xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
91 	int ret;
92 	struct btrfs_key key;
93 	struct btrfs_path *path;
94 
95 	path = btrfs_alloc_path();
96 	if (!path)
97 		return -ENOMEM;
98 
99 	key.objectid = start;
100 	key.offset = len;
101 	key.type = BTRFS_EXTENT_ITEM_KEY;
102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
103 	btrfs_free_path(path);
104 	return ret;
105 }
106 
107 /*
108  * helper function to lookup reference count and flags of a tree block.
109  *
110  * the head node for delayed ref is used to store the sum of all the
111  * reference count modifications queued up in the rbtree. the head
112  * node may also store the extent flags to set. This way you can check
113  * to see what the reference count and extent flags would be if all of
114  * the delayed refs are not processed.
115  */
116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
117 			     struct btrfs_fs_info *fs_info, u64 bytenr,
118 			     u64 offset, int metadata, u64 *refs, u64 *flags)
119 {
120 	struct btrfs_root *extent_root;
121 	struct btrfs_delayed_ref_head *head;
122 	struct btrfs_delayed_ref_root *delayed_refs;
123 	struct btrfs_path *path;
124 	struct btrfs_extent_item *ei;
125 	struct extent_buffer *leaf;
126 	struct btrfs_key key;
127 	u32 item_size;
128 	u64 num_refs;
129 	u64 extent_flags;
130 	int ret;
131 
132 	/*
133 	 * If we don't have skinny metadata, don't bother doing anything
134 	 * different
135 	 */
136 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
137 		offset = fs_info->nodesize;
138 		metadata = 0;
139 	}
140 
141 	path = btrfs_alloc_path();
142 	if (!path)
143 		return -ENOMEM;
144 
145 	if (!trans) {
146 		path->skip_locking = 1;
147 		path->search_commit_root = 1;
148 	}
149 
150 search_again:
151 	key.objectid = bytenr;
152 	key.offset = offset;
153 	if (metadata)
154 		key.type = BTRFS_METADATA_ITEM_KEY;
155 	else
156 		key.type = BTRFS_EXTENT_ITEM_KEY;
157 
158 	extent_root = btrfs_extent_root(fs_info, bytenr);
159 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
160 	if (ret < 0)
161 		goto out_free;
162 
163 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
164 		if (path->slots[0]) {
165 			path->slots[0]--;
166 			btrfs_item_key_to_cpu(path->nodes[0], &key,
167 					      path->slots[0]);
168 			if (key.objectid == bytenr &&
169 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
170 			    key.offset == fs_info->nodesize)
171 				ret = 0;
172 		}
173 	}
174 
175 	if (ret == 0) {
176 		leaf = path->nodes[0];
177 		item_size = btrfs_item_size(leaf, path->slots[0]);
178 		if (item_size >= sizeof(*ei)) {
179 			ei = btrfs_item_ptr(leaf, path->slots[0],
180 					    struct btrfs_extent_item);
181 			num_refs = btrfs_extent_refs(leaf, ei);
182 			extent_flags = btrfs_extent_flags(leaf, ei);
183 		} else {
184 			ret = -EINVAL;
185 			btrfs_print_v0_err(fs_info);
186 			if (trans)
187 				btrfs_abort_transaction(trans, ret);
188 			else
189 				btrfs_handle_fs_error(fs_info, ret, NULL);
190 
191 			goto out_free;
192 		}
193 
194 		BUG_ON(num_refs == 0);
195 	} else {
196 		num_refs = 0;
197 		extent_flags = 0;
198 		ret = 0;
199 	}
200 
201 	if (!trans)
202 		goto out;
203 
204 	delayed_refs = &trans->transaction->delayed_refs;
205 	spin_lock(&delayed_refs->lock);
206 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
207 	if (head) {
208 		if (!mutex_trylock(&head->mutex)) {
209 			refcount_inc(&head->refs);
210 			spin_unlock(&delayed_refs->lock);
211 
212 			btrfs_release_path(path);
213 
214 			/*
215 			 * Mutex was contended, block until it's released and try
216 			 * again
217 			 */
218 			mutex_lock(&head->mutex);
219 			mutex_unlock(&head->mutex);
220 			btrfs_put_delayed_ref_head(head);
221 			goto search_again;
222 		}
223 		spin_lock(&head->lock);
224 		if (head->extent_op && head->extent_op->update_flags)
225 			extent_flags |= head->extent_op->flags_to_set;
226 		else
227 			BUG_ON(num_refs == 0);
228 
229 		num_refs += head->ref_mod;
230 		spin_unlock(&head->lock);
231 		mutex_unlock(&head->mutex);
232 	}
233 	spin_unlock(&delayed_refs->lock);
234 out:
235 	WARN_ON(num_refs == 0);
236 	if (refs)
237 		*refs = num_refs;
238 	if (flags)
239 		*flags = extent_flags;
240 out_free:
241 	btrfs_free_path(path);
242 	return ret;
243 }
244 
245 /*
246  * Back reference rules.  Back refs have three main goals:
247  *
248  * 1) differentiate between all holders of references to an extent so that
249  *    when a reference is dropped we can make sure it was a valid reference
250  *    before freeing the extent.
251  *
252  * 2) Provide enough information to quickly find the holders of an extent
253  *    if we notice a given block is corrupted or bad.
254  *
255  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
256  *    maintenance.  This is actually the same as #2, but with a slightly
257  *    different use case.
258  *
259  * There are two kinds of back refs. The implicit back refs is optimized
260  * for pointers in non-shared tree blocks. For a given pointer in a block,
261  * back refs of this kind provide information about the block's owner tree
262  * and the pointer's key. These information allow us to find the block by
263  * b-tree searching. The full back refs is for pointers in tree blocks not
264  * referenced by their owner trees. The location of tree block is recorded
265  * in the back refs. Actually the full back refs is generic, and can be
266  * used in all cases the implicit back refs is used. The major shortcoming
267  * of the full back refs is its overhead. Every time a tree block gets
268  * COWed, we have to update back refs entry for all pointers in it.
269  *
270  * For a newly allocated tree block, we use implicit back refs for
271  * pointers in it. This means most tree related operations only involve
272  * implicit back refs. For a tree block created in old transaction, the
273  * only way to drop a reference to it is COW it. So we can detect the
274  * event that tree block loses its owner tree's reference and do the
275  * back refs conversion.
276  *
277  * When a tree block is COWed through a tree, there are four cases:
278  *
279  * The reference count of the block is one and the tree is the block's
280  * owner tree. Nothing to do in this case.
281  *
282  * The reference count of the block is one and the tree is not the
283  * block's owner tree. In this case, full back refs is used for pointers
284  * in the block. Remove these full back refs, add implicit back refs for
285  * every pointers in the new block.
286  *
287  * The reference count of the block is greater than one and the tree is
288  * the block's owner tree. In this case, implicit back refs is used for
289  * pointers in the block. Add full back refs for every pointers in the
290  * block, increase lower level extents' reference counts. The original
291  * implicit back refs are entailed to the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * not the block's owner tree. Add implicit back refs for every pointer in
295  * the new block, increase lower level extents' reference count.
296  *
297  * Back Reference Key composing:
298  *
299  * The key objectid corresponds to the first byte in the extent,
300  * The key type is used to differentiate between types of back refs.
301  * There are different meanings of the key offset for different types
302  * of back refs.
303  *
304  * File extents can be referenced by:
305  *
306  * - multiple snapshots, subvolumes, or different generations in one subvol
307  * - different files inside a single subvolume
308  * - different offsets inside a file (bookend extents in file.c)
309  *
310  * The extent ref structure for the implicit back refs has fields for:
311  *
312  * - Objectid of the subvolume root
313  * - objectid of the file holding the reference
314  * - original offset in the file
315  * - how many bookend extents
316  *
317  * The key offset for the implicit back refs is hash of the first
318  * three fields.
319  *
320  * The extent ref structure for the full back refs has field for:
321  *
322  * - number of pointers in the tree leaf
323  *
324  * The key offset for the implicit back refs is the first byte of
325  * the tree leaf
326  *
327  * When a file extent is allocated, The implicit back refs is used.
328  * the fields are filled in:
329  *
330  *     (root_key.objectid, inode objectid, offset in file, 1)
331  *
332  * When a file extent is removed file truncation, we find the
333  * corresponding implicit back refs and check the following fields:
334  *
335  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
336  *
337  * Btree extents can be referenced by:
338  *
339  * - Different subvolumes
340  *
341  * Both the implicit back refs and the full back refs for tree blocks
342  * only consist of key. The key offset for the implicit back refs is
343  * objectid of block's owner tree. The key offset for the full back refs
344  * is the first byte of parent block.
345  *
346  * When implicit back refs is used, information about the lowest key and
347  * level of the tree block are required. These information are stored in
348  * tree block info structure.
349  */
350 
351 /*
352  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
353  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
354  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
355  */
356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
357 				     struct btrfs_extent_inline_ref *iref,
358 				     enum btrfs_inline_ref_type is_data)
359 {
360 	int type = btrfs_extent_inline_ref_type(eb, iref);
361 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
362 
363 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
364 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_DATA_REF_KEY ||
366 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
367 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
368 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(eb->fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	btrfs_print_leaf((struct extent_buffer *)eb);
400 	btrfs_err(eb->fs_info,
401 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
402 		  eb->start, (unsigned long)iref, type);
403 	WARN_ON(1);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
622 		btrfs_print_v0_err(trans->fs_info);
623 		btrfs_abort_transaction(trans, -EINVAL);
624 		return -EINVAL;
625 	} else {
626 		BUG();
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
658 	if (iref) {
659 		/*
660 		 * If type is invalid, we should have bailed out earlier than
661 		 * this call.
662 		 */
663 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
664 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
665 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
666 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
667 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
668 		} else {
669 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
670 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
671 		}
672 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
673 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
674 				      struct btrfs_extent_data_ref);
675 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
677 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
678 				      struct btrfs_shared_data_ref);
679 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
680 	} else {
681 		WARN_ON(1);
682 	}
683 	return num_refs;
684 }
685 
686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
687 					  struct btrfs_path *path,
688 					  u64 bytenr, u64 parent,
689 					  u64 root_objectid)
690 {
691 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 	struct btrfs_key key;
693 	int ret;
694 
695 	key.objectid = bytenr;
696 	if (parent) {
697 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 		key.offset = parent;
699 	} else {
700 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 		key.offset = root_objectid;
702 	}
703 
704 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
705 	if (ret > 0)
706 		ret = -ENOENT;
707 	return ret;
708 }
709 
710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
711 					  struct btrfs_path *path,
712 					  u64 bytenr, u64 parent,
713 					  u64 root_objectid)
714 {
715 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
716 	struct btrfs_key key;
717 	int ret;
718 
719 	key.objectid = bytenr;
720 	if (parent) {
721 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
722 		key.offset = parent;
723 	} else {
724 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
725 		key.offset = root_objectid;
726 	}
727 
728 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
729 	btrfs_release_path(path);
730 	return ret;
731 }
732 
733 static inline int extent_ref_type(u64 parent, u64 owner)
734 {
735 	int type;
736 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
737 		if (parent > 0)
738 			type = BTRFS_SHARED_BLOCK_REF_KEY;
739 		else
740 			type = BTRFS_TREE_BLOCK_REF_KEY;
741 	} else {
742 		if (parent > 0)
743 			type = BTRFS_SHARED_DATA_REF_KEY;
744 		else
745 			type = BTRFS_EXTENT_DATA_REF_KEY;
746 	}
747 	return type;
748 }
749 
750 static int find_next_key(struct btrfs_path *path, int level,
751 			 struct btrfs_key *key)
752 
753 {
754 	for (; level < BTRFS_MAX_LEVEL; level++) {
755 		if (!path->nodes[level])
756 			break;
757 		if (path->slots[level] + 1 >=
758 		    btrfs_header_nritems(path->nodes[level]))
759 			continue;
760 		if (level == 0)
761 			btrfs_item_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		else
764 			btrfs_node_key_to_cpu(path->nodes[level], key,
765 					      path->slots[level] + 1);
766 		return 0;
767 	}
768 	return 1;
769 }
770 
771 /*
772  * look for inline back ref. if back ref is found, *ref_ret is set
773  * to the address of inline back ref, and 0 is returned.
774  *
775  * if back ref isn't found, *ref_ret is set to the address where it
776  * should be inserted, and -ENOENT is returned.
777  *
778  * if insert is true and there are too many inline back refs, the path
779  * points to the extent item, and -EAGAIN is returned.
780  *
781  * NOTE: inline back refs are ordered in the same way that back ref
782  *	 items in the tree are ordered.
783  */
784 static noinline_for_stack
785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
786 				 struct btrfs_path *path,
787 				 struct btrfs_extent_inline_ref **ref_ret,
788 				 u64 bytenr, u64 num_bytes,
789 				 u64 parent, u64 root_objectid,
790 				 u64 owner, u64 offset, int insert)
791 {
792 	struct btrfs_fs_info *fs_info = trans->fs_info;
793 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
794 	struct btrfs_key key;
795 	struct extent_buffer *leaf;
796 	struct btrfs_extent_item *ei;
797 	struct btrfs_extent_inline_ref *iref;
798 	u64 flags;
799 	u64 item_size;
800 	unsigned long ptr;
801 	unsigned long end;
802 	int extra_size;
803 	int type;
804 	int want;
805 	int ret;
806 	int err = 0;
807 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
808 	int needed;
809 
810 	key.objectid = bytenr;
811 	key.type = BTRFS_EXTENT_ITEM_KEY;
812 	key.offset = num_bytes;
813 
814 	want = extent_ref_type(parent, owner);
815 	if (insert) {
816 		extra_size = btrfs_extent_inline_ref_size(want);
817 		path->search_for_extension = 1;
818 		path->keep_locks = 1;
819 	} else
820 		extra_size = -1;
821 
822 	/*
823 	 * Owner is our level, so we can just add one to get the level for the
824 	 * block we are interested in.
825 	 */
826 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
827 		key.type = BTRFS_METADATA_ITEM_KEY;
828 		key.offset = owner;
829 	}
830 
831 again:
832 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
833 	if (ret < 0) {
834 		err = ret;
835 		goto out;
836 	}
837 
838 	/*
839 	 * We may be a newly converted file system which still has the old fat
840 	 * extent entries for metadata, so try and see if we have one of those.
841 	 */
842 	if (ret > 0 && skinny_metadata) {
843 		skinny_metadata = false;
844 		if (path->slots[0]) {
845 			path->slots[0]--;
846 			btrfs_item_key_to_cpu(path->nodes[0], &key,
847 					      path->slots[0]);
848 			if (key.objectid == bytenr &&
849 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
850 			    key.offset == num_bytes)
851 				ret = 0;
852 		}
853 		if (ret) {
854 			key.objectid = bytenr;
855 			key.type = BTRFS_EXTENT_ITEM_KEY;
856 			key.offset = num_bytes;
857 			btrfs_release_path(path);
858 			goto again;
859 		}
860 	}
861 
862 	if (ret && !insert) {
863 		err = -ENOENT;
864 		goto out;
865 	} else if (WARN_ON(ret)) {
866 		err = -EIO;
867 		goto out;
868 	}
869 
870 	leaf = path->nodes[0];
871 	item_size = btrfs_item_size(leaf, path->slots[0]);
872 	if (unlikely(item_size < sizeof(*ei))) {
873 		err = -EINVAL;
874 		btrfs_print_v0_err(fs_info);
875 		btrfs_abort_transaction(trans, err);
876 		goto out;
877 	}
878 
879 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
880 	flags = btrfs_extent_flags(leaf, ei);
881 
882 	ptr = (unsigned long)(ei + 1);
883 	end = (unsigned long)ei + item_size;
884 
885 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
886 		ptr += sizeof(struct btrfs_tree_block_info);
887 		BUG_ON(ptr > end);
888 	}
889 
890 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
891 		needed = BTRFS_REF_TYPE_DATA;
892 	else
893 		needed = BTRFS_REF_TYPE_BLOCK;
894 
895 	err = -ENOENT;
896 	while (1) {
897 		if (ptr >= end) {
898 			WARN_ON(ptr > end);
899 			break;
900 		}
901 		iref = (struct btrfs_extent_inline_ref *)ptr;
902 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
903 		if (type == BTRFS_REF_TYPE_INVALID) {
904 			err = -EUCLEAN;
905 			goto out;
906 		}
907 
908 		if (want < type)
909 			break;
910 		if (want > type) {
911 			ptr += btrfs_extent_inline_ref_size(type);
912 			continue;
913 		}
914 
915 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
916 			struct btrfs_extent_data_ref *dref;
917 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
918 			if (match_extent_data_ref(leaf, dref, root_objectid,
919 						  owner, offset)) {
920 				err = 0;
921 				break;
922 			}
923 			if (hash_extent_data_ref_item(leaf, dref) <
924 			    hash_extent_data_ref(root_objectid, owner, offset))
925 				break;
926 		} else {
927 			u64 ref_offset;
928 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
929 			if (parent > 0) {
930 				if (parent == ref_offset) {
931 					err = 0;
932 					break;
933 				}
934 				if (ref_offset < parent)
935 					break;
936 			} else {
937 				if (root_objectid == ref_offset) {
938 					err = 0;
939 					break;
940 				}
941 				if (ref_offset < root_objectid)
942 					break;
943 			}
944 		}
945 		ptr += btrfs_extent_inline_ref_size(type);
946 	}
947 	if (err == -ENOENT && insert) {
948 		if (item_size + extra_size >=
949 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
950 			err = -EAGAIN;
951 			goto out;
952 		}
953 		/*
954 		 * To add new inline back ref, we have to make sure
955 		 * there is no corresponding back ref item.
956 		 * For simplicity, we just do not add new inline back
957 		 * ref if there is any kind of item for this block
958 		 */
959 		if (find_next_key(path, 0, &key) == 0 &&
960 		    key.objectid == bytenr &&
961 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
962 			err = -EAGAIN;
963 			goto out;
964 		}
965 	}
966 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
967 out:
968 	if (insert) {
969 		path->keep_locks = 0;
970 		path->search_for_extension = 0;
971 		btrfs_unlock_up_safe(path, 1);
972 	}
973 	return err;
974 }
975 
976 /*
977  * helper to add new inline back ref
978  */
979 static noinline_for_stack
980 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
981 				 struct btrfs_path *path,
982 				 struct btrfs_extent_inline_ref *iref,
983 				 u64 parent, u64 root_objectid,
984 				 u64 owner, u64 offset, int refs_to_add,
985 				 struct btrfs_delayed_extent_op *extent_op)
986 {
987 	struct extent_buffer *leaf;
988 	struct btrfs_extent_item *ei;
989 	unsigned long ptr;
990 	unsigned long end;
991 	unsigned long item_offset;
992 	u64 refs;
993 	int size;
994 	int type;
995 
996 	leaf = path->nodes[0];
997 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
998 	item_offset = (unsigned long)iref - (unsigned long)ei;
999 
1000 	type = extent_ref_type(parent, owner);
1001 	size = btrfs_extent_inline_ref_size(type);
1002 
1003 	btrfs_extend_item(path, size);
1004 
1005 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1006 	refs = btrfs_extent_refs(leaf, ei);
1007 	refs += refs_to_add;
1008 	btrfs_set_extent_refs(leaf, ei, refs);
1009 	if (extent_op)
1010 		__run_delayed_extent_op(extent_op, leaf, ei);
1011 
1012 	ptr = (unsigned long)ei + item_offset;
1013 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1014 	if (ptr < end - size)
1015 		memmove_extent_buffer(leaf, ptr + size, ptr,
1016 				      end - size - ptr);
1017 
1018 	iref = (struct btrfs_extent_inline_ref *)ptr;
1019 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1020 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1021 		struct btrfs_extent_data_ref *dref;
1022 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1023 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1024 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1025 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1026 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1027 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1028 		struct btrfs_shared_data_ref *sref;
1029 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1030 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1031 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1032 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1033 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1034 	} else {
1035 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1036 	}
1037 	btrfs_mark_buffer_dirty(leaf);
1038 }
1039 
1040 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1041 				 struct btrfs_path *path,
1042 				 struct btrfs_extent_inline_ref **ref_ret,
1043 				 u64 bytenr, u64 num_bytes, u64 parent,
1044 				 u64 root_objectid, u64 owner, u64 offset)
1045 {
1046 	int ret;
1047 
1048 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1049 					   num_bytes, parent, root_objectid,
1050 					   owner, offset, 0);
1051 	if (ret != -ENOENT)
1052 		return ret;
1053 
1054 	btrfs_release_path(path);
1055 	*ref_ret = NULL;
1056 
1057 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1058 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1059 					    root_objectid);
1060 	} else {
1061 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1062 					     root_objectid, owner, offset);
1063 	}
1064 	return ret;
1065 }
1066 
1067 /*
1068  * helper to update/remove inline back ref
1069  */
1070 static noinline_for_stack
1071 void update_inline_extent_backref(struct btrfs_path *path,
1072 				  struct btrfs_extent_inline_ref *iref,
1073 				  int refs_to_mod,
1074 				  struct btrfs_delayed_extent_op *extent_op)
1075 {
1076 	struct extent_buffer *leaf = path->nodes[0];
1077 	struct btrfs_extent_item *ei;
1078 	struct btrfs_extent_data_ref *dref = NULL;
1079 	struct btrfs_shared_data_ref *sref = NULL;
1080 	unsigned long ptr;
1081 	unsigned long end;
1082 	u32 item_size;
1083 	int size;
1084 	int type;
1085 	u64 refs;
1086 
1087 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1088 	refs = btrfs_extent_refs(leaf, ei);
1089 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1090 	refs += refs_to_mod;
1091 	btrfs_set_extent_refs(leaf, ei, refs);
1092 	if (extent_op)
1093 		__run_delayed_extent_op(extent_op, leaf, ei);
1094 
1095 	/*
1096 	 * If type is invalid, we should have bailed out after
1097 	 * lookup_inline_extent_backref().
1098 	 */
1099 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1100 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1101 
1102 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1103 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1104 		refs = btrfs_extent_data_ref_count(leaf, dref);
1105 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1106 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1107 		refs = btrfs_shared_data_ref_count(leaf, sref);
1108 	} else {
1109 		refs = 1;
1110 		BUG_ON(refs_to_mod != -1);
1111 	}
1112 
1113 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1114 	refs += refs_to_mod;
1115 
1116 	if (refs > 0) {
1117 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1118 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1119 		else
1120 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1121 	} else {
1122 		size =  btrfs_extent_inline_ref_size(type);
1123 		item_size = btrfs_item_size(leaf, path->slots[0]);
1124 		ptr = (unsigned long)iref;
1125 		end = (unsigned long)ei + item_size;
1126 		if (ptr + size < end)
1127 			memmove_extent_buffer(leaf, ptr, ptr + size,
1128 					      end - ptr - size);
1129 		item_size -= size;
1130 		btrfs_truncate_item(path, item_size, 1);
1131 	}
1132 	btrfs_mark_buffer_dirty(leaf);
1133 }
1134 
1135 static noinline_for_stack
1136 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1137 				 struct btrfs_path *path,
1138 				 u64 bytenr, u64 num_bytes, u64 parent,
1139 				 u64 root_objectid, u64 owner,
1140 				 u64 offset, int refs_to_add,
1141 				 struct btrfs_delayed_extent_op *extent_op)
1142 {
1143 	struct btrfs_extent_inline_ref *iref;
1144 	int ret;
1145 
1146 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1147 					   num_bytes, parent, root_objectid,
1148 					   owner, offset, 1);
1149 	if (ret == 0) {
1150 		/*
1151 		 * We're adding refs to a tree block we already own, this
1152 		 * should not happen at all.
1153 		 */
1154 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1155 			btrfs_crit(trans->fs_info,
1156 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1157 				   bytenr, num_bytes, root_objectid);
1158 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1159 				WARN_ON(1);
1160 				btrfs_crit(trans->fs_info,
1161 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1162 				btrfs_print_leaf(path->nodes[0]);
1163 			}
1164 			return -EUCLEAN;
1165 		}
1166 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1167 	} else if (ret == -ENOENT) {
1168 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1169 					    root_objectid, owner, offset,
1170 					    refs_to_add, extent_op);
1171 		ret = 0;
1172 	}
1173 	return ret;
1174 }
1175 
1176 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1177 				 struct btrfs_root *root,
1178 				 struct btrfs_path *path,
1179 				 struct btrfs_extent_inline_ref *iref,
1180 				 int refs_to_drop, int is_data)
1181 {
1182 	int ret = 0;
1183 
1184 	BUG_ON(!is_data && refs_to_drop != 1);
1185 	if (iref)
1186 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1187 	else if (is_data)
1188 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1189 	else
1190 		ret = btrfs_del_item(trans, root, path);
1191 	return ret;
1192 }
1193 
1194 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1195 			       u64 *discarded_bytes)
1196 {
1197 	int j, ret = 0;
1198 	u64 bytes_left, end;
1199 	u64 aligned_start = ALIGN(start, 1 << 9);
1200 
1201 	if (WARN_ON(start != aligned_start)) {
1202 		len -= aligned_start - start;
1203 		len = round_down(len, 1 << 9);
1204 		start = aligned_start;
1205 	}
1206 
1207 	*discarded_bytes = 0;
1208 
1209 	if (!len)
1210 		return 0;
1211 
1212 	end = start + len;
1213 	bytes_left = len;
1214 
1215 	/* Skip any superblocks on this device. */
1216 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1217 		u64 sb_start = btrfs_sb_offset(j);
1218 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1219 		u64 size = sb_start - start;
1220 
1221 		if (!in_range(sb_start, start, bytes_left) &&
1222 		    !in_range(sb_end, start, bytes_left) &&
1223 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1224 			continue;
1225 
1226 		/*
1227 		 * Superblock spans beginning of range.  Adjust start and
1228 		 * try again.
1229 		 */
1230 		if (sb_start <= start) {
1231 			start += sb_end - start;
1232 			if (start > end) {
1233 				bytes_left = 0;
1234 				break;
1235 			}
1236 			bytes_left = end - start;
1237 			continue;
1238 		}
1239 
1240 		if (size) {
1241 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1242 						   GFP_NOFS, 0);
1243 			if (!ret)
1244 				*discarded_bytes += size;
1245 			else if (ret != -EOPNOTSUPP)
1246 				return ret;
1247 		}
1248 
1249 		start = sb_end;
1250 		if (start > end) {
1251 			bytes_left = 0;
1252 			break;
1253 		}
1254 		bytes_left = end - start;
1255 	}
1256 
1257 	if (bytes_left) {
1258 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1259 					   GFP_NOFS, 0);
1260 		if (!ret)
1261 			*discarded_bytes += bytes_left;
1262 	}
1263 	return ret;
1264 }
1265 
1266 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes)
1267 {
1268 	struct btrfs_device *dev = stripe->dev;
1269 	struct btrfs_fs_info *fs_info = dev->fs_info;
1270 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1271 	u64 phys = stripe->physical;
1272 	u64 len = stripe->length;
1273 	u64 discarded = 0;
1274 	int ret = 0;
1275 
1276 	/* Zone reset on a zoned filesystem */
1277 	if (btrfs_can_zone_reset(dev, phys, len)) {
1278 		u64 src_disc;
1279 
1280 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1281 		if (ret)
1282 			goto out;
1283 
1284 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1285 		    dev != dev_replace->srcdev)
1286 			goto out;
1287 
1288 		src_disc = discarded;
1289 
1290 		/* Send to replace target as well */
1291 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1292 					      &discarded);
1293 		discarded += src_disc;
1294 	} else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) {
1295 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1296 	} else {
1297 		ret = 0;
1298 		*bytes = 0;
1299 	}
1300 
1301 out:
1302 	*bytes = discarded;
1303 	return ret;
1304 }
1305 
1306 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307 			 u64 num_bytes, u64 *actual_bytes)
1308 {
1309 	int ret = 0;
1310 	u64 discarded_bytes = 0;
1311 	u64 end = bytenr + num_bytes;
1312 	u64 cur = bytenr;
1313 	struct btrfs_io_context *bioc = NULL;
1314 
1315 	/*
1316 	 * Avoid races with device replace and make sure our bioc has devices
1317 	 * associated to its stripes that don't go away while we are discarding.
1318 	 */
1319 	btrfs_bio_counter_inc_blocked(fs_info);
1320 	while (cur < end) {
1321 		struct btrfs_io_stripe *stripe;
1322 		int i;
1323 
1324 		num_bytes = end - cur;
1325 		/* Tell the block device(s) that the sectors can be discarded */
1326 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1327 				      &num_bytes, &bioc, 0);
1328 		/*
1329 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1330 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1331 		 * thus we can't continue anyway.
1332 		 */
1333 		if (ret < 0)
1334 			goto out;
1335 
1336 		stripe = bioc->stripes;
1337 		for (i = 0; i < bioc->num_stripes; i++, stripe++) {
1338 			u64 bytes;
1339 			struct btrfs_device *device = stripe->dev;
1340 
1341 			if (!device->bdev) {
1342 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1343 				continue;
1344 			}
1345 
1346 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1347 				continue;
1348 
1349 			ret = do_discard_extent(stripe, &bytes);
1350 			if (!ret) {
1351 				discarded_bytes += bytes;
1352 			} else if (ret != -EOPNOTSUPP) {
1353 				/*
1354 				 * Logic errors or -ENOMEM, or -EIO, but
1355 				 * unlikely to happen.
1356 				 *
1357 				 * And since there are two loops, explicitly
1358 				 * go to out to avoid confusion.
1359 				 */
1360 				btrfs_put_bioc(bioc);
1361 				goto out;
1362 			}
1363 
1364 			/*
1365 			 * Just in case we get back EOPNOTSUPP for some reason,
1366 			 * just ignore the return value so we don't screw up
1367 			 * people calling discard_extent.
1368 			 */
1369 			ret = 0;
1370 		}
1371 		btrfs_put_bioc(bioc);
1372 		cur += num_bytes;
1373 	}
1374 out:
1375 	btrfs_bio_counter_dec(fs_info);
1376 
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 
1380 
1381 	if (ret == -EOPNOTSUPP)
1382 		ret = 0;
1383 	return ret;
1384 }
1385 
1386 /* Can return -ENOMEM */
1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1388 			 struct btrfs_ref *generic_ref)
1389 {
1390 	struct btrfs_fs_info *fs_info = trans->fs_info;
1391 	int ret;
1392 
1393 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1394 	       generic_ref->action);
1395 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1396 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1397 
1398 	if (generic_ref->type == BTRFS_REF_METADATA)
1399 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1400 	else
1401 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1402 
1403 	btrfs_ref_tree_mod(fs_info, generic_ref);
1404 
1405 	return ret;
1406 }
1407 
1408 /*
1409  * __btrfs_inc_extent_ref - insert backreference for a given extent
1410  *
1411  * The counterpart is in __btrfs_free_extent(), with examples and more details
1412  * how it works.
1413  *
1414  * @trans:	    Handle of transaction
1415  *
1416  * @node:	    The delayed ref node used to get the bytenr/length for
1417  *		    extent whose references are incremented.
1418  *
1419  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1420  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1421  *		    bytenr of the parent block. Since new extents are always
1422  *		    created with indirect references, this will only be the case
1423  *		    when relocating a shared extent. In that case, root_objectid
1424  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1425  *		    be 0
1426  *
1427  * @root_objectid:  The id of the root where this modification has originated,
1428  *		    this can be either one of the well-known metadata trees or
1429  *		    the subvolume id which references this extent.
1430  *
1431  * @owner:	    For data extents it is the inode number of the owning file.
1432  *		    For metadata extents this parameter holds the level in the
1433  *		    tree of the extent.
1434  *
1435  * @offset:	    For metadata extents the offset is ignored and is currently
1436  *		    always passed as 0. For data extents it is the fileoffset
1437  *		    this extent belongs to.
1438  *
1439  * @refs_to_add     Number of references to add
1440  *
1441  * @extent_op       Pointer to a structure, holding information necessary when
1442  *                  updating a tree block's flags
1443  *
1444  */
1445 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1446 				  struct btrfs_delayed_ref_node *node,
1447 				  u64 parent, u64 root_objectid,
1448 				  u64 owner, u64 offset, int refs_to_add,
1449 				  struct btrfs_delayed_extent_op *extent_op)
1450 {
1451 	struct btrfs_path *path;
1452 	struct extent_buffer *leaf;
1453 	struct btrfs_extent_item *item;
1454 	struct btrfs_key key;
1455 	u64 bytenr = node->bytenr;
1456 	u64 num_bytes = node->num_bytes;
1457 	u64 refs;
1458 	int ret;
1459 
1460 	path = btrfs_alloc_path();
1461 	if (!path)
1462 		return -ENOMEM;
1463 
1464 	/* this will setup the path even if it fails to insert the back ref */
1465 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1466 					   parent, root_objectid, owner,
1467 					   offset, refs_to_add, extent_op);
1468 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1469 		goto out;
1470 
1471 	/*
1472 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1473 	 * inline extent ref, so just update the reference count and add a
1474 	 * normal backref.
1475 	 */
1476 	leaf = path->nodes[0];
1477 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1478 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1479 	refs = btrfs_extent_refs(leaf, item);
1480 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1481 	if (extent_op)
1482 		__run_delayed_extent_op(extent_op, leaf, item);
1483 
1484 	btrfs_mark_buffer_dirty(leaf);
1485 	btrfs_release_path(path);
1486 
1487 	/* now insert the actual backref */
1488 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1489 		BUG_ON(refs_to_add != 1);
1490 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1491 					    root_objectid);
1492 	} else {
1493 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1494 					     root_objectid, owner, offset,
1495 					     refs_to_add);
1496 	}
1497 	if (ret)
1498 		btrfs_abort_transaction(trans, ret);
1499 out:
1500 	btrfs_free_path(path);
1501 	return ret;
1502 }
1503 
1504 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1505 				struct btrfs_delayed_ref_node *node,
1506 				struct btrfs_delayed_extent_op *extent_op,
1507 				int insert_reserved)
1508 {
1509 	int ret = 0;
1510 	struct btrfs_delayed_data_ref *ref;
1511 	struct btrfs_key ins;
1512 	u64 parent = 0;
1513 	u64 ref_root = 0;
1514 	u64 flags = 0;
1515 
1516 	ins.objectid = node->bytenr;
1517 	ins.offset = node->num_bytes;
1518 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1519 
1520 	ref = btrfs_delayed_node_to_data_ref(node);
1521 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1522 
1523 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1524 		parent = ref->parent;
1525 	ref_root = ref->root;
1526 
1527 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1528 		if (extent_op)
1529 			flags |= extent_op->flags_to_set;
1530 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1531 						 flags, ref->objectid,
1532 						 ref->offset, &ins,
1533 						 node->ref_mod);
1534 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1535 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1536 					     ref->objectid, ref->offset,
1537 					     node->ref_mod, extent_op);
1538 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1539 		ret = __btrfs_free_extent(trans, node, parent,
1540 					  ref_root, ref->objectid,
1541 					  ref->offset, node->ref_mod,
1542 					  extent_op);
1543 	} else {
1544 		BUG();
1545 	}
1546 	return ret;
1547 }
1548 
1549 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1550 				    struct extent_buffer *leaf,
1551 				    struct btrfs_extent_item *ei)
1552 {
1553 	u64 flags = btrfs_extent_flags(leaf, ei);
1554 	if (extent_op->update_flags) {
1555 		flags |= extent_op->flags_to_set;
1556 		btrfs_set_extent_flags(leaf, ei, flags);
1557 	}
1558 
1559 	if (extent_op->update_key) {
1560 		struct btrfs_tree_block_info *bi;
1561 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1562 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1563 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1564 	}
1565 }
1566 
1567 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1568 				 struct btrfs_delayed_ref_head *head,
1569 				 struct btrfs_delayed_extent_op *extent_op)
1570 {
1571 	struct btrfs_fs_info *fs_info = trans->fs_info;
1572 	struct btrfs_root *root;
1573 	struct btrfs_key key;
1574 	struct btrfs_path *path;
1575 	struct btrfs_extent_item *ei;
1576 	struct extent_buffer *leaf;
1577 	u32 item_size;
1578 	int ret;
1579 	int err = 0;
1580 	int metadata = !extent_op->is_data;
1581 
1582 	if (TRANS_ABORTED(trans))
1583 		return 0;
1584 
1585 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1586 		metadata = 0;
1587 
1588 	path = btrfs_alloc_path();
1589 	if (!path)
1590 		return -ENOMEM;
1591 
1592 	key.objectid = head->bytenr;
1593 
1594 	if (metadata) {
1595 		key.type = BTRFS_METADATA_ITEM_KEY;
1596 		key.offset = extent_op->level;
1597 	} else {
1598 		key.type = BTRFS_EXTENT_ITEM_KEY;
1599 		key.offset = head->num_bytes;
1600 	}
1601 
1602 	root = btrfs_extent_root(fs_info, key.objectid);
1603 again:
1604 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1605 	if (ret < 0) {
1606 		err = ret;
1607 		goto out;
1608 	}
1609 	if (ret > 0) {
1610 		if (metadata) {
1611 			if (path->slots[0] > 0) {
1612 				path->slots[0]--;
1613 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1614 						      path->slots[0]);
1615 				if (key.objectid == head->bytenr &&
1616 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1617 				    key.offset == head->num_bytes)
1618 					ret = 0;
1619 			}
1620 			if (ret > 0) {
1621 				btrfs_release_path(path);
1622 				metadata = 0;
1623 
1624 				key.objectid = head->bytenr;
1625 				key.offset = head->num_bytes;
1626 				key.type = BTRFS_EXTENT_ITEM_KEY;
1627 				goto again;
1628 			}
1629 		} else {
1630 			err = -EIO;
1631 			goto out;
1632 		}
1633 	}
1634 
1635 	leaf = path->nodes[0];
1636 	item_size = btrfs_item_size(leaf, path->slots[0]);
1637 
1638 	if (unlikely(item_size < sizeof(*ei))) {
1639 		err = -EINVAL;
1640 		btrfs_print_v0_err(fs_info);
1641 		btrfs_abort_transaction(trans, err);
1642 		goto out;
1643 	}
1644 
1645 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646 	__run_delayed_extent_op(extent_op, leaf, ei);
1647 
1648 	btrfs_mark_buffer_dirty(leaf);
1649 out:
1650 	btrfs_free_path(path);
1651 	return err;
1652 }
1653 
1654 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1655 				struct btrfs_delayed_ref_node *node,
1656 				struct btrfs_delayed_extent_op *extent_op,
1657 				int insert_reserved)
1658 {
1659 	int ret = 0;
1660 	struct btrfs_delayed_tree_ref *ref;
1661 	u64 parent = 0;
1662 	u64 ref_root = 0;
1663 
1664 	ref = btrfs_delayed_node_to_tree_ref(node);
1665 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1666 
1667 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1668 		parent = ref->parent;
1669 	ref_root = ref->root;
1670 
1671 	if (node->ref_mod != 1) {
1672 		btrfs_err(trans->fs_info,
1673 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1674 			  node->bytenr, node->ref_mod, node->action, ref_root,
1675 			  parent);
1676 		return -EIO;
1677 	}
1678 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1679 		BUG_ON(!extent_op || !extent_op->update_flags);
1680 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1681 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1682 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1683 					     ref->level, 0, 1, extent_op);
1684 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1685 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1686 					  ref->level, 0, 1, extent_op);
1687 	} else {
1688 		BUG();
1689 	}
1690 	return ret;
1691 }
1692 
1693 /* helper function to actually process a single delayed ref entry */
1694 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1695 			       struct btrfs_delayed_ref_node *node,
1696 			       struct btrfs_delayed_extent_op *extent_op,
1697 			       int insert_reserved)
1698 {
1699 	int ret = 0;
1700 
1701 	if (TRANS_ABORTED(trans)) {
1702 		if (insert_reserved)
1703 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1704 		return 0;
1705 	}
1706 
1707 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1708 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1709 		ret = run_delayed_tree_ref(trans, node, extent_op,
1710 					   insert_reserved);
1711 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1712 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1713 		ret = run_delayed_data_ref(trans, node, extent_op,
1714 					   insert_reserved);
1715 	else
1716 		BUG();
1717 	if (ret && insert_reserved)
1718 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1719 	return ret;
1720 }
1721 
1722 static inline struct btrfs_delayed_ref_node *
1723 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1724 {
1725 	struct btrfs_delayed_ref_node *ref;
1726 
1727 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1728 		return NULL;
1729 
1730 	/*
1731 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1732 	 * This is to prevent a ref count from going down to zero, which deletes
1733 	 * the extent item from the extent tree, when there still are references
1734 	 * to add, which would fail because they would not find the extent item.
1735 	 */
1736 	if (!list_empty(&head->ref_add_list))
1737 		return list_first_entry(&head->ref_add_list,
1738 				struct btrfs_delayed_ref_node, add_list);
1739 
1740 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1741 		       struct btrfs_delayed_ref_node, ref_node);
1742 	ASSERT(list_empty(&ref->add_list));
1743 	return ref;
1744 }
1745 
1746 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1747 				      struct btrfs_delayed_ref_head *head)
1748 {
1749 	spin_lock(&delayed_refs->lock);
1750 	head->processing = 0;
1751 	delayed_refs->num_heads_ready++;
1752 	spin_unlock(&delayed_refs->lock);
1753 	btrfs_delayed_ref_unlock(head);
1754 }
1755 
1756 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1757 				struct btrfs_delayed_ref_head *head)
1758 {
1759 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1760 
1761 	if (!extent_op)
1762 		return NULL;
1763 
1764 	if (head->must_insert_reserved) {
1765 		head->extent_op = NULL;
1766 		btrfs_free_delayed_extent_op(extent_op);
1767 		return NULL;
1768 	}
1769 	return extent_op;
1770 }
1771 
1772 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1773 				     struct btrfs_delayed_ref_head *head)
1774 {
1775 	struct btrfs_delayed_extent_op *extent_op;
1776 	int ret;
1777 
1778 	extent_op = cleanup_extent_op(head);
1779 	if (!extent_op)
1780 		return 0;
1781 	head->extent_op = NULL;
1782 	spin_unlock(&head->lock);
1783 	ret = run_delayed_extent_op(trans, head, extent_op);
1784 	btrfs_free_delayed_extent_op(extent_op);
1785 	return ret ? ret : 1;
1786 }
1787 
1788 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1789 				  struct btrfs_delayed_ref_root *delayed_refs,
1790 				  struct btrfs_delayed_ref_head *head)
1791 {
1792 	int nr_items = 1;	/* Dropping this ref head update. */
1793 
1794 	/*
1795 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1796 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1797 	 */
1798 	if (head->total_ref_mod < 0 && head->is_data) {
1799 		spin_lock(&delayed_refs->lock);
1800 		delayed_refs->pending_csums -= head->num_bytes;
1801 		spin_unlock(&delayed_refs->lock);
1802 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1803 	}
1804 
1805 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1806 }
1807 
1808 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1809 			    struct btrfs_delayed_ref_head *head)
1810 {
1811 
1812 	struct btrfs_fs_info *fs_info = trans->fs_info;
1813 	struct btrfs_delayed_ref_root *delayed_refs;
1814 	int ret;
1815 
1816 	delayed_refs = &trans->transaction->delayed_refs;
1817 
1818 	ret = run_and_cleanup_extent_op(trans, head);
1819 	if (ret < 0) {
1820 		unselect_delayed_ref_head(delayed_refs, head);
1821 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1822 		return ret;
1823 	} else if (ret) {
1824 		return ret;
1825 	}
1826 
1827 	/*
1828 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1829 	 * and then re-check to make sure nobody got added.
1830 	 */
1831 	spin_unlock(&head->lock);
1832 	spin_lock(&delayed_refs->lock);
1833 	spin_lock(&head->lock);
1834 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1835 		spin_unlock(&head->lock);
1836 		spin_unlock(&delayed_refs->lock);
1837 		return 1;
1838 	}
1839 	btrfs_delete_ref_head(delayed_refs, head);
1840 	spin_unlock(&head->lock);
1841 	spin_unlock(&delayed_refs->lock);
1842 
1843 	if (head->must_insert_reserved) {
1844 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1845 		if (head->is_data) {
1846 			struct btrfs_root *csum_root;
1847 
1848 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1849 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1850 					      head->num_bytes);
1851 		}
1852 	}
1853 
1854 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1855 
1856 	trace_run_delayed_ref_head(fs_info, head, 0);
1857 	btrfs_delayed_ref_unlock(head);
1858 	btrfs_put_delayed_ref_head(head);
1859 	return ret;
1860 }
1861 
1862 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1863 					struct btrfs_trans_handle *trans)
1864 {
1865 	struct btrfs_delayed_ref_root *delayed_refs =
1866 		&trans->transaction->delayed_refs;
1867 	struct btrfs_delayed_ref_head *head = NULL;
1868 	int ret;
1869 
1870 	spin_lock(&delayed_refs->lock);
1871 	head = btrfs_select_ref_head(delayed_refs);
1872 	if (!head) {
1873 		spin_unlock(&delayed_refs->lock);
1874 		return head;
1875 	}
1876 
1877 	/*
1878 	 * Grab the lock that says we are going to process all the refs for
1879 	 * this head
1880 	 */
1881 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1882 	spin_unlock(&delayed_refs->lock);
1883 
1884 	/*
1885 	 * We may have dropped the spin lock to get the head mutex lock, and
1886 	 * that might have given someone else time to free the head.  If that's
1887 	 * true, it has been removed from our list and we can move on.
1888 	 */
1889 	if (ret == -EAGAIN)
1890 		head = ERR_PTR(-EAGAIN);
1891 
1892 	return head;
1893 }
1894 
1895 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1896 				    struct btrfs_delayed_ref_head *locked_ref,
1897 				    unsigned long *run_refs)
1898 {
1899 	struct btrfs_fs_info *fs_info = trans->fs_info;
1900 	struct btrfs_delayed_ref_root *delayed_refs;
1901 	struct btrfs_delayed_extent_op *extent_op;
1902 	struct btrfs_delayed_ref_node *ref;
1903 	int must_insert_reserved = 0;
1904 	int ret;
1905 
1906 	delayed_refs = &trans->transaction->delayed_refs;
1907 
1908 	lockdep_assert_held(&locked_ref->mutex);
1909 	lockdep_assert_held(&locked_ref->lock);
1910 
1911 	while ((ref = select_delayed_ref(locked_ref))) {
1912 		if (ref->seq &&
1913 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1914 			spin_unlock(&locked_ref->lock);
1915 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1916 			return -EAGAIN;
1917 		}
1918 
1919 		(*run_refs)++;
1920 		ref->in_tree = 0;
1921 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1922 		RB_CLEAR_NODE(&ref->ref_node);
1923 		if (!list_empty(&ref->add_list))
1924 			list_del(&ref->add_list);
1925 		/*
1926 		 * When we play the delayed ref, also correct the ref_mod on
1927 		 * head
1928 		 */
1929 		switch (ref->action) {
1930 		case BTRFS_ADD_DELAYED_REF:
1931 		case BTRFS_ADD_DELAYED_EXTENT:
1932 			locked_ref->ref_mod -= ref->ref_mod;
1933 			break;
1934 		case BTRFS_DROP_DELAYED_REF:
1935 			locked_ref->ref_mod += ref->ref_mod;
1936 			break;
1937 		default:
1938 			WARN_ON(1);
1939 		}
1940 		atomic_dec(&delayed_refs->num_entries);
1941 
1942 		/*
1943 		 * Record the must_insert_reserved flag before we drop the
1944 		 * spin lock.
1945 		 */
1946 		must_insert_reserved = locked_ref->must_insert_reserved;
1947 		locked_ref->must_insert_reserved = 0;
1948 
1949 		extent_op = locked_ref->extent_op;
1950 		locked_ref->extent_op = NULL;
1951 		spin_unlock(&locked_ref->lock);
1952 
1953 		ret = run_one_delayed_ref(trans, ref, extent_op,
1954 					  must_insert_reserved);
1955 
1956 		btrfs_free_delayed_extent_op(extent_op);
1957 		if (ret) {
1958 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1959 			btrfs_put_delayed_ref(ref);
1960 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1961 				    ret);
1962 			return ret;
1963 		}
1964 
1965 		btrfs_put_delayed_ref(ref);
1966 		cond_resched();
1967 
1968 		spin_lock(&locked_ref->lock);
1969 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 /*
1976  * Returns 0 on success or if called with an already aborted transaction.
1977  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1978  */
1979 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1980 					     unsigned long nr)
1981 {
1982 	struct btrfs_fs_info *fs_info = trans->fs_info;
1983 	struct btrfs_delayed_ref_root *delayed_refs;
1984 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1985 	ktime_t start = ktime_get();
1986 	int ret;
1987 	unsigned long count = 0;
1988 	unsigned long actual_count = 0;
1989 
1990 	delayed_refs = &trans->transaction->delayed_refs;
1991 	do {
1992 		if (!locked_ref) {
1993 			locked_ref = btrfs_obtain_ref_head(trans);
1994 			if (IS_ERR_OR_NULL(locked_ref)) {
1995 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1996 					continue;
1997 				} else {
1998 					break;
1999 				}
2000 			}
2001 			count++;
2002 		}
2003 		/*
2004 		 * We need to try and merge add/drops of the same ref since we
2005 		 * can run into issues with relocate dropping the implicit ref
2006 		 * and then it being added back again before the drop can
2007 		 * finish.  If we merged anything we need to re-loop so we can
2008 		 * get a good ref.
2009 		 * Or we can get node references of the same type that weren't
2010 		 * merged when created due to bumps in the tree mod seq, and
2011 		 * we need to merge them to prevent adding an inline extent
2012 		 * backref before dropping it (triggering a BUG_ON at
2013 		 * insert_inline_extent_backref()).
2014 		 */
2015 		spin_lock(&locked_ref->lock);
2016 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2017 
2018 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2019 						      &actual_count);
2020 		if (ret < 0 && ret != -EAGAIN) {
2021 			/*
2022 			 * Error, btrfs_run_delayed_refs_for_head already
2023 			 * unlocked everything so just bail out
2024 			 */
2025 			return ret;
2026 		} else if (!ret) {
2027 			/*
2028 			 * Success, perform the usual cleanup of a processed
2029 			 * head
2030 			 */
2031 			ret = cleanup_ref_head(trans, locked_ref);
2032 			if (ret > 0 ) {
2033 				/* We dropped our lock, we need to loop. */
2034 				ret = 0;
2035 				continue;
2036 			} else if (ret) {
2037 				return ret;
2038 			}
2039 		}
2040 
2041 		/*
2042 		 * Either success case or btrfs_run_delayed_refs_for_head
2043 		 * returned -EAGAIN, meaning we need to select another head
2044 		 */
2045 
2046 		locked_ref = NULL;
2047 		cond_resched();
2048 	} while ((nr != -1 && count < nr) || locked_ref);
2049 
2050 	/*
2051 	 * We don't want to include ref heads since we can have empty ref heads
2052 	 * and those will drastically skew our runtime down since we just do
2053 	 * accounting, no actual extent tree updates.
2054 	 */
2055 	if (actual_count > 0) {
2056 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2057 		u64 avg;
2058 
2059 		/*
2060 		 * We weigh the current average higher than our current runtime
2061 		 * to avoid large swings in the average.
2062 		 */
2063 		spin_lock(&delayed_refs->lock);
2064 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2065 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2066 		spin_unlock(&delayed_refs->lock);
2067 	}
2068 	return 0;
2069 }
2070 
2071 #ifdef SCRAMBLE_DELAYED_REFS
2072 /*
2073  * Normally delayed refs get processed in ascending bytenr order. This
2074  * correlates in most cases to the order added. To expose dependencies on this
2075  * order, we start to process the tree in the middle instead of the beginning
2076  */
2077 static u64 find_middle(struct rb_root *root)
2078 {
2079 	struct rb_node *n = root->rb_node;
2080 	struct btrfs_delayed_ref_node *entry;
2081 	int alt = 1;
2082 	u64 middle;
2083 	u64 first = 0, last = 0;
2084 
2085 	n = rb_first(root);
2086 	if (n) {
2087 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2088 		first = entry->bytenr;
2089 	}
2090 	n = rb_last(root);
2091 	if (n) {
2092 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2093 		last = entry->bytenr;
2094 	}
2095 	n = root->rb_node;
2096 
2097 	while (n) {
2098 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2099 		WARN_ON(!entry->in_tree);
2100 
2101 		middle = entry->bytenr;
2102 
2103 		if (alt)
2104 			n = n->rb_left;
2105 		else
2106 			n = n->rb_right;
2107 
2108 		alt = 1 - alt;
2109 	}
2110 	return middle;
2111 }
2112 #endif
2113 
2114 /*
2115  * this starts processing the delayed reference count updates and
2116  * extent insertions we have queued up so far.  count can be
2117  * 0, which means to process everything in the tree at the start
2118  * of the run (but not newly added entries), or it can be some target
2119  * number you'd like to process.
2120  *
2121  * Returns 0 on success or if called with an aborted transaction
2122  * Returns <0 on error and aborts the transaction
2123  */
2124 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2125 			   unsigned long count)
2126 {
2127 	struct btrfs_fs_info *fs_info = trans->fs_info;
2128 	struct rb_node *node;
2129 	struct btrfs_delayed_ref_root *delayed_refs;
2130 	struct btrfs_delayed_ref_head *head;
2131 	int ret;
2132 	int run_all = count == (unsigned long)-1;
2133 
2134 	/* We'll clean this up in btrfs_cleanup_transaction */
2135 	if (TRANS_ABORTED(trans))
2136 		return 0;
2137 
2138 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2139 		return 0;
2140 
2141 	delayed_refs = &trans->transaction->delayed_refs;
2142 	if (count == 0)
2143 		count = delayed_refs->num_heads_ready;
2144 
2145 again:
2146 #ifdef SCRAMBLE_DELAYED_REFS
2147 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2148 #endif
2149 	ret = __btrfs_run_delayed_refs(trans, count);
2150 	if (ret < 0) {
2151 		btrfs_abort_transaction(trans, ret);
2152 		return ret;
2153 	}
2154 
2155 	if (run_all) {
2156 		btrfs_create_pending_block_groups(trans);
2157 
2158 		spin_lock(&delayed_refs->lock);
2159 		node = rb_first_cached(&delayed_refs->href_root);
2160 		if (!node) {
2161 			spin_unlock(&delayed_refs->lock);
2162 			goto out;
2163 		}
2164 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2165 				href_node);
2166 		refcount_inc(&head->refs);
2167 		spin_unlock(&delayed_refs->lock);
2168 
2169 		/* Mutex was contended, block until it's released and retry. */
2170 		mutex_lock(&head->mutex);
2171 		mutex_unlock(&head->mutex);
2172 
2173 		btrfs_put_delayed_ref_head(head);
2174 		cond_resched();
2175 		goto again;
2176 	}
2177 out:
2178 	return 0;
2179 }
2180 
2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2182 				struct extent_buffer *eb, u64 flags,
2183 				int level, int is_data)
2184 {
2185 	struct btrfs_delayed_extent_op *extent_op;
2186 	int ret;
2187 
2188 	extent_op = btrfs_alloc_delayed_extent_op();
2189 	if (!extent_op)
2190 		return -ENOMEM;
2191 
2192 	extent_op->flags_to_set = flags;
2193 	extent_op->update_flags = true;
2194 	extent_op->update_key = false;
2195 	extent_op->is_data = is_data ? true : false;
2196 	extent_op->level = level;
2197 
2198 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2199 	if (ret)
2200 		btrfs_free_delayed_extent_op(extent_op);
2201 	return ret;
2202 }
2203 
2204 static noinline int check_delayed_ref(struct btrfs_root *root,
2205 				      struct btrfs_path *path,
2206 				      u64 objectid, u64 offset, u64 bytenr)
2207 {
2208 	struct btrfs_delayed_ref_head *head;
2209 	struct btrfs_delayed_ref_node *ref;
2210 	struct btrfs_delayed_data_ref *data_ref;
2211 	struct btrfs_delayed_ref_root *delayed_refs;
2212 	struct btrfs_transaction *cur_trans;
2213 	struct rb_node *node;
2214 	int ret = 0;
2215 
2216 	spin_lock(&root->fs_info->trans_lock);
2217 	cur_trans = root->fs_info->running_transaction;
2218 	if (cur_trans)
2219 		refcount_inc(&cur_trans->use_count);
2220 	spin_unlock(&root->fs_info->trans_lock);
2221 	if (!cur_trans)
2222 		return 0;
2223 
2224 	delayed_refs = &cur_trans->delayed_refs;
2225 	spin_lock(&delayed_refs->lock);
2226 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2227 	if (!head) {
2228 		spin_unlock(&delayed_refs->lock);
2229 		btrfs_put_transaction(cur_trans);
2230 		return 0;
2231 	}
2232 
2233 	if (!mutex_trylock(&head->mutex)) {
2234 		refcount_inc(&head->refs);
2235 		spin_unlock(&delayed_refs->lock);
2236 
2237 		btrfs_release_path(path);
2238 
2239 		/*
2240 		 * Mutex was contended, block until it's released and let
2241 		 * caller try again
2242 		 */
2243 		mutex_lock(&head->mutex);
2244 		mutex_unlock(&head->mutex);
2245 		btrfs_put_delayed_ref_head(head);
2246 		btrfs_put_transaction(cur_trans);
2247 		return -EAGAIN;
2248 	}
2249 	spin_unlock(&delayed_refs->lock);
2250 
2251 	spin_lock(&head->lock);
2252 	/*
2253 	 * XXX: We should replace this with a proper search function in the
2254 	 * future.
2255 	 */
2256 	for (node = rb_first_cached(&head->ref_tree); node;
2257 	     node = rb_next(node)) {
2258 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2259 		/* If it's a shared ref we know a cross reference exists */
2260 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2261 			ret = 1;
2262 			break;
2263 		}
2264 
2265 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2266 
2267 		/*
2268 		 * If our ref doesn't match the one we're currently looking at
2269 		 * then we have a cross reference.
2270 		 */
2271 		if (data_ref->root != root->root_key.objectid ||
2272 		    data_ref->objectid != objectid ||
2273 		    data_ref->offset != offset) {
2274 			ret = 1;
2275 			break;
2276 		}
2277 	}
2278 	spin_unlock(&head->lock);
2279 	mutex_unlock(&head->mutex);
2280 	btrfs_put_transaction(cur_trans);
2281 	return ret;
2282 }
2283 
2284 static noinline int check_committed_ref(struct btrfs_root *root,
2285 					struct btrfs_path *path,
2286 					u64 objectid, u64 offset, u64 bytenr,
2287 					bool strict)
2288 {
2289 	struct btrfs_fs_info *fs_info = root->fs_info;
2290 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2291 	struct extent_buffer *leaf;
2292 	struct btrfs_extent_data_ref *ref;
2293 	struct btrfs_extent_inline_ref *iref;
2294 	struct btrfs_extent_item *ei;
2295 	struct btrfs_key key;
2296 	u32 item_size;
2297 	int type;
2298 	int ret;
2299 
2300 	key.objectid = bytenr;
2301 	key.offset = (u64)-1;
2302 	key.type = BTRFS_EXTENT_ITEM_KEY;
2303 
2304 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2305 	if (ret < 0)
2306 		goto out;
2307 	BUG_ON(ret == 0); /* Corruption */
2308 
2309 	ret = -ENOENT;
2310 	if (path->slots[0] == 0)
2311 		goto out;
2312 
2313 	path->slots[0]--;
2314 	leaf = path->nodes[0];
2315 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2316 
2317 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2318 		goto out;
2319 
2320 	ret = 1;
2321 	item_size = btrfs_item_size(leaf, path->slots[0]);
2322 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 
2324 	/* If extent item has more than 1 inline ref then it's shared */
2325 	if (item_size != sizeof(*ei) +
2326 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2327 		goto out;
2328 
2329 	/*
2330 	 * If extent created before last snapshot => it's shared unless the
2331 	 * snapshot has been deleted. Use the heuristic if strict is false.
2332 	 */
2333 	if (!strict &&
2334 	    (btrfs_extent_generation(leaf, ei) <=
2335 	     btrfs_root_last_snapshot(&root->root_item)))
2336 		goto out;
2337 
2338 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2339 
2340 	/* If this extent has SHARED_DATA_REF then it's shared */
2341 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2342 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2343 		goto out;
2344 
2345 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2346 	if (btrfs_extent_refs(leaf, ei) !=
2347 	    btrfs_extent_data_ref_count(leaf, ref) ||
2348 	    btrfs_extent_data_ref_root(leaf, ref) !=
2349 	    root->root_key.objectid ||
2350 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2351 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2352 		goto out;
2353 
2354 	ret = 0;
2355 out:
2356 	return ret;
2357 }
2358 
2359 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2360 			  u64 bytenr, bool strict)
2361 {
2362 	struct btrfs_path *path;
2363 	int ret;
2364 
2365 	path = btrfs_alloc_path();
2366 	if (!path)
2367 		return -ENOMEM;
2368 
2369 	do {
2370 		ret = check_committed_ref(root, path, objectid,
2371 					  offset, bytenr, strict);
2372 		if (ret && ret != -ENOENT)
2373 			goto out;
2374 
2375 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2376 	} while (ret == -EAGAIN);
2377 
2378 out:
2379 	btrfs_free_path(path);
2380 	if (btrfs_is_data_reloc_root(root))
2381 		WARN_ON(ret > 0);
2382 	return ret;
2383 }
2384 
2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2386 			   struct btrfs_root *root,
2387 			   struct extent_buffer *buf,
2388 			   int full_backref, int inc)
2389 {
2390 	struct btrfs_fs_info *fs_info = root->fs_info;
2391 	u64 bytenr;
2392 	u64 num_bytes;
2393 	u64 parent;
2394 	u64 ref_root;
2395 	u32 nritems;
2396 	struct btrfs_key key;
2397 	struct btrfs_file_extent_item *fi;
2398 	struct btrfs_ref generic_ref = { 0 };
2399 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2400 	int i;
2401 	int action;
2402 	int level;
2403 	int ret = 0;
2404 
2405 	if (btrfs_is_testing(fs_info))
2406 		return 0;
2407 
2408 	ref_root = btrfs_header_owner(buf);
2409 	nritems = btrfs_header_nritems(buf);
2410 	level = btrfs_header_level(buf);
2411 
2412 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2413 		return 0;
2414 
2415 	if (full_backref)
2416 		parent = buf->start;
2417 	else
2418 		parent = 0;
2419 	if (inc)
2420 		action = BTRFS_ADD_DELAYED_REF;
2421 	else
2422 		action = BTRFS_DROP_DELAYED_REF;
2423 
2424 	for (i = 0; i < nritems; i++) {
2425 		if (level == 0) {
2426 			btrfs_item_key_to_cpu(buf, &key, i);
2427 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2428 				continue;
2429 			fi = btrfs_item_ptr(buf, i,
2430 					    struct btrfs_file_extent_item);
2431 			if (btrfs_file_extent_type(buf, fi) ==
2432 			    BTRFS_FILE_EXTENT_INLINE)
2433 				continue;
2434 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2435 			if (bytenr == 0)
2436 				continue;
2437 
2438 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2439 			key.offset -= btrfs_file_extent_offset(buf, fi);
2440 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2441 					       num_bytes, parent);
2442 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2443 					    key.offset, root->root_key.objectid,
2444 					    for_reloc);
2445 			if (inc)
2446 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2447 			else
2448 				ret = btrfs_free_extent(trans, &generic_ref);
2449 			if (ret)
2450 				goto fail;
2451 		} else {
2452 			bytenr = btrfs_node_blockptr(buf, i);
2453 			num_bytes = fs_info->nodesize;
2454 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2455 					       num_bytes, parent);
2456 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2457 					    root->root_key.objectid, for_reloc);
2458 			if (inc)
2459 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2460 			else
2461 				ret = btrfs_free_extent(trans, &generic_ref);
2462 			if (ret)
2463 				goto fail;
2464 		}
2465 	}
2466 	return 0;
2467 fail:
2468 	return ret;
2469 }
2470 
2471 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2472 		  struct extent_buffer *buf, int full_backref)
2473 {
2474 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2475 }
2476 
2477 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2478 		  struct extent_buffer *buf, int full_backref)
2479 {
2480 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2481 }
2482 
2483 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2484 {
2485 	struct btrfs_fs_info *fs_info = root->fs_info;
2486 	u64 flags;
2487 	u64 ret;
2488 
2489 	if (data)
2490 		flags = BTRFS_BLOCK_GROUP_DATA;
2491 	else if (root == fs_info->chunk_root)
2492 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2493 	else
2494 		flags = BTRFS_BLOCK_GROUP_METADATA;
2495 
2496 	ret = btrfs_get_alloc_profile(fs_info, flags);
2497 	return ret;
2498 }
2499 
2500 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2501 {
2502 	struct btrfs_block_group *cache;
2503 	u64 bytenr;
2504 
2505 	spin_lock(&fs_info->block_group_cache_lock);
2506 	bytenr = fs_info->first_logical_byte;
2507 	spin_unlock(&fs_info->block_group_cache_lock);
2508 
2509 	if (bytenr < (u64)-1)
2510 		return bytenr;
2511 
2512 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2513 	if (!cache)
2514 		return 0;
2515 
2516 	bytenr = cache->start;
2517 	btrfs_put_block_group(cache);
2518 
2519 	return bytenr;
2520 }
2521 
2522 static int pin_down_extent(struct btrfs_trans_handle *trans,
2523 			   struct btrfs_block_group *cache,
2524 			   u64 bytenr, u64 num_bytes, int reserved)
2525 {
2526 	struct btrfs_fs_info *fs_info = cache->fs_info;
2527 
2528 	spin_lock(&cache->space_info->lock);
2529 	spin_lock(&cache->lock);
2530 	cache->pinned += num_bytes;
2531 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2532 					     num_bytes);
2533 	if (reserved) {
2534 		cache->reserved -= num_bytes;
2535 		cache->space_info->bytes_reserved -= num_bytes;
2536 	}
2537 	spin_unlock(&cache->lock);
2538 	spin_unlock(&cache->space_info->lock);
2539 
2540 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2541 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2542 	return 0;
2543 }
2544 
2545 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2546 		     u64 bytenr, u64 num_bytes, int reserved)
2547 {
2548 	struct btrfs_block_group *cache;
2549 
2550 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2551 	BUG_ON(!cache); /* Logic error */
2552 
2553 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2554 
2555 	btrfs_put_block_group(cache);
2556 	return 0;
2557 }
2558 
2559 /*
2560  * this function must be called within transaction
2561  */
2562 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2563 				    u64 bytenr, u64 num_bytes)
2564 {
2565 	struct btrfs_block_group *cache;
2566 	int ret;
2567 
2568 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2569 	if (!cache)
2570 		return -EINVAL;
2571 
2572 	/*
2573 	 * pull in the free space cache (if any) so that our pin
2574 	 * removes the free space from the cache.  We have load_only set
2575 	 * to one because the slow code to read in the free extents does check
2576 	 * the pinned extents.
2577 	 */
2578 	btrfs_cache_block_group(cache, 1);
2579 	/*
2580 	 * Make sure we wait until the cache is completely built in case it is
2581 	 * missing or is invalid and therefore needs to be rebuilt.
2582 	 */
2583 	ret = btrfs_wait_block_group_cache_done(cache);
2584 	if (ret)
2585 		goto out;
2586 
2587 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2588 
2589 	/* remove us from the free space cache (if we're there at all) */
2590 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2591 out:
2592 	btrfs_put_block_group(cache);
2593 	return ret;
2594 }
2595 
2596 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2597 				   u64 start, u64 num_bytes)
2598 {
2599 	int ret;
2600 	struct btrfs_block_group *block_group;
2601 
2602 	block_group = btrfs_lookup_block_group(fs_info, start);
2603 	if (!block_group)
2604 		return -EINVAL;
2605 
2606 	btrfs_cache_block_group(block_group, 1);
2607 	/*
2608 	 * Make sure we wait until the cache is completely built in case it is
2609 	 * missing or is invalid and therefore needs to be rebuilt.
2610 	 */
2611 	ret = btrfs_wait_block_group_cache_done(block_group);
2612 	if (ret)
2613 		goto out;
2614 
2615 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2616 out:
2617 	btrfs_put_block_group(block_group);
2618 	return ret;
2619 }
2620 
2621 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2622 {
2623 	struct btrfs_fs_info *fs_info = eb->fs_info;
2624 	struct btrfs_file_extent_item *item;
2625 	struct btrfs_key key;
2626 	int found_type;
2627 	int i;
2628 	int ret = 0;
2629 
2630 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2631 		return 0;
2632 
2633 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2634 		btrfs_item_key_to_cpu(eb, &key, i);
2635 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2636 			continue;
2637 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2638 		found_type = btrfs_file_extent_type(eb, item);
2639 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2640 			continue;
2641 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2642 			continue;
2643 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2644 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2645 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2646 		if (ret)
2647 			break;
2648 	}
2649 
2650 	return ret;
2651 }
2652 
2653 static void
2654 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2655 {
2656 	atomic_inc(&bg->reservations);
2657 }
2658 
2659 /*
2660  * Returns the free cluster for the given space info and sets empty_cluster to
2661  * what it should be based on the mount options.
2662  */
2663 static struct btrfs_free_cluster *
2664 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2665 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2666 {
2667 	struct btrfs_free_cluster *ret = NULL;
2668 
2669 	*empty_cluster = 0;
2670 	if (btrfs_mixed_space_info(space_info))
2671 		return ret;
2672 
2673 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2674 		ret = &fs_info->meta_alloc_cluster;
2675 		if (btrfs_test_opt(fs_info, SSD))
2676 			*empty_cluster = SZ_2M;
2677 		else
2678 			*empty_cluster = SZ_64K;
2679 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2680 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2681 		*empty_cluster = SZ_2M;
2682 		ret = &fs_info->data_alloc_cluster;
2683 	}
2684 
2685 	return ret;
2686 }
2687 
2688 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2689 			      u64 start, u64 end,
2690 			      const bool return_free_space)
2691 {
2692 	struct btrfs_block_group *cache = NULL;
2693 	struct btrfs_space_info *space_info;
2694 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2695 	struct btrfs_free_cluster *cluster = NULL;
2696 	u64 len;
2697 	u64 total_unpinned = 0;
2698 	u64 empty_cluster = 0;
2699 	bool readonly;
2700 
2701 	while (start <= end) {
2702 		readonly = false;
2703 		if (!cache ||
2704 		    start >= cache->start + cache->length) {
2705 			if (cache)
2706 				btrfs_put_block_group(cache);
2707 			total_unpinned = 0;
2708 			cache = btrfs_lookup_block_group(fs_info, start);
2709 			BUG_ON(!cache); /* Logic error */
2710 
2711 			cluster = fetch_cluster_info(fs_info,
2712 						     cache->space_info,
2713 						     &empty_cluster);
2714 			empty_cluster <<= 1;
2715 		}
2716 
2717 		len = cache->start + cache->length - start;
2718 		len = min(len, end + 1 - start);
2719 
2720 		down_read(&fs_info->commit_root_sem);
2721 		if (start < cache->last_byte_to_unpin && return_free_space) {
2722 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2723 
2724 			btrfs_add_free_space(cache, start, add_len);
2725 		}
2726 		up_read(&fs_info->commit_root_sem);
2727 
2728 		start += len;
2729 		total_unpinned += len;
2730 		space_info = cache->space_info;
2731 
2732 		/*
2733 		 * If this space cluster has been marked as fragmented and we've
2734 		 * unpinned enough in this block group to potentially allow a
2735 		 * cluster to be created inside of it go ahead and clear the
2736 		 * fragmented check.
2737 		 */
2738 		if (cluster && cluster->fragmented &&
2739 		    total_unpinned > empty_cluster) {
2740 			spin_lock(&cluster->lock);
2741 			cluster->fragmented = 0;
2742 			spin_unlock(&cluster->lock);
2743 		}
2744 
2745 		spin_lock(&space_info->lock);
2746 		spin_lock(&cache->lock);
2747 		cache->pinned -= len;
2748 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2749 		space_info->max_extent_size = 0;
2750 		if (cache->ro) {
2751 			space_info->bytes_readonly += len;
2752 			readonly = true;
2753 		} else if (btrfs_is_zoned(fs_info)) {
2754 			/* Need reset before reusing in a zoned block group */
2755 			space_info->bytes_zone_unusable += len;
2756 			readonly = true;
2757 		}
2758 		spin_unlock(&cache->lock);
2759 		if (!readonly && return_free_space &&
2760 		    global_rsv->space_info == space_info) {
2761 			spin_lock(&global_rsv->lock);
2762 			if (!global_rsv->full) {
2763 				u64 to_add = min(len, global_rsv->size -
2764 						      global_rsv->reserved);
2765 
2766 				global_rsv->reserved += to_add;
2767 				btrfs_space_info_update_bytes_may_use(fs_info,
2768 						space_info, to_add);
2769 				if (global_rsv->reserved >= global_rsv->size)
2770 					global_rsv->full = 1;
2771 				len -= to_add;
2772 			}
2773 			spin_unlock(&global_rsv->lock);
2774 		}
2775 		/* Add to any tickets we may have */
2776 		if (!readonly && return_free_space && len)
2777 			btrfs_try_granting_tickets(fs_info, space_info);
2778 		spin_unlock(&space_info->lock);
2779 	}
2780 
2781 	if (cache)
2782 		btrfs_put_block_group(cache);
2783 	return 0;
2784 }
2785 
2786 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2787 {
2788 	struct btrfs_fs_info *fs_info = trans->fs_info;
2789 	struct btrfs_block_group *block_group, *tmp;
2790 	struct list_head *deleted_bgs;
2791 	struct extent_io_tree *unpin;
2792 	u64 start;
2793 	u64 end;
2794 	int ret;
2795 
2796 	unpin = &trans->transaction->pinned_extents;
2797 
2798 	while (!TRANS_ABORTED(trans)) {
2799 		struct extent_state *cached_state = NULL;
2800 
2801 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2802 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2803 					    EXTENT_DIRTY, &cached_state);
2804 		if (ret) {
2805 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2806 			break;
2807 		}
2808 
2809 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2810 			ret = btrfs_discard_extent(fs_info, start,
2811 						   end + 1 - start, NULL);
2812 
2813 		clear_extent_dirty(unpin, start, end, &cached_state);
2814 		unpin_extent_range(fs_info, start, end, true);
2815 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2816 		free_extent_state(cached_state);
2817 		cond_resched();
2818 	}
2819 
2820 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2821 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2822 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2823 	}
2824 
2825 	/*
2826 	 * Transaction is finished.  We don't need the lock anymore.  We
2827 	 * do need to clean up the block groups in case of a transaction
2828 	 * abort.
2829 	 */
2830 	deleted_bgs = &trans->transaction->deleted_bgs;
2831 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2832 		u64 trimmed = 0;
2833 
2834 		ret = -EROFS;
2835 		if (!TRANS_ABORTED(trans))
2836 			ret = btrfs_discard_extent(fs_info,
2837 						   block_group->start,
2838 						   block_group->length,
2839 						   &trimmed);
2840 
2841 		list_del_init(&block_group->bg_list);
2842 		btrfs_unfreeze_block_group(block_group);
2843 		btrfs_put_block_group(block_group);
2844 
2845 		if (ret) {
2846 			const char *errstr = btrfs_decode_error(ret);
2847 			btrfs_warn(fs_info,
2848 			   "discard failed while removing blockgroup: errno=%d %s",
2849 				   ret, errstr);
2850 		}
2851 	}
2852 
2853 	return 0;
2854 }
2855 
2856 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2857 				     u64 bytenr, u64 num_bytes, bool is_data)
2858 {
2859 	int ret;
2860 
2861 	if (is_data) {
2862 		struct btrfs_root *csum_root;
2863 
2864 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2865 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2866 		if (ret) {
2867 			btrfs_abort_transaction(trans, ret);
2868 			return ret;
2869 		}
2870 	}
2871 
2872 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2873 	if (ret) {
2874 		btrfs_abort_transaction(trans, ret);
2875 		return ret;
2876 	}
2877 
2878 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2879 	if (ret)
2880 		btrfs_abort_transaction(trans, ret);
2881 
2882 	return ret;
2883 }
2884 
2885 /*
2886  * Drop one or more refs of @node.
2887  *
2888  * 1. Locate the extent refs.
2889  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2890  *    Locate it, then reduce the refs number or remove the ref line completely.
2891  *
2892  * 2. Update the refs count in EXTENT/METADATA_ITEM
2893  *
2894  * Inline backref case:
2895  *
2896  * in extent tree we have:
2897  *
2898  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2899  *		refs 2 gen 6 flags DATA
2900  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2901  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2902  *
2903  * This function gets called with:
2904  *
2905  *    node->bytenr = 13631488
2906  *    node->num_bytes = 1048576
2907  *    root_objectid = FS_TREE
2908  *    owner_objectid = 257
2909  *    owner_offset = 0
2910  *    refs_to_drop = 1
2911  *
2912  * Then we should get some like:
2913  *
2914  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2915  *		refs 1 gen 6 flags DATA
2916  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2917  *
2918  * Keyed backref case:
2919  *
2920  * in extent tree we have:
2921  *
2922  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2923  *		refs 754 gen 6 flags DATA
2924  *	[...]
2925  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2926  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2927  *
2928  * This function get called with:
2929  *
2930  *    node->bytenr = 13631488
2931  *    node->num_bytes = 1048576
2932  *    root_objectid = FS_TREE
2933  *    owner_objectid = 866
2934  *    owner_offset = 0
2935  *    refs_to_drop = 1
2936  *
2937  * Then we should get some like:
2938  *
2939  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2940  *		refs 753 gen 6 flags DATA
2941  *
2942  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2943  */
2944 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2945 			       struct btrfs_delayed_ref_node *node, u64 parent,
2946 			       u64 root_objectid, u64 owner_objectid,
2947 			       u64 owner_offset, int refs_to_drop,
2948 			       struct btrfs_delayed_extent_op *extent_op)
2949 {
2950 	struct btrfs_fs_info *info = trans->fs_info;
2951 	struct btrfs_key key;
2952 	struct btrfs_path *path;
2953 	struct btrfs_root *extent_root;
2954 	struct extent_buffer *leaf;
2955 	struct btrfs_extent_item *ei;
2956 	struct btrfs_extent_inline_ref *iref;
2957 	int ret;
2958 	int is_data;
2959 	int extent_slot = 0;
2960 	int found_extent = 0;
2961 	int num_to_del = 1;
2962 	u32 item_size;
2963 	u64 refs;
2964 	u64 bytenr = node->bytenr;
2965 	u64 num_bytes = node->num_bytes;
2966 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2967 
2968 	extent_root = btrfs_extent_root(info, bytenr);
2969 	ASSERT(extent_root);
2970 
2971 	path = btrfs_alloc_path();
2972 	if (!path)
2973 		return -ENOMEM;
2974 
2975 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2976 
2977 	if (!is_data && refs_to_drop != 1) {
2978 		btrfs_crit(info,
2979 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2980 			   node->bytenr, refs_to_drop);
2981 		ret = -EINVAL;
2982 		btrfs_abort_transaction(trans, ret);
2983 		goto out;
2984 	}
2985 
2986 	if (is_data)
2987 		skinny_metadata = false;
2988 
2989 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2990 				    parent, root_objectid, owner_objectid,
2991 				    owner_offset);
2992 	if (ret == 0) {
2993 		/*
2994 		 * Either the inline backref or the SHARED_DATA_REF/
2995 		 * SHARED_BLOCK_REF is found
2996 		 *
2997 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2998 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2999 		 */
3000 		extent_slot = path->slots[0];
3001 		while (extent_slot >= 0) {
3002 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3003 					      extent_slot);
3004 			if (key.objectid != bytenr)
3005 				break;
3006 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3007 			    key.offset == num_bytes) {
3008 				found_extent = 1;
3009 				break;
3010 			}
3011 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3012 			    key.offset == owner_objectid) {
3013 				found_extent = 1;
3014 				break;
3015 			}
3016 
3017 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3018 			if (path->slots[0] - extent_slot > 5)
3019 				break;
3020 			extent_slot--;
3021 		}
3022 
3023 		if (!found_extent) {
3024 			if (iref) {
3025 				btrfs_crit(info,
3026 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3027 				btrfs_abort_transaction(trans, -EUCLEAN);
3028 				goto err_dump;
3029 			}
3030 			/* Must be SHARED_* item, remove the backref first */
3031 			ret = remove_extent_backref(trans, extent_root, path,
3032 						    NULL, refs_to_drop, is_data);
3033 			if (ret) {
3034 				btrfs_abort_transaction(trans, ret);
3035 				goto out;
3036 			}
3037 			btrfs_release_path(path);
3038 
3039 			/* Slow path to locate EXTENT/METADATA_ITEM */
3040 			key.objectid = bytenr;
3041 			key.type = BTRFS_EXTENT_ITEM_KEY;
3042 			key.offset = num_bytes;
3043 
3044 			if (!is_data && skinny_metadata) {
3045 				key.type = BTRFS_METADATA_ITEM_KEY;
3046 				key.offset = owner_objectid;
3047 			}
3048 
3049 			ret = btrfs_search_slot(trans, extent_root,
3050 						&key, path, -1, 1);
3051 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3052 				/*
3053 				 * Couldn't find our skinny metadata item,
3054 				 * see if we have ye olde extent item.
3055 				 */
3056 				path->slots[0]--;
3057 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3058 						      path->slots[0]);
3059 				if (key.objectid == bytenr &&
3060 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3061 				    key.offset == num_bytes)
3062 					ret = 0;
3063 			}
3064 
3065 			if (ret > 0 && skinny_metadata) {
3066 				skinny_metadata = false;
3067 				key.objectid = bytenr;
3068 				key.type = BTRFS_EXTENT_ITEM_KEY;
3069 				key.offset = num_bytes;
3070 				btrfs_release_path(path);
3071 				ret = btrfs_search_slot(trans, extent_root,
3072 							&key, path, -1, 1);
3073 			}
3074 
3075 			if (ret) {
3076 				btrfs_err(info,
3077 					  "umm, got %d back from search, was looking for %llu",
3078 					  ret, bytenr);
3079 				if (ret > 0)
3080 					btrfs_print_leaf(path->nodes[0]);
3081 			}
3082 			if (ret < 0) {
3083 				btrfs_abort_transaction(trans, ret);
3084 				goto out;
3085 			}
3086 			extent_slot = path->slots[0];
3087 		}
3088 	} else if (WARN_ON(ret == -ENOENT)) {
3089 		btrfs_print_leaf(path->nodes[0]);
3090 		btrfs_err(info,
3091 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3092 			bytenr, parent, root_objectid, owner_objectid,
3093 			owner_offset);
3094 		btrfs_abort_transaction(trans, ret);
3095 		goto out;
3096 	} else {
3097 		btrfs_abort_transaction(trans, ret);
3098 		goto out;
3099 	}
3100 
3101 	leaf = path->nodes[0];
3102 	item_size = btrfs_item_size(leaf, extent_slot);
3103 	if (unlikely(item_size < sizeof(*ei))) {
3104 		ret = -EINVAL;
3105 		btrfs_print_v0_err(info);
3106 		btrfs_abort_transaction(trans, ret);
3107 		goto out;
3108 	}
3109 	ei = btrfs_item_ptr(leaf, extent_slot,
3110 			    struct btrfs_extent_item);
3111 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3112 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3113 		struct btrfs_tree_block_info *bi;
3114 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3115 			btrfs_crit(info,
3116 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3117 				   key.objectid, key.type, key.offset,
3118 				   owner_objectid, item_size,
3119 				   sizeof(*ei) + sizeof(*bi));
3120 			btrfs_abort_transaction(trans, -EUCLEAN);
3121 			goto err_dump;
3122 		}
3123 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3124 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3125 	}
3126 
3127 	refs = btrfs_extent_refs(leaf, ei);
3128 	if (refs < refs_to_drop) {
3129 		btrfs_crit(info,
3130 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3131 			  refs_to_drop, refs, bytenr);
3132 		btrfs_abort_transaction(trans, -EUCLEAN);
3133 		goto err_dump;
3134 	}
3135 	refs -= refs_to_drop;
3136 
3137 	if (refs > 0) {
3138 		if (extent_op)
3139 			__run_delayed_extent_op(extent_op, leaf, ei);
3140 		/*
3141 		 * In the case of inline back ref, reference count will
3142 		 * be updated by remove_extent_backref
3143 		 */
3144 		if (iref) {
3145 			if (!found_extent) {
3146 				btrfs_crit(info,
3147 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3148 				btrfs_abort_transaction(trans, -EUCLEAN);
3149 				goto err_dump;
3150 			}
3151 		} else {
3152 			btrfs_set_extent_refs(leaf, ei, refs);
3153 			btrfs_mark_buffer_dirty(leaf);
3154 		}
3155 		if (found_extent) {
3156 			ret = remove_extent_backref(trans, extent_root, path,
3157 						    iref, refs_to_drop, is_data);
3158 			if (ret) {
3159 				btrfs_abort_transaction(trans, ret);
3160 				goto out;
3161 			}
3162 		}
3163 	} else {
3164 		/* In this branch refs == 1 */
3165 		if (found_extent) {
3166 			if (is_data && refs_to_drop !=
3167 			    extent_data_ref_count(path, iref)) {
3168 				btrfs_crit(info,
3169 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3170 					   extent_data_ref_count(path, iref),
3171 					   refs_to_drop);
3172 				btrfs_abort_transaction(trans, -EUCLEAN);
3173 				goto err_dump;
3174 			}
3175 			if (iref) {
3176 				if (path->slots[0] != extent_slot) {
3177 					btrfs_crit(info,
3178 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3179 						   key.objectid, key.type,
3180 						   key.offset);
3181 					btrfs_abort_transaction(trans, -EUCLEAN);
3182 					goto err_dump;
3183 				}
3184 			} else {
3185 				/*
3186 				 * No inline ref, we must be at SHARED_* item,
3187 				 * And it's single ref, it must be:
3188 				 * |	extent_slot	  ||extent_slot + 1|
3189 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3190 				 */
3191 				if (path->slots[0] != extent_slot + 1) {
3192 					btrfs_crit(info,
3193 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3194 					btrfs_abort_transaction(trans, -EUCLEAN);
3195 					goto err_dump;
3196 				}
3197 				path->slots[0] = extent_slot;
3198 				num_to_del = 2;
3199 			}
3200 		}
3201 
3202 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3203 				      num_to_del);
3204 		if (ret) {
3205 			btrfs_abort_transaction(trans, ret);
3206 			goto out;
3207 		}
3208 		btrfs_release_path(path);
3209 
3210 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3211 	}
3212 	btrfs_release_path(path);
3213 
3214 out:
3215 	btrfs_free_path(path);
3216 	return ret;
3217 err_dump:
3218 	/*
3219 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3220 	 * dump for debug build.
3221 	 */
3222 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3223 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3224 			   path->slots[0], extent_slot);
3225 		btrfs_print_leaf(path->nodes[0]);
3226 	}
3227 
3228 	btrfs_free_path(path);
3229 	return -EUCLEAN;
3230 }
3231 
3232 /*
3233  * when we free an block, it is possible (and likely) that we free the last
3234  * delayed ref for that extent as well.  This searches the delayed ref tree for
3235  * a given extent, and if there are no other delayed refs to be processed, it
3236  * removes it from the tree.
3237  */
3238 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3239 				      u64 bytenr)
3240 {
3241 	struct btrfs_delayed_ref_head *head;
3242 	struct btrfs_delayed_ref_root *delayed_refs;
3243 	int ret = 0;
3244 
3245 	delayed_refs = &trans->transaction->delayed_refs;
3246 	spin_lock(&delayed_refs->lock);
3247 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3248 	if (!head)
3249 		goto out_delayed_unlock;
3250 
3251 	spin_lock(&head->lock);
3252 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3253 		goto out;
3254 
3255 	if (cleanup_extent_op(head) != NULL)
3256 		goto out;
3257 
3258 	/*
3259 	 * waiting for the lock here would deadlock.  If someone else has it
3260 	 * locked they are already in the process of dropping it anyway
3261 	 */
3262 	if (!mutex_trylock(&head->mutex))
3263 		goto out;
3264 
3265 	btrfs_delete_ref_head(delayed_refs, head);
3266 	head->processing = 0;
3267 
3268 	spin_unlock(&head->lock);
3269 	spin_unlock(&delayed_refs->lock);
3270 
3271 	BUG_ON(head->extent_op);
3272 	if (head->must_insert_reserved)
3273 		ret = 1;
3274 
3275 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3276 	mutex_unlock(&head->mutex);
3277 	btrfs_put_delayed_ref_head(head);
3278 	return ret;
3279 out:
3280 	spin_unlock(&head->lock);
3281 
3282 out_delayed_unlock:
3283 	spin_unlock(&delayed_refs->lock);
3284 	return 0;
3285 }
3286 
3287 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3288 			   u64 root_id,
3289 			   struct extent_buffer *buf,
3290 			   u64 parent, int last_ref)
3291 {
3292 	struct btrfs_fs_info *fs_info = trans->fs_info;
3293 	struct btrfs_ref generic_ref = { 0 };
3294 	int ret;
3295 
3296 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3297 			       buf->start, buf->len, parent);
3298 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3299 			    root_id, 0, false);
3300 
3301 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3302 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3303 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3304 		BUG_ON(ret); /* -ENOMEM */
3305 	}
3306 
3307 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3308 		struct btrfs_block_group *cache;
3309 		bool must_pin = false;
3310 
3311 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3312 			ret = check_ref_cleanup(trans, buf->start);
3313 			if (!ret) {
3314 				btrfs_redirty_list_add(trans->transaction, buf);
3315 				goto out;
3316 			}
3317 		}
3318 
3319 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3320 
3321 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3322 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3323 			btrfs_put_block_group(cache);
3324 			goto out;
3325 		}
3326 
3327 		/*
3328 		 * If this is a leaf and there are tree mod log users, we may
3329 		 * have recorded mod log operations that point to this leaf.
3330 		 * So we must make sure no one reuses this leaf's extent before
3331 		 * mod log operations are applied to a node, otherwise after
3332 		 * rewinding a node using the mod log operations we get an
3333 		 * inconsistent btree, as the leaf's extent may now be used as
3334 		 * a node or leaf for another different btree.
3335 		 * We are safe from races here because at this point no other
3336 		 * node or root points to this extent buffer, so if after this
3337 		 * check a new tree mod log user joins, it will not be able to
3338 		 * find a node pointing to this leaf and record operations that
3339 		 * point to this leaf.
3340 		 */
3341 		if (btrfs_header_level(buf) == 0 &&
3342 		    test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3343 			must_pin = true;
3344 
3345 		if (must_pin || btrfs_is_zoned(fs_info)) {
3346 			btrfs_redirty_list_add(trans->transaction, buf);
3347 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3348 			btrfs_put_block_group(cache);
3349 			goto out;
3350 		}
3351 
3352 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3353 
3354 		btrfs_add_free_space(cache, buf->start, buf->len);
3355 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3356 		btrfs_put_block_group(cache);
3357 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3358 	}
3359 out:
3360 	if (last_ref) {
3361 		/*
3362 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3363 		 * matter anymore.
3364 		 */
3365 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3366 	}
3367 }
3368 
3369 /* Can return -ENOMEM */
3370 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3371 {
3372 	struct btrfs_fs_info *fs_info = trans->fs_info;
3373 	int ret;
3374 
3375 	if (btrfs_is_testing(fs_info))
3376 		return 0;
3377 
3378 	/*
3379 	 * tree log blocks never actually go into the extent allocation
3380 	 * tree, just update pinning info and exit early.
3381 	 */
3382 	if ((ref->type == BTRFS_REF_METADATA &&
3383 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3384 	    (ref->type == BTRFS_REF_DATA &&
3385 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3386 		/* unlocks the pinned mutex */
3387 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3388 		ret = 0;
3389 	} else if (ref->type == BTRFS_REF_METADATA) {
3390 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3391 	} else {
3392 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3393 	}
3394 
3395 	if (!((ref->type == BTRFS_REF_METADATA &&
3396 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3397 	      (ref->type == BTRFS_REF_DATA &&
3398 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3399 		btrfs_ref_tree_mod(fs_info, ref);
3400 
3401 	return ret;
3402 }
3403 
3404 enum btrfs_loop_type {
3405 	LOOP_CACHING_NOWAIT,
3406 	LOOP_CACHING_WAIT,
3407 	LOOP_ALLOC_CHUNK,
3408 	LOOP_NO_EMPTY_SIZE,
3409 };
3410 
3411 static inline void
3412 btrfs_lock_block_group(struct btrfs_block_group *cache,
3413 		       int delalloc)
3414 {
3415 	if (delalloc)
3416 		down_read(&cache->data_rwsem);
3417 }
3418 
3419 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3420 		       int delalloc)
3421 {
3422 	btrfs_get_block_group(cache);
3423 	if (delalloc)
3424 		down_read(&cache->data_rwsem);
3425 }
3426 
3427 static struct btrfs_block_group *btrfs_lock_cluster(
3428 		   struct btrfs_block_group *block_group,
3429 		   struct btrfs_free_cluster *cluster,
3430 		   int delalloc)
3431 	__acquires(&cluster->refill_lock)
3432 {
3433 	struct btrfs_block_group *used_bg = NULL;
3434 
3435 	spin_lock(&cluster->refill_lock);
3436 	while (1) {
3437 		used_bg = cluster->block_group;
3438 		if (!used_bg)
3439 			return NULL;
3440 
3441 		if (used_bg == block_group)
3442 			return used_bg;
3443 
3444 		btrfs_get_block_group(used_bg);
3445 
3446 		if (!delalloc)
3447 			return used_bg;
3448 
3449 		if (down_read_trylock(&used_bg->data_rwsem))
3450 			return used_bg;
3451 
3452 		spin_unlock(&cluster->refill_lock);
3453 
3454 		/* We should only have one-level nested. */
3455 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3456 
3457 		spin_lock(&cluster->refill_lock);
3458 		if (used_bg == cluster->block_group)
3459 			return used_bg;
3460 
3461 		up_read(&used_bg->data_rwsem);
3462 		btrfs_put_block_group(used_bg);
3463 	}
3464 }
3465 
3466 static inline void
3467 btrfs_release_block_group(struct btrfs_block_group *cache,
3468 			 int delalloc)
3469 {
3470 	if (delalloc)
3471 		up_read(&cache->data_rwsem);
3472 	btrfs_put_block_group(cache);
3473 }
3474 
3475 enum btrfs_extent_allocation_policy {
3476 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3477 	BTRFS_EXTENT_ALLOC_ZONED,
3478 };
3479 
3480 /*
3481  * Structure used internally for find_free_extent() function.  Wraps needed
3482  * parameters.
3483  */
3484 struct find_free_extent_ctl {
3485 	/* Basic allocation info */
3486 	u64 ram_bytes;
3487 	u64 num_bytes;
3488 	u64 min_alloc_size;
3489 	u64 empty_size;
3490 	u64 flags;
3491 	int delalloc;
3492 
3493 	/* Where to start the search inside the bg */
3494 	u64 search_start;
3495 
3496 	/* For clustered allocation */
3497 	u64 empty_cluster;
3498 	struct btrfs_free_cluster *last_ptr;
3499 	bool use_cluster;
3500 
3501 	bool have_caching_bg;
3502 	bool orig_have_caching_bg;
3503 
3504 	/* Allocation is called for tree-log */
3505 	bool for_treelog;
3506 
3507 	/* Allocation is called for data relocation */
3508 	bool for_data_reloc;
3509 
3510 	/* RAID index, converted from flags */
3511 	int index;
3512 
3513 	/*
3514 	 * Current loop number, check find_free_extent_update_loop() for details
3515 	 */
3516 	int loop;
3517 
3518 	/*
3519 	 * Whether we're refilling a cluster, if true we need to re-search
3520 	 * current block group but don't try to refill the cluster again.
3521 	 */
3522 	bool retry_clustered;
3523 
3524 	/*
3525 	 * Whether we're updating free space cache, if true we need to re-search
3526 	 * current block group but don't try updating free space cache again.
3527 	 */
3528 	bool retry_unclustered;
3529 
3530 	/* If current block group is cached */
3531 	int cached;
3532 
3533 	/* Max contiguous hole found */
3534 	u64 max_extent_size;
3535 
3536 	/* Total free space from free space cache, not always contiguous */
3537 	u64 total_free_space;
3538 
3539 	/* Found result */
3540 	u64 found_offset;
3541 
3542 	/* Hint where to start looking for an empty space */
3543 	u64 hint_byte;
3544 
3545 	/* Allocation policy */
3546 	enum btrfs_extent_allocation_policy policy;
3547 };
3548 
3549 
3550 /*
3551  * Helper function for find_free_extent().
3552  *
3553  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3554  * Return -EAGAIN to inform caller that we need to re-search this block group
3555  * Return >0 to inform caller that we find nothing
3556  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3557  */
3558 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3559 				      struct find_free_extent_ctl *ffe_ctl,
3560 				      struct btrfs_block_group **cluster_bg_ret)
3561 {
3562 	struct btrfs_block_group *cluster_bg;
3563 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3564 	u64 aligned_cluster;
3565 	u64 offset;
3566 	int ret;
3567 
3568 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3569 	if (!cluster_bg)
3570 		goto refill_cluster;
3571 	if (cluster_bg != bg && (cluster_bg->ro ||
3572 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3573 		goto release_cluster;
3574 
3575 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3576 			ffe_ctl->num_bytes, cluster_bg->start,
3577 			&ffe_ctl->max_extent_size);
3578 	if (offset) {
3579 		/* We have a block, we're done */
3580 		spin_unlock(&last_ptr->refill_lock);
3581 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3582 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3583 		*cluster_bg_ret = cluster_bg;
3584 		ffe_ctl->found_offset = offset;
3585 		return 0;
3586 	}
3587 	WARN_ON(last_ptr->block_group != cluster_bg);
3588 
3589 release_cluster:
3590 	/*
3591 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3592 	 * lets just skip it and let the allocator find whatever block it can
3593 	 * find. If we reach this point, we will have tried the cluster
3594 	 * allocator plenty of times and not have found anything, so we are
3595 	 * likely way too fragmented for the clustering stuff to find anything.
3596 	 *
3597 	 * However, if the cluster is taken from the current block group,
3598 	 * release the cluster first, so that we stand a better chance of
3599 	 * succeeding in the unclustered allocation.
3600 	 */
3601 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3602 		spin_unlock(&last_ptr->refill_lock);
3603 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3604 		return -ENOENT;
3605 	}
3606 
3607 	/* This cluster didn't work out, free it and start over */
3608 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3609 
3610 	if (cluster_bg != bg)
3611 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3612 
3613 refill_cluster:
3614 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3615 		spin_unlock(&last_ptr->refill_lock);
3616 		return -ENOENT;
3617 	}
3618 
3619 	aligned_cluster = max_t(u64,
3620 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3621 			bg->full_stripe_len);
3622 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3623 			ffe_ctl->num_bytes, aligned_cluster);
3624 	if (ret == 0) {
3625 		/* Now pull our allocation out of this cluster */
3626 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3627 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3628 				&ffe_ctl->max_extent_size);
3629 		if (offset) {
3630 			/* We found one, proceed */
3631 			spin_unlock(&last_ptr->refill_lock);
3632 			trace_btrfs_reserve_extent_cluster(bg,
3633 					ffe_ctl->search_start,
3634 					ffe_ctl->num_bytes);
3635 			ffe_ctl->found_offset = offset;
3636 			return 0;
3637 		}
3638 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3639 		   !ffe_ctl->retry_clustered) {
3640 		spin_unlock(&last_ptr->refill_lock);
3641 
3642 		ffe_ctl->retry_clustered = true;
3643 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3644 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3645 		return -EAGAIN;
3646 	}
3647 	/*
3648 	 * At this point we either didn't find a cluster or we weren't able to
3649 	 * allocate a block from our cluster.  Free the cluster we've been
3650 	 * trying to use, and go to the next block group.
3651 	 */
3652 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3653 	spin_unlock(&last_ptr->refill_lock);
3654 	return 1;
3655 }
3656 
3657 /*
3658  * Return >0 to inform caller that we find nothing
3659  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3660  * Return -EAGAIN to inform caller that we need to re-search this block group
3661  */
3662 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3663 					struct find_free_extent_ctl *ffe_ctl)
3664 {
3665 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3666 	u64 offset;
3667 
3668 	/*
3669 	 * We are doing an unclustered allocation, set the fragmented flag so
3670 	 * we don't bother trying to setup a cluster again until we get more
3671 	 * space.
3672 	 */
3673 	if (unlikely(last_ptr)) {
3674 		spin_lock(&last_ptr->lock);
3675 		last_ptr->fragmented = 1;
3676 		spin_unlock(&last_ptr->lock);
3677 	}
3678 	if (ffe_ctl->cached) {
3679 		struct btrfs_free_space_ctl *free_space_ctl;
3680 
3681 		free_space_ctl = bg->free_space_ctl;
3682 		spin_lock(&free_space_ctl->tree_lock);
3683 		if (free_space_ctl->free_space <
3684 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3685 		    ffe_ctl->empty_size) {
3686 			ffe_ctl->total_free_space = max_t(u64,
3687 					ffe_ctl->total_free_space,
3688 					free_space_ctl->free_space);
3689 			spin_unlock(&free_space_ctl->tree_lock);
3690 			return 1;
3691 		}
3692 		spin_unlock(&free_space_ctl->tree_lock);
3693 	}
3694 
3695 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3696 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3697 			&ffe_ctl->max_extent_size);
3698 
3699 	/*
3700 	 * If we didn't find a chunk, and we haven't failed on this block group
3701 	 * before, and this block group is in the middle of caching and we are
3702 	 * ok with waiting, then go ahead and wait for progress to be made, and
3703 	 * set @retry_unclustered to true.
3704 	 *
3705 	 * If @retry_unclustered is true then we've already waited on this
3706 	 * block group once and should move on to the next block group.
3707 	 */
3708 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3709 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3710 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3711 						      ffe_ctl->empty_size);
3712 		ffe_ctl->retry_unclustered = true;
3713 		return -EAGAIN;
3714 	} else if (!offset) {
3715 		return 1;
3716 	}
3717 	ffe_ctl->found_offset = offset;
3718 	return 0;
3719 }
3720 
3721 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3722 				   struct find_free_extent_ctl *ffe_ctl,
3723 				   struct btrfs_block_group **bg_ret)
3724 {
3725 	int ret;
3726 
3727 	/* We want to try and use the cluster allocator, so lets look there */
3728 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3729 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3730 		if (ret >= 0 || ret == -EAGAIN)
3731 			return ret;
3732 		/* ret == -ENOENT case falls through */
3733 	}
3734 
3735 	return find_free_extent_unclustered(block_group, ffe_ctl);
3736 }
3737 
3738 /*
3739  * Tree-log block group locking
3740  * ============================
3741  *
3742  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3743  * indicates the starting address of a block group, which is reserved only
3744  * for tree-log metadata.
3745  *
3746  * Lock nesting
3747  * ============
3748  *
3749  * space_info::lock
3750  *   block_group::lock
3751  *     fs_info::treelog_bg_lock
3752  */
3753 
3754 /*
3755  * Simple allocator for sequential-only block group. It only allows sequential
3756  * allocation. No need to play with trees. This function also reserves the
3757  * bytes as in btrfs_add_reserved_bytes.
3758  */
3759 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3760 			       struct find_free_extent_ctl *ffe_ctl,
3761 			       struct btrfs_block_group **bg_ret)
3762 {
3763 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3764 	struct btrfs_space_info *space_info = block_group->space_info;
3765 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3766 	u64 start = block_group->start;
3767 	u64 num_bytes = ffe_ctl->num_bytes;
3768 	u64 avail;
3769 	u64 bytenr = block_group->start;
3770 	u64 log_bytenr;
3771 	u64 data_reloc_bytenr;
3772 	int ret = 0;
3773 	bool skip = false;
3774 
3775 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3776 
3777 	/*
3778 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3779 	 * group, and vice versa.
3780 	 */
3781 	spin_lock(&fs_info->treelog_bg_lock);
3782 	log_bytenr = fs_info->treelog_bg;
3783 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3784 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3785 		skip = true;
3786 	spin_unlock(&fs_info->treelog_bg_lock);
3787 	if (skip)
3788 		return 1;
3789 
3790 	/*
3791 	 * Do not allow non-relocation blocks in the dedicated relocation block
3792 	 * group, and vice versa.
3793 	 */
3794 	spin_lock(&fs_info->relocation_bg_lock);
3795 	data_reloc_bytenr = fs_info->data_reloc_bg;
3796 	if (data_reloc_bytenr &&
3797 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3798 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3799 		skip = true;
3800 	spin_unlock(&fs_info->relocation_bg_lock);
3801 	if (skip)
3802 		return 1;
3803 
3804 	/* Check RO and no space case before trying to activate it */
3805 	spin_lock(&block_group->lock);
3806 	if (block_group->ro ||
3807 	    block_group->alloc_offset == block_group->zone_capacity) {
3808 		ret = 1;
3809 		/*
3810 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3811 		 * Return the error after taking the locks.
3812 		 */
3813 	}
3814 	spin_unlock(&block_group->lock);
3815 
3816 	if (!ret && !btrfs_zone_activate(block_group)) {
3817 		ret = 1;
3818 		/*
3819 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3820 		 * Return the error after taking the locks.
3821 		 */
3822 	}
3823 
3824 	spin_lock(&space_info->lock);
3825 	spin_lock(&block_group->lock);
3826 	spin_lock(&fs_info->treelog_bg_lock);
3827 	spin_lock(&fs_info->relocation_bg_lock);
3828 
3829 	if (ret)
3830 		goto out;
3831 
3832 	ASSERT(!ffe_ctl->for_treelog ||
3833 	       block_group->start == fs_info->treelog_bg ||
3834 	       fs_info->treelog_bg == 0);
3835 	ASSERT(!ffe_ctl->for_data_reloc ||
3836 	       block_group->start == fs_info->data_reloc_bg ||
3837 	       fs_info->data_reloc_bg == 0);
3838 
3839 	if (block_group->ro) {
3840 		ret = 1;
3841 		goto out;
3842 	}
3843 
3844 	/*
3845 	 * Do not allow currently using block group to be tree-log dedicated
3846 	 * block group.
3847 	 */
3848 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3849 	    (block_group->used || block_group->reserved)) {
3850 		ret = 1;
3851 		goto out;
3852 	}
3853 
3854 	/*
3855 	 * Do not allow currently used block group to be the data relocation
3856 	 * dedicated block group.
3857 	 */
3858 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3859 	    (block_group->used || block_group->reserved)) {
3860 		ret = 1;
3861 		goto out;
3862 	}
3863 
3864 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3865 	avail = block_group->zone_capacity - block_group->alloc_offset;
3866 	if (avail < num_bytes) {
3867 		if (ffe_ctl->max_extent_size < avail) {
3868 			/*
3869 			 * With sequential allocator, free space is always
3870 			 * contiguous
3871 			 */
3872 			ffe_ctl->max_extent_size = avail;
3873 			ffe_ctl->total_free_space = avail;
3874 		}
3875 		ret = 1;
3876 		goto out;
3877 	}
3878 
3879 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3880 		fs_info->treelog_bg = block_group->start;
3881 
3882 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3883 		fs_info->data_reloc_bg = block_group->start;
3884 
3885 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3886 	block_group->alloc_offset += num_bytes;
3887 	spin_lock(&ctl->tree_lock);
3888 	ctl->free_space -= num_bytes;
3889 	spin_unlock(&ctl->tree_lock);
3890 
3891 	/*
3892 	 * We do not check if found_offset is aligned to stripesize. The
3893 	 * address is anyway rewritten when using zone append writing.
3894 	 */
3895 
3896 	ffe_ctl->search_start = ffe_ctl->found_offset;
3897 
3898 out:
3899 	if (ret && ffe_ctl->for_treelog)
3900 		fs_info->treelog_bg = 0;
3901 	if (ret && ffe_ctl->for_data_reloc)
3902 		fs_info->data_reloc_bg = 0;
3903 	spin_unlock(&fs_info->relocation_bg_lock);
3904 	spin_unlock(&fs_info->treelog_bg_lock);
3905 	spin_unlock(&block_group->lock);
3906 	spin_unlock(&space_info->lock);
3907 	return ret;
3908 }
3909 
3910 static int do_allocation(struct btrfs_block_group *block_group,
3911 			 struct find_free_extent_ctl *ffe_ctl,
3912 			 struct btrfs_block_group **bg_ret)
3913 {
3914 	switch (ffe_ctl->policy) {
3915 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3916 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3917 	case BTRFS_EXTENT_ALLOC_ZONED:
3918 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3919 	default:
3920 		BUG();
3921 	}
3922 }
3923 
3924 static void release_block_group(struct btrfs_block_group *block_group,
3925 				struct find_free_extent_ctl *ffe_ctl,
3926 				int delalloc)
3927 {
3928 	switch (ffe_ctl->policy) {
3929 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3930 		ffe_ctl->retry_clustered = false;
3931 		ffe_ctl->retry_unclustered = false;
3932 		break;
3933 	case BTRFS_EXTENT_ALLOC_ZONED:
3934 		/* Nothing to do */
3935 		break;
3936 	default:
3937 		BUG();
3938 	}
3939 
3940 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3941 	       ffe_ctl->index);
3942 	btrfs_release_block_group(block_group, delalloc);
3943 }
3944 
3945 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3946 				   struct btrfs_key *ins)
3947 {
3948 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3949 
3950 	if (!ffe_ctl->use_cluster && last_ptr) {
3951 		spin_lock(&last_ptr->lock);
3952 		last_ptr->window_start = ins->objectid;
3953 		spin_unlock(&last_ptr->lock);
3954 	}
3955 }
3956 
3957 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3958 			 struct btrfs_key *ins)
3959 {
3960 	switch (ffe_ctl->policy) {
3961 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3962 		found_extent_clustered(ffe_ctl, ins);
3963 		break;
3964 	case BTRFS_EXTENT_ALLOC_ZONED:
3965 		/* Nothing to do */
3966 		break;
3967 	default:
3968 		BUG();
3969 	}
3970 }
3971 
3972 static bool can_allocate_chunk(struct btrfs_fs_info *fs_info,
3973 			       struct find_free_extent_ctl *ffe_ctl)
3974 {
3975 	switch (ffe_ctl->policy) {
3976 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3977 		return true;
3978 	case BTRFS_EXTENT_ALLOC_ZONED:
3979 		/*
3980 		 * If we have enough free space left in an already
3981 		 * active block group and we can't activate any other
3982 		 * zone now, do not allow allocating a new chunk and
3983 		 * let find_free_extent() retry with a smaller size.
3984 		 */
3985 		if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size &&
3986 		    !btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3987 			return false;
3988 		return true;
3989 	default:
3990 		BUG();
3991 	}
3992 }
3993 
3994 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3995 {
3996 	switch (ffe_ctl->policy) {
3997 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3998 		/*
3999 		 * If we can't allocate a new chunk we've already looped through
4000 		 * at least once, move on to the NO_EMPTY_SIZE case.
4001 		 */
4002 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4003 		return 0;
4004 	case BTRFS_EXTENT_ALLOC_ZONED:
4005 		/* Give up here */
4006 		return -ENOSPC;
4007 	default:
4008 		BUG();
4009 	}
4010 }
4011 
4012 /*
4013  * Return >0 means caller needs to re-search for free extent
4014  * Return 0 means we have the needed free extent.
4015  * Return <0 means we failed to locate any free extent.
4016  */
4017 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4018 					struct btrfs_key *ins,
4019 					struct find_free_extent_ctl *ffe_ctl,
4020 					bool full_search)
4021 {
4022 	struct btrfs_root *root = fs_info->chunk_root;
4023 	int ret;
4024 
4025 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4026 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4027 		ffe_ctl->orig_have_caching_bg = true;
4028 
4029 	if (ins->objectid) {
4030 		found_extent(ffe_ctl, ins);
4031 		return 0;
4032 	}
4033 
4034 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4035 		return 1;
4036 
4037 	ffe_ctl->index++;
4038 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4039 		return 1;
4040 
4041 	/*
4042 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4043 	 *			caching kthreads as we move along
4044 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4045 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4046 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4047 	 *		       again
4048 	 */
4049 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4050 		ffe_ctl->index = 0;
4051 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4052 			/*
4053 			 * We want to skip the LOOP_CACHING_WAIT step if we
4054 			 * don't have any uncached bgs and we've already done a
4055 			 * full search through.
4056 			 */
4057 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4058 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4059 			else
4060 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4061 		} else {
4062 			ffe_ctl->loop++;
4063 		}
4064 
4065 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4066 			struct btrfs_trans_handle *trans;
4067 			int exist = 0;
4068 
4069 			/*Check if allocation policy allows to create a new chunk */
4070 			if (!can_allocate_chunk(fs_info, ffe_ctl))
4071 				return -ENOSPC;
4072 
4073 			trans = current->journal_info;
4074 			if (trans)
4075 				exist = 1;
4076 			else
4077 				trans = btrfs_join_transaction(root);
4078 
4079 			if (IS_ERR(trans)) {
4080 				ret = PTR_ERR(trans);
4081 				return ret;
4082 			}
4083 
4084 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4085 						CHUNK_ALLOC_FORCE);
4086 
4087 			/* Do not bail out on ENOSPC since we can do more. */
4088 			if (ret == -ENOSPC)
4089 				ret = chunk_allocation_failed(ffe_ctl);
4090 			else if (ret < 0)
4091 				btrfs_abort_transaction(trans, ret);
4092 			else
4093 				ret = 0;
4094 			if (!exist)
4095 				btrfs_end_transaction(trans);
4096 			if (ret)
4097 				return ret;
4098 		}
4099 
4100 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4101 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4102 				return -ENOSPC;
4103 
4104 			/*
4105 			 * Don't loop again if we already have no empty_size and
4106 			 * no empty_cluster.
4107 			 */
4108 			if (ffe_ctl->empty_size == 0 &&
4109 			    ffe_ctl->empty_cluster == 0)
4110 				return -ENOSPC;
4111 			ffe_ctl->empty_size = 0;
4112 			ffe_ctl->empty_cluster = 0;
4113 		}
4114 		return 1;
4115 	}
4116 	return -ENOSPC;
4117 }
4118 
4119 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4120 					struct find_free_extent_ctl *ffe_ctl,
4121 					struct btrfs_space_info *space_info,
4122 					struct btrfs_key *ins)
4123 {
4124 	/*
4125 	 * If our free space is heavily fragmented we may not be able to make
4126 	 * big contiguous allocations, so instead of doing the expensive search
4127 	 * for free space, simply return ENOSPC with our max_extent_size so we
4128 	 * can go ahead and search for a more manageable chunk.
4129 	 *
4130 	 * If our max_extent_size is large enough for our allocation simply
4131 	 * disable clustering since we will likely not be able to find enough
4132 	 * space to create a cluster and induce latency trying.
4133 	 */
4134 	if (space_info->max_extent_size) {
4135 		spin_lock(&space_info->lock);
4136 		if (space_info->max_extent_size &&
4137 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4138 			ins->offset = space_info->max_extent_size;
4139 			spin_unlock(&space_info->lock);
4140 			return -ENOSPC;
4141 		} else if (space_info->max_extent_size) {
4142 			ffe_ctl->use_cluster = false;
4143 		}
4144 		spin_unlock(&space_info->lock);
4145 	}
4146 
4147 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4148 					       &ffe_ctl->empty_cluster);
4149 	if (ffe_ctl->last_ptr) {
4150 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4151 
4152 		spin_lock(&last_ptr->lock);
4153 		if (last_ptr->block_group)
4154 			ffe_ctl->hint_byte = last_ptr->window_start;
4155 		if (last_ptr->fragmented) {
4156 			/*
4157 			 * We still set window_start so we can keep track of the
4158 			 * last place we found an allocation to try and save
4159 			 * some time.
4160 			 */
4161 			ffe_ctl->hint_byte = last_ptr->window_start;
4162 			ffe_ctl->use_cluster = false;
4163 		}
4164 		spin_unlock(&last_ptr->lock);
4165 	}
4166 
4167 	return 0;
4168 }
4169 
4170 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4171 			      struct find_free_extent_ctl *ffe_ctl,
4172 			      struct btrfs_space_info *space_info,
4173 			      struct btrfs_key *ins)
4174 {
4175 	switch (ffe_ctl->policy) {
4176 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4177 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4178 						    space_info, ins);
4179 	case BTRFS_EXTENT_ALLOC_ZONED:
4180 		if (ffe_ctl->for_treelog) {
4181 			spin_lock(&fs_info->treelog_bg_lock);
4182 			if (fs_info->treelog_bg)
4183 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4184 			spin_unlock(&fs_info->treelog_bg_lock);
4185 		}
4186 		if (ffe_ctl->for_data_reloc) {
4187 			spin_lock(&fs_info->relocation_bg_lock);
4188 			if (fs_info->data_reloc_bg)
4189 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4190 			spin_unlock(&fs_info->relocation_bg_lock);
4191 		}
4192 		return 0;
4193 	default:
4194 		BUG();
4195 	}
4196 }
4197 
4198 /*
4199  * walks the btree of allocated extents and find a hole of a given size.
4200  * The key ins is changed to record the hole:
4201  * ins->objectid == start position
4202  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4203  * ins->offset == the size of the hole.
4204  * Any available blocks before search_start are skipped.
4205  *
4206  * If there is no suitable free space, we will record the max size of
4207  * the free space extent currently.
4208  *
4209  * The overall logic and call chain:
4210  *
4211  * find_free_extent()
4212  * |- Iterate through all block groups
4213  * |  |- Get a valid block group
4214  * |  |- Try to do clustered allocation in that block group
4215  * |  |- Try to do unclustered allocation in that block group
4216  * |  |- Check if the result is valid
4217  * |  |  |- If valid, then exit
4218  * |  |- Jump to next block group
4219  * |
4220  * |- Push harder to find free extents
4221  *    |- If not found, re-iterate all block groups
4222  */
4223 static noinline int find_free_extent(struct btrfs_root *root,
4224 				     struct btrfs_key *ins,
4225 				     struct find_free_extent_ctl *ffe_ctl)
4226 {
4227 	struct btrfs_fs_info *fs_info = root->fs_info;
4228 	int ret = 0;
4229 	int cache_block_group_error = 0;
4230 	struct btrfs_block_group *block_group = NULL;
4231 	struct btrfs_space_info *space_info;
4232 	bool full_search = false;
4233 
4234 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4235 
4236 	ffe_ctl->search_start = 0;
4237 	/* For clustered allocation */
4238 	ffe_ctl->empty_cluster = 0;
4239 	ffe_ctl->last_ptr = NULL;
4240 	ffe_ctl->use_cluster = true;
4241 	ffe_ctl->have_caching_bg = false;
4242 	ffe_ctl->orig_have_caching_bg = false;
4243 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4244 	ffe_ctl->loop = 0;
4245 	/* For clustered allocation */
4246 	ffe_ctl->retry_clustered = false;
4247 	ffe_ctl->retry_unclustered = false;
4248 	ffe_ctl->cached = 0;
4249 	ffe_ctl->max_extent_size = 0;
4250 	ffe_ctl->total_free_space = 0;
4251 	ffe_ctl->found_offset = 0;
4252 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4253 
4254 	if (btrfs_is_zoned(fs_info))
4255 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4256 
4257 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4258 	ins->objectid = 0;
4259 	ins->offset = 0;
4260 
4261 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4262 			       ffe_ctl->flags);
4263 
4264 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4265 	if (!space_info) {
4266 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4267 		return -ENOSPC;
4268 	}
4269 
4270 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4271 	if (ret < 0)
4272 		return ret;
4273 
4274 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4275 				    first_logical_byte(fs_info, 0));
4276 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4277 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4278 		block_group = btrfs_lookup_block_group(fs_info,
4279 						       ffe_ctl->search_start);
4280 		/*
4281 		 * we don't want to use the block group if it doesn't match our
4282 		 * allocation bits, or if its not cached.
4283 		 *
4284 		 * However if we are re-searching with an ideal block group
4285 		 * picked out then we don't care that the block group is cached.
4286 		 */
4287 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4288 		    block_group->cached != BTRFS_CACHE_NO) {
4289 			down_read(&space_info->groups_sem);
4290 			if (list_empty(&block_group->list) ||
4291 			    block_group->ro) {
4292 				/*
4293 				 * someone is removing this block group,
4294 				 * we can't jump into the have_block_group
4295 				 * target because our list pointers are not
4296 				 * valid
4297 				 */
4298 				btrfs_put_block_group(block_group);
4299 				up_read(&space_info->groups_sem);
4300 			} else {
4301 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4302 							block_group->flags);
4303 				btrfs_lock_block_group(block_group,
4304 						       ffe_ctl->delalloc);
4305 				goto have_block_group;
4306 			}
4307 		} else if (block_group) {
4308 			btrfs_put_block_group(block_group);
4309 		}
4310 	}
4311 search:
4312 	ffe_ctl->have_caching_bg = false;
4313 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4314 	    ffe_ctl->index == 0)
4315 		full_search = true;
4316 	down_read(&space_info->groups_sem);
4317 	list_for_each_entry(block_group,
4318 			    &space_info->block_groups[ffe_ctl->index], list) {
4319 		struct btrfs_block_group *bg_ret;
4320 
4321 		/* If the block group is read-only, we can skip it entirely. */
4322 		if (unlikely(block_group->ro)) {
4323 			if (ffe_ctl->for_treelog)
4324 				btrfs_clear_treelog_bg(block_group);
4325 			if (ffe_ctl->for_data_reloc)
4326 				btrfs_clear_data_reloc_bg(block_group);
4327 			continue;
4328 		}
4329 
4330 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4331 		ffe_ctl->search_start = block_group->start;
4332 
4333 		/*
4334 		 * this can happen if we end up cycling through all the
4335 		 * raid types, but we want to make sure we only allocate
4336 		 * for the proper type.
4337 		 */
4338 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4339 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4340 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4341 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4342 				BTRFS_BLOCK_GROUP_RAID10;
4343 
4344 			/*
4345 			 * if they asked for extra copies and this block group
4346 			 * doesn't provide them, bail.  This does allow us to
4347 			 * fill raid0 from raid1.
4348 			 */
4349 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4350 				goto loop;
4351 
4352 			/*
4353 			 * This block group has different flags than we want.
4354 			 * It's possible that we have MIXED_GROUP flag but no
4355 			 * block group is mixed.  Just skip such block group.
4356 			 */
4357 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4358 			continue;
4359 		}
4360 
4361 have_block_group:
4362 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4363 		if (unlikely(!ffe_ctl->cached)) {
4364 			ffe_ctl->have_caching_bg = true;
4365 			ret = btrfs_cache_block_group(block_group, 0);
4366 
4367 			/*
4368 			 * If we get ENOMEM here or something else we want to
4369 			 * try other block groups, because it may not be fatal.
4370 			 * However if we can't find anything else we need to
4371 			 * save our return here so that we return the actual
4372 			 * error that caused problems, not ENOSPC.
4373 			 */
4374 			if (ret < 0) {
4375 				if (!cache_block_group_error)
4376 					cache_block_group_error = ret;
4377 				ret = 0;
4378 				goto loop;
4379 			}
4380 			ret = 0;
4381 		}
4382 
4383 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4384 			goto loop;
4385 
4386 		bg_ret = NULL;
4387 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4388 		if (ret == 0) {
4389 			if (bg_ret && bg_ret != block_group) {
4390 				btrfs_release_block_group(block_group,
4391 							  ffe_ctl->delalloc);
4392 				block_group = bg_ret;
4393 			}
4394 		} else if (ret == -EAGAIN) {
4395 			goto have_block_group;
4396 		} else if (ret > 0) {
4397 			goto loop;
4398 		}
4399 
4400 		/* Checks */
4401 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4402 						 fs_info->stripesize);
4403 
4404 		/* move on to the next group */
4405 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4406 		    block_group->start + block_group->length) {
4407 			btrfs_add_free_space_unused(block_group,
4408 					    ffe_ctl->found_offset,
4409 					    ffe_ctl->num_bytes);
4410 			goto loop;
4411 		}
4412 
4413 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4414 			btrfs_add_free_space_unused(block_group,
4415 					ffe_ctl->found_offset,
4416 					ffe_ctl->search_start - ffe_ctl->found_offset);
4417 
4418 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4419 					       ffe_ctl->num_bytes,
4420 					       ffe_ctl->delalloc);
4421 		if (ret == -EAGAIN) {
4422 			btrfs_add_free_space_unused(block_group,
4423 					ffe_ctl->found_offset,
4424 					ffe_ctl->num_bytes);
4425 			goto loop;
4426 		}
4427 		btrfs_inc_block_group_reservations(block_group);
4428 
4429 		/* we are all good, lets return */
4430 		ins->objectid = ffe_ctl->search_start;
4431 		ins->offset = ffe_ctl->num_bytes;
4432 
4433 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4434 					   ffe_ctl->num_bytes);
4435 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4436 		break;
4437 loop:
4438 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4439 		cond_resched();
4440 	}
4441 	up_read(&space_info->groups_sem);
4442 
4443 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4444 	if (ret > 0)
4445 		goto search;
4446 
4447 	if (ret == -ENOSPC && !cache_block_group_error) {
4448 		/*
4449 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4450 		 * any contiguous hole.
4451 		 */
4452 		if (!ffe_ctl->max_extent_size)
4453 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4454 		spin_lock(&space_info->lock);
4455 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4456 		spin_unlock(&space_info->lock);
4457 		ins->offset = ffe_ctl->max_extent_size;
4458 	} else if (ret == -ENOSPC) {
4459 		ret = cache_block_group_error;
4460 	}
4461 	return ret;
4462 }
4463 
4464 /*
4465  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4466  *			  hole that is at least as big as @num_bytes.
4467  *
4468  * @root           -	The root that will contain this extent
4469  *
4470  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4471  *			is used for accounting purposes. This value differs
4472  *			from @num_bytes only in the case of compressed extents.
4473  *
4474  * @num_bytes      -	Number of bytes to allocate on-disk.
4475  *
4476  * @min_alloc_size -	Indicates the minimum amount of space that the
4477  *			allocator should try to satisfy. In some cases
4478  *			@num_bytes may be larger than what is required and if
4479  *			the filesystem is fragmented then allocation fails.
4480  *			However, the presence of @min_alloc_size gives a
4481  *			chance to try and satisfy the smaller allocation.
4482  *
4483  * @empty_size     -	A hint that you plan on doing more COW. This is the
4484  *			size in bytes the allocator should try to find free
4485  *			next to the block it returns.  This is just a hint and
4486  *			may be ignored by the allocator.
4487  *
4488  * @hint_byte      -	Hint to the allocator to start searching above the byte
4489  *			address passed. It might be ignored.
4490  *
4491  * @ins            -	This key is modified to record the found hole. It will
4492  *			have the following values:
4493  *			ins->objectid == start position
4494  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4495  *			ins->offset == the size of the hole.
4496  *
4497  * @is_data        -	Boolean flag indicating whether an extent is
4498  *			allocated for data (true) or metadata (false)
4499  *
4500  * @delalloc       -	Boolean flag indicating whether this allocation is for
4501  *			delalloc or not. If 'true' data_rwsem of block groups
4502  *			is going to be acquired.
4503  *
4504  *
4505  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4506  * case -ENOSPC is returned then @ins->offset will contain the size of the
4507  * largest available hole the allocator managed to find.
4508  */
4509 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4510 			 u64 num_bytes, u64 min_alloc_size,
4511 			 u64 empty_size, u64 hint_byte,
4512 			 struct btrfs_key *ins, int is_data, int delalloc)
4513 {
4514 	struct btrfs_fs_info *fs_info = root->fs_info;
4515 	struct find_free_extent_ctl ffe_ctl = {};
4516 	bool final_tried = num_bytes == min_alloc_size;
4517 	u64 flags;
4518 	int ret;
4519 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4520 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4521 
4522 	flags = get_alloc_profile_by_root(root, is_data);
4523 again:
4524 	WARN_ON(num_bytes < fs_info->sectorsize);
4525 
4526 	ffe_ctl.ram_bytes = ram_bytes;
4527 	ffe_ctl.num_bytes = num_bytes;
4528 	ffe_ctl.min_alloc_size = min_alloc_size;
4529 	ffe_ctl.empty_size = empty_size;
4530 	ffe_ctl.flags = flags;
4531 	ffe_ctl.delalloc = delalloc;
4532 	ffe_ctl.hint_byte = hint_byte;
4533 	ffe_ctl.for_treelog = for_treelog;
4534 	ffe_ctl.for_data_reloc = for_data_reloc;
4535 
4536 	ret = find_free_extent(root, ins, &ffe_ctl);
4537 	if (!ret && !is_data) {
4538 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4539 	} else if (ret == -ENOSPC) {
4540 		if (!final_tried && ins->offset) {
4541 			num_bytes = min(num_bytes >> 1, ins->offset);
4542 			num_bytes = round_down(num_bytes,
4543 					       fs_info->sectorsize);
4544 			num_bytes = max(num_bytes, min_alloc_size);
4545 			ram_bytes = num_bytes;
4546 			if (num_bytes == min_alloc_size)
4547 				final_tried = true;
4548 			goto again;
4549 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4550 			struct btrfs_space_info *sinfo;
4551 
4552 			sinfo = btrfs_find_space_info(fs_info, flags);
4553 			btrfs_err(fs_info,
4554 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4555 				  flags, num_bytes, for_treelog, for_data_reloc);
4556 			if (sinfo)
4557 				btrfs_dump_space_info(fs_info, sinfo,
4558 						      num_bytes, 1);
4559 		}
4560 	}
4561 
4562 	return ret;
4563 }
4564 
4565 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4566 			       u64 start, u64 len, int delalloc)
4567 {
4568 	struct btrfs_block_group *cache;
4569 
4570 	cache = btrfs_lookup_block_group(fs_info, start);
4571 	if (!cache) {
4572 		btrfs_err(fs_info, "Unable to find block group for %llu",
4573 			  start);
4574 		return -ENOSPC;
4575 	}
4576 
4577 	btrfs_add_free_space(cache, start, len);
4578 	btrfs_free_reserved_bytes(cache, len, delalloc);
4579 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4580 
4581 	btrfs_put_block_group(cache);
4582 	return 0;
4583 }
4584 
4585 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4586 			      u64 len)
4587 {
4588 	struct btrfs_block_group *cache;
4589 	int ret = 0;
4590 
4591 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4592 	if (!cache) {
4593 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4594 			  start);
4595 		return -ENOSPC;
4596 	}
4597 
4598 	ret = pin_down_extent(trans, cache, start, len, 1);
4599 	btrfs_put_block_group(cache);
4600 	return ret;
4601 }
4602 
4603 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4604 				 u64 num_bytes)
4605 {
4606 	struct btrfs_fs_info *fs_info = trans->fs_info;
4607 	int ret;
4608 
4609 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4610 	if (ret)
4611 		return ret;
4612 
4613 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4614 	if (ret) {
4615 		ASSERT(!ret);
4616 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4617 			  bytenr, num_bytes);
4618 		return ret;
4619 	}
4620 
4621 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4622 	return 0;
4623 }
4624 
4625 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4626 				      u64 parent, u64 root_objectid,
4627 				      u64 flags, u64 owner, u64 offset,
4628 				      struct btrfs_key *ins, int ref_mod)
4629 {
4630 	struct btrfs_fs_info *fs_info = trans->fs_info;
4631 	struct btrfs_root *extent_root;
4632 	int ret;
4633 	struct btrfs_extent_item *extent_item;
4634 	struct btrfs_extent_inline_ref *iref;
4635 	struct btrfs_path *path;
4636 	struct extent_buffer *leaf;
4637 	int type;
4638 	u32 size;
4639 
4640 	if (parent > 0)
4641 		type = BTRFS_SHARED_DATA_REF_KEY;
4642 	else
4643 		type = BTRFS_EXTENT_DATA_REF_KEY;
4644 
4645 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4646 
4647 	path = btrfs_alloc_path();
4648 	if (!path)
4649 		return -ENOMEM;
4650 
4651 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4652 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4653 	if (ret) {
4654 		btrfs_free_path(path);
4655 		return ret;
4656 	}
4657 
4658 	leaf = path->nodes[0];
4659 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4660 				     struct btrfs_extent_item);
4661 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4662 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4663 	btrfs_set_extent_flags(leaf, extent_item,
4664 			       flags | BTRFS_EXTENT_FLAG_DATA);
4665 
4666 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4667 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4668 	if (parent > 0) {
4669 		struct btrfs_shared_data_ref *ref;
4670 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4671 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4672 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4673 	} else {
4674 		struct btrfs_extent_data_ref *ref;
4675 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4676 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4677 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4678 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4679 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4680 	}
4681 
4682 	btrfs_mark_buffer_dirty(path->nodes[0]);
4683 	btrfs_free_path(path);
4684 
4685 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4686 }
4687 
4688 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4689 				     struct btrfs_delayed_ref_node *node,
4690 				     struct btrfs_delayed_extent_op *extent_op)
4691 {
4692 	struct btrfs_fs_info *fs_info = trans->fs_info;
4693 	struct btrfs_root *extent_root;
4694 	int ret;
4695 	struct btrfs_extent_item *extent_item;
4696 	struct btrfs_key extent_key;
4697 	struct btrfs_tree_block_info *block_info;
4698 	struct btrfs_extent_inline_ref *iref;
4699 	struct btrfs_path *path;
4700 	struct extent_buffer *leaf;
4701 	struct btrfs_delayed_tree_ref *ref;
4702 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4703 	u64 flags = extent_op->flags_to_set;
4704 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4705 
4706 	ref = btrfs_delayed_node_to_tree_ref(node);
4707 
4708 	extent_key.objectid = node->bytenr;
4709 	if (skinny_metadata) {
4710 		extent_key.offset = ref->level;
4711 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4712 	} else {
4713 		extent_key.offset = node->num_bytes;
4714 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4715 		size += sizeof(*block_info);
4716 	}
4717 
4718 	path = btrfs_alloc_path();
4719 	if (!path)
4720 		return -ENOMEM;
4721 
4722 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4723 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4724 				      size);
4725 	if (ret) {
4726 		btrfs_free_path(path);
4727 		return ret;
4728 	}
4729 
4730 	leaf = path->nodes[0];
4731 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4732 				     struct btrfs_extent_item);
4733 	btrfs_set_extent_refs(leaf, extent_item, 1);
4734 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4735 	btrfs_set_extent_flags(leaf, extent_item,
4736 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4737 
4738 	if (skinny_metadata) {
4739 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4740 	} else {
4741 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4742 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4743 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4744 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4745 	}
4746 
4747 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4748 		btrfs_set_extent_inline_ref_type(leaf, iref,
4749 						 BTRFS_SHARED_BLOCK_REF_KEY);
4750 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4751 	} else {
4752 		btrfs_set_extent_inline_ref_type(leaf, iref,
4753 						 BTRFS_TREE_BLOCK_REF_KEY);
4754 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4755 	}
4756 
4757 	btrfs_mark_buffer_dirty(leaf);
4758 	btrfs_free_path(path);
4759 
4760 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4761 }
4762 
4763 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4764 				     struct btrfs_root *root, u64 owner,
4765 				     u64 offset, u64 ram_bytes,
4766 				     struct btrfs_key *ins)
4767 {
4768 	struct btrfs_ref generic_ref = { 0 };
4769 
4770 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4771 
4772 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4773 			       ins->objectid, ins->offset, 0);
4774 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4775 			    offset, 0, false);
4776 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4777 
4778 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4779 }
4780 
4781 /*
4782  * this is used by the tree logging recovery code.  It records that
4783  * an extent has been allocated and makes sure to clear the free
4784  * space cache bits as well
4785  */
4786 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4787 				   u64 root_objectid, u64 owner, u64 offset,
4788 				   struct btrfs_key *ins)
4789 {
4790 	struct btrfs_fs_info *fs_info = trans->fs_info;
4791 	int ret;
4792 	struct btrfs_block_group *block_group;
4793 	struct btrfs_space_info *space_info;
4794 
4795 	/*
4796 	 * Mixed block groups will exclude before processing the log so we only
4797 	 * need to do the exclude dance if this fs isn't mixed.
4798 	 */
4799 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4800 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4801 					      ins->offset);
4802 		if (ret)
4803 			return ret;
4804 	}
4805 
4806 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4807 	if (!block_group)
4808 		return -EINVAL;
4809 
4810 	space_info = block_group->space_info;
4811 	spin_lock(&space_info->lock);
4812 	spin_lock(&block_group->lock);
4813 	space_info->bytes_reserved += ins->offset;
4814 	block_group->reserved += ins->offset;
4815 	spin_unlock(&block_group->lock);
4816 	spin_unlock(&space_info->lock);
4817 
4818 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4819 					 offset, ins, 1);
4820 	if (ret)
4821 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4822 	btrfs_put_block_group(block_group);
4823 	return ret;
4824 }
4825 
4826 static struct extent_buffer *
4827 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4828 		      u64 bytenr, int level, u64 owner,
4829 		      enum btrfs_lock_nesting nest)
4830 {
4831 	struct btrfs_fs_info *fs_info = root->fs_info;
4832 	struct extent_buffer *buf;
4833 
4834 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4835 	if (IS_ERR(buf))
4836 		return buf;
4837 
4838 	/*
4839 	 * Extra safety check in case the extent tree is corrupted and extent
4840 	 * allocator chooses to use a tree block which is already used and
4841 	 * locked.
4842 	 */
4843 	if (buf->lock_owner == current->pid) {
4844 		btrfs_err_rl(fs_info,
4845 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4846 			buf->start, btrfs_header_owner(buf), current->pid);
4847 		free_extent_buffer(buf);
4848 		return ERR_PTR(-EUCLEAN);
4849 	}
4850 
4851 	/*
4852 	 * This needs to stay, because we could allocate a freed block from an
4853 	 * old tree into a new tree, so we need to make sure this new block is
4854 	 * set to the appropriate level and owner.
4855 	 */
4856 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4857 	__btrfs_tree_lock(buf, nest);
4858 	btrfs_clean_tree_block(buf);
4859 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4860 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4861 
4862 	set_extent_buffer_uptodate(buf);
4863 
4864 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4865 	btrfs_set_header_level(buf, level);
4866 	btrfs_set_header_bytenr(buf, buf->start);
4867 	btrfs_set_header_generation(buf, trans->transid);
4868 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4869 	btrfs_set_header_owner(buf, owner);
4870 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4871 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4872 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4873 		buf->log_index = root->log_transid % 2;
4874 		/*
4875 		 * we allow two log transactions at a time, use different
4876 		 * EXTENT bit to differentiate dirty pages.
4877 		 */
4878 		if (buf->log_index == 0)
4879 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4880 					buf->start + buf->len - 1, GFP_NOFS);
4881 		else
4882 			set_extent_new(&root->dirty_log_pages, buf->start,
4883 					buf->start + buf->len - 1);
4884 	} else {
4885 		buf->log_index = -1;
4886 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4887 			 buf->start + buf->len - 1, GFP_NOFS);
4888 	}
4889 	/* this returns a buffer locked for blocking */
4890 	return buf;
4891 }
4892 
4893 /*
4894  * finds a free extent and does all the dirty work required for allocation
4895  * returns the tree buffer or an ERR_PTR on error.
4896  */
4897 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4898 					     struct btrfs_root *root,
4899 					     u64 parent, u64 root_objectid,
4900 					     const struct btrfs_disk_key *key,
4901 					     int level, u64 hint,
4902 					     u64 empty_size,
4903 					     enum btrfs_lock_nesting nest)
4904 {
4905 	struct btrfs_fs_info *fs_info = root->fs_info;
4906 	struct btrfs_key ins;
4907 	struct btrfs_block_rsv *block_rsv;
4908 	struct extent_buffer *buf;
4909 	struct btrfs_delayed_extent_op *extent_op;
4910 	struct btrfs_ref generic_ref = { 0 };
4911 	u64 flags = 0;
4912 	int ret;
4913 	u32 blocksize = fs_info->nodesize;
4914 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4915 
4916 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4917 	if (btrfs_is_testing(fs_info)) {
4918 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4919 					    level, root_objectid, nest);
4920 		if (!IS_ERR(buf))
4921 			root->alloc_bytenr += blocksize;
4922 		return buf;
4923 	}
4924 #endif
4925 
4926 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4927 	if (IS_ERR(block_rsv))
4928 		return ERR_CAST(block_rsv);
4929 
4930 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4931 				   empty_size, hint, &ins, 0, 0);
4932 	if (ret)
4933 		goto out_unuse;
4934 
4935 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4936 				    root_objectid, nest);
4937 	if (IS_ERR(buf)) {
4938 		ret = PTR_ERR(buf);
4939 		goto out_free_reserved;
4940 	}
4941 
4942 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4943 		if (parent == 0)
4944 			parent = ins.objectid;
4945 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4946 	} else
4947 		BUG_ON(parent > 0);
4948 
4949 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4950 		extent_op = btrfs_alloc_delayed_extent_op();
4951 		if (!extent_op) {
4952 			ret = -ENOMEM;
4953 			goto out_free_buf;
4954 		}
4955 		if (key)
4956 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4957 		else
4958 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4959 		extent_op->flags_to_set = flags;
4960 		extent_op->update_key = skinny_metadata ? false : true;
4961 		extent_op->update_flags = true;
4962 		extent_op->is_data = false;
4963 		extent_op->level = level;
4964 
4965 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4966 				       ins.objectid, ins.offset, parent);
4967 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4968 				    root->root_key.objectid, false);
4969 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4970 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4971 		if (ret)
4972 			goto out_free_delayed;
4973 	}
4974 	return buf;
4975 
4976 out_free_delayed:
4977 	btrfs_free_delayed_extent_op(extent_op);
4978 out_free_buf:
4979 	btrfs_tree_unlock(buf);
4980 	free_extent_buffer(buf);
4981 out_free_reserved:
4982 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4983 out_unuse:
4984 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4985 	return ERR_PTR(ret);
4986 }
4987 
4988 struct walk_control {
4989 	u64 refs[BTRFS_MAX_LEVEL];
4990 	u64 flags[BTRFS_MAX_LEVEL];
4991 	struct btrfs_key update_progress;
4992 	struct btrfs_key drop_progress;
4993 	int drop_level;
4994 	int stage;
4995 	int level;
4996 	int shared_level;
4997 	int update_ref;
4998 	int keep_locks;
4999 	int reada_slot;
5000 	int reada_count;
5001 	int restarted;
5002 };
5003 
5004 #define DROP_REFERENCE	1
5005 #define UPDATE_BACKREF	2
5006 
5007 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5008 				     struct btrfs_root *root,
5009 				     struct walk_control *wc,
5010 				     struct btrfs_path *path)
5011 {
5012 	struct btrfs_fs_info *fs_info = root->fs_info;
5013 	u64 bytenr;
5014 	u64 generation;
5015 	u64 refs;
5016 	u64 flags;
5017 	u32 nritems;
5018 	struct btrfs_key key;
5019 	struct extent_buffer *eb;
5020 	int ret;
5021 	int slot;
5022 	int nread = 0;
5023 
5024 	if (path->slots[wc->level] < wc->reada_slot) {
5025 		wc->reada_count = wc->reada_count * 2 / 3;
5026 		wc->reada_count = max(wc->reada_count, 2);
5027 	} else {
5028 		wc->reada_count = wc->reada_count * 3 / 2;
5029 		wc->reada_count = min_t(int, wc->reada_count,
5030 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5031 	}
5032 
5033 	eb = path->nodes[wc->level];
5034 	nritems = btrfs_header_nritems(eb);
5035 
5036 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5037 		if (nread >= wc->reada_count)
5038 			break;
5039 
5040 		cond_resched();
5041 		bytenr = btrfs_node_blockptr(eb, slot);
5042 		generation = btrfs_node_ptr_generation(eb, slot);
5043 
5044 		if (slot == path->slots[wc->level])
5045 			goto reada;
5046 
5047 		if (wc->stage == UPDATE_BACKREF &&
5048 		    generation <= root->root_key.offset)
5049 			continue;
5050 
5051 		/* We don't lock the tree block, it's OK to be racy here */
5052 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5053 					       wc->level - 1, 1, &refs,
5054 					       &flags);
5055 		/* We don't care about errors in readahead. */
5056 		if (ret < 0)
5057 			continue;
5058 		BUG_ON(refs == 0);
5059 
5060 		if (wc->stage == DROP_REFERENCE) {
5061 			if (refs == 1)
5062 				goto reada;
5063 
5064 			if (wc->level == 1 &&
5065 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5066 				continue;
5067 			if (!wc->update_ref ||
5068 			    generation <= root->root_key.offset)
5069 				continue;
5070 			btrfs_node_key_to_cpu(eb, &key, slot);
5071 			ret = btrfs_comp_cpu_keys(&key,
5072 						  &wc->update_progress);
5073 			if (ret < 0)
5074 				continue;
5075 		} else {
5076 			if (wc->level == 1 &&
5077 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5078 				continue;
5079 		}
5080 reada:
5081 		btrfs_readahead_node_child(eb, slot);
5082 		nread++;
5083 	}
5084 	wc->reada_slot = slot;
5085 }
5086 
5087 /*
5088  * helper to process tree block while walking down the tree.
5089  *
5090  * when wc->stage == UPDATE_BACKREF, this function updates
5091  * back refs for pointers in the block.
5092  *
5093  * NOTE: return value 1 means we should stop walking down.
5094  */
5095 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5096 				   struct btrfs_root *root,
5097 				   struct btrfs_path *path,
5098 				   struct walk_control *wc, int lookup_info)
5099 {
5100 	struct btrfs_fs_info *fs_info = root->fs_info;
5101 	int level = wc->level;
5102 	struct extent_buffer *eb = path->nodes[level];
5103 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5104 	int ret;
5105 
5106 	if (wc->stage == UPDATE_BACKREF &&
5107 	    btrfs_header_owner(eb) != root->root_key.objectid)
5108 		return 1;
5109 
5110 	/*
5111 	 * when reference count of tree block is 1, it won't increase
5112 	 * again. once full backref flag is set, we never clear it.
5113 	 */
5114 	if (lookup_info &&
5115 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5116 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5117 		BUG_ON(!path->locks[level]);
5118 		ret = btrfs_lookup_extent_info(trans, fs_info,
5119 					       eb->start, level, 1,
5120 					       &wc->refs[level],
5121 					       &wc->flags[level]);
5122 		BUG_ON(ret == -ENOMEM);
5123 		if (ret)
5124 			return ret;
5125 		BUG_ON(wc->refs[level] == 0);
5126 	}
5127 
5128 	if (wc->stage == DROP_REFERENCE) {
5129 		if (wc->refs[level] > 1)
5130 			return 1;
5131 
5132 		if (path->locks[level] && !wc->keep_locks) {
5133 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5134 			path->locks[level] = 0;
5135 		}
5136 		return 0;
5137 	}
5138 
5139 	/* wc->stage == UPDATE_BACKREF */
5140 	if (!(wc->flags[level] & flag)) {
5141 		BUG_ON(!path->locks[level]);
5142 		ret = btrfs_inc_ref(trans, root, eb, 1);
5143 		BUG_ON(ret); /* -ENOMEM */
5144 		ret = btrfs_dec_ref(trans, root, eb, 0);
5145 		BUG_ON(ret); /* -ENOMEM */
5146 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5147 						  btrfs_header_level(eb), 0);
5148 		BUG_ON(ret); /* -ENOMEM */
5149 		wc->flags[level] |= flag;
5150 	}
5151 
5152 	/*
5153 	 * the block is shared by multiple trees, so it's not good to
5154 	 * keep the tree lock
5155 	 */
5156 	if (path->locks[level] && level > 0) {
5157 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5158 		path->locks[level] = 0;
5159 	}
5160 	return 0;
5161 }
5162 
5163 /*
5164  * This is used to verify a ref exists for this root to deal with a bug where we
5165  * would have a drop_progress key that hadn't been updated properly.
5166  */
5167 static int check_ref_exists(struct btrfs_trans_handle *trans,
5168 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5169 			    int level)
5170 {
5171 	struct btrfs_path *path;
5172 	struct btrfs_extent_inline_ref *iref;
5173 	int ret;
5174 
5175 	path = btrfs_alloc_path();
5176 	if (!path)
5177 		return -ENOMEM;
5178 
5179 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5180 				    root->fs_info->nodesize, parent,
5181 				    root->root_key.objectid, level, 0);
5182 	btrfs_free_path(path);
5183 	if (ret == -ENOENT)
5184 		return 0;
5185 	if (ret < 0)
5186 		return ret;
5187 	return 1;
5188 }
5189 
5190 /*
5191  * helper to process tree block pointer.
5192  *
5193  * when wc->stage == DROP_REFERENCE, this function checks
5194  * reference count of the block pointed to. if the block
5195  * is shared and we need update back refs for the subtree
5196  * rooted at the block, this function changes wc->stage to
5197  * UPDATE_BACKREF. if the block is shared and there is no
5198  * need to update back, this function drops the reference
5199  * to the block.
5200  *
5201  * NOTE: return value 1 means we should stop walking down.
5202  */
5203 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5204 				 struct btrfs_root *root,
5205 				 struct btrfs_path *path,
5206 				 struct walk_control *wc, int *lookup_info)
5207 {
5208 	struct btrfs_fs_info *fs_info = root->fs_info;
5209 	u64 bytenr;
5210 	u64 generation;
5211 	u64 parent;
5212 	struct btrfs_key key;
5213 	struct btrfs_key first_key;
5214 	struct btrfs_ref ref = { 0 };
5215 	struct extent_buffer *next;
5216 	int level = wc->level;
5217 	int reada = 0;
5218 	int ret = 0;
5219 	bool need_account = false;
5220 
5221 	generation = btrfs_node_ptr_generation(path->nodes[level],
5222 					       path->slots[level]);
5223 	/*
5224 	 * if the lower level block was created before the snapshot
5225 	 * was created, we know there is no need to update back refs
5226 	 * for the subtree
5227 	 */
5228 	if (wc->stage == UPDATE_BACKREF &&
5229 	    generation <= root->root_key.offset) {
5230 		*lookup_info = 1;
5231 		return 1;
5232 	}
5233 
5234 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5235 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5236 			      path->slots[level]);
5237 
5238 	next = find_extent_buffer(fs_info, bytenr);
5239 	if (!next) {
5240 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5241 				root->root_key.objectid, level - 1);
5242 		if (IS_ERR(next))
5243 			return PTR_ERR(next);
5244 		reada = 1;
5245 	}
5246 	btrfs_tree_lock(next);
5247 
5248 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5249 				       &wc->refs[level - 1],
5250 				       &wc->flags[level - 1]);
5251 	if (ret < 0)
5252 		goto out_unlock;
5253 
5254 	if (unlikely(wc->refs[level - 1] == 0)) {
5255 		btrfs_err(fs_info, "Missing references.");
5256 		ret = -EIO;
5257 		goto out_unlock;
5258 	}
5259 	*lookup_info = 0;
5260 
5261 	if (wc->stage == DROP_REFERENCE) {
5262 		if (wc->refs[level - 1] > 1) {
5263 			need_account = true;
5264 			if (level == 1 &&
5265 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5266 				goto skip;
5267 
5268 			if (!wc->update_ref ||
5269 			    generation <= root->root_key.offset)
5270 				goto skip;
5271 
5272 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5273 					      path->slots[level]);
5274 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5275 			if (ret < 0)
5276 				goto skip;
5277 
5278 			wc->stage = UPDATE_BACKREF;
5279 			wc->shared_level = level - 1;
5280 		}
5281 	} else {
5282 		if (level == 1 &&
5283 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5284 			goto skip;
5285 	}
5286 
5287 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5288 		btrfs_tree_unlock(next);
5289 		free_extent_buffer(next);
5290 		next = NULL;
5291 		*lookup_info = 1;
5292 	}
5293 
5294 	if (!next) {
5295 		if (reada && level == 1)
5296 			reada_walk_down(trans, root, wc, path);
5297 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5298 				       generation, level - 1, &first_key);
5299 		if (IS_ERR(next)) {
5300 			return PTR_ERR(next);
5301 		} else if (!extent_buffer_uptodate(next)) {
5302 			free_extent_buffer(next);
5303 			return -EIO;
5304 		}
5305 		btrfs_tree_lock(next);
5306 	}
5307 
5308 	level--;
5309 	ASSERT(level == btrfs_header_level(next));
5310 	if (level != btrfs_header_level(next)) {
5311 		btrfs_err(root->fs_info, "mismatched level");
5312 		ret = -EIO;
5313 		goto out_unlock;
5314 	}
5315 	path->nodes[level] = next;
5316 	path->slots[level] = 0;
5317 	path->locks[level] = BTRFS_WRITE_LOCK;
5318 	wc->level = level;
5319 	if (wc->level == 1)
5320 		wc->reada_slot = 0;
5321 	return 0;
5322 skip:
5323 	wc->refs[level - 1] = 0;
5324 	wc->flags[level - 1] = 0;
5325 	if (wc->stage == DROP_REFERENCE) {
5326 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5327 			parent = path->nodes[level]->start;
5328 		} else {
5329 			ASSERT(root->root_key.objectid ==
5330 			       btrfs_header_owner(path->nodes[level]));
5331 			if (root->root_key.objectid !=
5332 			    btrfs_header_owner(path->nodes[level])) {
5333 				btrfs_err(root->fs_info,
5334 						"mismatched block owner");
5335 				ret = -EIO;
5336 				goto out_unlock;
5337 			}
5338 			parent = 0;
5339 		}
5340 
5341 		/*
5342 		 * If we had a drop_progress we need to verify the refs are set
5343 		 * as expected.  If we find our ref then we know that from here
5344 		 * on out everything should be correct, and we can clear the
5345 		 * ->restarted flag.
5346 		 */
5347 		if (wc->restarted) {
5348 			ret = check_ref_exists(trans, root, bytenr, parent,
5349 					       level - 1);
5350 			if (ret < 0)
5351 				goto out_unlock;
5352 			if (ret == 0)
5353 				goto no_delete;
5354 			ret = 0;
5355 			wc->restarted = 0;
5356 		}
5357 
5358 		/*
5359 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5360 		 * already accounted them at merge time (replace_path),
5361 		 * thus we could skip expensive subtree trace here.
5362 		 */
5363 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5364 		    need_account) {
5365 			ret = btrfs_qgroup_trace_subtree(trans, next,
5366 							 generation, level - 1);
5367 			if (ret) {
5368 				btrfs_err_rl(fs_info,
5369 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5370 					     ret);
5371 			}
5372 		}
5373 
5374 		/*
5375 		 * We need to update the next key in our walk control so we can
5376 		 * update the drop_progress key accordingly.  We don't care if
5377 		 * find_next_key doesn't find a key because that means we're at
5378 		 * the end and are going to clean up now.
5379 		 */
5380 		wc->drop_level = level;
5381 		find_next_key(path, level, &wc->drop_progress);
5382 
5383 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5384 				       fs_info->nodesize, parent);
5385 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5386 				    0, false);
5387 		ret = btrfs_free_extent(trans, &ref);
5388 		if (ret)
5389 			goto out_unlock;
5390 	}
5391 no_delete:
5392 	*lookup_info = 1;
5393 	ret = 1;
5394 
5395 out_unlock:
5396 	btrfs_tree_unlock(next);
5397 	free_extent_buffer(next);
5398 
5399 	return ret;
5400 }
5401 
5402 /*
5403  * helper to process tree block while walking up the tree.
5404  *
5405  * when wc->stage == DROP_REFERENCE, this function drops
5406  * reference count on the block.
5407  *
5408  * when wc->stage == UPDATE_BACKREF, this function changes
5409  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5410  * to UPDATE_BACKREF previously while processing the block.
5411  *
5412  * NOTE: return value 1 means we should stop walking up.
5413  */
5414 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5415 				 struct btrfs_root *root,
5416 				 struct btrfs_path *path,
5417 				 struct walk_control *wc)
5418 {
5419 	struct btrfs_fs_info *fs_info = root->fs_info;
5420 	int ret;
5421 	int level = wc->level;
5422 	struct extent_buffer *eb = path->nodes[level];
5423 	u64 parent = 0;
5424 
5425 	if (wc->stage == UPDATE_BACKREF) {
5426 		BUG_ON(wc->shared_level < level);
5427 		if (level < wc->shared_level)
5428 			goto out;
5429 
5430 		ret = find_next_key(path, level + 1, &wc->update_progress);
5431 		if (ret > 0)
5432 			wc->update_ref = 0;
5433 
5434 		wc->stage = DROP_REFERENCE;
5435 		wc->shared_level = -1;
5436 		path->slots[level] = 0;
5437 
5438 		/*
5439 		 * check reference count again if the block isn't locked.
5440 		 * we should start walking down the tree again if reference
5441 		 * count is one.
5442 		 */
5443 		if (!path->locks[level]) {
5444 			BUG_ON(level == 0);
5445 			btrfs_tree_lock(eb);
5446 			path->locks[level] = BTRFS_WRITE_LOCK;
5447 
5448 			ret = btrfs_lookup_extent_info(trans, fs_info,
5449 						       eb->start, level, 1,
5450 						       &wc->refs[level],
5451 						       &wc->flags[level]);
5452 			if (ret < 0) {
5453 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5454 				path->locks[level] = 0;
5455 				return ret;
5456 			}
5457 			BUG_ON(wc->refs[level] == 0);
5458 			if (wc->refs[level] == 1) {
5459 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5460 				path->locks[level] = 0;
5461 				return 1;
5462 			}
5463 		}
5464 	}
5465 
5466 	/* wc->stage == DROP_REFERENCE */
5467 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5468 
5469 	if (wc->refs[level] == 1) {
5470 		if (level == 0) {
5471 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5472 				ret = btrfs_dec_ref(trans, root, eb, 1);
5473 			else
5474 				ret = btrfs_dec_ref(trans, root, eb, 0);
5475 			BUG_ON(ret); /* -ENOMEM */
5476 			if (is_fstree(root->root_key.objectid)) {
5477 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5478 				if (ret) {
5479 					btrfs_err_rl(fs_info,
5480 	"error %d accounting leaf items, quota is out of sync, rescan required",
5481 					     ret);
5482 				}
5483 			}
5484 		}
5485 		/* make block locked assertion in btrfs_clean_tree_block happy */
5486 		if (!path->locks[level] &&
5487 		    btrfs_header_generation(eb) == trans->transid) {
5488 			btrfs_tree_lock(eb);
5489 			path->locks[level] = BTRFS_WRITE_LOCK;
5490 		}
5491 		btrfs_clean_tree_block(eb);
5492 	}
5493 
5494 	if (eb == root->node) {
5495 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5496 			parent = eb->start;
5497 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5498 			goto owner_mismatch;
5499 	} else {
5500 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5501 			parent = path->nodes[level + 1]->start;
5502 		else if (root->root_key.objectid !=
5503 			 btrfs_header_owner(path->nodes[level + 1]))
5504 			goto owner_mismatch;
5505 	}
5506 
5507 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5508 			      wc->refs[level] == 1);
5509 out:
5510 	wc->refs[level] = 0;
5511 	wc->flags[level] = 0;
5512 	return 0;
5513 
5514 owner_mismatch:
5515 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5516 		     btrfs_header_owner(eb), root->root_key.objectid);
5517 	return -EUCLEAN;
5518 }
5519 
5520 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5521 				   struct btrfs_root *root,
5522 				   struct btrfs_path *path,
5523 				   struct walk_control *wc)
5524 {
5525 	int level = wc->level;
5526 	int lookup_info = 1;
5527 	int ret;
5528 
5529 	while (level >= 0) {
5530 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5531 		if (ret > 0)
5532 			break;
5533 
5534 		if (level == 0)
5535 			break;
5536 
5537 		if (path->slots[level] >=
5538 		    btrfs_header_nritems(path->nodes[level]))
5539 			break;
5540 
5541 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5542 		if (ret > 0) {
5543 			path->slots[level]++;
5544 			continue;
5545 		} else if (ret < 0)
5546 			return ret;
5547 		level = wc->level;
5548 	}
5549 	return 0;
5550 }
5551 
5552 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5553 				 struct btrfs_root *root,
5554 				 struct btrfs_path *path,
5555 				 struct walk_control *wc, int max_level)
5556 {
5557 	int level = wc->level;
5558 	int ret;
5559 
5560 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5561 	while (level < max_level && path->nodes[level]) {
5562 		wc->level = level;
5563 		if (path->slots[level] + 1 <
5564 		    btrfs_header_nritems(path->nodes[level])) {
5565 			path->slots[level]++;
5566 			return 0;
5567 		} else {
5568 			ret = walk_up_proc(trans, root, path, wc);
5569 			if (ret > 0)
5570 				return 0;
5571 			if (ret < 0)
5572 				return ret;
5573 
5574 			if (path->locks[level]) {
5575 				btrfs_tree_unlock_rw(path->nodes[level],
5576 						     path->locks[level]);
5577 				path->locks[level] = 0;
5578 			}
5579 			free_extent_buffer(path->nodes[level]);
5580 			path->nodes[level] = NULL;
5581 			level++;
5582 		}
5583 	}
5584 	return 1;
5585 }
5586 
5587 /*
5588  * drop a subvolume tree.
5589  *
5590  * this function traverses the tree freeing any blocks that only
5591  * referenced by the tree.
5592  *
5593  * when a shared tree block is found. this function decreases its
5594  * reference count by one. if update_ref is true, this function
5595  * also make sure backrefs for the shared block and all lower level
5596  * blocks are properly updated.
5597  *
5598  * If called with for_reloc == 0, may exit early with -EAGAIN
5599  */
5600 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5601 {
5602 	struct btrfs_fs_info *fs_info = root->fs_info;
5603 	struct btrfs_path *path;
5604 	struct btrfs_trans_handle *trans;
5605 	struct btrfs_root *tree_root = fs_info->tree_root;
5606 	struct btrfs_root_item *root_item = &root->root_item;
5607 	struct walk_control *wc;
5608 	struct btrfs_key key;
5609 	int err = 0;
5610 	int ret;
5611 	int level;
5612 	bool root_dropped = false;
5613 	bool unfinished_drop = false;
5614 
5615 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5616 
5617 	path = btrfs_alloc_path();
5618 	if (!path) {
5619 		err = -ENOMEM;
5620 		goto out;
5621 	}
5622 
5623 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5624 	if (!wc) {
5625 		btrfs_free_path(path);
5626 		err = -ENOMEM;
5627 		goto out;
5628 	}
5629 
5630 	/*
5631 	 * Use join to avoid potential EINTR from transaction start. See
5632 	 * wait_reserve_ticket and the whole reservation callchain.
5633 	 */
5634 	if (for_reloc)
5635 		trans = btrfs_join_transaction(tree_root);
5636 	else
5637 		trans = btrfs_start_transaction(tree_root, 0);
5638 	if (IS_ERR(trans)) {
5639 		err = PTR_ERR(trans);
5640 		goto out_free;
5641 	}
5642 
5643 	err = btrfs_run_delayed_items(trans);
5644 	if (err)
5645 		goto out_end_trans;
5646 
5647 	/*
5648 	 * This will help us catch people modifying the fs tree while we're
5649 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5650 	 * dropped as we unlock the root node and parent nodes as we walk down
5651 	 * the tree, assuming nothing will change.  If something does change
5652 	 * then we'll have stale information and drop references to blocks we've
5653 	 * already dropped.
5654 	 */
5655 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5656 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5657 
5658 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5659 		level = btrfs_header_level(root->node);
5660 		path->nodes[level] = btrfs_lock_root_node(root);
5661 		path->slots[level] = 0;
5662 		path->locks[level] = BTRFS_WRITE_LOCK;
5663 		memset(&wc->update_progress, 0,
5664 		       sizeof(wc->update_progress));
5665 	} else {
5666 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5667 		memcpy(&wc->update_progress, &key,
5668 		       sizeof(wc->update_progress));
5669 
5670 		level = btrfs_root_drop_level(root_item);
5671 		BUG_ON(level == 0);
5672 		path->lowest_level = level;
5673 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5674 		path->lowest_level = 0;
5675 		if (ret < 0) {
5676 			err = ret;
5677 			goto out_end_trans;
5678 		}
5679 		WARN_ON(ret > 0);
5680 
5681 		/*
5682 		 * unlock our path, this is safe because only this
5683 		 * function is allowed to delete this snapshot
5684 		 */
5685 		btrfs_unlock_up_safe(path, 0);
5686 
5687 		level = btrfs_header_level(root->node);
5688 		while (1) {
5689 			btrfs_tree_lock(path->nodes[level]);
5690 			path->locks[level] = BTRFS_WRITE_LOCK;
5691 
5692 			ret = btrfs_lookup_extent_info(trans, fs_info,
5693 						path->nodes[level]->start,
5694 						level, 1, &wc->refs[level],
5695 						&wc->flags[level]);
5696 			if (ret < 0) {
5697 				err = ret;
5698 				goto out_end_trans;
5699 			}
5700 			BUG_ON(wc->refs[level] == 0);
5701 
5702 			if (level == btrfs_root_drop_level(root_item))
5703 				break;
5704 
5705 			btrfs_tree_unlock(path->nodes[level]);
5706 			path->locks[level] = 0;
5707 			WARN_ON(wc->refs[level] != 1);
5708 			level--;
5709 		}
5710 	}
5711 
5712 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5713 	wc->level = level;
5714 	wc->shared_level = -1;
5715 	wc->stage = DROP_REFERENCE;
5716 	wc->update_ref = update_ref;
5717 	wc->keep_locks = 0;
5718 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5719 
5720 	while (1) {
5721 
5722 		ret = walk_down_tree(trans, root, path, wc);
5723 		if (ret < 0) {
5724 			err = ret;
5725 			break;
5726 		}
5727 
5728 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5729 		if (ret < 0) {
5730 			err = ret;
5731 			break;
5732 		}
5733 
5734 		if (ret > 0) {
5735 			BUG_ON(wc->stage != DROP_REFERENCE);
5736 			break;
5737 		}
5738 
5739 		if (wc->stage == DROP_REFERENCE) {
5740 			wc->drop_level = wc->level;
5741 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5742 					      &wc->drop_progress,
5743 					      path->slots[wc->drop_level]);
5744 		}
5745 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5746 				      &wc->drop_progress);
5747 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5748 
5749 		BUG_ON(wc->level == 0);
5750 		if (btrfs_should_end_transaction(trans) ||
5751 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5752 			ret = btrfs_update_root(trans, tree_root,
5753 						&root->root_key,
5754 						root_item);
5755 			if (ret) {
5756 				btrfs_abort_transaction(trans, ret);
5757 				err = ret;
5758 				goto out_end_trans;
5759 			}
5760 
5761 			btrfs_end_transaction_throttle(trans);
5762 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5763 				btrfs_debug(fs_info,
5764 					    "drop snapshot early exit");
5765 				err = -EAGAIN;
5766 				goto out_free;
5767 			}
5768 
5769 		       /*
5770 			* Use join to avoid potential EINTR from transaction
5771 			* start. See wait_reserve_ticket and the whole
5772 			* reservation callchain.
5773 			*/
5774 			if (for_reloc)
5775 				trans = btrfs_join_transaction(tree_root);
5776 			else
5777 				trans = btrfs_start_transaction(tree_root, 0);
5778 			if (IS_ERR(trans)) {
5779 				err = PTR_ERR(trans);
5780 				goto out_free;
5781 			}
5782 		}
5783 	}
5784 	btrfs_release_path(path);
5785 	if (err)
5786 		goto out_end_trans;
5787 
5788 	ret = btrfs_del_root(trans, &root->root_key);
5789 	if (ret) {
5790 		btrfs_abort_transaction(trans, ret);
5791 		err = ret;
5792 		goto out_end_trans;
5793 	}
5794 
5795 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5796 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5797 				      NULL, NULL);
5798 		if (ret < 0) {
5799 			btrfs_abort_transaction(trans, ret);
5800 			err = ret;
5801 			goto out_end_trans;
5802 		} else if (ret > 0) {
5803 			/* if we fail to delete the orphan item this time
5804 			 * around, it'll get picked up the next time.
5805 			 *
5806 			 * The most common failure here is just -ENOENT.
5807 			 */
5808 			btrfs_del_orphan_item(trans, tree_root,
5809 					      root->root_key.objectid);
5810 		}
5811 	}
5812 
5813 	/*
5814 	 * This subvolume is going to be completely dropped, and won't be
5815 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5816 	 * commit transaction time.  So free it here manually.
5817 	 */
5818 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5819 	btrfs_qgroup_free_meta_all_pertrans(root);
5820 
5821 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5822 		btrfs_add_dropped_root(trans, root);
5823 	else
5824 		btrfs_put_root(root);
5825 	root_dropped = true;
5826 out_end_trans:
5827 	btrfs_end_transaction_throttle(trans);
5828 out_free:
5829 	kfree(wc);
5830 	btrfs_free_path(path);
5831 out:
5832 	/*
5833 	 * We were an unfinished drop root, check to see if there are any
5834 	 * pending, and if not clear and wake up any waiters.
5835 	 */
5836 	if (!err && unfinished_drop)
5837 		btrfs_maybe_wake_unfinished_drop(fs_info);
5838 
5839 	/*
5840 	 * So if we need to stop dropping the snapshot for whatever reason we
5841 	 * need to make sure to add it back to the dead root list so that we
5842 	 * keep trying to do the work later.  This also cleans up roots if we
5843 	 * don't have it in the radix (like when we recover after a power fail
5844 	 * or unmount) so we don't leak memory.
5845 	 */
5846 	if (!for_reloc && !root_dropped)
5847 		btrfs_add_dead_root(root);
5848 	return err;
5849 }
5850 
5851 /*
5852  * drop subtree rooted at tree block 'node'.
5853  *
5854  * NOTE: this function will unlock and release tree block 'node'
5855  * only used by relocation code
5856  */
5857 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5858 			struct btrfs_root *root,
5859 			struct extent_buffer *node,
5860 			struct extent_buffer *parent)
5861 {
5862 	struct btrfs_fs_info *fs_info = root->fs_info;
5863 	struct btrfs_path *path;
5864 	struct walk_control *wc;
5865 	int level;
5866 	int parent_level;
5867 	int ret = 0;
5868 	int wret;
5869 
5870 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5871 
5872 	path = btrfs_alloc_path();
5873 	if (!path)
5874 		return -ENOMEM;
5875 
5876 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5877 	if (!wc) {
5878 		btrfs_free_path(path);
5879 		return -ENOMEM;
5880 	}
5881 
5882 	btrfs_assert_tree_write_locked(parent);
5883 	parent_level = btrfs_header_level(parent);
5884 	atomic_inc(&parent->refs);
5885 	path->nodes[parent_level] = parent;
5886 	path->slots[parent_level] = btrfs_header_nritems(parent);
5887 
5888 	btrfs_assert_tree_write_locked(node);
5889 	level = btrfs_header_level(node);
5890 	path->nodes[level] = node;
5891 	path->slots[level] = 0;
5892 	path->locks[level] = BTRFS_WRITE_LOCK;
5893 
5894 	wc->refs[parent_level] = 1;
5895 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5896 	wc->level = level;
5897 	wc->shared_level = -1;
5898 	wc->stage = DROP_REFERENCE;
5899 	wc->update_ref = 0;
5900 	wc->keep_locks = 1;
5901 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5902 
5903 	while (1) {
5904 		wret = walk_down_tree(trans, root, path, wc);
5905 		if (wret < 0) {
5906 			ret = wret;
5907 			break;
5908 		}
5909 
5910 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5911 		if (wret < 0)
5912 			ret = wret;
5913 		if (wret != 0)
5914 			break;
5915 	}
5916 
5917 	kfree(wc);
5918 	btrfs_free_path(path);
5919 	return ret;
5920 }
5921 
5922 /*
5923  * helper to account the unused space of all the readonly block group in the
5924  * space_info. takes mirrors into account.
5925  */
5926 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5927 {
5928 	struct btrfs_block_group *block_group;
5929 	u64 free_bytes = 0;
5930 	int factor;
5931 
5932 	/* It's df, we don't care if it's racy */
5933 	if (list_empty(&sinfo->ro_bgs))
5934 		return 0;
5935 
5936 	spin_lock(&sinfo->lock);
5937 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5938 		spin_lock(&block_group->lock);
5939 
5940 		if (!block_group->ro) {
5941 			spin_unlock(&block_group->lock);
5942 			continue;
5943 		}
5944 
5945 		factor = btrfs_bg_type_to_factor(block_group->flags);
5946 		free_bytes += (block_group->length -
5947 			       block_group->used) * factor;
5948 
5949 		spin_unlock(&block_group->lock);
5950 	}
5951 	spin_unlock(&sinfo->lock);
5952 
5953 	return free_bytes;
5954 }
5955 
5956 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5957 				   u64 start, u64 end)
5958 {
5959 	return unpin_extent_range(fs_info, start, end, false);
5960 }
5961 
5962 /*
5963  * It used to be that old block groups would be left around forever.
5964  * Iterating over them would be enough to trim unused space.  Since we
5965  * now automatically remove them, we also need to iterate over unallocated
5966  * space.
5967  *
5968  * We don't want a transaction for this since the discard may take a
5969  * substantial amount of time.  We don't require that a transaction be
5970  * running, but we do need to take a running transaction into account
5971  * to ensure that we're not discarding chunks that were released or
5972  * allocated in the current transaction.
5973  *
5974  * Holding the chunks lock will prevent other threads from allocating
5975  * or releasing chunks, but it won't prevent a running transaction
5976  * from committing and releasing the memory that the pending chunks
5977  * list head uses.  For that, we need to take a reference to the
5978  * transaction and hold the commit root sem.  We only need to hold
5979  * it while performing the free space search since we have already
5980  * held back allocations.
5981  */
5982 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5983 {
5984 	u64 start = SZ_1M, len = 0, end = 0;
5985 	int ret;
5986 
5987 	*trimmed = 0;
5988 
5989 	/* Discard not supported = nothing to do. */
5990 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5991 		return 0;
5992 
5993 	/* Not writable = nothing to do. */
5994 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5995 		return 0;
5996 
5997 	/* No free space = nothing to do. */
5998 	if (device->total_bytes <= device->bytes_used)
5999 		return 0;
6000 
6001 	ret = 0;
6002 
6003 	while (1) {
6004 		struct btrfs_fs_info *fs_info = device->fs_info;
6005 		u64 bytes;
6006 
6007 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6008 		if (ret)
6009 			break;
6010 
6011 		find_first_clear_extent_bit(&device->alloc_state, start,
6012 					    &start, &end,
6013 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6014 
6015 		/* Check if there are any CHUNK_* bits left */
6016 		if (start > device->total_bytes) {
6017 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6018 			btrfs_warn_in_rcu(fs_info,
6019 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6020 					  start, end - start + 1,
6021 					  rcu_str_deref(device->name),
6022 					  device->total_bytes);
6023 			mutex_unlock(&fs_info->chunk_mutex);
6024 			ret = 0;
6025 			break;
6026 		}
6027 
6028 		/* Ensure we skip the reserved area in the first 1M */
6029 		start = max_t(u64, start, SZ_1M);
6030 
6031 		/*
6032 		 * If find_first_clear_extent_bit find a range that spans the
6033 		 * end of the device it will set end to -1, in this case it's up
6034 		 * to the caller to trim the value to the size of the device.
6035 		 */
6036 		end = min(end, device->total_bytes - 1);
6037 
6038 		len = end - start + 1;
6039 
6040 		/* We didn't find any extents */
6041 		if (!len) {
6042 			mutex_unlock(&fs_info->chunk_mutex);
6043 			ret = 0;
6044 			break;
6045 		}
6046 
6047 		ret = btrfs_issue_discard(device->bdev, start, len,
6048 					  &bytes);
6049 		if (!ret)
6050 			set_extent_bits(&device->alloc_state, start,
6051 					start + bytes - 1,
6052 					CHUNK_TRIMMED);
6053 		mutex_unlock(&fs_info->chunk_mutex);
6054 
6055 		if (ret)
6056 			break;
6057 
6058 		start += len;
6059 		*trimmed += bytes;
6060 
6061 		if (fatal_signal_pending(current)) {
6062 			ret = -ERESTARTSYS;
6063 			break;
6064 		}
6065 
6066 		cond_resched();
6067 	}
6068 
6069 	return ret;
6070 }
6071 
6072 /*
6073  * Trim the whole filesystem by:
6074  * 1) trimming the free space in each block group
6075  * 2) trimming the unallocated space on each device
6076  *
6077  * This will also continue trimming even if a block group or device encounters
6078  * an error.  The return value will be the last error, or 0 if nothing bad
6079  * happens.
6080  */
6081 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6082 {
6083 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6084 	struct btrfs_block_group *cache = NULL;
6085 	struct btrfs_device *device;
6086 	u64 group_trimmed;
6087 	u64 range_end = U64_MAX;
6088 	u64 start;
6089 	u64 end;
6090 	u64 trimmed = 0;
6091 	u64 bg_failed = 0;
6092 	u64 dev_failed = 0;
6093 	int bg_ret = 0;
6094 	int dev_ret = 0;
6095 	int ret = 0;
6096 
6097 	if (range->start == U64_MAX)
6098 		return -EINVAL;
6099 
6100 	/*
6101 	 * Check range overflow if range->len is set.
6102 	 * The default range->len is U64_MAX.
6103 	 */
6104 	if (range->len != U64_MAX &&
6105 	    check_add_overflow(range->start, range->len, &range_end))
6106 		return -EINVAL;
6107 
6108 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6109 	for (; cache; cache = btrfs_next_block_group(cache)) {
6110 		if (cache->start >= range_end) {
6111 			btrfs_put_block_group(cache);
6112 			break;
6113 		}
6114 
6115 		start = max(range->start, cache->start);
6116 		end = min(range_end, cache->start + cache->length);
6117 
6118 		if (end - start >= range->minlen) {
6119 			if (!btrfs_block_group_done(cache)) {
6120 				ret = btrfs_cache_block_group(cache, 0);
6121 				if (ret) {
6122 					bg_failed++;
6123 					bg_ret = ret;
6124 					continue;
6125 				}
6126 				ret = btrfs_wait_block_group_cache_done(cache);
6127 				if (ret) {
6128 					bg_failed++;
6129 					bg_ret = ret;
6130 					continue;
6131 				}
6132 			}
6133 			ret = btrfs_trim_block_group(cache,
6134 						     &group_trimmed,
6135 						     start,
6136 						     end,
6137 						     range->minlen);
6138 
6139 			trimmed += group_trimmed;
6140 			if (ret) {
6141 				bg_failed++;
6142 				bg_ret = ret;
6143 				continue;
6144 			}
6145 		}
6146 	}
6147 
6148 	if (bg_failed)
6149 		btrfs_warn(fs_info,
6150 			"failed to trim %llu block group(s), last error %d",
6151 			bg_failed, bg_ret);
6152 
6153 	mutex_lock(&fs_devices->device_list_mutex);
6154 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6155 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6156 			continue;
6157 
6158 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6159 		if (ret) {
6160 			dev_failed++;
6161 			dev_ret = ret;
6162 			break;
6163 		}
6164 
6165 		trimmed += group_trimmed;
6166 	}
6167 	mutex_unlock(&fs_devices->device_list_mutex);
6168 
6169 	if (dev_failed)
6170 		btrfs_warn(fs_info,
6171 			"failed to trim %llu device(s), last error %d",
6172 			dev_failed, dev_ret);
6173 	range->len = trimmed;
6174 	if (bg_ret)
6175 		return bg_ret;
6176 	return dev_ret;
6177 }
6178