1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 int ret; 91 struct btrfs_key key; 92 struct btrfs_path *path; 93 94 path = btrfs_alloc_path(); 95 if (!path) 96 return -ENOMEM; 97 98 key.objectid = start; 99 key.offset = len; 100 key.type = BTRFS_EXTENT_ITEM_KEY; 101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 102 btrfs_free_path(path); 103 return ret; 104 } 105 106 /* 107 * helper function to lookup reference count and flags of a tree block. 108 * 109 * the head node for delayed ref is used to store the sum of all the 110 * reference count modifications queued up in the rbtree. the head 111 * node may also store the extent flags to set. This way you can check 112 * to see what the reference count and extent flags would be if all of 113 * the delayed refs are not processed. 114 */ 115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 116 struct btrfs_fs_info *fs_info, u64 bytenr, 117 u64 offset, int metadata, u64 *refs, u64 *flags) 118 { 119 struct btrfs_delayed_ref_head *head; 120 struct btrfs_delayed_ref_root *delayed_refs; 121 struct btrfs_path *path; 122 struct btrfs_extent_item *ei; 123 struct extent_buffer *leaf; 124 struct btrfs_key key; 125 u32 item_size; 126 u64 num_refs; 127 u64 extent_flags; 128 int ret; 129 130 /* 131 * If we don't have skinny metadata, don't bother doing anything 132 * different 133 */ 134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 135 offset = fs_info->nodesize; 136 metadata = 0; 137 } 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 if (!trans) { 144 path->skip_locking = 1; 145 path->search_commit_root = 1; 146 } 147 148 search_again: 149 key.objectid = bytenr; 150 key.offset = offset; 151 if (metadata) 152 key.type = BTRFS_METADATA_ITEM_KEY; 153 else 154 key.type = BTRFS_EXTENT_ITEM_KEY; 155 156 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 157 if (ret < 0) 158 goto out_free; 159 160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 161 if (path->slots[0]) { 162 path->slots[0]--; 163 btrfs_item_key_to_cpu(path->nodes[0], &key, 164 path->slots[0]); 165 if (key.objectid == bytenr && 166 key.type == BTRFS_EXTENT_ITEM_KEY && 167 key.offset == fs_info->nodesize) 168 ret = 0; 169 } 170 } 171 172 if (ret == 0) { 173 leaf = path->nodes[0]; 174 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 175 if (item_size >= sizeof(*ei)) { 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_extent_item); 178 num_refs = btrfs_extent_refs(leaf, ei); 179 extent_flags = btrfs_extent_flags(leaf, ei); 180 } else { 181 ret = -EINVAL; 182 btrfs_print_v0_err(fs_info); 183 if (trans) 184 btrfs_abort_transaction(trans, ret); 185 else 186 btrfs_handle_fs_error(fs_info, ret, NULL); 187 188 goto out_free; 189 } 190 191 BUG_ON(num_refs == 0); 192 } else { 193 num_refs = 0; 194 extent_flags = 0; 195 ret = 0; 196 } 197 198 if (!trans) 199 goto out; 200 201 delayed_refs = &trans->transaction->delayed_refs; 202 spin_lock(&delayed_refs->lock); 203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 204 if (head) { 205 if (!mutex_trylock(&head->mutex)) { 206 refcount_inc(&head->refs); 207 spin_unlock(&delayed_refs->lock); 208 209 btrfs_release_path(path); 210 211 /* 212 * Mutex was contended, block until it's released and try 213 * again 214 */ 215 mutex_lock(&head->mutex); 216 mutex_unlock(&head->mutex); 217 btrfs_put_delayed_ref_head(head); 218 goto search_again; 219 } 220 spin_lock(&head->lock); 221 if (head->extent_op && head->extent_op->update_flags) 222 extent_flags |= head->extent_op->flags_to_set; 223 else 224 BUG_ON(num_refs == 0); 225 226 num_refs += head->ref_mod; 227 spin_unlock(&head->lock); 228 mutex_unlock(&head->mutex); 229 } 230 spin_unlock(&delayed_refs->lock); 231 out: 232 WARN_ON(num_refs == 0); 233 if (refs) 234 *refs = num_refs; 235 if (flags) 236 *flags = extent_flags; 237 out_free: 238 btrfs_free_path(path); 239 return ret; 240 } 241 242 /* 243 * Back reference rules. Back refs have three main goals: 244 * 245 * 1) differentiate between all holders of references to an extent so that 246 * when a reference is dropped we can make sure it was a valid reference 247 * before freeing the extent. 248 * 249 * 2) Provide enough information to quickly find the holders of an extent 250 * if we notice a given block is corrupted or bad. 251 * 252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 253 * maintenance. This is actually the same as #2, but with a slightly 254 * different use case. 255 * 256 * There are two kinds of back refs. The implicit back refs is optimized 257 * for pointers in non-shared tree blocks. For a given pointer in a block, 258 * back refs of this kind provide information about the block's owner tree 259 * and the pointer's key. These information allow us to find the block by 260 * b-tree searching. The full back refs is for pointers in tree blocks not 261 * referenced by their owner trees. The location of tree block is recorded 262 * in the back refs. Actually the full back refs is generic, and can be 263 * used in all cases the implicit back refs is used. The major shortcoming 264 * of the full back refs is its overhead. Every time a tree block gets 265 * COWed, we have to update back refs entry for all pointers in it. 266 * 267 * For a newly allocated tree block, we use implicit back refs for 268 * pointers in it. This means most tree related operations only involve 269 * implicit back refs. For a tree block created in old transaction, the 270 * only way to drop a reference to it is COW it. So we can detect the 271 * event that tree block loses its owner tree's reference and do the 272 * back refs conversion. 273 * 274 * When a tree block is COWed through a tree, there are four cases: 275 * 276 * The reference count of the block is one and the tree is the block's 277 * owner tree. Nothing to do in this case. 278 * 279 * The reference count of the block is one and the tree is not the 280 * block's owner tree. In this case, full back refs is used for pointers 281 * in the block. Remove these full back refs, add implicit back refs for 282 * every pointers in the new block. 283 * 284 * The reference count of the block is greater than one and the tree is 285 * the block's owner tree. In this case, implicit back refs is used for 286 * pointers in the block. Add full back refs for every pointers in the 287 * block, increase lower level extents' reference counts. The original 288 * implicit back refs are entailed to the new block. 289 * 290 * The reference count of the block is greater than one and the tree is 291 * not the block's owner tree. Add implicit back refs for every pointer in 292 * the new block, increase lower level extents' reference count. 293 * 294 * Back Reference Key composing: 295 * 296 * The key objectid corresponds to the first byte in the extent, 297 * The key type is used to differentiate between types of back refs. 298 * There are different meanings of the key offset for different types 299 * of back refs. 300 * 301 * File extents can be referenced by: 302 * 303 * - multiple snapshots, subvolumes, or different generations in one subvol 304 * - different files inside a single subvolume 305 * - different offsets inside a file (bookend extents in file.c) 306 * 307 * The extent ref structure for the implicit back refs has fields for: 308 * 309 * - Objectid of the subvolume root 310 * - objectid of the file holding the reference 311 * - original offset in the file 312 * - how many bookend extents 313 * 314 * The key offset for the implicit back refs is hash of the first 315 * three fields. 316 * 317 * The extent ref structure for the full back refs has field for: 318 * 319 * - number of pointers in the tree leaf 320 * 321 * The key offset for the implicit back refs is the first byte of 322 * the tree leaf 323 * 324 * When a file extent is allocated, The implicit back refs is used. 325 * the fields are filled in: 326 * 327 * (root_key.objectid, inode objectid, offset in file, 1) 328 * 329 * When a file extent is removed file truncation, we find the 330 * corresponding implicit back refs and check the following fields: 331 * 332 * (btrfs_header_owner(leaf), inode objectid, offset in file) 333 * 334 * Btree extents can be referenced by: 335 * 336 * - Different subvolumes 337 * 338 * Both the implicit back refs and the full back refs for tree blocks 339 * only consist of key. The key offset for the implicit back refs is 340 * objectid of block's owner tree. The key offset for the full back refs 341 * is the first byte of parent block. 342 * 343 * When implicit back refs is used, information about the lowest key and 344 * level of the tree block are required. These information are stored in 345 * tree block info structure. 346 */ 347 348 /* 349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 352 */ 353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 354 struct btrfs_extent_inline_ref *iref, 355 enum btrfs_inline_ref_type is_data) 356 { 357 int type = btrfs_extent_inline_ref_type(eb, iref); 358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 359 360 if (type == BTRFS_TREE_BLOCK_REF_KEY || 361 type == BTRFS_SHARED_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_DATA_REF_KEY || 363 type == BTRFS_EXTENT_DATA_REF_KEY) { 364 if (is_data == BTRFS_REF_TYPE_BLOCK) { 365 if (type == BTRFS_TREE_BLOCK_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 368 ASSERT(eb->fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(eb->fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 btrfs_print_leaf((struct extent_buffer *)eb); 397 btrfs_err(eb->fs_info, 398 "eb %llu iref 0x%lx invalid extent inline ref type %d", 399 eb->start, (unsigned long)iref, type); 400 WARN_ON(1); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = trans->fs_info->extent_root; 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = trans->fs_info->extent_root; 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_path *path, 597 int refs_to_drop, int *last_ref) 598 { 599 struct btrfs_key key; 600 struct btrfs_extent_data_ref *ref1 = NULL; 601 struct btrfs_shared_data_ref *ref2 = NULL; 602 struct extent_buffer *leaf; 603 u32 num_refs = 0; 604 int ret = 0; 605 606 leaf = path->nodes[0]; 607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 608 609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 610 ref1 = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 614 ref2 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_shared_data_ref); 616 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 618 btrfs_print_v0_err(trans->fs_info); 619 btrfs_abort_transaction(trans, -EINVAL); 620 return -EINVAL; 621 } else { 622 BUG(); 623 } 624 625 BUG_ON(num_refs < refs_to_drop); 626 num_refs -= refs_to_drop; 627 628 if (num_refs == 0) { 629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 630 *last_ref = 1; 631 } else { 632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 636 btrfs_mark_buffer_dirty(leaf); 637 } 638 return ret; 639 } 640 641 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 642 struct btrfs_extent_inline_ref *iref) 643 { 644 struct btrfs_key key; 645 struct extent_buffer *leaf; 646 struct btrfs_extent_data_ref *ref1; 647 struct btrfs_shared_data_ref *ref2; 648 u32 num_refs = 0; 649 int type; 650 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 653 654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 655 if (iref) { 656 /* 657 * If type is invalid, we should have bailed out earlier than 658 * this call. 659 */ 660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 661 ASSERT(type != BTRFS_REF_TYPE_INVALID); 662 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 664 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 665 } else { 666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 667 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 668 } 669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 670 ref1 = btrfs_item_ptr(leaf, path->slots[0], 671 struct btrfs_extent_data_ref); 672 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 674 ref2 = btrfs_item_ptr(leaf, path->slots[0], 675 struct btrfs_shared_data_ref); 676 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 677 } else { 678 WARN_ON(1); 679 } 680 return num_refs; 681 } 682 683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 684 struct btrfs_path *path, 685 u64 bytenr, u64 parent, 686 u64 root_objectid) 687 { 688 struct btrfs_root *root = trans->fs_info->extent_root; 689 struct btrfs_key key; 690 int ret; 691 692 key.objectid = bytenr; 693 if (parent) { 694 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 695 key.offset = parent; 696 } else { 697 key.type = BTRFS_TREE_BLOCK_REF_KEY; 698 key.offset = root_objectid; 699 } 700 701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 702 if (ret > 0) 703 ret = -ENOENT; 704 return ret; 705 } 706 707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 708 struct btrfs_path *path, 709 u64 bytenr, u64 parent, 710 u64 root_objectid) 711 { 712 struct btrfs_key key; 713 int ret; 714 715 key.objectid = bytenr; 716 if (parent) { 717 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 718 key.offset = parent; 719 } else { 720 key.type = BTRFS_TREE_BLOCK_REF_KEY; 721 key.offset = root_objectid; 722 } 723 724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 725 path, &key, 0); 726 btrfs_release_path(path); 727 return ret; 728 } 729 730 static inline int extent_ref_type(u64 parent, u64 owner) 731 { 732 int type; 733 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 734 if (parent > 0) 735 type = BTRFS_SHARED_BLOCK_REF_KEY; 736 else 737 type = BTRFS_TREE_BLOCK_REF_KEY; 738 } else { 739 if (parent > 0) 740 type = BTRFS_SHARED_DATA_REF_KEY; 741 else 742 type = BTRFS_EXTENT_DATA_REF_KEY; 743 } 744 return type; 745 } 746 747 static int find_next_key(struct btrfs_path *path, int level, 748 struct btrfs_key *key) 749 750 { 751 for (; level < BTRFS_MAX_LEVEL; level++) { 752 if (!path->nodes[level]) 753 break; 754 if (path->slots[level] + 1 >= 755 btrfs_header_nritems(path->nodes[level])) 756 continue; 757 if (level == 0) 758 btrfs_item_key_to_cpu(path->nodes[level], key, 759 path->slots[level] + 1); 760 else 761 btrfs_node_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 return 0; 764 } 765 return 1; 766 } 767 768 /* 769 * look for inline back ref. if back ref is found, *ref_ret is set 770 * to the address of inline back ref, and 0 is returned. 771 * 772 * if back ref isn't found, *ref_ret is set to the address where it 773 * should be inserted, and -ENOENT is returned. 774 * 775 * if insert is true and there are too many inline back refs, the path 776 * points to the extent item, and -EAGAIN is returned. 777 * 778 * NOTE: inline back refs are ordered in the same way that back ref 779 * items in the tree are ordered. 780 */ 781 static noinline_for_stack 782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 783 struct btrfs_path *path, 784 struct btrfs_extent_inline_ref **ref_ret, 785 u64 bytenr, u64 num_bytes, 786 u64 parent, u64 root_objectid, 787 u64 owner, u64 offset, int insert) 788 { 789 struct btrfs_fs_info *fs_info = trans->fs_info; 790 struct btrfs_root *root = fs_info->extent_root; 791 struct btrfs_key key; 792 struct extent_buffer *leaf; 793 struct btrfs_extent_item *ei; 794 struct btrfs_extent_inline_ref *iref; 795 u64 flags; 796 u64 item_size; 797 unsigned long ptr; 798 unsigned long end; 799 int extra_size; 800 int type; 801 int want; 802 int ret; 803 int err = 0; 804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 805 int needed; 806 807 key.objectid = bytenr; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 key.offset = num_bytes; 810 811 want = extent_ref_type(parent, owner); 812 if (insert) { 813 extra_size = btrfs_extent_inline_ref_size(want); 814 path->search_for_extension = 1; 815 path->keep_locks = 1; 816 } else 817 extra_size = -1; 818 819 /* 820 * Owner is our level, so we can just add one to get the level for the 821 * block we are interested in. 822 */ 823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 824 key.type = BTRFS_METADATA_ITEM_KEY; 825 key.offset = owner; 826 } 827 828 again: 829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 830 if (ret < 0) { 831 err = ret; 832 goto out; 833 } 834 835 /* 836 * We may be a newly converted file system which still has the old fat 837 * extent entries for metadata, so try and see if we have one of those. 838 */ 839 if (ret > 0 && skinny_metadata) { 840 skinny_metadata = false; 841 if (path->slots[0]) { 842 path->slots[0]--; 843 btrfs_item_key_to_cpu(path->nodes[0], &key, 844 path->slots[0]); 845 if (key.objectid == bytenr && 846 key.type == BTRFS_EXTENT_ITEM_KEY && 847 key.offset == num_bytes) 848 ret = 0; 849 } 850 if (ret) { 851 key.objectid = bytenr; 852 key.type = BTRFS_EXTENT_ITEM_KEY; 853 key.offset = num_bytes; 854 btrfs_release_path(path); 855 goto again; 856 } 857 } 858 859 if (ret && !insert) { 860 err = -ENOENT; 861 goto out; 862 } else if (WARN_ON(ret)) { 863 err = -EIO; 864 goto out; 865 } 866 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (unlikely(item_size < sizeof(*ei))) { 870 err = -EINVAL; 871 btrfs_print_v0_err(fs_info); 872 btrfs_abort_transaction(trans, err); 873 goto out; 874 } 875 876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 877 flags = btrfs_extent_flags(leaf, ei); 878 879 ptr = (unsigned long)(ei + 1); 880 end = (unsigned long)ei + item_size; 881 882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 883 ptr += sizeof(struct btrfs_tree_block_info); 884 BUG_ON(ptr > end); 885 } 886 887 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 888 needed = BTRFS_REF_TYPE_DATA; 889 else 890 needed = BTRFS_REF_TYPE_BLOCK; 891 892 err = -ENOENT; 893 while (1) { 894 if (ptr >= end) { 895 WARN_ON(ptr > end); 896 break; 897 } 898 iref = (struct btrfs_extent_inline_ref *)ptr; 899 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 900 if (type == BTRFS_REF_TYPE_INVALID) { 901 err = -EUCLEAN; 902 goto out; 903 } 904 905 if (want < type) 906 break; 907 if (want > type) { 908 ptr += btrfs_extent_inline_ref_size(type); 909 continue; 910 } 911 912 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 913 struct btrfs_extent_data_ref *dref; 914 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 915 if (match_extent_data_ref(leaf, dref, root_objectid, 916 owner, offset)) { 917 err = 0; 918 break; 919 } 920 if (hash_extent_data_ref_item(leaf, dref) < 921 hash_extent_data_ref(root_objectid, owner, offset)) 922 break; 923 } else { 924 u64 ref_offset; 925 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 926 if (parent > 0) { 927 if (parent == ref_offset) { 928 err = 0; 929 break; 930 } 931 if (ref_offset < parent) 932 break; 933 } else { 934 if (root_objectid == ref_offset) { 935 err = 0; 936 break; 937 } 938 if (ref_offset < root_objectid) 939 break; 940 } 941 } 942 ptr += btrfs_extent_inline_ref_size(type); 943 } 944 if (err == -ENOENT && insert) { 945 if (item_size + extra_size >= 946 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 947 err = -EAGAIN; 948 goto out; 949 } 950 /* 951 * To add new inline back ref, we have to make sure 952 * there is no corresponding back ref item. 953 * For simplicity, we just do not add new inline back 954 * ref if there is any kind of item for this block 955 */ 956 if (find_next_key(path, 0, &key) == 0 && 957 key.objectid == bytenr && 958 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 959 err = -EAGAIN; 960 goto out; 961 } 962 } 963 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 964 out: 965 if (insert) { 966 path->keep_locks = 0; 967 path->search_for_extension = 0; 968 btrfs_unlock_up_safe(path, 1); 969 } 970 return err; 971 } 972 973 /* 974 * helper to add new inline back ref 975 */ 976 static noinline_for_stack 977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 978 struct btrfs_path *path, 979 struct btrfs_extent_inline_ref *iref, 980 u64 parent, u64 root_objectid, 981 u64 owner, u64 offset, int refs_to_add, 982 struct btrfs_delayed_extent_op *extent_op) 983 { 984 struct extent_buffer *leaf; 985 struct btrfs_extent_item *ei; 986 unsigned long ptr; 987 unsigned long end; 988 unsigned long item_offset; 989 u64 refs; 990 int size; 991 int type; 992 993 leaf = path->nodes[0]; 994 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 995 item_offset = (unsigned long)iref - (unsigned long)ei; 996 997 type = extent_ref_type(parent, owner); 998 size = btrfs_extent_inline_ref_size(type); 999 1000 btrfs_extend_item(path, size); 1001 1002 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1003 refs = btrfs_extent_refs(leaf, ei); 1004 refs += refs_to_add; 1005 btrfs_set_extent_refs(leaf, ei, refs); 1006 if (extent_op) 1007 __run_delayed_extent_op(extent_op, leaf, ei); 1008 1009 ptr = (unsigned long)ei + item_offset; 1010 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1011 if (ptr < end - size) 1012 memmove_extent_buffer(leaf, ptr + size, ptr, 1013 end - size - ptr); 1014 1015 iref = (struct btrfs_extent_inline_ref *)ptr; 1016 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1017 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1018 struct btrfs_extent_data_ref *dref; 1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1020 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1021 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1022 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1023 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1024 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1025 struct btrfs_shared_data_ref *sref; 1026 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1027 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1028 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1029 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1033 } 1034 btrfs_mark_buffer_dirty(leaf); 1035 } 1036 1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1038 struct btrfs_path *path, 1039 struct btrfs_extent_inline_ref **ref_ret, 1040 u64 bytenr, u64 num_bytes, u64 parent, 1041 u64 root_objectid, u64 owner, u64 offset) 1042 { 1043 int ret; 1044 1045 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1046 num_bytes, parent, root_objectid, 1047 owner, offset, 0); 1048 if (ret != -ENOENT) 1049 return ret; 1050 1051 btrfs_release_path(path); 1052 *ref_ret = NULL; 1053 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1056 root_objectid); 1057 } else { 1058 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1059 root_objectid, owner, offset); 1060 } 1061 return ret; 1062 } 1063 1064 /* 1065 * helper to update/remove inline back ref 1066 */ 1067 static noinline_for_stack 1068 void update_inline_extent_backref(struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op, 1072 int *last_ref) 1073 { 1074 struct extent_buffer *leaf = path->nodes[0]; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1088 refs += refs_to_mod; 1089 btrfs_set_extent_refs(leaf, ei, refs); 1090 if (extent_op) 1091 __run_delayed_extent_op(extent_op, leaf, ei); 1092 1093 /* 1094 * If type is invalid, we should have bailed out after 1095 * lookup_inline_extent_backref(). 1096 */ 1097 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1098 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1099 1100 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1101 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1102 refs = btrfs_extent_data_ref_count(leaf, dref); 1103 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1104 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1105 refs = btrfs_shared_data_ref_count(leaf, sref); 1106 } else { 1107 refs = 1; 1108 BUG_ON(refs_to_mod != -1); 1109 } 1110 1111 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1112 refs += refs_to_mod; 1113 1114 if (refs > 0) { 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1116 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1117 else 1118 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1119 } else { 1120 *last_ref = 1; 1121 size = btrfs_extent_inline_ref_size(type); 1122 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1123 ptr = (unsigned long)iref; 1124 end = (unsigned long)ei + item_size; 1125 if (ptr + size < end) 1126 memmove_extent_buffer(leaf, ptr, ptr + size, 1127 end - ptr - size); 1128 item_size -= size; 1129 btrfs_truncate_item(path, item_size, 1); 1130 } 1131 btrfs_mark_buffer_dirty(leaf); 1132 } 1133 1134 static noinline_for_stack 1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1136 struct btrfs_path *path, 1137 u64 bytenr, u64 num_bytes, u64 parent, 1138 u64 root_objectid, u64 owner, 1139 u64 offset, int refs_to_add, 1140 struct btrfs_delayed_extent_op *extent_op) 1141 { 1142 struct btrfs_extent_inline_ref *iref; 1143 int ret; 1144 1145 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1146 num_bytes, parent, root_objectid, 1147 owner, offset, 1); 1148 if (ret == 0) { 1149 /* 1150 * We're adding refs to a tree block we already own, this 1151 * should not happen at all. 1152 */ 1153 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1154 btrfs_crit(trans->fs_info, 1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1156 bytenr, num_bytes, root_objectid); 1157 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1158 WARN_ON(1); 1159 btrfs_crit(trans->fs_info, 1160 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1161 btrfs_print_leaf(path->nodes[0]); 1162 } 1163 return -EUCLEAN; 1164 } 1165 update_inline_extent_backref(path, iref, refs_to_add, 1166 extent_op, NULL); 1167 } else if (ret == -ENOENT) { 1168 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1169 root_objectid, owner, offset, 1170 refs_to_add, extent_op); 1171 ret = 0; 1172 } 1173 return ret; 1174 } 1175 1176 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1177 struct btrfs_path *path, 1178 struct btrfs_extent_inline_ref *iref, 1179 int refs_to_drop, int is_data, int *last_ref) 1180 { 1181 int ret = 0; 1182 1183 BUG_ON(!is_data && refs_to_drop != 1); 1184 if (iref) { 1185 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1186 last_ref); 1187 } else if (is_data) { 1188 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1189 last_ref); 1190 } else { 1191 *last_ref = 1; 1192 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1193 } 1194 return ret; 1195 } 1196 1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1198 u64 *discarded_bytes) 1199 { 1200 int j, ret = 0; 1201 u64 bytes_left, end; 1202 u64 aligned_start = ALIGN(start, 1 << 9); 1203 1204 if (WARN_ON(start != aligned_start)) { 1205 len -= aligned_start - start; 1206 len = round_down(len, 1 << 9); 1207 start = aligned_start; 1208 } 1209 1210 *discarded_bytes = 0; 1211 1212 if (!len) 1213 return 0; 1214 1215 end = start + len; 1216 bytes_left = len; 1217 1218 /* Skip any superblocks on this device. */ 1219 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1220 u64 sb_start = btrfs_sb_offset(j); 1221 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1222 u64 size = sb_start - start; 1223 1224 if (!in_range(sb_start, start, bytes_left) && 1225 !in_range(sb_end, start, bytes_left) && 1226 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1227 continue; 1228 1229 /* 1230 * Superblock spans beginning of range. Adjust start and 1231 * try again. 1232 */ 1233 if (sb_start <= start) { 1234 start += sb_end - start; 1235 if (start > end) { 1236 bytes_left = 0; 1237 break; 1238 } 1239 bytes_left = end - start; 1240 continue; 1241 } 1242 1243 if (size) { 1244 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1245 GFP_NOFS, 0); 1246 if (!ret) 1247 *discarded_bytes += size; 1248 else if (ret != -EOPNOTSUPP) 1249 return ret; 1250 } 1251 1252 start = sb_end; 1253 if (start > end) { 1254 bytes_left = 0; 1255 break; 1256 } 1257 bytes_left = end - start; 1258 } 1259 1260 if (bytes_left) { 1261 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1262 GFP_NOFS, 0); 1263 if (!ret) 1264 *discarded_bytes += bytes_left; 1265 } 1266 return ret; 1267 } 1268 1269 static int do_discard_extent(struct btrfs_bio_stripe *stripe, u64 *bytes) 1270 { 1271 struct btrfs_device *dev = stripe->dev; 1272 struct btrfs_fs_info *fs_info = dev->fs_info; 1273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1274 u64 phys = stripe->physical; 1275 u64 len = stripe->length; 1276 u64 discarded = 0; 1277 int ret = 0; 1278 1279 /* Zone reset on a zoned filesystem */ 1280 if (btrfs_can_zone_reset(dev, phys, len)) { 1281 u64 src_disc; 1282 1283 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1284 if (ret) 1285 goto out; 1286 1287 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1288 dev != dev_replace->srcdev) 1289 goto out; 1290 1291 src_disc = discarded; 1292 1293 /* Send to replace target as well */ 1294 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1295 &discarded); 1296 discarded += src_disc; 1297 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) { 1298 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1299 } else { 1300 ret = 0; 1301 *bytes = 0; 1302 } 1303 1304 out: 1305 *bytes = discarded; 1306 return ret; 1307 } 1308 1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1310 u64 num_bytes, u64 *actual_bytes) 1311 { 1312 int ret = 0; 1313 u64 discarded_bytes = 0; 1314 u64 end = bytenr + num_bytes; 1315 u64 cur = bytenr; 1316 struct btrfs_bio *bbio = NULL; 1317 1318 1319 /* 1320 * Avoid races with device replace and make sure our bbio has devices 1321 * associated to its stripes that don't go away while we are discarding. 1322 */ 1323 btrfs_bio_counter_inc_blocked(fs_info); 1324 while (cur < end) { 1325 struct btrfs_bio_stripe *stripe; 1326 int i; 1327 1328 num_bytes = end - cur; 1329 /* Tell the block device(s) that the sectors can be discarded */ 1330 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1331 &num_bytes, &bbio, 0); 1332 /* 1333 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1334 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1335 * thus we can't continue anyway. 1336 */ 1337 if (ret < 0) 1338 goto out; 1339 1340 stripe = bbio->stripes; 1341 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1342 u64 bytes; 1343 1344 if (!stripe->dev->bdev) { 1345 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1346 continue; 1347 } 1348 1349 ret = do_discard_extent(stripe, &bytes); 1350 if (!ret) { 1351 discarded_bytes += bytes; 1352 } else if (ret != -EOPNOTSUPP) { 1353 /* 1354 * Logic errors or -ENOMEM, or -EIO, but 1355 * unlikely to happen. 1356 * 1357 * And since there are two loops, explicitly 1358 * go to out to avoid confusion. 1359 */ 1360 btrfs_put_bbio(bbio); 1361 goto out; 1362 } 1363 1364 /* 1365 * Just in case we get back EOPNOTSUPP for some reason, 1366 * just ignore the return value so we don't screw up 1367 * people calling discard_extent. 1368 */ 1369 ret = 0; 1370 } 1371 btrfs_put_bbio(bbio); 1372 cur += num_bytes; 1373 } 1374 out: 1375 btrfs_bio_counter_dec(fs_info); 1376 1377 if (actual_bytes) 1378 *actual_bytes = discarded_bytes; 1379 1380 1381 if (ret == -EOPNOTSUPP) 1382 ret = 0; 1383 return ret; 1384 } 1385 1386 /* Can return -ENOMEM */ 1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1388 struct btrfs_ref *generic_ref) 1389 { 1390 struct btrfs_fs_info *fs_info = trans->fs_info; 1391 int ret; 1392 1393 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1394 generic_ref->action); 1395 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1396 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1397 1398 if (generic_ref->type == BTRFS_REF_METADATA) 1399 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1400 else 1401 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1402 1403 btrfs_ref_tree_mod(fs_info, generic_ref); 1404 1405 return ret; 1406 } 1407 1408 /* 1409 * __btrfs_inc_extent_ref - insert backreference for a given extent 1410 * 1411 * The counterpart is in __btrfs_free_extent(), with examples and more details 1412 * how it works. 1413 * 1414 * @trans: Handle of transaction 1415 * 1416 * @node: The delayed ref node used to get the bytenr/length for 1417 * extent whose references are incremented. 1418 * 1419 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1420 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1421 * bytenr of the parent block. Since new extents are always 1422 * created with indirect references, this will only be the case 1423 * when relocating a shared extent. In that case, root_objectid 1424 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1425 * be 0 1426 * 1427 * @root_objectid: The id of the root where this modification has originated, 1428 * this can be either one of the well-known metadata trees or 1429 * the subvolume id which references this extent. 1430 * 1431 * @owner: For data extents it is the inode number of the owning file. 1432 * For metadata extents this parameter holds the level in the 1433 * tree of the extent. 1434 * 1435 * @offset: For metadata extents the offset is ignored and is currently 1436 * always passed as 0. For data extents it is the fileoffset 1437 * this extent belongs to. 1438 * 1439 * @refs_to_add Number of references to add 1440 * 1441 * @extent_op Pointer to a structure, holding information necessary when 1442 * updating a tree block's flags 1443 * 1444 */ 1445 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1446 struct btrfs_delayed_ref_node *node, 1447 u64 parent, u64 root_objectid, 1448 u64 owner, u64 offset, int refs_to_add, 1449 struct btrfs_delayed_extent_op *extent_op) 1450 { 1451 struct btrfs_path *path; 1452 struct extent_buffer *leaf; 1453 struct btrfs_extent_item *item; 1454 struct btrfs_key key; 1455 u64 bytenr = node->bytenr; 1456 u64 num_bytes = node->num_bytes; 1457 u64 refs; 1458 int ret; 1459 1460 path = btrfs_alloc_path(); 1461 if (!path) 1462 return -ENOMEM; 1463 1464 /* this will setup the path even if it fails to insert the back ref */ 1465 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1466 parent, root_objectid, owner, 1467 offset, refs_to_add, extent_op); 1468 if ((ret < 0 && ret != -EAGAIN) || !ret) 1469 goto out; 1470 1471 /* 1472 * Ok we had -EAGAIN which means we didn't have space to insert and 1473 * inline extent ref, so just update the reference count and add a 1474 * normal backref. 1475 */ 1476 leaf = path->nodes[0]; 1477 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1478 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1479 refs = btrfs_extent_refs(leaf, item); 1480 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1481 if (extent_op) 1482 __run_delayed_extent_op(extent_op, leaf, item); 1483 1484 btrfs_mark_buffer_dirty(leaf); 1485 btrfs_release_path(path); 1486 1487 /* now insert the actual backref */ 1488 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1489 BUG_ON(refs_to_add != 1); 1490 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1491 root_objectid); 1492 } else { 1493 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1494 root_objectid, owner, offset, 1495 refs_to_add); 1496 } 1497 if (ret) 1498 btrfs_abort_transaction(trans, ret); 1499 out: 1500 btrfs_free_path(path); 1501 return ret; 1502 } 1503 1504 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1505 struct btrfs_delayed_ref_node *node, 1506 struct btrfs_delayed_extent_op *extent_op, 1507 int insert_reserved) 1508 { 1509 int ret = 0; 1510 struct btrfs_delayed_data_ref *ref; 1511 struct btrfs_key ins; 1512 u64 parent = 0; 1513 u64 ref_root = 0; 1514 u64 flags = 0; 1515 1516 ins.objectid = node->bytenr; 1517 ins.offset = node->num_bytes; 1518 ins.type = BTRFS_EXTENT_ITEM_KEY; 1519 1520 ref = btrfs_delayed_node_to_data_ref(node); 1521 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1522 1523 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1524 parent = ref->parent; 1525 ref_root = ref->root; 1526 1527 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1528 if (extent_op) 1529 flags |= extent_op->flags_to_set; 1530 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1531 flags, ref->objectid, 1532 ref->offset, &ins, 1533 node->ref_mod); 1534 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1535 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1536 ref->objectid, ref->offset, 1537 node->ref_mod, extent_op); 1538 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1539 ret = __btrfs_free_extent(trans, node, parent, 1540 ref_root, ref->objectid, 1541 ref->offset, node->ref_mod, 1542 extent_op); 1543 } else { 1544 BUG(); 1545 } 1546 return ret; 1547 } 1548 1549 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1550 struct extent_buffer *leaf, 1551 struct btrfs_extent_item *ei) 1552 { 1553 u64 flags = btrfs_extent_flags(leaf, ei); 1554 if (extent_op->update_flags) { 1555 flags |= extent_op->flags_to_set; 1556 btrfs_set_extent_flags(leaf, ei, flags); 1557 } 1558 1559 if (extent_op->update_key) { 1560 struct btrfs_tree_block_info *bi; 1561 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1562 bi = (struct btrfs_tree_block_info *)(ei + 1); 1563 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1564 } 1565 } 1566 1567 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1568 struct btrfs_delayed_ref_head *head, 1569 struct btrfs_delayed_extent_op *extent_op) 1570 { 1571 struct btrfs_fs_info *fs_info = trans->fs_info; 1572 struct btrfs_key key; 1573 struct btrfs_path *path; 1574 struct btrfs_extent_item *ei; 1575 struct extent_buffer *leaf; 1576 u32 item_size; 1577 int ret; 1578 int err = 0; 1579 int metadata = !extent_op->is_data; 1580 1581 if (TRANS_ABORTED(trans)) 1582 return 0; 1583 1584 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1585 metadata = 0; 1586 1587 path = btrfs_alloc_path(); 1588 if (!path) 1589 return -ENOMEM; 1590 1591 key.objectid = head->bytenr; 1592 1593 if (metadata) { 1594 key.type = BTRFS_METADATA_ITEM_KEY; 1595 key.offset = extent_op->level; 1596 } else { 1597 key.type = BTRFS_EXTENT_ITEM_KEY; 1598 key.offset = head->num_bytes; 1599 } 1600 1601 again: 1602 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1603 if (ret < 0) { 1604 err = ret; 1605 goto out; 1606 } 1607 if (ret > 0) { 1608 if (metadata) { 1609 if (path->slots[0] > 0) { 1610 path->slots[0]--; 1611 btrfs_item_key_to_cpu(path->nodes[0], &key, 1612 path->slots[0]); 1613 if (key.objectid == head->bytenr && 1614 key.type == BTRFS_EXTENT_ITEM_KEY && 1615 key.offset == head->num_bytes) 1616 ret = 0; 1617 } 1618 if (ret > 0) { 1619 btrfs_release_path(path); 1620 metadata = 0; 1621 1622 key.objectid = head->bytenr; 1623 key.offset = head->num_bytes; 1624 key.type = BTRFS_EXTENT_ITEM_KEY; 1625 goto again; 1626 } 1627 } else { 1628 err = -EIO; 1629 goto out; 1630 } 1631 } 1632 1633 leaf = path->nodes[0]; 1634 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1635 1636 if (unlikely(item_size < sizeof(*ei))) { 1637 err = -EINVAL; 1638 btrfs_print_v0_err(fs_info); 1639 btrfs_abort_transaction(trans, err); 1640 goto out; 1641 } 1642 1643 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1644 __run_delayed_extent_op(extent_op, leaf, ei); 1645 1646 btrfs_mark_buffer_dirty(leaf); 1647 out: 1648 btrfs_free_path(path); 1649 return err; 1650 } 1651 1652 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1653 struct btrfs_delayed_ref_node *node, 1654 struct btrfs_delayed_extent_op *extent_op, 1655 int insert_reserved) 1656 { 1657 int ret = 0; 1658 struct btrfs_delayed_tree_ref *ref; 1659 u64 parent = 0; 1660 u64 ref_root = 0; 1661 1662 ref = btrfs_delayed_node_to_tree_ref(node); 1663 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1664 1665 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1666 parent = ref->parent; 1667 ref_root = ref->root; 1668 1669 if (node->ref_mod != 1) { 1670 btrfs_err(trans->fs_info, 1671 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1672 node->bytenr, node->ref_mod, node->action, ref_root, 1673 parent); 1674 return -EIO; 1675 } 1676 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1677 BUG_ON(!extent_op || !extent_op->update_flags); 1678 ret = alloc_reserved_tree_block(trans, node, extent_op); 1679 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1680 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1681 ref->level, 0, 1, extent_op); 1682 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1683 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1684 ref->level, 0, 1, extent_op); 1685 } else { 1686 BUG(); 1687 } 1688 return ret; 1689 } 1690 1691 /* helper function to actually process a single delayed ref entry */ 1692 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1693 struct btrfs_delayed_ref_node *node, 1694 struct btrfs_delayed_extent_op *extent_op, 1695 int insert_reserved) 1696 { 1697 int ret = 0; 1698 1699 if (TRANS_ABORTED(trans)) { 1700 if (insert_reserved) 1701 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1702 return 0; 1703 } 1704 1705 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1706 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1707 ret = run_delayed_tree_ref(trans, node, extent_op, 1708 insert_reserved); 1709 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1710 node->type == BTRFS_SHARED_DATA_REF_KEY) 1711 ret = run_delayed_data_ref(trans, node, extent_op, 1712 insert_reserved); 1713 else 1714 BUG(); 1715 if (ret && insert_reserved) 1716 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1717 return ret; 1718 } 1719 1720 static inline struct btrfs_delayed_ref_node * 1721 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1722 { 1723 struct btrfs_delayed_ref_node *ref; 1724 1725 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1726 return NULL; 1727 1728 /* 1729 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1730 * This is to prevent a ref count from going down to zero, which deletes 1731 * the extent item from the extent tree, when there still are references 1732 * to add, which would fail because they would not find the extent item. 1733 */ 1734 if (!list_empty(&head->ref_add_list)) 1735 return list_first_entry(&head->ref_add_list, 1736 struct btrfs_delayed_ref_node, add_list); 1737 1738 ref = rb_entry(rb_first_cached(&head->ref_tree), 1739 struct btrfs_delayed_ref_node, ref_node); 1740 ASSERT(list_empty(&ref->add_list)); 1741 return ref; 1742 } 1743 1744 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1745 struct btrfs_delayed_ref_head *head) 1746 { 1747 spin_lock(&delayed_refs->lock); 1748 head->processing = 0; 1749 delayed_refs->num_heads_ready++; 1750 spin_unlock(&delayed_refs->lock); 1751 btrfs_delayed_ref_unlock(head); 1752 } 1753 1754 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1755 struct btrfs_delayed_ref_head *head) 1756 { 1757 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1758 1759 if (!extent_op) 1760 return NULL; 1761 1762 if (head->must_insert_reserved) { 1763 head->extent_op = NULL; 1764 btrfs_free_delayed_extent_op(extent_op); 1765 return NULL; 1766 } 1767 return extent_op; 1768 } 1769 1770 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1771 struct btrfs_delayed_ref_head *head) 1772 { 1773 struct btrfs_delayed_extent_op *extent_op; 1774 int ret; 1775 1776 extent_op = cleanup_extent_op(head); 1777 if (!extent_op) 1778 return 0; 1779 head->extent_op = NULL; 1780 spin_unlock(&head->lock); 1781 ret = run_delayed_extent_op(trans, head, extent_op); 1782 btrfs_free_delayed_extent_op(extent_op); 1783 return ret ? ret : 1; 1784 } 1785 1786 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1787 struct btrfs_delayed_ref_root *delayed_refs, 1788 struct btrfs_delayed_ref_head *head) 1789 { 1790 int nr_items = 1; /* Dropping this ref head update. */ 1791 1792 /* 1793 * We had csum deletions accounted for in our delayed refs rsv, we need 1794 * to drop the csum leaves for this update from our delayed_refs_rsv. 1795 */ 1796 if (head->total_ref_mod < 0 && head->is_data) { 1797 spin_lock(&delayed_refs->lock); 1798 delayed_refs->pending_csums -= head->num_bytes; 1799 spin_unlock(&delayed_refs->lock); 1800 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1801 } 1802 1803 /* 1804 * We were dropping refs, or had a new ref and dropped it, and thus must 1805 * adjust down our total_bytes_pinned, the space may or may not have 1806 * been pinned and so is accounted for properly in the pinned space by 1807 * now. 1808 */ 1809 if (head->total_ref_mod < 0 || 1810 (head->total_ref_mod == 0 && head->must_insert_reserved)) { 1811 u64 flags = btrfs_ref_head_to_space_flags(head); 1812 1813 btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes); 1814 } 1815 1816 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1817 } 1818 1819 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1820 struct btrfs_delayed_ref_head *head) 1821 { 1822 1823 struct btrfs_fs_info *fs_info = trans->fs_info; 1824 struct btrfs_delayed_ref_root *delayed_refs; 1825 int ret; 1826 1827 delayed_refs = &trans->transaction->delayed_refs; 1828 1829 ret = run_and_cleanup_extent_op(trans, head); 1830 if (ret < 0) { 1831 unselect_delayed_ref_head(delayed_refs, head); 1832 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1833 return ret; 1834 } else if (ret) { 1835 return ret; 1836 } 1837 1838 /* 1839 * Need to drop our head ref lock and re-acquire the delayed ref lock 1840 * and then re-check to make sure nobody got added. 1841 */ 1842 spin_unlock(&head->lock); 1843 spin_lock(&delayed_refs->lock); 1844 spin_lock(&head->lock); 1845 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1846 spin_unlock(&head->lock); 1847 spin_unlock(&delayed_refs->lock); 1848 return 1; 1849 } 1850 btrfs_delete_ref_head(delayed_refs, head); 1851 spin_unlock(&head->lock); 1852 spin_unlock(&delayed_refs->lock); 1853 1854 if (head->must_insert_reserved) { 1855 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1856 if (head->is_data) { 1857 ret = btrfs_del_csums(trans, fs_info->csum_root, 1858 head->bytenr, head->num_bytes); 1859 } 1860 } 1861 1862 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1863 1864 trace_run_delayed_ref_head(fs_info, head, 0); 1865 btrfs_delayed_ref_unlock(head); 1866 btrfs_put_delayed_ref_head(head); 1867 return 0; 1868 } 1869 1870 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1871 struct btrfs_trans_handle *trans) 1872 { 1873 struct btrfs_delayed_ref_root *delayed_refs = 1874 &trans->transaction->delayed_refs; 1875 struct btrfs_delayed_ref_head *head = NULL; 1876 int ret; 1877 1878 spin_lock(&delayed_refs->lock); 1879 head = btrfs_select_ref_head(delayed_refs); 1880 if (!head) { 1881 spin_unlock(&delayed_refs->lock); 1882 return head; 1883 } 1884 1885 /* 1886 * Grab the lock that says we are going to process all the refs for 1887 * this head 1888 */ 1889 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1890 spin_unlock(&delayed_refs->lock); 1891 1892 /* 1893 * We may have dropped the spin lock to get the head mutex lock, and 1894 * that might have given someone else time to free the head. If that's 1895 * true, it has been removed from our list and we can move on. 1896 */ 1897 if (ret == -EAGAIN) 1898 head = ERR_PTR(-EAGAIN); 1899 1900 return head; 1901 } 1902 1903 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1904 struct btrfs_delayed_ref_head *locked_ref, 1905 unsigned long *run_refs) 1906 { 1907 struct btrfs_fs_info *fs_info = trans->fs_info; 1908 struct btrfs_delayed_ref_root *delayed_refs; 1909 struct btrfs_delayed_extent_op *extent_op; 1910 struct btrfs_delayed_ref_node *ref; 1911 int must_insert_reserved = 0; 1912 int ret; 1913 1914 delayed_refs = &trans->transaction->delayed_refs; 1915 1916 lockdep_assert_held(&locked_ref->mutex); 1917 lockdep_assert_held(&locked_ref->lock); 1918 1919 while ((ref = select_delayed_ref(locked_ref))) { 1920 if (ref->seq && 1921 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1922 spin_unlock(&locked_ref->lock); 1923 unselect_delayed_ref_head(delayed_refs, locked_ref); 1924 return -EAGAIN; 1925 } 1926 1927 (*run_refs)++; 1928 ref->in_tree = 0; 1929 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1930 RB_CLEAR_NODE(&ref->ref_node); 1931 if (!list_empty(&ref->add_list)) 1932 list_del(&ref->add_list); 1933 /* 1934 * When we play the delayed ref, also correct the ref_mod on 1935 * head 1936 */ 1937 switch (ref->action) { 1938 case BTRFS_ADD_DELAYED_REF: 1939 case BTRFS_ADD_DELAYED_EXTENT: 1940 locked_ref->ref_mod -= ref->ref_mod; 1941 break; 1942 case BTRFS_DROP_DELAYED_REF: 1943 locked_ref->ref_mod += ref->ref_mod; 1944 break; 1945 default: 1946 WARN_ON(1); 1947 } 1948 atomic_dec(&delayed_refs->num_entries); 1949 1950 /* 1951 * Record the must_insert_reserved flag before we drop the 1952 * spin lock. 1953 */ 1954 must_insert_reserved = locked_ref->must_insert_reserved; 1955 locked_ref->must_insert_reserved = 0; 1956 1957 extent_op = locked_ref->extent_op; 1958 locked_ref->extent_op = NULL; 1959 spin_unlock(&locked_ref->lock); 1960 1961 ret = run_one_delayed_ref(trans, ref, extent_op, 1962 must_insert_reserved); 1963 1964 btrfs_free_delayed_extent_op(extent_op); 1965 if (ret) { 1966 unselect_delayed_ref_head(delayed_refs, locked_ref); 1967 btrfs_put_delayed_ref(ref); 1968 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1969 ret); 1970 return ret; 1971 } 1972 1973 btrfs_put_delayed_ref(ref); 1974 cond_resched(); 1975 1976 spin_lock(&locked_ref->lock); 1977 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1978 } 1979 1980 return 0; 1981 } 1982 1983 /* 1984 * Returns 0 on success or if called with an already aborted transaction. 1985 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1986 */ 1987 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1988 unsigned long nr) 1989 { 1990 struct btrfs_fs_info *fs_info = trans->fs_info; 1991 struct btrfs_delayed_ref_root *delayed_refs; 1992 struct btrfs_delayed_ref_head *locked_ref = NULL; 1993 ktime_t start = ktime_get(); 1994 int ret; 1995 unsigned long count = 0; 1996 unsigned long actual_count = 0; 1997 1998 delayed_refs = &trans->transaction->delayed_refs; 1999 do { 2000 if (!locked_ref) { 2001 locked_ref = btrfs_obtain_ref_head(trans); 2002 if (IS_ERR_OR_NULL(locked_ref)) { 2003 if (PTR_ERR(locked_ref) == -EAGAIN) { 2004 continue; 2005 } else { 2006 break; 2007 } 2008 } 2009 count++; 2010 } 2011 /* 2012 * We need to try and merge add/drops of the same ref since we 2013 * can run into issues with relocate dropping the implicit ref 2014 * and then it being added back again before the drop can 2015 * finish. If we merged anything we need to re-loop so we can 2016 * get a good ref. 2017 * Or we can get node references of the same type that weren't 2018 * merged when created due to bumps in the tree mod seq, and 2019 * we need to merge them to prevent adding an inline extent 2020 * backref before dropping it (triggering a BUG_ON at 2021 * insert_inline_extent_backref()). 2022 */ 2023 spin_lock(&locked_ref->lock); 2024 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2025 2026 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2027 &actual_count); 2028 if (ret < 0 && ret != -EAGAIN) { 2029 /* 2030 * Error, btrfs_run_delayed_refs_for_head already 2031 * unlocked everything so just bail out 2032 */ 2033 return ret; 2034 } else if (!ret) { 2035 /* 2036 * Success, perform the usual cleanup of a processed 2037 * head 2038 */ 2039 ret = cleanup_ref_head(trans, locked_ref); 2040 if (ret > 0 ) { 2041 /* We dropped our lock, we need to loop. */ 2042 ret = 0; 2043 continue; 2044 } else if (ret) { 2045 return ret; 2046 } 2047 } 2048 2049 /* 2050 * Either success case or btrfs_run_delayed_refs_for_head 2051 * returned -EAGAIN, meaning we need to select another head 2052 */ 2053 2054 locked_ref = NULL; 2055 cond_resched(); 2056 } while ((nr != -1 && count < nr) || locked_ref); 2057 2058 /* 2059 * We don't want to include ref heads since we can have empty ref heads 2060 * and those will drastically skew our runtime down since we just do 2061 * accounting, no actual extent tree updates. 2062 */ 2063 if (actual_count > 0) { 2064 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2065 u64 avg; 2066 2067 /* 2068 * We weigh the current average higher than our current runtime 2069 * to avoid large swings in the average. 2070 */ 2071 spin_lock(&delayed_refs->lock); 2072 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2073 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2074 spin_unlock(&delayed_refs->lock); 2075 } 2076 return 0; 2077 } 2078 2079 #ifdef SCRAMBLE_DELAYED_REFS 2080 /* 2081 * Normally delayed refs get processed in ascending bytenr order. This 2082 * correlates in most cases to the order added. To expose dependencies on this 2083 * order, we start to process the tree in the middle instead of the beginning 2084 */ 2085 static u64 find_middle(struct rb_root *root) 2086 { 2087 struct rb_node *n = root->rb_node; 2088 struct btrfs_delayed_ref_node *entry; 2089 int alt = 1; 2090 u64 middle; 2091 u64 first = 0, last = 0; 2092 2093 n = rb_first(root); 2094 if (n) { 2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2096 first = entry->bytenr; 2097 } 2098 n = rb_last(root); 2099 if (n) { 2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2101 last = entry->bytenr; 2102 } 2103 n = root->rb_node; 2104 2105 while (n) { 2106 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2107 WARN_ON(!entry->in_tree); 2108 2109 middle = entry->bytenr; 2110 2111 if (alt) 2112 n = n->rb_left; 2113 else 2114 n = n->rb_right; 2115 2116 alt = 1 - alt; 2117 } 2118 return middle; 2119 } 2120 #endif 2121 2122 /* 2123 * this starts processing the delayed reference count updates and 2124 * extent insertions we have queued up so far. count can be 2125 * 0, which means to process everything in the tree at the start 2126 * of the run (but not newly added entries), or it can be some target 2127 * number you'd like to process. 2128 * 2129 * Returns 0 on success or if called with an aborted transaction 2130 * Returns <0 on error and aborts the transaction 2131 */ 2132 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2133 unsigned long count) 2134 { 2135 struct btrfs_fs_info *fs_info = trans->fs_info; 2136 struct rb_node *node; 2137 struct btrfs_delayed_ref_root *delayed_refs; 2138 struct btrfs_delayed_ref_head *head; 2139 int ret; 2140 int run_all = count == (unsigned long)-1; 2141 2142 /* We'll clean this up in btrfs_cleanup_transaction */ 2143 if (TRANS_ABORTED(trans)) 2144 return 0; 2145 2146 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2147 return 0; 2148 2149 delayed_refs = &trans->transaction->delayed_refs; 2150 if (count == 0) 2151 count = delayed_refs->num_heads_ready; 2152 2153 again: 2154 #ifdef SCRAMBLE_DELAYED_REFS 2155 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2156 #endif 2157 ret = __btrfs_run_delayed_refs(trans, count); 2158 if (ret < 0) { 2159 btrfs_abort_transaction(trans, ret); 2160 return ret; 2161 } 2162 2163 if (run_all) { 2164 btrfs_create_pending_block_groups(trans); 2165 2166 spin_lock(&delayed_refs->lock); 2167 node = rb_first_cached(&delayed_refs->href_root); 2168 if (!node) { 2169 spin_unlock(&delayed_refs->lock); 2170 goto out; 2171 } 2172 head = rb_entry(node, struct btrfs_delayed_ref_head, 2173 href_node); 2174 refcount_inc(&head->refs); 2175 spin_unlock(&delayed_refs->lock); 2176 2177 /* Mutex was contended, block until it's released and retry. */ 2178 mutex_lock(&head->mutex); 2179 mutex_unlock(&head->mutex); 2180 2181 btrfs_put_delayed_ref_head(head); 2182 cond_resched(); 2183 goto again; 2184 } 2185 out: 2186 return 0; 2187 } 2188 2189 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2190 struct extent_buffer *eb, u64 flags, 2191 int level, int is_data) 2192 { 2193 struct btrfs_delayed_extent_op *extent_op; 2194 int ret; 2195 2196 extent_op = btrfs_alloc_delayed_extent_op(); 2197 if (!extent_op) 2198 return -ENOMEM; 2199 2200 extent_op->flags_to_set = flags; 2201 extent_op->update_flags = true; 2202 extent_op->update_key = false; 2203 extent_op->is_data = is_data ? true : false; 2204 extent_op->level = level; 2205 2206 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2207 if (ret) 2208 btrfs_free_delayed_extent_op(extent_op); 2209 return ret; 2210 } 2211 2212 static noinline int check_delayed_ref(struct btrfs_root *root, 2213 struct btrfs_path *path, 2214 u64 objectid, u64 offset, u64 bytenr) 2215 { 2216 struct btrfs_delayed_ref_head *head; 2217 struct btrfs_delayed_ref_node *ref; 2218 struct btrfs_delayed_data_ref *data_ref; 2219 struct btrfs_delayed_ref_root *delayed_refs; 2220 struct btrfs_transaction *cur_trans; 2221 struct rb_node *node; 2222 int ret = 0; 2223 2224 spin_lock(&root->fs_info->trans_lock); 2225 cur_trans = root->fs_info->running_transaction; 2226 if (cur_trans) 2227 refcount_inc(&cur_trans->use_count); 2228 spin_unlock(&root->fs_info->trans_lock); 2229 if (!cur_trans) 2230 return 0; 2231 2232 delayed_refs = &cur_trans->delayed_refs; 2233 spin_lock(&delayed_refs->lock); 2234 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2235 if (!head) { 2236 spin_unlock(&delayed_refs->lock); 2237 btrfs_put_transaction(cur_trans); 2238 return 0; 2239 } 2240 2241 if (!mutex_trylock(&head->mutex)) { 2242 refcount_inc(&head->refs); 2243 spin_unlock(&delayed_refs->lock); 2244 2245 btrfs_release_path(path); 2246 2247 /* 2248 * Mutex was contended, block until it's released and let 2249 * caller try again 2250 */ 2251 mutex_lock(&head->mutex); 2252 mutex_unlock(&head->mutex); 2253 btrfs_put_delayed_ref_head(head); 2254 btrfs_put_transaction(cur_trans); 2255 return -EAGAIN; 2256 } 2257 spin_unlock(&delayed_refs->lock); 2258 2259 spin_lock(&head->lock); 2260 /* 2261 * XXX: We should replace this with a proper search function in the 2262 * future. 2263 */ 2264 for (node = rb_first_cached(&head->ref_tree); node; 2265 node = rb_next(node)) { 2266 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2267 /* If it's a shared ref we know a cross reference exists */ 2268 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2269 ret = 1; 2270 break; 2271 } 2272 2273 data_ref = btrfs_delayed_node_to_data_ref(ref); 2274 2275 /* 2276 * If our ref doesn't match the one we're currently looking at 2277 * then we have a cross reference. 2278 */ 2279 if (data_ref->root != root->root_key.objectid || 2280 data_ref->objectid != objectid || 2281 data_ref->offset != offset) { 2282 ret = 1; 2283 break; 2284 } 2285 } 2286 spin_unlock(&head->lock); 2287 mutex_unlock(&head->mutex); 2288 btrfs_put_transaction(cur_trans); 2289 return ret; 2290 } 2291 2292 static noinline int check_committed_ref(struct btrfs_root *root, 2293 struct btrfs_path *path, 2294 u64 objectid, u64 offset, u64 bytenr, 2295 bool strict) 2296 { 2297 struct btrfs_fs_info *fs_info = root->fs_info; 2298 struct btrfs_root *extent_root = fs_info->extent_root; 2299 struct extent_buffer *leaf; 2300 struct btrfs_extent_data_ref *ref; 2301 struct btrfs_extent_inline_ref *iref; 2302 struct btrfs_extent_item *ei; 2303 struct btrfs_key key; 2304 u32 item_size; 2305 int type; 2306 int ret; 2307 2308 key.objectid = bytenr; 2309 key.offset = (u64)-1; 2310 key.type = BTRFS_EXTENT_ITEM_KEY; 2311 2312 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2313 if (ret < 0) 2314 goto out; 2315 BUG_ON(ret == 0); /* Corruption */ 2316 2317 ret = -ENOENT; 2318 if (path->slots[0] == 0) 2319 goto out; 2320 2321 path->slots[0]--; 2322 leaf = path->nodes[0]; 2323 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2324 2325 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2326 goto out; 2327 2328 ret = 1; 2329 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2330 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2331 2332 /* If extent item has more than 1 inline ref then it's shared */ 2333 if (item_size != sizeof(*ei) + 2334 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2335 goto out; 2336 2337 /* 2338 * If extent created before last snapshot => it's shared unless the 2339 * snapshot has been deleted. Use the heuristic if strict is false. 2340 */ 2341 if (!strict && 2342 (btrfs_extent_generation(leaf, ei) <= 2343 btrfs_root_last_snapshot(&root->root_item))) 2344 goto out; 2345 2346 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2347 2348 /* If this extent has SHARED_DATA_REF then it's shared */ 2349 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2350 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2351 goto out; 2352 2353 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2354 if (btrfs_extent_refs(leaf, ei) != 2355 btrfs_extent_data_ref_count(leaf, ref) || 2356 btrfs_extent_data_ref_root(leaf, ref) != 2357 root->root_key.objectid || 2358 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2359 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2360 goto out; 2361 2362 ret = 0; 2363 out: 2364 return ret; 2365 } 2366 2367 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2368 u64 bytenr, bool strict) 2369 { 2370 struct btrfs_path *path; 2371 int ret; 2372 2373 path = btrfs_alloc_path(); 2374 if (!path) 2375 return -ENOMEM; 2376 2377 do { 2378 ret = check_committed_ref(root, path, objectid, 2379 offset, bytenr, strict); 2380 if (ret && ret != -ENOENT) 2381 goto out; 2382 2383 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2384 } while (ret == -EAGAIN); 2385 2386 out: 2387 btrfs_free_path(path); 2388 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2389 WARN_ON(ret > 0); 2390 return ret; 2391 } 2392 2393 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2394 struct btrfs_root *root, 2395 struct extent_buffer *buf, 2396 int full_backref, int inc) 2397 { 2398 struct btrfs_fs_info *fs_info = root->fs_info; 2399 u64 bytenr; 2400 u64 num_bytes; 2401 u64 parent; 2402 u64 ref_root; 2403 u32 nritems; 2404 struct btrfs_key key; 2405 struct btrfs_file_extent_item *fi; 2406 struct btrfs_ref generic_ref = { 0 }; 2407 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2408 int i; 2409 int action; 2410 int level; 2411 int ret = 0; 2412 2413 if (btrfs_is_testing(fs_info)) 2414 return 0; 2415 2416 ref_root = btrfs_header_owner(buf); 2417 nritems = btrfs_header_nritems(buf); 2418 level = btrfs_header_level(buf); 2419 2420 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2421 return 0; 2422 2423 if (full_backref) 2424 parent = buf->start; 2425 else 2426 parent = 0; 2427 if (inc) 2428 action = BTRFS_ADD_DELAYED_REF; 2429 else 2430 action = BTRFS_DROP_DELAYED_REF; 2431 2432 for (i = 0; i < nritems; i++) { 2433 if (level == 0) { 2434 btrfs_item_key_to_cpu(buf, &key, i); 2435 if (key.type != BTRFS_EXTENT_DATA_KEY) 2436 continue; 2437 fi = btrfs_item_ptr(buf, i, 2438 struct btrfs_file_extent_item); 2439 if (btrfs_file_extent_type(buf, fi) == 2440 BTRFS_FILE_EXTENT_INLINE) 2441 continue; 2442 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2443 if (bytenr == 0) 2444 continue; 2445 2446 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2447 key.offset -= btrfs_file_extent_offset(buf, fi); 2448 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2449 num_bytes, parent); 2450 generic_ref.real_root = root->root_key.objectid; 2451 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2452 key.offset); 2453 generic_ref.skip_qgroup = for_reloc; 2454 if (inc) 2455 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2456 else 2457 ret = btrfs_free_extent(trans, &generic_ref); 2458 if (ret) 2459 goto fail; 2460 } else { 2461 bytenr = btrfs_node_blockptr(buf, i); 2462 num_bytes = fs_info->nodesize; 2463 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2464 num_bytes, parent); 2465 generic_ref.real_root = root->root_key.objectid; 2466 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2467 generic_ref.skip_qgroup = for_reloc; 2468 if (inc) 2469 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2470 else 2471 ret = btrfs_free_extent(trans, &generic_ref); 2472 if (ret) 2473 goto fail; 2474 } 2475 } 2476 return 0; 2477 fail: 2478 return ret; 2479 } 2480 2481 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2482 struct extent_buffer *buf, int full_backref) 2483 { 2484 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2485 } 2486 2487 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2488 struct extent_buffer *buf, int full_backref) 2489 { 2490 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2491 } 2492 2493 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2494 { 2495 struct btrfs_block_group *block_group; 2496 int readonly = 0; 2497 2498 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2499 if (!block_group || block_group->ro) 2500 readonly = 1; 2501 if (block_group) 2502 btrfs_put_block_group(block_group); 2503 return readonly; 2504 } 2505 2506 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2507 { 2508 struct btrfs_fs_info *fs_info = root->fs_info; 2509 u64 flags; 2510 u64 ret; 2511 2512 if (data) 2513 flags = BTRFS_BLOCK_GROUP_DATA; 2514 else if (root == fs_info->chunk_root) 2515 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2516 else 2517 flags = BTRFS_BLOCK_GROUP_METADATA; 2518 2519 ret = btrfs_get_alloc_profile(fs_info, flags); 2520 return ret; 2521 } 2522 2523 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2524 { 2525 struct btrfs_block_group *cache; 2526 u64 bytenr; 2527 2528 spin_lock(&fs_info->block_group_cache_lock); 2529 bytenr = fs_info->first_logical_byte; 2530 spin_unlock(&fs_info->block_group_cache_lock); 2531 2532 if (bytenr < (u64)-1) 2533 return bytenr; 2534 2535 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2536 if (!cache) 2537 return 0; 2538 2539 bytenr = cache->start; 2540 btrfs_put_block_group(cache); 2541 2542 return bytenr; 2543 } 2544 2545 static int pin_down_extent(struct btrfs_trans_handle *trans, 2546 struct btrfs_block_group *cache, 2547 u64 bytenr, u64 num_bytes, int reserved) 2548 { 2549 struct btrfs_fs_info *fs_info = cache->fs_info; 2550 2551 spin_lock(&cache->space_info->lock); 2552 spin_lock(&cache->lock); 2553 cache->pinned += num_bytes; 2554 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2555 num_bytes); 2556 if (reserved) { 2557 cache->reserved -= num_bytes; 2558 cache->space_info->bytes_reserved -= num_bytes; 2559 } 2560 spin_unlock(&cache->lock); 2561 spin_unlock(&cache->space_info->lock); 2562 2563 __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes); 2564 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2565 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2566 return 0; 2567 } 2568 2569 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2570 u64 bytenr, u64 num_bytes, int reserved) 2571 { 2572 struct btrfs_block_group *cache; 2573 2574 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2575 BUG_ON(!cache); /* Logic error */ 2576 2577 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2578 2579 btrfs_put_block_group(cache); 2580 return 0; 2581 } 2582 2583 /* 2584 * this function must be called within transaction 2585 */ 2586 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2587 u64 bytenr, u64 num_bytes) 2588 { 2589 struct btrfs_block_group *cache; 2590 int ret; 2591 2592 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2593 if (!cache) 2594 return -EINVAL; 2595 2596 /* 2597 * pull in the free space cache (if any) so that our pin 2598 * removes the free space from the cache. We have load_only set 2599 * to one because the slow code to read in the free extents does check 2600 * the pinned extents. 2601 */ 2602 btrfs_cache_block_group(cache, 1); 2603 /* 2604 * Make sure we wait until the cache is completely built in case it is 2605 * missing or is invalid and therefore needs to be rebuilt. 2606 */ 2607 ret = btrfs_wait_block_group_cache_done(cache); 2608 if (ret) 2609 goto out; 2610 2611 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2612 2613 /* remove us from the free space cache (if we're there at all) */ 2614 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2615 out: 2616 btrfs_put_block_group(cache); 2617 return ret; 2618 } 2619 2620 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2621 u64 start, u64 num_bytes) 2622 { 2623 int ret; 2624 struct btrfs_block_group *block_group; 2625 2626 block_group = btrfs_lookup_block_group(fs_info, start); 2627 if (!block_group) 2628 return -EINVAL; 2629 2630 btrfs_cache_block_group(block_group, 1); 2631 /* 2632 * Make sure we wait until the cache is completely built in case it is 2633 * missing or is invalid and therefore needs to be rebuilt. 2634 */ 2635 ret = btrfs_wait_block_group_cache_done(block_group); 2636 if (ret) 2637 goto out; 2638 2639 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2640 out: 2641 btrfs_put_block_group(block_group); 2642 return ret; 2643 } 2644 2645 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2646 { 2647 struct btrfs_fs_info *fs_info = eb->fs_info; 2648 struct btrfs_file_extent_item *item; 2649 struct btrfs_key key; 2650 int found_type; 2651 int i; 2652 int ret = 0; 2653 2654 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2655 return 0; 2656 2657 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2658 btrfs_item_key_to_cpu(eb, &key, i); 2659 if (key.type != BTRFS_EXTENT_DATA_KEY) 2660 continue; 2661 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2662 found_type = btrfs_file_extent_type(eb, item); 2663 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2664 continue; 2665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2666 continue; 2667 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2668 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2669 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2670 if (ret) 2671 break; 2672 } 2673 2674 return ret; 2675 } 2676 2677 static void 2678 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2679 { 2680 atomic_inc(&bg->reservations); 2681 } 2682 2683 /* 2684 * Returns the free cluster for the given space info and sets empty_cluster to 2685 * what it should be based on the mount options. 2686 */ 2687 static struct btrfs_free_cluster * 2688 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2689 struct btrfs_space_info *space_info, u64 *empty_cluster) 2690 { 2691 struct btrfs_free_cluster *ret = NULL; 2692 2693 *empty_cluster = 0; 2694 if (btrfs_mixed_space_info(space_info)) 2695 return ret; 2696 2697 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2698 ret = &fs_info->meta_alloc_cluster; 2699 if (btrfs_test_opt(fs_info, SSD)) 2700 *empty_cluster = SZ_2M; 2701 else 2702 *empty_cluster = SZ_64K; 2703 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2704 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2705 *empty_cluster = SZ_2M; 2706 ret = &fs_info->data_alloc_cluster; 2707 } 2708 2709 return ret; 2710 } 2711 2712 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2713 u64 start, u64 end, 2714 const bool return_free_space) 2715 { 2716 struct btrfs_block_group *cache = NULL; 2717 struct btrfs_space_info *space_info; 2718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2719 struct btrfs_free_cluster *cluster = NULL; 2720 u64 len; 2721 u64 total_unpinned = 0; 2722 u64 empty_cluster = 0; 2723 bool readonly; 2724 2725 while (start <= end) { 2726 readonly = false; 2727 if (!cache || 2728 start >= cache->start + cache->length) { 2729 if (cache) 2730 btrfs_put_block_group(cache); 2731 total_unpinned = 0; 2732 cache = btrfs_lookup_block_group(fs_info, start); 2733 BUG_ON(!cache); /* Logic error */ 2734 2735 cluster = fetch_cluster_info(fs_info, 2736 cache->space_info, 2737 &empty_cluster); 2738 empty_cluster <<= 1; 2739 } 2740 2741 len = cache->start + cache->length - start; 2742 len = min(len, end + 1 - start); 2743 2744 down_read(&fs_info->commit_root_sem); 2745 if (start < cache->last_byte_to_unpin && return_free_space) { 2746 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2747 2748 btrfs_add_free_space(cache, start, add_len); 2749 } 2750 up_read(&fs_info->commit_root_sem); 2751 2752 start += len; 2753 total_unpinned += len; 2754 space_info = cache->space_info; 2755 2756 /* 2757 * If this space cluster has been marked as fragmented and we've 2758 * unpinned enough in this block group to potentially allow a 2759 * cluster to be created inside of it go ahead and clear the 2760 * fragmented check. 2761 */ 2762 if (cluster && cluster->fragmented && 2763 total_unpinned > empty_cluster) { 2764 spin_lock(&cluster->lock); 2765 cluster->fragmented = 0; 2766 spin_unlock(&cluster->lock); 2767 } 2768 2769 spin_lock(&space_info->lock); 2770 spin_lock(&cache->lock); 2771 cache->pinned -= len; 2772 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2773 space_info->max_extent_size = 0; 2774 __btrfs_mod_total_bytes_pinned(space_info, -len); 2775 if (cache->ro) { 2776 space_info->bytes_readonly += len; 2777 readonly = true; 2778 } else if (btrfs_is_zoned(fs_info)) { 2779 /* Need reset before reusing in a zoned block group */ 2780 space_info->bytes_zone_unusable += len; 2781 readonly = true; 2782 } 2783 spin_unlock(&cache->lock); 2784 if (!readonly && return_free_space && 2785 global_rsv->space_info == space_info) { 2786 u64 to_add = len; 2787 2788 spin_lock(&global_rsv->lock); 2789 if (!global_rsv->full) { 2790 to_add = min(len, global_rsv->size - 2791 global_rsv->reserved); 2792 global_rsv->reserved += to_add; 2793 btrfs_space_info_update_bytes_may_use(fs_info, 2794 space_info, to_add); 2795 if (global_rsv->reserved >= global_rsv->size) 2796 global_rsv->full = 1; 2797 len -= to_add; 2798 } 2799 spin_unlock(&global_rsv->lock); 2800 } 2801 /* Add to any tickets we may have */ 2802 if (!readonly && return_free_space && len) 2803 btrfs_try_granting_tickets(fs_info, space_info); 2804 spin_unlock(&space_info->lock); 2805 } 2806 2807 if (cache) 2808 btrfs_put_block_group(cache); 2809 return 0; 2810 } 2811 2812 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2813 { 2814 struct btrfs_fs_info *fs_info = trans->fs_info; 2815 struct btrfs_block_group *block_group, *tmp; 2816 struct list_head *deleted_bgs; 2817 struct extent_io_tree *unpin; 2818 u64 start; 2819 u64 end; 2820 int ret; 2821 2822 unpin = &trans->transaction->pinned_extents; 2823 2824 while (!TRANS_ABORTED(trans)) { 2825 struct extent_state *cached_state = NULL; 2826 2827 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2828 ret = find_first_extent_bit(unpin, 0, &start, &end, 2829 EXTENT_DIRTY, &cached_state); 2830 if (ret) { 2831 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2832 break; 2833 } 2834 2835 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2836 ret = btrfs_discard_extent(fs_info, start, 2837 end + 1 - start, NULL); 2838 2839 clear_extent_dirty(unpin, start, end, &cached_state); 2840 unpin_extent_range(fs_info, start, end, true); 2841 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2842 free_extent_state(cached_state); 2843 cond_resched(); 2844 } 2845 2846 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2847 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2848 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2849 } 2850 2851 /* 2852 * Transaction is finished. We don't need the lock anymore. We 2853 * do need to clean up the block groups in case of a transaction 2854 * abort. 2855 */ 2856 deleted_bgs = &trans->transaction->deleted_bgs; 2857 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2858 u64 trimmed = 0; 2859 2860 ret = -EROFS; 2861 if (!TRANS_ABORTED(trans)) 2862 ret = btrfs_discard_extent(fs_info, 2863 block_group->start, 2864 block_group->length, 2865 &trimmed); 2866 2867 list_del_init(&block_group->bg_list); 2868 btrfs_unfreeze_block_group(block_group); 2869 btrfs_put_block_group(block_group); 2870 2871 if (ret) { 2872 const char *errstr = btrfs_decode_error(ret); 2873 btrfs_warn(fs_info, 2874 "discard failed while removing blockgroup: errno=%d %s", 2875 ret, errstr); 2876 } 2877 } 2878 2879 return 0; 2880 } 2881 2882 /* 2883 * Drop one or more refs of @node. 2884 * 2885 * 1. Locate the extent refs. 2886 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2887 * Locate it, then reduce the refs number or remove the ref line completely. 2888 * 2889 * 2. Update the refs count in EXTENT/METADATA_ITEM 2890 * 2891 * Inline backref case: 2892 * 2893 * in extent tree we have: 2894 * 2895 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2896 * refs 2 gen 6 flags DATA 2897 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2898 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2899 * 2900 * This function gets called with: 2901 * 2902 * node->bytenr = 13631488 2903 * node->num_bytes = 1048576 2904 * root_objectid = FS_TREE 2905 * owner_objectid = 257 2906 * owner_offset = 0 2907 * refs_to_drop = 1 2908 * 2909 * Then we should get some like: 2910 * 2911 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2912 * refs 1 gen 6 flags DATA 2913 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2914 * 2915 * Keyed backref case: 2916 * 2917 * in extent tree we have: 2918 * 2919 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2920 * refs 754 gen 6 flags DATA 2921 * [...] 2922 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2923 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2924 * 2925 * This function get called with: 2926 * 2927 * node->bytenr = 13631488 2928 * node->num_bytes = 1048576 2929 * root_objectid = FS_TREE 2930 * owner_objectid = 866 2931 * owner_offset = 0 2932 * refs_to_drop = 1 2933 * 2934 * Then we should get some like: 2935 * 2936 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2937 * refs 753 gen 6 flags DATA 2938 * 2939 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2940 */ 2941 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2942 struct btrfs_delayed_ref_node *node, u64 parent, 2943 u64 root_objectid, u64 owner_objectid, 2944 u64 owner_offset, int refs_to_drop, 2945 struct btrfs_delayed_extent_op *extent_op) 2946 { 2947 struct btrfs_fs_info *info = trans->fs_info; 2948 struct btrfs_key key; 2949 struct btrfs_path *path; 2950 struct btrfs_root *extent_root = info->extent_root; 2951 struct extent_buffer *leaf; 2952 struct btrfs_extent_item *ei; 2953 struct btrfs_extent_inline_ref *iref; 2954 int ret; 2955 int is_data; 2956 int extent_slot = 0; 2957 int found_extent = 0; 2958 int num_to_del = 1; 2959 u32 item_size; 2960 u64 refs; 2961 u64 bytenr = node->bytenr; 2962 u64 num_bytes = node->num_bytes; 2963 int last_ref = 0; 2964 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2965 2966 path = btrfs_alloc_path(); 2967 if (!path) 2968 return -ENOMEM; 2969 2970 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2971 2972 if (!is_data && refs_to_drop != 1) { 2973 btrfs_crit(info, 2974 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2975 node->bytenr, refs_to_drop); 2976 ret = -EINVAL; 2977 btrfs_abort_transaction(trans, ret); 2978 goto out; 2979 } 2980 2981 if (is_data) 2982 skinny_metadata = false; 2983 2984 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2985 parent, root_objectid, owner_objectid, 2986 owner_offset); 2987 if (ret == 0) { 2988 /* 2989 * Either the inline backref or the SHARED_DATA_REF/ 2990 * SHARED_BLOCK_REF is found 2991 * 2992 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2993 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2994 */ 2995 extent_slot = path->slots[0]; 2996 while (extent_slot >= 0) { 2997 btrfs_item_key_to_cpu(path->nodes[0], &key, 2998 extent_slot); 2999 if (key.objectid != bytenr) 3000 break; 3001 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3002 key.offset == num_bytes) { 3003 found_extent = 1; 3004 break; 3005 } 3006 if (key.type == BTRFS_METADATA_ITEM_KEY && 3007 key.offset == owner_objectid) { 3008 found_extent = 1; 3009 break; 3010 } 3011 3012 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3013 if (path->slots[0] - extent_slot > 5) 3014 break; 3015 extent_slot--; 3016 } 3017 3018 if (!found_extent) { 3019 if (iref) { 3020 btrfs_crit(info, 3021 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3022 btrfs_abort_transaction(trans, -EUCLEAN); 3023 goto err_dump; 3024 } 3025 /* Must be SHARED_* item, remove the backref first */ 3026 ret = remove_extent_backref(trans, path, NULL, 3027 refs_to_drop, 3028 is_data, &last_ref); 3029 if (ret) { 3030 btrfs_abort_transaction(trans, ret); 3031 goto out; 3032 } 3033 btrfs_release_path(path); 3034 3035 /* Slow path to locate EXTENT/METADATA_ITEM */ 3036 key.objectid = bytenr; 3037 key.type = BTRFS_EXTENT_ITEM_KEY; 3038 key.offset = num_bytes; 3039 3040 if (!is_data && skinny_metadata) { 3041 key.type = BTRFS_METADATA_ITEM_KEY; 3042 key.offset = owner_objectid; 3043 } 3044 3045 ret = btrfs_search_slot(trans, extent_root, 3046 &key, path, -1, 1); 3047 if (ret > 0 && skinny_metadata && path->slots[0]) { 3048 /* 3049 * Couldn't find our skinny metadata item, 3050 * see if we have ye olde extent item. 3051 */ 3052 path->slots[0]--; 3053 btrfs_item_key_to_cpu(path->nodes[0], &key, 3054 path->slots[0]); 3055 if (key.objectid == bytenr && 3056 key.type == BTRFS_EXTENT_ITEM_KEY && 3057 key.offset == num_bytes) 3058 ret = 0; 3059 } 3060 3061 if (ret > 0 && skinny_metadata) { 3062 skinny_metadata = false; 3063 key.objectid = bytenr; 3064 key.type = BTRFS_EXTENT_ITEM_KEY; 3065 key.offset = num_bytes; 3066 btrfs_release_path(path); 3067 ret = btrfs_search_slot(trans, extent_root, 3068 &key, path, -1, 1); 3069 } 3070 3071 if (ret) { 3072 btrfs_err(info, 3073 "umm, got %d back from search, was looking for %llu", 3074 ret, bytenr); 3075 if (ret > 0) 3076 btrfs_print_leaf(path->nodes[0]); 3077 } 3078 if (ret < 0) { 3079 btrfs_abort_transaction(trans, ret); 3080 goto out; 3081 } 3082 extent_slot = path->slots[0]; 3083 } 3084 } else if (WARN_ON(ret == -ENOENT)) { 3085 btrfs_print_leaf(path->nodes[0]); 3086 btrfs_err(info, 3087 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3088 bytenr, parent, root_objectid, owner_objectid, 3089 owner_offset); 3090 btrfs_abort_transaction(trans, ret); 3091 goto out; 3092 } else { 3093 btrfs_abort_transaction(trans, ret); 3094 goto out; 3095 } 3096 3097 leaf = path->nodes[0]; 3098 item_size = btrfs_item_size_nr(leaf, extent_slot); 3099 if (unlikely(item_size < sizeof(*ei))) { 3100 ret = -EINVAL; 3101 btrfs_print_v0_err(info); 3102 btrfs_abort_transaction(trans, ret); 3103 goto out; 3104 } 3105 ei = btrfs_item_ptr(leaf, extent_slot, 3106 struct btrfs_extent_item); 3107 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3108 key.type == BTRFS_EXTENT_ITEM_KEY) { 3109 struct btrfs_tree_block_info *bi; 3110 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3111 btrfs_crit(info, 3112 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3113 key.objectid, key.type, key.offset, 3114 owner_objectid, item_size, 3115 sizeof(*ei) + sizeof(*bi)); 3116 btrfs_abort_transaction(trans, -EUCLEAN); 3117 goto err_dump; 3118 } 3119 bi = (struct btrfs_tree_block_info *)(ei + 1); 3120 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3121 } 3122 3123 refs = btrfs_extent_refs(leaf, ei); 3124 if (refs < refs_to_drop) { 3125 btrfs_crit(info, 3126 "trying to drop %d refs but we only have %llu for bytenr %llu", 3127 refs_to_drop, refs, bytenr); 3128 btrfs_abort_transaction(trans, -EUCLEAN); 3129 goto err_dump; 3130 } 3131 refs -= refs_to_drop; 3132 3133 if (refs > 0) { 3134 if (extent_op) 3135 __run_delayed_extent_op(extent_op, leaf, ei); 3136 /* 3137 * In the case of inline back ref, reference count will 3138 * be updated by remove_extent_backref 3139 */ 3140 if (iref) { 3141 if (!found_extent) { 3142 btrfs_crit(info, 3143 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3144 btrfs_abort_transaction(trans, -EUCLEAN); 3145 goto err_dump; 3146 } 3147 } else { 3148 btrfs_set_extent_refs(leaf, ei, refs); 3149 btrfs_mark_buffer_dirty(leaf); 3150 } 3151 if (found_extent) { 3152 ret = remove_extent_backref(trans, path, iref, 3153 refs_to_drop, is_data, 3154 &last_ref); 3155 if (ret) { 3156 btrfs_abort_transaction(trans, ret); 3157 goto out; 3158 } 3159 } 3160 } else { 3161 /* In this branch refs == 1 */ 3162 if (found_extent) { 3163 if (is_data && refs_to_drop != 3164 extent_data_ref_count(path, iref)) { 3165 btrfs_crit(info, 3166 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3167 extent_data_ref_count(path, iref), 3168 refs_to_drop); 3169 btrfs_abort_transaction(trans, -EUCLEAN); 3170 goto err_dump; 3171 } 3172 if (iref) { 3173 if (path->slots[0] != extent_slot) { 3174 btrfs_crit(info, 3175 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3176 key.objectid, key.type, 3177 key.offset); 3178 btrfs_abort_transaction(trans, -EUCLEAN); 3179 goto err_dump; 3180 } 3181 } else { 3182 /* 3183 * No inline ref, we must be at SHARED_* item, 3184 * And it's single ref, it must be: 3185 * | extent_slot ||extent_slot + 1| 3186 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3187 */ 3188 if (path->slots[0] != extent_slot + 1) { 3189 btrfs_crit(info, 3190 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3191 btrfs_abort_transaction(trans, -EUCLEAN); 3192 goto err_dump; 3193 } 3194 path->slots[0] = extent_slot; 3195 num_to_del = 2; 3196 } 3197 } 3198 3199 last_ref = 1; 3200 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3201 num_to_del); 3202 if (ret) { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 btrfs_release_path(path); 3207 3208 if (is_data) { 3209 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3210 num_bytes); 3211 if (ret) { 3212 btrfs_abort_transaction(trans, ret); 3213 goto out; 3214 } 3215 } 3216 3217 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3218 if (ret) { 3219 btrfs_abort_transaction(trans, ret); 3220 goto out; 3221 } 3222 3223 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3224 if (ret) { 3225 btrfs_abort_transaction(trans, ret); 3226 goto out; 3227 } 3228 } 3229 btrfs_release_path(path); 3230 3231 out: 3232 btrfs_free_path(path); 3233 return ret; 3234 err_dump: 3235 /* 3236 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3237 * dump for debug build. 3238 */ 3239 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3240 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3241 path->slots[0], extent_slot); 3242 btrfs_print_leaf(path->nodes[0]); 3243 } 3244 3245 btrfs_free_path(path); 3246 return -EUCLEAN; 3247 } 3248 3249 /* 3250 * when we free an block, it is possible (and likely) that we free the last 3251 * delayed ref for that extent as well. This searches the delayed ref tree for 3252 * a given extent, and if there are no other delayed refs to be processed, it 3253 * removes it from the tree. 3254 */ 3255 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3256 u64 bytenr) 3257 { 3258 struct btrfs_delayed_ref_head *head; 3259 struct btrfs_delayed_ref_root *delayed_refs; 3260 int ret = 0; 3261 3262 delayed_refs = &trans->transaction->delayed_refs; 3263 spin_lock(&delayed_refs->lock); 3264 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3265 if (!head) 3266 goto out_delayed_unlock; 3267 3268 spin_lock(&head->lock); 3269 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3270 goto out; 3271 3272 if (cleanup_extent_op(head) != NULL) 3273 goto out; 3274 3275 /* 3276 * waiting for the lock here would deadlock. If someone else has it 3277 * locked they are already in the process of dropping it anyway 3278 */ 3279 if (!mutex_trylock(&head->mutex)) 3280 goto out; 3281 3282 btrfs_delete_ref_head(delayed_refs, head); 3283 head->processing = 0; 3284 3285 spin_unlock(&head->lock); 3286 spin_unlock(&delayed_refs->lock); 3287 3288 BUG_ON(head->extent_op); 3289 if (head->must_insert_reserved) 3290 ret = 1; 3291 3292 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3293 mutex_unlock(&head->mutex); 3294 btrfs_put_delayed_ref_head(head); 3295 return ret; 3296 out: 3297 spin_unlock(&head->lock); 3298 3299 out_delayed_unlock: 3300 spin_unlock(&delayed_refs->lock); 3301 return 0; 3302 } 3303 3304 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3305 struct btrfs_root *root, 3306 struct extent_buffer *buf, 3307 u64 parent, int last_ref) 3308 { 3309 struct btrfs_fs_info *fs_info = root->fs_info; 3310 struct btrfs_ref generic_ref = { 0 }; 3311 int ret; 3312 3313 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3314 buf->start, buf->len, parent); 3315 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3316 root->root_key.objectid); 3317 3318 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3319 btrfs_ref_tree_mod(fs_info, &generic_ref); 3320 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3321 BUG_ON(ret); /* -ENOMEM */ 3322 } 3323 3324 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3325 struct btrfs_block_group *cache; 3326 bool must_pin = false; 3327 3328 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3329 ret = check_ref_cleanup(trans, buf->start); 3330 if (!ret) { 3331 btrfs_redirty_list_add(trans->transaction, buf); 3332 goto out; 3333 } 3334 } 3335 3336 cache = btrfs_lookup_block_group(fs_info, buf->start); 3337 3338 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3339 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3340 btrfs_put_block_group(cache); 3341 goto out; 3342 } 3343 3344 /* 3345 * If this is a leaf and there are tree mod log users, we may 3346 * have recorded mod log operations that point to this leaf. 3347 * So we must make sure no one reuses this leaf's extent before 3348 * mod log operations are applied to a node, otherwise after 3349 * rewinding a node using the mod log operations we get an 3350 * inconsistent btree, as the leaf's extent may now be used as 3351 * a node or leaf for another different btree. 3352 * We are safe from races here because at this point no other 3353 * node or root points to this extent buffer, so if after this 3354 * check a new tree mod log user joins, it will not be able to 3355 * find a node pointing to this leaf and record operations that 3356 * point to this leaf. 3357 */ 3358 if (btrfs_header_level(buf) == 0) { 3359 read_lock(&fs_info->tree_mod_log_lock); 3360 must_pin = !list_empty(&fs_info->tree_mod_seq_list); 3361 read_unlock(&fs_info->tree_mod_log_lock); 3362 } 3363 3364 if (must_pin || btrfs_is_zoned(fs_info)) { 3365 btrfs_redirty_list_add(trans->transaction, buf); 3366 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3367 btrfs_put_block_group(cache); 3368 goto out; 3369 } 3370 3371 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3372 3373 btrfs_add_free_space(cache, buf->start, buf->len); 3374 btrfs_free_reserved_bytes(cache, buf->len, 0); 3375 btrfs_put_block_group(cache); 3376 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3377 } 3378 out: 3379 if (last_ref) { 3380 /* 3381 * Deleting the buffer, clear the corrupt flag since it doesn't 3382 * matter anymore. 3383 */ 3384 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3385 } 3386 } 3387 3388 /* Can return -ENOMEM */ 3389 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3390 { 3391 struct btrfs_fs_info *fs_info = trans->fs_info; 3392 int ret; 3393 3394 if (btrfs_is_testing(fs_info)) 3395 return 0; 3396 3397 /* 3398 * tree log blocks never actually go into the extent allocation 3399 * tree, just update pinning info and exit early. 3400 */ 3401 if ((ref->type == BTRFS_REF_METADATA && 3402 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3403 (ref->type == BTRFS_REF_DATA && 3404 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3405 /* unlocks the pinned mutex */ 3406 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3407 ret = 0; 3408 } else if (ref->type == BTRFS_REF_METADATA) { 3409 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3410 } else { 3411 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3412 } 3413 3414 if (!((ref->type == BTRFS_REF_METADATA && 3415 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3416 (ref->type == BTRFS_REF_DATA && 3417 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3418 btrfs_ref_tree_mod(fs_info, ref); 3419 3420 return ret; 3421 } 3422 3423 enum btrfs_loop_type { 3424 LOOP_CACHING_NOWAIT, 3425 LOOP_CACHING_WAIT, 3426 LOOP_ALLOC_CHUNK, 3427 LOOP_NO_EMPTY_SIZE, 3428 }; 3429 3430 static inline void 3431 btrfs_lock_block_group(struct btrfs_block_group *cache, 3432 int delalloc) 3433 { 3434 if (delalloc) 3435 down_read(&cache->data_rwsem); 3436 } 3437 3438 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3439 int delalloc) 3440 { 3441 btrfs_get_block_group(cache); 3442 if (delalloc) 3443 down_read(&cache->data_rwsem); 3444 } 3445 3446 static struct btrfs_block_group *btrfs_lock_cluster( 3447 struct btrfs_block_group *block_group, 3448 struct btrfs_free_cluster *cluster, 3449 int delalloc) 3450 __acquires(&cluster->refill_lock) 3451 { 3452 struct btrfs_block_group *used_bg = NULL; 3453 3454 spin_lock(&cluster->refill_lock); 3455 while (1) { 3456 used_bg = cluster->block_group; 3457 if (!used_bg) 3458 return NULL; 3459 3460 if (used_bg == block_group) 3461 return used_bg; 3462 3463 btrfs_get_block_group(used_bg); 3464 3465 if (!delalloc) 3466 return used_bg; 3467 3468 if (down_read_trylock(&used_bg->data_rwsem)) 3469 return used_bg; 3470 3471 spin_unlock(&cluster->refill_lock); 3472 3473 /* We should only have one-level nested. */ 3474 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3475 3476 spin_lock(&cluster->refill_lock); 3477 if (used_bg == cluster->block_group) 3478 return used_bg; 3479 3480 up_read(&used_bg->data_rwsem); 3481 btrfs_put_block_group(used_bg); 3482 } 3483 } 3484 3485 static inline void 3486 btrfs_release_block_group(struct btrfs_block_group *cache, 3487 int delalloc) 3488 { 3489 if (delalloc) 3490 up_read(&cache->data_rwsem); 3491 btrfs_put_block_group(cache); 3492 } 3493 3494 enum btrfs_extent_allocation_policy { 3495 BTRFS_EXTENT_ALLOC_CLUSTERED, 3496 BTRFS_EXTENT_ALLOC_ZONED, 3497 }; 3498 3499 /* 3500 * Structure used internally for find_free_extent() function. Wraps needed 3501 * parameters. 3502 */ 3503 struct find_free_extent_ctl { 3504 /* Basic allocation info */ 3505 u64 num_bytes; 3506 u64 empty_size; 3507 u64 flags; 3508 int delalloc; 3509 3510 /* Where to start the search inside the bg */ 3511 u64 search_start; 3512 3513 /* For clustered allocation */ 3514 u64 empty_cluster; 3515 struct btrfs_free_cluster *last_ptr; 3516 bool use_cluster; 3517 3518 bool have_caching_bg; 3519 bool orig_have_caching_bg; 3520 3521 /* Allocation is called for tree-log */ 3522 bool for_treelog; 3523 3524 /* RAID index, converted from flags */ 3525 int index; 3526 3527 /* 3528 * Current loop number, check find_free_extent_update_loop() for details 3529 */ 3530 int loop; 3531 3532 /* 3533 * Whether we're refilling a cluster, if true we need to re-search 3534 * current block group but don't try to refill the cluster again. 3535 */ 3536 bool retry_clustered; 3537 3538 /* 3539 * Whether we're updating free space cache, if true we need to re-search 3540 * current block group but don't try updating free space cache again. 3541 */ 3542 bool retry_unclustered; 3543 3544 /* If current block group is cached */ 3545 int cached; 3546 3547 /* Max contiguous hole found */ 3548 u64 max_extent_size; 3549 3550 /* Total free space from free space cache, not always contiguous */ 3551 u64 total_free_space; 3552 3553 /* Found result */ 3554 u64 found_offset; 3555 3556 /* Hint where to start looking for an empty space */ 3557 u64 hint_byte; 3558 3559 /* Allocation policy */ 3560 enum btrfs_extent_allocation_policy policy; 3561 }; 3562 3563 3564 /* 3565 * Helper function for find_free_extent(). 3566 * 3567 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3568 * Return -EAGAIN to inform caller that we need to re-search this block group 3569 * Return >0 to inform caller that we find nothing 3570 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3571 */ 3572 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3573 struct find_free_extent_ctl *ffe_ctl, 3574 struct btrfs_block_group **cluster_bg_ret) 3575 { 3576 struct btrfs_block_group *cluster_bg; 3577 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3578 u64 aligned_cluster; 3579 u64 offset; 3580 int ret; 3581 3582 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3583 if (!cluster_bg) 3584 goto refill_cluster; 3585 if (cluster_bg != bg && (cluster_bg->ro || 3586 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3587 goto release_cluster; 3588 3589 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3590 ffe_ctl->num_bytes, cluster_bg->start, 3591 &ffe_ctl->max_extent_size); 3592 if (offset) { 3593 /* We have a block, we're done */ 3594 spin_unlock(&last_ptr->refill_lock); 3595 trace_btrfs_reserve_extent_cluster(cluster_bg, 3596 ffe_ctl->search_start, ffe_ctl->num_bytes); 3597 *cluster_bg_ret = cluster_bg; 3598 ffe_ctl->found_offset = offset; 3599 return 0; 3600 } 3601 WARN_ON(last_ptr->block_group != cluster_bg); 3602 3603 release_cluster: 3604 /* 3605 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3606 * lets just skip it and let the allocator find whatever block it can 3607 * find. If we reach this point, we will have tried the cluster 3608 * allocator plenty of times and not have found anything, so we are 3609 * likely way too fragmented for the clustering stuff to find anything. 3610 * 3611 * However, if the cluster is taken from the current block group, 3612 * release the cluster first, so that we stand a better chance of 3613 * succeeding in the unclustered allocation. 3614 */ 3615 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3616 spin_unlock(&last_ptr->refill_lock); 3617 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3618 return -ENOENT; 3619 } 3620 3621 /* This cluster didn't work out, free it and start over */ 3622 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3623 3624 if (cluster_bg != bg) 3625 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3626 3627 refill_cluster: 3628 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3629 spin_unlock(&last_ptr->refill_lock); 3630 return -ENOENT; 3631 } 3632 3633 aligned_cluster = max_t(u64, 3634 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3635 bg->full_stripe_len); 3636 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3637 ffe_ctl->num_bytes, aligned_cluster); 3638 if (ret == 0) { 3639 /* Now pull our allocation out of this cluster */ 3640 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3641 ffe_ctl->num_bytes, ffe_ctl->search_start, 3642 &ffe_ctl->max_extent_size); 3643 if (offset) { 3644 /* We found one, proceed */ 3645 spin_unlock(&last_ptr->refill_lock); 3646 trace_btrfs_reserve_extent_cluster(bg, 3647 ffe_ctl->search_start, 3648 ffe_ctl->num_bytes); 3649 ffe_ctl->found_offset = offset; 3650 return 0; 3651 } 3652 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3653 !ffe_ctl->retry_clustered) { 3654 spin_unlock(&last_ptr->refill_lock); 3655 3656 ffe_ctl->retry_clustered = true; 3657 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3658 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3659 return -EAGAIN; 3660 } 3661 /* 3662 * At this point we either didn't find a cluster or we weren't able to 3663 * allocate a block from our cluster. Free the cluster we've been 3664 * trying to use, and go to the next block group. 3665 */ 3666 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3667 spin_unlock(&last_ptr->refill_lock); 3668 return 1; 3669 } 3670 3671 /* 3672 * Return >0 to inform caller that we find nothing 3673 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3674 * Return -EAGAIN to inform caller that we need to re-search this block group 3675 */ 3676 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3677 struct find_free_extent_ctl *ffe_ctl) 3678 { 3679 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3680 u64 offset; 3681 3682 /* 3683 * We are doing an unclustered allocation, set the fragmented flag so 3684 * we don't bother trying to setup a cluster again until we get more 3685 * space. 3686 */ 3687 if (unlikely(last_ptr)) { 3688 spin_lock(&last_ptr->lock); 3689 last_ptr->fragmented = 1; 3690 spin_unlock(&last_ptr->lock); 3691 } 3692 if (ffe_ctl->cached) { 3693 struct btrfs_free_space_ctl *free_space_ctl; 3694 3695 free_space_ctl = bg->free_space_ctl; 3696 spin_lock(&free_space_ctl->tree_lock); 3697 if (free_space_ctl->free_space < 3698 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3699 ffe_ctl->empty_size) { 3700 ffe_ctl->total_free_space = max_t(u64, 3701 ffe_ctl->total_free_space, 3702 free_space_ctl->free_space); 3703 spin_unlock(&free_space_ctl->tree_lock); 3704 return 1; 3705 } 3706 spin_unlock(&free_space_ctl->tree_lock); 3707 } 3708 3709 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3710 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3711 &ffe_ctl->max_extent_size); 3712 3713 /* 3714 * If we didn't find a chunk, and we haven't failed on this block group 3715 * before, and this block group is in the middle of caching and we are 3716 * ok with waiting, then go ahead and wait for progress to be made, and 3717 * set @retry_unclustered to true. 3718 * 3719 * If @retry_unclustered is true then we've already waited on this 3720 * block group once and should move on to the next block group. 3721 */ 3722 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3723 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3724 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3725 ffe_ctl->empty_size); 3726 ffe_ctl->retry_unclustered = true; 3727 return -EAGAIN; 3728 } else if (!offset) { 3729 return 1; 3730 } 3731 ffe_ctl->found_offset = offset; 3732 return 0; 3733 } 3734 3735 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3736 struct find_free_extent_ctl *ffe_ctl, 3737 struct btrfs_block_group **bg_ret) 3738 { 3739 int ret; 3740 3741 /* We want to try and use the cluster allocator, so lets look there */ 3742 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3743 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3744 if (ret >= 0 || ret == -EAGAIN) 3745 return ret; 3746 /* ret == -ENOENT case falls through */ 3747 } 3748 3749 return find_free_extent_unclustered(block_group, ffe_ctl); 3750 } 3751 3752 /* 3753 * Tree-log block group locking 3754 * ============================ 3755 * 3756 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3757 * indicates the starting address of a block group, which is reserved only 3758 * for tree-log metadata. 3759 * 3760 * Lock nesting 3761 * ============ 3762 * 3763 * space_info::lock 3764 * block_group::lock 3765 * fs_info::treelog_bg_lock 3766 */ 3767 3768 /* 3769 * Simple allocator for sequential-only block group. It only allows sequential 3770 * allocation. No need to play with trees. This function also reserves the 3771 * bytes as in btrfs_add_reserved_bytes. 3772 */ 3773 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3774 struct find_free_extent_ctl *ffe_ctl, 3775 struct btrfs_block_group **bg_ret) 3776 { 3777 struct btrfs_fs_info *fs_info = block_group->fs_info; 3778 struct btrfs_space_info *space_info = block_group->space_info; 3779 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3780 u64 start = block_group->start; 3781 u64 num_bytes = ffe_ctl->num_bytes; 3782 u64 avail; 3783 u64 bytenr = block_group->start; 3784 u64 log_bytenr; 3785 int ret = 0; 3786 bool skip; 3787 3788 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3789 3790 /* 3791 * Do not allow non-tree-log blocks in the dedicated tree-log block 3792 * group, and vice versa. 3793 */ 3794 spin_lock(&fs_info->treelog_bg_lock); 3795 log_bytenr = fs_info->treelog_bg; 3796 skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3797 (!ffe_ctl->for_treelog && bytenr == log_bytenr)); 3798 spin_unlock(&fs_info->treelog_bg_lock); 3799 if (skip) 3800 return 1; 3801 3802 spin_lock(&space_info->lock); 3803 spin_lock(&block_group->lock); 3804 spin_lock(&fs_info->treelog_bg_lock); 3805 3806 ASSERT(!ffe_ctl->for_treelog || 3807 block_group->start == fs_info->treelog_bg || 3808 fs_info->treelog_bg == 0); 3809 3810 if (block_group->ro) { 3811 ret = 1; 3812 goto out; 3813 } 3814 3815 /* 3816 * Do not allow currently using block group to be tree-log dedicated 3817 * block group. 3818 */ 3819 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3820 (block_group->used || block_group->reserved)) { 3821 ret = 1; 3822 goto out; 3823 } 3824 3825 avail = block_group->length - block_group->alloc_offset; 3826 if (avail < num_bytes) { 3827 if (ffe_ctl->max_extent_size < avail) { 3828 /* 3829 * With sequential allocator, free space is always 3830 * contiguous 3831 */ 3832 ffe_ctl->max_extent_size = avail; 3833 ffe_ctl->total_free_space = avail; 3834 } 3835 ret = 1; 3836 goto out; 3837 } 3838 3839 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3840 fs_info->treelog_bg = block_group->start; 3841 3842 ffe_ctl->found_offset = start + block_group->alloc_offset; 3843 block_group->alloc_offset += num_bytes; 3844 spin_lock(&ctl->tree_lock); 3845 ctl->free_space -= num_bytes; 3846 spin_unlock(&ctl->tree_lock); 3847 3848 /* 3849 * We do not check if found_offset is aligned to stripesize. The 3850 * address is anyway rewritten when using zone append writing. 3851 */ 3852 3853 ffe_ctl->search_start = ffe_ctl->found_offset; 3854 3855 out: 3856 if (ret && ffe_ctl->for_treelog) 3857 fs_info->treelog_bg = 0; 3858 spin_unlock(&fs_info->treelog_bg_lock); 3859 spin_unlock(&block_group->lock); 3860 spin_unlock(&space_info->lock); 3861 return ret; 3862 } 3863 3864 static int do_allocation(struct btrfs_block_group *block_group, 3865 struct find_free_extent_ctl *ffe_ctl, 3866 struct btrfs_block_group **bg_ret) 3867 { 3868 switch (ffe_ctl->policy) { 3869 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3870 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3871 case BTRFS_EXTENT_ALLOC_ZONED: 3872 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3873 default: 3874 BUG(); 3875 } 3876 } 3877 3878 static void release_block_group(struct btrfs_block_group *block_group, 3879 struct find_free_extent_ctl *ffe_ctl, 3880 int delalloc) 3881 { 3882 switch (ffe_ctl->policy) { 3883 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3884 ffe_ctl->retry_clustered = false; 3885 ffe_ctl->retry_unclustered = false; 3886 break; 3887 case BTRFS_EXTENT_ALLOC_ZONED: 3888 /* Nothing to do */ 3889 break; 3890 default: 3891 BUG(); 3892 } 3893 3894 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3895 ffe_ctl->index); 3896 btrfs_release_block_group(block_group, delalloc); 3897 } 3898 3899 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3900 struct btrfs_key *ins) 3901 { 3902 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3903 3904 if (!ffe_ctl->use_cluster && last_ptr) { 3905 spin_lock(&last_ptr->lock); 3906 last_ptr->window_start = ins->objectid; 3907 spin_unlock(&last_ptr->lock); 3908 } 3909 } 3910 3911 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3912 struct btrfs_key *ins) 3913 { 3914 switch (ffe_ctl->policy) { 3915 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3916 found_extent_clustered(ffe_ctl, ins); 3917 break; 3918 case BTRFS_EXTENT_ALLOC_ZONED: 3919 /* Nothing to do */ 3920 break; 3921 default: 3922 BUG(); 3923 } 3924 } 3925 3926 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3927 { 3928 switch (ffe_ctl->policy) { 3929 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3930 /* 3931 * If we can't allocate a new chunk we've already looped through 3932 * at least once, move on to the NO_EMPTY_SIZE case. 3933 */ 3934 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3935 return 0; 3936 case BTRFS_EXTENT_ALLOC_ZONED: 3937 /* Give up here */ 3938 return -ENOSPC; 3939 default: 3940 BUG(); 3941 } 3942 } 3943 3944 /* 3945 * Return >0 means caller needs to re-search for free extent 3946 * Return 0 means we have the needed free extent. 3947 * Return <0 means we failed to locate any free extent. 3948 */ 3949 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3950 struct btrfs_key *ins, 3951 struct find_free_extent_ctl *ffe_ctl, 3952 bool full_search) 3953 { 3954 struct btrfs_root *root = fs_info->extent_root; 3955 int ret; 3956 3957 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3958 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3959 ffe_ctl->orig_have_caching_bg = true; 3960 3961 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3962 ffe_ctl->have_caching_bg) 3963 return 1; 3964 3965 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3966 return 1; 3967 3968 if (ins->objectid) { 3969 found_extent(ffe_ctl, ins); 3970 return 0; 3971 } 3972 3973 /* 3974 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3975 * caching kthreads as we move along 3976 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3977 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3978 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3979 * again 3980 */ 3981 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3982 ffe_ctl->index = 0; 3983 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3984 /* 3985 * We want to skip the LOOP_CACHING_WAIT step if we 3986 * don't have any uncached bgs and we've already done a 3987 * full search through. 3988 */ 3989 if (ffe_ctl->orig_have_caching_bg || !full_search) 3990 ffe_ctl->loop = LOOP_CACHING_WAIT; 3991 else 3992 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3993 } else { 3994 ffe_ctl->loop++; 3995 } 3996 3997 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3998 struct btrfs_trans_handle *trans; 3999 int exist = 0; 4000 4001 trans = current->journal_info; 4002 if (trans) 4003 exist = 1; 4004 else 4005 trans = btrfs_join_transaction(root); 4006 4007 if (IS_ERR(trans)) { 4008 ret = PTR_ERR(trans); 4009 return ret; 4010 } 4011 4012 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4013 CHUNK_ALLOC_FORCE); 4014 4015 /* Do not bail out on ENOSPC since we can do more. */ 4016 if (ret == -ENOSPC) 4017 ret = chunk_allocation_failed(ffe_ctl); 4018 else if (ret < 0) 4019 btrfs_abort_transaction(trans, ret); 4020 else 4021 ret = 0; 4022 if (!exist) 4023 btrfs_end_transaction(trans); 4024 if (ret) 4025 return ret; 4026 } 4027 4028 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4029 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4030 return -ENOSPC; 4031 4032 /* 4033 * Don't loop again if we already have no empty_size and 4034 * no empty_cluster. 4035 */ 4036 if (ffe_ctl->empty_size == 0 && 4037 ffe_ctl->empty_cluster == 0) 4038 return -ENOSPC; 4039 ffe_ctl->empty_size = 0; 4040 ffe_ctl->empty_cluster = 0; 4041 } 4042 return 1; 4043 } 4044 return -ENOSPC; 4045 } 4046 4047 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4048 struct find_free_extent_ctl *ffe_ctl, 4049 struct btrfs_space_info *space_info, 4050 struct btrfs_key *ins) 4051 { 4052 /* 4053 * If our free space is heavily fragmented we may not be able to make 4054 * big contiguous allocations, so instead of doing the expensive search 4055 * for free space, simply return ENOSPC with our max_extent_size so we 4056 * can go ahead and search for a more manageable chunk. 4057 * 4058 * If our max_extent_size is large enough for our allocation simply 4059 * disable clustering since we will likely not be able to find enough 4060 * space to create a cluster and induce latency trying. 4061 */ 4062 if (space_info->max_extent_size) { 4063 spin_lock(&space_info->lock); 4064 if (space_info->max_extent_size && 4065 ffe_ctl->num_bytes > space_info->max_extent_size) { 4066 ins->offset = space_info->max_extent_size; 4067 spin_unlock(&space_info->lock); 4068 return -ENOSPC; 4069 } else if (space_info->max_extent_size) { 4070 ffe_ctl->use_cluster = false; 4071 } 4072 spin_unlock(&space_info->lock); 4073 } 4074 4075 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4076 &ffe_ctl->empty_cluster); 4077 if (ffe_ctl->last_ptr) { 4078 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4079 4080 spin_lock(&last_ptr->lock); 4081 if (last_ptr->block_group) 4082 ffe_ctl->hint_byte = last_ptr->window_start; 4083 if (last_ptr->fragmented) { 4084 /* 4085 * We still set window_start so we can keep track of the 4086 * last place we found an allocation to try and save 4087 * some time. 4088 */ 4089 ffe_ctl->hint_byte = last_ptr->window_start; 4090 ffe_ctl->use_cluster = false; 4091 } 4092 spin_unlock(&last_ptr->lock); 4093 } 4094 4095 return 0; 4096 } 4097 4098 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4099 struct find_free_extent_ctl *ffe_ctl, 4100 struct btrfs_space_info *space_info, 4101 struct btrfs_key *ins) 4102 { 4103 switch (ffe_ctl->policy) { 4104 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4105 return prepare_allocation_clustered(fs_info, ffe_ctl, 4106 space_info, ins); 4107 case BTRFS_EXTENT_ALLOC_ZONED: 4108 if (ffe_ctl->for_treelog) { 4109 spin_lock(&fs_info->treelog_bg_lock); 4110 if (fs_info->treelog_bg) 4111 ffe_ctl->hint_byte = fs_info->treelog_bg; 4112 spin_unlock(&fs_info->treelog_bg_lock); 4113 } 4114 return 0; 4115 default: 4116 BUG(); 4117 } 4118 } 4119 4120 /* 4121 * walks the btree of allocated extents and find a hole of a given size. 4122 * The key ins is changed to record the hole: 4123 * ins->objectid == start position 4124 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4125 * ins->offset == the size of the hole. 4126 * Any available blocks before search_start are skipped. 4127 * 4128 * If there is no suitable free space, we will record the max size of 4129 * the free space extent currently. 4130 * 4131 * The overall logic and call chain: 4132 * 4133 * find_free_extent() 4134 * |- Iterate through all block groups 4135 * | |- Get a valid block group 4136 * | |- Try to do clustered allocation in that block group 4137 * | |- Try to do unclustered allocation in that block group 4138 * | |- Check if the result is valid 4139 * | | |- If valid, then exit 4140 * | |- Jump to next block group 4141 * | 4142 * |- Push harder to find free extents 4143 * |- If not found, re-iterate all block groups 4144 */ 4145 static noinline int find_free_extent(struct btrfs_root *root, 4146 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4147 u64 hint_byte_orig, struct btrfs_key *ins, 4148 u64 flags, int delalloc) 4149 { 4150 struct btrfs_fs_info *fs_info = root->fs_info; 4151 int ret = 0; 4152 int cache_block_group_error = 0; 4153 struct btrfs_block_group *block_group = NULL; 4154 struct find_free_extent_ctl ffe_ctl = {0}; 4155 struct btrfs_space_info *space_info; 4156 bool full_search = false; 4157 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4158 4159 WARN_ON(num_bytes < fs_info->sectorsize); 4160 4161 ffe_ctl.num_bytes = num_bytes; 4162 ffe_ctl.empty_size = empty_size; 4163 ffe_ctl.flags = flags; 4164 ffe_ctl.search_start = 0; 4165 ffe_ctl.delalloc = delalloc; 4166 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4167 ffe_ctl.have_caching_bg = false; 4168 ffe_ctl.orig_have_caching_bg = false; 4169 ffe_ctl.found_offset = 0; 4170 ffe_ctl.hint_byte = hint_byte_orig; 4171 ffe_ctl.for_treelog = for_treelog; 4172 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4173 4174 /* For clustered allocation */ 4175 ffe_ctl.retry_clustered = false; 4176 ffe_ctl.retry_unclustered = false; 4177 ffe_ctl.last_ptr = NULL; 4178 ffe_ctl.use_cluster = true; 4179 4180 if (btrfs_is_zoned(fs_info)) 4181 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED; 4182 4183 ins->type = BTRFS_EXTENT_ITEM_KEY; 4184 ins->objectid = 0; 4185 ins->offset = 0; 4186 4187 trace_find_free_extent(root, num_bytes, empty_size, flags); 4188 4189 space_info = btrfs_find_space_info(fs_info, flags); 4190 if (!space_info) { 4191 btrfs_err(fs_info, "No space info for %llu", flags); 4192 return -ENOSPC; 4193 } 4194 4195 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4196 if (ret < 0) 4197 return ret; 4198 4199 ffe_ctl.search_start = max(ffe_ctl.search_start, 4200 first_logical_byte(fs_info, 0)); 4201 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4202 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4203 block_group = btrfs_lookup_block_group(fs_info, 4204 ffe_ctl.search_start); 4205 /* 4206 * we don't want to use the block group if it doesn't match our 4207 * allocation bits, or if its not cached. 4208 * 4209 * However if we are re-searching with an ideal block group 4210 * picked out then we don't care that the block group is cached. 4211 */ 4212 if (block_group && block_group_bits(block_group, flags) && 4213 block_group->cached != BTRFS_CACHE_NO) { 4214 down_read(&space_info->groups_sem); 4215 if (list_empty(&block_group->list) || 4216 block_group->ro) { 4217 /* 4218 * someone is removing this block group, 4219 * we can't jump into the have_block_group 4220 * target because our list pointers are not 4221 * valid 4222 */ 4223 btrfs_put_block_group(block_group); 4224 up_read(&space_info->groups_sem); 4225 } else { 4226 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4227 block_group->flags); 4228 btrfs_lock_block_group(block_group, delalloc); 4229 goto have_block_group; 4230 } 4231 } else if (block_group) { 4232 btrfs_put_block_group(block_group); 4233 } 4234 } 4235 search: 4236 ffe_ctl.have_caching_bg = false; 4237 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4238 ffe_ctl.index == 0) 4239 full_search = true; 4240 down_read(&space_info->groups_sem); 4241 list_for_each_entry(block_group, 4242 &space_info->block_groups[ffe_ctl.index], list) { 4243 struct btrfs_block_group *bg_ret; 4244 4245 /* If the block group is read-only, we can skip it entirely. */ 4246 if (unlikely(block_group->ro)) { 4247 if (for_treelog) 4248 btrfs_clear_treelog_bg(block_group); 4249 continue; 4250 } 4251 4252 btrfs_grab_block_group(block_group, delalloc); 4253 ffe_ctl.search_start = block_group->start; 4254 4255 /* 4256 * this can happen if we end up cycling through all the 4257 * raid types, but we want to make sure we only allocate 4258 * for the proper type. 4259 */ 4260 if (!block_group_bits(block_group, flags)) { 4261 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4262 BTRFS_BLOCK_GROUP_RAID1_MASK | 4263 BTRFS_BLOCK_GROUP_RAID56_MASK | 4264 BTRFS_BLOCK_GROUP_RAID10; 4265 4266 /* 4267 * if they asked for extra copies and this block group 4268 * doesn't provide them, bail. This does allow us to 4269 * fill raid0 from raid1. 4270 */ 4271 if ((flags & extra) && !(block_group->flags & extra)) 4272 goto loop; 4273 4274 /* 4275 * This block group has different flags than we want. 4276 * It's possible that we have MIXED_GROUP flag but no 4277 * block group is mixed. Just skip such block group. 4278 */ 4279 btrfs_release_block_group(block_group, delalloc); 4280 continue; 4281 } 4282 4283 have_block_group: 4284 ffe_ctl.cached = btrfs_block_group_done(block_group); 4285 if (unlikely(!ffe_ctl.cached)) { 4286 ffe_ctl.have_caching_bg = true; 4287 ret = btrfs_cache_block_group(block_group, 0); 4288 4289 /* 4290 * If we get ENOMEM here or something else we want to 4291 * try other block groups, because it may not be fatal. 4292 * However if we can't find anything else we need to 4293 * save our return here so that we return the actual 4294 * error that caused problems, not ENOSPC. 4295 */ 4296 if (ret < 0) { 4297 if (!cache_block_group_error) 4298 cache_block_group_error = ret; 4299 ret = 0; 4300 goto loop; 4301 } 4302 ret = 0; 4303 } 4304 4305 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4306 goto loop; 4307 4308 bg_ret = NULL; 4309 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4310 if (ret == 0) { 4311 if (bg_ret && bg_ret != block_group) { 4312 btrfs_release_block_group(block_group, delalloc); 4313 block_group = bg_ret; 4314 } 4315 } else if (ret == -EAGAIN) { 4316 goto have_block_group; 4317 } else if (ret > 0) { 4318 goto loop; 4319 } 4320 4321 /* Checks */ 4322 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4323 fs_info->stripesize); 4324 4325 /* move on to the next group */ 4326 if (ffe_ctl.search_start + num_bytes > 4327 block_group->start + block_group->length) { 4328 btrfs_add_free_space_unused(block_group, 4329 ffe_ctl.found_offset, num_bytes); 4330 goto loop; 4331 } 4332 4333 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4334 btrfs_add_free_space_unused(block_group, 4335 ffe_ctl.found_offset, 4336 ffe_ctl.search_start - ffe_ctl.found_offset); 4337 4338 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4339 num_bytes, delalloc); 4340 if (ret == -EAGAIN) { 4341 btrfs_add_free_space_unused(block_group, 4342 ffe_ctl.found_offset, num_bytes); 4343 goto loop; 4344 } 4345 btrfs_inc_block_group_reservations(block_group); 4346 4347 /* we are all good, lets return */ 4348 ins->objectid = ffe_ctl.search_start; 4349 ins->offset = num_bytes; 4350 4351 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4352 num_bytes); 4353 btrfs_release_block_group(block_group, delalloc); 4354 break; 4355 loop: 4356 release_block_group(block_group, &ffe_ctl, delalloc); 4357 cond_resched(); 4358 } 4359 up_read(&space_info->groups_sem); 4360 4361 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4362 if (ret > 0) 4363 goto search; 4364 4365 if (ret == -ENOSPC && !cache_block_group_error) { 4366 /* 4367 * Use ffe_ctl->total_free_space as fallback if we can't find 4368 * any contiguous hole. 4369 */ 4370 if (!ffe_ctl.max_extent_size) 4371 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4372 spin_lock(&space_info->lock); 4373 space_info->max_extent_size = ffe_ctl.max_extent_size; 4374 spin_unlock(&space_info->lock); 4375 ins->offset = ffe_ctl.max_extent_size; 4376 } else if (ret == -ENOSPC) { 4377 ret = cache_block_group_error; 4378 } 4379 return ret; 4380 } 4381 4382 /* 4383 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4384 * hole that is at least as big as @num_bytes. 4385 * 4386 * @root - The root that will contain this extent 4387 * 4388 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4389 * is used for accounting purposes. This value differs 4390 * from @num_bytes only in the case of compressed extents. 4391 * 4392 * @num_bytes - Number of bytes to allocate on-disk. 4393 * 4394 * @min_alloc_size - Indicates the minimum amount of space that the 4395 * allocator should try to satisfy. In some cases 4396 * @num_bytes may be larger than what is required and if 4397 * the filesystem is fragmented then allocation fails. 4398 * However, the presence of @min_alloc_size gives a 4399 * chance to try and satisfy the smaller allocation. 4400 * 4401 * @empty_size - A hint that you plan on doing more COW. This is the 4402 * size in bytes the allocator should try to find free 4403 * next to the block it returns. This is just a hint and 4404 * may be ignored by the allocator. 4405 * 4406 * @hint_byte - Hint to the allocator to start searching above the byte 4407 * address passed. It might be ignored. 4408 * 4409 * @ins - This key is modified to record the found hole. It will 4410 * have the following values: 4411 * ins->objectid == start position 4412 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4413 * ins->offset == the size of the hole. 4414 * 4415 * @is_data - Boolean flag indicating whether an extent is 4416 * allocated for data (true) or metadata (false) 4417 * 4418 * @delalloc - Boolean flag indicating whether this allocation is for 4419 * delalloc or not. If 'true' data_rwsem of block groups 4420 * is going to be acquired. 4421 * 4422 * 4423 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4424 * case -ENOSPC is returned then @ins->offset will contain the size of the 4425 * largest available hole the allocator managed to find. 4426 */ 4427 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4428 u64 num_bytes, u64 min_alloc_size, 4429 u64 empty_size, u64 hint_byte, 4430 struct btrfs_key *ins, int is_data, int delalloc) 4431 { 4432 struct btrfs_fs_info *fs_info = root->fs_info; 4433 bool final_tried = num_bytes == min_alloc_size; 4434 u64 flags; 4435 int ret; 4436 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4437 4438 flags = get_alloc_profile_by_root(root, is_data); 4439 again: 4440 WARN_ON(num_bytes < fs_info->sectorsize); 4441 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4442 hint_byte, ins, flags, delalloc); 4443 if (!ret && !is_data) { 4444 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4445 } else if (ret == -ENOSPC) { 4446 if (!final_tried && ins->offset) { 4447 num_bytes = min(num_bytes >> 1, ins->offset); 4448 num_bytes = round_down(num_bytes, 4449 fs_info->sectorsize); 4450 num_bytes = max(num_bytes, min_alloc_size); 4451 ram_bytes = num_bytes; 4452 if (num_bytes == min_alloc_size) 4453 final_tried = true; 4454 goto again; 4455 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4456 struct btrfs_space_info *sinfo; 4457 4458 sinfo = btrfs_find_space_info(fs_info, flags); 4459 btrfs_err(fs_info, 4460 "allocation failed flags %llu, wanted %llu tree-log %d", 4461 flags, num_bytes, for_treelog); 4462 if (sinfo) 4463 btrfs_dump_space_info(fs_info, sinfo, 4464 num_bytes, 1); 4465 } 4466 } 4467 4468 return ret; 4469 } 4470 4471 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4472 u64 start, u64 len, int delalloc) 4473 { 4474 struct btrfs_block_group *cache; 4475 4476 cache = btrfs_lookup_block_group(fs_info, start); 4477 if (!cache) { 4478 btrfs_err(fs_info, "Unable to find block group for %llu", 4479 start); 4480 return -ENOSPC; 4481 } 4482 4483 btrfs_add_free_space(cache, start, len); 4484 btrfs_free_reserved_bytes(cache, len, delalloc); 4485 trace_btrfs_reserved_extent_free(fs_info, start, len); 4486 4487 btrfs_put_block_group(cache); 4488 return 0; 4489 } 4490 4491 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4492 u64 len) 4493 { 4494 struct btrfs_block_group *cache; 4495 int ret = 0; 4496 4497 cache = btrfs_lookup_block_group(trans->fs_info, start); 4498 if (!cache) { 4499 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4500 start); 4501 return -ENOSPC; 4502 } 4503 4504 ret = pin_down_extent(trans, cache, start, len, 1); 4505 btrfs_put_block_group(cache); 4506 return ret; 4507 } 4508 4509 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4510 u64 parent, u64 root_objectid, 4511 u64 flags, u64 owner, u64 offset, 4512 struct btrfs_key *ins, int ref_mod) 4513 { 4514 struct btrfs_fs_info *fs_info = trans->fs_info; 4515 int ret; 4516 struct btrfs_extent_item *extent_item; 4517 struct btrfs_extent_inline_ref *iref; 4518 struct btrfs_path *path; 4519 struct extent_buffer *leaf; 4520 int type; 4521 u32 size; 4522 4523 if (parent > 0) 4524 type = BTRFS_SHARED_DATA_REF_KEY; 4525 else 4526 type = BTRFS_EXTENT_DATA_REF_KEY; 4527 4528 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4529 4530 path = btrfs_alloc_path(); 4531 if (!path) 4532 return -ENOMEM; 4533 4534 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4535 ins, size); 4536 if (ret) { 4537 btrfs_free_path(path); 4538 return ret; 4539 } 4540 4541 leaf = path->nodes[0]; 4542 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4543 struct btrfs_extent_item); 4544 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4545 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4546 btrfs_set_extent_flags(leaf, extent_item, 4547 flags | BTRFS_EXTENT_FLAG_DATA); 4548 4549 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4550 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4551 if (parent > 0) { 4552 struct btrfs_shared_data_ref *ref; 4553 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4554 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4555 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4556 } else { 4557 struct btrfs_extent_data_ref *ref; 4558 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4559 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4560 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4561 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4562 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4563 } 4564 4565 btrfs_mark_buffer_dirty(path->nodes[0]); 4566 btrfs_free_path(path); 4567 4568 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4569 if (ret) 4570 return ret; 4571 4572 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4573 if (ret) { /* -ENOENT, logic error */ 4574 btrfs_err(fs_info, "update block group failed for %llu %llu", 4575 ins->objectid, ins->offset); 4576 BUG(); 4577 } 4578 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4579 return ret; 4580 } 4581 4582 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4583 struct btrfs_delayed_ref_node *node, 4584 struct btrfs_delayed_extent_op *extent_op) 4585 { 4586 struct btrfs_fs_info *fs_info = trans->fs_info; 4587 int ret; 4588 struct btrfs_extent_item *extent_item; 4589 struct btrfs_key extent_key; 4590 struct btrfs_tree_block_info *block_info; 4591 struct btrfs_extent_inline_ref *iref; 4592 struct btrfs_path *path; 4593 struct extent_buffer *leaf; 4594 struct btrfs_delayed_tree_ref *ref; 4595 u32 size = sizeof(*extent_item) + sizeof(*iref); 4596 u64 num_bytes; 4597 u64 flags = extent_op->flags_to_set; 4598 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4599 4600 ref = btrfs_delayed_node_to_tree_ref(node); 4601 4602 extent_key.objectid = node->bytenr; 4603 if (skinny_metadata) { 4604 extent_key.offset = ref->level; 4605 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4606 num_bytes = fs_info->nodesize; 4607 } else { 4608 extent_key.offset = node->num_bytes; 4609 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4610 size += sizeof(*block_info); 4611 num_bytes = node->num_bytes; 4612 } 4613 4614 path = btrfs_alloc_path(); 4615 if (!path) 4616 return -ENOMEM; 4617 4618 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4619 &extent_key, size); 4620 if (ret) { 4621 btrfs_free_path(path); 4622 return ret; 4623 } 4624 4625 leaf = path->nodes[0]; 4626 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4627 struct btrfs_extent_item); 4628 btrfs_set_extent_refs(leaf, extent_item, 1); 4629 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4630 btrfs_set_extent_flags(leaf, extent_item, 4631 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4632 4633 if (skinny_metadata) { 4634 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4635 } else { 4636 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4637 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4638 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4639 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4640 } 4641 4642 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4643 btrfs_set_extent_inline_ref_type(leaf, iref, 4644 BTRFS_SHARED_BLOCK_REF_KEY); 4645 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4646 } else { 4647 btrfs_set_extent_inline_ref_type(leaf, iref, 4648 BTRFS_TREE_BLOCK_REF_KEY); 4649 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4650 } 4651 4652 btrfs_mark_buffer_dirty(leaf); 4653 btrfs_free_path(path); 4654 4655 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4656 num_bytes); 4657 if (ret) 4658 return ret; 4659 4660 ret = btrfs_update_block_group(trans, extent_key.objectid, 4661 fs_info->nodesize, 1); 4662 if (ret) { /* -ENOENT, logic error */ 4663 btrfs_err(fs_info, "update block group failed for %llu %llu", 4664 extent_key.objectid, extent_key.offset); 4665 BUG(); 4666 } 4667 4668 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4669 fs_info->nodesize); 4670 return ret; 4671 } 4672 4673 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4674 struct btrfs_root *root, u64 owner, 4675 u64 offset, u64 ram_bytes, 4676 struct btrfs_key *ins) 4677 { 4678 struct btrfs_ref generic_ref = { 0 }; 4679 4680 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4681 4682 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4683 ins->objectid, ins->offset, 0); 4684 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4685 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4686 4687 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4688 } 4689 4690 /* 4691 * this is used by the tree logging recovery code. It records that 4692 * an extent has been allocated and makes sure to clear the free 4693 * space cache bits as well 4694 */ 4695 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4696 u64 root_objectid, u64 owner, u64 offset, 4697 struct btrfs_key *ins) 4698 { 4699 struct btrfs_fs_info *fs_info = trans->fs_info; 4700 int ret; 4701 struct btrfs_block_group *block_group; 4702 struct btrfs_space_info *space_info; 4703 4704 /* 4705 * Mixed block groups will exclude before processing the log so we only 4706 * need to do the exclude dance if this fs isn't mixed. 4707 */ 4708 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4709 ret = __exclude_logged_extent(fs_info, ins->objectid, 4710 ins->offset); 4711 if (ret) 4712 return ret; 4713 } 4714 4715 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4716 if (!block_group) 4717 return -EINVAL; 4718 4719 space_info = block_group->space_info; 4720 spin_lock(&space_info->lock); 4721 spin_lock(&block_group->lock); 4722 space_info->bytes_reserved += ins->offset; 4723 block_group->reserved += ins->offset; 4724 spin_unlock(&block_group->lock); 4725 spin_unlock(&space_info->lock); 4726 4727 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4728 offset, ins, 1); 4729 if (ret) 4730 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4731 btrfs_put_block_group(block_group); 4732 return ret; 4733 } 4734 4735 static struct extent_buffer * 4736 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4737 u64 bytenr, int level, u64 owner, 4738 enum btrfs_lock_nesting nest) 4739 { 4740 struct btrfs_fs_info *fs_info = root->fs_info; 4741 struct extent_buffer *buf; 4742 4743 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4744 if (IS_ERR(buf)) 4745 return buf; 4746 4747 /* 4748 * Extra safety check in case the extent tree is corrupted and extent 4749 * allocator chooses to use a tree block which is already used and 4750 * locked. 4751 */ 4752 if (buf->lock_owner == current->pid) { 4753 btrfs_err_rl(fs_info, 4754 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4755 buf->start, btrfs_header_owner(buf), current->pid); 4756 free_extent_buffer(buf); 4757 return ERR_PTR(-EUCLEAN); 4758 } 4759 4760 /* 4761 * This needs to stay, because we could allocate a freed block from an 4762 * old tree into a new tree, so we need to make sure this new block is 4763 * set to the appropriate level and owner. 4764 */ 4765 btrfs_set_buffer_lockdep_class(owner, buf, level); 4766 __btrfs_tree_lock(buf, nest); 4767 btrfs_clean_tree_block(buf); 4768 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4769 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4770 4771 set_extent_buffer_uptodate(buf); 4772 4773 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4774 btrfs_set_header_level(buf, level); 4775 btrfs_set_header_bytenr(buf, buf->start); 4776 btrfs_set_header_generation(buf, trans->transid); 4777 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4778 btrfs_set_header_owner(buf, owner); 4779 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4780 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4781 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4782 buf->log_index = root->log_transid % 2; 4783 /* 4784 * we allow two log transactions at a time, use different 4785 * EXTENT bit to differentiate dirty pages. 4786 */ 4787 if (buf->log_index == 0) 4788 set_extent_dirty(&root->dirty_log_pages, buf->start, 4789 buf->start + buf->len - 1, GFP_NOFS); 4790 else 4791 set_extent_new(&root->dirty_log_pages, buf->start, 4792 buf->start + buf->len - 1); 4793 } else { 4794 buf->log_index = -1; 4795 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4796 buf->start + buf->len - 1, GFP_NOFS); 4797 } 4798 trans->dirty = true; 4799 /* this returns a buffer locked for blocking */ 4800 return buf; 4801 } 4802 4803 /* 4804 * finds a free extent and does all the dirty work required for allocation 4805 * returns the tree buffer or an ERR_PTR on error. 4806 */ 4807 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4808 struct btrfs_root *root, 4809 u64 parent, u64 root_objectid, 4810 const struct btrfs_disk_key *key, 4811 int level, u64 hint, 4812 u64 empty_size, 4813 enum btrfs_lock_nesting nest) 4814 { 4815 struct btrfs_fs_info *fs_info = root->fs_info; 4816 struct btrfs_key ins; 4817 struct btrfs_block_rsv *block_rsv; 4818 struct extent_buffer *buf; 4819 struct btrfs_delayed_extent_op *extent_op; 4820 struct btrfs_ref generic_ref = { 0 }; 4821 u64 flags = 0; 4822 int ret; 4823 u32 blocksize = fs_info->nodesize; 4824 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4825 4826 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4827 if (btrfs_is_testing(fs_info)) { 4828 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4829 level, root_objectid, nest); 4830 if (!IS_ERR(buf)) 4831 root->alloc_bytenr += blocksize; 4832 return buf; 4833 } 4834 #endif 4835 4836 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4837 if (IS_ERR(block_rsv)) 4838 return ERR_CAST(block_rsv); 4839 4840 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4841 empty_size, hint, &ins, 0, 0); 4842 if (ret) 4843 goto out_unuse; 4844 4845 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4846 root_objectid, nest); 4847 if (IS_ERR(buf)) { 4848 ret = PTR_ERR(buf); 4849 goto out_free_reserved; 4850 } 4851 4852 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4853 if (parent == 0) 4854 parent = ins.objectid; 4855 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4856 } else 4857 BUG_ON(parent > 0); 4858 4859 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4860 extent_op = btrfs_alloc_delayed_extent_op(); 4861 if (!extent_op) { 4862 ret = -ENOMEM; 4863 goto out_free_buf; 4864 } 4865 if (key) 4866 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4867 else 4868 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4869 extent_op->flags_to_set = flags; 4870 extent_op->update_key = skinny_metadata ? false : true; 4871 extent_op->update_flags = true; 4872 extent_op->is_data = false; 4873 extent_op->level = level; 4874 4875 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4876 ins.objectid, ins.offset, parent); 4877 generic_ref.real_root = root->root_key.objectid; 4878 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4879 btrfs_ref_tree_mod(fs_info, &generic_ref); 4880 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4881 if (ret) 4882 goto out_free_delayed; 4883 } 4884 return buf; 4885 4886 out_free_delayed: 4887 btrfs_free_delayed_extent_op(extent_op); 4888 out_free_buf: 4889 free_extent_buffer(buf); 4890 out_free_reserved: 4891 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4892 out_unuse: 4893 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4894 return ERR_PTR(ret); 4895 } 4896 4897 struct walk_control { 4898 u64 refs[BTRFS_MAX_LEVEL]; 4899 u64 flags[BTRFS_MAX_LEVEL]; 4900 struct btrfs_key update_progress; 4901 struct btrfs_key drop_progress; 4902 int drop_level; 4903 int stage; 4904 int level; 4905 int shared_level; 4906 int update_ref; 4907 int keep_locks; 4908 int reada_slot; 4909 int reada_count; 4910 int restarted; 4911 }; 4912 4913 #define DROP_REFERENCE 1 4914 #define UPDATE_BACKREF 2 4915 4916 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4917 struct btrfs_root *root, 4918 struct walk_control *wc, 4919 struct btrfs_path *path) 4920 { 4921 struct btrfs_fs_info *fs_info = root->fs_info; 4922 u64 bytenr; 4923 u64 generation; 4924 u64 refs; 4925 u64 flags; 4926 u32 nritems; 4927 struct btrfs_key key; 4928 struct extent_buffer *eb; 4929 int ret; 4930 int slot; 4931 int nread = 0; 4932 4933 if (path->slots[wc->level] < wc->reada_slot) { 4934 wc->reada_count = wc->reada_count * 2 / 3; 4935 wc->reada_count = max(wc->reada_count, 2); 4936 } else { 4937 wc->reada_count = wc->reada_count * 3 / 2; 4938 wc->reada_count = min_t(int, wc->reada_count, 4939 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4940 } 4941 4942 eb = path->nodes[wc->level]; 4943 nritems = btrfs_header_nritems(eb); 4944 4945 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4946 if (nread >= wc->reada_count) 4947 break; 4948 4949 cond_resched(); 4950 bytenr = btrfs_node_blockptr(eb, slot); 4951 generation = btrfs_node_ptr_generation(eb, slot); 4952 4953 if (slot == path->slots[wc->level]) 4954 goto reada; 4955 4956 if (wc->stage == UPDATE_BACKREF && 4957 generation <= root->root_key.offset) 4958 continue; 4959 4960 /* We don't lock the tree block, it's OK to be racy here */ 4961 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4962 wc->level - 1, 1, &refs, 4963 &flags); 4964 /* We don't care about errors in readahead. */ 4965 if (ret < 0) 4966 continue; 4967 BUG_ON(refs == 0); 4968 4969 if (wc->stage == DROP_REFERENCE) { 4970 if (refs == 1) 4971 goto reada; 4972 4973 if (wc->level == 1 && 4974 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4975 continue; 4976 if (!wc->update_ref || 4977 generation <= root->root_key.offset) 4978 continue; 4979 btrfs_node_key_to_cpu(eb, &key, slot); 4980 ret = btrfs_comp_cpu_keys(&key, 4981 &wc->update_progress); 4982 if (ret < 0) 4983 continue; 4984 } else { 4985 if (wc->level == 1 && 4986 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4987 continue; 4988 } 4989 reada: 4990 btrfs_readahead_node_child(eb, slot); 4991 nread++; 4992 } 4993 wc->reada_slot = slot; 4994 } 4995 4996 /* 4997 * helper to process tree block while walking down the tree. 4998 * 4999 * when wc->stage == UPDATE_BACKREF, this function updates 5000 * back refs for pointers in the block. 5001 * 5002 * NOTE: return value 1 means we should stop walking down. 5003 */ 5004 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5005 struct btrfs_root *root, 5006 struct btrfs_path *path, 5007 struct walk_control *wc, int lookup_info) 5008 { 5009 struct btrfs_fs_info *fs_info = root->fs_info; 5010 int level = wc->level; 5011 struct extent_buffer *eb = path->nodes[level]; 5012 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5013 int ret; 5014 5015 if (wc->stage == UPDATE_BACKREF && 5016 btrfs_header_owner(eb) != root->root_key.objectid) 5017 return 1; 5018 5019 /* 5020 * when reference count of tree block is 1, it won't increase 5021 * again. once full backref flag is set, we never clear it. 5022 */ 5023 if (lookup_info && 5024 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5025 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5026 BUG_ON(!path->locks[level]); 5027 ret = btrfs_lookup_extent_info(trans, fs_info, 5028 eb->start, level, 1, 5029 &wc->refs[level], 5030 &wc->flags[level]); 5031 BUG_ON(ret == -ENOMEM); 5032 if (ret) 5033 return ret; 5034 BUG_ON(wc->refs[level] == 0); 5035 } 5036 5037 if (wc->stage == DROP_REFERENCE) { 5038 if (wc->refs[level] > 1) 5039 return 1; 5040 5041 if (path->locks[level] && !wc->keep_locks) { 5042 btrfs_tree_unlock_rw(eb, path->locks[level]); 5043 path->locks[level] = 0; 5044 } 5045 return 0; 5046 } 5047 5048 /* wc->stage == UPDATE_BACKREF */ 5049 if (!(wc->flags[level] & flag)) { 5050 BUG_ON(!path->locks[level]); 5051 ret = btrfs_inc_ref(trans, root, eb, 1); 5052 BUG_ON(ret); /* -ENOMEM */ 5053 ret = btrfs_dec_ref(trans, root, eb, 0); 5054 BUG_ON(ret); /* -ENOMEM */ 5055 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5056 btrfs_header_level(eb), 0); 5057 BUG_ON(ret); /* -ENOMEM */ 5058 wc->flags[level] |= flag; 5059 } 5060 5061 /* 5062 * the block is shared by multiple trees, so it's not good to 5063 * keep the tree lock 5064 */ 5065 if (path->locks[level] && level > 0) { 5066 btrfs_tree_unlock_rw(eb, path->locks[level]); 5067 path->locks[level] = 0; 5068 } 5069 return 0; 5070 } 5071 5072 /* 5073 * This is used to verify a ref exists for this root to deal with a bug where we 5074 * would have a drop_progress key that hadn't been updated properly. 5075 */ 5076 static int check_ref_exists(struct btrfs_trans_handle *trans, 5077 struct btrfs_root *root, u64 bytenr, u64 parent, 5078 int level) 5079 { 5080 struct btrfs_path *path; 5081 struct btrfs_extent_inline_ref *iref; 5082 int ret; 5083 5084 path = btrfs_alloc_path(); 5085 if (!path) 5086 return -ENOMEM; 5087 5088 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5089 root->fs_info->nodesize, parent, 5090 root->root_key.objectid, level, 0); 5091 btrfs_free_path(path); 5092 if (ret == -ENOENT) 5093 return 0; 5094 if (ret < 0) 5095 return ret; 5096 return 1; 5097 } 5098 5099 /* 5100 * helper to process tree block pointer. 5101 * 5102 * when wc->stage == DROP_REFERENCE, this function checks 5103 * reference count of the block pointed to. if the block 5104 * is shared and we need update back refs for the subtree 5105 * rooted at the block, this function changes wc->stage to 5106 * UPDATE_BACKREF. if the block is shared and there is no 5107 * need to update back, this function drops the reference 5108 * to the block. 5109 * 5110 * NOTE: return value 1 means we should stop walking down. 5111 */ 5112 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5113 struct btrfs_root *root, 5114 struct btrfs_path *path, 5115 struct walk_control *wc, int *lookup_info) 5116 { 5117 struct btrfs_fs_info *fs_info = root->fs_info; 5118 u64 bytenr; 5119 u64 generation; 5120 u64 parent; 5121 struct btrfs_key key; 5122 struct btrfs_key first_key; 5123 struct btrfs_ref ref = { 0 }; 5124 struct extent_buffer *next; 5125 int level = wc->level; 5126 int reada = 0; 5127 int ret = 0; 5128 bool need_account = false; 5129 5130 generation = btrfs_node_ptr_generation(path->nodes[level], 5131 path->slots[level]); 5132 /* 5133 * if the lower level block was created before the snapshot 5134 * was created, we know there is no need to update back refs 5135 * for the subtree 5136 */ 5137 if (wc->stage == UPDATE_BACKREF && 5138 generation <= root->root_key.offset) { 5139 *lookup_info = 1; 5140 return 1; 5141 } 5142 5143 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5144 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5145 path->slots[level]); 5146 5147 next = find_extent_buffer(fs_info, bytenr); 5148 if (!next) { 5149 next = btrfs_find_create_tree_block(fs_info, bytenr, 5150 root->root_key.objectid, level - 1); 5151 if (IS_ERR(next)) 5152 return PTR_ERR(next); 5153 reada = 1; 5154 } 5155 btrfs_tree_lock(next); 5156 5157 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5158 &wc->refs[level - 1], 5159 &wc->flags[level - 1]); 5160 if (ret < 0) 5161 goto out_unlock; 5162 5163 if (unlikely(wc->refs[level - 1] == 0)) { 5164 btrfs_err(fs_info, "Missing references."); 5165 ret = -EIO; 5166 goto out_unlock; 5167 } 5168 *lookup_info = 0; 5169 5170 if (wc->stage == DROP_REFERENCE) { 5171 if (wc->refs[level - 1] > 1) { 5172 need_account = true; 5173 if (level == 1 && 5174 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5175 goto skip; 5176 5177 if (!wc->update_ref || 5178 generation <= root->root_key.offset) 5179 goto skip; 5180 5181 btrfs_node_key_to_cpu(path->nodes[level], &key, 5182 path->slots[level]); 5183 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5184 if (ret < 0) 5185 goto skip; 5186 5187 wc->stage = UPDATE_BACKREF; 5188 wc->shared_level = level - 1; 5189 } 5190 } else { 5191 if (level == 1 && 5192 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5193 goto skip; 5194 } 5195 5196 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5197 btrfs_tree_unlock(next); 5198 free_extent_buffer(next); 5199 next = NULL; 5200 *lookup_info = 1; 5201 } 5202 5203 if (!next) { 5204 if (reada && level == 1) 5205 reada_walk_down(trans, root, wc, path); 5206 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5207 generation, level - 1, &first_key); 5208 if (IS_ERR(next)) { 5209 return PTR_ERR(next); 5210 } else if (!extent_buffer_uptodate(next)) { 5211 free_extent_buffer(next); 5212 return -EIO; 5213 } 5214 btrfs_tree_lock(next); 5215 } 5216 5217 level--; 5218 ASSERT(level == btrfs_header_level(next)); 5219 if (level != btrfs_header_level(next)) { 5220 btrfs_err(root->fs_info, "mismatched level"); 5221 ret = -EIO; 5222 goto out_unlock; 5223 } 5224 path->nodes[level] = next; 5225 path->slots[level] = 0; 5226 path->locks[level] = BTRFS_WRITE_LOCK; 5227 wc->level = level; 5228 if (wc->level == 1) 5229 wc->reada_slot = 0; 5230 return 0; 5231 skip: 5232 wc->refs[level - 1] = 0; 5233 wc->flags[level - 1] = 0; 5234 if (wc->stage == DROP_REFERENCE) { 5235 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5236 parent = path->nodes[level]->start; 5237 } else { 5238 ASSERT(root->root_key.objectid == 5239 btrfs_header_owner(path->nodes[level])); 5240 if (root->root_key.objectid != 5241 btrfs_header_owner(path->nodes[level])) { 5242 btrfs_err(root->fs_info, 5243 "mismatched block owner"); 5244 ret = -EIO; 5245 goto out_unlock; 5246 } 5247 parent = 0; 5248 } 5249 5250 /* 5251 * If we had a drop_progress we need to verify the refs are set 5252 * as expected. If we find our ref then we know that from here 5253 * on out everything should be correct, and we can clear the 5254 * ->restarted flag. 5255 */ 5256 if (wc->restarted) { 5257 ret = check_ref_exists(trans, root, bytenr, parent, 5258 level - 1); 5259 if (ret < 0) 5260 goto out_unlock; 5261 if (ret == 0) 5262 goto no_delete; 5263 ret = 0; 5264 wc->restarted = 0; 5265 } 5266 5267 /* 5268 * Reloc tree doesn't contribute to qgroup numbers, and we have 5269 * already accounted them at merge time (replace_path), 5270 * thus we could skip expensive subtree trace here. 5271 */ 5272 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5273 need_account) { 5274 ret = btrfs_qgroup_trace_subtree(trans, next, 5275 generation, level - 1); 5276 if (ret) { 5277 btrfs_err_rl(fs_info, 5278 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5279 ret); 5280 } 5281 } 5282 5283 /* 5284 * We need to update the next key in our walk control so we can 5285 * update the drop_progress key accordingly. We don't care if 5286 * find_next_key doesn't find a key because that means we're at 5287 * the end and are going to clean up now. 5288 */ 5289 wc->drop_level = level; 5290 find_next_key(path, level, &wc->drop_progress); 5291 5292 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5293 fs_info->nodesize, parent); 5294 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5295 ret = btrfs_free_extent(trans, &ref); 5296 if (ret) 5297 goto out_unlock; 5298 } 5299 no_delete: 5300 *lookup_info = 1; 5301 ret = 1; 5302 5303 out_unlock: 5304 btrfs_tree_unlock(next); 5305 free_extent_buffer(next); 5306 5307 return ret; 5308 } 5309 5310 /* 5311 * helper to process tree block while walking up the tree. 5312 * 5313 * when wc->stage == DROP_REFERENCE, this function drops 5314 * reference count on the block. 5315 * 5316 * when wc->stage == UPDATE_BACKREF, this function changes 5317 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5318 * to UPDATE_BACKREF previously while processing the block. 5319 * 5320 * NOTE: return value 1 means we should stop walking up. 5321 */ 5322 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5323 struct btrfs_root *root, 5324 struct btrfs_path *path, 5325 struct walk_control *wc) 5326 { 5327 struct btrfs_fs_info *fs_info = root->fs_info; 5328 int ret; 5329 int level = wc->level; 5330 struct extent_buffer *eb = path->nodes[level]; 5331 u64 parent = 0; 5332 5333 if (wc->stage == UPDATE_BACKREF) { 5334 BUG_ON(wc->shared_level < level); 5335 if (level < wc->shared_level) 5336 goto out; 5337 5338 ret = find_next_key(path, level + 1, &wc->update_progress); 5339 if (ret > 0) 5340 wc->update_ref = 0; 5341 5342 wc->stage = DROP_REFERENCE; 5343 wc->shared_level = -1; 5344 path->slots[level] = 0; 5345 5346 /* 5347 * check reference count again if the block isn't locked. 5348 * we should start walking down the tree again if reference 5349 * count is one. 5350 */ 5351 if (!path->locks[level]) { 5352 BUG_ON(level == 0); 5353 btrfs_tree_lock(eb); 5354 path->locks[level] = BTRFS_WRITE_LOCK; 5355 5356 ret = btrfs_lookup_extent_info(trans, fs_info, 5357 eb->start, level, 1, 5358 &wc->refs[level], 5359 &wc->flags[level]); 5360 if (ret < 0) { 5361 btrfs_tree_unlock_rw(eb, path->locks[level]); 5362 path->locks[level] = 0; 5363 return ret; 5364 } 5365 BUG_ON(wc->refs[level] == 0); 5366 if (wc->refs[level] == 1) { 5367 btrfs_tree_unlock_rw(eb, path->locks[level]); 5368 path->locks[level] = 0; 5369 return 1; 5370 } 5371 } 5372 } 5373 5374 /* wc->stage == DROP_REFERENCE */ 5375 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5376 5377 if (wc->refs[level] == 1) { 5378 if (level == 0) { 5379 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5380 ret = btrfs_dec_ref(trans, root, eb, 1); 5381 else 5382 ret = btrfs_dec_ref(trans, root, eb, 0); 5383 BUG_ON(ret); /* -ENOMEM */ 5384 if (is_fstree(root->root_key.objectid)) { 5385 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5386 if (ret) { 5387 btrfs_err_rl(fs_info, 5388 "error %d accounting leaf items, quota is out of sync, rescan required", 5389 ret); 5390 } 5391 } 5392 } 5393 /* make block locked assertion in btrfs_clean_tree_block happy */ 5394 if (!path->locks[level] && 5395 btrfs_header_generation(eb) == trans->transid) { 5396 btrfs_tree_lock(eb); 5397 path->locks[level] = BTRFS_WRITE_LOCK; 5398 } 5399 btrfs_clean_tree_block(eb); 5400 } 5401 5402 if (eb == root->node) { 5403 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5404 parent = eb->start; 5405 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5406 goto owner_mismatch; 5407 } else { 5408 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5409 parent = path->nodes[level + 1]->start; 5410 else if (root->root_key.objectid != 5411 btrfs_header_owner(path->nodes[level + 1])) 5412 goto owner_mismatch; 5413 } 5414 5415 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5416 out: 5417 wc->refs[level] = 0; 5418 wc->flags[level] = 0; 5419 return 0; 5420 5421 owner_mismatch: 5422 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5423 btrfs_header_owner(eb), root->root_key.objectid); 5424 return -EUCLEAN; 5425 } 5426 5427 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5428 struct btrfs_root *root, 5429 struct btrfs_path *path, 5430 struct walk_control *wc) 5431 { 5432 int level = wc->level; 5433 int lookup_info = 1; 5434 int ret; 5435 5436 while (level >= 0) { 5437 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5438 if (ret > 0) 5439 break; 5440 5441 if (level == 0) 5442 break; 5443 5444 if (path->slots[level] >= 5445 btrfs_header_nritems(path->nodes[level])) 5446 break; 5447 5448 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5449 if (ret > 0) { 5450 path->slots[level]++; 5451 continue; 5452 } else if (ret < 0) 5453 return ret; 5454 level = wc->level; 5455 } 5456 return 0; 5457 } 5458 5459 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5460 struct btrfs_root *root, 5461 struct btrfs_path *path, 5462 struct walk_control *wc, int max_level) 5463 { 5464 int level = wc->level; 5465 int ret; 5466 5467 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5468 while (level < max_level && path->nodes[level]) { 5469 wc->level = level; 5470 if (path->slots[level] + 1 < 5471 btrfs_header_nritems(path->nodes[level])) { 5472 path->slots[level]++; 5473 return 0; 5474 } else { 5475 ret = walk_up_proc(trans, root, path, wc); 5476 if (ret > 0) 5477 return 0; 5478 if (ret < 0) 5479 return ret; 5480 5481 if (path->locks[level]) { 5482 btrfs_tree_unlock_rw(path->nodes[level], 5483 path->locks[level]); 5484 path->locks[level] = 0; 5485 } 5486 free_extent_buffer(path->nodes[level]); 5487 path->nodes[level] = NULL; 5488 level++; 5489 } 5490 } 5491 return 1; 5492 } 5493 5494 /* 5495 * drop a subvolume tree. 5496 * 5497 * this function traverses the tree freeing any blocks that only 5498 * referenced by the tree. 5499 * 5500 * when a shared tree block is found. this function decreases its 5501 * reference count by one. if update_ref is true, this function 5502 * also make sure backrefs for the shared block and all lower level 5503 * blocks are properly updated. 5504 * 5505 * If called with for_reloc == 0, may exit early with -EAGAIN 5506 */ 5507 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5508 { 5509 struct btrfs_fs_info *fs_info = root->fs_info; 5510 struct btrfs_path *path; 5511 struct btrfs_trans_handle *trans; 5512 struct btrfs_root *tree_root = fs_info->tree_root; 5513 struct btrfs_root_item *root_item = &root->root_item; 5514 struct walk_control *wc; 5515 struct btrfs_key key; 5516 int err = 0; 5517 int ret; 5518 int level; 5519 bool root_dropped = false; 5520 5521 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5522 5523 path = btrfs_alloc_path(); 5524 if (!path) { 5525 err = -ENOMEM; 5526 goto out; 5527 } 5528 5529 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5530 if (!wc) { 5531 btrfs_free_path(path); 5532 err = -ENOMEM; 5533 goto out; 5534 } 5535 5536 /* 5537 * Use join to avoid potential EINTR from transaction start. See 5538 * wait_reserve_ticket and the whole reservation callchain. 5539 */ 5540 if (for_reloc) 5541 trans = btrfs_join_transaction(tree_root); 5542 else 5543 trans = btrfs_start_transaction(tree_root, 0); 5544 if (IS_ERR(trans)) { 5545 err = PTR_ERR(trans); 5546 goto out_free; 5547 } 5548 5549 err = btrfs_run_delayed_items(trans); 5550 if (err) 5551 goto out_end_trans; 5552 5553 /* 5554 * This will help us catch people modifying the fs tree while we're 5555 * dropping it. It is unsafe to mess with the fs tree while it's being 5556 * dropped as we unlock the root node and parent nodes as we walk down 5557 * the tree, assuming nothing will change. If something does change 5558 * then we'll have stale information and drop references to blocks we've 5559 * already dropped. 5560 */ 5561 set_bit(BTRFS_ROOT_DELETING, &root->state); 5562 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5563 level = btrfs_header_level(root->node); 5564 path->nodes[level] = btrfs_lock_root_node(root); 5565 path->slots[level] = 0; 5566 path->locks[level] = BTRFS_WRITE_LOCK; 5567 memset(&wc->update_progress, 0, 5568 sizeof(wc->update_progress)); 5569 } else { 5570 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5571 memcpy(&wc->update_progress, &key, 5572 sizeof(wc->update_progress)); 5573 5574 level = btrfs_root_drop_level(root_item); 5575 BUG_ON(level == 0); 5576 path->lowest_level = level; 5577 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5578 path->lowest_level = 0; 5579 if (ret < 0) { 5580 err = ret; 5581 goto out_end_trans; 5582 } 5583 WARN_ON(ret > 0); 5584 5585 /* 5586 * unlock our path, this is safe because only this 5587 * function is allowed to delete this snapshot 5588 */ 5589 btrfs_unlock_up_safe(path, 0); 5590 5591 level = btrfs_header_level(root->node); 5592 while (1) { 5593 btrfs_tree_lock(path->nodes[level]); 5594 path->locks[level] = BTRFS_WRITE_LOCK; 5595 5596 ret = btrfs_lookup_extent_info(trans, fs_info, 5597 path->nodes[level]->start, 5598 level, 1, &wc->refs[level], 5599 &wc->flags[level]); 5600 if (ret < 0) { 5601 err = ret; 5602 goto out_end_trans; 5603 } 5604 BUG_ON(wc->refs[level] == 0); 5605 5606 if (level == btrfs_root_drop_level(root_item)) 5607 break; 5608 5609 btrfs_tree_unlock(path->nodes[level]); 5610 path->locks[level] = 0; 5611 WARN_ON(wc->refs[level] != 1); 5612 level--; 5613 } 5614 } 5615 5616 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5617 wc->level = level; 5618 wc->shared_level = -1; 5619 wc->stage = DROP_REFERENCE; 5620 wc->update_ref = update_ref; 5621 wc->keep_locks = 0; 5622 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5623 5624 while (1) { 5625 5626 ret = walk_down_tree(trans, root, path, wc); 5627 if (ret < 0) { 5628 err = ret; 5629 break; 5630 } 5631 5632 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5633 if (ret < 0) { 5634 err = ret; 5635 break; 5636 } 5637 5638 if (ret > 0) { 5639 BUG_ON(wc->stage != DROP_REFERENCE); 5640 break; 5641 } 5642 5643 if (wc->stage == DROP_REFERENCE) { 5644 wc->drop_level = wc->level; 5645 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5646 &wc->drop_progress, 5647 path->slots[wc->drop_level]); 5648 } 5649 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5650 &wc->drop_progress); 5651 btrfs_set_root_drop_level(root_item, wc->drop_level); 5652 5653 BUG_ON(wc->level == 0); 5654 if (btrfs_should_end_transaction(trans) || 5655 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5656 ret = btrfs_update_root(trans, tree_root, 5657 &root->root_key, 5658 root_item); 5659 if (ret) { 5660 btrfs_abort_transaction(trans, ret); 5661 err = ret; 5662 goto out_end_trans; 5663 } 5664 5665 btrfs_end_transaction_throttle(trans); 5666 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5667 btrfs_debug(fs_info, 5668 "drop snapshot early exit"); 5669 err = -EAGAIN; 5670 goto out_free; 5671 } 5672 5673 /* 5674 * Use join to avoid potential EINTR from transaction 5675 * start. See wait_reserve_ticket and the whole 5676 * reservation callchain. 5677 */ 5678 if (for_reloc) 5679 trans = btrfs_join_transaction(tree_root); 5680 else 5681 trans = btrfs_start_transaction(tree_root, 0); 5682 if (IS_ERR(trans)) { 5683 err = PTR_ERR(trans); 5684 goto out_free; 5685 } 5686 } 5687 } 5688 btrfs_release_path(path); 5689 if (err) 5690 goto out_end_trans; 5691 5692 ret = btrfs_del_root(trans, &root->root_key); 5693 if (ret) { 5694 btrfs_abort_transaction(trans, ret); 5695 err = ret; 5696 goto out_end_trans; 5697 } 5698 5699 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5700 ret = btrfs_find_root(tree_root, &root->root_key, path, 5701 NULL, NULL); 5702 if (ret < 0) { 5703 btrfs_abort_transaction(trans, ret); 5704 err = ret; 5705 goto out_end_trans; 5706 } else if (ret > 0) { 5707 /* if we fail to delete the orphan item this time 5708 * around, it'll get picked up the next time. 5709 * 5710 * The most common failure here is just -ENOENT. 5711 */ 5712 btrfs_del_orphan_item(trans, tree_root, 5713 root->root_key.objectid); 5714 } 5715 } 5716 5717 /* 5718 * This subvolume is going to be completely dropped, and won't be 5719 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5720 * commit transaction time. So free it here manually. 5721 */ 5722 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5723 btrfs_qgroup_free_meta_all_pertrans(root); 5724 5725 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5726 btrfs_add_dropped_root(trans, root); 5727 else 5728 btrfs_put_root(root); 5729 root_dropped = true; 5730 out_end_trans: 5731 btrfs_end_transaction_throttle(trans); 5732 out_free: 5733 kfree(wc); 5734 btrfs_free_path(path); 5735 out: 5736 /* 5737 * So if we need to stop dropping the snapshot for whatever reason we 5738 * need to make sure to add it back to the dead root list so that we 5739 * keep trying to do the work later. This also cleans up roots if we 5740 * don't have it in the radix (like when we recover after a power fail 5741 * or unmount) so we don't leak memory. 5742 */ 5743 if (!for_reloc && !root_dropped) 5744 btrfs_add_dead_root(root); 5745 return err; 5746 } 5747 5748 /* 5749 * drop subtree rooted at tree block 'node'. 5750 * 5751 * NOTE: this function will unlock and release tree block 'node' 5752 * only used by relocation code 5753 */ 5754 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5755 struct btrfs_root *root, 5756 struct extent_buffer *node, 5757 struct extent_buffer *parent) 5758 { 5759 struct btrfs_fs_info *fs_info = root->fs_info; 5760 struct btrfs_path *path; 5761 struct walk_control *wc; 5762 int level; 5763 int parent_level; 5764 int ret = 0; 5765 int wret; 5766 5767 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5768 5769 path = btrfs_alloc_path(); 5770 if (!path) 5771 return -ENOMEM; 5772 5773 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5774 if (!wc) { 5775 btrfs_free_path(path); 5776 return -ENOMEM; 5777 } 5778 5779 btrfs_assert_tree_locked(parent); 5780 parent_level = btrfs_header_level(parent); 5781 atomic_inc(&parent->refs); 5782 path->nodes[parent_level] = parent; 5783 path->slots[parent_level] = btrfs_header_nritems(parent); 5784 5785 btrfs_assert_tree_locked(node); 5786 level = btrfs_header_level(node); 5787 path->nodes[level] = node; 5788 path->slots[level] = 0; 5789 path->locks[level] = BTRFS_WRITE_LOCK; 5790 5791 wc->refs[parent_level] = 1; 5792 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5793 wc->level = level; 5794 wc->shared_level = -1; 5795 wc->stage = DROP_REFERENCE; 5796 wc->update_ref = 0; 5797 wc->keep_locks = 1; 5798 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5799 5800 while (1) { 5801 wret = walk_down_tree(trans, root, path, wc); 5802 if (wret < 0) { 5803 ret = wret; 5804 break; 5805 } 5806 5807 wret = walk_up_tree(trans, root, path, wc, parent_level); 5808 if (wret < 0) 5809 ret = wret; 5810 if (wret != 0) 5811 break; 5812 } 5813 5814 kfree(wc); 5815 btrfs_free_path(path); 5816 return ret; 5817 } 5818 5819 /* 5820 * helper to account the unused space of all the readonly block group in the 5821 * space_info. takes mirrors into account. 5822 */ 5823 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5824 { 5825 struct btrfs_block_group *block_group; 5826 u64 free_bytes = 0; 5827 int factor; 5828 5829 /* It's df, we don't care if it's racy */ 5830 if (list_empty(&sinfo->ro_bgs)) 5831 return 0; 5832 5833 spin_lock(&sinfo->lock); 5834 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5835 spin_lock(&block_group->lock); 5836 5837 if (!block_group->ro) { 5838 spin_unlock(&block_group->lock); 5839 continue; 5840 } 5841 5842 factor = btrfs_bg_type_to_factor(block_group->flags); 5843 free_bytes += (block_group->length - 5844 block_group->used) * factor; 5845 5846 spin_unlock(&block_group->lock); 5847 } 5848 spin_unlock(&sinfo->lock); 5849 5850 return free_bytes; 5851 } 5852 5853 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5854 u64 start, u64 end) 5855 { 5856 return unpin_extent_range(fs_info, start, end, false); 5857 } 5858 5859 /* 5860 * It used to be that old block groups would be left around forever. 5861 * Iterating over them would be enough to trim unused space. Since we 5862 * now automatically remove them, we also need to iterate over unallocated 5863 * space. 5864 * 5865 * We don't want a transaction for this since the discard may take a 5866 * substantial amount of time. We don't require that a transaction be 5867 * running, but we do need to take a running transaction into account 5868 * to ensure that we're not discarding chunks that were released or 5869 * allocated in the current transaction. 5870 * 5871 * Holding the chunks lock will prevent other threads from allocating 5872 * or releasing chunks, but it won't prevent a running transaction 5873 * from committing and releasing the memory that the pending chunks 5874 * list head uses. For that, we need to take a reference to the 5875 * transaction and hold the commit root sem. We only need to hold 5876 * it while performing the free space search since we have already 5877 * held back allocations. 5878 */ 5879 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5880 { 5881 u64 start = SZ_1M, len = 0, end = 0; 5882 int ret; 5883 5884 *trimmed = 0; 5885 5886 /* Discard not supported = nothing to do. */ 5887 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5888 return 0; 5889 5890 /* Not writable = nothing to do. */ 5891 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5892 return 0; 5893 5894 /* No free space = nothing to do. */ 5895 if (device->total_bytes <= device->bytes_used) 5896 return 0; 5897 5898 ret = 0; 5899 5900 while (1) { 5901 struct btrfs_fs_info *fs_info = device->fs_info; 5902 u64 bytes; 5903 5904 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5905 if (ret) 5906 break; 5907 5908 find_first_clear_extent_bit(&device->alloc_state, start, 5909 &start, &end, 5910 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5911 5912 /* Check if there are any CHUNK_* bits left */ 5913 if (start > device->total_bytes) { 5914 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5915 btrfs_warn_in_rcu(fs_info, 5916 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5917 start, end - start + 1, 5918 rcu_str_deref(device->name), 5919 device->total_bytes); 5920 mutex_unlock(&fs_info->chunk_mutex); 5921 ret = 0; 5922 break; 5923 } 5924 5925 /* Ensure we skip the reserved area in the first 1M */ 5926 start = max_t(u64, start, SZ_1M); 5927 5928 /* 5929 * If find_first_clear_extent_bit find a range that spans the 5930 * end of the device it will set end to -1, in this case it's up 5931 * to the caller to trim the value to the size of the device. 5932 */ 5933 end = min(end, device->total_bytes - 1); 5934 5935 len = end - start + 1; 5936 5937 /* We didn't find any extents */ 5938 if (!len) { 5939 mutex_unlock(&fs_info->chunk_mutex); 5940 ret = 0; 5941 break; 5942 } 5943 5944 ret = btrfs_issue_discard(device->bdev, start, len, 5945 &bytes); 5946 if (!ret) 5947 set_extent_bits(&device->alloc_state, start, 5948 start + bytes - 1, 5949 CHUNK_TRIMMED); 5950 mutex_unlock(&fs_info->chunk_mutex); 5951 5952 if (ret) 5953 break; 5954 5955 start += len; 5956 *trimmed += bytes; 5957 5958 if (fatal_signal_pending(current)) { 5959 ret = -ERESTARTSYS; 5960 break; 5961 } 5962 5963 cond_resched(); 5964 } 5965 5966 return ret; 5967 } 5968 5969 /* 5970 * Trim the whole filesystem by: 5971 * 1) trimming the free space in each block group 5972 * 2) trimming the unallocated space on each device 5973 * 5974 * This will also continue trimming even if a block group or device encounters 5975 * an error. The return value will be the last error, or 0 if nothing bad 5976 * happens. 5977 */ 5978 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5979 { 5980 struct btrfs_block_group *cache = NULL; 5981 struct btrfs_device *device; 5982 struct list_head *devices; 5983 u64 group_trimmed; 5984 u64 range_end = U64_MAX; 5985 u64 start; 5986 u64 end; 5987 u64 trimmed = 0; 5988 u64 bg_failed = 0; 5989 u64 dev_failed = 0; 5990 int bg_ret = 0; 5991 int dev_ret = 0; 5992 int ret = 0; 5993 5994 /* 5995 * Check range overflow if range->len is set. 5996 * The default range->len is U64_MAX. 5997 */ 5998 if (range->len != U64_MAX && 5999 check_add_overflow(range->start, range->len, &range_end)) 6000 return -EINVAL; 6001 6002 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6003 for (; cache; cache = btrfs_next_block_group(cache)) { 6004 if (cache->start >= range_end) { 6005 btrfs_put_block_group(cache); 6006 break; 6007 } 6008 6009 start = max(range->start, cache->start); 6010 end = min(range_end, cache->start + cache->length); 6011 6012 if (end - start >= range->minlen) { 6013 if (!btrfs_block_group_done(cache)) { 6014 ret = btrfs_cache_block_group(cache, 0); 6015 if (ret) { 6016 bg_failed++; 6017 bg_ret = ret; 6018 continue; 6019 } 6020 ret = btrfs_wait_block_group_cache_done(cache); 6021 if (ret) { 6022 bg_failed++; 6023 bg_ret = ret; 6024 continue; 6025 } 6026 } 6027 ret = btrfs_trim_block_group(cache, 6028 &group_trimmed, 6029 start, 6030 end, 6031 range->minlen); 6032 6033 trimmed += group_trimmed; 6034 if (ret) { 6035 bg_failed++; 6036 bg_ret = ret; 6037 continue; 6038 } 6039 } 6040 } 6041 6042 if (bg_failed) 6043 btrfs_warn(fs_info, 6044 "failed to trim %llu block group(s), last error %d", 6045 bg_failed, bg_ret); 6046 mutex_lock(&fs_info->fs_devices->device_list_mutex); 6047 devices = &fs_info->fs_devices->devices; 6048 list_for_each_entry(device, devices, dev_list) { 6049 ret = btrfs_trim_free_extents(device, &group_trimmed); 6050 if (ret) { 6051 dev_failed++; 6052 dev_ret = ret; 6053 break; 6054 } 6055 6056 trimmed += group_trimmed; 6057 } 6058 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 6059 6060 if (dev_failed) 6061 btrfs_warn(fs_info, 6062 "failed to trim %llu device(s), last error %d", 6063 dev_failed, dev_ret); 6064 range->len = trimmed; 6065 if (bg_ret) 6066 return bg_ret; 6067 return dev_ret; 6068 } 6069