 	struct btrfs_key key;
2417 	struct btrfs_file_extent_item *fi;
2418 	struct btrfs_ref generic_ref = { 0 };
2419 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2420 	int i;
2421 	int action;
2422 	int level;
2423 	int ret = 0;
2424 
2425 	if (btrfs_is_testing(fs_info))
2426 		return 0;
2427 
2428 	ref_root = btrfs_header_owner(buf);
2429 	nritems = btrfs_header_nritems(buf);
2430 	level = btrfs_header_level(buf);
2431 
2432 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2433 		return 0;
2434 
2435 	if (full_backref)
2436 		parent = buf->start;
2437 	else
2438 		parent = 0;
2439 	if (inc)
2440 		action = BTRFS_ADD_DELAYED_REF;
2441 	else
2442 		action = BTRFS_DROP_DELAYED_REF;
2443 
2444 	for (i = 0; i < nritems; i++) {
2445 		if (level == 0) {
2446 			btrfs_item_key_to_cpu(buf, &key, i);
2447 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2448 				continue;
2449 			fi = btrfs_item_ptr(buf, i,
2450 					    struct btrfs_file_extent_item);
2451 			if (btrfs_file_extent_type(buf, fi) ==
2452 			    BTRFS_FILE_EXTENT_INLINE)
2453 				continue;
2454 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2455 			if (bytenr == 0)
2456 				continue;
2457 
2458 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2459 			key.offset -= btrfs_file_extent_offset(buf, fi);
2460 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2461 					       num_bytes, parent);
2462 			generic_ref.real_root = root->root_key.objectid;
2463 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2464 					    key.offset);
2465 			generic_ref.skip_qgroup = for_reloc;
2466 			if (inc)
2467 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2468 			else
2469 				ret = btrfs_free_extent(trans, &generic_ref);
2470 			if (ret)
2471 				goto fail;
2472 		} else {
2473 			bytenr = btrfs_node_blockptr(buf, i);
2474 			num_bytes = fs_info->nodesize;
2475 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2476 					       num_bytes, parent);
2477 			generic_ref.real_root = root->root_key.objectid;
2478 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2479 			generic_ref.skip_qgroup = for_reloc;
2480 			if (inc)
2481 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2482 			else
2483 				ret = btrfs_free_extent(trans, &generic_ref);
2484 			if (ret)
2485 				goto fail;
2486 		}
2487 	}
2488 	return 0;
2489 fail:
2490 	return ret;
2491 }
2492 
2493 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2494 		  struct extent_buffer *buf, int full_backref)
2495 {
2496 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2497 }
2498 
2499 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2500 		  struct extent_buffer *buf, int full_backref)
2501 {
2502 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2503 }
2504 
2505 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2506 {
2507 	struct btrfs_block_group *block_group;
2508 	int readonly = 0;
2509 
2510 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2511 	if (!block_group || block_group->ro)
2512 		readonly = 1;
2513 	if (block_group)
2514 		btrfs_put_block_group(block_group);
2515 	return readonly;
2516 }
2517 
2518 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2519 {
2520 	struct btrfs_fs_info *fs_info = root->fs_info;
2521 	u64 flags;
2522 	u64 ret;
2523 
2524 	if (data)
2525 		flags = BTRFS_BLOCK_GROUP_DATA;
2526 	else if (root == fs_info->chunk_root)
2527 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2528 	else
2529 		flags = BTRFS_BLOCK_GROUP_METADATA;
2530 
2531 	ret = btrfs_get_alloc_profile(fs_info, flags);
2532 	return ret;
2533 }
2534 
2535 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2536 {
2537 	struct btrfs_block_group *cache;
2538 	u64 bytenr;
2539 
2540 	spin_lock(&fs_info->block_group_cache_lock);
2541 	bytenr = fs_info->first_logical_byte;
2542 	spin_unlock(&fs_info->block_group_cache_lock);
2543 
2544 	if (bytenr < (u64)-1)
2545 		return bytenr;
2546 
2547 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2548 	if (!cache)
2549 		return 0;
2550 
2551 	bytenr = cache->start;
2552 	btrfs_put_block_group(cache);
2553 
2554 	return bytenr;
2555 }
2556 
2557 static int pin_down_extent(struct btrfs_trans_handle *trans,
2558 			   struct btrfs_block_group *cache,
2559 			   u64 bytenr, u64 num_bytes, int reserved)
2560 {
2561 	struct btrfs_fs_info *fs_info = cache->fs_info;
2562 
2563 	spin_lock(&cache->space_info->lock);
2564 	spin_lock(&cache->lock);
2565 	cache->pinned += num_bytes;
2566 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2567 					     num_bytes);
2568 	if (reserved) {
2569 		cache->reserved -= num_bytes;
2570 		cache->space_info->bytes_reserved -= num_bytes;
2571 	}
2572 	spin_unlock(&cache->lock);
2573 	spin_unlock(&cache->space_info->lock);
2574 
2575 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2576 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2577 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2578 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2579 	return 0;
2580 }
2581 
2582 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2583 		     u64 bytenr, u64 num_bytes, int reserved)
2584 {
2585 	struct btrfs_block_group *cache;
2586 
2587 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2588 	BUG_ON(!cache); /* Logic error */
2589 
2590 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2591 
2592 	btrfs_put_block_group(cache);
2593 	return 0;
2594 }
2595 
2596 /*
2597  * this function must be called within transaction
2598  */
2599 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2600 				    u64 bytenr, u64 num_bytes)
2601 {
2602 	struct btrfs_block_group *cache;
2603 	int ret;
2604 
2605 	btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2606 
2607 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2608 	if (!cache)
2609 		return -EINVAL;
2610 
2611 	/*
2612 	 * pull in the free space cache (if any) so that our pin
2613 	 * removes the free space from the cache.  We have load_only set
2614 	 * to one because the slow code to read in the free extents does check
2615 	 * the pinned extents.
2616 	 */
2617 	btrfs_cache_block_group(cache, 1);
2618 
2619 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2620 
2621 	/* remove us from the free space cache (if we're there at all) */
2622 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2623 	btrfs_put_block_group(cache);
2624 	return ret;
2625 }
2626 
2627 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2628 				   u64 start, u64 num_bytes)
2629 {
2630 	int ret;
2631 	struct btrfs_block_group *block_group;
2632 	struct btrfs_caching_control *caching_ctl;
2633 
2634 	block_group = btrfs_lookup_block_group(fs_info, start);
2635 	if (!block_group)
2636 		return -EINVAL;
2637 
2638 	btrfs_cache_block_group(block_group, 0);
2639 	caching_ctl = btrfs_get_caching_control(block_group);
2640 
2641 	if (!caching_ctl) {
2642 		/* Logic error */
2643 		BUG_ON(!btrfs_block_group_done(block_group));
2644 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2645 	} else {
2646 		/*
2647 		 * We must wait for v1 caching to finish, otherwise we may not
2648 		 * remove our space.
2649 		 */
2650 		btrfs_wait_space_cache_v1_finished(block_group, caching_ctl);
2651 		mutex_lock(&caching_ctl->mutex);
2652 
2653 		if (start >= caching_ctl->progress) {
2654 			ret = btrfs_add_excluded_extent(fs_info, start,
2655 							num_bytes);
2656 		} else if (start + num_bytes <= caching_ctl->progress) {
2657 			ret = btrfs_remove_free_space(block_group,
2658 						      start, num_bytes);
2659 		} else {
2660 			num_bytes = caching_ctl->progress - start;
2661 			ret = btrfs_remove_free_space(block_group,
2662 						      start, num_bytes);
2663 			if (ret)
2664 				goto out_lock;
2665 
2666 			num_bytes = (start + num_bytes) -
2667 				caching_ctl->progress;
2668 			start = caching_ctl->progress;
2669 			ret = btrfs_add_excluded_extent(fs_info, start,
2670 							num_bytes);
2671 		}
2672 out_lock:
2673 		mutex_unlock(&caching_ctl->mutex);
2674 		btrfs_put_caching_control(caching_ctl);
2675 	}
2676 	btrfs_put_block_group(block_group);
2677 	return ret;
2678 }
2679 
2680 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2681 {
2682 	struct btrfs_fs_info *fs_info = eb->fs_info;
2683 	struct btrfs_file_extent_item *item;
2684 	struct btrfs_key key;
2685 	int found_type;
2686 	int i;
2687 	int ret = 0;
2688 
2689 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2690 		return 0;
2691 
2692 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2693 		btrfs_item_key_to_cpu(eb, &key, i);
2694 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2695 			continue;
2696 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2697 		found_type = btrfs_file_extent_type(eb, item);
2698 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2699 			continue;
2700 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2701 			continue;
2702 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2703 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2704 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2705 		if (ret)
2706 			break;
2707 	}
2708 
2709 	return ret;
2710 }
2711 
2712 static void
2713 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2714 {
2715 	atomic_inc(&bg->reservations);
2716 }
2717 
2718 /*
2719  * Returns the free cluster for the given space info and sets empty_cluster to
2720  * what it should be based on the mount options.
2721  */
2722 static struct btrfs_free_cluster *
2723 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2724 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2725 {
2726 	struct btrfs_free_cluster *ret = NULL;
2727 
2728 	*empty_cluster = 0;
2729 	if (btrfs_mixed_space_info(space_info))
2730 		return ret;
2731 
2732 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2733 		ret = &fs_info->meta_alloc_cluster;
2734 		if (btrfs_test_opt(fs_info, SSD))
2735 			*empty_cluster = SZ_2M;
2736 		else
2737 			*empty_cluster = SZ_64K;
2738 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2739 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2740 		*empty_cluster = SZ_2M;
2741 		ret = &fs_info->data_alloc_cluster;
2742 	}
2743 
2744 	return ret;
2745 }
2746 
2747 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2748 			      u64 start, u64 end,
2749 			      const bool return_free_space)
2750 {
2751 	struct btrfs_block_group *cache = NULL;
2752 	struct btrfs_space_info *space_info;
2753 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2754 	struct btrfs_free_cluster *cluster = NULL;
2755 	u64 len;
2756 	u64 total_unpinned = 0;
2757 	u64 empty_cluster = 0;
2758 	bool readonly;
2759 
2760 	while (start <= end) {
2761 		readonly = false;
2762 		if (!cache ||
2763 		    start >= cache->start + cache->length) {
2764 			if (cache)
2765 				btrfs_put_block_group(cache);
2766 			total_unpinned = 0;
2767 			cache = btrfs_lookup_block_group(fs_info, start);
2768 			BUG_ON(!cache); /* Logic error */
2769 
2770 			cluster = fetch_cluster_info(fs_info,
2771 						     cache->space_info,
2772 						     &empty_cluster);
2773 			empty_cluster <<= 1;
2774 		}
2775 
2776 		len = cache->start + cache->length - start;
2777 		len = min(len, end + 1 - start);
2778 
2779 		down_read(&fs_info->commit_root_sem);
2780 		if (start < cache->last_byte_to_unpin && return_free_space) {
2781 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2782 
2783 			btrfs_add_free_space(cache, start, add_len);
2784 		}
2785 		up_read(&fs_info->commit_root_sem);
2786 
2787 		start += len;
2788 		total_unpinned += len;
2789 		space_info = cache->space_info;
2790 
2791 		/*
2792 		 * If this space cluster has been marked as fragmented and we've
2793 		 * unpinned enough in this block group to potentially allow a
2794 		 * cluster to be created inside of it go ahead and clear the
2795 		 * fragmented check.
2796 		 */
2797 		if (cluster && cluster->fragmented &&
2798 		    total_unpinned > empty_cluster) {
2799 			spin_lock(&cluster->lock);
2800 			cluster->fragmented = 0;
2801 			spin_unlock(&cluster->lock);
2802 		}
2803 
2804 		spin_lock(&space_info->lock);
2805 		spin_lock(&cache->lock);
2806 		cache->pinned -= len;
2807 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2808 		space_info->max_extent_size = 0;
2809 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2810 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2811 		if (cache->ro) {
2812 			space_info->bytes_readonly += len;
2813 			readonly = true;
2814 		}
2815 		spin_unlock(&cache->lock);
2816 		if (!readonly && return_free_space &&
2817 		    global_rsv->space_info == space_info) {
2818 			u64 to_add = len;
2819 
2820 			spin_lock(&global_rsv->lock);
2821 			if (!global_rsv->full) {
2822 				to_add = min(len, global_rsv->size -
2823 					     global_rsv->reserved);
2824 				global_rsv->reserved += to_add;
2825 				btrfs_space_info_update_bytes_may_use(fs_info,
2826 						space_info, to_add);
2827 				if (global_rsv->reserved >= global_rsv->size)
2828 					global_rsv->full = 1;
2829 				len -= to_add;
2830 			}
2831 			spin_unlock(&global_rsv->lock);
2832 		}
2833 		/* Add to any tickets we may have */
2834 		if (!readonly && return_free_space && len)
2835 			btrfs_try_granting_tickets(fs_info, space_info);
2836 		spin_unlock(&space_info->lock);
2837 	}
2838 
2839 	if (cache)
2840 		btrfs_put_block_group(cache);
2841 	return 0;
2842 }
2843 
2844 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2845 {
2846 	struct btrfs_fs_info *fs_info = trans->fs_info;
2847 	struct btrfs_block_group *block_group, *tmp;
2848 	struct list_head *deleted_bgs;
2849 	struct extent_io_tree *unpin;
2850 	u64 start;
2851 	u64 end;
2852 	int ret;
2853 
2854 	unpin = &trans->transaction->pinned_extents;
2855 
2856 	while (!TRANS_ABORTED(trans)) {
2857 		struct extent_state *cached_state = NULL;
2858 
2859 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2860 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2861 					    EXTENT_DIRTY, &cached_state);
2862 		if (ret) {
2863 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2864 			break;
2865 		}
2866 		if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2867 			clear_extent_bits(&fs_info->excluded_extents, start,
2868 					  end, EXTENT_UPTODATE);
2869 
2870 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2871 			ret = btrfs_discard_extent(fs_info, start,
2872 						   end + 1 - start, NULL);
2873 
2874 		clear_extent_dirty(unpin, start, end, &cached_state);
2875 		unpin_extent_range(fs_info, start, end, true);
2876 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2877 		free_extent_state(cached_state);
2878 		cond_resched();
2879 	}
2880 
2881 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2882 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2883 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2884 	}
2885 
2886 	/*
2887 	 * Transaction is finished.  We don't need the lock anymore.  We
2888 	 * do need to clean up the block groups in case of a transaction
2889 	 * abort.
2890 	 */
2891 	deleted_bgs = &trans->transaction->deleted_bgs;
2892 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2893 		u64 trimmed = 0;
2894 
2895 		ret = -EROFS;
2896 		if (!TRANS_ABORTED(trans))
2897 			ret = btrfs_discard_extent(fs_info,
2898 						   block_group->start,
2899 						   block_group->length,
2900 						   &trimmed);
2901 
2902 		list_del_init(&block_group->bg_list);
2903 		btrfs_unfreeze_block_group(block_group);
2904 		btrfs_put_block_group(block_group);
2905 
2906 		if (ret) {
2907 			const char *errstr = btrfs_decode_error(ret);
2908 			btrfs_warn(fs_info,
2909 			   "discard failed while removing blockgroup: errno=%d %s",
2910 				   ret, errstr);
2911 		}
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 /*
2918  * Drop one or more refs of @node.
2919  *
2920  * 1. Locate the extent refs.
2921  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2922  *    Locate it, then reduce the refs number or remove the ref line completely.
2923  *
2924  * 2. Update the refs count in EXTENT/METADATA_ITEM
2925  *
2926  * Inline backref case:
2927  *
2928  * in extent tree we have:
2929  *
2930  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2931  *		refs 2 gen 6 flags DATA
2932  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2933  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2934  *
2935  * This function gets called with:
2936  *
2937  *    node->bytenr = 13631488
2938  *    node->num_bytes = 1048576
2939  *    root_objectid = FS_TREE
2940  *    owner_objectid = 257
2941  *    owner_offset = 0
2942  *    refs_to_drop = 1
2943  *
2944  * Then we should get some like:
2945  *
2946  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2947  *		refs 1 gen 6 flags DATA
2948  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2949  *
2950  * Keyed backref case:
2951  *
2952  * in extent tree we have:
2953  *
2954  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2955  *		refs 754 gen 6 flags DATA
2956  *	[...]
2957  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2958  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2959  *
2960  * This function get called with:
2961  *
2962  *    node->bytenr = 13631488
2963  *    node->num_bytes = 1048576
2964  *    root_objectid = FS_TREE
2965  *    owner_objectid = 866
2966  *    owner_offset = 0
2967  *    refs_to_drop = 1
2968  *
2969  * Then we should get some like:
2970  *
2971  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2972  *		refs 753 gen 6 flags DATA
2973  *
2974  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2975  */
2976 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2977 			       struct btrfs_delayed_ref_node *node, u64 parent,
2978 			       u64 root_objectid, u64 owner_objectid,
2979 			       u64 owner_offset, int refs_to_drop,
2980 			       struct btrfs_delayed_extent_op *extent_op)
2981 {
2982 	struct btrfs_fs_info *info = trans->fs_info;
2983 	struct btrfs_key key;
2984 	struct btrfs_path *path;
2985 	struct btrfs_root *extent_root = info->extent_root;
2986 	struct extent_buffer *leaf;
2987 	struct btrfs_extent_item *ei;
2988 	struct btrfs_extent_inline_ref *iref;
2989 	int ret;
2990 	int is_data;
2991 	int extent_slot = 0;
2992 	int found_extent = 0;
2993 	int num_to_del = 1;
2994 	u32 item_size;
2995 	u64 refs;
2996 	u64 bytenr = node->bytenr;
2997 	u64 num_bytes = node->num_bytes;
2998 	int last_ref = 0;
2999 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3000 
3001 	path = btrfs_alloc_path();
3002 	if (!path)
3003 		return -ENOMEM;
3004 
3005 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3006 
3007 	if (!is_data && refs_to_drop != 1) {
3008 		btrfs_crit(info,
3009 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3010 			   node->bytenr, refs_to_drop);
3011 		ret = -EINVAL;
3012 		btrfs_abort_transaction(trans, ret);
3013 		goto out;
3014 	}
3015 
3016 	if (is_data)
3017 		skinny_metadata = false;
3018 
3019 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3020 				    parent, root_objectid, owner_objectid,
3021 				    owner_offset);
3022 	if (ret == 0) {
3023 		/*
3024 		 * Either the inline backref or the SHARED_DATA_REF/
3025 		 * SHARED_BLOCK_REF is found
3026 		 *
3027 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3028 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3029 		 */
3030 		extent_slot = path->slots[0];
3031 		while (extent_slot >= 0) {
3032 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3033 					      extent_slot);
3034 			if (key.objectid != bytenr)
3035 				break;
3036 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3037 			    key.offset == num_bytes) {
3038 				found_extent = 1;
3039 				break;
3040 			}
3041 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3042 			    key.offset == owner_objectid) {
3043 				found_extent = 1;
3044 				break;
3045 			}
3046 
3047 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3048 			if (path->slots[0] - extent_slot > 5)
3049 				break;
3050 			extent_slot--;
3051 		}
3052 
3053 		if (!found_extent) {
3054 			if (iref) {
3055 				btrfs_crit(info,
3056 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3057 				btrfs_abort_transaction(trans, -EUCLEAN);
3058 				goto err_dump;
3059 			}
3060 			/* Must be SHARED_* item, remove the backref first */
3061 			ret = remove_extent_backref(trans, path, NULL,
3062 						    refs_to_drop,
3063 						    is_data, &last_ref);
3064 			if (ret) {
3065 				btrfs_abort_transaction(trans, ret);
3066 				goto out;
3067 			}
3068 			btrfs_release_path(path);
3069 
3070 			/* Slow path to locate EXTENT/METADATA_ITEM */
3071 			key.objectid = bytenr;
3072 			key.type = BTRFS_EXTENT_ITEM_KEY;
3073 			key.offset = num_bytes;
3074 
3075 			if (!is_data && skinny_metadata) {
3076 				key.type = BTRFS_METADATA_ITEM_KEY;
3077 				key.offset = owner_objectid;
3078 			}
3079 
3080 			ret = btrfs_search_slot(trans, extent_root,
3081 						&key, path, -1, 1);
3082 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3083 				/*
3084 				 * Couldn't find our skinny metadata item,
3085 				 * see if we have ye olde extent item.
3086 				 */
3087 				path->slots[0]--;
3088 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3089 						      path->slots[0]);
3090 				if (key.objectid == bytenr &&
3091 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3092 				    key.offset == num_bytes)
3093 					ret = 0;
3094 			}
3095 
3096 			if (ret > 0 && skinny_metadata) {
3097 				skinny_metadata = false;
3098 				key.objectid = bytenr;
3099 				key.type = BTRFS_EXTENT_ITEM_KEY;
3100 				key.offset = num_bytes;
3101 				btrfs_release_path(path);
3102 				ret = btrfs_search_slot(trans, extent_root,
3103 							&key, path, -1, 1);
3104 			}
3105 
3106 			if (ret) {
3107 				btrfs_err(info,
3108 					  "umm, got %d back from search, was looking for %llu",
3109 					  ret, bytenr);
3110 				if (ret > 0)
3111 					btrfs_print_leaf(path->nodes[0]);
3112 			}
3113 			if (ret < 0) {
3114 				btrfs_abort_transaction(trans, ret);
3115 				goto out;
3116 			}
3117 			extent_slot = path->slots[0];
3118 		}
3119 	} else if (WARN_ON(ret == -ENOENT)) {
3120 		btrfs_print_leaf(path->nodes[0]);
3121 		btrfs_err(info,
3122 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3123 			bytenr, parent, root_objectid, owner_objectid,
3124 			owner_offset);
3125 		btrfs_abort_transaction(trans, ret);
3126 		goto out;
3127 	} else {
3128 		btrfs_abort_transaction(trans, ret);
3129 		goto out;
3130 	}
3131 
3132 	leaf = path->nodes[0];
3133 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3134 	if (unlikely(item_size < sizeof(*ei))) {
3135 		ret = -EINVAL;
3136 		btrfs_print_v0_err(info);
3137 		btrfs_abort_transaction(trans, ret);
3138 		goto out;
3139 	}
3140 	ei = btrfs_item_ptr(leaf, extent_slot,
3141 			    struct btrfs_extent_item);
3142 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3143 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3144 		struct btrfs_tree_block_info *bi;
3145 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3146 			btrfs_crit(info,
3147 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3148 				   key.objectid, key.type, key.offset,
3149 				   owner_objectid, item_size,
3150 				   sizeof(*ei) + sizeof(*bi));
3151 			btrfs_abort_transaction(trans, -EUCLEAN);
3152 			goto err_dump;
3153 		}
3154 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3155 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3156 	}
3157 
3158 	refs = btrfs_extent_refs(leaf, ei);
3159 	if (refs < refs_to_drop) {
3160 		btrfs_crit(info,
3161 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3162 			  refs_to_drop, refs, bytenr);
3163 		btrfs_abort_transaction(trans, -EUCLEAN);
3164 		goto err_dump;
3165 	}
3166 	refs -= refs_to_drop;
3167 
3168 	if (refs > 0) {
3169 		if (extent_op)
3170 			__run_delayed_extent_op(extent_op, leaf, ei);
3171 		/*
3172 		 * In the case of inline back ref, reference count will
3173 		 * be updated by remove_extent_backref
3174 		 */
3175 		if (iref) {
3176 			if (!found_extent) {
3177 				btrfs_crit(info,
3178 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3179 				btrfs_abort_transaction(trans, -EUCLEAN);
3180 				goto err_dump;
3181 			}
3182 		} else {
3183 			btrfs_set_extent_refs(leaf, ei, refs);
3184 			btrfs_mark_buffer_dirty(leaf);
3185 		}
3186 		if (found_extent) {
3187 			ret = remove_extent_backref(trans, path, iref,
3188 						    refs_to_drop, is_data,
3189 						    &last_ref);
3190 			if (ret) {
3191 				btrfs_abort_transaction(trans, ret);
3192 				goto out;
3193 			}
3194 		}
3195 	} else {
3196 		/* In this branch refs == 1 */
3197 		if (found_extent) {
3198 			if (is_data && refs_to_drop !=
3199 			    extent_data_ref_count(path, iref)) {
3200 				btrfs_crit(info,
3201 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3202 					   extent_data_ref_count(path, iref),
3203 					   refs_to_drop);
3204 				btrfs_abort_transaction(trans, -EUCLEAN);
3205 				goto err_dump;
3206 			}
3207 			if (iref) {
3208 				if (path->slots[0] != extent_slot) {
3209 					btrfs_crit(info,
3210 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3211 						   key.objectid, key.type,
3212 						   key.offset);
3213 					btrfs_abort_transaction(trans, -EUCLEAN);
3214 					goto err_dump;
3215 				}
3216 			} else {
3217 				/*
3218 				 * No inline ref, we must be at SHARED_* item,
3219 				 * And it's single ref, it must be:
3220 				 * |	extent_slot	  ||extent_slot + 1|
3221 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3222 				 */
3223 				if (path->slots[0] != extent_slot + 1) {
3224 					btrfs_crit(info,
3225 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3226 					btrfs_abort_transaction(trans, -EUCLEAN);
3227 					goto err_dump;
3228 				}
3229 				path->slots[0] = extent_slot;
3230 				num_to_del = 2;
3231 			}
3232 		}
3233 
3234 		last_ref = 1;
3235 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3236 				      num_to_del);
3237 		if (ret) {
3238 			btrfs_abort_transaction(trans, ret);
3239 			goto out;
3240 		}
3241 		btrfs_release_path(path);
3242 
3243 		if (is_data) {
3244 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3245 					      num_bytes);
3246 			if (ret) {
3247 				btrfs_abort_transaction(trans, ret);
3248 				goto out;
3249 			}
3250 		}
3251 
3252 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3253 		if (ret) {
3254 			btrfs_abort_transaction(trans, ret);
3255 			goto out;
3256 		}
3257 
3258 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3259 		if (ret) {
3260 			btrfs_abort_transaction(trans, ret);
3261 			goto out;
3262 		}
3263 	}
3264 	btrfs_release_path(path);
3265 
3266 out:
3267 	btrfs_free_path(path);
3268 	return ret;
3269 err_dump:
3270 	/*
3271 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3272 	 * dump for debug build.
3273 	 */
3274 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3275 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3276 			   path->slots[0], extent_slot);
3277 		btrfs_print_leaf(path->nodes[0]);
3278 	}
3279 
3280 	btrfs_free_path(path);
3281 	return -EUCLEAN;
3282 }
3283 
3284 /*
3285  * when we free an block, it is possible (and likely) that we free the last
3286  * delayed ref for that extent as well.  This searches the delayed ref tree for
3287  * a given extent, and if there are no other delayed refs to be processed, it
3288  * removes it from the tree.
3289  */
3290 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3291 				      u64 bytenr)
3292 {
3293 	struct btrfs_delayed_ref_head *head;
3294 	struct btrfs_delayed_ref_root *delayed_refs;
3295 	int ret = 0;
3296 
3297 	delayed_refs = &trans->transaction->delayed_refs;
3298 	spin_lock(&delayed_refs->lock);
3299 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3300 	if (!head)
3301 		goto out_delayed_unlock;
3302 
3303 	spin_lock(&head->lock);
3304 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3305 		goto out;
3306 
3307 	if (cleanup_extent_op(head) != NULL)
3308 		goto out;
3309 
3310 	/*
3311 	 * waiting for the lock here would deadlock.  If someone else has it
3312 	 * locked they are already in the process of dropping it anyway
3313 	 */
3314 	if (!mutex_trylock(&head->mutex))
3315 		goto out;
3316 
3317 	btrfs_delete_ref_head(delayed_refs, head);
3318 	head->processing = 0;
3319 
3320 	spin_unlock(&head->lock);
3321 	spin_unlock(&delayed_refs->lock);
3322 
3323 	BUG_ON(head->extent_op);
3324 	if (head->must_insert_reserved)
3325 		ret = 1;
3326 
3327 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3328 	mutex_unlock(&head->mutex);
3329 	btrfs_put_delayed_ref_head(head);
3330 	return ret;
3331 out:
3332 	spin_unlock(&head->lock);
3333 
3334 out_delayed_unlock:
3335 	spin_unlock(&delayed_refs->lock);
3336 	return 0;
3337 }
3338 
3339 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3340 			   struct btrfs_root *root,
3341 			   struct extent_buffer *buf,
3342 			   u64 parent, int last_ref)
3343 {
3344 	struct btrfs_fs_info *fs_info = root->fs_info;
3345 	struct btrfs_ref generic_ref = { 0 };
3346 	int pin = 1;
3347 	int ret;
3348 
3349 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3350 			       buf->start, buf->len, parent);
3351 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3352 			    root->root_key.objectid);
3353 
3354 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3355 		int old_ref_mod, new_ref_mod;
3356 
3357 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3358 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3359 						 &old_ref_mod, &new_ref_mod);
3360 		BUG_ON(ret); /* -ENOMEM */
3361 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3362 	}
3363 
3364 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3365 		struct btrfs_block_group *cache;
3366 
3367 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3368 			ret = check_ref_cleanup(trans, buf->start);
3369 			if (!ret)
3370 				goto out;
3371 		}
3372 
3373 		pin = 0;
3374 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3375 
3376 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3377 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3378 			btrfs_put_block_group(cache);
3379 			goto out;
3380 		}
3381 
3382 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3383 
3384 		btrfs_add_free_space(cache, buf->start, buf->len);
3385 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3386 		btrfs_put_block_group(cache);
3387 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3388 	}
3389 out:
3390 	if (pin)
3391 		add_pinned_bytes(fs_info, &generic_ref);
3392 
3393 	if (last_ref) {
3394 		/*
3395 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3396 		 * matter anymore.
3397 		 */
3398 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3399 	}
3400 }
3401 
3402 /* Can return -ENOMEM */
3403 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3404 {
3405 	struct btrfs_fs_info *fs_info = trans->fs_info;
3406 	int old_ref_mod, new_ref_mod;
3407 	int ret;
3408 
3409 	if (btrfs_is_testing(fs_info))
3410 		return 0;
3411 
3412 	/*
3413 	 * tree log blocks never actually go into the extent allocation
3414 	 * tree, just update pinning info and exit early.
3415 	 */
3416 	if ((ref->type == BTRFS_REF_METADATA &&
3417 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3418 	    (ref->type == BTRFS_REF_DATA &&
3419 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3420 		/* unlocks the pinned mutex */
3421 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3422 		old_ref_mod = new_ref_mod = 0;
3423 		ret = 0;
3424 	} else if (ref->type == BTRFS_REF_METADATA) {
3425 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3426 						 &old_ref_mod, &new_ref_mod);
3427 	} else {
3428 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3429 						 &old_ref_mod, &new_ref_mod);
3430 	}
3431 
3432 	if (!((ref->type == BTRFS_REF_METADATA &&
3433 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3434 	      (ref->type == BTRFS_REF_DATA &&
3435 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3436 		btrfs_ref_tree_mod(fs_info, ref);
3437 
3438 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3439 		add_pinned_bytes(fs_info, ref);
3440 
3441 	return ret;
3442 }
3443 
3444 enum btrfs_loop_type {
3445 	LOOP_CACHING_NOWAIT,
3446 	LOOP_CACHING_WAIT,
3447 	LOOP_ALLOC_CHUNK,
3448 	LOOP_NO_EMPTY_SIZE,
3449 };
3450 
3451 static inline void
3452 btrfs_lock_block_group(struct btrfs_block_group *cache,
3453 		       int delalloc)
3454 {
3455 	if (delalloc)
3456 		down_read(&cache->data_rwsem);
3457 }
3458 
3459 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3460 		       int delalloc)
3461 {
3462 	btrfs_get_block_group(cache);
3463 	if (delalloc)
3464 		down_read(&cache->data_rwsem);
3465 }
3466 
3467 static struct btrfs_block_group *btrfs_lock_cluster(
3468 		   struct btrfs_block_group *block_group,
3469 		   struct btrfs_free_cluster *cluster,
3470 		   int delalloc)
3471 	__acquires(&cluster->refill_lock)
3472 {
3473 	struct btrfs_block_group *used_bg = NULL;
3474 
3475 	spin_lock(&cluster->refill_lock);
3476 	while (1) {
3477 		used_bg = cluster->block_group;
3478 		if (!used_bg)
3479 			return NULL;
3480 
3481 		if (used_bg == block_group)
3482 			return used_bg;
3483 
3484 		btrfs_get_block_group(used_bg);
3485 
3486 		if (!delalloc)
3487 			return used_bg;
3488 
3489 		if (down_read_trylock(&used_bg->data_rwsem))
3490 			return used_bg;
3491 
3492 		spin_unlock(&cluster->refill_lock);
3493 
3494 		/* We should only have one-level nested. */
3495 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3496 
3497 		spin_lock(&cluster->refill_lock);
3498 		if (used_bg == cluster->block_group)
3499 			return used_bg;
3500 
3501 		up_read(&used_bg->data_rwsem);
3502 		btrfs_put_block_group(used_bg);
3503 	}
3504 }
3505 
3506 static inline void
3507 btrfs_release_block_group(struct btrfs_block_group *cache,
3508 			 int delalloc)
3509 {
3510 	if (delalloc)
3511 		up_read(&cache->data_rwsem);
3512 	btrfs_put_block_group(cache);
3513 }
3514 
3515 enum btrfs_extent_allocation_policy {
3516 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3517 };
3518 
3519 /*
3520  * Structure used internally for find_free_extent() function.  Wraps needed
3521  * parameters.
3522  */
3523 struct find_free_extent_ctl {
3524 	/* Basic allocation info */
3525 	u64 num_bytes;
3526 	u64 empty_size;
3527 	u64 flags;
3528 	int delalloc;
3529 
3530 	/* Where to start the search inside the bg */
3531 	u64 search_start;
3532 
3533 	/* For clustered allocation */
3534 	u64 empty_cluster;
3535 	struct btrfs_free_cluster *last_ptr;
3536 	bool use_cluster;
3537 
3538 	bool have_caching_bg;
3539 	bool orig_have_caching_bg;
3540 
3541 	/* RAID index, converted from flags */
3542 	int index;
3543 
3544 	/*
3545 	 * Current loop number, check find_free_extent_update_loop() for details
3546 	 */
3547 	int loop;
3548 
3549 	/*
3550 	 * Whether we're refilling a cluster, if true we need to re-search
3551 	 * current block group but don't try to refill the cluster again.
3552 	 */
3553 	bool retry_clustered;
3554 
3555 	/*
3556 	 * Whether we're updating free space cache, if true we need to re-search
3557 	 * current block group but don't try updating free space cache again.
3558 	 */
3559 	bool retry_unclustered;
3560 
3561 	/* If current block group is cached */
3562 	int cached;
3563 
3564 	/* Max contiguous hole found */
3565 	u64 max_extent_size;
3566 
3567 	/* Total free space from free space cache, not always contiguous */
3568 	u64 total_free_space;
3569 
3570 	/* Found result */
3571 	u64 found_offset;
3572 
3573 	/* Hint where to start looking for an empty space */
3574 	u64 hint_byte;
3575 
3576 	/* Allocation policy */
3577 	enum btrfs_extent_allocation_policy policy;
3578 };
3579 
3580 
3581 /*
3582  * Helper function for find_free_extent().
3583  *
3584  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3585  * Return -EAGAIN to inform caller that we need to re-search this block group
3586  * Return >0 to inform caller that we find nothing
3587  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3588  */
3589 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3590 				      struct find_free_extent_ctl *ffe_ctl,
3591 				      struct btrfs_block_group **cluster_bg_ret)
3592 {
3593 	struct btrfs_block_group *cluster_bg;
3594 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3595 	u64 aligned_cluster;
3596 	u64 offset;
3597 	int ret;
3598 
3599 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3600 	if (!cluster_bg)
3601 		goto refill_cluster;
3602 	if (cluster_bg != bg && (cluster_bg->ro ||
3603 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3604 		goto release_cluster;
3605 
3606 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3607 			ffe_ctl->num_bytes, cluster_bg->start,
3608 			&ffe_ctl->max_extent_size);
3609 	if (offset) {
3610 		/* We have a block, we're done */
3611 		spin_unlock(&last_ptr->refill_lock);
3612 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3613 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3614 		*cluster_bg_ret = cluster_bg;
3615 		ffe_ctl->found_offset = offset;
3616 		return 0;
3617 	}
3618 	WARN_ON(last_ptr->block_group != cluster_bg);
3619 
3620 release_cluster:
3621 	/*
3622 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3623 	 * lets just skip it and let the allocator find whatever block it can
3624 	 * find. If we reach this point, we will have tried the cluster
3625 	 * allocator plenty of times and not have found anything, so we are
3626 	 * likely way too fragmented for the clustering stuff to find anything.
3627 	 *
3628 	 * However, if the cluster is taken from the current block group,
3629 	 * release the cluster first, so that we stand a better chance of
3630 	 * succeeding in the unclustered allocation.
3631 	 */
3632 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3633 		spin_unlock(&last_ptr->refill_lock);
3634 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3635 		return -ENOENT;
3636 	}
3637 
3638 	/* This cluster didn't work out, free it and start over */
3639 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3640 
3641 	if (cluster_bg != bg)
3642 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3643 
3644 refill_cluster:
3645 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3646 		spin_unlock(&last_ptr->refill_lock);
3647 		return -ENOENT;
3648 	}
3649 
3650 	aligned_cluster = max_t(u64,
3651 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3652 			bg->full_stripe_len);
3653 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3654 			ffe_ctl->num_bytes, aligned_cluster);
3655 	if (ret == 0) {
3656 		/* Now pull our allocation out of this cluster */
3657 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3658 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3659 				&ffe_ctl->max_extent_size);
3660 		if (offset) {
3661 			/* We found one, proceed */
3662 			spin_unlock(&last_ptr->refill_lock);
3663 			trace_btrfs_reserve_extent_cluster(bg,
3664 					ffe_ctl->search_start,
3665 					ffe_ctl->num_bytes);
3666 			ffe_ctl->found_offset = offset;
3667 			return 0;
3668 		}
3669 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3670 		   !ffe_ctl->retry_clustered) {
3671 		spin_unlock(&last_ptr->refill_lock);
3672 
3673 		ffe_ctl->retry_clustered = true;
3674 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3675 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3676 		return -EAGAIN;
3677 	}
3678 	/*
3679 	 * At this point we either didn't find a cluster or we weren't able to
3680 	 * allocate a block from our cluster.  Free the cluster we've been
3681 	 * trying to use, and go to the next block group.
3682 	 */
3683 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3684 	spin_unlock(&last_ptr->refill_lock);
3685 	return 1;
3686 }
3687 
3688 /*
3689  * Return >0 to inform caller that we find nothing
3690  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3691  * Return -EAGAIN to inform caller that we need to re-search this block group
3692  */
3693 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3694 					struct find_free_extent_ctl *ffe_ctl)
3695 {
3696 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3697 	u64 offset;
3698 
3699 	/*
3700 	 * We are doing an unclustered allocation, set the fragmented flag so
3701 	 * we don't bother trying to setup a cluster again until we get more
3702 	 * space.
3703 	 */
3704 	if (unlikely(last_ptr)) {
3705 		spin_lock(&last_ptr->lock);
3706 		last_ptr->fragmented = 1;
3707 		spin_unlock(&last_ptr->lock);
3708 	}
3709 	if (ffe_ctl->cached) {
3710 		struct btrfs_free_space_ctl *free_space_ctl;
3711 
3712 		free_space_ctl = bg->free_space_ctl;
3713 		spin_lock(&free_space_ctl->tree_lock);
3714 		if (free_space_ctl->free_space <
3715 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3716 		    ffe_ctl->empty_size) {
3717 			ffe_ctl->total_free_space = max_t(u64,
3718 					ffe_ctl->total_free_space,
3719 					free_space_ctl->free_space);
3720 			spin_unlock(&free_space_ctl->tree_lock);
3721 			return 1;
3722 		}
3723 		spin_unlock(&free_space_ctl->tree_lock);
3724 	}
3725 
3726 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3727 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3728 			&ffe_ctl->max_extent_size);
3729 
3730 	/*
3731 	 * If we didn't find a chunk, and we haven't failed on this block group
3732 	 * before, and this block group is in the middle of caching and we are
3733 	 * ok with waiting, then go ahead and wait for progress to be made, and
3734 	 * set @retry_unclustered to true.
3735 	 *
3736 	 * If @retry_unclustered is true then we've already waited on this
3737 	 * block group once and should move on to the next block group.
3738 	 */
3739 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3740 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3741 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3742 						      ffe_ctl->empty_size);
3743 		ffe_ctl->retry_unclustered = true;
3744 		return -EAGAIN;
3745 	} else if (!offset) {
3746 		return 1;
3747 	}
3748 	ffe_ctl->found_offset = offset;
3749 	return 0;
3750 }
3751 
3752 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3753 				   struct find_free_extent_ctl *ffe_ctl,
3754 				   struct btrfs_block_group **bg_ret)
3755 {
3756 	int ret;
3757 
3758 	/* We want to try and use the cluster allocator, so lets look there */
3759 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3760 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3761 		if (ret >= 0 || ret == -EAGAIN)
3762 			return ret;
3763 		/* ret == -ENOENT case falls through */
3764 	}
3765 
3766 	return find_free_extent_unclustered(block_group, ffe_ctl);
3767 }
3768 
3769 static int do_allocation(struct btrfs_block_group *block_group,
3770 			 struct find_free_extent_ctl *ffe_ctl,
3771 			 struct btrfs_block_group **bg_ret)
3772 {
3773 	switch (ffe_ctl->policy) {
3774 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3775 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3776 	default:
3777 		BUG();
3778 	}
3779 }
3780 
3781 static void release_block_group(struct btrfs_block_group *block_group,
3782 				struct find_free_extent_ctl *ffe_ctl,
3783 				int delalloc)
3784 {
3785 	switch (ffe_ctl->policy) {
3786 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3787 		ffe_ctl->retry_clustered = false;
3788 		ffe_ctl->retry_unclustered = false;
3789 		break;
3790 	default:
3791 		BUG();
3792 	}
3793 
3794 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3795 	       ffe_ctl->index);
3796 	btrfs_release_block_group(block_group, delalloc);
3797 }
3798 
3799 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3800 				   struct btrfs_key *ins)
3801 {
3802 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3803 
3804 	if (!ffe_ctl->use_cluster && last_ptr) {
3805 		spin_lock(&last_ptr->lock);
3806 		last_ptr->window_start = ins->objectid;
3807 		spin_unlock(&last_ptr->lock);
3808 	}
3809 }
3810 
3811 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3812 			 struct btrfs_key *ins)
3813 {
3814 	switch (ffe_ctl->policy) {
3815 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3816 		found_extent_clustered(ffe_ctl, ins);
3817 		break;
3818 	default:
3819 		BUG();
3820 	}
3821 }
3822 
3823 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3824 {
3825 	switch (ffe_ctl->policy) {
3826 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3827 		/*
3828 		 * If we can't allocate a new chunk we've already looped through
3829 		 * at least once, move on to the NO_EMPTY_SIZE case.
3830 		 */
3831 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3832 		return 0;
3833 	default:
3834 		BUG();
3835 	}
3836 }
3837 
3838 /*
3839  * Return >0 means caller needs to re-search for free extent
3840  * Return 0 means we have the needed free extent.
3841  * Return <0 means we failed to locate any free extent.
3842  */
3843 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3844 					struct btrfs_key *ins,
3845 					struct find_free_extent_ctl *ffe_ctl,
3846 					bool full_search)
3847 {
3848 	struct btrfs_root *root = fs_info->extent_root;
3849 	int ret;
3850 
3851 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3852 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3853 		ffe_ctl->orig_have_caching_bg = true;
3854 
3855 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3856 	    ffe_ctl->have_caching_bg)
3857 		return 1;
3858 
3859 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3860 		return 1;
3861 
3862 	if (ins->objectid) {
3863 		found_extent(ffe_ctl, ins);
3864 		return 0;
3865 	}
3866 
3867 	/*
3868 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3869 	 *			caching kthreads as we move along
3870 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3871 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3872 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3873 	 *		       again
3874 	 */
3875 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3876 		ffe_ctl->index = 0;
3877 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3878 			/*
3879 			 * We want to skip the LOOP_CACHING_WAIT step if we
3880 			 * don't have any uncached bgs and we've already done a
3881 			 * full search through.
3882 			 */
3883 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3884 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3885 			else
3886 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3887 		} else {
3888 			ffe_ctl->loop++;
3889 		}
3890 
3891 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3892 			struct btrfs_trans_handle *trans;
3893 			int exist = 0;
3894 
3895 			trans = current->journal_info;
3896 			if (trans)
3897 				exist = 1;
3898 			else
3899 				trans = btrfs_join_transaction(root);
3900 
3901 			if (IS_ERR(trans)) {
3902 				ret = PTR_ERR(trans);
3903 				return ret;
3904 			}
3905 
3906 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3907 						CHUNK_ALLOC_FORCE);
3908 
3909 			/* Do not bail out on ENOSPC since we can do more. */
3910 			if (ret == -ENOSPC)
3911 				ret = chunk_allocation_failed(ffe_ctl);
3912 			else if (ret < 0)
3913 				btrfs_abort_transaction(trans, ret);
3914 			else
3915 				ret = 0;
3916 			if (!exist)
3917 				btrfs_end_transaction(trans);
3918 			if (ret)
3919 				return ret;
3920 		}
3921 
3922 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3923 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3924 				return -ENOSPC;
3925 
3926 			/*
3927 			 * Don't loop again if we already have no empty_size and
3928 			 * no empty_cluster.
3929 			 */
3930 			if (ffe_ctl->empty_size == 0 &&
3931 			    ffe_ctl->empty_cluster == 0)
3932 				return -ENOSPC;
3933 			ffe_ctl->empty_size = 0;
3934 			ffe_ctl->empty_cluster = 0;
3935 		}
3936 		return 1;
3937 	}
3938 	return -ENOSPC;
3939 }
3940 
3941 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3942 					struct find_free_extent_ctl *ffe_ctl,
3943 					struct btrfs_space_info *space_info,
3944 					struct btrfs_key *ins)
3945 {
3946 	/*
3947 	 * If our free space is heavily fragmented we may not be able to make
3948 	 * big contiguous allocations, so instead of doing the expensive search
3949 	 * for free space, simply return ENOSPC with our max_extent_size so we
3950 	 * can go ahead and search for a more manageable chunk.
3951 	 *
3952 	 * If our max_extent_size is large enough for our allocation simply
3953 	 * disable clustering since we will likely not be able to find enough
3954 	 * space to create a cluster and induce latency trying.
3955 	 */
3956 	if (space_info->max_extent_size) {
3957 		spin_lock(&space_info->lock);
3958 		if (space_info->max_extent_size &&
3959 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
3960 			ins->offset = space_info->max_extent_size;
3961 			spin_unlock(&space_info->lock);
3962 			return -ENOSPC;
3963 		} else if (space_info->max_extent_size) {
3964 			ffe_ctl->use_cluster = false;
3965 		}
3966 		spin_unlock(&space_info->lock);
3967 	}
3968 
3969 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3970 					       &ffe_ctl->empty_cluster);
3971 	if (ffe_ctl->last_ptr) {
3972 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3973 
3974 		spin_lock(&last_ptr->lock);
3975 		if (last_ptr->block_group)
3976 			ffe_ctl->hint_byte = last_ptr->window_start;
3977 		if (last_ptr->fragmented) {
3978 			/*
3979 			 * We still set window_start so we can keep track of the
3980 			 * last place we found an allocation to try and save
3981 			 * some time.
3982 			 */
3983 			ffe_ctl->hint_byte = last_ptr->window_start;
3984 			ffe_ctl->use_cluster = false;
3985 		}
3986 		spin_unlock(&last_ptr->lock);
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3993 			      struct find_free_extent_ctl *ffe_ctl,
3994 			      struct btrfs_space_info *space_info,
3995 			      struct btrfs_key *ins)
3996 {
3997 	switch (ffe_ctl->policy) {
3998 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3999 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4000 						    space_info, ins);
4001 	default:
4002 		BUG();
4003 	}
4004 }
4005 
4006 /*
4007  * walks the btree of allocated extents and find a hole of a given size.
4008  * The key ins is changed to record the hole:
4009  * ins->objectid == start position
4010  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4011  * ins->offset == the size of the hole.
4012  * Any available blocks before search_start are skipped.
4013  *
4014  * If there is no suitable free space, we will record the max size of
4015  * the free space extent currently.
4016  *
4017  * The overall logic and call chain:
4018  *
4019  * find_free_extent()
4020  * |- Iterate through all block groups
4021  * |  |- Get a valid block group
4022  * |  |- Try to do clustered allocation in that block group
4023  * |  |- Try to do unclustered allocation in that block group
4024  * |  |- Check if the result is valid
4025  * |  |  |- If valid, then exit
4026  * |  |- Jump to next block group
4027  * |
4028  * |- Push harder to find free extents
4029  *    |- If not found, re-iterate all block groups
4030  */
4031 static noinline int find_free_extent(struct btrfs_root *root,
4032 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
4033 				u64 hint_byte_orig, struct btrfs_key *ins,
4034 				u64 flags, int delalloc)
4035 {
4036 	struct btrfs_fs_info *fs_info = root->fs_info;
4037 	int ret = 0;
4038 	int cache_block_group_error = 0;
4039 	struct btrfs_block_group *block_group = NULL;
4040 	struct find_free_extent_ctl ffe_ctl = {0};
4041 	struct btrfs_space_info *space_info;
4042 	bool full_search = false;
4043 
4044 	WARN_ON(num_bytes < fs_info->sectorsize);
4045 
4046 	ffe_ctl.num_bytes = num_bytes;
4047 	ffe_ctl.empty_size = empty_size;
4048 	ffe_ctl.flags = flags;
4049 	ffe_ctl.search_start = 0;
4050 	ffe_ctl.delalloc = delalloc;
4051 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4052 	ffe_ctl.have_caching_bg = false;
4053 	ffe_ctl.orig_have_caching_bg = false;
4054 	ffe_ctl.found_offset = 0;
4055 	ffe_ctl.hint_byte = hint_byte_orig;
4056 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4057 
4058 	/* For clustered allocation */
4059 	ffe_ctl.retry_clustered = false;
4060 	ffe_ctl.retry_unclustered = false;
4061 	ffe_ctl.last_ptr = NULL;
4062 	ffe_ctl.use_cluster = true;
4063 
4064 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4065 	ins->objectid = 0;
4066 	ins->offset = 0;
4067 
4068 	trace_find_free_extent(root, num_bytes, empty_size, flags);
4069 
4070 	space_info = btrfs_find_space_info(fs_info, flags);
4071 	if (!space_info) {
4072 		btrfs_err(fs_info, "No space info for %llu", flags);
4073 		return -ENOSPC;
4074 	}
4075 
4076 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4077 	if (ret < 0)
4078 		return ret;
4079 
4080 	ffe_ctl.search_start = max(ffe_ctl.search_start,
4081 				   first_logical_byte(fs_info, 0));
4082 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4083 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4084 		block_group = btrfs_lookup_block_group(fs_info,
4085 						       ffe_ctl.search_start);
4086 		/*
4087 		 * we don't want to use the block group if it doesn't match our
4088 		 * allocation bits, or if its not cached.
4089 		 *
4090 		 * However if we are re-searching with an ideal block group
4091 		 * picked out then we don't care that the block group is cached.
4092 		 */
4093 		if (block_group && block_group_bits(block_group, flags) &&
4094 		    block_group->cached != BTRFS_CACHE_NO) {
4095 			down_read(&space_info->groups_sem);
4096 			if (list_empty(&block_group->list) ||
4097 			    block_group->ro) {
4098 				/*
4099 				 * someone is removing this block group,
4100 				 * we can't jump into the have_block_group
4101 				 * target because our list pointers are not
4102 				 * valid
4103 				 */
4104 				btrfs_put_block_group(block_group);
4105 				up_read(&space_info->groups_sem);
4106 			} else {
4107 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4108 						block_group->flags);
4109 				btrfs_lock_block_group(block_group, delalloc);
4110 				goto have_block_group;
4111 			}
4112 		} else if (block_group) {
4113 			btrfs_put_block_group(block_group);
4114 		}
4115 	}
4116 search:
4117 	ffe_ctl.have_caching_bg = false;
4118 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4119 	    ffe_ctl.index == 0)
4120 		full_search = true;
4121 	down_read(&space_info->groups_sem);
4122 	list_for_each_entry(block_group,
4123 			    &space_info->block_groups[ffe_ctl.index], list) {
4124 		struct btrfs_block_group *bg_ret;
4125 
4126 		/* If the block group is read-only, we can skip it entirely. */
4127 		if (unlikely(block_group->ro))
4128 			continue;
4129 
4130 		btrfs_grab_block_group(block_group, delalloc);
4131 		ffe_ctl.search_start = block_group->start;
4132 
4133 		/*
4134 		 * this can happen if we end up cycling through all the
4135 		 * raid types, but we want to make sure we only allocate
4136 		 * for the proper type.
4137 		 */
4138 		if (!block_group_bits(block_group, flags)) {
4139 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4140 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4141 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4142 				BTRFS_BLOCK_GROUP_RAID10;
4143 
4144 			/*
4145 			 * if they asked for extra copies and this block group
4146 			 * doesn't provide them, bail.  This does allow us to
4147 			 * fill raid0 from raid1.
4148 			 */
4149 			if ((flags & extra) && !(block_group->flags & extra))
4150 				goto loop;
4151 
4152 			/*
4153 			 * This block group has different flags than we want.
4154 			 * It's possible that we have MIXED_GROUP flag but no
4155 			 * block group is mixed.  Just skip such block group.
4156 			 */
4157 			btrfs_release_block_group(block_group, delalloc);
4158 			continue;
4159 		}
4160 
4161 have_block_group:
4162 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4163 		if (unlikely(!ffe_ctl.cached)) {
4164 			ffe_ctl.have_caching_bg = true;
4165 			ret = btrfs_cache_block_group(block_group, 0);
4166 
4167 			/*
4168 			 * If we get ENOMEM here or something else we want to
4169 			 * try other block groups, because it may not be fatal.
4170 			 * However if we can't find anything else we need to
4171 			 * save our return here so that we return the actual
4172 			 * error that caused problems, not ENOSPC.
4173 			 */
4174 			if (ret < 0) {
4175 				if (!cache_block_group_error)
4176 					cache_block_group_error = ret;
4177 				ret = 0;
4178 				goto loop;
4179 			}
4180 			ret = 0;
4181 		}
4182 
4183 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4184 			goto loop;
4185 
4186 		bg_ret = NULL;
4187 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4188 		if (ret == 0) {
4189 			if (bg_ret && bg_ret != block_group) {
4190 				btrfs_release_block_group(block_group, delalloc);
4191 				block_group = bg_ret;
4192 			}
4193 		} else if (ret == -EAGAIN) {
4194 			goto have_block_group;
4195 		} else if (ret > 0) {
4196 			goto loop;
4197 		}
4198 
4199 		/* Checks */
4200 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4201 					     fs_info->stripesize);
4202 
4203 		/* move on to the next group */
4204 		if (ffe_ctl.search_start + num_bytes >
4205 		    block_group->start + block_group->length) {
4206 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4207 					     num_bytes);
4208 			goto loop;
4209 		}
4210 
4211 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4212 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4213 				ffe_ctl.search_start - ffe_ctl.found_offset);
4214 
4215 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4216 				num_bytes, delalloc);
4217 		if (ret == -EAGAIN) {
4218 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4219 					     num_bytes);
4220 			goto loop;
4221 		}
4222 		btrfs_inc_block_group_reservations(block_group);
4223 
4224 		/* we are all good, lets return */
4225 		ins->objectid = ffe_ctl.search_start;
4226 		ins->offset = num_bytes;
4227 
4228 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4229 					   num_bytes);
4230 		btrfs_release_block_group(block_group, delalloc);
4231 		break;
4232 loop:
4233 		release_block_group(block_group, &ffe_ctl, delalloc);
4234 		cond_resched();
4235 	}
4236 	up_read(&space_info->groups_sem);
4237 
4238 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4239 	if (ret > 0)
4240 		goto search;
4241 
4242 	if (ret == -ENOSPC && !cache_block_group_error) {
4243 		/*
4244 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4245 		 * any contiguous hole.
4246 		 */
4247 		if (!ffe_ctl.max_extent_size)
4248 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4249 		spin_lock(&space_info->lock);
4250 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4251 		spin_unlock(&space_info->lock);
4252 		ins->offset = ffe_ctl.max_extent_size;
4253 	} else if (ret == -ENOSPC) {
4254 		ret = cache_block_group_error;
4255 	}
4256 	return ret;
4257 }
4258 
4259 /*
4260  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4261  *			  hole that is at least as big as @num_bytes.
4262  *
4263  * @root           -	The root that will contain this extent
4264  *
4265  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4266  *			is used for accounting purposes. This value differs
4267  *			from @num_bytes only in the case of compressed extents.
4268  *
4269  * @num_bytes      -	Number of bytes to allocate on-disk.
4270  *
4271  * @min_alloc_size -	Indicates the minimum amount of space that the
4272  *			allocator should try to satisfy. In some cases
4273  *			@num_bytes may be larger than what is required and if
4274  *			the filesystem is fragmented then allocation fails.
4275  *			However, the presence of @min_alloc_size gives a
4276  *			chance to try and satisfy the smaller allocation.
4277  *
4278  * @empty_size     -	A hint that you plan on doing more COW. This is the
4279  *			size in bytes the allocator should try to find free
4280  *			next to the block it returns.  This is just a hint and
4281  *			may be ignored by the allocator.
4282  *
4283  * @hint_byte      -	Hint to the allocator to start searching above the byte
4284  *			address passed. It might be ignored.
4285  *
4286  * @ins            -	This key is modified to record the found hole. It will
4287  *			have the following values:
4288  *			ins->objectid == start position
4289  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4290  *			ins->offset == the size of the hole.
4291  *
4292  * @is_data        -	Boolean flag indicating whether an extent is
4293  *			allocated for data (true) or metadata (false)
4294  *
4295  * @delalloc       -	Boolean flag indicating whether this allocation is for
4296  *			delalloc or not. If 'true' data_rwsem of block groups
4297  *			is going to be acquired.
4298  *
4299  *
4300  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4301  * case -ENOSPC is returned then @ins->offset will contain the size of the
4302  * largest available hole the allocator managed to find.
4303  */
4304 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4305 			 u64 num_bytes, u64 min_alloc_size,
4306 			 u64 empty_size, u64 hint_byte,
4307 			 struct btrfs_key *ins, int is_data, int delalloc)
4308 {
4309 	struct btrfs_fs_info *fs_info = root->fs_info;
4310 	bool final_tried = num_bytes == min_alloc_size;
4311 	u64 flags;
4312 	int ret;
4313 
4314 	flags = get_alloc_profile_by_root(root, is_data);
4315 again:
4316 	WARN_ON(num_bytes < fs_info->sectorsize);
4317 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4318 			       hint_byte, ins, flags, delalloc);
4319 	if (!ret && !is_data) {
4320 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4321 	} else if (ret == -ENOSPC) {
4322 		if (!final_tried && ins->offset) {
4323 			num_bytes = min(num_bytes >> 1, ins->offset);
4324 			num_bytes = round_down(num_bytes,
4325 					       fs_info->sectorsize);
4326 			num_bytes = max(num_bytes, min_alloc_size);
4327 			ram_bytes = num_bytes;
4328 			if (num_bytes == min_alloc_size)
4329 				final_tried = true;
4330 			goto again;
4331 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4332 			struct btrfs_space_info *sinfo;
4333 
4334 			sinfo = btrfs_find_space_info(fs_info, flags);
4335 			btrfs_err(fs_info,
4336 				  "allocation failed flags %llu, wanted %llu",
4337 				  flags, num_bytes);
4338 			if (sinfo)
4339 				btrfs_dump_space_info(fs_info, sinfo,
4340 						      num_bytes, 1);
4341 		}
4342 	}
4343 
4344 	return ret;
4345 }
4346 
4347 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4348 			       u64 start, u64 len, int delalloc)
4349 {
4350 	struct btrfs_block_group *cache;
4351 
4352 	cache = btrfs_lookup_block_group(fs_info, start);
4353 	if (!cache) {
4354 		btrfs_err(fs_info, "Unable to find block group for %llu",
4355 			  start);
4356 		return -ENOSPC;
4357 	}
4358 
4359 	btrfs_add_free_space(cache, start, len);
4360 	btrfs_free_reserved_bytes(cache, len, delalloc);
4361 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4362 
4363 	btrfs_put_block_group(cache);
4364 	return 0;
4365 }
4366 
4367 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4368 			      u64 len)
4369 {
4370 	struct btrfs_block_group *cache;
4371 	int ret = 0;
4372 
4373 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4374 	if (!cache) {
4375 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4376 			  start);
4377 		return -ENOSPC;
4378 	}
4379 
4380 	ret = pin_down_extent(trans, cache, start, len, 1);
4381 	btrfs_put_block_group(cache);
4382 	return ret;
4383 }
4384 
4385 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4386 				      u64 parent, u64 root_objectid,
4387 				      u64 flags, u64 owner, u64 offset,
4388 				      struct btrfs_key *ins, int ref_mod)
4389 {
4390 	struct btrfs_fs_info *fs_info = trans->fs_info;
4391 	int ret;
4392 	struct btrfs_extent_item *extent_item;
4393 	struct btrfs_extent_inline_ref *iref;
4394 	struct btrfs_path *path;
4395 	struct extent_buffer *leaf;
4396 	int type;
4397 	u32 size;
4398 
4399 	if (parent > 0)
4400 		type = BTRFS_SHARED_DATA_REF_KEY;
4401 	else
4402 		type = BTRFS_EXTENT_DATA_REF_KEY;
4403 
4404 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4405 
4406 	path = btrfs_alloc_path();
4407 	if (!path)
4408 		return -ENOMEM;
4409 
4410 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4411 				      ins, size);
4412 	if (ret) {
4413 		btrfs_free_path(path);
4414 		return ret;
4415 	}
4416 
4417 	leaf = path->nodes[0];
4418 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4419 				     struct btrfs_extent_item);
4420 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4421 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4422 	btrfs_set_extent_flags(leaf, extent_item,
4423 			       flags | BTRFS_EXTENT_FLAG_DATA);
4424 
4425 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4426 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4427 	if (parent > 0) {
4428 		struct btrfs_shared_data_ref *ref;
4429 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4430 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4431 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4432 	} else {
4433 		struct btrfs_extent_data_ref *ref;
4434 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4435 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4436 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4437 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4438 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4439 	}
4440 
4441 	btrfs_mark_buffer_dirty(path->nodes[0]);
4442 	btrfs_free_path(path);
4443 
4444 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4445 	if (ret)
4446 		return ret;
4447 
4448 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4449 	if (ret) { /* -ENOENT, logic error */
4450 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4451 			ins->objectid, ins->offset);
4452 		BUG();
4453 	}
4454 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4455 	return ret;
4456 }
4457 
4458 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4459 				     struct btrfs_delayed_ref_node *node,
4460 				     struct btrfs_delayed_extent_op *extent_op)
4461 {
4462 	struct btrfs_fs_info *fs_info = trans->fs_info;
4463 	int ret;
4464 	struct btrfs_extent_item *extent_item;
4465 	struct btrfs_key extent_key;
4466 	struct btrfs_tree_block_info *block_info;
4467 	struct btrfs_extent_inline_ref *iref;
4468 	struct btrfs_path *path;
4469 	struct extent_buffer *leaf;
4470 	struct btrfs_delayed_tree_ref *ref;
4471 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4472 	u64 num_bytes;
4473 	u64 flags = extent_op->flags_to_set;
4474 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4475 
4476 	ref = btrfs_delayed_node_to_tree_ref(node);
4477 
4478 	extent_key.objectid = node->bytenr;
4479 	if (skinny_metadata) {
4480 		extent_key.offset = ref->level;
4481 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4482 		num_bytes = fs_info->nodesize;
4483 	} else {
4484 		extent_key.offset = node->num_bytes;
4485 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4486 		size += sizeof(*block_info);
4487 		num_bytes = node->num_bytes;
4488 	}
4489 
4490 	path = btrfs_alloc_path();
4491 	if (!path)
4492 		return -ENOMEM;
4493 
4494 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4495 				      &extent_key, size);
4496 	if (ret) {
4497 		btrfs_free_path(path);
4498 		return ret;
4499 	}
4500 
4501 	leaf = path->nodes[0];
4502 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4503 				     struct btrfs_extent_item);
4504 	btrfs_set_extent_refs(leaf, extent_item, 1);
4505 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4506 	btrfs_set_extent_flags(leaf, extent_item,
4507 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4508 
4509 	if (skinny_metadata) {
4510 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4511 	} else {
4512 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4513 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4514 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4515 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4516 	}
4517 
4518 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4519 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4520 		btrfs_set_extent_inline_ref_type(leaf, iref,
4521 						 BTRFS_SHARED_BLOCK_REF_KEY);
4522 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4523 	} else {
4524 		btrfs_set_extent_inline_ref_type(leaf, iref,
4525 						 BTRFS_TREE_BLOCK_REF_KEY);
4526 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4527 	}
4528 
4529 	btrfs_mark_buffer_dirty(leaf);
4530 	btrfs_free_path(path);
4531 
4532 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4533 					  num_bytes);
4534 	if (ret)
4535 		return ret;
4536 
4537 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4538 				       fs_info->nodesize, 1);
4539 	if (ret) { /* -ENOENT, logic error */
4540 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4541 			extent_key.objectid, extent_key.offset);
4542 		BUG();
4543 	}
4544 
4545 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4546 					  fs_info->nodesize);
4547 	return ret;
4548 }
4549 
4550 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4551 				     struct btrfs_root *root, u64 owner,
4552 				     u64 offset, u64 ram_bytes,
4553 				     struct btrfs_key *ins)
4554 {
4555 	struct btrfs_ref generic_ref = { 0 };
4556 	int ret;
4557 
4558 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4559 
4560 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4561 			       ins->objectid, ins->offset, 0);
4562 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4563 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4564 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4565 					 ram_bytes, NULL, NULL);
4566 	return ret;
4567 }
4568 
4569 /*
4570  * this is used by the tree logging recovery code.  It records that
4571  * an extent has been allocated and makes sure to clear the free
4572  * space cache bits as well
4573  */
4574 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4575 				   u64 root_objectid, u64 owner, u64 offset,
4576 				   struct btrfs_key *ins)
4577 {
4578 	struct btrfs_fs_info *fs_info = trans->fs_info;
4579 	int ret;
4580 	struct btrfs_block_group *block_group;
4581 	struct btrfs_space_info *space_info;
4582 
4583 	/*
4584 	 * Mixed block groups will exclude before processing the log so we only
4585 	 * need to do the exclude dance if this fs isn't mixed.
4586 	 */
4587 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4588 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4589 					      ins->offset);
4590 		if (ret)
4591 			return ret;
4592 	}
4593 
4594 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4595 	if (!block_group)
4596 		return -EINVAL;
4597 
4598 	space_info = block_group->space_info;
4599 	spin_lock(&space_info->lock);
4600 	spin_lock(&block_group->lock);
4601 	space_info->bytes_reserved += ins->offset;
4602 	block_group->reserved += ins->offset;
4603 	spin_unlock(&block_group->lock);
4604 	spin_unlock(&space_info->lock);
4605 
4606 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4607 					 offset, ins, 1);
4608 	if (ret)
4609 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4610 	btrfs_put_block_group(block_group);
4611 	return ret;
4612 }
4613 
4614 static struct extent_buffer *
4615 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4616 		      u64 bytenr, int level, u64 owner,
4617 		      enum btrfs_lock_nesting nest)
4618 {
4619 	struct btrfs_fs_info *fs_info = root->fs_info;
4620 	struct extent_buffer *buf;
4621 
4622 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4623 	if (IS_ERR(buf))
4624 		return buf;
4625 
4626 	/*
4627 	 * Extra safety check in case the extent tree is corrupted and extent
4628 	 * allocator chooses to use a tree block which is already used and
4629 	 * locked.
4630 	 */
4631 	if (buf->lock_owner == current->pid) {
4632 		btrfs_err_rl(fs_info,
4633 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4634 			buf->start, btrfs_header_owner(buf), current->pid);
4635 		free_extent_buffer(buf);
4636 		return ERR_PTR(-EUCLEAN);
4637 	}
4638 
4639 	/*
4640 	 * This needs to stay, because we could allocate a freed block from an
4641 	 * old tree into a new tree, so we need to make sure this new block is
4642 	 * set to the appropriate level and owner.
4643 	 */
4644 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4645 	__btrfs_tree_lock(buf, nest);
4646 	btrfs_clean_tree_block(buf);
4647 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4648 
4649 	set_extent_buffer_uptodate(buf);
4650 
4651 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4652 	btrfs_set_header_level(buf, level);
4653 	btrfs_set_header_bytenr(buf, buf->start);
4654 	btrfs_set_header_generation(buf, trans->transid);
4655 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4656 	btrfs_set_header_owner(buf, owner);
4657 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4658 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4659 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4660 		buf->log_index = root->log_transid % 2;
4661 		/*
4662 		 * we allow two log transactions at a time, use different
4663 		 * EXTENT bit to differentiate dirty pages.
4664 		 */
4665 		if (buf->log_index == 0)
4666 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4667 					buf->start + buf->len - 1, GFP_NOFS);
4668 		else
4669 			set_extent_new(&root->dirty_log_pages, buf->start,
4670 					buf->start + buf->len - 1);
4671 	} else {
4672 		buf->log_index = -1;
4673 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4674 			 buf->start + buf->len - 1, GFP_NOFS);
4675 	}
4676 	trans->dirty = true;
4677 	/* this returns a buffer locked for blocking */
4678 	return buf;
4679 }
4680 
4681 /*
4682  * finds a free extent and does all the dirty work required for allocation
4683  * returns the tree buffer or an ERR_PTR on error.
4684  */
4685 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4686 					     struct btrfs_root *root,
4687 					     u64 parent, u64 root_objectid,
4688 					     const struct btrfs_disk_key *key,
4689 					     int level, u64 hint,
4690 					     u64 empty_size,
4691 					     enum btrfs_lock_nesting nest)
4692 {
4693 	struct btrfs_fs_info *fs_info = root->fs_info;
4694 	struct btrfs_key ins;
4695 	struct btrfs_block_rsv *block_rsv;
4696 	struct extent_buffer *buf;
4697 	struct btrfs_delayed_extent_op *extent_op;
4698 	struct btrfs_ref generic_ref = { 0 };
4699 	u64 flags = 0;
4700 	int ret;
4701 	u32 blocksize = fs_info->nodesize;
4702 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4703 
4704 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4705 	if (btrfs_is_testing(fs_info)) {
4706 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4707 					    level, root_objectid, nest);
4708 		if (!IS_ERR(buf))
4709 			root->alloc_bytenr += blocksize;
4710 		return buf;
4711 	}
4712 #endif
4713 
4714 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4715 	if (IS_ERR(block_rsv))
4716 		return ERR_CAST(block_rsv);
4717 
4718 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4719 				   empty_size, hint, &ins, 0, 0);
4720 	if (ret)
4721 		goto out_unuse;
4722 
4723 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4724 				    root_objectid, nest);
4725 	if (IS_ERR(buf)) {
4726 		ret = PTR_ERR(buf);
4727 		goto out_free_reserved;
4728 	}
4729 
4730 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4731 		if (parent == 0)
4732 			parent = ins.objectid;
4733 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4734 	} else
4735 		BUG_ON(parent > 0);
4736 
4737 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4738 		extent_op = btrfs_alloc_delayed_extent_op();
4739 		if (!extent_op) {
4740 			ret = -ENOMEM;
4741 			goto out_free_buf;
4742 		}
4743 		if (key)
4744 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4745 		else
4746 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4747 		extent_op->flags_to_set = flags;
4748 		extent_op->update_key = skinny_metadata ? false : true;
4749 		extent_op->update_flags = true;
4750 		extent_op->is_data = false;
4751 		extent_op->level = level;
4752 
4753 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4754 				       ins.objectid, ins.offset, parent);
4755 		generic_ref.real_root = root->root_key.objectid;
4756 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4757 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4758 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4759 						 extent_op, NULL, NULL);
4760 		if (ret)
4761 			goto out_free_delayed;
4762 	}
4763 	return buf;
4764 
4765 out_free_delayed:
4766 	btrfs_free_delayed_extent_op(extent_op);
4767 out_free_buf:
4768 	free_extent_buffer(buf);
4769 out_free_reserved:
4770 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4771 out_unuse:
4772 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4773 	return ERR_PTR(ret);
4774 }
4775 
4776 struct walk_control {
4777 	u64 refs[BTRFS_MAX_LEVEL];
4778 	u64 flags[BTRFS_MAX_LEVEL];
4779 	struct btrfs_key update_progress;
4780 	struct btrfs_key drop_progress;
4781 	int drop_level;
4782 	int stage;
4783 	int level;
4784 	int shared_level;
4785 	int update_ref;
4786 	int keep_locks;
4787 	int reada_slot;
4788 	int reada_count;
4789 	int restarted;
4790 };
4791 
4792 #define DROP_REFERENCE	1
4793 #define UPDATE_BACKREF	2
4794 
4795 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4796 				     struct btrfs_root *root,
4797 				     struct walk_control *wc,
4798 				     struct btrfs_path *path)
4799 {
4800 	struct btrfs_fs_info *fs_info = root->fs_info;
4801 	u64 bytenr;
4802 	u64 generation;
4803 	u64 refs;
4804 	u64 flags;
4805 	u32 nritems;
4806 	struct btrfs_key key;
4807 	struct extent_buffer *eb;
4808 	int ret;
4809 	int slot;
4810 	int nread = 0;
4811 
4812 	if (path->slots[wc->level] < wc->reada_slot) {
4813 		wc->reada_count = wc->reada_count * 2 / 3;
4814 		wc->reada_count = max(wc->reada_count, 2);
4815 	} else {
4816 		wc->reada_count = wc->reada_count * 3 / 2;
4817 		wc->reada_count = min_t(int, wc->reada_count,
4818 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4819 	}
4820 
4821 	eb = path->nodes[wc->level];
4822 	nritems = btrfs_header_nritems(eb);
4823 
4824 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4825 		if (nread >= wc->reada_count)
4826 			break;
4827 
4828 		cond_resched();
4829 		bytenr = btrfs_node_blockptr(eb, slot);
4830 		generation = btrfs_node_ptr_generation(eb, slot);
4831 
4832 		if (slot == path->slots[wc->level])
4833 			goto reada;
4834 
4835 		if (wc->stage == UPDATE_BACKREF &&
4836 		    generation <= root->root_key.offset)
4837 			continue;
4838 
4839 		/* We don't lock the tree block, it's OK to be racy here */
4840 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4841 					       wc->level - 1, 1, &refs,
4842 					       &flags);
4843 		/* We don't care about errors in readahead. */
4844 		if (ret < 0)
4845 			continue;
4846 		BUG_ON(refs == 0);
4847 
4848 		if (wc->stage == DROP_REFERENCE) {
4849 			if (refs == 1)
4850 				goto reada;
4851 
4852 			if (wc->level == 1 &&
4853 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4854 				continue;
4855 			if (!wc->update_ref ||
4856 			    generation <= root->root_key.offset)
4857 				continue;
4858 			btrfs_node_key_to_cpu(eb, &key, slot);
4859 			ret = btrfs_comp_cpu_keys(&key,
4860 						  &wc->update_progress);
4861 			if (ret < 0)
4862 				continue;
4863 		} else {
4864 			if (wc->level == 1 &&
4865 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4866 				continue;
4867 		}
4868 reada:
4869 		btrfs_readahead_node_child(eb, slot);
4870 		nread++;
4871 	}
4872 	wc->reada_slot = slot;
4873 }
4874 
4875 /*
4876  * helper to process tree block while walking down the tree.
4877  *
4878  * when wc->stage == UPDATE_BACKREF, this function updates
4879  * back refs for pointers in the block.
4880  *
4881  * NOTE: return value 1 means we should stop walking down.
4882  */
4883 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4884 				   struct btrfs_root *root,
4885 				   struct btrfs_path *path,
4886 				   struct walk_control *wc, int lookup_info)
4887 {
4888 	struct btrfs_fs_info *fs_info = root->fs_info;
4889 	int level = wc->level;
4890 	struct extent_buffer *eb = path->nodes[level];
4891 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4892 	int ret;
4893 
4894 	if (wc->stage == UPDATE_BACKREF &&
4895 	    btrfs_header_owner(eb) != root->root_key.objectid)
4896 		return 1;
4897 
4898 	/*
4899 	 * when reference count of tree block is 1, it won't increase
4900 	 * again. once full backref flag is set, we never clear it.
4901 	 */
4902 	if (lookup_info &&
4903 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4904 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4905 		BUG_ON(!path->locks[level]);
4906 		ret = btrfs_lookup_extent_info(trans, fs_info,
4907 					       eb->start, level, 1,
4908 					       &wc->refs[level],
4909 					       &wc->flags[level]);
4910 		BUG_ON(ret == -ENOMEM);
4911 		if (ret)
4912 			return ret;
4913 		BUG_ON(wc->refs[level] == 0);
4914 	}
4915 
4916 	if (wc->stage == DROP_REFERENCE) {
4917 		if (wc->refs[level] > 1)
4918 			return 1;
4919 
4920 		if (path->locks[level] && !wc->keep_locks) {
4921 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4922 			path->locks[level] = 0;
4923 		}
4924 		return 0;
4925 	}
4926 
4927 	/* wc->stage == UPDATE_BACKREF */
4928 	if (!(wc->flags[level] & flag)) {
4929 		BUG_ON(!path->locks[level]);
4930 		ret = btrfs_inc_ref(trans, root, eb, 1);
4931 		BUG_ON(ret); /* -ENOMEM */
4932 		ret = btrfs_dec_ref(trans, root, eb, 0);
4933 		BUG_ON(ret); /* -ENOMEM */
4934 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4935 						  btrfs_header_level(eb), 0);
4936 		BUG_ON(ret); /* -ENOMEM */
4937 		wc->flags[level] |= flag;
4938 	}
4939 
4940 	/*
4941 	 * the block is shared by multiple trees, so it's not good to
4942 	 * keep the tree lock
4943 	 */
4944 	if (path->locks[level] && level > 0) {
4945 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4946 		path->locks[level] = 0;
4947 	}
4948 	return 0;
4949 }
4950 
4951 /*
4952  * This is used to verify a ref exists for this root to deal with a bug where we
4953  * would have a drop_progress key that hadn't been updated properly.
4954  */
4955 static int check_ref_exists(struct btrfs_trans_handle *trans,
4956 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4957 			    int level)
4958 {
4959 	struct btrfs_path *path;
4960 	struct btrfs_extent_inline_ref *iref;
4961 	int ret;
4962 
4963 	path = btrfs_alloc_path();
4964 	if (!path)
4965 		return -ENOMEM;
4966 
4967 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4968 				    root->fs_info->nodesize, parent,
4969 				    root->root_key.objectid, level, 0);
4970 	btrfs_free_path(path);
4971 	if (ret == -ENOENT)
4972 		return 0;
4973 	if (ret < 0)
4974 		return ret;
4975 	return 1;
4976 }
4977 
4978 /*
4979  * helper to process tree block pointer.
4980  *
4981  * when wc->stage == DROP_REFERENCE, this function checks
4982  * reference count of the block pointed to. if the block
4983  * is shared and we need update back refs for the subtree
4984  * rooted at the block, this function changes wc->stage to
4985  * UPDATE_BACKREF. if the block is shared and there is no
4986  * need to update back, this function drops the reference
4987  * to the block.
4988  *
4989  * NOTE: return value 1 means we should stop walking down.
4990  */
4991 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4992 				 struct btrfs_root *root,
4993 				 struct btrfs_path *path,
4994 				 struct walk_control *wc, int *lookup_info)
4995 {
4996 	struct btrfs_fs_info *fs_info = root->fs_info;
4997 	u64 bytenr;
4998 	u64 generation;
4999 	u64 parent;
5000 	struct btrfs_key key;
5001 	struct btrfs_key first_key;
5002 	struct btrfs_ref ref = { 0 };
5003 	struct extent_buffer *next;
5004 	int level = wc->level;
5005 	int reada = 0;
5006 	int ret = 0;
5007 	bool need_account = false;
5008 
5009 	generation = btrfs_node_ptr_generation(path->nodes[level],
5010 					       path->slots[level]);
5011 	/*
5012 	 * if the lower level block was created before the snapshot
5013 	 * was created, we know there is no need to update back refs
5014 	 * for the subtree
5015 	 */
5016 	if (wc->stage == UPDATE_BACKREF &&
5017 	    generation <= root->root_key.offset) {
5018 		*lookup_info = 1;
5019 		return 1;
5020 	}
5021 
5022 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5023 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5024 			      path->slots[level]);
5025 
5026 	next = find_extent_buffer(fs_info, bytenr);
5027 	if (!next) {
5028 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5029 				root->root_key.objectid, level - 1);
5030 		if (IS_ERR(next))
5031 			return PTR_ERR(next);
5032 		reada = 1;
5033 	}
5034 	btrfs_tree_lock(next);
5035 
5036 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5037 				       &wc->refs[level - 1],
5038 				       &wc->flags[level - 1]);
5039 	if (ret < 0)
5040 		goto out_unlock;
5041 
5042 	if (unlikely(wc->refs[level - 1] == 0)) {
5043 		btrfs_err(fs_info, "Missing references.");
5044 		ret = -EIO;
5045 		goto out_unlock;
5046 	}
5047 	*lookup_info = 0;
5048 
5049 	if (wc->stage == DROP_REFERENCE) {
5050 		if (wc->refs[level - 1] > 1) {
5051 			need_account = true;
5052 			if (level == 1 &&
5053 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5054 				goto skip;
5055 
5056 			if (!wc->update_ref ||
5057 			    generation <= root->root_key.offset)
5058 				goto skip;
5059 
5060 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5061 					      path->slots[level]);
5062 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5063 			if (ret < 0)
5064 				goto skip;
5065 
5066 			wc->stage = UPDATE_BACKREF;
5067 			wc->shared_level = level - 1;
5068 		}
5069 	} else {
5070 		if (level == 1 &&
5071 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5072 			goto skip;
5073 	}
5074 
5075 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5076 		btrfs_tree_unlock(next);
5077 		free_extent_buffer(next);
5078 		next = NULL;
5079 		*lookup_info = 1;
5080 	}
5081 
5082 	if (!next) {
5083 		if (reada && level == 1)
5084 			reada_walk_down(trans, root, wc, path);
5085 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5086 				       generation, level - 1, &first_key);
5087 		if (IS_ERR(next)) {
5088 			return PTR_ERR(next);
5089 		} else if (!extent_buffer_uptodate(next)) {
5090 			free_extent_buffer(next);
5091 			return -EIO;
5092 		}
5093 		btrfs_tree_lock(next);
5094 	}
5095 
5096 	level--;
5097 	ASSERT(level == btrfs_header_level(next));
5098 	if (level != btrfs_header_level(next)) {
5099 		btrfs_err(root->fs_info, "mismatched level");
5100 		ret = -EIO;
5101 		goto out_unlock;
5102 	}
5103 	path->nodes[level] = next;
5104 	path->slots[level] = 0;
5105 	path->locks[level] = BTRFS_WRITE_LOCK;
5106 	wc->level = level;
5107 	if (wc->level == 1)
5108 		wc->reada_slot = 0;
5109 	return 0;
5110 skip:
5111 	wc->refs[level - 1] = 0;
5112 	wc->flags[level - 1] = 0;
5113 	if (wc->stage == DROP_REFERENCE) {
5114 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5115 			parent = path->nodes[level]->start;
5116 		} else {
5117 			ASSERT(root->root_key.objectid ==
5118 			       btrfs_header_owner(path->nodes[level]));
5119 			if (root->root_key.objectid !=
5120 			    btrfs_header_owner(path->nodes[level])) {
5121 				btrfs_err(root->fs_info,
5122 						"mismatched block owner");
5123 				ret = -EIO;
5124 				goto out_unlock;
5125 			}
5126 			parent = 0;
5127 		}
5128 
5129 		/*
5130 		 * If we had a drop_progress we need to verify the refs are set
5131 		 * as expected.  If we find our ref then we know that from here
5132 		 * on out everything should be correct, and we can clear the
5133 		 * ->restarted flag.
5134 		 */
5135 		if (wc->restarted) {
5136 			ret = check_ref_exists(trans, root, bytenr, parent,
5137 					       level - 1);
5138 			if (ret < 0)
5139 				goto out_unlock;
5140 			if (ret == 0)
5141 				goto no_delete;
5142 			ret = 0;
5143 			wc->restarted = 0;
5144 		}
5145 
5146 		/*
5147 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5148 		 * already accounted them at merge time (replace_path),
5149 		 * thus we could skip expensive subtree trace here.
5150 		 */
5151 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5152 		    need_account) {
5153 			ret = btrfs_qgroup_trace_subtree(trans, next,
5154 							 generation, level - 1);
5155 			if (ret) {
5156 				btrfs_err_rl(fs_info,
5157 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5158 					     ret);
5159 			}
5160 		}
5161 
5162 		/*
5163 		 * We need to update the next key in our walk control so we can
5164 		 * update the drop_progress key accordingly.  We don't care if
5165 		 * find_next_key doesn't find a key because that means we're at
5166 		 * the end and are going to clean up now.
5167 		 */
5168 		wc->drop_level = level;
5169 		find_next_key(path, level, &wc->drop_progress);
5170 
5171 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5172 				       fs_info->nodesize, parent);
5173 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5174 		ret = btrfs_free_extent(trans, &ref);
5175 		if (ret)
5176 			goto out_unlock;
5177 	}
5178 no_delete:
5179 	*lookup_info = 1;
5180 	ret = 1;
5181 
5182 out_unlock:
5183 	btrfs_tree_unlock(next);
5184 	free_extent_buffer(next);
5185 
5186 	return ret;
5187 }
5188 
5189 /*
5190  * helper to process tree block while walking up the tree.
5191  *
5192  * when wc->stage == DROP_REFERENCE, this function drops
5193  * reference count on the block.
5194  *
5195  * when wc->stage == UPDATE_BACKREF, this function changes
5196  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5197  * to UPDATE_BACKREF previously while processing the block.
5198  *
5199  * NOTE: return value 1 means we should stop walking up.
5200  */
5201 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5202 				 struct btrfs_root *root,
5203 				 struct btrfs_path *path,
5204 				 struct walk_control *wc)
5205 {
5206 	struct btrfs_fs_info *fs_info = root->fs_info;
5207 	int ret;
5208 	int level = wc->level;
5209 	struct extent_buffer *eb = path->nodes[level];
5210 	u64 parent = 0;
5211 
5212 	if (wc->stage == UPDATE_BACKREF) {
5213 		BUG_ON(wc->shared_level < level);
5214 		if (level < wc->shared_level)
5215 			goto out;
5216 
5217 		ret = find_next_key(path, level + 1, &wc->update_progress);
5218 		if (ret > 0)
5219 			wc->update_ref = 0;
5220 
5221 		wc->stage = DROP_REFERENCE;
5222 		wc->shared_level = -1;
5223 		path->slots[level] = 0;
5224 
5225 		/*
5226 		 * check reference count again if the block isn't locked.
5227 		 * we should start walking down the tree again if reference
5228 		 * count is one.
5229 		 */
5230 		if (!path->locks[level]) {
5231 			BUG_ON(level == 0);
5232 			btrfs_tree_lock(eb);
5233 			path->locks[level] = BTRFS_WRITE_LOCK;
5234 
5235 			ret = btrfs_lookup_extent_info(trans, fs_info,
5236 						       eb->start, level, 1,
5237 						       &wc->refs[level],
5238 						       &wc->flags[level]);
5239 			if (ret < 0) {
5240 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5241 				path->locks[level] = 0;
5242 				return ret;
5243 			}
5244 			BUG_ON(wc->refs[level] == 0);
5245 			if (wc->refs[level] == 1) {
5246 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5247 				path->locks[level] = 0;
5248 				return 1;
5249 			}
5250 		}
5251 	}
5252 
5253 	/* wc->stage == DROP_REFERENCE */
5254 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5255 
5256 	if (wc->refs[level] == 1) {
5257 		if (level == 0) {
5258 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5259 				ret = btrfs_dec_ref(trans, root, eb, 1);
5260 			else
5261 				ret = btrfs_dec_ref(trans, root, eb, 0);
5262 			BUG_ON(ret); /* -ENOMEM */
5263 			if (is_fstree(root->root_key.objectid)) {
5264 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5265 				if (ret) {
5266 					btrfs_err_rl(fs_info,
5267 	"error %d accounting leaf items, quota is out of sync, rescan required",
5268 					     ret);
5269 				}
5270 			}
5271 		}
5272 		/* make block locked assertion in btrfs_clean_tree_block happy */
5273 		if (!path->locks[level] &&
5274 		    btrfs_header_generation(eb) == trans->transid) {
5275 			btrfs_tree_lock(eb);
5276 			path->locks[level] = BTRFS_WRITE_LOCK;
5277 		}
5278 		btrfs_clean_tree_block(eb);
5279 	}
5280 
5281 	if (eb == root->node) {
5282 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5283 			parent = eb->start;
5284 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5285 			goto owner_mismatch;
5286 	} else {
5287 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5288 			parent = path->nodes[level + 1]->start;
5289 		else if (root->root_key.objectid !=
5290 			 btrfs_header_owner(path->nodes[level + 1]))
5291 			goto owner_mismatch;
5292 	}
5293 
5294 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5295 out:
5296 	wc->refs[level] = 0;
5297 	wc->flags[level] = 0;
5298 	return 0;
5299 
5300 owner_mismatch:
5301 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5302 		     btrfs_header_owner(eb), root->root_key.objectid);
5303 	return -EUCLEAN;
5304 }
5305 
5306 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5307 				   struct btrfs_root *root,
5308 				   struct btrfs_path *path,
5309 				   struct walk_control *wc)
5310 {
5311 	int level = wc->level;
5312 	int lookup_info = 1;
5313 	int ret;
5314 
5315 	while (level >= 0) {
5316 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5317 		if (ret > 0)
5318 			break;
5319 
5320 		if (level == 0)
5321 			break;
5322 
5323 		if (path->slots[level] >=
5324 		    btrfs_header_nritems(path->nodes[level]))
5325 			break;
5326 
5327 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5328 		if (ret > 0) {
5329 			path->slots[level]++;
5330 			continue;
5331 		} else if (ret < 0)
5332 			return ret;
5333 		level = wc->level;
5334 	}
5335 	return 0;
5336 }
5337 
5338 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5339 				 struct btrfs_root *root,
5340 				 struct btrfs_path *path,
5341 				 struct walk_control *wc, int max_level)
5342 {
5343 	int level = wc->level;
5344 	int ret;
5345 
5346 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5347 	while (level < max_level && path->nodes[level]) {
5348 		wc->level = level;
5349 		if (path->slots[level] + 1 <
5350 		    btrfs_header_nritems(path->nodes[level])) {
5351 			path->slots[level]++;
5352 			return 0;
5353 		} else {
5354 			ret = walk_up_proc(trans, root, path, wc);
5355 			if (ret > 0)
5356 				return 0;
5357 			if (ret < 0)
5358 				return ret;
5359 
5360 			if (path->locks[level]) {
5361 				btrfs_tree_unlock_rw(path->nodes[level],
5362 						     path->locks[level]);
5363 				path->locks[level] = 0;
5364 			}
5365 			free_extent_buffer(path->nodes[level]);
5366 			path->nodes[level] = NULL;
5367 			level++;
5368 		}
5369 	}
5370 	return 1;
5371 }
5372 
5373 /*
5374  * drop a subvolume tree.
5375  *
5376  * this function traverses the tree freeing any blocks that only
5377  * referenced by the tree.
5378  *
5379  * when a shared tree block is found. this function decreases its
5380  * reference count by one. if update_ref is true, this function
5381  * also make sure backrefs for the shared block and all lower level
5382  * blocks are properly updated.
5383  *
5384  * If called with for_reloc == 0, may exit early with -EAGAIN
5385  */
5386 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5387 {
5388 	struct btrfs_fs_info *fs_info = root->fs_info;
5389 	struct btrfs_path *path;
5390 	struct btrfs_trans_handle *trans;
5391 	struct btrfs_root *tree_root = fs_info->tree_root;
5392 	struct btrfs_root_item *root_item = &root->root_item;
5393 	struct walk_control *wc;
5394 	struct btrfs_key key;
5395 	int err = 0;
5396 	int ret;
5397 	int level;
5398 	bool root_dropped = false;
5399 
5400 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5401 
5402 	path = btrfs_alloc_path();
5403 	if (!path) {
5404 		err = -ENOMEM;
5405 		goto out;
5406 	}
5407 
5408 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5409 	if (!wc) {
5410 		btrfs_free_path(path);
5411 		err = -ENOMEM;
5412 		goto out;
5413 	}
5414 
5415 	/*
5416 	 * Use join to avoid potential EINTR from transaction start. See
5417 	 * wait_reserve_ticket and the whole reservation callchain.
5418 	 */
5419 	if (for_reloc)
5420 		trans = btrfs_join_transaction(tree_root);
5421 	else
5422 		trans = btrfs_start_transaction(tree_root, 0);
5423 	if (IS_ERR(trans)) {
5424 		err = PTR_ERR(trans);
5425 		goto out_free;
5426 	}
5427 
5428 	err = btrfs_run_delayed_items(trans);
5429 	if (err)
5430 		goto out_end_trans;
5431 
5432 	/*
5433 	 * This will help us catch people modifying the fs tree while we're
5434 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5435 	 * dropped as we unlock the root node and parent nodes as we walk down
5436 	 * the tree, assuming nothing will change.  If something does change
5437 	 * then we'll have stale information and drop references to blocks we've
5438 	 * already dropped.
5439 	 */
5440 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5441 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5442 		level = btrfs_header_level(root->node);
5443 		path->nodes[level] = btrfs_lock_root_node(root);
5444 		path->slots[level] = 0;
5445 		path->locks[level] = BTRFS_WRITE_LOCK;
5446 		memset(&wc->update_progress, 0,
5447 		       sizeof(wc->update_progress));
5448 	} else {
5449 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5450 		memcpy(&wc->update_progress, &key,
5451 		       sizeof(wc->update_progress));
5452 
5453 		level = btrfs_root_drop_level(root_item);
5454 		BUG_ON(level == 0);
5455 		path->lowest_level = level;
5456 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5457 		path->lowest_level = 0;
5458 		if (ret < 0) {
5459 			err = ret;
5460 			goto out_end_trans;
5461 		}
5462 		WARN_ON(ret > 0);
5463 
5464 		/*
5465 		 * unlock our path, this is safe because only this
5466 		 * function is allowed to delete this snapshot
5467 		 */
5468 		btrfs_unlock_up_safe(path, 0);
5469 
5470 		level = btrfs_header_level(root->node);
5471 		while (1) {
5472 			btrfs_tree_lock(path->nodes[level]);
5473 			path->locks[level] = BTRFS_WRITE_LOCK;
5474 
5475 			ret = btrfs_lookup_extent_info(trans, fs_info,
5476 						path->nodes[level]->start,
5477 						level, 1, &wc->refs[level],
5478 						&wc->flags[level]);
5479 			if (ret < 0) {
5480 				err = ret;
5481 				goto out_end_trans;
5482 			}
5483 			BUG_ON(wc->refs[level] == 0);
5484 
5485 			if (level == btrfs_root_drop_level(root_item))
5486 				break;
5487 
5488 			btrfs_tree_unlock(path->nodes[level]);
5489 			path->locks[level] = 0;
5490 			WARN_ON(wc->refs[level] != 1);
5491 			level--;
5492 		}
5493 	}
5494 
5495 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5496 	wc->level = level;
5497 	wc->shared_level = -1;
5498 	wc->stage = DROP_REFERENCE;
5499 	wc->update_ref = update_ref;
5500 	wc->keep_locks = 0;
5501 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5502 
5503 	while (1) {
5504 
5505 		ret = walk_down_tree(trans, root, path, wc);
5506 		if (ret < 0) {
5507 			err = ret;
5508 			break;
5509 		}
5510 
5511 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5512 		if (ret < 0) {
5513 			err = ret;
5514 			break;
5515 		}
5516 
5517 		if (ret > 0) {
5518 			BUG_ON(wc->stage != DROP_REFERENCE);
5519 			break;
5520 		}
5521 
5522 		if (wc->stage == DROP_REFERENCE) {
5523 			wc->drop_level = wc->level;
5524 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5525 					      &wc->drop_progress,
5526 					      path->slots[wc->drop_level]);
5527 		}
5528 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5529 				      &wc->drop_progress);
5530 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5531 
5532 		BUG_ON(wc->level == 0);
5533 		if (btrfs_should_end_transaction(trans) ||
5534 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5535 			ret = btrfs_update_root(trans, tree_root,
5536 						&root->root_key,
5537 						root_item);
5538 			if (ret) {
5539 				btrfs_abort_transaction(trans, ret);
5540 				err = ret;
5541 				goto out_end_trans;
5542 			}
5543 
5544 			btrfs_end_transaction_throttle(trans);
5545 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5546 				btrfs_debug(fs_info,
5547 					    "drop snapshot early exit");
5548 				err = -EAGAIN;
5549 				goto out_free;
5550 			}
5551 
5552 		       /*
5553 			* Use join to avoid potential EINTR from transaction
5554 			* start. See wait_reserve_ticket and the whole
5555 			* reservation callchain.
5556 			*/
5557 			if (for_reloc)
5558 				trans = btrfs_join_transaction(tree_root);
5559 			else
5560 				trans = btrfs_start_transaction(tree_root, 0);
5561 			if (IS_ERR(trans)) {
5562 				err = PTR_ERR(trans);
5563 				goto out_free;
5564 			}
5565 		}
5566 	}
5567 	btrfs_release_path(path);
5568 	if (err)
5569 		goto out_end_trans;
5570 
5571 	ret = btrfs_del_root(trans, &root->root_key);
5572 	if (ret) {
5573 		btrfs_abort_transaction(trans, ret);
5574 		err = ret;
5575 		goto out_end_trans;
5576 	}
5577 
5578 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5579 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5580 				      NULL, NULL);
5581 		if (ret < 0) {
5582 			btrfs_abort_transaction(trans, ret);
5583 			err = ret;
5584 			goto out_end_trans;
5585 		} else if (ret > 0) {
5586 			/* if we fail to delete the orphan item this time
5587 			 * around, it'll get picked up the next time.
5588 			 *
5589 			 * The most common failure here is just -ENOENT.
5590 			 */
5591 			btrfs_del_orphan_item(trans, tree_root,
5592 					      root->root_key.objectid);
5593 		}
5594 	}
5595 
5596 	/*
5597 	 * This subvolume is going to be completely dropped, and won't be
5598 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5599 	 * commit transaction time.  So free it here manually.
5600 	 */
5601 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5602 	btrfs_qgroup_free_meta_all_pertrans(root);
5603 
5604 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5605 		btrfs_add_dropped_root(trans, root);
5606 	else
5607 		btrfs_put_root(root);
5608 	root_dropped = true;
5609 out_end_trans:
5610 	btrfs_end_transaction_throttle(trans);
5611 out_free:
5612 	kfree(wc);
5613 	btrfs_free_path(path);
5614 out:
5615 	/*
5616 	 * So if we need to stop dropping the snapshot for whatever reason we
5617 	 * need to make sure to add it back to the dead root list so that we
5618 	 * keep trying to do the work later.  This also cleans up roots if we
5619 	 * don't have it in the radix (like when we recover after a power fail
5620 	 * or unmount) so we don't leak memory.
5621 	 */
5622 	if (!for_reloc && !root_dropped)
5623 		btrfs_add_dead_root(root);
5624 	return err;
5625 }
5626 
5627 /*
5628  * drop subtree rooted at tree block 'node'.
5629  *
5630  * NOTE: this function will unlock and release tree block 'node'
5631  * only used by relocation code
5632  */
5633 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5634 			struct btrfs_root *root,
5635 			struct extent_buffer *node,
5636 			struct extent_buffer *parent)
5637 {
5638 	struct btrfs_fs_info *fs_info = root->fs_info;
5639 	struct btrfs_path *path;
5640 	struct walk_control *wc;
5641 	int level;
5642 	int parent_level;
5643 	int ret = 0;
5644 	int wret;
5645 
5646 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5647 
5648 	path = btrfs_alloc_path();
5649 	if (!path)
5650 		return -ENOMEM;
5651 
5652 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5653 	if (!wc) {
5654 		btrfs_free_path(path);
5655 		return -ENOMEM;
5656 	}
5657 
5658 	btrfs_assert_tree_locked(parent);
5659 	parent_level = btrfs_header_level(parent);
5660 	atomic_inc(&parent->refs);
5661 	path->nodes[parent_level] = parent;
5662 	path->slots[parent_level] = btrfs_header_nritems(parent);
5663 
5664 	btrfs_assert_tree_locked(node);
5665 	level = btrfs_header_level(node);
5666 	path->nodes[level] = node;
5667 	path->slots[level] = 0;
5668 	path->locks[level] = BTRFS_WRITE_LOCK;
5669 
5670 	wc->refs[parent_level] = 1;
5671 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5672 	wc->level = level;
5673 	wc->shared_level = -1;
5674 	wc->stage = DROP_REFERENCE;
5675 	wc->update_ref = 0;
5676 	wc->keep_locks = 1;
5677 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5678 
5679 	while (1) {
5680 		wret = walk_down_tree(trans, root, path, wc);
5681 		if (wret < 0) {
5682 			ret = wret;
5683 			break;
5684 		}
5685 
5686 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5687 		if (wret < 0)
5688 			ret = wret;
5689 		if (wret != 0)
5690 			break;
5691 	}
5692 
5693 	kfree(wc);
5694 	btrfs_free_path(path);
5695 	return ret;
5696 }
5697 
5698 /*
5699  * helper to account the unused space of all the readonly block group in the
5700  * space_info. takes mirrors into account.
5701  */
5702 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5703 {
5704 	struct btrfs_block_group *block_group;
5705 	u64 free_bytes = 0;
5706 	int factor;
5707 
5708 	/* It's df, we don't care if it's racy */
5709 	if (list_empty(&sinfo->ro_bgs))
5710 		return 0;
5711 
5712 	spin_lock(&sinfo->lock);
5713 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5714 		spin_lock(&block_group->lock);
5715 
5716 		if (!block_group->ro) {
5717 			spin_unlock(&block_group->lock);
5718 			continue;
5719 		}
5720 
5721 		factor = btrfs_bg_type_to_factor(block_group->flags);
5722 		free_bytes += (block_group->length -
5723 			       block_group->used) * factor;
5724 
5725 		spin_unlock(&block_group->lock);
5726 	}
5727 	spin_unlock(&sinfo->lock);
5728 
5729 	return free_bytes;
5730 }
5731 
5732 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5733 				   u64 start, u64 end)
5734 {
5735 	return unpin_extent_range(fs_info, start, end, false);
5736 }
5737 
5738 /*
5739  * It used to be that old block groups would be left around forever.
5740  * Iterating over them would be enough to trim unused space.  Since we
5741  * now automatically remove them, we also need to iterate over unallocated
5742  * space.
5743  *
5744  * We don't want a transaction for this since the discard may take a
5745  * substantial amount of time.  We don't require that a transaction be
5746  * running, but we do need to take a running transaction into account
5747  * to ensure that we're not discarding chunks that were released or
5748  * allocated in the current transaction.
5749  *
5750  * Holding the chunks lock will prevent other threads from allocating
5751  * or releasing chunks, but it won't prevent a running transaction
5752  * from committing and releasing the memory that the pending chunks
5753  * list head uses.  For that, we need to take a reference to the
5754  * transaction and hold the commit root sem.  We only need to hold
5755  * it while performing the free space search since we have already
5756  * held back allocations.
5757  */
5758 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5759 {
5760 	u64 start = SZ_1M, len = 0, end = 0;
5761 	int ret;
5762 
5763 	*trimmed = 0;
5764 
5765 	/* Discard not supported = nothing to do. */
5766 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5767 		return 0;
5768 
5769 	/* Not writable = nothing to do. */
5770 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5771 		return 0;
5772 
5773 	/* No free space = nothing to do. */
5774 	if (device->total_bytes <= device->bytes_used)
5775 		return 0;
5776 
5777 	ret = 0;
5778 
5779 	while (1) {
5780 		struct btrfs_fs_info *fs_info = device->fs_info;
5781 		u64 bytes;
5782 
5783 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5784 		if (ret)
5785 			break;
5786 
5787 		find_first_clear_extent_bit(&device->alloc_state, start,
5788 					    &start, &end,
5789 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5790 
5791 		/* Check if there are any CHUNK_* bits left */
5792 		if (start > device->total_bytes) {
5793 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5794 			btrfs_warn_in_rcu(fs_info,
5795 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5796 					  start, end - start + 1,
5797 					  rcu_str_deref(device->name),
5798 					  device->total_bytes);
5799 			mutex_unlock(&fs_info->chunk_mutex);
5800 			ret = 0;
5801 			break;
5802 		}
5803 
5804 		/* Ensure we skip the reserved area in the first 1M */
5805 		start = max_t(u64, start, SZ_1M);
5806 
5807 		/*
5808 		 * If find_first_clear_extent_bit find a range that spans the
5809 		 * end of the device it will set end to -1, in this case it's up
5810 		 * to the caller to trim the value to the size of the device.
5811 		 */
5812 		end = min(end, device->total_bytes - 1);
5813 
5814 		len = end - start + 1;
5815 
5816 		/* We didn't find any extents */
5817 		if (!len) {
5818 			mutex_unlock(&fs_info->chunk_mutex);
5819 			ret = 0;
5820 			break;
5821 		}
5822 
5823 		ret = btrfs_issue_discard(device->bdev, start, len,
5824 					  &bytes);
5825 		if (!ret)
5826 			set_extent_bits(&device->alloc_state, start,
5827 					start + bytes - 1,
5828 					CHUNK_TRIMMED);
5829 		mutex_unlock(&fs_info->chunk_mutex);
5830 
5831 		if (ret)
5832 			break;
5833 
5834 		start += len;
5835 		*trimmed += bytes;
5836 
5837 		if (fatal_signal_pending(current)) {
5838 			ret = -ERESTARTSYS;
5839 			break;
5840 		}
5841 
5842 		cond_resched();
5843 	}
5844 
5845 	return ret;
5846 }
5847 
5848 /*
5849  * Trim the whole filesystem by:
5850  * 1) trimming the free space in each block group
5851  * 2) trimming the unallocated space on each device
5852  *
5853  * This will also continue trimming even if a block group or device encounters
5854  * an error.  The return value will be the last error, or 0 if nothing bad
5855  * happens.
5856  */
5857 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5858 {
5859 	struct btrfs_block_group *cache = NULL;
5860 	struct btrfs_device *device;
5861 	struct list_head *devices;
5862 	u64 group_trimmed;
5863 	u64 range_end = U64_MAX;
5864 	u64 start;
5865 	u64 end;
5866 	u64 trimmed = 0;
5867 	u64 bg_failed = 0;
5868 	u64 dev_failed = 0;
5869 	int bg_ret = 0;
5870 	int dev_ret = 0;
5871 	int ret = 0;
5872 
5873 	/*
5874 	 * Check range overflow if range->len is set.
5875 	 * The default range->len is U64_MAX.
5876 	 */
5877 	if (range->len != U64_MAX &&
5878 	    check_add_overflow(range->start, range->len, &range_end))
5879 		return -EINVAL;
5880 
5881 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5882 	for (; cache; cache = btrfs_next_block_group(cache)) {
5883 		if (cache->start >= range_end) {
5884 			btrfs_put_block_group(cache);
5885 			break;
5886 		}
5887 
5888 		start = max(range->start, cache->start);
5889 		end = min(range_end, cache->start + cache->length);
5890 
5891 		if (end - start >= range->minlen) {
5892 			if (!btrfs_block_group_done(cache)) {
5893 				ret = btrfs_cache_block_group(cache, 0);
5894 				if (ret) {
5895 					bg_failed++;
5896 					bg_ret = ret;
5897 					continue;
5898 				}
5899 				ret = btrfs_wait_block_group_cache_done(cache);
5900 				if (ret) {
5901 					bg_failed++;
5902 					bg_ret = ret;
5903 					continue;
5904 				}
5905 			}
5906 			ret = btrfs_trim_block_group(cache,
5907 						     &group_trimmed,
5908 						     start,
5909 						     end,
5910 						     range->minlen);
5911 
5912 			trimmed += group_trimmed;
5913 			if (ret) {
5914 				bg_failed++;
5915 				bg_ret = ret;
5916 				continue;
5917 			}
5918 		}
5919 	}
5920 
5921 	if (bg_failed)
5922 		btrfs_warn(fs_info,
5923 			"failed to trim %llu block group(s), last error %d",
5924 			bg_failed, bg_ret);
5925 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5926 	devices = &fs_info->fs_devices->devices;
5927 	list_for_each_entry(device, devices, dev_list) {
5928 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5929 		if (ret) {
5930 			dev_failed++;
5931 			dev_ret = ret;
5932 			break;
5933 		}
5934 
5935 		trimmed += group_trimmed;
5936 	}
5937 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5938 
5939 	if (dev_failed)
5940 		btrfs_warn(fs_info,
5941 			"failed to trim %llu device(s), last error %d",
5942 			dev_failed, dev_ret);
5943 	range->len = trimmed;
5944 	if (bg_ret)
5945 		return bg_ret;
5946 	return dev_ret;
5947 }
5948