1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_delayed_ref_node *node, u64 parent, 43 u64 root_objectid, u64 owner_objectid, 44 u64 owner_offset, int refs_to_drop, 45 struct btrfs_delayed_extent_op *extra_op); 46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 47 struct extent_buffer *leaf, 48 struct btrfs_extent_item *ei); 49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 50 u64 parent, u64 root_objectid, 51 u64 flags, u64 owner, u64 offset, 52 struct btrfs_key *ins, int ref_mod); 53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 54 struct btrfs_delayed_ref_node *node, 55 struct btrfs_delayed_extent_op *extent_op); 56 static int find_next_key(struct btrfs_path *path, int level, 57 struct btrfs_key *key); 58 59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 60 { 61 return (cache->flags & bits) == bits; 62 } 63 64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 65 u64 start, u64 num_bytes) 66 { 67 u64 end = start + num_bytes - 1; 68 set_extent_bits(&fs_info->excluded_extents, start, end, 69 EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->start; 79 end = start + cache->length - 1; 80 81 clear_extent_bits(&fs_info->excluded_extents, start, end, 82 EXTENT_UPTODATE); 83 } 84 85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 86 { 87 if (ref->type == BTRFS_REF_METADATA) { 88 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 89 return BTRFS_BLOCK_GROUP_SYSTEM; 90 else 91 return BTRFS_BLOCK_GROUP_METADATA; 92 } 93 return BTRFS_BLOCK_GROUP_DATA; 94 } 95 96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 97 struct btrfs_ref *ref) 98 { 99 struct btrfs_space_info *space_info; 100 u64 flags = generic_ref_to_space_flags(ref); 101 102 space_info = btrfs_find_space_info(fs_info, flags); 103 ASSERT(space_info); 104 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 105 BTRFS_TOTAL_BYTES_PINNED_BATCH); 106 } 107 108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_ref *ref) 110 { 111 struct btrfs_space_info *space_info; 112 u64 flags = generic_ref_to_space_flags(ref); 113 114 space_info = btrfs_find_space_info(fs_info, flags); 115 ASSERT(space_info); 116 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 117 BTRFS_TOTAL_BYTES_PINNED_BATCH); 118 } 119 120 /* simple helper to search for an existing data extent at a given offset */ 121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 122 { 123 int ret; 124 struct btrfs_key key; 125 struct btrfs_path *path; 126 127 path = btrfs_alloc_path(); 128 if (!path) 129 return -ENOMEM; 130 131 key.objectid = start; 132 key.offset = len; 133 key.type = BTRFS_EXTENT_ITEM_KEY; 134 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 135 btrfs_free_path(path); 136 return ret; 137 } 138 139 /* 140 * helper function to lookup reference count and flags of a tree block. 141 * 142 * the head node for delayed ref is used to store the sum of all the 143 * reference count modifications queued up in the rbtree. the head 144 * node may also store the extent flags to set. This way you can check 145 * to see what the reference count and extent flags would be if all of 146 * the delayed refs are not processed. 147 */ 148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 149 struct btrfs_fs_info *fs_info, u64 bytenr, 150 u64 offset, int metadata, u64 *refs, u64 *flags) 151 { 152 struct btrfs_delayed_ref_head *head; 153 struct btrfs_delayed_ref_root *delayed_refs; 154 struct btrfs_path *path; 155 struct btrfs_extent_item *ei; 156 struct extent_buffer *leaf; 157 struct btrfs_key key; 158 u32 item_size; 159 u64 num_refs; 160 u64 extent_flags; 161 int ret; 162 163 /* 164 * If we don't have skinny metadata, don't bother doing anything 165 * different 166 */ 167 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 168 offset = fs_info->nodesize; 169 metadata = 0; 170 } 171 172 path = btrfs_alloc_path(); 173 if (!path) 174 return -ENOMEM; 175 176 if (!trans) { 177 path->skip_locking = 1; 178 path->search_commit_root = 1; 179 } 180 181 search_again: 182 key.objectid = bytenr; 183 key.offset = offset; 184 if (metadata) 185 key.type = BTRFS_METADATA_ITEM_KEY; 186 else 187 key.type = BTRFS_EXTENT_ITEM_KEY; 188 189 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 190 if (ret < 0) 191 goto out_free; 192 193 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 194 if (path->slots[0]) { 195 path->slots[0]--; 196 btrfs_item_key_to_cpu(path->nodes[0], &key, 197 path->slots[0]); 198 if (key.objectid == bytenr && 199 key.type == BTRFS_EXTENT_ITEM_KEY && 200 key.offset == fs_info->nodesize) 201 ret = 0; 202 } 203 } 204 205 if (ret == 0) { 206 leaf = path->nodes[0]; 207 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 208 if (item_size >= sizeof(*ei)) { 209 ei = btrfs_item_ptr(leaf, path->slots[0], 210 struct btrfs_extent_item); 211 num_refs = btrfs_extent_refs(leaf, ei); 212 extent_flags = btrfs_extent_flags(leaf, ei); 213 } else { 214 ret = -EINVAL; 215 btrfs_print_v0_err(fs_info); 216 if (trans) 217 btrfs_abort_transaction(trans, ret); 218 else 219 btrfs_handle_fs_error(fs_info, ret, NULL); 220 221 goto out_free; 222 } 223 224 BUG_ON(num_refs == 0); 225 } else { 226 num_refs = 0; 227 extent_flags = 0; 228 ret = 0; 229 } 230 231 if (!trans) 232 goto out; 233 234 delayed_refs = &trans->transaction->delayed_refs; 235 spin_lock(&delayed_refs->lock); 236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 237 if (head) { 238 if (!mutex_trylock(&head->mutex)) { 239 refcount_inc(&head->refs); 240 spin_unlock(&delayed_refs->lock); 241 242 btrfs_release_path(path); 243 244 /* 245 * Mutex was contended, block until it's released and try 246 * again 247 */ 248 mutex_lock(&head->mutex); 249 mutex_unlock(&head->mutex); 250 btrfs_put_delayed_ref_head(head); 251 goto search_again; 252 } 253 spin_lock(&head->lock); 254 if (head->extent_op && head->extent_op->update_flags) 255 extent_flags |= head->extent_op->flags_to_set; 256 else 257 BUG_ON(num_refs == 0); 258 259 num_refs += head->ref_mod; 260 spin_unlock(&head->lock); 261 mutex_unlock(&head->mutex); 262 } 263 spin_unlock(&delayed_refs->lock); 264 out: 265 WARN_ON(num_refs == 0); 266 if (refs) 267 *refs = num_refs; 268 if (flags) 269 *flags = extent_flags; 270 out_free: 271 btrfs_free_path(path); 272 return ret; 273 } 274 275 /* 276 * Back reference rules. Back refs have three main goals: 277 * 278 * 1) differentiate between all holders of references to an extent so that 279 * when a reference is dropped we can make sure it was a valid reference 280 * before freeing the extent. 281 * 282 * 2) Provide enough information to quickly find the holders of an extent 283 * if we notice a given block is corrupted or bad. 284 * 285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 286 * maintenance. This is actually the same as #2, but with a slightly 287 * different use case. 288 * 289 * There are two kinds of back refs. The implicit back refs is optimized 290 * for pointers in non-shared tree blocks. For a given pointer in a block, 291 * back refs of this kind provide information about the block's owner tree 292 * and the pointer's key. These information allow us to find the block by 293 * b-tree searching. The full back refs is for pointers in tree blocks not 294 * referenced by their owner trees. The location of tree block is recorded 295 * in the back refs. Actually the full back refs is generic, and can be 296 * used in all cases the implicit back refs is used. The major shortcoming 297 * of the full back refs is its overhead. Every time a tree block gets 298 * COWed, we have to update back refs entry for all pointers in it. 299 * 300 * For a newly allocated tree block, we use implicit back refs for 301 * pointers in it. This means most tree related operations only involve 302 * implicit back refs. For a tree block created in old transaction, the 303 * only way to drop a reference to it is COW it. So we can detect the 304 * event that tree block loses its owner tree's reference and do the 305 * back refs conversion. 306 * 307 * When a tree block is COWed through a tree, there are four cases: 308 * 309 * The reference count of the block is one and the tree is the block's 310 * owner tree. Nothing to do in this case. 311 * 312 * The reference count of the block is one and the tree is not the 313 * block's owner tree. In this case, full back refs is used for pointers 314 * in the block. Remove these full back refs, add implicit back refs for 315 * every pointers in the new block. 316 * 317 * The reference count of the block is greater than one and the tree is 318 * the block's owner tree. In this case, implicit back refs is used for 319 * pointers in the block. Add full back refs for every pointers in the 320 * block, increase lower level extents' reference counts. The original 321 * implicit back refs are entailed to the new block. 322 * 323 * The reference count of the block is greater than one and the tree is 324 * not the block's owner tree. Add implicit back refs for every pointer in 325 * the new block, increase lower level extents' reference count. 326 * 327 * Back Reference Key composing: 328 * 329 * The key objectid corresponds to the first byte in the extent, 330 * The key type is used to differentiate between types of back refs. 331 * There are different meanings of the key offset for different types 332 * of back refs. 333 * 334 * File extents can be referenced by: 335 * 336 * - multiple snapshots, subvolumes, or different generations in one subvol 337 * - different files inside a single subvolume 338 * - different offsets inside a file (bookend extents in file.c) 339 * 340 * The extent ref structure for the implicit back refs has fields for: 341 * 342 * - Objectid of the subvolume root 343 * - objectid of the file holding the reference 344 * - original offset in the file 345 * - how many bookend extents 346 * 347 * The key offset for the implicit back refs is hash of the first 348 * three fields. 349 * 350 * The extent ref structure for the full back refs has field for: 351 * 352 * - number of pointers in the tree leaf 353 * 354 * The key offset for the implicit back refs is the first byte of 355 * the tree leaf 356 * 357 * When a file extent is allocated, The implicit back refs is used. 358 * the fields are filled in: 359 * 360 * (root_key.objectid, inode objectid, offset in file, 1) 361 * 362 * When a file extent is removed file truncation, we find the 363 * corresponding implicit back refs and check the following fields: 364 * 365 * (btrfs_header_owner(leaf), inode objectid, offset in file) 366 * 367 * Btree extents can be referenced by: 368 * 369 * - Different subvolumes 370 * 371 * Both the implicit back refs and the full back refs for tree blocks 372 * only consist of key. The key offset for the implicit back refs is 373 * objectid of block's owner tree. The key offset for the full back refs 374 * is the first byte of parent block. 375 * 376 * When implicit back refs is used, information about the lowest key and 377 * level of the tree block are required. These information are stored in 378 * tree block info structure. 379 */ 380 381 /* 382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 385 */ 386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 387 struct btrfs_extent_inline_ref *iref, 388 enum btrfs_inline_ref_type is_data) 389 { 390 int type = btrfs_extent_inline_ref_type(eb, iref); 391 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 392 393 if (type == BTRFS_TREE_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_BLOCK_REF_KEY || 395 type == BTRFS_SHARED_DATA_REF_KEY || 396 type == BTRFS_EXTENT_DATA_REF_KEY) { 397 if (is_data == BTRFS_REF_TYPE_BLOCK) { 398 if (type == BTRFS_TREE_BLOCK_REF_KEY) 399 return type; 400 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 401 ASSERT(eb->fs_info); 402 /* 403 * Every shared one has parent tree 404 * block, which must be aligned to 405 * nodesize. 406 */ 407 if (offset && 408 IS_ALIGNED(offset, eb->fs_info->nodesize)) 409 return type; 410 } 411 } else if (is_data == BTRFS_REF_TYPE_DATA) { 412 if (type == BTRFS_EXTENT_DATA_REF_KEY) 413 return type; 414 if (type == BTRFS_SHARED_DATA_REF_KEY) { 415 ASSERT(eb->fs_info); 416 /* 417 * Every shared one has parent tree 418 * block, which must be aligned to 419 * nodesize. 420 */ 421 if (offset && 422 IS_ALIGNED(offset, eb->fs_info->nodesize)) 423 return type; 424 } 425 } else { 426 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 427 return type; 428 } 429 } 430 431 btrfs_print_leaf((struct extent_buffer *)eb); 432 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 433 eb->start, type); 434 WARN_ON(1); 435 436 return BTRFS_REF_TYPE_INVALID; 437 } 438 439 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 440 { 441 u32 high_crc = ~(u32)0; 442 u32 low_crc = ~(u32)0; 443 __le64 lenum; 444 445 lenum = cpu_to_le64(root_objectid); 446 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 447 lenum = cpu_to_le64(owner); 448 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 449 lenum = cpu_to_le64(offset); 450 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 451 452 return ((u64)high_crc << 31) ^ (u64)low_crc; 453 } 454 455 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 456 struct btrfs_extent_data_ref *ref) 457 { 458 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 459 btrfs_extent_data_ref_objectid(leaf, ref), 460 btrfs_extent_data_ref_offset(leaf, ref)); 461 } 462 463 static int match_extent_data_ref(struct extent_buffer *leaf, 464 struct btrfs_extent_data_ref *ref, 465 u64 root_objectid, u64 owner, u64 offset) 466 { 467 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 468 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 469 btrfs_extent_data_ref_offset(leaf, ref) != offset) 470 return 0; 471 return 1; 472 } 473 474 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 475 struct btrfs_path *path, 476 u64 bytenr, u64 parent, 477 u64 root_objectid, 478 u64 owner, u64 offset) 479 { 480 struct btrfs_root *root = trans->fs_info->extent_root; 481 struct btrfs_key key; 482 struct btrfs_extent_data_ref *ref; 483 struct extent_buffer *leaf; 484 u32 nritems; 485 int ret; 486 int recow; 487 int err = -ENOENT; 488 489 key.objectid = bytenr; 490 if (parent) { 491 key.type = BTRFS_SHARED_DATA_REF_KEY; 492 key.offset = parent; 493 } else { 494 key.type = BTRFS_EXTENT_DATA_REF_KEY; 495 key.offset = hash_extent_data_ref(root_objectid, 496 owner, offset); 497 } 498 again: 499 recow = 0; 500 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 501 if (ret < 0) { 502 err = ret; 503 goto fail; 504 } 505 506 if (parent) { 507 if (!ret) 508 return 0; 509 goto fail; 510 } 511 512 leaf = path->nodes[0]; 513 nritems = btrfs_header_nritems(leaf); 514 while (1) { 515 if (path->slots[0] >= nritems) { 516 ret = btrfs_next_leaf(root, path); 517 if (ret < 0) 518 err = ret; 519 if (ret) 520 goto fail; 521 522 leaf = path->nodes[0]; 523 nritems = btrfs_header_nritems(leaf); 524 recow = 1; 525 } 526 527 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 528 if (key.objectid != bytenr || 529 key.type != BTRFS_EXTENT_DATA_REF_KEY) 530 goto fail; 531 532 ref = btrfs_item_ptr(leaf, path->slots[0], 533 struct btrfs_extent_data_ref); 534 535 if (match_extent_data_ref(leaf, ref, root_objectid, 536 owner, offset)) { 537 if (recow) { 538 btrfs_release_path(path); 539 goto again; 540 } 541 err = 0; 542 break; 543 } 544 path->slots[0]++; 545 } 546 fail: 547 return err; 548 } 549 550 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 551 struct btrfs_path *path, 552 u64 bytenr, u64 parent, 553 u64 root_objectid, u64 owner, 554 u64 offset, int refs_to_add) 555 { 556 struct btrfs_root *root = trans->fs_info->extent_root; 557 struct btrfs_key key; 558 struct extent_buffer *leaf; 559 u32 size; 560 u32 num_refs; 561 int ret; 562 563 key.objectid = bytenr; 564 if (parent) { 565 key.type = BTRFS_SHARED_DATA_REF_KEY; 566 key.offset = parent; 567 size = sizeof(struct btrfs_shared_data_ref); 568 } else { 569 key.type = BTRFS_EXTENT_DATA_REF_KEY; 570 key.offset = hash_extent_data_ref(root_objectid, 571 owner, offset); 572 size = sizeof(struct btrfs_extent_data_ref); 573 } 574 575 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 576 if (ret && ret != -EEXIST) 577 goto fail; 578 579 leaf = path->nodes[0]; 580 if (parent) { 581 struct btrfs_shared_data_ref *ref; 582 ref = btrfs_item_ptr(leaf, path->slots[0], 583 struct btrfs_shared_data_ref); 584 if (ret == 0) { 585 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 586 } else { 587 num_refs = btrfs_shared_data_ref_count(leaf, ref); 588 num_refs += refs_to_add; 589 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 590 } 591 } else { 592 struct btrfs_extent_data_ref *ref; 593 while (ret == -EEXIST) { 594 ref = btrfs_item_ptr(leaf, path->slots[0], 595 struct btrfs_extent_data_ref); 596 if (match_extent_data_ref(leaf, ref, root_objectid, 597 owner, offset)) 598 break; 599 btrfs_release_path(path); 600 key.offset++; 601 ret = btrfs_insert_empty_item(trans, root, path, &key, 602 size); 603 if (ret && ret != -EEXIST) 604 goto fail; 605 606 leaf = path->nodes[0]; 607 } 608 ref = btrfs_item_ptr(leaf, path->slots[0], 609 struct btrfs_extent_data_ref); 610 if (ret == 0) { 611 btrfs_set_extent_data_ref_root(leaf, ref, 612 root_objectid); 613 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 614 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 615 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 616 } else { 617 num_refs = btrfs_extent_data_ref_count(leaf, ref); 618 num_refs += refs_to_add; 619 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 620 } 621 } 622 btrfs_mark_buffer_dirty(leaf); 623 ret = 0; 624 fail: 625 btrfs_release_path(path); 626 return ret; 627 } 628 629 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 630 struct btrfs_path *path, 631 int refs_to_drop, int *last_ref) 632 { 633 struct btrfs_key key; 634 struct btrfs_extent_data_ref *ref1 = NULL; 635 struct btrfs_shared_data_ref *ref2 = NULL; 636 struct extent_buffer *leaf; 637 u32 num_refs = 0; 638 int ret = 0; 639 640 leaf = path->nodes[0]; 641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 642 643 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 644 ref1 = btrfs_item_ptr(leaf, path->slots[0], 645 struct btrfs_extent_data_ref); 646 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 647 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 648 ref2 = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_shared_data_ref); 650 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 651 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 652 btrfs_print_v0_err(trans->fs_info); 653 btrfs_abort_transaction(trans, -EINVAL); 654 return -EINVAL; 655 } else { 656 BUG(); 657 } 658 659 BUG_ON(num_refs < refs_to_drop); 660 num_refs -= refs_to_drop; 661 662 if (num_refs == 0) { 663 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 664 *last_ref = 1; 665 } else { 666 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 667 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 668 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 669 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 670 btrfs_mark_buffer_dirty(leaf); 671 } 672 return ret; 673 } 674 675 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 676 struct btrfs_extent_inline_ref *iref) 677 { 678 struct btrfs_key key; 679 struct extent_buffer *leaf; 680 struct btrfs_extent_data_ref *ref1; 681 struct btrfs_shared_data_ref *ref2; 682 u32 num_refs = 0; 683 int type; 684 685 leaf = path->nodes[0]; 686 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 687 688 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 689 if (iref) { 690 /* 691 * If type is invalid, we should have bailed out earlier than 692 * this call. 693 */ 694 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 695 ASSERT(type != BTRFS_REF_TYPE_INVALID); 696 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 697 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 698 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 699 } else { 700 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 701 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 702 } 703 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 704 ref1 = btrfs_item_ptr(leaf, path->slots[0], 705 struct btrfs_extent_data_ref); 706 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 707 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 708 ref2 = btrfs_item_ptr(leaf, path->slots[0], 709 struct btrfs_shared_data_ref); 710 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 711 } else { 712 WARN_ON(1); 713 } 714 return num_refs; 715 } 716 717 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 718 struct btrfs_path *path, 719 u64 bytenr, u64 parent, 720 u64 root_objectid) 721 { 722 struct btrfs_root *root = trans->fs_info->extent_root; 723 struct btrfs_key key; 724 int ret; 725 726 key.objectid = bytenr; 727 if (parent) { 728 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 729 key.offset = parent; 730 } else { 731 key.type = BTRFS_TREE_BLOCK_REF_KEY; 732 key.offset = root_objectid; 733 } 734 735 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 736 if (ret > 0) 737 ret = -ENOENT; 738 return ret; 739 } 740 741 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 742 struct btrfs_path *path, 743 u64 bytenr, u64 parent, 744 u64 root_objectid) 745 { 746 struct btrfs_key key; 747 int ret; 748 749 key.objectid = bytenr; 750 if (parent) { 751 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 752 key.offset = parent; 753 } else { 754 key.type = BTRFS_TREE_BLOCK_REF_KEY; 755 key.offset = root_objectid; 756 } 757 758 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 759 path, &key, 0); 760 btrfs_release_path(path); 761 return ret; 762 } 763 764 static inline int extent_ref_type(u64 parent, u64 owner) 765 { 766 int type; 767 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 768 if (parent > 0) 769 type = BTRFS_SHARED_BLOCK_REF_KEY; 770 else 771 type = BTRFS_TREE_BLOCK_REF_KEY; 772 } else { 773 if (parent > 0) 774 type = BTRFS_SHARED_DATA_REF_KEY; 775 else 776 type = BTRFS_EXTENT_DATA_REF_KEY; 777 } 778 return type; 779 } 780 781 static int find_next_key(struct btrfs_path *path, int level, 782 struct btrfs_key *key) 783 784 { 785 for (; level < BTRFS_MAX_LEVEL; level++) { 786 if (!path->nodes[level]) 787 break; 788 if (path->slots[level] + 1 >= 789 btrfs_header_nritems(path->nodes[level])) 790 continue; 791 if (level == 0) 792 btrfs_item_key_to_cpu(path->nodes[level], key, 793 path->slots[level] + 1); 794 else 795 btrfs_node_key_to_cpu(path->nodes[level], key, 796 path->slots[level] + 1); 797 return 0; 798 } 799 return 1; 800 } 801 802 /* 803 * look for inline back ref. if back ref is found, *ref_ret is set 804 * to the address of inline back ref, and 0 is returned. 805 * 806 * if back ref isn't found, *ref_ret is set to the address where it 807 * should be inserted, and -ENOENT is returned. 808 * 809 * if insert is true and there are too many inline back refs, the path 810 * points to the extent item, and -EAGAIN is returned. 811 * 812 * NOTE: inline back refs are ordered in the same way that back ref 813 * items in the tree are ordered. 814 */ 815 static noinline_for_stack 816 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 817 struct btrfs_path *path, 818 struct btrfs_extent_inline_ref **ref_ret, 819 u64 bytenr, u64 num_bytes, 820 u64 parent, u64 root_objectid, 821 u64 owner, u64 offset, int insert) 822 { 823 struct btrfs_fs_info *fs_info = trans->fs_info; 824 struct btrfs_root *root = fs_info->extent_root; 825 struct btrfs_key key; 826 struct extent_buffer *leaf; 827 struct btrfs_extent_item *ei; 828 struct btrfs_extent_inline_ref *iref; 829 u64 flags; 830 u64 item_size; 831 unsigned long ptr; 832 unsigned long end; 833 int extra_size; 834 int type; 835 int want; 836 int ret; 837 int err = 0; 838 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 839 int needed; 840 841 key.objectid = bytenr; 842 key.type = BTRFS_EXTENT_ITEM_KEY; 843 key.offset = num_bytes; 844 845 want = extent_ref_type(parent, owner); 846 if (insert) { 847 extra_size = btrfs_extent_inline_ref_size(want); 848 path->keep_locks = 1; 849 } else 850 extra_size = -1; 851 852 /* 853 * Owner is our level, so we can just add one to get the level for the 854 * block we are interested in. 855 */ 856 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 857 key.type = BTRFS_METADATA_ITEM_KEY; 858 key.offset = owner; 859 } 860 861 again: 862 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 863 if (ret < 0) { 864 err = ret; 865 goto out; 866 } 867 868 /* 869 * We may be a newly converted file system which still has the old fat 870 * extent entries for metadata, so try and see if we have one of those. 871 */ 872 if (ret > 0 && skinny_metadata) { 873 skinny_metadata = false; 874 if (path->slots[0]) { 875 path->slots[0]--; 876 btrfs_item_key_to_cpu(path->nodes[0], &key, 877 path->slots[0]); 878 if (key.objectid == bytenr && 879 key.type == BTRFS_EXTENT_ITEM_KEY && 880 key.offset == num_bytes) 881 ret = 0; 882 } 883 if (ret) { 884 key.objectid = bytenr; 885 key.type = BTRFS_EXTENT_ITEM_KEY; 886 key.offset = num_bytes; 887 btrfs_release_path(path); 888 goto again; 889 } 890 } 891 892 if (ret && !insert) { 893 err = -ENOENT; 894 goto out; 895 } else if (WARN_ON(ret)) { 896 err = -EIO; 897 goto out; 898 } 899 900 leaf = path->nodes[0]; 901 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 902 if (unlikely(item_size < sizeof(*ei))) { 903 err = -EINVAL; 904 btrfs_print_v0_err(fs_info); 905 btrfs_abort_transaction(trans, err); 906 goto out; 907 } 908 909 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 910 flags = btrfs_extent_flags(leaf, ei); 911 912 ptr = (unsigned long)(ei + 1); 913 end = (unsigned long)ei + item_size; 914 915 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 916 ptr += sizeof(struct btrfs_tree_block_info); 917 BUG_ON(ptr > end); 918 } 919 920 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 921 needed = BTRFS_REF_TYPE_DATA; 922 else 923 needed = BTRFS_REF_TYPE_BLOCK; 924 925 err = -ENOENT; 926 while (1) { 927 if (ptr >= end) { 928 WARN_ON(ptr > end); 929 break; 930 } 931 iref = (struct btrfs_extent_inline_ref *)ptr; 932 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 933 if (type == BTRFS_REF_TYPE_INVALID) { 934 err = -EUCLEAN; 935 goto out; 936 } 937 938 if (want < type) 939 break; 940 if (want > type) { 941 ptr += btrfs_extent_inline_ref_size(type); 942 continue; 943 } 944 945 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 946 struct btrfs_extent_data_ref *dref; 947 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 948 if (match_extent_data_ref(leaf, dref, root_objectid, 949 owner, offset)) { 950 err = 0; 951 break; 952 } 953 if (hash_extent_data_ref_item(leaf, dref) < 954 hash_extent_data_ref(root_objectid, owner, offset)) 955 break; 956 } else { 957 u64 ref_offset; 958 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 959 if (parent > 0) { 960 if (parent == ref_offset) { 961 err = 0; 962 break; 963 } 964 if (ref_offset < parent) 965 break; 966 } else { 967 if (root_objectid == ref_offset) { 968 err = 0; 969 break; 970 } 971 if (ref_offset < root_objectid) 972 break; 973 } 974 } 975 ptr += btrfs_extent_inline_ref_size(type); 976 } 977 if (err == -ENOENT && insert) { 978 if (item_size + extra_size >= 979 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 980 err = -EAGAIN; 981 goto out; 982 } 983 /* 984 * To add new inline back ref, we have to make sure 985 * there is no corresponding back ref item. 986 * For simplicity, we just do not add new inline back 987 * ref if there is any kind of item for this block 988 */ 989 if (find_next_key(path, 0, &key) == 0 && 990 key.objectid == bytenr && 991 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 992 err = -EAGAIN; 993 goto out; 994 } 995 } 996 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 997 out: 998 if (insert) { 999 path->keep_locks = 0; 1000 btrfs_unlock_up_safe(path, 1); 1001 } 1002 return err; 1003 } 1004 1005 /* 1006 * helper to add new inline back ref 1007 */ 1008 static noinline_for_stack 1009 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1010 struct btrfs_path *path, 1011 struct btrfs_extent_inline_ref *iref, 1012 u64 parent, u64 root_objectid, 1013 u64 owner, u64 offset, int refs_to_add, 1014 struct btrfs_delayed_extent_op *extent_op) 1015 { 1016 struct extent_buffer *leaf; 1017 struct btrfs_extent_item *ei; 1018 unsigned long ptr; 1019 unsigned long end; 1020 unsigned long item_offset; 1021 u64 refs; 1022 int size; 1023 int type; 1024 1025 leaf = path->nodes[0]; 1026 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1027 item_offset = (unsigned long)iref - (unsigned long)ei; 1028 1029 type = extent_ref_type(parent, owner); 1030 size = btrfs_extent_inline_ref_size(type); 1031 1032 btrfs_extend_item(path, size); 1033 1034 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1035 refs = btrfs_extent_refs(leaf, ei); 1036 refs += refs_to_add; 1037 btrfs_set_extent_refs(leaf, ei, refs); 1038 if (extent_op) 1039 __run_delayed_extent_op(extent_op, leaf, ei); 1040 1041 ptr = (unsigned long)ei + item_offset; 1042 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1043 if (ptr < end - size) 1044 memmove_extent_buffer(leaf, ptr + size, ptr, 1045 end - size - ptr); 1046 1047 iref = (struct btrfs_extent_inline_ref *)ptr; 1048 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1049 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1050 struct btrfs_extent_data_ref *dref; 1051 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1052 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1053 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1054 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1055 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1056 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1057 struct btrfs_shared_data_ref *sref; 1058 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1059 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1060 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1061 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1062 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1063 } else { 1064 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1065 } 1066 btrfs_mark_buffer_dirty(leaf); 1067 } 1068 1069 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1070 struct btrfs_path *path, 1071 struct btrfs_extent_inline_ref **ref_ret, 1072 u64 bytenr, u64 num_bytes, u64 parent, 1073 u64 root_objectid, u64 owner, u64 offset) 1074 { 1075 int ret; 1076 1077 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1078 num_bytes, parent, root_objectid, 1079 owner, offset, 0); 1080 if (ret != -ENOENT) 1081 return ret; 1082 1083 btrfs_release_path(path); 1084 *ref_ret = NULL; 1085 1086 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1087 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1088 root_objectid); 1089 } else { 1090 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1091 root_objectid, owner, offset); 1092 } 1093 return ret; 1094 } 1095 1096 /* 1097 * helper to update/remove inline back ref 1098 */ 1099 static noinline_for_stack 1100 void update_inline_extent_backref(struct btrfs_path *path, 1101 struct btrfs_extent_inline_ref *iref, 1102 int refs_to_mod, 1103 struct btrfs_delayed_extent_op *extent_op, 1104 int *last_ref) 1105 { 1106 struct extent_buffer *leaf = path->nodes[0]; 1107 struct btrfs_extent_item *ei; 1108 struct btrfs_extent_data_ref *dref = NULL; 1109 struct btrfs_shared_data_ref *sref = NULL; 1110 unsigned long ptr; 1111 unsigned long end; 1112 u32 item_size; 1113 int size; 1114 int type; 1115 u64 refs; 1116 1117 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1118 refs = btrfs_extent_refs(leaf, ei); 1119 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1120 refs += refs_to_mod; 1121 btrfs_set_extent_refs(leaf, ei, refs); 1122 if (extent_op) 1123 __run_delayed_extent_op(extent_op, leaf, ei); 1124 1125 /* 1126 * If type is invalid, we should have bailed out after 1127 * lookup_inline_extent_backref(). 1128 */ 1129 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1130 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1131 1132 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1133 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1134 refs = btrfs_extent_data_ref_count(leaf, dref); 1135 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1136 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1137 refs = btrfs_shared_data_ref_count(leaf, sref); 1138 } else { 1139 refs = 1; 1140 BUG_ON(refs_to_mod != -1); 1141 } 1142 1143 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1144 refs += refs_to_mod; 1145 1146 if (refs > 0) { 1147 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1148 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1149 else 1150 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1151 } else { 1152 *last_ref = 1; 1153 size = btrfs_extent_inline_ref_size(type); 1154 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1155 ptr = (unsigned long)iref; 1156 end = (unsigned long)ei + item_size; 1157 if (ptr + size < end) 1158 memmove_extent_buffer(leaf, ptr, ptr + size, 1159 end - ptr - size); 1160 item_size -= size; 1161 btrfs_truncate_item(path, item_size, 1); 1162 } 1163 btrfs_mark_buffer_dirty(leaf); 1164 } 1165 1166 static noinline_for_stack 1167 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1168 struct btrfs_path *path, 1169 u64 bytenr, u64 num_bytes, u64 parent, 1170 u64 root_objectid, u64 owner, 1171 u64 offset, int refs_to_add, 1172 struct btrfs_delayed_extent_op *extent_op) 1173 { 1174 struct btrfs_extent_inline_ref *iref; 1175 int ret; 1176 1177 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1178 num_bytes, parent, root_objectid, 1179 owner, offset, 1); 1180 if (ret == 0) { 1181 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1182 update_inline_extent_backref(path, iref, refs_to_add, 1183 extent_op, NULL); 1184 } else if (ret == -ENOENT) { 1185 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1186 root_objectid, owner, offset, 1187 refs_to_add, extent_op); 1188 ret = 0; 1189 } 1190 return ret; 1191 } 1192 1193 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1194 struct btrfs_path *path, 1195 struct btrfs_extent_inline_ref *iref, 1196 int refs_to_drop, int is_data, int *last_ref) 1197 { 1198 int ret = 0; 1199 1200 BUG_ON(!is_data && refs_to_drop != 1); 1201 if (iref) { 1202 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1203 last_ref); 1204 } else if (is_data) { 1205 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1206 last_ref); 1207 } else { 1208 *last_ref = 1; 1209 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1210 } 1211 return ret; 1212 } 1213 1214 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1215 u64 *discarded_bytes) 1216 { 1217 int j, ret = 0; 1218 u64 bytes_left, end; 1219 u64 aligned_start = ALIGN(start, 1 << 9); 1220 1221 if (WARN_ON(start != aligned_start)) { 1222 len -= aligned_start - start; 1223 len = round_down(len, 1 << 9); 1224 start = aligned_start; 1225 } 1226 1227 *discarded_bytes = 0; 1228 1229 if (!len) 1230 return 0; 1231 1232 end = start + len; 1233 bytes_left = len; 1234 1235 /* Skip any superblocks on this device. */ 1236 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1237 u64 sb_start = btrfs_sb_offset(j); 1238 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1239 u64 size = sb_start - start; 1240 1241 if (!in_range(sb_start, start, bytes_left) && 1242 !in_range(sb_end, start, bytes_left) && 1243 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1244 continue; 1245 1246 /* 1247 * Superblock spans beginning of range. Adjust start and 1248 * try again. 1249 */ 1250 if (sb_start <= start) { 1251 start += sb_end - start; 1252 if (start > end) { 1253 bytes_left = 0; 1254 break; 1255 } 1256 bytes_left = end - start; 1257 continue; 1258 } 1259 1260 if (size) { 1261 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1262 GFP_NOFS, 0); 1263 if (!ret) 1264 *discarded_bytes += size; 1265 else if (ret != -EOPNOTSUPP) 1266 return ret; 1267 } 1268 1269 start = sb_end; 1270 if (start > end) { 1271 bytes_left = 0; 1272 break; 1273 } 1274 bytes_left = end - start; 1275 } 1276 1277 if (bytes_left) { 1278 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1279 GFP_NOFS, 0); 1280 if (!ret) 1281 *discarded_bytes += bytes_left; 1282 } 1283 return ret; 1284 } 1285 1286 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1287 u64 num_bytes, u64 *actual_bytes) 1288 { 1289 int ret = 0; 1290 u64 discarded_bytes = 0; 1291 u64 end = bytenr + num_bytes; 1292 u64 cur = bytenr; 1293 struct btrfs_bio *bbio = NULL; 1294 1295 1296 /* 1297 * Avoid races with device replace and make sure our bbio has devices 1298 * associated to its stripes that don't go away while we are discarding. 1299 */ 1300 btrfs_bio_counter_inc_blocked(fs_info); 1301 while (cur < end) { 1302 struct btrfs_bio_stripe *stripe; 1303 int i; 1304 1305 num_bytes = end - cur; 1306 /* Tell the block device(s) that the sectors can be discarded */ 1307 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1308 &num_bytes, &bbio, 0); 1309 /* 1310 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1311 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1312 * thus we can't continue anyway. 1313 */ 1314 if (ret < 0) 1315 goto out; 1316 1317 stripe = bbio->stripes; 1318 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1319 u64 bytes; 1320 struct request_queue *req_q; 1321 1322 if (!stripe->dev->bdev) { 1323 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1324 continue; 1325 } 1326 req_q = bdev_get_queue(stripe->dev->bdev); 1327 if (!blk_queue_discard(req_q)) 1328 continue; 1329 1330 ret = btrfs_issue_discard(stripe->dev->bdev, 1331 stripe->physical, 1332 stripe->length, 1333 &bytes); 1334 if (!ret) { 1335 discarded_bytes += bytes; 1336 } else if (ret != -EOPNOTSUPP) { 1337 /* 1338 * Logic errors or -ENOMEM, or -EIO, but 1339 * unlikely to happen. 1340 * 1341 * And since there are two loops, explicitly 1342 * go to out to avoid confusion. 1343 */ 1344 btrfs_put_bbio(bbio); 1345 goto out; 1346 } 1347 1348 /* 1349 * Just in case we get back EOPNOTSUPP for some reason, 1350 * just ignore the return value so we don't screw up 1351 * people calling discard_extent. 1352 */ 1353 ret = 0; 1354 } 1355 btrfs_put_bbio(bbio); 1356 cur += num_bytes; 1357 } 1358 out: 1359 btrfs_bio_counter_dec(fs_info); 1360 1361 if (actual_bytes) 1362 *actual_bytes = discarded_bytes; 1363 1364 1365 if (ret == -EOPNOTSUPP) 1366 ret = 0; 1367 return ret; 1368 } 1369 1370 /* Can return -ENOMEM */ 1371 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1372 struct btrfs_ref *generic_ref) 1373 { 1374 struct btrfs_fs_info *fs_info = trans->fs_info; 1375 int old_ref_mod, new_ref_mod; 1376 int ret; 1377 1378 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1379 generic_ref->action); 1380 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1381 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1382 1383 if (generic_ref->type == BTRFS_REF_METADATA) 1384 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1385 NULL, &old_ref_mod, &new_ref_mod); 1386 else 1387 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1388 &old_ref_mod, &new_ref_mod); 1389 1390 btrfs_ref_tree_mod(fs_info, generic_ref); 1391 1392 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1393 sub_pinned_bytes(fs_info, generic_ref); 1394 1395 return ret; 1396 } 1397 1398 /* 1399 * __btrfs_inc_extent_ref - insert backreference for a given extent 1400 * 1401 * @trans: Handle of transaction 1402 * 1403 * @node: The delayed ref node used to get the bytenr/length for 1404 * extent whose references are incremented. 1405 * 1406 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1407 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1408 * bytenr of the parent block. Since new extents are always 1409 * created with indirect references, this will only be the case 1410 * when relocating a shared extent. In that case, root_objectid 1411 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1412 * be 0 1413 * 1414 * @root_objectid: The id of the root where this modification has originated, 1415 * this can be either one of the well-known metadata trees or 1416 * the subvolume id which references this extent. 1417 * 1418 * @owner: For data extents it is the inode number of the owning file. 1419 * For metadata extents this parameter holds the level in the 1420 * tree of the extent. 1421 * 1422 * @offset: For metadata extents the offset is ignored and is currently 1423 * always passed as 0. For data extents it is the fileoffset 1424 * this extent belongs to. 1425 * 1426 * @refs_to_add Number of references to add 1427 * 1428 * @extent_op Pointer to a structure, holding information necessary when 1429 * updating a tree block's flags 1430 * 1431 */ 1432 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1433 struct btrfs_delayed_ref_node *node, 1434 u64 parent, u64 root_objectid, 1435 u64 owner, u64 offset, int refs_to_add, 1436 struct btrfs_delayed_extent_op *extent_op) 1437 { 1438 struct btrfs_path *path; 1439 struct extent_buffer *leaf; 1440 struct btrfs_extent_item *item; 1441 struct btrfs_key key; 1442 u64 bytenr = node->bytenr; 1443 u64 num_bytes = node->num_bytes; 1444 u64 refs; 1445 int ret; 1446 1447 path = btrfs_alloc_path(); 1448 if (!path) 1449 return -ENOMEM; 1450 1451 path->leave_spinning = 1; 1452 /* this will setup the path even if it fails to insert the back ref */ 1453 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1454 parent, root_objectid, owner, 1455 offset, refs_to_add, extent_op); 1456 if ((ret < 0 && ret != -EAGAIN) || !ret) 1457 goto out; 1458 1459 /* 1460 * Ok we had -EAGAIN which means we didn't have space to insert and 1461 * inline extent ref, so just update the reference count and add a 1462 * normal backref. 1463 */ 1464 leaf = path->nodes[0]; 1465 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1466 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1467 refs = btrfs_extent_refs(leaf, item); 1468 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1469 if (extent_op) 1470 __run_delayed_extent_op(extent_op, leaf, item); 1471 1472 btrfs_mark_buffer_dirty(leaf); 1473 btrfs_release_path(path); 1474 1475 path->leave_spinning = 1; 1476 /* now insert the actual backref */ 1477 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1478 BUG_ON(refs_to_add != 1); 1479 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1480 root_objectid); 1481 } else { 1482 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1483 root_objectid, owner, offset, 1484 refs_to_add); 1485 } 1486 if (ret) 1487 btrfs_abort_transaction(trans, ret); 1488 out: 1489 btrfs_free_path(path); 1490 return ret; 1491 } 1492 1493 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1494 struct btrfs_delayed_ref_node *node, 1495 struct btrfs_delayed_extent_op *extent_op, 1496 int insert_reserved) 1497 { 1498 int ret = 0; 1499 struct btrfs_delayed_data_ref *ref; 1500 struct btrfs_key ins; 1501 u64 parent = 0; 1502 u64 ref_root = 0; 1503 u64 flags = 0; 1504 1505 ins.objectid = node->bytenr; 1506 ins.offset = node->num_bytes; 1507 ins.type = BTRFS_EXTENT_ITEM_KEY; 1508 1509 ref = btrfs_delayed_node_to_data_ref(node); 1510 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1511 1512 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1513 parent = ref->parent; 1514 ref_root = ref->root; 1515 1516 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1517 if (extent_op) 1518 flags |= extent_op->flags_to_set; 1519 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1520 flags, ref->objectid, 1521 ref->offset, &ins, 1522 node->ref_mod); 1523 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1524 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1525 ref->objectid, ref->offset, 1526 node->ref_mod, extent_op); 1527 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1528 ret = __btrfs_free_extent(trans, node, parent, 1529 ref_root, ref->objectid, 1530 ref->offset, node->ref_mod, 1531 extent_op); 1532 } else { 1533 BUG(); 1534 } 1535 return ret; 1536 } 1537 1538 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1539 struct extent_buffer *leaf, 1540 struct btrfs_extent_item *ei) 1541 { 1542 u64 flags = btrfs_extent_flags(leaf, ei); 1543 if (extent_op->update_flags) { 1544 flags |= extent_op->flags_to_set; 1545 btrfs_set_extent_flags(leaf, ei, flags); 1546 } 1547 1548 if (extent_op->update_key) { 1549 struct btrfs_tree_block_info *bi; 1550 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1551 bi = (struct btrfs_tree_block_info *)(ei + 1); 1552 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1553 } 1554 } 1555 1556 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1557 struct btrfs_delayed_ref_head *head, 1558 struct btrfs_delayed_extent_op *extent_op) 1559 { 1560 struct btrfs_fs_info *fs_info = trans->fs_info; 1561 struct btrfs_key key; 1562 struct btrfs_path *path; 1563 struct btrfs_extent_item *ei; 1564 struct extent_buffer *leaf; 1565 u32 item_size; 1566 int ret; 1567 int err = 0; 1568 int metadata = !extent_op->is_data; 1569 1570 if (TRANS_ABORTED(trans)) 1571 return 0; 1572 1573 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1574 metadata = 0; 1575 1576 path = btrfs_alloc_path(); 1577 if (!path) 1578 return -ENOMEM; 1579 1580 key.objectid = head->bytenr; 1581 1582 if (metadata) { 1583 key.type = BTRFS_METADATA_ITEM_KEY; 1584 key.offset = extent_op->level; 1585 } else { 1586 key.type = BTRFS_EXTENT_ITEM_KEY; 1587 key.offset = head->num_bytes; 1588 } 1589 1590 again: 1591 path->leave_spinning = 1; 1592 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1593 if (ret < 0) { 1594 err = ret; 1595 goto out; 1596 } 1597 if (ret > 0) { 1598 if (metadata) { 1599 if (path->slots[0] > 0) { 1600 path->slots[0]--; 1601 btrfs_item_key_to_cpu(path->nodes[0], &key, 1602 path->slots[0]); 1603 if (key.objectid == head->bytenr && 1604 key.type == BTRFS_EXTENT_ITEM_KEY && 1605 key.offset == head->num_bytes) 1606 ret = 0; 1607 } 1608 if (ret > 0) { 1609 btrfs_release_path(path); 1610 metadata = 0; 1611 1612 key.objectid = head->bytenr; 1613 key.offset = head->num_bytes; 1614 key.type = BTRFS_EXTENT_ITEM_KEY; 1615 goto again; 1616 } 1617 } else { 1618 err = -EIO; 1619 goto out; 1620 } 1621 } 1622 1623 leaf = path->nodes[0]; 1624 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1625 1626 if (unlikely(item_size < sizeof(*ei))) { 1627 err = -EINVAL; 1628 btrfs_print_v0_err(fs_info); 1629 btrfs_abort_transaction(trans, err); 1630 goto out; 1631 } 1632 1633 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1634 __run_delayed_extent_op(extent_op, leaf, ei); 1635 1636 btrfs_mark_buffer_dirty(leaf); 1637 out: 1638 btrfs_free_path(path); 1639 return err; 1640 } 1641 1642 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1643 struct btrfs_delayed_ref_node *node, 1644 struct btrfs_delayed_extent_op *extent_op, 1645 int insert_reserved) 1646 { 1647 int ret = 0; 1648 struct btrfs_delayed_tree_ref *ref; 1649 u64 parent = 0; 1650 u64 ref_root = 0; 1651 1652 ref = btrfs_delayed_node_to_tree_ref(node); 1653 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1654 1655 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1656 parent = ref->parent; 1657 ref_root = ref->root; 1658 1659 if (node->ref_mod != 1) { 1660 btrfs_err(trans->fs_info, 1661 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1662 node->bytenr, node->ref_mod, node->action, ref_root, 1663 parent); 1664 return -EIO; 1665 } 1666 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1667 BUG_ON(!extent_op || !extent_op->update_flags); 1668 ret = alloc_reserved_tree_block(trans, node, extent_op); 1669 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1670 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1671 ref->level, 0, 1, extent_op); 1672 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1673 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1674 ref->level, 0, 1, extent_op); 1675 } else { 1676 BUG(); 1677 } 1678 return ret; 1679 } 1680 1681 /* helper function to actually process a single delayed ref entry */ 1682 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1683 struct btrfs_delayed_ref_node *node, 1684 struct btrfs_delayed_extent_op *extent_op, 1685 int insert_reserved) 1686 { 1687 int ret = 0; 1688 1689 if (TRANS_ABORTED(trans)) { 1690 if (insert_reserved) 1691 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1692 return 0; 1693 } 1694 1695 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1696 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1697 ret = run_delayed_tree_ref(trans, node, extent_op, 1698 insert_reserved); 1699 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1700 node->type == BTRFS_SHARED_DATA_REF_KEY) 1701 ret = run_delayed_data_ref(trans, node, extent_op, 1702 insert_reserved); 1703 else 1704 BUG(); 1705 if (ret && insert_reserved) 1706 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1707 return ret; 1708 } 1709 1710 static inline struct btrfs_delayed_ref_node * 1711 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1712 { 1713 struct btrfs_delayed_ref_node *ref; 1714 1715 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1716 return NULL; 1717 1718 /* 1719 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1720 * This is to prevent a ref count from going down to zero, which deletes 1721 * the extent item from the extent tree, when there still are references 1722 * to add, which would fail because they would not find the extent item. 1723 */ 1724 if (!list_empty(&head->ref_add_list)) 1725 return list_first_entry(&head->ref_add_list, 1726 struct btrfs_delayed_ref_node, add_list); 1727 1728 ref = rb_entry(rb_first_cached(&head->ref_tree), 1729 struct btrfs_delayed_ref_node, ref_node); 1730 ASSERT(list_empty(&ref->add_list)); 1731 return ref; 1732 } 1733 1734 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1735 struct btrfs_delayed_ref_head *head) 1736 { 1737 spin_lock(&delayed_refs->lock); 1738 head->processing = 0; 1739 delayed_refs->num_heads_ready++; 1740 spin_unlock(&delayed_refs->lock); 1741 btrfs_delayed_ref_unlock(head); 1742 } 1743 1744 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1745 struct btrfs_delayed_ref_head *head) 1746 { 1747 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1748 1749 if (!extent_op) 1750 return NULL; 1751 1752 if (head->must_insert_reserved) { 1753 head->extent_op = NULL; 1754 btrfs_free_delayed_extent_op(extent_op); 1755 return NULL; 1756 } 1757 return extent_op; 1758 } 1759 1760 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1761 struct btrfs_delayed_ref_head *head) 1762 { 1763 struct btrfs_delayed_extent_op *extent_op; 1764 int ret; 1765 1766 extent_op = cleanup_extent_op(head); 1767 if (!extent_op) 1768 return 0; 1769 head->extent_op = NULL; 1770 spin_unlock(&head->lock); 1771 ret = run_delayed_extent_op(trans, head, extent_op); 1772 btrfs_free_delayed_extent_op(extent_op); 1773 return ret ? ret : 1; 1774 } 1775 1776 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1777 struct btrfs_delayed_ref_root *delayed_refs, 1778 struct btrfs_delayed_ref_head *head) 1779 { 1780 int nr_items = 1; /* Dropping this ref head update. */ 1781 1782 if (head->total_ref_mod < 0) { 1783 struct btrfs_space_info *space_info; 1784 u64 flags; 1785 1786 if (head->is_data) 1787 flags = BTRFS_BLOCK_GROUP_DATA; 1788 else if (head->is_system) 1789 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1790 else 1791 flags = BTRFS_BLOCK_GROUP_METADATA; 1792 space_info = btrfs_find_space_info(fs_info, flags); 1793 ASSERT(space_info); 1794 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1795 -head->num_bytes, 1796 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1797 1798 /* 1799 * We had csum deletions accounted for in our delayed refs rsv, 1800 * we need to drop the csum leaves for this update from our 1801 * delayed_refs_rsv. 1802 */ 1803 if (head->is_data) { 1804 spin_lock(&delayed_refs->lock); 1805 delayed_refs->pending_csums -= head->num_bytes; 1806 spin_unlock(&delayed_refs->lock); 1807 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1808 head->num_bytes); 1809 } 1810 } 1811 1812 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1813 } 1814 1815 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1816 struct btrfs_delayed_ref_head *head) 1817 { 1818 1819 struct btrfs_fs_info *fs_info = trans->fs_info; 1820 struct btrfs_delayed_ref_root *delayed_refs; 1821 int ret; 1822 1823 delayed_refs = &trans->transaction->delayed_refs; 1824 1825 ret = run_and_cleanup_extent_op(trans, head); 1826 if (ret < 0) { 1827 unselect_delayed_ref_head(delayed_refs, head); 1828 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1829 return ret; 1830 } else if (ret) { 1831 return ret; 1832 } 1833 1834 /* 1835 * Need to drop our head ref lock and re-acquire the delayed ref lock 1836 * and then re-check to make sure nobody got added. 1837 */ 1838 spin_unlock(&head->lock); 1839 spin_lock(&delayed_refs->lock); 1840 spin_lock(&head->lock); 1841 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1842 spin_unlock(&head->lock); 1843 spin_unlock(&delayed_refs->lock); 1844 return 1; 1845 } 1846 btrfs_delete_ref_head(delayed_refs, head); 1847 spin_unlock(&head->lock); 1848 spin_unlock(&delayed_refs->lock); 1849 1850 if (head->must_insert_reserved) { 1851 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1852 if (head->is_data) { 1853 ret = btrfs_del_csums(trans, fs_info->csum_root, 1854 head->bytenr, head->num_bytes); 1855 } 1856 } 1857 1858 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1859 1860 trace_run_delayed_ref_head(fs_info, head, 0); 1861 btrfs_delayed_ref_unlock(head); 1862 btrfs_put_delayed_ref_head(head); 1863 return 0; 1864 } 1865 1866 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1867 struct btrfs_trans_handle *trans) 1868 { 1869 struct btrfs_delayed_ref_root *delayed_refs = 1870 &trans->transaction->delayed_refs; 1871 struct btrfs_delayed_ref_head *head = NULL; 1872 int ret; 1873 1874 spin_lock(&delayed_refs->lock); 1875 head = btrfs_select_ref_head(delayed_refs); 1876 if (!head) { 1877 spin_unlock(&delayed_refs->lock); 1878 return head; 1879 } 1880 1881 /* 1882 * Grab the lock that says we are going to process all the refs for 1883 * this head 1884 */ 1885 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1886 spin_unlock(&delayed_refs->lock); 1887 1888 /* 1889 * We may have dropped the spin lock to get the head mutex lock, and 1890 * that might have given someone else time to free the head. If that's 1891 * true, it has been removed from our list and we can move on. 1892 */ 1893 if (ret == -EAGAIN) 1894 head = ERR_PTR(-EAGAIN); 1895 1896 return head; 1897 } 1898 1899 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1900 struct btrfs_delayed_ref_head *locked_ref, 1901 unsigned long *run_refs) 1902 { 1903 struct btrfs_fs_info *fs_info = trans->fs_info; 1904 struct btrfs_delayed_ref_root *delayed_refs; 1905 struct btrfs_delayed_extent_op *extent_op; 1906 struct btrfs_delayed_ref_node *ref; 1907 int must_insert_reserved = 0; 1908 int ret; 1909 1910 delayed_refs = &trans->transaction->delayed_refs; 1911 1912 lockdep_assert_held(&locked_ref->mutex); 1913 lockdep_assert_held(&locked_ref->lock); 1914 1915 while ((ref = select_delayed_ref(locked_ref))) { 1916 if (ref->seq && 1917 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1918 spin_unlock(&locked_ref->lock); 1919 unselect_delayed_ref_head(delayed_refs, locked_ref); 1920 return -EAGAIN; 1921 } 1922 1923 (*run_refs)++; 1924 ref->in_tree = 0; 1925 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1926 RB_CLEAR_NODE(&ref->ref_node); 1927 if (!list_empty(&ref->add_list)) 1928 list_del(&ref->add_list); 1929 /* 1930 * When we play the delayed ref, also correct the ref_mod on 1931 * head 1932 */ 1933 switch (ref->action) { 1934 case BTRFS_ADD_DELAYED_REF: 1935 case BTRFS_ADD_DELAYED_EXTENT: 1936 locked_ref->ref_mod -= ref->ref_mod; 1937 break; 1938 case BTRFS_DROP_DELAYED_REF: 1939 locked_ref->ref_mod += ref->ref_mod; 1940 break; 1941 default: 1942 WARN_ON(1); 1943 } 1944 atomic_dec(&delayed_refs->num_entries); 1945 1946 /* 1947 * Record the must_insert_reserved flag before we drop the 1948 * spin lock. 1949 */ 1950 must_insert_reserved = locked_ref->must_insert_reserved; 1951 locked_ref->must_insert_reserved = 0; 1952 1953 extent_op = locked_ref->extent_op; 1954 locked_ref->extent_op = NULL; 1955 spin_unlock(&locked_ref->lock); 1956 1957 ret = run_one_delayed_ref(trans, ref, extent_op, 1958 must_insert_reserved); 1959 1960 btrfs_free_delayed_extent_op(extent_op); 1961 if (ret) { 1962 unselect_delayed_ref_head(delayed_refs, locked_ref); 1963 btrfs_put_delayed_ref(ref); 1964 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1965 ret); 1966 return ret; 1967 } 1968 1969 btrfs_put_delayed_ref(ref); 1970 cond_resched(); 1971 1972 spin_lock(&locked_ref->lock); 1973 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1974 } 1975 1976 return 0; 1977 } 1978 1979 /* 1980 * Returns 0 on success or if called with an already aborted transaction. 1981 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1982 */ 1983 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1984 unsigned long nr) 1985 { 1986 struct btrfs_fs_info *fs_info = trans->fs_info; 1987 struct btrfs_delayed_ref_root *delayed_refs; 1988 struct btrfs_delayed_ref_head *locked_ref = NULL; 1989 ktime_t start = ktime_get(); 1990 int ret; 1991 unsigned long count = 0; 1992 unsigned long actual_count = 0; 1993 1994 delayed_refs = &trans->transaction->delayed_refs; 1995 do { 1996 if (!locked_ref) { 1997 locked_ref = btrfs_obtain_ref_head(trans); 1998 if (IS_ERR_OR_NULL(locked_ref)) { 1999 if (PTR_ERR(locked_ref) == -EAGAIN) { 2000 continue; 2001 } else { 2002 break; 2003 } 2004 } 2005 count++; 2006 } 2007 /* 2008 * We need to try and merge add/drops of the same ref since we 2009 * can run into issues with relocate dropping the implicit ref 2010 * and then it being added back again before the drop can 2011 * finish. If we merged anything we need to re-loop so we can 2012 * get a good ref. 2013 * Or we can get node references of the same type that weren't 2014 * merged when created due to bumps in the tree mod seq, and 2015 * we need to merge them to prevent adding an inline extent 2016 * backref before dropping it (triggering a BUG_ON at 2017 * insert_inline_extent_backref()). 2018 */ 2019 spin_lock(&locked_ref->lock); 2020 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2021 2022 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2023 &actual_count); 2024 if (ret < 0 && ret != -EAGAIN) { 2025 /* 2026 * Error, btrfs_run_delayed_refs_for_head already 2027 * unlocked everything so just bail out 2028 */ 2029 return ret; 2030 } else if (!ret) { 2031 /* 2032 * Success, perform the usual cleanup of a processed 2033 * head 2034 */ 2035 ret = cleanup_ref_head(trans, locked_ref); 2036 if (ret > 0 ) { 2037 /* We dropped our lock, we need to loop. */ 2038 ret = 0; 2039 continue; 2040 } else if (ret) { 2041 return ret; 2042 } 2043 } 2044 2045 /* 2046 * Either success case or btrfs_run_delayed_refs_for_head 2047 * returned -EAGAIN, meaning we need to select another head 2048 */ 2049 2050 locked_ref = NULL; 2051 cond_resched(); 2052 } while ((nr != -1 && count < nr) || locked_ref); 2053 2054 /* 2055 * We don't want to include ref heads since we can have empty ref heads 2056 * and those will drastically skew our runtime down since we just do 2057 * accounting, no actual extent tree updates. 2058 */ 2059 if (actual_count > 0) { 2060 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2061 u64 avg; 2062 2063 /* 2064 * We weigh the current average higher than our current runtime 2065 * to avoid large swings in the average. 2066 */ 2067 spin_lock(&delayed_refs->lock); 2068 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2069 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2070 spin_unlock(&delayed_refs->lock); 2071 } 2072 return 0; 2073 } 2074 2075 #ifdef SCRAMBLE_DELAYED_REFS 2076 /* 2077 * Normally delayed refs get processed in ascending bytenr order. This 2078 * correlates in most cases to the order added. To expose dependencies on this 2079 * order, we start to process the tree in the middle instead of the beginning 2080 */ 2081 static u64 find_middle(struct rb_root *root) 2082 { 2083 struct rb_node *n = root->rb_node; 2084 struct btrfs_delayed_ref_node *entry; 2085 int alt = 1; 2086 u64 middle; 2087 u64 first = 0, last = 0; 2088 2089 n = rb_first(root); 2090 if (n) { 2091 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2092 first = entry->bytenr; 2093 } 2094 n = rb_last(root); 2095 if (n) { 2096 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2097 last = entry->bytenr; 2098 } 2099 n = root->rb_node; 2100 2101 while (n) { 2102 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2103 WARN_ON(!entry->in_tree); 2104 2105 middle = entry->bytenr; 2106 2107 if (alt) 2108 n = n->rb_left; 2109 else 2110 n = n->rb_right; 2111 2112 alt = 1 - alt; 2113 } 2114 return middle; 2115 } 2116 #endif 2117 2118 /* 2119 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2120 * would require to store the csums for that many bytes. 2121 */ 2122 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2123 { 2124 u64 csum_size; 2125 u64 num_csums_per_leaf; 2126 u64 num_csums; 2127 2128 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2129 num_csums_per_leaf = div64_u64(csum_size, 2130 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2131 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2132 num_csums += num_csums_per_leaf - 1; 2133 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2134 return num_csums; 2135 } 2136 2137 /* 2138 * this starts processing the delayed reference count updates and 2139 * extent insertions we have queued up so far. count can be 2140 * 0, which means to process everything in the tree at the start 2141 * of the run (but not newly added entries), or it can be some target 2142 * number you'd like to process. 2143 * 2144 * Returns 0 on success or if called with an aborted transaction 2145 * Returns <0 on error and aborts the transaction 2146 */ 2147 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2148 unsigned long count) 2149 { 2150 struct btrfs_fs_info *fs_info = trans->fs_info; 2151 struct rb_node *node; 2152 struct btrfs_delayed_ref_root *delayed_refs; 2153 struct btrfs_delayed_ref_head *head; 2154 int ret; 2155 int run_all = count == (unsigned long)-1; 2156 2157 /* We'll clean this up in btrfs_cleanup_transaction */ 2158 if (TRANS_ABORTED(trans)) 2159 return 0; 2160 2161 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2162 return 0; 2163 2164 delayed_refs = &trans->transaction->delayed_refs; 2165 if (count == 0) 2166 count = atomic_read(&delayed_refs->num_entries) * 2; 2167 2168 again: 2169 #ifdef SCRAMBLE_DELAYED_REFS 2170 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2171 #endif 2172 ret = __btrfs_run_delayed_refs(trans, count); 2173 if (ret < 0) { 2174 btrfs_abort_transaction(trans, ret); 2175 return ret; 2176 } 2177 2178 if (run_all) { 2179 btrfs_create_pending_block_groups(trans); 2180 2181 spin_lock(&delayed_refs->lock); 2182 node = rb_first_cached(&delayed_refs->href_root); 2183 if (!node) { 2184 spin_unlock(&delayed_refs->lock); 2185 goto out; 2186 } 2187 head = rb_entry(node, struct btrfs_delayed_ref_head, 2188 href_node); 2189 refcount_inc(&head->refs); 2190 spin_unlock(&delayed_refs->lock); 2191 2192 /* Mutex was contended, block until it's released and retry. */ 2193 mutex_lock(&head->mutex); 2194 mutex_unlock(&head->mutex); 2195 2196 btrfs_put_delayed_ref_head(head); 2197 cond_resched(); 2198 goto again; 2199 } 2200 out: 2201 return 0; 2202 } 2203 2204 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2205 struct extent_buffer *eb, u64 flags, 2206 int level, int is_data) 2207 { 2208 struct btrfs_delayed_extent_op *extent_op; 2209 int ret; 2210 2211 extent_op = btrfs_alloc_delayed_extent_op(); 2212 if (!extent_op) 2213 return -ENOMEM; 2214 2215 extent_op->flags_to_set = flags; 2216 extent_op->update_flags = true; 2217 extent_op->update_key = false; 2218 extent_op->is_data = is_data ? true : false; 2219 extent_op->level = level; 2220 2221 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2222 if (ret) 2223 btrfs_free_delayed_extent_op(extent_op); 2224 return ret; 2225 } 2226 2227 static noinline int check_delayed_ref(struct btrfs_root *root, 2228 struct btrfs_path *path, 2229 u64 objectid, u64 offset, u64 bytenr) 2230 { 2231 struct btrfs_delayed_ref_head *head; 2232 struct btrfs_delayed_ref_node *ref; 2233 struct btrfs_delayed_data_ref *data_ref; 2234 struct btrfs_delayed_ref_root *delayed_refs; 2235 struct btrfs_transaction *cur_trans; 2236 struct rb_node *node; 2237 int ret = 0; 2238 2239 spin_lock(&root->fs_info->trans_lock); 2240 cur_trans = root->fs_info->running_transaction; 2241 if (cur_trans) 2242 refcount_inc(&cur_trans->use_count); 2243 spin_unlock(&root->fs_info->trans_lock); 2244 if (!cur_trans) 2245 return 0; 2246 2247 delayed_refs = &cur_trans->delayed_refs; 2248 spin_lock(&delayed_refs->lock); 2249 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2250 if (!head) { 2251 spin_unlock(&delayed_refs->lock); 2252 btrfs_put_transaction(cur_trans); 2253 return 0; 2254 } 2255 2256 if (!mutex_trylock(&head->mutex)) { 2257 refcount_inc(&head->refs); 2258 spin_unlock(&delayed_refs->lock); 2259 2260 btrfs_release_path(path); 2261 2262 /* 2263 * Mutex was contended, block until it's released and let 2264 * caller try again 2265 */ 2266 mutex_lock(&head->mutex); 2267 mutex_unlock(&head->mutex); 2268 btrfs_put_delayed_ref_head(head); 2269 btrfs_put_transaction(cur_trans); 2270 return -EAGAIN; 2271 } 2272 spin_unlock(&delayed_refs->lock); 2273 2274 spin_lock(&head->lock); 2275 /* 2276 * XXX: We should replace this with a proper search function in the 2277 * future. 2278 */ 2279 for (node = rb_first_cached(&head->ref_tree); node; 2280 node = rb_next(node)) { 2281 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2282 /* If it's a shared ref we know a cross reference exists */ 2283 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2284 ret = 1; 2285 break; 2286 } 2287 2288 data_ref = btrfs_delayed_node_to_data_ref(ref); 2289 2290 /* 2291 * If our ref doesn't match the one we're currently looking at 2292 * then we have a cross reference. 2293 */ 2294 if (data_ref->root != root->root_key.objectid || 2295 data_ref->objectid != objectid || 2296 data_ref->offset != offset) { 2297 ret = 1; 2298 break; 2299 } 2300 } 2301 spin_unlock(&head->lock); 2302 mutex_unlock(&head->mutex); 2303 btrfs_put_transaction(cur_trans); 2304 return ret; 2305 } 2306 2307 static noinline int check_committed_ref(struct btrfs_root *root, 2308 struct btrfs_path *path, 2309 u64 objectid, u64 offset, u64 bytenr) 2310 { 2311 struct btrfs_fs_info *fs_info = root->fs_info; 2312 struct btrfs_root *extent_root = fs_info->extent_root; 2313 struct extent_buffer *leaf; 2314 struct btrfs_extent_data_ref *ref; 2315 struct btrfs_extent_inline_ref *iref; 2316 struct btrfs_extent_item *ei; 2317 struct btrfs_key key; 2318 u32 item_size; 2319 int type; 2320 int ret; 2321 2322 key.objectid = bytenr; 2323 key.offset = (u64)-1; 2324 key.type = BTRFS_EXTENT_ITEM_KEY; 2325 2326 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2327 if (ret < 0) 2328 goto out; 2329 BUG_ON(ret == 0); /* Corruption */ 2330 2331 ret = -ENOENT; 2332 if (path->slots[0] == 0) 2333 goto out; 2334 2335 path->slots[0]--; 2336 leaf = path->nodes[0]; 2337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2338 2339 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2340 goto out; 2341 2342 ret = 1; 2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2344 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2345 2346 /* If extent item has more than 1 inline ref then it's shared */ 2347 if (item_size != sizeof(*ei) + 2348 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2349 goto out; 2350 2351 /* If extent created before last snapshot => it's definitely shared */ 2352 if (btrfs_extent_generation(leaf, ei) <= 2353 btrfs_root_last_snapshot(&root->root_item)) 2354 goto out; 2355 2356 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2357 2358 /* If this extent has SHARED_DATA_REF then it's shared */ 2359 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2360 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2361 goto out; 2362 2363 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2364 if (btrfs_extent_refs(leaf, ei) != 2365 btrfs_extent_data_ref_count(leaf, ref) || 2366 btrfs_extent_data_ref_root(leaf, ref) != 2367 root->root_key.objectid || 2368 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2369 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2370 goto out; 2371 2372 ret = 0; 2373 out: 2374 return ret; 2375 } 2376 2377 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2378 u64 bytenr) 2379 { 2380 struct btrfs_path *path; 2381 int ret; 2382 2383 path = btrfs_alloc_path(); 2384 if (!path) 2385 return -ENOMEM; 2386 2387 do { 2388 ret = check_committed_ref(root, path, objectid, 2389 offset, bytenr); 2390 if (ret && ret != -ENOENT) 2391 goto out; 2392 2393 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2394 } while (ret == -EAGAIN); 2395 2396 out: 2397 btrfs_free_path(path); 2398 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2399 WARN_ON(ret > 0); 2400 return ret; 2401 } 2402 2403 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2404 struct btrfs_root *root, 2405 struct extent_buffer *buf, 2406 int full_backref, int inc) 2407 { 2408 struct btrfs_fs_info *fs_info = root->fs_info; 2409 u64 bytenr; 2410 u64 num_bytes; 2411 u64 parent; 2412 u64 ref_root; 2413 u32 nritems; 2414 struct btrfs_key key; 2415 struct btrfs_file_extent_item *fi; 2416 struct btrfs_ref generic_ref = { 0 }; 2417 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2418 int i; 2419 int action; 2420 int level; 2421 int ret = 0; 2422 2423 if (btrfs_is_testing(fs_info)) 2424 return 0; 2425 2426 ref_root = btrfs_header_owner(buf); 2427 nritems = btrfs_header_nritems(buf); 2428 level = btrfs_header_level(buf); 2429 2430 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2431 return 0; 2432 2433 if (full_backref) 2434 parent = buf->start; 2435 else 2436 parent = 0; 2437 if (inc) 2438 action = BTRFS_ADD_DELAYED_REF; 2439 else 2440 action = BTRFS_DROP_DELAYED_REF; 2441 2442 for (i = 0; i < nritems; i++) { 2443 if (level == 0) { 2444 btrfs_item_key_to_cpu(buf, &key, i); 2445 if (key.type != BTRFS_EXTENT_DATA_KEY) 2446 continue; 2447 fi = btrfs_item_ptr(buf, i, 2448 struct btrfs_file_extent_item); 2449 if (btrfs_file_extent_type(buf, fi) == 2450 BTRFS_FILE_EXTENT_INLINE) 2451 continue; 2452 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2453 if (bytenr == 0) 2454 continue; 2455 2456 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2457 key.offset -= btrfs_file_extent_offset(buf, fi); 2458 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2459 num_bytes, parent); 2460 generic_ref.real_root = root->root_key.objectid; 2461 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2462 key.offset); 2463 generic_ref.skip_qgroup = for_reloc; 2464 if (inc) 2465 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2466 else 2467 ret = btrfs_free_extent(trans, &generic_ref); 2468 if (ret) 2469 goto fail; 2470 } else { 2471 bytenr = btrfs_node_blockptr(buf, i); 2472 num_bytes = fs_info->nodesize; 2473 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2474 num_bytes, parent); 2475 generic_ref.real_root = root->root_key.objectid; 2476 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2477 generic_ref.skip_qgroup = for_reloc; 2478 if (inc) 2479 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2480 else 2481 ret = btrfs_free_extent(trans, &generic_ref); 2482 if (ret) 2483 goto fail; 2484 } 2485 } 2486 return 0; 2487 fail: 2488 return ret; 2489 } 2490 2491 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2492 struct extent_buffer *buf, int full_backref) 2493 { 2494 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2495 } 2496 2497 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2498 struct extent_buffer *buf, int full_backref) 2499 { 2500 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2501 } 2502 2503 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2504 { 2505 struct btrfs_block_group *block_group; 2506 int readonly = 0; 2507 2508 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2509 if (!block_group || block_group->ro) 2510 readonly = 1; 2511 if (block_group) 2512 btrfs_put_block_group(block_group); 2513 return readonly; 2514 } 2515 2516 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2517 { 2518 struct btrfs_fs_info *fs_info = root->fs_info; 2519 u64 flags; 2520 u64 ret; 2521 2522 if (data) 2523 flags = BTRFS_BLOCK_GROUP_DATA; 2524 else if (root == fs_info->chunk_root) 2525 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2526 else 2527 flags = BTRFS_BLOCK_GROUP_METADATA; 2528 2529 ret = btrfs_get_alloc_profile(fs_info, flags); 2530 return ret; 2531 } 2532 2533 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2534 { 2535 struct btrfs_block_group *cache; 2536 u64 bytenr; 2537 2538 spin_lock(&fs_info->block_group_cache_lock); 2539 bytenr = fs_info->first_logical_byte; 2540 spin_unlock(&fs_info->block_group_cache_lock); 2541 2542 if (bytenr < (u64)-1) 2543 return bytenr; 2544 2545 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2546 if (!cache) 2547 return 0; 2548 2549 bytenr = cache->start; 2550 btrfs_put_block_group(cache); 2551 2552 return bytenr; 2553 } 2554 2555 static int pin_down_extent(struct btrfs_trans_handle *trans, 2556 struct btrfs_block_group *cache, 2557 u64 bytenr, u64 num_bytes, int reserved) 2558 { 2559 struct btrfs_fs_info *fs_info = cache->fs_info; 2560 2561 spin_lock(&cache->space_info->lock); 2562 spin_lock(&cache->lock); 2563 cache->pinned += num_bytes; 2564 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2565 num_bytes); 2566 if (reserved) { 2567 cache->reserved -= num_bytes; 2568 cache->space_info->bytes_reserved -= num_bytes; 2569 } 2570 spin_unlock(&cache->lock); 2571 spin_unlock(&cache->space_info->lock); 2572 2573 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2574 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2575 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2576 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2577 return 0; 2578 } 2579 2580 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2581 u64 bytenr, u64 num_bytes, int reserved) 2582 { 2583 struct btrfs_block_group *cache; 2584 2585 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2586 BUG_ON(!cache); /* Logic error */ 2587 2588 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2589 2590 btrfs_put_block_group(cache); 2591 return 0; 2592 } 2593 2594 /* 2595 * this function must be called within transaction 2596 */ 2597 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2598 u64 bytenr, u64 num_bytes) 2599 { 2600 struct btrfs_block_group *cache; 2601 int ret; 2602 2603 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes); 2604 2605 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2606 if (!cache) 2607 return -EINVAL; 2608 2609 /* 2610 * pull in the free space cache (if any) so that our pin 2611 * removes the free space from the cache. We have load_only set 2612 * to one because the slow code to read in the free extents does check 2613 * the pinned extents. 2614 */ 2615 btrfs_cache_block_group(cache, 1); 2616 2617 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2618 2619 /* remove us from the free space cache (if we're there at all) */ 2620 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2621 btrfs_put_block_group(cache); 2622 return ret; 2623 } 2624 2625 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2626 u64 start, u64 num_bytes) 2627 { 2628 int ret; 2629 struct btrfs_block_group *block_group; 2630 struct btrfs_caching_control *caching_ctl; 2631 2632 block_group = btrfs_lookup_block_group(fs_info, start); 2633 if (!block_group) 2634 return -EINVAL; 2635 2636 btrfs_cache_block_group(block_group, 0); 2637 caching_ctl = btrfs_get_caching_control(block_group); 2638 2639 if (!caching_ctl) { 2640 /* Logic error */ 2641 BUG_ON(!btrfs_block_group_done(block_group)); 2642 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2643 } else { 2644 mutex_lock(&caching_ctl->mutex); 2645 2646 if (start >= caching_ctl->progress) { 2647 ret = btrfs_add_excluded_extent(fs_info, start, 2648 num_bytes); 2649 } else if (start + num_bytes <= caching_ctl->progress) { 2650 ret = btrfs_remove_free_space(block_group, 2651 start, num_bytes); 2652 } else { 2653 num_bytes = caching_ctl->progress - start; 2654 ret = btrfs_remove_free_space(block_group, 2655 start, num_bytes); 2656 if (ret) 2657 goto out_lock; 2658 2659 num_bytes = (start + num_bytes) - 2660 caching_ctl->progress; 2661 start = caching_ctl->progress; 2662 ret = btrfs_add_excluded_extent(fs_info, start, 2663 num_bytes); 2664 } 2665 out_lock: 2666 mutex_unlock(&caching_ctl->mutex); 2667 btrfs_put_caching_control(caching_ctl); 2668 } 2669 btrfs_put_block_group(block_group); 2670 return ret; 2671 } 2672 2673 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2674 { 2675 struct btrfs_fs_info *fs_info = eb->fs_info; 2676 struct btrfs_file_extent_item *item; 2677 struct btrfs_key key; 2678 int found_type; 2679 int i; 2680 int ret = 0; 2681 2682 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2683 return 0; 2684 2685 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2686 btrfs_item_key_to_cpu(eb, &key, i); 2687 if (key.type != BTRFS_EXTENT_DATA_KEY) 2688 continue; 2689 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2690 found_type = btrfs_file_extent_type(eb, item); 2691 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2692 continue; 2693 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2694 continue; 2695 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2696 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2697 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2698 if (ret) 2699 break; 2700 } 2701 2702 return ret; 2703 } 2704 2705 static void 2706 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2707 { 2708 atomic_inc(&bg->reservations); 2709 } 2710 2711 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2712 { 2713 struct btrfs_caching_control *next; 2714 struct btrfs_caching_control *caching_ctl; 2715 struct btrfs_block_group *cache; 2716 2717 down_write(&fs_info->commit_root_sem); 2718 2719 list_for_each_entry_safe(caching_ctl, next, 2720 &fs_info->caching_block_groups, list) { 2721 cache = caching_ctl->block_group; 2722 if (btrfs_block_group_done(cache)) { 2723 cache->last_byte_to_unpin = (u64)-1; 2724 list_del_init(&caching_ctl->list); 2725 btrfs_put_caching_control(caching_ctl); 2726 } else { 2727 cache->last_byte_to_unpin = caching_ctl->progress; 2728 } 2729 } 2730 2731 up_write(&fs_info->commit_root_sem); 2732 2733 btrfs_update_global_block_rsv(fs_info); 2734 } 2735 2736 /* 2737 * Returns the free cluster for the given space info and sets empty_cluster to 2738 * what it should be based on the mount options. 2739 */ 2740 static struct btrfs_free_cluster * 2741 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2742 struct btrfs_space_info *space_info, u64 *empty_cluster) 2743 { 2744 struct btrfs_free_cluster *ret = NULL; 2745 2746 *empty_cluster = 0; 2747 if (btrfs_mixed_space_info(space_info)) 2748 return ret; 2749 2750 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2751 ret = &fs_info->meta_alloc_cluster; 2752 if (btrfs_test_opt(fs_info, SSD)) 2753 *empty_cluster = SZ_2M; 2754 else 2755 *empty_cluster = SZ_64K; 2756 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2757 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2758 *empty_cluster = SZ_2M; 2759 ret = &fs_info->data_alloc_cluster; 2760 } 2761 2762 return ret; 2763 } 2764 2765 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2766 u64 start, u64 end, 2767 const bool return_free_space) 2768 { 2769 struct btrfs_block_group *cache = NULL; 2770 struct btrfs_space_info *space_info; 2771 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2772 struct btrfs_free_cluster *cluster = NULL; 2773 u64 len; 2774 u64 total_unpinned = 0; 2775 u64 empty_cluster = 0; 2776 bool readonly; 2777 2778 while (start <= end) { 2779 readonly = false; 2780 if (!cache || 2781 start >= cache->start + cache->length) { 2782 if (cache) 2783 btrfs_put_block_group(cache); 2784 total_unpinned = 0; 2785 cache = btrfs_lookup_block_group(fs_info, start); 2786 BUG_ON(!cache); /* Logic error */ 2787 2788 cluster = fetch_cluster_info(fs_info, 2789 cache->space_info, 2790 &empty_cluster); 2791 empty_cluster <<= 1; 2792 } 2793 2794 len = cache->start + cache->length - start; 2795 len = min(len, end + 1 - start); 2796 2797 if (start < cache->last_byte_to_unpin) { 2798 len = min(len, cache->last_byte_to_unpin - start); 2799 if (return_free_space) 2800 btrfs_add_free_space(cache, start, len); 2801 } 2802 2803 start += len; 2804 total_unpinned += len; 2805 space_info = cache->space_info; 2806 2807 /* 2808 * If this space cluster has been marked as fragmented and we've 2809 * unpinned enough in this block group to potentially allow a 2810 * cluster to be created inside of it go ahead and clear the 2811 * fragmented check. 2812 */ 2813 if (cluster && cluster->fragmented && 2814 total_unpinned > empty_cluster) { 2815 spin_lock(&cluster->lock); 2816 cluster->fragmented = 0; 2817 spin_unlock(&cluster->lock); 2818 } 2819 2820 spin_lock(&space_info->lock); 2821 spin_lock(&cache->lock); 2822 cache->pinned -= len; 2823 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2824 space_info->max_extent_size = 0; 2825 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2826 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2827 if (cache->ro) { 2828 space_info->bytes_readonly += len; 2829 readonly = true; 2830 } 2831 spin_unlock(&cache->lock); 2832 if (!readonly && return_free_space && 2833 global_rsv->space_info == space_info) { 2834 u64 to_add = len; 2835 2836 spin_lock(&global_rsv->lock); 2837 if (!global_rsv->full) { 2838 to_add = min(len, global_rsv->size - 2839 global_rsv->reserved); 2840 global_rsv->reserved += to_add; 2841 btrfs_space_info_update_bytes_may_use(fs_info, 2842 space_info, to_add); 2843 if (global_rsv->reserved >= global_rsv->size) 2844 global_rsv->full = 1; 2845 len -= to_add; 2846 } 2847 spin_unlock(&global_rsv->lock); 2848 /* Add to any tickets we may have */ 2849 if (len) 2850 btrfs_try_granting_tickets(fs_info, 2851 space_info); 2852 } 2853 spin_unlock(&space_info->lock); 2854 } 2855 2856 if (cache) 2857 btrfs_put_block_group(cache); 2858 return 0; 2859 } 2860 2861 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2862 { 2863 struct btrfs_fs_info *fs_info = trans->fs_info; 2864 struct btrfs_block_group *block_group, *tmp; 2865 struct list_head *deleted_bgs; 2866 struct extent_io_tree *unpin; 2867 u64 start; 2868 u64 end; 2869 int ret; 2870 2871 unpin = &trans->transaction->pinned_extents; 2872 2873 while (!TRANS_ABORTED(trans)) { 2874 struct extent_state *cached_state = NULL; 2875 2876 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2877 ret = find_first_extent_bit(unpin, 0, &start, &end, 2878 EXTENT_DIRTY, &cached_state); 2879 if (ret) { 2880 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2881 break; 2882 } 2883 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 2884 clear_extent_bits(&fs_info->excluded_extents, start, 2885 end, EXTENT_UPTODATE); 2886 2887 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2888 ret = btrfs_discard_extent(fs_info, start, 2889 end + 1 - start, NULL); 2890 2891 clear_extent_dirty(unpin, start, end, &cached_state); 2892 unpin_extent_range(fs_info, start, end, true); 2893 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2894 free_extent_state(cached_state); 2895 cond_resched(); 2896 } 2897 2898 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2899 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2900 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2901 } 2902 2903 /* 2904 * Transaction is finished. We don't need the lock anymore. We 2905 * do need to clean up the block groups in case of a transaction 2906 * abort. 2907 */ 2908 deleted_bgs = &trans->transaction->deleted_bgs; 2909 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2910 u64 trimmed = 0; 2911 2912 ret = -EROFS; 2913 if (!TRANS_ABORTED(trans)) 2914 ret = btrfs_discard_extent(fs_info, 2915 block_group->start, 2916 block_group->length, 2917 &trimmed); 2918 2919 list_del_init(&block_group->bg_list); 2920 btrfs_unfreeze_block_group(block_group); 2921 btrfs_put_block_group(block_group); 2922 2923 if (ret) { 2924 const char *errstr = btrfs_decode_error(ret); 2925 btrfs_warn(fs_info, 2926 "discard failed while removing blockgroup: errno=%d %s", 2927 ret, errstr); 2928 } 2929 } 2930 2931 return 0; 2932 } 2933 2934 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2935 struct btrfs_delayed_ref_node *node, u64 parent, 2936 u64 root_objectid, u64 owner_objectid, 2937 u64 owner_offset, int refs_to_drop, 2938 struct btrfs_delayed_extent_op *extent_op) 2939 { 2940 struct btrfs_fs_info *info = trans->fs_info; 2941 struct btrfs_key key; 2942 struct btrfs_path *path; 2943 struct btrfs_root *extent_root = info->extent_root; 2944 struct extent_buffer *leaf; 2945 struct btrfs_extent_item *ei; 2946 struct btrfs_extent_inline_ref *iref; 2947 int ret; 2948 int is_data; 2949 int extent_slot = 0; 2950 int found_extent = 0; 2951 int num_to_del = 1; 2952 u32 item_size; 2953 u64 refs; 2954 u64 bytenr = node->bytenr; 2955 u64 num_bytes = node->num_bytes; 2956 int last_ref = 0; 2957 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2958 2959 path = btrfs_alloc_path(); 2960 if (!path) 2961 return -ENOMEM; 2962 2963 path->leave_spinning = 1; 2964 2965 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2966 BUG_ON(!is_data && refs_to_drop != 1); 2967 2968 if (is_data) 2969 skinny_metadata = false; 2970 2971 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2972 parent, root_objectid, owner_objectid, 2973 owner_offset); 2974 if (ret == 0) { 2975 extent_slot = path->slots[0]; 2976 while (extent_slot >= 0) { 2977 btrfs_item_key_to_cpu(path->nodes[0], &key, 2978 extent_slot); 2979 if (key.objectid != bytenr) 2980 break; 2981 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2982 key.offset == num_bytes) { 2983 found_extent = 1; 2984 break; 2985 } 2986 if (key.type == BTRFS_METADATA_ITEM_KEY && 2987 key.offset == owner_objectid) { 2988 found_extent = 1; 2989 break; 2990 } 2991 if (path->slots[0] - extent_slot > 5) 2992 break; 2993 extent_slot--; 2994 } 2995 2996 if (!found_extent) { 2997 BUG_ON(iref); 2998 ret = remove_extent_backref(trans, path, NULL, 2999 refs_to_drop, 3000 is_data, &last_ref); 3001 if (ret) { 3002 btrfs_abort_transaction(trans, ret); 3003 goto out; 3004 } 3005 btrfs_release_path(path); 3006 path->leave_spinning = 1; 3007 3008 key.objectid = bytenr; 3009 key.type = BTRFS_EXTENT_ITEM_KEY; 3010 key.offset = num_bytes; 3011 3012 if (!is_data && skinny_metadata) { 3013 key.type = BTRFS_METADATA_ITEM_KEY; 3014 key.offset = owner_objectid; 3015 } 3016 3017 ret = btrfs_search_slot(trans, extent_root, 3018 &key, path, -1, 1); 3019 if (ret > 0 && skinny_metadata && path->slots[0]) { 3020 /* 3021 * Couldn't find our skinny metadata item, 3022 * see if we have ye olde extent item. 3023 */ 3024 path->slots[0]--; 3025 btrfs_item_key_to_cpu(path->nodes[0], &key, 3026 path->slots[0]); 3027 if (key.objectid == bytenr && 3028 key.type == BTRFS_EXTENT_ITEM_KEY && 3029 key.offset == num_bytes) 3030 ret = 0; 3031 } 3032 3033 if (ret > 0 && skinny_metadata) { 3034 skinny_metadata = false; 3035 key.objectid = bytenr; 3036 key.type = BTRFS_EXTENT_ITEM_KEY; 3037 key.offset = num_bytes; 3038 btrfs_release_path(path); 3039 ret = btrfs_search_slot(trans, extent_root, 3040 &key, path, -1, 1); 3041 } 3042 3043 if (ret) { 3044 btrfs_err(info, 3045 "umm, got %d back from search, was looking for %llu", 3046 ret, bytenr); 3047 if (ret > 0) 3048 btrfs_print_leaf(path->nodes[0]); 3049 } 3050 if (ret < 0) { 3051 btrfs_abort_transaction(trans, ret); 3052 goto out; 3053 } 3054 extent_slot = path->slots[0]; 3055 } 3056 } else if (WARN_ON(ret == -ENOENT)) { 3057 btrfs_print_leaf(path->nodes[0]); 3058 btrfs_err(info, 3059 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3060 bytenr, parent, root_objectid, owner_objectid, 3061 owner_offset); 3062 btrfs_abort_transaction(trans, ret); 3063 goto out; 3064 } else { 3065 btrfs_abort_transaction(trans, ret); 3066 goto out; 3067 } 3068 3069 leaf = path->nodes[0]; 3070 item_size = btrfs_item_size_nr(leaf, extent_slot); 3071 if (unlikely(item_size < sizeof(*ei))) { 3072 ret = -EINVAL; 3073 btrfs_print_v0_err(info); 3074 btrfs_abort_transaction(trans, ret); 3075 goto out; 3076 } 3077 ei = btrfs_item_ptr(leaf, extent_slot, 3078 struct btrfs_extent_item); 3079 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3080 key.type == BTRFS_EXTENT_ITEM_KEY) { 3081 struct btrfs_tree_block_info *bi; 3082 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3083 bi = (struct btrfs_tree_block_info *)(ei + 1); 3084 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3085 } 3086 3087 refs = btrfs_extent_refs(leaf, ei); 3088 if (refs < refs_to_drop) { 3089 btrfs_err(info, 3090 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3091 refs_to_drop, refs, bytenr); 3092 ret = -EINVAL; 3093 btrfs_abort_transaction(trans, ret); 3094 goto out; 3095 } 3096 refs -= refs_to_drop; 3097 3098 if (refs > 0) { 3099 if (extent_op) 3100 __run_delayed_extent_op(extent_op, leaf, ei); 3101 /* 3102 * In the case of inline back ref, reference count will 3103 * be updated by remove_extent_backref 3104 */ 3105 if (iref) { 3106 BUG_ON(!found_extent); 3107 } else { 3108 btrfs_set_extent_refs(leaf, ei, refs); 3109 btrfs_mark_buffer_dirty(leaf); 3110 } 3111 if (found_extent) { 3112 ret = remove_extent_backref(trans, path, iref, 3113 refs_to_drop, is_data, 3114 &last_ref); 3115 if (ret) { 3116 btrfs_abort_transaction(trans, ret); 3117 goto out; 3118 } 3119 } 3120 } else { 3121 if (found_extent) { 3122 BUG_ON(is_data && refs_to_drop != 3123 extent_data_ref_count(path, iref)); 3124 if (iref) { 3125 BUG_ON(path->slots[0] != extent_slot); 3126 } else { 3127 BUG_ON(path->slots[0] != extent_slot + 1); 3128 path->slots[0] = extent_slot; 3129 num_to_del = 2; 3130 } 3131 } 3132 3133 last_ref = 1; 3134 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3135 num_to_del); 3136 if (ret) { 3137 btrfs_abort_transaction(trans, ret); 3138 goto out; 3139 } 3140 btrfs_release_path(path); 3141 3142 if (is_data) { 3143 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3144 num_bytes); 3145 if (ret) { 3146 btrfs_abort_transaction(trans, ret); 3147 goto out; 3148 } 3149 } 3150 3151 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3152 if (ret) { 3153 btrfs_abort_transaction(trans, ret); 3154 goto out; 3155 } 3156 3157 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3158 if (ret) { 3159 btrfs_abort_transaction(trans, ret); 3160 goto out; 3161 } 3162 } 3163 btrfs_release_path(path); 3164 3165 out: 3166 btrfs_free_path(path); 3167 return ret; 3168 } 3169 3170 /* 3171 * when we free an block, it is possible (and likely) that we free the last 3172 * delayed ref for that extent as well. This searches the delayed ref tree for 3173 * a given extent, and if there are no other delayed refs to be processed, it 3174 * removes it from the tree. 3175 */ 3176 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3177 u64 bytenr) 3178 { 3179 struct btrfs_delayed_ref_head *head; 3180 struct btrfs_delayed_ref_root *delayed_refs; 3181 int ret = 0; 3182 3183 delayed_refs = &trans->transaction->delayed_refs; 3184 spin_lock(&delayed_refs->lock); 3185 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3186 if (!head) 3187 goto out_delayed_unlock; 3188 3189 spin_lock(&head->lock); 3190 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3191 goto out; 3192 3193 if (cleanup_extent_op(head) != NULL) 3194 goto out; 3195 3196 /* 3197 * waiting for the lock here would deadlock. If someone else has it 3198 * locked they are already in the process of dropping it anyway 3199 */ 3200 if (!mutex_trylock(&head->mutex)) 3201 goto out; 3202 3203 btrfs_delete_ref_head(delayed_refs, head); 3204 head->processing = 0; 3205 3206 spin_unlock(&head->lock); 3207 spin_unlock(&delayed_refs->lock); 3208 3209 BUG_ON(head->extent_op); 3210 if (head->must_insert_reserved) 3211 ret = 1; 3212 3213 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3214 mutex_unlock(&head->mutex); 3215 btrfs_put_delayed_ref_head(head); 3216 return ret; 3217 out: 3218 spin_unlock(&head->lock); 3219 3220 out_delayed_unlock: 3221 spin_unlock(&delayed_refs->lock); 3222 return 0; 3223 } 3224 3225 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3226 struct btrfs_root *root, 3227 struct extent_buffer *buf, 3228 u64 parent, int last_ref) 3229 { 3230 struct btrfs_fs_info *fs_info = root->fs_info; 3231 struct btrfs_ref generic_ref = { 0 }; 3232 int pin = 1; 3233 int ret; 3234 3235 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3236 buf->start, buf->len, parent); 3237 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3238 root->root_key.objectid); 3239 3240 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3241 int old_ref_mod, new_ref_mod; 3242 3243 btrfs_ref_tree_mod(fs_info, &generic_ref); 3244 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3245 &old_ref_mod, &new_ref_mod); 3246 BUG_ON(ret); /* -ENOMEM */ 3247 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3248 } 3249 3250 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3251 struct btrfs_block_group *cache; 3252 3253 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3254 ret = check_ref_cleanup(trans, buf->start); 3255 if (!ret) 3256 goto out; 3257 } 3258 3259 pin = 0; 3260 cache = btrfs_lookup_block_group(fs_info, buf->start); 3261 3262 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3263 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3264 btrfs_put_block_group(cache); 3265 goto out; 3266 } 3267 3268 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3269 3270 btrfs_add_free_space(cache, buf->start, buf->len); 3271 btrfs_free_reserved_bytes(cache, buf->len, 0); 3272 btrfs_put_block_group(cache); 3273 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3274 } 3275 out: 3276 if (pin) 3277 add_pinned_bytes(fs_info, &generic_ref); 3278 3279 if (last_ref) { 3280 /* 3281 * Deleting the buffer, clear the corrupt flag since it doesn't 3282 * matter anymore. 3283 */ 3284 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3285 } 3286 } 3287 3288 /* Can return -ENOMEM */ 3289 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3290 { 3291 struct btrfs_fs_info *fs_info = trans->fs_info; 3292 int old_ref_mod, new_ref_mod; 3293 int ret; 3294 3295 if (btrfs_is_testing(fs_info)) 3296 return 0; 3297 3298 /* 3299 * tree log blocks never actually go into the extent allocation 3300 * tree, just update pinning info and exit early. 3301 */ 3302 if ((ref->type == BTRFS_REF_METADATA && 3303 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3304 (ref->type == BTRFS_REF_DATA && 3305 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3306 /* unlocks the pinned mutex */ 3307 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3308 old_ref_mod = new_ref_mod = 0; 3309 ret = 0; 3310 } else if (ref->type == BTRFS_REF_METADATA) { 3311 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3312 &old_ref_mod, &new_ref_mod); 3313 } else { 3314 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3315 &old_ref_mod, &new_ref_mod); 3316 } 3317 3318 if (!((ref->type == BTRFS_REF_METADATA && 3319 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3320 (ref->type == BTRFS_REF_DATA && 3321 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3322 btrfs_ref_tree_mod(fs_info, ref); 3323 3324 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3325 add_pinned_bytes(fs_info, ref); 3326 3327 return ret; 3328 } 3329 3330 enum btrfs_loop_type { 3331 LOOP_CACHING_NOWAIT, 3332 LOOP_CACHING_WAIT, 3333 LOOP_ALLOC_CHUNK, 3334 LOOP_NO_EMPTY_SIZE, 3335 }; 3336 3337 static inline void 3338 btrfs_lock_block_group(struct btrfs_block_group *cache, 3339 int delalloc) 3340 { 3341 if (delalloc) 3342 down_read(&cache->data_rwsem); 3343 } 3344 3345 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3346 int delalloc) 3347 { 3348 btrfs_get_block_group(cache); 3349 if (delalloc) 3350 down_read(&cache->data_rwsem); 3351 } 3352 3353 static struct btrfs_block_group *btrfs_lock_cluster( 3354 struct btrfs_block_group *block_group, 3355 struct btrfs_free_cluster *cluster, 3356 int delalloc) 3357 __acquires(&cluster->refill_lock) 3358 { 3359 struct btrfs_block_group *used_bg = NULL; 3360 3361 spin_lock(&cluster->refill_lock); 3362 while (1) { 3363 used_bg = cluster->block_group; 3364 if (!used_bg) 3365 return NULL; 3366 3367 if (used_bg == block_group) 3368 return used_bg; 3369 3370 btrfs_get_block_group(used_bg); 3371 3372 if (!delalloc) 3373 return used_bg; 3374 3375 if (down_read_trylock(&used_bg->data_rwsem)) 3376 return used_bg; 3377 3378 spin_unlock(&cluster->refill_lock); 3379 3380 /* We should only have one-level nested. */ 3381 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3382 3383 spin_lock(&cluster->refill_lock); 3384 if (used_bg == cluster->block_group) 3385 return used_bg; 3386 3387 up_read(&used_bg->data_rwsem); 3388 btrfs_put_block_group(used_bg); 3389 } 3390 } 3391 3392 static inline void 3393 btrfs_release_block_group(struct btrfs_block_group *cache, 3394 int delalloc) 3395 { 3396 if (delalloc) 3397 up_read(&cache->data_rwsem); 3398 btrfs_put_block_group(cache); 3399 } 3400 3401 enum btrfs_extent_allocation_policy { 3402 BTRFS_EXTENT_ALLOC_CLUSTERED, 3403 }; 3404 3405 /* 3406 * Structure used internally for find_free_extent() function. Wraps needed 3407 * parameters. 3408 */ 3409 struct find_free_extent_ctl { 3410 /* Basic allocation info */ 3411 u64 num_bytes; 3412 u64 empty_size; 3413 u64 flags; 3414 int delalloc; 3415 3416 /* Where to start the search inside the bg */ 3417 u64 search_start; 3418 3419 /* For clustered allocation */ 3420 u64 empty_cluster; 3421 struct btrfs_free_cluster *last_ptr; 3422 bool use_cluster; 3423 3424 bool have_caching_bg; 3425 bool orig_have_caching_bg; 3426 3427 /* RAID index, converted from flags */ 3428 int index; 3429 3430 /* 3431 * Current loop number, check find_free_extent_update_loop() for details 3432 */ 3433 int loop; 3434 3435 /* 3436 * Whether we're refilling a cluster, if true we need to re-search 3437 * current block group but don't try to refill the cluster again. 3438 */ 3439 bool retry_clustered; 3440 3441 /* 3442 * Whether we're updating free space cache, if true we need to re-search 3443 * current block group but don't try updating free space cache again. 3444 */ 3445 bool retry_unclustered; 3446 3447 /* If current block group is cached */ 3448 int cached; 3449 3450 /* Max contiguous hole found */ 3451 u64 max_extent_size; 3452 3453 /* Total free space from free space cache, not always contiguous */ 3454 u64 total_free_space; 3455 3456 /* Found result */ 3457 u64 found_offset; 3458 3459 /* Hint where to start looking for an empty space */ 3460 u64 hint_byte; 3461 3462 /* Allocation policy */ 3463 enum btrfs_extent_allocation_policy policy; 3464 }; 3465 3466 3467 /* 3468 * Helper function for find_free_extent(). 3469 * 3470 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3471 * Return -EAGAIN to inform caller that we need to re-search this block group 3472 * Return >0 to inform caller that we find nothing 3473 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3474 */ 3475 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3476 struct find_free_extent_ctl *ffe_ctl, 3477 struct btrfs_block_group **cluster_bg_ret) 3478 { 3479 struct btrfs_block_group *cluster_bg; 3480 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3481 u64 aligned_cluster; 3482 u64 offset; 3483 int ret; 3484 3485 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3486 if (!cluster_bg) 3487 goto refill_cluster; 3488 if (cluster_bg != bg && (cluster_bg->ro || 3489 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3490 goto release_cluster; 3491 3492 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3493 ffe_ctl->num_bytes, cluster_bg->start, 3494 &ffe_ctl->max_extent_size); 3495 if (offset) { 3496 /* We have a block, we're done */ 3497 spin_unlock(&last_ptr->refill_lock); 3498 trace_btrfs_reserve_extent_cluster(cluster_bg, 3499 ffe_ctl->search_start, ffe_ctl->num_bytes); 3500 *cluster_bg_ret = cluster_bg; 3501 ffe_ctl->found_offset = offset; 3502 return 0; 3503 } 3504 WARN_ON(last_ptr->block_group != cluster_bg); 3505 3506 release_cluster: 3507 /* 3508 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3509 * lets just skip it and let the allocator find whatever block it can 3510 * find. If we reach this point, we will have tried the cluster 3511 * allocator plenty of times and not have found anything, so we are 3512 * likely way too fragmented for the clustering stuff to find anything. 3513 * 3514 * However, if the cluster is taken from the current block group, 3515 * release the cluster first, so that we stand a better chance of 3516 * succeeding in the unclustered allocation. 3517 */ 3518 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3519 spin_unlock(&last_ptr->refill_lock); 3520 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3521 return -ENOENT; 3522 } 3523 3524 /* This cluster didn't work out, free it and start over */ 3525 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3526 3527 if (cluster_bg != bg) 3528 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3529 3530 refill_cluster: 3531 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3532 spin_unlock(&last_ptr->refill_lock); 3533 return -ENOENT; 3534 } 3535 3536 aligned_cluster = max_t(u64, 3537 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3538 bg->full_stripe_len); 3539 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3540 ffe_ctl->num_bytes, aligned_cluster); 3541 if (ret == 0) { 3542 /* Now pull our allocation out of this cluster */ 3543 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3544 ffe_ctl->num_bytes, ffe_ctl->search_start, 3545 &ffe_ctl->max_extent_size); 3546 if (offset) { 3547 /* We found one, proceed */ 3548 spin_unlock(&last_ptr->refill_lock); 3549 trace_btrfs_reserve_extent_cluster(bg, 3550 ffe_ctl->search_start, 3551 ffe_ctl->num_bytes); 3552 ffe_ctl->found_offset = offset; 3553 return 0; 3554 } 3555 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3556 !ffe_ctl->retry_clustered) { 3557 spin_unlock(&last_ptr->refill_lock); 3558 3559 ffe_ctl->retry_clustered = true; 3560 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3561 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3562 return -EAGAIN; 3563 } 3564 /* 3565 * At this point we either didn't find a cluster or we weren't able to 3566 * allocate a block from our cluster. Free the cluster we've been 3567 * trying to use, and go to the next block group. 3568 */ 3569 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3570 spin_unlock(&last_ptr->refill_lock); 3571 return 1; 3572 } 3573 3574 /* 3575 * Return >0 to inform caller that we find nothing 3576 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3577 * Return -EAGAIN to inform caller that we need to re-search this block group 3578 */ 3579 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3580 struct find_free_extent_ctl *ffe_ctl) 3581 { 3582 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3583 u64 offset; 3584 3585 /* 3586 * We are doing an unclustered allocation, set the fragmented flag so 3587 * we don't bother trying to setup a cluster again until we get more 3588 * space. 3589 */ 3590 if (unlikely(last_ptr)) { 3591 spin_lock(&last_ptr->lock); 3592 last_ptr->fragmented = 1; 3593 spin_unlock(&last_ptr->lock); 3594 } 3595 if (ffe_ctl->cached) { 3596 struct btrfs_free_space_ctl *free_space_ctl; 3597 3598 free_space_ctl = bg->free_space_ctl; 3599 spin_lock(&free_space_ctl->tree_lock); 3600 if (free_space_ctl->free_space < 3601 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3602 ffe_ctl->empty_size) { 3603 ffe_ctl->total_free_space = max_t(u64, 3604 ffe_ctl->total_free_space, 3605 free_space_ctl->free_space); 3606 spin_unlock(&free_space_ctl->tree_lock); 3607 return 1; 3608 } 3609 spin_unlock(&free_space_ctl->tree_lock); 3610 } 3611 3612 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3613 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3614 &ffe_ctl->max_extent_size); 3615 3616 /* 3617 * If we didn't find a chunk, and we haven't failed on this block group 3618 * before, and this block group is in the middle of caching and we are 3619 * ok with waiting, then go ahead and wait for progress to be made, and 3620 * set @retry_unclustered to true. 3621 * 3622 * If @retry_unclustered is true then we've already waited on this 3623 * block group once and should move on to the next block group. 3624 */ 3625 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3626 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3627 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3628 ffe_ctl->empty_size); 3629 ffe_ctl->retry_unclustered = true; 3630 return -EAGAIN; 3631 } else if (!offset) { 3632 return 1; 3633 } 3634 ffe_ctl->found_offset = offset; 3635 return 0; 3636 } 3637 3638 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3639 struct find_free_extent_ctl *ffe_ctl, 3640 struct btrfs_block_group **bg_ret) 3641 { 3642 int ret; 3643 3644 /* We want to try and use the cluster allocator, so lets look there */ 3645 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3646 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3647 if (ret >= 0 || ret == -EAGAIN) 3648 return ret; 3649 /* ret == -ENOENT case falls through */ 3650 } 3651 3652 return find_free_extent_unclustered(block_group, ffe_ctl); 3653 } 3654 3655 static int do_allocation(struct btrfs_block_group *block_group, 3656 struct find_free_extent_ctl *ffe_ctl, 3657 struct btrfs_block_group **bg_ret) 3658 { 3659 switch (ffe_ctl->policy) { 3660 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3661 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3662 default: 3663 BUG(); 3664 } 3665 } 3666 3667 static void release_block_group(struct btrfs_block_group *block_group, 3668 struct find_free_extent_ctl *ffe_ctl, 3669 int delalloc) 3670 { 3671 switch (ffe_ctl->policy) { 3672 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3673 ffe_ctl->retry_clustered = false; 3674 ffe_ctl->retry_unclustered = false; 3675 break; 3676 default: 3677 BUG(); 3678 } 3679 3680 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3681 ffe_ctl->index); 3682 btrfs_release_block_group(block_group, delalloc); 3683 } 3684 3685 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3686 struct btrfs_key *ins) 3687 { 3688 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3689 3690 if (!ffe_ctl->use_cluster && last_ptr) { 3691 spin_lock(&last_ptr->lock); 3692 last_ptr->window_start = ins->objectid; 3693 spin_unlock(&last_ptr->lock); 3694 } 3695 } 3696 3697 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3698 struct btrfs_key *ins) 3699 { 3700 switch (ffe_ctl->policy) { 3701 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3702 found_extent_clustered(ffe_ctl, ins); 3703 break; 3704 default: 3705 BUG(); 3706 } 3707 } 3708 3709 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3710 { 3711 switch (ffe_ctl->policy) { 3712 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3713 /* 3714 * If we can't allocate a new chunk we've already looped through 3715 * at least once, move on to the NO_EMPTY_SIZE case. 3716 */ 3717 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3718 return 0; 3719 default: 3720 BUG(); 3721 } 3722 } 3723 3724 /* 3725 * Return >0 means caller needs to re-search for free extent 3726 * Return 0 means we have the needed free extent. 3727 * Return <0 means we failed to locate any free extent. 3728 */ 3729 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3730 struct btrfs_key *ins, 3731 struct find_free_extent_ctl *ffe_ctl, 3732 bool full_search) 3733 { 3734 struct btrfs_root *root = fs_info->extent_root; 3735 int ret; 3736 3737 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3738 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3739 ffe_ctl->orig_have_caching_bg = true; 3740 3741 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3742 ffe_ctl->have_caching_bg) 3743 return 1; 3744 3745 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3746 return 1; 3747 3748 if (ins->objectid) { 3749 found_extent(ffe_ctl, ins); 3750 return 0; 3751 } 3752 3753 /* 3754 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3755 * caching kthreads as we move along 3756 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3757 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3758 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3759 * again 3760 */ 3761 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3762 ffe_ctl->index = 0; 3763 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3764 /* 3765 * We want to skip the LOOP_CACHING_WAIT step if we 3766 * don't have any uncached bgs and we've already done a 3767 * full search through. 3768 */ 3769 if (ffe_ctl->orig_have_caching_bg || !full_search) 3770 ffe_ctl->loop = LOOP_CACHING_WAIT; 3771 else 3772 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3773 } else { 3774 ffe_ctl->loop++; 3775 } 3776 3777 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3778 struct btrfs_trans_handle *trans; 3779 int exist = 0; 3780 3781 trans = current->journal_info; 3782 if (trans) 3783 exist = 1; 3784 else 3785 trans = btrfs_join_transaction(root); 3786 3787 if (IS_ERR(trans)) { 3788 ret = PTR_ERR(trans); 3789 return ret; 3790 } 3791 3792 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3793 CHUNK_ALLOC_FORCE); 3794 3795 /* Do not bail out on ENOSPC since we can do more. */ 3796 if (ret == -ENOSPC) 3797 ret = chunk_allocation_failed(ffe_ctl); 3798 else if (ret < 0) 3799 btrfs_abort_transaction(trans, ret); 3800 else 3801 ret = 0; 3802 if (!exist) 3803 btrfs_end_transaction(trans); 3804 if (ret) 3805 return ret; 3806 } 3807 3808 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3809 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3810 return -ENOSPC; 3811 3812 /* 3813 * Don't loop again if we already have no empty_size and 3814 * no empty_cluster. 3815 */ 3816 if (ffe_ctl->empty_size == 0 && 3817 ffe_ctl->empty_cluster == 0) 3818 return -ENOSPC; 3819 ffe_ctl->empty_size = 0; 3820 ffe_ctl->empty_cluster = 0; 3821 } 3822 return 1; 3823 } 3824 return -ENOSPC; 3825 } 3826 3827 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3828 struct find_free_extent_ctl *ffe_ctl, 3829 struct btrfs_space_info *space_info, 3830 struct btrfs_key *ins) 3831 { 3832 /* 3833 * If our free space is heavily fragmented we may not be able to make 3834 * big contiguous allocations, so instead of doing the expensive search 3835 * for free space, simply return ENOSPC with our max_extent_size so we 3836 * can go ahead and search for a more manageable chunk. 3837 * 3838 * If our max_extent_size is large enough for our allocation simply 3839 * disable clustering since we will likely not be able to find enough 3840 * space to create a cluster and induce latency trying. 3841 */ 3842 if (space_info->max_extent_size) { 3843 spin_lock(&space_info->lock); 3844 if (space_info->max_extent_size && 3845 ffe_ctl->num_bytes > space_info->max_extent_size) { 3846 ins->offset = space_info->max_extent_size; 3847 spin_unlock(&space_info->lock); 3848 return -ENOSPC; 3849 } else if (space_info->max_extent_size) { 3850 ffe_ctl->use_cluster = false; 3851 } 3852 spin_unlock(&space_info->lock); 3853 } 3854 3855 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3856 &ffe_ctl->empty_cluster); 3857 if (ffe_ctl->last_ptr) { 3858 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3859 3860 spin_lock(&last_ptr->lock); 3861 if (last_ptr->block_group) 3862 ffe_ctl->hint_byte = last_ptr->window_start; 3863 if (last_ptr->fragmented) { 3864 /* 3865 * We still set window_start so we can keep track of the 3866 * last place we found an allocation to try and save 3867 * some time. 3868 */ 3869 ffe_ctl->hint_byte = last_ptr->window_start; 3870 ffe_ctl->use_cluster = false; 3871 } 3872 spin_unlock(&last_ptr->lock); 3873 } 3874 3875 return 0; 3876 } 3877 3878 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3879 struct find_free_extent_ctl *ffe_ctl, 3880 struct btrfs_space_info *space_info, 3881 struct btrfs_key *ins) 3882 { 3883 switch (ffe_ctl->policy) { 3884 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3885 return prepare_allocation_clustered(fs_info, ffe_ctl, 3886 space_info, ins); 3887 default: 3888 BUG(); 3889 } 3890 } 3891 3892 /* 3893 * walks the btree of allocated extents and find a hole of a given size. 3894 * The key ins is changed to record the hole: 3895 * ins->objectid == start position 3896 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3897 * ins->offset == the size of the hole. 3898 * Any available blocks before search_start are skipped. 3899 * 3900 * If there is no suitable free space, we will record the max size of 3901 * the free space extent currently. 3902 * 3903 * The overall logic and call chain: 3904 * 3905 * find_free_extent() 3906 * |- Iterate through all block groups 3907 * | |- Get a valid block group 3908 * | |- Try to do clustered allocation in that block group 3909 * | |- Try to do unclustered allocation in that block group 3910 * | |- Check if the result is valid 3911 * | | |- If valid, then exit 3912 * | |- Jump to next block group 3913 * | 3914 * |- Push harder to find free extents 3915 * |- If not found, re-iterate all block groups 3916 */ 3917 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3918 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3919 u64 hint_byte_orig, struct btrfs_key *ins, 3920 u64 flags, int delalloc) 3921 { 3922 int ret = 0; 3923 int cache_block_group_error = 0; 3924 struct btrfs_block_group *block_group = NULL; 3925 struct find_free_extent_ctl ffe_ctl = {0}; 3926 struct btrfs_space_info *space_info; 3927 bool full_search = false; 3928 3929 WARN_ON(num_bytes < fs_info->sectorsize); 3930 3931 ffe_ctl.num_bytes = num_bytes; 3932 ffe_ctl.empty_size = empty_size; 3933 ffe_ctl.flags = flags; 3934 ffe_ctl.search_start = 0; 3935 ffe_ctl.delalloc = delalloc; 3936 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3937 ffe_ctl.have_caching_bg = false; 3938 ffe_ctl.orig_have_caching_bg = false; 3939 ffe_ctl.found_offset = 0; 3940 ffe_ctl.hint_byte = hint_byte_orig; 3941 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 3942 3943 /* For clustered allocation */ 3944 ffe_ctl.retry_clustered = false; 3945 ffe_ctl.retry_unclustered = false; 3946 ffe_ctl.last_ptr = NULL; 3947 ffe_ctl.use_cluster = true; 3948 3949 ins->type = BTRFS_EXTENT_ITEM_KEY; 3950 ins->objectid = 0; 3951 ins->offset = 0; 3952 3953 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3954 3955 space_info = btrfs_find_space_info(fs_info, flags); 3956 if (!space_info) { 3957 btrfs_err(fs_info, "No space info for %llu", flags); 3958 return -ENOSPC; 3959 } 3960 3961 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 3962 if (ret < 0) 3963 return ret; 3964 3965 ffe_ctl.search_start = max(ffe_ctl.search_start, 3966 first_logical_byte(fs_info, 0)); 3967 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 3968 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 3969 block_group = btrfs_lookup_block_group(fs_info, 3970 ffe_ctl.search_start); 3971 /* 3972 * we don't want to use the block group if it doesn't match our 3973 * allocation bits, or if its not cached. 3974 * 3975 * However if we are re-searching with an ideal block group 3976 * picked out then we don't care that the block group is cached. 3977 */ 3978 if (block_group && block_group_bits(block_group, flags) && 3979 block_group->cached != BTRFS_CACHE_NO) { 3980 down_read(&space_info->groups_sem); 3981 if (list_empty(&block_group->list) || 3982 block_group->ro) { 3983 /* 3984 * someone is removing this block group, 3985 * we can't jump into the have_block_group 3986 * target because our list pointers are not 3987 * valid 3988 */ 3989 btrfs_put_block_group(block_group); 3990 up_read(&space_info->groups_sem); 3991 } else { 3992 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 3993 block_group->flags); 3994 btrfs_lock_block_group(block_group, delalloc); 3995 goto have_block_group; 3996 } 3997 } else if (block_group) { 3998 btrfs_put_block_group(block_group); 3999 } 4000 } 4001 search: 4002 ffe_ctl.have_caching_bg = false; 4003 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4004 ffe_ctl.index == 0) 4005 full_search = true; 4006 down_read(&space_info->groups_sem); 4007 list_for_each_entry(block_group, 4008 &space_info->block_groups[ffe_ctl.index], list) { 4009 struct btrfs_block_group *bg_ret; 4010 4011 /* If the block group is read-only, we can skip it entirely. */ 4012 if (unlikely(block_group->ro)) 4013 continue; 4014 4015 btrfs_grab_block_group(block_group, delalloc); 4016 ffe_ctl.search_start = block_group->start; 4017 4018 /* 4019 * this can happen if we end up cycling through all the 4020 * raid types, but we want to make sure we only allocate 4021 * for the proper type. 4022 */ 4023 if (!block_group_bits(block_group, flags)) { 4024 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4025 BTRFS_BLOCK_GROUP_RAID1_MASK | 4026 BTRFS_BLOCK_GROUP_RAID56_MASK | 4027 BTRFS_BLOCK_GROUP_RAID10; 4028 4029 /* 4030 * if they asked for extra copies and this block group 4031 * doesn't provide them, bail. This does allow us to 4032 * fill raid0 from raid1. 4033 */ 4034 if ((flags & extra) && !(block_group->flags & extra)) 4035 goto loop; 4036 4037 /* 4038 * This block group has different flags than we want. 4039 * It's possible that we have MIXED_GROUP flag but no 4040 * block group is mixed. Just skip such block group. 4041 */ 4042 btrfs_release_block_group(block_group, delalloc); 4043 continue; 4044 } 4045 4046 have_block_group: 4047 ffe_ctl.cached = btrfs_block_group_done(block_group); 4048 if (unlikely(!ffe_ctl.cached)) { 4049 ffe_ctl.have_caching_bg = true; 4050 ret = btrfs_cache_block_group(block_group, 0); 4051 4052 /* 4053 * If we get ENOMEM here or something else we want to 4054 * try other block groups, because it may not be fatal. 4055 * However if we can't find anything else we need to 4056 * save our return here so that we return the actual 4057 * error that caused problems, not ENOSPC. 4058 */ 4059 if (ret < 0) { 4060 if (!cache_block_group_error) 4061 cache_block_group_error = ret; 4062 ret = 0; 4063 goto loop; 4064 } 4065 ret = 0; 4066 } 4067 4068 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4069 goto loop; 4070 4071 bg_ret = NULL; 4072 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4073 if (ret == 0) { 4074 if (bg_ret && bg_ret != block_group) { 4075 btrfs_release_block_group(block_group, delalloc); 4076 block_group = bg_ret; 4077 } 4078 } else if (ret == -EAGAIN) { 4079 goto have_block_group; 4080 } else if (ret > 0) { 4081 goto loop; 4082 } 4083 4084 /* Checks */ 4085 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4086 fs_info->stripesize); 4087 4088 /* move on to the next group */ 4089 if (ffe_ctl.search_start + num_bytes > 4090 block_group->start + block_group->length) { 4091 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4092 num_bytes); 4093 goto loop; 4094 } 4095 4096 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4097 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4098 ffe_ctl.search_start - ffe_ctl.found_offset); 4099 4100 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4101 num_bytes, delalloc); 4102 if (ret == -EAGAIN) { 4103 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4104 num_bytes); 4105 goto loop; 4106 } 4107 btrfs_inc_block_group_reservations(block_group); 4108 4109 /* we are all good, lets return */ 4110 ins->objectid = ffe_ctl.search_start; 4111 ins->offset = num_bytes; 4112 4113 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4114 num_bytes); 4115 btrfs_release_block_group(block_group, delalloc); 4116 break; 4117 loop: 4118 release_block_group(block_group, &ffe_ctl, delalloc); 4119 cond_resched(); 4120 } 4121 up_read(&space_info->groups_sem); 4122 4123 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4124 if (ret > 0) 4125 goto search; 4126 4127 if (ret == -ENOSPC && !cache_block_group_error) { 4128 /* 4129 * Use ffe_ctl->total_free_space as fallback if we can't find 4130 * any contiguous hole. 4131 */ 4132 if (!ffe_ctl.max_extent_size) 4133 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4134 spin_lock(&space_info->lock); 4135 space_info->max_extent_size = ffe_ctl.max_extent_size; 4136 spin_unlock(&space_info->lock); 4137 ins->offset = ffe_ctl.max_extent_size; 4138 } else if (ret == -ENOSPC) { 4139 ret = cache_block_group_error; 4140 } 4141 return ret; 4142 } 4143 4144 /* 4145 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4146 * hole that is at least as big as @num_bytes. 4147 * 4148 * @root - The root that will contain this extent 4149 * 4150 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4151 * is used for accounting purposes. This value differs 4152 * from @num_bytes only in the case of compressed extents. 4153 * 4154 * @num_bytes - Number of bytes to allocate on-disk. 4155 * 4156 * @min_alloc_size - Indicates the minimum amount of space that the 4157 * allocator should try to satisfy. In some cases 4158 * @num_bytes may be larger than what is required and if 4159 * the filesystem is fragmented then allocation fails. 4160 * However, the presence of @min_alloc_size gives a 4161 * chance to try and satisfy the smaller allocation. 4162 * 4163 * @empty_size - A hint that you plan on doing more COW. This is the 4164 * size in bytes the allocator should try to find free 4165 * next to the block it returns. This is just a hint and 4166 * may be ignored by the allocator. 4167 * 4168 * @hint_byte - Hint to the allocator to start searching above the byte 4169 * address passed. It might be ignored. 4170 * 4171 * @ins - This key is modified to record the found hole. It will 4172 * have the following values: 4173 * ins->objectid == start position 4174 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4175 * ins->offset == the size of the hole. 4176 * 4177 * @is_data - Boolean flag indicating whether an extent is 4178 * allocated for data (true) or metadata (false) 4179 * 4180 * @delalloc - Boolean flag indicating whether this allocation is for 4181 * delalloc or not. If 'true' data_rwsem of block groups 4182 * is going to be acquired. 4183 * 4184 * 4185 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4186 * case -ENOSPC is returned then @ins->offset will contain the size of the 4187 * largest available hole the allocator managed to find. 4188 */ 4189 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4190 u64 num_bytes, u64 min_alloc_size, 4191 u64 empty_size, u64 hint_byte, 4192 struct btrfs_key *ins, int is_data, int delalloc) 4193 { 4194 struct btrfs_fs_info *fs_info = root->fs_info; 4195 bool final_tried = num_bytes == min_alloc_size; 4196 u64 flags; 4197 int ret; 4198 4199 flags = get_alloc_profile_by_root(root, is_data); 4200 again: 4201 WARN_ON(num_bytes < fs_info->sectorsize); 4202 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4203 hint_byte, ins, flags, delalloc); 4204 if (!ret && !is_data) { 4205 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4206 } else if (ret == -ENOSPC) { 4207 if (!final_tried && ins->offset) { 4208 num_bytes = min(num_bytes >> 1, ins->offset); 4209 num_bytes = round_down(num_bytes, 4210 fs_info->sectorsize); 4211 num_bytes = max(num_bytes, min_alloc_size); 4212 ram_bytes = num_bytes; 4213 if (num_bytes == min_alloc_size) 4214 final_tried = true; 4215 goto again; 4216 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4217 struct btrfs_space_info *sinfo; 4218 4219 sinfo = btrfs_find_space_info(fs_info, flags); 4220 btrfs_err(fs_info, 4221 "allocation failed flags %llu, wanted %llu", 4222 flags, num_bytes); 4223 if (sinfo) 4224 btrfs_dump_space_info(fs_info, sinfo, 4225 num_bytes, 1); 4226 } 4227 } 4228 4229 return ret; 4230 } 4231 4232 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4233 u64 start, u64 len, int delalloc) 4234 { 4235 struct btrfs_block_group *cache; 4236 4237 cache = btrfs_lookup_block_group(fs_info, start); 4238 if (!cache) { 4239 btrfs_err(fs_info, "Unable to find block group for %llu", 4240 start); 4241 return -ENOSPC; 4242 } 4243 4244 btrfs_add_free_space(cache, start, len); 4245 btrfs_free_reserved_bytes(cache, len, delalloc); 4246 trace_btrfs_reserved_extent_free(fs_info, start, len); 4247 4248 btrfs_put_block_group(cache); 4249 return 0; 4250 } 4251 4252 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4253 u64 len) 4254 { 4255 struct btrfs_block_group *cache; 4256 int ret = 0; 4257 4258 cache = btrfs_lookup_block_group(trans->fs_info, start); 4259 if (!cache) { 4260 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4261 start); 4262 return -ENOSPC; 4263 } 4264 4265 ret = pin_down_extent(trans, cache, start, len, 1); 4266 btrfs_put_block_group(cache); 4267 return ret; 4268 } 4269 4270 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4271 u64 parent, u64 root_objectid, 4272 u64 flags, u64 owner, u64 offset, 4273 struct btrfs_key *ins, int ref_mod) 4274 { 4275 struct btrfs_fs_info *fs_info = trans->fs_info; 4276 int ret; 4277 struct btrfs_extent_item *extent_item; 4278 struct btrfs_extent_inline_ref *iref; 4279 struct btrfs_path *path; 4280 struct extent_buffer *leaf; 4281 int type; 4282 u32 size; 4283 4284 if (parent > 0) 4285 type = BTRFS_SHARED_DATA_REF_KEY; 4286 else 4287 type = BTRFS_EXTENT_DATA_REF_KEY; 4288 4289 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4290 4291 path = btrfs_alloc_path(); 4292 if (!path) 4293 return -ENOMEM; 4294 4295 path->leave_spinning = 1; 4296 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4297 ins, size); 4298 if (ret) { 4299 btrfs_free_path(path); 4300 return ret; 4301 } 4302 4303 leaf = path->nodes[0]; 4304 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4305 struct btrfs_extent_item); 4306 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4307 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4308 btrfs_set_extent_flags(leaf, extent_item, 4309 flags | BTRFS_EXTENT_FLAG_DATA); 4310 4311 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4312 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4313 if (parent > 0) { 4314 struct btrfs_shared_data_ref *ref; 4315 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4316 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4317 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4318 } else { 4319 struct btrfs_extent_data_ref *ref; 4320 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4321 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4322 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4323 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4324 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4325 } 4326 4327 btrfs_mark_buffer_dirty(path->nodes[0]); 4328 btrfs_free_path(path); 4329 4330 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4331 if (ret) 4332 return ret; 4333 4334 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4335 if (ret) { /* -ENOENT, logic error */ 4336 btrfs_err(fs_info, "update block group failed for %llu %llu", 4337 ins->objectid, ins->offset); 4338 BUG(); 4339 } 4340 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4341 return ret; 4342 } 4343 4344 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4345 struct btrfs_delayed_ref_node *node, 4346 struct btrfs_delayed_extent_op *extent_op) 4347 { 4348 struct btrfs_fs_info *fs_info = trans->fs_info; 4349 int ret; 4350 struct btrfs_extent_item *extent_item; 4351 struct btrfs_key extent_key; 4352 struct btrfs_tree_block_info *block_info; 4353 struct btrfs_extent_inline_ref *iref; 4354 struct btrfs_path *path; 4355 struct extent_buffer *leaf; 4356 struct btrfs_delayed_tree_ref *ref; 4357 u32 size = sizeof(*extent_item) + sizeof(*iref); 4358 u64 num_bytes; 4359 u64 flags = extent_op->flags_to_set; 4360 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4361 4362 ref = btrfs_delayed_node_to_tree_ref(node); 4363 4364 extent_key.objectid = node->bytenr; 4365 if (skinny_metadata) { 4366 extent_key.offset = ref->level; 4367 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4368 num_bytes = fs_info->nodesize; 4369 } else { 4370 extent_key.offset = node->num_bytes; 4371 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4372 size += sizeof(*block_info); 4373 num_bytes = node->num_bytes; 4374 } 4375 4376 path = btrfs_alloc_path(); 4377 if (!path) 4378 return -ENOMEM; 4379 4380 path->leave_spinning = 1; 4381 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4382 &extent_key, size); 4383 if (ret) { 4384 btrfs_free_path(path); 4385 return ret; 4386 } 4387 4388 leaf = path->nodes[0]; 4389 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4390 struct btrfs_extent_item); 4391 btrfs_set_extent_refs(leaf, extent_item, 1); 4392 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4393 btrfs_set_extent_flags(leaf, extent_item, 4394 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4395 4396 if (skinny_metadata) { 4397 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4398 } else { 4399 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4400 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4401 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4402 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4403 } 4404 4405 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4406 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4407 btrfs_set_extent_inline_ref_type(leaf, iref, 4408 BTRFS_SHARED_BLOCK_REF_KEY); 4409 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4410 } else { 4411 btrfs_set_extent_inline_ref_type(leaf, iref, 4412 BTRFS_TREE_BLOCK_REF_KEY); 4413 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4414 } 4415 4416 btrfs_mark_buffer_dirty(leaf); 4417 btrfs_free_path(path); 4418 4419 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4420 num_bytes); 4421 if (ret) 4422 return ret; 4423 4424 ret = btrfs_update_block_group(trans, extent_key.objectid, 4425 fs_info->nodesize, 1); 4426 if (ret) { /* -ENOENT, logic error */ 4427 btrfs_err(fs_info, "update block group failed for %llu %llu", 4428 extent_key.objectid, extent_key.offset); 4429 BUG(); 4430 } 4431 4432 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4433 fs_info->nodesize); 4434 return ret; 4435 } 4436 4437 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4438 struct btrfs_root *root, u64 owner, 4439 u64 offset, u64 ram_bytes, 4440 struct btrfs_key *ins) 4441 { 4442 struct btrfs_ref generic_ref = { 0 }; 4443 int ret; 4444 4445 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4446 4447 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4448 ins->objectid, ins->offset, 0); 4449 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4450 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4451 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4452 ram_bytes, NULL, NULL); 4453 return ret; 4454 } 4455 4456 /* 4457 * this is used by the tree logging recovery code. It records that 4458 * an extent has been allocated and makes sure to clear the free 4459 * space cache bits as well 4460 */ 4461 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4462 u64 root_objectid, u64 owner, u64 offset, 4463 struct btrfs_key *ins) 4464 { 4465 struct btrfs_fs_info *fs_info = trans->fs_info; 4466 int ret; 4467 struct btrfs_block_group *block_group; 4468 struct btrfs_space_info *space_info; 4469 4470 /* 4471 * Mixed block groups will exclude before processing the log so we only 4472 * need to do the exclude dance if this fs isn't mixed. 4473 */ 4474 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4475 ret = __exclude_logged_extent(fs_info, ins->objectid, 4476 ins->offset); 4477 if (ret) 4478 return ret; 4479 } 4480 4481 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4482 if (!block_group) 4483 return -EINVAL; 4484 4485 space_info = block_group->space_info; 4486 spin_lock(&space_info->lock); 4487 spin_lock(&block_group->lock); 4488 space_info->bytes_reserved += ins->offset; 4489 block_group->reserved += ins->offset; 4490 spin_unlock(&block_group->lock); 4491 spin_unlock(&space_info->lock); 4492 4493 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4494 offset, ins, 1); 4495 if (ret) 4496 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4497 btrfs_put_block_group(block_group); 4498 return ret; 4499 } 4500 4501 static struct extent_buffer * 4502 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4503 u64 bytenr, int level, u64 owner) 4504 { 4505 struct btrfs_fs_info *fs_info = root->fs_info; 4506 struct extent_buffer *buf; 4507 4508 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4509 if (IS_ERR(buf)) 4510 return buf; 4511 4512 /* 4513 * Extra safety check in case the extent tree is corrupted and extent 4514 * allocator chooses to use a tree block which is already used and 4515 * locked. 4516 */ 4517 if (buf->lock_owner == current->pid) { 4518 btrfs_err_rl(fs_info, 4519 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4520 buf->start, btrfs_header_owner(buf), current->pid); 4521 free_extent_buffer(buf); 4522 return ERR_PTR(-EUCLEAN); 4523 } 4524 4525 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 4526 btrfs_tree_lock(buf); 4527 btrfs_clean_tree_block(buf); 4528 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4529 4530 btrfs_set_lock_blocking_write(buf); 4531 set_extent_buffer_uptodate(buf); 4532 4533 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4534 btrfs_set_header_level(buf, level); 4535 btrfs_set_header_bytenr(buf, buf->start); 4536 btrfs_set_header_generation(buf, trans->transid); 4537 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4538 btrfs_set_header_owner(buf, owner); 4539 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4540 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4541 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4542 buf->log_index = root->log_transid % 2; 4543 /* 4544 * we allow two log transactions at a time, use different 4545 * EXTENT bit to differentiate dirty pages. 4546 */ 4547 if (buf->log_index == 0) 4548 set_extent_dirty(&root->dirty_log_pages, buf->start, 4549 buf->start + buf->len - 1, GFP_NOFS); 4550 else 4551 set_extent_new(&root->dirty_log_pages, buf->start, 4552 buf->start + buf->len - 1); 4553 } else { 4554 buf->log_index = -1; 4555 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4556 buf->start + buf->len - 1, GFP_NOFS); 4557 } 4558 trans->dirty = true; 4559 /* this returns a buffer locked for blocking */ 4560 return buf; 4561 } 4562 4563 /* 4564 * finds a free extent and does all the dirty work required for allocation 4565 * returns the tree buffer or an ERR_PTR on error. 4566 */ 4567 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4568 struct btrfs_root *root, 4569 u64 parent, u64 root_objectid, 4570 const struct btrfs_disk_key *key, 4571 int level, u64 hint, 4572 u64 empty_size) 4573 { 4574 struct btrfs_fs_info *fs_info = root->fs_info; 4575 struct btrfs_key ins; 4576 struct btrfs_block_rsv *block_rsv; 4577 struct extent_buffer *buf; 4578 struct btrfs_delayed_extent_op *extent_op; 4579 struct btrfs_ref generic_ref = { 0 }; 4580 u64 flags = 0; 4581 int ret; 4582 u32 blocksize = fs_info->nodesize; 4583 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4584 4585 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4586 if (btrfs_is_testing(fs_info)) { 4587 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4588 level, root_objectid); 4589 if (!IS_ERR(buf)) 4590 root->alloc_bytenr += blocksize; 4591 return buf; 4592 } 4593 #endif 4594 4595 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4596 if (IS_ERR(block_rsv)) 4597 return ERR_CAST(block_rsv); 4598 4599 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4600 empty_size, hint, &ins, 0, 0); 4601 if (ret) 4602 goto out_unuse; 4603 4604 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4605 root_objectid); 4606 if (IS_ERR(buf)) { 4607 ret = PTR_ERR(buf); 4608 goto out_free_reserved; 4609 } 4610 4611 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4612 if (parent == 0) 4613 parent = ins.objectid; 4614 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4615 } else 4616 BUG_ON(parent > 0); 4617 4618 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4619 extent_op = btrfs_alloc_delayed_extent_op(); 4620 if (!extent_op) { 4621 ret = -ENOMEM; 4622 goto out_free_buf; 4623 } 4624 if (key) 4625 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4626 else 4627 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4628 extent_op->flags_to_set = flags; 4629 extent_op->update_key = skinny_metadata ? false : true; 4630 extent_op->update_flags = true; 4631 extent_op->is_data = false; 4632 extent_op->level = level; 4633 4634 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4635 ins.objectid, ins.offset, parent); 4636 generic_ref.real_root = root->root_key.objectid; 4637 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4638 btrfs_ref_tree_mod(fs_info, &generic_ref); 4639 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4640 extent_op, NULL, NULL); 4641 if (ret) 4642 goto out_free_delayed; 4643 } 4644 return buf; 4645 4646 out_free_delayed: 4647 btrfs_free_delayed_extent_op(extent_op); 4648 out_free_buf: 4649 free_extent_buffer(buf); 4650 out_free_reserved: 4651 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4652 out_unuse: 4653 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4654 return ERR_PTR(ret); 4655 } 4656 4657 struct walk_control { 4658 u64 refs[BTRFS_MAX_LEVEL]; 4659 u64 flags[BTRFS_MAX_LEVEL]; 4660 struct btrfs_key update_progress; 4661 struct btrfs_key drop_progress; 4662 int drop_level; 4663 int stage; 4664 int level; 4665 int shared_level; 4666 int update_ref; 4667 int keep_locks; 4668 int reada_slot; 4669 int reada_count; 4670 int restarted; 4671 }; 4672 4673 #define DROP_REFERENCE 1 4674 #define UPDATE_BACKREF 2 4675 4676 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4677 struct btrfs_root *root, 4678 struct walk_control *wc, 4679 struct btrfs_path *path) 4680 { 4681 struct btrfs_fs_info *fs_info = root->fs_info; 4682 u64 bytenr; 4683 u64 generation; 4684 u64 refs; 4685 u64 flags; 4686 u32 nritems; 4687 struct btrfs_key key; 4688 struct extent_buffer *eb; 4689 int ret; 4690 int slot; 4691 int nread = 0; 4692 4693 if (path->slots[wc->level] < wc->reada_slot) { 4694 wc->reada_count = wc->reada_count * 2 / 3; 4695 wc->reada_count = max(wc->reada_count, 2); 4696 } else { 4697 wc->reada_count = wc->reada_count * 3 / 2; 4698 wc->reada_count = min_t(int, wc->reada_count, 4699 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4700 } 4701 4702 eb = path->nodes[wc->level]; 4703 nritems = btrfs_header_nritems(eb); 4704 4705 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4706 if (nread >= wc->reada_count) 4707 break; 4708 4709 cond_resched(); 4710 bytenr = btrfs_node_blockptr(eb, slot); 4711 generation = btrfs_node_ptr_generation(eb, slot); 4712 4713 if (slot == path->slots[wc->level]) 4714 goto reada; 4715 4716 if (wc->stage == UPDATE_BACKREF && 4717 generation <= root->root_key.offset) 4718 continue; 4719 4720 /* We don't lock the tree block, it's OK to be racy here */ 4721 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4722 wc->level - 1, 1, &refs, 4723 &flags); 4724 /* We don't care about errors in readahead. */ 4725 if (ret < 0) 4726 continue; 4727 BUG_ON(refs == 0); 4728 4729 if (wc->stage == DROP_REFERENCE) { 4730 if (refs == 1) 4731 goto reada; 4732 4733 if (wc->level == 1 && 4734 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4735 continue; 4736 if (!wc->update_ref || 4737 generation <= root->root_key.offset) 4738 continue; 4739 btrfs_node_key_to_cpu(eb, &key, slot); 4740 ret = btrfs_comp_cpu_keys(&key, 4741 &wc->update_progress); 4742 if (ret < 0) 4743 continue; 4744 } else { 4745 if (wc->level == 1 && 4746 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4747 continue; 4748 } 4749 reada: 4750 readahead_tree_block(fs_info, bytenr); 4751 nread++; 4752 } 4753 wc->reada_slot = slot; 4754 } 4755 4756 /* 4757 * helper to process tree block while walking down the tree. 4758 * 4759 * when wc->stage == UPDATE_BACKREF, this function updates 4760 * back refs for pointers in the block. 4761 * 4762 * NOTE: return value 1 means we should stop walking down. 4763 */ 4764 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4765 struct btrfs_root *root, 4766 struct btrfs_path *path, 4767 struct walk_control *wc, int lookup_info) 4768 { 4769 struct btrfs_fs_info *fs_info = root->fs_info; 4770 int level = wc->level; 4771 struct extent_buffer *eb = path->nodes[level]; 4772 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4773 int ret; 4774 4775 if (wc->stage == UPDATE_BACKREF && 4776 btrfs_header_owner(eb) != root->root_key.objectid) 4777 return 1; 4778 4779 /* 4780 * when reference count of tree block is 1, it won't increase 4781 * again. once full backref flag is set, we never clear it. 4782 */ 4783 if (lookup_info && 4784 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4785 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4786 BUG_ON(!path->locks[level]); 4787 ret = btrfs_lookup_extent_info(trans, fs_info, 4788 eb->start, level, 1, 4789 &wc->refs[level], 4790 &wc->flags[level]); 4791 BUG_ON(ret == -ENOMEM); 4792 if (ret) 4793 return ret; 4794 BUG_ON(wc->refs[level] == 0); 4795 } 4796 4797 if (wc->stage == DROP_REFERENCE) { 4798 if (wc->refs[level] > 1) 4799 return 1; 4800 4801 if (path->locks[level] && !wc->keep_locks) { 4802 btrfs_tree_unlock_rw(eb, path->locks[level]); 4803 path->locks[level] = 0; 4804 } 4805 return 0; 4806 } 4807 4808 /* wc->stage == UPDATE_BACKREF */ 4809 if (!(wc->flags[level] & flag)) { 4810 BUG_ON(!path->locks[level]); 4811 ret = btrfs_inc_ref(trans, root, eb, 1); 4812 BUG_ON(ret); /* -ENOMEM */ 4813 ret = btrfs_dec_ref(trans, root, eb, 0); 4814 BUG_ON(ret); /* -ENOMEM */ 4815 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4816 btrfs_header_level(eb), 0); 4817 BUG_ON(ret); /* -ENOMEM */ 4818 wc->flags[level] |= flag; 4819 } 4820 4821 /* 4822 * the block is shared by multiple trees, so it's not good to 4823 * keep the tree lock 4824 */ 4825 if (path->locks[level] && level > 0) { 4826 btrfs_tree_unlock_rw(eb, path->locks[level]); 4827 path->locks[level] = 0; 4828 } 4829 return 0; 4830 } 4831 4832 /* 4833 * This is used to verify a ref exists for this root to deal with a bug where we 4834 * would have a drop_progress key that hadn't been updated properly. 4835 */ 4836 static int check_ref_exists(struct btrfs_trans_handle *trans, 4837 struct btrfs_root *root, u64 bytenr, u64 parent, 4838 int level) 4839 { 4840 struct btrfs_path *path; 4841 struct btrfs_extent_inline_ref *iref; 4842 int ret; 4843 4844 path = btrfs_alloc_path(); 4845 if (!path) 4846 return -ENOMEM; 4847 4848 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4849 root->fs_info->nodesize, parent, 4850 root->root_key.objectid, level, 0); 4851 btrfs_free_path(path); 4852 if (ret == -ENOENT) 4853 return 0; 4854 if (ret < 0) 4855 return ret; 4856 return 1; 4857 } 4858 4859 /* 4860 * helper to process tree block pointer. 4861 * 4862 * when wc->stage == DROP_REFERENCE, this function checks 4863 * reference count of the block pointed to. if the block 4864 * is shared and we need update back refs for the subtree 4865 * rooted at the block, this function changes wc->stage to 4866 * UPDATE_BACKREF. if the block is shared and there is no 4867 * need to update back, this function drops the reference 4868 * to the block. 4869 * 4870 * NOTE: return value 1 means we should stop walking down. 4871 */ 4872 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4873 struct btrfs_root *root, 4874 struct btrfs_path *path, 4875 struct walk_control *wc, int *lookup_info) 4876 { 4877 struct btrfs_fs_info *fs_info = root->fs_info; 4878 u64 bytenr; 4879 u64 generation; 4880 u64 parent; 4881 struct btrfs_key key; 4882 struct btrfs_key first_key; 4883 struct btrfs_ref ref = { 0 }; 4884 struct extent_buffer *next; 4885 int level = wc->level; 4886 int reada = 0; 4887 int ret = 0; 4888 bool need_account = false; 4889 4890 generation = btrfs_node_ptr_generation(path->nodes[level], 4891 path->slots[level]); 4892 /* 4893 * if the lower level block was created before the snapshot 4894 * was created, we know there is no need to update back refs 4895 * for the subtree 4896 */ 4897 if (wc->stage == UPDATE_BACKREF && 4898 generation <= root->root_key.offset) { 4899 *lookup_info = 1; 4900 return 1; 4901 } 4902 4903 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4904 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4905 path->slots[level]); 4906 4907 next = find_extent_buffer(fs_info, bytenr); 4908 if (!next) { 4909 next = btrfs_find_create_tree_block(fs_info, bytenr); 4910 if (IS_ERR(next)) 4911 return PTR_ERR(next); 4912 4913 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4914 level - 1); 4915 reada = 1; 4916 } 4917 btrfs_tree_lock(next); 4918 btrfs_set_lock_blocking_write(next); 4919 4920 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4921 &wc->refs[level - 1], 4922 &wc->flags[level - 1]); 4923 if (ret < 0) 4924 goto out_unlock; 4925 4926 if (unlikely(wc->refs[level - 1] == 0)) { 4927 btrfs_err(fs_info, "Missing references."); 4928 ret = -EIO; 4929 goto out_unlock; 4930 } 4931 *lookup_info = 0; 4932 4933 if (wc->stage == DROP_REFERENCE) { 4934 if (wc->refs[level - 1] > 1) { 4935 need_account = true; 4936 if (level == 1 && 4937 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4938 goto skip; 4939 4940 if (!wc->update_ref || 4941 generation <= root->root_key.offset) 4942 goto skip; 4943 4944 btrfs_node_key_to_cpu(path->nodes[level], &key, 4945 path->slots[level]); 4946 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4947 if (ret < 0) 4948 goto skip; 4949 4950 wc->stage = UPDATE_BACKREF; 4951 wc->shared_level = level - 1; 4952 } 4953 } else { 4954 if (level == 1 && 4955 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4956 goto skip; 4957 } 4958 4959 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4960 btrfs_tree_unlock(next); 4961 free_extent_buffer(next); 4962 next = NULL; 4963 *lookup_info = 1; 4964 } 4965 4966 if (!next) { 4967 if (reada && level == 1) 4968 reada_walk_down(trans, root, wc, path); 4969 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4970 &first_key); 4971 if (IS_ERR(next)) { 4972 return PTR_ERR(next); 4973 } else if (!extent_buffer_uptodate(next)) { 4974 free_extent_buffer(next); 4975 return -EIO; 4976 } 4977 btrfs_tree_lock(next); 4978 btrfs_set_lock_blocking_write(next); 4979 } 4980 4981 level--; 4982 ASSERT(level == btrfs_header_level(next)); 4983 if (level != btrfs_header_level(next)) { 4984 btrfs_err(root->fs_info, "mismatched level"); 4985 ret = -EIO; 4986 goto out_unlock; 4987 } 4988 path->nodes[level] = next; 4989 path->slots[level] = 0; 4990 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 4991 wc->level = level; 4992 if (wc->level == 1) 4993 wc->reada_slot = 0; 4994 return 0; 4995 skip: 4996 wc->refs[level - 1] = 0; 4997 wc->flags[level - 1] = 0; 4998 if (wc->stage == DROP_REFERENCE) { 4999 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5000 parent = path->nodes[level]->start; 5001 } else { 5002 ASSERT(root->root_key.objectid == 5003 btrfs_header_owner(path->nodes[level])); 5004 if (root->root_key.objectid != 5005 btrfs_header_owner(path->nodes[level])) { 5006 btrfs_err(root->fs_info, 5007 "mismatched block owner"); 5008 ret = -EIO; 5009 goto out_unlock; 5010 } 5011 parent = 0; 5012 } 5013 5014 /* 5015 * If we had a drop_progress we need to verify the refs are set 5016 * as expected. If we find our ref then we know that from here 5017 * on out everything should be correct, and we can clear the 5018 * ->restarted flag. 5019 */ 5020 if (wc->restarted) { 5021 ret = check_ref_exists(trans, root, bytenr, parent, 5022 level - 1); 5023 if (ret < 0) 5024 goto out_unlock; 5025 if (ret == 0) 5026 goto no_delete; 5027 ret = 0; 5028 wc->restarted = 0; 5029 } 5030 5031 /* 5032 * Reloc tree doesn't contribute to qgroup numbers, and we have 5033 * already accounted them at merge time (replace_path), 5034 * thus we could skip expensive subtree trace here. 5035 */ 5036 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5037 need_account) { 5038 ret = btrfs_qgroup_trace_subtree(trans, next, 5039 generation, level - 1); 5040 if (ret) { 5041 btrfs_err_rl(fs_info, 5042 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5043 ret); 5044 } 5045 } 5046 5047 /* 5048 * We need to update the next key in our walk control so we can 5049 * update the drop_progress key accordingly. We don't care if 5050 * find_next_key doesn't find a key because that means we're at 5051 * the end and are going to clean up now. 5052 */ 5053 wc->drop_level = level; 5054 find_next_key(path, level, &wc->drop_progress); 5055 5056 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5057 fs_info->nodesize, parent); 5058 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5059 ret = btrfs_free_extent(trans, &ref); 5060 if (ret) 5061 goto out_unlock; 5062 } 5063 no_delete: 5064 *lookup_info = 1; 5065 ret = 1; 5066 5067 out_unlock: 5068 btrfs_tree_unlock(next); 5069 free_extent_buffer(next); 5070 5071 return ret; 5072 } 5073 5074 /* 5075 * helper to process tree block while walking up the tree. 5076 * 5077 * when wc->stage == DROP_REFERENCE, this function drops 5078 * reference count on the block. 5079 * 5080 * when wc->stage == UPDATE_BACKREF, this function changes 5081 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5082 * to UPDATE_BACKREF previously while processing the block. 5083 * 5084 * NOTE: return value 1 means we should stop walking up. 5085 */ 5086 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5087 struct btrfs_root *root, 5088 struct btrfs_path *path, 5089 struct walk_control *wc) 5090 { 5091 struct btrfs_fs_info *fs_info = root->fs_info; 5092 int ret; 5093 int level = wc->level; 5094 struct extent_buffer *eb = path->nodes[level]; 5095 u64 parent = 0; 5096 5097 if (wc->stage == UPDATE_BACKREF) { 5098 BUG_ON(wc->shared_level < level); 5099 if (level < wc->shared_level) 5100 goto out; 5101 5102 ret = find_next_key(path, level + 1, &wc->update_progress); 5103 if (ret > 0) 5104 wc->update_ref = 0; 5105 5106 wc->stage = DROP_REFERENCE; 5107 wc->shared_level = -1; 5108 path->slots[level] = 0; 5109 5110 /* 5111 * check reference count again if the block isn't locked. 5112 * we should start walking down the tree again if reference 5113 * count is one. 5114 */ 5115 if (!path->locks[level]) { 5116 BUG_ON(level == 0); 5117 btrfs_tree_lock(eb); 5118 btrfs_set_lock_blocking_write(eb); 5119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5120 5121 ret = btrfs_lookup_extent_info(trans, fs_info, 5122 eb->start, level, 1, 5123 &wc->refs[level], 5124 &wc->flags[level]); 5125 if (ret < 0) { 5126 btrfs_tree_unlock_rw(eb, path->locks[level]); 5127 path->locks[level] = 0; 5128 return ret; 5129 } 5130 BUG_ON(wc->refs[level] == 0); 5131 if (wc->refs[level] == 1) { 5132 btrfs_tree_unlock_rw(eb, path->locks[level]); 5133 path->locks[level] = 0; 5134 return 1; 5135 } 5136 } 5137 } 5138 5139 /* wc->stage == DROP_REFERENCE */ 5140 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5141 5142 if (wc->refs[level] == 1) { 5143 if (level == 0) { 5144 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5145 ret = btrfs_dec_ref(trans, root, eb, 1); 5146 else 5147 ret = btrfs_dec_ref(trans, root, eb, 0); 5148 BUG_ON(ret); /* -ENOMEM */ 5149 if (is_fstree(root->root_key.objectid)) { 5150 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5151 if (ret) { 5152 btrfs_err_rl(fs_info, 5153 "error %d accounting leaf items, quota is out of sync, rescan required", 5154 ret); 5155 } 5156 } 5157 } 5158 /* make block locked assertion in btrfs_clean_tree_block happy */ 5159 if (!path->locks[level] && 5160 btrfs_header_generation(eb) == trans->transid) { 5161 btrfs_tree_lock(eb); 5162 btrfs_set_lock_blocking_write(eb); 5163 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5164 } 5165 btrfs_clean_tree_block(eb); 5166 } 5167 5168 if (eb == root->node) { 5169 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5170 parent = eb->start; 5171 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5172 goto owner_mismatch; 5173 } else { 5174 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5175 parent = path->nodes[level + 1]->start; 5176 else if (root->root_key.objectid != 5177 btrfs_header_owner(path->nodes[level + 1])) 5178 goto owner_mismatch; 5179 } 5180 5181 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5182 out: 5183 wc->refs[level] = 0; 5184 wc->flags[level] = 0; 5185 return 0; 5186 5187 owner_mismatch: 5188 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5189 btrfs_header_owner(eb), root->root_key.objectid); 5190 return -EUCLEAN; 5191 } 5192 5193 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5194 struct btrfs_root *root, 5195 struct btrfs_path *path, 5196 struct walk_control *wc) 5197 { 5198 int level = wc->level; 5199 int lookup_info = 1; 5200 int ret; 5201 5202 while (level >= 0) { 5203 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5204 if (ret > 0) 5205 break; 5206 5207 if (level == 0) 5208 break; 5209 5210 if (path->slots[level] >= 5211 btrfs_header_nritems(path->nodes[level])) 5212 break; 5213 5214 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5215 if (ret > 0) { 5216 path->slots[level]++; 5217 continue; 5218 } else if (ret < 0) 5219 return ret; 5220 level = wc->level; 5221 } 5222 return 0; 5223 } 5224 5225 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5226 struct btrfs_root *root, 5227 struct btrfs_path *path, 5228 struct walk_control *wc, int max_level) 5229 { 5230 int level = wc->level; 5231 int ret; 5232 5233 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5234 while (level < max_level && path->nodes[level]) { 5235 wc->level = level; 5236 if (path->slots[level] + 1 < 5237 btrfs_header_nritems(path->nodes[level])) { 5238 path->slots[level]++; 5239 return 0; 5240 } else { 5241 ret = walk_up_proc(trans, root, path, wc); 5242 if (ret > 0) 5243 return 0; 5244 if (ret < 0) 5245 return ret; 5246 5247 if (path->locks[level]) { 5248 btrfs_tree_unlock_rw(path->nodes[level], 5249 path->locks[level]); 5250 path->locks[level] = 0; 5251 } 5252 free_extent_buffer(path->nodes[level]); 5253 path->nodes[level] = NULL; 5254 level++; 5255 } 5256 } 5257 return 1; 5258 } 5259 5260 /* 5261 * drop a subvolume tree. 5262 * 5263 * this function traverses the tree freeing any blocks that only 5264 * referenced by the tree. 5265 * 5266 * when a shared tree block is found. this function decreases its 5267 * reference count by one. if update_ref is true, this function 5268 * also make sure backrefs for the shared block and all lower level 5269 * blocks are properly updated. 5270 * 5271 * If called with for_reloc == 0, may exit early with -EAGAIN 5272 */ 5273 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5274 { 5275 struct btrfs_fs_info *fs_info = root->fs_info; 5276 struct btrfs_path *path; 5277 struct btrfs_trans_handle *trans; 5278 struct btrfs_root *tree_root = fs_info->tree_root; 5279 struct btrfs_root_item *root_item = &root->root_item; 5280 struct walk_control *wc; 5281 struct btrfs_key key; 5282 int err = 0; 5283 int ret; 5284 int level; 5285 bool root_dropped = false; 5286 5287 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5288 5289 path = btrfs_alloc_path(); 5290 if (!path) { 5291 err = -ENOMEM; 5292 goto out; 5293 } 5294 5295 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5296 if (!wc) { 5297 btrfs_free_path(path); 5298 err = -ENOMEM; 5299 goto out; 5300 } 5301 5302 /* 5303 * Use join to avoid potential EINTR from transaction start. See 5304 * wait_reserve_ticket and the whole reservation callchain. 5305 */ 5306 if (for_reloc) 5307 trans = btrfs_join_transaction(tree_root); 5308 else 5309 trans = btrfs_start_transaction(tree_root, 0); 5310 if (IS_ERR(trans)) { 5311 err = PTR_ERR(trans); 5312 goto out_free; 5313 } 5314 5315 err = btrfs_run_delayed_items(trans); 5316 if (err) 5317 goto out_end_trans; 5318 5319 /* 5320 * This will help us catch people modifying the fs tree while we're 5321 * dropping it. It is unsafe to mess with the fs tree while it's being 5322 * dropped as we unlock the root node and parent nodes as we walk down 5323 * the tree, assuming nothing will change. If something does change 5324 * then we'll have stale information and drop references to blocks we've 5325 * already dropped. 5326 */ 5327 set_bit(BTRFS_ROOT_DELETING, &root->state); 5328 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5329 level = btrfs_header_level(root->node); 5330 path->nodes[level] = btrfs_lock_root_node(root); 5331 btrfs_set_lock_blocking_write(path->nodes[level]); 5332 path->slots[level] = 0; 5333 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5334 memset(&wc->update_progress, 0, 5335 sizeof(wc->update_progress)); 5336 } else { 5337 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5338 memcpy(&wc->update_progress, &key, 5339 sizeof(wc->update_progress)); 5340 5341 level = root_item->drop_level; 5342 BUG_ON(level == 0); 5343 path->lowest_level = level; 5344 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5345 path->lowest_level = 0; 5346 if (ret < 0) { 5347 err = ret; 5348 goto out_end_trans; 5349 } 5350 WARN_ON(ret > 0); 5351 5352 /* 5353 * unlock our path, this is safe because only this 5354 * function is allowed to delete this snapshot 5355 */ 5356 btrfs_unlock_up_safe(path, 0); 5357 5358 level = btrfs_header_level(root->node); 5359 while (1) { 5360 btrfs_tree_lock(path->nodes[level]); 5361 btrfs_set_lock_blocking_write(path->nodes[level]); 5362 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5363 5364 ret = btrfs_lookup_extent_info(trans, fs_info, 5365 path->nodes[level]->start, 5366 level, 1, &wc->refs[level], 5367 &wc->flags[level]); 5368 if (ret < 0) { 5369 err = ret; 5370 goto out_end_trans; 5371 } 5372 BUG_ON(wc->refs[level] == 0); 5373 5374 if (level == root_item->drop_level) 5375 break; 5376 5377 btrfs_tree_unlock(path->nodes[level]); 5378 path->locks[level] = 0; 5379 WARN_ON(wc->refs[level] != 1); 5380 level--; 5381 } 5382 } 5383 5384 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5385 wc->level = level; 5386 wc->shared_level = -1; 5387 wc->stage = DROP_REFERENCE; 5388 wc->update_ref = update_ref; 5389 wc->keep_locks = 0; 5390 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5391 5392 while (1) { 5393 5394 ret = walk_down_tree(trans, root, path, wc); 5395 if (ret < 0) { 5396 err = ret; 5397 break; 5398 } 5399 5400 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5401 if (ret < 0) { 5402 err = ret; 5403 break; 5404 } 5405 5406 if (ret > 0) { 5407 BUG_ON(wc->stage != DROP_REFERENCE); 5408 break; 5409 } 5410 5411 if (wc->stage == DROP_REFERENCE) { 5412 wc->drop_level = wc->level; 5413 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5414 &wc->drop_progress, 5415 path->slots[wc->drop_level]); 5416 } 5417 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5418 &wc->drop_progress); 5419 root_item->drop_level = wc->drop_level; 5420 5421 BUG_ON(wc->level == 0); 5422 if (btrfs_should_end_transaction(trans) || 5423 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5424 ret = btrfs_update_root(trans, tree_root, 5425 &root->root_key, 5426 root_item); 5427 if (ret) { 5428 btrfs_abort_transaction(trans, ret); 5429 err = ret; 5430 goto out_end_trans; 5431 } 5432 5433 btrfs_end_transaction_throttle(trans); 5434 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5435 btrfs_debug(fs_info, 5436 "drop snapshot early exit"); 5437 err = -EAGAIN; 5438 goto out_free; 5439 } 5440 5441 trans = btrfs_start_transaction(tree_root, 0); 5442 if (IS_ERR(trans)) { 5443 err = PTR_ERR(trans); 5444 goto out_free; 5445 } 5446 } 5447 } 5448 btrfs_release_path(path); 5449 if (err) 5450 goto out_end_trans; 5451 5452 ret = btrfs_del_root(trans, &root->root_key); 5453 if (ret) { 5454 btrfs_abort_transaction(trans, ret); 5455 err = ret; 5456 goto out_end_trans; 5457 } 5458 5459 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5460 ret = btrfs_find_root(tree_root, &root->root_key, path, 5461 NULL, NULL); 5462 if (ret < 0) { 5463 btrfs_abort_transaction(trans, ret); 5464 err = ret; 5465 goto out_end_trans; 5466 } else if (ret > 0) { 5467 /* if we fail to delete the orphan item this time 5468 * around, it'll get picked up the next time. 5469 * 5470 * The most common failure here is just -ENOENT. 5471 */ 5472 btrfs_del_orphan_item(trans, tree_root, 5473 root->root_key.objectid); 5474 } 5475 } 5476 5477 /* 5478 * This subvolume is going to be completely dropped, and won't be 5479 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5480 * commit transaction time. So free it here manually. 5481 */ 5482 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5483 btrfs_qgroup_free_meta_all_pertrans(root); 5484 5485 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5486 btrfs_add_dropped_root(trans, root); 5487 else 5488 btrfs_put_root(root); 5489 root_dropped = true; 5490 out_end_trans: 5491 btrfs_end_transaction_throttle(trans); 5492 out_free: 5493 kfree(wc); 5494 btrfs_free_path(path); 5495 out: 5496 /* 5497 * So if we need to stop dropping the snapshot for whatever reason we 5498 * need to make sure to add it back to the dead root list so that we 5499 * keep trying to do the work later. This also cleans up roots if we 5500 * don't have it in the radix (like when we recover after a power fail 5501 * or unmount) so we don't leak memory. 5502 */ 5503 if (!for_reloc && !root_dropped) 5504 btrfs_add_dead_root(root); 5505 return err; 5506 } 5507 5508 /* 5509 * drop subtree rooted at tree block 'node'. 5510 * 5511 * NOTE: this function will unlock and release tree block 'node' 5512 * only used by relocation code 5513 */ 5514 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5515 struct btrfs_root *root, 5516 struct extent_buffer *node, 5517 struct extent_buffer *parent) 5518 { 5519 struct btrfs_fs_info *fs_info = root->fs_info; 5520 struct btrfs_path *path; 5521 struct walk_control *wc; 5522 int level; 5523 int parent_level; 5524 int ret = 0; 5525 int wret; 5526 5527 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5528 5529 path = btrfs_alloc_path(); 5530 if (!path) 5531 return -ENOMEM; 5532 5533 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5534 if (!wc) { 5535 btrfs_free_path(path); 5536 return -ENOMEM; 5537 } 5538 5539 btrfs_assert_tree_locked(parent); 5540 parent_level = btrfs_header_level(parent); 5541 atomic_inc(&parent->refs); 5542 path->nodes[parent_level] = parent; 5543 path->slots[parent_level] = btrfs_header_nritems(parent); 5544 5545 btrfs_assert_tree_locked(node); 5546 level = btrfs_header_level(node); 5547 path->nodes[level] = node; 5548 path->slots[level] = 0; 5549 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5550 5551 wc->refs[parent_level] = 1; 5552 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5553 wc->level = level; 5554 wc->shared_level = -1; 5555 wc->stage = DROP_REFERENCE; 5556 wc->update_ref = 0; 5557 wc->keep_locks = 1; 5558 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5559 5560 while (1) { 5561 wret = walk_down_tree(trans, root, path, wc); 5562 if (wret < 0) { 5563 ret = wret; 5564 break; 5565 } 5566 5567 wret = walk_up_tree(trans, root, path, wc, parent_level); 5568 if (wret < 0) 5569 ret = wret; 5570 if (wret != 0) 5571 break; 5572 } 5573 5574 kfree(wc); 5575 btrfs_free_path(path); 5576 return ret; 5577 } 5578 5579 /* 5580 * helper to account the unused space of all the readonly block group in the 5581 * space_info. takes mirrors into account. 5582 */ 5583 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5584 { 5585 struct btrfs_block_group *block_group; 5586 u64 free_bytes = 0; 5587 int factor; 5588 5589 /* It's df, we don't care if it's racy */ 5590 if (list_empty(&sinfo->ro_bgs)) 5591 return 0; 5592 5593 spin_lock(&sinfo->lock); 5594 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5595 spin_lock(&block_group->lock); 5596 5597 if (!block_group->ro) { 5598 spin_unlock(&block_group->lock); 5599 continue; 5600 } 5601 5602 factor = btrfs_bg_type_to_factor(block_group->flags); 5603 free_bytes += (block_group->length - 5604 block_group->used) * factor; 5605 5606 spin_unlock(&block_group->lock); 5607 } 5608 spin_unlock(&sinfo->lock); 5609 5610 return free_bytes; 5611 } 5612 5613 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5614 u64 start, u64 end) 5615 { 5616 return unpin_extent_range(fs_info, start, end, false); 5617 } 5618 5619 /* 5620 * It used to be that old block groups would be left around forever. 5621 * Iterating over them would be enough to trim unused space. Since we 5622 * now automatically remove them, we also need to iterate over unallocated 5623 * space. 5624 * 5625 * We don't want a transaction for this since the discard may take a 5626 * substantial amount of time. We don't require that a transaction be 5627 * running, but we do need to take a running transaction into account 5628 * to ensure that we're not discarding chunks that were released or 5629 * allocated in the current transaction. 5630 * 5631 * Holding the chunks lock will prevent other threads from allocating 5632 * or releasing chunks, but it won't prevent a running transaction 5633 * from committing and releasing the memory that the pending chunks 5634 * list head uses. For that, we need to take a reference to the 5635 * transaction and hold the commit root sem. We only need to hold 5636 * it while performing the free space search since we have already 5637 * held back allocations. 5638 */ 5639 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5640 { 5641 u64 start = SZ_1M, len = 0, end = 0; 5642 int ret; 5643 5644 *trimmed = 0; 5645 5646 /* Discard not supported = nothing to do. */ 5647 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5648 return 0; 5649 5650 /* Not writable = nothing to do. */ 5651 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5652 return 0; 5653 5654 /* No free space = nothing to do. */ 5655 if (device->total_bytes <= device->bytes_used) 5656 return 0; 5657 5658 ret = 0; 5659 5660 while (1) { 5661 struct btrfs_fs_info *fs_info = device->fs_info; 5662 u64 bytes; 5663 5664 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5665 if (ret) 5666 break; 5667 5668 find_first_clear_extent_bit(&device->alloc_state, start, 5669 &start, &end, 5670 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5671 5672 /* Check if there are any CHUNK_* bits left */ 5673 if (start > device->total_bytes) { 5674 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5675 btrfs_warn_in_rcu(fs_info, 5676 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5677 start, end - start + 1, 5678 rcu_str_deref(device->name), 5679 device->total_bytes); 5680 mutex_unlock(&fs_info->chunk_mutex); 5681 ret = 0; 5682 break; 5683 } 5684 5685 /* Ensure we skip the reserved area in the first 1M */ 5686 start = max_t(u64, start, SZ_1M); 5687 5688 /* 5689 * If find_first_clear_extent_bit find a range that spans the 5690 * end of the device it will set end to -1, in this case it's up 5691 * to the caller to trim the value to the size of the device. 5692 */ 5693 end = min(end, device->total_bytes - 1); 5694 5695 len = end - start + 1; 5696 5697 /* We didn't find any extents */ 5698 if (!len) { 5699 mutex_unlock(&fs_info->chunk_mutex); 5700 ret = 0; 5701 break; 5702 } 5703 5704 ret = btrfs_issue_discard(device->bdev, start, len, 5705 &bytes); 5706 if (!ret) 5707 set_extent_bits(&device->alloc_state, start, 5708 start + bytes - 1, 5709 CHUNK_TRIMMED); 5710 mutex_unlock(&fs_info->chunk_mutex); 5711 5712 if (ret) 5713 break; 5714 5715 start += len; 5716 *trimmed += bytes; 5717 5718 if (fatal_signal_pending(current)) { 5719 ret = -ERESTARTSYS; 5720 break; 5721 } 5722 5723 cond_resched(); 5724 } 5725 5726 return ret; 5727 } 5728 5729 /* 5730 * Trim the whole filesystem by: 5731 * 1) trimming the free space in each block group 5732 * 2) trimming the unallocated space on each device 5733 * 5734 * This will also continue trimming even if a block group or device encounters 5735 * an error. The return value will be the last error, or 0 if nothing bad 5736 * happens. 5737 */ 5738 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5739 { 5740 struct btrfs_block_group *cache = NULL; 5741 struct btrfs_device *device; 5742 struct list_head *devices; 5743 u64 group_trimmed; 5744 u64 range_end = U64_MAX; 5745 u64 start; 5746 u64 end; 5747 u64 trimmed = 0; 5748 u64 bg_failed = 0; 5749 u64 dev_failed = 0; 5750 int bg_ret = 0; 5751 int dev_ret = 0; 5752 int ret = 0; 5753 5754 /* 5755 * Check range overflow if range->len is set. 5756 * The default range->len is U64_MAX. 5757 */ 5758 if (range->len != U64_MAX && 5759 check_add_overflow(range->start, range->len, &range_end)) 5760 return -EINVAL; 5761 5762 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5763 for (; cache; cache = btrfs_next_block_group(cache)) { 5764 if (cache->start >= range_end) { 5765 btrfs_put_block_group(cache); 5766 break; 5767 } 5768 5769 start = max(range->start, cache->start); 5770 end = min(range_end, cache->start + cache->length); 5771 5772 if (end - start >= range->minlen) { 5773 if (!btrfs_block_group_done(cache)) { 5774 ret = btrfs_cache_block_group(cache, 0); 5775 if (ret) { 5776 bg_failed++; 5777 bg_ret = ret; 5778 continue; 5779 } 5780 ret = btrfs_wait_block_group_cache_done(cache); 5781 if (ret) { 5782 bg_failed++; 5783 bg_ret = ret; 5784 continue; 5785 } 5786 } 5787 ret = btrfs_trim_block_group(cache, 5788 &group_trimmed, 5789 start, 5790 end, 5791 range->minlen); 5792 5793 trimmed += group_trimmed; 5794 if (ret) { 5795 bg_failed++; 5796 bg_ret = ret; 5797 continue; 5798 } 5799 } 5800 } 5801 5802 if (bg_failed) 5803 btrfs_warn(fs_info, 5804 "failed to trim %llu block group(s), last error %d", 5805 bg_failed, bg_ret); 5806 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5807 devices = &fs_info->fs_devices->devices; 5808 list_for_each_entry(device, devices, dev_list) { 5809 ret = btrfs_trim_free_extents(device, &group_trimmed); 5810 if (ret) { 5811 dev_failed++; 5812 dev_ret = ret; 5813 break; 5814 } 5815 5816 trimmed += group_trimmed; 5817 } 5818 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5819 5820 if (dev_failed) 5821 btrfs_warn(fs_info, 5822 "failed to trim %llu device(s), last error %d", 5823 dev_failed, dev_ret); 5824 range->len = trimmed; 5825 if (bg_ret) 5826 return bg_ret; 5827 return dev_ret; 5828 } 5829