1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_delayed_ref_node *node, u64 parent, 43 u64 root_objectid, u64 owner_objectid, 44 u64 owner_offset, int refs_to_drop, 45 struct btrfs_delayed_extent_op *extra_op); 46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 47 struct extent_buffer *leaf, 48 struct btrfs_extent_item *ei); 49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 50 u64 parent, u64 root_objectid, 51 u64 flags, u64 owner, u64 offset, 52 struct btrfs_key *ins, int ref_mod); 53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 54 struct btrfs_delayed_ref_node *node, 55 struct btrfs_delayed_extent_op *extent_op); 56 static int find_next_key(struct btrfs_path *path, int level, 57 struct btrfs_key *key); 58 59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 60 { 61 return (cache->flags & bits) == bits; 62 } 63 64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 65 u64 start, u64 num_bytes) 66 { 67 u64 end = start + num_bytes - 1; 68 set_extent_bits(&fs_info->excluded_extents, start, end, 69 EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->start; 79 end = start + cache->length - 1; 80 81 clear_extent_bits(&fs_info->excluded_extents, start, end, 82 EXTENT_UPTODATE); 83 } 84 85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 86 { 87 if (ref->type == BTRFS_REF_METADATA) { 88 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 89 return BTRFS_BLOCK_GROUP_SYSTEM; 90 else 91 return BTRFS_BLOCK_GROUP_METADATA; 92 } 93 return BTRFS_BLOCK_GROUP_DATA; 94 } 95 96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 97 struct btrfs_ref *ref) 98 { 99 struct btrfs_space_info *space_info; 100 u64 flags = generic_ref_to_space_flags(ref); 101 102 space_info = btrfs_find_space_info(fs_info, flags); 103 ASSERT(space_info); 104 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 105 BTRFS_TOTAL_BYTES_PINNED_BATCH); 106 } 107 108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_ref *ref) 110 { 111 struct btrfs_space_info *space_info; 112 u64 flags = generic_ref_to_space_flags(ref); 113 114 space_info = btrfs_find_space_info(fs_info, flags); 115 ASSERT(space_info); 116 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 117 BTRFS_TOTAL_BYTES_PINNED_BATCH); 118 } 119 120 /* simple helper to search for an existing data extent at a given offset */ 121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 122 { 123 int ret; 124 struct btrfs_key key; 125 struct btrfs_path *path; 126 127 path = btrfs_alloc_path(); 128 if (!path) 129 return -ENOMEM; 130 131 key.objectid = start; 132 key.offset = len; 133 key.type = BTRFS_EXTENT_ITEM_KEY; 134 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 135 btrfs_free_path(path); 136 return ret; 137 } 138 139 /* 140 * helper function to lookup reference count and flags of a tree block. 141 * 142 * the head node for delayed ref is used to store the sum of all the 143 * reference count modifications queued up in the rbtree. the head 144 * node may also store the extent flags to set. This way you can check 145 * to see what the reference count and extent flags would be if all of 146 * the delayed refs are not processed. 147 */ 148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 149 struct btrfs_fs_info *fs_info, u64 bytenr, 150 u64 offset, int metadata, u64 *refs, u64 *flags) 151 { 152 struct btrfs_delayed_ref_head *head; 153 struct btrfs_delayed_ref_root *delayed_refs; 154 struct btrfs_path *path; 155 struct btrfs_extent_item *ei; 156 struct extent_buffer *leaf; 157 struct btrfs_key key; 158 u32 item_size; 159 u64 num_refs; 160 u64 extent_flags; 161 int ret; 162 163 /* 164 * If we don't have skinny metadata, don't bother doing anything 165 * different 166 */ 167 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 168 offset = fs_info->nodesize; 169 metadata = 0; 170 } 171 172 path = btrfs_alloc_path(); 173 if (!path) 174 return -ENOMEM; 175 176 if (!trans) { 177 path->skip_locking = 1; 178 path->search_commit_root = 1; 179 } 180 181 search_again: 182 key.objectid = bytenr; 183 key.offset = offset; 184 if (metadata) 185 key.type = BTRFS_METADATA_ITEM_KEY; 186 else 187 key.type = BTRFS_EXTENT_ITEM_KEY; 188 189 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 190 if (ret < 0) 191 goto out_free; 192 193 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 194 if (path->slots[0]) { 195 path->slots[0]--; 196 btrfs_item_key_to_cpu(path->nodes[0], &key, 197 path->slots[0]); 198 if (key.objectid == bytenr && 199 key.type == BTRFS_EXTENT_ITEM_KEY && 200 key.offset == fs_info->nodesize) 201 ret = 0; 202 } 203 } 204 205 if (ret == 0) { 206 leaf = path->nodes[0]; 207 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 208 if (item_size >= sizeof(*ei)) { 209 ei = btrfs_item_ptr(leaf, path->slots[0], 210 struct btrfs_extent_item); 211 num_refs = btrfs_extent_refs(leaf, ei); 212 extent_flags = btrfs_extent_flags(leaf, ei); 213 } else { 214 ret = -EINVAL; 215 btrfs_print_v0_err(fs_info); 216 if (trans) 217 btrfs_abort_transaction(trans, ret); 218 else 219 btrfs_handle_fs_error(fs_info, ret, NULL); 220 221 goto out_free; 222 } 223 224 BUG_ON(num_refs == 0); 225 } else { 226 num_refs = 0; 227 extent_flags = 0; 228 ret = 0; 229 } 230 231 if (!trans) 232 goto out; 233 234 delayed_refs = &trans->transaction->delayed_refs; 235 spin_lock(&delayed_refs->lock); 236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 237 if (head) { 238 if (!mutex_trylock(&head->mutex)) { 239 refcount_inc(&head->refs); 240 spin_unlock(&delayed_refs->lock); 241 242 btrfs_release_path(path); 243 244 /* 245 * Mutex was contended, block until it's released and try 246 * again 247 */ 248 mutex_lock(&head->mutex); 249 mutex_unlock(&head->mutex); 250 btrfs_put_delayed_ref_head(head); 251 goto search_again; 252 } 253 spin_lock(&head->lock); 254 if (head->extent_op && head->extent_op->update_flags) 255 extent_flags |= head->extent_op->flags_to_set; 256 else 257 BUG_ON(num_refs == 0); 258 259 num_refs += head->ref_mod; 260 spin_unlock(&head->lock); 261 mutex_unlock(&head->mutex); 262 } 263 spin_unlock(&delayed_refs->lock); 264 out: 265 WARN_ON(num_refs == 0); 266 if (refs) 267 *refs = num_refs; 268 if (flags) 269 *flags = extent_flags; 270 out_free: 271 btrfs_free_path(path); 272 return ret; 273 } 274 275 /* 276 * Back reference rules. Back refs have three main goals: 277 * 278 * 1) differentiate between all holders of references to an extent so that 279 * when a reference is dropped we can make sure it was a valid reference 280 * before freeing the extent. 281 * 282 * 2) Provide enough information to quickly find the holders of an extent 283 * if we notice a given block is corrupted or bad. 284 * 285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 286 * maintenance. This is actually the same as #2, but with a slightly 287 * different use case. 288 * 289 * There are two kinds of back refs. The implicit back refs is optimized 290 * for pointers in non-shared tree blocks. For a given pointer in a block, 291 * back refs of this kind provide information about the block's owner tree 292 * and the pointer's key. These information allow us to find the block by 293 * b-tree searching. The full back refs is for pointers in tree blocks not 294 * referenced by their owner trees. The location of tree block is recorded 295 * in the back refs. Actually the full back refs is generic, and can be 296 * used in all cases the implicit back refs is used. The major shortcoming 297 * of the full back refs is its overhead. Every time a tree block gets 298 * COWed, we have to update back refs entry for all pointers in it. 299 * 300 * For a newly allocated tree block, we use implicit back refs for 301 * pointers in it. This means most tree related operations only involve 302 * implicit back refs. For a tree block created in old transaction, the 303 * only way to drop a reference to it is COW it. So we can detect the 304 * event that tree block loses its owner tree's reference and do the 305 * back refs conversion. 306 * 307 * When a tree block is COWed through a tree, there are four cases: 308 * 309 * The reference count of the block is one and the tree is the block's 310 * owner tree. Nothing to do in this case. 311 * 312 * The reference count of the block is one and the tree is not the 313 * block's owner tree. In this case, full back refs is used for pointers 314 * in the block. Remove these full back refs, add implicit back refs for 315 * every pointers in the new block. 316 * 317 * The reference count of the block is greater than one and the tree is 318 * the block's owner tree. In this case, implicit back refs is used for 319 * pointers in the block. Add full back refs for every pointers in the 320 * block, increase lower level extents' reference counts. The original 321 * implicit back refs are entailed to the new block. 322 * 323 * The reference count of the block is greater than one and the tree is 324 * not the block's owner tree. Add implicit back refs for every pointer in 325 * the new block, increase lower level extents' reference count. 326 * 327 * Back Reference Key composing: 328 * 329 * The key objectid corresponds to the first byte in the extent, 330 * The key type is used to differentiate between types of back refs. 331 * There are different meanings of the key offset for different types 332 * of back refs. 333 * 334 * File extents can be referenced by: 335 * 336 * - multiple snapshots, subvolumes, or different generations in one subvol 337 * - different files inside a single subvolume 338 * - different offsets inside a file (bookend extents in file.c) 339 * 340 * The extent ref structure for the implicit back refs has fields for: 341 * 342 * - Objectid of the subvolume root 343 * - objectid of the file holding the reference 344 * - original offset in the file 345 * - how many bookend extents 346 * 347 * The key offset for the implicit back refs is hash of the first 348 * three fields. 349 * 350 * The extent ref structure for the full back refs has field for: 351 * 352 * - number of pointers in the tree leaf 353 * 354 * The key offset for the implicit back refs is the first byte of 355 * the tree leaf 356 * 357 * When a file extent is allocated, The implicit back refs is used. 358 * the fields are filled in: 359 * 360 * (root_key.objectid, inode objectid, offset in file, 1) 361 * 362 * When a file extent is removed file truncation, we find the 363 * corresponding implicit back refs and check the following fields: 364 * 365 * (btrfs_header_owner(leaf), inode objectid, offset in file) 366 * 367 * Btree extents can be referenced by: 368 * 369 * - Different subvolumes 370 * 371 * Both the implicit back refs and the full back refs for tree blocks 372 * only consist of key. The key offset for the implicit back refs is 373 * objectid of block's owner tree. The key offset for the full back refs 374 * is the first byte of parent block. 375 * 376 * When implicit back refs is used, information about the lowest key and 377 * level of the tree block are required. These information are stored in 378 * tree block info structure. 379 */ 380 381 /* 382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 385 */ 386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 387 struct btrfs_extent_inline_ref *iref, 388 enum btrfs_inline_ref_type is_data) 389 { 390 int type = btrfs_extent_inline_ref_type(eb, iref); 391 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 392 393 if (type == BTRFS_TREE_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_BLOCK_REF_KEY || 395 type == BTRFS_SHARED_DATA_REF_KEY || 396 type == BTRFS_EXTENT_DATA_REF_KEY) { 397 if (is_data == BTRFS_REF_TYPE_BLOCK) { 398 if (type == BTRFS_TREE_BLOCK_REF_KEY) 399 return type; 400 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 401 ASSERT(eb->fs_info); 402 /* 403 * Every shared one has parent tree block, 404 * which must be aligned to sector size. 405 */ 406 if (offset && 407 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 408 return type; 409 } 410 } else if (is_data == BTRFS_REF_TYPE_DATA) { 411 if (type == BTRFS_EXTENT_DATA_REF_KEY) 412 return type; 413 if (type == BTRFS_SHARED_DATA_REF_KEY) { 414 ASSERT(eb->fs_info); 415 /* 416 * Every shared one has parent tree block, 417 * which must be aligned to sector size. 418 */ 419 if (offset && 420 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 421 return type; 422 } 423 } else { 424 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 425 return type; 426 } 427 } 428 429 btrfs_print_leaf((struct extent_buffer *)eb); 430 btrfs_err(eb->fs_info, 431 "eb %llu iref 0x%lx invalid extent inline ref type %d", 432 eb->start, (unsigned long)iref, type); 433 WARN_ON(1); 434 435 return BTRFS_REF_TYPE_INVALID; 436 } 437 438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 439 { 440 u32 high_crc = ~(u32)0; 441 u32 low_crc = ~(u32)0; 442 __le64 lenum; 443 444 lenum = cpu_to_le64(root_objectid); 445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 446 lenum = cpu_to_le64(owner); 447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 448 lenum = cpu_to_le64(offset); 449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 450 451 return ((u64)high_crc << 31) ^ (u64)low_crc; 452 } 453 454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 455 struct btrfs_extent_data_ref *ref) 456 { 457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 458 btrfs_extent_data_ref_objectid(leaf, ref), 459 btrfs_extent_data_ref_offset(leaf, ref)); 460 } 461 462 static int match_extent_data_ref(struct extent_buffer *leaf, 463 struct btrfs_extent_data_ref *ref, 464 u64 root_objectid, u64 owner, u64 offset) 465 { 466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 467 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 468 btrfs_extent_data_ref_offset(leaf, ref) != offset) 469 return 0; 470 return 1; 471 } 472 473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_path *path, 475 u64 bytenr, u64 parent, 476 u64 root_objectid, 477 u64 owner, u64 offset) 478 { 479 struct btrfs_root *root = trans->fs_info->extent_root; 480 struct btrfs_key key; 481 struct btrfs_extent_data_ref *ref; 482 struct extent_buffer *leaf; 483 u32 nritems; 484 int ret; 485 int recow; 486 int err = -ENOENT; 487 488 key.objectid = bytenr; 489 if (parent) { 490 key.type = BTRFS_SHARED_DATA_REF_KEY; 491 key.offset = parent; 492 } else { 493 key.type = BTRFS_EXTENT_DATA_REF_KEY; 494 key.offset = hash_extent_data_ref(root_objectid, 495 owner, offset); 496 } 497 again: 498 recow = 0; 499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 500 if (ret < 0) { 501 err = ret; 502 goto fail; 503 } 504 505 if (parent) { 506 if (!ret) 507 return 0; 508 goto fail; 509 } 510 511 leaf = path->nodes[0]; 512 nritems = btrfs_header_nritems(leaf); 513 while (1) { 514 if (path->slots[0] >= nritems) { 515 ret = btrfs_next_leaf(root, path); 516 if (ret < 0) 517 err = ret; 518 if (ret) 519 goto fail; 520 521 leaf = path->nodes[0]; 522 nritems = btrfs_header_nritems(leaf); 523 recow = 1; 524 } 525 526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 527 if (key.objectid != bytenr || 528 key.type != BTRFS_EXTENT_DATA_REF_KEY) 529 goto fail; 530 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_extent_data_ref); 533 534 if (match_extent_data_ref(leaf, ref, root_objectid, 535 owner, offset)) { 536 if (recow) { 537 btrfs_release_path(path); 538 goto again; 539 } 540 err = 0; 541 break; 542 } 543 path->slots[0]++; 544 } 545 fail: 546 return err; 547 } 548 549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 550 struct btrfs_path *path, 551 u64 bytenr, u64 parent, 552 u64 root_objectid, u64 owner, 553 u64 offset, int refs_to_add) 554 { 555 struct btrfs_root *root = trans->fs_info->extent_root; 556 struct btrfs_key key; 557 struct extent_buffer *leaf; 558 u32 size; 559 u32 num_refs; 560 int ret; 561 562 key.objectid = bytenr; 563 if (parent) { 564 key.type = BTRFS_SHARED_DATA_REF_KEY; 565 key.offset = parent; 566 size = sizeof(struct btrfs_shared_data_ref); 567 } else { 568 key.type = BTRFS_EXTENT_DATA_REF_KEY; 569 key.offset = hash_extent_data_ref(root_objectid, 570 owner, offset); 571 size = sizeof(struct btrfs_extent_data_ref); 572 } 573 574 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 575 if (ret && ret != -EEXIST) 576 goto fail; 577 578 leaf = path->nodes[0]; 579 if (parent) { 580 struct btrfs_shared_data_ref *ref; 581 ref = btrfs_item_ptr(leaf, path->slots[0], 582 struct btrfs_shared_data_ref); 583 if (ret == 0) { 584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_shared_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 589 } 590 } else { 591 struct btrfs_extent_data_ref *ref; 592 while (ret == -EEXIST) { 593 ref = btrfs_item_ptr(leaf, path->slots[0], 594 struct btrfs_extent_data_ref); 595 if (match_extent_data_ref(leaf, ref, root_objectid, 596 owner, offset)) 597 break; 598 btrfs_release_path(path); 599 key.offset++; 600 ret = btrfs_insert_empty_item(trans, root, path, &key, 601 size); 602 if (ret && ret != -EEXIST) 603 goto fail; 604 605 leaf = path->nodes[0]; 606 } 607 ref = btrfs_item_ptr(leaf, path->slots[0], 608 struct btrfs_extent_data_ref); 609 if (ret == 0) { 610 btrfs_set_extent_data_ref_root(leaf, ref, 611 root_objectid); 612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 613 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 615 } else { 616 num_refs = btrfs_extent_data_ref_count(leaf, ref); 617 num_refs += refs_to_add; 618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 619 } 620 } 621 btrfs_mark_buffer_dirty(leaf); 622 ret = 0; 623 fail: 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 629 struct btrfs_path *path, 630 int refs_to_drop, int *last_ref) 631 { 632 struct btrfs_key key; 633 struct btrfs_extent_data_ref *ref1 = NULL; 634 struct btrfs_shared_data_ref *ref2 = NULL; 635 struct extent_buffer *leaf; 636 u32 num_refs = 0; 637 int ret = 0; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 643 ref1 = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_extent_data_ref); 645 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 647 ref2 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_shared_data_ref); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 651 btrfs_print_v0_err(trans->fs_info); 652 btrfs_abort_transaction(trans, -EINVAL); 653 return -EINVAL; 654 } else { 655 BUG(); 656 } 657 658 BUG_ON(num_refs < refs_to_drop); 659 num_refs -= refs_to_drop; 660 661 if (num_refs == 0) { 662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 663 *last_ref = 1; 664 } else { 665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 669 btrfs_mark_buffer_dirty(leaf); 670 } 671 return ret; 672 } 673 674 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 675 struct btrfs_extent_inline_ref *iref) 676 { 677 struct btrfs_key key; 678 struct extent_buffer *leaf; 679 struct btrfs_extent_data_ref *ref1; 680 struct btrfs_shared_data_ref *ref2; 681 u32 num_refs = 0; 682 int type; 683 684 leaf = path->nodes[0]; 685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 686 687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 688 if (iref) { 689 /* 690 * If type is invalid, we should have bailed out earlier than 691 * this call. 692 */ 693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 694 ASSERT(type != BTRFS_REF_TYPE_INVALID); 695 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 697 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 698 } else { 699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 700 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 701 } 702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 703 ref1 = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_extent_data_ref); 705 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 707 ref2 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_shared_data_ref); 709 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 710 } else { 711 WARN_ON(1); 712 } 713 return num_refs; 714 } 715 716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = trans->fs_info->extent_root; 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 735 if (ret > 0) 736 ret = -ENOENT; 737 return ret; 738 } 739 740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 741 struct btrfs_path *path, 742 u64 bytenr, u64 parent, 743 u64 root_objectid) 744 { 745 struct btrfs_key key; 746 int ret; 747 748 key.objectid = bytenr; 749 if (parent) { 750 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 751 key.offset = parent; 752 } else { 753 key.type = BTRFS_TREE_BLOCK_REF_KEY; 754 key.offset = root_objectid; 755 } 756 757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 758 path, &key, 0); 759 btrfs_release_path(path); 760 return ret; 761 } 762 763 static inline int extent_ref_type(u64 parent, u64 owner) 764 { 765 int type; 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (parent > 0) 768 type = BTRFS_SHARED_BLOCK_REF_KEY; 769 else 770 type = BTRFS_TREE_BLOCK_REF_KEY; 771 } else { 772 if (parent > 0) 773 type = BTRFS_SHARED_DATA_REF_KEY; 774 else 775 type = BTRFS_EXTENT_DATA_REF_KEY; 776 } 777 return type; 778 } 779 780 static int find_next_key(struct btrfs_path *path, int level, 781 struct btrfs_key *key) 782 783 { 784 for (; level < BTRFS_MAX_LEVEL; level++) { 785 if (!path->nodes[level]) 786 break; 787 if (path->slots[level] + 1 >= 788 btrfs_header_nritems(path->nodes[level])) 789 continue; 790 if (level == 0) 791 btrfs_item_key_to_cpu(path->nodes[level], key, 792 path->slots[level] + 1); 793 else 794 btrfs_node_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 return 0; 797 } 798 return 1; 799 } 800 801 /* 802 * look for inline back ref. if back ref is found, *ref_ret is set 803 * to the address of inline back ref, and 0 is returned. 804 * 805 * if back ref isn't found, *ref_ret is set to the address where it 806 * should be inserted, and -ENOENT is returned. 807 * 808 * if insert is true and there are too many inline back refs, the path 809 * points to the extent item, and -EAGAIN is returned. 810 * 811 * NOTE: inline back refs are ordered in the same way that back ref 812 * items in the tree are ordered. 813 */ 814 static noinline_for_stack 815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_extent_inline_ref **ref_ret, 818 u64 bytenr, u64 num_bytes, 819 u64 parent, u64 root_objectid, 820 u64 owner, u64 offset, int insert) 821 { 822 struct btrfs_fs_info *fs_info = trans->fs_info; 823 struct btrfs_root *root = fs_info->extent_root; 824 struct btrfs_key key; 825 struct extent_buffer *leaf; 826 struct btrfs_extent_item *ei; 827 struct btrfs_extent_inline_ref *iref; 828 u64 flags; 829 u64 item_size; 830 unsigned long ptr; 831 unsigned long end; 832 int extra_size; 833 int type; 834 int want; 835 int ret; 836 int err = 0; 837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 838 int needed; 839 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 844 want = extent_ref_type(parent, owner); 845 if (insert) { 846 extra_size = btrfs_extent_inline_ref_size(want); 847 path->search_for_extension = 1; 848 path->keep_locks = 1; 849 } else 850 extra_size = -1; 851 852 /* 853 * Owner is our level, so we can just add one to get the level for the 854 * block we are interested in. 855 */ 856 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 857 key.type = BTRFS_METADATA_ITEM_KEY; 858 key.offset = owner; 859 } 860 861 again: 862 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 863 if (ret < 0) { 864 err = ret; 865 goto out; 866 } 867 868 /* 869 * We may be a newly converted file system which still has the old fat 870 * extent entries for metadata, so try and see if we have one of those. 871 */ 872 if (ret > 0 && skinny_metadata) { 873 skinny_metadata = false; 874 if (path->slots[0]) { 875 path->slots[0]--; 876 btrfs_item_key_to_cpu(path->nodes[0], &key, 877 path->slots[0]); 878 if (key.objectid == bytenr && 879 key.type == BTRFS_EXTENT_ITEM_KEY && 880 key.offset == num_bytes) 881 ret = 0; 882 } 883 if (ret) { 884 key.objectid = bytenr; 885 key.type = BTRFS_EXTENT_ITEM_KEY; 886 key.offset = num_bytes; 887 btrfs_release_path(path); 888 goto again; 889 } 890 } 891 892 if (ret && !insert) { 893 err = -ENOENT; 894 goto out; 895 } else if (WARN_ON(ret)) { 896 err = -EIO; 897 goto out; 898 } 899 900 leaf = path->nodes[0]; 901 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 902 if (unlikely(item_size < sizeof(*ei))) { 903 err = -EINVAL; 904 btrfs_print_v0_err(fs_info); 905 btrfs_abort_transaction(trans, err); 906 goto out; 907 } 908 909 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 910 flags = btrfs_extent_flags(leaf, ei); 911 912 ptr = (unsigned long)(ei + 1); 913 end = (unsigned long)ei + item_size; 914 915 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 916 ptr += sizeof(struct btrfs_tree_block_info); 917 BUG_ON(ptr > end); 918 } 919 920 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 921 needed = BTRFS_REF_TYPE_DATA; 922 else 923 needed = BTRFS_REF_TYPE_BLOCK; 924 925 err = -ENOENT; 926 while (1) { 927 if (ptr >= end) { 928 WARN_ON(ptr > end); 929 break; 930 } 931 iref = (struct btrfs_extent_inline_ref *)ptr; 932 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 933 if (type == BTRFS_REF_TYPE_INVALID) { 934 err = -EUCLEAN; 935 goto out; 936 } 937 938 if (want < type) 939 break; 940 if (want > type) { 941 ptr += btrfs_extent_inline_ref_size(type); 942 continue; 943 } 944 945 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 946 struct btrfs_extent_data_ref *dref; 947 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 948 if (match_extent_data_ref(leaf, dref, root_objectid, 949 owner, offset)) { 950 err = 0; 951 break; 952 } 953 if (hash_extent_data_ref_item(leaf, dref) < 954 hash_extent_data_ref(root_objectid, owner, offset)) 955 break; 956 } else { 957 u64 ref_offset; 958 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 959 if (parent > 0) { 960 if (parent == ref_offset) { 961 err = 0; 962 break; 963 } 964 if (ref_offset < parent) 965 break; 966 } else { 967 if (root_objectid == ref_offset) { 968 err = 0; 969 break; 970 } 971 if (ref_offset < root_objectid) 972 break; 973 } 974 } 975 ptr += btrfs_extent_inline_ref_size(type); 976 } 977 if (err == -ENOENT && insert) { 978 if (item_size + extra_size >= 979 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 980 err = -EAGAIN; 981 goto out; 982 } 983 /* 984 * To add new inline back ref, we have to make sure 985 * there is no corresponding back ref item. 986 * For simplicity, we just do not add new inline back 987 * ref if there is any kind of item for this block 988 */ 989 if (find_next_key(path, 0, &key) == 0 && 990 key.objectid == bytenr && 991 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 992 err = -EAGAIN; 993 goto out; 994 } 995 } 996 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 997 out: 998 if (insert) { 999 path->keep_locks = 0; 1000 path->search_for_extension = 0; 1001 btrfs_unlock_up_safe(path, 1); 1002 } 1003 return err; 1004 } 1005 1006 /* 1007 * helper to add new inline back ref 1008 */ 1009 static noinline_for_stack 1010 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1011 struct btrfs_path *path, 1012 struct btrfs_extent_inline_ref *iref, 1013 u64 parent, u64 root_objectid, 1014 u64 owner, u64 offset, int refs_to_add, 1015 struct btrfs_delayed_extent_op *extent_op) 1016 { 1017 struct extent_buffer *leaf; 1018 struct btrfs_extent_item *ei; 1019 unsigned long ptr; 1020 unsigned long end; 1021 unsigned long item_offset; 1022 u64 refs; 1023 int size; 1024 int type; 1025 1026 leaf = path->nodes[0]; 1027 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1028 item_offset = (unsigned long)iref - (unsigned long)ei; 1029 1030 type = extent_ref_type(parent, owner); 1031 size = btrfs_extent_inline_ref_size(type); 1032 1033 btrfs_extend_item(path, size); 1034 1035 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1036 refs = btrfs_extent_refs(leaf, ei); 1037 refs += refs_to_add; 1038 btrfs_set_extent_refs(leaf, ei, refs); 1039 if (extent_op) 1040 __run_delayed_extent_op(extent_op, leaf, ei); 1041 1042 ptr = (unsigned long)ei + item_offset; 1043 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1044 if (ptr < end - size) 1045 memmove_extent_buffer(leaf, ptr + size, ptr, 1046 end - size - ptr); 1047 1048 iref = (struct btrfs_extent_inline_ref *)ptr; 1049 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1050 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1051 struct btrfs_extent_data_ref *dref; 1052 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1053 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1054 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1055 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1056 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1057 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1058 struct btrfs_shared_data_ref *sref; 1059 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1060 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1062 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1064 } else { 1065 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1066 } 1067 btrfs_mark_buffer_dirty(leaf); 1068 } 1069 1070 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_extent_inline_ref **ref_ret, 1073 u64 bytenr, u64 num_bytes, u64 parent, 1074 u64 root_objectid, u64 owner, u64 offset) 1075 { 1076 int ret; 1077 1078 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1079 num_bytes, parent, root_objectid, 1080 owner, offset, 0); 1081 if (ret != -ENOENT) 1082 return ret; 1083 1084 btrfs_release_path(path); 1085 *ref_ret = NULL; 1086 1087 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1088 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1089 root_objectid); 1090 } else { 1091 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1092 root_objectid, owner, offset); 1093 } 1094 return ret; 1095 } 1096 1097 /* 1098 * helper to update/remove inline back ref 1099 */ 1100 static noinline_for_stack 1101 void update_inline_extent_backref(struct btrfs_path *path, 1102 struct btrfs_extent_inline_ref *iref, 1103 int refs_to_mod, 1104 struct btrfs_delayed_extent_op *extent_op, 1105 int *last_ref) 1106 { 1107 struct extent_buffer *leaf = path->nodes[0]; 1108 struct btrfs_extent_item *ei; 1109 struct btrfs_extent_data_ref *dref = NULL; 1110 struct btrfs_shared_data_ref *sref = NULL; 1111 unsigned long ptr; 1112 unsigned long end; 1113 u32 item_size; 1114 int size; 1115 int type; 1116 u64 refs; 1117 1118 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1119 refs = btrfs_extent_refs(leaf, ei); 1120 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1121 refs += refs_to_mod; 1122 btrfs_set_extent_refs(leaf, ei, refs); 1123 if (extent_op) 1124 __run_delayed_extent_op(extent_op, leaf, ei); 1125 1126 /* 1127 * If type is invalid, we should have bailed out after 1128 * lookup_inline_extent_backref(). 1129 */ 1130 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1131 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1132 1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1135 refs = btrfs_extent_data_ref_count(leaf, dref); 1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1137 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1138 refs = btrfs_shared_data_ref_count(leaf, sref); 1139 } else { 1140 refs = 1; 1141 BUG_ON(refs_to_mod != -1); 1142 } 1143 1144 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1145 refs += refs_to_mod; 1146 1147 if (refs > 0) { 1148 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1149 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1150 else 1151 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1152 } else { 1153 *last_ref = 1; 1154 size = btrfs_extent_inline_ref_size(type); 1155 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1156 ptr = (unsigned long)iref; 1157 end = (unsigned long)ei + item_size; 1158 if (ptr + size < end) 1159 memmove_extent_buffer(leaf, ptr, ptr + size, 1160 end - ptr - size); 1161 item_size -= size; 1162 btrfs_truncate_item(path, item_size, 1); 1163 } 1164 btrfs_mark_buffer_dirty(leaf); 1165 } 1166 1167 static noinline_for_stack 1168 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1169 struct btrfs_path *path, 1170 u64 bytenr, u64 num_bytes, u64 parent, 1171 u64 root_objectid, u64 owner, 1172 u64 offset, int refs_to_add, 1173 struct btrfs_delayed_extent_op *extent_op) 1174 { 1175 struct btrfs_extent_inline_ref *iref; 1176 int ret; 1177 1178 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1179 num_bytes, parent, root_objectid, 1180 owner, offset, 1); 1181 if (ret == 0) { 1182 /* 1183 * We're adding refs to a tree block we already own, this 1184 * should not happen at all. 1185 */ 1186 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1187 btrfs_crit(trans->fs_info, 1188 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1189 bytenr, num_bytes, root_objectid); 1190 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1191 WARN_ON(1); 1192 btrfs_crit(trans->fs_info, 1193 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1194 btrfs_print_leaf(path->nodes[0]); 1195 } 1196 return -EUCLEAN; 1197 } 1198 update_inline_extent_backref(path, iref, refs_to_add, 1199 extent_op, NULL); 1200 } else if (ret == -ENOENT) { 1201 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1202 root_objectid, owner, offset, 1203 refs_to_add, extent_op); 1204 ret = 0; 1205 } 1206 return ret; 1207 } 1208 1209 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1210 struct btrfs_path *path, 1211 struct btrfs_extent_inline_ref *iref, 1212 int refs_to_drop, int is_data, int *last_ref) 1213 { 1214 int ret = 0; 1215 1216 BUG_ON(!is_data && refs_to_drop != 1); 1217 if (iref) { 1218 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1219 last_ref); 1220 } else if (is_data) { 1221 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1222 last_ref); 1223 } else { 1224 *last_ref = 1; 1225 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1226 } 1227 return ret; 1228 } 1229 1230 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1231 u64 *discarded_bytes) 1232 { 1233 int j, ret = 0; 1234 u64 bytes_left, end; 1235 u64 aligned_start = ALIGN(start, 1 << 9); 1236 1237 if (WARN_ON(start != aligned_start)) { 1238 len -= aligned_start - start; 1239 len = round_down(len, 1 << 9); 1240 start = aligned_start; 1241 } 1242 1243 *discarded_bytes = 0; 1244 1245 if (!len) 1246 return 0; 1247 1248 end = start + len; 1249 bytes_left = len; 1250 1251 /* Skip any superblocks on this device. */ 1252 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1253 u64 sb_start = btrfs_sb_offset(j); 1254 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1255 u64 size = sb_start - start; 1256 1257 if (!in_range(sb_start, start, bytes_left) && 1258 !in_range(sb_end, start, bytes_left) && 1259 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1260 continue; 1261 1262 /* 1263 * Superblock spans beginning of range. Adjust start and 1264 * try again. 1265 */ 1266 if (sb_start <= start) { 1267 start += sb_end - start; 1268 if (start > end) { 1269 bytes_left = 0; 1270 break; 1271 } 1272 bytes_left = end - start; 1273 continue; 1274 } 1275 1276 if (size) { 1277 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1278 GFP_NOFS, 0); 1279 if (!ret) 1280 *discarded_bytes += size; 1281 else if (ret != -EOPNOTSUPP) 1282 return ret; 1283 } 1284 1285 start = sb_end; 1286 if (start > end) { 1287 bytes_left = 0; 1288 break; 1289 } 1290 bytes_left = end - start; 1291 } 1292 1293 if (bytes_left) { 1294 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1295 GFP_NOFS, 0); 1296 if (!ret) 1297 *discarded_bytes += bytes_left; 1298 } 1299 return ret; 1300 } 1301 1302 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1303 u64 num_bytes, u64 *actual_bytes) 1304 { 1305 int ret = 0; 1306 u64 discarded_bytes = 0; 1307 u64 end = bytenr + num_bytes; 1308 u64 cur = bytenr; 1309 struct btrfs_bio *bbio = NULL; 1310 1311 1312 /* 1313 * Avoid races with device replace and make sure our bbio has devices 1314 * associated to its stripes that don't go away while we are discarding. 1315 */ 1316 btrfs_bio_counter_inc_blocked(fs_info); 1317 while (cur < end) { 1318 struct btrfs_bio_stripe *stripe; 1319 int i; 1320 1321 num_bytes = end - cur; 1322 /* Tell the block device(s) that the sectors can be discarded */ 1323 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1324 &num_bytes, &bbio, 0); 1325 /* 1326 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1327 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1328 * thus we can't continue anyway. 1329 */ 1330 if (ret < 0) 1331 goto out; 1332 1333 stripe = bbio->stripes; 1334 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1335 u64 bytes; 1336 struct request_queue *req_q; 1337 1338 if (!stripe->dev->bdev) { 1339 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1340 continue; 1341 } 1342 req_q = bdev_get_queue(stripe->dev->bdev); 1343 if (!blk_queue_discard(req_q)) 1344 continue; 1345 1346 ret = btrfs_issue_discard(stripe->dev->bdev, 1347 stripe->physical, 1348 stripe->length, 1349 &bytes); 1350 if (!ret) { 1351 discarded_bytes += bytes; 1352 } else if (ret != -EOPNOTSUPP) { 1353 /* 1354 * Logic errors or -ENOMEM, or -EIO, but 1355 * unlikely to happen. 1356 * 1357 * And since there are two loops, explicitly 1358 * go to out to avoid confusion. 1359 */ 1360 btrfs_put_bbio(bbio); 1361 goto out; 1362 } 1363 1364 /* 1365 * Just in case we get back EOPNOTSUPP for some reason, 1366 * just ignore the return value so we don't screw up 1367 * people calling discard_extent. 1368 */ 1369 ret = 0; 1370 } 1371 btrfs_put_bbio(bbio); 1372 cur += num_bytes; 1373 } 1374 out: 1375 btrfs_bio_counter_dec(fs_info); 1376 1377 if (actual_bytes) 1378 *actual_bytes = discarded_bytes; 1379 1380 1381 if (ret == -EOPNOTSUPP) 1382 ret = 0; 1383 return ret; 1384 } 1385 1386 /* Can return -ENOMEM */ 1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1388 struct btrfs_ref *generic_ref) 1389 { 1390 struct btrfs_fs_info *fs_info = trans->fs_info; 1391 int old_ref_mod, new_ref_mod; 1392 int ret; 1393 1394 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1395 generic_ref->action); 1396 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1397 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1398 1399 if (generic_ref->type == BTRFS_REF_METADATA) 1400 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1401 NULL, &old_ref_mod, &new_ref_mod); 1402 else 1403 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1404 &old_ref_mod, &new_ref_mod); 1405 1406 btrfs_ref_tree_mod(fs_info, generic_ref); 1407 1408 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1409 sub_pinned_bytes(fs_info, generic_ref); 1410 1411 return ret; 1412 } 1413 1414 /* 1415 * __btrfs_inc_extent_ref - insert backreference for a given extent 1416 * 1417 * The counterpart is in __btrfs_free_extent(), with examples and more details 1418 * how it works. 1419 * 1420 * @trans: Handle of transaction 1421 * 1422 * @node: The delayed ref node used to get the bytenr/length for 1423 * extent whose references are incremented. 1424 * 1425 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1426 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1427 * bytenr of the parent block. Since new extents are always 1428 * created with indirect references, this will only be the case 1429 * when relocating a shared extent. In that case, root_objectid 1430 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1431 * be 0 1432 * 1433 * @root_objectid: The id of the root where this modification has originated, 1434 * this can be either one of the well-known metadata trees or 1435 * the subvolume id which references this extent. 1436 * 1437 * @owner: For data extents it is the inode number of the owning file. 1438 * For metadata extents this parameter holds the level in the 1439 * tree of the extent. 1440 * 1441 * @offset: For metadata extents the offset is ignored and is currently 1442 * always passed as 0. For data extents it is the fileoffset 1443 * this extent belongs to. 1444 * 1445 * @refs_to_add Number of references to add 1446 * 1447 * @extent_op Pointer to a structure, holding information necessary when 1448 * updating a tree block's flags 1449 * 1450 */ 1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1452 struct btrfs_delayed_ref_node *node, 1453 u64 parent, u64 root_objectid, 1454 u64 owner, u64 offset, int refs_to_add, 1455 struct btrfs_delayed_extent_op *extent_op) 1456 { 1457 struct btrfs_path *path; 1458 struct extent_buffer *leaf; 1459 struct btrfs_extent_item *item; 1460 struct btrfs_key key; 1461 u64 bytenr = node->bytenr; 1462 u64 num_bytes = node->num_bytes; 1463 u64 refs; 1464 int ret; 1465 1466 path = btrfs_alloc_path(); 1467 if (!path) 1468 return -ENOMEM; 1469 1470 /* this will setup the path even if it fails to insert the back ref */ 1471 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1472 parent, root_objectid, owner, 1473 offset, refs_to_add, extent_op); 1474 if ((ret < 0 && ret != -EAGAIN) || !ret) 1475 goto out; 1476 1477 /* 1478 * Ok we had -EAGAIN which means we didn't have space to insert and 1479 * inline extent ref, so just update the reference count and add a 1480 * normal backref. 1481 */ 1482 leaf = path->nodes[0]; 1483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1484 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1485 refs = btrfs_extent_refs(leaf, item); 1486 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1487 if (extent_op) 1488 __run_delayed_extent_op(extent_op, leaf, item); 1489 1490 btrfs_mark_buffer_dirty(leaf); 1491 btrfs_release_path(path); 1492 1493 /* now insert the actual backref */ 1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1495 BUG_ON(refs_to_add != 1); 1496 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1497 root_objectid); 1498 } else { 1499 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1500 root_objectid, owner, offset, 1501 refs_to_add); 1502 } 1503 if (ret) 1504 btrfs_abort_transaction(trans, ret); 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1511 struct btrfs_delayed_ref_node *node, 1512 struct btrfs_delayed_extent_op *extent_op, 1513 int insert_reserved) 1514 { 1515 int ret = 0; 1516 struct btrfs_delayed_data_ref *ref; 1517 struct btrfs_key ins; 1518 u64 parent = 0; 1519 u64 ref_root = 0; 1520 u64 flags = 0; 1521 1522 ins.objectid = node->bytenr; 1523 ins.offset = node->num_bytes; 1524 ins.type = BTRFS_EXTENT_ITEM_KEY; 1525 1526 ref = btrfs_delayed_node_to_data_ref(node); 1527 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1528 1529 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1530 parent = ref->parent; 1531 ref_root = ref->root; 1532 1533 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1534 if (extent_op) 1535 flags |= extent_op->flags_to_set; 1536 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1537 flags, ref->objectid, 1538 ref->offset, &ins, 1539 node->ref_mod); 1540 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1541 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1542 ref->objectid, ref->offset, 1543 node->ref_mod, extent_op); 1544 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1545 ret = __btrfs_free_extent(trans, node, parent, 1546 ref_root, ref->objectid, 1547 ref->offset, node->ref_mod, 1548 extent_op); 1549 } else { 1550 BUG(); 1551 } 1552 return ret; 1553 } 1554 1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1556 struct extent_buffer *leaf, 1557 struct btrfs_extent_item *ei) 1558 { 1559 u64 flags = btrfs_extent_flags(leaf, ei); 1560 if (extent_op->update_flags) { 1561 flags |= extent_op->flags_to_set; 1562 btrfs_set_extent_flags(leaf, ei, flags); 1563 } 1564 1565 if (extent_op->update_key) { 1566 struct btrfs_tree_block_info *bi; 1567 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1568 bi = (struct btrfs_tree_block_info *)(ei + 1); 1569 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1570 } 1571 } 1572 1573 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1574 struct btrfs_delayed_ref_head *head, 1575 struct btrfs_delayed_extent_op *extent_op) 1576 { 1577 struct btrfs_fs_info *fs_info = trans->fs_info; 1578 struct btrfs_key key; 1579 struct btrfs_path *path; 1580 struct btrfs_extent_item *ei; 1581 struct extent_buffer *leaf; 1582 u32 item_size; 1583 int ret; 1584 int err = 0; 1585 int metadata = !extent_op->is_data; 1586 1587 if (TRANS_ABORTED(trans)) 1588 return 0; 1589 1590 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1591 metadata = 0; 1592 1593 path = btrfs_alloc_path(); 1594 if (!path) 1595 return -ENOMEM; 1596 1597 key.objectid = head->bytenr; 1598 1599 if (metadata) { 1600 key.type = BTRFS_METADATA_ITEM_KEY; 1601 key.offset = extent_op->level; 1602 } else { 1603 key.type = BTRFS_EXTENT_ITEM_KEY; 1604 key.offset = head->num_bytes; 1605 } 1606 1607 again: 1608 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1609 if (ret < 0) { 1610 err = ret; 1611 goto out; 1612 } 1613 if (ret > 0) { 1614 if (metadata) { 1615 if (path->slots[0] > 0) { 1616 path->slots[0]--; 1617 btrfs_item_key_to_cpu(path->nodes[0], &key, 1618 path->slots[0]); 1619 if (key.objectid == head->bytenr && 1620 key.type == BTRFS_EXTENT_ITEM_KEY && 1621 key.offset == head->num_bytes) 1622 ret = 0; 1623 } 1624 if (ret > 0) { 1625 btrfs_release_path(path); 1626 metadata = 0; 1627 1628 key.objectid = head->bytenr; 1629 key.offset = head->num_bytes; 1630 key.type = BTRFS_EXTENT_ITEM_KEY; 1631 goto again; 1632 } 1633 } else { 1634 err = -EIO; 1635 goto out; 1636 } 1637 } 1638 1639 leaf = path->nodes[0]; 1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1641 1642 if (unlikely(item_size < sizeof(*ei))) { 1643 err = -EINVAL; 1644 btrfs_print_v0_err(fs_info); 1645 btrfs_abort_transaction(trans, err); 1646 goto out; 1647 } 1648 1649 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1650 __run_delayed_extent_op(extent_op, leaf, ei); 1651 1652 btrfs_mark_buffer_dirty(leaf); 1653 out: 1654 btrfs_free_path(path); 1655 return err; 1656 } 1657 1658 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1659 struct btrfs_delayed_ref_node *node, 1660 struct btrfs_delayed_extent_op *extent_op, 1661 int insert_reserved) 1662 { 1663 int ret = 0; 1664 struct btrfs_delayed_tree_ref *ref; 1665 u64 parent = 0; 1666 u64 ref_root = 0; 1667 1668 ref = btrfs_delayed_node_to_tree_ref(node); 1669 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1670 1671 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1672 parent = ref->parent; 1673 ref_root = ref->root; 1674 1675 if (node->ref_mod != 1) { 1676 btrfs_err(trans->fs_info, 1677 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1678 node->bytenr, node->ref_mod, node->action, ref_root, 1679 parent); 1680 return -EIO; 1681 } 1682 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1683 BUG_ON(!extent_op || !extent_op->update_flags); 1684 ret = alloc_reserved_tree_block(trans, node, extent_op); 1685 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1686 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1687 ref->level, 0, 1, extent_op); 1688 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1689 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1690 ref->level, 0, 1, extent_op); 1691 } else { 1692 BUG(); 1693 } 1694 return ret; 1695 } 1696 1697 /* helper function to actually process a single delayed ref entry */ 1698 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1699 struct btrfs_delayed_ref_node *node, 1700 struct btrfs_delayed_extent_op *extent_op, 1701 int insert_reserved) 1702 { 1703 int ret = 0; 1704 1705 if (TRANS_ABORTED(trans)) { 1706 if (insert_reserved) 1707 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1708 return 0; 1709 } 1710 1711 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1712 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1713 ret = run_delayed_tree_ref(trans, node, extent_op, 1714 insert_reserved); 1715 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1716 node->type == BTRFS_SHARED_DATA_REF_KEY) 1717 ret = run_delayed_data_ref(trans, node, extent_op, 1718 insert_reserved); 1719 else 1720 BUG(); 1721 if (ret && insert_reserved) 1722 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1723 return ret; 1724 } 1725 1726 static inline struct btrfs_delayed_ref_node * 1727 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1728 { 1729 struct btrfs_delayed_ref_node *ref; 1730 1731 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1732 return NULL; 1733 1734 /* 1735 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1736 * This is to prevent a ref count from going down to zero, which deletes 1737 * the extent item from the extent tree, when there still are references 1738 * to add, which would fail because they would not find the extent item. 1739 */ 1740 if (!list_empty(&head->ref_add_list)) 1741 return list_first_entry(&head->ref_add_list, 1742 struct btrfs_delayed_ref_node, add_list); 1743 1744 ref = rb_entry(rb_first_cached(&head->ref_tree), 1745 struct btrfs_delayed_ref_node, ref_node); 1746 ASSERT(list_empty(&ref->add_list)); 1747 return ref; 1748 } 1749 1750 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1751 struct btrfs_delayed_ref_head *head) 1752 { 1753 spin_lock(&delayed_refs->lock); 1754 head->processing = 0; 1755 delayed_refs->num_heads_ready++; 1756 spin_unlock(&delayed_refs->lock); 1757 btrfs_delayed_ref_unlock(head); 1758 } 1759 1760 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1761 struct btrfs_delayed_ref_head *head) 1762 { 1763 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1764 1765 if (!extent_op) 1766 return NULL; 1767 1768 if (head->must_insert_reserved) { 1769 head->extent_op = NULL; 1770 btrfs_free_delayed_extent_op(extent_op); 1771 return NULL; 1772 } 1773 return extent_op; 1774 } 1775 1776 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1777 struct btrfs_delayed_ref_head *head) 1778 { 1779 struct btrfs_delayed_extent_op *extent_op; 1780 int ret; 1781 1782 extent_op = cleanup_extent_op(head); 1783 if (!extent_op) 1784 return 0; 1785 head->extent_op = NULL; 1786 spin_unlock(&head->lock); 1787 ret = run_delayed_extent_op(trans, head, extent_op); 1788 btrfs_free_delayed_extent_op(extent_op); 1789 return ret ? ret : 1; 1790 } 1791 1792 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1793 struct btrfs_delayed_ref_root *delayed_refs, 1794 struct btrfs_delayed_ref_head *head) 1795 { 1796 int nr_items = 1; /* Dropping this ref head update. */ 1797 1798 if (head->total_ref_mod < 0) { 1799 struct btrfs_space_info *space_info; 1800 u64 flags; 1801 1802 if (head->is_data) 1803 flags = BTRFS_BLOCK_GROUP_DATA; 1804 else if (head->is_system) 1805 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1806 else 1807 flags = BTRFS_BLOCK_GROUP_METADATA; 1808 space_info = btrfs_find_space_info(fs_info, flags); 1809 ASSERT(space_info); 1810 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1811 -head->num_bytes, 1812 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1813 1814 /* 1815 * We had csum deletions accounted for in our delayed refs rsv, 1816 * we need to drop the csum leaves for this update from our 1817 * delayed_refs_rsv. 1818 */ 1819 if (head->is_data) { 1820 spin_lock(&delayed_refs->lock); 1821 delayed_refs->pending_csums -= head->num_bytes; 1822 spin_unlock(&delayed_refs->lock); 1823 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1824 head->num_bytes); 1825 } 1826 } 1827 1828 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1829 } 1830 1831 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1832 struct btrfs_delayed_ref_head *head) 1833 { 1834 1835 struct btrfs_fs_info *fs_info = trans->fs_info; 1836 struct btrfs_delayed_ref_root *delayed_refs; 1837 int ret; 1838 1839 delayed_refs = &trans->transaction->delayed_refs; 1840 1841 ret = run_and_cleanup_extent_op(trans, head); 1842 if (ret < 0) { 1843 unselect_delayed_ref_head(delayed_refs, head); 1844 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1845 return ret; 1846 } else if (ret) { 1847 return ret; 1848 } 1849 1850 /* 1851 * Need to drop our head ref lock and re-acquire the delayed ref lock 1852 * and then re-check to make sure nobody got added. 1853 */ 1854 spin_unlock(&head->lock); 1855 spin_lock(&delayed_refs->lock); 1856 spin_lock(&head->lock); 1857 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1858 spin_unlock(&head->lock); 1859 spin_unlock(&delayed_refs->lock); 1860 return 1; 1861 } 1862 btrfs_delete_ref_head(delayed_refs, head); 1863 spin_unlock(&head->lock); 1864 spin_unlock(&delayed_refs->lock); 1865 1866 if (head->must_insert_reserved) { 1867 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1868 if (head->is_data) { 1869 ret = btrfs_del_csums(trans, fs_info->csum_root, 1870 head->bytenr, head->num_bytes); 1871 } 1872 } 1873 1874 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1875 1876 trace_run_delayed_ref_head(fs_info, head, 0); 1877 btrfs_delayed_ref_unlock(head); 1878 btrfs_put_delayed_ref_head(head); 1879 return 0; 1880 } 1881 1882 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1883 struct btrfs_trans_handle *trans) 1884 { 1885 struct btrfs_delayed_ref_root *delayed_refs = 1886 &trans->transaction->delayed_refs; 1887 struct btrfs_delayed_ref_head *head = NULL; 1888 int ret; 1889 1890 spin_lock(&delayed_refs->lock); 1891 head = btrfs_select_ref_head(delayed_refs); 1892 if (!head) { 1893 spin_unlock(&delayed_refs->lock); 1894 return head; 1895 } 1896 1897 /* 1898 * Grab the lock that says we are going to process all the refs for 1899 * this head 1900 */ 1901 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1902 spin_unlock(&delayed_refs->lock); 1903 1904 /* 1905 * We may have dropped the spin lock to get the head mutex lock, and 1906 * that might have given someone else time to free the head. If that's 1907 * true, it has been removed from our list and we can move on. 1908 */ 1909 if (ret == -EAGAIN) 1910 head = ERR_PTR(-EAGAIN); 1911 1912 return head; 1913 } 1914 1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1916 struct btrfs_delayed_ref_head *locked_ref, 1917 unsigned long *run_refs) 1918 { 1919 struct btrfs_fs_info *fs_info = trans->fs_info; 1920 struct btrfs_delayed_ref_root *delayed_refs; 1921 struct btrfs_delayed_extent_op *extent_op; 1922 struct btrfs_delayed_ref_node *ref; 1923 int must_insert_reserved = 0; 1924 int ret; 1925 1926 delayed_refs = &trans->transaction->delayed_refs; 1927 1928 lockdep_assert_held(&locked_ref->mutex); 1929 lockdep_assert_held(&locked_ref->lock); 1930 1931 while ((ref = select_delayed_ref(locked_ref))) { 1932 if (ref->seq && 1933 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1934 spin_unlock(&locked_ref->lock); 1935 unselect_delayed_ref_head(delayed_refs, locked_ref); 1936 return -EAGAIN; 1937 } 1938 1939 (*run_refs)++; 1940 ref->in_tree = 0; 1941 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1942 RB_CLEAR_NODE(&ref->ref_node); 1943 if (!list_empty(&ref->add_list)) 1944 list_del(&ref->add_list); 1945 /* 1946 * When we play the delayed ref, also correct the ref_mod on 1947 * head 1948 */ 1949 switch (ref->action) { 1950 case BTRFS_ADD_DELAYED_REF: 1951 case BTRFS_ADD_DELAYED_EXTENT: 1952 locked_ref->ref_mod -= ref->ref_mod; 1953 break; 1954 case BTRFS_DROP_DELAYED_REF: 1955 locked_ref->ref_mod += ref->ref_mod; 1956 break; 1957 default: 1958 WARN_ON(1); 1959 } 1960 atomic_dec(&delayed_refs->num_entries); 1961 1962 /* 1963 * Record the must_insert_reserved flag before we drop the 1964 * spin lock. 1965 */ 1966 must_insert_reserved = locked_ref->must_insert_reserved; 1967 locked_ref->must_insert_reserved = 0; 1968 1969 extent_op = locked_ref->extent_op; 1970 locked_ref->extent_op = NULL; 1971 spin_unlock(&locked_ref->lock); 1972 1973 ret = run_one_delayed_ref(trans, ref, extent_op, 1974 must_insert_reserved); 1975 1976 btrfs_free_delayed_extent_op(extent_op); 1977 if (ret) { 1978 unselect_delayed_ref_head(delayed_refs, locked_ref); 1979 btrfs_put_delayed_ref(ref); 1980 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1981 ret); 1982 return ret; 1983 } 1984 1985 btrfs_put_delayed_ref(ref); 1986 cond_resched(); 1987 1988 spin_lock(&locked_ref->lock); 1989 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1990 } 1991 1992 return 0; 1993 } 1994 1995 /* 1996 * Returns 0 on success or if called with an already aborted transaction. 1997 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1998 */ 1999 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2000 unsigned long nr) 2001 { 2002 struct btrfs_fs_info *fs_info = trans->fs_info; 2003 struct btrfs_delayed_ref_root *delayed_refs; 2004 struct btrfs_delayed_ref_head *locked_ref = NULL; 2005 ktime_t start = ktime_get(); 2006 int ret; 2007 unsigned long count = 0; 2008 unsigned long actual_count = 0; 2009 2010 delayed_refs = &trans->transaction->delayed_refs; 2011 do { 2012 if (!locked_ref) { 2013 locked_ref = btrfs_obtain_ref_head(trans); 2014 if (IS_ERR_OR_NULL(locked_ref)) { 2015 if (PTR_ERR(locked_ref) == -EAGAIN) { 2016 continue; 2017 } else { 2018 break; 2019 } 2020 } 2021 count++; 2022 } 2023 /* 2024 * We need to try and merge add/drops of the same ref since we 2025 * can run into issues with relocate dropping the implicit ref 2026 * and then it being added back again before the drop can 2027 * finish. If we merged anything we need to re-loop so we can 2028 * get a good ref. 2029 * Or we can get node references of the same type that weren't 2030 * merged when created due to bumps in the tree mod seq, and 2031 * we need to merge them to prevent adding an inline extent 2032 * backref before dropping it (triggering a BUG_ON at 2033 * insert_inline_extent_backref()). 2034 */ 2035 spin_lock(&locked_ref->lock); 2036 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2037 2038 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2039 &actual_count); 2040 if (ret < 0 && ret != -EAGAIN) { 2041 /* 2042 * Error, btrfs_run_delayed_refs_for_head already 2043 * unlocked everything so just bail out 2044 */ 2045 return ret; 2046 } else if (!ret) { 2047 /* 2048 * Success, perform the usual cleanup of a processed 2049 * head 2050 */ 2051 ret = cleanup_ref_head(trans, locked_ref); 2052 if (ret > 0 ) { 2053 /* We dropped our lock, we need to loop. */ 2054 ret = 0; 2055 continue; 2056 } else if (ret) { 2057 return ret; 2058 } 2059 } 2060 2061 /* 2062 * Either success case or btrfs_run_delayed_refs_for_head 2063 * returned -EAGAIN, meaning we need to select another head 2064 */ 2065 2066 locked_ref = NULL; 2067 cond_resched(); 2068 } while ((nr != -1 && count < nr) || locked_ref); 2069 2070 /* 2071 * We don't want to include ref heads since we can have empty ref heads 2072 * and those will drastically skew our runtime down since we just do 2073 * accounting, no actual extent tree updates. 2074 */ 2075 if (actual_count > 0) { 2076 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2077 u64 avg; 2078 2079 /* 2080 * We weigh the current average higher than our current runtime 2081 * to avoid large swings in the average. 2082 */ 2083 spin_lock(&delayed_refs->lock); 2084 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2085 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2086 spin_unlock(&delayed_refs->lock); 2087 } 2088 return 0; 2089 } 2090 2091 #ifdef SCRAMBLE_DELAYED_REFS 2092 /* 2093 * Normally delayed refs get processed in ascending bytenr order. This 2094 * correlates in most cases to the order added. To expose dependencies on this 2095 * order, we start to process the tree in the middle instead of the beginning 2096 */ 2097 static u64 find_middle(struct rb_root *root) 2098 { 2099 struct rb_node *n = root->rb_node; 2100 struct btrfs_delayed_ref_node *entry; 2101 int alt = 1; 2102 u64 middle; 2103 u64 first = 0, last = 0; 2104 2105 n = rb_first(root); 2106 if (n) { 2107 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2108 first = entry->bytenr; 2109 } 2110 n = rb_last(root); 2111 if (n) { 2112 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2113 last = entry->bytenr; 2114 } 2115 n = root->rb_node; 2116 2117 while (n) { 2118 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2119 WARN_ON(!entry->in_tree); 2120 2121 middle = entry->bytenr; 2122 2123 if (alt) 2124 n = n->rb_left; 2125 else 2126 n = n->rb_right; 2127 2128 alt = 1 - alt; 2129 } 2130 return middle; 2131 } 2132 #endif 2133 2134 /* 2135 * this starts processing the delayed reference count updates and 2136 * extent insertions we have queued up so far. count can be 2137 * 0, which means to process everything in the tree at the start 2138 * of the run (but not newly added entries), or it can be some target 2139 * number you'd like to process. 2140 * 2141 * Returns 0 on success or if called with an aborted transaction 2142 * Returns <0 on error and aborts the transaction 2143 */ 2144 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2145 unsigned long count) 2146 { 2147 struct btrfs_fs_info *fs_info = trans->fs_info; 2148 struct rb_node *node; 2149 struct btrfs_delayed_ref_root *delayed_refs; 2150 struct btrfs_delayed_ref_head *head; 2151 int ret; 2152 int run_all = count == (unsigned long)-1; 2153 2154 /* We'll clean this up in btrfs_cleanup_transaction */ 2155 if (TRANS_ABORTED(trans)) 2156 return 0; 2157 2158 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2159 return 0; 2160 2161 delayed_refs = &trans->transaction->delayed_refs; 2162 if (count == 0) 2163 count = atomic_read(&delayed_refs->num_entries) * 2; 2164 2165 again: 2166 #ifdef SCRAMBLE_DELAYED_REFS 2167 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2168 #endif 2169 ret = __btrfs_run_delayed_refs(trans, count); 2170 if (ret < 0) { 2171 btrfs_abort_transaction(trans, ret); 2172 return ret; 2173 } 2174 2175 if (run_all) { 2176 btrfs_create_pending_block_groups(trans); 2177 2178 spin_lock(&delayed_refs->lock); 2179 node = rb_first_cached(&delayed_refs->href_root); 2180 if (!node) { 2181 spin_unlock(&delayed_refs->lock); 2182 goto out; 2183 } 2184 head = rb_entry(node, struct btrfs_delayed_ref_head, 2185 href_node); 2186 refcount_inc(&head->refs); 2187 spin_unlock(&delayed_refs->lock); 2188 2189 /* Mutex was contended, block until it's released and retry. */ 2190 mutex_lock(&head->mutex); 2191 mutex_unlock(&head->mutex); 2192 2193 btrfs_put_delayed_ref_head(head); 2194 cond_resched(); 2195 goto again; 2196 } 2197 out: 2198 return 0; 2199 } 2200 2201 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2202 struct extent_buffer *eb, u64 flags, 2203 int level, int is_data) 2204 { 2205 struct btrfs_delayed_extent_op *extent_op; 2206 int ret; 2207 2208 extent_op = btrfs_alloc_delayed_extent_op(); 2209 if (!extent_op) 2210 return -ENOMEM; 2211 2212 extent_op->flags_to_set = flags; 2213 extent_op->update_flags = true; 2214 extent_op->update_key = false; 2215 extent_op->is_data = is_data ? true : false; 2216 extent_op->level = level; 2217 2218 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2219 if (ret) 2220 btrfs_free_delayed_extent_op(extent_op); 2221 return ret; 2222 } 2223 2224 static noinline int check_delayed_ref(struct btrfs_root *root, 2225 struct btrfs_path *path, 2226 u64 objectid, u64 offset, u64 bytenr) 2227 { 2228 struct btrfs_delayed_ref_head *head; 2229 struct btrfs_delayed_ref_node *ref; 2230 struct btrfs_delayed_data_ref *data_ref; 2231 struct btrfs_delayed_ref_root *delayed_refs; 2232 struct btrfs_transaction *cur_trans; 2233 struct rb_node *node; 2234 int ret = 0; 2235 2236 spin_lock(&root->fs_info->trans_lock); 2237 cur_trans = root->fs_info->running_transaction; 2238 if (cur_trans) 2239 refcount_inc(&cur_trans->use_count); 2240 spin_unlock(&root->fs_info->trans_lock); 2241 if (!cur_trans) 2242 return 0; 2243 2244 delayed_refs = &cur_trans->delayed_refs; 2245 spin_lock(&delayed_refs->lock); 2246 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2247 if (!head) { 2248 spin_unlock(&delayed_refs->lock); 2249 btrfs_put_transaction(cur_trans); 2250 return 0; 2251 } 2252 2253 if (!mutex_trylock(&head->mutex)) { 2254 refcount_inc(&head->refs); 2255 spin_unlock(&delayed_refs->lock); 2256 2257 btrfs_release_path(path); 2258 2259 /* 2260 * Mutex was contended, block until it's released and let 2261 * caller try again 2262 */ 2263 mutex_lock(&head->mutex); 2264 mutex_unlock(&head->mutex); 2265 btrfs_put_delayed_ref_head(head); 2266 btrfs_put_transaction(cur_trans); 2267 return -EAGAIN; 2268 } 2269 spin_unlock(&delayed_refs->lock); 2270 2271 spin_lock(&head->lock); 2272 /* 2273 * XXX: We should replace this with a proper search function in the 2274 * future. 2275 */ 2276 for (node = rb_first_cached(&head->ref_tree); node; 2277 node = rb_next(node)) { 2278 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2279 /* If it's a shared ref we know a cross reference exists */ 2280 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2281 ret = 1; 2282 break; 2283 } 2284 2285 data_ref = btrfs_delayed_node_to_data_ref(ref); 2286 2287 /* 2288 * If our ref doesn't match the one we're currently looking at 2289 * then we have a cross reference. 2290 */ 2291 if (data_ref->root != root->root_key.objectid || 2292 data_ref->objectid != objectid || 2293 data_ref->offset != offset) { 2294 ret = 1; 2295 break; 2296 } 2297 } 2298 spin_unlock(&head->lock); 2299 mutex_unlock(&head->mutex); 2300 btrfs_put_transaction(cur_trans); 2301 return ret; 2302 } 2303 2304 static noinline int check_committed_ref(struct btrfs_root *root, 2305 struct btrfs_path *path, 2306 u64 objectid, u64 offset, u64 bytenr, 2307 bool strict) 2308 { 2309 struct btrfs_fs_info *fs_info = root->fs_info; 2310 struct btrfs_root *extent_root = fs_info->extent_root; 2311 struct extent_buffer *leaf; 2312 struct btrfs_extent_data_ref *ref; 2313 struct btrfs_extent_inline_ref *iref; 2314 struct btrfs_extent_item *ei; 2315 struct btrfs_key key; 2316 u32 item_size; 2317 int type; 2318 int ret; 2319 2320 key.objectid = bytenr; 2321 key.offset = (u64)-1; 2322 key.type = BTRFS_EXTENT_ITEM_KEY; 2323 2324 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2325 if (ret < 0) 2326 goto out; 2327 BUG_ON(ret == 0); /* Corruption */ 2328 2329 ret = -ENOENT; 2330 if (path->slots[0] == 0) 2331 goto out; 2332 2333 path->slots[0]--; 2334 leaf = path->nodes[0]; 2335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2336 2337 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2338 goto out; 2339 2340 ret = 1; 2341 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2342 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2343 2344 /* If extent item has more than 1 inline ref then it's shared */ 2345 if (item_size != sizeof(*ei) + 2346 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2347 goto out; 2348 2349 /* 2350 * If extent created before last snapshot => it's shared unless the 2351 * snapshot has been deleted. Use the heuristic if strict is false. 2352 */ 2353 if (!strict && 2354 (btrfs_extent_generation(leaf, ei) <= 2355 btrfs_root_last_snapshot(&root->root_item))) 2356 goto out; 2357 2358 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2359 2360 /* If this extent has SHARED_DATA_REF then it's shared */ 2361 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2362 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2363 goto out; 2364 2365 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2366 if (btrfs_extent_refs(leaf, ei) != 2367 btrfs_extent_data_ref_count(leaf, ref) || 2368 btrfs_extent_data_ref_root(leaf, ref) != 2369 root->root_key.objectid || 2370 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2371 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2372 goto out; 2373 2374 ret = 0; 2375 out: 2376 return ret; 2377 } 2378 2379 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2380 u64 bytenr, bool strict) 2381 { 2382 struct btrfs_path *path; 2383 int ret; 2384 2385 path = btrfs_alloc_path(); 2386 if (!path) 2387 return -ENOMEM; 2388 2389 do { 2390 ret = check_committed_ref(root, path, objectid, 2391 offset, bytenr, strict); 2392 if (ret && ret != -ENOENT) 2393 goto out; 2394 2395 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2396 } while (ret == -EAGAIN); 2397 2398 out: 2399 btrfs_free_path(path); 2400 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2401 WARN_ON(ret > 0); 2402 return ret; 2403 } 2404 2405 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2406 struct btrfs_root *root, 2407 struct extent_buffer *buf, 2408 int full_backref, int inc) 2409 { 2410 struct btrfs_fs_info *fs_info = root->fs_info; 2411 u64 bytenr; 2412 u64 num_bytes; 2413 u64 parent; 2414 u64 ref_root; 2415 u32 nritems; 2416 struct btrfs_key key; 2417 struct btrfs_file_extent_item *fi; 2418 struct btrfs_ref generic_ref = { 0 }; 2419 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2420 int i; 2421 int action; 2422 int level; 2423 int ret = 0; 2424 2425 if (btrfs_is_testing(fs_info)) 2426 return 0; 2427 2428 ref_root = btrfs_header_owner(buf); 2429 nritems = btrfs_header_nritems(buf); 2430 level = btrfs_header_level(buf); 2431 2432 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2433 return 0; 2434 2435 if (full_backref) 2436 parent = buf->start; 2437 else 2438 parent = 0; 2439 if (inc) 2440 action = BTRFS_ADD_DELAYED_REF; 2441 else 2442 action = BTRFS_DROP_DELAYED_REF; 2443 2444 for (i = 0; i < nritems; i++) { 2445 if (level == 0) { 2446 btrfs_item_key_to_cpu(buf, &key, i); 2447 if (key.type != BTRFS_EXTENT_DATA_KEY) 2448 continue; 2449 fi = btrfs_item_ptr(buf, i, 2450 struct btrfs_file_extent_item); 2451 if (btrfs_file_extent_type(buf, fi) == 2452 BTRFS_FILE_EXTENT_INLINE) 2453 continue; 2454 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2455 if (bytenr == 0) 2456 continue; 2457 2458 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2459 key.offset -= btrfs_file_extent_offset(buf, fi); 2460 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2461 num_bytes, parent); 2462 generic_ref.real_root = root->root_key.objectid; 2463 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2464 key.offset); 2465 generic_ref.skip_qgroup = for_reloc; 2466 if (inc) 2467 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2468 else 2469 ret = btrfs_free_extent(trans, &generic_ref); 2470 if (ret) 2471 goto fail; 2472 } else { 2473 bytenr = btrfs_node_blockptr(buf, i); 2474 num_bytes = fs_info->nodesize; 2475 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2476 num_bytes, parent); 2477 generic_ref.real_root = root->root_key.objectid; 2478 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2479 generic_ref.skip_qgroup = for_reloc; 2480 if (inc) 2481 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2482 else 2483 ret = btrfs_free_extent(trans, &generic_ref); 2484 if (ret) 2485 goto fail; 2486 } 2487 } 2488 return 0; 2489 fail: 2490 return ret; 2491 } 2492 2493 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2494 struct extent_buffer *buf, int full_backref) 2495 { 2496 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2497 } 2498 2499 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2500 struct extent_buffer *buf, int full_backref) 2501 { 2502 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2503 } 2504 2505 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2506 { 2507 struct btrfs_block_group *block_group; 2508 int readonly = 0; 2509 2510 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2511 if (!block_group || block_group->ro) 2512 readonly = 1; 2513 if (block_group) 2514 btrfs_put_block_group(block_group); 2515 return readonly; 2516 } 2517 2518 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2519 { 2520 struct btrfs_fs_info *fs_info = root->fs_info; 2521 u64 flags; 2522 u64 ret; 2523 2524 if (data) 2525 flags = BTRFS_BLOCK_GROUP_DATA; 2526 else if (root == fs_info->chunk_root) 2527 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2528 else 2529 flags = BTRFS_BLOCK_GROUP_METADATA; 2530 2531 ret = btrfs_get_alloc_profile(fs_info, flags); 2532 return ret; 2533 } 2534 2535 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2536 { 2537 struct btrfs_block_group *cache; 2538 u64 bytenr; 2539 2540 spin_lock(&fs_info->block_group_cache_lock); 2541 bytenr = fs_info->first_logical_byte; 2542 spin_unlock(&fs_info->block_group_cache_lock); 2543 2544 if (bytenr < (u64)-1) 2545 return bytenr; 2546 2547 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2548 if (!cache) 2549 return 0; 2550 2551 bytenr = cache->start; 2552 btrfs_put_block_group(cache); 2553 2554 return bytenr; 2555 } 2556 2557 static int pin_down_extent(struct btrfs_trans_handle *trans, 2558 struct btrfs_block_group *cache, 2559 u64 bytenr, u64 num_bytes, int reserved) 2560 { 2561 struct btrfs_fs_info *fs_info = cache->fs_info; 2562 2563 spin_lock(&cache->space_info->lock); 2564 spin_lock(&cache->lock); 2565 cache->pinned += num_bytes; 2566 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2567 num_bytes); 2568 if (reserved) { 2569 cache->reserved -= num_bytes; 2570 cache->space_info->bytes_reserved -= num_bytes; 2571 } 2572 spin_unlock(&cache->lock); 2573 spin_unlock(&cache->space_info->lock); 2574 2575 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2576 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2577 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2578 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2579 return 0; 2580 } 2581 2582 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2583 u64 bytenr, u64 num_bytes, int reserved) 2584 { 2585 struct btrfs_block_group *cache; 2586 2587 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2588 BUG_ON(!cache); /* Logic error */ 2589 2590 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2591 2592 btrfs_put_block_group(cache); 2593 return 0; 2594 } 2595 2596 /* 2597 * this function must be called within transaction 2598 */ 2599 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2600 u64 bytenr, u64 num_bytes) 2601 { 2602 struct btrfs_block_group *cache; 2603 int ret; 2604 2605 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes); 2606 2607 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2608 if (!cache) 2609 return -EINVAL; 2610 2611 /* 2612 * pull in the free space cache (if any) so that our pin 2613 * removes the free space from the cache. We have load_only set 2614 * to one because the slow code to read in the free extents does check 2615 * the pinned extents. 2616 */ 2617 btrfs_cache_block_group(cache, 1); 2618 2619 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2620 2621 /* remove us from the free space cache (if we're there at all) */ 2622 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2623 btrfs_put_block_group(cache); 2624 return ret; 2625 } 2626 2627 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2628 u64 start, u64 num_bytes) 2629 { 2630 int ret; 2631 struct btrfs_block_group *block_group; 2632 struct btrfs_caching_control *caching_ctl; 2633 2634 block_group = btrfs_lookup_block_group(fs_info, start); 2635 if (!block_group) 2636 return -EINVAL; 2637 2638 btrfs_cache_block_group(block_group, 0); 2639 caching_ctl = btrfs_get_caching_control(block_group); 2640 2641 if (!caching_ctl) { 2642 /* Logic error */ 2643 BUG_ON(!btrfs_block_group_done(block_group)); 2644 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2645 } else { 2646 /* 2647 * We must wait for v1 caching to finish, otherwise we may not 2648 * remove our space. 2649 */ 2650 btrfs_wait_space_cache_v1_finished(block_group, caching_ctl); 2651 mutex_lock(&caching_ctl->mutex); 2652 2653 if (start >= caching_ctl->progress) { 2654 ret = btrfs_add_excluded_extent(fs_info, start, 2655 num_bytes); 2656 } else if (start + num_bytes <= caching_ctl->progress) { 2657 ret = btrfs_remove_free_space(block_group, 2658 start, num_bytes); 2659 } else { 2660 num_bytes = caching_ctl->progress - start; 2661 ret = btrfs_remove_free_space(block_group, 2662 start, num_bytes); 2663 if (ret) 2664 goto out_lock; 2665 2666 num_bytes = (start + num_bytes) - 2667 caching_ctl->progress; 2668 start = caching_ctl->progress; 2669 ret = btrfs_add_excluded_extent(fs_info, start, 2670 num_bytes); 2671 } 2672 out_lock: 2673 mutex_unlock(&caching_ctl->mutex); 2674 btrfs_put_caching_control(caching_ctl); 2675 } 2676 btrfs_put_block_group(block_group); 2677 return ret; 2678 } 2679 2680 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2681 { 2682 struct btrfs_fs_info *fs_info = eb->fs_info; 2683 struct btrfs_file_extent_item *item; 2684 struct btrfs_key key; 2685 int found_type; 2686 int i; 2687 int ret = 0; 2688 2689 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2690 return 0; 2691 2692 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2693 btrfs_item_key_to_cpu(eb, &key, i); 2694 if (key.type != BTRFS_EXTENT_DATA_KEY) 2695 continue; 2696 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2697 found_type = btrfs_file_extent_type(eb, item); 2698 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2699 continue; 2700 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2701 continue; 2702 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2703 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2704 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2705 if (ret) 2706 break; 2707 } 2708 2709 return ret; 2710 } 2711 2712 static void 2713 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2714 { 2715 atomic_inc(&bg->reservations); 2716 } 2717 2718 /* 2719 * Returns the free cluster for the given space info and sets empty_cluster to 2720 * what it should be based on the mount options. 2721 */ 2722 static struct btrfs_free_cluster * 2723 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2724 struct btrfs_space_info *space_info, u64 *empty_cluster) 2725 { 2726 struct btrfs_free_cluster *ret = NULL; 2727 2728 *empty_cluster = 0; 2729 if (btrfs_mixed_space_info(space_info)) 2730 return ret; 2731 2732 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2733 ret = &fs_info->meta_alloc_cluster; 2734 if (btrfs_test_opt(fs_info, SSD)) 2735 *empty_cluster = SZ_2M; 2736 else 2737 *empty_cluster = SZ_64K; 2738 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2739 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2740 *empty_cluster = SZ_2M; 2741 ret = &fs_info->data_alloc_cluster; 2742 } 2743 2744 return ret; 2745 } 2746 2747 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2748 u64 start, u64 end, 2749 const bool return_free_space) 2750 { 2751 struct btrfs_block_group *cache = NULL; 2752 struct btrfs_space_info *space_info; 2753 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2754 struct btrfs_free_cluster *cluster = NULL; 2755 u64 len; 2756 u64 total_unpinned = 0; 2757 u64 empty_cluster = 0; 2758 bool readonly; 2759 2760 while (start <= end) { 2761 readonly = false; 2762 if (!cache || 2763 start >= cache->start + cache->length) { 2764 if (cache) 2765 btrfs_put_block_group(cache); 2766 total_unpinned = 0; 2767 cache = btrfs_lookup_block_group(fs_info, start); 2768 BUG_ON(!cache); /* Logic error */ 2769 2770 cluster = fetch_cluster_info(fs_info, 2771 cache->space_info, 2772 &empty_cluster); 2773 empty_cluster <<= 1; 2774 } 2775 2776 len = cache->start + cache->length - start; 2777 len = min(len, end + 1 - start); 2778 2779 down_read(&fs_info->commit_root_sem); 2780 if (start < cache->last_byte_to_unpin && return_free_space) { 2781 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2782 2783 btrfs_add_free_space(cache, start, add_len); 2784 } 2785 up_read(&fs_info->commit_root_sem); 2786 2787 start += len; 2788 total_unpinned += len; 2789 space_info = cache->space_info; 2790 2791 /* 2792 * If this space cluster has been marked as fragmented and we've 2793 * unpinned enough in this block group to potentially allow a 2794 * cluster to be created inside of it go ahead and clear the 2795 * fragmented check. 2796 */ 2797 if (cluster && cluster->fragmented && 2798 total_unpinned > empty_cluster) { 2799 spin_lock(&cluster->lock); 2800 cluster->fragmented = 0; 2801 spin_unlock(&cluster->lock); 2802 } 2803 2804 spin_lock(&space_info->lock); 2805 spin_lock(&cache->lock); 2806 cache->pinned -= len; 2807 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2808 space_info->max_extent_size = 0; 2809 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2810 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2811 if (cache->ro) { 2812 space_info->bytes_readonly += len; 2813 readonly = true; 2814 } 2815 spin_unlock(&cache->lock); 2816 if (!readonly && return_free_space && 2817 global_rsv->space_info == space_info) { 2818 u64 to_add = len; 2819 2820 spin_lock(&global_rsv->lock); 2821 if (!global_rsv->full) { 2822 to_add = min(len, global_rsv->size - 2823 global_rsv->reserved); 2824 global_rsv->reserved += to_add; 2825 btrfs_space_info_update_bytes_may_use(fs_info, 2826 space_info, to_add); 2827 if (global_rsv->reserved >= global_rsv->size) 2828 global_rsv->full = 1; 2829 len -= to_add; 2830 } 2831 spin_unlock(&global_rsv->lock); 2832 } 2833 /* Add to any tickets we may have */ 2834 if (!readonly && return_free_space && len) 2835 btrfs_try_granting_tickets(fs_info, space_info); 2836 spin_unlock(&space_info->lock); 2837 } 2838 2839 if (cache) 2840 btrfs_put_block_group(cache); 2841 return 0; 2842 } 2843 2844 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2845 { 2846 struct btrfs_fs_info *fs_info = trans->fs_info; 2847 struct btrfs_block_group *block_group, *tmp; 2848 struct list_head *deleted_bgs; 2849 struct extent_io_tree *unpin; 2850 u64 start; 2851 u64 end; 2852 int ret; 2853 2854 unpin = &trans->transaction->pinned_extents; 2855 2856 while (!TRANS_ABORTED(trans)) { 2857 struct extent_state *cached_state = NULL; 2858 2859 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2860 ret = find_first_extent_bit(unpin, 0, &start, &end, 2861 EXTENT_DIRTY, &cached_state); 2862 if (ret) { 2863 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2864 break; 2865 } 2866 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 2867 clear_extent_bits(&fs_info->excluded_extents, start, 2868 end, EXTENT_UPTODATE); 2869 2870 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2871 ret = btrfs_discard_extent(fs_info, start, 2872 end + 1 - start, NULL); 2873 2874 clear_extent_dirty(unpin, start, end, &cached_state); 2875 unpin_extent_range(fs_info, start, end, true); 2876 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2877 free_extent_state(cached_state); 2878 cond_resched(); 2879 } 2880 2881 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2882 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2883 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2884 } 2885 2886 /* 2887 * Transaction is finished. We don't need the lock anymore. We 2888 * do need to clean up the block groups in case of a transaction 2889 * abort. 2890 */ 2891 deleted_bgs = &trans->transaction->deleted_bgs; 2892 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2893 u64 trimmed = 0; 2894 2895 ret = -EROFS; 2896 if (!TRANS_ABORTED(trans)) 2897 ret = btrfs_discard_extent(fs_info, 2898 block_group->start, 2899 block_group->length, 2900 &trimmed); 2901 2902 list_del_init(&block_group->bg_list); 2903 btrfs_unfreeze_block_group(block_group); 2904 btrfs_put_block_group(block_group); 2905 2906 if (ret) { 2907 const char *errstr = btrfs_decode_error(ret); 2908 btrfs_warn(fs_info, 2909 "discard failed while removing blockgroup: errno=%d %s", 2910 ret, errstr); 2911 } 2912 } 2913 2914 return 0; 2915 } 2916 2917 /* 2918 * Drop one or more refs of @node. 2919 * 2920 * 1. Locate the extent refs. 2921 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2922 * Locate it, then reduce the refs number or remove the ref line completely. 2923 * 2924 * 2. Update the refs count in EXTENT/METADATA_ITEM 2925 * 2926 * Inline backref case: 2927 * 2928 * in extent tree we have: 2929 * 2930 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2931 * refs 2 gen 6 flags DATA 2932 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2933 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2934 * 2935 * This function gets called with: 2936 * 2937 * node->bytenr = 13631488 2938 * node->num_bytes = 1048576 2939 * root_objectid = FS_TREE 2940 * owner_objectid = 257 2941 * owner_offset = 0 2942 * refs_to_drop = 1 2943 * 2944 * Then we should get some like: 2945 * 2946 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2947 * refs 1 gen 6 flags DATA 2948 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2949 * 2950 * Keyed backref case: 2951 * 2952 * in extent tree we have: 2953 * 2954 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2955 * refs 754 gen 6 flags DATA 2956 * [...] 2957 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2958 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2959 * 2960 * This function get called with: 2961 * 2962 * node->bytenr = 13631488 2963 * node->num_bytes = 1048576 2964 * root_objectid = FS_TREE 2965 * owner_objectid = 866 2966 * owner_offset = 0 2967 * refs_to_drop = 1 2968 * 2969 * Then we should get some like: 2970 * 2971 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2972 * refs 753 gen 6 flags DATA 2973 * 2974 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2975 */ 2976 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2977 struct btrfs_delayed_ref_node *node, u64 parent, 2978 u64 root_objectid, u64 owner_objectid, 2979 u64 owner_offset, int refs_to_drop, 2980 struct btrfs_delayed_extent_op *extent_op) 2981 { 2982 struct btrfs_fs_info *info = trans->fs_info; 2983 struct btrfs_key key; 2984 struct btrfs_path *path; 2985 struct btrfs_root *extent_root = info->extent_root; 2986 struct extent_buffer *leaf; 2987 struct btrfs_extent_item *ei; 2988 struct btrfs_extent_inline_ref *iref; 2989 int ret; 2990 int is_data; 2991 int extent_slot = 0; 2992 int found_extent = 0; 2993 int num_to_del = 1; 2994 u32 item_size; 2995 u64 refs; 2996 u64 bytenr = node->bytenr; 2997 u64 num_bytes = node->num_bytes; 2998 int last_ref = 0; 2999 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3000 3001 path = btrfs_alloc_path(); 3002 if (!path) 3003 return -ENOMEM; 3004 3005 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3006 3007 if (!is_data && refs_to_drop != 1) { 3008 btrfs_crit(info, 3009 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3010 node->bytenr, refs_to_drop); 3011 ret = -EINVAL; 3012 btrfs_abort_transaction(trans, ret); 3013 goto out; 3014 } 3015 3016 if (is_data) 3017 skinny_metadata = false; 3018 3019 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3020 parent, root_objectid, owner_objectid, 3021 owner_offset); 3022 if (ret == 0) { 3023 /* 3024 * Either the inline backref or the SHARED_DATA_REF/ 3025 * SHARED_BLOCK_REF is found 3026 * 3027 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3028 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3029 */ 3030 extent_slot = path->slots[0]; 3031 while (extent_slot >= 0) { 3032 btrfs_item_key_to_cpu(path->nodes[0], &key, 3033 extent_slot); 3034 if (key.objectid != bytenr) 3035 break; 3036 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3037 key.offset == num_bytes) { 3038 found_extent = 1; 3039 break; 3040 } 3041 if (key.type == BTRFS_METADATA_ITEM_KEY && 3042 key.offset == owner_objectid) { 3043 found_extent = 1; 3044 break; 3045 } 3046 3047 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3048 if (path->slots[0] - extent_slot > 5) 3049 break; 3050 extent_slot--; 3051 } 3052 3053 if (!found_extent) { 3054 if (iref) { 3055 btrfs_crit(info, 3056 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3057 btrfs_abort_transaction(trans, -EUCLEAN); 3058 goto err_dump; 3059 } 3060 /* Must be SHARED_* item, remove the backref first */ 3061 ret = remove_extent_backref(trans, path, NULL, 3062 refs_to_drop, 3063 is_data, &last_ref); 3064 if (ret) { 3065 btrfs_abort_transaction(trans, ret); 3066 goto out; 3067 } 3068 btrfs_release_path(path); 3069 3070 /* Slow path to locate EXTENT/METADATA_ITEM */ 3071 key.objectid = bytenr; 3072 key.type = BTRFS_EXTENT_ITEM_KEY; 3073 key.offset = num_bytes; 3074 3075 if (!is_data && skinny_metadata) { 3076 key.type = BTRFS_METADATA_ITEM_KEY; 3077 key.offset = owner_objectid; 3078 } 3079 3080 ret = btrfs_search_slot(trans, extent_root, 3081 &key, path, -1, 1); 3082 if (ret > 0 && skinny_metadata && path->slots[0]) { 3083 /* 3084 * Couldn't find our skinny metadata item, 3085 * see if we have ye olde extent item. 3086 */ 3087 path->slots[0]--; 3088 btrfs_item_key_to_cpu(path->nodes[0], &key, 3089 path->slots[0]); 3090 if (key.objectid == bytenr && 3091 key.type == BTRFS_EXTENT_ITEM_KEY && 3092 key.offset == num_bytes) 3093 ret = 0; 3094 } 3095 3096 if (ret > 0 && skinny_metadata) { 3097 skinny_metadata = false; 3098 key.objectid = bytenr; 3099 key.type = BTRFS_EXTENT_ITEM_KEY; 3100 key.offset = num_bytes; 3101 btrfs_release_path(path); 3102 ret = btrfs_search_slot(trans, extent_root, 3103 &key, path, -1, 1); 3104 } 3105 3106 if (ret) { 3107 btrfs_err(info, 3108 "umm, got %d back from search, was looking for %llu", 3109 ret, bytenr); 3110 if (ret > 0) 3111 btrfs_print_leaf(path->nodes[0]); 3112 } 3113 if (ret < 0) { 3114 btrfs_abort_transaction(trans, ret); 3115 goto out; 3116 } 3117 extent_slot = path->slots[0]; 3118 } 3119 } else if (WARN_ON(ret == -ENOENT)) { 3120 btrfs_print_leaf(path->nodes[0]); 3121 btrfs_err(info, 3122 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3123 bytenr, parent, root_objectid, owner_objectid, 3124 owner_offset); 3125 btrfs_abort_transaction(trans, ret); 3126 goto out; 3127 } else { 3128 btrfs_abort_transaction(trans, ret); 3129 goto out; 3130 } 3131 3132 leaf = path->nodes[0]; 3133 item_size = btrfs_item_size_nr(leaf, extent_slot); 3134 if (unlikely(item_size < sizeof(*ei))) { 3135 ret = -EINVAL; 3136 btrfs_print_v0_err(info); 3137 btrfs_abort_transaction(trans, ret); 3138 goto out; 3139 } 3140 ei = btrfs_item_ptr(leaf, extent_slot, 3141 struct btrfs_extent_item); 3142 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3143 key.type == BTRFS_EXTENT_ITEM_KEY) { 3144 struct btrfs_tree_block_info *bi; 3145 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3146 btrfs_crit(info, 3147 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3148 key.objectid, key.type, key.offset, 3149 owner_objectid, item_size, 3150 sizeof(*ei) + sizeof(*bi)); 3151 btrfs_abort_transaction(trans, -EUCLEAN); 3152 goto err_dump; 3153 } 3154 bi = (struct btrfs_tree_block_info *)(ei + 1); 3155 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3156 } 3157 3158 refs = btrfs_extent_refs(leaf, ei); 3159 if (refs < refs_to_drop) { 3160 btrfs_crit(info, 3161 "trying to drop %d refs but we only have %llu for bytenr %llu", 3162 refs_to_drop, refs, bytenr); 3163 btrfs_abort_transaction(trans, -EUCLEAN); 3164 goto err_dump; 3165 } 3166 refs -= refs_to_drop; 3167 3168 if (refs > 0) { 3169 if (extent_op) 3170 __run_delayed_extent_op(extent_op, leaf, ei); 3171 /* 3172 * In the case of inline back ref, reference count will 3173 * be updated by remove_extent_backref 3174 */ 3175 if (iref) { 3176 if (!found_extent) { 3177 btrfs_crit(info, 3178 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3179 btrfs_abort_transaction(trans, -EUCLEAN); 3180 goto err_dump; 3181 } 3182 } else { 3183 btrfs_set_extent_refs(leaf, ei, refs); 3184 btrfs_mark_buffer_dirty(leaf); 3185 } 3186 if (found_extent) { 3187 ret = remove_extent_backref(trans, path, iref, 3188 refs_to_drop, is_data, 3189 &last_ref); 3190 if (ret) { 3191 btrfs_abort_transaction(trans, ret); 3192 goto out; 3193 } 3194 } 3195 } else { 3196 /* In this branch refs == 1 */ 3197 if (found_extent) { 3198 if (is_data && refs_to_drop != 3199 extent_data_ref_count(path, iref)) { 3200 btrfs_crit(info, 3201 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3202 extent_data_ref_count(path, iref), 3203 refs_to_drop); 3204 btrfs_abort_transaction(trans, -EUCLEAN); 3205 goto err_dump; 3206 } 3207 if (iref) { 3208 if (path->slots[0] != extent_slot) { 3209 btrfs_crit(info, 3210 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3211 key.objectid, key.type, 3212 key.offset); 3213 btrfs_abort_transaction(trans, -EUCLEAN); 3214 goto err_dump; 3215 } 3216 } else { 3217 /* 3218 * No inline ref, we must be at SHARED_* item, 3219 * And it's single ref, it must be: 3220 * | extent_slot ||extent_slot + 1| 3221 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3222 */ 3223 if (path->slots[0] != extent_slot + 1) { 3224 btrfs_crit(info, 3225 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3226 btrfs_abort_transaction(trans, -EUCLEAN); 3227 goto err_dump; 3228 } 3229 path->slots[0] = extent_slot; 3230 num_to_del = 2; 3231 } 3232 } 3233 3234 last_ref = 1; 3235 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3236 num_to_del); 3237 if (ret) { 3238 btrfs_abort_transaction(trans, ret); 3239 goto out; 3240 } 3241 btrfs_release_path(path); 3242 3243 if (is_data) { 3244 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3245 num_bytes); 3246 if (ret) { 3247 btrfs_abort_transaction(trans, ret); 3248 goto out; 3249 } 3250 } 3251 3252 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3253 if (ret) { 3254 btrfs_abort_transaction(trans, ret); 3255 goto out; 3256 } 3257 3258 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3259 if (ret) { 3260 btrfs_abort_transaction(trans, ret); 3261 goto out; 3262 } 3263 } 3264 btrfs_release_path(path); 3265 3266 out: 3267 btrfs_free_path(path); 3268 return ret; 3269 err_dump: 3270 /* 3271 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3272 * dump for debug build. 3273 */ 3274 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3275 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3276 path->slots[0], extent_slot); 3277 btrfs_print_leaf(path->nodes[0]); 3278 } 3279 3280 btrfs_free_path(path); 3281 return -EUCLEAN; 3282 } 3283 3284 /* 3285 * when we free an block, it is possible (and likely) that we free the last 3286 * delayed ref for that extent as well. This searches the delayed ref tree for 3287 * a given extent, and if there are no other delayed refs to be processed, it 3288 * removes it from the tree. 3289 */ 3290 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3291 u64 bytenr) 3292 { 3293 struct btrfs_delayed_ref_head *head; 3294 struct btrfs_delayed_ref_root *delayed_refs; 3295 int ret = 0; 3296 3297 delayed_refs = &trans->transaction->delayed_refs; 3298 spin_lock(&delayed_refs->lock); 3299 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3300 if (!head) 3301 goto out_delayed_unlock; 3302 3303 spin_lock(&head->lock); 3304 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3305 goto out; 3306 3307 if (cleanup_extent_op(head) != NULL) 3308 goto out; 3309 3310 /* 3311 * waiting for the lock here would deadlock. If someone else has it 3312 * locked they are already in the process of dropping it anyway 3313 */ 3314 if (!mutex_trylock(&head->mutex)) 3315 goto out; 3316 3317 btrfs_delete_ref_head(delayed_refs, head); 3318 head->processing = 0; 3319 3320 spin_unlock(&head->lock); 3321 spin_unlock(&delayed_refs->lock); 3322 3323 BUG_ON(head->extent_op); 3324 if (head->must_insert_reserved) 3325 ret = 1; 3326 3327 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3328 mutex_unlock(&head->mutex); 3329 btrfs_put_delayed_ref_head(head); 3330 return ret; 3331 out: 3332 spin_unlock(&head->lock); 3333 3334 out_delayed_unlock: 3335 spin_unlock(&delayed_refs->lock); 3336 return 0; 3337 } 3338 3339 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3340 struct btrfs_root *root, 3341 struct extent_buffer *buf, 3342 u64 parent, int last_ref) 3343 { 3344 struct btrfs_fs_info *fs_info = root->fs_info; 3345 struct btrfs_ref generic_ref = { 0 }; 3346 int pin = 1; 3347 int ret; 3348 3349 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3350 buf->start, buf->len, parent); 3351 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3352 root->root_key.objectid); 3353 3354 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3355 int old_ref_mod, new_ref_mod; 3356 3357 btrfs_ref_tree_mod(fs_info, &generic_ref); 3358 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3359 &old_ref_mod, &new_ref_mod); 3360 BUG_ON(ret); /* -ENOMEM */ 3361 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3362 } 3363 3364 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3365 struct btrfs_block_group *cache; 3366 3367 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3368 ret = check_ref_cleanup(trans, buf->start); 3369 if (!ret) 3370 goto out; 3371 } 3372 3373 pin = 0; 3374 cache = btrfs_lookup_block_group(fs_info, buf->start); 3375 3376 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3377 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3378 btrfs_put_block_group(cache); 3379 goto out; 3380 } 3381 3382 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3383 3384 btrfs_add_free_space(cache, buf->start, buf->len); 3385 btrfs_free_reserved_bytes(cache, buf->len, 0); 3386 btrfs_put_block_group(cache); 3387 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3388 } 3389 out: 3390 if (pin) 3391 add_pinned_bytes(fs_info, &generic_ref); 3392 3393 if (last_ref) { 3394 /* 3395 * Deleting the buffer, clear the corrupt flag since it doesn't 3396 * matter anymore. 3397 */ 3398 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3399 } 3400 } 3401 3402 /* Can return -ENOMEM */ 3403 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3404 { 3405 struct btrfs_fs_info *fs_info = trans->fs_info; 3406 int old_ref_mod, new_ref_mod; 3407 int ret; 3408 3409 if (btrfs_is_testing(fs_info)) 3410 return 0; 3411 3412 /* 3413 * tree log blocks never actually go into the extent allocation 3414 * tree, just update pinning info and exit early. 3415 */ 3416 if ((ref->type == BTRFS_REF_METADATA && 3417 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3418 (ref->type == BTRFS_REF_DATA && 3419 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3420 /* unlocks the pinned mutex */ 3421 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3422 old_ref_mod = new_ref_mod = 0; 3423 ret = 0; 3424 } else if (ref->type == BTRFS_REF_METADATA) { 3425 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3426 &old_ref_mod, &new_ref_mod); 3427 } else { 3428 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3429 &old_ref_mod, &new_ref_mod); 3430 } 3431 3432 if (!((ref->type == BTRFS_REF_METADATA && 3433 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3434 (ref->type == BTRFS_REF_DATA && 3435 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3436 btrfs_ref_tree_mod(fs_info, ref); 3437 3438 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3439 add_pinned_bytes(fs_info, ref); 3440 3441 return ret; 3442 } 3443 3444 enum btrfs_loop_type { 3445 LOOP_CACHING_NOWAIT, 3446 LOOP_CACHING_WAIT, 3447 LOOP_ALLOC_CHUNK, 3448 LOOP_NO_EMPTY_SIZE, 3449 }; 3450 3451 static inline void 3452 btrfs_lock_block_group(struct btrfs_block_group *cache, 3453 int delalloc) 3454 { 3455 if (delalloc) 3456 down_read(&cache->data_rwsem); 3457 } 3458 3459 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3460 int delalloc) 3461 { 3462 btrfs_get_block_group(cache); 3463 if (delalloc) 3464 down_read(&cache->data_rwsem); 3465 } 3466 3467 static struct btrfs_block_group *btrfs_lock_cluster( 3468 struct btrfs_block_group *block_group, 3469 struct btrfs_free_cluster *cluster, 3470 int delalloc) 3471 __acquires(&cluster->refill_lock) 3472 { 3473 struct btrfs_block_group *used_bg = NULL; 3474 3475 spin_lock(&cluster->refill_lock); 3476 while (1) { 3477 used_bg = cluster->block_group; 3478 if (!used_bg) 3479 return NULL; 3480 3481 if (used_bg == block_group) 3482 return used_bg; 3483 3484 btrfs_get_block_group(used_bg); 3485 3486 if (!delalloc) 3487 return used_bg; 3488 3489 if (down_read_trylock(&used_bg->data_rwsem)) 3490 return used_bg; 3491 3492 spin_unlock(&cluster->refill_lock); 3493 3494 /* We should only have one-level nested. */ 3495 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3496 3497 spin_lock(&cluster->refill_lock); 3498 if (used_bg == cluster->block_group) 3499 return used_bg; 3500 3501 up_read(&used_bg->data_rwsem); 3502 btrfs_put_block_group(used_bg); 3503 } 3504 } 3505 3506 static inline void 3507 btrfs_release_block_group(struct btrfs_block_group *cache, 3508 int delalloc) 3509 { 3510 if (delalloc) 3511 up_read(&cache->data_rwsem); 3512 btrfs_put_block_group(cache); 3513 } 3514 3515 enum btrfs_extent_allocation_policy { 3516 BTRFS_EXTENT_ALLOC_CLUSTERED, 3517 }; 3518 3519 /* 3520 * Structure used internally for find_free_extent() function. Wraps needed 3521 * parameters. 3522 */ 3523 struct find_free_extent_ctl { 3524 /* Basic allocation info */ 3525 u64 num_bytes; 3526 u64 empty_size; 3527 u64 flags; 3528 int delalloc; 3529 3530 /* Where to start the search inside the bg */ 3531 u64 search_start; 3532 3533 /* For clustered allocation */ 3534 u64 empty_cluster; 3535 struct btrfs_free_cluster *last_ptr; 3536 bool use_cluster; 3537 3538 bool have_caching_bg; 3539 bool orig_have_caching_bg; 3540 3541 /* RAID index, converted from flags */ 3542 int index; 3543 3544 /* 3545 * Current loop number, check find_free_extent_update_loop() for details 3546 */ 3547 int loop; 3548 3549 /* 3550 * Whether we're refilling a cluster, if true we need to re-search 3551 * current block group but don't try to refill the cluster again. 3552 */ 3553 bool retry_clustered; 3554 3555 /* 3556 * Whether we're updating free space cache, if true we need to re-search 3557 * current block group but don't try updating free space cache again. 3558 */ 3559 bool retry_unclustered; 3560 3561 /* If current block group is cached */ 3562 int cached; 3563 3564 /* Max contiguous hole found */ 3565 u64 max_extent_size; 3566 3567 /* Total free space from free space cache, not always contiguous */ 3568 u64 total_free_space; 3569 3570 /* Found result */ 3571 u64 found_offset; 3572 3573 /* Hint where to start looking for an empty space */ 3574 u64 hint_byte; 3575 3576 /* Allocation policy */ 3577 enum btrfs_extent_allocation_policy policy; 3578 }; 3579 3580 3581 /* 3582 * Helper function for find_free_extent(). 3583 * 3584 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3585 * Return -EAGAIN to inform caller that we need to re-search this block group 3586 * Return >0 to inform caller that we find nothing 3587 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3588 */ 3589 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3590 struct find_free_extent_ctl *ffe_ctl, 3591 struct btrfs_block_group **cluster_bg_ret) 3592 { 3593 struct btrfs_block_group *cluster_bg; 3594 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3595 u64 aligned_cluster; 3596 u64 offset; 3597 int ret; 3598 3599 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3600 if (!cluster_bg) 3601 goto refill_cluster; 3602 if (cluster_bg != bg && (cluster_bg->ro || 3603 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3604 goto release_cluster; 3605 3606 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3607 ffe_ctl->num_bytes, cluster_bg->start, 3608 &ffe_ctl->max_extent_size); 3609 if (offset) { 3610 /* We have a block, we're done */ 3611 spin_unlock(&last_ptr->refill_lock); 3612 trace_btrfs_reserve_extent_cluster(cluster_bg, 3613 ffe_ctl->search_start, ffe_ctl->num_bytes); 3614 *cluster_bg_ret = cluster_bg; 3615 ffe_ctl->found_offset = offset; 3616 return 0; 3617 } 3618 WARN_ON(last_ptr->block_group != cluster_bg); 3619 3620 release_cluster: 3621 /* 3622 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3623 * lets just skip it and let the allocator find whatever block it can 3624 * find. If we reach this point, we will have tried the cluster 3625 * allocator plenty of times and not have found anything, so we are 3626 * likely way too fragmented for the clustering stuff to find anything. 3627 * 3628 * However, if the cluster is taken from the current block group, 3629 * release the cluster first, so that we stand a better chance of 3630 * succeeding in the unclustered allocation. 3631 */ 3632 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3633 spin_unlock(&last_ptr->refill_lock); 3634 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3635 return -ENOENT; 3636 } 3637 3638 /* This cluster didn't work out, free it and start over */ 3639 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3640 3641 if (cluster_bg != bg) 3642 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3643 3644 refill_cluster: 3645 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3646 spin_unlock(&last_ptr->refill_lock); 3647 return -ENOENT; 3648 } 3649 3650 aligned_cluster = max_t(u64, 3651 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3652 bg->full_stripe_len); 3653 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3654 ffe_ctl->num_bytes, aligned_cluster); 3655 if (ret == 0) { 3656 /* Now pull our allocation out of this cluster */ 3657 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3658 ffe_ctl->num_bytes, ffe_ctl->search_start, 3659 &ffe_ctl->max_extent_size); 3660 if (offset) { 3661 /* We found one, proceed */ 3662 spin_unlock(&last_ptr->refill_lock); 3663 trace_btrfs_reserve_extent_cluster(bg, 3664 ffe_ctl->search_start, 3665 ffe_ctl->num_bytes); 3666 ffe_ctl->found_offset = offset; 3667 return 0; 3668 } 3669 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3670 !ffe_ctl->retry_clustered) { 3671 spin_unlock(&last_ptr->refill_lock); 3672 3673 ffe_ctl->retry_clustered = true; 3674 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3675 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3676 return -EAGAIN; 3677 } 3678 /* 3679 * At this point we either didn't find a cluster or we weren't able to 3680 * allocate a block from our cluster. Free the cluster we've been 3681 * trying to use, and go to the next block group. 3682 */ 3683 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3684 spin_unlock(&last_ptr->refill_lock); 3685 return 1; 3686 } 3687 3688 /* 3689 * Return >0 to inform caller that we find nothing 3690 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3691 * Return -EAGAIN to inform caller that we need to re-search this block group 3692 */ 3693 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3694 struct find_free_extent_ctl *ffe_ctl) 3695 { 3696 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3697 u64 offset; 3698 3699 /* 3700 * We are doing an unclustered allocation, set the fragmented flag so 3701 * we don't bother trying to setup a cluster again until we get more 3702 * space. 3703 */ 3704 if (unlikely(last_ptr)) { 3705 spin_lock(&last_ptr->lock); 3706 last_ptr->fragmented = 1; 3707 spin_unlock(&last_ptr->lock); 3708 } 3709 if (ffe_ctl->cached) { 3710 struct btrfs_free_space_ctl *free_space_ctl; 3711 3712 free_space_ctl = bg->free_space_ctl; 3713 spin_lock(&free_space_ctl->tree_lock); 3714 if (free_space_ctl->free_space < 3715 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3716 ffe_ctl->empty_size) { 3717 ffe_ctl->total_free_space = max_t(u64, 3718 ffe_ctl->total_free_space, 3719 free_space_ctl->free_space); 3720 spin_unlock(&free_space_ctl->tree_lock); 3721 return 1; 3722 } 3723 spin_unlock(&free_space_ctl->tree_lock); 3724 } 3725 3726 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3727 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3728 &ffe_ctl->max_extent_size); 3729 3730 /* 3731 * If we didn't find a chunk, and we haven't failed on this block group 3732 * before, and this block group is in the middle of caching and we are 3733 * ok with waiting, then go ahead and wait for progress to be made, and 3734 * set @retry_unclustered to true. 3735 * 3736 * If @retry_unclustered is true then we've already waited on this 3737 * block group once and should move on to the next block group. 3738 */ 3739 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3740 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3741 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3742 ffe_ctl->empty_size); 3743 ffe_ctl->retry_unclustered = true; 3744 return -EAGAIN; 3745 } else if (!offset) { 3746 return 1; 3747 } 3748 ffe_ctl->found_offset = offset; 3749 return 0; 3750 } 3751 3752 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3753 struct find_free_extent_ctl *ffe_ctl, 3754 struct btrfs_block_group **bg_ret) 3755 { 3756 int ret; 3757 3758 /* We want to try and use the cluster allocator, so lets look there */ 3759 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3760 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3761 if (ret >= 0 || ret == -EAGAIN) 3762 return ret; 3763 /* ret == -ENOENT case falls through */ 3764 } 3765 3766 return find_free_extent_unclustered(block_group, ffe_ctl); 3767 } 3768 3769 static int do_allocation(struct btrfs_block_group *block_group, 3770 struct find_free_extent_ctl *ffe_ctl, 3771 struct btrfs_block_group **bg_ret) 3772 { 3773 switch (ffe_ctl->policy) { 3774 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3775 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3776 default: 3777 BUG(); 3778 } 3779 } 3780 3781 static void release_block_group(struct btrfs_block_group *block_group, 3782 struct find_free_extent_ctl *ffe_ctl, 3783 int delalloc) 3784 { 3785 switch (ffe_ctl->policy) { 3786 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3787 ffe_ctl->retry_clustered = false; 3788 ffe_ctl->retry_unclustered = false; 3789 break; 3790 default: 3791 BUG(); 3792 } 3793 3794 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3795 ffe_ctl->index); 3796 btrfs_release_block_group(block_group, delalloc); 3797 } 3798 3799 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3800 struct btrfs_key *ins) 3801 { 3802 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3803 3804 if (!ffe_ctl->use_cluster && last_ptr) { 3805 spin_lock(&last_ptr->lock); 3806 last_ptr->window_start = ins->objectid; 3807 spin_unlock(&last_ptr->lock); 3808 } 3809 } 3810 3811 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3812 struct btrfs_key *ins) 3813 { 3814 switch (ffe_ctl->policy) { 3815 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3816 found_extent_clustered(ffe_ctl, ins); 3817 break; 3818 default: 3819 BUG(); 3820 } 3821 } 3822 3823 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3824 { 3825 switch (ffe_ctl->policy) { 3826 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3827 /* 3828 * If we can't allocate a new chunk we've already looped through 3829 * at least once, move on to the NO_EMPTY_SIZE case. 3830 */ 3831 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3832 return 0; 3833 default: 3834 BUG(); 3835 } 3836 } 3837 3838 /* 3839 * Return >0 means caller needs to re-search for free extent 3840 * Return 0 means we have the needed free extent. 3841 * Return <0 means we failed to locate any free extent. 3842 */ 3843 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3844 struct btrfs_key *ins, 3845 struct find_free_extent_ctl *ffe_ctl, 3846 bool full_search) 3847 { 3848 struct btrfs_root *root = fs_info->extent_root; 3849 int ret; 3850 3851 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3852 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3853 ffe_ctl->orig_have_caching_bg = true; 3854 3855 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3856 ffe_ctl->have_caching_bg) 3857 return 1; 3858 3859 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3860 return 1; 3861 3862 if (ins->objectid) { 3863 found_extent(ffe_ctl, ins); 3864 return 0; 3865 } 3866 3867 /* 3868 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3869 * caching kthreads as we move along 3870 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3871 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3872 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3873 * again 3874 */ 3875 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3876 ffe_ctl->index = 0; 3877 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3878 /* 3879 * We want to skip the LOOP_CACHING_WAIT step if we 3880 * don't have any uncached bgs and we've already done a 3881 * full search through. 3882 */ 3883 if (ffe_ctl->orig_have_caching_bg || !full_search) 3884 ffe_ctl->loop = LOOP_CACHING_WAIT; 3885 else 3886 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3887 } else { 3888 ffe_ctl->loop++; 3889 } 3890 3891 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3892 struct btrfs_trans_handle *trans; 3893 int exist = 0; 3894 3895 trans = current->journal_info; 3896 if (trans) 3897 exist = 1; 3898 else 3899 trans = btrfs_join_transaction(root); 3900 3901 if (IS_ERR(trans)) { 3902 ret = PTR_ERR(trans); 3903 return ret; 3904 } 3905 3906 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3907 CHUNK_ALLOC_FORCE); 3908 3909 /* Do not bail out on ENOSPC since we can do more. */ 3910 if (ret == -ENOSPC) 3911 ret = chunk_allocation_failed(ffe_ctl); 3912 else if (ret < 0) 3913 btrfs_abort_transaction(trans, ret); 3914 else 3915 ret = 0; 3916 if (!exist) 3917 btrfs_end_transaction(trans); 3918 if (ret) 3919 return ret; 3920 } 3921 3922 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3923 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3924 return -ENOSPC; 3925 3926 /* 3927 * Don't loop again if we already have no empty_size and 3928 * no empty_cluster. 3929 */ 3930 if (ffe_ctl->empty_size == 0 && 3931 ffe_ctl->empty_cluster == 0) 3932 return -ENOSPC; 3933 ffe_ctl->empty_size = 0; 3934 ffe_ctl->empty_cluster = 0; 3935 } 3936 return 1; 3937 } 3938 return -ENOSPC; 3939 } 3940 3941 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3942 struct find_free_extent_ctl *ffe_ctl, 3943 struct btrfs_space_info *space_info, 3944 struct btrfs_key *ins) 3945 { 3946 /* 3947 * If our free space is heavily fragmented we may not be able to make 3948 * big contiguous allocations, so instead of doing the expensive search 3949 * for free space, simply return ENOSPC with our max_extent_size so we 3950 * can go ahead and search for a more manageable chunk. 3951 * 3952 * If our max_extent_size is large enough for our allocation simply 3953 * disable clustering since we will likely not be able to find enough 3954 * space to create a cluster and induce latency trying. 3955 */ 3956 if (space_info->max_extent_size) { 3957 spin_lock(&space_info->lock); 3958 if (space_info->max_extent_size && 3959 ffe_ctl->num_bytes > space_info->max_extent_size) { 3960 ins->offset = space_info->max_extent_size; 3961 spin_unlock(&space_info->lock); 3962 return -ENOSPC; 3963 } else if (space_info->max_extent_size) { 3964 ffe_ctl->use_cluster = false; 3965 } 3966 spin_unlock(&space_info->lock); 3967 } 3968 3969 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3970 &ffe_ctl->empty_cluster); 3971 if (ffe_ctl->last_ptr) { 3972 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3973 3974 spin_lock(&last_ptr->lock); 3975 if (last_ptr->block_group) 3976 ffe_ctl->hint_byte = last_ptr->window_start; 3977 if (last_ptr->fragmented) { 3978 /* 3979 * We still set window_start so we can keep track of the 3980 * last place we found an allocation to try and save 3981 * some time. 3982 */ 3983 ffe_ctl->hint_byte = last_ptr->window_start; 3984 ffe_ctl->use_cluster = false; 3985 } 3986 spin_unlock(&last_ptr->lock); 3987 } 3988 3989 return 0; 3990 } 3991 3992 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3993 struct find_free_extent_ctl *ffe_ctl, 3994 struct btrfs_space_info *space_info, 3995 struct btrfs_key *ins) 3996 { 3997 switch (ffe_ctl->policy) { 3998 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3999 return prepare_allocation_clustered(fs_info, ffe_ctl, 4000 space_info, ins); 4001 default: 4002 BUG(); 4003 } 4004 } 4005 4006 /* 4007 * walks the btree of allocated extents and find a hole of a given size. 4008 * The key ins is changed to record the hole: 4009 * ins->objectid == start position 4010 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4011 * ins->offset == the size of the hole. 4012 * Any available blocks before search_start are skipped. 4013 * 4014 * If there is no suitable free space, we will record the max size of 4015 * the free space extent currently. 4016 * 4017 * The overall logic and call chain: 4018 * 4019 * find_free_extent() 4020 * |- Iterate through all block groups 4021 * | |- Get a valid block group 4022 * | |- Try to do clustered allocation in that block group 4023 * | |- Try to do unclustered allocation in that block group 4024 * | |- Check if the result is valid 4025 * | | |- If valid, then exit 4026 * | |- Jump to next block group 4027 * | 4028 * |- Push harder to find free extents 4029 * |- If not found, re-iterate all block groups 4030 */ 4031 static noinline int find_free_extent(struct btrfs_root *root, 4032 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4033 u64 hint_byte_orig, struct btrfs_key *ins, 4034 u64 flags, int delalloc) 4035 { 4036 struct btrfs_fs_info *fs_info = root->fs_info; 4037 int ret = 0; 4038 int cache_block_group_error = 0; 4039 struct btrfs_block_group *block_group = NULL; 4040 struct find_free_extent_ctl ffe_ctl = {0}; 4041 struct btrfs_space_info *space_info; 4042 bool full_search = false; 4043 4044 WARN_ON(num_bytes < fs_info->sectorsize); 4045 4046 ffe_ctl.num_bytes = num_bytes; 4047 ffe_ctl.empty_size = empty_size; 4048 ffe_ctl.flags = flags; 4049 ffe_ctl.search_start = 0; 4050 ffe_ctl.delalloc = delalloc; 4051 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4052 ffe_ctl.have_caching_bg = false; 4053 ffe_ctl.orig_have_caching_bg = false; 4054 ffe_ctl.found_offset = 0; 4055 ffe_ctl.hint_byte = hint_byte_orig; 4056 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4057 4058 /* For clustered allocation */ 4059 ffe_ctl.retry_clustered = false; 4060 ffe_ctl.retry_unclustered = false; 4061 ffe_ctl.last_ptr = NULL; 4062 ffe_ctl.use_cluster = true; 4063 4064 ins->type = BTRFS_EXTENT_ITEM_KEY; 4065 ins->objectid = 0; 4066 ins->offset = 0; 4067 4068 trace_find_free_extent(root, num_bytes, empty_size, flags); 4069 4070 space_info = btrfs_find_space_info(fs_info, flags); 4071 if (!space_info) { 4072 btrfs_err(fs_info, "No space info for %llu", flags); 4073 return -ENOSPC; 4074 } 4075 4076 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4077 if (ret < 0) 4078 return ret; 4079 4080 ffe_ctl.search_start = max(ffe_ctl.search_start, 4081 first_logical_byte(fs_info, 0)); 4082 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4083 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4084 block_group = btrfs_lookup_block_group(fs_info, 4085 ffe_ctl.search_start); 4086 /* 4087 * we don't want to use the block group if it doesn't match our 4088 * allocation bits, or if its not cached. 4089 * 4090 * However if we are re-searching with an ideal block group 4091 * picked out then we don't care that the block group is cached. 4092 */ 4093 if (block_group && block_group_bits(block_group, flags) && 4094 block_group->cached != BTRFS_CACHE_NO) { 4095 down_read(&space_info->groups_sem); 4096 if (list_empty(&block_group->list) || 4097 block_group->ro) { 4098 /* 4099 * someone is removing this block group, 4100 * we can't jump into the have_block_group 4101 * target because our list pointers are not 4102 * valid 4103 */ 4104 btrfs_put_block_group(block_group); 4105 up_read(&space_info->groups_sem); 4106 } else { 4107 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4108 block_group->flags); 4109 btrfs_lock_block_group(block_group, delalloc); 4110 goto have_block_group; 4111 } 4112 } else if (block_group) { 4113 btrfs_put_block_group(block_group); 4114 } 4115 } 4116 search: 4117 ffe_ctl.have_caching_bg = false; 4118 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4119 ffe_ctl.index == 0) 4120 full_search = true; 4121 down_read(&space_info->groups_sem); 4122 list_for_each_entry(block_group, 4123 &space_info->block_groups[ffe_ctl.index], list) { 4124 struct btrfs_block_group *bg_ret; 4125 4126 /* If the block group is read-only, we can skip it entirely. */ 4127 if (unlikely(block_group->ro)) 4128 continue; 4129 4130 btrfs_grab_block_group(block_group, delalloc); 4131 ffe_ctl.search_start = block_group->start; 4132 4133 /* 4134 * this can happen if we end up cycling through all the 4135 * raid types, but we want to make sure we only allocate 4136 * for the proper type. 4137 */ 4138 if (!block_group_bits(block_group, flags)) { 4139 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4140 BTRFS_BLOCK_GROUP_RAID1_MASK | 4141 BTRFS_BLOCK_GROUP_RAID56_MASK | 4142 BTRFS_BLOCK_GROUP_RAID10; 4143 4144 /* 4145 * if they asked for extra copies and this block group 4146 * doesn't provide them, bail. This does allow us to 4147 * fill raid0 from raid1. 4148 */ 4149 if ((flags & extra) && !(block_group->flags & extra)) 4150 goto loop; 4151 4152 /* 4153 * This block group has different flags than we want. 4154 * It's possible that we have MIXED_GROUP flag but no 4155 * block group is mixed. Just skip such block group. 4156 */ 4157 btrfs_release_block_group(block_group, delalloc); 4158 continue; 4159 } 4160 4161 have_block_group: 4162 ffe_ctl.cached = btrfs_block_group_done(block_group); 4163 if (unlikely(!ffe_ctl.cached)) { 4164 ffe_ctl.have_caching_bg = true; 4165 ret = btrfs_cache_block_group(block_group, 0); 4166 4167 /* 4168 * If we get ENOMEM here or something else we want to 4169 * try other block groups, because it may not be fatal. 4170 * However if we can't find anything else we need to 4171 * save our return here so that we return the actual 4172 * error that caused problems, not ENOSPC. 4173 */ 4174 if (ret < 0) { 4175 if (!cache_block_group_error) 4176 cache_block_group_error = ret; 4177 ret = 0; 4178 goto loop; 4179 } 4180 ret = 0; 4181 } 4182 4183 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4184 goto loop; 4185 4186 bg_ret = NULL; 4187 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4188 if (ret == 0) { 4189 if (bg_ret && bg_ret != block_group) { 4190 btrfs_release_block_group(block_group, delalloc); 4191 block_group = bg_ret; 4192 } 4193 } else if (ret == -EAGAIN) { 4194 goto have_block_group; 4195 } else if (ret > 0) { 4196 goto loop; 4197 } 4198 4199 /* Checks */ 4200 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4201 fs_info->stripesize); 4202 4203 /* move on to the next group */ 4204 if (ffe_ctl.search_start + num_bytes > 4205 block_group->start + block_group->length) { 4206 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4207 num_bytes); 4208 goto loop; 4209 } 4210 4211 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4212 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4213 ffe_ctl.search_start - ffe_ctl.found_offset); 4214 4215 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4216 num_bytes, delalloc); 4217 if (ret == -EAGAIN) { 4218 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4219 num_bytes); 4220 goto loop; 4221 } 4222 btrfs_inc_block_group_reservations(block_group); 4223 4224 /* we are all good, lets return */ 4225 ins->objectid = ffe_ctl.search_start; 4226 ins->offset = num_bytes; 4227 4228 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4229 num_bytes); 4230 btrfs_release_block_group(block_group, delalloc); 4231 break; 4232 loop: 4233 release_block_group(block_group, &ffe_ctl, delalloc); 4234 cond_resched(); 4235 } 4236 up_read(&space_info->groups_sem); 4237 4238 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4239 if (ret > 0) 4240 goto search; 4241 4242 if (ret == -ENOSPC && !cache_block_group_error) { 4243 /* 4244 * Use ffe_ctl->total_free_space as fallback if we can't find 4245 * any contiguous hole. 4246 */ 4247 if (!ffe_ctl.max_extent_size) 4248 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4249 spin_lock(&space_info->lock); 4250 space_info->max_extent_size = ffe_ctl.max_extent_size; 4251 spin_unlock(&space_info->lock); 4252 ins->offset = ffe_ctl.max_extent_size; 4253 } else if (ret == -ENOSPC) { 4254 ret = cache_block_group_error; 4255 } 4256 return ret; 4257 } 4258 4259 /* 4260 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4261 * hole that is at least as big as @num_bytes. 4262 * 4263 * @root - The root that will contain this extent 4264 * 4265 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4266 * is used for accounting purposes. This value differs 4267 * from @num_bytes only in the case of compressed extents. 4268 * 4269 * @num_bytes - Number of bytes to allocate on-disk. 4270 * 4271 * @min_alloc_size - Indicates the minimum amount of space that the 4272 * allocator should try to satisfy. In some cases 4273 * @num_bytes may be larger than what is required and if 4274 * the filesystem is fragmented then allocation fails. 4275 * However, the presence of @min_alloc_size gives a 4276 * chance to try and satisfy the smaller allocation. 4277 * 4278 * @empty_size - A hint that you plan on doing more COW. This is the 4279 * size in bytes the allocator should try to find free 4280 * next to the block it returns. This is just a hint and 4281 * may be ignored by the allocator. 4282 * 4283 * @hint_byte - Hint to the allocator to start searching above the byte 4284 * address passed. It might be ignored. 4285 * 4286 * @ins - This key is modified to record the found hole. It will 4287 * have the following values: 4288 * ins->objectid == start position 4289 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4290 * ins->offset == the size of the hole. 4291 * 4292 * @is_data - Boolean flag indicating whether an extent is 4293 * allocated for data (true) or metadata (false) 4294 * 4295 * @delalloc - Boolean flag indicating whether this allocation is for 4296 * delalloc or not. If 'true' data_rwsem of block groups 4297 * is going to be acquired. 4298 * 4299 * 4300 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4301 * case -ENOSPC is returned then @ins->offset will contain the size of the 4302 * largest available hole the allocator managed to find. 4303 */ 4304 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4305 u64 num_bytes, u64 min_alloc_size, 4306 u64 empty_size, u64 hint_byte, 4307 struct btrfs_key *ins, int is_data, int delalloc) 4308 { 4309 struct btrfs_fs_info *fs_info = root->fs_info; 4310 bool final_tried = num_bytes == min_alloc_size; 4311 u64 flags; 4312 int ret; 4313 4314 flags = get_alloc_profile_by_root(root, is_data); 4315 again: 4316 WARN_ON(num_bytes < fs_info->sectorsize); 4317 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4318 hint_byte, ins, flags, delalloc); 4319 if (!ret && !is_data) { 4320 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4321 } else if (ret == -ENOSPC) { 4322 if (!final_tried && ins->offset) { 4323 num_bytes = min(num_bytes >> 1, ins->offset); 4324 num_bytes = round_down(num_bytes, 4325 fs_info->sectorsize); 4326 num_bytes = max(num_bytes, min_alloc_size); 4327 ram_bytes = num_bytes; 4328 if (num_bytes == min_alloc_size) 4329 final_tried = true; 4330 goto again; 4331 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4332 struct btrfs_space_info *sinfo; 4333 4334 sinfo = btrfs_find_space_info(fs_info, flags); 4335 btrfs_err(fs_info, 4336 "allocation failed flags %llu, wanted %llu", 4337 flags, num_bytes); 4338 if (sinfo) 4339 btrfs_dump_space_info(fs_info, sinfo, 4340 num_bytes, 1); 4341 } 4342 } 4343 4344 return ret; 4345 } 4346 4347 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4348 u64 start, u64 len, int delalloc) 4349 { 4350 struct btrfs_block_group *cache; 4351 4352 cache = btrfs_lookup_block_group(fs_info, start); 4353 if (!cache) { 4354 btrfs_err(fs_info, "Unable to find block group for %llu", 4355 start); 4356 return -ENOSPC; 4357 } 4358 4359 btrfs_add_free_space(cache, start, len); 4360 btrfs_free_reserved_bytes(cache, len, delalloc); 4361 trace_btrfs_reserved_extent_free(fs_info, start, len); 4362 4363 btrfs_put_block_group(cache); 4364 return 0; 4365 } 4366 4367 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4368 u64 len) 4369 { 4370 struct btrfs_block_group *cache; 4371 int ret = 0; 4372 4373 cache = btrfs_lookup_block_group(trans->fs_info, start); 4374 if (!cache) { 4375 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4376 start); 4377 return -ENOSPC; 4378 } 4379 4380 ret = pin_down_extent(trans, cache, start, len, 1); 4381 btrfs_put_block_group(cache); 4382 return ret; 4383 } 4384 4385 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4386 u64 parent, u64 root_objectid, 4387 u64 flags, u64 owner, u64 offset, 4388 struct btrfs_key *ins, int ref_mod) 4389 { 4390 struct btrfs_fs_info *fs_info = trans->fs_info; 4391 int ret; 4392 struct btrfs_extent_item *extent_item; 4393 struct btrfs_extent_inline_ref *iref; 4394 struct btrfs_path *path; 4395 struct extent_buffer *leaf; 4396 int type; 4397 u32 size; 4398 4399 if (parent > 0) 4400 type = BTRFS_SHARED_DATA_REF_KEY; 4401 else 4402 type = BTRFS_EXTENT_DATA_REF_KEY; 4403 4404 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4405 4406 path = btrfs_alloc_path(); 4407 if (!path) 4408 return -ENOMEM; 4409 4410 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4411 ins, size); 4412 if (ret) { 4413 btrfs_free_path(path); 4414 return ret; 4415 } 4416 4417 leaf = path->nodes[0]; 4418 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4419 struct btrfs_extent_item); 4420 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4421 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4422 btrfs_set_extent_flags(leaf, extent_item, 4423 flags | BTRFS_EXTENT_FLAG_DATA); 4424 4425 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4426 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4427 if (parent > 0) { 4428 struct btrfs_shared_data_ref *ref; 4429 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4430 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4431 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4432 } else { 4433 struct btrfs_extent_data_ref *ref; 4434 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4435 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4436 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4437 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4438 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4439 } 4440 4441 btrfs_mark_buffer_dirty(path->nodes[0]); 4442 btrfs_free_path(path); 4443 4444 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4445 if (ret) 4446 return ret; 4447 4448 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4449 if (ret) { /* -ENOENT, logic error */ 4450 btrfs_err(fs_info, "update block group failed for %llu %llu", 4451 ins->objectid, ins->offset); 4452 BUG(); 4453 } 4454 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4455 return ret; 4456 } 4457 4458 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4459 struct btrfs_delayed_ref_node *node, 4460 struct btrfs_delayed_extent_op *extent_op) 4461 { 4462 struct btrfs_fs_info *fs_info = trans->fs_info; 4463 int ret; 4464 struct btrfs_extent_item *extent_item; 4465 struct btrfs_key extent_key; 4466 struct btrfs_tree_block_info *block_info; 4467 struct btrfs_extent_inline_ref *iref; 4468 struct btrfs_path *path; 4469 struct extent_buffer *leaf; 4470 struct btrfs_delayed_tree_ref *ref; 4471 u32 size = sizeof(*extent_item) + sizeof(*iref); 4472 u64 num_bytes; 4473 u64 flags = extent_op->flags_to_set; 4474 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4475 4476 ref = btrfs_delayed_node_to_tree_ref(node); 4477 4478 extent_key.objectid = node->bytenr; 4479 if (skinny_metadata) { 4480 extent_key.offset = ref->level; 4481 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4482 num_bytes = fs_info->nodesize; 4483 } else { 4484 extent_key.offset = node->num_bytes; 4485 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4486 size += sizeof(*block_info); 4487 num_bytes = node->num_bytes; 4488 } 4489 4490 path = btrfs_alloc_path(); 4491 if (!path) 4492 return -ENOMEM; 4493 4494 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4495 &extent_key, size); 4496 if (ret) { 4497 btrfs_free_path(path); 4498 return ret; 4499 } 4500 4501 leaf = path->nodes[0]; 4502 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4503 struct btrfs_extent_item); 4504 btrfs_set_extent_refs(leaf, extent_item, 1); 4505 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4506 btrfs_set_extent_flags(leaf, extent_item, 4507 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4508 4509 if (skinny_metadata) { 4510 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4511 } else { 4512 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4513 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4514 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4515 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4516 } 4517 4518 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4519 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4520 btrfs_set_extent_inline_ref_type(leaf, iref, 4521 BTRFS_SHARED_BLOCK_REF_KEY); 4522 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4523 } else { 4524 btrfs_set_extent_inline_ref_type(leaf, iref, 4525 BTRFS_TREE_BLOCK_REF_KEY); 4526 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4527 } 4528 4529 btrfs_mark_buffer_dirty(leaf); 4530 btrfs_free_path(path); 4531 4532 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4533 num_bytes); 4534 if (ret) 4535 return ret; 4536 4537 ret = btrfs_update_block_group(trans, extent_key.objectid, 4538 fs_info->nodesize, 1); 4539 if (ret) { /* -ENOENT, logic error */ 4540 btrfs_err(fs_info, "update block group failed for %llu %llu", 4541 extent_key.objectid, extent_key.offset); 4542 BUG(); 4543 } 4544 4545 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4546 fs_info->nodesize); 4547 return ret; 4548 } 4549 4550 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4551 struct btrfs_root *root, u64 owner, 4552 u64 offset, u64 ram_bytes, 4553 struct btrfs_key *ins) 4554 { 4555 struct btrfs_ref generic_ref = { 0 }; 4556 int ret; 4557 4558 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4559 4560 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4561 ins->objectid, ins->offset, 0); 4562 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4563 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4564 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4565 ram_bytes, NULL, NULL); 4566 return ret; 4567 } 4568 4569 /* 4570 * this is used by the tree logging recovery code. It records that 4571 * an extent has been allocated and makes sure to clear the free 4572 * space cache bits as well 4573 */ 4574 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4575 u64 root_objectid, u64 owner, u64 offset, 4576 struct btrfs_key *ins) 4577 { 4578 struct btrfs_fs_info *fs_info = trans->fs_info; 4579 int ret; 4580 struct btrfs_block_group *block_group; 4581 struct btrfs_space_info *space_info; 4582 4583 /* 4584 * Mixed block groups will exclude before processing the log so we only 4585 * need to do the exclude dance if this fs isn't mixed. 4586 */ 4587 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4588 ret = __exclude_logged_extent(fs_info, ins->objectid, 4589 ins->offset); 4590 if (ret) 4591 return ret; 4592 } 4593 4594 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4595 if (!block_group) 4596 return -EINVAL; 4597 4598 space_info = block_group->space_info; 4599 spin_lock(&space_info->lock); 4600 spin_lock(&block_group->lock); 4601 space_info->bytes_reserved += ins->offset; 4602 block_group->reserved += ins->offset; 4603 spin_unlock(&block_group->lock); 4604 spin_unlock(&space_info->lock); 4605 4606 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4607 offset, ins, 1); 4608 if (ret) 4609 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4610 btrfs_put_block_group(block_group); 4611 return ret; 4612 } 4613 4614 static struct extent_buffer * 4615 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4616 u64 bytenr, int level, u64 owner, 4617 enum btrfs_lock_nesting nest) 4618 { 4619 struct btrfs_fs_info *fs_info = root->fs_info; 4620 struct extent_buffer *buf; 4621 4622 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4623 if (IS_ERR(buf)) 4624 return buf; 4625 4626 /* 4627 * Extra safety check in case the extent tree is corrupted and extent 4628 * allocator chooses to use a tree block which is already used and 4629 * locked. 4630 */ 4631 if (buf->lock_owner == current->pid) { 4632 btrfs_err_rl(fs_info, 4633 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4634 buf->start, btrfs_header_owner(buf), current->pid); 4635 free_extent_buffer(buf); 4636 return ERR_PTR(-EUCLEAN); 4637 } 4638 4639 /* 4640 * This needs to stay, because we could allocate a freed block from an 4641 * old tree into a new tree, so we need to make sure this new block is 4642 * set to the appropriate level and owner. 4643 */ 4644 btrfs_set_buffer_lockdep_class(owner, buf, level); 4645 __btrfs_tree_lock(buf, nest); 4646 btrfs_clean_tree_block(buf); 4647 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4648 4649 set_extent_buffer_uptodate(buf); 4650 4651 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4652 btrfs_set_header_level(buf, level); 4653 btrfs_set_header_bytenr(buf, buf->start); 4654 btrfs_set_header_generation(buf, trans->transid); 4655 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4656 btrfs_set_header_owner(buf, owner); 4657 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4658 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4659 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4660 buf->log_index = root->log_transid % 2; 4661 /* 4662 * we allow two log transactions at a time, use different 4663 * EXTENT bit to differentiate dirty pages. 4664 */ 4665 if (buf->log_index == 0) 4666 set_extent_dirty(&root->dirty_log_pages, buf->start, 4667 buf->start + buf->len - 1, GFP_NOFS); 4668 else 4669 set_extent_new(&root->dirty_log_pages, buf->start, 4670 buf->start + buf->len - 1); 4671 } else { 4672 buf->log_index = -1; 4673 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4674 buf->start + buf->len - 1, GFP_NOFS); 4675 } 4676 trans->dirty = true; 4677 /* this returns a buffer locked for blocking */ 4678 return buf; 4679 } 4680 4681 /* 4682 * finds a free extent and does all the dirty work required for allocation 4683 * returns the tree buffer or an ERR_PTR on error. 4684 */ 4685 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4686 struct btrfs_root *root, 4687 u64 parent, u64 root_objectid, 4688 const struct btrfs_disk_key *key, 4689 int level, u64 hint, 4690 u64 empty_size, 4691 enum btrfs_lock_nesting nest) 4692 { 4693 struct btrfs_fs_info *fs_info = root->fs_info; 4694 struct btrfs_key ins; 4695 struct btrfs_block_rsv *block_rsv; 4696 struct extent_buffer *buf; 4697 struct btrfs_delayed_extent_op *extent_op; 4698 struct btrfs_ref generic_ref = { 0 }; 4699 u64 flags = 0; 4700 int ret; 4701 u32 blocksize = fs_info->nodesize; 4702 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4703 4704 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4705 if (btrfs_is_testing(fs_info)) { 4706 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4707 level, root_objectid, nest); 4708 if (!IS_ERR(buf)) 4709 root->alloc_bytenr += blocksize; 4710 return buf; 4711 } 4712 #endif 4713 4714 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4715 if (IS_ERR(block_rsv)) 4716 return ERR_CAST(block_rsv); 4717 4718 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4719 empty_size, hint, &ins, 0, 0); 4720 if (ret) 4721 goto out_unuse; 4722 4723 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4724 root_objectid, nest); 4725 if (IS_ERR(buf)) { 4726 ret = PTR_ERR(buf); 4727 goto out_free_reserved; 4728 } 4729 4730 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4731 if (parent == 0) 4732 parent = ins.objectid; 4733 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4734 } else 4735 BUG_ON(parent > 0); 4736 4737 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4738 extent_op = btrfs_alloc_delayed_extent_op(); 4739 if (!extent_op) { 4740 ret = -ENOMEM; 4741 goto out_free_buf; 4742 } 4743 if (key) 4744 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4745 else 4746 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4747 extent_op->flags_to_set = flags; 4748 extent_op->update_key = skinny_metadata ? false : true; 4749 extent_op->update_flags = true; 4750 extent_op->is_data = false; 4751 extent_op->level = level; 4752 4753 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4754 ins.objectid, ins.offset, parent); 4755 generic_ref.real_root = root->root_key.objectid; 4756 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4757 btrfs_ref_tree_mod(fs_info, &generic_ref); 4758 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4759 extent_op, NULL, NULL); 4760 if (ret) 4761 goto out_free_delayed; 4762 } 4763 return buf; 4764 4765 out_free_delayed: 4766 btrfs_free_delayed_extent_op(extent_op); 4767 out_free_buf: 4768 free_extent_buffer(buf); 4769 out_free_reserved: 4770 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4771 out_unuse: 4772 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4773 return ERR_PTR(ret); 4774 } 4775 4776 struct walk_control { 4777 u64 refs[BTRFS_MAX_LEVEL]; 4778 u64 flags[BTRFS_MAX_LEVEL]; 4779 struct btrfs_key update_progress; 4780 struct btrfs_key drop_progress; 4781 int drop_level; 4782 int stage; 4783 int level; 4784 int shared_level; 4785 int update_ref; 4786 int keep_locks; 4787 int reada_slot; 4788 int reada_count; 4789 int restarted; 4790 }; 4791 4792 #define DROP_REFERENCE 1 4793 #define UPDATE_BACKREF 2 4794 4795 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4796 struct btrfs_root *root, 4797 struct walk_control *wc, 4798 struct btrfs_path *path) 4799 { 4800 struct btrfs_fs_info *fs_info = root->fs_info; 4801 u64 bytenr; 4802 u64 generation; 4803 u64 refs; 4804 u64 flags; 4805 u32 nritems; 4806 struct btrfs_key key; 4807 struct extent_buffer *eb; 4808 int ret; 4809 int slot; 4810 int nread = 0; 4811 4812 if (path->slots[wc->level] < wc->reada_slot) { 4813 wc->reada_count = wc->reada_count * 2 / 3; 4814 wc->reada_count = max(wc->reada_count, 2); 4815 } else { 4816 wc->reada_count = wc->reada_count * 3 / 2; 4817 wc->reada_count = min_t(int, wc->reada_count, 4818 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4819 } 4820 4821 eb = path->nodes[wc->level]; 4822 nritems = btrfs_header_nritems(eb); 4823 4824 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4825 if (nread >= wc->reada_count) 4826 break; 4827 4828 cond_resched(); 4829 bytenr = btrfs_node_blockptr(eb, slot); 4830 generation = btrfs_node_ptr_generation(eb, slot); 4831 4832 if (slot == path->slots[wc->level]) 4833 goto reada; 4834 4835 if (wc->stage == UPDATE_BACKREF && 4836 generation <= root->root_key.offset) 4837 continue; 4838 4839 /* We don't lock the tree block, it's OK to be racy here */ 4840 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4841 wc->level - 1, 1, &refs, 4842 &flags); 4843 /* We don't care about errors in readahead. */ 4844 if (ret < 0) 4845 continue; 4846 BUG_ON(refs == 0); 4847 4848 if (wc->stage == DROP_REFERENCE) { 4849 if (refs == 1) 4850 goto reada; 4851 4852 if (wc->level == 1 && 4853 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4854 continue; 4855 if (!wc->update_ref || 4856 generation <= root->root_key.offset) 4857 continue; 4858 btrfs_node_key_to_cpu(eb, &key, slot); 4859 ret = btrfs_comp_cpu_keys(&key, 4860 &wc->update_progress); 4861 if (ret < 0) 4862 continue; 4863 } else { 4864 if (wc->level == 1 && 4865 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4866 continue; 4867 } 4868 reada: 4869 btrfs_readahead_node_child(eb, slot); 4870 nread++; 4871 } 4872 wc->reada_slot = slot; 4873 } 4874 4875 /* 4876 * helper to process tree block while walking down the tree. 4877 * 4878 * when wc->stage == UPDATE_BACKREF, this function updates 4879 * back refs for pointers in the block. 4880 * 4881 * NOTE: return value 1 means we should stop walking down. 4882 */ 4883 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4884 struct btrfs_root *root, 4885 struct btrfs_path *path, 4886 struct walk_control *wc, int lookup_info) 4887 { 4888 struct btrfs_fs_info *fs_info = root->fs_info; 4889 int level = wc->level; 4890 struct extent_buffer *eb = path->nodes[level]; 4891 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4892 int ret; 4893 4894 if (wc->stage == UPDATE_BACKREF && 4895 btrfs_header_owner(eb) != root->root_key.objectid) 4896 return 1; 4897 4898 /* 4899 * when reference count of tree block is 1, it won't increase 4900 * again. once full backref flag is set, we never clear it. 4901 */ 4902 if (lookup_info && 4903 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4904 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4905 BUG_ON(!path->locks[level]); 4906 ret = btrfs_lookup_extent_info(trans, fs_info, 4907 eb->start, level, 1, 4908 &wc->refs[level], 4909 &wc->flags[level]); 4910 BUG_ON(ret == -ENOMEM); 4911 if (ret) 4912 return ret; 4913 BUG_ON(wc->refs[level] == 0); 4914 } 4915 4916 if (wc->stage == DROP_REFERENCE) { 4917 if (wc->refs[level] > 1) 4918 return 1; 4919 4920 if (path->locks[level] && !wc->keep_locks) { 4921 btrfs_tree_unlock_rw(eb, path->locks[level]); 4922 path->locks[level] = 0; 4923 } 4924 return 0; 4925 } 4926 4927 /* wc->stage == UPDATE_BACKREF */ 4928 if (!(wc->flags[level] & flag)) { 4929 BUG_ON(!path->locks[level]); 4930 ret = btrfs_inc_ref(trans, root, eb, 1); 4931 BUG_ON(ret); /* -ENOMEM */ 4932 ret = btrfs_dec_ref(trans, root, eb, 0); 4933 BUG_ON(ret); /* -ENOMEM */ 4934 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4935 btrfs_header_level(eb), 0); 4936 BUG_ON(ret); /* -ENOMEM */ 4937 wc->flags[level] |= flag; 4938 } 4939 4940 /* 4941 * the block is shared by multiple trees, so it's not good to 4942 * keep the tree lock 4943 */ 4944 if (path->locks[level] && level > 0) { 4945 btrfs_tree_unlock_rw(eb, path->locks[level]); 4946 path->locks[level] = 0; 4947 } 4948 return 0; 4949 } 4950 4951 /* 4952 * This is used to verify a ref exists for this root to deal with a bug where we 4953 * would have a drop_progress key that hadn't been updated properly. 4954 */ 4955 static int check_ref_exists(struct btrfs_trans_handle *trans, 4956 struct btrfs_root *root, u64 bytenr, u64 parent, 4957 int level) 4958 { 4959 struct btrfs_path *path; 4960 struct btrfs_extent_inline_ref *iref; 4961 int ret; 4962 4963 path = btrfs_alloc_path(); 4964 if (!path) 4965 return -ENOMEM; 4966 4967 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4968 root->fs_info->nodesize, parent, 4969 root->root_key.objectid, level, 0); 4970 btrfs_free_path(path); 4971 if (ret == -ENOENT) 4972 return 0; 4973 if (ret < 0) 4974 return ret; 4975 return 1; 4976 } 4977 4978 /* 4979 * helper to process tree block pointer. 4980 * 4981 * when wc->stage == DROP_REFERENCE, this function checks 4982 * reference count of the block pointed to. if the block 4983 * is shared and we need update back refs for the subtree 4984 * rooted at the block, this function changes wc->stage to 4985 * UPDATE_BACKREF. if the block is shared and there is no 4986 * need to update back, this function drops the reference 4987 * to the block. 4988 * 4989 * NOTE: return value 1 means we should stop walking down. 4990 */ 4991 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4992 struct btrfs_root *root, 4993 struct btrfs_path *path, 4994 struct walk_control *wc, int *lookup_info) 4995 { 4996 struct btrfs_fs_info *fs_info = root->fs_info; 4997 u64 bytenr; 4998 u64 generation; 4999 u64 parent; 5000 struct btrfs_key key; 5001 struct btrfs_key first_key; 5002 struct btrfs_ref ref = { 0 }; 5003 struct extent_buffer *next; 5004 int level = wc->level; 5005 int reada = 0; 5006 int ret = 0; 5007 bool need_account = false; 5008 5009 generation = btrfs_node_ptr_generation(path->nodes[level], 5010 path->slots[level]); 5011 /* 5012 * if the lower level block was created before the snapshot 5013 * was created, we know there is no need to update back refs 5014 * for the subtree 5015 */ 5016 if (wc->stage == UPDATE_BACKREF && 5017 generation <= root->root_key.offset) { 5018 *lookup_info = 1; 5019 return 1; 5020 } 5021 5022 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5023 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5024 path->slots[level]); 5025 5026 next = find_extent_buffer(fs_info, bytenr); 5027 if (!next) { 5028 next = btrfs_find_create_tree_block(fs_info, bytenr, 5029 root->root_key.objectid, level - 1); 5030 if (IS_ERR(next)) 5031 return PTR_ERR(next); 5032 reada = 1; 5033 } 5034 btrfs_tree_lock(next); 5035 5036 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5037 &wc->refs[level - 1], 5038 &wc->flags[level - 1]); 5039 if (ret < 0) 5040 goto out_unlock; 5041 5042 if (unlikely(wc->refs[level - 1] == 0)) { 5043 btrfs_err(fs_info, "Missing references."); 5044 ret = -EIO; 5045 goto out_unlock; 5046 } 5047 *lookup_info = 0; 5048 5049 if (wc->stage == DROP_REFERENCE) { 5050 if (wc->refs[level - 1] > 1) { 5051 need_account = true; 5052 if (level == 1 && 5053 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5054 goto skip; 5055 5056 if (!wc->update_ref || 5057 generation <= root->root_key.offset) 5058 goto skip; 5059 5060 btrfs_node_key_to_cpu(path->nodes[level], &key, 5061 path->slots[level]); 5062 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5063 if (ret < 0) 5064 goto skip; 5065 5066 wc->stage = UPDATE_BACKREF; 5067 wc->shared_level = level - 1; 5068 } 5069 } else { 5070 if (level == 1 && 5071 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5072 goto skip; 5073 } 5074 5075 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5076 btrfs_tree_unlock(next); 5077 free_extent_buffer(next); 5078 next = NULL; 5079 *lookup_info = 1; 5080 } 5081 5082 if (!next) { 5083 if (reada && level == 1) 5084 reada_walk_down(trans, root, wc, path); 5085 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5086 generation, level - 1, &first_key); 5087 if (IS_ERR(next)) { 5088 return PTR_ERR(next); 5089 } else if (!extent_buffer_uptodate(next)) { 5090 free_extent_buffer(next); 5091 return -EIO; 5092 } 5093 btrfs_tree_lock(next); 5094 } 5095 5096 level--; 5097 ASSERT(level == btrfs_header_level(next)); 5098 if (level != btrfs_header_level(next)) { 5099 btrfs_err(root->fs_info, "mismatched level"); 5100 ret = -EIO; 5101 goto out_unlock; 5102 } 5103 path->nodes[level] = next; 5104 path->slots[level] = 0; 5105 path->locks[level] = BTRFS_WRITE_LOCK; 5106 wc->level = level; 5107 if (wc->level == 1) 5108 wc->reada_slot = 0; 5109 return 0; 5110 skip: 5111 wc->refs[level - 1] = 0; 5112 wc->flags[level - 1] = 0; 5113 if (wc->stage == DROP_REFERENCE) { 5114 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5115 parent = path->nodes[level]->start; 5116 } else { 5117 ASSERT(root->root_key.objectid == 5118 btrfs_header_owner(path->nodes[level])); 5119 if (root->root_key.objectid != 5120 btrfs_header_owner(path->nodes[level])) { 5121 btrfs_err(root->fs_info, 5122 "mismatched block owner"); 5123 ret = -EIO; 5124 goto out_unlock; 5125 } 5126 parent = 0; 5127 } 5128 5129 /* 5130 * If we had a drop_progress we need to verify the refs are set 5131 * as expected. If we find our ref then we know that from here 5132 * on out everything should be correct, and we can clear the 5133 * ->restarted flag. 5134 */ 5135 if (wc->restarted) { 5136 ret = check_ref_exists(trans, root, bytenr, parent, 5137 level - 1); 5138 if (ret < 0) 5139 goto out_unlock; 5140 if (ret == 0) 5141 goto no_delete; 5142 ret = 0; 5143 wc->restarted = 0; 5144 } 5145 5146 /* 5147 * Reloc tree doesn't contribute to qgroup numbers, and we have 5148 * already accounted them at merge time (replace_path), 5149 * thus we could skip expensive subtree trace here. 5150 */ 5151 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5152 need_account) { 5153 ret = btrfs_qgroup_trace_subtree(trans, next, 5154 generation, level - 1); 5155 if (ret) { 5156 btrfs_err_rl(fs_info, 5157 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5158 ret); 5159 } 5160 } 5161 5162 /* 5163 * We need to update the next key in our walk control so we can 5164 * update the drop_progress key accordingly. We don't care if 5165 * find_next_key doesn't find a key because that means we're at 5166 * the end and are going to clean up now. 5167 */ 5168 wc->drop_level = level; 5169 find_next_key(path, level, &wc->drop_progress); 5170 5171 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5172 fs_info->nodesize, parent); 5173 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5174 ret = btrfs_free_extent(trans, &ref); 5175 if (ret) 5176 goto out_unlock; 5177 } 5178 no_delete: 5179 *lookup_info = 1; 5180 ret = 1; 5181 5182 out_unlock: 5183 btrfs_tree_unlock(next); 5184 free_extent_buffer(next); 5185 5186 return ret; 5187 } 5188 5189 /* 5190 * helper to process tree block while walking up the tree. 5191 * 5192 * when wc->stage == DROP_REFERENCE, this function drops 5193 * reference count on the block. 5194 * 5195 * when wc->stage == UPDATE_BACKREF, this function changes 5196 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5197 * to UPDATE_BACKREF previously while processing the block. 5198 * 5199 * NOTE: return value 1 means we should stop walking up. 5200 */ 5201 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5202 struct btrfs_root *root, 5203 struct btrfs_path *path, 5204 struct walk_control *wc) 5205 { 5206 struct btrfs_fs_info *fs_info = root->fs_info; 5207 int ret; 5208 int level = wc->level; 5209 struct extent_buffer *eb = path->nodes[level]; 5210 u64 parent = 0; 5211 5212 if (wc->stage == UPDATE_BACKREF) { 5213 BUG_ON(wc->shared_level < level); 5214 if (level < wc->shared_level) 5215 goto out; 5216 5217 ret = find_next_key(path, level + 1, &wc->update_progress); 5218 if (ret > 0) 5219 wc->update_ref = 0; 5220 5221 wc->stage = DROP_REFERENCE; 5222 wc->shared_level = -1; 5223 path->slots[level] = 0; 5224 5225 /* 5226 * check reference count again if the block isn't locked. 5227 * we should start walking down the tree again if reference 5228 * count is one. 5229 */ 5230 if (!path->locks[level]) { 5231 BUG_ON(level == 0); 5232 btrfs_tree_lock(eb); 5233 path->locks[level] = BTRFS_WRITE_LOCK; 5234 5235 ret = btrfs_lookup_extent_info(trans, fs_info, 5236 eb->start, level, 1, 5237 &wc->refs[level], 5238 &wc->flags[level]); 5239 if (ret < 0) { 5240 btrfs_tree_unlock_rw(eb, path->locks[level]); 5241 path->locks[level] = 0; 5242 return ret; 5243 } 5244 BUG_ON(wc->refs[level] == 0); 5245 if (wc->refs[level] == 1) { 5246 btrfs_tree_unlock_rw(eb, path->locks[level]); 5247 path->locks[level] = 0; 5248 return 1; 5249 } 5250 } 5251 } 5252 5253 /* wc->stage == DROP_REFERENCE */ 5254 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5255 5256 if (wc->refs[level] == 1) { 5257 if (level == 0) { 5258 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5259 ret = btrfs_dec_ref(trans, root, eb, 1); 5260 else 5261 ret = btrfs_dec_ref(trans, root, eb, 0); 5262 BUG_ON(ret); /* -ENOMEM */ 5263 if (is_fstree(root->root_key.objectid)) { 5264 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5265 if (ret) { 5266 btrfs_err_rl(fs_info, 5267 "error %d accounting leaf items, quota is out of sync, rescan required", 5268 ret); 5269 } 5270 } 5271 } 5272 /* make block locked assertion in btrfs_clean_tree_block happy */ 5273 if (!path->locks[level] && 5274 btrfs_header_generation(eb) == trans->transid) { 5275 btrfs_tree_lock(eb); 5276 path->locks[level] = BTRFS_WRITE_LOCK; 5277 } 5278 btrfs_clean_tree_block(eb); 5279 } 5280 5281 if (eb == root->node) { 5282 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5283 parent = eb->start; 5284 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5285 goto owner_mismatch; 5286 } else { 5287 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5288 parent = path->nodes[level + 1]->start; 5289 else if (root->root_key.objectid != 5290 btrfs_header_owner(path->nodes[level + 1])) 5291 goto owner_mismatch; 5292 } 5293 5294 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5295 out: 5296 wc->refs[level] = 0; 5297 wc->flags[level] = 0; 5298 return 0; 5299 5300 owner_mismatch: 5301 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5302 btrfs_header_owner(eb), root->root_key.objectid); 5303 return -EUCLEAN; 5304 } 5305 5306 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5307 struct btrfs_root *root, 5308 struct btrfs_path *path, 5309 struct walk_control *wc) 5310 { 5311 int level = wc->level; 5312 int lookup_info = 1; 5313 int ret; 5314 5315 while (level >= 0) { 5316 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5317 if (ret > 0) 5318 break; 5319 5320 if (level == 0) 5321 break; 5322 5323 if (path->slots[level] >= 5324 btrfs_header_nritems(path->nodes[level])) 5325 break; 5326 5327 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5328 if (ret > 0) { 5329 path->slots[level]++; 5330 continue; 5331 } else if (ret < 0) 5332 return ret; 5333 level = wc->level; 5334 } 5335 return 0; 5336 } 5337 5338 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5339 struct btrfs_root *root, 5340 struct btrfs_path *path, 5341 struct walk_control *wc, int max_level) 5342 { 5343 int level = wc->level; 5344 int ret; 5345 5346 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5347 while (level < max_level && path->nodes[level]) { 5348 wc->level = level; 5349 if (path->slots[level] + 1 < 5350 btrfs_header_nritems(path->nodes[level])) { 5351 path->slots[level]++; 5352 return 0; 5353 } else { 5354 ret = walk_up_proc(trans, root, path, wc); 5355 if (ret > 0) 5356 return 0; 5357 if (ret < 0) 5358 return ret; 5359 5360 if (path->locks[level]) { 5361 btrfs_tree_unlock_rw(path->nodes[level], 5362 path->locks[level]); 5363 path->locks[level] = 0; 5364 } 5365 free_extent_buffer(path->nodes[level]); 5366 path->nodes[level] = NULL; 5367 level++; 5368 } 5369 } 5370 return 1; 5371 } 5372 5373 /* 5374 * drop a subvolume tree. 5375 * 5376 * this function traverses the tree freeing any blocks that only 5377 * referenced by the tree. 5378 * 5379 * when a shared tree block is found. this function decreases its 5380 * reference count by one. if update_ref is true, this function 5381 * also make sure backrefs for the shared block and all lower level 5382 * blocks are properly updated. 5383 * 5384 * If called with for_reloc == 0, may exit early with -EAGAIN 5385 */ 5386 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5387 { 5388 struct btrfs_fs_info *fs_info = root->fs_info; 5389 struct btrfs_path *path; 5390 struct btrfs_trans_handle *trans; 5391 struct btrfs_root *tree_root = fs_info->tree_root; 5392 struct btrfs_root_item *root_item = &root->root_item; 5393 struct walk_control *wc; 5394 struct btrfs_key key; 5395 int err = 0; 5396 int ret; 5397 int level; 5398 bool root_dropped = false; 5399 5400 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5401 5402 path = btrfs_alloc_path(); 5403 if (!path) { 5404 err = -ENOMEM; 5405 goto out; 5406 } 5407 5408 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5409 if (!wc) { 5410 btrfs_free_path(path); 5411 err = -ENOMEM; 5412 goto out; 5413 } 5414 5415 /* 5416 * Use join to avoid potential EINTR from transaction start. See 5417 * wait_reserve_ticket and the whole reservation callchain. 5418 */ 5419 if (for_reloc) 5420 trans = btrfs_join_transaction(tree_root); 5421 else 5422 trans = btrfs_start_transaction(tree_root, 0); 5423 if (IS_ERR(trans)) { 5424 err = PTR_ERR(trans); 5425 goto out_free; 5426 } 5427 5428 err = btrfs_run_delayed_items(trans); 5429 if (err) 5430 goto out_end_trans; 5431 5432 /* 5433 * This will help us catch people modifying the fs tree while we're 5434 * dropping it. It is unsafe to mess with the fs tree while it's being 5435 * dropped as we unlock the root node and parent nodes as we walk down 5436 * the tree, assuming nothing will change. If something does change 5437 * then we'll have stale information and drop references to blocks we've 5438 * already dropped. 5439 */ 5440 set_bit(BTRFS_ROOT_DELETING, &root->state); 5441 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5442 level = btrfs_header_level(root->node); 5443 path->nodes[level] = btrfs_lock_root_node(root); 5444 path->slots[level] = 0; 5445 path->locks[level] = BTRFS_WRITE_LOCK; 5446 memset(&wc->update_progress, 0, 5447 sizeof(wc->update_progress)); 5448 } else { 5449 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5450 memcpy(&wc->update_progress, &key, 5451 sizeof(wc->update_progress)); 5452 5453 level = btrfs_root_drop_level(root_item); 5454 BUG_ON(level == 0); 5455 path->lowest_level = level; 5456 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5457 path->lowest_level = 0; 5458 if (ret < 0) { 5459 err = ret; 5460 goto out_end_trans; 5461 } 5462 WARN_ON(ret > 0); 5463 5464 /* 5465 * unlock our path, this is safe because only this 5466 * function is allowed to delete this snapshot 5467 */ 5468 btrfs_unlock_up_safe(path, 0); 5469 5470 level = btrfs_header_level(root->node); 5471 while (1) { 5472 btrfs_tree_lock(path->nodes[level]); 5473 path->locks[level] = BTRFS_WRITE_LOCK; 5474 5475 ret = btrfs_lookup_extent_info(trans, fs_info, 5476 path->nodes[level]->start, 5477 level, 1, &wc->refs[level], 5478 &wc->flags[level]); 5479 if (ret < 0) { 5480 err = ret; 5481 goto out_end_trans; 5482 } 5483 BUG_ON(wc->refs[level] == 0); 5484 5485 if (level == btrfs_root_drop_level(root_item)) 5486 break; 5487 5488 btrfs_tree_unlock(path->nodes[level]); 5489 path->locks[level] = 0; 5490 WARN_ON(wc->refs[level] != 1); 5491 level--; 5492 } 5493 } 5494 5495 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5496 wc->level = level; 5497 wc->shared_level = -1; 5498 wc->stage = DROP_REFERENCE; 5499 wc->update_ref = update_ref; 5500 wc->keep_locks = 0; 5501 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5502 5503 while (1) { 5504 5505 ret = walk_down_tree(trans, root, path, wc); 5506 if (ret < 0) { 5507 err = ret; 5508 break; 5509 } 5510 5511 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5512 if (ret < 0) { 5513 err = ret; 5514 break; 5515 } 5516 5517 if (ret > 0) { 5518 BUG_ON(wc->stage != DROP_REFERENCE); 5519 break; 5520 } 5521 5522 if (wc->stage == DROP_REFERENCE) { 5523 wc->drop_level = wc->level; 5524 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5525 &wc->drop_progress, 5526 path->slots[wc->drop_level]); 5527 } 5528 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5529 &wc->drop_progress); 5530 btrfs_set_root_drop_level(root_item, wc->drop_level); 5531 5532 BUG_ON(wc->level == 0); 5533 if (btrfs_should_end_transaction(trans) || 5534 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5535 ret = btrfs_update_root(trans, tree_root, 5536 &root->root_key, 5537 root_item); 5538 if (ret) { 5539 btrfs_abort_transaction(trans, ret); 5540 err = ret; 5541 goto out_end_trans; 5542 } 5543 5544 btrfs_end_transaction_throttle(trans); 5545 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5546 btrfs_debug(fs_info, 5547 "drop snapshot early exit"); 5548 err = -EAGAIN; 5549 goto out_free; 5550 } 5551 5552 /* 5553 * Use join to avoid potential EINTR from transaction 5554 * start. See wait_reserve_ticket and the whole 5555 * reservation callchain. 5556 */ 5557 if (for_reloc) 5558 trans = btrfs_join_transaction(tree_root); 5559 else 5560 trans = btrfs_start_transaction(tree_root, 0); 5561 if (IS_ERR(trans)) { 5562 err = PTR_ERR(trans); 5563 goto out_free; 5564 } 5565 } 5566 } 5567 btrfs_release_path(path); 5568 if (err) 5569 goto out_end_trans; 5570 5571 ret = btrfs_del_root(trans, &root->root_key); 5572 if (ret) { 5573 btrfs_abort_transaction(trans, ret); 5574 err = ret; 5575 goto out_end_trans; 5576 } 5577 5578 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5579 ret = btrfs_find_root(tree_root, &root->root_key, path, 5580 NULL, NULL); 5581 if (ret < 0) { 5582 btrfs_abort_transaction(trans, ret); 5583 err = ret; 5584 goto out_end_trans; 5585 } else if (ret > 0) { 5586 /* if we fail to delete the orphan item this time 5587 * around, it'll get picked up the next time. 5588 * 5589 * The most common failure here is just -ENOENT. 5590 */ 5591 btrfs_del_orphan_item(trans, tree_root, 5592 root->root_key.objectid); 5593 } 5594 } 5595 5596 /* 5597 * This subvolume is going to be completely dropped, and won't be 5598 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5599 * commit transaction time. So free it here manually. 5600 */ 5601 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5602 btrfs_qgroup_free_meta_all_pertrans(root); 5603 5604 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5605 btrfs_add_dropped_root(trans, root); 5606 else 5607 btrfs_put_root(root); 5608 root_dropped = true; 5609 out_end_trans: 5610 btrfs_end_transaction_throttle(trans); 5611 out_free: 5612 kfree(wc); 5613 btrfs_free_path(path); 5614 out: 5615 /* 5616 * So if we need to stop dropping the snapshot for whatever reason we 5617 * need to make sure to add it back to the dead root list so that we 5618 * keep trying to do the work later. This also cleans up roots if we 5619 * don't have it in the radix (like when we recover after a power fail 5620 * or unmount) so we don't leak memory. 5621 */ 5622 if (!for_reloc && !root_dropped) 5623 btrfs_add_dead_root(root); 5624 return err; 5625 } 5626 5627 /* 5628 * drop subtree rooted at tree block 'node'. 5629 * 5630 * NOTE: this function will unlock and release tree block 'node' 5631 * only used by relocation code 5632 */ 5633 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5634 struct btrfs_root *root, 5635 struct extent_buffer *node, 5636 struct extent_buffer *parent) 5637 { 5638 struct btrfs_fs_info *fs_info = root->fs_info; 5639 struct btrfs_path *path; 5640 struct walk_control *wc; 5641 int level; 5642 int parent_level; 5643 int ret = 0; 5644 int wret; 5645 5646 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5647 5648 path = btrfs_alloc_path(); 5649 if (!path) 5650 return -ENOMEM; 5651 5652 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5653 if (!wc) { 5654 btrfs_free_path(path); 5655 return -ENOMEM; 5656 } 5657 5658 btrfs_assert_tree_locked(parent); 5659 parent_level = btrfs_header_level(parent); 5660 atomic_inc(&parent->refs); 5661 path->nodes[parent_level] = parent; 5662 path->slots[parent_level] = btrfs_header_nritems(parent); 5663 5664 btrfs_assert_tree_locked(node); 5665 level = btrfs_header_level(node); 5666 path->nodes[level] = node; 5667 path->slots[level] = 0; 5668 path->locks[level] = BTRFS_WRITE_LOCK; 5669 5670 wc->refs[parent_level] = 1; 5671 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5672 wc->level = level; 5673 wc->shared_level = -1; 5674 wc->stage = DROP_REFERENCE; 5675 wc->update_ref = 0; 5676 wc->keep_locks = 1; 5677 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5678 5679 while (1) { 5680 wret = walk_down_tree(trans, root, path, wc); 5681 if (wret < 0) { 5682 ret = wret; 5683 break; 5684 } 5685 5686 wret = walk_up_tree(trans, root, path, wc, parent_level); 5687 if (wret < 0) 5688 ret = wret; 5689 if (wret != 0) 5690 break; 5691 } 5692 5693 kfree(wc); 5694 btrfs_free_path(path); 5695 return ret; 5696 } 5697 5698 /* 5699 * helper to account the unused space of all the readonly block group in the 5700 * space_info. takes mirrors into account. 5701 */ 5702 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5703 { 5704 struct btrfs_block_group *block_group; 5705 u64 free_bytes = 0; 5706 int factor; 5707 5708 /* It's df, we don't care if it's racy */ 5709 if (list_empty(&sinfo->ro_bgs)) 5710 return 0; 5711 5712 spin_lock(&sinfo->lock); 5713 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5714 spin_lock(&block_group->lock); 5715 5716 if (!block_group->ro) { 5717 spin_unlock(&block_group->lock); 5718 continue; 5719 } 5720 5721 factor = btrfs_bg_type_to_factor(block_group->flags); 5722 free_bytes += (block_group->length - 5723 block_group->used) * factor; 5724 5725 spin_unlock(&block_group->lock); 5726 } 5727 spin_unlock(&sinfo->lock); 5728 5729 return free_bytes; 5730 } 5731 5732 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5733 u64 start, u64 end) 5734 { 5735 return unpin_extent_range(fs_info, start, end, false); 5736 } 5737 5738 /* 5739 * It used to be that old block groups would be left around forever. 5740 * Iterating over them would be enough to trim unused space. Since we 5741 * now automatically remove them, we also need to iterate over unallocated 5742 * space. 5743 * 5744 * We don't want a transaction for this since the discard may take a 5745 * substantial amount of time. We don't require that a transaction be 5746 * running, but we do need to take a running transaction into account 5747 * to ensure that we're not discarding chunks that were released or 5748 * allocated in the current transaction. 5749 * 5750 * Holding the chunks lock will prevent other threads from allocating 5751 * or releasing chunks, but it won't prevent a running transaction 5752 * from committing and releasing the memory that the pending chunks 5753 * list head uses. For that, we need to take a reference to the 5754 * transaction and hold the commit root sem. We only need to hold 5755 * it while performing the free space search since we have already 5756 * held back allocations. 5757 */ 5758 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5759 { 5760 u64 start = SZ_1M, len = 0, end = 0; 5761 int ret; 5762 5763 *trimmed = 0; 5764 5765 /* Discard not supported = nothing to do. */ 5766 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5767 return 0; 5768 5769 /* Not writable = nothing to do. */ 5770 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5771 return 0; 5772 5773 /* No free space = nothing to do. */ 5774 if (device->total_bytes <= device->bytes_used) 5775 return 0; 5776 5777 ret = 0; 5778 5779 while (1) { 5780 struct btrfs_fs_info *fs_info = device->fs_info; 5781 u64 bytes; 5782 5783 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5784 if (ret) 5785 break; 5786 5787 find_first_clear_extent_bit(&device->alloc_state, start, 5788 &start, &end, 5789 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5790 5791 /* Check if there are any CHUNK_* bits left */ 5792 if (start > device->total_bytes) { 5793 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5794 btrfs_warn_in_rcu(fs_info, 5795 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5796 start, end - start + 1, 5797 rcu_str_deref(device->name), 5798 device->total_bytes); 5799 mutex_unlock(&fs_info->chunk_mutex); 5800 ret = 0; 5801 break; 5802 } 5803 5804 /* Ensure we skip the reserved area in the first 1M */ 5805 start = max_t(u64, start, SZ_1M); 5806 5807 /* 5808 * If find_first_clear_extent_bit find a range that spans the 5809 * end of the device it will set end to -1, in this case it's up 5810 * to the caller to trim the value to the size of the device. 5811 */ 5812 end = min(end, device->total_bytes - 1); 5813 5814 len = end - start + 1; 5815 5816 /* We didn't find any extents */ 5817 if (!len) { 5818 mutex_unlock(&fs_info->chunk_mutex); 5819 ret = 0; 5820 break; 5821 } 5822 5823 ret = btrfs_issue_discard(device->bdev, start, len, 5824 &bytes); 5825 if (!ret) 5826 set_extent_bits(&device->alloc_state, start, 5827 start + bytes - 1, 5828 CHUNK_TRIMMED); 5829 mutex_unlock(&fs_info->chunk_mutex); 5830 5831 if (ret) 5832 break; 5833 5834 start += len; 5835 *trimmed += bytes; 5836 5837 if (fatal_signal_pending(current)) { 5838 ret = -ERESTARTSYS; 5839 break; 5840 } 5841 5842 cond_resched(); 5843 } 5844 5845 return ret; 5846 } 5847 5848 /* 5849 * Trim the whole filesystem by: 5850 * 1) trimming the free space in each block group 5851 * 2) trimming the unallocated space on each device 5852 * 5853 * This will also continue trimming even if a block group or device encounters 5854 * an error. The return value will be the last error, or 0 if nothing bad 5855 * happens. 5856 */ 5857 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5858 { 5859 struct btrfs_block_group *cache = NULL; 5860 struct btrfs_device *device; 5861 struct list_head *devices; 5862 u64 group_trimmed; 5863 u64 range_end = U64_MAX; 5864 u64 start; 5865 u64 end; 5866 u64 trimmed = 0; 5867 u64 bg_failed = 0; 5868 u64 dev_failed = 0; 5869 int bg_ret = 0; 5870 int dev_ret = 0; 5871 int ret = 0; 5872 5873 /* 5874 * Check range overflow if range->len is set. 5875 * The default range->len is U64_MAX. 5876 */ 5877 if (range->len != U64_MAX && 5878 check_add_overflow(range->start, range->len, &range_end)) 5879 return -EINVAL; 5880 5881 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5882 for (; cache; cache = btrfs_next_block_group(cache)) { 5883 if (cache->start >= range_end) { 5884 btrfs_put_block_group(cache); 5885 break; 5886 } 5887 5888 start = max(range->start, cache->start); 5889 end = min(range_end, cache->start + cache->length); 5890 5891 if (end - start >= range->minlen) { 5892 if (!btrfs_block_group_done(cache)) { 5893 ret = btrfs_cache_block_group(cache, 0); 5894 if (ret) { 5895 bg_failed++; 5896 bg_ret = ret; 5897 continue; 5898 } 5899 ret = btrfs_wait_block_group_cache_done(cache); 5900 if (ret) { 5901 bg_failed++; 5902 bg_ret = ret; 5903 continue; 5904 } 5905 } 5906 ret = btrfs_trim_block_group(cache, 5907 &group_trimmed, 5908 start, 5909 end, 5910 range->minlen); 5911 5912 trimmed += group_trimmed; 5913 if (ret) { 5914 bg_failed++; 5915 bg_ret = ret; 5916 continue; 5917 } 5918 } 5919 } 5920 5921 if (bg_failed) 5922 btrfs_warn(fs_info, 5923 "failed to trim %llu block group(s), last error %d", 5924 bg_failed, bg_ret); 5925 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5926 devices = &fs_info->fs_devices->devices; 5927 list_for_each_entry(device, devices, dev_list) { 5928 ret = btrfs_trim_free_extents(device, &group_trimmed); 5929 if (ret) { 5930 dev_failed++; 5931 dev_ret = ret; 5932 break; 5933 } 5934 5935 trimmed += group_trimmed; 5936 } 5937 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5938 5939 if (dev_failed) 5940 btrfs_warn(fs_info, 5941 "failed to trim %llu device(s), last error %d", 5942 dev_failed, dev_ret); 5943 range->len = trimmed; 5944 if (bg_ret) 5945 return bg_ret; 5946 return dev_ret; 5947 } 5948