xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision b85d4594)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				struct btrfs_delayed_ref_node *node, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 			      struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 	u64 extent_start, extent_end, size, total_added = 0;
344 	int ret;
345 
346 	while (start < end) {
347 		ret = find_first_extent_bit(info->pinned_extents, start,
348 					    &extent_start, &extent_end,
349 					    EXTENT_DIRTY | EXTENT_UPTODATE,
350 					    NULL);
351 		if (ret)
352 			break;
353 
354 		if (extent_start <= start) {
355 			start = extent_end + 1;
356 		} else if (extent_start > start && extent_start < end) {
357 			size = extent_start - start;
358 			total_added += size;
359 			ret = btrfs_add_free_space(block_group, start,
360 						   size);
361 			BUG_ON(ret); /* -ENOMEM or logic error */
362 			start = extent_end + 1;
363 		} else {
364 			break;
365 		}
366 	}
367 
368 	if (start < end) {
369 		size = end - start;
370 		total_added += size;
371 		ret = btrfs_add_free_space(block_group, start, size);
372 		BUG_ON(ret); /* -ENOMEM or logic error */
373 	}
374 
375 	return total_added;
376 }
377 
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 	struct btrfs_block_group_cache *block_group;
381 	struct btrfs_fs_info *fs_info;
382 	struct btrfs_caching_control *caching_ctl;
383 	struct btrfs_root *extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret = -ENOMEM;
391 
392 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 	block_group = caching_ctl->block_group;
394 	fs_info = block_group->fs_info;
395 	extent_root = fs_info->extent_root;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		goto out;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 	/*
404 	 * We don't want to deadlock with somebody trying to allocate a new
405 	 * extent for the extent root while also trying to search the extent
406 	 * root to add free space.  So we skip locking and search the commit
407 	 * root, since its read-only
408 	 */
409 	path->skip_locking = 1;
410 	path->search_commit_root = 1;
411 	path->reada = 1;
412 
413 	key.objectid = last;
414 	key.offset = 0;
415 	key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 	mutex_lock(&caching_ctl->mutex);
418 	/* need to make sure the commit_root doesn't disappear */
419 	down_read(&fs_info->commit_root_sem);
420 
421 next:
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched() ||
443 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
444 				caching_ctl->progress = last;
445 				btrfs_release_path(path);
446 				up_read(&fs_info->commit_root_sem);
447 				mutex_unlock(&caching_ctl->mutex);
448 				cond_resched();
449 				goto again;
450 			}
451 
452 			ret = btrfs_next_leaf(extent_root, path);
453 			if (ret < 0)
454 				goto err;
455 			if (ret)
456 				break;
457 			leaf = path->nodes[0];
458 			nritems = btrfs_header_nritems(leaf);
459 			continue;
460 		}
461 
462 		if (key.objectid < last) {
463 			key.objectid = last;
464 			key.offset = 0;
465 			key.type = BTRFS_EXTENT_ITEM_KEY;
466 
467 			caching_ctl->progress = last;
468 			btrfs_release_path(path);
469 			goto next;
470 		}
471 
472 		if (key.objectid < block_group->key.objectid) {
473 			path->slots[0]++;
474 			continue;
475 		}
476 
477 		if (key.objectid >= block_group->key.objectid +
478 		    block_group->key.offset)
479 			break;
480 
481 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 		    key.type == BTRFS_METADATA_ITEM_KEY) {
483 			total_found += add_new_free_space(block_group,
484 							  fs_info, last,
485 							  key.objectid);
486 			if (key.type == BTRFS_METADATA_ITEM_KEY)
487 				last = key.objectid +
488 					fs_info->tree_root->nodesize;
489 			else
490 				last = key.objectid + key.offset;
491 
492 			if (total_found > (1024 * 1024 * 2)) {
493 				total_found = 0;
494 				wake_up(&caching_ctl->wait);
495 			}
496 		}
497 		path->slots[0]++;
498 	}
499 	ret = 0;
500 
501 	total_found += add_new_free_space(block_group, fs_info, last,
502 					  block_group->key.objectid +
503 					  block_group->key.offset);
504 	caching_ctl->progress = (u64)-1;
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 err:
512 	btrfs_free_path(path);
513 	up_read(&fs_info->commit_root_sem);
514 
515 	free_excluded_extents(extent_root, block_group);
516 
517 	mutex_unlock(&caching_ctl->mutex);
518 out:
519 	if (ret) {
520 		spin_lock(&block_group->lock);
521 		block_group->caching_ctl = NULL;
522 		block_group->cached = BTRFS_CACHE_ERROR;
523 		spin_unlock(&block_group->lock);
524 	}
525 	wake_up(&caching_ctl->wait);
526 
527 	put_caching_control(caching_ctl);
528 	btrfs_put_block_group(block_group);
529 }
530 
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 			     int load_cache_only)
533 {
534 	DEFINE_WAIT(wait);
535 	struct btrfs_fs_info *fs_info = cache->fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	int ret = 0;
538 
539 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 	if (!caching_ctl)
541 		return -ENOMEM;
542 
543 	INIT_LIST_HEAD(&caching_ctl->list);
544 	mutex_init(&caching_ctl->mutex);
545 	init_waitqueue_head(&caching_ctl->wait);
546 	caching_ctl->block_group = cache;
547 	caching_ctl->progress = cache->key.objectid;
548 	atomic_set(&caching_ctl->count, 1);
549 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 			caching_thread, NULL, NULL);
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		mutex_lock(&caching_ctl->mutex);
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 			caching_ctl->progress = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 				cache->has_caching_ctl = 1;
607 			}
608 		}
609 		spin_unlock(&cache->lock);
610 		mutex_unlock(&caching_ctl->mutex);
611 
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 			cache->has_caching_ctl = 1;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->nodesize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 				&key, path, 0, 0);
785 	if (ret < 0)
786 		goto out_free;
787 
788 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 		if (path->slots[0]) {
790 			path->slots[0]--;
791 			btrfs_item_key_to_cpu(path->nodes[0], &key,
792 					      path->slots[0]);
793 			if (key.objectid == bytenr &&
794 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
795 			    key.offset == root->nodesize)
796 				ret = 0;
797 		}
798 	}
799 
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 		if (item_size >= sizeof(*ei)) {
804 			ei = btrfs_item_ptr(leaf, path->slots[0],
805 					    struct btrfs_extent_item);
806 			num_refs = btrfs_extent_refs(leaf, ei);
807 			extent_flags = btrfs_extent_flags(leaf, ei);
808 		} else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 			struct btrfs_extent_item_v0 *ei0;
811 			BUG_ON(item_size != sizeof(*ei0));
812 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 					     struct btrfs_extent_item_v0);
814 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 			/* FIXME: this isn't correct for data */
816 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 			BUG();
819 #endif
820 		}
821 		BUG_ON(num_refs == 0);
822 	} else {
823 		num_refs = 0;
824 		extent_flags = 0;
825 		ret = 0;
826 	}
827 
828 	if (!trans)
829 		goto out;
830 
831 	delayed_refs = &trans->transaction->delayed_refs;
832 	spin_lock(&delayed_refs->lock);
833 	head = btrfs_find_delayed_ref_head(trans, bytenr);
834 	if (head) {
835 		if (!mutex_trylock(&head->mutex)) {
836 			atomic_inc(&head->node.refs);
837 			spin_unlock(&delayed_refs->lock);
838 
839 			btrfs_release_path(path);
840 
841 			/*
842 			 * Mutex was contended, block until it's released and try
843 			 * again
844 			 */
845 			mutex_lock(&head->mutex);
846 			mutex_unlock(&head->mutex);
847 			btrfs_put_delayed_ref(&head->node);
848 			goto search_again;
849 		}
850 		spin_lock(&head->lock);
851 		if (head->extent_op && head->extent_op->update_flags)
852 			extent_flags |= head->extent_op->flags_to_set;
853 		else
854 			BUG_ON(num_refs == 0);
855 
856 		num_refs += head->node.ref_mod;
857 		spin_unlock(&head->lock);
858 		mutex_unlock(&head->mutex);
859 	}
860 	spin_unlock(&delayed_refs->lock);
861 out:
862 	WARN_ON(num_refs == 0);
863 	if (refs)
864 		*refs = num_refs;
865 	if (flags)
866 		*flags = extent_flags;
867 out_free:
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 /*
873  * Back reference rules.  Back refs have three main goals:
874  *
875  * 1) differentiate between all holders of references to an extent so that
876  *    when a reference is dropped we can make sure it was a valid reference
877  *    before freeing the extent.
878  *
879  * 2) Provide enough information to quickly find the holders of an extent
880  *    if we notice a given block is corrupted or bad.
881  *
882  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883  *    maintenance.  This is actually the same as #2, but with a slightly
884  *    different use case.
885  *
886  * There are two kinds of back refs. The implicit back refs is optimized
887  * for pointers in non-shared tree blocks. For a given pointer in a block,
888  * back refs of this kind provide information about the block's owner tree
889  * and the pointer's key. These information allow us to find the block by
890  * b-tree searching. The full back refs is for pointers in tree blocks not
891  * referenced by their owner trees. The location of tree block is recorded
892  * in the back refs. Actually the full back refs is generic, and can be
893  * used in all cases the implicit back refs is used. The major shortcoming
894  * of the full back refs is its overhead. Every time a tree block gets
895  * COWed, we have to update back refs entry for all pointers in it.
896  *
897  * For a newly allocated tree block, we use implicit back refs for
898  * pointers in it. This means most tree related operations only involve
899  * implicit back refs. For a tree block created in old transaction, the
900  * only way to drop a reference to it is COW it. So we can detect the
901  * event that tree block loses its owner tree's reference and do the
902  * back refs conversion.
903  *
904  * When a tree block is COW'd through a tree, there are four cases:
905  *
906  * The reference count of the block is one and the tree is the block's
907  * owner tree. Nothing to do in this case.
908  *
909  * The reference count of the block is one and the tree is not the
910  * block's owner tree. In this case, full back refs is used for pointers
911  * in the block. Remove these full back refs, add implicit back refs for
912  * every pointers in the new block.
913  *
914  * The reference count of the block is greater than one and the tree is
915  * the block's owner tree. In this case, implicit back refs is used for
916  * pointers in the block. Add full back refs for every pointers in the
917  * block, increase lower level extents' reference counts. The original
918  * implicit back refs are entailed to the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * not the block's owner tree. Add implicit back refs for every pointer in
922  * the new block, increase lower level extents' reference count.
923  *
924  * Back Reference Key composing:
925  *
926  * The key objectid corresponds to the first byte in the extent,
927  * The key type is used to differentiate between types of back refs.
928  * There are different meanings of the key offset for different types
929  * of back refs.
930  *
931  * File extents can be referenced by:
932  *
933  * - multiple snapshots, subvolumes, or different generations in one subvol
934  * - different files inside a single subvolume
935  * - different offsets inside a file (bookend extents in file.c)
936  *
937  * The extent ref structure for the implicit back refs has fields for:
938  *
939  * - Objectid of the subvolume root
940  * - objectid of the file holding the reference
941  * - original offset in the file
942  * - how many bookend extents
943  *
944  * The key offset for the implicit back refs is hash of the first
945  * three fields.
946  *
947  * The extent ref structure for the full back refs has field for:
948  *
949  * - number of pointers in the tree leaf
950  *
951  * The key offset for the implicit back refs is the first byte of
952  * the tree leaf
953  *
954  * When a file extent is allocated, The implicit back refs is used.
955  * the fields are filled in:
956  *
957  *     (root_key.objectid, inode objectid, offset in file, 1)
958  *
959  * When a file extent is removed file truncation, we find the
960  * corresponding implicit back refs and check the following fields:
961  *
962  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
963  *
964  * Btree extents can be referenced by:
965  *
966  * - Different subvolumes
967  *
968  * Both the implicit back refs and the full back refs for tree blocks
969  * only consist of key. The key offset for the implicit back refs is
970  * objectid of block's owner tree. The key offset for the full back refs
971  * is the first byte of parent block.
972  *
973  * When implicit back refs is used, information about the lowest key and
974  * level of the tree block are required. These information are stored in
975  * tree block info structure.
976  */
977 
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  u64 owner, u32 extra_size)
983 {
984 	struct btrfs_extent_item *item;
985 	struct btrfs_extent_item_v0 *ei0;
986 	struct btrfs_extent_ref_v0 *ref0;
987 	struct btrfs_tree_block_info *bi;
988 	struct extent_buffer *leaf;
989 	struct btrfs_key key;
990 	struct btrfs_key found_key;
991 	u32 new_size = sizeof(*item);
992 	u64 refs;
993 	int ret;
994 
995 	leaf = path->nodes[0];
996 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997 
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 			     struct btrfs_extent_item_v0);
1001 	refs = btrfs_extent_refs_v0(leaf, ei0);
1002 
1003 	if (owner == (u64)-1) {
1004 		while (1) {
1005 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 				ret = btrfs_next_leaf(root, path);
1007 				if (ret < 0)
1008 					return ret;
1009 				BUG_ON(ret > 0); /* Corruption */
1010 				leaf = path->nodes[0];
1011 			}
1012 			btrfs_item_key_to_cpu(leaf, &found_key,
1013 					      path->slots[0]);
1014 			BUG_ON(key.objectid != found_key.objectid);
1015 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 				path->slots[0]++;
1017 				continue;
1018 			}
1019 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 					      struct btrfs_extent_ref_v0);
1021 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 			break;
1023 		}
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 		new_size += sizeof(*bi);
1029 
1030 	new_size -= sizeof(*ei0);
1031 	ret = btrfs_search_slot(trans, root, &key, path,
1032 				new_size + extra_size, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 	BUG_ON(ret); /* Corruption */
1036 
1037 	btrfs_extend_item(root, path, new_size);
1038 
1039 	leaf = path->nodes[0];
1040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 	btrfs_set_extent_refs(leaf, item, refs);
1042 	/* FIXME: get real generation */
1043 	btrfs_set_extent_generation(leaf, item, 0);
1044 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 		btrfs_set_extent_flags(leaf, item,
1046 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 		bi = (struct btrfs_tree_block_info *)(item + 1);
1049 		/* FIXME: get first key of the block */
1050 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 	} else {
1053 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 	}
1055 	btrfs_mark_buffer_dirty(leaf);
1056 	return 0;
1057 }
1058 #endif
1059 
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	u32 high_crc = ~(u32)0;
1063 	u32 low_crc = ~(u32)0;
1064 	__le64 lenum;
1065 
1066 	lenum = cpu_to_le64(root_objectid);
1067 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 	lenum = cpu_to_le64(owner);
1069 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 	lenum = cpu_to_le64(offset);
1071 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 
1073 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075 
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 				     struct btrfs_extent_data_ref *ref)
1078 {
1079 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 				    btrfs_extent_data_ref_objectid(leaf, ref),
1081 				    btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083 
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 				 struct btrfs_extent_data_ref *ref,
1086 				 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 		return 0;
1092 	return 1;
1093 }
1094 
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 					   struct btrfs_root *root,
1097 					   struct btrfs_path *path,
1098 					   u64 bytenr, u64 parent,
1099 					   u64 root_objectid,
1100 					   u64 owner, u64 offset)
1101 {
1102 	struct btrfs_key key;
1103 	struct btrfs_extent_data_ref *ref;
1104 	struct extent_buffer *leaf;
1105 	u32 nritems;
1106 	int ret;
1107 	int recow;
1108 	int err = -ENOENT;
1109 
1110 	key.objectid = bytenr;
1111 	if (parent) {
1112 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 		key.offset = parent;
1114 	} else {
1115 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 		key.offset = hash_extent_data_ref(root_objectid,
1117 						  owner, offset);
1118 	}
1119 again:
1120 	recow = 0;
1121 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 	if (ret < 0) {
1123 		err = ret;
1124 		goto fail;
1125 	}
1126 
1127 	if (parent) {
1128 		if (!ret)
1129 			return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 		btrfs_release_path(path);
1133 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 		if (ret < 0) {
1135 			err = ret;
1136 			goto fail;
1137 		}
1138 		if (!ret)
1139 			return 0;
1140 #endif
1141 		goto fail;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	nritems = btrfs_header_nritems(leaf);
1146 	while (1) {
1147 		if (path->slots[0] >= nritems) {
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret < 0)
1150 				err = ret;
1151 			if (ret)
1152 				goto fail;
1153 
1154 			leaf = path->nodes[0];
1155 			nritems = btrfs_header_nritems(leaf);
1156 			recow = 1;
1157 		}
1158 
1159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 		if (key.objectid != bytenr ||
1161 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 			goto fail;
1163 
1164 		ref = btrfs_item_ptr(leaf, path->slots[0],
1165 				     struct btrfs_extent_data_ref);
1166 
1167 		if (match_extent_data_ref(leaf, ref, root_objectid,
1168 					  owner, offset)) {
1169 			if (recow) {
1170 				btrfs_release_path(path);
1171 				goto again;
1172 			}
1173 			err = 0;
1174 			break;
1175 		}
1176 		path->slots[0]++;
1177 	}
1178 fail:
1179 	return err;
1180 }
1181 
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 					   struct btrfs_root *root,
1184 					   struct btrfs_path *path,
1185 					   u64 bytenr, u64 parent,
1186 					   u64 root_objectid, u64 owner,
1187 					   u64 offset, int refs_to_add)
1188 {
1189 	struct btrfs_key key;
1190 	struct extent_buffer *leaf;
1191 	u32 size;
1192 	u32 num_refs;
1193 	int ret;
1194 
1195 	key.objectid = bytenr;
1196 	if (parent) {
1197 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 		key.offset = parent;
1199 		size = sizeof(struct btrfs_shared_data_ref);
1200 	} else {
1201 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 		key.offset = hash_extent_data_ref(root_objectid,
1203 						  owner, offset);
1204 		size = sizeof(struct btrfs_extent_data_ref);
1205 	}
1206 
1207 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 	if (ret && ret != -EEXIST)
1209 		goto fail;
1210 
1211 	leaf = path->nodes[0];
1212 	if (parent) {
1213 		struct btrfs_shared_data_ref *ref;
1214 		ref = btrfs_item_ptr(leaf, path->slots[0],
1215 				     struct btrfs_shared_data_ref);
1216 		if (ret == 0) {
1217 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 		} else {
1219 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 			num_refs += refs_to_add;
1221 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 		}
1223 	} else {
1224 		struct btrfs_extent_data_ref *ref;
1225 		while (ret == -EEXIST) {
1226 			ref = btrfs_item_ptr(leaf, path->slots[0],
1227 					     struct btrfs_extent_data_ref);
1228 			if (match_extent_data_ref(leaf, ref, root_objectid,
1229 						  owner, offset))
1230 				break;
1231 			btrfs_release_path(path);
1232 			key.offset++;
1233 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 						      size);
1235 			if (ret && ret != -EEXIST)
1236 				goto fail;
1237 
1238 			leaf = path->nodes[0];
1239 		}
1240 		ref = btrfs_item_ptr(leaf, path->slots[0],
1241 				     struct btrfs_extent_data_ref);
1242 		if (ret == 0) {
1243 			btrfs_set_extent_data_ref_root(leaf, ref,
1244 						       root_objectid);
1245 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 		} else {
1249 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 			num_refs += refs_to_add;
1251 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 		}
1253 	}
1254 	btrfs_mark_buffer_dirty(leaf);
1255 	ret = 0;
1256 fail:
1257 	btrfs_release_path(path);
1258 	return ret;
1259 }
1260 
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   int refs_to_drop, int *last_ref)
1265 {
1266 	struct btrfs_key key;
1267 	struct btrfs_extent_data_ref *ref1 = NULL;
1268 	struct btrfs_shared_data_ref *ref2 = NULL;
1269 	struct extent_buffer *leaf;
1270 	u32 num_refs = 0;
1271 	int ret = 0;
1272 
1273 	leaf = path->nodes[0];
1274 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275 
1276 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 				      struct btrfs_extent_data_ref);
1279 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 				      struct btrfs_shared_data_ref);
1283 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 		struct btrfs_extent_ref_v0 *ref0;
1287 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_ref_v0);
1289 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 	} else {
1292 		BUG();
1293 	}
1294 
1295 	BUG_ON(num_refs < refs_to_drop);
1296 	num_refs -= refs_to_drop;
1297 
1298 	if (num_refs == 0) {
1299 		ret = btrfs_del_item(trans, root, path);
1300 		*last_ref = 1;
1301 	} else {
1302 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 		else {
1308 			struct btrfs_extent_ref_v0 *ref0;
1309 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 					struct btrfs_extent_ref_v0);
1311 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 		}
1313 #endif
1314 		btrfs_mark_buffer_dirty(leaf);
1315 	}
1316 	return ret;
1317 }
1318 
1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1320 					  struct btrfs_extent_inline_ref *iref)
1321 {
1322 	struct btrfs_key key;
1323 	struct extent_buffer *leaf;
1324 	struct btrfs_extent_data_ref *ref1;
1325 	struct btrfs_shared_data_ref *ref2;
1326 	u32 num_refs = 0;
1327 
1328 	leaf = path->nodes[0];
1329 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 	if (iref) {
1331 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 		    BTRFS_EXTENT_DATA_REF_KEY) {
1333 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 		} else {
1336 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 		}
1339 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 				      struct btrfs_extent_data_ref);
1342 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 				      struct btrfs_shared_data_ref);
1346 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 		struct btrfs_extent_ref_v0 *ref0;
1350 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_ref_v0);
1352 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 	} else {
1355 		WARN_ON(1);
1356 	}
1357 	return num_refs;
1358 }
1359 
1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 					  struct btrfs_root *root,
1362 					  struct btrfs_path *path,
1363 					  u64 bytenr, u64 parent,
1364 					  u64 root_objectid)
1365 {
1366 	struct btrfs_key key;
1367 	int ret;
1368 
1369 	key.objectid = bytenr;
1370 	if (parent) {
1371 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 		key.offset = parent;
1373 	} else {
1374 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 		key.offset = root_objectid;
1376 	}
1377 
1378 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 	if (ret > 0)
1380 		ret = -ENOENT;
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 	if (ret == -ENOENT && parent) {
1383 		btrfs_release_path(path);
1384 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 		if (ret > 0)
1387 			ret = -ENOENT;
1388 	}
1389 #endif
1390 	return ret;
1391 }
1392 
1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 					  struct btrfs_root *root,
1395 					  struct btrfs_path *path,
1396 					  u64 bytenr, u64 parent,
1397 					  u64 root_objectid)
1398 {
1399 	struct btrfs_key key;
1400 	int ret;
1401 
1402 	key.objectid = bytenr;
1403 	if (parent) {
1404 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 		key.offset = parent;
1406 	} else {
1407 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 		key.offset = root_objectid;
1409 	}
1410 
1411 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1412 	btrfs_release_path(path);
1413 	return ret;
1414 }
1415 
1416 static inline int extent_ref_type(u64 parent, u64 owner)
1417 {
1418 	int type;
1419 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 		if (parent > 0)
1421 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 		else
1423 			type = BTRFS_TREE_BLOCK_REF_KEY;
1424 	} else {
1425 		if (parent > 0)
1426 			type = BTRFS_SHARED_DATA_REF_KEY;
1427 		else
1428 			type = BTRFS_EXTENT_DATA_REF_KEY;
1429 	}
1430 	return type;
1431 }
1432 
1433 static int find_next_key(struct btrfs_path *path, int level,
1434 			 struct btrfs_key *key)
1435 
1436 {
1437 	for (; level < BTRFS_MAX_LEVEL; level++) {
1438 		if (!path->nodes[level])
1439 			break;
1440 		if (path->slots[level] + 1 >=
1441 		    btrfs_header_nritems(path->nodes[level]))
1442 			continue;
1443 		if (level == 0)
1444 			btrfs_item_key_to_cpu(path->nodes[level], key,
1445 					      path->slots[level] + 1);
1446 		else
1447 			btrfs_node_key_to_cpu(path->nodes[level], key,
1448 					      path->slots[level] + 1);
1449 		return 0;
1450 	}
1451 	return 1;
1452 }
1453 
1454 /*
1455  * look for inline back ref. if back ref is found, *ref_ret is set
1456  * to the address of inline back ref, and 0 is returned.
1457  *
1458  * if back ref isn't found, *ref_ret is set to the address where it
1459  * should be inserted, and -ENOENT is returned.
1460  *
1461  * if insert is true and there are too many inline back refs, the path
1462  * points to the extent item, and -EAGAIN is returned.
1463  *
1464  * NOTE: inline back refs are ordered in the same way that back ref
1465  *	 items in the tree are ordered.
1466  */
1467 static noinline_for_stack
1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 				 struct btrfs_root *root,
1470 				 struct btrfs_path *path,
1471 				 struct btrfs_extent_inline_ref **ref_ret,
1472 				 u64 bytenr, u64 num_bytes,
1473 				 u64 parent, u64 root_objectid,
1474 				 u64 owner, u64 offset, int insert)
1475 {
1476 	struct btrfs_key key;
1477 	struct extent_buffer *leaf;
1478 	struct btrfs_extent_item *ei;
1479 	struct btrfs_extent_inline_ref *iref;
1480 	u64 flags;
1481 	u64 item_size;
1482 	unsigned long ptr;
1483 	unsigned long end;
1484 	int extra_size;
1485 	int type;
1486 	int want;
1487 	int ret;
1488 	int err = 0;
1489 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 						 SKINNY_METADATA);
1491 
1492 	key.objectid = bytenr;
1493 	key.type = BTRFS_EXTENT_ITEM_KEY;
1494 	key.offset = num_bytes;
1495 
1496 	want = extent_ref_type(parent, owner);
1497 	if (insert) {
1498 		extra_size = btrfs_extent_inline_ref_size(want);
1499 		path->keep_locks = 1;
1500 	} else
1501 		extra_size = -1;
1502 
1503 	/*
1504 	 * Owner is our parent level, so we can just add one to get the level
1505 	 * for the block we are interested in.
1506 	 */
1507 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 		key.type = BTRFS_METADATA_ITEM_KEY;
1509 		key.offset = owner;
1510 	}
1511 
1512 again:
1513 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1514 	if (ret < 0) {
1515 		err = ret;
1516 		goto out;
1517 	}
1518 
1519 	/*
1520 	 * We may be a newly converted file system which still has the old fat
1521 	 * extent entries for metadata, so try and see if we have one of those.
1522 	 */
1523 	if (ret > 0 && skinny_metadata) {
1524 		skinny_metadata = false;
1525 		if (path->slots[0]) {
1526 			path->slots[0]--;
1527 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 					      path->slots[0]);
1529 			if (key.objectid == bytenr &&
1530 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 			    key.offset == num_bytes)
1532 				ret = 0;
1533 		}
1534 		if (ret) {
1535 			key.objectid = bytenr;
1536 			key.type = BTRFS_EXTENT_ITEM_KEY;
1537 			key.offset = num_bytes;
1538 			btrfs_release_path(path);
1539 			goto again;
1540 		}
1541 	}
1542 
1543 	if (ret && !insert) {
1544 		err = -ENOENT;
1545 		goto out;
1546 	} else if (WARN_ON(ret)) {
1547 		err = -EIO;
1548 		goto out;
1549 	}
1550 
1551 	leaf = path->nodes[0];
1552 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 	if (item_size < sizeof(*ei)) {
1555 		if (!insert) {
1556 			err = -ENOENT;
1557 			goto out;
1558 		}
1559 		ret = convert_extent_item_v0(trans, root, path, owner,
1560 					     extra_size);
1561 		if (ret < 0) {
1562 			err = ret;
1563 			goto out;
1564 		}
1565 		leaf = path->nodes[0];
1566 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 	}
1568 #endif
1569 	BUG_ON(item_size < sizeof(*ei));
1570 
1571 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 	flags = btrfs_extent_flags(leaf, ei);
1573 
1574 	ptr = (unsigned long)(ei + 1);
1575 	end = (unsigned long)ei + item_size;
1576 
1577 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1578 		ptr += sizeof(struct btrfs_tree_block_info);
1579 		BUG_ON(ptr > end);
1580 	}
1581 
1582 	err = -ENOENT;
1583 	while (1) {
1584 		if (ptr >= end) {
1585 			WARN_ON(ptr > end);
1586 			break;
1587 		}
1588 		iref = (struct btrfs_extent_inline_ref *)ptr;
1589 		type = btrfs_extent_inline_ref_type(leaf, iref);
1590 		if (want < type)
1591 			break;
1592 		if (want > type) {
1593 			ptr += btrfs_extent_inline_ref_size(type);
1594 			continue;
1595 		}
1596 
1597 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 			struct btrfs_extent_data_ref *dref;
1599 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 			if (match_extent_data_ref(leaf, dref, root_objectid,
1601 						  owner, offset)) {
1602 				err = 0;
1603 				break;
1604 			}
1605 			if (hash_extent_data_ref_item(leaf, dref) <
1606 			    hash_extent_data_ref(root_objectid, owner, offset))
1607 				break;
1608 		} else {
1609 			u64 ref_offset;
1610 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 			if (parent > 0) {
1612 				if (parent == ref_offset) {
1613 					err = 0;
1614 					break;
1615 				}
1616 				if (ref_offset < parent)
1617 					break;
1618 			} else {
1619 				if (root_objectid == ref_offset) {
1620 					err = 0;
1621 					break;
1622 				}
1623 				if (ref_offset < root_objectid)
1624 					break;
1625 			}
1626 		}
1627 		ptr += btrfs_extent_inline_ref_size(type);
1628 	}
1629 	if (err == -ENOENT && insert) {
1630 		if (item_size + extra_size >=
1631 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 			err = -EAGAIN;
1633 			goto out;
1634 		}
1635 		/*
1636 		 * To add new inline back ref, we have to make sure
1637 		 * there is no corresponding back ref item.
1638 		 * For simplicity, we just do not add new inline back
1639 		 * ref if there is any kind of item for this block
1640 		 */
1641 		if (find_next_key(path, 0, &key) == 0 &&
1642 		    key.objectid == bytenr &&
1643 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1644 			err = -EAGAIN;
1645 			goto out;
1646 		}
1647 	}
1648 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649 out:
1650 	if (insert) {
1651 		path->keep_locks = 0;
1652 		btrfs_unlock_up_safe(path, 1);
1653 	}
1654 	return err;
1655 }
1656 
1657 /*
1658  * helper to add new inline back ref
1659  */
1660 static noinline_for_stack
1661 void setup_inline_extent_backref(struct btrfs_root *root,
1662 				 struct btrfs_path *path,
1663 				 struct btrfs_extent_inline_ref *iref,
1664 				 u64 parent, u64 root_objectid,
1665 				 u64 owner, u64 offset, int refs_to_add,
1666 				 struct btrfs_delayed_extent_op *extent_op)
1667 {
1668 	struct extent_buffer *leaf;
1669 	struct btrfs_extent_item *ei;
1670 	unsigned long ptr;
1671 	unsigned long end;
1672 	unsigned long item_offset;
1673 	u64 refs;
1674 	int size;
1675 	int type;
1676 
1677 	leaf = path->nodes[0];
1678 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 	item_offset = (unsigned long)iref - (unsigned long)ei;
1680 
1681 	type = extent_ref_type(parent, owner);
1682 	size = btrfs_extent_inline_ref_size(type);
1683 
1684 	btrfs_extend_item(root, path, size);
1685 
1686 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 	refs = btrfs_extent_refs(leaf, ei);
1688 	refs += refs_to_add;
1689 	btrfs_set_extent_refs(leaf, ei, refs);
1690 	if (extent_op)
1691 		__run_delayed_extent_op(extent_op, leaf, ei);
1692 
1693 	ptr = (unsigned long)ei + item_offset;
1694 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 	if (ptr < end - size)
1696 		memmove_extent_buffer(leaf, ptr + size, ptr,
1697 				      end - size - ptr);
1698 
1699 	iref = (struct btrfs_extent_inline_ref *)ptr;
1700 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 		struct btrfs_extent_data_ref *dref;
1703 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 		struct btrfs_shared_data_ref *sref;
1710 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 	}
1718 	btrfs_mark_buffer_dirty(leaf);
1719 }
1720 
1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 				 struct btrfs_root *root,
1723 				 struct btrfs_path *path,
1724 				 struct btrfs_extent_inline_ref **ref_ret,
1725 				 u64 bytenr, u64 num_bytes, u64 parent,
1726 				 u64 root_objectid, u64 owner, u64 offset)
1727 {
1728 	int ret;
1729 
1730 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 					   bytenr, num_bytes, parent,
1732 					   root_objectid, owner, offset, 0);
1733 	if (ret != -ENOENT)
1734 		return ret;
1735 
1736 	btrfs_release_path(path);
1737 	*ref_ret = NULL;
1738 
1739 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 					    root_objectid);
1742 	} else {
1743 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 					     root_objectid, owner, offset);
1745 	}
1746 	return ret;
1747 }
1748 
1749 /*
1750  * helper to update/remove inline back ref
1751  */
1752 static noinline_for_stack
1753 void update_inline_extent_backref(struct btrfs_root *root,
1754 				  struct btrfs_path *path,
1755 				  struct btrfs_extent_inline_ref *iref,
1756 				  int refs_to_mod,
1757 				  struct btrfs_delayed_extent_op *extent_op,
1758 				  int *last_ref)
1759 {
1760 	struct extent_buffer *leaf;
1761 	struct btrfs_extent_item *ei;
1762 	struct btrfs_extent_data_ref *dref = NULL;
1763 	struct btrfs_shared_data_ref *sref = NULL;
1764 	unsigned long ptr;
1765 	unsigned long end;
1766 	u32 item_size;
1767 	int size;
1768 	int type;
1769 	u64 refs;
1770 
1771 	leaf = path->nodes[0];
1772 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 	refs = btrfs_extent_refs(leaf, ei);
1774 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 	refs += refs_to_mod;
1776 	btrfs_set_extent_refs(leaf, ei, refs);
1777 	if (extent_op)
1778 		__run_delayed_extent_op(extent_op, leaf, ei);
1779 
1780 	type = btrfs_extent_inline_ref_type(leaf, iref);
1781 
1782 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 		refs = btrfs_extent_data_ref_count(leaf, dref);
1785 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 		refs = btrfs_shared_data_ref_count(leaf, sref);
1788 	} else {
1789 		refs = 1;
1790 		BUG_ON(refs_to_mod != -1);
1791 	}
1792 
1793 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 	refs += refs_to_mod;
1795 
1796 	if (refs > 0) {
1797 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 		else
1800 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 	} else {
1802 		*last_ref = 1;
1803 		size =  btrfs_extent_inline_ref_size(type);
1804 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 		ptr = (unsigned long)iref;
1806 		end = (unsigned long)ei + item_size;
1807 		if (ptr + size < end)
1808 			memmove_extent_buffer(leaf, ptr, ptr + size,
1809 					      end - ptr - size);
1810 		item_size -= size;
1811 		btrfs_truncate_item(root, path, item_size, 1);
1812 	}
1813 	btrfs_mark_buffer_dirty(leaf);
1814 }
1815 
1816 static noinline_for_stack
1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 				 struct btrfs_root *root,
1819 				 struct btrfs_path *path,
1820 				 u64 bytenr, u64 num_bytes, u64 parent,
1821 				 u64 root_objectid, u64 owner,
1822 				 u64 offset, int refs_to_add,
1823 				 struct btrfs_delayed_extent_op *extent_op)
1824 {
1825 	struct btrfs_extent_inline_ref *iref;
1826 	int ret;
1827 
1828 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 					   bytenr, num_bytes, parent,
1830 					   root_objectid, owner, offset, 1);
1831 	if (ret == 0) {
1832 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1833 		update_inline_extent_backref(root, path, iref,
1834 					     refs_to_add, extent_op, NULL);
1835 	} else if (ret == -ENOENT) {
1836 		setup_inline_extent_backref(root, path, iref, parent,
1837 					    root_objectid, owner, offset,
1838 					    refs_to_add, extent_op);
1839 		ret = 0;
1840 	}
1841 	return ret;
1842 }
1843 
1844 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 				 struct btrfs_root *root,
1846 				 struct btrfs_path *path,
1847 				 u64 bytenr, u64 parent, u64 root_objectid,
1848 				 u64 owner, u64 offset, int refs_to_add)
1849 {
1850 	int ret;
1851 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 		BUG_ON(refs_to_add != 1);
1853 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 					    parent, root_objectid);
1855 	} else {
1856 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 					     parent, root_objectid,
1858 					     owner, offset, refs_to_add);
1859 	}
1860 	return ret;
1861 }
1862 
1863 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 				 struct btrfs_root *root,
1865 				 struct btrfs_path *path,
1866 				 struct btrfs_extent_inline_ref *iref,
1867 				 int refs_to_drop, int is_data, int *last_ref)
1868 {
1869 	int ret = 0;
1870 
1871 	BUG_ON(!is_data && refs_to_drop != 1);
1872 	if (iref) {
1873 		update_inline_extent_backref(root, path, iref,
1874 					     -refs_to_drop, NULL, last_ref);
1875 	} else if (is_data) {
1876 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 					     last_ref);
1878 	} else {
1879 		*last_ref = 1;
1880 		ret = btrfs_del_item(trans, root, path);
1881 	}
1882 	return ret;
1883 }
1884 
1885 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 			       u64 *discarded_bytes)
1888 {
1889 	int j, ret = 0;
1890 	u64 bytes_left, end;
1891 	u64 aligned_start = ALIGN(start, 1 << 9);
1892 
1893 	if (WARN_ON(start != aligned_start)) {
1894 		len -= aligned_start - start;
1895 		len = round_down(len, 1 << 9);
1896 		start = aligned_start;
1897 	}
1898 
1899 	*discarded_bytes = 0;
1900 
1901 	if (!len)
1902 		return 0;
1903 
1904 	end = start + len;
1905 	bytes_left = len;
1906 
1907 	/* Skip any superblocks on this device. */
1908 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 		u64 sb_start = btrfs_sb_offset(j);
1910 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 		u64 size = sb_start - start;
1912 
1913 		if (!in_range(sb_start, start, bytes_left) &&
1914 		    !in_range(sb_end, start, bytes_left) &&
1915 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 			continue;
1917 
1918 		/*
1919 		 * Superblock spans beginning of range.  Adjust start and
1920 		 * try again.
1921 		 */
1922 		if (sb_start <= start) {
1923 			start += sb_end - start;
1924 			if (start > end) {
1925 				bytes_left = 0;
1926 				break;
1927 			}
1928 			bytes_left = end - start;
1929 			continue;
1930 		}
1931 
1932 		if (size) {
1933 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 						   GFP_NOFS, 0);
1935 			if (!ret)
1936 				*discarded_bytes += size;
1937 			else if (ret != -EOPNOTSUPP)
1938 				return ret;
1939 		}
1940 
1941 		start = sb_end;
1942 		if (start > end) {
1943 			bytes_left = 0;
1944 			break;
1945 		}
1946 		bytes_left = end - start;
1947 	}
1948 
1949 	if (bytes_left) {
1950 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1951 					   GFP_NOFS, 0);
1952 		if (!ret)
1953 			*discarded_bytes += bytes_left;
1954 	}
1955 	return ret;
1956 }
1957 
1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 			 u64 num_bytes, u64 *actual_bytes)
1960 {
1961 	int ret;
1962 	u64 discarded_bytes = 0;
1963 	struct btrfs_bio *bbio = NULL;
1964 
1965 
1966 	/* Tell the block device(s) that the sectors can be discarded */
1967 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1968 			      bytenr, &num_bytes, &bbio, 0);
1969 	/* Error condition is -ENOMEM */
1970 	if (!ret) {
1971 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1972 		int i;
1973 
1974 
1975 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1976 			u64 bytes;
1977 			if (!stripe->dev->can_discard)
1978 				continue;
1979 
1980 			ret = btrfs_issue_discard(stripe->dev->bdev,
1981 						  stripe->physical,
1982 						  stripe->length,
1983 						  &bytes);
1984 			if (!ret)
1985 				discarded_bytes += bytes;
1986 			else if (ret != -EOPNOTSUPP)
1987 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1988 
1989 			/*
1990 			 * Just in case we get back EOPNOTSUPP for some reason,
1991 			 * just ignore the return value so we don't screw up
1992 			 * people calling discard_extent.
1993 			 */
1994 			ret = 0;
1995 		}
1996 		btrfs_put_bbio(bbio);
1997 	}
1998 
1999 	if (actual_bytes)
2000 		*actual_bytes = discarded_bytes;
2001 
2002 
2003 	if (ret == -EOPNOTSUPP)
2004 		ret = 0;
2005 	return ret;
2006 }
2007 
2008 /* Can return -ENOMEM */
2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 			 struct btrfs_root *root,
2011 			 u64 bytenr, u64 num_bytes, u64 parent,
2012 			 u64 root_objectid, u64 owner, u64 offset,
2013 			 int no_quota)
2014 {
2015 	int ret;
2016 	struct btrfs_fs_info *fs_info = root->fs_info;
2017 
2018 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020 
2021 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2022 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 					num_bytes,
2024 					parent, root_objectid, (int)owner,
2025 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2026 	} else {
2027 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 					num_bytes,
2029 					parent, root_objectid, owner, offset,
2030 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2031 	}
2032 	return ret;
2033 }
2034 
2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 				  struct btrfs_root *root,
2037 				  struct btrfs_delayed_ref_node *node,
2038 				  u64 parent, u64 root_objectid,
2039 				  u64 owner, u64 offset, int refs_to_add,
2040 				  struct btrfs_delayed_extent_op *extent_op)
2041 {
2042 	struct btrfs_fs_info *fs_info = root->fs_info;
2043 	struct btrfs_path *path;
2044 	struct extent_buffer *leaf;
2045 	struct btrfs_extent_item *item;
2046 	struct btrfs_key key;
2047 	u64 bytenr = node->bytenr;
2048 	u64 num_bytes = node->num_bytes;
2049 	u64 refs;
2050 	int ret;
2051 	int no_quota = node->no_quota;
2052 
2053 	path = btrfs_alloc_path();
2054 	if (!path)
2055 		return -ENOMEM;
2056 
2057 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 		no_quota = 1;
2059 
2060 	path->reada = 1;
2061 	path->leave_spinning = 1;
2062 	/* this will setup the path even if it fails to insert the back ref */
2063 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 					   bytenr, num_bytes, parent,
2065 					   root_objectid, owner, offset,
2066 					   refs_to_add, extent_op);
2067 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2068 		goto out;
2069 
2070 	/*
2071 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 	 * inline extent ref, so just update the reference count and add a
2073 	 * normal backref.
2074 	 */
2075 	leaf = path->nodes[0];
2076 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2077 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 	refs = btrfs_extent_refs(leaf, item);
2079 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 	if (extent_op)
2081 		__run_delayed_extent_op(extent_op, leaf, item);
2082 
2083 	btrfs_mark_buffer_dirty(leaf);
2084 	btrfs_release_path(path);
2085 
2086 	path->reada = 1;
2087 	path->leave_spinning = 1;
2088 	/* now insert the actual backref */
2089 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2090 				    path, bytenr, parent, root_objectid,
2091 				    owner, offset, refs_to_add);
2092 	if (ret)
2093 		btrfs_abort_transaction(trans, root, ret);
2094 out:
2095 	btrfs_free_path(path);
2096 	return ret;
2097 }
2098 
2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 				struct btrfs_root *root,
2101 				struct btrfs_delayed_ref_node *node,
2102 				struct btrfs_delayed_extent_op *extent_op,
2103 				int insert_reserved)
2104 {
2105 	int ret = 0;
2106 	struct btrfs_delayed_data_ref *ref;
2107 	struct btrfs_key ins;
2108 	u64 parent = 0;
2109 	u64 ref_root = 0;
2110 	u64 flags = 0;
2111 
2112 	ins.objectid = node->bytenr;
2113 	ins.offset = node->num_bytes;
2114 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2115 
2116 	ref = btrfs_delayed_node_to_data_ref(node);
2117 	trace_run_delayed_data_ref(node, ref, node->action);
2118 
2119 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 		parent = ref->parent;
2121 	ref_root = ref->root;
2122 
2123 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2124 		if (extent_op)
2125 			flags |= extent_op->flags_to_set;
2126 		ret = alloc_reserved_file_extent(trans, root,
2127 						 parent, ref_root, flags,
2128 						 ref->objectid, ref->offset,
2129 						 &ins, node->ref_mod);
2130 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2131 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2132 					     ref_root, ref->objectid,
2133 					     ref->offset, node->ref_mod,
2134 					     extent_op);
2135 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2136 		ret = __btrfs_free_extent(trans, root, node, parent,
2137 					  ref_root, ref->objectid,
2138 					  ref->offset, node->ref_mod,
2139 					  extent_op);
2140 	} else {
2141 		BUG();
2142 	}
2143 	return ret;
2144 }
2145 
2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 				    struct extent_buffer *leaf,
2148 				    struct btrfs_extent_item *ei)
2149 {
2150 	u64 flags = btrfs_extent_flags(leaf, ei);
2151 	if (extent_op->update_flags) {
2152 		flags |= extent_op->flags_to_set;
2153 		btrfs_set_extent_flags(leaf, ei, flags);
2154 	}
2155 
2156 	if (extent_op->update_key) {
2157 		struct btrfs_tree_block_info *bi;
2158 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 	}
2162 }
2163 
2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 				 struct btrfs_root *root,
2166 				 struct btrfs_delayed_ref_node *node,
2167 				 struct btrfs_delayed_extent_op *extent_op)
2168 {
2169 	struct btrfs_key key;
2170 	struct btrfs_path *path;
2171 	struct btrfs_extent_item *ei;
2172 	struct extent_buffer *leaf;
2173 	u32 item_size;
2174 	int ret;
2175 	int err = 0;
2176 	int metadata = !extent_op->is_data;
2177 
2178 	if (trans->aborted)
2179 		return 0;
2180 
2181 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 		metadata = 0;
2183 
2184 	path = btrfs_alloc_path();
2185 	if (!path)
2186 		return -ENOMEM;
2187 
2188 	key.objectid = node->bytenr;
2189 
2190 	if (metadata) {
2191 		key.type = BTRFS_METADATA_ITEM_KEY;
2192 		key.offset = extent_op->level;
2193 	} else {
2194 		key.type = BTRFS_EXTENT_ITEM_KEY;
2195 		key.offset = node->num_bytes;
2196 	}
2197 
2198 again:
2199 	path->reada = 1;
2200 	path->leave_spinning = 1;
2201 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 				path, 0, 1);
2203 	if (ret < 0) {
2204 		err = ret;
2205 		goto out;
2206 	}
2207 	if (ret > 0) {
2208 		if (metadata) {
2209 			if (path->slots[0] > 0) {
2210 				path->slots[0]--;
2211 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 						      path->slots[0]);
2213 				if (key.objectid == node->bytenr &&
2214 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 				    key.offset == node->num_bytes)
2216 					ret = 0;
2217 			}
2218 			if (ret > 0) {
2219 				btrfs_release_path(path);
2220 				metadata = 0;
2221 
2222 				key.objectid = node->bytenr;
2223 				key.offset = node->num_bytes;
2224 				key.type = BTRFS_EXTENT_ITEM_KEY;
2225 				goto again;
2226 			}
2227 		} else {
2228 			err = -EIO;
2229 			goto out;
2230 		}
2231 	}
2232 
2233 	leaf = path->nodes[0];
2234 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 	if (item_size < sizeof(*ei)) {
2237 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 					     path, (u64)-1, 0);
2239 		if (ret < 0) {
2240 			err = ret;
2241 			goto out;
2242 		}
2243 		leaf = path->nodes[0];
2244 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 	}
2246 #endif
2247 	BUG_ON(item_size < sizeof(*ei));
2248 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 	__run_delayed_extent_op(extent_op, leaf, ei);
2250 
2251 	btrfs_mark_buffer_dirty(leaf);
2252 out:
2253 	btrfs_free_path(path);
2254 	return err;
2255 }
2256 
2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 				struct btrfs_root *root,
2259 				struct btrfs_delayed_ref_node *node,
2260 				struct btrfs_delayed_extent_op *extent_op,
2261 				int insert_reserved)
2262 {
2263 	int ret = 0;
2264 	struct btrfs_delayed_tree_ref *ref;
2265 	struct btrfs_key ins;
2266 	u64 parent = 0;
2267 	u64 ref_root = 0;
2268 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 						 SKINNY_METADATA);
2270 
2271 	ref = btrfs_delayed_node_to_tree_ref(node);
2272 	trace_run_delayed_tree_ref(node, ref, node->action);
2273 
2274 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 		parent = ref->parent;
2276 	ref_root = ref->root;
2277 
2278 	ins.objectid = node->bytenr;
2279 	if (skinny_metadata) {
2280 		ins.offset = ref->level;
2281 		ins.type = BTRFS_METADATA_ITEM_KEY;
2282 	} else {
2283 		ins.offset = node->num_bytes;
2284 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 	}
2286 
2287 	BUG_ON(node->ref_mod != 1);
2288 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2289 		BUG_ON(!extent_op || !extent_op->update_flags);
2290 		ret = alloc_reserved_tree_block(trans, root,
2291 						parent, ref_root,
2292 						extent_op->flags_to_set,
2293 						&extent_op->key,
2294 						ref->level, &ins,
2295 						node->no_quota);
2296 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2297 		ret = __btrfs_inc_extent_ref(trans, root, node,
2298 					     parent, ref_root,
2299 					     ref->level, 0, 1,
2300 					     extent_op);
2301 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2302 		ret = __btrfs_free_extent(trans, root, node,
2303 					  parent, ref_root,
2304 					  ref->level, 0, 1, extent_op);
2305 	} else {
2306 		BUG();
2307 	}
2308 	return ret;
2309 }
2310 
2311 /* helper function to actually process a single delayed ref entry */
2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 			       struct btrfs_root *root,
2314 			       struct btrfs_delayed_ref_node *node,
2315 			       struct btrfs_delayed_extent_op *extent_op,
2316 			       int insert_reserved)
2317 {
2318 	int ret = 0;
2319 
2320 	if (trans->aborted) {
2321 		if (insert_reserved)
2322 			btrfs_pin_extent(root, node->bytenr,
2323 					 node->num_bytes, 1);
2324 		return 0;
2325 	}
2326 
2327 	if (btrfs_delayed_ref_is_head(node)) {
2328 		struct btrfs_delayed_ref_head *head;
2329 		/*
2330 		 * we've hit the end of the chain and we were supposed
2331 		 * to insert this extent into the tree.  But, it got
2332 		 * deleted before we ever needed to insert it, so all
2333 		 * we have to do is clean up the accounting
2334 		 */
2335 		BUG_ON(extent_op);
2336 		head = btrfs_delayed_node_to_head(node);
2337 		trace_run_delayed_ref_head(node, head, node->action);
2338 
2339 		if (insert_reserved) {
2340 			btrfs_pin_extent(root, node->bytenr,
2341 					 node->num_bytes, 1);
2342 			if (head->is_data) {
2343 				ret = btrfs_del_csums(trans, root,
2344 						      node->bytenr,
2345 						      node->num_bytes);
2346 			}
2347 		}
2348 		return ret;
2349 	}
2350 
2351 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2354 					   insert_reserved);
2355 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2356 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2357 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2358 					   insert_reserved);
2359 	else
2360 		BUG();
2361 	return ret;
2362 }
2363 
2364 static inline struct btrfs_delayed_ref_node *
2365 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2366 {
2367 	struct btrfs_delayed_ref_node *ref;
2368 
2369 	if (list_empty(&head->ref_list))
2370 		return NULL;
2371 
2372 	/*
2373 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2374 	 * This is to prevent a ref count from going down to zero, which deletes
2375 	 * the extent item from the extent tree, when there still are references
2376 	 * to add, which would fail because they would not find the extent item.
2377 	 */
2378 	list_for_each_entry(ref, &head->ref_list, list) {
2379 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2380 			return ref;
2381 	}
2382 
2383 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2384 			  list);
2385 }
2386 
2387 /*
2388  * Returns 0 on success or if called with an already aborted transaction.
2389  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2390  */
2391 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2392 					     struct btrfs_root *root,
2393 					     unsigned long nr)
2394 {
2395 	struct btrfs_delayed_ref_root *delayed_refs;
2396 	struct btrfs_delayed_ref_node *ref;
2397 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2398 	struct btrfs_delayed_extent_op *extent_op;
2399 	struct btrfs_fs_info *fs_info = root->fs_info;
2400 	ktime_t start = ktime_get();
2401 	int ret;
2402 	unsigned long count = 0;
2403 	unsigned long actual_count = 0;
2404 	int must_insert_reserved = 0;
2405 
2406 	delayed_refs = &trans->transaction->delayed_refs;
2407 	while (1) {
2408 		if (!locked_ref) {
2409 			if (count >= nr)
2410 				break;
2411 
2412 			spin_lock(&delayed_refs->lock);
2413 			locked_ref = btrfs_select_ref_head(trans);
2414 			if (!locked_ref) {
2415 				spin_unlock(&delayed_refs->lock);
2416 				break;
2417 			}
2418 
2419 			/* grab the lock that says we are going to process
2420 			 * all the refs for this head */
2421 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2422 			spin_unlock(&delayed_refs->lock);
2423 			/*
2424 			 * we may have dropped the spin lock to get the head
2425 			 * mutex lock, and that might have given someone else
2426 			 * time to free the head.  If that's true, it has been
2427 			 * removed from our list and we can move on.
2428 			 */
2429 			if (ret == -EAGAIN) {
2430 				locked_ref = NULL;
2431 				count++;
2432 				continue;
2433 			}
2434 		}
2435 
2436 		spin_lock(&locked_ref->lock);
2437 
2438 		/*
2439 		 * locked_ref is the head node, so we have to go one
2440 		 * node back for any delayed ref updates
2441 		 */
2442 		ref = select_delayed_ref(locked_ref);
2443 
2444 		if (ref && ref->seq &&
2445 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2446 			spin_unlock(&locked_ref->lock);
2447 			btrfs_delayed_ref_unlock(locked_ref);
2448 			spin_lock(&delayed_refs->lock);
2449 			locked_ref->processing = 0;
2450 			delayed_refs->num_heads_ready++;
2451 			spin_unlock(&delayed_refs->lock);
2452 			locked_ref = NULL;
2453 			cond_resched();
2454 			count++;
2455 			continue;
2456 		}
2457 
2458 		/*
2459 		 * record the must insert reserved flag before we
2460 		 * drop the spin lock.
2461 		 */
2462 		must_insert_reserved = locked_ref->must_insert_reserved;
2463 		locked_ref->must_insert_reserved = 0;
2464 
2465 		extent_op = locked_ref->extent_op;
2466 		locked_ref->extent_op = NULL;
2467 
2468 		if (!ref) {
2469 
2470 
2471 			/* All delayed refs have been processed, Go ahead
2472 			 * and send the head node to run_one_delayed_ref,
2473 			 * so that any accounting fixes can happen
2474 			 */
2475 			ref = &locked_ref->node;
2476 
2477 			if (extent_op && must_insert_reserved) {
2478 				btrfs_free_delayed_extent_op(extent_op);
2479 				extent_op = NULL;
2480 			}
2481 
2482 			if (extent_op) {
2483 				spin_unlock(&locked_ref->lock);
2484 				ret = run_delayed_extent_op(trans, root,
2485 							    ref, extent_op);
2486 				btrfs_free_delayed_extent_op(extent_op);
2487 
2488 				if (ret) {
2489 					/*
2490 					 * Need to reset must_insert_reserved if
2491 					 * there was an error so the abort stuff
2492 					 * can cleanup the reserved space
2493 					 * properly.
2494 					 */
2495 					if (must_insert_reserved)
2496 						locked_ref->must_insert_reserved = 1;
2497 					locked_ref->processing = 0;
2498 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2499 					btrfs_delayed_ref_unlock(locked_ref);
2500 					return ret;
2501 				}
2502 				continue;
2503 			}
2504 
2505 			/*
2506 			 * Need to drop our head ref lock and re-aqcuire the
2507 			 * delayed ref lock and then re-check to make sure
2508 			 * nobody got added.
2509 			 */
2510 			spin_unlock(&locked_ref->lock);
2511 			spin_lock(&delayed_refs->lock);
2512 			spin_lock(&locked_ref->lock);
2513 			if (!list_empty(&locked_ref->ref_list) ||
2514 			    locked_ref->extent_op) {
2515 				spin_unlock(&locked_ref->lock);
2516 				spin_unlock(&delayed_refs->lock);
2517 				continue;
2518 			}
2519 			ref->in_tree = 0;
2520 			delayed_refs->num_heads--;
2521 			rb_erase(&locked_ref->href_node,
2522 				 &delayed_refs->href_root);
2523 			spin_unlock(&delayed_refs->lock);
2524 		} else {
2525 			actual_count++;
2526 			ref->in_tree = 0;
2527 			list_del(&ref->list);
2528 		}
2529 		atomic_dec(&delayed_refs->num_entries);
2530 
2531 		if (!btrfs_delayed_ref_is_head(ref)) {
2532 			/*
2533 			 * when we play the delayed ref, also correct the
2534 			 * ref_mod on head
2535 			 */
2536 			switch (ref->action) {
2537 			case BTRFS_ADD_DELAYED_REF:
2538 			case BTRFS_ADD_DELAYED_EXTENT:
2539 				locked_ref->node.ref_mod -= ref->ref_mod;
2540 				break;
2541 			case BTRFS_DROP_DELAYED_REF:
2542 				locked_ref->node.ref_mod += ref->ref_mod;
2543 				break;
2544 			default:
2545 				WARN_ON(1);
2546 			}
2547 		}
2548 		spin_unlock(&locked_ref->lock);
2549 
2550 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2551 					  must_insert_reserved);
2552 
2553 		btrfs_free_delayed_extent_op(extent_op);
2554 		if (ret) {
2555 			locked_ref->processing = 0;
2556 			btrfs_delayed_ref_unlock(locked_ref);
2557 			btrfs_put_delayed_ref(ref);
2558 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2559 			return ret;
2560 		}
2561 
2562 		/*
2563 		 * If this node is a head, that means all the refs in this head
2564 		 * have been dealt with, and we will pick the next head to deal
2565 		 * with, so we must unlock the head and drop it from the cluster
2566 		 * list before we release it.
2567 		 */
2568 		if (btrfs_delayed_ref_is_head(ref)) {
2569 			if (locked_ref->is_data &&
2570 			    locked_ref->total_ref_mod < 0) {
2571 				spin_lock(&delayed_refs->lock);
2572 				delayed_refs->pending_csums -= ref->num_bytes;
2573 				spin_unlock(&delayed_refs->lock);
2574 			}
2575 			btrfs_delayed_ref_unlock(locked_ref);
2576 			locked_ref = NULL;
2577 		}
2578 		btrfs_put_delayed_ref(ref);
2579 		count++;
2580 		cond_resched();
2581 	}
2582 
2583 	/*
2584 	 * We don't want to include ref heads since we can have empty ref heads
2585 	 * and those will drastically skew our runtime down since we just do
2586 	 * accounting, no actual extent tree updates.
2587 	 */
2588 	if (actual_count > 0) {
2589 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2590 		u64 avg;
2591 
2592 		/*
2593 		 * We weigh the current average higher than our current runtime
2594 		 * to avoid large swings in the average.
2595 		 */
2596 		spin_lock(&delayed_refs->lock);
2597 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2598 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2599 		spin_unlock(&delayed_refs->lock);
2600 	}
2601 	return 0;
2602 }
2603 
2604 #ifdef SCRAMBLE_DELAYED_REFS
2605 /*
2606  * Normally delayed refs get processed in ascending bytenr order. This
2607  * correlates in most cases to the order added. To expose dependencies on this
2608  * order, we start to process the tree in the middle instead of the beginning
2609  */
2610 static u64 find_middle(struct rb_root *root)
2611 {
2612 	struct rb_node *n = root->rb_node;
2613 	struct btrfs_delayed_ref_node *entry;
2614 	int alt = 1;
2615 	u64 middle;
2616 	u64 first = 0, last = 0;
2617 
2618 	n = rb_first(root);
2619 	if (n) {
2620 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2621 		first = entry->bytenr;
2622 	}
2623 	n = rb_last(root);
2624 	if (n) {
2625 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 		last = entry->bytenr;
2627 	}
2628 	n = root->rb_node;
2629 
2630 	while (n) {
2631 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2632 		WARN_ON(!entry->in_tree);
2633 
2634 		middle = entry->bytenr;
2635 
2636 		if (alt)
2637 			n = n->rb_left;
2638 		else
2639 			n = n->rb_right;
2640 
2641 		alt = 1 - alt;
2642 	}
2643 	return middle;
2644 }
2645 #endif
2646 
2647 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2648 {
2649 	u64 num_bytes;
2650 
2651 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2652 			     sizeof(struct btrfs_extent_inline_ref));
2653 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2654 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2655 
2656 	/*
2657 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2658 	 * closer to what we're really going to want to ouse.
2659 	 */
2660 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2661 }
2662 
2663 /*
2664  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2665  * would require to store the csums for that many bytes.
2666  */
2667 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2668 {
2669 	u64 csum_size;
2670 	u64 num_csums_per_leaf;
2671 	u64 num_csums;
2672 
2673 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2674 	num_csums_per_leaf = div64_u64(csum_size,
2675 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2676 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2677 	num_csums += num_csums_per_leaf - 1;
2678 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2679 	return num_csums;
2680 }
2681 
2682 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2683 				       struct btrfs_root *root)
2684 {
2685 	struct btrfs_block_rsv *global_rsv;
2686 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2687 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2688 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2689 	u64 num_bytes, num_dirty_bgs_bytes;
2690 	int ret = 0;
2691 
2692 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2693 	num_heads = heads_to_leaves(root, num_heads);
2694 	if (num_heads > 1)
2695 		num_bytes += (num_heads - 1) * root->nodesize;
2696 	num_bytes <<= 1;
2697 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2698 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2699 							     num_dirty_bgs);
2700 	global_rsv = &root->fs_info->global_block_rsv;
2701 
2702 	/*
2703 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2704 	 * wiggle room since running delayed refs can create more delayed refs.
2705 	 */
2706 	if (global_rsv->space_info->full) {
2707 		num_dirty_bgs_bytes <<= 1;
2708 		num_bytes <<= 1;
2709 	}
2710 
2711 	spin_lock(&global_rsv->lock);
2712 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2713 		ret = 1;
2714 	spin_unlock(&global_rsv->lock);
2715 	return ret;
2716 }
2717 
2718 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2719 				       struct btrfs_root *root)
2720 {
2721 	struct btrfs_fs_info *fs_info = root->fs_info;
2722 	u64 num_entries =
2723 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2724 	u64 avg_runtime;
2725 	u64 val;
2726 
2727 	smp_mb();
2728 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2729 	val = num_entries * avg_runtime;
2730 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2731 		return 1;
2732 	if (val >= NSEC_PER_SEC / 2)
2733 		return 2;
2734 
2735 	return btrfs_check_space_for_delayed_refs(trans, root);
2736 }
2737 
2738 struct async_delayed_refs {
2739 	struct btrfs_root *root;
2740 	int count;
2741 	int error;
2742 	int sync;
2743 	struct completion wait;
2744 	struct btrfs_work work;
2745 };
2746 
2747 static void delayed_ref_async_start(struct btrfs_work *work)
2748 {
2749 	struct async_delayed_refs *async;
2750 	struct btrfs_trans_handle *trans;
2751 	int ret;
2752 
2753 	async = container_of(work, struct async_delayed_refs, work);
2754 
2755 	trans = btrfs_join_transaction(async->root);
2756 	if (IS_ERR(trans)) {
2757 		async->error = PTR_ERR(trans);
2758 		goto done;
2759 	}
2760 
2761 	/*
2762 	 * trans->sync means that when we call end_transaciton, we won't
2763 	 * wait on delayed refs
2764 	 */
2765 	trans->sync = true;
2766 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2767 	if (ret)
2768 		async->error = ret;
2769 
2770 	ret = btrfs_end_transaction(trans, async->root);
2771 	if (ret && !async->error)
2772 		async->error = ret;
2773 done:
2774 	if (async->sync)
2775 		complete(&async->wait);
2776 	else
2777 		kfree(async);
2778 }
2779 
2780 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2781 				 unsigned long count, int wait)
2782 {
2783 	struct async_delayed_refs *async;
2784 	int ret;
2785 
2786 	async = kmalloc(sizeof(*async), GFP_NOFS);
2787 	if (!async)
2788 		return -ENOMEM;
2789 
2790 	async->root = root->fs_info->tree_root;
2791 	async->count = count;
2792 	async->error = 0;
2793 	if (wait)
2794 		async->sync = 1;
2795 	else
2796 		async->sync = 0;
2797 	init_completion(&async->wait);
2798 
2799 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2800 			delayed_ref_async_start, NULL, NULL);
2801 
2802 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2803 
2804 	if (wait) {
2805 		wait_for_completion(&async->wait);
2806 		ret = async->error;
2807 		kfree(async);
2808 		return ret;
2809 	}
2810 	return 0;
2811 }
2812 
2813 /*
2814  * this starts processing the delayed reference count updates and
2815  * extent insertions we have queued up so far.  count can be
2816  * 0, which means to process everything in the tree at the start
2817  * of the run (but not newly added entries), or it can be some target
2818  * number you'd like to process.
2819  *
2820  * Returns 0 on success or if called with an aborted transaction
2821  * Returns <0 on error and aborts the transaction
2822  */
2823 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2824 			   struct btrfs_root *root, unsigned long count)
2825 {
2826 	struct rb_node *node;
2827 	struct btrfs_delayed_ref_root *delayed_refs;
2828 	struct btrfs_delayed_ref_head *head;
2829 	int ret;
2830 	int run_all = count == (unsigned long)-1;
2831 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2832 
2833 	/* We'll clean this up in btrfs_cleanup_transaction */
2834 	if (trans->aborted)
2835 		return 0;
2836 
2837 	if (root == root->fs_info->extent_root)
2838 		root = root->fs_info->tree_root;
2839 
2840 	delayed_refs = &trans->transaction->delayed_refs;
2841 	if (count == 0)
2842 		count = atomic_read(&delayed_refs->num_entries) * 2;
2843 
2844 again:
2845 #ifdef SCRAMBLE_DELAYED_REFS
2846 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2847 #endif
2848 	trans->can_flush_pending_bgs = false;
2849 	ret = __btrfs_run_delayed_refs(trans, root, count);
2850 	if (ret < 0) {
2851 		btrfs_abort_transaction(trans, root, ret);
2852 		return ret;
2853 	}
2854 
2855 	if (run_all) {
2856 		if (!list_empty(&trans->new_bgs))
2857 			btrfs_create_pending_block_groups(trans, root);
2858 
2859 		spin_lock(&delayed_refs->lock);
2860 		node = rb_first(&delayed_refs->href_root);
2861 		if (!node) {
2862 			spin_unlock(&delayed_refs->lock);
2863 			goto out;
2864 		}
2865 		count = (unsigned long)-1;
2866 
2867 		while (node) {
2868 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2869 					href_node);
2870 			if (btrfs_delayed_ref_is_head(&head->node)) {
2871 				struct btrfs_delayed_ref_node *ref;
2872 
2873 				ref = &head->node;
2874 				atomic_inc(&ref->refs);
2875 
2876 				spin_unlock(&delayed_refs->lock);
2877 				/*
2878 				 * Mutex was contended, block until it's
2879 				 * released and try again
2880 				 */
2881 				mutex_lock(&head->mutex);
2882 				mutex_unlock(&head->mutex);
2883 
2884 				btrfs_put_delayed_ref(ref);
2885 				cond_resched();
2886 				goto again;
2887 			} else {
2888 				WARN_ON(1);
2889 			}
2890 			node = rb_next(node);
2891 		}
2892 		spin_unlock(&delayed_refs->lock);
2893 		cond_resched();
2894 		goto again;
2895 	}
2896 out:
2897 	assert_qgroups_uptodate(trans);
2898 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
2899 	return 0;
2900 }
2901 
2902 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2903 				struct btrfs_root *root,
2904 				u64 bytenr, u64 num_bytes, u64 flags,
2905 				int level, int is_data)
2906 {
2907 	struct btrfs_delayed_extent_op *extent_op;
2908 	int ret;
2909 
2910 	extent_op = btrfs_alloc_delayed_extent_op();
2911 	if (!extent_op)
2912 		return -ENOMEM;
2913 
2914 	extent_op->flags_to_set = flags;
2915 	extent_op->update_flags = 1;
2916 	extent_op->update_key = 0;
2917 	extent_op->is_data = is_data ? 1 : 0;
2918 	extent_op->level = level;
2919 
2920 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2921 					  num_bytes, extent_op);
2922 	if (ret)
2923 		btrfs_free_delayed_extent_op(extent_op);
2924 	return ret;
2925 }
2926 
2927 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2928 				      struct btrfs_root *root,
2929 				      struct btrfs_path *path,
2930 				      u64 objectid, u64 offset, u64 bytenr)
2931 {
2932 	struct btrfs_delayed_ref_head *head;
2933 	struct btrfs_delayed_ref_node *ref;
2934 	struct btrfs_delayed_data_ref *data_ref;
2935 	struct btrfs_delayed_ref_root *delayed_refs;
2936 	int ret = 0;
2937 
2938 	delayed_refs = &trans->transaction->delayed_refs;
2939 	spin_lock(&delayed_refs->lock);
2940 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2941 	if (!head) {
2942 		spin_unlock(&delayed_refs->lock);
2943 		return 0;
2944 	}
2945 
2946 	if (!mutex_trylock(&head->mutex)) {
2947 		atomic_inc(&head->node.refs);
2948 		spin_unlock(&delayed_refs->lock);
2949 
2950 		btrfs_release_path(path);
2951 
2952 		/*
2953 		 * Mutex was contended, block until it's released and let
2954 		 * caller try again
2955 		 */
2956 		mutex_lock(&head->mutex);
2957 		mutex_unlock(&head->mutex);
2958 		btrfs_put_delayed_ref(&head->node);
2959 		return -EAGAIN;
2960 	}
2961 	spin_unlock(&delayed_refs->lock);
2962 
2963 	spin_lock(&head->lock);
2964 	list_for_each_entry(ref, &head->ref_list, list) {
2965 		/* If it's a shared ref we know a cross reference exists */
2966 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2967 			ret = 1;
2968 			break;
2969 		}
2970 
2971 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2972 
2973 		/*
2974 		 * If our ref doesn't match the one we're currently looking at
2975 		 * then we have a cross reference.
2976 		 */
2977 		if (data_ref->root != root->root_key.objectid ||
2978 		    data_ref->objectid != objectid ||
2979 		    data_ref->offset != offset) {
2980 			ret = 1;
2981 			break;
2982 		}
2983 	}
2984 	spin_unlock(&head->lock);
2985 	mutex_unlock(&head->mutex);
2986 	return ret;
2987 }
2988 
2989 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2990 					struct btrfs_root *root,
2991 					struct btrfs_path *path,
2992 					u64 objectid, u64 offset, u64 bytenr)
2993 {
2994 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2995 	struct extent_buffer *leaf;
2996 	struct btrfs_extent_data_ref *ref;
2997 	struct btrfs_extent_inline_ref *iref;
2998 	struct btrfs_extent_item *ei;
2999 	struct btrfs_key key;
3000 	u32 item_size;
3001 	int ret;
3002 
3003 	key.objectid = bytenr;
3004 	key.offset = (u64)-1;
3005 	key.type = BTRFS_EXTENT_ITEM_KEY;
3006 
3007 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3008 	if (ret < 0)
3009 		goto out;
3010 	BUG_ON(ret == 0); /* Corruption */
3011 
3012 	ret = -ENOENT;
3013 	if (path->slots[0] == 0)
3014 		goto out;
3015 
3016 	path->slots[0]--;
3017 	leaf = path->nodes[0];
3018 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3019 
3020 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3021 		goto out;
3022 
3023 	ret = 1;
3024 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3025 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3026 	if (item_size < sizeof(*ei)) {
3027 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3028 		goto out;
3029 	}
3030 #endif
3031 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3032 
3033 	if (item_size != sizeof(*ei) +
3034 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3035 		goto out;
3036 
3037 	if (btrfs_extent_generation(leaf, ei) <=
3038 	    btrfs_root_last_snapshot(&root->root_item))
3039 		goto out;
3040 
3041 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3042 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3043 	    BTRFS_EXTENT_DATA_REF_KEY)
3044 		goto out;
3045 
3046 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3047 	if (btrfs_extent_refs(leaf, ei) !=
3048 	    btrfs_extent_data_ref_count(leaf, ref) ||
3049 	    btrfs_extent_data_ref_root(leaf, ref) !=
3050 	    root->root_key.objectid ||
3051 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3052 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3053 		goto out;
3054 
3055 	ret = 0;
3056 out:
3057 	return ret;
3058 }
3059 
3060 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3061 			  struct btrfs_root *root,
3062 			  u64 objectid, u64 offset, u64 bytenr)
3063 {
3064 	struct btrfs_path *path;
3065 	int ret;
3066 	int ret2;
3067 
3068 	path = btrfs_alloc_path();
3069 	if (!path)
3070 		return -ENOENT;
3071 
3072 	do {
3073 		ret = check_committed_ref(trans, root, path, objectid,
3074 					  offset, bytenr);
3075 		if (ret && ret != -ENOENT)
3076 			goto out;
3077 
3078 		ret2 = check_delayed_ref(trans, root, path, objectid,
3079 					 offset, bytenr);
3080 	} while (ret2 == -EAGAIN);
3081 
3082 	if (ret2 && ret2 != -ENOENT) {
3083 		ret = ret2;
3084 		goto out;
3085 	}
3086 
3087 	if (ret != -ENOENT || ret2 != -ENOENT)
3088 		ret = 0;
3089 out:
3090 	btrfs_free_path(path);
3091 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3092 		WARN_ON(ret > 0);
3093 	return ret;
3094 }
3095 
3096 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3097 			   struct btrfs_root *root,
3098 			   struct extent_buffer *buf,
3099 			   int full_backref, int inc)
3100 {
3101 	u64 bytenr;
3102 	u64 num_bytes;
3103 	u64 parent;
3104 	u64 ref_root;
3105 	u32 nritems;
3106 	struct btrfs_key key;
3107 	struct btrfs_file_extent_item *fi;
3108 	int i;
3109 	int level;
3110 	int ret = 0;
3111 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3112 			    u64, u64, u64, u64, u64, u64, int);
3113 
3114 
3115 	if (btrfs_test_is_dummy_root(root))
3116 		return 0;
3117 
3118 	ref_root = btrfs_header_owner(buf);
3119 	nritems = btrfs_header_nritems(buf);
3120 	level = btrfs_header_level(buf);
3121 
3122 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3123 		return 0;
3124 
3125 	if (inc)
3126 		process_func = btrfs_inc_extent_ref;
3127 	else
3128 		process_func = btrfs_free_extent;
3129 
3130 	if (full_backref)
3131 		parent = buf->start;
3132 	else
3133 		parent = 0;
3134 
3135 	for (i = 0; i < nritems; i++) {
3136 		if (level == 0) {
3137 			btrfs_item_key_to_cpu(buf, &key, i);
3138 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3139 				continue;
3140 			fi = btrfs_item_ptr(buf, i,
3141 					    struct btrfs_file_extent_item);
3142 			if (btrfs_file_extent_type(buf, fi) ==
3143 			    BTRFS_FILE_EXTENT_INLINE)
3144 				continue;
3145 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3146 			if (bytenr == 0)
3147 				continue;
3148 
3149 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3150 			key.offset -= btrfs_file_extent_offset(buf, fi);
3151 			ret = process_func(trans, root, bytenr, num_bytes,
3152 					   parent, ref_root, key.objectid,
3153 					   key.offset, 1);
3154 			if (ret)
3155 				goto fail;
3156 		} else {
3157 			bytenr = btrfs_node_blockptr(buf, i);
3158 			num_bytes = root->nodesize;
3159 			ret = process_func(trans, root, bytenr, num_bytes,
3160 					   parent, ref_root, level - 1, 0,
3161 					   1);
3162 			if (ret)
3163 				goto fail;
3164 		}
3165 	}
3166 	return 0;
3167 fail:
3168 	return ret;
3169 }
3170 
3171 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3172 		  struct extent_buffer *buf, int full_backref)
3173 {
3174 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3175 }
3176 
3177 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3178 		  struct extent_buffer *buf, int full_backref)
3179 {
3180 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3181 }
3182 
3183 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3184 				 struct btrfs_root *root,
3185 				 struct btrfs_path *path,
3186 				 struct btrfs_block_group_cache *cache)
3187 {
3188 	int ret;
3189 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3190 	unsigned long bi;
3191 	struct extent_buffer *leaf;
3192 
3193 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3194 	if (ret) {
3195 		if (ret > 0)
3196 			ret = -ENOENT;
3197 		goto fail;
3198 	}
3199 
3200 	leaf = path->nodes[0];
3201 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3202 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3203 	btrfs_mark_buffer_dirty(leaf);
3204 fail:
3205 	btrfs_release_path(path);
3206 	return ret;
3207 
3208 }
3209 
3210 static struct btrfs_block_group_cache *
3211 next_block_group(struct btrfs_root *root,
3212 		 struct btrfs_block_group_cache *cache)
3213 {
3214 	struct rb_node *node;
3215 
3216 	spin_lock(&root->fs_info->block_group_cache_lock);
3217 
3218 	/* If our block group was removed, we need a full search. */
3219 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3220 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3221 
3222 		spin_unlock(&root->fs_info->block_group_cache_lock);
3223 		btrfs_put_block_group(cache);
3224 		cache = btrfs_lookup_first_block_group(root->fs_info,
3225 						       next_bytenr);
3226 		return cache;
3227 	}
3228 	node = rb_next(&cache->cache_node);
3229 	btrfs_put_block_group(cache);
3230 	if (node) {
3231 		cache = rb_entry(node, struct btrfs_block_group_cache,
3232 				 cache_node);
3233 		btrfs_get_block_group(cache);
3234 	} else
3235 		cache = NULL;
3236 	spin_unlock(&root->fs_info->block_group_cache_lock);
3237 	return cache;
3238 }
3239 
3240 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3241 			    struct btrfs_trans_handle *trans,
3242 			    struct btrfs_path *path)
3243 {
3244 	struct btrfs_root *root = block_group->fs_info->tree_root;
3245 	struct inode *inode = NULL;
3246 	u64 alloc_hint = 0;
3247 	int dcs = BTRFS_DC_ERROR;
3248 	u64 num_pages = 0;
3249 	int retries = 0;
3250 	int ret = 0;
3251 
3252 	/*
3253 	 * If this block group is smaller than 100 megs don't bother caching the
3254 	 * block group.
3255 	 */
3256 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3257 		spin_lock(&block_group->lock);
3258 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3259 		spin_unlock(&block_group->lock);
3260 		return 0;
3261 	}
3262 
3263 	if (trans->aborted)
3264 		return 0;
3265 again:
3266 	inode = lookup_free_space_inode(root, block_group, path);
3267 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3268 		ret = PTR_ERR(inode);
3269 		btrfs_release_path(path);
3270 		goto out;
3271 	}
3272 
3273 	if (IS_ERR(inode)) {
3274 		BUG_ON(retries);
3275 		retries++;
3276 
3277 		if (block_group->ro)
3278 			goto out_free;
3279 
3280 		ret = create_free_space_inode(root, trans, block_group, path);
3281 		if (ret)
3282 			goto out_free;
3283 		goto again;
3284 	}
3285 
3286 	/* We've already setup this transaction, go ahead and exit */
3287 	if (block_group->cache_generation == trans->transid &&
3288 	    i_size_read(inode)) {
3289 		dcs = BTRFS_DC_SETUP;
3290 		goto out_put;
3291 	}
3292 
3293 	/*
3294 	 * We want to set the generation to 0, that way if anything goes wrong
3295 	 * from here on out we know not to trust this cache when we load up next
3296 	 * time.
3297 	 */
3298 	BTRFS_I(inode)->generation = 0;
3299 	ret = btrfs_update_inode(trans, root, inode);
3300 	if (ret) {
3301 		/*
3302 		 * So theoretically we could recover from this, simply set the
3303 		 * super cache generation to 0 so we know to invalidate the
3304 		 * cache, but then we'd have to keep track of the block groups
3305 		 * that fail this way so we know we _have_ to reset this cache
3306 		 * before the next commit or risk reading stale cache.  So to
3307 		 * limit our exposure to horrible edge cases lets just abort the
3308 		 * transaction, this only happens in really bad situations
3309 		 * anyway.
3310 		 */
3311 		btrfs_abort_transaction(trans, root, ret);
3312 		goto out_put;
3313 	}
3314 	WARN_ON(ret);
3315 
3316 	if (i_size_read(inode) > 0) {
3317 		ret = btrfs_check_trunc_cache_free_space(root,
3318 					&root->fs_info->global_block_rsv);
3319 		if (ret)
3320 			goto out_put;
3321 
3322 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3323 		if (ret)
3324 			goto out_put;
3325 	}
3326 
3327 	spin_lock(&block_group->lock);
3328 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3329 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3330 		/*
3331 		 * don't bother trying to write stuff out _if_
3332 		 * a) we're not cached,
3333 		 * b) we're with nospace_cache mount option.
3334 		 */
3335 		dcs = BTRFS_DC_WRITTEN;
3336 		spin_unlock(&block_group->lock);
3337 		goto out_put;
3338 	}
3339 	spin_unlock(&block_group->lock);
3340 
3341 	/*
3342 	 * Try to preallocate enough space based on how big the block group is.
3343 	 * Keep in mind this has to include any pinned space which could end up
3344 	 * taking up quite a bit since it's not folded into the other space
3345 	 * cache.
3346 	 */
3347 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3348 	if (!num_pages)
3349 		num_pages = 1;
3350 
3351 	num_pages *= 16;
3352 	num_pages *= PAGE_CACHE_SIZE;
3353 
3354 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3355 	if (ret)
3356 		goto out_put;
3357 
3358 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3359 					      num_pages, num_pages,
3360 					      &alloc_hint);
3361 	if (!ret)
3362 		dcs = BTRFS_DC_SETUP;
3363 	btrfs_free_reserved_data_space(inode, num_pages);
3364 
3365 out_put:
3366 	iput(inode);
3367 out_free:
3368 	btrfs_release_path(path);
3369 out:
3370 	spin_lock(&block_group->lock);
3371 	if (!ret && dcs == BTRFS_DC_SETUP)
3372 		block_group->cache_generation = trans->transid;
3373 	block_group->disk_cache_state = dcs;
3374 	spin_unlock(&block_group->lock);
3375 
3376 	return ret;
3377 }
3378 
3379 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3380 			    struct btrfs_root *root)
3381 {
3382 	struct btrfs_block_group_cache *cache, *tmp;
3383 	struct btrfs_transaction *cur_trans = trans->transaction;
3384 	struct btrfs_path *path;
3385 
3386 	if (list_empty(&cur_trans->dirty_bgs) ||
3387 	    !btrfs_test_opt(root, SPACE_CACHE))
3388 		return 0;
3389 
3390 	path = btrfs_alloc_path();
3391 	if (!path)
3392 		return -ENOMEM;
3393 
3394 	/* Could add new block groups, use _safe just in case */
3395 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3396 				 dirty_list) {
3397 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3398 			cache_save_setup(cache, trans, path);
3399 	}
3400 
3401 	btrfs_free_path(path);
3402 	return 0;
3403 }
3404 
3405 /*
3406  * transaction commit does final block group cache writeback during a
3407  * critical section where nothing is allowed to change the FS.  This is
3408  * required in order for the cache to actually match the block group,
3409  * but can introduce a lot of latency into the commit.
3410  *
3411  * So, btrfs_start_dirty_block_groups is here to kick off block group
3412  * cache IO.  There's a chance we'll have to redo some of it if the
3413  * block group changes again during the commit, but it greatly reduces
3414  * the commit latency by getting rid of the easy block groups while
3415  * we're still allowing others to join the commit.
3416  */
3417 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3418 				   struct btrfs_root *root)
3419 {
3420 	struct btrfs_block_group_cache *cache;
3421 	struct btrfs_transaction *cur_trans = trans->transaction;
3422 	int ret = 0;
3423 	int should_put;
3424 	struct btrfs_path *path = NULL;
3425 	LIST_HEAD(dirty);
3426 	struct list_head *io = &cur_trans->io_bgs;
3427 	int num_started = 0;
3428 	int loops = 0;
3429 
3430 	spin_lock(&cur_trans->dirty_bgs_lock);
3431 	if (list_empty(&cur_trans->dirty_bgs)) {
3432 		spin_unlock(&cur_trans->dirty_bgs_lock);
3433 		return 0;
3434 	}
3435 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3436 	spin_unlock(&cur_trans->dirty_bgs_lock);
3437 
3438 again:
3439 	/*
3440 	 * make sure all the block groups on our dirty list actually
3441 	 * exist
3442 	 */
3443 	btrfs_create_pending_block_groups(trans, root);
3444 
3445 	if (!path) {
3446 		path = btrfs_alloc_path();
3447 		if (!path)
3448 			return -ENOMEM;
3449 	}
3450 
3451 	/*
3452 	 * cache_write_mutex is here only to save us from balance or automatic
3453 	 * removal of empty block groups deleting this block group while we are
3454 	 * writing out the cache
3455 	 */
3456 	mutex_lock(&trans->transaction->cache_write_mutex);
3457 	while (!list_empty(&dirty)) {
3458 		cache = list_first_entry(&dirty,
3459 					 struct btrfs_block_group_cache,
3460 					 dirty_list);
3461 		/*
3462 		 * this can happen if something re-dirties a block
3463 		 * group that is already under IO.  Just wait for it to
3464 		 * finish and then do it all again
3465 		 */
3466 		if (!list_empty(&cache->io_list)) {
3467 			list_del_init(&cache->io_list);
3468 			btrfs_wait_cache_io(root, trans, cache,
3469 					    &cache->io_ctl, path,
3470 					    cache->key.objectid);
3471 			btrfs_put_block_group(cache);
3472 		}
3473 
3474 
3475 		/*
3476 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3477 		 * if it should update the cache_state.  Don't delete
3478 		 * until after we wait.
3479 		 *
3480 		 * Since we're not running in the commit critical section
3481 		 * we need the dirty_bgs_lock to protect from update_block_group
3482 		 */
3483 		spin_lock(&cur_trans->dirty_bgs_lock);
3484 		list_del_init(&cache->dirty_list);
3485 		spin_unlock(&cur_trans->dirty_bgs_lock);
3486 
3487 		should_put = 1;
3488 
3489 		cache_save_setup(cache, trans, path);
3490 
3491 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3492 			cache->io_ctl.inode = NULL;
3493 			ret = btrfs_write_out_cache(root, trans, cache, path);
3494 			if (ret == 0 && cache->io_ctl.inode) {
3495 				num_started++;
3496 				should_put = 0;
3497 
3498 				/*
3499 				 * the cache_write_mutex is protecting
3500 				 * the io_list
3501 				 */
3502 				list_add_tail(&cache->io_list, io);
3503 			} else {
3504 				/*
3505 				 * if we failed to write the cache, the
3506 				 * generation will be bad and life goes on
3507 				 */
3508 				ret = 0;
3509 			}
3510 		}
3511 		if (!ret) {
3512 			ret = write_one_cache_group(trans, root, path, cache);
3513 			/*
3514 			 * Our block group might still be attached to the list
3515 			 * of new block groups in the transaction handle of some
3516 			 * other task (struct btrfs_trans_handle->new_bgs). This
3517 			 * means its block group item isn't yet in the extent
3518 			 * tree. If this happens ignore the error, as we will
3519 			 * try again later in the critical section of the
3520 			 * transaction commit.
3521 			 */
3522 			if (ret == -ENOENT) {
3523 				ret = 0;
3524 				spin_lock(&cur_trans->dirty_bgs_lock);
3525 				if (list_empty(&cache->dirty_list)) {
3526 					list_add_tail(&cache->dirty_list,
3527 						      &cur_trans->dirty_bgs);
3528 					btrfs_get_block_group(cache);
3529 				}
3530 				spin_unlock(&cur_trans->dirty_bgs_lock);
3531 			} else if (ret) {
3532 				btrfs_abort_transaction(trans, root, ret);
3533 			}
3534 		}
3535 
3536 		/* if its not on the io list, we need to put the block group */
3537 		if (should_put)
3538 			btrfs_put_block_group(cache);
3539 
3540 		if (ret)
3541 			break;
3542 
3543 		/*
3544 		 * Avoid blocking other tasks for too long. It might even save
3545 		 * us from writing caches for block groups that are going to be
3546 		 * removed.
3547 		 */
3548 		mutex_unlock(&trans->transaction->cache_write_mutex);
3549 		mutex_lock(&trans->transaction->cache_write_mutex);
3550 	}
3551 	mutex_unlock(&trans->transaction->cache_write_mutex);
3552 
3553 	/*
3554 	 * go through delayed refs for all the stuff we've just kicked off
3555 	 * and then loop back (just once)
3556 	 */
3557 	ret = btrfs_run_delayed_refs(trans, root, 0);
3558 	if (!ret && loops == 0) {
3559 		loops++;
3560 		spin_lock(&cur_trans->dirty_bgs_lock);
3561 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3562 		/*
3563 		 * dirty_bgs_lock protects us from concurrent block group
3564 		 * deletes too (not just cache_write_mutex).
3565 		 */
3566 		if (!list_empty(&dirty)) {
3567 			spin_unlock(&cur_trans->dirty_bgs_lock);
3568 			goto again;
3569 		}
3570 		spin_unlock(&cur_trans->dirty_bgs_lock);
3571 	}
3572 
3573 	btrfs_free_path(path);
3574 	return ret;
3575 }
3576 
3577 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3578 				   struct btrfs_root *root)
3579 {
3580 	struct btrfs_block_group_cache *cache;
3581 	struct btrfs_transaction *cur_trans = trans->transaction;
3582 	int ret = 0;
3583 	int should_put;
3584 	struct btrfs_path *path;
3585 	struct list_head *io = &cur_trans->io_bgs;
3586 	int num_started = 0;
3587 
3588 	path = btrfs_alloc_path();
3589 	if (!path)
3590 		return -ENOMEM;
3591 
3592 	/*
3593 	 * We don't need the lock here since we are protected by the transaction
3594 	 * commit.  We want to do the cache_save_setup first and then run the
3595 	 * delayed refs to make sure we have the best chance at doing this all
3596 	 * in one shot.
3597 	 */
3598 	while (!list_empty(&cur_trans->dirty_bgs)) {
3599 		cache = list_first_entry(&cur_trans->dirty_bgs,
3600 					 struct btrfs_block_group_cache,
3601 					 dirty_list);
3602 
3603 		/*
3604 		 * this can happen if cache_save_setup re-dirties a block
3605 		 * group that is already under IO.  Just wait for it to
3606 		 * finish and then do it all again
3607 		 */
3608 		if (!list_empty(&cache->io_list)) {
3609 			list_del_init(&cache->io_list);
3610 			btrfs_wait_cache_io(root, trans, cache,
3611 					    &cache->io_ctl, path,
3612 					    cache->key.objectid);
3613 			btrfs_put_block_group(cache);
3614 		}
3615 
3616 		/*
3617 		 * don't remove from the dirty list until after we've waited
3618 		 * on any pending IO
3619 		 */
3620 		list_del_init(&cache->dirty_list);
3621 		should_put = 1;
3622 
3623 		cache_save_setup(cache, trans, path);
3624 
3625 		if (!ret)
3626 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3627 
3628 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3629 			cache->io_ctl.inode = NULL;
3630 			ret = btrfs_write_out_cache(root, trans, cache, path);
3631 			if (ret == 0 && cache->io_ctl.inode) {
3632 				num_started++;
3633 				should_put = 0;
3634 				list_add_tail(&cache->io_list, io);
3635 			} else {
3636 				/*
3637 				 * if we failed to write the cache, the
3638 				 * generation will be bad and life goes on
3639 				 */
3640 				ret = 0;
3641 			}
3642 		}
3643 		if (!ret) {
3644 			ret = write_one_cache_group(trans, root, path, cache);
3645 			if (ret)
3646 				btrfs_abort_transaction(trans, root, ret);
3647 		}
3648 
3649 		/* if its not on the io list, we need to put the block group */
3650 		if (should_put)
3651 			btrfs_put_block_group(cache);
3652 	}
3653 
3654 	while (!list_empty(io)) {
3655 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3656 					 io_list);
3657 		list_del_init(&cache->io_list);
3658 		btrfs_wait_cache_io(root, trans, cache,
3659 				    &cache->io_ctl, path, cache->key.objectid);
3660 		btrfs_put_block_group(cache);
3661 	}
3662 
3663 	btrfs_free_path(path);
3664 	return ret;
3665 }
3666 
3667 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3668 {
3669 	struct btrfs_block_group_cache *block_group;
3670 	int readonly = 0;
3671 
3672 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3673 	if (!block_group || block_group->ro)
3674 		readonly = 1;
3675 	if (block_group)
3676 		btrfs_put_block_group(block_group);
3677 	return readonly;
3678 }
3679 
3680 static const char *alloc_name(u64 flags)
3681 {
3682 	switch (flags) {
3683 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3684 		return "mixed";
3685 	case BTRFS_BLOCK_GROUP_METADATA:
3686 		return "metadata";
3687 	case BTRFS_BLOCK_GROUP_DATA:
3688 		return "data";
3689 	case BTRFS_BLOCK_GROUP_SYSTEM:
3690 		return "system";
3691 	default:
3692 		WARN_ON(1);
3693 		return "invalid-combination";
3694 	};
3695 }
3696 
3697 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3698 			     u64 total_bytes, u64 bytes_used,
3699 			     struct btrfs_space_info **space_info)
3700 {
3701 	struct btrfs_space_info *found;
3702 	int i;
3703 	int factor;
3704 	int ret;
3705 
3706 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3707 		     BTRFS_BLOCK_GROUP_RAID10))
3708 		factor = 2;
3709 	else
3710 		factor = 1;
3711 
3712 	found = __find_space_info(info, flags);
3713 	if (found) {
3714 		spin_lock(&found->lock);
3715 		found->total_bytes += total_bytes;
3716 		found->disk_total += total_bytes * factor;
3717 		found->bytes_used += bytes_used;
3718 		found->disk_used += bytes_used * factor;
3719 		if (total_bytes > 0)
3720 			found->full = 0;
3721 		spin_unlock(&found->lock);
3722 		*space_info = found;
3723 		return 0;
3724 	}
3725 	found = kzalloc(sizeof(*found), GFP_NOFS);
3726 	if (!found)
3727 		return -ENOMEM;
3728 
3729 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3730 	if (ret) {
3731 		kfree(found);
3732 		return ret;
3733 	}
3734 
3735 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3736 		INIT_LIST_HEAD(&found->block_groups[i]);
3737 	init_rwsem(&found->groups_sem);
3738 	spin_lock_init(&found->lock);
3739 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3740 	found->total_bytes = total_bytes;
3741 	found->disk_total = total_bytes * factor;
3742 	found->bytes_used = bytes_used;
3743 	found->disk_used = bytes_used * factor;
3744 	found->bytes_pinned = 0;
3745 	found->bytes_reserved = 0;
3746 	found->bytes_readonly = 0;
3747 	found->bytes_may_use = 0;
3748 	found->full = 0;
3749 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3750 	found->chunk_alloc = 0;
3751 	found->flush = 0;
3752 	init_waitqueue_head(&found->wait);
3753 	INIT_LIST_HEAD(&found->ro_bgs);
3754 
3755 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3756 				    info->space_info_kobj, "%s",
3757 				    alloc_name(found->flags));
3758 	if (ret) {
3759 		kfree(found);
3760 		return ret;
3761 	}
3762 
3763 	*space_info = found;
3764 	list_add_rcu(&found->list, &info->space_info);
3765 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3766 		info->data_sinfo = found;
3767 
3768 	return ret;
3769 }
3770 
3771 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3772 {
3773 	u64 extra_flags = chunk_to_extended(flags) &
3774 				BTRFS_EXTENDED_PROFILE_MASK;
3775 
3776 	write_seqlock(&fs_info->profiles_lock);
3777 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3778 		fs_info->avail_data_alloc_bits |= extra_flags;
3779 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3780 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3781 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3782 		fs_info->avail_system_alloc_bits |= extra_flags;
3783 	write_sequnlock(&fs_info->profiles_lock);
3784 }
3785 
3786 /*
3787  * returns target flags in extended format or 0 if restripe for this
3788  * chunk_type is not in progress
3789  *
3790  * should be called with either volume_mutex or balance_lock held
3791  */
3792 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3793 {
3794 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3795 	u64 target = 0;
3796 
3797 	if (!bctl)
3798 		return 0;
3799 
3800 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3801 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3803 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3804 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3805 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3806 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3807 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3808 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3809 	}
3810 
3811 	return target;
3812 }
3813 
3814 /*
3815  * @flags: available profiles in extended format (see ctree.h)
3816  *
3817  * Returns reduced profile in chunk format.  If profile changing is in
3818  * progress (either running or paused) picks the target profile (if it's
3819  * already available), otherwise falls back to plain reducing.
3820  */
3821 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3822 {
3823 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3824 	u64 target;
3825 	u64 tmp;
3826 
3827 	/*
3828 	 * see if restripe for this chunk_type is in progress, if so
3829 	 * try to reduce to the target profile
3830 	 */
3831 	spin_lock(&root->fs_info->balance_lock);
3832 	target = get_restripe_target(root->fs_info, flags);
3833 	if (target) {
3834 		/* pick target profile only if it's already available */
3835 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3836 			spin_unlock(&root->fs_info->balance_lock);
3837 			return extended_to_chunk(target);
3838 		}
3839 	}
3840 	spin_unlock(&root->fs_info->balance_lock);
3841 
3842 	/* First, mask out the RAID levels which aren't possible */
3843 	if (num_devices == 1)
3844 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3845 			   BTRFS_BLOCK_GROUP_RAID5);
3846 	if (num_devices < 3)
3847 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3848 	if (num_devices < 4)
3849 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3850 
3851 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3852 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3853 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3854 	flags &= ~tmp;
3855 
3856 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3857 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3858 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3859 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3860 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3861 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3862 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3863 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3864 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3865 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3866 
3867 	return extended_to_chunk(flags | tmp);
3868 }
3869 
3870 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3871 {
3872 	unsigned seq;
3873 	u64 flags;
3874 
3875 	do {
3876 		flags = orig_flags;
3877 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3878 
3879 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3880 			flags |= root->fs_info->avail_data_alloc_bits;
3881 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3882 			flags |= root->fs_info->avail_system_alloc_bits;
3883 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3884 			flags |= root->fs_info->avail_metadata_alloc_bits;
3885 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3886 
3887 	return btrfs_reduce_alloc_profile(root, flags);
3888 }
3889 
3890 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3891 {
3892 	u64 flags;
3893 	u64 ret;
3894 
3895 	if (data)
3896 		flags = BTRFS_BLOCK_GROUP_DATA;
3897 	else if (root == root->fs_info->chunk_root)
3898 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3899 	else
3900 		flags = BTRFS_BLOCK_GROUP_METADATA;
3901 
3902 	ret = get_alloc_profile(root, flags);
3903 	return ret;
3904 }
3905 
3906 /*
3907  * This will check the space that the inode allocates from to make sure we have
3908  * enough space for bytes.
3909  */
3910 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3911 {
3912 	struct btrfs_space_info *data_sinfo;
3913 	struct btrfs_root *root = BTRFS_I(inode)->root;
3914 	struct btrfs_fs_info *fs_info = root->fs_info;
3915 	u64 used;
3916 	int ret = 0;
3917 	int need_commit = 2;
3918 	int have_pinned_space;
3919 
3920 	/* make sure bytes are sectorsize aligned */
3921 	bytes = ALIGN(bytes, root->sectorsize);
3922 
3923 	if (btrfs_is_free_space_inode(inode)) {
3924 		need_commit = 0;
3925 		ASSERT(current->journal_info);
3926 	}
3927 
3928 	data_sinfo = fs_info->data_sinfo;
3929 	if (!data_sinfo)
3930 		goto alloc;
3931 
3932 again:
3933 	/* make sure we have enough space to handle the data first */
3934 	spin_lock(&data_sinfo->lock);
3935 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3936 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3937 		data_sinfo->bytes_may_use;
3938 
3939 	if (used + bytes > data_sinfo->total_bytes) {
3940 		struct btrfs_trans_handle *trans;
3941 
3942 		/*
3943 		 * if we don't have enough free bytes in this space then we need
3944 		 * to alloc a new chunk.
3945 		 */
3946 		if (!data_sinfo->full) {
3947 			u64 alloc_target;
3948 
3949 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3950 			spin_unlock(&data_sinfo->lock);
3951 alloc:
3952 			alloc_target = btrfs_get_alloc_profile(root, 1);
3953 			/*
3954 			 * It is ugly that we don't call nolock join
3955 			 * transaction for the free space inode case here.
3956 			 * But it is safe because we only do the data space
3957 			 * reservation for the free space cache in the
3958 			 * transaction context, the common join transaction
3959 			 * just increase the counter of the current transaction
3960 			 * handler, doesn't try to acquire the trans_lock of
3961 			 * the fs.
3962 			 */
3963 			trans = btrfs_join_transaction(root);
3964 			if (IS_ERR(trans))
3965 				return PTR_ERR(trans);
3966 
3967 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3968 					     alloc_target,
3969 					     CHUNK_ALLOC_NO_FORCE);
3970 			btrfs_end_transaction(trans, root);
3971 			if (ret < 0) {
3972 				if (ret != -ENOSPC)
3973 					return ret;
3974 				else {
3975 					have_pinned_space = 1;
3976 					goto commit_trans;
3977 				}
3978 			}
3979 
3980 			if (!data_sinfo)
3981 				data_sinfo = fs_info->data_sinfo;
3982 
3983 			goto again;
3984 		}
3985 
3986 		/*
3987 		 * If we don't have enough pinned space to deal with this
3988 		 * allocation, and no removed chunk in current transaction,
3989 		 * don't bother committing the transaction.
3990 		 */
3991 		have_pinned_space = percpu_counter_compare(
3992 			&data_sinfo->total_bytes_pinned,
3993 			used + bytes - data_sinfo->total_bytes);
3994 		spin_unlock(&data_sinfo->lock);
3995 
3996 		/* commit the current transaction and try again */
3997 commit_trans:
3998 		if (need_commit &&
3999 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4000 			need_commit--;
4001 
4002 			if (need_commit > 0)
4003 				btrfs_wait_ordered_roots(fs_info, -1);
4004 
4005 			trans = btrfs_join_transaction(root);
4006 			if (IS_ERR(trans))
4007 				return PTR_ERR(trans);
4008 			if (have_pinned_space >= 0 ||
4009 			    trans->transaction->have_free_bgs ||
4010 			    need_commit > 0) {
4011 				ret = btrfs_commit_transaction(trans, root);
4012 				if (ret)
4013 					return ret;
4014 				/*
4015 				 * make sure that all running delayed iput are
4016 				 * done
4017 				 */
4018 				down_write(&root->fs_info->delayed_iput_sem);
4019 				up_write(&root->fs_info->delayed_iput_sem);
4020 				goto again;
4021 			} else {
4022 				btrfs_end_transaction(trans, root);
4023 			}
4024 		}
4025 
4026 		trace_btrfs_space_reservation(root->fs_info,
4027 					      "space_info:enospc",
4028 					      data_sinfo->flags, bytes, 1);
4029 		return -ENOSPC;
4030 	}
4031 	ret = btrfs_qgroup_reserve(root, write_bytes);
4032 	if (ret)
4033 		goto out;
4034 	data_sinfo->bytes_may_use += bytes;
4035 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4036 				      data_sinfo->flags, bytes, 1);
4037 out:
4038 	spin_unlock(&data_sinfo->lock);
4039 
4040 	return ret;
4041 }
4042 
4043 /*
4044  * Called if we need to clear a data reservation for this inode.
4045  */
4046 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4047 {
4048 	struct btrfs_root *root = BTRFS_I(inode)->root;
4049 	struct btrfs_space_info *data_sinfo;
4050 
4051 	/* make sure bytes are sectorsize aligned */
4052 	bytes = ALIGN(bytes, root->sectorsize);
4053 
4054 	data_sinfo = root->fs_info->data_sinfo;
4055 	spin_lock(&data_sinfo->lock);
4056 	WARN_ON(data_sinfo->bytes_may_use < bytes);
4057 	data_sinfo->bytes_may_use -= bytes;
4058 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4059 				      data_sinfo->flags, bytes, 0);
4060 	spin_unlock(&data_sinfo->lock);
4061 }
4062 
4063 static void force_metadata_allocation(struct btrfs_fs_info *info)
4064 {
4065 	struct list_head *head = &info->space_info;
4066 	struct btrfs_space_info *found;
4067 
4068 	rcu_read_lock();
4069 	list_for_each_entry_rcu(found, head, list) {
4070 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4071 			found->force_alloc = CHUNK_ALLOC_FORCE;
4072 	}
4073 	rcu_read_unlock();
4074 }
4075 
4076 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4077 {
4078 	return (global->size << 1);
4079 }
4080 
4081 static int should_alloc_chunk(struct btrfs_root *root,
4082 			      struct btrfs_space_info *sinfo, int force)
4083 {
4084 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4085 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4086 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4087 	u64 thresh;
4088 
4089 	if (force == CHUNK_ALLOC_FORCE)
4090 		return 1;
4091 
4092 	/*
4093 	 * We need to take into account the global rsv because for all intents
4094 	 * and purposes it's used space.  Don't worry about locking the
4095 	 * global_rsv, it doesn't change except when the transaction commits.
4096 	 */
4097 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4098 		num_allocated += calc_global_rsv_need_space(global_rsv);
4099 
4100 	/*
4101 	 * in limited mode, we want to have some free space up to
4102 	 * about 1% of the FS size.
4103 	 */
4104 	if (force == CHUNK_ALLOC_LIMITED) {
4105 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4106 		thresh = max_t(u64, 64 * 1024 * 1024,
4107 			       div_factor_fine(thresh, 1));
4108 
4109 		if (num_bytes - num_allocated < thresh)
4110 			return 1;
4111 	}
4112 
4113 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4114 		return 0;
4115 	return 1;
4116 }
4117 
4118 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4119 {
4120 	u64 num_dev;
4121 
4122 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4123 		    BTRFS_BLOCK_GROUP_RAID0 |
4124 		    BTRFS_BLOCK_GROUP_RAID5 |
4125 		    BTRFS_BLOCK_GROUP_RAID6))
4126 		num_dev = root->fs_info->fs_devices->rw_devices;
4127 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4128 		num_dev = 2;
4129 	else
4130 		num_dev = 1;	/* DUP or single */
4131 
4132 	return num_dev;
4133 }
4134 
4135 /*
4136  * If @is_allocation is true, reserve space in the system space info necessary
4137  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4138  * removing a chunk.
4139  */
4140 void check_system_chunk(struct btrfs_trans_handle *trans,
4141 			struct btrfs_root *root,
4142 			u64 type)
4143 {
4144 	struct btrfs_space_info *info;
4145 	u64 left;
4146 	u64 thresh;
4147 	int ret = 0;
4148 	u64 num_devs;
4149 
4150 	/*
4151 	 * Needed because we can end up allocating a system chunk and for an
4152 	 * atomic and race free space reservation in the chunk block reserve.
4153 	 */
4154 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4155 
4156 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4157 	spin_lock(&info->lock);
4158 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4159 		info->bytes_reserved - info->bytes_readonly -
4160 		info->bytes_may_use;
4161 	spin_unlock(&info->lock);
4162 
4163 	num_devs = get_profile_num_devs(root, type);
4164 
4165 	/* num_devs device items to update and 1 chunk item to add or remove */
4166 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4167 		btrfs_calc_trans_metadata_size(root, 1);
4168 
4169 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4170 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4171 			left, thresh, type);
4172 		dump_space_info(info, 0, 0);
4173 	}
4174 
4175 	if (left < thresh) {
4176 		u64 flags;
4177 
4178 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4179 		/*
4180 		 * Ignore failure to create system chunk. We might end up not
4181 		 * needing it, as we might not need to COW all nodes/leafs from
4182 		 * the paths we visit in the chunk tree (they were already COWed
4183 		 * or created in the current transaction for example).
4184 		 */
4185 		ret = btrfs_alloc_chunk(trans, root, flags);
4186 	}
4187 
4188 	if (!ret) {
4189 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4190 					  &root->fs_info->chunk_block_rsv,
4191 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4192 		if (!ret)
4193 			trans->chunk_bytes_reserved += thresh;
4194 	}
4195 }
4196 
4197 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4198 			  struct btrfs_root *extent_root, u64 flags, int force)
4199 {
4200 	struct btrfs_space_info *space_info;
4201 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4202 	int wait_for_alloc = 0;
4203 	int ret = 0;
4204 
4205 	/* Don't re-enter if we're already allocating a chunk */
4206 	if (trans->allocating_chunk)
4207 		return -ENOSPC;
4208 
4209 	space_info = __find_space_info(extent_root->fs_info, flags);
4210 	if (!space_info) {
4211 		ret = update_space_info(extent_root->fs_info, flags,
4212 					0, 0, &space_info);
4213 		BUG_ON(ret); /* -ENOMEM */
4214 	}
4215 	BUG_ON(!space_info); /* Logic error */
4216 
4217 again:
4218 	spin_lock(&space_info->lock);
4219 	if (force < space_info->force_alloc)
4220 		force = space_info->force_alloc;
4221 	if (space_info->full) {
4222 		if (should_alloc_chunk(extent_root, space_info, force))
4223 			ret = -ENOSPC;
4224 		else
4225 			ret = 0;
4226 		spin_unlock(&space_info->lock);
4227 		return ret;
4228 	}
4229 
4230 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4231 		spin_unlock(&space_info->lock);
4232 		return 0;
4233 	} else if (space_info->chunk_alloc) {
4234 		wait_for_alloc = 1;
4235 	} else {
4236 		space_info->chunk_alloc = 1;
4237 	}
4238 
4239 	spin_unlock(&space_info->lock);
4240 
4241 	mutex_lock(&fs_info->chunk_mutex);
4242 
4243 	/*
4244 	 * The chunk_mutex is held throughout the entirety of a chunk
4245 	 * allocation, so once we've acquired the chunk_mutex we know that the
4246 	 * other guy is done and we need to recheck and see if we should
4247 	 * allocate.
4248 	 */
4249 	if (wait_for_alloc) {
4250 		mutex_unlock(&fs_info->chunk_mutex);
4251 		wait_for_alloc = 0;
4252 		goto again;
4253 	}
4254 
4255 	trans->allocating_chunk = true;
4256 
4257 	/*
4258 	 * If we have mixed data/metadata chunks we want to make sure we keep
4259 	 * allocating mixed chunks instead of individual chunks.
4260 	 */
4261 	if (btrfs_mixed_space_info(space_info))
4262 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4263 
4264 	/*
4265 	 * if we're doing a data chunk, go ahead and make sure that
4266 	 * we keep a reasonable number of metadata chunks allocated in the
4267 	 * FS as well.
4268 	 */
4269 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4270 		fs_info->data_chunk_allocations++;
4271 		if (!(fs_info->data_chunk_allocations %
4272 		      fs_info->metadata_ratio))
4273 			force_metadata_allocation(fs_info);
4274 	}
4275 
4276 	/*
4277 	 * Check if we have enough space in SYSTEM chunk because we may need
4278 	 * to update devices.
4279 	 */
4280 	check_system_chunk(trans, extent_root, flags);
4281 
4282 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4283 	trans->allocating_chunk = false;
4284 
4285 	spin_lock(&space_info->lock);
4286 	if (ret < 0 && ret != -ENOSPC)
4287 		goto out;
4288 	if (ret)
4289 		space_info->full = 1;
4290 	else
4291 		ret = 1;
4292 
4293 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4294 out:
4295 	space_info->chunk_alloc = 0;
4296 	spin_unlock(&space_info->lock);
4297 	mutex_unlock(&fs_info->chunk_mutex);
4298 	/*
4299 	 * When we allocate a new chunk we reserve space in the chunk block
4300 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4301 	 * add new nodes/leafs to it if we end up needing to do it when
4302 	 * inserting the chunk item and updating device items as part of the
4303 	 * second phase of chunk allocation, performed by
4304 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4305 	 * large number of new block groups to create in our transaction
4306 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4307 	 * in extreme cases - like having a single transaction create many new
4308 	 * block groups when starting to write out the free space caches of all
4309 	 * the block groups that were made dirty during the lifetime of the
4310 	 * transaction.
4311 	 */
4312 	if (trans->can_flush_pending_bgs &&
4313 	    trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4314 		btrfs_create_pending_block_groups(trans, trans->root);
4315 		btrfs_trans_release_chunk_metadata(trans);
4316 	}
4317 	return ret;
4318 }
4319 
4320 static int can_overcommit(struct btrfs_root *root,
4321 			  struct btrfs_space_info *space_info, u64 bytes,
4322 			  enum btrfs_reserve_flush_enum flush)
4323 {
4324 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4325 	u64 profile = btrfs_get_alloc_profile(root, 0);
4326 	u64 space_size;
4327 	u64 avail;
4328 	u64 used;
4329 
4330 	used = space_info->bytes_used + space_info->bytes_reserved +
4331 		space_info->bytes_pinned + space_info->bytes_readonly;
4332 
4333 	/*
4334 	 * We only want to allow over committing if we have lots of actual space
4335 	 * free, but if we don't have enough space to handle the global reserve
4336 	 * space then we could end up having a real enospc problem when trying
4337 	 * to allocate a chunk or some other such important allocation.
4338 	 */
4339 	spin_lock(&global_rsv->lock);
4340 	space_size = calc_global_rsv_need_space(global_rsv);
4341 	spin_unlock(&global_rsv->lock);
4342 	if (used + space_size >= space_info->total_bytes)
4343 		return 0;
4344 
4345 	used += space_info->bytes_may_use;
4346 
4347 	spin_lock(&root->fs_info->free_chunk_lock);
4348 	avail = root->fs_info->free_chunk_space;
4349 	spin_unlock(&root->fs_info->free_chunk_lock);
4350 
4351 	/*
4352 	 * If we have dup, raid1 or raid10 then only half of the free
4353 	 * space is actually useable.  For raid56, the space info used
4354 	 * doesn't include the parity drive, so we don't have to
4355 	 * change the math
4356 	 */
4357 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4358 		       BTRFS_BLOCK_GROUP_RAID1 |
4359 		       BTRFS_BLOCK_GROUP_RAID10))
4360 		avail >>= 1;
4361 
4362 	/*
4363 	 * If we aren't flushing all things, let us overcommit up to
4364 	 * 1/2th of the space. If we can flush, don't let us overcommit
4365 	 * too much, let it overcommit up to 1/8 of the space.
4366 	 */
4367 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4368 		avail >>= 3;
4369 	else
4370 		avail >>= 1;
4371 
4372 	if (used + bytes < space_info->total_bytes + avail)
4373 		return 1;
4374 	return 0;
4375 }
4376 
4377 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4378 					 unsigned long nr_pages, int nr_items)
4379 {
4380 	struct super_block *sb = root->fs_info->sb;
4381 
4382 	if (down_read_trylock(&sb->s_umount)) {
4383 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4384 		up_read(&sb->s_umount);
4385 	} else {
4386 		/*
4387 		 * We needn't worry the filesystem going from r/w to r/o though
4388 		 * we don't acquire ->s_umount mutex, because the filesystem
4389 		 * should guarantee the delalloc inodes list be empty after
4390 		 * the filesystem is readonly(all dirty pages are written to
4391 		 * the disk).
4392 		 */
4393 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4394 		if (!current->journal_info)
4395 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4396 	}
4397 }
4398 
4399 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4400 {
4401 	u64 bytes;
4402 	int nr;
4403 
4404 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4405 	nr = (int)div64_u64(to_reclaim, bytes);
4406 	if (!nr)
4407 		nr = 1;
4408 	return nr;
4409 }
4410 
4411 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4412 
4413 /*
4414  * shrink metadata reservation for delalloc
4415  */
4416 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4417 			    bool wait_ordered)
4418 {
4419 	struct btrfs_block_rsv *block_rsv;
4420 	struct btrfs_space_info *space_info;
4421 	struct btrfs_trans_handle *trans;
4422 	u64 delalloc_bytes;
4423 	u64 max_reclaim;
4424 	long time_left;
4425 	unsigned long nr_pages;
4426 	int loops;
4427 	int items;
4428 	enum btrfs_reserve_flush_enum flush;
4429 
4430 	/* Calc the number of the pages we need flush for space reservation */
4431 	items = calc_reclaim_items_nr(root, to_reclaim);
4432 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4433 
4434 	trans = (struct btrfs_trans_handle *)current->journal_info;
4435 	block_rsv = &root->fs_info->delalloc_block_rsv;
4436 	space_info = block_rsv->space_info;
4437 
4438 	delalloc_bytes = percpu_counter_sum_positive(
4439 						&root->fs_info->delalloc_bytes);
4440 	if (delalloc_bytes == 0) {
4441 		if (trans)
4442 			return;
4443 		if (wait_ordered)
4444 			btrfs_wait_ordered_roots(root->fs_info, items);
4445 		return;
4446 	}
4447 
4448 	loops = 0;
4449 	while (delalloc_bytes && loops < 3) {
4450 		max_reclaim = min(delalloc_bytes, to_reclaim);
4451 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4452 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4453 		/*
4454 		 * We need to wait for the async pages to actually start before
4455 		 * we do anything.
4456 		 */
4457 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4458 		if (!max_reclaim)
4459 			goto skip_async;
4460 
4461 		if (max_reclaim <= nr_pages)
4462 			max_reclaim = 0;
4463 		else
4464 			max_reclaim -= nr_pages;
4465 
4466 		wait_event(root->fs_info->async_submit_wait,
4467 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4468 			   (int)max_reclaim);
4469 skip_async:
4470 		if (!trans)
4471 			flush = BTRFS_RESERVE_FLUSH_ALL;
4472 		else
4473 			flush = BTRFS_RESERVE_NO_FLUSH;
4474 		spin_lock(&space_info->lock);
4475 		if (can_overcommit(root, space_info, orig, flush)) {
4476 			spin_unlock(&space_info->lock);
4477 			break;
4478 		}
4479 		spin_unlock(&space_info->lock);
4480 
4481 		loops++;
4482 		if (wait_ordered && !trans) {
4483 			btrfs_wait_ordered_roots(root->fs_info, items);
4484 		} else {
4485 			time_left = schedule_timeout_killable(1);
4486 			if (time_left)
4487 				break;
4488 		}
4489 		delalloc_bytes = percpu_counter_sum_positive(
4490 						&root->fs_info->delalloc_bytes);
4491 	}
4492 }
4493 
4494 /**
4495  * maybe_commit_transaction - possibly commit the transaction if its ok to
4496  * @root - the root we're allocating for
4497  * @bytes - the number of bytes we want to reserve
4498  * @force - force the commit
4499  *
4500  * This will check to make sure that committing the transaction will actually
4501  * get us somewhere and then commit the transaction if it does.  Otherwise it
4502  * will return -ENOSPC.
4503  */
4504 static int may_commit_transaction(struct btrfs_root *root,
4505 				  struct btrfs_space_info *space_info,
4506 				  u64 bytes, int force)
4507 {
4508 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4509 	struct btrfs_trans_handle *trans;
4510 
4511 	trans = (struct btrfs_trans_handle *)current->journal_info;
4512 	if (trans)
4513 		return -EAGAIN;
4514 
4515 	if (force)
4516 		goto commit;
4517 
4518 	/* See if there is enough pinned space to make this reservation */
4519 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4520 				   bytes) >= 0)
4521 		goto commit;
4522 
4523 	/*
4524 	 * See if there is some space in the delayed insertion reservation for
4525 	 * this reservation.
4526 	 */
4527 	if (space_info != delayed_rsv->space_info)
4528 		return -ENOSPC;
4529 
4530 	spin_lock(&delayed_rsv->lock);
4531 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4532 				   bytes - delayed_rsv->size) >= 0) {
4533 		spin_unlock(&delayed_rsv->lock);
4534 		return -ENOSPC;
4535 	}
4536 	spin_unlock(&delayed_rsv->lock);
4537 
4538 commit:
4539 	trans = btrfs_join_transaction(root);
4540 	if (IS_ERR(trans))
4541 		return -ENOSPC;
4542 
4543 	return btrfs_commit_transaction(trans, root);
4544 }
4545 
4546 enum flush_state {
4547 	FLUSH_DELAYED_ITEMS_NR	=	1,
4548 	FLUSH_DELAYED_ITEMS	=	2,
4549 	FLUSH_DELALLOC		=	3,
4550 	FLUSH_DELALLOC_WAIT	=	4,
4551 	ALLOC_CHUNK		=	5,
4552 	COMMIT_TRANS		=	6,
4553 };
4554 
4555 static int flush_space(struct btrfs_root *root,
4556 		       struct btrfs_space_info *space_info, u64 num_bytes,
4557 		       u64 orig_bytes, int state)
4558 {
4559 	struct btrfs_trans_handle *trans;
4560 	int nr;
4561 	int ret = 0;
4562 
4563 	switch (state) {
4564 	case FLUSH_DELAYED_ITEMS_NR:
4565 	case FLUSH_DELAYED_ITEMS:
4566 		if (state == FLUSH_DELAYED_ITEMS_NR)
4567 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4568 		else
4569 			nr = -1;
4570 
4571 		trans = btrfs_join_transaction(root);
4572 		if (IS_ERR(trans)) {
4573 			ret = PTR_ERR(trans);
4574 			break;
4575 		}
4576 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4577 		btrfs_end_transaction(trans, root);
4578 		break;
4579 	case FLUSH_DELALLOC:
4580 	case FLUSH_DELALLOC_WAIT:
4581 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4582 				state == FLUSH_DELALLOC_WAIT);
4583 		break;
4584 	case ALLOC_CHUNK:
4585 		trans = btrfs_join_transaction(root);
4586 		if (IS_ERR(trans)) {
4587 			ret = PTR_ERR(trans);
4588 			break;
4589 		}
4590 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4591 				     btrfs_get_alloc_profile(root, 0),
4592 				     CHUNK_ALLOC_NO_FORCE);
4593 		btrfs_end_transaction(trans, root);
4594 		if (ret == -ENOSPC)
4595 			ret = 0;
4596 		break;
4597 	case COMMIT_TRANS:
4598 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4599 		break;
4600 	default:
4601 		ret = -ENOSPC;
4602 		break;
4603 	}
4604 
4605 	return ret;
4606 }
4607 
4608 static inline u64
4609 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4610 				 struct btrfs_space_info *space_info)
4611 {
4612 	u64 used;
4613 	u64 expected;
4614 	u64 to_reclaim;
4615 
4616 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4617 				16 * 1024 * 1024);
4618 	spin_lock(&space_info->lock);
4619 	if (can_overcommit(root, space_info, to_reclaim,
4620 			   BTRFS_RESERVE_FLUSH_ALL)) {
4621 		to_reclaim = 0;
4622 		goto out;
4623 	}
4624 
4625 	used = space_info->bytes_used + space_info->bytes_reserved +
4626 	       space_info->bytes_pinned + space_info->bytes_readonly +
4627 	       space_info->bytes_may_use;
4628 	if (can_overcommit(root, space_info, 1024 * 1024,
4629 			   BTRFS_RESERVE_FLUSH_ALL))
4630 		expected = div_factor_fine(space_info->total_bytes, 95);
4631 	else
4632 		expected = div_factor_fine(space_info->total_bytes, 90);
4633 
4634 	if (used > expected)
4635 		to_reclaim = used - expected;
4636 	else
4637 		to_reclaim = 0;
4638 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4639 				     space_info->bytes_reserved);
4640 out:
4641 	spin_unlock(&space_info->lock);
4642 
4643 	return to_reclaim;
4644 }
4645 
4646 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4647 					struct btrfs_fs_info *fs_info, u64 used)
4648 {
4649 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4650 
4651 	/* If we're just plain full then async reclaim just slows us down. */
4652 	if (space_info->bytes_used >= thresh)
4653 		return 0;
4654 
4655 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4656 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4657 }
4658 
4659 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4660 				       struct btrfs_fs_info *fs_info,
4661 				       int flush_state)
4662 {
4663 	u64 used;
4664 
4665 	spin_lock(&space_info->lock);
4666 	/*
4667 	 * We run out of space and have not got any free space via flush_space,
4668 	 * so don't bother doing async reclaim.
4669 	 */
4670 	if (flush_state > COMMIT_TRANS && space_info->full) {
4671 		spin_unlock(&space_info->lock);
4672 		return 0;
4673 	}
4674 
4675 	used = space_info->bytes_used + space_info->bytes_reserved +
4676 	       space_info->bytes_pinned + space_info->bytes_readonly +
4677 	       space_info->bytes_may_use;
4678 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4679 		spin_unlock(&space_info->lock);
4680 		return 1;
4681 	}
4682 	spin_unlock(&space_info->lock);
4683 
4684 	return 0;
4685 }
4686 
4687 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4688 {
4689 	struct btrfs_fs_info *fs_info;
4690 	struct btrfs_space_info *space_info;
4691 	u64 to_reclaim;
4692 	int flush_state;
4693 
4694 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4695 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4696 
4697 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4698 						      space_info);
4699 	if (!to_reclaim)
4700 		return;
4701 
4702 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4703 	do {
4704 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4705 			    to_reclaim, flush_state);
4706 		flush_state++;
4707 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4708 						 flush_state))
4709 			return;
4710 	} while (flush_state < COMMIT_TRANS);
4711 }
4712 
4713 void btrfs_init_async_reclaim_work(struct work_struct *work)
4714 {
4715 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4716 }
4717 
4718 /**
4719  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4720  * @root - the root we're allocating for
4721  * @block_rsv - the block_rsv we're allocating for
4722  * @orig_bytes - the number of bytes we want
4723  * @flush - whether or not we can flush to make our reservation
4724  *
4725  * This will reserve orgi_bytes number of bytes from the space info associated
4726  * with the block_rsv.  If there is not enough space it will make an attempt to
4727  * flush out space to make room.  It will do this by flushing delalloc if
4728  * possible or committing the transaction.  If flush is 0 then no attempts to
4729  * regain reservations will be made and this will fail if there is not enough
4730  * space already.
4731  */
4732 static int reserve_metadata_bytes(struct btrfs_root *root,
4733 				  struct btrfs_block_rsv *block_rsv,
4734 				  u64 orig_bytes,
4735 				  enum btrfs_reserve_flush_enum flush)
4736 {
4737 	struct btrfs_space_info *space_info = block_rsv->space_info;
4738 	u64 used;
4739 	u64 num_bytes = orig_bytes;
4740 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4741 	int ret = 0;
4742 	bool flushing = false;
4743 
4744 again:
4745 	ret = 0;
4746 	spin_lock(&space_info->lock);
4747 	/*
4748 	 * We only want to wait if somebody other than us is flushing and we
4749 	 * are actually allowed to flush all things.
4750 	 */
4751 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4752 	       space_info->flush) {
4753 		spin_unlock(&space_info->lock);
4754 		/*
4755 		 * If we have a trans handle we can't wait because the flusher
4756 		 * may have to commit the transaction, which would mean we would
4757 		 * deadlock since we are waiting for the flusher to finish, but
4758 		 * hold the current transaction open.
4759 		 */
4760 		if (current->journal_info)
4761 			return -EAGAIN;
4762 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4763 		/* Must have been killed, return */
4764 		if (ret)
4765 			return -EINTR;
4766 
4767 		spin_lock(&space_info->lock);
4768 	}
4769 
4770 	ret = -ENOSPC;
4771 	used = space_info->bytes_used + space_info->bytes_reserved +
4772 		space_info->bytes_pinned + space_info->bytes_readonly +
4773 		space_info->bytes_may_use;
4774 
4775 	/*
4776 	 * The idea here is that we've not already over-reserved the block group
4777 	 * then we can go ahead and save our reservation first and then start
4778 	 * flushing if we need to.  Otherwise if we've already overcommitted
4779 	 * lets start flushing stuff first and then come back and try to make
4780 	 * our reservation.
4781 	 */
4782 	if (used <= space_info->total_bytes) {
4783 		if (used + orig_bytes <= space_info->total_bytes) {
4784 			space_info->bytes_may_use += orig_bytes;
4785 			trace_btrfs_space_reservation(root->fs_info,
4786 				"space_info", space_info->flags, orig_bytes, 1);
4787 			ret = 0;
4788 		} else {
4789 			/*
4790 			 * Ok set num_bytes to orig_bytes since we aren't
4791 			 * overocmmitted, this way we only try and reclaim what
4792 			 * we need.
4793 			 */
4794 			num_bytes = orig_bytes;
4795 		}
4796 	} else {
4797 		/*
4798 		 * Ok we're over committed, set num_bytes to the overcommitted
4799 		 * amount plus the amount of bytes that we need for this
4800 		 * reservation.
4801 		 */
4802 		num_bytes = used - space_info->total_bytes +
4803 			(orig_bytes * 2);
4804 	}
4805 
4806 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4807 		space_info->bytes_may_use += orig_bytes;
4808 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4809 					      space_info->flags, orig_bytes,
4810 					      1);
4811 		ret = 0;
4812 	}
4813 
4814 	/*
4815 	 * Couldn't make our reservation, save our place so while we're trying
4816 	 * to reclaim space we can actually use it instead of somebody else
4817 	 * stealing it from us.
4818 	 *
4819 	 * We make the other tasks wait for the flush only when we can flush
4820 	 * all things.
4821 	 */
4822 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4823 		flushing = true;
4824 		space_info->flush = 1;
4825 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4826 		used += orig_bytes;
4827 		/*
4828 		 * We will do the space reservation dance during log replay,
4829 		 * which means we won't have fs_info->fs_root set, so don't do
4830 		 * the async reclaim as we will panic.
4831 		 */
4832 		if (!root->fs_info->log_root_recovering &&
4833 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4834 		    !work_busy(&root->fs_info->async_reclaim_work))
4835 			queue_work(system_unbound_wq,
4836 				   &root->fs_info->async_reclaim_work);
4837 	}
4838 	spin_unlock(&space_info->lock);
4839 
4840 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4841 		goto out;
4842 
4843 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4844 			  flush_state);
4845 	flush_state++;
4846 
4847 	/*
4848 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4849 	 * would happen. So skip delalloc flush.
4850 	 */
4851 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4852 	    (flush_state == FLUSH_DELALLOC ||
4853 	     flush_state == FLUSH_DELALLOC_WAIT))
4854 		flush_state = ALLOC_CHUNK;
4855 
4856 	if (!ret)
4857 		goto again;
4858 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4859 		 flush_state < COMMIT_TRANS)
4860 		goto again;
4861 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4862 		 flush_state <= COMMIT_TRANS)
4863 		goto again;
4864 
4865 out:
4866 	if (ret == -ENOSPC &&
4867 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4868 		struct btrfs_block_rsv *global_rsv =
4869 			&root->fs_info->global_block_rsv;
4870 
4871 		if (block_rsv != global_rsv &&
4872 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4873 			ret = 0;
4874 	}
4875 	if (ret == -ENOSPC)
4876 		trace_btrfs_space_reservation(root->fs_info,
4877 					      "space_info:enospc",
4878 					      space_info->flags, orig_bytes, 1);
4879 	if (flushing) {
4880 		spin_lock(&space_info->lock);
4881 		space_info->flush = 0;
4882 		wake_up_all(&space_info->wait);
4883 		spin_unlock(&space_info->lock);
4884 	}
4885 	return ret;
4886 }
4887 
4888 static struct btrfs_block_rsv *get_block_rsv(
4889 					const struct btrfs_trans_handle *trans,
4890 					const struct btrfs_root *root)
4891 {
4892 	struct btrfs_block_rsv *block_rsv = NULL;
4893 
4894 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4895 		block_rsv = trans->block_rsv;
4896 
4897 	if (root == root->fs_info->csum_root && trans->adding_csums)
4898 		block_rsv = trans->block_rsv;
4899 
4900 	if (root == root->fs_info->uuid_root)
4901 		block_rsv = trans->block_rsv;
4902 
4903 	if (!block_rsv)
4904 		block_rsv = root->block_rsv;
4905 
4906 	if (!block_rsv)
4907 		block_rsv = &root->fs_info->empty_block_rsv;
4908 
4909 	return block_rsv;
4910 }
4911 
4912 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4913 			       u64 num_bytes)
4914 {
4915 	int ret = -ENOSPC;
4916 	spin_lock(&block_rsv->lock);
4917 	if (block_rsv->reserved >= num_bytes) {
4918 		block_rsv->reserved -= num_bytes;
4919 		if (block_rsv->reserved < block_rsv->size)
4920 			block_rsv->full = 0;
4921 		ret = 0;
4922 	}
4923 	spin_unlock(&block_rsv->lock);
4924 	return ret;
4925 }
4926 
4927 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4928 				u64 num_bytes, int update_size)
4929 {
4930 	spin_lock(&block_rsv->lock);
4931 	block_rsv->reserved += num_bytes;
4932 	if (update_size)
4933 		block_rsv->size += num_bytes;
4934 	else if (block_rsv->reserved >= block_rsv->size)
4935 		block_rsv->full = 1;
4936 	spin_unlock(&block_rsv->lock);
4937 }
4938 
4939 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4940 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4941 			     int min_factor)
4942 {
4943 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4944 	u64 min_bytes;
4945 
4946 	if (global_rsv->space_info != dest->space_info)
4947 		return -ENOSPC;
4948 
4949 	spin_lock(&global_rsv->lock);
4950 	min_bytes = div_factor(global_rsv->size, min_factor);
4951 	if (global_rsv->reserved < min_bytes + num_bytes) {
4952 		spin_unlock(&global_rsv->lock);
4953 		return -ENOSPC;
4954 	}
4955 	global_rsv->reserved -= num_bytes;
4956 	if (global_rsv->reserved < global_rsv->size)
4957 		global_rsv->full = 0;
4958 	spin_unlock(&global_rsv->lock);
4959 
4960 	block_rsv_add_bytes(dest, num_bytes, 1);
4961 	return 0;
4962 }
4963 
4964 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4965 				    struct btrfs_block_rsv *block_rsv,
4966 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4967 {
4968 	struct btrfs_space_info *space_info = block_rsv->space_info;
4969 
4970 	spin_lock(&block_rsv->lock);
4971 	if (num_bytes == (u64)-1)
4972 		num_bytes = block_rsv->size;
4973 	block_rsv->size -= num_bytes;
4974 	if (block_rsv->reserved >= block_rsv->size) {
4975 		num_bytes = block_rsv->reserved - block_rsv->size;
4976 		block_rsv->reserved = block_rsv->size;
4977 		block_rsv->full = 1;
4978 	} else {
4979 		num_bytes = 0;
4980 	}
4981 	spin_unlock(&block_rsv->lock);
4982 
4983 	if (num_bytes > 0) {
4984 		if (dest) {
4985 			spin_lock(&dest->lock);
4986 			if (!dest->full) {
4987 				u64 bytes_to_add;
4988 
4989 				bytes_to_add = dest->size - dest->reserved;
4990 				bytes_to_add = min(num_bytes, bytes_to_add);
4991 				dest->reserved += bytes_to_add;
4992 				if (dest->reserved >= dest->size)
4993 					dest->full = 1;
4994 				num_bytes -= bytes_to_add;
4995 			}
4996 			spin_unlock(&dest->lock);
4997 		}
4998 		if (num_bytes) {
4999 			spin_lock(&space_info->lock);
5000 			space_info->bytes_may_use -= num_bytes;
5001 			trace_btrfs_space_reservation(fs_info, "space_info",
5002 					space_info->flags, num_bytes, 0);
5003 			spin_unlock(&space_info->lock);
5004 		}
5005 	}
5006 }
5007 
5008 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5009 				   struct btrfs_block_rsv *dst, u64 num_bytes)
5010 {
5011 	int ret;
5012 
5013 	ret = block_rsv_use_bytes(src, num_bytes);
5014 	if (ret)
5015 		return ret;
5016 
5017 	block_rsv_add_bytes(dst, num_bytes, 1);
5018 	return 0;
5019 }
5020 
5021 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5022 {
5023 	memset(rsv, 0, sizeof(*rsv));
5024 	spin_lock_init(&rsv->lock);
5025 	rsv->type = type;
5026 }
5027 
5028 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5029 					      unsigned short type)
5030 {
5031 	struct btrfs_block_rsv *block_rsv;
5032 	struct btrfs_fs_info *fs_info = root->fs_info;
5033 
5034 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5035 	if (!block_rsv)
5036 		return NULL;
5037 
5038 	btrfs_init_block_rsv(block_rsv, type);
5039 	block_rsv->space_info = __find_space_info(fs_info,
5040 						  BTRFS_BLOCK_GROUP_METADATA);
5041 	return block_rsv;
5042 }
5043 
5044 void btrfs_free_block_rsv(struct btrfs_root *root,
5045 			  struct btrfs_block_rsv *rsv)
5046 {
5047 	if (!rsv)
5048 		return;
5049 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5050 	kfree(rsv);
5051 }
5052 
5053 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5054 {
5055 	kfree(rsv);
5056 }
5057 
5058 int btrfs_block_rsv_add(struct btrfs_root *root,
5059 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5060 			enum btrfs_reserve_flush_enum flush)
5061 {
5062 	int ret;
5063 
5064 	if (num_bytes == 0)
5065 		return 0;
5066 
5067 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5068 	if (!ret) {
5069 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5070 		return 0;
5071 	}
5072 
5073 	return ret;
5074 }
5075 
5076 int btrfs_block_rsv_check(struct btrfs_root *root,
5077 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5078 {
5079 	u64 num_bytes = 0;
5080 	int ret = -ENOSPC;
5081 
5082 	if (!block_rsv)
5083 		return 0;
5084 
5085 	spin_lock(&block_rsv->lock);
5086 	num_bytes = div_factor(block_rsv->size, min_factor);
5087 	if (block_rsv->reserved >= num_bytes)
5088 		ret = 0;
5089 	spin_unlock(&block_rsv->lock);
5090 
5091 	return ret;
5092 }
5093 
5094 int btrfs_block_rsv_refill(struct btrfs_root *root,
5095 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5096 			   enum btrfs_reserve_flush_enum flush)
5097 {
5098 	u64 num_bytes = 0;
5099 	int ret = -ENOSPC;
5100 
5101 	if (!block_rsv)
5102 		return 0;
5103 
5104 	spin_lock(&block_rsv->lock);
5105 	num_bytes = min_reserved;
5106 	if (block_rsv->reserved >= num_bytes)
5107 		ret = 0;
5108 	else
5109 		num_bytes -= block_rsv->reserved;
5110 	spin_unlock(&block_rsv->lock);
5111 
5112 	if (!ret)
5113 		return 0;
5114 
5115 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5116 	if (!ret) {
5117 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5118 		return 0;
5119 	}
5120 
5121 	return ret;
5122 }
5123 
5124 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5125 			    struct btrfs_block_rsv *dst_rsv,
5126 			    u64 num_bytes)
5127 {
5128 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5129 }
5130 
5131 void btrfs_block_rsv_release(struct btrfs_root *root,
5132 			     struct btrfs_block_rsv *block_rsv,
5133 			     u64 num_bytes)
5134 {
5135 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5136 	if (global_rsv == block_rsv ||
5137 	    block_rsv->space_info != global_rsv->space_info)
5138 		global_rsv = NULL;
5139 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5140 				num_bytes);
5141 }
5142 
5143 /*
5144  * helper to calculate size of global block reservation.
5145  * the desired value is sum of space used by extent tree,
5146  * checksum tree and root tree
5147  */
5148 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5149 {
5150 	struct btrfs_space_info *sinfo;
5151 	u64 num_bytes;
5152 	u64 meta_used;
5153 	u64 data_used;
5154 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5155 
5156 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5157 	spin_lock(&sinfo->lock);
5158 	data_used = sinfo->bytes_used;
5159 	spin_unlock(&sinfo->lock);
5160 
5161 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5162 	spin_lock(&sinfo->lock);
5163 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5164 		data_used = 0;
5165 	meta_used = sinfo->bytes_used;
5166 	spin_unlock(&sinfo->lock);
5167 
5168 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5169 		    csum_size * 2;
5170 	num_bytes += div_u64(data_used + meta_used, 50);
5171 
5172 	if (num_bytes * 3 > meta_used)
5173 		num_bytes = div_u64(meta_used, 3);
5174 
5175 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5176 }
5177 
5178 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5179 {
5180 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5181 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5182 	u64 num_bytes;
5183 
5184 	num_bytes = calc_global_metadata_size(fs_info);
5185 
5186 	spin_lock(&sinfo->lock);
5187 	spin_lock(&block_rsv->lock);
5188 
5189 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5190 
5191 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5192 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5193 		    sinfo->bytes_may_use;
5194 
5195 	if (sinfo->total_bytes > num_bytes) {
5196 		num_bytes = sinfo->total_bytes - num_bytes;
5197 		block_rsv->reserved += num_bytes;
5198 		sinfo->bytes_may_use += num_bytes;
5199 		trace_btrfs_space_reservation(fs_info, "space_info",
5200 				      sinfo->flags, num_bytes, 1);
5201 	}
5202 
5203 	if (block_rsv->reserved >= block_rsv->size) {
5204 		num_bytes = block_rsv->reserved - block_rsv->size;
5205 		sinfo->bytes_may_use -= num_bytes;
5206 		trace_btrfs_space_reservation(fs_info, "space_info",
5207 				      sinfo->flags, num_bytes, 0);
5208 		block_rsv->reserved = block_rsv->size;
5209 		block_rsv->full = 1;
5210 	}
5211 
5212 	spin_unlock(&block_rsv->lock);
5213 	spin_unlock(&sinfo->lock);
5214 }
5215 
5216 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5217 {
5218 	struct btrfs_space_info *space_info;
5219 
5220 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5221 	fs_info->chunk_block_rsv.space_info = space_info;
5222 
5223 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5224 	fs_info->global_block_rsv.space_info = space_info;
5225 	fs_info->delalloc_block_rsv.space_info = space_info;
5226 	fs_info->trans_block_rsv.space_info = space_info;
5227 	fs_info->empty_block_rsv.space_info = space_info;
5228 	fs_info->delayed_block_rsv.space_info = space_info;
5229 
5230 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5231 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5232 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5233 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5234 	if (fs_info->quota_root)
5235 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5236 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5237 
5238 	update_global_block_rsv(fs_info);
5239 }
5240 
5241 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5242 {
5243 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5244 				(u64)-1);
5245 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5246 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5247 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5248 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5249 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5250 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5251 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5252 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5253 }
5254 
5255 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5256 				  struct btrfs_root *root)
5257 {
5258 	if (!trans->block_rsv)
5259 		return;
5260 
5261 	if (!trans->bytes_reserved)
5262 		return;
5263 
5264 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5265 				      trans->transid, trans->bytes_reserved, 0);
5266 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5267 	trans->bytes_reserved = 0;
5268 }
5269 
5270 /*
5271  * To be called after all the new block groups attached to the transaction
5272  * handle have been created (btrfs_create_pending_block_groups()).
5273  */
5274 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5275 {
5276 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5277 
5278 	if (!trans->chunk_bytes_reserved)
5279 		return;
5280 
5281 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5282 
5283 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5284 				trans->chunk_bytes_reserved);
5285 	trans->chunk_bytes_reserved = 0;
5286 }
5287 
5288 /* Can only return 0 or -ENOSPC */
5289 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5290 				  struct inode *inode)
5291 {
5292 	struct btrfs_root *root = BTRFS_I(inode)->root;
5293 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5294 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5295 
5296 	/*
5297 	 * We need to hold space in order to delete our orphan item once we've
5298 	 * added it, so this takes the reservation so we can release it later
5299 	 * when we are truly done with the orphan item.
5300 	 */
5301 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5302 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5303 				      btrfs_ino(inode), num_bytes, 1);
5304 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5305 }
5306 
5307 void btrfs_orphan_release_metadata(struct inode *inode)
5308 {
5309 	struct btrfs_root *root = BTRFS_I(inode)->root;
5310 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5311 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5312 				      btrfs_ino(inode), num_bytes, 0);
5313 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5314 }
5315 
5316 /*
5317  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5318  * root: the root of the parent directory
5319  * rsv: block reservation
5320  * items: the number of items that we need do reservation
5321  * qgroup_reserved: used to return the reserved size in qgroup
5322  *
5323  * This function is used to reserve the space for snapshot/subvolume
5324  * creation and deletion. Those operations are different with the
5325  * common file/directory operations, they change two fs/file trees
5326  * and root tree, the number of items that the qgroup reserves is
5327  * different with the free space reservation. So we can not use
5328  * the space reseravtion mechanism in start_transaction().
5329  */
5330 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5331 				     struct btrfs_block_rsv *rsv,
5332 				     int items,
5333 				     u64 *qgroup_reserved,
5334 				     bool use_global_rsv)
5335 {
5336 	u64 num_bytes;
5337 	int ret;
5338 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5339 
5340 	if (root->fs_info->quota_enabled) {
5341 		/* One for parent inode, two for dir entries */
5342 		num_bytes = 3 * root->nodesize;
5343 		ret = btrfs_qgroup_reserve(root, num_bytes);
5344 		if (ret)
5345 			return ret;
5346 	} else {
5347 		num_bytes = 0;
5348 	}
5349 
5350 	*qgroup_reserved = num_bytes;
5351 
5352 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5353 	rsv->space_info = __find_space_info(root->fs_info,
5354 					    BTRFS_BLOCK_GROUP_METADATA);
5355 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5356 				  BTRFS_RESERVE_FLUSH_ALL);
5357 
5358 	if (ret == -ENOSPC && use_global_rsv)
5359 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5360 
5361 	if (ret) {
5362 		if (*qgroup_reserved)
5363 			btrfs_qgroup_free(root, *qgroup_reserved);
5364 	}
5365 
5366 	return ret;
5367 }
5368 
5369 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5370 				      struct btrfs_block_rsv *rsv,
5371 				      u64 qgroup_reserved)
5372 {
5373 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5374 }
5375 
5376 /**
5377  * drop_outstanding_extent - drop an outstanding extent
5378  * @inode: the inode we're dropping the extent for
5379  * @num_bytes: the number of bytes we're relaseing.
5380  *
5381  * This is called when we are freeing up an outstanding extent, either called
5382  * after an error or after an extent is written.  This will return the number of
5383  * reserved extents that need to be freed.  This must be called with
5384  * BTRFS_I(inode)->lock held.
5385  */
5386 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5387 {
5388 	unsigned drop_inode_space = 0;
5389 	unsigned dropped_extents = 0;
5390 	unsigned num_extents = 0;
5391 
5392 	num_extents = (unsigned)div64_u64(num_bytes +
5393 					  BTRFS_MAX_EXTENT_SIZE - 1,
5394 					  BTRFS_MAX_EXTENT_SIZE);
5395 	ASSERT(num_extents);
5396 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5397 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5398 
5399 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5400 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5401 			       &BTRFS_I(inode)->runtime_flags))
5402 		drop_inode_space = 1;
5403 
5404 	/*
5405 	 * If we have more or the same amount of outsanding extents than we have
5406 	 * reserved then we need to leave the reserved extents count alone.
5407 	 */
5408 	if (BTRFS_I(inode)->outstanding_extents >=
5409 	    BTRFS_I(inode)->reserved_extents)
5410 		return drop_inode_space;
5411 
5412 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5413 		BTRFS_I(inode)->outstanding_extents;
5414 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5415 	return dropped_extents + drop_inode_space;
5416 }
5417 
5418 /**
5419  * calc_csum_metadata_size - return the amount of metada space that must be
5420  *	reserved/free'd for the given bytes.
5421  * @inode: the inode we're manipulating
5422  * @num_bytes: the number of bytes in question
5423  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5424  *
5425  * This adjusts the number of csum_bytes in the inode and then returns the
5426  * correct amount of metadata that must either be reserved or freed.  We
5427  * calculate how many checksums we can fit into one leaf and then divide the
5428  * number of bytes that will need to be checksumed by this value to figure out
5429  * how many checksums will be required.  If we are adding bytes then the number
5430  * may go up and we will return the number of additional bytes that must be
5431  * reserved.  If it is going down we will return the number of bytes that must
5432  * be freed.
5433  *
5434  * This must be called with BTRFS_I(inode)->lock held.
5435  */
5436 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5437 				   int reserve)
5438 {
5439 	struct btrfs_root *root = BTRFS_I(inode)->root;
5440 	u64 old_csums, num_csums;
5441 
5442 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5443 	    BTRFS_I(inode)->csum_bytes == 0)
5444 		return 0;
5445 
5446 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5447 	if (reserve)
5448 		BTRFS_I(inode)->csum_bytes += num_bytes;
5449 	else
5450 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5451 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5452 
5453 	/* No change, no need to reserve more */
5454 	if (old_csums == num_csums)
5455 		return 0;
5456 
5457 	if (reserve)
5458 		return btrfs_calc_trans_metadata_size(root,
5459 						      num_csums - old_csums);
5460 
5461 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5462 }
5463 
5464 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5465 {
5466 	struct btrfs_root *root = BTRFS_I(inode)->root;
5467 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5468 	u64 to_reserve = 0;
5469 	u64 csum_bytes;
5470 	unsigned nr_extents = 0;
5471 	int extra_reserve = 0;
5472 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5473 	int ret = 0;
5474 	bool delalloc_lock = true;
5475 	u64 to_free = 0;
5476 	unsigned dropped;
5477 
5478 	/* If we are a free space inode we need to not flush since we will be in
5479 	 * the middle of a transaction commit.  We also don't need the delalloc
5480 	 * mutex since we won't race with anybody.  We need this mostly to make
5481 	 * lockdep shut its filthy mouth.
5482 	 */
5483 	if (btrfs_is_free_space_inode(inode)) {
5484 		flush = BTRFS_RESERVE_NO_FLUSH;
5485 		delalloc_lock = false;
5486 	}
5487 
5488 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5489 	    btrfs_transaction_in_commit(root->fs_info))
5490 		schedule_timeout(1);
5491 
5492 	if (delalloc_lock)
5493 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5494 
5495 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5496 
5497 	spin_lock(&BTRFS_I(inode)->lock);
5498 	nr_extents = (unsigned)div64_u64(num_bytes +
5499 					 BTRFS_MAX_EXTENT_SIZE - 1,
5500 					 BTRFS_MAX_EXTENT_SIZE);
5501 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5502 	nr_extents = 0;
5503 
5504 	if (BTRFS_I(inode)->outstanding_extents >
5505 	    BTRFS_I(inode)->reserved_extents)
5506 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5507 			BTRFS_I(inode)->reserved_extents;
5508 
5509 	/*
5510 	 * Add an item to reserve for updating the inode when we complete the
5511 	 * delalloc io.
5512 	 */
5513 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5514 		      &BTRFS_I(inode)->runtime_flags)) {
5515 		nr_extents++;
5516 		extra_reserve = 1;
5517 	}
5518 
5519 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5520 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5521 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5522 	spin_unlock(&BTRFS_I(inode)->lock);
5523 
5524 	if (root->fs_info->quota_enabled) {
5525 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5526 		if (ret)
5527 			goto out_fail;
5528 	}
5529 
5530 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5531 	if (unlikely(ret)) {
5532 		if (root->fs_info->quota_enabled)
5533 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5534 		goto out_fail;
5535 	}
5536 
5537 	spin_lock(&BTRFS_I(inode)->lock);
5538 	if (extra_reserve) {
5539 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5540 			&BTRFS_I(inode)->runtime_flags);
5541 		nr_extents--;
5542 	}
5543 	BTRFS_I(inode)->reserved_extents += nr_extents;
5544 	spin_unlock(&BTRFS_I(inode)->lock);
5545 
5546 	if (delalloc_lock)
5547 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5548 
5549 	if (to_reserve)
5550 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5551 					      btrfs_ino(inode), to_reserve, 1);
5552 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5553 
5554 	return 0;
5555 
5556 out_fail:
5557 	spin_lock(&BTRFS_I(inode)->lock);
5558 	dropped = drop_outstanding_extent(inode, num_bytes);
5559 	/*
5560 	 * If the inodes csum_bytes is the same as the original
5561 	 * csum_bytes then we know we haven't raced with any free()ers
5562 	 * so we can just reduce our inodes csum bytes and carry on.
5563 	 */
5564 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5565 		calc_csum_metadata_size(inode, num_bytes, 0);
5566 	} else {
5567 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5568 		u64 bytes;
5569 
5570 		/*
5571 		 * This is tricky, but first we need to figure out how much we
5572 		 * free'd from any free-ers that occured during this
5573 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5574 		 * before we dropped our lock, and then call the free for the
5575 		 * number of bytes that were freed while we were trying our
5576 		 * reservation.
5577 		 */
5578 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5579 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5580 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5581 
5582 
5583 		/*
5584 		 * Now we need to see how much we would have freed had we not
5585 		 * been making this reservation and our ->csum_bytes were not
5586 		 * artificially inflated.
5587 		 */
5588 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5589 		bytes = csum_bytes - orig_csum_bytes;
5590 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5591 
5592 		/*
5593 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5594 		 * more than to_free then we would have free'd more space had we
5595 		 * not had an artificially high ->csum_bytes, so we need to free
5596 		 * the remainder.  If bytes is the same or less then we don't
5597 		 * need to do anything, the other free-ers did the correct
5598 		 * thing.
5599 		 */
5600 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5601 		if (bytes > to_free)
5602 			to_free = bytes - to_free;
5603 		else
5604 			to_free = 0;
5605 	}
5606 	spin_unlock(&BTRFS_I(inode)->lock);
5607 	if (dropped)
5608 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5609 
5610 	if (to_free) {
5611 		btrfs_block_rsv_release(root, block_rsv, to_free);
5612 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5613 					      btrfs_ino(inode), to_free, 0);
5614 	}
5615 	if (delalloc_lock)
5616 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5617 	return ret;
5618 }
5619 
5620 /**
5621  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5622  * @inode: the inode to release the reservation for
5623  * @num_bytes: the number of bytes we're releasing
5624  *
5625  * This will release the metadata reservation for an inode.  This can be called
5626  * once we complete IO for a given set of bytes to release their metadata
5627  * reservations.
5628  */
5629 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5630 {
5631 	struct btrfs_root *root = BTRFS_I(inode)->root;
5632 	u64 to_free = 0;
5633 	unsigned dropped;
5634 
5635 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5636 	spin_lock(&BTRFS_I(inode)->lock);
5637 	dropped = drop_outstanding_extent(inode, num_bytes);
5638 
5639 	if (num_bytes)
5640 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5641 	spin_unlock(&BTRFS_I(inode)->lock);
5642 	if (dropped > 0)
5643 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5644 
5645 	if (btrfs_test_is_dummy_root(root))
5646 		return;
5647 
5648 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5649 				      btrfs_ino(inode), to_free, 0);
5650 
5651 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5652 				to_free);
5653 }
5654 
5655 /**
5656  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5657  * @inode: inode we're writing to
5658  * @num_bytes: the number of bytes we want to allocate
5659  *
5660  * This will do the following things
5661  *
5662  * o reserve space in the data space info for num_bytes
5663  * o reserve space in the metadata space info based on number of outstanding
5664  *   extents and how much csums will be needed
5665  * o add to the inodes ->delalloc_bytes
5666  * o add it to the fs_info's delalloc inodes list.
5667  *
5668  * This will return 0 for success and -ENOSPC if there is no space left.
5669  */
5670 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5671 {
5672 	int ret;
5673 
5674 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5675 	if (ret)
5676 		return ret;
5677 
5678 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5679 	if (ret) {
5680 		btrfs_free_reserved_data_space(inode, num_bytes);
5681 		return ret;
5682 	}
5683 
5684 	return 0;
5685 }
5686 
5687 /**
5688  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5689  * @inode: inode we're releasing space for
5690  * @num_bytes: the number of bytes we want to free up
5691  *
5692  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5693  * called in the case that we don't need the metadata AND data reservations
5694  * anymore.  So if there is an error or we insert an inline extent.
5695  *
5696  * This function will release the metadata space that was not used and will
5697  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5698  * list if there are no delalloc bytes left.
5699  */
5700 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5701 {
5702 	btrfs_delalloc_release_metadata(inode, num_bytes);
5703 	btrfs_free_reserved_data_space(inode, num_bytes);
5704 }
5705 
5706 static int update_block_group(struct btrfs_trans_handle *trans,
5707 			      struct btrfs_root *root, u64 bytenr,
5708 			      u64 num_bytes, int alloc)
5709 {
5710 	struct btrfs_block_group_cache *cache = NULL;
5711 	struct btrfs_fs_info *info = root->fs_info;
5712 	u64 total = num_bytes;
5713 	u64 old_val;
5714 	u64 byte_in_group;
5715 	int factor;
5716 
5717 	/* block accounting for super block */
5718 	spin_lock(&info->delalloc_root_lock);
5719 	old_val = btrfs_super_bytes_used(info->super_copy);
5720 	if (alloc)
5721 		old_val += num_bytes;
5722 	else
5723 		old_val -= num_bytes;
5724 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5725 	spin_unlock(&info->delalloc_root_lock);
5726 
5727 	while (total) {
5728 		cache = btrfs_lookup_block_group(info, bytenr);
5729 		if (!cache)
5730 			return -ENOENT;
5731 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5732 				    BTRFS_BLOCK_GROUP_RAID1 |
5733 				    BTRFS_BLOCK_GROUP_RAID10))
5734 			factor = 2;
5735 		else
5736 			factor = 1;
5737 		/*
5738 		 * If this block group has free space cache written out, we
5739 		 * need to make sure to load it if we are removing space.  This
5740 		 * is because we need the unpinning stage to actually add the
5741 		 * space back to the block group, otherwise we will leak space.
5742 		 */
5743 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5744 			cache_block_group(cache, 1);
5745 
5746 		byte_in_group = bytenr - cache->key.objectid;
5747 		WARN_ON(byte_in_group > cache->key.offset);
5748 
5749 		spin_lock(&cache->space_info->lock);
5750 		spin_lock(&cache->lock);
5751 
5752 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5753 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5754 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5755 
5756 		old_val = btrfs_block_group_used(&cache->item);
5757 		num_bytes = min(total, cache->key.offset - byte_in_group);
5758 		if (alloc) {
5759 			old_val += num_bytes;
5760 			btrfs_set_block_group_used(&cache->item, old_val);
5761 			cache->reserved -= num_bytes;
5762 			cache->space_info->bytes_reserved -= num_bytes;
5763 			cache->space_info->bytes_used += num_bytes;
5764 			cache->space_info->disk_used += num_bytes * factor;
5765 			spin_unlock(&cache->lock);
5766 			spin_unlock(&cache->space_info->lock);
5767 		} else {
5768 			old_val -= num_bytes;
5769 			btrfs_set_block_group_used(&cache->item, old_val);
5770 			cache->pinned += num_bytes;
5771 			cache->space_info->bytes_pinned += num_bytes;
5772 			cache->space_info->bytes_used -= num_bytes;
5773 			cache->space_info->disk_used -= num_bytes * factor;
5774 			spin_unlock(&cache->lock);
5775 			spin_unlock(&cache->space_info->lock);
5776 
5777 			set_extent_dirty(info->pinned_extents,
5778 					 bytenr, bytenr + num_bytes - 1,
5779 					 GFP_NOFS | __GFP_NOFAIL);
5780 			/*
5781 			 * No longer have used bytes in this block group, queue
5782 			 * it for deletion.
5783 			 */
5784 			if (old_val == 0) {
5785 				spin_lock(&info->unused_bgs_lock);
5786 				if (list_empty(&cache->bg_list)) {
5787 					btrfs_get_block_group(cache);
5788 					list_add_tail(&cache->bg_list,
5789 						      &info->unused_bgs);
5790 				}
5791 				spin_unlock(&info->unused_bgs_lock);
5792 			}
5793 		}
5794 
5795 		spin_lock(&trans->transaction->dirty_bgs_lock);
5796 		if (list_empty(&cache->dirty_list)) {
5797 			list_add_tail(&cache->dirty_list,
5798 				      &trans->transaction->dirty_bgs);
5799 				trans->transaction->num_dirty_bgs++;
5800 			btrfs_get_block_group(cache);
5801 		}
5802 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5803 
5804 		btrfs_put_block_group(cache);
5805 		total -= num_bytes;
5806 		bytenr += num_bytes;
5807 	}
5808 	return 0;
5809 }
5810 
5811 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5812 {
5813 	struct btrfs_block_group_cache *cache;
5814 	u64 bytenr;
5815 
5816 	spin_lock(&root->fs_info->block_group_cache_lock);
5817 	bytenr = root->fs_info->first_logical_byte;
5818 	spin_unlock(&root->fs_info->block_group_cache_lock);
5819 
5820 	if (bytenr < (u64)-1)
5821 		return bytenr;
5822 
5823 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5824 	if (!cache)
5825 		return 0;
5826 
5827 	bytenr = cache->key.objectid;
5828 	btrfs_put_block_group(cache);
5829 
5830 	return bytenr;
5831 }
5832 
5833 static int pin_down_extent(struct btrfs_root *root,
5834 			   struct btrfs_block_group_cache *cache,
5835 			   u64 bytenr, u64 num_bytes, int reserved)
5836 {
5837 	spin_lock(&cache->space_info->lock);
5838 	spin_lock(&cache->lock);
5839 	cache->pinned += num_bytes;
5840 	cache->space_info->bytes_pinned += num_bytes;
5841 	if (reserved) {
5842 		cache->reserved -= num_bytes;
5843 		cache->space_info->bytes_reserved -= num_bytes;
5844 	}
5845 	spin_unlock(&cache->lock);
5846 	spin_unlock(&cache->space_info->lock);
5847 
5848 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5849 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5850 	if (reserved)
5851 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5852 	return 0;
5853 }
5854 
5855 /*
5856  * this function must be called within transaction
5857  */
5858 int btrfs_pin_extent(struct btrfs_root *root,
5859 		     u64 bytenr, u64 num_bytes, int reserved)
5860 {
5861 	struct btrfs_block_group_cache *cache;
5862 
5863 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5864 	BUG_ON(!cache); /* Logic error */
5865 
5866 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5867 
5868 	btrfs_put_block_group(cache);
5869 	return 0;
5870 }
5871 
5872 /*
5873  * this function must be called within transaction
5874  */
5875 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5876 				    u64 bytenr, u64 num_bytes)
5877 {
5878 	struct btrfs_block_group_cache *cache;
5879 	int ret;
5880 
5881 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5882 	if (!cache)
5883 		return -EINVAL;
5884 
5885 	/*
5886 	 * pull in the free space cache (if any) so that our pin
5887 	 * removes the free space from the cache.  We have load_only set
5888 	 * to one because the slow code to read in the free extents does check
5889 	 * the pinned extents.
5890 	 */
5891 	cache_block_group(cache, 1);
5892 
5893 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5894 
5895 	/* remove us from the free space cache (if we're there at all) */
5896 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5897 	btrfs_put_block_group(cache);
5898 	return ret;
5899 }
5900 
5901 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5902 {
5903 	int ret;
5904 	struct btrfs_block_group_cache *block_group;
5905 	struct btrfs_caching_control *caching_ctl;
5906 
5907 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5908 	if (!block_group)
5909 		return -EINVAL;
5910 
5911 	cache_block_group(block_group, 0);
5912 	caching_ctl = get_caching_control(block_group);
5913 
5914 	if (!caching_ctl) {
5915 		/* Logic error */
5916 		BUG_ON(!block_group_cache_done(block_group));
5917 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5918 	} else {
5919 		mutex_lock(&caching_ctl->mutex);
5920 
5921 		if (start >= caching_ctl->progress) {
5922 			ret = add_excluded_extent(root, start, num_bytes);
5923 		} else if (start + num_bytes <= caching_ctl->progress) {
5924 			ret = btrfs_remove_free_space(block_group,
5925 						      start, num_bytes);
5926 		} else {
5927 			num_bytes = caching_ctl->progress - start;
5928 			ret = btrfs_remove_free_space(block_group,
5929 						      start, num_bytes);
5930 			if (ret)
5931 				goto out_lock;
5932 
5933 			num_bytes = (start + num_bytes) -
5934 				caching_ctl->progress;
5935 			start = caching_ctl->progress;
5936 			ret = add_excluded_extent(root, start, num_bytes);
5937 		}
5938 out_lock:
5939 		mutex_unlock(&caching_ctl->mutex);
5940 		put_caching_control(caching_ctl);
5941 	}
5942 	btrfs_put_block_group(block_group);
5943 	return ret;
5944 }
5945 
5946 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5947 				 struct extent_buffer *eb)
5948 {
5949 	struct btrfs_file_extent_item *item;
5950 	struct btrfs_key key;
5951 	int found_type;
5952 	int i;
5953 
5954 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5955 		return 0;
5956 
5957 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5958 		btrfs_item_key_to_cpu(eb, &key, i);
5959 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5960 			continue;
5961 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5962 		found_type = btrfs_file_extent_type(eb, item);
5963 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5964 			continue;
5965 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5966 			continue;
5967 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5968 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5969 		__exclude_logged_extent(log, key.objectid, key.offset);
5970 	}
5971 
5972 	return 0;
5973 }
5974 
5975 /**
5976  * btrfs_update_reserved_bytes - update the block_group and space info counters
5977  * @cache:	The cache we are manipulating
5978  * @num_bytes:	The number of bytes in question
5979  * @reserve:	One of the reservation enums
5980  * @delalloc:   The blocks are allocated for the delalloc write
5981  *
5982  * This is called by the allocator when it reserves space, or by somebody who is
5983  * freeing space that was never actually used on disk.  For example if you
5984  * reserve some space for a new leaf in transaction A and before transaction A
5985  * commits you free that leaf, you call this with reserve set to 0 in order to
5986  * clear the reservation.
5987  *
5988  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5989  * ENOSPC accounting.  For data we handle the reservation through clearing the
5990  * delalloc bits in the io_tree.  We have to do this since we could end up
5991  * allocating less disk space for the amount of data we have reserved in the
5992  * case of compression.
5993  *
5994  * If this is a reservation and the block group has become read only we cannot
5995  * make the reservation and return -EAGAIN, otherwise this function always
5996  * succeeds.
5997  */
5998 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5999 				       u64 num_bytes, int reserve, int delalloc)
6000 {
6001 	struct btrfs_space_info *space_info = cache->space_info;
6002 	int ret = 0;
6003 
6004 	spin_lock(&space_info->lock);
6005 	spin_lock(&cache->lock);
6006 	if (reserve != RESERVE_FREE) {
6007 		if (cache->ro) {
6008 			ret = -EAGAIN;
6009 		} else {
6010 			cache->reserved += num_bytes;
6011 			space_info->bytes_reserved += num_bytes;
6012 			if (reserve == RESERVE_ALLOC) {
6013 				trace_btrfs_space_reservation(cache->fs_info,
6014 						"space_info", space_info->flags,
6015 						num_bytes, 0);
6016 				space_info->bytes_may_use -= num_bytes;
6017 			}
6018 
6019 			if (delalloc)
6020 				cache->delalloc_bytes += num_bytes;
6021 		}
6022 	} else {
6023 		if (cache->ro)
6024 			space_info->bytes_readonly += num_bytes;
6025 		cache->reserved -= num_bytes;
6026 		space_info->bytes_reserved -= num_bytes;
6027 
6028 		if (delalloc)
6029 			cache->delalloc_bytes -= num_bytes;
6030 	}
6031 	spin_unlock(&cache->lock);
6032 	spin_unlock(&space_info->lock);
6033 	return ret;
6034 }
6035 
6036 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6037 				struct btrfs_root *root)
6038 {
6039 	struct btrfs_fs_info *fs_info = root->fs_info;
6040 	struct btrfs_caching_control *next;
6041 	struct btrfs_caching_control *caching_ctl;
6042 	struct btrfs_block_group_cache *cache;
6043 
6044 	down_write(&fs_info->commit_root_sem);
6045 
6046 	list_for_each_entry_safe(caching_ctl, next,
6047 				 &fs_info->caching_block_groups, list) {
6048 		cache = caching_ctl->block_group;
6049 		if (block_group_cache_done(cache)) {
6050 			cache->last_byte_to_unpin = (u64)-1;
6051 			list_del_init(&caching_ctl->list);
6052 			put_caching_control(caching_ctl);
6053 		} else {
6054 			cache->last_byte_to_unpin = caching_ctl->progress;
6055 		}
6056 	}
6057 
6058 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6059 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6060 	else
6061 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6062 
6063 	up_write(&fs_info->commit_root_sem);
6064 
6065 	update_global_block_rsv(fs_info);
6066 }
6067 
6068 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6069 			      const bool return_free_space)
6070 {
6071 	struct btrfs_fs_info *fs_info = root->fs_info;
6072 	struct btrfs_block_group_cache *cache = NULL;
6073 	struct btrfs_space_info *space_info;
6074 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6075 	u64 len;
6076 	bool readonly;
6077 
6078 	while (start <= end) {
6079 		readonly = false;
6080 		if (!cache ||
6081 		    start >= cache->key.objectid + cache->key.offset) {
6082 			if (cache)
6083 				btrfs_put_block_group(cache);
6084 			cache = btrfs_lookup_block_group(fs_info, start);
6085 			BUG_ON(!cache); /* Logic error */
6086 		}
6087 
6088 		len = cache->key.objectid + cache->key.offset - start;
6089 		len = min(len, end + 1 - start);
6090 
6091 		if (start < cache->last_byte_to_unpin) {
6092 			len = min(len, cache->last_byte_to_unpin - start);
6093 			if (return_free_space)
6094 				btrfs_add_free_space(cache, start, len);
6095 		}
6096 
6097 		start += len;
6098 		space_info = cache->space_info;
6099 
6100 		spin_lock(&space_info->lock);
6101 		spin_lock(&cache->lock);
6102 		cache->pinned -= len;
6103 		space_info->bytes_pinned -= len;
6104 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6105 		if (cache->ro) {
6106 			space_info->bytes_readonly += len;
6107 			readonly = true;
6108 		}
6109 		spin_unlock(&cache->lock);
6110 		if (!readonly && global_rsv->space_info == space_info) {
6111 			spin_lock(&global_rsv->lock);
6112 			if (!global_rsv->full) {
6113 				len = min(len, global_rsv->size -
6114 					  global_rsv->reserved);
6115 				global_rsv->reserved += len;
6116 				space_info->bytes_may_use += len;
6117 				if (global_rsv->reserved >= global_rsv->size)
6118 					global_rsv->full = 1;
6119 			}
6120 			spin_unlock(&global_rsv->lock);
6121 		}
6122 		spin_unlock(&space_info->lock);
6123 	}
6124 
6125 	if (cache)
6126 		btrfs_put_block_group(cache);
6127 	return 0;
6128 }
6129 
6130 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6131 			       struct btrfs_root *root)
6132 {
6133 	struct btrfs_fs_info *fs_info = root->fs_info;
6134 	struct btrfs_block_group_cache *block_group, *tmp;
6135 	struct list_head *deleted_bgs;
6136 	struct extent_io_tree *unpin;
6137 	u64 start;
6138 	u64 end;
6139 	int ret;
6140 
6141 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6142 		unpin = &fs_info->freed_extents[1];
6143 	else
6144 		unpin = &fs_info->freed_extents[0];
6145 
6146 	while (!trans->aborted) {
6147 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6148 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6149 					    EXTENT_DIRTY, NULL);
6150 		if (ret) {
6151 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6152 			break;
6153 		}
6154 
6155 		if (btrfs_test_opt(root, DISCARD))
6156 			ret = btrfs_discard_extent(root, start,
6157 						   end + 1 - start, NULL);
6158 
6159 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6160 		unpin_extent_range(root, start, end, true);
6161 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6162 		cond_resched();
6163 	}
6164 
6165 	/*
6166 	 * Transaction is finished.  We don't need the lock anymore.  We
6167 	 * do need to clean up the block groups in case of a transaction
6168 	 * abort.
6169 	 */
6170 	deleted_bgs = &trans->transaction->deleted_bgs;
6171 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6172 		u64 trimmed = 0;
6173 
6174 		ret = -EROFS;
6175 		if (!trans->aborted)
6176 			ret = btrfs_discard_extent(root,
6177 						   block_group->key.objectid,
6178 						   block_group->key.offset,
6179 						   &trimmed);
6180 
6181 		list_del_init(&block_group->bg_list);
6182 		btrfs_put_block_group_trimming(block_group);
6183 		btrfs_put_block_group(block_group);
6184 
6185 		if (ret) {
6186 			const char *errstr = btrfs_decode_error(ret);
6187 			btrfs_warn(fs_info,
6188 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6189 				   ret, errstr);
6190 		}
6191 	}
6192 
6193 	return 0;
6194 }
6195 
6196 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6197 			     u64 owner, u64 root_objectid)
6198 {
6199 	struct btrfs_space_info *space_info;
6200 	u64 flags;
6201 
6202 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6203 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6204 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6205 		else
6206 			flags = BTRFS_BLOCK_GROUP_METADATA;
6207 	} else {
6208 		flags = BTRFS_BLOCK_GROUP_DATA;
6209 	}
6210 
6211 	space_info = __find_space_info(fs_info, flags);
6212 	BUG_ON(!space_info); /* Logic bug */
6213 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6214 }
6215 
6216 
6217 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6218 				struct btrfs_root *root,
6219 				struct btrfs_delayed_ref_node *node, u64 parent,
6220 				u64 root_objectid, u64 owner_objectid,
6221 				u64 owner_offset, int refs_to_drop,
6222 				struct btrfs_delayed_extent_op *extent_op)
6223 {
6224 	struct btrfs_key key;
6225 	struct btrfs_path *path;
6226 	struct btrfs_fs_info *info = root->fs_info;
6227 	struct btrfs_root *extent_root = info->extent_root;
6228 	struct extent_buffer *leaf;
6229 	struct btrfs_extent_item *ei;
6230 	struct btrfs_extent_inline_ref *iref;
6231 	int ret;
6232 	int is_data;
6233 	int extent_slot = 0;
6234 	int found_extent = 0;
6235 	int num_to_del = 1;
6236 	int no_quota = node->no_quota;
6237 	u32 item_size;
6238 	u64 refs;
6239 	u64 bytenr = node->bytenr;
6240 	u64 num_bytes = node->num_bytes;
6241 	int last_ref = 0;
6242 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6243 						 SKINNY_METADATA);
6244 
6245 	if (!info->quota_enabled || !is_fstree(root_objectid))
6246 		no_quota = 1;
6247 
6248 	path = btrfs_alloc_path();
6249 	if (!path)
6250 		return -ENOMEM;
6251 
6252 	path->reada = 1;
6253 	path->leave_spinning = 1;
6254 
6255 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6256 	BUG_ON(!is_data && refs_to_drop != 1);
6257 
6258 	if (is_data)
6259 		skinny_metadata = 0;
6260 
6261 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6262 				    bytenr, num_bytes, parent,
6263 				    root_objectid, owner_objectid,
6264 				    owner_offset);
6265 	if (ret == 0) {
6266 		extent_slot = path->slots[0];
6267 		while (extent_slot >= 0) {
6268 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6269 					      extent_slot);
6270 			if (key.objectid != bytenr)
6271 				break;
6272 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6273 			    key.offset == num_bytes) {
6274 				found_extent = 1;
6275 				break;
6276 			}
6277 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6278 			    key.offset == owner_objectid) {
6279 				found_extent = 1;
6280 				break;
6281 			}
6282 			if (path->slots[0] - extent_slot > 5)
6283 				break;
6284 			extent_slot--;
6285 		}
6286 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6287 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6288 		if (found_extent && item_size < sizeof(*ei))
6289 			found_extent = 0;
6290 #endif
6291 		if (!found_extent) {
6292 			BUG_ON(iref);
6293 			ret = remove_extent_backref(trans, extent_root, path,
6294 						    NULL, refs_to_drop,
6295 						    is_data, &last_ref);
6296 			if (ret) {
6297 				btrfs_abort_transaction(trans, extent_root, ret);
6298 				goto out;
6299 			}
6300 			btrfs_release_path(path);
6301 			path->leave_spinning = 1;
6302 
6303 			key.objectid = bytenr;
6304 			key.type = BTRFS_EXTENT_ITEM_KEY;
6305 			key.offset = num_bytes;
6306 
6307 			if (!is_data && skinny_metadata) {
6308 				key.type = BTRFS_METADATA_ITEM_KEY;
6309 				key.offset = owner_objectid;
6310 			}
6311 
6312 			ret = btrfs_search_slot(trans, extent_root,
6313 						&key, path, -1, 1);
6314 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6315 				/*
6316 				 * Couldn't find our skinny metadata item,
6317 				 * see if we have ye olde extent item.
6318 				 */
6319 				path->slots[0]--;
6320 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6321 						      path->slots[0]);
6322 				if (key.objectid == bytenr &&
6323 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6324 				    key.offset == num_bytes)
6325 					ret = 0;
6326 			}
6327 
6328 			if (ret > 0 && skinny_metadata) {
6329 				skinny_metadata = false;
6330 				key.objectid = bytenr;
6331 				key.type = BTRFS_EXTENT_ITEM_KEY;
6332 				key.offset = num_bytes;
6333 				btrfs_release_path(path);
6334 				ret = btrfs_search_slot(trans, extent_root,
6335 							&key, path, -1, 1);
6336 			}
6337 
6338 			if (ret) {
6339 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6340 					ret, bytenr);
6341 				if (ret > 0)
6342 					btrfs_print_leaf(extent_root,
6343 							 path->nodes[0]);
6344 			}
6345 			if (ret < 0) {
6346 				btrfs_abort_transaction(trans, extent_root, ret);
6347 				goto out;
6348 			}
6349 			extent_slot = path->slots[0];
6350 		}
6351 	} else if (WARN_ON(ret == -ENOENT)) {
6352 		btrfs_print_leaf(extent_root, path->nodes[0]);
6353 		btrfs_err(info,
6354 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6355 			bytenr, parent, root_objectid, owner_objectid,
6356 			owner_offset);
6357 		btrfs_abort_transaction(trans, extent_root, ret);
6358 		goto out;
6359 	} else {
6360 		btrfs_abort_transaction(trans, extent_root, ret);
6361 		goto out;
6362 	}
6363 
6364 	leaf = path->nodes[0];
6365 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6366 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6367 	if (item_size < sizeof(*ei)) {
6368 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6369 		ret = convert_extent_item_v0(trans, extent_root, path,
6370 					     owner_objectid, 0);
6371 		if (ret < 0) {
6372 			btrfs_abort_transaction(trans, extent_root, ret);
6373 			goto out;
6374 		}
6375 
6376 		btrfs_release_path(path);
6377 		path->leave_spinning = 1;
6378 
6379 		key.objectid = bytenr;
6380 		key.type = BTRFS_EXTENT_ITEM_KEY;
6381 		key.offset = num_bytes;
6382 
6383 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6384 					-1, 1);
6385 		if (ret) {
6386 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6387 				ret, bytenr);
6388 			btrfs_print_leaf(extent_root, path->nodes[0]);
6389 		}
6390 		if (ret < 0) {
6391 			btrfs_abort_transaction(trans, extent_root, ret);
6392 			goto out;
6393 		}
6394 
6395 		extent_slot = path->slots[0];
6396 		leaf = path->nodes[0];
6397 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6398 	}
6399 #endif
6400 	BUG_ON(item_size < sizeof(*ei));
6401 	ei = btrfs_item_ptr(leaf, extent_slot,
6402 			    struct btrfs_extent_item);
6403 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6404 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6405 		struct btrfs_tree_block_info *bi;
6406 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6407 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6408 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6409 	}
6410 
6411 	refs = btrfs_extent_refs(leaf, ei);
6412 	if (refs < refs_to_drop) {
6413 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6414 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6415 		ret = -EINVAL;
6416 		btrfs_abort_transaction(trans, extent_root, ret);
6417 		goto out;
6418 	}
6419 	refs -= refs_to_drop;
6420 
6421 	if (refs > 0) {
6422 		if (extent_op)
6423 			__run_delayed_extent_op(extent_op, leaf, ei);
6424 		/*
6425 		 * In the case of inline back ref, reference count will
6426 		 * be updated by remove_extent_backref
6427 		 */
6428 		if (iref) {
6429 			BUG_ON(!found_extent);
6430 		} else {
6431 			btrfs_set_extent_refs(leaf, ei, refs);
6432 			btrfs_mark_buffer_dirty(leaf);
6433 		}
6434 		if (found_extent) {
6435 			ret = remove_extent_backref(trans, extent_root, path,
6436 						    iref, refs_to_drop,
6437 						    is_data, &last_ref);
6438 			if (ret) {
6439 				btrfs_abort_transaction(trans, extent_root, ret);
6440 				goto out;
6441 			}
6442 		}
6443 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6444 				 root_objectid);
6445 	} else {
6446 		if (found_extent) {
6447 			BUG_ON(is_data && refs_to_drop !=
6448 			       extent_data_ref_count(path, iref));
6449 			if (iref) {
6450 				BUG_ON(path->slots[0] != extent_slot);
6451 			} else {
6452 				BUG_ON(path->slots[0] != extent_slot + 1);
6453 				path->slots[0] = extent_slot;
6454 				num_to_del = 2;
6455 			}
6456 		}
6457 
6458 		last_ref = 1;
6459 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6460 				      num_to_del);
6461 		if (ret) {
6462 			btrfs_abort_transaction(trans, extent_root, ret);
6463 			goto out;
6464 		}
6465 		btrfs_release_path(path);
6466 
6467 		if (is_data) {
6468 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6469 			if (ret) {
6470 				btrfs_abort_transaction(trans, extent_root, ret);
6471 				goto out;
6472 			}
6473 		}
6474 
6475 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6476 		if (ret) {
6477 			btrfs_abort_transaction(trans, extent_root, ret);
6478 			goto out;
6479 		}
6480 	}
6481 	btrfs_release_path(path);
6482 
6483 out:
6484 	btrfs_free_path(path);
6485 	return ret;
6486 }
6487 
6488 /*
6489  * when we free an block, it is possible (and likely) that we free the last
6490  * delayed ref for that extent as well.  This searches the delayed ref tree for
6491  * a given extent, and if there are no other delayed refs to be processed, it
6492  * removes it from the tree.
6493  */
6494 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6495 				      struct btrfs_root *root, u64 bytenr)
6496 {
6497 	struct btrfs_delayed_ref_head *head;
6498 	struct btrfs_delayed_ref_root *delayed_refs;
6499 	int ret = 0;
6500 
6501 	delayed_refs = &trans->transaction->delayed_refs;
6502 	spin_lock(&delayed_refs->lock);
6503 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6504 	if (!head)
6505 		goto out_delayed_unlock;
6506 
6507 	spin_lock(&head->lock);
6508 	if (!list_empty(&head->ref_list))
6509 		goto out;
6510 
6511 	if (head->extent_op) {
6512 		if (!head->must_insert_reserved)
6513 			goto out;
6514 		btrfs_free_delayed_extent_op(head->extent_op);
6515 		head->extent_op = NULL;
6516 	}
6517 
6518 	/*
6519 	 * waiting for the lock here would deadlock.  If someone else has it
6520 	 * locked they are already in the process of dropping it anyway
6521 	 */
6522 	if (!mutex_trylock(&head->mutex))
6523 		goto out;
6524 
6525 	/*
6526 	 * at this point we have a head with no other entries.  Go
6527 	 * ahead and process it.
6528 	 */
6529 	head->node.in_tree = 0;
6530 	rb_erase(&head->href_node, &delayed_refs->href_root);
6531 
6532 	atomic_dec(&delayed_refs->num_entries);
6533 
6534 	/*
6535 	 * we don't take a ref on the node because we're removing it from the
6536 	 * tree, so we just steal the ref the tree was holding.
6537 	 */
6538 	delayed_refs->num_heads--;
6539 	if (head->processing == 0)
6540 		delayed_refs->num_heads_ready--;
6541 	head->processing = 0;
6542 	spin_unlock(&head->lock);
6543 	spin_unlock(&delayed_refs->lock);
6544 
6545 	BUG_ON(head->extent_op);
6546 	if (head->must_insert_reserved)
6547 		ret = 1;
6548 
6549 	mutex_unlock(&head->mutex);
6550 	btrfs_put_delayed_ref(&head->node);
6551 	return ret;
6552 out:
6553 	spin_unlock(&head->lock);
6554 
6555 out_delayed_unlock:
6556 	spin_unlock(&delayed_refs->lock);
6557 	return 0;
6558 }
6559 
6560 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6561 			   struct btrfs_root *root,
6562 			   struct extent_buffer *buf,
6563 			   u64 parent, int last_ref)
6564 {
6565 	int pin = 1;
6566 	int ret;
6567 
6568 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6569 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6570 					buf->start, buf->len,
6571 					parent, root->root_key.objectid,
6572 					btrfs_header_level(buf),
6573 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6574 		BUG_ON(ret); /* -ENOMEM */
6575 	}
6576 
6577 	if (!last_ref)
6578 		return;
6579 
6580 	if (btrfs_header_generation(buf) == trans->transid) {
6581 		struct btrfs_block_group_cache *cache;
6582 
6583 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6584 			ret = check_ref_cleanup(trans, root, buf->start);
6585 			if (!ret)
6586 				goto out;
6587 		}
6588 
6589 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6590 
6591 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6592 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6593 			btrfs_put_block_group(cache);
6594 			goto out;
6595 		}
6596 
6597 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6598 
6599 		btrfs_add_free_space(cache, buf->start, buf->len);
6600 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6601 		btrfs_put_block_group(cache);
6602 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6603 		pin = 0;
6604 	}
6605 out:
6606 	if (pin)
6607 		add_pinned_bytes(root->fs_info, buf->len,
6608 				 btrfs_header_level(buf),
6609 				 root->root_key.objectid);
6610 
6611 	/*
6612 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6613 	 * anymore.
6614 	 */
6615 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6616 }
6617 
6618 /* Can return -ENOMEM */
6619 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6620 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6621 		      u64 owner, u64 offset, int no_quota)
6622 {
6623 	int ret;
6624 	struct btrfs_fs_info *fs_info = root->fs_info;
6625 
6626 	if (btrfs_test_is_dummy_root(root))
6627 		return 0;
6628 
6629 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6630 
6631 	/*
6632 	 * tree log blocks never actually go into the extent allocation
6633 	 * tree, just update pinning info and exit early.
6634 	 */
6635 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6636 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6637 		/* unlocks the pinned mutex */
6638 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6639 		ret = 0;
6640 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6641 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6642 					num_bytes,
6643 					parent, root_objectid, (int)owner,
6644 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6645 	} else {
6646 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6647 						num_bytes,
6648 						parent, root_objectid, owner,
6649 						offset, BTRFS_DROP_DELAYED_REF,
6650 						NULL, no_quota);
6651 	}
6652 	return ret;
6653 }
6654 
6655 /*
6656  * when we wait for progress in the block group caching, its because
6657  * our allocation attempt failed at least once.  So, we must sleep
6658  * and let some progress happen before we try again.
6659  *
6660  * This function will sleep at least once waiting for new free space to
6661  * show up, and then it will check the block group free space numbers
6662  * for our min num_bytes.  Another option is to have it go ahead
6663  * and look in the rbtree for a free extent of a given size, but this
6664  * is a good start.
6665  *
6666  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6667  * any of the information in this block group.
6668  */
6669 static noinline void
6670 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6671 				u64 num_bytes)
6672 {
6673 	struct btrfs_caching_control *caching_ctl;
6674 
6675 	caching_ctl = get_caching_control(cache);
6676 	if (!caching_ctl)
6677 		return;
6678 
6679 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6680 		   (cache->free_space_ctl->free_space >= num_bytes));
6681 
6682 	put_caching_control(caching_ctl);
6683 }
6684 
6685 static noinline int
6686 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6687 {
6688 	struct btrfs_caching_control *caching_ctl;
6689 	int ret = 0;
6690 
6691 	caching_ctl = get_caching_control(cache);
6692 	if (!caching_ctl)
6693 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6694 
6695 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6696 	if (cache->cached == BTRFS_CACHE_ERROR)
6697 		ret = -EIO;
6698 	put_caching_control(caching_ctl);
6699 	return ret;
6700 }
6701 
6702 int __get_raid_index(u64 flags)
6703 {
6704 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6705 		return BTRFS_RAID_RAID10;
6706 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6707 		return BTRFS_RAID_RAID1;
6708 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6709 		return BTRFS_RAID_DUP;
6710 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6711 		return BTRFS_RAID_RAID0;
6712 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6713 		return BTRFS_RAID_RAID5;
6714 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6715 		return BTRFS_RAID_RAID6;
6716 
6717 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6718 }
6719 
6720 int get_block_group_index(struct btrfs_block_group_cache *cache)
6721 {
6722 	return __get_raid_index(cache->flags);
6723 }
6724 
6725 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6726 	[BTRFS_RAID_RAID10]	= "raid10",
6727 	[BTRFS_RAID_RAID1]	= "raid1",
6728 	[BTRFS_RAID_DUP]	= "dup",
6729 	[BTRFS_RAID_RAID0]	= "raid0",
6730 	[BTRFS_RAID_SINGLE]	= "single",
6731 	[BTRFS_RAID_RAID5]	= "raid5",
6732 	[BTRFS_RAID_RAID6]	= "raid6",
6733 };
6734 
6735 static const char *get_raid_name(enum btrfs_raid_types type)
6736 {
6737 	if (type >= BTRFS_NR_RAID_TYPES)
6738 		return NULL;
6739 
6740 	return btrfs_raid_type_names[type];
6741 }
6742 
6743 enum btrfs_loop_type {
6744 	LOOP_CACHING_NOWAIT = 0,
6745 	LOOP_CACHING_WAIT = 1,
6746 	LOOP_ALLOC_CHUNK = 2,
6747 	LOOP_NO_EMPTY_SIZE = 3,
6748 };
6749 
6750 static inline void
6751 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6752 		       int delalloc)
6753 {
6754 	if (delalloc)
6755 		down_read(&cache->data_rwsem);
6756 }
6757 
6758 static inline void
6759 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6760 		       int delalloc)
6761 {
6762 	btrfs_get_block_group(cache);
6763 	if (delalloc)
6764 		down_read(&cache->data_rwsem);
6765 }
6766 
6767 static struct btrfs_block_group_cache *
6768 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6769 		   struct btrfs_free_cluster *cluster,
6770 		   int delalloc)
6771 {
6772 	struct btrfs_block_group_cache *used_bg;
6773 	bool locked = false;
6774 again:
6775 	spin_lock(&cluster->refill_lock);
6776 	if (locked) {
6777 		if (used_bg == cluster->block_group)
6778 			return used_bg;
6779 
6780 		up_read(&used_bg->data_rwsem);
6781 		btrfs_put_block_group(used_bg);
6782 	}
6783 
6784 	used_bg = cluster->block_group;
6785 	if (!used_bg)
6786 		return NULL;
6787 
6788 	if (used_bg == block_group)
6789 		return used_bg;
6790 
6791 	btrfs_get_block_group(used_bg);
6792 
6793 	if (!delalloc)
6794 		return used_bg;
6795 
6796 	if (down_read_trylock(&used_bg->data_rwsem))
6797 		return used_bg;
6798 
6799 	spin_unlock(&cluster->refill_lock);
6800 	down_read(&used_bg->data_rwsem);
6801 	locked = true;
6802 	goto again;
6803 }
6804 
6805 static inline void
6806 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6807 			 int delalloc)
6808 {
6809 	if (delalloc)
6810 		up_read(&cache->data_rwsem);
6811 	btrfs_put_block_group(cache);
6812 }
6813 
6814 /*
6815  * walks the btree of allocated extents and find a hole of a given size.
6816  * The key ins is changed to record the hole:
6817  * ins->objectid == start position
6818  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6819  * ins->offset == the size of the hole.
6820  * Any available blocks before search_start are skipped.
6821  *
6822  * If there is no suitable free space, we will record the max size of
6823  * the free space extent currently.
6824  */
6825 static noinline int find_free_extent(struct btrfs_root *orig_root,
6826 				     u64 num_bytes, u64 empty_size,
6827 				     u64 hint_byte, struct btrfs_key *ins,
6828 				     u64 flags, int delalloc)
6829 {
6830 	int ret = 0;
6831 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6832 	struct btrfs_free_cluster *last_ptr = NULL;
6833 	struct btrfs_block_group_cache *block_group = NULL;
6834 	u64 search_start = 0;
6835 	u64 max_extent_size = 0;
6836 	int empty_cluster = 2 * 1024 * 1024;
6837 	struct btrfs_space_info *space_info;
6838 	int loop = 0;
6839 	int index = __get_raid_index(flags);
6840 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6841 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6842 	bool failed_cluster_refill = false;
6843 	bool failed_alloc = false;
6844 	bool use_cluster = true;
6845 	bool have_caching_bg = false;
6846 
6847 	WARN_ON(num_bytes < root->sectorsize);
6848 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6849 	ins->objectid = 0;
6850 	ins->offset = 0;
6851 
6852 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6853 
6854 	space_info = __find_space_info(root->fs_info, flags);
6855 	if (!space_info) {
6856 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6857 		return -ENOSPC;
6858 	}
6859 
6860 	/*
6861 	 * If the space info is for both data and metadata it means we have a
6862 	 * small filesystem and we can't use the clustering stuff.
6863 	 */
6864 	if (btrfs_mixed_space_info(space_info))
6865 		use_cluster = false;
6866 
6867 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6868 		last_ptr = &root->fs_info->meta_alloc_cluster;
6869 		if (!btrfs_test_opt(root, SSD))
6870 			empty_cluster = 64 * 1024;
6871 	}
6872 
6873 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6874 	    btrfs_test_opt(root, SSD)) {
6875 		last_ptr = &root->fs_info->data_alloc_cluster;
6876 	}
6877 
6878 	if (last_ptr) {
6879 		spin_lock(&last_ptr->lock);
6880 		if (last_ptr->block_group)
6881 			hint_byte = last_ptr->window_start;
6882 		spin_unlock(&last_ptr->lock);
6883 	}
6884 
6885 	search_start = max(search_start, first_logical_byte(root, 0));
6886 	search_start = max(search_start, hint_byte);
6887 
6888 	if (!last_ptr)
6889 		empty_cluster = 0;
6890 
6891 	if (search_start == hint_byte) {
6892 		block_group = btrfs_lookup_block_group(root->fs_info,
6893 						       search_start);
6894 		/*
6895 		 * we don't want to use the block group if it doesn't match our
6896 		 * allocation bits, or if its not cached.
6897 		 *
6898 		 * However if we are re-searching with an ideal block group
6899 		 * picked out then we don't care that the block group is cached.
6900 		 */
6901 		if (block_group && block_group_bits(block_group, flags) &&
6902 		    block_group->cached != BTRFS_CACHE_NO) {
6903 			down_read(&space_info->groups_sem);
6904 			if (list_empty(&block_group->list) ||
6905 			    block_group->ro) {
6906 				/*
6907 				 * someone is removing this block group,
6908 				 * we can't jump into the have_block_group
6909 				 * target because our list pointers are not
6910 				 * valid
6911 				 */
6912 				btrfs_put_block_group(block_group);
6913 				up_read(&space_info->groups_sem);
6914 			} else {
6915 				index = get_block_group_index(block_group);
6916 				btrfs_lock_block_group(block_group, delalloc);
6917 				goto have_block_group;
6918 			}
6919 		} else if (block_group) {
6920 			btrfs_put_block_group(block_group);
6921 		}
6922 	}
6923 search:
6924 	have_caching_bg = false;
6925 	down_read(&space_info->groups_sem);
6926 	list_for_each_entry(block_group, &space_info->block_groups[index],
6927 			    list) {
6928 		u64 offset;
6929 		int cached;
6930 
6931 		btrfs_grab_block_group(block_group, delalloc);
6932 		search_start = block_group->key.objectid;
6933 
6934 		/*
6935 		 * this can happen if we end up cycling through all the
6936 		 * raid types, but we want to make sure we only allocate
6937 		 * for the proper type.
6938 		 */
6939 		if (!block_group_bits(block_group, flags)) {
6940 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6941 				BTRFS_BLOCK_GROUP_RAID1 |
6942 				BTRFS_BLOCK_GROUP_RAID5 |
6943 				BTRFS_BLOCK_GROUP_RAID6 |
6944 				BTRFS_BLOCK_GROUP_RAID10;
6945 
6946 			/*
6947 			 * if they asked for extra copies and this block group
6948 			 * doesn't provide them, bail.  This does allow us to
6949 			 * fill raid0 from raid1.
6950 			 */
6951 			if ((flags & extra) && !(block_group->flags & extra))
6952 				goto loop;
6953 		}
6954 
6955 have_block_group:
6956 		cached = block_group_cache_done(block_group);
6957 		if (unlikely(!cached)) {
6958 			ret = cache_block_group(block_group, 0);
6959 			BUG_ON(ret < 0);
6960 			ret = 0;
6961 		}
6962 
6963 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6964 			goto loop;
6965 		if (unlikely(block_group->ro))
6966 			goto loop;
6967 
6968 		/*
6969 		 * Ok we want to try and use the cluster allocator, so
6970 		 * lets look there
6971 		 */
6972 		if (last_ptr) {
6973 			struct btrfs_block_group_cache *used_block_group;
6974 			unsigned long aligned_cluster;
6975 			/*
6976 			 * the refill lock keeps out other
6977 			 * people trying to start a new cluster
6978 			 */
6979 			used_block_group = btrfs_lock_cluster(block_group,
6980 							      last_ptr,
6981 							      delalloc);
6982 			if (!used_block_group)
6983 				goto refill_cluster;
6984 
6985 			if (used_block_group != block_group &&
6986 			    (used_block_group->ro ||
6987 			     !block_group_bits(used_block_group, flags)))
6988 				goto release_cluster;
6989 
6990 			offset = btrfs_alloc_from_cluster(used_block_group,
6991 						last_ptr,
6992 						num_bytes,
6993 						used_block_group->key.objectid,
6994 						&max_extent_size);
6995 			if (offset) {
6996 				/* we have a block, we're done */
6997 				spin_unlock(&last_ptr->refill_lock);
6998 				trace_btrfs_reserve_extent_cluster(root,
6999 						used_block_group,
7000 						search_start, num_bytes);
7001 				if (used_block_group != block_group) {
7002 					btrfs_release_block_group(block_group,
7003 								  delalloc);
7004 					block_group = used_block_group;
7005 				}
7006 				goto checks;
7007 			}
7008 
7009 			WARN_ON(last_ptr->block_group != used_block_group);
7010 release_cluster:
7011 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7012 			 * set up a new clusters, so lets just skip it
7013 			 * and let the allocator find whatever block
7014 			 * it can find.  If we reach this point, we
7015 			 * will have tried the cluster allocator
7016 			 * plenty of times and not have found
7017 			 * anything, so we are likely way too
7018 			 * fragmented for the clustering stuff to find
7019 			 * anything.
7020 			 *
7021 			 * However, if the cluster is taken from the
7022 			 * current block group, release the cluster
7023 			 * first, so that we stand a better chance of
7024 			 * succeeding in the unclustered
7025 			 * allocation.  */
7026 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7027 			    used_block_group != block_group) {
7028 				spin_unlock(&last_ptr->refill_lock);
7029 				btrfs_release_block_group(used_block_group,
7030 							  delalloc);
7031 				goto unclustered_alloc;
7032 			}
7033 
7034 			/*
7035 			 * this cluster didn't work out, free it and
7036 			 * start over
7037 			 */
7038 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7039 
7040 			if (used_block_group != block_group)
7041 				btrfs_release_block_group(used_block_group,
7042 							  delalloc);
7043 refill_cluster:
7044 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7045 				spin_unlock(&last_ptr->refill_lock);
7046 				goto unclustered_alloc;
7047 			}
7048 
7049 			aligned_cluster = max_t(unsigned long,
7050 						empty_cluster + empty_size,
7051 					      block_group->full_stripe_len);
7052 
7053 			/* allocate a cluster in this block group */
7054 			ret = btrfs_find_space_cluster(root, block_group,
7055 						       last_ptr, search_start,
7056 						       num_bytes,
7057 						       aligned_cluster);
7058 			if (ret == 0) {
7059 				/*
7060 				 * now pull our allocation out of this
7061 				 * cluster
7062 				 */
7063 				offset = btrfs_alloc_from_cluster(block_group,
7064 							last_ptr,
7065 							num_bytes,
7066 							search_start,
7067 							&max_extent_size);
7068 				if (offset) {
7069 					/* we found one, proceed */
7070 					spin_unlock(&last_ptr->refill_lock);
7071 					trace_btrfs_reserve_extent_cluster(root,
7072 						block_group, search_start,
7073 						num_bytes);
7074 					goto checks;
7075 				}
7076 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7077 				   && !failed_cluster_refill) {
7078 				spin_unlock(&last_ptr->refill_lock);
7079 
7080 				failed_cluster_refill = true;
7081 				wait_block_group_cache_progress(block_group,
7082 				       num_bytes + empty_cluster + empty_size);
7083 				goto have_block_group;
7084 			}
7085 
7086 			/*
7087 			 * at this point we either didn't find a cluster
7088 			 * or we weren't able to allocate a block from our
7089 			 * cluster.  Free the cluster we've been trying
7090 			 * to use, and go to the next block group
7091 			 */
7092 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7093 			spin_unlock(&last_ptr->refill_lock);
7094 			goto loop;
7095 		}
7096 
7097 unclustered_alloc:
7098 		spin_lock(&block_group->free_space_ctl->tree_lock);
7099 		if (cached &&
7100 		    block_group->free_space_ctl->free_space <
7101 		    num_bytes + empty_cluster + empty_size) {
7102 			if (block_group->free_space_ctl->free_space >
7103 			    max_extent_size)
7104 				max_extent_size =
7105 					block_group->free_space_ctl->free_space;
7106 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7107 			goto loop;
7108 		}
7109 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7110 
7111 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7112 						    num_bytes, empty_size,
7113 						    &max_extent_size);
7114 		/*
7115 		 * If we didn't find a chunk, and we haven't failed on this
7116 		 * block group before, and this block group is in the middle of
7117 		 * caching and we are ok with waiting, then go ahead and wait
7118 		 * for progress to be made, and set failed_alloc to true.
7119 		 *
7120 		 * If failed_alloc is true then we've already waited on this
7121 		 * block group once and should move on to the next block group.
7122 		 */
7123 		if (!offset && !failed_alloc && !cached &&
7124 		    loop > LOOP_CACHING_NOWAIT) {
7125 			wait_block_group_cache_progress(block_group,
7126 						num_bytes + empty_size);
7127 			failed_alloc = true;
7128 			goto have_block_group;
7129 		} else if (!offset) {
7130 			if (!cached)
7131 				have_caching_bg = true;
7132 			goto loop;
7133 		}
7134 checks:
7135 		search_start = ALIGN(offset, root->stripesize);
7136 
7137 		/* move on to the next group */
7138 		if (search_start + num_bytes >
7139 		    block_group->key.objectid + block_group->key.offset) {
7140 			btrfs_add_free_space(block_group, offset, num_bytes);
7141 			goto loop;
7142 		}
7143 
7144 		if (offset < search_start)
7145 			btrfs_add_free_space(block_group, offset,
7146 					     search_start - offset);
7147 		BUG_ON(offset > search_start);
7148 
7149 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7150 						  alloc_type, delalloc);
7151 		if (ret == -EAGAIN) {
7152 			btrfs_add_free_space(block_group, offset, num_bytes);
7153 			goto loop;
7154 		}
7155 
7156 		/* we are all good, lets return */
7157 		ins->objectid = search_start;
7158 		ins->offset = num_bytes;
7159 
7160 		trace_btrfs_reserve_extent(orig_root, block_group,
7161 					   search_start, num_bytes);
7162 		btrfs_release_block_group(block_group, delalloc);
7163 		break;
7164 loop:
7165 		failed_cluster_refill = false;
7166 		failed_alloc = false;
7167 		BUG_ON(index != get_block_group_index(block_group));
7168 		btrfs_release_block_group(block_group, delalloc);
7169 	}
7170 	up_read(&space_info->groups_sem);
7171 
7172 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7173 		goto search;
7174 
7175 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7176 		goto search;
7177 
7178 	/*
7179 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7180 	 *			caching kthreads as we move along
7181 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7182 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7183 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7184 	 *			again
7185 	 */
7186 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7187 		index = 0;
7188 		loop++;
7189 		if (loop == LOOP_ALLOC_CHUNK) {
7190 			struct btrfs_trans_handle *trans;
7191 			int exist = 0;
7192 
7193 			trans = current->journal_info;
7194 			if (trans)
7195 				exist = 1;
7196 			else
7197 				trans = btrfs_join_transaction(root);
7198 
7199 			if (IS_ERR(trans)) {
7200 				ret = PTR_ERR(trans);
7201 				goto out;
7202 			}
7203 
7204 			ret = do_chunk_alloc(trans, root, flags,
7205 					     CHUNK_ALLOC_FORCE);
7206 			/*
7207 			 * Do not bail out on ENOSPC since we
7208 			 * can do more things.
7209 			 */
7210 			if (ret < 0 && ret != -ENOSPC)
7211 				btrfs_abort_transaction(trans,
7212 							root, ret);
7213 			else
7214 				ret = 0;
7215 			if (!exist)
7216 				btrfs_end_transaction(trans, root);
7217 			if (ret)
7218 				goto out;
7219 		}
7220 
7221 		if (loop == LOOP_NO_EMPTY_SIZE) {
7222 			empty_size = 0;
7223 			empty_cluster = 0;
7224 		}
7225 
7226 		goto search;
7227 	} else if (!ins->objectid) {
7228 		ret = -ENOSPC;
7229 	} else if (ins->objectid) {
7230 		ret = 0;
7231 	}
7232 out:
7233 	if (ret == -ENOSPC)
7234 		ins->offset = max_extent_size;
7235 	return ret;
7236 }
7237 
7238 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7239 			    int dump_block_groups)
7240 {
7241 	struct btrfs_block_group_cache *cache;
7242 	int index = 0;
7243 
7244 	spin_lock(&info->lock);
7245 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7246 	       info->flags,
7247 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7248 	       info->bytes_reserved - info->bytes_readonly,
7249 	       (info->full) ? "" : "not ");
7250 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7251 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7252 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7253 	       info->bytes_reserved, info->bytes_may_use,
7254 	       info->bytes_readonly);
7255 	spin_unlock(&info->lock);
7256 
7257 	if (!dump_block_groups)
7258 		return;
7259 
7260 	down_read(&info->groups_sem);
7261 again:
7262 	list_for_each_entry(cache, &info->block_groups[index], list) {
7263 		spin_lock(&cache->lock);
7264 		printk(KERN_INFO "BTRFS: "
7265 			   "block group %llu has %llu bytes, "
7266 			   "%llu used %llu pinned %llu reserved %s\n",
7267 		       cache->key.objectid, cache->key.offset,
7268 		       btrfs_block_group_used(&cache->item), cache->pinned,
7269 		       cache->reserved, cache->ro ? "[readonly]" : "");
7270 		btrfs_dump_free_space(cache, bytes);
7271 		spin_unlock(&cache->lock);
7272 	}
7273 	if (++index < BTRFS_NR_RAID_TYPES)
7274 		goto again;
7275 	up_read(&info->groups_sem);
7276 }
7277 
7278 int btrfs_reserve_extent(struct btrfs_root *root,
7279 			 u64 num_bytes, u64 min_alloc_size,
7280 			 u64 empty_size, u64 hint_byte,
7281 			 struct btrfs_key *ins, int is_data, int delalloc)
7282 {
7283 	bool final_tried = false;
7284 	u64 flags;
7285 	int ret;
7286 
7287 	flags = btrfs_get_alloc_profile(root, is_data);
7288 again:
7289 	WARN_ON(num_bytes < root->sectorsize);
7290 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7291 			       flags, delalloc);
7292 
7293 	if (ret == -ENOSPC) {
7294 		if (!final_tried && ins->offset) {
7295 			num_bytes = min(num_bytes >> 1, ins->offset);
7296 			num_bytes = round_down(num_bytes, root->sectorsize);
7297 			num_bytes = max(num_bytes, min_alloc_size);
7298 			if (num_bytes == min_alloc_size)
7299 				final_tried = true;
7300 			goto again;
7301 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7302 			struct btrfs_space_info *sinfo;
7303 
7304 			sinfo = __find_space_info(root->fs_info, flags);
7305 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7306 				flags, num_bytes);
7307 			if (sinfo)
7308 				dump_space_info(sinfo, num_bytes, 1);
7309 		}
7310 	}
7311 
7312 	return ret;
7313 }
7314 
7315 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7316 					u64 start, u64 len,
7317 					int pin, int delalloc)
7318 {
7319 	struct btrfs_block_group_cache *cache;
7320 	int ret = 0;
7321 
7322 	cache = btrfs_lookup_block_group(root->fs_info, start);
7323 	if (!cache) {
7324 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7325 			start);
7326 		return -ENOSPC;
7327 	}
7328 
7329 	if (pin)
7330 		pin_down_extent(root, cache, start, len, 1);
7331 	else {
7332 		if (btrfs_test_opt(root, DISCARD))
7333 			ret = btrfs_discard_extent(root, start, len, NULL);
7334 		btrfs_add_free_space(cache, start, len);
7335 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7336 	}
7337 
7338 	btrfs_put_block_group(cache);
7339 
7340 	trace_btrfs_reserved_extent_free(root, start, len);
7341 
7342 	return ret;
7343 }
7344 
7345 int btrfs_free_reserved_extent(struct btrfs_root *root,
7346 			       u64 start, u64 len, int delalloc)
7347 {
7348 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7349 }
7350 
7351 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7352 				       u64 start, u64 len)
7353 {
7354 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7355 }
7356 
7357 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7358 				      struct btrfs_root *root,
7359 				      u64 parent, u64 root_objectid,
7360 				      u64 flags, u64 owner, u64 offset,
7361 				      struct btrfs_key *ins, int ref_mod)
7362 {
7363 	int ret;
7364 	struct btrfs_fs_info *fs_info = root->fs_info;
7365 	struct btrfs_extent_item *extent_item;
7366 	struct btrfs_extent_inline_ref *iref;
7367 	struct btrfs_path *path;
7368 	struct extent_buffer *leaf;
7369 	int type;
7370 	u32 size;
7371 
7372 	if (parent > 0)
7373 		type = BTRFS_SHARED_DATA_REF_KEY;
7374 	else
7375 		type = BTRFS_EXTENT_DATA_REF_KEY;
7376 
7377 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7378 
7379 	path = btrfs_alloc_path();
7380 	if (!path)
7381 		return -ENOMEM;
7382 
7383 	path->leave_spinning = 1;
7384 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7385 				      ins, size);
7386 	if (ret) {
7387 		btrfs_free_path(path);
7388 		return ret;
7389 	}
7390 
7391 	leaf = path->nodes[0];
7392 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7393 				     struct btrfs_extent_item);
7394 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7395 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7396 	btrfs_set_extent_flags(leaf, extent_item,
7397 			       flags | BTRFS_EXTENT_FLAG_DATA);
7398 
7399 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7400 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7401 	if (parent > 0) {
7402 		struct btrfs_shared_data_ref *ref;
7403 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7404 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7405 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7406 	} else {
7407 		struct btrfs_extent_data_ref *ref;
7408 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7409 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7410 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7411 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7412 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7413 	}
7414 
7415 	btrfs_mark_buffer_dirty(path->nodes[0]);
7416 	btrfs_free_path(path);
7417 
7418 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7419 	if (ret) { /* -ENOENT, logic error */
7420 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7421 			ins->objectid, ins->offset);
7422 		BUG();
7423 	}
7424 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7425 	return ret;
7426 }
7427 
7428 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7429 				     struct btrfs_root *root,
7430 				     u64 parent, u64 root_objectid,
7431 				     u64 flags, struct btrfs_disk_key *key,
7432 				     int level, struct btrfs_key *ins,
7433 				     int no_quota)
7434 {
7435 	int ret;
7436 	struct btrfs_fs_info *fs_info = root->fs_info;
7437 	struct btrfs_extent_item *extent_item;
7438 	struct btrfs_tree_block_info *block_info;
7439 	struct btrfs_extent_inline_ref *iref;
7440 	struct btrfs_path *path;
7441 	struct extent_buffer *leaf;
7442 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7443 	u64 num_bytes = ins->offset;
7444 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7445 						 SKINNY_METADATA);
7446 
7447 	if (!skinny_metadata)
7448 		size += sizeof(*block_info);
7449 
7450 	path = btrfs_alloc_path();
7451 	if (!path) {
7452 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7453 						   root->nodesize);
7454 		return -ENOMEM;
7455 	}
7456 
7457 	path->leave_spinning = 1;
7458 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7459 				      ins, size);
7460 	if (ret) {
7461 		btrfs_free_path(path);
7462 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7463 						   root->nodesize);
7464 		return ret;
7465 	}
7466 
7467 	leaf = path->nodes[0];
7468 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7469 				     struct btrfs_extent_item);
7470 	btrfs_set_extent_refs(leaf, extent_item, 1);
7471 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7472 	btrfs_set_extent_flags(leaf, extent_item,
7473 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7474 
7475 	if (skinny_metadata) {
7476 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7477 		num_bytes = root->nodesize;
7478 	} else {
7479 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7480 		btrfs_set_tree_block_key(leaf, block_info, key);
7481 		btrfs_set_tree_block_level(leaf, block_info, level);
7482 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7483 	}
7484 
7485 	if (parent > 0) {
7486 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7487 		btrfs_set_extent_inline_ref_type(leaf, iref,
7488 						 BTRFS_SHARED_BLOCK_REF_KEY);
7489 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7490 	} else {
7491 		btrfs_set_extent_inline_ref_type(leaf, iref,
7492 						 BTRFS_TREE_BLOCK_REF_KEY);
7493 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7494 	}
7495 
7496 	btrfs_mark_buffer_dirty(leaf);
7497 	btrfs_free_path(path);
7498 
7499 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7500 				 1);
7501 	if (ret) { /* -ENOENT, logic error */
7502 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7503 			ins->objectid, ins->offset);
7504 		BUG();
7505 	}
7506 
7507 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7508 	return ret;
7509 }
7510 
7511 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7512 				     struct btrfs_root *root,
7513 				     u64 root_objectid, u64 owner,
7514 				     u64 offset, struct btrfs_key *ins)
7515 {
7516 	int ret;
7517 
7518 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7519 
7520 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7521 					 ins->offset, 0,
7522 					 root_objectid, owner, offset,
7523 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7524 	return ret;
7525 }
7526 
7527 /*
7528  * this is used by the tree logging recovery code.  It records that
7529  * an extent has been allocated and makes sure to clear the free
7530  * space cache bits as well
7531  */
7532 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7533 				   struct btrfs_root *root,
7534 				   u64 root_objectid, u64 owner, u64 offset,
7535 				   struct btrfs_key *ins)
7536 {
7537 	int ret;
7538 	struct btrfs_block_group_cache *block_group;
7539 
7540 	/*
7541 	 * Mixed block groups will exclude before processing the log so we only
7542 	 * need to do the exlude dance if this fs isn't mixed.
7543 	 */
7544 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7545 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7546 		if (ret)
7547 			return ret;
7548 	}
7549 
7550 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7551 	if (!block_group)
7552 		return -EINVAL;
7553 
7554 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7555 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7556 	BUG_ON(ret); /* logic error */
7557 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7558 					 0, owner, offset, ins, 1);
7559 	btrfs_put_block_group(block_group);
7560 	return ret;
7561 }
7562 
7563 static struct extent_buffer *
7564 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7565 		      u64 bytenr, int level)
7566 {
7567 	struct extent_buffer *buf;
7568 
7569 	buf = btrfs_find_create_tree_block(root, bytenr);
7570 	if (!buf)
7571 		return ERR_PTR(-ENOMEM);
7572 	btrfs_set_header_generation(buf, trans->transid);
7573 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7574 	btrfs_tree_lock(buf);
7575 	clean_tree_block(trans, root->fs_info, buf);
7576 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7577 
7578 	btrfs_set_lock_blocking(buf);
7579 	btrfs_set_buffer_uptodate(buf);
7580 
7581 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7582 		buf->log_index = root->log_transid % 2;
7583 		/*
7584 		 * we allow two log transactions at a time, use different
7585 		 * EXENT bit to differentiate dirty pages.
7586 		 */
7587 		if (buf->log_index == 0)
7588 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7589 					buf->start + buf->len - 1, GFP_NOFS);
7590 		else
7591 			set_extent_new(&root->dirty_log_pages, buf->start,
7592 					buf->start + buf->len - 1, GFP_NOFS);
7593 	} else {
7594 		buf->log_index = -1;
7595 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7596 			 buf->start + buf->len - 1, GFP_NOFS);
7597 	}
7598 	trans->blocks_used++;
7599 	/* this returns a buffer locked for blocking */
7600 	return buf;
7601 }
7602 
7603 static struct btrfs_block_rsv *
7604 use_block_rsv(struct btrfs_trans_handle *trans,
7605 	      struct btrfs_root *root, u32 blocksize)
7606 {
7607 	struct btrfs_block_rsv *block_rsv;
7608 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7609 	int ret;
7610 	bool global_updated = false;
7611 
7612 	block_rsv = get_block_rsv(trans, root);
7613 
7614 	if (unlikely(block_rsv->size == 0))
7615 		goto try_reserve;
7616 again:
7617 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7618 	if (!ret)
7619 		return block_rsv;
7620 
7621 	if (block_rsv->failfast)
7622 		return ERR_PTR(ret);
7623 
7624 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7625 		global_updated = true;
7626 		update_global_block_rsv(root->fs_info);
7627 		goto again;
7628 	}
7629 
7630 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7631 		static DEFINE_RATELIMIT_STATE(_rs,
7632 				DEFAULT_RATELIMIT_INTERVAL * 10,
7633 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7634 		if (__ratelimit(&_rs))
7635 			WARN(1, KERN_DEBUG
7636 				"BTRFS: block rsv returned %d\n", ret);
7637 	}
7638 try_reserve:
7639 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7640 				     BTRFS_RESERVE_NO_FLUSH);
7641 	if (!ret)
7642 		return block_rsv;
7643 	/*
7644 	 * If we couldn't reserve metadata bytes try and use some from
7645 	 * the global reserve if its space type is the same as the global
7646 	 * reservation.
7647 	 */
7648 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7649 	    block_rsv->space_info == global_rsv->space_info) {
7650 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7651 		if (!ret)
7652 			return global_rsv;
7653 	}
7654 	return ERR_PTR(ret);
7655 }
7656 
7657 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7658 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7659 {
7660 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7661 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7662 }
7663 
7664 /*
7665  * finds a free extent and does all the dirty work required for allocation
7666  * returns the tree buffer or an ERR_PTR on error.
7667  */
7668 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7669 					struct btrfs_root *root,
7670 					u64 parent, u64 root_objectid,
7671 					struct btrfs_disk_key *key, int level,
7672 					u64 hint, u64 empty_size)
7673 {
7674 	struct btrfs_key ins;
7675 	struct btrfs_block_rsv *block_rsv;
7676 	struct extent_buffer *buf;
7677 	struct btrfs_delayed_extent_op *extent_op;
7678 	u64 flags = 0;
7679 	int ret;
7680 	u32 blocksize = root->nodesize;
7681 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7682 						 SKINNY_METADATA);
7683 
7684 	if (btrfs_test_is_dummy_root(root)) {
7685 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7686 					    level);
7687 		if (!IS_ERR(buf))
7688 			root->alloc_bytenr += blocksize;
7689 		return buf;
7690 	}
7691 
7692 	block_rsv = use_block_rsv(trans, root, blocksize);
7693 	if (IS_ERR(block_rsv))
7694 		return ERR_CAST(block_rsv);
7695 
7696 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7697 				   empty_size, hint, &ins, 0, 0);
7698 	if (ret)
7699 		goto out_unuse;
7700 
7701 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7702 	if (IS_ERR(buf)) {
7703 		ret = PTR_ERR(buf);
7704 		goto out_free_reserved;
7705 	}
7706 
7707 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7708 		if (parent == 0)
7709 			parent = ins.objectid;
7710 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7711 	} else
7712 		BUG_ON(parent > 0);
7713 
7714 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7715 		extent_op = btrfs_alloc_delayed_extent_op();
7716 		if (!extent_op) {
7717 			ret = -ENOMEM;
7718 			goto out_free_buf;
7719 		}
7720 		if (key)
7721 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7722 		else
7723 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7724 		extent_op->flags_to_set = flags;
7725 		if (skinny_metadata)
7726 			extent_op->update_key = 0;
7727 		else
7728 			extent_op->update_key = 1;
7729 		extent_op->update_flags = 1;
7730 		extent_op->is_data = 0;
7731 		extent_op->level = level;
7732 
7733 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7734 						 ins.objectid, ins.offset,
7735 						 parent, root_objectid, level,
7736 						 BTRFS_ADD_DELAYED_EXTENT,
7737 						 extent_op, 0);
7738 		if (ret)
7739 			goto out_free_delayed;
7740 	}
7741 	return buf;
7742 
7743 out_free_delayed:
7744 	btrfs_free_delayed_extent_op(extent_op);
7745 out_free_buf:
7746 	free_extent_buffer(buf);
7747 out_free_reserved:
7748 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7749 out_unuse:
7750 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7751 	return ERR_PTR(ret);
7752 }
7753 
7754 struct walk_control {
7755 	u64 refs[BTRFS_MAX_LEVEL];
7756 	u64 flags[BTRFS_MAX_LEVEL];
7757 	struct btrfs_key update_progress;
7758 	int stage;
7759 	int level;
7760 	int shared_level;
7761 	int update_ref;
7762 	int keep_locks;
7763 	int reada_slot;
7764 	int reada_count;
7765 	int for_reloc;
7766 };
7767 
7768 #define DROP_REFERENCE	1
7769 #define UPDATE_BACKREF	2
7770 
7771 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7772 				     struct btrfs_root *root,
7773 				     struct walk_control *wc,
7774 				     struct btrfs_path *path)
7775 {
7776 	u64 bytenr;
7777 	u64 generation;
7778 	u64 refs;
7779 	u64 flags;
7780 	u32 nritems;
7781 	u32 blocksize;
7782 	struct btrfs_key key;
7783 	struct extent_buffer *eb;
7784 	int ret;
7785 	int slot;
7786 	int nread = 0;
7787 
7788 	if (path->slots[wc->level] < wc->reada_slot) {
7789 		wc->reada_count = wc->reada_count * 2 / 3;
7790 		wc->reada_count = max(wc->reada_count, 2);
7791 	} else {
7792 		wc->reada_count = wc->reada_count * 3 / 2;
7793 		wc->reada_count = min_t(int, wc->reada_count,
7794 					BTRFS_NODEPTRS_PER_BLOCK(root));
7795 	}
7796 
7797 	eb = path->nodes[wc->level];
7798 	nritems = btrfs_header_nritems(eb);
7799 	blocksize = root->nodesize;
7800 
7801 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7802 		if (nread >= wc->reada_count)
7803 			break;
7804 
7805 		cond_resched();
7806 		bytenr = btrfs_node_blockptr(eb, slot);
7807 		generation = btrfs_node_ptr_generation(eb, slot);
7808 
7809 		if (slot == path->slots[wc->level])
7810 			goto reada;
7811 
7812 		if (wc->stage == UPDATE_BACKREF &&
7813 		    generation <= root->root_key.offset)
7814 			continue;
7815 
7816 		/* We don't lock the tree block, it's OK to be racy here */
7817 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7818 					       wc->level - 1, 1, &refs,
7819 					       &flags);
7820 		/* We don't care about errors in readahead. */
7821 		if (ret < 0)
7822 			continue;
7823 		BUG_ON(refs == 0);
7824 
7825 		if (wc->stage == DROP_REFERENCE) {
7826 			if (refs == 1)
7827 				goto reada;
7828 
7829 			if (wc->level == 1 &&
7830 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7831 				continue;
7832 			if (!wc->update_ref ||
7833 			    generation <= root->root_key.offset)
7834 				continue;
7835 			btrfs_node_key_to_cpu(eb, &key, slot);
7836 			ret = btrfs_comp_cpu_keys(&key,
7837 						  &wc->update_progress);
7838 			if (ret < 0)
7839 				continue;
7840 		} else {
7841 			if (wc->level == 1 &&
7842 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7843 				continue;
7844 		}
7845 reada:
7846 		readahead_tree_block(root, bytenr);
7847 		nread++;
7848 	}
7849 	wc->reada_slot = slot;
7850 }
7851 
7852 /*
7853  * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7854  * for later qgroup accounting.
7855  *
7856  * Current, this function does nothing.
7857  */
7858 static int account_leaf_items(struct btrfs_trans_handle *trans,
7859 			      struct btrfs_root *root,
7860 			      struct extent_buffer *eb)
7861 {
7862 	int nr = btrfs_header_nritems(eb);
7863 	int i, extent_type;
7864 	struct btrfs_key key;
7865 	struct btrfs_file_extent_item *fi;
7866 	u64 bytenr, num_bytes;
7867 
7868 	for (i = 0; i < nr; i++) {
7869 		btrfs_item_key_to_cpu(eb, &key, i);
7870 
7871 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7872 			continue;
7873 
7874 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7875 		/* filter out non qgroup-accountable extents  */
7876 		extent_type = btrfs_file_extent_type(eb, fi);
7877 
7878 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7879 			continue;
7880 
7881 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7882 		if (!bytenr)
7883 			continue;
7884 
7885 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7886 	}
7887 	return 0;
7888 }
7889 
7890 /*
7891  * Walk up the tree from the bottom, freeing leaves and any interior
7892  * nodes which have had all slots visited. If a node (leaf or
7893  * interior) is freed, the node above it will have it's slot
7894  * incremented. The root node will never be freed.
7895  *
7896  * At the end of this function, we should have a path which has all
7897  * slots incremented to the next position for a search. If we need to
7898  * read a new node it will be NULL and the node above it will have the
7899  * correct slot selected for a later read.
7900  *
7901  * If we increment the root nodes slot counter past the number of
7902  * elements, 1 is returned to signal completion of the search.
7903  */
7904 static int adjust_slots_upwards(struct btrfs_root *root,
7905 				struct btrfs_path *path, int root_level)
7906 {
7907 	int level = 0;
7908 	int nr, slot;
7909 	struct extent_buffer *eb;
7910 
7911 	if (root_level == 0)
7912 		return 1;
7913 
7914 	while (level <= root_level) {
7915 		eb = path->nodes[level];
7916 		nr = btrfs_header_nritems(eb);
7917 		path->slots[level]++;
7918 		slot = path->slots[level];
7919 		if (slot >= nr || level == 0) {
7920 			/*
7921 			 * Don't free the root -  we will detect this
7922 			 * condition after our loop and return a
7923 			 * positive value for caller to stop walking the tree.
7924 			 */
7925 			if (level != root_level) {
7926 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7927 				path->locks[level] = 0;
7928 
7929 				free_extent_buffer(eb);
7930 				path->nodes[level] = NULL;
7931 				path->slots[level] = 0;
7932 			}
7933 		} else {
7934 			/*
7935 			 * We have a valid slot to walk back down
7936 			 * from. Stop here so caller can process these
7937 			 * new nodes.
7938 			 */
7939 			break;
7940 		}
7941 
7942 		level++;
7943 	}
7944 
7945 	eb = path->nodes[root_level];
7946 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7947 		return 1;
7948 
7949 	return 0;
7950 }
7951 
7952 /*
7953  * root_eb is the subtree root and is locked before this function is called.
7954  * TODO: Modify this function to mark all (including complete shared node)
7955  * to dirty_extent_root to allow it get accounted in qgroup.
7956  */
7957 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7958 				  struct btrfs_root *root,
7959 				  struct extent_buffer *root_eb,
7960 				  u64 root_gen,
7961 				  int root_level)
7962 {
7963 	int ret = 0;
7964 	int level;
7965 	struct extent_buffer *eb = root_eb;
7966 	struct btrfs_path *path = NULL;
7967 
7968 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7969 	BUG_ON(root_eb == NULL);
7970 
7971 	if (!root->fs_info->quota_enabled)
7972 		return 0;
7973 
7974 	if (!extent_buffer_uptodate(root_eb)) {
7975 		ret = btrfs_read_buffer(root_eb, root_gen);
7976 		if (ret)
7977 			goto out;
7978 	}
7979 
7980 	if (root_level == 0) {
7981 		ret = account_leaf_items(trans, root, root_eb);
7982 		goto out;
7983 	}
7984 
7985 	path = btrfs_alloc_path();
7986 	if (!path)
7987 		return -ENOMEM;
7988 
7989 	/*
7990 	 * Walk down the tree.  Missing extent blocks are filled in as
7991 	 * we go. Metadata is accounted every time we read a new
7992 	 * extent block.
7993 	 *
7994 	 * When we reach a leaf, we account for file extent items in it,
7995 	 * walk back up the tree (adjusting slot pointers as we go)
7996 	 * and restart the search process.
7997 	 */
7998 	extent_buffer_get(root_eb); /* For path */
7999 	path->nodes[root_level] = root_eb;
8000 	path->slots[root_level] = 0;
8001 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8002 walk_down:
8003 	level = root_level;
8004 	while (level >= 0) {
8005 		if (path->nodes[level] == NULL) {
8006 			int parent_slot;
8007 			u64 child_gen;
8008 			u64 child_bytenr;
8009 
8010 			/* We need to get child blockptr/gen from
8011 			 * parent before we can read it. */
8012 			eb = path->nodes[level + 1];
8013 			parent_slot = path->slots[level + 1];
8014 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8015 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8016 
8017 			eb = read_tree_block(root, child_bytenr, child_gen);
8018 			if (IS_ERR(eb)) {
8019 				ret = PTR_ERR(eb);
8020 				goto out;
8021 			} else if (!extent_buffer_uptodate(eb)) {
8022 				free_extent_buffer(eb);
8023 				ret = -EIO;
8024 				goto out;
8025 			}
8026 
8027 			path->nodes[level] = eb;
8028 			path->slots[level] = 0;
8029 
8030 			btrfs_tree_read_lock(eb);
8031 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8032 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8033 		}
8034 
8035 		if (level == 0) {
8036 			ret = account_leaf_items(trans, root, path->nodes[level]);
8037 			if (ret)
8038 				goto out;
8039 
8040 			/* Nonzero return here means we completed our search */
8041 			ret = adjust_slots_upwards(root, path, root_level);
8042 			if (ret)
8043 				break;
8044 
8045 			/* Restart search with new slots */
8046 			goto walk_down;
8047 		}
8048 
8049 		level--;
8050 	}
8051 
8052 	ret = 0;
8053 out:
8054 	btrfs_free_path(path);
8055 
8056 	return ret;
8057 }
8058 
8059 /*
8060  * helper to process tree block while walking down the tree.
8061  *
8062  * when wc->stage == UPDATE_BACKREF, this function updates
8063  * back refs for pointers in the block.
8064  *
8065  * NOTE: return value 1 means we should stop walking down.
8066  */
8067 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8068 				   struct btrfs_root *root,
8069 				   struct btrfs_path *path,
8070 				   struct walk_control *wc, int lookup_info)
8071 {
8072 	int level = wc->level;
8073 	struct extent_buffer *eb = path->nodes[level];
8074 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8075 	int ret;
8076 
8077 	if (wc->stage == UPDATE_BACKREF &&
8078 	    btrfs_header_owner(eb) != root->root_key.objectid)
8079 		return 1;
8080 
8081 	/*
8082 	 * when reference count of tree block is 1, it won't increase
8083 	 * again. once full backref flag is set, we never clear it.
8084 	 */
8085 	if (lookup_info &&
8086 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8087 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8088 		BUG_ON(!path->locks[level]);
8089 		ret = btrfs_lookup_extent_info(trans, root,
8090 					       eb->start, level, 1,
8091 					       &wc->refs[level],
8092 					       &wc->flags[level]);
8093 		BUG_ON(ret == -ENOMEM);
8094 		if (ret)
8095 			return ret;
8096 		BUG_ON(wc->refs[level] == 0);
8097 	}
8098 
8099 	if (wc->stage == DROP_REFERENCE) {
8100 		if (wc->refs[level] > 1)
8101 			return 1;
8102 
8103 		if (path->locks[level] && !wc->keep_locks) {
8104 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8105 			path->locks[level] = 0;
8106 		}
8107 		return 0;
8108 	}
8109 
8110 	/* wc->stage == UPDATE_BACKREF */
8111 	if (!(wc->flags[level] & flag)) {
8112 		BUG_ON(!path->locks[level]);
8113 		ret = btrfs_inc_ref(trans, root, eb, 1);
8114 		BUG_ON(ret); /* -ENOMEM */
8115 		ret = btrfs_dec_ref(trans, root, eb, 0);
8116 		BUG_ON(ret); /* -ENOMEM */
8117 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8118 						  eb->len, flag,
8119 						  btrfs_header_level(eb), 0);
8120 		BUG_ON(ret); /* -ENOMEM */
8121 		wc->flags[level] |= flag;
8122 	}
8123 
8124 	/*
8125 	 * the block is shared by multiple trees, so it's not good to
8126 	 * keep the tree lock
8127 	 */
8128 	if (path->locks[level] && level > 0) {
8129 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8130 		path->locks[level] = 0;
8131 	}
8132 	return 0;
8133 }
8134 
8135 /*
8136  * helper to process tree block pointer.
8137  *
8138  * when wc->stage == DROP_REFERENCE, this function checks
8139  * reference count of the block pointed to. if the block
8140  * is shared and we need update back refs for the subtree
8141  * rooted at the block, this function changes wc->stage to
8142  * UPDATE_BACKREF. if the block is shared and there is no
8143  * need to update back, this function drops the reference
8144  * to the block.
8145  *
8146  * NOTE: return value 1 means we should stop walking down.
8147  */
8148 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8149 				 struct btrfs_root *root,
8150 				 struct btrfs_path *path,
8151 				 struct walk_control *wc, int *lookup_info)
8152 {
8153 	u64 bytenr;
8154 	u64 generation;
8155 	u64 parent;
8156 	u32 blocksize;
8157 	struct btrfs_key key;
8158 	struct extent_buffer *next;
8159 	int level = wc->level;
8160 	int reada = 0;
8161 	int ret = 0;
8162 	bool need_account = false;
8163 
8164 	generation = btrfs_node_ptr_generation(path->nodes[level],
8165 					       path->slots[level]);
8166 	/*
8167 	 * if the lower level block was created before the snapshot
8168 	 * was created, we know there is no need to update back refs
8169 	 * for the subtree
8170 	 */
8171 	if (wc->stage == UPDATE_BACKREF &&
8172 	    generation <= root->root_key.offset) {
8173 		*lookup_info = 1;
8174 		return 1;
8175 	}
8176 
8177 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8178 	blocksize = root->nodesize;
8179 
8180 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8181 	if (!next) {
8182 		next = btrfs_find_create_tree_block(root, bytenr);
8183 		if (!next)
8184 			return -ENOMEM;
8185 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8186 					       level - 1);
8187 		reada = 1;
8188 	}
8189 	btrfs_tree_lock(next);
8190 	btrfs_set_lock_blocking(next);
8191 
8192 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8193 				       &wc->refs[level - 1],
8194 				       &wc->flags[level - 1]);
8195 	if (ret < 0) {
8196 		btrfs_tree_unlock(next);
8197 		return ret;
8198 	}
8199 
8200 	if (unlikely(wc->refs[level - 1] == 0)) {
8201 		btrfs_err(root->fs_info, "Missing references.");
8202 		BUG();
8203 	}
8204 	*lookup_info = 0;
8205 
8206 	if (wc->stage == DROP_REFERENCE) {
8207 		if (wc->refs[level - 1] > 1) {
8208 			need_account = true;
8209 			if (level == 1 &&
8210 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8211 				goto skip;
8212 
8213 			if (!wc->update_ref ||
8214 			    generation <= root->root_key.offset)
8215 				goto skip;
8216 
8217 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8218 					      path->slots[level]);
8219 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8220 			if (ret < 0)
8221 				goto skip;
8222 
8223 			wc->stage = UPDATE_BACKREF;
8224 			wc->shared_level = level - 1;
8225 		}
8226 	} else {
8227 		if (level == 1 &&
8228 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8229 			goto skip;
8230 	}
8231 
8232 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8233 		btrfs_tree_unlock(next);
8234 		free_extent_buffer(next);
8235 		next = NULL;
8236 		*lookup_info = 1;
8237 	}
8238 
8239 	if (!next) {
8240 		if (reada && level == 1)
8241 			reada_walk_down(trans, root, wc, path);
8242 		next = read_tree_block(root, bytenr, generation);
8243 		if (IS_ERR(next)) {
8244 			return PTR_ERR(next);
8245 		} else if (!extent_buffer_uptodate(next)) {
8246 			free_extent_buffer(next);
8247 			return -EIO;
8248 		}
8249 		btrfs_tree_lock(next);
8250 		btrfs_set_lock_blocking(next);
8251 	}
8252 
8253 	level--;
8254 	BUG_ON(level != btrfs_header_level(next));
8255 	path->nodes[level] = next;
8256 	path->slots[level] = 0;
8257 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8258 	wc->level = level;
8259 	if (wc->level == 1)
8260 		wc->reada_slot = 0;
8261 	return 0;
8262 skip:
8263 	wc->refs[level - 1] = 0;
8264 	wc->flags[level - 1] = 0;
8265 	if (wc->stage == DROP_REFERENCE) {
8266 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8267 			parent = path->nodes[level]->start;
8268 		} else {
8269 			BUG_ON(root->root_key.objectid !=
8270 			       btrfs_header_owner(path->nodes[level]));
8271 			parent = 0;
8272 		}
8273 
8274 		if (need_account) {
8275 			ret = account_shared_subtree(trans, root, next,
8276 						     generation, level - 1);
8277 			if (ret) {
8278 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8279 					"%d accounting shared subtree. Quota "
8280 					"is out of sync, rescan required.\n",
8281 					root->fs_info->sb->s_id, ret);
8282 			}
8283 		}
8284 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8285 				root->root_key.objectid, level - 1, 0, 0);
8286 		BUG_ON(ret); /* -ENOMEM */
8287 	}
8288 	btrfs_tree_unlock(next);
8289 	free_extent_buffer(next);
8290 	*lookup_info = 1;
8291 	return 1;
8292 }
8293 
8294 /*
8295  * helper to process tree block while walking up the tree.
8296  *
8297  * when wc->stage == DROP_REFERENCE, this function drops
8298  * reference count on the block.
8299  *
8300  * when wc->stage == UPDATE_BACKREF, this function changes
8301  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8302  * to UPDATE_BACKREF previously while processing the block.
8303  *
8304  * NOTE: return value 1 means we should stop walking up.
8305  */
8306 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8307 				 struct btrfs_root *root,
8308 				 struct btrfs_path *path,
8309 				 struct walk_control *wc)
8310 {
8311 	int ret;
8312 	int level = wc->level;
8313 	struct extent_buffer *eb = path->nodes[level];
8314 	u64 parent = 0;
8315 
8316 	if (wc->stage == UPDATE_BACKREF) {
8317 		BUG_ON(wc->shared_level < level);
8318 		if (level < wc->shared_level)
8319 			goto out;
8320 
8321 		ret = find_next_key(path, level + 1, &wc->update_progress);
8322 		if (ret > 0)
8323 			wc->update_ref = 0;
8324 
8325 		wc->stage = DROP_REFERENCE;
8326 		wc->shared_level = -1;
8327 		path->slots[level] = 0;
8328 
8329 		/*
8330 		 * check reference count again if the block isn't locked.
8331 		 * we should start walking down the tree again if reference
8332 		 * count is one.
8333 		 */
8334 		if (!path->locks[level]) {
8335 			BUG_ON(level == 0);
8336 			btrfs_tree_lock(eb);
8337 			btrfs_set_lock_blocking(eb);
8338 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8339 
8340 			ret = btrfs_lookup_extent_info(trans, root,
8341 						       eb->start, level, 1,
8342 						       &wc->refs[level],
8343 						       &wc->flags[level]);
8344 			if (ret < 0) {
8345 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8346 				path->locks[level] = 0;
8347 				return ret;
8348 			}
8349 			BUG_ON(wc->refs[level] == 0);
8350 			if (wc->refs[level] == 1) {
8351 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8352 				path->locks[level] = 0;
8353 				return 1;
8354 			}
8355 		}
8356 	}
8357 
8358 	/* wc->stage == DROP_REFERENCE */
8359 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8360 
8361 	if (wc->refs[level] == 1) {
8362 		if (level == 0) {
8363 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8364 				ret = btrfs_dec_ref(trans, root, eb, 1);
8365 			else
8366 				ret = btrfs_dec_ref(trans, root, eb, 0);
8367 			BUG_ON(ret); /* -ENOMEM */
8368 			ret = account_leaf_items(trans, root, eb);
8369 			if (ret) {
8370 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8371 					"%d accounting leaf items. Quota "
8372 					"is out of sync, rescan required.\n",
8373 					root->fs_info->sb->s_id, ret);
8374 			}
8375 		}
8376 		/* make block locked assertion in clean_tree_block happy */
8377 		if (!path->locks[level] &&
8378 		    btrfs_header_generation(eb) == trans->transid) {
8379 			btrfs_tree_lock(eb);
8380 			btrfs_set_lock_blocking(eb);
8381 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8382 		}
8383 		clean_tree_block(trans, root->fs_info, eb);
8384 	}
8385 
8386 	if (eb == root->node) {
8387 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8388 			parent = eb->start;
8389 		else
8390 			BUG_ON(root->root_key.objectid !=
8391 			       btrfs_header_owner(eb));
8392 	} else {
8393 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8394 			parent = path->nodes[level + 1]->start;
8395 		else
8396 			BUG_ON(root->root_key.objectid !=
8397 			       btrfs_header_owner(path->nodes[level + 1]));
8398 	}
8399 
8400 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8401 out:
8402 	wc->refs[level] = 0;
8403 	wc->flags[level] = 0;
8404 	return 0;
8405 }
8406 
8407 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8408 				   struct btrfs_root *root,
8409 				   struct btrfs_path *path,
8410 				   struct walk_control *wc)
8411 {
8412 	int level = wc->level;
8413 	int lookup_info = 1;
8414 	int ret;
8415 
8416 	while (level >= 0) {
8417 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8418 		if (ret > 0)
8419 			break;
8420 
8421 		if (level == 0)
8422 			break;
8423 
8424 		if (path->slots[level] >=
8425 		    btrfs_header_nritems(path->nodes[level]))
8426 			break;
8427 
8428 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8429 		if (ret > 0) {
8430 			path->slots[level]++;
8431 			continue;
8432 		} else if (ret < 0)
8433 			return ret;
8434 		level = wc->level;
8435 	}
8436 	return 0;
8437 }
8438 
8439 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8440 				 struct btrfs_root *root,
8441 				 struct btrfs_path *path,
8442 				 struct walk_control *wc, int max_level)
8443 {
8444 	int level = wc->level;
8445 	int ret;
8446 
8447 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8448 	while (level < max_level && path->nodes[level]) {
8449 		wc->level = level;
8450 		if (path->slots[level] + 1 <
8451 		    btrfs_header_nritems(path->nodes[level])) {
8452 			path->slots[level]++;
8453 			return 0;
8454 		} else {
8455 			ret = walk_up_proc(trans, root, path, wc);
8456 			if (ret > 0)
8457 				return 0;
8458 
8459 			if (path->locks[level]) {
8460 				btrfs_tree_unlock_rw(path->nodes[level],
8461 						     path->locks[level]);
8462 				path->locks[level] = 0;
8463 			}
8464 			free_extent_buffer(path->nodes[level]);
8465 			path->nodes[level] = NULL;
8466 			level++;
8467 		}
8468 	}
8469 	return 1;
8470 }
8471 
8472 /*
8473  * drop a subvolume tree.
8474  *
8475  * this function traverses the tree freeing any blocks that only
8476  * referenced by the tree.
8477  *
8478  * when a shared tree block is found. this function decreases its
8479  * reference count by one. if update_ref is true, this function
8480  * also make sure backrefs for the shared block and all lower level
8481  * blocks are properly updated.
8482  *
8483  * If called with for_reloc == 0, may exit early with -EAGAIN
8484  */
8485 int btrfs_drop_snapshot(struct btrfs_root *root,
8486 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8487 			 int for_reloc)
8488 {
8489 	struct btrfs_path *path;
8490 	struct btrfs_trans_handle *trans;
8491 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8492 	struct btrfs_root_item *root_item = &root->root_item;
8493 	struct walk_control *wc;
8494 	struct btrfs_key key;
8495 	int err = 0;
8496 	int ret;
8497 	int level;
8498 	bool root_dropped = false;
8499 
8500 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8501 
8502 	path = btrfs_alloc_path();
8503 	if (!path) {
8504 		err = -ENOMEM;
8505 		goto out;
8506 	}
8507 
8508 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8509 	if (!wc) {
8510 		btrfs_free_path(path);
8511 		err = -ENOMEM;
8512 		goto out;
8513 	}
8514 
8515 	trans = btrfs_start_transaction(tree_root, 0);
8516 	if (IS_ERR(trans)) {
8517 		err = PTR_ERR(trans);
8518 		goto out_free;
8519 	}
8520 
8521 	if (block_rsv)
8522 		trans->block_rsv = block_rsv;
8523 
8524 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8525 		level = btrfs_header_level(root->node);
8526 		path->nodes[level] = btrfs_lock_root_node(root);
8527 		btrfs_set_lock_blocking(path->nodes[level]);
8528 		path->slots[level] = 0;
8529 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8530 		memset(&wc->update_progress, 0,
8531 		       sizeof(wc->update_progress));
8532 	} else {
8533 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8534 		memcpy(&wc->update_progress, &key,
8535 		       sizeof(wc->update_progress));
8536 
8537 		level = root_item->drop_level;
8538 		BUG_ON(level == 0);
8539 		path->lowest_level = level;
8540 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8541 		path->lowest_level = 0;
8542 		if (ret < 0) {
8543 			err = ret;
8544 			goto out_end_trans;
8545 		}
8546 		WARN_ON(ret > 0);
8547 
8548 		/*
8549 		 * unlock our path, this is safe because only this
8550 		 * function is allowed to delete this snapshot
8551 		 */
8552 		btrfs_unlock_up_safe(path, 0);
8553 
8554 		level = btrfs_header_level(root->node);
8555 		while (1) {
8556 			btrfs_tree_lock(path->nodes[level]);
8557 			btrfs_set_lock_blocking(path->nodes[level]);
8558 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8559 
8560 			ret = btrfs_lookup_extent_info(trans, root,
8561 						path->nodes[level]->start,
8562 						level, 1, &wc->refs[level],
8563 						&wc->flags[level]);
8564 			if (ret < 0) {
8565 				err = ret;
8566 				goto out_end_trans;
8567 			}
8568 			BUG_ON(wc->refs[level] == 0);
8569 
8570 			if (level == root_item->drop_level)
8571 				break;
8572 
8573 			btrfs_tree_unlock(path->nodes[level]);
8574 			path->locks[level] = 0;
8575 			WARN_ON(wc->refs[level] != 1);
8576 			level--;
8577 		}
8578 	}
8579 
8580 	wc->level = level;
8581 	wc->shared_level = -1;
8582 	wc->stage = DROP_REFERENCE;
8583 	wc->update_ref = update_ref;
8584 	wc->keep_locks = 0;
8585 	wc->for_reloc = for_reloc;
8586 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8587 
8588 	while (1) {
8589 
8590 		ret = walk_down_tree(trans, root, path, wc);
8591 		if (ret < 0) {
8592 			err = ret;
8593 			break;
8594 		}
8595 
8596 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8597 		if (ret < 0) {
8598 			err = ret;
8599 			break;
8600 		}
8601 
8602 		if (ret > 0) {
8603 			BUG_ON(wc->stage != DROP_REFERENCE);
8604 			break;
8605 		}
8606 
8607 		if (wc->stage == DROP_REFERENCE) {
8608 			level = wc->level;
8609 			btrfs_node_key(path->nodes[level],
8610 				       &root_item->drop_progress,
8611 				       path->slots[level]);
8612 			root_item->drop_level = level;
8613 		}
8614 
8615 		BUG_ON(wc->level == 0);
8616 		if (btrfs_should_end_transaction(trans, tree_root) ||
8617 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8618 			ret = btrfs_update_root(trans, tree_root,
8619 						&root->root_key,
8620 						root_item);
8621 			if (ret) {
8622 				btrfs_abort_transaction(trans, tree_root, ret);
8623 				err = ret;
8624 				goto out_end_trans;
8625 			}
8626 
8627 			btrfs_end_transaction_throttle(trans, tree_root);
8628 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8629 				pr_debug("BTRFS: drop snapshot early exit\n");
8630 				err = -EAGAIN;
8631 				goto out_free;
8632 			}
8633 
8634 			trans = btrfs_start_transaction(tree_root, 0);
8635 			if (IS_ERR(trans)) {
8636 				err = PTR_ERR(trans);
8637 				goto out_free;
8638 			}
8639 			if (block_rsv)
8640 				trans->block_rsv = block_rsv;
8641 		}
8642 	}
8643 	btrfs_release_path(path);
8644 	if (err)
8645 		goto out_end_trans;
8646 
8647 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8648 	if (ret) {
8649 		btrfs_abort_transaction(trans, tree_root, ret);
8650 		goto out_end_trans;
8651 	}
8652 
8653 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8654 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8655 				      NULL, NULL);
8656 		if (ret < 0) {
8657 			btrfs_abort_transaction(trans, tree_root, ret);
8658 			err = ret;
8659 			goto out_end_trans;
8660 		} else if (ret > 0) {
8661 			/* if we fail to delete the orphan item this time
8662 			 * around, it'll get picked up the next time.
8663 			 *
8664 			 * The most common failure here is just -ENOENT.
8665 			 */
8666 			btrfs_del_orphan_item(trans, tree_root,
8667 					      root->root_key.objectid);
8668 		}
8669 	}
8670 
8671 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8672 		btrfs_add_dropped_root(trans, root);
8673 	} else {
8674 		free_extent_buffer(root->node);
8675 		free_extent_buffer(root->commit_root);
8676 		btrfs_put_fs_root(root);
8677 	}
8678 	root_dropped = true;
8679 out_end_trans:
8680 	btrfs_end_transaction_throttle(trans, tree_root);
8681 out_free:
8682 	kfree(wc);
8683 	btrfs_free_path(path);
8684 out:
8685 	/*
8686 	 * So if we need to stop dropping the snapshot for whatever reason we
8687 	 * need to make sure to add it back to the dead root list so that we
8688 	 * keep trying to do the work later.  This also cleans up roots if we
8689 	 * don't have it in the radix (like when we recover after a power fail
8690 	 * or unmount) so we don't leak memory.
8691 	 */
8692 	if (!for_reloc && root_dropped == false)
8693 		btrfs_add_dead_root(root);
8694 	if (err && err != -EAGAIN)
8695 		btrfs_std_error(root->fs_info, err);
8696 	return err;
8697 }
8698 
8699 /*
8700  * drop subtree rooted at tree block 'node'.
8701  *
8702  * NOTE: this function will unlock and release tree block 'node'
8703  * only used by relocation code
8704  */
8705 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8706 			struct btrfs_root *root,
8707 			struct extent_buffer *node,
8708 			struct extent_buffer *parent)
8709 {
8710 	struct btrfs_path *path;
8711 	struct walk_control *wc;
8712 	int level;
8713 	int parent_level;
8714 	int ret = 0;
8715 	int wret;
8716 
8717 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8718 
8719 	path = btrfs_alloc_path();
8720 	if (!path)
8721 		return -ENOMEM;
8722 
8723 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8724 	if (!wc) {
8725 		btrfs_free_path(path);
8726 		return -ENOMEM;
8727 	}
8728 
8729 	btrfs_assert_tree_locked(parent);
8730 	parent_level = btrfs_header_level(parent);
8731 	extent_buffer_get(parent);
8732 	path->nodes[parent_level] = parent;
8733 	path->slots[parent_level] = btrfs_header_nritems(parent);
8734 
8735 	btrfs_assert_tree_locked(node);
8736 	level = btrfs_header_level(node);
8737 	path->nodes[level] = node;
8738 	path->slots[level] = 0;
8739 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8740 
8741 	wc->refs[parent_level] = 1;
8742 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8743 	wc->level = level;
8744 	wc->shared_level = -1;
8745 	wc->stage = DROP_REFERENCE;
8746 	wc->update_ref = 0;
8747 	wc->keep_locks = 1;
8748 	wc->for_reloc = 1;
8749 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8750 
8751 	while (1) {
8752 		wret = walk_down_tree(trans, root, path, wc);
8753 		if (wret < 0) {
8754 			ret = wret;
8755 			break;
8756 		}
8757 
8758 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8759 		if (wret < 0)
8760 			ret = wret;
8761 		if (wret != 0)
8762 			break;
8763 	}
8764 
8765 	kfree(wc);
8766 	btrfs_free_path(path);
8767 	return ret;
8768 }
8769 
8770 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8771 {
8772 	u64 num_devices;
8773 	u64 stripped;
8774 
8775 	/*
8776 	 * if restripe for this chunk_type is on pick target profile and
8777 	 * return, otherwise do the usual balance
8778 	 */
8779 	stripped = get_restripe_target(root->fs_info, flags);
8780 	if (stripped)
8781 		return extended_to_chunk(stripped);
8782 
8783 	num_devices = root->fs_info->fs_devices->rw_devices;
8784 
8785 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8786 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8787 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8788 
8789 	if (num_devices == 1) {
8790 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8791 		stripped = flags & ~stripped;
8792 
8793 		/* turn raid0 into single device chunks */
8794 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8795 			return stripped;
8796 
8797 		/* turn mirroring into duplication */
8798 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8799 			     BTRFS_BLOCK_GROUP_RAID10))
8800 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8801 	} else {
8802 		/* they already had raid on here, just return */
8803 		if (flags & stripped)
8804 			return flags;
8805 
8806 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8807 		stripped = flags & ~stripped;
8808 
8809 		/* switch duplicated blocks with raid1 */
8810 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8811 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8812 
8813 		/* this is drive concat, leave it alone */
8814 	}
8815 
8816 	return flags;
8817 }
8818 
8819 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8820 {
8821 	struct btrfs_space_info *sinfo = cache->space_info;
8822 	u64 num_bytes;
8823 	u64 min_allocable_bytes;
8824 	int ret = -ENOSPC;
8825 
8826 	/*
8827 	 * We need some metadata space and system metadata space for
8828 	 * allocating chunks in some corner cases until we force to set
8829 	 * it to be readonly.
8830 	 */
8831 	if ((sinfo->flags &
8832 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8833 	    !force)
8834 		min_allocable_bytes = 1 * 1024 * 1024;
8835 	else
8836 		min_allocable_bytes = 0;
8837 
8838 	spin_lock(&sinfo->lock);
8839 	spin_lock(&cache->lock);
8840 
8841 	if (cache->ro) {
8842 		cache->ro++;
8843 		ret = 0;
8844 		goto out;
8845 	}
8846 
8847 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8848 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8849 
8850 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8851 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8852 	    min_allocable_bytes <= sinfo->total_bytes) {
8853 		sinfo->bytes_readonly += num_bytes;
8854 		cache->ro++;
8855 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8856 		ret = 0;
8857 	}
8858 out:
8859 	spin_unlock(&cache->lock);
8860 	spin_unlock(&sinfo->lock);
8861 	return ret;
8862 }
8863 
8864 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8865 			     struct btrfs_block_group_cache *cache)
8866 
8867 {
8868 	struct btrfs_trans_handle *trans;
8869 	u64 alloc_flags;
8870 	int ret;
8871 
8872 again:
8873 	trans = btrfs_join_transaction(root);
8874 	if (IS_ERR(trans))
8875 		return PTR_ERR(trans);
8876 
8877 	/*
8878 	 * we're not allowed to set block groups readonly after the dirty
8879 	 * block groups cache has started writing.  If it already started,
8880 	 * back off and let this transaction commit
8881 	 */
8882 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8883 	if (trans->transaction->dirty_bg_run) {
8884 		u64 transid = trans->transid;
8885 
8886 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8887 		btrfs_end_transaction(trans, root);
8888 
8889 		ret = btrfs_wait_for_commit(root, transid);
8890 		if (ret)
8891 			return ret;
8892 		goto again;
8893 	}
8894 
8895 	/*
8896 	 * if we are changing raid levels, try to allocate a corresponding
8897 	 * block group with the new raid level.
8898 	 */
8899 	alloc_flags = update_block_group_flags(root, cache->flags);
8900 	if (alloc_flags != cache->flags) {
8901 		ret = do_chunk_alloc(trans, root, alloc_flags,
8902 				     CHUNK_ALLOC_FORCE);
8903 		/*
8904 		 * ENOSPC is allowed here, we may have enough space
8905 		 * already allocated at the new raid level to
8906 		 * carry on
8907 		 */
8908 		if (ret == -ENOSPC)
8909 			ret = 0;
8910 		if (ret < 0)
8911 			goto out;
8912 	}
8913 
8914 	ret = inc_block_group_ro(cache, 0);
8915 	if (!ret)
8916 		goto out;
8917 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8918 	ret = do_chunk_alloc(trans, root, alloc_flags,
8919 			     CHUNK_ALLOC_FORCE);
8920 	if (ret < 0)
8921 		goto out;
8922 	ret = inc_block_group_ro(cache, 0);
8923 out:
8924 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8925 		alloc_flags = update_block_group_flags(root, cache->flags);
8926 		lock_chunks(root->fs_info->chunk_root);
8927 		check_system_chunk(trans, root, alloc_flags);
8928 		unlock_chunks(root->fs_info->chunk_root);
8929 	}
8930 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8931 
8932 	btrfs_end_transaction(trans, root);
8933 	return ret;
8934 }
8935 
8936 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8937 			    struct btrfs_root *root, u64 type)
8938 {
8939 	u64 alloc_flags = get_alloc_profile(root, type);
8940 	return do_chunk_alloc(trans, root, alloc_flags,
8941 			      CHUNK_ALLOC_FORCE);
8942 }
8943 
8944 /*
8945  * helper to account the unused space of all the readonly block group in the
8946  * space_info. takes mirrors into account.
8947  */
8948 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8949 {
8950 	struct btrfs_block_group_cache *block_group;
8951 	u64 free_bytes = 0;
8952 	int factor;
8953 
8954 	/* It's df, we don't care if it's racey */
8955 	if (list_empty(&sinfo->ro_bgs))
8956 		return 0;
8957 
8958 	spin_lock(&sinfo->lock);
8959 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8960 		spin_lock(&block_group->lock);
8961 
8962 		if (!block_group->ro) {
8963 			spin_unlock(&block_group->lock);
8964 			continue;
8965 		}
8966 
8967 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8968 					  BTRFS_BLOCK_GROUP_RAID10 |
8969 					  BTRFS_BLOCK_GROUP_DUP))
8970 			factor = 2;
8971 		else
8972 			factor = 1;
8973 
8974 		free_bytes += (block_group->key.offset -
8975 			       btrfs_block_group_used(&block_group->item)) *
8976 			       factor;
8977 
8978 		spin_unlock(&block_group->lock);
8979 	}
8980 	spin_unlock(&sinfo->lock);
8981 
8982 	return free_bytes;
8983 }
8984 
8985 void btrfs_dec_block_group_ro(struct btrfs_root *root,
8986 			      struct btrfs_block_group_cache *cache)
8987 {
8988 	struct btrfs_space_info *sinfo = cache->space_info;
8989 	u64 num_bytes;
8990 
8991 	BUG_ON(!cache->ro);
8992 
8993 	spin_lock(&sinfo->lock);
8994 	spin_lock(&cache->lock);
8995 	if (!--cache->ro) {
8996 		num_bytes = cache->key.offset - cache->reserved -
8997 			    cache->pinned - cache->bytes_super -
8998 			    btrfs_block_group_used(&cache->item);
8999 		sinfo->bytes_readonly -= num_bytes;
9000 		list_del_init(&cache->ro_list);
9001 	}
9002 	spin_unlock(&cache->lock);
9003 	spin_unlock(&sinfo->lock);
9004 }
9005 
9006 /*
9007  * checks to see if its even possible to relocate this block group.
9008  *
9009  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9010  * ok to go ahead and try.
9011  */
9012 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9013 {
9014 	struct btrfs_block_group_cache *block_group;
9015 	struct btrfs_space_info *space_info;
9016 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9017 	struct btrfs_device *device;
9018 	struct btrfs_trans_handle *trans;
9019 	u64 min_free;
9020 	u64 dev_min = 1;
9021 	u64 dev_nr = 0;
9022 	u64 target;
9023 	int index;
9024 	int full = 0;
9025 	int ret = 0;
9026 
9027 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9028 
9029 	/* odd, couldn't find the block group, leave it alone */
9030 	if (!block_group)
9031 		return -1;
9032 
9033 	min_free = btrfs_block_group_used(&block_group->item);
9034 
9035 	/* no bytes used, we're good */
9036 	if (!min_free)
9037 		goto out;
9038 
9039 	space_info = block_group->space_info;
9040 	spin_lock(&space_info->lock);
9041 
9042 	full = space_info->full;
9043 
9044 	/*
9045 	 * if this is the last block group we have in this space, we can't
9046 	 * relocate it unless we're able to allocate a new chunk below.
9047 	 *
9048 	 * Otherwise, we need to make sure we have room in the space to handle
9049 	 * all of the extents from this block group.  If we can, we're good
9050 	 */
9051 	if ((space_info->total_bytes != block_group->key.offset) &&
9052 	    (space_info->bytes_used + space_info->bytes_reserved +
9053 	     space_info->bytes_pinned + space_info->bytes_readonly +
9054 	     min_free < space_info->total_bytes)) {
9055 		spin_unlock(&space_info->lock);
9056 		goto out;
9057 	}
9058 	spin_unlock(&space_info->lock);
9059 
9060 	/*
9061 	 * ok we don't have enough space, but maybe we have free space on our
9062 	 * devices to allocate new chunks for relocation, so loop through our
9063 	 * alloc devices and guess if we have enough space.  if this block
9064 	 * group is going to be restriped, run checks against the target
9065 	 * profile instead of the current one.
9066 	 */
9067 	ret = -1;
9068 
9069 	/*
9070 	 * index:
9071 	 *      0: raid10
9072 	 *      1: raid1
9073 	 *      2: dup
9074 	 *      3: raid0
9075 	 *      4: single
9076 	 */
9077 	target = get_restripe_target(root->fs_info, block_group->flags);
9078 	if (target) {
9079 		index = __get_raid_index(extended_to_chunk(target));
9080 	} else {
9081 		/*
9082 		 * this is just a balance, so if we were marked as full
9083 		 * we know there is no space for a new chunk
9084 		 */
9085 		if (full)
9086 			goto out;
9087 
9088 		index = get_block_group_index(block_group);
9089 	}
9090 
9091 	if (index == BTRFS_RAID_RAID10) {
9092 		dev_min = 4;
9093 		/* Divide by 2 */
9094 		min_free >>= 1;
9095 	} else if (index == BTRFS_RAID_RAID1) {
9096 		dev_min = 2;
9097 	} else if (index == BTRFS_RAID_DUP) {
9098 		/* Multiply by 2 */
9099 		min_free <<= 1;
9100 	} else if (index == BTRFS_RAID_RAID0) {
9101 		dev_min = fs_devices->rw_devices;
9102 		min_free = div64_u64(min_free, dev_min);
9103 	}
9104 
9105 	/* We need to do this so that we can look at pending chunks */
9106 	trans = btrfs_join_transaction(root);
9107 	if (IS_ERR(trans)) {
9108 		ret = PTR_ERR(trans);
9109 		goto out;
9110 	}
9111 
9112 	mutex_lock(&root->fs_info->chunk_mutex);
9113 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9114 		u64 dev_offset;
9115 
9116 		/*
9117 		 * check to make sure we can actually find a chunk with enough
9118 		 * space to fit our block group in.
9119 		 */
9120 		if (device->total_bytes > device->bytes_used + min_free &&
9121 		    !device->is_tgtdev_for_dev_replace) {
9122 			ret = find_free_dev_extent(trans, device, min_free,
9123 						   &dev_offset, NULL);
9124 			if (!ret)
9125 				dev_nr++;
9126 
9127 			if (dev_nr >= dev_min)
9128 				break;
9129 
9130 			ret = -1;
9131 		}
9132 	}
9133 	mutex_unlock(&root->fs_info->chunk_mutex);
9134 	btrfs_end_transaction(trans, root);
9135 out:
9136 	btrfs_put_block_group(block_group);
9137 	return ret;
9138 }
9139 
9140 static int find_first_block_group(struct btrfs_root *root,
9141 		struct btrfs_path *path, struct btrfs_key *key)
9142 {
9143 	int ret = 0;
9144 	struct btrfs_key found_key;
9145 	struct extent_buffer *leaf;
9146 	int slot;
9147 
9148 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9149 	if (ret < 0)
9150 		goto out;
9151 
9152 	while (1) {
9153 		slot = path->slots[0];
9154 		leaf = path->nodes[0];
9155 		if (slot >= btrfs_header_nritems(leaf)) {
9156 			ret = btrfs_next_leaf(root, path);
9157 			if (ret == 0)
9158 				continue;
9159 			if (ret < 0)
9160 				goto out;
9161 			break;
9162 		}
9163 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9164 
9165 		if (found_key.objectid >= key->objectid &&
9166 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9167 			ret = 0;
9168 			goto out;
9169 		}
9170 		path->slots[0]++;
9171 	}
9172 out:
9173 	return ret;
9174 }
9175 
9176 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9177 {
9178 	struct btrfs_block_group_cache *block_group;
9179 	u64 last = 0;
9180 
9181 	while (1) {
9182 		struct inode *inode;
9183 
9184 		block_group = btrfs_lookup_first_block_group(info, last);
9185 		while (block_group) {
9186 			spin_lock(&block_group->lock);
9187 			if (block_group->iref)
9188 				break;
9189 			spin_unlock(&block_group->lock);
9190 			block_group = next_block_group(info->tree_root,
9191 						       block_group);
9192 		}
9193 		if (!block_group) {
9194 			if (last == 0)
9195 				break;
9196 			last = 0;
9197 			continue;
9198 		}
9199 
9200 		inode = block_group->inode;
9201 		block_group->iref = 0;
9202 		block_group->inode = NULL;
9203 		spin_unlock(&block_group->lock);
9204 		iput(inode);
9205 		last = block_group->key.objectid + block_group->key.offset;
9206 		btrfs_put_block_group(block_group);
9207 	}
9208 }
9209 
9210 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9211 {
9212 	struct btrfs_block_group_cache *block_group;
9213 	struct btrfs_space_info *space_info;
9214 	struct btrfs_caching_control *caching_ctl;
9215 	struct rb_node *n;
9216 
9217 	down_write(&info->commit_root_sem);
9218 	while (!list_empty(&info->caching_block_groups)) {
9219 		caching_ctl = list_entry(info->caching_block_groups.next,
9220 					 struct btrfs_caching_control, list);
9221 		list_del(&caching_ctl->list);
9222 		put_caching_control(caching_ctl);
9223 	}
9224 	up_write(&info->commit_root_sem);
9225 
9226 	spin_lock(&info->unused_bgs_lock);
9227 	while (!list_empty(&info->unused_bgs)) {
9228 		block_group = list_first_entry(&info->unused_bgs,
9229 					       struct btrfs_block_group_cache,
9230 					       bg_list);
9231 		list_del_init(&block_group->bg_list);
9232 		btrfs_put_block_group(block_group);
9233 	}
9234 	spin_unlock(&info->unused_bgs_lock);
9235 
9236 	spin_lock(&info->block_group_cache_lock);
9237 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9238 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9239 				       cache_node);
9240 		rb_erase(&block_group->cache_node,
9241 			 &info->block_group_cache_tree);
9242 		RB_CLEAR_NODE(&block_group->cache_node);
9243 		spin_unlock(&info->block_group_cache_lock);
9244 
9245 		down_write(&block_group->space_info->groups_sem);
9246 		list_del(&block_group->list);
9247 		up_write(&block_group->space_info->groups_sem);
9248 
9249 		if (block_group->cached == BTRFS_CACHE_STARTED)
9250 			wait_block_group_cache_done(block_group);
9251 
9252 		/*
9253 		 * We haven't cached this block group, which means we could
9254 		 * possibly have excluded extents on this block group.
9255 		 */
9256 		if (block_group->cached == BTRFS_CACHE_NO ||
9257 		    block_group->cached == BTRFS_CACHE_ERROR)
9258 			free_excluded_extents(info->extent_root, block_group);
9259 
9260 		btrfs_remove_free_space_cache(block_group);
9261 		btrfs_put_block_group(block_group);
9262 
9263 		spin_lock(&info->block_group_cache_lock);
9264 	}
9265 	spin_unlock(&info->block_group_cache_lock);
9266 
9267 	/* now that all the block groups are freed, go through and
9268 	 * free all the space_info structs.  This is only called during
9269 	 * the final stages of unmount, and so we know nobody is
9270 	 * using them.  We call synchronize_rcu() once before we start,
9271 	 * just to be on the safe side.
9272 	 */
9273 	synchronize_rcu();
9274 
9275 	release_global_block_rsv(info);
9276 
9277 	while (!list_empty(&info->space_info)) {
9278 		int i;
9279 
9280 		space_info = list_entry(info->space_info.next,
9281 					struct btrfs_space_info,
9282 					list);
9283 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9284 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9285 			    space_info->bytes_reserved > 0 ||
9286 			    space_info->bytes_may_use > 0)) {
9287 				dump_space_info(space_info, 0, 0);
9288 			}
9289 		}
9290 		list_del(&space_info->list);
9291 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9292 			struct kobject *kobj;
9293 			kobj = space_info->block_group_kobjs[i];
9294 			space_info->block_group_kobjs[i] = NULL;
9295 			if (kobj) {
9296 				kobject_del(kobj);
9297 				kobject_put(kobj);
9298 			}
9299 		}
9300 		kobject_del(&space_info->kobj);
9301 		kobject_put(&space_info->kobj);
9302 	}
9303 	return 0;
9304 }
9305 
9306 static void __link_block_group(struct btrfs_space_info *space_info,
9307 			       struct btrfs_block_group_cache *cache)
9308 {
9309 	int index = get_block_group_index(cache);
9310 	bool first = false;
9311 
9312 	down_write(&space_info->groups_sem);
9313 	if (list_empty(&space_info->block_groups[index]))
9314 		first = true;
9315 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9316 	up_write(&space_info->groups_sem);
9317 
9318 	if (first) {
9319 		struct raid_kobject *rkobj;
9320 		int ret;
9321 
9322 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9323 		if (!rkobj)
9324 			goto out_err;
9325 		rkobj->raid_type = index;
9326 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9327 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9328 				  "%s", get_raid_name(index));
9329 		if (ret) {
9330 			kobject_put(&rkobj->kobj);
9331 			goto out_err;
9332 		}
9333 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9334 	}
9335 
9336 	return;
9337 out_err:
9338 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9339 }
9340 
9341 static struct btrfs_block_group_cache *
9342 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9343 {
9344 	struct btrfs_block_group_cache *cache;
9345 
9346 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9347 	if (!cache)
9348 		return NULL;
9349 
9350 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9351 					GFP_NOFS);
9352 	if (!cache->free_space_ctl) {
9353 		kfree(cache);
9354 		return NULL;
9355 	}
9356 
9357 	cache->key.objectid = start;
9358 	cache->key.offset = size;
9359 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9360 
9361 	cache->sectorsize = root->sectorsize;
9362 	cache->fs_info = root->fs_info;
9363 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9364 					       &root->fs_info->mapping_tree,
9365 					       start);
9366 	atomic_set(&cache->count, 1);
9367 	spin_lock_init(&cache->lock);
9368 	init_rwsem(&cache->data_rwsem);
9369 	INIT_LIST_HEAD(&cache->list);
9370 	INIT_LIST_HEAD(&cache->cluster_list);
9371 	INIT_LIST_HEAD(&cache->bg_list);
9372 	INIT_LIST_HEAD(&cache->ro_list);
9373 	INIT_LIST_HEAD(&cache->dirty_list);
9374 	INIT_LIST_HEAD(&cache->io_list);
9375 	btrfs_init_free_space_ctl(cache);
9376 	atomic_set(&cache->trimming, 0);
9377 
9378 	return cache;
9379 }
9380 
9381 int btrfs_read_block_groups(struct btrfs_root *root)
9382 {
9383 	struct btrfs_path *path;
9384 	int ret;
9385 	struct btrfs_block_group_cache *cache;
9386 	struct btrfs_fs_info *info = root->fs_info;
9387 	struct btrfs_space_info *space_info;
9388 	struct btrfs_key key;
9389 	struct btrfs_key found_key;
9390 	struct extent_buffer *leaf;
9391 	int need_clear = 0;
9392 	u64 cache_gen;
9393 
9394 	root = info->extent_root;
9395 	key.objectid = 0;
9396 	key.offset = 0;
9397 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9398 	path = btrfs_alloc_path();
9399 	if (!path)
9400 		return -ENOMEM;
9401 	path->reada = 1;
9402 
9403 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9404 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9405 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9406 		need_clear = 1;
9407 	if (btrfs_test_opt(root, CLEAR_CACHE))
9408 		need_clear = 1;
9409 
9410 	while (1) {
9411 		ret = find_first_block_group(root, path, &key);
9412 		if (ret > 0)
9413 			break;
9414 		if (ret != 0)
9415 			goto error;
9416 
9417 		leaf = path->nodes[0];
9418 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9419 
9420 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9421 						       found_key.offset);
9422 		if (!cache) {
9423 			ret = -ENOMEM;
9424 			goto error;
9425 		}
9426 
9427 		if (need_clear) {
9428 			/*
9429 			 * When we mount with old space cache, we need to
9430 			 * set BTRFS_DC_CLEAR and set dirty flag.
9431 			 *
9432 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9433 			 *    truncate the old free space cache inode and
9434 			 *    setup a new one.
9435 			 * b) Setting 'dirty flag' makes sure that we flush
9436 			 *    the new space cache info onto disk.
9437 			 */
9438 			if (btrfs_test_opt(root, SPACE_CACHE))
9439 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9440 		}
9441 
9442 		read_extent_buffer(leaf, &cache->item,
9443 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9444 				   sizeof(cache->item));
9445 		cache->flags = btrfs_block_group_flags(&cache->item);
9446 
9447 		key.objectid = found_key.objectid + found_key.offset;
9448 		btrfs_release_path(path);
9449 
9450 		/*
9451 		 * We need to exclude the super stripes now so that the space
9452 		 * info has super bytes accounted for, otherwise we'll think
9453 		 * we have more space than we actually do.
9454 		 */
9455 		ret = exclude_super_stripes(root, cache);
9456 		if (ret) {
9457 			/*
9458 			 * We may have excluded something, so call this just in
9459 			 * case.
9460 			 */
9461 			free_excluded_extents(root, cache);
9462 			btrfs_put_block_group(cache);
9463 			goto error;
9464 		}
9465 
9466 		/*
9467 		 * check for two cases, either we are full, and therefore
9468 		 * don't need to bother with the caching work since we won't
9469 		 * find any space, or we are empty, and we can just add all
9470 		 * the space in and be done with it.  This saves us _alot_ of
9471 		 * time, particularly in the full case.
9472 		 */
9473 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9474 			cache->last_byte_to_unpin = (u64)-1;
9475 			cache->cached = BTRFS_CACHE_FINISHED;
9476 			free_excluded_extents(root, cache);
9477 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9478 			cache->last_byte_to_unpin = (u64)-1;
9479 			cache->cached = BTRFS_CACHE_FINISHED;
9480 			add_new_free_space(cache, root->fs_info,
9481 					   found_key.objectid,
9482 					   found_key.objectid +
9483 					   found_key.offset);
9484 			free_excluded_extents(root, cache);
9485 		}
9486 
9487 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9488 		if (ret) {
9489 			btrfs_remove_free_space_cache(cache);
9490 			btrfs_put_block_group(cache);
9491 			goto error;
9492 		}
9493 
9494 		ret = update_space_info(info, cache->flags, found_key.offset,
9495 					btrfs_block_group_used(&cache->item),
9496 					&space_info);
9497 		if (ret) {
9498 			btrfs_remove_free_space_cache(cache);
9499 			spin_lock(&info->block_group_cache_lock);
9500 			rb_erase(&cache->cache_node,
9501 				 &info->block_group_cache_tree);
9502 			RB_CLEAR_NODE(&cache->cache_node);
9503 			spin_unlock(&info->block_group_cache_lock);
9504 			btrfs_put_block_group(cache);
9505 			goto error;
9506 		}
9507 
9508 		cache->space_info = space_info;
9509 		spin_lock(&cache->space_info->lock);
9510 		cache->space_info->bytes_readonly += cache->bytes_super;
9511 		spin_unlock(&cache->space_info->lock);
9512 
9513 		__link_block_group(space_info, cache);
9514 
9515 		set_avail_alloc_bits(root->fs_info, cache->flags);
9516 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9517 			inc_block_group_ro(cache, 1);
9518 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9519 			spin_lock(&info->unused_bgs_lock);
9520 			/* Should always be true but just in case. */
9521 			if (list_empty(&cache->bg_list)) {
9522 				btrfs_get_block_group(cache);
9523 				list_add_tail(&cache->bg_list,
9524 					      &info->unused_bgs);
9525 			}
9526 			spin_unlock(&info->unused_bgs_lock);
9527 		}
9528 	}
9529 
9530 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9531 		if (!(get_alloc_profile(root, space_info->flags) &
9532 		      (BTRFS_BLOCK_GROUP_RAID10 |
9533 		       BTRFS_BLOCK_GROUP_RAID1 |
9534 		       BTRFS_BLOCK_GROUP_RAID5 |
9535 		       BTRFS_BLOCK_GROUP_RAID6 |
9536 		       BTRFS_BLOCK_GROUP_DUP)))
9537 			continue;
9538 		/*
9539 		 * avoid allocating from un-mirrored block group if there are
9540 		 * mirrored block groups.
9541 		 */
9542 		list_for_each_entry(cache,
9543 				&space_info->block_groups[BTRFS_RAID_RAID0],
9544 				list)
9545 			inc_block_group_ro(cache, 1);
9546 		list_for_each_entry(cache,
9547 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9548 				list)
9549 			inc_block_group_ro(cache, 1);
9550 	}
9551 
9552 	init_global_block_rsv(info);
9553 	ret = 0;
9554 error:
9555 	btrfs_free_path(path);
9556 	return ret;
9557 }
9558 
9559 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9560 				       struct btrfs_root *root)
9561 {
9562 	struct btrfs_block_group_cache *block_group, *tmp;
9563 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9564 	struct btrfs_block_group_item item;
9565 	struct btrfs_key key;
9566 	int ret = 0;
9567 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9568 
9569 	trans->can_flush_pending_bgs = false;
9570 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9571 		if (ret)
9572 			goto next;
9573 
9574 		spin_lock(&block_group->lock);
9575 		memcpy(&item, &block_group->item, sizeof(item));
9576 		memcpy(&key, &block_group->key, sizeof(key));
9577 		spin_unlock(&block_group->lock);
9578 
9579 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9580 					sizeof(item));
9581 		if (ret)
9582 			btrfs_abort_transaction(trans, extent_root, ret);
9583 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9584 					       key.objectid, key.offset);
9585 		if (ret)
9586 			btrfs_abort_transaction(trans, extent_root, ret);
9587 next:
9588 		list_del_init(&block_group->bg_list);
9589 	}
9590 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
9591 }
9592 
9593 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9594 			   struct btrfs_root *root, u64 bytes_used,
9595 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9596 			   u64 size)
9597 {
9598 	int ret;
9599 	struct btrfs_root *extent_root;
9600 	struct btrfs_block_group_cache *cache;
9601 
9602 	extent_root = root->fs_info->extent_root;
9603 
9604 	btrfs_set_log_full_commit(root->fs_info, trans);
9605 
9606 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9607 	if (!cache)
9608 		return -ENOMEM;
9609 
9610 	btrfs_set_block_group_used(&cache->item, bytes_used);
9611 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9612 	btrfs_set_block_group_flags(&cache->item, type);
9613 
9614 	cache->flags = type;
9615 	cache->last_byte_to_unpin = (u64)-1;
9616 	cache->cached = BTRFS_CACHE_FINISHED;
9617 	ret = exclude_super_stripes(root, cache);
9618 	if (ret) {
9619 		/*
9620 		 * We may have excluded something, so call this just in
9621 		 * case.
9622 		 */
9623 		free_excluded_extents(root, cache);
9624 		btrfs_put_block_group(cache);
9625 		return ret;
9626 	}
9627 
9628 	add_new_free_space(cache, root->fs_info, chunk_offset,
9629 			   chunk_offset + size);
9630 
9631 	free_excluded_extents(root, cache);
9632 
9633 	/*
9634 	 * Call to ensure the corresponding space_info object is created and
9635 	 * assigned to our block group, but don't update its counters just yet.
9636 	 * We want our bg to be added to the rbtree with its ->space_info set.
9637 	 */
9638 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9639 				&cache->space_info);
9640 	if (ret) {
9641 		btrfs_remove_free_space_cache(cache);
9642 		btrfs_put_block_group(cache);
9643 		return ret;
9644 	}
9645 
9646 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9647 	if (ret) {
9648 		btrfs_remove_free_space_cache(cache);
9649 		btrfs_put_block_group(cache);
9650 		return ret;
9651 	}
9652 
9653 	/*
9654 	 * Now that our block group has its ->space_info set and is inserted in
9655 	 * the rbtree, update the space info's counters.
9656 	 */
9657 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9658 				&cache->space_info);
9659 	if (ret) {
9660 		btrfs_remove_free_space_cache(cache);
9661 		spin_lock(&root->fs_info->block_group_cache_lock);
9662 		rb_erase(&cache->cache_node,
9663 			 &root->fs_info->block_group_cache_tree);
9664 		RB_CLEAR_NODE(&cache->cache_node);
9665 		spin_unlock(&root->fs_info->block_group_cache_lock);
9666 		btrfs_put_block_group(cache);
9667 		return ret;
9668 	}
9669 	update_global_block_rsv(root->fs_info);
9670 
9671 	spin_lock(&cache->space_info->lock);
9672 	cache->space_info->bytes_readonly += cache->bytes_super;
9673 	spin_unlock(&cache->space_info->lock);
9674 
9675 	__link_block_group(cache->space_info, cache);
9676 
9677 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9678 
9679 	set_avail_alloc_bits(extent_root->fs_info, type);
9680 
9681 	return 0;
9682 }
9683 
9684 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9685 {
9686 	u64 extra_flags = chunk_to_extended(flags) &
9687 				BTRFS_EXTENDED_PROFILE_MASK;
9688 
9689 	write_seqlock(&fs_info->profiles_lock);
9690 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9691 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9692 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9693 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9694 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9695 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9696 	write_sequnlock(&fs_info->profiles_lock);
9697 }
9698 
9699 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9700 			     struct btrfs_root *root, u64 group_start,
9701 			     struct extent_map *em)
9702 {
9703 	struct btrfs_path *path;
9704 	struct btrfs_block_group_cache *block_group;
9705 	struct btrfs_free_cluster *cluster;
9706 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9707 	struct btrfs_key key;
9708 	struct inode *inode;
9709 	struct kobject *kobj = NULL;
9710 	int ret;
9711 	int index;
9712 	int factor;
9713 	struct btrfs_caching_control *caching_ctl = NULL;
9714 	bool remove_em;
9715 
9716 	root = root->fs_info->extent_root;
9717 
9718 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9719 	BUG_ON(!block_group);
9720 	BUG_ON(!block_group->ro);
9721 
9722 	/*
9723 	 * Free the reserved super bytes from this block group before
9724 	 * remove it.
9725 	 */
9726 	free_excluded_extents(root, block_group);
9727 
9728 	memcpy(&key, &block_group->key, sizeof(key));
9729 	index = get_block_group_index(block_group);
9730 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9731 				  BTRFS_BLOCK_GROUP_RAID1 |
9732 				  BTRFS_BLOCK_GROUP_RAID10))
9733 		factor = 2;
9734 	else
9735 		factor = 1;
9736 
9737 	/* make sure this block group isn't part of an allocation cluster */
9738 	cluster = &root->fs_info->data_alloc_cluster;
9739 	spin_lock(&cluster->refill_lock);
9740 	btrfs_return_cluster_to_free_space(block_group, cluster);
9741 	spin_unlock(&cluster->refill_lock);
9742 
9743 	/*
9744 	 * make sure this block group isn't part of a metadata
9745 	 * allocation cluster
9746 	 */
9747 	cluster = &root->fs_info->meta_alloc_cluster;
9748 	spin_lock(&cluster->refill_lock);
9749 	btrfs_return_cluster_to_free_space(block_group, cluster);
9750 	spin_unlock(&cluster->refill_lock);
9751 
9752 	path = btrfs_alloc_path();
9753 	if (!path) {
9754 		ret = -ENOMEM;
9755 		goto out;
9756 	}
9757 
9758 	/*
9759 	 * get the inode first so any iput calls done for the io_list
9760 	 * aren't the final iput (no unlinks allowed now)
9761 	 */
9762 	inode = lookup_free_space_inode(tree_root, block_group, path);
9763 
9764 	mutex_lock(&trans->transaction->cache_write_mutex);
9765 	/*
9766 	 * make sure our free spache cache IO is done before remove the
9767 	 * free space inode
9768 	 */
9769 	spin_lock(&trans->transaction->dirty_bgs_lock);
9770 	if (!list_empty(&block_group->io_list)) {
9771 		list_del_init(&block_group->io_list);
9772 
9773 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9774 
9775 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9776 		btrfs_wait_cache_io(root, trans, block_group,
9777 				    &block_group->io_ctl, path,
9778 				    block_group->key.objectid);
9779 		btrfs_put_block_group(block_group);
9780 		spin_lock(&trans->transaction->dirty_bgs_lock);
9781 	}
9782 
9783 	if (!list_empty(&block_group->dirty_list)) {
9784 		list_del_init(&block_group->dirty_list);
9785 		btrfs_put_block_group(block_group);
9786 	}
9787 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9788 	mutex_unlock(&trans->transaction->cache_write_mutex);
9789 
9790 	if (!IS_ERR(inode)) {
9791 		ret = btrfs_orphan_add(trans, inode);
9792 		if (ret) {
9793 			btrfs_add_delayed_iput(inode);
9794 			goto out;
9795 		}
9796 		clear_nlink(inode);
9797 		/* One for the block groups ref */
9798 		spin_lock(&block_group->lock);
9799 		if (block_group->iref) {
9800 			block_group->iref = 0;
9801 			block_group->inode = NULL;
9802 			spin_unlock(&block_group->lock);
9803 			iput(inode);
9804 		} else {
9805 			spin_unlock(&block_group->lock);
9806 		}
9807 		/* One for our lookup ref */
9808 		btrfs_add_delayed_iput(inode);
9809 	}
9810 
9811 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9812 	key.offset = block_group->key.objectid;
9813 	key.type = 0;
9814 
9815 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9816 	if (ret < 0)
9817 		goto out;
9818 	if (ret > 0)
9819 		btrfs_release_path(path);
9820 	if (ret == 0) {
9821 		ret = btrfs_del_item(trans, tree_root, path);
9822 		if (ret)
9823 			goto out;
9824 		btrfs_release_path(path);
9825 	}
9826 
9827 	spin_lock(&root->fs_info->block_group_cache_lock);
9828 	rb_erase(&block_group->cache_node,
9829 		 &root->fs_info->block_group_cache_tree);
9830 	RB_CLEAR_NODE(&block_group->cache_node);
9831 
9832 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9833 		root->fs_info->first_logical_byte = (u64)-1;
9834 	spin_unlock(&root->fs_info->block_group_cache_lock);
9835 
9836 	down_write(&block_group->space_info->groups_sem);
9837 	/*
9838 	 * we must use list_del_init so people can check to see if they
9839 	 * are still on the list after taking the semaphore
9840 	 */
9841 	list_del_init(&block_group->list);
9842 	if (list_empty(&block_group->space_info->block_groups[index])) {
9843 		kobj = block_group->space_info->block_group_kobjs[index];
9844 		block_group->space_info->block_group_kobjs[index] = NULL;
9845 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9846 	}
9847 	up_write(&block_group->space_info->groups_sem);
9848 	if (kobj) {
9849 		kobject_del(kobj);
9850 		kobject_put(kobj);
9851 	}
9852 
9853 	if (block_group->has_caching_ctl)
9854 		caching_ctl = get_caching_control(block_group);
9855 	if (block_group->cached == BTRFS_CACHE_STARTED)
9856 		wait_block_group_cache_done(block_group);
9857 	if (block_group->has_caching_ctl) {
9858 		down_write(&root->fs_info->commit_root_sem);
9859 		if (!caching_ctl) {
9860 			struct btrfs_caching_control *ctl;
9861 
9862 			list_for_each_entry(ctl,
9863 				    &root->fs_info->caching_block_groups, list)
9864 				if (ctl->block_group == block_group) {
9865 					caching_ctl = ctl;
9866 					atomic_inc(&caching_ctl->count);
9867 					break;
9868 				}
9869 		}
9870 		if (caching_ctl)
9871 			list_del_init(&caching_ctl->list);
9872 		up_write(&root->fs_info->commit_root_sem);
9873 		if (caching_ctl) {
9874 			/* Once for the caching bgs list and once for us. */
9875 			put_caching_control(caching_ctl);
9876 			put_caching_control(caching_ctl);
9877 		}
9878 	}
9879 
9880 	spin_lock(&trans->transaction->dirty_bgs_lock);
9881 	if (!list_empty(&block_group->dirty_list)) {
9882 		WARN_ON(1);
9883 	}
9884 	if (!list_empty(&block_group->io_list)) {
9885 		WARN_ON(1);
9886 	}
9887 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9888 	btrfs_remove_free_space_cache(block_group);
9889 
9890 	spin_lock(&block_group->space_info->lock);
9891 	list_del_init(&block_group->ro_list);
9892 
9893 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9894 		WARN_ON(block_group->space_info->total_bytes
9895 			< block_group->key.offset);
9896 		WARN_ON(block_group->space_info->bytes_readonly
9897 			< block_group->key.offset);
9898 		WARN_ON(block_group->space_info->disk_total
9899 			< block_group->key.offset * factor);
9900 	}
9901 	block_group->space_info->total_bytes -= block_group->key.offset;
9902 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9903 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9904 
9905 	spin_unlock(&block_group->space_info->lock);
9906 
9907 	memcpy(&key, &block_group->key, sizeof(key));
9908 
9909 	lock_chunks(root);
9910 	if (!list_empty(&em->list)) {
9911 		/* We're in the transaction->pending_chunks list. */
9912 		free_extent_map(em);
9913 	}
9914 	spin_lock(&block_group->lock);
9915 	block_group->removed = 1;
9916 	/*
9917 	 * At this point trimming can't start on this block group, because we
9918 	 * removed the block group from the tree fs_info->block_group_cache_tree
9919 	 * so no one can't find it anymore and even if someone already got this
9920 	 * block group before we removed it from the rbtree, they have already
9921 	 * incremented block_group->trimming - if they didn't, they won't find
9922 	 * any free space entries because we already removed them all when we
9923 	 * called btrfs_remove_free_space_cache().
9924 	 *
9925 	 * And we must not remove the extent map from the fs_info->mapping_tree
9926 	 * to prevent the same logical address range and physical device space
9927 	 * ranges from being reused for a new block group. This is because our
9928 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9929 	 * completely transactionless, so while it is trimming a range the
9930 	 * currently running transaction might finish and a new one start,
9931 	 * allowing for new block groups to be created that can reuse the same
9932 	 * physical device locations unless we take this special care.
9933 	 *
9934 	 * There may also be an implicit trim operation if the file system
9935 	 * is mounted with -odiscard. The same protections must remain
9936 	 * in place until the extents have been discarded completely when
9937 	 * the transaction commit has completed.
9938 	 */
9939 	remove_em = (atomic_read(&block_group->trimming) == 0);
9940 	/*
9941 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9942 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9943 	 * before checking block_group->removed).
9944 	 */
9945 	if (!remove_em) {
9946 		/*
9947 		 * Our em might be in trans->transaction->pending_chunks which
9948 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9949 		 * and so is the fs_info->pinned_chunks list.
9950 		 *
9951 		 * So at this point we must be holding the chunk_mutex to avoid
9952 		 * any races with chunk allocation (more specifically at
9953 		 * volumes.c:contains_pending_extent()), to ensure it always
9954 		 * sees the em, either in the pending_chunks list or in the
9955 		 * pinned_chunks list.
9956 		 */
9957 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9958 	}
9959 	spin_unlock(&block_group->lock);
9960 
9961 	if (remove_em) {
9962 		struct extent_map_tree *em_tree;
9963 
9964 		em_tree = &root->fs_info->mapping_tree.map_tree;
9965 		write_lock(&em_tree->lock);
9966 		/*
9967 		 * The em might be in the pending_chunks list, so make sure the
9968 		 * chunk mutex is locked, since remove_extent_mapping() will
9969 		 * delete us from that list.
9970 		 */
9971 		remove_extent_mapping(em_tree, em);
9972 		write_unlock(&em_tree->lock);
9973 		/* once for the tree */
9974 		free_extent_map(em);
9975 	}
9976 
9977 	unlock_chunks(root);
9978 
9979 	btrfs_put_block_group(block_group);
9980 	btrfs_put_block_group(block_group);
9981 
9982 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9983 	if (ret > 0)
9984 		ret = -EIO;
9985 	if (ret < 0)
9986 		goto out;
9987 
9988 	ret = btrfs_del_item(trans, root, path);
9989 out:
9990 	btrfs_free_path(path);
9991 	return ret;
9992 }
9993 
9994 /*
9995  * Process the unused_bgs list and remove any that don't have any allocated
9996  * space inside of them.
9997  */
9998 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9999 {
10000 	struct btrfs_block_group_cache *block_group;
10001 	struct btrfs_space_info *space_info;
10002 	struct btrfs_root *root = fs_info->extent_root;
10003 	struct btrfs_trans_handle *trans;
10004 	int ret = 0;
10005 
10006 	if (!fs_info->open)
10007 		return;
10008 
10009 	spin_lock(&fs_info->unused_bgs_lock);
10010 	while (!list_empty(&fs_info->unused_bgs)) {
10011 		u64 start, end;
10012 		int trimming;
10013 
10014 		block_group = list_first_entry(&fs_info->unused_bgs,
10015 					       struct btrfs_block_group_cache,
10016 					       bg_list);
10017 		space_info = block_group->space_info;
10018 		list_del_init(&block_group->bg_list);
10019 		if (ret || btrfs_mixed_space_info(space_info)) {
10020 			btrfs_put_block_group(block_group);
10021 			continue;
10022 		}
10023 		spin_unlock(&fs_info->unused_bgs_lock);
10024 
10025 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10026 
10027 		/* Don't want to race with allocators so take the groups_sem */
10028 		down_write(&space_info->groups_sem);
10029 		spin_lock(&block_group->lock);
10030 		if (block_group->reserved ||
10031 		    btrfs_block_group_used(&block_group->item) ||
10032 		    block_group->ro) {
10033 			/*
10034 			 * We want to bail if we made new allocations or have
10035 			 * outstanding allocations in this block group.  We do
10036 			 * the ro check in case balance is currently acting on
10037 			 * this block group.
10038 			 */
10039 			spin_unlock(&block_group->lock);
10040 			up_write(&space_info->groups_sem);
10041 			goto next;
10042 		}
10043 		spin_unlock(&block_group->lock);
10044 
10045 		/* We don't want to force the issue, only flip if it's ok. */
10046 		ret = inc_block_group_ro(block_group, 0);
10047 		up_write(&space_info->groups_sem);
10048 		if (ret < 0) {
10049 			ret = 0;
10050 			goto next;
10051 		}
10052 
10053 		/*
10054 		 * Want to do this before we do anything else so we can recover
10055 		 * properly if we fail to join the transaction.
10056 		 */
10057 		/* 1 for btrfs_orphan_reserve_metadata() */
10058 		trans = btrfs_start_transaction(root, 1);
10059 		if (IS_ERR(trans)) {
10060 			btrfs_dec_block_group_ro(root, block_group);
10061 			ret = PTR_ERR(trans);
10062 			goto next;
10063 		}
10064 
10065 		/*
10066 		 * We could have pending pinned extents for this block group,
10067 		 * just delete them, we don't care about them anymore.
10068 		 */
10069 		start = block_group->key.objectid;
10070 		end = start + block_group->key.offset - 1;
10071 		/*
10072 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10073 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10074 		 * another task might be running finish_extent_commit() for the
10075 		 * previous transaction N - 1, and have seen a range belonging
10076 		 * to the block group in freed_extents[] before we were able to
10077 		 * clear the whole block group range from freed_extents[]. This
10078 		 * means that task can lookup for the block group after we
10079 		 * unpinned it from freed_extents[] and removed it, leading to
10080 		 * a BUG_ON() at btrfs_unpin_extent_range().
10081 		 */
10082 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10083 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10084 				  EXTENT_DIRTY, GFP_NOFS);
10085 		if (ret) {
10086 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10087 			btrfs_dec_block_group_ro(root, block_group);
10088 			goto end_trans;
10089 		}
10090 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10091 				  EXTENT_DIRTY, GFP_NOFS);
10092 		if (ret) {
10093 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10094 			btrfs_dec_block_group_ro(root, block_group);
10095 			goto end_trans;
10096 		}
10097 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10098 
10099 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10100 		spin_lock(&space_info->lock);
10101 		spin_lock(&block_group->lock);
10102 
10103 		space_info->bytes_pinned -= block_group->pinned;
10104 		space_info->bytes_readonly += block_group->pinned;
10105 		percpu_counter_add(&space_info->total_bytes_pinned,
10106 				   -block_group->pinned);
10107 		block_group->pinned = 0;
10108 
10109 		spin_unlock(&block_group->lock);
10110 		spin_unlock(&space_info->lock);
10111 
10112 		/* DISCARD can flip during remount */
10113 		trimming = btrfs_test_opt(root, DISCARD);
10114 
10115 		/* Implicit trim during transaction commit. */
10116 		if (trimming)
10117 			btrfs_get_block_group_trimming(block_group);
10118 
10119 		/*
10120 		 * Btrfs_remove_chunk will abort the transaction if things go
10121 		 * horribly wrong.
10122 		 */
10123 		ret = btrfs_remove_chunk(trans, root,
10124 					 block_group->key.objectid);
10125 
10126 		if (ret) {
10127 			if (trimming)
10128 				btrfs_put_block_group_trimming(block_group);
10129 			goto end_trans;
10130 		}
10131 
10132 		/*
10133 		 * If we're not mounted with -odiscard, we can just forget
10134 		 * about this block group. Otherwise we'll need to wait
10135 		 * until transaction commit to do the actual discard.
10136 		 */
10137 		if (trimming) {
10138 			WARN_ON(!list_empty(&block_group->bg_list));
10139 			spin_lock(&trans->transaction->deleted_bgs_lock);
10140 			list_move(&block_group->bg_list,
10141 				  &trans->transaction->deleted_bgs);
10142 			spin_unlock(&trans->transaction->deleted_bgs_lock);
10143 			btrfs_get_block_group(block_group);
10144 		}
10145 end_trans:
10146 		btrfs_end_transaction(trans, root);
10147 next:
10148 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10149 		btrfs_put_block_group(block_group);
10150 		spin_lock(&fs_info->unused_bgs_lock);
10151 	}
10152 	spin_unlock(&fs_info->unused_bgs_lock);
10153 }
10154 
10155 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10156 {
10157 	struct btrfs_space_info *space_info;
10158 	struct btrfs_super_block *disk_super;
10159 	u64 features;
10160 	u64 flags;
10161 	int mixed = 0;
10162 	int ret;
10163 
10164 	disk_super = fs_info->super_copy;
10165 	if (!btrfs_super_root(disk_super))
10166 		return 1;
10167 
10168 	features = btrfs_super_incompat_flags(disk_super);
10169 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10170 		mixed = 1;
10171 
10172 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10173 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10174 	if (ret)
10175 		goto out;
10176 
10177 	if (mixed) {
10178 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10179 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10180 	} else {
10181 		flags = BTRFS_BLOCK_GROUP_METADATA;
10182 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10183 		if (ret)
10184 			goto out;
10185 
10186 		flags = BTRFS_BLOCK_GROUP_DATA;
10187 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10188 	}
10189 out:
10190 	return ret;
10191 }
10192 
10193 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10194 {
10195 	return unpin_extent_range(root, start, end, false);
10196 }
10197 
10198 /*
10199  * It used to be that old block groups would be left around forever.
10200  * Iterating over them would be enough to trim unused space.  Since we
10201  * now automatically remove them, we also need to iterate over unallocated
10202  * space.
10203  *
10204  * We don't want a transaction for this since the discard may take a
10205  * substantial amount of time.  We don't require that a transaction be
10206  * running, but we do need to take a running transaction into account
10207  * to ensure that we're not discarding chunks that were released in
10208  * the current transaction.
10209  *
10210  * Holding the chunks lock will prevent other threads from allocating
10211  * or releasing chunks, but it won't prevent a running transaction
10212  * from committing and releasing the memory that the pending chunks
10213  * list head uses.  For that, we need to take a reference to the
10214  * transaction.
10215  */
10216 static int btrfs_trim_free_extents(struct btrfs_device *device,
10217 				   u64 minlen, u64 *trimmed)
10218 {
10219 	u64 start = 0, len = 0;
10220 	int ret;
10221 
10222 	*trimmed = 0;
10223 
10224 	/* Not writeable = nothing to do. */
10225 	if (!device->writeable)
10226 		return 0;
10227 
10228 	/* No free space = nothing to do. */
10229 	if (device->total_bytes <= device->bytes_used)
10230 		return 0;
10231 
10232 	ret = 0;
10233 
10234 	while (1) {
10235 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10236 		struct btrfs_transaction *trans;
10237 		u64 bytes;
10238 
10239 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10240 		if (ret)
10241 			return ret;
10242 
10243 		down_read(&fs_info->commit_root_sem);
10244 
10245 		spin_lock(&fs_info->trans_lock);
10246 		trans = fs_info->running_transaction;
10247 		if (trans)
10248 			atomic_inc(&trans->use_count);
10249 		spin_unlock(&fs_info->trans_lock);
10250 
10251 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10252 						 &start, &len);
10253 		if (trans)
10254 			btrfs_put_transaction(trans);
10255 
10256 		if (ret) {
10257 			up_read(&fs_info->commit_root_sem);
10258 			mutex_unlock(&fs_info->chunk_mutex);
10259 			if (ret == -ENOSPC)
10260 				ret = 0;
10261 			break;
10262 		}
10263 
10264 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10265 		up_read(&fs_info->commit_root_sem);
10266 		mutex_unlock(&fs_info->chunk_mutex);
10267 
10268 		if (ret)
10269 			break;
10270 
10271 		start += len;
10272 		*trimmed += bytes;
10273 
10274 		if (fatal_signal_pending(current)) {
10275 			ret = -ERESTARTSYS;
10276 			break;
10277 		}
10278 
10279 		cond_resched();
10280 	}
10281 
10282 	return ret;
10283 }
10284 
10285 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10286 {
10287 	struct btrfs_fs_info *fs_info = root->fs_info;
10288 	struct btrfs_block_group_cache *cache = NULL;
10289 	struct btrfs_device *device;
10290 	struct list_head *devices;
10291 	u64 group_trimmed;
10292 	u64 start;
10293 	u64 end;
10294 	u64 trimmed = 0;
10295 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10296 	int ret = 0;
10297 
10298 	/*
10299 	 * try to trim all FS space, our block group may start from non-zero.
10300 	 */
10301 	if (range->len == total_bytes)
10302 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10303 	else
10304 		cache = btrfs_lookup_block_group(fs_info, range->start);
10305 
10306 	while (cache) {
10307 		if (cache->key.objectid >= (range->start + range->len)) {
10308 			btrfs_put_block_group(cache);
10309 			break;
10310 		}
10311 
10312 		start = max(range->start, cache->key.objectid);
10313 		end = min(range->start + range->len,
10314 				cache->key.objectid + cache->key.offset);
10315 
10316 		if (end - start >= range->minlen) {
10317 			if (!block_group_cache_done(cache)) {
10318 				ret = cache_block_group(cache, 0);
10319 				if (ret) {
10320 					btrfs_put_block_group(cache);
10321 					break;
10322 				}
10323 				ret = wait_block_group_cache_done(cache);
10324 				if (ret) {
10325 					btrfs_put_block_group(cache);
10326 					break;
10327 				}
10328 			}
10329 			ret = btrfs_trim_block_group(cache,
10330 						     &group_trimmed,
10331 						     start,
10332 						     end,
10333 						     range->minlen);
10334 
10335 			trimmed += group_trimmed;
10336 			if (ret) {
10337 				btrfs_put_block_group(cache);
10338 				break;
10339 			}
10340 		}
10341 
10342 		cache = next_block_group(fs_info->tree_root, cache);
10343 	}
10344 
10345 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10346 	devices = &root->fs_info->fs_devices->alloc_list;
10347 	list_for_each_entry(device, devices, dev_alloc_list) {
10348 		ret = btrfs_trim_free_extents(device, range->minlen,
10349 					      &group_trimmed);
10350 		if (ret)
10351 			break;
10352 
10353 		trimmed += group_trimmed;
10354 	}
10355 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10356 
10357 	range->len = trimmed;
10358 	return ret;
10359 }
10360 
10361 /*
10362  * btrfs_{start,end}_write_no_snapshoting() are similar to
10363  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10364  * data into the page cache through nocow before the subvolume is snapshoted,
10365  * but flush the data into disk after the snapshot creation, or to prevent
10366  * operations while snapshoting is ongoing and that cause the snapshot to be
10367  * inconsistent (writes followed by expanding truncates for example).
10368  */
10369 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10370 {
10371 	percpu_counter_dec(&root->subv_writers->counter);
10372 	/*
10373 	 * Make sure counter is updated before we wake up
10374 	 * waiters.
10375 	 */
10376 	smp_mb();
10377 	if (waitqueue_active(&root->subv_writers->wait))
10378 		wake_up(&root->subv_writers->wait);
10379 }
10380 
10381 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10382 {
10383 	if (atomic_read(&root->will_be_snapshoted))
10384 		return 0;
10385 
10386 	percpu_counter_inc(&root->subv_writers->counter);
10387 	/*
10388 	 * Make sure counter is updated before we check for snapshot creation.
10389 	 */
10390 	smp_mb();
10391 	if (atomic_read(&root->will_be_snapshoted)) {
10392 		btrfs_end_write_no_snapshoting(root);
10393 		return 0;
10394 	}
10395 	return 1;
10396 }
10397