xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision bea2b592)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				u64 bytenr, u64 num_bytes, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op,
86 				int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins,
100 				     int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 			  struct btrfs_root *extent_root, u64 flags,
103 			  int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 			 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 			    int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 				       u64 num_bytes, int reserve,
110 				       int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 			       u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 		     u64 bytenr, u64 num_bytes, int reserved);
115 
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 	smp_mb();
120 	return cache->cached == BTRFS_CACHE_FINISHED ||
121 		cache->cached == BTRFS_CACHE_ERROR;
122 }
123 
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 	return (cache->flags & bits) == bits;
127 }
128 
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	atomic_inc(&cache->count);
132 }
133 
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 	if (atomic_dec_and_test(&cache->count)) {
137 		WARN_ON(cache->pinned > 0);
138 		WARN_ON(cache->reserved > 0);
139 		kfree(cache->free_space_ctl);
140 		kfree(cache);
141 	}
142 }
143 
144 /*
145  * this adds the block group to the fs_info rb tree for the block group
146  * cache
147  */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 				struct btrfs_block_group_cache *block_group)
150 {
151 	struct rb_node **p;
152 	struct rb_node *parent = NULL;
153 	struct btrfs_block_group_cache *cache;
154 
155 	spin_lock(&info->block_group_cache_lock);
156 	p = &info->block_group_cache_tree.rb_node;
157 
158 	while (*p) {
159 		parent = *p;
160 		cache = rb_entry(parent, struct btrfs_block_group_cache,
161 				 cache_node);
162 		if (block_group->key.objectid < cache->key.objectid) {
163 			p = &(*p)->rb_left;
164 		} else if (block_group->key.objectid > cache->key.objectid) {
165 			p = &(*p)->rb_right;
166 		} else {
167 			spin_unlock(&info->block_group_cache_lock);
168 			return -EEXIST;
169 		}
170 	}
171 
172 	rb_link_node(&block_group->cache_node, parent, p);
173 	rb_insert_color(&block_group->cache_node,
174 			&info->block_group_cache_tree);
175 
176 	if (info->first_logical_byte > block_group->key.objectid)
177 		info->first_logical_byte = block_group->key.objectid;
178 
179 	spin_unlock(&info->block_group_cache_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * This will return the block group at or after bytenr if contains is 0, else
186  * it will return the block group that contains the bytenr
187  */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 			      int contains)
191 {
192 	struct btrfs_block_group_cache *cache, *ret = NULL;
193 	struct rb_node *n;
194 	u64 end, start;
195 
196 	spin_lock(&info->block_group_cache_lock);
197 	n = info->block_group_cache_tree.rb_node;
198 
199 	while (n) {
200 		cache = rb_entry(n, struct btrfs_block_group_cache,
201 				 cache_node);
202 		end = cache->key.objectid + cache->key.offset - 1;
203 		start = cache->key.objectid;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->key.objectid))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 			info->first_logical_byte = ret->key.objectid;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 static int add_excluded_extent(struct btrfs_root *root,
231 			       u64 start, u64 num_bytes)
232 {
233 	u64 end = start + num_bytes - 1;
234 	set_extent_bits(&root->fs_info->freed_extents[0],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	set_extent_bits(&root->fs_info->freed_extents[1],
237 			start, end, EXTENT_UPTODATE, GFP_NOFS);
238 	return 0;
239 }
240 
241 static void free_excluded_extents(struct btrfs_root *root,
242 				  struct btrfs_block_group_cache *cache)
243 {
244 	u64 start, end;
245 
246 	start = cache->key.objectid;
247 	end = start + cache->key.offset - 1;
248 
249 	clear_extent_bits(&root->fs_info->freed_extents[0],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 	clear_extent_bits(&root->fs_info->freed_extents[1],
252 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254 
255 static int exclude_super_stripes(struct btrfs_root *root,
256 				 struct btrfs_block_group_cache *cache)
257 {
258 	u64 bytenr;
259 	u64 *logical;
260 	int stripe_len;
261 	int i, nr, ret;
262 
263 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 		cache->bytes_super += stripe_len;
266 		ret = add_excluded_extent(root, cache->key.objectid,
267 					  stripe_len);
268 		if (ret)
269 			return ret;
270 	}
271 
272 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 		bytenr = btrfs_sb_offset(i);
274 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 				       cache->key.objectid, bytenr,
276 				       0, &logical, &nr, &stripe_len);
277 		if (ret)
278 			return ret;
279 
280 		while (nr--) {
281 			u64 start, len;
282 
283 			if (logical[nr] > cache->key.objectid +
284 			    cache->key.offset)
285 				continue;
286 
287 			if (logical[nr] + stripe_len <= cache->key.objectid)
288 				continue;
289 
290 			start = logical[nr];
291 			if (start < cache->key.objectid) {
292 				start = cache->key.objectid;
293 				len = (logical[nr] + stripe_len) - start;
294 			} else {
295 				len = min_t(u64, stripe_len,
296 					    cache->key.objectid +
297 					    cache->key.offset - start);
298 			}
299 
300 			cache->bytes_super += len;
301 			ret = add_excluded_extent(root, start, len);
302 			if (ret) {
303 				kfree(logical);
304 				return ret;
305 			}
306 		}
307 
308 		kfree(logical);
309 	}
310 	return 0;
311 }
312 
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 	struct btrfs_caching_control *ctl;
317 
318 	spin_lock(&cache->lock);
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = -ENOMEM;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->commit_root_sem);
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto err;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->commit_root_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->nodesize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->commit_root_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 			caching_thread, NULL, NULL);
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		mutex_lock(&caching_ctl->mutex);
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 			caching_ctl->progress = (u64)-1;
601 		} else {
602 			if (load_cache_only) {
603 				cache->caching_ctl = NULL;
604 				cache->cached = BTRFS_CACHE_NO;
605 			} else {
606 				cache->cached = BTRFS_CACHE_STARTED;
607 				cache->has_caching_ctl = 1;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		mutex_unlock(&caching_ctl->mutex);
612 
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 			cache->has_caching_ctl = 1;
631 		}
632 		spin_unlock(&cache->lock);
633 		wake_up(&caching_ctl->wait);
634 	}
635 
636 	if (load_cache_only) {
637 		put_caching_control(caching_ctl);
638 		return 0;
639 	}
640 
641 	down_write(&fs_info->commit_root_sem);
642 	atomic_inc(&caching_ctl->count);
643 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 	up_write(&fs_info->commit_root_sem);
645 
646 	btrfs_get_block_group(cache);
647 
648 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 
650 	return ret;
651 }
652 
653 /*
654  * return the block group that starts at or after bytenr
655  */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 	struct btrfs_block_group_cache *cache;
660 
661 	cache = block_group_cache_tree_search(info, bytenr, 0);
662 
663 	return cache;
664 }
665 
666 /*
667  * return the block group that contains the given bytenr
668  */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 						 struct btrfs_fs_info *info,
671 						 u64 bytenr)
672 {
673 	struct btrfs_block_group_cache *cache;
674 
675 	cache = block_group_cache_tree_search(info, bytenr, 1);
676 
677 	return cache;
678 }
679 
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 						  u64 flags)
682 {
683 	struct list_head *head = &info->space_info;
684 	struct btrfs_space_info *found;
685 
686 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 
688 	rcu_read_lock();
689 	list_for_each_entry_rcu(found, head, list) {
690 		if (found->flags & flags) {
691 			rcu_read_unlock();
692 			return found;
693 		}
694 	}
695 	rcu_read_unlock();
696 	return NULL;
697 }
698 
699 /*
700  * after adding space to the filesystem, we need to clear the full flags
701  * on all the space infos.
702  */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 	struct list_head *head = &info->space_info;
706 	struct btrfs_space_info *found;
707 
708 	rcu_read_lock();
709 	list_for_each_entry_rcu(found, head, list)
710 		found->full = 0;
711 	rcu_read_unlock();
712 }
713 
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 	int ret;
718 	struct btrfs_key key;
719 	struct btrfs_path *path;
720 
721 	path = btrfs_alloc_path();
722 	if (!path)
723 		return -ENOMEM;
724 
725 	key.objectid = start;
726 	key.offset = len;
727 	key.type = BTRFS_EXTENT_ITEM_KEY;
728 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 				0, 0);
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->nodesize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (!trans) {
772 		path->skip_locking = 1;
773 		path->search_commit_root = 1;
774 	}
775 
776 search_again:
777 	key.objectid = bytenr;
778 	key.offset = offset;
779 	if (metadata)
780 		key.type = BTRFS_METADATA_ITEM_KEY;
781 	else
782 		key.type = BTRFS_EXTENT_ITEM_KEY;
783 
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->nodesize)
797 				ret = 0;
798 		}
799 	}
800 
801 	if (ret == 0) {
802 		leaf = path->nodes[0];
803 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 		if (item_size >= sizeof(*ei)) {
805 			ei = btrfs_item_ptr(leaf, path->slots[0],
806 					    struct btrfs_extent_item);
807 			num_refs = btrfs_extent_refs(leaf, ei);
808 			extent_flags = btrfs_extent_flags(leaf, ei);
809 		} else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 			struct btrfs_extent_item_v0 *ei0;
812 			BUG_ON(item_size != sizeof(*ei0));
813 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 					     struct btrfs_extent_item_v0);
815 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 			/* FIXME: this isn't correct for data */
817 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 			BUG();
820 #endif
821 		}
822 		BUG_ON(num_refs == 0);
823 	} else {
824 		num_refs = 0;
825 		extent_flags = 0;
826 		ret = 0;
827 	}
828 
829 	if (!trans)
830 		goto out;
831 
832 	delayed_refs = &trans->transaction->delayed_refs;
833 	spin_lock(&delayed_refs->lock);
834 	head = btrfs_find_delayed_ref_head(trans, bytenr);
835 	if (head) {
836 		if (!mutex_trylock(&head->mutex)) {
837 			atomic_inc(&head->node.refs);
838 			spin_unlock(&delayed_refs->lock);
839 
840 			btrfs_release_path(path);
841 
842 			/*
843 			 * Mutex was contended, block until it's released and try
844 			 * again
845 			 */
846 			mutex_lock(&head->mutex);
847 			mutex_unlock(&head->mutex);
848 			btrfs_put_delayed_ref(&head->node);
849 			goto search_again;
850 		}
851 		spin_lock(&head->lock);
852 		if (head->extent_op && head->extent_op->update_flags)
853 			extent_flags |= head->extent_op->flags_to_set;
854 		else
855 			BUG_ON(num_refs == 0);
856 
857 		num_refs += head->node.ref_mod;
858 		spin_unlock(&head->lock);
859 		mutex_unlock(&head->mutex);
860 	}
861 	spin_unlock(&delayed_refs->lock);
862 out:
863 	WARN_ON(num_refs == 0);
864 	if (refs)
865 		*refs = num_refs;
866 	if (flags)
867 		*flags = extent_flags;
868 out_free:
869 	btrfs_free_path(path);
870 	return ret;
871 }
872 
873 /*
874  * Back reference rules.  Back refs have three main goals:
875  *
876  * 1) differentiate between all holders of references to an extent so that
877  *    when a reference is dropped we can make sure it was a valid reference
878  *    before freeing the extent.
879  *
880  * 2) Provide enough information to quickly find the holders of an extent
881  *    if we notice a given block is corrupted or bad.
882  *
883  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884  *    maintenance.  This is actually the same as #2, but with a slightly
885  *    different use case.
886  *
887  * There are two kinds of back refs. The implicit back refs is optimized
888  * for pointers in non-shared tree blocks. For a given pointer in a block,
889  * back refs of this kind provide information about the block's owner tree
890  * and the pointer's key. These information allow us to find the block by
891  * b-tree searching. The full back refs is for pointers in tree blocks not
892  * referenced by their owner trees. The location of tree block is recorded
893  * in the back refs. Actually the full back refs is generic, and can be
894  * used in all cases the implicit back refs is used. The major shortcoming
895  * of the full back refs is its overhead. Every time a tree block gets
896  * COWed, we have to update back refs entry for all pointers in it.
897  *
898  * For a newly allocated tree block, we use implicit back refs for
899  * pointers in it. This means most tree related operations only involve
900  * implicit back refs. For a tree block created in old transaction, the
901  * only way to drop a reference to it is COW it. So we can detect the
902  * event that tree block loses its owner tree's reference and do the
903  * back refs conversion.
904  *
905  * When a tree block is COW'd through a tree, there are four cases:
906  *
907  * The reference count of the block is one and the tree is the block's
908  * owner tree. Nothing to do in this case.
909  *
910  * The reference count of the block is one and the tree is not the
911  * block's owner tree. In this case, full back refs is used for pointers
912  * in the block. Remove these full back refs, add implicit back refs for
913  * every pointers in the new block.
914  *
915  * The reference count of the block is greater than one and the tree is
916  * the block's owner tree. In this case, implicit back refs is used for
917  * pointers in the block. Add full back refs for every pointers in the
918  * block, increase lower level extents' reference counts. The original
919  * implicit back refs are entailed to the new block.
920  *
921  * The reference count of the block is greater than one and the tree is
922  * not the block's owner tree. Add implicit back refs for every pointer in
923  * the new block, increase lower level extents' reference count.
924  *
925  * Back Reference Key composing:
926  *
927  * The key objectid corresponds to the first byte in the extent,
928  * The key type is used to differentiate between types of back refs.
929  * There are different meanings of the key offset for different types
930  * of back refs.
931  *
932  * File extents can be referenced by:
933  *
934  * - multiple snapshots, subvolumes, or different generations in one subvol
935  * - different files inside a single subvolume
936  * - different offsets inside a file (bookend extents in file.c)
937  *
938  * The extent ref structure for the implicit back refs has fields for:
939  *
940  * - Objectid of the subvolume root
941  * - objectid of the file holding the reference
942  * - original offset in the file
943  * - how many bookend extents
944  *
945  * The key offset for the implicit back refs is hash of the first
946  * three fields.
947  *
948  * The extent ref structure for the full back refs has field for:
949  *
950  * - number of pointers in the tree leaf
951  *
952  * The key offset for the implicit back refs is the first byte of
953  * the tree leaf
954  *
955  * When a file extent is allocated, The implicit back refs is used.
956  * the fields are filled in:
957  *
958  *     (root_key.objectid, inode objectid, offset in file, 1)
959  *
960  * When a file extent is removed file truncation, we find the
961  * corresponding implicit back refs and check the following fields:
962  *
963  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
964  *
965  * Btree extents can be referenced by:
966  *
967  * - Different subvolumes
968  *
969  * Both the implicit back refs and the full back refs for tree blocks
970  * only consist of key. The key offset for the implicit back refs is
971  * objectid of block's owner tree. The key offset for the full back refs
972  * is the first byte of parent block.
973  *
974  * When implicit back refs is used, information about the lowest key and
975  * level of the tree block are required. These information are stored in
976  * tree block info structure.
977  */
978 
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 				  struct btrfs_root *root,
982 				  struct btrfs_path *path,
983 				  u64 owner, u32 extra_size)
984 {
985 	struct btrfs_extent_item *item;
986 	struct btrfs_extent_item_v0 *ei0;
987 	struct btrfs_extent_ref_v0 *ref0;
988 	struct btrfs_tree_block_info *bi;
989 	struct extent_buffer *leaf;
990 	struct btrfs_key key;
991 	struct btrfs_key found_key;
992 	u32 new_size = sizeof(*item);
993 	u64 refs;
994 	int ret;
995 
996 	leaf = path->nodes[0];
997 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998 
999 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 			     struct btrfs_extent_item_v0);
1002 	refs = btrfs_extent_refs_v0(leaf, ei0);
1003 
1004 	if (owner == (u64)-1) {
1005 		while (1) {
1006 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 				ret = btrfs_next_leaf(root, path);
1008 				if (ret < 0)
1009 					return ret;
1010 				BUG_ON(ret > 0); /* Corruption */
1011 				leaf = path->nodes[0];
1012 			}
1013 			btrfs_item_key_to_cpu(leaf, &found_key,
1014 					      path->slots[0]);
1015 			BUG_ON(key.objectid != found_key.objectid);
1016 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 				path->slots[0]++;
1018 				continue;
1019 			}
1020 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 					      struct btrfs_extent_ref_v0);
1022 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 			break;
1024 		}
1025 	}
1026 	btrfs_release_path(path);
1027 
1028 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 		new_size += sizeof(*bi);
1030 
1031 	new_size -= sizeof(*ei0);
1032 	ret = btrfs_search_slot(trans, root, &key, path,
1033 				new_size + extra_size, 1);
1034 	if (ret < 0)
1035 		return ret;
1036 	BUG_ON(ret); /* Corruption */
1037 
1038 	btrfs_extend_item(root, path, new_size);
1039 
1040 	leaf = path->nodes[0];
1041 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 	btrfs_set_extent_refs(leaf, item, refs);
1043 	/* FIXME: get real generation */
1044 	btrfs_set_extent_generation(leaf, item, 0);
1045 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 		btrfs_set_extent_flags(leaf, item,
1047 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 		bi = (struct btrfs_tree_block_info *)(item + 1);
1050 		/* FIXME: get first key of the block */
1051 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 	} else {
1054 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 	}
1056 	btrfs_mark_buffer_dirty(leaf);
1057 	return 0;
1058 }
1059 #endif
1060 
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	u32 high_crc = ~(u32)0;
1064 	u32 low_crc = ~(u32)0;
1065 	__le64 lenum;
1066 
1067 	lenum = cpu_to_le64(root_objectid);
1068 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 	lenum = cpu_to_le64(owner);
1070 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 	lenum = cpu_to_le64(offset);
1072 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073 
1074 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076 
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 				     struct btrfs_extent_data_ref *ref)
1079 {
1080 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 				    btrfs_extent_data_ref_objectid(leaf, ref),
1082 				    btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084 
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 				 struct btrfs_extent_data_ref *ref,
1087 				 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 		return 0;
1093 	return 1;
1094 }
1095 
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 					   struct btrfs_root *root,
1098 					   struct btrfs_path *path,
1099 					   u64 bytenr, u64 parent,
1100 					   u64 root_objectid,
1101 					   u64 owner, u64 offset)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_extent_data_ref *ref;
1105 	struct extent_buffer *leaf;
1106 	u32 nritems;
1107 	int ret;
1108 	int recow;
1109 	int err = -ENOENT;
1110 
1111 	key.objectid = bytenr;
1112 	if (parent) {
1113 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 		key.offset = parent;
1115 	} else {
1116 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 		key.offset = hash_extent_data_ref(root_objectid,
1118 						  owner, offset);
1119 	}
1120 again:
1121 	recow = 0;
1122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 	if (ret < 0) {
1124 		err = ret;
1125 		goto fail;
1126 	}
1127 
1128 	if (parent) {
1129 		if (!ret)
1130 			return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 		btrfs_release_path(path);
1134 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 		if (ret < 0) {
1136 			err = ret;
1137 			goto fail;
1138 		}
1139 		if (!ret)
1140 			return 0;
1141 #endif
1142 		goto fail;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	nritems = btrfs_header_nritems(leaf);
1147 	while (1) {
1148 		if (path->slots[0] >= nritems) {
1149 			ret = btrfs_next_leaf(root, path);
1150 			if (ret < 0)
1151 				err = ret;
1152 			if (ret)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 			nritems = btrfs_header_nritems(leaf);
1157 			recow = 1;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 		if (key.objectid != bytenr ||
1162 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 			goto fail;
1164 
1165 		ref = btrfs_item_ptr(leaf, path->slots[0],
1166 				     struct btrfs_extent_data_ref);
1167 
1168 		if (match_extent_data_ref(leaf, ref, root_objectid,
1169 					  owner, offset)) {
1170 			if (recow) {
1171 				btrfs_release_path(path);
1172 				goto again;
1173 			}
1174 			err = 0;
1175 			break;
1176 		}
1177 		path->slots[0]++;
1178 	}
1179 fail:
1180 	return err;
1181 }
1182 
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 					   struct btrfs_root *root,
1185 					   struct btrfs_path *path,
1186 					   u64 bytenr, u64 parent,
1187 					   u64 root_objectid, u64 owner,
1188 					   u64 offset, int refs_to_add)
1189 {
1190 	struct btrfs_key key;
1191 	struct extent_buffer *leaf;
1192 	u32 size;
1193 	u32 num_refs;
1194 	int ret;
1195 
1196 	key.objectid = bytenr;
1197 	if (parent) {
1198 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 		key.offset = parent;
1200 		size = sizeof(struct btrfs_shared_data_ref);
1201 	} else {
1202 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 		key.offset = hash_extent_data_ref(root_objectid,
1204 						  owner, offset);
1205 		size = sizeof(struct btrfs_extent_data_ref);
1206 	}
1207 
1208 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 	if (ret && ret != -EEXIST)
1210 		goto fail;
1211 
1212 	leaf = path->nodes[0];
1213 	if (parent) {
1214 		struct btrfs_shared_data_ref *ref;
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_shared_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 		} else {
1220 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 			num_refs += refs_to_add;
1222 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 		}
1224 	} else {
1225 		struct btrfs_extent_data_ref *ref;
1226 		while (ret == -EEXIST) {
1227 			ref = btrfs_item_ptr(leaf, path->slots[0],
1228 					     struct btrfs_extent_data_ref);
1229 			if (match_extent_data_ref(leaf, ref, root_objectid,
1230 						  owner, offset))
1231 				break;
1232 			btrfs_release_path(path);
1233 			key.offset++;
1234 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 						      size);
1236 			if (ret && ret != -EEXIST)
1237 				goto fail;
1238 
1239 			leaf = path->nodes[0];
1240 		}
1241 		ref = btrfs_item_ptr(leaf, path->slots[0],
1242 				     struct btrfs_extent_data_ref);
1243 		if (ret == 0) {
1244 			btrfs_set_extent_data_ref_root(leaf, ref,
1245 						       root_objectid);
1246 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 		} else {
1250 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 			num_refs += refs_to_add;
1252 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 		}
1254 	}
1255 	btrfs_mark_buffer_dirty(leaf);
1256 	ret = 0;
1257 fail:
1258 	btrfs_release_path(path);
1259 	return ret;
1260 }
1261 
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 					   struct btrfs_root *root,
1264 					   struct btrfs_path *path,
1265 					   int refs_to_drop, int *last_ref)
1266 {
1267 	struct btrfs_key key;
1268 	struct btrfs_extent_data_ref *ref1 = NULL;
1269 	struct btrfs_shared_data_ref *ref2 = NULL;
1270 	struct extent_buffer *leaf;
1271 	u32 num_refs = 0;
1272 	int ret = 0;
1273 
1274 	leaf = path->nodes[0];
1275 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276 
1277 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 				      struct btrfs_extent_data_ref);
1280 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 				      struct btrfs_shared_data_ref);
1284 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 		struct btrfs_extent_ref_v0 *ref0;
1288 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 				      struct btrfs_extent_ref_v0);
1290 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 	} else {
1293 		BUG();
1294 	}
1295 
1296 	BUG_ON(num_refs < refs_to_drop);
1297 	num_refs -= refs_to_drop;
1298 
1299 	if (num_refs == 0) {
1300 		ret = btrfs_del_item(trans, root, path);
1301 		*last_ref = 1;
1302 	} else {
1303 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 		else {
1309 			struct btrfs_extent_ref_v0 *ref0;
1310 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 					struct btrfs_extent_ref_v0);
1312 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 		}
1314 #endif
1315 		btrfs_mark_buffer_dirty(leaf);
1316 	}
1317 	return ret;
1318 }
1319 
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 					  struct btrfs_path *path,
1322 					  struct btrfs_extent_inline_ref *iref)
1323 {
1324 	struct btrfs_key key;
1325 	struct extent_buffer *leaf;
1326 	struct btrfs_extent_data_ref *ref1;
1327 	struct btrfs_shared_data_ref *ref2;
1328 	u32 num_refs = 0;
1329 
1330 	leaf = path->nodes[0];
1331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 	if (iref) {
1333 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 		    BTRFS_EXTENT_DATA_REF_KEY) {
1335 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 		} else {
1338 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 		}
1341 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_extent_data_ref);
1344 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_shared_data_ref);
1348 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 		struct btrfs_extent_ref_v0 *ref0;
1352 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_ref_v0);
1354 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 	} else {
1357 		WARN_ON(1);
1358 	}
1359 	return num_refs;
1360 }
1361 
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 					  struct btrfs_root *root,
1364 					  struct btrfs_path *path,
1365 					  u64 bytenr, u64 parent,
1366 					  u64 root_objectid)
1367 {
1368 	struct btrfs_key key;
1369 	int ret;
1370 
1371 	key.objectid = bytenr;
1372 	if (parent) {
1373 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 		key.offset = parent;
1375 	} else {
1376 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 		key.offset = root_objectid;
1378 	}
1379 
1380 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 	if (ret > 0)
1382 		ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 	if (ret == -ENOENT && parent) {
1385 		btrfs_release_path(path);
1386 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 		if (ret > 0)
1389 			ret = -ENOENT;
1390 	}
1391 #endif
1392 	return ret;
1393 }
1394 
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_root *root,
1397 					  struct btrfs_path *path,
1398 					  u64 bytenr, u64 parent,
1399 					  u64 root_objectid)
1400 {
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 	btrfs_release_path(path);
1415 	return ret;
1416 }
1417 
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 	int type;
1421 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 		if (parent > 0)
1423 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 		else
1425 			type = BTRFS_TREE_BLOCK_REF_KEY;
1426 	} else {
1427 		if (parent > 0)
1428 			type = BTRFS_SHARED_DATA_REF_KEY;
1429 		else
1430 			type = BTRFS_EXTENT_DATA_REF_KEY;
1431 	}
1432 	return type;
1433 }
1434 
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 			 struct btrfs_key *key)
1437 
1438 {
1439 	for (; level < BTRFS_MAX_LEVEL; level++) {
1440 		if (!path->nodes[level])
1441 			break;
1442 		if (path->slots[level] + 1 >=
1443 		    btrfs_header_nritems(path->nodes[level]))
1444 			continue;
1445 		if (level == 0)
1446 			btrfs_item_key_to_cpu(path->nodes[level], key,
1447 					      path->slots[level] + 1);
1448 		else
1449 			btrfs_node_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		return 0;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * look for inline back ref. if back ref is found, *ref_ret is set
1458  * to the address of inline back ref, and 0 is returned.
1459  *
1460  * if back ref isn't found, *ref_ret is set to the address where it
1461  * should be inserted, and -ENOENT is returned.
1462  *
1463  * if insert is true and there are too many inline back refs, the path
1464  * points to the extent item, and -EAGAIN is returned.
1465  *
1466  * NOTE: inline back refs are ordered in the same way that back ref
1467  *	 items in the tree are ordered.
1468  */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 				 struct btrfs_root *root,
1472 				 struct btrfs_path *path,
1473 				 struct btrfs_extent_inline_ref **ref_ret,
1474 				 u64 bytenr, u64 num_bytes,
1475 				 u64 parent, u64 root_objectid,
1476 				 u64 owner, u64 offset, int insert)
1477 {
1478 	struct btrfs_key key;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_extent_item *ei;
1481 	struct btrfs_extent_inline_ref *iref;
1482 	u64 flags;
1483 	u64 item_size;
1484 	unsigned long ptr;
1485 	unsigned long end;
1486 	int extra_size;
1487 	int type;
1488 	int want;
1489 	int ret;
1490 	int err = 0;
1491 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 						 SKINNY_METADATA);
1493 
1494 	key.objectid = bytenr;
1495 	key.type = BTRFS_EXTENT_ITEM_KEY;
1496 	key.offset = num_bytes;
1497 
1498 	want = extent_ref_type(parent, owner);
1499 	if (insert) {
1500 		extra_size = btrfs_extent_inline_ref_size(want);
1501 		path->keep_locks = 1;
1502 	} else
1503 		extra_size = -1;
1504 
1505 	/*
1506 	 * Owner is our parent level, so we can just add one to get the level
1507 	 * for the block we are interested in.
1508 	 */
1509 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 		key.type = BTRFS_METADATA_ITEM_KEY;
1511 		key.offset = owner;
1512 	}
1513 
1514 again:
1515 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 	if (ret < 0) {
1517 		err = ret;
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * We may be a newly converted file system which still has the old fat
1523 	 * extent entries for metadata, so try and see if we have one of those.
1524 	 */
1525 	if (ret > 0 && skinny_metadata) {
1526 		skinny_metadata = false;
1527 		if (path->slots[0]) {
1528 			path->slots[0]--;
1529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 					      path->slots[0]);
1531 			if (key.objectid == bytenr &&
1532 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 			    key.offset == num_bytes)
1534 				ret = 0;
1535 		}
1536 		if (ret) {
1537 			key.objectid = bytenr;
1538 			key.type = BTRFS_EXTENT_ITEM_KEY;
1539 			key.offset = num_bytes;
1540 			btrfs_release_path(path);
1541 			goto again;
1542 		}
1543 	}
1544 
1545 	if (ret && !insert) {
1546 		err = -ENOENT;
1547 		goto out;
1548 	} else if (WARN_ON(ret)) {
1549 		err = -EIO;
1550 		goto out;
1551 	}
1552 
1553 	leaf = path->nodes[0];
1554 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 	if (item_size < sizeof(*ei)) {
1557 		if (!insert) {
1558 			err = -ENOENT;
1559 			goto out;
1560 		}
1561 		ret = convert_extent_item_v0(trans, root, path, owner,
1562 					     extra_size);
1563 		if (ret < 0) {
1564 			err = ret;
1565 			goto out;
1566 		}
1567 		leaf = path->nodes[0];
1568 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 	}
1570 #endif
1571 	BUG_ON(item_size < sizeof(*ei));
1572 
1573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 	flags = btrfs_extent_flags(leaf, ei);
1575 
1576 	ptr = (unsigned long)(ei + 1);
1577 	end = (unsigned long)ei + item_size;
1578 
1579 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 		ptr += sizeof(struct btrfs_tree_block_info);
1581 		BUG_ON(ptr > end);
1582 	}
1583 
1584 	err = -ENOENT;
1585 	while (1) {
1586 		if (ptr >= end) {
1587 			WARN_ON(ptr > end);
1588 			break;
1589 		}
1590 		iref = (struct btrfs_extent_inline_ref *)ptr;
1591 		type = btrfs_extent_inline_ref_type(leaf, iref);
1592 		if (want < type)
1593 			break;
1594 		if (want > type) {
1595 			ptr += btrfs_extent_inline_ref_size(type);
1596 			continue;
1597 		}
1598 
1599 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 			struct btrfs_extent_data_ref *dref;
1601 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 			if (match_extent_data_ref(leaf, dref, root_objectid,
1603 						  owner, offset)) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (hash_extent_data_ref_item(leaf, dref) <
1608 			    hash_extent_data_ref(root_objectid, owner, offset))
1609 				break;
1610 		} else {
1611 			u64 ref_offset;
1612 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 			if (parent > 0) {
1614 				if (parent == ref_offset) {
1615 					err = 0;
1616 					break;
1617 				}
1618 				if (ref_offset < parent)
1619 					break;
1620 			} else {
1621 				if (root_objectid == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < root_objectid)
1626 					break;
1627 			}
1628 		}
1629 		ptr += btrfs_extent_inline_ref_size(type);
1630 	}
1631 	if (err == -ENOENT && insert) {
1632 		if (item_size + extra_size >=
1633 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 			err = -EAGAIN;
1635 			goto out;
1636 		}
1637 		/*
1638 		 * To add new inline back ref, we have to make sure
1639 		 * there is no corresponding back ref item.
1640 		 * For simplicity, we just do not add new inline back
1641 		 * ref if there is any kind of item for this block
1642 		 */
1643 		if (find_next_key(path, 0, &key) == 0 &&
1644 		    key.objectid == bytenr &&
1645 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 	}
1650 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 	if (insert) {
1653 		path->keep_locks = 0;
1654 		btrfs_unlock_up_safe(path, 1);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  * helper to add new inline back ref
1661  */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 				 struct btrfs_path *path,
1665 				 struct btrfs_extent_inline_ref *iref,
1666 				 u64 parent, u64 root_objectid,
1667 				 u64 owner, u64 offset, int refs_to_add,
1668 				 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 	struct extent_buffer *leaf;
1671 	struct btrfs_extent_item *ei;
1672 	unsigned long ptr;
1673 	unsigned long end;
1674 	unsigned long item_offset;
1675 	u64 refs;
1676 	int size;
1677 	int type;
1678 
1679 	leaf = path->nodes[0];
1680 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 	item_offset = (unsigned long)iref - (unsigned long)ei;
1682 
1683 	type = extent_ref_type(parent, owner);
1684 	size = btrfs_extent_inline_ref_size(type);
1685 
1686 	btrfs_extend_item(root, path, size);
1687 
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	refs = btrfs_extent_refs(leaf, ei);
1690 	refs += refs_to_add;
1691 	btrfs_set_extent_refs(leaf, ei, refs);
1692 	if (extent_op)
1693 		__run_delayed_extent_op(extent_op, leaf, ei);
1694 
1695 	ptr = (unsigned long)ei + item_offset;
1696 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 	if (ptr < end - size)
1698 		memmove_extent_buffer(leaf, ptr + size, ptr,
1699 				      end - size - ptr);
1700 
1701 	iref = (struct btrfs_extent_inline_ref *)ptr;
1702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 		struct btrfs_extent_data_ref *dref;
1705 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 		struct btrfs_shared_data_ref *sref;
1712 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 	} else {
1718 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 	}
1720 	btrfs_mark_buffer_dirty(leaf);
1721 }
1722 
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref **ref_ret,
1727 				 u64 bytenr, u64 num_bytes, u64 parent,
1728 				 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 	int ret;
1731 
1732 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 					   bytenr, num_bytes, parent,
1734 					   root_objectid, owner, offset, 0);
1735 	if (ret != -ENOENT)
1736 		return ret;
1737 
1738 	btrfs_release_path(path);
1739 	*ref_ret = NULL;
1740 
1741 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 					    root_objectid);
1744 	} else {
1745 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 					     root_objectid, owner, offset);
1747 	}
1748 	return ret;
1749 }
1750 
1751 /*
1752  * helper to update/remove inline back ref
1753  */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 				  struct btrfs_path *path,
1757 				  struct btrfs_extent_inline_ref *iref,
1758 				  int refs_to_mod,
1759 				  struct btrfs_delayed_extent_op *extent_op,
1760 				  int *last_ref)
1761 {
1762 	struct extent_buffer *leaf;
1763 	struct btrfs_extent_item *ei;
1764 	struct btrfs_extent_data_ref *dref = NULL;
1765 	struct btrfs_shared_data_ref *sref = NULL;
1766 	unsigned long ptr;
1767 	unsigned long end;
1768 	u32 item_size;
1769 	int size;
1770 	int type;
1771 	u64 refs;
1772 
1773 	leaf = path->nodes[0];
1774 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 	refs = btrfs_extent_refs(leaf, ei);
1776 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 	refs += refs_to_mod;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	type = btrfs_extent_inline_ref_type(leaf, iref);
1783 
1784 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 		refs = btrfs_extent_data_ref_count(leaf, dref);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 		refs = btrfs_shared_data_ref_count(leaf, sref);
1790 	} else {
1791 		refs = 1;
1792 		BUG_ON(refs_to_mod != -1);
1793 	}
1794 
1795 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 	refs += refs_to_mod;
1797 
1798 	if (refs > 0) {
1799 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 		else
1802 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 	} else {
1804 		*last_ref = 1;
1805 		size =  btrfs_extent_inline_ref_size(type);
1806 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 		ptr = (unsigned long)iref;
1808 		end = (unsigned long)ei + item_size;
1809 		if (ptr + size < end)
1810 			memmove_extent_buffer(leaf, ptr, ptr + size,
1811 					      end - ptr - size);
1812 		item_size -= size;
1813 		btrfs_truncate_item(root, path, item_size, 1);
1814 	}
1815 	btrfs_mark_buffer_dirty(leaf);
1816 }
1817 
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 num_bytes, u64 parent,
1823 				 u64 root_objectid, u64 owner,
1824 				 u64 offset, int refs_to_add,
1825 				 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 	struct btrfs_extent_inline_ref *iref;
1828 	int ret;
1829 
1830 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 					   bytenr, num_bytes, parent,
1832 					   root_objectid, owner, offset, 1);
1833 	if (ret == 0) {
1834 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 		update_inline_extent_backref(root, path, iref,
1836 					     refs_to_add, extent_op, NULL);
1837 	} else if (ret == -ENOENT) {
1838 		setup_inline_extent_backref(root, path, iref, parent,
1839 					    root_objectid, owner, offset,
1840 					    refs_to_add, extent_op);
1841 		ret = 0;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 				 struct btrfs_root *root,
1848 				 struct btrfs_path *path,
1849 				 u64 bytenr, u64 parent, u64 root_objectid,
1850 				 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 	int ret;
1853 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 		BUG_ON(refs_to_add != 1);
1855 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 					    parent, root_objectid);
1857 	} else {
1858 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 					     parent, root_objectid,
1860 					     owner, offset, refs_to_add);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 				 struct btrfs_root *root,
1867 				 struct btrfs_path *path,
1868 				 struct btrfs_extent_inline_ref *iref,
1869 				 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!is_data && refs_to_drop != 1);
1874 	if (iref) {
1875 		update_inline_extent_backref(root, path, iref,
1876 					     -refs_to_drop, NULL, last_ref);
1877 	} else if (is_data) {
1878 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 					     last_ref);
1880 	} else {
1881 		*last_ref = 1;
1882 		ret = btrfs_del_item(trans, root, path);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 				u64 start, u64 len)
1889 {
1890 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892 
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 			 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 	int ret;
1897 	u64 discarded_bytes = 0;
1898 	struct btrfs_bio *bbio = NULL;
1899 
1900 
1901 	/* Tell the block device(s) that the sectors can be discarded */
1902 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 			      bytenr, &num_bytes, &bbio, 0);
1904 	/* Error condition is -ENOMEM */
1905 	if (!ret) {
1906 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 		int i;
1908 
1909 
1910 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 			if (!stripe->dev->can_discard)
1912 				continue;
1913 
1914 			ret = btrfs_issue_discard(stripe->dev->bdev,
1915 						  stripe->physical,
1916 						  stripe->length);
1917 			if (!ret)
1918 				discarded_bytes += stripe->length;
1919 			else if (ret != -EOPNOTSUPP)
1920 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921 
1922 			/*
1923 			 * Just in case we get back EOPNOTSUPP for some reason,
1924 			 * just ignore the return value so we don't screw up
1925 			 * people calling discard_extent.
1926 			 */
1927 			ret = 0;
1928 		}
1929 		btrfs_put_bbio(bbio);
1930 	}
1931 
1932 	if (actual_bytes)
1933 		*actual_bytes = discarded_bytes;
1934 
1935 
1936 	if (ret == -EOPNOTSUPP)
1937 		ret = 0;
1938 	return ret;
1939 }
1940 
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 			 struct btrfs_root *root,
1944 			 u64 bytenr, u64 num_bytes, u64 parent,
1945 			 u64 root_objectid, u64 owner, u64 offset,
1946 			 int no_quota)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  int no_quota,
1974 				  struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 	struct btrfs_fs_info *fs_info = root->fs_info;
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	struct btrfs_key key;
1981 	u64 refs;
1982 	int ret;
1983 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 		goto out;
2001 	/*
2002 	 * Ok we were able to insert an inline extent and it appears to be a new
2003 	 * reference, deal with the qgroup accounting.
2004 	 */
2005 	if (!ret && !no_quota) {
2006 		ASSERT(root->fs_info->quota_enabled);
2007 		leaf = path->nodes[0];
2008 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 		item = btrfs_item_ptr(leaf, path->slots[0],
2010 				      struct btrfs_extent_item);
2011 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 		btrfs_release_path(path);
2014 
2015 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 					      bytenr, num_bytes, type, 0);
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 	 * inline extent ref, so just update the reference count and add a
2023 	 * normal backref.
2024 	 */
2025 	leaf = path->nodes[0];
2026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 	refs = btrfs_extent_refs(leaf, item);
2029 	if (refs)
2030 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 	if (extent_op)
2033 		__run_delayed_extent_op(extent_op, leaf, item);
2034 
2035 	btrfs_mark_buffer_dirty(leaf);
2036 	btrfs_release_path(path);
2037 
2038 	if (!no_quota) {
2039 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 					      bytenr, num_bytes, type, 0);
2041 		if (ret)
2042 			goto out;
2043 	}
2044 
2045 	path->reada = 1;
2046 	path->leave_spinning = 1;
2047 	/* now insert the actual backref */
2048 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 				    path, bytenr, parent, root_objectid,
2050 				    owner, offset, refs_to_add);
2051 	if (ret)
2052 		btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 	btrfs_free_path(path);
2055 	return ret;
2056 }
2057 
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 				struct btrfs_root *root,
2060 				struct btrfs_delayed_ref_node *node,
2061 				struct btrfs_delayed_extent_op *extent_op,
2062 				int insert_reserved)
2063 {
2064 	int ret = 0;
2065 	struct btrfs_delayed_data_ref *ref;
2066 	struct btrfs_key ins;
2067 	u64 parent = 0;
2068 	u64 ref_root = 0;
2069 	u64 flags = 0;
2070 
2071 	ins.objectid = node->bytenr;
2072 	ins.offset = node->num_bytes;
2073 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2074 
2075 	ref = btrfs_delayed_node_to_data_ref(node);
2076 	trace_run_delayed_data_ref(node, ref, node->action);
2077 
2078 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 		parent = ref->parent;
2080 	ref_root = ref->root;
2081 
2082 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 		if (extent_op)
2084 			flags |= extent_op->flags_to_set;
2085 		ret = alloc_reserved_file_extent(trans, root,
2086 						 parent, ref_root, flags,
2087 						 ref->objectid, ref->offset,
2088 						 &ins, node->ref_mod);
2089 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 					     node->num_bytes, parent,
2092 					     ref_root, ref->objectid,
2093 					     ref->offset, node->ref_mod,
2094 					     node->no_quota, extent_op);
2095 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 					  node->num_bytes, parent,
2098 					  ref_root, ref->objectid,
2099 					  ref->offset, node->ref_mod,
2100 					  extent_op, node->no_quota);
2101 	} else {
2102 		BUG();
2103 	}
2104 	return ret;
2105 }
2106 
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 				    struct extent_buffer *leaf,
2109 				    struct btrfs_extent_item *ei)
2110 {
2111 	u64 flags = btrfs_extent_flags(leaf, ei);
2112 	if (extent_op->update_flags) {
2113 		flags |= extent_op->flags_to_set;
2114 		btrfs_set_extent_flags(leaf, ei, flags);
2115 	}
2116 
2117 	if (extent_op->update_key) {
2118 		struct btrfs_tree_block_info *bi;
2119 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 	}
2123 }
2124 
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 				 struct btrfs_root *root,
2127 				 struct btrfs_delayed_ref_node *node,
2128 				 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 	struct btrfs_key key;
2131 	struct btrfs_path *path;
2132 	struct btrfs_extent_item *ei;
2133 	struct extent_buffer *leaf;
2134 	u32 item_size;
2135 	int ret;
2136 	int err = 0;
2137 	int metadata = !extent_op->is_data;
2138 
2139 	if (trans->aborted)
2140 		return 0;
2141 
2142 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 		metadata = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	key.objectid = node->bytenr;
2150 
2151 	if (metadata) {
2152 		key.type = BTRFS_METADATA_ITEM_KEY;
2153 		key.offset = extent_op->level;
2154 	} else {
2155 		key.type = BTRFS_EXTENT_ITEM_KEY;
2156 		key.offset = node->num_bytes;
2157 	}
2158 
2159 again:
2160 	path->reada = 1;
2161 	path->leave_spinning = 1;
2162 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 				path, 0, 1);
2164 	if (ret < 0) {
2165 		err = ret;
2166 		goto out;
2167 	}
2168 	if (ret > 0) {
2169 		if (metadata) {
2170 			if (path->slots[0] > 0) {
2171 				path->slots[0]--;
2172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 						      path->slots[0]);
2174 				if (key.objectid == node->bytenr &&
2175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 				    key.offset == node->num_bytes)
2177 					ret = 0;
2178 			}
2179 			if (ret > 0) {
2180 				btrfs_release_path(path);
2181 				metadata = 0;
2182 
2183 				key.objectid = node->bytenr;
2184 				key.offset = node->num_bytes;
2185 				key.type = BTRFS_EXTENT_ITEM_KEY;
2186 				goto again;
2187 			}
2188 		} else {
2189 			err = -EIO;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	leaf = path->nodes[0];
2195 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 	if (item_size < sizeof(*ei)) {
2198 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 					     path, (u64)-1, 0);
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 		leaf = path->nodes[0];
2205 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 	}
2207 #endif
2208 	BUG_ON(item_size < sizeof(*ei));
2209 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 	__run_delayed_extent_op(extent_op, leaf, ei);
2211 
2212 	btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 	btrfs_free_path(path);
2215 	return err;
2216 }
2217 
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 				struct btrfs_root *root,
2220 				struct btrfs_delayed_ref_node *node,
2221 				struct btrfs_delayed_extent_op *extent_op,
2222 				int insert_reserved)
2223 {
2224 	int ret = 0;
2225 	struct btrfs_delayed_tree_ref *ref;
2226 	struct btrfs_key ins;
2227 	u64 parent = 0;
2228 	u64 ref_root = 0;
2229 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 						 SKINNY_METADATA);
2231 
2232 	ref = btrfs_delayed_node_to_tree_ref(node);
2233 	trace_run_delayed_tree_ref(node, ref, node->action);
2234 
2235 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 		parent = ref->parent;
2237 	ref_root = ref->root;
2238 
2239 	ins.objectid = node->bytenr;
2240 	if (skinny_metadata) {
2241 		ins.offset = ref->level;
2242 		ins.type = BTRFS_METADATA_ITEM_KEY;
2243 	} else {
2244 		ins.offset = node->num_bytes;
2245 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 	}
2247 
2248 	BUG_ON(node->ref_mod != 1);
2249 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 		BUG_ON(!extent_op || !extent_op->update_flags);
2251 		ret = alloc_reserved_tree_block(trans, root,
2252 						parent, ref_root,
2253 						extent_op->flags_to_set,
2254 						&extent_op->key,
2255 						ref->level, &ins,
2256 						node->no_quota);
2257 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 					     node->num_bytes, parent, ref_root,
2260 					     ref->level, 0, 1, node->no_quota,
2261 					     extent_op);
2262 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 					  node->num_bytes, parent, ref_root,
2265 					  ref->level, 0, 1, extent_op,
2266 					  node->no_quota);
2267 	} else {
2268 		BUG();
2269 	}
2270 	return ret;
2271 }
2272 
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 			       struct btrfs_root *root,
2276 			       struct btrfs_delayed_ref_node *node,
2277 			       struct btrfs_delayed_extent_op *extent_op,
2278 			       int insert_reserved)
2279 {
2280 	int ret = 0;
2281 
2282 	if (trans->aborted) {
2283 		if (insert_reserved)
2284 			btrfs_pin_extent(root, node->bytenr,
2285 					 node->num_bytes, 1);
2286 		return 0;
2287 	}
2288 
2289 	if (btrfs_delayed_ref_is_head(node)) {
2290 		struct btrfs_delayed_ref_head *head;
2291 		/*
2292 		 * we've hit the end of the chain and we were supposed
2293 		 * to insert this extent into the tree.  But, it got
2294 		 * deleted before we ever needed to insert it, so all
2295 		 * we have to do is clean up the accounting
2296 		 */
2297 		BUG_ON(extent_op);
2298 		head = btrfs_delayed_node_to_head(node);
2299 		trace_run_delayed_ref_head(node, head, node->action);
2300 
2301 		if (insert_reserved) {
2302 			btrfs_pin_extent(root, node->bytenr,
2303 					 node->num_bytes, 1);
2304 			if (head->is_data) {
2305 				ret = btrfs_del_csums(trans, root,
2306 						      node->bytenr,
2307 						      node->num_bytes);
2308 			}
2309 		}
2310 		return ret;
2311 	}
2312 
2313 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 					   insert_reserved);
2317 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 					   insert_reserved);
2321 	else
2322 		BUG();
2323 	return ret;
2324 }
2325 
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 	struct rb_node *node;
2330 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331 
2332 	/*
2333 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 	 * this prevents ref count from going down to zero when
2335 	 * there still are pending delayed ref.
2336 	 */
2337 	node = rb_first(&head->ref_root);
2338 	while (node) {
2339 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 				rb_node);
2341 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 			return ref;
2343 		else if (last == NULL)
2344 			last = ref;
2345 		node = rb_next(node);
2346 	}
2347 	return last;
2348 }
2349 
2350 /*
2351  * Returns 0 on success or if called with an already aborted transaction.
2352  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353  */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 					     struct btrfs_root *root,
2356 					     unsigned long nr)
2357 {
2358 	struct btrfs_delayed_ref_root *delayed_refs;
2359 	struct btrfs_delayed_ref_node *ref;
2360 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 	struct btrfs_delayed_extent_op *extent_op;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	ktime_t start = ktime_get();
2364 	int ret;
2365 	unsigned long count = 0;
2366 	unsigned long actual_count = 0;
2367 	int must_insert_reserved = 0;
2368 
2369 	delayed_refs = &trans->transaction->delayed_refs;
2370 	while (1) {
2371 		if (!locked_ref) {
2372 			if (count >= nr)
2373 				break;
2374 
2375 			spin_lock(&delayed_refs->lock);
2376 			locked_ref = btrfs_select_ref_head(trans);
2377 			if (!locked_ref) {
2378 				spin_unlock(&delayed_refs->lock);
2379 				break;
2380 			}
2381 
2382 			/* grab the lock that says we are going to process
2383 			 * all the refs for this head */
2384 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 			spin_unlock(&delayed_refs->lock);
2386 			/*
2387 			 * we may have dropped the spin lock to get the head
2388 			 * mutex lock, and that might have given someone else
2389 			 * time to free the head.  If that's true, it has been
2390 			 * removed from our list and we can move on.
2391 			 */
2392 			if (ret == -EAGAIN) {
2393 				locked_ref = NULL;
2394 				count++;
2395 				continue;
2396 			}
2397 		}
2398 
2399 		/*
2400 		 * We need to try and merge add/drops of the same ref since we
2401 		 * can run into issues with relocate dropping the implicit ref
2402 		 * and then it being added back again before the drop can
2403 		 * finish.  If we merged anything we need to re-loop so we can
2404 		 * get a good ref.
2405 		 */
2406 		spin_lock(&locked_ref->lock);
2407 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 					 locked_ref);
2409 
2410 		/*
2411 		 * locked_ref is the head node, so we have to go one
2412 		 * node back for any delayed ref updates
2413 		 */
2414 		ref = select_delayed_ref(locked_ref);
2415 
2416 		if (ref && ref->seq &&
2417 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 			spin_unlock(&locked_ref->lock);
2419 			btrfs_delayed_ref_unlock(locked_ref);
2420 			spin_lock(&delayed_refs->lock);
2421 			locked_ref->processing = 0;
2422 			delayed_refs->num_heads_ready++;
2423 			spin_unlock(&delayed_refs->lock);
2424 			locked_ref = NULL;
2425 			cond_resched();
2426 			count++;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * record the must insert reserved flag before we
2432 		 * drop the spin lock.
2433 		 */
2434 		must_insert_reserved = locked_ref->must_insert_reserved;
2435 		locked_ref->must_insert_reserved = 0;
2436 
2437 		extent_op = locked_ref->extent_op;
2438 		locked_ref->extent_op = NULL;
2439 
2440 		if (!ref) {
2441 
2442 
2443 			/* All delayed refs have been processed, Go ahead
2444 			 * and send the head node to run_one_delayed_ref,
2445 			 * so that any accounting fixes can happen
2446 			 */
2447 			ref = &locked_ref->node;
2448 
2449 			if (extent_op && must_insert_reserved) {
2450 				btrfs_free_delayed_extent_op(extent_op);
2451 				extent_op = NULL;
2452 			}
2453 
2454 			if (extent_op) {
2455 				spin_unlock(&locked_ref->lock);
2456 				ret = run_delayed_extent_op(trans, root,
2457 							    ref, extent_op);
2458 				btrfs_free_delayed_extent_op(extent_op);
2459 
2460 				if (ret) {
2461 					/*
2462 					 * Need to reset must_insert_reserved if
2463 					 * there was an error so the abort stuff
2464 					 * can cleanup the reserved space
2465 					 * properly.
2466 					 */
2467 					if (must_insert_reserved)
2468 						locked_ref->must_insert_reserved = 1;
2469 					locked_ref->processing = 0;
2470 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 					btrfs_delayed_ref_unlock(locked_ref);
2472 					return ret;
2473 				}
2474 				continue;
2475 			}
2476 
2477 			/*
2478 			 * Need to drop our head ref lock and re-aqcuire the
2479 			 * delayed ref lock and then re-check to make sure
2480 			 * nobody got added.
2481 			 */
2482 			spin_unlock(&locked_ref->lock);
2483 			spin_lock(&delayed_refs->lock);
2484 			spin_lock(&locked_ref->lock);
2485 			if (rb_first(&locked_ref->ref_root) ||
2486 			    locked_ref->extent_op) {
2487 				spin_unlock(&locked_ref->lock);
2488 				spin_unlock(&delayed_refs->lock);
2489 				continue;
2490 			}
2491 			ref->in_tree = 0;
2492 			delayed_refs->num_heads--;
2493 			rb_erase(&locked_ref->href_node,
2494 				 &delayed_refs->href_root);
2495 			spin_unlock(&delayed_refs->lock);
2496 		} else {
2497 			actual_count++;
2498 			ref->in_tree = 0;
2499 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 		}
2501 		atomic_dec(&delayed_refs->num_entries);
2502 
2503 		if (!btrfs_delayed_ref_is_head(ref)) {
2504 			/*
2505 			 * when we play the delayed ref, also correct the
2506 			 * ref_mod on head
2507 			 */
2508 			switch (ref->action) {
2509 			case BTRFS_ADD_DELAYED_REF:
2510 			case BTRFS_ADD_DELAYED_EXTENT:
2511 				locked_ref->node.ref_mod -= ref->ref_mod;
2512 				break;
2513 			case BTRFS_DROP_DELAYED_REF:
2514 				locked_ref->node.ref_mod += ref->ref_mod;
2515 				break;
2516 			default:
2517 				WARN_ON(1);
2518 			}
2519 		}
2520 		spin_unlock(&locked_ref->lock);
2521 
2522 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 					  must_insert_reserved);
2524 
2525 		btrfs_free_delayed_extent_op(extent_op);
2526 		if (ret) {
2527 			locked_ref->processing = 0;
2528 			btrfs_delayed_ref_unlock(locked_ref);
2529 			btrfs_put_delayed_ref(ref);
2530 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 			return ret;
2532 		}
2533 
2534 		/*
2535 		 * If this node is a head, that means all the refs in this head
2536 		 * have been dealt with, and we will pick the next head to deal
2537 		 * with, so we must unlock the head and drop it from the cluster
2538 		 * list before we release it.
2539 		 */
2540 		if (btrfs_delayed_ref_is_head(ref)) {
2541 			btrfs_delayed_ref_unlock(locked_ref);
2542 			locked_ref = NULL;
2543 		}
2544 		btrfs_put_delayed_ref(ref);
2545 		count++;
2546 		cond_resched();
2547 	}
2548 
2549 	/*
2550 	 * We don't want to include ref heads since we can have empty ref heads
2551 	 * and those will drastically skew our runtime down since we just do
2552 	 * accounting, no actual extent tree updates.
2553 	 */
2554 	if (actual_count > 0) {
2555 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 		u64 avg;
2557 
2558 		/*
2559 		 * We weigh the current average higher than our current runtime
2560 		 * to avoid large swings in the average.
2561 		 */
2562 		spin_lock(&delayed_refs->lock);
2563 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 		avg = div64_u64(avg, 4);
2565 		fs_info->avg_delayed_ref_runtime = avg;
2566 		spin_unlock(&delayed_refs->lock);
2567 	}
2568 	return 0;
2569 }
2570 
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573  * Normally delayed refs get processed in ascending bytenr order. This
2574  * correlates in most cases to the order added. To expose dependencies on this
2575  * order, we start to process the tree in the middle instead of the beginning
2576  */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 	struct rb_node *n = root->rb_node;
2580 	struct btrfs_delayed_ref_node *entry;
2581 	int alt = 1;
2582 	u64 middle;
2583 	u64 first = 0, last = 0;
2584 
2585 	n = rb_first(root);
2586 	if (n) {
2587 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 		first = entry->bytenr;
2589 	}
2590 	n = rb_last(root);
2591 	if (n) {
2592 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 		last = entry->bytenr;
2594 	}
2595 	n = root->rb_node;
2596 
2597 	while (n) {
2598 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 		WARN_ON(!entry->in_tree);
2600 
2601 		middle = entry->bytenr;
2602 
2603 		if (alt)
2604 			n = n->rb_left;
2605 		else
2606 			n = n->rb_right;
2607 
2608 		alt = 1 - alt;
2609 	}
2610 	return middle;
2611 }
2612 #endif
2613 
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 	u64 num_bytes;
2617 
2618 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 			     sizeof(struct btrfs_extent_inline_ref));
2620 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622 
2623 	/*
2624 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 	 * closer to what we're really going to want to ouse.
2626 	 */
2627 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629 
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 				       struct btrfs_root *root)
2632 {
2633 	struct btrfs_block_rsv *global_rsv;
2634 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 	u64 num_bytes;
2636 	int ret = 0;
2637 
2638 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 	num_heads = heads_to_leaves(root, num_heads);
2640 	if (num_heads > 1)
2641 		num_bytes += (num_heads - 1) * root->nodesize;
2642 	num_bytes <<= 1;
2643 	global_rsv = &root->fs_info->global_block_rsv;
2644 
2645 	/*
2646 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 	 * wiggle room since running delayed refs can create more delayed refs.
2648 	 */
2649 	if (global_rsv->space_info->full)
2650 		num_bytes <<= 1;
2651 
2652 	spin_lock(&global_rsv->lock);
2653 	if (global_rsv->reserved <= num_bytes)
2654 		ret = 1;
2655 	spin_unlock(&global_rsv->lock);
2656 	return ret;
2657 }
2658 
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 				       struct btrfs_root *root)
2661 {
2662 	struct btrfs_fs_info *fs_info = root->fs_info;
2663 	u64 num_entries =
2664 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 	u64 avg_runtime;
2666 	u64 val;
2667 
2668 	smp_mb();
2669 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 	val = num_entries * avg_runtime;
2671 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 		return 1;
2673 	if (val >= NSEC_PER_SEC / 2)
2674 		return 2;
2675 
2676 	return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678 
2679 struct async_delayed_refs {
2680 	struct btrfs_root *root;
2681 	int count;
2682 	int error;
2683 	int sync;
2684 	struct completion wait;
2685 	struct btrfs_work work;
2686 };
2687 
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 	struct async_delayed_refs *async;
2691 	struct btrfs_trans_handle *trans;
2692 	int ret;
2693 
2694 	async = container_of(work, struct async_delayed_refs, work);
2695 
2696 	trans = btrfs_join_transaction(async->root);
2697 	if (IS_ERR(trans)) {
2698 		async->error = PTR_ERR(trans);
2699 		goto done;
2700 	}
2701 
2702 	/*
2703 	 * trans->sync means that when we call end_transaciton, we won't
2704 	 * wait on delayed refs
2705 	 */
2706 	trans->sync = true;
2707 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 	if (ret)
2709 		async->error = ret;
2710 
2711 	ret = btrfs_end_transaction(trans, async->root);
2712 	if (ret && !async->error)
2713 		async->error = ret;
2714 done:
2715 	if (async->sync)
2716 		complete(&async->wait);
2717 	else
2718 		kfree(async);
2719 }
2720 
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 				 unsigned long count, int wait)
2723 {
2724 	struct async_delayed_refs *async;
2725 	int ret;
2726 
2727 	async = kmalloc(sizeof(*async), GFP_NOFS);
2728 	if (!async)
2729 		return -ENOMEM;
2730 
2731 	async->root = root->fs_info->tree_root;
2732 	async->count = count;
2733 	async->error = 0;
2734 	if (wait)
2735 		async->sync = 1;
2736 	else
2737 		async->sync = 0;
2738 	init_completion(&async->wait);
2739 
2740 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 			delayed_ref_async_start, NULL, NULL);
2742 
2743 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744 
2745 	if (wait) {
2746 		wait_for_completion(&async->wait);
2747 		ret = async->error;
2748 		kfree(async);
2749 		return ret;
2750 	}
2751 	return 0;
2752 }
2753 
2754 /*
2755  * this starts processing the delayed reference count updates and
2756  * extent insertions we have queued up so far.  count can be
2757  * 0, which means to process everything in the tree at the start
2758  * of the run (but not newly added entries), or it can be some target
2759  * number you'd like to process.
2760  *
2761  * Returns 0 on success or if called with an aborted transaction
2762  * Returns <0 on error and aborts the transaction
2763  */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 			   struct btrfs_root *root, unsigned long count)
2766 {
2767 	struct rb_node *node;
2768 	struct btrfs_delayed_ref_root *delayed_refs;
2769 	struct btrfs_delayed_ref_head *head;
2770 	int ret;
2771 	int run_all = count == (unsigned long)-1;
2772 
2773 	/* We'll clean this up in btrfs_cleanup_transaction */
2774 	if (trans->aborted)
2775 		return 0;
2776 
2777 	if (root == root->fs_info->extent_root)
2778 		root = root->fs_info->tree_root;
2779 
2780 	delayed_refs = &trans->transaction->delayed_refs;
2781 	if (count == 0)
2782 		count = atomic_read(&delayed_refs->num_entries) * 2;
2783 
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 	ret = __btrfs_run_delayed_refs(trans, root, count);
2789 	if (ret < 0) {
2790 		btrfs_abort_transaction(trans, root, ret);
2791 		return ret;
2792 	}
2793 
2794 	if (run_all) {
2795 		if (!list_empty(&trans->new_bgs))
2796 			btrfs_create_pending_block_groups(trans, root);
2797 
2798 		spin_lock(&delayed_refs->lock);
2799 		node = rb_first(&delayed_refs->href_root);
2800 		if (!node) {
2801 			spin_unlock(&delayed_refs->lock);
2802 			goto out;
2803 		}
2804 		count = (unsigned long)-1;
2805 
2806 		while (node) {
2807 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 					href_node);
2809 			if (btrfs_delayed_ref_is_head(&head->node)) {
2810 				struct btrfs_delayed_ref_node *ref;
2811 
2812 				ref = &head->node;
2813 				atomic_inc(&ref->refs);
2814 
2815 				spin_unlock(&delayed_refs->lock);
2816 				/*
2817 				 * Mutex was contended, block until it's
2818 				 * released and try again
2819 				 */
2820 				mutex_lock(&head->mutex);
2821 				mutex_unlock(&head->mutex);
2822 
2823 				btrfs_put_delayed_ref(ref);
2824 				cond_resched();
2825 				goto again;
2826 			} else {
2827 				WARN_ON(1);
2828 			}
2829 			node = rb_next(node);
2830 		}
2831 		spin_unlock(&delayed_refs->lock);
2832 		cond_resched();
2833 		goto again;
2834 	}
2835 out:
2836 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 	if (ret)
2838 		return ret;
2839 	assert_qgroups_uptodate(trans);
2840 	return 0;
2841 }
2842 
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 				struct btrfs_root *root,
2845 				u64 bytenr, u64 num_bytes, u64 flags,
2846 				int level, int is_data)
2847 {
2848 	struct btrfs_delayed_extent_op *extent_op;
2849 	int ret;
2850 
2851 	extent_op = btrfs_alloc_delayed_extent_op();
2852 	if (!extent_op)
2853 		return -ENOMEM;
2854 
2855 	extent_op->flags_to_set = flags;
2856 	extent_op->update_flags = 1;
2857 	extent_op->update_key = 0;
2858 	extent_op->is_data = is_data ? 1 : 0;
2859 	extent_op->level = level;
2860 
2861 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 					  num_bytes, extent_op);
2863 	if (ret)
2864 		btrfs_free_delayed_extent_op(extent_op);
2865 	return ret;
2866 }
2867 
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 				      struct btrfs_root *root,
2870 				      struct btrfs_path *path,
2871 				      u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 	struct btrfs_delayed_ref_head *head;
2874 	struct btrfs_delayed_ref_node *ref;
2875 	struct btrfs_delayed_data_ref *data_ref;
2876 	struct btrfs_delayed_ref_root *delayed_refs;
2877 	struct rb_node *node;
2878 	int ret = 0;
2879 
2880 	delayed_refs = &trans->transaction->delayed_refs;
2881 	spin_lock(&delayed_refs->lock);
2882 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 	if (!head) {
2884 		spin_unlock(&delayed_refs->lock);
2885 		return 0;
2886 	}
2887 
2888 	if (!mutex_trylock(&head->mutex)) {
2889 		atomic_inc(&head->node.refs);
2890 		spin_unlock(&delayed_refs->lock);
2891 
2892 		btrfs_release_path(path);
2893 
2894 		/*
2895 		 * Mutex was contended, block until it's released and let
2896 		 * caller try again
2897 		 */
2898 		mutex_lock(&head->mutex);
2899 		mutex_unlock(&head->mutex);
2900 		btrfs_put_delayed_ref(&head->node);
2901 		return -EAGAIN;
2902 	}
2903 	spin_unlock(&delayed_refs->lock);
2904 
2905 	spin_lock(&head->lock);
2906 	node = rb_first(&head->ref_root);
2907 	while (node) {
2908 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 		node = rb_next(node);
2910 
2911 		/* If it's a shared ref we know a cross reference exists */
2912 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 			ret = 1;
2914 			break;
2915 		}
2916 
2917 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2918 
2919 		/*
2920 		 * If our ref doesn't match the one we're currently looking at
2921 		 * then we have a cross reference.
2922 		 */
2923 		if (data_ref->root != root->root_key.objectid ||
2924 		    data_ref->objectid != objectid ||
2925 		    data_ref->offset != offset) {
2926 			ret = 1;
2927 			break;
2928 		}
2929 	}
2930 	spin_unlock(&head->lock);
2931 	mutex_unlock(&head->mutex);
2932 	return ret;
2933 }
2934 
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 					struct btrfs_root *root,
2937 					struct btrfs_path *path,
2938 					u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 	struct extent_buffer *leaf;
2942 	struct btrfs_extent_data_ref *ref;
2943 	struct btrfs_extent_inline_ref *iref;
2944 	struct btrfs_extent_item *ei;
2945 	struct btrfs_key key;
2946 	u32 item_size;
2947 	int ret;
2948 
2949 	key.objectid = bytenr;
2950 	key.offset = (u64)-1;
2951 	key.type = BTRFS_EXTENT_ITEM_KEY;
2952 
2953 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 	if (ret < 0)
2955 		goto out;
2956 	BUG_ON(ret == 0); /* Corruption */
2957 
2958 	ret = -ENOENT;
2959 	if (path->slots[0] == 0)
2960 		goto out;
2961 
2962 	path->slots[0]--;
2963 	leaf = path->nodes[0];
2964 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965 
2966 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 		goto out;
2968 
2969 	ret = 1;
2970 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 	if (item_size < sizeof(*ei)) {
2973 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 		goto out;
2975 	}
2976 #endif
2977 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978 
2979 	if (item_size != sizeof(*ei) +
2980 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 		goto out;
2982 
2983 	if (btrfs_extent_generation(leaf, ei) <=
2984 	    btrfs_root_last_snapshot(&root->root_item))
2985 		goto out;
2986 
2987 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 	    BTRFS_EXTENT_DATA_REF_KEY)
2990 		goto out;
2991 
2992 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 	if (btrfs_extent_refs(leaf, ei) !=
2994 	    btrfs_extent_data_ref_count(leaf, ref) ||
2995 	    btrfs_extent_data_ref_root(leaf, ref) !=
2996 	    root->root_key.objectid ||
2997 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 		goto out;
3000 
3001 	ret = 0;
3002 out:
3003 	return ret;
3004 }
3005 
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 			  struct btrfs_root *root,
3008 			  u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 	struct btrfs_path *path;
3011 	int ret;
3012 	int ret2;
3013 
3014 	path = btrfs_alloc_path();
3015 	if (!path)
3016 		return -ENOENT;
3017 
3018 	do {
3019 		ret = check_committed_ref(trans, root, path, objectid,
3020 					  offset, bytenr);
3021 		if (ret && ret != -ENOENT)
3022 			goto out;
3023 
3024 		ret2 = check_delayed_ref(trans, root, path, objectid,
3025 					 offset, bytenr);
3026 	} while (ret2 == -EAGAIN);
3027 
3028 	if (ret2 && ret2 != -ENOENT) {
3029 		ret = ret2;
3030 		goto out;
3031 	}
3032 
3033 	if (ret != -ENOENT || ret2 != -ENOENT)
3034 		ret = 0;
3035 out:
3036 	btrfs_free_path(path);
3037 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 		WARN_ON(ret > 0);
3039 	return ret;
3040 }
3041 
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 			   struct btrfs_root *root,
3044 			   struct extent_buffer *buf,
3045 			   int full_backref, int inc)
3046 {
3047 	u64 bytenr;
3048 	u64 num_bytes;
3049 	u64 parent;
3050 	u64 ref_root;
3051 	u32 nritems;
3052 	struct btrfs_key key;
3053 	struct btrfs_file_extent_item *fi;
3054 	int i;
3055 	int level;
3056 	int ret = 0;
3057 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 			    u64, u64, u64, u64, u64, u64, int);
3059 
3060 
3061 	if (btrfs_test_is_dummy_root(root))
3062 		return 0;
3063 
3064 	ref_root = btrfs_header_owner(buf);
3065 	nritems = btrfs_header_nritems(buf);
3066 	level = btrfs_header_level(buf);
3067 
3068 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 		return 0;
3070 
3071 	if (inc)
3072 		process_func = btrfs_inc_extent_ref;
3073 	else
3074 		process_func = btrfs_free_extent;
3075 
3076 	if (full_backref)
3077 		parent = buf->start;
3078 	else
3079 		parent = 0;
3080 
3081 	for (i = 0; i < nritems; i++) {
3082 		if (level == 0) {
3083 			btrfs_item_key_to_cpu(buf, &key, i);
3084 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 				continue;
3086 			fi = btrfs_item_ptr(buf, i,
3087 					    struct btrfs_file_extent_item);
3088 			if (btrfs_file_extent_type(buf, fi) ==
3089 			    BTRFS_FILE_EXTENT_INLINE)
3090 				continue;
3091 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 			if (bytenr == 0)
3093 				continue;
3094 
3095 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 			key.offset -= btrfs_file_extent_offset(buf, fi);
3097 			ret = process_func(trans, root, bytenr, num_bytes,
3098 					   parent, ref_root, key.objectid,
3099 					   key.offset, 1);
3100 			if (ret)
3101 				goto fail;
3102 		} else {
3103 			bytenr = btrfs_node_blockptr(buf, i);
3104 			num_bytes = root->nodesize;
3105 			ret = process_func(trans, root, bytenr, num_bytes,
3106 					   parent, ref_root, level - 1, 0,
3107 					   1);
3108 			if (ret)
3109 				goto fail;
3110 		}
3111 	}
3112 	return 0;
3113 fail:
3114 	return ret;
3115 }
3116 
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 		  struct extent_buffer *buf, int full_backref)
3119 {
3120 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122 
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 		  struct extent_buffer *buf, int full_backref)
3125 {
3126 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128 
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 				 struct btrfs_root *root,
3131 				 struct btrfs_path *path,
3132 				 struct btrfs_block_group_cache *cache)
3133 {
3134 	int ret;
3135 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 	unsigned long bi;
3137 	struct extent_buffer *leaf;
3138 
3139 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 	if (ret) {
3141 		if (ret > 0)
3142 			ret = -ENOENT;
3143 		goto fail;
3144 	}
3145 
3146 	leaf = path->nodes[0];
3147 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 	btrfs_mark_buffer_dirty(leaf);
3150 	btrfs_release_path(path);
3151 fail:
3152 	if (ret)
3153 		btrfs_abort_transaction(trans, root, ret);
3154 	return ret;
3155 
3156 }
3157 
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 		 struct btrfs_block_group_cache *cache)
3161 {
3162 	struct rb_node *node;
3163 
3164 	spin_lock(&root->fs_info->block_group_cache_lock);
3165 
3166 	/* If our block group was removed, we need a full search. */
3167 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169 
3170 		spin_unlock(&root->fs_info->block_group_cache_lock);
3171 		btrfs_put_block_group(cache);
3172 		cache = btrfs_lookup_first_block_group(root->fs_info,
3173 						       next_bytenr);
3174 		return cache;
3175 	}
3176 	node = rb_next(&cache->cache_node);
3177 	btrfs_put_block_group(cache);
3178 	if (node) {
3179 		cache = rb_entry(node, struct btrfs_block_group_cache,
3180 				 cache_node);
3181 		btrfs_get_block_group(cache);
3182 	} else
3183 		cache = NULL;
3184 	spin_unlock(&root->fs_info->block_group_cache_lock);
3185 	return cache;
3186 }
3187 
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 			    struct btrfs_trans_handle *trans,
3190 			    struct btrfs_path *path)
3191 {
3192 	struct btrfs_root *root = block_group->fs_info->tree_root;
3193 	struct inode *inode = NULL;
3194 	u64 alloc_hint = 0;
3195 	int dcs = BTRFS_DC_ERROR;
3196 	int num_pages = 0;
3197 	int retries = 0;
3198 	int ret = 0;
3199 
3200 	/*
3201 	 * If this block group is smaller than 100 megs don't bother caching the
3202 	 * block group.
3203 	 */
3204 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 		spin_lock(&block_group->lock);
3206 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 		spin_unlock(&block_group->lock);
3208 		return 0;
3209 	}
3210 
3211 	if (trans->aborted)
3212 		return 0;
3213 again:
3214 	inode = lookup_free_space_inode(root, block_group, path);
3215 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 		ret = PTR_ERR(inode);
3217 		btrfs_release_path(path);
3218 		goto out;
3219 	}
3220 
3221 	if (IS_ERR(inode)) {
3222 		BUG_ON(retries);
3223 		retries++;
3224 
3225 		if (block_group->ro)
3226 			goto out_free;
3227 
3228 		ret = create_free_space_inode(root, trans, block_group, path);
3229 		if (ret)
3230 			goto out_free;
3231 		goto again;
3232 	}
3233 
3234 	/* We've already setup this transaction, go ahead and exit */
3235 	if (block_group->cache_generation == trans->transid &&
3236 	    i_size_read(inode)) {
3237 		dcs = BTRFS_DC_SETUP;
3238 		goto out_put;
3239 	}
3240 
3241 	/*
3242 	 * We want to set the generation to 0, that way if anything goes wrong
3243 	 * from here on out we know not to trust this cache when we load up next
3244 	 * time.
3245 	 */
3246 	BTRFS_I(inode)->generation = 0;
3247 	ret = btrfs_update_inode(trans, root, inode);
3248 	if (ret) {
3249 		/*
3250 		 * So theoretically we could recover from this, simply set the
3251 		 * super cache generation to 0 so we know to invalidate the
3252 		 * cache, but then we'd have to keep track of the block groups
3253 		 * that fail this way so we know we _have_ to reset this cache
3254 		 * before the next commit or risk reading stale cache.  So to
3255 		 * limit our exposure to horrible edge cases lets just abort the
3256 		 * transaction, this only happens in really bad situations
3257 		 * anyway.
3258 		 */
3259 		btrfs_abort_transaction(trans, root, ret);
3260 		goto out_put;
3261 	}
3262 	WARN_ON(ret);
3263 
3264 	if (i_size_read(inode) > 0) {
3265 		ret = btrfs_check_trunc_cache_free_space(root,
3266 					&root->fs_info->global_block_rsv);
3267 		if (ret)
3268 			goto out_put;
3269 
3270 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3271 		if (ret)
3272 			goto out_put;
3273 	}
3274 
3275 	spin_lock(&block_group->lock);
3276 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3277 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3278 	    block_group->delalloc_bytes) {
3279 		/*
3280 		 * don't bother trying to write stuff out _if_
3281 		 * a) we're not cached,
3282 		 * b) we're with nospace_cache mount option.
3283 		 */
3284 		dcs = BTRFS_DC_WRITTEN;
3285 		spin_unlock(&block_group->lock);
3286 		goto out_put;
3287 	}
3288 	spin_unlock(&block_group->lock);
3289 
3290 	/*
3291 	 * Try to preallocate enough space based on how big the block group is.
3292 	 * Keep in mind this has to include any pinned space which could end up
3293 	 * taking up quite a bit since it's not folded into the other space
3294 	 * cache.
3295 	 */
3296 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3297 	if (!num_pages)
3298 		num_pages = 1;
3299 
3300 	num_pages *= 16;
3301 	num_pages *= PAGE_CACHE_SIZE;
3302 
3303 	ret = btrfs_check_data_free_space(inode, num_pages);
3304 	if (ret)
3305 		goto out_put;
3306 
3307 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3308 					      num_pages, num_pages,
3309 					      &alloc_hint);
3310 	if (!ret)
3311 		dcs = BTRFS_DC_SETUP;
3312 	btrfs_free_reserved_data_space(inode, num_pages);
3313 
3314 out_put:
3315 	iput(inode);
3316 out_free:
3317 	btrfs_release_path(path);
3318 out:
3319 	spin_lock(&block_group->lock);
3320 	if (!ret && dcs == BTRFS_DC_SETUP)
3321 		block_group->cache_generation = trans->transid;
3322 	block_group->disk_cache_state = dcs;
3323 	spin_unlock(&block_group->lock);
3324 
3325 	return ret;
3326 }
3327 
3328 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3329 			    struct btrfs_root *root)
3330 {
3331 	struct btrfs_block_group_cache *cache, *tmp;
3332 	struct btrfs_transaction *cur_trans = trans->transaction;
3333 	struct btrfs_path *path;
3334 
3335 	if (list_empty(&cur_trans->dirty_bgs) ||
3336 	    !btrfs_test_opt(root, SPACE_CACHE))
3337 		return 0;
3338 
3339 	path = btrfs_alloc_path();
3340 	if (!path)
3341 		return -ENOMEM;
3342 
3343 	/* Could add new block groups, use _safe just in case */
3344 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3345 				 dirty_list) {
3346 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3347 			cache_save_setup(cache, trans, path);
3348 	}
3349 
3350 	btrfs_free_path(path);
3351 	return 0;
3352 }
3353 
3354 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3355 				   struct btrfs_root *root)
3356 {
3357 	struct btrfs_block_group_cache *cache;
3358 	struct btrfs_transaction *cur_trans = trans->transaction;
3359 	int ret = 0;
3360 	struct btrfs_path *path;
3361 
3362 	if (list_empty(&cur_trans->dirty_bgs))
3363 		return 0;
3364 
3365 	path = btrfs_alloc_path();
3366 	if (!path)
3367 		return -ENOMEM;
3368 
3369 	/*
3370 	 * We don't need the lock here since we are protected by the transaction
3371 	 * commit.  We want to do the cache_save_setup first and then run the
3372 	 * delayed refs to make sure we have the best chance at doing this all
3373 	 * in one shot.
3374 	 */
3375 	while (!list_empty(&cur_trans->dirty_bgs)) {
3376 		cache = list_first_entry(&cur_trans->dirty_bgs,
3377 					 struct btrfs_block_group_cache,
3378 					 dirty_list);
3379 		list_del_init(&cache->dirty_list);
3380 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3381 			cache_save_setup(cache, trans, path);
3382 		if (!ret)
3383 			ret = btrfs_run_delayed_refs(trans, root,
3384 						     (unsigned long) -1);
3385 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3386 			btrfs_write_out_cache(root, trans, cache, path);
3387 		if (!ret)
3388 			ret = write_one_cache_group(trans, root, path, cache);
3389 		btrfs_put_block_group(cache);
3390 	}
3391 
3392 	btrfs_free_path(path);
3393 	return ret;
3394 }
3395 
3396 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3397 {
3398 	struct btrfs_block_group_cache *block_group;
3399 	int readonly = 0;
3400 
3401 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3402 	if (!block_group || block_group->ro)
3403 		readonly = 1;
3404 	if (block_group)
3405 		btrfs_put_block_group(block_group);
3406 	return readonly;
3407 }
3408 
3409 static const char *alloc_name(u64 flags)
3410 {
3411 	switch (flags) {
3412 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3413 		return "mixed";
3414 	case BTRFS_BLOCK_GROUP_METADATA:
3415 		return "metadata";
3416 	case BTRFS_BLOCK_GROUP_DATA:
3417 		return "data";
3418 	case BTRFS_BLOCK_GROUP_SYSTEM:
3419 		return "system";
3420 	default:
3421 		WARN_ON(1);
3422 		return "invalid-combination";
3423 	};
3424 }
3425 
3426 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3427 			     u64 total_bytes, u64 bytes_used,
3428 			     struct btrfs_space_info **space_info)
3429 {
3430 	struct btrfs_space_info *found;
3431 	int i;
3432 	int factor;
3433 	int ret;
3434 
3435 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3436 		     BTRFS_BLOCK_GROUP_RAID10))
3437 		factor = 2;
3438 	else
3439 		factor = 1;
3440 
3441 	found = __find_space_info(info, flags);
3442 	if (found) {
3443 		spin_lock(&found->lock);
3444 		found->total_bytes += total_bytes;
3445 		found->disk_total += total_bytes * factor;
3446 		found->bytes_used += bytes_used;
3447 		found->disk_used += bytes_used * factor;
3448 		found->full = 0;
3449 		spin_unlock(&found->lock);
3450 		*space_info = found;
3451 		return 0;
3452 	}
3453 	found = kzalloc(sizeof(*found), GFP_NOFS);
3454 	if (!found)
3455 		return -ENOMEM;
3456 
3457 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3458 	if (ret) {
3459 		kfree(found);
3460 		return ret;
3461 	}
3462 
3463 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3464 		INIT_LIST_HEAD(&found->block_groups[i]);
3465 	init_rwsem(&found->groups_sem);
3466 	spin_lock_init(&found->lock);
3467 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3468 	found->total_bytes = total_bytes;
3469 	found->disk_total = total_bytes * factor;
3470 	found->bytes_used = bytes_used;
3471 	found->disk_used = bytes_used * factor;
3472 	found->bytes_pinned = 0;
3473 	found->bytes_reserved = 0;
3474 	found->bytes_readonly = 0;
3475 	found->bytes_may_use = 0;
3476 	found->full = 0;
3477 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3478 	found->chunk_alloc = 0;
3479 	found->flush = 0;
3480 	init_waitqueue_head(&found->wait);
3481 	INIT_LIST_HEAD(&found->ro_bgs);
3482 
3483 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3484 				    info->space_info_kobj, "%s",
3485 				    alloc_name(found->flags));
3486 	if (ret) {
3487 		kfree(found);
3488 		return ret;
3489 	}
3490 
3491 	*space_info = found;
3492 	list_add_rcu(&found->list, &info->space_info);
3493 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3494 		info->data_sinfo = found;
3495 
3496 	return ret;
3497 }
3498 
3499 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3500 {
3501 	u64 extra_flags = chunk_to_extended(flags) &
3502 				BTRFS_EXTENDED_PROFILE_MASK;
3503 
3504 	write_seqlock(&fs_info->profiles_lock);
3505 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3506 		fs_info->avail_data_alloc_bits |= extra_flags;
3507 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3508 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3509 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3510 		fs_info->avail_system_alloc_bits |= extra_flags;
3511 	write_sequnlock(&fs_info->profiles_lock);
3512 }
3513 
3514 /*
3515  * returns target flags in extended format or 0 if restripe for this
3516  * chunk_type is not in progress
3517  *
3518  * should be called with either volume_mutex or balance_lock held
3519  */
3520 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3521 {
3522 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3523 	u64 target = 0;
3524 
3525 	if (!bctl)
3526 		return 0;
3527 
3528 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3529 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3530 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3531 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3532 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3533 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3534 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3535 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3536 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3537 	}
3538 
3539 	return target;
3540 }
3541 
3542 /*
3543  * @flags: available profiles in extended format (see ctree.h)
3544  *
3545  * Returns reduced profile in chunk format.  If profile changing is in
3546  * progress (either running or paused) picks the target profile (if it's
3547  * already available), otherwise falls back to plain reducing.
3548  */
3549 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3550 {
3551 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3552 	u64 target;
3553 	u64 tmp;
3554 
3555 	/*
3556 	 * see if restripe for this chunk_type is in progress, if so
3557 	 * try to reduce to the target profile
3558 	 */
3559 	spin_lock(&root->fs_info->balance_lock);
3560 	target = get_restripe_target(root->fs_info, flags);
3561 	if (target) {
3562 		/* pick target profile only if it's already available */
3563 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3564 			spin_unlock(&root->fs_info->balance_lock);
3565 			return extended_to_chunk(target);
3566 		}
3567 	}
3568 	spin_unlock(&root->fs_info->balance_lock);
3569 
3570 	/* First, mask out the RAID levels which aren't possible */
3571 	if (num_devices == 1)
3572 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3573 			   BTRFS_BLOCK_GROUP_RAID5);
3574 	if (num_devices < 3)
3575 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3576 	if (num_devices < 4)
3577 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3578 
3579 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3580 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3581 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3582 	flags &= ~tmp;
3583 
3584 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3585 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3586 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3587 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3588 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3589 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3590 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3591 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3592 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3593 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3594 
3595 	return extended_to_chunk(flags | tmp);
3596 }
3597 
3598 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3599 {
3600 	unsigned seq;
3601 	u64 flags;
3602 
3603 	do {
3604 		flags = orig_flags;
3605 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3606 
3607 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3608 			flags |= root->fs_info->avail_data_alloc_bits;
3609 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3610 			flags |= root->fs_info->avail_system_alloc_bits;
3611 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3612 			flags |= root->fs_info->avail_metadata_alloc_bits;
3613 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3614 
3615 	return btrfs_reduce_alloc_profile(root, flags);
3616 }
3617 
3618 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3619 {
3620 	u64 flags;
3621 	u64 ret;
3622 
3623 	if (data)
3624 		flags = BTRFS_BLOCK_GROUP_DATA;
3625 	else if (root == root->fs_info->chunk_root)
3626 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3627 	else
3628 		flags = BTRFS_BLOCK_GROUP_METADATA;
3629 
3630 	ret = get_alloc_profile(root, flags);
3631 	return ret;
3632 }
3633 
3634 /*
3635  * This will check the space that the inode allocates from to make sure we have
3636  * enough space for bytes.
3637  */
3638 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3639 {
3640 	struct btrfs_space_info *data_sinfo;
3641 	struct btrfs_root *root = BTRFS_I(inode)->root;
3642 	struct btrfs_fs_info *fs_info = root->fs_info;
3643 	u64 used;
3644 	int ret = 0, committed = 0, alloc_chunk = 1;
3645 
3646 	/* make sure bytes are sectorsize aligned */
3647 	bytes = ALIGN(bytes, root->sectorsize);
3648 
3649 	if (btrfs_is_free_space_inode(inode)) {
3650 		committed = 1;
3651 		ASSERT(current->journal_info);
3652 	}
3653 
3654 	data_sinfo = fs_info->data_sinfo;
3655 	if (!data_sinfo)
3656 		goto alloc;
3657 
3658 again:
3659 	/* make sure we have enough space to handle the data first */
3660 	spin_lock(&data_sinfo->lock);
3661 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3662 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3663 		data_sinfo->bytes_may_use;
3664 
3665 	if (used + bytes > data_sinfo->total_bytes) {
3666 		struct btrfs_trans_handle *trans;
3667 
3668 		/*
3669 		 * if we don't have enough free bytes in this space then we need
3670 		 * to alloc a new chunk.
3671 		 */
3672 		if (!data_sinfo->full && alloc_chunk) {
3673 			u64 alloc_target;
3674 
3675 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3676 			spin_unlock(&data_sinfo->lock);
3677 alloc:
3678 			alloc_target = btrfs_get_alloc_profile(root, 1);
3679 			/*
3680 			 * It is ugly that we don't call nolock join
3681 			 * transaction for the free space inode case here.
3682 			 * But it is safe because we only do the data space
3683 			 * reservation for the free space cache in the
3684 			 * transaction context, the common join transaction
3685 			 * just increase the counter of the current transaction
3686 			 * handler, doesn't try to acquire the trans_lock of
3687 			 * the fs.
3688 			 */
3689 			trans = btrfs_join_transaction(root);
3690 			if (IS_ERR(trans))
3691 				return PTR_ERR(trans);
3692 
3693 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3694 					     alloc_target,
3695 					     CHUNK_ALLOC_NO_FORCE);
3696 			btrfs_end_transaction(trans, root);
3697 			if (ret < 0) {
3698 				if (ret != -ENOSPC)
3699 					return ret;
3700 				else
3701 					goto commit_trans;
3702 			}
3703 
3704 			if (!data_sinfo)
3705 				data_sinfo = fs_info->data_sinfo;
3706 
3707 			goto again;
3708 		}
3709 
3710 		/*
3711 		 * If we don't have enough pinned space to deal with this
3712 		 * allocation don't bother committing the transaction.
3713 		 */
3714 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3715 					   bytes) < 0)
3716 			committed = 1;
3717 		spin_unlock(&data_sinfo->lock);
3718 
3719 		/* commit the current transaction and try again */
3720 commit_trans:
3721 		if (!committed &&
3722 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3723 			committed = 1;
3724 
3725 			trans = btrfs_join_transaction(root);
3726 			if (IS_ERR(trans))
3727 				return PTR_ERR(trans);
3728 			ret = btrfs_commit_transaction(trans, root);
3729 			if (ret)
3730 				return ret;
3731 			goto again;
3732 		}
3733 
3734 		trace_btrfs_space_reservation(root->fs_info,
3735 					      "space_info:enospc",
3736 					      data_sinfo->flags, bytes, 1);
3737 		return -ENOSPC;
3738 	}
3739 	data_sinfo->bytes_may_use += bytes;
3740 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3741 				      data_sinfo->flags, bytes, 1);
3742 	spin_unlock(&data_sinfo->lock);
3743 
3744 	return 0;
3745 }
3746 
3747 /*
3748  * Called if we need to clear a data reservation for this inode.
3749  */
3750 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3751 {
3752 	struct btrfs_root *root = BTRFS_I(inode)->root;
3753 	struct btrfs_space_info *data_sinfo;
3754 
3755 	/* make sure bytes are sectorsize aligned */
3756 	bytes = ALIGN(bytes, root->sectorsize);
3757 
3758 	data_sinfo = root->fs_info->data_sinfo;
3759 	spin_lock(&data_sinfo->lock);
3760 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3761 	data_sinfo->bytes_may_use -= bytes;
3762 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3763 				      data_sinfo->flags, bytes, 0);
3764 	spin_unlock(&data_sinfo->lock);
3765 }
3766 
3767 static void force_metadata_allocation(struct btrfs_fs_info *info)
3768 {
3769 	struct list_head *head = &info->space_info;
3770 	struct btrfs_space_info *found;
3771 
3772 	rcu_read_lock();
3773 	list_for_each_entry_rcu(found, head, list) {
3774 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3775 			found->force_alloc = CHUNK_ALLOC_FORCE;
3776 	}
3777 	rcu_read_unlock();
3778 }
3779 
3780 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3781 {
3782 	return (global->size << 1);
3783 }
3784 
3785 static int should_alloc_chunk(struct btrfs_root *root,
3786 			      struct btrfs_space_info *sinfo, int force)
3787 {
3788 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3789 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3790 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3791 	u64 thresh;
3792 
3793 	if (force == CHUNK_ALLOC_FORCE)
3794 		return 1;
3795 
3796 	/*
3797 	 * We need to take into account the global rsv because for all intents
3798 	 * and purposes it's used space.  Don't worry about locking the
3799 	 * global_rsv, it doesn't change except when the transaction commits.
3800 	 */
3801 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3802 		num_allocated += calc_global_rsv_need_space(global_rsv);
3803 
3804 	/*
3805 	 * in limited mode, we want to have some free space up to
3806 	 * about 1% of the FS size.
3807 	 */
3808 	if (force == CHUNK_ALLOC_LIMITED) {
3809 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3810 		thresh = max_t(u64, 64 * 1024 * 1024,
3811 			       div_factor_fine(thresh, 1));
3812 
3813 		if (num_bytes - num_allocated < thresh)
3814 			return 1;
3815 	}
3816 
3817 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3818 		return 0;
3819 	return 1;
3820 }
3821 
3822 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3823 {
3824 	u64 num_dev;
3825 
3826 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3827 		    BTRFS_BLOCK_GROUP_RAID0 |
3828 		    BTRFS_BLOCK_GROUP_RAID5 |
3829 		    BTRFS_BLOCK_GROUP_RAID6))
3830 		num_dev = root->fs_info->fs_devices->rw_devices;
3831 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3832 		num_dev = 2;
3833 	else
3834 		num_dev = 1;	/* DUP or single */
3835 
3836 	/* metadata for updaing devices and chunk tree */
3837 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3838 }
3839 
3840 static void check_system_chunk(struct btrfs_trans_handle *trans,
3841 			       struct btrfs_root *root, u64 type)
3842 {
3843 	struct btrfs_space_info *info;
3844 	u64 left;
3845 	u64 thresh;
3846 
3847 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3848 	spin_lock(&info->lock);
3849 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3850 		info->bytes_reserved - info->bytes_readonly;
3851 	spin_unlock(&info->lock);
3852 
3853 	thresh = get_system_chunk_thresh(root, type);
3854 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3855 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3856 			left, thresh, type);
3857 		dump_space_info(info, 0, 0);
3858 	}
3859 
3860 	if (left < thresh) {
3861 		u64 flags;
3862 
3863 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3864 		btrfs_alloc_chunk(trans, root, flags);
3865 	}
3866 }
3867 
3868 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3869 			  struct btrfs_root *extent_root, u64 flags, int force)
3870 {
3871 	struct btrfs_space_info *space_info;
3872 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3873 	int wait_for_alloc = 0;
3874 	int ret = 0;
3875 
3876 	/* Don't re-enter if we're already allocating a chunk */
3877 	if (trans->allocating_chunk)
3878 		return -ENOSPC;
3879 
3880 	space_info = __find_space_info(extent_root->fs_info, flags);
3881 	if (!space_info) {
3882 		ret = update_space_info(extent_root->fs_info, flags,
3883 					0, 0, &space_info);
3884 		BUG_ON(ret); /* -ENOMEM */
3885 	}
3886 	BUG_ON(!space_info); /* Logic error */
3887 
3888 again:
3889 	spin_lock(&space_info->lock);
3890 	if (force < space_info->force_alloc)
3891 		force = space_info->force_alloc;
3892 	if (space_info->full) {
3893 		if (should_alloc_chunk(extent_root, space_info, force))
3894 			ret = -ENOSPC;
3895 		else
3896 			ret = 0;
3897 		spin_unlock(&space_info->lock);
3898 		return ret;
3899 	}
3900 
3901 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3902 		spin_unlock(&space_info->lock);
3903 		return 0;
3904 	} else if (space_info->chunk_alloc) {
3905 		wait_for_alloc = 1;
3906 	} else {
3907 		space_info->chunk_alloc = 1;
3908 	}
3909 
3910 	spin_unlock(&space_info->lock);
3911 
3912 	mutex_lock(&fs_info->chunk_mutex);
3913 
3914 	/*
3915 	 * The chunk_mutex is held throughout the entirety of a chunk
3916 	 * allocation, so once we've acquired the chunk_mutex we know that the
3917 	 * other guy is done and we need to recheck and see if we should
3918 	 * allocate.
3919 	 */
3920 	if (wait_for_alloc) {
3921 		mutex_unlock(&fs_info->chunk_mutex);
3922 		wait_for_alloc = 0;
3923 		goto again;
3924 	}
3925 
3926 	trans->allocating_chunk = true;
3927 
3928 	/*
3929 	 * If we have mixed data/metadata chunks we want to make sure we keep
3930 	 * allocating mixed chunks instead of individual chunks.
3931 	 */
3932 	if (btrfs_mixed_space_info(space_info))
3933 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3934 
3935 	/*
3936 	 * if we're doing a data chunk, go ahead and make sure that
3937 	 * we keep a reasonable number of metadata chunks allocated in the
3938 	 * FS as well.
3939 	 */
3940 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3941 		fs_info->data_chunk_allocations++;
3942 		if (!(fs_info->data_chunk_allocations %
3943 		      fs_info->metadata_ratio))
3944 			force_metadata_allocation(fs_info);
3945 	}
3946 
3947 	/*
3948 	 * Check if we have enough space in SYSTEM chunk because we may need
3949 	 * to update devices.
3950 	 */
3951 	check_system_chunk(trans, extent_root, flags);
3952 
3953 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3954 	trans->allocating_chunk = false;
3955 
3956 	spin_lock(&space_info->lock);
3957 	if (ret < 0 && ret != -ENOSPC)
3958 		goto out;
3959 	if (ret)
3960 		space_info->full = 1;
3961 	else
3962 		ret = 1;
3963 
3964 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3965 out:
3966 	space_info->chunk_alloc = 0;
3967 	spin_unlock(&space_info->lock);
3968 	mutex_unlock(&fs_info->chunk_mutex);
3969 	return ret;
3970 }
3971 
3972 static int can_overcommit(struct btrfs_root *root,
3973 			  struct btrfs_space_info *space_info, u64 bytes,
3974 			  enum btrfs_reserve_flush_enum flush)
3975 {
3976 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3977 	u64 profile = btrfs_get_alloc_profile(root, 0);
3978 	u64 space_size;
3979 	u64 avail;
3980 	u64 used;
3981 
3982 	used = space_info->bytes_used + space_info->bytes_reserved +
3983 		space_info->bytes_pinned + space_info->bytes_readonly;
3984 
3985 	/*
3986 	 * We only want to allow over committing if we have lots of actual space
3987 	 * free, but if we don't have enough space to handle the global reserve
3988 	 * space then we could end up having a real enospc problem when trying
3989 	 * to allocate a chunk or some other such important allocation.
3990 	 */
3991 	spin_lock(&global_rsv->lock);
3992 	space_size = calc_global_rsv_need_space(global_rsv);
3993 	spin_unlock(&global_rsv->lock);
3994 	if (used + space_size >= space_info->total_bytes)
3995 		return 0;
3996 
3997 	used += space_info->bytes_may_use;
3998 
3999 	spin_lock(&root->fs_info->free_chunk_lock);
4000 	avail = root->fs_info->free_chunk_space;
4001 	spin_unlock(&root->fs_info->free_chunk_lock);
4002 
4003 	/*
4004 	 * If we have dup, raid1 or raid10 then only half of the free
4005 	 * space is actually useable.  For raid56, the space info used
4006 	 * doesn't include the parity drive, so we don't have to
4007 	 * change the math
4008 	 */
4009 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4010 		       BTRFS_BLOCK_GROUP_RAID1 |
4011 		       BTRFS_BLOCK_GROUP_RAID10))
4012 		avail >>= 1;
4013 
4014 	/*
4015 	 * If we aren't flushing all things, let us overcommit up to
4016 	 * 1/2th of the space. If we can flush, don't let us overcommit
4017 	 * too much, let it overcommit up to 1/8 of the space.
4018 	 */
4019 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4020 		avail >>= 3;
4021 	else
4022 		avail >>= 1;
4023 
4024 	if (used + bytes < space_info->total_bytes + avail)
4025 		return 1;
4026 	return 0;
4027 }
4028 
4029 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4030 					 unsigned long nr_pages, int nr_items)
4031 {
4032 	struct super_block *sb = root->fs_info->sb;
4033 
4034 	if (down_read_trylock(&sb->s_umount)) {
4035 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4036 		up_read(&sb->s_umount);
4037 	} else {
4038 		/*
4039 		 * We needn't worry the filesystem going from r/w to r/o though
4040 		 * we don't acquire ->s_umount mutex, because the filesystem
4041 		 * should guarantee the delalloc inodes list be empty after
4042 		 * the filesystem is readonly(all dirty pages are written to
4043 		 * the disk).
4044 		 */
4045 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4046 		if (!current->journal_info)
4047 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4048 	}
4049 }
4050 
4051 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4052 {
4053 	u64 bytes;
4054 	int nr;
4055 
4056 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4057 	nr = (int)div64_u64(to_reclaim, bytes);
4058 	if (!nr)
4059 		nr = 1;
4060 	return nr;
4061 }
4062 
4063 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4064 
4065 /*
4066  * shrink metadata reservation for delalloc
4067  */
4068 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4069 			    bool wait_ordered)
4070 {
4071 	struct btrfs_block_rsv *block_rsv;
4072 	struct btrfs_space_info *space_info;
4073 	struct btrfs_trans_handle *trans;
4074 	u64 delalloc_bytes;
4075 	u64 max_reclaim;
4076 	long time_left;
4077 	unsigned long nr_pages;
4078 	int loops;
4079 	int items;
4080 	enum btrfs_reserve_flush_enum flush;
4081 
4082 	/* Calc the number of the pages we need flush for space reservation */
4083 	items = calc_reclaim_items_nr(root, to_reclaim);
4084 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4085 
4086 	trans = (struct btrfs_trans_handle *)current->journal_info;
4087 	block_rsv = &root->fs_info->delalloc_block_rsv;
4088 	space_info = block_rsv->space_info;
4089 
4090 	delalloc_bytes = percpu_counter_sum_positive(
4091 						&root->fs_info->delalloc_bytes);
4092 	if (delalloc_bytes == 0) {
4093 		if (trans)
4094 			return;
4095 		if (wait_ordered)
4096 			btrfs_wait_ordered_roots(root->fs_info, items);
4097 		return;
4098 	}
4099 
4100 	loops = 0;
4101 	while (delalloc_bytes && loops < 3) {
4102 		max_reclaim = min(delalloc_bytes, to_reclaim);
4103 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4104 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4105 		/*
4106 		 * We need to wait for the async pages to actually start before
4107 		 * we do anything.
4108 		 */
4109 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4110 		if (!max_reclaim)
4111 			goto skip_async;
4112 
4113 		if (max_reclaim <= nr_pages)
4114 			max_reclaim = 0;
4115 		else
4116 			max_reclaim -= nr_pages;
4117 
4118 		wait_event(root->fs_info->async_submit_wait,
4119 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4120 			   (int)max_reclaim);
4121 skip_async:
4122 		if (!trans)
4123 			flush = BTRFS_RESERVE_FLUSH_ALL;
4124 		else
4125 			flush = BTRFS_RESERVE_NO_FLUSH;
4126 		spin_lock(&space_info->lock);
4127 		if (can_overcommit(root, space_info, orig, flush)) {
4128 			spin_unlock(&space_info->lock);
4129 			break;
4130 		}
4131 		spin_unlock(&space_info->lock);
4132 
4133 		loops++;
4134 		if (wait_ordered && !trans) {
4135 			btrfs_wait_ordered_roots(root->fs_info, items);
4136 		} else {
4137 			time_left = schedule_timeout_killable(1);
4138 			if (time_left)
4139 				break;
4140 		}
4141 		delalloc_bytes = percpu_counter_sum_positive(
4142 						&root->fs_info->delalloc_bytes);
4143 	}
4144 }
4145 
4146 /**
4147  * maybe_commit_transaction - possibly commit the transaction if its ok to
4148  * @root - the root we're allocating for
4149  * @bytes - the number of bytes we want to reserve
4150  * @force - force the commit
4151  *
4152  * This will check to make sure that committing the transaction will actually
4153  * get us somewhere and then commit the transaction if it does.  Otherwise it
4154  * will return -ENOSPC.
4155  */
4156 static int may_commit_transaction(struct btrfs_root *root,
4157 				  struct btrfs_space_info *space_info,
4158 				  u64 bytes, int force)
4159 {
4160 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4161 	struct btrfs_trans_handle *trans;
4162 
4163 	trans = (struct btrfs_trans_handle *)current->journal_info;
4164 	if (trans)
4165 		return -EAGAIN;
4166 
4167 	if (force)
4168 		goto commit;
4169 
4170 	/* See if there is enough pinned space to make this reservation */
4171 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4172 				   bytes) >= 0)
4173 		goto commit;
4174 
4175 	/*
4176 	 * See if there is some space in the delayed insertion reservation for
4177 	 * this reservation.
4178 	 */
4179 	if (space_info != delayed_rsv->space_info)
4180 		return -ENOSPC;
4181 
4182 	spin_lock(&delayed_rsv->lock);
4183 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4184 				   bytes - delayed_rsv->size) >= 0) {
4185 		spin_unlock(&delayed_rsv->lock);
4186 		return -ENOSPC;
4187 	}
4188 	spin_unlock(&delayed_rsv->lock);
4189 
4190 commit:
4191 	trans = btrfs_join_transaction(root);
4192 	if (IS_ERR(trans))
4193 		return -ENOSPC;
4194 
4195 	return btrfs_commit_transaction(trans, root);
4196 }
4197 
4198 enum flush_state {
4199 	FLUSH_DELAYED_ITEMS_NR	=	1,
4200 	FLUSH_DELAYED_ITEMS	=	2,
4201 	FLUSH_DELALLOC		=	3,
4202 	FLUSH_DELALLOC_WAIT	=	4,
4203 	ALLOC_CHUNK		=	5,
4204 	COMMIT_TRANS		=	6,
4205 };
4206 
4207 static int flush_space(struct btrfs_root *root,
4208 		       struct btrfs_space_info *space_info, u64 num_bytes,
4209 		       u64 orig_bytes, int state)
4210 {
4211 	struct btrfs_trans_handle *trans;
4212 	int nr;
4213 	int ret = 0;
4214 
4215 	switch (state) {
4216 	case FLUSH_DELAYED_ITEMS_NR:
4217 	case FLUSH_DELAYED_ITEMS:
4218 		if (state == FLUSH_DELAYED_ITEMS_NR)
4219 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4220 		else
4221 			nr = -1;
4222 
4223 		trans = btrfs_join_transaction(root);
4224 		if (IS_ERR(trans)) {
4225 			ret = PTR_ERR(trans);
4226 			break;
4227 		}
4228 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4229 		btrfs_end_transaction(trans, root);
4230 		break;
4231 	case FLUSH_DELALLOC:
4232 	case FLUSH_DELALLOC_WAIT:
4233 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4234 				state == FLUSH_DELALLOC_WAIT);
4235 		break;
4236 	case ALLOC_CHUNK:
4237 		trans = btrfs_join_transaction(root);
4238 		if (IS_ERR(trans)) {
4239 			ret = PTR_ERR(trans);
4240 			break;
4241 		}
4242 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4243 				     btrfs_get_alloc_profile(root, 0),
4244 				     CHUNK_ALLOC_NO_FORCE);
4245 		btrfs_end_transaction(trans, root);
4246 		if (ret == -ENOSPC)
4247 			ret = 0;
4248 		break;
4249 	case COMMIT_TRANS:
4250 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4251 		break;
4252 	default:
4253 		ret = -ENOSPC;
4254 		break;
4255 	}
4256 
4257 	return ret;
4258 }
4259 
4260 static inline u64
4261 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4262 				 struct btrfs_space_info *space_info)
4263 {
4264 	u64 used;
4265 	u64 expected;
4266 	u64 to_reclaim;
4267 
4268 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4269 				16 * 1024 * 1024);
4270 	spin_lock(&space_info->lock);
4271 	if (can_overcommit(root, space_info, to_reclaim,
4272 			   BTRFS_RESERVE_FLUSH_ALL)) {
4273 		to_reclaim = 0;
4274 		goto out;
4275 	}
4276 
4277 	used = space_info->bytes_used + space_info->bytes_reserved +
4278 	       space_info->bytes_pinned + space_info->bytes_readonly +
4279 	       space_info->bytes_may_use;
4280 	if (can_overcommit(root, space_info, 1024 * 1024,
4281 			   BTRFS_RESERVE_FLUSH_ALL))
4282 		expected = div_factor_fine(space_info->total_bytes, 95);
4283 	else
4284 		expected = div_factor_fine(space_info->total_bytes, 90);
4285 
4286 	if (used > expected)
4287 		to_reclaim = used - expected;
4288 	else
4289 		to_reclaim = 0;
4290 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4291 				     space_info->bytes_reserved);
4292 out:
4293 	spin_unlock(&space_info->lock);
4294 
4295 	return to_reclaim;
4296 }
4297 
4298 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4299 					struct btrfs_fs_info *fs_info, u64 used)
4300 {
4301 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4302 		!btrfs_fs_closing(fs_info) &&
4303 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4304 }
4305 
4306 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4307 				       struct btrfs_fs_info *fs_info,
4308 				       int flush_state)
4309 {
4310 	u64 used;
4311 
4312 	spin_lock(&space_info->lock);
4313 	/*
4314 	 * We run out of space and have not got any free space via flush_space,
4315 	 * so don't bother doing async reclaim.
4316 	 */
4317 	if (flush_state > COMMIT_TRANS && space_info->full) {
4318 		spin_unlock(&space_info->lock);
4319 		return 0;
4320 	}
4321 
4322 	used = space_info->bytes_used + space_info->bytes_reserved +
4323 	       space_info->bytes_pinned + space_info->bytes_readonly +
4324 	       space_info->bytes_may_use;
4325 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4326 		spin_unlock(&space_info->lock);
4327 		return 1;
4328 	}
4329 	spin_unlock(&space_info->lock);
4330 
4331 	return 0;
4332 }
4333 
4334 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4335 {
4336 	struct btrfs_fs_info *fs_info;
4337 	struct btrfs_space_info *space_info;
4338 	u64 to_reclaim;
4339 	int flush_state;
4340 
4341 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4342 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4343 
4344 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4345 						      space_info);
4346 	if (!to_reclaim)
4347 		return;
4348 
4349 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4350 	do {
4351 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4352 			    to_reclaim, flush_state);
4353 		flush_state++;
4354 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4355 						 flush_state))
4356 			return;
4357 	} while (flush_state <= COMMIT_TRANS);
4358 
4359 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4360 		queue_work(system_unbound_wq, work);
4361 }
4362 
4363 void btrfs_init_async_reclaim_work(struct work_struct *work)
4364 {
4365 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4366 }
4367 
4368 /**
4369  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4370  * @root - the root we're allocating for
4371  * @block_rsv - the block_rsv we're allocating for
4372  * @orig_bytes - the number of bytes we want
4373  * @flush - whether or not we can flush to make our reservation
4374  *
4375  * This will reserve orgi_bytes number of bytes from the space info associated
4376  * with the block_rsv.  If there is not enough space it will make an attempt to
4377  * flush out space to make room.  It will do this by flushing delalloc if
4378  * possible or committing the transaction.  If flush is 0 then no attempts to
4379  * regain reservations will be made and this will fail if there is not enough
4380  * space already.
4381  */
4382 static int reserve_metadata_bytes(struct btrfs_root *root,
4383 				  struct btrfs_block_rsv *block_rsv,
4384 				  u64 orig_bytes,
4385 				  enum btrfs_reserve_flush_enum flush)
4386 {
4387 	struct btrfs_space_info *space_info = block_rsv->space_info;
4388 	u64 used;
4389 	u64 num_bytes = orig_bytes;
4390 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4391 	int ret = 0;
4392 	bool flushing = false;
4393 
4394 again:
4395 	ret = 0;
4396 	spin_lock(&space_info->lock);
4397 	/*
4398 	 * We only want to wait if somebody other than us is flushing and we
4399 	 * are actually allowed to flush all things.
4400 	 */
4401 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4402 	       space_info->flush) {
4403 		spin_unlock(&space_info->lock);
4404 		/*
4405 		 * If we have a trans handle we can't wait because the flusher
4406 		 * may have to commit the transaction, which would mean we would
4407 		 * deadlock since we are waiting for the flusher to finish, but
4408 		 * hold the current transaction open.
4409 		 */
4410 		if (current->journal_info)
4411 			return -EAGAIN;
4412 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4413 		/* Must have been killed, return */
4414 		if (ret)
4415 			return -EINTR;
4416 
4417 		spin_lock(&space_info->lock);
4418 	}
4419 
4420 	ret = -ENOSPC;
4421 	used = space_info->bytes_used + space_info->bytes_reserved +
4422 		space_info->bytes_pinned + space_info->bytes_readonly +
4423 		space_info->bytes_may_use;
4424 
4425 	/*
4426 	 * The idea here is that we've not already over-reserved the block group
4427 	 * then we can go ahead and save our reservation first and then start
4428 	 * flushing if we need to.  Otherwise if we've already overcommitted
4429 	 * lets start flushing stuff first and then come back and try to make
4430 	 * our reservation.
4431 	 */
4432 	if (used <= space_info->total_bytes) {
4433 		if (used + orig_bytes <= space_info->total_bytes) {
4434 			space_info->bytes_may_use += orig_bytes;
4435 			trace_btrfs_space_reservation(root->fs_info,
4436 				"space_info", space_info->flags, orig_bytes, 1);
4437 			ret = 0;
4438 		} else {
4439 			/*
4440 			 * Ok set num_bytes to orig_bytes since we aren't
4441 			 * overocmmitted, this way we only try and reclaim what
4442 			 * we need.
4443 			 */
4444 			num_bytes = orig_bytes;
4445 		}
4446 	} else {
4447 		/*
4448 		 * Ok we're over committed, set num_bytes to the overcommitted
4449 		 * amount plus the amount of bytes that we need for this
4450 		 * reservation.
4451 		 */
4452 		num_bytes = used - space_info->total_bytes +
4453 			(orig_bytes * 2);
4454 	}
4455 
4456 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4457 		space_info->bytes_may_use += orig_bytes;
4458 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4459 					      space_info->flags, orig_bytes,
4460 					      1);
4461 		ret = 0;
4462 	}
4463 
4464 	/*
4465 	 * Couldn't make our reservation, save our place so while we're trying
4466 	 * to reclaim space we can actually use it instead of somebody else
4467 	 * stealing it from us.
4468 	 *
4469 	 * We make the other tasks wait for the flush only when we can flush
4470 	 * all things.
4471 	 */
4472 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4473 		flushing = true;
4474 		space_info->flush = 1;
4475 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4476 		used += orig_bytes;
4477 		/*
4478 		 * We will do the space reservation dance during log replay,
4479 		 * which means we won't have fs_info->fs_root set, so don't do
4480 		 * the async reclaim as we will panic.
4481 		 */
4482 		if (!root->fs_info->log_root_recovering &&
4483 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4484 		    !work_busy(&root->fs_info->async_reclaim_work))
4485 			queue_work(system_unbound_wq,
4486 				   &root->fs_info->async_reclaim_work);
4487 	}
4488 	spin_unlock(&space_info->lock);
4489 
4490 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4491 		goto out;
4492 
4493 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4494 			  flush_state);
4495 	flush_state++;
4496 
4497 	/*
4498 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4499 	 * would happen. So skip delalloc flush.
4500 	 */
4501 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4502 	    (flush_state == FLUSH_DELALLOC ||
4503 	     flush_state == FLUSH_DELALLOC_WAIT))
4504 		flush_state = ALLOC_CHUNK;
4505 
4506 	if (!ret)
4507 		goto again;
4508 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4509 		 flush_state < COMMIT_TRANS)
4510 		goto again;
4511 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4512 		 flush_state <= COMMIT_TRANS)
4513 		goto again;
4514 
4515 out:
4516 	if (ret == -ENOSPC &&
4517 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4518 		struct btrfs_block_rsv *global_rsv =
4519 			&root->fs_info->global_block_rsv;
4520 
4521 		if (block_rsv != global_rsv &&
4522 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4523 			ret = 0;
4524 	}
4525 	if (ret == -ENOSPC)
4526 		trace_btrfs_space_reservation(root->fs_info,
4527 					      "space_info:enospc",
4528 					      space_info->flags, orig_bytes, 1);
4529 	if (flushing) {
4530 		spin_lock(&space_info->lock);
4531 		space_info->flush = 0;
4532 		wake_up_all(&space_info->wait);
4533 		spin_unlock(&space_info->lock);
4534 	}
4535 	return ret;
4536 }
4537 
4538 static struct btrfs_block_rsv *get_block_rsv(
4539 					const struct btrfs_trans_handle *trans,
4540 					const struct btrfs_root *root)
4541 {
4542 	struct btrfs_block_rsv *block_rsv = NULL;
4543 
4544 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4545 		block_rsv = trans->block_rsv;
4546 
4547 	if (root == root->fs_info->csum_root && trans->adding_csums)
4548 		block_rsv = trans->block_rsv;
4549 
4550 	if (root == root->fs_info->uuid_root)
4551 		block_rsv = trans->block_rsv;
4552 
4553 	if (!block_rsv)
4554 		block_rsv = root->block_rsv;
4555 
4556 	if (!block_rsv)
4557 		block_rsv = &root->fs_info->empty_block_rsv;
4558 
4559 	return block_rsv;
4560 }
4561 
4562 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4563 			       u64 num_bytes)
4564 {
4565 	int ret = -ENOSPC;
4566 	spin_lock(&block_rsv->lock);
4567 	if (block_rsv->reserved >= num_bytes) {
4568 		block_rsv->reserved -= num_bytes;
4569 		if (block_rsv->reserved < block_rsv->size)
4570 			block_rsv->full = 0;
4571 		ret = 0;
4572 	}
4573 	spin_unlock(&block_rsv->lock);
4574 	return ret;
4575 }
4576 
4577 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4578 				u64 num_bytes, int update_size)
4579 {
4580 	spin_lock(&block_rsv->lock);
4581 	block_rsv->reserved += num_bytes;
4582 	if (update_size)
4583 		block_rsv->size += num_bytes;
4584 	else if (block_rsv->reserved >= block_rsv->size)
4585 		block_rsv->full = 1;
4586 	spin_unlock(&block_rsv->lock);
4587 }
4588 
4589 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4590 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4591 			     int min_factor)
4592 {
4593 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4594 	u64 min_bytes;
4595 
4596 	if (global_rsv->space_info != dest->space_info)
4597 		return -ENOSPC;
4598 
4599 	spin_lock(&global_rsv->lock);
4600 	min_bytes = div_factor(global_rsv->size, min_factor);
4601 	if (global_rsv->reserved < min_bytes + num_bytes) {
4602 		spin_unlock(&global_rsv->lock);
4603 		return -ENOSPC;
4604 	}
4605 	global_rsv->reserved -= num_bytes;
4606 	if (global_rsv->reserved < global_rsv->size)
4607 		global_rsv->full = 0;
4608 	spin_unlock(&global_rsv->lock);
4609 
4610 	block_rsv_add_bytes(dest, num_bytes, 1);
4611 	return 0;
4612 }
4613 
4614 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4615 				    struct btrfs_block_rsv *block_rsv,
4616 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4617 {
4618 	struct btrfs_space_info *space_info = block_rsv->space_info;
4619 
4620 	spin_lock(&block_rsv->lock);
4621 	if (num_bytes == (u64)-1)
4622 		num_bytes = block_rsv->size;
4623 	block_rsv->size -= num_bytes;
4624 	if (block_rsv->reserved >= block_rsv->size) {
4625 		num_bytes = block_rsv->reserved - block_rsv->size;
4626 		block_rsv->reserved = block_rsv->size;
4627 		block_rsv->full = 1;
4628 	} else {
4629 		num_bytes = 0;
4630 	}
4631 	spin_unlock(&block_rsv->lock);
4632 
4633 	if (num_bytes > 0) {
4634 		if (dest) {
4635 			spin_lock(&dest->lock);
4636 			if (!dest->full) {
4637 				u64 bytes_to_add;
4638 
4639 				bytes_to_add = dest->size - dest->reserved;
4640 				bytes_to_add = min(num_bytes, bytes_to_add);
4641 				dest->reserved += bytes_to_add;
4642 				if (dest->reserved >= dest->size)
4643 					dest->full = 1;
4644 				num_bytes -= bytes_to_add;
4645 			}
4646 			spin_unlock(&dest->lock);
4647 		}
4648 		if (num_bytes) {
4649 			spin_lock(&space_info->lock);
4650 			space_info->bytes_may_use -= num_bytes;
4651 			trace_btrfs_space_reservation(fs_info, "space_info",
4652 					space_info->flags, num_bytes, 0);
4653 			spin_unlock(&space_info->lock);
4654 		}
4655 	}
4656 }
4657 
4658 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4659 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4660 {
4661 	int ret;
4662 
4663 	ret = block_rsv_use_bytes(src, num_bytes);
4664 	if (ret)
4665 		return ret;
4666 
4667 	block_rsv_add_bytes(dst, num_bytes, 1);
4668 	return 0;
4669 }
4670 
4671 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4672 {
4673 	memset(rsv, 0, sizeof(*rsv));
4674 	spin_lock_init(&rsv->lock);
4675 	rsv->type = type;
4676 }
4677 
4678 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4679 					      unsigned short type)
4680 {
4681 	struct btrfs_block_rsv *block_rsv;
4682 	struct btrfs_fs_info *fs_info = root->fs_info;
4683 
4684 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4685 	if (!block_rsv)
4686 		return NULL;
4687 
4688 	btrfs_init_block_rsv(block_rsv, type);
4689 	block_rsv->space_info = __find_space_info(fs_info,
4690 						  BTRFS_BLOCK_GROUP_METADATA);
4691 	return block_rsv;
4692 }
4693 
4694 void btrfs_free_block_rsv(struct btrfs_root *root,
4695 			  struct btrfs_block_rsv *rsv)
4696 {
4697 	if (!rsv)
4698 		return;
4699 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4700 	kfree(rsv);
4701 }
4702 
4703 int btrfs_block_rsv_add(struct btrfs_root *root,
4704 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4705 			enum btrfs_reserve_flush_enum flush)
4706 {
4707 	int ret;
4708 
4709 	if (num_bytes == 0)
4710 		return 0;
4711 
4712 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4713 	if (!ret) {
4714 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4715 		return 0;
4716 	}
4717 
4718 	return ret;
4719 }
4720 
4721 int btrfs_block_rsv_check(struct btrfs_root *root,
4722 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4723 {
4724 	u64 num_bytes = 0;
4725 	int ret = -ENOSPC;
4726 
4727 	if (!block_rsv)
4728 		return 0;
4729 
4730 	spin_lock(&block_rsv->lock);
4731 	num_bytes = div_factor(block_rsv->size, min_factor);
4732 	if (block_rsv->reserved >= num_bytes)
4733 		ret = 0;
4734 	spin_unlock(&block_rsv->lock);
4735 
4736 	return ret;
4737 }
4738 
4739 int btrfs_block_rsv_refill(struct btrfs_root *root,
4740 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4741 			   enum btrfs_reserve_flush_enum flush)
4742 {
4743 	u64 num_bytes = 0;
4744 	int ret = -ENOSPC;
4745 
4746 	if (!block_rsv)
4747 		return 0;
4748 
4749 	spin_lock(&block_rsv->lock);
4750 	num_bytes = min_reserved;
4751 	if (block_rsv->reserved >= num_bytes)
4752 		ret = 0;
4753 	else
4754 		num_bytes -= block_rsv->reserved;
4755 	spin_unlock(&block_rsv->lock);
4756 
4757 	if (!ret)
4758 		return 0;
4759 
4760 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4761 	if (!ret) {
4762 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4763 		return 0;
4764 	}
4765 
4766 	return ret;
4767 }
4768 
4769 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4770 			    struct btrfs_block_rsv *dst_rsv,
4771 			    u64 num_bytes)
4772 {
4773 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4774 }
4775 
4776 void btrfs_block_rsv_release(struct btrfs_root *root,
4777 			     struct btrfs_block_rsv *block_rsv,
4778 			     u64 num_bytes)
4779 {
4780 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4781 	if (global_rsv == block_rsv ||
4782 	    block_rsv->space_info != global_rsv->space_info)
4783 		global_rsv = NULL;
4784 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4785 				num_bytes);
4786 }
4787 
4788 /*
4789  * helper to calculate size of global block reservation.
4790  * the desired value is sum of space used by extent tree,
4791  * checksum tree and root tree
4792  */
4793 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4794 {
4795 	struct btrfs_space_info *sinfo;
4796 	u64 num_bytes;
4797 	u64 meta_used;
4798 	u64 data_used;
4799 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4800 
4801 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4802 	spin_lock(&sinfo->lock);
4803 	data_used = sinfo->bytes_used;
4804 	spin_unlock(&sinfo->lock);
4805 
4806 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4807 	spin_lock(&sinfo->lock);
4808 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4809 		data_used = 0;
4810 	meta_used = sinfo->bytes_used;
4811 	spin_unlock(&sinfo->lock);
4812 
4813 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4814 		    csum_size * 2;
4815 	num_bytes += div64_u64(data_used + meta_used, 50);
4816 
4817 	if (num_bytes * 3 > meta_used)
4818 		num_bytes = div64_u64(meta_used, 3);
4819 
4820 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4821 }
4822 
4823 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4824 {
4825 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4826 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4827 	u64 num_bytes;
4828 
4829 	num_bytes = calc_global_metadata_size(fs_info);
4830 
4831 	spin_lock(&sinfo->lock);
4832 	spin_lock(&block_rsv->lock);
4833 
4834 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4835 
4836 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4837 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4838 		    sinfo->bytes_may_use;
4839 
4840 	if (sinfo->total_bytes > num_bytes) {
4841 		num_bytes = sinfo->total_bytes - num_bytes;
4842 		block_rsv->reserved += num_bytes;
4843 		sinfo->bytes_may_use += num_bytes;
4844 		trace_btrfs_space_reservation(fs_info, "space_info",
4845 				      sinfo->flags, num_bytes, 1);
4846 	}
4847 
4848 	if (block_rsv->reserved >= block_rsv->size) {
4849 		num_bytes = block_rsv->reserved - block_rsv->size;
4850 		sinfo->bytes_may_use -= num_bytes;
4851 		trace_btrfs_space_reservation(fs_info, "space_info",
4852 				      sinfo->flags, num_bytes, 0);
4853 		block_rsv->reserved = block_rsv->size;
4854 		block_rsv->full = 1;
4855 	}
4856 
4857 	spin_unlock(&block_rsv->lock);
4858 	spin_unlock(&sinfo->lock);
4859 }
4860 
4861 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4862 {
4863 	struct btrfs_space_info *space_info;
4864 
4865 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4866 	fs_info->chunk_block_rsv.space_info = space_info;
4867 
4868 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4869 	fs_info->global_block_rsv.space_info = space_info;
4870 	fs_info->delalloc_block_rsv.space_info = space_info;
4871 	fs_info->trans_block_rsv.space_info = space_info;
4872 	fs_info->empty_block_rsv.space_info = space_info;
4873 	fs_info->delayed_block_rsv.space_info = space_info;
4874 
4875 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4876 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4877 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4878 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4879 	if (fs_info->quota_root)
4880 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4881 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4882 
4883 	update_global_block_rsv(fs_info);
4884 }
4885 
4886 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4887 {
4888 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4889 				(u64)-1);
4890 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4891 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4892 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4893 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4894 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4895 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4896 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4897 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4898 }
4899 
4900 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4901 				  struct btrfs_root *root)
4902 {
4903 	if (!trans->block_rsv)
4904 		return;
4905 
4906 	if (!trans->bytes_reserved)
4907 		return;
4908 
4909 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4910 				      trans->transid, trans->bytes_reserved, 0);
4911 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4912 	trans->bytes_reserved = 0;
4913 }
4914 
4915 /* Can only return 0 or -ENOSPC */
4916 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4917 				  struct inode *inode)
4918 {
4919 	struct btrfs_root *root = BTRFS_I(inode)->root;
4920 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4921 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4922 
4923 	/*
4924 	 * We need to hold space in order to delete our orphan item once we've
4925 	 * added it, so this takes the reservation so we can release it later
4926 	 * when we are truly done with the orphan item.
4927 	 */
4928 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4929 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4930 				      btrfs_ino(inode), num_bytes, 1);
4931 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4932 }
4933 
4934 void btrfs_orphan_release_metadata(struct inode *inode)
4935 {
4936 	struct btrfs_root *root = BTRFS_I(inode)->root;
4937 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4938 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4939 				      btrfs_ino(inode), num_bytes, 0);
4940 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4941 }
4942 
4943 /*
4944  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4945  * root: the root of the parent directory
4946  * rsv: block reservation
4947  * items: the number of items that we need do reservation
4948  * qgroup_reserved: used to return the reserved size in qgroup
4949  *
4950  * This function is used to reserve the space for snapshot/subvolume
4951  * creation and deletion. Those operations are different with the
4952  * common file/directory operations, they change two fs/file trees
4953  * and root tree, the number of items that the qgroup reserves is
4954  * different with the free space reservation. So we can not use
4955  * the space reseravtion mechanism in start_transaction().
4956  */
4957 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4958 				     struct btrfs_block_rsv *rsv,
4959 				     int items,
4960 				     u64 *qgroup_reserved,
4961 				     bool use_global_rsv)
4962 {
4963 	u64 num_bytes;
4964 	int ret;
4965 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4966 
4967 	if (root->fs_info->quota_enabled) {
4968 		/* One for parent inode, two for dir entries */
4969 		num_bytes = 3 * root->nodesize;
4970 		ret = btrfs_qgroup_reserve(root, num_bytes);
4971 		if (ret)
4972 			return ret;
4973 	} else {
4974 		num_bytes = 0;
4975 	}
4976 
4977 	*qgroup_reserved = num_bytes;
4978 
4979 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4980 	rsv->space_info = __find_space_info(root->fs_info,
4981 					    BTRFS_BLOCK_GROUP_METADATA);
4982 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4983 				  BTRFS_RESERVE_FLUSH_ALL);
4984 
4985 	if (ret == -ENOSPC && use_global_rsv)
4986 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4987 
4988 	if (ret) {
4989 		if (*qgroup_reserved)
4990 			btrfs_qgroup_free(root, *qgroup_reserved);
4991 	}
4992 
4993 	return ret;
4994 }
4995 
4996 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4997 				      struct btrfs_block_rsv *rsv,
4998 				      u64 qgroup_reserved)
4999 {
5000 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5001 	if (qgroup_reserved)
5002 		btrfs_qgroup_free(root, qgroup_reserved);
5003 }
5004 
5005 /**
5006  * drop_outstanding_extent - drop an outstanding extent
5007  * @inode: the inode we're dropping the extent for
5008  * @num_bytes: the number of bytes we're relaseing.
5009  *
5010  * This is called when we are freeing up an outstanding extent, either called
5011  * after an error or after an extent is written.  This will return the number of
5012  * reserved extents that need to be freed.  This must be called with
5013  * BTRFS_I(inode)->lock held.
5014  */
5015 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5016 {
5017 	unsigned drop_inode_space = 0;
5018 	unsigned dropped_extents = 0;
5019 	unsigned num_extents = 0;
5020 
5021 	num_extents = (unsigned)div64_u64(num_bytes +
5022 					  BTRFS_MAX_EXTENT_SIZE - 1,
5023 					  BTRFS_MAX_EXTENT_SIZE);
5024 	ASSERT(num_extents);
5025 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5026 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5027 
5028 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5029 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5030 			       &BTRFS_I(inode)->runtime_flags))
5031 		drop_inode_space = 1;
5032 
5033 	/*
5034 	 * If we have more or the same amount of outsanding extents than we have
5035 	 * reserved then we need to leave the reserved extents count alone.
5036 	 */
5037 	if (BTRFS_I(inode)->outstanding_extents >=
5038 	    BTRFS_I(inode)->reserved_extents)
5039 		return drop_inode_space;
5040 
5041 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5042 		BTRFS_I(inode)->outstanding_extents;
5043 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5044 	return dropped_extents + drop_inode_space;
5045 }
5046 
5047 /**
5048  * calc_csum_metadata_size - return the amount of metada space that must be
5049  *	reserved/free'd for the given bytes.
5050  * @inode: the inode we're manipulating
5051  * @num_bytes: the number of bytes in question
5052  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5053  *
5054  * This adjusts the number of csum_bytes in the inode and then returns the
5055  * correct amount of metadata that must either be reserved or freed.  We
5056  * calculate how many checksums we can fit into one leaf and then divide the
5057  * number of bytes that will need to be checksumed by this value to figure out
5058  * how many checksums will be required.  If we are adding bytes then the number
5059  * may go up and we will return the number of additional bytes that must be
5060  * reserved.  If it is going down we will return the number of bytes that must
5061  * be freed.
5062  *
5063  * This must be called with BTRFS_I(inode)->lock held.
5064  */
5065 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5066 				   int reserve)
5067 {
5068 	struct btrfs_root *root = BTRFS_I(inode)->root;
5069 	u64 csum_size;
5070 	int num_csums_per_leaf;
5071 	int num_csums;
5072 	int old_csums;
5073 
5074 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5075 	    BTRFS_I(inode)->csum_bytes == 0)
5076 		return 0;
5077 
5078 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5079 	if (reserve)
5080 		BTRFS_I(inode)->csum_bytes += num_bytes;
5081 	else
5082 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5083 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5084 	num_csums_per_leaf = (int)div64_u64(csum_size,
5085 					    sizeof(struct btrfs_csum_item) +
5086 					    sizeof(struct btrfs_disk_key));
5087 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5088 	num_csums = num_csums + num_csums_per_leaf - 1;
5089 	num_csums = num_csums / num_csums_per_leaf;
5090 
5091 	old_csums = old_csums + num_csums_per_leaf - 1;
5092 	old_csums = old_csums / num_csums_per_leaf;
5093 
5094 	/* No change, no need to reserve more */
5095 	if (old_csums == num_csums)
5096 		return 0;
5097 
5098 	if (reserve)
5099 		return btrfs_calc_trans_metadata_size(root,
5100 						      num_csums - old_csums);
5101 
5102 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5103 }
5104 
5105 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5106 {
5107 	struct btrfs_root *root = BTRFS_I(inode)->root;
5108 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5109 	u64 to_reserve = 0;
5110 	u64 csum_bytes;
5111 	unsigned nr_extents = 0;
5112 	int extra_reserve = 0;
5113 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5114 	int ret = 0;
5115 	bool delalloc_lock = true;
5116 	u64 to_free = 0;
5117 	unsigned dropped;
5118 
5119 	/* If we are a free space inode we need to not flush since we will be in
5120 	 * the middle of a transaction commit.  We also don't need the delalloc
5121 	 * mutex since we won't race with anybody.  We need this mostly to make
5122 	 * lockdep shut its filthy mouth.
5123 	 */
5124 	if (btrfs_is_free_space_inode(inode)) {
5125 		flush = BTRFS_RESERVE_NO_FLUSH;
5126 		delalloc_lock = false;
5127 	}
5128 
5129 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5130 	    btrfs_transaction_in_commit(root->fs_info))
5131 		schedule_timeout(1);
5132 
5133 	if (delalloc_lock)
5134 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5135 
5136 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5137 
5138 	spin_lock(&BTRFS_I(inode)->lock);
5139 	nr_extents = (unsigned)div64_u64(num_bytes +
5140 					 BTRFS_MAX_EXTENT_SIZE - 1,
5141 					 BTRFS_MAX_EXTENT_SIZE);
5142 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5143 	nr_extents = 0;
5144 
5145 	if (BTRFS_I(inode)->outstanding_extents >
5146 	    BTRFS_I(inode)->reserved_extents)
5147 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5148 			BTRFS_I(inode)->reserved_extents;
5149 
5150 	/*
5151 	 * Add an item to reserve for updating the inode when we complete the
5152 	 * delalloc io.
5153 	 */
5154 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5155 		      &BTRFS_I(inode)->runtime_flags)) {
5156 		nr_extents++;
5157 		extra_reserve = 1;
5158 	}
5159 
5160 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5161 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5162 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5163 	spin_unlock(&BTRFS_I(inode)->lock);
5164 
5165 	if (root->fs_info->quota_enabled) {
5166 		ret = btrfs_qgroup_reserve(root, num_bytes +
5167 					   nr_extents * root->nodesize);
5168 		if (ret)
5169 			goto out_fail;
5170 	}
5171 
5172 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5173 	if (unlikely(ret)) {
5174 		if (root->fs_info->quota_enabled)
5175 			btrfs_qgroup_free(root, num_bytes +
5176 						nr_extents * root->nodesize);
5177 		goto out_fail;
5178 	}
5179 
5180 	spin_lock(&BTRFS_I(inode)->lock);
5181 	if (extra_reserve) {
5182 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5183 			&BTRFS_I(inode)->runtime_flags);
5184 		nr_extents--;
5185 	}
5186 	BTRFS_I(inode)->reserved_extents += nr_extents;
5187 	spin_unlock(&BTRFS_I(inode)->lock);
5188 
5189 	if (delalloc_lock)
5190 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5191 
5192 	if (to_reserve)
5193 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5194 					      btrfs_ino(inode), to_reserve, 1);
5195 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5196 
5197 	return 0;
5198 
5199 out_fail:
5200 	spin_lock(&BTRFS_I(inode)->lock);
5201 	dropped = drop_outstanding_extent(inode, num_bytes);
5202 	/*
5203 	 * If the inodes csum_bytes is the same as the original
5204 	 * csum_bytes then we know we haven't raced with any free()ers
5205 	 * so we can just reduce our inodes csum bytes and carry on.
5206 	 */
5207 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5208 		calc_csum_metadata_size(inode, num_bytes, 0);
5209 	} else {
5210 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5211 		u64 bytes;
5212 
5213 		/*
5214 		 * This is tricky, but first we need to figure out how much we
5215 		 * free'd from any free-ers that occured during this
5216 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5217 		 * before we dropped our lock, and then call the free for the
5218 		 * number of bytes that were freed while we were trying our
5219 		 * reservation.
5220 		 */
5221 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5222 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5223 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5224 
5225 
5226 		/*
5227 		 * Now we need to see how much we would have freed had we not
5228 		 * been making this reservation and our ->csum_bytes were not
5229 		 * artificially inflated.
5230 		 */
5231 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5232 		bytes = csum_bytes - orig_csum_bytes;
5233 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5234 
5235 		/*
5236 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5237 		 * more than to_free then we would have free'd more space had we
5238 		 * not had an artificially high ->csum_bytes, so we need to free
5239 		 * the remainder.  If bytes is the same or less then we don't
5240 		 * need to do anything, the other free-ers did the correct
5241 		 * thing.
5242 		 */
5243 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5244 		if (bytes > to_free)
5245 			to_free = bytes - to_free;
5246 		else
5247 			to_free = 0;
5248 	}
5249 	spin_unlock(&BTRFS_I(inode)->lock);
5250 	if (dropped)
5251 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5252 
5253 	if (to_free) {
5254 		btrfs_block_rsv_release(root, block_rsv, to_free);
5255 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5256 					      btrfs_ino(inode), to_free, 0);
5257 	}
5258 	if (delalloc_lock)
5259 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5260 	return ret;
5261 }
5262 
5263 /**
5264  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5265  * @inode: the inode to release the reservation for
5266  * @num_bytes: the number of bytes we're releasing
5267  *
5268  * This will release the metadata reservation for an inode.  This can be called
5269  * once we complete IO for a given set of bytes to release their metadata
5270  * reservations.
5271  */
5272 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5273 {
5274 	struct btrfs_root *root = BTRFS_I(inode)->root;
5275 	u64 to_free = 0;
5276 	unsigned dropped;
5277 
5278 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5279 	spin_lock(&BTRFS_I(inode)->lock);
5280 	dropped = drop_outstanding_extent(inode, num_bytes);
5281 
5282 	if (num_bytes)
5283 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5284 	spin_unlock(&BTRFS_I(inode)->lock);
5285 	if (dropped > 0)
5286 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5287 
5288 	if (btrfs_test_is_dummy_root(root))
5289 		return;
5290 
5291 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5292 				      btrfs_ino(inode), to_free, 0);
5293 	if (root->fs_info->quota_enabled) {
5294 		btrfs_qgroup_free(root, num_bytes +
5295 					dropped * root->nodesize);
5296 	}
5297 
5298 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5299 				to_free);
5300 }
5301 
5302 /**
5303  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5304  * @inode: inode we're writing to
5305  * @num_bytes: the number of bytes we want to allocate
5306  *
5307  * This will do the following things
5308  *
5309  * o reserve space in the data space info for num_bytes
5310  * o reserve space in the metadata space info based on number of outstanding
5311  *   extents and how much csums will be needed
5312  * o add to the inodes ->delalloc_bytes
5313  * o add it to the fs_info's delalloc inodes list.
5314  *
5315  * This will return 0 for success and -ENOSPC if there is no space left.
5316  */
5317 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5318 {
5319 	int ret;
5320 
5321 	ret = btrfs_check_data_free_space(inode, num_bytes);
5322 	if (ret)
5323 		return ret;
5324 
5325 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5326 	if (ret) {
5327 		btrfs_free_reserved_data_space(inode, num_bytes);
5328 		return ret;
5329 	}
5330 
5331 	return 0;
5332 }
5333 
5334 /**
5335  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5336  * @inode: inode we're releasing space for
5337  * @num_bytes: the number of bytes we want to free up
5338  *
5339  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5340  * called in the case that we don't need the metadata AND data reservations
5341  * anymore.  So if there is an error or we insert an inline extent.
5342  *
5343  * This function will release the metadata space that was not used and will
5344  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5345  * list if there are no delalloc bytes left.
5346  */
5347 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5348 {
5349 	btrfs_delalloc_release_metadata(inode, num_bytes);
5350 	btrfs_free_reserved_data_space(inode, num_bytes);
5351 }
5352 
5353 static int update_block_group(struct btrfs_trans_handle *trans,
5354 			      struct btrfs_root *root, u64 bytenr,
5355 			      u64 num_bytes, int alloc)
5356 {
5357 	struct btrfs_block_group_cache *cache = NULL;
5358 	struct btrfs_fs_info *info = root->fs_info;
5359 	u64 total = num_bytes;
5360 	u64 old_val;
5361 	u64 byte_in_group;
5362 	int factor;
5363 
5364 	/* block accounting for super block */
5365 	spin_lock(&info->delalloc_root_lock);
5366 	old_val = btrfs_super_bytes_used(info->super_copy);
5367 	if (alloc)
5368 		old_val += num_bytes;
5369 	else
5370 		old_val -= num_bytes;
5371 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5372 	spin_unlock(&info->delalloc_root_lock);
5373 
5374 	while (total) {
5375 		cache = btrfs_lookup_block_group(info, bytenr);
5376 		if (!cache)
5377 			return -ENOENT;
5378 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5379 				    BTRFS_BLOCK_GROUP_RAID1 |
5380 				    BTRFS_BLOCK_GROUP_RAID10))
5381 			factor = 2;
5382 		else
5383 			factor = 1;
5384 		/*
5385 		 * If this block group has free space cache written out, we
5386 		 * need to make sure to load it if we are removing space.  This
5387 		 * is because we need the unpinning stage to actually add the
5388 		 * space back to the block group, otherwise we will leak space.
5389 		 */
5390 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5391 			cache_block_group(cache, 1);
5392 
5393 		spin_lock(&trans->transaction->dirty_bgs_lock);
5394 		if (list_empty(&cache->dirty_list)) {
5395 			list_add_tail(&cache->dirty_list,
5396 				      &trans->transaction->dirty_bgs);
5397 			btrfs_get_block_group(cache);
5398 		}
5399 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5400 
5401 		byte_in_group = bytenr - cache->key.objectid;
5402 		WARN_ON(byte_in_group > cache->key.offset);
5403 
5404 		spin_lock(&cache->space_info->lock);
5405 		spin_lock(&cache->lock);
5406 
5407 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5408 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5409 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5410 
5411 		old_val = btrfs_block_group_used(&cache->item);
5412 		num_bytes = min(total, cache->key.offset - byte_in_group);
5413 		if (alloc) {
5414 			old_val += num_bytes;
5415 			btrfs_set_block_group_used(&cache->item, old_val);
5416 			cache->reserved -= num_bytes;
5417 			cache->space_info->bytes_reserved -= num_bytes;
5418 			cache->space_info->bytes_used += num_bytes;
5419 			cache->space_info->disk_used += num_bytes * factor;
5420 			spin_unlock(&cache->lock);
5421 			spin_unlock(&cache->space_info->lock);
5422 		} else {
5423 			old_val -= num_bytes;
5424 			btrfs_set_block_group_used(&cache->item, old_val);
5425 			cache->pinned += num_bytes;
5426 			cache->space_info->bytes_pinned += num_bytes;
5427 			cache->space_info->bytes_used -= num_bytes;
5428 			cache->space_info->disk_used -= num_bytes * factor;
5429 			spin_unlock(&cache->lock);
5430 			spin_unlock(&cache->space_info->lock);
5431 
5432 			set_extent_dirty(info->pinned_extents,
5433 					 bytenr, bytenr + num_bytes - 1,
5434 					 GFP_NOFS | __GFP_NOFAIL);
5435 			/*
5436 			 * No longer have used bytes in this block group, queue
5437 			 * it for deletion.
5438 			 */
5439 			if (old_val == 0) {
5440 				spin_lock(&info->unused_bgs_lock);
5441 				if (list_empty(&cache->bg_list)) {
5442 					btrfs_get_block_group(cache);
5443 					list_add_tail(&cache->bg_list,
5444 						      &info->unused_bgs);
5445 				}
5446 				spin_unlock(&info->unused_bgs_lock);
5447 			}
5448 		}
5449 		btrfs_put_block_group(cache);
5450 		total -= num_bytes;
5451 		bytenr += num_bytes;
5452 	}
5453 	return 0;
5454 }
5455 
5456 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5457 {
5458 	struct btrfs_block_group_cache *cache;
5459 	u64 bytenr;
5460 
5461 	spin_lock(&root->fs_info->block_group_cache_lock);
5462 	bytenr = root->fs_info->first_logical_byte;
5463 	spin_unlock(&root->fs_info->block_group_cache_lock);
5464 
5465 	if (bytenr < (u64)-1)
5466 		return bytenr;
5467 
5468 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5469 	if (!cache)
5470 		return 0;
5471 
5472 	bytenr = cache->key.objectid;
5473 	btrfs_put_block_group(cache);
5474 
5475 	return bytenr;
5476 }
5477 
5478 static int pin_down_extent(struct btrfs_root *root,
5479 			   struct btrfs_block_group_cache *cache,
5480 			   u64 bytenr, u64 num_bytes, int reserved)
5481 {
5482 	spin_lock(&cache->space_info->lock);
5483 	spin_lock(&cache->lock);
5484 	cache->pinned += num_bytes;
5485 	cache->space_info->bytes_pinned += num_bytes;
5486 	if (reserved) {
5487 		cache->reserved -= num_bytes;
5488 		cache->space_info->bytes_reserved -= num_bytes;
5489 	}
5490 	spin_unlock(&cache->lock);
5491 	spin_unlock(&cache->space_info->lock);
5492 
5493 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5494 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5495 	if (reserved)
5496 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5497 	return 0;
5498 }
5499 
5500 /*
5501  * this function must be called within transaction
5502  */
5503 int btrfs_pin_extent(struct btrfs_root *root,
5504 		     u64 bytenr, u64 num_bytes, int reserved)
5505 {
5506 	struct btrfs_block_group_cache *cache;
5507 
5508 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5509 	BUG_ON(!cache); /* Logic error */
5510 
5511 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5512 
5513 	btrfs_put_block_group(cache);
5514 	return 0;
5515 }
5516 
5517 /*
5518  * this function must be called within transaction
5519  */
5520 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5521 				    u64 bytenr, u64 num_bytes)
5522 {
5523 	struct btrfs_block_group_cache *cache;
5524 	int ret;
5525 
5526 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5527 	if (!cache)
5528 		return -EINVAL;
5529 
5530 	/*
5531 	 * pull in the free space cache (if any) so that our pin
5532 	 * removes the free space from the cache.  We have load_only set
5533 	 * to one because the slow code to read in the free extents does check
5534 	 * the pinned extents.
5535 	 */
5536 	cache_block_group(cache, 1);
5537 
5538 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5539 
5540 	/* remove us from the free space cache (if we're there at all) */
5541 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5542 	btrfs_put_block_group(cache);
5543 	return ret;
5544 }
5545 
5546 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5547 {
5548 	int ret;
5549 	struct btrfs_block_group_cache *block_group;
5550 	struct btrfs_caching_control *caching_ctl;
5551 
5552 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5553 	if (!block_group)
5554 		return -EINVAL;
5555 
5556 	cache_block_group(block_group, 0);
5557 	caching_ctl = get_caching_control(block_group);
5558 
5559 	if (!caching_ctl) {
5560 		/* Logic error */
5561 		BUG_ON(!block_group_cache_done(block_group));
5562 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5563 	} else {
5564 		mutex_lock(&caching_ctl->mutex);
5565 
5566 		if (start >= caching_ctl->progress) {
5567 			ret = add_excluded_extent(root, start, num_bytes);
5568 		} else if (start + num_bytes <= caching_ctl->progress) {
5569 			ret = btrfs_remove_free_space(block_group,
5570 						      start, num_bytes);
5571 		} else {
5572 			num_bytes = caching_ctl->progress - start;
5573 			ret = btrfs_remove_free_space(block_group,
5574 						      start, num_bytes);
5575 			if (ret)
5576 				goto out_lock;
5577 
5578 			num_bytes = (start + num_bytes) -
5579 				caching_ctl->progress;
5580 			start = caching_ctl->progress;
5581 			ret = add_excluded_extent(root, start, num_bytes);
5582 		}
5583 out_lock:
5584 		mutex_unlock(&caching_ctl->mutex);
5585 		put_caching_control(caching_ctl);
5586 	}
5587 	btrfs_put_block_group(block_group);
5588 	return ret;
5589 }
5590 
5591 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5592 				 struct extent_buffer *eb)
5593 {
5594 	struct btrfs_file_extent_item *item;
5595 	struct btrfs_key key;
5596 	int found_type;
5597 	int i;
5598 
5599 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5600 		return 0;
5601 
5602 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5603 		btrfs_item_key_to_cpu(eb, &key, i);
5604 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5605 			continue;
5606 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5607 		found_type = btrfs_file_extent_type(eb, item);
5608 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5609 			continue;
5610 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5611 			continue;
5612 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5613 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5614 		__exclude_logged_extent(log, key.objectid, key.offset);
5615 	}
5616 
5617 	return 0;
5618 }
5619 
5620 /**
5621  * btrfs_update_reserved_bytes - update the block_group and space info counters
5622  * @cache:	The cache we are manipulating
5623  * @num_bytes:	The number of bytes in question
5624  * @reserve:	One of the reservation enums
5625  * @delalloc:   The blocks are allocated for the delalloc write
5626  *
5627  * This is called by the allocator when it reserves space, or by somebody who is
5628  * freeing space that was never actually used on disk.  For example if you
5629  * reserve some space for a new leaf in transaction A and before transaction A
5630  * commits you free that leaf, you call this with reserve set to 0 in order to
5631  * clear the reservation.
5632  *
5633  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5634  * ENOSPC accounting.  For data we handle the reservation through clearing the
5635  * delalloc bits in the io_tree.  We have to do this since we could end up
5636  * allocating less disk space for the amount of data we have reserved in the
5637  * case of compression.
5638  *
5639  * If this is a reservation and the block group has become read only we cannot
5640  * make the reservation and return -EAGAIN, otherwise this function always
5641  * succeeds.
5642  */
5643 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5644 				       u64 num_bytes, int reserve, int delalloc)
5645 {
5646 	struct btrfs_space_info *space_info = cache->space_info;
5647 	int ret = 0;
5648 
5649 	spin_lock(&space_info->lock);
5650 	spin_lock(&cache->lock);
5651 	if (reserve != RESERVE_FREE) {
5652 		if (cache->ro) {
5653 			ret = -EAGAIN;
5654 		} else {
5655 			cache->reserved += num_bytes;
5656 			space_info->bytes_reserved += num_bytes;
5657 			if (reserve == RESERVE_ALLOC) {
5658 				trace_btrfs_space_reservation(cache->fs_info,
5659 						"space_info", space_info->flags,
5660 						num_bytes, 0);
5661 				space_info->bytes_may_use -= num_bytes;
5662 			}
5663 
5664 			if (delalloc)
5665 				cache->delalloc_bytes += num_bytes;
5666 		}
5667 	} else {
5668 		if (cache->ro)
5669 			space_info->bytes_readonly += num_bytes;
5670 		cache->reserved -= num_bytes;
5671 		space_info->bytes_reserved -= num_bytes;
5672 
5673 		if (delalloc)
5674 			cache->delalloc_bytes -= num_bytes;
5675 	}
5676 	spin_unlock(&cache->lock);
5677 	spin_unlock(&space_info->lock);
5678 	return ret;
5679 }
5680 
5681 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5682 				struct btrfs_root *root)
5683 {
5684 	struct btrfs_fs_info *fs_info = root->fs_info;
5685 	struct btrfs_caching_control *next;
5686 	struct btrfs_caching_control *caching_ctl;
5687 	struct btrfs_block_group_cache *cache;
5688 
5689 	down_write(&fs_info->commit_root_sem);
5690 
5691 	list_for_each_entry_safe(caching_ctl, next,
5692 				 &fs_info->caching_block_groups, list) {
5693 		cache = caching_ctl->block_group;
5694 		if (block_group_cache_done(cache)) {
5695 			cache->last_byte_to_unpin = (u64)-1;
5696 			list_del_init(&caching_ctl->list);
5697 			put_caching_control(caching_ctl);
5698 		} else {
5699 			cache->last_byte_to_unpin = caching_ctl->progress;
5700 		}
5701 	}
5702 
5703 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5704 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5705 	else
5706 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5707 
5708 	up_write(&fs_info->commit_root_sem);
5709 
5710 	update_global_block_rsv(fs_info);
5711 }
5712 
5713 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5714 			      const bool return_free_space)
5715 {
5716 	struct btrfs_fs_info *fs_info = root->fs_info;
5717 	struct btrfs_block_group_cache *cache = NULL;
5718 	struct btrfs_space_info *space_info;
5719 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5720 	u64 len;
5721 	bool readonly;
5722 
5723 	while (start <= end) {
5724 		readonly = false;
5725 		if (!cache ||
5726 		    start >= cache->key.objectid + cache->key.offset) {
5727 			if (cache)
5728 				btrfs_put_block_group(cache);
5729 			cache = btrfs_lookup_block_group(fs_info, start);
5730 			BUG_ON(!cache); /* Logic error */
5731 		}
5732 
5733 		len = cache->key.objectid + cache->key.offset - start;
5734 		len = min(len, end + 1 - start);
5735 
5736 		if (start < cache->last_byte_to_unpin) {
5737 			len = min(len, cache->last_byte_to_unpin - start);
5738 			if (return_free_space)
5739 				btrfs_add_free_space(cache, start, len);
5740 		}
5741 
5742 		start += len;
5743 		space_info = cache->space_info;
5744 
5745 		spin_lock(&space_info->lock);
5746 		spin_lock(&cache->lock);
5747 		cache->pinned -= len;
5748 		space_info->bytes_pinned -= len;
5749 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5750 		if (cache->ro) {
5751 			space_info->bytes_readonly += len;
5752 			readonly = true;
5753 		}
5754 		spin_unlock(&cache->lock);
5755 		if (!readonly && global_rsv->space_info == space_info) {
5756 			spin_lock(&global_rsv->lock);
5757 			if (!global_rsv->full) {
5758 				len = min(len, global_rsv->size -
5759 					  global_rsv->reserved);
5760 				global_rsv->reserved += len;
5761 				space_info->bytes_may_use += len;
5762 				if (global_rsv->reserved >= global_rsv->size)
5763 					global_rsv->full = 1;
5764 			}
5765 			spin_unlock(&global_rsv->lock);
5766 		}
5767 		spin_unlock(&space_info->lock);
5768 	}
5769 
5770 	if (cache)
5771 		btrfs_put_block_group(cache);
5772 	return 0;
5773 }
5774 
5775 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5776 			       struct btrfs_root *root)
5777 {
5778 	struct btrfs_fs_info *fs_info = root->fs_info;
5779 	struct extent_io_tree *unpin;
5780 	u64 start;
5781 	u64 end;
5782 	int ret;
5783 
5784 	if (trans->aborted)
5785 		return 0;
5786 
5787 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5788 		unpin = &fs_info->freed_extents[1];
5789 	else
5790 		unpin = &fs_info->freed_extents[0];
5791 
5792 	while (1) {
5793 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5794 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5795 					    EXTENT_DIRTY, NULL);
5796 		if (ret) {
5797 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5798 			break;
5799 		}
5800 
5801 		if (btrfs_test_opt(root, DISCARD))
5802 			ret = btrfs_discard_extent(root, start,
5803 						   end + 1 - start, NULL);
5804 
5805 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5806 		unpin_extent_range(root, start, end, true);
5807 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5808 		cond_resched();
5809 	}
5810 
5811 	return 0;
5812 }
5813 
5814 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5815 			     u64 owner, u64 root_objectid)
5816 {
5817 	struct btrfs_space_info *space_info;
5818 	u64 flags;
5819 
5820 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5821 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5822 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5823 		else
5824 			flags = BTRFS_BLOCK_GROUP_METADATA;
5825 	} else {
5826 		flags = BTRFS_BLOCK_GROUP_DATA;
5827 	}
5828 
5829 	space_info = __find_space_info(fs_info, flags);
5830 	BUG_ON(!space_info); /* Logic bug */
5831 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5832 }
5833 
5834 
5835 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5836 				struct btrfs_root *root,
5837 				u64 bytenr, u64 num_bytes, u64 parent,
5838 				u64 root_objectid, u64 owner_objectid,
5839 				u64 owner_offset, int refs_to_drop,
5840 				struct btrfs_delayed_extent_op *extent_op,
5841 				int no_quota)
5842 {
5843 	struct btrfs_key key;
5844 	struct btrfs_path *path;
5845 	struct btrfs_fs_info *info = root->fs_info;
5846 	struct btrfs_root *extent_root = info->extent_root;
5847 	struct extent_buffer *leaf;
5848 	struct btrfs_extent_item *ei;
5849 	struct btrfs_extent_inline_ref *iref;
5850 	int ret;
5851 	int is_data;
5852 	int extent_slot = 0;
5853 	int found_extent = 0;
5854 	int num_to_del = 1;
5855 	u32 item_size;
5856 	u64 refs;
5857 	int last_ref = 0;
5858 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5859 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5860 						 SKINNY_METADATA);
5861 
5862 	if (!info->quota_enabled || !is_fstree(root_objectid))
5863 		no_quota = 1;
5864 
5865 	path = btrfs_alloc_path();
5866 	if (!path)
5867 		return -ENOMEM;
5868 
5869 	path->reada = 1;
5870 	path->leave_spinning = 1;
5871 
5872 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5873 	BUG_ON(!is_data && refs_to_drop != 1);
5874 
5875 	if (is_data)
5876 		skinny_metadata = 0;
5877 
5878 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5879 				    bytenr, num_bytes, parent,
5880 				    root_objectid, owner_objectid,
5881 				    owner_offset);
5882 	if (ret == 0) {
5883 		extent_slot = path->slots[0];
5884 		while (extent_slot >= 0) {
5885 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5886 					      extent_slot);
5887 			if (key.objectid != bytenr)
5888 				break;
5889 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5890 			    key.offset == num_bytes) {
5891 				found_extent = 1;
5892 				break;
5893 			}
5894 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5895 			    key.offset == owner_objectid) {
5896 				found_extent = 1;
5897 				break;
5898 			}
5899 			if (path->slots[0] - extent_slot > 5)
5900 				break;
5901 			extent_slot--;
5902 		}
5903 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5904 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5905 		if (found_extent && item_size < sizeof(*ei))
5906 			found_extent = 0;
5907 #endif
5908 		if (!found_extent) {
5909 			BUG_ON(iref);
5910 			ret = remove_extent_backref(trans, extent_root, path,
5911 						    NULL, refs_to_drop,
5912 						    is_data, &last_ref);
5913 			if (ret) {
5914 				btrfs_abort_transaction(trans, extent_root, ret);
5915 				goto out;
5916 			}
5917 			btrfs_release_path(path);
5918 			path->leave_spinning = 1;
5919 
5920 			key.objectid = bytenr;
5921 			key.type = BTRFS_EXTENT_ITEM_KEY;
5922 			key.offset = num_bytes;
5923 
5924 			if (!is_data && skinny_metadata) {
5925 				key.type = BTRFS_METADATA_ITEM_KEY;
5926 				key.offset = owner_objectid;
5927 			}
5928 
5929 			ret = btrfs_search_slot(trans, extent_root,
5930 						&key, path, -1, 1);
5931 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5932 				/*
5933 				 * Couldn't find our skinny metadata item,
5934 				 * see if we have ye olde extent item.
5935 				 */
5936 				path->slots[0]--;
5937 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5938 						      path->slots[0]);
5939 				if (key.objectid == bytenr &&
5940 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5941 				    key.offset == num_bytes)
5942 					ret = 0;
5943 			}
5944 
5945 			if (ret > 0 && skinny_metadata) {
5946 				skinny_metadata = false;
5947 				key.objectid = bytenr;
5948 				key.type = BTRFS_EXTENT_ITEM_KEY;
5949 				key.offset = num_bytes;
5950 				btrfs_release_path(path);
5951 				ret = btrfs_search_slot(trans, extent_root,
5952 							&key, path, -1, 1);
5953 			}
5954 
5955 			if (ret) {
5956 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5957 					ret, bytenr);
5958 				if (ret > 0)
5959 					btrfs_print_leaf(extent_root,
5960 							 path->nodes[0]);
5961 			}
5962 			if (ret < 0) {
5963 				btrfs_abort_transaction(trans, extent_root, ret);
5964 				goto out;
5965 			}
5966 			extent_slot = path->slots[0];
5967 		}
5968 	} else if (WARN_ON(ret == -ENOENT)) {
5969 		btrfs_print_leaf(extent_root, path->nodes[0]);
5970 		btrfs_err(info,
5971 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5972 			bytenr, parent, root_objectid, owner_objectid,
5973 			owner_offset);
5974 		btrfs_abort_transaction(trans, extent_root, ret);
5975 		goto out;
5976 	} else {
5977 		btrfs_abort_transaction(trans, extent_root, ret);
5978 		goto out;
5979 	}
5980 
5981 	leaf = path->nodes[0];
5982 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5983 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5984 	if (item_size < sizeof(*ei)) {
5985 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5986 		ret = convert_extent_item_v0(trans, extent_root, path,
5987 					     owner_objectid, 0);
5988 		if (ret < 0) {
5989 			btrfs_abort_transaction(trans, extent_root, ret);
5990 			goto out;
5991 		}
5992 
5993 		btrfs_release_path(path);
5994 		path->leave_spinning = 1;
5995 
5996 		key.objectid = bytenr;
5997 		key.type = BTRFS_EXTENT_ITEM_KEY;
5998 		key.offset = num_bytes;
5999 
6000 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6001 					-1, 1);
6002 		if (ret) {
6003 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6004 				ret, bytenr);
6005 			btrfs_print_leaf(extent_root, path->nodes[0]);
6006 		}
6007 		if (ret < 0) {
6008 			btrfs_abort_transaction(trans, extent_root, ret);
6009 			goto out;
6010 		}
6011 
6012 		extent_slot = path->slots[0];
6013 		leaf = path->nodes[0];
6014 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6015 	}
6016 #endif
6017 	BUG_ON(item_size < sizeof(*ei));
6018 	ei = btrfs_item_ptr(leaf, extent_slot,
6019 			    struct btrfs_extent_item);
6020 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6021 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6022 		struct btrfs_tree_block_info *bi;
6023 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6024 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6025 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6026 	}
6027 
6028 	refs = btrfs_extent_refs(leaf, ei);
6029 	if (refs < refs_to_drop) {
6030 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6031 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6032 		ret = -EINVAL;
6033 		btrfs_abort_transaction(trans, extent_root, ret);
6034 		goto out;
6035 	}
6036 	refs -= refs_to_drop;
6037 
6038 	if (refs > 0) {
6039 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6040 		if (extent_op)
6041 			__run_delayed_extent_op(extent_op, leaf, ei);
6042 		/*
6043 		 * In the case of inline back ref, reference count will
6044 		 * be updated by remove_extent_backref
6045 		 */
6046 		if (iref) {
6047 			BUG_ON(!found_extent);
6048 		} else {
6049 			btrfs_set_extent_refs(leaf, ei, refs);
6050 			btrfs_mark_buffer_dirty(leaf);
6051 		}
6052 		if (found_extent) {
6053 			ret = remove_extent_backref(trans, extent_root, path,
6054 						    iref, refs_to_drop,
6055 						    is_data, &last_ref);
6056 			if (ret) {
6057 				btrfs_abort_transaction(trans, extent_root, ret);
6058 				goto out;
6059 			}
6060 		}
6061 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6062 				 root_objectid);
6063 	} else {
6064 		if (found_extent) {
6065 			BUG_ON(is_data && refs_to_drop !=
6066 			       extent_data_ref_count(root, path, iref));
6067 			if (iref) {
6068 				BUG_ON(path->slots[0] != extent_slot);
6069 			} else {
6070 				BUG_ON(path->slots[0] != extent_slot + 1);
6071 				path->slots[0] = extent_slot;
6072 				num_to_del = 2;
6073 			}
6074 		}
6075 
6076 		last_ref = 1;
6077 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6078 				      num_to_del);
6079 		if (ret) {
6080 			btrfs_abort_transaction(trans, extent_root, ret);
6081 			goto out;
6082 		}
6083 		btrfs_release_path(path);
6084 
6085 		if (is_data) {
6086 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6087 			if (ret) {
6088 				btrfs_abort_transaction(trans, extent_root, ret);
6089 				goto out;
6090 			}
6091 		}
6092 
6093 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6094 		if (ret) {
6095 			btrfs_abort_transaction(trans, extent_root, ret);
6096 			goto out;
6097 		}
6098 	}
6099 	btrfs_release_path(path);
6100 
6101 	/* Deal with the quota accounting */
6102 	if (!ret && last_ref && !no_quota) {
6103 		int mod_seq = 0;
6104 
6105 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6106 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6107 			mod_seq = 1;
6108 
6109 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6110 					      bytenr, num_bytes, type,
6111 					      mod_seq);
6112 	}
6113 out:
6114 	btrfs_free_path(path);
6115 	return ret;
6116 }
6117 
6118 /*
6119  * when we free an block, it is possible (and likely) that we free the last
6120  * delayed ref for that extent as well.  This searches the delayed ref tree for
6121  * a given extent, and if there are no other delayed refs to be processed, it
6122  * removes it from the tree.
6123  */
6124 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6125 				      struct btrfs_root *root, u64 bytenr)
6126 {
6127 	struct btrfs_delayed_ref_head *head;
6128 	struct btrfs_delayed_ref_root *delayed_refs;
6129 	int ret = 0;
6130 
6131 	delayed_refs = &trans->transaction->delayed_refs;
6132 	spin_lock(&delayed_refs->lock);
6133 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6134 	if (!head)
6135 		goto out_delayed_unlock;
6136 
6137 	spin_lock(&head->lock);
6138 	if (rb_first(&head->ref_root))
6139 		goto out;
6140 
6141 	if (head->extent_op) {
6142 		if (!head->must_insert_reserved)
6143 			goto out;
6144 		btrfs_free_delayed_extent_op(head->extent_op);
6145 		head->extent_op = NULL;
6146 	}
6147 
6148 	/*
6149 	 * waiting for the lock here would deadlock.  If someone else has it
6150 	 * locked they are already in the process of dropping it anyway
6151 	 */
6152 	if (!mutex_trylock(&head->mutex))
6153 		goto out;
6154 
6155 	/*
6156 	 * at this point we have a head with no other entries.  Go
6157 	 * ahead and process it.
6158 	 */
6159 	head->node.in_tree = 0;
6160 	rb_erase(&head->href_node, &delayed_refs->href_root);
6161 
6162 	atomic_dec(&delayed_refs->num_entries);
6163 
6164 	/*
6165 	 * we don't take a ref on the node because we're removing it from the
6166 	 * tree, so we just steal the ref the tree was holding.
6167 	 */
6168 	delayed_refs->num_heads--;
6169 	if (head->processing == 0)
6170 		delayed_refs->num_heads_ready--;
6171 	head->processing = 0;
6172 	spin_unlock(&head->lock);
6173 	spin_unlock(&delayed_refs->lock);
6174 
6175 	BUG_ON(head->extent_op);
6176 	if (head->must_insert_reserved)
6177 		ret = 1;
6178 
6179 	mutex_unlock(&head->mutex);
6180 	btrfs_put_delayed_ref(&head->node);
6181 	return ret;
6182 out:
6183 	spin_unlock(&head->lock);
6184 
6185 out_delayed_unlock:
6186 	spin_unlock(&delayed_refs->lock);
6187 	return 0;
6188 }
6189 
6190 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6191 			   struct btrfs_root *root,
6192 			   struct extent_buffer *buf,
6193 			   u64 parent, int last_ref)
6194 {
6195 	int pin = 1;
6196 	int ret;
6197 
6198 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6199 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6200 					buf->start, buf->len,
6201 					parent, root->root_key.objectid,
6202 					btrfs_header_level(buf),
6203 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6204 		BUG_ON(ret); /* -ENOMEM */
6205 	}
6206 
6207 	if (!last_ref)
6208 		return;
6209 
6210 	if (btrfs_header_generation(buf) == trans->transid) {
6211 		struct btrfs_block_group_cache *cache;
6212 
6213 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6214 			ret = check_ref_cleanup(trans, root, buf->start);
6215 			if (!ret)
6216 				goto out;
6217 		}
6218 
6219 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6220 
6221 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6222 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6223 			btrfs_put_block_group(cache);
6224 			goto out;
6225 		}
6226 
6227 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6228 
6229 		btrfs_add_free_space(cache, buf->start, buf->len);
6230 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6231 		btrfs_put_block_group(cache);
6232 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6233 		pin = 0;
6234 	}
6235 out:
6236 	if (pin)
6237 		add_pinned_bytes(root->fs_info, buf->len,
6238 				 btrfs_header_level(buf),
6239 				 root->root_key.objectid);
6240 
6241 	/*
6242 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6243 	 * anymore.
6244 	 */
6245 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6246 }
6247 
6248 /* Can return -ENOMEM */
6249 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6250 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6251 		      u64 owner, u64 offset, int no_quota)
6252 {
6253 	int ret;
6254 	struct btrfs_fs_info *fs_info = root->fs_info;
6255 
6256 	if (btrfs_test_is_dummy_root(root))
6257 		return 0;
6258 
6259 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6260 
6261 	/*
6262 	 * tree log blocks never actually go into the extent allocation
6263 	 * tree, just update pinning info and exit early.
6264 	 */
6265 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6266 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6267 		/* unlocks the pinned mutex */
6268 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6269 		ret = 0;
6270 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6271 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6272 					num_bytes,
6273 					parent, root_objectid, (int)owner,
6274 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6275 	} else {
6276 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6277 						num_bytes,
6278 						parent, root_objectid, owner,
6279 						offset, BTRFS_DROP_DELAYED_REF,
6280 						NULL, no_quota);
6281 	}
6282 	return ret;
6283 }
6284 
6285 /*
6286  * when we wait for progress in the block group caching, its because
6287  * our allocation attempt failed at least once.  So, we must sleep
6288  * and let some progress happen before we try again.
6289  *
6290  * This function will sleep at least once waiting for new free space to
6291  * show up, and then it will check the block group free space numbers
6292  * for our min num_bytes.  Another option is to have it go ahead
6293  * and look in the rbtree for a free extent of a given size, but this
6294  * is a good start.
6295  *
6296  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6297  * any of the information in this block group.
6298  */
6299 static noinline void
6300 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6301 				u64 num_bytes)
6302 {
6303 	struct btrfs_caching_control *caching_ctl;
6304 
6305 	caching_ctl = get_caching_control(cache);
6306 	if (!caching_ctl)
6307 		return;
6308 
6309 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6310 		   (cache->free_space_ctl->free_space >= num_bytes));
6311 
6312 	put_caching_control(caching_ctl);
6313 }
6314 
6315 static noinline int
6316 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6317 {
6318 	struct btrfs_caching_control *caching_ctl;
6319 	int ret = 0;
6320 
6321 	caching_ctl = get_caching_control(cache);
6322 	if (!caching_ctl)
6323 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6324 
6325 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6326 	if (cache->cached == BTRFS_CACHE_ERROR)
6327 		ret = -EIO;
6328 	put_caching_control(caching_ctl);
6329 	return ret;
6330 }
6331 
6332 int __get_raid_index(u64 flags)
6333 {
6334 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6335 		return BTRFS_RAID_RAID10;
6336 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6337 		return BTRFS_RAID_RAID1;
6338 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6339 		return BTRFS_RAID_DUP;
6340 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6341 		return BTRFS_RAID_RAID0;
6342 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6343 		return BTRFS_RAID_RAID5;
6344 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6345 		return BTRFS_RAID_RAID6;
6346 
6347 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6348 }
6349 
6350 int get_block_group_index(struct btrfs_block_group_cache *cache)
6351 {
6352 	return __get_raid_index(cache->flags);
6353 }
6354 
6355 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6356 	[BTRFS_RAID_RAID10]	= "raid10",
6357 	[BTRFS_RAID_RAID1]	= "raid1",
6358 	[BTRFS_RAID_DUP]	= "dup",
6359 	[BTRFS_RAID_RAID0]	= "raid0",
6360 	[BTRFS_RAID_SINGLE]	= "single",
6361 	[BTRFS_RAID_RAID5]	= "raid5",
6362 	[BTRFS_RAID_RAID6]	= "raid6",
6363 };
6364 
6365 static const char *get_raid_name(enum btrfs_raid_types type)
6366 {
6367 	if (type >= BTRFS_NR_RAID_TYPES)
6368 		return NULL;
6369 
6370 	return btrfs_raid_type_names[type];
6371 }
6372 
6373 enum btrfs_loop_type {
6374 	LOOP_CACHING_NOWAIT = 0,
6375 	LOOP_CACHING_WAIT = 1,
6376 	LOOP_ALLOC_CHUNK = 2,
6377 	LOOP_NO_EMPTY_SIZE = 3,
6378 };
6379 
6380 static inline void
6381 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6382 		       int delalloc)
6383 {
6384 	if (delalloc)
6385 		down_read(&cache->data_rwsem);
6386 }
6387 
6388 static inline void
6389 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6390 		       int delalloc)
6391 {
6392 	btrfs_get_block_group(cache);
6393 	if (delalloc)
6394 		down_read(&cache->data_rwsem);
6395 }
6396 
6397 static struct btrfs_block_group_cache *
6398 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6399 		   struct btrfs_free_cluster *cluster,
6400 		   int delalloc)
6401 {
6402 	struct btrfs_block_group_cache *used_bg;
6403 	bool locked = false;
6404 again:
6405 	spin_lock(&cluster->refill_lock);
6406 	if (locked) {
6407 		if (used_bg == cluster->block_group)
6408 			return used_bg;
6409 
6410 		up_read(&used_bg->data_rwsem);
6411 		btrfs_put_block_group(used_bg);
6412 	}
6413 
6414 	used_bg = cluster->block_group;
6415 	if (!used_bg)
6416 		return NULL;
6417 
6418 	if (used_bg == block_group)
6419 		return used_bg;
6420 
6421 	btrfs_get_block_group(used_bg);
6422 
6423 	if (!delalloc)
6424 		return used_bg;
6425 
6426 	if (down_read_trylock(&used_bg->data_rwsem))
6427 		return used_bg;
6428 
6429 	spin_unlock(&cluster->refill_lock);
6430 	down_read(&used_bg->data_rwsem);
6431 	locked = true;
6432 	goto again;
6433 }
6434 
6435 static inline void
6436 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6437 			 int delalloc)
6438 {
6439 	if (delalloc)
6440 		up_read(&cache->data_rwsem);
6441 	btrfs_put_block_group(cache);
6442 }
6443 
6444 /*
6445  * walks the btree of allocated extents and find a hole of a given size.
6446  * The key ins is changed to record the hole:
6447  * ins->objectid == start position
6448  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6449  * ins->offset == the size of the hole.
6450  * Any available blocks before search_start are skipped.
6451  *
6452  * If there is no suitable free space, we will record the max size of
6453  * the free space extent currently.
6454  */
6455 static noinline int find_free_extent(struct btrfs_root *orig_root,
6456 				     u64 num_bytes, u64 empty_size,
6457 				     u64 hint_byte, struct btrfs_key *ins,
6458 				     u64 flags, int delalloc)
6459 {
6460 	int ret = 0;
6461 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6462 	struct btrfs_free_cluster *last_ptr = NULL;
6463 	struct btrfs_block_group_cache *block_group = NULL;
6464 	u64 search_start = 0;
6465 	u64 max_extent_size = 0;
6466 	int empty_cluster = 2 * 1024 * 1024;
6467 	struct btrfs_space_info *space_info;
6468 	int loop = 0;
6469 	int index = __get_raid_index(flags);
6470 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6471 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6472 	bool failed_cluster_refill = false;
6473 	bool failed_alloc = false;
6474 	bool use_cluster = true;
6475 	bool have_caching_bg = false;
6476 
6477 	WARN_ON(num_bytes < root->sectorsize);
6478 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6479 	ins->objectid = 0;
6480 	ins->offset = 0;
6481 
6482 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6483 
6484 	space_info = __find_space_info(root->fs_info, flags);
6485 	if (!space_info) {
6486 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6487 		return -ENOSPC;
6488 	}
6489 
6490 	/*
6491 	 * If the space info is for both data and metadata it means we have a
6492 	 * small filesystem and we can't use the clustering stuff.
6493 	 */
6494 	if (btrfs_mixed_space_info(space_info))
6495 		use_cluster = false;
6496 
6497 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6498 		last_ptr = &root->fs_info->meta_alloc_cluster;
6499 		if (!btrfs_test_opt(root, SSD))
6500 			empty_cluster = 64 * 1024;
6501 	}
6502 
6503 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6504 	    btrfs_test_opt(root, SSD)) {
6505 		last_ptr = &root->fs_info->data_alloc_cluster;
6506 	}
6507 
6508 	if (last_ptr) {
6509 		spin_lock(&last_ptr->lock);
6510 		if (last_ptr->block_group)
6511 			hint_byte = last_ptr->window_start;
6512 		spin_unlock(&last_ptr->lock);
6513 	}
6514 
6515 	search_start = max(search_start, first_logical_byte(root, 0));
6516 	search_start = max(search_start, hint_byte);
6517 
6518 	if (!last_ptr)
6519 		empty_cluster = 0;
6520 
6521 	if (search_start == hint_byte) {
6522 		block_group = btrfs_lookup_block_group(root->fs_info,
6523 						       search_start);
6524 		/*
6525 		 * we don't want to use the block group if it doesn't match our
6526 		 * allocation bits, or if its not cached.
6527 		 *
6528 		 * However if we are re-searching with an ideal block group
6529 		 * picked out then we don't care that the block group is cached.
6530 		 */
6531 		if (block_group && block_group_bits(block_group, flags) &&
6532 		    block_group->cached != BTRFS_CACHE_NO) {
6533 			down_read(&space_info->groups_sem);
6534 			if (list_empty(&block_group->list) ||
6535 			    block_group->ro) {
6536 				/*
6537 				 * someone is removing this block group,
6538 				 * we can't jump into the have_block_group
6539 				 * target because our list pointers are not
6540 				 * valid
6541 				 */
6542 				btrfs_put_block_group(block_group);
6543 				up_read(&space_info->groups_sem);
6544 			} else {
6545 				index = get_block_group_index(block_group);
6546 				btrfs_lock_block_group(block_group, delalloc);
6547 				goto have_block_group;
6548 			}
6549 		} else if (block_group) {
6550 			btrfs_put_block_group(block_group);
6551 		}
6552 	}
6553 search:
6554 	have_caching_bg = false;
6555 	down_read(&space_info->groups_sem);
6556 	list_for_each_entry(block_group, &space_info->block_groups[index],
6557 			    list) {
6558 		u64 offset;
6559 		int cached;
6560 
6561 		btrfs_grab_block_group(block_group, delalloc);
6562 		search_start = block_group->key.objectid;
6563 
6564 		/*
6565 		 * this can happen if we end up cycling through all the
6566 		 * raid types, but we want to make sure we only allocate
6567 		 * for the proper type.
6568 		 */
6569 		if (!block_group_bits(block_group, flags)) {
6570 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6571 				BTRFS_BLOCK_GROUP_RAID1 |
6572 				BTRFS_BLOCK_GROUP_RAID5 |
6573 				BTRFS_BLOCK_GROUP_RAID6 |
6574 				BTRFS_BLOCK_GROUP_RAID10;
6575 
6576 			/*
6577 			 * if they asked for extra copies and this block group
6578 			 * doesn't provide them, bail.  This does allow us to
6579 			 * fill raid0 from raid1.
6580 			 */
6581 			if ((flags & extra) && !(block_group->flags & extra))
6582 				goto loop;
6583 		}
6584 
6585 have_block_group:
6586 		cached = block_group_cache_done(block_group);
6587 		if (unlikely(!cached)) {
6588 			ret = cache_block_group(block_group, 0);
6589 			BUG_ON(ret < 0);
6590 			ret = 0;
6591 		}
6592 
6593 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6594 			goto loop;
6595 		if (unlikely(block_group->ro))
6596 			goto loop;
6597 
6598 		/*
6599 		 * Ok we want to try and use the cluster allocator, so
6600 		 * lets look there
6601 		 */
6602 		if (last_ptr) {
6603 			struct btrfs_block_group_cache *used_block_group;
6604 			unsigned long aligned_cluster;
6605 			/*
6606 			 * the refill lock keeps out other
6607 			 * people trying to start a new cluster
6608 			 */
6609 			used_block_group = btrfs_lock_cluster(block_group,
6610 							      last_ptr,
6611 							      delalloc);
6612 			if (!used_block_group)
6613 				goto refill_cluster;
6614 
6615 			if (used_block_group != block_group &&
6616 			    (used_block_group->ro ||
6617 			     !block_group_bits(used_block_group, flags)))
6618 				goto release_cluster;
6619 
6620 			offset = btrfs_alloc_from_cluster(used_block_group,
6621 						last_ptr,
6622 						num_bytes,
6623 						used_block_group->key.objectid,
6624 						&max_extent_size);
6625 			if (offset) {
6626 				/* we have a block, we're done */
6627 				spin_unlock(&last_ptr->refill_lock);
6628 				trace_btrfs_reserve_extent_cluster(root,
6629 						used_block_group,
6630 						search_start, num_bytes);
6631 				if (used_block_group != block_group) {
6632 					btrfs_release_block_group(block_group,
6633 								  delalloc);
6634 					block_group = used_block_group;
6635 				}
6636 				goto checks;
6637 			}
6638 
6639 			WARN_ON(last_ptr->block_group != used_block_group);
6640 release_cluster:
6641 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6642 			 * set up a new clusters, so lets just skip it
6643 			 * and let the allocator find whatever block
6644 			 * it can find.  If we reach this point, we
6645 			 * will have tried the cluster allocator
6646 			 * plenty of times and not have found
6647 			 * anything, so we are likely way too
6648 			 * fragmented for the clustering stuff to find
6649 			 * anything.
6650 			 *
6651 			 * However, if the cluster is taken from the
6652 			 * current block group, release the cluster
6653 			 * first, so that we stand a better chance of
6654 			 * succeeding in the unclustered
6655 			 * allocation.  */
6656 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6657 			    used_block_group != block_group) {
6658 				spin_unlock(&last_ptr->refill_lock);
6659 				btrfs_release_block_group(used_block_group,
6660 							  delalloc);
6661 				goto unclustered_alloc;
6662 			}
6663 
6664 			/*
6665 			 * this cluster didn't work out, free it and
6666 			 * start over
6667 			 */
6668 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6669 
6670 			if (used_block_group != block_group)
6671 				btrfs_release_block_group(used_block_group,
6672 							  delalloc);
6673 refill_cluster:
6674 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6675 				spin_unlock(&last_ptr->refill_lock);
6676 				goto unclustered_alloc;
6677 			}
6678 
6679 			aligned_cluster = max_t(unsigned long,
6680 						empty_cluster + empty_size,
6681 					      block_group->full_stripe_len);
6682 
6683 			/* allocate a cluster in this block group */
6684 			ret = btrfs_find_space_cluster(root, block_group,
6685 						       last_ptr, search_start,
6686 						       num_bytes,
6687 						       aligned_cluster);
6688 			if (ret == 0) {
6689 				/*
6690 				 * now pull our allocation out of this
6691 				 * cluster
6692 				 */
6693 				offset = btrfs_alloc_from_cluster(block_group,
6694 							last_ptr,
6695 							num_bytes,
6696 							search_start,
6697 							&max_extent_size);
6698 				if (offset) {
6699 					/* we found one, proceed */
6700 					spin_unlock(&last_ptr->refill_lock);
6701 					trace_btrfs_reserve_extent_cluster(root,
6702 						block_group, search_start,
6703 						num_bytes);
6704 					goto checks;
6705 				}
6706 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6707 				   && !failed_cluster_refill) {
6708 				spin_unlock(&last_ptr->refill_lock);
6709 
6710 				failed_cluster_refill = true;
6711 				wait_block_group_cache_progress(block_group,
6712 				       num_bytes + empty_cluster + empty_size);
6713 				goto have_block_group;
6714 			}
6715 
6716 			/*
6717 			 * at this point we either didn't find a cluster
6718 			 * or we weren't able to allocate a block from our
6719 			 * cluster.  Free the cluster we've been trying
6720 			 * to use, and go to the next block group
6721 			 */
6722 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6723 			spin_unlock(&last_ptr->refill_lock);
6724 			goto loop;
6725 		}
6726 
6727 unclustered_alloc:
6728 		spin_lock(&block_group->free_space_ctl->tree_lock);
6729 		if (cached &&
6730 		    block_group->free_space_ctl->free_space <
6731 		    num_bytes + empty_cluster + empty_size) {
6732 			if (block_group->free_space_ctl->free_space >
6733 			    max_extent_size)
6734 				max_extent_size =
6735 					block_group->free_space_ctl->free_space;
6736 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6737 			goto loop;
6738 		}
6739 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6740 
6741 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6742 						    num_bytes, empty_size,
6743 						    &max_extent_size);
6744 		/*
6745 		 * If we didn't find a chunk, and we haven't failed on this
6746 		 * block group before, and this block group is in the middle of
6747 		 * caching and we are ok with waiting, then go ahead and wait
6748 		 * for progress to be made, and set failed_alloc to true.
6749 		 *
6750 		 * If failed_alloc is true then we've already waited on this
6751 		 * block group once and should move on to the next block group.
6752 		 */
6753 		if (!offset && !failed_alloc && !cached &&
6754 		    loop > LOOP_CACHING_NOWAIT) {
6755 			wait_block_group_cache_progress(block_group,
6756 						num_bytes + empty_size);
6757 			failed_alloc = true;
6758 			goto have_block_group;
6759 		} else if (!offset) {
6760 			if (!cached)
6761 				have_caching_bg = true;
6762 			goto loop;
6763 		}
6764 checks:
6765 		search_start = ALIGN(offset, root->stripesize);
6766 
6767 		/* move on to the next group */
6768 		if (search_start + num_bytes >
6769 		    block_group->key.objectid + block_group->key.offset) {
6770 			btrfs_add_free_space(block_group, offset, num_bytes);
6771 			goto loop;
6772 		}
6773 
6774 		if (offset < search_start)
6775 			btrfs_add_free_space(block_group, offset,
6776 					     search_start - offset);
6777 		BUG_ON(offset > search_start);
6778 
6779 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6780 						  alloc_type, delalloc);
6781 		if (ret == -EAGAIN) {
6782 			btrfs_add_free_space(block_group, offset, num_bytes);
6783 			goto loop;
6784 		}
6785 
6786 		/* we are all good, lets return */
6787 		ins->objectid = search_start;
6788 		ins->offset = num_bytes;
6789 
6790 		trace_btrfs_reserve_extent(orig_root, block_group,
6791 					   search_start, num_bytes);
6792 		btrfs_release_block_group(block_group, delalloc);
6793 		break;
6794 loop:
6795 		failed_cluster_refill = false;
6796 		failed_alloc = false;
6797 		BUG_ON(index != get_block_group_index(block_group));
6798 		btrfs_release_block_group(block_group, delalloc);
6799 	}
6800 	up_read(&space_info->groups_sem);
6801 
6802 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6803 		goto search;
6804 
6805 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6806 		goto search;
6807 
6808 	/*
6809 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6810 	 *			caching kthreads as we move along
6811 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6812 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6813 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6814 	 *			again
6815 	 */
6816 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6817 		index = 0;
6818 		loop++;
6819 		if (loop == LOOP_ALLOC_CHUNK) {
6820 			struct btrfs_trans_handle *trans;
6821 			int exist = 0;
6822 
6823 			trans = current->journal_info;
6824 			if (trans)
6825 				exist = 1;
6826 			else
6827 				trans = btrfs_join_transaction(root);
6828 
6829 			if (IS_ERR(trans)) {
6830 				ret = PTR_ERR(trans);
6831 				goto out;
6832 			}
6833 
6834 			ret = do_chunk_alloc(trans, root, flags,
6835 					     CHUNK_ALLOC_FORCE);
6836 			/*
6837 			 * Do not bail out on ENOSPC since we
6838 			 * can do more things.
6839 			 */
6840 			if (ret < 0 && ret != -ENOSPC)
6841 				btrfs_abort_transaction(trans,
6842 							root, ret);
6843 			else
6844 				ret = 0;
6845 			if (!exist)
6846 				btrfs_end_transaction(trans, root);
6847 			if (ret)
6848 				goto out;
6849 		}
6850 
6851 		if (loop == LOOP_NO_EMPTY_SIZE) {
6852 			empty_size = 0;
6853 			empty_cluster = 0;
6854 		}
6855 
6856 		goto search;
6857 	} else if (!ins->objectid) {
6858 		ret = -ENOSPC;
6859 	} else if (ins->objectid) {
6860 		ret = 0;
6861 	}
6862 out:
6863 	if (ret == -ENOSPC)
6864 		ins->offset = max_extent_size;
6865 	return ret;
6866 }
6867 
6868 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6869 			    int dump_block_groups)
6870 {
6871 	struct btrfs_block_group_cache *cache;
6872 	int index = 0;
6873 
6874 	spin_lock(&info->lock);
6875 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6876 	       info->flags,
6877 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6878 	       info->bytes_reserved - info->bytes_readonly,
6879 	       (info->full) ? "" : "not ");
6880 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6881 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6882 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6883 	       info->bytes_reserved, info->bytes_may_use,
6884 	       info->bytes_readonly);
6885 	spin_unlock(&info->lock);
6886 
6887 	if (!dump_block_groups)
6888 		return;
6889 
6890 	down_read(&info->groups_sem);
6891 again:
6892 	list_for_each_entry(cache, &info->block_groups[index], list) {
6893 		spin_lock(&cache->lock);
6894 		printk(KERN_INFO "BTRFS: "
6895 			   "block group %llu has %llu bytes, "
6896 			   "%llu used %llu pinned %llu reserved %s\n",
6897 		       cache->key.objectid, cache->key.offset,
6898 		       btrfs_block_group_used(&cache->item), cache->pinned,
6899 		       cache->reserved, cache->ro ? "[readonly]" : "");
6900 		btrfs_dump_free_space(cache, bytes);
6901 		spin_unlock(&cache->lock);
6902 	}
6903 	if (++index < BTRFS_NR_RAID_TYPES)
6904 		goto again;
6905 	up_read(&info->groups_sem);
6906 }
6907 
6908 int btrfs_reserve_extent(struct btrfs_root *root,
6909 			 u64 num_bytes, u64 min_alloc_size,
6910 			 u64 empty_size, u64 hint_byte,
6911 			 struct btrfs_key *ins, int is_data, int delalloc)
6912 {
6913 	bool final_tried = false;
6914 	u64 flags;
6915 	int ret;
6916 
6917 	flags = btrfs_get_alloc_profile(root, is_data);
6918 again:
6919 	WARN_ON(num_bytes < root->sectorsize);
6920 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6921 			       flags, delalloc);
6922 
6923 	if (ret == -ENOSPC) {
6924 		if (!final_tried && ins->offset) {
6925 			num_bytes = min(num_bytes >> 1, ins->offset);
6926 			num_bytes = round_down(num_bytes, root->sectorsize);
6927 			num_bytes = max(num_bytes, min_alloc_size);
6928 			if (num_bytes == min_alloc_size)
6929 				final_tried = true;
6930 			goto again;
6931 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6932 			struct btrfs_space_info *sinfo;
6933 
6934 			sinfo = __find_space_info(root->fs_info, flags);
6935 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6936 				flags, num_bytes);
6937 			if (sinfo)
6938 				dump_space_info(sinfo, num_bytes, 1);
6939 		}
6940 	}
6941 
6942 	return ret;
6943 }
6944 
6945 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6946 					u64 start, u64 len,
6947 					int pin, int delalloc)
6948 {
6949 	struct btrfs_block_group_cache *cache;
6950 	int ret = 0;
6951 
6952 	cache = btrfs_lookup_block_group(root->fs_info, start);
6953 	if (!cache) {
6954 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6955 			start);
6956 		return -ENOSPC;
6957 	}
6958 
6959 	if (btrfs_test_opt(root, DISCARD))
6960 		ret = btrfs_discard_extent(root, start, len, NULL);
6961 
6962 	if (pin)
6963 		pin_down_extent(root, cache, start, len, 1);
6964 	else {
6965 		btrfs_add_free_space(cache, start, len);
6966 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6967 	}
6968 	btrfs_put_block_group(cache);
6969 
6970 	trace_btrfs_reserved_extent_free(root, start, len);
6971 
6972 	return ret;
6973 }
6974 
6975 int btrfs_free_reserved_extent(struct btrfs_root *root,
6976 			       u64 start, u64 len, int delalloc)
6977 {
6978 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6979 }
6980 
6981 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6982 				       u64 start, u64 len)
6983 {
6984 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6985 }
6986 
6987 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6988 				      struct btrfs_root *root,
6989 				      u64 parent, u64 root_objectid,
6990 				      u64 flags, u64 owner, u64 offset,
6991 				      struct btrfs_key *ins, int ref_mod)
6992 {
6993 	int ret;
6994 	struct btrfs_fs_info *fs_info = root->fs_info;
6995 	struct btrfs_extent_item *extent_item;
6996 	struct btrfs_extent_inline_ref *iref;
6997 	struct btrfs_path *path;
6998 	struct extent_buffer *leaf;
6999 	int type;
7000 	u32 size;
7001 
7002 	if (parent > 0)
7003 		type = BTRFS_SHARED_DATA_REF_KEY;
7004 	else
7005 		type = BTRFS_EXTENT_DATA_REF_KEY;
7006 
7007 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7008 
7009 	path = btrfs_alloc_path();
7010 	if (!path)
7011 		return -ENOMEM;
7012 
7013 	path->leave_spinning = 1;
7014 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7015 				      ins, size);
7016 	if (ret) {
7017 		btrfs_free_path(path);
7018 		return ret;
7019 	}
7020 
7021 	leaf = path->nodes[0];
7022 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7023 				     struct btrfs_extent_item);
7024 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7025 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7026 	btrfs_set_extent_flags(leaf, extent_item,
7027 			       flags | BTRFS_EXTENT_FLAG_DATA);
7028 
7029 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7030 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7031 	if (parent > 0) {
7032 		struct btrfs_shared_data_ref *ref;
7033 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7034 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7035 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7036 	} else {
7037 		struct btrfs_extent_data_ref *ref;
7038 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7039 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7040 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7041 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7042 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7043 	}
7044 
7045 	btrfs_mark_buffer_dirty(path->nodes[0]);
7046 	btrfs_free_path(path);
7047 
7048 	/* Always set parent to 0 here since its exclusive anyway. */
7049 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7050 				      ins->objectid, ins->offset,
7051 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7052 	if (ret)
7053 		return ret;
7054 
7055 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7056 	if (ret) { /* -ENOENT, logic error */
7057 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7058 			ins->objectid, ins->offset);
7059 		BUG();
7060 	}
7061 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7062 	return ret;
7063 }
7064 
7065 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7066 				     struct btrfs_root *root,
7067 				     u64 parent, u64 root_objectid,
7068 				     u64 flags, struct btrfs_disk_key *key,
7069 				     int level, struct btrfs_key *ins,
7070 				     int no_quota)
7071 {
7072 	int ret;
7073 	struct btrfs_fs_info *fs_info = root->fs_info;
7074 	struct btrfs_extent_item *extent_item;
7075 	struct btrfs_tree_block_info *block_info;
7076 	struct btrfs_extent_inline_ref *iref;
7077 	struct btrfs_path *path;
7078 	struct extent_buffer *leaf;
7079 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7080 	u64 num_bytes = ins->offset;
7081 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7082 						 SKINNY_METADATA);
7083 
7084 	if (!skinny_metadata)
7085 		size += sizeof(*block_info);
7086 
7087 	path = btrfs_alloc_path();
7088 	if (!path) {
7089 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7090 						   root->nodesize);
7091 		return -ENOMEM;
7092 	}
7093 
7094 	path->leave_spinning = 1;
7095 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7096 				      ins, size);
7097 	if (ret) {
7098 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7099 						   root->nodesize);
7100 		btrfs_free_path(path);
7101 		return ret;
7102 	}
7103 
7104 	leaf = path->nodes[0];
7105 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7106 				     struct btrfs_extent_item);
7107 	btrfs_set_extent_refs(leaf, extent_item, 1);
7108 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7109 	btrfs_set_extent_flags(leaf, extent_item,
7110 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7111 
7112 	if (skinny_metadata) {
7113 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7114 		num_bytes = root->nodesize;
7115 	} else {
7116 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7117 		btrfs_set_tree_block_key(leaf, block_info, key);
7118 		btrfs_set_tree_block_level(leaf, block_info, level);
7119 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7120 	}
7121 
7122 	if (parent > 0) {
7123 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7124 		btrfs_set_extent_inline_ref_type(leaf, iref,
7125 						 BTRFS_SHARED_BLOCK_REF_KEY);
7126 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7127 	} else {
7128 		btrfs_set_extent_inline_ref_type(leaf, iref,
7129 						 BTRFS_TREE_BLOCK_REF_KEY);
7130 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7131 	}
7132 
7133 	btrfs_mark_buffer_dirty(leaf);
7134 	btrfs_free_path(path);
7135 
7136 	if (!no_quota) {
7137 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7138 					      ins->objectid, num_bytes,
7139 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7140 		if (ret)
7141 			return ret;
7142 	}
7143 
7144 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7145 				 1);
7146 	if (ret) { /* -ENOENT, logic error */
7147 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7148 			ins->objectid, ins->offset);
7149 		BUG();
7150 	}
7151 
7152 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7153 	return ret;
7154 }
7155 
7156 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7157 				     struct btrfs_root *root,
7158 				     u64 root_objectid, u64 owner,
7159 				     u64 offset, struct btrfs_key *ins)
7160 {
7161 	int ret;
7162 
7163 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7164 
7165 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7166 					 ins->offset, 0,
7167 					 root_objectid, owner, offset,
7168 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7169 	return ret;
7170 }
7171 
7172 /*
7173  * this is used by the tree logging recovery code.  It records that
7174  * an extent has been allocated and makes sure to clear the free
7175  * space cache bits as well
7176  */
7177 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7178 				   struct btrfs_root *root,
7179 				   u64 root_objectid, u64 owner, u64 offset,
7180 				   struct btrfs_key *ins)
7181 {
7182 	int ret;
7183 	struct btrfs_block_group_cache *block_group;
7184 
7185 	/*
7186 	 * Mixed block groups will exclude before processing the log so we only
7187 	 * need to do the exlude dance if this fs isn't mixed.
7188 	 */
7189 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7190 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7191 		if (ret)
7192 			return ret;
7193 	}
7194 
7195 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7196 	if (!block_group)
7197 		return -EINVAL;
7198 
7199 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7200 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7201 	BUG_ON(ret); /* logic error */
7202 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7203 					 0, owner, offset, ins, 1);
7204 	btrfs_put_block_group(block_group);
7205 	return ret;
7206 }
7207 
7208 static struct extent_buffer *
7209 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7210 		      u64 bytenr, int level)
7211 {
7212 	struct extent_buffer *buf;
7213 
7214 	buf = btrfs_find_create_tree_block(root, bytenr);
7215 	if (!buf)
7216 		return ERR_PTR(-ENOMEM);
7217 	btrfs_set_header_generation(buf, trans->transid);
7218 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7219 	btrfs_tree_lock(buf);
7220 	clean_tree_block(trans, root, buf);
7221 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7222 
7223 	btrfs_set_lock_blocking(buf);
7224 	btrfs_set_buffer_uptodate(buf);
7225 
7226 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7227 		buf->log_index = root->log_transid % 2;
7228 		/*
7229 		 * we allow two log transactions at a time, use different
7230 		 * EXENT bit to differentiate dirty pages.
7231 		 */
7232 		if (buf->log_index == 0)
7233 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7234 					buf->start + buf->len - 1, GFP_NOFS);
7235 		else
7236 			set_extent_new(&root->dirty_log_pages, buf->start,
7237 					buf->start + buf->len - 1, GFP_NOFS);
7238 	} else {
7239 		buf->log_index = -1;
7240 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7241 			 buf->start + buf->len - 1, GFP_NOFS);
7242 	}
7243 	trans->blocks_used++;
7244 	/* this returns a buffer locked for blocking */
7245 	return buf;
7246 }
7247 
7248 static struct btrfs_block_rsv *
7249 use_block_rsv(struct btrfs_trans_handle *trans,
7250 	      struct btrfs_root *root, u32 blocksize)
7251 {
7252 	struct btrfs_block_rsv *block_rsv;
7253 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7254 	int ret;
7255 	bool global_updated = false;
7256 
7257 	block_rsv = get_block_rsv(trans, root);
7258 
7259 	if (unlikely(block_rsv->size == 0))
7260 		goto try_reserve;
7261 again:
7262 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7263 	if (!ret)
7264 		return block_rsv;
7265 
7266 	if (block_rsv->failfast)
7267 		return ERR_PTR(ret);
7268 
7269 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7270 		global_updated = true;
7271 		update_global_block_rsv(root->fs_info);
7272 		goto again;
7273 	}
7274 
7275 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7276 		static DEFINE_RATELIMIT_STATE(_rs,
7277 				DEFAULT_RATELIMIT_INTERVAL * 10,
7278 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7279 		if (__ratelimit(&_rs))
7280 			WARN(1, KERN_DEBUG
7281 				"BTRFS: block rsv returned %d\n", ret);
7282 	}
7283 try_reserve:
7284 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7285 				     BTRFS_RESERVE_NO_FLUSH);
7286 	if (!ret)
7287 		return block_rsv;
7288 	/*
7289 	 * If we couldn't reserve metadata bytes try and use some from
7290 	 * the global reserve if its space type is the same as the global
7291 	 * reservation.
7292 	 */
7293 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7294 	    block_rsv->space_info == global_rsv->space_info) {
7295 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7296 		if (!ret)
7297 			return global_rsv;
7298 	}
7299 	return ERR_PTR(ret);
7300 }
7301 
7302 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7303 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7304 {
7305 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7306 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7307 }
7308 
7309 /*
7310  * finds a free extent and does all the dirty work required for allocation
7311  * returns the key for the extent through ins, and a tree buffer for
7312  * the first block of the extent through buf.
7313  *
7314  * returns the tree buffer or NULL.
7315  */
7316 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7317 					struct btrfs_root *root,
7318 					u64 parent, u64 root_objectid,
7319 					struct btrfs_disk_key *key, int level,
7320 					u64 hint, u64 empty_size)
7321 {
7322 	struct btrfs_key ins;
7323 	struct btrfs_block_rsv *block_rsv;
7324 	struct extent_buffer *buf;
7325 	u64 flags = 0;
7326 	int ret;
7327 	u32 blocksize = root->nodesize;
7328 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7329 						 SKINNY_METADATA);
7330 
7331 	if (btrfs_test_is_dummy_root(root)) {
7332 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7333 					    level);
7334 		if (!IS_ERR(buf))
7335 			root->alloc_bytenr += blocksize;
7336 		return buf;
7337 	}
7338 
7339 	block_rsv = use_block_rsv(trans, root, blocksize);
7340 	if (IS_ERR(block_rsv))
7341 		return ERR_CAST(block_rsv);
7342 
7343 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7344 				   empty_size, hint, &ins, 0, 0);
7345 	if (ret) {
7346 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7347 		return ERR_PTR(ret);
7348 	}
7349 
7350 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7351 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7352 
7353 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7354 		if (parent == 0)
7355 			parent = ins.objectid;
7356 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7357 	} else
7358 		BUG_ON(parent > 0);
7359 
7360 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7361 		struct btrfs_delayed_extent_op *extent_op;
7362 		extent_op = btrfs_alloc_delayed_extent_op();
7363 		BUG_ON(!extent_op); /* -ENOMEM */
7364 		if (key)
7365 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7366 		else
7367 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7368 		extent_op->flags_to_set = flags;
7369 		if (skinny_metadata)
7370 			extent_op->update_key = 0;
7371 		else
7372 			extent_op->update_key = 1;
7373 		extent_op->update_flags = 1;
7374 		extent_op->is_data = 0;
7375 		extent_op->level = level;
7376 
7377 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7378 					ins.objectid,
7379 					ins.offset, parent, root_objectid,
7380 					level, BTRFS_ADD_DELAYED_EXTENT,
7381 					extent_op, 0);
7382 		BUG_ON(ret); /* -ENOMEM */
7383 	}
7384 	return buf;
7385 }
7386 
7387 struct walk_control {
7388 	u64 refs[BTRFS_MAX_LEVEL];
7389 	u64 flags[BTRFS_MAX_LEVEL];
7390 	struct btrfs_key update_progress;
7391 	int stage;
7392 	int level;
7393 	int shared_level;
7394 	int update_ref;
7395 	int keep_locks;
7396 	int reada_slot;
7397 	int reada_count;
7398 	int for_reloc;
7399 };
7400 
7401 #define DROP_REFERENCE	1
7402 #define UPDATE_BACKREF	2
7403 
7404 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7405 				     struct btrfs_root *root,
7406 				     struct walk_control *wc,
7407 				     struct btrfs_path *path)
7408 {
7409 	u64 bytenr;
7410 	u64 generation;
7411 	u64 refs;
7412 	u64 flags;
7413 	u32 nritems;
7414 	u32 blocksize;
7415 	struct btrfs_key key;
7416 	struct extent_buffer *eb;
7417 	int ret;
7418 	int slot;
7419 	int nread = 0;
7420 
7421 	if (path->slots[wc->level] < wc->reada_slot) {
7422 		wc->reada_count = wc->reada_count * 2 / 3;
7423 		wc->reada_count = max(wc->reada_count, 2);
7424 	} else {
7425 		wc->reada_count = wc->reada_count * 3 / 2;
7426 		wc->reada_count = min_t(int, wc->reada_count,
7427 					BTRFS_NODEPTRS_PER_BLOCK(root));
7428 	}
7429 
7430 	eb = path->nodes[wc->level];
7431 	nritems = btrfs_header_nritems(eb);
7432 	blocksize = root->nodesize;
7433 
7434 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7435 		if (nread >= wc->reada_count)
7436 			break;
7437 
7438 		cond_resched();
7439 		bytenr = btrfs_node_blockptr(eb, slot);
7440 		generation = btrfs_node_ptr_generation(eb, slot);
7441 
7442 		if (slot == path->slots[wc->level])
7443 			goto reada;
7444 
7445 		if (wc->stage == UPDATE_BACKREF &&
7446 		    generation <= root->root_key.offset)
7447 			continue;
7448 
7449 		/* We don't lock the tree block, it's OK to be racy here */
7450 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7451 					       wc->level - 1, 1, &refs,
7452 					       &flags);
7453 		/* We don't care about errors in readahead. */
7454 		if (ret < 0)
7455 			continue;
7456 		BUG_ON(refs == 0);
7457 
7458 		if (wc->stage == DROP_REFERENCE) {
7459 			if (refs == 1)
7460 				goto reada;
7461 
7462 			if (wc->level == 1 &&
7463 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7464 				continue;
7465 			if (!wc->update_ref ||
7466 			    generation <= root->root_key.offset)
7467 				continue;
7468 			btrfs_node_key_to_cpu(eb, &key, slot);
7469 			ret = btrfs_comp_cpu_keys(&key,
7470 						  &wc->update_progress);
7471 			if (ret < 0)
7472 				continue;
7473 		} else {
7474 			if (wc->level == 1 &&
7475 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7476 				continue;
7477 		}
7478 reada:
7479 		readahead_tree_block(root, bytenr);
7480 		nread++;
7481 	}
7482 	wc->reada_slot = slot;
7483 }
7484 
7485 static int account_leaf_items(struct btrfs_trans_handle *trans,
7486 			      struct btrfs_root *root,
7487 			      struct extent_buffer *eb)
7488 {
7489 	int nr = btrfs_header_nritems(eb);
7490 	int i, extent_type, ret;
7491 	struct btrfs_key key;
7492 	struct btrfs_file_extent_item *fi;
7493 	u64 bytenr, num_bytes;
7494 
7495 	for (i = 0; i < nr; i++) {
7496 		btrfs_item_key_to_cpu(eb, &key, i);
7497 
7498 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7499 			continue;
7500 
7501 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7502 		/* filter out non qgroup-accountable extents  */
7503 		extent_type = btrfs_file_extent_type(eb, fi);
7504 
7505 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7506 			continue;
7507 
7508 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7509 		if (!bytenr)
7510 			continue;
7511 
7512 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7513 
7514 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7515 					      root->objectid,
7516 					      bytenr, num_bytes,
7517 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7518 		if (ret)
7519 			return ret;
7520 	}
7521 	return 0;
7522 }
7523 
7524 /*
7525  * Walk up the tree from the bottom, freeing leaves and any interior
7526  * nodes which have had all slots visited. If a node (leaf or
7527  * interior) is freed, the node above it will have it's slot
7528  * incremented. The root node will never be freed.
7529  *
7530  * At the end of this function, we should have a path which has all
7531  * slots incremented to the next position for a search. If we need to
7532  * read a new node it will be NULL and the node above it will have the
7533  * correct slot selected for a later read.
7534  *
7535  * If we increment the root nodes slot counter past the number of
7536  * elements, 1 is returned to signal completion of the search.
7537  */
7538 static int adjust_slots_upwards(struct btrfs_root *root,
7539 				struct btrfs_path *path, int root_level)
7540 {
7541 	int level = 0;
7542 	int nr, slot;
7543 	struct extent_buffer *eb;
7544 
7545 	if (root_level == 0)
7546 		return 1;
7547 
7548 	while (level <= root_level) {
7549 		eb = path->nodes[level];
7550 		nr = btrfs_header_nritems(eb);
7551 		path->slots[level]++;
7552 		slot = path->slots[level];
7553 		if (slot >= nr || level == 0) {
7554 			/*
7555 			 * Don't free the root -  we will detect this
7556 			 * condition after our loop and return a
7557 			 * positive value for caller to stop walking the tree.
7558 			 */
7559 			if (level != root_level) {
7560 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7561 				path->locks[level] = 0;
7562 
7563 				free_extent_buffer(eb);
7564 				path->nodes[level] = NULL;
7565 				path->slots[level] = 0;
7566 			}
7567 		} else {
7568 			/*
7569 			 * We have a valid slot to walk back down
7570 			 * from. Stop here so caller can process these
7571 			 * new nodes.
7572 			 */
7573 			break;
7574 		}
7575 
7576 		level++;
7577 	}
7578 
7579 	eb = path->nodes[root_level];
7580 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7581 		return 1;
7582 
7583 	return 0;
7584 }
7585 
7586 /*
7587  * root_eb is the subtree root and is locked before this function is called.
7588  */
7589 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7590 				  struct btrfs_root *root,
7591 				  struct extent_buffer *root_eb,
7592 				  u64 root_gen,
7593 				  int root_level)
7594 {
7595 	int ret = 0;
7596 	int level;
7597 	struct extent_buffer *eb = root_eb;
7598 	struct btrfs_path *path = NULL;
7599 
7600 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7601 	BUG_ON(root_eb == NULL);
7602 
7603 	if (!root->fs_info->quota_enabled)
7604 		return 0;
7605 
7606 	if (!extent_buffer_uptodate(root_eb)) {
7607 		ret = btrfs_read_buffer(root_eb, root_gen);
7608 		if (ret)
7609 			goto out;
7610 	}
7611 
7612 	if (root_level == 0) {
7613 		ret = account_leaf_items(trans, root, root_eb);
7614 		goto out;
7615 	}
7616 
7617 	path = btrfs_alloc_path();
7618 	if (!path)
7619 		return -ENOMEM;
7620 
7621 	/*
7622 	 * Walk down the tree.  Missing extent blocks are filled in as
7623 	 * we go. Metadata is accounted every time we read a new
7624 	 * extent block.
7625 	 *
7626 	 * When we reach a leaf, we account for file extent items in it,
7627 	 * walk back up the tree (adjusting slot pointers as we go)
7628 	 * and restart the search process.
7629 	 */
7630 	extent_buffer_get(root_eb); /* For path */
7631 	path->nodes[root_level] = root_eb;
7632 	path->slots[root_level] = 0;
7633 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7634 walk_down:
7635 	level = root_level;
7636 	while (level >= 0) {
7637 		if (path->nodes[level] == NULL) {
7638 			int parent_slot;
7639 			u64 child_gen;
7640 			u64 child_bytenr;
7641 
7642 			/* We need to get child blockptr/gen from
7643 			 * parent before we can read it. */
7644 			eb = path->nodes[level + 1];
7645 			parent_slot = path->slots[level + 1];
7646 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7647 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7648 
7649 			eb = read_tree_block(root, child_bytenr, child_gen);
7650 			if (!eb || !extent_buffer_uptodate(eb)) {
7651 				ret = -EIO;
7652 				goto out;
7653 			}
7654 
7655 			path->nodes[level] = eb;
7656 			path->slots[level] = 0;
7657 
7658 			btrfs_tree_read_lock(eb);
7659 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7660 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7661 
7662 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7663 						root->objectid,
7664 						child_bytenr,
7665 						root->nodesize,
7666 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7667 						0);
7668 			if (ret)
7669 				goto out;
7670 
7671 		}
7672 
7673 		if (level == 0) {
7674 			ret = account_leaf_items(trans, root, path->nodes[level]);
7675 			if (ret)
7676 				goto out;
7677 
7678 			/* Nonzero return here means we completed our search */
7679 			ret = adjust_slots_upwards(root, path, root_level);
7680 			if (ret)
7681 				break;
7682 
7683 			/* Restart search with new slots */
7684 			goto walk_down;
7685 		}
7686 
7687 		level--;
7688 	}
7689 
7690 	ret = 0;
7691 out:
7692 	btrfs_free_path(path);
7693 
7694 	return ret;
7695 }
7696 
7697 /*
7698  * helper to process tree block while walking down the tree.
7699  *
7700  * when wc->stage == UPDATE_BACKREF, this function updates
7701  * back refs for pointers in the block.
7702  *
7703  * NOTE: return value 1 means we should stop walking down.
7704  */
7705 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7706 				   struct btrfs_root *root,
7707 				   struct btrfs_path *path,
7708 				   struct walk_control *wc, int lookup_info)
7709 {
7710 	int level = wc->level;
7711 	struct extent_buffer *eb = path->nodes[level];
7712 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7713 	int ret;
7714 
7715 	if (wc->stage == UPDATE_BACKREF &&
7716 	    btrfs_header_owner(eb) != root->root_key.objectid)
7717 		return 1;
7718 
7719 	/*
7720 	 * when reference count of tree block is 1, it won't increase
7721 	 * again. once full backref flag is set, we never clear it.
7722 	 */
7723 	if (lookup_info &&
7724 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7725 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7726 		BUG_ON(!path->locks[level]);
7727 		ret = btrfs_lookup_extent_info(trans, root,
7728 					       eb->start, level, 1,
7729 					       &wc->refs[level],
7730 					       &wc->flags[level]);
7731 		BUG_ON(ret == -ENOMEM);
7732 		if (ret)
7733 			return ret;
7734 		BUG_ON(wc->refs[level] == 0);
7735 	}
7736 
7737 	if (wc->stage == DROP_REFERENCE) {
7738 		if (wc->refs[level] > 1)
7739 			return 1;
7740 
7741 		if (path->locks[level] && !wc->keep_locks) {
7742 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7743 			path->locks[level] = 0;
7744 		}
7745 		return 0;
7746 	}
7747 
7748 	/* wc->stage == UPDATE_BACKREF */
7749 	if (!(wc->flags[level] & flag)) {
7750 		BUG_ON(!path->locks[level]);
7751 		ret = btrfs_inc_ref(trans, root, eb, 1);
7752 		BUG_ON(ret); /* -ENOMEM */
7753 		ret = btrfs_dec_ref(trans, root, eb, 0);
7754 		BUG_ON(ret); /* -ENOMEM */
7755 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7756 						  eb->len, flag,
7757 						  btrfs_header_level(eb), 0);
7758 		BUG_ON(ret); /* -ENOMEM */
7759 		wc->flags[level] |= flag;
7760 	}
7761 
7762 	/*
7763 	 * the block is shared by multiple trees, so it's not good to
7764 	 * keep the tree lock
7765 	 */
7766 	if (path->locks[level] && level > 0) {
7767 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7768 		path->locks[level] = 0;
7769 	}
7770 	return 0;
7771 }
7772 
7773 /*
7774  * helper to process tree block pointer.
7775  *
7776  * when wc->stage == DROP_REFERENCE, this function checks
7777  * reference count of the block pointed to. if the block
7778  * is shared and we need update back refs for the subtree
7779  * rooted at the block, this function changes wc->stage to
7780  * UPDATE_BACKREF. if the block is shared and there is no
7781  * need to update back, this function drops the reference
7782  * to the block.
7783  *
7784  * NOTE: return value 1 means we should stop walking down.
7785  */
7786 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7787 				 struct btrfs_root *root,
7788 				 struct btrfs_path *path,
7789 				 struct walk_control *wc, int *lookup_info)
7790 {
7791 	u64 bytenr;
7792 	u64 generation;
7793 	u64 parent;
7794 	u32 blocksize;
7795 	struct btrfs_key key;
7796 	struct extent_buffer *next;
7797 	int level = wc->level;
7798 	int reada = 0;
7799 	int ret = 0;
7800 	bool need_account = false;
7801 
7802 	generation = btrfs_node_ptr_generation(path->nodes[level],
7803 					       path->slots[level]);
7804 	/*
7805 	 * if the lower level block was created before the snapshot
7806 	 * was created, we know there is no need to update back refs
7807 	 * for the subtree
7808 	 */
7809 	if (wc->stage == UPDATE_BACKREF &&
7810 	    generation <= root->root_key.offset) {
7811 		*lookup_info = 1;
7812 		return 1;
7813 	}
7814 
7815 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7816 	blocksize = root->nodesize;
7817 
7818 	next = btrfs_find_tree_block(root, bytenr);
7819 	if (!next) {
7820 		next = btrfs_find_create_tree_block(root, bytenr);
7821 		if (!next)
7822 			return -ENOMEM;
7823 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7824 					       level - 1);
7825 		reada = 1;
7826 	}
7827 	btrfs_tree_lock(next);
7828 	btrfs_set_lock_blocking(next);
7829 
7830 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7831 				       &wc->refs[level - 1],
7832 				       &wc->flags[level - 1]);
7833 	if (ret < 0) {
7834 		btrfs_tree_unlock(next);
7835 		return ret;
7836 	}
7837 
7838 	if (unlikely(wc->refs[level - 1] == 0)) {
7839 		btrfs_err(root->fs_info, "Missing references.");
7840 		BUG();
7841 	}
7842 	*lookup_info = 0;
7843 
7844 	if (wc->stage == DROP_REFERENCE) {
7845 		if (wc->refs[level - 1] > 1) {
7846 			need_account = true;
7847 			if (level == 1 &&
7848 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7849 				goto skip;
7850 
7851 			if (!wc->update_ref ||
7852 			    generation <= root->root_key.offset)
7853 				goto skip;
7854 
7855 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7856 					      path->slots[level]);
7857 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7858 			if (ret < 0)
7859 				goto skip;
7860 
7861 			wc->stage = UPDATE_BACKREF;
7862 			wc->shared_level = level - 1;
7863 		}
7864 	} else {
7865 		if (level == 1 &&
7866 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7867 			goto skip;
7868 	}
7869 
7870 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7871 		btrfs_tree_unlock(next);
7872 		free_extent_buffer(next);
7873 		next = NULL;
7874 		*lookup_info = 1;
7875 	}
7876 
7877 	if (!next) {
7878 		if (reada && level == 1)
7879 			reada_walk_down(trans, root, wc, path);
7880 		next = read_tree_block(root, bytenr, generation);
7881 		if (!next || !extent_buffer_uptodate(next)) {
7882 			free_extent_buffer(next);
7883 			return -EIO;
7884 		}
7885 		btrfs_tree_lock(next);
7886 		btrfs_set_lock_blocking(next);
7887 	}
7888 
7889 	level--;
7890 	BUG_ON(level != btrfs_header_level(next));
7891 	path->nodes[level] = next;
7892 	path->slots[level] = 0;
7893 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7894 	wc->level = level;
7895 	if (wc->level == 1)
7896 		wc->reada_slot = 0;
7897 	return 0;
7898 skip:
7899 	wc->refs[level - 1] = 0;
7900 	wc->flags[level - 1] = 0;
7901 	if (wc->stage == DROP_REFERENCE) {
7902 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7903 			parent = path->nodes[level]->start;
7904 		} else {
7905 			BUG_ON(root->root_key.objectid !=
7906 			       btrfs_header_owner(path->nodes[level]));
7907 			parent = 0;
7908 		}
7909 
7910 		if (need_account) {
7911 			ret = account_shared_subtree(trans, root, next,
7912 						     generation, level - 1);
7913 			if (ret) {
7914 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7915 					"%d accounting shared subtree. Quota "
7916 					"is out of sync, rescan required.\n",
7917 					root->fs_info->sb->s_id, ret);
7918 			}
7919 		}
7920 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7921 				root->root_key.objectid, level - 1, 0, 0);
7922 		BUG_ON(ret); /* -ENOMEM */
7923 	}
7924 	btrfs_tree_unlock(next);
7925 	free_extent_buffer(next);
7926 	*lookup_info = 1;
7927 	return 1;
7928 }
7929 
7930 /*
7931  * helper to process tree block while walking up the tree.
7932  *
7933  * when wc->stage == DROP_REFERENCE, this function drops
7934  * reference count on the block.
7935  *
7936  * when wc->stage == UPDATE_BACKREF, this function changes
7937  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7938  * to UPDATE_BACKREF previously while processing the block.
7939  *
7940  * NOTE: return value 1 means we should stop walking up.
7941  */
7942 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7943 				 struct btrfs_root *root,
7944 				 struct btrfs_path *path,
7945 				 struct walk_control *wc)
7946 {
7947 	int ret;
7948 	int level = wc->level;
7949 	struct extent_buffer *eb = path->nodes[level];
7950 	u64 parent = 0;
7951 
7952 	if (wc->stage == UPDATE_BACKREF) {
7953 		BUG_ON(wc->shared_level < level);
7954 		if (level < wc->shared_level)
7955 			goto out;
7956 
7957 		ret = find_next_key(path, level + 1, &wc->update_progress);
7958 		if (ret > 0)
7959 			wc->update_ref = 0;
7960 
7961 		wc->stage = DROP_REFERENCE;
7962 		wc->shared_level = -1;
7963 		path->slots[level] = 0;
7964 
7965 		/*
7966 		 * check reference count again if the block isn't locked.
7967 		 * we should start walking down the tree again if reference
7968 		 * count is one.
7969 		 */
7970 		if (!path->locks[level]) {
7971 			BUG_ON(level == 0);
7972 			btrfs_tree_lock(eb);
7973 			btrfs_set_lock_blocking(eb);
7974 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7975 
7976 			ret = btrfs_lookup_extent_info(trans, root,
7977 						       eb->start, level, 1,
7978 						       &wc->refs[level],
7979 						       &wc->flags[level]);
7980 			if (ret < 0) {
7981 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7982 				path->locks[level] = 0;
7983 				return ret;
7984 			}
7985 			BUG_ON(wc->refs[level] == 0);
7986 			if (wc->refs[level] == 1) {
7987 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7988 				path->locks[level] = 0;
7989 				return 1;
7990 			}
7991 		}
7992 	}
7993 
7994 	/* wc->stage == DROP_REFERENCE */
7995 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7996 
7997 	if (wc->refs[level] == 1) {
7998 		if (level == 0) {
7999 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8000 				ret = btrfs_dec_ref(trans, root, eb, 1);
8001 			else
8002 				ret = btrfs_dec_ref(trans, root, eb, 0);
8003 			BUG_ON(ret); /* -ENOMEM */
8004 			ret = account_leaf_items(trans, root, eb);
8005 			if (ret) {
8006 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8007 					"%d accounting leaf items. Quota "
8008 					"is out of sync, rescan required.\n",
8009 					root->fs_info->sb->s_id, ret);
8010 			}
8011 		}
8012 		/* make block locked assertion in clean_tree_block happy */
8013 		if (!path->locks[level] &&
8014 		    btrfs_header_generation(eb) == trans->transid) {
8015 			btrfs_tree_lock(eb);
8016 			btrfs_set_lock_blocking(eb);
8017 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8018 		}
8019 		clean_tree_block(trans, root, eb);
8020 	}
8021 
8022 	if (eb == root->node) {
8023 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8024 			parent = eb->start;
8025 		else
8026 			BUG_ON(root->root_key.objectid !=
8027 			       btrfs_header_owner(eb));
8028 	} else {
8029 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8030 			parent = path->nodes[level + 1]->start;
8031 		else
8032 			BUG_ON(root->root_key.objectid !=
8033 			       btrfs_header_owner(path->nodes[level + 1]));
8034 	}
8035 
8036 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8037 out:
8038 	wc->refs[level] = 0;
8039 	wc->flags[level] = 0;
8040 	return 0;
8041 }
8042 
8043 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8044 				   struct btrfs_root *root,
8045 				   struct btrfs_path *path,
8046 				   struct walk_control *wc)
8047 {
8048 	int level = wc->level;
8049 	int lookup_info = 1;
8050 	int ret;
8051 
8052 	while (level >= 0) {
8053 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8054 		if (ret > 0)
8055 			break;
8056 
8057 		if (level == 0)
8058 			break;
8059 
8060 		if (path->slots[level] >=
8061 		    btrfs_header_nritems(path->nodes[level]))
8062 			break;
8063 
8064 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8065 		if (ret > 0) {
8066 			path->slots[level]++;
8067 			continue;
8068 		} else if (ret < 0)
8069 			return ret;
8070 		level = wc->level;
8071 	}
8072 	return 0;
8073 }
8074 
8075 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8076 				 struct btrfs_root *root,
8077 				 struct btrfs_path *path,
8078 				 struct walk_control *wc, int max_level)
8079 {
8080 	int level = wc->level;
8081 	int ret;
8082 
8083 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8084 	while (level < max_level && path->nodes[level]) {
8085 		wc->level = level;
8086 		if (path->slots[level] + 1 <
8087 		    btrfs_header_nritems(path->nodes[level])) {
8088 			path->slots[level]++;
8089 			return 0;
8090 		} else {
8091 			ret = walk_up_proc(trans, root, path, wc);
8092 			if (ret > 0)
8093 				return 0;
8094 
8095 			if (path->locks[level]) {
8096 				btrfs_tree_unlock_rw(path->nodes[level],
8097 						     path->locks[level]);
8098 				path->locks[level] = 0;
8099 			}
8100 			free_extent_buffer(path->nodes[level]);
8101 			path->nodes[level] = NULL;
8102 			level++;
8103 		}
8104 	}
8105 	return 1;
8106 }
8107 
8108 /*
8109  * drop a subvolume tree.
8110  *
8111  * this function traverses the tree freeing any blocks that only
8112  * referenced by the tree.
8113  *
8114  * when a shared tree block is found. this function decreases its
8115  * reference count by one. if update_ref is true, this function
8116  * also make sure backrefs for the shared block and all lower level
8117  * blocks are properly updated.
8118  *
8119  * If called with for_reloc == 0, may exit early with -EAGAIN
8120  */
8121 int btrfs_drop_snapshot(struct btrfs_root *root,
8122 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8123 			 int for_reloc)
8124 {
8125 	struct btrfs_path *path;
8126 	struct btrfs_trans_handle *trans;
8127 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8128 	struct btrfs_root_item *root_item = &root->root_item;
8129 	struct walk_control *wc;
8130 	struct btrfs_key key;
8131 	int err = 0;
8132 	int ret;
8133 	int level;
8134 	bool root_dropped = false;
8135 
8136 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8137 
8138 	path = btrfs_alloc_path();
8139 	if (!path) {
8140 		err = -ENOMEM;
8141 		goto out;
8142 	}
8143 
8144 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8145 	if (!wc) {
8146 		btrfs_free_path(path);
8147 		err = -ENOMEM;
8148 		goto out;
8149 	}
8150 
8151 	trans = btrfs_start_transaction(tree_root, 0);
8152 	if (IS_ERR(trans)) {
8153 		err = PTR_ERR(trans);
8154 		goto out_free;
8155 	}
8156 
8157 	if (block_rsv)
8158 		trans->block_rsv = block_rsv;
8159 
8160 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8161 		level = btrfs_header_level(root->node);
8162 		path->nodes[level] = btrfs_lock_root_node(root);
8163 		btrfs_set_lock_blocking(path->nodes[level]);
8164 		path->slots[level] = 0;
8165 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8166 		memset(&wc->update_progress, 0,
8167 		       sizeof(wc->update_progress));
8168 	} else {
8169 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8170 		memcpy(&wc->update_progress, &key,
8171 		       sizeof(wc->update_progress));
8172 
8173 		level = root_item->drop_level;
8174 		BUG_ON(level == 0);
8175 		path->lowest_level = level;
8176 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8177 		path->lowest_level = 0;
8178 		if (ret < 0) {
8179 			err = ret;
8180 			goto out_end_trans;
8181 		}
8182 		WARN_ON(ret > 0);
8183 
8184 		/*
8185 		 * unlock our path, this is safe because only this
8186 		 * function is allowed to delete this snapshot
8187 		 */
8188 		btrfs_unlock_up_safe(path, 0);
8189 
8190 		level = btrfs_header_level(root->node);
8191 		while (1) {
8192 			btrfs_tree_lock(path->nodes[level]);
8193 			btrfs_set_lock_blocking(path->nodes[level]);
8194 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8195 
8196 			ret = btrfs_lookup_extent_info(trans, root,
8197 						path->nodes[level]->start,
8198 						level, 1, &wc->refs[level],
8199 						&wc->flags[level]);
8200 			if (ret < 0) {
8201 				err = ret;
8202 				goto out_end_trans;
8203 			}
8204 			BUG_ON(wc->refs[level] == 0);
8205 
8206 			if (level == root_item->drop_level)
8207 				break;
8208 
8209 			btrfs_tree_unlock(path->nodes[level]);
8210 			path->locks[level] = 0;
8211 			WARN_ON(wc->refs[level] != 1);
8212 			level--;
8213 		}
8214 	}
8215 
8216 	wc->level = level;
8217 	wc->shared_level = -1;
8218 	wc->stage = DROP_REFERENCE;
8219 	wc->update_ref = update_ref;
8220 	wc->keep_locks = 0;
8221 	wc->for_reloc = for_reloc;
8222 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8223 
8224 	while (1) {
8225 
8226 		ret = walk_down_tree(trans, root, path, wc);
8227 		if (ret < 0) {
8228 			err = ret;
8229 			break;
8230 		}
8231 
8232 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8233 		if (ret < 0) {
8234 			err = ret;
8235 			break;
8236 		}
8237 
8238 		if (ret > 0) {
8239 			BUG_ON(wc->stage != DROP_REFERENCE);
8240 			break;
8241 		}
8242 
8243 		if (wc->stage == DROP_REFERENCE) {
8244 			level = wc->level;
8245 			btrfs_node_key(path->nodes[level],
8246 				       &root_item->drop_progress,
8247 				       path->slots[level]);
8248 			root_item->drop_level = level;
8249 		}
8250 
8251 		BUG_ON(wc->level == 0);
8252 		if (btrfs_should_end_transaction(trans, tree_root) ||
8253 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8254 			ret = btrfs_update_root(trans, tree_root,
8255 						&root->root_key,
8256 						root_item);
8257 			if (ret) {
8258 				btrfs_abort_transaction(trans, tree_root, ret);
8259 				err = ret;
8260 				goto out_end_trans;
8261 			}
8262 
8263 			/*
8264 			 * Qgroup update accounting is run from
8265 			 * delayed ref handling. This usually works
8266 			 * out because delayed refs are normally the
8267 			 * only way qgroup updates are added. However,
8268 			 * we may have added updates during our tree
8269 			 * walk so run qgroups here to make sure we
8270 			 * don't lose any updates.
8271 			 */
8272 			ret = btrfs_delayed_qgroup_accounting(trans,
8273 							      root->fs_info);
8274 			if (ret)
8275 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8276 						   "running qgroup updates "
8277 						   "during snapshot delete. "
8278 						   "Quota is out of sync, "
8279 						   "rescan required.\n", ret);
8280 
8281 			btrfs_end_transaction_throttle(trans, tree_root);
8282 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8283 				pr_debug("BTRFS: drop snapshot early exit\n");
8284 				err = -EAGAIN;
8285 				goto out_free;
8286 			}
8287 
8288 			trans = btrfs_start_transaction(tree_root, 0);
8289 			if (IS_ERR(trans)) {
8290 				err = PTR_ERR(trans);
8291 				goto out_free;
8292 			}
8293 			if (block_rsv)
8294 				trans->block_rsv = block_rsv;
8295 		}
8296 	}
8297 	btrfs_release_path(path);
8298 	if (err)
8299 		goto out_end_trans;
8300 
8301 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8302 	if (ret) {
8303 		btrfs_abort_transaction(trans, tree_root, ret);
8304 		goto out_end_trans;
8305 	}
8306 
8307 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8308 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8309 				      NULL, NULL);
8310 		if (ret < 0) {
8311 			btrfs_abort_transaction(trans, tree_root, ret);
8312 			err = ret;
8313 			goto out_end_trans;
8314 		} else if (ret > 0) {
8315 			/* if we fail to delete the orphan item this time
8316 			 * around, it'll get picked up the next time.
8317 			 *
8318 			 * The most common failure here is just -ENOENT.
8319 			 */
8320 			btrfs_del_orphan_item(trans, tree_root,
8321 					      root->root_key.objectid);
8322 		}
8323 	}
8324 
8325 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8326 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8327 	} else {
8328 		free_extent_buffer(root->node);
8329 		free_extent_buffer(root->commit_root);
8330 		btrfs_put_fs_root(root);
8331 	}
8332 	root_dropped = true;
8333 out_end_trans:
8334 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8335 	if (ret)
8336 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8337 				   "running qgroup updates "
8338 				   "during snapshot delete. "
8339 				   "Quota is out of sync, "
8340 				   "rescan required.\n", ret);
8341 
8342 	btrfs_end_transaction_throttle(trans, tree_root);
8343 out_free:
8344 	kfree(wc);
8345 	btrfs_free_path(path);
8346 out:
8347 	/*
8348 	 * So if we need to stop dropping the snapshot for whatever reason we
8349 	 * need to make sure to add it back to the dead root list so that we
8350 	 * keep trying to do the work later.  This also cleans up roots if we
8351 	 * don't have it in the radix (like when we recover after a power fail
8352 	 * or unmount) so we don't leak memory.
8353 	 */
8354 	if (!for_reloc && root_dropped == false)
8355 		btrfs_add_dead_root(root);
8356 	if (err && err != -EAGAIN)
8357 		btrfs_std_error(root->fs_info, err);
8358 	return err;
8359 }
8360 
8361 /*
8362  * drop subtree rooted at tree block 'node'.
8363  *
8364  * NOTE: this function will unlock and release tree block 'node'
8365  * only used by relocation code
8366  */
8367 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8368 			struct btrfs_root *root,
8369 			struct extent_buffer *node,
8370 			struct extent_buffer *parent)
8371 {
8372 	struct btrfs_path *path;
8373 	struct walk_control *wc;
8374 	int level;
8375 	int parent_level;
8376 	int ret = 0;
8377 	int wret;
8378 
8379 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8380 
8381 	path = btrfs_alloc_path();
8382 	if (!path)
8383 		return -ENOMEM;
8384 
8385 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8386 	if (!wc) {
8387 		btrfs_free_path(path);
8388 		return -ENOMEM;
8389 	}
8390 
8391 	btrfs_assert_tree_locked(parent);
8392 	parent_level = btrfs_header_level(parent);
8393 	extent_buffer_get(parent);
8394 	path->nodes[parent_level] = parent;
8395 	path->slots[parent_level] = btrfs_header_nritems(parent);
8396 
8397 	btrfs_assert_tree_locked(node);
8398 	level = btrfs_header_level(node);
8399 	path->nodes[level] = node;
8400 	path->slots[level] = 0;
8401 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8402 
8403 	wc->refs[parent_level] = 1;
8404 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8405 	wc->level = level;
8406 	wc->shared_level = -1;
8407 	wc->stage = DROP_REFERENCE;
8408 	wc->update_ref = 0;
8409 	wc->keep_locks = 1;
8410 	wc->for_reloc = 1;
8411 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8412 
8413 	while (1) {
8414 		wret = walk_down_tree(trans, root, path, wc);
8415 		if (wret < 0) {
8416 			ret = wret;
8417 			break;
8418 		}
8419 
8420 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8421 		if (wret < 0)
8422 			ret = wret;
8423 		if (wret != 0)
8424 			break;
8425 	}
8426 
8427 	kfree(wc);
8428 	btrfs_free_path(path);
8429 	return ret;
8430 }
8431 
8432 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8433 {
8434 	u64 num_devices;
8435 	u64 stripped;
8436 
8437 	/*
8438 	 * if restripe for this chunk_type is on pick target profile and
8439 	 * return, otherwise do the usual balance
8440 	 */
8441 	stripped = get_restripe_target(root->fs_info, flags);
8442 	if (stripped)
8443 		return extended_to_chunk(stripped);
8444 
8445 	num_devices = root->fs_info->fs_devices->rw_devices;
8446 
8447 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8448 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8449 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8450 
8451 	if (num_devices == 1) {
8452 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8453 		stripped = flags & ~stripped;
8454 
8455 		/* turn raid0 into single device chunks */
8456 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8457 			return stripped;
8458 
8459 		/* turn mirroring into duplication */
8460 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8461 			     BTRFS_BLOCK_GROUP_RAID10))
8462 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8463 	} else {
8464 		/* they already had raid on here, just return */
8465 		if (flags & stripped)
8466 			return flags;
8467 
8468 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8469 		stripped = flags & ~stripped;
8470 
8471 		/* switch duplicated blocks with raid1 */
8472 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8473 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8474 
8475 		/* this is drive concat, leave it alone */
8476 	}
8477 
8478 	return flags;
8479 }
8480 
8481 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8482 {
8483 	struct btrfs_space_info *sinfo = cache->space_info;
8484 	u64 num_bytes;
8485 	u64 min_allocable_bytes;
8486 	int ret = -ENOSPC;
8487 
8488 
8489 	/*
8490 	 * We need some metadata space and system metadata space for
8491 	 * allocating chunks in some corner cases until we force to set
8492 	 * it to be readonly.
8493 	 */
8494 	if ((sinfo->flags &
8495 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8496 	    !force)
8497 		min_allocable_bytes = 1 * 1024 * 1024;
8498 	else
8499 		min_allocable_bytes = 0;
8500 
8501 	spin_lock(&sinfo->lock);
8502 	spin_lock(&cache->lock);
8503 
8504 	if (cache->ro) {
8505 		ret = 0;
8506 		goto out;
8507 	}
8508 
8509 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8510 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8511 
8512 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8513 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8514 	    min_allocable_bytes <= sinfo->total_bytes) {
8515 		sinfo->bytes_readonly += num_bytes;
8516 		cache->ro = 1;
8517 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8518 		ret = 0;
8519 	}
8520 out:
8521 	spin_unlock(&cache->lock);
8522 	spin_unlock(&sinfo->lock);
8523 	return ret;
8524 }
8525 
8526 int btrfs_set_block_group_ro(struct btrfs_root *root,
8527 			     struct btrfs_block_group_cache *cache)
8528 
8529 {
8530 	struct btrfs_trans_handle *trans;
8531 	u64 alloc_flags;
8532 	int ret;
8533 
8534 	BUG_ON(cache->ro);
8535 
8536 	trans = btrfs_join_transaction(root);
8537 	if (IS_ERR(trans))
8538 		return PTR_ERR(trans);
8539 
8540 	ret = set_block_group_ro(cache, 0);
8541 	if (!ret)
8542 		goto out;
8543 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8544 	ret = do_chunk_alloc(trans, root, alloc_flags,
8545 			     CHUNK_ALLOC_FORCE);
8546 	if (ret < 0)
8547 		goto out;
8548 	ret = set_block_group_ro(cache, 0);
8549 out:
8550 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8551 		alloc_flags = update_block_group_flags(root, cache->flags);
8552 		check_system_chunk(trans, root, alloc_flags);
8553 	}
8554 
8555 	btrfs_end_transaction(trans, root);
8556 	return ret;
8557 }
8558 
8559 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8560 			    struct btrfs_root *root, u64 type)
8561 {
8562 	u64 alloc_flags = get_alloc_profile(root, type);
8563 	return do_chunk_alloc(trans, root, alloc_flags,
8564 			      CHUNK_ALLOC_FORCE);
8565 }
8566 
8567 /*
8568  * helper to account the unused space of all the readonly block group in the
8569  * space_info. takes mirrors into account.
8570  */
8571 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8572 {
8573 	struct btrfs_block_group_cache *block_group;
8574 	u64 free_bytes = 0;
8575 	int factor;
8576 
8577 	/* It's df, we don't care if it's racey */
8578 	if (list_empty(&sinfo->ro_bgs))
8579 		return 0;
8580 
8581 	spin_lock(&sinfo->lock);
8582 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8583 		spin_lock(&block_group->lock);
8584 
8585 		if (!block_group->ro) {
8586 			spin_unlock(&block_group->lock);
8587 			continue;
8588 		}
8589 
8590 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8591 					  BTRFS_BLOCK_GROUP_RAID10 |
8592 					  BTRFS_BLOCK_GROUP_DUP))
8593 			factor = 2;
8594 		else
8595 			factor = 1;
8596 
8597 		free_bytes += (block_group->key.offset -
8598 			       btrfs_block_group_used(&block_group->item)) *
8599 			       factor;
8600 
8601 		spin_unlock(&block_group->lock);
8602 	}
8603 	spin_unlock(&sinfo->lock);
8604 
8605 	return free_bytes;
8606 }
8607 
8608 void btrfs_set_block_group_rw(struct btrfs_root *root,
8609 			      struct btrfs_block_group_cache *cache)
8610 {
8611 	struct btrfs_space_info *sinfo = cache->space_info;
8612 	u64 num_bytes;
8613 
8614 	BUG_ON(!cache->ro);
8615 
8616 	spin_lock(&sinfo->lock);
8617 	spin_lock(&cache->lock);
8618 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8619 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8620 	sinfo->bytes_readonly -= num_bytes;
8621 	cache->ro = 0;
8622 	list_del_init(&cache->ro_list);
8623 	spin_unlock(&cache->lock);
8624 	spin_unlock(&sinfo->lock);
8625 }
8626 
8627 /*
8628  * checks to see if its even possible to relocate this block group.
8629  *
8630  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8631  * ok to go ahead and try.
8632  */
8633 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8634 {
8635 	struct btrfs_block_group_cache *block_group;
8636 	struct btrfs_space_info *space_info;
8637 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8638 	struct btrfs_device *device;
8639 	struct btrfs_trans_handle *trans;
8640 	u64 min_free;
8641 	u64 dev_min = 1;
8642 	u64 dev_nr = 0;
8643 	u64 target;
8644 	int index;
8645 	int full = 0;
8646 	int ret = 0;
8647 
8648 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8649 
8650 	/* odd, couldn't find the block group, leave it alone */
8651 	if (!block_group)
8652 		return -1;
8653 
8654 	min_free = btrfs_block_group_used(&block_group->item);
8655 
8656 	/* no bytes used, we're good */
8657 	if (!min_free)
8658 		goto out;
8659 
8660 	space_info = block_group->space_info;
8661 	spin_lock(&space_info->lock);
8662 
8663 	full = space_info->full;
8664 
8665 	/*
8666 	 * if this is the last block group we have in this space, we can't
8667 	 * relocate it unless we're able to allocate a new chunk below.
8668 	 *
8669 	 * Otherwise, we need to make sure we have room in the space to handle
8670 	 * all of the extents from this block group.  If we can, we're good
8671 	 */
8672 	if ((space_info->total_bytes != block_group->key.offset) &&
8673 	    (space_info->bytes_used + space_info->bytes_reserved +
8674 	     space_info->bytes_pinned + space_info->bytes_readonly +
8675 	     min_free < space_info->total_bytes)) {
8676 		spin_unlock(&space_info->lock);
8677 		goto out;
8678 	}
8679 	spin_unlock(&space_info->lock);
8680 
8681 	/*
8682 	 * ok we don't have enough space, but maybe we have free space on our
8683 	 * devices to allocate new chunks for relocation, so loop through our
8684 	 * alloc devices and guess if we have enough space.  if this block
8685 	 * group is going to be restriped, run checks against the target
8686 	 * profile instead of the current one.
8687 	 */
8688 	ret = -1;
8689 
8690 	/*
8691 	 * index:
8692 	 *      0: raid10
8693 	 *      1: raid1
8694 	 *      2: dup
8695 	 *      3: raid0
8696 	 *      4: single
8697 	 */
8698 	target = get_restripe_target(root->fs_info, block_group->flags);
8699 	if (target) {
8700 		index = __get_raid_index(extended_to_chunk(target));
8701 	} else {
8702 		/*
8703 		 * this is just a balance, so if we were marked as full
8704 		 * we know there is no space for a new chunk
8705 		 */
8706 		if (full)
8707 			goto out;
8708 
8709 		index = get_block_group_index(block_group);
8710 	}
8711 
8712 	if (index == BTRFS_RAID_RAID10) {
8713 		dev_min = 4;
8714 		/* Divide by 2 */
8715 		min_free >>= 1;
8716 	} else if (index == BTRFS_RAID_RAID1) {
8717 		dev_min = 2;
8718 	} else if (index == BTRFS_RAID_DUP) {
8719 		/* Multiply by 2 */
8720 		min_free <<= 1;
8721 	} else if (index == BTRFS_RAID_RAID0) {
8722 		dev_min = fs_devices->rw_devices;
8723 		do_div(min_free, dev_min);
8724 	}
8725 
8726 	/* We need to do this so that we can look at pending chunks */
8727 	trans = btrfs_join_transaction(root);
8728 	if (IS_ERR(trans)) {
8729 		ret = PTR_ERR(trans);
8730 		goto out;
8731 	}
8732 
8733 	mutex_lock(&root->fs_info->chunk_mutex);
8734 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8735 		u64 dev_offset;
8736 
8737 		/*
8738 		 * check to make sure we can actually find a chunk with enough
8739 		 * space to fit our block group in.
8740 		 */
8741 		if (device->total_bytes > device->bytes_used + min_free &&
8742 		    !device->is_tgtdev_for_dev_replace) {
8743 			ret = find_free_dev_extent(trans, device, min_free,
8744 						   &dev_offset, NULL);
8745 			if (!ret)
8746 				dev_nr++;
8747 
8748 			if (dev_nr >= dev_min)
8749 				break;
8750 
8751 			ret = -1;
8752 		}
8753 	}
8754 	mutex_unlock(&root->fs_info->chunk_mutex);
8755 	btrfs_end_transaction(trans, root);
8756 out:
8757 	btrfs_put_block_group(block_group);
8758 	return ret;
8759 }
8760 
8761 static int find_first_block_group(struct btrfs_root *root,
8762 		struct btrfs_path *path, struct btrfs_key *key)
8763 {
8764 	int ret = 0;
8765 	struct btrfs_key found_key;
8766 	struct extent_buffer *leaf;
8767 	int slot;
8768 
8769 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8770 	if (ret < 0)
8771 		goto out;
8772 
8773 	while (1) {
8774 		slot = path->slots[0];
8775 		leaf = path->nodes[0];
8776 		if (slot >= btrfs_header_nritems(leaf)) {
8777 			ret = btrfs_next_leaf(root, path);
8778 			if (ret == 0)
8779 				continue;
8780 			if (ret < 0)
8781 				goto out;
8782 			break;
8783 		}
8784 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8785 
8786 		if (found_key.objectid >= key->objectid &&
8787 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8788 			ret = 0;
8789 			goto out;
8790 		}
8791 		path->slots[0]++;
8792 	}
8793 out:
8794 	return ret;
8795 }
8796 
8797 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8798 {
8799 	struct btrfs_block_group_cache *block_group;
8800 	u64 last = 0;
8801 
8802 	while (1) {
8803 		struct inode *inode;
8804 
8805 		block_group = btrfs_lookup_first_block_group(info, last);
8806 		while (block_group) {
8807 			spin_lock(&block_group->lock);
8808 			if (block_group->iref)
8809 				break;
8810 			spin_unlock(&block_group->lock);
8811 			block_group = next_block_group(info->tree_root,
8812 						       block_group);
8813 		}
8814 		if (!block_group) {
8815 			if (last == 0)
8816 				break;
8817 			last = 0;
8818 			continue;
8819 		}
8820 
8821 		inode = block_group->inode;
8822 		block_group->iref = 0;
8823 		block_group->inode = NULL;
8824 		spin_unlock(&block_group->lock);
8825 		iput(inode);
8826 		last = block_group->key.objectid + block_group->key.offset;
8827 		btrfs_put_block_group(block_group);
8828 	}
8829 }
8830 
8831 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8832 {
8833 	struct btrfs_block_group_cache *block_group;
8834 	struct btrfs_space_info *space_info;
8835 	struct btrfs_caching_control *caching_ctl;
8836 	struct rb_node *n;
8837 
8838 	down_write(&info->commit_root_sem);
8839 	while (!list_empty(&info->caching_block_groups)) {
8840 		caching_ctl = list_entry(info->caching_block_groups.next,
8841 					 struct btrfs_caching_control, list);
8842 		list_del(&caching_ctl->list);
8843 		put_caching_control(caching_ctl);
8844 	}
8845 	up_write(&info->commit_root_sem);
8846 
8847 	spin_lock(&info->unused_bgs_lock);
8848 	while (!list_empty(&info->unused_bgs)) {
8849 		block_group = list_first_entry(&info->unused_bgs,
8850 					       struct btrfs_block_group_cache,
8851 					       bg_list);
8852 		list_del_init(&block_group->bg_list);
8853 		btrfs_put_block_group(block_group);
8854 	}
8855 	spin_unlock(&info->unused_bgs_lock);
8856 
8857 	spin_lock(&info->block_group_cache_lock);
8858 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8859 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8860 				       cache_node);
8861 		rb_erase(&block_group->cache_node,
8862 			 &info->block_group_cache_tree);
8863 		RB_CLEAR_NODE(&block_group->cache_node);
8864 		spin_unlock(&info->block_group_cache_lock);
8865 
8866 		down_write(&block_group->space_info->groups_sem);
8867 		list_del(&block_group->list);
8868 		up_write(&block_group->space_info->groups_sem);
8869 
8870 		if (block_group->cached == BTRFS_CACHE_STARTED)
8871 			wait_block_group_cache_done(block_group);
8872 
8873 		/*
8874 		 * We haven't cached this block group, which means we could
8875 		 * possibly have excluded extents on this block group.
8876 		 */
8877 		if (block_group->cached == BTRFS_CACHE_NO ||
8878 		    block_group->cached == BTRFS_CACHE_ERROR)
8879 			free_excluded_extents(info->extent_root, block_group);
8880 
8881 		btrfs_remove_free_space_cache(block_group);
8882 		btrfs_put_block_group(block_group);
8883 
8884 		spin_lock(&info->block_group_cache_lock);
8885 	}
8886 	spin_unlock(&info->block_group_cache_lock);
8887 
8888 	/* now that all the block groups are freed, go through and
8889 	 * free all the space_info structs.  This is only called during
8890 	 * the final stages of unmount, and so we know nobody is
8891 	 * using them.  We call synchronize_rcu() once before we start,
8892 	 * just to be on the safe side.
8893 	 */
8894 	synchronize_rcu();
8895 
8896 	release_global_block_rsv(info);
8897 
8898 	while (!list_empty(&info->space_info)) {
8899 		int i;
8900 
8901 		space_info = list_entry(info->space_info.next,
8902 					struct btrfs_space_info,
8903 					list);
8904 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8905 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8906 			    space_info->bytes_reserved > 0 ||
8907 			    space_info->bytes_may_use > 0)) {
8908 				dump_space_info(space_info, 0, 0);
8909 			}
8910 		}
8911 		list_del(&space_info->list);
8912 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8913 			struct kobject *kobj;
8914 			kobj = space_info->block_group_kobjs[i];
8915 			space_info->block_group_kobjs[i] = NULL;
8916 			if (kobj) {
8917 				kobject_del(kobj);
8918 				kobject_put(kobj);
8919 			}
8920 		}
8921 		kobject_del(&space_info->kobj);
8922 		kobject_put(&space_info->kobj);
8923 	}
8924 	return 0;
8925 }
8926 
8927 static void __link_block_group(struct btrfs_space_info *space_info,
8928 			       struct btrfs_block_group_cache *cache)
8929 {
8930 	int index = get_block_group_index(cache);
8931 	bool first = false;
8932 
8933 	down_write(&space_info->groups_sem);
8934 	if (list_empty(&space_info->block_groups[index]))
8935 		first = true;
8936 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8937 	up_write(&space_info->groups_sem);
8938 
8939 	if (first) {
8940 		struct raid_kobject *rkobj;
8941 		int ret;
8942 
8943 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8944 		if (!rkobj)
8945 			goto out_err;
8946 		rkobj->raid_type = index;
8947 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8948 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8949 				  "%s", get_raid_name(index));
8950 		if (ret) {
8951 			kobject_put(&rkobj->kobj);
8952 			goto out_err;
8953 		}
8954 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8955 	}
8956 
8957 	return;
8958 out_err:
8959 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8960 }
8961 
8962 static struct btrfs_block_group_cache *
8963 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8964 {
8965 	struct btrfs_block_group_cache *cache;
8966 
8967 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8968 	if (!cache)
8969 		return NULL;
8970 
8971 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8972 					GFP_NOFS);
8973 	if (!cache->free_space_ctl) {
8974 		kfree(cache);
8975 		return NULL;
8976 	}
8977 
8978 	cache->key.objectid = start;
8979 	cache->key.offset = size;
8980 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8981 
8982 	cache->sectorsize = root->sectorsize;
8983 	cache->fs_info = root->fs_info;
8984 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8985 					       &root->fs_info->mapping_tree,
8986 					       start);
8987 	atomic_set(&cache->count, 1);
8988 	spin_lock_init(&cache->lock);
8989 	init_rwsem(&cache->data_rwsem);
8990 	INIT_LIST_HEAD(&cache->list);
8991 	INIT_LIST_HEAD(&cache->cluster_list);
8992 	INIT_LIST_HEAD(&cache->bg_list);
8993 	INIT_LIST_HEAD(&cache->ro_list);
8994 	INIT_LIST_HEAD(&cache->dirty_list);
8995 	btrfs_init_free_space_ctl(cache);
8996 	atomic_set(&cache->trimming, 0);
8997 
8998 	return cache;
8999 }
9000 
9001 int btrfs_read_block_groups(struct btrfs_root *root)
9002 {
9003 	struct btrfs_path *path;
9004 	int ret;
9005 	struct btrfs_block_group_cache *cache;
9006 	struct btrfs_fs_info *info = root->fs_info;
9007 	struct btrfs_space_info *space_info;
9008 	struct btrfs_key key;
9009 	struct btrfs_key found_key;
9010 	struct extent_buffer *leaf;
9011 	int need_clear = 0;
9012 	u64 cache_gen;
9013 
9014 	root = info->extent_root;
9015 	key.objectid = 0;
9016 	key.offset = 0;
9017 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9018 	path = btrfs_alloc_path();
9019 	if (!path)
9020 		return -ENOMEM;
9021 	path->reada = 1;
9022 
9023 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9024 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9025 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9026 		need_clear = 1;
9027 	if (btrfs_test_opt(root, CLEAR_CACHE))
9028 		need_clear = 1;
9029 
9030 	while (1) {
9031 		ret = find_first_block_group(root, path, &key);
9032 		if (ret > 0)
9033 			break;
9034 		if (ret != 0)
9035 			goto error;
9036 
9037 		leaf = path->nodes[0];
9038 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9039 
9040 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9041 						       found_key.offset);
9042 		if (!cache) {
9043 			ret = -ENOMEM;
9044 			goto error;
9045 		}
9046 
9047 		if (need_clear) {
9048 			/*
9049 			 * When we mount with old space cache, we need to
9050 			 * set BTRFS_DC_CLEAR and set dirty flag.
9051 			 *
9052 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9053 			 *    truncate the old free space cache inode and
9054 			 *    setup a new one.
9055 			 * b) Setting 'dirty flag' makes sure that we flush
9056 			 *    the new space cache info onto disk.
9057 			 */
9058 			if (btrfs_test_opt(root, SPACE_CACHE))
9059 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9060 		}
9061 
9062 		read_extent_buffer(leaf, &cache->item,
9063 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9064 				   sizeof(cache->item));
9065 		cache->flags = btrfs_block_group_flags(&cache->item);
9066 
9067 		key.objectid = found_key.objectid + found_key.offset;
9068 		btrfs_release_path(path);
9069 
9070 		/*
9071 		 * We need to exclude the super stripes now so that the space
9072 		 * info has super bytes accounted for, otherwise we'll think
9073 		 * we have more space than we actually do.
9074 		 */
9075 		ret = exclude_super_stripes(root, cache);
9076 		if (ret) {
9077 			/*
9078 			 * We may have excluded something, so call this just in
9079 			 * case.
9080 			 */
9081 			free_excluded_extents(root, cache);
9082 			btrfs_put_block_group(cache);
9083 			goto error;
9084 		}
9085 
9086 		/*
9087 		 * check for two cases, either we are full, and therefore
9088 		 * don't need to bother with the caching work since we won't
9089 		 * find any space, or we are empty, and we can just add all
9090 		 * the space in and be done with it.  This saves us _alot_ of
9091 		 * time, particularly in the full case.
9092 		 */
9093 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9094 			cache->last_byte_to_unpin = (u64)-1;
9095 			cache->cached = BTRFS_CACHE_FINISHED;
9096 			free_excluded_extents(root, cache);
9097 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9098 			cache->last_byte_to_unpin = (u64)-1;
9099 			cache->cached = BTRFS_CACHE_FINISHED;
9100 			add_new_free_space(cache, root->fs_info,
9101 					   found_key.objectid,
9102 					   found_key.objectid +
9103 					   found_key.offset);
9104 			free_excluded_extents(root, cache);
9105 		}
9106 
9107 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9108 		if (ret) {
9109 			btrfs_remove_free_space_cache(cache);
9110 			btrfs_put_block_group(cache);
9111 			goto error;
9112 		}
9113 
9114 		ret = update_space_info(info, cache->flags, found_key.offset,
9115 					btrfs_block_group_used(&cache->item),
9116 					&space_info);
9117 		if (ret) {
9118 			btrfs_remove_free_space_cache(cache);
9119 			spin_lock(&info->block_group_cache_lock);
9120 			rb_erase(&cache->cache_node,
9121 				 &info->block_group_cache_tree);
9122 			RB_CLEAR_NODE(&cache->cache_node);
9123 			spin_unlock(&info->block_group_cache_lock);
9124 			btrfs_put_block_group(cache);
9125 			goto error;
9126 		}
9127 
9128 		cache->space_info = space_info;
9129 		spin_lock(&cache->space_info->lock);
9130 		cache->space_info->bytes_readonly += cache->bytes_super;
9131 		spin_unlock(&cache->space_info->lock);
9132 
9133 		__link_block_group(space_info, cache);
9134 
9135 		set_avail_alloc_bits(root->fs_info, cache->flags);
9136 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9137 			set_block_group_ro(cache, 1);
9138 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9139 			spin_lock(&info->unused_bgs_lock);
9140 			/* Should always be true but just in case. */
9141 			if (list_empty(&cache->bg_list)) {
9142 				btrfs_get_block_group(cache);
9143 				list_add_tail(&cache->bg_list,
9144 					      &info->unused_bgs);
9145 			}
9146 			spin_unlock(&info->unused_bgs_lock);
9147 		}
9148 	}
9149 
9150 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9151 		if (!(get_alloc_profile(root, space_info->flags) &
9152 		      (BTRFS_BLOCK_GROUP_RAID10 |
9153 		       BTRFS_BLOCK_GROUP_RAID1 |
9154 		       BTRFS_BLOCK_GROUP_RAID5 |
9155 		       BTRFS_BLOCK_GROUP_RAID6 |
9156 		       BTRFS_BLOCK_GROUP_DUP)))
9157 			continue;
9158 		/*
9159 		 * avoid allocating from un-mirrored block group if there are
9160 		 * mirrored block groups.
9161 		 */
9162 		list_for_each_entry(cache,
9163 				&space_info->block_groups[BTRFS_RAID_RAID0],
9164 				list)
9165 			set_block_group_ro(cache, 1);
9166 		list_for_each_entry(cache,
9167 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9168 				list)
9169 			set_block_group_ro(cache, 1);
9170 	}
9171 
9172 	init_global_block_rsv(info);
9173 	ret = 0;
9174 error:
9175 	btrfs_free_path(path);
9176 	return ret;
9177 }
9178 
9179 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9180 				       struct btrfs_root *root)
9181 {
9182 	struct btrfs_block_group_cache *block_group, *tmp;
9183 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9184 	struct btrfs_block_group_item item;
9185 	struct btrfs_key key;
9186 	int ret = 0;
9187 
9188 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9189 		if (ret)
9190 			goto next;
9191 
9192 		spin_lock(&block_group->lock);
9193 		memcpy(&item, &block_group->item, sizeof(item));
9194 		memcpy(&key, &block_group->key, sizeof(key));
9195 		spin_unlock(&block_group->lock);
9196 
9197 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9198 					sizeof(item));
9199 		if (ret)
9200 			btrfs_abort_transaction(trans, extent_root, ret);
9201 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9202 					       key.objectid, key.offset);
9203 		if (ret)
9204 			btrfs_abort_transaction(trans, extent_root, ret);
9205 next:
9206 		list_del_init(&block_group->bg_list);
9207 	}
9208 }
9209 
9210 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9211 			   struct btrfs_root *root, u64 bytes_used,
9212 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9213 			   u64 size)
9214 {
9215 	int ret;
9216 	struct btrfs_root *extent_root;
9217 	struct btrfs_block_group_cache *cache;
9218 
9219 	extent_root = root->fs_info->extent_root;
9220 
9221 	btrfs_set_log_full_commit(root->fs_info, trans);
9222 
9223 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9224 	if (!cache)
9225 		return -ENOMEM;
9226 
9227 	btrfs_set_block_group_used(&cache->item, bytes_used);
9228 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9229 	btrfs_set_block_group_flags(&cache->item, type);
9230 
9231 	cache->flags = type;
9232 	cache->last_byte_to_unpin = (u64)-1;
9233 	cache->cached = BTRFS_CACHE_FINISHED;
9234 	ret = exclude_super_stripes(root, cache);
9235 	if (ret) {
9236 		/*
9237 		 * We may have excluded something, so call this just in
9238 		 * case.
9239 		 */
9240 		free_excluded_extents(root, cache);
9241 		btrfs_put_block_group(cache);
9242 		return ret;
9243 	}
9244 
9245 	add_new_free_space(cache, root->fs_info, chunk_offset,
9246 			   chunk_offset + size);
9247 
9248 	free_excluded_extents(root, cache);
9249 
9250 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9251 	if (ret) {
9252 		btrfs_remove_free_space_cache(cache);
9253 		btrfs_put_block_group(cache);
9254 		return ret;
9255 	}
9256 
9257 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9258 				&cache->space_info);
9259 	if (ret) {
9260 		btrfs_remove_free_space_cache(cache);
9261 		spin_lock(&root->fs_info->block_group_cache_lock);
9262 		rb_erase(&cache->cache_node,
9263 			 &root->fs_info->block_group_cache_tree);
9264 		RB_CLEAR_NODE(&cache->cache_node);
9265 		spin_unlock(&root->fs_info->block_group_cache_lock);
9266 		btrfs_put_block_group(cache);
9267 		return ret;
9268 	}
9269 	update_global_block_rsv(root->fs_info);
9270 
9271 	spin_lock(&cache->space_info->lock);
9272 	cache->space_info->bytes_readonly += cache->bytes_super;
9273 	spin_unlock(&cache->space_info->lock);
9274 
9275 	__link_block_group(cache->space_info, cache);
9276 
9277 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9278 
9279 	set_avail_alloc_bits(extent_root->fs_info, type);
9280 
9281 	return 0;
9282 }
9283 
9284 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9285 {
9286 	u64 extra_flags = chunk_to_extended(flags) &
9287 				BTRFS_EXTENDED_PROFILE_MASK;
9288 
9289 	write_seqlock(&fs_info->profiles_lock);
9290 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9291 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9292 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9293 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9294 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9295 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9296 	write_sequnlock(&fs_info->profiles_lock);
9297 }
9298 
9299 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9300 			     struct btrfs_root *root, u64 group_start,
9301 			     struct extent_map *em)
9302 {
9303 	struct btrfs_path *path;
9304 	struct btrfs_block_group_cache *block_group;
9305 	struct btrfs_free_cluster *cluster;
9306 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9307 	struct btrfs_key key;
9308 	struct inode *inode;
9309 	struct kobject *kobj = NULL;
9310 	int ret;
9311 	int index;
9312 	int factor;
9313 	struct btrfs_caching_control *caching_ctl = NULL;
9314 	bool remove_em;
9315 
9316 	root = root->fs_info->extent_root;
9317 
9318 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9319 	BUG_ON(!block_group);
9320 	BUG_ON(!block_group->ro);
9321 
9322 	/*
9323 	 * Free the reserved super bytes from this block group before
9324 	 * remove it.
9325 	 */
9326 	free_excluded_extents(root, block_group);
9327 
9328 	memcpy(&key, &block_group->key, sizeof(key));
9329 	index = get_block_group_index(block_group);
9330 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9331 				  BTRFS_BLOCK_GROUP_RAID1 |
9332 				  BTRFS_BLOCK_GROUP_RAID10))
9333 		factor = 2;
9334 	else
9335 		factor = 1;
9336 
9337 	/* make sure this block group isn't part of an allocation cluster */
9338 	cluster = &root->fs_info->data_alloc_cluster;
9339 	spin_lock(&cluster->refill_lock);
9340 	btrfs_return_cluster_to_free_space(block_group, cluster);
9341 	spin_unlock(&cluster->refill_lock);
9342 
9343 	/*
9344 	 * make sure this block group isn't part of a metadata
9345 	 * allocation cluster
9346 	 */
9347 	cluster = &root->fs_info->meta_alloc_cluster;
9348 	spin_lock(&cluster->refill_lock);
9349 	btrfs_return_cluster_to_free_space(block_group, cluster);
9350 	spin_unlock(&cluster->refill_lock);
9351 
9352 	path = btrfs_alloc_path();
9353 	if (!path) {
9354 		ret = -ENOMEM;
9355 		goto out;
9356 	}
9357 
9358 	inode = lookup_free_space_inode(tree_root, block_group, path);
9359 	if (!IS_ERR(inode)) {
9360 		ret = btrfs_orphan_add(trans, inode);
9361 		if (ret) {
9362 			btrfs_add_delayed_iput(inode);
9363 			goto out;
9364 		}
9365 		clear_nlink(inode);
9366 		/* One for the block groups ref */
9367 		spin_lock(&block_group->lock);
9368 		if (block_group->iref) {
9369 			block_group->iref = 0;
9370 			block_group->inode = NULL;
9371 			spin_unlock(&block_group->lock);
9372 			iput(inode);
9373 		} else {
9374 			spin_unlock(&block_group->lock);
9375 		}
9376 		/* One for our lookup ref */
9377 		btrfs_add_delayed_iput(inode);
9378 	}
9379 
9380 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9381 	key.offset = block_group->key.objectid;
9382 	key.type = 0;
9383 
9384 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9385 	if (ret < 0)
9386 		goto out;
9387 	if (ret > 0)
9388 		btrfs_release_path(path);
9389 	if (ret == 0) {
9390 		ret = btrfs_del_item(trans, tree_root, path);
9391 		if (ret)
9392 			goto out;
9393 		btrfs_release_path(path);
9394 	}
9395 
9396 	spin_lock(&root->fs_info->block_group_cache_lock);
9397 	rb_erase(&block_group->cache_node,
9398 		 &root->fs_info->block_group_cache_tree);
9399 	RB_CLEAR_NODE(&block_group->cache_node);
9400 
9401 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9402 		root->fs_info->first_logical_byte = (u64)-1;
9403 	spin_unlock(&root->fs_info->block_group_cache_lock);
9404 
9405 	down_write(&block_group->space_info->groups_sem);
9406 	/*
9407 	 * we must use list_del_init so people can check to see if they
9408 	 * are still on the list after taking the semaphore
9409 	 */
9410 	list_del_init(&block_group->list);
9411 	if (list_empty(&block_group->space_info->block_groups[index])) {
9412 		kobj = block_group->space_info->block_group_kobjs[index];
9413 		block_group->space_info->block_group_kobjs[index] = NULL;
9414 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9415 	}
9416 	up_write(&block_group->space_info->groups_sem);
9417 	if (kobj) {
9418 		kobject_del(kobj);
9419 		kobject_put(kobj);
9420 	}
9421 
9422 	if (block_group->has_caching_ctl)
9423 		caching_ctl = get_caching_control(block_group);
9424 	if (block_group->cached == BTRFS_CACHE_STARTED)
9425 		wait_block_group_cache_done(block_group);
9426 	if (block_group->has_caching_ctl) {
9427 		down_write(&root->fs_info->commit_root_sem);
9428 		if (!caching_ctl) {
9429 			struct btrfs_caching_control *ctl;
9430 
9431 			list_for_each_entry(ctl,
9432 				    &root->fs_info->caching_block_groups, list)
9433 				if (ctl->block_group == block_group) {
9434 					caching_ctl = ctl;
9435 					atomic_inc(&caching_ctl->count);
9436 					break;
9437 				}
9438 		}
9439 		if (caching_ctl)
9440 			list_del_init(&caching_ctl->list);
9441 		up_write(&root->fs_info->commit_root_sem);
9442 		if (caching_ctl) {
9443 			/* Once for the caching bgs list and once for us. */
9444 			put_caching_control(caching_ctl);
9445 			put_caching_control(caching_ctl);
9446 		}
9447 	}
9448 
9449 	spin_lock(&trans->transaction->dirty_bgs_lock);
9450 	if (!list_empty(&block_group->dirty_list)) {
9451 		list_del_init(&block_group->dirty_list);
9452 		btrfs_put_block_group(block_group);
9453 	}
9454 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9455 
9456 	btrfs_remove_free_space_cache(block_group);
9457 
9458 	spin_lock(&block_group->space_info->lock);
9459 	list_del_init(&block_group->ro_list);
9460 	block_group->space_info->total_bytes -= block_group->key.offset;
9461 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9462 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9463 	spin_unlock(&block_group->space_info->lock);
9464 
9465 	memcpy(&key, &block_group->key, sizeof(key));
9466 
9467 	lock_chunks(root);
9468 	if (!list_empty(&em->list)) {
9469 		/* We're in the transaction->pending_chunks list. */
9470 		free_extent_map(em);
9471 	}
9472 	spin_lock(&block_group->lock);
9473 	block_group->removed = 1;
9474 	/*
9475 	 * At this point trimming can't start on this block group, because we
9476 	 * removed the block group from the tree fs_info->block_group_cache_tree
9477 	 * so no one can't find it anymore and even if someone already got this
9478 	 * block group before we removed it from the rbtree, they have already
9479 	 * incremented block_group->trimming - if they didn't, they won't find
9480 	 * any free space entries because we already removed them all when we
9481 	 * called btrfs_remove_free_space_cache().
9482 	 *
9483 	 * And we must not remove the extent map from the fs_info->mapping_tree
9484 	 * to prevent the same logical address range and physical device space
9485 	 * ranges from being reused for a new block group. This is because our
9486 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9487 	 * completely transactionless, so while it is trimming a range the
9488 	 * currently running transaction might finish and a new one start,
9489 	 * allowing for new block groups to be created that can reuse the same
9490 	 * physical device locations unless we take this special care.
9491 	 */
9492 	remove_em = (atomic_read(&block_group->trimming) == 0);
9493 	/*
9494 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9495 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9496 	 * before checking block_group->removed).
9497 	 */
9498 	if (!remove_em) {
9499 		/*
9500 		 * Our em might be in trans->transaction->pending_chunks which
9501 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9502 		 * and so is the fs_info->pinned_chunks list.
9503 		 *
9504 		 * So at this point we must be holding the chunk_mutex to avoid
9505 		 * any races with chunk allocation (more specifically at
9506 		 * volumes.c:contains_pending_extent()), to ensure it always
9507 		 * sees the em, either in the pending_chunks list or in the
9508 		 * pinned_chunks list.
9509 		 */
9510 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9511 	}
9512 	spin_unlock(&block_group->lock);
9513 
9514 	if (remove_em) {
9515 		struct extent_map_tree *em_tree;
9516 
9517 		em_tree = &root->fs_info->mapping_tree.map_tree;
9518 		write_lock(&em_tree->lock);
9519 		/*
9520 		 * The em might be in the pending_chunks list, so make sure the
9521 		 * chunk mutex is locked, since remove_extent_mapping() will
9522 		 * delete us from that list.
9523 		 */
9524 		remove_extent_mapping(em_tree, em);
9525 		write_unlock(&em_tree->lock);
9526 		/* once for the tree */
9527 		free_extent_map(em);
9528 	}
9529 
9530 	unlock_chunks(root);
9531 
9532 	btrfs_put_block_group(block_group);
9533 	btrfs_put_block_group(block_group);
9534 
9535 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9536 	if (ret > 0)
9537 		ret = -EIO;
9538 	if (ret < 0)
9539 		goto out;
9540 
9541 	ret = btrfs_del_item(trans, root, path);
9542 out:
9543 	btrfs_free_path(path);
9544 	return ret;
9545 }
9546 
9547 /*
9548  * Process the unused_bgs list and remove any that don't have any allocated
9549  * space inside of them.
9550  */
9551 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9552 {
9553 	struct btrfs_block_group_cache *block_group;
9554 	struct btrfs_space_info *space_info;
9555 	struct btrfs_root *root = fs_info->extent_root;
9556 	struct btrfs_trans_handle *trans;
9557 	int ret = 0;
9558 
9559 	if (!fs_info->open)
9560 		return;
9561 
9562 	spin_lock(&fs_info->unused_bgs_lock);
9563 	while (!list_empty(&fs_info->unused_bgs)) {
9564 		u64 start, end;
9565 
9566 		block_group = list_first_entry(&fs_info->unused_bgs,
9567 					       struct btrfs_block_group_cache,
9568 					       bg_list);
9569 		space_info = block_group->space_info;
9570 		list_del_init(&block_group->bg_list);
9571 		if (ret || btrfs_mixed_space_info(space_info)) {
9572 			btrfs_put_block_group(block_group);
9573 			continue;
9574 		}
9575 		spin_unlock(&fs_info->unused_bgs_lock);
9576 
9577 		/* Don't want to race with allocators so take the groups_sem */
9578 		down_write(&space_info->groups_sem);
9579 		spin_lock(&block_group->lock);
9580 		if (block_group->reserved ||
9581 		    btrfs_block_group_used(&block_group->item) ||
9582 		    block_group->ro) {
9583 			/*
9584 			 * We want to bail if we made new allocations or have
9585 			 * outstanding allocations in this block group.  We do
9586 			 * the ro check in case balance is currently acting on
9587 			 * this block group.
9588 			 */
9589 			spin_unlock(&block_group->lock);
9590 			up_write(&space_info->groups_sem);
9591 			goto next;
9592 		}
9593 		spin_unlock(&block_group->lock);
9594 
9595 		/* We don't want to force the issue, only flip if it's ok. */
9596 		ret = set_block_group_ro(block_group, 0);
9597 		up_write(&space_info->groups_sem);
9598 		if (ret < 0) {
9599 			ret = 0;
9600 			goto next;
9601 		}
9602 
9603 		/*
9604 		 * Want to do this before we do anything else so we can recover
9605 		 * properly if we fail to join the transaction.
9606 		 */
9607 		/* 1 for btrfs_orphan_reserve_metadata() */
9608 		trans = btrfs_start_transaction(root, 1);
9609 		if (IS_ERR(trans)) {
9610 			btrfs_set_block_group_rw(root, block_group);
9611 			ret = PTR_ERR(trans);
9612 			goto next;
9613 		}
9614 
9615 		/*
9616 		 * We could have pending pinned extents for this block group,
9617 		 * just delete them, we don't care about them anymore.
9618 		 */
9619 		start = block_group->key.objectid;
9620 		end = start + block_group->key.offset - 1;
9621 		/*
9622 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9623 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9624 		 * another task might be running finish_extent_commit() for the
9625 		 * previous transaction N - 1, and have seen a range belonging
9626 		 * to the block group in freed_extents[] before we were able to
9627 		 * clear the whole block group range from freed_extents[]. This
9628 		 * means that task can lookup for the block group after we
9629 		 * unpinned it from freed_extents[] and removed it, leading to
9630 		 * a BUG_ON() at btrfs_unpin_extent_range().
9631 		 */
9632 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9633 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9634 				  EXTENT_DIRTY, GFP_NOFS);
9635 		if (ret) {
9636 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9637 			btrfs_set_block_group_rw(root, block_group);
9638 			goto end_trans;
9639 		}
9640 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9641 				  EXTENT_DIRTY, GFP_NOFS);
9642 		if (ret) {
9643 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9644 			btrfs_set_block_group_rw(root, block_group);
9645 			goto end_trans;
9646 		}
9647 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9648 
9649 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9650 		block_group->pinned = 0;
9651 
9652 		/*
9653 		 * Btrfs_remove_chunk will abort the transaction if things go
9654 		 * horribly wrong.
9655 		 */
9656 		ret = btrfs_remove_chunk(trans, root,
9657 					 block_group->key.objectid);
9658 end_trans:
9659 		btrfs_end_transaction(trans, root);
9660 next:
9661 		btrfs_put_block_group(block_group);
9662 		spin_lock(&fs_info->unused_bgs_lock);
9663 	}
9664 	spin_unlock(&fs_info->unused_bgs_lock);
9665 }
9666 
9667 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9668 {
9669 	struct btrfs_space_info *space_info;
9670 	struct btrfs_super_block *disk_super;
9671 	u64 features;
9672 	u64 flags;
9673 	int mixed = 0;
9674 	int ret;
9675 
9676 	disk_super = fs_info->super_copy;
9677 	if (!btrfs_super_root(disk_super))
9678 		return 1;
9679 
9680 	features = btrfs_super_incompat_flags(disk_super);
9681 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9682 		mixed = 1;
9683 
9684 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9685 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9686 	if (ret)
9687 		goto out;
9688 
9689 	if (mixed) {
9690 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9691 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9692 	} else {
9693 		flags = BTRFS_BLOCK_GROUP_METADATA;
9694 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9695 		if (ret)
9696 			goto out;
9697 
9698 		flags = BTRFS_BLOCK_GROUP_DATA;
9699 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9700 	}
9701 out:
9702 	return ret;
9703 }
9704 
9705 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9706 {
9707 	return unpin_extent_range(root, start, end, false);
9708 }
9709 
9710 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9711 {
9712 	struct btrfs_fs_info *fs_info = root->fs_info;
9713 	struct btrfs_block_group_cache *cache = NULL;
9714 	u64 group_trimmed;
9715 	u64 start;
9716 	u64 end;
9717 	u64 trimmed = 0;
9718 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9719 	int ret = 0;
9720 
9721 	/*
9722 	 * try to trim all FS space, our block group may start from non-zero.
9723 	 */
9724 	if (range->len == total_bytes)
9725 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9726 	else
9727 		cache = btrfs_lookup_block_group(fs_info, range->start);
9728 
9729 	while (cache) {
9730 		if (cache->key.objectid >= (range->start + range->len)) {
9731 			btrfs_put_block_group(cache);
9732 			break;
9733 		}
9734 
9735 		start = max(range->start, cache->key.objectid);
9736 		end = min(range->start + range->len,
9737 				cache->key.objectid + cache->key.offset);
9738 
9739 		if (end - start >= range->minlen) {
9740 			if (!block_group_cache_done(cache)) {
9741 				ret = cache_block_group(cache, 0);
9742 				if (ret) {
9743 					btrfs_put_block_group(cache);
9744 					break;
9745 				}
9746 				ret = wait_block_group_cache_done(cache);
9747 				if (ret) {
9748 					btrfs_put_block_group(cache);
9749 					break;
9750 				}
9751 			}
9752 			ret = btrfs_trim_block_group(cache,
9753 						     &group_trimmed,
9754 						     start,
9755 						     end,
9756 						     range->minlen);
9757 
9758 			trimmed += group_trimmed;
9759 			if (ret) {
9760 				btrfs_put_block_group(cache);
9761 				break;
9762 			}
9763 		}
9764 
9765 		cache = next_block_group(fs_info->tree_root, cache);
9766 	}
9767 
9768 	range->len = trimmed;
9769 	return ret;
9770 }
9771 
9772 /*
9773  * btrfs_{start,end}_write_no_snapshoting() are similar to
9774  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9775  * data into the page cache through nocow before the subvolume is snapshoted,
9776  * but flush the data into disk after the snapshot creation, or to prevent
9777  * operations while snapshoting is ongoing and that cause the snapshot to be
9778  * inconsistent (writes followed by expanding truncates for example).
9779  */
9780 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9781 {
9782 	percpu_counter_dec(&root->subv_writers->counter);
9783 	/*
9784 	 * Make sure counter is updated before we wake up
9785 	 * waiters.
9786 	 */
9787 	smp_mb();
9788 	if (waitqueue_active(&root->subv_writers->wait))
9789 		wake_up(&root->subv_writers->wait);
9790 }
9791 
9792 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9793 {
9794 	if (atomic_read(&root->will_be_snapshoted))
9795 		return 0;
9796 
9797 	percpu_counter_inc(&root->subv_writers->counter);
9798 	/*
9799 	 * Make sure counter is updated before we check for snapshot creation.
9800 	 */
9801 	smp_mb();
9802 	if (atomic_read(&root->will_be_snapshoted)) {
9803 		btrfs_end_write_no_snapshoting(root);
9804 		return 0;
9805 	}
9806 	return 1;
9807 }
9808