xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision b94b10aa)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 			      struct btrfs_root *root, u64 bytenr,
65 			      u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 				struct btrfs_root *root,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_root *root,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_root *root,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_root *extent_root, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 			    int dump_block_groups);
92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
93 				    u64 ram_bytes, u64 num_bytes, int delalloc);
94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 				     u64 num_bytes, int delalloc);
96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
97 			       u64 num_bytes);
98 int btrfs_pin_extent(struct btrfs_root *root,
99 		     u64 bytenr, u64 num_bytes, int reserved);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 				    struct btrfs_space_info *space_info,
102 				    u64 orig_bytes,
103 				    enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 				     struct btrfs_space_info *space_info,
106 				     u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 				     struct btrfs_space_info *space_info,
109 				     u64 num_bytes);
110 
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 	smp_mb();
115 	return cache->cached == BTRFS_CACHE_FINISHED ||
116 		cache->cached == BTRFS_CACHE_ERROR;
117 }
118 
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 	return (cache->flags & bits) == bits;
122 }
123 
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	atomic_inc(&cache->count);
127 }
128 
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	if (atomic_dec_and_test(&cache->count)) {
132 		WARN_ON(cache->pinned > 0);
133 		WARN_ON(cache->reserved > 0);
134 		kfree(cache->free_space_ctl);
135 		kfree(cache);
136 	}
137 }
138 
139 /*
140  * this adds the block group to the fs_info rb tree for the block group
141  * cache
142  */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 				struct btrfs_block_group_cache *block_group)
145 {
146 	struct rb_node **p;
147 	struct rb_node *parent = NULL;
148 	struct btrfs_block_group_cache *cache;
149 
150 	spin_lock(&info->block_group_cache_lock);
151 	p = &info->block_group_cache_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		cache = rb_entry(parent, struct btrfs_block_group_cache,
156 				 cache_node);
157 		if (block_group->key.objectid < cache->key.objectid) {
158 			p = &(*p)->rb_left;
159 		} else if (block_group->key.objectid > cache->key.objectid) {
160 			p = &(*p)->rb_right;
161 		} else {
162 			spin_unlock(&info->block_group_cache_lock);
163 			return -EEXIST;
164 		}
165 	}
166 
167 	rb_link_node(&block_group->cache_node, parent, p);
168 	rb_insert_color(&block_group->cache_node,
169 			&info->block_group_cache_tree);
170 
171 	if (info->first_logical_byte > block_group->key.objectid)
172 		info->first_logical_byte = block_group->key.objectid;
173 
174 	spin_unlock(&info->block_group_cache_lock);
175 
176 	return 0;
177 }
178 
179 /*
180  * This will return the block group at or after bytenr if contains is 0, else
181  * it will return the block group that contains the bytenr
182  */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 			      int contains)
186 {
187 	struct btrfs_block_group_cache *cache, *ret = NULL;
188 	struct rb_node *n;
189 	u64 end, start;
190 
191 	spin_lock(&info->block_group_cache_lock);
192 	n = info->block_group_cache_tree.rb_node;
193 
194 	while (n) {
195 		cache = rb_entry(n, struct btrfs_block_group_cache,
196 				 cache_node);
197 		end = cache->key.objectid + cache->key.offset - 1;
198 		start = cache->key.objectid;
199 
200 		if (bytenr < start) {
201 			if (!contains && (!ret || start < ret->key.objectid))
202 				ret = cache;
203 			n = n->rb_left;
204 		} else if (bytenr > start) {
205 			if (contains && bytenr <= end) {
206 				ret = cache;
207 				break;
208 			}
209 			n = n->rb_right;
210 		} else {
211 			ret = cache;
212 			break;
213 		}
214 	}
215 	if (ret) {
216 		btrfs_get_block_group(ret);
217 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 			info->first_logical_byte = ret->key.objectid;
219 	}
220 	spin_unlock(&info->block_group_cache_lock);
221 
222 	return ret;
223 }
224 
225 static int add_excluded_extent(struct btrfs_root *root,
226 			       u64 start, u64 num_bytes)
227 {
228 	u64 end = start + num_bytes - 1;
229 	set_extent_bits(&root->fs_info->freed_extents[0],
230 			start, end, EXTENT_UPTODATE);
231 	set_extent_bits(&root->fs_info->freed_extents[1],
232 			start, end, EXTENT_UPTODATE);
233 	return 0;
234 }
235 
236 static void free_excluded_extents(struct btrfs_root *root,
237 				  struct btrfs_block_group_cache *cache)
238 {
239 	u64 start, end;
240 
241 	start = cache->key.objectid;
242 	end = start + cache->key.offset - 1;
243 
244 	clear_extent_bits(&root->fs_info->freed_extents[0],
245 			  start, end, EXTENT_UPTODATE);
246 	clear_extent_bits(&root->fs_info->freed_extents[1],
247 			  start, end, EXTENT_UPTODATE);
248 }
249 
250 static int exclude_super_stripes(struct btrfs_root *root,
251 				 struct btrfs_block_group_cache *cache)
252 {
253 	u64 bytenr;
254 	u64 *logical;
255 	int stripe_len;
256 	int i, nr, ret;
257 
258 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 		cache->bytes_super += stripe_len;
261 		ret = add_excluded_extent(root, cache->key.objectid,
262 					  stripe_len);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 		bytenr = btrfs_sb_offset(i);
269 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 				       cache->key.objectid, bytenr,
271 				       0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(root, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	atomic_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (atomic_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 				struct btrfs_block_group_cache *block_group)
334 {
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		root->nodesize : root->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group;
398 	struct btrfs_fs_info *fs_info;
399 	struct btrfs_root *extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	block_group = caching_ctl->block_group;
410 	fs_info = block_group->fs_info;
411 	extent_root = fs_info->extent_root;
412 
413 	path = btrfs_alloc_path();
414 	if (!path)
415 		return -ENOMEM;
416 
417 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418 
419 #ifdef CONFIG_BTRFS_DEBUG
420 	/*
421 	 * If we're fragmenting we don't want to make anybody think we can
422 	 * allocate from this block group until we've had a chance to fragment
423 	 * the free space.
424 	 */
425 	if (btrfs_should_fragment_free_space(extent_root, block_group))
426 		wakeup = false;
427 #endif
428 	/*
429 	 * We don't want to deadlock with somebody trying to allocate a new
430 	 * extent for the extent root while also trying to search the extent
431 	 * root to add free space.  So we skip locking and search the commit
432 	 * root, since its read-only
433 	 */
434 	path->skip_locking = 1;
435 	path->search_commit_root = 1;
436 	path->reada = READA_FORWARD;
437 
438 	key.objectid = last;
439 	key.offset = 0;
440 	key.type = BTRFS_EXTENT_ITEM_KEY;
441 
442 next:
443 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 	if (ret < 0)
445 		goto out;
446 
447 	leaf = path->nodes[0];
448 	nritems = btrfs_header_nritems(leaf);
449 
450 	while (1) {
451 		if (btrfs_fs_closing(fs_info) > 1) {
452 			last = (u64)-1;
453 			break;
454 		}
455 
456 		if (path->slots[0] < nritems) {
457 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 		} else {
459 			ret = find_next_key(path, 0, &key);
460 			if (ret)
461 				break;
462 
463 			if (need_resched() ||
464 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
465 				if (wakeup)
466 					caching_ctl->progress = last;
467 				btrfs_release_path(path);
468 				up_read(&fs_info->commit_root_sem);
469 				mutex_unlock(&caching_ctl->mutex);
470 				cond_resched();
471 				mutex_lock(&caching_ctl->mutex);
472 				down_read(&fs_info->commit_root_sem);
473 				goto next;
474 			}
475 
476 			ret = btrfs_next_leaf(extent_root, path);
477 			if (ret < 0)
478 				goto out;
479 			if (ret)
480 				break;
481 			leaf = path->nodes[0];
482 			nritems = btrfs_header_nritems(leaf);
483 			continue;
484 		}
485 
486 		if (key.objectid < last) {
487 			key.objectid = last;
488 			key.offset = 0;
489 			key.type = BTRFS_EXTENT_ITEM_KEY;
490 
491 			if (wakeup)
492 				caching_ctl->progress = last;
493 			btrfs_release_path(path);
494 			goto next;
495 		}
496 
497 		if (key.objectid < block_group->key.objectid) {
498 			path->slots[0]++;
499 			continue;
500 		}
501 
502 		if (key.objectid >= block_group->key.objectid +
503 		    block_group->key.offset)
504 			break;
505 
506 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 		    key.type == BTRFS_METADATA_ITEM_KEY) {
508 			total_found += add_new_free_space(block_group,
509 							  fs_info, last,
510 							  key.objectid);
511 			if (key.type == BTRFS_METADATA_ITEM_KEY)
512 				last = key.objectid +
513 					fs_info->tree_root->nodesize;
514 			else
515 				last = key.objectid + key.offset;
516 
517 			if (total_found > CACHING_CTL_WAKE_UP) {
518 				total_found = 0;
519 				if (wakeup)
520 					wake_up(&caching_ctl->wait);
521 			}
522 		}
523 		path->slots[0]++;
524 	}
525 	ret = 0;
526 
527 	total_found += add_new_free_space(block_group, fs_info, last,
528 					  block_group->key.objectid +
529 					  block_group->key.offset);
530 	caching_ctl->progress = (u64)-1;
531 
532 out:
533 	btrfs_free_path(path);
534 	return ret;
535 }
536 
537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 	struct btrfs_block_group_cache *block_group;
540 	struct btrfs_fs_info *fs_info;
541 	struct btrfs_caching_control *caching_ctl;
542 	struct btrfs_root *extent_root;
543 	int ret;
544 
545 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 	block_group = caching_ctl->block_group;
547 	fs_info = block_group->fs_info;
548 	extent_root = fs_info->extent_root;
549 
550 	mutex_lock(&caching_ctl->mutex);
551 	down_read(&fs_info->commit_root_sem);
552 
553 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 		ret = load_free_space_tree(caching_ctl);
555 	else
556 		ret = load_extent_tree_free(caching_ctl);
557 
558 	spin_lock(&block_group->lock);
559 	block_group->caching_ctl = NULL;
560 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 	spin_unlock(&block_group->lock);
562 
563 #ifdef CONFIG_BTRFS_DEBUG
564 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 		u64 bytes_used;
566 
567 		spin_lock(&block_group->space_info->lock);
568 		spin_lock(&block_group->lock);
569 		bytes_used = block_group->key.offset -
570 			btrfs_block_group_used(&block_group->item);
571 		block_group->space_info->bytes_used += bytes_used >> 1;
572 		spin_unlock(&block_group->lock);
573 		spin_unlock(&block_group->space_info->lock);
574 		fragment_free_space(extent_root, block_group);
575 	}
576 #endif
577 
578 	caching_ctl->progress = (u64)-1;
579 
580 	up_read(&fs_info->commit_root_sem);
581 	free_excluded_extents(fs_info->extent_root, block_group);
582 	mutex_unlock(&caching_ctl->mutex);
583 
584 	wake_up(&caching_ctl->wait);
585 
586 	put_caching_control(caching_ctl);
587 	btrfs_put_block_group(block_group);
588 }
589 
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 			     int load_cache_only)
592 {
593 	DEFINE_WAIT(wait);
594 	struct btrfs_fs_info *fs_info = cache->fs_info;
595 	struct btrfs_caching_control *caching_ctl;
596 	int ret = 0;
597 
598 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 	if (!caching_ctl)
600 		return -ENOMEM;
601 
602 	INIT_LIST_HEAD(&caching_ctl->list);
603 	mutex_init(&caching_ctl->mutex);
604 	init_waitqueue_head(&caching_ctl->wait);
605 	caching_ctl->block_group = cache;
606 	caching_ctl->progress = cache->key.objectid;
607 	atomic_set(&caching_ctl->count, 1);
608 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 			caching_thread, NULL, NULL);
610 
611 	spin_lock(&cache->lock);
612 	/*
613 	 * This should be a rare occasion, but this could happen I think in the
614 	 * case where one thread starts to load the space cache info, and then
615 	 * some other thread starts a transaction commit which tries to do an
616 	 * allocation while the other thread is still loading the space cache
617 	 * info.  The previous loop should have kept us from choosing this block
618 	 * group, but if we've moved to the state where we will wait on caching
619 	 * block groups we need to first check if we're doing a fast load here,
620 	 * so we can wait for it to finish, otherwise we could end up allocating
621 	 * from a block group who's cache gets evicted for one reason or
622 	 * another.
623 	 */
624 	while (cache->cached == BTRFS_CACHE_FAST) {
625 		struct btrfs_caching_control *ctl;
626 
627 		ctl = cache->caching_ctl;
628 		atomic_inc(&ctl->count);
629 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 		spin_unlock(&cache->lock);
631 
632 		schedule();
633 
634 		finish_wait(&ctl->wait, &wait);
635 		put_caching_control(ctl);
636 		spin_lock(&cache->lock);
637 	}
638 
639 	if (cache->cached != BTRFS_CACHE_NO) {
640 		spin_unlock(&cache->lock);
641 		kfree(caching_ctl);
642 		return 0;
643 	}
644 	WARN_ON(cache->caching_ctl);
645 	cache->caching_ctl = caching_ctl;
646 	cache->cached = BTRFS_CACHE_FAST;
647 	spin_unlock(&cache->lock);
648 
649 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 		mutex_lock(&caching_ctl->mutex);
651 		ret = load_free_space_cache(fs_info, cache);
652 
653 		spin_lock(&cache->lock);
654 		if (ret == 1) {
655 			cache->caching_ctl = NULL;
656 			cache->cached = BTRFS_CACHE_FINISHED;
657 			cache->last_byte_to_unpin = (u64)-1;
658 			caching_ctl->progress = (u64)-1;
659 		} else {
660 			if (load_cache_only) {
661 				cache->caching_ctl = NULL;
662 				cache->cached = BTRFS_CACHE_NO;
663 			} else {
664 				cache->cached = BTRFS_CACHE_STARTED;
665 				cache->has_caching_ctl = 1;
666 			}
667 		}
668 		spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 		if (ret == 1 &&
671 		    btrfs_should_fragment_free_space(fs_info->extent_root,
672 						     cache)) {
673 			u64 bytes_used;
674 
675 			spin_lock(&cache->space_info->lock);
676 			spin_lock(&cache->lock);
677 			bytes_used = cache->key.offset -
678 				btrfs_block_group_used(&cache->item);
679 			cache->space_info->bytes_used += bytes_used >> 1;
680 			spin_unlock(&cache->lock);
681 			spin_unlock(&cache->space_info->lock);
682 			fragment_free_space(fs_info->extent_root, cache);
683 		}
684 #endif
685 		mutex_unlock(&caching_ctl->mutex);
686 
687 		wake_up(&caching_ctl->wait);
688 		if (ret == 1) {
689 			put_caching_control(caching_ctl);
690 			free_excluded_extents(fs_info->extent_root, cache);
691 			return 0;
692 		}
693 	} else {
694 		/*
695 		 * We're either using the free space tree or no caching at all.
696 		 * Set cached to the appropriate value and wakeup any waiters.
697 		 */
698 		spin_lock(&cache->lock);
699 		if (load_cache_only) {
700 			cache->caching_ctl = NULL;
701 			cache->cached = BTRFS_CACHE_NO;
702 		} else {
703 			cache->cached = BTRFS_CACHE_STARTED;
704 			cache->has_caching_ctl = 1;
705 		}
706 		spin_unlock(&cache->lock);
707 		wake_up(&caching_ctl->wait);
708 	}
709 
710 	if (load_cache_only) {
711 		put_caching_control(caching_ctl);
712 		return 0;
713 	}
714 
715 	down_write(&fs_info->commit_root_sem);
716 	atomic_inc(&caching_ctl->count);
717 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 	up_write(&fs_info->commit_root_sem);
719 
720 	btrfs_get_block_group(cache);
721 
722 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723 
724 	return ret;
725 }
726 
727 /*
728  * return the block group that starts at or after bytenr
729  */
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 	struct btrfs_block_group_cache *cache;
734 
735 	cache = block_group_cache_tree_search(info, bytenr, 0);
736 
737 	return cache;
738 }
739 
740 /*
741  * return the block group that contains the given bytenr
742  */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 						 struct btrfs_fs_info *info,
745 						 u64 bytenr)
746 {
747 	struct btrfs_block_group_cache *cache;
748 
749 	cache = block_group_cache_tree_search(info, bytenr, 1);
750 
751 	return cache;
752 }
753 
754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
755 						  u64 flags)
756 {
757 	struct list_head *head = &info->space_info;
758 	struct btrfs_space_info *found;
759 
760 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
761 
762 	rcu_read_lock();
763 	list_for_each_entry_rcu(found, head, list) {
764 		if (found->flags & flags) {
765 			rcu_read_unlock();
766 			return found;
767 		}
768 	}
769 	rcu_read_unlock();
770 	return NULL;
771 }
772 
773 /*
774  * after adding space to the filesystem, we need to clear the full flags
775  * on all the space infos.
776  */
777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
778 {
779 	struct list_head *head = &info->space_info;
780 	struct btrfs_space_info *found;
781 
782 	rcu_read_lock();
783 	list_for_each_entry_rcu(found, head, list)
784 		found->full = 0;
785 	rcu_read_unlock();
786 }
787 
788 /* simple helper to search for an existing data extent at a given offset */
789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
790 {
791 	int ret;
792 	struct btrfs_key key;
793 	struct btrfs_path *path;
794 
795 	path = btrfs_alloc_path();
796 	if (!path)
797 		return -ENOMEM;
798 
799 	key.objectid = start;
800 	key.offset = len;
801 	key.type = BTRFS_EXTENT_ITEM_KEY;
802 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
803 				0, 0);
804 	btrfs_free_path(path);
805 	return ret;
806 }
807 
808 /*
809  * helper function to lookup reference count and flags of a tree block.
810  *
811  * the head node for delayed ref is used to store the sum of all the
812  * reference count modifications queued up in the rbtree. the head
813  * node may also store the extent flags to set. This way you can check
814  * to see what the reference count and extent flags would be if all of
815  * the delayed refs are not processed.
816  */
817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 			     struct btrfs_root *root, u64 bytenr,
819 			     u64 offset, int metadata, u64 *refs, u64 *flags)
820 {
821 	struct btrfs_delayed_ref_head *head;
822 	struct btrfs_delayed_ref_root *delayed_refs;
823 	struct btrfs_path *path;
824 	struct btrfs_extent_item *ei;
825 	struct extent_buffer *leaf;
826 	struct btrfs_key key;
827 	u32 item_size;
828 	u64 num_refs;
829 	u64 extent_flags;
830 	int ret;
831 
832 	/*
833 	 * If we don't have skinny metadata, don't bother doing anything
834 	 * different
835 	 */
836 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
837 		offset = root->nodesize;
838 		metadata = 0;
839 	}
840 
841 	path = btrfs_alloc_path();
842 	if (!path)
843 		return -ENOMEM;
844 
845 	if (!trans) {
846 		path->skip_locking = 1;
847 		path->search_commit_root = 1;
848 	}
849 
850 search_again:
851 	key.objectid = bytenr;
852 	key.offset = offset;
853 	if (metadata)
854 		key.type = BTRFS_METADATA_ITEM_KEY;
855 	else
856 		key.type = BTRFS_EXTENT_ITEM_KEY;
857 
858 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
859 				&key, path, 0, 0);
860 	if (ret < 0)
861 		goto out_free;
862 
863 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
864 		if (path->slots[0]) {
865 			path->slots[0]--;
866 			btrfs_item_key_to_cpu(path->nodes[0], &key,
867 					      path->slots[0]);
868 			if (key.objectid == bytenr &&
869 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
870 			    key.offset == root->nodesize)
871 				ret = 0;
872 		}
873 	}
874 
875 	if (ret == 0) {
876 		leaf = path->nodes[0];
877 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 		if (item_size >= sizeof(*ei)) {
879 			ei = btrfs_item_ptr(leaf, path->slots[0],
880 					    struct btrfs_extent_item);
881 			num_refs = btrfs_extent_refs(leaf, ei);
882 			extent_flags = btrfs_extent_flags(leaf, ei);
883 		} else {
884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 			struct btrfs_extent_item_v0 *ei0;
886 			BUG_ON(item_size != sizeof(*ei0));
887 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 					     struct btrfs_extent_item_v0);
889 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 			/* FIXME: this isn't correct for data */
891 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
892 #else
893 			BUG();
894 #endif
895 		}
896 		BUG_ON(num_refs == 0);
897 	} else {
898 		num_refs = 0;
899 		extent_flags = 0;
900 		ret = 0;
901 	}
902 
903 	if (!trans)
904 		goto out;
905 
906 	delayed_refs = &trans->transaction->delayed_refs;
907 	spin_lock(&delayed_refs->lock);
908 	head = btrfs_find_delayed_ref_head(trans, bytenr);
909 	if (head) {
910 		if (!mutex_trylock(&head->mutex)) {
911 			atomic_inc(&head->node.refs);
912 			spin_unlock(&delayed_refs->lock);
913 
914 			btrfs_release_path(path);
915 
916 			/*
917 			 * Mutex was contended, block until it's released and try
918 			 * again
919 			 */
920 			mutex_lock(&head->mutex);
921 			mutex_unlock(&head->mutex);
922 			btrfs_put_delayed_ref(&head->node);
923 			goto search_again;
924 		}
925 		spin_lock(&head->lock);
926 		if (head->extent_op && head->extent_op->update_flags)
927 			extent_flags |= head->extent_op->flags_to_set;
928 		else
929 			BUG_ON(num_refs == 0);
930 
931 		num_refs += head->node.ref_mod;
932 		spin_unlock(&head->lock);
933 		mutex_unlock(&head->mutex);
934 	}
935 	spin_unlock(&delayed_refs->lock);
936 out:
937 	WARN_ON(num_refs == 0);
938 	if (refs)
939 		*refs = num_refs;
940 	if (flags)
941 		*flags = extent_flags;
942 out_free:
943 	btrfs_free_path(path);
944 	return ret;
945 }
946 
947 /*
948  * Back reference rules.  Back refs have three main goals:
949  *
950  * 1) differentiate between all holders of references to an extent so that
951  *    when a reference is dropped we can make sure it was a valid reference
952  *    before freeing the extent.
953  *
954  * 2) Provide enough information to quickly find the holders of an extent
955  *    if we notice a given block is corrupted or bad.
956  *
957  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958  *    maintenance.  This is actually the same as #2, but with a slightly
959  *    different use case.
960  *
961  * There are two kinds of back refs. The implicit back refs is optimized
962  * for pointers in non-shared tree blocks. For a given pointer in a block,
963  * back refs of this kind provide information about the block's owner tree
964  * and the pointer's key. These information allow us to find the block by
965  * b-tree searching. The full back refs is for pointers in tree blocks not
966  * referenced by their owner trees. The location of tree block is recorded
967  * in the back refs. Actually the full back refs is generic, and can be
968  * used in all cases the implicit back refs is used. The major shortcoming
969  * of the full back refs is its overhead. Every time a tree block gets
970  * COWed, we have to update back refs entry for all pointers in it.
971  *
972  * For a newly allocated tree block, we use implicit back refs for
973  * pointers in it. This means most tree related operations only involve
974  * implicit back refs. For a tree block created in old transaction, the
975  * only way to drop a reference to it is COW it. So we can detect the
976  * event that tree block loses its owner tree's reference and do the
977  * back refs conversion.
978  *
979  * When a tree block is COWed through a tree, there are four cases:
980  *
981  * The reference count of the block is one and the tree is the block's
982  * owner tree. Nothing to do in this case.
983  *
984  * The reference count of the block is one and the tree is not the
985  * block's owner tree. In this case, full back refs is used for pointers
986  * in the block. Remove these full back refs, add implicit back refs for
987  * every pointers in the new block.
988  *
989  * The reference count of the block is greater than one and the tree is
990  * the block's owner tree. In this case, implicit back refs is used for
991  * pointers in the block. Add full back refs for every pointers in the
992  * block, increase lower level extents' reference counts. The original
993  * implicit back refs are entailed to the new block.
994  *
995  * The reference count of the block is greater than one and the tree is
996  * not the block's owner tree. Add implicit back refs for every pointer in
997  * the new block, increase lower level extents' reference count.
998  *
999  * Back Reference Key composing:
1000  *
1001  * The key objectid corresponds to the first byte in the extent,
1002  * The key type is used to differentiate between types of back refs.
1003  * There are different meanings of the key offset for different types
1004  * of back refs.
1005  *
1006  * File extents can be referenced by:
1007  *
1008  * - multiple snapshots, subvolumes, or different generations in one subvol
1009  * - different files inside a single subvolume
1010  * - different offsets inside a file (bookend extents in file.c)
1011  *
1012  * The extent ref structure for the implicit back refs has fields for:
1013  *
1014  * - Objectid of the subvolume root
1015  * - objectid of the file holding the reference
1016  * - original offset in the file
1017  * - how many bookend extents
1018  *
1019  * The key offset for the implicit back refs is hash of the first
1020  * three fields.
1021  *
1022  * The extent ref structure for the full back refs has field for:
1023  *
1024  * - number of pointers in the tree leaf
1025  *
1026  * The key offset for the implicit back refs is the first byte of
1027  * the tree leaf
1028  *
1029  * When a file extent is allocated, The implicit back refs is used.
1030  * the fields are filled in:
1031  *
1032  *     (root_key.objectid, inode objectid, offset in file, 1)
1033  *
1034  * When a file extent is removed file truncation, we find the
1035  * corresponding implicit back refs and check the following fields:
1036  *
1037  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1038  *
1039  * Btree extents can be referenced by:
1040  *
1041  * - Different subvolumes
1042  *
1043  * Both the implicit back refs and the full back refs for tree blocks
1044  * only consist of key. The key offset for the implicit back refs is
1045  * objectid of block's owner tree. The key offset for the full back refs
1046  * is the first byte of parent block.
1047  *
1048  * When implicit back refs is used, information about the lowest key and
1049  * level of the tree block are required. These information are stored in
1050  * tree block info structure.
1051  */
1052 
1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 				  struct btrfs_root *root,
1056 				  struct btrfs_path *path,
1057 				  u64 owner, u32 extra_size)
1058 {
1059 	struct btrfs_extent_item *item;
1060 	struct btrfs_extent_item_v0 *ei0;
1061 	struct btrfs_extent_ref_v0 *ref0;
1062 	struct btrfs_tree_block_info *bi;
1063 	struct extent_buffer *leaf;
1064 	struct btrfs_key key;
1065 	struct btrfs_key found_key;
1066 	u32 new_size = sizeof(*item);
1067 	u64 refs;
1068 	int ret;
1069 
1070 	leaf = path->nodes[0];
1071 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1072 
1073 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 			     struct btrfs_extent_item_v0);
1076 	refs = btrfs_extent_refs_v0(leaf, ei0);
1077 
1078 	if (owner == (u64)-1) {
1079 		while (1) {
1080 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 				ret = btrfs_next_leaf(root, path);
1082 				if (ret < 0)
1083 					return ret;
1084 				BUG_ON(ret > 0); /* Corruption */
1085 				leaf = path->nodes[0];
1086 			}
1087 			btrfs_item_key_to_cpu(leaf, &found_key,
1088 					      path->slots[0]);
1089 			BUG_ON(key.objectid != found_key.objectid);
1090 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1091 				path->slots[0]++;
1092 				continue;
1093 			}
1094 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 					      struct btrfs_extent_ref_v0);
1096 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1097 			break;
1098 		}
1099 	}
1100 	btrfs_release_path(path);
1101 
1102 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 		new_size += sizeof(*bi);
1104 
1105 	new_size -= sizeof(*ei0);
1106 	ret = btrfs_search_slot(trans, root, &key, path,
1107 				new_size + extra_size, 1);
1108 	if (ret < 0)
1109 		return ret;
1110 	BUG_ON(ret); /* Corruption */
1111 
1112 	btrfs_extend_item(root, path, new_size);
1113 
1114 	leaf = path->nodes[0];
1115 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 	btrfs_set_extent_refs(leaf, item, refs);
1117 	/* FIXME: get real generation */
1118 	btrfs_set_extent_generation(leaf, item, 0);
1119 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 		btrfs_set_extent_flags(leaf, item,
1121 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 		bi = (struct btrfs_tree_block_info *)(item + 1);
1124 		/* FIXME: get first key of the block */
1125 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1127 	} else {
1128 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1129 	}
1130 	btrfs_mark_buffer_dirty(leaf);
1131 	return 0;
1132 }
1133 #endif
1134 
1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1136 {
1137 	u32 high_crc = ~(u32)0;
1138 	u32 low_crc = ~(u32)0;
1139 	__le64 lenum;
1140 
1141 	lenum = cpu_to_le64(root_objectid);
1142 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1143 	lenum = cpu_to_le64(owner);
1144 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1145 	lenum = cpu_to_le64(offset);
1146 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1147 
1148 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1149 }
1150 
1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 				     struct btrfs_extent_data_ref *ref)
1153 {
1154 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 				    btrfs_extent_data_ref_objectid(leaf, ref),
1156 				    btrfs_extent_data_ref_offset(leaf, ref));
1157 }
1158 
1159 static int match_extent_data_ref(struct extent_buffer *leaf,
1160 				 struct btrfs_extent_data_ref *ref,
1161 				 u64 root_objectid, u64 owner, u64 offset)
1162 {
1163 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1166 		return 0;
1167 	return 1;
1168 }
1169 
1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 					   struct btrfs_root *root,
1172 					   struct btrfs_path *path,
1173 					   u64 bytenr, u64 parent,
1174 					   u64 root_objectid,
1175 					   u64 owner, u64 offset)
1176 {
1177 	struct btrfs_key key;
1178 	struct btrfs_extent_data_ref *ref;
1179 	struct extent_buffer *leaf;
1180 	u32 nritems;
1181 	int ret;
1182 	int recow;
1183 	int err = -ENOENT;
1184 
1185 	key.objectid = bytenr;
1186 	if (parent) {
1187 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 		key.offset = parent;
1189 	} else {
1190 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 		key.offset = hash_extent_data_ref(root_objectid,
1192 						  owner, offset);
1193 	}
1194 again:
1195 	recow = 0;
1196 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 	if (ret < 0) {
1198 		err = ret;
1199 		goto fail;
1200 	}
1201 
1202 	if (parent) {
1203 		if (!ret)
1204 			return 0;
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1207 		btrfs_release_path(path);
1208 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 		if (ret < 0) {
1210 			err = ret;
1211 			goto fail;
1212 		}
1213 		if (!ret)
1214 			return 0;
1215 #endif
1216 		goto fail;
1217 	}
1218 
1219 	leaf = path->nodes[0];
1220 	nritems = btrfs_header_nritems(leaf);
1221 	while (1) {
1222 		if (path->slots[0] >= nritems) {
1223 			ret = btrfs_next_leaf(root, path);
1224 			if (ret < 0)
1225 				err = ret;
1226 			if (ret)
1227 				goto fail;
1228 
1229 			leaf = path->nodes[0];
1230 			nritems = btrfs_header_nritems(leaf);
1231 			recow = 1;
1232 		}
1233 
1234 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 		if (key.objectid != bytenr ||
1236 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1237 			goto fail;
1238 
1239 		ref = btrfs_item_ptr(leaf, path->slots[0],
1240 				     struct btrfs_extent_data_ref);
1241 
1242 		if (match_extent_data_ref(leaf, ref, root_objectid,
1243 					  owner, offset)) {
1244 			if (recow) {
1245 				btrfs_release_path(path);
1246 				goto again;
1247 			}
1248 			err = 0;
1249 			break;
1250 		}
1251 		path->slots[0]++;
1252 	}
1253 fail:
1254 	return err;
1255 }
1256 
1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 					   struct btrfs_root *root,
1259 					   struct btrfs_path *path,
1260 					   u64 bytenr, u64 parent,
1261 					   u64 root_objectid, u64 owner,
1262 					   u64 offset, int refs_to_add)
1263 {
1264 	struct btrfs_key key;
1265 	struct extent_buffer *leaf;
1266 	u32 size;
1267 	u32 num_refs;
1268 	int ret;
1269 
1270 	key.objectid = bytenr;
1271 	if (parent) {
1272 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 		key.offset = parent;
1274 		size = sizeof(struct btrfs_shared_data_ref);
1275 	} else {
1276 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 		key.offset = hash_extent_data_ref(root_objectid,
1278 						  owner, offset);
1279 		size = sizeof(struct btrfs_extent_data_ref);
1280 	}
1281 
1282 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 	if (ret && ret != -EEXIST)
1284 		goto fail;
1285 
1286 	leaf = path->nodes[0];
1287 	if (parent) {
1288 		struct btrfs_shared_data_ref *ref;
1289 		ref = btrfs_item_ptr(leaf, path->slots[0],
1290 				     struct btrfs_shared_data_ref);
1291 		if (ret == 0) {
1292 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1293 		} else {
1294 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 			num_refs += refs_to_add;
1296 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1297 		}
1298 	} else {
1299 		struct btrfs_extent_data_ref *ref;
1300 		while (ret == -EEXIST) {
1301 			ref = btrfs_item_ptr(leaf, path->slots[0],
1302 					     struct btrfs_extent_data_ref);
1303 			if (match_extent_data_ref(leaf, ref, root_objectid,
1304 						  owner, offset))
1305 				break;
1306 			btrfs_release_path(path);
1307 			key.offset++;
1308 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1309 						      size);
1310 			if (ret && ret != -EEXIST)
1311 				goto fail;
1312 
1313 			leaf = path->nodes[0];
1314 		}
1315 		ref = btrfs_item_ptr(leaf, path->slots[0],
1316 				     struct btrfs_extent_data_ref);
1317 		if (ret == 0) {
1318 			btrfs_set_extent_data_ref_root(leaf, ref,
1319 						       root_objectid);
1320 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1323 		} else {
1324 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 			num_refs += refs_to_add;
1326 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1327 		}
1328 	}
1329 	btrfs_mark_buffer_dirty(leaf);
1330 	ret = 0;
1331 fail:
1332 	btrfs_release_path(path);
1333 	return ret;
1334 }
1335 
1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 					   struct btrfs_root *root,
1338 					   struct btrfs_path *path,
1339 					   int refs_to_drop, int *last_ref)
1340 {
1341 	struct btrfs_key key;
1342 	struct btrfs_extent_data_ref *ref1 = NULL;
1343 	struct btrfs_shared_data_ref *ref2 = NULL;
1344 	struct extent_buffer *leaf;
1345 	u32 num_refs = 0;
1346 	int ret = 0;
1347 
1348 	leaf = path->nodes[0];
1349 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350 
1351 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_data_ref);
1354 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 				      struct btrfs_shared_data_ref);
1358 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 		struct btrfs_extent_ref_v0 *ref0;
1362 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 				      struct btrfs_extent_ref_v0);
1364 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1365 #endif
1366 	} else {
1367 		BUG();
1368 	}
1369 
1370 	BUG_ON(num_refs < refs_to_drop);
1371 	num_refs -= refs_to_drop;
1372 
1373 	if (num_refs == 0) {
1374 		ret = btrfs_del_item(trans, root, path);
1375 		*last_ref = 1;
1376 	} else {
1377 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 		else {
1383 			struct btrfs_extent_ref_v0 *ref0;
1384 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 					struct btrfs_extent_ref_v0);
1386 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1387 		}
1388 #endif
1389 		btrfs_mark_buffer_dirty(leaf);
1390 	}
1391 	return ret;
1392 }
1393 
1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1395 					  struct btrfs_extent_inline_ref *iref)
1396 {
1397 	struct btrfs_key key;
1398 	struct extent_buffer *leaf;
1399 	struct btrfs_extent_data_ref *ref1;
1400 	struct btrfs_shared_data_ref *ref2;
1401 	u32 num_refs = 0;
1402 
1403 	leaf = path->nodes[0];
1404 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1405 	if (iref) {
1406 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 		    BTRFS_EXTENT_DATA_REF_KEY) {
1408 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 		} else {
1411 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1413 		}
1414 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 				      struct btrfs_extent_data_ref);
1417 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 				      struct btrfs_shared_data_ref);
1421 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 		struct btrfs_extent_ref_v0 *ref0;
1425 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 				      struct btrfs_extent_ref_v0);
1427 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1428 #endif
1429 	} else {
1430 		WARN_ON(1);
1431 	}
1432 	return num_refs;
1433 }
1434 
1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 					  struct btrfs_root *root,
1437 					  struct btrfs_path *path,
1438 					  u64 bytenr, u64 parent,
1439 					  u64 root_objectid)
1440 {
1441 	struct btrfs_key key;
1442 	int ret;
1443 
1444 	key.objectid = bytenr;
1445 	if (parent) {
1446 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 		key.offset = parent;
1448 	} else {
1449 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 		key.offset = root_objectid;
1451 	}
1452 
1453 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 	if (ret > 0)
1455 		ret = -ENOENT;
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 	if (ret == -ENOENT && parent) {
1458 		btrfs_release_path(path);
1459 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1461 		if (ret > 0)
1462 			ret = -ENOENT;
1463 	}
1464 #endif
1465 	return ret;
1466 }
1467 
1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 					  struct btrfs_root *root,
1470 					  struct btrfs_path *path,
1471 					  u64 bytenr, u64 parent,
1472 					  u64 root_objectid)
1473 {
1474 	struct btrfs_key key;
1475 	int ret;
1476 
1477 	key.objectid = bytenr;
1478 	if (parent) {
1479 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 		key.offset = parent;
1481 	} else {
1482 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 		key.offset = root_objectid;
1484 	}
1485 
1486 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 	btrfs_release_path(path);
1488 	return ret;
1489 }
1490 
1491 static inline int extent_ref_type(u64 parent, u64 owner)
1492 {
1493 	int type;
1494 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 		if (parent > 0)
1496 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 		else
1498 			type = BTRFS_TREE_BLOCK_REF_KEY;
1499 	} else {
1500 		if (parent > 0)
1501 			type = BTRFS_SHARED_DATA_REF_KEY;
1502 		else
1503 			type = BTRFS_EXTENT_DATA_REF_KEY;
1504 	}
1505 	return type;
1506 }
1507 
1508 static int find_next_key(struct btrfs_path *path, int level,
1509 			 struct btrfs_key *key)
1510 
1511 {
1512 	for (; level < BTRFS_MAX_LEVEL; level++) {
1513 		if (!path->nodes[level])
1514 			break;
1515 		if (path->slots[level] + 1 >=
1516 		    btrfs_header_nritems(path->nodes[level]))
1517 			continue;
1518 		if (level == 0)
1519 			btrfs_item_key_to_cpu(path->nodes[level], key,
1520 					      path->slots[level] + 1);
1521 		else
1522 			btrfs_node_key_to_cpu(path->nodes[level], key,
1523 					      path->slots[level] + 1);
1524 		return 0;
1525 	}
1526 	return 1;
1527 }
1528 
1529 /*
1530  * look for inline back ref. if back ref is found, *ref_ret is set
1531  * to the address of inline back ref, and 0 is returned.
1532  *
1533  * if back ref isn't found, *ref_ret is set to the address where it
1534  * should be inserted, and -ENOENT is returned.
1535  *
1536  * if insert is true and there are too many inline back refs, the path
1537  * points to the extent item, and -EAGAIN is returned.
1538  *
1539  * NOTE: inline back refs are ordered in the same way that back ref
1540  *	 items in the tree are ordered.
1541  */
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 				 struct btrfs_root *root,
1545 				 struct btrfs_path *path,
1546 				 struct btrfs_extent_inline_ref **ref_ret,
1547 				 u64 bytenr, u64 num_bytes,
1548 				 u64 parent, u64 root_objectid,
1549 				 u64 owner, u64 offset, int insert)
1550 {
1551 	struct btrfs_key key;
1552 	struct extent_buffer *leaf;
1553 	struct btrfs_extent_item *ei;
1554 	struct btrfs_extent_inline_ref *iref;
1555 	u64 flags;
1556 	u64 item_size;
1557 	unsigned long ptr;
1558 	unsigned long end;
1559 	int extra_size;
1560 	int type;
1561 	int want;
1562 	int ret;
1563 	int err = 0;
1564 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1565 						 SKINNY_METADATA);
1566 
1567 	key.objectid = bytenr;
1568 	key.type = BTRFS_EXTENT_ITEM_KEY;
1569 	key.offset = num_bytes;
1570 
1571 	want = extent_ref_type(parent, owner);
1572 	if (insert) {
1573 		extra_size = btrfs_extent_inline_ref_size(want);
1574 		path->keep_locks = 1;
1575 	} else
1576 		extra_size = -1;
1577 
1578 	/*
1579 	 * Owner is our parent level, so we can just add one to get the level
1580 	 * for the block we are interested in.
1581 	 */
1582 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 		key.type = BTRFS_METADATA_ITEM_KEY;
1584 		key.offset = owner;
1585 	}
1586 
1587 again:
1588 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1589 	if (ret < 0) {
1590 		err = ret;
1591 		goto out;
1592 	}
1593 
1594 	/*
1595 	 * We may be a newly converted file system which still has the old fat
1596 	 * extent entries for metadata, so try and see if we have one of those.
1597 	 */
1598 	if (ret > 0 && skinny_metadata) {
1599 		skinny_metadata = false;
1600 		if (path->slots[0]) {
1601 			path->slots[0]--;
1602 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 					      path->slots[0]);
1604 			if (key.objectid == bytenr &&
1605 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 			    key.offset == num_bytes)
1607 				ret = 0;
1608 		}
1609 		if (ret) {
1610 			key.objectid = bytenr;
1611 			key.type = BTRFS_EXTENT_ITEM_KEY;
1612 			key.offset = num_bytes;
1613 			btrfs_release_path(path);
1614 			goto again;
1615 		}
1616 	}
1617 
1618 	if (ret && !insert) {
1619 		err = -ENOENT;
1620 		goto out;
1621 	} else if (WARN_ON(ret)) {
1622 		err = -EIO;
1623 		goto out;
1624 	}
1625 
1626 	leaf = path->nodes[0];
1627 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 	if (item_size < sizeof(*ei)) {
1630 		if (!insert) {
1631 			err = -ENOENT;
1632 			goto out;
1633 		}
1634 		ret = convert_extent_item_v0(trans, root, path, owner,
1635 					     extra_size);
1636 		if (ret < 0) {
1637 			err = ret;
1638 			goto out;
1639 		}
1640 		leaf = path->nodes[0];
1641 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 	}
1643 #endif
1644 	BUG_ON(item_size < sizeof(*ei));
1645 
1646 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 	flags = btrfs_extent_flags(leaf, ei);
1648 
1649 	ptr = (unsigned long)(ei + 1);
1650 	end = (unsigned long)ei + item_size;
1651 
1652 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1653 		ptr += sizeof(struct btrfs_tree_block_info);
1654 		BUG_ON(ptr > end);
1655 	}
1656 
1657 	err = -ENOENT;
1658 	while (1) {
1659 		if (ptr >= end) {
1660 			WARN_ON(ptr > end);
1661 			break;
1662 		}
1663 		iref = (struct btrfs_extent_inline_ref *)ptr;
1664 		type = btrfs_extent_inline_ref_type(leaf, iref);
1665 		if (want < type)
1666 			break;
1667 		if (want > type) {
1668 			ptr += btrfs_extent_inline_ref_size(type);
1669 			continue;
1670 		}
1671 
1672 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 			struct btrfs_extent_data_ref *dref;
1674 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 			if (match_extent_data_ref(leaf, dref, root_objectid,
1676 						  owner, offset)) {
1677 				err = 0;
1678 				break;
1679 			}
1680 			if (hash_extent_data_ref_item(leaf, dref) <
1681 			    hash_extent_data_ref(root_objectid, owner, offset))
1682 				break;
1683 		} else {
1684 			u64 ref_offset;
1685 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 			if (parent > 0) {
1687 				if (parent == ref_offset) {
1688 					err = 0;
1689 					break;
1690 				}
1691 				if (ref_offset < parent)
1692 					break;
1693 			} else {
1694 				if (root_objectid == ref_offset) {
1695 					err = 0;
1696 					break;
1697 				}
1698 				if (ref_offset < root_objectid)
1699 					break;
1700 			}
1701 		}
1702 		ptr += btrfs_extent_inline_ref_size(type);
1703 	}
1704 	if (err == -ENOENT && insert) {
1705 		if (item_size + extra_size >=
1706 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 			err = -EAGAIN;
1708 			goto out;
1709 		}
1710 		/*
1711 		 * To add new inline back ref, we have to make sure
1712 		 * there is no corresponding back ref item.
1713 		 * For simplicity, we just do not add new inline back
1714 		 * ref if there is any kind of item for this block
1715 		 */
1716 		if (find_next_key(path, 0, &key) == 0 &&
1717 		    key.objectid == bytenr &&
1718 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1719 			err = -EAGAIN;
1720 			goto out;
1721 		}
1722 	}
1723 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724 out:
1725 	if (insert) {
1726 		path->keep_locks = 0;
1727 		btrfs_unlock_up_safe(path, 1);
1728 	}
1729 	return err;
1730 }
1731 
1732 /*
1733  * helper to add new inline back ref
1734  */
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_root *root,
1737 				 struct btrfs_path *path,
1738 				 struct btrfs_extent_inline_ref *iref,
1739 				 u64 parent, u64 root_objectid,
1740 				 u64 owner, u64 offset, int refs_to_add,
1741 				 struct btrfs_delayed_extent_op *extent_op)
1742 {
1743 	struct extent_buffer *leaf;
1744 	struct btrfs_extent_item *ei;
1745 	unsigned long ptr;
1746 	unsigned long end;
1747 	unsigned long item_offset;
1748 	u64 refs;
1749 	int size;
1750 	int type;
1751 
1752 	leaf = path->nodes[0];
1753 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 	item_offset = (unsigned long)iref - (unsigned long)ei;
1755 
1756 	type = extent_ref_type(parent, owner);
1757 	size = btrfs_extent_inline_ref_size(type);
1758 
1759 	btrfs_extend_item(root, path, size);
1760 
1761 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 	refs = btrfs_extent_refs(leaf, ei);
1763 	refs += refs_to_add;
1764 	btrfs_set_extent_refs(leaf, ei, refs);
1765 	if (extent_op)
1766 		__run_delayed_extent_op(extent_op, leaf, ei);
1767 
1768 	ptr = (unsigned long)ei + item_offset;
1769 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 	if (ptr < end - size)
1771 		memmove_extent_buffer(leaf, ptr + size, ptr,
1772 				      end - size - ptr);
1773 
1774 	iref = (struct btrfs_extent_inline_ref *)ptr;
1775 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 		struct btrfs_extent_data_ref *dref;
1778 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 		struct btrfs_shared_data_ref *sref;
1785 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 	} else {
1791 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 	}
1793 	btrfs_mark_buffer_dirty(leaf);
1794 }
1795 
1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 				 struct btrfs_root *root,
1798 				 struct btrfs_path *path,
1799 				 struct btrfs_extent_inline_ref **ref_ret,
1800 				 u64 bytenr, u64 num_bytes, u64 parent,
1801 				 u64 root_objectid, u64 owner, u64 offset)
1802 {
1803 	int ret;
1804 
1805 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 					   bytenr, num_bytes, parent,
1807 					   root_objectid, owner, offset, 0);
1808 	if (ret != -ENOENT)
1809 		return ret;
1810 
1811 	btrfs_release_path(path);
1812 	*ref_ret = NULL;
1813 
1814 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1816 					    root_objectid);
1817 	} else {
1818 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 					     root_objectid, owner, offset);
1820 	}
1821 	return ret;
1822 }
1823 
1824 /*
1825  * helper to update/remove inline back ref
1826  */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_root *root,
1829 				  struct btrfs_path *path,
1830 				  struct btrfs_extent_inline_ref *iref,
1831 				  int refs_to_mod,
1832 				  struct btrfs_delayed_extent_op *extent_op,
1833 				  int *last_ref)
1834 {
1835 	struct extent_buffer *leaf;
1836 	struct btrfs_extent_item *ei;
1837 	struct btrfs_extent_data_ref *dref = NULL;
1838 	struct btrfs_shared_data_ref *sref = NULL;
1839 	unsigned long ptr;
1840 	unsigned long end;
1841 	u32 item_size;
1842 	int size;
1843 	int type;
1844 	u64 refs;
1845 
1846 	leaf = path->nodes[0];
1847 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 	refs = btrfs_extent_refs(leaf, ei);
1849 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 	refs += refs_to_mod;
1851 	btrfs_set_extent_refs(leaf, ei, refs);
1852 	if (extent_op)
1853 		__run_delayed_extent_op(extent_op, leaf, ei);
1854 
1855 	type = btrfs_extent_inline_ref_type(leaf, iref);
1856 
1857 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 		refs = btrfs_extent_data_ref_count(leaf, dref);
1860 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 		refs = btrfs_shared_data_ref_count(leaf, sref);
1863 	} else {
1864 		refs = 1;
1865 		BUG_ON(refs_to_mod != -1);
1866 	}
1867 
1868 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 	refs += refs_to_mod;
1870 
1871 	if (refs > 0) {
1872 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 		else
1875 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 	} else {
1877 		*last_ref = 1;
1878 		size =  btrfs_extent_inline_ref_size(type);
1879 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 		ptr = (unsigned long)iref;
1881 		end = (unsigned long)ei + item_size;
1882 		if (ptr + size < end)
1883 			memmove_extent_buffer(leaf, ptr, ptr + size,
1884 					      end - ptr - size);
1885 		item_size -= size;
1886 		btrfs_truncate_item(root, path, item_size, 1);
1887 	}
1888 	btrfs_mark_buffer_dirty(leaf);
1889 }
1890 
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 				 struct btrfs_root *root,
1894 				 struct btrfs_path *path,
1895 				 u64 bytenr, u64 num_bytes, u64 parent,
1896 				 u64 root_objectid, u64 owner,
1897 				 u64 offset, int refs_to_add,
1898 				 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 	struct btrfs_extent_inline_ref *iref;
1901 	int ret;
1902 
1903 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 					   bytenr, num_bytes, parent,
1905 					   root_objectid, owner, offset, 1);
1906 	if (ret == 0) {
1907 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 		update_inline_extent_backref(root, path, iref,
1909 					     refs_to_add, extent_op, NULL);
1910 	} else if (ret == -ENOENT) {
1911 		setup_inline_extent_backref(root, path, iref, parent,
1912 					    root_objectid, owner, offset,
1913 					    refs_to_add, extent_op);
1914 		ret = 0;
1915 	}
1916 	return ret;
1917 }
1918 
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 				 struct btrfs_root *root,
1921 				 struct btrfs_path *path,
1922 				 u64 bytenr, u64 parent, u64 root_objectid,
1923 				 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 	int ret;
1926 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 		BUG_ON(refs_to_add != 1);
1928 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 					    parent, root_objectid);
1930 	} else {
1931 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 					     parent, root_objectid,
1933 					     owner, offset, refs_to_add);
1934 	}
1935 	return ret;
1936 }
1937 
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 				 struct btrfs_root *root,
1940 				 struct btrfs_path *path,
1941 				 struct btrfs_extent_inline_ref *iref,
1942 				 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 	int ret = 0;
1945 
1946 	BUG_ON(!is_data && refs_to_drop != 1);
1947 	if (iref) {
1948 		update_inline_extent_backref(root, path, iref,
1949 					     -refs_to_drop, NULL, last_ref);
1950 	} else if (is_data) {
1951 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1952 					     last_ref);
1953 	} else {
1954 		*last_ref = 1;
1955 		ret = btrfs_del_item(trans, root, path);
1956 	}
1957 	return ret;
1958 }
1959 
1960 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 			       u64 *discarded_bytes)
1963 {
1964 	int j, ret = 0;
1965 	u64 bytes_left, end;
1966 	u64 aligned_start = ALIGN(start, 1 << 9);
1967 
1968 	if (WARN_ON(start != aligned_start)) {
1969 		len -= aligned_start - start;
1970 		len = round_down(len, 1 << 9);
1971 		start = aligned_start;
1972 	}
1973 
1974 	*discarded_bytes = 0;
1975 
1976 	if (!len)
1977 		return 0;
1978 
1979 	end = start + len;
1980 	bytes_left = len;
1981 
1982 	/* Skip any superblocks on this device. */
1983 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 		u64 sb_start = btrfs_sb_offset(j);
1985 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 		u64 size = sb_start - start;
1987 
1988 		if (!in_range(sb_start, start, bytes_left) &&
1989 		    !in_range(sb_end, start, bytes_left) &&
1990 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 			continue;
1992 
1993 		/*
1994 		 * Superblock spans beginning of range.  Adjust start and
1995 		 * try again.
1996 		 */
1997 		if (sb_start <= start) {
1998 			start += sb_end - start;
1999 			if (start > end) {
2000 				bytes_left = 0;
2001 				break;
2002 			}
2003 			bytes_left = end - start;
2004 			continue;
2005 		}
2006 
2007 		if (size) {
2008 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 						   GFP_NOFS, 0);
2010 			if (!ret)
2011 				*discarded_bytes += size;
2012 			else if (ret != -EOPNOTSUPP)
2013 				return ret;
2014 		}
2015 
2016 		start = sb_end;
2017 		if (start > end) {
2018 			bytes_left = 0;
2019 			break;
2020 		}
2021 		bytes_left = end - start;
2022 	}
2023 
2024 	if (bytes_left) {
2025 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 					   GFP_NOFS, 0);
2027 		if (!ret)
2028 			*discarded_bytes += bytes_left;
2029 	}
2030 	return ret;
2031 }
2032 
2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 			 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 	int ret;
2037 	u64 discarded_bytes = 0;
2038 	struct btrfs_bio *bbio = NULL;
2039 
2040 
2041 	/*
2042 	 * Avoid races with device replace and make sure our bbio has devices
2043 	 * associated to its stripes that don't go away while we are discarding.
2044 	 */
2045 	btrfs_bio_counter_inc_blocked(root->fs_info);
2046 	/* Tell the block device(s) that the sectors can be discarded */
2047 	ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2048 			      bytenr, &num_bytes, &bbio, 0);
2049 	/* Error condition is -ENOMEM */
2050 	if (!ret) {
2051 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 		int i;
2053 
2054 
2055 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 			u64 bytes;
2057 			if (!stripe->dev->can_discard)
2058 				continue;
2059 
2060 			ret = btrfs_issue_discard(stripe->dev->bdev,
2061 						  stripe->physical,
2062 						  stripe->length,
2063 						  &bytes);
2064 			if (!ret)
2065 				discarded_bytes += bytes;
2066 			else if (ret != -EOPNOTSUPP)
2067 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068 
2069 			/*
2070 			 * Just in case we get back EOPNOTSUPP for some reason,
2071 			 * just ignore the return value so we don't screw up
2072 			 * people calling discard_extent.
2073 			 */
2074 			ret = 0;
2075 		}
2076 		btrfs_put_bbio(bbio);
2077 	}
2078 	btrfs_bio_counter_dec(root->fs_info);
2079 
2080 	if (actual_bytes)
2081 		*actual_bytes = discarded_bytes;
2082 
2083 
2084 	if (ret == -EOPNOTSUPP)
2085 		ret = 0;
2086 	return ret;
2087 }
2088 
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 			 struct btrfs_root *root,
2092 			 u64 bytenr, u64 num_bytes, u64 parent,
2093 			 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 	int ret;
2096 	struct btrfs_fs_info *fs_info = root->fs_info;
2097 
2098 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100 
2101 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2102 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 					num_bytes,
2104 					parent, root_objectid, (int)owner,
2105 					BTRFS_ADD_DELAYED_REF, NULL);
2106 	} else {
2107 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2108 					num_bytes, parent, root_objectid,
2109 					owner, offset, 0,
2110 					BTRFS_ADD_DELAYED_REF, NULL);
2111 	}
2112 	return ret;
2113 }
2114 
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 				  struct btrfs_root *root,
2117 				  struct btrfs_delayed_ref_node *node,
2118 				  u64 parent, u64 root_objectid,
2119 				  u64 owner, u64 offset, int refs_to_add,
2120 				  struct btrfs_delayed_extent_op *extent_op)
2121 {
2122 	struct btrfs_fs_info *fs_info = root->fs_info;
2123 	struct btrfs_path *path;
2124 	struct extent_buffer *leaf;
2125 	struct btrfs_extent_item *item;
2126 	struct btrfs_key key;
2127 	u64 bytenr = node->bytenr;
2128 	u64 num_bytes = node->num_bytes;
2129 	u64 refs;
2130 	int ret;
2131 
2132 	path = btrfs_alloc_path();
2133 	if (!path)
2134 		return -ENOMEM;
2135 
2136 	path->reada = READA_FORWARD;
2137 	path->leave_spinning = 1;
2138 	/* this will setup the path even if it fails to insert the back ref */
2139 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 					   bytenr, num_bytes, parent,
2141 					   root_objectid, owner, offset,
2142 					   refs_to_add, extent_op);
2143 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2144 		goto out;
2145 
2146 	/*
2147 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 	 * inline extent ref, so just update the reference count and add a
2149 	 * normal backref.
2150 	 */
2151 	leaf = path->nodes[0];
2152 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2153 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 	refs = btrfs_extent_refs(leaf, item);
2155 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 	if (extent_op)
2157 		__run_delayed_extent_op(extent_op, leaf, item);
2158 
2159 	btrfs_mark_buffer_dirty(leaf);
2160 	btrfs_release_path(path);
2161 
2162 	path->reada = READA_FORWARD;
2163 	path->leave_spinning = 1;
2164 	/* now insert the actual backref */
2165 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2166 				    path, bytenr, parent, root_objectid,
2167 				    owner, offset, refs_to_add);
2168 	if (ret)
2169 		btrfs_abort_transaction(trans, ret);
2170 out:
2171 	btrfs_free_path(path);
2172 	return ret;
2173 }
2174 
2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 				struct btrfs_root *root,
2177 				struct btrfs_delayed_ref_node *node,
2178 				struct btrfs_delayed_extent_op *extent_op,
2179 				int insert_reserved)
2180 {
2181 	int ret = 0;
2182 	struct btrfs_delayed_data_ref *ref;
2183 	struct btrfs_key ins;
2184 	u64 parent = 0;
2185 	u64 ref_root = 0;
2186 	u64 flags = 0;
2187 
2188 	ins.objectid = node->bytenr;
2189 	ins.offset = node->num_bytes;
2190 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2191 
2192 	ref = btrfs_delayed_node_to_data_ref(node);
2193 	trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2194 
2195 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 		parent = ref->parent;
2197 	ref_root = ref->root;
2198 
2199 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2200 		if (extent_op)
2201 			flags |= extent_op->flags_to_set;
2202 		ret = alloc_reserved_file_extent(trans, root,
2203 						 parent, ref_root, flags,
2204 						 ref->objectid, ref->offset,
2205 						 &ins, node->ref_mod);
2206 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2207 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2208 					     ref_root, ref->objectid,
2209 					     ref->offset, node->ref_mod,
2210 					     extent_op);
2211 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2212 		ret = __btrfs_free_extent(trans, root, node, parent,
2213 					  ref_root, ref->objectid,
2214 					  ref->offset, node->ref_mod,
2215 					  extent_op);
2216 	} else {
2217 		BUG();
2218 	}
2219 	return ret;
2220 }
2221 
2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 				    struct extent_buffer *leaf,
2224 				    struct btrfs_extent_item *ei)
2225 {
2226 	u64 flags = btrfs_extent_flags(leaf, ei);
2227 	if (extent_op->update_flags) {
2228 		flags |= extent_op->flags_to_set;
2229 		btrfs_set_extent_flags(leaf, ei, flags);
2230 	}
2231 
2232 	if (extent_op->update_key) {
2233 		struct btrfs_tree_block_info *bi;
2234 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2237 	}
2238 }
2239 
2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 				 struct btrfs_root *root,
2242 				 struct btrfs_delayed_ref_node *node,
2243 				 struct btrfs_delayed_extent_op *extent_op)
2244 {
2245 	struct btrfs_key key;
2246 	struct btrfs_path *path;
2247 	struct btrfs_extent_item *ei;
2248 	struct extent_buffer *leaf;
2249 	u32 item_size;
2250 	int ret;
2251 	int err = 0;
2252 	int metadata = !extent_op->is_data;
2253 
2254 	if (trans->aborted)
2255 		return 0;
2256 
2257 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 		metadata = 0;
2259 
2260 	path = btrfs_alloc_path();
2261 	if (!path)
2262 		return -ENOMEM;
2263 
2264 	key.objectid = node->bytenr;
2265 
2266 	if (metadata) {
2267 		key.type = BTRFS_METADATA_ITEM_KEY;
2268 		key.offset = extent_op->level;
2269 	} else {
2270 		key.type = BTRFS_EXTENT_ITEM_KEY;
2271 		key.offset = node->num_bytes;
2272 	}
2273 
2274 again:
2275 	path->reada = READA_FORWARD;
2276 	path->leave_spinning = 1;
2277 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2278 				path, 0, 1);
2279 	if (ret < 0) {
2280 		err = ret;
2281 		goto out;
2282 	}
2283 	if (ret > 0) {
2284 		if (metadata) {
2285 			if (path->slots[0] > 0) {
2286 				path->slots[0]--;
2287 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2288 						      path->slots[0]);
2289 				if (key.objectid == node->bytenr &&
2290 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 				    key.offset == node->num_bytes)
2292 					ret = 0;
2293 			}
2294 			if (ret > 0) {
2295 				btrfs_release_path(path);
2296 				metadata = 0;
2297 
2298 				key.objectid = node->bytenr;
2299 				key.offset = node->num_bytes;
2300 				key.type = BTRFS_EXTENT_ITEM_KEY;
2301 				goto again;
2302 			}
2303 		} else {
2304 			err = -EIO;
2305 			goto out;
2306 		}
2307 	}
2308 
2309 	leaf = path->nodes[0];
2310 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 	if (item_size < sizeof(*ei)) {
2313 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2314 					     path, (u64)-1, 0);
2315 		if (ret < 0) {
2316 			err = ret;
2317 			goto out;
2318 		}
2319 		leaf = path->nodes[0];
2320 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 	}
2322 #endif
2323 	BUG_ON(item_size < sizeof(*ei));
2324 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 	__run_delayed_extent_op(extent_op, leaf, ei);
2326 
2327 	btrfs_mark_buffer_dirty(leaf);
2328 out:
2329 	btrfs_free_path(path);
2330 	return err;
2331 }
2332 
2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 				struct btrfs_root *root,
2335 				struct btrfs_delayed_ref_node *node,
2336 				struct btrfs_delayed_extent_op *extent_op,
2337 				int insert_reserved)
2338 {
2339 	int ret = 0;
2340 	struct btrfs_delayed_tree_ref *ref;
2341 	struct btrfs_key ins;
2342 	u64 parent = 0;
2343 	u64 ref_root = 0;
2344 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 						 SKINNY_METADATA);
2346 
2347 	ref = btrfs_delayed_node_to_tree_ref(node);
2348 	trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2349 
2350 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 		parent = ref->parent;
2352 	ref_root = ref->root;
2353 
2354 	ins.objectid = node->bytenr;
2355 	if (skinny_metadata) {
2356 		ins.offset = ref->level;
2357 		ins.type = BTRFS_METADATA_ITEM_KEY;
2358 	} else {
2359 		ins.offset = node->num_bytes;
2360 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 	}
2362 
2363 	BUG_ON(node->ref_mod != 1);
2364 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 		BUG_ON(!extent_op || !extent_op->update_flags);
2366 		ret = alloc_reserved_tree_block(trans, root,
2367 						parent, ref_root,
2368 						extent_op->flags_to_set,
2369 						&extent_op->key,
2370 						ref->level, &ins);
2371 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 		ret = __btrfs_inc_extent_ref(trans, root, node,
2373 					     parent, ref_root,
2374 					     ref->level, 0, 1,
2375 					     extent_op);
2376 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 		ret = __btrfs_free_extent(trans, root, node,
2378 					  parent, ref_root,
2379 					  ref->level, 0, 1, extent_op);
2380 	} else {
2381 		BUG();
2382 	}
2383 	return ret;
2384 }
2385 
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 			       struct btrfs_root *root,
2389 			       struct btrfs_delayed_ref_node *node,
2390 			       struct btrfs_delayed_extent_op *extent_op,
2391 			       int insert_reserved)
2392 {
2393 	int ret = 0;
2394 
2395 	if (trans->aborted) {
2396 		if (insert_reserved)
2397 			btrfs_pin_extent(root, node->bytenr,
2398 					 node->num_bytes, 1);
2399 		return 0;
2400 	}
2401 
2402 	if (btrfs_delayed_ref_is_head(node)) {
2403 		struct btrfs_delayed_ref_head *head;
2404 		/*
2405 		 * we've hit the end of the chain and we were supposed
2406 		 * to insert this extent into the tree.  But, it got
2407 		 * deleted before we ever needed to insert it, so all
2408 		 * we have to do is clean up the accounting
2409 		 */
2410 		BUG_ON(extent_op);
2411 		head = btrfs_delayed_node_to_head(node);
2412 		trace_run_delayed_ref_head(root->fs_info, node, head,
2413 					   node->action);
2414 
2415 		if (insert_reserved) {
2416 			btrfs_pin_extent(root, node->bytenr,
2417 					 node->num_bytes, 1);
2418 			if (head->is_data) {
2419 				ret = btrfs_del_csums(trans, root,
2420 						      node->bytenr,
2421 						      node->num_bytes);
2422 			}
2423 		}
2424 
2425 		/* Also free its reserved qgroup space */
2426 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 					      head->qgroup_ref_root,
2428 					      head->qgroup_reserved);
2429 		return ret;
2430 	}
2431 
2432 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2435 					   insert_reserved);
2436 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2439 					   insert_reserved);
2440 	else
2441 		BUG();
2442 	return ret;
2443 }
2444 
2445 static inline struct btrfs_delayed_ref_node *
2446 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2447 {
2448 	struct btrfs_delayed_ref_node *ref;
2449 
2450 	if (list_empty(&head->ref_list))
2451 		return NULL;
2452 
2453 	/*
2454 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 	 * This is to prevent a ref count from going down to zero, which deletes
2456 	 * the extent item from the extent tree, when there still are references
2457 	 * to add, which would fail because they would not find the extent item.
2458 	 */
2459 	list_for_each_entry(ref, &head->ref_list, list) {
2460 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 			return ref;
2462 	}
2463 
2464 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2465 			  list);
2466 }
2467 
2468 /*
2469  * Returns 0 on success or if called with an already aborted transaction.
2470  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471  */
2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 					     struct btrfs_root *root,
2474 					     unsigned long nr)
2475 {
2476 	struct btrfs_delayed_ref_root *delayed_refs;
2477 	struct btrfs_delayed_ref_node *ref;
2478 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2479 	struct btrfs_delayed_extent_op *extent_op;
2480 	struct btrfs_fs_info *fs_info = root->fs_info;
2481 	ktime_t start = ktime_get();
2482 	int ret;
2483 	unsigned long count = 0;
2484 	unsigned long actual_count = 0;
2485 	int must_insert_reserved = 0;
2486 
2487 	delayed_refs = &trans->transaction->delayed_refs;
2488 	while (1) {
2489 		if (!locked_ref) {
2490 			if (count >= nr)
2491 				break;
2492 
2493 			spin_lock(&delayed_refs->lock);
2494 			locked_ref = btrfs_select_ref_head(trans);
2495 			if (!locked_ref) {
2496 				spin_unlock(&delayed_refs->lock);
2497 				break;
2498 			}
2499 
2500 			/* grab the lock that says we are going to process
2501 			 * all the refs for this head */
2502 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2503 			spin_unlock(&delayed_refs->lock);
2504 			/*
2505 			 * we may have dropped the spin lock to get the head
2506 			 * mutex lock, and that might have given someone else
2507 			 * time to free the head.  If that's true, it has been
2508 			 * removed from our list and we can move on.
2509 			 */
2510 			if (ret == -EAGAIN) {
2511 				locked_ref = NULL;
2512 				count++;
2513 				continue;
2514 			}
2515 		}
2516 
2517 		/*
2518 		 * We need to try and merge add/drops of the same ref since we
2519 		 * can run into issues with relocate dropping the implicit ref
2520 		 * and then it being added back again before the drop can
2521 		 * finish.  If we merged anything we need to re-loop so we can
2522 		 * get a good ref.
2523 		 * Or we can get node references of the same type that weren't
2524 		 * merged when created due to bumps in the tree mod seq, and
2525 		 * we need to merge them to prevent adding an inline extent
2526 		 * backref before dropping it (triggering a BUG_ON at
2527 		 * insert_inline_extent_backref()).
2528 		 */
2529 		spin_lock(&locked_ref->lock);
2530 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 					 locked_ref);
2532 
2533 		/*
2534 		 * locked_ref is the head node, so we have to go one
2535 		 * node back for any delayed ref updates
2536 		 */
2537 		ref = select_delayed_ref(locked_ref);
2538 
2539 		if (ref && ref->seq &&
2540 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2541 			spin_unlock(&locked_ref->lock);
2542 			btrfs_delayed_ref_unlock(locked_ref);
2543 			spin_lock(&delayed_refs->lock);
2544 			locked_ref->processing = 0;
2545 			delayed_refs->num_heads_ready++;
2546 			spin_unlock(&delayed_refs->lock);
2547 			locked_ref = NULL;
2548 			cond_resched();
2549 			count++;
2550 			continue;
2551 		}
2552 
2553 		/*
2554 		 * record the must insert reserved flag before we
2555 		 * drop the spin lock.
2556 		 */
2557 		must_insert_reserved = locked_ref->must_insert_reserved;
2558 		locked_ref->must_insert_reserved = 0;
2559 
2560 		extent_op = locked_ref->extent_op;
2561 		locked_ref->extent_op = NULL;
2562 
2563 		if (!ref) {
2564 
2565 
2566 			/* All delayed refs have been processed, Go ahead
2567 			 * and send the head node to run_one_delayed_ref,
2568 			 * so that any accounting fixes can happen
2569 			 */
2570 			ref = &locked_ref->node;
2571 
2572 			if (extent_op && must_insert_reserved) {
2573 				btrfs_free_delayed_extent_op(extent_op);
2574 				extent_op = NULL;
2575 			}
2576 
2577 			if (extent_op) {
2578 				spin_unlock(&locked_ref->lock);
2579 				ret = run_delayed_extent_op(trans, root,
2580 							    ref, extent_op);
2581 				btrfs_free_delayed_extent_op(extent_op);
2582 
2583 				if (ret) {
2584 					/*
2585 					 * Need to reset must_insert_reserved if
2586 					 * there was an error so the abort stuff
2587 					 * can cleanup the reserved space
2588 					 * properly.
2589 					 */
2590 					if (must_insert_reserved)
2591 						locked_ref->must_insert_reserved = 1;
2592 					locked_ref->processing = 0;
2593 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2594 					btrfs_delayed_ref_unlock(locked_ref);
2595 					return ret;
2596 				}
2597 				continue;
2598 			}
2599 
2600 			/*
2601 			 * Need to drop our head ref lock and re-acquire the
2602 			 * delayed ref lock and then re-check to make sure
2603 			 * nobody got added.
2604 			 */
2605 			spin_unlock(&locked_ref->lock);
2606 			spin_lock(&delayed_refs->lock);
2607 			spin_lock(&locked_ref->lock);
2608 			if (!list_empty(&locked_ref->ref_list) ||
2609 			    locked_ref->extent_op) {
2610 				spin_unlock(&locked_ref->lock);
2611 				spin_unlock(&delayed_refs->lock);
2612 				continue;
2613 			}
2614 			ref->in_tree = 0;
2615 			delayed_refs->num_heads--;
2616 			rb_erase(&locked_ref->href_node,
2617 				 &delayed_refs->href_root);
2618 			spin_unlock(&delayed_refs->lock);
2619 		} else {
2620 			actual_count++;
2621 			ref->in_tree = 0;
2622 			list_del(&ref->list);
2623 		}
2624 		atomic_dec(&delayed_refs->num_entries);
2625 
2626 		if (!btrfs_delayed_ref_is_head(ref)) {
2627 			/*
2628 			 * when we play the delayed ref, also correct the
2629 			 * ref_mod on head
2630 			 */
2631 			switch (ref->action) {
2632 			case BTRFS_ADD_DELAYED_REF:
2633 			case BTRFS_ADD_DELAYED_EXTENT:
2634 				locked_ref->node.ref_mod -= ref->ref_mod;
2635 				break;
2636 			case BTRFS_DROP_DELAYED_REF:
2637 				locked_ref->node.ref_mod += ref->ref_mod;
2638 				break;
2639 			default:
2640 				WARN_ON(1);
2641 			}
2642 		}
2643 		spin_unlock(&locked_ref->lock);
2644 
2645 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 					  must_insert_reserved);
2647 
2648 		btrfs_free_delayed_extent_op(extent_op);
2649 		if (ret) {
2650 			locked_ref->processing = 0;
2651 			btrfs_delayed_ref_unlock(locked_ref);
2652 			btrfs_put_delayed_ref(ref);
2653 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2654 			return ret;
2655 		}
2656 
2657 		/*
2658 		 * If this node is a head, that means all the refs in this head
2659 		 * have been dealt with, and we will pick the next head to deal
2660 		 * with, so we must unlock the head and drop it from the cluster
2661 		 * list before we release it.
2662 		 */
2663 		if (btrfs_delayed_ref_is_head(ref)) {
2664 			if (locked_ref->is_data &&
2665 			    locked_ref->total_ref_mod < 0) {
2666 				spin_lock(&delayed_refs->lock);
2667 				delayed_refs->pending_csums -= ref->num_bytes;
2668 				spin_unlock(&delayed_refs->lock);
2669 			}
2670 			btrfs_delayed_ref_unlock(locked_ref);
2671 			locked_ref = NULL;
2672 		}
2673 		btrfs_put_delayed_ref(ref);
2674 		count++;
2675 		cond_resched();
2676 	}
2677 
2678 	/*
2679 	 * We don't want to include ref heads since we can have empty ref heads
2680 	 * and those will drastically skew our runtime down since we just do
2681 	 * accounting, no actual extent tree updates.
2682 	 */
2683 	if (actual_count > 0) {
2684 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2685 		u64 avg;
2686 
2687 		/*
2688 		 * We weigh the current average higher than our current runtime
2689 		 * to avoid large swings in the average.
2690 		 */
2691 		spin_lock(&delayed_refs->lock);
2692 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2693 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2694 		spin_unlock(&delayed_refs->lock);
2695 	}
2696 	return 0;
2697 }
2698 
2699 #ifdef SCRAMBLE_DELAYED_REFS
2700 /*
2701  * Normally delayed refs get processed in ascending bytenr order. This
2702  * correlates in most cases to the order added. To expose dependencies on this
2703  * order, we start to process the tree in the middle instead of the beginning
2704  */
2705 static u64 find_middle(struct rb_root *root)
2706 {
2707 	struct rb_node *n = root->rb_node;
2708 	struct btrfs_delayed_ref_node *entry;
2709 	int alt = 1;
2710 	u64 middle;
2711 	u64 first = 0, last = 0;
2712 
2713 	n = rb_first(root);
2714 	if (n) {
2715 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2716 		first = entry->bytenr;
2717 	}
2718 	n = rb_last(root);
2719 	if (n) {
2720 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 		last = entry->bytenr;
2722 	}
2723 	n = root->rb_node;
2724 
2725 	while (n) {
2726 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2727 		WARN_ON(!entry->in_tree);
2728 
2729 		middle = entry->bytenr;
2730 
2731 		if (alt)
2732 			n = n->rb_left;
2733 		else
2734 			n = n->rb_right;
2735 
2736 		alt = 1 - alt;
2737 	}
2738 	return middle;
2739 }
2740 #endif
2741 
2742 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2743 {
2744 	u64 num_bytes;
2745 
2746 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2747 			     sizeof(struct btrfs_extent_inline_ref));
2748 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2749 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2750 
2751 	/*
2752 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2753 	 * closer to what we're really going to want to use.
2754 	 */
2755 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2756 }
2757 
2758 /*
2759  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2760  * would require to store the csums for that many bytes.
2761  */
2762 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2763 {
2764 	u64 csum_size;
2765 	u64 num_csums_per_leaf;
2766 	u64 num_csums;
2767 
2768 	csum_size = BTRFS_MAX_ITEM_SIZE(root);
2769 	num_csums_per_leaf = div64_u64(csum_size,
2770 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2771 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2772 	num_csums += num_csums_per_leaf - 1;
2773 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2774 	return num_csums;
2775 }
2776 
2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2778 				       struct btrfs_root *root)
2779 {
2780 	struct btrfs_block_rsv *global_rsv;
2781 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2782 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2783 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2784 	u64 num_bytes, num_dirty_bgs_bytes;
2785 	int ret = 0;
2786 
2787 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2788 	num_heads = heads_to_leaves(root, num_heads);
2789 	if (num_heads > 1)
2790 		num_bytes += (num_heads - 1) * root->nodesize;
2791 	num_bytes <<= 1;
2792 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2793 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2794 							     num_dirty_bgs);
2795 	global_rsv = &root->fs_info->global_block_rsv;
2796 
2797 	/*
2798 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 	 * wiggle room since running delayed refs can create more delayed refs.
2800 	 */
2801 	if (global_rsv->space_info->full) {
2802 		num_dirty_bgs_bytes <<= 1;
2803 		num_bytes <<= 1;
2804 	}
2805 
2806 	spin_lock(&global_rsv->lock);
2807 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2808 		ret = 1;
2809 	spin_unlock(&global_rsv->lock);
2810 	return ret;
2811 }
2812 
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 				       struct btrfs_root *root)
2815 {
2816 	struct btrfs_fs_info *fs_info = root->fs_info;
2817 	u64 num_entries =
2818 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2819 	u64 avg_runtime;
2820 	u64 val;
2821 
2822 	smp_mb();
2823 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2824 	val = num_entries * avg_runtime;
2825 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2826 		return 1;
2827 	if (val >= NSEC_PER_SEC / 2)
2828 		return 2;
2829 
2830 	return btrfs_check_space_for_delayed_refs(trans, root);
2831 }
2832 
2833 struct async_delayed_refs {
2834 	struct btrfs_root *root;
2835 	u64 transid;
2836 	int count;
2837 	int error;
2838 	int sync;
2839 	struct completion wait;
2840 	struct btrfs_work work;
2841 };
2842 
2843 static void delayed_ref_async_start(struct btrfs_work *work)
2844 {
2845 	struct async_delayed_refs *async;
2846 	struct btrfs_trans_handle *trans;
2847 	int ret;
2848 
2849 	async = container_of(work, struct async_delayed_refs, work);
2850 
2851 	/* if the commit is already started, we don't need to wait here */
2852 	if (btrfs_transaction_blocked(async->root->fs_info))
2853 		goto done;
2854 
2855 	trans = btrfs_join_transaction(async->root);
2856 	if (IS_ERR(trans)) {
2857 		async->error = PTR_ERR(trans);
2858 		goto done;
2859 	}
2860 
2861 	/*
2862 	 * trans->sync means that when we call end_transaction, we won't
2863 	 * wait on delayed refs
2864 	 */
2865 	trans->sync = true;
2866 
2867 	/* Don't bother flushing if we got into a different transaction */
2868 	if (trans->transid > async->transid)
2869 		goto end;
2870 
2871 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2872 	if (ret)
2873 		async->error = ret;
2874 end:
2875 	ret = btrfs_end_transaction(trans, async->root);
2876 	if (ret && !async->error)
2877 		async->error = ret;
2878 done:
2879 	if (async->sync)
2880 		complete(&async->wait);
2881 	else
2882 		kfree(async);
2883 }
2884 
2885 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2886 				 unsigned long count, u64 transid, int wait)
2887 {
2888 	struct async_delayed_refs *async;
2889 	int ret;
2890 
2891 	async = kmalloc(sizeof(*async), GFP_NOFS);
2892 	if (!async)
2893 		return -ENOMEM;
2894 
2895 	async->root = root->fs_info->tree_root;
2896 	async->count = count;
2897 	async->error = 0;
2898 	async->transid = transid;
2899 	if (wait)
2900 		async->sync = 1;
2901 	else
2902 		async->sync = 0;
2903 	init_completion(&async->wait);
2904 
2905 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2906 			delayed_ref_async_start, NULL, NULL);
2907 
2908 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2909 
2910 	if (wait) {
2911 		wait_for_completion(&async->wait);
2912 		ret = async->error;
2913 		kfree(async);
2914 		return ret;
2915 	}
2916 	return 0;
2917 }
2918 
2919 /*
2920  * this starts processing the delayed reference count updates and
2921  * extent insertions we have queued up so far.  count can be
2922  * 0, which means to process everything in the tree at the start
2923  * of the run (but not newly added entries), or it can be some target
2924  * number you'd like to process.
2925  *
2926  * Returns 0 on success or if called with an aborted transaction
2927  * Returns <0 on error and aborts the transaction
2928  */
2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2930 			   struct btrfs_root *root, unsigned long count)
2931 {
2932 	struct rb_node *node;
2933 	struct btrfs_delayed_ref_root *delayed_refs;
2934 	struct btrfs_delayed_ref_head *head;
2935 	int ret;
2936 	int run_all = count == (unsigned long)-1;
2937 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2938 
2939 	/* We'll clean this up in btrfs_cleanup_transaction */
2940 	if (trans->aborted)
2941 		return 0;
2942 
2943 	if (root->fs_info->creating_free_space_tree)
2944 		return 0;
2945 
2946 	if (root == root->fs_info->extent_root)
2947 		root = root->fs_info->tree_root;
2948 
2949 	delayed_refs = &trans->transaction->delayed_refs;
2950 	if (count == 0)
2951 		count = atomic_read(&delayed_refs->num_entries) * 2;
2952 
2953 again:
2954 #ifdef SCRAMBLE_DELAYED_REFS
2955 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2956 #endif
2957 	trans->can_flush_pending_bgs = false;
2958 	ret = __btrfs_run_delayed_refs(trans, root, count);
2959 	if (ret < 0) {
2960 		btrfs_abort_transaction(trans, ret);
2961 		return ret;
2962 	}
2963 
2964 	if (run_all) {
2965 		if (!list_empty(&trans->new_bgs))
2966 			btrfs_create_pending_block_groups(trans, root);
2967 
2968 		spin_lock(&delayed_refs->lock);
2969 		node = rb_first(&delayed_refs->href_root);
2970 		if (!node) {
2971 			spin_unlock(&delayed_refs->lock);
2972 			goto out;
2973 		}
2974 		count = (unsigned long)-1;
2975 
2976 		while (node) {
2977 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 					href_node);
2979 			if (btrfs_delayed_ref_is_head(&head->node)) {
2980 				struct btrfs_delayed_ref_node *ref;
2981 
2982 				ref = &head->node;
2983 				atomic_inc(&ref->refs);
2984 
2985 				spin_unlock(&delayed_refs->lock);
2986 				/*
2987 				 * Mutex was contended, block until it's
2988 				 * released and try again
2989 				 */
2990 				mutex_lock(&head->mutex);
2991 				mutex_unlock(&head->mutex);
2992 
2993 				btrfs_put_delayed_ref(ref);
2994 				cond_resched();
2995 				goto again;
2996 			} else {
2997 				WARN_ON(1);
2998 			}
2999 			node = rb_next(node);
3000 		}
3001 		spin_unlock(&delayed_refs->lock);
3002 		cond_resched();
3003 		goto again;
3004 	}
3005 out:
3006 	assert_qgroups_uptodate(trans);
3007 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3008 	return 0;
3009 }
3010 
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 				struct btrfs_root *root,
3013 				u64 bytenr, u64 num_bytes, u64 flags,
3014 				int level, int is_data)
3015 {
3016 	struct btrfs_delayed_extent_op *extent_op;
3017 	int ret;
3018 
3019 	extent_op = btrfs_alloc_delayed_extent_op();
3020 	if (!extent_op)
3021 		return -ENOMEM;
3022 
3023 	extent_op->flags_to_set = flags;
3024 	extent_op->update_flags = true;
3025 	extent_op->update_key = false;
3026 	extent_op->is_data = is_data ? true : false;
3027 	extent_op->level = level;
3028 
3029 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3030 					  num_bytes, extent_op);
3031 	if (ret)
3032 		btrfs_free_delayed_extent_op(extent_op);
3033 	return ret;
3034 }
3035 
3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3037 				      struct btrfs_root *root,
3038 				      struct btrfs_path *path,
3039 				      u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 	struct btrfs_delayed_ref_head *head;
3042 	struct btrfs_delayed_ref_node *ref;
3043 	struct btrfs_delayed_data_ref *data_ref;
3044 	struct btrfs_delayed_ref_root *delayed_refs;
3045 	int ret = 0;
3046 
3047 	delayed_refs = &trans->transaction->delayed_refs;
3048 	spin_lock(&delayed_refs->lock);
3049 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3050 	if (!head) {
3051 		spin_unlock(&delayed_refs->lock);
3052 		return 0;
3053 	}
3054 
3055 	if (!mutex_trylock(&head->mutex)) {
3056 		atomic_inc(&head->node.refs);
3057 		spin_unlock(&delayed_refs->lock);
3058 
3059 		btrfs_release_path(path);
3060 
3061 		/*
3062 		 * Mutex was contended, block until it's released and let
3063 		 * caller try again
3064 		 */
3065 		mutex_lock(&head->mutex);
3066 		mutex_unlock(&head->mutex);
3067 		btrfs_put_delayed_ref(&head->node);
3068 		return -EAGAIN;
3069 	}
3070 	spin_unlock(&delayed_refs->lock);
3071 
3072 	spin_lock(&head->lock);
3073 	list_for_each_entry(ref, &head->ref_list, list) {
3074 		/* If it's a shared ref we know a cross reference exists */
3075 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3076 			ret = 1;
3077 			break;
3078 		}
3079 
3080 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3081 
3082 		/*
3083 		 * If our ref doesn't match the one we're currently looking at
3084 		 * then we have a cross reference.
3085 		 */
3086 		if (data_ref->root != root->root_key.objectid ||
3087 		    data_ref->objectid != objectid ||
3088 		    data_ref->offset != offset) {
3089 			ret = 1;
3090 			break;
3091 		}
3092 	}
3093 	spin_unlock(&head->lock);
3094 	mutex_unlock(&head->mutex);
3095 	return ret;
3096 }
3097 
3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3099 					struct btrfs_root *root,
3100 					struct btrfs_path *path,
3101 					u64 objectid, u64 offset, u64 bytenr)
3102 {
3103 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3104 	struct extent_buffer *leaf;
3105 	struct btrfs_extent_data_ref *ref;
3106 	struct btrfs_extent_inline_ref *iref;
3107 	struct btrfs_extent_item *ei;
3108 	struct btrfs_key key;
3109 	u32 item_size;
3110 	int ret;
3111 
3112 	key.objectid = bytenr;
3113 	key.offset = (u64)-1;
3114 	key.type = BTRFS_EXTENT_ITEM_KEY;
3115 
3116 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3117 	if (ret < 0)
3118 		goto out;
3119 	BUG_ON(ret == 0); /* Corruption */
3120 
3121 	ret = -ENOENT;
3122 	if (path->slots[0] == 0)
3123 		goto out;
3124 
3125 	path->slots[0]--;
3126 	leaf = path->nodes[0];
3127 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3128 
3129 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3130 		goto out;
3131 
3132 	ret = 1;
3133 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 	if (item_size < sizeof(*ei)) {
3136 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3137 		goto out;
3138 	}
3139 #endif
3140 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3141 
3142 	if (item_size != sizeof(*ei) +
3143 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3144 		goto out;
3145 
3146 	if (btrfs_extent_generation(leaf, ei) <=
3147 	    btrfs_root_last_snapshot(&root->root_item))
3148 		goto out;
3149 
3150 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3151 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3152 	    BTRFS_EXTENT_DATA_REF_KEY)
3153 		goto out;
3154 
3155 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3156 	if (btrfs_extent_refs(leaf, ei) !=
3157 	    btrfs_extent_data_ref_count(leaf, ref) ||
3158 	    btrfs_extent_data_ref_root(leaf, ref) !=
3159 	    root->root_key.objectid ||
3160 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3161 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3162 		goto out;
3163 
3164 	ret = 0;
3165 out:
3166 	return ret;
3167 }
3168 
3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3170 			  struct btrfs_root *root,
3171 			  u64 objectid, u64 offset, u64 bytenr)
3172 {
3173 	struct btrfs_path *path;
3174 	int ret;
3175 	int ret2;
3176 
3177 	path = btrfs_alloc_path();
3178 	if (!path)
3179 		return -ENOENT;
3180 
3181 	do {
3182 		ret = check_committed_ref(trans, root, path, objectid,
3183 					  offset, bytenr);
3184 		if (ret && ret != -ENOENT)
3185 			goto out;
3186 
3187 		ret2 = check_delayed_ref(trans, root, path, objectid,
3188 					 offset, bytenr);
3189 	} while (ret2 == -EAGAIN);
3190 
3191 	if (ret2 && ret2 != -ENOENT) {
3192 		ret = ret2;
3193 		goto out;
3194 	}
3195 
3196 	if (ret != -ENOENT || ret2 != -ENOENT)
3197 		ret = 0;
3198 out:
3199 	btrfs_free_path(path);
3200 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3201 		WARN_ON(ret > 0);
3202 	return ret;
3203 }
3204 
3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3206 			   struct btrfs_root *root,
3207 			   struct extent_buffer *buf,
3208 			   int full_backref, int inc)
3209 {
3210 	u64 bytenr;
3211 	u64 num_bytes;
3212 	u64 parent;
3213 	u64 ref_root;
3214 	u32 nritems;
3215 	struct btrfs_key key;
3216 	struct btrfs_file_extent_item *fi;
3217 	int i;
3218 	int level;
3219 	int ret = 0;
3220 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3221 			    u64, u64, u64, u64, u64, u64);
3222 
3223 
3224 	if (btrfs_is_testing(root->fs_info))
3225 		return 0;
3226 
3227 	ref_root = btrfs_header_owner(buf);
3228 	nritems = btrfs_header_nritems(buf);
3229 	level = btrfs_header_level(buf);
3230 
3231 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3232 		return 0;
3233 
3234 	if (inc)
3235 		process_func = btrfs_inc_extent_ref;
3236 	else
3237 		process_func = btrfs_free_extent;
3238 
3239 	if (full_backref)
3240 		parent = buf->start;
3241 	else
3242 		parent = 0;
3243 
3244 	for (i = 0; i < nritems; i++) {
3245 		if (level == 0) {
3246 			btrfs_item_key_to_cpu(buf, &key, i);
3247 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3248 				continue;
3249 			fi = btrfs_item_ptr(buf, i,
3250 					    struct btrfs_file_extent_item);
3251 			if (btrfs_file_extent_type(buf, fi) ==
3252 			    BTRFS_FILE_EXTENT_INLINE)
3253 				continue;
3254 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3255 			if (bytenr == 0)
3256 				continue;
3257 
3258 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3259 			key.offset -= btrfs_file_extent_offset(buf, fi);
3260 			ret = process_func(trans, root, bytenr, num_bytes,
3261 					   parent, ref_root, key.objectid,
3262 					   key.offset);
3263 			if (ret)
3264 				goto fail;
3265 		} else {
3266 			bytenr = btrfs_node_blockptr(buf, i);
3267 			num_bytes = root->nodesize;
3268 			ret = process_func(trans, root, bytenr, num_bytes,
3269 					   parent, ref_root, level - 1, 0);
3270 			if (ret)
3271 				goto fail;
3272 		}
3273 	}
3274 	return 0;
3275 fail:
3276 	return ret;
3277 }
3278 
3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3280 		  struct extent_buffer *buf, int full_backref)
3281 {
3282 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3283 }
3284 
3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3286 		  struct extent_buffer *buf, int full_backref)
3287 {
3288 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3289 }
3290 
3291 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3292 				 struct btrfs_root *root,
3293 				 struct btrfs_path *path,
3294 				 struct btrfs_block_group_cache *cache)
3295 {
3296 	int ret;
3297 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3298 	unsigned long bi;
3299 	struct extent_buffer *leaf;
3300 
3301 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3302 	if (ret) {
3303 		if (ret > 0)
3304 			ret = -ENOENT;
3305 		goto fail;
3306 	}
3307 
3308 	leaf = path->nodes[0];
3309 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3310 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3311 	btrfs_mark_buffer_dirty(leaf);
3312 fail:
3313 	btrfs_release_path(path);
3314 	return ret;
3315 
3316 }
3317 
3318 static struct btrfs_block_group_cache *
3319 next_block_group(struct btrfs_root *root,
3320 		 struct btrfs_block_group_cache *cache)
3321 {
3322 	struct rb_node *node;
3323 
3324 	spin_lock(&root->fs_info->block_group_cache_lock);
3325 
3326 	/* If our block group was removed, we need a full search. */
3327 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3328 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3329 
3330 		spin_unlock(&root->fs_info->block_group_cache_lock);
3331 		btrfs_put_block_group(cache);
3332 		cache = btrfs_lookup_first_block_group(root->fs_info,
3333 						       next_bytenr);
3334 		return cache;
3335 	}
3336 	node = rb_next(&cache->cache_node);
3337 	btrfs_put_block_group(cache);
3338 	if (node) {
3339 		cache = rb_entry(node, struct btrfs_block_group_cache,
3340 				 cache_node);
3341 		btrfs_get_block_group(cache);
3342 	} else
3343 		cache = NULL;
3344 	spin_unlock(&root->fs_info->block_group_cache_lock);
3345 	return cache;
3346 }
3347 
3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3349 			    struct btrfs_trans_handle *trans,
3350 			    struct btrfs_path *path)
3351 {
3352 	struct btrfs_root *root = block_group->fs_info->tree_root;
3353 	struct inode *inode = NULL;
3354 	u64 alloc_hint = 0;
3355 	int dcs = BTRFS_DC_ERROR;
3356 	u64 num_pages = 0;
3357 	int retries = 0;
3358 	int ret = 0;
3359 
3360 	/*
3361 	 * If this block group is smaller than 100 megs don't bother caching the
3362 	 * block group.
3363 	 */
3364 	if (block_group->key.offset < (100 * SZ_1M)) {
3365 		spin_lock(&block_group->lock);
3366 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3367 		spin_unlock(&block_group->lock);
3368 		return 0;
3369 	}
3370 
3371 	if (trans->aborted)
3372 		return 0;
3373 again:
3374 	inode = lookup_free_space_inode(root, block_group, path);
3375 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3376 		ret = PTR_ERR(inode);
3377 		btrfs_release_path(path);
3378 		goto out;
3379 	}
3380 
3381 	if (IS_ERR(inode)) {
3382 		BUG_ON(retries);
3383 		retries++;
3384 
3385 		if (block_group->ro)
3386 			goto out_free;
3387 
3388 		ret = create_free_space_inode(root, trans, block_group, path);
3389 		if (ret)
3390 			goto out_free;
3391 		goto again;
3392 	}
3393 
3394 	/* We've already setup this transaction, go ahead and exit */
3395 	if (block_group->cache_generation == trans->transid &&
3396 	    i_size_read(inode)) {
3397 		dcs = BTRFS_DC_SETUP;
3398 		goto out_put;
3399 	}
3400 
3401 	/*
3402 	 * We want to set the generation to 0, that way if anything goes wrong
3403 	 * from here on out we know not to trust this cache when we load up next
3404 	 * time.
3405 	 */
3406 	BTRFS_I(inode)->generation = 0;
3407 	ret = btrfs_update_inode(trans, root, inode);
3408 	if (ret) {
3409 		/*
3410 		 * So theoretically we could recover from this, simply set the
3411 		 * super cache generation to 0 so we know to invalidate the
3412 		 * cache, but then we'd have to keep track of the block groups
3413 		 * that fail this way so we know we _have_ to reset this cache
3414 		 * before the next commit or risk reading stale cache.  So to
3415 		 * limit our exposure to horrible edge cases lets just abort the
3416 		 * transaction, this only happens in really bad situations
3417 		 * anyway.
3418 		 */
3419 		btrfs_abort_transaction(trans, ret);
3420 		goto out_put;
3421 	}
3422 	WARN_ON(ret);
3423 
3424 	if (i_size_read(inode) > 0) {
3425 		ret = btrfs_check_trunc_cache_free_space(root,
3426 					&root->fs_info->global_block_rsv);
3427 		if (ret)
3428 			goto out_put;
3429 
3430 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3431 		if (ret)
3432 			goto out_put;
3433 	}
3434 
3435 	spin_lock(&block_group->lock);
3436 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3437 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3438 		/*
3439 		 * don't bother trying to write stuff out _if_
3440 		 * a) we're not cached,
3441 		 * b) we're with nospace_cache mount option.
3442 		 */
3443 		dcs = BTRFS_DC_WRITTEN;
3444 		spin_unlock(&block_group->lock);
3445 		goto out_put;
3446 	}
3447 	spin_unlock(&block_group->lock);
3448 
3449 	/*
3450 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 	 * skip doing the setup, we've already cleared the cache so we're safe.
3452 	 */
3453 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3454 		ret = -ENOSPC;
3455 		goto out_put;
3456 	}
3457 
3458 	/*
3459 	 * Try to preallocate enough space based on how big the block group is.
3460 	 * Keep in mind this has to include any pinned space which could end up
3461 	 * taking up quite a bit since it's not folded into the other space
3462 	 * cache.
3463 	 */
3464 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3465 	if (!num_pages)
3466 		num_pages = 1;
3467 
3468 	num_pages *= 16;
3469 	num_pages *= PAGE_SIZE;
3470 
3471 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3472 	if (ret)
3473 		goto out_put;
3474 
3475 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3476 					      num_pages, num_pages,
3477 					      &alloc_hint);
3478 	/*
3479 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 	 * of metadata or split extents when writing the cache out, which means
3481 	 * we can enospc if we are heavily fragmented in addition to just normal
3482 	 * out of space conditions.  So if we hit this just skip setting up any
3483 	 * other block groups for this transaction, maybe we'll unpin enough
3484 	 * space the next time around.
3485 	 */
3486 	if (!ret)
3487 		dcs = BTRFS_DC_SETUP;
3488 	else if (ret == -ENOSPC)
3489 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3490 
3491 out_put:
3492 	iput(inode);
3493 out_free:
3494 	btrfs_release_path(path);
3495 out:
3496 	spin_lock(&block_group->lock);
3497 	if (!ret && dcs == BTRFS_DC_SETUP)
3498 		block_group->cache_generation = trans->transid;
3499 	block_group->disk_cache_state = dcs;
3500 	spin_unlock(&block_group->lock);
3501 
3502 	return ret;
3503 }
3504 
3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3506 			    struct btrfs_root *root)
3507 {
3508 	struct btrfs_block_group_cache *cache, *tmp;
3509 	struct btrfs_transaction *cur_trans = trans->transaction;
3510 	struct btrfs_path *path;
3511 
3512 	if (list_empty(&cur_trans->dirty_bgs) ||
3513 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3514 		return 0;
3515 
3516 	path = btrfs_alloc_path();
3517 	if (!path)
3518 		return -ENOMEM;
3519 
3520 	/* Could add new block groups, use _safe just in case */
3521 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3522 				 dirty_list) {
3523 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3524 			cache_save_setup(cache, trans, path);
3525 	}
3526 
3527 	btrfs_free_path(path);
3528 	return 0;
3529 }
3530 
3531 /*
3532  * transaction commit does final block group cache writeback during a
3533  * critical section where nothing is allowed to change the FS.  This is
3534  * required in order for the cache to actually match the block group,
3535  * but can introduce a lot of latency into the commit.
3536  *
3537  * So, btrfs_start_dirty_block_groups is here to kick off block group
3538  * cache IO.  There's a chance we'll have to redo some of it if the
3539  * block group changes again during the commit, but it greatly reduces
3540  * the commit latency by getting rid of the easy block groups while
3541  * we're still allowing others to join the commit.
3542  */
3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3544 				   struct btrfs_root *root)
3545 {
3546 	struct btrfs_block_group_cache *cache;
3547 	struct btrfs_transaction *cur_trans = trans->transaction;
3548 	int ret = 0;
3549 	int should_put;
3550 	struct btrfs_path *path = NULL;
3551 	LIST_HEAD(dirty);
3552 	struct list_head *io = &cur_trans->io_bgs;
3553 	int num_started = 0;
3554 	int loops = 0;
3555 
3556 	spin_lock(&cur_trans->dirty_bgs_lock);
3557 	if (list_empty(&cur_trans->dirty_bgs)) {
3558 		spin_unlock(&cur_trans->dirty_bgs_lock);
3559 		return 0;
3560 	}
3561 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3562 	spin_unlock(&cur_trans->dirty_bgs_lock);
3563 
3564 again:
3565 	/*
3566 	 * make sure all the block groups on our dirty list actually
3567 	 * exist
3568 	 */
3569 	btrfs_create_pending_block_groups(trans, root);
3570 
3571 	if (!path) {
3572 		path = btrfs_alloc_path();
3573 		if (!path)
3574 			return -ENOMEM;
3575 	}
3576 
3577 	/*
3578 	 * cache_write_mutex is here only to save us from balance or automatic
3579 	 * removal of empty block groups deleting this block group while we are
3580 	 * writing out the cache
3581 	 */
3582 	mutex_lock(&trans->transaction->cache_write_mutex);
3583 	while (!list_empty(&dirty)) {
3584 		cache = list_first_entry(&dirty,
3585 					 struct btrfs_block_group_cache,
3586 					 dirty_list);
3587 		/*
3588 		 * this can happen if something re-dirties a block
3589 		 * group that is already under IO.  Just wait for it to
3590 		 * finish and then do it all again
3591 		 */
3592 		if (!list_empty(&cache->io_list)) {
3593 			list_del_init(&cache->io_list);
3594 			btrfs_wait_cache_io(root, trans, cache,
3595 					    &cache->io_ctl, path,
3596 					    cache->key.objectid);
3597 			btrfs_put_block_group(cache);
3598 		}
3599 
3600 
3601 		/*
3602 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 		 * if it should update the cache_state.  Don't delete
3604 		 * until after we wait.
3605 		 *
3606 		 * Since we're not running in the commit critical section
3607 		 * we need the dirty_bgs_lock to protect from update_block_group
3608 		 */
3609 		spin_lock(&cur_trans->dirty_bgs_lock);
3610 		list_del_init(&cache->dirty_list);
3611 		spin_unlock(&cur_trans->dirty_bgs_lock);
3612 
3613 		should_put = 1;
3614 
3615 		cache_save_setup(cache, trans, path);
3616 
3617 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 			cache->io_ctl.inode = NULL;
3619 			ret = btrfs_write_out_cache(root, trans, cache, path);
3620 			if (ret == 0 && cache->io_ctl.inode) {
3621 				num_started++;
3622 				should_put = 0;
3623 
3624 				/*
3625 				 * the cache_write_mutex is protecting
3626 				 * the io_list
3627 				 */
3628 				list_add_tail(&cache->io_list, io);
3629 			} else {
3630 				/*
3631 				 * if we failed to write the cache, the
3632 				 * generation will be bad and life goes on
3633 				 */
3634 				ret = 0;
3635 			}
3636 		}
3637 		if (!ret) {
3638 			ret = write_one_cache_group(trans, root, path, cache);
3639 			/*
3640 			 * Our block group might still be attached to the list
3641 			 * of new block groups in the transaction handle of some
3642 			 * other task (struct btrfs_trans_handle->new_bgs). This
3643 			 * means its block group item isn't yet in the extent
3644 			 * tree. If this happens ignore the error, as we will
3645 			 * try again later in the critical section of the
3646 			 * transaction commit.
3647 			 */
3648 			if (ret == -ENOENT) {
3649 				ret = 0;
3650 				spin_lock(&cur_trans->dirty_bgs_lock);
3651 				if (list_empty(&cache->dirty_list)) {
3652 					list_add_tail(&cache->dirty_list,
3653 						      &cur_trans->dirty_bgs);
3654 					btrfs_get_block_group(cache);
3655 				}
3656 				spin_unlock(&cur_trans->dirty_bgs_lock);
3657 			} else if (ret) {
3658 				btrfs_abort_transaction(trans, ret);
3659 			}
3660 		}
3661 
3662 		/* if its not on the io list, we need to put the block group */
3663 		if (should_put)
3664 			btrfs_put_block_group(cache);
3665 
3666 		if (ret)
3667 			break;
3668 
3669 		/*
3670 		 * Avoid blocking other tasks for too long. It might even save
3671 		 * us from writing caches for block groups that are going to be
3672 		 * removed.
3673 		 */
3674 		mutex_unlock(&trans->transaction->cache_write_mutex);
3675 		mutex_lock(&trans->transaction->cache_write_mutex);
3676 	}
3677 	mutex_unlock(&trans->transaction->cache_write_mutex);
3678 
3679 	/*
3680 	 * go through delayed refs for all the stuff we've just kicked off
3681 	 * and then loop back (just once)
3682 	 */
3683 	ret = btrfs_run_delayed_refs(trans, root, 0);
3684 	if (!ret && loops == 0) {
3685 		loops++;
3686 		spin_lock(&cur_trans->dirty_bgs_lock);
3687 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3688 		/*
3689 		 * dirty_bgs_lock protects us from concurrent block group
3690 		 * deletes too (not just cache_write_mutex).
3691 		 */
3692 		if (!list_empty(&dirty)) {
3693 			spin_unlock(&cur_trans->dirty_bgs_lock);
3694 			goto again;
3695 		}
3696 		spin_unlock(&cur_trans->dirty_bgs_lock);
3697 	}
3698 
3699 	btrfs_free_path(path);
3700 	return ret;
3701 }
3702 
3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3704 				   struct btrfs_root *root)
3705 {
3706 	struct btrfs_block_group_cache *cache;
3707 	struct btrfs_transaction *cur_trans = trans->transaction;
3708 	int ret = 0;
3709 	int should_put;
3710 	struct btrfs_path *path;
3711 	struct list_head *io = &cur_trans->io_bgs;
3712 	int num_started = 0;
3713 
3714 	path = btrfs_alloc_path();
3715 	if (!path)
3716 		return -ENOMEM;
3717 
3718 	/*
3719 	 * Even though we are in the critical section of the transaction commit,
3720 	 * we can still have concurrent tasks adding elements to this
3721 	 * transaction's list of dirty block groups. These tasks correspond to
3722 	 * endio free space workers started when writeback finishes for a
3723 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3724 	 * allocate new block groups as a result of COWing nodes of the root
3725 	 * tree when updating the free space inode. The writeback for the space
3726 	 * caches is triggered by an earlier call to
3727 	 * btrfs_start_dirty_block_groups() and iterations of the following
3728 	 * loop.
3729 	 * Also we want to do the cache_save_setup first and then run the
3730 	 * delayed refs to make sure we have the best chance at doing this all
3731 	 * in one shot.
3732 	 */
3733 	spin_lock(&cur_trans->dirty_bgs_lock);
3734 	while (!list_empty(&cur_trans->dirty_bgs)) {
3735 		cache = list_first_entry(&cur_trans->dirty_bgs,
3736 					 struct btrfs_block_group_cache,
3737 					 dirty_list);
3738 
3739 		/*
3740 		 * this can happen if cache_save_setup re-dirties a block
3741 		 * group that is already under IO.  Just wait for it to
3742 		 * finish and then do it all again
3743 		 */
3744 		if (!list_empty(&cache->io_list)) {
3745 			spin_unlock(&cur_trans->dirty_bgs_lock);
3746 			list_del_init(&cache->io_list);
3747 			btrfs_wait_cache_io(root, trans, cache,
3748 					    &cache->io_ctl, path,
3749 					    cache->key.objectid);
3750 			btrfs_put_block_group(cache);
3751 			spin_lock(&cur_trans->dirty_bgs_lock);
3752 		}
3753 
3754 		/*
3755 		 * don't remove from the dirty list until after we've waited
3756 		 * on any pending IO
3757 		 */
3758 		list_del_init(&cache->dirty_list);
3759 		spin_unlock(&cur_trans->dirty_bgs_lock);
3760 		should_put = 1;
3761 
3762 		cache_save_setup(cache, trans, path);
3763 
3764 		if (!ret)
3765 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3766 
3767 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3768 			cache->io_ctl.inode = NULL;
3769 			ret = btrfs_write_out_cache(root, trans, cache, path);
3770 			if (ret == 0 && cache->io_ctl.inode) {
3771 				num_started++;
3772 				should_put = 0;
3773 				list_add_tail(&cache->io_list, io);
3774 			} else {
3775 				/*
3776 				 * if we failed to write the cache, the
3777 				 * generation will be bad and life goes on
3778 				 */
3779 				ret = 0;
3780 			}
3781 		}
3782 		if (!ret) {
3783 			ret = write_one_cache_group(trans, root, path, cache);
3784 			/*
3785 			 * One of the free space endio workers might have
3786 			 * created a new block group while updating a free space
3787 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3788 			 * and hasn't released its transaction handle yet, in
3789 			 * which case the new block group is still attached to
3790 			 * its transaction handle and its creation has not
3791 			 * finished yet (no block group item in the extent tree
3792 			 * yet, etc). If this is the case, wait for all free
3793 			 * space endio workers to finish and retry. This is a
3794 			 * a very rare case so no need for a more efficient and
3795 			 * complex approach.
3796 			 */
3797 			if (ret == -ENOENT) {
3798 				wait_event(cur_trans->writer_wait,
3799 				   atomic_read(&cur_trans->num_writers) == 1);
3800 				ret = write_one_cache_group(trans, root, path,
3801 							    cache);
3802 			}
3803 			if (ret)
3804 				btrfs_abort_transaction(trans, ret);
3805 		}
3806 
3807 		/* if its not on the io list, we need to put the block group */
3808 		if (should_put)
3809 			btrfs_put_block_group(cache);
3810 		spin_lock(&cur_trans->dirty_bgs_lock);
3811 	}
3812 	spin_unlock(&cur_trans->dirty_bgs_lock);
3813 
3814 	while (!list_empty(io)) {
3815 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3816 					 io_list);
3817 		list_del_init(&cache->io_list);
3818 		btrfs_wait_cache_io(root, trans, cache,
3819 				    &cache->io_ctl, path, cache->key.objectid);
3820 		btrfs_put_block_group(cache);
3821 	}
3822 
3823 	btrfs_free_path(path);
3824 	return ret;
3825 }
3826 
3827 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3828 {
3829 	struct btrfs_block_group_cache *block_group;
3830 	int readonly = 0;
3831 
3832 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3833 	if (!block_group || block_group->ro)
3834 		readonly = 1;
3835 	if (block_group)
3836 		btrfs_put_block_group(block_group);
3837 	return readonly;
3838 }
3839 
3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3841 {
3842 	struct btrfs_block_group_cache *bg;
3843 	bool ret = true;
3844 
3845 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3846 	if (!bg)
3847 		return false;
3848 
3849 	spin_lock(&bg->lock);
3850 	if (bg->ro)
3851 		ret = false;
3852 	else
3853 		atomic_inc(&bg->nocow_writers);
3854 	spin_unlock(&bg->lock);
3855 
3856 	/* no put on block group, done by btrfs_dec_nocow_writers */
3857 	if (!ret)
3858 		btrfs_put_block_group(bg);
3859 
3860 	return ret;
3861 
3862 }
3863 
3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3865 {
3866 	struct btrfs_block_group_cache *bg;
3867 
3868 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3869 	ASSERT(bg);
3870 	if (atomic_dec_and_test(&bg->nocow_writers))
3871 		wake_up_atomic_t(&bg->nocow_writers);
3872 	/*
3873 	 * Once for our lookup and once for the lookup done by a previous call
3874 	 * to btrfs_inc_nocow_writers()
3875 	 */
3876 	btrfs_put_block_group(bg);
3877 	btrfs_put_block_group(bg);
3878 }
3879 
3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3881 {
3882 	schedule();
3883 	return 0;
3884 }
3885 
3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3887 {
3888 	wait_on_atomic_t(&bg->nocow_writers,
3889 			 btrfs_wait_nocow_writers_atomic_t,
3890 			 TASK_UNINTERRUPTIBLE);
3891 }
3892 
3893 static const char *alloc_name(u64 flags)
3894 {
3895 	switch (flags) {
3896 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3897 		return "mixed";
3898 	case BTRFS_BLOCK_GROUP_METADATA:
3899 		return "metadata";
3900 	case BTRFS_BLOCK_GROUP_DATA:
3901 		return "data";
3902 	case BTRFS_BLOCK_GROUP_SYSTEM:
3903 		return "system";
3904 	default:
3905 		WARN_ON(1);
3906 		return "invalid-combination";
3907 	};
3908 }
3909 
3910 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3911 			     u64 total_bytes, u64 bytes_used,
3912 			     u64 bytes_readonly,
3913 			     struct btrfs_space_info **space_info)
3914 {
3915 	struct btrfs_space_info *found;
3916 	int i;
3917 	int factor;
3918 	int ret;
3919 
3920 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3921 		     BTRFS_BLOCK_GROUP_RAID10))
3922 		factor = 2;
3923 	else
3924 		factor = 1;
3925 
3926 	found = __find_space_info(info, flags);
3927 	if (found) {
3928 		spin_lock(&found->lock);
3929 		found->total_bytes += total_bytes;
3930 		found->disk_total += total_bytes * factor;
3931 		found->bytes_used += bytes_used;
3932 		found->disk_used += bytes_used * factor;
3933 		found->bytes_readonly += bytes_readonly;
3934 		if (total_bytes > 0)
3935 			found->full = 0;
3936 		space_info_add_new_bytes(info, found, total_bytes -
3937 					 bytes_used - bytes_readonly);
3938 		spin_unlock(&found->lock);
3939 		*space_info = found;
3940 		return 0;
3941 	}
3942 	found = kzalloc(sizeof(*found), GFP_NOFS);
3943 	if (!found)
3944 		return -ENOMEM;
3945 
3946 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3947 	if (ret) {
3948 		kfree(found);
3949 		return ret;
3950 	}
3951 
3952 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953 		INIT_LIST_HEAD(&found->block_groups[i]);
3954 	init_rwsem(&found->groups_sem);
3955 	spin_lock_init(&found->lock);
3956 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957 	found->total_bytes = total_bytes;
3958 	found->disk_total = total_bytes * factor;
3959 	found->bytes_used = bytes_used;
3960 	found->disk_used = bytes_used * factor;
3961 	found->bytes_pinned = 0;
3962 	found->bytes_reserved = 0;
3963 	found->bytes_readonly = bytes_readonly;
3964 	found->bytes_may_use = 0;
3965 	found->full = 0;
3966 	found->max_extent_size = 0;
3967 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3968 	found->chunk_alloc = 0;
3969 	found->flush = 0;
3970 	init_waitqueue_head(&found->wait);
3971 	INIT_LIST_HEAD(&found->ro_bgs);
3972 	INIT_LIST_HEAD(&found->tickets);
3973 	INIT_LIST_HEAD(&found->priority_tickets);
3974 
3975 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976 				    info->space_info_kobj, "%s",
3977 				    alloc_name(found->flags));
3978 	if (ret) {
3979 		kfree(found);
3980 		return ret;
3981 	}
3982 
3983 	*space_info = found;
3984 	list_add_rcu(&found->list, &info->space_info);
3985 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 		info->data_sinfo = found;
3987 
3988 	return ret;
3989 }
3990 
3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3992 {
3993 	u64 extra_flags = chunk_to_extended(flags) &
3994 				BTRFS_EXTENDED_PROFILE_MASK;
3995 
3996 	write_seqlock(&fs_info->profiles_lock);
3997 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3998 		fs_info->avail_data_alloc_bits |= extra_flags;
3999 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4001 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002 		fs_info->avail_system_alloc_bits |= extra_flags;
4003 	write_sequnlock(&fs_info->profiles_lock);
4004 }
4005 
4006 /*
4007  * returns target flags in extended format or 0 if restripe for this
4008  * chunk_type is not in progress
4009  *
4010  * should be called with either volume_mutex or balance_lock held
4011  */
4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4013 {
4014 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 	u64 target = 0;
4016 
4017 	if (!bctl)
4018 		return 0;
4019 
4020 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4029 	}
4030 
4031 	return target;
4032 }
4033 
4034 /*
4035  * @flags: available profiles in extended format (see ctree.h)
4036  *
4037  * Returns reduced profile in chunk format.  If profile changing is in
4038  * progress (either running or paused) picks the target profile (if it's
4039  * already available), otherwise falls back to plain reducing.
4040  */
4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4042 {
4043 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4044 	u64 target;
4045 	u64 raid_type;
4046 	u64 allowed = 0;
4047 
4048 	/*
4049 	 * see if restripe for this chunk_type is in progress, if so
4050 	 * try to reduce to the target profile
4051 	 */
4052 	spin_lock(&root->fs_info->balance_lock);
4053 	target = get_restripe_target(root->fs_info, flags);
4054 	if (target) {
4055 		/* pick target profile only if it's already available */
4056 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4057 			spin_unlock(&root->fs_info->balance_lock);
4058 			return extended_to_chunk(target);
4059 		}
4060 	}
4061 	spin_unlock(&root->fs_info->balance_lock);
4062 
4063 	/* First, mask out the RAID levels which aren't possible */
4064 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066 			allowed |= btrfs_raid_group[raid_type];
4067 	}
4068 	allowed &= flags;
4069 
4070 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4072 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4074 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4076 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4078 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4080 
4081 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4082 
4083 	return extended_to_chunk(flags | allowed);
4084 }
4085 
4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4087 {
4088 	unsigned seq;
4089 	u64 flags;
4090 
4091 	do {
4092 		flags = orig_flags;
4093 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4094 
4095 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 			flags |= root->fs_info->avail_data_alloc_bits;
4097 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098 			flags |= root->fs_info->avail_system_alloc_bits;
4099 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100 			flags |= root->fs_info->avail_metadata_alloc_bits;
4101 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4102 
4103 	return btrfs_reduce_alloc_profile(root, flags);
4104 }
4105 
4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4107 {
4108 	u64 flags;
4109 	u64 ret;
4110 
4111 	if (data)
4112 		flags = BTRFS_BLOCK_GROUP_DATA;
4113 	else if (root == root->fs_info->chunk_root)
4114 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4115 	else
4116 		flags = BTRFS_BLOCK_GROUP_METADATA;
4117 
4118 	ret = get_alloc_profile(root, flags);
4119 	return ret;
4120 }
4121 
4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4123 {
4124 	struct btrfs_space_info *data_sinfo;
4125 	struct btrfs_root *root = BTRFS_I(inode)->root;
4126 	struct btrfs_fs_info *fs_info = root->fs_info;
4127 	u64 used;
4128 	int ret = 0;
4129 	int need_commit = 2;
4130 	int have_pinned_space;
4131 
4132 	/* make sure bytes are sectorsize aligned */
4133 	bytes = ALIGN(bytes, root->sectorsize);
4134 
4135 	if (btrfs_is_free_space_inode(inode)) {
4136 		need_commit = 0;
4137 		ASSERT(current->journal_info);
4138 	}
4139 
4140 	data_sinfo = fs_info->data_sinfo;
4141 	if (!data_sinfo)
4142 		goto alloc;
4143 
4144 again:
4145 	/* make sure we have enough space to handle the data first */
4146 	spin_lock(&data_sinfo->lock);
4147 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 		data_sinfo->bytes_may_use;
4150 
4151 	if (used + bytes > data_sinfo->total_bytes) {
4152 		struct btrfs_trans_handle *trans;
4153 
4154 		/*
4155 		 * if we don't have enough free bytes in this space then we need
4156 		 * to alloc a new chunk.
4157 		 */
4158 		if (!data_sinfo->full) {
4159 			u64 alloc_target;
4160 
4161 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162 			spin_unlock(&data_sinfo->lock);
4163 alloc:
4164 			alloc_target = btrfs_get_alloc_profile(root, 1);
4165 			/*
4166 			 * It is ugly that we don't call nolock join
4167 			 * transaction for the free space inode case here.
4168 			 * But it is safe because we only do the data space
4169 			 * reservation for the free space cache in the
4170 			 * transaction context, the common join transaction
4171 			 * just increase the counter of the current transaction
4172 			 * handler, doesn't try to acquire the trans_lock of
4173 			 * the fs.
4174 			 */
4175 			trans = btrfs_join_transaction(root);
4176 			if (IS_ERR(trans))
4177 				return PTR_ERR(trans);
4178 
4179 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4180 					     alloc_target,
4181 					     CHUNK_ALLOC_NO_FORCE);
4182 			btrfs_end_transaction(trans, root);
4183 			if (ret < 0) {
4184 				if (ret != -ENOSPC)
4185 					return ret;
4186 				else {
4187 					have_pinned_space = 1;
4188 					goto commit_trans;
4189 				}
4190 			}
4191 
4192 			if (!data_sinfo)
4193 				data_sinfo = fs_info->data_sinfo;
4194 
4195 			goto again;
4196 		}
4197 
4198 		/*
4199 		 * If we don't have enough pinned space to deal with this
4200 		 * allocation, and no removed chunk in current transaction,
4201 		 * don't bother committing the transaction.
4202 		 */
4203 		have_pinned_space = percpu_counter_compare(
4204 			&data_sinfo->total_bytes_pinned,
4205 			used + bytes - data_sinfo->total_bytes);
4206 		spin_unlock(&data_sinfo->lock);
4207 
4208 		/* commit the current transaction and try again */
4209 commit_trans:
4210 		if (need_commit &&
4211 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4212 			need_commit--;
4213 
4214 			if (need_commit > 0) {
4215 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4216 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4217 			}
4218 
4219 			trans = btrfs_join_transaction(root);
4220 			if (IS_ERR(trans))
4221 				return PTR_ERR(trans);
4222 			if (have_pinned_space >= 0 ||
4223 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 				     &trans->transaction->flags) ||
4225 			    need_commit > 0) {
4226 				ret = btrfs_commit_transaction(trans, root);
4227 				if (ret)
4228 					return ret;
4229 				/*
4230 				 * The cleaner kthread might still be doing iput
4231 				 * operations. Wait for it to finish so that
4232 				 * more space is released.
4233 				 */
4234 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4236 				goto again;
4237 			} else {
4238 				btrfs_end_transaction(trans, root);
4239 			}
4240 		}
4241 
4242 		trace_btrfs_space_reservation(root->fs_info,
4243 					      "space_info:enospc",
4244 					      data_sinfo->flags, bytes, 1);
4245 		return -ENOSPC;
4246 	}
4247 	data_sinfo->bytes_may_use += bytes;
4248 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4249 				      data_sinfo->flags, bytes, 1);
4250 	spin_unlock(&data_sinfo->lock);
4251 
4252 	return ret;
4253 }
4254 
4255 /*
4256  * New check_data_free_space() with ability for precious data reservation
4257  * Will replace old btrfs_check_data_free_space(), but for patch split,
4258  * add a new function first and then replace it.
4259  */
4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4261 {
4262 	struct btrfs_root *root = BTRFS_I(inode)->root;
4263 	int ret;
4264 
4265 	/* align the range */
4266 	len = round_up(start + len, root->sectorsize) -
4267 	      round_down(start, root->sectorsize);
4268 	start = round_down(start, root->sectorsize);
4269 
4270 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271 	if (ret < 0)
4272 		return ret;
4273 
4274 	/*
4275 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4276 	 *
4277 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4278 	 * range, but don't impact performance on quota disable case.
4279 	 */
4280 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4281 	return ret;
4282 }
4283 
4284 /*
4285  * Called if we need to clear a data reservation for this inode
4286  * Normally in a error case.
4287  *
4288  * This one will *NOT* use accurate qgroup reserved space API, just for case
4289  * which we can't sleep and is sure it won't affect qgroup reserved space.
4290  * Like clear_bit_hook().
4291  */
4292 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4293 					    u64 len)
4294 {
4295 	struct btrfs_root *root = BTRFS_I(inode)->root;
4296 	struct btrfs_space_info *data_sinfo;
4297 
4298 	/* Make sure the range is aligned to sectorsize */
4299 	len = round_up(start + len, root->sectorsize) -
4300 	      round_down(start, root->sectorsize);
4301 	start = round_down(start, root->sectorsize);
4302 
4303 	data_sinfo = root->fs_info->data_sinfo;
4304 	spin_lock(&data_sinfo->lock);
4305 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4306 		data_sinfo->bytes_may_use = 0;
4307 	else
4308 		data_sinfo->bytes_may_use -= len;
4309 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4310 				      data_sinfo->flags, len, 0);
4311 	spin_unlock(&data_sinfo->lock);
4312 }
4313 
4314 /*
4315  * Called if we need to clear a data reservation for this inode
4316  * Normally in a error case.
4317  *
4318  * This one will handle the per-inode data rsv map for accurate reserved
4319  * space framework.
4320  */
4321 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4322 {
4323 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4324 	btrfs_qgroup_free_data(inode, start, len);
4325 }
4326 
4327 static void force_metadata_allocation(struct btrfs_fs_info *info)
4328 {
4329 	struct list_head *head = &info->space_info;
4330 	struct btrfs_space_info *found;
4331 
4332 	rcu_read_lock();
4333 	list_for_each_entry_rcu(found, head, list) {
4334 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4335 			found->force_alloc = CHUNK_ALLOC_FORCE;
4336 	}
4337 	rcu_read_unlock();
4338 }
4339 
4340 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4341 {
4342 	return (global->size << 1);
4343 }
4344 
4345 static int should_alloc_chunk(struct btrfs_root *root,
4346 			      struct btrfs_space_info *sinfo, int force)
4347 {
4348 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4349 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4350 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4351 	u64 thresh;
4352 
4353 	if (force == CHUNK_ALLOC_FORCE)
4354 		return 1;
4355 
4356 	/*
4357 	 * We need to take into account the global rsv because for all intents
4358 	 * and purposes it's used space.  Don't worry about locking the
4359 	 * global_rsv, it doesn't change except when the transaction commits.
4360 	 */
4361 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4362 		num_allocated += calc_global_rsv_need_space(global_rsv);
4363 
4364 	/*
4365 	 * in limited mode, we want to have some free space up to
4366 	 * about 1% of the FS size.
4367 	 */
4368 	if (force == CHUNK_ALLOC_LIMITED) {
4369 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4370 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4371 
4372 		if (num_bytes - num_allocated < thresh)
4373 			return 1;
4374 	}
4375 
4376 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4377 		return 0;
4378 	return 1;
4379 }
4380 
4381 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4382 {
4383 	u64 num_dev;
4384 
4385 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4386 		    BTRFS_BLOCK_GROUP_RAID0 |
4387 		    BTRFS_BLOCK_GROUP_RAID5 |
4388 		    BTRFS_BLOCK_GROUP_RAID6))
4389 		num_dev = root->fs_info->fs_devices->rw_devices;
4390 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4391 		num_dev = 2;
4392 	else
4393 		num_dev = 1;	/* DUP or single */
4394 
4395 	return num_dev;
4396 }
4397 
4398 /*
4399  * If @is_allocation is true, reserve space in the system space info necessary
4400  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4401  * removing a chunk.
4402  */
4403 void check_system_chunk(struct btrfs_trans_handle *trans,
4404 			struct btrfs_root *root,
4405 			u64 type)
4406 {
4407 	struct btrfs_space_info *info;
4408 	u64 left;
4409 	u64 thresh;
4410 	int ret = 0;
4411 	u64 num_devs;
4412 
4413 	/*
4414 	 * Needed because we can end up allocating a system chunk and for an
4415 	 * atomic and race free space reservation in the chunk block reserve.
4416 	 */
4417 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4418 
4419 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4420 	spin_lock(&info->lock);
4421 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4422 		info->bytes_reserved - info->bytes_readonly -
4423 		info->bytes_may_use;
4424 	spin_unlock(&info->lock);
4425 
4426 	num_devs = get_profile_num_devs(root, type);
4427 
4428 	/* num_devs device items to update and 1 chunk item to add or remove */
4429 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4430 		btrfs_calc_trans_metadata_size(root, 1);
4431 
4432 	if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4433 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4434 			left, thresh, type);
4435 		dump_space_info(info, 0, 0);
4436 	}
4437 
4438 	if (left < thresh) {
4439 		u64 flags;
4440 
4441 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4442 		/*
4443 		 * Ignore failure to create system chunk. We might end up not
4444 		 * needing it, as we might not need to COW all nodes/leafs from
4445 		 * the paths we visit in the chunk tree (they were already COWed
4446 		 * or created in the current transaction for example).
4447 		 */
4448 		ret = btrfs_alloc_chunk(trans, root, flags);
4449 	}
4450 
4451 	if (!ret) {
4452 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4453 					  &root->fs_info->chunk_block_rsv,
4454 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4455 		if (!ret)
4456 			trans->chunk_bytes_reserved += thresh;
4457 	}
4458 }
4459 
4460 /*
4461  * If force is CHUNK_ALLOC_FORCE:
4462  *    - return 1 if it successfully allocates a chunk,
4463  *    - return errors including -ENOSPC otherwise.
4464  * If force is NOT CHUNK_ALLOC_FORCE:
4465  *    - return 0 if it doesn't need to allocate a new chunk,
4466  *    - return 1 if it successfully allocates a chunk,
4467  *    - return errors including -ENOSPC otherwise.
4468  */
4469 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4470 			  struct btrfs_root *extent_root, u64 flags, int force)
4471 {
4472 	struct btrfs_space_info *space_info;
4473 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4474 	int wait_for_alloc = 0;
4475 	int ret = 0;
4476 
4477 	/* Don't re-enter if we're already allocating a chunk */
4478 	if (trans->allocating_chunk)
4479 		return -ENOSPC;
4480 
4481 	space_info = __find_space_info(extent_root->fs_info, flags);
4482 	if (!space_info) {
4483 		ret = update_space_info(extent_root->fs_info, flags,
4484 					0, 0, 0, &space_info);
4485 		BUG_ON(ret); /* -ENOMEM */
4486 	}
4487 	BUG_ON(!space_info); /* Logic error */
4488 
4489 again:
4490 	spin_lock(&space_info->lock);
4491 	if (force < space_info->force_alloc)
4492 		force = space_info->force_alloc;
4493 	if (space_info->full) {
4494 		if (should_alloc_chunk(extent_root, space_info, force))
4495 			ret = -ENOSPC;
4496 		else
4497 			ret = 0;
4498 		spin_unlock(&space_info->lock);
4499 		return ret;
4500 	}
4501 
4502 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4503 		spin_unlock(&space_info->lock);
4504 		return 0;
4505 	} else if (space_info->chunk_alloc) {
4506 		wait_for_alloc = 1;
4507 	} else {
4508 		space_info->chunk_alloc = 1;
4509 	}
4510 
4511 	spin_unlock(&space_info->lock);
4512 
4513 	mutex_lock(&fs_info->chunk_mutex);
4514 
4515 	/*
4516 	 * The chunk_mutex is held throughout the entirety of a chunk
4517 	 * allocation, so once we've acquired the chunk_mutex we know that the
4518 	 * other guy is done and we need to recheck and see if we should
4519 	 * allocate.
4520 	 */
4521 	if (wait_for_alloc) {
4522 		mutex_unlock(&fs_info->chunk_mutex);
4523 		wait_for_alloc = 0;
4524 		goto again;
4525 	}
4526 
4527 	trans->allocating_chunk = true;
4528 
4529 	/*
4530 	 * If we have mixed data/metadata chunks we want to make sure we keep
4531 	 * allocating mixed chunks instead of individual chunks.
4532 	 */
4533 	if (btrfs_mixed_space_info(space_info))
4534 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4535 
4536 	/*
4537 	 * if we're doing a data chunk, go ahead and make sure that
4538 	 * we keep a reasonable number of metadata chunks allocated in the
4539 	 * FS as well.
4540 	 */
4541 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4542 		fs_info->data_chunk_allocations++;
4543 		if (!(fs_info->data_chunk_allocations %
4544 		      fs_info->metadata_ratio))
4545 			force_metadata_allocation(fs_info);
4546 	}
4547 
4548 	/*
4549 	 * Check if we have enough space in SYSTEM chunk because we may need
4550 	 * to update devices.
4551 	 */
4552 	check_system_chunk(trans, extent_root, flags);
4553 
4554 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4555 	trans->allocating_chunk = false;
4556 
4557 	spin_lock(&space_info->lock);
4558 	if (ret < 0 && ret != -ENOSPC)
4559 		goto out;
4560 	if (ret)
4561 		space_info->full = 1;
4562 	else
4563 		ret = 1;
4564 
4565 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4566 out:
4567 	space_info->chunk_alloc = 0;
4568 	spin_unlock(&space_info->lock);
4569 	mutex_unlock(&fs_info->chunk_mutex);
4570 	/*
4571 	 * When we allocate a new chunk we reserve space in the chunk block
4572 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4573 	 * add new nodes/leafs to it if we end up needing to do it when
4574 	 * inserting the chunk item and updating device items as part of the
4575 	 * second phase of chunk allocation, performed by
4576 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4577 	 * large number of new block groups to create in our transaction
4578 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4579 	 * in extreme cases - like having a single transaction create many new
4580 	 * block groups when starting to write out the free space caches of all
4581 	 * the block groups that were made dirty during the lifetime of the
4582 	 * transaction.
4583 	 */
4584 	if (trans->can_flush_pending_bgs &&
4585 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4586 		btrfs_create_pending_block_groups(trans, extent_root);
4587 		btrfs_trans_release_chunk_metadata(trans);
4588 	}
4589 	return ret;
4590 }
4591 
4592 static int can_overcommit(struct btrfs_root *root,
4593 			  struct btrfs_space_info *space_info, u64 bytes,
4594 			  enum btrfs_reserve_flush_enum flush)
4595 {
4596 	struct btrfs_block_rsv *global_rsv;
4597 	u64 profile;
4598 	u64 space_size;
4599 	u64 avail;
4600 	u64 used;
4601 
4602 	/* Don't overcommit when in mixed mode. */
4603 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4604 		return 0;
4605 
4606 	BUG_ON(root->fs_info == NULL);
4607 	global_rsv = &root->fs_info->global_block_rsv;
4608 	profile = btrfs_get_alloc_profile(root, 0);
4609 	used = space_info->bytes_used + space_info->bytes_reserved +
4610 		space_info->bytes_pinned + space_info->bytes_readonly;
4611 
4612 	/*
4613 	 * We only want to allow over committing if we have lots of actual space
4614 	 * free, but if we don't have enough space to handle the global reserve
4615 	 * space then we could end up having a real enospc problem when trying
4616 	 * to allocate a chunk or some other such important allocation.
4617 	 */
4618 	spin_lock(&global_rsv->lock);
4619 	space_size = calc_global_rsv_need_space(global_rsv);
4620 	spin_unlock(&global_rsv->lock);
4621 	if (used + space_size >= space_info->total_bytes)
4622 		return 0;
4623 
4624 	used += space_info->bytes_may_use;
4625 
4626 	spin_lock(&root->fs_info->free_chunk_lock);
4627 	avail = root->fs_info->free_chunk_space;
4628 	spin_unlock(&root->fs_info->free_chunk_lock);
4629 
4630 	/*
4631 	 * If we have dup, raid1 or raid10 then only half of the free
4632 	 * space is actually useable.  For raid56, the space info used
4633 	 * doesn't include the parity drive, so we don't have to
4634 	 * change the math
4635 	 */
4636 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4637 		       BTRFS_BLOCK_GROUP_RAID1 |
4638 		       BTRFS_BLOCK_GROUP_RAID10))
4639 		avail >>= 1;
4640 
4641 	/*
4642 	 * If we aren't flushing all things, let us overcommit up to
4643 	 * 1/2th of the space. If we can flush, don't let us overcommit
4644 	 * too much, let it overcommit up to 1/8 of the space.
4645 	 */
4646 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4647 		avail >>= 3;
4648 	else
4649 		avail >>= 1;
4650 
4651 	if (used + bytes < space_info->total_bytes + avail)
4652 		return 1;
4653 	return 0;
4654 }
4655 
4656 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4657 					 unsigned long nr_pages, int nr_items)
4658 {
4659 	struct super_block *sb = root->fs_info->sb;
4660 
4661 	if (down_read_trylock(&sb->s_umount)) {
4662 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4663 		up_read(&sb->s_umount);
4664 	} else {
4665 		/*
4666 		 * We needn't worry the filesystem going from r/w to r/o though
4667 		 * we don't acquire ->s_umount mutex, because the filesystem
4668 		 * should guarantee the delalloc inodes list be empty after
4669 		 * the filesystem is readonly(all dirty pages are written to
4670 		 * the disk).
4671 		 */
4672 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4673 		if (!current->journal_info)
4674 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4675 						 0, (u64)-1);
4676 	}
4677 }
4678 
4679 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4680 {
4681 	u64 bytes;
4682 	int nr;
4683 
4684 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4685 	nr = (int)div64_u64(to_reclaim, bytes);
4686 	if (!nr)
4687 		nr = 1;
4688 	return nr;
4689 }
4690 
4691 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4692 
4693 /*
4694  * shrink metadata reservation for delalloc
4695  */
4696 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4697 			    bool wait_ordered)
4698 {
4699 	struct btrfs_block_rsv *block_rsv;
4700 	struct btrfs_space_info *space_info;
4701 	struct btrfs_trans_handle *trans;
4702 	u64 delalloc_bytes;
4703 	u64 max_reclaim;
4704 	long time_left;
4705 	unsigned long nr_pages;
4706 	int loops;
4707 	int items;
4708 	enum btrfs_reserve_flush_enum flush;
4709 
4710 	/* Calc the number of the pages we need flush for space reservation */
4711 	items = calc_reclaim_items_nr(root, to_reclaim);
4712 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4713 
4714 	trans = (struct btrfs_trans_handle *)current->journal_info;
4715 	block_rsv = &root->fs_info->delalloc_block_rsv;
4716 	space_info = block_rsv->space_info;
4717 
4718 	delalloc_bytes = percpu_counter_sum_positive(
4719 						&root->fs_info->delalloc_bytes);
4720 	if (delalloc_bytes == 0) {
4721 		if (trans)
4722 			return;
4723 		if (wait_ordered)
4724 			btrfs_wait_ordered_roots(root->fs_info, items,
4725 						 0, (u64)-1);
4726 		return;
4727 	}
4728 
4729 	loops = 0;
4730 	while (delalloc_bytes && loops < 3) {
4731 		max_reclaim = min(delalloc_bytes, to_reclaim);
4732 		nr_pages = max_reclaim >> PAGE_SHIFT;
4733 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4734 		/*
4735 		 * We need to wait for the async pages to actually start before
4736 		 * we do anything.
4737 		 */
4738 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4739 		if (!max_reclaim)
4740 			goto skip_async;
4741 
4742 		if (max_reclaim <= nr_pages)
4743 			max_reclaim = 0;
4744 		else
4745 			max_reclaim -= nr_pages;
4746 
4747 		wait_event(root->fs_info->async_submit_wait,
4748 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4749 			   (int)max_reclaim);
4750 skip_async:
4751 		if (!trans)
4752 			flush = BTRFS_RESERVE_FLUSH_ALL;
4753 		else
4754 			flush = BTRFS_RESERVE_NO_FLUSH;
4755 		spin_lock(&space_info->lock);
4756 		if (can_overcommit(root, space_info, orig, flush)) {
4757 			spin_unlock(&space_info->lock);
4758 			break;
4759 		}
4760 		if (list_empty(&space_info->tickets) &&
4761 		    list_empty(&space_info->priority_tickets)) {
4762 			spin_unlock(&space_info->lock);
4763 			break;
4764 		}
4765 		spin_unlock(&space_info->lock);
4766 
4767 		loops++;
4768 		if (wait_ordered && !trans) {
4769 			btrfs_wait_ordered_roots(root->fs_info, items,
4770 						 0, (u64)-1);
4771 		} else {
4772 			time_left = schedule_timeout_killable(1);
4773 			if (time_left)
4774 				break;
4775 		}
4776 		delalloc_bytes = percpu_counter_sum_positive(
4777 						&root->fs_info->delalloc_bytes);
4778 	}
4779 }
4780 
4781 /**
4782  * maybe_commit_transaction - possibly commit the transaction if its ok to
4783  * @root - the root we're allocating for
4784  * @bytes - the number of bytes we want to reserve
4785  * @force - force the commit
4786  *
4787  * This will check to make sure that committing the transaction will actually
4788  * get us somewhere and then commit the transaction if it does.  Otherwise it
4789  * will return -ENOSPC.
4790  */
4791 static int may_commit_transaction(struct btrfs_root *root,
4792 				  struct btrfs_space_info *space_info,
4793 				  u64 bytes, int force)
4794 {
4795 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4796 	struct btrfs_trans_handle *trans;
4797 
4798 	trans = (struct btrfs_trans_handle *)current->journal_info;
4799 	if (trans)
4800 		return -EAGAIN;
4801 
4802 	if (force)
4803 		goto commit;
4804 
4805 	/* See if there is enough pinned space to make this reservation */
4806 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4807 				   bytes) >= 0)
4808 		goto commit;
4809 
4810 	/*
4811 	 * See if there is some space in the delayed insertion reservation for
4812 	 * this reservation.
4813 	 */
4814 	if (space_info != delayed_rsv->space_info)
4815 		return -ENOSPC;
4816 
4817 	spin_lock(&delayed_rsv->lock);
4818 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4819 				   bytes - delayed_rsv->size) >= 0) {
4820 		spin_unlock(&delayed_rsv->lock);
4821 		return -ENOSPC;
4822 	}
4823 	spin_unlock(&delayed_rsv->lock);
4824 
4825 commit:
4826 	trans = btrfs_join_transaction(root);
4827 	if (IS_ERR(trans))
4828 		return -ENOSPC;
4829 
4830 	return btrfs_commit_transaction(trans, root);
4831 }
4832 
4833 struct reserve_ticket {
4834 	u64 bytes;
4835 	int error;
4836 	struct list_head list;
4837 	wait_queue_head_t wait;
4838 };
4839 
4840 static int flush_space(struct btrfs_root *root,
4841 		       struct btrfs_space_info *space_info, u64 num_bytes,
4842 		       u64 orig_bytes, int state)
4843 {
4844 	struct btrfs_trans_handle *trans;
4845 	int nr;
4846 	int ret = 0;
4847 
4848 	switch (state) {
4849 	case FLUSH_DELAYED_ITEMS_NR:
4850 	case FLUSH_DELAYED_ITEMS:
4851 		if (state == FLUSH_DELAYED_ITEMS_NR)
4852 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4853 		else
4854 			nr = -1;
4855 
4856 		trans = btrfs_join_transaction(root);
4857 		if (IS_ERR(trans)) {
4858 			ret = PTR_ERR(trans);
4859 			break;
4860 		}
4861 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4862 		btrfs_end_transaction(trans, root);
4863 		break;
4864 	case FLUSH_DELALLOC:
4865 	case FLUSH_DELALLOC_WAIT:
4866 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4867 				state == FLUSH_DELALLOC_WAIT);
4868 		break;
4869 	case ALLOC_CHUNK:
4870 		trans = btrfs_join_transaction(root);
4871 		if (IS_ERR(trans)) {
4872 			ret = PTR_ERR(trans);
4873 			break;
4874 		}
4875 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4876 				     btrfs_get_alloc_profile(root, 0),
4877 				     CHUNK_ALLOC_NO_FORCE);
4878 		btrfs_end_transaction(trans, root);
4879 		if (ret > 0 || ret == -ENOSPC)
4880 			ret = 0;
4881 		break;
4882 	case COMMIT_TRANS:
4883 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4884 		break;
4885 	default:
4886 		ret = -ENOSPC;
4887 		break;
4888 	}
4889 
4890 	trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4891 				orig_bytes, state, ret);
4892 	return ret;
4893 }
4894 
4895 static inline u64
4896 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4897 				 struct btrfs_space_info *space_info)
4898 {
4899 	struct reserve_ticket *ticket;
4900 	u64 used;
4901 	u64 expected;
4902 	u64 to_reclaim = 0;
4903 
4904 	list_for_each_entry(ticket, &space_info->tickets, list)
4905 		to_reclaim += ticket->bytes;
4906 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4907 		to_reclaim += ticket->bytes;
4908 	if (to_reclaim)
4909 		return to_reclaim;
4910 
4911 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4912 	if (can_overcommit(root, space_info, to_reclaim,
4913 			   BTRFS_RESERVE_FLUSH_ALL))
4914 		return 0;
4915 
4916 	used = space_info->bytes_used + space_info->bytes_reserved +
4917 	       space_info->bytes_pinned + space_info->bytes_readonly +
4918 	       space_info->bytes_may_use;
4919 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4920 		expected = div_factor_fine(space_info->total_bytes, 95);
4921 	else
4922 		expected = div_factor_fine(space_info->total_bytes, 90);
4923 
4924 	if (used > expected)
4925 		to_reclaim = used - expected;
4926 	else
4927 		to_reclaim = 0;
4928 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4929 				     space_info->bytes_reserved);
4930 	return to_reclaim;
4931 }
4932 
4933 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4934 					struct btrfs_root *root, u64 used)
4935 {
4936 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4937 
4938 	/* If we're just plain full then async reclaim just slows us down. */
4939 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4940 		return 0;
4941 
4942 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4943 		return 0;
4944 
4945 	return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4946 		!test_bit(BTRFS_FS_STATE_REMOUNTING,
4947 			  &root->fs_info->fs_state));
4948 }
4949 
4950 static void wake_all_tickets(struct list_head *head)
4951 {
4952 	struct reserve_ticket *ticket;
4953 
4954 	while (!list_empty(head)) {
4955 		ticket = list_first_entry(head, struct reserve_ticket, list);
4956 		list_del_init(&ticket->list);
4957 		ticket->error = -ENOSPC;
4958 		wake_up(&ticket->wait);
4959 	}
4960 }
4961 
4962 /*
4963  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4964  * will loop and continuously try to flush as long as we are making progress.
4965  * We count progress as clearing off tickets each time we have to loop.
4966  */
4967 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4968 {
4969 	struct reserve_ticket *last_ticket = NULL;
4970 	struct btrfs_fs_info *fs_info;
4971 	struct btrfs_space_info *space_info;
4972 	u64 to_reclaim;
4973 	int flush_state;
4974 	int commit_cycles = 0;
4975 
4976 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4977 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4978 
4979 	spin_lock(&space_info->lock);
4980 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4981 						      space_info);
4982 	if (!to_reclaim) {
4983 		space_info->flush = 0;
4984 		spin_unlock(&space_info->lock);
4985 		return;
4986 	}
4987 	last_ticket = list_first_entry(&space_info->tickets,
4988 				       struct reserve_ticket, list);
4989 	spin_unlock(&space_info->lock);
4990 
4991 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4992 	do {
4993 		struct reserve_ticket *ticket;
4994 		int ret;
4995 
4996 		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4997 			    to_reclaim, flush_state);
4998 		spin_lock(&space_info->lock);
4999 		if (list_empty(&space_info->tickets)) {
5000 			space_info->flush = 0;
5001 			spin_unlock(&space_info->lock);
5002 			return;
5003 		}
5004 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5005 							      space_info);
5006 		ticket = list_first_entry(&space_info->tickets,
5007 					  struct reserve_ticket, list);
5008 		if (last_ticket == ticket) {
5009 			flush_state++;
5010 		} else {
5011 			last_ticket = ticket;
5012 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5013 			if (commit_cycles)
5014 				commit_cycles--;
5015 		}
5016 
5017 		if (flush_state > COMMIT_TRANS) {
5018 			commit_cycles++;
5019 			if (commit_cycles > 2) {
5020 				wake_all_tickets(&space_info->tickets);
5021 				space_info->flush = 0;
5022 			} else {
5023 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5024 			}
5025 		}
5026 		spin_unlock(&space_info->lock);
5027 	} while (flush_state <= COMMIT_TRANS);
5028 }
5029 
5030 void btrfs_init_async_reclaim_work(struct work_struct *work)
5031 {
5032 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5033 }
5034 
5035 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5036 					    struct btrfs_space_info *space_info,
5037 					    struct reserve_ticket *ticket)
5038 {
5039 	u64 to_reclaim;
5040 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5041 
5042 	spin_lock(&space_info->lock);
5043 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5044 						      space_info);
5045 	if (!to_reclaim) {
5046 		spin_unlock(&space_info->lock);
5047 		return;
5048 	}
5049 	spin_unlock(&space_info->lock);
5050 
5051 	do {
5052 		flush_space(fs_info->fs_root, space_info, to_reclaim,
5053 			    to_reclaim, flush_state);
5054 		flush_state++;
5055 		spin_lock(&space_info->lock);
5056 		if (ticket->bytes == 0) {
5057 			spin_unlock(&space_info->lock);
5058 			return;
5059 		}
5060 		spin_unlock(&space_info->lock);
5061 
5062 		/*
5063 		 * Priority flushers can't wait on delalloc without
5064 		 * deadlocking.
5065 		 */
5066 		if (flush_state == FLUSH_DELALLOC ||
5067 		    flush_state == FLUSH_DELALLOC_WAIT)
5068 			flush_state = ALLOC_CHUNK;
5069 	} while (flush_state < COMMIT_TRANS);
5070 }
5071 
5072 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5073 			       struct btrfs_space_info *space_info,
5074 			       struct reserve_ticket *ticket, u64 orig_bytes)
5075 
5076 {
5077 	DEFINE_WAIT(wait);
5078 	int ret = 0;
5079 
5080 	spin_lock(&space_info->lock);
5081 	while (ticket->bytes > 0 && ticket->error == 0) {
5082 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5083 		if (ret) {
5084 			ret = -EINTR;
5085 			break;
5086 		}
5087 		spin_unlock(&space_info->lock);
5088 
5089 		schedule();
5090 
5091 		finish_wait(&ticket->wait, &wait);
5092 		spin_lock(&space_info->lock);
5093 	}
5094 	if (!ret)
5095 		ret = ticket->error;
5096 	if (!list_empty(&ticket->list))
5097 		list_del_init(&ticket->list);
5098 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5099 		u64 num_bytes = orig_bytes - ticket->bytes;
5100 		space_info->bytes_may_use -= num_bytes;
5101 		trace_btrfs_space_reservation(fs_info, "space_info",
5102 					      space_info->flags, num_bytes, 0);
5103 	}
5104 	spin_unlock(&space_info->lock);
5105 
5106 	return ret;
5107 }
5108 
5109 /**
5110  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5111  * @root - the root we're allocating for
5112  * @space_info - the space info we want to allocate from
5113  * @orig_bytes - the number of bytes we want
5114  * @flush - whether or not we can flush to make our reservation
5115  *
5116  * This will reserve orig_bytes number of bytes from the space info associated
5117  * with the block_rsv.  If there is not enough space it will make an attempt to
5118  * flush out space to make room.  It will do this by flushing delalloc if
5119  * possible or committing the transaction.  If flush is 0 then no attempts to
5120  * regain reservations will be made and this will fail if there is not enough
5121  * space already.
5122  */
5123 static int __reserve_metadata_bytes(struct btrfs_root *root,
5124 				    struct btrfs_space_info *space_info,
5125 				    u64 orig_bytes,
5126 				    enum btrfs_reserve_flush_enum flush)
5127 {
5128 	struct reserve_ticket ticket;
5129 	u64 used;
5130 	int ret = 0;
5131 
5132 	ASSERT(orig_bytes);
5133 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5134 
5135 	spin_lock(&space_info->lock);
5136 	ret = -ENOSPC;
5137 	used = space_info->bytes_used + space_info->bytes_reserved +
5138 		space_info->bytes_pinned + space_info->bytes_readonly +
5139 		space_info->bytes_may_use;
5140 
5141 	/*
5142 	 * If we have enough space then hooray, make our reservation and carry
5143 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5144 	 * If not things get more complicated.
5145 	 */
5146 	if (used + orig_bytes <= space_info->total_bytes) {
5147 		space_info->bytes_may_use += orig_bytes;
5148 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5149 					      space_info->flags, orig_bytes,
5150 					      1);
5151 		ret = 0;
5152 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5153 		space_info->bytes_may_use += orig_bytes;
5154 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5155 					      space_info->flags, orig_bytes,
5156 					      1);
5157 		ret = 0;
5158 	}
5159 
5160 	/*
5161 	 * If we couldn't make a reservation then setup our reservation ticket
5162 	 * and kick the async worker if it's not already running.
5163 	 *
5164 	 * If we are a priority flusher then we just need to add our ticket to
5165 	 * the list and we will do our own flushing further down.
5166 	 */
5167 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5168 		ticket.bytes = orig_bytes;
5169 		ticket.error = 0;
5170 		init_waitqueue_head(&ticket.wait);
5171 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5172 			list_add_tail(&ticket.list, &space_info->tickets);
5173 			if (!space_info->flush) {
5174 				space_info->flush = 1;
5175 				trace_btrfs_trigger_flush(root->fs_info,
5176 							  space_info->flags,
5177 							  orig_bytes, flush,
5178 							  "enospc");
5179 				queue_work(system_unbound_wq,
5180 					   &root->fs_info->async_reclaim_work);
5181 			}
5182 		} else {
5183 			list_add_tail(&ticket.list,
5184 				      &space_info->priority_tickets);
5185 		}
5186 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5187 		used += orig_bytes;
5188 		/*
5189 		 * We will do the space reservation dance during log replay,
5190 		 * which means we won't have fs_info->fs_root set, so don't do
5191 		 * the async reclaim as we will panic.
5192 		 */
5193 		if (!root->fs_info->log_root_recovering &&
5194 		    need_do_async_reclaim(space_info, root, used) &&
5195 		    !work_busy(&root->fs_info->async_reclaim_work)) {
5196 			trace_btrfs_trigger_flush(root->fs_info,
5197 						  space_info->flags,
5198 						  orig_bytes, flush,
5199 						  "preempt");
5200 			queue_work(system_unbound_wq,
5201 				   &root->fs_info->async_reclaim_work);
5202 		}
5203 	}
5204 	spin_unlock(&space_info->lock);
5205 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5206 		return ret;
5207 
5208 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5209 		return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5210 					   orig_bytes);
5211 
5212 	ret = 0;
5213 	priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5214 	spin_lock(&space_info->lock);
5215 	if (ticket.bytes) {
5216 		if (ticket.bytes < orig_bytes) {
5217 			u64 num_bytes = orig_bytes - ticket.bytes;
5218 			space_info->bytes_may_use -= num_bytes;
5219 			trace_btrfs_space_reservation(root->fs_info,
5220 					"space_info", space_info->flags,
5221 					num_bytes, 0);
5222 
5223 		}
5224 		list_del_init(&ticket.list);
5225 		ret = -ENOSPC;
5226 	}
5227 	spin_unlock(&space_info->lock);
5228 	ASSERT(list_empty(&ticket.list));
5229 	return ret;
5230 }
5231 
5232 /**
5233  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5234  * @root - the root we're allocating for
5235  * @block_rsv - the block_rsv we're allocating for
5236  * @orig_bytes - the number of bytes we want
5237  * @flush - whether or not we can flush to make our reservation
5238  *
5239  * This will reserve orgi_bytes number of bytes from the space info associated
5240  * with the block_rsv.  If there is not enough space it will make an attempt to
5241  * flush out space to make room.  It will do this by flushing delalloc if
5242  * possible or committing the transaction.  If flush is 0 then no attempts to
5243  * regain reservations will be made and this will fail if there is not enough
5244  * space already.
5245  */
5246 static int reserve_metadata_bytes(struct btrfs_root *root,
5247 				  struct btrfs_block_rsv *block_rsv,
5248 				  u64 orig_bytes,
5249 				  enum btrfs_reserve_flush_enum flush)
5250 {
5251 	int ret;
5252 
5253 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5254 				       flush);
5255 	if (ret == -ENOSPC &&
5256 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5257 		struct btrfs_block_rsv *global_rsv =
5258 			&root->fs_info->global_block_rsv;
5259 
5260 		if (block_rsv != global_rsv &&
5261 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5262 			ret = 0;
5263 	}
5264 	if (ret == -ENOSPC)
5265 		trace_btrfs_space_reservation(root->fs_info,
5266 					      "space_info:enospc",
5267 					      block_rsv->space_info->flags,
5268 					      orig_bytes, 1);
5269 	return ret;
5270 }
5271 
5272 static struct btrfs_block_rsv *get_block_rsv(
5273 					const struct btrfs_trans_handle *trans,
5274 					const struct btrfs_root *root)
5275 {
5276 	struct btrfs_block_rsv *block_rsv = NULL;
5277 
5278 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5279 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5280 	     (root == root->fs_info->uuid_root))
5281 		block_rsv = trans->block_rsv;
5282 
5283 	if (!block_rsv)
5284 		block_rsv = root->block_rsv;
5285 
5286 	if (!block_rsv)
5287 		block_rsv = &root->fs_info->empty_block_rsv;
5288 
5289 	return block_rsv;
5290 }
5291 
5292 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5293 			       u64 num_bytes)
5294 {
5295 	int ret = -ENOSPC;
5296 	spin_lock(&block_rsv->lock);
5297 	if (block_rsv->reserved >= num_bytes) {
5298 		block_rsv->reserved -= num_bytes;
5299 		if (block_rsv->reserved < block_rsv->size)
5300 			block_rsv->full = 0;
5301 		ret = 0;
5302 	}
5303 	spin_unlock(&block_rsv->lock);
5304 	return ret;
5305 }
5306 
5307 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5308 				u64 num_bytes, int update_size)
5309 {
5310 	spin_lock(&block_rsv->lock);
5311 	block_rsv->reserved += num_bytes;
5312 	if (update_size)
5313 		block_rsv->size += num_bytes;
5314 	else if (block_rsv->reserved >= block_rsv->size)
5315 		block_rsv->full = 1;
5316 	spin_unlock(&block_rsv->lock);
5317 }
5318 
5319 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5320 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5321 			     int min_factor)
5322 {
5323 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5324 	u64 min_bytes;
5325 
5326 	if (global_rsv->space_info != dest->space_info)
5327 		return -ENOSPC;
5328 
5329 	spin_lock(&global_rsv->lock);
5330 	min_bytes = div_factor(global_rsv->size, min_factor);
5331 	if (global_rsv->reserved < min_bytes + num_bytes) {
5332 		spin_unlock(&global_rsv->lock);
5333 		return -ENOSPC;
5334 	}
5335 	global_rsv->reserved -= num_bytes;
5336 	if (global_rsv->reserved < global_rsv->size)
5337 		global_rsv->full = 0;
5338 	spin_unlock(&global_rsv->lock);
5339 
5340 	block_rsv_add_bytes(dest, num_bytes, 1);
5341 	return 0;
5342 }
5343 
5344 /*
5345  * This is for space we already have accounted in space_info->bytes_may_use, so
5346  * basically when we're returning space from block_rsv's.
5347  */
5348 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5349 				     struct btrfs_space_info *space_info,
5350 				     u64 num_bytes)
5351 {
5352 	struct reserve_ticket *ticket;
5353 	struct list_head *head;
5354 	u64 used;
5355 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5356 	bool check_overcommit = false;
5357 
5358 	spin_lock(&space_info->lock);
5359 	head = &space_info->priority_tickets;
5360 
5361 	/*
5362 	 * If we are over our limit then we need to check and see if we can
5363 	 * overcommit, and if we can't then we just need to free up our space
5364 	 * and not satisfy any requests.
5365 	 */
5366 	used = space_info->bytes_used + space_info->bytes_reserved +
5367 		space_info->bytes_pinned + space_info->bytes_readonly +
5368 		space_info->bytes_may_use;
5369 	if (used - num_bytes >= space_info->total_bytes)
5370 		check_overcommit = true;
5371 again:
5372 	while (!list_empty(head) && num_bytes) {
5373 		ticket = list_first_entry(head, struct reserve_ticket,
5374 					  list);
5375 		/*
5376 		 * We use 0 bytes because this space is already reserved, so
5377 		 * adding the ticket space would be a double count.
5378 		 */
5379 		if (check_overcommit &&
5380 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5381 				    flush))
5382 			break;
5383 		if (num_bytes >= ticket->bytes) {
5384 			list_del_init(&ticket->list);
5385 			num_bytes -= ticket->bytes;
5386 			ticket->bytes = 0;
5387 			wake_up(&ticket->wait);
5388 		} else {
5389 			ticket->bytes -= num_bytes;
5390 			num_bytes = 0;
5391 		}
5392 	}
5393 
5394 	if (num_bytes && head == &space_info->priority_tickets) {
5395 		head = &space_info->tickets;
5396 		flush = BTRFS_RESERVE_FLUSH_ALL;
5397 		goto again;
5398 	}
5399 	space_info->bytes_may_use -= num_bytes;
5400 	trace_btrfs_space_reservation(fs_info, "space_info",
5401 				      space_info->flags, num_bytes, 0);
5402 	spin_unlock(&space_info->lock);
5403 }
5404 
5405 /*
5406  * This is for newly allocated space that isn't accounted in
5407  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5408  * we use this helper.
5409  */
5410 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5411 				     struct btrfs_space_info *space_info,
5412 				     u64 num_bytes)
5413 {
5414 	struct reserve_ticket *ticket;
5415 	struct list_head *head = &space_info->priority_tickets;
5416 
5417 again:
5418 	while (!list_empty(head) && num_bytes) {
5419 		ticket = list_first_entry(head, struct reserve_ticket,
5420 					  list);
5421 		if (num_bytes >= ticket->bytes) {
5422 			trace_btrfs_space_reservation(fs_info, "space_info",
5423 						      space_info->flags,
5424 						      ticket->bytes, 1);
5425 			list_del_init(&ticket->list);
5426 			num_bytes -= ticket->bytes;
5427 			space_info->bytes_may_use += ticket->bytes;
5428 			ticket->bytes = 0;
5429 			wake_up(&ticket->wait);
5430 		} else {
5431 			trace_btrfs_space_reservation(fs_info, "space_info",
5432 						      space_info->flags,
5433 						      num_bytes, 1);
5434 			space_info->bytes_may_use += num_bytes;
5435 			ticket->bytes -= num_bytes;
5436 			num_bytes = 0;
5437 		}
5438 	}
5439 
5440 	if (num_bytes && head == &space_info->priority_tickets) {
5441 		head = &space_info->tickets;
5442 		goto again;
5443 	}
5444 }
5445 
5446 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5447 				    struct btrfs_block_rsv *block_rsv,
5448 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5449 {
5450 	struct btrfs_space_info *space_info = block_rsv->space_info;
5451 
5452 	spin_lock(&block_rsv->lock);
5453 	if (num_bytes == (u64)-1)
5454 		num_bytes = block_rsv->size;
5455 	block_rsv->size -= num_bytes;
5456 	if (block_rsv->reserved >= block_rsv->size) {
5457 		num_bytes = block_rsv->reserved - block_rsv->size;
5458 		block_rsv->reserved = block_rsv->size;
5459 		block_rsv->full = 1;
5460 	} else {
5461 		num_bytes = 0;
5462 	}
5463 	spin_unlock(&block_rsv->lock);
5464 
5465 	if (num_bytes > 0) {
5466 		if (dest) {
5467 			spin_lock(&dest->lock);
5468 			if (!dest->full) {
5469 				u64 bytes_to_add;
5470 
5471 				bytes_to_add = dest->size - dest->reserved;
5472 				bytes_to_add = min(num_bytes, bytes_to_add);
5473 				dest->reserved += bytes_to_add;
5474 				if (dest->reserved >= dest->size)
5475 					dest->full = 1;
5476 				num_bytes -= bytes_to_add;
5477 			}
5478 			spin_unlock(&dest->lock);
5479 		}
5480 		if (num_bytes)
5481 			space_info_add_old_bytes(fs_info, space_info,
5482 						 num_bytes);
5483 	}
5484 }
5485 
5486 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5487 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5488 			    int update_size)
5489 {
5490 	int ret;
5491 
5492 	ret = block_rsv_use_bytes(src, num_bytes);
5493 	if (ret)
5494 		return ret;
5495 
5496 	block_rsv_add_bytes(dst, num_bytes, update_size);
5497 	return 0;
5498 }
5499 
5500 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5501 {
5502 	memset(rsv, 0, sizeof(*rsv));
5503 	spin_lock_init(&rsv->lock);
5504 	rsv->type = type;
5505 }
5506 
5507 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5508 					      unsigned short type)
5509 {
5510 	struct btrfs_block_rsv *block_rsv;
5511 	struct btrfs_fs_info *fs_info = root->fs_info;
5512 
5513 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5514 	if (!block_rsv)
5515 		return NULL;
5516 
5517 	btrfs_init_block_rsv(block_rsv, type);
5518 	block_rsv->space_info = __find_space_info(fs_info,
5519 						  BTRFS_BLOCK_GROUP_METADATA);
5520 	return block_rsv;
5521 }
5522 
5523 void btrfs_free_block_rsv(struct btrfs_root *root,
5524 			  struct btrfs_block_rsv *rsv)
5525 {
5526 	if (!rsv)
5527 		return;
5528 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5529 	kfree(rsv);
5530 }
5531 
5532 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5533 {
5534 	kfree(rsv);
5535 }
5536 
5537 int btrfs_block_rsv_add(struct btrfs_root *root,
5538 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5539 			enum btrfs_reserve_flush_enum flush)
5540 {
5541 	int ret;
5542 
5543 	if (num_bytes == 0)
5544 		return 0;
5545 
5546 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5547 	if (!ret) {
5548 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5549 		return 0;
5550 	}
5551 
5552 	return ret;
5553 }
5554 
5555 int btrfs_block_rsv_check(struct btrfs_root *root,
5556 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5557 {
5558 	u64 num_bytes = 0;
5559 	int ret = -ENOSPC;
5560 
5561 	if (!block_rsv)
5562 		return 0;
5563 
5564 	spin_lock(&block_rsv->lock);
5565 	num_bytes = div_factor(block_rsv->size, min_factor);
5566 	if (block_rsv->reserved >= num_bytes)
5567 		ret = 0;
5568 	spin_unlock(&block_rsv->lock);
5569 
5570 	return ret;
5571 }
5572 
5573 int btrfs_block_rsv_refill(struct btrfs_root *root,
5574 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5575 			   enum btrfs_reserve_flush_enum flush)
5576 {
5577 	u64 num_bytes = 0;
5578 	int ret = -ENOSPC;
5579 
5580 	if (!block_rsv)
5581 		return 0;
5582 
5583 	spin_lock(&block_rsv->lock);
5584 	num_bytes = min_reserved;
5585 	if (block_rsv->reserved >= num_bytes)
5586 		ret = 0;
5587 	else
5588 		num_bytes -= block_rsv->reserved;
5589 	spin_unlock(&block_rsv->lock);
5590 
5591 	if (!ret)
5592 		return 0;
5593 
5594 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5595 	if (!ret) {
5596 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5597 		return 0;
5598 	}
5599 
5600 	return ret;
5601 }
5602 
5603 void btrfs_block_rsv_release(struct btrfs_root *root,
5604 			     struct btrfs_block_rsv *block_rsv,
5605 			     u64 num_bytes)
5606 {
5607 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5608 	if (global_rsv == block_rsv ||
5609 	    block_rsv->space_info != global_rsv->space_info)
5610 		global_rsv = NULL;
5611 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5612 				num_bytes);
5613 }
5614 
5615 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5616 {
5617 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5618 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5619 	u64 num_bytes;
5620 
5621 	/*
5622 	 * The global block rsv is based on the size of the extent tree, the
5623 	 * checksum tree and the root tree.  If the fs is empty we want to set
5624 	 * it to a minimal amount for safety.
5625 	 */
5626 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5627 		btrfs_root_used(&fs_info->csum_root->root_item) +
5628 		btrfs_root_used(&fs_info->tree_root->root_item);
5629 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5630 
5631 	spin_lock(&sinfo->lock);
5632 	spin_lock(&block_rsv->lock);
5633 
5634 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5635 
5636 	if (block_rsv->reserved < block_rsv->size) {
5637 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5638 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5639 			sinfo->bytes_may_use;
5640 		if (sinfo->total_bytes > num_bytes) {
5641 			num_bytes = sinfo->total_bytes - num_bytes;
5642 			num_bytes = min(num_bytes,
5643 					block_rsv->size - block_rsv->reserved);
5644 			block_rsv->reserved += num_bytes;
5645 			sinfo->bytes_may_use += num_bytes;
5646 			trace_btrfs_space_reservation(fs_info, "space_info",
5647 						      sinfo->flags, num_bytes,
5648 						      1);
5649 		}
5650 	} else if (block_rsv->reserved > block_rsv->size) {
5651 		num_bytes = block_rsv->reserved - block_rsv->size;
5652 		sinfo->bytes_may_use -= num_bytes;
5653 		trace_btrfs_space_reservation(fs_info, "space_info",
5654 				      sinfo->flags, num_bytes, 0);
5655 		block_rsv->reserved = block_rsv->size;
5656 	}
5657 
5658 	if (block_rsv->reserved == block_rsv->size)
5659 		block_rsv->full = 1;
5660 	else
5661 		block_rsv->full = 0;
5662 
5663 	spin_unlock(&block_rsv->lock);
5664 	spin_unlock(&sinfo->lock);
5665 }
5666 
5667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5668 {
5669 	struct btrfs_space_info *space_info;
5670 
5671 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5672 	fs_info->chunk_block_rsv.space_info = space_info;
5673 
5674 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5675 	fs_info->global_block_rsv.space_info = space_info;
5676 	fs_info->delalloc_block_rsv.space_info = space_info;
5677 	fs_info->trans_block_rsv.space_info = space_info;
5678 	fs_info->empty_block_rsv.space_info = space_info;
5679 	fs_info->delayed_block_rsv.space_info = space_info;
5680 
5681 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5682 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5683 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5684 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5685 	if (fs_info->quota_root)
5686 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5687 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5688 
5689 	update_global_block_rsv(fs_info);
5690 }
5691 
5692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5693 {
5694 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5695 				(u64)-1);
5696 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5697 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5698 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5699 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5700 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5701 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5702 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5703 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5704 }
5705 
5706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5707 				  struct btrfs_root *root)
5708 {
5709 	if (!trans->block_rsv)
5710 		return;
5711 
5712 	if (!trans->bytes_reserved)
5713 		return;
5714 
5715 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5716 				      trans->transid, trans->bytes_reserved, 0);
5717 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5718 	trans->bytes_reserved = 0;
5719 }
5720 
5721 /*
5722  * To be called after all the new block groups attached to the transaction
5723  * handle have been created (btrfs_create_pending_block_groups()).
5724  */
5725 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5726 {
5727 	struct btrfs_fs_info *fs_info = trans->fs_info;
5728 
5729 	if (!trans->chunk_bytes_reserved)
5730 		return;
5731 
5732 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5733 
5734 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5735 				trans->chunk_bytes_reserved);
5736 	trans->chunk_bytes_reserved = 0;
5737 }
5738 
5739 /* Can only return 0 or -ENOSPC */
5740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5741 				  struct inode *inode)
5742 {
5743 	struct btrfs_root *root = BTRFS_I(inode)->root;
5744 	/*
5745 	 * We always use trans->block_rsv here as we will have reserved space
5746 	 * for our orphan when starting the transaction, using get_block_rsv()
5747 	 * here will sometimes make us choose the wrong block rsv as we could be
5748 	 * doing a reloc inode for a non refcounted root.
5749 	 */
5750 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5751 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5752 
5753 	/*
5754 	 * We need to hold space in order to delete our orphan item once we've
5755 	 * added it, so this takes the reservation so we can release it later
5756 	 * when we are truly done with the orphan item.
5757 	 */
5758 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5759 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5760 				      btrfs_ino(inode), num_bytes, 1);
5761 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5762 }
5763 
5764 void btrfs_orphan_release_metadata(struct inode *inode)
5765 {
5766 	struct btrfs_root *root = BTRFS_I(inode)->root;
5767 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5768 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5769 				      btrfs_ino(inode), num_bytes, 0);
5770 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5771 }
5772 
5773 /*
5774  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5775  * root: the root of the parent directory
5776  * rsv: block reservation
5777  * items: the number of items that we need do reservation
5778  * qgroup_reserved: used to return the reserved size in qgroup
5779  *
5780  * This function is used to reserve the space for snapshot/subvolume
5781  * creation and deletion. Those operations are different with the
5782  * common file/directory operations, they change two fs/file trees
5783  * and root tree, the number of items that the qgroup reserves is
5784  * different with the free space reservation. So we can not use
5785  * the space reservation mechanism in start_transaction().
5786  */
5787 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5788 				     struct btrfs_block_rsv *rsv,
5789 				     int items,
5790 				     u64 *qgroup_reserved,
5791 				     bool use_global_rsv)
5792 {
5793 	u64 num_bytes;
5794 	int ret;
5795 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5796 
5797 	if (root->fs_info->quota_enabled) {
5798 		/* One for parent inode, two for dir entries */
5799 		num_bytes = 3 * root->nodesize;
5800 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5801 		if (ret)
5802 			return ret;
5803 	} else {
5804 		num_bytes = 0;
5805 	}
5806 
5807 	*qgroup_reserved = num_bytes;
5808 
5809 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5810 	rsv->space_info = __find_space_info(root->fs_info,
5811 					    BTRFS_BLOCK_GROUP_METADATA);
5812 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5813 				  BTRFS_RESERVE_FLUSH_ALL);
5814 
5815 	if (ret == -ENOSPC && use_global_rsv)
5816 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5817 
5818 	if (ret && *qgroup_reserved)
5819 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5820 
5821 	return ret;
5822 }
5823 
5824 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5825 				      struct btrfs_block_rsv *rsv,
5826 				      u64 qgroup_reserved)
5827 {
5828 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5829 }
5830 
5831 /**
5832  * drop_outstanding_extent - drop an outstanding extent
5833  * @inode: the inode we're dropping the extent for
5834  * @num_bytes: the number of bytes we're releasing.
5835  *
5836  * This is called when we are freeing up an outstanding extent, either called
5837  * after an error or after an extent is written.  This will return the number of
5838  * reserved extents that need to be freed.  This must be called with
5839  * BTRFS_I(inode)->lock held.
5840  */
5841 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5842 {
5843 	unsigned drop_inode_space = 0;
5844 	unsigned dropped_extents = 0;
5845 	unsigned num_extents = 0;
5846 
5847 	num_extents = (unsigned)div64_u64(num_bytes +
5848 					  BTRFS_MAX_EXTENT_SIZE - 1,
5849 					  BTRFS_MAX_EXTENT_SIZE);
5850 	ASSERT(num_extents);
5851 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5852 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5853 
5854 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5855 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5856 			       &BTRFS_I(inode)->runtime_flags))
5857 		drop_inode_space = 1;
5858 
5859 	/*
5860 	 * If we have more or the same amount of outstanding extents than we have
5861 	 * reserved then we need to leave the reserved extents count alone.
5862 	 */
5863 	if (BTRFS_I(inode)->outstanding_extents >=
5864 	    BTRFS_I(inode)->reserved_extents)
5865 		return drop_inode_space;
5866 
5867 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5868 		BTRFS_I(inode)->outstanding_extents;
5869 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5870 	return dropped_extents + drop_inode_space;
5871 }
5872 
5873 /**
5874  * calc_csum_metadata_size - return the amount of metadata space that must be
5875  *	reserved/freed for the given bytes.
5876  * @inode: the inode we're manipulating
5877  * @num_bytes: the number of bytes in question
5878  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5879  *
5880  * This adjusts the number of csum_bytes in the inode and then returns the
5881  * correct amount of metadata that must either be reserved or freed.  We
5882  * calculate how many checksums we can fit into one leaf and then divide the
5883  * number of bytes that will need to be checksumed by this value to figure out
5884  * how many checksums will be required.  If we are adding bytes then the number
5885  * may go up and we will return the number of additional bytes that must be
5886  * reserved.  If it is going down we will return the number of bytes that must
5887  * be freed.
5888  *
5889  * This must be called with BTRFS_I(inode)->lock held.
5890  */
5891 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5892 				   int reserve)
5893 {
5894 	struct btrfs_root *root = BTRFS_I(inode)->root;
5895 	u64 old_csums, num_csums;
5896 
5897 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5898 	    BTRFS_I(inode)->csum_bytes == 0)
5899 		return 0;
5900 
5901 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5902 	if (reserve)
5903 		BTRFS_I(inode)->csum_bytes += num_bytes;
5904 	else
5905 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5906 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5907 
5908 	/* No change, no need to reserve more */
5909 	if (old_csums == num_csums)
5910 		return 0;
5911 
5912 	if (reserve)
5913 		return btrfs_calc_trans_metadata_size(root,
5914 						      num_csums - old_csums);
5915 
5916 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5917 }
5918 
5919 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5920 {
5921 	struct btrfs_root *root = BTRFS_I(inode)->root;
5922 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5923 	u64 to_reserve = 0;
5924 	u64 csum_bytes;
5925 	unsigned nr_extents = 0;
5926 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5927 	int ret = 0;
5928 	bool delalloc_lock = true;
5929 	u64 to_free = 0;
5930 	unsigned dropped;
5931 	bool release_extra = false;
5932 
5933 	/* If we are a free space inode we need to not flush since we will be in
5934 	 * the middle of a transaction commit.  We also don't need the delalloc
5935 	 * mutex since we won't race with anybody.  We need this mostly to make
5936 	 * lockdep shut its filthy mouth.
5937 	 *
5938 	 * If we have a transaction open (can happen if we call truncate_block
5939 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5940 	 */
5941 	if (btrfs_is_free_space_inode(inode)) {
5942 		flush = BTRFS_RESERVE_NO_FLUSH;
5943 		delalloc_lock = false;
5944 	} else if (current->journal_info) {
5945 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5946 	}
5947 
5948 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5949 	    btrfs_transaction_in_commit(root->fs_info))
5950 		schedule_timeout(1);
5951 
5952 	if (delalloc_lock)
5953 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5954 
5955 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5956 
5957 	spin_lock(&BTRFS_I(inode)->lock);
5958 	nr_extents = (unsigned)div64_u64(num_bytes +
5959 					 BTRFS_MAX_EXTENT_SIZE - 1,
5960 					 BTRFS_MAX_EXTENT_SIZE);
5961 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5962 
5963 	nr_extents = 0;
5964 	if (BTRFS_I(inode)->outstanding_extents >
5965 	    BTRFS_I(inode)->reserved_extents)
5966 		nr_extents += BTRFS_I(inode)->outstanding_extents -
5967 			BTRFS_I(inode)->reserved_extents;
5968 
5969 	/* We always want to reserve a slot for updating the inode. */
5970 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5971 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5972 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5973 	spin_unlock(&BTRFS_I(inode)->lock);
5974 
5975 	if (root->fs_info->quota_enabled) {
5976 		ret = btrfs_qgroup_reserve_meta(root,
5977 				nr_extents * root->nodesize);
5978 		if (ret)
5979 			goto out_fail;
5980 	}
5981 
5982 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5983 	if (unlikely(ret)) {
5984 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5985 		goto out_fail;
5986 	}
5987 
5988 	spin_lock(&BTRFS_I(inode)->lock);
5989 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5990 			     &BTRFS_I(inode)->runtime_flags)) {
5991 		to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5992 		release_extra = true;
5993 	}
5994 	BTRFS_I(inode)->reserved_extents += nr_extents;
5995 	spin_unlock(&BTRFS_I(inode)->lock);
5996 
5997 	if (delalloc_lock)
5998 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5999 
6000 	if (to_reserve)
6001 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6002 					      btrfs_ino(inode), to_reserve, 1);
6003 	if (release_extra)
6004 		btrfs_block_rsv_release(root, block_rsv,
6005 					btrfs_calc_trans_metadata_size(root,
6006 								       1));
6007 	return 0;
6008 
6009 out_fail:
6010 	spin_lock(&BTRFS_I(inode)->lock);
6011 	dropped = drop_outstanding_extent(inode, num_bytes);
6012 	/*
6013 	 * If the inodes csum_bytes is the same as the original
6014 	 * csum_bytes then we know we haven't raced with any free()ers
6015 	 * so we can just reduce our inodes csum bytes and carry on.
6016 	 */
6017 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6018 		calc_csum_metadata_size(inode, num_bytes, 0);
6019 	} else {
6020 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6021 		u64 bytes;
6022 
6023 		/*
6024 		 * This is tricky, but first we need to figure out how much we
6025 		 * freed from any free-ers that occurred during this
6026 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6027 		 * before we dropped our lock, and then call the free for the
6028 		 * number of bytes that were freed while we were trying our
6029 		 * reservation.
6030 		 */
6031 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6032 		BTRFS_I(inode)->csum_bytes = csum_bytes;
6033 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6034 
6035 
6036 		/*
6037 		 * Now we need to see how much we would have freed had we not
6038 		 * been making this reservation and our ->csum_bytes were not
6039 		 * artificially inflated.
6040 		 */
6041 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6042 		bytes = csum_bytes - orig_csum_bytes;
6043 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6044 
6045 		/*
6046 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6047 		 * more than to_free then we would have freed more space had we
6048 		 * not had an artificially high ->csum_bytes, so we need to free
6049 		 * the remainder.  If bytes is the same or less then we don't
6050 		 * need to do anything, the other free-ers did the correct
6051 		 * thing.
6052 		 */
6053 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6054 		if (bytes > to_free)
6055 			to_free = bytes - to_free;
6056 		else
6057 			to_free = 0;
6058 	}
6059 	spin_unlock(&BTRFS_I(inode)->lock);
6060 	if (dropped)
6061 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6062 
6063 	if (to_free) {
6064 		btrfs_block_rsv_release(root, block_rsv, to_free);
6065 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6066 					      btrfs_ino(inode), to_free, 0);
6067 	}
6068 	if (delalloc_lock)
6069 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6070 	return ret;
6071 }
6072 
6073 /**
6074  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6075  * @inode: the inode to release the reservation for
6076  * @num_bytes: the number of bytes we're releasing
6077  *
6078  * This will release the metadata reservation for an inode.  This can be called
6079  * once we complete IO for a given set of bytes to release their metadata
6080  * reservations.
6081  */
6082 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6083 {
6084 	struct btrfs_root *root = BTRFS_I(inode)->root;
6085 	u64 to_free = 0;
6086 	unsigned dropped;
6087 
6088 	num_bytes = ALIGN(num_bytes, root->sectorsize);
6089 	spin_lock(&BTRFS_I(inode)->lock);
6090 	dropped = drop_outstanding_extent(inode, num_bytes);
6091 
6092 	if (num_bytes)
6093 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6094 	spin_unlock(&BTRFS_I(inode)->lock);
6095 	if (dropped > 0)
6096 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6097 
6098 	if (btrfs_is_testing(root->fs_info))
6099 		return;
6100 
6101 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
6102 				      btrfs_ino(inode), to_free, 0);
6103 
6104 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6105 				to_free);
6106 }
6107 
6108 /**
6109  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6110  * delalloc
6111  * @inode: inode we're writing to
6112  * @start: start range we are writing to
6113  * @len: how long the range we are writing to
6114  *
6115  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6116  *
6117  * This will do the following things
6118  *
6119  * o reserve space in data space info for num bytes
6120  *   and reserve precious corresponding qgroup space
6121  *   (Done in check_data_free_space)
6122  *
6123  * o reserve space for metadata space, based on the number of outstanding
6124  *   extents and how much csums will be needed
6125  *   also reserve metadata space in a per root over-reserve method.
6126  * o add to the inodes->delalloc_bytes
6127  * o add it to the fs_info's delalloc inodes list.
6128  *   (Above 3 all done in delalloc_reserve_metadata)
6129  *
6130  * Return 0 for success
6131  * Return <0 for error(-ENOSPC or -EQUOT)
6132  */
6133 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6134 {
6135 	int ret;
6136 
6137 	ret = btrfs_check_data_free_space(inode, start, len);
6138 	if (ret < 0)
6139 		return ret;
6140 	ret = btrfs_delalloc_reserve_metadata(inode, len);
6141 	if (ret < 0)
6142 		btrfs_free_reserved_data_space(inode, start, len);
6143 	return ret;
6144 }
6145 
6146 /**
6147  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6148  * @inode: inode we're releasing space for
6149  * @start: start position of the space already reserved
6150  * @len: the len of the space already reserved
6151  *
6152  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6153  * called in the case that we don't need the metadata AND data reservations
6154  * anymore.  So if there is an error or we insert an inline extent.
6155  *
6156  * This function will release the metadata space that was not used and will
6157  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6158  * list if there are no delalloc bytes left.
6159  * Also it will handle the qgroup reserved space.
6160  */
6161 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6162 {
6163 	btrfs_delalloc_release_metadata(inode, len);
6164 	btrfs_free_reserved_data_space(inode, start, len);
6165 }
6166 
6167 static int update_block_group(struct btrfs_trans_handle *trans,
6168 			      struct btrfs_root *root, u64 bytenr,
6169 			      u64 num_bytes, int alloc)
6170 {
6171 	struct btrfs_block_group_cache *cache = NULL;
6172 	struct btrfs_fs_info *info = root->fs_info;
6173 	u64 total = num_bytes;
6174 	u64 old_val;
6175 	u64 byte_in_group;
6176 	int factor;
6177 
6178 	/* block accounting for super block */
6179 	spin_lock(&info->delalloc_root_lock);
6180 	old_val = btrfs_super_bytes_used(info->super_copy);
6181 	if (alloc)
6182 		old_val += num_bytes;
6183 	else
6184 		old_val -= num_bytes;
6185 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6186 	spin_unlock(&info->delalloc_root_lock);
6187 
6188 	while (total) {
6189 		cache = btrfs_lookup_block_group(info, bytenr);
6190 		if (!cache)
6191 			return -ENOENT;
6192 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6193 				    BTRFS_BLOCK_GROUP_RAID1 |
6194 				    BTRFS_BLOCK_GROUP_RAID10))
6195 			factor = 2;
6196 		else
6197 			factor = 1;
6198 		/*
6199 		 * If this block group has free space cache written out, we
6200 		 * need to make sure to load it if we are removing space.  This
6201 		 * is because we need the unpinning stage to actually add the
6202 		 * space back to the block group, otherwise we will leak space.
6203 		 */
6204 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6205 			cache_block_group(cache, 1);
6206 
6207 		byte_in_group = bytenr - cache->key.objectid;
6208 		WARN_ON(byte_in_group > cache->key.offset);
6209 
6210 		spin_lock(&cache->space_info->lock);
6211 		spin_lock(&cache->lock);
6212 
6213 		if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6214 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6215 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6216 
6217 		old_val = btrfs_block_group_used(&cache->item);
6218 		num_bytes = min(total, cache->key.offset - byte_in_group);
6219 		if (alloc) {
6220 			old_val += num_bytes;
6221 			btrfs_set_block_group_used(&cache->item, old_val);
6222 			cache->reserved -= num_bytes;
6223 			cache->space_info->bytes_reserved -= num_bytes;
6224 			cache->space_info->bytes_used += num_bytes;
6225 			cache->space_info->disk_used += num_bytes * factor;
6226 			spin_unlock(&cache->lock);
6227 			spin_unlock(&cache->space_info->lock);
6228 		} else {
6229 			old_val -= num_bytes;
6230 			btrfs_set_block_group_used(&cache->item, old_val);
6231 			cache->pinned += num_bytes;
6232 			cache->space_info->bytes_pinned += num_bytes;
6233 			cache->space_info->bytes_used -= num_bytes;
6234 			cache->space_info->disk_used -= num_bytes * factor;
6235 			spin_unlock(&cache->lock);
6236 			spin_unlock(&cache->space_info->lock);
6237 
6238 			trace_btrfs_space_reservation(root->fs_info, "pinned",
6239 						      cache->space_info->flags,
6240 						      num_bytes, 1);
6241 			set_extent_dirty(info->pinned_extents,
6242 					 bytenr, bytenr + num_bytes - 1,
6243 					 GFP_NOFS | __GFP_NOFAIL);
6244 		}
6245 
6246 		spin_lock(&trans->transaction->dirty_bgs_lock);
6247 		if (list_empty(&cache->dirty_list)) {
6248 			list_add_tail(&cache->dirty_list,
6249 				      &trans->transaction->dirty_bgs);
6250 				trans->transaction->num_dirty_bgs++;
6251 			btrfs_get_block_group(cache);
6252 		}
6253 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6254 
6255 		/*
6256 		 * No longer have used bytes in this block group, queue it for
6257 		 * deletion. We do this after adding the block group to the
6258 		 * dirty list to avoid races between cleaner kthread and space
6259 		 * cache writeout.
6260 		 */
6261 		if (!alloc && old_val == 0) {
6262 			spin_lock(&info->unused_bgs_lock);
6263 			if (list_empty(&cache->bg_list)) {
6264 				btrfs_get_block_group(cache);
6265 				list_add_tail(&cache->bg_list,
6266 					      &info->unused_bgs);
6267 			}
6268 			spin_unlock(&info->unused_bgs_lock);
6269 		}
6270 
6271 		btrfs_put_block_group(cache);
6272 		total -= num_bytes;
6273 		bytenr += num_bytes;
6274 	}
6275 	return 0;
6276 }
6277 
6278 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6279 {
6280 	struct btrfs_block_group_cache *cache;
6281 	u64 bytenr;
6282 
6283 	spin_lock(&root->fs_info->block_group_cache_lock);
6284 	bytenr = root->fs_info->first_logical_byte;
6285 	spin_unlock(&root->fs_info->block_group_cache_lock);
6286 
6287 	if (bytenr < (u64)-1)
6288 		return bytenr;
6289 
6290 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6291 	if (!cache)
6292 		return 0;
6293 
6294 	bytenr = cache->key.objectid;
6295 	btrfs_put_block_group(cache);
6296 
6297 	return bytenr;
6298 }
6299 
6300 static int pin_down_extent(struct btrfs_root *root,
6301 			   struct btrfs_block_group_cache *cache,
6302 			   u64 bytenr, u64 num_bytes, int reserved)
6303 {
6304 	spin_lock(&cache->space_info->lock);
6305 	spin_lock(&cache->lock);
6306 	cache->pinned += num_bytes;
6307 	cache->space_info->bytes_pinned += num_bytes;
6308 	if (reserved) {
6309 		cache->reserved -= num_bytes;
6310 		cache->space_info->bytes_reserved -= num_bytes;
6311 	}
6312 	spin_unlock(&cache->lock);
6313 	spin_unlock(&cache->space_info->lock);
6314 
6315 	trace_btrfs_space_reservation(root->fs_info, "pinned",
6316 				      cache->space_info->flags, num_bytes, 1);
6317 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6318 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6319 	return 0;
6320 }
6321 
6322 /*
6323  * this function must be called within transaction
6324  */
6325 int btrfs_pin_extent(struct btrfs_root *root,
6326 		     u64 bytenr, u64 num_bytes, int reserved)
6327 {
6328 	struct btrfs_block_group_cache *cache;
6329 
6330 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6331 	BUG_ON(!cache); /* Logic error */
6332 
6333 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6334 
6335 	btrfs_put_block_group(cache);
6336 	return 0;
6337 }
6338 
6339 /*
6340  * this function must be called within transaction
6341  */
6342 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6343 				    u64 bytenr, u64 num_bytes)
6344 {
6345 	struct btrfs_block_group_cache *cache;
6346 	int ret;
6347 
6348 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6349 	if (!cache)
6350 		return -EINVAL;
6351 
6352 	/*
6353 	 * pull in the free space cache (if any) so that our pin
6354 	 * removes the free space from the cache.  We have load_only set
6355 	 * to one because the slow code to read in the free extents does check
6356 	 * the pinned extents.
6357 	 */
6358 	cache_block_group(cache, 1);
6359 
6360 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6361 
6362 	/* remove us from the free space cache (if we're there at all) */
6363 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6364 	btrfs_put_block_group(cache);
6365 	return ret;
6366 }
6367 
6368 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6369 {
6370 	int ret;
6371 	struct btrfs_block_group_cache *block_group;
6372 	struct btrfs_caching_control *caching_ctl;
6373 
6374 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6375 	if (!block_group)
6376 		return -EINVAL;
6377 
6378 	cache_block_group(block_group, 0);
6379 	caching_ctl = get_caching_control(block_group);
6380 
6381 	if (!caching_ctl) {
6382 		/* Logic error */
6383 		BUG_ON(!block_group_cache_done(block_group));
6384 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6385 	} else {
6386 		mutex_lock(&caching_ctl->mutex);
6387 
6388 		if (start >= caching_ctl->progress) {
6389 			ret = add_excluded_extent(root, start, num_bytes);
6390 		} else if (start + num_bytes <= caching_ctl->progress) {
6391 			ret = btrfs_remove_free_space(block_group,
6392 						      start, num_bytes);
6393 		} else {
6394 			num_bytes = caching_ctl->progress - start;
6395 			ret = btrfs_remove_free_space(block_group,
6396 						      start, num_bytes);
6397 			if (ret)
6398 				goto out_lock;
6399 
6400 			num_bytes = (start + num_bytes) -
6401 				caching_ctl->progress;
6402 			start = caching_ctl->progress;
6403 			ret = add_excluded_extent(root, start, num_bytes);
6404 		}
6405 out_lock:
6406 		mutex_unlock(&caching_ctl->mutex);
6407 		put_caching_control(caching_ctl);
6408 	}
6409 	btrfs_put_block_group(block_group);
6410 	return ret;
6411 }
6412 
6413 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6414 				 struct extent_buffer *eb)
6415 {
6416 	struct btrfs_file_extent_item *item;
6417 	struct btrfs_key key;
6418 	int found_type;
6419 	int i;
6420 
6421 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6422 		return 0;
6423 
6424 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6425 		btrfs_item_key_to_cpu(eb, &key, i);
6426 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6427 			continue;
6428 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6429 		found_type = btrfs_file_extent_type(eb, item);
6430 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6431 			continue;
6432 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6433 			continue;
6434 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6435 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6436 		__exclude_logged_extent(log, key.objectid, key.offset);
6437 	}
6438 
6439 	return 0;
6440 }
6441 
6442 static void
6443 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6444 {
6445 	atomic_inc(&bg->reservations);
6446 }
6447 
6448 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449 					const u64 start)
6450 {
6451 	struct btrfs_block_group_cache *bg;
6452 
6453 	bg = btrfs_lookup_block_group(fs_info, start);
6454 	ASSERT(bg);
6455 	if (atomic_dec_and_test(&bg->reservations))
6456 		wake_up_atomic_t(&bg->reservations);
6457 	btrfs_put_block_group(bg);
6458 }
6459 
6460 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6461 {
6462 	schedule();
6463 	return 0;
6464 }
6465 
6466 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6467 {
6468 	struct btrfs_space_info *space_info = bg->space_info;
6469 
6470 	ASSERT(bg->ro);
6471 
6472 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6473 		return;
6474 
6475 	/*
6476 	 * Our block group is read only but before we set it to read only,
6477 	 * some task might have had allocated an extent from it already, but it
6478 	 * has not yet created a respective ordered extent (and added it to a
6479 	 * root's list of ordered extents).
6480 	 * Therefore wait for any task currently allocating extents, since the
6481 	 * block group's reservations counter is incremented while a read lock
6482 	 * on the groups' semaphore is held and decremented after releasing
6483 	 * the read access on that semaphore and creating the ordered extent.
6484 	 */
6485 	down_write(&space_info->groups_sem);
6486 	up_write(&space_info->groups_sem);
6487 
6488 	wait_on_atomic_t(&bg->reservations,
6489 			 btrfs_wait_bg_reservations_atomic_t,
6490 			 TASK_UNINTERRUPTIBLE);
6491 }
6492 
6493 /**
6494  * btrfs_add_reserved_bytes - update the block_group and space info counters
6495  * @cache:	The cache we are manipulating
6496  * @ram_bytes:  The number of bytes of file content, and will be same to
6497  *              @num_bytes except for the compress path.
6498  * @num_bytes:	The number of bytes in question
6499  * @delalloc:   The blocks are allocated for the delalloc write
6500  *
6501  * This is called by the allocator when it reserves space. Metadata
6502  * reservations should be called with RESERVE_ALLOC so we do the proper
6503  * ENOSPC accounting.  For data we handle the reservation through clearing the
6504  * delalloc bits in the io_tree.  We have to do this since we could end up
6505  * allocating less disk space for the amount of data we have reserved in the
6506  * case of compression.
6507  *
6508  * If this is a reservation and the block group has become read only we cannot
6509  * make the reservation and return -EAGAIN, otherwise this function always
6510  * succeeds.
6511  */
6512 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6513 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6514 {
6515 	struct btrfs_space_info *space_info = cache->space_info;
6516 	int ret = 0;
6517 
6518 	spin_lock(&space_info->lock);
6519 	spin_lock(&cache->lock);
6520 	if (cache->ro) {
6521 		ret = -EAGAIN;
6522 	} else {
6523 		cache->reserved += num_bytes;
6524 		space_info->bytes_reserved += num_bytes;
6525 
6526 		trace_btrfs_space_reservation(cache->fs_info,
6527 				"space_info", space_info->flags,
6528 				ram_bytes, 0);
6529 		space_info->bytes_may_use -= ram_bytes;
6530 		if (delalloc)
6531 			cache->delalloc_bytes += num_bytes;
6532 	}
6533 	spin_unlock(&cache->lock);
6534 	spin_unlock(&space_info->lock);
6535 	return ret;
6536 }
6537 
6538 /**
6539  * btrfs_free_reserved_bytes - update the block_group and space info counters
6540  * @cache:      The cache we are manipulating
6541  * @num_bytes:  The number of bytes in question
6542  * @delalloc:   The blocks are allocated for the delalloc write
6543  *
6544  * This is called by somebody who is freeing space that was never actually used
6545  * on disk.  For example if you reserve some space for a new leaf in transaction
6546  * A and before transaction A commits you free that leaf, you call this with
6547  * reserve set to 0 in order to clear the reservation.
6548  */
6549 
6550 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6551 				     u64 num_bytes, int delalloc)
6552 {
6553 	struct btrfs_space_info *space_info = cache->space_info;
6554 	int ret = 0;
6555 
6556 	spin_lock(&space_info->lock);
6557 	spin_lock(&cache->lock);
6558 	if (cache->ro)
6559 		space_info->bytes_readonly += num_bytes;
6560 	cache->reserved -= num_bytes;
6561 	space_info->bytes_reserved -= num_bytes;
6562 
6563 	if (delalloc)
6564 		cache->delalloc_bytes -= num_bytes;
6565 	spin_unlock(&cache->lock);
6566 	spin_unlock(&space_info->lock);
6567 	return ret;
6568 }
6569 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6570 				struct btrfs_root *root)
6571 {
6572 	struct btrfs_fs_info *fs_info = root->fs_info;
6573 	struct btrfs_caching_control *next;
6574 	struct btrfs_caching_control *caching_ctl;
6575 	struct btrfs_block_group_cache *cache;
6576 
6577 	down_write(&fs_info->commit_root_sem);
6578 
6579 	list_for_each_entry_safe(caching_ctl, next,
6580 				 &fs_info->caching_block_groups, list) {
6581 		cache = caching_ctl->block_group;
6582 		if (block_group_cache_done(cache)) {
6583 			cache->last_byte_to_unpin = (u64)-1;
6584 			list_del_init(&caching_ctl->list);
6585 			put_caching_control(caching_ctl);
6586 		} else {
6587 			cache->last_byte_to_unpin = caching_ctl->progress;
6588 		}
6589 	}
6590 
6591 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6592 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6593 	else
6594 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6595 
6596 	up_write(&fs_info->commit_root_sem);
6597 
6598 	update_global_block_rsv(fs_info);
6599 }
6600 
6601 /*
6602  * Returns the free cluster for the given space info and sets empty_cluster to
6603  * what it should be based on the mount options.
6604  */
6605 static struct btrfs_free_cluster *
6606 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6607 		   u64 *empty_cluster)
6608 {
6609 	struct btrfs_free_cluster *ret = NULL;
6610 	bool ssd = btrfs_test_opt(root->fs_info, SSD);
6611 
6612 	*empty_cluster = 0;
6613 	if (btrfs_mixed_space_info(space_info))
6614 		return ret;
6615 
6616 	if (ssd)
6617 		*empty_cluster = SZ_2M;
6618 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6619 		ret = &root->fs_info->meta_alloc_cluster;
6620 		if (!ssd)
6621 			*empty_cluster = SZ_64K;
6622 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6623 		ret = &root->fs_info->data_alloc_cluster;
6624 	}
6625 
6626 	return ret;
6627 }
6628 
6629 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6630 			      const bool return_free_space)
6631 {
6632 	struct btrfs_fs_info *fs_info = root->fs_info;
6633 	struct btrfs_block_group_cache *cache = NULL;
6634 	struct btrfs_space_info *space_info;
6635 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6636 	struct btrfs_free_cluster *cluster = NULL;
6637 	u64 len;
6638 	u64 total_unpinned = 0;
6639 	u64 empty_cluster = 0;
6640 	bool readonly;
6641 
6642 	while (start <= end) {
6643 		readonly = false;
6644 		if (!cache ||
6645 		    start >= cache->key.objectid + cache->key.offset) {
6646 			if (cache)
6647 				btrfs_put_block_group(cache);
6648 			total_unpinned = 0;
6649 			cache = btrfs_lookup_block_group(fs_info, start);
6650 			BUG_ON(!cache); /* Logic error */
6651 
6652 			cluster = fetch_cluster_info(root,
6653 						     cache->space_info,
6654 						     &empty_cluster);
6655 			empty_cluster <<= 1;
6656 		}
6657 
6658 		len = cache->key.objectid + cache->key.offset - start;
6659 		len = min(len, end + 1 - start);
6660 
6661 		if (start < cache->last_byte_to_unpin) {
6662 			len = min(len, cache->last_byte_to_unpin - start);
6663 			if (return_free_space)
6664 				btrfs_add_free_space(cache, start, len);
6665 		}
6666 
6667 		start += len;
6668 		total_unpinned += len;
6669 		space_info = cache->space_info;
6670 
6671 		/*
6672 		 * If this space cluster has been marked as fragmented and we've
6673 		 * unpinned enough in this block group to potentially allow a
6674 		 * cluster to be created inside of it go ahead and clear the
6675 		 * fragmented check.
6676 		 */
6677 		if (cluster && cluster->fragmented &&
6678 		    total_unpinned > empty_cluster) {
6679 			spin_lock(&cluster->lock);
6680 			cluster->fragmented = 0;
6681 			spin_unlock(&cluster->lock);
6682 		}
6683 
6684 		spin_lock(&space_info->lock);
6685 		spin_lock(&cache->lock);
6686 		cache->pinned -= len;
6687 		space_info->bytes_pinned -= len;
6688 
6689 		trace_btrfs_space_reservation(fs_info, "pinned",
6690 					      space_info->flags, len, 0);
6691 		space_info->max_extent_size = 0;
6692 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6693 		if (cache->ro) {
6694 			space_info->bytes_readonly += len;
6695 			readonly = true;
6696 		}
6697 		spin_unlock(&cache->lock);
6698 		if (!readonly && return_free_space &&
6699 		    global_rsv->space_info == space_info) {
6700 			u64 to_add = len;
6701 			WARN_ON(!return_free_space);
6702 			spin_lock(&global_rsv->lock);
6703 			if (!global_rsv->full) {
6704 				to_add = min(len, global_rsv->size -
6705 					     global_rsv->reserved);
6706 				global_rsv->reserved += to_add;
6707 				space_info->bytes_may_use += to_add;
6708 				if (global_rsv->reserved >= global_rsv->size)
6709 					global_rsv->full = 1;
6710 				trace_btrfs_space_reservation(fs_info,
6711 							      "space_info",
6712 							      space_info->flags,
6713 							      to_add, 1);
6714 				len -= to_add;
6715 			}
6716 			spin_unlock(&global_rsv->lock);
6717 			/* Add to any tickets we may have */
6718 			if (len)
6719 				space_info_add_new_bytes(fs_info, space_info,
6720 							 len);
6721 		}
6722 		spin_unlock(&space_info->lock);
6723 	}
6724 
6725 	if (cache)
6726 		btrfs_put_block_group(cache);
6727 	return 0;
6728 }
6729 
6730 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6731 			       struct btrfs_root *root)
6732 {
6733 	struct btrfs_fs_info *fs_info = root->fs_info;
6734 	struct btrfs_block_group_cache *block_group, *tmp;
6735 	struct list_head *deleted_bgs;
6736 	struct extent_io_tree *unpin;
6737 	u64 start;
6738 	u64 end;
6739 	int ret;
6740 
6741 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6742 		unpin = &fs_info->freed_extents[1];
6743 	else
6744 		unpin = &fs_info->freed_extents[0];
6745 
6746 	while (!trans->aborted) {
6747 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6748 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6749 					    EXTENT_DIRTY, NULL);
6750 		if (ret) {
6751 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752 			break;
6753 		}
6754 
6755 		if (btrfs_test_opt(root->fs_info, DISCARD))
6756 			ret = btrfs_discard_extent(root, start,
6757 						   end + 1 - start, NULL);
6758 
6759 		clear_extent_dirty(unpin, start, end);
6760 		unpin_extent_range(root, start, end, true);
6761 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6762 		cond_resched();
6763 	}
6764 
6765 	/*
6766 	 * Transaction is finished.  We don't need the lock anymore.  We
6767 	 * do need to clean up the block groups in case of a transaction
6768 	 * abort.
6769 	 */
6770 	deleted_bgs = &trans->transaction->deleted_bgs;
6771 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6772 		u64 trimmed = 0;
6773 
6774 		ret = -EROFS;
6775 		if (!trans->aborted)
6776 			ret = btrfs_discard_extent(root,
6777 						   block_group->key.objectid,
6778 						   block_group->key.offset,
6779 						   &trimmed);
6780 
6781 		list_del_init(&block_group->bg_list);
6782 		btrfs_put_block_group_trimming(block_group);
6783 		btrfs_put_block_group(block_group);
6784 
6785 		if (ret) {
6786 			const char *errstr = btrfs_decode_error(ret);
6787 			btrfs_warn(fs_info,
6788 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6789 				   ret, errstr);
6790 		}
6791 	}
6792 
6793 	return 0;
6794 }
6795 
6796 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6797 			     u64 owner, u64 root_objectid)
6798 {
6799 	struct btrfs_space_info *space_info;
6800 	u64 flags;
6801 
6802 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6803 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6804 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6805 		else
6806 			flags = BTRFS_BLOCK_GROUP_METADATA;
6807 	} else {
6808 		flags = BTRFS_BLOCK_GROUP_DATA;
6809 	}
6810 
6811 	space_info = __find_space_info(fs_info, flags);
6812 	BUG_ON(!space_info); /* Logic bug */
6813 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6814 }
6815 
6816 
6817 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6818 				struct btrfs_root *root,
6819 				struct btrfs_delayed_ref_node *node, u64 parent,
6820 				u64 root_objectid, u64 owner_objectid,
6821 				u64 owner_offset, int refs_to_drop,
6822 				struct btrfs_delayed_extent_op *extent_op)
6823 {
6824 	struct btrfs_key key;
6825 	struct btrfs_path *path;
6826 	struct btrfs_fs_info *info = root->fs_info;
6827 	struct btrfs_root *extent_root = info->extent_root;
6828 	struct extent_buffer *leaf;
6829 	struct btrfs_extent_item *ei;
6830 	struct btrfs_extent_inline_ref *iref;
6831 	int ret;
6832 	int is_data;
6833 	int extent_slot = 0;
6834 	int found_extent = 0;
6835 	int num_to_del = 1;
6836 	u32 item_size;
6837 	u64 refs;
6838 	u64 bytenr = node->bytenr;
6839 	u64 num_bytes = node->num_bytes;
6840 	int last_ref = 0;
6841 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6842 						 SKINNY_METADATA);
6843 
6844 	path = btrfs_alloc_path();
6845 	if (!path)
6846 		return -ENOMEM;
6847 
6848 	path->reada = READA_FORWARD;
6849 	path->leave_spinning = 1;
6850 
6851 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6852 	BUG_ON(!is_data && refs_to_drop != 1);
6853 
6854 	if (is_data)
6855 		skinny_metadata = 0;
6856 
6857 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6858 				    bytenr, num_bytes, parent,
6859 				    root_objectid, owner_objectid,
6860 				    owner_offset);
6861 	if (ret == 0) {
6862 		extent_slot = path->slots[0];
6863 		while (extent_slot >= 0) {
6864 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6865 					      extent_slot);
6866 			if (key.objectid != bytenr)
6867 				break;
6868 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6869 			    key.offset == num_bytes) {
6870 				found_extent = 1;
6871 				break;
6872 			}
6873 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6874 			    key.offset == owner_objectid) {
6875 				found_extent = 1;
6876 				break;
6877 			}
6878 			if (path->slots[0] - extent_slot > 5)
6879 				break;
6880 			extent_slot--;
6881 		}
6882 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6883 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6884 		if (found_extent && item_size < sizeof(*ei))
6885 			found_extent = 0;
6886 #endif
6887 		if (!found_extent) {
6888 			BUG_ON(iref);
6889 			ret = remove_extent_backref(trans, extent_root, path,
6890 						    NULL, refs_to_drop,
6891 						    is_data, &last_ref);
6892 			if (ret) {
6893 				btrfs_abort_transaction(trans, ret);
6894 				goto out;
6895 			}
6896 			btrfs_release_path(path);
6897 			path->leave_spinning = 1;
6898 
6899 			key.objectid = bytenr;
6900 			key.type = BTRFS_EXTENT_ITEM_KEY;
6901 			key.offset = num_bytes;
6902 
6903 			if (!is_data && skinny_metadata) {
6904 				key.type = BTRFS_METADATA_ITEM_KEY;
6905 				key.offset = owner_objectid;
6906 			}
6907 
6908 			ret = btrfs_search_slot(trans, extent_root,
6909 						&key, path, -1, 1);
6910 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6911 				/*
6912 				 * Couldn't find our skinny metadata item,
6913 				 * see if we have ye olde extent item.
6914 				 */
6915 				path->slots[0]--;
6916 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6917 						      path->slots[0]);
6918 				if (key.objectid == bytenr &&
6919 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6920 				    key.offset == num_bytes)
6921 					ret = 0;
6922 			}
6923 
6924 			if (ret > 0 && skinny_metadata) {
6925 				skinny_metadata = false;
6926 				key.objectid = bytenr;
6927 				key.type = BTRFS_EXTENT_ITEM_KEY;
6928 				key.offset = num_bytes;
6929 				btrfs_release_path(path);
6930 				ret = btrfs_search_slot(trans, extent_root,
6931 							&key, path, -1, 1);
6932 			}
6933 
6934 			if (ret) {
6935 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6936 					ret, bytenr);
6937 				if (ret > 0)
6938 					btrfs_print_leaf(extent_root,
6939 							 path->nodes[0]);
6940 			}
6941 			if (ret < 0) {
6942 				btrfs_abort_transaction(trans, ret);
6943 				goto out;
6944 			}
6945 			extent_slot = path->slots[0];
6946 		}
6947 	} else if (WARN_ON(ret == -ENOENT)) {
6948 		btrfs_print_leaf(extent_root, path->nodes[0]);
6949 		btrfs_err(info,
6950 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6951 			bytenr, parent, root_objectid, owner_objectid,
6952 			owner_offset);
6953 		btrfs_abort_transaction(trans, ret);
6954 		goto out;
6955 	} else {
6956 		btrfs_abort_transaction(trans, ret);
6957 		goto out;
6958 	}
6959 
6960 	leaf = path->nodes[0];
6961 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6963 	if (item_size < sizeof(*ei)) {
6964 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6965 		ret = convert_extent_item_v0(trans, extent_root, path,
6966 					     owner_objectid, 0);
6967 		if (ret < 0) {
6968 			btrfs_abort_transaction(trans, ret);
6969 			goto out;
6970 		}
6971 
6972 		btrfs_release_path(path);
6973 		path->leave_spinning = 1;
6974 
6975 		key.objectid = bytenr;
6976 		key.type = BTRFS_EXTENT_ITEM_KEY;
6977 		key.offset = num_bytes;
6978 
6979 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6980 					-1, 1);
6981 		if (ret) {
6982 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6983 				ret, bytenr);
6984 			btrfs_print_leaf(extent_root, path->nodes[0]);
6985 		}
6986 		if (ret < 0) {
6987 			btrfs_abort_transaction(trans, ret);
6988 			goto out;
6989 		}
6990 
6991 		extent_slot = path->slots[0];
6992 		leaf = path->nodes[0];
6993 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 	}
6995 #endif
6996 	BUG_ON(item_size < sizeof(*ei));
6997 	ei = btrfs_item_ptr(leaf, extent_slot,
6998 			    struct btrfs_extent_item);
6999 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7000 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7001 		struct btrfs_tree_block_info *bi;
7002 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7003 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7004 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7005 	}
7006 
7007 	refs = btrfs_extent_refs(leaf, ei);
7008 	if (refs < refs_to_drop) {
7009 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7010 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
7011 		ret = -EINVAL;
7012 		btrfs_abort_transaction(trans, ret);
7013 		goto out;
7014 	}
7015 	refs -= refs_to_drop;
7016 
7017 	if (refs > 0) {
7018 		if (extent_op)
7019 			__run_delayed_extent_op(extent_op, leaf, ei);
7020 		/*
7021 		 * In the case of inline back ref, reference count will
7022 		 * be updated by remove_extent_backref
7023 		 */
7024 		if (iref) {
7025 			BUG_ON(!found_extent);
7026 		} else {
7027 			btrfs_set_extent_refs(leaf, ei, refs);
7028 			btrfs_mark_buffer_dirty(leaf);
7029 		}
7030 		if (found_extent) {
7031 			ret = remove_extent_backref(trans, extent_root, path,
7032 						    iref, refs_to_drop,
7033 						    is_data, &last_ref);
7034 			if (ret) {
7035 				btrfs_abort_transaction(trans, ret);
7036 				goto out;
7037 			}
7038 		}
7039 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7040 				 root_objectid);
7041 	} else {
7042 		if (found_extent) {
7043 			BUG_ON(is_data && refs_to_drop !=
7044 			       extent_data_ref_count(path, iref));
7045 			if (iref) {
7046 				BUG_ON(path->slots[0] != extent_slot);
7047 			} else {
7048 				BUG_ON(path->slots[0] != extent_slot + 1);
7049 				path->slots[0] = extent_slot;
7050 				num_to_del = 2;
7051 			}
7052 		}
7053 
7054 		last_ref = 1;
7055 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7056 				      num_to_del);
7057 		if (ret) {
7058 			btrfs_abort_transaction(trans, ret);
7059 			goto out;
7060 		}
7061 		btrfs_release_path(path);
7062 
7063 		if (is_data) {
7064 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7065 			if (ret) {
7066 				btrfs_abort_transaction(trans, ret);
7067 				goto out;
7068 			}
7069 		}
7070 
7071 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7072 					     num_bytes);
7073 		if (ret) {
7074 			btrfs_abort_transaction(trans, ret);
7075 			goto out;
7076 		}
7077 
7078 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7079 		if (ret) {
7080 			btrfs_abort_transaction(trans, ret);
7081 			goto out;
7082 		}
7083 	}
7084 	btrfs_release_path(path);
7085 
7086 out:
7087 	btrfs_free_path(path);
7088 	return ret;
7089 }
7090 
7091 /*
7092  * when we free an block, it is possible (and likely) that we free the last
7093  * delayed ref for that extent as well.  This searches the delayed ref tree for
7094  * a given extent, and if there are no other delayed refs to be processed, it
7095  * removes it from the tree.
7096  */
7097 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7098 				      struct btrfs_root *root, u64 bytenr)
7099 {
7100 	struct btrfs_delayed_ref_head *head;
7101 	struct btrfs_delayed_ref_root *delayed_refs;
7102 	int ret = 0;
7103 
7104 	delayed_refs = &trans->transaction->delayed_refs;
7105 	spin_lock(&delayed_refs->lock);
7106 	head = btrfs_find_delayed_ref_head(trans, bytenr);
7107 	if (!head)
7108 		goto out_delayed_unlock;
7109 
7110 	spin_lock(&head->lock);
7111 	if (!list_empty(&head->ref_list))
7112 		goto out;
7113 
7114 	if (head->extent_op) {
7115 		if (!head->must_insert_reserved)
7116 			goto out;
7117 		btrfs_free_delayed_extent_op(head->extent_op);
7118 		head->extent_op = NULL;
7119 	}
7120 
7121 	/*
7122 	 * waiting for the lock here would deadlock.  If someone else has it
7123 	 * locked they are already in the process of dropping it anyway
7124 	 */
7125 	if (!mutex_trylock(&head->mutex))
7126 		goto out;
7127 
7128 	/*
7129 	 * at this point we have a head with no other entries.  Go
7130 	 * ahead and process it.
7131 	 */
7132 	head->node.in_tree = 0;
7133 	rb_erase(&head->href_node, &delayed_refs->href_root);
7134 
7135 	atomic_dec(&delayed_refs->num_entries);
7136 
7137 	/*
7138 	 * we don't take a ref on the node because we're removing it from the
7139 	 * tree, so we just steal the ref the tree was holding.
7140 	 */
7141 	delayed_refs->num_heads--;
7142 	if (head->processing == 0)
7143 		delayed_refs->num_heads_ready--;
7144 	head->processing = 0;
7145 	spin_unlock(&head->lock);
7146 	spin_unlock(&delayed_refs->lock);
7147 
7148 	BUG_ON(head->extent_op);
7149 	if (head->must_insert_reserved)
7150 		ret = 1;
7151 
7152 	mutex_unlock(&head->mutex);
7153 	btrfs_put_delayed_ref(&head->node);
7154 	return ret;
7155 out:
7156 	spin_unlock(&head->lock);
7157 
7158 out_delayed_unlock:
7159 	spin_unlock(&delayed_refs->lock);
7160 	return 0;
7161 }
7162 
7163 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7164 			   struct btrfs_root *root,
7165 			   struct extent_buffer *buf,
7166 			   u64 parent, int last_ref)
7167 {
7168 	int pin = 1;
7169 	int ret;
7170 
7171 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7172 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7173 					buf->start, buf->len,
7174 					parent, root->root_key.objectid,
7175 					btrfs_header_level(buf),
7176 					BTRFS_DROP_DELAYED_REF, NULL);
7177 		BUG_ON(ret); /* -ENOMEM */
7178 	}
7179 
7180 	if (!last_ref)
7181 		return;
7182 
7183 	if (btrfs_header_generation(buf) == trans->transid) {
7184 		struct btrfs_block_group_cache *cache;
7185 
7186 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7187 			ret = check_ref_cleanup(trans, root, buf->start);
7188 			if (!ret)
7189 				goto out;
7190 		}
7191 
7192 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7193 
7194 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7195 			pin_down_extent(root, cache, buf->start, buf->len, 1);
7196 			btrfs_put_block_group(cache);
7197 			goto out;
7198 		}
7199 
7200 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7201 
7202 		btrfs_add_free_space(cache, buf->start, buf->len);
7203 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7204 		btrfs_put_block_group(cache);
7205 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7206 		pin = 0;
7207 	}
7208 out:
7209 	if (pin)
7210 		add_pinned_bytes(root->fs_info, buf->len,
7211 				 btrfs_header_level(buf),
7212 				 root->root_key.objectid);
7213 
7214 	/*
7215 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7216 	 * anymore.
7217 	 */
7218 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7219 }
7220 
7221 /* Can return -ENOMEM */
7222 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7223 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7224 		      u64 owner, u64 offset)
7225 {
7226 	int ret;
7227 	struct btrfs_fs_info *fs_info = root->fs_info;
7228 
7229 	if (btrfs_is_testing(fs_info))
7230 		return 0;
7231 
7232 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7233 
7234 	/*
7235 	 * tree log blocks never actually go into the extent allocation
7236 	 * tree, just update pinning info and exit early.
7237 	 */
7238 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7239 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7240 		/* unlocks the pinned mutex */
7241 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7242 		ret = 0;
7243 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7244 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7245 					num_bytes,
7246 					parent, root_objectid, (int)owner,
7247 					BTRFS_DROP_DELAYED_REF, NULL);
7248 	} else {
7249 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7250 						num_bytes,
7251 						parent, root_objectid, owner,
7252 						offset, 0,
7253 						BTRFS_DROP_DELAYED_REF, NULL);
7254 	}
7255 	return ret;
7256 }
7257 
7258 /*
7259  * when we wait for progress in the block group caching, its because
7260  * our allocation attempt failed at least once.  So, we must sleep
7261  * and let some progress happen before we try again.
7262  *
7263  * This function will sleep at least once waiting for new free space to
7264  * show up, and then it will check the block group free space numbers
7265  * for our min num_bytes.  Another option is to have it go ahead
7266  * and look in the rbtree for a free extent of a given size, but this
7267  * is a good start.
7268  *
7269  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7270  * any of the information in this block group.
7271  */
7272 static noinline void
7273 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7274 				u64 num_bytes)
7275 {
7276 	struct btrfs_caching_control *caching_ctl;
7277 
7278 	caching_ctl = get_caching_control(cache);
7279 	if (!caching_ctl)
7280 		return;
7281 
7282 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7283 		   (cache->free_space_ctl->free_space >= num_bytes));
7284 
7285 	put_caching_control(caching_ctl);
7286 }
7287 
7288 static noinline int
7289 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7290 {
7291 	struct btrfs_caching_control *caching_ctl;
7292 	int ret = 0;
7293 
7294 	caching_ctl = get_caching_control(cache);
7295 	if (!caching_ctl)
7296 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7297 
7298 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7299 	if (cache->cached == BTRFS_CACHE_ERROR)
7300 		ret = -EIO;
7301 	put_caching_control(caching_ctl);
7302 	return ret;
7303 }
7304 
7305 int __get_raid_index(u64 flags)
7306 {
7307 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7308 		return BTRFS_RAID_RAID10;
7309 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7310 		return BTRFS_RAID_RAID1;
7311 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7312 		return BTRFS_RAID_DUP;
7313 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7314 		return BTRFS_RAID_RAID0;
7315 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7316 		return BTRFS_RAID_RAID5;
7317 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7318 		return BTRFS_RAID_RAID6;
7319 
7320 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7321 }
7322 
7323 int get_block_group_index(struct btrfs_block_group_cache *cache)
7324 {
7325 	return __get_raid_index(cache->flags);
7326 }
7327 
7328 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7329 	[BTRFS_RAID_RAID10]	= "raid10",
7330 	[BTRFS_RAID_RAID1]	= "raid1",
7331 	[BTRFS_RAID_DUP]	= "dup",
7332 	[BTRFS_RAID_RAID0]	= "raid0",
7333 	[BTRFS_RAID_SINGLE]	= "single",
7334 	[BTRFS_RAID_RAID5]	= "raid5",
7335 	[BTRFS_RAID_RAID6]	= "raid6",
7336 };
7337 
7338 static const char *get_raid_name(enum btrfs_raid_types type)
7339 {
7340 	if (type >= BTRFS_NR_RAID_TYPES)
7341 		return NULL;
7342 
7343 	return btrfs_raid_type_names[type];
7344 }
7345 
7346 enum btrfs_loop_type {
7347 	LOOP_CACHING_NOWAIT = 0,
7348 	LOOP_CACHING_WAIT = 1,
7349 	LOOP_ALLOC_CHUNK = 2,
7350 	LOOP_NO_EMPTY_SIZE = 3,
7351 };
7352 
7353 static inline void
7354 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7355 		       int delalloc)
7356 {
7357 	if (delalloc)
7358 		down_read(&cache->data_rwsem);
7359 }
7360 
7361 static inline void
7362 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7363 		       int delalloc)
7364 {
7365 	btrfs_get_block_group(cache);
7366 	if (delalloc)
7367 		down_read(&cache->data_rwsem);
7368 }
7369 
7370 static struct btrfs_block_group_cache *
7371 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7372 		   struct btrfs_free_cluster *cluster,
7373 		   int delalloc)
7374 {
7375 	struct btrfs_block_group_cache *used_bg = NULL;
7376 
7377 	spin_lock(&cluster->refill_lock);
7378 	while (1) {
7379 		used_bg = cluster->block_group;
7380 		if (!used_bg)
7381 			return NULL;
7382 
7383 		if (used_bg == block_group)
7384 			return used_bg;
7385 
7386 		btrfs_get_block_group(used_bg);
7387 
7388 		if (!delalloc)
7389 			return used_bg;
7390 
7391 		if (down_read_trylock(&used_bg->data_rwsem))
7392 			return used_bg;
7393 
7394 		spin_unlock(&cluster->refill_lock);
7395 
7396 		down_read(&used_bg->data_rwsem);
7397 
7398 		spin_lock(&cluster->refill_lock);
7399 		if (used_bg == cluster->block_group)
7400 			return used_bg;
7401 
7402 		up_read(&used_bg->data_rwsem);
7403 		btrfs_put_block_group(used_bg);
7404 	}
7405 }
7406 
7407 static inline void
7408 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7409 			 int delalloc)
7410 {
7411 	if (delalloc)
7412 		up_read(&cache->data_rwsem);
7413 	btrfs_put_block_group(cache);
7414 }
7415 
7416 /*
7417  * walks the btree of allocated extents and find a hole of a given size.
7418  * The key ins is changed to record the hole:
7419  * ins->objectid == start position
7420  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7421  * ins->offset == the size of the hole.
7422  * Any available blocks before search_start are skipped.
7423  *
7424  * If there is no suitable free space, we will record the max size of
7425  * the free space extent currently.
7426  */
7427 static noinline int find_free_extent(struct btrfs_root *orig_root,
7428 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7429 				u64 hint_byte, struct btrfs_key *ins,
7430 				u64 flags, int delalloc)
7431 {
7432 	int ret = 0;
7433 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7434 	struct btrfs_free_cluster *last_ptr = NULL;
7435 	struct btrfs_block_group_cache *block_group = NULL;
7436 	u64 search_start = 0;
7437 	u64 max_extent_size = 0;
7438 	u64 empty_cluster = 0;
7439 	struct btrfs_space_info *space_info;
7440 	int loop = 0;
7441 	int index = __get_raid_index(flags);
7442 	bool failed_cluster_refill = false;
7443 	bool failed_alloc = false;
7444 	bool use_cluster = true;
7445 	bool have_caching_bg = false;
7446 	bool orig_have_caching_bg = false;
7447 	bool full_search = false;
7448 
7449 	WARN_ON(num_bytes < root->sectorsize);
7450 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7451 	ins->objectid = 0;
7452 	ins->offset = 0;
7453 
7454 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7455 
7456 	space_info = __find_space_info(root->fs_info, flags);
7457 	if (!space_info) {
7458 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7459 		return -ENOSPC;
7460 	}
7461 
7462 	/*
7463 	 * If our free space is heavily fragmented we may not be able to make
7464 	 * big contiguous allocations, so instead of doing the expensive search
7465 	 * for free space, simply return ENOSPC with our max_extent_size so we
7466 	 * can go ahead and search for a more manageable chunk.
7467 	 *
7468 	 * If our max_extent_size is large enough for our allocation simply
7469 	 * disable clustering since we will likely not be able to find enough
7470 	 * space to create a cluster and induce latency trying.
7471 	 */
7472 	if (unlikely(space_info->max_extent_size)) {
7473 		spin_lock(&space_info->lock);
7474 		if (space_info->max_extent_size &&
7475 		    num_bytes > space_info->max_extent_size) {
7476 			ins->offset = space_info->max_extent_size;
7477 			spin_unlock(&space_info->lock);
7478 			return -ENOSPC;
7479 		} else if (space_info->max_extent_size) {
7480 			use_cluster = false;
7481 		}
7482 		spin_unlock(&space_info->lock);
7483 	}
7484 
7485 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7486 	if (last_ptr) {
7487 		spin_lock(&last_ptr->lock);
7488 		if (last_ptr->block_group)
7489 			hint_byte = last_ptr->window_start;
7490 		if (last_ptr->fragmented) {
7491 			/*
7492 			 * We still set window_start so we can keep track of the
7493 			 * last place we found an allocation to try and save
7494 			 * some time.
7495 			 */
7496 			hint_byte = last_ptr->window_start;
7497 			use_cluster = false;
7498 		}
7499 		spin_unlock(&last_ptr->lock);
7500 	}
7501 
7502 	search_start = max(search_start, first_logical_byte(root, 0));
7503 	search_start = max(search_start, hint_byte);
7504 	if (search_start == hint_byte) {
7505 		block_group = btrfs_lookup_block_group(root->fs_info,
7506 						       search_start);
7507 		/*
7508 		 * we don't want to use the block group if it doesn't match our
7509 		 * allocation bits, or if its not cached.
7510 		 *
7511 		 * However if we are re-searching with an ideal block group
7512 		 * picked out then we don't care that the block group is cached.
7513 		 */
7514 		if (block_group && block_group_bits(block_group, flags) &&
7515 		    block_group->cached != BTRFS_CACHE_NO) {
7516 			down_read(&space_info->groups_sem);
7517 			if (list_empty(&block_group->list) ||
7518 			    block_group->ro) {
7519 				/*
7520 				 * someone is removing this block group,
7521 				 * we can't jump into the have_block_group
7522 				 * target because our list pointers are not
7523 				 * valid
7524 				 */
7525 				btrfs_put_block_group(block_group);
7526 				up_read(&space_info->groups_sem);
7527 			} else {
7528 				index = get_block_group_index(block_group);
7529 				btrfs_lock_block_group(block_group, delalloc);
7530 				goto have_block_group;
7531 			}
7532 		} else if (block_group) {
7533 			btrfs_put_block_group(block_group);
7534 		}
7535 	}
7536 search:
7537 	have_caching_bg = false;
7538 	if (index == 0 || index == __get_raid_index(flags))
7539 		full_search = true;
7540 	down_read(&space_info->groups_sem);
7541 	list_for_each_entry(block_group, &space_info->block_groups[index],
7542 			    list) {
7543 		u64 offset;
7544 		int cached;
7545 
7546 		btrfs_grab_block_group(block_group, delalloc);
7547 		search_start = block_group->key.objectid;
7548 
7549 		/*
7550 		 * this can happen if we end up cycling through all the
7551 		 * raid types, but we want to make sure we only allocate
7552 		 * for the proper type.
7553 		 */
7554 		if (!block_group_bits(block_group, flags)) {
7555 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7556 				BTRFS_BLOCK_GROUP_RAID1 |
7557 				BTRFS_BLOCK_GROUP_RAID5 |
7558 				BTRFS_BLOCK_GROUP_RAID6 |
7559 				BTRFS_BLOCK_GROUP_RAID10;
7560 
7561 			/*
7562 			 * if they asked for extra copies and this block group
7563 			 * doesn't provide them, bail.  This does allow us to
7564 			 * fill raid0 from raid1.
7565 			 */
7566 			if ((flags & extra) && !(block_group->flags & extra))
7567 				goto loop;
7568 		}
7569 
7570 have_block_group:
7571 		cached = block_group_cache_done(block_group);
7572 		if (unlikely(!cached)) {
7573 			have_caching_bg = true;
7574 			ret = cache_block_group(block_group, 0);
7575 			BUG_ON(ret < 0);
7576 			ret = 0;
7577 		}
7578 
7579 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7580 			goto loop;
7581 		if (unlikely(block_group->ro))
7582 			goto loop;
7583 
7584 		/*
7585 		 * Ok we want to try and use the cluster allocator, so
7586 		 * lets look there
7587 		 */
7588 		if (last_ptr && use_cluster) {
7589 			struct btrfs_block_group_cache *used_block_group;
7590 			unsigned long aligned_cluster;
7591 			/*
7592 			 * the refill lock keeps out other
7593 			 * people trying to start a new cluster
7594 			 */
7595 			used_block_group = btrfs_lock_cluster(block_group,
7596 							      last_ptr,
7597 							      delalloc);
7598 			if (!used_block_group)
7599 				goto refill_cluster;
7600 
7601 			if (used_block_group != block_group &&
7602 			    (used_block_group->ro ||
7603 			     !block_group_bits(used_block_group, flags)))
7604 				goto release_cluster;
7605 
7606 			offset = btrfs_alloc_from_cluster(used_block_group,
7607 						last_ptr,
7608 						num_bytes,
7609 						used_block_group->key.objectid,
7610 						&max_extent_size);
7611 			if (offset) {
7612 				/* we have a block, we're done */
7613 				spin_unlock(&last_ptr->refill_lock);
7614 				trace_btrfs_reserve_extent_cluster(root,
7615 						used_block_group,
7616 						search_start, num_bytes);
7617 				if (used_block_group != block_group) {
7618 					btrfs_release_block_group(block_group,
7619 								  delalloc);
7620 					block_group = used_block_group;
7621 				}
7622 				goto checks;
7623 			}
7624 
7625 			WARN_ON(last_ptr->block_group != used_block_group);
7626 release_cluster:
7627 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7628 			 * set up a new clusters, so lets just skip it
7629 			 * and let the allocator find whatever block
7630 			 * it can find.  If we reach this point, we
7631 			 * will have tried the cluster allocator
7632 			 * plenty of times and not have found
7633 			 * anything, so we are likely way too
7634 			 * fragmented for the clustering stuff to find
7635 			 * anything.
7636 			 *
7637 			 * However, if the cluster is taken from the
7638 			 * current block group, release the cluster
7639 			 * first, so that we stand a better chance of
7640 			 * succeeding in the unclustered
7641 			 * allocation.  */
7642 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7643 			    used_block_group != block_group) {
7644 				spin_unlock(&last_ptr->refill_lock);
7645 				btrfs_release_block_group(used_block_group,
7646 							  delalloc);
7647 				goto unclustered_alloc;
7648 			}
7649 
7650 			/*
7651 			 * this cluster didn't work out, free it and
7652 			 * start over
7653 			 */
7654 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7655 
7656 			if (used_block_group != block_group)
7657 				btrfs_release_block_group(used_block_group,
7658 							  delalloc);
7659 refill_cluster:
7660 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7661 				spin_unlock(&last_ptr->refill_lock);
7662 				goto unclustered_alloc;
7663 			}
7664 
7665 			aligned_cluster = max_t(unsigned long,
7666 						empty_cluster + empty_size,
7667 					      block_group->full_stripe_len);
7668 
7669 			/* allocate a cluster in this block group */
7670 			ret = btrfs_find_space_cluster(root, block_group,
7671 						       last_ptr, search_start,
7672 						       num_bytes,
7673 						       aligned_cluster);
7674 			if (ret == 0) {
7675 				/*
7676 				 * now pull our allocation out of this
7677 				 * cluster
7678 				 */
7679 				offset = btrfs_alloc_from_cluster(block_group,
7680 							last_ptr,
7681 							num_bytes,
7682 							search_start,
7683 							&max_extent_size);
7684 				if (offset) {
7685 					/* we found one, proceed */
7686 					spin_unlock(&last_ptr->refill_lock);
7687 					trace_btrfs_reserve_extent_cluster(root,
7688 						block_group, search_start,
7689 						num_bytes);
7690 					goto checks;
7691 				}
7692 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7693 				   && !failed_cluster_refill) {
7694 				spin_unlock(&last_ptr->refill_lock);
7695 
7696 				failed_cluster_refill = true;
7697 				wait_block_group_cache_progress(block_group,
7698 				       num_bytes + empty_cluster + empty_size);
7699 				goto have_block_group;
7700 			}
7701 
7702 			/*
7703 			 * at this point we either didn't find a cluster
7704 			 * or we weren't able to allocate a block from our
7705 			 * cluster.  Free the cluster we've been trying
7706 			 * to use, and go to the next block group
7707 			 */
7708 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7709 			spin_unlock(&last_ptr->refill_lock);
7710 			goto loop;
7711 		}
7712 
7713 unclustered_alloc:
7714 		/*
7715 		 * We are doing an unclustered alloc, set the fragmented flag so
7716 		 * we don't bother trying to setup a cluster again until we get
7717 		 * more space.
7718 		 */
7719 		if (unlikely(last_ptr)) {
7720 			spin_lock(&last_ptr->lock);
7721 			last_ptr->fragmented = 1;
7722 			spin_unlock(&last_ptr->lock);
7723 		}
7724 		spin_lock(&block_group->free_space_ctl->tree_lock);
7725 		if (cached &&
7726 		    block_group->free_space_ctl->free_space <
7727 		    num_bytes + empty_cluster + empty_size) {
7728 			if (block_group->free_space_ctl->free_space >
7729 			    max_extent_size)
7730 				max_extent_size =
7731 					block_group->free_space_ctl->free_space;
7732 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7733 			goto loop;
7734 		}
7735 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7736 
7737 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7738 						    num_bytes, empty_size,
7739 						    &max_extent_size);
7740 		/*
7741 		 * If we didn't find a chunk, and we haven't failed on this
7742 		 * block group before, and this block group is in the middle of
7743 		 * caching and we are ok with waiting, then go ahead and wait
7744 		 * for progress to be made, and set failed_alloc to true.
7745 		 *
7746 		 * If failed_alloc is true then we've already waited on this
7747 		 * block group once and should move on to the next block group.
7748 		 */
7749 		if (!offset && !failed_alloc && !cached &&
7750 		    loop > LOOP_CACHING_NOWAIT) {
7751 			wait_block_group_cache_progress(block_group,
7752 						num_bytes + empty_size);
7753 			failed_alloc = true;
7754 			goto have_block_group;
7755 		} else if (!offset) {
7756 			goto loop;
7757 		}
7758 checks:
7759 		search_start = ALIGN(offset, root->stripesize);
7760 
7761 		/* move on to the next group */
7762 		if (search_start + num_bytes >
7763 		    block_group->key.objectid + block_group->key.offset) {
7764 			btrfs_add_free_space(block_group, offset, num_bytes);
7765 			goto loop;
7766 		}
7767 
7768 		if (offset < search_start)
7769 			btrfs_add_free_space(block_group, offset,
7770 					     search_start - offset);
7771 		BUG_ON(offset > search_start);
7772 
7773 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7774 				num_bytes, delalloc);
7775 		if (ret == -EAGAIN) {
7776 			btrfs_add_free_space(block_group, offset, num_bytes);
7777 			goto loop;
7778 		}
7779 		btrfs_inc_block_group_reservations(block_group);
7780 
7781 		/* we are all good, lets return */
7782 		ins->objectid = search_start;
7783 		ins->offset = num_bytes;
7784 
7785 		trace_btrfs_reserve_extent(orig_root, block_group,
7786 					   search_start, num_bytes);
7787 		btrfs_release_block_group(block_group, delalloc);
7788 		break;
7789 loop:
7790 		failed_cluster_refill = false;
7791 		failed_alloc = false;
7792 		BUG_ON(index != get_block_group_index(block_group));
7793 		btrfs_release_block_group(block_group, delalloc);
7794 	}
7795 	up_read(&space_info->groups_sem);
7796 
7797 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7798 		&& !orig_have_caching_bg)
7799 		orig_have_caching_bg = true;
7800 
7801 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7802 		goto search;
7803 
7804 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7805 		goto search;
7806 
7807 	/*
7808 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7809 	 *			caching kthreads as we move along
7810 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7811 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7812 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7813 	 *			again
7814 	 */
7815 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7816 		index = 0;
7817 		if (loop == LOOP_CACHING_NOWAIT) {
7818 			/*
7819 			 * We want to skip the LOOP_CACHING_WAIT step if we
7820 			 * don't have any uncached bgs and we've already done a
7821 			 * full search through.
7822 			 */
7823 			if (orig_have_caching_bg || !full_search)
7824 				loop = LOOP_CACHING_WAIT;
7825 			else
7826 				loop = LOOP_ALLOC_CHUNK;
7827 		} else {
7828 			loop++;
7829 		}
7830 
7831 		if (loop == LOOP_ALLOC_CHUNK) {
7832 			struct btrfs_trans_handle *trans;
7833 			int exist = 0;
7834 
7835 			trans = current->journal_info;
7836 			if (trans)
7837 				exist = 1;
7838 			else
7839 				trans = btrfs_join_transaction(root);
7840 
7841 			if (IS_ERR(trans)) {
7842 				ret = PTR_ERR(trans);
7843 				goto out;
7844 			}
7845 
7846 			ret = do_chunk_alloc(trans, root, flags,
7847 					     CHUNK_ALLOC_FORCE);
7848 
7849 			/*
7850 			 * If we can't allocate a new chunk we've already looped
7851 			 * through at least once, move on to the NO_EMPTY_SIZE
7852 			 * case.
7853 			 */
7854 			if (ret == -ENOSPC)
7855 				loop = LOOP_NO_EMPTY_SIZE;
7856 
7857 			/*
7858 			 * Do not bail out on ENOSPC since we
7859 			 * can do more things.
7860 			 */
7861 			if (ret < 0 && ret != -ENOSPC)
7862 				btrfs_abort_transaction(trans, ret);
7863 			else
7864 				ret = 0;
7865 			if (!exist)
7866 				btrfs_end_transaction(trans, root);
7867 			if (ret)
7868 				goto out;
7869 		}
7870 
7871 		if (loop == LOOP_NO_EMPTY_SIZE) {
7872 			/*
7873 			 * Don't loop again if we already have no empty_size and
7874 			 * no empty_cluster.
7875 			 */
7876 			if (empty_size == 0 &&
7877 			    empty_cluster == 0) {
7878 				ret = -ENOSPC;
7879 				goto out;
7880 			}
7881 			empty_size = 0;
7882 			empty_cluster = 0;
7883 		}
7884 
7885 		goto search;
7886 	} else if (!ins->objectid) {
7887 		ret = -ENOSPC;
7888 	} else if (ins->objectid) {
7889 		if (!use_cluster && last_ptr) {
7890 			spin_lock(&last_ptr->lock);
7891 			last_ptr->window_start = ins->objectid;
7892 			spin_unlock(&last_ptr->lock);
7893 		}
7894 		ret = 0;
7895 	}
7896 out:
7897 	if (ret == -ENOSPC) {
7898 		spin_lock(&space_info->lock);
7899 		space_info->max_extent_size = max_extent_size;
7900 		spin_unlock(&space_info->lock);
7901 		ins->offset = max_extent_size;
7902 	}
7903 	return ret;
7904 }
7905 
7906 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7907 			    int dump_block_groups)
7908 {
7909 	struct btrfs_block_group_cache *cache;
7910 	int index = 0;
7911 
7912 	spin_lock(&info->lock);
7913 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7914 	       info->flags,
7915 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7916 	       info->bytes_reserved - info->bytes_readonly -
7917 	       info->bytes_may_use, (info->full) ? "" : "not ");
7918 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7919 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7920 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7921 	       info->bytes_reserved, info->bytes_may_use,
7922 	       info->bytes_readonly);
7923 	spin_unlock(&info->lock);
7924 
7925 	if (!dump_block_groups)
7926 		return;
7927 
7928 	down_read(&info->groups_sem);
7929 again:
7930 	list_for_each_entry(cache, &info->block_groups[index], list) {
7931 		spin_lock(&cache->lock);
7932 		printk(KERN_INFO "BTRFS: "
7933 			   "block group %llu has %llu bytes, "
7934 			   "%llu used %llu pinned %llu reserved %s\n",
7935 		       cache->key.objectid, cache->key.offset,
7936 		       btrfs_block_group_used(&cache->item), cache->pinned,
7937 		       cache->reserved, cache->ro ? "[readonly]" : "");
7938 		btrfs_dump_free_space(cache, bytes);
7939 		spin_unlock(&cache->lock);
7940 	}
7941 	if (++index < BTRFS_NR_RAID_TYPES)
7942 		goto again;
7943 	up_read(&info->groups_sem);
7944 }
7945 
7946 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7947 			 u64 num_bytes, u64 min_alloc_size,
7948 			 u64 empty_size, u64 hint_byte,
7949 			 struct btrfs_key *ins, int is_data, int delalloc)
7950 {
7951 	bool final_tried = num_bytes == min_alloc_size;
7952 	u64 flags;
7953 	int ret;
7954 
7955 	flags = btrfs_get_alloc_profile(root, is_data);
7956 again:
7957 	WARN_ON(num_bytes < root->sectorsize);
7958 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7959 			       hint_byte, ins, flags, delalloc);
7960 	if (!ret && !is_data) {
7961 		btrfs_dec_block_group_reservations(root->fs_info,
7962 						   ins->objectid);
7963 	} else if (ret == -ENOSPC) {
7964 		if (!final_tried && ins->offset) {
7965 			num_bytes = min(num_bytes >> 1, ins->offset);
7966 			num_bytes = round_down(num_bytes, root->sectorsize);
7967 			num_bytes = max(num_bytes, min_alloc_size);
7968 			ram_bytes = num_bytes;
7969 			if (num_bytes == min_alloc_size)
7970 				final_tried = true;
7971 			goto again;
7972 		} else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
7973 			struct btrfs_space_info *sinfo;
7974 
7975 			sinfo = __find_space_info(root->fs_info, flags);
7976 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7977 				flags, num_bytes);
7978 			if (sinfo)
7979 				dump_space_info(sinfo, num_bytes, 1);
7980 		}
7981 	}
7982 
7983 	return ret;
7984 }
7985 
7986 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7987 					u64 start, u64 len,
7988 					int pin, int delalloc)
7989 {
7990 	struct btrfs_block_group_cache *cache;
7991 	int ret = 0;
7992 
7993 	cache = btrfs_lookup_block_group(root->fs_info, start);
7994 	if (!cache) {
7995 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7996 			start);
7997 		return -ENOSPC;
7998 	}
7999 
8000 	if (pin)
8001 		pin_down_extent(root, cache, start, len, 1);
8002 	else {
8003 		if (btrfs_test_opt(root->fs_info, DISCARD))
8004 			ret = btrfs_discard_extent(root, start, len, NULL);
8005 		btrfs_add_free_space(cache, start, len);
8006 		btrfs_free_reserved_bytes(cache, len, delalloc);
8007 		trace_btrfs_reserved_extent_free(root, start, len);
8008 	}
8009 
8010 	btrfs_put_block_group(cache);
8011 	return ret;
8012 }
8013 
8014 int btrfs_free_reserved_extent(struct btrfs_root *root,
8015 			       u64 start, u64 len, int delalloc)
8016 {
8017 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8018 }
8019 
8020 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8021 				       u64 start, u64 len)
8022 {
8023 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8024 }
8025 
8026 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8027 				      struct btrfs_root *root,
8028 				      u64 parent, u64 root_objectid,
8029 				      u64 flags, u64 owner, u64 offset,
8030 				      struct btrfs_key *ins, int ref_mod)
8031 {
8032 	int ret;
8033 	struct btrfs_fs_info *fs_info = root->fs_info;
8034 	struct btrfs_extent_item *extent_item;
8035 	struct btrfs_extent_inline_ref *iref;
8036 	struct btrfs_path *path;
8037 	struct extent_buffer *leaf;
8038 	int type;
8039 	u32 size;
8040 
8041 	if (parent > 0)
8042 		type = BTRFS_SHARED_DATA_REF_KEY;
8043 	else
8044 		type = BTRFS_EXTENT_DATA_REF_KEY;
8045 
8046 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8047 
8048 	path = btrfs_alloc_path();
8049 	if (!path)
8050 		return -ENOMEM;
8051 
8052 	path->leave_spinning = 1;
8053 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8054 				      ins, size);
8055 	if (ret) {
8056 		btrfs_free_path(path);
8057 		return ret;
8058 	}
8059 
8060 	leaf = path->nodes[0];
8061 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8062 				     struct btrfs_extent_item);
8063 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8064 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8065 	btrfs_set_extent_flags(leaf, extent_item,
8066 			       flags | BTRFS_EXTENT_FLAG_DATA);
8067 
8068 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8069 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8070 	if (parent > 0) {
8071 		struct btrfs_shared_data_ref *ref;
8072 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8073 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8074 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8075 	} else {
8076 		struct btrfs_extent_data_ref *ref;
8077 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8078 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8079 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8080 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8081 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8082 	}
8083 
8084 	btrfs_mark_buffer_dirty(path->nodes[0]);
8085 	btrfs_free_path(path);
8086 
8087 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8088 					  ins->offset);
8089 	if (ret)
8090 		return ret;
8091 
8092 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8093 	if (ret) { /* -ENOENT, logic error */
8094 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8095 			ins->objectid, ins->offset);
8096 		BUG();
8097 	}
8098 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8099 	return ret;
8100 }
8101 
8102 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8103 				     struct btrfs_root *root,
8104 				     u64 parent, u64 root_objectid,
8105 				     u64 flags, struct btrfs_disk_key *key,
8106 				     int level, struct btrfs_key *ins)
8107 {
8108 	int ret;
8109 	struct btrfs_fs_info *fs_info = root->fs_info;
8110 	struct btrfs_extent_item *extent_item;
8111 	struct btrfs_tree_block_info *block_info;
8112 	struct btrfs_extent_inline_ref *iref;
8113 	struct btrfs_path *path;
8114 	struct extent_buffer *leaf;
8115 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8116 	u64 num_bytes = ins->offset;
8117 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8118 						 SKINNY_METADATA);
8119 
8120 	if (!skinny_metadata)
8121 		size += sizeof(*block_info);
8122 
8123 	path = btrfs_alloc_path();
8124 	if (!path) {
8125 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8126 						   root->nodesize);
8127 		return -ENOMEM;
8128 	}
8129 
8130 	path->leave_spinning = 1;
8131 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8132 				      ins, size);
8133 	if (ret) {
8134 		btrfs_free_path(path);
8135 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8136 						   root->nodesize);
8137 		return ret;
8138 	}
8139 
8140 	leaf = path->nodes[0];
8141 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8142 				     struct btrfs_extent_item);
8143 	btrfs_set_extent_refs(leaf, extent_item, 1);
8144 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8145 	btrfs_set_extent_flags(leaf, extent_item,
8146 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8147 
8148 	if (skinny_metadata) {
8149 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8150 		num_bytes = root->nodesize;
8151 	} else {
8152 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8153 		btrfs_set_tree_block_key(leaf, block_info, key);
8154 		btrfs_set_tree_block_level(leaf, block_info, level);
8155 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8156 	}
8157 
8158 	if (parent > 0) {
8159 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8160 		btrfs_set_extent_inline_ref_type(leaf, iref,
8161 						 BTRFS_SHARED_BLOCK_REF_KEY);
8162 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8163 	} else {
8164 		btrfs_set_extent_inline_ref_type(leaf, iref,
8165 						 BTRFS_TREE_BLOCK_REF_KEY);
8166 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8167 	}
8168 
8169 	btrfs_mark_buffer_dirty(leaf);
8170 	btrfs_free_path(path);
8171 
8172 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8173 					  num_bytes);
8174 	if (ret)
8175 		return ret;
8176 
8177 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8178 				 1);
8179 	if (ret) { /* -ENOENT, logic error */
8180 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8181 			ins->objectid, ins->offset);
8182 		BUG();
8183 	}
8184 
8185 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8186 	return ret;
8187 }
8188 
8189 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8190 				     struct btrfs_root *root,
8191 				     u64 root_objectid, u64 owner,
8192 				     u64 offset, u64 ram_bytes,
8193 				     struct btrfs_key *ins)
8194 {
8195 	int ret;
8196 
8197 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8198 
8199 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8200 					 ins->offset, 0,
8201 					 root_objectid, owner, offset,
8202 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8203 					 NULL);
8204 	return ret;
8205 }
8206 
8207 /*
8208  * this is used by the tree logging recovery code.  It records that
8209  * an extent has been allocated and makes sure to clear the free
8210  * space cache bits as well
8211  */
8212 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8213 				   struct btrfs_root *root,
8214 				   u64 root_objectid, u64 owner, u64 offset,
8215 				   struct btrfs_key *ins)
8216 {
8217 	int ret;
8218 	struct btrfs_block_group_cache *block_group;
8219 
8220 	/*
8221 	 * Mixed block groups will exclude before processing the log so we only
8222 	 * need to do the exclude dance if this fs isn't mixed.
8223 	 */
8224 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8225 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8226 		if (ret)
8227 			return ret;
8228 	}
8229 
8230 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8231 	if (!block_group)
8232 		return -EINVAL;
8233 
8234 	ret = btrfs_add_reserved_bytes(block_group, ins->offset,
8235 				       ins->offset, 0);
8236 	BUG_ON(ret); /* logic error */
8237 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8238 					 0, owner, offset, ins, 1);
8239 	btrfs_put_block_group(block_group);
8240 	return ret;
8241 }
8242 
8243 static struct extent_buffer *
8244 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8245 		      u64 bytenr, int level)
8246 {
8247 	struct extent_buffer *buf;
8248 
8249 	buf = btrfs_find_create_tree_block(root, bytenr);
8250 	if (IS_ERR(buf))
8251 		return buf;
8252 
8253 	btrfs_set_header_generation(buf, trans->transid);
8254 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8255 	btrfs_tree_lock(buf);
8256 	clean_tree_block(trans, root->fs_info, buf);
8257 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8258 
8259 	btrfs_set_lock_blocking(buf);
8260 	set_extent_buffer_uptodate(buf);
8261 
8262 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8263 		buf->log_index = root->log_transid % 2;
8264 		/*
8265 		 * we allow two log transactions at a time, use different
8266 		 * EXENT bit to differentiate dirty pages.
8267 		 */
8268 		if (buf->log_index == 0)
8269 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8270 					buf->start + buf->len - 1, GFP_NOFS);
8271 		else
8272 			set_extent_new(&root->dirty_log_pages, buf->start,
8273 					buf->start + buf->len - 1);
8274 	} else {
8275 		buf->log_index = -1;
8276 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8277 			 buf->start + buf->len - 1, GFP_NOFS);
8278 	}
8279 	trans->dirty = true;
8280 	/* this returns a buffer locked for blocking */
8281 	return buf;
8282 }
8283 
8284 static struct btrfs_block_rsv *
8285 use_block_rsv(struct btrfs_trans_handle *trans,
8286 	      struct btrfs_root *root, u32 blocksize)
8287 {
8288 	struct btrfs_block_rsv *block_rsv;
8289 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8290 	int ret;
8291 	bool global_updated = false;
8292 
8293 	block_rsv = get_block_rsv(trans, root);
8294 
8295 	if (unlikely(block_rsv->size == 0))
8296 		goto try_reserve;
8297 again:
8298 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8299 	if (!ret)
8300 		return block_rsv;
8301 
8302 	if (block_rsv->failfast)
8303 		return ERR_PTR(ret);
8304 
8305 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306 		global_updated = true;
8307 		update_global_block_rsv(root->fs_info);
8308 		goto again;
8309 	}
8310 
8311 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8312 		static DEFINE_RATELIMIT_STATE(_rs,
8313 				DEFAULT_RATELIMIT_INTERVAL * 10,
8314 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8315 		if (__ratelimit(&_rs))
8316 			WARN(1, KERN_DEBUG
8317 				"BTRFS: block rsv returned %d\n", ret);
8318 	}
8319 try_reserve:
8320 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321 				     BTRFS_RESERVE_NO_FLUSH);
8322 	if (!ret)
8323 		return block_rsv;
8324 	/*
8325 	 * If we couldn't reserve metadata bytes try and use some from
8326 	 * the global reserve if its space type is the same as the global
8327 	 * reservation.
8328 	 */
8329 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330 	    block_rsv->space_info == global_rsv->space_info) {
8331 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8332 		if (!ret)
8333 			return global_rsv;
8334 	}
8335 	return ERR_PTR(ret);
8336 }
8337 
8338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8340 {
8341 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8342 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8343 }
8344 
8345 /*
8346  * finds a free extent and does all the dirty work required for allocation
8347  * returns the tree buffer or an ERR_PTR on error.
8348  */
8349 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8350 					struct btrfs_root *root,
8351 					u64 parent, u64 root_objectid,
8352 					struct btrfs_disk_key *key, int level,
8353 					u64 hint, u64 empty_size)
8354 {
8355 	struct btrfs_key ins;
8356 	struct btrfs_block_rsv *block_rsv;
8357 	struct extent_buffer *buf;
8358 	struct btrfs_delayed_extent_op *extent_op;
8359 	u64 flags = 0;
8360 	int ret;
8361 	u32 blocksize = root->nodesize;
8362 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8363 						 SKINNY_METADATA);
8364 
8365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8366 	if (btrfs_is_testing(root->fs_info)) {
8367 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8368 					    level);
8369 		if (!IS_ERR(buf))
8370 			root->alloc_bytenr += blocksize;
8371 		return buf;
8372 	}
8373 #endif
8374 
8375 	block_rsv = use_block_rsv(trans, root, blocksize);
8376 	if (IS_ERR(block_rsv))
8377 		return ERR_CAST(block_rsv);
8378 
8379 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8380 				   empty_size, hint, &ins, 0, 0);
8381 	if (ret)
8382 		goto out_unuse;
8383 
8384 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8385 	if (IS_ERR(buf)) {
8386 		ret = PTR_ERR(buf);
8387 		goto out_free_reserved;
8388 	}
8389 
8390 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8391 		if (parent == 0)
8392 			parent = ins.objectid;
8393 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8394 	} else
8395 		BUG_ON(parent > 0);
8396 
8397 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8398 		extent_op = btrfs_alloc_delayed_extent_op();
8399 		if (!extent_op) {
8400 			ret = -ENOMEM;
8401 			goto out_free_buf;
8402 		}
8403 		if (key)
8404 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8405 		else
8406 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8407 		extent_op->flags_to_set = flags;
8408 		extent_op->update_key = skinny_metadata ? false : true;
8409 		extent_op->update_flags = true;
8410 		extent_op->is_data = false;
8411 		extent_op->level = level;
8412 
8413 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8414 						 ins.objectid, ins.offset,
8415 						 parent, root_objectid, level,
8416 						 BTRFS_ADD_DELAYED_EXTENT,
8417 						 extent_op);
8418 		if (ret)
8419 			goto out_free_delayed;
8420 	}
8421 	return buf;
8422 
8423 out_free_delayed:
8424 	btrfs_free_delayed_extent_op(extent_op);
8425 out_free_buf:
8426 	free_extent_buffer(buf);
8427 out_free_reserved:
8428 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8429 out_unuse:
8430 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8431 	return ERR_PTR(ret);
8432 }
8433 
8434 struct walk_control {
8435 	u64 refs[BTRFS_MAX_LEVEL];
8436 	u64 flags[BTRFS_MAX_LEVEL];
8437 	struct btrfs_key update_progress;
8438 	int stage;
8439 	int level;
8440 	int shared_level;
8441 	int update_ref;
8442 	int keep_locks;
8443 	int reada_slot;
8444 	int reada_count;
8445 	int for_reloc;
8446 };
8447 
8448 #define DROP_REFERENCE	1
8449 #define UPDATE_BACKREF	2
8450 
8451 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8452 				     struct btrfs_root *root,
8453 				     struct walk_control *wc,
8454 				     struct btrfs_path *path)
8455 {
8456 	u64 bytenr;
8457 	u64 generation;
8458 	u64 refs;
8459 	u64 flags;
8460 	u32 nritems;
8461 	u32 blocksize;
8462 	struct btrfs_key key;
8463 	struct extent_buffer *eb;
8464 	int ret;
8465 	int slot;
8466 	int nread = 0;
8467 
8468 	if (path->slots[wc->level] < wc->reada_slot) {
8469 		wc->reada_count = wc->reada_count * 2 / 3;
8470 		wc->reada_count = max(wc->reada_count, 2);
8471 	} else {
8472 		wc->reada_count = wc->reada_count * 3 / 2;
8473 		wc->reada_count = min_t(int, wc->reada_count,
8474 					BTRFS_NODEPTRS_PER_BLOCK(root));
8475 	}
8476 
8477 	eb = path->nodes[wc->level];
8478 	nritems = btrfs_header_nritems(eb);
8479 	blocksize = root->nodesize;
8480 
8481 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482 		if (nread >= wc->reada_count)
8483 			break;
8484 
8485 		cond_resched();
8486 		bytenr = btrfs_node_blockptr(eb, slot);
8487 		generation = btrfs_node_ptr_generation(eb, slot);
8488 
8489 		if (slot == path->slots[wc->level])
8490 			goto reada;
8491 
8492 		if (wc->stage == UPDATE_BACKREF &&
8493 		    generation <= root->root_key.offset)
8494 			continue;
8495 
8496 		/* We don't lock the tree block, it's OK to be racy here */
8497 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8498 					       wc->level - 1, 1, &refs,
8499 					       &flags);
8500 		/* We don't care about errors in readahead. */
8501 		if (ret < 0)
8502 			continue;
8503 		BUG_ON(refs == 0);
8504 
8505 		if (wc->stage == DROP_REFERENCE) {
8506 			if (refs == 1)
8507 				goto reada;
8508 
8509 			if (wc->level == 1 &&
8510 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511 				continue;
8512 			if (!wc->update_ref ||
8513 			    generation <= root->root_key.offset)
8514 				continue;
8515 			btrfs_node_key_to_cpu(eb, &key, slot);
8516 			ret = btrfs_comp_cpu_keys(&key,
8517 						  &wc->update_progress);
8518 			if (ret < 0)
8519 				continue;
8520 		} else {
8521 			if (wc->level == 1 &&
8522 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 				continue;
8524 		}
8525 reada:
8526 		readahead_tree_block(root, bytenr);
8527 		nread++;
8528 	}
8529 	wc->reada_slot = slot;
8530 }
8531 
8532 static int account_leaf_items(struct btrfs_trans_handle *trans,
8533 			      struct btrfs_root *root,
8534 			      struct extent_buffer *eb)
8535 {
8536 	int nr = btrfs_header_nritems(eb);
8537 	int i, extent_type, ret;
8538 	struct btrfs_key key;
8539 	struct btrfs_file_extent_item *fi;
8540 	u64 bytenr, num_bytes;
8541 
8542 	/* We can be called directly from walk_up_proc() */
8543 	if (!root->fs_info->quota_enabled)
8544 		return 0;
8545 
8546 	for (i = 0; i < nr; i++) {
8547 		btrfs_item_key_to_cpu(eb, &key, i);
8548 
8549 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8550 			continue;
8551 
8552 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8553 		/* filter out non qgroup-accountable extents  */
8554 		extent_type = btrfs_file_extent_type(eb, fi);
8555 
8556 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8557 			continue;
8558 
8559 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8560 		if (!bytenr)
8561 			continue;
8562 
8563 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8564 
8565 		ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8566 				bytenr, num_bytes, GFP_NOFS);
8567 		if (ret)
8568 			return ret;
8569 	}
8570 	return 0;
8571 }
8572 
8573 /*
8574  * Walk up the tree from the bottom, freeing leaves and any interior
8575  * nodes which have had all slots visited. If a node (leaf or
8576  * interior) is freed, the node above it will have it's slot
8577  * incremented. The root node will never be freed.
8578  *
8579  * At the end of this function, we should have a path which has all
8580  * slots incremented to the next position for a search. If we need to
8581  * read a new node it will be NULL and the node above it will have the
8582  * correct slot selected for a later read.
8583  *
8584  * If we increment the root nodes slot counter past the number of
8585  * elements, 1 is returned to signal completion of the search.
8586  */
8587 static int adjust_slots_upwards(struct btrfs_root *root,
8588 				struct btrfs_path *path, int root_level)
8589 {
8590 	int level = 0;
8591 	int nr, slot;
8592 	struct extent_buffer *eb;
8593 
8594 	if (root_level == 0)
8595 		return 1;
8596 
8597 	while (level <= root_level) {
8598 		eb = path->nodes[level];
8599 		nr = btrfs_header_nritems(eb);
8600 		path->slots[level]++;
8601 		slot = path->slots[level];
8602 		if (slot >= nr || level == 0) {
8603 			/*
8604 			 * Don't free the root -  we will detect this
8605 			 * condition after our loop and return a
8606 			 * positive value for caller to stop walking the tree.
8607 			 */
8608 			if (level != root_level) {
8609 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8610 				path->locks[level] = 0;
8611 
8612 				free_extent_buffer(eb);
8613 				path->nodes[level] = NULL;
8614 				path->slots[level] = 0;
8615 			}
8616 		} else {
8617 			/*
8618 			 * We have a valid slot to walk back down
8619 			 * from. Stop here so caller can process these
8620 			 * new nodes.
8621 			 */
8622 			break;
8623 		}
8624 
8625 		level++;
8626 	}
8627 
8628 	eb = path->nodes[root_level];
8629 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8630 		return 1;
8631 
8632 	return 0;
8633 }
8634 
8635 /*
8636  * root_eb is the subtree root and is locked before this function is called.
8637  */
8638 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8639 				  struct btrfs_root *root,
8640 				  struct extent_buffer *root_eb,
8641 				  u64 root_gen,
8642 				  int root_level)
8643 {
8644 	int ret = 0;
8645 	int level;
8646 	struct extent_buffer *eb = root_eb;
8647 	struct btrfs_path *path = NULL;
8648 
8649 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8650 	BUG_ON(root_eb == NULL);
8651 
8652 	if (!root->fs_info->quota_enabled)
8653 		return 0;
8654 
8655 	if (!extent_buffer_uptodate(root_eb)) {
8656 		ret = btrfs_read_buffer(root_eb, root_gen);
8657 		if (ret)
8658 			goto out;
8659 	}
8660 
8661 	if (root_level == 0) {
8662 		ret = account_leaf_items(trans, root, root_eb);
8663 		goto out;
8664 	}
8665 
8666 	path = btrfs_alloc_path();
8667 	if (!path)
8668 		return -ENOMEM;
8669 
8670 	/*
8671 	 * Walk down the tree.  Missing extent blocks are filled in as
8672 	 * we go. Metadata is accounted every time we read a new
8673 	 * extent block.
8674 	 *
8675 	 * When we reach a leaf, we account for file extent items in it,
8676 	 * walk back up the tree (adjusting slot pointers as we go)
8677 	 * and restart the search process.
8678 	 */
8679 	extent_buffer_get(root_eb); /* For path */
8680 	path->nodes[root_level] = root_eb;
8681 	path->slots[root_level] = 0;
8682 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8683 walk_down:
8684 	level = root_level;
8685 	while (level >= 0) {
8686 		if (path->nodes[level] == NULL) {
8687 			int parent_slot;
8688 			u64 child_gen;
8689 			u64 child_bytenr;
8690 
8691 			/* We need to get child blockptr/gen from
8692 			 * parent before we can read it. */
8693 			eb = path->nodes[level + 1];
8694 			parent_slot = path->slots[level + 1];
8695 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8696 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8697 
8698 			eb = read_tree_block(root, child_bytenr, child_gen);
8699 			if (IS_ERR(eb)) {
8700 				ret = PTR_ERR(eb);
8701 				goto out;
8702 			} else if (!extent_buffer_uptodate(eb)) {
8703 				free_extent_buffer(eb);
8704 				ret = -EIO;
8705 				goto out;
8706 			}
8707 
8708 			path->nodes[level] = eb;
8709 			path->slots[level] = 0;
8710 
8711 			btrfs_tree_read_lock(eb);
8712 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8713 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8714 
8715 			ret = btrfs_qgroup_insert_dirty_extent(trans,
8716 					root->fs_info, child_bytenr,
8717 					root->nodesize, GFP_NOFS);
8718 			if (ret)
8719 				goto out;
8720 		}
8721 
8722 		if (level == 0) {
8723 			ret = account_leaf_items(trans, root, path->nodes[level]);
8724 			if (ret)
8725 				goto out;
8726 
8727 			/* Nonzero return here means we completed our search */
8728 			ret = adjust_slots_upwards(root, path, root_level);
8729 			if (ret)
8730 				break;
8731 
8732 			/* Restart search with new slots */
8733 			goto walk_down;
8734 		}
8735 
8736 		level--;
8737 	}
8738 
8739 	ret = 0;
8740 out:
8741 	btrfs_free_path(path);
8742 
8743 	return ret;
8744 }
8745 
8746 /*
8747  * helper to process tree block while walking down the tree.
8748  *
8749  * when wc->stage == UPDATE_BACKREF, this function updates
8750  * back refs for pointers in the block.
8751  *
8752  * NOTE: return value 1 means we should stop walking down.
8753  */
8754 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8755 				   struct btrfs_root *root,
8756 				   struct btrfs_path *path,
8757 				   struct walk_control *wc, int lookup_info)
8758 {
8759 	int level = wc->level;
8760 	struct extent_buffer *eb = path->nodes[level];
8761 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8762 	int ret;
8763 
8764 	if (wc->stage == UPDATE_BACKREF &&
8765 	    btrfs_header_owner(eb) != root->root_key.objectid)
8766 		return 1;
8767 
8768 	/*
8769 	 * when reference count of tree block is 1, it won't increase
8770 	 * again. once full backref flag is set, we never clear it.
8771 	 */
8772 	if (lookup_info &&
8773 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8774 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8775 		BUG_ON(!path->locks[level]);
8776 		ret = btrfs_lookup_extent_info(trans, root,
8777 					       eb->start, level, 1,
8778 					       &wc->refs[level],
8779 					       &wc->flags[level]);
8780 		BUG_ON(ret == -ENOMEM);
8781 		if (ret)
8782 			return ret;
8783 		BUG_ON(wc->refs[level] == 0);
8784 	}
8785 
8786 	if (wc->stage == DROP_REFERENCE) {
8787 		if (wc->refs[level] > 1)
8788 			return 1;
8789 
8790 		if (path->locks[level] && !wc->keep_locks) {
8791 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8792 			path->locks[level] = 0;
8793 		}
8794 		return 0;
8795 	}
8796 
8797 	/* wc->stage == UPDATE_BACKREF */
8798 	if (!(wc->flags[level] & flag)) {
8799 		BUG_ON(!path->locks[level]);
8800 		ret = btrfs_inc_ref(trans, root, eb, 1);
8801 		BUG_ON(ret); /* -ENOMEM */
8802 		ret = btrfs_dec_ref(trans, root, eb, 0);
8803 		BUG_ON(ret); /* -ENOMEM */
8804 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8805 						  eb->len, flag,
8806 						  btrfs_header_level(eb), 0);
8807 		BUG_ON(ret); /* -ENOMEM */
8808 		wc->flags[level] |= flag;
8809 	}
8810 
8811 	/*
8812 	 * the block is shared by multiple trees, so it's not good to
8813 	 * keep the tree lock
8814 	 */
8815 	if (path->locks[level] && level > 0) {
8816 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8817 		path->locks[level] = 0;
8818 	}
8819 	return 0;
8820 }
8821 
8822 /*
8823  * helper to process tree block pointer.
8824  *
8825  * when wc->stage == DROP_REFERENCE, this function checks
8826  * reference count of the block pointed to. if the block
8827  * is shared and we need update back refs for the subtree
8828  * rooted at the block, this function changes wc->stage to
8829  * UPDATE_BACKREF. if the block is shared and there is no
8830  * need to update back, this function drops the reference
8831  * to the block.
8832  *
8833  * NOTE: return value 1 means we should stop walking down.
8834  */
8835 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8836 				 struct btrfs_root *root,
8837 				 struct btrfs_path *path,
8838 				 struct walk_control *wc, int *lookup_info)
8839 {
8840 	u64 bytenr;
8841 	u64 generation;
8842 	u64 parent;
8843 	u32 blocksize;
8844 	struct btrfs_key key;
8845 	struct extent_buffer *next;
8846 	int level = wc->level;
8847 	int reada = 0;
8848 	int ret = 0;
8849 	bool need_account = false;
8850 
8851 	generation = btrfs_node_ptr_generation(path->nodes[level],
8852 					       path->slots[level]);
8853 	/*
8854 	 * if the lower level block was created before the snapshot
8855 	 * was created, we know there is no need to update back refs
8856 	 * for the subtree
8857 	 */
8858 	if (wc->stage == UPDATE_BACKREF &&
8859 	    generation <= root->root_key.offset) {
8860 		*lookup_info = 1;
8861 		return 1;
8862 	}
8863 
8864 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8865 	blocksize = root->nodesize;
8866 
8867 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8868 	if (!next) {
8869 		next = btrfs_find_create_tree_block(root, bytenr);
8870 		if (IS_ERR(next))
8871 			return PTR_ERR(next);
8872 
8873 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8874 					       level - 1);
8875 		reada = 1;
8876 	}
8877 	btrfs_tree_lock(next);
8878 	btrfs_set_lock_blocking(next);
8879 
8880 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8881 				       &wc->refs[level - 1],
8882 				       &wc->flags[level - 1]);
8883 	if (ret < 0) {
8884 		btrfs_tree_unlock(next);
8885 		return ret;
8886 	}
8887 
8888 	if (unlikely(wc->refs[level - 1] == 0)) {
8889 		btrfs_err(root->fs_info, "Missing references.");
8890 		BUG();
8891 	}
8892 	*lookup_info = 0;
8893 
8894 	if (wc->stage == DROP_REFERENCE) {
8895 		if (wc->refs[level - 1] > 1) {
8896 			need_account = true;
8897 			if (level == 1 &&
8898 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8899 				goto skip;
8900 
8901 			if (!wc->update_ref ||
8902 			    generation <= root->root_key.offset)
8903 				goto skip;
8904 
8905 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8906 					      path->slots[level]);
8907 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8908 			if (ret < 0)
8909 				goto skip;
8910 
8911 			wc->stage = UPDATE_BACKREF;
8912 			wc->shared_level = level - 1;
8913 		}
8914 	} else {
8915 		if (level == 1 &&
8916 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8917 			goto skip;
8918 	}
8919 
8920 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8921 		btrfs_tree_unlock(next);
8922 		free_extent_buffer(next);
8923 		next = NULL;
8924 		*lookup_info = 1;
8925 	}
8926 
8927 	if (!next) {
8928 		if (reada && level == 1)
8929 			reada_walk_down(trans, root, wc, path);
8930 		next = read_tree_block(root, bytenr, generation);
8931 		if (IS_ERR(next)) {
8932 			return PTR_ERR(next);
8933 		} else if (!extent_buffer_uptodate(next)) {
8934 			free_extent_buffer(next);
8935 			return -EIO;
8936 		}
8937 		btrfs_tree_lock(next);
8938 		btrfs_set_lock_blocking(next);
8939 	}
8940 
8941 	level--;
8942 	BUG_ON(level != btrfs_header_level(next));
8943 	path->nodes[level] = next;
8944 	path->slots[level] = 0;
8945 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8946 	wc->level = level;
8947 	if (wc->level == 1)
8948 		wc->reada_slot = 0;
8949 	return 0;
8950 skip:
8951 	wc->refs[level - 1] = 0;
8952 	wc->flags[level - 1] = 0;
8953 	if (wc->stage == DROP_REFERENCE) {
8954 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8955 			parent = path->nodes[level]->start;
8956 		} else {
8957 			BUG_ON(root->root_key.objectid !=
8958 			       btrfs_header_owner(path->nodes[level]));
8959 			parent = 0;
8960 		}
8961 
8962 		if (need_account) {
8963 			ret = account_shared_subtree(trans, root, next,
8964 						     generation, level - 1);
8965 			if (ret) {
8966 				btrfs_err_rl(root->fs_info,
8967 					"Error "
8968 					"%d accounting shared subtree. Quota "
8969 					"is out of sync, rescan required.",
8970 					ret);
8971 			}
8972 		}
8973 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8974 				root->root_key.objectid, level - 1, 0);
8975 		BUG_ON(ret); /* -ENOMEM */
8976 	}
8977 	btrfs_tree_unlock(next);
8978 	free_extent_buffer(next);
8979 	*lookup_info = 1;
8980 	return 1;
8981 }
8982 
8983 /*
8984  * helper to process tree block while walking up the tree.
8985  *
8986  * when wc->stage == DROP_REFERENCE, this function drops
8987  * reference count on the block.
8988  *
8989  * when wc->stage == UPDATE_BACKREF, this function changes
8990  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8991  * to UPDATE_BACKREF previously while processing the block.
8992  *
8993  * NOTE: return value 1 means we should stop walking up.
8994  */
8995 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8996 				 struct btrfs_root *root,
8997 				 struct btrfs_path *path,
8998 				 struct walk_control *wc)
8999 {
9000 	int ret;
9001 	int level = wc->level;
9002 	struct extent_buffer *eb = path->nodes[level];
9003 	u64 parent = 0;
9004 
9005 	if (wc->stage == UPDATE_BACKREF) {
9006 		BUG_ON(wc->shared_level < level);
9007 		if (level < wc->shared_level)
9008 			goto out;
9009 
9010 		ret = find_next_key(path, level + 1, &wc->update_progress);
9011 		if (ret > 0)
9012 			wc->update_ref = 0;
9013 
9014 		wc->stage = DROP_REFERENCE;
9015 		wc->shared_level = -1;
9016 		path->slots[level] = 0;
9017 
9018 		/*
9019 		 * check reference count again if the block isn't locked.
9020 		 * we should start walking down the tree again if reference
9021 		 * count is one.
9022 		 */
9023 		if (!path->locks[level]) {
9024 			BUG_ON(level == 0);
9025 			btrfs_tree_lock(eb);
9026 			btrfs_set_lock_blocking(eb);
9027 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9028 
9029 			ret = btrfs_lookup_extent_info(trans, root,
9030 						       eb->start, level, 1,
9031 						       &wc->refs[level],
9032 						       &wc->flags[level]);
9033 			if (ret < 0) {
9034 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9035 				path->locks[level] = 0;
9036 				return ret;
9037 			}
9038 			BUG_ON(wc->refs[level] == 0);
9039 			if (wc->refs[level] == 1) {
9040 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9041 				path->locks[level] = 0;
9042 				return 1;
9043 			}
9044 		}
9045 	}
9046 
9047 	/* wc->stage == DROP_REFERENCE */
9048 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9049 
9050 	if (wc->refs[level] == 1) {
9051 		if (level == 0) {
9052 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9053 				ret = btrfs_dec_ref(trans, root, eb, 1);
9054 			else
9055 				ret = btrfs_dec_ref(trans, root, eb, 0);
9056 			BUG_ON(ret); /* -ENOMEM */
9057 			ret = account_leaf_items(trans, root, eb);
9058 			if (ret) {
9059 				btrfs_err_rl(root->fs_info,
9060 					"error "
9061 					"%d accounting leaf items. Quota "
9062 					"is out of sync, rescan required.",
9063 					ret);
9064 			}
9065 		}
9066 		/* make block locked assertion in clean_tree_block happy */
9067 		if (!path->locks[level] &&
9068 		    btrfs_header_generation(eb) == trans->transid) {
9069 			btrfs_tree_lock(eb);
9070 			btrfs_set_lock_blocking(eb);
9071 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9072 		}
9073 		clean_tree_block(trans, root->fs_info, eb);
9074 	}
9075 
9076 	if (eb == root->node) {
9077 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9078 			parent = eb->start;
9079 		else
9080 			BUG_ON(root->root_key.objectid !=
9081 			       btrfs_header_owner(eb));
9082 	} else {
9083 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9084 			parent = path->nodes[level + 1]->start;
9085 		else
9086 			BUG_ON(root->root_key.objectid !=
9087 			       btrfs_header_owner(path->nodes[level + 1]));
9088 	}
9089 
9090 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9091 out:
9092 	wc->refs[level] = 0;
9093 	wc->flags[level] = 0;
9094 	return 0;
9095 }
9096 
9097 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9098 				   struct btrfs_root *root,
9099 				   struct btrfs_path *path,
9100 				   struct walk_control *wc)
9101 {
9102 	int level = wc->level;
9103 	int lookup_info = 1;
9104 	int ret;
9105 
9106 	while (level >= 0) {
9107 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9108 		if (ret > 0)
9109 			break;
9110 
9111 		if (level == 0)
9112 			break;
9113 
9114 		if (path->slots[level] >=
9115 		    btrfs_header_nritems(path->nodes[level]))
9116 			break;
9117 
9118 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9119 		if (ret > 0) {
9120 			path->slots[level]++;
9121 			continue;
9122 		} else if (ret < 0)
9123 			return ret;
9124 		level = wc->level;
9125 	}
9126 	return 0;
9127 }
9128 
9129 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9130 				 struct btrfs_root *root,
9131 				 struct btrfs_path *path,
9132 				 struct walk_control *wc, int max_level)
9133 {
9134 	int level = wc->level;
9135 	int ret;
9136 
9137 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9138 	while (level < max_level && path->nodes[level]) {
9139 		wc->level = level;
9140 		if (path->slots[level] + 1 <
9141 		    btrfs_header_nritems(path->nodes[level])) {
9142 			path->slots[level]++;
9143 			return 0;
9144 		} else {
9145 			ret = walk_up_proc(trans, root, path, wc);
9146 			if (ret > 0)
9147 				return 0;
9148 
9149 			if (path->locks[level]) {
9150 				btrfs_tree_unlock_rw(path->nodes[level],
9151 						     path->locks[level]);
9152 				path->locks[level] = 0;
9153 			}
9154 			free_extent_buffer(path->nodes[level]);
9155 			path->nodes[level] = NULL;
9156 			level++;
9157 		}
9158 	}
9159 	return 1;
9160 }
9161 
9162 /*
9163  * drop a subvolume tree.
9164  *
9165  * this function traverses the tree freeing any blocks that only
9166  * referenced by the tree.
9167  *
9168  * when a shared tree block is found. this function decreases its
9169  * reference count by one. if update_ref is true, this function
9170  * also make sure backrefs for the shared block and all lower level
9171  * blocks are properly updated.
9172  *
9173  * If called with for_reloc == 0, may exit early with -EAGAIN
9174  */
9175 int btrfs_drop_snapshot(struct btrfs_root *root,
9176 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9177 			 int for_reloc)
9178 {
9179 	struct btrfs_path *path;
9180 	struct btrfs_trans_handle *trans;
9181 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9182 	struct btrfs_root_item *root_item = &root->root_item;
9183 	struct walk_control *wc;
9184 	struct btrfs_key key;
9185 	int err = 0;
9186 	int ret;
9187 	int level;
9188 	bool root_dropped = false;
9189 
9190 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9191 
9192 	path = btrfs_alloc_path();
9193 	if (!path) {
9194 		err = -ENOMEM;
9195 		goto out;
9196 	}
9197 
9198 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9199 	if (!wc) {
9200 		btrfs_free_path(path);
9201 		err = -ENOMEM;
9202 		goto out;
9203 	}
9204 
9205 	trans = btrfs_start_transaction(tree_root, 0);
9206 	if (IS_ERR(trans)) {
9207 		err = PTR_ERR(trans);
9208 		goto out_free;
9209 	}
9210 
9211 	if (block_rsv)
9212 		trans->block_rsv = block_rsv;
9213 
9214 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9215 		level = btrfs_header_level(root->node);
9216 		path->nodes[level] = btrfs_lock_root_node(root);
9217 		btrfs_set_lock_blocking(path->nodes[level]);
9218 		path->slots[level] = 0;
9219 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9220 		memset(&wc->update_progress, 0,
9221 		       sizeof(wc->update_progress));
9222 	} else {
9223 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9224 		memcpy(&wc->update_progress, &key,
9225 		       sizeof(wc->update_progress));
9226 
9227 		level = root_item->drop_level;
9228 		BUG_ON(level == 0);
9229 		path->lowest_level = level;
9230 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9231 		path->lowest_level = 0;
9232 		if (ret < 0) {
9233 			err = ret;
9234 			goto out_end_trans;
9235 		}
9236 		WARN_ON(ret > 0);
9237 
9238 		/*
9239 		 * unlock our path, this is safe because only this
9240 		 * function is allowed to delete this snapshot
9241 		 */
9242 		btrfs_unlock_up_safe(path, 0);
9243 
9244 		level = btrfs_header_level(root->node);
9245 		while (1) {
9246 			btrfs_tree_lock(path->nodes[level]);
9247 			btrfs_set_lock_blocking(path->nodes[level]);
9248 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9249 
9250 			ret = btrfs_lookup_extent_info(trans, root,
9251 						path->nodes[level]->start,
9252 						level, 1, &wc->refs[level],
9253 						&wc->flags[level]);
9254 			if (ret < 0) {
9255 				err = ret;
9256 				goto out_end_trans;
9257 			}
9258 			BUG_ON(wc->refs[level] == 0);
9259 
9260 			if (level == root_item->drop_level)
9261 				break;
9262 
9263 			btrfs_tree_unlock(path->nodes[level]);
9264 			path->locks[level] = 0;
9265 			WARN_ON(wc->refs[level] != 1);
9266 			level--;
9267 		}
9268 	}
9269 
9270 	wc->level = level;
9271 	wc->shared_level = -1;
9272 	wc->stage = DROP_REFERENCE;
9273 	wc->update_ref = update_ref;
9274 	wc->keep_locks = 0;
9275 	wc->for_reloc = for_reloc;
9276 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9277 
9278 	while (1) {
9279 
9280 		ret = walk_down_tree(trans, root, path, wc);
9281 		if (ret < 0) {
9282 			err = ret;
9283 			break;
9284 		}
9285 
9286 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9287 		if (ret < 0) {
9288 			err = ret;
9289 			break;
9290 		}
9291 
9292 		if (ret > 0) {
9293 			BUG_ON(wc->stage != DROP_REFERENCE);
9294 			break;
9295 		}
9296 
9297 		if (wc->stage == DROP_REFERENCE) {
9298 			level = wc->level;
9299 			btrfs_node_key(path->nodes[level],
9300 				       &root_item->drop_progress,
9301 				       path->slots[level]);
9302 			root_item->drop_level = level;
9303 		}
9304 
9305 		BUG_ON(wc->level == 0);
9306 		if (btrfs_should_end_transaction(trans, tree_root) ||
9307 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9308 			ret = btrfs_update_root(trans, tree_root,
9309 						&root->root_key,
9310 						root_item);
9311 			if (ret) {
9312 				btrfs_abort_transaction(trans, ret);
9313 				err = ret;
9314 				goto out_end_trans;
9315 			}
9316 
9317 			btrfs_end_transaction_throttle(trans, tree_root);
9318 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9319 				pr_debug("BTRFS: drop snapshot early exit\n");
9320 				err = -EAGAIN;
9321 				goto out_free;
9322 			}
9323 
9324 			trans = btrfs_start_transaction(tree_root, 0);
9325 			if (IS_ERR(trans)) {
9326 				err = PTR_ERR(trans);
9327 				goto out_free;
9328 			}
9329 			if (block_rsv)
9330 				trans->block_rsv = block_rsv;
9331 		}
9332 	}
9333 	btrfs_release_path(path);
9334 	if (err)
9335 		goto out_end_trans;
9336 
9337 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9338 	if (ret) {
9339 		btrfs_abort_transaction(trans, ret);
9340 		goto out_end_trans;
9341 	}
9342 
9343 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9344 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9345 				      NULL, NULL);
9346 		if (ret < 0) {
9347 			btrfs_abort_transaction(trans, ret);
9348 			err = ret;
9349 			goto out_end_trans;
9350 		} else if (ret > 0) {
9351 			/* if we fail to delete the orphan item this time
9352 			 * around, it'll get picked up the next time.
9353 			 *
9354 			 * The most common failure here is just -ENOENT.
9355 			 */
9356 			btrfs_del_orphan_item(trans, tree_root,
9357 					      root->root_key.objectid);
9358 		}
9359 	}
9360 
9361 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9362 		btrfs_add_dropped_root(trans, root);
9363 	} else {
9364 		free_extent_buffer(root->node);
9365 		free_extent_buffer(root->commit_root);
9366 		btrfs_put_fs_root(root);
9367 	}
9368 	root_dropped = true;
9369 out_end_trans:
9370 	btrfs_end_transaction_throttle(trans, tree_root);
9371 out_free:
9372 	kfree(wc);
9373 	btrfs_free_path(path);
9374 out:
9375 	/*
9376 	 * So if we need to stop dropping the snapshot for whatever reason we
9377 	 * need to make sure to add it back to the dead root list so that we
9378 	 * keep trying to do the work later.  This also cleans up roots if we
9379 	 * don't have it in the radix (like when we recover after a power fail
9380 	 * or unmount) so we don't leak memory.
9381 	 */
9382 	if (!for_reloc && root_dropped == false)
9383 		btrfs_add_dead_root(root);
9384 	if (err && err != -EAGAIN)
9385 		btrfs_handle_fs_error(root->fs_info, err, NULL);
9386 	return err;
9387 }
9388 
9389 /*
9390  * drop subtree rooted at tree block 'node'.
9391  *
9392  * NOTE: this function will unlock and release tree block 'node'
9393  * only used by relocation code
9394  */
9395 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9396 			struct btrfs_root *root,
9397 			struct extent_buffer *node,
9398 			struct extent_buffer *parent)
9399 {
9400 	struct btrfs_path *path;
9401 	struct walk_control *wc;
9402 	int level;
9403 	int parent_level;
9404 	int ret = 0;
9405 	int wret;
9406 
9407 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9408 
9409 	path = btrfs_alloc_path();
9410 	if (!path)
9411 		return -ENOMEM;
9412 
9413 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9414 	if (!wc) {
9415 		btrfs_free_path(path);
9416 		return -ENOMEM;
9417 	}
9418 
9419 	btrfs_assert_tree_locked(parent);
9420 	parent_level = btrfs_header_level(parent);
9421 	extent_buffer_get(parent);
9422 	path->nodes[parent_level] = parent;
9423 	path->slots[parent_level] = btrfs_header_nritems(parent);
9424 
9425 	btrfs_assert_tree_locked(node);
9426 	level = btrfs_header_level(node);
9427 	path->nodes[level] = node;
9428 	path->slots[level] = 0;
9429 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9430 
9431 	wc->refs[parent_level] = 1;
9432 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9433 	wc->level = level;
9434 	wc->shared_level = -1;
9435 	wc->stage = DROP_REFERENCE;
9436 	wc->update_ref = 0;
9437 	wc->keep_locks = 1;
9438 	wc->for_reloc = 1;
9439 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9440 
9441 	while (1) {
9442 		wret = walk_down_tree(trans, root, path, wc);
9443 		if (wret < 0) {
9444 			ret = wret;
9445 			break;
9446 		}
9447 
9448 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9449 		if (wret < 0)
9450 			ret = wret;
9451 		if (wret != 0)
9452 			break;
9453 	}
9454 
9455 	kfree(wc);
9456 	btrfs_free_path(path);
9457 	return ret;
9458 }
9459 
9460 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9461 {
9462 	u64 num_devices;
9463 	u64 stripped;
9464 
9465 	/*
9466 	 * if restripe for this chunk_type is on pick target profile and
9467 	 * return, otherwise do the usual balance
9468 	 */
9469 	stripped = get_restripe_target(root->fs_info, flags);
9470 	if (stripped)
9471 		return extended_to_chunk(stripped);
9472 
9473 	num_devices = root->fs_info->fs_devices->rw_devices;
9474 
9475 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9476 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9477 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9478 
9479 	if (num_devices == 1) {
9480 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9481 		stripped = flags & ~stripped;
9482 
9483 		/* turn raid0 into single device chunks */
9484 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9485 			return stripped;
9486 
9487 		/* turn mirroring into duplication */
9488 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9489 			     BTRFS_BLOCK_GROUP_RAID10))
9490 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9491 	} else {
9492 		/* they already had raid on here, just return */
9493 		if (flags & stripped)
9494 			return flags;
9495 
9496 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9497 		stripped = flags & ~stripped;
9498 
9499 		/* switch duplicated blocks with raid1 */
9500 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9501 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9502 
9503 		/* this is drive concat, leave it alone */
9504 	}
9505 
9506 	return flags;
9507 }
9508 
9509 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9510 {
9511 	struct btrfs_space_info *sinfo = cache->space_info;
9512 	u64 num_bytes;
9513 	u64 min_allocable_bytes;
9514 	int ret = -ENOSPC;
9515 
9516 	/*
9517 	 * We need some metadata space and system metadata space for
9518 	 * allocating chunks in some corner cases until we force to set
9519 	 * it to be readonly.
9520 	 */
9521 	if ((sinfo->flags &
9522 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9523 	    !force)
9524 		min_allocable_bytes = SZ_1M;
9525 	else
9526 		min_allocable_bytes = 0;
9527 
9528 	spin_lock(&sinfo->lock);
9529 	spin_lock(&cache->lock);
9530 
9531 	if (cache->ro) {
9532 		cache->ro++;
9533 		ret = 0;
9534 		goto out;
9535 	}
9536 
9537 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9538 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9539 
9540 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9541 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9542 	    min_allocable_bytes <= sinfo->total_bytes) {
9543 		sinfo->bytes_readonly += num_bytes;
9544 		cache->ro++;
9545 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9546 		ret = 0;
9547 	}
9548 out:
9549 	spin_unlock(&cache->lock);
9550 	spin_unlock(&sinfo->lock);
9551 	return ret;
9552 }
9553 
9554 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9555 			     struct btrfs_block_group_cache *cache)
9556 
9557 {
9558 	struct btrfs_trans_handle *trans;
9559 	u64 alloc_flags;
9560 	int ret;
9561 
9562 again:
9563 	trans = btrfs_join_transaction(root);
9564 	if (IS_ERR(trans))
9565 		return PTR_ERR(trans);
9566 
9567 	/*
9568 	 * we're not allowed to set block groups readonly after the dirty
9569 	 * block groups cache has started writing.  If it already started,
9570 	 * back off and let this transaction commit
9571 	 */
9572 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9573 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9574 		u64 transid = trans->transid;
9575 
9576 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9577 		btrfs_end_transaction(trans, root);
9578 
9579 		ret = btrfs_wait_for_commit(root, transid);
9580 		if (ret)
9581 			return ret;
9582 		goto again;
9583 	}
9584 
9585 	/*
9586 	 * if we are changing raid levels, try to allocate a corresponding
9587 	 * block group with the new raid level.
9588 	 */
9589 	alloc_flags = update_block_group_flags(root, cache->flags);
9590 	if (alloc_flags != cache->flags) {
9591 		ret = do_chunk_alloc(trans, root, alloc_flags,
9592 				     CHUNK_ALLOC_FORCE);
9593 		/*
9594 		 * ENOSPC is allowed here, we may have enough space
9595 		 * already allocated at the new raid level to
9596 		 * carry on
9597 		 */
9598 		if (ret == -ENOSPC)
9599 			ret = 0;
9600 		if (ret < 0)
9601 			goto out;
9602 	}
9603 
9604 	ret = inc_block_group_ro(cache, 0);
9605 	if (!ret)
9606 		goto out;
9607 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9608 	ret = do_chunk_alloc(trans, root, alloc_flags,
9609 			     CHUNK_ALLOC_FORCE);
9610 	if (ret < 0)
9611 		goto out;
9612 	ret = inc_block_group_ro(cache, 0);
9613 out:
9614 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9615 		alloc_flags = update_block_group_flags(root, cache->flags);
9616 		lock_chunks(root->fs_info->chunk_root);
9617 		check_system_chunk(trans, root, alloc_flags);
9618 		unlock_chunks(root->fs_info->chunk_root);
9619 	}
9620 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9621 
9622 	btrfs_end_transaction(trans, root);
9623 	return ret;
9624 }
9625 
9626 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9627 			    struct btrfs_root *root, u64 type)
9628 {
9629 	u64 alloc_flags = get_alloc_profile(root, type);
9630 	return do_chunk_alloc(trans, root, alloc_flags,
9631 			      CHUNK_ALLOC_FORCE);
9632 }
9633 
9634 /*
9635  * helper to account the unused space of all the readonly block group in the
9636  * space_info. takes mirrors into account.
9637  */
9638 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9639 {
9640 	struct btrfs_block_group_cache *block_group;
9641 	u64 free_bytes = 0;
9642 	int factor;
9643 
9644 	/* It's df, we don't care if it's racy */
9645 	if (list_empty(&sinfo->ro_bgs))
9646 		return 0;
9647 
9648 	spin_lock(&sinfo->lock);
9649 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9650 		spin_lock(&block_group->lock);
9651 
9652 		if (!block_group->ro) {
9653 			spin_unlock(&block_group->lock);
9654 			continue;
9655 		}
9656 
9657 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9658 					  BTRFS_BLOCK_GROUP_RAID10 |
9659 					  BTRFS_BLOCK_GROUP_DUP))
9660 			factor = 2;
9661 		else
9662 			factor = 1;
9663 
9664 		free_bytes += (block_group->key.offset -
9665 			       btrfs_block_group_used(&block_group->item)) *
9666 			       factor;
9667 
9668 		spin_unlock(&block_group->lock);
9669 	}
9670 	spin_unlock(&sinfo->lock);
9671 
9672 	return free_bytes;
9673 }
9674 
9675 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9676 			      struct btrfs_block_group_cache *cache)
9677 {
9678 	struct btrfs_space_info *sinfo = cache->space_info;
9679 	u64 num_bytes;
9680 
9681 	BUG_ON(!cache->ro);
9682 
9683 	spin_lock(&sinfo->lock);
9684 	spin_lock(&cache->lock);
9685 	if (!--cache->ro) {
9686 		num_bytes = cache->key.offset - cache->reserved -
9687 			    cache->pinned - cache->bytes_super -
9688 			    btrfs_block_group_used(&cache->item);
9689 		sinfo->bytes_readonly -= num_bytes;
9690 		list_del_init(&cache->ro_list);
9691 	}
9692 	spin_unlock(&cache->lock);
9693 	spin_unlock(&sinfo->lock);
9694 }
9695 
9696 /*
9697  * checks to see if its even possible to relocate this block group.
9698  *
9699  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9700  * ok to go ahead and try.
9701  */
9702 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9703 {
9704 	struct btrfs_block_group_cache *block_group;
9705 	struct btrfs_space_info *space_info;
9706 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9707 	struct btrfs_device *device;
9708 	struct btrfs_trans_handle *trans;
9709 	u64 min_free;
9710 	u64 dev_min = 1;
9711 	u64 dev_nr = 0;
9712 	u64 target;
9713 	int debug;
9714 	int index;
9715 	int full = 0;
9716 	int ret = 0;
9717 
9718 	debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9719 
9720 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9721 
9722 	/* odd, couldn't find the block group, leave it alone */
9723 	if (!block_group) {
9724 		if (debug)
9725 			btrfs_warn(root->fs_info,
9726 				   "can't find block group for bytenr %llu",
9727 				   bytenr);
9728 		return -1;
9729 	}
9730 
9731 	min_free = btrfs_block_group_used(&block_group->item);
9732 
9733 	/* no bytes used, we're good */
9734 	if (!min_free)
9735 		goto out;
9736 
9737 	space_info = block_group->space_info;
9738 	spin_lock(&space_info->lock);
9739 
9740 	full = space_info->full;
9741 
9742 	/*
9743 	 * if this is the last block group we have in this space, we can't
9744 	 * relocate it unless we're able to allocate a new chunk below.
9745 	 *
9746 	 * Otherwise, we need to make sure we have room in the space to handle
9747 	 * all of the extents from this block group.  If we can, we're good
9748 	 */
9749 	if ((space_info->total_bytes != block_group->key.offset) &&
9750 	    (space_info->bytes_used + space_info->bytes_reserved +
9751 	     space_info->bytes_pinned + space_info->bytes_readonly +
9752 	     min_free < space_info->total_bytes)) {
9753 		spin_unlock(&space_info->lock);
9754 		goto out;
9755 	}
9756 	spin_unlock(&space_info->lock);
9757 
9758 	/*
9759 	 * ok we don't have enough space, but maybe we have free space on our
9760 	 * devices to allocate new chunks for relocation, so loop through our
9761 	 * alloc devices and guess if we have enough space.  if this block
9762 	 * group is going to be restriped, run checks against the target
9763 	 * profile instead of the current one.
9764 	 */
9765 	ret = -1;
9766 
9767 	/*
9768 	 * index:
9769 	 *      0: raid10
9770 	 *      1: raid1
9771 	 *      2: dup
9772 	 *      3: raid0
9773 	 *      4: single
9774 	 */
9775 	target = get_restripe_target(root->fs_info, block_group->flags);
9776 	if (target) {
9777 		index = __get_raid_index(extended_to_chunk(target));
9778 	} else {
9779 		/*
9780 		 * this is just a balance, so if we were marked as full
9781 		 * we know there is no space for a new chunk
9782 		 */
9783 		if (full) {
9784 			if (debug)
9785 				btrfs_warn(root->fs_info,
9786 					"no space to alloc new chunk for block group %llu",
9787 					block_group->key.objectid);
9788 			goto out;
9789 		}
9790 
9791 		index = get_block_group_index(block_group);
9792 	}
9793 
9794 	if (index == BTRFS_RAID_RAID10) {
9795 		dev_min = 4;
9796 		/* Divide by 2 */
9797 		min_free >>= 1;
9798 	} else if (index == BTRFS_RAID_RAID1) {
9799 		dev_min = 2;
9800 	} else if (index == BTRFS_RAID_DUP) {
9801 		/* Multiply by 2 */
9802 		min_free <<= 1;
9803 	} else if (index == BTRFS_RAID_RAID0) {
9804 		dev_min = fs_devices->rw_devices;
9805 		min_free = div64_u64(min_free, dev_min);
9806 	}
9807 
9808 	/* We need to do this so that we can look at pending chunks */
9809 	trans = btrfs_join_transaction(root);
9810 	if (IS_ERR(trans)) {
9811 		ret = PTR_ERR(trans);
9812 		goto out;
9813 	}
9814 
9815 	mutex_lock(&root->fs_info->chunk_mutex);
9816 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9817 		u64 dev_offset;
9818 
9819 		/*
9820 		 * check to make sure we can actually find a chunk with enough
9821 		 * space to fit our block group in.
9822 		 */
9823 		if (device->total_bytes > device->bytes_used + min_free &&
9824 		    !device->is_tgtdev_for_dev_replace) {
9825 			ret = find_free_dev_extent(trans, device, min_free,
9826 						   &dev_offset, NULL);
9827 			if (!ret)
9828 				dev_nr++;
9829 
9830 			if (dev_nr >= dev_min)
9831 				break;
9832 
9833 			ret = -1;
9834 		}
9835 	}
9836 	if (debug && ret == -1)
9837 		btrfs_warn(root->fs_info,
9838 			"no space to allocate a new chunk for block group %llu",
9839 			block_group->key.objectid);
9840 	mutex_unlock(&root->fs_info->chunk_mutex);
9841 	btrfs_end_transaction(trans, root);
9842 out:
9843 	btrfs_put_block_group(block_group);
9844 	return ret;
9845 }
9846 
9847 static int find_first_block_group(struct btrfs_root *root,
9848 		struct btrfs_path *path, struct btrfs_key *key)
9849 {
9850 	int ret = 0;
9851 	struct btrfs_key found_key;
9852 	struct extent_buffer *leaf;
9853 	int slot;
9854 
9855 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9856 	if (ret < 0)
9857 		goto out;
9858 
9859 	while (1) {
9860 		slot = path->slots[0];
9861 		leaf = path->nodes[0];
9862 		if (slot >= btrfs_header_nritems(leaf)) {
9863 			ret = btrfs_next_leaf(root, path);
9864 			if (ret == 0)
9865 				continue;
9866 			if (ret < 0)
9867 				goto out;
9868 			break;
9869 		}
9870 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9871 
9872 		if (found_key.objectid >= key->objectid &&
9873 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9874 			struct extent_map_tree *em_tree;
9875 			struct extent_map *em;
9876 
9877 			em_tree = &root->fs_info->mapping_tree.map_tree;
9878 			read_lock(&em_tree->lock);
9879 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9880 						   found_key.offset);
9881 			read_unlock(&em_tree->lock);
9882 			if (!em) {
9883 				btrfs_err(root->fs_info,
9884 			"logical %llu len %llu found bg but no related chunk",
9885 					  found_key.objectid, found_key.offset);
9886 				ret = -ENOENT;
9887 			} else {
9888 				ret = 0;
9889 			}
9890 			free_extent_map(em);
9891 			goto out;
9892 		}
9893 		path->slots[0]++;
9894 	}
9895 out:
9896 	return ret;
9897 }
9898 
9899 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9900 {
9901 	struct btrfs_block_group_cache *block_group;
9902 	u64 last = 0;
9903 
9904 	while (1) {
9905 		struct inode *inode;
9906 
9907 		block_group = btrfs_lookup_first_block_group(info, last);
9908 		while (block_group) {
9909 			spin_lock(&block_group->lock);
9910 			if (block_group->iref)
9911 				break;
9912 			spin_unlock(&block_group->lock);
9913 			block_group = next_block_group(info->tree_root,
9914 						       block_group);
9915 		}
9916 		if (!block_group) {
9917 			if (last == 0)
9918 				break;
9919 			last = 0;
9920 			continue;
9921 		}
9922 
9923 		inode = block_group->inode;
9924 		block_group->iref = 0;
9925 		block_group->inode = NULL;
9926 		spin_unlock(&block_group->lock);
9927 		ASSERT(block_group->io_ctl.inode == NULL);
9928 		iput(inode);
9929 		last = block_group->key.objectid + block_group->key.offset;
9930 		btrfs_put_block_group(block_group);
9931 	}
9932 }
9933 
9934 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9935 {
9936 	struct btrfs_block_group_cache *block_group;
9937 	struct btrfs_space_info *space_info;
9938 	struct btrfs_caching_control *caching_ctl;
9939 	struct rb_node *n;
9940 
9941 	down_write(&info->commit_root_sem);
9942 	while (!list_empty(&info->caching_block_groups)) {
9943 		caching_ctl = list_entry(info->caching_block_groups.next,
9944 					 struct btrfs_caching_control, list);
9945 		list_del(&caching_ctl->list);
9946 		put_caching_control(caching_ctl);
9947 	}
9948 	up_write(&info->commit_root_sem);
9949 
9950 	spin_lock(&info->unused_bgs_lock);
9951 	while (!list_empty(&info->unused_bgs)) {
9952 		block_group = list_first_entry(&info->unused_bgs,
9953 					       struct btrfs_block_group_cache,
9954 					       bg_list);
9955 		list_del_init(&block_group->bg_list);
9956 		btrfs_put_block_group(block_group);
9957 	}
9958 	spin_unlock(&info->unused_bgs_lock);
9959 
9960 	spin_lock(&info->block_group_cache_lock);
9961 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9962 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9963 				       cache_node);
9964 		rb_erase(&block_group->cache_node,
9965 			 &info->block_group_cache_tree);
9966 		RB_CLEAR_NODE(&block_group->cache_node);
9967 		spin_unlock(&info->block_group_cache_lock);
9968 
9969 		down_write(&block_group->space_info->groups_sem);
9970 		list_del(&block_group->list);
9971 		up_write(&block_group->space_info->groups_sem);
9972 
9973 		if (block_group->cached == BTRFS_CACHE_STARTED)
9974 			wait_block_group_cache_done(block_group);
9975 
9976 		/*
9977 		 * We haven't cached this block group, which means we could
9978 		 * possibly have excluded extents on this block group.
9979 		 */
9980 		if (block_group->cached == BTRFS_CACHE_NO ||
9981 		    block_group->cached == BTRFS_CACHE_ERROR)
9982 			free_excluded_extents(info->extent_root, block_group);
9983 
9984 		btrfs_remove_free_space_cache(block_group);
9985 		ASSERT(list_empty(&block_group->dirty_list));
9986 		ASSERT(list_empty(&block_group->io_list));
9987 		ASSERT(list_empty(&block_group->bg_list));
9988 		ASSERT(atomic_read(&block_group->count) == 1);
9989 		btrfs_put_block_group(block_group);
9990 
9991 		spin_lock(&info->block_group_cache_lock);
9992 	}
9993 	spin_unlock(&info->block_group_cache_lock);
9994 
9995 	/* now that all the block groups are freed, go through and
9996 	 * free all the space_info structs.  This is only called during
9997 	 * the final stages of unmount, and so we know nobody is
9998 	 * using them.  We call synchronize_rcu() once before we start,
9999 	 * just to be on the safe side.
10000 	 */
10001 	synchronize_rcu();
10002 
10003 	release_global_block_rsv(info);
10004 
10005 	while (!list_empty(&info->space_info)) {
10006 		int i;
10007 
10008 		space_info = list_entry(info->space_info.next,
10009 					struct btrfs_space_info,
10010 					list);
10011 
10012 		/*
10013 		 * Do not hide this behind enospc_debug, this is actually
10014 		 * important and indicates a real bug if this happens.
10015 		 */
10016 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10017 			    space_info->bytes_reserved > 0 ||
10018 			    space_info->bytes_may_use > 0))
10019 			dump_space_info(space_info, 0, 0);
10020 		list_del(&space_info->list);
10021 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10022 			struct kobject *kobj;
10023 			kobj = space_info->block_group_kobjs[i];
10024 			space_info->block_group_kobjs[i] = NULL;
10025 			if (kobj) {
10026 				kobject_del(kobj);
10027 				kobject_put(kobj);
10028 			}
10029 		}
10030 		kobject_del(&space_info->kobj);
10031 		kobject_put(&space_info->kobj);
10032 	}
10033 	return 0;
10034 }
10035 
10036 static void __link_block_group(struct btrfs_space_info *space_info,
10037 			       struct btrfs_block_group_cache *cache)
10038 {
10039 	int index = get_block_group_index(cache);
10040 	bool first = false;
10041 
10042 	down_write(&space_info->groups_sem);
10043 	if (list_empty(&space_info->block_groups[index]))
10044 		first = true;
10045 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10046 	up_write(&space_info->groups_sem);
10047 
10048 	if (first) {
10049 		struct raid_kobject *rkobj;
10050 		int ret;
10051 
10052 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10053 		if (!rkobj)
10054 			goto out_err;
10055 		rkobj->raid_type = index;
10056 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10057 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10058 				  "%s", get_raid_name(index));
10059 		if (ret) {
10060 			kobject_put(&rkobj->kobj);
10061 			goto out_err;
10062 		}
10063 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10064 	}
10065 
10066 	return;
10067 out_err:
10068 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10069 }
10070 
10071 static struct btrfs_block_group_cache *
10072 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10073 {
10074 	struct btrfs_block_group_cache *cache;
10075 
10076 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10077 	if (!cache)
10078 		return NULL;
10079 
10080 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10081 					GFP_NOFS);
10082 	if (!cache->free_space_ctl) {
10083 		kfree(cache);
10084 		return NULL;
10085 	}
10086 
10087 	cache->key.objectid = start;
10088 	cache->key.offset = size;
10089 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10090 
10091 	cache->sectorsize = root->sectorsize;
10092 	cache->fs_info = root->fs_info;
10093 	cache->full_stripe_len = btrfs_full_stripe_len(root,
10094 					       &root->fs_info->mapping_tree,
10095 					       start);
10096 	set_free_space_tree_thresholds(cache);
10097 
10098 	atomic_set(&cache->count, 1);
10099 	spin_lock_init(&cache->lock);
10100 	init_rwsem(&cache->data_rwsem);
10101 	INIT_LIST_HEAD(&cache->list);
10102 	INIT_LIST_HEAD(&cache->cluster_list);
10103 	INIT_LIST_HEAD(&cache->bg_list);
10104 	INIT_LIST_HEAD(&cache->ro_list);
10105 	INIT_LIST_HEAD(&cache->dirty_list);
10106 	INIT_LIST_HEAD(&cache->io_list);
10107 	btrfs_init_free_space_ctl(cache);
10108 	atomic_set(&cache->trimming, 0);
10109 	mutex_init(&cache->free_space_lock);
10110 
10111 	return cache;
10112 }
10113 
10114 int btrfs_read_block_groups(struct btrfs_root *root)
10115 {
10116 	struct btrfs_path *path;
10117 	int ret;
10118 	struct btrfs_block_group_cache *cache;
10119 	struct btrfs_fs_info *info = root->fs_info;
10120 	struct btrfs_space_info *space_info;
10121 	struct btrfs_key key;
10122 	struct btrfs_key found_key;
10123 	struct extent_buffer *leaf;
10124 	int need_clear = 0;
10125 	u64 cache_gen;
10126 
10127 	root = info->extent_root;
10128 	key.objectid = 0;
10129 	key.offset = 0;
10130 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10131 	path = btrfs_alloc_path();
10132 	if (!path)
10133 		return -ENOMEM;
10134 	path->reada = READA_FORWARD;
10135 
10136 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10137 	if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10138 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10139 		need_clear = 1;
10140 	if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10141 		need_clear = 1;
10142 
10143 	while (1) {
10144 		ret = find_first_block_group(root, path, &key);
10145 		if (ret > 0)
10146 			break;
10147 		if (ret != 0)
10148 			goto error;
10149 
10150 		leaf = path->nodes[0];
10151 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10152 
10153 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
10154 						       found_key.offset);
10155 		if (!cache) {
10156 			ret = -ENOMEM;
10157 			goto error;
10158 		}
10159 
10160 		if (need_clear) {
10161 			/*
10162 			 * When we mount with old space cache, we need to
10163 			 * set BTRFS_DC_CLEAR and set dirty flag.
10164 			 *
10165 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10166 			 *    truncate the old free space cache inode and
10167 			 *    setup a new one.
10168 			 * b) Setting 'dirty flag' makes sure that we flush
10169 			 *    the new space cache info onto disk.
10170 			 */
10171 			if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10172 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10173 		}
10174 
10175 		read_extent_buffer(leaf, &cache->item,
10176 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10177 				   sizeof(cache->item));
10178 		cache->flags = btrfs_block_group_flags(&cache->item);
10179 
10180 		key.objectid = found_key.objectid + found_key.offset;
10181 		btrfs_release_path(path);
10182 
10183 		/*
10184 		 * We need to exclude the super stripes now so that the space
10185 		 * info has super bytes accounted for, otherwise we'll think
10186 		 * we have more space than we actually do.
10187 		 */
10188 		ret = exclude_super_stripes(root, cache);
10189 		if (ret) {
10190 			/*
10191 			 * We may have excluded something, so call this just in
10192 			 * case.
10193 			 */
10194 			free_excluded_extents(root, cache);
10195 			btrfs_put_block_group(cache);
10196 			goto error;
10197 		}
10198 
10199 		/*
10200 		 * check for two cases, either we are full, and therefore
10201 		 * don't need to bother with the caching work since we won't
10202 		 * find any space, or we are empty, and we can just add all
10203 		 * the space in and be done with it.  This saves us _alot_ of
10204 		 * time, particularly in the full case.
10205 		 */
10206 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10207 			cache->last_byte_to_unpin = (u64)-1;
10208 			cache->cached = BTRFS_CACHE_FINISHED;
10209 			free_excluded_extents(root, cache);
10210 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10211 			cache->last_byte_to_unpin = (u64)-1;
10212 			cache->cached = BTRFS_CACHE_FINISHED;
10213 			add_new_free_space(cache, root->fs_info,
10214 					   found_key.objectid,
10215 					   found_key.objectid +
10216 					   found_key.offset);
10217 			free_excluded_extents(root, cache);
10218 		}
10219 
10220 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
10221 		if (ret) {
10222 			btrfs_remove_free_space_cache(cache);
10223 			btrfs_put_block_group(cache);
10224 			goto error;
10225 		}
10226 
10227 		trace_btrfs_add_block_group(root->fs_info, cache, 0);
10228 		ret = update_space_info(info, cache->flags, found_key.offset,
10229 					btrfs_block_group_used(&cache->item),
10230 					cache->bytes_super, &space_info);
10231 		if (ret) {
10232 			btrfs_remove_free_space_cache(cache);
10233 			spin_lock(&info->block_group_cache_lock);
10234 			rb_erase(&cache->cache_node,
10235 				 &info->block_group_cache_tree);
10236 			RB_CLEAR_NODE(&cache->cache_node);
10237 			spin_unlock(&info->block_group_cache_lock);
10238 			btrfs_put_block_group(cache);
10239 			goto error;
10240 		}
10241 
10242 		cache->space_info = space_info;
10243 
10244 		__link_block_group(space_info, cache);
10245 
10246 		set_avail_alloc_bits(root->fs_info, cache->flags);
10247 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10248 			inc_block_group_ro(cache, 1);
10249 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10250 			spin_lock(&info->unused_bgs_lock);
10251 			/* Should always be true but just in case. */
10252 			if (list_empty(&cache->bg_list)) {
10253 				btrfs_get_block_group(cache);
10254 				list_add_tail(&cache->bg_list,
10255 					      &info->unused_bgs);
10256 			}
10257 			spin_unlock(&info->unused_bgs_lock);
10258 		}
10259 	}
10260 
10261 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10262 		if (!(get_alloc_profile(root, space_info->flags) &
10263 		      (BTRFS_BLOCK_GROUP_RAID10 |
10264 		       BTRFS_BLOCK_GROUP_RAID1 |
10265 		       BTRFS_BLOCK_GROUP_RAID5 |
10266 		       BTRFS_BLOCK_GROUP_RAID6 |
10267 		       BTRFS_BLOCK_GROUP_DUP)))
10268 			continue;
10269 		/*
10270 		 * avoid allocating from un-mirrored block group if there are
10271 		 * mirrored block groups.
10272 		 */
10273 		list_for_each_entry(cache,
10274 				&space_info->block_groups[BTRFS_RAID_RAID0],
10275 				list)
10276 			inc_block_group_ro(cache, 1);
10277 		list_for_each_entry(cache,
10278 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10279 				list)
10280 			inc_block_group_ro(cache, 1);
10281 	}
10282 
10283 	init_global_block_rsv(info);
10284 	ret = 0;
10285 error:
10286 	btrfs_free_path(path);
10287 	return ret;
10288 }
10289 
10290 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10291 				       struct btrfs_root *root)
10292 {
10293 	struct btrfs_block_group_cache *block_group, *tmp;
10294 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10295 	struct btrfs_block_group_item item;
10296 	struct btrfs_key key;
10297 	int ret = 0;
10298 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10299 
10300 	trans->can_flush_pending_bgs = false;
10301 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10302 		if (ret)
10303 			goto next;
10304 
10305 		spin_lock(&block_group->lock);
10306 		memcpy(&item, &block_group->item, sizeof(item));
10307 		memcpy(&key, &block_group->key, sizeof(key));
10308 		spin_unlock(&block_group->lock);
10309 
10310 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10311 					sizeof(item));
10312 		if (ret)
10313 			btrfs_abort_transaction(trans, ret);
10314 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10315 					       key.objectid, key.offset);
10316 		if (ret)
10317 			btrfs_abort_transaction(trans, ret);
10318 		add_block_group_free_space(trans, root->fs_info, block_group);
10319 		/* already aborted the transaction if it failed. */
10320 next:
10321 		list_del_init(&block_group->bg_list);
10322 	}
10323 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10324 }
10325 
10326 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10327 			   struct btrfs_root *root, u64 bytes_used,
10328 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10329 			   u64 size)
10330 {
10331 	int ret;
10332 	struct btrfs_root *extent_root;
10333 	struct btrfs_block_group_cache *cache;
10334 	extent_root = root->fs_info->extent_root;
10335 
10336 	btrfs_set_log_full_commit(root->fs_info, trans);
10337 
10338 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10339 	if (!cache)
10340 		return -ENOMEM;
10341 
10342 	btrfs_set_block_group_used(&cache->item, bytes_used);
10343 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10344 	btrfs_set_block_group_flags(&cache->item, type);
10345 
10346 	cache->flags = type;
10347 	cache->last_byte_to_unpin = (u64)-1;
10348 	cache->cached = BTRFS_CACHE_FINISHED;
10349 	cache->needs_free_space = 1;
10350 	ret = exclude_super_stripes(root, cache);
10351 	if (ret) {
10352 		/*
10353 		 * We may have excluded something, so call this just in
10354 		 * case.
10355 		 */
10356 		free_excluded_extents(root, cache);
10357 		btrfs_put_block_group(cache);
10358 		return ret;
10359 	}
10360 
10361 	add_new_free_space(cache, root->fs_info, chunk_offset,
10362 			   chunk_offset + size);
10363 
10364 	free_excluded_extents(root, cache);
10365 
10366 #ifdef CONFIG_BTRFS_DEBUG
10367 	if (btrfs_should_fragment_free_space(root, cache)) {
10368 		u64 new_bytes_used = size - bytes_used;
10369 
10370 		bytes_used += new_bytes_used >> 1;
10371 		fragment_free_space(root, cache);
10372 	}
10373 #endif
10374 	/*
10375 	 * Call to ensure the corresponding space_info object is created and
10376 	 * assigned to our block group, but don't update its counters just yet.
10377 	 * We want our bg to be added to the rbtree with its ->space_info set.
10378 	 */
10379 	ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10380 				&cache->space_info);
10381 	if (ret) {
10382 		btrfs_remove_free_space_cache(cache);
10383 		btrfs_put_block_group(cache);
10384 		return ret;
10385 	}
10386 
10387 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10388 	if (ret) {
10389 		btrfs_remove_free_space_cache(cache);
10390 		btrfs_put_block_group(cache);
10391 		return ret;
10392 	}
10393 
10394 	/*
10395 	 * Now that our block group has its ->space_info set and is inserted in
10396 	 * the rbtree, update the space info's counters.
10397 	 */
10398 	trace_btrfs_add_block_group(root->fs_info, cache, 1);
10399 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10400 				cache->bytes_super, &cache->space_info);
10401 	if (ret) {
10402 		btrfs_remove_free_space_cache(cache);
10403 		spin_lock(&root->fs_info->block_group_cache_lock);
10404 		rb_erase(&cache->cache_node,
10405 			 &root->fs_info->block_group_cache_tree);
10406 		RB_CLEAR_NODE(&cache->cache_node);
10407 		spin_unlock(&root->fs_info->block_group_cache_lock);
10408 		btrfs_put_block_group(cache);
10409 		return ret;
10410 	}
10411 	update_global_block_rsv(root->fs_info);
10412 
10413 	__link_block_group(cache->space_info, cache);
10414 
10415 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10416 
10417 	set_avail_alloc_bits(extent_root->fs_info, type);
10418 	return 0;
10419 }
10420 
10421 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10422 {
10423 	u64 extra_flags = chunk_to_extended(flags) &
10424 				BTRFS_EXTENDED_PROFILE_MASK;
10425 
10426 	write_seqlock(&fs_info->profiles_lock);
10427 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10428 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10429 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10430 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10431 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10432 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10433 	write_sequnlock(&fs_info->profiles_lock);
10434 }
10435 
10436 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10437 			     struct btrfs_root *root, u64 group_start,
10438 			     struct extent_map *em)
10439 {
10440 	struct btrfs_path *path;
10441 	struct btrfs_block_group_cache *block_group;
10442 	struct btrfs_free_cluster *cluster;
10443 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10444 	struct btrfs_key key;
10445 	struct inode *inode;
10446 	struct kobject *kobj = NULL;
10447 	int ret;
10448 	int index;
10449 	int factor;
10450 	struct btrfs_caching_control *caching_ctl = NULL;
10451 	bool remove_em;
10452 
10453 	root = root->fs_info->extent_root;
10454 
10455 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10456 	BUG_ON(!block_group);
10457 	BUG_ON(!block_group->ro);
10458 
10459 	/*
10460 	 * Free the reserved super bytes from this block group before
10461 	 * remove it.
10462 	 */
10463 	free_excluded_extents(root, block_group);
10464 
10465 	memcpy(&key, &block_group->key, sizeof(key));
10466 	index = get_block_group_index(block_group);
10467 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10468 				  BTRFS_BLOCK_GROUP_RAID1 |
10469 				  BTRFS_BLOCK_GROUP_RAID10))
10470 		factor = 2;
10471 	else
10472 		factor = 1;
10473 
10474 	/* make sure this block group isn't part of an allocation cluster */
10475 	cluster = &root->fs_info->data_alloc_cluster;
10476 	spin_lock(&cluster->refill_lock);
10477 	btrfs_return_cluster_to_free_space(block_group, cluster);
10478 	spin_unlock(&cluster->refill_lock);
10479 
10480 	/*
10481 	 * make sure this block group isn't part of a metadata
10482 	 * allocation cluster
10483 	 */
10484 	cluster = &root->fs_info->meta_alloc_cluster;
10485 	spin_lock(&cluster->refill_lock);
10486 	btrfs_return_cluster_to_free_space(block_group, cluster);
10487 	spin_unlock(&cluster->refill_lock);
10488 
10489 	path = btrfs_alloc_path();
10490 	if (!path) {
10491 		ret = -ENOMEM;
10492 		goto out;
10493 	}
10494 
10495 	/*
10496 	 * get the inode first so any iput calls done for the io_list
10497 	 * aren't the final iput (no unlinks allowed now)
10498 	 */
10499 	inode = lookup_free_space_inode(tree_root, block_group, path);
10500 
10501 	mutex_lock(&trans->transaction->cache_write_mutex);
10502 	/*
10503 	 * make sure our free spache cache IO is done before remove the
10504 	 * free space inode
10505 	 */
10506 	spin_lock(&trans->transaction->dirty_bgs_lock);
10507 	if (!list_empty(&block_group->io_list)) {
10508 		list_del_init(&block_group->io_list);
10509 
10510 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10511 
10512 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10513 		btrfs_wait_cache_io(root, trans, block_group,
10514 				    &block_group->io_ctl, path,
10515 				    block_group->key.objectid);
10516 		btrfs_put_block_group(block_group);
10517 		spin_lock(&trans->transaction->dirty_bgs_lock);
10518 	}
10519 
10520 	if (!list_empty(&block_group->dirty_list)) {
10521 		list_del_init(&block_group->dirty_list);
10522 		btrfs_put_block_group(block_group);
10523 	}
10524 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10525 	mutex_unlock(&trans->transaction->cache_write_mutex);
10526 
10527 	if (!IS_ERR(inode)) {
10528 		ret = btrfs_orphan_add(trans, inode);
10529 		if (ret) {
10530 			btrfs_add_delayed_iput(inode);
10531 			goto out;
10532 		}
10533 		clear_nlink(inode);
10534 		/* One for the block groups ref */
10535 		spin_lock(&block_group->lock);
10536 		if (block_group->iref) {
10537 			block_group->iref = 0;
10538 			block_group->inode = NULL;
10539 			spin_unlock(&block_group->lock);
10540 			iput(inode);
10541 		} else {
10542 			spin_unlock(&block_group->lock);
10543 		}
10544 		/* One for our lookup ref */
10545 		btrfs_add_delayed_iput(inode);
10546 	}
10547 
10548 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10549 	key.offset = block_group->key.objectid;
10550 	key.type = 0;
10551 
10552 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10553 	if (ret < 0)
10554 		goto out;
10555 	if (ret > 0)
10556 		btrfs_release_path(path);
10557 	if (ret == 0) {
10558 		ret = btrfs_del_item(trans, tree_root, path);
10559 		if (ret)
10560 			goto out;
10561 		btrfs_release_path(path);
10562 	}
10563 
10564 	spin_lock(&root->fs_info->block_group_cache_lock);
10565 	rb_erase(&block_group->cache_node,
10566 		 &root->fs_info->block_group_cache_tree);
10567 	RB_CLEAR_NODE(&block_group->cache_node);
10568 
10569 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10570 		root->fs_info->first_logical_byte = (u64)-1;
10571 	spin_unlock(&root->fs_info->block_group_cache_lock);
10572 
10573 	down_write(&block_group->space_info->groups_sem);
10574 	/*
10575 	 * we must use list_del_init so people can check to see if they
10576 	 * are still on the list after taking the semaphore
10577 	 */
10578 	list_del_init(&block_group->list);
10579 	if (list_empty(&block_group->space_info->block_groups[index])) {
10580 		kobj = block_group->space_info->block_group_kobjs[index];
10581 		block_group->space_info->block_group_kobjs[index] = NULL;
10582 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10583 	}
10584 	up_write(&block_group->space_info->groups_sem);
10585 	if (kobj) {
10586 		kobject_del(kobj);
10587 		kobject_put(kobj);
10588 	}
10589 
10590 	if (block_group->has_caching_ctl)
10591 		caching_ctl = get_caching_control(block_group);
10592 	if (block_group->cached == BTRFS_CACHE_STARTED)
10593 		wait_block_group_cache_done(block_group);
10594 	if (block_group->has_caching_ctl) {
10595 		down_write(&root->fs_info->commit_root_sem);
10596 		if (!caching_ctl) {
10597 			struct btrfs_caching_control *ctl;
10598 
10599 			list_for_each_entry(ctl,
10600 				    &root->fs_info->caching_block_groups, list)
10601 				if (ctl->block_group == block_group) {
10602 					caching_ctl = ctl;
10603 					atomic_inc(&caching_ctl->count);
10604 					break;
10605 				}
10606 		}
10607 		if (caching_ctl)
10608 			list_del_init(&caching_ctl->list);
10609 		up_write(&root->fs_info->commit_root_sem);
10610 		if (caching_ctl) {
10611 			/* Once for the caching bgs list and once for us. */
10612 			put_caching_control(caching_ctl);
10613 			put_caching_control(caching_ctl);
10614 		}
10615 	}
10616 
10617 	spin_lock(&trans->transaction->dirty_bgs_lock);
10618 	if (!list_empty(&block_group->dirty_list)) {
10619 		WARN_ON(1);
10620 	}
10621 	if (!list_empty(&block_group->io_list)) {
10622 		WARN_ON(1);
10623 	}
10624 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10625 	btrfs_remove_free_space_cache(block_group);
10626 
10627 	spin_lock(&block_group->space_info->lock);
10628 	list_del_init(&block_group->ro_list);
10629 
10630 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10631 		WARN_ON(block_group->space_info->total_bytes
10632 			< block_group->key.offset);
10633 		WARN_ON(block_group->space_info->bytes_readonly
10634 			< block_group->key.offset);
10635 		WARN_ON(block_group->space_info->disk_total
10636 			< block_group->key.offset * factor);
10637 	}
10638 	block_group->space_info->total_bytes -= block_group->key.offset;
10639 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10640 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10641 
10642 	spin_unlock(&block_group->space_info->lock);
10643 
10644 	memcpy(&key, &block_group->key, sizeof(key));
10645 
10646 	lock_chunks(root);
10647 	if (!list_empty(&em->list)) {
10648 		/* We're in the transaction->pending_chunks list. */
10649 		free_extent_map(em);
10650 	}
10651 	spin_lock(&block_group->lock);
10652 	block_group->removed = 1;
10653 	/*
10654 	 * At this point trimming can't start on this block group, because we
10655 	 * removed the block group from the tree fs_info->block_group_cache_tree
10656 	 * so no one can't find it anymore and even if someone already got this
10657 	 * block group before we removed it from the rbtree, they have already
10658 	 * incremented block_group->trimming - if they didn't, they won't find
10659 	 * any free space entries because we already removed them all when we
10660 	 * called btrfs_remove_free_space_cache().
10661 	 *
10662 	 * And we must not remove the extent map from the fs_info->mapping_tree
10663 	 * to prevent the same logical address range and physical device space
10664 	 * ranges from being reused for a new block group. This is because our
10665 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10666 	 * completely transactionless, so while it is trimming a range the
10667 	 * currently running transaction might finish and a new one start,
10668 	 * allowing for new block groups to be created that can reuse the same
10669 	 * physical device locations unless we take this special care.
10670 	 *
10671 	 * There may also be an implicit trim operation if the file system
10672 	 * is mounted with -odiscard. The same protections must remain
10673 	 * in place until the extents have been discarded completely when
10674 	 * the transaction commit has completed.
10675 	 */
10676 	remove_em = (atomic_read(&block_group->trimming) == 0);
10677 	/*
10678 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10679 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10680 	 * before checking block_group->removed).
10681 	 */
10682 	if (!remove_em) {
10683 		/*
10684 		 * Our em might be in trans->transaction->pending_chunks which
10685 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10686 		 * and so is the fs_info->pinned_chunks list.
10687 		 *
10688 		 * So at this point we must be holding the chunk_mutex to avoid
10689 		 * any races with chunk allocation (more specifically at
10690 		 * volumes.c:contains_pending_extent()), to ensure it always
10691 		 * sees the em, either in the pending_chunks list or in the
10692 		 * pinned_chunks list.
10693 		 */
10694 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10695 	}
10696 	spin_unlock(&block_group->lock);
10697 
10698 	if (remove_em) {
10699 		struct extent_map_tree *em_tree;
10700 
10701 		em_tree = &root->fs_info->mapping_tree.map_tree;
10702 		write_lock(&em_tree->lock);
10703 		/*
10704 		 * The em might be in the pending_chunks list, so make sure the
10705 		 * chunk mutex is locked, since remove_extent_mapping() will
10706 		 * delete us from that list.
10707 		 */
10708 		remove_extent_mapping(em_tree, em);
10709 		write_unlock(&em_tree->lock);
10710 		/* once for the tree */
10711 		free_extent_map(em);
10712 	}
10713 
10714 	unlock_chunks(root);
10715 
10716 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10717 	if (ret)
10718 		goto out;
10719 
10720 	btrfs_put_block_group(block_group);
10721 	btrfs_put_block_group(block_group);
10722 
10723 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10724 	if (ret > 0)
10725 		ret = -EIO;
10726 	if (ret < 0)
10727 		goto out;
10728 
10729 	ret = btrfs_del_item(trans, root, path);
10730 out:
10731 	btrfs_free_path(path);
10732 	return ret;
10733 }
10734 
10735 struct btrfs_trans_handle *
10736 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10737 				     const u64 chunk_offset)
10738 {
10739 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10740 	struct extent_map *em;
10741 	struct map_lookup *map;
10742 	unsigned int num_items;
10743 
10744 	read_lock(&em_tree->lock);
10745 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10746 	read_unlock(&em_tree->lock);
10747 	ASSERT(em && em->start == chunk_offset);
10748 
10749 	/*
10750 	 * We need to reserve 3 + N units from the metadata space info in order
10751 	 * to remove a block group (done at btrfs_remove_chunk() and at
10752 	 * btrfs_remove_block_group()), which are used for:
10753 	 *
10754 	 * 1 unit for adding the free space inode's orphan (located in the tree
10755 	 * of tree roots).
10756 	 * 1 unit for deleting the block group item (located in the extent
10757 	 * tree).
10758 	 * 1 unit for deleting the free space item (located in tree of tree
10759 	 * roots).
10760 	 * N units for deleting N device extent items corresponding to each
10761 	 * stripe (located in the device tree).
10762 	 *
10763 	 * In order to remove a block group we also need to reserve units in the
10764 	 * system space info in order to update the chunk tree (update one or
10765 	 * more device items and remove one chunk item), but this is done at
10766 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10767 	 */
10768 	map = em->map_lookup;
10769 	num_items = 3 + map->num_stripes;
10770 	free_extent_map(em);
10771 
10772 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10773 							   num_items, 1);
10774 }
10775 
10776 /*
10777  * Process the unused_bgs list and remove any that don't have any allocated
10778  * space inside of them.
10779  */
10780 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10781 {
10782 	struct btrfs_block_group_cache *block_group;
10783 	struct btrfs_space_info *space_info;
10784 	struct btrfs_root *root = fs_info->extent_root;
10785 	struct btrfs_trans_handle *trans;
10786 	int ret = 0;
10787 
10788 	if (!fs_info->open)
10789 		return;
10790 
10791 	spin_lock(&fs_info->unused_bgs_lock);
10792 	while (!list_empty(&fs_info->unused_bgs)) {
10793 		u64 start, end;
10794 		int trimming;
10795 
10796 		block_group = list_first_entry(&fs_info->unused_bgs,
10797 					       struct btrfs_block_group_cache,
10798 					       bg_list);
10799 		list_del_init(&block_group->bg_list);
10800 
10801 		space_info = block_group->space_info;
10802 
10803 		if (ret || btrfs_mixed_space_info(space_info)) {
10804 			btrfs_put_block_group(block_group);
10805 			continue;
10806 		}
10807 		spin_unlock(&fs_info->unused_bgs_lock);
10808 
10809 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10810 
10811 		/* Don't want to race with allocators so take the groups_sem */
10812 		down_write(&space_info->groups_sem);
10813 		spin_lock(&block_group->lock);
10814 		if (block_group->reserved ||
10815 		    btrfs_block_group_used(&block_group->item) ||
10816 		    block_group->ro ||
10817 		    list_is_singular(&block_group->list)) {
10818 			/*
10819 			 * We want to bail if we made new allocations or have
10820 			 * outstanding allocations in this block group.  We do
10821 			 * the ro check in case balance is currently acting on
10822 			 * this block group.
10823 			 */
10824 			spin_unlock(&block_group->lock);
10825 			up_write(&space_info->groups_sem);
10826 			goto next;
10827 		}
10828 		spin_unlock(&block_group->lock);
10829 
10830 		/* We don't want to force the issue, only flip if it's ok. */
10831 		ret = inc_block_group_ro(block_group, 0);
10832 		up_write(&space_info->groups_sem);
10833 		if (ret < 0) {
10834 			ret = 0;
10835 			goto next;
10836 		}
10837 
10838 		/*
10839 		 * Want to do this before we do anything else so we can recover
10840 		 * properly if we fail to join the transaction.
10841 		 */
10842 		trans = btrfs_start_trans_remove_block_group(fs_info,
10843 						     block_group->key.objectid);
10844 		if (IS_ERR(trans)) {
10845 			btrfs_dec_block_group_ro(root, block_group);
10846 			ret = PTR_ERR(trans);
10847 			goto next;
10848 		}
10849 
10850 		/*
10851 		 * We could have pending pinned extents for this block group,
10852 		 * just delete them, we don't care about them anymore.
10853 		 */
10854 		start = block_group->key.objectid;
10855 		end = start + block_group->key.offset - 1;
10856 		/*
10857 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10858 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10859 		 * another task might be running finish_extent_commit() for the
10860 		 * previous transaction N - 1, and have seen a range belonging
10861 		 * to the block group in freed_extents[] before we were able to
10862 		 * clear the whole block group range from freed_extents[]. This
10863 		 * means that task can lookup for the block group after we
10864 		 * unpinned it from freed_extents[] and removed it, leading to
10865 		 * a BUG_ON() at btrfs_unpin_extent_range().
10866 		 */
10867 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10868 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10869 				  EXTENT_DIRTY);
10870 		if (ret) {
10871 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10872 			btrfs_dec_block_group_ro(root, block_group);
10873 			goto end_trans;
10874 		}
10875 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10876 				  EXTENT_DIRTY);
10877 		if (ret) {
10878 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10879 			btrfs_dec_block_group_ro(root, block_group);
10880 			goto end_trans;
10881 		}
10882 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10883 
10884 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10885 		spin_lock(&space_info->lock);
10886 		spin_lock(&block_group->lock);
10887 
10888 		space_info->bytes_pinned -= block_group->pinned;
10889 		space_info->bytes_readonly += block_group->pinned;
10890 		percpu_counter_add(&space_info->total_bytes_pinned,
10891 				   -block_group->pinned);
10892 		block_group->pinned = 0;
10893 
10894 		spin_unlock(&block_group->lock);
10895 		spin_unlock(&space_info->lock);
10896 
10897 		/* DISCARD can flip during remount */
10898 		trimming = btrfs_test_opt(root->fs_info, DISCARD);
10899 
10900 		/* Implicit trim during transaction commit. */
10901 		if (trimming)
10902 			btrfs_get_block_group_trimming(block_group);
10903 
10904 		/*
10905 		 * Btrfs_remove_chunk will abort the transaction if things go
10906 		 * horribly wrong.
10907 		 */
10908 		ret = btrfs_remove_chunk(trans, root,
10909 					 block_group->key.objectid);
10910 
10911 		if (ret) {
10912 			if (trimming)
10913 				btrfs_put_block_group_trimming(block_group);
10914 			goto end_trans;
10915 		}
10916 
10917 		/*
10918 		 * If we're not mounted with -odiscard, we can just forget
10919 		 * about this block group. Otherwise we'll need to wait
10920 		 * until transaction commit to do the actual discard.
10921 		 */
10922 		if (trimming) {
10923 			spin_lock(&fs_info->unused_bgs_lock);
10924 			/*
10925 			 * A concurrent scrub might have added us to the list
10926 			 * fs_info->unused_bgs, so use a list_move operation
10927 			 * to add the block group to the deleted_bgs list.
10928 			 */
10929 			list_move(&block_group->bg_list,
10930 				  &trans->transaction->deleted_bgs);
10931 			spin_unlock(&fs_info->unused_bgs_lock);
10932 			btrfs_get_block_group(block_group);
10933 		}
10934 end_trans:
10935 		btrfs_end_transaction(trans, root);
10936 next:
10937 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10938 		btrfs_put_block_group(block_group);
10939 		spin_lock(&fs_info->unused_bgs_lock);
10940 	}
10941 	spin_unlock(&fs_info->unused_bgs_lock);
10942 }
10943 
10944 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10945 {
10946 	struct btrfs_space_info *space_info;
10947 	struct btrfs_super_block *disk_super;
10948 	u64 features;
10949 	u64 flags;
10950 	int mixed = 0;
10951 	int ret;
10952 
10953 	disk_super = fs_info->super_copy;
10954 	if (!btrfs_super_root(disk_super))
10955 		return -EINVAL;
10956 
10957 	features = btrfs_super_incompat_flags(disk_super);
10958 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10959 		mixed = 1;
10960 
10961 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10962 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10963 	if (ret)
10964 		goto out;
10965 
10966 	if (mixed) {
10967 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10968 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10969 	} else {
10970 		flags = BTRFS_BLOCK_GROUP_METADATA;
10971 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10972 		if (ret)
10973 			goto out;
10974 
10975 		flags = BTRFS_BLOCK_GROUP_DATA;
10976 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10977 	}
10978 out:
10979 	return ret;
10980 }
10981 
10982 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10983 {
10984 	return unpin_extent_range(root, start, end, false);
10985 }
10986 
10987 /*
10988  * It used to be that old block groups would be left around forever.
10989  * Iterating over them would be enough to trim unused space.  Since we
10990  * now automatically remove them, we also need to iterate over unallocated
10991  * space.
10992  *
10993  * We don't want a transaction for this since the discard may take a
10994  * substantial amount of time.  We don't require that a transaction be
10995  * running, but we do need to take a running transaction into account
10996  * to ensure that we're not discarding chunks that were released in
10997  * the current transaction.
10998  *
10999  * Holding the chunks lock will prevent other threads from allocating
11000  * or releasing chunks, but it won't prevent a running transaction
11001  * from committing and releasing the memory that the pending chunks
11002  * list head uses.  For that, we need to take a reference to the
11003  * transaction.
11004  */
11005 static int btrfs_trim_free_extents(struct btrfs_device *device,
11006 				   u64 minlen, u64 *trimmed)
11007 {
11008 	u64 start = 0, len = 0;
11009 	int ret;
11010 
11011 	*trimmed = 0;
11012 
11013 	/* Not writeable = nothing to do. */
11014 	if (!device->writeable)
11015 		return 0;
11016 
11017 	/* No free space = nothing to do. */
11018 	if (device->total_bytes <= device->bytes_used)
11019 		return 0;
11020 
11021 	ret = 0;
11022 
11023 	while (1) {
11024 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11025 		struct btrfs_transaction *trans;
11026 		u64 bytes;
11027 
11028 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11029 		if (ret)
11030 			return ret;
11031 
11032 		down_read(&fs_info->commit_root_sem);
11033 
11034 		spin_lock(&fs_info->trans_lock);
11035 		trans = fs_info->running_transaction;
11036 		if (trans)
11037 			atomic_inc(&trans->use_count);
11038 		spin_unlock(&fs_info->trans_lock);
11039 
11040 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11041 						 &start, &len);
11042 		if (trans)
11043 			btrfs_put_transaction(trans);
11044 
11045 		if (ret) {
11046 			up_read(&fs_info->commit_root_sem);
11047 			mutex_unlock(&fs_info->chunk_mutex);
11048 			if (ret == -ENOSPC)
11049 				ret = 0;
11050 			break;
11051 		}
11052 
11053 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11054 		up_read(&fs_info->commit_root_sem);
11055 		mutex_unlock(&fs_info->chunk_mutex);
11056 
11057 		if (ret)
11058 			break;
11059 
11060 		start += len;
11061 		*trimmed += bytes;
11062 
11063 		if (fatal_signal_pending(current)) {
11064 			ret = -ERESTARTSYS;
11065 			break;
11066 		}
11067 
11068 		cond_resched();
11069 	}
11070 
11071 	return ret;
11072 }
11073 
11074 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11075 {
11076 	struct btrfs_fs_info *fs_info = root->fs_info;
11077 	struct btrfs_block_group_cache *cache = NULL;
11078 	struct btrfs_device *device;
11079 	struct list_head *devices;
11080 	u64 group_trimmed;
11081 	u64 start;
11082 	u64 end;
11083 	u64 trimmed = 0;
11084 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11085 	int ret = 0;
11086 
11087 	/*
11088 	 * try to trim all FS space, our block group may start from non-zero.
11089 	 */
11090 	if (range->len == total_bytes)
11091 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11092 	else
11093 		cache = btrfs_lookup_block_group(fs_info, range->start);
11094 
11095 	while (cache) {
11096 		if (cache->key.objectid >= (range->start + range->len)) {
11097 			btrfs_put_block_group(cache);
11098 			break;
11099 		}
11100 
11101 		start = max(range->start, cache->key.objectid);
11102 		end = min(range->start + range->len,
11103 				cache->key.objectid + cache->key.offset);
11104 
11105 		if (end - start >= range->minlen) {
11106 			if (!block_group_cache_done(cache)) {
11107 				ret = cache_block_group(cache, 0);
11108 				if (ret) {
11109 					btrfs_put_block_group(cache);
11110 					break;
11111 				}
11112 				ret = wait_block_group_cache_done(cache);
11113 				if (ret) {
11114 					btrfs_put_block_group(cache);
11115 					break;
11116 				}
11117 			}
11118 			ret = btrfs_trim_block_group(cache,
11119 						     &group_trimmed,
11120 						     start,
11121 						     end,
11122 						     range->minlen);
11123 
11124 			trimmed += group_trimmed;
11125 			if (ret) {
11126 				btrfs_put_block_group(cache);
11127 				break;
11128 			}
11129 		}
11130 
11131 		cache = next_block_group(fs_info->tree_root, cache);
11132 	}
11133 
11134 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11135 	devices = &root->fs_info->fs_devices->alloc_list;
11136 	list_for_each_entry(device, devices, dev_alloc_list) {
11137 		ret = btrfs_trim_free_extents(device, range->minlen,
11138 					      &group_trimmed);
11139 		if (ret)
11140 			break;
11141 
11142 		trimmed += group_trimmed;
11143 	}
11144 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11145 
11146 	range->len = trimmed;
11147 	return ret;
11148 }
11149 
11150 /*
11151  * btrfs_{start,end}_write_no_snapshoting() are similar to
11152  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11153  * data into the page cache through nocow before the subvolume is snapshoted,
11154  * but flush the data into disk after the snapshot creation, or to prevent
11155  * operations while snapshoting is ongoing and that cause the snapshot to be
11156  * inconsistent (writes followed by expanding truncates for example).
11157  */
11158 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11159 {
11160 	percpu_counter_dec(&root->subv_writers->counter);
11161 	/*
11162 	 * Make sure counter is updated before we wake up waiters.
11163 	 */
11164 	smp_mb();
11165 	if (waitqueue_active(&root->subv_writers->wait))
11166 		wake_up(&root->subv_writers->wait);
11167 }
11168 
11169 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11170 {
11171 	if (atomic_read(&root->will_be_snapshoted))
11172 		return 0;
11173 
11174 	percpu_counter_inc(&root->subv_writers->counter);
11175 	/*
11176 	 * Make sure counter is updated before we check for snapshot creation.
11177 	 */
11178 	smp_mb();
11179 	if (atomic_read(&root->will_be_snapshoted)) {
11180 		btrfs_end_write_no_snapshoting(root);
11181 		return 0;
11182 	}
11183 	return 1;
11184 }
11185 
11186 static int wait_snapshoting_atomic_t(atomic_t *a)
11187 {
11188 	schedule();
11189 	return 0;
11190 }
11191 
11192 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11193 {
11194 	while (true) {
11195 		int ret;
11196 
11197 		ret = btrfs_start_write_no_snapshoting(root);
11198 		if (ret)
11199 			break;
11200 		wait_on_atomic_t(&root->will_be_snapshoted,
11201 				 wait_snapshoting_atomic_t,
11202 				 TASK_UNINTERRUPTIBLE);
11203 	}
11204 }
11205