xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision b627b4ed)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include "compat.h"
25 #include "hash.h"
26 #include "crc32c.h"
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "print-tree.h"
30 #include "transaction.h"
31 #include "volumes.h"
32 #include "locking.h"
33 #include "ref-cache.h"
34 #include "free-space-cache.h"
35 
36 #define PENDING_EXTENT_INSERT 0
37 #define PENDING_EXTENT_DELETE 1
38 #define PENDING_BACKREF_UPDATE 2
39 
40 struct pending_extent_op {
41 	int type;
42 	u64 bytenr;
43 	u64 num_bytes;
44 	u64 parent;
45 	u64 orig_parent;
46 	u64 generation;
47 	u64 orig_generation;
48 	int level;
49 	struct list_head list;
50 	int del;
51 };
52 
53 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
54 					 struct btrfs_root *root, u64 parent,
55 					 u64 root_objectid, u64 ref_generation,
56 					 u64 owner, struct btrfs_key *ins,
57 					 int ref_mod);
58 static int update_reserved_extents(struct btrfs_root *root,
59 				   u64 bytenr, u64 num, int reserve);
60 static int update_block_group(struct btrfs_trans_handle *trans,
61 			      struct btrfs_root *root,
62 			      u64 bytenr, u64 num_bytes, int alloc,
63 			      int mark_free);
64 static noinline int __btrfs_free_extent(struct btrfs_trans_handle *trans,
65 					struct btrfs_root *root,
66 					u64 bytenr, u64 num_bytes, u64 parent,
67 					u64 root_objectid, u64 ref_generation,
68 					u64 owner_objectid, int pin,
69 					int ref_to_drop);
70 
71 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
72 			  struct btrfs_root *extent_root, u64 alloc_bytes,
73 			  u64 flags, int force);
74 
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 	return (cache->flags & bits) == bits;
78 }
79 
80 /*
81  * this adds the block group to the fs_info rb tree for the block group
82  * cache
83  */
84 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
85 				struct btrfs_block_group_cache *block_group)
86 {
87 	struct rb_node **p;
88 	struct rb_node *parent = NULL;
89 	struct btrfs_block_group_cache *cache;
90 
91 	spin_lock(&info->block_group_cache_lock);
92 	p = &info->block_group_cache_tree.rb_node;
93 
94 	while (*p) {
95 		parent = *p;
96 		cache = rb_entry(parent, struct btrfs_block_group_cache,
97 				 cache_node);
98 		if (block_group->key.objectid < cache->key.objectid) {
99 			p = &(*p)->rb_left;
100 		} else if (block_group->key.objectid > cache->key.objectid) {
101 			p = &(*p)->rb_right;
102 		} else {
103 			spin_unlock(&info->block_group_cache_lock);
104 			return -EEXIST;
105 		}
106 	}
107 
108 	rb_link_node(&block_group->cache_node, parent, p);
109 	rb_insert_color(&block_group->cache_node,
110 			&info->block_group_cache_tree);
111 	spin_unlock(&info->block_group_cache_lock);
112 
113 	return 0;
114 }
115 
116 /*
117  * This will return the block group at or after bytenr if contains is 0, else
118  * it will return the block group that contains the bytenr
119  */
120 static struct btrfs_block_group_cache *
121 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
122 			      int contains)
123 {
124 	struct btrfs_block_group_cache *cache, *ret = NULL;
125 	struct rb_node *n;
126 	u64 end, start;
127 
128 	spin_lock(&info->block_group_cache_lock);
129 	n = info->block_group_cache_tree.rb_node;
130 
131 	while (n) {
132 		cache = rb_entry(n, struct btrfs_block_group_cache,
133 				 cache_node);
134 		end = cache->key.objectid + cache->key.offset - 1;
135 		start = cache->key.objectid;
136 
137 		if (bytenr < start) {
138 			if (!contains && (!ret || start < ret->key.objectid))
139 				ret = cache;
140 			n = n->rb_left;
141 		} else if (bytenr > start) {
142 			if (contains && bytenr <= end) {
143 				ret = cache;
144 				break;
145 			}
146 			n = n->rb_right;
147 		} else {
148 			ret = cache;
149 			break;
150 		}
151 	}
152 	if (ret)
153 		atomic_inc(&ret->count);
154 	spin_unlock(&info->block_group_cache_lock);
155 
156 	return ret;
157 }
158 
159 /*
160  * this is only called by cache_block_group, since we could have freed extents
161  * we need to check the pinned_extents for any extents that can't be used yet
162  * since their free space will be released as soon as the transaction commits.
163  */
164 static int add_new_free_space(struct btrfs_block_group_cache *block_group,
165 			      struct btrfs_fs_info *info, u64 start, u64 end)
166 {
167 	u64 extent_start, extent_end, size;
168 	int ret;
169 
170 	while (start < end) {
171 		ret = find_first_extent_bit(&info->pinned_extents, start,
172 					    &extent_start, &extent_end,
173 					    EXTENT_DIRTY);
174 		if (ret)
175 			break;
176 
177 		if (extent_start == start) {
178 			start = extent_end + 1;
179 		} else if (extent_start > start && extent_start < end) {
180 			size = extent_start - start;
181 			ret = btrfs_add_free_space(block_group, start,
182 						   size);
183 			BUG_ON(ret);
184 			start = extent_end + 1;
185 		} else {
186 			break;
187 		}
188 	}
189 
190 	if (start < end) {
191 		size = end - start;
192 		ret = btrfs_add_free_space(block_group, start, size);
193 		BUG_ON(ret);
194 	}
195 
196 	return 0;
197 }
198 
199 static int remove_sb_from_cache(struct btrfs_root *root,
200 				struct btrfs_block_group_cache *cache)
201 {
202 	u64 bytenr;
203 	u64 *logical;
204 	int stripe_len;
205 	int i, nr, ret;
206 
207 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
208 		bytenr = btrfs_sb_offset(i);
209 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
210 				       cache->key.objectid, bytenr, 0,
211 				       &logical, &nr, &stripe_len);
212 		BUG_ON(ret);
213 		while (nr--) {
214 			btrfs_remove_free_space(cache, logical[nr],
215 						stripe_len);
216 		}
217 		kfree(logical);
218 	}
219 	return 0;
220 }
221 
222 static int cache_block_group(struct btrfs_root *root,
223 			     struct btrfs_block_group_cache *block_group)
224 {
225 	struct btrfs_path *path;
226 	int ret = 0;
227 	struct btrfs_key key;
228 	struct extent_buffer *leaf;
229 	int slot;
230 	u64 last;
231 
232 	if (!block_group)
233 		return 0;
234 
235 	root = root->fs_info->extent_root;
236 
237 	if (block_group->cached)
238 		return 0;
239 
240 	path = btrfs_alloc_path();
241 	if (!path)
242 		return -ENOMEM;
243 
244 	path->reada = 2;
245 	/*
246 	 * we get into deadlocks with paths held by callers of this function.
247 	 * since the alloc_mutex is protecting things right now, just
248 	 * skip the locking here
249 	 */
250 	path->skip_locking = 1;
251 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
252 	key.objectid = last;
253 	key.offset = 0;
254 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
255 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
256 	if (ret < 0)
257 		goto err;
258 
259 	while (1) {
260 		leaf = path->nodes[0];
261 		slot = path->slots[0];
262 		if (slot >= btrfs_header_nritems(leaf)) {
263 			ret = btrfs_next_leaf(root, path);
264 			if (ret < 0)
265 				goto err;
266 			if (ret == 0)
267 				continue;
268 			else
269 				break;
270 		}
271 		btrfs_item_key_to_cpu(leaf, &key, slot);
272 		if (key.objectid < block_group->key.objectid)
273 			goto next;
274 
275 		if (key.objectid >= block_group->key.objectid +
276 		    block_group->key.offset)
277 			break;
278 
279 		if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
280 			add_new_free_space(block_group, root->fs_info, last,
281 					   key.objectid);
282 
283 			last = key.objectid + key.offset;
284 		}
285 next:
286 		path->slots[0]++;
287 	}
288 
289 	add_new_free_space(block_group, root->fs_info, last,
290 			   block_group->key.objectid +
291 			   block_group->key.offset);
292 
293 	block_group->cached = 1;
294 	remove_sb_from_cache(root, block_group);
295 	ret = 0;
296 err:
297 	btrfs_free_path(path);
298 	return ret;
299 }
300 
301 /*
302  * return the block group that starts at or after bytenr
303  */
304 static struct btrfs_block_group_cache *
305 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
306 {
307 	struct btrfs_block_group_cache *cache;
308 
309 	cache = block_group_cache_tree_search(info, bytenr, 0);
310 
311 	return cache;
312 }
313 
314 /*
315  * return the block group that contains teh given bytenr
316  */
317 struct btrfs_block_group_cache *btrfs_lookup_block_group(
318 						 struct btrfs_fs_info *info,
319 						 u64 bytenr)
320 {
321 	struct btrfs_block_group_cache *cache;
322 
323 	cache = block_group_cache_tree_search(info, bytenr, 1);
324 
325 	return cache;
326 }
327 
328 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
329 {
330 	if (atomic_dec_and_test(&cache->count))
331 		kfree(cache);
332 }
333 
334 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
335 						  u64 flags)
336 {
337 	struct list_head *head = &info->space_info;
338 	struct btrfs_space_info *found;
339 
340 	rcu_read_lock();
341 	list_for_each_entry_rcu(found, head, list) {
342 		if (found->flags == flags) {
343 			rcu_read_unlock();
344 			return found;
345 		}
346 	}
347 	rcu_read_unlock();
348 	return NULL;
349 }
350 
351 /*
352  * after adding space to the filesystem, we need to clear the full flags
353  * on all the space infos.
354  */
355 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
356 {
357 	struct list_head *head = &info->space_info;
358 	struct btrfs_space_info *found;
359 
360 	rcu_read_lock();
361 	list_for_each_entry_rcu(found, head, list)
362 		found->full = 0;
363 	rcu_read_unlock();
364 }
365 
366 static u64 div_factor(u64 num, int factor)
367 {
368 	if (factor == 10)
369 		return num;
370 	num *= factor;
371 	do_div(num, 10);
372 	return num;
373 }
374 
375 u64 btrfs_find_block_group(struct btrfs_root *root,
376 			   u64 search_start, u64 search_hint, int owner)
377 {
378 	struct btrfs_block_group_cache *cache;
379 	u64 used;
380 	u64 last = max(search_hint, search_start);
381 	u64 group_start = 0;
382 	int full_search = 0;
383 	int factor = 9;
384 	int wrapped = 0;
385 again:
386 	while (1) {
387 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
388 		if (!cache)
389 			break;
390 
391 		spin_lock(&cache->lock);
392 		last = cache->key.objectid + cache->key.offset;
393 		used = btrfs_block_group_used(&cache->item);
394 
395 		if ((full_search || !cache->ro) &&
396 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
397 			if (used + cache->pinned + cache->reserved <
398 			    div_factor(cache->key.offset, factor)) {
399 				group_start = cache->key.objectid;
400 				spin_unlock(&cache->lock);
401 				btrfs_put_block_group(cache);
402 				goto found;
403 			}
404 		}
405 		spin_unlock(&cache->lock);
406 		btrfs_put_block_group(cache);
407 		cond_resched();
408 	}
409 	if (!wrapped) {
410 		last = search_start;
411 		wrapped = 1;
412 		goto again;
413 	}
414 	if (!full_search && factor < 10) {
415 		last = search_start;
416 		full_search = 1;
417 		factor = 10;
418 		goto again;
419 	}
420 found:
421 	return group_start;
422 }
423 
424 /* simple helper to search for an existing extent at a given offset */
425 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
426 {
427 	int ret;
428 	struct btrfs_key key;
429 	struct btrfs_path *path;
430 
431 	path = btrfs_alloc_path();
432 	BUG_ON(!path);
433 	key.objectid = start;
434 	key.offset = len;
435 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
436 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
437 				0, 0);
438 	btrfs_free_path(path);
439 	return ret;
440 }
441 
442 /*
443  * Back reference rules.  Back refs have three main goals:
444  *
445  * 1) differentiate between all holders of references to an extent so that
446  *    when a reference is dropped we can make sure it was a valid reference
447  *    before freeing the extent.
448  *
449  * 2) Provide enough information to quickly find the holders of an extent
450  *    if we notice a given block is corrupted or bad.
451  *
452  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
453  *    maintenance.  This is actually the same as #2, but with a slightly
454  *    different use case.
455  *
456  * File extents can be referenced by:
457  *
458  * - multiple snapshots, subvolumes, or different generations in one subvol
459  * - different files inside a single subvolume
460  * - different offsets inside a file (bookend extents in file.c)
461  *
462  * The extent ref structure has fields for:
463  *
464  * - Objectid of the subvolume root
465  * - Generation number of the tree holding the reference
466  * - objectid of the file holding the reference
467  * - number of references holding by parent node (alway 1 for tree blocks)
468  *
469  * Btree leaf may hold multiple references to a file extent. In most cases,
470  * these references are from same file and the corresponding offsets inside
471  * the file are close together.
472  *
473  * When a file extent is allocated the fields are filled in:
474  *     (root_key.objectid, trans->transid, inode objectid, 1)
475  *
476  * When a leaf is cow'd new references are added for every file extent found
477  * in the leaf.  It looks similar to the create case, but trans->transid will
478  * be different when the block is cow'd.
479  *
480  *     (root_key.objectid, trans->transid, inode objectid,
481  *      number of references in the leaf)
482  *
483  * When a file extent is removed either during snapshot deletion or
484  * file truncation, we find the corresponding back reference and check
485  * the following fields:
486  *
487  *     (btrfs_header_owner(leaf), btrfs_header_generation(leaf),
488  *      inode objectid)
489  *
490  * Btree extents can be referenced by:
491  *
492  * - Different subvolumes
493  * - Different generations of the same subvolume
494  *
495  * When a tree block is created, back references are inserted:
496  *
497  * (root->root_key.objectid, trans->transid, level, 1)
498  *
499  * When a tree block is cow'd, new back references are added for all the
500  * blocks it points to. If the tree block isn't in reference counted root,
501  * the old back references are removed. These new back references are of
502  * the form (trans->transid will have increased since creation):
503  *
504  * (root->root_key.objectid, trans->transid, level, 1)
505  *
506  * When a backref is in deleting, the following fields are checked:
507  *
508  * if backref was for a tree root:
509  *     (btrfs_header_owner(itself), btrfs_header_generation(itself), level)
510  * else
511  *     (btrfs_header_owner(parent), btrfs_header_generation(parent), level)
512  *
513  * Back Reference Key composing:
514  *
515  * The key objectid corresponds to the first byte in the extent, the key
516  * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first
517  * byte of parent extent. If a extent is tree root, the key offset is set
518  * to the key objectid.
519  */
520 
521 static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans,
522 					  struct btrfs_root *root,
523 					  struct btrfs_path *path,
524 					  u64 bytenr, u64 parent,
525 					  u64 ref_root, u64 ref_generation,
526 					  u64 owner_objectid, int del)
527 {
528 	struct btrfs_key key;
529 	struct btrfs_extent_ref *ref;
530 	struct extent_buffer *leaf;
531 	u64 ref_objectid;
532 	int ret;
533 
534 	key.objectid = bytenr;
535 	key.type = BTRFS_EXTENT_REF_KEY;
536 	key.offset = parent;
537 
538 	ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1);
539 	if (ret < 0)
540 		goto out;
541 	if (ret > 0) {
542 		ret = -ENOENT;
543 		goto out;
544 	}
545 
546 	leaf = path->nodes[0];
547 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
548 	ref_objectid = btrfs_ref_objectid(leaf, ref);
549 	if (btrfs_ref_root(leaf, ref) != ref_root ||
550 	    btrfs_ref_generation(leaf, ref) != ref_generation ||
551 	    (ref_objectid != owner_objectid &&
552 	     ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
553 		ret = -EIO;
554 		WARN_ON(1);
555 		goto out;
556 	}
557 	ret = 0;
558 out:
559 	return ret;
560 }
561 
562 static noinline int insert_extent_backref(struct btrfs_trans_handle *trans,
563 					  struct btrfs_root *root,
564 					  struct btrfs_path *path,
565 					  u64 bytenr, u64 parent,
566 					  u64 ref_root, u64 ref_generation,
567 					  u64 owner_objectid,
568 					  int refs_to_add)
569 {
570 	struct btrfs_key key;
571 	struct extent_buffer *leaf;
572 	struct btrfs_extent_ref *ref;
573 	u32 num_refs;
574 	int ret;
575 
576 	key.objectid = bytenr;
577 	key.type = BTRFS_EXTENT_REF_KEY;
578 	key.offset = parent;
579 
580 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref));
581 	if (ret == 0) {
582 		leaf = path->nodes[0];
583 		ref = btrfs_item_ptr(leaf, path->slots[0],
584 				     struct btrfs_extent_ref);
585 		btrfs_set_ref_root(leaf, ref, ref_root);
586 		btrfs_set_ref_generation(leaf, ref, ref_generation);
587 		btrfs_set_ref_objectid(leaf, ref, owner_objectid);
588 		btrfs_set_ref_num_refs(leaf, ref, refs_to_add);
589 	} else if (ret == -EEXIST) {
590 		u64 existing_owner;
591 
592 		BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID);
593 		leaf = path->nodes[0];
594 		ref = btrfs_item_ptr(leaf, path->slots[0],
595 				     struct btrfs_extent_ref);
596 		if (btrfs_ref_root(leaf, ref) != ref_root ||
597 		    btrfs_ref_generation(leaf, ref) != ref_generation) {
598 			ret = -EIO;
599 			WARN_ON(1);
600 			goto out;
601 		}
602 
603 		num_refs = btrfs_ref_num_refs(leaf, ref);
604 		BUG_ON(num_refs == 0);
605 		btrfs_set_ref_num_refs(leaf, ref, num_refs + refs_to_add);
606 
607 		existing_owner = btrfs_ref_objectid(leaf, ref);
608 		if (existing_owner != owner_objectid &&
609 		    existing_owner != BTRFS_MULTIPLE_OBJECTIDS) {
610 			btrfs_set_ref_objectid(leaf, ref,
611 					BTRFS_MULTIPLE_OBJECTIDS);
612 		}
613 		ret = 0;
614 	} else {
615 		goto out;
616 	}
617 	btrfs_unlock_up_safe(path, 1);
618 	btrfs_mark_buffer_dirty(path->nodes[0]);
619 out:
620 	btrfs_release_path(root, path);
621 	return ret;
622 }
623 
624 static noinline int remove_extent_backref(struct btrfs_trans_handle *trans,
625 					  struct btrfs_root *root,
626 					  struct btrfs_path *path,
627 					  int refs_to_drop)
628 {
629 	struct extent_buffer *leaf;
630 	struct btrfs_extent_ref *ref;
631 	u32 num_refs;
632 	int ret = 0;
633 
634 	leaf = path->nodes[0];
635 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
636 	num_refs = btrfs_ref_num_refs(leaf, ref);
637 	BUG_ON(num_refs < refs_to_drop);
638 	num_refs -= refs_to_drop;
639 	if (num_refs == 0) {
640 		ret = btrfs_del_item(trans, root, path);
641 	} else {
642 		btrfs_set_ref_num_refs(leaf, ref, num_refs);
643 		btrfs_mark_buffer_dirty(leaf);
644 	}
645 	btrfs_release_path(root, path);
646 	return ret;
647 }
648 
649 #ifdef BIO_RW_DISCARD
650 static void btrfs_issue_discard(struct block_device *bdev,
651 				u64 start, u64 len)
652 {
653 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
654 }
655 #endif
656 
657 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
658 				u64 num_bytes)
659 {
660 #ifdef BIO_RW_DISCARD
661 	int ret;
662 	u64 map_length = num_bytes;
663 	struct btrfs_multi_bio *multi = NULL;
664 
665 	/* Tell the block device(s) that the sectors can be discarded */
666 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
667 			      bytenr, &map_length, &multi, 0);
668 	if (!ret) {
669 		struct btrfs_bio_stripe *stripe = multi->stripes;
670 		int i;
671 
672 		if (map_length > num_bytes)
673 			map_length = num_bytes;
674 
675 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
676 			btrfs_issue_discard(stripe->dev->bdev,
677 					    stripe->physical,
678 					    map_length);
679 		}
680 		kfree(multi);
681 	}
682 
683 	return ret;
684 #else
685 	return 0;
686 #endif
687 }
688 
689 static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
690 				     struct btrfs_root *root, u64 bytenr,
691 				     u64 num_bytes,
692 				     u64 orig_parent, u64 parent,
693 				     u64 orig_root, u64 ref_root,
694 				     u64 orig_generation, u64 ref_generation,
695 				     u64 owner_objectid)
696 {
697 	int ret;
698 	int pin = owner_objectid < BTRFS_FIRST_FREE_OBJECTID;
699 
700 	ret = btrfs_update_delayed_ref(trans, bytenr, num_bytes,
701 				       orig_parent, parent, orig_root,
702 				       ref_root, orig_generation,
703 				       ref_generation, owner_objectid, pin);
704 	BUG_ON(ret);
705 	return ret;
706 }
707 
708 int btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
709 			    struct btrfs_root *root, u64 bytenr,
710 			    u64 num_bytes, u64 orig_parent, u64 parent,
711 			    u64 ref_root, u64 ref_generation,
712 			    u64 owner_objectid)
713 {
714 	int ret;
715 	if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
716 	    owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
717 		return 0;
718 
719 	ret = __btrfs_update_extent_ref(trans, root, bytenr, num_bytes,
720 					orig_parent, parent, ref_root,
721 					ref_root, ref_generation,
722 					ref_generation, owner_objectid);
723 	return ret;
724 }
725 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
726 				  struct btrfs_root *root, u64 bytenr,
727 				  u64 num_bytes,
728 				  u64 orig_parent, u64 parent,
729 				  u64 orig_root, u64 ref_root,
730 				  u64 orig_generation, u64 ref_generation,
731 				  u64 owner_objectid)
732 {
733 	int ret;
734 
735 	ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, ref_root,
736 				    ref_generation, owner_objectid,
737 				    BTRFS_ADD_DELAYED_REF, 0);
738 	BUG_ON(ret);
739 	return ret;
740 }
741 
742 static noinline_for_stack int add_extent_ref(struct btrfs_trans_handle *trans,
743 			  struct btrfs_root *root, u64 bytenr,
744 			  u64 num_bytes, u64 parent, u64 ref_root,
745 			  u64 ref_generation, u64 owner_objectid,
746 			  int refs_to_add)
747 {
748 	struct btrfs_path *path;
749 	int ret;
750 	struct btrfs_key key;
751 	struct extent_buffer *l;
752 	struct btrfs_extent_item *item;
753 	u32 refs;
754 
755 	path = btrfs_alloc_path();
756 	if (!path)
757 		return -ENOMEM;
758 
759 	path->reada = 1;
760 	path->leave_spinning = 1;
761 	key.objectid = bytenr;
762 	key.type = BTRFS_EXTENT_ITEM_KEY;
763 	key.offset = num_bytes;
764 
765 	/* first find the extent item and update its reference count */
766 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
767 				path, 0, 1);
768 	if (ret < 0) {
769 		btrfs_set_path_blocking(path);
770 		return ret;
771 	}
772 
773 	if (ret > 0) {
774 		WARN_ON(1);
775 		btrfs_free_path(path);
776 		return -EIO;
777 	}
778 	l = path->nodes[0];
779 
780 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
781 	if (key.objectid != bytenr) {
782 		btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]);
783 		printk(KERN_ERR "btrfs wanted %llu found %llu\n",
784 		       (unsigned long long)bytenr,
785 		       (unsigned long long)key.objectid);
786 		BUG();
787 	}
788 	BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY);
789 
790 	item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
791 
792 	refs = btrfs_extent_refs(l, item);
793 	btrfs_set_extent_refs(l, item, refs + refs_to_add);
794 	btrfs_unlock_up_safe(path, 1);
795 
796 	btrfs_mark_buffer_dirty(path->nodes[0]);
797 
798 	btrfs_release_path(root->fs_info->extent_root, path);
799 
800 	path->reada = 1;
801 	path->leave_spinning = 1;
802 
803 	/* now insert the actual backref */
804 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
805 				    path, bytenr, parent,
806 				    ref_root, ref_generation,
807 				    owner_objectid, refs_to_add);
808 	BUG_ON(ret);
809 	btrfs_free_path(path);
810 	return 0;
811 }
812 
813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
814 			 struct btrfs_root *root,
815 			 u64 bytenr, u64 num_bytes, u64 parent,
816 			 u64 ref_root, u64 ref_generation,
817 			 u64 owner_objectid)
818 {
819 	int ret;
820 	if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
821 	    owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
822 		return 0;
823 
824 	ret = __btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, parent,
825 				     0, ref_root, 0, ref_generation,
826 				     owner_objectid);
827 	return ret;
828 }
829 
830 static int drop_delayed_ref(struct btrfs_trans_handle *trans,
831 					struct btrfs_root *root,
832 					struct btrfs_delayed_ref_node *node)
833 {
834 	int ret = 0;
835 	struct btrfs_delayed_ref *ref = btrfs_delayed_node_to_ref(node);
836 
837 	BUG_ON(node->ref_mod == 0);
838 	ret = __btrfs_free_extent(trans, root, node->bytenr, node->num_bytes,
839 				  node->parent, ref->root, ref->generation,
840 				  ref->owner_objectid, ref->pin, node->ref_mod);
841 
842 	return ret;
843 }
844 
845 /* helper function to actually process a single delayed ref entry */
846 static noinline int run_one_delayed_ref(struct btrfs_trans_handle *trans,
847 					struct btrfs_root *root,
848 					struct btrfs_delayed_ref_node *node,
849 					int insert_reserved)
850 {
851 	int ret;
852 	struct btrfs_delayed_ref *ref;
853 
854 	if (node->parent == (u64)-1) {
855 		struct btrfs_delayed_ref_head *head;
856 		/*
857 		 * we've hit the end of the chain and we were supposed
858 		 * to insert this extent into the tree.  But, it got
859 		 * deleted before we ever needed to insert it, so all
860 		 * we have to do is clean up the accounting
861 		 */
862 		if (insert_reserved) {
863 			update_reserved_extents(root, node->bytenr,
864 						node->num_bytes, 0);
865 		}
866 		head = btrfs_delayed_node_to_head(node);
867 		mutex_unlock(&head->mutex);
868 		return 0;
869 	}
870 
871 	ref = btrfs_delayed_node_to_ref(node);
872 	if (ref->action == BTRFS_ADD_DELAYED_REF) {
873 		if (insert_reserved) {
874 			struct btrfs_key ins;
875 
876 			ins.objectid = node->bytenr;
877 			ins.offset = node->num_bytes;
878 			ins.type = BTRFS_EXTENT_ITEM_KEY;
879 
880 			/* record the full extent allocation */
881 			ret = __btrfs_alloc_reserved_extent(trans, root,
882 					node->parent, ref->root,
883 					ref->generation, ref->owner_objectid,
884 					&ins, node->ref_mod);
885 			update_reserved_extents(root, node->bytenr,
886 						node->num_bytes, 0);
887 		} else {
888 			/* just add one backref */
889 			ret = add_extent_ref(trans, root, node->bytenr,
890 				     node->num_bytes,
891 				     node->parent, ref->root, ref->generation,
892 				     ref->owner_objectid, node->ref_mod);
893 		}
894 		BUG_ON(ret);
895 	} else if (ref->action == BTRFS_DROP_DELAYED_REF) {
896 		WARN_ON(insert_reserved);
897 		ret = drop_delayed_ref(trans, root, node);
898 	}
899 	return 0;
900 }
901 
902 static noinline struct btrfs_delayed_ref_node *
903 select_delayed_ref(struct btrfs_delayed_ref_head *head)
904 {
905 	struct rb_node *node;
906 	struct btrfs_delayed_ref_node *ref;
907 	int action = BTRFS_ADD_DELAYED_REF;
908 again:
909 	/*
910 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
911 	 * this prevents ref count from going down to zero when
912 	 * there still are pending delayed ref.
913 	 */
914 	node = rb_prev(&head->node.rb_node);
915 	while (1) {
916 		if (!node)
917 			break;
918 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
919 				rb_node);
920 		if (ref->bytenr != head->node.bytenr)
921 			break;
922 		if (btrfs_delayed_node_to_ref(ref)->action == action)
923 			return ref;
924 		node = rb_prev(node);
925 	}
926 	if (action == BTRFS_ADD_DELAYED_REF) {
927 		action = BTRFS_DROP_DELAYED_REF;
928 		goto again;
929 	}
930 	return NULL;
931 }
932 
933 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
934 				       struct btrfs_root *root,
935 				       struct list_head *cluster)
936 {
937 	struct btrfs_delayed_ref_root *delayed_refs;
938 	struct btrfs_delayed_ref_node *ref;
939 	struct btrfs_delayed_ref_head *locked_ref = NULL;
940 	int ret;
941 	int count = 0;
942 	int must_insert_reserved = 0;
943 
944 	delayed_refs = &trans->transaction->delayed_refs;
945 	while (1) {
946 		if (!locked_ref) {
947 			/* pick a new head ref from the cluster list */
948 			if (list_empty(cluster))
949 				break;
950 
951 			locked_ref = list_entry(cluster->next,
952 				     struct btrfs_delayed_ref_head, cluster);
953 
954 			/* grab the lock that says we are going to process
955 			 * all the refs for this head */
956 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
957 
958 			/*
959 			 * we may have dropped the spin lock to get the head
960 			 * mutex lock, and that might have given someone else
961 			 * time to free the head.  If that's true, it has been
962 			 * removed from our list and we can move on.
963 			 */
964 			if (ret == -EAGAIN) {
965 				locked_ref = NULL;
966 				count++;
967 				continue;
968 			}
969 		}
970 
971 		/*
972 		 * record the must insert reserved flag before we
973 		 * drop the spin lock.
974 		 */
975 		must_insert_reserved = locked_ref->must_insert_reserved;
976 		locked_ref->must_insert_reserved = 0;
977 
978 		/*
979 		 * locked_ref is the head node, so we have to go one
980 		 * node back for any delayed ref updates
981 		 */
982 		ref = select_delayed_ref(locked_ref);
983 		if (!ref) {
984 			/* All delayed refs have been processed, Go ahead
985 			 * and send the head node to run_one_delayed_ref,
986 			 * so that any accounting fixes can happen
987 			 */
988 			ref = &locked_ref->node;
989 			list_del_init(&locked_ref->cluster);
990 			locked_ref = NULL;
991 		}
992 
993 		ref->in_tree = 0;
994 		rb_erase(&ref->rb_node, &delayed_refs->root);
995 		delayed_refs->num_entries--;
996 		spin_unlock(&delayed_refs->lock);
997 
998 		ret = run_one_delayed_ref(trans, root, ref,
999 					  must_insert_reserved);
1000 		BUG_ON(ret);
1001 		btrfs_put_delayed_ref(ref);
1002 
1003 		count++;
1004 		cond_resched();
1005 		spin_lock(&delayed_refs->lock);
1006 	}
1007 	return count;
1008 }
1009 
1010 /*
1011  * this starts processing the delayed reference count updates and
1012  * extent insertions we have queued up so far.  count can be
1013  * 0, which means to process everything in the tree at the start
1014  * of the run (but not newly added entries), or it can be some target
1015  * number you'd like to process.
1016  */
1017 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1018 			   struct btrfs_root *root, unsigned long count)
1019 {
1020 	struct rb_node *node;
1021 	struct btrfs_delayed_ref_root *delayed_refs;
1022 	struct btrfs_delayed_ref_node *ref;
1023 	struct list_head cluster;
1024 	int ret;
1025 	int run_all = count == (unsigned long)-1;
1026 	int run_most = 0;
1027 
1028 	if (root == root->fs_info->extent_root)
1029 		root = root->fs_info->tree_root;
1030 
1031 	delayed_refs = &trans->transaction->delayed_refs;
1032 	INIT_LIST_HEAD(&cluster);
1033 again:
1034 	spin_lock(&delayed_refs->lock);
1035 	if (count == 0) {
1036 		count = delayed_refs->num_entries * 2;
1037 		run_most = 1;
1038 	}
1039 	while (1) {
1040 		if (!(run_all || run_most) &&
1041 		    delayed_refs->num_heads_ready < 64)
1042 			break;
1043 
1044 		/*
1045 		 * go find something we can process in the rbtree.  We start at
1046 		 * the beginning of the tree, and then build a cluster
1047 		 * of refs to process starting at the first one we are able to
1048 		 * lock
1049 		 */
1050 		ret = btrfs_find_ref_cluster(trans, &cluster,
1051 					     delayed_refs->run_delayed_start);
1052 		if (ret)
1053 			break;
1054 
1055 		ret = run_clustered_refs(trans, root, &cluster);
1056 		BUG_ON(ret < 0);
1057 
1058 		count -= min_t(unsigned long, ret, count);
1059 
1060 		if (count == 0)
1061 			break;
1062 	}
1063 
1064 	if (run_all) {
1065 		node = rb_first(&delayed_refs->root);
1066 		if (!node)
1067 			goto out;
1068 		count = (unsigned long)-1;
1069 
1070 		while (node) {
1071 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
1072 				       rb_node);
1073 			if (btrfs_delayed_ref_is_head(ref)) {
1074 				struct btrfs_delayed_ref_head *head;
1075 
1076 				head = btrfs_delayed_node_to_head(ref);
1077 				atomic_inc(&ref->refs);
1078 
1079 				spin_unlock(&delayed_refs->lock);
1080 				mutex_lock(&head->mutex);
1081 				mutex_unlock(&head->mutex);
1082 
1083 				btrfs_put_delayed_ref(ref);
1084 				cond_resched();
1085 				goto again;
1086 			}
1087 			node = rb_next(node);
1088 		}
1089 		spin_unlock(&delayed_refs->lock);
1090 		schedule_timeout(1);
1091 		goto again;
1092 	}
1093 out:
1094 	spin_unlock(&delayed_refs->lock);
1095 	return 0;
1096 }
1097 
1098 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
1099 			  struct btrfs_root *root, u64 objectid, u64 bytenr)
1100 {
1101 	struct btrfs_root *extent_root = root->fs_info->extent_root;
1102 	struct btrfs_path *path;
1103 	struct extent_buffer *leaf;
1104 	struct btrfs_extent_ref *ref_item;
1105 	struct btrfs_key key;
1106 	struct btrfs_key found_key;
1107 	u64 ref_root;
1108 	u64 last_snapshot;
1109 	u32 nritems;
1110 	int ret;
1111 
1112 	key.objectid = bytenr;
1113 	key.offset = (u64)-1;
1114 	key.type = BTRFS_EXTENT_ITEM_KEY;
1115 
1116 	path = btrfs_alloc_path();
1117 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1118 	if (ret < 0)
1119 		goto out;
1120 	BUG_ON(ret == 0);
1121 
1122 	ret = -ENOENT;
1123 	if (path->slots[0] == 0)
1124 		goto out;
1125 
1126 	path->slots[0]--;
1127 	leaf = path->nodes[0];
1128 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1129 
1130 	if (found_key.objectid != bytenr ||
1131 	    found_key.type != BTRFS_EXTENT_ITEM_KEY)
1132 		goto out;
1133 
1134 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1135 	while (1) {
1136 		leaf = path->nodes[0];
1137 		nritems = btrfs_header_nritems(leaf);
1138 		if (path->slots[0] >= nritems) {
1139 			ret = btrfs_next_leaf(extent_root, path);
1140 			if (ret < 0)
1141 				goto out;
1142 			if (ret == 0)
1143 				continue;
1144 			break;
1145 		}
1146 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1147 		if (found_key.objectid != bytenr)
1148 			break;
1149 
1150 		if (found_key.type != BTRFS_EXTENT_REF_KEY) {
1151 			path->slots[0]++;
1152 			continue;
1153 		}
1154 
1155 		ref_item = btrfs_item_ptr(leaf, path->slots[0],
1156 					  struct btrfs_extent_ref);
1157 		ref_root = btrfs_ref_root(leaf, ref_item);
1158 		if ((ref_root != root->root_key.objectid &&
1159 		     ref_root != BTRFS_TREE_LOG_OBJECTID) ||
1160 		     objectid != btrfs_ref_objectid(leaf, ref_item)) {
1161 			ret = 1;
1162 			goto out;
1163 		}
1164 		if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) {
1165 			ret = 1;
1166 			goto out;
1167 		}
1168 
1169 		path->slots[0]++;
1170 	}
1171 	ret = 0;
1172 out:
1173 	btrfs_free_path(path);
1174 	return ret;
1175 }
1176 
1177 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1178 		    struct extent_buffer *buf, u32 nr_extents)
1179 {
1180 	struct btrfs_key key;
1181 	struct btrfs_file_extent_item *fi;
1182 	u64 root_gen;
1183 	u32 nritems;
1184 	int i;
1185 	int level;
1186 	int ret = 0;
1187 	int shared = 0;
1188 
1189 	if (!root->ref_cows)
1190 		return 0;
1191 
1192 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1193 		shared = 0;
1194 		root_gen = root->root_key.offset;
1195 	} else {
1196 		shared = 1;
1197 		root_gen = trans->transid - 1;
1198 	}
1199 
1200 	level = btrfs_header_level(buf);
1201 	nritems = btrfs_header_nritems(buf);
1202 
1203 	if (level == 0) {
1204 		struct btrfs_leaf_ref *ref;
1205 		struct btrfs_extent_info *info;
1206 
1207 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
1208 		if (!ref) {
1209 			ret = -ENOMEM;
1210 			goto out;
1211 		}
1212 
1213 		ref->root_gen = root_gen;
1214 		ref->bytenr = buf->start;
1215 		ref->owner = btrfs_header_owner(buf);
1216 		ref->generation = btrfs_header_generation(buf);
1217 		ref->nritems = nr_extents;
1218 		info = ref->extents;
1219 
1220 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
1221 			u64 disk_bytenr;
1222 			btrfs_item_key_to_cpu(buf, &key, i);
1223 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1224 				continue;
1225 			fi = btrfs_item_ptr(buf, i,
1226 					    struct btrfs_file_extent_item);
1227 			if (btrfs_file_extent_type(buf, fi) ==
1228 			    BTRFS_FILE_EXTENT_INLINE)
1229 				continue;
1230 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1231 			if (disk_bytenr == 0)
1232 				continue;
1233 
1234 			info->bytenr = disk_bytenr;
1235 			info->num_bytes =
1236 				btrfs_file_extent_disk_num_bytes(buf, fi);
1237 			info->objectid = key.objectid;
1238 			info->offset = key.offset;
1239 			info++;
1240 		}
1241 
1242 		ret = btrfs_add_leaf_ref(root, ref, shared);
1243 		if (ret == -EEXIST && shared) {
1244 			struct btrfs_leaf_ref *old;
1245 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
1246 			BUG_ON(!old);
1247 			btrfs_remove_leaf_ref(root, old);
1248 			btrfs_free_leaf_ref(root, old);
1249 			ret = btrfs_add_leaf_ref(root, ref, shared);
1250 		}
1251 		WARN_ON(ret);
1252 		btrfs_free_leaf_ref(root, ref);
1253 	}
1254 out:
1255 	return ret;
1256 }
1257 
1258 /* when a block goes through cow, we update the reference counts of
1259  * everything that block points to.  The internal pointers of the block
1260  * can be in just about any order, and it is likely to have clusters of
1261  * things that are close together and clusters of things that are not.
1262  *
1263  * To help reduce the seeks that come with updating all of these reference
1264  * counts, sort them by byte number before actual updates are done.
1265  *
1266  * struct refsort is used to match byte number to slot in the btree block.
1267  * we sort based on the byte number and then use the slot to actually
1268  * find the item.
1269  *
1270  * struct refsort is smaller than strcut btrfs_item and smaller than
1271  * struct btrfs_key_ptr.  Since we're currently limited to the page size
1272  * for a btree block, there's no way for a kmalloc of refsorts for a
1273  * single node to be bigger than a page.
1274  */
1275 struct refsort {
1276 	u64 bytenr;
1277 	u32 slot;
1278 };
1279 
1280 /*
1281  * for passing into sort()
1282  */
1283 static int refsort_cmp(const void *a_void, const void *b_void)
1284 {
1285 	const struct refsort *a = a_void;
1286 	const struct refsort *b = b_void;
1287 
1288 	if (a->bytenr < b->bytenr)
1289 		return -1;
1290 	if (a->bytenr > b->bytenr)
1291 		return 1;
1292 	return 0;
1293 }
1294 
1295 
1296 noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans,
1297 			   struct btrfs_root *root,
1298 			   struct extent_buffer *orig_buf,
1299 			   struct extent_buffer *buf, u32 *nr_extents)
1300 {
1301 	u64 bytenr;
1302 	u64 ref_root;
1303 	u64 orig_root;
1304 	u64 ref_generation;
1305 	u64 orig_generation;
1306 	struct refsort *sorted;
1307 	u32 nritems;
1308 	u32 nr_file_extents = 0;
1309 	struct btrfs_key key;
1310 	struct btrfs_file_extent_item *fi;
1311 	int i;
1312 	int level;
1313 	int ret = 0;
1314 	int faili = 0;
1315 	int refi = 0;
1316 	int slot;
1317 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
1318 			    u64, u64, u64, u64, u64, u64, u64, u64, u64);
1319 
1320 	ref_root = btrfs_header_owner(buf);
1321 	ref_generation = btrfs_header_generation(buf);
1322 	orig_root = btrfs_header_owner(orig_buf);
1323 	orig_generation = btrfs_header_generation(orig_buf);
1324 
1325 	nritems = btrfs_header_nritems(buf);
1326 	level = btrfs_header_level(buf);
1327 
1328 	sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS);
1329 	BUG_ON(!sorted);
1330 
1331 	if (root->ref_cows) {
1332 		process_func = __btrfs_inc_extent_ref;
1333 	} else {
1334 		if (level == 0 &&
1335 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1336 			goto out;
1337 		if (level != 0 &&
1338 		    root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1339 			goto out;
1340 		process_func = __btrfs_update_extent_ref;
1341 	}
1342 
1343 	/*
1344 	 * we make two passes through the items.  In the first pass we
1345 	 * only record the byte number and slot.  Then we sort based on
1346 	 * byte number and do the actual work based on the sorted results
1347 	 */
1348 	for (i = 0; i < nritems; i++) {
1349 		cond_resched();
1350 		if (level == 0) {
1351 			btrfs_item_key_to_cpu(buf, &key, i);
1352 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1353 				continue;
1354 			fi = btrfs_item_ptr(buf, i,
1355 					    struct btrfs_file_extent_item);
1356 			if (btrfs_file_extent_type(buf, fi) ==
1357 			    BTRFS_FILE_EXTENT_INLINE)
1358 				continue;
1359 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1360 			if (bytenr == 0)
1361 				continue;
1362 
1363 			nr_file_extents++;
1364 			sorted[refi].bytenr = bytenr;
1365 			sorted[refi].slot = i;
1366 			refi++;
1367 		} else {
1368 			bytenr = btrfs_node_blockptr(buf, i);
1369 			sorted[refi].bytenr = bytenr;
1370 			sorted[refi].slot = i;
1371 			refi++;
1372 		}
1373 	}
1374 	/*
1375 	 * if refi == 0, we didn't actually put anything into the sorted
1376 	 * array and we're done
1377 	 */
1378 	if (refi == 0)
1379 		goto out;
1380 
1381 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
1382 
1383 	for (i = 0; i < refi; i++) {
1384 		cond_resched();
1385 		slot = sorted[i].slot;
1386 		bytenr = sorted[i].bytenr;
1387 
1388 		if (level == 0) {
1389 			btrfs_item_key_to_cpu(buf, &key, slot);
1390 			fi = btrfs_item_ptr(buf, slot,
1391 					    struct btrfs_file_extent_item);
1392 
1393 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1394 			if (bytenr == 0)
1395 				continue;
1396 
1397 			ret = process_func(trans, root, bytenr,
1398 				   btrfs_file_extent_disk_num_bytes(buf, fi),
1399 				   orig_buf->start, buf->start,
1400 				   orig_root, ref_root,
1401 				   orig_generation, ref_generation,
1402 				   key.objectid);
1403 
1404 			if (ret) {
1405 				faili = slot;
1406 				WARN_ON(1);
1407 				goto fail;
1408 			}
1409 		} else {
1410 			ret = process_func(trans, root, bytenr, buf->len,
1411 					   orig_buf->start, buf->start,
1412 					   orig_root, ref_root,
1413 					   orig_generation, ref_generation,
1414 					   level - 1);
1415 			if (ret) {
1416 				faili = slot;
1417 				WARN_ON(1);
1418 				goto fail;
1419 			}
1420 		}
1421 	}
1422 out:
1423 	kfree(sorted);
1424 	if (nr_extents) {
1425 		if (level == 0)
1426 			*nr_extents = nr_file_extents;
1427 		else
1428 			*nr_extents = nritems;
1429 	}
1430 	return 0;
1431 fail:
1432 	kfree(sorted);
1433 	WARN_ON(1);
1434 	return ret;
1435 }
1436 
1437 int btrfs_update_ref(struct btrfs_trans_handle *trans,
1438 		     struct btrfs_root *root, struct extent_buffer *orig_buf,
1439 		     struct extent_buffer *buf, int start_slot, int nr)
1440 
1441 {
1442 	u64 bytenr;
1443 	u64 ref_root;
1444 	u64 orig_root;
1445 	u64 ref_generation;
1446 	u64 orig_generation;
1447 	struct btrfs_key key;
1448 	struct btrfs_file_extent_item *fi;
1449 	int i;
1450 	int ret;
1451 	int slot;
1452 	int level;
1453 
1454 	BUG_ON(start_slot < 0);
1455 	BUG_ON(start_slot + nr > btrfs_header_nritems(buf));
1456 
1457 	ref_root = btrfs_header_owner(buf);
1458 	ref_generation = btrfs_header_generation(buf);
1459 	orig_root = btrfs_header_owner(orig_buf);
1460 	orig_generation = btrfs_header_generation(orig_buf);
1461 	level = btrfs_header_level(buf);
1462 
1463 	if (!root->ref_cows) {
1464 		if (level == 0 &&
1465 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1466 			return 0;
1467 		if (level != 0 &&
1468 		    root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1469 			return 0;
1470 	}
1471 
1472 	for (i = 0, slot = start_slot; i < nr; i++, slot++) {
1473 		cond_resched();
1474 		if (level == 0) {
1475 			btrfs_item_key_to_cpu(buf, &key, slot);
1476 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1477 				continue;
1478 			fi = btrfs_item_ptr(buf, slot,
1479 					    struct btrfs_file_extent_item);
1480 			if (btrfs_file_extent_type(buf, fi) ==
1481 			    BTRFS_FILE_EXTENT_INLINE)
1482 				continue;
1483 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1484 			if (bytenr == 0)
1485 				continue;
1486 			ret = __btrfs_update_extent_ref(trans, root, bytenr,
1487 				    btrfs_file_extent_disk_num_bytes(buf, fi),
1488 				    orig_buf->start, buf->start,
1489 				    orig_root, ref_root, orig_generation,
1490 				    ref_generation, key.objectid);
1491 			if (ret)
1492 				goto fail;
1493 		} else {
1494 			bytenr = btrfs_node_blockptr(buf, slot);
1495 			ret = __btrfs_update_extent_ref(trans, root, bytenr,
1496 					    buf->len, orig_buf->start,
1497 					    buf->start, orig_root, ref_root,
1498 					    orig_generation, ref_generation,
1499 					    level - 1);
1500 			if (ret)
1501 				goto fail;
1502 		}
1503 	}
1504 	return 0;
1505 fail:
1506 	WARN_ON(1);
1507 	return -1;
1508 }
1509 
1510 static int write_one_cache_group(struct btrfs_trans_handle *trans,
1511 				 struct btrfs_root *root,
1512 				 struct btrfs_path *path,
1513 				 struct btrfs_block_group_cache *cache)
1514 {
1515 	int ret;
1516 	struct btrfs_root *extent_root = root->fs_info->extent_root;
1517 	unsigned long bi;
1518 	struct extent_buffer *leaf;
1519 
1520 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
1521 	if (ret < 0)
1522 		goto fail;
1523 	BUG_ON(ret);
1524 
1525 	leaf = path->nodes[0];
1526 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
1528 	btrfs_mark_buffer_dirty(leaf);
1529 	btrfs_release_path(extent_root, path);
1530 fail:
1531 	if (ret)
1532 		return ret;
1533 	return 0;
1534 
1535 }
1536 
1537 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1538 				   struct btrfs_root *root)
1539 {
1540 	struct btrfs_block_group_cache *cache, *entry;
1541 	struct rb_node *n;
1542 	int err = 0;
1543 	int werr = 0;
1544 	struct btrfs_path *path;
1545 	u64 last = 0;
1546 
1547 	path = btrfs_alloc_path();
1548 	if (!path)
1549 		return -ENOMEM;
1550 
1551 	while (1) {
1552 		cache = NULL;
1553 		spin_lock(&root->fs_info->block_group_cache_lock);
1554 		for (n = rb_first(&root->fs_info->block_group_cache_tree);
1555 		     n; n = rb_next(n)) {
1556 			entry = rb_entry(n, struct btrfs_block_group_cache,
1557 					 cache_node);
1558 			if (entry->dirty) {
1559 				cache = entry;
1560 				break;
1561 			}
1562 		}
1563 		spin_unlock(&root->fs_info->block_group_cache_lock);
1564 
1565 		if (!cache)
1566 			break;
1567 
1568 		cache->dirty = 0;
1569 		last += cache->key.offset;
1570 
1571 		err = write_one_cache_group(trans, root,
1572 					    path, cache);
1573 		/*
1574 		 * if we fail to write the cache group, we want
1575 		 * to keep it marked dirty in hopes that a later
1576 		 * write will work
1577 		 */
1578 		if (err) {
1579 			werr = err;
1580 			continue;
1581 		}
1582 	}
1583 	btrfs_free_path(path);
1584 	return werr;
1585 }
1586 
1587 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
1588 {
1589 	struct btrfs_block_group_cache *block_group;
1590 	int readonly = 0;
1591 
1592 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1593 	if (!block_group || block_group->ro)
1594 		readonly = 1;
1595 	if (block_group)
1596 		btrfs_put_block_group(block_group);
1597 	return readonly;
1598 }
1599 
1600 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
1601 			     u64 total_bytes, u64 bytes_used,
1602 			     struct btrfs_space_info **space_info)
1603 {
1604 	struct btrfs_space_info *found;
1605 
1606 	found = __find_space_info(info, flags);
1607 	if (found) {
1608 		spin_lock(&found->lock);
1609 		found->total_bytes += total_bytes;
1610 		found->bytes_used += bytes_used;
1611 		found->full = 0;
1612 		spin_unlock(&found->lock);
1613 		*space_info = found;
1614 		return 0;
1615 	}
1616 	found = kzalloc(sizeof(*found), GFP_NOFS);
1617 	if (!found)
1618 		return -ENOMEM;
1619 
1620 	INIT_LIST_HEAD(&found->block_groups);
1621 	init_rwsem(&found->groups_sem);
1622 	spin_lock_init(&found->lock);
1623 	found->flags = flags;
1624 	found->total_bytes = total_bytes;
1625 	found->bytes_used = bytes_used;
1626 	found->bytes_pinned = 0;
1627 	found->bytes_reserved = 0;
1628 	found->bytes_readonly = 0;
1629 	found->bytes_delalloc = 0;
1630 	found->full = 0;
1631 	found->force_alloc = 0;
1632 	*space_info = found;
1633 	list_add_rcu(&found->list, &info->space_info);
1634 	return 0;
1635 }
1636 
1637 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1638 {
1639 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
1640 				   BTRFS_BLOCK_GROUP_RAID1 |
1641 				   BTRFS_BLOCK_GROUP_RAID10 |
1642 				   BTRFS_BLOCK_GROUP_DUP);
1643 	if (extra_flags) {
1644 		if (flags & BTRFS_BLOCK_GROUP_DATA)
1645 			fs_info->avail_data_alloc_bits |= extra_flags;
1646 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
1647 			fs_info->avail_metadata_alloc_bits |= extra_flags;
1648 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1649 			fs_info->avail_system_alloc_bits |= extra_flags;
1650 	}
1651 }
1652 
1653 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
1654 {
1655 	spin_lock(&cache->space_info->lock);
1656 	spin_lock(&cache->lock);
1657 	if (!cache->ro) {
1658 		cache->space_info->bytes_readonly += cache->key.offset -
1659 					btrfs_block_group_used(&cache->item);
1660 		cache->ro = 1;
1661 	}
1662 	spin_unlock(&cache->lock);
1663 	spin_unlock(&cache->space_info->lock);
1664 }
1665 
1666 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
1667 {
1668 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
1669 
1670 	if (num_devices == 1)
1671 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
1672 	if (num_devices < 4)
1673 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
1674 
1675 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
1676 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
1677 		      BTRFS_BLOCK_GROUP_RAID10))) {
1678 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
1679 	}
1680 
1681 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
1682 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
1683 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
1684 	}
1685 
1686 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
1687 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
1688 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
1689 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
1690 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
1691 	return flags;
1692 }
1693 
1694 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
1695 {
1696 	struct btrfs_fs_info *info = root->fs_info;
1697 	u64 alloc_profile;
1698 
1699 	if (data) {
1700 		alloc_profile = info->avail_data_alloc_bits &
1701 			info->data_alloc_profile;
1702 		data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
1703 	} else if (root == root->fs_info->chunk_root) {
1704 		alloc_profile = info->avail_system_alloc_bits &
1705 			info->system_alloc_profile;
1706 		data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
1707 	} else {
1708 		alloc_profile = info->avail_metadata_alloc_bits &
1709 			info->metadata_alloc_profile;
1710 		data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
1711 	}
1712 
1713 	return btrfs_reduce_alloc_profile(root, data);
1714 }
1715 
1716 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
1717 {
1718 	u64 alloc_target;
1719 
1720 	alloc_target = btrfs_get_alloc_profile(root, 1);
1721 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
1722 						       alloc_target);
1723 }
1724 
1725 /*
1726  * for now this just makes sure we have at least 5% of our metadata space free
1727  * for use.
1728  */
1729 int btrfs_check_metadata_free_space(struct btrfs_root *root)
1730 {
1731 	struct btrfs_fs_info *info = root->fs_info;
1732 	struct btrfs_space_info *meta_sinfo;
1733 	u64 alloc_target, thresh;
1734 	int committed = 0, ret;
1735 
1736 	/* get the space info for where the metadata will live */
1737 	alloc_target = btrfs_get_alloc_profile(root, 0);
1738 	meta_sinfo = __find_space_info(info, alloc_target);
1739 
1740 again:
1741 	spin_lock(&meta_sinfo->lock);
1742 	if (!meta_sinfo->full)
1743 		thresh = meta_sinfo->total_bytes * 80;
1744 	else
1745 		thresh = meta_sinfo->total_bytes * 95;
1746 
1747 	do_div(thresh, 100);
1748 
1749 	if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
1750 	    meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) {
1751 		struct btrfs_trans_handle *trans;
1752 		if (!meta_sinfo->full) {
1753 			meta_sinfo->force_alloc = 1;
1754 			spin_unlock(&meta_sinfo->lock);
1755 
1756 			trans = btrfs_start_transaction(root, 1);
1757 			if (!trans)
1758 				return -ENOMEM;
1759 
1760 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
1761 					     2 * 1024 * 1024, alloc_target, 0);
1762 			btrfs_end_transaction(trans, root);
1763 			goto again;
1764 		}
1765 		spin_unlock(&meta_sinfo->lock);
1766 
1767 		if (!committed) {
1768 			committed = 1;
1769 			trans = btrfs_join_transaction(root, 1);
1770 			if (!trans)
1771 				return -ENOMEM;
1772 			ret = btrfs_commit_transaction(trans, root);
1773 			if (ret)
1774 				return ret;
1775 			goto again;
1776 		}
1777 		return -ENOSPC;
1778 	}
1779 	spin_unlock(&meta_sinfo->lock);
1780 
1781 	return 0;
1782 }
1783 
1784 /*
1785  * This will check the space that the inode allocates from to make sure we have
1786  * enough space for bytes.
1787  */
1788 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
1789 				u64 bytes)
1790 {
1791 	struct btrfs_space_info *data_sinfo;
1792 	int ret = 0, committed = 0;
1793 
1794 	/* make sure bytes are sectorsize aligned */
1795 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
1796 
1797 	data_sinfo = BTRFS_I(inode)->space_info;
1798 again:
1799 	/* make sure we have enough space to handle the data first */
1800 	spin_lock(&data_sinfo->lock);
1801 	if (data_sinfo->total_bytes - data_sinfo->bytes_used -
1802 	    data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
1803 	    data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
1804 	    data_sinfo->bytes_may_use < bytes) {
1805 		struct btrfs_trans_handle *trans;
1806 
1807 		/*
1808 		 * if we don't have enough free bytes in this space then we need
1809 		 * to alloc a new chunk.
1810 		 */
1811 		if (!data_sinfo->full) {
1812 			u64 alloc_target;
1813 
1814 			data_sinfo->force_alloc = 1;
1815 			spin_unlock(&data_sinfo->lock);
1816 
1817 			alloc_target = btrfs_get_alloc_profile(root, 1);
1818 			trans = btrfs_start_transaction(root, 1);
1819 			if (!trans)
1820 				return -ENOMEM;
1821 
1822 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
1823 					     bytes + 2 * 1024 * 1024,
1824 					     alloc_target, 0);
1825 			btrfs_end_transaction(trans, root);
1826 			if (ret)
1827 				return ret;
1828 			goto again;
1829 		}
1830 		spin_unlock(&data_sinfo->lock);
1831 
1832 		/* commit the current transaction and try again */
1833 		if (!committed) {
1834 			committed = 1;
1835 			trans = btrfs_join_transaction(root, 1);
1836 			if (!trans)
1837 				return -ENOMEM;
1838 			ret = btrfs_commit_transaction(trans, root);
1839 			if (ret)
1840 				return ret;
1841 			goto again;
1842 		}
1843 
1844 		printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
1845 		       ", %llu bytes_used, %llu bytes_reserved, "
1846 		       "%llu bytes_pinned, %llu bytes_readonly, %llu may use"
1847 		       "%llu total\n", bytes, data_sinfo->bytes_delalloc,
1848 		       data_sinfo->bytes_used, data_sinfo->bytes_reserved,
1849 		       data_sinfo->bytes_pinned, data_sinfo->bytes_readonly,
1850 		       data_sinfo->bytes_may_use, data_sinfo->total_bytes);
1851 		return -ENOSPC;
1852 	}
1853 	data_sinfo->bytes_may_use += bytes;
1854 	BTRFS_I(inode)->reserved_bytes += bytes;
1855 	spin_unlock(&data_sinfo->lock);
1856 
1857 	return btrfs_check_metadata_free_space(root);
1858 }
1859 
1860 /*
1861  * if there was an error for whatever reason after calling
1862  * btrfs_check_data_free_space, call this so we can cleanup the counters.
1863  */
1864 void btrfs_free_reserved_data_space(struct btrfs_root *root,
1865 				    struct inode *inode, u64 bytes)
1866 {
1867 	struct btrfs_space_info *data_sinfo;
1868 
1869 	/* make sure bytes are sectorsize aligned */
1870 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
1871 
1872 	data_sinfo = BTRFS_I(inode)->space_info;
1873 	spin_lock(&data_sinfo->lock);
1874 	data_sinfo->bytes_may_use -= bytes;
1875 	BTRFS_I(inode)->reserved_bytes -= bytes;
1876 	spin_unlock(&data_sinfo->lock);
1877 }
1878 
1879 /* called when we are adding a delalloc extent to the inode's io_tree */
1880 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
1881 				  u64 bytes)
1882 {
1883 	struct btrfs_space_info *data_sinfo;
1884 
1885 	/* get the space info for where this inode will be storing its data */
1886 	data_sinfo = BTRFS_I(inode)->space_info;
1887 
1888 	/* make sure we have enough space to handle the data first */
1889 	spin_lock(&data_sinfo->lock);
1890 	data_sinfo->bytes_delalloc += bytes;
1891 
1892 	/*
1893 	 * we are adding a delalloc extent without calling
1894 	 * btrfs_check_data_free_space first.  This happens on a weird
1895 	 * writepage condition, but shouldn't hurt our accounting
1896 	 */
1897 	if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
1898 		data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
1899 		BTRFS_I(inode)->reserved_bytes = 0;
1900 	} else {
1901 		data_sinfo->bytes_may_use -= bytes;
1902 		BTRFS_I(inode)->reserved_bytes -= bytes;
1903 	}
1904 
1905 	spin_unlock(&data_sinfo->lock);
1906 }
1907 
1908 /* called when we are clearing an delalloc extent from the inode's io_tree */
1909 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
1910 			      u64 bytes)
1911 {
1912 	struct btrfs_space_info *info;
1913 
1914 	info = BTRFS_I(inode)->space_info;
1915 
1916 	spin_lock(&info->lock);
1917 	info->bytes_delalloc -= bytes;
1918 	spin_unlock(&info->lock);
1919 }
1920 
1921 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
1922 			  struct btrfs_root *extent_root, u64 alloc_bytes,
1923 			  u64 flags, int force)
1924 {
1925 	struct btrfs_space_info *space_info;
1926 	u64 thresh;
1927 	int ret = 0;
1928 
1929 	mutex_lock(&extent_root->fs_info->chunk_mutex);
1930 
1931 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
1932 
1933 	space_info = __find_space_info(extent_root->fs_info, flags);
1934 	if (!space_info) {
1935 		ret = update_space_info(extent_root->fs_info, flags,
1936 					0, 0, &space_info);
1937 		BUG_ON(ret);
1938 	}
1939 	BUG_ON(!space_info);
1940 
1941 	spin_lock(&space_info->lock);
1942 	if (space_info->force_alloc) {
1943 		force = 1;
1944 		space_info->force_alloc = 0;
1945 	}
1946 	if (space_info->full) {
1947 		spin_unlock(&space_info->lock);
1948 		goto out;
1949 	}
1950 
1951 	thresh = space_info->total_bytes - space_info->bytes_readonly;
1952 	thresh = div_factor(thresh, 6);
1953 	if (!force &&
1954 	   (space_info->bytes_used + space_info->bytes_pinned +
1955 	    space_info->bytes_reserved + alloc_bytes) < thresh) {
1956 		spin_unlock(&space_info->lock);
1957 		goto out;
1958 	}
1959 	spin_unlock(&space_info->lock);
1960 
1961 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
1962 	if (ret)
1963 		space_info->full = 1;
1964 out:
1965 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
1966 	return ret;
1967 }
1968 
1969 static int update_block_group(struct btrfs_trans_handle *trans,
1970 			      struct btrfs_root *root,
1971 			      u64 bytenr, u64 num_bytes, int alloc,
1972 			      int mark_free)
1973 {
1974 	struct btrfs_block_group_cache *cache;
1975 	struct btrfs_fs_info *info = root->fs_info;
1976 	u64 total = num_bytes;
1977 	u64 old_val;
1978 	u64 byte_in_group;
1979 
1980 	while (total) {
1981 		cache = btrfs_lookup_block_group(info, bytenr);
1982 		if (!cache)
1983 			return -1;
1984 		byte_in_group = bytenr - cache->key.objectid;
1985 		WARN_ON(byte_in_group > cache->key.offset);
1986 
1987 		spin_lock(&cache->space_info->lock);
1988 		spin_lock(&cache->lock);
1989 		cache->dirty = 1;
1990 		old_val = btrfs_block_group_used(&cache->item);
1991 		num_bytes = min(total, cache->key.offset - byte_in_group);
1992 		if (alloc) {
1993 			old_val += num_bytes;
1994 			cache->space_info->bytes_used += num_bytes;
1995 			if (cache->ro)
1996 				cache->space_info->bytes_readonly -= num_bytes;
1997 			btrfs_set_block_group_used(&cache->item, old_val);
1998 			spin_unlock(&cache->lock);
1999 			spin_unlock(&cache->space_info->lock);
2000 		} else {
2001 			old_val -= num_bytes;
2002 			cache->space_info->bytes_used -= num_bytes;
2003 			if (cache->ro)
2004 				cache->space_info->bytes_readonly += num_bytes;
2005 			btrfs_set_block_group_used(&cache->item, old_val);
2006 			spin_unlock(&cache->lock);
2007 			spin_unlock(&cache->space_info->lock);
2008 			if (mark_free) {
2009 				int ret;
2010 
2011 				ret = btrfs_discard_extent(root, bytenr,
2012 							   num_bytes);
2013 				WARN_ON(ret);
2014 
2015 				ret = btrfs_add_free_space(cache, bytenr,
2016 							   num_bytes);
2017 				WARN_ON(ret);
2018 			}
2019 		}
2020 		btrfs_put_block_group(cache);
2021 		total -= num_bytes;
2022 		bytenr += num_bytes;
2023 	}
2024 	return 0;
2025 }
2026 
2027 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
2028 {
2029 	struct btrfs_block_group_cache *cache;
2030 	u64 bytenr;
2031 
2032 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
2033 	if (!cache)
2034 		return 0;
2035 
2036 	bytenr = cache->key.objectid;
2037 	btrfs_put_block_group(cache);
2038 
2039 	return bytenr;
2040 }
2041 
2042 int btrfs_update_pinned_extents(struct btrfs_root *root,
2043 				u64 bytenr, u64 num, int pin)
2044 {
2045 	u64 len;
2046 	struct btrfs_block_group_cache *cache;
2047 	struct btrfs_fs_info *fs_info = root->fs_info;
2048 
2049 	if (pin) {
2050 		set_extent_dirty(&fs_info->pinned_extents,
2051 				bytenr, bytenr + num - 1, GFP_NOFS);
2052 	} else {
2053 		clear_extent_dirty(&fs_info->pinned_extents,
2054 				bytenr, bytenr + num - 1, GFP_NOFS);
2055 	}
2056 
2057 	while (num > 0) {
2058 		cache = btrfs_lookup_block_group(fs_info, bytenr);
2059 		BUG_ON(!cache);
2060 		len = min(num, cache->key.offset -
2061 			  (bytenr - cache->key.objectid));
2062 		if (pin) {
2063 			spin_lock(&cache->space_info->lock);
2064 			spin_lock(&cache->lock);
2065 			cache->pinned += len;
2066 			cache->space_info->bytes_pinned += len;
2067 			spin_unlock(&cache->lock);
2068 			spin_unlock(&cache->space_info->lock);
2069 			fs_info->total_pinned += len;
2070 		} else {
2071 			spin_lock(&cache->space_info->lock);
2072 			spin_lock(&cache->lock);
2073 			cache->pinned -= len;
2074 			cache->space_info->bytes_pinned -= len;
2075 			spin_unlock(&cache->lock);
2076 			spin_unlock(&cache->space_info->lock);
2077 			fs_info->total_pinned -= len;
2078 			if (cache->cached)
2079 				btrfs_add_free_space(cache, bytenr, len);
2080 		}
2081 		btrfs_put_block_group(cache);
2082 		bytenr += len;
2083 		num -= len;
2084 	}
2085 	return 0;
2086 }
2087 
2088 static int update_reserved_extents(struct btrfs_root *root,
2089 				   u64 bytenr, u64 num, int reserve)
2090 {
2091 	u64 len;
2092 	struct btrfs_block_group_cache *cache;
2093 	struct btrfs_fs_info *fs_info = root->fs_info;
2094 
2095 	while (num > 0) {
2096 		cache = btrfs_lookup_block_group(fs_info, bytenr);
2097 		BUG_ON(!cache);
2098 		len = min(num, cache->key.offset -
2099 			  (bytenr - cache->key.objectid));
2100 
2101 		spin_lock(&cache->space_info->lock);
2102 		spin_lock(&cache->lock);
2103 		if (reserve) {
2104 			cache->reserved += len;
2105 			cache->space_info->bytes_reserved += len;
2106 		} else {
2107 			cache->reserved -= len;
2108 			cache->space_info->bytes_reserved -= len;
2109 		}
2110 		spin_unlock(&cache->lock);
2111 		spin_unlock(&cache->space_info->lock);
2112 		btrfs_put_block_group(cache);
2113 		bytenr += len;
2114 		num -= len;
2115 	}
2116 	return 0;
2117 }
2118 
2119 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
2120 {
2121 	u64 last = 0;
2122 	u64 start;
2123 	u64 end;
2124 	struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
2125 	int ret;
2126 
2127 	while (1) {
2128 		ret = find_first_extent_bit(pinned_extents, last,
2129 					    &start, &end, EXTENT_DIRTY);
2130 		if (ret)
2131 			break;
2132 		set_extent_dirty(copy, start, end, GFP_NOFS);
2133 		last = end + 1;
2134 	}
2135 	return 0;
2136 }
2137 
2138 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2139 			       struct btrfs_root *root,
2140 			       struct extent_io_tree *unpin)
2141 {
2142 	u64 start;
2143 	u64 end;
2144 	int ret;
2145 
2146 	while (1) {
2147 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2148 					    EXTENT_DIRTY);
2149 		if (ret)
2150 			break;
2151 
2152 		ret = btrfs_discard_extent(root, start, end + 1 - start);
2153 
2154 		/* unlocks the pinned mutex */
2155 		btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
2156 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
2157 
2158 		cond_resched();
2159 	}
2160 	return ret;
2161 }
2162 
2163 static int pin_down_bytes(struct btrfs_trans_handle *trans,
2164 			  struct btrfs_root *root,
2165 			  struct btrfs_path *path,
2166 			  u64 bytenr, u64 num_bytes, int is_data,
2167 			  struct extent_buffer **must_clean)
2168 {
2169 	int err = 0;
2170 	struct extent_buffer *buf;
2171 
2172 	if (is_data)
2173 		goto pinit;
2174 
2175 	buf = btrfs_find_tree_block(root, bytenr, num_bytes);
2176 	if (!buf)
2177 		goto pinit;
2178 
2179 	/* we can reuse a block if it hasn't been written
2180 	 * and it is from this transaction.  We can't
2181 	 * reuse anything from the tree log root because
2182 	 * it has tiny sub-transactions.
2183 	 */
2184 	if (btrfs_buffer_uptodate(buf, 0) &&
2185 	    btrfs_try_tree_lock(buf)) {
2186 		u64 header_owner = btrfs_header_owner(buf);
2187 		u64 header_transid = btrfs_header_generation(buf);
2188 		if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
2189 		    header_owner != BTRFS_TREE_RELOC_OBJECTID &&
2190 		    header_owner != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2191 		    header_transid == trans->transid &&
2192 		    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2193 			*must_clean = buf;
2194 			return 1;
2195 		}
2196 		btrfs_tree_unlock(buf);
2197 	}
2198 	free_extent_buffer(buf);
2199 pinit:
2200 	btrfs_set_path_blocking(path);
2201 	/* unlocks the pinned mutex */
2202 	btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2203 
2204 	BUG_ON(err < 0);
2205 	return 0;
2206 }
2207 
2208 /*
2209  * remove an extent from the root, returns 0 on success
2210  */
2211 static int __free_extent(struct btrfs_trans_handle *trans,
2212 			 struct btrfs_root *root,
2213 			 u64 bytenr, u64 num_bytes, u64 parent,
2214 			 u64 root_objectid, u64 ref_generation,
2215 			 u64 owner_objectid, int pin, int mark_free,
2216 			 int refs_to_drop)
2217 {
2218 	struct btrfs_path *path;
2219 	struct btrfs_key key;
2220 	struct btrfs_fs_info *info = root->fs_info;
2221 	struct btrfs_root *extent_root = info->extent_root;
2222 	struct extent_buffer *leaf;
2223 	int ret;
2224 	int extent_slot = 0;
2225 	int found_extent = 0;
2226 	int num_to_del = 1;
2227 	struct btrfs_extent_item *ei;
2228 	u32 refs;
2229 
2230 	key.objectid = bytenr;
2231 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
2232 	key.offset = num_bytes;
2233 	path = btrfs_alloc_path();
2234 	if (!path)
2235 		return -ENOMEM;
2236 
2237 	path->reada = 1;
2238 	path->leave_spinning = 1;
2239 	ret = lookup_extent_backref(trans, extent_root, path,
2240 				    bytenr, parent, root_objectid,
2241 				    ref_generation, owner_objectid, 1);
2242 	if (ret == 0) {
2243 		struct btrfs_key found_key;
2244 		extent_slot = path->slots[0];
2245 		while (extent_slot > 0) {
2246 			extent_slot--;
2247 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2248 					      extent_slot);
2249 			if (found_key.objectid != bytenr)
2250 				break;
2251 			if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
2252 			    found_key.offset == num_bytes) {
2253 				found_extent = 1;
2254 				break;
2255 			}
2256 			if (path->slots[0] - extent_slot > 5)
2257 				break;
2258 		}
2259 		if (!found_extent) {
2260 			ret = remove_extent_backref(trans, extent_root, path,
2261 						    refs_to_drop);
2262 			BUG_ON(ret);
2263 			btrfs_release_path(extent_root, path);
2264 			path->leave_spinning = 1;
2265 			ret = btrfs_search_slot(trans, extent_root,
2266 						&key, path, -1, 1);
2267 			if (ret) {
2268 				printk(KERN_ERR "umm, got %d back from search"
2269 				       ", was looking for %llu\n", ret,
2270 				       (unsigned long long)bytenr);
2271 				btrfs_print_leaf(extent_root, path->nodes[0]);
2272 			}
2273 			BUG_ON(ret);
2274 			extent_slot = path->slots[0];
2275 		}
2276 	} else {
2277 		btrfs_print_leaf(extent_root, path->nodes[0]);
2278 		WARN_ON(1);
2279 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
2280 		       "parent %llu root %llu gen %llu owner %llu\n",
2281 		       (unsigned long long)bytenr,
2282 		       (unsigned long long)parent,
2283 		       (unsigned long long)root_objectid,
2284 		       (unsigned long long)ref_generation,
2285 		       (unsigned long long)owner_objectid);
2286 	}
2287 
2288 	leaf = path->nodes[0];
2289 	ei = btrfs_item_ptr(leaf, extent_slot,
2290 			    struct btrfs_extent_item);
2291 	refs = btrfs_extent_refs(leaf, ei);
2292 
2293 	/*
2294 	 * we're not allowed to delete the extent item if there
2295 	 * are other delayed ref updates pending
2296 	 */
2297 
2298 	BUG_ON(refs < refs_to_drop);
2299 	refs -= refs_to_drop;
2300 	btrfs_set_extent_refs(leaf, ei, refs);
2301 	btrfs_mark_buffer_dirty(leaf);
2302 
2303 	if (refs == 0 && found_extent &&
2304 	    path->slots[0] == extent_slot + 1) {
2305 		struct btrfs_extent_ref *ref;
2306 		ref = btrfs_item_ptr(leaf, path->slots[0],
2307 				     struct btrfs_extent_ref);
2308 		BUG_ON(btrfs_ref_num_refs(leaf, ref) != refs_to_drop);
2309 		/* if the back ref and the extent are next to each other
2310 		 * they get deleted below in one shot
2311 		 */
2312 		path->slots[0] = extent_slot;
2313 		num_to_del = 2;
2314 	} else if (found_extent) {
2315 		/* otherwise delete the extent back ref */
2316 		ret = remove_extent_backref(trans, extent_root, path,
2317 					    refs_to_drop);
2318 		BUG_ON(ret);
2319 		/* if refs are 0, we need to setup the path for deletion */
2320 		if (refs == 0) {
2321 			btrfs_release_path(extent_root, path);
2322 			path->leave_spinning = 1;
2323 			ret = btrfs_search_slot(trans, extent_root, &key, path,
2324 						-1, 1);
2325 			BUG_ON(ret);
2326 		}
2327 	}
2328 
2329 	if (refs == 0) {
2330 		u64 super_used;
2331 		u64 root_used;
2332 		struct extent_buffer *must_clean = NULL;
2333 
2334 		if (pin) {
2335 			ret = pin_down_bytes(trans, root, path,
2336 				bytenr, num_bytes,
2337 				owner_objectid >= BTRFS_FIRST_FREE_OBJECTID,
2338 				&must_clean);
2339 			if (ret > 0)
2340 				mark_free = 1;
2341 			BUG_ON(ret < 0);
2342 		}
2343 
2344 		/* block accounting for super block */
2345 		spin_lock(&info->delalloc_lock);
2346 		super_used = btrfs_super_bytes_used(&info->super_copy);
2347 		btrfs_set_super_bytes_used(&info->super_copy,
2348 					   super_used - num_bytes);
2349 
2350 		/* block accounting for root item */
2351 		root_used = btrfs_root_used(&root->root_item);
2352 		btrfs_set_root_used(&root->root_item,
2353 					   root_used - num_bytes);
2354 		spin_unlock(&info->delalloc_lock);
2355 
2356 		/*
2357 		 * it is going to be very rare for someone to be waiting
2358 		 * on the block we're freeing.  del_items might need to
2359 		 * schedule, so rather than get fancy, just force it
2360 		 * to blocking here
2361 		 */
2362 		if (must_clean)
2363 			btrfs_set_lock_blocking(must_clean);
2364 
2365 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
2366 				      num_to_del);
2367 		BUG_ON(ret);
2368 		btrfs_release_path(extent_root, path);
2369 
2370 		if (must_clean) {
2371 			clean_tree_block(NULL, root, must_clean);
2372 			btrfs_tree_unlock(must_clean);
2373 			free_extent_buffer(must_clean);
2374 		}
2375 
2376 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
2377 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
2378 			BUG_ON(ret);
2379 		} else {
2380 			invalidate_mapping_pages(info->btree_inode->i_mapping,
2381 			     bytenr >> PAGE_CACHE_SHIFT,
2382 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
2383 		}
2384 
2385 		ret = update_block_group(trans, root, bytenr, num_bytes, 0,
2386 					 mark_free);
2387 		BUG_ON(ret);
2388 	}
2389 	btrfs_free_path(path);
2390 	return ret;
2391 }
2392 
2393 /*
2394  * remove an extent from the root, returns 0 on success
2395  */
2396 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2397 					struct btrfs_root *root,
2398 					u64 bytenr, u64 num_bytes, u64 parent,
2399 					u64 root_objectid, u64 ref_generation,
2400 					u64 owner_objectid, int pin,
2401 					int refs_to_drop)
2402 {
2403 	WARN_ON(num_bytes < root->sectorsize);
2404 
2405 	/*
2406 	 * if metadata always pin
2407 	 * if data pin when any transaction has committed this
2408 	 */
2409 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID ||
2410 	    ref_generation != trans->transid)
2411 		pin = 1;
2412 
2413 	if (ref_generation != trans->transid)
2414 		pin = 1;
2415 
2416 	return __free_extent(trans, root, bytenr, num_bytes, parent,
2417 			    root_objectid, ref_generation,
2418 			    owner_objectid, pin, pin == 0, refs_to_drop);
2419 }
2420 
2421 /*
2422  * when we free an extent, it is possible (and likely) that we free the last
2423  * delayed ref for that extent as well.  This searches the delayed ref tree for
2424  * a given extent, and if there are no other delayed refs to be processed, it
2425  * removes it from the tree.
2426  */
2427 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2428 				      struct btrfs_root *root, u64 bytenr)
2429 {
2430 	struct btrfs_delayed_ref_head *head;
2431 	struct btrfs_delayed_ref_root *delayed_refs;
2432 	struct btrfs_delayed_ref_node *ref;
2433 	struct rb_node *node;
2434 	int ret;
2435 
2436 	delayed_refs = &trans->transaction->delayed_refs;
2437 	spin_lock(&delayed_refs->lock);
2438 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2439 	if (!head)
2440 		goto out;
2441 
2442 	node = rb_prev(&head->node.rb_node);
2443 	if (!node)
2444 		goto out;
2445 
2446 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2447 
2448 	/* there are still entries for this ref, we can't drop it */
2449 	if (ref->bytenr == bytenr)
2450 		goto out;
2451 
2452 	/*
2453 	 * waiting for the lock here would deadlock.  If someone else has it
2454 	 * locked they are already in the process of dropping it anyway
2455 	 */
2456 	if (!mutex_trylock(&head->mutex))
2457 		goto out;
2458 
2459 	/*
2460 	 * at this point we have a head with no other entries.  Go
2461 	 * ahead and process it.
2462 	 */
2463 	head->node.in_tree = 0;
2464 	rb_erase(&head->node.rb_node, &delayed_refs->root);
2465 
2466 	delayed_refs->num_entries--;
2467 
2468 	/*
2469 	 * we don't take a ref on the node because we're removing it from the
2470 	 * tree, so we just steal the ref the tree was holding.
2471 	 */
2472 	delayed_refs->num_heads--;
2473 	if (list_empty(&head->cluster))
2474 		delayed_refs->num_heads_ready--;
2475 
2476 	list_del_init(&head->cluster);
2477 	spin_unlock(&delayed_refs->lock);
2478 
2479 	ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
2480 				  &head->node, head->must_insert_reserved);
2481 	BUG_ON(ret);
2482 	btrfs_put_delayed_ref(&head->node);
2483 	return 0;
2484 out:
2485 	spin_unlock(&delayed_refs->lock);
2486 	return 0;
2487 }
2488 
2489 int btrfs_free_extent(struct btrfs_trans_handle *trans,
2490 		      struct btrfs_root *root,
2491 		      u64 bytenr, u64 num_bytes, u64 parent,
2492 		      u64 root_objectid, u64 ref_generation,
2493 		      u64 owner_objectid, int pin)
2494 {
2495 	int ret;
2496 
2497 	/*
2498 	 * tree log blocks never actually go into the extent allocation
2499 	 * tree, just update pinning info and exit early.
2500 	 *
2501 	 * data extents referenced by the tree log do need to have
2502 	 * their reference counts bumped.
2503 	 */
2504 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID &&
2505 	    owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
2506 		/* unlocks the pinned mutex */
2507 		btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2508 		update_reserved_extents(root, bytenr, num_bytes, 0);
2509 		ret = 0;
2510 	} else {
2511 		ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent,
2512 				       root_objectid, ref_generation,
2513 				       owner_objectid,
2514 				       BTRFS_DROP_DELAYED_REF, 1);
2515 		BUG_ON(ret);
2516 		ret = check_ref_cleanup(trans, root, bytenr);
2517 		BUG_ON(ret);
2518 	}
2519 	return ret;
2520 }
2521 
2522 static u64 stripe_align(struct btrfs_root *root, u64 val)
2523 {
2524 	u64 mask = ((u64)root->stripesize - 1);
2525 	u64 ret = (val + mask) & ~mask;
2526 	return ret;
2527 }
2528 
2529 /*
2530  * walks the btree of allocated extents and find a hole of a given size.
2531  * The key ins is changed to record the hole:
2532  * ins->objectid == block start
2533  * ins->flags = BTRFS_EXTENT_ITEM_KEY
2534  * ins->offset == number of blocks
2535  * Any available blocks before search_start are skipped.
2536  */
2537 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
2538 				     struct btrfs_root *orig_root,
2539 				     u64 num_bytes, u64 empty_size,
2540 				     u64 search_start, u64 search_end,
2541 				     u64 hint_byte, struct btrfs_key *ins,
2542 				     u64 exclude_start, u64 exclude_nr,
2543 				     int data)
2544 {
2545 	int ret = 0;
2546 	struct btrfs_root *root = orig_root->fs_info->extent_root;
2547 	struct btrfs_free_cluster *last_ptr = NULL;
2548 	struct btrfs_block_group_cache *block_group = NULL;
2549 	int empty_cluster = 2 * 1024 * 1024;
2550 	int allowed_chunk_alloc = 0;
2551 	struct btrfs_space_info *space_info;
2552 	int last_ptr_loop = 0;
2553 	int loop = 0;
2554 
2555 	WARN_ON(num_bytes < root->sectorsize);
2556 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
2557 	ins->objectid = 0;
2558 	ins->offset = 0;
2559 
2560 	space_info = __find_space_info(root->fs_info, data);
2561 
2562 	if (orig_root->ref_cows || empty_size)
2563 		allowed_chunk_alloc = 1;
2564 
2565 	if (data & BTRFS_BLOCK_GROUP_METADATA) {
2566 		last_ptr = &root->fs_info->meta_alloc_cluster;
2567 		if (!btrfs_test_opt(root, SSD))
2568 			empty_cluster = 64 * 1024;
2569 	}
2570 
2571 	if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
2572 		last_ptr = &root->fs_info->data_alloc_cluster;
2573 	}
2574 
2575 	if (last_ptr) {
2576 		spin_lock(&last_ptr->lock);
2577 		if (last_ptr->block_group)
2578 			hint_byte = last_ptr->window_start;
2579 		spin_unlock(&last_ptr->lock);
2580 	}
2581 
2582 	search_start = max(search_start, first_logical_byte(root, 0));
2583 	search_start = max(search_start, hint_byte);
2584 
2585 	if (!last_ptr) {
2586 		empty_cluster = 0;
2587 		loop = 1;
2588 	}
2589 
2590 	if (search_start == hint_byte) {
2591 		block_group = btrfs_lookup_block_group(root->fs_info,
2592 						       search_start);
2593 		if (block_group && block_group_bits(block_group, data)) {
2594 			down_read(&space_info->groups_sem);
2595 			goto have_block_group;
2596 		} else if (block_group) {
2597 			btrfs_put_block_group(block_group);
2598 		}
2599 	}
2600 
2601 search:
2602 	down_read(&space_info->groups_sem);
2603 	list_for_each_entry(block_group, &space_info->block_groups, list) {
2604 		u64 offset;
2605 
2606 		atomic_inc(&block_group->count);
2607 		search_start = block_group->key.objectid;
2608 
2609 have_block_group:
2610 		if (unlikely(!block_group->cached)) {
2611 			mutex_lock(&block_group->cache_mutex);
2612 			ret = cache_block_group(root, block_group);
2613 			mutex_unlock(&block_group->cache_mutex);
2614 			if (ret) {
2615 				btrfs_put_block_group(block_group);
2616 				break;
2617 			}
2618 		}
2619 
2620 		if (unlikely(block_group->ro))
2621 			goto loop;
2622 
2623 		if (last_ptr) {
2624 			/*
2625 			 * the refill lock keeps out other
2626 			 * people trying to start a new cluster
2627 			 */
2628 			spin_lock(&last_ptr->refill_lock);
2629 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
2630 						 num_bytes, search_start);
2631 			if (offset) {
2632 				/* we have a block, we're done */
2633 				spin_unlock(&last_ptr->refill_lock);
2634 				goto checks;
2635 			}
2636 
2637 			spin_lock(&last_ptr->lock);
2638 			/*
2639 			 * whoops, this cluster doesn't actually point to
2640 			 * this block group.  Get a ref on the block
2641 			 * group is does point to and try again
2642 			 */
2643 			if (!last_ptr_loop && last_ptr->block_group &&
2644 			    last_ptr->block_group != block_group) {
2645 
2646 				btrfs_put_block_group(block_group);
2647 				block_group = last_ptr->block_group;
2648 				atomic_inc(&block_group->count);
2649 				spin_unlock(&last_ptr->lock);
2650 				spin_unlock(&last_ptr->refill_lock);
2651 
2652 				last_ptr_loop = 1;
2653 				search_start = block_group->key.objectid;
2654 				goto have_block_group;
2655 			}
2656 			spin_unlock(&last_ptr->lock);
2657 
2658 			/*
2659 			 * this cluster didn't work out, free it and
2660 			 * start over
2661 			 */
2662 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
2663 
2664 			last_ptr_loop = 0;
2665 
2666 			/* allocate a cluster in this block group */
2667 			ret = btrfs_find_space_cluster(trans,
2668 					       block_group, last_ptr,
2669 					       offset, num_bytes,
2670 					       empty_cluster + empty_size);
2671 			if (ret == 0) {
2672 				/*
2673 				 * now pull our allocation out of this
2674 				 * cluster
2675 				 */
2676 				offset = btrfs_alloc_from_cluster(block_group,
2677 						  last_ptr, num_bytes,
2678 						  search_start);
2679 				if (offset) {
2680 					/* we found one, proceed */
2681 					spin_unlock(&last_ptr->refill_lock);
2682 					goto checks;
2683 				}
2684 			}
2685 			/*
2686 			 * at this point we either didn't find a cluster
2687 			 * or we weren't able to allocate a block from our
2688 			 * cluster.  Free the cluster we've been trying
2689 			 * to use, and go to the next block group
2690 			 */
2691 			if (loop < 2) {
2692 				btrfs_return_cluster_to_free_space(NULL,
2693 								   last_ptr);
2694 				spin_unlock(&last_ptr->refill_lock);
2695 				goto loop;
2696 			}
2697 			spin_unlock(&last_ptr->refill_lock);
2698 		}
2699 
2700 		offset = btrfs_find_space_for_alloc(block_group, search_start,
2701 						    num_bytes, empty_size);
2702 		if (!offset)
2703 			goto loop;
2704 checks:
2705 		search_start = stripe_align(root, offset);
2706 
2707 		/* move on to the next group */
2708 		if (search_start + num_bytes >= search_end) {
2709 			btrfs_add_free_space(block_group, offset, num_bytes);
2710 			goto loop;
2711 		}
2712 
2713 		/* move on to the next group */
2714 		if (search_start + num_bytes >
2715 		    block_group->key.objectid + block_group->key.offset) {
2716 			btrfs_add_free_space(block_group, offset, num_bytes);
2717 			goto loop;
2718 		}
2719 
2720 		if (exclude_nr > 0 &&
2721 		    (search_start + num_bytes > exclude_start &&
2722 		     search_start < exclude_start + exclude_nr)) {
2723 			search_start = exclude_start + exclude_nr;
2724 
2725 			btrfs_add_free_space(block_group, offset, num_bytes);
2726 			/*
2727 			 * if search_start is still in this block group
2728 			 * then we just re-search this block group
2729 			 */
2730 			if (search_start >= block_group->key.objectid &&
2731 			    search_start < (block_group->key.objectid +
2732 					    block_group->key.offset))
2733 				goto have_block_group;
2734 			goto loop;
2735 		}
2736 
2737 		ins->objectid = search_start;
2738 		ins->offset = num_bytes;
2739 
2740 		if (offset < search_start)
2741 			btrfs_add_free_space(block_group, offset,
2742 					     search_start - offset);
2743 		BUG_ON(offset > search_start);
2744 
2745 		/* we are all good, lets return */
2746 		break;
2747 loop:
2748 		btrfs_put_block_group(block_group);
2749 	}
2750 	up_read(&space_info->groups_sem);
2751 
2752 	/* loop == 0, try to find a clustered alloc in every block group
2753 	 * loop == 1, try again after forcing a chunk allocation
2754 	 * loop == 2, set empty_size and empty_cluster to 0 and try again
2755 	 */
2756 	if (!ins->objectid && loop < 3 &&
2757 	    (empty_size || empty_cluster || allowed_chunk_alloc)) {
2758 		if (loop >= 2) {
2759 			empty_size = 0;
2760 			empty_cluster = 0;
2761 		}
2762 
2763 		if (allowed_chunk_alloc) {
2764 			ret = do_chunk_alloc(trans, root, num_bytes +
2765 					     2 * 1024 * 1024, data, 1);
2766 			allowed_chunk_alloc = 0;
2767 		} else {
2768 			space_info->force_alloc = 1;
2769 		}
2770 
2771 		if (loop < 3) {
2772 			loop++;
2773 			goto search;
2774 		}
2775 		ret = -ENOSPC;
2776 	} else if (!ins->objectid) {
2777 		ret = -ENOSPC;
2778 	}
2779 
2780 	/* we found what we needed */
2781 	if (ins->objectid) {
2782 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
2783 			trans->block_group = block_group->key.objectid;
2784 
2785 		btrfs_put_block_group(block_group);
2786 		ret = 0;
2787 	}
2788 
2789 	return ret;
2790 }
2791 
2792 static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
2793 {
2794 	struct btrfs_block_group_cache *cache;
2795 
2796 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
2797 	       (unsigned long long)(info->total_bytes - info->bytes_used -
2798 				    info->bytes_pinned - info->bytes_reserved),
2799 	       (info->full) ? "" : "not ");
2800 	printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
2801 	       " may_use=%llu, used=%llu\n", info->total_bytes,
2802 	       info->bytes_pinned, info->bytes_delalloc, info->bytes_may_use,
2803 	       info->bytes_used);
2804 
2805 	down_read(&info->groups_sem);
2806 	list_for_each_entry(cache, &info->block_groups, list) {
2807 		spin_lock(&cache->lock);
2808 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
2809 		       "%llu pinned %llu reserved\n",
2810 		       (unsigned long long)cache->key.objectid,
2811 		       (unsigned long long)cache->key.offset,
2812 		       (unsigned long long)btrfs_block_group_used(&cache->item),
2813 		       (unsigned long long)cache->pinned,
2814 		       (unsigned long long)cache->reserved);
2815 		btrfs_dump_free_space(cache, bytes);
2816 		spin_unlock(&cache->lock);
2817 	}
2818 	up_read(&info->groups_sem);
2819 }
2820 
2821 static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2822 				  struct btrfs_root *root,
2823 				  u64 num_bytes, u64 min_alloc_size,
2824 				  u64 empty_size, u64 hint_byte,
2825 				  u64 search_end, struct btrfs_key *ins,
2826 				  u64 data)
2827 {
2828 	int ret;
2829 	u64 search_start = 0;
2830 	struct btrfs_fs_info *info = root->fs_info;
2831 
2832 	data = btrfs_get_alloc_profile(root, data);
2833 again:
2834 	/*
2835 	 * the only place that sets empty_size is btrfs_realloc_node, which
2836 	 * is not called recursively on allocations
2837 	 */
2838 	if (empty_size || root->ref_cows) {
2839 		if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
2840 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2841 				     2 * 1024 * 1024,
2842 				     BTRFS_BLOCK_GROUP_METADATA |
2843 				     (info->metadata_alloc_profile &
2844 				      info->avail_metadata_alloc_bits), 0);
2845 		}
2846 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2847 				     num_bytes + 2 * 1024 * 1024, data, 0);
2848 	}
2849 
2850 	WARN_ON(num_bytes < root->sectorsize);
2851 	ret = find_free_extent(trans, root, num_bytes, empty_size,
2852 			       search_start, search_end, hint_byte, ins,
2853 			       trans->alloc_exclude_start,
2854 			       trans->alloc_exclude_nr, data);
2855 
2856 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
2857 		num_bytes = num_bytes >> 1;
2858 		num_bytes = num_bytes & ~(root->sectorsize - 1);
2859 		num_bytes = max(num_bytes, min_alloc_size);
2860 		do_chunk_alloc(trans, root->fs_info->extent_root,
2861 			       num_bytes, data, 1);
2862 		goto again;
2863 	}
2864 	if (ret) {
2865 		struct btrfs_space_info *sinfo;
2866 
2867 		sinfo = __find_space_info(root->fs_info, data);
2868 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
2869 		       "wanted %llu\n", (unsigned long long)data,
2870 		       (unsigned long long)num_bytes);
2871 		dump_space_info(sinfo, num_bytes);
2872 		BUG();
2873 	}
2874 
2875 	return ret;
2876 }
2877 
2878 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
2879 {
2880 	struct btrfs_block_group_cache *cache;
2881 	int ret = 0;
2882 
2883 	cache = btrfs_lookup_block_group(root->fs_info, start);
2884 	if (!cache) {
2885 		printk(KERN_ERR "Unable to find block group for %llu\n",
2886 		       (unsigned long long)start);
2887 		return -ENOSPC;
2888 	}
2889 
2890 	ret = btrfs_discard_extent(root, start, len);
2891 
2892 	btrfs_add_free_space(cache, start, len);
2893 	btrfs_put_block_group(cache);
2894 	update_reserved_extents(root, start, len, 0);
2895 
2896 	return ret;
2897 }
2898 
2899 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2900 				  struct btrfs_root *root,
2901 				  u64 num_bytes, u64 min_alloc_size,
2902 				  u64 empty_size, u64 hint_byte,
2903 				  u64 search_end, struct btrfs_key *ins,
2904 				  u64 data)
2905 {
2906 	int ret;
2907 	ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
2908 				     empty_size, hint_byte, search_end, ins,
2909 				     data);
2910 	update_reserved_extents(root, ins->objectid, ins->offset, 1);
2911 	return ret;
2912 }
2913 
2914 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
2915 					 struct btrfs_root *root, u64 parent,
2916 					 u64 root_objectid, u64 ref_generation,
2917 					 u64 owner, struct btrfs_key *ins,
2918 					 int ref_mod)
2919 {
2920 	int ret;
2921 	u64 super_used;
2922 	u64 root_used;
2923 	u64 num_bytes = ins->offset;
2924 	u32 sizes[2];
2925 	struct btrfs_fs_info *info = root->fs_info;
2926 	struct btrfs_root *extent_root = info->extent_root;
2927 	struct btrfs_extent_item *extent_item;
2928 	struct btrfs_extent_ref *ref;
2929 	struct btrfs_path *path;
2930 	struct btrfs_key keys[2];
2931 
2932 	if (parent == 0)
2933 		parent = ins->objectid;
2934 
2935 	/* block accounting for super block */
2936 	spin_lock(&info->delalloc_lock);
2937 	super_used = btrfs_super_bytes_used(&info->super_copy);
2938 	btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes);
2939 
2940 	/* block accounting for root item */
2941 	root_used = btrfs_root_used(&root->root_item);
2942 	btrfs_set_root_used(&root->root_item, root_used + num_bytes);
2943 	spin_unlock(&info->delalloc_lock);
2944 
2945 	memcpy(&keys[0], ins, sizeof(*ins));
2946 	keys[1].objectid = ins->objectid;
2947 	keys[1].type = BTRFS_EXTENT_REF_KEY;
2948 	keys[1].offset = parent;
2949 	sizes[0] = sizeof(*extent_item);
2950 	sizes[1] = sizeof(*ref);
2951 
2952 	path = btrfs_alloc_path();
2953 	BUG_ON(!path);
2954 
2955 	path->leave_spinning = 1;
2956 	ret = btrfs_insert_empty_items(trans, extent_root, path, keys,
2957 				       sizes, 2);
2958 	BUG_ON(ret);
2959 
2960 	extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2961 				     struct btrfs_extent_item);
2962 	btrfs_set_extent_refs(path->nodes[0], extent_item, ref_mod);
2963 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2964 			     struct btrfs_extent_ref);
2965 
2966 	btrfs_set_ref_root(path->nodes[0], ref, root_objectid);
2967 	btrfs_set_ref_generation(path->nodes[0], ref, ref_generation);
2968 	btrfs_set_ref_objectid(path->nodes[0], ref, owner);
2969 	btrfs_set_ref_num_refs(path->nodes[0], ref, ref_mod);
2970 
2971 	btrfs_mark_buffer_dirty(path->nodes[0]);
2972 
2973 	trans->alloc_exclude_start = 0;
2974 	trans->alloc_exclude_nr = 0;
2975 	btrfs_free_path(path);
2976 
2977 	if (ret)
2978 		goto out;
2979 
2980 	ret = update_block_group(trans, root, ins->objectid,
2981 				 ins->offset, 1, 0);
2982 	if (ret) {
2983 		printk(KERN_ERR "btrfs update block group failed for %llu "
2984 		       "%llu\n", (unsigned long long)ins->objectid,
2985 		       (unsigned long long)ins->offset);
2986 		BUG();
2987 	}
2988 out:
2989 	return ret;
2990 }
2991 
2992 int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
2993 				struct btrfs_root *root, u64 parent,
2994 				u64 root_objectid, u64 ref_generation,
2995 				u64 owner, struct btrfs_key *ins)
2996 {
2997 	int ret;
2998 
2999 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID)
3000 		return 0;
3001 
3002 	ret = btrfs_add_delayed_ref(trans, ins->objectid,
3003 				    ins->offset, parent, root_objectid,
3004 				    ref_generation, owner,
3005 				    BTRFS_ADD_DELAYED_EXTENT, 0);
3006 	BUG_ON(ret);
3007 	return ret;
3008 }
3009 
3010 /*
3011  * this is used by the tree logging recovery code.  It records that
3012  * an extent has been allocated and makes sure to clear the free
3013  * space cache bits as well
3014  */
3015 int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans,
3016 				struct btrfs_root *root, u64 parent,
3017 				u64 root_objectid, u64 ref_generation,
3018 				u64 owner, struct btrfs_key *ins)
3019 {
3020 	int ret;
3021 	struct btrfs_block_group_cache *block_group;
3022 
3023 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
3024 	mutex_lock(&block_group->cache_mutex);
3025 	cache_block_group(root, block_group);
3026 	mutex_unlock(&block_group->cache_mutex);
3027 
3028 	ret = btrfs_remove_free_space(block_group, ins->objectid,
3029 				      ins->offset);
3030 	BUG_ON(ret);
3031 	btrfs_put_block_group(block_group);
3032 	ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
3033 					    ref_generation, owner, ins, 1);
3034 	return ret;
3035 }
3036 
3037 /*
3038  * finds a free extent and does all the dirty work required for allocation
3039  * returns the key for the extent through ins, and a tree buffer for
3040  * the first block of the extent through buf.
3041  *
3042  * returns 0 if everything worked, non-zero otherwise.
3043  */
3044 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
3045 		       struct btrfs_root *root,
3046 		       u64 num_bytes, u64 parent, u64 min_alloc_size,
3047 		       u64 root_objectid, u64 ref_generation,
3048 		       u64 owner_objectid, u64 empty_size, u64 hint_byte,
3049 		       u64 search_end, struct btrfs_key *ins, u64 data)
3050 {
3051 	int ret;
3052 	ret = __btrfs_reserve_extent(trans, root, num_bytes,
3053 				     min_alloc_size, empty_size, hint_byte,
3054 				     search_end, ins, data);
3055 	BUG_ON(ret);
3056 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
3057 		ret = btrfs_add_delayed_ref(trans, ins->objectid,
3058 					    ins->offset, parent, root_objectid,
3059 					    ref_generation, owner_objectid,
3060 					    BTRFS_ADD_DELAYED_EXTENT, 0);
3061 		BUG_ON(ret);
3062 	}
3063 	update_reserved_extents(root, ins->objectid, ins->offset, 1);
3064 	return ret;
3065 }
3066 
3067 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
3068 					    struct btrfs_root *root,
3069 					    u64 bytenr, u32 blocksize,
3070 					    int level)
3071 {
3072 	struct extent_buffer *buf;
3073 
3074 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
3075 	if (!buf)
3076 		return ERR_PTR(-ENOMEM);
3077 	btrfs_set_header_generation(buf, trans->transid);
3078 	btrfs_set_buffer_lockdep_class(buf, level);
3079 	btrfs_tree_lock(buf);
3080 	clean_tree_block(trans, root, buf);
3081 
3082 	btrfs_set_lock_blocking(buf);
3083 	btrfs_set_buffer_uptodate(buf);
3084 
3085 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
3086 		set_extent_dirty(&root->dirty_log_pages, buf->start,
3087 			 buf->start + buf->len - 1, GFP_NOFS);
3088 	} else {
3089 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
3090 			 buf->start + buf->len - 1, GFP_NOFS);
3091 	}
3092 	trans->blocks_used++;
3093 	/* this returns a buffer locked for blocking */
3094 	return buf;
3095 }
3096 
3097 /*
3098  * helper function to allocate a block for a given tree
3099  * returns the tree buffer or NULL.
3100  */
3101 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3102 					     struct btrfs_root *root,
3103 					     u32 blocksize, u64 parent,
3104 					     u64 root_objectid,
3105 					     u64 ref_generation,
3106 					     int level,
3107 					     u64 hint,
3108 					     u64 empty_size)
3109 {
3110 	struct btrfs_key ins;
3111 	int ret;
3112 	struct extent_buffer *buf;
3113 
3114 	ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize,
3115 				 root_objectid, ref_generation, level,
3116 				 empty_size, hint, (u64)-1, &ins, 0);
3117 	if (ret) {
3118 		BUG_ON(ret > 0);
3119 		return ERR_PTR(ret);
3120 	}
3121 
3122 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
3123 				    blocksize, level);
3124 	return buf;
3125 }
3126 
3127 int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
3128 			struct btrfs_root *root, struct extent_buffer *leaf)
3129 {
3130 	u64 leaf_owner;
3131 	u64 leaf_generation;
3132 	struct refsort *sorted;
3133 	struct btrfs_key key;
3134 	struct btrfs_file_extent_item *fi;
3135 	int i;
3136 	int nritems;
3137 	int ret;
3138 	int refi = 0;
3139 	int slot;
3140 
3141 	BUG_ON(!btrfs_is_leaf(leaf));
3142 	nritems = btrfs_header_nritems(leaf);
3143 	leaf_owner = btrfs_header_owner(leaf);
3144 	leaf_generation = btrfs_header_generation(leaf);
3145 
3146 	sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
3147 	/* we do this loop twice.  The first time we build a list
3148 	 * of the extents we have a reference on, then we sort the list
3149 	 * by bytenr.  The second time around we actually do the
3150 	 * extent freeing.
3151 	 */
3152 	for (i = 0; i < nritems; i++) {
3153 		u64 disk_bytenr;
3154 		cond_resched();
3155 
3156 		btrfs_item_key_to_cpu(leaf, &key, i);
3157 
3158 		/* only extents have references, skip everything else */
3159 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3160 			continue;
3161 
3162 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3163 
3164 		/* inline extents live in the btree, they don't have refs */
3165 		if (btrfs_file_extent_type(leaf, fi) ==
3166 		    BTRFS_FILE_EXTENT_INLINE)
3167 			continue;
3168 
3169 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
3170 
3171 		/* holes don't have refs */
3172 		if (disk_bytenr == 0)
3173 			continue;
3174 
3175 		sorted[refi].bytenr = disk_bytenr;
3176 		sorted[refi].slot = i;
3177 		refi++;
3178 	}
3179 
3180 	if (refi == 0)
3181 		goto out;
3182 
3183 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
3184 
3185 	for (i = 0; i < refi; i++) {
3186 		u64 disk_bytenr;
3187 
3188 		disk_bytenr = sorted[i].bytenr;
3189 		slot = sorted[i].slot;
3190 
3191 		cond_resched();
3192 
3193 		btrfs_item_key_to_cpu(leaf, &key, slot);
3194 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3195 			continue;
3196 
3197 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
3198 
3199 		ret = btrfs_free_extent(trans, root, disk_bytenr,
3200 				btrfs_file_extent_disk_num_bytes(leaf, fi),
3201 				leaf->start, leaf_owner, leaf_generation,
3202 				key.objectid, 0);
3203 		BUG_ON(ret);
3204 
3205 		atomic_inc(&root->fs_info->throttle_gen);
3206 		wake_up(&root->fs_info->transaction_throttle);
3207 		cond_resched();
3208 	}
3209 out:
3210 	kfree(sorted);
3211 	return 0;
3212 }
3213 
3214 static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
3215 					struct btrfs_root *root,
3216 					struct btrfs_leaf_ref *ref)
3217 {
3218 	int i;
3219 	int ret;
3220 	struct btrfs_extent_info *info;
3221 	struct refsort *sorted;
3222 
3223 	if (ref->nritems == 0)
3224 		return 0;
3225 
3226 	sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS);
3227 	for (i = 0; i < ref->nritems; i++) {
3228 		sorted[i].bytenr = ref->extents[i].bytenr;
3229 		sorted[i].slot = i;
3230 	}
3231 	sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL);
3232 
3233 	/*
3234 	 * the items in the ref were sorted when the ref was inserted
3235 	 * into the ref cache, so this is already in order
3236 	 */
3237 	for (i = 0; i < ref->nritems; i++) {
3238 		info = ref->extents + sorted[i].slot;
3239 		ret = btrfs_free_extent(trans, root, info->bytenr,
3240 					  info->num_bytes, ref->bytenr,
3241 					  ref->owner, ref->generation,
3242 					  info->objectid, 0);
3243 
3244 		atomic_inc(&root->fs_info->throttle_gen);
3245 		wake_up(&root->fs_info->transaction_throttle);
3246 		cond_resched();
3247 
3248 		BUG_ON(ret);
3249 		info++;
3250 	}
3251 
3252 	kfree(sorted);
3253 	return 0;
3254 }
3255 
3256 static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans,
3257 				     struct btrfs_root *root, u64 start,
3258 				     u64 len, u32 *refs)
3259 {
3260 	int ret;
3261 
3262 	ret = btrfs_lookup_extent_ref(trans, root, start, len, refs);
3263 	BUG_ON(ret);
3264 
3265 #if 0 /* some debugging code in case we see problems here */
3266 	/* if the refs count is one, it won't get increased again.  But
3267 	 * if the ref count is > 1, someone may be decreasing it at
3268 	 * the same time we are.
3269 	 */
3270 	if (*refs != 1) {
3271 		struct extent_buffer *eb = NULL;
3272 		eb = btrfs_find_create_tree_block(root, start, len);
3273 		if (eb)
3274 			btrfs_tree_lock(eb);
3275 
3276 		mutex_lock(&root->fs_info->alloc_mutex);
3277 		ret = lookup_extent_ref(NULL, root, start, len, refs);
3278 		BUG_ON(ret);
3279 		mutex_unlock(&root->fs_info->alloc_mutex);
3280 
3281 		if (eb) {
3282 			btrfs_tree_unlock(eb);
3283 			free_extent_buffer(eb);
3284 		}
3285 		if (*refs == 1) {
3286 			printk(KERN_ERR "btrfs block %llu went down to one "
3287 			       "during drop_snap\n", (unsigned long long)start);
3288 		}
3289 
3290 	}
3291 #endif
3292 
3293 	cond_resched();
3294 	return ret;
3295 }
3296 
3297 /*
3298  * this is used while deleting old snapshots, and it drops the refs
3299  * on a whole subtree starting from a level 1 node.
3300  *
3301  * The idea is to sort all the leaf pointers, and then drop the
3302  * ref on all the leaves in order.  Most of the time the leaves
3303  * will have ref cache entries, so no leaf IOs will be required to
3304  * find the extents they have references on.
3305  *
3306  * For each leaf, any references it has are also dropped in order
3307  *
3308  * This ends up dropping the references in something close to optimal
3309  * order for reading and modifying the extent allocation tree.
3310  */
3311 static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans,
3312 					struct btrfs_root *root,
3313 					struct btrfs_path *path)
3314 {
3315 	u64 bytenr;
3316 	u64 root_owner;
3317 	u64 root_gen;
3318 	struct extent_buffer *eb = path->nodes[1];
3319 	struct extent_buffer *leaf;
3320 	struct btrfs_leaf_ref *ref;
3321 	struct refsort *sorted = NULL;
3322 	int nritems = btrfs_header_nritems(eb);
3323 	int ret;
3324 	int i;
3325 	int refi = 0;
3326 	int slot = path->slots[1];
3327 	u32 blocksize = btrfs_level_size(root, 0);
3328 	u32 refs;
3329 
3330 	if (nritems == 0)
3331 		goto out;
3332 
3333 	root_owner = btrfs_header_owner(eb);
3334 	root_gen = btrfs_header_generation(eb);
3335 	sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
3336 
3337 	/*
3338 	 * step one, sort all the leaf pointers so we don't scribble
3339 	 * randomly into the extent allocation tree
3340 	 */
3341 	for (i = slot; i < nritems; i++) {
3342 		sorted[refi].bytenr = btrfs_node_blockptr(eb, i);
3343 		sorted[refi].slot = i;
3344 		refi++;
3345 	}
3346 
3347 	/*
3348 	 * nritems won't be zero, but if we're picking up drop_snapshot
3349 	 * after a crash, slot might be > 0, so double check things
3350 	 * just in case.
3351 	 */
3352 	if (refi == 0)
3353 		goto out;
3354 
3355 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
3356 
3357 	/*
3358 	 * the first loop frees everything the leaves point to
3359 	 */
3360 	for (i = 0; i < refi; i++) {
3361 		u64 ptr_gen;
3362 
3363 		bytenr = sorted[i].bytenr;
3364 
3365 		/*
3366 		 * check the reference count on this leaf.  If it is > 1
3367 		 * we just decrement it below and don't update any
3368 		 * of the refs the leaf points to.
3369 		 */
3370 		ret = drop_snap_lookup_refcount(trans, root, bytenr,
3371 						blocksize, &refs);
3372 		BUG_ON(ret);
3373 		if (refs != 1)
3374 			continue;
3375 
3376 		ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot);
3377 
3378 		/*
3379 		 * the leaf only had one reference, which means the
3380 		 * only thing pointing to this leaf is the snapshot
3381 		 * we're deleting.  It isn't possible for the reference
3382 		 * count to increase again later
3383 		 *
3384 		 * The reference cache is checked for the leaf,
3385 		 * and if found we'll be able to drop any refs held by
3386 		 * the leaf without needing to read it in.
3387 		 */
3388 		ref = btrfs_lookup_leaf_ref(root, bytenr);
3389 		if (ref && ref->generation != ptr_gen) {
3390 			btrfs_free_leaf_ref(root, ref);
3391 			ref = NULL;
3392 		}
3393 		if (ref) {
3394 			ret = cache_drop_leaf_ref(trans, root, ref);
3395 			BUG_ON(ret);
3396 			btrfs_remove_leaf_ref(root, ref);
3397 			btrfs_free_leaf_ref(root, ref);
3398 		} else {
3399 			/*
3400 			 * the leaf wasn't in the reference cache, so
3401 			 * we have to read it.
3402 			 */
3403 			leaf = read_tree_block(root, bytenr, blocksize,
3404 					       ptr_gen);
3405 			ret = btrfs_drop_leaf_ref(trans, root, leaf);
3406 			BUG_ON(ret);
3407 			free_extent_buffer(leaf);
3408 		}
3409 		atomic_inc(&root->fs_info->throttle_gen);
3410 		wake_up(&root->fs_info->transaction_throttle);
3411 		cond_resched();
3412 	}
3413 
3414 	/*
3415 	 * run through the loop again to free the refs on the leaves.
3416 	 * This is faster than doing it in the loop above because
3417 	 * the leaves are likely to be clustered together.  We end up
3418 	 * working in nice chunks on the extent allocation tree.
3419 	 */
3420 	for (i = 0; i < refi; i++) {
3421 		bytenr = sorted[i].bytenr;
3422 		ret = btrfs_free_extent(trans, root, bytenr,
3423 					blocksize, eb->start,
3424 					root_owner, root_gen, 0, 1);
3425 		BUG_ON(ret);
3426 
3427 		atomic_inc(&root->fs_info->throttle_gen);
3428 		wake_up(&root->fs_info->transaction_throttle);
3429 		cond_resched();
3430 	}
3431 out:
3432 	kfree(sorted);
3433 
3434 	/*
3435 	 * update the path to show we've processed the entire level 1
3436 	 * node.  This will get saved into the root's drop_snapshot_progress
3437 	 * field so these drops are not repeated again if this transaction
3438 	 * commits.
3439 	 */
3440 	path->slots[1] = nritems;
3441 	return 0;
3442 }
3443 
3444 /*
3445  * helper function for drop_snapshot, this walks down the tree dropping ref
3446  * counts as it goes.
3447  */
3448 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
3449 				   struct btrfs_root *root,
3450 				   struct btrfs_path *path, int *level)
3451 {
3452 	u64 root_owner;
3453 	u64 root_gen;
3454 	u64 bytenr;
3455 	u64 ptr_gen;
3456 	struct extent_buffer *next;
3457 	struct extent_buffer *cur;
3458 	struct extent_buffer *parent;
3459 	u32 blocksize;
3460 	int ret;
3461 	u32 refs;
3462 
3463 	WARN_ON(*level < 0);
3464 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
3465 	ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start,
3466 				path->nodes[*level]->len, &refs);
3467 	BUG_ON(ret);
3468 	if (refs > 1)
3469 		goto out;
3470 
3471 	/*
3472 	 * walk down to the last node level and free all the leaves
3473 	 */
3474 	while (*level >= 0) {
3475 		WARN_ON(*level < 0);
3476 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
3477 		cur = path->nodes[*level];
3478 
3479 		if (btrfs_header_level(cur) != *level)
3480 			WARN_ON(1);
3481 
3482 		if (path->slots[*level] >=
3483 		    btrfs_header_nritems(cur))
3484 			break;
3485 
3486 		/* the new code goes down to level 1 and does all the
3487 		 * leaves pointed to that node in bulk.  So, this check
3488 		 * for level 0 will always be false.
3489 		 *
3490 		 * But, the disk format allows the drop_snapshot_progress
3491 		 * field in the root to leave things in a state where
3492 		 * a leaf will need cleaning up here.  If someone crashes
3493 		 * with the old code and then boots with the new code,
3494 		 * we might find a leaf here.
3495 		 */
3496 		if (*level == 0) {
3497 			ret = btrfs_drop_leaf_ref(trans, root, cur);
3498 			BUG_ON(ret);
3499 			break;
3500 		}
3501 
3502 		/*
3503 		 * once we get to level one, process the whole node
3504 		 * at once, including everything below it.
3505 		 */
3506 		if (*level == 1) {
3507 			ret = drop_level_one_refs(trans, root, path);
3508 			BUG_ON(ret);
3509 			break;
3510 		}
3511 
3512 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3513 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3514 		blocksize = btrfs_level_size(root, *level - 1);
3515 
3516 		ret = drop_snap_lookup_refcount(trans, root, bytenr,
3517 						blocksize, &refs);
3518 		BUG_ON(ret);
3519 
3520 		/*
3521 		 * if there is more than one reference, we don't need
3522 		 * to read that node to drop any references it has.  We
3523 		 * just drop the ref we hold on that node and move on to the
3524 		 * next slot in this level.
3525 		 */
3526 		if (refs != 1) {
3527 			parent = path->nodes[*level];
3528 			root_owner = btrfs_header_owner(parent);
3529 			root_gen = btrfs_header_generation(parent);
3530 			path->slots[*level]++;
3531 
3532 			ret = btrfs_free_extent(trans, root, bytenr,
3533 						blocksize, parent->start,
3534 						root_owner, root_gen,
3535 						*level - 1, 1);
3536 			BUG_ON(ret);
3537 
3538 			atomic_inc(&root->fs_info->throttle_gen);
3539 			wake_up(&root->fs_info->transaction_throttle);
3540 			cond_resched();
3541 
3542 			continue;
3543 		}
3544 
3545 		/*
3546 		 * we need to keep freeing things in the next level down.
3547 		 * read the block and loop around to process it
3548 		 */
3549 		next = read_tree_block(root, bytenr, blocksize, ptr_gen);
3550 		WARN_ON(*level <= 0);
3551 		if (path->nodes[*level-1])
3552 			free_extent_buffer(path->nodes[*level-1]);
3553 		path->nodes[*level-1] = next;
3554 		*level = btrfs_header_level(next);
3555 		path->slots[*level] = 0;
3556 		cond_resched();
3557 	}
3558 out:
3559 	WARN_ON(*level < 0);
3560 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
3561 
3562 	if (path->nodes[*level] == root->node) {
3563 		parent = path->nodes[*level];
3564 		bytenr = path->nodes[*level]->start;
3565 	} else {
3566 		parent = path->nodes[*level + 1];
3567 		bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
3568 	}
3569 
3570 	blocksize = btrfs_level_size(root, *level);
3571 	root_owner = btrfs_header_owner(parent);
3572 	root_gen = btrfs_header_generation(parent);
3573 
3574 	/*
3575 	 * cleanup and free the reference on the last node
3576 	 * we processed
3577 	 */
3578 	ret = btrfs_free_extent(trans, root, bytenr, blocksize,
3579 				  parent->start, root_owner, root_gen,
3580 				  *level, 1);
3581 	free_extent_buffer(path->nodes[*level]);
3582 	path->nodes[*level] = NULL;
3583 
3584 	*level += 1;
3585 	BUG_ON(ret);
3586 
3587 	cond_resched();
3588 	return 0;
3589 }
3590 
3591 /*
3592  * helper function for drop_subtree, this function is similar to
3593  * walk_down_tree. The main difference is that it checks reference
3594  * counts while tree blocks are locked.
3595  */
3596 static noinline int walk_down_subtree(struct btrfs_trans_handle *trans,
3597 				      struct btrfs_root *root,
3598 				      struct btrfs_path *path, int *level)
3599 {
3600 	struct extent_buffer *next;
3601 	struct extent_buffer *cur;
3602 	struct extent_buffer *parent;
3603 	u64 bytenr;
3604 	u64 ptr_gen;
3605 	u32 blocksize;
3606 	u32 refs;
3607 	int ret;
3608 
3609 	cur = path->nodes[*level];
3610 	ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len,
3611 				      &refs);
3612 	BUG_ON(ret);
3613 	if (refs > 1)
3614 		goto out;
3615 
3616 	while (*level >= 0) {
3617 		cur = path->nodes[*level];
3618 		if (*level == 0) {
3619 			ret = btrfs_drop_leaf_ref(trans, root, cur);
3620 			BUG_ON(ret);
3621 			clean_tree_block(trans, root, cur);
3622 			break;
3623 		}
3624 		if (path->slots[*level] >= btrfs_header_nritems(cur)) {
3625 			clean_tree_block(trans, root, cur);
3626 			break;
3627 		}
3628 
3629 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3630 		blocksize = btrfs_level_size(root, *level - 1);
3631 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3632 
3633 		next = read_tree_block(root, bytenr, blocksize, ptr_gen);
3634 		btrfs_tree_lock(next);
3635 		btrfs_set_lock_blocking(next);
3636 
3637 		ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize,
3638 					      &refs);
3639 		BUG_ON(ret);
3640 		if (refs > 1) {
3641 			parent = path->nodes[*level];
3642 			ret = btrfs_free_extent(trans, root, bytenr,
3643 					blocksize, parent->start,
3644 					btrfs_header_owner(parent),
3645 					btrfs_header_generation(parent),
3646 					*level - 1, 1);
3647 			BUG_ON(ret);
3648 			path->slots[*level]++;
3649 			btrfs_tree_unlock(next);
3650 			free_extent_buffer(next);
3651 			continue;
3652 		}
3653 
3654 		*level = btrfs_header_level(next);
3655 		path->nodes[*level] = next;
3656 		path->slots[*level] = 0;
3657 		path->locks[*level] = 1;
3658 		cond_resched();
3659 	}
3660 out:
3661 	parent = path->nodes[*level + 1];
3662 	bytenr = path->nodes[*level]->start;
3663 	blocksize = path->nodes[*level]->len;
3664 
3665 	ret = btrfs_free_extent(trans, root, bytenr, blocksize,
3666 			parent->start, btrfs_header_owner(parent),
3667 			btrfs_header_generation(parent), *level, 1);
3668 	BUG_ON(ret);
3669 
3670 	if (path->locks[*level]) {
3671 		btrfs_tree_unlock(path->nodes[*level]);
3672 		path->locks[*level] = 0;
3673 	}
3674 	free_extent_buffer(path->nodes[*level]);
3675 	path->nodes[*level] = NULL;
3676 	*level += 1;
3677 	cond_resched();
3678 	return 0;
3679 }
3680 
3681 /*
3682  * helper for dropping snapshots.  This walks back up the tree in the path
3683  * to find the first node higher up where we haven't yet gone through
3684  * all the slots
3685  */
3686 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
3687 				 struct btrfs_root *root,
3688 				 struct btrfs_path *path,
3689 				 int *level, int max_level)
3690 {
3691 	u64 root_owner;
3692 	u64 root_gen;
3693 	struct btrfs_root_item *root_item = &root->root_item;
3694 	int i;
3695 	int slot;
3696 	int ret;
3697 
3698 	for (i = *level; i < max_level && path->nodes[i]; i++) {
3699 		slot = path->slots[i];
3700 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
3701 			struct extent_buffer *node;
3702 			struct btrfs_disk_key disk_key;
3703 
3704 			/*
3705 			 * there is more work to do in this level.
3706 			 * Update the drop_progress marker to reflect
3707 			 * the work we've done so far, and then bump
3708 			 * the slot number
3709 			 */
3710 			node = path->nodes[i];
3711 			path->slots[i]++;
3712 			*level = i;
3713 			WARN_ON(*level == 0);
3714 			btrfs_node_key(node, &disk_key, path->slots[i]);
3715 			memcpy(&root_item->drop_progress,
3716 			       &disk_key, sizeof(disk_key));
3717 			root_item->drop_level = i;
3718 			return 0;
3719 		} else {
3720 			struct extent_buffer *parent;
3721 
3722 			/*
3723 			 * this whole node is done, free our reference
3724 			 * on it and go up one level
3725 			 */
3726 			if (path->nodes[*level] == root->node)
3727 				parent = path->nodes[*level];
3728 			else
3729 				parent = path->nodes[*level + 1];
3730 
3731 			root_owner = btrfs_header_owner(parent);
3732 			root_gen = btrfs_header_generation(parent);
3733 
3734 			clean_tree_block(trans, root, path->nodes[*level]);
3735 			ret = btrfs_free_extent(trans, root,
3736 						path->nodes[*level]->start,
3737 						path->nodes[*level]->len,
3738 						parent->start, root_owner,
3739 						root_gen, *level, 1);
3740 			BUG_ON(ret);
3741 			if (path->locks[*level]) {
3742 				btrfs_tree_unlock(path->nodes[*level]);
3743 				path->locks[*level] = 0;
3744 			}
3745 			free_extent_buffer(path->nodes[*level]);
3746 			path->nodes[*level] = NULL;
3747 			*level = i + 1;
3748 		}
3749 	}
3750 	return 1;
3751 }
3752 
3753 /*
3754  * drop the reference count on the tree rooted at 'snap'.  This traverses
3755  * the tree freeing any blocks that have a ref count of zero after being
3756  * decremented.
3757  */
3758 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
3759 			*root)
3760 {
3761 	int ret = 0;
3762 	int wret;
3763 	int level;
3764 	struct btrfs_path *path;
3765 	int i;
3766 	int orig_level;
3767 	int update_count;
3768 	struct btrfs_root_item *root_item = &root->root_item;
3769 
3770 	WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex));
3771 	path = btrfs_alloc_path();
3772 	BUG_ON(!path);
3773 
3774 	level = btrfs_header_level(root->node);
3775 	orig_level = level;
3776 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
3777 		path->nodes[level] = root->node;
3778 		extent_buffer_get(root->node);
3779 		path->slots[level] = 0;
3780 	} else {
3781 		struct btrfs_key key;
3782 		struct btrfs_disk_key found_key;
3783 		struct extent_buffer *node;
3784 
3785 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
3786 		level = root_item->drop_level;
3787 		path->lowest_level = level;
3788 		wret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3789 		if (wret < 0) {
3790 			ret = wret;
3791 			goto out;
3792 		}
3793 		node = path->nodes[level];
3794 		btrfs_node_key(node, &found_key, path->slots[level]);
3795 		WARN_ON(memcmp(&found_key, &root_item->drop_progress,
3796 			       sizeof(found_key)));
3797 		/*
3798 		 * unlock our path, this is safe because only this
3799 		 * function is allowed to delete this snapshot
3800 		 */
3801 		for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3802 			if (path->nodes[i] && path->locks[i]) {
3803 				path->locks[i] = 0;
3804 				btrfs_tree_unlock(path->nodes[i]);
3805 			}
3806 		}
3807 	}
3808 	while (1) {
3809 		unsigned long update;
3810 		wret = walk_down_tree(trans, root, path, &level);
3811 		if (wret > 0)
3812 			break;
3813 		if (wret < 0)
3814 			ret = wret;
3815 
3816 		wret = walk_up_tree(trans, root, path, &level,
3817 				    BTRFS_MAX_LEVEL);
3818 		if (wret > 0)
3819 			break;
3820 		if (wret < 0)
3821 			ret = wret;
3822 		if (trans->transaction->in_commit ||
3823 		    trans->transaction->delayed_refs.flushing) {
3824 			ret = -EAGAIN;
3825 			break;
3826 		}
3827 		atomic_inc(&root->fs_info->throttle_gen);
3828 		wake_up(&root->fs_info->transaction_throttle);
3829 		for (update_count = 0; update_count < 16; update_count++) {
3830 			update = trans->delayed_ref_updates;
3831 			trans->delayed_ref_updates = 0;
3832 			if (update)
3833 				btrfs_run_delayed_refs(trans, root, update);
3834 			else
3835 				break;
3836 		}
3837 	}
3838 	for (i = 0; i <= orig_level; i++) {
3839 		if (path->nodes[i]) {
3840 			free_extent_buffer(path->nodes[i]);
3841 			path->nodes[i] = NULL;
3842 		}
3843 	}
3844 out:
3845 	btrfs_free_path(path);
3846 	return ret;
3847 }
3848 
3849 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3850 			struct btrfs_root *root,
3851 			struct extent_buffer *node,
3852 			struct extent_buffer *parent)
3853 {
3854 	struct btrfs_path *path;
3855 	int level;
3856 	int parent_level;
3857 	int ret = 0;
3858 	int wret;
3859 
3860 	path = btrfs_alloc_path();
3861 	BUG_ON(!path);
3862 
3863 	btrfs_assert_tree_locked(parent);
3864 	parent_level = btrfs_header_level(parent);
3865 	extent_buffer_get(parent);
3866 	path->nodes[parent_level] = parent;
3867 	path->slots[parent_level] = btrfs_header_nritems(parent);
3868 
3869 	btrfs_assert_tree_locked(node);
3870 	level = btrfs_header_level(node);
3871 	extent_buffer_get(node);
3872 	path->nodes[level] = node;
3873 	path->slots[level] = 0;
3874 
3875 	while (1) {
3876 		wret = walk_down_subtree(trans, root, path, &level);
3877 		if (wret < 0)
3878 			ret = wret;
3879 		if (wret != 0)
3880 			break;
3881 
3882 		wret = walk_up_tree(trans, root, path, &level, parent_level);
3883 		if (wret < 0)
3884 			ret = wret;
3885 		if (wret != 0)
3886 			break;
3887 	}
3888 
3889 	btrfs_free_path(path);
3890 	return ret;
3891 }
3892 
3893 static unsigned long calc_ra(unsigned long start, unsigned long last,
3894 			     unsigned long nr)
3895 {
3896 	return min(last, start + nr - 1);
3897 }
3898 
3899 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
3900 					 u64 len)
3901 {
3902 	u64 page_start;
3903 	u64 page_end;
3904 	unsigned long first_index;
3905 	unsigned long last_index;
3906 	unsigned long i;
3907 	struct page *page;
3908 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3909 	struct file_ra_state *ra;
3910 	struct btrfs_ordered_extent *ordered;
3911 	unsigned int total_read = 0;
3912 	unsigned int total_dirty = 0;
3913 	int ret = 0;
3914 
3915 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3916 
3917 	mutex_lock(&inode->i_mutex);
3918 	first_index = start >> PAGE_CACHE_SHIFT;
3919 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
3920 
3921 	/* make sure the dirty trick played by the caller work */
3922 	ret = invalidate_inode_pages2_range(inode->i_mapping,
3923 					    first_index, last_index);
3924 	if (ret)
3925 		goto out_unlock;
3926 
3927 	file_ra_state_init(ra, inode->i_mapping);
3928 
3929 	for (i = first_index ; i <= last_index; i++) {
3930 		if (total_read % ra->ra_pages == 0) {
3931 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
3932 				       calc_ra(i, last_index, ra->ra_pages));
3933 		}
3934 		total_read++;
3935 again:
3936 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
3937 			BUG_ON(1);
3938 		page = grab_cache_page(inode->i_mapping, i);
3939 		if (!page) {
3940 			ret = -ENOMEM;
3941 			goto out_unlock;
3942 		}
3943 		if (!PageUptodate(page)) {
3944 			btrfs_readpage(NULL, page);
3945 			lock_page(page);
3946 			if (!PageUptodate(page)) {
3947 				unlock_page(page);
3948 				page_cache_release(page);
3949 				ret = -EIO;
3950 				goto out_unlock;
3951 			}
3952 		}
3953 		wait_on_page_writeback(page);
3954 
3955 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
3956 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3957 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3958 
3959 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
3960 		if (ordered) {
3961 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3962 			unlock_page(page);
3963 			page_cache_release(page);
3964 			btrfs_start_ordered_extent(inode, ordered, 1);
3965 			btrfs_put_ordered_extent(ordered);
3966 			goto again;
3967 		}
3968 		set_page_extent_mapped(page);
3969 
3970 		if (i == first_index)
3971 			set_extent_bits(io_tree, page_start, page_end,
3972 					EXTENT_BOUNDARY, GFP_NOFS);
3973 		btrfs_set_extent_delalloc(inode, page_start, page_end);
3974 
3975 		set_page_dirty(page);
3976 		total_dirty++;
3977 
3978 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3979 		unlock_page(page);
3980 		page_cache_release(page);
3981 	}
3982 
3983 out_unlock:
3984 	kfree(ra);
3985 	mutex_unlock(&inode->i_mutex);
3986 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
3987 	return ret;
3988 }
3989 
3990 static noinline int relocate_data_extent(struct inode *reloc_inode,
3991 					 struct btrfs_key *extent_key,
3992 					 u64 offset)
3993 {
3994 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
3995 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
3996 	struct extent_map *em;
3997 	u64 start = extent_key->objectid - offset;
3998 	u64 end = start + extent_key->offset - 1;
3999 
4000 	em = alloc_extent_map(GFP_NOFS);
4001 	BUG_ON(!em || IS_ERR(em));
4002 
4003 	em->start = start;
4004 	em->len = extent_key->offset;
4005 	em->block_len = extent_key->offset;
4006 	em->block_start = extent_key->objectid;
4007 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4008 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
4009 
4010 	/* setup extent map to cheat btrfs_readpage */
4011 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
4012 	while (1) {
4013 		int ret;
4014 		spin_lock(&em_tree->lock);
4015 		ret = add_extent_mapping(em_tree, em);
4016 		spin_unlock(&em_tree->lock);
4017 		if (ret != -EEXIST) {
4018 			free_extent_map(em);
4019 			break;
4020 		}
4021 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
4022 	}
4023 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
4024 
4025 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
4026 }
4027 
4028 struct btrfs_ref_path {
4029 	u64 extent_start;
4030 	u64 nodes[BTRFS_MAX_LEVEL];
4031 	u64 root_objectid;
4032 	u64 root_generation;
4033 	u64 owner_objectid;
4034 	u32 num_refs;
4035 	int lowest_level;
4036 	int current_level;
4037 	int shared_level;
4038 
4039 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
4040 	u64 new_nodes[BTRFS_MAX_LEVEL];
4041 };
4042 
4043 struct disk_extent {
4044 	u64 ram_bytes;
4045 	u64 disk_bytenr;
4046 	u64 disk_num_bytes;
4047 	u64 offset;
4048 	u64 num_bytes;
4049 	u8 compression;
4050 	u8 encryption;
4051 	u16 other_encoding;
4052 };
4053 
4054 static int is_cowonly_root(u64 root_objectid)
4055 {
4056 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
4057 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
4058 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
4059 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
4060 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
4061 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
4062 		return 1;
4063 	return 0;
4064 }
4065 
4066 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
4067 				    struct btrfs_root *extent_root,
4068 				    struct btrfs_ref_path *ref_path,
4069 				    int first_time)
4070 {
4071 	struct extent_buffer *leaf;
4072 	struct btrfs_path *path;
4073 	struct btrfs_extent_ref *ref;
4074 	struct btrfs_key key;
4075 	struct btrfs_key found_key;
4076 	u64 bytenr;
4077 	u32 nritems;
4078 	int level;
4079 	int ret = 1;
4080 
4081 	path = btrfs_alloc_path();
4082 	if (!path)
4083 		return -ENOMEM;
4084 
4085 	if (first_time) {
4086 		ref_path->lowest_level = -1;
4087 		ref_path->current_level = -1;
4088 		ref_path->shared_level = -1;
4089 		goto walk_up;
4090 	}
4091 walk_down:
4092 	level = ref_path->current_level - 1;
4093 	while (level >= -1) {
4094 		u64 parent;
4095 		if (level < ref_path->lowest_level)
4096 			break;
4097 
4098 		if (level >= 0)
4099 			bytenr = ref_path->nodes[level];
4100 		else
4101 			bytenr = ref_path->extent_start;
4102 		BUG_ON(bytenr == 0);
4103 
4104 		parent = ref_path->nodes[level + 1];
4105 		ref_path->nodes[level + 1] = 0;
4106 		ref_path->current_level = level;
4107 		BUG_ON(parent == 0);
4108 
4109 		key.objectid = bytenr;
4110 		key.offset = parent + 1;
4111 		key.type = BTRFS_EXTENT_REF_KEY;
4112 
4113 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
4114 		if (ret < 0)
4115 			goto out;
4116 		BUG_ON(ret == 0);
4117 
4118 		leaf = path->nodes[0];
4119 		nritems = btrfs_header_nritems(leaf);
4120 		if (path->slots[0] >= nritems) {
4121 			ret = btrfs_next_leaf(extent_root, path);
4122 			if (ret < 0)
4123 				goto out;
4124 			if (ret > 0)
4125 				goto next;
4126 			leaf = path->nodes[0];
4127 		}
4128 
4129 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4130 		if (found_key.objectid == bytenr &&
4131 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
4132 			if (level < ref_path->shared_level)
4133 				ref_path->shared_level = level;
4134 			goto found;
4135 		}
4136 next:
4137 		level--;
4138 		btrfs_release_path(extent_root, path);
4139 		cond_resched();
4140 	}
4141 	/* reached lowest level */
4142 	ret = 1;
4143 	goto out;
4144 walk_up:
4145 	level = ref_path->current_level;
4146 	while (level < BTRFS_MAX_LEVEL - 1) {
4147 		u64 ref_objectid;
4148 
4149 		if (level >= 0)
4150 			bytenr = ref_path->nodes[level];
4151 		else
4152 			bytenr = ref_path->extent_start;
4153 
4154 		BUG_ON(bytenr == 0);
4155 
4156 		key.objectid = bytenr;
4157 		key.offset = 0;
4158 		key.type = BTRFS_EXTENT_REF_KEY;
4159 
4160 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
4161 		if (ret < 0)
4162 			goto out;
4163 
4164 		leaf = path->nodes[0];
4165 		nritems = btrfs_header_nritems(leaf);
4166 		if (path->slots[0] >= nritems) {
4167 			ret = btrfs_next_leaf(extent_root, path);
4168 			if (ret < 0)
4169 				goto out;
4170 			if (ret > 0) {
4171 				/* the extent was freed by someone */
4172 				if (ref_path->lowest_level == level)
4173 					goto out;
4174 				btrfs_release_path(extent_root, path);
4175 				goto walk_down;
4176 			}
4177 			leaf = path->nodes[0];
4178 		}
4179 
4180 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4181 		if (found_key.objectid != bytenr ||
4182 				found_key.type != BTRFS_EXTENT_REF_KEY) {
4183 			/* the extent was freed by someone */
4184 			if (ref_path->lowest_level == level) {
4185 				ret = 1;
4186 				goto out;
4187 			}
4188 			btrfs_release_path(extent_root, path);
4189 			goto walk_down;
4190 		}
4191 found:
4192 		ref = btrfs_item_ptr(leaf, path->slots[0],
4193 				struct btrfs_extent_ref);
4194 		ref_objectid = btrfs_ref_objectid(leaf, ref);
4195 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4196 			if (first_time) {
4197 				level = (int)ref_objectid;
4198 				BUG_ON(level >= BTRFS_MAX_LEVEL);
4199 				ref_path->lowest_level = level;
4200 				ref_path->current_level = level;
4201 				ref_path->nodes[level] = bytenr;
4202 			} else {
4203 				WARN_ON(ref_objectid != level);
4204 			}
4205 		} else {
4206 			WARN_ON(level != -1);
4207 		}
4208 		first_time = 0;
4209 
4210 		if (ref_path->lowest_level == level) {
4211 			ref_path->owner_objectid = ref_objectid;
4212 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
4213 		}
4214 
4215 		/*
4216 		 * the block is tree root or the block isn't in reference
4217 		 * counted tree.
4218 		 */
4219 		if (found_key.objectid == found_key.offset ||
4220 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
4221 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
4222 			ref_path->root_generation =
4223 				btrfs_ref_generation(leaf, ref);
4224 			if (level < 0) {
4225 				/* special reference from the tree log */
4226 				ref_path->nodes[0] = found_key.offset;
4227 				ref_path->current_level = 0;
4228 			}
4229 			ret = 0;
4230 			goto out;
4231 		}
4232 
4233 		level++;
4234 		BUG_ON(ref_path->nodes[level] != 0);
4235 		ref_path->nodes[level] = found_key.offset;
4236 		ref_path->current_level = level;
4237 
4238 		/*
4239 		 * the reference was created in the running transaction,
4240 		 * no need to continue walking up.
4241 		 */
4242 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
4243 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
4244 			ref_path->root_generation =
4245 				btrfs_ref_generation(leaf, ref);
4246 			ret = 0;
4247 			goto out;
4248 		}
4249 
4250 		btrfs_release_path(extent_root, path);
4251 		cond_resched();
4252 	}
4253 	/* reached max tree level, but no tree root found. */
4254 	BUG();
4255 out:
4256 	btrfs_free_path(path);
4257 	return ret;
4258 }
4259 
4260 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
4261 				struct btrfs_root *extent_root,
4262 				struct btrfs_ref_path *ref_path,
4263 				u64 extent_start)
4264 {
4265 	memset(ref_path, 0, sizeof(*ref_path));
4266 	ref_path->extent_start = extent_start;
4267 
4268 	return __next_ref_path(trans, extent_root, ref_path, 1);
4269 }
4270 
4271 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
4272 			       struct btrfs_root *extent_root,
4273 			       struct btrfs_ref_path *ref_path)
4274 {
4275 	return __next_ref_path(trans, extent_root, ref_path, 0);
4276 }
4277 
4278 static noinline int get_new_locations(struct inode *reloc_inode,
4279 				      struct btrfs_key *extent_key,
4280 				      u64 offset, int no_fragment,
4281 				      struct disk_extent **extents,
4282 				      int *nr_extents)
4283 {
4284 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
4285 	struct btrfs_path *path;
4286 	struct btrfs_file_extent_item *fi;
4287 	struct extent_buffer *leaf;
4288 	struct disk_extent *exts = *extents;
4289 	struct btrfs_key found_key;
4290 	u64 cur_pos;
4291 	u64 last_byte;
4292 	u32 nritems;
4293 	int nr = 0;
4294 	int max = *nr_extents;
4295 	int ret;
4296 
4297 	WARN_ON(!no_fragment && *extents);
4298 	if (!exts) {
4299 		max = 1;
4300 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
4301 		if (!exts)
4302 			return -ENOMEM;
4303 	}
4304 
4305 	path = btrfs_alloc_path();
4306 	BUG_ON(!path);
4307 
4308 	cur_pos = extent_key->objectid - offset;
4309 	last_byte = extent_key->objectid + extent_key->offset;
4310 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
4311 				       cur_pos, 0);
4312 	if (ret < 0)
4313 		goto out;
4314 	if (ret > 0) {
4315 		ret = -ENOENT;
4316 		goto out;
4317 	}
4318 
4319 	while (1) {
4320 		leaf = path->nodes[0];
4321 		nritems = btrfs_header_nritems(leaf);
4322 		if (path->slots[0] >= nritems) {
4323 			ret = btrfs_next_leaf(root, path);
4324 			if (ret < 0)
4325 				goto out;
4326 			if (ret > 0)
4327 				break;
4328 			leaf = path->nodes[0];
4329 		}
4330 
4331 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332 		if (found_key.offset != cur_pos ||
4333 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
4334 		    found_key.objectid != reloc_inode->i_ino)
4335 			break;
4336 
4337 		fi = btrfs_item_ptr(leaf, path->slots[0],
4338 				    struct btrfs_file_extent_item);
4339 		if (btrfs_file_extent_type(leaf, fi) !=
4340 		    BTRFS_FILE_EXTENT_REG ||
4341 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
4342 			break;
4343 
4344 		if (nr == max) {
4345 			struct disk_extent *old = exts;
4346 			max *= 2;
4347 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
4348 			memcpy(exts, old, sizeof(*exts) * nr);
4349 			if (old != *extents)
4350 				kfree(old);
4351 		}
4352 
4353 		exts[nr].disk_bytenr =
4354 			btrfs_file_extent_disk_bytenr(leaf, fi);
4355 		exts[nr].disk_num_bytes =
4356 			btrfs_file_extent_disk_num_bytes(leaf, fi);
4357 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
4358 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4359 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
4360 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
4361 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
4362 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
4363 									   fi);
4364 		BUG_ON(exts[nr].offset > 0);
4365 		BUG_ON(exts[nr].compression || exts[nr].encryption);
4366 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
4367 
4368 		cur_pos += exts[nr].num_bytes;
4369 		nr++;
4370 
4371 		if (cur_pos + offset >= last_byte)
4372 			break;
4373 
4374 		if (no_fragment) {
4375 			ret = 1;
4376 			goto out;
4377 		}
4378 		path->slots[0]++;
4379 	}
4380 
4381 	BUG_ON(cur_pos + offset > last_byte);
4382 	if (cur_pos + offset < last_byte) {
4383 		ret = -ENOENT;
4384 		goto out;
4385 	}
4386 	ret = 0;
4387 out:
4388 	btrfs_free_path(path);
4389 	if (ret) {
4390 		if (exts != *extents)
4391 			kfree(exts);
4392 	} else {
4393 		*extents = exts;
4394 		*nr_extents = nr;
4395 	}
4396 	return ret;
4397 }
4398 
4399 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
4400 					struct btrfs_root *root,
4401 					struct btrfs_path *path,
4402 					struct btrfs_key *extent_key,
4403 					struct btrfs_key *leaf_key,
4404 					struct btrfs_ref_path *ref_path,
4405 					struct disk_extent *new_extents,
4406 					int nr_extents)
4407 {
4408 	struct extent_buffer *leaf;
4409 	struct btrfs_file_extent_item *fi;
4410 	struct inode *inode = NULL;
4411 	struct btrfs_key key;
4412 	u64 lock_start = 0;
4413 	u64 lock_end = 0;
4414 	u64 num_bytes;
4415 	u64 ext_offset;
4416 	u64 search_end = (u64)-1;
4417 	u32 nritems;
4418 	int nr_scaned = 0;
4419 	int extent_locked = 0;
4420 	int extent_type;
4421 	int ret;
4422 
4423 	memcpy(&key, leaf_key, sizeof(key));
4424 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
4425 		if (key.objectid < ref_path->owner_objectid ||
4426 		    (key.objectid == ref_path->owner_objectid &&
4427 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
4428 			key.objectid = ref_path->owner_objectid;
4429 			key.type = BTRFS_EXTENT_DATA_KEY;
4430 			key.offset = 0;
4431 		}
4432 	}
4433 
4434 	while (1) {
4435 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4436 		if (ret < 0)
4437 			goto out;
4438 
4439 		leaf = path->nodes[0];
4440 		nritems = btrfs_header_nritems(leaf);
4441 next:
4442 		if (extent_locked && ret > 0) {
4443 			/*
4444 			 * the file extent item was modified by someone
4445 			 * before the extent got locked.
4446 			 */
4447 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4448 				      lock_end, GFP_NOFS);
4449 			extent_locked = 0;
4450 		}
4451 
4452 		if (path->slots[0] >= nritems) {
4453 			if (++nr_scaned > 2)
4454 				break;
4455 
4456 			BUG_ON(extent_locked);
4457 			ret = btrfs_next_leaf(root, path);
4458 			if (ret < 0)
4459 				goto out;
4460 			if (ret > 0)
4461 				break;
4462 			leaf = path->nodes[0];
4463 			nritems = btrfs_header_nritems(leaf);
4464 		}
4465 
4466 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4467 
4468 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
4469 			if ((key.objectid > ref_path->owner_objectid) ||
4470 			    (key.objectid == ref_path->owner_objectid &&
4471 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
4472 			    key.offset >= search_end)
4473 				break;
4474 		}
4475 
4476 		if (inode && key.objectid != inode->i_ino) {
4477 			BUG_ON(extent_locked);
4478 			btrfs_release_path(root, path);
4479 			mutex_unlock(&inode->i_mutex);
4480 			iput(inode);
4481 			inode = NULL;
4482 			continue;
4483 		}
4484 
4485 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
4486 			path->slots[0]++;
4487 			ret = 1;
4488 			goto next;
4489 		}
4490 		fi = btrfs_item_ptr(leaf, path->slots[0],
4491 				    struct btrfs_file_extent_item);
4492 		extent_type = btrfs_file_extent_type(leaf, fi);
4493 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
4494 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
4495 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
4496 		     extent_key->objectid)) {
4497 			path->slots[0]++;
4498 			ret = 1;
4499 			goto next;
4500 		}
4501 
4502 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4503 		ext_offset = btrfs_file_extent_offset(leaf, fi);
4504 
4505 		if (search_end == (u64)-1) {
4506 			search_end = key.offset - ext_offset +
4507 				btrfs_file_extent_ram_bytes(leaf, fi);
4508 		}
4509 
4510 		if (!extent_locked) {
4511 			lock_start = key.offset;
4512 			lock_end = lock_start + num_bytes - 1;
4513 		} else {
4514 			if (lock_start > key.offset ||
4515 			    lock_end + 1 < key.offset + num_bytes) {
4516 				unlock_extent(&BTRFS_I(inode)->io_tree,
4517 					      lock_start, lock_end, GFP_NOFS);
4518 				extent_locked = 0;
4519 			}
4520 		}
4521 
4522 		if (!inode) {
4523 			btrfs_release_path(root, path);
4524 
4525 			inode = btrfs_iget_locked(root->fs_info->sb,
4526 						  key.objectid, root);
4527 			if (inode->i_state & I_NEW) {
4528 				BTRFS_I(inode)->root = root;
4529 				BTRFS_I(inode)->location.objectid =
4530 					key.objectid;
4531 				BTRFS_I(inode)->location.type =
4532 					BTRFS_INODE_ITEM_KEY;
4533 				BTRFS_I(inode)->location.offset = 0;
4534 				btrfs_read_locked_inode(inode);
4535 				unlock_new_inode(inode);
4536 			}
4537 			/*
4538 			 * some code call btrfs_commit_transaction while
4539 			 * holding the i_mutex, so we can't use mutex_lock
4540 			 * here.
4541 			 */
4542 			if (is_bad_inode(inode) ||
4543 			    !mutex_trylock(&inode->i_mutex)) {
4544 				iput(inode);
4545 				inode = NULL;
4546 				key.offset = (u64)-1;
4547 				goto skip;
4548 			}
4549 		}
4550 
4551 		if (!extent_locked) {
4552 			struct btrfs_ordered_extent *ordered;
4553 
4554 			btrfs_release_path(root, path);
4555 
4556 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4557 				    lock_end, GFP_NOFS);
4558 			ordered = btrfs_lookup_first_ordered_extent(inode,
4559 								    lock_end);
4560 			if (ordered &&
4561 			    ordered->file_offset <= lock_end &&
4562 			    ordered->file_offset + ordered->len > lock_start) {
4563 				unlock_extent(&BTRFS_I(inode)->io_tree,
4564 					      lock_start, lock_end, GFP_NOFS);
4565 				btrfs_start_ordered_extent(inode, ordered, 1);
4566 				btrfs_put_ordered_extent(ordered);
4567 				key.offset += num_bytes;
4568 				goto skip;
4569 			}
4570 			if (ordered)
4571 				btrfs_put_ordered_extent(ordered);
4572 
4573 			extent_locked = 1;
4574 			continue;
4575 		}
4576 
4577 		if (nr_extents == 1) {
4578 			/* update extent pointer in place */
4579 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
4580 						new_extents[0].disk_bytenr);
4581 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4582 						new_extents[0].disk_num_bytes);
4583 			btrfs_mark_buffer_dirty(leaf);
4584 
4585 			btrfs_drop_extent_cache(inode, key.offset,
4586 						key.offset + num_bytes - 1, 0);
4587 
4588 			ret = btrfs_inc_extent_ref(trans, root,
4589 						new_extents[0].disk_bytenr,
4590 						new_extents[0].disk_num_bytes,
4591 						leaf->start,
4592 						root->root_key.objectid,
4593 						trans->transid,
4594 						key.objectid);
4595 			BUG_ON(ret);
4596 
4597 			ret = btrfs_free_extent(trans, root,
4598 						extent_key->objectid,
4599 						extent_key->offset,
4600 						leaf->start,
4601 						btrfs_header_owner(leaf),
4602 						btrfs_header_generation(leaf),
4603 						key.objectid, 0);
4604 			BUG_ON(ret);
4605 
4606 			btrfs_release_path(root, path);
4607 			key.offset += num_bytes;
4608 		} else {
4609 			BUG_ON(1);
4610 #if 0
4611 			u64 alloc_hint;
4612 			u64 extent_len;
4613 			int i;
4614 			/*
4615 			 * drop old extent pointer at first, then insert the
4616 			 * new pointers one bye one
4617 			 */
4618 			btrfs_release_path(root, path);
4619 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
4620 						 key.offset + num_bytes,
4621 						 key.offset, &alloc_hint);
4622 			BUG_ON(ret);
4623 
4624 			for (i = 0; i < nr_extents; i++) {
4625 				if (ext_offset >= new_extents[i].num_bytes) {
4626 					ext_offset -= new_extents[i].num_bytes;
4627 					continue;
4628 				}
4629 				extent_len = min(new_extents[i].num_bytes -
4630 						 ext_offset, num_bytes);
4631 
4632 				ret = btrfs_insert_empty_item(trans, root,
4633 							      path, &key,
4634 							      sizeof(*fi));
4635 				BUG_ON(ret);
4636 
4637 				leaf = path->nodes[0];
4638 				fi = btrfs_item_ptr(leaf, path->slots[0],
4639 						struct btrfs_file_extent_item);
4640 				btrfs_set_file_extent_generation(leaf, fi,
4641 							trans->transid);
4642 				btrfs_set_file_extent_type(leaf, fi,
4643 							BTRFS_FILE_EXTENT_REG);
4644 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
4645 						new_extents[i].disk_bytenr);
4646 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4647 						new_extents[i].disk_num_bytes);
4648 				btrfs_set_file_extent_ram_bytes(leaf, fi,
4649 						new_extents[i].ram_bytes);
4650 
4651 				btrfs_set_file_extent_compression(leaf, fi,
4652 						new_extents[i].compression);
4653 				btrfs_set_file_extent_encryption(leaf, fi,
4654 						new_extents[i].encryption);
4655 				btrfs_set_file_extent_other_encoding(leaf, fi,
4656 						new_extents[i].other_encoding);
4657 
4658 				btrfs_set_file_extent_num_bytes(leaf, fi,
4659 							extent_len);
4660 				ext_offset += new_extents[i].offset;
4661 				btrfs_set_file_extent_offset(leaf, fi,
4662 							ext_offset);
4663 				btrfs_mark_buffer_dirty(leaf);
4664 
4665 				btrfs_drop_extent_cache(inode, key.offset,
4666 						key.offset + extent_len - 1, 0);
4667 
4668 				ret = btrfs_inc_extent_ref(trans, root,
4669 						new_extents[i].disk_bytenr,
4670 						new_extents[i].disk_num_bytes,
4671 						leaf->start,
4672 						root->root_key.objectid,
4673 						trans->transid, key.objectid);
4674 				BUG_ON(ret);
4675 				btrfs_release_path(root, path);
4676 
4677 				inode_add_bytes(inode, extent_len);
4678 
4679 				ext_offset = 0;
4680 				num_bytes -= extent_len;
4681 				key.offset += extent_len;
4682 
4683 				if (num_bytes == 0)
4684 					break;
4685 			}
4686 			BUG_ON(i >= nr_extents);
4687 #endif
4688 		}
4689 
4690 		if (extent_locked) {
4691 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4692 				      lock_end, GFP_NOFS);
4693 			extent_locked = 0;
4694 		}
4695 skip:
4696 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
4697 		    key.offset >= search_end)
4698 			break;
4699 
4700 		cond_resched();
4701 	}
4702 	ret = 0;
4703 out:
4704 	btrfs_release_path(root, path);
4705 	if (inode) {
4706 		mutex_unlock(&inode->i_mutex);
4707 		if (extent_locked) {
4708 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4709 				      lock_end, GFP_NOFS);
4710 		}
4711 		iput(inode);
4712 	}
4713 	return ret;
4714 }
4715 
4716 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
4717 			       struct btrfs_root *root,
4718 			       struct extent_buffer *buf, u64 orig_start)
4719 {
4720 	int level;
4721 	int ret;
4722 
4723 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
4724 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
4725 
4726 	level = btrfs_header_level(buf);
4727 	if (level == 0) {
4728 		struct btrfs_leaf_ref *ref;
4729 		struct btrfs_leaf_ref *orig_ref;
4730 
4731 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
4732 		if (!orig_ref)
4733 			return -ENOENT;
4734 
4735 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
4736 		if (!ref) {
4737 			btrfs_free_leaf_ref(root, orig_ref);
4738 			return -ENOMEM;
4739 		}
4740 
4741 		ref->nritems = orig_ref->nritems;
4742 		memcpy(ref->extents, orig_ref->extents,
4743 			sizeof(ref->extents[0]) * ref->nritems);
4744 
4745 		btrfs_free_leaf_ref(root, orig_ref);
4746 
4747 		ref->root_gen = trans->transid;
4748 		ref->bytenr = buf->start;
4749 		ref->owner = btrfs_header_owner(buf);
4750 		ref->generation = btrfs_header_generation(buf);
4751 
4752 		ret = btrfs_add_leaf_ref(root, ref, 0);
4753 		WARN_ON(ret);
4754 		btrfs_free_leaf_ref(root, ref);
4755 	}
4756 	return 0;
4757 }
4758 
4759 static noinline int invalidate_extent_cache(struct btrfs_root *root,
4760 					struct extent_buffer *leaf,
4761 					struct btrfs_block_group_cache *group,
4762 					struct btrfs_root *target_root)
4763 {
4764 	struct btrfs_key key;
4765 	struct inode *inode = NULL;
4766 	struct btrfs_file_extent_item *fi;
4767 	u64 num_bytes;
4768 	u64 skip_objectid = 0;
4769 	u32 nritems;
4770 	u32 i;
4771 
4772 	nritems = btrfs_header_nritems(leaf);
4773 	for (i = 0; i < nritems; i++) {
4774 		btrfs_item_key_to_cpu(leaf, &key, i);
4775 		if (key.objectid == skip_objectid ||
4776 		    key.type != BTRFS_EXTENT_DATA_KEY)
4777 			continue;
4778 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
4779 		if (btrfs_file_extent_type(leaf, fi) ==
4780 		    BTRFS_FILE_EXTENT_INLINE)
4781 			continue;
4782 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
4783 			continue;
4784 		if (!inode || inode->i_ino != key.objectid) {
4785 			iput(inode);
4786 			inode = btrfs_ilookup(target_root->fs_info->sb,
4787 					      key.objectid, target_root, 1);
4788 		}
4789 		if (!inode) {
4790 			skip_objectid = key.objectid;
4791 			continue;
4792 		}
4793 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4794 
4795 		lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
4796 			    key.offset + num_bytes - 1, GFP_NOFS);
4797 		btrfs_drop_extent_cache(inode, key.offset,
4798 					key.offset + num_bytes - 1, 1);
4799 		unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
4800 			      key.offset + num_bytes - 1, GFP_NOFS);
4801 		cond_resched();
4802 	}
4803 	iput(inode);
4804 	return 0;
4805 }
4806 
4807 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
4808 					struct btrfs_root *root,
4809 					struct extent_buffer *leaf,
4810 					struct btrfs_block_group_cache *group,
4811 					struct inode *reloc_inode)
4812 {
4813 	struct btrfs_key key;
4814 	struct btrfs_key extent_key;
4815 	struct btrfs_file_extent_item *fi;
4816 	struct btrfs_leaf_ref *ref;
4817 	struct disk_extent *new_extent;
4818 	u64 bytenr;
4819 	u64 num_bytes;
4820 	u32 nritems;
4821 	u32 i;
4822 	int ext_index;
4823 	int nr_extent;
4824 	int ret;
4825 
4826 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
4827 	BUG_ON(!new_extent);
4828 
4829 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
4830 	BUG_ON(!ref);
4831 
4832 	ext_index = -1;
4833 	nritems = btrfs_header_nritems(leaf);
4834 	for (i = 0; i < nritems; i++) {
4835 		btrfs_item_key_to_cpu(leaf, &key, i);
4836 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
4837 			continue;
4838 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
4839 		if (btrfs_file_extent_type(leaf, fi) ==
4840 		    BTRFS_FILE_EXTENT_INLINE)
4841 			continue;
4842 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
4843 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
4844 		if (bytenr == 0)
4845 			continue;
4846 
4847 		ext_index++;
4848 		if (bytenr >= group->key.objectid + group->key.offset ||
4849 		    bytenr + num_bytes <= group->key.objectid)
4850 			continue;
4851 
4852 		extent_key.objectid = bytenr;
4853 		extent_key.offset = num_bytes;
4854 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4855 		nr_extent = 1;
4856 		ret = get_new_locations(reloc_inode, &extent_key,
4857 					group->key.objectid, 1,
4858 					&new_extent, &nr_extent);
4859 		if (ret > 0)
4860 			continue;
4861 		BUG_ON(ret < 0);
4862 
4863 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
4864 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
4865 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
4866 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
4867 
4868 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
4869 						new_extent->disk_bytenr);
4870 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4871 						new_extent->disk_num_bytes);
4872 		btrfs_mark_buffer_dirty(leaf);
4873 
4874 		ret = btrfs_inc_extent_ref(trans, root,
4875 					new_extent->disk_bytenr,
4876 					new_extent->disk_num_bytes,
4877 					leaf->start,
4878 					root->root_key.objectid,
4879 					trans->transid, key.objectid);
4880 		BUG_ON(ret);
4881 
4882 		ret = btrfs_free_extent(trans, root,
4883 					bytenr, num_bytes, leaf->start,
4884 					btrfs_header_owner(leaf),
4885 					btrfs_header_generation(leaf),
4886 					key.objectid, 0);
4887 		BUG_ON(ret);
4888 		cond_resched();
4889 	}
4890 	kfree(new_extent);
4891 	BUG_ON(ext_index + 1 != ref->nritems);
4892 	btrfs_free_leaf_ref(root, ref);
4893 	return 0;
4894 }
4895 
4896 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
4897 			  struct btrfs_root *root)
4898 {
4899 	struct btrfs_root *reloc_root;
4900 	int ret;
4901 
4902 	if (root->reloc_root) {
4903 		reloc_root = root->reloc_root;
4904 		root->reloc_root = NULL;
4905 		list_add(&reloc_root->dead_list,
4906 			 &root->fs_info->dead_reloc_roots);
4907 
4908 		btrfs_set_root_bytenr(&reloc_root->root_item,
4909 				      reloc_root->node->start);
4910 		btrfs_set_root_level(&root->root_item,
4911 				     btrfs_header_level(reloc_root->node));
4912 		memset(&reloc_root->root_item.drop_progress, 0,
4913 			sizeof(struct btrfs_disk_key));
4914 		reloc_root->root_item.drop_level = 0;
4915 
4916 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
4917 					&reloc_root->root_key,
4918 					&reloc_root->root_item);
4919 		BUG_ON(ret);
4920 	}
4921 	return 0;
4922 }
4923 
4924 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
4925 {
4926 	struct btrfs_trans_handle *trans;
4927 	struct btrfs_root *reloc_root;
4928 	struct btrfs_root *prev_root = NULL;
4929 	struct list_head dead_roots;
4930 	int ret;
4931 	unsigned long nr;
4932 
4933 	INIT_LIST_HEAD(&dead_roots);
4934 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
4935 
4936 	while (!list_empty(&dead_roots)) {
4937 		reloc_root = list_entry(dead_roots.prev,
4938 					struct btrfs_root, dead_list);
4939 		list_del_init(&reloc_root->dead_list);
4940 
4941 		BUG_ON(reloc_root->commit_root != NULL);
4942 		while (1) {
4943 			trans = btrfs_join_transaction(root, 1);
4944 			BUG_ON(!trans);
4945 
4946 			mutex_lock(&root->fs_info->drop_mutex);
4947 			ret = btrfs_drop_snapshot(trans, reloc_root);
4948 			if (ret != -EAGAIN)
4949 				break;
4950 			mutex_unlock(&root->fs_info->drop_mutex);
4951 
4952 			nr = trans->blocks_used;
4953 			ret = btrfs_end_transaction(trans, root);
4954 			BUG_ON(ret);
4955 			btrfs_btree_balance_dirty(root, nr);
4956 		}
4957 
4958 		free_extent_buffer(reloc_root->node);
4959 
4960 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
4961 				     &reloc_root->root_key);
4962 		BUG_ON(ret);
4963 		mutex_unlock(&root->fs_info->drop_mutex);
4964 
4965 		nr = trans->blocks_used;
4966 		ret = btrfs_end_transaction(trans, root);
4967 		BUG_ON(ret);
4968 		btrfs_btree_balance_dirty(root, nr);
4969 
4970 		kfree(prev_root);
4971 		prev_root = reloc_root;
4972 	}
4973 	if (prev_root) {
4974 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
4975 		kfree(prev_root);
4976 	}
4977 	return 0;
4978 }
4979 
4980 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
4981 {
4982 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
4983 	return 0;
4984 }
4985 
4986 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
4987 {
4988 	struct btrfs_root *reloc_root;
4989 	struct btrfs_trans_handle *trans;
4990 	struct btrfs_key location;
4991 	int found;
4992 	int ret;
4993 
4994 	mutex_lock(&root->fs_info->tree_reloc_mutex);
4995 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
4996 	BUG_ON(ret);
4997 	found = !list_empty(&root->fs_info->dead_reloc_roots);
4998 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
4999 
5000 	if (found) {
5001 		trans = btrfs_start_transaction(root, 1);
5002 		BUG_ON(!trans);
5003 		ret = btrfs_commit_transaction(trans, root);
5004 		BUG_ON(ret);
5005 	}
5006 
5007 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
5008 	location.offset = (u64)-1;
5009 	location.type = BTRFS_ROOT_ITEM_KEY;
5010 
5011 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
5012 	BUG_ON(!reloc_root);
5013 	btrfs_orphan_cleanup(reloc_root);
5014 	return 0;
5015 }
5016 
5017 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
5018 				    struct btrfs_root *root)
5019 {
5020 	struct btrfs_root *reloc_root;
5021 	struct extent_buffer *eb;
5022 	struct btrfs_root_item *root_item;
5023 	struct btrfs_key root_key;
5024 	int ret;
5025 
5026 	BUG_ON(!root->ref_cows);
5027 	if (root->reloc_root)
5028 		return 0;
5029 
5030 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
5031 	BUG_ON(!root_item);
5032 
5033 	ret = btrfs_copy_root(trans, root, root->commit_root,
5034 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
5035 	BUG_ON(ret);
5036 
5037 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
5038 	root_key.offset = root->root_key.objectid;
5039 	root_key.type = BTRFS_ROOT_ITEM_KEY;
5040 
5041 	memcpy(root_item, &root->root_item, sizeof(root_item));
5042 	btrfs_set_root_refs(root_item, 0);
5043 	btrfs_set_root_bytenr(root_item, eb->start);
5044 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
5045 	btrfs_set_root_generation(root_item, trans->transid);
5046 
5047 	btrfs_tree_unlock(eb);
5048 	free_extent_buffer(eb);
5049 
5050 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
5051 				&root_key, root_item);
5052 	BUG_ON(ret);
5053 	kfree(root_item);
5054 
5055 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
5056 						 &root_key);
5057 	BUG_ON(!reloc_root);
5058 	reloc_root->last_trans = trans->transid;
5059 	reloc_root->commit_root = NULL;
5060 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
5061 
5062 	root->reloc_root = reloc_root;
5063 	return 0;
5064 }
5065 
5066 /*
5067  * Core function of space balance.
5068  *
5069  * The idea is using reloc trees to relocate tree blocks in reference
5070  * counted roots. There is one reloc tree for each subvol, and all
5071  * reloc trees share same root key objectid. Reloc trees are snapshots
5072  * of the latest committed roots of subvols (root->commit_root).
5073  *
5074  * To relocate a tree block referenced by a subvol, there are two steps.
5075  * COW the block through subvol's reloc tree, then update block pointer
5076  * in the subvol to point to the new block. Since all reloc trees share
5077  * same root key objectid, doing special handing for tree blocks owned
5078  * by them is easy. Once a tree block has been COWed in one reloc tree,
5079  * we can use the resulting new block directly when the same block is
5080  * required to COW again through other reloc trees. By this way, relocated
5081  * tree blocks are shared between reloc trees, so they are also shared
5082  * between subvols.
5083  */
5084 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
5085 				      struct btrfs_root *root,
5086 				      struct btrfs_path *path,
5087 				      struct btrfs_key *first_key,
5088 				      struct btrfs_ref_path *ref_path,
5089 				      struct btrfs_block_group_cache *group,
5090 				      struct inode *reloc_inode)
5091 {
5092 	struct btrfs_root *reloc_root;
5093 	struct extent_buffer *eb = NULL;
5094 	struct btrfs_key *keys;
5095 	u64 *nodes;
5096 	int level;
5097 	int shared_level;
5098 	int lowest_level = 0;
5099 	int ret;
5100 
5101 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
5102 		lowest_level = ref_path->owner_objectid;
5103 
5104 	if (!root->ref_cows) {
5105 		path->lowest_level = lowest_level;
5106 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
5107 		BUG_ON(ret < 0);
5108 		path->lowest_level = 0;
5109 		btrfs_release_path(root, path);
5110 		return 0;
5111 	}
5112 
5113 	mutex_lock(&root->fs_info->tree_reloc_mutex);
5114 	ret = init_reloc_tree(trans, root);
5115 	BUG_ON(ret);
5116 	reloc_root = root->reloc_root;
5117 
5118 	shared_level = ref_path->shared_level;
5119 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
5120 
5121 	keys = ref_path->node_keys;
5122 	nodes = ref_path->new_nodes;
5123 	memset(&keys[shared_level + 1], 0,
5124 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
5125 	memset(&nodes[shared_level + 1], 0,
5126 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
5127 
5128 	if (nodes[lowest_level] == 0) {
5129 		path->lowest_level = lowest_level;
5130 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
5131 					0, 1);
5132 		BUG_ON(ret);
5133 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
5134 			eb = path->nodes[level];
5135 			if (!eb || eb == reloc_root->node)
5136 				break;
5137 			nodes[level] = eb->start;
5138 			if (level == 0)
5139 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
5140 			else
5141 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
5142 		}
5143 		if (nodes[0] &&
5144 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5145 			eb = path->nodes[0];
5146 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
5147 						      group, reloc_inode);
5148 			BUG_ON(ret);
5149 		}
5150 		btrfs_release_path(reloc_root, path);
5151 	} else {
5152 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
5153 				       lowest_level);
5154 		BUG_ON(ret);
5155 	}
5156 
5157 	/*
5158 	 * replace tree blocks in the fs tree with tree blocks in
5159 	 * the reloc tree.
5160 	 */
5161 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
5162 	BUG_ON(ret < 0);
5163 
5164 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5165 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
5166 					0, 0);
5167 		BUG_ON(ret);
5168 		extent_buffer_get(path->nodes[0]);
5169 		eb = path->nodes[0];
5170 		btrfs_release_path(reloc_root, path);
5171 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
5172 		BUG_ON(ret);
5173 		free_extent_buffer(eb);
5174 	}
5175 
5176 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
5177 	path->lowest_level = 0;
5178 	return 0;
5179 }
5180 
5181 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
5182 					struct btrfs_root *root,
5183 					struct btrfs_path *path,
5184 					struct btrfs_key *first_key,
5185 					struct btrfs_ref_path *ref_path)
5186 {
5187 	int ret;
5188 
5189 	ret = relocate_one_path(trans, root, path, first_key,
5190 				ref_path, NULL, NULL);
5191 	BUG_ON(ret);
5192 
5193 	return 0;
5194 }
5195 
5196 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
5197 				    struct btrfs_root *extent_root,
5198 				    struct btrfs_path *path,
5199 				    struct btrfs_key *extent_key)
5200 {
5201 	int ret;
5202 
5203 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
5204 	if (ret)
5205 		goto out;
5206 	ret = btrfs_del_item(trans, extent_root, path);
5207 out:
5208 	btrfs_release_path(extent_root, path);
5209 	return ret;
5210 }
5211 
5212 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
5213 						struct btrfs_ref_path *ref_path)
5214 {
5215 	struct btrfs_key root_key;
5216 
5217 	root_key.objectid = ref_path->root_objectid;
5218 	root_key.type = BTRFS_ROOT_ITEM_KEY;
5219 	if (is_cowonly_root(ref_path->root_objectid))
5220 		root_key.offset = 0;
5221 	else
5222 		root_key.offset = (u64)-1;
5223 
5224 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
5225 }
5226 
5227 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
5228 					struct btrfs_path *path,
5229 					struct btrfs_key *extent_key,
5230 					struct btrfs_block_group_cache *group,
5231 					struct inode *reloc_inode, int pass)
5232 {
5233 	struct btrfs_trans_handle *trans;
5234 	struct btrfs_root *found_root;
5235 	struct btrfs_ref_path *ref_path = NULL;
5236 	struct disk_extent *new_extents = NULL;
5237 	int nr_extents = 0;
5238 	int loops;
5239 	int ret;
5240 	int level;
5241 	struct btrfs_key first_key;
5242 	u64 prev_block = 0;
5243 
5244 
5245 	trans = btrfs_start_transaction(extent_root, 1);
5246 	BUG_ON(!trans);
5247 
5248 	if (extent_key->objectid == 0) {
5249 		ret = del_extent_zero(trans, extent_root, path, extent_key);
5250 		goto out;
5251 	}
5252 
5253 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
5254 	if (!ref_path) {
5255 		ret = -ENOMEM;
5256 		goto out;
5257 	}
5258 
5259 	for (loops = 0; ; loops++) {
5260 		if (loops == 0) {
5261 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
5262 						   extent_key->objectid);
5263 		} else {
5264 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
5265 		}
5266 		if (ret < 0)
5267 			goto out;
5268 		if (ret > 0)
5269 			break;
5270 
5271 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5272 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
5273 			continue;
5274 
5275 		found_root = read_ref_root(extent_root->fs_info, ref_path);
5276 		BUG_ON(!found_root);
5277 		/*
5278 		 * for reference counted tree, only process reference paths
5279 		 * rooted at the latest committed root.
5280 		 */
5281 		if (found_root->ref_cows &&
5282 		    ref_path->root_generation != found_root->root_key.offset)
5283 			continue;
5284 
5285 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5286 			if (pass == 0) {
5287 				/*
5288 				 * copy data extents to new locations
5289 				 */
5290 				u64 group_start = group->key.objectid;
5291 				ret = relocate_data_extent(reloc_inode,
5292 							   extent_key,
5293 							   group_start);
5294 				if (ret < 0)
5295 					goto out;
5296 				break;
5297 			}
5298 			level = 0;
5299 		} else {
5300 			level = ref_path->owner_objectid;
5301 		}
5302 
5303 		if (prev_block != ref_path->nodes[level]) {
5304 			struct extent_buffer *eb;
5305 			u64 block_start = ref_path->nodes[level];
5306 			u64 block_size = btrfs_level_size(found_root, level);
5307 
5308 			eb = read_tree_block(found_root, block_start,
5309 					     block_size, 0);
5310 			btrfs_tree_lock(eb);
5311 			BUG_ON(level != btrfs_header_level(eb));
5312 
5313 			if (level == 0)
5314 				btrfs_item_key_to_cpu(eb, &first_key, 0);
5315 			else
5316 				btrfs_node_key_to_cpu(eb, &first_key, 0);
5317 
5318 			btrfs_tree_unlock(eb);
5319 			free_extent_buffer(eb);
5320 			prev_block = block_start;
5321 		}
5322 
5323 		mutex_lock(&extent_root->fs_info->trans_mutex);
5324 		btrfs_record_root_in_trans(found_root);
5325 		mutex_unlock(&extent_root->fs_info->trans_mutex);
5326 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5327 			/*
5328 			 * try to update data extent references while
5329 			 * keeping metadata shared between snapshots.
5330 			 */
5331 			if (pass == 1) {
5332 				ret = relocate_one_path(trans, found_root,
5333 						path, &first_key, ref_path,
5334 						group, reloc_inode);
5335 				if (ret < 0)
5336 					goto out;
5337 				continue;
5338 			}
5339 			/*
5340 			 * use fallback method to process the remaining
5341 			 * references.
5342 			 */
5343 			if (!new_extents) {
5344 				u64 group_start = group->key.objectid;
5345 				new_extents = kmalloc(sizeof(*new_extents),
5346 						      GFP_NOFS);
5347 				nr_extents = 1;
5348 				ret = get_new_locations(reloc_inode,
5349 							extent_key,
5350 							group_start, 1,
5351 							&new_extents,
5352 							&nr_extents);
5353 				if (ret)
5354 					goto out;
5355 			}
5356 			ret = replace_one_extent(trans, found_root,
5357 						path, extent_key,
5358 						&first_key, ref_path,
5359 						new_extents, nr_extents);
5360 		} else {
5361 			ret = relocate_tree_block(trans, found_root, path,
5362 						  &first_key, ref_path);
5363 		}
5364 		if (ret < 0)
5365 			goto out;
5366 	}
5367 	ret = 0;
5368 out:
5369 	btrfs_end_transaction(trans, extent_root);
5370 	kfree(new_extents);
5371 	kfree(ref_path);
5372 	return ret;
5373 }
5374 
5375 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
5376 {
5377 	u64 num_devices;
5378 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
5379 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
5380 
5381 	num_devices = root->fs_info->fs_devices->rw_devices;
5382 	if (num_devices == 1) {
5383 		stripped |= BTRFS_BLOCK_GROUP_DUP;
5384 		stripped = flags & ~stripped;
5385 
5386 		/* turn raid0 into single device chunks */
5387 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
5388 			return stripped;
5389 
5390 		/* turn mirroring into duplication */
5391 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
5392 			     BTRFS_BLOCK_GROUP_RAID10))
5393 			return stripped | BTRFS_BLOCK_GROUP_DUP;
5394 		return flags;
5395 	} else {
5396 		/* they already had raid on here, just return */
5397 		if (flags & stripped)
5398 			return flags;
5399 
5400 		stripped |= BTRFS_BLOCK_GROUP_DUP;
5401 		stripped = flags & ~stripped;
5402 
5403 		/* switch duplicated blocks with raid1 */
5404 		if (flags & BTRFS_BLOCK_GROUP_DUP)
5405 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
5406 
5407 		/* turn single device chunks into raid0 */
5408 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
5409 	}
5410 	return flags;
5411 }
5412 
5413 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
5414 		     struct btrfs_block_group_cache *shrink_block_group,
5415 		     int force)
5416 {
5417 	struct btrfs_trans_handle *trans;
5418 	u64 new_alloc_flags;
5419 	u64 calc;
5420 
5421 	spin_lock(&shrink_block_group->lock);
5422 	if (btrfs_block_group_used(&shrink_block_group->item) > 0) {
5423 		spin_unlock(&shrink_block_group->lock);
5424 
5425 		trans = btrfs_start_transaction(root, 1);
5426 		spin_lock(&shrink_block_group->lock);
5427 
5428 		new_alloc_flags = update_block_group_flags(root,
5429 						   shrink_block_group->flags);
5430 		if (new_alloc_flags != shrink_block_group->flags) {
5431 			calc =
5432 			     btrfs_block_group_used(&shrink_block_group->item);
5433 		} else {
5434 			calc = shrink_block_group->key.offset;
5435 		}
5436 		spin_unlock(&shrink_block_group->lock);
5437 
5438 		do_chunk_alloc(trans, root->fs_info->extent_root,
5439 			       calc + 2 * 1024 * 1024, new_alloc_flags, force);
5440 
5441 		btrfs_end_transaction(trans, root);
5442 	} else
5443 		spin_unlock(&shrink_block_group->lock);
5444 	return 0;
5445 }
5446 
5447 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
5448 				 struct btrfs_root *root,
5449 				 u64 objectid, u64 size)
5450 {
5451 	struct btrfs_path *path;
5452 	struct btrfs_inode_item *item;
5453 	struct extent_buffer *leaf;
5454 	int ret;
5455 
5456 	path = btrfs_alloc_path();
5457 	if (!path)
5458 		return -ENOMEM;
5459 
5460 	path->leave_spinning = 1;
5461 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
5462 	if (ret)
5463 		goto out;
5464 
5465 	leaf = path->nodes[0];
5466 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
5467 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
5468 	btrfs_set_inode_generation(leaf, item, 1);
5469 	btrfs_set_inode_size(leaf, item, size);
5470 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
5471 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
5472 	btrfs_mark_buffer_dirty(leaf);
5473 	btrfs_release_path(root, path);
5474 out:
5475 	btrfs_free_path(path);
5476 	return ret;
5477 }
5478 
5479 static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
5480 					struct btrfs_block_group_cache *group)
5481 {
5482 	struct inode *inode = NULL;
5483 	struct btrfs_trans_handle *trans;
5484 	struct btrfs_root *root;
5485 	struct btrfs_key root_key;
5486 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
5487 	int err = 0;
5488 
5489 	root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
5490 	root_key.type = BTRFS_ROOT_ITEM_KEY;
5491 	root_key.offset = (u64)-1;
5492 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
5493 	if (IS_ERR(root))
5494 		return ERR_CAST(root);
5495 
5496 	trans = btrfs_start_transaction(root, 1);
5497 	BUG_ON(!trans);
5498 
5499 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
5500 	if (err)
5501 		goto out;
5502 
5503 	err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
5504 	BUG_ON(err);
5505 
5506 	err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
5507 				       group->key.offset, 0, group->key.offset,
5508 				       0, 0, 0);
5509 	BUG_ON(err);
5510 
5511 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
5512 	if (inode->i_state & I_NEW) {
5513 		BTRFS_I(inode)->root = root;
5514 		BTRFS_I(inode)->location.objectid = objectid;
5515 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5516 		BTRFS_I(inode)->location.offset = 0;
5517 		btrfs_read_locked_inode(inode);
5518 		unlock_new_inode(inode);
5519 		BUG_ON(is_bad_inode(inode));
5520 	} else {
5521 		BUG_ON(1);
5522 	}
5523 	BTRFS_I(inode)->index_cnt = group->key.objectid;
5524 
5525 	err = btrfs_orphan_add(trans, inode);
5526 out:
5527 	btrfs_end_transaction(trans, root);
5528 	if (err) {
5529 		if (inode)
5530 			iput(inode);
5531 		inode = ERR_PTR(err);
5532 	}
5533 	return inode;
5534 }
5535 
5536 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
5537 {
5538 
5539 	struct btrfs_ordered_sum *sums;
5540 	struct btrfs_sector_sum *sector_sum;
5541 	struct btrfs_ordered_extent *ordered;
5542 	struct btrfs_root *root = BTRFS_I(inode)->root;
5543 	struct list_head list;
5544 	size_t offset;
5545 	int ret;
5546 	u64 disk_bytenr;
5547 
5548 	INIT_LIST_HEAD(&list);
5549 
5550 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
5551 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
5552 
5553 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
5554 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
5555 				       disk_bytenr + len - 1, &list);
5556 
5557 	while (!list_empty(&list)) {
5558 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
5559 		list_del_init(&sums->list);
5560 
5561 		sector_sum = sums->sums;
5562 		sums->bytenr = ordered->start;
5563 
5564 		offset = 0;
5565 		while (offset < sums->len) {
5566 			sector_sum->bytenr += ordered->start - disk_bytenr;
5567 			sector_sum++;
5568 			offset += root->sectorsize;
5569 		}
5570 
5571 		btrfs_add_ordered_sum(inode, ordered, sums);
5572 	}
5573 	btrfs_put_ordered_extent(ordered);
5574 	return 0;
5575 }
5576 
5577 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
5578 {
5579 	struct btrfs_trans_handle *trans;
5580 	struct btrfs_path *path;
5581 	struct btrfs_fs_info *info = root->fs_info;
5582 	struct extent_buffer *leaf;
5583 	struct inode *reloc_inode;
5584 	struct btrfs_block_group_cache *block_group;
5585 	struct btrfs_key key;
5586 	u64 skipped;
5587 	u64 cur_byte;
5588 	u64 total_found;
5589 	u32 nritems;
5590 	int ret;
5591 	int progress;
5592 	int pass = 0;
5593 
5594 	root = root->fs_info->extent_root;
5595 
5596 	block_group = btrfs_lookup_block_group(info, group_start);
5597 	BUG_ON(!block_group);
5598 
5599 	printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n",
5600 	       (unsigned long long)block_group->key.objectid,
5601 	       (unsigned long long)block_group->flags);
5602 
5603 	path = btrfs_alloc_path();
5604 	BUG_ON(!path);
5605 
5606 	reloc_inode = create_reloc_inode(info, block_group);
5607 	BUG_ON(IS_ERR(reloc_inode));
5608 
5609 	__alloc_chunk_for_shrink(root, block_group, 1);
5610 	set_block_group_readonly(block_group);
5611 
5612 	btrfs_start_delalloc_inodes(info->tree_root);
5613 	btrfs_wait_ordered_extents(info->tree_root, 0);
5614 again:
5615 	skipped = 0;
5616 	total_found = 0;
5617 	progress = 0;
5618 	key.objectid = block_group->key.objectid;
5619 	key.offset = 0;
5620 	key.type = 0;
5621 	cur_byte = key.objectid;
5622 
5623 	trans = btrfs_start_transaction(info->tree_root, 1);
5624 	btrfs_commit_transaction(trans, info->tree_root);
5625 
5626 	mutex_lock(&root->fs_info->cleaner_mutex);
5627 	btrfs_clean_old_snapshots(info->tree_root);
5628 	btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
5629 	mutex_unlock(&root->fs_info->cleaner_mutex);
5630 
5631 	trans = btrfs_start_transaction(info->tree_root, 1);
5632 	btrfs_commit_transaction(trans, info->tree_root);
5633 
5634 	while (1) {
5635 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5636 		if (ret < 0)
5637 			goto out;
5638 next:
5639 		leaf = path->nodes[0];
5640 		nritems = btrfs_header_nritems(leaf);
5641 		if (path->slots[0] >= nritems) {
5642 			ret = btrfs_next_leaf(root, path);
5643 			if (ret < 0)
5644 				goto out;
5645 			if (ret == 1) {
5646 				ret = 0;
5647 				break;
5648 			}
5649 			leaf = path->nodes[0];
5650 			nritems = btrfs_header_nritems(leaf);
5651 		}
5652 
5653 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5654 
5655 		if (key.objectid >= block_group->key.objectid +
5656 		    block_group->key.offset)
5657 			break;
5658 
5659 		if (progress && need_resched()) {
5660 			btrfs_release_path(root, path);
5661 			cond_resched();
5662 			progress = 0;
5663 			continue;
5664 		}
5665 		progress = 1;
5666 
5667 		if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
5668 		    key.objectid + key.offset <= cur_byte) {
5669 			path->slots[0]++;
5670 			goto next;
5671 		}
5672 
5673 		total_found++;
5674 		cur_byte = key.objectid + key.offset;
5675 		btrfs_release_path(root, path);
5676 
5677 		__alloc_chunk_for_shrink(root, block_group, 0);
5678 		ret = relocate_one_extent(root, path, &key, block_group,
5679 					  reloc_inode, pass);
5680 		BUG_ON(ret < 0);
5681 		if (ret > 0)
5682 			skipped++;
5683 
5684 		key.objectid = cur_byte;
5685 		key.type = 0;
5686 		key.offset = 0;
5687 	}
5688 
5689 	btrfs_release_path(root, path);
5690 
5691 	if (pass == 0) {
5692 		btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
5693 		invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
5694 	}
5695 
5696 	if (total_found > 0) {
5697 		printk(KERN_INFO "btrfs found %llu extents in pass %d\n",
5698 		       (unsigned long long)total_found, pass);
5699 		pass++;
5700 		if (total_found == skipped && pass > 2) {
5701 			iput(reloc_inode);
5702 			reloc_inode = create_reloc_inode(info, block_group);
5703 			pass = 0;
5704 		}
5705 		goto again;
5706 	}
5707 
5708 	/* delete reloc_inode */
5709 	iput(reloc_inode);
5710 
5711 	/* unpin extents in this range */
5712 	trans = btrfs_start_transaction(info->tree_root, 1);
5713 	btrfs_commit_transaction(trans, info->tree_root);
5714 
5715 	spin_lock(&block_group->lock);
5716 	WARN_ON(block_group->pinned > 0);
5717 	WARN_ON(block_group->reserved > 0);
5718 	WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
5719 	spin_unlock(&block_group->lock);
5720 	btrfs_put_block_group(block_group);
5721 	ret = 0;
5722 out:
5723 	btrfs_free_path(path);
5724 	return ret;
5725 }
5726 
5727 static int find_first_block_group(struct btrfs_root *root,
5728 		struct btrfs_path *path, struct btrfs_key *key)
5729 {
5730 	int ret = 0;
5731 	struct btrfs_key found_key;
5732 	struct extent_buffer *leaf;
5733 	int slot;
5734 
5735 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
5736 	if (ret < 0)
5737 		goto out;
5738 
5739 	while (1) {
5740 		slot = path->slots[0];
5741 		leaf = path->nodes[0];
5742 		if (slot >= btrfs_header_nritems(leaf)) {
5743 			ret = btrfs_next_leaf(root, path);
5744 			if (ret == 0)
5745 				continue;
5746 			if (ret < 0)
5747 				goto out;
5748 			break;
5749 		}
5750 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5751 
5752 		if (found_key.objectid >= key->objectid &&
5753 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
5754 			ret = 0;
5755 			goto out;
5756 		}
5757 		path->slots[0]++;
5758 	}
5759 	ret = -ENOENT;
5760 out:
5761 	return ret;
5762 }
5763 
5764 int btrfs_free_block_groups(struct btrfs_fs_info *info)
5765 {
5766 	struct btrfs_block_group_cache *block_group;
5767 	struct btrfs_space_info *space_info;
5768 	struct rb_node *n;
5769 
5770 	spin_lock(&info->block_group_cache_lock);
5771 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
5772 		block_group = rb_entry(n, struct btrfs_block_group_cache,
5773 				       cache_node);
5774 		rb_erase(&block_group->cache_node,
5775 			 &info->block_group_cache_tree);
5776 		spin_unlock(&info->block_group_cache_lock);
5777 
5778 		btrfs_remove_free_space_cache(block_group);
5779 		down_write(&block_group->space_info->groups_sem);
5780 		list_del(&block_group->list);
5781 		up_write(&block_group->space_info->groups_sem);
5782 
5783 		WARN_ON(atomic_read(&block_group->count) != 1);
5784 		kfree(block_group);
5785 
5786 		spin_lock(&info->block_group_cache_lock);
5787 	}
5788 	spin_unlock(&info->block_group_cache_lock);
5789 
5790 	/* now that all the block groups are freed, go through and
5791 	 * free all the space_info structs.  This is only called during
5792 	 * the final stages of unmount, and so we know nobody is
5793 	 * using them.  We call synchronize_rcu() once before we start,
5794 	 * just to be on the safe side.
5795 	 */
5796 	synchronize_rcu();
5797 
5798 	while(!list_empty(&info->space_info)) {
5799 		space_info = list_entry(info->space_info.next,
5800 					struct btrfs_space_info,
5801 					list);
5802 
5803 		list_del(&space_info->list);
5804 		kfree(space_info);
5805 	}
5806 	return 0;
5807 }
5808 
5809 int btrfs_read_block_groups(struct btrfs_root *root)
5810 {
5811 	struct btrfs_path *path;
5812 	int ret;
5813 	struct btrfs_block_group_cache *cache;
5814 	struct btrfs_fs_info *info = root->fs_info;
5815 	struct btrfs_space_info *space_info;
5816 	struct btrfs_key key;
5817 	struct btrfs_key found_key;
5818 	struct extent_buffer *leaf;
5819 
5820 	root = info->extent_root;
5821 	key.objectid = 0;
5822 	key.offset = 0;
5823 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
5824 	path = btrfs_alloc_path();
5825 	if (!path)
5826 		return -ENOMEM;
5827 
5828 	while (1) {
5829 		ret = find_first_block_group(root, path, &key);
5830 		if (ret > 0) {
5831 			ret = 0;
5832 			goto error;
5833 		}
5834 		if (ret != 0)
5835 			goto error;
5836 
5837 		leaf = path->nodes[0];
5838 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5839 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
5840 		if (!cache) {
5841 			ret = -ENOMEM;
5842 			break;
5843 		}
5844 
5845 		atomic_set(&cache->count, 1);
5846 		spin_lock_init(&cache->lock);
5847 		spin_lock_init(&cache->tree_lock);
5848 		mutex_init(&cache->cache_mutex);
5849 		INIT_LIST_HEAD(&cache->list);
5850 		INIT_LIST_HEAD(&cache->cluster_list);
5851 		read_extent_buffer(leaf, &cache->item,
5852 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
5853 				   sizeof(cache->item));
5854 		memcpy(&cache->key, &found_key, sizeof(found_key));
5855 
5856 		key.objectid = found_key.objectid + found_key.offset;
5857 		btrfs_release_path(root, path);
5858 		cache->flags = btrfs_block_group_flags(&cache->item);
5859 
5860 		ret = update_space_info(info, cache->flags, found_key.offset,
5861 					btrfs_block_group_used(&cache->item),
5862 					&space_info);
5863 		BUG_ON(ret);
5864 		cache->space_info = space_info;
5865 		down_write(&space_info->groups_sem);
5866 		list_add_tail(&cache->list, &space_info->block_groups);
5867 		up_write(&space_info->groups_sem);
5868 
5869 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
5870 		BUG_ON(ret);
5871 
5872 		set_avail_alloc_bits(root->fs_info, cache->flags);
5873 		if (btrfs_chunk_readonly(root, cache->key.objectid))
5874 			set_block_group_readonly(cache);
5875 	}
5876 	ret = 0;
5877 error:
5878 	btrfs_free_path(path);
5879 	return ret;
5880 }
5881 
5882 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
5883 			   struct btrfs_root *root, u64 bytes_used,
5884 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
5885 			   u64 size)
5886 {
5887 	int ret;
5888 	struct btrfs_root *extent_root;
5889 	struct btrfs_block_group_cache *cache;
5890 
5891 	extent_root = root->fs_info->extent_root;
5892 
5893 	root->fs_info->last_trans_log_full_commit = trans->transid;
5894 
5895 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
5896 	if (!cache)
5897 		return -ENOMEM;
5898 
5899 	cache->key.objectid = chunk_offset;
5900 	cache->key.offset = size;
5901 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
5902 	atomic_set(&cache->count, 1);
5903 	spin_lock_init(&cache->lock);
5904 	spin_lock_init(&cache->tree_lock);
5905 	mutex_init(&cache->cache_mutex);
5906 	INIT_LIST_HEAD(&cache->list);
5907 	INIT_LIST_HEAD(&cache->cluster_list);
5908 
5909 	btrfs_set_block_group_used(&cache->item, bytes_used);
5910 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
5911 	cache->flags = type;
5912 	btrfs_set_block_group_flags(&cache->item, type);
5913 
5914 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
5915 				&cache->space_info);
5916 	BUG_ON(ret);
5917 	down_write(&cache->space_info->groups_sem);
5918 	list_add_tail(&cache->list, &cache->space_info->block_groups);
5919 	up_write(&cache->space_info->groups_sem);
5920 
5921 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
5922 	BUG_ON(ret);
5923 
5924 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
5925 				sizeof(cache->item));
5926 	BUG_ON(ret);
5927 
5928 	set_avail_alloc_bits(extent_root->fs_info, type);
5929 
5930 	return 0;
5931 }
5932 
5933 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5934 			     struct btrfs_root *root, u64 group_start)
5935 {
5936 	struct btrfs_path *path;
5937 	struct btrfs_block_group_cache *block_group;
5938 	struct btrfs_key key;
5939 	int ret;
5940 
5941 	root = root->fs_info->extent_root;
5942 
5943 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
5944 	BUG_ON(!block_group);
5945 	BUG_ON(!block_group->ro);
5946 
5947 	memcpy(&key, &block_group->key, sizeof(key));
5948 
5949 	path = btrfs_alloc_path();
5950 	BUG_ON(!path);
5951 
5952 	spin_lock(&root->fs_info->block_group_cache_lock);
5953 	rb_erase(&block_group->cache_node,
5954 		 &root->fs_info->block_group_cache_tree);
5955 	spin_unlock(&root->fs_info->block_group_cache_lock);
5956 	btrfs_remove_free_space_cache(block_group);
5957 	down_write(&block_group->space_info->groups_sem);
5958 	list_del(&block_group->list);
5959 	up_write(&block_group->space_info->groups_sem);
5960 
5961 	spin_lock(&block_group->space_info->lock);
5962 	block_group->space_info->total_bytes -= block_group->key.offset;
5963 	block_group->space_info->bytes_readonly -= block_group->key.offset;
5964 	spin_unlock(&block_group->space_info->lock);
5965 	block_group->space_info->full = 0;
5966 
5967 	btrfs_put_block_group(block_group);
5968 	btrfs_put_block_group(block_group);
5969 
5970 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5971 	if (ret > 0)
5972 		ret = -EIO;
5973 	if (ret < 0)
5974 		goto out;
5975 
5976 	ret = btrfs_del_item(trans, root, path);
5977 out:
5978 	btrfs_free_path(path);
5979 	return ret;
5980 }
5981