1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include "compat.h" 25 #include "hash.h" 26 #include "crc32c.h" 27 #include "ctree.h" 28 #include "disk-io.h" 29 #include "print-tree.h" 30 #include "transaction.h" 31 #include "volumes.h" 32 #include "locking.h" 33 #include "ref-cache.h" 34 #include "free-space-cache.h" 35 36 #define PENDING_EXTENT_INSERT 0 37 #define PENDING_EXTENT_DELETE 1 38 #define PENDING_BACKREF_UPDATE 2 39 40 struct pending_extent_op { 41 int type; 42 u64 bytenr; 43 u64 num_bytes; 44 u64 parent; 45 u64 orig_parent; 46 u64 generation; 47 u64 orig_generation; 48 int level; 49 struct list_head list; 50 int del; 51 }; 52 53 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, 54 struct btrfs_root *root, u64 parent, 55 u64 root_objectid, u64 ref_generation, 56 u64 owner, struct btrfs_key *ins, 57 int ref_mod); 58 static int update_reserved_extents(struct btrfs_root *root, 59 u64 bytenr, u64 num, int reserve); 60 static int update_block_group(struct btrfs_trans_handle *trans, 61 struct btrfs_root *root, 62 u64 bytenr, u64 num_bytes, int alloc, 63 int mark_free); 64 static noinline int __btrfs_free_extent(struct btrfs_trans_handle *trans, 65 struct btrfs_root *root, 66 u64 bytenr, u64 num_bytes, u64 parent, 67 u64 root_objectid, u64 ref_generation, 68 u64 owner_objectid, int pin, 69 int ref_to_drop); 70 71 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 72 struct btrfs_root *extent_root, u64 alloc_bytes, 73 u64 flags, int force); 74 75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 76 { 77 return (cache->flags & bits) == bits; 78 } 79 80 /* 81 * this adds the block group to the fs_info rb tree for the block group 82 * cache 83 */ 84 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 85 struct btrfs_block_group_cache *block_group) 86 { 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 struct btrfs_block_group_cache *cache; 90 91 spin_lock(&info->block_group_cache_lock); 92 p = &info->block_group_cache_tree.rb_node; 93 94 while (*p) { 95 parent = *p; 96 cache = rb_entry(parent, struct btrfs_block_group_cache, 97 cache_node); 98 if (block_group->key.objectid < cache->key.objectid) { 99 p = &(*p)->rb_left; 100 } else if (block_group->key.objectid > cache->key.objectid) { 101 p = &(*p)->rb_right; 102 } else { 103 spin_unlock(&info->block_group_cache_lock); 104 return -EEXIST; 105 } 106 } 107 108 rb_link_node(&block_group->cache_node, parent, p); 109 rb_insert_color(&block_group->cache_node, 110 &info->block_group_cache_tree); 111 spin_unlock(&info->block_group_cache_lock); 112 113 return 0; 114 } 115 116 /* 117 * This will return the block group at or after bytenr if contains is 0, else 118 * it will return the block group that contains the bytenr 119 */ 120 static struct btrfs_block_group_cache * 121 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 122 int contains) 123 { 124 struct btrfs_block_group_cache *cache, *ret = NULL; 125 struct rb_node *n; 126 u64 end, start; 127 128 spin_lock(&info->block_group_cache_lock); 129 n = info->block_group_cache_tree.rb_node; 130 131 while (n) { 132 cache = rb_entry(n, struct btrfs_block_group_cache, 133 cache_node); 134 end = cache->key.objectid + cache->key.offset - 1; 135 start = cache->key.objectid; 136 137 if (bytenr < start) { 138 if (!contains && (!ret || start < ret->key.objectid)) 139 ret = cache; 140 n = n->rb_left; 141 } else if (bytenr > start) { 142 if (contains && bytenr <= end) { 143 ret = cache; 144 break; 145 } 146 n = n->rb_right; 147 } else { 148 ret = cache; 149 break; 150 } 151 } 152 if (ret) 153 atomic_inc(&ret->count); 154 spin_unlock(&info->block_group_cache_lock); 155 156 return ret; 157 } 158 159 /* 160 * this is only called by cache_block_group, since we could have freed extents 161 * we need to check the pinned_extents for any extents that can't be used yet 162 * since their free space will be released as soon as the transaction commits. 163 */ 164 static int add_new_free_space(struct btrfs_block_group_cache *block_group, 165 struct btrfs_fs_info *info, u64 start, u64 end) 166 { 167 u64 extent_start, extent_end, size; 168 int ret; 169 170 while (start < end) { 171 ret = find_first_extent_bit(&info->pinned_extents, start, 172 &extent_start, &extent_end, 173 EXTENT_DIRTY); 174 if (ret) 175 break; 176 177 if (extent_start == start) { 178 start = extent_end + 1; 179 } else if (extent_start > start && extent_start < end) { 180 size = extent_start - start; 181 ret = btrfs_add_free_space(block_group, start, 182 size); 183 BUG_ON(ret); 184 start = extent_end + 1; 185 } else { 186 break; 187 } 188 } 189 190 if (start < end) { 191 size = end - start; 192 ret = btrfs_add_free_space(block_group, start, size); 193 BUG_ON(ret); 194 } 195 196 return 0; 197 } 198 199 static int remove_sb_from_cache(struct btrfs_root *root, 200 struct btrfs_block_group_cache *cache) 201 { 202 u64 bytenr; 203 u64 *logical; 204 int stripe_len; 205 int i, nr, ret; 206 207 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 208 bytenr = btrfs_sb_offset(i); 209 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 210 cache->key.objectid, bytenr, 0, 211 &logical, &nr, &stripe_len); 212 BUG_ON(ret); 213 while (nr--) { 214 btrfs_remove_free_space(cache, logical[nr], 215 stripe_len); 216 } 217 kfree(logical); 218 } 219 return 0; 220 } 221 222 static int cache_block_group(struct btrfs_root *root, 223 struct btrfs_block_group_cache *block_group) 224 { 225 struct btrfs_path *path; 226 int ret = 0; 227 struct btrfs_key key; 228 struct extent_buffer *leaf; 229 int slot; 230 u64 last; 231 232 if (!block_group) 233 return 0; 234 235 root = root->fs_info->extent_root; 236 237 if (block_group->cached) 238 return 0; 239 240 path = btrfs_alloc_path(); 241 if (!path) 242 return -ENOMEM; 243 244 path->reada = 2; 245 /* 246 * we get into deadlocks with paths held by callers of this function. 247 * since the alloc_mutex is protecting things right now, just 248 * skip the locking here 249 */ 250 path->skip_locking = 1; 251 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 252 key.objectid = last; 253 key.offset = 0; 254 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 256 if (ret < 0) 257 goto err; 258 259 while (1) { 260 leaf = path->nodes[0]; 261 slot = path->slots[0]; 262 if (slot >= btrfs_header_nritems(leaf)) { 263 ret = btrfs_next_leaf(root, path); 264 if (ret < 0) 265 goto err; 266 if (ret == 0) 267 continue; 268 else 269 break; 270 } 271 btrfs_item_key_to_cpu(leaf, &key, slot); 272 if (key.objectid < block_group->key.objectid) 273 goto next; 274 275 if (key.objectid >= block_group->key.objectid + 276 block_group->key.offset) 277 break; 278 279 if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) { 280 add_new_free_space(block_group, root->fs_info, last, 281 key.objectid); 282 283 last = key.objectid + key.offset; 284 } 285 next: 286 path->slots[0]++; 287 } 288 289 add_new_free_space(block_group, root->fs_info, last, 290 block_group->key.objectid + 291 block_group->key.offset); 292 293 block_group->cached = 1; 294 remove_sb_from_cache(root, block_group); 295 ret = 0; 296 err: 297 btrfs_free_path(path); 298 return ret; 299 } 300 301 /* 302 * return the block group that starts at or after bytenr 303 */ 304 static struct btrfs_block_group_cache * 305 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 306 { 307 struct btrfs_block_group_cache *cache; 308 309 cache = block_group_cache_tree_search(info, bytenr, 0); 310 311 return cache; 312 } 313 314 /* 315 * return the block group that contains teh given bytenr 316 */ 317 struct btrfs_block_group_cache *btrfs_lookup_block_group( 318 struct btrfs_fs_info *info, 319 u64 bytenr) 320 { 321 struct btrfs_block_group_cache *cache; 322 323 cache = block_group_cache_tree_search(info, bytenr, 1); 324 325 return cache; 326 } 327 328 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 329 { 330 if (atomic_dec_and_test(&cache->count)) 331 kfree(cache); 332 } 333 334 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 335 u64 flags) 336 { 337 struct list_head *head = &info->space_info; 338 struct btrfs_space_info *found; 339 340 rcu_read_lock(); 341 list_for_each_entry_rcu(found, head, list) { 342 if (found->flags == flags) { 343 rcu_read_unlock(); 344 return found; 345 } 346 } 347 rcu_read_unlock(); 348 return NULL; 349 } 350 351 /* 352 * after adding space to the filesystem, we need to clear the full flags 353 * on all the space infos. 354 */ 355 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 356 { 357 struct list_head *head = &info->space_info; 358 struct btrfs_space_info *found; 359 360 rcu_read_lock(); 361 list_for_each_entry_rcu(found, head, list) 362 found->full = 0; 363 rcu_read_unlock(); 364 } 365 366 static u64 div_factor(u64 num, int factor) 367 { 368 if (factor == 10) 369 return num; 370 num *= factor; 371 do_div(num, 10); 372 return num; 373 } 374 375 u64 btrfs_find_block_group(struct btrfs_root *root, 376 u64 search_start, u64 search_hint, int owner) 377 { 378 struct btrfs_block_group_cache *cache; 379 u64 used; 380 u64 last = max(search_hint, search_start); 381 u64 group_start = 0; 382 int full_search = 0; 383 int factor = 9; 384 int wrapped = 0; 385 again: 386 while (1) { 387 cache = btrfs_lookup_first_block_group(root->fs_info, last); 388 if (!cache) 389 break; 390 391 spin_lock(&cache->lock); 392 last = cache->key.objectid + cache->key.offset; 393 used = btrfs_block_group_used(&cache->item); 394 395 if ((full_search || !cache->ro) && 396 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 397 if (used + cache->pinned + cache->reserved < 398 div_factor(cache->key.offset, factor)) { 399 group_start = cache->key.objectid; 400 spin_unlock(&cache->lock); 401 btrfs_put_block_group(cache); 402 goto found; 403 } 404 } 405 spin_unlock(&cache->lock); 406 btrfs_put_block_group(cache); 407 cond_resched(); 408 } 409 if (!wrapped) { 410 last = search_start; 411 wrapped = 1; 412 goto again; 413 } 414 if (!full_search && factor < 10) { 415 last = search_start; 416 full_search = 1; 417 factor = 10; 418 goto again; 419 } 420 found: 421 return group_start; 422 } 423 424 /* simple helper to search for an existing extent at a given offset */ 425 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 426 { 427 int ret; 428 struct btrfs_key key; 429 struct btrfs_path *path; 430 431 path = btrfs_alloc_path(); 432 BUG_ON(!path); 433 key.objectid = start; 434 key.offset = len; 435 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 436 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 437 0, 0); 438 btrfs_free_path(path); 439 return ret; 440 } 441 442 /* 443 * Back reference rules. Back refs have three main goals: 444 * 445 * 1) differentiate between all holders of references to an extent so that 446 * when a reference is dropped we can make sure it was a valid reference 447 * before freeing the extent. 448 * 449 * 2) Provide enough information to quickly find the holders of an extent 450 * if we notice a given block is corrupted or bad. 451 * 452 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 453 * maintenance. This is actually the same as #2, but with a slightly 454 * different use case. 455 * 456 * File extents can be referenced by: 457 * 458 * - multiple snapshots, subvolumes, or different generations in one subvol 459 * - different files inside a single subvolume 460 * - different offsets inside a file (bookend extents in file.c) 461 * 462 * The extent ref structure has fields for: 463 * 464 * - Objectid of the subvolume root 465 * - Generation number of the tree holding the reference 466 * - objectid of the file holding the reference 467 * - number of references holding by parent node (alway 1 for tree blocks) 468 * 469 * Btree leaf may hold multiple references to a file extent. In most cases, 470 * these references are from same file and the corresponding offsets inside 471 * the file are close together. 472 * 473 * When a file extent is allocated the fields are filled in: 474 * (root_key.objectid, trans->transid, inode objectid, 1) 475 * 476 * When a leaf is cow'd new references are added for every file extent found 477 * in the leaf. It looks similar to the create case, but trans->transid will 478 * be different when the block is cow'd. 479 * 480 * (root_key.objectid, trans->transid, inode objectid, 481 * number of references in the leaf) 482 * 483 * When a file extent is removed either during snapshot deletion or 484 * file truncation, we find the corresponding back reference and check 485 * the following fields: 486 * 487 * (btrfs_header_owner(leaf), btrfs_header_generation(leaf), 488 * inode objectid) 489 * 490 * Btree extents can be referenced by: 491 * 492 * - Different subvolumes 493 * - Different generations of the same subvolume 494 * 495 * When a tree block is created, back references are inserted: 496 * 497 * (root->root_key.objectid, trans->transid, level, 1) 498 * 499 * When a tree block is cow'd, new back references are added for all the 500 * blocks it points to. If the tree block isn't in reference counted root, 501 * the old back references are removed. These new back references are of 502 * the form (trans->transid will have increased since creation): 503 * 504 * (root->root_key.objectid, trans->transid, level, 1) 505 * 506 * When a backref is in deleting, the following fields are checked: 507 * 508 * if backref was for a tree root: 509 * (btrfs_header_owner(itself), btrfs_header_generation(itself), level) 510 * else 511 * (btrfs_header_owner(parent), btrfs_header_generation(parent), level) 512 * 513 * Back Reference Key composing: 514 * 515 * The key objectid corresponds to the first byte in the extent, the key 516 * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first 517 * byte of parent extent. If a extent is tree root, the key offset is set 518 * to the key objectid. 519 */ 520 521 static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans, 522 struct btrfs_root *root, 523 struct btrfs_path *path, 524 u64 bytenr, u64 parent, 525 u64 ref_root, u64 ref_generation, 526 u64 owner_objectid, int del) 527 { 528 struct btrfs_key key; 529 struct btrfs_extent_ref *ref; 530 struct extent_buffer *leaf; 531 u64 ref_objectid; 532 int ret; 533 534 key.objectid = bytenr; 535 key.type = BTRFS_EXTENT_REF_KEY; 536 key.offset = parent; 537 538 ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1); 539 if (ret < 0) 540 goto out; 541 if (ret > 0) { 542 ret = -ENOENT; 543 goto out; 544 } 545 546 leaf = path->nodes[0]; 547 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); 548 ref_objectid = btrfs_ref_objectid(leaf, ref); 549 if (btrfs_ref_root(leaf, ref) != ref_root || 550 btrfs_ref_generation(leaf, ref) != ref_generation || 551 (ref_objectid != owner_objectid && 552 ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) { 553 ret = -EIO; 554 WARN_ON(1); 555 goto out; 556 } 557 ret = 0; 558 out: 559 return ret; 560 } 561 562 static noinline int insert_extent_backref(struct btrfs_trans_handle *trans, 563 struct btrfs_root *root, 564 struct btrfs_path *path, 565 u64 bytenr, u64 parent, 566 u64 ref_root, u64 ref_generation, 567 u64 owner_objectid, 568 int refs_to_add) 569 { 570 struct btrfs_key key; 571 struct extent_buffer *leaf; 572 struct btrfs_extent_ref *ref; 573 u32 num_refs; 574 int ret; 575 576 key.objectid = bytenr; 577 key.type = BTRFS_EXTENT_REF_KEY; 578 key.offset = parent; 579 580 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref)); 581 if (ret == 0) { 582 leaf = path->nodes[0]; 583 ref = btrfs_item_ptr(leaf, path->slots[0], 584 struct btrfs_extent_ref); 585 btrfs_set_ref_root(leaf, ref, ref_root); 586 btrfs_set_ref_generation(leaf, ref, ref_generation); 587 btrfs_set_ref_objectid(leaf, ref, owner_objectid); 588 btrfs_set_ref_num_refs(leaf, ref, refs_to_add); 589 } else if (ret == -EEXIST) { 590 u64 existing_owner; 591 592 BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID); 593 leaf = path->nodes[0]; 594 ref = btrfs_item_ptr(leaf, path->slots[0], 595 struct btrfs_extent_ref); 596 if (btrfs_ref_root(leaf, ref) != ref_root || 597 btrfs_ref_generation(leaf, ref) != ref_generation) { 598 ret = -EIO; 599 WARN_ON(1); 600 goto out; 601 } 602 603 num_refs = btrfs_ref_num_refs(leaf, ref); 604 BUG_ON(num_refs == 0); 605 btrfs_set_ref_num_refs(leaf, ref, num_refs + refs_to_add); 606 607 existing_owner = btrfs_ref_objectid(leaf, ref); 608 if (existing_owner != owner_objectid && 609 existing_owner != BTRFS_MULTIPLE_OBJECTIDS) { 610 btrfs_set_ref_objectid(leaf, ref, 611 BTRFS_MULTIPLE_OBJECTIDS); 612 } 613 ret = 0; 614 } else { 615 goto out; 616 } 617 btrfs_unlock_up_safe(path, 1); 618 btrfs_mark_buffer_dirty(path->nodes[0]); 619 out: 620 btrfs_release_path(root, path); 621 return ret; 622 } 623 624 static noinline int remove_extent_backref(struct btrfs_trans_handle *trans, 625 struct btrfs_root *root, 626 struct btrfs_path *path, 627 int refs_to_drop) 628 { 629 struct extent_buffer *leaf; 630 struct btrfs_extent_ref *ref; 631 u32 num_refs; 632 int ret = 0; 633 634 leaf = path->nodes[0]; 635 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); 636 num_refs = btrfs_ref_num_refs(leaf, ref); 637 BUG_ON(num_refs < refs_to_drop); 638 num_refs -= refs_to_drop; 639 if (num_refs == 0) { 640 ret = btrfs_del_item(trans, root, path); 641 } else { 642 btrfs_set_ref_num_refs(leaf, ref, num_refs); 643 btrfs_mark_buffer_dirty(leaf); 644 } 645 btrfs_release_path(root, path); 646 return ret; 647 } 648 649 #ifdef BIO_RW_DISCARD 650 static void btrfs_issue_discard(struct block_device *bdev, 651 u64 start, u64 len) 652 { 653 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL); 654 } 655 #endif 656 657 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 658 u64 num_bytes) 659 { 660 #ifdef BIO_RW_DISCARD 661 int ret; 662 u64 map_length = num_bytes; 663 struct btrfs_multi_bio *multi = NULL; 664 665 /* Tell the block device(s) that the sectors can be discarded */ 666 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, 667 bytenr, &map_length, &multi, 0); 668 if (!ret) { 669 struct btrfs_bio_stripe *stripe = multi->stripes; 670 int i; 671 672 if (map_length > num_bytes) 673 map_length = num_bytes; 674 675 for (i = 0; i < multi->num_stripes; i++, stripe++) { 676 btrfs_issue_discard(stripe->dev->bdev, 677 stripe->physical, 678 map_length); 679 } 680 kfree(multi); 681 } 682 683 return ret; 684 #else 685 return 0; 686 #endif 687 } 688 689 static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans, 690 struct btrfs_root *root, u64 bytenr, 691 u64 num_bytes, 692 u64 orig_parent, u64 parent, 693 u64 orig_root, u64 ref_root, 694 u64 orig_generation, u64 ref_generation, 695 u64 owner_objectid) 696 { 697 int ret; 698 int pin = owner_objectid < BTRFS_FIRST_FREE_OBJECTID; 699 700 ret = btrfs_update_delayed_ref(trans, bytenr, num_bytes, 701 orig_parent, parent, orig_root, 702 ref_root, orig_generation, 703 ref_generation, owner_objectid, pin); 704 BUG_ON(ret); 705 return ret; 706 } 707 708 int btrfs_update_extent_ref(struct btrfs_trans_handle *trans, 709 struct btrfs_root *root, u64 bytenr, 710 u64 num_bytes, u64 orig_parent, u64 parent, 711 u64 ref_root, u64 ref_generation, 712 u64 owner_objectid) 713 { 714 int ret; 715 if (ref_root == BTRFS_TREE_LOG_OBJECTID && 716 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 717 return 0; 718 719 ret = __btrfs_update_extent_ref(trans, root, bytenr, num_bytes, 720 orig_parent, parent, ref_root, 721 ref_root, ref_generation, 722 ref_generation, owner_objectid); 723 return ret; 724 } 725 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 726 struct btrfs_root *root, u64 bytenr, 727 u64 num_bytes, 728 u64 orig_parent, u64 parent, 729 u64 orig_root, u64 ref_root, 730 u64 orig_generation, u64 ref_generation, 731 u64 owner_objectid) 732 { 733 int ret; 734 735 ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, ref_root, 736 ref_generation, owner_objectid, 737 BTRFS_ADD_DELAYED_REF, 0); 738 BUG_ON(ret); 739 return ret; 740 } 741 742 static noinline_for_stack int add_extent_ref(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 num_bytes, u64 parent, u64 ref_root, 745 u64 ref_generation, u64 owner_objectid, 746 int refs_to_add) 747 { 748 struct btrfs_path *path; 749 int ret; 750 struct btrfs_key key; 751 struct extent_buffer *l; 752 struct btrfs_extent_item *item; 753 u32 refs; 754 755 path = btrfs_alloc_path(); 756 if (!path) 757 return -ENOMEM; 758 759 path->reada = 1; 760 path->leave_spinning = 1; 761 key.objectid = bytenr; 762 key.type = BTRFS_EXTENT_ITEM_KEY; 763 key.offset = num_bytes; 764 765 /* first find the extent item and update its reference count */ 766 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 767 path, 0, 1); 768 if (ret < 0) { 769 btrfs_set_path_blocking(path); 770 return ret; 771 } 772 773 if (ret > 0) { 774 WARN_ON(1); 775 btrfs_free_path(path); 776 return -EIO; 777 } 778 l = path->nodes[0]; 779 780 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 781 if (key.objectid != bytenr) { 782 btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]); 783 printk(KERN_ERR "btrfs wanted %llu found %llu\n", 784 (unsigned long long)bytenr, 785 (unsigned long long)key.objectid); 786 BUG(); 787 } 788 BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY); 789 790 item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); 791 792 refs = btrfs_extent_refs(l, item); 793 btrfs_set_extent_refs(l, item, refs + refs_to_add); 794 btrfs_unlock_up_safe(path, 1); 795 796 btrfs_mark_buffer_dirty(path->nodes[0]); 797 798 btrfs_release_path(root->fs_info->extent_root, path); 799 800 path->reada = 1; 801 path->leave_spinning = 1; 802 803 /* now insert the actual backref */ 804 ret = insert_extent_backref(trans, root->fs_info->extent_root, 805 path, bytenr, parent, 806 ref_root, ref_generation, 807 owner_objectid, refs_to_add); 808 BUG_ON(ret); 809 btrfs_free_path(path); 810 return 0; 811 } 812 813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 814 struct btrfs_root *root, 815 u64 bytenr, u64 num_bytes, u64 parent, 816 u64 ref_root, u64 ref_generation, 817 u64 owner_objectid) 818 { 819 int ret; 820 if (ref_root == BTRFS_TREE_LOG_OBJECTID && 821 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 822 return 0; 823 824 ret = __btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, parent, 825 0, ref_root, 0, ref_generation, 826 owner_objectid); 827 return ret; 828 } 829 830 static int drop_delayed_ref(struct btrfs_trans_handle *trans, 831 struct btrfs_root *root, 832 struct btrfs_delayed_ref_node *node) 833 { 834 int ret = 0; 835 struct btrfs_delayed_ref *ref = btrfs_delayed_node_to_ref(node); 836 837 BUG_ON(node->ref_mod == 0); 838 ret = __btrfs_free_extent(trans, root, node->bytenr, node->num_bytes, 839 node->parent, ref->root, ref->generation, 840 ref->owner_objectid, ref->pin, node->ref_mod); 841 842 return ret; 843 } 844 845 /* helper function to actually process a single delayed ref entry */ 846 static noinline int run_one_delayed_ref(struct btrfs_trans_handle *trans, 847 struct btrfs_root *root, 848 struct btrfs_delayed_ref_node *node, 849 int insert_reserved) 850 { 851 int ret; 852 struct btrfs_delayed_ref *ref; 853 854 if (node->parent == (u64)-1) { 855 struct btrfs_delayed_ref_head *head; 856 /* 857 * we've hit the end of the chain and we were supposed 858 * to insert this extent into the tree. But, it got 859 * deleted before we ever needed to insert it, so all 860 * we have to do is clean up the accounting 861 */ 862 if (insert_reserved) { 863 update_reserved_extents(root, node->bytenr, 864 node->num_bytes, 0); 865 } 866 head = btrfs_delayed_node_to_head(node); 867 mutex_unlock(&head->mutex); 868 return 0; 869 } 870 871 ref = btrfs_delayed_node_to_ref(node); 872 if (ref->action == BTRFS_ADD_DELAYED_REF) { 873 if (insert_reserved) { 874 struct btrfs_key ins; 875 876 ins.objectid = node->bytenr; 877 ins.offset = node->num_bytes; 878 ins.type = BTRFS_EXTENT_ITEM_KEY; 879 880 /* record the full extent allocation */ 881 ret = __btrfs_alloc_reserved_extent(trans, root, 882 node->parent, ref->root, 883 ref->generation, ref->owner_objectid, 884 &ins, node->ref_mod); 885 update_reserved_extents(root, node->bytenr, 886 node->num_bytes, 0); 887 } else { 888 /* just add one backref */ 889 ret = add_extent_ref(trans, root, node->bytenr, 890 node->num_bytes, 891 node->parent, ref->root, ref->generation, 892 ref->owner_objectid, node->ref_mod); 893 } 894 BUG_ON(ret); 895 } else if (ref->action == BTRFS_DROP_DELAYED_REF) { 896 WARN_ON(insert_reserved); 897 ret = drop_delayed_ref(trans, root, node); 898 } 899 return 0; 900 } 901 902 static noinline struct btrfs_delayed_ref_node * 903 select_delayed_ref(struct btrfs_delayed_ref_head *head) 904 { 905 struct rb_node *node; 906 struct btrfs_delayed_ref_node *ref; 907 int action = BTRFS_ADD_DELAYED_REF; 908 again: 909 /* 910 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 911 * this prevents ref count from going down to zero when 912 * there still are pending delayed ref. 913 */ 914 node = rb_prev(&head->node.rb_node); 915 while (1) { 916 if (!node) 917 break; 918 ref = rb_entry(node, struct btrfs_delayed_ref_node, 919 rb_node); 920 if (ref->bytenr != head->node.bytenr) 921 break; 922 if (btrfs_delayed_node_to_ref(ref)->action == action) 923 return ref; 924 node = rb_prev(node); 925 } 926 if (action == BTRFS_ADD_DELAYED_REF) { 927 action = BTRFS_DROP_DELAYED_REF; 928 goto again; 929 } 930 return NULL; 931 } 932 933 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 934 struct btrfs_root *root, 935 struct list_head *cluster) 936 { 937 struct btrfs_delayed_ref_root *delayed_refs; 938 struct btrfs_delayed_ref_node *ref; 939 struct btrfs_delayed_ref_head *locked_ref = NULL; 940 int ret; 941 int count = 0; 942 int must_insert_reserved = 0; 943 944 delayed_refs = &trans->transaction->delayed_refs; 945 while (1) { 946 if (!locked_ref) { 947 /* pick a new head ref from the cluster list */ 948 if (list_empty(cluster)) 949 break; 950 951 locked_ref = list_entry(cluster->next, 952 struct btrfs_delayed_ref_head, cluster); 953 954 /* grab the lock that says we are going to process 955 * all the refs for this head */ 956 ret = btrfs_delayed_ref_lock(trans, locked_ref); 957 958 /* 959 * we may have dropped the spin lock to get the head 960 * mutex lock, and that might have given someone else 961 * time to free the head. If that's true, it has been 962 * removed from our list and we can move on. 963 */ 964 if (ret == -EAGAIN) { 965 locked_ref = NULL; 966 count++; 967 continue; 968 } 969 } 970 971 /* 972 * record the must insert reserved flag before we 973 * drop the spin lock. 974 */ 975 must_insert_reserved = locked_ref->must_insert_reserved; 976 locked_ref->must_insert_reserved = 0; 977 978 /* 979 * locked_ref is the head node, so we have to go one 980 * node back for any delayed ref updates 981 */ 982 ref = select_delayed_ref(locked_ref); 983 if (!ref) { 984 /* All delayed refs have been processed, Go ahead 985 * and send the head node to run_one_delayed_ref, 986 * so that any accounting fixes can happen 987 */ 988 ref = &locked_ref->node; 989 list_del_init(&locked_ref->cluster); 990 locked_ref = NULL; 991 } 992 993 ref->in_tree = 0; 994 rb_erase(&ref->rb_node, &delayed_refs->root); 995 delayed_refs->num_entries--; 996 spin_unlock(&delayed_refs->lock); 997 998 ret = run_one_delayed_ref(trans, root, ref, 999 must_insert_reserved); 1000 BUG_ON(ret); 1001 btrfs_put_delayed_ref(ref); 1002 1003 count++; 1004 cond_resched(); 1005 spin_lock(&delayed_refs->lock); 1006 } 1007 return count; 1008 } 1009 1010 /* 1011 * this starts processing the delayed reference count updates and 1012 * extent insertions we have queued up so far. count can be 1013 * 0, which means to process everything in the tree at the start 1014 * of the run (but not newly added entries), or it can be some target 1015 * number you'd like to process. 1016 */ 1017 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, unsigned long count) 1019 { 1020 struct rb_node *node; 1021 struct btrfs_delayed_ref_root *delayed_refs; 1022 struct btrfs_delayed_ref_node *ref; 1023 struct list_head cluster; 1024 int ret; 1025 int run_all = count == (unsigned long)-1; 1026 int run_most = 0; 1027 1028 if (root == root->fs_info->extent_root) 1029 root = root->fs_info->tree_root; 1030 1031 delayed_refs = &trans->transaction->delayed_refs; 1032 INIT_LIST_HEAD(&cluster); 1033 again: 1034 spin_lock(&delayed_refs->lock); 1035 if (count == 0) { 1036 count = delayed_refs->num_entries * 2; 1037 run_most = 1; 1038 } 1039 while (1) { 1040 if (!(run_all || run_most) && 1041 delayed_refs->num_heads_ready < 64) 1042 break; 1043 1044 /* 1045 * go find something we can process in the rbtree. We start at 1046 * the beginning of the tree, and then build a cluster 1047 * of refs to process starting at the first one we are able to 1048 * lock 1049 */ 1050 ret = btrfs_find_ref_cluster(trans, &cluster, 1051 delayed_refs->run_delayed_start); 1052 if (ret) 1053 break; 1054 1055 ret = run_clustered_refs(trans, root, &cluster); 1056 BUG_ON(ret < 0); 1057 1058 count -= min_t(unsigned long, ret, count); 1059 1060 if (count == 0) 1061 break; 1062 } 1063 1064 if (run_all) { 1065 node = rb_first(&delayed_refs->root); 1066 if (!node) 1067 goto out; 1068 count = (unsigned long)-1; 1069 1070 while (node) { 1071 ref = rb_entry(node, struct btrfs_delayed_ref_node, 1072 rb_node); 1073 if (btrfs_delayed_ref_is_head(ref)) { 1074 struct btrfs_delayed_ref_head *head; 1075 1076 head = btrfs_delayed_node_to_head(ref); 1077 atomic_inc(&ref->refs); 1078 1079 spin_unlock(&delayed_refs->lock); 1080 mutex_lock(&head->mutex); 1081 mutex_unlock(&head->mutex); 1082 1083 btrfs_put_delayed_ref(ref); 1084 cond_resched(); 1085 goto again; 1086 } 1087 node = rb_next(node); 1088 } 1089 spin_unlock(&delayed_refs->lock); 1090 schedule_timeout(1); 1091 goto again; 1092 } 1093 out: 1094 spin_unlock(&delayed_refs->lock); 1095 return 0; 1096 } 1097 1098 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 1099 struct btrfs_root *root, u64 objectid, u64 bytenr) 1100 { 1101 struct btrfs_root *extent_root = root->fs_info->extent_root; 1102 struct btrfs_path *path; 1103 struct extent_buffer *leaf; 1104 struct btrfs_extent_ref *ref_item; 1105 struct btrfs_key key; 1106 struct btrfs_key found_key; 1107 u64 ref_root; 1108 u64 last_snapshot; 1109 u32 nritems; 1110 int ret; 1111 1112 key.objectid = bytenr; 1113 key.offset = (u64)-1; 1114 key.type = BTRFS_EXTENT_ITEM_KEY; 1115 1116 path = btrfs_alloc_path(); 1117 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1118 if (ret < 0) 1119 goto out; 1120 BUG_ON(ret == 0); 1121 1122 ret = -ENOENT; 1123 if (path->slots[0] == 0) 1124 goto out; 1125 1126 path->slots[0]--; 1127 leaf = path->nodes[0]; 1128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1129 1130 if (found_key.objectid != bytenr || 1131 found_key.type != BTRFS_EXTENT_ITEM_KEY) 1132 goto out; 1133 1134 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1135 while (1) { 1136 leaf = path->nodes[0]; 1137 nritems = btrfs_header_nritems(leaf); 1138 if (path->slots[0] >= nritems) { 1139 ret = btrfs_next_leaf(extent_root, path); 1140 if (ret < 0) 1141 goto out; 1142 if (ret == 0) 1143 continue; 1144 break; 1145 } 1146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1147 if (found_key.objectid != bytenr) 1148 break; 1149 1150 if (found_key.type != BTRFS_EXTENT_REF_KEY) { 1151 path->slots[0]++; 1152 continue; 1153 } 1154 1155 ref_item = btrfs_item_ptr(leaf, path->slots[0], 1156 struct btrfs_extent_ref); 1157 ref_root = btrfs_ref_root(leaf, ref_item); 1158 if ((ref_root != root->root_key.objectid && 1159 ref_root != BTRFS_TREE_LOG_OBJECTID) || 1160 objectid != btrfs_ref_objectid(leaf, ref_item)) { 1161 ret = 1; 1162 goto out; 1163 } 1164 if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) { 1165 ret = 1; 1166 goto out; 1167 } 1168 1169 path->slots[0]++; 1170 } 1171 ret = 0; 1172 out: 1173 btrfs_free_path(path); 1174 return ret; 1175 } 1176 1177 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1178 struct extent_buffer *buf, u32 nr_extents) 1179 { 1180 struct btrfs_key key; 1181 struct btrfs_file_extent_item *fi; 1182 u64 root_gen; 1183 u32 nritems; 1184 int i; 1185 int level; 1186 int ret = 0; 1187 int shared = 0; 1188 1189 if (!root->ref_cows) 1190 return 0; 1191 1192 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1193 shared = 0; 1194 root_gen = root->root_key.offset; 1195 } else { 1196 shared = 1; 1197 root_gen = trans->transid - 1; 1198 } 1199 1200 level = btrfs_header_level(buf); 1201 nritems = btrfs_header_nritems(buf); 1202 1203 if (level == 0) { 1204 struct btrfs_leaf_ref *ref; 1205 struct btrfs_extent_info *info; 1206 1207 ref = btrfs_alloc_leaf_ref(root, nr_extents); 1208 if (!ref) { 1209 ret = -ENOMEM; 1210 goto out; 1211 } 1212 1213 ref->root_gen = root_gen; 1214 ref->bytenr = buf->start; 1215 ref->owner = btrfs_header_owner(buf); 1216 ref->generation = btrfs_header_generation(buf); 1217 ref->nritems = nr_extents; 1218 info = ref->extents; 1219 1220 for (i = 0; nr_extents > 0 && i < nritems; i++) { 1221 u64 disk_bytenr; 1222 btrfs_item_key_to_cpu(buf, &key, i); 1223 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 1224 continue; 1225 fi = btrfs_item_ptr(buf, i, 1226 struct btrfs_file_extent_item); 1227 if (btrfs_file_extent_type(buf, fi) == 1228 BTRFS_FILE_EXTENT_INLINE) 1229 continue; 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1231 if (disk_bytenr == 0) 1232 continue; 1233 1234 info->bytenr = disk_bytenr; 1235 info->num_bytes = 1236 btrfs_file_extent_disk_num_bytes(buf, fi); 1237 info->objectid = key.objectid; 1238 info->offset = key.offset; 1239 info++; 1240 } 1241 1242 ret = btrfs_add_leaf_ref(root, ref, shared); 1243 if (ret == -EEXIST && shared) { 1244 struct btrfs_leaf_ref *old; 1245 old = btrfs_lookup_leaf_ref(root, ref->bytenr); 1246 BUG_ON(!old); 1247 btrfs_remove_leaf_ref(root, old); 1248 btrfs_free_leaf_ref(root, old); 1249 ret = btrfs_add_leaf_ref(root, ref, shared); 1250 } 1251 WARN_ON(ret); 1252 btrfs_free_leaf_ref(root, ref); 1253 } 1254 out: 1255 return ret; 1256 } 1257 1258 /* when a block goes through cow, we update the reference counts of 1259 * everything that block points to. The internal pointers of the block 1260 * can be in just about any order, and it is likely to have clusters of 1261 * things that are close together and clusters of things that are not. 1262 * 1263 * To help reduce the seeks that come with updating all of these reference 1264 * counts, sort them by byte number before actual updates are done. 1265 * 1266 * struct refsort is used to match byte number to slot in the btree block. 1267 * we sort based on the byte number and then use the slot to actually 1268 * find the item. 1269 * 1270 * struct refsort is smaller than strcut btrfs_item and smaller than 1271 * struct btrfs_key_ptr. Since we're currently limited to the page size 1272 * for a btree block, there's no way for a kmalloc of refsorts for a 1273 * single node to be bigger than a page. 1274 */ 1275 struct refsort { 1276 u64 bytenr; 1277 u32 slot; 1278 }; 1279 1280 /* 1281 * for passing into sort() 1282 */ 1283 static int refsort_cmp(const void *a_void, const void *b_void) 1284 { 1285 const struct refsort *a = a_void; 1286 const struct refsort *b = b_void; 1287 1288 if (a->bytenr < b->bytenr) 1289 return -1; 1290 if (a->bytenr > b->bytenr) 1291 return 1; 1292 return 0; 1293 } 1294 1295 1296 noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans, 1297 struct btrfs_root *root, 1298 struct extent_buffer *orig_buf, 1299 struct extent_buffer *buf, u32 *nr_extents) 1300 { 1301 u64 bytenr; 1302 u64 ref_root; 1303 u64 orig_root; 1304 u64 ref_generation; 1305 u64 orig_generation; 1306 struct refsort *sorted; 1307 u32 nritems; 1308 u32 nr_file_extents = 0; 1309 struct btrfs_key key; 1310 struct btrfs_file_extent_item *fi; 1311 int i; 1312 int level; 1313 int ret = 0; 1314 int faili = 0; 1315 int refi = 0; 1316 int slot; 1317 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 1318 u64, u64, u64, u64, u64, u64, u64, u64, u64); 1319 1320 ref_root = btrfs_header_owner(buf); 1321 ref_generation = btrfs_header_generation(buf); 1322 orig_root = btrfs_header_owner(orig_buf); 1323 orig_generation = btrfs_header_generation(orig_buf); 1324 1325 nritems = btrfs_header_nritems(buf); 1326 level = btrfs_header_level(buf); 1327 1328 sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS); 1329 BUG_ON(!sorted); 1330 1331 if (root->ref_cows) { 1332 process_func = __btrfs_inc_extent_ref; 1333 } else { 1334 if (level == 0 && 1335 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 1336 goto out; 1337 if (level != 0 && 1338 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) 1339 goto out; 1340 process_func = __btrfs_update_extent_ref; 1341 } 1342 1343 /* 1344 * we make two passes through the items. In the first pass we 1345 * only record the byte number and slot. Then we sort based on 1346 * byte number and do the actual work based on the sorted results 1347 */ 1348 for (i = 0; i < nritems; i++) { 1349 cond_resched(); 1350 if (level == 0) { 1351 btrfs_item_key_to_cpu(buf, &key, i); 1352 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 1353 continue; 1354 fi = btrfs_item_ptr(buf, i, 1355 struct btrfs_file_extent_item); 1356 if (btrfs_file_extent_type(buf, fi) == 1357 BTRFS_FILE_EXTENT_INLINE) 1358 continue; 1359 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1360 if (bytenr == 0) 1361 continue; 1362 1363 nr_file_extents++; 1364 sorted[refi].bytenr = bytenr; 1365 sorted[refi].slot = i; 1366 refi++; 1367 } else { 1368 bytenr = btrfs_node_blockptr(buf, i); 1369 sorted[refi].bytenr = bytenr; 1370 sorted[refi].slot = i; 1371 refi++; 1372 } 1373 } 1374 /* 1375 * if refi == 0, we didn't actually put anything into the sorted 1376 * array and we're done 1377 */ 1378 if (refi == 0) 1379 goto out; 1380 1381 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL); 1382 1383 for (i = 0; i < refi; i++) { 1384 cond_resched(); 1385 slot = sorted[i].slot; 1386 bytenr = sorted[i].bytenr; 1387 1388 if (level == 0) { 1389 btrfs_item_key_to_cpu(buf, &key, slot); 1390 fi = btrfs_item_ptr(buf, slot, 1391 struct btrfs_file_extent_item); 1392 1393 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1394 if (bytenr == 0) 1395 continue; 1396 1397 ret = process_func(trans, root, bytenr, 1398 btrfs_file_extent_disk_num_bytes(buf, fi), 1399 orig_buf->start, buf->start, 1400 orig_root, ref_root, 1401 orig_generation, ref_generation, 1402 key.objectid); 1403 1404 if (ret) { 1405 faili = slot; 1406 WARN_ON(1); 1407 goto fail; 1408 } 1409 } else { 1410 ret = process_func(trans, root, bytenr, buf->len, 1411 orig_buf->start, buf->start, 1412 orig_root, ref_root, 1413 orig_generation, ref_generation, 1414 level - 1); 1415 if (ret) { 1416 faili = slot; 1417 WARN_ON(1); 1418 goto fail; 1419 } 1420 } 1421 } 1422 out: 1423 kfree(sorted); 1424 if (nr_extents) { 1425 if (level == 0) 1426 *nr_extents = nr_file_extents; 1427 else 1428 *nr_extents = nritems; 1429 } 1430 return 0; 1431 fail: 1432 kfree(sorted); 1433 WARN_ON(1); 1434 return ret; 1435 } 1436 1437 int btrfs_update_ref(struct btrfs_trans_handle *trans, 1438 struct btrfs_root *root, struct extent_buffer *orig_buf, 1439 struct extent_buffer *buf, int start_slot, int nr) 1440 1441 { 1442 u64 bytenr; 1443 u64 ref_root; 1444 u64 orig_root; 1445 u64 ref_generation; 1446 u64 orig_generation; 1447 struct btrfs_key key; 1448 struct btrfs_file_extent_item *fi; 1449 int i; 1450 int ret; 1451 int slot; 1452 int level; 1453 1454 BUG_ON(start_slot < 0); 1455 BUG_ON(start_slot + nr > btrfs_header_nritems(buf)); 1456 1457 ref_root = btrfs_header_owner(buf); 1458 ref_generation = btrfs_header_generation(buf); 1459 orig_root = btrfs_header_owner(orig_buf); 1460 orig_generation = btrfs_header_generation(orig_buf); 1461 level = btrfs_header_level(buf); 1462 1463 if (!root->ref_cows) { 1464 if (level == 0 && 1465 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 1466 return 0; 1467 if (level != 0 && 1468 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) 1469 return 0; 1470 } 1471 1472 for (i = 0, slot = start_slot; i < nr; i++, slot++) { 1473 cond_resched(); 1474 if (level == 0) { 1475 btrfs_item_key_to_cpu(buf, &key, slot); 1476 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 1477 continue; 1478 fi = btrfs_item_ptr(buf, slot, 1479 struct btrfs_file_extent_item); 1480 if (btrfs_file_extent_type(buf, fi) == 1481 BTRFS_FILE_EXTENT_INLINE) 1482 continue; 1483 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1484 if (bytenr == 0) 1485 continue; 1486 ret = __btrfs_update_extent_ref(trans, root, bytenr, 1487 btrfs_file_extent_disk_num_bytes(buf, fi), 1488 orig_buf->start, buf->start, 1489 orig_root, ref_root, orig_generation, 1490 ref_generation, key.objectid); 1491 if (ret) 1492 goto fail; 1493 } else { 1494 bytenr = btrfs_node_blockptr(buf, slot); 1495 ret = __btrfs_update_extent_ref(trans, root, bytenr, 1496 buf->len, orig_buf->start, 1497 buf->start, orig_root, ref_root, 1498 orig_generation, ref_generation, 1499 level - 1); 1500 if (ret) 1501 goto fail; 1502 } 1503 } 1504 return 0; 1505 fail: 1506 WARN_ON(1); 1507 return -1; 1508 } 1509 1510 static int write_one_cache_group(struct btrfs_trans_handle *trans, 1511 struct btrfs_root *root, 1512 struct btrfs_path *path, 1513 struct btrfs_block_group_cache *cache) 1514 { 1515 int ret; 1516 struct btrfs_root *extent_root = root->fs_info->extent_root; 1517 unsigned long bi; 1518 struct extent_buffer *leaf; 1519 1520 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 1521 if (ret < 0) 1522 goto fail; 1523 BUG_ON(ret); 1524 1525 leaf = path->nodes[0]; 1526 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 1527 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 1528 btrfs_mark_buffer_dirty(leaf); 1529 btrfs_release_path(extent_root, path); 1530 fail: 1531 if (ret) 1532 return ret; 1533 return 0; 1534 1535 } 1536 1537 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root) 1539 { 1540 struct btrfs_block_group_cache *cache, *entry; 1541 struct rb_node *n; 1542 int err = 0; 1543 int werr = 0; 1544 struct btrfs_path *path; 1545 u64 last = 0; 1546 1547 path = btrfs_alloc_path(); 1548 if (!path) 1549 return -ENOMEM; 1550 1551 while (1) { 1552 cache = NULL; 1553 spin_lock(&root->fs_info->block_group_cache_lock); 1554 for (n = rb_first(&root->fs_info->block_group_cache_tree); 1555 n; n = rb_next(n)) { 1556 entry = rb_entry(n, struct btrfs_block_group_cache, 1557 cache_node); 1558 if (entry->dirty) { 1559 cache = entry; 1560 break; 1561 } 1562 } 1563 spin_unlock(&root->fs_info->block_group_cache_lock); 1564 1565 if (!cache) 1566 break; 1567 1568 cache->dirty = 0; 1569 last += cache->key.offset; 1570 1571 err = write_one_cache_group(trans, root, 1572 path, cache); 1573 /* 1574 * if we fail to write the cache group, we want 1575 * to keep it marked dirty in hopes that a later 1576 * write will work 1577 */ 1578 if (err) { 1579 werr = err; 1580 continue; 1581 } 1582 } 1583 btrfs_free_path(path); 1584 return werr; 1585 } 1586 1587 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 1588 { 1589 struct btrfs_block_group_cache *block_group; 1590 int readonly = 0; 1591 1592 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 1593 if (!block_group || block_group->ro) 1594 readonly = 1; 1595 if (block_group) 1596 btrfs_put_block_group(block_group); 1597 return readonly; 1598 } 1599 1600 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 1601 u64 total_bytes, u64 bytes_used, 1602 struct btrfs_space_info **space_info) 1603 { 1604 struct btrfs_space_info *found; 1605 1606 found = __find_space_info(info, flags); 1607 if (found) { 1608 spin_lock(&found->lock); 1609 found->total_bytes += total_bytes; 1610 found->bytes_used += bytes_used; 1611 found->full = 0; 1612 spin_unlock(&found->lock); 1613 *space_info = found; 1614 return 0; 1615 } 1616 found = kzalloc(sizeof(*found), GFP_NOFS); 1617 if (!found) 1618 return -ENOMEM; 1619 1620 INIT_LIST_HEAD(&found->block_groups); 1621 init_rwsem(&found->groups_sem); 1622 spin_lock_init(&found->lock); 1623 found->flags = flags; 1624 found->total_bytes = total_bytes; 1625 found->bytes_used = bytes_used; 1626 found->bytes_pinned = 0; 1627 found->bytes_reserved = 0; 1628 found->bytes_readonly = 0; 1629 found->bytes_delalloc = 0; 1630 found->full = 0; 1631 found->force_alloc = 0; 1632 *space_info = found; 1633 list_add_rcu(&found->list, &info->space_info); 1634 return 0; 1635 } 1636 1637 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1638 { 1639 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | 1640 BTRFS_BLOCK_GROUP_RAID1 | 1641 BTRFS_BLOCK_GROUP_RAID10 | 1642 BTRFS_BLOCK_GROUP_DUP); 1643 if (extra_flags) { 1644 if (flags & BTRFS_BLOCK_GROUP_DATA) 1645 fs_info->avail_data_alloc_bits |= extra_flags; 1646 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1647 fs_info->avail_metadata_alloc_bits |= extra_flags; 1648 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1649 fs_info->avail_system_alloc_bits |= extra_flags; 1650 } 1651 } 1652 1653 static void set_block_group_readonly(struct btrfs_block_group_cache *cache) 1654 { 1655 spin_lock(&cache->space_info->lock); 1656 spin_lock(&cache->lock); 1657 if (!cache->ro) { 1658 cache->space_info->bytes_readonly += cache->key.offset - 1659 btrfs_block_group_used(&cache->item); 1660 cache->ro = 1; 1661 } 1662 spin_unlock(&cache->lock); 1663 spin_unlock(&cache->space_info->lock); 1664 } 1665 1666 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 1667 { 1668 u64 num_devices = root->fs_info->fs_devices->rw_devices; 1669 1670 if (num_devices == 1) 1671 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 1672 if (num_devices < 4) 1673 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 1674 1675 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 1676 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 1677 BTRFS_BLOCK_GROUP_RAID10))) { 1678 flags &= ~BTRFS_BLOCK_GROUP_DUP; 1679 } 1680 1681 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 1682 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 1683 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 1684 } 1685 1686 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 1687 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 1688 (flags & BTRFS_BLOCK_GROUP_RAID10) | 1689 (flags & BTRFS_BLOCK_GROUP_DUP))) 1690 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 1691 return flags; 1692 } 1693 1694 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data) 1695 { 1696 struct btrfs_fs_info *info = root->fs_info; 1697 u64 alloc_profile; 1698 1699 if (data) { 1700 alloc_profile = info->avail_data_alloc_bits & 1701 info->data_alloc_profile; 1702 data = BTRFS_BLOCK_GROUP_DATA | alloc_profile; 1703 } else if (root == root->fs_info->chunk_root) { 1704 alloc_profile = info->avail_system_alloc_bits & 1705 info->system_alloc_profile; 1706 data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile; 1707 } else { 1708 alloc_profile = info->avail_metadata_alloc_bits & 1709 info->metadata_alloc_profile; 1710 data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile; 1711 } 1712 1713 return btrfs_reduce_alloc_profile(root, data); 1714 } 1715 1716 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 1717 { 1718 u64 alloc_target; 1719 1720 alloc_target = btrfs_get_alloc_profile(root, 1); 1721 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 1722 alloc_target); 1723 } 1724 1725 /* 1726 * for now this just makes sure we have at least 5% of our metadata space free 1727 * for use. 1728 */ 1729 int btrfs_check_metadata_free_space(struct btrfs_root *root) 1730 { 1731 struct btrfs_fs_info *info = root->fs_info; 1732 struct btrfs_space_info *meta_sinfo; 1733 u64 alloc_target, thresh; 1734 int committed = 0, ret; 1735 1736 /* get the space info for where the metadata will live */ 1737 alloc_target = btrfs_get_alloc_profile(root, 0); 1738 meta_sinfo = __find_space_info(info, alloc_target); 1739 1740 again: 1741 spin_lock(&meta_sinfo->lock); 1742 if (!meta_sinfo->full) 1743 thresh = meta_sinfo->total_bytes * 80; 1744 else 1745 thresh = meta_sinfo->total_bytes * 95; 1746 1747 do_div(thresh, 100); 1748 1749 if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved + 1750 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) { 1751 struct btrfs_trans_handle *trans; 1752 if (!meta_sinfo->full) { 1753 meta_sinfo->force_alloc = 1; 1754 spin_unlock(&meta_sinfo->lock); 1755 1756 trans = btrfs_start_transaction(root, 1); 1757 if (!trans) 1758 return -ENOMEM; 1759 1760 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 1761 2 * 1024 * 1024, alloc_target, 0); 1762 btrfs_end_transaction(trans, root); 1763 goto again; 1764 } 1765 spin_unlock(&meta_sinfo->lock); 1766 1767 if (!committed) { 1768 committed = 1; 1769 trans = btrfs_join_transaction(root, 1); 1770 if (!trans) 1771 return -ENOMEM; 1772 ret = btrfs_commit_transaction(trans, root); 1773 if (ret) 1774 return ret; 1775 goto again; 1776 } 1777 return -ENOSPC; 1778 } 1779 spin_unlock(&meta_sinfo->lock); 1780 1781 return 0; 1782 } 1783 1784 /* 1785 * This will check the space that the inode allocates from to make sure we have 1786 * enough space for bytes. 1787 */ 1788 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode, 1789 u64 bytes) 1790 { 1791 struct btrfs_space_info *data_sinfo; 1792 int ret = 0, committed = 0; 1793 1794 /* make sure bytes are sectorsize aligned */ 1795 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 1796 1797 data_sinfo = BTRFS_I(inode)->space_info; 1798 again: 1799 /* make sure we have enough space to handle the data first */ 1800 spin_lock(&data_sinfo->lock); 1801 if (data_sinfo->total_bytes - data_sinfo->bytes_used - 1802 data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved - 1803 data_sinfo->bytes_pinned - data_sinfo->bytes_readonly - 1804 data_sinfo->bytes_may_use < bytes) { 1805 struct btrfs_trans_handle *trans; 1806 1807 /* 1808 * if we don't have enough free bytes in this space then we need 1809 * to alloc a new chunk. 1810 */ 1811 if (!data_sinfo->full) { 1812 u64 alloc_target; 1813 1814 data_sinfo->force_alloc = 1; 1815 spin_unlock(&data_sinfo->lock); 1816 1817 alloc_target = btrfs_get_alloc_profile(root, 1); 1818 trans = btrfs_start_transaction(root, 1); 1819 if (!trans) 1820 return -ENOMEM; 1821 1822 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 1823 bytes + 2 * 1024 * 1024, 1824 alloc_target, 0); 1825 btrfs_end_transaction(trans, root); 1826 if (ret) 1827 return ret; 1828 goto again; 1829 } 1830 spin_unlock(&data_sinfo->lock); 1831 1832 /* commit the current transaction and try again */ 1833 if (!committed) { 1834 committed = 1; 1835 trans = btrfs_join_transaction(root, 1); 1836 if (!trans) 1837 return -ENOMEM; 1838 ret = btrfs_commit_transaction(trans, root); 1839 if (ret) 1840 return ret; 1841 goto again; 1842 } 1843 1844 printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes" 1845 ", %llu bytes_used, %llu bytes_reserved, " 1846 "%llu bytes_pinned, %llu bytes_readonly, %llu may use" 1847 "%llu total\n", bytes, data_sinfo->bytes_delalloc, 1848 data_sinfo->bytes_used, data_sinfo->bytes_reserved, 1849 data_sinfo->bytes_pinned, data_sinfo->bytes_readonly, 1850 data_sinfo->bytes_may_use, data_sinfo->total_bytes); 1851 return -ENOSPC; 1852 } 1853 data_sinfo->bytes_may_use += bytes; 1854 BTRFS_I(inode)->reserved_bytes += bytes; 1855 spin_unlock(&data_sinfo->lock); 1856 1857 return btrfs_check_metadata_free_space(root); 1858 } 1859 1860 /* 1861 * if there was an error for whatever reason after calling 1862 * btrfs_check_data_free_space, call this so we can cleanup the counters. 1863 */ 1864 void btrfs_free_reserved_data_space(struct btrfs_root *root, 1865 struct inode *inode, u64 bytes) 1866 { 1867 struct btrfs_space_info *data_sinfo; 1868 1869 /* make sure bytes are sectorsize aligned */ 1870 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 1871 1872 data_sinfo = BTRFS_I(inode)->space_info; 1873 spin_lock(&data_sinfo->lock); 1874 data_sinfo->bytes_may_use -= bytes; 1875 BTRFS_I(inode)->reserved_bytes -= bytes; 1876 spin_unlock(&data_sinfo->lock); 1877 } 1878 1879 /* called when we are adding a delalloc extent to the inode's io_tree */ 1880 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode, 1881 u64 bytes) 1882 { 1883 struct btrfs_space_info *data_sinfo; 1884 1885 /* get the space info for where this inode will be storing its data */ 1886 data_sinfo = BTRFS_I(inode)->space_info; 1887 1888 /* make sure we have enough space to handle the data first */ 1889 spin_lock(&data_sinfo->lock); 1890 data_sinfo->bytes_delalloc += bytes; 1891 1892 /* 1893 * we are adding a delalloc extent without calling 1894 * btrfs_check_data_free_space first. This happens on a weird 1895 * writepage condition, but shouldn't hurt our accounting 1896 */ 1897 if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) { 1898 data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes; 1899 BTRFS_I(inode)->reserved_bytes = 0; 1900 } else { 1901 data_sinfo->bytes_may_use -= bytes; 1902 BTRFS_I(inode)->reserved_bytes -= bytes; 1903 } 1904 1905 spin_unlock(&data_sinfo->lock); 1906 } 1907 1908 /* called when we are clearing an delalloc extent from the inode's io_tree */ 1909 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode, 1910 u64 bytes) 1911 { 1912 struct btrfs_space_info *info; 1913 1914 info = BTRFS_I(inode)->space_info; 1915 1916 spin_lock(&info->lock); 1917 info->bytes_delalloc -= bytes; 1918 spin_unlock(&info->lock); 1919 } 1920 1921 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 1922 struct btrfs_root *extent_root, u64 alloc_bytes, 1923 u64 flags, int force) 1924 { 1925 struct btrfs_space_info *space_info; 1926 u64 thresh; 1927 int ret = 0; 1928 1929 mutex_lock(&extent_root->fs_info->chunk_mutex); 1930 1931 flags = btrfs_reduce_alloc_profile(extent_root, flags); 1932 1933 space_info = __find_space_info(extent_root->fs_info, flags); 1934 if (!space_info) { 1935 ret = update_space_info(extent_root->fs_info, flags, 1936 0, 0, &space_info); 1937 BUG_ON(ret); 1938 } 1939 BUG_ON(!space_info); 1940 1941 spin_lock(&space_info->lock); 1942 if (space_info->force_alloc) { 1943 force = 1; 1944 space_info->force_alloc = 0; 1945 } 1946 if (space_info->full) { 1947 spin_unlock(&space_info->lock); 1948 goto out; 1949 } 1950 1951 thresh = space_info->total_bytes - space_info->bytes_readonly; 1952 thresh = div_factor(thresh, 6); 1953 if (!force && 1954 (space_info->bytes_used + space_info->bytes_pinned + 1955 space_info->bytes_reserved + alloc_bytes) < thresh) { 1956 spin_unlock(&space_info->lock); 1957 goto out; 1958 } 1959 spin_unlock(&space_info->lock); 1960 1961 ret = btrfs_alloc_chunk(trans, extent_root, flags); 1962 if (ret) 1963 space_info->full = 1; 1964 out: 1965 mutex_unlock(&extent_root->fs_info->chunk_mutex); 1966 return ret; 1967 } 1968 1969 static int update_block_group(struct btrfs_trans_handle *trans, 1970 struct btrfs_root *root, 1971 u64 bytenr, u64 num_bytes, int alloc, 1972 int mark_free) 1973 { 1974 struct btrfs_block_group_cache *cache; 1975 struct btrfs_fs_info *info = root->fs_info; 1976 u64 total = num_bytes; 1977 u64 old_val; 1978 u64 byte_in_group; 1979 1980 while (total) { 1981 cache = btrfs_lookup_block_group(info, bytenr); 1982 if (!cache) 1983 return -1; 1984 byte_in_group = bytenr - cache->key.objectid; 1985 WARN_ON(byte_in_group > cache->key.offset); 1986 1987 spin_lock(&cache->space_info->lock); 1988 spin_lock(&cache->lock); 1989 cache->dirty = 1; 1990 old_val = btrfs_block_group_used(&cache->item); 1991 num_bytes = min(total, cache->key.offset - byte_in_group); 1992 if (alloc) { 1993 old_val += num_bytes; 1994 cache->space_info->bytes_used += num_bytes; 1995 if (cache->ro) 1996 cache->space_info->bytes_readonly -= num_bytes; 1997 btrfs_set_block_group_used(&cache->item, old_val); 1998 spin_unlock(&cache->lock); 1999 spin_unlock(&cache->space_info->lock); 2000 } else { 2001 old_val -= num_bytes; 2002 cache->space_info->bytes_used -= num_bytes; 2003 if (cache->ro) 2004 cache->space_info->bytes_readonly += num_bytes; 2005 btrfs_set_block_group_used(&cache->item, old_val); 2006 spin_unlock(&cache->lock); 2007 spin_unlock(&cache->space_info->lock); 2008 if (mark_free) { 2009 int ret; 2010 2011 ret = btrfs_discard_extent(root, bytenr, 2012 num_bytes); 2013 WARN_ON(ret); 2014 2015 ret = btrfs_add_free_space(cache, bytenr, 2016 num_bytes); 2017 WARN_ON(ret); 2018 } 2019 } 2020 btrfs_put_block_group(cache); 2021 total -= num_bytes; 2022 bytenr += num_bytes; 2023 } 2024 return 0; 2025 } 2026 2027 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 2028 { 2029 struct btrfs_block_group_cache *cache; 2030 u64 bytenr; 2031 2032 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 2033 if (!cache) 2034 return 0; 2035 2036 bytenr = cache->key.objectid; 2037 btrfs_put_block_group(cache); 2038 2039 return bytenr; 2040 } 2041 2042 int btrfs_update_pinned_extents(struct btrfs_root *root, 2043 u64 bytenr, u64 num, int pin) 2044 { 2045 u64 len; 2046 struct btrfs_block_group_cache *cache; 2047 struct btrfs_fs_info *fs_info = root->fs_info; 2048 2049 if (pin) { 2050 set_extent_dirty(&fs_info->pinned_extents, 2051 bytenr, bytenr + num - 1, GFP_NOFS); 2052 } else { 2053 clear_extent_dirty(&fs_info->pinned_extents, 2054 bytenr, bytenr + num - 1, GFP_NOFS); 2055 } 2056 2057 while (num > 0) { 2058 cache = btrfs_lookup_block_group(fs_info, bytenr); 2059 BUG_ON(!cache); 2060 len = min(num, cache->key.offset - 2061 (bytenr - cache->key.objectid)); 2062 if (pin) { 2063 spin_lock(&cache->space_info->lock); 2064 spin_lock(&cache->lock); 2065 cache->pinned += len; 2066 cache->space_info->bytes_pinned += len; 2067 spin_unlock(&cache->lock); 2068 spin_unlock(&cache->space_info->lock); 2069 fs_info->total_pinned += len; 2070 } else { 2071 spin_lock(&cache->space_info->lock); 2072 spin_lock(&cache->lock); 2073 cache->pinned -= len; 2074 cache->space_info->bytes_pinned -= len; 2075 spin_unlock(&cache->lock); 2076 spin_unlock(&cache->space_info->lock); 2077 fs_info->total_pinned -= len; 2078 if (cache->cached) 2079 btrfs_add_free_space(cache, bytenr, len); 2080 } 2081 btrfs_put_block_group(cache); 2082 bytenr += len; 2083 num -= len; 2084 } 2085 return 0; 2086 } 2087 2088 static int update_reserved_extents(struct btrfs_root *root, 2089 u64 bytenr, u64 num, int reserve) 2090 { 2091 u64 len; 2092 struct btrfs_block_group_cache *cache; 2093 struct btrfs_fs_info *fs_info = root->fs_info; 2094 2095 while (num > 0) { 2096 cache = btrfs_lookup_block_group(fs_info, bytenr); 2097 BUG_ON(!cache); 2098 len = min(num, cache->key.offset - 2099 (bytenr - cache->key.objectid)); 2100 2101 spin_lock(&cache->space_info->lock); 2102 spin_lock(&cache->lock); 2103 if (reserve) { 2104 cache->reserved += len; 2105 cache->space_info->bytes_reserved += len; 2106 } else { 2107 cache->reserved -= len; 2108 cache->space_info->bytes_reserved -= len; 2109 } 2110 spin_unlock(&cache->lock); 2111 spin_unlock(&cache->space_info->lock); 2112 btrfs_put_block_group(cache); 2113 bytenr += len; 2114 num -= len; 2115 } 2116 return 0; 2117 } 2118 2119 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy) 2120 { 2121 u64 last = 0; 2122 u64 start; 2123 u64 end; 2124 struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents; 2125 int ret; 2126 2127 while (1) { 2128 ret = find_first_extent_bit(pinned_extents, last, 2129 &start, &end, EXTENT_DIRTY); 2130 if (ret) 2131 break; 2132 set_extent_dirty(copy, start, end, GFP_NOFS); 2133 last = end + 1; 2134 } 2135 return 0; 2136 } 2137 2138 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 2139 struct btrfs_root *root, 2140 struct extent_io_tree *unpin) 2141 { 2142 u64 start; 2143 u64 end; 2144 int ret; 2145 2146 while (1) { 2147 ret = find_first_extent_bit(unpin, 0, &start, &end, 2148 EXTENT_DIRTY); 2149 if (ret) 2150 break; 2151 2152 ret = btrfs_discard_extent(root, start, end + 1 - start); 2153 2154 /* unlocks the pinned mutex */ 2155 btrfs_update_pinned_extents(root, start, end + 1 - start, 0); 2156 clear_extent_dirty(unpin, start, end, GFP_NOFS); 2157 2158 cond_resched(); 2159 } 2160 return ret; 2161 } 2162 2163 static int pin_down_bytes(struct btrfs_trans_handle *trans, 2164 struct btrfs_root *root, 2165 struct btrfs_path *path, 2166 u64 bytenr, u64 num_bytes, int is_data, 2167 struct extent_buffer **must_clean) 2168 { 2169 int err = 0; 2170 struct extent_buffer *buf; 2171 2172 if (is_data) 2173 goto pinit; 2174 2175 buf = btrfs_find_tree_block(root, bytenr, num_bytes); 2176 if (!buf) 2177 goto pinit; 2178 2179 /* we can reuse a block if it hasn't been written 2180 * and it is from this transaction. We can't 2181 * reuse anything from the tree log root because 2182 * it has tiny sub-transactions. 2183 */ 2184 if (btrfs_buffer_uptodate(buf, 0) && 2185 btrfs_try_tree_lock(buf)) { 2186 u64 header_owner = btrfs_header_owner(buf); 2187 u64 header_transid = btrfs_header_generation(buf); 2188 if (header_owner != BTRFS_TREE_LOG_OBJECTID && 2189 header_owner != BTRFS_TREE_RELOC_OBJECTID && 2190 header_owner != BTRFS_DATA_RELOC_TREE_OBJECTID && 2191 header_transid == trans->transid && 2192 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 2193 *must_clean = buf; 2194 return 1; 2195 } 2196 btrfs_tree_unlock(buf); 2197 } 2198 free_extent_buffer(buf); 2199 pinit: 2200 btrfs_set_path_blocking(path); 2201 /* unlocks the pinned mutex */ 2202 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1); 2203 2204 BUG_ON(err < 0); 2205 return 0; 2206 } 2207 2208 /* 2209 * remove an extent from the root, returns 0 on success 2210 */ 2211 static int __free_extent(struct btrfs_trans_handle *trans, 2212 struct btrfs_root *root, 2213 u64 bytenr, u64 num_bytes, u64 parent, 2214 u64 root_objectid, u64 ref_generation, 2215 u64 owner_objectid, int pin, int mark_free, 2216 int refs_to_drop) 2217 { 2218 struct btrfs_path *path; 2219 struct btrfs_key key; 2220 struct btrfs_fs_info *info = root->fs_info; 2221 struct btrfs_root *extent_root = info->extent_root; 2222 struct extent_buffer *leaf; 2223 int ret; 2224 int extent_slot = 0; 2225 int found_extent = 0; 2226 int num_to_del = 1; 2227 struct btrfs_extent_item *ei; 2228 u32 refs; 2229 2230 key.objectid = bytenr; 2231 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 2232 key.offset = num_bytes; 2233 path = btrfs_alloc_path(); 2234 if (!path) 2235 return -ENOMEM; 2236 2237 path->reada = 1; 2238 path->leave_spinning = 1; 2239 ret = lookup_extent_backref(trans, extent_root, path, 2240 bytenr, parent, root_objectid, 2241 ref_generation, owner_objectid, 1); 2242 if (ret == 0) { 2243 struct btrfs_key found_key; 2244 extent_slot = path->slots[0]; 2245 while (extent_slot > 0) { 2246 extent_slot--; 2247 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2248 extent_slot); 2249 if (found_key.objectid != bytenr) 2250 break; 2251 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 2252 found_key.offset == num_bytes) { 2253 found_extent = 1; 2254 break; 2255 } 2256 if (path->slots[0] - extent_slot > 5) 2257 break; 2258 } 2259 if (!found_extent) { 2260 ret = remove_extent_backref(trans, extent_root, path, 2261 refs_to_drop); 2262 BUG_ON(ret); 2263 btrfs_release_path(extent_root, path); 2264 path->leave_spinning = 1; 2265 ret = btrfs_search_slot(trans, extent_root, 2266 &key, path, -1, 1); 2267 if (ret) { 2268 printk(KERN_ERR "umm, got %d back from search" 2269 ", was looking for %llu\n", ret, 2270 (unsigned long long)bytenr); 2271 btrfs_print_leaf(extent_root, path->nodes[0]); 2272 } 2273 BUG_ON(ret); 2274 extent_slot = path->slots[0]; 2275 } 2276 } else { 2277 btrfs_print_leaf(extent_root, path->nodes[0]); 2278 WARN_ON(1); 2279 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 2280 "parent %llu root %llu gen %llu owner %llu\n", 2281 (unsigned long long)bytenr, 2282 (unsigned long long)parent, 2283 (unsigned long long)root_objectid, 2284 (unsigned long long)ref_generation, 2285 (unsigned long long)owner_objectid); 2286 } 2287 2288 leaf = path->nodes[0]; 2289 ei = btrfs_item_ptr(leaf, extent_slot, 2290 struct btrfs_extent_item); 2291 refs = btrfs_extent_refs(leaf, ei); 2292 2293 /* 2294 * we're not allowed to delete the extent item if there 2295 * are other delayed ref updates pending 2296 */ 2297 2298 BUG_ON(refs < refs_to_drop); 2299 refs -= refs_to_drop; 2300 btrfs_set_extent_refs(leaf, ei, refs); 2301 btrfs_mark_buffer_dirty(leaf); 2302 2303 if (refs == 0 && found_extent && 2304 path->slots[0] == extent_slot + 1) { 2305 struct btrfs_extent_ref *ref; 2306 ref = btrfs_item_ptr(leaf, path->slots[0], 2307 struct btrfs_extent_ref); 2308 BUG_ON(btrfs_ref_num_refs(leaf, ref) != refs_to_drop); 2309 /* if the back ref and the extent are next to each other 2310 * they get deleted below in one shot 2311 */ 2312 path->slots[0] = extent_slot; 2313 num_to_del = 2; 2314 } else if (found_extent) { 2315 /* otherwise delete the extent back ref */ 2316 ret = remove_extent_backref(trans, extent_root, path, 2317 refs_to_drop); 2318 BUG_ON(ret); 2319 /* if refs are 0, we need to setup the path for deletion */ 2320 if (refs == 0) { 2321 btrfs_release_path(extent_root, path); 2322 path->leave_spinning = 1; 2323 ret = btrfs_search_slot(trans, extent_root, &key, path, 2324 -1, 1); 2325 BUG_ON(ret); 2326 } 2327 } 2328 2329 if (refs == 0) { 2330 u64 super_used; 2331 u64 root_used; 2332 struct extent_buffer *must_clean = NULL; 2333 2334 if (pin) { 2335 ret = pin_down_bytes(trans, root, path, 2336 bytenr, num_bytes, 2337 owner_objectid >= BTRFS_FIRST_FREE_OBJECTID, 2338 &must_clean); 2339 if (ret > 0) 2340 mark_free = 1; 2341 BUG_ON(ret < 0); 2342 } 2343 2344 /* block accounting for super block */ 2345 spin_lock(&info->delalloc_lock); 2346 super_used = btrfs_super_bytes_used(&info->super_copy); 2347 btrfs_set_super_bytes_used(&info->super_copy, 2348 super_used - num_bytes); 2349 2350 /* block accounting for root item */ 2351 root_used = btrfs_root_used(&root->root_item); 2352 btrfs_set_root_used(&root->root_item, 2353 root_used - num_bytes); 2354 spin_unlock(&info->delalloc_lock); 2355 2356 /* 2357 * it is going to be very rare for someone to be waiting 2358 * on the block we're freeing. del_items might need to 2359 * schedule, so rather than get fancy, just force it 2360 * to blocking here 2361 */ 2362 if (must_clean) 2363 btrfs_set_lock_blocking(must_clean); 2364 2365 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 2366 num_to_del); 2367 BUG_ON(ret); 2368 btrfs_release_path(extent_root, path); 2369 2370 if (must_clean) { 2371 clean_tree_block(NULL, root, must_clean); 2372 btrfs_tree_unlock(must_clean); 2373 free_extent_buffer(must_clean); 2374 } 2375 2376 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 2377 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 2378 BUG_ON(ret); 2379 } else { 2380 invalidate_mapping_pages(info->btree_inode->i_mapping, 2381 bytenr >> PAGE_CACHE_SHIFT, 2382 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 2383 } 2384 2385 ret = update_block_group(trans, root, bytenr, num_bytes, 0, 2386 mark_free); 2387 BUG_ON(ret); 2388 } 2389 btrfs_free_path(path); 2390 return ret; 2391 } 2392 2393 /* 2394 * remove an extent from the root, returns 0 on success 2395 */ 2396 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2397 struct btrfs_root *root, 2398 u64 bytenr, u64 num_bytes, u64 parent, 2399 u64 root_objectid, u64 ref_generation, 2400 u64 owner_objectid, int pin, 2401 int refs_to_drop) 2402 { 2403 WARN_ON(num_bytes < root->sectorsize); 2404 2405 /* 2406 * if metadata always pin 2407 * if data pin when any transaction has committed this 2408 */ 2409 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID || 2410 ref_generation != trans->transid) 2411 pin = 1; 2412 2413 if (ref_generation != trans->transid) 2414 pin = 1; 2415 2416 return __free_extent(trans, root, bytenr, num_bytes, parent, 2417 root_objectid, ref_generation, 2418 owner_objectid, pin, pin == 0, refs_to_drop); 2419 } 2420 2421 /* 2422 * when we free an extent, it is possible (and likely) that we free the last 2423 * delayed ref for that extent as well. This searches the delayed ref tree for 2424 * a given extent, and if there are no other delayed refs to be processed, it 2425 * removes it from the tree. 2426 */ 2427 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 2428 struct btrfs_root *root, u64 bytenr) 2429 { 2430 struct btrfs_delayed_ref_head *head; 2431 struct btrfs_delayed_ref_root *delayed_refs; 2432 struct btrfs_delayed_ref_node *ref; 2433 struct rb_node *node; 2434 int ret; 2435 2436 delayed_refs = &trans->transaction->delayed_refs; 2437 spin_lock(&delayed_refs->lock); 2438 head = btrfs_find_delayed_ref_head(trans, bytenr); 2439 if (!head) 2440 goto out; 2441 2442 node = rb_prev(&head->node.rb_node); 2443 if (!node) 2444 goto out; 2445 2446 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2447 2448 /* there are still entries for this ref, we can't drop it */ 2449 if (ref->bytenr == bytenr) 2450 goto out; 2451 2452 /* 2453 * waiting for the lock here would deadlock. If someone else has it 2454 * locked they are already in the process of dropping it anyway 2455 */ 2456 if (!mutex_trylock(&head->mutex)) 2457 goto out; 2458 2459 /* 2460 * at this point we have a head with no other entries. Go 2461 * ahead and process it. 2462 */ 2463 head->node.in_tree = 0; 2464 rb_erase(&head->node.rb_node, &delayed_refs->root); 2465 2466 delayed_refs->num_entries--; 2467 2468 /* 2469 * we don't take a ref on the node because we're removing it from the 2470 * tree, so we just steal the ref the tree was holding. 2471 */ 2472 delayed_refs->num_heads--; 2473 if (list_empty(&head->cluster)) 2474 delayed_refs->num_heads_ready--; 2475 2476 list_del_init(&head->cluster); 2477 spin_unlock(&delayed_refs->lock); 2478 2479 ret = run_one_delayed_ref(trans, root->fs_info->tree_root, 2480 &head->node, head->must_insert_reserved); 2481 BUG_ON(ret); 2482 btrfs_put_delayed_ref(&head->node); 2483 return 0; 2484 out: 2485 spin_unlock(&delayed_refs->lock); 2486 return 0; 2487 } 2488 2489 int btrfs_free_extent(struct btrfs_trans_handle *trans, 2490 struct btrfs_root *root, 2491 u64 bytenr, u64 num_bytes, u64 parent, 2492 u64 root_objectid, u64 ref_generation, 2493 u64 owner_objectid, int pin) 2494 { 2495 int ret; 2496 2497 /* 2498 * tree log blocks never actually go into the extent allocation 2499 * tree, just update pinning info and exit early. 2500 * 2501 * data extents referenced by the tree log do need to have 2502 * their reference counts bumped. 2503 */ 2504 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID && 2505 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 2506 /* unlocks the pinned mutex */ 2507 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1); 2508 update_reserved_extents(root, bytenr, num_bytes, 0); 2509 ret = 0; 2510 } else { 2511 ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, 2512 root_objectid, ref_generation, 2513 owner_objectid, 2514 BTRFS_DROP_DELAYED_REF, 1); 2515 BUG_ON(ret); 2516 ret = check_ref_cleanup(trans, root, bytenr); 2517 BUG_ON(ret); 2518 } 2519 return ret; 2520 } 2521 2522 static u64 stripe_align(struct btrfs_root *root, u64 val) 2523 { 2524 u64 mask = ((u64)root->stripesize - 1); 2525 u64 ret = (val + mask) & ~mask; 2526 return ret; 2527 } 2528 2529 /* 2530 * walks the btree of allocated extents and find a hole of a given size. 2531 * The key ins is changed to record the hole: 2532 * ins->objectid == block start 2533 * ins->flags = BTRFS_EXTENT_ITEM_KEY 2534 * ins->offset == number of blocks 2535 * Any available blocks before search_start are skipped. 2536 */ 2537 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 2538 struct btrfs_root *orig_root, 2539 u64 num_bytes, u64 empty_size, 2540 u64 search_start, u64 search_end, 2541 u64 hint_byte, struct btrfs_key *ins, 2542 u64 exclude_start, u64 exclude_nr, 2543 int data) 2544 { 2545 int ret = 0; 2546 struct btrfs_root *root = orig_root->fs_info->extent_root; 2547 struct btrfs_free_cluster *last_ptr = NULL; 2548 struct btrfs_block_group_cache *block_group = NULL; 2549 int empty_cluster = 2 * 1024 * 1024; 2550 int allowed_chunk_alloc = 0; 2551 struct btrfs_space_info *space_info; 2552 int last_ptr_loop = 0; 2553 int loop = 0; 2554 2555 WARN_ON(num_bytes < root->sectorsize); 2556 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 2557 ins->objectid = 0; 2558 ins->offset = 0; 2559 2560 space_info = __find_space_info(root->fs_info, data); 2561 2562 if (orig_root->ref_cows || empty_size) 2563 allowed_chunk_alloc = 1; 2564 2565 if (data & BTRFS_BLOCK_GROUP_METADATA) { 2566 last_ptr = &root->fs_info->meta_alloc_cluster; 2567 if (!btrfs_test_opt(root, SSD)) 2568 empty_cluster = 64 * 1024; 2569 } 2570 2571 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) { 2572 last_ptr = &root->fs_info->data_alloc_cluster; 2573 } 2574 2575 if (last_ptr) { 2576 spin_lock(&last_ptr->lock); 2577 if (last_ptr->block_group) 2578 hint_byte = last_ptr->window_start; 2579 spin_unlock(&last_ptr->lock); 2580 } 2581 2582 search_start = max(search_start, first_logical_byte(root, 0)); 2583 search_start = max(search_start, hint_byte); 2584 2585 if (!last_ptr) { 2586 empty_cluster = 0; 2587 loop = 1; 2588 } 2589 2590 if (search_start == hint_byte) { 2591 block_group = btrfs_lookup_block_group(root->fs_info, 2592 search_start); 2593 if (block_group && block_group_bits(block_group, data)) { 2594 down_read(&space_info->groups_sem); 2595 goto have_block_group; 2596 } else if (block_group) { 2597 btrfs_put_block_group(block_group); 2598 } 2599 } 2600 2601 search: 2602 down_read(&space_info->groups_sem); 2603 list_for_each_entry(block_group, &space_info->block_groups, list) { 2604 u64 offset; 2605 2606 atomic_inc(&block_group->count); 2607 search_start = block_group->key.objectid; 2608 2609 have_block_group: 2610 if (unlikely(!block_group->cached)) { 2611 mutex_lock(&block_group->cache_mutex); 2612 ret = cache_block_group(root, block_group); 2613 mutex_unlock(&block_group->cache_mutex); 2614 if (ret) { 2615 btrfs_put_block_group(block_group); 2616 break; 2617 } 2618 } 2619 2620 if (unlikely(block_group->ro)) 2621 goto loop; 2622 2623 if (last_ptr) { 2624 /* 2625 * the refill lock keeps out other 2626 * people trying to start a new cluster 2627 */ 2628 spin_lock(&last_ptr->refill_lock); 2629 offset = btrfs_alloc_from_cluster(block_group, last_ptr, 2630 num_bytes, search_start); 2631 if (offset) { 2632 /* we have a block, we're done */ 2633 spin_unlock(&last_ptr->refill_lock); 2634 goto checks; 2635 } 2636 2637 spin_lock(&last_ptr->lock); 2638 /* 2639 * whoops, this cluster doesn't actually point to 2640 * this block group. Get a ref on the block 2641 * group is does point to and try again 2642 */ 2643 if (!last_ptr_loop && last_ptr->block_group && 2644 last_ptr->block_group != block_group) { 2645 2646 btrfs_put_block_group(block_group); 2647 block_group = last_ptr->block_group; 2648 atomic_inc(&block_group->count); 2649 spin_unlock(&last_ptr->lock); 2650 spin_unlock(&last_ptr->refill_lock); 2651 2652 last_ptr_loop = 1; 2653 search_start = block_group->key.objectid; 2654 goto have_block_group; 2655 } 2656 spin_unlock(&last_ptr->lock); 2657 2658 /* 2659 * this cluster didn't work out, free it and 2660 * start over 2661 */ 2662 btrfs_return_cluster_to_free_space(NULL, last_ptr); 2663 2664 last_ptr_loop = 0; 2665 2666 /* allocate a cluster in this block group */ 2667 ret = btrfs_find_space_cluster(trans, 2668 block_group, last_ptr, 2669 offset, num_bytes, 2670 empty_cluster + empty_size); 2671 if (ret == 0) { 2672 /* 2673 * now pull our allocation out of this 2674 * cluster 2675 */ 2676 offset = btrfs_alloc_from_cluster(block_group, 2677 last_ptr, num_bytes, 2678 search_start); 2679 if (offset) { 2680 /* we found one, proceed */ 2681 spin_unlock(&last_ptr->refill_lock); 2682 goto checks; 2683 } 2684 } 2685 /* 2686 * at this point we either didn't find a cluster 2687 * or we weren't able to allocate a block from our 2688 * cluster. Free the cluster we've been trying 2689 * to use, and go to the next block group 2690 */ 2691 if (loop < 2) { 2692 btrfs_return_cluster_to_free_space(NULL, 2693 last_ptr); 2694 spin_unlock(&last_ptr->refill_lock); 2695 goto loop; 2696 } 2697 spin_unlock(&last_ptr->refill_lock); 2698 } 2699 2700 offset = btrfs_find_space_for_alloc(block_group, search_start, 2701 num_bytes, empty_size); 2702 if (!offset) 2703 goto loop; 2704 checks: 2705 search_start = stripe_align(root, offset); 2706 2707 /* move on to the next group */ 2708 if (search_start + num_bytes >= search_end) { 2709 btrfs_add_free_space(block_group, offset, num_bytes); 2710 goto loop; 2711 } 2712 2713 /* move on to the next group */ 2714 if (search_start + num_bytes > 2715 block_group->key.objectid + block_group->key.offset) { 2716 btrfs_add_free_space(block_group, offset, num_bytes); 2717 goto loop; 2718 } 2719 2720 if (exclude_nr > 0 && 2721 (search_start + num_bytes > exclude_start && 2722 search_start < exclude_start + exclude_nr)) { 2723 search_start = exclude_start + exclude_nr; 2724 2725 btrfs_add_free_space(block_group, offset, num_bytes); 2726 /* 2727 * if search_start is still in this block group 2728 * then we just re-search this block group 2729 */ 2730 if (search_start >= block_group->key.objectid && 2731 search_start < (block_group->key.objectid + 2732 block_group->key.offset)) 2733 goto have_block_group; 2734 goto loop; 2735 } 2736 2737 ins->objectid = search_start; 2738 ins->offset = num_bytes; 2739 2740 if (offset < search_start) 2741 btrfs_add_free_space(block_group, offset, 2742 search_start - offset); 2743 BUG_ON(offset > search_start); 2744 2745 /* we are all good, lets return */ 2746 break; 2747 loop: 2748 btrfs_put_block_group(block_group); 2749 } 2750 up_read(&space_info->groups_sem); 2751 2752 /* loop == 0, try to find a clustered alloc in every block group 2753 * loop == 1, try again after forcing a chunk allocation 2754 * loop == 2, set empty_size and empty_cluster to 0 and try again 2755 */ 2756 if (!ins->objectid && loop < 3 && 2757 (empty_size || empty_cluster || allowed_chunk_alloc)) { 2758 if (loop >= 2) { 2759 empty_size = 0; 2760 empty_cluster = 0; 2761 } 2762 2763 if (allowed_chunk_alloc) { 2764 ret = do_chunk_alloc(trans, root, num_bytes + 2765 2 * 1024 * 1024, data, 1); 2766 allowed_chunk_alloc = 0; 2767 } else { 2768 space_info->force_alloc = 1; 2769 } 2770 2771 if (loop < 3) { 2772 loop++; 2773 goto search; 2774 } 2775 ret = -ENOSPC; 2776 } else if (!ins->objectid) { 2777 ret = -ENOSPC; 2778 } 2779 2780 /* we found what we needed */ 2781 if (ins->objectid) { 2782 if (!(data & BTRFS_BLOCK_GROUP_DATA)) 2783 trans->block_group = block_group->key.objectid; 2784 2785 btrfs_put_block_group(block_group); 2786 ret = 0; 2787 } 2788 2789 return ret; 2790 } 2791 2792 static void dump_space_info(struct btrfs_space_info *info, u64 bytes) 2793 { 2794 struct btrfs_block_group_cache *cache; 2795 2796 printk(KERN_INFO "space_info has %llu free, is %sfull\n", 2797 (unsigned long long)(info->total_bytes - info->bytes_used - 2798 info->bytes_pinned - info->bytes_reserved), 2799 (info->full) ? "" : "not "); 2800 printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu," 2801 " may_use=%llu, used=%llu\n", info->total_bytes, 2802 info->bytes_pinned, info->bytes_delalloc, info->bytes_may_use, 2803 info->bytes_used); 2804 2805 down_read(&info->groups_sem); 2806 list_for_each_entry(cache, &info->block_groups, list) { 2807 spin_lock(&cache->lock); 2808 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 2809 "%llu pinned %llu reserved\n", 2810 (unsigned long long)cache->key.objectid, 2811 (unsigned long long)cache->key.offset, 2812 (unsigned long long)btrfs_block_group_used(&cache->item), 2813 (unsigned long long)cache->pinned, 2814 (unsigned long long)cache->reserved); 2815 btrfs_dump_free_space(cache, bytes); 2816 spin_unlock(&cache->lock); 2817 } 2818 up_read(&info->groups_sem); 2819 } 2820 2821 static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans, 2822 struct btrfs_root *root, 2823 u64 num_bytes, u64 min_alloc_size, 2824 u64 empty_size, u64 hint_byte, 2825 u64 search_end, struct btrfs_key *ins, 2826 u64 data) 2827 { 2828 int ret; 2829 u64 search_start = 0; 2830 struct btrfs_fs_info *info = root->fs_info; 2831 2832 data = btrfs_get_alloc_profile(root, data); 2833 again: 2834 /* 2835 * the only place that sets empty_size is btrfs_realloc_node, which 2836 * is not called recursively on allocations 2837 */ 2838 if (empty_size || root->ref_cows) { 2839 if (!(data & BTRFS_BLOCK_GROUP_METADATA)) { 2840 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 2841 2 * 1024 * 1024, 2842 BTRFS_BLOCK_GROUP_METADATA | 2843 (info->metadata_alloc_profile & 2844 info->avail_metadata_alloc_bits), 0); 2845 } 2846 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 2847 num_bytes + 2 * 1024 * 1024, data, 0); 2848 } 2849 2850 WARN_ON(num_bytes < root->sectorsize); 2851 ret = find_free_extent(trans, root, num_bytes, empty_size, 2852 search_start, search_end, hint_byte, ins, 2853 trans->alloc_exclude_start, 2854 trans->alloc_exclude_nr, data); 2855 2856 if (ret == -ENOSPC && num_bytes > min_alloc_size) { 2857 num_bytes = num_bytes >> 1; 2858 num_bytes = num_bytes & ~(root->sectorsize - 1); 2859 num_bytes = max(num_bytes, min_alloc_size); 2860 do_chunk_alloc(trans, root->fs_info->extent_root, 2861 num_bytes, data, 1); 2862 goto again; 2863 } 2864 if (ret) { 2865 struct btrfs_space_info *sinfo; 2866 2867 sinfo = __find_space_info(root->fs_info, data); 2868 printk(KERN_ERR "btrfs allocation failed flags %llu, " 2869 "wanted %llu\n", (unsigned long long)data, 2870 (unsigned long long)num_bytes); 2871 dump_space_info(sinfo, num_bytes); 2872 BUG(); 2873 } 2874 2875 return ret; 2876 } 2877 2878 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) 2879 { 2880 struct btrfs_block_group_cache *cache; 2881 int ret = 0; 2882 2883 cache = btrfs_lookup_block_group(root->fs_info, start); 2884 if (!cache) { 2885 printk(KERN_ERR "Unable to find block group for %llu\n", 2886 (unsigned long long)start); 2887 return -ENOSPC; 2888 } 2889 2890 ret = btrfs_discard_extent(root, start, len); 2891 2892 btrfs_add_free_space(cache, start, len); 2893 btrfs_put_block_group(cache); 2894 update_reserved_extents(root, start, len, 0); 2895 2896 return ret; 2897 } 2898 2899 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 u64 num_bytes, u64 min_alloc_size, 2902 u64 empty_size, u64 hint_byte, 2903 u64 search_end, struct btrfs_key *ins, 2904 u64 data) 2905 { 2906 int ret; 2907 ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size, 2908 empty_size, hint_byte, search_end, ins, 2909 data); 2910 update_reserved_extents(root, ins->objectid, ins->offset, 1); 2911 return ret; 2912 } 2913 2914 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, 2915 struct btrfs_root *root, u64 parent, 2916 u64 root_objectid, u64 ref_generation, 2917 u64 owner, struct btrfs_key *ins, 2918 int ref_mod) 2919 { 2920 int ret; 2921 u64 super_used; 2922 u64 root_used; 2923 u64 num_bytes = ins->offset; 2924 u32 sizes[2]; 2925 struct btrfs_fs_info *info = root->fs_info; 2926 struct btrfs_root *extent_root = info->extent_root; 2927 struct btrfs_extent_item *extent_item; 2928 struct btrfs_extent_ref *ref; 2929 struct btrfs_path *path; 2930 struct btrfs_key keys[2]; 2931 2932 if (parent == 0) 2933 parent = ins->objectid; 2934 2935 /* block accounting for super block */ 2936 spin_lock(&info->delalloc_lock); 2937 super_used = btrfs_super_bytes_used(&info->super_copy); 2938 btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes); 2939 2940 /* block accounting for root item */ 2941 root_used = btrfs_root_used(&root->root_item); 2942 btrfs_set_root_used(&root->root_item, root_used + num_bytes); 2943 spin_unlock(&info->delalloc_lock); 2944 2945 memcpy(&keys[0], ins, sizeof(*ins)); 2946 keys[1].objectid = ins->objectid; 2947 keys[1].type = BTRFS_EXTENT_REF_KEY; 2948 keys[1].offset = parent; 2949 sizes[0] = sizeof(*extent_item); 2950 sizes[1] = sizeof(*ref); 2951 2952 path = btrfs_alloc_path(); 2953 BUG_ON(!path); 2954 2955 path->leave_spinning = 1; 2956 ret = btrfs_insert_empty_items(trans, extent_root, path, keys, 2957 sizes, 2); 2958 BUG_ON(ret); 2959 2960 extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2961 struct btrfs_extent_item); 2962 btrfs_set_extent_refs(path->nodes[0], extent_item, ref_mod); 2963 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 2964 struct btrfs_extent_ref); 2965 2966 btrfs_set_ref_root(path->nodes[0], ref, root_objectid); 2967 btrfs_set_ref_generation(path->nodes[0], ref, ref_generation); 2968 btrfs_set_ref_objectid(path->nodes[0], ref, owner); 2969 btrfs_set_ref_num_refs(path->nodes[0], ref, ref_mod); 2970 2971 btrfs_mark_buffer_dirty(path->nodes[0]); 2972 2973 trans->alloc_exclude_start = 0; 2974 trans->alloc_exclude_nr = 0; 2975 btrfs_free_path(path); 2976 2977 if (ret) 2978 goto out; 2979 2980 ret = update_block_group(trans, root, ins->objectid, 2981 ins->offset, 1, 0); 2982 if (ret) { 2983 printk(KERN_ERR "btrfs update block group failed for %llu " 2984 "%llu\n", (unsigned long long)ins->objectid, 2985 (unsigned long long)ins->offset); 2986 BUG(); 2987 } 2988 out: 2989 return ret; 2990 } 2991 2992 int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, 2993 struct btrfs_root *root, u64 parent, 2994 u64 root_objectid, u64 ref_generation, 2995 u64 owner, struct btrfs_key *ins) 2996 { 2997 int ret; 2998 2999 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) 3000 return 0; 3001 3002 ret = btrfs_add_delayed_ref(trans, ins->objectid, 3003 ins->offset, parent, root_objectid, 3004 ref_generation, owner, 3005 BTRFS_ADD_DELAYED_EXTENT, 0); 3006 BUG_ON(ret); 3007 return ret; 3008 } 3009 3010 /* 3011 * this is used by the tree logging recovery code. It records that 3012 * an extent has been allocated and makes sure to clear the free 3013 * space cache bits as well 3014 */ 3015 int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans, 3016 struct btrfs_root *root, u64 parent, 3017 u64 root_objectid, u64 ref_generation, 3018 u64 owner, struct btrfs_key *ins) 3019 { 3020 int ret; 3021 struct btrfs_block_group_cache *block_group; 3022 3023 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 3024 mutex_lock(&block_group->cache_mutex); 3025 cache_block_group(root, block_group); 3026 mutex_unlock(&block_group->cache_mutex); 3027 3028 ret = btrfs_remove_free_space(block_group, ins->objectid, 3029 ins->offset); 3030 BUG_ON(ret); 3031 btrfs_put_block_group(block_group); 3032 ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid, 3033 ref_generation, owner, ins, 1); 3034 return ret; 3035 } 3036 3037 /* 3038 * finds a free extent and does all the dirty work required for allocation 3039 * returns the key for the extent through ins, and a tree buffer for 3040 * the first block of the extent through buf. 3041 * 3042 * returns 0 if everything worked, non-zero otherwise. 3043 */ 3044 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, 3045 struct btrfs_root *root, 3046 u64 num_bytes, u64 parent, u64 min_alloc_size, 3047 u64 root_objectid, u64 ref_generation, 3048 u64 owner_objectid, u64 empty_size, u64 hint_byte, 3049 u64 search_end, struct btrfs_key *ins, u64 data) 3050 { 3051 int ret; 3052 ret = __btrfs_reserve_extent(trans, root, num_bytes, 3053 min_alloc_size, empty_size, hint_byte, 3054 search_end, ins, data); 3055 BUG_ON(ret); 3056 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 3057 ret = btrfs_add_delayed_ref(trans, ins->objectid, 3058 ins->offset, parent, root_objectid, 3059 ref_generation, owner_objectid, 3060 BTRFS_ADD_DELAYED_EXTENT, 0); 3061 BUG_ON(ret); 3062 } 3063 update_reserved_extents(root, ins->objectid, ins->offset, 1); 3064 return ret; 3065 } 3066 3067 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 3068 struct btrfs_root *root, 3069 u64 bytenr, u32 blocksize, 3070 int level) 3071 { 3072 struct extent_buffer *buf; 3073 3074 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 3075 if (!buf) 3076 return ERR_PTR(-ENOMEM); 3077 btrfs_set_header_generation(buf, trans->transid); 3078 btrfs_set_buffer_lockdep_class(buf, level); 3079 btrfs_tree_lock(buf); 3080 clean_tree_block(trans, root, buf); 3081 3082 btrfs_set_lock_blocking(buf); 3083 btrfs_set_buffer_uptodate(buf); 3084 3085 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 3086 set_extent_dirty(&root->dirty_log_pages, buf->start, 3087 buf->start + buf->len - 1, GFP_NOFS); 3088 } else { 3089 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 3090 buf->start + buf->len - 1, GFP_NOFS); 3091 } 3092 trans->blocks_used++; 3093 /* this returns a buffer locked for blocking */ 3094 return buf; 3095 } 3096 3097 /* 3098 * helper function to allocate a block for a given tree 3099 * returns the tree buffer or NULL. 3100 */ 3101 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 3102 struct btrfs_root *root, 3103 u32 blocksize, u64 parent, 3104 u64 root_objectid, 3105 u64 ref_generation, 3106 int level, 3107 u64 hint, 3108 u64 empty_size) 3109 { 3110 struct btrfs_key ins; 3111 int ret; 3112 struct extent_buffer *buf; 3113 3114 ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize, 3115 root_objectid, ref_generation, level, 3116 empty_size, hint, (u64)-1, &ins, 0); 3117 if (ret) { 3118 BUG_ON(ret > 0); 3119 return ERR_PTR(ret); 3120 } 3121 3122 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 3123 blocksize, level); 3124 return buf; 3125 } 3126 3127 int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans, 3128 struct btrfs_root *root, struct extent_buffer *leaf) 3129 { 3130 u64 leaf_owner; 3131 u64 leaf_generation; 3132 struct refsort *sorted; 3133 struct btrfs_key key; 3134 struct btrfs_file_extent_item *fi; 3135 int i; 3136 int nritems; 3137 int ret; 3138 int refi = 0; 3139 int slot; 3140 3141 BUG_ON(!btrfs_is_leaf(leaf)); 3142 nritems = btrfs_header_nritems(leaf); 3143 leaf_owner = btrfs_header_owner(leaf); 3144 leaf_generation = btrfs_header_generation(leaf); 3145 3146 sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS); 3147 /* we do this loop twice. The first time we build a list 3148 * of the extents we have a reference on, then we sort the list 3149 * by bytenr. The second time around we actually do the 3150 * extent freeing. 3151 */ 3152 for (i = 0; i < nritems; i++) { 3153 u64 disk_bytenr; 3154 cond_resched(); 3155 3156 btrfs_item_key_to_cpu(leaf, &key, i); 3157 3158 /* only extents have references, skip everything else */ 3159 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3160 continue; 3161 3162 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3163 3164 /* inline extents live in the btree, they don't have refs */ 3165 if (btrfs_file_extent_type(leaf, fi) == 3166 BTRFS_FILE_EXTENT_INLINE) 3167 continue; 3168 3169 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 3170 3171 /* holes don't have refs */ 3172 if (disk_bytenr == 0) 3173 continue; 3174 3175 sorted[refi].bytenr = disk_bytenr; 3176 sorted[refi].slot = i; 3177 refi++; 3178 } 3179 3180 if (refi == 0) 3181 goto out; 3182 3183 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL); 3184 3185 for (i = 0; i < refi; i++) { 3186 u64 disk_bytenr; 3187 3188 disk_bytenr = sorted[i].bytenr; 3189 slot = sorted[i].slot; 3190 3191 cond_resched(); 3192 3193 btrfs_item_key_to_cpu(leaf, &key, slot); 3194 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3195 continue; 3196 3197 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 3198 3199 ret = btrfs_free_extent(trans, root, disk_bytenr, 3200 btrfs_file_extent_disk_num_bytes(leaf, fi), 3201 leaf->start, leaf_owner, leaf_generation, 3202 key.objectid, 0); 3203 BUG_ON(ret); 3204 3205 atomic_inc(&root->fs_info->throttle_gen); 3206 wake_up(&root->fs_info->transaction_throttle); 3207 cond_resched(); 3208 } 3209 out: 3210 kfree(sorted); 3211 return 0; 3212 } 3213 3214 static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans, 3215 struct btrfs_root *root, 3216 struct btrfs_leaf_ref *ref) 3217 { 3218 int i; 3219 int ret; 3220 struct btrfs_extent_info *info; 3221 struct refsort *sorted; 3222 3223 if (ref->nritems == 0) 3224 return 0; 3225 3226 sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS); 3227 for (i = 0; i < ref->nritems; i++) { 3228 sorted[i].bytenr = ref->extents[i].bytenr; 3229 sorted[i].slot = i; 3230 } 3231 sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL); 3232 3233 /* 3234 * the items in the ref were sorted when the ref was inserted 3235 * into the ref cache, so this is already in order 3236 */ 3237 for (i = 0; i < ref->nritems; i++) { 3238 info = ref->extents + sorted[i].slot; 3239 ret = btrfs_free_extent(trans, root, info->bytenr, 3240 info->num_bytes, ref->bytenr, 3241 ref->owner, ref->generation, 3242 info->objectid, 0); 3243 3244 atomic_inc(&root->fs_info->throttle_gen); 3245 wake_up(&root->fs_info->transaction_throttle); 3246 cond_resched(); 3247 3248 BUG_ON(ret); 3249 info++; 3250 } 3251 3252 kfree(sorted); 3253 return 0; 3254 } 3255 3256 static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans, 3257 struct btrfs_root *root, u64 start, 3258 u64 len, u32 *refs) 3259 { 3260 int ret; 3261 3262 ret = btrfs_lookup_extent_ref(trans, root, start, len, refs); 3263 BUG_ON(ret); 3264 3265 #if 0 /* some debugging code in case we see problems here */ 3266 /* if the refs count is one, it won't get increased again. But 3267 * if the ref count is > 1, someone may be decreasing it at 3268 * the same time we are. 3269 */ 3270 if (*refs != 1) { 3271 struct extent_buffer *eb = NULL; 3272 eb = btrfs_find_create_tree_block(root, start, len); 3273 if (eb) 3274 btrfs_tree_lock(eb); 3275 3276 mutex_lock(&root->fs_info->alloc_mutex); 3277 ret = lookup_extent_ref(NULL, root, start, len, refs); 3278 BUG_ON(ret); 3279 mutex_unlock(&root->fs_info->alloc_mutex); 3280 3281 if (eb) { 3282 btrfs_tree_unlock(eb); 3283 free_extent_buffer(eb); 3284 } 3285 if (*refs == 1) { 3286 printk(KERN_ERR "btrfs block %llu went down to one " 3287 "during drop_snap\n", (unsigned long long)start); 3288 } 3289 3290 } 3291 #endif 3292 3293 cond_resched(); 3294 return ret; 3295 } 3296 3297 /* 3298 * this is used while deleting old snapshots, and it drops the refs 3299 * on a whole subtree starting from a level 1 node. 3300 * 3301 * The idea is to sort all the leaf pointers, and then drop the 3302 * ref on all the leaves in order. Most of the time the leaves 3303 * will have ref cache entries, so no leaf IOs will be required to 3304 * find the extents they have references on. 3305 * 3306 * For each leaf, any references it has are also dropped in order 3307 * 3308 * This ends up dropping the references in something close to optimal 3309 * order for reading and modifying the extent allocation tree. 3310 */ 3311 static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans, 3312 struct btrfs_root *root, 3313 struct btrfs_path *path) 3314 { 3315 u64 bytenr; 3316 u64 root_owner; 3317 u64 root_gen; 3318 struct extent_buffer *eb = path->nodes[1]; 3319 struct extent_buffer *leaf; 3320 struct btrfs_leaf_ref *ref; 3321 struct refsort *sorted = NULL; 3322 int nritems = btrfs_header_nritems(eb); 3323 int ret; 3324 int i; 3325 int refi = 0; 3326 int slot = path->slots[1]; 3327 u32 blocksize = btrfs_level_size(root, 0); 3328 u32 refs; 3329 3330 if (nritems == 0) 3331 goto out; 3332 3333 root_owner = btrfs_header_owner(eb); 3334 root_gen = btrfs_header_generation(eb); 3335 sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS); 3336 3337 /* 3338 * step one, sort all the leaf pointers so we don't scribble 3339 * randomly into the extent allocation tree 3340 */ 3341 for (i = slot; i < nritems; i++) { 3342 sorted[refi].bytenr = btrfs_node_blockptr(eb, i); 3343 sorted[refi].slot = i; 3344 refi++; 3345 } 3346 3347 /* 3348 * nritems won't be zero, but if we're picking up drop_snapshot 3349 * after a crash, slot might be > 0, so double check things 3350 * just in case. 3351 */ 3352 if (refi == 0) 3353 goto out; 3354 3355 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL); 3356 3357 /* 3358 * the first loop frees everything the leaves point to 3359 */ 3360 for (i = 0; i < refi; i++) { 3361 u64 ptr_gen; 3362 3363 bytenr = sorted[i].bytenr; 3364 3365 /* 3366 * check the reference count on this leaf. If it is > 1 3367 * we just decrement it below and don't update any 3368 * of the refs the leaf points to. 3369 */ 3370 ret = drop_snap_lookup_refcount(trans, root, bytenr, 3371 blocksize, &refs); 3372 BUG_ON(ret); 3373 if (refs != 1) 3374 continue; 3375 3376 ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot); 3377 3378 /* 3379 * the leaf only had one reference, which means the 3380 * only thing pointing to this leaf is the snapshot 3381 * we're deleting. It isn't possible for the reference 3382 * count to increase again later 3383 * 3384 * The reference cache is checked for the leaf, 3385 * and if found we'll be able to drop any refs held by 3386 * the leaf without needing to read it in. 3387 */ 3388 ref = btrfs_lookup_leaf_ref(root, bytenr); 3389 if (ref && ref->generation != ptr_gen) { 3390 btrfs_free_leaf_ref(root, ref); 3391 ref = NULL; 3392 } 3393 if (ref) { 3394 ret = cache_drop_leaf_ref(trans, root, ref); 3395 BUG_ON(ret); 3396 btrfs_remove_leaf_ref(root, ref); 3397 btrfs_free_leaf_ref(root, ref); 3398 } else { 3399 /* 3400 * the leaf wasn't in the reference cache, so 3401 * we have to read it. 3402 */ 3403 leaf = read_tree_block(root, bytenr, blocksize, 3404 ptr_gen); 3405 ret = btrfs_drop_leaf_ref(trans, root, leaf); 3406 BUG_ON(ret); 3407 free_extent_buffer(leaf); 3408 } 3409 atomic_inc(&root->fs_info->throttle_gen); 3410 wake_up(&root->fs_info->transaction_throttle); 3411 cond_resched(); 3412 } 3413 3414 /* 3415 * run through the loop again to free the refs on the leaves. 3416 * This is faster than doing it in the loop above because 3417 * the leaves are likely to be clustered together. We end up 3418 * working in nice chunks on the extent allocation tree. 3419 */ 3420 for (i = 0; i < refi; i++) { 3421 bytenr = sorted[i].bytenr; 3422 ret = btrfs_free_extent(trans, root, bytenr, 3423 blocksize, eb->start, 3424 root_owner, root_gen, 0, 1); 3425 BUG_ON(ret); 3426 3427 atomic_inc(&root->fs_info->throttle_gen); 3428 wake_up(&root->fs_info->transaction_throttle); 3429 cond_resched(); 3430 } 3431 out: 3432 kfree(sorted); 3433 3434 /* 3435 * update the path to show we've processed the entire level 1 3436 * node. This will get saved into the root's drop_snapshot_progress 3437 * field so these drops are not repeated again if this transaction 3438 * commits. 3439 */ 3440 path->slots[1] = nritems; 3441 return 0; 3442 } 3443 3444 /* 3445 * helper function for drop_snapshot, this walks down the tree dropping ref 3446 * counts as it goes. 3447 */ 3448 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 3449 struct btrfs_root *root, 3450 struct btrfs_path *path, int *level) 3451 { 3452 u64 root_owner; 3453 u64 root_gen; 3454 u64 bytenr; 3455 u64 ptr_gen; 3456 struct extent_buffer *next; 3457 struct extent_buffer *cur; 3458 struct extent_buffer *parent; 3459 u32 blocksize; 3460 int ret; 3461 u32 refs; 3462 3463 WARN_ON(*level < 0); 3464 WARN_ON(*level >= BTRFS_MAX_LEVEL); 3465 ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start, 3466 path->nodes[*level]->len, &refs); 3467 BUG_ON(ret); 3468 if (refs > 1) 3469 goto out; 3470 3471 /* 3472 * walk down to the last node level and free all the leaves 3473 */ 3474 while (*level >= 0) { 3475 WARN_ON(*level < 0); 3476 WARN_ON(*level >= BTRFS_MAX_LEVEL); 3477 cur = path->nodes[*level]; 3478 3479 if (btrfs_header_level(cur) != *level) 3480 WARN_ON(1); 3481 3482 if (path->slots[*level] >= 3483 btrfs_header_nritems(cur)) 3484 break; 3485 3486 /* the new code goes down to level 1 and does all the 3487 * leaves pointed to that node in bulk. So, this check 3488 * for level 0 will always be false. 3489 * 3490 * But, the disk format allows the drop_snapshot_progress 3491 * field in the root to leave things in a state where 3492 * a leaf will need cleaning up here. If someone crashes 3493 * with the old code and then boots with the new code, 3494 * we might find a leaf here. 3495 */ 3496 if (*level == 0) { 3497 ret = btrfs_drop_leaf_ref(trans, root, cur); 3498 BUG_ON(ret); 3499 break; 3500 } 3501 3502 /* 3503 * once we get to level one, process the whole node 3504 * at once, including everything below it. 3505 */ 3506 if (*level == 1) { 3507 ret = drop_level_one_refs(trans, root, path); 3508 BUG_ON(ret); 3509 break; 3510 } 3511 3512 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 3513 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 3514 blocksize = btrfs_level_size(root, *level - 1); 3515 3516 ret = drop_snap_lookup_refcount(trans, root, bytenr, 3517 blocksize, &refs); 3518 BUG_ON(ret); 3519 3520 /* 3521 * if there is more than one reference, we don't need 3522 * to read that node to drop any references it has. We 3523 * just drop the ref we hold on that node and move on to the 3524 * next slot in this level. 3525 */ 3526 if (refs != 1) { 3527 parent = path->nodes[*level]; 3528 root_owner = btrfs_header_owner(parent); 3529 root_gen = btrfs_header_generation(parent); 3530 path->slots[*level]++; 3531 3532 ret = btrfs_free_extent(trans, root, bytenr, 3533 blocksize, parent->start, 3534 root_owner, root_gen, 3535 *level - 1, 1); 3536 BUG_ON(ret); 3537 3538 atomic_inc(&root->fs_info->throttle_gen); 3539 wake_up(&root->fs_info->transaction_throttle); 3540 cond_resched(); 3541 3542 continue; 3543 } 3544 3545 /* 3546 * we need to keep freeing things in the next level down. 3547 * read the block and loop around to process it 3548 */ 3549 next = read_tree_block(root, bytenr, blocksize, ptr_gen); 3550 WARN_ON(*level <= 0); 3551 if (path->nodes[*level-1]) 3552 free_extent_buffer(path->nodes[*level-1]); 3553 path->nodes[*level-1] = next; 3554 *level = btrfs_header_level(next); 3555 path->slots[*level] = 0; 3556 cond_resched(); 3557 } 3558 out: 3559 WARN_ON(*level < 0); 3560 WARN_ON(*level >= BTRFS_MAX_LEVEL); 3561 3562 if (path->nodes[*level] == root->node) { 3563 parent = path->nodes[*level]; 3564 bytenr = path->nodes[*level]->start; 3565 } else { 3566 parent = path->nodes[*level + 1]; 3567 bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]); 3568 } 3569 3570 blocksize = btrfs_level_size(root, *level); 3571 root_owner = btrfs_header_owner(parent); 3572 root_gen = btrfs_header_generation(parent); 3573 3574 /* 3575 * cleanup and free the reference on the last node 3576 * we processed 3577 */ 3578 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 3579 parent->start, root_owner, root_gen, 3580 *level, 1); 3581 free_extent_buffer(path->nodes[*level]); 3582 path->nodes[*level] = NULL; 3583 3584 *level += 1; 3585 BUG_ON(ret); 3586 3587 cond_resched(); 3588 return 0; 3589 } 3590 3591 /* 3592 * helper function for drop_subtree, this function is similar to 3593 * walk_down_tree. The main difference is that it checks reference 3594 * counts while tree blocks are locked. 3595 */ 3596 static noinline int walk_down_subtree(struct btrfs_trans_handle *trans, 3597 struct btrfs_root *root, 3598 struct btrfs_path *path, int *level) 3599 { 3600 struct extent_buffer *next; 3601 struct extent_buffer *cur; 3602 struct extent_buffer *parent; 3603 u64 bytenr; 3604 u64 ptr_gen; 3605 u32 blocksize; 3606 u32 refs; 3607 int ret; 3608 3609 cur = path->nodes[*level]; 3610 ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len, 3611 &refs); 3612 BUG_ON(ret); 3613 if (refs > 1) 3614 goto out; 3615 3616 while (*level >= 0) { 3617 cur = path->nodes[*level]; 3618 if (*level == 0) { 3619 ret = btrfs_drop_leaf_ref(trans, root, cur); 3620 BUG_ON(ret); 3621 clean_tree_block(trans, root, cur); 3622 break; 3623 } 3624 if (path->slots[*level] >= btrfs_header_nritems(cur)) { 3625 clean_tree_block(trans, root, cur); 3626 break; 3627 } 3628 3629 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 3630 blocksize = btrfs_level_size(root, *level - 1); 3631 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 3632 3633 next = read_tree_block(root, bytenr, blocksize, ptr_gen); 3634 btrfs_tree_lock(next); 3635 btrfs_set_lock_blocking(next); 3636 3637 ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize, 3638 &refs); 3639 BUG_ON(ret); 3640 if (refs > 1) { 3641 parent = path->nodes[*level]; 3642 ret = btrfs_free_extent(trans, root, bytenr, 3643 blocksize, parent->start, 3644 btrfs_header_owner(parent), 3645 btrfs_header_generation(parent), 3646 *level - 1, 1); 3647 BUG_ON(ret); 3648 path->slots[*level]++; 3649 btrfs_tree_unlock(next); 3650 free_extent_buffer(next); 3651 continue; 3652 } 3653 3654 *level = btrfs_header_level(next); 3655 path->nodes[*level] = next; 3656 path->slots[*level] = 0; 3657 path->locks[*level] = 1; 3658 cond_resched(); 3659 } 3660 out: 3661 parent = path->nodes[*level + 1]; 3662 bytenr = path->nodes[*level]->start; 3663 blocksize = path->nodes[*level]->len; 3664 3665 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 3666 parent->start, btrfs_header_owner(parent), 3667 btrfs_header_generation(parent), *level, 1); 3668 BUG_ON(ret); 3669 3670 if (path->locks[*level]) { 3671 btrfs_tree_unlock(path->nodes[*level]); 3672 path->locks[*level] = 0; 3673 } 3674 free_extent_buffer(path->nodes[*level]); 3675 path->nodes[*level] = NULL; 3676 *level += 1; 3677 cond_resched(); 3678 return 0; 3679 } 3680 3681 /* 3682 * helper for dropping snapshots. This walks back up the tree in the path 3683 * to find the first node higher up where we haven't yet gone through 3684 * all the slots 3685 */ 3686 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 3687 struct btrfs_root *root, 3688 struct btrfs_path *path, 3689 int *level, int max_level) 3690 { 3691 u64 root_owner; 3692 u64 root_gen; 3693 struct btrfs_root_item *root_item = &root->root_item; 3694 int i; 3695 int slot; 3696 int ret; 3697 3698 for (i = *level; i < max_level && path->nodes[i]; i++) { 3699 slot = path->slots[i]; 3700 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { 3701 struct extent_buffer *node; 3702 struct btrfs_disk_key disk_key; 3703 3704 /* 3705 * there is more work to do in this level. 3706 * Update the drop_progress marker to reflect 3707 * the work we've done so far, and then bump 3708 * the slot number 3709 */ 3710 node = path->nodes[i]; 3711 path->slots[i]++; 3712 *level = i; 3713 WARN_ON(*level == 0); 3714 btrfs_node_key(node, &disk_key, path->slots[i]); 3715 memcpy(&root_item->drop_progress, 3716 &disk_key, sizeof(disk_key)); 3717 root_item->drop_level = i; 3718 return 0; 3719 } else { 3720 struct extent_buffer *parent; 3721 3722 /* 3723 * this whole node is done, free our reference 3724 * on it and go up one level 3725 */ 3726 if (path->nodes[*level] == root->node) 3727 parent = path->nodes[*level]; 3728 else 3729 parent = path->nodes[*level + 1]; 3730 3731 root_owner = btrfs_header_owner(parent); 3732 root_gen = btrfs_header_generation(parent); 3733 3734 clean_tree_block(trans, root, path->nodes[*level]); 3735 ret = btrfs_free_extent(trans, root, 3736 path->nodes[*level]->start, 3737 path->nodes[*level]->len, 3738 parent->start, root_owner, 3739 root_gen, *level, 1); 3740 BUG_ON(ret); 3741 if (path->locks[*level]) { 3742 btrfs_tree_unlock(path->nodes[*level]); 3743 path->locks[*level] = 0; 3744 } 3745 free_extent_buffer(path->nodes[*level]); 3746 path->nodes[*level] = NULL; 3747 *level = i + 1; 3748 } 3749 } 3750 return 1; 3751 } 3752 3753 /* 3754 * drop the reference count on the tree rooted at 'snap'. This traverses 3755 * the tree freeing any blocks that have a ref count of zero after being 3756 * decremented. 3757 */ 3758 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root 3759 *root) 3760 { 3761 int ret = 0; 3762 int wret; 3763 int level; 3764 struct btrfs_path *path; 3765 int i; 3766 int orig_level; 3767 int update_count; 3768 struct btrfs_root_item *root_item = &root->root_item; 3769 3770 WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex)); 3771 path = btrfs_alloc_path(); 3772 BUG_ON(!path); 3773 3774 level = btrfs_header_level(root->node); 3775 orig_level = level; 3776 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 3777 path->nodes[level] = root->node; 3778 extent_buffer_get(root->node); 3779 path->slots[level] = 0; 3780 } else { 3781 struct btrfs_key key; 3782 struct btrfs_disk_key found_key; 3783 struct extent_buffer *node; 3784 3785 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 3786 level = root_item->drop_level; 3787 path->lowest_level = level; 3788 wret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3789 if (wret < 0) { 3790 ret = wret; 3791 goto out; 3792 } 3793 node = path->nodes[level]; 3794 btrfs_node_key(node, &found_key, path->slots[level]); 3795 WARN_ON(memcmp(&found_key, &root_item->drop_progress, 3796 sizeof(found_key))); 3797 /* 3798 * unlock our path, this is safe because only this 3799 * function is allowed to delete this snapshot 3800 */ 3801 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 3802 if (path->nodes[i] && path->locks[i]) { 3803 path->locks[i] = 0; 3804 btrfs_tree_unlock(path->nodes[i]); 3805 } 3806 } 3807 } 3808 while (1) { 3809 unsigned long update; 3810 wret = walk_down_tree(trans, root, path, &level); 3811 if (wret > 0) 3812 break; 3813 if (wret < 0) 3814 ret = wret; 3815 3816 wret = walk_up_tree(trans, root, path, &level, 3817 BTRFS_MAX_LEVEL); 3818 if (wret > 0) 3819 break; 3820 if (wret < 0) 3821 ret = wret; 3822 if (trans->transaction->in_commit || 3823 trans->transaction->delayed_refs.flushing) { 3824 ret = -EAGAIN; 3825 break; 3826 } 3827 atomic_inc(&root->fs_info->throttle_gen); 3828 wake_up(&root->fs_info->transaction_throttle); 3829 for (update_count = 0; update_count < 16; update_count++) { 3830 update = trans->delayed_ref_updates; 3831 trans->delayed_ref_updates = 0; 3832 if (update) 3833 btrfs_run_delayed_refs(trans, root, update); 3834 else 3835 break; 3836 } 3837 } 3838 for (i = 0; i <= orig_level; i++) { 3839 if (path->nodes[i]) { 3840 free_extent_buffer(path->nodes[i]); 3841 path->nodes[i] = NULL; 3842 } 3843 } 3844 out: 3845 btrfs_free_path(path); 3846 return ret; 3847 } 3848 3849 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3850 struct btrfs_root *root, 3851 struct extent_buffer *node, 3852 struct extent_buffer *parent) 3853 { 3854 struct btrfs_path *path; 3855 int level; 3856 int parent_level; 3857 int ret = 0; 3858 int wret; 3859 3860 path = btrfs_alloc_path(); 3861 BUG_ON(!path); 3862 3863 btrfs_assert_tree_locked(parent); 3864 parent_level = btrfs_header_level(parent); 3865 extent_buffer_get(parent); 3866 path->nodes[parent_level] = parent; 3867 path->slots[parent_level] = btrfs_header_nritems(parent); 3868 3869 btrfs_assert_tree_locked(node); 3870 level = btrfs_header_level(node); 3871 extent_buffer_get(node); 3872 path->nodes[level] = node; 3873 path->slots[level] = 0; 3874 3875 while (1) { 3876 wret = walk_down_subtree(trans, root, path, &level); 3877 if (wret < 0) 3878 ret = wret; 3879 if (wret != 0) 3880 break; 3881 3882 wret = walk_up_tree(trans, root, path, &level, parent_level); 3883 if (wret < 0) 3884 ret = wret; 3885 if (wret != 0) 3886 break; 3887 } 3888 3889 btrfs_free_path(path); 3890 return ret; 3891 } 3892 3893 static unsigned long calc_ra(unsigned long start, unsigned long last, 3894 unsigned long nr) 3895 { 3896 return min(last, start + nr - 1); 3897 } 3898 3899 static noinline int relocate_inode_pages(struct inode *inode, u64 start, 3900 u64 len) 3901 { 3902 u64 page_start; 3903 u64 page_end; 3904 unsigned long first_index; 3905 unsigned long last_index; 3906 unsigned long i; 3907 struct page *page; 3908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3909 struct file_ra_state *ra; 3910 struct btrfs_ordered_extent *ordered; 3911 unsigned int total_read = 0; 3912 unsigned int total_dirty = 0; 3913 int ret = 0; 3914 3915 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3916 3917 mutex_lock(&inode->i_mutex); 3918 first_index = start >> PAGE_CACHE_SHIFT; 3919 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; 3920 3921 /* make sure the dirty trick played by the caller work */ 3922 ret = invalidate_inode_pages2_range(inode->i_mapping, 3923 first_index, last_index); 3924 if (ret) 3925 goto out_unlock; 3926 3927 file_ra_state_init(ra, inode->i_mapping); 3928 3929 for (i = first_index ; i <= last_index; i++) { 3930 if (total_read % ra->ra_pages == 0) { 3931 btrfs_force_ra(inode->i_mapping, ra, NULL, i, 3932 calc_ra(i, last_index, ra->ra_pages)); 3933 } 3934 total_read++; 3935 again: 3936 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) 3937 BUG_ON(1); 3938 page = grab_cache_page(inode->i_mapping, i); 3939 if (!page) { 3940 ret = -ENOMEM; 3941 goto out_unlock; 3942 } 3943 if (!PageUptodate(page)) { 3944 btrfs_readpage(NULL, page); 3945 lock_page(page); 3946 if (!PageUptodate(page)) { 3947 unlock_page(page); 3948 page_cache_release(page); 3949 ret = -EIO; 3950 goto out_unlock; 3951 } 3952 } 3953 wait_on_page_writeback(page); 3954 3955 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 3956 page_end = page_start + PAGE_CACHE_SIZE - 1; 3957 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 3958 3959 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3960 if (ordered) { 3961 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3962 unlock_page(page); 3963 page_cache_release(page); 3964 btrfs_start_ordered_extent(inode, ordered, 1); 3965 btrfs_put_ordered_extent(ordered); 3966 goto again; 3967 } 3968 set_page_extent_mapped(page); 3969 3970 if (i == first_index) 3971 set_extent_bits(io_tree, page_start, page_end, 3972 EXTENT_BOUNDARY, GFP_NOFS); 3973 btrfs_set_extent_delalloc(inode, page_start, page_end); 3974 3975 set_page_dirty(page); 3976 total_dirty++; 3977 3978 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3979 unlock_page(page); 3980 page_cache_release(page); 3981 } 3982 3983 out_unlock: 3984 kfree(ra); 3985 mutex_unlock(&inode->i_mutex); 3986 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); 3987 return ret; 3988 } 3989 3990 static noinline int relocate_data_extent(struct inode *reloc_inode, 3991 struct btrfs_key *extent_key, 3992 u64 offset) 3993 { 3994 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 3995 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; 3996 struct extent_map *em; 3997 u64 start = extent_key->objectid - offset; 3998 u64 end = start + extent_key->offset - 1; 3999 4000 em = alloc_extent_map(GFP_NOFS); 4001 BUG_ON(!em || IS_ERR(em)); 4002 4003 em->start = start; 4004 em->len = extent_key->offset; 4005 em->block_len = extent_key->offset; 4006 em->block_start = extent_key->objectid; 4007 em->bdev = root->fs_info->fs_devices->latest_bdev; 4008 set_bit(EXTENT_FLAG_PINNED, &em->flags); 4009 4010 /* setup extent map to cheat btrfs_readpage */ 4011 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 4012 while (1) { 4013 int ret; 4014 spin_lock(&em_tree->lock); 4015 ret = add_extent_mapping(em_tree, em); 4016 spin_unlock(&em_tree->lock); 4017 if (ret != -EEXIST) { 4018 free_extent_map(em); 4019 break; 4020 } 4021 btrfs_drop_extent_cache(reloc_inode, start, end, 0); 4022 } 4023 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 4024 4025 return relocate_inode_pages(reloc_inode, start, extent_key->offset); 4026 } 4027 4028 struct btrfs_ref_path { 4029 u64 extent_start; 4030 u64 nodes[BTRFS_MAX_LEVEL]; 4031 u64 root_objectid; 4032 u64 root_generation; 4033 u64 owner_objectid; 4034 u32 num_refs; 4035 int lowest_level; 4036 int current_level; 4037 int shared_level; 4038 4039 struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; 4040 u64 new_nodes[BTRFS_MAX_LEVEL]; 4041 }; 4042 4043 struct disk_extent { 4044 u64 ram_bytes; 4045 u64 disk_bytenr; 4046 u64 disk_num_bytes; 4047 u64 offset; 4048 u64 num_bytes; 4049 u8 compression; 4050 u8 encryption; 4051 u16 other_encoding; 4052 }; 4053 4054 static int is_cowonly_root(u64 root_objectid) 4055 { 4056 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 4057 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 4058 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 4059 root_objectid == BTRFS_DEV_TREE_OBJECTID || 4060 root_objectid == BTRFS_TREE_LOG_OBJECTID || 4061 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 4062 return 1; 4063 return 0; 4064 } 4065 4066 static noinline int __next_ref_path(struct btrfs_trans_handle *trans, 4067 struct btrfs_root *extent_root, 4068 struct btrfs_ref_path *ref_path, 4069 int first_time) 4070 { 4071 struct extent_buffer *leaf; 4072 struct btrfs_path *path; 4073 struct btrfs_extent_ref *ref; 4074 struct btrfs_key key; 4075 struct btrfs_key found_key; 4076 u64 bytenr; 4077 u32 nritems; 4078 int level; 4079 int ret = 1; 4080 4081 path = btrfs_alloc_path(); 4082 if (!path) 4083 return -ENOMEM; 4084 4085 if (first_time) { 4086 ref_path->lowest_level = -1; 4087 ref_path->current_level = -1; 4088 ref_path->shared_level = -1; 4089 goto walk_up; 4090 } 4091 walk_down: 4092 level = ref_path->current_level - 1; 4093 while (level >= -1) { 4094 u64 parent; 4095 if (level < ref_path->lowest_level) 4096 break; 4097 4098 if (level >= 0) 4099 bytenr = ref_path->nodes[level]; 4100 else 4101 bytenr = ref_path->extent_start; 4102 BUG_ON(bytenr == 0); 4103 4104 parent = ref_path->nodes[level + 1]; 4105 ref_path->nodes[level + 1] = 0; 4106 ref_path->current_level = level; 4107 BUG_ON(parent == 0); 4108 4109 key.objectid = bytenr; 4110 key.offset = parent + 1; 4111 key.type = BTRFS_EXTENT_REF_KEY; 4112 4113 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 4114 if (ret < 0) 4115 goto out; 4116 BUG_ON(ret == 0); 4117 4118 leaf = path->nodes[0]; 4119 nritems = btrfs_header_nritems(leaf); 4120 if (path->slots[0] >= nritems) { 4121 ret = btrfs_next_leaf(extent_root, path); 4122 if (ret < 0) 4123 goto out; 4124 if (ret > 0) 4125 goto next; 4126 leaf = path->nodes[0]; 4127 } 4128 4129 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4130 if (found_key.objectid == bytenr && 4131 found_key.type == BTRFS_EXTENT_REF_KEY) { 4132 if (level < ref_path->shared_level) 4133 ref_path->shared_level = level; 4134 goto found; 4135 } 4136 next: 4137 level--; 4138 btrfs_release_path(extent_root, path); 4139 cond_resched(); 4140 } 4141 /* reached lowest level */ 4142 ret = 1; 4143 goto out; 4144 walk_up: 4145 level = ref_path->current_level; 4146 while (level < BTRFS_MAX_LEVEL - 1) { 4147 u64 ref_objectid; 4148 4149 if (level >= 0) 4150 bytenr = ref_path->nodes[level]; 4151 else 4152 bytenr = ref_path->extent_start; 4153 4154 BUG_ON(bytenr == 0); 4155 4156 key.objectid = bytenr; 4157 key.offset = 0; 4158 key.type = BTRFS_EXTENT_REF_KEY; 4159 4160 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 4161 if (ret < 0) 4162 goto out; 4163 4164 leaf = path->nodes[0]; 4165 nritems = btrfs_header_nritems(leaf); 4166 if (path->slots[0] >= nritems) { 4167 ret = btrfs_next_leaf(extent_root, path); 4168 if (ret < 0) 4169 goto out; 4170 if (ret > 0) { 4171 /* the extent was freed by someone */ 4172 if (ref_path->lowest_level == level) 4173 goto out; 4174 btrfs_release_path(extent_root, path); 4175 goto walk_down; 4176 } 4177 leaf = path->nodes[0]; 4178 } 4179 4180 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4181 if (found_key.objectid != bytenr || 4182 found_key.type != BTRFS_EXTENT_REF_KEY) { 4183 /* the extent was freed by someone */ 4184 if (ref_path->lowest_level == level) { 4185 ret = 1; 4186 goto out; 4187 } 4188 btrfs_release_path(extent_root, path); 4189 goto walk_down; 4190 } 4191 found: 4192 ref = btrfs_item_ptr(leaf, path->slots[0], 4193 struct btrfs_extent_ref); 4194 ref_objectid = btrfs_ref_objectid(leaf, ref); 4195 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4196 if (first_time) { 4197 level = (int)ref_objectid; 4198 BUG_ON(level >= BTRFS_MAX_LEVEL); 4199 ref_path->lowest_level = level; 4200 ref_path->current_level = level; 4201 ref_path->nodes[level] = bytenr; 4202 } else { 4203 WARN_ON(ref_objectid != level); 4204 } 4205 } else { 4206 WARN_ON(level != -1); 4207 } 4208 first_time = 0; 4209 4210 if (ref_path->lowest_level == level) { 4211 ref_path->owner_objectid = ref_objectid; 4212 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); 4213 } 4214 4215 /* 4216 * the block is tree root or the block isn't in reference 4217 * counted tree. 4218 */ 4219 if (found_key.objectid == found_key.offset || 4220 is_cowonly_root(btrfs_ref_root(leaf, ref))) { 4221 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 4222 ref_path->root_generation = 4223 btrfs_ref_generation(leaf, ref); 4224 if (level < 0) { 4225 /* special reference from the tree log */ 4226 ref_path->nodes[0] = found_key.offset; 4227 ref_path->current_level = 0; 4228 } 4229 ret = 0; 4230 goto out; 4231 } 4232 4233 level++; 4234 BUG_ON(ref_path->nodes[level] != 0); 4235 ref_path->nodes[level] = found_key.offset; 4236 ref_path->current_level = level; 4237 4238 /* 4239 * the reference was created in the running transaction, 4240 * no need to continue walking up. 4241 */ 4242 if (btrfs_ref_generation(leaf, ref) == trans->transid) { 4243 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 4244 ref_path->root_generation = 4245 btrfs_ref_generation(leaf, ref); 4246 ret = 0; 4247 goto out; 4248 } 4249 4250 btrfs_release_path(extent_root, path); 4251 cond_resched(); 4252 } 4253 /* reached max tree level, but no tree root found. */ 4254 BUG(); 4255 out: 4256 btrfs_free_path(path); 4257 return ret; 4258 } 4259 4260 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, 4261 struct btrfs_root *extent_root, 4262 struct btrfs_ref_path *ref_path, 4263 u64 extent_start) 4264 { 4265 memset(ref_path, 0, sizeof(*ref_path)); 4266 ref_path->extent_start = extent_start; 4267 4268 return __next_ref_path(trans, extent_root, ref_path, 1); 4269 } 4270 4271 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, 4272 struct btrfs_root *extent_root, 4273 struct btrfs_ref_path *ref_path) 4274 { 4275 return __next_ref_path(trans, extent_root, ref_path, 0); 4276 } 4277 4278 static noinline int get_new_locations(struct inode *reloc_inode, 4279 struct btrfs_key *extent_key, 4280 u64 offset, int no_fragment, 4281 struct disk_extent **extents, 4282 int *nr_extents) 4283 { 4284 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 4285 struct btrfs_path *path; 4286 struct btrfs_file_extent_item *fi; 4287 struct extent_buffer *leaf; 4288 struct disk_extent *exts = *extents; 4289 struct btrfs_key found_key; 4290 u64 cur_pos; 4291 u64 last_byte; 4292 u32 nritems; 4293 int nr = 0; 4294 int max = *nr_extents; 4295 int ret; 4296 4297 WARN_ON(!no_fragment && *extents); 4298 if (!exts) { 4299 max = 1; 4300 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); 4301 if (!exts) 4302 return -ENOMEM; 4303 } 4304 4305 path = btrfs_alloc_path(); 4306 BUG_ON(!path); 4307 4308 cur_pos = extent_key->objectid - offset; 4309 last_byte = extent_key->objectid + extent_key->offset; 4310 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, 4311 cur_pos, 0); 4312 if (ret < 0) 4313 goto out; 4314 if (ret > 0) { 4315 ret = -ENOENT; 4316 goto out; 4317 } 4318 4319 while (1) { 4320 leaf = path->nodes[0]; 4321 nritems = btrfs_header_nritems(leaf); 4322 if (path->slots[0] >= nritems) { 4323 ret = btrfs_next_leaf(root, path); 4324 if (ret < 0) 4325 goto out; 4326 if (ret > 0) 4327 break; 4328 leaf = path->nodes[0]; 4329 } 4330 4331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4332 if (found_key.offset != cur_pos || 4333 found_key.type != BTRFS_EXTENT_DATA_KEY || 4334 found_key.objectid != reloc_inode->i_ino) 4335 break; 4336 4337 fi = btrfs_item_ptr(leaf, path->slots[0], 4338 struct btrfs_file_extent_item); 4339 if (btrfs_file_extent_type(leaf, fi) != 4340 BTRFS_FILE_EXTENT_REG || 4341 btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 4342 break; 4343 4344 if (nr == max) { 4345 struct disk_extent *old = exts; 4346 max *= 2; 4347 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); 4348 memcpy(exts, old, sizeof(*exts) * nr); 4349 if (old != *extents) 4350 kfree(old); 4351 } 4352 4353 exts[nr].disk_bytenr = 4354 btrfs_file_extent_disk_bytenr(leaf, fi); 4355 exts[nr].disk_num_bytes = 4356 btrfs_file_extent_disk_num_bytes(leaf, fi); 4357 exts[nr].offset = btrfs_file_extent_offset(leaf, fi); 4358 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 4359 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 4360 exts[nr].compression = btrfs_file_extent_compression(leaf, fi); 4361 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); 4362 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, 4363 fi); 4364 BUG_ON(exts[nr].offset > 0); 4365 BUG_ON(exts[nr].compression || exts[nr].encryption); 4366 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); 4367 4368 cur_pos += exts[nr].num_bytes; 4369 nr++; 4370 4371 if (cur_pos + offset >= last_byte) 4372 break; 4373 4374 if (no_fragment) { 4375 ret = 1; 4376 goto out; 4377 } 4378 path->slots[0]++; 4379 } 4380 4381 BUG_ON(cur_pos + offset > last_byte); 4382 if (cur_pos + offset < last_byte) { 4383 ret = -ENOENT; 4384 goto out; 4385 } 4386 ret = 0; 4387 out: 4388 btrfs_free_path(path); 4389 if (ret) { 4390 if (exts != *extents) 4391 kfree(exts); 4392 } else { 4393 *extents = exts; 4394 *nr_extents = nr; 4395 } 4396 return ret; 4397 } 4398 4399 static noinline int replace_one_extent(struct btrfs_trans_handle *trans, 4400 struct btrfs_root *root, 4401 struct btrfs_path *path, 4402 struct btrfs_key *extent_key, 4403 struct btrfs_key *leaf_key, 4404 struct btrfs_ref_path *ref_path, 4405 struct disk_extent *new_extents, 4406 int nr_extents) 4407 { 4408 struct extent_buffer *leaf; 4409 struct btrfs_file_extent_item *fi; 4410 struct inode *inode = NULL; 4411 struct btrfs_key key; 4412 u64 lock_start = 0; 4413 u64 lock_end = 0; 4414 u64 num_bytes; 4415 u64 ext_offset; 4416 u64 search_end = (u64)-1; 4417 u32 nritems; 4418 int nr_scaned = 0; 4419 int extent_locked = 0; 4420 int extent_type; 4421 int ret; 4422 4423 memcpy(&key, leaf_key, sizeof(key)); 4424 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 4425 if (key.objectid < ref_path->owner_objectid || 4426 (key.objectid == ref_path->owner_objectid && 4427 key.type < BTRFS_EXTENT_DATA_KEY)) { 4428 key.objectid = ref_path->owner_objectid; 4429 key.type = BTRFS_EXTENT_DATA_KEY; 4430 key.offset = 0; 4431 } 4432 } 4433 4434 while (1) { 4435 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4436 if (ret < 0) 4437 goto out; 4438 4439 leaf = path->nodes[0]; 4440 nritems = btrfs_header_nritems(leaf); 4441 next: 4442 if (extent_locked && ret > 0) { 4443 /* 4444 * the file extent item was modified by someone 4445 * before the extent got locked. 4446 */ 4447 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4448 lock_end, GFP_NOFS); 4449 extent_locked = 0; 4450 } 4451 4452 if (path->slots[0] >= nritems) { 4453 if (++nr_scaned > 2) 4454 break; 4455 4456 BUG_ON(extent_locked); 4457 ret = btrfs_next_leaf(root, path); 4458 if (ret < 0) 4459 goto out; 4460 if (ret > 0) 4461 break; 4462 leaf = path->nodes[0]; 4463 nritems = btrfs_header_nritems(leaf); 4464 } 4465 4466 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4467 4468 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 4469 if ((key.objectid > ref_path->owner_objectid) || 4470 (key.objectid == ref_path->owner_objectid && 4471 key.type > BTRFS_EXTENT_DATA_KEY) || 4472 key.offset >= search_end) 4473 break; 4474 } 4475 4476 if (inode && key.objectid != inode->i_ino) { 4477 BUG_ON(extent_locked); 4478 btrfs_release_path(root, path); 4479 mutex_unlock(&inode->i_mutex); 4480 iput(inode); 4481 inode = NULL; 4482 continue; 4483 } 4484 4485 if (key.type != BTRFS_EXTENT_DATA_KEY) { 4486 path->slots[0]++; 4487 ret = 1; 4488 goto next; 4489 } 4490 fi = btrfs_item_ptr(leaf, path->slots[0], 4491 struct btrfs_file_extent_item); 4492 extent_type = btrfs_file_extent_type(leaf, fi); 4493 if ((extent_type != BTRFS_FILE_EXTENT_REG && 4494 extent_type != BTRFS_FILE_EXTENT_PREALLOC) || 4495 (btrfs_file_extent_disk_bytenr(leaf, fi) != 4496 extent_key->objectid)) { 4497 path->slots[0]++; 4498 ret = 1; 4499 goto next; 4500 } 4501 4502 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 4503 ext_offset = btrfs_file_extent_offset(leaf, fi); 4504 4505 if (search_end == (u64)-1) { 4506 search_end = key.offset - ext_offset + 4507 btrfs_file_extent_ram_bytes(leaf, fi); 4508 } 4509 4510 if (!extent_locked) { 4511 lock_start = key.offset; 4512 lock_end = lock_start + num_bytes - 1; 4513 } else { 4514 if (lock_start > key.offset || 4515 lock_end + 1 < key.offset + num_bytes) { 4516 unlock_extent(&BTRFS_I(inode)->io_tree, 4517 lock_start, lock_end, GFP_NOFS); 4518 extent_locked = 0; 4519 } 4520 } 4521 4522 if (!inode) { 4523 btrfs_release_path(root, path); 4524 4525 inode = btrfs_iget_locked(root->fs_info->sb, 4526 key.objectid, root); 4527 if (inode->i_state & I_NEW) { 4528 BTRFS_I(inode)->root = root; 4529 BTRFS_I(inode)->location.objectid = 4530 key.objectid; 4531 BTRFS_I(inode)->location.type = 4532 BTRFS_INODE_ITEM_KEY; 4533 BTRFS_I(inode)->location.offset = 0; 4534 btrfs_read_locked_inode(inode); 4535 unlock_new_inode(inode); 4536 } 4537 /* 4538 * some code call btrfs_commit_transaction while 4539 * holding the i_mutex, so we can't use mutex_lock 4540 * here. 4541 */ 4542 if (is_bad_inode(inode) || 4543 !mutex_trylock(&inode->i_mutex)) { 4544 iput(inode); 4545 inode = NULL; 4546 key.offset = (u64)-1; 4547 goto skip; 4548 } 4549 } 4550 4551 if (!extent_locked) { 4552 struct btrfs_ordered_extent *ordered; 4553 4554 btrfs_release_path(root, path); 4555 4556 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4557 lock_end, GFP_NOFS); 4558 ordered = btrfs_lookup_first_ordered_extent(inode, 4559 lock_end); 4560 if (ordered && 4561 ordered->file_offset <= lock_end && 4562 ordered->file_offset + ordered->len > lock_start) { 4563 unlock_extent(&BTRFS_I(inode)->io_tree, 4564 lock_start, lock_end, GFP_NOFS); 4565 btrfs_start_ordered_extent(inode, ordered, 1); 4566 btrfs_put_ordered_extent(ordered); 4567 key.offset += num_bytes; 4568 goto skip; 4569 } 4570 if (ordered) 4571 btrfs_put_ordered_extent(ordered); 4572 4573 extent_locked = 1; 4574 continue; 4575 } 4576 4577 if (nr_extents == 1) { 4578 /* update extent pointer in place */ 4579 btrfs_set_file_extent_disk_bytenr(leaf, fi, 4580 new_extents[0].disk_bytenr); 4581 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 4582 new_extents[0].disk_num_bytes); 4583 btrfs_mark_buffer_dirty(leaf); 4584 4585 btrfs_drop_extent_cache(inode, key.offset, 4586 key.offset + num_bytes - 1, 0); 4587 4588 ret = btrfs_inc_extent_ref(trans, root, 4589 new_extents[0].disk_bytenr, 4590 new_extents[0].disk_num_bytes, 4591 leaf->start, 4592 root->root_key.objectid, 4593 trans->transid, 4594 key.objectid); 4595 BUG_ON(ret); 4596 4597 ret = btrfs_free_extent(trans, root, 4598 extent_key->objectid, 4599 extent_key->offset, 4600 leaf->start, 4601 btrfs_header_owner(leaf), 4602 btrfs_header_generation(leaf), 4603 key.objectid, 0); 4604 BUG_ON(ret); 4605 4606 btrfs_release_path(root, path); 4607 key.offset += num_bytes; 4608 } else { 4609 BUG_ON(1); 4610 #if 0 4611 u64 alloc_hint; 4612 u64 extent_len; 4613 int i; 4614 /* 4615 * drop old extent pointer at first, then insert the 4616 * new pointers one bye one 4617 */ 4618 btrfs_release_path(root, path); 4619 ret = btrfs_drop_extents(trans, root, inode, key.offset, 4620 key.offset + num_bytes, 4621 key.offset, &alloc_hint); 4622 BUG_ON(ret); 4623 4624 for (i = 0; i < nr_extents; i++) { 4625 if (ext_offset >= new_extents[i].num_bytes) { 4626 ext_offset -= new_extents[i].num_bytes; 4627 continue; 4628 } 4629 extent_len = min(new_extents[i].num_bytes - 4630 ext_offset, num_bytes); 4631 4632 ret = btrfs_insert_empty_item(trans, root, 4633 path, &key, 4634 sizeof(*fi)); 4635 BUG_ON(ret); 4636 4637 leaf = path->nodes[0]; 4638 fi = btrfs_item_ptr(leaf, path->slots[0], 4639 struct btrfs_file_extent_item); 4640 btrfs_set_file_extent_generation(leaf, fi, 4641 trans->transid); 4642 btrfs_set_file_extent_type(leaf, fi, 4643 BTRFS_FILE_EXTENT_REG); 4644 btrfs_set_file_extent_disk_bytenr(leaf, fi, 4645 new_extents[i].disk_bytenr); 4646 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 4647 new_extents[i].disk_num_bytes); 4648 btrfs_set_file_extent_ram_bytes(leaf, fi, 4649 new_extents[i].ram_bytes); 4650 4651 btrfs_set_file_extent_compression(leaf, fi, 4652 new_extents[i].compression); 4653 btrfs_set_file_extent_encryption(leaf, fi, 4654 new_extents[i].encryption); 4655 btrfs_set_file_extent_other_encoding(leaf, fi, 4656 new_extents[i].other_encoding); 4657 4658 btrfs_set_file_extent_num_bytes(leaf, fi, 4659 extent_len); 4660 ext_offset += new_extents[i].offset; 4661 btrfs_set_file_extent_offset(leaf, fi, 4662 ext_offset); 4663 btrfs_mark_buffer_dirty(leaf); 4664 4665 btrfs_drop_extent_cache(inode, key.offset, 4666 key.offset + extent_len - 1, 0); 4667 4668 ret = btrfs_inc_extent_ref(trans, root, 4669 new_extents[i].disk_bytenr, 4670 new_extents[i].disk_num_bytes, 4671 leaf->start, 4672 root->root_key.objectid, 4673 trans->transid, key.objectid); 4674 BUG_ON(ret); 4675 btrfs_release_path(root, path); 4676 4677 inode_add_bytes(inode, extent_len); 4678 4679 ext_offset = 0; 4680 num_bytes -= extent_len; 4681 key.offset += extent_len; 4682 4683 if (num_bytes == 0) 4684 break; 4685 } 4686 BUG_ON(i >= nr_extents); 4687 #endif 4688 } 4689 4690 if (extent_locked) { 4691 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4692 lock_end, GFP_NOFS); 4693 extent_locked = 0; 4694 } 4695 skip: 4696 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && 4697 key.offset >= search_end) 4698 break; 4699 4700 cond_resched(); 4701 } 4702 ret = 0; 4703 out: 4704 btrfs_release_path(root, path); 4705 if (inode) { 4706 mutex_unlock(&inode->i_mutex); 4707 if (extent_locked) { 4708 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4709 lock_end, GFP_NOFS); 4710 } 4711 iput(inode); 4712 } 4713 return ret; 4714 } 4715 4716 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, 4717 struct btrfs_root *root, 4718 struct extent_buffer *buf, u64 orig_start) 4719 { 4720 int level; 4721 int ret; 4722 4723 BUG_ON(btrfs_header_generation(buf) != trans->transid); 4724 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 4725 4726 level = btrfs_header_level(buf); 4727 if (level == 0) { 4728 struct btrfs_leaf_ref *ref; 4729 struct btrfs_leaf_ref *orig_ref; 4730 4731 orig_ref = btrfs_lookup_leaf_ref(root, orig_start); 4732 if (!orig_ref) 4733 return -ENOENT; 4734 4735 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); 4736 if (!ref) { 4737 btrfs_free_leaf_ref(root, orig_ref); 4738 return -ENOMEM; 4739 } 4740 4741 ref->nritems = orig_ref->nritems; 4742 memcpy(ref->extents, orig_ref->extents, 4743 sizeof(ref->extents[0]) * ref->nritems); 4744 4745 btrfs_free_leaf_ref(root, orig_ref); 4746 4747 ref->root_gen = trans->transid; 4748 ref->bytenr = buf->start; 4749 ref->owner = btrfs_header_owner(buf); 4750 ref->generation = btrfs_header_generation(buf); 4751 4752 ret = btrfs_add_leaf_ref(root, ref, 0); 4753 WARN_ON(ret); 4754 btrfs_free_leaf_ref(root, ref); 4755 } 4756 return 0; 4757 } 4758 4759 static noinline int invalidate_extent_cache(struct btrfs_root *root, 4760 struct extent_buffer *leaf, 4761 struct btrfs_block_group_cache *group, 4762 struct btrfs_root *target_root) 4763 { 4764 struct btrfs_key key; 4765 struct inode *inode = NULL; 4766 struct btrfs_file_extent_item *fi; 4767 u64 num_bytes; 4768 u64 skip_objectid = 0; 4769 u32 nritems; 4770 u32 i; 4771 4772 nritems = btrfs_header_nritems(leaf); 4773 for (i = 0; i < nritems; i++) { 4774 btrfs_item_key_to_cpu(leaf, &key, i); 4775 if (key.objectid == skip_objectid || 4776 key.type != BTRFS_EXTENT_DATA_KEY) 4777 continue; 4778 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 4779 if (btrfs_file_extent_type(leaf, fi) == 4780 BTRFS_FILE_EXTENT_INLINE) 4781 continue; 4782 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 4783 continue; 4784 if (!inode || inode->i_ino != key.objectid) { 4785 iput(inode); 4786 inode = btrfs_ilookup(target_root->fs_info->sb, 4787 key.objectid, target_root, 1); 4788 } 4789 if (!inode) { 4790 skip_objectid = key.objectid; 4791 continue; 4792 } 4793 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 4794 4795 lock_extent(&BTRFS_I(inode)->io_tree, key.offset, 4796 key.offset + num_bytes - 1, GFP_NOFS); 4797 btrfs_drop_extent_cache(inode, key.offset, 4798 key.offset + num_bytes - 1, 1); 4799 unlock_extent(&BTRFS_I(inode)->io_tree, key.offset, 4800 key.offset + num_bytes - 1, GFP_NOFS); 4801 cond_resched(); 4802 } 4803 iput(inode); 4804 return 0; 4805 } 4806 4807 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, 4808 struct btrfs_root *root, 4809 struct extent_buffer *leaf, 4810 struct btrfs_block_group_cache *group, 4811 struct inode *reloc_inode) 4812 { 4813 struct btrfs_key key; 4814 struct btrfs_key extent_key; 4815 struct btrfs_file_extent_item *fi; 4816 struct btrfs_leaf_ref *ref; 4817 struct disk_extent *new_extent; 4818 u64 bytenr; 4819 u64 num_bytes; 4820 u32 nritems; 4821 u32 i; 4822 int ext_index; 4823 int nr_extent; 4824 int ret; 4825 4826 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); 4827 BUG_ON(!new_extent); 4828 4829 ref = btrfs_lookup_leaf_ref(root, leaf->start); 4830 BUG_ON(!ref); 4831 4832 ext_index = -1; 4833 nritems = btrfs_header_nritems(leaf); 4834 for (i = 0; i < nritems; i++) { 4835 btrfs_item_key_to_cpu(leaf, &key, i); 4836 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 4837 continue; 4838 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 4839 if (btrfs_file_extent_type(leaf, fi) == 4840 BTRFS_FILE_EXTENT_INLINE) 4841 continue; 4842 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 4843 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 4844 if (bytenr == 0) 4845 continue; 4846 4847 ext_index++; 4848 if (bytenr >= group->key.objectid + group->key.offset || 4849 bytenr + num_bytes <= group->key.objectid) 4850 continue; 4851 4852 extent_key.objectid = bytenr; 4853 extent_key.offset = num_bytes; 4854 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4855 nr_extent = 1; 4856 ret = get_new_locations(reloc_inode, &extent_key, 4857 group->key.objectid, 1, 4858 &new_extent, &nr_extent); 4859 if (ret > 0) 4860 continue; 4861 BUG_ON(ret < 0); 4862 4863 BUG_ON(ref->extents[ext_index].bytenr != bytenr); 4864 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); 4865 ref->extents[ext_index].bytenr = new_extent->disk_bytenr; 4866 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; 4867 4868 btrfs_set_file_extent_disk_bytenr(leaf, fi, 4869 new_extent->disk_bytenr); 4870 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 4871 new_extent->disk_num_bytes); 4872 btrfs_mark_buffer_dirty(leaf); 4873 4874 ret = btrfs_inc_extent_ref(trans, root, 4875 new_extent->disk_bytenr, 4876 new_extent->disk_num_bytes, 4877 leaf->start, 4878 root->root_key.objectid, 4879 trans->transid, key.objectid); 4880 BUG_ON(ret); 4881 4882 ret = btrfs_free_extent(trans, root, 4883 bytenr, num_bytes, leaf->start, 4884 btrfs_header_owner(leaf), 4885 btrfs_header_generation(leaf), 4886 key.objectid, 0); 4887 BUG_ON(ret); 4888 cond_resched(); 4889 } 4890 kfree(new_extent); 4891 BUG_ON(ext_index + 1 != ref->nritems); 4892 btrfs_free_leaf_ref(root, ref); 4893 return 0; 4894 } 4895 4896 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, 4897 struct btrfs_root *root) 4898 { 4899 struct btrfs_root *reloc_root; 4900 int ret; 4901 4902 if (root->reloc_root) { 4903 reloc_root = root->reloc_root; 4904 root->reloc_root = NULL; 4905 list_add(&reloc_root->dead_list, 4906 &root->fs_info->dead_reloc_roots); 4907 4908 btrfs_set_root_bytenr(&reloc_root->root_item, 4909 reloc_root->node->start); 4910 btrfs_set_root_level(&root->root_item, 4911 btrfs_header_level(reloc_root->node)); 4912 memset(&reloc_root->root_item.drop_progress, 0, 4913 sizeof(struct btrfs_disk_key)); 4914 reloc_root->root_item.drop_level = 0; 4915 4916 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4917 &reloc_root->root_key, 4918 &reloc_root->root_item); 4919 BUG_ON(ret); 4920 } 4921 return 0; 4922 } 4923 4924 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) 4925 { 4926 struct btrfs_trans_handle *trans; 4927 struct btrfs_root *reloc_root; 4928 struct btrfs_root *prev_root = NULL; 4929 struct list_head dead_roots; 4930 int ret; 4931 unsigned long nr; 4932 4933 INIT_LIST_HEAD(&dead_roots); 4934 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); 4935 4936 while (!list_empty(&dead_roots)) { 4937 reloc_root = list_entry(dead_roots.prev, 4938 struct btrfs_root, dead_list); 4939 list_del_init(&reloc_root->dead_list); 4940 4941 BUG_ON(reloc_root->commit_root != NULL); 4942 while (1) { 4943 trans = btrfs_join_transaction(root, 1); 4944 BUG_ON(!trans); 4945 4946 mutex_lock(&root->fs_info->drop_mutex); 4947 ret = btrfs_drop_snapshot(trans, reloc_root); 4948 if (ret != -EAGAIN) 4949 break; 4950 mutex_unlock(&root->fs_info->drop_mutex); 4951 4952 nr = trans->blocks_used; 4953 ret = btrfs_end_transaction(trans, root); 4954 BUG_ON(ret); 4955 btrfs_btree_balance_dirty(root, nr); 4956 } 4957 4958 free_extent_buffer(reloc_root->node); 4959 4960 ret = btrfs_del_root(trans, root->fs_info->tree_root, 4961 &reloc_root->root_key); 4962 BUG_ON(ret); 4963 mutex_unlock(&root->fs_info->drop_mutex); 4964 4965 nr = trans->blocks_used; 4966 ret = btrfs_end_transaction(trans, root); 4967 BUG_ON(ret); 4968 btrfs_btree_balance_dirty(root, nr); 4969 4970 kfree(prev_root); 4971 prev_root = reloc_root; 4972 } 4973 if (prev_root) { 4974 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); 4975 kfree(prev_root); 4976 } 4977 return 0; 4978 } 4979 4980 int btrfs_add_dead_reloc_root(struct btrfs_root *root) 4981 { 4982 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); 4983 return 0; 4984 } 4985 4986 int btrfs_cleanup_reloc_trees(struct btrfs_root *root) 4987 { 4988 struct btrfs_root *reloc_root; 4989 struct btrfs_trans_handle *trans; 4990 struct btrfs_key location; 4991 int found; 4992 int ret; 4993 4994 mutex_lock(&root->fs_info->tree_reloc_mutex); 4995 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); 4996 BUG_ON(ret); 4997 found = !list_empty(&root->fs_info->dead_reloc_roots); 4998 mutex_unlock(&root->fs_info->tree_reloc_mutex); 4999 5000 if (found) { 5001 trans = btrfs_start_transaction(root, 1); 5002 BUG_ON(!trans); 5003 ret = btrfs_commit_transaction(trans, root); 5004 BUG_ON(ret); 5005 } 5006 5007 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 5008 location.offset = (u64)-1; 5009 location.type = BTRFS_ROOT_ITEM_KEY; 5010 5011 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 5012 BUG_ON(!reloc_root); 5013 btrfs_orphan_cleanup(reloc_root); 5014 return 0; 5015 } 5016 5017 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, 5018 struct btrfs_root *root) 5019 { 5020 struct btrfs_root *reloc_root; 5021 struct extent_buffer *eb; 5022 struct btrfs_root_item *root_item; 5023 struct btrfs_key root_key; 5024 int ret; 5025 5026 BUG_ON(!root->ref_cows); 5027 if (root->reloc_root) 5028 return 0; 5029 5030 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 5031 BUG_ON(!root_item); 5032 5033 ret = btrfs_copy_root(trans, root, root->commit_root, 5034 &eb, BTRFS_TREE_RELOC_OBJECTID); 5035 BUG_ON(ret); 5036 5037 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 5038 root_key.offset = root->root_key.objectid; 5039 root_key.type = BTRFS_ROOT_ITEM_KEY; 5040 5041 memcpy(root_item, &root->root_item, sizeof(root_item)); 5042 btrfs_set_root_refs(root_item, 0); 5043 btrfs_set_root_bytenr(root_item, eb->start); 5044 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 5045 btrfs_set_root_generation(root_item, trans->transid); 5046 5047 btrfs_tree_unlock(eb); 5048 free_extent_buffer(eb); 5049 5050 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 5051 &root_key, root_item); 5052 BUG_ON(ret); 5053 kfree(root_item); 5054 5055 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 5056 &root_key); 5057 BUG_ON(!reloc_root); 5058 reloc_root->last_trans = trans->transid; 5059 reloc_root->commit_root = NULL; 5060 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; 5061 5062 root->reloc_root = reloc_root; 5063 return 0; 5064 } 5065 5066 /* 5067 * Core function of space balance. 5068 * 5069 * The idea is using reloc trees to relocate tree blocks in reference 5070 * counted roots. There is one reloc tree for each subvol, and all 5071 * reloc trees share same root key objectid. Reloc trees are snapshots 5072 * of the latest committed roots of subvols (root->commit_root). 5073 * 5074 * To relocate a tree block referenced by a subvol, there are two steps. 5075 * COW the block through subvol's reloc tree, then update block pointer 5076 * in the subvol to point to the new block. Since all reloc trees share 5077 * same root key objectid, doing special handing for tree blocks owned 5078 * by them is easy. Once a tree block has been COWed in one reloc tree, 5079 * we can use the resulting new block directly when the same block is 5080 * required to COW again through other reloc trees. By this way, relocated 5081 * tree blocks are shared between reloc trees, so they are also shared 5082 * between subvols. 5083 */ 5084 static noinline int relocate_one_path(struct btrfs_trans_handle *trans, 5085 struct btrfs_root *root, 5086 struct btrfs_path *path, 5087 struct btrfs_key *first_key, 5088 struct btrfs_ref_path *ref_path, 5089 struct btrfs_block_group_cache *group, 5090 struct inode *reloc_inode) 5091 { 5092 struct btrfs_root *reloc_root; 5093 struct extent_buffer *eb = NULL; 5094 struct btrfs_key *keys; 5095 u64 *nodes; 5096 int level; 5097 int shared_level; 5098 int lowest_level = 0; 5099 int ret; 5100 5101 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 5102 lowest_level = ref_path->owner_objectid; 5103 5104 if (!root->ref_cows) { 5105 path->lowest_level = lowest_level; 5106 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); 5107 BUG_ON(ret < 0); 5108 path->lowest_level = 0; 5109 btrfs_release_path(root, path); 5110 return 0; 5111 } 5112 5113 mutex_lock(&root->fs_info->tree_reloc_mutex); 5114 ret = init_reloc_tree(trans, root); 5115 BUG_ON(ret); 5116 reloc_root = root->reloc_root; 5117 5118 shared_level = ref_path->shared_level; 5119 ref_path->shared_level = BTRFS_MAX_LEVEL - 1; 5120 5121 keys = ref_path->node_keys; 5122 nodes = ref_path->new_nodes; 5123 memset(&keys[shared_level + 1], 0, 5124 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); 5125 memset(&nodes[shared_level + 1], 0, 5126 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); 5127 5128 if (nodes[lowest_level] == 0) { 5129 path->lowest_level = lowest_level; 5130 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 5131 0, 1); 5132 BUG_ON(ret); 5133 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { 5134 eb = path->nodes[level]; 5135 if (!eb || eb == reloc_root->node) 5136 break; 5137 nodes[level] = eb->start; 5138 if (level == 0) 5139 btrfs_item_key_to_cpu(eb, &keys[level], 0); 5140 else 5141 btrfs_node_key_to_cpu(eb, &keys[level], 0); 5142 } 5143 if (nodes[0] && 5144 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5145 eb = path->nodes[0]; 5146 ret = replace_extents_in_leaf(trans, reloc_root, eb, 5147 group, reloc_inode); 5148 BUG_ON(ret); 5149 } 5150 btrfs_release_path(reloc_root, path); 5151 } else { 5152 ret = btrfs_merge_path(trans, reloc_root, keys, nodes, 5153 lowest_level); 5154 BUG_ON(ret); 5155 } 5156 5157 /* 5158 * replace tree blocks in the fs tree with tree blocks in 5159 * the reloc tree. 5160 */ 5161 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); 5162 BUG_ON(ret < 0); 5163 5164 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5165 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 5166 0, 0); 5167 BUG_ON(ret); 5168 extent_buffer_get(path->nodes[0]); 5169 eb = path->nodes[0]; 5170 btrfs_release_path(reloc_root, path); 5171 ret = invalidate_extent_cache(reloc_root, eb, group, root); 5172 BUG_ON(ret); 5173 free_extent_buffer(eb); 5174 } 5175 5176 mutex_unlock(&root->fs_info->tree_reloc_mutex); 5177 path->lowest_level = 0; 5178 return 0; 5179 } 5180 5181 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, 5182 struct btrfs_root *root, 5183 struct btrfs_path *path, 5184 struct btrfs_key *first_key, 5185 struct btrfs_ref_path *ref_path) 5186 { 5187 int ret; 5188 5189 ret = relocate_one_path(trans, root, path, first_key, 5190 ref_path, NULL, NULL); 5191 BUG_ON(ret); 5192 5193 return 0; 5194 } 5195 5196 static noinline int del_extent_zero(struct btrfs_trans_handle *trans, 5197 struct btrfs_root *extent_root, 5198 struct btrfs_path *path, 5199 struct btrfs_key *extent_key) 5200 { 5201 int ret; 5202 5203 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); 5204 if (ret) 5205 goto out; 5206 ret = btrfs_del_item(trans, extent_root, path); 5207 out: 5208 btrfs_release_path(extent_root, path); 5209 return ret; 5210 } 5211 5212 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, 5213 struct btrfs_ref_path *ref_path) 5214 { 5215 struct btrfs_key root_key; 5216 5217 root_key.objectid = ref_path->root_objectid; 5218 root_key.type = BTRFS_ROOT_ITEM_KEY; 5219 if (is_cowonly_root(ref_path->root_objectid)) 5220 root_key.offset = 0; 5221 else 5222 root_key.offset = (u64)-1; 5223 5224 return btrfs_read_fs_root_no_name(fs_info, &root_key); 5225 } 5226 5227 static noinline int relocate_one_extent(struct btrfs_root *extent_root, 5228 struct btrfs_path *path, 5229 struct btrfs_key *extent_key, 5230 struct btrfs_block_group_cache *group, 5231 struct inode *reloc_inode, int pass) 5232 { 5233 struct btrfs_trans_handle *trans; 5234 struct btrfs_root *found_root; 5235 struct btrfs_ref_path *ref_path = NULL; 5236 struct disk_extent *new_extents = NULL; 5237 int nr_extents = 0; 5238 int loops; 5239 int ret; 5240 int level; 5241 struct btrfs_key first_key; 5242 u64 prev_block = 0; 5243 5244 5245 trans = btrfs_start_transaction(extent_root, 1); 5246 BUG_ON(!trans); 5247 5248 if (extent_key->objectid == 0) { 5249 ret = del_extent_zero(trans, extent_root, path, extent_key); 5250 goto out; 5251 } 5252 5253 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); 5254 if (!ref_path) { 5255 ret = -ENOMEM; 5256 goto out; 5257 } 5258 5259 for (loops = 0; ; loops++) { 5260 if (loops == 0) { 5261 ret = btrfs_first_ref_path(trans, extent_root, ref_path, 5262 extent_key->objectid); 5263 } else { 5264 ret = btrfs_next_ref_path(trans, extent_root, ref_path); 5265 } 5266 if (ret < 0) 5267 goto out; 5268 if (ret > 0) 5269 break; 5270 5271 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || 5272 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) 5273 continue; 5274 5275 found_root = read_ref_root(extent_root->fs_info, ref_path); 5276 BUG_ON(!found_root); 5277 /* 5278 * for reference counted tree, only process reference paths 5279 * rooted at the latest committed root. 5280 */ 5281 if (found_root->ref_cows && 5282 ref_path->root_generation != found_root->root_key.offset) 5283 continue; 5284 5285 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5286 if (pass == 0) { 5287 /* 5288 * copy data extents to new locations 5289 */ 5290 u64 group_start = group->key.objectid; 5291 ret = relocate_data_extent(reloc_inode, 5292 extent_key, 5293 group_start); 5294 if (ret < 0) 5295 goto out; 5296 break; 5297 } 5298 level = 0; 5299 } else { 5300 level = ref_path->owner_objectid; 5301 } 5302 5303 if (prev_block != ref_path->nodes[level]) { 5304 struct extent_buffer *eb; 5305 u64 block_start = ref_path->nodes[level]; 5306 u64 block_size = btrfs_level_size(found_root, level); 5307 5308 eb = read_tree_block(found_root, block_start, 5309 block_size, 0); 5310 btrfs_tree_lock(eb); 5311 BUG_ON(level != btrfs_header_level(eb)); 5312 5313 if (level == 0) 5314 btrfs_item_key_to_cpu(eb, &first_key, 0); 5315 else 5316 btrfs_node_key_to_cpu(eb, &first_key, 0); 5317 5318 btrfs_tree_unlock(eb); 5319 free_extent_buffer(eb); 5320 prev_block = block_start; 5321 } 5322 5323 mutex_lock(&extent_root->fs_info->trans_mutex); 5324 btrfs_record_root_in_trans(found_root); 5325 mutex_unlock(&extent_root->fs_info->trans_mutex); 5326 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5327 /* 5328 * try to update data extent references while 5329 * keeping metadata shared between snapshots. 5330 */ 5331 if (pass == 1) { 5332 ret = relocate_one_path(trans, found_root, 5333 path, &first_key, ref_path, 5334 group, reloc_inode); 5335 if (ret < 0) 5336 goto out; 5337 continue; 5338 } 5339 /* 5340 * use fallback method to process the remaining 5341 * references. 5342 */ 5343 if (!new_extents) { 5344 u64 group_start = group->key.objectid; 5345 new_extents = kmalloc(sizeof(*new_extents), 5346 GFP_NOFS); 5347 nr_extents = 1; 5348 ret = get_new_locations(reloc_inode, 5349 extent_key, 5350 group_start, 1, 5351 &new_extents, 5352 &nr_extents); 5353 if (ret) 5354 goto out; 5355 } 5356 ret = replace_one_extent(trans, found_root, 5357 path, extent_key, 5358 &first_key, ref_path, 5359 new_extents, nr_extents); 5360 } else { 5361 ret = relocate_tree_block(trans, found_root, path, 5362 &first_key, ref_path); 5363 } 5364 if (ret < 0) 5365 goto out; 5366 } 5367 ret = 0; 5368 out: 5369 btrfs_end_transaction(trans, extent_root); 5370 kfree(new_extents); 5371 kfree(ref_path); 5372 return ret; 5373 } 5374 5375 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 5376 { 5377 u64 num_devices; 5378 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 5379 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 5380 5381 num_devices = root->fs_info->fs_devices->rw_devices; 5382 if (num_devices == 1) { 5383 stripped |= BTRFS_BLOCK_GROUP_DUP; 5384 stripped = flags & ~stripped; 5385 5386 /* turn raid0 into single device chunks */ 5387 if (flags & BTRFS_BLOCK_GROUP_RAID0) 5388 return stripped; 5389 5390 /* turn mirroring into duplication */ 5391 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 5392 BTRFS_BLOCK_GROUP_RAID10)) 5393 return stripped | BTRFS_BLOCK_GROUP_DUP; 5394 return flags; 5395 } else { 5396 /* they already had raid on here, just return */ 5397 if (flags & stripped) 5398 return flags; 5399 5400 stripped |= BTRFS_BLOCK_GROUP_DUP; 5401 stripped = flags & ~stripped; 5402 5403 /* switch duplicated blocks with raid1 */ 5404 if (flags & BTRFS_BLOCK_GROUP_DUP) 5405 return stripped | BTRFS_BLOCK_GROUP_RAID1; 5406 5407 /* turn single device chunks into raid0 */ 5408 return stripped | BTRFS_BLOCK_GROUP_RAID0; 5409 } 5410 return flags; 5411 } 5412 5413 static int __alloc_chunk_for_shrink(struct btrfs_root *root, 5414 struct btrfs_block_group_cache *shrink_block_group, 5415 int force) 5416 { 5417 struct btrfs_trans_handle *trans; 5418 u64 new_alloc_flags; 5419 u64 calc; 5420 5421 spin_lock(&shrink_block_group->lock); 5422 if (btrfs_block_group_used(&shrink_block_group->item) > 0) { 5423 spin_unlock(&shrink_block_group->lock); 5424 5425 trans = btrfs_start_transaction(root, 1); 5426 spin_lock(&shrink_block_group->lock); 5427 5428 new_alloc_flags = update_block_group_flags(root, 5429 shrink_block_group->flags); 5430 if (new_alloc_flags != shrink_block_group->flags) { 5431 calc = 5432 btrfs_block_group_used(&shrink_block_group->item); 5433 } else { 5434 calc = shrink_block_group->key.offset; 5435 } 5436 spin_unlock(&shrink_block_group->lock); 5437 5438 do_chunk_alloc(trans, root->fs_info->extent_root, 5439 calc + 2 * 1024 * 1024, new_alloc_flags, force); 5440 5441 btrfs_end_transaction(trans, root); 5442 } else 5443 spin_unlock(&shrink_block_group->lock); 5444 return 0; 5445 } 5446 5447 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 5448 struct btrfs_root *root, 5449 u64 objectid, u64 size) 5450 { 5451 struct btrfs_path *path; 5452 struct btrfs_inode_item *item; 5453 struct extent_buffer *leaf; 5454 int ret; 5455 5456 path = btrfs_alloc_path(); 5457 if (!path) 5458 return -ENOMEM; 5459 5460 path->leave_spinning = 1; 5461 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 5462 if (ret) 5463 goto out; 5464 5465 leaf = path->nodes[0]; 5466 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 5467 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 5468 btrfs_set_inode_generation(leaf, item, 1); 5469 btrfs_set_inode_size(leaf, item, size); 5470 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 5471 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS); 5472 btrfs_mark_buffer_dirty(leaf); 5473 btrfs_release_path(root, path); 5474 out: 5475 btrfs_free_path(path); 5476 return ret; 5477 } 5478 5479 static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 5480 struct btrfs_block_group_cache *group) 5481 { 5482 struct inode *inode = NULL; 5483 struct btrfs_trans_handle *trans; 5484 struct btrfs_root *root; 5485 struct btrfs_key root_key; 5486 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 5487 int err = 0; 5488 5489 root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 5490 root_key.type = BTRFS_ROOT_ITEM_KEY; 5491 root_key.offset = (u64)-1; 5492 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 5493 if (IS_ERR(root)) 5494 return ERR_CAST(root); 5495 5496 trans = btrfs_start_transaction(root, 1); 5497 BUG_ON(!trans); 5498 5499 err = btrfs_find_free_objectid(trans, root, objectid, &objectid); 5500 if (err) 5501 goto out; 5502 5503 err = __insert_orphan_inode(trans, root, objectid, group->key.offset); 5504 BUG_ON(err); 5505 5506 err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0, 5507 group->key.offset, 0, group->key.offset, 5508 0, 0, 0); 5509 BUG_ON(err); 5510 5511 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); 5512 if (inode->i_state & I_NEW) { 5513 BTRFS_I(inode)->root = root; 5514 BTRFS_I(inode)->location.objectid = objectid; 5515 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5516 BTRFS_I(inode)->location.offset = 0; 5517 btrfs_read_locked_inode(inode); 5518 unlock_new_inode(inode); 5519 BUG_ON(is_bad_inode(inode)); 5520 } else { 5521 BUG_ON(1); 5522 } 5523 BTRFS_I(inode)->index_cnt = group->key.objectid; 5524 5525 err = btrfs_orphan_add(trans, inode); 5526 out: 5527 btrfs_end_transaction(trans, root); 5528 if (err) { 5529 if (inode) 5530 iput(inode); 5531 inode = ERR_PTR(err); 5532 } 5533 return inode; 5534 } 5535 5536 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 5537 { 5538 5539 struct btrfs_ordered_sum *sums; 5540 struct btrfs_sector_sum *sector_sum; 5541 struct btrfs_ordered_extent *ordered; 5542 struct btrfs_root *root = BTRFS_I(inode)->root; 5543 struct list_head list; 5544 size_t offset; 5545 int ret; 5546 u64 disk_bytenr; 5547 5548 INIT_LIST_HEAD(&list); 5549 5550 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 5551 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 5552 5553 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 5554 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 5555 disk_bytenr + len - 1, &list); 5556 5557 while (!list_empty(&list)) { 5558 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 5559 list_del_init(&sums->list); 5560 5561 sector_sum = sums->sums; 5562 sums->bytenr = ordered->start; 5563 5564 offset = 0; 5565 while (offset < sums->len) { 5566 sector_sum->bytenr += ordered->start - disk_bytenr; 5567 sector_sum++; 5568 offset += root->sectorsize; 5569 } 5570 5571 btrfs_add_ordered_sum(inode, ordered, sums); 5572 } 5573 btrfs_put_ordered_extent(ordered); 5574 return 0; 5575 } 5576 5577 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start) 5578 { 5579 struct btrfs_trans_handle *trans; 5580 struct btrfs_path *path; 5581 struct btrfs_fs_info *info = root->fs_info; 5582 struct extent_buffer *leaf; 5583 struct inode *reloc_inode; 5584 struct btrfs_block_group_cache *block_group; 5585 struct btrfs_key key; 5586 u64 skipped; 5587 u64 cur_byte; 5588 u64 total_found; 5589 u32 nritems; 5590 int ret; 5591 int progress; 5592 int pass = 0; 5593 5594 root = root->fs_info->extent_root; 5595 5596 block_group = btrfs_lookup_block_group(info, group_start); 5597 BUG_ON(!block_group); 5598 5599 printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n", 5600 (unsigned long long)block_group->key.objectid, 5601 (unsigned long long)block_group->flags); 5602 5603 path = btrfs_alloc_path(); 5604 BUG_ON(!path); 5605 5606 reloc_inode = create_reloc_inode(info, block_group); 5607 BUG_ON(IS_ERR(reloc_inode)); 5608 5609 __alloc_chunk_for_shrink(root, block_group, 1); 5610 set_block_group_readonly(block_group); 5611 5612 btrfs_start_delalloc_inodes(info->tree_root); 5613 btrfs_wait_ordered_extents(info->tree_root, 0); 5614 again: 5615 skipped = 0; 5616 total_found = 0; 5617 progress = 0; 5618 key.objectid = block_group->key.objectid; 5619 key.offset = 0; 5620 key.type = 0; 5621 cur_byte = key.objectid; 5622 5623 trans = btrfs_start_transaction(info->tree_root, 1); 5624 btrfs_commit_transaction(trans, info->tree_root); 5625 5626 mutex_lock(&root->fs_info->cleaner_mutex); 5627 btrfs_clean_old_snapshots(info->tree_root); 5628 btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1); 5629 mutex_unlock(&root->fs_info->cleaner_mutex); 5630 5631 trans = btrfs_start_transaction(info->tree_root, 1); 5632 btrfs_commit_transaction(trans, info->tree_root); 5633 5634 while (1) { 5635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5636 if (ret < 0) 5637 goto out; 5638 next: 5639 leaf = path->nodes[0]; 5640 nritems = btrfs_header_nritems(leaf); 5641 if (path->slots[0] >= nritems) { 5642 ret = btrfs_next_leaf(root, path); 5643 if (ret < 0) 5644 goto out; 5645 if (ret == 1) { 5646 ret = 0; 5647 break; 5648 } 5649 leaf = path->nodes[0]; 5650 nritems = btrfs_header_nritems(leaf); 5651 } 5652 5653 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5654 5655 if (key.objectid >= block_group->key.objectid + 5656 block_group->key.offset) 5657 break; 5658 5659 if (progress && need_resched()) { 5660 btrfs_release_path(root, path); 5661 cond_resched(); 5662 progress = 0; 5663 continue; 5664 } 5665 progress = 1; 5666 5667 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY || 5668 key.objectid + key.offset <= cur_byte) { 5669 path->slots[0]++; 5670 goto next; 5671 } 5672 5673 total_found++; 5674 cur_byte = key.objectid + key.offset; 5675 btrfs_release_path(root, path); 5676 5677 __alloc_chunk_for_shrink(root, block_group, 0); 5678 ret = relocate_one_extent(root, path, &key, block_group, 5679 reloc_inode, pass); 5680 BUG_ON(ret < 0); 5681 if (ret > 0) 5682 skipped++; 5683 5684 key.objectid = cur_byte; 5685 key.type = 0; 5686 key.offset = 0; 5687 } 5688 5689 btrfs_release_path(root, path); 5690 5691 if (pass == 0) { 5692 btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1); 5693 invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1); 5694 } 5695 5696 if (total_found > 0) { 5697 printk(KERN_INFO "btrfs found %llu extents in pass %d\n", 5698 (unsigned long long)total_found, pass); 5699 pass++; 5700 if (total_found == skipped && pass > 2) { 5701 iput(reloc_inode); 5702 reloc_inode = create_reloc_inode(info, block_group); 5703 pass = 0; 5704 } 5705 goto again; 5706 } 5707 5708 /* delete reloc_inode */ 5709 iput(reloc_inode); 5710 5711 /* unpin extents in this range */ 5712 trans = btrfs_start_transaction(info->tree_root, 1); 5713 btrfs_commit_transaction(trans, info->tree_root); 5714 5715 spin_lock(&block_group->lock); 5716 WARN_ON(block_group->pinned > 0); 5717 WARN_ON(block_group->reserved > 0); 5718 WARN_ON(btrfs_block_group_used(&block_group->item) > 0); 5719 spin_unlock(&block_group->lock); 5720 btrfs_put_block_group(block_group); 5721 ret = 0; 5722 out: 5723 btrfs_free_path(path); 5724 return ret; 5725 } 5726 5727 static int find_first_block_group(struct btrfs_root *root, 5728 struct btrfs_path *path, struct btrfs_key *key) 5729 { 5730 int ret = 0; 5731 struct btrfs_key found_key; 5732 struct extent_buffer *leaf; 5733 int slot; 5734 5735 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 5736 if (ret < 0) 5737 goto out; 5738 5739 while (1) { 5740 slot = path->slots[0]; 5741 leaf = path->nodes[0]; 5742 if (slot >= btrfs_header_nritems(leaf)) { 5743 ret = btrfs_next_leaf(root, path); 5744 if (ret == 0) 5745 continue; 5746 if (ret < 0) 5747 goto out; 5748 break; 5749 } 5750 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5751 5752 if (found_key.objectid >= key->objectid && 5753 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 5754 ret = 0; 5755 goto out; 5756 } 5757 path->slots[0]++; 5758 } 5759 ret = -ENOENT; 5760 out: 5761 return ret; 5762 } 5763 5764 int btrfs_free_block_groups(struct btrfs_fs_info *info) 5765 { 5766 struct btrfs_block_group_cache *block_group; 5767 struct btrfs_space_info *space_info; 5768 struct rb_node *n; 5769 5770 spin_lock(&info->block_group_cache_lock); 5771 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 5772 block_group = rb_entry(n, struct btrfs_block_group_cache, 5773 cache_node); 5774 rb_erase(&block_group->cache_node, 5775 &info->block_group_cache_tree); 5776 spin_unlock(&info->block_group_cache_lock); 5777 5778 btrfs_remove_free_space_cache(block_group); 5779 down_write(&block_group->space_info->groups_sem); 5780 list_del(&block_group->list); 5781 up_write(&block_group->space_info->groups_sem); 5782 5783 WARN_ON(atomic_read(&block_group->count) != 1); 5784 kfree(block_group); 5785 5786 spin_lock(&info->block_group_cache_lock); 5787 } 5788 spin_unlock(&info->block_group_cache_lock); 5789 5790 /* now that all the block groups are freed, go through and 5791 * free all the space_info structs. This is only called during 5792 * the final stages of unmount, and so we know nobody is 5793 * using them. We call synchronize_rcu() once before we start, 5794 * just to be on the safe side. 5795 */ 5796 synchronize_rcu(); 5797 5798 while(!list_empty(&info->space_info)) { 5799 space_info = list_entry(info->space_info.next, 5800 struct btrfs_space_info, 5801 list); 5802 5803 list_del(&space_info->list); 5804 kfree(space_info); 5805 } 5806 return 0; 5807 } 5808 5809 int btrfs_read_block_groups(struct btrfs_root *root) 5810 { 5811 struct btrfs_path *path; 5812 int ret; 5813 struct btrfs_block_group_cache *cache; 5814 struct btrfs_fs_info *info = root->fs_info; 5815 struct btrfs_space_info *space_info; 5816 struct btrfs_key key; 5817 struct btrfs_key found_key; 5818 struct extent_buffer *leaf; 5819 5820 root = info->extent_root; 5821 key.objectid = 0; 5822 key.offset = 0; 5823 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 5824 path = btrfs_alloc_path(); 5825 if (!path) 5826 return -ENOMEM; 5827 5828 while (1) { 5829 ret = find_first_block_group(root, path, &key); 5830 if (ret > 0) { 5831 ret = 0; 5832 goto error; 5833 } 5834 if (ret != 0) 5835 goto error; 5836 5837 leaf = path->nodes[0]; 5838 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5839 cache = kzalloc(sizeof(*cache), GFP_NOFS); 5840 if (!cache) { 5841 ret = -ENOMEM; 5842 break; 5843 } 5844 5845 atomic_set(&cache->count, 1); 5846 spin_lock_init(&cache->lock); 5847 spin_lock_init(&cache->tree_lock); 5848 mutex_init(&cache->cache_mutex); 5849 INIT_LIST_HEAD(&cache->list); 5850 INIT_LIST_HEAD(&cache->cluster_list); 5851 read_extent_buffer(leaf, &cache->item, 5852 btrfs_item_ptr_offset(leaf, path->slots[0]), 5853 sizeof(cache->item)); 5854 memcpy(&cache->key, &found_key, sizeof(found_key)); 5855 5856 key.objectid = found_key.objectid + found_key.offset; 5857 btrfs_release_path(root, path); 5858 cache->flags = btrfs_block_group_flags(&cache->item); 5859 5860 ret = update_space_info(info, cache->flags, found_key.offset, 5861 btrfs_block_group_used(&cache->item), 5862 &space_info); 5863 BUG_ON(ret); 5864 cache->space_info = space_info; 5865 down_write(&space_info->groups_sem); 5866 list_add_tail(&cache->list, &space_info->block_groups); 5867 up_write(&space_info->groups_sem); 5868 5869 ret = btrfs_add_block_group_cache(root->fs_info, cache); 5870 BUG_ON(ret); 5871 5872 set_avail_alloc_bits(root->fs_info, cache->flags); 5873 if (btrfs_chunk_readonly(root, cache->key.objectid)) 5874 set_block_group_readonly(cache); 5875 } 5876 ret = 0; 5877 error: 5878 btrfs_free_path(path); 5879 return ret; 5880 } 5881 5882 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 5883 struct btrfs_root *root, u64 bytes_used, 5884 u64 type, u64 chunk_objectid, u64 chunk_offset, 5885 u64 size) 5886 { 5887 int ret; 5888 struct btrfs_root *extent_root; 5889 struct btrfs_block_group_cache *cache; 5890 5891 extent_root = root->fs_info->extent_root; 5892 5893 root->fs_info->last_trans_log_full_commit = trans->transid; 5894 5895 cache = kzalloc(sizeof(*cache), GFP_NOFS); 5896 if (!cache) 5897 return -ENOMEM; 5898 5899 cache->key.objectid = chunk_offset; 5900 cache->key.offset = size; 5901 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 5902 atomic_set(&cache->count, 1); 5903 spin_lock_init(&cache->lock); 5904 spin_lock_init(&cache->tree_lock); 5905 mutex_init(&cache->cache_mutex); 5906 INIT_LIST_HEAD(&cache->list); 5907 INIT_LIST_HEAD(&cache->cluster_list); 5908 5909 btrfs_set_block_group_used(&cache->item, bytes_used); 5910 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 5911 cache->flags = type; 5912 btrfs_set_block_group_flags(&cache->item, type); 5913 5914 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 5915 &cache->space_info); 5916 BUG_ON(ret); 5917 down_write(&cache->space_info->groups_sem); 5918 list_add_tail(&cache->list, &cache->space_info->block_groups); 5919 up_write(&cache->space_info->groups_sem); 5920 5921 ret = btrfs_add_block_group_cache(root->fs_info, cache); 5922 BUG_ON(ret); 5923 5924 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 5925 sizeof(cache->item)); 5926 BUG_ON(ret); 5927 5928 set_avail_alloc_bits(extent_root->fs_info, type); 5929 5930 return 0; 5931 } 5932 5933 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 5934 struct btrfs_root *root, u64 group_start) 5935 { 5936 struct btrfs_path *path; 5937 struct btrfs_block_group_cache *block_group; 5938 struct btrfs_key key; 5939 int ret; 5940 5941 root = root->fs_info->extent_root; 5942 5943 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 5944 BUG_ON(!block_group); 5945 BUG_ON(!block_group->ro); 5946 5947 memcpy(&key, &block_group->key, sizeof(key)); 5948 5949 path = btrfs_alloc_path(); 5950 BUG_ON(!path); 5951 5952 spin_lock(&root->fs_info->block_group_cache_lock); 5953 rb_erase(&block_group->cache_node, 5954 &root->fs_info->block_group_cache_tree); 5955 spin_unlock(&root->fs_info->block_group_cache_lock); 5956 btrfs_remove_free_space_cache(block_group); 5957 down_write(&block_group->space_info->groups_sem); 5958 list_del(&block_group->list); 5959 up_write(&block_group->space_info->groups_sem); 5960 5961 spin_lock(&block_group->space_info->lock); 5962 block_group->space_info->total_bytes -= block_group->key.offset; 5963 block_group->space_info->bytes_readonly -= block_group->key.offset; 5964 spin_unlock(&block_group->space_info->lock); 5965 block_group->space_info->full = 0; 5966 5967 btrfs_put_block_group(block_group); 5968 btrfs_put_block_group(block_group); 5969 5970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 5971 if (ret > 0) 5972 ret = -EIO; 5973 if (ret < 0) 5974 goto out; 5975 5976 ret = btrfs_del_item(trans, root, path); 5977 out: 5978 btrfs_free_path(path); 5979 return ret; 5980 } 5981