1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 36 #undef SCRAMBLE_DELAYED_REFS 37 38 39 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 40 struct btrfs_delayed_ref_node *node, u64 parent, 41 u64 root_objectid, u64 owner_objectid, 42 u64 owner_offset, int refs_to_drop, 43 struct btrfs_delayed_extent_op *extra_op); 44 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 45 struct extent_buffer *leaf, 46 struct btrfs_extent_item *ei); 47 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 48 u64 parent, u64 root_objectid, 49 u64 flags, u64 owner, u64 offset, 50 struct btrfs_key *ins, int ref_mod); 51 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 52 struct btrfs_delayed_ref_node *node, 53 struct btrfs_delayed_extent_op *extent_op); 54 static int find_next_key(struct btrfs_path *path, int level, 55 struct btrfs_key *key); 56 57 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 58 { 59 return (cache->flags & bits) == bits; 60 } 61 62 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 63 u64 start, u64 num_bytes) 64 { 65 u64 end = start + num_bytes - 1; 66 set_extent_bits(&fs_info->freed_extents[0], 67 start, end, EXTENT_UPTODATE); 68 set_extent_bits(&fs_info->freed_extents[1], 69 start, end, EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->start; 79 end = start + cache->length - 1; 80 81 clear_extent_bits(&fs_info->freed_extents[0], 82 start, end, EXTENT_UPTODATE); 83 clear_extent_bits(&fs_info->freed_extents[1], 84 start, end, EXTENT_UPTODATE); 85 } 86 87 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 88 { 89 if (ref->type == BTRFS_REF_METADATA) { 90 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 91 return BTRFS_BLOCK_GROUP_SYSTEM; 92 else 93 return BTRFS_BLOCK_GROUP_METADATA; 94 } 95 return BTRFS_BLOCK_GROUP_DATA; 96 } 97 98 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 99 struct btrfs_ref *ref) 100 { 101 struct btrfs_space_info *space_info; 102 u64 flags = generic_ref_to_space_flags(ref); 103 104 space_info = btrfs_find_space_info(fs_info, flags); 105 ASSERT(space_info); 106 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 107 BTRFS_TOTAL_BYTES_PINNED_BATCH); 108 } 109 110 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 111 struct btrfs_ref *ref) 112 { 113 struct btrfs_space_info *space_info; 114 u64 flags = generic_ref_to_space_flags(ref); 115 116 space_info = btrfs_find_space_info(fs_info, flags); 117 ASSERT(space_info); 118 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 119 BTRFS_TOTAL_BYTES_PINNED_BATCH); 120 } 121 122 /* simple helper to search for an existing data extent at a given offset */ 123 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 124 { 125 int ret; 126 struct btrfs_key key; 127 struct btrfs_path *path; 128 129 path = btrfs_alloc_path(); 130 if (!path) 131 return -ENOMEM; 132 133 key.objectid = start; 134 key.offset = len; 135 key.type = BTRFS_EXTENT_ITEM_KEY; 136 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 137 btrfs_free_path(path); 138 return ret; 139 } 140 141 /* 142 * helper function to lookup reference count and flags of a tree block. 143 * 144 * the head node for delayed ref is used to store the sum of all the 145 * reference count modifications queued up in the rbtree. the head 146 * node may also store the extent flags to set. This way you can check 147 * to see what the reference count and extent flags would be if all of 148 * the delayed refs are not processed. 149 */ 150 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 151 struct btrfs_fs_info *fs_info, u64 bytenr, 152 u64 offset, int metadata, u64 *refs, u64 *flags) 153 { 154 struct btrfs_delayed_ref_head *head; 155 struct btrfs_delayed_ref_root *delayed_refs; 156 struct btrfs_path *path; 157 struct btrfs_extent_item *ei; 158 struct extent_buffer *leaf; 159 struct btrfs_key key; 160 u32 item_size; 161 u64 num_refs; 162 u64 extent_flags; 163 int ret; 164 165 /* 166 * If we don't have skinny metadata, don't bother doing anything 167 * different 168 */ 169 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 170 offset = fs_info->nodesize; 171 metadata = 0; 172 } 173 174 path = btrfs_alloc_path(); 175 if (!path) 176 return -ENOMEM; 177 178 if (!trans) { 179 path->skip_locking = 1; 180 path->search_commit_root = 1; 181 } 182 183 search_again: 184 key.objectid = bytenr; 185 key.offset = offset; 186 if (metadata) 187 key.type = BTRFS_METADATA_ITEM_KEY; 188 else 189 key.type = BTRFS_EXTENT_ITEM_KEY; 190 191 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 192 if (ret < 0) 193 goto out_free; 194 195 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 196 if (path->slots[0]) { 197 path->slots[0]--; 198 btrfs_item_key_to_cpu(path->nodes[0], &key, 199 path->slots[0]); 200 if (key.objectid == bytenr && 201 key.type == BTRFS_EXTENT_ITEM_KEY && 202 key.offset == fs_info->nodesize) 203 ret = 0; 204 } 205 } 206 207 if (ret == 0) { 208 leaf = path->nodes[0]; 209 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 210 if (item_size >= sizeof(*ei)) { 211 ei = btrfs_item_ptr(leaf, path->slots[0], 212 struct btrfs_extent_item); 213 num_refs = btrfs_extent_refs(leaf, ei); 214 extent_flags = btrfs_extent_flags(leaf, ei); 215 } else { 216 ret = -EINVAL; 217 btrfs_print_v0_err(fs_info); 218 if (trans) 219 btrfs_abort_transaction(trans, ret); 220 else 221 btrfs_handle_fs_error(fs_info, ret, NULL); 222 223 goto out_free; 224 } 225 226 BUG_ON(num_refs == 0); 227 } else { 228 num_refs = 0; 229 extent_flags = 0; 230 ret = 0; 231 } 232 233 if (!trans) 234 goto out; 235 236 delayed_refs = &trans->transaction->delayed_refs; 237 spin_lock(&delayed_refs->lock); 238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 239 if (head) { 240 if (!mutex_trylock(&head->mutex)) { 241 refcount_inc(&head->refs); 242 spin_unlock(&delayed_refs->lock); 243 244 btrfs_release_path(path); 245 246 /* 247 * Mutex was contended, block until it's released and try 248 * again 249 */ 250 mutex_lock(&head->mutex); 251 mutex_unlock(&head->mutex); 252 btrfs_put_delayed_ref_head(head); 253 goto search_again; 254 } 255 spin_lock(&head->lock); 256 if (head->extent_op && head->extent_op->update_flags) 257 extent_flags |= head->extent_op->flags_to_set; 258 else 259 BUG_ON(num_refs == 0); 260 261 num_refs += head->ref_mod; 262 spin_unlock(&head->lock); 263 mutex_unlock(&head->mutex); 264 } 265 spin_unlock(&delayed_refs->lock); 266 out: 267 WARN_ON(num_refs == 0); 268 if (refs) 269 *refs = num_refs; 270 if (flags) 271 *flags = extent_flags; 272 out_free: 273 btrfs_free_path(path); 274 return ret; 275 } 276 277 /* 278 * Back reference rules. Back refs have three main goals: 279 * 280 * 1) differentiate between all holders of references to an extent so that 281 * when a reference is dropped we can make sure it was a valid reference 282 * before freeing the extent. 283 * 284 * 2) Provide enough information to quickly find the holders of an extent 285 * if we notice a given block is corrupted or bad. 286 * 287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 288 * maintenance. This is actually the same as #2, but with a slightly 289 * different use case. 290 * 291 * There are two kinds of back refs. The implicit back refs is optimized 292 * for pointers in non-shared tree blocks. For a given pointer in a block, 293 * back refs of this kind provide information about the block's owner tree 294 * and the pointer's key. These information allow us to find the block by 295 * b-tree searching. The full back refs is for pointers in tree blocks not 296 * referenced by their owner trees. The location of tree block is recorded 297 * in the back refs. Actually the full back refs is generic, and can be 298 * used in all cases the implicit back refs is used. The major shortcoming 299 * of the full back refs is its overhead. Every time a tree block gets 300 * COWed, we have to update back refs entry for all pointers in it. 301 * 302 * For a newly allocated tree block, we use implicit back refs for 303 * pointers in it. This means most tree related operations only involve 304 * implicit back refs. For a tree block created in old transaction, the 305 * only way to drop a reference to it is COW it. So we can detect the 306 * event that tree block loses its owner tree's reference and do the 307 * back refs conversion. 308 * 309 * When a tree block is COWed through a tree, there are four cases: 310 * 311 * The reference count of the block is one and the tree is the block's 312 * owner tree. Nothing to do in this case. 313 * 314 * The reference count of the block is one and the tree is not the 315 * block's owner tree. In this case, full back refs is used for pointers 316 * in the block. Remove these full back refs, add implicit back refs for 317 * every pointers in the new block. 318 * 319 * The reference count of the block is greater than one and the tree is 320 * the block's owner tree. In this case, implicit back refs is used for 321 * pointers in the block. Add full back refs for every pointers in the 322 * block, increase lower level extents' reference counts. The original 323 * implicit back refs are entailed to the new block. 324 * 325 * The reference count of the block is greater than one and the tree is 326 * not the block's owner tree. Add implicit back refs for every pointer in 327 * the new block, increase lower level extents' reference count. 328 * 329 * Back Reference Key composing: 330 * 331 * The key objectid corresponds to the first byte in the extent, 332 * The key type is used to differentiate between types of back refs. 333 * There are different meanings of the key offset for different types 334 * of back refs. 335 * 336 * File extents can be referenced by: 337 * 338 * - multiple snapshots, subvolumes, or different generations in one subvol 339 * - different files inside a single subvolume 340 * - different offsets inside a file (bookend extents in file.c) 341 * 342 * The extent ref structure for the implicit back refs has fields for: 343 * 344 * - Objectid of the subvolume root 345 * - objectid of the file holding the reference 346 * - original offset in the file 347 * - how many bookend extents 348 * 349 * The key offset for the implicit back refs is hash of the first 350 * three fields. 351 * 352 * The extent ref structure for the full back refs has field for: 353 * 354 * - number of pointers in the tree leaf 355 * 356 * The key offset for the implicit back refs is the first byte of 357 * the tree leaf 358 * 359 * When a file extent is allocated, The implicit back refs is used. 360 * the fields are filled in: 361 * 362 * (root_key.objectid, inode objectid, offset in file, 1) 363 * 364 * When a file extent is removed file truncation, we find the 365 * corresponding implicit back refs and check the following fields: 366 * 367 * (btrfs_header_owner(leaf), inode objectid, offset in file) 368 * 369 * Btree extents can be referenced by: 370 * 371 * - Different subvolumes 372 * 373 * Both the implicit back refs and the full back refs for tree blocks 374 * only consist of key. The key offset for the implicit back refs is 375 * objectid of block's owner tree. The key offset for the full back refs 376 * is the first byte of parent block. 377 * 378 * When implicit back refs is used, information about the lowest key and 379 * level of the tree block are required. These information are stored in 380 * tree block info structure. 381 */ 382 383 /* 384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 387 */ 388 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 389 struct btrfs_extent_inline_ref *iref, 390 enum btrfs_inline_ref_type is_data) 391 { 392 int type = btrfs_extent_inline_ref_type(eb, iref); 393 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 394 395 if (type == BTRFS_TREE_BLOCK_REF_KEY || 396 type == BTRFS_SHARED_BLOCK_REF_KEY || 397 type == BTRFS_SHARED_DATA_REF_KEY || 398 type == BTRFS_EXTENT_DATA_REF_KEY) { 399 if (is_data == BTRFS_REF_TYPE_BLOCK) { 400 if (type == BTRFS_TREE_BLOCK_REF_KEY) 401 return type; 402 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 403 ASSERT(eb->fs_info); 404 /* 405 * Every shared one has parent tree 406 * block, which must be aligned to 407 * nodesize. 408 */ 409 if (offset && 410 IS_ALIGNED(offset, eb->fs_info->nodesize)) 411 return type; 412 } 413 } else if (is_data == BTRFS_REF_TYPE_DATA) { 414 if (type == BTRFS_EXTENT_DATA_REF_KEY) 415 return type; 416 if (type == BTRFS_SHARED_DATA_REF_KEY) { 417 ASSERT(eb->fs_info); 418 /* 419 * Every shared one has parent tree 420 * block, which must be aligned to 421 * nodesize. 422 */ 423 if (offset && 424 IS_ALIGNED(offset, eb->fs_info->nodesize)) 425 return type; 426 } 427 } else { 428 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 429 return type; 430 } 431 } 432 433 btrfs_print_leaf((struct extent_buffer *)eb); 434 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 435 eb->start, type); 436 WARN_ON(1); 437 438 return BTRFS_REF_TYPE_INVALID; 439 } 440 441 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 442 { 443 u32 high_crc = ~(u32)0; 444 u32 low_crc = ~(u32)0; 445 __le64 lenum; 446 447 lenum = cpu_to_le64(root_objectid); 448 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 449 lenum = cpu_to_le64(owner); 450 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 451 lenum = cpu_to_le64(offset); 452 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 453 454 return ((u64)high_crc << 31) ^ (u64)low_crc; 455 } 456 457 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 458 struct btrfs_extent_data_ref *ref) 459 { 460 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 461 btrfs_extent_data_ref_objectid(leaf, ref), 462 btrfs_extent_data_ref_offset(leaf, ref)); 463 } 464 465 static int match_extent_data_ref(struct extent_buffer *leaf, 466 struct btrfs_extent_data_ref *ref, 467 u64 root_objectid, u64 owner, u64 offset) 468 { 469 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 470 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 471 btrfs_extent_data_ref_offset(leaf, ref) != offset) 472 return 0; 473 return 1; 474 } 475 476 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 477 struct btrfs_path *path, 478 u64 bytenr, u64 parent, 479 u64 root_objectid, 480 u64 owner, u64 offset) 481 { 482 struct btrfs_root *root = trans->fs_info->extent_root; 483 struct btrfs_key key; 484 struct btrfs_extent_data_ref *ref; 485 struct extent_buffer *leaf; 486 u32 nritems; 487 int ret; 488 int recow; 489 int err = -ENOENT; 490 491 key.objectid = bytenr; 492 if (parent) { 493 key.type = BTRFS_SHARED_DATA_REF_KEY; 494 key.offset = parent; 495 } else { 496 key.type = BTRFS_EXTENT_DATA_REF_KEY; 497 key.offset = hash_extent_data_ref(root_objectid, 498 owner, offset); 499 } 500 again: 501 recow = 0; 502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 503 if (ret < 0) { 504 err = ret; 505 goto fail; 506 } 507 508 if (parent) { 509 if (!ret) 510 return 0; 511 goto fail; 512 } 513 514 leaf = path->nodes[0]; 515 nritems = btrfs_header_nritems(leaf); 516 while (1) { 517 if (path->slots[0] >= nritems) { 518 ret = btrfs_next_leaf(root, path); 519 if (ret < 0) 520 err = ret; 521 if (ret) 522 goto fail; 523 524 leaf = path->nodes[0]; 525 nritems = btrfs_header_nritems(leaf); 526 recow = 1; 527 } 528 529 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 530 if (key.objectid != bytenr || 531 key.type != BTRFS_EXTENT_DATA_REF_KEY) 532 goto fail; 533 534 ref = btrfs_item_ptr(leaf, path->slots[0], 535 struct btrfs_extent_data_ref); 536 537 if (match_extent_data_ref(leaf, ref, root_objectid, 538 owner, offset)) { 539 if (recow) { 540 btrfs_release_path(path); 541 goto again; 542 } 543 err = 0; 544 break; 545 } 546 path->slots[0]++; 547 } 548 fail: 549 return err; 550 } 551 552 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 553 struct btrfs_path *path, 554 u64 bytenr, u64 parent, 555 u64 root_objectid, u64 owner, 556 u64 offset, int refs_to_add) 557 { 558 struct btrfs_root *root = trans->fs_info->extent_root; 559 struct btrfs_key key; 560 struct extent_buffer *leaf; 561 u32 size; 562 u32 num_refs; 563 int ret; 564 565 key.objectid = bytenr; 566 if (parent) { 567 key.type = BTRFS_SHARED_DATA_REF_KEY; 568 key.offset = parent; 569 size = sizeof(struct btrfs_shared_data_ref); 570 } else { 571 key.type = BTRFS_EXTENT_DATA_REF_KEY; 572 key.offset = hash_extent_data_ref(root_objectid, 573 owner, offset); 574 size = sizeof(struct btrfs_extent_data_ref); 575 } 576 577 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 578 if (ret && ret != -EEXIST) 579 goto fail; 580 581 leaf = path->nodes[0]; 582 if (parent) { 583 struct btrfs_shared_data_ref *ref; 584 ref = btrfs_item_ptr(leaf, path->slots[0], 585 struct btrfs_shared_data_ref); 586 if (ret == 0) { 587 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 588 } else { 589 num_refs = btrfs_shared_data_ref_count(leaf, ref); 590 num_refs += refs_to_add; 591 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 592 } 593 } else { 594 struct btrfs_extent_data_ref *ref; 595 while (ret == -EEXIST) { 596 ref = btrfs_item_ptr(leaf, path->slots[0], 597 struct btrfs_extent_data_ref); 598 if (match_extent_data_ref(leaf, ref, root_objectid, 599 owner, offset)) 600 break; 601 btrfs_release_path(path); 602 key.offset++; 603 ret = btrfs_insert_empty_item(trans, root, path, &key, 604 size); 605 if (ret && ret != -EEXIST) 606 goto fail; 607 608 leaf = path->nodes[0]; 609 } 610 ref = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 if (ret == 0) { 613 btrfs_set_extent_data_ref_root(leaf, ref, 614 root_objectid); 615 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 616 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 617 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 618 } else { 619 num_refs = btrfs_extent_data_ref_count(leaf, ref); 620 num_refs += refs_to_add; 621 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 622 } 623 } 624 btrfs_mark_buffer_dirty(leaf); 625 ret = 0; 626 fail: 627 btrfs_release_path(path); 628 return ret; 629 } 630 631 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 632 struct btrfs_path *path, 633 int refs_to_drop, int *last_ref) 634 { 635 struct btrfs_key key; 636 struct btrfs_extent_data_ref *ref1 = NULL; 637 struct btrfs_shared_data_ref *ref2 = NULL; 638 struct extent_buffer *leaf; 639 u32 num_refs = 0; 640 int ret = 0; 641 642 leaf = path->nodes[0]; 643 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 644 645 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 646 ref1 = btrfs_item_ptr(leaf, path->slots[0], 647 struct btrfs_extent_data_ref); 648 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 649 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 650 ref2 = btrfs_item_ptr(leaf, path->slots[0], 651 struct btrfs_shared_data_ref); 652 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 653 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 654 btrfs_print_v0_err(trans->fs_info); 655 btrfs_abort_transaction(trans, -EINVAL); 656 return -EINVAL; 657 } else { 658 BUG(); 659 } 660 661 BUG_ON(num_refs < refs_to_drop); 662 num_refs -= refs_to_drop; 663 664 if (num_refs == 0) { 665 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 666 *last_ref = 1; 667 } else { 668 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 669 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 670 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 671 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 672 btrfs_mark_buffer_dirty(leaf); 673 } 674 return ret; 675 } 676 677 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 678 struct btrfs_extent_inline_ref *iref) 679 { 680 struct btrfs_key key; 681 struct extent_buffer *leaf; 682 struct btrfs_extent_data_ref *ref1; 683 struct btrfs_shared_data_ref *ref2; 684 u32 num_refs = 0; 685 int type; 686 687 leaf = path->nodes[0]; 688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 689 690 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 691 if (iref) { 692 /* 693 * If type is invalid, we should have bailed out earlier than 694 * this call. 695 */ 696 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 697 ASSERT(type != BTRFS_REF_TYPE_INVALID); 698 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 699 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 700 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 701 } else { 702 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 703 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 704 } 705 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 706 ref1 = btrfs_item_ptr(leaf, path->slots[0], 707 struct btrfs_extent_data_ref); 708 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 709 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 710 ref2 = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_shared_data_ref); 712 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 713 } else { 714 WARN_ON(1); 715 } 716 return num_refs; 717 } 718 719 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 720 struct btrfs_path *path, 721 u64 bytenr, u64 parent, 722 u64 root_objectid) 723 { 724 struct btrfs_root *root = trans->fs_info->extent_root; 725 struct btrfs_key key; 726 int ret; 727 728 key.objectid = bytenr; 729 if (parent) { 730 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 731 key.offset = parent; 732 } else { 733 key.type = BTRFS_TREE_BLOCK_REF_KEY; 734 key.offset = root_objectid; 735 } 736 737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 738 if (ret > 0) 739 ret = -ENOENT; 740 return ret; 741 } 742 743 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 744 struct btrfs_path *path, 745 u64 bytenr, u64 parent, 746 u64 root_objectid) 747 { 748 struct btrfs_key key; 749 int ret; 750 751 key.objectid = bytenr; 752 if (parent) { 753 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 754 key.offset = parent; 755 } else { 756 key.type = BTRFS_TREE_BLOCK_REF_KEY; 757 key.offset = root_objectid; 758 } 759 760 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 761 path, &key, 0); 762 btrfs_release_path(path); 763 return ret; 764 } 765 766 static inline int extent_ref_type(u64 parent, u64 owner) 767 { 768 int type; 769 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 770 if (parent > 0) 771 type = BTRFS_SHARED_BLOCK_REF_KEY; 772 else 773 type = BTRFS_TREE_BLOCK_REF_KEY; 774 } else { 775 if (parent > 0) 776 type = BTRFS_SHARED_DATA_REF_KEY; 777 else 778 type = BTRFS_EXTENT_DATA_REF_KEY; 779 } 780 return type; 781 } 782 783 static int find_next_key(struct btrfs_path *path, int level, 784 struct btrfs_key *key) 785 786 { 787 for (; level < BTRFS_MAX_LEVEL; level++) { 788 if (!path->nodes[level]) 789 break; 790 if (path->slots[level] + 1 >= 791 btrfs_header_nritems(path->nodes[level])) 792 continue; 793 if (level == 0) 794 btrfs_item_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 else 797 btrfs_node_key_to_cpu(path->nodes[level], key, 798 path->slots[level] + 1); 799 return 0; 800 } 801 return 1; 802 } 803 804 /* 805 * look for inline back ref. if back ref is found, *ref_ret is set 806 * to the address of inline back ref, and 0 is returned. 807 * 808 * if back ref isn't found, *ref_ret is set to the address where it 809 * should be inserted, and -ENOENT is returned. 810 * 811 * if insert is true and there are too many inline back refs, the path 812 * points to the extent item, and -EAGAIN is returned. 813 * 814 * NOTE: inline back refs are ordered in the same way that back ref 815 * items in the tree are ordered. 816 */ 817 static noinline_for_stack 818 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 819 struct btrfs_path *path, 820 struct btrfs_extent_inline_ref **ref_ret, 821 u64 bytenr, u64 num_bytes, 822 u64 parent, u64 root_objectid, 823 u64 owner, u64 offset, int insert) 824 { 825 struct btrfs_fs_info *fs_info = trans->fs_info; 826 struct btrfs_root *root = fs_info->extent_root; 827 struct btrfs_key key; 828 struct extent_buffer *leaf; 829 struct btrfs_extent_item *ei; 830 struct btrfs_extent_inline_ref *iref; 831 u64 flags; 832 u64 item_size; 833 unsigned long ptr; 834 unsigned long end; 835 int extra_size; 836 int type; 837 int want; 838 int ret; 839 int err = 0; 840 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 841 int needed; 842 843 key.objectid = bytenr; 844 key.type = BTRFS_EXTENT_ITEM_KEY; 845 key.offset = num_bytes; 846 847 want = extent_ref_type(parent, owner); 848 if (insert) { 849 extra_size = btrfs_extent_inline_ref_size(want); 850 path->keep_locks = 1; 851 } else 852 extra_size = -1; 853 854 /* 855 * Owner is our level, so we can just add one to get the level for the 856 * block we are interested in. 857 */ 858 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 859 key.type = BTRFS_METADATA_ITEM_KEY; 860 key.offset = owner; 861 } 862 863 again: 864 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 865 if (ret < 0) { 866 err = ret; 867 goto out; 868 } 869 870 /* 871 * We may be a newly converted file system which still has the old fat 872 * extent entries for metadata, so try and see if we have one of those. 873 */ 874 if (ret > 0 && skinny_metadata) { 875 skinny_metadata = false; 876 if (path->slots[0]) { 877 path->slots[0]--; 878 btrfs_item_key_to_cpu(path->nodes[0], &key, 879 path->slots[0]); 880 if (key.objectid == bytenr && 881 key.type == BTRFS_EXTENT_ITEM_KEY && 882 key.offset == num_bytes) 883 ret = 0; 884 } 885 if (ret) { 886 key.objectid = bytenr; 887 key.type = BTRFS_EXTENT_ITEM_KEY; 888 key.offset = num_bytes; 889 btrfs_release_path(path); 890 goto again; 891 } 892 } 893 894 if (ret && !insert) { 895 err = -ENOENT; 896 goto out; 897 } else if (WARN_ON(ret)) { 898 err = -EIO; 899 goto out; 900 } 901 902 leaf = path->nodes[0]; 903 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 904 if (unlikely(item_size < sizeof(*ei))) { 905 err = -EINVAL; 906 btrfs_print_v0_err(fs_info); 907 btrfs_abort_transaction(trans, err); 908 goto out; 909 } 910 911 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 912 flags = btrfs_extent_flags(leaf, ei); 913 914 ptr = (unsigned long)(ei + 1); 915 end = (unsigned long)ei + item_size; 916 917 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 918 ptr += sizeof(struct btrfs_tree_block_info); 919 BUG_ON(ptr > end); 920 } 921 922 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 923 needed = BTRFS_REF_TYPE_DATA; 924 else 925 needed = BTRFS_REF_TYPE_BLOCK; 926 927 err = -ENOENT; 928 while (1) { 929 if (ptr >= end) { 930 WARN_ON(ptr > end); 931 break; 932 } 933 iref = (struct btrfs_extent_inline_ref *)ptr; 934 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 935 if (type == BTRFS_REF_TYPE_INVALID) { 936 err = -EUCLEAN; 937 goto out; 938 } 939 940 if (want < type) 941 break; 942 if (want > type) { 943 ptr += btrfs_extent_inline_ref_size(type); 944 continue; 945 } 946 947 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 948 struct btrfs_extent_data_ref *dref; 949 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 950 if (match_extent_data_ref(leaf, dref, root_objectid, 951 owner, offset)) { 952 err = 0; 953 break; 954 } 955 if (hash_extent_data_ref_item(leaf, dref) < 956 hash_extent_data_ref(root_objectid, owner, offset)) 957 break; 958 } else { 959 u64 ref_offset; 960 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 961 if (parent > 0) { 962 if (parent == ref_offset) { 963 err = 0; 964 break; 965 } 966 if (ref_offset < parent) 967 break; 968 } else { 969 if (root_objectid == ref_offset) { 970 err = 0; 971 break; 972 } 973 if (ref_offset < root_objectid) 974 break; 975 } 976 } 977 ptr += btrfs_extent_inline_ref_size(type); 978 } 979 if (err == -ENOENT && insert) { 980 if (item_size + extra_size >= 981 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 982 err = -EAGAIN; 983 goto out; 984 } 985 /* 986 * To add new inline back ref, we have to make sure 987 * there is no corresponding back ref item. 988 * For simplicity, we just do not add new inline back 989 * ref if there is any kind of item for this block 990 */ 991 if (find_next_key(path, 0, &key) == 0 && 992 key.objectid == bytenr && 993 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 994 err = -EAGAIN; 995 goto out; 996 } 997 } 998 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 999 out: 1000 if (insert) { 1001 path->keep_locks = 0; 1002 btrfs_unlock_up_safe(path, 1); 1003 } 1004 return err; 1005 } 1006 1007 /* 1008 * helper to add new inline back ref 1009 */ 1010 static noinline_for_stack 1011 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1012 struct btrfs_path *path, 1013 struct btrfs_extent_inline_ref *iref, 1014 u64 parent, u64 root_objectid, 1015 u64 owner, u64 offset, int refs_to_add, 1016 struct btrfs_delayed_extent_op *extent_op) 1017 { 1018 struct extent_buffer *leaf; 1019 struct btrfs_extent_item *ei; 1020 unsigned long ptr; 1021 unsigned long end; 1022 unsigned long item_offset; 1023 u64 refs; 1024 int size; 1025 int type; 1026 1027 leaf = path->nodes[0]; 1028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1029 item_offset = (unsigned long)iref - (unsigned long)ei; 1030 1031 type = extent_ref_type(parent, owner); 1032 size = btrfs_extent_inline_ref_size(type); 1033 1034 btrfs_extend_item(path, size); 1035 1036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1037 refs = btrfs_extent_refs(leaf, ei); 1038 refs += refs_to_add; 1039 btrfs_set_extent_refs(leaf, ei, refs); 1040 if (extent_op) 1041 __run_delayed_extent_op(extent_op, leaf, ei); 1042 1043 ptr = (unsigned long)ei + item_offset; 1044 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1045 if (ptr < end - size) 1046 memmove_extent_buffer(leaf, ptr + size, ptr, 1047 end - size - ptr); 1048 1049 iref = (struct btrfs_extent_inline_ref *)ptr; 1050 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1051 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1052 struct btrfs_extent_data_ref *dref; 1053 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1054 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1055 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1056 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1057 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1058 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1059 struct btrfs_shared_data_ref *sref; 1060 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1061 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1062 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1063 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1064 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1065 } else { 1066 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1067 } 1068 btrfs_mark_buffer_dirty(leaf); 1069 } 1070 1071 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1072 struct btrfs_path *path, 1073 struct btrfs_extent_inline_ref **ref_ret, 1074 u64 bytenr, u64 num_bytes, u64 parent, 1075 u64 root_objectid, u64 owner, u64 offset) 1076 { 1077 int ret; 1078 1079 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1080 num_bytes, parent, root_objectid, 1081 owner, offset, 0); 1082 if (ret != -ENOENT) 1083 return ret; 1084 1085 btrfs_release_path(path); 1086 *ref_ret = NULL; 1087 1088 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1089 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1090 root_objectid); 1091 } else { 1092 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1093 root_objectid, owner, offset); 1094 } 1095 return ret; 1096 } 1097 1098 /* 1099 * helper to update/remove inline back ref 1100 */ 1101 static noinline_for_stack 1102 void update_inline_extent_backref(struct btrfs_path *path, 1103 struct btrfs_extent_inline_ref *iref, 1104 int refs_to_mod, 1105 struct btrfs_delayed_extent_op *extent_op, 1106 int *last_ref) 1107 { 1108 struct extent_buffer *leaf = path->nodes[0]; 1109 struct btrfs_extent_item *ei; 1110 struct btrfs_extent_data_ref *dref = NULL; 1111 struct btrfs_shared_data_ref *sref = NULL; 1112 unsigned long ptr; 1113 unsigned long end; 1114 u32 item_size; 1115 int size; 1116 int type; 1117 u64 refs; 1118 1119 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1120 refs = btrfs_extent_refs(leaf, ei); 1121 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1122 refs += refs_to_mod; 1123 btrfs_set_extent_refs(leaf, ei, refs); 1124 if (extent_op) 1125 __run_delayed_extent_op(extent_op, leaf, ei); 1126 1127 /* 1128 * If type is invalid, we should have bailed out after 1129 * lookup_inline_extent_backref(). 1130 */ 1131 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1132 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1133 1134 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1135 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1136 refs = btrfs_extent_data_ref_count(leaf, dref); 1137 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1138 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1139 refs = btrfs_shared_data_ref_count(leaf, sref); 1140 } else { 1141 refs = 1; 1142 BUG_ON(refs_to_mod != -1); 1143 } 1144 1145 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1146 refs += refs_to_mod; 1147 1148 if (refs > 0) { 1149 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1150 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1151 else 1152 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1153 } else { 1154 *last_ref = 1; 1155 size = btrfs_extent_inline_ref_size(type); 1156 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1157 ptr = (unsigned long)iref; 1158 end = (unsigned long)ei + item_size; 1159 if (ptr + size < end) 1160 memmove_extent_buffer(leaf, ptr, ptr + size, 1161 end - ptr - size); 1162 item_size -= size; 1163 btrfs_truncate_item(path, item_size, 1); 1164 } 1165 btrfs_mark_buffer_dirty(leaf); 1166 } 1167 1168 static noinline_for_stack 1169 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1170 struct btrfs_path *path, 1171 u64 bytenr, u64 num_bytes, u64 parent, 1172 u64 root_objectid, u64 owner, 1173 u64 offset, int refs_to_add, 1174 struct btrfs_delayed_extent_op *extent_op) 1175 { 1176 struct btrfs_extent_inline_ref *iref; 1177 int ret; 1178 1179 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1180 num_bytes, parent, root_objectid, 1181 owner, offset, 1); 1182 if (ret == 0) { 1183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1184 update_inline_extent_backref(path, iref, refs_to_add, 1185 extent_op, NULL); 1186 } else if (ret == -ENOENT) { 1187 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1188 root_objectid, owner, offset, 1189 refs_to_add, extent_op); 1190 ret = 0; 1191 } 1192 return ret; 1193 } 1194 1195 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1196 struct btrfs_path *path, 1197 u64 bytenr, u64 parent, u64 root_objectid, 1198 u64 owner, u64 offset, int refs_to_add) 1199 { 1200 int ret; 1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1202 BUG_ON(refs_to_add != 1); 1203 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1204 root_objectid); 1205 } else { 1206 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1207 root_objectid, owner, offset, 1208 refs_to_add); 1209 } 1210 return ret; 1211 } 1212 1213 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1214 struct btrfs_path *path, 1215 struct btrfs_extent_inline_ref *iref, 1216 int refs_to_drop, int is_data, int *last_ref) 1217 { 1218 int ret = 0; 1219 1220 BUG_ON(!is_data && refs_to_drop != 1); 1221 if (iref) { 1222 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1223 last_ref); 1224 } else if (is_data) { 1225 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1226 last_ref); 1227 } else { 1228 *last_ref = 1; 1229 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1230 } 1231 return ret; 1232 } 1233 1234 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1235 u64 *discarded_bytes) 1236 { 1237 int j, ret = 0; 1238 u64 bytes_left, end; 1239 u64 aligned_start = ALIGN(start, 1 << 9); 1240 1241 if (WARN_ON(start != aligned_start)) { 1242 len -= aligned_start - start; 1243 len = round_down(len, 1 << 9); 1244 start = aligned_start; 1245 } 1246 1247 *discarded_bytes = 0; 1248 1249 if (!len) 1250 return 0; 1251 1252 end = start + len; 1253 bytes_left = len; 1254 1255 /* Skip any superblocks on this device. */ 1256 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1257 u64 sb_start = btrfs_sb_offset(j); 1258 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1259 u64 size = sb_start - start; 1260 1261 if (!in_range(sb_start, start, bytes_left) && 1262 !in_range(sb_end, start, bytes_left) && 1263 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1264 continue; 1265 1266 /* 1267 * Superblock spans beginning of range. Adjust start and 1268 * try again. 1269 */ 1270 if (sb_start <= start) { 1271 start += sb_end - start; 1272 if (start > end) { 1273 bytes_left = 0; 1274 break; 1275 } 1276 bytes_left = end - start; 1277 continue; 1278 } 1279 1280 if (size) { 1281 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1282 GFP_NOFS, 0); 1283 if (!ret) 1284 *discarded_bytes += size; 1285 else if (ret != -EOPNOTSUPP) 1286 return ret; 1287 } 1288 1289 start = sb_end; 1290 if (start > end) { 1291 bytes_left = 0; 1292 break; 1293 } 1294 bytes_left = end - start; 1295 } 1296 1297 if (bytes_left) { 1298 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1299 GFP_NOFS, 0); 1300 if (!ret) 1301 *discarded_bytes += bytes_left; 1302 } 1303 return ret; 1304 } 1305 1306 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1307 u64 num_bytes, u64 *actual_bytes) 1308 { 1309 int ret = 0; 1310 u64 discarded_bytes = 0; 1311 u64 end = bytenr + num_bytes; 1312 u64 cur = bytenr; 1313 struct btrfs_bio *bbio = NULL; 1314 1315 1316 /* 1317 * Avoid races with device replace and make sure our bbio has devices 1318 * associated to its stripes that don't go away while we are discarding. 1319 */ 1320 btrfs_bio_counter_inc_blocked(fs_info); 1321 while (cur < end) { 1322 struct btrfs_bio_stripe *stripe; 1323 int i; 1324 1325 num_bytes = end - cur; 1326 /* Tell the block device(s) that the sectors can be discarded */ 1327 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1328 &num_bytes, &bbio, 0); 1329 /* 1330 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1331 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1332 * thus we can't continue anyway. 1333 */ 1334 if (ret < 0) 1335 goto out; 1336 1337 stripe = bbio->stripes; 1338 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1339 u64 bytes; 1340 struct request_queue *req_q; 1341 1342 if (!stripe->dev->bdev) { 1343 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1344 continue; 1345 } 1346 req_q = bdev_get_queue(stripe->dev->bdev); 1347 if (!blk_queue_discard(req_q)) 1348 continue; 1349 1350 ret = btrfs_issue_discard(stripe->dev->bdev, 1351 stripe->physical, 1352 stripe->length, 1353 &bytes); 1354 if (!ret) { 1355 discarded_bytes += bytes; 1356 } else if (ret != -EOPNOTSUPP) { 1357 /* 1358 * Logic errors or -ENOMEM, or -EIO, but 1359 * unlikely to happen. 1360 * 1361 * And since there are two loops, explicitly 1362 * go to out to avoid confusion. 1363 */ 1364 btrfs_put_bbio(bbio); 1365 goto out; 1366 } 1367 1368 /* 1369 * Just in case we get back EOPNOTSUPP for some reason, 1370 * just ignore the return value so we don't screw up 1371 * people calling discard_extent. 1372 */ 1373 ret = 0; 1374 } 1375 btrfs_put_bbio(bbio); 1376 cur += num_bytes; 1377 } 1378 out: 1379 btrfs_bio_counter_dec(fs_info); 1380 1381 if (actual_bytes) 1382 *actual_bytes = discarded_bytes; 1383 1384 1385 if (ret == -EOPNOTSUPP) 1386 ret = 0; 1387 return ret; 1388 } 1389 1390 /* Can return -ENOMEM */ 1391 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1392 struct btrfs_ref *generic_ref) 1393 { 1394 struct btrfs_fs_info *fs_info = trans->fs_info; 1395 int old_ref_mod, new_ref_mod; 1396 int ret; 1397 1398 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1399 generic_ref->action); 1400 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1401 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1402 1403 if (generic_ref->type == BTRFS_REF_METADATA) 1404 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1405 NULL, &old_ref_mod, &new_ref_mod); 1406 else 1407 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1408 &old_ref_mod, &new_ref_mod); 1409 1410 btrfs_ref_tree_mod(fs_info, generic_ref); 1411 1412 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1413 sub_pinned_bytes(fs_info, generic_ref); 1414 1415 return ret; 1416 } 1417 1418 /* 1419 * __btrfs_inc_extent_ref - insert backreference for a given extent 1420 * 1421 * @trans: Handle of transaction 1422 * 1423 * @node: The delayed ref node used to get the bytenr/length for 1424 * extent whose references are incremented. 1425 * 1426 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1427 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1428 * bytenr of the parent block. Since new extents are always 1429 * created with indirect references, this will only be the case 1430 * when relocating a shared extent. In that case, root_objectid 1431 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1432 * be 0 1433 * 1434 * @root_objectid: The id of the root where this modification has originated, 1435 * this can be either one of the well-known metadata trees or 1436 * the subvolume id which references this extent. 1437 * 1438 * @owner: For data extents it is the inode number of the owning file. 1439 * For metadata extents this parameter holds the level in the 1440 * tree of the extent. 1441 * 1442 * @offset: For metadata extents the offset is ignored and is currently 1443 * always passed as 0. For data extents it is the fileoffset 1444 * this extent belongs to. 1445 * 1446 * @refs_to_add Number of references to add 1447 * 1448 * @extent_op Pointer to a structure, holding information necessary when 1449 * updating a tree block's flags 1450 * 1451 */ 1452 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1453 struct btrfs_delayed_ref_node *node, 1454 u64 parent, u64 root_objectid, 1455 u64 owner, u64 offset, int refs_to_add, 1456 struct btrfs_delayed_extent_op *extent_op) 1457 { 1458 struct btrfs_path *path; 1459 struct extent_buffer *leaf; 1460 struct btrfs_extent_item *item; 1461 struct btrfs_key key; 1462 u64 bytenr = node->bytenr; 1463 u64 num_bytes = node->num_bytes; 1464 u64 refs; 1465 int ret; 1466 1467 path = btrfs_alloc_path(); 1468 if (!path) 1469 return -ENOMEM; 1470 1471 path->reada = READA_FORWARD; 1472 path->leave_spinning = 1; 1473 /* this will setup the path even if it fails to insert the back ref */ 1474 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1475 parent, root_objectid, owner, 1476 offset, refs_to_add, extent_op); 1477 if ((ret < 0 && ret != -EAGAIN) || !ret) 1478 goto out; 1479 1480 /* 1481 * Ok we had -EAGAIN which means we didn't have space to insert and 1482 * inline extent ref, so just update the reference count and add a 1483 * normal backref. 1484 */ 1485 leaf = path->nodes[0]; 1486 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1487 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1488 refs = btrfs_extent_refs(leaf, item); 1489 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1490 if (extent_op) 1491 __run_delayed_extent_op(extent_op, leaf, item); 1492 1493 btrfs_mark_buffer_dirty(leaf); 1494 btrfs_release_path(path); 1495 1496 path->reada = READA_FORWARD; 1497 path->leave_spinning = 1; 1498 /* now insert the actual backref */ 1499 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, 1500 owner, offset, refs_to_add); 1501 if (ret) 1502 btrfs_abort_transaction(trans, ret); 1503 out: 1504 btrfs_free_path(path); 1505 return ret; 1506 } 1507 1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1509 struct btrfs_delayed_ref_node *node, 1510 struct btrfs_delayed_extent_op *extent_op, 1511 int insert_reserved) 1512 { 1513 int ret = 0; 1514 struct btrfs_delayed_data_ref *ref; 1515 struct btrfs_key ins; 1516 u64 parent = 0; 1517 u64 ref_root = 0; 1518 u64 flags = 0; 1519 1520 ins.objectid = node->bytenr; 1521 ins.offset = node->num_bytes; 1522 ins.type = BTRFS_EXTENT_ITEM_KEY; 1523 1524 ref = btrfs_delayed_node_to_data_ref(node); 1525 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1526 1527 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1528 parent = ref->parent; 1529 ref_root = ref->root; 1530 1531 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1532 if (extent_op) 1533 flags |= extent_op->flags_to_set; 1534 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1535 flags, ref->objectid, 1536 ref->offset, &ins, 1537 node->ref_mod); 1538 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1539 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1540 ref->objectid, ref->offset, 1541 node->ref_mod, extent_op); 1542 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1543 ret = __btrfs_free_extent(trans, node, parent, 1544 ref_root, ref->objectid, 1545 ref->offset, node->ref_mod, 1546 extent_op); 1547 } else { 1548 BUG(); 1549 } 1550 return ret; 1551 } 1552 1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1554 struct extent_buffer *leaf, 1555 struct btrfs_extent_item *ei) 1556 { 1557 u64 flags = btrfs_extent_flags(leaf, ei); 1558 if (extent_op->update_flags) { 1559 flags |= extent_op->flags_to_set; 1560 btrfs_set_extent_flags(leaf, ei, flags); 1561 } 1562 1563 if (extent_op->update_key) { 1564 struct btrfs_tree_block_info *bi; 1565 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1566 bi = (struct btrfs_tree_block_info *)(ei + 1); 1567 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1568 } 1569 } 1570 1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1572 struct btrfs_delayed_ref_head *head, 1573 struct btrfs_delayed_extent_op *extent_op) 1574 { 1575 struct btrfs_fs_info *fs_info = trans->fs_info; 1576 struct btrfs_key key; 1577 struct btrfs_path *path; 1578 struct btrfs_extent_item *ei; 1579 struct extent_buffer *leaf; 1580 u32 item_size; 1581 int ret; 1582 int err = 0; 1583 int metadata = !extent_op->is_data; 1584 1585 if (trans->aborted) 1586 return 0; 1587 1588 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1589 metadata = 0; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 key.objectid = head->bytenr; 1596 1597 if (metadata) { 1598 key.type = BTRFS_METADATA_ITEM_KEY; 1599 key.offset = extent_op->level; 1600 } else { 1601 key.type = BTRFS_EXTENT_ITEM_KEY; 1602 key.offset = head->num_bytes; 1603 } 1604 1605 again: 1606 path->reada = READA_FORWARD; 1607 path->leave_spinning = 1; 1608 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1609 if (ret < 0) { 1610 err = ret; 1611 goto out; 1612 } 1613 if (ret > 0) { 1614 if (metadata) { 1615 if (path->slots[0] > 0) { 1616 path->slots[0]--; 1617 btrfs_item_key_to_cpu(path->nodes[0], &key, 1618 path->slots[0]); 1619 if (key.objectid == head->bytenr && 1620 key.type == BTRFS_EXTENT_ITEM_KEY && 1621 key.offset == head->num_bytes) 1622 ret = 0; 1623 } 1624 if (ret > 0) { 1625 btrfs_release_path(path); 1626 metadata = 0; 1627 1628 key.objectid = head->bytenr; 1629 key.offset = head->num_bytes; 1630 key.type = BTRFS_EXTENT_ITEM_KEY; 1631 goto again; 1632 } 1633 } else { 1634 err = -EIO; 1635 goto out; 1636 } 1637 } 1638 1639 leaf = path->nodes[0]; 1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1641 1642 if (unlikely(item_size < sizeof(*ei))) { 1643 err = -EINVAL; 1644 btrfs_print_v0_err(fs_info); 1645 btrfs_abort_transaction(trans, err); 1646 goto out; 1647 } 1648 1649 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1650 __run_delayed_extent_op(extent_op, leaf, ei); 1651 1652 btrfs_mark_buffer_dirty(leaf); 1653 out: 1654 btrfs_free_path(path); 1655 return err; 1656 } 1657 1658 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1659 struct btrfs_delayed_ref_node *node, 1660 struct btrfs_delayed_extent_op *extent_op, 1661 int insert_reserved) 1662 { 1663 int ret = 0; 1664 struct btrfs_delayed_tree_ref *ref; 1665 u64 parent = 0; 1666 u64 ref_root = 0; 1667 1668 ref = btrfs_delayed_node_to_tree_ref(node); 1669 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1670 1671 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1672 parent = ref->parent; 1673 ref_root = ref->root; 1674 1675 if (node->ref_mod != 1) { 1676 btrfs_err(trans->fs_info, 1677 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1678 node->bytenr, node->ref_mod, node->action, ref_root, 1679 parent); 1680 return -EIO; 1681 } 1682 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1683 BUG_ON(!extent_op || !extent_op->update_flags); 1684 ret = alloc_reserved_tree_block(trans, node, extent_op); 1685 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1686 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1687 ref->level, 0, 1, extent_op); 1688 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1689 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1690 ref->level, 0, 1, extent_op); 1691 } else { 1692 BUG(); 1693 } 1694 return ret; 1695 } 1696 1697 /* helper function to actually process a single delayed ref entry */ 1698 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1699 struct btrfs_delayed_ref_node *node, 1700 struct btrfs_delayed_extent_op *extent_op, 1701 int insert_reserved) 1702 { 1703 int ret = 0; 1704 1705 if (trans->aborted) { 1706 if (insert_reserved) 1707 btrfs_pin_extent(trans->fs_info, node->bytenr, 1708 node->num_bytes, 1); 1709 return 0; 1710 } 1711 1712 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1713 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1714 ret = run_delayed_tree_ref(trans, node, extent_op, 1715 insert_reserved); 1716 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1717 node->type == BTRFS_SHARED_DATA_REF_KEY) 1718 ret = run_delayed_data_ref(trans, node, extent_op, 1719 insert_reserved); 1720 else 1721 BUG(); 1722 if (ret && insert_reserved) 1723 btrfs_pin_extent(trans->fs_info, node->bytenr, 1724 node->num_bytes, 1); 1725 return ret; 1726 } 1727 1728 static inline struct btrfs_delayed_ref_node * 1729 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1730 { 1731 struct btrfs_delayed_ref_node *ref; 1732 1733 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1734 return NULL; 1735 1736 /* 1737 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1738 * This is to prevent a ref count from going down to zero, which deletes 1739 * the extent item from the extent tree, when there still are references 1740 * to add, which would fail because they would not find the extent item. 1741 */ 1742 if (!list_empty(&head->ref_add_list)) 1743 return list_first_entry(&head->ref_add_list, 1744 struct btrfs_delayed_ref_node, add_list); 1745 1746 ref = rb_entry(rb_first_cached(&head->ref_tree), 1747 struct btrfs_delayed_ref_node, ref_node); 1748 ASSERT(list_empty(&ref->add_list)); 1749 return ref; 1750 } 1751 1752 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1753 struct btrfs_delayed_ref_head *head) 1754 { 1755 spin_lock(&delayed_refs->lock); 1756 head->processing = 0; 1757 delayed_refs->num_heads_ready++; 1758 spin_unlock(&delayed_refs->lock); 1759 btrfs_delayed_ref_unlock(head); 1760 } 1761 1762 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1763 struct btrfs_delayed_ref_head *head) 1764 { 1765 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1766 1767 if (!extent_op) 1768 return NULL; 1769 1770 if (head->must_insert_reserved) { 1771 head->extent_op = NULL; 1772 btrfs_free_delayed_extent_op(extent_op); 1773 return NULL; 1774 } 1775 return extent_op; 1776 } 1777 1778 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1779 struct btrfs_delayed_ref_head *head) 1780 { 1781 struct btrfs_delayed_extent_op *extent_op; 1782 int ret; 1783 1784 extent_op = cleanup_extent_op(head); 1785 if (!extent_op) 1786 return 0; 1787 head->extent_op = NULL; 1788 spin_unlock(&head->lock); 1789 ret = run_delayed_extent_op(trans, head, extent_op); 1790 btrfs_free_delayed_extent_op(extent_op); 1791 return ret ? ret : 1; 1792 } 1793 1794 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1795 struct btrfs_delayed_ref_root *delayed_refs, 1796 struct btrfs_delayed_ref_head *head) 1797 { 1798 int nr_items = 1; /* Dropping this ref head update. */ 1799 1800 if (head->total_ref_mod < 0) { 1801 struct btrfs_space_info *space_info; 1802 u64 flags; 1803 1804 if (head->is_data) 1805 flags = BTRFS_BLOCK_GROUP_DATA; 1806 else if (head->is_system) 1807 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1808 else 1809 flags = BTRFS_BLOCK_GROUP_METADATA; 1810 space_info = btrfs_find_space_info(fs_info, flags); 1811 ASSERT(space_info); 1812 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1813 -head->num_bytes, 1814 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1815 1816 /* 1817 * We had csum deletions accounted for in our delayed refs rsv, 1818 * we need to drop the csum leaves for this update from our 1819 * delayed_refs_rsv. 1820 */ 1821 if (head->is_data) { 1822 spin_lock(&delayed_refs->lock); 1823 delayed_refs->pending_csums -= head->num_bytes; 1824 spin_unlock(&delayed_refs->lock); 1825 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1826 head->num_bytes); 1827 } 1828 } 1829 1830 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1831 } 1832 1833 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1834 struct btrfs_delayed_ref_head *head) 1835 { 1836 1837 struct btrfs_fs_info *fs_info = trans->fs_info; 1838 struct btrfs_delayed_ref_root *delayed_refs; 1839 int ret; 1840 1841 delayed_refs = &trans->transaction->delayed_refs; 1842 1843 ret = run_and_cleanup_extent_op(trans, head); 1844 if (ret < 0) { 1845 unselect_delayed_ref_head(delayed_refs, head); 1846 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1847 return ret; 1848 } else if (ret) { 1849 return ret; 1850 } 1851 1852 /* 1853 * Need to drop our head ref lock and re-acquire the delayed ref lock 1854 * and then re-check to make sure nobody got added. 1855 */ 1856 spin_unlock(&head->lock); 1857 spin_lock(&delayed_refs->lock); 1858 spin_lock(&head->lock); 1859 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1860 spin_unlock(&head->lock); 1861 spin_unlock(&delayed_refs->lock); 1862 return 1; 1863 } 1864 btrfs_delete_ref_head(delayed_refs, head); 1865 spin_unlock(&head->lock); 1866 spin_unlock(&delayed_refs->lock); 1867 1868 if (head->must_insert_reserved) { 1869 btrfs_pin_extent(fs_info, head->bytenr, 1870 head->num_bytes, 1); 1871 if (head->is_data) { 1872 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 1873 head->num_bytes); 1874 } 1875 } 1876 1877 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1878 1879 trace_run_delayed_ref_head(fs_info, head, 0); 1880 btrfs_delayed_ref_unlock(head); 1881 btrfs_put_delayed_ref_head(head); 1882 return 0; 1883 } 1884 1885 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1886 struct btrfs_trans_handle *trans) 1887 { 1888 struct btrfs_delayed_ref_root *delayed_refs = 1889 &trans->transaction->delayed_refs; 1890 struct btrfs_delayed_ref_head *head = NULL; 1891 int ret; 1892 1893 spin_lock(&delayed_refs->lock); 1894 head = btrfs_select_ref_head(delayed_refs); 1895 if (!head) { 1896 spin_unlock(&delayed_refs->lock); 1897 return head; 1898 } 1899 1900 /* 1901 * Grab the lock that says we are going to process all the refs for 1902 * this head 1903 */ 1904 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1905 spin_unlock(&delayed_refs->lock); 1906 1907 /* 1908 * We may have dropped the spin lock to get the head mutex lock, and 1909 * that might have given someone else time to free the head. If that's 1910 * true, it has been removed from our list and we can move on. 1911 */ 1912 if (ret == -EAGAIN) 1913 head = ERR_PTR(-EAGAIN); 1914 1915 return head; 1916 } 1917 1918 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1919 struct btrfs_delayed_ref_head *locked_ref, 1920 unsigned long *run_refs) 1921 { 1922 struct btrfs_fs_info *fs_info = trans->fs_info; 1923 struct btrfs_delayed_ref_root *delayed_refs; 1924 struct btrfs_delayed_extent_op *extent_op; 1925 struct btrfs_delayed_ref_node *ref; 1926 int must_insert_reserved = 0; 1927 int ret; 1928 1929 delayed_refs = &trans->transaction->delayed_refs; 1930 1931 lockdep_assert_held(&locked_ref->mutex); 1932 lockdep_assert_held(&locked_ref->lock); 1933 1934 while ((ref = select_delayed_ref(locked_ref))) { 1935 if (ref->seq && 1936 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1937 spin_unlock(&locked_ref->lock); 1938 unselect_delayed_ref_head(delayed_refs, locked_ref); 1939 return -EAGAIN; 1940 } 1941 1942 (*run_refs)++; 1943 ref->in_tree = 0; 1944 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1945 RB_CLEAR_NODE(&ref->ref_node); 1946 if (!list_empty(&ref->add_list)) 1947 list_del(&ref->add_list); 1948 /* 1949 * When we play the delayed ref, also correct the ref_mod on 1950 * head 1951 */ 1952 switch (ref->action) { 1953 case BTRFS_ADD_DELAYED_REF: 1954 case BTRFS_ADD_DELAYED_EXTENT: 1955 locked_ref->ref_mod -= ref->ref_mod; 1956 break; 1957 case BTRFS_DROP_DELAYED_REF: 1958 locked_ref->ref_mod += ref->ref_mod; 1959 break; 1960 default: 1961 WARN_ON(1); 1962 } 1963 atomic_dec(&delayed_refs->num_entries); 1964 1965 /* 1966 * Record the must_insert_reserved flag before we drop the 1967 * spin lock. 1968 */ 1969 must_insert_reserved = locked_ref->must_insert_reserved; 1970 locked_ref->must_insert_reserved = 0; 1971 1972 extent_op = locked_ref->extent_op; 1973 locked_ref->extent_op = NULL; 1974 spin_unlock(&locked_ref->lock); 1975 1976 ret = run_one_delayed_ref(trans, ref, extent_op, 1977 must_insert_reserved); 1978 1979 btrfs_free_delayed_extent_op(extent_op); 1980 if (ret) { 1981 unselect_delayed_ref_head(delayed_refs, locked_ref); 1982 btrfs_put_delayed_ref(ref); 1983 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1984 ret); 1985 return ret; 1986 } 1987 1988 btrfs_put_delayed_ref(ref); 1989 cond_resched(); 1990 1991 spin_lock(&locked_ref->lock); 1992 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1993 } 1994 1995 return 0; 1996 } 1997 1998 /* 1999 * Returns 0 on success or if called with an already aborted transaction. 2000 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2001 */ 2002 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2003 unsigned long nr) 2004 { 2005 struct btrfs_fs_info *fs_info = trans->fs_info; 2006 struct btrfs_delayed_ref_root *delayed_refs; 2007 struct btrfs_delayed_ref_head *locked_ref = NULL; 2008 ktime_t start = ktime_get(); 2009 int ret; 2010 unsigned long count = 0; 2011 unsigned long actual_count = 0; 2012 2013 delayed_refs = &trans->transaction->delayed_refs; 2014 do { 2015 if (!locked_ref) { 2016 locked_ref = btrfs_obtain_ref_head(trans); 2017 if (IS_ERR_OR_NULL(locked_ref)) { 2018 if (PTR_ERR(locked_ref) == -EAGAIN) { 2019 continue; 2020 } else { 2021 break; 2022 } 2023 } 2024 count++; 2025 } 2026 /* 2027 * We need to try and merge add/drops of the same ref since we 2028 * can run into issues with relocate dropping the implicit ref 2029 * and then it being added back again before the drop can 2030 * finish. If we merged anything we need to re-loop so we can 2031 * get a good ref. 2032 * Or we can get node references of the same type that weren't 2033 * merged when created due to bumps in the tree mod seq, and 2034 * we need to merge them to prevent adding an inline extent 2035 * backref before dropping it (triggering a BUG_ON at 2036 * insert_inline_extent_backref()). 2037 */ 2038 spin_lock(&locked_ref->lock); 2039 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2040 2041 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2042 &actual_count); 2043 if (ret < 0 && ret != -EAGAIN) { 2044 /* 2045 * Error, btrfs_run_delayed_refs_for_head already 2046 * unlocked everything so just bail out 2047 */ 2048 return ret; 2049 } else if (!ret) { 2050 /* 2051 * Success, perform the usual cleanup of a processed 2052 * head 2053 */ 2054 ret = cleanup_ref_head(trans, locked_ref); 2055 if (ret > 0 ) { 2056 /* We dropped our lock, we need to loop. */ 2057 ret = 0; 2058 continue; 2059 } else if (ret) { 2060 return ret; 2061 } 2062 } 2063 2064 /* 2065 * Either success case or btrfs_run_delayed_refs_for_head 2066 * returned -EAGAIN, meaning we need to select another head 2067 */ 2068 2069 locked_ref = NULL; 2070 cond_resched(); 2071 } while ((nr != -1 && count < nr) || locked_ref); 2072 2073 /* 2074 * We don't want to include ref heads since we can have empty ref heads 2075 * and those will drastically skew our runtime down since we just do 2076 * accounting, no actual extent tree updates. 2077 */ 2078 if (actual_count > 0) { 2079 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2080 u64 avg; 2081 2082 /* 2083 * We weigh the current average higher than our current runtime 2084 * to avoid large swings in the average. 2085 */ 2086 spin_lock(&delayed_refs->lock); 2087 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2088 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2089 spin_unlock(&delayed_refs->lock); 2090 } 2091 return 0; 2092 } 2093 2094 #ifdef SCRAMBLE_DELAYED_REFS 2095 /* 2096 * Normally delayed refs get processed in ascending bytenr order. This 2097 * correlates in most cases to the order added. To expose dependencies on this 2098 * order, we start to process the tree in the middle instead of the beginning 2099 */ 2100 static u64 find_middle(struct rb_root *root) 2101 { 2102 struct rb_node *n = root->rb_node; 2103 struct btrfs_delayed_ref_node *entry; 2104 int alt = 1; 2105 u64 middle; 2106 u64 first = 0, last = 0; 2107 2108 n = rb_first(root); 2109 if (n) { 2110 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2111 first = entry->bytenr; 2112 } 2113 n = rb_last(root); 2114 if (n) { 2115 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2116 last = entry->bytenr; 2117 } 2118 n = root->rb_node; 2119 2120 while (n) { 2121 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2122 WARN_ON(!entry->in_tree); 2123 2124 middle = entry->bytenr; 2125 2126 if (alt) 2127 n = n->rb_left; 2128 else 2129 n = n->rb_right; 2130 2131 alt = 1 - alt; 2132 } 2133 return middle; 2134 } 2135 #endif 2136 2137 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2138 { 2139 u64 num_bytes; 2140 2141 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2142 sizeof(struct btrfs_extent_inline_ref)); 2143 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2144 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2145 2146 /* 2147 * We don't ever fill up leaves all the way so multiply by 2 just to be 2148 * closer to what we're really going to want to use. 2149 */ 2150 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2151 } 2152 2153 /* 2154 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2155 * would require to store the csums for that many bytes. 2156 */ 2157 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2158 { 2159 u64 csum_size; 2160 u64 num_csums_per_leaf; 2161 u64 num_csums; 2162 2163 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2164 num_csums_per_leaf = div64_u64(csum_size, 2165 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2166 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2167 num_csums += num_csums_per_leaf - 1; 2168 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2169 return num_csums; 2170 } 2171 2172 /* 2173 * this starts processing the delayed reference count updates and 2174 * extent insertions we have queued up so far. count can be 2175 * 0, which means to process everything in the tree at the start 2176 * of the run (but not newly added entries), or it can be some target 2177 * number you'd like to process. 2178 * 2179 * Returns 0 on success or if called with an aborted transaction 2180 * Returns <0 on error and aborts the transaction 2181 */ 2182 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2183 unsigned long count) 2184 { 2185 struct btrfs_fs_info *fs_info = trans->fs_info; 2186 struct rb_node *node; 2187 struct btrfs_delayed_ref_root *delayed_refs; 2188 struct btrfs_delayed_ref_head *head; 2189 int ret; 2190 int run_all = count == (unsigned long)-1; 2191 2192 /* We'll clean this up in btrfs_cleanup_transaction */ 2193 if (trans->aborted) 2194 return 0; 2195 2196 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2197 return 0; 2198 2199 delayed_refs = &trans->transaction->delayed_refs; 2200 if (count == 0) 2201 count = atomic_read(&delayed_refs->num_entries) * 2; 2202 2203 again: 2204 #ifdef SCRAMBLE_DELAYED_REFS 2205 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2206 #endif 2207 ret = __btrfs_run_delayed_refs(trans, count); 2208 if (ret < 0) { 2209 btrfs_abort_transaction(trans, ret); 2210 return ret; 2211 } 2212 2213 if (run_all) { 2214 btrfs_create_pending_block_groups(trans); 2215 2216 spin_lock(&delayed_refs->lock); 2217 node = rb_first_cached(&delayed_refs->href_root); 2218 if (!node) { 2219 spin_unlock(&delayed_refs->lock); 2220 goto out; 2221 } 2222 head = rb_entry(node, struct btrfs_delayed_ref_head, 2223 href_node); 2224 refcount_inc(&head->refs); 2225 spin_unlock(&delayed_refs->lock); 2226 2227 /* Mutex was contended, block until it's released and retry. */ 2228 mutex_lock(&head->mutex); 2229 mutex_unlock(&head->mutex); 2230 2231 btrfs_put_delayed_ref_head(head); 2232 cond_resched(); 2233 goto again; 2234 } 2235 out: 2236 return 0; 2237 } 2238 2239 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2240 u64 bytenr, u64 num_bytes, u64 flags, 2241 int level, int is_data) 2242 { 2243 struct btrfs_delayed_extent_op *extent_op; 2244 int ret; 2245 2246 extent_op = btrfs_alloc_delayed_extent_op(); 2247 if (!extent_op) 2248 return -ENOMEM; 2249 2250 extent_op->flags_to_set = flags; 2251 extent_op->update_flags = true; 2252 extent_op->update_key = false; 2253 extent_op->is_data = is_data ? true : false; 2254 extent_op->level = level; 2255 2256 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2257 if (ret) 2258 btrfs_free_delayed_extent_op(extent_op); 2259 return ret; 2260 } 2261 2262 static noinline int check_delayed_ref(struct btrfs_root *root, 2263 struct btrfs_path *path, 2264 u64 objectid, u64 offset, u64 bytenr) 2265 { 2266 struct btrfs_delayed_ref_head *head; 2267 struct btrfs_delayed_ref_node *ref; 2268 struct btrfs_delayed_data_ref *data_ref; 2269 struct btrfs_delayed_ref_root *delayed_refs; 2270 struct btrfs_transaction *cur_trans; 2271 struct rb_node *node; 2272 int ret = 0; 2273 2274 spin_lock(&root->fs_info->trans_lock); 2275 cur_trans = root->fs_info->running_transaction; 2276 if (cur_trans) 2277 refcount_inc(&cur_trans->use_count); 2278 spin_unlock(&root->fs_info->trans_lock); 2279 if (!cur_trans) 2280 return 0; 2281 2282 delayed_refs = &cur_trans->delayed_refs; 2283 spin_lock(&delayed_refs->lock); 2284 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2285 if (!head) { 2286 spin_unlock(&delayed_refs->lock); 2287 btrfs_put_transaction(cur_trans); 2288 return 0; 2289 } 2290 2291 if (!mutex_trylock(&head->mutex)) { 2292 refcount_inc(&head->refs); 2293 spin_unlock(&delayed_refs->lock); 2294 2295 btrfs_release_path(path); 2296 2297 /* 2298 * Mutex was contended, block until it's released and let 2299 * caller try again 2300 */ 2301 mutex_lock(&head->mutex); 2302 mutex_unlock(&head->mutex); 2303 btrfs_put_delayed_ref_head(head); 2304 btrfs_put_transaction(cur_trans); 2305 return -EAGAIN; 2306 } 2307 spin_unlock(&delayed_refs->lock); 2308 2309 spin_lock(&head->lock); 2310 /* 2311 * XXX: We should replace this with a proper search function in the 2312 * future. 2313 */ 2314 for (node = rb_first_cached(&head->ref_tree); node; 2315 node = rb_next(node)) { 2316 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2317 /* If it's a shared ref we know a cross reference exists */ 2318 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2319 ret = 1; 2320 break; 2321 } 2322 2323 data_ref = btrfs_delayed_node_to_data_ref(ref); 2324 2325 /* 2326 * If our ref doesn't match the one we're currently looking at 2327 * then we have a cross reference. 2328 */ 2329 if (data_ref->root != root->root_key.objectid || 2330 data_ref->objectid != objectid || 2331 data_ref->offset != offset) { 2332 ret = 1; 2333 break; 2334 } 2335 } 2336 spin_unlock(&head->lock); 2337 mutex_unlock(&head->mutex); 2338 btrfs_put_transaction(cur_trans); 2339 return ret; 2340 } 2341 2342 static noinline int check_committed_ref(struct btrfs_root *root, 2343 struct btrfs_path *path, 2344 u64 objectid, u64 offset, u64 bytenr) 2345 { 2346 struct btrfs_fs_info *fs_info = root->fs_info; 2347 struct btrfs_root *extent_root = fs_info->extent_root; 2348 struct extent_buffer *leaf; 2349 struct btrfs_extent_data_ref *ref; 2350 struct btrfs_extent_inline_ref *iref; 2351 struct btrfs_extent_item *ei; 2352 struct btrfs_key key; 2353 u32 item_size; 2354 int type; 2355 int ret; 2356 2357 key.objectid = bytenr; 2358 key.offset = (u64)-1; 2359 key.type = BTRFS_EXTENT_ITEM_KEY; 2360 2361 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2362 if (ret < 0) 2363 goto out; 2364 BUG_ON(ret == 0); /* Corruption */ 2365 2366 ret = -ENOENT; 2367 if (path->slots[0] == 0) 2368 goto out; 2369 2370 path->slots[0]--; 2371 leaf = path->nodes[0]; 2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2373 2374 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2375 goto out; 2376 2377 ret = 1; 2378 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2379 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2380 2381 /* If extent item has more than 1 inline ref then it's shared */ 2382 if (item_size != sizeof(*ei) + 2383 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2384 goto out; 2385 2386 /* If extent created before last snapshot => it's definitely shared */ 2387 if (btrfs_extent_generation(leaf, ei) <= 2388 btrfs_root_last_snapshot(&root->root_item)) 2389 goto out; 2390 2391 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2392 2393 /* If this extent has SHARED_DATA_REF then it's shared */ 2394 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2395 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2396 goto out; 2397 2398 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2399 if (btrfs_extent_refs(leaf, ei) != 2400 btrfs_extent_data_ref_count(leaf, ref) || 2401 btrfs_extent_data_ref_root(leaf, ref) != 2402 root->root_key.objectid || 2403 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2404 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2405 goto out; 2406 2407 ret = 0; 2408 out: 2409 return ret; 2410 } 2411 2412 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2413 u64 bytenr) 2414 { 2415 struct btrfs_path *path; 2416 int ret; 2417 2418 path = btrfs_alloc_path(); 2419 if (!path) 2420 return -ENOMEM; 2421 2422 do { 2423 ret = check_committed_ref(root, path, objectid, 2424 offset, bytenr); 2425 if (ret && ret != -ENOENT) 2426 goto out; 2427 2428 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2429 } while (ret == -EAGAIN); 2430 2431 out: 2432 btrfs_free_path(path); 2433 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2434 WARN_ON(ret > 0); 2435 return ret; 2436 } 2437 2438 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2439 struct btrfs_root *root, 2440 struct extent_buffer *buf, 2441 int full_backref, int inc) 2442 { 2443 struct btrfs_fs_info *fs_info = root->fs_info; 2444 u64 bytenr; 2445 u64 num_bytes; 2446 u64 parent; 2447 u64 ref_root; 2448 u32 nritems; 2449 struct btrfs_key key; 2450 struct btrfs_file_extent_item *fi; 2451 struct btrfs_ref generic_ref = { 0 }; 2452 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2453 int i; 2454 int action; 2455 int level; 2456 int ret = 0; 2457 2458 if (btrfs_is_testing(fs_info)) 2459 return 0; 2460 2461 ref_root = btrfs_header_owner(buf); 2462 nritems = btrfs_header_nritems(buf); 2463 level = btrfs_header_level(buf); 2464 2465 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 2466 return 0; 2467 2468 if (full_backref) 2469 parent = buf->start; 2470 else 2471 parent = 0; 2472 if (inc) 2473 action = BTRFS_ADD_DELAYED_REF; 2474 else 2475 action = BTRFS_DROP_DELAYED_REF; 2476 2477 for (i = 0; i < nritems; i++) { 2478 if (level == 0) { 2479 btrfs_item_key_to_cpu(buf, &key, i); 2480 if (key.type != BTRFS_EXTENT_DATA_KEY) 2481 continue; 2482 fi = btrfs_item_ptr(buf, i, 2483 struct btrfs_file_extent_item); 2484 if (btrfs_file_extent_type(buf, fi) == 2485 BTRFS_FILE_EXTENT_INLINE) 2486 continue; 2487 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2488 if (bytenr == 0) 2489 continue; 2490 2491 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2492 key.offset -= btrfs_file_extent_offset(buf, fi); 2493 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2494 num_bytes, parent); 2495 generic_ref.real_root = root->root_key.objectid; 2496 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2497 key.offset); 2498 generic_ref.skip_qgroup = for_reloc; 2499 if (inc) 2500 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2501 else 2502 ret = btrfs_free_extent(trans, &generic_ref); 2503 if (ret) 2504 goto fail; 2505 } else { 2506 bytenr = btrfs_node_blockptr(buf, i); 2507 num_bytes = fs_info->nodesize; 2508 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2509 num_bytes, parent); 2510 generic_ref.real_root = root->root_key.objectid; 2511 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2512 generic_ref.skip_qgroup = for_reloc; 2513 if (inc) 2514 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2515 else 2516 ret = btrfs_free_extent(trans, &generic_ref); 2517 if (ret) 2518 goto fail; 2519 } 2520 } 2521 return 0; 2522 fail: 2523 return ret; 2524 } 2525 2526 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2527 struct extent_buffer *buf, int full_backref) 2528 { 2529 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2530 } 2531 2532 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2533 struct extent_buffer *buf, int full_backref) 2534 { 2535 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2536 } 2537 2538 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2539 { 2540 struct btrfs_block_group *block_group; 2541 int readonly = 0; 2542 2543 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2544 if (!block_group || block_group->ro) 2545 readonly = 1; 2546 if (block_group) 2547 btrfs_put_block_group(block_group); 2548 return readonly; 2549 } 2550 2551 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2552 { 2553 struct btrfs_fs_info *fs_info = root->fs_info; 2554 u64 flags; 2555 u64 ret; 2556 2557 if (data) 2558 flags = BTRFS_BLOCK_GROUP_DATA; 2559 else if (root == fs_info->chunk_root) 2560 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2561 else 2562 flags = BTRFS_BLOCK_GROUP_METADATA; 2563 2564 ret = btrfs_get_alloc_profile(fs_info, flags); 2565 return ret; 2566 } 2567 2568 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2569 { 2570 struct btrfs_block_group *cache; 2571 u64 bytenr; 2572 2573 spin_lock(&fs_info->block_group_cache_lock); 2574 bytenr = fs_info->first_logical_byte; 2575 spin_unlock(&fs_info->block_group_cache_lock); 2576 2577 if (bytenr < (u64)-1) 2578 return bytenr; 2579 2580 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2581 if (!cache) 2582 return 0; 2583 2584 bytenr = cache->start; 2585 btrfs_put_block_group(cache); 2586 2587 return bytenr; 2588 } 2589 2590 static int pin_down_extent(struct btrfs_block_group *cache, 2591 u64 bytenr, u64 num_bytes, int reserved) 2592 { 2593 struct btrfs_fs_info *fs_info = cache->fs_info; 2594 2595 spin_lock(&cache->space_info->lock); 2596 spin_lock(&cache->lock); 2597 cache->pinned += num_bytes; 2598 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2599 num_bytes); 2600 if (reserved) { 2601 cache->reserved -= num_bytes; 2602 cache->space_info->bytes_reserved -= num_bytes; 2603 } 2604 spin_unlock(&cache->lock); 2605 spin_unlock(&cache->space_info->lock); 2606 2607 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2608 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2609 set_extent_dirty(fs_info->pinned_extents, bytenr, 2610 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2611 return 0; 2612 } 2613 2614 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 2615 u64 bytenr, u64 num_bytes, int reserved) 2616 { 2617 struct btrfs_block_group *cache; 2618 2619 ASSERT(fs_info->running_transaction); 2620 2621 cache = btrfs_lookup_block_group(fs_info, bytenr); 2622 BUG_ON(!cache); /* Logic error */ 2623 2624 pin_down_extent(cache, bytenr, num_bytes, reserved); 2625 2626 btrfs_put_block_group(cache); 2627 return 0; 2628 } 2629 2630 /* 2631 * this function must be called within transaction 2632 */ 2633 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 2634 u64 bytenr, u64 num_bytes) 2635 { 2636 struct btrfs_block_group *cache; 2637 int ret; 2638 2639 cache = btrfs_lookup_block_group(fs_info, bytenr); 2640 if (!cache) 2641 return -EINVAL; 2642 2643 /* 2644 * pull in the free space cache (if any) so that our pin 2645 * removes the free space from the cache. We have load_only set 2646 * to one because the slow code to read in the free extents does check 2647 * the pinned extents. 2648 */ 2649 btrfs_cache_block_group(cache, 1); 2650 2651 pin_down_extent(cache, bytenr, num_bytes, 0); 2652 2653 /* remove us from the free space cache (if we're there at all) */ 2654 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2655 btrfs_put_block_group(cache); 2656 return ret; 2657 } 2658 2659 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2660 u64 start, u64 num_bytes) 2661 { 2662 int ret; 2663 struct btrfs_block_group *block_group; 2664 struct btrfs_caching_control *caching_ctl; 2665 2666 block_group = btrfs_lookup_block_group(fs_info, start); 2667 if (!block_group) 2668 return -EINVAL; 2669 2670 btrfs_cache_block_group(block_group, 0); 2671 caching_ctl = btrfs_get_caching_control(block_group); 2672 2673 if (!caching_ctl) { 2674 /* Logic error */ 2675 BUG_ON(!btrfs_block_group_done(block_group)); 2676 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2677 } else { 2678 mutex_lock(&caching_ctl->mutex); 2679 2680 if (start >= caching_ctl->progress) { 2681 ret = btrfs_add_excluded_extent(fs_info, start, 2682 num_bytes); 2683 } else if (start + num_bytes <= caching_ctl->progress) { 2684 ret = btrfs_remove_free_space(block_group, 2685 start, num_bytes); 2686 } else { 2687 num_bytes = caching_ctl->progress - start; 2688 ret = btrfs_remove_free_space(block_group, 2689 start, num_bytes); 2690 if (ret) 2691 goto out_lock; 2692 2693 num_bytes = (start + num_bytes) - 2694 caching_ctl->progress; 2695 start = caching_ctl->progress; 2696 ret = btrfs_add_excluded_extent(fs_info, start, 2697 num_bytes); 2698 } 2699 out_lock: 2700 mutex_unlock(&caching_ctl->mutex); 2701 btrfs_put_caching_control(caching_ctl); 2702 } 2703 btrfs_put_block_group(block_group); 2704 return ret; 2705 } 2706 2707 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2708 { 2709 struct btrfs_fs_info *fs_info = eb->fs_info; 2710 struct btrfs_file_extent_item *item; 2711 struct btrfs_key key; 2712 int found_type; 2713 int i; 2714 int ret = 0; 2715 2716 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2717 return 0; 2718 2719 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2720 btrfs_item_key_to_cpu(eb, &key, i); 2721 if (key.type != BTRFS_EXTENT_DATA_KEY) 2722 continue; 2723 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2724 found_type = btrfs_file_extent_type(eb, item); 2725 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2726 continue; 2727 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2728 continue; 2729 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2730 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2731 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2732 if (ret) 2733 break; 2734 } 2735 2736 return ret; 2737 } 2738 2739 static void 2740 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2741 { 2742 atomic_inc(&bg->reservations); 2743 } 2744 2745 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2746 { 2747 struct btrfs_caching_control *next; 2748 struct btrfs_caching_control *caching_ctl; 2749 struct btrfs_block_group *cache; 2750 2751 down_write(&fs_info->commit_root_sem); 2752 2753 list_for_each_entry_safe(caching_ctl, next, 2754 &fs_info->caching_block_groups, list) { 2755 cache = caching_ctl->block_group; 2756 if (btrfs_block_group_done(cache)) { 2757 cache->last_byte_to_unpin = (u64)-1; 2758 list_del_init(&caching_ctl->list); 2759 btrfs_put_caching_control(caching_ctl); 2760 } else { 2761 cache->last_byte_to_unpin = caching_ctl->progress; 2762 } 2763 } 2764 2765 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 2766 fs_info->pinned_extents = &fs_info->freed_extents[1]; 2767 else 2768 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2769 2770 up_write(&fs_info->commit_root_sem); 2771 2772 btrfs_update_global_block_rsv(fs_info); 2773 } 2774 2775 /* 2776 * Returns the free cluster for the given space info and sets empty_cluster to 2777 * what it should be based on the mount options. 2778 */ 2779 static struct btrfs_free_cluster * 2780 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2781 struct btrfs_space_info *space_info, u64 *empty_cluster) 2782 { 2783 struct btrfs_free_cluster *ret = NULL; 2784 2785 *empty_cluster = 0; 2786 if (btrfs_mixed_space_info(space_info)) 2787 return ret; 2788 2789 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2790 ret = &fs_info->meta_alloc_cluster; 2791 if (btrfs_test_opt(fs_info, SSD)) 2792 *empty_cluster = SZ_2M; 2793 else 2794 *empty_cluster = SZ_64K; 2795 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2796 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2797 *empty_cluster = SZ_2M; 2798 ret = &fs_info->data_alloc_cluster; 2799 } 2800 2801 return ret; 2802 } 2803 2804 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2805 u64 start, u64 end, 2806 const bool return_free_space) 2807 { 2808 struct btrfs_block_group *cache = NULL; 2809 struct btrfs_space_info *space_info; 2810 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2811 struct btrfs_free_cluster *cluster = NULL; 2812 u64 len; 2813 u64 total_unpinned = 0; 2814 u64 empty_cluster = 0; 2815 bool readonly; 2816 2817 while (start <= end) { 2818 readonly = false; 2819 if (!cache || 2820 start >= cache->start + cache->length) { 2821 if (cache) 2822 btrfs_put_block_group(cache); 2823 total_unpinned = 0; 2824 cache = btrfs_lookup_block_group(fs_info, start); 2825 BUG_ON(!cache); /* Logic error */ 2826 2827 cluster = fetch_cluster_info(fs_info, 2828 cache->space_info, 2829 &empty_cluster); 2830 empty_cluster <<= 1; 2831 } 2832 2833 len = cache->start + cache->length - start; 2834 len = min(len, end + 1 - start); 2835 2836 if (start < cache->last_byte_to_unpin) { 2837 len = min(len, cache->last_byte_to_unpin - start); 2838 if (return_free_space) 2839 btrfs_add_free_space(cache, start, len); 2840 } 2841 2842 start += len; 2843 total_unpinned += len; 2844 space_info = cache->space_info; 2845 2846 /* 2847 * If this space cluster has been marked as fragmented and we've 2848 * unpinned enough in this block group to potentially allow a 2849 * cluster to be created inside of it go ahead and clear the 2850 * fragmented check. 2851 */ 2852 if (cluster && cluster->fragmented && 2853 total_unpinned > empty_cluster) { 2854 spin_lock(&cluster->lock); 2855 cluster->fragmented = 0; 2856 spin_unlock(&cluster->lock); 2857 } 2858 2859 spin_lock(&space_info->lock); 2860 spin_lock(&cache->lock); 2861 cache->pinned -= len; 2862 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2863 space_info->max_extent_size = 0; 2864 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2865 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2866 if (cache->ro) { 2867 space_info->bytes_readonly += len; 2868 readonly = true; 2869 } 2870 spin_unlock(&cache->lock); 2871 if (!readonly && return_free_space && 2872 global_rsv->space_info == space_info) { 2873 u64 to_add = len; 2874 2875 spin_lock(&global_rsv->lock); 2876 if (!global_rsv->full) { 2877 to_add = min(len, global_rsv->size - 2878 global_rsv->reserved); 2879 global_rsv->reserved += to_add; 2880 btrfs_space_info_update_bytes_may_use(fs_info, 2881 space_info, to_add); 2882 if (global_rsv->reserved >= global_rsv->size) 2883 global_rsv->full = 1; 2884 len -= to_add; 2885 } 2886 spin_unlock(&global_rsv->lock); 2887 /* Add to any tickets we may have */ 2888 if (len) 2889 btrfs_try_granting_tickets(fs_info, 2890 space_info); 2891 } 2892 spin_unlock(&space_info->lock); 2893 } 2894 2895 if (cache) 2896 btrfs_put_block_group(cache); 2897 return 0; 2898 } 2899 2900 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2901 { 2902 struct btrfs_fs_info *fs_info = trans->fs_info; 2903 struct btrfs_block_group *block_group, *tmp; 2904 struct list_head *deleted_bgs; 2905 struct extent_io_tree *unpin; 2906 u64 start; 2907 u64 end; 2908 int ret; 2909 2910 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 2911 unpin = &fs_info->freed_extents[1]; 2912 else 2913 unpin = &fs_info->freed_extents[0]; 2914 2915 while (!trans->aborted) { 2916 struct extent_state *cached_state = NULL; 2917 2918 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2919 ret = find_first_extent_bit(unpin, 0, &start, &end, 2920 EXTENT_DIRTY, &cached_state); 2921 if (ret) { 2922 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2923 break; 2924 } 2925 2926 if (btrfs_test_opt(fs_info, DISCARD)) 2927 ret = btrfs_discard_extent(fs_info, start, 2928 end + 1 - start, NULL); 2929 2930 clear_extent_dirty(unpin, start, end, &cached_state); 2931 unpin_extent_range(fs_info, start, end, true); 2932 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2933 free_extent_state(cached_state); 2934 cond_resched(); 2935 } 2936 2937 /* 2938 * Transaction is finished. We don't need the lock anymore. We 2939 * do need to clean up the block groups in case of a transaction 2940 * abort. 2941 */ 2942 deleted_bgs = &trans->transaction->deleted_bgs; 2943 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2944 u64 trimmed = 0; 2945 2946 ret = -EROFS; 2947 if (!trans->aborted) 2948 ret = btrfs_discard_extent(fs_info, 2949 block_group->start, 2950 block_group->length, 2951 &trimmed); 2952 2953 list_del_init(&block_group->bg_list); 2954 btrfs_put_block_group_trimming(block_group); 2955 btrfs_put_block_group(block_group); 2956 2957 if (ret) { 2958 const char *errstr = btrfs_decode_error(ret); 2959 btrfs_warn(fs_info, 2960 "discard failed while removing blockgroup: errno=%d %s", 2961 ret, errstr); 2962 } 2963 } 2964 2965 return 0; 2966 } 2967 2968 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2969 struct btrfs_delayed_ref_node *node, u64 parent, 2970 u64 root_objectid, u64 owner_objectid, 2971 u64 owner_offset, int refs_to_drop, 2972 struct btrfs_delayed_extent_op *extent_op) 2973 { 2974 struct btrfs_fs_info *info = trans->fs_info; 2975 struct btrfs_key key; 2976 struct btrfs_path *path; 2977 struct btrfs_root *extent_root = info->extent_root; 2978 struct extent_buffer *leaf; 2979 struct btrfs_extent_item *ei; 2980 struct btrfs_extent_inline_ref *iref; 2981 int ret; 2982 int is_data; 2983 int extent_slot = 0; 2984 int found_extent = 0; 2985 int num_to_del = 1; 2986 u32 item_size; 2987 u64 refs; 2988 u64 bytenr = node->bytenr; 2989 u64 num_bytes = node->num_bytes; 2990 int last_ref = 0; 2991 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2992 2993 path = btrfs_alloc_path(); 2994 if (!path) 2995 return -ENOMEM; 2996 2997 path->reada = READA_FORWARD; 2998 path->leave_spinning = 1; 2999 3000 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3001 BUG_ON(!is_data && refs_to_drop != 1); 3002 3003 if (is_data) 3004 skinny_metadata = false; 3005 3006 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3007 parent, root_objectid, owner_objectid, 3008 owner_offset); 3009 if (ret == 0) { 3010 extent_slot = path->slots[0]; 3011 while (extent_slot >= 0) { 3012 btrfs_item_key_to_cpu(path->nodes[0], &key, 3013 extent_slot); 3014 if (key.objectid != bytenr) 3015 break; 3016 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3017 key.offset == num_bytes) { 3018 found_extent = 1; 3019 break; 3020 } 3021 if (key.type == BTRFS_METADATA_ITEM_KEY && 3022 key.offset == owner_objectid) { 3023 found_extent = 1; 3024 break; 3025 } 3026 if (path->slots[0] - extent_slot > 5) 3027 break; 3028 extent_slot--; 3029 } 3030 3031 if (!found_extent) { 3032 BUG_ON(iref); 3033 ret = remove_extent_backref(trans, path, NULL, 3034 refs_to_drop, 3035 is_data, &last_ref); 3036 if (ret) { 3037 btrfs_abort_transaction(trans, ret); 3038 goto out; 3039 } 3040 btrfs_release_path(path); 3041 path->leave_spinning = 1; 3042 3043 key.objectid = bytenr; 3044 key.type = BTRFS_EXTENT_ITEM_KEY; 3045 key.offset = num_bytes; 3046 3047 if (!is_data && skinny_metadata) { 3048 key.type = BTRFS_METADATA_ITEM_KEY; 3049 key.offset = owner_objectid; 3050 } 3051 3052 ret = btrfs_search_slot(trans, extent_root, 3053 &key, path, -1, 1); 3054 if (ret > 0 && skinny_metadata && path->slots[0]) { 3055 /* 3056 * Couldn't find our skinny metadata item, 3057 * see if we have ye olde extent item. 3058 */ 3059 path->slots[0]--; 3060 btrfs_item_key_to_cpu(path->nodes[0], &key, 3061 path->slots[0]); 3062 if (key.objectid == bytenr && 3063 key.type == BTRFS_EXTENT_ITEM_KEY && 3064 key.offset == num_bytes) 3065 ret = 0; 3066 } 3067 3068 if (ret > 0 && skinny_metadata) { 3069 skinny_metadata = false; 3070 key.objectid = bytenr; 3071 key.type = BTRFS_EXTENT_ITEM_KEY; 3072 key.offset = num_bytes; 3073 btrfs_release_path(path); 3074 ret = btrfs_search_slot(trans, extent_root, 3075 &key, path, -1, 1); 3076 } 3077 3078 if (ret) { 3079 btrfs_err(info, 3080 "umm, got %d back from search, was looking for %llu", 3081 ret, bytenr); 3082 if (ret > 0) 3083 btrfs_print_leaf(path->nodes[0]); 3084 } 3085 if (ret < 0) { 3086 btrfs_abort_transaction(trans, ret); 3087 goto out; 3088 } 3089 extent_slot = path->slots[0]; 3090 } 3091 } else if (WARN_ON(ret == -ENOENT)) { 3092 btrfs_print_leaf(path->nodes[0]); 3093 btrfs_err(info, 3094 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3095 bytenr, parent, root_objectid, owner_objectid, 3096 owner_offset); 3097 btrfs_abort_transaction(trans, ret); 3098 goto out; 3099 } else { 3100 btrfs_abort_transaction(trans, ret); 3101 goto out; 3102 } 3103 3104 leaf = path->nodes[0]; 3105 item_size = btrfs_item_size_nr(leaf, extent_slot); 3106 if (unlikely(item_size < sizeof(*ei))) { 3107 ret = -EINVAL; 3108 btrfs_print_v0_err(info); 3109 btrfs_abort_transaction(trans, ret); 3110 goto out; 3111 } 3112 ei = btrfs_item_ptr(leaf, extent_slot, 3113 struct btrfs_extent_item); 3114 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3115 key.type == BTRFS_EXTENT_ITEM_KEY) { 3116 struct btrfs_tree_block_info *bi; 3117 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3118 bi = (struct btrfs_tree_block_info *)(ei + 1); 3119 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3120 } 3121 3122 refs = btrfs_extent_refs(leaf, ei); 3123 if (refs < refs_to_drop) { 3124 btrfs_err(info, 3125 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3126 refs_to_drop, refs, bytenr); 3127 ret = -EINVAL; 3128 btrfs_abort_transaction(trans, ret); 3129 goto out; 3130 } 3131 refs -= refs_to_drop; 3132 3133 if (refs > 0) { 3134 if (extent_op) 3135 __run_delayed_extent_op(extent_op, leaf, ei); 3136 /* 3137 * In the case of inline back ref, reference count will 3138 * be updated by remove_extent_backref 3139 */ 3140 if (iref) { 3141 BUG_ON(!found_extent); 3142 } else { 3143 btrfs_set_extent_refs(leaf, ei, refs); 3144 btrfs_mark_buffer_dirty(leaf); 3145 } 3146 if (found_extent) { 3147 ret = remove_extent_backref(trans, path, iref, 3148 refs_to_drop, is_data, 3149 &last_ref); 3150 if (ret) { 3151 btrfs_abort_transaction(trans, ret); 3152 goto out; 3153 } 3154 } 3155 } else { 3156 if (found_extent) { 3157 BUG_ON(is_data && refs_to_drop != 3158 extent_data_ref_count(path, iref)); 3159 if (iref) { 3160 BUG_ON(path->slots[0] != extent_slot); 3161 } else { 3162 BUG_ON(path->slots[0] != extent_slot + 1); 3163 path->slots[0] = extent_slot; 3164 num_to_del = 2; 3165 } 3166 } 3167 3168 last_ref = 1; 3169 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3170 num_to_del); 3171 if (ret) { 3172 btrfs_abort_transaction(trans, ret); 3173 goto out; 3174 } 3175 btrfs_release_path(path); 3176 3177 if (is_data) { 3178 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 3179 if (ret) { 3180 btrfs_abort_transaction(trans, ret); 3181 goto out; 3182 } 3183 } 3184 3185 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3186 if (ret) { 3187 btrfs_abort_transaction(trans, ret); 3188 goto out; 3189 } 3190 3191 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3192 if (ret) { 3193 btrfs_abort_transaction(trans, ret); 3194 goto out; 3195 } 3196 } 3197 btrfs_release_path(path); 3198 3199 out: 3200 btrfs_free_path(path); 3201 return ret; 3202 } 3203 3204 /* 3205 * when we free an block, it is possible (and likely) that we free the last 3206 * delayed ref for that extent as well. This searches the delayed ref tree for 3207 * a given extent, and if there are no other delayed refs to be processed, it 3208 * removes it from the tree. 3209 */ 3210 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3211 u64 bytenr) 3212 { 3213 struct btrfs_delayed_ref_head *head; 3214 struct btrfs_delayed_ref_root *delayed_refs; 3215 int ret = 0; 3216 3217 delayed_refs = &trans->transaction->delayed_refs; 3218 spin_lock(&delayed_refs->lock); 3219 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3220 if (!head) 3221 goto out_delayed_unlock; 3222 3223 spin_lock(&head->lock); 3224 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3225 goto out; 3226 3227 if (cleanup_extent_op(head) != NULL) 3228 goto out; 3229 3230 /* 3231 * waiting for the lock here would deadlock. If someone else has it 3232 * locked they are already in the process of dropping it anyway 3233 */ 3234 if (!mutex_trylock(&head->mutex)) 3235 goto out; 3236 3237 btrfs_delete_ref_head(delayed_refs, head); 3238 head->processing = 0; 3239 3240 spin_unlock(&head->lock); 3241 spin_unlock(&delayed_refs->lock); 3242 3243 BUG_ON(head->extent_op); 3244 if (head->must_insert_reserved) 3245 ret = 1; 3246 3247 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3248 mutex_unlock(&head->mutex); 3249 btrfs_put_delayed_ref_head(head); 3250 return ret; 3251 out: 3252 spin_unlock(&head->lock); 3253 3254 out_delayed_unlock: 3255 spin_unlock(&delayed_refs->lock); 3256 return 0; 3257 } 3258 3259 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3260 struct btrfs_root *root, 3261 struct extent_buffer *buf, 3262 u64 parent, int last_ref) 3263 { 3264 struct btrfs_fs_info *fs_info = root->fs_info; 3265 struct btrfs_ref generic_ref = { 0 }; 3266 int pin = 1; 3267 int ret; 3268 3269 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3270 buf->start, buf->len, parent); 3271 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3272 root->root_key.objectid); 3273 3274 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3275 int old_ref_mod, new_ref_mod; 3276 3277 btrfs_ref_tree_mod(fs_info, &generic_ref); 3278 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3279 &old_ref_mod, &new_ref_mod); 3280 BUG_ON(ret); /* -ENOMEM */ 3281 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3282 } 3283 3284 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3285 struct btrfs_block_group *cache; 3286 3287 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3288 ret = check_ref_cleanup(trans, buf->start); 3289 if (!ret) 3290 goto out; 3291 } 3292 3293 pin = 0; 3294 cache = btrfs_lookup_block_group(fs_info, buf->start); 3295 3296 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3297 pin_down_extent(cache, buf->start, buf->len, 1); 3298 btrfs_put_block_group(cache); 3299 goto out; 3300 } 3301 3302 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3303 3304 btrfs_add_free_space(cache, buf->start, buf->len); 3305 btrfs_free_reserved_bytes(cache, buf->len, 0); 3306 btrfs_put_block_group(cache); 3307 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3308 } 3309 out: 3310 if (pin) 3311 add_pinned_bytes(fs_info, &generic_ref); 3312 3313 if (last_ref) { 3314 /* 3315 * Deleting the buffer, clear the corrupt flag since it doesn't 3316 * matter anymore. 3317 */ 3318 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3319 } 3320 } 3321 3322 /* Can return -ENOMEM */ 3323 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3324 { 3325 struct btrfs_fs_info *fs_info = trans->fs_info; 3326 int old_ref_mod, new_ref_mod; 3327 int ret; 3328 3329 if (btrfs_is_testing(fs_info)) 3330 return 0; 3331 3332 /* 3333 * tree log blocks never actually go into the extent allocation 3334 * tree, just update pinning info and exit early. 3335 */ 3336 if ((ref->type == BTRFS_REF_METADATA && 3337 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3338 (ref->type == BTRFS_REF_DATA && 3339 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3340 /* unlocks the pinned mutex */ 3341 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1); 3342 old_ref_mod = new_ref_mod = 0; 3343 ret = 0; 3344 } else if (ref->type == BTRFS_REF_METADATA) { 3345 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3346 &old_ref_mod, &new_ref_mod); 3347 } else { 3348 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3349 &old_ref_mod, &new_ref_mod); 3350 } 3351 3352 if (!((ref->type == BTRFS_REF_METADATA && 3353 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3354 (ref->type == BTRFS_REF_DATA && 3355 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3356 btrfs_ref_tree_mod(fs_info, ref); 3357 3358 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3359 add_pinned_bytes(fs_info, ref); 3360 3361 return ret; 3362 } 3363 3364 enum btrfs_loop_type { 3365 LOOP_CACHING_NOWAIT, 3366 LOOP_CACHING_WAIT, 3367 LOOP_ALLOC_CHUNK, 3368 LOOP_NO_EMPTY_SIZE, 3369 }; 3370 3371 static inline void 3372 btrfs_lock_block_group(struct btrfs_block_group *cache, 3373 int delalloc) 3374 { 3375 if (delalloc) 3376 down_read(&cache->data_rwsem); 3377 } 3378 3379 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3380 int delalloc) 3381 { 3382 btrfs_get_block_group(cache); 3383 if (delalloc) 3384 down_read(&cache->data_rwsem); 3385 } 3386 3387 static struct btrfs_block_group *btrfs_lock_cluster( 3388 struct btrfs_block_group *block_group, 3389 struct btrfs_free_cluster *cluster, 3390 int delalloc) 3391 { 3392 struct btrfs_block_group *used_bg = NULL; 3393 3394 spin_lock(&cluster->refill_lock); 3395 while (1) { 3396 used_bg = cluster->block_group; 3397 if (!used_bg) 3398 return NULL; 3399 3400 if (used_bg == block_group) 3401 return used_bg; 3402 3403 btrfs_get_block_group(used_bg); 3404 3405 if (!delalloc) 3406 return used_bg; 3407 3408 if (down_read_trylock(&used_bg->data_rwsem)) 3409 return used_bg; 3410 3411 spin_unlock(&cluster->refill_lock); 3412 3413 /* We should only have one-level nested. */ 3414 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3415 3416 spin_lock(&cluster->refill_lock); 3417 if (used_bg == cluster->block_group) 3418 return used_bg; 3419 3420 up_read(&used_bg->data_rwsem); 3421 btrfs_put_block_group(used_bg); 3422 } 3423 } 3424 3425 static inline void 3426 btrfs_release_block_group(struct btrfs_block_group *cache, 3427 int delalloc) 3428 { 3429 if (delalloc) 3430 up_read(&cache->data_rwsem); 3431 btrfs_put_block_group(cache); 3432 } 3433 3434 /* 3435 * Structure used internally for find_free_extent() function. Wraps needed 3436 * parameters. 3437 */ 3438 struct find_free_extent_ctl { 3439 /* Basic allocation info */ 3440 u64 ram_bytes; 3441 u64 num_bytes; 3442 u64 empty_size; 3443 u64 flags; 3444 int delalloc; 3445 3446 /* Where to start the search inside the bg */ 3447 u64 search_start; 3448 3449 /* For clustered allocation */ 3450 u64 empty_cluster; 3451 3452 bool have_caching_bg; 3453 bool orig_have_caching_bg; 3454 3455 /* RAID index, converted from flags */ 3456 int index; 3457 3458 /* 3459 * Current loop number, check find_free_extent_update_loop() for details 3460 */ 3461 int loop; 3462 3463 /* 3464 * Whether we're refilling a cluster, if true we need to re-search 3465 * current block group but don't try to refill the cluster again. 3466 */ 3467 bool retry_clustered; 3468 3469 /* 3470 * Whether we're updating free space cache, if true we need to re-search 3471 * current block group but don't try updating free space cache again. 3472 */ 3473 bool retry_unclustered; 3474 3475 /* If current block group is cached */ 3476 int cached; 3477 3478 /* Max contiguous hole found */ 3479 u64 max_extent_size; 3480 3481 /* Total free space from free space cache, not always contiguous */ 3482 u64 total_free_space; 3483 3484 /* Found result */ 3485 u64 found_offset; 3486 }; 3487 3488 3489 /* 3490 * Helper function for find_free_extent(). 3491 * 3492 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3493 * Return -EAGAIN to inform caller that we need to re-search this block group 3494 * Return >0 to inform caller that we find nothing 3495 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3496 */ 3497 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3498 struct btrfs_free_cluster *last_ptr, 3499 struct find_free_extent_ctl *ffe_ctl, 3500 struct btrfs_block_group **cluster_bg_ret) 3501 { 3502 struct btrfs_block_group *cluster_bg; 3503 u64 aligned_cluster; 3504 u64 offset; 3505 int ret; 3506 3507 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3508 if (!cluster_bg) 3509 goto refill_cluster; 3510 if (cluster_bg != bg && (cluster_bg->ro || 3511 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3512 goto release_cluster; 3513 3514 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3515 ffe_ctl->num_bytes, cluster_bg->start, 3516 &ffe_ctl->max_extent_size); 3517 if (offset) { 3518 /* We have a block, we're done */ 3519 spin_unlock(&last_ptr->refill_lock); 3520 trace_btrfs_reserve_extent_cluster(cluster_bg, 3521 ffe_ctl->search_start, ffe_ctl->num_bytes); 3522 *cluster_bg_ret = cluster_bg; 3523 ffe_ctl->found_offset = offset; 3524 return 0; 3525 } 3526 WARN_ON(last_ptr->block_group != cluster_bg); 3527 3528 release_cluster: 3529 /* 3530 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3531 * lets just skip it and let the allocator find whatever block it can 3532 * find. If we reach this point, we will have tried the cluster 3533 * allocator plenty of times and not have found anything, so we are 3534 * likely way too fragmented for the clustering stuff to find anything. 3535 * 3536 * However, if the cluster is taken from the current block group, 3537 * release the cluster first, so that we stand a better chance of 3538 * succeeding in the unclustered allocation. 3539 */ 3540 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3541 spin_unlock(&last_ptr->refill_lock); 3542 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3543 return -ENOENT; 3544 } 3545 3546 /* This cluster didn't work out, free it and start over */ 3547 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3548 3549 if (cluster_bg != bg) 3550 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3551 3552 refill_cluster: 3553 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3554 spin_unlock(&last_ptr->refill_lock); 3555 return -ENOENT; 3556 } 3557 3558 aligned_cluster = max_t(u64, 3559 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3560 bg->full_stripe_len); 3561 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3562 ffe_ctl->num_bytes, aligned_cluster); 3563 if (ret == 0) { 3564 /* Now pull our allocation out of this cluster */ 3565 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3566 ffe_ctl->num_bytes, ffe_ctl->search_start, 3567 &ffe_ctl->max_extent_size); 3568 if (offset) { 3569 /* We found one, proceed */ 3570 spin_unlock(&last_ptr->refill_lock); 3571 trace_btrfs_reserve_extent_cluster(bg, 3572 ffe_ctl->search_start, 3573 ffe_ctl->num_bytes); 3574 ffe_ctl->found_offset = offset; 3575 return 0; 3576 } 3577 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3578 !ffe_ctl->retry_clustered) { 3579 spin_unlock(&last_ptr->refill_lock); 3580 3581 ffe_ctl->retry_clustered = true; 3582 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3583 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3584 return -EAGAIN; 3585 } 3586 /* 3587 * At this point we either didn't find a cluster or we weren't able to 3588 * allocate a block from our cluster. Free the cluster we've been 3589 * trying to use, and go to the next block group. 3590 */ 3591 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3592 spin_unlock(&last_ptr->refill_lock); 3593 return 1; 3594 } 3595 3596 /* 3597 * Return >0 to inform caller that we find nothing 3598 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3599 * Return -EAGAIN to inform caller that we need to re-search this block group 3600 */ 3601 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3602 struct btrfs_free_cluster *last_ptr, 3603 struct find_free_extent_ctl *ffe_ctl) 3604 { 3605 u64 offset; 3606 3607 /* 3608 * We are doing an unclustered allocation, set the fragmented flag so 3609 * we don't bother trying to setup a cluster again until we get more 3610 * space. 3611 */ 3612 if (unlikely(last_ptr)) { 3613 spin_lock(&last_ptr->lock); 3614 last_ptr->fragmented = 1; 3615 spin_unlock(&last_ptr->lock); 3616 } 3617 if (ffe_ctl->cached) { 3618 struct btrfs_free_space_ctl *free_space_ctl; 3619 3620 free_space_ctl = bg->free_space_ctl; 3621 spin_lock(&free_space_ctl->tree_lock); 3622 if (free_space_ctl->free_space < 3623 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3624 ffe_ctl->empty_size) { 3625 ffe_ctl->total_free_space = max_t(u64, 3626 ffe_ctl->total_free_space, 3627 free_space_ctl->free_space); 3628 spin_unlock(&free_space_ctl->tree_lock); 3629 return 1; 3630 } 3631 spin_unlock(&free_space_ctl->tree_lock); 3632 } 3633 3634 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3635 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3636 &ffe_ctl->max_extent_size); 3637 3638 /* 3639 * If we didn't find a chunk, and we haven't failed on this block group 3640 * before, and this block group is in the middle of caching and we are 3641 * ok with waiting, then go ahead and wait for progress to be made, and 3642 * set @retry_unclustered to true. 3643 * 3644 * If @retry_unclustered is true then we've already waited on this 3645 * block group once and should move on to the next block group. 3646 */ 3647 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3648 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3649 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3650 ffe_ctl->empty_size); 3651 ffe_ctl->retry_unclustered = true; 3652 return -EAGAIN; 3653 } else if (!offset) { 3654 return 1; 3655 } 3656 ffe_ctl->found_offset = offset; 3657 return 0; 3658 } 3659 3660 /* 3661 * Return >0 means caller needs to re-search for free extent 3662 * Return 0 means we have the needed free extent. 3663 * Return <0 means we failed to locate any free extent. 3664 */ 3665 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3666 struct btrfs_free_cluster *last_ptr, 3667 struct btrfs_key *ins, 3668 struct find_free_extent_ctl *ffe_ctl, 3669 int full_search, bool use_cluster) 3670 { 3671 struct btrfs_root *root = fs_info->extent_root; 3672 int ret; 3673 3674 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3675 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3676 ffe_ctl->orig_have_caching_bg = true; 3677 3678 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3679 ffe_ctl->have_caching_bg) 3680 return 1; 3681 3682 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3683 return 1; 3684 3685 if (ins->objectid) { 3686 if (!use_cluster && last_ptr) { 3687 spin_lock(&last_ptr->lock); 3688 last_ptr->window_start = ins->objectid; 3689 spin_unlock(&last_ptr->lock); 3690 } 3691 return 0; 3692 } 3693 3694 /* 3695 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3696 * caching kthreads as we move along 3697 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3698 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3699 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3700 * again 3701 */ 3702 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3703 ffe_ctl->index = 0; 3704 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3705 /* 3706 * We want to skip the LOOP_CACHING_WAIT step if we 3707 * don't have any uncached bgs and we've already done a 3708 * full search through. 3709 */ 3710 if (ffe_ctl->orig_have_caching_bg || !full_search) 3711 ffe_ctl->loop = LOOP_CACHING_WAIT; 3712 else 3713 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3714 } else { 3715 ffe_ctl->loop++; 3716 } 3717 3718 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3719 struct btrfs_trans_handle *trans; 3720 int exist = 0; 3721 3722 trans = current->journal_info; 3723 if (trans) 3724 exist = 1; 3725 else 3726 trans = btrfs_join_transaction(root); 3727 3728 if (IS_ERR(trans)) { 3729 ret = PTR_ERR(trans); 3730 return ret; 3731 } 3732 3733 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3734 CHUNK_ALLOC_FORCE); 3735 3736 /* 3737 * If we can't allocate a new chunk we've already looped 3738 * through at least once, move on to the NO_EMPTY_SIZE 3739 * case. 3740 */ 3741 if (ret == -ENOSPC) 3742 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3743 3744 /* Do not bail out on ENOSPC since we can do more. */ 3745 if (ret < 0 && ret != -ENOSPC) 3746 btrfs_abort_transaction(trans, ret); 3747 else 3748 ret = 0; 3749 if (!exist) 3750 btrfs_end_transaction(trans); 3751 if (ret) 3752 return ret; 3753 } 3754 3755 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3756 /* 3757 * Don't loop again if we already have no empty_size and 3758 * no empty_cluster. 3759 */ 3760 if (ffe_ctl->empty_size == 0 && 3761 ffe_ctl->empty_cluster == 0) 3762 return -ENOSPC; 3763 ffe_ctl->empty_size = 0; 3764 ffe_ctl->empty_cluster = 0; 3765 } 3766 return 1; 3767 } 3768 return -ENOSPC; 3769 } 3770 3771 /* 3772 * walks the btree of allocated extents and find a hole of a given size. 3773 * The key ins is changed to record the hole: 3774 * ins->objectid == start position 3775 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3776 * ins->offset == the size of the hole. 3777 * Any available blocks before search_start are skipped. 3778 * 3779 * If there is no suitable free space, we will record the max size of 3780 * the free space extent currently. 3781 * 3782 * The overall logic and call chain: 3783 * 3784 * find_free_extent() 3785 * |- Iterate through all block groups 3786 * | |- Get a valid block group 3787 * | |- Try to do clustered allocation in that block group 3788 * | |- Try to do unclustered allocation in that block group 3789 * | |- Check if the result is valid 3790 * | | |- If valid, then exit 3791 * | |- Jump to next block group 3792 * | 3793 * |- Push harder to find free extents 3794 * |- If not found, re-iterate all block groups 3795 */ 3796 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3797 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3798 u64 hint_byte, struct btrfs_key *ins, 3799 u64 flags, int delalloc) 3800 { 3801 int ret = 0; 3802 struct btrfs_free_cluster *last_ptr = NULL; 3803 struct btrfs_block_group *block_group = NULL; 3804 struct find_free_extent_ctl ffe_ctl = {0}; 3805 struct btrfs_space_info *space_info; 3806 bool use_cluster = true; 3807 bool full_search = false; 3808 3809 WARN_ON(num_bytes < fs_info->sectorsize); 3810 3811 ffe_ctl.ram_bytes = ram_bytes; 3812 ffe_ctl.num_bytes = num_bytes; 3813 ffe_ctl.empty_size = empty_size; 3814 ffe_ctl.flags = flags; 3815 ffe_ctl.search_start = 0; 3816 ffe_ctl.retry_clustered = false; 3817 ffe_ctl.retry_unclustered = false; 3818 ffe_ctl.delalloc = delalloc; 3819 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3820 ffe_ctl.have_caching_bg = false; 3821 ffe_ctl.orig_have_caching_bg = false; 3822 ffe_ctl.found_offset = 0; 3823 3824 ins->type = BTRFS_EXTENT_ITEM_KEY; 3825 ins->objectid = 0; 3826 ins->offset = 0; 3827 3828 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3829 3830 space_info = btrfs_find_space_info(fs_info, flags); 3831 if (!space_info) { 3832 btrfs_err(fs_info, "No space info for %llu", flags); 3833 return -ENOSPC; 3834 } 3835 3836 /* 3837 * If our free space is heavily fragmented we may not be able to make 3838 * big contiguous allocations, so instead of doing the expensive search 3839 * for free space, simply return ENOSPC with our max_extent_size so we 3840 * can go ahead and search for a more manageable chunk. 3841 * 3842 * If our max_extent_size is large enough for our allocation simply 3843 * disable clustering since we will likely not be able to find enough 3844 * space to create a cluster and induce latency trying. 3845 */ 3846 if (unlikely(space_info->max_extent_size)) { 3847 spin_lock(&space_info->lock); 3848 if (space_info->max_extent_size && 3849 num_bytes > space_info->max_extent_size) { 3850 ins->offset = space_info->max_extent_size; 3851 spin_unlock(&space_info->lock); 3852 return -ENOSPC; 3853 } else if (space_info->max_extent_size) { 3854 use_cluster = false; 3855 } 3856 spin_unlock(&space_info->lock); 3857 } 3858 3859 last_ptr = fetch_cluster_info(fs_info, space_info, 3860 &ffe_ctl.empty_cluster); 3861 if (last_ptr) { 3862 spin_lock(&last_ptr->lock); 3863 if (last_ptr->block_group) 3864 hint_byte = last_ptr->window_start; 3865 if (last_ptr->fragmented) { 3866 /* 3867 * We still set window_start so we can keep track of the 3868 * last place we found an allocation to try and save 3869 * some time. 3870 */ 3871 hint_byte = last_ptr->window_start; 3872 use_cluster = false; 3873 } 3874 spin_unlock(&last_ptr->lock); 3875 } 3876 3877 ffe_ctl.search_start = max(ffe_ctl.search_start, 3878 first_logical_byte(fs_info, 0)); 3879 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte); 3880 if (ffe_ctl.search_start == hint_byte) { 3881 block_group = btrfs_lookup_block_group(fs_info, 3882 ffe_ctl.search_start); 3883 /* 3884 * we don't want to use the block group if it doesn't match our 3885 * allocation bits, or if its not cached. 3886 * 3887 * However if we are re-searching with an ideal block group 3888 * picked out then we don't care that the block group is cached. 3889 */ 3890 if (block_group && block_group_bits(block_group, flags) && 3891 block_group->cached != BTRFS_CACHE_NO) { 3892 down_read(&space_info->groups_sem); 3893 if (list_empty(&block_group->list) || 3894 block_group->ro) { 3895 /* 3896 * someone is removing this block group, 3897 * we can't jump into the have_block_group 3898 * target because our list pointers are not 3899 * valid 3900 */ 3901 btrfs_put_block_group(block_group); 3902 up_read(&space_info->groups_sem); 3903 } else { 3904 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 3905 block_group->flags); 3906 btrfs_lock_block_group(block_group, delalloc); 3907 goto have_block_group; 3908 } 3909 } else if (block_group) { 3910 btrfs_put_block_group(block_group); 3911 } 3912 } 3913 search: 3914 ffe_ctl.have_caching_bg = false; 3915 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 3916 ffe_ctl.index == 0) 3917 full_search = true; 3918 down_read(&space_info->groups_sem); 3919 list_for_each_entry(block_group, 3920 &space_info->block_groups[ffe_ctl.index], list) { 3921 /* If the block group is read-only, we can skip it entirely. */ 3922 if (unlikely(block_group->ro)) 3923 continue; 3924 3925 btrfs_grab_block_group(block_group, delalloc); 3926 ffe_ctl.search_start = block_group->start; 3927 3928 /* 3929 * this can happen if we end up cycling through all the 3930 * raid types, but we want to make sure we only allocate 3931 * for the proper type. 3932 */ 3933 if (!block_group_bits(block_group, flags)) { 3934 u64 extra = BTRFS_BLOCK_GROUP_DUP | 3935 BTRFS_BLOCK_GROUP_RAID1_MASK | 3936 BTRFS_BLOCK_GROUP_RAID56_MASK | 3937 BTRFS_BLOCK_GROUP_RAID10; 3938 3939 /* 3940 * if they asked for extra copies and this block group 3941 * doesn't provide them, bail. This does allow us to 3942 * fill raid0 from raid1. 3943 */ 3944 if ((flags & extra) && !(block_group->flags & extra)) 3945 goto loop; 3946 3947 /* 3948 * This block group has different flags than we want. 3949 * It's possible that we have MIXED_GROUP flag but no 3950 * block group is mixed. Just skip such block group. 3951 */ 3952 btrfs_release_block_group(block_group, delalloc); 3953 continue; 3954 } 3955 3956 have_block_group: 3957 ffe_ctl.cached = btrfs_block_group_done(block_group); 3958 if (unlikely(!ffe_ctl.cached)) { 3959 ffe_ctl.have_caching_bg = true; 3960 ret = btrfs_cache_block_group(block_group, 0); 3961 BUG_ON(ret < 0); 3962 ret = 0; 3963 } 3964 3965 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 3966 goto loop; 3967 3968 /* 3969 * Ok we want to try and use the cluster allocator, so 3970 * lets look there 3971 */ 3972 if (last_ptr && use_cluster) { 3973 struct btrfs_block_group *cluster_bg = NULL; 3974 3975 ret = find_free_extent_clustered(block_group, last_ptr, 3976 &ffe_ctl, &cluster_bg); 3977 3978 if (ret == 0) { 3979 if (cluster_bg && cluster_bg != block_group) { 3980 btrfs_release_block_group(block_group, 3981 delalloc); 3982 block_group = cluster_bg; 3983 } 3984 goto checks; 3985 } else if (ret == -EAGAIN) { 3986 goto have_block_group; 3987 } else if (ret > 0) { 3988 goto loop; 3989 } 3990 /* ret == -ENOENT case falls through */ 3991 } 3992 3993 ret = find_free_extent_unclustered(block_group, last_ptr, 3994 &ffe_ctl); 3995 if (ret == -EAGAIN) 3996 goto have_block_group; 3997 else if (ret > 0) 3998 goto loop; 3999 /* ret == 0 case falls through */ 4000 checks: 4001 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4002 fs_info->stripesize); 4003 4004 /* move on to the next group */ 4005 if (ffe_ctl.search_start + num_bytes > 4006 block_group->start + block_group->length) { 4007 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4008 num_bytes); 4009 goto loop; 4010 } 4011 4012 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4013 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4014 ffe_ctl.search_start - ffe_ctl.found_offset); 4015 4016 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4017 num_bytes, delalloc); 4018 if (ret == -EAGAIN) { 4019 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4020 num_bytes); 4021 goto loop; 4022 } 4023 btrfs_inc_block_group_reservations(block_group); 4024 4025 /* we are all good, lets return */ 4026 ins->objectid = ffe_ctl.search_start; 4027 ins->offset = num_bytes; 4028 4029 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4030 num_bytes); 4031 btrfs_release_block_group(block_group, delalloc); 4032 break; 4033 loop: 4034 ffe_ctl.retry_clustered = false; 4035 ffe_ctl.retry_unclustered = false; 4036 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4037 ffe_ctl.index); 4038 btrfs_release_block_group(block_group, delalloc); 4039 cond_resched(); 4040 } 4041 up_read(&space_info->groups_sem); 4042 4043 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl, 4044 full_search, use_cluster); 4045 if (ret > 0) 4046 goto search; 4047 4048 if (ret == -ENOSPC) { 4049 /* 4050 * Use ffe_ctl->total_free_space as fallback if we can't find 4051 * any contiguous hole. 4052 */ 4053 if (!ffe_ctl.max_extent_size) 4054 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4055 spin_lock(&space_info->lock); 4056 space_info->max_extent_size = ffe_ctl.max_extent_size; 4057 spin_unlock(&space_info->lock); 4058 ins->offset = ffe_ctl.max_extent_size; 4059 } 4060 return ret; 4061 } 4062 4063 /* 4064 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4065 * hole that is at least as big as @num_bytes. 4066 * 4067 * @root - The root that will contain this extent 4068 * 4069 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4070 * is used for accounting purposes. This value differs 4071 * from @num_bytes only in the case of compressed extents. 4072 * 4073 * @num_bytes - Number of bytes to allocate on-disk. 4074 * 4075 * @min_alloc_size - Indicates the minimum amount of space that the 4076 * allocator should try to satisfy. In some cases 4077 * @num_bytes may be larger than what is required and if 4078 * the filesystem is fragmented then allocation fails. 4079 * However, the presence of @min_alloc_size gives a 4080 * chance to try and satisfy the smaller allocation. 4081 * 4082 * @empty_size - A hint that you plan on doing more COW. This is the 4083 * size in bytes the allocator should try to find free 4084 * next to the block it returns. This is just a hint and 4085 * may be ignored by the allocator. 4086 * 4087 * @hint_byte - Hint to the allocator to start searching above the byte 4088 * address passed. It might be ignored. 4089 * 4090 * @ins - This key is modified to record the found hole. It will 4091 * have the following values: 4092 * ins->objectid == start position 4093 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4094 * ins->offset == the size of the hole. 4095 * 4096 * @is_data - Boolean flag indicating whether an extent is 4097 * allocated for data (true) or metadata (false) 4098 * 4099 * @delalloc - Boolean flag indicating whether this allocation is for 4100 * delalloc or not. If 'true' data_rwsem of block groups 4101 * is going to be acquired. 4102 * 4103 * 4104 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4105 * case -ENOSPC is returned then @ins->offset will contain the size of the 4106 * largest available hole the allocator managed to find. 4107 */ 4108 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4109 u64 num_bytes, u64 min_alloc_size, 4110 u64 empty_size, u64 hint_byte, 4111 struct btrfs_key *ins, int is_data, int delalloc) 4112 { 4113 struct btrfs_fs_info *fs_info = root->fs_info; 4114 bool final_tried = num_bytes == min_alloc_size; 4115 u64 flags; 4116 int ret; 4117 4118 flags = get_alloc_profile_by_root(root, is_data); 4119 again: 4120 WARN_ON(num_bytes < fs_info->sectorsize); 4121 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4122 hint_byte, ins, flags, delalloc); 4123 if (!ret && !is_data) { 4124 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4125 } else if (ret == -ENOSPC) { 4126 if (!final_tried && ins->offset) { 4127 num_bytes = min(num_bytes >> 1, ins->offset); 4128 num_bytes = round_down(num_bytes, 4129 fs_info->sectorsize); 4130 num_bytes = max(num_bytes, min_alloc_size); 4131 ram_bytes = num_bytes; 4132 if (num_bytes == min_alloc_size) 4133 final_tried = true; 4134 goto again; 4135 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4136 struct btrfs_space_info *sinfo; 4137 4138 sinfo = btrfs_find_space_info(fs_info, flags); 4139 btrfs_err(fs_info, 4140 "allocation failed flags %llu, wanted %llu", 4141 flags, num_bytes); 4142 if (sinfo) 4143 btrfs_dump_space_info(fs_info, sinfo, 4144 num_bytes, 1); 4145 } 4146 } 4147 4148 return ret; 4149 } 4150 4151 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4152 u64 start, u64 len, 4153 int pin, int delalloc) 4154 { 4155 struct btrfs_block_group *cache; 4156 int ret = 0; 4157 4158 cache = btrfs_lookup_block_group(fs_info, start); 4159 if (!cache) { 4160 btrfs_err(fs_info, "Unable to find block group for %llu", 4161 start); 4162 return -ENOSPC; 4163 } 4164 4165 if (pin) 4166 pin_down_extent(cache, start, len, 1); 4167 else { 4168 if (btrfs_test_opt(fs_info, DISCARD)) 4169 ret = btrfs_discard_extent(fs_info, start, len, NULL); 4170 btrfs_add_free_space(cache, start, len); 4171 btrfs_free_reserved_bytes(cache, len, delalloc); 4172 trace_btrfs_reserved_extent_free(fs_info, start, len); 4173 } 4174 4175 btrfs_put_block_group(cache); 4176 return ret; 4177 } 4178 4179 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4180 u64 start, u64 len, int delalloc) 4181 { 4182 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 4183 } 4184 4185 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 4186 u64 start, u64 len) 4187 { 4188 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 4189 } 4190 4191 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4192 u64 parent, u64 root_objectid, 4193 u64 flags, u64 owner, u64 offset, 4194 struct btrfs_key *ins, int ref_mod) 4195 { 4196 struct btrfs_fs_info *fs_info = trans->fs_info; 4197 int ret; 4198 struct btrfs_extent_item *extent_item; 4199 struct btrfs_extent_inline_ref *iref; 4200 struct btrfs_path *path; 4201 struct extent_buffer *leaf; 4202 int type; 4203 u32 size; 4204 4205 if (parent > 0) 4206 type = BTRFS_SHARED_DATA_REF_KEY; 4207 else 4208 type = BTRFS_EXTENT_DATA_REF_KEY; 4209 4210 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4211 4212 path = btrfs_alloc_path(); 4213 if (!path) 4214 return -ENOMEM; 4215 4216 path->leave_spinning = 1; 4217 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4218 ins, size); 4219 if (ret) { 4220 btrfs_free_path(path); 4221 return ret; 4222 } 4223 4224 leaf = path->nodes[0]; 4225 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4226 struct btrfs_extent_item); 4227 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4228 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4229 btrfs_set_extent_flags(leaf, extent_item, 4230 flags | BTRFS_EXTENT_FLAG_DATA); 4231 4232 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4233 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4234 if (parent > 0) { 4235 struct btrfs_shared_data_ref *ref; 4236 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4237 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4238 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4239 } else { 4240 struct btrfs_extent_data_ref *ref; 4241 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4242 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4243 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4244 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4245 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4246 } 4247 4248 btrfs_mark_buffer_dirty(path->nodes[0]); 4249 btrfs_free_path(path); 4250 4251 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4252 if (ret) 4253 return ret; 4254 4255 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4256 if (ret) { /* -ENOENT, logic error */ 4257 btrfs_err(fs_info, "update block group failed for %llu %llu", 4258 ins->objectid, ins->offset); 4259 BUG(); 4260 } 4261 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4262 return ret; 4263 } 4264 4265 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4266 struct btrfs_delayed_ref_node *node, 4267 struct btrfs_delayed_extent_op *extent_op) 4268 { 4269 struct btrfs_fs_info *fs_info = trans->fs_info; 4270 int ret; 4271 struct btrfs_extent_item *extent_item; 4272 struct btrfs_key extent_key; 4273 struct btrfs_tree_block_info *block_info; 4274 struct btrfs_extent_inline_ref *iref; 4275 struct btrfs_path *path; 4276 struct extent_buffer *leaf; 4277 struct btrfs_delayed_tree_ref *ref; 4278 u32 size = sizeof(*extent_item) + sizeof(*iref); 4279 u64 num_bytes; 4280 u64 flags = extent_op->flags_to_set; 4281 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4282 4283 ref = btrfs_delayed_node_to_tree_ref(node); 4284 4285 extent_key.objectid = node->bytenr; 4286 if (skinny_metadata) { 4287 extent_key.offset = ref->level; 4288 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4289 num_bytes = fs_info->nodesize; 4290 } else { 4291 extent_key.offset = node->num_bytes; 4292 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4293 size += sizeof(*block_info); 4294 num_bytes = node->num_bytes; 4295 } 4296 4297 path = btrfs_alloc_path(); 4298 if (!path) 4299 return -ENOMEM; 4300 4301 path->leave_spinning = 1; 4302 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4303 &extent_key, size); 4304 if (ret) { 4305 btrfs_free_path(path); 4306 return ret; 4307 } 4308 4309 leaf = path->nodes[0]; 4310 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4311 struct btrfs_extent_item); 4312 btrfs_set_extent_refs(leaf, extent_item, 1); 4313 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4314 btrfs_set_extent_flags(leaf, extent_item, 4315 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4316 4317 if (skinny_metadata) { 4318 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4319 } else { 4320 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4321 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4322 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4323 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4324 } 4325 4326 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4327 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4328 btrfs_set_extent_inline_ref_type(leaf, iref, 4329 BTRFS_SHARED_BLOCK_REF_KEY); 4330 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4331 } else { 4332 btrfs_set_extent_inline_ref_type(leaf, iref, 4333 BTRFS_TREE_BLOCK_REF_KEY); 4334 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4335 } 4336 4337 btrfs_mark_buffer_dirty(leaf); 4338 btrfs_free_path(path); 4339 4340 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4341 num_bytes); 4342 if (ret) 4343 return ret; 4344 4345 ret = btrfs_update_block_group(trans, extent_key.objectid, 4346 fs_info->nodesize, 1); 4347 if (ret) { /* -ENOENT, logic error */ 4348 btrfs_err(fs_info, "update block group failed for %llu %llu", 4349 extent_key.objectid, extent_key.offset); 4350 BUG(); 4351 } 4352 4353 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4354 fs_info->nodesize); 4355 return ret; 4356 } 4357 4358 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4359 struct btrfs_root *root, u64 owner, 4360 u64 offset, u64 ram_bytes, 4361 struct btrfs_key *ins) 4362 { 4363 struct btrfs_ref generic_ref = { 0 }; 4364 int ret; 4365 4366 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4367 4368 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4369 ins->objectid, ins->offset, 0); 4370 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4371 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4372 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4373 ram_bytes, NULL, NULL); 4374 return ret; 4375 } 4376 4377 /* 4378 * this is used by the tree logging recovery code. It records that 4379 * an extent has been allocated and makes sure to clear the free 4380 * space cache bits as well 4381 */ 4382 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4383 u64 root_objectid, u64 owner, u64 offset, 4384 struct btrfs_key *ins) 4385 { 4386 struct btrfs_fs_info *fs_info = trans->fs_info; 4387 int ret; 4388 struct btrfs_block_group *block_group; 4389 struct btrfs_space_info *space_info; 4390 4391 /* 4392 * Mixed block groups will exclude before processing the log so we only 4393 * need to do the exclude dance if this fs isn't mixed. 4394 */ 4395 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4396 ret = __exclude_logged_extent(fs_info, ins->objectid, 4397 ins->offset); 4398 if (ret) 4399 return ret; 4400 } 4401 4402 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4403 if (!block_group) 4404 return -EINVAL; 4405 4406 space_info = block_group->space_info; 4407 spin_lock(&space_info->lock); 4408 spin_lock(&block_group->lock); 4409 space_info->bytes_reserved += ins->offset; 4410 block_group->reserved += ins->offset; 4411 spin_unlock(&block_group->lock); 4412 spin_unlock(&space_info->lock); 4413 4414 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4415 offset, ins, 1); 4416 btrfs_put_block_group(block_group); 4417 return ret; 4418 } 4419 4420 static struct extent_buffer * 4421 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4422 u64 bytenr, int level, u64 owner) 4423 { 4424 struct btrfs_fs_info *fs_info = root->fs_info; 4425 struct extent_buffer *buf; 4426 4427 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4428 if (IS_ERR(buf)) 4429 return buf; 4430 4431 /* 4432 * Extra safety check in case the extent tree is corrupted and extent 4433 * allocator chooses to use a tree block which is already used and 4434 * locked. 4435 */ 4436 if (buf->lock_owner == current->pid) { 4437 btrfs_err_rl(fs_info, 4438 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4439 buf->start, btrfs_header_owner(buf), current->pid); 4440 free_extent_buffer(buf); 4441 return ERR_PTR(-EUCLEAN); 4442 } 4443 4444 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 4445 btrfs_tree_lock(buf); 4446 btrfs_clean_tree_block(buf); 4447 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4448 4449 btrfs_set_lock_blocking_write(buf); 4450 set_extent_buffer_uptodate(buf); 4451 4452 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4453 btrfs_set_header_level(buf, level); 4454 btrfs_set_header_bytenr(buf, buf->start); 4455 btrfs_set_header_generation(buf, trans->transid); 4456 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4457 btrfs_set_header_owner(buf, owner); 4458 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4459 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4460 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4461 buf->log_index = root->log_transid % 2; 4462 /* 4463 * we allow two log transactions at a time, use different 4464 * EXTENT bit to differentiate dirty pages. 4465 */ 4466 if (buf->log_index == 0) 4467 set_extent_dirty(&root->dirty_log_pages, buf->start, 4468 buf->start + buf->len - 1, GFP_NOFS); 4469 else 4470 set_extent_new(&root->dirty_log_pages, buf->start, 4471 buf->start + buf->len - 1); 4472 } else { 4473 buf->log_index = -1; 4474 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4475 buf->start + buf->len - 1, GFP_NOFS); 4476 } 4477 trans->dirty = true; 4478 /* this returns a buffer locked for blocking */ 4479 return buf; 4480 } 4481 4482 /* 4483 * finds a free extent and does all the dirty work required for allocation 4484 * returns the tree buffer or an ERR_PTR on error. 4485 */ 4486 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4487 struct btrfs_root *root, 4488 u64 parent, u64 root_objectid, 4489 const struct btrfs_disk_key *key, 4490 int level, u64 hint, 4491 u64 empty_size) 4492 { 4493 struct btrfs_fs_info *fs_info = root->fs_info; 4494 struct btrfs_key ins; 4495 struct btrfs_block_rsv *block_rsv; 4496 struct extent_buffer *buf; 4497 struct btrfs_delayed_extent_op *extent_op; 4498 struct btrfs_ref generic_ref = { 0 }; 4499 u64 flags = 0; 4500 int ret; 4501 u32 blocksize = fs_info->nodesize; 4502 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4503 4504 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4505 if (btrfs_is_testing(fs_info)) { 4506 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4507 level, root_objectid); 4508 if (!IS_ERR(buf)) 4509 root->alloc_bytenr += blocksize; 4510 return buf; 4511 } 4512 #endif 4513 4514 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4515 if (IS_ERR(block_rsv)) 4516 return ERR_CAST(block_rsv); 4517 4518 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4519 empty_size, hint, &ins, 0, 0); 4520 if (ret) 4521 goto out_unuse; 4522 4523 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4524 root_objectid); 4525 if (IS_ERR(buf)) { 4526 ret = PTR_ERR(buf); 4527 goto out_free_reserved; 4528 } 4529 4530 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4531 if (parent == 0) 4532 parent = ins.objectid; 4533 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4534 } else 4535 BUG_ON(parent > 0); 4536 4537 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4538 extent_op = btrfs_alloc_delayed_extent_op(); 4539 if (!extent_op) { 4540 ret = -ENOMEM; 4541 goto out_free_buf; 4542 } 4543 if (key) 4544 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4545 else 4546 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4547 extent_op->flags_to_set = flags; 4548 extent_op->update_key = skinny_metadata ? false : true; 4549 extent_op->update_flags = true; 4550 extent_op->is_data = false; 4551 extent_op->level = level; 4552 4553 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4554 ins.objectid, ins.offset, parent); 4555 generic_ref.real_root = root->root_key.objectid; 4556 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4557 btrfs_ref_tree_mod(fs_info, &generic_ref); 4558 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4559 extent_op, NULL, NULL); 4560 if (ret) 4561 goto out_free_delayed; 4562 } 4563 return buf; 4564 4565 out_free_delayed: 4566 btrfs_free_delayed_extent_op(extent_op); 4567 out_free_buf: 4568 free_extent_buffer(buf); 4569 out_free_reserved: 4570 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4571 out_unuse: 4572 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4573 return ERR_PTR(ret); 4574 } 4575 4576 struct walk_control { 4577 u64 refs[BTRFS_MAX_LEVEL]; 4578 u64 flags[BTRFS_MAX_LEVEL]; 4579 struct btrfs_key update_progress; 4580 struct btrfs_key drop_progress; 4581 int drop_level; 4582 int stage; 4583 int level; 4584 int shared_level; 4585 int update_ref; 4586 int keep_locks; 4587 int reada_slot; 4588 int reada_count; 4589 int restarted; 4590 }; 4591 4592 #define DROP_REFERENCE 1 4593 #define UPDATE_BACKREF 2 4594 4595 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4596 struct btrfs_root *root, 4597 struct walk_control *wc, 4598 struct btrfs_path *path) 4599 { 4600 struct btrfs_fs_info *fs_info = root->fs_info; 4601 u64 bytenr; 4602 u64 generation; 4603 u64 refs; 4604 u64 flags; 4605 u32 nritems; 4606 struct btrfs_key key; 4607 struct extent_buffer *eb; 4608 int ret; 4609 int slot; 4610 int nread = 0; 4611 4612 if (path->slots[wc->level] < wc->reada_slot) { 4613 wc->reada_count = wc->reada_count * 2 / 3; 4614 wc->reada_count = max(wc->reada_count, 2); 4615 } else { 4616 wc->reada_count = wc->reada_count * 3 / 2; 4617 wc->reada_count = min_t(int, wc->reada_count, 4618 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4619 } 4620 4621 eb = path->nodes[wc->level]; 4622 nritems = btrfs_header_nritems(eb); 4623 4624 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4625 if (nread >= wc->reada_count) 4626 break; 4627 4628 cond_resched(); 4629 bytenr = btrfs_node_blockptr(eb, slot); 4630 generation = btrfs_node_ptr_generation(eb, slot); 4631 4632 if (slot == path->slots[wc->level]) 4633 goto reada; 4634 4635 if (wc->stage == UPDATE_BACKREF && 4636 generation <= root->root_key.offset) 4637 continue; 4638 4639 /* We don't lock the tree block, it's OK to be racy here */ 4640 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4641 wc->level - 1, 1, &refs, 4642 &flags); 4643 /* We don't care about errors in readahead. */ 4644 if (ret < 0) 4645 continue; 4646 BUG_ON(refs == 0); 4647 4648 if (wc->stage == DROP_REFERENCE) { 4649 if (refs == 1) 4650 goto reada; 4651 4652 if (wc->level == 1 && 4653 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4654 continue; 4655 if (!wc->update_ref || 4656 generation <= root->root_key.offset) 4657 continue; 4658 btrfs_node_key_to_cpu(eb, &key, slot); 4659 ret = btrfs_comp_cpu_keys(&key, 4660 &wc->update_progress); 4661 if (ret < 0) 4662 continue; 4663 } else { 4664 if (wc->level == 1 && 4665 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4666 continue; 4667 } 4668 reada: 4669 readahead_tree_block(fs_info, bytenr); 4670 nread++; 4671 } 4672 wc->reada_slot = slot; 4673 } 4674 4675 /* 4676 * helper to process tree block while walking down the tree. 4677 * 4678 * when wc->stage == UPDATE_BACKREF, this function updates 4679 * back refs for pointers in the block. 4680 * 4681 * NOTE: return value 1 means we should stop walking down. 4682 */ 4683 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4684 struct btrfs_root *root, 4685 struct btrfs_path *path, 4686 struct walk_control *wc, int lookup_info) 4687 { 4688 struct btrfs_fs_info *fs_info = root->fs_info; 4689 int level = wc->level; 4690 struct extent_buffer *eb = path->nodes[level]; 4691 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4692 int ret; 4693 4694 if (wc->stage == UPDATE_BACKREF && 4695 btrfs_header_owner(eb) != root->root_key.objectid) 4696 return 1; 4697 4698 /* 4699 * when reference count of tree block is 1, it won't increase 4700 * again. once full backref flag is set, we never clear it. 4701 */ 4702 if (lookup_info && 4703 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4704 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4705 BUG_ON(!path->locks[level]); 4706 ret = btrfs_lookup_extent_info(trans, fs_info, 4707 eb->start, level, 1, 4708 &wc->refs[level], 4709 &wc->flags[level]); 4710 BUG_ON(ret == -ENOMEM); 4711 if (ret) 4712 return ret; 4713 BUG_ON(wc->refs[level] == 0); 4714 } 4715 4716 if (wc->stage == DROP_REFERENCE) { 4717 if (wc->refs[level] > 1) 4718 return 1; 4719 4720 if (path->locks[level] && !wc->keep_locks) { 4721 btrfs_tree_unlock_rw(eb, path->locks[level]); 4722 path->locks[level] = 0; 4723 } 4724 return 0; 4725 } 4726 4727 /* wc->stage == UPDATE_BACKREF */ 4728 if (!(wc->flags[level] & flag)) { 4729 BUG_ON(!path->locks[level]); 4730 ret = btrfs_inc_ref(trans, root, eb, 1); 4731 BUG_ON(ret); /* -ENOMEM */ 4732 ret = btrfs_dec_ref(trans, root, eb, 0); 4733 BUG_ON(ret); /* -ENOMEM */ 4734 ret = btrfs_set_disk_extent_flags(trans, eb->start, 4735 eb->len, flag, 4736 btrfs_header_level(eb), 0); 4737 BUG_ON(ret); /* -ENOMEM */ 4738 wc->flags[level] |= flag; 4739 } 4740 4741 /* 4742 * the block is shared by multiple trees, so it's not good to 4743 * keep the tree lock 4744 */ 4745 if (path->locks[level] && level > 0) { 4746 btrfs_tree_unlock_rw(eb, path->locks[level]); 4747 path->locks[level] = 0; 4748 } 4749 return 0; 4750 } 4751 4752 /* 4753 * This is used to verify a ref exists for this root to deal with a bug where we 4754 * would have a drop_progress key that hadn't been updated properly. 4755 */ 4756 static int check_ref_exists(struct btrfs_trans_handle *trans, 4757 struct btrfs_root *root, u64 bytenr, u64 parent, 4758 int level) 4759 { 4760 struct btrfs_path *path; 4761 struct btrfs_extent_inline_ref *iref; 4762 int ret; 4763 4764 path = btrfs_alloc_path(); 4765 if (!path) 4766 return -ENOMEM; 4767 4768 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4769 root->fs_info->nodesize, parent, 4770 root->root_key.objectid, level, 0); 4771 btrfs_free_path(path); 4772 if (ret == -ENOENT) 4773 return 0; 4774 if (ret < 0) 4775 return ret; 4776 return 1; 4777 } 4778 4779 /* 4780 * helper to process tree block pointer. 4781 * 4782 * when wc->stage == DROP_REFERENCE, this function checks 4783 * reference count of the block pointed to. if the block 4784 * is shared and we need update back refs for the subtree 4785 * rooted at the block, this function changes wc->stage to 4786 * UPDATE_BACKREF. if the block is shared and there is no 4787 * need to update back, this function drops the reference 4788 * to the block. 4789 * 4790 * NOTE: return value 1 means we should stop walking down. 4791 */ 4792 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4793 struct btrfs_root *root, 4794 struct btrfs_path *path, 4795 struct walk_control *wc, int *lookup_info) 4796 { 4797 struct btrfs_fs_info *fs_info = root->fs_info; 4798 u64 bytenr; 4799 u64 generation; 4800 u64 parent; 4801 struct btrfs_key key; 4802 struct btrfs_key first_key; 4803 struct btrfs_ref ref = { 0 }; 4804 struct extent_buffer *next; 4805 int level = wc->level; 4806 int reada = 0; 4807 int ret = 0; 4808 bool need_account = false; 4809 4810 generation = btrfs_node_ptr_generation(path->nodes[level], 4811 path->slots[level]); 4812 /* 4813 * if the lower level block was created before the snapshot 4814 * was created, we know there is no need to update back refs 4815 * for the subtree 4816 */ 4817 if (wc->stage == UPDATE_BACKREF && 4818 generation <= root->root_key.offset) { 4819 *lookup_info = 1; 4820 return 1; 4821 } 4822 4823 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4824 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4825 path->slots[level]); 4826 4827 next = find_extent_buffer(fs_info, bytenr); 4828 if (!next) { 4829 next = btrfs_find_create_tree_block(fs_info, bytenr); 4830 if (IS_ERR(next)) 4831 return PTR_ERR(next); 4832 4833 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4834 level - 1); 4835 reada = 1; 4836 } 4837 btrfs_tree_lock(next); 4838 btrfs_set_lock_blocking_write(next); 4839 4840 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4841 &wc->refs[level - 1], 4842 &wc->flags[level - 1]); 4843 if (ret < 0) 4844 goto out_unlock; 4845 4846 if (unlikely(wc->refs[level - 1] == 0)) { 4847 btrfs_err(fs_info, "Missing references."); 4848 ret = -EIO; 4849 goto out_unlock; 4850 } 4851 *lookup_info = 0; 4852 4853 if (wc->stage == DROP_REFERENCE) { 4854 if (wc->refs[level - 1] > 1) { 4855 need_account = true; 4856 if (level == 1 && 4857 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4858 goto skip; 4859 4860 if (!wc->update_ref || 4861 generation <= root->root_key.offset) 4862 goto skip; 4863 4864 btrfs_node_key_to_cpu(path->nodes[level], &key, 4865 path->slots[level]); 4866 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4867 if (ret < 0) 4868 goto skip; 4869 4870 wc->stage = UPDATE_BACKREF; 4871 wc->shared_level = level - 1; 4872 } 4873 } else { 4874 if (level == 1 && 4875 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4876 goto skip; 4877 } 4878 4879 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4880 btrfs_tree_unlock(next); 4881 free_extent_buffer(next); 4882 next = NULL; 4883 *lookup_info = 1; 4884 } 4885 4886 if (!next) { 4887 if (reada && level == 1) 4888 reada_walk_down(trans, root, wc, path); 4889 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4890 &first_key); 4891 if (IS_ERR(next)) { 4892 return PTR_ERR(next); 4893 } else if (!extent_buffer_uptodate(next)) { 4894 free_extent_buffer(next); 4895 return -EIO; 4896 } 4897 btrfs_tree_lock(next); 4898 btrfs_set_lock_blocking_write(next); 4899 } 4900 4901 level--; 4902 ASSERT(level == btrfs_header_level(next)); 4903 if (level != btrfs_header_level(next)) { 4904 btrfs_err(root->fs_info, "mismatched level"); 4905 ret = -EIO; 4906 goto out_unlock; 4907 } 4908 path->nodes[level] = next; 4909 path->slots[level] = 0; 4910 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 4911 wc->level = level; 4912 if (wc->level == 1) 4913 wc->reada_slot = 0; 4914 return 0; 4915 skip: 4916 wc->refs[level - 1] = 0; 4917 wc->flags[level - 1] = 0; 4918 if (wc->stage == DROP_REFERENCE) { 4919 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 4920 parent = path->nodes[level]->start; 4921 } else { 4922 ASSERT(root->root_key.objectid == 4923 btrfs_header_owner(path->nodes[level])); 4924 if (root->root_key.objectid != 4925 btrfs_header_owner(path->nodes[level])) { 4926 btrfs_err(root->fs_info, 4927 "mismatched block owner"); 4928 ret = -EIO; 4929 goto out_unlock; 4930 } 4931 parent = 0; 4932 } 4933 4934 /* 4935 * If we had a drop_progress we need to verify the refs are set 4936 * as expected. If we find our ref then we know that from here 4937 * on out everything should be correct, and we can clear the 4938 * ->restarted flag. 4939 */ 4940 if (wc->restarted) { 4941 ret = check_ref_exists(trans, root, bytenr, parent, 4942 level - 1); 4943 if (ret < 0) 4944 goto out_unlock; 4945 if (ret == 0) 4946 goto no_delete; 4947 ret = 0; 4948 wc->restarted = 0; 4949 } 4950 4951 /* 4952 * Reloc tree doesn't contribute to qgroup numbers, and we have 4953 * already accounted them at merge time (replace_path), 4954 * thus we could skip expensive subtree trace here. 4955 */ 4956 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 4957 need_account) { 4958 ret = btrfs_qgroup_trace_subtree(trans, next, 4959 generation, level - 1); 4960 if (ret) { 4961 btrfs_err_rl(fs_info, 4962 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 4963 ret); 4964 } 4965 } 4966 4967 /* 4968 * We need to update the next key in our walk control so we can 4969 * update the drop_progress key accordingly. We don't care if 4970 * find_next_key doesn't find a key because that means we're at 4971 * the end and are going to clean up now. 4972 */ 4973 wc->drop_level = level; 4974 find_next_key(path, level, &wc->drop_progress); 4975 4976 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 4977 fs_info->nodesize, parent); 4978 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 4979 ret = btrfs_free_extent(trans, &ref); 4980 if (ret) 4981 goto out_unlock; 4982 } 4983 no_delete: 4984 *lookup_info = 1; 4985 ret = 1; 4986 4987 out_unlock: 4988 btrfs_tree_unlock(next); 4989 free_extent_buffer(next); 4990 4991 return ret; 4992 } 4993 4994 /* 4995 * helper to process tree block while walking up the tree. 4996 * 4997 * when wc->stage == DROP_REFERENCE, this function drops 4998 * reference count on the block. 4999 * 5000 * when wc->stage == UPDATE_BACKREF, this function changes 5001 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5002 * to UPDATE_BACKREF previously while processing the block. 5003 * 5004 * NOTE: return value 1 means we should stop walking up. 5005 */ 5006 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5007 struct btrfs_root *root, 5008 struct btrfs_path *path, 5009 struct walk_control *wc) 5010 { 5011 struct btrfs_fs_info *fs_info = root->fs_info; 5012 int ret; 5013 int level = wc->level; 5014 struct extent_buffer *eb = path->nodes[level]; 5015 u64 parent = 0; 5016 5017 if (wc->stage == UPDATE_BACKREF) { 5018 BUG_ON(wc->shared_level < level); 5019 if (level < wc->shared_level) 5020 goto out; 5021 5022 ret = find_next_key(path, level + 1, &wc->update_progress); 5023 if (ret > 0) 5024 wc->update_ref = 0; 5025 5026 wc->stage = DROP_REFERENCE; 5027 wc->shared_level = -1; 5028 path->slots[level] = 0; 5029 5030 /* 5031 * check reference count again if the block isn't locked. 5032 * we should start walking down the tree again if reference 5033 * count is one. 5034 */ 5035 if (!path->locks[level]) { 5036 BUG_ON(level == 0); 5037 btrfs_tree_lock(eb); 5038 btrfs_set_lock_blocking_write(eb); 5039 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5040 5041 ret = btrfs_lookup_extent_info(trans, fs_info, 5042 eb->start, level, 1, 5043 &wc->refs[level], 5044 &wc->flags[level]); 5045 if (ret < 0) { 5046 btrfs_tree_unlock_rw(eb, path->locks[level]); 5047 path->locks[level] = 0; 5048 return ret; 5049 } 5050 BUG_ON(wc->refs[level] == 0); 5051 if (wc->refs[level] == 1) { 5052 btrfs_tree_unlock_rw(eb, path->locks[level]); 5053 path->locks[level] = 0; 5054 return 1; 5055 } 5056 } 5057 } 5058 5059 /* wc->stage == DROP_REFERENCE */ 5060 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5061 5062 if (wc->refs[level] == 1) { 5063 if (level == 0) { 5064 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5065 ret = btrfs_dec_ref(trans, root, eb, 1); 5066 else 5067 ret = btrfs_dec_ref(trans, root, eb, 0); 5068 BUG_ON(ret); /* -ENOMEM */ 5069 if (is_fstree(root->root_key.objectid)) { 5070 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5071 if (ret) { 5072 btrfs_err_rl(fs_info, 5073 "error %d accounting leaf items, quota is out of sync, rescan required", 5074 ret); 5075 } 5076 } 5077 } 5078 /* make block locked assertion in btrfs_clean_tree_block happy */ 5079 if (!path->locks[level] && 5080 btrfs_header_generation(eb) == trans->transid) { 5081 btrfs_tree_lock(eb); 5082 btrfs_set_lock_blocking_write(eb); 5083 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5084 } 5085 btrfs_clean_tree_block(eb); 5086 } 5087 5088 if (eb == root->node) { 5089 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5090 parent = eb->start; 5091 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5092 goto owner_mismatch; 5093 } else { 5094 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5095 parent = path->nodes[level + 1]->start; 5096 else if (root->root_key.objectid != 5097 btrfs_header_owner(path->nodes[level + 1])) 5098 goto owner_mismatch; 5099 } 5100 5101 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5102 out: 5103 wc->refs[level] = 0; 5104 wc->flags[level] = 0; 5105 return 0; 5106 5107 owner_mismatch: 5108 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5109 btrfs_header_owner(eb), root->root_key.objectid); 5110 return -EUCLEAN; 5111 } 5112 5113 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5114 struct btrfs_root *root, 5115 struct btrfs_path *path, 5116 struct walk_control *wc) 5117 { 5118 int level = wc->level; 5119 int lookup_info = 1; 5120 int ret; 5121 5122 while (level >= 0) { 5123 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5124 if (ret > 0) 5125 break; 5126 5127 if (level == 0) 5128 break; 5129 5130 if (path->slots[level] >= 5131 btrfs_header_nritems(path->nodes[level])) 5132 break; 5133 5134 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5135 if (ret > 0) { 5136 path->slots[level]++; 5137 continue; 5138 } else if (ret < 0) 5139 return ret; 5140 level = wc->level; 5141 } 5142 return 0; 5143 } 5144 5145 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5146 struct btrfs_root *root, 5147 struct btrfs_path *path, 5148 struct walk_control *wc, int max_level) 5149 { 5150 int level = wc->level; 5151 int ret; 5152 5153 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5154 while (level < max_level && path->nodes[level]) { 5155 wc->level = level; 5156 if (path->slots[level] + 1 < 5157 btrfs_header_nritems(path->nodes[level])) { 5158 path->slots[level]++; 5159 return 0; 5160 } else { 5161 ret = walk_up_proc(trans, root, path, wc); 5162 if (ret > 0) 5163 return 0; 5164 if (ret < 0) 5165 return ret; 5166 5167 if (path->locks[level]) { 5168 btrfs_tree_unlock_rw(path->nodes[level], 5169 path->locks[level]); 5170 path->locks[level] = 0; 5171 } 5172 free_extent_buffer(path->nodes[level]); 5173 path->nodes[level] = NULL; 5174 level++; 5175 } 5176 } 5177 return 1; 5178 } 5179 5180 /* 5181 * drop a subvolume tree. 5182 * 5183 * this function traverses the tree freeing any blocks that only 5184 * referenced by the tree. 5185 * 5186 * when a shared tree block is found. this function decreases its 5187 * reference count by one. if update_ref is true, this function 5188 * also make sure backrefs for the shared block and all lower level 5189 * blocks are properly updated. 5190 * 5191 * If called with for_reloc == 0, may exit early with -EAGAIN 5192 */ 5193 int btrfs_drop_snapshot(struct btrfs_root *root, 5194 struct btrfs_block_rsv *block_rsv, int update_ref, 5195 int for_reloc) 5196 { 5197 struct btrfs_fs_info *fs_info = root->fs_info; 5198 struct btrfs_path *path; 5199 struct btrfs_trans_handle *trans; 5200 struct btrfs_root *tree_root = fs_info->tree_root; 5201 struct btrfs_root_item *root_item = &root->root_item; 5202 struct walk_control *wc; 5203 struct btrfs_key key; 5204 int err = 0; 5205 int ret; 5206 int level; 5207 bool root_dropped = false; 5208 5209 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5210 5211 path = btrfs_alloc_path(); 5212 if (!path) { 5213 err = -ENOMEM; 5214 goto out; 5215 } 5216 5217 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5218 if (!wc) { 5219 btrfs_free_path(path); 5220 err = -ENOMEM; 5221 goto out; 5222 } 5223 5224 trans = btrfs_start_transaction(tree_root, 0); 5225 if (IS_ERR(trans)) { 5226 err = PTR_ERR(trans); 5227 goto out_free; 5228 } 5229 5230 err = btrfs_run_delayed_items(trans); 5231 if (err) 5232 goto out_end_trans; 5233 5234 if (block_rsv) 5235 trans->block_rsv = block_rsv; 5236 5237 /* 5238 * This will help us catch people modifying the fs tree while we're 5239 * dropping it. It is unsafe to mess with the fs tree while it's being 5240 * dropped as we unlock the root node and parent nodes as we walk down 5241 * the tree, assuming nothing will change. If something does change 5242 * then we'll have stale information and drop references to blocks we've 5243 * already dropped. 5244 */ 5245 set_bit(BTRFS_ROOT_DELETING, &root->state); 5246 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5247 level = btrfs_header_level(root->node); 5248 path->nodes[level] = btrfs_lock_root_node(root); 5249 btrfs_set_lock_blocking_write(path->nodes[level]); 5250 path->slots[level] = 0; 5251 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5252 memset(&wc->update_progress, 0, 5253 sizeof(wc->update_progress)); 5254 } else { 5255 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5256 memcpy(&wc->update_progress, &key, 5257 sizeof(wc->update_progress)); 5258 5259 level = root_item->drop_level; 5260 BUG_ON(level == 0); 5261 path->lowest_level = level; 5262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5263 path->lowest_level = 0; 5264 if (ret < 0) { 5265 err = ret; 5266 goto out_end_trans; 5267 } 5268 WARN_ON(ret > 0); 5269 5270 /* 5271 * unlock our path, this is safe because only this 5272 * function is allowed to delete this snapshot 5273 */ 5274 btrfs_unlock_up_safe(path, 0); 5275 5276 level = btrfs_header_level(root->node); 5277 while (1) { 5278 btrfs_tree_lock(path->nodes[level]); 5279 btrfs_set_lock_blocking_write(path->nodes[level]); 5280 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5281 5282 ret = btrfs_lookup_extent_info(trans, fs_info, 5283 path->nodes[level]->start, 5284 level, 1, &wc->refs[level], 5285 &wc->flags[level]); 5286 if (ret < 0) { 5287 err = ret; 5288 goto out_end_trans; 5289 } 5290 BUG_ON(wc->refs[level] == 0); 5291 5292 if (level == root_item->drop_level) 5293 break; 5294 5295 btrfs_tree_unlock(path->nodes[level]); 5296 path->locks[level] = 0; 5297 WARN_ON(wc->refs[level] != 1); 5298 level--; 5299 } 5300 } 5301 5302 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5303 wc->level = level; 5304 wc->shared_level = -1; 5305 wc->stage = DROP_REFERENCE; 5306 wc->update_ref = update_ref; 5307 wc->keep_locks = 0; 5308 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5309 5310 while (1) { 5311 5312 ret = walk_down_tree(trans, root, path, wc); 5313 if (ret < 0) { 5314 err = ret; 5315 break; 5316 } 5317 5318 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5319 if (ret < 0) { 5320 err = ret; 5321 break; 5322 } 5323 5324 if (ret > 0) { 5325 BUG_ON(wc->stage != DROP_REFERENCE); 5326 break; 5327 } 5328 5329 if (wc->stage == DROP_REFERENCE) { 5330 wc->drop_level = wc->level; 5331 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5332 &wc->drop_progress, 5333 path->slots[wc->drop_level]); 5334 } 5335 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5336 &wc->drop_progress); 5337 root_item->drop_level = wc->drop_level; 5338 5339 BUG_ON(wc->level == 0); 5340 if (btrfs_should_end_transaction(trans) || 5341 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5342 ret = btrfs_update_root(trans, tree_root, 5343 &root->root_key, 5344 root_item); 5345 if (ret) { 5346 btrfs_abort_transaction(trans, ret); 5347 err = ret; 5348 goto out_end_trans; 5349 } 5350 5351 btrfs_end_transaction_throttle(trans); 5352 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5353 btrfs_debug(fs_info, 5354 "drop snapshot early exit"); 5355 err = -EAGAIN; 5356 goto out_free; 5357 } 5358 5359 trans = btrfs_start_transaction(tree_root, 0); 5360 if (IS_ERR(trans)) { 5361 err = PTR_ERR(trans); 5362 goto out_free; 5363 } 5364 if (block_rsv) 5365 trans->block_rsv = block_rsv; 5366 } 5367 } 5368 btrfs_release_path(path); 5369 if (err) 5370 goto out_end_trans; 5371 5372 ret = btrfs_del_root(trans, &root->root_key); 5373 if (ret) { 5374 btrfs_abort_transaction(trans, ret); 5375 err = ret; 5376 goto out_end_trans; 5377 } 5378 5379 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5380 ret = btrfs_find_root(tree_root, &root->root_key, path, 5381 NULL, NULL); 5382 if (ret < 0) { 5383 btrfs_abort_transaction(trans, ret); 5384 err = ret; 5385 goto out_end_trans; 5386 } else if (ret > 0) { 5387 /* if we fail to delete the orphan item this time 5388 * around, it'll get picked up the next time. 5389 * 5390 * The most common failure here is just -ENOENT. 5391 */ 5392 btrfs_del_orphan_item(trans, tree_root, 5393 root->root_key.objectid); 5394 } 5395 } 5396 5397 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 5398 btrfs_add_dropped_root(trans, root); 5399 } else { 5400 free_extent_buffer(root->node); 5401 free_extent_buffer(root->commit_root); 5402 btrfs_put_fs_root(root); 5403 } 5404 root_dropped = true; 5405 out_end_trans: 5406 btrfs_end_transaction_throttle(trans); 5407 out_free: 5408 kfree(wc); 5409 btrfs_free_path(path); 5410 out: 5411 /* 5412 * So if we need to stop dropping the snapshot for whatever reason we 5413 * need to make sure to add it back to the dead root list so that we 5414 * keep trying to do the work later. This also cleans up roots if we 5415 * don't have it in the radix (like when we recover after a power fail 5416 * or unmount) so we don't leak memory. 5417 */ 5418 if (!for_reloc && !root_dropped) 5419 btrfs_add_dead_root(root); 5420 if (err && err != -EAGAIN) 5421 btrfs_handle_fs_error(fs_info, err, NULL); 5422 return err; 5423 } 5424 5425 /* 5426 * drop subtree rooted at tree block 'node'. 5427 * 5428 * NOTE: this function will unlock and release tree block 'node' 5429 * only used by relocation code 5430 */ 5431 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5432 struct btrfs_root *root, 5433 struct extent_buffer *node, 5434 struct extent_buffer *parent) 5435 { 5436 struct btrfs_fs_info *fs_info = root->fs_info; 5437 struct btrfs_path *path; 5438 struct walk_control *wc; 5439 int level; 5440 int parent_level; 5441 int ret = 0; 5442 int wret; 5443 5444 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5445 5446 path = btrfs_alloc_path(); 5447 if (!path) 5448 return -ENOMEM; 5449 5450 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5451 if (!wc) { 5452 btrfs_free_path(path); 5453 return -ENOMEM; 5454 } 5455 5456 btrfs_assert_tree_locked(parent); 5457 parent_level = btrfs_header_level(parent); 5458 atomic_inc(&parent->refs); 5459 path->nodes[parent_level] = parent; 5460 path->slots[parent_level] = btrfs_header_nritems(parent); 5461 5462 btrfs_assert_tree_locked(node); 5463 level = btrfs_header_level(node); 5464 path->nodes[level] = node; 5465 path->slots[level] = 0; 5466 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5467 5468 wc->refs[parent_level] = 1; 5469 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5470 wc->level = level; 5471 wc->shared_level = -1; 5472 wc->stage = DROP_REFERENCE; 5473 wc->update_ref = 0; 5474 wc->keep_locks = 1; 5475 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5476 5477 while (1) { 5478 wret = walk_down_tree(trans, root, path, wc); 5479 if (wret < 0) { 5480 ret = wret; 5481 break; 5482 } 5483 5484 wret = walk_up_tree(trans, root, path, wc, parent_level); 5485 if (wret < 0) 5486 ret = wret; 5487 if (wret != 0) 5488 break; 5489 } 5490 5491 kfree(wc); 5492 btrfs_free_path(path); 5493 return ret; 5494 } 5495 5496 /* 5497 * helper to account the unused space of all the readonly block group in the 5498 * space_info. takes mirrors into account. 5499 */ 5500 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5501 { 5502 struct btrfs_block_group *block_group; 5503 u64 free_bytes = 0; 5504 int factor; 5505 5506 /* It's df, we don't care if it's racy */ 5507 if (list_empty(&sinfo->ro_bgs)) 5508 return 0; 5509 5510 spin_lock(&sinfo->lock); 5511 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5512 spin_lock(&block_group->lock); 5513 5514 if (!block_group->ro) { 5515 spin_unlock(&block_group->lock); 5516 continue; 5517 } 5518 5519 factor = btrfs_bg_type_to_factor(block_group->flags); 5520 free_bytes += (block_group->length - 5521 block_group->used) * factor; 5522 5523 spin_unlock(&block_group->lock); 5524 } 5525 spin_unlock(&sinfo->lock); 5526 5527 return free_bytes; 5528 } 5529 5530 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5531 u64 start, u64 end) 5532 { 5533 return unpin_extent_range(fs_info, start, end, false); 5534 } 5535 5536 /* 5537 * It used to be that old block groups would be left around forever. 5538 * Iterating over them would be enough to trim unused space. Since we 5539 * now automatically remove them, we also need to iterate over unallocated 5540 * space. 5541 * 5542 * We don't want a transaction for this since the discard may take a 5543 * substantial amount of time. We don't require that a transaction be 5544 * running, but we do need to take a running transaction into account 5545 * to ensure that we're not discarding chunks that were released or 5546 * allocated in the current transaction. 5547 * 5548 * Holding the chunks lock will prevent other threads from allocating 5549 * or releasing chunks, but it won't prevent a running transaction 5550 * from committing and releasing the memory that the pending chunks 5551 * list head uses. For that, we need to take a reference to the 5552 * transaction and hold the commit root sem. We only need to hold 5553 * it while performing the free space search since we have already 5554 * held back allocations. 5555 */ 5556 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5557 { 5558 u64 start = SZ_1M, len = 0, end = 0; 5559 int ret; 5560 5561 *trimmed = 0; 5562 5563 /* Discard not supported = nothing to do. */ 5564 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5565 return 0; 5566 5567 /* Not writable = nothing to do. */ 5568 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5569 return 0; 5570 5571 /* No free space = nothing to do. */ 5572 if (device->total_bytes <= device->bytes_used) 5573 return 0; 5574 5575 ret = 0; 5576 5577 while (1) { 5578 struct btrfs_fs_info *fs_info = device->fs_info; 5579 u64 bytes; 5580 5581 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5582 if (ret) 5583 break; 5584 5585 find_first_clear_extent_bit(&device->alloc_state, start, 5586 &start, &end, 5587 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5588 5589 /* Ensure we skip the reserved area in the first 1M */ 5590 start = max_t(u64, start, SZ_1M); 5591 5592 /* 5593 * If find_first_clear_extent_bit find a range that spans the 5594 * end of the device it will set end to -1, in this case it's up 5595 * to the caller to trim the value to the size of the device. 5596 */ 5597 end = min(end, device->total_bytes - 1); 5598 5599 len = end - start + 1; 5600 5601 /* We didn't find any extents */ 5602 if (!len) { 5603 mutex_unlock(&fs_info->chunk_mutex); 5604 ret = 0; 5605 break; 5606 } 5607 5608 ret = btrfs_issue_discard(device->bdev, start, len, 5609 &bytes); 5610 if (!ret) 5611 set_extent_bits(&device->alloc_state, start, 5612 start + bytes - 1, 5613 CHUNK_TRIMMED); 5614 mutex_unlock(&fs_info->chunk_mutex); 5615 5616 if (ret) 5617 break; 5618 5619 start += len; 5620 *trimmed += bytes; 5621 5622 if (fatal_signal_pending(current)) { 5623 ret = -ERESTARTSYS; 5624 break; 5625 } 5626 5627 cond_resched(); 5628 } 5629 5630 return ret; 5631 } 5632 5633 /* 5634 * Trim the whole filesystem by: 5635 * 1) trimming the free space in each block group 5636 * 2) trimming the unallocated space on each device 5637 * 5638 * This will also continue trimming even if a block group or device encounters 5639 * an error. The return value will be the last error, or 0 if nothing bad 5640 * happens. 5641 */ 5642 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5643 { 5644 struct btrfs_block_group *cache = NULL; 5645 struct btrfs_device *device; 5646 struct list_head *devices; 5647 u64 group_trimmed; 5648 u64 range_end = U64_MAX; 5649 u64 start; 5650 u64 end; 5651 u64 trimmed = 0; 5652 u64 bg_failed = 0; 5653 u64 dev_failed = 0; 5654 int bg_ret = 0; 5655 int dev_ret = 0; 5656 int ret = 0; 5657 5658 /* 5659 * Check range overflow if range->len is set. 5660 * The default range->len is U64_MAX. 5661 */ 5662 if (range->len != U64_MAX && 5663 check_add_overflow(range->start, range->len, &range_end)) 5664 return -EINVAL; 5665 5666 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5667 for (; cache; cache = btrfs_next_block_group(cache)) { 5668 if (cache->start >= range_end) { 5669 btrfs_put_block_group(cache); 5670 break; 5671 } 5672 5673 start = max(range->start, cache->start); 5674 end = min(range_end, cache->start + cache->length); 5675 5676 if (end - start >= range->minlen) { 5677 if (!btrfs_block_group_done(cache)) { 5678 ret = btrfs_cache_block_group(cache, 0); 5679 if (ret) { 5680 bg_failed++; 5681 bg_ret = ret; 5682 continue; 5683 } 5684 ret = btrfs_wait_block_group_cache_done(cache); 5685 if (ret) { 5686 bg_failed++; 5687 bg_ret = ret; 5688 continue; 5689 } 5690 } 5691 ret = btrfs_trim_block_group(cache, 5692 &group_trimmed, 5693 start, 5694 end, 5695 range->minlen); 5696 5697 trimmed += group_trimmed; 5698 if (ret) { 5699 bg_failed++; 5700 bg_ret = ret; 5701 continue; 5702 } 5703 } 5704 } 5705 5706 if (bg_failed) 5707 btrfs_warn(fs_info, 5708 "failed to trim %llu block group(s), last error %d", 5709 bg_failed, bg_ret); 5710 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5711 devices = &fs_info->fs_devices->devices; 5712 list_for_each_entry(device, devices, dev_list) { 5713 ret = btrfs_trim_free_extents(device, &group_trimmed); 5714 if (ret) { 5715 dev_failed++; 5716 dev_ret = ret; 5717 break; 5718 } 5719 5720 trimmed += group_trimmed; 5721 } 5722 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5723 5724 if (dev_failed) 5725 btrfs_warn(fs_info, 5726 "failed to trim %llu device(s), last error %d", 5727 dev_failed, dev_ret); 5728 range->len = trimmed; 5729 if (bg_ret) 5730 return bg_ret; 5731 return dev_ret; 5732 } 5733 5734 /* 5735 * btrfs_{start,end}_write_no_snapshotting() are similar to 5736 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 5737 * data into the page cache through nocow before the subvolume is snapshoted, 5738 * but flush the data into disk after the snapshot creation, or to prevent 5739 * operations while snapshotting is ongoing and that cause the snapshot to be 5740 * inconsistent (writes followed by expanding truncates for example). 5741 */ 5742 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 5743 { 5744 percpu_counter_dec(&root->subv_writers->counter); 5745 cond_wake_up(&root->subv_writers->wait); 5746 } 5747 5748 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 5749 { 5750 if (atomic_read(&root->will_be_snapshotted)) 5751 return 0; 5752 5753 percpu_counter_inc(&root->subv_writers->counter); 5754 /* 5755 * Make sure counter is updated before we check for snapshot creation. 5756 */ 5757 smp_mb(); 5758 if (atomic_read(&root->will_be_snapshotted)) { 5759 btrfs_end_write_no_snapshotting(root); 5760 return 0; 5761 } 5762 return 1; 5763 } 5764 5765 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 5766 { 5767 while (true) { 5768 int ret; 5769 5770 ret = btrfs_start_write_no_snapshotting(root); 5771 if (ret) 5772 break; 5773 wait_var_event(&root->will_be_snapshotted, 5774 !atomic_read(&root->will_be_snapshotted)); 5775 } 5776 } 5777