xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision abfbd895)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				struct btrfs_delayed_ref_node *node, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100 			  struct btrfs_root *extent_root, u64 flags,
101 			  int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103 			 struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105 			    int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107 				       u64 num_bytes, int reserve,
108 				       int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110 			       u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112 		     u64 bytenr, u64 num_bytes, int reserved);
113 
114 static noinline int
115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117 	smp_mb();
118 	return cache->cached == BTRFS_CACHE_FINISHED ||
119 		cache->cached == BTRFS_CACHE_ERROR;
120 }
121 
122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124 	return (cache->flags & bits) == bits;
125 }
126 
127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129 	atomic_inc(&cache->count);
130 }
131 
132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134 	if (atomic_dec_and_test(&cache->count)) {
135 		WARN_ON(cache->pinned > 0);
136 		WARN_ON(cache->reserved > 0);
137 		kfree(cache->free_space_ctl);
138 		kfree(cache);
139 	}
140 }
141 
142 /*
143  * this adds the block group to the fs_info rb tree for the block group
144  * cache
145  */
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147 				struct btrfs_block_group_cache *block_group)
148 {
149 	struct rb_node **p;
150 	struct rb_node *parent = NULL;
151 	struct btrfs_block_group_cache *cache;
152 
153 	spin_lock(&info->block_group_cache_lock);
154 	p = &info->block_group_cache_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		cache = rb_entry(parent, struct btrfs_block_group_cache,
159 				 cache_node);
160 		if (block_group->key.objectid < cache->key.objectid) {
161 			p = &(*p)->rb_left;
162 		} else if (block_group->key.objectid > cache->key.objectid) {
163 			p = &(*p)->rb_right;
164 		} else {
165 			spin_unlock(&info->block_group_cache_lock);
166 			return -EEXIST;
167 		}
168 	}
169 
170 	rb_link_node(&block_group->cache_node, parent, p);
171 	rb_insert_color(&block_group->cache_node,
172 			&info->block_group_cache_tree);
173 
174 	if (info->first_logical_byte > block_group->key.objectid)
175 		info->first_logical_byte = block_group->key.objectid;
176 
177 	spin_unlock(&info->block_group_cache_lock);
178 
179 	return 0;
180 }
181 
182 /*
183  * This will return the block group at or after bytenr if contains is 0, else
184  * it will return the block group that contains the bytenr
185  */
186 static struct btrfs_block_group_cache *
187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 			      int contains)
189 {
190 	struct btrfs_block_group_cache *cache, *ret = NULL;
191 	struct rb_node *n;
192 	u64 end, start;
193 
194 	spin_lock(&info->block_group_cache_lock);
195 	n = info->block_group_cache_tree.rb_node;
196 
197 	while (n) {
198 		cache = rb_entry(n, struct btrfs_block_group_cache,
199 				 cache_node);
200 		end = cache->key.objectid + cache->key.offset - 1;
201 		start = cache->key.objectid;
202 
203 		if (bytenr < start) {
204 			if (!contains && (!ret || start < ret->key.objectid))
205 				ret = cache;
206 			n = n->rb_left;
207 		} else if (bytenr > start) {
208 			if (contains && bytenr <= end) {
209 				ret = cache;
210 				break;
211 			}
212 			n = n->rb_right;
213 		} else {
214 			ret = cache;
215 			break;
216 		}
217 	}
218 	if (ret) {
219 		btrfs_get_block_group(ret);
220 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221 			info->first_logical_byte = ret->key.objectid;
222 	}
223 	spin_unlock(&info->block_group_cache_lock);
224 
225 	return ret;
226 }
227 
228 static int add_excluded_extent(struct btrfs_root *root,
229 			       u64 start, u64 num_bytes)
230 {
231 	u64 end = start + num_bytes - 1;
232 	set_extent_bits(&root->fs_info->freed_extents[0],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	set_extent_bits(&root->fs_info->freed_extents[1],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	return 0;
237 }
238 
239 static void free_excluded_extents(struct btrfs_root *root,
240 				  struct btrfs_block_group_cache *cache)
241 {
242 	u64 start, end;
243 
244 	start = cache->key.objectid;
245 	end = start + cache->key.offset - 1;
246 
247 	clear_extent_bits(&root->fs_info->freed_extents[0],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 	clear_extent_bits(&root->fs_info->freed_extents[1],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252 
253 static int exclude_super_stripes(struct btrfs_root *root,
254 				 struct btrfs_block_group_cache *cache)
255 {
256 	u64 bytenr;
257 	u64 *logical;
258 	int stripe_len;
259 	int i, nr, ret;
260 
261 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263 		cache->bytes_super += stripe_len;
264 		ret = add_excluded_extent(root, cache->key.objectid,
265 					  stripe_len);
266 		if (ret)
267 			return ret;
268 	}
269 
270 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271 		bytenr = btrfs_sb_offset(i);
272 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273 				       cache->key.objectid, bytenr,
274 				       0, &logical, &nr, &stripe_len);
275 		if (ret)
276 			return ret;
277 
278 		while (nr--) {
279 			u64 start, len;
280 
281 			if (logical[nr] > cache->key.objectid +
282 			    cache->key.offset)
283 				continue;
284 
285 			if (logical[nr] + stripe_len <= cache->key.objectid)
286 				continue;
287 
288 			start = logical[nr];
289 			if (start < cache->key.objectid) {
290 				start = cache->key.objectid;
291 				len = (logical[nr] + stripe_len) - start;
292 			} else {
293 				len = min_t(u64, stripe_len,
294 					    cache->key.objectid +
295 					    cache->key.offset - start);
296 			}
297 
298 			cache->bytes_super += len;
299 			ret = add_excluded_extent(root, start, len);
300 			if (ret) {
301 				kfree(logical);
302 				return ret;
303 			}
304 		}
305 
306 		kfree(logical);
307 	}
308 	return 0;
309 }
310 
311 static struct btrfs_caching_control *
312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314 	struct btrfs_caching_control *ctl;
315 
316 	spin_lock(&cache->lock);
317 	if (!cache->caching_ctl) {
318 		spin_unlock(&cache->lock);
319 		return NULL;
320 	}
321 
322 	ctl = cache->caching_ctl;
323 	atomic_inc(&ctl->count);
324 	spin_unlock(&cache->lock);
325 	return ctl;
326 }
327 
328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330 	if (atomic_dec_and_test(&ctl->count))
331 		kfree(ctl);
332 }
333 
334 #ifdef CONFIG_BTRFS_DEBUG
335 static void fragment_free_space(struct btrfs_root *root,
336 				struct btrfs_block_group_cache *block_group)
337 {
338 	u64 start = block_group->key.objectid;
339 	u64 len = block_group->key.offset;
340 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341 		root->nodesize : root->sectorsize;
342 	u64 step = chunk << 1;
343 
344 	while (len > chunk) {
345 		btrfs_remove_free_space(block_group, start, chunk);
346 		start += step;
347 		if (len < step)
348 			len = 0;
349 		else
350 			len -= step;
351 	}
352 }
353 #endif
354 
355 /*
356  * this is only called by cache_block_group, since we could have freed extents
357  * we need to check the pinned_extents for any extents that can't be used yet
358  * since their free space will be released as soon as the transaction commits.
359  */
360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 			      struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363 	u64 extent_start, extent_end, size, total_added = 0;
364 	int ret;
365 
366 	while (start < end) {
367 		ret = find_first_extent_bit(info->pinned_extents, start,
368 					    &extent_start, &extent_end,
369 					    EXTENT_DIRTY | EXTENT_UPTODATE,
370 					    NULL);
371 		if (ret)
372 			break;
373 
374 		if (extent_start <= start) {
375 			start = extent_end + 1;
376 		} else if (extent_start > start && extent_start < end) {
377 			size = extent_start - start;
378 			total_added += size;
379 			ret = btrfs_add_free_space(block_group, start,
380 						   size);
381 			BUG_ON(ret); /* -ENOMEM or logic error */
382 			start = extent_end + 1;
383 		} else {
384 			break;
385 		}
386 	}
387 
388 	if (start < end) {
389 		size = end - start;
390 		total_added += size;
391 		ret = btrfs_add_free_space(block_group, start, size);
392 		BUG_ON(ret); /* -ENOMEM or logic error */
393 	}
394 
395 	return total_added;
396 }
397 
398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400 	struct btrfs_block_group_cache *block_group;
401 	struct btrfs_fs_info *fs_info;
402 	struct btrfs_caching_control *caching_ctl;
403 	struct btrfs_root *extent_root;
404 	struct btrfs_path *path;
405 	struct extent_buffer *leaf;
406 	struct btrfs_key key;
407 	u64 total_found = 0;
408 	u64 last = 0;
409 	u32 nritems;
410 	int ret = -ENOMEM;
411 	bool wakeup = true;
412 
413 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
414 	block_group = caching_ctl->block_group;
415 	fs_info = block_group->fs_info;
416 	extent_root = fs_info->extent_root;
417 
418 	path = btrfs_alloc_path();
419 	if (!path)
420 		goto out;
421 
422 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423 
424 #ifdef CONFIG_BTRFS_DEBUG
425 	/*
426 	 * If we're fragmenting we don't want to make anybody think we can
427 	 * allocate from this block group until we've had a chance to fragment
428 	 * the free space.
429 	 */
430 	if (btrfs_should_fragment_free_space(extent_root, block_group))
431 		wakeup = false;
432 #endif
433 	/*
434 	 * We don't want to deadlock with somebody trying to allocate a new
435 	 * extent for the extent root while also trying to search the extent
436 	 * root to add free space.  So we skip locking and search the commit
437 	 * root, since its read-only
438 	 */
439 	path->skip_locking = 1;
440 	path->search_commit_root = 1;
441 	path->reada = 1;
442 
443 	key.objectid = last;
444 	key.offset = 0;
445 	key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447 	mutex_lock(&caching_ctl->mutex);
448 	/* need to make sure the commit_root doesn't disappear */
449 	down_read(&fs_info->commit_root_sem);
450 
451 next:
452 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453 	if (ret < 0)
454 		goto err;
455 
456 	leaf = path->nodes[0];
457 	nritems = btrfs_header_nritems(leaf);
458 
459 	while (1) {
460 		if (btrfs_fs_closing(fs_info) > 1) {
461 			last = (u64)-1;
462 			break;
463 		}
464 
465 		if (path->slots[0] < nritems) {
466 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467 		} else {
468 			ret = find_next_key(path, 0, &key);
469 			if (ret)
470 				break;
471 
472 			if (need_resched() ||
473 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
474 				if (wakeup)
475 					caching_ctl->progress = last;
476 				btrfs_release_path(path);
477 				up_read(&fs_info->commit_root_sem);
478 				mutex_unlock(&caching_ctl->mutex);
479 				cond_resched();
480 				goto again;
481 			}
482 
483 			ret = btrfs_next_leaf(extent_root, path);
484 			if (ret < 0)
485 				goto err;
486 			if (ret)
487 				break;
488 			leaf = path->nodes[0];
489 			nritems = btrfs_header_nritems(leaf);
490 			continue;
491 		}
492 
493 		if (key.objectid < last) {
494 			key.objectid = last;
495 			key.offset = 0;
496 			key.type = BTRFS_EXTENT_ITEM_KEY;
497 
498 			if (wakeup)
499 				caching_ctl->progress = last;
500 			btrfs_release_path(path);
501 			goto next;
502 		}
503 
504 		if (key.objectid < block_group->key.objectid) {
505 			path->slots[0]++;
506 			continue;
507 		}
508 
509 		if (key.objectid >= block_group->key.objectid +
510 		    block_group->key.offset)
511 			break;
512 
513 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514 		    key.type == BTRFS_METADATA_ITEM_KEY) {
515 			total_found += add_new_free_space(block_group,
516 							  fs_info, last,
517 							  key.objectid);
518 			if (key.type == BTRFS_METADATA_ITEM_KEY)
519 				last = key.objectid +
520 					fs_info->tree_root->nodesize;
521 			else
522 				last = key.objectid + key.offset;
523 
524 			if (total_found > (1024 * 1024 * 2)) {
525 				total_found = 0;
526 				if (wakeup)
527 					wake_up(&caching_ctl->wait);
528 			}
529 		}
530 		path->slots[0]++;
531 	}
532 	ret = 0;
533 
534 	total_found += add_new_free_space(block_group, fs_info, last,
535 					  block_group->key.objectid +
536 					  block_group->key.offset);
537 	spin_lock(&block_group->lock);
538 	block_group->caching_ctl = NULL;
539 	block_group->cached = BTRFS_CACHE_FINISHED;
540 	spin_unlock(&block_group->lock);
541 
542 #ifdef CONFIG_BTRFS_DEBUG
543 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544 		u64 bytes_used;
545 
546 		spin_lock(&block_group->space_info->lock);
547 		spin_lock(&block_group->lock);
548 		bytes_used = block_group->key.offset -
549 			btrfs_block_group_used(&block_group->item);
550 		block_group->space_info->bytes_used += bytes_used >> 1;
551 		spin_unlock(&block_group->lock);
552 		spin_unlock(&block_group->space_info->lock);
553 		fragment_free_space(extent_root, block_group);
554 	}
555 #endif
556 
557 	caching_ctl->progress = (u64)-1;
558 err:
559 	btrfs_free_path(path);
560 	up_read(&fs_info->commit_root_sem);
561 
562 	free_excluded_extents(extent_root, block_group);
563 
564 	mutex_unlock(&caching_ctl->mutex);
565 out:
566 	if (ret) {
567 		spin_lock(&block_group->lock);
568 		block_group->caching_ctl = NULL;
569 		block_group->cached = BTRFS_CACHE_ERROR;
570 		spin_unlock(&block_group->lock);
571 	}
572 	wake_up(&caching_ctl->wait);
573 
574 	put_caching_control(caching_ctl);
575 	btrfs_put_block_group(block_group);
576 }
577 
578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579 			     int load_cache_only)
580 {
581 	DEFINE_WAIT(wait);
582 	struct btrfs_fs_info *fs_info = cache->fs_info;
583 	struct btrfs_caching_control *caching_ctl;
584 	int ret = 0;
585 
586 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587 	if (!caching_ctl)
588 		return -ENOMEM;
589 
590 	INIT_LIST_HEAD(&caching_ctl->list);
591 	mutex_init(&caching_ctl->mutex);
592 	init_waitqueue_head(&caching_ctl->wait);
593 	caching_ctl->block_group = cache;
594 	caching_ctl->progress = cache->key.objectid;
595 	atomic_set(&caching_ctl->count, 1);
596 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597 			caching_thread, NULL, NULL);
598 
599 	spin_lock(&cache->lock);
600 	/*
601 	 * This should be a rare occasion, but this could happen I think in the
602 	 * case where one thread starts to load the space cache info, and then
603 	 * some other thread starts a transaction commit which tries to do an
604 	 * allocation while the other thread is still loading the space cache
605 	 * info.  The previous loop should have kept us from choosing this block
606 	 * group, but if we've moved to the state where we will wait on caching
607 	 * block groups we need to first check if we're doing a fast load here,
608 	 * so we can wait for it to finish, otherwise we could end up allocating
609 	 * from a block group who's cache gets evicted for one reason or
610 	 * another.
611 	 */
612 	while (cache->cached == BTRFS_CACHE_FAST) {
613 		struct btrfs_caching_control *ctl;
614 
615 		ctl = cache->caching_ctl;
616 		atomic_inc(&ctl->count);
617 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618 		spin_unlock(&cache->lock);
619 
620 		schedule();
621 
622 		finish_wait(&ctl->wait, &wait);
623 		put_caching_control(ctl);
624 		spin_lock(&cache->lock);
625 	}
626 
627 	if (cache->cached != BTRFS_CACHE_NO) {
628 		spin_unlock(&cache->lock);
629 		kfree(caching_ctl);
630 		return 0;
631 	}
632 	WARN_ON(cache->caching_ctl);
633 	cache->caching_ctl = caching_ctl;
634 	cache->cached = BTRFS_CACHE_FAST;
635 	spin_unlock(&cache->lock);
636 
637 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638 		mutex_lock(&caching_ctl->mutex);
639 		ret = load_free_space_cache(fs_info, cache);
640 
641 		spin_lock(&cache->lock);
642 		if (ret == 1) {
643 			cache->caching_ctl = NULL;
644 			cache->cached = BTRFS_CACHE_FINISHED;
645 			cache->last_byte_to_unpin = (u64)-1;
646 			caching_ctl->progress = (u64)-1;
647 		} else {
648 			if (load_cache_only) {
649 				cache->caching_ctl = NULL;
650 				cache->cached = BTRFS_CACHE_NO;
651 			} else {
652 				cache->cached = BTRFS_CACHE_STARTED;
653 				cache->has_caching_ctl = 1;
654 			}
655 		}
656 		spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658 		if (ret == 1 &&
659 		    btrfs_should_fragment_free_space(fs_info->extent_root,
660 						     cache)) {
661 			u64 bytes_used;
662 
663 			spin_lock(&cache->space_info->lock);
664 			spin_lock(&cache->lock);
665 			bytes_used = cache->key.offset -
666 				btrfs_block_group_used(&cache->item);
667 			cache->space_info->bytes_used += bytes_used >> 1;
668 			spin_unlock(&cache->lock);
669 			spin_unlock(&cache->space_info->lock);
670 			fragment_free_space(fs_info->extent_root, cache);
671 		}
672 #endif
673 		mutex_unlock(&caching_ctl->mutex);
674 
675 		wake_up(&caching_ctl->wait);
676 		if (ret == 1) {
677 			put_caching_control(caching_ctl);
678 			free_excluded_extents(fs_info->extent_root, cache);
679 			return 0;
680 		}
681 	} else {
682 		/*
683 		 * We are not going to do the fast caching, set cached to the
684 		 * appropriate value and wakeup any waiters.
685 		 */
686 		spin_lock(&cache->lock);
687 		if (load_cache_only) {
688 			cache->caching_ctl = NULL;
689 			cache->cached = BTRFS_CACHE_NO;
690 		} else {
691 			cache->cached = BTRFS_CACHE_STARTED;
692 			cache->has_caching_ctl = 1;
693 		}
694 		spin_unlock(&cache->lock);
695 		wake_up(&caching_ctl->wait);
696 	}
697 
698 	if (load_cache_only) {
699 		put_caching_control(caching_ctl);
700 		return 0;
701 	}
702 
703 	down_write(&fs_info->commit_root_sem);
704 	atomic_inc(&caching_ctl->count);
705 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706 	up_write(&fs_info->commit_root_sem);
707 
708 	btrfs_get_block_group(cache);
709 
710 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711 
712 	return ret;
713 }
714 
715 /*
716  * return the block group that starts at or after bytenr
717  */
718 static struct btrfs_block_group_cache *
719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721 	struct btrfs_block_group_cache *cache;
722 
723 	cache = block_group_cache_tree_search(info, bytenr, 0);
724 
725 	return cache;
726 }
727 
728 /*
729  * return the block group that contains the given bytenr
730  */
731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732 						 struct btrfs_fs_info *info,
733 						 u64 bytenr)
734 {
735 	struct btrfs_block_group_cache *cache;
736 
737 	cache = block_group_cache_tree_search(info, bytenr, 1);
738 
739 	return cache;
740 }
741 
742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 						  u64 flags)
744 {
745 	struct list_head *head = &info->space_info;
746 	struct btrfs_space_info *found;
747 
748 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749 
750 	rcu_read_lock();
751 	list_for_each_entry_rcu(found, head, list) {
752 		if (found->flags & flags) {
753 			rcu_read_unlock();
754 			return found;
755 		}
756 	}
757 	rcu_read_unlock();
758 	return NULL;
759 }
760 
761 /*
762  * after adding space to the filesystem, we need to clear the full flags
763  * on all the space infos.
764  */
765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767 	struct list_head *head = &info->space_info;
768 	struct btrfs_space_info *found;
769 
770 	rcu_read_lock();
771 	list_for_each_entry_rcu(found, head, list)
772 		found->full = 0;
773 	rcu_read_unlock();
774 }
775 
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779 	int ret;
780 	struct btrfs_key key;
781 	struct btrfs_path *path;
782 
783 	path = btrfs_alloc_path();
784 	if (!path)
785 		return -ENOMEM;
786 
787 	key.objectid = start;
788 	key.offset = len;
789 	key.type = BTRFS_EXTENT_ITEM_KEY;
790 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791 				0, 0);
792 	btrfs_free_path(path);
793 	return ret;
794 }
795 
796 /*
797  * helper function to lookup reference count and flags of a tree block.
798  *
799  * the head node for delayed ref is used to store the sum of all the
800  * reference count modifications queued up in the rbtree. the head
801  * node may also store the extent flags to set. This way you can check
802  * to see what the reference count and extent flags would be if all of
803  * the delayed refs are not processed.
804  */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 			     struct btrfs_root *root, u64 bytenr,
807 			     u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 	struct btrfs_delayed_ref_head *head;
810 	struct btrfs_delayed_ref_root *delayed_refs;
811 	struct btrfs_path *path;
812 	struct btrfs_extent_item *ei;
813 	struct extent_buffer *leaf;
814 	struct btrfs_key key;
815 	u32 item_size;
816 	u64 num_refs;
817 	u64 extent_flags;
818 	int ret;
819 
820 	/*
821 	 * If we don't have skinny metadata, don't bother doing anything
822 	 * different
823 	 */
824 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825 		offset = root->nodesize;
826 		metadata = 0;
827 	}
828 
829 	path = btrfs_alloc_path();
830 	if (!path)
831 		return -ENOMEM;
832 
833 	if (!trans) {
834 		path->skip_locking = 1;
835 		path->search_commit_root = 1;
836 	}
837 
838 search_again:
839 	key.objectid = bytenr;
840 	key.offset = offset;
841 	if (metadata)
842 		key.type = BTRFS_METADATA_ITEM_KEY;
843 	else
844 		key.type = BTRFS_EXTENT_ITEM_KEY;
845 
846 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847 				&key, path, 0, 0);
848 	if (ret < 0)
849 		goto out_free;
850 
851 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852 		if (path->slots[0]) {
853 			path->slots[0]--;
854 			btrfs_item_key_to_cpu(path->nodes[0], &key,
855 					      path->slots[0]);
856 			if (key.objectid == bytenr &&
857 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
858 			    key.offset == root->nodesize)
859 				ret = 0;
860 		}
861 	}
862 
863 	if (ret == 0) {
864 		leaf = path->nodes[0];
865 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866 		if (item_size >= sizeof(*ei)) {
867 			ei = btrfs_item_ptr(leaf, path->slots[0],
868 					    struct btrfs_extent_item);
869 			num_refs = btrfs_extent_refs(leaf, ei);
870 			extent_flags = btrfs_extent_flags(leaf, ei);
871 		} else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873 			struct btrfs_extent_item_v0 *ei0;
874 			BUG_ON(item_size != sizeof(*ei0));
875 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
876 					     struct btrfs_extent_item_v0);
877 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
878 			/* FIXME: this isn't correct for data */
879 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881 			BUG();
882 #endif
883 		}
884 		BUG_ON(num_refs == 0);
885 	} else {
886 		num_refs = 0;
887 		extent_flags = 0;
888 		ret = 0;
889 	}
890 
891 	if (!trans)
892 		goto out;
893 
894 	delayed_refs = &trans->transaction->delayed_refs;
895 	spin_lock(&delayed_refs->lock);
896 	head = btrfs_find_delayed_ref_head(trans, bytenr);
897 	if (head) {
898 		if (!mutex_trylock(&head->mutex)) {
899 			atomic_inc(&head->node.refs);
900 			spin_unlock(&delayed_refs->lock);
901 
902 			btrfs_release_path(path);
903 
904 			/*
905 			 * Mutex was contended, block until it's released and try
906 			 * again
907 			 */
908 			mutex_lock(&head->mutex);
909 			mutex_unlock(&head->mutex);
910 			btrfs_put_delayed_ref(&head->node);
911 			goto search_again;
912 		}
913 		spin_lock(&head->lock);
914 		if (head->extent_op && head->extent_op->update_flags)
915 			extent_flags |= head->extent_op->flags_to_set;
916 		else
917 			BUG_ON(num_refs == 0);
918 
919 		num_refs += head->node.ref_mod;
920 		spin_unlock(&head->lock);
921 		mutex_unlock(&head->mutex);
922 	}
923 	spin_unlock(&delayed_refs->lock);
924 out:
925 	WARN_ON(num_refs == 0);
926 	if (refs)
927 		*refs = num_refs;
928 	if (flags)
929 		*flags = extent_flags;
930 out_free:
931 	btrfs_free_path(path);
932 	return ret;
933 }
934 
935 /*
936  * Back reference rules.  Back refs have three main goals:
937  *
938  * 1) differentiate between all holders of references to an extent so that
939  *    when a reference is dropped we can make sure it was a valid reference
940  *    before freeing the extent.
941  *
942  * 2) Provide enough information to quickly find the holders of an extent
943  *    if we notice a given block is corrupted or bad.
944  *
945  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946  *    maintenance.  This is actually the same as #2, but with a slightly
947  *    different use case.
948  *
949  * There are two kinds of back refs. The implicit back refs is optimized
950  * for pointers in non-shared tree blocks. For a given pointer in a block,
951  * back refs of this kind provide information about the block's owner tree
952  * and the pointer's key. These information allow us to find the block by
953  * b-tree searching. The full back refs is for pointers in tree blocks not
954  * referenced by their owner trees. The location of tree block is recorded
955  * in the back refs. Actually the full back refs is generic, and can be
956  * used in all cases the implicit back refs is used. The major shortcoming
957  * of the full back refs is its overhead. Every time a tree block gets
958  * COWed, we have to update back refs entry for all pointers in it.
959  *
960  * For a newly allocated tree block, we use implicit back refs for
961  * pointers in it. This means most tree related operations only involve
962  * implicit back refs. For a tree block created in old transaction, the
963  * only way to drop a reference to it is COW it. So we can detect the
964  * event that tree block loses its owner tree's reference and do the
965  * back refs conversion.
966  *
967  * When a tree block is COW'd through a tree, there are four cases:
968  *
969  * The reference count of the block is one and the tree is the block's
970  * owner tree. Nothing to do in this case.
971  *
972  * The reference count of the block is one and the tree is not the
973  * block's owner tree. In this case, full back refs is used for pointers
974  * in the block. Remove these full back refs, add implicit back refs for
975  * every pointers in the new block.
976  *
977  * The reference count of the block is greater than one and the tree is
978  * the block's owner tree. In this case, implicit back refs is used for
979  * pointers in the block. Add full back refs for every pointers in the
980  * block, increase lower level extents' reference counts. The original
981  * implicit back refs are entailed to the new block.
982  *
983  * The reference count of the block is greater than one and the tree is
984  * not the block's owner tree. Add implicit back refs for every pointer in
985  * the new block, increase lower level extents' reference count.
986  *
987  * Back Reference Key composing:
988  *
989  * The key objectid corresponds to the first byte in the extent,
990  * The key type is used to differentiate between types of back refs.
991  * There are different meanings of the key offset for different types
992  * of back refs.
993  *
994  * File extents can be referenced by:
995  *
996  * - multiple snapshots, subvolumes, or different generations in one subvol
997  * - different files inside a single subvolume
998  * - different offsets inside a file (bookend extents in file.c)
999  *
1000  * The extent ref structure for the implicit back refs has fields for:
1001  *
1002  * - Objectid of the subvolume root
1003  * - objectid of the file holding the reference
1004  * - original offset in the file
1005  * - how many bookend extents
1006  *
1007  * The key offset for the implicit back refs is hash of the first
1008  * three fields.
1009  *
1010  * The extent ref structure for the full back refs has field for:
1011  *
1012  * - number of pointers in the tree leaf
1013  *
1014  * The key offset for the implicit back refs is the first byte of
1015  * the tree leaf
1016  *
1017  * When a file extent is allocated, The implicit back refs is used.
1018  * the fields are filled in:
1019  *
1020  *     (root_key.objectid, inode objectid, offset in file, 1)
1021  *
1022  * When a file extent is removed file truncation, we find the
1023  * corresponding implicit back refs and check the following fields:
1024  *
1025  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1026  *
1027  * Btree extents can be referenced by:
1028  *
1029  * - Different subvolumes
1030  *
1031  * Both the implicit back refs and the full back refs for tree blocks
1032  * only consist of key. The key offset for the implicit back refs is
1033  * objectid of block's owner tree. The key offset for the full back refs
1034  * is the first byte of parent block.
1035  *
1036  * When implicit back refs is used, information about the lowest key and
1037  * level of the tree block are required. These information are stored in
1038  * tree block info structure.
1039  */
1040 
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043 				  struct btrfs_root *root,
1044 				  struct btrfs_path *path,
1045 				  u64 owner, u32 extra_size)
1046 {
1047 	struct btrfs_extent_item *item;
1048 	struct btrfs_extent_item_v0 *ei0;
1049 	struct btrfs_extent_ref_v0 *ref0;
1050 	struct btrfs_tree_block_info *bi;
1051 	struct extent_buffer *leaf;
1052 	struct btrfs_key key;
1053 	struct btrfs_key found_key;
1054 	u32 new_size = sizeof(*item);
1055 	u64 refs;
1056 	int ret;
1057 
1058 	leaf = path->nodes[0];
1059 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060 
1061 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063 			     struct btrfs_extent_item_v0);
1064 	refs = btrfs_extent_refs_v0(leaf, ei0);
1065 
1066 	if (owner == (u64)-1) {
1067 		while (1) {
1068 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069 				ret = btrfs_next_leaf(root, path);
1070 				if (ret < 0)
1071 					return ret;
1072 				BUG_ON(ret > 0); /* Corruption */
1073 				leaf = path->nodes[0];
1074 			}
1075 			btrfs_item_key_to_cpu(leaf, &found_key,
1076 					      path->slots[0]);
1077 			BUG_ON(key.objectid != found_key.objectid);
1078 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079 				path->slots[0]++;
1080 				continue;
1081 			}
1082 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 					      struct btrfs_extent_ref_v0);
1084 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1085 			break;
1086 		}
1087 	}
1088 	btrfs_release_path(path);
1089 
1090 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091 		new_size += sizeof(*bi);
1092 
1093 	new_size -= sizeof(*ei0);
1094 	ret = btrfs_search_slot(trans, root, &key, path,
1095 				new_size + extra_size, 1);
1096 	if (ret < 0)
1097 		return ret;
1098 	BUG_ON(ret); /* Corruption */
1099 
1100 	btrfs_extend_item(root, path, new_size);
1101 
1102 	leaf = path->nodes[0];
1103 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 	btrfs_set_extent_refs(leaf, item, refs);
1105 	/* FIXME: get real generation */
1106 	btrfs_set_extent_generation(leaf, item, 0);
1107 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108 		btrfs_set_extent_flags(leaf, item,
1109 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111 		bi = (struct btrfs_tree_block_info *)(item + 1);
1112 		/* FIXME: get first key of the block */
1113 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 	} else {
1116 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 	}
1118 	btrfs_mark_buffer_dirty(leaf);
1119 	return 0;
1120 }
1121 #endif
1122 
1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125 	u32 high_crc = ~(u32)0;
1126 	u32 low_crc = ~(u32)0;
1127 	__le64 lenum;
1128 
1129 	lenum = cpu_to_le64(root_objectid);
1130 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131 	lenum = cpu_to_le64(owner);
1132 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133 	lenum = cpu_to_le64(offset);
1134 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135 
1136 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138 
1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140 				     struct btrfs_extent_data_ref *ref)
1141 {
1142 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143 				    btrfs_extent_data_ref_objectid(leaf, ref),
1144 				    btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146 
1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148 				 struct btrfs_extent_data_ref *ref,
1149 				 u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154 		return 0;
1155 	return 1;
1156 }
1157 
1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159 					   struct btrfs_root *root,
1160 					   struct btrfs_path *path,
1161 					   u64 bytenr, u64 parent,
1162 					   u64 root_objectid,
1163 					   u64 owner, u64 offset)
1164 {
1165 	struct btrfs_key key;
1166 	struct btrfs_extent_data_ref *ref;
1167 	struct extent_buffer *leaf;
1168 	u32 nritems;
1169 	int ret;
1170 	int recow;
1171 	int err = -ENOENT;
1172 
1173 	key.objectid = bytenr;
1174 	if (parent) {
1175 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1176 		key.offset = parent;
1177 	} else {
1178 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 		key.offset = hash_extent_data_ref(root_objectid,
1180 						  owner, offset);
1181 	}
1182 again:
1183 	recow = 0;
1184 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185 	if (ret < 0) {
1186 		err = ret;
1187 		goto fail;
1188 	}
1189 
1190 	if (parent) {
1191 		if (!ret)
1192 			return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1195 		btrfs_release_path(path);
1196 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 		if (ret < 0) {
1198 			err = ret;
1199 			goto fail;
1200 		}
1201 		if (!ret)
1202 			return 0;
1203 #endif
1204 		goto fail;
1205 	}
1206 
1207 	leaf = path->nodes[0];
1208 	nritems = btrfs_header_nritems(leaf);
1209 	while (1) {
1210 		if (path->slots[0] >= nritems) {
1211 			ret = btrfs_next_leaf(root, path);
1212 			if (ret < 0)
1213 				err = ret;
1214 			if (ret)
1215 				goto fail;
1216 
1217 			leaf = path->nodes[0];
1218 			nritems = btrfs_header_nritems(leaf);
1219 			recow = 1;
1220 		}
1221 
1222 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223 		if (key.objectid != bytenr ||
1224 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225 			goto fail;
1226 
1227 		ref = btrfs_item_ptr(leaf, path->slots[0],
1228 				     struct btrfs_extent_data_ref);
1229 
1230 		if (match_extent_data_ref(leaf, ref, root_objectid,
1231 					  owner, offset)) {
1232 			if (recow) {
1233 				btrfs_release_path(path);
1234 				goto again;
1235 			}
1236 			err = 0;
1237 			break;
1238 		}
1239 		path->slots[0]++;
1240 	}
1241 fail:
1242 	return err;
1243 }
1244 
1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246 					   struct btrfs_root *root,
1247 					   struct btrfs_path *path,
1248 					   u64 bytenr, u64 parent,
1249 					   u64 root_objectid, u64 owner,
1250 					   u64 offset, int refs_to_add)
1251 {
1252 	struct btrfs_key key;
1253 	struct extent_buffer *leaf;
1254 	u32 size;
1255 	u32 num_refs;
1256 	int ret;
1257 
1258 	key.objectid = bytenr;
1259 	if (parent) {
1260 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1261 		key.offset = parent;
1262 		size = sizeof(struct btrfs_shared_data_ref);
1263 	} else {
1264 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265 		key.offset = hash_extent_data_ref(root_objectid,
1266 						  owner, offset);
1267 		size = sizeof(struct btrfs_extent_data_ref);
1268 	}
1269 
1270 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271 	if (ret && ret != -EEXIST)
1272 		goto fail;
1273 
1274 	leaf = path->nodes[0];
1275 	if (parent) {
1276 		struct btrfs_shared_data_ref *ref;
1277 		ref = btrfs_item_ptr(leaf, path->slots[0],
1278 				     struct btrfs_shared_data_ref);
1279 		if (ret == 0) {
1280 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281 		} else {
1282 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283 			num_refs += refs_to_add;
1284 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285 		}
1286 	} else {
1287 		struct btrfs_extent_data_ref *ref;
1288 		while (ret == -EEXIST) {
1289 			ref = btrfs_item_ptr(leaf, path->slots[0],
1290 					     struct btrfs_extent_data_ref);
1291 			if (match_extent_data_ref(leaf, ref, root_objectid,
1292 						  owner, offset))
1293 				break;
1294 			btrfs_release_path(path);
1295 			key.offset++;
1296 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1297 						      size);
1298 			if (ret && ret != -EEXIST)
1299 				goto fail;
1300 
1301 			leaf = path->nodes[0];
1302 		}
1303 		ref = btrfs_item_ptr(leaf, path->slots[0],
1304 				     struct btrfs_extent_data_ref);
1305 		if (ret == 0) {
1306 			btrfs_set_extent_data_ref_root(leaf, ref,
1307 						       root_objectid);
1308 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311 		} else {
1312 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313 			num_refs += refs_to_add;
1314 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315 		}
1316 	}
1317 	btrfs_mark_buffer_dirty(leaf);
1318 	ret = 0;
1319 fail:
1320 	btrfs_release_path(path);
1321 	return ret;
1322 }
1323 
1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325 					   struct btrfs_root *root,
1326 					   struct btrfs_path *path,
1327 					   int refs_to_drop, int *last_ref)
1328 {
1329 	struct btrfs_key key;
1330 	struct btrfs_extent_data_ref *ref1 = NULL;
1331 	struct btrfs_shared_data_ref *ref2 = NULL;
1332 	struct extent_buffer *leaf;
1333 	u32 num_refs = 0;
1334 	int ret = 0;
1335 
1336 	leaf = path->nodes[0];
1337 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338 
1339 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 				      struct btrfs_extent_data_ref);
1342 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 				      struct btrfs_shared_data_ref);
1346 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 		struct btrfs_extent_ref_v0 *ref0;
1350 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_ref_v0);
1352 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 	} else {
1355 		BUG();
1356 	}
1357 
1358 	BUG_ON(num_refs < refs_to_drop);
1359 	num_refs -= refs_to_drop;
1360 
1361 	if (num_refs == 0) {
1362 		ret = btrfs_del_item(trans, root, path);
1363 		*last_ref = 1;
1364 	} else {
1365 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370 		else {
1371 			struct btrfs_extent_ref_v0 *ref0;
1372 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373 					struct btrfs_extent_ref_v0);
1374 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375 		}
1376 #endif
1377 		btrfs_mark_buffer_dirty(leaf);
1378 	}
1379 	return ret;
1380 }
1381 
1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383 					  struct btrfs_extent_inline_ref *iref)
1384 {
1385 	struct btrfs_key key;
1386 	struct extent_buffer *leaf;
1387 	struct btrfs_extent_data_ref *ref1;
1388 	struct btrfs_shared_data_ref *ref2;
1389 	u32 num_refs = 0;
1390 
1391 	leaf = path->nodes[0];
1392 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393 	if (iref) {
1394 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395 		    BTRFS_EXTENT_DATA_REF_KEY) {
1396 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398 		} else {
1399 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401 		}
1402 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404 				      struct btrfs_extent_data_ref);
1405 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408 				      struct btrfs_shared_data_ref);
1409 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412 		struct btrfs_extent_ref_v0 *ref0;
1413 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414 				      struct btrfs_extent_ref_v0);
1415 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417 	} else {
1418 		WARN_ON(1);
1419 	}
1420 	return num_refs;
1421 }
1422 
1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424 					  struct btrfs_root *root,
1425 					  struct btrfs_path *path,
1426 					  u64 bytenr, u64 parent,
1427 					  u64 root_objectid)
1428 {
1429 	struct btrfs_key key;
1430 	int ret;
1431 
1432 	key.objectid = bytenr;
1433 	if (parent) {
1434 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 		key.offset = parent;
1436 	} else {
1437 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 		key.offset = root_objectid;
1439 	}
1440 
1441 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 	if (ret > 0)
1443 		ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 	if (ret == -ENOENT && parent) {
1446 		btrfs_release_path(path);
1447 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 		if (ret > 0)
1450 			ret = -ENOENT;
1451 	}
1452 #endif
1453 	return ret;
1454 }
1455 
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 					  struct btrfs_root *root,
1458 					  struct btrfs_path *path,
1459 					  u64 bytenr, u64 parent,
1460 					  u64 root_objectid)
1461 {
1462 	struct btrfs_key key;
1463 	int ret;
1464 
1465 	key.objectid = bytenr;
1466 	if (parent) {
1467 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 		key.offset = parent;
1469 	} else {
1470 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 		key.offset = root_objectid;
1472 	}
1473 
1474 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475 	btrfs_release_path(path);
1476 	return ret;
1477 }
1478 
1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481 	int type;
1482 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 		if (parent > 0)
1484 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 		else
1486 			type = BTRFS_TREE_BLOCK_REF_KEY;
1487 	} else {
1488 		if (parent > 0)
1489 			type = BTRFS_SHARED_DATA_REF_KEY;
1490 		else
1491 			type = BTRFS_EXTENT_DATA_REF_KEY;
1492 	}
1493 	return type;
1494 }
1495 
1496 static int find_next_key(struct btrfs_path *path, int level,
1497 			 struct btrfs_key *key)
1498 
1499 {
1500 	for (; level < BTRFS_MAX_LEVEL; level++) {
1501 		if (!path->nodes[level])
1502 			break;
1503 		if (path->slots[level] + 1 >=
1504 		    btrfs_header_nritems(path->nodes[level]))
1505 			continue;
1506 		if (level == 0)
1507 			btrfs_item_key_to_cpu(path->nodes[level], key,
1508 					      path->slots[level] + 1);
1509 		else
1510 			btrfs_node_key_to_cpu(path->nodes[level], key,
1511 					      path->slots[level] + 1);
1512 		return 0;
1513 	}
1514 	return 1;
1515 }
1516 
1517 /*
1518  * look for inline back ref. if back ref is found, *ref_ret is set
1519  * to the address of inline back ref, and 0 is returned.
1520  *
1521  * if back ref isn't found, *ref_ret is set to the address where it
1522  * should be inserted, and -ENOENT is returned.
1523  *
1524  * if insert is true and there are too many inline back refs, the path
1525  * points to the extent item, and -EAGAIN is returned.
1526  *
1527  * NOTE: inline back refs are ordered in the same way that back ref
1528  *	 items in the tree are ordered.
1529  */
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532 				 struct btrfs_root *root,
1533 				 struct btrfs_path *path,
1534 				 struct btrfs_extent_inline_ref **ref_ret,
1535 				 u64 bytenr, u64 num_bytes,
1536 				 u64 parent, u64 root_objectid,
1537 				 u64 owner, u64 offset, int insert)
1538 {
1539 	struct btrfs_key key;
1540 	struct extent_buffer *leaf;
1541 	struct btrfs_extent_item *ei;
1542 	struct btrfs_extent_inline_ref *iref;
1543 	u64 flags;
1544 	u64 item_size;
1545 	unsigned long ptr;
1546 	unsigned long end;
1547 	int extra_size;
1548 	int type;
1549 	int want;
1550 	int ret;
1551 	int err = 0;
1552 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553 						 SKINNY_METADATA);
1554 
1555 	key.objectid = bytenr;
1556 	key.type = BTRFS_EXTENT_ITEM_KEY;
1557 	key.offset = num_bytes;
1558 
1559 	want = extent_ref_type(parent, owner);
1560 	if (insert) {
1561 		extra_size = btrfs_extent_inline_ref_size(want);
1562 		path->keep_locks = 1;
1563 	} else
1564 		extra_size = -1;
1565 
1566 	/*
1567 	 * Owner is our parent level, so we can just add one to get the level
1568 	 * for the block we are interested in.
1569 	 */
1570 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 		key.type = BTRFS_METADATA_ITEM_KEY;
1572 		key.offset = owner;
1573 	}
1574 
1575 again:
1576 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577 	if (ret < 0) {
1578 		err = ret;
1579 		goto out;
1580 	}
1581 
1582 	/*
1583 	 * We may be a newly converted file system which still has the old fat
1584 	 * extent entries for metadata, so try and see if we have one of those.
1585 	 */
1586 	if (ret > 0 && skinny_metadata) {
1587 		skinny_metadata = false;
1588 		if (path->slots[0]) {
1589 			path->slots[0]--;
1590 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 					      path->slots[0]);
1592 			if (key.objectid == bytenr &&
1593 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 			    key.offset == num_bytes)
1595 				ret = 0;
1596 		}
1597 		if (ret) {
1598 			key.objectid = bytenr;
1599 			key.type = BTRFS_EXTENT_ITEM_KEY;
1600 			key.offset = num_bytes;
1601 			btrfs_release_path(path);
1602 			goto again;
1603 		}
1604 	}
1605 
1606 	if (ret && !insert) {
1607 		err = -ENOENT;
1608 		goto out;
1609 	} else if (WARN_ON(ret)) {
1610 		err = -EIO;
1611 		goto out;
1612 	}
1613 
1614 	leaf = path->nodes[0];
1615 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 	if (item_size < sizeof(*ei)) {
1618 		if (!insert) {
1619 			err = -ENOENT;
1620 			goto out;
1621 		}
1622 		ret = convert_extent_item_v0(trans, root, path, owner,
1623 					     extra_size);
1624 		if (ret < 0) {
1625 			err = ret;
1626 			goto out;
1627 		}
1628 		leaf = path->nodes[0];
1629 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 	}
1631 #endif
1632 	BUG_ON(item_size < sizeof(*ei));
1633 
1634 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 	flags = btrfs_extent_flags(leaf, ei);
1636 
1637 	ptr = (unsigned long)(ei + 1);
1638 	end = (unsigned long)ei + item_size;
1639 
1640 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641 		ptr += sizeof(struct btrfs_tree_block_info);
1642 		BUG_ON(ptr > end);
1643 	}
1644 
1645 	err = -ENOENT;
1646 	while (1) {
1647 		if (ptr >= end) {
1648 			WARN_ON(ptr > end);
1649 			break;
1650 		}
1651 		iref = (struct btrfs_extent_inline_ref *)ptr;
1652 		type = btrfs_extent_inline_ref_type(leaf, iref);
1653 		if (want < type)
1654 			break;
1655 		if (want > type) {
1656 			ptr += btrfs_extent_inline_ref_size(type);
1657 			continue;
1658 		}
1659 
1660 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 			struct btrfs_extent_data_ref *dref;
1662 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 			if (match_extent_data_ref(leaf, dref, root_objectid,
1664 						  owner, offset)) {
1665 				err = 0;
1666 				break;
1667 			}
1668 			if (hash_extent_data_ref_item(leaf, dref) <
1669 			    hash_extent_data_ref(root_objectid, owner, offset))
1670 				break;
1671 		} else {
1672 			u64 ref_offset;
1673 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 			if (parent > 0) {
1675 				if (parent == ref_offset) {
1676 					err = 0;
1677 					break;
1678 				}
1679 				if (ref_offset < parent)
1680 					break;
1681 			} else {
1682 				if (root_objectid == ref_offset) {
1683 					err = 0;
1684 					break;
1685 				}
1686 				if (ref_offset < root_objectid)
1687 					break;
1688 			}
1689 		}
1690 		ptr += btrfs_extent_inline_ref_size(type);
1691 	}
1692 	if (err == -ENOENT && insert) {
1693 		if (item_size + extra_size >=
1694 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 			err = -EAGAIN;
1696 			goto out;
1697 		}
1698 		/*
1699 		 * To add new inline back ref, we have to make sure
1700 		 * there is no corresponding back ref item.
1701 		 * For simplicity, we just do not add new inline back
1702 		 * ref if there is any kind of item for this block
1703 		 */
1704 		if (find_next_key(path, 0, &key) == 0 &&
1705 		    key.objectid == bytenr &&
1706 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707 			err = -EAGAIN;
1708 			goto out;
1709 		}
1710 	}
1711 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713 	if (insert) {
1714 		path->keep_locks = 0;
1715 		btrfs_unlock_up_safe(path, 1);
1716 	}
1717 	return err;
1718 }
1719 
1720 /*
1721  * helper to add new inline back ref
1722  */
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref *iref,
1727 				 u64 parent, u64 root_objectid,
1728 				 u64 owner, u64 offset, int refs_to_add,
1729 				 struct btrfs_delayed_extent_op *extent_op)
1730 {
1731 	struct extent_buffer *leaf;
1732 	struct btrfs_extent_item *ei;
1733 	unsigned long ptr;
1734 	unsigned long end;
1735 	unsigned long item_offset;
1736 	u64 refs;
1737 	int size;
1738 	int type;
1739 
1740 	leaf = path->nodes[0];
1741 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 	item_offset = (unsigned long)iref - (unsigned long)ei;
1743 
1744 	type = extent_ref_type(parent, owner);
1745 	size = btrfs_extent_inline_ref_size(type);
1746 
1747 	btrfs_extend_item(root, path, size);
1748 
1749 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 	refs = btrfs_extent_refs(leaf, ei);
1751 	refs += refs_to_add;
1752 	btrfs_set_extent_refs(leaf, ei, refs);
1753 	if (extent_op)
1754 		__run_delayed_extent_op(extent_op, leaf, ei);
1755 
1756 	ptr = (unsigned long)ei + item_offset;
1757 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 	if (ptr < end - size)
1759 		memmove_extent_buffer(leaf, ptr + size, ptr,
1760 				      end - size - ptr);
1761 
1762 	iref = (struct btrfs_extent_inline_ref *)ptr;
1763 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 		struct btrfs_extent_data_ref *dref;
1766 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 		struct btrfs_shared_data_ref *sref;
1773 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 	} else {
1779 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 	}
1781 	btrfs_mark_buffer_dirty(leaf);
1782 }
1783 
1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785 				 struct btrfs_root *root,
1786 				 struct btrfs_path *path,
1787 				 struct btrfs_extent_inline_ref **ref_ret,
1788 				 u64 bytenr, u64 num_bytes, u64 parent,
1789 				 u64 root_objectid, u64 owner, u64 offset)
1790 {
1791 	int ret;
1792 
1793 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794 					   bytenr, num_bytes, parent,
1795 					   root_objectid, owner, offset, 0);
1796 	if (ret != -ENOENT)
1797 		return ret;
1798 
1799 	btrfs_release_path(path);
1800 	*ref_ret = NULL;
1801 
1802 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804 					    root_objectid);
1805 	} else {
1806 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807 					     root_objectid, owner, offset);
1808 	}
1809 	return ret;
1810 }
1811 
1812 /*
1813  * helper to update/remove inline back ref
1814  */
1815 static noinline_for_stack
1816 void update_inline_extent_backref(struct btrfs_root *root,
1817 				  struct btrfs_path *path,
1818 				  struct btrfs_extent_inline_ref *iref,
1819 				  int refs_to_mod,
1820 				  struct btrfs_delayed_extent_op *extent_op,
1821 				  int *last_ref)
1822 {
1823 	struct extent_buffer *leaf;
1824 	struct btrfs_extent_item *ei;
1825 	struct btrfs_extent_data_ref *dref = NULL;
1826 	struct btrfs_shared_data_ref *sref = NULL;
1827 	unsigned long ptr;
1828 	unsigned long end;
1829 	u32 item_size;
1830 	int size;
1831 	int type;
1832 	u64 refs;
1833 
1834 	leaf = path->nodes[0];
1835 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 	refs = btrfs_extent_refs(leaf, ei);
1837 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838 	refs += refs_to_mod;
1839 	btrfs_set_extent_refs(leaf, ei, refs);
1840 	if (extent_op)
1841 		__run_delayed_extent_op(extent_op, leaf, ei);
1842 
1843 	type = btrfs_extent_inline_ref_type(leaf, iref);
1844 
1845 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847 		refs = btrfs_extent_data_ref_count(leaf, dref);
1848 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850 		refs = btrfs_shared_data_ref_count(leaf, sref);
1851 	} else {
1852 		refs = 1;
1853 		BUG_ON(refs_to_mod != -1);
1854 	}
1855 
1856 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857 	refs += refs_to_mod;
1858 
1859 	if (refs > 0) {
1860 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862 		else
1863 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864 	} else {
1865 		*last_ref = 1;
1866 		size =  btrfs_extent_inline_ref_size(type);
1867 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868 		ptr = (unsigned long)iref;
1869 		end = (unsigned long)ei + item_size;
1870 		if (ptr + size < end)
1871 			memmove_extent_buffer(leaf, ptr, ptr + size,
1872 					      end - ptr - size);
1873 		item_size -= size;
1874 		btrfs_truncate_item(root, path, item_size, 1);
1875 	}
1876 	btrfs_mark_buffer_dirty(leaf);
1877 }
1878 
1879 static noinline_for_stack
1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881 				 struct btrfs_root *root,
1882 				 struct btrfs_path *path,
1883 				 u64 bytenr, u64 num_bytes, u64 parent,
1884 				 u64 root_objectid, u64 owner,
1885 				 u64 offset, int refs_to_add,
1886 				 struct btrfs_delayed_extent_op *extent_op)
1887 {
1888 	struct btrfs_extent_inline_ref *iref;
1889 	int ret;
1890 
1891 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892 					   bytenr, num_bytes, parent,
1893 					   root_objectid, owner, offset, 1);
1894 	if (ret == 0) {
1895 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896 		update_inline_extent_backref(root, path, iref,
1897 					     refs_to_add, extent_op, NULL);
1898 	} else if (ret == -ENOENT) {
1899 		setup_inline_extent_backref(root, path, iref, parent,
1900 					    root_objectid, owner, offset,
1901 					    refs_to_add, extent_op);
1902 		ret = 0;
1903 	}
1904 	return ret;
1905 }
1906 
1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908 				 struct btrfs_root *root,
1909 				 struct btrfs_path *path,
1910 				 u64 bytenr, u64 parent, u64 root_objectid,
1911 				 u64 owner, u64 offset, int refs_to_add)
1912 {
1913 	int ret;
1914 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915 		BUG_ON(refs_to_add != 1);
1916 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1917 					    parent, root_objectid);
1918 	} else {
1919 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1920 					     parent, root_objectid,
1921 					     owner, offset, refs_to_add);
1922 	}
1923 	return ret;
1924 }
1925 
1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927 				 struct btrfs_root *root,
1928 				 struct btrfs_path *path,
1929 				 struct btrfs_extent_inline_ref *iref,
1930 				 int refs_to_drop, int is_data, int *last_ref)
1931 {
1932 	int ret = 0;
1933 
1934 	BUG_ON(!is_data && refs_to_drop != 1);
1935 	if (iref) {
1936 		update_inline_extent_backref(root, path, iref,
1937 					     -refs_to_drop, NULL, last_ref);
1938 	} else if (is_data) {
1939 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940 					     last_ref);
1941 	} else {
1942 		*last_ref = 1;
1943 		ret = btrfs_del_item(trans, root, path);
1944 	}
1945 	return ret;
1946 }
1947 
1948 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950 			       u64 *discarded_bytes)
1951 {
1952 	int j, ret = 0;
1953 	u64 bytes_left, end;
1954 	u64 aligned_start = ALIGN(start, 1 << 9);
1955 
1956 	if (WARN_ON(start != aligned_start)) {
1957 		len -= aligned_start - start;
1958 		len = round_down(len, 1 << 9);
1959 		start = aligned_start;
1960 	}
1961 
1962 	*discarded_bytes = 0;
1963 
1964 	if (!len)
1965 		return 0;
1966 
1967 	end = start + len;
1968 	bytes_left = len;
1969 
1970 	/* Skip any superblocks on this device. */
1971 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972 		u64 sb_start = btrfs_sb_offset(j);
1973 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974 		u64 size = sb_start - start;
1975 
1976 		if (!in_range(sb_start, start, bytes_left) &&
1977 		    !in_range(sb_end, start, bytes_left) &&
1978 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979 			continue;
1980 
1981 		/*
1982 		 * Superblock spans beginning of range.  Adjust start and
1983 		 * try again.
1984 		 */
1985 		if (sb_start <= start) {
1986 			start += sb_end - start;
1987 			if (start > end) {
1988 				bytes_left = 0;
1989 				break;
1990 			}
1991 			bytes_left = end - start;
1992 			continue;
1993 		}
1994 
1995 		if (size) {
1996 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997 						   GFP_NOFS, 0);
1998 			if (!ret)
1999 				*discarded_bytes += size;
2000 			else if (ret != -EOPNOTSUPP)
2001 				return ret;
2002 		}
2003 
2004 		start = sb_end;
2005 		if (start > end) {
2006 			bytes_left = 0;
2007 			break;
2008 		}
2009 		bytes_left = end - start;
2010 	}
2011 
2012 	if (bytes_left) {
2013 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014 					   GFP_NOFS, 0);
2015 		if (!ret)
2016 			*discarded_bytes += bytes_left;
2017 	}
2018 	return ret;
2019 }
2020 
2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022 			 u64 num_bytes, u64 *actual_bytes)
2023 {
2024 	int ret;
2025 	u64 discarded_bytes = 0;
2026 	struct btrfs_bio *bbio = NULL;
2027 
2028 
2029 	/* Tell the block device(s) that the sectors can be discarded */
2030 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031 			      bytenr, &num_bytes, &bbio, 0);
2032 	/* Error condition is -ENOMEM */
2033 	if (!ret) {
2034 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2035 		int i;
2036 
2037 
2038 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039 			u64 bytes;
2040 			if (!stripe->dev->can_discard)
2041 				continue;
2042 
2043 			ret = btrfs_issue_discard(stripe->dev->bdev,
2044 						  stripe->physical,
2045 						  stripe->length,
2046 						  &bytes);
2047 			if (!ret)
2048 				discarded_bytes += bytes;
2049 			else if (ret != -EOPNOTSUPP)
2050 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051 
2052 			/*
2053 			 * Just in case we get back EOPNOTSUPP for some reason,
2054 			 * just ignore the return value so we don't screw up
2055 			 * people calling discard_extent.
2056 			 */
2057 			ret = 0;
2058 		}
2059 		btrfs_put_bbio(bbio);
2060 	}
2061 
2062 	if (actual_bytes)
2063 		*actual_bytes = discarded_bytes;
2064 
2065 
2066 	if (ret == -EOPNOTSUPP)
2067 		ret = 0;
2068 	return ret;
2069 }
2070 
2071 /* Can return -ENOMEM */
2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073 			 struct btrfs_root *root,
2074 			 u64 bytenr, u64 num_bytes, u64 parent,
2075 			 u64 root_objectid, u64 owner, u64 offset)
2076 {
2077 	int ret;
2078 	struct btrfs_fs_info *fs_info = root->fs_info;
2079 
2080 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082 
2083 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 					num_bytes,
2086 					parent, root_objectid, (int)owner,
2087 					BTRFS_ADD_DELAYED_REF, NULL);
2088 	} else {
2089 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090 					num_bytes, parent, root_objectid,
2091 					owner, offset, 0,
2092 					BTRFS_ADD_DELAYED_REF, NULL);
2093 	}
2094 	return ret;
2095 }
2096 
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098 				  struct btrfs_root *root,
2099 				  struct btrfs_delayed_ref_node *node,
2100 				  u64 parent, u64 root_objectid,
2101 				  u64 owner, u64 offset, int refs_to_add,
2102 				  struct btrfs_delayed_extent_op *extent_op)
2103 {
2104 	struct btrfs_fs_info *fs_info = root->fs_info;
2105 	struct btrfs_path *path;
2106 	struct extent_buffer *leaf;
2107 	struct btrfs_extent_item *item;
2108 	struct btrfs_key key;
2109 	u64 bytenr = node->bytenr;
2110 	u64 num_bytes = node->num_bytes;
2111 	u64 refs;
2112 	int ret;
2113 
2114 	path = btrfs_alloc_path();
2115 	if (!path)
2116 		return -ENOMEM;
2117 
2118 	path->reada = 1;
2119 	path->leave_spinning = 1;
2120 	/* this will setup the path even if it fails to insert the back ref */
2121 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122 					   bytenr, num_bytes, parent,
2123 					   root_objectid, owner, offset,
2124 					   refs_to_add, extent_op);
2125 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2126 		goto out;
2127 
2128 	/*
2129 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2130 	 * inline extent ref, so just update the reference count and add a
2131 	 * normal backref.
2132 	 */
2133 	leaf = path->nodes[0];
2134 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136 	refs = btrfs_extent_refs(leaf, item);
2137 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 	if (extent_op)
2139 		__run_delayed_extent_op(extent_op, leaf, item);
2140 
2141 	btrfs_mark_buffer_dirty(leaf);
2142 	btrfs_release_path(path);
2143 
2144 	path->reada = 1;
2145 	path->leave_spinning = 1;
2146 	/* now insert the actual backref */
2147 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148 				    path, bytenr, parent, root_objectid,
2149 				    owner, offset, refs_to_add);
2150 	if (ret)
2151 		btrfs_abort_transaction(trans, root, ret);
2152 out:
2153 	btrfs_free_path(path);
2154 	return ret;
2155 }
2156 
2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158 				struct btrfs_root *root,
2159 				struct btrfs_delayed_ref_node *node,
2160 				struct btrfs_delayed_extent_op *extent_op,
2161 				int insert_reserved)
2162 {
2163 	int ret = 0;
2164 	struct btrfs_delayed_data_ref *ref;
2165 	struct btrfs_key ins;
2166 	u64 parent = 0;
2167 	u64 ref_root = 0;
2168 	u64 flags = 0;
2169 
2170 	ins.objectid = node->bytenr;
2171 	ins.offset = node->num_bytes;
2172 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2173 
2174 	ref = btrfs_delayed_node_to_data_ref(node);
2175 	trace_run_delayed_data_ref(node, ref, node->action);
2176 
2177 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178 		parent = ref->parent;
2179 	ref_root = ref->root;
2180 
2181 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182 		if (extent_op)
2183 			flags |= extent_op->flags_to_set;
2184 		ret = alloc_reserved_file_extent(trans, root,
2185 						 parent, ref_root, flags,
2186 						 ref->objectid, ref->offset,
2187 						 &ins, node->ref_mod);
2188 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190 					     ref_root, ref->objectid,
2191 					     ref->offset, node->ref_mod,
2192 					     extent_op);
2193 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194 		ret = __btrfs_free_extent(trans, root, node, parent,
2195 					  ref_root, ref->objectid,
2196 					  ref->offset, node->ref_mod,
2197 					  extent_op);
2198 	} else {
2199 		BUG();
2200 	}
2201 	return ret;
2202 }
2203 
2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205 				    struct extent_buffer *leaf,
2206 				    struct btrfs_extent_item *ei)
2207 {
2208 	u64 flags = btrfs_extent_flags(leaf, ei);
2209 	if (extent_op->update_flags) {
2210 		flags |= extent_op->flags_to_set;
2211 		btrfs_set_extent_flags(leaf, ei, flags);
2212 	}
2213 
2214 	if (extent_op->update_key) {
2215 		struct btrfs_tree_block_info *bi;
2216 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2218 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219 	}
2220 }
2221 
2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223 				 struct btrfs_root *root,
2224 				 struct btrfs_delayed_ref_node *node,
2225 				 struct btrfs_delayed_extent_op *extent_op)
2226 {
2227 	struct btrfs_key key;
2228 	struct btrfs_path *path;
2229 	struct btrfs_extent_item *ei;
2230 	struct extent_buffer *leaf;
2231 	u32 item_size;
2232 	int ret;
2233 	int err = 0;
2234 	int metadata = !extent_op->is_data;
2235 
2236 	if (trans->aborted)
2237 		return 0;
2238 
2239 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240 		metadata = 0;
2241 
2242 	path = btrfs_alloc_path();
2243 	if (!path)
2244 		return -ENOMEM;
2245 
2246 	key.objectid = node->bytenr;
2247 
2248 	if (metadata) {
2249 		key.type = BTRFS_METADATA_ITEM_KEY;
2250 		key.offset = extent_op->level;
2251 	} else {
2252 		key.type = BTRFS_EXTENT_ITEM_KEY;
2253 		key.offset = node->num_bytes;
2254 	}
2255 
2256 again:
2257 	path->reada = 1;
2258 	path->leave_spinning = 1;
2259 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260 				path, 0, 1);
2261 	if (ret < 0) {
2262 		err = ret;
2263 		goto out;
2264 	}
2265 	if (ret > 0) {
2266 		if (metadata) {
2267 			if (path->slots[0] > 0) {
2268 				path->slots[0]--;
2269 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2270 						      path->slots[0]);
2271 				if (key.objectid == node->bytenr &&
2272 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2273 				    key.offset == node->num_bytes)
2274 					ret = 0;
2275 			}
2276 			if (ret > 0) {
2277 				btrfs_release_path(path);
2278 				metadata = 0;
2279 
2280 				key.objectid = node->bytenr;
2281 				key.offset = node->num_bytes;
2282 				key.type = BTRFS_EXTENT_ITEM_KEY;
2283 				goto again;
2284 			}
2285 		} else {
2286 			err = -EIO;
2287 			goto out;
2288 		}
2289 	}
2290 
2291 	leaf = path->nodes[0];
2292 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294 	if (item_size < sizeof(*ei)) {
2295 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296 					     path, (u64)-1, 0);
2297 		if (ret < 0) {
2298 			err = ret;
2299 			goto out;
2300 		}
2301 		leaf = path->nodes[0];
2302 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 	}
2304 #endif
2305 	BUG_ON(item_size < sizeof(*ei));
2306 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307 	__run_delayed_extent_op(extent_op, leaf, ei);
2308 
2309 	btrfs_mark_buffer_dirty(leaf);
2310 out:
2311 	btrfs_free_path(path);
2312 	return err;
2313 }
2314 
2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316 				struct btrfs_root *root,
2317 				struct btrfs_delayed_ref_node *node,
2318 				struct btrfs_delayed_extent_op *extent_op,
2319 				int insert_reserved)
2320 {
2321 	int ret = 0;
2322 	struct btrfs_delayed_tree_ref *ref;
2323 	struct btrfs_key ins;
2324 	u64 parent = 0;
2325 	u64 ref_root = 0;
2326 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327 						 SKINNY_METADATA);
2328 
2329 	ref = btrfs_delayed_node_to_tree_ref(node);
2330 	trace_run_delayed_tree_ref(node, ref, node->action);
2331 
2332 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333 		parent = ref->parent;
2334 	ref_root = ref->root;
2335 
2336 	ins.objectid = node->bytenr;
2337 	if (skinny_metadata) {
2338 		ins.offset = ref->level;
2339 		ins.type = BTRFS_METADATA_ITEM_KEY;
2340 	} else {
2341 		ins.offset = node->num_bytes;
2342 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2343 	}
2344 
2345 	BUG_ON(node->ref_mod != 1);
2346 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2347 		BUG_ON(!extent_op || !extent_op->update_flags);
2348 		ret = alloc_reserved_tree_block(trans, root,
2349 						parent, ref_root,
2350 						extent_op->flags_to_set,
2351 						&extent_op->key,
2352 						ref->level, &ins);
2353 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2354 		ret = __btrfs_inc_extent_ref(trans, root, node,
2355 					     parent, ref_root,
2356 					     ref->level, 0, 1,
2357 					     extent_op);
2358 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2359 		ret = __btrfs_free_extent(trans, root, node,
2360 					  parent, ref_root,
2361 					  ref->level, 0, 1, extent_op);
2362 	} else {
2363 		BUG();
2364 	}
2365 	return ret;
2366 }
2367 
2368 /* helper function to actually process a single delayed ref entry */
2369 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2370 			       struct btrfs_root *root,
2371 			       struct btrfs_delayed_ref_node *node,
2372 			       struct btrfs_delayed_extent_op *extent_op,
2373 			       int insert_reserved)
2374 {
2375 	int ret = 0;
2376 
2377 	if (trans->aborted) {
2378 		if (insert_reserved)
2379 			btrfs_pin_extent(root, node->bytenr,
2380 					 node->num_bytes, 1);
2381 		return 0;
2382 	}
2383 
2384 	if (btrfs_delayed_ref_is_head(node)) {
2385 		struct btrfs_delayed_ref_head *head;
2386 		/*
2387 		 * we've hit the end of the chain and we were supposed
2388 		 * to insert this extent into the tree.  But, it got
2389 		 * deleted before we ever needed to insert it, so all
2390 		 * we have to do is clean up the accounting
2391 		 */
2392 		BUG_ON(extent_op);
2393 		head = btrfs_delayed_node_to_head(node);
2394 		trace_run_delayed_ref_head(node, head, node->action);
2395 
2396 		if (insert_reserved) {
2397 			btrfs_pin_extent(root, node->bytenr,
2398 					 node->num_bytes, 1);
2399 			if (head->is_data) {
2400 				ret = btrfs_del_csums(trans, root,
2401 						      node->bytenr,
2402 						      node->num_bytes);
2403 			}
2404 		}
2405 
2406 		/* Also free its reserved qgroup space */
2407 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2408 					      head->qgroup_ref_root,
2409 					      head->qgroup_reserved);
2410 		return ret;
2411 	}
2412 
2413 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2414 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2415 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2416 					   insert_reserved);
2417 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2418 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2419 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2420 					   insert_reserved);
2421 	else
2422 		BUG();
2423 	return ret;
2424 }
2425 
2426 static inline struct btrfs_delayed_ref_node *
2427 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2428 {
2429 	struct btrfs_delayed_ref_node *ref;
2430 
2431 	if (list_empty(&head->ref_list))
2432 		return NULL;
2433 
2434 	/*
2435 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2436 	 * This is to prevent a ref count from going down to zero, which deletes
2437 	 * the extent item from the extent tree, when there still are references
2438 	 * to add, which would fail because they would not find the extent item.
2439 	 */
2440 	list_for_each_entry(ref, &head->ref_list, list) {
2441 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2442 			return ref;
2443 	}
2444 
2445 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2446 			  list);
2447 }
2448 
2449 /*
2450  * Returns 0 on success or if called with an already aborted transaction.
2451  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2452  */
2453 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454 					     struct btrfs_root *root,
2455 					     unsigned long nr)
2456 {
2457 	struct btrfs_delayed_ref_root *delayed_refs;
2458 	struct btrfs_delayed_ref_node *ref;
2459 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2460 	struct btrfs_delayed_extent_op *extent_op;
2461 	struct btrfs_fs_info *fs_info = root->fs_info;
2462 	ktime_t start = ktime_get();
2463 	int ret;
2464 	unsigned long count = 0;
2465 	unsigned long actual_count = 0;
2466 	int must_insert_reserved = 0;
2467 
2468 	delayed_refs = &trans->transaction->delayed_refs;
2469 	while (1) {
2470 		if (!locked_ref) {
2471 			if (count >= nr)
2472 				break;
2473 
2474 			spin_lock(&delayed_refs->lock);
2475 			locked_ref = btrfs_select_ref_head(trans);
2476 			if (!locked_ref) {
2477 				spin_unlock(&delayed_refs->lock);
2478 				break;
2479 			}
2480 
2481 			/* grab the lock that says we are going to process
2482 			 * all the refs for this head */
2483 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2484 			spin_unlock(&delayed_refs->lock);
2485 			/*
2486 			 * we may have dropped the spin lock to get the head
2487 			 * mutex lock, and that might have given someone else
2488 			 * time to free the head.  If that's true, it has been
2489 			 * removed from our list and we can move on.
2490 			 */
2491 			if (ret == -EAGAIN) {
2492 				locked_ref = NULL;
2493 				count++;
2494 				continue;
2495 			}
2496 		}
2497 
2498 		/*
2499 		 * We need to try and merge add/drops of the same ref since we
2500 		 * can run into issues with relocate dropping the implicit ref
2501 		 * and then it being added back again before the drop can
2502 		 * finish.  If we merged anything we need to re-loop so we can
2503 		 * get a good ref.
2504 		 * Or we can get node references of the same type that weren't
2505 		 * merged when created due to bumps in the tree mod seq, and
2506 		 * we need to merge them to prevent adding an inline extent
2507 		 * backref before dropping it (triggering a BUG_ON at
2508 		 * insert_inline_extent_backref()).
2509 		 */
2510 		spin_lock(&locked_ref->lock);
2511 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2512 					 locked_ref);
2513 
2514 		/*
2515 		 * locked_ref is the head node, so we have to go one
2516 		 * node back for any delayed ref updates
2517 		 */
2518 		ref = select_delayed_ref(locked_ref);
2519 
2520 		if (ref && ref->seq &&
2521 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2522 			spin_unlock(&locked_ref->lock);
2523 			btrfs_delayed_ref_unlock(locked_ref);
2524 			spin_lock(&delayed_refs->lock);
2525 			locked_ref->processing = 0;
2526 			delayed_refs->num_heads_ready++;
2527 			spin_unlock(&delayed_refs->lock);
2528 			locked_ref = NULL;
2529 			cond_resched();
2530 			count++;
2531 			continue;
2532 		}
2533 
2534 		/*
2535 		 * record the must insert reserved flag before we
2536 		 * drop the spin lock.
2537 		 */
2538 		must_insert_reserved = locked_ref->must_insert_reserved;
2539 		locked_ref->must_insert_reserved = 0;
2540 
2541 		extent_op = locked_ref->extent_op;
2542 		locked_ref->extent_op = NULL;
2543 
2544 		if (!ref) {
2545 
2546 
2547 			/* All delayed refs have been processed, Go ahead
2548 			 * and send the head node to run_one_delayed_ref,
2549 			 * so that any accounting fixes can happen
2550 			 */
2551 			ref = &locked_ref->node;
2552 
2553 			if (extent_op && must_insert_reserved) {
2554 				btrfs_free_delayed_extent_op(extent_op);
2555 				extent_op = NULL;
2556 			}
2557 
2558 			if (extent_op) {
2559 				spin_unlock(&locked_ref->lock);
2560 				ret = run_delayed_extent_op(trans, root,
2561 							    ref, extent_op);
2562 				btrfs_free_delayed_extent_op(extent_op);
2563 
2564 				if (ret) {
2565 					/*
2566 					 * Need to reset must_insert_reserved if
2567 					 * there was an error so the abort stuff
2568 					 * can cleanup the reserved space
2569 					 * properly.
2570 					 */
2571 					if (must_insert_reserved)
2572 						locked_ref->must_insert_reserved = 1;
2573 					locked_ref->processing = 0;
2574 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2575 					btrfs_delayed_ref_unlock(locked_ref);
2576 					return ret;
2577 				}
2578 				continue;
2579 			}
2580 
2581 			/*
2582 			 * Need to drop our head ref lock and re-aqcuire the
2583 			 * delayed ref lock and then re-check to make sure
2584 			 * nobody got added.
2585 			 */
2586 			spin_unlock(&locked_ref->lock);
2587 			spin_lock(&delayed_refs->lock);
2588 			spin_lock(&locked_ref->lock);
2589 			if (!list_empty(&locked_ref->ref_list) ||
2590 			    locked_ref->extent_op) {
2591 				spin_unlock(&locked_ref->lock);
2592 				spin_unlock(&delayed_refs->lock);
2593 				continue;
2594 			}
2595 			ref->in_tree = 0;
2596 			delayed_refs->num_heads--;
2597 			rb_erase(&locked_ref->href_node,
2598 				 &delayed_refs->href_root);
2599 			spin_unlock(&delayed_refs->lock);
2600 		} else {
2601 			actual_count++;
2602 			ref->in_tree = 0;
2603 			list_del(&ref->list);
2604 		}
2605 		atomic_dec(&delayed_refs->num_entries);
2606 
2607 		if (!btrfs_delayed_ref_is_head(ref)) {
2608 			/*
2609 			 * when we play the delayed ref, also correct the
2610 			 * ref_mod on head
2611 			 */
2612 			switch (ref->action) {
2613 			case BTRFS_ADD_DELAYED_REF:
2614 			case BTRFS_ADD_DELAYED_EXTENT:
2615 				locked_ref->node.ref_mod -= ref->ref_mod;
2616 				break;
2617 			case BTRFS_DROP_DELAYED_REF:
2618 				locked_ref->node.ref_mod += ref->ref_mod;
2619 				break;
2620 			default:
2621 				WARN_ON(1);
2622 			}
2623 		}
2624 		spin_unlock(&locked_ref->lock);
2625 
2626 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2627 					  must_insert_reserved);
2628 
2629 		btrfs_free_delayed_extent_op(extent_op);
2630 		if (ret) {
2631 			locked_ref->processing = 0;
2632 			btrfs_delayed_ref_unlock(locked_ref);
2633 			btrfs_put_delayed_ref(ref);
2634 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2635 			return ret;
2636 		}
2637 
2638 		/*
2639 		 * If this node is a head, that means all the refs in this head
2640 		 * have been dealt with, and we will pick the next head to deal
2641 		 * with, so we must unlock the head and drop it from the cluster
2642 		 * list before we release it.
2643 		 */
2644 		if (btrfs_delayed_ref_is_head(ref)) {
2645 			if (locked_ref->is_data &&
2646 			    locked_ref->total_ref_mod < 0) {
2647 				spin_lock(&delayed_refs->lock);
2648 				delayed_refs->pending_csums -= ref->num_bytes;
2649 				spin_unlock(&delayed_refs->lock);
2650 			}
2651 			btrfs_delayed_ref_unlock(locked_ref);
2652 			locked_ref = NULL;
2653 		}
2654 		btrfs_put_delayed_ref(ref);
2655 		count++;
2656 		cond_resched();
2657 	}
2658 
2659 	/*
2660 	 * We don't want to include ref heads since we can have empty ref heads
2661 	 * and those will drastically skew our runtime down since we just do
2662 	 * accounting, no actual extent tree updates.
2663 	 */
2664 	if (actual_count > 0) {
2665 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2666 		u64 avg;
2667 
2668 		/*
2669 		 * We weigh the current average higher than our current runtime
2670 		 * to avoid large swings in the average.
2671 		 */
2672 		spin_lock(&delayed_refs->lock);
2673 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2674 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2675 		spin_unlock(&delayed_refs->lock);
2676 	}
2677 	return 0;
2678 }
2679 
2680 #ifdef SCRAMBLE_DELAYED_REFS
2681 /*
2682  * Normally delayed refs get processed in ascending bytenr order. This
2683  * correlates in most cases to the order added. To expose dependencies on this
2684  * order, we start to process the tree in the middle instead of the beginning
2685  */
2686 static u64 find_middle(struct rb_root *root)
2687 {
2688 	struct rb_node *n = root->rb_node;
2689 	struct btrfs_delayed_ref_node *entry;
2690 	int alt = 1;
2691 	u64 middle;
2692 	u64 first = 0, last = 0;
2693 
2694 	n = rb_first(root);
2695 	if (n) {
2696 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2697 		first = entry->bytenr;
2698 	}
2699 	n = rb_last(root);
2700 	if (n) {
2701 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2702 		last = entry->bytenr;
2703 	}
2704 	n = root->rb_node;
2705 
2706 	while (n) {
2707 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2708 		WARN_ON(!entry->in_tree);
2709 
2710 		middle = entry->bytenr;
2711 
2712 		if (alt)
2713 			n = n->rb_left;
2714 		else
2715 			n = n->rb_right;
2716 
2717 		alt = 1 - alt;
2718 	}
2719 	return middle;
2720 }
2721 #endif
2722 
2723 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2724 {
2725 	u64 num_bytes;
2726 
2727 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2728 			     sizeof(struct btrfs_extent_inline_ref));
2729 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2730 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2731 
2732 	/*
2733 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2734 	 * closer to what we're really going to want to ouse.
2735 	 */
2736 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2737 }
2738 
2739 /*
2740  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2741  * would require to store the csums for that many bytes.
2742  */
2743 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2744 {
2745 	u64 csum_size;
2746 	u64 num_csums_per_leaf;
2747 	u64 num_csums;
2748 
2749 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2750 	num_csums_per_leaf = div64_u64(csum_size,
2751 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2752 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2753 	num_csums += num_csums_per_leaf - 1;
2754 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2755 	return num_csums;
2756 }
2757 
2758 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2759 				       struct btrfs_root *root)
2760 {
2761 	struct btrfs_block_rsv *global_rsv;
2762 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2763 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2764 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2765 	u64 num_bytes, num_dirty_bgs_bytes;
2766 	int ret = 0;
2767 
2768 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2769 	num_heads = heads_to_leaves(root, num_heads);
2770 	if (num_heads > 1)
2771 		num_bytes += (num_heads - 1) * root->nodesize;
2772 	num_bytes <<= 1;
2773 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2774 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2775 							     num_dirty_bgs);
2776 	global_rsv = &root->fs_info->global_block_rsv;
2777 
2778 	/*
2779 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2780 	 * wiggle room since running delayed refs can create more delayed refs.
2781 	 */
2782 	if (global_rsv->space_info->full) {
2783 		num_dirty_bgs_bytes <<= 1;
2784 		num_bytes <<= 1;
2785 	}
2786 
2787 	spin_lock(&global_rsv->lock);
2788 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2789 		ret = 1;
2790 	spin_unlock(&global_rsv->lock);
2791 	return ret;
2792 }
2793 
2794 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2795 				       struct btrfs_root *root)
2796 {
2797 	struct btrfs_fs_info *fs_info = root->fs_info;
2798 	u64 num_entries =
2799 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2800 	u64 avg_runtime;
2801 	u64 val;
2802 
2803 	smp_mb();
2804 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2805 	val = num_entries * avg_runtime;
2806 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2807 		return 1;
2808 	if (val >= NSEC_PER_SEC / 2)
2809 		return 2;
2810 
2811 	return btrfs_check_space_for_delayed_refs(trans, root);
2812 }
2813 
2814 struct async_delayed_refs {
2815 	struct btrfs_root *root;
2816 	int count;
2817 	int error;
2818 	int sync;
2819 	struct completion wait;
2820 	struct btrfs_work work;
2821 };
2822 
2823 static void delayed_ref_async_start(struct btrfs_work *work)
2824 {
2825 	struct async_delayed_refs *async;
2826 	struct btrfs_trans_handle *trans;
2827 	int ret;
2828 
2829 	async = container_of(work, struct async_delayed_refs, work);
2830 
2831 	trans = btrfs_join_transaction(async->root);
2832 	if (IS_ERR(trans)) {
2833 		async->error = PTR_ERR(trans);
2834 		goto done;
2835 	}
2836 
2837 	/*
2838 	 * trans->sync means that when we call end_transaciton, we won't
2839 	 * wait on delayed refs
2840 	 */
2841 	trans->sync = true;
2842 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2843 	if (ret)
2844 		async->error = ret;
2845 
2846 	ret = btrfs_end_transaction(trans, async->root);
2847 	if (ret && !async->error)
2848 		async->error = ret;
2849 done:
2850 	if (async->sync)
2851 		complete(&async->wait);
2852 	else
2853 		kfree(async);
2854 }
2855 
2856 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2857 				 unsigned long count, int wait)
2858 {
2859 	struct async_delayed_refs *async;
2860 	int ret;
2861 
2862 	async = kmalloc(sizeof(*async), GFP_NOFS);
2863 	if (!async)
2864 		return -ENOMEM;
2865 
2866 	async->root = root->fs_info->tree_root;
2867 	async->count = count;
2868 	async->error = 0;
2869 	if (wait)
2870 		async->sync = 1;
2871 	else
2872 		async->sync = 0;
2873 	init_completion(&async->wait);
2874 
2875 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2876 			delayed_ref_async_start, NULL, NULL);
2877 
2878 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2879 
2880 	if (wait) {
2881 		wait_for_completion(&async->wait);
2882 		ret = async->error;
2883 		kfree(async);
2884 		return ret;
2885 	}
2886 	return 0;
2887 }
2888 
2889 /*
2890  * this starts processing the delayed reference count updates and
2891  * extent insertions we have queued up so far.  count can be
2892  * 0, which means to process everything in the tree at the start
2893  * of the run (but not newly added entries), or it can be some target
2894  * number you'd like to process.
2895  *
2896  * Returns 0 on success or if called with an aborted transaction
2897  * Returns <0 on error and aborts the transaction
2898  */
2899 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2900 			   struct btrfs_root *root, unsigned long count)
2901 {
2902 	struct rb_node *node;
2903 	struct btrfs_delayed_ref_root *delayed_refs;
2904 	struct btrfs_delayed_ref_head *head;
2905 	int ret;
2906 	int run_all = count == (unsigned long)-1;
2907 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2908 
2909 	/* We'll clean this up in btrfs_cleanup_transaction */
2910 	if (trans->aborted)
2911 		return 0;
2912 
2913 	if (root == root->fs_info->extent_root)
2914 		root = root->fs_info->tree_root;
2915 
2916 	delayed_refs = &trans->transaction->delayed_refs;
2917 	if (count == 0)
2918 		count = atomic_read(&delayed_refs->num_entries) * 2;
2919 
2920 again:
2921 #ifdef SCRAMBLE_DELAYED_REFS
2922 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2923 #endif
2924 	trans->can_flush_pending_bgs = false;
2925 	ret = __btrfs_run_delayed_refs(trans, root, count);
2926 	if (ret < 0) {
2927 		btrfs_abort_transaction(trans, root, ret);
2928 		return ret;
2929 	}
2930 
2931 	if (run_all) {
2932 		if (!list_empty(&trans->new_bgs))
2933 			btrfs_create_pending_block_groups(trans, root);
2934 
2935 		spin_lock(&delayed_refs->lock);
2936 		node = rb_first(&delayed_refs->href_root);
2937 		if (!node) {
2938 			spin_unlock(&delayed_refs->lock);
2939 			goto out;
2940 		}
2941 		count = (unsigned long)-1;
2942 
2943 		while (node) {
2944 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2945 					href_node);
2946 			if (btrfs_delayed_ref_is_head(&head->node)) {
2947 				struct btrfs_delayed_ref_node *ref;
2948 
2949 				ref = &head->node;
2950 				atomic_inc(&ref->refs);
2951 
2952 				spin_unlock(&delayed_refs->lock);
2953 				/*
2954 				 * Mutex was contended, block until it's
2955 				 * released and try again
2956 				 */
2957 				mutex_lock(&head->mutex);
2958 				mutex_unlock(&head->mutex);
2959 
2960 				btrfs_put_delayed_ref(ref);
2961 				cond_resched();
2962 				goto again;
2963 			} else {
2964 				WARN_ON(1);
2965 			}
2966 			node = rb_next(node);
2967 		}
2968 		spin_unlock(&delayed_refs->lock);
2969 		cond_resched();
2970 		goto again;
2971 	}
2972 out:
2973 	assert_qgroups_uptodate(trans);
2974 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
2975 	return 0;
2976 }
2977 
2978 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2979 				struct btrfs_root *root,
2980 				u64 bytenr, u64 num_bytes, u64 flags,
2981 				int level, int is_data)
2982 {
2983 	struct btrfs_delayed_extent_op *extent_op;
2984 	int ret;
2985 
2986 	extent_op = btrfs_alloc_delayed_extent_op();
2987 	if (!extent_op)
2988 		return -ENOMEM;
2989 
2990 	extent_op->flags_to_set = flags;
2991 	extent_op->update_flags = 1;
2992 	extent_op->update_key = 0;
2993 	extent_op->is_data = is_data ? 1 : 0;
2994 	extent_op->level = level;
2995 
2996 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2997 					  num_bytes, extent_op);
2998 	if (ret)
2999 		btrfs_free_delayed_extent_op(extent_op);
3000 	return ret;
3001 }
3002 
3003 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3004 				      struct btrfs_root *root,
3005 				      struct btrfs_path *path,
3006 				      u64 objectid, u64 offset, u64 bytenr)
3007 {
3008 	struct btrfs_delayed_ref_head *head;
3009 	struct btrfs_delayed_ref_node *ref;
3010 	struct btrfs_delayed_data_ref *data_ref;
3011 	struct btrfs_delayed_ref_root *delayed_refs;
3012 	int ret = 0;
3013 
3014 	delayed_refs = &trans->transaction->delayed_refs;
3015 	spin_lock(&delayed_refs->lock);
3016 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3017 	if (!head) {
3018 		spin_unlock(&delayed_refs->lock);
3019 		return 0;
3020 	}
3021 
3022 	if (!mutex_trylock(&head->mutex)) {
3023 		atomic_inc(&head->node.refs);
3024 		spin_unlock(&delayed_refs->lock);
3025 
3026 		btrfs_release_path(path);
3027 
3028 		/*
3029 		 * Mutex was contended, block until it's released and let
3030 		 * caller try again
3031 		 */
3032 		mutex_lock(&head->mutex);
3033 		mutex_unlock(&head->mutex);
3034 		btrfs_put_delayed_ref(&head->node);
3035 		return -EAGAIN;
3036 	}
3037 	spin_unlock(&delayed_refs->lock);
3038 
3039 	spin_lock(&head->lock);
3040 	list_for_each_entry(ref, &head->ref_list, list) {
3041 		/* If it's a shared ref we know a cross reference exists */
3042 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3043 			ret = 1;
3044 			break;
3045 		}
3046 
3047 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3048 
3049 		/*
3050 		 * If our ref doesn't match the one we're currently looking at
3051 		 * then we have a cross reference.
3052 		 */
3053 		if (data_ref->root != root->root_key.objectid ||
3054 		    data_ref->objectid != objectid ||
3055 		    data_ref->offset != offset) {
3056 			ret = 1;
3057 			break;
3058 		}
3059 	}
3060 	spin_unlock(&head->lock);
3061 	mutex_unlock(&head->mutex);
3062 	return ret;
3063 }
3064 
3065 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3066 					struct btrfs_root *root,
3067 					struct btrfs_path *path,
3068 					u64 objectid, u64 offset, u64 bytenr)
3069 {
3070 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3071 	struct extent_buffer *leaf;
3072 	struct btrfs_extent_data_ref *ref;
3073 	struct btrfs_extent_inline_ref *iref;
3074 	struct btrfs_extent_item *ei;
3075 	struct btrfs_key key;
3076 	u32 item_size;
3077 	int ret;
3078 
3079 	key.objectid = bytenr;
3080 	key.offset = (u64)-1;
3081 	key.type = BTRFS_EXTENT_ITEM_KEY;
3082 
3083 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3084 	if (ret < 0)
3085 		goto out;
3086 	BUG_ON(ret == 0); /* Corruption */
3087 
3088 	ret = -ENOENT;
3089 	if (path->slots[0] == 0)
3090 		goto out;
3091 
3092 	path->slots[0]--;
3093 	leaf = path->nodes[0];
3094 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3095 
3096 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3097 		goto out;
3098 
3099 	ret = 1;
3100 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3101 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3102 	if (item_size < sizeof(*ei)) {
3103 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3104 		goto out;
3105 	}
3106 #endif
3107 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108 
3109 	if (item_size != sizeof(*ei) +
3110 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 		goto out;
3112 
3113 	if (btrfs_extent_generation(leaf, ei) <=
3114 	    btrfs_root_last_snapshot(&root->root_item))
3115 		goto out;
3116 
3117 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3119 	    BTRFS_EXTENT_DATA_REF_KEY)
3120 		goto out;
3121 
3122 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3123 	if (btrfs_extent_refs(leaf, ei) !=
3124 	    btrfs_extent_data_ref_count(leaf, ref) ||
3125 	    btrfs_extent_data_ref_root(leaf, ref) !=
3126 	    root->root_key.objectid ||
3127 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3128 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3129 		goto out;
3130 
3131 	ret = 0;
3132 out:
3133 	return ret;
3134 }
3135 
3136 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3137 			  struct btrfs_root *root,
3138 			  u64 objectid, u64 offset, u64 bytenr)
3139 {
3140 	struct btrfs_path *path;
3141 	int ret;
3142 	int ret2;
3143 
3144 	path = btrfs_alloc_path();
3145 	if (!path)
3146 		return -ENOENT;
3147 
3148 	do {
3149 		ret = check_committed_ref(trans, root, path, objectid,
3150 					  offset, bytenr);
3151 		if (ret && ret != -ENOENT)
3152 			goto out;
3153 
3154 		ret2 = check_delayed_ref(trans, root, path, objectid,
3155 					 offset, bytenr);
3156 	} while (ret2 == -EAGAIN);
3157 
3158 	if (ret2 && ret2 != -ENOENT) {
3159 		ret = ret2;
3160 		goto out;
3161 	}
3162 
3163 	if (ret != -ENOENT || ret2 != -ENOENT)
3164 		ret = 0;
3165 out:
3166 	btrfs_free_path(path);
3167 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 		WARN_ON(ret > 0);
3169 	return ret;
3170 }
3171 
3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 			   struct btrfs_root *root,
3174 			   struct extent_buffer *buf,
3175 			   int full_backref, int inc)
3176 {
3177 	u64 bytenr;
3178 	u64 num_bytes;
3179 	u64 parent;
3180 	u64 ref_root;
3181 	u32 nritems;
3182 	struct btrfs_key key;
3183 	struct btrfs_file_extent_item *fi;
3184 	int i;
3185 	int level;
3186 	int ret = 0;
3187 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3188 			    u64, u64, u64, u64, u64, u64);
3189 
3190 
3191 	if (btrfs_test_is_dummy_root(root))
3192 		return 0;
3193 
3194 	ref_root = btrfs_header_owner(buf);
3195 	nritems = btrfs_header_nritems(buf);
3196 	level = btrfs_header_level(buf);
3197 
3198 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3199 		return 0;
3200 
3201 	if (inc)
3202 		process_func = btrfs_inc_extent_ref;
3203 	else
3204 		process_func = btrfs_free_extent;
3205 
3206 	if (full_backref)
3207 		parent = buf->start;
3208 	else
3209 		parent = 0;
3210 
3211 	for (i = 0; i < nritems; i++) {
3212 		if (level == 0) {
3213 			btrfs_item_key_to_cpu(buf, &key, i);
3214 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3215 				continue;
3216 			fi = btrfs_item_ptr(buf, i,
3217 					    struct btrfs_file_extent_item);
3218 			if (btrfs_file_extent_type(buf, fi) ==
3219 			    BTRFS_FILE_EXTENT_INLINE)
3220 				continue;
3221 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3222 			if (bytenr == 0)
3223 				continue;
3224 
3225 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3226 			key.offset -= btrfs_file_extent_offset(buf, fi);
3227 			ret = process_func(trans, root, bytenr, num_bytes,
3228 					   parent, ref_root, key.objectid,
3229 					   key.offset);
3230 			if (ret)
3231 				goto fail;
3232 		} else {
3233 			bytenr = btrfs_node_blockptr(buf, i);
3234 			num_bytes = root->nodesize;
3235 			ret = process_func(trans, root, bytenr, num_bytes,
3236 					   parent, ref_root, level - 1, 0);
3237 			if (ret)
3238 				goto fail;
3239 		}
3240 	}
3241 	return 0;
3242 fail:
3243 	return ret;
3244 }
3245 
3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3247 		  struct extent_buffer *buf, int full_backref)
3248 {
3249 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3250 }
3251 
3252 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3253 		  struct extent_buffer *buf, int full_backref)
3254 {
3255 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3256 }
3257 
3258 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3259 				 struct btrfs_root *root,
3260 				 struct btrfs_path *path,
3261 				 struct btrfs_block_group_cache *cache)
3262 {
3263 	int ret;
3264 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3265 	unsigned long bi;
3266 	struct extent_buffer *leaf;
3267 
3268 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3269 	if (ret) {
3270 		if (ret > 0)
3271 			ret = -ENOENT;
3272 		goto fail;
3273 	}
3274 
3275 	leaf = path->nodes[0];
3276 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3277 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3278 	btrfs_mark_buffer_dirty(leaf);
3279 fail:
3280 	btrfs_release_path(path);
3281 	return ret;
3282 
3283 }
3284 
3285 static struct btrfs_block_group_cache *
3286 next_block_group(struct btrfs_root *root,
3287 		 struct btrfs_block_group_cache *cache)
3288 {
3289 	struct rb_node *node;
3290 
3291 	spin_lock(&root->fs_info->block_group_cache_lock);
3292 
3293 	/* If our block group was removed, we need a full search. */
3294 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3295 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3296 
3297 		spin_unlock(&root->fs_info->block_group_cache_lock);
3298 		btrfs_put_block_group(cache);
3299 		cache = btrfs_lookup_first_block_group(root->fs_info,
3300 						       next_bytenr);
3301 		return cache;
3302 	}
3303 	node = rb_next(&cache->cache_node);
3304 	btrfs_put_block_group(cache);
3305 	if (node) {
3306 		cache = rb_entry(node, struct btrfs_block_group_cache,
3307 				 cache_node);
3308 		btrfs_get_block_group(cache);
3309 	} else
3310 		cache = NULL;
3311 	spin_unlock(&root->fs_info->block_group_cache_lock);
3312 	return cache;
3313 }
3314 
3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 			    struct btrfs_trans_handle *trans,
3317 			    struct btrfs_path *path)
3318 {
3319 	struct btrfs_root *root = block_group->fs_info->tree_root;
3320 	struct inode *inode = NULL;
3321 	u64 alloc_hint = 0;
3322 	int dcs = BTRFS_DC_ERROR;
3323 	u64 num_pages = 0;
3324 	int retries = 0;
3325 	int ret = 0;
3326 
3327 	/*
3328 	 * If this block group is smaller than 100 megs don't bother caching the
3329 	 * block group.
3330 	 */
3331 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3332 		spin_lock(&block_group->lock);
3333 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3334 		spin_unlock(&block_group->lock);
3335 		return 0;
3336 	}
3337 
3338 	if (trans->aborted)
3339 		return 0;
3340 again:
3341 	inode = lookup_free_space_inode(root, block_group, path);
3342 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3343 		ret = PTR_ERR(inode);
3344 		btrfs_release_path(path);
3345 		goto out;
3346 	}
3347 
3348 	if (IS_ERR(inode)) {
3349 		BUG_ON(retries);
3350 		retries++;
3351 
3352 		if (block_group->ro)
3353 			goto out_free;
3354 
3355 		ret = create_free_space_inode(root, trans, block_group, path);
3356 		if (ret)
3357 			goto out_free;
3358 		goto again;
3359 	}
3360 
3361 	/* We've already setup this transaction, go ahead and exit */
3362 	if (block_group->cache_generation == trans->transid &&
3363 	    i_size_read(inode)) {
3364 		dcs = BTRFS_DC_SETUP;
3365 		goto out_put;
3366 	}
3367 
3368 	/*
3369 	 * We want to set the generation to 0, that way if anything goes wrong
3370 	 * from here on out we know not to trust this cache when we load up next
3371 	 * time.
3372 	 */
3373 	BTRFS_I(inode)->generation = 0;
3374 	ret = btrfs_update_inode(trans, root, inode);
3375 	if (ret) {
3376 		/*
3377 		 * So theoretically we could recover from this, simply set the
3378 		 * super cache generation to 0 so we know to invalidate the
3379 		 * cache, but then we'd have to keep track of the block groups
3380 		 * that fail this way so we know we _have_ to reset this cache
3381 		 * before the next commit or risk reading stale cache.  So to
3382 		 * limit our exposure to horrible edge cases lets just abort the
3383 		 * transaction, this only happens in really bad situations
3384 		 * anyway.
3385 		 */
3386 		btrfs_abort_transaction(trans, root, ret);
3387 		goto out_put;
3388 	}
3389 	WARN_ON(ret);
3390 
3391 	if (i_size_read(inode) > 0) {
3392 		ret = btrfs_check_trunc_cache_free_space(root,
3393 					&root->fs_info->global_block_rsv);
3394 		if (ret)
3395 			goto out_put;
3396 
3397 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3398 		if (ret)
3399 			goto out_put;
3400 	}
3401 
3402 	spin_lock(&block_group->lock);
3403 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3404 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3405 		/*
3406 		 * don't bother trying to write stuff out _if_
3407 		 * a) we're not cached,
3408 		 * b) we're with nospace_cache mount option.
3409 		 */
3410 		dcs = BTRFS_DC_WRITTEN;
3411 		spin_unlock(&block_group->lock);
3412 		goto out_put;
3413 	}
3414 	spin_unlock(&block_group->lock);
3415 
3416 	/*
3417 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3418 	 * skip doing the setup, we've already cleared the cache so we're safe.
3419 	 */
3420 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3421 		ret = -ENOSPC;
3422 		goto out_put;
3423 	}
3424 
3425 	/*
3426 	 * Try to preallocate enough space based on how big the block group is.
3427 	 * Keep in mind this has to include any pinned space which could end up
3428 	 * taking up quite a bit since it's not folded into the other space
3429 	 * cache.
3430 	 */
3431 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3432 	if (!num_pages)
3433 		num_pages = 1;
3434 
3435 	num_pages *= 16;
3436 	num_pages *= PAGE_CACHE_SIZE;
3437 
3438 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3439 	if (ret)
3440 		goto out_put;
3441 
3442 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3443 					      num_pages, num_pages,
3444 					      &alloc_hint);
3445 	/*
3446 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3447 	 * of metadata or split extents when writing the cache out, which means
3448 	 * we can enospc if we are heavily fragmented in addition to just normal
3449 	 * out of space conditions.  So if we hit this just skip setting up any
3450 	 * other block groups for this transaction, maybe we'll unpin enough
3451 	 * space the next time around.
3452 	 */
3453 	if (!ret)
3454 		dcs = BTRFS_DC_SETUP;
3455 	else if (ret == -ENOSPC)
3456 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3457 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3458 
3459 out_put:
3460 	iput(inode);
3461 out_free:
3462 	btrfs_release_path(path);
3463 out:
3464 	spin_lock(&block_group->lock);
3465 	if (!ret && dcs == BTRFS_DC_SETUP)
3466 		block_group->cache_generation = trans->transid;
3467 	block_group->disk_cache_state = dcs;
3468 	spin_unlock(&block_group->lock);
3469 
3470 	return ret;
3471 }
3472 
3473 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3474 			    struct btrfs_root *root)
3475 {
3476 	struct btrfs_block_group_cache *cache, *tmp;
3477 	struct btrfs_transaction *cur_trans = trans->transaction;
3478 	struct btrfs_path *path;
3479 
3480 	if (list_empty(&cur_trans->dirty_bgs) ||
3481 	    !btrfs_test_opt(root, SPACE_CACHE))
3482 		return 0;
3483 
3484 	path = btrfs_alloc_path();
3485 	if (!path)
3486 		return -ENOMEM;
3487 
3488 	/* Could add new block groups, use _safe just in case */
3489 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3490 				 dirty_list) {
3491 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3492 			cache_save_setup(cache, trans, path);
3493 	}
3494 
3495 	btrfs_free_path(path);
3496 	return 0;
3497 }
3498 
3499 /*
3500  * transaction commit does final block group cache writeback during a
3501  * critical section where nothing is allowed to change the FS.  This is
3502  * required in order for the cache to actually match the block group,
3503  * but can introduce a lot of latency into the commit.
3504  *
3505  * So, btrfs_start_dirty_block_groups is here to kick off block group
3506  * cache IO.  There's a chance we'll have to redo some of it if the
3507  * block group changes again during the commit, but it greatly reduces
3508  * the commit latency by getting rid of the easy block groups while
3509  * we're still allowing others to join the commit.
3510  */
3511 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3512 				   struct btrfs_root *root)
3513 {
3514 	struct btrfs_block_group_cache *cache;
3515 	struct btrfs_transaction *cur_trans = trans->transaction;
3516 	int ret = 0;
3517 	int should_put;
3518 	struct btrfs_path *path = NULL;
3519 	LIST_HEAD(dirty);
3520 	struct list_head *io = &cur_trans->io_bgs;
3521 	int num_started = 0;
3522 	int loops = 0;
3523 
3524 	spin_lock(&cur_trans->dirty_bgs_lock);
3525 	if (list_empty(&cur_trans->dirty_bgs)) {
3526 		spin_unlock(&cur_trans->dirty_bgs_lock);
3527 		return 0;
3528 	}
3529 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3530 	spin_unlock(&cur_trans->dirty_bgs_lock);
3531 
3532 again:
3533 	/*
3534 	 * make sure all the block groups on our dirty list actually
3535 	 * exist
3536 	 */
3537 	btrfs_create_pending_block_groups(trans, root);
3538 
3539 	if (!path) {
3540 		path = btrfs_alloc_path();
3541 		if (!path)
3542 			return -ENOMEM;
3543 	}
3544 
3545 	/*
3546 	 * cache_write_mutex is here only to save us from balance or automatic
3547 	 * removal of empty block groups deleting this block group while we are
3548 	 * writing out the cache
3549 	 */
3550 	mutex_lock(&trans->transaction->cache_write_mutex);
3551 	while (!list_empty(&dirty)) {
3552 		cache = list_first_entry(&dirty,
3553 					 struct btrfs_block_group_cache,
3554 					 dirty_list);
3555 		/*
3556 		 * this can happen if something re-dirties a block
3557 		 * group that is already under IO.  Just wait for it to
3558 		 * finish and then do it all again
3559 		 */
3560 		if (!list_empty(&cache->io_list)) {
3561 			list_del_init(&cache->io_list);
3562 			btrfs_wait_cache_io(root, trans, cache,
3563 					    &cache->io_ctl, path,
3564 					    cache->key.objectid);
3565 			btrfs_put_block_group(cache);
3566 		}
3567 
3568 
3569 		/*
3570 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3571 		 * if it should update the cache_state.  Don't delete
3572 		 * until after we wait.
3573 		 *
3574 		 * Since we're not running in the commit critical section
3575 		 * we need the dirty_bgs_lock to protect from update_block_group
3576 		 */
3577 		spin_lock(&cur_trans->dirty_bgs_lock);
3578 		list_del_init(&cache->dirty_list);
3579 		spin_unlock(&cur_trans->dirty_bgs_lock);
3580 
3581 		should_put = 1;
3582 
3583 		cache_save_setup(cache, trans, path);
3584 
3585 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 			cache->io_ctl.inode = NULL;
3587 			ret = btrfs_write_out_cache(root, trans, cache, path);
3588 			if (ret == 0 && cache->io_ctl.inode) {
3589 				num_started++;
3590 				should_put = 0;
3591 
3592 				/*
3593 				 * the cache_write_mutex is protecting
3594 				 * the io_list
3595 				 */
3596 				list_add_tail(&cache->io_list, io);
3597 			} else {
3598 				/*
3599 				 * if we failed to write the cache, the
3600 				 * generation will be bad and life goes on
3601 				 */
3602 				ret = 0;
3603 			}
3604 		}
3605 		if (!ret) {
3606 			ret = write_one_cache_group(trans, root, path, cache);
3607 			/*
3608 			 * Our block group might still be attached to the list
3609 			 * of new block groups in the transaction handle of some
3610 			 * other task (struct btrfs_trans_handle->new_bgs). This
3611 			 * means its block group item isn't yet in the extent
3612 			 * tree. If this happens ignore the error, as we will
3613 			 * try again later in the critical section of the
3614 			 * transaction commit.
3615 			 */
3616 			if (ret == -ENOENT) {
3617 				ret = 0;
3618 				spin_lock(&cur_trans->dirty_bgs_lock);
3619 				if (list_empty(&cache->dirty_list)) {
3620 					list_add_tail(&cache->dirty_list,
3621 						      &cur_trans->dirty_bgs);
3622 					btrfs_get_block_group(cache);
3623 				}
3624 				spin_unlock(&cur_trans->dirty_bgs_lock);
3625 			} else if (ret) {
3626 				btrfs_abort_transaction(trans, root, ret);
3627 			}
3628 		}
3629 
3630 		/* if its not on the io list, we need to put the block group */
3631 		if (should_put)
3632 			btrfs_put_block_group(cache);
3633 
3634 		if (ret)
3635 			break;
3636 
3637 		/*
3638 		 * Avoid blocking other tasks for too long. It might even save
3639 		 * us from writing caches for block groups that are going to be
3640 		 * removed.
3641 		 */
3642 		mutex_unlock(&trans->transaction->cache_write_mutex);
3643 		mutex_lock(&trans->transaction->cache_write_mutex);
3644 	}
3645 	mutex_unlock(&trans->transaction->cache_write_mutex);
3646 
3647 	/*
3648 	 * go through delayed refs for all the stuff we've just kicked off
3649 	 * and then loop back (just once)
3650 	 */
3651 	ret = btrfs_run_delayed_refs(trans, root, 0);
3652 	if (!ret && loops == 0) {
3653 		loops++;
3654 		spin_lock(&cur_trans->dirty_bgs_lock);
3655 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3656 		/*
3657 		 * dirty_bgs_lock protects us from concurrent block group
3658 		 * deletes too (not just cache_write_mutex).
3659 		 */
3660 		if (!list_empty(&dirty)) {
3661 			spin_unlock(&cur_trans->dirty_bgs_lock);
3662 			goto again;
3663 		}
3664 		spin_unlock(&cur_trans->dirty_bgs_lock);
3665 	}
3666 
3667 	btrfs_free_path(path);
3668 	return ret;
3669 }
3670 
3671 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3672 				   struct btrfs_root *root)
3673 {
3674 	struct btrfs_block_group_cache *cache;
3675 	struct btrfs_transaction *cur_trans = trans->transaction;
3676 	int ret = 0;
3677 	int should_put;
3678 	struct btrfs_path *path;
3679 	struct list_head *io = &cur_trans->io_bgs;
3680 	int num_started = 0;
3681 
3682 	path = btrfs_alloc_path();
3683 	if (!path)
3684 		return -ENOMEM;
3685 
3686 	/*
3687 	 * We don't need the lock here since we are protected by the transaction
3688 	 * commit.  We want to do the cache_save_setup first and then run the
3689 	 * delayed refs to make sure we have the best chance at doing this all
3690 	 * in one shot.
3691 	 */
3692 	while (!list_empty(&cur_trans->dirty_bgs)) {
3693 		cache = list_first_entry(&cur_trans->dirty_bgs,
3694 					 struct btrfs_block_group_cache,
3695 					 dirty_list);
3696 
3697 		/*
3698 		 * this can happen if cache_save_setup re-dirties a block
3699 		 * group that is already under IO.  Just wait for it to
3700 		 * finish and then do it all again
3701 		 */
3702 		if (!list_empty(&cache->io_list)) {
3703 			list_del_init(&cache->io_list);
3704 			btrfs_wait_cache_io(root, trans, cache,
3705 					    &cache->io_ctl, path,
3706 					    cache->key.objectid);
3707 			btrfs_put_block_group(cache);
3708 		}
3709 
3710 		/*
3711 		 * don't remove from the dirty list until after we've waited
3712 		 * on any pending IO
3713 		 */
3714 		list_del_init(&cache->dirty_list);
3715 		should_put = 1;
3716 
3717 		cache_save_setup(cache, trans, path);
3718 
3719 		if (!ret)
3720 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3721 
3722 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3723 			cache->io_ctl.inode = NULL;
3724 			ret = btrfs_write_out_cache(root, trans, cache, path);
3725 			if (ret == 0 && cache->io_ctl.inode) {
3726 				num_started++;
3727 				should_put = 0;
3728 				list_add_tail(&cache->io_list, io);
3729 			} else {
3730 				/*
3731 				 * if we failed to write the cache, the
3732 				 * generation will be bad and life goes on
3733 				 */
3734 				ret = 0;
3735 			}
3736 		}
3737 		if (!ret) {
3738 			ret = write_one_cache_group(trans, root, path, cache);
3739 			if (ret)
3740 				btrfs_abort_transaction(trans, root, ret);
3741 		}
3742 
3743 		/* if its not on the io list, we need to put the block group */
3744 		if (should_put)
3745 			btrfs_put_block_group(cache);
3746 	}
3747 
3748 	while (!list_empty(io)) {
3749 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3750 					 io_list);
3751 		list_del_init(&cache->io_list);
3752 		btrfs_wait_cache_io(root, trans, cache,
3753 				    &cache->io_ctl, path, cache->key.objectid);
3754 		btrfs_put_block_group(cache);
3755 	}
3756 
3757 	btrfs_free_path(path);
3758 	return ret;
3759 }
3760 
3761 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3762 {
3763 	struct btrfs_block_group_cache *block_group;
3764 	int readonly = 0;
3765 
3766 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3767 	if (!block_group || block_group->ro)
3768 		readonly = 1;
3769 	if (block_group)
3770 		btrfs_put_block_group(block_group);
3771 	return readonly;
3772 }
3773 
3774 static const char *alloc_name(u64 flags)
3775 {
3776 	switch (flags) {
3777 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3778 		return "mixed";
3779 	case BTRFS_BLOCK_GROUP_METADATA:
3780 		return "metadata";
3781 	case BTRFS_BLOCK_GROUP_DATA:
3782 		return "data";
3783 	case BTRFS_BLOCK_GROUP_SYSTEM:
3784 		return "system";
3785 	default:
3786 		WARN_ON(1);
3787 		return "invalid-combination";
3788 	};
3789 }
3790 
3791 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3792 			     u64 total_bytes, u64 bytes_used,
3793 			     struct btrfs_space_info **space_info)
3794 {
3795 	struct btrfs_space_info *found;
3796 	int i;
3797 	int factor;
3798 	int ret;
3799 
3800 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3801 		     BTRFS_BLOCK_GROUP_RAID10))
3802 		factor = 2;
3803 	else
3804 		factor = 1;
3805 
3806 	found = __find_space_info(info, flags);
3807 	if (found) {
3808 		spin_lock(&found->lock);
3809 		found->total_bytes += total_bytes;
3810 		found->disk_total += total_bytes * factor;
3811 		found->bytes_used += bytes_used;
3812 		found->disk_used += bytes_used * factor;
3813 		if (total_bytes > 0)
3814 			found->full = 0;
3815 		spin_unlock(&found->lock);
3816 		*space_info = found;
3817 		return 0;
3818 	}
3819 	found = kzalloc(sizeof(*found), GFP_NOFS);
3820 	if (!found)
3821 		return -ENOMEM;
3822 
3823 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3824 	if (ret) {
3825 		kfree(found);
3826 		return ret;
3827 	}
3828 
3829 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3830 		INIT_LIST_HEAD(&found->block_groups[i]);
3831 	init_rwsem(&found->groups_sem);
3832 	spin_lock_init(&found->lock);
3833 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3834 	found->total_bytes = total_bytes;
3835 	found->disk_total = total_bytes * factor;
3836 	found->bytes_used = bytes_used;
3837 	found->disk_used = bytes_used * factor;
3838 	found->bytes_pinned = 0;
3839 	found->bytes_reserved = 0;
3840 	found->bytes_readonly = 0;
3841 	found->bytes_may_use = 0;
3842 	found->full = 0;
3843 	found->max_extent_size = 0;
3844 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3845 	found->chunk_alloc = 0;
3846 	found->flush = 0;
3847 	init_waitqueue_head(&found->wait);
3848 	INIT_LIST_HEAD(&found->ro_bgs);
3849 
3850 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3851 				    info->space_info_kobj, "%s",
3852 				    alloc_name(found->flags));
3853 	if (ret) {
3854 		kfree(found);
3855 		return ret;
3856 	}
3857 
3858 	*space_info = found;
3859 	list_add_rcu(&found->list, &info->space_info);
3860 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3861 		info->data_sinfo = found;
3862 
3863 	return ret;
3864 }
3865 
3866 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3867 {
3868 	u64 extra_flags = chunk_to_extended(flags) &
3869 				BTRFS_EXTENDED_PROFILE_MASK;
3870 
3871 	write_seqlock(&fs_info->profiles_lock);
3872 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3873 		fs_info->avail_data_alloc_bits |= extra_flags;
3874 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3875 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3876 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3877 		fs_info->avail_system_alloc_bits |= extra_flags;
3878 	write_sequnlock(&fs_info->profiles_lock);
3879 }
3880 
3881 /*
3882  * returns target flags in extended format or 0 if restripe for this
3883  * chunk_type is not in progress
3884  *
3885  * should be called with either volume_mutex or balance_lock held
3886  */
3887 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3888 {
3889 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3890 	u64 target = 0;
3891 
3892 	if (!bctl)
3893 		return 0;
3894 
3895 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3896 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3897 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3898 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3899 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3901 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3902 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3903 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3904 	}
3905 
3906 	return target;
3907 }
3908 
3909 /*
3910  * @flags: available profiles in extended format (see ctree.h)
3911  *
3912  * Returns reduced profile in chunk format.  If profile changing is in
3913  * progress (either running or paused) picks the target profile (if it's
3914  * already available), otherwise falls back to plain reducing.
3915  */
3916 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3917 {
3918 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3919 	u64 target;
3920 	u64 raid_type;
3921 	u64 allowed = 0;
3922 
3923 	/*
3924 	 * see if restripe for this chunk_type is in progress, if so
3925 	 * try to reduce to the target profile
3926 	 */
3927 	spin_lock(&root->fs_info->balance_lock);
3928 	target = get_restripe_target(root->fs_info, flags);
3929 	if (target) {
3930 		/* pick target profile only if it's already available */
3931 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3932 			spin_unlock(&root->fs_info->balance_lock);
3933 			return extended_to_chunk(target);
3934 		}
3935 	}
3936 	spin_unlock(&root->fs_info->balance_lock);
3937 
3938 	/* First, mask out the RAID levels which aren't possible */
3939 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3940 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3941 			allowed |= btrfs_raid_group[raid_type];
3942 	}
3943 	allowed &= flags;
3944 
3945 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3946 		allowed = BTRFS_BLOCK_GROUP_RAID6;
3947 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3948 		allowed = BTRFS_BLOCK_GROUP_RAID5;
3949 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3950 		allowed = BTRFS_BLOCK_GROUP_RAID10;
3951 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3952 		allowed = BTRFS_BLOCK_GROUP_RAID1;
3953 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3954 		allowed = BTRFS_BLOCK_GROUP_RAID0;
3955 
3956 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3957 
3958 	return extended_to_chunk(flags | allowed);
3959 }
3960 
3961 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3962 {
3963 	unsigned seq;
3964 	u64 flags;
3965 
3966 	do {
3967 		flags = orig_flags;
3968 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3969 
3970 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3971 			flags |= root->fs_info->avail_data_alloc_bits;
3972 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3973 			flags |= root->fs_info->avail_system_alloc_bits;
3974 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3975 			flags |= root->fs_info->avail_metadata_alloc_bits;
3976 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3977 
3978 	return btrfs_reduce_alloc_profile(root, flags);
3979 }
3980 
3981 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3982 {
3983 	u64 flags;
3984 	u64 ret;
3985 
3986 	if (data)
3987 		flags = BTRFS_BLOCK_GROUP_DATA;
3988 	else if (root == root->fs_info->chunk_root)
3989 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3990 	else
3991 		flags = BTRFS_BLOCK_GROUP_METADATA;
3992 
3993 	ret = get_alloc_profile(root, flags);
3994 	return ret;
3995 }
3996 
3997 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
3998 {
3999 	struct btrfs_space_info *data_sinfo;
4000 	struct btrfs_root *root = BTRFS_I(inode)->root;
4001 	struct btrfs_fs_info *fs_info = root->fs_info;
4002 	u64 used;
4003 	int ret = 0;
4004 	int need_commit = 2;
4005 	int have_pinned_space;
4006 
4007 	/* make sure bytes are sectorsize aligned */
4008 	bytes = ALIGN(bytes, root->sectorsize);
4009 
4010 	if (btrfs_is_free_space_inode(inode)) {
4011 		need_commit = 0;
4012 		ASSERT(current->journal_info);
4013 	}
4014 
4015 	data_sinfo = fs_info->data_sinfo;
4016 	if (!data_sinfo)
4017 		goto alloc;
4018 
4019 again:
4020 	/* make sure we have enough space to handle the data first */
4021 	spin_lock(&data_sinfo->lock);
4022 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4023 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4024 		data_sinfo->bytes_may_use;
4025 
4026 	if (used + bytes > data_sinfo->total_bytes) {
4027 		struct btrfs_trans_handle *trans;
4028 
4029 		/*
4030 		 * if we don't have enough free bytes in this space then we need
4031 		 * to alloc a new chunk.
4032 		 */
4033 		if (!data_sinfo->full) {
4034 			u64 alloc_target;
4035 
4036 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4037 			spin_unlock(&data_sinfo->lock);
4038 alloc:
4039 			alloc_target = btrfs_get_alloc_profile(root, 1);
4040 			/*
4041 			 * It is ugly that we don't call nolock join
4042 			 * transaction for the free space inode case here.
4043 			 * But it is safe because we only do the data space
4044 			 * reservation for the free space cache in the
4045 			 * transaction context, the common join transaction
4046 			 * just increase the counter of the current transaction
4047 			 * handler, doesn't try to acquire the trans_lock of
4048 			 * the fs.
4049 			 */
4050 			trans = btrfs_join_transaction(root);
4051 			if (IS_ERR(trans))
4052 				return PTR_ERR(trans);
4053 
4054 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4055 					     alloc_target,
4056 					     CHUNK_ALLOC_NO_FORCE);
4057 			btrfs_end_transaction(trans, root);
4058 			if (ret < 0) {
4059 				if (ret != -ENOSPC)
4060 					return ret;
4061 				else {
4062 					have_pinned_space = 1;
4063 					goto commit_trans;
4064 				}
4065 			}
4066 
4067 			if (!data_sinfo)
4068 				data_sinfo = fs_info->data_sinfo;
4069 
4070 			goto again;
4071 		}
4072 
4073 		/*
4074 		 * If we don't have enough pinned space to deal with this
4075 		 * allocation, and no removed chunk in current transaction,
4076 		 * don't bother committing the transaction.
4077 		 */
4078 		have_pinned_space = percpu_counter_compare(
4079 			&data_sinfo->total_bytes_pinned,
4080 			used + bytes - data_sinfo->total_bytes);
4081 		spin_unlock(&data_sinfo->lock);
4082 
4083 		/* commit the current transaction and try again */
4084 commit_trans:
4085 		if (need_commit &&
4086 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4087 			need_commit--;
4088 
4089 			if (need_commit > 0)
4090 				btrfs_wait_ordered_roots(fs_info, -1);
4091 
4092 			trans = btrfs_join_transaction(root);
4093 			if (IS_ERR(trans))
4094 				return PTR_ERR(trans);
4095 			if (have_pinned_space >= 0 ||
4096 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4097 				     &trans->transaction->flags) ||
4098 			    need_commit > 0) {
4099 				ret = btrfs_commit_transaction(trans, root);
4100 				if (ret)
4101 					return ret;
4102 				/*
4103 				 * make sure that all running delayed iput are
4104 				 * done
4105 				 */
4106 				down_write(&root->fs_info->delayed_iput_sem);
4107 				up_write(&root->fs_info->delayed_iput_sem);
4108 				goto again;
4109 			} else {
4110 				btrfs_end_transaction(trans, root);
4111 			}
4112 		}
4113 
4114 		trace_btrfs_space_reservation(root->fs_info,
4115 					      "space_info:enospc",
4116 					      data_sinfo->flags, bytes, 1);
4117 		return -ENOSPC;
4118 	}
4119 	data_sinfo->bytes_may_use += bytes;
4120 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4121 				      data_sinfo->flags, bytes, 1);
4122 	spin_unlock(&data_sinfo->lock);
4123 
4124 	return ret;
4125 }
4126 
4127 /*
4128  * New check_data_free_space() with ability for precious data reservation
4129  * Will replace old btrfs_check_data_free_space(), but for patch split,
4130  * add a new function first and then replace it.
4131  */
4132 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4133 {
4134 	struct btrfs_root *root = BTRFS_I(inode)->root;
4135 	int ret;
4136 
4137 	/* align the range */
4138 	len = round_up(start + len, root->sectorsize) -
4139 	      round_down(start, root->sectorsize);
4140 	start = round_down(start, root->sectorsize);
4141 
4142 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4143 	if (ret < 0)
4144 		return ret;
4145 
4146 	/*
4147 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4148 	 *
4149 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4150 	 * range, but don't impact performance on quota disable case.
4151 	 */
4152 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4153 	return ret;
4154 }
4155 
4156 /*
4157  * Called if we need to clear a data reservation for this inode
4158  * Normally in a error case.
4159  *
4160  * This one will *NOT* use accurate qgroup reserved space API, just for case
4161  * which we can't sleep and is sure it won't affect qgroup reserved space.
4162  * Like clear_bit_hook().
4163  */
4164 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4165 					    u64 len)
4166 {
4167 	struct btrfs_root *root = BTRFS_I(inode)->root;
4168 	struct btrfs_space_info *data_sinfo;
4169 
4170 	/* Make sure the range is aligned to sectorsize */
4171 	len = round_up(start + len, root->sectorsize) -
4172 	      round_down(start, root->sectorsize);
4173 	start = round_down(start, root->sectorsize);
4174 
4175 	data_sinfo = root->fs_info->data_sinfo;
4176 	spin_lock(&data_sinfo->lock);
4177 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4178 		data_sinfo->bytes_may_use = 0;
4179 	else
4180 		data_sinfo->bytes_may_use -= len;
4181 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4182 				      data_sinfo->flags, len, 0);
4183 	spin_unlock(&data_sinfo->lock);
4184 }
4185 
4186 /*
4187  * Called if we need to clear a data reservation for this inode
4188  * Normally in a error case.
4189  *
4190  * This one will handle the per-indoe data rsv map for accurate reserved
4191  * space framework.
4192  */
4193 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4194 {
4195 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4196 	btrfs_qgroup_free_data(inode, start, len);
4197 }
4198 
4199 static void force_metadata_allocation(struct btrfs_fs_info *info)
4200 {
4201 	struct list_head *head = &info->space_info;
4202 	struct btrfs_space_info *found;
4203 
4204 	rcu_read_lock();
4205 	list_for_each_entry_rcu(found, head, list) {
4206 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4207 			found->force_alloc = CHUNK_ALLOC_FORCE;
4208 	}
4209 	rcu_read_unlock();
4210 }
4211 
4212 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4213 {
4214 	return (global->size << 1);
4215 }
4216 
4217 static int should_alloc_chunk(struct btrfs_root *root,
4218 			      struct btrfs_space_info *sinfo, int force)
4219 {
4220 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4221 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4222 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4223 	u64 thresh;
4224 
4225 	if (force == CHUNK_ALLOC_FORCE)
4226 		return 1;
4227 
4228 	/*
4229 	 * We need to take into account the global rsv because for all intents
4230 	 * and purposes it's used space.  Don't worry about locking the
4231 	 * global_rsv, it doesn't change except when the transaction commits.
4232 	 */
4233 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4234 		num_allocated += calc_global_rsv_need_space(global_rsv);
4235 
4236 	/*
4237 	 * in limited mode, we want to have some free space up to
4238 	 * about 1% of the FS size.
4239 	 */
4240 	if (force == CHUNK_ALLOC_LIMITED) {
4241 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4242 		thresh = max_t(u64, 64 * 1024 * 1024,
4243 			       div_factor_fine(thresh, 1));
4244 
4245 		if (num_bytes - num_allocated < thresh)
4246 			return 1;
4247 	}
4248 
4249 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4250 		return 0;
4251 	return 1;
4252 }
4253 
4254 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4255 {
4256 	u64 num_dev;
4257 
4258 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4259 		    BTRFS_BLOCK_GROUP_RAID0 |
4260 		    BTRFS_BLOCK_GROUP_RAID5 |
4261 		    BTRFS_BLOCK_GROUP_RAID6))
4262 		num_dev = root->fs_info->fs_devices->rw_devices;
4263 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4264 		num_dev = 2;
4265 	else
4266 		num_dev = 1;	/* DUP or single */
4267 
4268 	return num_dev;
4269 }
4270 
4271 /*
4272  * If @is_allocation is true, reserve space in the system space info necessary
4273  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4274  * removing a chunk.
4275  */
4276 void check_system_chunk(struct btrfs_trans_handle *trans,
4277 			struct btrfs_root *root,
4278 			u64 type)
4279 {
4280 	struct btrfs_space_info *info;
4281 	u64 left;
4282 	u64 thresh;
4283 	int ret = 0;
4284 	u64 num_devs;
4285 
4286 	/*
4287 	 * Needed because we can end up allocating a system chunk and for an
4288 	 * atomic and race free space reservation in the chunk block reserve.
4289 	 */
4290 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4291 
4292 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4293 	spin_lock(&info->lock);
4294 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4295 		info->bytes_reserved - info->bytes_readonly -
4296 		info->bytes_may_use;
4297 	spin_unlock(&info->lock);
4298 
4299 	num_devs = get_profile_num_devs(root, type);
4300 
4301 	/* num_devs device items to update and 1 chunk item to add or remove */
4302 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4303 		btrfs_calc_trans_metadata_size(root, 1);
4304 
4305 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4306 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4307 			left, thresh, type);
4308 		dump_space_info(info, 0, 0);
4309 	}
4310 
4311 	if (left < thresh) {
4312 		u64 flags;
4313 
4314 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4315 		/*
4316 		 * Ignore failure to create system chunk. We might end up not
4317 		 * needing it, as we might not need to COW all nodes/leafs from
4318 		 * the paths we visit in the chunk tree (they were already COWed
4319 		 * or created in the current transaction for example).
4320 		 */
4321 		ret = btrfs_alloc_chunk(trans, root, flags);
4322 	}
4323 
4324 	if (!ret) {
4325 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4326 					  &root->fs_info->chunk_block_rsv,
4327 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4328 		if (!ret)
4329 			trans->chunk_bytes_reserved += thresh;
4330 	}
4331 }
4332 
4333 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4334 			  struct btrfs_root *extent_root, u64 flags, int force)
4335 {
4336 	struct btrfs_space_info *space_info;
4337 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4338 	int wait_for_alloc = 0;
4339 	int ret = 0;
4340 
4341 	/* Don't re-enter if we're already allocating a chunk */
4342 	if (trans->allocating_chunk)
4343 		return -ENOSPC;
4344 
4345 	space_info = __find_space_info(extent_root->fs_info, flags);
4346 	if (!space_info) {
4347 		ret = update_space_info(extent_root->fs_info, flags,
4348 					0, 0, &space_info);
4349 		BUG_ON(ret); /* -ENOMEM */
4350 	}
4351 	BUG_ON(!space_info); /* Logic error */
4352 
4353 again:
4354 	spin_lock(&space_info->lock);
4355 	if (force < space_info->force_alloc)
4356 		force = space_info->force_alloc;
4357 	if (space_info->full) {
4358 		if (should_alloc_chunk(extent_root, space_info, force))
4359 			ret = -ENOSPC;
4360 		else
4361 			ret = 0;
4362 		spin_unlock(&space_info->lock);
4363 		return ret;
4364 	}
4365 
4366 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4367 		spin_unlock(&space_info->lock);
4368 		return 0;
4369 	} else if (space_info->chunk_alloc) {
4370 		wait_for_alloc = 1;
4371 	} else {
4372 		space_info->chunk_alloc = 1;
4373 	}
4374 
4375 	spin_unlock(&space_info->lock);
4376 
4377 	mutex_lock(&fs_info->chunk_mutex);
4378 
4379 	/*
4380 	 * The chunk_mutex is held throughout the entirety of a chunk
4381 	 * allocation, so once we've acquired the chunk_mutex we know that the
4382 	 * other guy is done and we need to recheck and see if we should
4383 	 * allocate.
4384 	 */
4385 	if (wait_for_alloc) {
4386 		mutex_unlock(&fs_info->chunk_mutex);
4387 		wait_for_alloc = 0;
4388 		goto again;
4389 	}
4390 
4391 	trans->allocating_chunk = true;
4392 
4393 	/*
4394 	 * If we have mixed data/metadata chunks we want to make sure we keep
4395 	 * allocating mixed chunks instead of individual chunks.
4396 	 */
4397 	if (btrfs_mixed_space_info(space_info))
4398 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4399 
4400 	/*
4401 	 * if we're doing a data chunk, go ahead and make sure that
4402 	 * we keep a reasonable number of metadata chunks allocated in the
4403 	 * FS as well.
4404 	 */
4405 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4406 		fs_info->data_chunk_allocations++;
4407 		if (!(fs_info->data_chunk_allocations %
4408 		      fs_info->metadata_ratio))
4409 			force_metadata_allocation(fs_info);
4410 	}
4411 
4412 	/*
4413 	 * Check if we have enough space in SYSTEM chunk because we may need
4414 	 * to update devices.
4415 	 */
4416 	check_system_chunk(trans, extent_root, flags);
4417 
4418 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4419 	trans->allocating_chunk = false;
4420 
4421 	spin_lock(&space_info->lock);
4422 	if (ret < 0 && ret != -ENOSPC)
4423 		goto out;
4424 	if (ret)
4425 		space_info->full = 1;
4426 	else
4427 		ret = 1;
4428 
4429 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4430 out:
4431 	space_info->chunk_alloc = 0;
4432 	spin_unlock(&space_info->lock);
4433 	mutex_unlock(&fs_info->chunk_mutex);
4434 	/*
4435 	 * When we allocate a new chunk we reserve space in the chunk block
4436 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4437 	 * add new nodes/leafs to it if we end up needing to do it when
4438 	 * inserting the chunk item and updating device items as part of the
4439 	 * second phase of chunk allocation, performed by
4440 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4441 	 * large number of new block groups to create in our transaction
4442 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4443 	 * in extreme cases - like having a single transaction create many new
4444 	 * block groups when starting to write out the free space caches of all
4445 	 * the block groups that were made dirty during the lifetime of the
4446 	 * transaction.
4447 	 */
4448 	if (trans->can_flush_pending_bgs &&
4449 	    trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4450 		btrfs_create_pending_block_groups(trans, trans->root);
4451 		btrfs_trans_release_chunk_metadata(trans);
4452 	}
4453 	return ret;
4454 }
4455 
4456 static int can_overcommit(struct btrfs_root *root,
4457 			  struct btrfs_space_info *space_info, u64 bytes,
4458 			  enum btrfs_reserve_flush_enum flush)
4459 {
4460 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4461 	u64 profile = btrfs_get_alloc_profile(root, 0);
4462 	u64 space_size;
4463 	u64 avail;
4464 	u64 used;
4465 
4466 	used = space_info->bytes_used + space_info->bytes_reserved +
4467 		space_info->bytes_pinned + space_info->bytes_readonly;
4468 
4469 	/*
4470 	 * We only want to allow over committing if we have lots of actual space
4471 	 * free, but if we don't have enough space to handle the global reserve
4472 	 * space then we could end up having a real enospc problem when trying
4473 	 * to allocate a chunk or some other such important allocation.
4474 	 */
4475 	spin_lock(&global_rsv->lock);
4476 	space_size = calc_global_rsv_need_space(global_rsv);
4477 	spin_unlock(&global_rsv->lock);
4478 	if (used + space_size >= space_info->total_bytes)
4479 		return 0;
4480 
4481 	used += space_info->bytes_may_use;
4482 
4483 	spin_lock(&root->fs_info->free_chunk_lock);
4484 	avail = root->fs_info->free_chunk_space;
4485 	spin_unlock(&root->fs_info->free_chunk_lock);
4486 
4487 	/*
4488 	 * If we have dup, raid1 or raid10 then only half of the free
4489 	 * space is actually useable.  For raid56, the space info used
4490 	 * doesn't include the parity drive, so we don't have to
4491 	 * change the math
4492 	 */
4493 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4494 		       BTRFS_BLOCK_GROUP_RAID1 |
4495 		       BTRFS_BLOCK_GROUP_RAID10))
4496 		avail >>= 1;
4497 
4498 	/*
4499 	 * If we aren't flushing all things, let us overcommit up to
4500 	 * 1/2th of the space. If we can flush, don't let us overcommit
4501 	 * too much, let it overcommit up to 1/8 of the space.
4502 	 */
4503 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4504 		avail >>= 3;
4505 	else
4506 		avail >>= 1;
4507 
4508 	if (used + bytes < space_info->total_bytes + avail)
4509 		return 1;
4510 	return 0;
4511 }
4512 
4513 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4514 					 unsigned long nr_pages, int nr_items)
4515 {
4516 	struct super_block *sb = root->fs_info->sb;
4517 
4518 	if (down_read_trylock(&sb->s_umount)) {
4519 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4520 		up_read(&sb->s_umount);
4521 	} else {
4522 		/*
4523 		 * We needn't worry the filesystem going from r/w to r/o though
4524 		 * we don't acquire ->s_umount mutex, because the filesystem
4525 		 * should guarantee the delalloc inodes list be empty after
4526 		 * the filesystem is readonly(all dirty pages are written to
4527 		 * the disk).
4528 		 */
4529 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4530 		if (!current->journal_info)
4531 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4532 	}
4533 }
4534 
4535 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4536 {
4537 	u64 bytes;
4538 	int nr;
4539 
4540 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4541 	nr = (int)div64_u64(to_reclaim, bytes);
4542 	if (!nr)
4543 		nr = 1;
4544 	return nr;
4545 }
4546 
4547 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4548 
4549 /*
4550  * shrink metadata reservation for delalloc
4551  */
4552 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4553 			    bool wait_ordered)
4554 {
4555 	struct btrfs_block_rsv *block_rsv;
4556 	struct btrfs_space_info *space_info;
4557 	struct btrfs_trans_handle *trans;
4558 	u64 delalloc_bytes;
4559 	u64 max_reclaim;
4560 	long time_left;
4561 	unsigned long nr_pages;
4562 	int loops;
4563 	int items;
4564 	enum btrfs_reserve_flush_enum flush;
4565 
4566 	/* Calc the number of the pages we need flush for space reservation */
4567 	items = calc_reclaim_items_nr(root, to_reclaim);
4568 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4569 
4570 	trans = (struct btrfs_trans_handle *)current->journal_info;
4571 	block_rsv = &root->fs_info->delalloc_block_rsv;
4572 	space_info = block_rsv->space_info;
4573 
4574 	delalloc_bytes = percpu_counter_sum_positive(
4575 						&root->fs_info->delalloc_bytes);
4576 	if (delalloc_bytes == 0) {
4577 		if (trans)
4578 			return;
4579 		if (wait_ordered)
4580 			btrfs_wait_ordered_roots(root->fs_info, items);
4581 		return;
4582 	}
4583 
4584 	loops = 0;
4585 	while (delalloc_bytes && loops < 3) {
4586 		max_reclaim = min(delalloc_bytes, to_reclaim);
4587 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4588 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4589 		/*
4590 		 * We need to wait for the async pages to actually start before
4591 		 * we do anything.
4592 		 */
4593 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4594 		if (!max_reclaim)
4595 			goto skip_async;
4596 
4597 		if (max_reclaim <= nr_pages)
4598 			max_reclaim = 0;
4599 		else
4600 			max_reclaim -= nr_pages;
4601 
4602 		wait_event(root->fs_info->async_submit_wait,
4603 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4604 			   (int)max_reclaim);
4605 skip_async:
4606 		if (!trans)
4607 			flush = BTRFS_RESERVE_FLUSH_ALL;
4608 		else
4609 			flush = BTRFS_RESERVE_NO_FLUSH;
4610 		spin_lock(&space_info->lock);
4611 		if (can_overcommit(root, space_info, orig, flush)) {
4612 			spin_unlock(&space_info->lock);
4613 			break;
4614 		}
4615 		spin_unlock(&space_info->lock);
4616 
4617 		loops++;
4618 		if (wait_ordered && !trans) {
4619 			btrfs_wait_ordered_roots(root->fs_info, items);
4620 		} else {
4621 			time_left = schedule_timeout_killable(1);
4622 			if (time_left)
4623 				break;
4624 		}
4625 		delalloc_bytes = percpu_counter_sum_positive(
4626 						&root->fs_info->delalloc_bytes);
4627 	}
4628 }
4629 
4630 /**
4631  * maybe_commit_transaction - possibly commit the transaction if its ok to
4632  * @root - the root we're allocating for
4633  * @bytes - the number of bytes we want to reserve
4634  * @force - force the commit
4635  *
4636  * This will check to make sure that committing the transaction will actually
4637  * get us somewhere and then commit the transaction if it does.  Otherwise it
4638  * will return -ENOSPC.
4639  */
4640 static int may_commit_transaction(struct btrfs_root *root,
4641 				  struct btrfs_space_info *space_info,
4642 				  u64 bytes, int force)
4643 {
4644 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4645 	struct btrfs_trans_handle *trans;
4646 
4647 	trans = (struct btrfs_trans_handle *)current->journal_info;
4648 	if (trans)
4649 		return -EAGAIN;
4650 
4651 	if (force)
4652 		goto commit;
4653 
4654 	/* See if there is enough pinned space to make this reservation */
4655 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4656 				   bytes) >= 0)
4657 		goto commit;
4658 
4659 	/*
4660 	 * See if there is some space in the delayed insertion reservation for
4661 	 * this reservation.
4662 	 */
4663 	if (space_info != delayed_rsv->space_info)
4664 		return -ENOSPC;
4665 
4666 	spin_lock(&delayed_rsv->lock);
4667 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4668 				   bytes - delayed_rsv->size) >= 0) {
4669 		spin_unlock(&delayed_rsv->lock);
4670 		return -ENOSPC;
4671 	}
4672 	spin_unlock(&delayed_rsv->lock);
4673 
4674 commit:
4675 	trans = btrfs_join_transaction(root);
4676 	if (IS_ERR(trans))
4677 		return -ENOSPC;
4678 
4679 	return btrfs_commit_transaction(trans, root);
4680 }
4681 
4682 enum flush_state {
4683 	FLUSH_DELAYED_ITEMS_NR	=	1,
4684 	FLUSH_DELAYED_ITEMS	=	2,
4685 	FLUSH_DELALLOC		=	3,
4686 	FLUSH_DELALLOC_WAIT	=	4,
4687 	ALLOC_CHUNK		=	5,
4688 	COMMIT_TRANS		=	6,
4689 };
4690 
4691 static int flush_space(struct btrfs_root *root,
4692 		       struct btrfs_space_info *space_info, u64 num_bytes,
4693 		       u64 orig_bytes, int state)
4694 {
4695 	struct btrfs_trans_handle *trans;
4696 	int nr;
4697 	int ret = 0;
4698 
4699 	switch (state) {
4700 	case FLUSH_DELAYED_ITEMS_NR:
4701 	case FLUSH_DELAYED_ITEMS:
4702 		if (state == FLUSH_DELAYED_ITEMS_NR)
4703 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4704 		else
4705 			nr = -1;
4706 
4707 		trans = btrfs_join_transaction(root);
4708 		if (IS_ERR(trans)) {
4709 			ret = PTR_ERR(trans);
4710 			break;
4711 		}
4712 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4713 		btrfs_end_transaction(trans, root);
4714 		break;
4715 	case FLUSH_DELALLOC:
4716 	case FLUSH_DELALLOC_WAIT:
4717 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4718 				state == FLUSH_DELALLOC_WAIT);
4719 		break;
4720 	case ALLOC_CHUNK:
4721 		trans = btrfs_join_transaction(root);
4722 		if (IS_ERR(trans)) {
4723 			ret = PTR_ERR(trans);
4724 			break;
4725 		}
4726 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4727 				     btrfs_get_alloc_profile(root, 0),
4728 				     CHUNK_ALLOC_NO_FORCE);
4729 		btrfs_end_transaction(trans, root);
4730 		if (ret == -ENOSPC)
4731 			ret = 0;
4732 		break;
4733 	case COMMIT_TRANS:
4734 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4735 		break;
4736 	default:
4737 		ret = -ENOSPC;
4738 		break;
4739 	}
4740 
4741 	return ret;
4742 }
4743 
4744 static inline u64
4745 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4746 				 struct btrfs_space_info *space_info)
4747 {
4748 	u64 used;
4749 	u64 expected;
4750 	u64 to_reclaim;
4751 
4752 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4753 				16 * 1024 * 1024);
4754 	spin_lock(&space_info->lock);
4755 	if (can_overcommit(root, space_info, to_reclaim,
4756 			   BTRFS_RESERVE_FLUSH_ALL)) {
4757 		to_reclaim = 0;
4758 		goto out;
4759 	}
4760 
4761 	used = space_info->bytes_used + space_info->bytes_reserved +
4762 	       space_info->bytes_pinned + space_info->bytes_readonly +
4763 	       space_info->bytes_may_use;
4764 	if (can_overcommit(root, space_info, 1024 * 1024,
4765 			   BTRFS_RESERVE_FLUSH_ALL))
4766 		expected = div_factor_fine(space_info->total_bytes, 95);
4767 	else
4768 		expected = div_factor_fine(space_info->total_bytes, 90);
4769 
4770 	if (used > expected)
4771 		to_reclaim = used - expected;
4772 	else
4773 		to_reclaim = 0;
4774 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4775 				     space_info->bytes_reserved);
4776 out:
4777 	spin_unlock(&space_info->lock);
4778 
4779 	return to_reclaim;
4780 }
4781 
4782 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4783 					struct btrfs_fs_info *fs_info, u64 used)
4784 {
4785 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4786 
4787 	/* If we're just plain full then async reclaim just slows us down. */
4788 	if (space_info->bytes_used >= thresh)
4789 		return 0;
4790 
4791 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4792 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4793 }
4794 
4795 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4796 				       struct btrfs_fs_info *fs_info,
4797 				       int flush_state)
4798 {
4799 	u64 used;
4800 
4801 	spin_lock(&space_info->lock);
4802 	/*
4803 	 * We run out of space and have not got any free space via flush_space,
4804 	 * so don't bother doing async reclaim.
4805 	 */
4806 	if (flush_state > COMMIT_TRANS && space_info->full) {
4807 		spin_unlock(&space_info->lock);
4808 		return 0;
4809 	}
4810 
4811 	used = space_info->bytes_used + space_info->bytes_reserved +
4812 	       space_info->bytes_pinned + space_info->bytes_readonly +
4813 	       space_info->bytes_may_use;
4814 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4815 		spin_unlock(&space_info->lock);
4816 		return 1;
4817 	}
4818 	spin_unlock(&space_info->lock);
4819 
4820 	return 0;
4821 }
4822 
4823 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4824 {
4825 	struct btrfs_fs_info *fs_info;
4826 	struct btrfs_space_info *space_info;
4827 	u64 to_reclaim;
4828 	int flush_state;
4829 
4830 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4831 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4832 
4833 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4834 						      space_info);
4835 	if (!to_reclaim)
4836 		return;
4837 
4838 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4839 	do {
4840 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4841 			    to_reclaim, flush_state);
4842 		flush_state++;
4843 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4844 						 flush_state))
4845 			return;
4846 	} while (flush_state < COMMIT_TRANS);
4847 }
4848 
4849 void btrfs_init_async_reclaim_work(struct work_struct *work)
4850 {
4851 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4852 }
4853 
4854 /**
4855  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4856  * @root - the root we're allocating for
4857  * @block_rsv - the block_rsv we're allocating for
4858  * @orig_bytes - the number of bytes we want
4859  * @flush - whether or not we can flush to make our reservation
4860  *
4861  * This will reserve orgi_bytes number of bytes from the space info associated
4862  * with the block_rsv.  If there is not enough space it will make an attempt to
4863  * flush out space to make room.  It will do this by flushing delalloc if
4864  * possible or committing the transaction.  If flush is 0 then no attempts to
4865  * regain reservations will be made and this will fail if there is not enough
4866  * space already.
4867  */
4868 static int reserve_metadata_bytes(struct btrfs_root *root,
4869 				  struct btrfs_block_rsv *block_rsv,
4870 				  u64 orig_bytes,
4871 				  enum btrfs_reserve_flush_enum flush)
4872 {
4873 	struct btrfs_space_info *space_info = block_rsv->space_info;
4874 	u64 used;
4875 	u64 num_bytes = orig_bytes;
4876 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4877 	int ret = 0;
4878 	bool flushing = false;
4879 
4880 again:
4881 	ret = 0;
4882 	spin_lock(&space_info->lock);
4883 	/*
4884 	 * We only want to wait if somebody other than us is flushing and we
4885 	 * are actually allowed to flush all things.
4886 	 */
4887 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4888 	       space_info->flush) {
4889 		spin_unlock(&space_info->lock);
4890 		/*
4891 		 * If we have a trans handle we can't wait because the flusher
4892 		 * may have to commit the transaction, which would mean we would
4893 		 * deadlock since we are waiting for the flusher to finish, but
4894 		 * hold the current transaction open.
4895 		 */
4896 		if (current->journal_info)
4897 			return -EAGAIN;
4898 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4899 		/* Must have been killed, return */
4900 		if (ret)
4901 			return -EINTR;
4902 
4903 		spin_lock(&space_info->lock);
4904 	}
4905 
4906 	ret = -ENOSPC;
4907 	used = space_info->bytes_used + space_info->bytes_reserved +
4908 		space_info->bytes_pinned + space_info->bytes_readonly +
4909 		space_info->bytes_may_use;
4910 
4911 	/*
4912 	 * The idea here is that we've not already over-reserved the block group
4913 	 * then we can go ahead and save our reservation first and then start
4914 	 * flushing if we need to.  Otherwise if we've already overcommitted
4915 	 * lets start flushing stuff first and then come back and try to make
4916 	 * our reservation.
4917 	 */
4918 	if (used <= space_info->total_bytes) {
4919 		if (used + orig_bytes <= space_info->total_bytes) {
4920 			space_info->bytes_may_use += orig_bytes;
4921 			trace_btrfs_space_reservation(root->fs_info,
4922 				"space_info", space_info->flags, orig_bytes, 1);
4923 			ret = 0;
4924 		} else {
4925 			/*
4926 			 * Ok set num_bytes to orig_bytes since we aren't
4927 			 * overocmmitted, this way we only try and reclaim what
4928 			 * we need.
4929 			 */
4930 			num_bytes = orig_bytes;
4931 		}
4932 	} else {
4933 		/*
4934 		 * Ok we're over committed, set num_bytes to the overcommitted
4935 		 * amount plus the amount of bytes that we need for this
4936 		 * reservation.
4937 		 */
4938 		num_bytes = used - space_info->total_bytes +
4939 			(orig_bytes * 2);
4940 	}
4941 
4942 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4943 		space_info->bytes_may_use += orig_bytes;
4944 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4945 					      space_info->flags, orig_bytes,
4946 					      1);
4947 		ret = 0;
4948 	}
4949 
4950 	/*
4951 	 * Couldn't make our reservation, save our place so while we're trying
4952 	 * to reclaim space we can actually use it instead of somebody else
4953 	 * stealing it from us.
4954 	 *
4955 	 * We make the other tasks wait for the flush only when we can flush
4956 	 * all things.
4957 	 */
4958 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4959 		flushing = true;
4960 		space_info->flush = 1;
4961 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4962 		used += orig_bytes;
4963 		/*
4964 		 * We will do the space reservation dance during log replay,
4965 		 * which means we won't have fs_info->fs_root set, so don't do
4966 		 * the async reclaim as we will panic.
4967 		 */
4968 		if (!root->fs_info->log_root_recovering &&
4969 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4970 		    !work_busy(&root->fs_info->async_reclaim_work))
4971 			queue_work(system_unbound_wq,
4972 				   &root->fs_info->async_reclaim_work);
4973 	}
4974 	spin_unlock(&space_info->lock);
4975 
4976 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4977 		goto out;
4978 
4979 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4980 			  flush_state);
4981 	flush_state++;
4982 
4983 	/*
4984 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4985 	 * would happen. So skip delalloc flush.
4986 	 */
4987 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4988 	    (flush_state == FLUSH_DELALLOC ||
4989 	     flush_state == FLUSH_DELALLOC_WAIT))
4990 		flush_state = ALLOC_CHUNK;
4991 
4992 	if (!ret)
4993 		goto again;
4994 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4995 		 flush_state < COMMIT_TRANS)
4996 		goto again;
4997 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4998 		 flush_state <= COMMIT_TRANS)
4999 		goto again;
5000 
5001 out:
5002 	if (ret == -ENOSPC &&
5003 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5004 		struct btrfs_block_rsv *global_rsv =
5005 			&root->fs_info->global_block_rsv;
5006 
5007 		if (block_rsv != global_rsv &&
5008 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5009 			ret = 0;
5010 	}
5011 	if (ret == -ENOSPC)
5012 		trace_btrfs_space_reservation(root->fs_info,
5013 					      "space_info:enospc",
5014 					      space_info->flags, orig_bytes, 1);
5015 	if (flushing) {
5016 		spin_lock(&space_info->lock);
5017 		space_info->flush = 0;
5018 		wake_up_all(&space_info->wait);
5019 		spin_unlock(&space_info->lock);
5020 	}
5021 	return ret;
5022 }
5023 
5024 static struct btrfs_block_rsv *get_block_rsv(
5025 					const struct btrfs_trans_handle *trans,
5026 					const struct btrfs_root *root)
5027 {
5028 	struct btrfs_block_rsv *block_rsv = NULL;
5029 
5030 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5031 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5032 	     (root == root->fs_info->uuid_root))
5033 		block_rsv = trans->block_rsv;
5034 
5035 	if (!block_rsv)
5036 		block_rsv = root->block_rsv;
5037 
5038 	if (!block_rsv)
5039 		block_rsv = &root->fs_info->empty_block_rsv;
5040 
5041 	return block_rsv;
5042 }
5043 
5044 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5045 			       u64 num_bytes)
5046 {
5047 	int ret = -ENOSPC;
5048 	spin_lock(&block_rsv->lock);
5049 	if (block_rsv->reserved >= num_bytes) {
5050 		block_rsv->reserved -= num_bytes;
5051 		if (block_rsv->reserved < block_rsv->size)
5052 			block_rsv->full = 0;
5053 		ret = 0;
5054 	}
5055 	spin_unlock(&block_rsv->lock);
5056 	return ret;
5057 }
5058 
5059 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5060 				u64 num_bytes, int update_size)
5061 {
5062 	spin_lock(&block_rsv->lock);
5063 	block_rsv->reserved += num_bytes;
5064 	if (update_size)
5065 		block_rsv->size += num_bytes;
5066 	else if (block_rsv->reserved >= block_rsv->size)
5067 		block_rsv->full = 1;
5068 	spin_unlock(&block_rsv->lock);
5069 }
5070 
5071 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5072 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5073 			     int min_factor)
5074 {
5075 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5076 	u64 min_bytes;
5077 
5078 	if (global_rsv->space_info != dest->space_info)
5079 		return -ENOSPC;
5080 
5081 	spin_lock(&global_rsv->lock);
5082 	min_bytes = div_factor(global_rsv->size, min_factor);
5083 	if (global_rsv->reserved < min_bytes + num_bytes) {
5084 		spin_unlock(&global_rsv->lock);
5085 		return -ENOSPC;
5086 	}
5087 	global_rsv->reserved -= num_bytes;
5088 	if (global_rsv->reserved < global_rsv->size)
5089 		global_rsv->full = 0;
5090 	spin_unlock(&global_rsv->lock);
5091 
5092 	block_rsv_add_bytes(dest, num_bytes, 1);
5093 	return 0;
5094 }
5095 
5096 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5097 				    struct btrfs_block_rsv *block_rsv,
5098 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5099 {
5100 	struct btrfs_space_info *space_info = block_rsv->space_info;
5101 
5102 	spin_lock(&block_rsv->lock);
5103 	if (num_bytes == (u64)-1)
5104 		num_bytes = block_rsv->size;
5105 	block_rsv->size -= num_bytes;
5106 	if (block_rsv->reserved >= block_rsv->size) {
5107 		num_bytes = block_rsv->reserved - block_rsv->size;
5108 		block_rsv->reserved = block_rsv->size;
5109 		block_rsv->full = 1;
5110 	} else {
5111 		num_bytes = 0;
5112 	}
5113 	spin_unlock(&block_rsv->lock);
5114 
5115 	if (num_bytes > 0) {
5116 		if (dest) {
5117 			spin_lock(&dest->lock);
5118 			if (!dest->full) {
5119 				u64 bytes_to_add;
5120 
5121 				bytes_to_add = dest->size - dest->reserved;
5122 				bytes_to_add = min(num_bytes, bytes_to_add);
5123 				dest->reserved += bytes_to_add;
5124 				if (dest->reserved >= dest->size)
5125 					dest->full = 1;
5126 				num_bytes -= bytes_to_add;
5127 			}
5128 			spin_unlock(&dest->lock);
5129 		}
5130 		if (num_bytes) {
5131 			spin_lock(&space_info->lock);
5132 			space_info->bytes_may_use -= num_bytes;
5133 			trace_btrfs_space_reservation(fs_info, "space_info",
5134 					space_info->flags, num_bytes, 0);
5135 			spin_unlock(&space_info->lock);
5136 		}
5137 	}
5138 }
5139 
5140 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5141 				   struct btrfs_block_rsv *dst, u64 num_bytes)
5142 {
5143 	int ret;
5144 
5145 	ret = block_rsv_use_bytes(src, num_bytes);
5146 	if (ret)
5147 		return ret;
5148 
5149 	block_rsv_add_bytes(dst, num_bytes, 1);
5150 	return 0;
5151 }
5152 
5153 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5154 {
5155 	memset(rsv, 0, sizeof(*rsv));
5156 	spin_lock_init(&rsv->lock);
5157 	rsv->type = type;
5158 }
5159 
5160 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5161 					      unsigned short type)
5162 {
5163 	struct btrfs_block_rsv *block_rsv;
5164 	struct btrfs_fs_info *fs_info = root->fs_info;
5165 
5166 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5167 	if (!block_rsv)
5168 		return NULL;
5169 
5170 	btrfs_init_block_rsv(block_rsv, type);
5171 	block_rsv->space_info = __find_space_info(fs_info,
5172 						  BTRFS_BLOCK_GROUP_METADATA);
5173 	return block_rsv;
5174 }
5175 
5176 void btrfs_free_block_rsv(struct btrfs_root *root,
5177 			  struct btrfs_block_rsv *rsv)
5178 {
5179 	if (!rsv)
5180 		return;
5181 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5182 	kfree(rsv);
5183 }
5184 
5185 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5186 {
5187 	kfree(rsv);
5188 }
5189 
5190 int btrfs_block_rsv_add(struct btrfs_root *root,
5191 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5192 			enum btrfs_reserve_flush_enum flush)
5193 {
5194 	int ret;
5195 
5196 	if (num_bytes == 0)
5197 		return 0;
5198 
5199 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5200 	if (!ret) {
5201 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5202 		return 0;
5203 	}
5204 
5205 	return ret;
5206 }
5207 
5208 int btrfs_block_rsv_check(struct btrfs_root *root,
5209 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5210 {
5211 	u64 num_bytes = 0;
5212 	int ret = -ENOSPC;
5213 
5214 	if (!block_rsv)
5215 		return 0;
5216 
5217 	spin_lock(&block_rsv->lock);
5218 	num_bytes = div_factor(block_rsv->size, min_factor);
5219 	if (block_rsv->reserved >= num_bytes)
5220 		ret = 0;
5221 	spin_unlock(&block_rsv->lock);
5222 
5223 	return ret;
5224 }
5225 
5226 int btrfs_block_rsv_refill(struct btrfs_root *root,
5227 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5228 			   enum btrfs_reserve_flush_enum flush)
5229 {
5230 	u64 num_bytes = 0;
5231 	int ret = -ENOSPC;
5232 
5233 	if (!block_rsv)
5234 		return 0;
5235 
5236 	spin_lock(&block_rsv->lock);
5237 	num_bytes = min_reserved;
5238 	if (block_rsv->reserved >= num_bytes)
5239 		ret = 0;
5240 	else
5241 		num_bytes -= block_rsv->reserved;
5242 	spin_unlock(&block_rsv->lock);
5243 
5244 	if (!ret)
5245 		return 0;
5246 
5247 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5248 	if (!ret) {
5249 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5250 		return 0;
5251 	}
5252 
5253 	return ret;
5254 }
5255 
5256 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5257 			    struct btrfs_block_rsv *dst_rsv,
5258 			    u64 num_bytes)
5259 {
5260 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5261 }
5262 
5263 void btrfs_block_rsv_release(struct btrfs_root *root,
5264 			     struct btrfs_block_rsv *block_rsv,
5265 			     u64 num_bytes)
5266 {
5267 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5268 	if (global_rsv == block_rsv ||
5269 	    block_rsv->space_info != global_rsv->space_info)
5270 		global_rsv = NULL;
5271 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5272 				num_bytes);
5273 }
5274 
5275 /*
5276  * helper to calculate size of global block reservation.
5277  * the desired value is sum of space used by extent tree,
5278  * checksum tree and root tree
5279  */
5280 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5281 {
5282 	struct btrfs_space_info *sinfo;
5283 	u64 num_bytes;
5284 	u64 meta_used;
5285 	u64 data_used;
5286 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5287 
5288 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5289 	spin_lock(&sinfo->lock);
5290 	data_used = sinfo->bytes_used;
5291 	spin_unlock(&sinfo->lock);
5292 
5293 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5294 	spin_lock(&sinfo->lock);
5295 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5296 		data_used = 0;
5297 	meta_used = sinfo->bytes_used;
5298 	spin_unlock(&sinfo->lock);
5299 
5300 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5301 		    csum_size * 2;
5302 	num_bytes += div_u64(data_used + meta_used, 50);
5303 
5304 	if (num_bytes * 3 > meta_used)
5305 		num_bytes = div_u64(meta_used, 3);
5306 
5307 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5308 }
5309 
5310 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5311 {
5312 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5313 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5314 	u64 num_bytes;
5315 
5316 	num_bytes = calc_global_metadata_size(fs_info);
5317 
5318 	spin_lock(&sinfo->lock);
5319 	spin_lock(&block_rsv->lock);
5320 
5321 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5322 
5323 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5324 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5325 		    sinfo->bytes_may_use;
5326 
5327 	if (sinfo->total_bytes > num_bytes) {
5328 		num_bytes = sinfo->total_bytes - num_bytes;
5329 		block_rsv->reserved += num_bytes;
5330 		sinfo->bytes_may_use += num_bytes;
5331 		trace_btrfs_space_reservation(fs_info, "space_info",
5332 				      sinfo->flags, num_bytes, 1);
5333 	}
5334 
5335 	if (block_rsv->reserved >= block_rsv->size) {
5336 		num_bytes = block_rsv->reserved - block_rsv->size;
5337 		sinfo->bytes_may_use -= num_bytes;
5338 		trace_btrfs_space_reservation(fs_info, "space_info",
5339 				      sinfo->flags, num_bytes, 0);
5340 		block_rsv->reserved = block_rsv->size;
5341 		block_rsv->full = 1;
5342 	}
5343 
5344 	spin_unlock(&block_rsv->lock);
5345 	spin_unlock(&sinfo->lock);
5346 }
5347 
5348 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5349 {
5350 	struct btrfs_space_info *space_info;
5351 
5352 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5353 	fs_info->chunk_block_rsv.space_info = space_info;
5354 
5355 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5356 	fs_info->global_block_rsv.space_info = space_info;
5357 	fs_info->delalloc_block_rsv.space_info = space_info;
5358 	fs_info->trans_block_rsv.space_info = space_info;
5359 	fs_info->empty_block_rsv.space_info = space_info;
5360 	fs_info->delayed_block_rsv.space_info = space_info;
5361 
5362 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5363 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5364 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5365 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5366 	if (fs_info->quota_root)
5367 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5368 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5369 
5370 	update_global_block_rsv(fs_info);
5371 }
5372 
5373 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5374 {
5375 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5376 				(u64)-1);
5377 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5378 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5379 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5380 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5381 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5382 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5383 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5384 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5385 }
5386 
5387 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5388 				  struct btrfs_root *root)
5389 {
5390 	if (!trans->block_rsv)
5391 		return;
5392 
5393 	if (!trans->bytes_reserved)
5394 		return;
5395 
5396 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5397 				      trans->transid, trans->bytes_reserved, 0);
5398 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5399 	trans->bytes_reserved = 0;
5400 }
5401 
5402 /*
5403  * To be called after all the new block groups attached to the transaction
5404  * handle have been created (btrfs_create_pending_block_groups()).
5405  */
5406 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5407 {
5408 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5409 
5410 	if (!trans->chunk_bytes_reserved)
5411 		return;
5412 
5413 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5414 
5415 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5416 				trans->chunk_bytes_reserved);
5417 	trans->chunk_bytes_reserved = 0;
5418 }
5419 
5420 /* Can only return 0 or -ENOSPC */
5421 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5422 				  struct inode *inode)
5423 {
5424 	struct btrfs_root *root = BTRFS_I(inode)->root;
5425 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5426 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5427 
5428 	/*
5429 	 * We need to hold space in order to delete our orphan item once we've
5430 	 * added it, so this takes the reservation so we can release it later
5431 	 * when we are truly done with the orphan item.
5432 	 */
5433 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5434 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5435 				      btrfs_ino(inode), num_bytes, 1);
5436 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5437 }
5438 
5439 void btrfs_orphan_release_metadata(struct inode *inode)
5440 {
5441 	struct btrfs_root *root = BTRFS_I(inode)->root;
5442 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5443 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5444 				      btrfs_ino(inode), num_bytes, 0);
5445 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5446 }
5447 
5448 /*
5449  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5450  * root: the root of the parent directory
5451  * rsv: block reservation
5452  * items: the number of items that we need do reservation
5453  * qgroup_reserved: used to return the reserved size in qgroup
5454  *
5455  * This function is used to reserve the space for snapshot/subvolume
5456  * creation and deletion. Those operations are different with the
5457  * common file/directory operations, they change two fs/file trees
5458  * and root tree, the number of items that the qgroup reserves is
5459  * different with the free space reservation. So we can not use
5460  * the space reseravtion mechanism in start_transaction().
5461  */
5462 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5463 				     struct btrfs_block_rsv *rsv,
5464 				     int items,
5465 				     u64 *qgroup_reserved,
5466 				     bool use_global_rsv)
5467 {
5468 	u64 num_bytes;
5469 	int ret;
5470 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5471 
5472 	if (root->fs_info->quota_enabled) {
5473 		/* One for parent inode, two for dir entries */
5474 		num_bytes = 3 * root->nodesize;
5475 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5476 		if (ret)
5477 			return ret;
5478 	} else {
5479 		num_bytes = 0;
5480 	}
5481 
5482 	*qgroup_reserved = num_bytes;
5483 
5484 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5485 	rsv->space_info = __find_space_info(root->fs_info,
5486 					    BTRFS_BLOCK_GROUP_METADATA);
5487 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5488 				  BTRFS_RESERVE_FLUSH_ALL);
5489 
5490 	if (ret == -ENOSPC && use_global_rsv)
5491 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5492 
5493 	if (ret && *qgroup_reserved)
5494 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5495 
5496 	return ret;
5497 }
5498 
5499 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5500 				      struct btrfs_block_rsv *rsv,
5501 				      u64 qgroup_reserved)
5502 {
5503 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5504 }
5505 
5506 /**
5507  * drop_outstanding_extent - drop an outstanding extent
5508  * @inode: the inode we're dropping the extent for
5509  * @num_bytes: the number of bytes we're relaseing.
5510  *
5511  * This is called when we are freeing up an outstanding extent, either called
5512  * after an error or after an extent is written.  This will return the number of
5513  * reserved extents that need to be freed.  This must be called with
5514  * BTRFS_I(inode)->lock held.
5515  */
5516 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5517 {
5518 	unsigned drop_inode_space = 0;
5519 	unsigned dropped_extents = 0;
5520 	unsigned num_extents = 0;
5521 
5522 	num_extents = (unsigned)div64_u64(num_bytes +
5523 					  BTRFS_MAX_EXTENT_SIZE - 1,
5524 					  BTRFS_MAX_EXTENT_SIZE);
5525 	ASSERT(num_extents);
5526 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5527 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5528 
5529 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5530 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5531 			       &BTRFS_I(inode)->runtime_flags))
5532 		drop_inode_space = 1;
5533 
5534 	/*
5535 	 * If we have more or the same amount of outsanding extents than we have
5536 	 * reserved then we need to leave the reserved extents count alone.
5537 	 */
5538 	if (BTRFS_I(inode)->outstanding_extents >=
5539 	    BTRFS_I(inode)->reserved_extents)
5540 		return drop_inode_space;
5541 
5542 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5543 		BTRFS_I(inode)->outstanding_extents;
5544 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5545 	return dropped_extents + drop_inode_space;
5546 }
5547 
5548 /**
5549  * calc_csum_metadata_size - return the amount of metada space that must be
5550  *	reserved/free'd for the given bytes.
5551  * @inode: the inode we're manipulating
5552  * @num_bytes: the number of bytes in question
5553  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5554  *
5555  * This adjusts the number of csum_bytes in the inode and then returns the
5556  * correct amount of metadata that must either be reserved or freed.  We
5557  * calculate how many checksums we can fit into one leaf and then divide the
5558  * number of bytes that will need to be checksumed by this value to figure out
5559  * how many checksums will be required.  If we are adding bytes then the number
5560  * may go up and we will return the number of additional bytes that must be
5561  * reserved.  If it is going down we will return the number of bytes that must
5562  * be freed.
5563  *
5564  * This must be called with BTRFS_I(inode)->lock held.
5565  */
5566 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5567 				   int reserve)
5568 {
5569 	struct btrfs_root *root = BTRFS_I(inode)->root;
5570 	u64 old_csums, num_csums;
5571 
5572 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5573 	    BTRFS_I(inode)->csum_bytes == 0)
5574 		return 0;
5575 
5576 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5577 	if (reserve)
5578 		BTRFS_I(inode)->csum_bytes += num_bytes;
5579 	else
5580 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5581 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5582 
5583 	/* No change, no need to reserve more */
5584 	if (old_csums == num_csums)
5585 		return 0;
5586 
5587 	if (reserve)
5588 		return btrfs_calc_trans_metadata_size(root,
5589 						      num_csums - old_csums);
5590 
5591 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5592 }
5593 
5594 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5595 {
5596 	struct btrfs_root *root = BTRFS_I(inode)->root;
5597 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5598 	u64 to_reserve = 0;
5599 	u64 csum_bytes;
5600 	unsigned nr_extents = 0;
5601 	int extra_reserve = 0;
5602 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5603 	int ret = 0;
5604 	bool delalloc_lock = true;
5605 	u64 to_free = 0;
5606 	unsigned dropped;
5607 
5608 	/* If we are a free space inode we need to not flush since we will be in
5609 	 * the middle of a transaction commit.  We also don't need the delalloc
5610 	 * mutex since we won't race with anybody.  We need this mostly to make
5611 	 * lockdep shut its filthy mouth.
5612 	 */
5613 	if (btrfs_is_free_space_inode(inode)) {
5614 		flush = BTRFS_RESERVE_NO_FLUSH;
5615 		delalloc_lock = false;
5616 	}
5617 
5618 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5619 	    btrfs_transaction_in_commit(root->fs_info))
5620 		schedule_timeout(1);
5621 
5622 	if (delalloc_lock)
5623 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5624 
5625 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5626 
5627 	spin_lock(&BTRFS_I(inode)->lock);
5628 	nr_extents = (unsigned)div64_u64(num_bytes +
5629 					 BTRFS_MAX_EXTENT_SIZE - 1,
5630 					 BTRFS_MAX_EXTENT_SIZE);
5631 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5632 	nr_extents = 0;
5633 
5634 	if (BTRFS_I(inode)->outstanding_extents >
5635 	    BTRFS_I(inode)->reserved_extents)
5636 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5637 			BTRFS_I(inode)->reserved_extents;
5638 
5639 	/*
5640 	 * Add an item to reserve for updating the inode when we complete the
5641 	 * delalloc io.
5642 	 */
5643 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5644 		      &BTRFS_I(inode)->runtime_flags)) {
5645 		nr_extents++;
5646 		extra_reserve = 1;
5647 	}
5648 
5649 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5650 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5651 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5652 	spin_unlock(&BTRFS_I(inode)->lock);
5653 
5654 	if (root->fs_info->quota_enabled) {
5655 		ret = btrfs_qgroup_reserve_meta(root,
5656 				nr_extents * root->nodesize);
5657 		if (ret)
5658 			goto out_fail;
5659 	}
5660 
5661 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5662 	if (unlikely(ret)) {
5663 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5664 		goto out_fail;
5665 	}
5666 
5667 	spin_lock(&BTRFS_I(inode)->lock);
5668 	if (extra_reserve) {
5669 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5670 			&BTRFS_I(inode)->runtime_flags);
5671 		nr_extents--;
5672 	}
5673 	BTRFS_I(inode)->reserved_extents += nr_extents;
5674 	spin_unlock(&BTRFS_I(inode)->lock);
5675 
5676 	if (delalloc_lock)
5677 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5678 
5679 	if (to_reserve)
5680 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5681 					      btrfs_ino(inode), to_reserve, 1);
5682 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5683 
5684 	return 0;
5685 
5686 out_fail:
5687 	spin_lock(&BTRFS_I(inode)->lock);
5688 	dropped = drop_outstanding_extent(inode, num_bytes);
5689 	/*
5690 	 * If the inodes csum_bytes is the same as the original
5691 	 * csum_bytes then we know we haven't raced with any free()ers
5692 	 * so we can just reduce our inodes csum bytes and carry on.
5693 	 */
5694 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5695 		calc_csum_metadata_size(inode, num_bytes, 0);
5696 	} else {
5697 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5698 		u64 bytes;
5699 
5700 		/*
5701 		 * This is tricky, but first we need to figure out how much we
5702 		 * free'd from any free-ers that occured during this
5703 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5704 		 * before we dropped our lock, and then call the free for the
5705 		 * number of bytes that were freed while we were trying our
5706 		 * reservation.
5707 		 */
5708 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5709 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5710 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5711 
5712 
5713 		/*
5714 		 * Now we need to see how much we would have freed had we not
5715 		 * been making this reservation and our ->csum_bytes were not
5716 		 * artificially inflated.
5717 		 */
5718 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5719 		bytes = csum_bytes - orig_csum_bytes;
5720 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5721 
5722 		/*
5723 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5724 		 * more than to_free then we would have free'd more space had we
5725 		 * not had an artificially high ->csum_bytes, so we need to free
5726 		 * the remainder.  If bytes is the same or less then we don't
5727 		 * need to do anything, the other free-ers did the correct
5728 		 * thing.
5729 		 */
5730 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5731 		if (bytes > to_free)
5732 			to_free = bytes - to_free;
5733 		else
5734 			to_free = 0;
5735 	}
5736 	spin_unlock(&BTRFS_I(inode)->lock);
5737 	if (dropped)
5738 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5739 
5740 	if (to_free) {
5741 		btrfs_block_rsv_release(root, block_rsv, to_free);
5742 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5743 					      btrfs_ino(inode), to_free, 0);
5744 	}
5745 	if (delalloc_lock)
5746 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5747 	return ret;
5748 }
5749 
5750 /**
5751  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5752  * @inode: the inode to release the reservation for
5753  * @num_bytes: the number of bytes we're releasing
5754  *
5755  * This will release the metadata reservation for an inode.  This can be called
5756  * once we complete IO for a given set of bytes to release their metadata
5757  * reservations.
5758  */
5759 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5760 {
5761 	struct btrfs_root *root = BTRFS_I(inode)->root;
5762 	u64 to_free = 0;
5763 	unsigned dropped;
5764 
5765 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5766 	spin_lock(&BTRFS_I(inode)->lock);
5767 	dropped = drop_outstanding_extent(inode, num_bytes);
5768 
5769 	if (num_bytes)
5770 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5771 	spin_unlock(&BTRFS_I(inode)->lock);
5772 	if (dropped > 0)
5773 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5774 
5775 	if (btrfs_test_is_dummy_root(root))
5776 		return;
5777 
5778 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5779 				      btrfs_ino(inode), to_free, 0);
5780 
5781 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5782 				to_free);
5783 }
5784 
5785 /**
5786  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5787  * delalloc
5788  * @inode: inode we're writing to
5789  * @start: start range we are writing to
5790  * @len: how long the range we are writing to
5791  *
5792  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5793  *
5794  * This will do the following things
5795  *
5796  * o reserve space in data space info for num bytes
5797  *   and reserve precious corresponding qgroup space
5798  *   (Done in check_data_free_space)
5799  *
5800  * o reserve space for metadata space, based on the number of outstanding
5801  *   extents and how much csums will be needed
5802  *   also reserve metadata space in a per root over-reserve method.
5803  * o add to the inodes->delalloc_bytes
5804  * o add it to the fs_info's delalloc inodes list.
5805  *   (Above 3 all done in delalloc_reserve_metadata)
5806  *
5807  * Return 0 for success
5808  * Return <0 for error(-ENOSPC or -EQUOT)
5809  */
5810 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5811 {
5812 	int ret;
5813 
5814 	ret = btrfs_check_data_free_space(inode, start, len);
5815 	if (ret < 0)
5816 		return ret;
5817 	ret = btrfs_delalloc_reserve_metadata(inode, len);
5818 	if (ret < 0)
5819 		btrfs_free_reserved_data_space(inode, start, len);
5820 	return ret;
5821 }
5822 
5823 /**
5824  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5825  * @inode: inode we're releasing space for
5826  * @start: start position of the space already reserved
5827  * @len: the len of the space already reserved
5828  *
5829  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5830  * called in the case that we don't need the metadata AND data reservations
5831  * anymore.  So if there is an error or we insert an inline extent.
5832  *
5833  * This function will release the metadata space that was not used and will
5834  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5835  * list if there are no delalloc bytes left.
5836  * Also it will handle the qgroup reserved space.
5837  */
5838 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5839 {
5840 	btrfs_delalloc_release_metadata(inode, len);
5841 	btrfs_free_reserved_data_space(inode, start, len);
5842 }
5843 
5844 static int update_block_group(struct btrfs_trans_handle *trans,
5845 			      struct btrfs_root *root, u64 bytenr,
5846 			      u64 num_bytes, int alloc)
5847 {
5848 	struct btrfs_block_group_cache *cache = NULL;
5849 	struct btrfs_fs_info *info = root->fs_info;
5850 	u64 total = num_bytes;
5851 	u64 old_val;
5852 	u64 byte_in_group;
5853 	int factor;
5854 
5855 	/* block accounting for super block */
5856 	spin_lock(&info->delalloc_root_lock);
5857 	old_val = btrfs_super_bytes_used(info->super_copy);
5858 	if (alloc)
5859 		old_val += num_bytes;
5860 	else
5861 		old_val -= num_bytes;
5862 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5863 	spin_unlock(&info->delalloc_root_lock);
5864 
5865 	while (total) {
5866 		cache = btrfs_lookup_block_group(info, bytenr);
5867 		if (!cache)
5868 			return -ENOENT;
5869 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5870 				    BTRFS_BLOCK_GROUP_RAID1 |
5871 				    BTRFS_BLOCK_GROUP_RAID10))
5872 			factor = 2;
5873 		else
5874 			factor = 1;
5875 		/*
5876 		 * If this block group has free space cache written out, we
5877 		 * need to make sure to load it if we are removing space.  This
5878 		 * is because we need the unpinning stage to actually add the
5879 		 * space back to the block group, otherwise we will leak space.
5880 		 */
5881 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5882 			cache_block_group(cache, 1);
5883 
5884 		byte_in_group = bytenr - cache->key.objectid;
5885 		WARN_ON(byte_in_group > cache->key.offset);
5886 
5887 		spin_lock(&cache->space_info->lock);
5888 		spin_lock(&cache->lock);
5889 
5890 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5891 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5892 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5893 
5894 		old_val = btrfs_block_group_used(&cache->item);
5895 		num_bytes = min(total, cache->key.offset - byte_in_group);
5896 		if (alloc) {
5897 			old_val += num_bytes;
5898 			btrfs_set_block_group_used(&cache->item, old_val);
5899 			cache->reserved -= num_bytes;
5900 			cache->space_info->bytes_reserved -= num_bytes;
5901 			cache->space_info->bytes_used += num_bytes;
5902 			cache->space_info->disk_used += num_bytes * factor;
5903 			spin_unlock(&cache->lock);
5904 			spin_unlock(&cache->space_info->lock);
5905 		} else {
5906 			old_val -= num_bytes;
5907 			btrfs_set_block_group_used(&cache->item, old_val);
5908 			cache->pinned += num_bytes;
5909 			cache->space_info->bytes_pinned += num_bytes;
5910 			cache->space_info->bytes_used -= num_bytes;
5911 			cache->space_info->disk_used -= num_bytes * factor;
5912 			spin_unlock(&cache->lock);
5913 			spin_unlock(&cache->space_info->lock);
5914 
5915 			set_extent_dirty(info->pinned_extents,
5916 					 bytenr, bytenr + num_bytes - 1,
5917 					 GFP_NOFS | __GFP_NOFAIL);
5918 		}
5919 
5920 		spin_lock(&trans->transaction->dirty_bgs_lock);
5921 		if (list_empty(&cache->dirty_list)) {
5922 			list_add_tail(&cache->dirty_list,
5923 				      &trans->transaction->dirty_bgs);
5924 				trans->transaction->num_dirty_bgs++;
5925 			btrfs_get_block_group(cache);
5926 		}
5927 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5928 
5929 		/*
5930 		 * No longer have used bytes in this block group, queue it for
5931 		 * deletion. We do this after adding the block group to the
5932 		 * dirty list to avoid races between cleaner kthread and space
5933 		 * cache writeout.
5934 		 */
5935 		if (!alloc && old_val == 0) {
5936 			spin_lock(&info->unused_bgs_lock);
5937 			if (list_empty(&cache->bg_list)) {
5938 				btrfs_get_block_group(cache);
5939 				list_add_tail(&cache->bg_list,
5940 					      &info->unused_bgs);
5941 			}
5942 			spin_unlock(&info->unused_bgs_lock);
5943 		}
5944 
5945 		btrfs_put_block_group(cache);
5946 		total -= num_bytes;
5947 		bytenr += num_bytes;
5948 	}
5949 	return 0;
5950 }
5951 
5952 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5953 {
5954 	struct btrfs_block_group_cache *cache;
5955 	u64 bytenr;
5956 
5957 	spin_lock(&root->fs_info->block_group_cache_lock);
5958 	bytenr = root->fs_info->first_logical_byte;
5959 	spin_unlock(&root->fs_info->block_group_cache_lock);
5960 
5961 	if (bytenr < (u64)-1)
5962 		return bytenr;
5963 
5964 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5965 	if (!cache)
5966 		return 0;
5967 
5968 	bytenr = cache->key.objectid;
5969 	btrfs_put_block_group(cache);
5970 
5971 	return bytenr;
5972 }
5973 
5974 static int pin_down_extent(struct btrfs_root *root,
5975 			   struct btrfs_block_group_cache *cache,
5976 			   u64 bytenr, u64 num_bytes, int reserved)
5977 {
5978 	spin_lock(&cache->space_info->lock);
5979 	spin_lock(&cache->lock);
5980 	cache->pinned += num_bytes;
5981 	cache->space_info->bytes_pinned += num_bytes;
5982 	if (reserved) {
5983 		cache->reserved -= num_bytes;
5984 		cache->space_info->bytes_reserved -= num_bytes;
5985 	}
5986 	spin_unlock(&cache->lock);
5987 	spin_unlock(&cache->space_info->lock);
5988 
5989 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5990 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5991 	if (reserved)
5992 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5993 	return 0;
5994 }
5995 
5996 /*
5997  * this function must be called within transaction
5998  */
5999 int btrfs_pin_extent(struct btrfs_root *root,
6000 		     u64 bytenr, u64 num_bytes, int reserved)
6001 {
6002 	struct btrfs_block_group_cache *cache;
6003 
6004 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6005 	BUG_ON(!cache); /* Logic error */
6006 
6007 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6008 
6009 	btrfs_put_block_group(cache);
6010 	return 0;
6011 }
6012 
6013 /*
6014  * this function must be called within transaction
6015  */
6016 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6017 				    u64 bytenr, u64 num_bytes)
6018 {
6019 	struct btrfs_block_group_cache *cache;
6020 	int ret;
6021 
6022 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6023 	if (!cache)
6024 		return -EINVAL;
6025 
6026 	/*
6027 	 * pull in the free space cache (if any) so that our pin
6028 	 * removes the free space from the cache.  We have load_only set
6029 	 * to one because the slow code to read in the free extents does check
6030 	 * the pinned extents.
6031 	 */
6032 	cache_block_group(cache, 1);
6033 
6034 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6035 
6036 	/* remove us from the free space cache (if we're there at all) */
6037 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6038 	btrfs_put_block_group(cache);
6039 	return ret;
6040 }
6041 
6042 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6043 {
6044 	int ret;
6045 	struct btrfs_block_group_cache *block_group;
6046 	struct btrfs_caching_control *caching_ctl;
6047 
6048 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6049 	if (!block_group)
6050 		return -EINVAL;
6051 
6052 	cache_block_group(block_group, 0);
6053 	caching_ctl = get_caching_control(block_group);
6054 
6055 	if (!caching_ctl) {
6056 		/* Logic error */
6057 		BUG_ON(!block_group_cache_done(block_group));
6058 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6059 	} else {
6060 		mutex_lock(&caching_ctl->mutex);
6061 
6062 		if (start >= caching_ctl->progress) {
6063 			ret = add_excluded_extent(root, start, num_bytes);
6064 		} else if (start + num_bytes <= caching_ctl->progress) {
6065 			ret = btrfs_remove_free_space(block_group,
6066 						      start, num_bytes);
6067 		} else {
6068 			num_bytes = caching_ctl->progress - start;
6069 			ret = btrfs_remove_free_space(block_group,
6070 						      start, num_bytes);
6071 			if (ret)
6072 				goto out_lock;
6073 
6074 			num_bytes = (start + num_bytes) -
6075 				caching_ctl->progress;
6076 			start = caching_ctl->progress;
6077 			ret = add_excluded_extent(root, start, num_bytes);
6078 		}
6079 out_lock:
6080 		mutex_unlock(&caching_ctl->mutex);
6081 		put_caching_control(caching_ctl);
6082 	}
6083 	btrfs_put_block_group(block_group);
6084 	return ret;
6085 }
6086 
6087 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6088 				 struct extent_buffer *eb)
6089 {
6090 	struct btrfs_file_extent_item *item;
6091 	struct btrfs_key key;
6092 	int found_type;
6093 	int i;
6094 
6095 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6096 		return 0;
6097 
6098 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6099 		btrfs_item_key_to_cpu(eb, &key, i);
6100 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6101 			continue;
6102 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6103 		found_type = btrfs_file_extent_type(eb, item);
6104 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6105 			continue;
6106 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6107 			continue;
6108 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6109 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6110 		__exclude_logged_extent(log, key.objectid, key.offset);
6111 	}
6112 
6113 	return 0;
6114 }
6115 
6116 /**
6117  * btrfs_update_reserved_bytes - update the block_group and space info counters
6118  * @cache:	The cache we are manipulating
6119  * @num_bytes:	The number of bytes in question
6120  * @reserve:	One of the reservation enums
6121  * @delalloc:   The blocks are allocated for the delalloc write
6122  *
6123  * This is called by the allocator when it reserves space, or by somebody who is
6124  * freeing space that was never actually used on disk.  For example if you
6125  * reserve some space for a new leaf in transaction A and before transaction A
6126  * commits you free that leaf, you call this with reserve set to 0 in order to
6127  * clear the reservation.
6128  *
6129  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6130  * ENOSPC accounting.  For data we handle the reservation through clearing the
6131  * delalloc bits in the io_tree.  We have to do this since we could end up
6132  * allocating less disk space for the amount of data we have reserved in the
6133  * case of compression.
6134  *
6135  * If this is a reservation and the block group has become read only we cannot
6136  * make the reservation and return -EAGAIN, otherwise this function always
6137  * succeeds.
6138  */
6139 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6140 				       u64 num_bytes, int reserve, int delalloc)
6141 {
6142 	struct btrfs_space_info *space_info = cache->space_info;
6143 	int ret = 0;
6144 
6145 	spin_lock(&space_info->lock);
6146 	spin_lock(&cache->lock);
6147 	if (reserve != RESERVE_FREE) {
6148 		if (cache->ro) {
6149 			ret = -EAGAIN;
6150 		} else {
6151 			cache->reserved += num_bytes;
6152 			space_info->bytes_reserved += num_bytes;
6153 			if (reserve == RESERVE_ALLOC) {
6154 				trace_btrfs_space_reservation(cache->fs_info,
6155 						"space_info", space_info->flags,
6156 						num_bytes, 0);
6157 				space_info->bytes_may_use -= num_bytes;
6158 			}
6159 
6160 			if (delalloc)
6161 				cache->delalloc_bytes += num_bytes;
6162 		}
6163 	} else {
6164 		if (cache->ro)
6165 			space_info->bytes_readonly += num_bytes;
6166 		cache->reserved -= num_bytes;
6167 		space_info->bytes_reserved -= num_bytes;
6168 
6169 		if (delalloc)
6170 			cache->delalloc_bytes -= num_bytes;
6171 	}
6172 	spin_unlock(&cache->lock);
6173 	spin_unlock(&space_info->lock);
6174 	return ret;
6175 }
6176 
6177 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6178 				struct btrfs_root *root)
6179 {
6180 	struct btrfs_fs_info *fs_info = root->fs_info;
6181 	struct btrfs_caching_control *next;
6182 	struct btrfs_caching_control *caching_ctl;
6183 	struct btrfs_block_group_cache *cache;
6184 
6185 	down_write(&fs_info->commit_root_sem);
6186 
6187 	list_for_each_entry_safe(caching_ctl, next,
6188 				 &fs_info->caching_block_groups, list) {
6189 		cache = caching_ctl->block_group;
6190 		if (block_group_cache_done(cache)) {
6191 			cache->last_byte_to_unpin = (u64)-1;
6192 			list_del_init(&caching_ctl->list);
6193 			put_caching_control(caching_ctl);
6194 		} else {
6195 			cache->last_byte_to_unpin = caching_ctl->progress;
6196 		}
6197 	}
6198 
6199 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6200 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6201 	else
6202 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6203 
6204 	up_write(&fs_info->commit_root_sem);
6205 
6206 	update_global_block_rsv(fs_info);
6207 }
6208 
6209 /*
6210  * Returns the free cluster for the given space info and sets empty_cluster to
6211  * what it should be based on the mount options.
6212  */
6213 static struct btrfs_free_cluster *
6214 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6215 		   u64 *empty_cluster)
6216 {
6217 	struct btrfs_free_cluster *ret = NULL;
6218 	bool ssd = btrfs_test_opt(root, SSD);
6219 
6220 	*empty_cluster = 0;
6221 	if (btrfs_mixed_space_info(space_info))
6222 		return ret;
6223 
6224 	if (ssd)
6225 		*empty_cluster = 2 * 1024 * 1024;
6226 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6227 		ret = &root->fs_info->meta_alloc_cluster;
6228 		if (!ssd)
6229 			*empty_cluster = 64 * 1024;
6230 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6231 		ret = &root->fs_info->data_alloc_cluster;
6232 	}
6233 
6234 	return ret;
6235 }
6236 
6237 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6238 			      const bool return_free_space)
6239 {
6240 	struct btrfs_fs_info *fs_info = root->fs_info;
6241 	struct btrfs_block_group_cache *cache = NULL;
6242 	struct btrfs_space_info *space_info;
6243 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6244 	struct btrfs_free_cluster *cluster = NULL;
6245 	u64 len;
6246 	u64 total_unpinned = 0;
6247 	u64 empty_cluster = 0;
6248 	bool readonly;
6249 
6250 	while (start <= end) {
6251 		readonly = false;
6252 		if (!cache ||
6253 		    start >= cache->key.objectid + cache->key.offset) {
6254 			if (cache)
6255 				btrfs_put_block_group(cache);
6256 			total_unpinned = 0;
6257 			cache = btrfs_lookup_block_group(fs_info, start);
6258 			BUG_ON(!cache); /* Logic error */
6259 
6260 			cluster = fetch_cluster_info(root,
6261 						     cache->space_info,
6262 						     &empty_cluster);
6263 			empty_cluster <<= 1;
6264 		}
6265 
6266 		len = cache->key.objectid + cache->key.offset - start;
6267 		len = min(len, end + 1 - start);
6268 
6269 		if (start < cache->last_byte_to_unpin) {
6270 			len = min(len, cache->last_byte_to_unpin - start);
6271 			if (return_free_space)
6272 				btrfs_add_free_space(cache, start, len);
6273 		}
6274 
6275 		start += len;
6276 		total_unpinned += len;
6277 		space_info = cache->space_info;
6278 
6279 		/*
6280 		 * If this space cluster has been marked as fragmented and we've
6281 		 * unpinned enough in this block group to potentially allow a
6282 		 * cluster to be created inside of it go ahead and clear the
6283 		 * fragmented check.
6284 		 */
6285 		if (cluster && cluster->fragmented &&
6286 		    total_unpinned > empty_cluster) {
6287 			spin_lock(&cluster->lock);
6288 			cluster->fragmented = 0;
6289 			spin_unlock(&cluster->lock);
6290 		}
6291 
6292 		spin_lock(&space_info->lock);
6293 		spin_lock(&cache->lock);
6294 		cache->pinned -= len;
6295 		space_info->bytes_pinned -= len;
6296 		space_info->max_extent_size = 0;
6297 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6298 		if (cache->ro) {
6299 			space_info->bytes_readonly += len;
6300 			readonly = true;
6301 		}
6302 		spin_unlock(&cache->lock);
6303 		if (!readonly && global_rsv->space_info == space_info) {
6304 			spin_lock(&global_rsv->lock);
6305 			if (!global_rsv->full) {
6306 				len = min(len, global_rsv->size -
6307 					  global_rsv->reserved);
6308 				global_rsv->reserved += len;
6309 				space_info->bytes_may_use += len;
6310 				if (global_rsv->reserved >= global_rsv->size)
6311 					global_rsv->full = 1;
6312 			}
6313 			spin_unlock(&global_rsv->lock);
6314 		}
6315 		spin_unlock(&space_info->lock);
6316 	}
6317 
6318 	if (cache)
6319 		btrfs_put_block_group(cache);
6320 	return 0;
6321 }
6322 
6323 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6324 			       struct btrfs_root *root)
6325 {
6326 	struct btrfs_fs_info *fs_info = root->fs_info;
6327 	struct btrfs_block_group_cache *block_group, *tmp;
6328 	struct list_head *deleted_bgs;
6329 	struct extent_io_tree *unpin;
6330 	u64 start;
6331 	u64 end;
6332 	int ret;
6333 
6334 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6335 		unpin = &fs_info->freed_extents[1];
6336 	else
6337 		unpin = &fs_info->freed_extents[0];
6338 
6339 	while (!trans->aborted) {
6340 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6341 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6342 					    EXTENT_DIRTY, NULL);
6343 		if (ret) {
6344 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6345 			break;
6346 		}
6347 
6348 		if (btrfs_test_opt(root, DISCARD))
6349 			ret = btrfs_discard_extent(root, start,
6350 						   end + 1 - start, NULL);
6351 
6352 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6353 		unpin_extent_range(root, start, end, true);
6354 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6355 		cond_resched();
6356 	}
6357 
6358 	/*
6359 	 * Transaction is finished.  We don't need the lock anymore.  We
6360 	 * do need to clean up the block groups in case of a transaction
6361 	 * abort.
6362 	 */
6363 	deleted_bgs = &trans->transaction->deleted_bgs;
6364 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6365 		u64 trimmed = 0;
6366 
6367 		ret = -EROFS;
6368 		if (!trans->aborted)
6369 			ret = btrfs_discard_extent(root,
6370 						   block_group->key.objectid,
6371 						   block_group->key.offset,
6372 						   &trimmed);
6373 
6374 		list_del_init(&block_group->bg_list);
6375 		btrfs_put_block_group_trimming(block_group);
6376 		btrfs_put_block_group(block_group);
6377 
6378 		if (ret) {
6379 			const char *errstr = btrfs_decode_error(ret);
6380 			btrfs_warn(fs_info,
6381 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6382 				   ret, errstr);
6383 		}
6384 	}
6385 
6386 	return 0;
6387 }
6388 
6389 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6390 			     u64 owner, u64 root_objectid)
6391 {
6392 	struct btrfs_space_info *space_info;
6393 	u64 flags;
6394 
6395 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6396 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6397 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6398 		else
6399 			flags = BTRFS_BLOCK_GROUP_METADATA;
6400 	} else {
6401 		flags = BTRFS_BLOCK_GROUP_DATA;
6402 	}
6403 
6404 	space_info = __find_space_info(fs_info, flags);
6405 	BUG_ON(!space_info); /* Logic bug */
6406 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6407 }
6408 
6409 
6410 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6411 				struct btrfs_root *root,
6412 				struct btrfs_delayed_ref_node *node, u64 parent,
6413 				u64 root_objectid, u64 owner_objectid,
6414 				u64 owner_offset, int refs_to_drop,
6415 				struct btrfs_delayed_extent_op *extent_op)
6416 {
6417 	struct btrfs_key key;
6418 	struct btrfs_path *path;
6419 	struct btrfs_fs_info *info = root->fs_info;
6420 	struct btrfs_root *extent_root = info->extent_root;
6421 	struct extent_buffer *leaf;
6422 	struct btrfs_extent_item *ei;
6423 	struct btrfs_extent_inline_ref *iref;
6424 	int ret;
6425 	int is_data;
6426 	int extent_slot = 0;
6427 	int found_extent = 0;
6428 	int num_to_del = 1;
6429 	u32 item_size;
6430 	u64 refs;
6431 	u64 bytenr = node->bytenr;
6432 	u64 num_bytes = node->num_bytes;
6433 	int last_ref = 0;
6434 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6435 						 SKINNY_METADATA);
6436 
6437 	path = btrfs_alloc_path();
6438 	if (!path)
6439 		return -ENOMEM;
6440 
6441 	path->reada = 1;
6442 	path->leave_spinning = 1;
6443 
6444 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6445 	BUG_ON(!is_data && refs_to_drop != 1);
6446 
6447 	if (is_data)
6448 		skinny_metadata = 0;
6449 
6450 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6451 				    bytenr, num_bytes, parent,
6452 				    root_objectid, owner_objectid,
6453 				    owner_offset);
6454 	if (ret == 0) {
6455 		extent_slot = path->slots[0];
6456 		while (extent_slot >= 0) {
6457 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6458 					      extent_slot);
6459 			if (key.objectid != bytenr)
6460 				break;
6461 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6462 			    key.offset == num_bytes) {
6463 				found_extent = 1;
6464 				break;
6465 			}
6466 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6467 			    key.offset == owner_objectid) {
6468 				found_extent = 1;
6469 				break;
6470 			}
6471 			if (path->slots[0] - extent_slot > 5)
6472 				break;
6473 			extent_slot--;
6474 		}
6475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6476 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6477 		if (found_extent && item_size < sizeof(*ei))
6478 			found_extent = 0;
6479 #endif
6480 		if (!found_extent) {
6481 			BUG_ON(iref);
6482 			ret = remove_extent_backref(trans, extent_root, path,
6483 						    NULL, refs_to_drop,
6484 						    is_data, &last_ref);
6485 			if (ret) {
6486 				btrfs_abort_transaction(trans, extent_root, ret);
6487 				goto out;
6488 			}
6489 			btrfs_release_path(path);
6490 			path->leave_spinning = 1;
6491 
6492 			key.objectid = bytenr;
6493 			key.type = BTRFS_EXTENT_ITEM_KEY;
6494 			key.offset = num_bytes;
6495 
6496 			if (!is_data && skinny_metadata) {
6497 				key.type = BTRFS_METADATA_ITEM_KEY;
6498 				key.offset = owner_objectid;
6499 			}
6500 
6501 			ret = btrfs_search_slot(trans, extent_root,
6502 						&key, path, -1, 1);
6503 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6504 				/*
6505 				 * Couldn't find our skinny metadata item,
6506 				 * see if we have ye olde extent item.
6507 				 */
6508 				path->slots[0]--;
6509 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6510 						      path->slots[0]);
6511 				if (key.objectid == bytenr &&
6512 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6513 				    key.offset == num_bytes)
6514 					ret = 0;
6515 			}
6516 
6517 			if (ret > 0 && skinny_metadata) {
6518 				skinny_metadata = false;
6519 				key.objectid = bytenr;
6520 				key.type = BTRFS_EXTENT_ITEM_KEY;
6521 				key.offset = num_bytes;
6522 				btrfs_release_path(path);
6523 				ret = btrfs_search_slot(trans, extent_root,
6524 							&key, path, -1, 1);
6525 			}
6526 
6527 			if (ret) {
6528 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6529 					ret, bytenr);
6530 				if (ret > 0)
6531 					btrfs_print_leaf(extent_root,
6532 							 path->nodes[0]);
6533 			}
6534 			if (ret < 0) {
6535 				btrfs_abort_transaction(trans, extent_root, ret);
6536 				goto out;
6537 			}
6538 			extent_slot = path->slots[0];
6539 		}
6540 	} else if (WARN_ON(ret == -ENOENT)) {
6541 		btrfs_print_leaf(extent_root, path->nodes[0]);
6542 		btrfs_err(info,
6543 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6544 			bytenr, parent, root_objectid, owner_objectid,
6545 			owner_offset);
6546 		btrfs_abort_transaction(trans, extent_root, ret);
6547 		goto out;
6548 	} else {
6549 		btrfs_abort_transaction(trans, extent_root, ret);
6550 		goto out;
6551 	}
6552 
6553 	leaf = path->nodes[0];
6554 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6556 	if (item_size < sizeof(*ei)) {
6557 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6558 		ret = convert_extent_item_v0(trans, extent_root, path,
6559 					     owner_objectid, 0);
6560 		if (ret < 0) {
6561 			btrfs_abort_transaction(trans, extent_root, ret);
6562 			goto out;
6563 		}
6564 
6565 		btrfs_release_path(path);
6566 		path->leave_spinning = 1;
6567 
6568 		key.objectid = bytenr;
6569 		key.type = BTRFS_EXTENT_ITEM_KEY;
6570 		key.offset = num_bytes;
6571 
6572 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6573 					-1, 1);
6574 		if (ret) {
6575 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6576 				ret, bytenr);
6577 			btrfs_print_leaf(extent_root, path->nodes[0]);
6578 		}
6579 		if (ret < 0) {
6580 			btrfs_abort_transaction(trans, extent_root, ret);
6581 			goto out;
6582 		}
6583 
6584 		extent_slot = path->slots[0];
6585 		leaf = path->nodes[0];
6586 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6587 	}
6588 #endif
6589 	BUG_ON(item_size < sizeof(*ei));
6590 	ei = btrfs_item_ptr(leaf, extent_slot,
6591 			    struct btrfs_extent_item);
6592 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6593 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6594 		struct btrfs_tree_block_info *bi;
6595 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6596 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6597 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6598 	}
6599 
6600 	refs = btrfs_extent_refs(leaf, ei);
6601 	if (refs < refs_to_drop) {
6602 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6603 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6604 		ret = -EINVAL;
6605 		btrfs_abort_transaction(trans, extent_root, ret);
6606 		goto out;
6607 	}
6608 	refs -= refs_to_drop;
6609 
6610 	if (refs > 0) {
6611 		if (extent_op)
6612 			__run_delayed_extent_op(extent_op, leaf, ei);
6613 		/*
6614 		 * In the case of inline back ref, reference count will
6615 		 * be updated by remove_extent_backref
6616 		 */
6617 		if (iref) {
6618 			BUG_ON(!found_extent);
6619 		} else {
6620 			btrfs_set_extent_refs(leaf, ei, refs);
6621 			btrfs_mark_buffer_dirty(leaf);
6622 		}
6623 		if (found_extent) {
6624 			ret = remove_extent_backref(trans, extent_root, path,
6625 						    iref, refs_to_drop,
6626 						    is_data, &last_ref);
6627 			if (ret) {
6628 				btrfs_abort_transaction(trans, extent_root, ret);
6629 				goto out;
6630 			}
6631 		}
6632 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6633 				 root_objectid);
6634 	} else {
6635 		if (found_extent) {
6636 			BUG_ON(is_data && refs_to_drop !=
6637 			       extent_data_ref_count(path, iref));
6638 			if (iref) {
6639 				BUG_ON(path->slots[0] != extent_slot);
6640 			} else {
6641 				BUG_ON(path->slots[0] != extent_slot + 1);
6642 				path->slots[0] = extent_slot;
6643 				num_to_del = 2;
6644 			}
6645 		}
6646 
6647 		last_ref = 1;
6648 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6649 				      num_to_del);
6650 		if (ret) {
6651 			btrfs_abort_transaction(trans, extent_root, ret);
6652 			goto out;
6653 		}
6654 		btrfs_release_path(path);
6655 
6656 		if (is_data) {
6657 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6658 			if (ret) {
6659 				btrfs_abort_transaction(trans, extent_root, ret);
6660 				goto out;
6661 			}
6662 		}
6663 
6664 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6665 		if (ret) {
6666 			btrfs_abort_transaction(trans, extent_root, ret);
6667 			goto out;
6668 		}
6669 	}
6670 	btrfs_release_path(path);
6671 
6672 out:
6673 	btrfs_free_path(path);
6674 	return ret;
6675 }
6676 
6677 /*
6678  * when we free an block, it is possible (and likely) that we free the last
6679  * delayed ref for that extent as well.  This searches the delayed ref tree for
6680  * a given extent, and if there are no other delayed refs to be processed, it
6681  * removes it from the tree.
6682  */
6683 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6684 				      struct btrfs_root *root, u64 bytenr)
6685 {
6686 	struct btrfs_delayed_ref_head *head;
6687 	struct btrfs_delayed_ref_root *delayed_refs;
6688 	int ret = 0;
6689 
6690 	delayed_refs = &trans->transaction->delayed_refs;
6691 	spin_lock(&delayed_refs->lock);
6692 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6693 	if (!head)
6694 		goto out_delayed_unlock;
6695 
6696 	spin_lock(&head->lock);
6697 	if (!list_empty(&head->ref_list))
6698 		goto out;
6699 
6700 	if (head->extent_op) {
6701 		if (!head->must_insert_reserved)
6702 			goto out;
6703 		btrfs_free_delayed_extent_op(head->extent_op);
6704 		head->extent_op = NULL;
6705 	}
6706 
6707 	/*
6708 	 * waiting for the lock here would deadlock.  If someone else has it
6709 	 * locked they are already in the process of dropping it anyway
6710 	 */
6711 	if (!mutex_trylock(&head->mutex))
6712 		goto out;
6713 
6714 	/*
6715 	 * at this point we have a head with no other entries.  Go
6716 	 * ahead and process it.
6717 	 */
6718 	head->node.in_tree = 0;
6719 	rb_erase(&head->href_node, &delayed_refs->href_root);
6720 
6721 	atomic_dec(&delayed_refs->num_entries);
6722 
6723 	/*
6724 	 * we don't take a ref on the node because we're removing it from the
6725 	 * tree, so we just steal the ref the tree was holding.
6726 	 */
6727 	delayed_refs->num_heads--;
6728 	if (head->processing == 0)
6729 		delayed_refs->num_heads_ready--;
6730 	head->processing = 0;
6731 	spin_unlock(&head->lock);
6732 	spin_unlock(&delayed_refs->lock);
6733 
6734 	BUG_ON(head->extent_op);
6735 	if (head->must_insert_reserved)
6736 		ret = 1;
6737 
6738 	mutex_unlock(&head->mutex);
6739 	btrfs_put_delayed_ref(&head->node);
6740 	return ret;
6741 out:
6742 	spin_unlock(&head->lock);
6743 
6744 out_delayed_unlock:
6745 	spin_unlock(&delayed_refs->lock);
6746 	return 0;
6747 }
6748 
6749 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6750 			   struct btrfs_root *root,
6751 			   struct extent_buffer *buf,
6752 			   u64 parent, int last_ref)
6753 {
6754 	int pin = 1;
6755 	int ret;
6756 
6757 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6758 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6759 					buf->start, buf->len,
6760 					parent, root->root_key.objectid,
6761 					btrfs_header_level(buf),
6762 					BTRFS_DROP_DELAYED_REF, NULL);
6763 		BUG_ON(ret); /* -ENOMEM */
6764 	}
6765 
6766 	if (!last_ref)
6767 		return;
6768 
6769 	if (btrfs_header_generation(buf) == trans->transid) {
6770 		struct btrfs_block_group_cache *cache;
6771 
6772 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6773 			ret = check_ref_cleanup(trans, root, buf->start);
6774 			if (!ret)
6775 				goto out;
6776 		}
6777 
6778 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6779 
6780 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6781 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6782 			btrfs_put_block_group(cache);
6783 			goto out;
6784 		}
6785 
6786 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6787 
6788 		btrfs_add_free_space(cache, buf->start, buf->len);
6789 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6790 		btrfs_put_block_group(cache);
6791 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6792 		pin = 0;
6793 	}
6794 out:
6795 	if (pin)
6796 		add_pinned_bytes(root->fs_info, buf->len,
6797 				 btrfs_header_level(buf),
6798 				 root->root_key.objectid);
6799 
6800 	/*
6801 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6802 	 * anymore.
6803 	 */
6804 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6805 }
6806 
6807 /* Can return -ENOMEM */
6808 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6809 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6810 		      u64 owner, u64 offset)
6811 {
6812 	int ret;
6813 	struct btrfs_fs_info *fs_info = root->fs_info;
6814 
6815 	if (btrfs_test_is_dummy_root(root))
6816 		return 0;
6817 
6818 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6819 
6820 	/*
6821 	 * tree log blocks never actually go into the extent allocation
6822 	 * tree, just update pinning info and exit early.
6823 	 */
6824 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6825 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6826 		/* unlocks the pinned mutex */
6827 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6828 		ret = 0;
6829 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6830 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6831 					num_bytes,
6832 					parent, root_objectid, (int)owner,
6833 					BTRFS_DROP_DELAYED_REF, NULL);
6834 	} else {
6835 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6836 						num_bytes,
6837 						parent, root_objectid, owner,
6838 						offset, 0,
6839 						BTRFS_DROP_DELAYED_REF, NULL);
6840 	}
6841 	return ret;
6842 }
6843 
6844 /*
6845  * when we wait for progress in the block group caching, its because
6846  * our allocation attempt failed at least once.  So, we must sleep
6847  * and let some progress happen before we try again.
6848  *
6849  * This function will sleep at least once waiting for new free space to
6850  * show up, and then it will check the block group free space numbers
6851  * for our min num_bytes.  Another option is to have it go ahead
6852  * and look in the rbtree for a free extent of a given size, but this
6853  * is a good start.
6854  *
6855  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6856  * any of the information in this block group.
6857  */
6858 static noinline void
6859 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6860 				u64 num_bytes)
6861 {
6862 	struct btrfs_caching_control *caching_ctl;
6863 
6864 	caching_ctl = get_caching_control(cache);
6865 	if (!caching_ctl)
6866 		return;
6867 
6868 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6869 		   (cache->free_space_ctl->free_space >= num_bytes));
6870 
6871 	put_caching_control(caching_ctl);
6872 }
6873 
6874 static noinline int
6875 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6876 {
6877 	struct btrfs_caching_control *caching_ctl;
6878 	int ret = 0;
6879 
6880 	caching_ctl = get_caching_control(cache);
6881 	if (!caching_ctl)
6882 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6883 
6884 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6885 	if (cache->cached == BTRFS_CACHE_ERROR)
6886 		ret = -EIO;
6887 	put_caching_control(caching_ctl);
6888 	return ret;
6889 }
6890 
6891 int __get_raid_index(u64 flags)
6892 {
6893 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6894 		return BTRFS_RAID_RAID10;
6895 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6896 		return BTRFS_RAID_RAID1;
6897 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6898 		return BTRFS_RAID_DUP;
6899 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6900 		return BTRFS_RAID_RAID0;
6901 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6902 		return BTRFS_RAID_RAID5;
6903 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6904 		return BTRFS_RAID_RAID6;
6905 
6906 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6907 }
6908 
6909 int get_block_group_index(struct btrfs_block_group_cache *cache)
6910 {
6911 	return __get_raid_index(cache->flags);
6912 }
6913 
6914 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6915 	[BTRFS_RAID_RAID10]	= "raid10",
6916 	[BTRFS_RAID_RAID1]	= "raid1",
6917 	[BTRFS_RAID_DUP]	= "dup",
6918 	[BTRFS_RAID_RAID0]	= "raid0",
6919 	[BTRFS_RAID_SINGLE]	= "single",
6920 	[BTRFS_RAID_RAID5]	= "raid5",
6921 	[BTRFS_RAID_RAID6]	= "raid6",
6922 };
6923 
6924 static const char *get_raid_name(enum btrfs_raid_types type)
6925 {
6926 	if (type >= BTRFS_NR_RAID_TYPES)
6927 		return NULL;
6928 
6929 	return btrfs_raid_type_names[type];
6930 }
6931 
6932 enum btrfs_loop_type {
6933 	LOOP_CACHING_NOWAIT = 0,
6934 	LOOP_CACHING_WAIT = 1,
6935 	LOOP_ALLOC_CHUNK = 2,
6936 	LOOP_NO_EMPTY_SIZE = 3,
6937 };
6938 
6939 static inline void
6940 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6941 		       int delalloc)
6942 {
6943 	if (delalloc)
6944 		down_read(&cache->data_rwsem);
6945 }
6946 
6947 static inline void
6948 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6949 		       int delalloc)
6950 {
6951 	btrfs_get_block_group(cache);
6952 	if (delalloc)
6953 		down_read(&cache->data_rwsem);
6954 }
6955 
6956 static struct btrfs_block_group_cache *
6957 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6958 		   struct btrfs_free_cluster *cluster,
6959 		   int delalloc)
6960 {
6961 	struct btrfs_block_group_cache *used_bg;
6962 	bool locked = false;
6963 again:
6964 	spin_lock(&cluster->refill_lock);
6965 	if (locked) {
6966 		if (used_bg == cluster->block_group)
6967 			return used_bg;
6968 
6969 		up_read(&used_bg->data_rwsem);
6970 		btrfs_put_block_group(used_bg);
6971 	}
6972 
6973 	used_bg = cluster->block_group;
6974 	if (!used_bg)
6975 		return NULL;
6976 
6977 	if (used_bg == block_group)
6978 		return used_bg;
6979 
6980 	btrfs_get_block_group(used_bg);
6981 
6982 	if (!delalloc)
6983 		return used_bg;
6984 
6985 	if (down_read_trylock(&used_bg->data_rwsem))
6986 		return used_bg;
6987 
6988 	spin_unlock(&cluster->refill_lock);
6989 	down_read(&used_bg->data_rwsem);
6990 	locked = true;
6991 	goto again;
6992 }
6993 
6994 static inline void
6995 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6996 			 int delalloc)
6997 {
6998 	if (delalloc)
6999 		up_read(&cache->data_rwsem);
7000 	btrfs_put_block_group(cache);
7001 }
7002 
7003 /*
7004  * walks the btree of allocated extents and find a hole of a given size.
7005  * The key ins is changed to record the hole:
7006  * ins->objectid == start position
7007  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7008  * ins->offset == the size of the hole.
7009  * Any available blocks before search_start are skipped.
7010  *
7011  * If there is no suitable free space, we will record the max size of
7012  * the free space extent currently.
7013  */
7014 static noinline int find_free_extent(struct btrfs_root *orig_root,
7015 				     u64 num_bytes, u64 empty_size,
7016 				     u64 hint_byte, struct btrfs_key *ins,
7017 				     u64 flags, int delalloc)
7018 {
7019 	int ret = 0;
7020 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7021 	struct btrfs_free_cluster *last_ptr = NULL;
7022 	struct btrfs_block_group_cache *block_group = NULL;
7023 	u64 search_start = 0;
7024 	u64 max_extent_size = 0;
7025 	u64 empty_cluster = 0;
7026 	struct btrfs_space_info *space_info;
7027 	int loop = 0;
7028 	int index = __get_raid_index(flags);
7029 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7030 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7031 	bool failed_cluster_refill = false;
7032 	bool failed_alloc = false;
7033 	bool use_cluster = true;
7034 	bool have_caching_bg = false;
7035 	bool orig_have_caching_bg = false;
7036 	bool full_search = false;
7037 
7038 	WARN_ON(num_bytes < root->sectorsize);
7039 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7040 	ins->objectid = 0;
7041 	ins->offset = 0;
7042 
7043 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7044 
7045 	space_info = __find_space_info(root->fs_info, flags);
7046 	if (!space_info) {
7047 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7048 		return -ENOSPC;
7049 	}
7050 
7051 	/*
7052 	 * If our free space is heavily fragmented we may not be able to make
7053 	 * big contiguous allocations, so instead of doing the expensive search
7054 	 * for free space, simply return ENOSPC with our max_extent_size so we
7055 	 * can go ahead and search for a more manageable chunk.
7056 	 *
7057 	 * If our max_extent_size is large enough for our allocation simply
7058 	 * disable clustering since we will likely not be able to find enough
7059 	 * space to create a cluster and induce latency trying.
7060 	 */
7061 	if (unlikely(space_info->max_extent_size)) {
7062 		spin_lock(&space_info->lock);
7063 		if (space_info->max_extent_size &&
7064 		    num_bytes > space_info->max_extent_size) {
7065 			ins->offset = space_info->max_extent_size;
7066 			spin_unlock(&space_info->lock);
7067 			return -ENOSPC;
7068 		} else if (space_info->max_extent_size) {
7069 			use_cluster = false;
7070 		}
7071 		spin_unlock(&space_info->lock);
7072 	}
7073 
7074 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7075 	if (last_ptr) {
7076 		spin_lock(&last_ptr->lock);
7077 		if (last_ptr->block_group)
7078 			hint_byte = last_ptr->window_start;
7079 		if (last_ptr->fragmented) {
7080 			/*
7081 			 * We still set window_start so we can keep track of the
7082 			 * last place we found an allocation to try and save
7083 			 * some time.
7084 			 */
7085 			hint_byte = last_ptr->window_start;
7086 			use_cluster = false;
7087 		}
7088 		spin_unlock(&last_ptr->lock);
7089 	}
7090 
7091 	search_start = max(search_start, first_logical_byte(root, 0));
7092 	search_start = max(search_start, hint_byte);
7093 	if (search_start == hint_byte) {
7094 		block_group = btrfs_lookup_block_group(root->fs_info,
7095 						       search_start);
7096 		/*
7097 		 * we don't want to use the block group if it doesn't match our
7098 		 * allocation bits, or if its not cached.
7099 		 *
7100 		 * However if we are re-searching with an ideal block group
7101 		 * picked out then we don't care that the block group is cached.
7102 		 */
7103 		if (block_group && block_group_bits(block_group, flags) &&
7104 		    block_group->cached != BTRFS_CACHE_NO) {
7105 			down_read(&space_info->groups_sem);
7106 			if (list_empty(&block_group->list) ||
7107 			    block_group->ro) {
7108 				/*
7109 				 * someone is removing this block group,
7110 				 * we can't jump into the have_block_group
7111 				 * target because our list pointers are not
7112 				 * valid
7113 				 */
7114 				btrfs_put_block_group(block_group);
7115 				up_read(&space_info->groups_sem);
7116 			} else {
7117 				index = get_block_group_index(block_group);
7118 				btrfs_lock_block_group(block_group, delalloc);
7119 				goto have_block_group;
7120 			}
7121 		} else if (block_group) {
7122 			btrfs_put_block_group(block_group);
7123 		}
7124 	}
7125 search:
7126 	have_caching_bg = false;
7127 	if (index == 0 || index == __get_raid_index(flags))
7128 		full_search = true;
7129 	down_read(&space_info->groups_sem);
7130 	list_for_each_entry(block_group, &space_info->block_groups[index],
7131 			    list) {
7132 		u64 offset;
7133 		int cached;
7134 
7135 		btrfs_grab_block_group(block_group, delalloc);
7136 		search_start = block_group->key.objectid;
7137 
7138 		/*
7139 		 * this can happen if we end up cycling through all the
7140 		 * raid types, but we want to make sure we only allocate
7141 		 * for the proper type.
7142 		 */
7143 		if (!block_group_bits(block_group, flags)) {
7144 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7145 				BTRFS_BLOCK_GROUP_RAID1 |
7146 				BTRFS_BLOCK_GROUP_RAID5 |
7147 				BTRFS_BLOCK_GROUP_RAID6 |
7148 				BTRFS_BLOCK_GROUP_RAID10;
7149 
7150 			/*
7151 			 * if they asked for extra copies and this block group
7152 			 * doesn't provide them, bail.  This does allow us to
7153 			 * fill raid0 from raid1.
7154 			 */
7155 			if ((flags & extra) && !(block_group->flags & extra))
7156 				goto loop;
7157 		}
7158 
7159 have_block_group:
7160 		cached = block_group_cache_done(block_group);
7161 		if (unlikely(!cached)) {
7162 			have_caching_bg = true;
7163 			ret = cache_block_group(block_group, 0);
7164 			BUG_ON(ret < 0);
7165 			ret = 0;
7166 		}
7167 
7168 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7169 			goto loop;
7170 		if (unlikely(block_group->ro))
7171 			goto loop;
7172 
7173 		/*
7174 		 * Ok we want to try and use the cluster allocator, so
7175 		 * lets look there
7176 		 */
7177 		if (last_ptr && use_cluster) {
7178 			struct btrfs_block_group_cache *used_block_group;
7179 			unsigned long aligned_cluster;
7180 			/*
7181 			 * the refill lock keeps out other
7182 			 * people trying to start a new cluster
7183 			 */
7184 			used_block_group = btrfs_lock_cluster(block_group,
7185 							      last_ptr,
7186 							      delalloc);
7187 			if (!used_block_group)
7188 				goto refill_cluster;
7189 
7190 			if (used_block_group != block_group &&
7191 			    (used_block_group->ro ||
7192 			     !block_group_bits(used_block_group, flags)))
7193 				goto release_cluster;
7194 
7195 			offset = btrfs_alloc_from_cluster(used_block_group,
7196 						last_ptr,
7197 						num_bytes,
7198 						used_block_group->key.objectid,
7199 						&max_extent_size);
7200 			if (offset) {
7201 				/* we have a block, we're done */
7202 				spin_unlock(&last_ptr->refill_lock);
7203 				trace_btrfs_reserve_extent_cluster(root,
7204 						used_block_group,
7205 						search_start, num_bytes);
7206 				if (used_block_group != block_group) {
7207 					btrfs_release_block_group(block_group,
7208 								  delalloc);
7209 					block_group = used_block_group;
7210 				}
7211 				goto checks;
7212 			}
7213 
7214 			WARN_ON(last_ptr->block_group != used_block_group);
7215 release_cluster:
7216 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7217 			 * set up a new clusters, so lets just skip it
7218 			 * and let the allocator find whatever block
7219 			 * it can find.  If we reach this point, we
7220 			 * will have tried the cluster allocator
7221 			 * plenty of times and not have found
7222 			 * anything, so we are likely way too
7223 			 * fragmented for the clustering stuff to find
7224 			 * anything.
7225 			 *
7226 			 * However, if the cluster is taken from the
7227 			 * current block group, release the cluster
7228 			 * first, so that we stand a better chance of
7229 			 * succeeding in the unclustered
7230 			 * allocation.  */
7231 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7232 			    used_block_group != block_group) {
7233 				spin_unlock(&last_ptr->refill_lock);
7234 				btrfs_release_block_group(used_block_group,
7235 							  delalloc);
7236 				goto unclustered_alloc;
7237 			}
7238 
7239 			/*
7240 			 * this cluster didn't work out, free it and
7241 			 * start over
7242 			 */
7243 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7244 
7245 			if (used_block_group != block_group)
7246 				btrfs_release_block_group(used_block_group,
7247 							  delalloc);
7248 refill_cluster:
7249 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7250 				spin_unlock(&last_ptr->refill_lock);
7251 				goto unclustered_alloc;
7252 			}
7253 
7254 			aligned_cluster = max_t(unsigned long,
7255 						empty_cluster + empty_size,
7256 					      block_group->full_stripe_len);
7257 
7258 			/* allocate a cluster in this block group */
7259 			ret = btrfs_find_space_cluster(root, block_group,
7260 						       last_ptr, search_start,
7261 						       num_bytes,
7262 						       aligned_cluster);
7263 			if (ret == 0) {
7264 				/*
7265 				 * now pull our allocation out of this
7266 				 * cluster
7267 				 */
7268 				offset = btrfs_alloc_from_cluster(block_group,
7269 							last_ptr,
7270 							num_bytes,
7271 							search_start,
7272 							&max_extent_size);
7273 				if (offset) {
7274 					/* we found one, proceed */
7275 					spin_unlock(&last_ptr->refill_lock);
7276 					trace_btrfs_reserve_extent_cluster(root,
7277 						block_group, search_start,
7278 						num_bytes);
7279 					goto checks;
7280 				}
7281 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7282 				   && !failed_cluster_refill) {
7283 				spin_unlock(&last_ptr->refill_lock);
7284 
7285 				failed_cluster_refill = true;
7286 				wait_block_group_cache_progress(block_group,
7287 				       num_bytes + empty_cluster + empty_size);
7288 				goto have_block_group;
7289 			}
7290 
7291 			/*
7292 			 * at this point we either didn't find a cluster
7293 			 * or we weren't able to allocate a block from our
7294 			 * cluster.  Free the cluster we've been trying
7295 			 * to use, and go to the next block group
7296 			 */
7297 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7298 			spin_unlock(&last_ptr->refill_lock);
7299 			goto loop;
7300 		}
7301 
7302 unclustered_alloc:
7303 		/*
7304 		 * We are doing an unclustered alloc, set the fragmented flag so
7305 		 * we don't bother trying to setup a cluster again until we get
7306 		 * more space.
7307 		 */
7308 		if (unlikely(last_ptr)) {
7309 			spin_lock(&last_ptr->lock);
7310 			last_ptr->fragmented = 1;
7311 			spin_unlock(&last_ptr->lock);
7312 		}
7313 		spin_lock(&block_group->free_space_ctl->tree_lock);
7314 		if (cached &&
7315 		    block_group->free_space_ctl->free_space <
7316 		    num_bytes + empty_cluster + empty_size) {
7317 			if (block_group->free_space_ctl->free_space >
7318 			    max_extent_size)
7319 				max_extent_size =
7320 					block_group->free_space_ctl->free_space;
7321 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7322 			goto loop;
7323 		}
7324 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7325 
7326 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7327 						    num_bytes, empty_size,
7328 						    &max_extent_size);
7329 		/*
7330 		 * If we didn't find a chunk, and we haven't failed on this
7331 		 * block group before, and this block group is in the middle of
7332 		 * caching and we are ok with waiting, then go ahead and wait
7333 		 * for progress to be made, and set failed_alloc to true.
7334 		 *
7335 		 * If failed_alloc is true then we've already waited on this
7336 		 * block group once and should move on to the next block group.
7337 		 */
7338 		if (!offset && !failed_alloc && !cached &&
7339 		    loop > LOOP_CACHING_NOWAIT) {
7340 			wait_block_group_cache_progress(block_group,
7341 						num_bytes + empty_size);
7342 			failed_alloc = true;
7343 			goto have_block_group;
7344 		} else if (!offset) {
7345 			goto loop;
7346 		}
7347 checks:
7348 		search_start = ALIGN(offset, root->stripesize);
7349 
7350 		/* move on to the next group */
7351 		if (search_start + num_bytes >
7352 		    block_group->key.objectid + block_group->key.offset) {
7353 			btrfs_add_free_space(block_group, offset, num_bytes);
7354 			goto loop;
7355 		}
7356 
7357 		if (offset < search_start)
7358 			btrfs_add_free_space(block_group, offset,
7359 					     search_start - offset);
7360 		BUG_ON(offset > search_start);
7361 
7362 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7363 						  alloc_type, delalloc);
7364 		if (ret == -EAGAIN) {
7365 			btrfs_add_free_space(block_group, offset, num_bytes);
7366 			goto loop;
7367 		}
7368 
7369 		/* we are all good, lets return */
7370 		ins->objectid = search_start;
7371 		ins->offset = num_bytes;
7372 
7373 		trace_btrfs_reserve_extent(orig_root, block_group,
7374 					   search_start, num_bytes);
7375 		btrfs_release_block_group(block_group, delalloc);
7376 		break;
7377 loop:
7378 		failed_cluster_refill = false;
7379 		failed_alloc = false;
7380 		BUG_ON(index != get_block_group_index(block_group));
7381 		btrfs_release_block_group(block_group, delalloc);
7382 	}
7383 	up_read(&space_info->groups_sem);
7384 
7385 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7386 		&& !orig_have_caching_bg)
7387 		orig_have_caching_bg = true;
7388 
7389 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7390 		goto search;
7391 
7392 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7393 		goto search;
7394 
7395 	/*
7396 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7397 	 *			caching kthreads as we move along
7398 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7399 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7400 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7401 	 *			again
7402 	 */
7403 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7404 		index = 0;
7405 		if (loop == LOOP_CACHING_NOWAIT) {
7406 			/*
7407 			 * We want to skip the LOOP_CACHING_WAIT step if we
7408 			 * don't have any unached bgs and we've alrelady done a
7409 			 * full search through.
7410 			 */
7411 			if (orig_have_caching_bg || !full_search)
7412 				loop = LOOP_CACHING_WAIT;
7413 			else
7414 				loop = LOOP_ALLOC_CHUNK;
7415 		} else {
7416 			loop++;
7417 		}
7418 
7419 		if (loop == LOOP_ALLOC_CHUNK) {
7420 			struct btrfs_trans_handle *trans;
7421 			int exist = 0;
7422 
7423 			trans = current->journal_info;
7424 			if (trans)
7425 				exist = 1;
7426 			else
7427 				trans = btrfs_join_transaction(root);
7428 
7429 			if (IS_ERR(trans)) {
7430 				ret = PTR_ERR(trans);
7431 				goto out;
7432 			}
7433 
7434 			ret = do_chunk_alloc(trans, root, flags,
7435 					     CHUNK_ALLOC_FORCE);
7436 
7437 			/*
7438 			 * If we can't allocate a new chunk we've already looped
7439 			 * through at least once, move on to the NO_EMPTY_SIZE
7440 			 * case.
7441 			 */
7442 			if (ret == -ENOSPC)
7443 				loop = LOOP_NO_EMPTY_SIZE;
7444 
7445 			/*
7446 			 * Do not bail out on ENOSPC since we
7447 			 * can do more things.
7448 			 */
7449 			if (ret < 0 && ret != -ENOSPC)
7450 				btrfs_abort_transaction(trans,
7451 							root, ret);
7452 			else
7453 				ret = 0;
7454 			if (!exist)
7455 				btrfs_end_transaction(trans, root);
7456 			if (ret)
7457 				goto out;
7458 		}
7459 
7460 		if (loop == LOOP_NO_EMPTY_SIZE) {
7461 			/*
7462 			 * Don't loop again if we already have no empty_size and
7463 			 * no empty_cluster.
7464 			 */
7465 			if (empty_size == 0 &&
7466 			    empty_cluster == 0) {
7467 				ret = -ENOSPC;
7468 				goto out;
7469 			}
7470 			empty_size = 0;
7471 			empty_cluster = 0;
7472 		}
7473 
7474 		goto search;
7475 	} else if (!ins->objectid) {
7476 		ret = -ENOSPC;
7477 	} else if (ins->objectid) {
7478 		if (!use_cluster && last_ptr) {
7479 			spin_lock(&last_ptr->lock);
7480 			last_ptr->window_start = ins->objectid;
7481 			spin_unlock(&last_ptr->lock);
7482 		}
7483 		ret = 0;
7484 	}
7485 out:
7486 	if (ret == -ENOSPC) {
7487 		spin_lock(&space_info->lock);
7488 		space_info->max_extent_size = max_extent_size;
7489 		spin_unlock(&space_info->lock);
7490 		ins->offset = max_extent_size;
7491 	}
7492 	return ret;
7493 }
7494 
7495 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7496 			    int dump_block_groups)
7497 {
7498 	struct btrfs_block_group_cache *cache;
7499 	int index = 0;
7500 
7501 	spin_lock(&info->lock);
7502 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7503 	       info->flags,
7504 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7505 	       info->bytes_reserved - info->bytes_readonly,
7506 	       (info->full) ? "" : "not ");
7507 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7508 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7509 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7510 	       info->bytes_reserved, info->bytes_may_use,
7511 	       info->bytes_readonly);
7512 	spin_unlock(&info->lock);
7513 
7514 	if (!dump_block_groups)
7515 		return;
7516 
7517 	down_read(&info->groups_sem);
7518 again:
7519 	list_for_each_entry(cache, &info->block_groups[index], list) {
7520 		spin_lock(&cache->lock);
7521 		printk(KERN_INFO "BTRFS: "
7522 			   "block group %llu has %llu bytes, "
7523 			   "%llu used %llu pinned %llu reserved %s\n",
7524 		       cache->key.objectid, cache->key.offset,
7525 		       btrfs_block_group_used(&cache->item), cache->pinned,
7526 		       cache->reserved, cache->ro ? "[readonly]" : "");
7527 		btrfs_dump_free_space(cache, bytes);
7528 		spin_unlock(&cache->lock);
7529 	}
7530 	if (++index < BTRFS_NR_RAID_TYPES)
7531 		goto again;
7532 	up_read(&info->groups_sem);
7533 }
7534 
7535 int btrfs_reserve_extent(struct btrfs_root *root,
7536 			 u64 num_bytes, u64 min_alloc_size,
7537 			 u64 empty_size, u64 hint_byte,
7538 			 struct btrfs_key *ins, int is_data, int delalloc)
7539 {
7540 	bool final_tried = num_bytes == min_alloc_size;
7541 	u64 flags;
7542 	int ret;
7543 
7544 	flags = btrfs_get_alloc_profile(root, is_data);
7545 again:
7546 	WARN_ON(num_bytes < root->sectorsize);
7547 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7548 			       flags, delalloc);
7549 
7550 	if (ret == -ENOSPC) {
7551 		if (!final_tried && ins->offset) {
7552 			num_bytes = min(num_bytes >> 1, ins->offset);
7553 			num_bytes = round_down(num_bytes, root->sectorsize);
7554 			num_bytes = max(num_bytes, min_alloc_size);
7555 			if (num_bytes == min_alloc_size)
7556 				final_tried = true;
7557 			goto again;
7558 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7559 			struct btrfs_space_info *sinfo;
7560 
7561 			sinfo = __find_space_info(root->fs_info, flags);
7562 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7563 				flags, num_bytes);
7564 			if (sinfo)
7565 				dump_space_info(sinfo, num_bytes, 1);
7566 		}
7567 	}
7568 
7569 	return ret;
7570 }
7571 
7572 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7573 					u64 start, u64 len,
7574 					int pin, int delalloc)
7575 {
7576 	struct btrfs_block_group_cache *cache;
7577 	int ret = 0;
7578 
7579 	cache = btrfs_lookup_block_group(root->fs_info, start);
7580 	if (!cache) {
7581 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7582 			start);
7583 		return -ENOSPC;
7584 	}
7585 
7586 	if (pin)
7587 		pin_down_extent(root, cache, start, len, 1);
7588 	else {
7589 		if (btrfs_test_opt(root, DISCARD))
7590 			ret = btrfs_discard_extent(root, start, len, NULL);
7591 		btrfs_add_free_space(cache, start, len);
7592 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7593 	}
7594 
7595 	btrfs_put_block_group(cache);
7596 
7597 	trace_btrfs_reserved_extent_free(root, start, len);
7598 
7599 	return ret;
7600 }
7601 
7602 int btrfs_free_reserved_extent(struct btrfs_root *root,
7603 			       u64 start, u64 len, int delalloc)
7604 {
7605 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7606 }
7607 
7608 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7609 				       u64 start, u64 len)
7610 {
7611 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7612 }
7613 
7614 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7615 				      struct btrfs_root *root,
7616 				      u64 parent, u64 root_objectid,
7617 				      u64 flags, u64 owner, u64 offset,
7618 				      struct btrfs_key *ins, int ref_mod)
7619 {
7620 	int ret;
7621 	struct btrfs_fs_info *fs_info = root->fs_info;
7622 	struct btrfs_extent_item *extent_item;
7623 	struct btrfs_extent_inline_ref *iref;
7624 	struct btrfs_path *path;
7625 	struct extent_buffer *leaf;
7626 	int type;
7627 	u32 size;
7628 
7629 	if (parent > 0)
7630 		type = BTRFS_SHARED_DATA_REF_KEY;
7631 	else
7632 		type = BTRFS_EXTENT_DATA_REF_KEY;
7633 
7634 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7635 
7636 	path = btrfs_alloc_path();
7637 	if (!path)
7638 		return -ENOMEM;
7639 
7640 	path->leave_spinning = 1;
7641 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7642 				      ins, size);
7643 	if (ret) {
7644 		btrfs_free_path(path);
7645 		return ret;
7646 	}
7647 
7648 	leaf = path->nodes[0];
7649 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7650 				     struct btrfs_extent_item);
7651 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7652 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7653 	btrfs_set_extent_flags(leaf, extent_item,
7654 			       flags | BTRFS_EXTENT_FLAG_DATA);
7655 
7656 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7657 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7658 	if (parent > 0) {
7659 		struct btrfs_shared_data_ref *ref;
7660 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7661 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7662 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7663 	} else {
7664 		struct btrfs_extent_data_ref *ref;
7665 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7666 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7667 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7668 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7669 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7670 	}
7671 
7672 	btrfs_mark_buffer_dirty(path->nodes[0]);
7673 	btrfs_free_path(path);
7674 
7675 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7676 	if (ret) { /* -ENOENT, logic error */
7677 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7678 			ins->objectid, ins->offset);
7679 		BUG();
7680 	}
7681 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7682 	return ret;
7683 }
7684 
7685 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7686 				     struct btrfs_root *root,
7687 				     u64 parent, u64 root_objectid,
7688 				     u64 flags, struct btrfs_disk_key *key,
7689 				     int level, struct btrfs_key *ins)
7690 {
7691 	int ret;
7692 	struct btrfs_fs_info *fs_info = root->fs_info;
7693 	struct btrfs_extent_item *extent_item;
7694 	struct btrfs_tree_block_info *block_info;
7695 	struct btrfs_extent_inline_ref *iref;
7696 	struct btrfs_path *path;
7697 	struct extent_buffer *leaf;
7698 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7699 	u64 num_bytes = ins->offset;
7700 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7701 						 SKINNY_METADATA);
7702 
7703 	if (!skinny_metadata)
7704 		size += sizeof(*block_info);
7705 
7706 	path = btrfs_alloc_path();
7707 	if (!path) {
7708 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7709 						   root->nodesize);
7710 		return -ENOMEM;
7711 	}
7712 
7713 	path->leave_spinning = 1;
7714 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7715 				      ins, size);
7716 	if (ret) {
7717 		btrfs_free_path(path);
7718 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7719 						   root->nodesize);
7720 		return ret;
7721 	}
7722 
7723 	leaf = path->nodes[0];
7724 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7725 				     struct btrfs_extent_item);
7726 	btrfs_set_extent_refs(leaf, extent_item, 1);
7727 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7728 	btrfs_set_extent_flags(leaf, extent_item,
7729 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7730 
7731 	if (skinny_metadata) {
7732 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7733 		num_bytes = root->nodesize;
7734 	} else {
7735 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7736 		btrfs_set_tree_block_key(leaf, block_info, key);
7737 		btrfs_set_tree_block_level(leaf, block_info, level);
7738 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7739 	}
7740 
7741 	if (parent > 0) {
7742 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7743 		btrfs_set_extent_inline_ref_type(leaf, iref,
7744 						 BTRFS_SHARED_BLOCK_REF_KEY);
7745 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7746 	} else {
7747 		btrfs_set_extent_inline_ref_type(leaf, iref,
7748 						 BTRFS_TREE_BLOCK_REF_KEY);
7749 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7750 	}
7751 
7752 	btrfs_mark_buffer_dirty(leaf);
7753 	btrfs_free_path(path);
7754 
7755 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7756 				 1);
7757 	if (ret) { /* -ENOENT, logic error */
7758 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7759 			ins->objectid, ins->offset);
7760 		BUG();
7761 	}
7762 
7763 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7764 	return ret;
7765 }
7766 
7767 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7768 				     struct btrfs_root *root,
7769 				     u64 root_objectid, u64 owner,
7770 				     u64 offset, u64 ram_bytes,
7771 				     struct btrfs_key *ins)
7772 {
7773 	int ret;
7774 
7775 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7776 
7777 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7778 					 ins->offset, 0,
7779 					 root_objectid, owner, offset,
7780 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7781 					 NULL);
7782 	return ret;
7783 }
7784 
7785 /*
7786  * this is used by the tree logging recovery code.  It records that
7787  * an extent has been allocated and makes sure to clear the free
7788  * space cache bits as well
7789  */
7790 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7791 				   struct btrfs_root *root,
7792 				   u64 root_objectid, u64 owner, u64 offset,
7793 				   struct btrfs_key *ins)
7794 {
7795 	int ret;
7796 	struct btrfs_block_group_cache *block_group;
7797 
7798 	/*
7799 	 * Mixed block groups will exclude before processing the log so we only
7800 	 * need to do the exlude dance if this fs isn't mixed.
7801 	 */
7802 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7803 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7804 		if (ret)
7805 			return ret;
7806 	}
7807 
7808 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7809 	if (!block_group)
7810 		return -EINVAL;
7811 
7812 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7813 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7814 	BUG_ON(ret); /* logic error */
7815 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7816 					 0, owner, offset, ins, 1);
7817 	btrfs_put_block_group(block_group);
7818 	return ret;
7819 }
7820 
7821 static struct extent_buffer *
7822 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7823 		      u64 bytenr, int level)
7824 {
7825 	struct extent_buffer *buf;
7826 
7827 	buf = btrfs_find_create_tree_block(root, bytenr);
7828 	if (!buf)
7829 		return ERR_PTR(-ENOMEM);
7830 	btrfs_set_header_generation(buf, trans->transid);
7831 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7832 	btrfs_tree_lock(buf);
7833 	clean_tree_block(trans, root->fs_info, buf);
7834 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7835 
7836 	btrfs_set_lock_blocking(buf);
7837 	btrfs_set_buffer_uptodate(buf);
7838 
7839 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7840 		buf->log_index = root->log_transid % 2;
7841 		/*
7842 		 * we allow two log transactions at a time, use different
7843 		 * EXENT bit to differentiate dirty pages.
7844 		 */
7845 		if (buf->log_index == 0)
7846 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7847 					buf->start + buf->len - 1, GFP_NOFS);
7848 		else
7849 			set_extent_new(&root->dirty_log_pages, buf->start,
7850 					buf->start + buf->len - 1, GFP_NOFS);
7851 	} else {
7852 		buf->log_index = -1;
7853 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7854 			 buf->start + buf->len - 1, GFP_NOFS);
7855 	}
7856 	trans->blocks_used++;
7857 	/* this returns a buffer locked for blocking */
7858 	return buf;
7859 }
7860 
7861 static struct btrfs_block_rsv *
7862 use_block_rsv(struct btrfs_trans_handle *trans,
7863 	      struct btrfs_root *root, u32 blocksize)
7864 {
7865 	struct btrfs_block_rsv *block_rsv;
7866 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7867 	int ret;
7868 	bool global_updated = false;
7869 
7870 	block_rsv = get_block_rsv(trans, root);
7871 
7872 	if (unlikely(block_rsv->size == 0))
7873 		goto try_reserve;
7874 again:
7875 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7876 	if (!ret)
7877 		return block_rsv;
7878 
7879 	if (block_rsv->failfast)
7880 		return ERR_PTR(ret);
7881 
7882 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7883 		global_updated = true;
7884 		update_global_block_rsv(root->fs_info);
7885 		goto again;
7886 	}
7887 
7888 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7889 		static DEFINE_RATELIMIT_STATE(_rs,
7890 				DEFAULT_RATELIMIT_INTERVAL * 10,
7891 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7892 		if (__ratelimit(&_rs))
7893 			WARN(1, KERN_DEBUG
7894 				"BTRFS: block rsv returned %d\n", ret);
7895 	}
7896 try_reserve:
7897 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7898 				     BTRFS_RESERVE_NO_FLUSH);
7899 	if (!ret)
7900 		return block_rsv;
7901 	/*
7902 	 * If we couldn't reserve metadata bytes try and use some from
7903 	 * the global reserve if its space type is the same as the global
7904 	 * reservation.
7905 	 */
7906 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7907 	    block_rsv->space_info == global_rsv->space_info) {
7908 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7909 		if (!ret)
7910 			return global_rsv;
7911 	}
7912 	return ERR_PTR(ret);
7913 }
7914 
7915 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7916 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7917 {
7918 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7919 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7920 }
7921 
7922 /*
7923  * finds a free extent and does all the dirty work required for allocation
7924  * returns the tree buffer or an ERR_PTR on error.
7925  */
7926 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7927 					struct btrfs_root *root,
7928 					u64 parent, u64 root_objectid,
7929 					struct btrfs_disk_key *key, int level,
7930 					u64 hint, u64 empty_size)
7931 {
7932 	struct btrfs_key ins;
7933 	struct btrfs_block_rsv *block_rsv;
7934 	struct extent_buffer *buf;
7935 	struct btrfs_delayed_extent_op *extent_op;
7936 	u64 flags = 0;
7937 	int ret;
7938 	u32 blocksize = root->nodesize;
7939 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7940 						 SKINNY_METADATA);
7941 
7942 	if (btrfs_test_is_dummy_root(root)) {
7943 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7944 					    level);
7945 		if (!IS_ERR(buf))
7946 			root->alloc_bytenr += blocksize;
7947 		return buf;
7948 	}
7949 
7950 	block_rsv = use_block_rsv(trans, root, blocksize);
7951 	if (IS_ERR(block_rsv))
7952 		return ERR_CAST(block_rsv);
7953 
7954 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7955 				   empty_size, hint, &ins, 0, 0);
7956 	if (ret)
7957 		goto out_unuse;
7958 
7959 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7960 	if (IS_ERR(buf)) {
7961 		ret = PTR_ERR(buf);
7962 		goto out_free_reserved;
7963 	}
7964 
7965 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7966 		if (parent == 0)
7967 			parent = ins.objectid;
7968 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7969 	} else
7970 		BUG_ON(parent > 0);
7971 
7972 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7973 		extent_op = btrfs_alloc_delayed_extent_op();
7974 		if (!extent_op) {
7975 			ret = -ENOMEM;
7976 			goto out_free_buf;
7977 		}
7978 		if (key)
7979 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7980 		else
7981 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7982 		extent_op->flags_to_set = flags;
7983 		if (skinny_metadata)
7984 			extent_op->update_key = 0;
7985 		else
7986 			extent_op->update_key = 1;
7987 		extent_op->update_flags = 1;
7988 		extent_op->is_data = 0;
7989 		extent_op->level = level;
7990 
7991 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7992 						 ins.objectid, ins.offset,
7993 						 parent, root_objectid, level,
7994 						 BTRFS_ADD_DELAYED_EXTENT,
7995 						 extent_op);
7996 		if (ret)
7997 			goto out_free_delayed;
7998 	}
7999 	return buf;
8000 
8001 out_free_delayed:
8002 	btrfs_free_delayed_extent_op(extent_op);
8003 out_free_buf:
8004 	free_extent_buffer(buf);
8005 out_free_reserved:
8006 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8007 out_unuse:
8008 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8009 	return ERR_PTR(ret);
8010 }
8011 
8012 struct walk_control {
8013 	u64 refs[BTRFS_MAX_LEVEL];
8014 	u64 flags[BTRFS_MAX_LEVEL];
8015 	struct btrfs_key update_progress;
8016 	int stage;
8017 	int level;
8018 	int shared_level;
8019 	int update_ref;
8020 	int keep_locks;
8021 	int reada_slot;
8022 	int reada_count;
8023 	int for_reloc;
8024 };
8025 
8026 #define DROP_REFERENCE	1
8027 #define UPDATE_BACKREF	2
8028 
8029 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8030 				     struct btrfs_root *root,
8031 				     struct walk_control *wc,
8032 				     struct btrfs_path *path)
8033 {
8034 	u64 bytenr;
8035 	u64 generation;
8036 	u64 refs;
8037 	u64 flags;
8038 	u32 nritems;
8039 	u32 blocksize;
8040 	struct btrfs_key key;
8041 	struct extent_buffer *eb;
8042 	int ret;
8043 	int slot;
8044 	int nread = 0;
8045 
8046 	if (path->slots[wc->level] < wc->reada_slot) {
8047 		wc->reada_count = wc->reada_count * 2 / 3;
8048 		wc->reada_count = max(wc->reada_count, 2);
8049 	} else {
8050 		wc->reada_count = wc->reada_count * 3 / 2;
8051 		wc->reada_count = min_t(int, wc->reada_count,
8052 					BTRFS_NODEPTRS_PER_BLOCK(root));
8053 	}
8054 
8055 	eb = path->nodes[wc->level];
8056 	nritems = btrfs_header_nritems(eb);
8057 	blocksize = root->nodesize;
8058 
8059 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8060 		if (nread >= wc->reada_count)
8061 			break;
8062 
8063 		cond_resched();
8064 		bytenr = btrfs_node_blockptr(eb, slot);
8065 		generation = btrfs_node_ptr_generation(eb, slot);
8066 
8067 		if (slot == path->slots[wc->level])
8068 			goto reada;
8069 
8070 		if (wc->stage == UPDATE_BACKREF &&
8071 		    generation <= root->root_key.offset)
8072 			continue;
8073 
8074 		/* We don't lock the tree block, it's OK to be racy here */
8075 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8076 					       wc->level - 1, 1, &refs,
8077 					       &flags);
8078 		/* We don't care about errors in readahead. */
8079 		if (ret < 0)
8080 			continue;
8081 		BUG_ON(refs == 0);
8082 
8083 		if (wc->stage == DROP_REFERENCE) {
8084 			if (refs == 1)
8085 				goto reada;
8086 
8087 			if (wc->level == 1 &&
8088 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8089 				continue;
8090 			if (!wc->update_ref ||
8091 			    generation <= root->root_key.offset)
8092 				continue;
8093 			btrfs_node_key_to_cpu(eb, &key, slot);
8094 			ret = btrfs_comp_cpu_keys(&key,
8095 						  &wc->update_progress);
8096 			if (ret < 0)
8097 				continue;
8098 		} else {
8099 			if (wc->level == 1 &&
8100 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8101 				continue;
8102 		}
8103 reada:
8104 		readahead_tree_block(root, bytenr);
8105 		nread++;
8106 	}
8107 	wc->reada_slot = slot;
8108 }
8109 
8110 /*
8111  * These may not be seen by the usual inc/dec ref code so we have to
8112  * add them here.
8113  */
8114 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8115 				     struct btrfs_root *root, u64 bytenr,
8116 				     u64 num_bytes)
8117 {
8118 	struct btrfs_qgroup_extent_record *qrecord;
8119 	struct btrfs_delayed_ref_root *delayed_refs;
8120 
8121 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8122 	if (!qrecord)
8123 		return -ENOMEM;
8124 
8125 	qrecord->bytenr = bytenr;
8126 	qrecord->num_bytes = num_bytes;
8127 	qrecord->old_roots = NULL;
8128 
8129 	delayed_refs = &trans->transaction->delayed_refs;
8130 	spin_lock(&delayed_refs->lock);
8131 	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8132 		kfree(qrecord);
8133 	spin_unlock(&delayed_refs->lock);
8134 
8135 	return 0;
8136 }
8137 
8138 static int account_leaf_items(struct btrfs_trans_handle *trans,
8139 			      struct btrfs_root *root,
8140 			      struct extent_buffer *eb)
8141 {
8142 	int nr = btrfs_header_nritems(eb);
8143 	int i, extent_type, ret;
8144 	struct btrfs_key key;
8145 	struct btrfs_file_extent_item *fi;
8146 	u64 bytenr, num_bytes;
8147 
8148 	/* We can be called directly from walk_up_proc() */
8149 	if (!root->fs_info->quota_enabled)
8150 		return 0;
8151 
8152 	for (i = 0; i < nr; i++) {
8153 		btrfs_item_key_to_cpu(eb, &key, i);
8154 
8155 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8156 			continue;
8157 
8158 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8159 		/* filter out non qgroup-accountable extents  */
8160 		extent_type = btrfs_file_extent_type(eb, fi);
8161 
8162 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8163 			continue;
8164 
8165 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8166 		if (!bytenr)
8167 			continue;
8168 
8169 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8170 
8171 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8172 		if (ret)
8173 			return ret;
8174 	}
8175 	return 0;
8176 }
8177 
8178 /*
8179  * Walk up the tree from the bottom, freeing leaves and any interior
8180  * nodes which have had all slots visited. If a node (leaf or
8181  * interior) is freed, the node above it will have it's slot
8182  * incremented. The root node will never be freed.
8183  *
8184  * At the end of this function, we should have a path which has all
8185  * slots incremented to the next position for a search. If we need to
8186  * read a new node it will be NULL and the node above it will have the
8187  * correct slot selected for a later read.
8188  *
8189  * If we increment the root nodes slot counter past the number of
8190  * elements, 1 is returned to signal completion of the search.
8191  */
8192 static int adjust_slots_upwards(struct btrfs_root *root,
8193 				struct btrfs_path *path, int root_level)
8194 {
8195 	int level = 0;
8196 	int nr, slot;
8197 	struct extent_buffer *eb;
8198 
8199 	if (root_level == 0)
8200 		return 1;
8201 
8202 	while (level <= root_level) {
8203 		eb = path->nodes[level];
8204 		nr = btrfs_header_nritems(eb);
8205 		path->slots[level]++;
8206 		slot = path->slots[level];
8207 		if (slot >= nr || level == 0) {
8208 			/*
8209 			 * Don't free the root -  we will detect this
8210 			 * condition after our loop and return a
8211 			 * positive value for caller to stop walking the tree.
8212 			 */
8213 			if (level != root_level) {
8214 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8215 				path->locks[level] = 0;
8216 
8217 				free_extent_buffer(eb);
8218 				path->nodes[level] = NULL;
8219 				path->slots[level] = 0;
8220 			}
8221 		} else {
8222 			/*
8223 			 * We have a valid slot to walk back down
8224 			 * from. Stop here so caller can process these
8225 			 * new nodes.
8226 			 */
8227 			break;
8228 		}
8229 
8230 		level++;
8231 	}
8232 
8233 	eb = path->nodes[root_level];
8234 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8235 		return 1;
8236 
8237 	return 0;
8238 }
8239 
8240 /*
8241  * root_eb is the subtree root and is locked before this function is called.
8242  */
8243 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8244 				  struct btrfs_root *root,
8245 				  struct extent_buffer *root_eb,
8246 				  u64 root_gen,
8247 				  int root_level)
8248 {
8249 	int ret = 0;
8250 	int level;
8251 	struct extent_buffer *eb = root_eb;
8252 	struct btrfs_path *path = NULL;
8253 
8254 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8255 	BUG_ON(root_eb == NULL);
8256 
8257 	if (!root->fs_info->quota_enabled)
8258 		return 0;
8259 
8260 	if (!extent_buffer_uptodate(root_eb)) {
8261 		ret = btrfs_read_buffer(root_eb, root_gen);
8262 		if (ret)
8263 			goto out;
8264 	}
8265 
8266 	if (root_level == 0) {
8267 		ret = account_leaf_items(trans, root, root_eb);
8268 		goto out;
8269 	}
8270 
8271 	path = btrfs_alloc_path();
8272 	if (!path)
8273 		return -ENOMEM;
8274 
8275 	/*
8276 	 * Walk down the tree.  Missing extent blocks are filled in as
8277 	 * we go. Metadata is accounted every time we read a new
8278 	 * extent block.
8279 	 *
8280 	 * When we reach a leaf, we account for file extent items in it,
8281 	 * walk back up the tree (adjusting slot pointers as we go)
8282 	 * and restart the search process.
8283 	 */
8284 	extent_buffer_get(root_eb); /* For path */
8285 	path->nodes[root_level] = root_eb;
8286 	path->slots[root_level] = 0;
8287 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8288 walk_down:
8289 	level = root_level;
8290 	while (level >= 0) {
8291 		if (path->nodes[level] == NULL) {
8292 			int parent_slot;
8293 			u64 child_gen;
8294 			u64 child_bytenr;
8295 
8296 			/* We need to get child blockptr/gen from
8297 			 * parent before we can read it. */
8298 			eb = path->nodes[level + 1];
8299 			parent_slot = path->slots[level + 1];
8300 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8301 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8302 
8303 			eb = read_tree_block(root, child_bytenr, child_gen);
8304 			if (IS_ERR(eb)) {
8305 				ret = PTR_ERR(eb);
8306 				goto out;
8307 			} else if (!extent_buffer_uptodate(eb)) {
8308 				free_extent_buffer(eb);
8309 				ret = -EIO;
8310 				goto out;
8311 			}
8312 
8313 			path->nodes[level] = eb;
8314 			path->slots[level] = 0;
8315 
8316 			btrfs_tree_read_lock(eb);
8317 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8318 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8319 
8320 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8321 							root->nodesize);
8322 			if (ret)
8323 				goto out;
8324 		}
8325 
8326 		if (level == 0) {
8327 			ret = account_leaf_items(trans, root, path->nodes[level]);
8328 			if (ret)
8329 				goto out;
8330 
8331 			/* Nonzero return here means we completed our search */
8332 			ret = adjust_slots_upwards(root, path, root_level);
8333 			if (ret)
8334 				break;
8335 
8336 			/* Restart search with new slots */
8337 			goto walk_down;
8338 		}
8339 
8340 		level--;
8341 	}
8342 
8343 	ret = 0;
8344 out:
8345 	btrfs_free_path(path);
8346 
8347 	return ret;
8348 }
8349 
8350 /*
8351  * helper to process tree block while walking down the tree.
8352  *
8353  * when wc->stage == UPDATE_BACKREF, this function updates
8354  * back refs for pointers in the block.
8355  *
8356  * NOTE: return value 1 means we should stop walking down.
8357  */
8358 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8359 				   struct btrfs_root *root,
8360 				   struct btrfs_path *path,
8361 				   struct walk_control *wc, int lookup_info)
8362 {
8363 	int level = wc->level;
8364 	struct extent_buffer *eb = path->nodes[level];
8365 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8366 	int ret;
8367 
8368 	if (wc->stage == UPDATE_BACKREF &&
8369 	    btrfs_header_owner(eb) != root->root_key.objectid)
8370 		return 1;
8371 
8372 	/*
8373 	 * when reference count of tree block is 1, it won't increase
8374 	 * again. once full backref flag is set, we never clear it.
8375 	 */
8376 	if (lookup_info &&
8377 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8378 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8379 		BUG_ON(!path->locks[level]);
8380 		ret = btrfs_lookup_extent_info(trans, root,
8381 					       eb->start, level, 1,
8382 					       &wc->refs[level],
8383 					       &wc->flags[level]);
8384 		BUG_ON(ret == -ENOMEM);
8385 		if (ret)
8386 			return ret;
8387 		BUG_ON(wc->refs[level] == 0);
8388 	}
8389 
8390 	if (wc->stage == DROP_REFERENCE) {
8391 		if (wc->refs[level] > 1)
8392 			return 1;
8393 
8394 		if (path->locks[level] && !wc->keep_locks) {
8395 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8396 			path->locks[level] = 0;
8397 		}
8398 		return 0;
8399 	}
8400 
8401 	/* wc->stage == UPDATE_BACKREF */
8402 	if (!(wc->flags[level] & flag)) {
8403 		BUG_ON(!path->locks[level]);
8404 		ret = btrfs_inc_ref(trans, root, eb, 1);
8405 		BUG_ON(ret); /* -ENOMEM */
8406 		ret = btrfs_dec_ref(trans, root, eb, 0);
8407 		BUG_ON(ret); /* -ENOMEM */
8408 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8409 						  eb->len, flag,
8410 						  btrfs_header_level(eb), 0);
8411 		BUG_ON(ret); /* -ENOMEM */
8412 		wc->flags[level] |= flag;
8413 	}
8414 
8415 	/*
8416 	 * the block is shared by multiple trees, so it's not good to
8417 	 * keep the tree lock
8418 	 */
8419 	if (path->locks[level] && level > 0) {
8420 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8421 		path->locks[level] = 0;
8422 	}
8423 	return 0;
8424 }
8425 
8426 /*
8427  * helper to process tree block pointer.
8428  *
8429  * when wc->stage == DROP_REFERENCE, this function checks
8430  * reference count of the block pointed to. if the block
8431  * is shared and we need update back refs for the subtree
8432  * rooted at the block, this function changes wc->stage to
8433  * UPDATE_BACKREF. if the block is shared and there is no
8434  * need to update back, this function drops the reference
8435  * to the block.
8436  *
8437  * NOTE: return value 1 means we should stop walking down.
8438  */
8439 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8440 				 struct btrfs_root *root,
8441 				 struct btrfs_path *path,
8442 				 struct walk_control *wc, int *lookup_info)
8443 {
8444 	u64 bytenr;
8445 	u64 generation;
8446 	u64 parent;
8447 	u32 blocksize;
8448 	struct btrfs_key key;
8449 	struct extent_buffer *next;
8450 	int level = wc->level;
8451 	int reada = 0;
8452 	int ret = 0;
8453 	bool need_account = false;
8454 
8455 	generation = btrfs_node_ptr_generation(path->nodes[level],
8456 					       path->slots[level]);
8457 	/*
8458 	 * if the lower level block was created before the snapshot
8459 	 * was created, we know there is no need to update back refs
8460 	 * for the subtree
8461 	 */
8462 	if (wc->stage == UPDATE_BACKREF &&
8463 	    generation <= root->root_key.offset) {
8464 		*lookup_info = 1;
8465 		return 1;
8466 	}
8467 
8468 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8469 	blocksize = root->nodesize;
8470 
8471 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8472 	if (!next) {
8473 		next = btrfs_find_create_tree_block(root, bytenr);
8474 		if (!next)
8475 			return -ENOMEM;
8476 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8477 					       level - 1);
8478 		reada = 1;
8479 	}
8480 	btrfs_tree_lock(next);
8481 	btrfs_set_lock_blocking(next);
8482 
8483 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8484 				       &wc->refs[level - 1],
8485 				       &wc->flags[level - 1]);
8486 	if (ret < 0) {
8487 		btrfs_tree_unlock(next);
8488 		return ret;
8489 	}
8490 
8491 	if (unlikely(wc->refs[level - 1] == 0)) {
8492 		btrfs_err(root->fs_info, "Missing references.");
8493 		BUG();
8494 	}
8495 	*lookup_info = 0;
8496 
8497 	if (wc->stage == DROP_REFERENCE) {
8498 		if (wc->refs[level - 1] > 1) {
8499 			need_account = true;
8500 			if (level == 1 &&
8501 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8502 				goto skip;
8503 
8504 			if (!wc->update_ref ||
8505 			    generation <= root->root_key.offset)
8506 				goto skip;
8507 
8508 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8509 					      path->slots[level]);
8510 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8511 			if (ret < 0)
8512 				goto skip;
8513 
8514 			wc->stage = UPDATE_BACKREF;
8515 			wc->shared_level = level - 1;
8516 		}
8517 	} else {
8518 		if (level == 1 &&
8519 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8520 			goto skip;
8521 	}
8522 
8523 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8524 		btrfs_tree_unlock(next);
8525 		free_extent_buffer(next);
8526 		next = NULL;
8527 		*lookup_info = 1;
8528 	}
8529 
8530 	if (!next) {
8531 		if (reada && level == 1)
8532 			reada_walk_down(trans, root, wc, path);
8533 		next = read_tree_block(root, bytenr, generation);
8534 		if (IS_ERR(next)) {
8535 			return PTR_ERR(next);
8536 		} else if (!extent_buffer_uptodate(next)) {
8537 			free_extent_buffer(next);
8538 			return -EIO;
8539 		}
8540 		btrfs_tree_lock(next);
8541 		btrfs_set_lock_blocking(next);
8542 	}
8543 
8544 	level--;
8545 	BUG_ON(level != btrfs_header_level(next));
8546 	path->nodes[level] = next;
8547 	path->slots[level] = 0;
8548 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8549 	wc->level = level;
8550 	if (wc->level == 1)
8551 		wc->reada_slot = 0;
8552 	return 0;
8553 skip:
8554 	wc->refs[level - 1] = 0;
8555 	wc->flags[level - 1] = 0;
8556 	if (wc->stage == DROP_REFERENCE) {
8557 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8558 			parent = path->nodes[level]->start;
8559 		} else {
8560 			BUG_ON(root->root_key.objectid !=
8561 			       btrfs_header_owner(path->nodes[level]));
8562 			parent = 0;
8563 		}
8564 
8565 		if (need_account) {
8566 			ret = account_shared_subtree(trans, root, next,
8567 						     generation, level - 1);
8568 			if (ret) {
8569 				btrfs_err_rl(root->fs_info,
8570 					"Error "
8571 					"%d accounting shared subtree. Quota "
8572 					"is out of sync, rescan required.",
8573 					ret);
8574 			}
8575 		}
8576 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8577 				root->root_key.objectid, level - 1, 0);
8578 		BUG_ON(ret); /* -ENOMEM */
8579 	}
8580 	btrfs_tree_unlock(next);
8581 	free_extent_buffer(next);
8582 	*lookup_info = 1;
8583 	return 1;
8584 }
8585 
8586 /*
8587  * helper to process tree block while walking up the tree.
8588  *
8589  * when wc->stage == DROP_REFERENCE, this function drops
8590  * reference count on the block.
8591  *
8592  * when wc->stage == UPDATE_BACKREF, this function changes
8593  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8594  * to UPDATE_BACKREF previously while processing the block.
8595  *
8596  * NOTE: return value 1 means we should stop walking up.
8597  */
8598 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8599 				 struct btrfs_root *root,
8600 				 struct btrfs_path *path,
8601 				 struct walk_control *wc)
8602 {
8603 	int ret;
8604 	int level = wc->level;
8605 	struct extent_buffer *eb = path->nodes[level];
8606 	u64 parent = 0;
8607 
8608 	if (wc->stage == UPDATE_BACKREF) {
8609 		BUG_ON(wc->shared_level < level);
8610 		if (level < wc->shared_level)
8611 			goto out;
8612 
8613 		ret = find_next_key(path, level + 1, &wc->update_progress);
8614 		if (ret > 0)
8615 			wc->update_ref = 0;
8616 
8617 		wc->stage = DROP_REFERENCE;
8618 		wc->shared_level = -1;
8619 		path->slots[level] = 0;
8620 
8621 		/*
8622 		 * check reference count again if the block isn't locked.
8623 		 * we should start walking down the tree again if reference
8624 		 * count is one.
8625 		 */
8626 		if (!path->locks[level]) {
8627 			BUG_ON(level == 0);
8628 			btrfs_tree_lock(eb);
8629 			btrfs_set_lock_blocking(eb);
8630 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8631 
8632 			ret = btrfs_lookup_extent_info(trans, root,
8633 						       eb->start, level, 1,
8634 						       &wc->refs[level],
8635 						       &wc->flags[level]);
8636 			if (ret < 0) {
8637 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8638 				path->locks[level] = 0;
8639 				return ret;
8640 			}
8641 			BUG_ON(wc->refs[level] == 0);
8642 			if (wc->refs[level] == 1) {
8643 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8644 				path->locks[level] = 0;
8645 				return 1;
8646 			}
8647 		}
8648 	}
8649 
8650 	/* wc->stage == DROP_REFERENCE */
8651 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8652 
8653 	if (wc->refs[level] == 1) {
8654 		if (level == 0) {
8655 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8656 				ret = btrfs_dec_ref(trans, root, eb, 1);
8657 			else
8658 				ret = btrfs_dec_ref(trans, root, eb, 0);
8659 			BUG_ON(ret); /* -ENOMEM */
8660 			ret = account_leaf_items(trans, root, eb);
8661 			if (ret) {
8662 				btrfs_err_rl(root->fs_info,
8663 					"error "
8664 					"%d accounting leaf items. Quota "
8665 					"is out of sync, rescan required.",
8666 					ret);
8667 			}
8668 		}
8669 		/* make block locked assertion in clean_tree_block happy */
8670 		if (!path->locks[level] &&
8671 		    btrfs_header_generation(eb) == trans->transid) {
8672 			btrfs_tree_lock(eb);
8673 			btrfs_set_lock_blocking(eb);
8674 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8675 		}
8676 		clean_tree_block(trans, root->fs_info, eb);
8677 	}
8678 
8679 	if (eb == root->node) {
8680 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8681 			parent = eb->start;
8682 		else
8683 			BUG_ON(root->root_key.objectid !=
8684 			       btrfs_header_owner(eb));
8685 	} else {
8686 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8687 			parent = path->nodes[level + 1]->start;
8688 		else
8689 			BUG_ON(root->root_key.objectid !=
8690 			       btrfs_header_owner(path->nodes[level + 1]));
8691 	}
8692 
8693 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8694 out:
8695 	wc->refs[level] = 0;
8696 	wc->flags[level] = 0;
8697 	return 0;
8698 }
8699 
8700 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8701 				   struct btrfs_root *root,
8702 				   struct btrfs_path *path,
8703 				   struct walk_control *wc)
8704 {
8705 	int level = wc->level;
8706 	int lookup_info = 1;
8707 	int ret;
8708 
8709 	while (level >= 0) {
8710 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8711 		if (ret > 0)
8712 			break;
8713 
8714 		if (level == 0)
8715 			break;
8716 
8717 		if (path->slots[level] >=
8718 		    btrfs_header_nritems(path->nodes[level]))
8719 			break;
8720 
8721 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8722 		if (ret > 0) {
8723 			path->slots[level]++;
8724 			continue;
8725 		} else if (ret < 0)
8726 			return ret;
8727 		level = wc->level;
8728 	}
8729 	return 0;
8730 }
8731 
8732 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8733 				 struct btrfs_root *root,
8734 				 struct btrfs_path *path,
8735 				 struct walk_control *wc, int max_level)
8736 {
8737 	int level = wc->level;
8738 	int ret;
8739 
8740 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8741 	while (level < max_level && path->nodes[level]) {
8742 		wc->level = level;
8743 		if (path->slots[level] + 1 <
8744 		    btrfs_header_nritems(path->nodes[level])) {
8745 			path->slots[level]++;
8746 			return 0;
8747 		} else {
8748 			ret = walk_up_proc(trans, root, path, wc);
8749 			if (ret > 0)
8750 				return 0;
8751 
8752 			if (path->locks[level]) {
8753 				btrfs_tree_unlock_rw(path->nodes[level],
8754 						     path->locks[level]);
8755 				path->locks[level] = 0;
8756 			}
8757 			free_extent_buffer(path->nodes[level]);
8758 			path->nodes[level] = NULL;
8759 			level++;
8760 		}
8761 	}
8762 	return 1;
8763 }
8764 
8765 /*
8766  * drop a subvolume tree.
8767  *
8768  * this function traverses the tree freeing any blocks that only
8769  * referenced by the tree.
8770  *
8771  * when a shared tree block is found. this function decreases its
8772  * reference count by one. if update_ref is true, this function
8773  * also make sure backrefs for the shared block and all lower level
8774  * blocks are properly updated.
8775  *
8776  * If called with for_reloc == 0, may exit early with -EAGAIN
8777  */
8778 int btrfs_drop_snapshot(struct btrfs_root *root,
8779 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8780 			 int for_reloc)
8781 {
8782 	struct btrfs_path *path;
8783 	struct btrfs_trans_handle *trans;
8784 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8785 	struct btrfs_root_item *root_item = &root->root_item;
8786 	struct walk_control *wc;
8787 	struct btrfs_key key;
8788 	int err = 0;
8789 	int ret;
8790 	int level;
8791 	bool root_dropped = false;
8792 
8793 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8794 
8795 	path = btrfs_alloc_path();
8796 	if (!path) {
8797 		err = -ENOMEM;
8798 		goto out;
8799 	}
8800 
8801 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8802 	if (!wc) {
8803 		btrfs_free_path(path);
8804 		err = -ENOMEM;
8805 		goto out;
8806 	}
8807 
8808 	trans = btrfs_start_transaction(tree_root, 0);
8809 	if (IS_ERR(trans)) {
8810 		err = PTR_ERR(trans);
8811 		goto out_free;
8812 	}
8813 
8814 	if (block_rsv)
8815 		trans->block_rsv = block_rsv;
8816 
8817 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8818 		level = btrfs_header_level(root->node);
8819 		path->nodes[level] = btrfs_lock_root_node(root);
8820 		btrfs_set_lock_blocking(path->nodes[level]);
8821 		path->slots[level] = 0;
8822 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8823 		memset(&wc->update_progress, 0,
8824 		       sizeof(wc->update_progress));
8825 	} else {
8826 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8827 		memcpy(&wc->update_progress, &key,
8828 		       sizeof(wc->update_progress));
8829 
8830 		level = root_item->drop_level;
8831 		BUG_ON(level == 0);
8832 		path->lowest_level = level;
8833 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8834 		path->lowest_level = 0;
8835 		if (ret < 0) {
8836 			err = ret;
8837 			goto out_end_trans;
8838 		}
8839 		WARN_ON(ret > 0);
8840 
8841 		/*
8842 		 * unlock our path, this is safe because only this
8843 		 * function is allowed to delete this snapshot
8844 		 */
8845 		btrfs_unlock_up_safe(path, 0);
8846 
8847 		level = btrfs_header_level(root->node);
8848 		while (1) {
8849 			btrfs_tree_lock(path->nodes[level]);
8850 			btrfs_set_lock_blocking(path->nodes[level]);
8851 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8852 
8853 			ret = btrfs_lookup_extent_info(trans, root,
8854 						path->nodes[level]->start,
8855 						level, 1, &wc->refs[level],
8856 						&wc->flags[level]);
8857 			if (ret < 0) {
8858 				err = ret;
8859 				goto out_end_trans;
8860 			}
8861 			BUG_ON(wc->refs[level] == 0);
8862 
8863 			if (level == root_item->drop_level)
8864 				break;
8865 
8866 			btrfs_tree_unlock(path->nodes[level]);
8867 			path->locks[level] = 0;
8868 			WARN_ON(wc->refs[level] != 1);
8869 			level--;
8870 		}
8871 	}
8872 
8873 	wc->level = level;
8874 	wc->shared_level = -1;
8875 	wc->stage = DROP_REFERENCE;
8876 	wc->update_ref = update_ref;
8877 	wc->keep_locks = 0;
8878 	wc->for_reloc = for_reloc;
8879 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8880 
8881 	while (1) {
8882 
8883 		ret = walk_down_tree(trans, root, path, wc);
8884 		if (ret < 0) {
8885 			err = ret;
8886 			break;
8887 		}
8888 
8889 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8890 		if (ret < 0) {
8891 			err = ret;
8892 			break;
8893 		}
8894 
8895 		if (ret > 0) {
8896 			BUG_ON(wc->stage != DROP_REFERENCE);
8897 			break;
8898 		}
8899 
8900 		if (wc->stage == DROP_REFERENCE) {
8901 			level = wc->level;
8902 			btrfs_node_key(path->nodes[level],
8903 				       &root_item->drop_progress,
8904 				       path->slots[level]);
8905 			root_item->drop_level = level;
8906 		}
8907 
8908 		BUG_ON(wc->level == 0);
8909 		if (btrfs_should_end_transaction(trans, tree_root) ||
8910 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8911 			ret = btrfs_update_root(trans, tree_root,
8912 						&root->root_key,
8913 						root_item);
8914 			if (ret) {
8915 				btrfs_abort_transaction(trans, tree_root, ret);
8916 				err = ret;
8917 				goto out_end_trans;
8918 			}
8919 
8920 			btrfs_end_transaction_throttle(trans, tree_root);
8921 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8922 				pr_debug("BTRFS: drop snapshot early exit\n");
8923 				err = -EAGAIN;
8924 				goto out_free;
8925 			}
8926 
8927 			trans = btrfs_start_transaction(tree_root, 0);
8928 			if (IS_ERR(trans)) {
8929 				err = PTR_ERR(trans);
8930 				goto out_free;
8931 			}
8932 			if (block_rsv)
8933 				trans->block_rsv = block_rsv;
8934 		}
8935 	}
8936 	btrfs_release_path(path);
8937 	if (err)
8938 		goto out_end_trans;
8939 
8940 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8941 	if (ret) {
8942 		btrfs_abort_transaction(trans, tree_root, ret);
8943 		goto out_end_trans;
8944 	}
8945 
8946 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8947 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8948 				      NULL, NULL);
8949 		if (ret < 0) {
8950 			btrfs_abort_transaction(trans, tree_root, ret);
8951 			err = ret;
8952 			goto out_end_trans;
8953 		} else if (ret > 0) {
8954 			/* if we fail to delete the orphan item this time
8955 			 * around, it'll get picked up the next time.
8956 			 *
8957 			 * The most common failure here is just -ENOENT.
8958 			 */
8959 			btrfs_del_orphan_item(trans, tree_root,
8960 					      root->root_key.objectid);
8961 		}
8962 	}
8963 
8964 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8965 		btrfs_add_dropped_root(trans, root);
8966 	} else {
8967 		free_extent_buffer(root->node);
8968 		free_extent_buffer(root->commit_root);
8969 		btrfs_put_fs_root(root);
8970 	}
8971 	root_dropped = true;
8972 out_end_trans:
8973 	btrfs_end_transaction_throttle(trans, tree_root);
8974 out_free:
8975 	kfree(wc);
8976 	btrfs_free_path(path);
8977 out:
8978 	/*
8979 	 * So if we need to stop dropping the snapshot for whatever reason we
8980 	 * need to make sure to add it back to the dead root list so that we
8981 	 * keep trying to do the work later.  This also cleans up roots if we
8982 	 * don't have it in the radix (like when we recover after a power fail
8983 	 * or unmount) so we don't leak memory.
8984 	 */
8985 	if (!for_reloc && root_dropped == false)
8986 		btrfs_add_dead_root(root);
8987 	if (err && err != -EAGAIN)
8988 		btrfs_std_error(root->fs_info, err, NULL);
8989 	return err;
8990 }
8991 
8992 /*
8993  * drop subtree rooted at tree block 'node'.
8994  *
8995  * NOTE: this function will unlock and release tree block 'node'
8996  * only used by relocation code
8997  */
8998 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8999 			struct btrfs_root *root,
9000 			struct extent_buffer *node,
9001 			struct extent_buffer *parent)
9002 {
9003 	struct btrfs_path *path;
9004 	struct walk_control *wc;
9005 	int level;
9006 	int parent_level;
9007 	int ret = 0;
9008 	int wret;
9009 
9010 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9011 
9012 	path = btrfs_alloc_path();
9013 	if (!path)
9014 		return -ENOMEM;
9015 
9016 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9017 	if (!wc) {
9018 		btrfs_free_path(path);
9019 		return -ENOMEM;
9020 	}
9021 
9022 	btrfs_assert_tree_locked(parent);
9023 	parent_level = btrfs_header_level(parent);
9024 	extent_buffer_get(parent);
9025 	path->nodes[parent_level] = parent;
9026 	path->slots[parent_level] = btrfs_header_nritems(parent);
9027 
9028 	btrfs_assert_tree_locked(node);
9029 	level = btrfs_header_level(node);
9030 	path->nodes[level] = node;
9031 	path->slots[level] = 0;
9032 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9033 
9034 	wc->refs[parent_level] = 1;
9035 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9036 	wc->level = level;
9037 	wc->shared_level = -1;
9038 	wc->stage = DROP_REFERENCE;
9039 	wc->update_ref = 0;
9040 	wc->keep_locks = 1;
9041 	wc->for_reloc = 1;
9042 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9043 
9044 	while (1) {
9045 		wret = walk_down_tree(trans, root, path, wc);
9046 		if (wret < 0) {
9047 			ret = wret;
9048 			break;
9049 		}
9050 
9051 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9052 		if (wret < 0)
9053 			ret = wret;
9054 		if (wret != 0)
9055 			break;
9056 	}
9057 
9058 	kfree(wc);
9059 	btrfs_free_path(path);
9060 	return ret;
9061 }
9062 
9063 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9064 {
9065 	u64 num_devices;
9066 	u64 stripped;
9067 
9068 	/*
9069 	 * if restripe for this chunk_type is on pick target profile and
9070 	 * return, otherwise do the usual balance
9071 	 */
9072 	stripped = get_restripe_target(root->fs_info, flags);
9073 	if (stripped)
9074 		return extended_to_chunk(stripped);
9075 
9076 	num_devices = root->fs_info->fs_devices->rw_devices;
9077 
9078 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9079 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9080 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9081 
9082 	if (num_devices == 1) {
9083 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9084 		stripped = flags & ~stripped;
9085 
9086 		/* turn raid0 into single device chunks */
9087 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9088 			return stripped;
9089 
9090 		/* turn mirroring into duplication */
9091 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9092 			     BTRFS_BLOCK_GROUP_RAID10))
9093 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9094 	} else {
9095 		/* they already had raid on here, just return */
9096 		if (flags & stripped)
9097 			return flags;
9098 
9099 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9100 		stripped = flags & ~stripped;
9101 
9102 		/* switch duplicated blocks with raid1 */
9103 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9104 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9105 
9106 		/* this is drive concat, leave it alone */
9107 	}
9108 
9109 	return flags;
9110 }
9111 
9112 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9113 {
9114 	struct btrfs_space_info *sinfo = cache->space_info;
9115 	u64 num_bytes;
9116 	u64 min_allocable_bytes;
9117 	int ret = -ENOSPC;
9118 
9119 	/*
9120 	 * We need some metadata space and system metadata space for
9121 	 * allocating chunks in some corner cases until we force to set
9122 	 * it to be readonly.
9123 	 */
9124 	if ((sinfo->flags &
9125 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9126 	    !force)
9127 		min_allocable_bytes = 1 * 1024 * 1024;
9128 	else
9129 		min_allocable_bytes = 0;
9130 
9131 	spin_lock(&sinfo->lock);
9132 	spin_lock(&cache->lock);
9133 
9134 	if (cache->ro) {
9135 		cache->ro++;
9136 		ret = 0;
9137 		goto out;
9138 	}
9139 
9140 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9141 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9142 
9143 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9144 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9145 	    min_allocable_bytes <= sinfo->total_bytes) {
9146 		sinfo->bytes_readonly += num_bytes;
9147 		cache->ro++;
9148 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9149 		ret = 0;
9150 	}
9151 out:
9152 	spin_unlock(&cache->lock);
9153 	spin_unlock(&sinfo->lock);
9154 	return ret;
9155 }
9156 
9157 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9158 			     struct btrfs_block_group_cache *cache)
9159 
9160 {
9161 	struct btrfs_trans_handle *trans;
9162 	u64 alloc_flags;
9163 	int ret;
9164 
9165 again:
9166 	trans = btrfs_join_transaction(root);
9167 	if (IS_ERR(trans))
9168 		return PTR_ERR(trans);
9169 
9170 	/*
9171 	 * we're not allowed to set block groups readonly after the dirty
9172 	 * block groups cache has started writing.  If it already started,
9173 	 * back off and let this transaction commit
9174 	 */
9175 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9176 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9177 		u64 transid = trans->transid;
9178 
9179 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9180 		btrfs_end_transaction(trans, root);
9181 
9182 		ret = btrfs_wait_for_commit(root, transid);
9183 		if (ret)
9184 			return ret;
9185 		goto again;
9186 	}
9187 
9188 	/*
9189 	 * if we are changing raid levels, try to allocate a corresponding
9190 	 * block group with the new raid level.
9191 	 */
9192 	alloc_flags = update_block_group_flags(root, cache->flags);
9193 	if (alloc_flags != cache->flags) {
9194 		ret = do_chunk_alloc(trans, root, alloc_flags,
9195 				     CHUNK_ALLOC_FORCE);
9196 		/*
9197 		 * ENOSPC is allowed here, we may have enough space
9198 		 * already allocated at the new raid level to
9199 		 * carry on
9200 		 */
9201 		if (ret == -ENOSPC)
9202 			ret = 0;
9203 		if (ret < 0)
9204 			goto out;
9205 	}
9206 
9207 	ret = inc_block_group_ro(cache, 0);
9208 	if (!ret)
9209 		goto out;
9210 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9211 	ret = do_chunk_alloc(trans, root, alloc_flags,
9212 			     CHUNK_ALLOC_FORCE);
9213 	if (ret < 0)
9214 		goto out;
9215 	ret = inc_block_group_ro(cache, 0);
9216 out:
9217 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9218 		alloc_flags = update_block_group_flags(root, cache->flags);
9219 		lock_chunks(root->fs_info->chunk_root);
9220 		check_system_chunk(trans, root, alloc_flags);
9221 		unlock_chunks(root->fs_info->chunk_root);
9222 	}
9223 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9224 
9225 	btrfs_end_transaction(trans, root);
9226 	return ret;
9227 }
9228 
9229 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9230 			    struct btrfs_root *root, u64 type)
9231 {
9232 	u64 alloc_flags = get_alloc_profile(root, type);
9233 	return do_chunk_alloc(trans, root, alloc_flags,
9234 			      CHUNK_ALLOC_FORCE);
9235 }
9236 
9237 /*
9238  * helper to account the unused space of all the readonly block group in the
9239  * space_info. takes mirrors into account.
9240  */
9241 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9242 {
9243 	struct btrfs_block_group_cache *block_group;
9244 	u64 free_bytes = 0;
9245 	int factor;
9246 
9247 	/* It's df, we don't care if it's racey */
9248 	if (list_empty(&sinfo->ro_bgs))
9249 		return 0;
9250 
9251 	spin_lock(&sinfo->lock);
9252 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9253 		spin_lock(&block_group->lock);
9254 
9255 		if (!block_group->ro) {
9256 			spin_unlock(&block_group->lock);
9257 			continue;
9258 		}
9259 
9260 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9261 					  BTRFS_BLOCK_GROUP_RAID10 |
9262 					  BTRFS_BLOCK_GROUP_DUP))
9263 			factor = 2;
9264 		else
9265 			factor = 1;
9266 
9267 		free_bytes += (block_group->key.offset -
9268 			       btrfs_block_group_used(&block_group->item)) *
9269 			       factor;
9270 
9271 		spin_unlock(&block_group->lock);
9272 	}
9273 	spin_unlock(&sinfo->lock);
9274 
9275 	return free_bytes;
9276 }
9277 
9278 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9279 			      struct btrfs_block_group_cache *cache)
9280 {
9281 	struct btrfs_space_info *sinfo = cache->space_info;
9282 	u64 num_bytes;
9283 
9284 	BUG_ON(!cache->ro);
9285 
9286 	spin_lock(&sinfo->lock);
9287 	spin_lock(&cache->lock);
9288 	if (!--cache->ro) {
9289 		num_bytes = cache->key.offset - cache->reserved -
9290 			    cache->pinned - cache->bytes_super -
9291 			    btrfs_block_group_used(&cache->item);
9292 		sinfo->bytes_readonly -= num_bytes;
9293 		list_del_init(&cache->ro_list);
9294 	}
9295 	spin_unlock(&cache->lock);
9296 	spin_unlock(&sinfo->lock);
9297 }
9298 
9299 /*
9300  * checks to see if its even possible to relocate this block group.
9301  *
9302  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9303  * ok to go ahead and try.
9304  */
9305 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9306 {
9307 	struct btrfs_block_group_cache *block_group;
9308 	struct btrfs_space_info *space_info;
9309 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9310 	struct btrfs_device *device;
9311 	struct btrfs_trans_handle *trans;
9312 	u64 min_free;
9313 	u64 dev_min = 1;
9314 	u64 dev_nr = 0;
9315 	u64 target;
9316 	int index;
9317 	int full = 0;
9318 	int ret = 0;
9319 
9320 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9321 
9322 	/* odd, couldn't find the block group, leave it alone */
9323 	if (!block_group)
9324 		return -1;
9325 
9326 	min_free = btrfs_block_group_used(&block_group->item);
9327 
9328 	/* no bytes used, we're good */
9329 	if (!min_free)
9330 		goto out;
9331 
9332 	space_info = block_group->space_info;
9333 	spin_lock(&space_info->lock);
9334 
9335 	full = space_info->full;
9336 
9337 	/*
9338 	 * if this is the last block group we have in this space, we can't
9339 	 * relocate it unless we're able to allocate a new chunk below.
9340 	 *
9341 	 * Otherwise, we need to make sure we have room in the space to handle
9342 	 * all of the extents from this block group.  If we can, we're good
9343 	 */
9344 	if ((space_info->total_bytes != block_group->key.offset) &&
9345 	    (space_info->bytes_used + space_info->bytes_reserved +
9346 	     space_info->bytes_pinned + space_info->bytes_readonly +
9347 	     min_free < space_info->total_bytes)) {
9348 		spin_unlock(&space_info->lock);
9349 		goto out;
9350 	}
9351 	spin_unlock(&space_info->lock);
9352 
9353 	/*
9354 	 * ok we don't have enough space, but maybe we have free space on our
9355 	 * devices to allocate new chunks for relocation, so loop through our
9356 	 * alloc devices and guess if we have enough space.  if this block
9357 	 * group is going to be restriped, run checks against the target
9358 	 * profile instead of the current one.
9359 	 */
9360 	ret = -1;
9361 
9362 	/*
9363 	 * index:
9364 	 *      0: raid10
9365 	 *      1: raid1
9366 	 *      2: dup
9367 	 *      3: raid0
9368 	 *      4: single
9369 	 */
9370 	target = get_restripe_target(root->fs_info, block_group->flags);
9371 	if (target) {
9372 		index = __get_raid_index(extended_to_chunk(target));
9373 	} else {
9374 		/*
9375 		 * this is just a balance, so if we were marked as full
9376 		 * we know there is no space for a new chunk
9377 		 */
9378 		if (full)
9379 			goto out;
9380 
9381 		index = get_block_group_index(block_group);
9382 	}
9383 
9384 	if (index == BTRFS_RAID_RAID10) {
9385 		dev_min = 4;
9386 		/* Divide by 2 */
9387 		min_free >>= 1;
9388 	} else if (index == BTRFS_RAID_RAID1) {
9389 		dev_min = 2;
9390 	} else if (index == BTRFS_RAID_DUP) {
9391 		/* Multiply by 2 */
9392 		min_free <<= 1;
9393 	} else if (index == BTRFS_RAID_RAID0) {
9394 		dev_min = fs_devices->rw_devices;
9395 		min_free = div64_u64(min_free, dev_min);
9396 	}
9397 
9398 	/* We need to do this so that we can look at pending chunks */
9399 	trans = btrfs_join_transaction(root);
9400 	if (IS_ERR(trans)) {
9401 		ret = PTR_ERR(trans);
9402 		goto out;
9403 	}
9404 
9405 	mutex_lock(&root->fs_info->chunk_mutex);
9406 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9407 		u64 dev_offset;
9408 
9409 		/*
9410 		 * check to make sure we can actually find a chunk with enough
9411 		 * space to fit our block group in.
9412 		 */
9413 		if (device->total_bytes > device->bytes_used + min_free &&
9414 		    !device->is_tgtdev_for_dev_replace) {
9415 			ret = find_free_dev_extent(trans, device, min_free,
9416 						   &dev_offset, NULL);
9417 			if (!ret)
9418 				dev_nr++;
9419 
9420 			if (dev_nr >= dev_min)
9421 				break;
9422 
9423 			ret = -1;
9424 		}
9425 	}
9426 	mutex_unlock(&root->fs_info->chunk_mutex);
9427 	btrfs_end_transaction(trans, root);
9428 out:
9429 	btrfs_put_block_group(block_group);
9430 	return ret;
9431 }
9432 
9433 static int find_first_block_group(struct btrfs_root *root,
9434 		struct btrfs_path *path, struct btrfs_key *key)
9435 {
9436 	int ret = 0;
9437 	struct btrfs_key found_key;
9438 	struct extent_buffer *leaf;
9439 	int slot;
9440 
9441 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9442 	if (ret < 0)
9443 		goto out;
9444 
9445 	while (1) {
9446 		slot = path->slots[0];
9447 		leaf = path->nodes[0];
9448 		if (slot >= btrfs_header_nritems(leaf)) {
9449 			ret = btrfs_next_leaf(root, path);
9450 			if (ret == 0)
9451 				continue;
9452 			if (ret < 0)
9453 				goto out;
9454 			break;
9455 		}
9456 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9457 
9458 		if (found_key.objectid >= key->objectid &&
9459 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9460 			ret = 0;
9461 			goto out;
9462 		}
9463 		path->slots[0]++;
9464 	}
9465 out:
9466 	return ret;
9467 }
9468 
9469 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9470 {
9471 	struct btrfs_block_group_cache *block_group;
9472 	u64 last = 0;
9473 
9474 	while (1) {
9475 		struct inode *inode;
9476 
9477 		block_group = btrfs_lookup_first_block_group(info, last);
9478 		while (block_group) {
9479 			spin_lock(&block_group->lock);
9480 			if (block_group->iref)
9481 				break;
9482 			spin_unlock(&block_group->lock);
9483 			block_group = next_block_group(info->tree_root,
9484 						       block_group);
9485 		}
9486 		if (!block_group) {
9487 			if (last == 0)
9488 				break;
9489 			last = 0;
9490 			continue;
9491 		}
9492 
9493 		inode = block_group->inode;
9494 		block_group->iref = 0;
9495 		block_group->inode = NULL;
9496 		spin_unlock(&block_group->lock);
9497 		iput(inode);
9498 		last = block_group->key.objectid + block_group->key.offset;
9499 		btrfs_put_block_group(block_group);
9500 	}
9501 }
9502 
9503 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9504 {
9505 	struct btrfs_block_group_cache *block_group;
9506 	struct btrfs_space_info *space_info;
9507 	struct btrfs_caching_control *caching_ctl;
9508 	struct rb_node *n;
9509 
9510 	down_write(&info->commit_root_sem);
9511 	while (!list_empty(&info->caching_block_groups)) {
9512 		caching_ctl = list_entry(info->caching_block_groups.next,
9513 					 struct btrfs_caching_control, list);
9514 		list_del(&caching_ctl->list);
9515 		put_caching_control(caching_ctl);
9516 	}
9517 	up_write(&info->commit_root_sem);
9518 
9519 	spin_lock(&info->unused_bgs_lock);
9520 	while (!list_empty(&info->unused_bgs)) {
9521 		block_group = list_first_entry(&info->unused_bgs,
9522 					       struct btrfs_block_group_cache,
9523 					       bg_list);
9524 		list_del_init(&block_group->bg_list);
9525 		btrfs_put_block_group(block_group);
9526 	}
9527 	spin_unlock(&info->unused_bgs_lock);
9528 
9529 	spin_lock(&info->block_group_cache_lock);
9530 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9531 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9532 				       cache_node);
9533 		rb_erase(&block_group->cache_node,
9534 			 &info->block_group_cache_tree);
9535 		RB_CLEAR_NODE(&block_group->cache_node);
9536 		spin_unlock(&info->block_group_cache_lock);
9537 
9538 		down_write(&block_group->space_info->groups_sem);
9539 		list_del(&block_group->list);
9540 		up_write(&block_group->space_info->groups_sem);
9541 
9542 		if (block_group->cached == BTRFS_CACHE_STARTED)
9543 			wait_block_group_cache_done(block_group);
9544 
9545 		/*
9546 		 * We haven't cached this block group, which means we could
9547 		 * possibly have excluded extents on this block group.
9548 		 */
9549 		if (block_group->cached == BTRFS_CACHE_NO ||
9550 		    block_group->cached == BTRFS_CACHE_ERROR)
9551 			free_excluded_extents(info->extent_root, block_group);
9552 
9553 		btrfs_remove_free_space_cache(block_group);
9554 		btrfs_put_block_group(block_group);
9555 
9556 		spin_lock(&info->block_group_cache_lock);
9557 	}
9558 	spin_unlock(&info->block_group_cache_lock);
9559 
9560 	/* now that all the block groups are freed, go through and
9561 	 * free all the space_info structs.  This is only called during
9562 	 * the final stages of unmount, and so we know nobody is
9563 	 * using them.  We call synchronize_rcu() once before we start,
9564 	 * just to be on the safe side.
9565 	 */
9566 	synchronize_rcu();
9567 
9568 	release_global_block_rsv(info);
9569 
9570 	while (!list_empty(&info->space_info)) {
9571 		int i;
9572 
9573 		space_info = list_entry(info->space_info.next,
9574 					struct btrfs_space_info,
9575 					list);
9576 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9577 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9578 			    space_info->bytes_reserved > 0 ||
9579 			    space_info->bytes_may_use > 0)) {
9580 				dump_space_info(space_info, 0, 0);
9581 			}
9582 		}
9583 		list_del(&space_info->list);
9584 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9585 			struct kobject *kobj;
9586 			kobj = space_info->block_group_kobjs[i];
9587 			space_info->block_group_kobjs[i] = NULL;
9588 			if (kobj) {
9589 				kobject_del(kobj);
9590 				kobject_put(kobj);
9591 			}
9592 		}
9593 		kobject_del(&space_info->kobj);
9594 		kobject_put(&space_info->kobj);
9595 	}
9596 	return 0;
9597 }
9598 
9599 static void __link_block_group(struct btrfs_space_info *space_info,
9600 			       struct btrfs_block_group_cache *cache)
9601 {
9602 	int index = get_block_group_index(cache);
9603 	bool first = false;
9604 
9605 	down_write(&space_info->groups_sem);
9606 	if (list_empty(&space_info->block_groups[index]))
9607 		first = true;
9608 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9609 	up_write(&space_info->groups_sem);
9610 
9611 	if (first) {
9612 		struct raid_kobject *rkobj;
9613 		int ret;
9614 
9615 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9616 		if (!rkobj)
9617 			goto out_err;
9618 		rkobj->raid_type = index;
9619 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9620 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9621 				  "%s", get_raid_name(index));
9622 		if (ret) {
9623 			kobject_put(&rkobj->kobj);
9624 			goto out_err;
9625 		}
9626 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9627 	}
9628 
9629 	return;
9630 out_err:
9631 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9632 }
9633 
9634 static struct btrfs_block_group_cache *
9635 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9636 {
9637 	struct btrfs_block_group_cache *cache;
9638 
9639 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9640 	if (!cache)
9641 		return NULL;
9642 
9643 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9644 					GFP_NOFS);
9645 	if (!cache->free_space_ctl) {
9646 		kfree(cache);
9647 		return NULL;
9648 	}
9649 
9650 	cache->key.objectid = start;
9651 	cache->key.offset = size;
9652 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9653 
9654 	cache->sectorsize = root->sectorsize;
9655 	cache->fs_info = root->fs_info;
9656 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9657 					       &root->fs_info->mapping_tree,
9658 					       start);
9659 	atomic_set(&cache->count, 1);
9660 	spin_lock_init(&cache->lock);
9661 	init_rwsem(&cache->data_rwsem);
9662 	INIT_LIST_HEAD(&cache->list);
9663 	INIT_LIST_HEAD(&cache->cluster_list);
9664 	INIT_LIST_HEAD(&cache->bg_list);
9665 	INIT_LIST_HEAD(&cache->ro_list);
9666 	INIT_LIST_HEAD(&cache->dirty_list);
9667 	INIT_LIST_HEAD(&cache->io_list);
9668 	btrfs_init_free_space_ctl(cache);
9669 	atomic_set(&cache->trimming, 0);
9670 
9671 	return cache;
9672 }
9673 
9674 int btrfs_read_block_groups(struct btrfs_root *root)
9675 {
9676 	struct btrfs_path *path;
9677 	int ret;
9678 	struct btrfs_block_group_cache *cache;
9679 	struct btrfs_fs_info *info = root->fs_info;
9680 	struct btrfs_space_info *space_info;
9681 	struct btrfs_key key;
9682 	struct btrfs_key found_key;
9683 	struct extent_buffer *leaf;
9684 	int need_clear = 0;
9685 	u64 cache_gen;
9686 
9687 	root = info->extent_root;
9688 	key.objectid = 0;
9689 	key.offset = 0;
9690 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9691 	path = btrfs_alloc_path();
9692 	if (!path)
9693 		return -ENOMEM;
9694 	path->reada = 1;
9695 
9696 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9697 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9698 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9699 		need_clear = 1;
9700 	if (btrfs_test_opt(root, CLEAR_CACHE))
9701 		need_clear = 1;
9702 
9703 	while (1) {
9704 		ret = find_first_block_group(root, path, &key);
9705 		if (ret > 0)
9706 			break;
9707 		if (ret != 0)
9708 			goto error;
9709 
9710 		leaf = path->nodes[0];
9711 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9712 
9713 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9714 						       found_key.offset);
9715 		if (!cache) {
9716 			ret = -ENOMEM;
9717 			goto error;
9718 		}
9719 
9720 		if (need_clear) {
9721 			/*
9722 			 * When we mount with old space cache, we need to
9723 			 * set BTRFS_DC_CLEAR and set dirty flag.
9724 			 *
9725 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9726 			 *    truncate the old free space cache inode and
9727 			 *    setup a new one.
9728 			 * b) Setting 'dirty flag' makes sure that we flush
9729 			 *    the new space cache info onto disk.
9730 			 */
9731 			if (btrfs_test_opt(root, SPACE_CACHE))
9732 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9733 		}
9734 
9735 		read_extent_buffer(leaf, &cache->item,
9736 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9737 				   sizeof(cache->item));
9738 		cache->flags = btrfs_block_group_flags(&cache->item);
9739 
9740 		key.objectid = found_key.objectid + found_key.offset;
9741 		btrfs_release_path(path);
9742 
9743 		/*
9744 		 * We need to exclude the super stripes now so that the space
9745 		 * info has super bytes accounted for, otherwise we'll think
9746 		 * we have more space than we actually do.
9747 		 */
9748 		ret = exclude_super_stripes(root, cache);
9749 		if (ret) {
9750 			/*
9751 			 * We may have excluded something, so call this just in
9752 			 * case.
9753 			 */
9754 			free_excluded_extents(root, cache);
9755 			btrfs_put_block_group(cache);
9756 			goto error;
9757 		}
9758 
9759 		/*
9760 		 * check for two cases, either we are full, and therefore
9761 		 * don't need to bother with the caching work since we won't
9762 		 * find any space, or we are empty, and we can just add all
9763 		 * the space in and be done with it.  This saves us _alot_ of
9764 		 * time, particularly in the full case.
9765 		 */
9766 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9767 			cache->last_byte_to_unpin = (u64)-1;
9768 			cache->cached = BTRFS_CACHE_FINISHED;
9769 			free_excluded_extents(root, cache);
9770 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9771 			cache->last_byte_to_unpin = (u64)-1;
9772 			cache->cached = BTRFS_CACHE_FINISHED;
9773 			add_new_free_space(cache, root->fs_info,
9774 					   found_key.objectid,
9775 					   found_key.objectid +
9776 					   found_key.offset);
9777 			free_excluded_extents(root, cache);
9778 		}
9779 
9780 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9781 		if (ret) {
9782 			btrfs_remove_free_space_cache(cache);
9783 			btrfs_put_block_group(cache);
9784 			goto error;
9785 		}
9786 
9787 		ret = update_space_info(info, cache->flags, found_key.offset,
9788 					btrfs_block_group_used(&cache->item),
9789 					&space_info);
9790 		if (ret) {
9791 			btrfs_remove_free_space_cache(cache);
9792 			spin_lock(&info->block_group_cache_lock);
9793 			rb_erase(&cache->cache_node,
9794 				 &info->block_group_cache_tree);
9795 			RB_CLEAR_NODE(&cache->cache_node);
9796 			spin_unlock(&info->block_group_cache_lock);
9797 			btrfs_put_block_group(cache);
9798 			goto error;
9799 		}
9800 
9801 		cache->space_info = space_info;
9802 		spin_lock(&cache->space_info->lock);
9803 		cache->space_info->bytes_readonly += cache->bytes_super;
9804 		spin_unlock(&cache->space_info->lock);
9805 
9806 		__link_block_group(space_info, cache);
9807 
9808 		set_avail_alloc_bits(root->fs_info, cache->flags);
9809 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9810 			inc_block_group_ro(cache, 1);
9811 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9812 			spin_lock(&info->unused_bgs_lock);
9813 			/* Should always be true but just in case. */
9814 			if (list_empty(&cache->bg_list)) {
9815 				btrfs_get_block_group(cache);
9816 				list_add_tail(&cache->bg_list,
9817 					      &info->unused_bgs);
9818 			}
9819 			spin_unlock(&info->unused_bgs_lock);
9820 		}
9821 	}
9822 
9823 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9824 		if (!(get_alloc_profile(root, space_info->flags) &
9825 		      (BTRFS_BLOCK_GROUP_RAID10 |
9826 		       BTRFS_BLOCK_GROUP_RAID1 |
9827 		       BTRFS_BLOCK_GROUP_RAID5 |
9828 		       BTRFS_BLOCK_GROUP_RAID6 |
9829 		       BTRFS_BLOCK_GROUP_DUP)))
9830 			continue;
9831 		/*
9832 		 * avoid allocating from un-mirrored block group if there are
9833 		 * mirrored block groups.
9834 		 */
9835 		list_for_each_entry(cache,
9836 				&space_info->block_groups[BTRFS_RAID_RAID0],
9837 				list)
9838 			inc_block_group_ro(cache, 1);
9839 		list_for_each_entry(cache,
9840 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9841 				list)
9842 			inc_block_group_ro(cache, 1);
9843 	}
9844 
9845 	init_global_block_rsv(info);
9846 	ret = 0;
9847 error:
9848 	btrfs_free_path(path);
9849 	return ret;
9850 }
9851 
9852 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9853 				       struct btrfs_root *root)
9854 {
9855 	struct btrfs_block_group_cache *block_group, *tmp;
9856 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9857 	struct btrfs_block_group_item item;
9858 	struct btrfs_key key;
9859 	int ret = 0;
9860 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9861 
9862 	trans->can_flush_pending_bgs = false;
9863 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9864 		if (ret)
9865 			goto next;
9866 
9867 		spin_lock(&block_group->lock);
9868 		memcpy(&item, &block_group->item, sizeof(item));
9869 		memcpy(&key, &block_group->key, sizeof(key));
9870 		spin_unlock(&block_group->lock);
9871 
9872 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9873 					sizeof(item));
9874 		if (ret)
9875 			btrfs_abort_transaction(trans, extent_root, ret);
9876 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9877 					       key.objectid, key.offset);
9878 		if (ret)
9879 			btrfs_abort_transaction(trans, extent_root, ret);
9880 next:
9881 		list_del_init(&block_group->bg_list);
9882 	}
9883 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
9884 }
9885 
9886 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9887 			   struct btrfs_root *root, u64 bytes_used,
9888 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9889 			   u64 size)
9890 {
9891 	int ret;
9892 	struct btrfs_root *extent_root;
9893 	struct btrfs_block_group_cache *cache;
9894 
9895 	extent_root = root->fs_info->extent_root;
9896 
9897 	btrfs_set_log_full_commit(root->fs_info, trans);
9898 
9899 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9900 	if (!cache)
9901 		return -ENOMEM;
9902 
9903 	btrfs_set_block_group_used(&cache->item, bytes_used);
9904 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9905 	btrfs_set_block_group_flags(&cache->item, type);
9906 
9907 	cache->flags = type;
9908 	cache->last_byte_to_unpin = (u64)-1;
9909 	cache->cached = BTRFS_CACHE_FINISHED;
9910 	ret = exclude_super_stripes(root, cache);
9911 	if (ret) {
9912 		/*
9913 		 * We may have excluded something, so call this just in
9914 		 * case.
9915 		 */
9916 		free_excluded_extents(root, cache);
9917 		btrfs_put_block_group(cache);
9918 		return ret;
9919 	}
9920 
9921 	add_new_free_space(cache, root->fs_info, chunk_offset,
9922 			   chunk_offset + size);
9923 
9924 	free_excluded_extents(root, cache);
9925 
9926 #ifdef CONFIG_BTRFS_DEBUG
9927 	if (btrfs_should_fragment_free_space(root, cache)) {
9928 		u64 new_bytes_used = size - bytes_used;
9929 
9930 		bytes_used += new_bytes_used >> 1;
9931 		fragment_free_space(root, cache);
9932 	}
9933 #endif
9934 	/*
9935 	 * Call to ensure the corresponding space_info object is created and
9936 	 * assigned to our block group, but don't update its counters just yet.
9937 	 * We want our bg to be added to the rbtree with its ->space_info set.
9938 	 */
9939 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9940 				&cache->space_info);
9941 	if (ret) {
9942 		btrfs_remove_free_space_cache(cache);
9943 		btrfs_put_block_group(cache);
9944 		return ret;
9945 	}
9946 
9947 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9948 	if (ret) {
9949 		btrfs_remove_free_space_cache(cache);
9950 		btrfs_put_block_group(cache);
9951 		return ret;
9952 	}
9953 
9954 	/*
9955 	 * Now that our block group has its ->space_info set and is inserted in
9956 	 * the rbtree, update the space info's counters.
9957 	 */
9958 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9959 				&cache->space_info);
9960 	if (ret) {
9961 		btrfs_remove_free_space_cache(cache);
9962 		spin_lock(&root->fs_info->block_group_cache_lock);
9963 		rb_erase(&cache->cache_node,
9964 			 &root->fs_info->block_group_cache_tree);
9965 		RB_CLEAR_NODE(&cache->cache_node);
9966 		spin_unlock(&root->fs_info->block_group_cache_lock);
9967 		btrfs_put_block_group(cache);
9968 		return ret;
9969 	}
9970 	update_global_block_rsv(root->fs_info);
9971 
9972 	spin_lock(&cache->space_info->lock);
9973 	cache->space_info->bytes_readonly += cache->bytes_super;
9974 	spin_unlock(&cache->space_info->lock);
9975 
9976 	__link_block_group(cache->space_info, cache);
9977 
9978 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9979 
9980 	set_avail_alloc_bits(extent_root->fs_info, type);
9981 
9982 	return 0;
9983 }
9984 
9985 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9986 {
9987 	u64 extra_flags = chunk_to_extended(flags) &
9988 				BTRFS_EXTENDED_PROFILE_MASK;
9989 
9990 	write_seqlock(&fs_info->profiles_lock);
9991 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9992 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9993 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9994 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9995 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9996 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9997 	write_sequnlock(&fs_info->profiles_lock);
9998 }
9999 
10000 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10001 			     struct btrfs_root *root, u64 group_start,
10002 			     struct extent_map *em)
10003 {
10004 	struct btrfs_path *path;
10005 	struct btrfs_block_group_cache *block_group;
10006 	struct btrfs_free_cluster *cluster;
10007 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10008 	struct btrfs_key key;
10009 	struct inode *inode;
10010 	struct kobject *kobj = NULL;
10011 	int ret;
10012 	int index;
10013 	int factor;
10014 	struct btrfs_caching_control *caching_ctl = NULL;
10015 	bool remove_em;
10016 
10017 	root = root->fs_info->extent_root;
10018 
10019 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10020 	BUG_ON(!block_group);
10021 	BUG_ON(!block_group->ro);
10022 
10023 	/*
10024 	 * Free the reserved super bytes from this block group before
10025 	 * remove it.
10026 	 */
10027 	free_excluded_extents(root, block_group);
10028 
10029 	memcpy(&key, &block_group->key, sizeof(key));
10030 	index = get_block_group_index(block_group);
10031 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10032 				  BTRFS_BLOCK_GROUP_RAID1 |
10033 				  BTRFS_BLOCK_GROUP_RAID10))
10034 		factor = 2;
10035 	else
10036 		factor = 1;
10037 
10038 	/* make sure this block group isn't part of an allocation cluster */
10039 	cluster = &root->fs_info->data_alloc_cluster;
10040 	spin_lock(&cluster->refill_lock);
10041 	btrfs_return_cluster_to_free_space(block_group, cluster);
10042 	spin_unlock(&cluster->refill_lock);
10043 
10044 	/*
10045 	 * make sure this block group isn't part of a metadata
10046 	 * allocation cluster
10047 	 */
10048 	cluster = &root->fs_info->meta_alloc_cluster;
10049 	spin_lock(&cluster->refill_lock);
10050 	btrfs_return_cluster_to_free_space(block_group, cluster);
10051 	spin_unlock(&cluster->refill_lock);
10052 
10053 	path = btrfs_alloc_path();
10054 	if (!path) {
10055 		ret = -ENOMEM;
10056 		goto out;
10057 	}
10058 
10059 	/*
10060 	 * get the inode first so any iput calls done for the io_list
10061 	 * aren't the final iput (no unlinks allowed now)
10062 	 */
10063 	inode = lookup_free_space_inode(tree_root, block_group, path);
10064 
10065 	mutex_lock(&trans->transaction->cache_write_mutex);
10066 	/*
10067 	 * make sure our free spache cache IO is done before remove the
10068 	 * free space inode
10069 	 */
10070 	spin_lock(&trans->transaction->dirty_bgs_lock);
10071 	if (!list_empty(&block_group->io_list)) {
10072 		list_del_init(&block_group->io_list);
10073 
10074 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10075 
10076 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10077 		btrfs_wait_cache_io(root, trans, block_group,
10078 				    &block_group->io_ctl, path,
10079 				    block_group->key.objectid);
10080 		btrfs_put_block_group(block_group);
10081 		spin_lock(&trans->transaction->dirty_bgs_lock);
10082 	}
10083 
10084 	if (!list_empty(&block_group->dirty_list)) {
10085 		list_del_init(&block_group->dirty_list);
10086 		btrfs_put_block_group(block_group);
10087 	}
10088 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10089 	mutex_unlock(&trans->transaction->cache_write_mutex);
10090 
10091 	if (!IS_ERR(inode)) {
10092 		ret = btrfs_orphan_add(trans, inode);
10093 		if (ret) {
10094 			btrfs_add_delayed_iput(inode);
10095 			goto out;
10096 		}
10097 		clear_nlink(inode);
10098 		/* One for the block groups ref */
10099 		spin_lock(&block_group->lock);
10100 		if (block_group->iref) {
10101 			block_group->iref = 0;
10102 			block_group->inode = NULL;
10103 			spin_unlock(&block_group->lock);
10104 			iput(inode);
10105 		} else {
10106 			spin_unlock(&block_group->lock);
10107 		}
10108 		/* One for our lookup ref */
10109 		btrfs_add_delayed_iput(inode);
10110 	}
10111 
10112 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10113 	key.offset = block_group->key.objectid;
10114 	key.type = 0;
10115 
10116 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10117 	if (ret < 0)
10118 		goto out;
10119 	if (ret > 0)
10120 		btrfs_release_path(path);
10121 	if (ret == 0) {
10122 		ret = btrfs_del_item(trans, tree_root, path);
10123 		if (ret)
10124 			goto out;
10125 		btrfs_release_path(path);
10126 	}
10127 
10128 	spin_lock(&root->fs_info->block_group_cache_lock);
10129 	rb_erase(&block_group->cache_node,
10130 		 &root->fs_info->block_group_cache_tree);
10131 	RB_CLEAR_NODE(&block_group->cache_node);
10132 
10133 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10134 		root->fs_info->first_logical_byte = (u64)-1;
10135 	spin_unlock(&root->fs_info->block_group_cache_lock);
10136 
10137 	down_write(&block_group->space_info->groups_sem);
10138 	/*
10139 	 * we must use list_del_init so people can check to see if they
10140 	 * are still on the list after taking the semaphore
10141 	 */
10142 	list_del_init(&block_group->list);
10143 	if (list_empty(&block_group->space_info->block_groups[index])) {
10144 		kobj = block_group->space_info->block_group_kobjs[index];
10145 		block_group->space_info->block_group_kobjs[index] = NULL;
10146 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10147 	}
10148 	up_write(&block_group->space_info->groups_sem);
10149 	if (kobj) {
10150 		kobject_del(kobj);
10151 		kobject_put(kobj);
10152 	}
10153 
10154 	if (block_group->has_caching_ctl)
10155 		caching_ctl = get_caching_control(block_group);
10156 	if (block_group->cached == BTRFS_CACHE_STARTED)
10157 		wait_block_group_cache_done(block_group);
10158 	if (block_group->has_caching_ctl) {
10159 		down_write(&root->fs_info->commit_root_sem);
10160 		if (!caching_ctl) {
10161 			struct btrfs_caching_control *ctl;
10162 
10163 			list_for_each_entry(ctl,
10164 				    &root->fs_info->caching_block_groups, list)
10165 				if (ctl->block_group == block_group) {
10166 					caching_ctl = ctl;
10167 					atomic_inc(&caching_ctl->count);
10168 					break;
10169 				}
10170 		}
10171 		if (caching_ctl)
10172 			list_del_init(&caching_ctl->list);
10173 		up_write(&root->fs_info->commit_root_sem);
10174 		if (caching_ctl) {
10175 			/* Once for the caching bgs list and once for us. */
10176 			put_caching_control(caching_ctl);
10177 			put_caching_control(caching_ctl);
10178 		}
10179 	}
10180 
10181 	spin_lock(&trans->transaction->dirty_bgs_lock);
10182 	if (!list_empty(&block_group->dirty_list)) {
10183 		WARN_ON(1);
10184 	}
10185 	if (!list_empty(&block_group->io_list)) {
10186 		WARN_ON(1);
10187 	}
10188 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10189 	btrfs_remove_free_space_cache(block_group);
10190 
10191 	spin_lock(&block_group->space_info->lock);
10192 	list_del_init(&block_group->ro_list);
10193 
10194 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10195 		WARN_ON(block_group->space_info->total_bytes
10196 			< block_group->key.offset);
10197 		WARN_ON(block_group->space_info->bytes_readonly
10198 			< block_group->key.offset);
10199 		WARN_ON(block_group->space_info->disk_total
10200 			< block_group->key.offset * factor);
10201 	}
10202 	block_group->space_info->total_bytes -= block_group->key.offset;
10203 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10204 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10205 
10206 	spin_unlock(&block_group->space_info->lock);
10207 
10208 	memcpy(&key, &block_group->key, sizeof(key));
10209 
10210 	lock_chunks(root);
10211 	if (!list_empty(&em->list)) {
10212 		/* We're in the transaction->pending_chunks list. */
10213 		free_extent_map(em);
10214 	}
10215 	spin_lock(&block_group->lock);
10216 	block_group->removed = 1;
10217 	/*
10218 	 * At this point trimming can't start on this block group, because we
10219 	 * removed the block group from the tree fs_info->block_group_cache_tree
10220 	 * so no one can't find it anymore and even if someone already got this
10221 	 * block group before we removed it from the rbtree, they have already
10222 	 * incremented block_group->trimming - if they didn't, they won't find
10223 	 * any free space entries because we already removed them all when we
10224 	 * called btrfs_remove_free_space_cache().
10225 	 *
10226 	 * And we must not remove the extent map from the fs_info->mapping_tree
10227 	 * to prevent the same logical address range and physical device space
10228 	 * ranges from being reused for a new block group. This is because our
10229 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10230 	 * completely transactionless, so while it is trimming a range the
10231 	 * currently running transaction might finish and a new one start,
10232 	 * allowing for new block groups to be created that can reuse the same
10233 	 * physical device locations unless we take this special care.
10234 	 *
10235 	 * There may also be an implicit trim operation if the file system
10236 	 * is mounted with -odiscard. The same protections must remain
10237 	 * in place until the extents have been discarded completely when
10238 	 * the transaction commit has completed.
10239 	 */
10240 	remove_em = (atomic_read(&block_group->trimming) == 0);
10241 	/*
10242 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10243 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10244 	 * before checking block_group->removed).
10245 	 */
10246 	if (!remove_em) {
10247 		/*
10248 		 * Our em might be in trans->transaction->pending_chunks which
10249 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10250 		 * and so is the fs_info->pinned_chunks list.
10251 		 *
10252 		 * So at this point we must be holding the chunk_mutex to avoid
10253 		 * any races with chunk allocation (more specifically at
10254 		 * volumes.c:contains_pending_extent()), to ensure it always
10255 		 * sees the em, either in the pending_chunks list or in the
10256 		 * pinned_chunks list.
10257 		 */
10258 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10259 	}
10260 	spin_unlock(&block_group->lock);
10261 
10262 	if (remove_em) {
10263 		struct extent_map_tree *em_tree;
10264 
10265 		em_tree = &root->fs_info->mapping_tree.map_tree;
10266 		write_lock(&em_tree->lock);
10267 		/*
10268 		 * The em might be in the pending_chunks list, so make sure the
10269 		 * chunk mutex is locked, since remove_extent_mapping() will
10270 		 * delete us from that list.
10271 		 */
10272 		remove_extent_mapping(em_tree, em);
10273 		write_unlock(&em_tree->lock);
10274 		/* once for the tree */
10275 		free_extent_map(em);
10276 	}
10277 
10278 	unlock_chunks(root);
10279 
10280 	btrfs_put_block_group(block_group);
10281 	btrfs_put_block_group(block_group);
10282 
10283 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10284 	if (ret > 0)
10285 		ret = -EIO;
10286 	if (ret < 0)
10287 		goto out;
10288 
10289 	ret = btrfs_del_item(trans, root, path);
10290 out:
10291 	btrfs_free_path(path);
10292 	return ret;
10293 }
10294 
10295 struct btrfs_trans_handle *
10296 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10297 				     const u64 chunk_offset)
10298 {
10299 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10300 	struct extent_map *em;
10301 	struct map_lookup *map;
10302 	unsigned int num_items;
10303 
10304 	read_lock(&em_tree->lock);
10305 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10306 	read_unlock(&em_tree->lock);
10307 	ASSERT(em && em->start == chunk_offset);
10308 
10309 	/*
10310 	 * We need to reserve 3 + N units from the metadata space info in order
10311 	 * to remove a block group (done at btrfs_remove_chunk() and at
10312 	 * btrfs_remove_block_group()), which are used for:
10313 	 *
10314 	 * 1 unit for adding the free space inode's orphan (located in the tree
10315 	 * of tree roots).
10316 	 * 1 unit for deleting the block group item (located in the extent
10317 	 * tree).
10318 	 * 1 unit for deleting the free space item (located in tree of tree
10319 	 * roots).
10320 	 * N units for deleting N device extent items corresponding to each
10321 	 * stripe (located in the device tree).
10322 	 *
10323 	 * In order to remove a block group we also need to reserve units in the
10324 	 * system space info in order to update the chunk tree (update one or
10325 	 * more device items and remove one chunk item), but this is done at
10326 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10327 	 */
10328 	map = (struct map_lookup *)em->bdev;
10329 	num_items = 3 + map->num_stripes;
10330 	free_extent_map(em);
10331 
10332 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10333 							   num_items, 1);
10334 }
10335 
10336 /*
10337  * Process the unused_bgs list and remove any that don't have any allocated
10338  * space inside of them.
10339  */
10340 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10341 {
10342 	struct btrfs_block_group_cache *block_group;
10343 	struct btrfs_space_info *space_info;
10344 	struct btrfs_root *root = fs_info->extent_root;
10345 	struct btrfs_trans_handle *trans;
10346 	int ret = 0;
10347 
10348 	if (!fs_info->open)
10349 		return;
10350 
10351 	spin_lock(&fs_info->unused_bgs_lock);
10352 	while (!list_empty(&fs_info->unused_bgs)) {
10353 		u64 start, end;
10354 		int trimming;
10355 
10356 		block_group = list_first_entry(&fs_info->unused_bgs,
10357 					       struct btrfs_block_group_cache,
10358 					       bg_list);
10359 		list_del_init(&block_group->bg_list);
10360 
10361 		space_info = block_group->space_info;
10362 
10363 		if (ret || btrfs_mixed_space_info(space_info)) {
10364 			btrfs_put_block_group(block_group);
10365 			continue;
10366 		}
10367 		spin_unlock(&fs_info->unused_bgs_lock);
10368 
10369 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10370 
10371 		/* Don't want to race with allocators so take the groups_sem */
10372 		down_write(&space_info->groups_sem);
10373 		spin_lock(&block_group->lock);
10374 		if (block_group->reserved ||
10375 		    btrfs_block_group_used(&block_group->item) ||
10376 		    block_group->ro ||
10377 		    list_is_singular(&block_group->list)) {
10378 			/*
10379 			 * We want to bail if we made new allocations or have
10380 			 * outstanding allocations in this block group.  We do
10381 			 * the ro check in case balance is currently acting on
10382 			 * this block group.
10383 			 */
10384 			spin_unlock(&block_group->lock);
10385 			up_write(&space_info->groups_sem);
10386 			goto next;
10387 		}
10388 		spin_unlock(&block_group->lock);
10389 
10390 		/* We don't want to force the issue, only flip if it's ok. */
10391 		ret = inc_block_group_ro(block_group, 0);
10392 		up_write(&space_info->groups_sem);
10393 		if (ret < 0) {
10394 			ret = 0;
10395 			goto next;
10396 		}
10397 
10398 		/*
10399 		 * Want to do this before we do anything else so we can recover
10400 		 * properly if we fail to join the transaction.
10401 		 */
10402 		trans = btrfs_start_trans_remove_block_group(fs_info,
10403 						     block_group->key.objectid);
10404 		if (IS_ERR(trans)) {
10405 			btrfs_dec_block_group_ro(root, block_group);
10406 			ret = PTR_ERR(trans);
10407 			goto next;
10408 		}
10409 
10410 		/*
10411 		 * We could have pending pinned extents for this block group,
10412 		 * just delete them, we don't care about them anymore.
10413 		 */
10414 		start = block_group->key.objectid;
10415 		end = start + block_group->key.offset - 1;
10416 		/*
10417 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10418 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10419 		 * another task might be running finish_extent_commit() for the
10420 		 * previous transaction N - 1, and have seen a range belonging
10421 		 * to the block group in freed_extents[] before we were able to
10422 		 * clear the whole block group range from freed_extents[]. This
10423 		 * means that task can lookup for the block group after we
10424 		 * unpinned it from freed_extents[] and removed it, leading to
10425 		 * a BUG_ON() at btrfs_unpin_extent_range().
10426 		 */
10427 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10428 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10429 				  EXTENT_DIRTY, GFP_NOFS);
10430 		if (ret) {
10431 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10432 			btrfs_dec_block_group_ro(root, block_group);
10433 			goto end_trans;
10434 		}
10435 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10436 				  EXTENT_DIRTY, GFP_NOFS);
10437 		if (ret) {
10438 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10439 			btrfs_dec_block_group_ro(root, block_group);
10440 			goto end_trans;
10441 		}
10442 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10443 
10444 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10445 		spin_lock(&space_info->lock);
10446 		spin_lock(&block_group->lock);
10447 
10448 		space_info->bytes_pinned -= block_group->pinned;
10449 		space_info->bytes_readonly += block_group->pinned;
10450 		percpu_counter_add(&space_info->total_bytes_pinned,
10451 				   -block_group->pinned);
10452 		block_group->pinned = 0;
10453 
10454 		spin_unlock(&block_group->lock);
10455 		spin_unlock(&space_info->lock);
10456 
10457 		/* DISCARD can flip during remount */
10458 		trimming = btrfs_test_opt(root, DISCARD);
10459 
10460 		/* Implicit trim during transaction commit. */
10461 		if (trimming)
10462 			btrfs_get_block_group_trimming(block_group);
10463 
10464 		/*
10465 		 * Btrfs_remove_chunk will abort the transaction if things go
10466 		 * horribly wrong.
10467 		 */
10468 		ret = btrfs_remove_chunk(trans, root,
10469 					 block_group->key.objectid);
10470 
10471 		if (ret) {
10472 			if (trimming)
10473 				btrfs_put_block_group_trimming(block_group);
10474 			goto end_trans;
10475 		}
10476 
10477 		/*
10478 		 * If we're not mounted with -odiscard, we can just forget
10479 		 * about this block group. Otherwise we'll need to wait
10480 		 * until transaction commit to do the actual discard.
10481 		 */
10482 		if (trimming) {
10483 			spin_lock(&fs_info->unused_bgs_lock);
10484 			/*
10485 			 * A concurrent scrub might have added us to the list
10486 			 * fs_info->unused_bgs, so use a list_move operation
10487 			 * to add the block group to the deleted_bgs list.
10488 			 */
10489 			list_move(&block_group->bg_list,
10490 				  &trans->transaction->deleted_bgs);
10491 			spin_unlock(&fs_info->unused_bgs_lock);
10492 			btrfs_get_block_group(block_group);
10493 		}
10494 end_trans:
10495 		btrfs_end_transaction(trans, root);
10496 next:
10497 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10498 		btrfs_put_block_group(block_group);
10499 		spin_lock(&fs_info->unused_bgs_lock);
10500 	}
10501 	spin_unlock(&fs_info->unused_bgs_lock);
10502 }
10503 
10504 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10505 {
10506 	struct btrfs_space_info *space_info;
10507 	struct btrfs_super_block *disk_super;
10508 	u64 features;
10509 	u64 flags;
10510 	int mixed = 0;
10511 	int ret;
10512 
10513 	disk_super = fs_info->super_copy;
10514 	if (!btrfs_super_root(disk_super))
10515 		return 1;
10516 
10517 	features = btrfs_super_incompat_flags(disk_super);
10518 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10519 		mixed = 1;
10520 
10521 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10522 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10523 	if (ret)
10524 		goto out;
10525 
10526 	if (mixed) {
10527 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10528 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10529 	} else {
10530 		flags = BTRFS_BLOCK_GROUP_METADATA;
10531 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10532 		if (ret)
10533 			goto out;
10534 
10535 		flags = BTRFS_BLOCK_GROUP_DATA;
10536 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10537 	}
10538 out:
10539 	return ret;
10540 }
10541 
10542 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10543 {
10544 	return unpin_extent_range(root, start, end, false);
10545 }
10546 
10547 /*
10548  * It used to be that old block groups would be left around forever.
10549  * Iterating over them would be enough to trim unused space.  Since we
10550  * now automatically remove them, we also need to iterate over unallocated
10551  * space.
10552  *
10553  * We don't want a transaction for this since the discard may take a
10554  * substantial amount of time.  We don't require that a transaction be
10555  * running, but we do need to take a running transaction into account
10556  * to ensure that we're not discarding chunks that were released in
10557  * the current transaction.
10558  *
10559  * Holding the chunks lock will prevent other threads from allocating
10560  * or releasing chunks, but it won't prevent a running transaction
10561  * from committing and releasing the memory that the pending chunks
10562  * list head uses.  For that, we need to take a reference to the
10563  * transaction.
10564  */
10565 static int btrfs_trim_free_extents(struct btrfs_device *device,
10566 				   u64 minlen, u64 *trimmed)
10567 {
10568 	u64 start = 0, len = 0;
10569 	int ret;
10570 
10571 	*trimmed = 0;
10572 
10573 	/* Not writeable = nothing to do. */
10574 	if (!device->writeable)
10575 		return 0;
10576 
10577 	/* No free space = nothing to do. */
10578 	if (device->total_bytes <= device->bytes_used)
10579 		return 0;
10580 
10581 	ret = 0;
10582 
10583 	while (1) {
10584 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10585 		struct btrfs_transaction *trans;
10586 		u64 bytes;
10587 
10588 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10589 		if (ret)
10590 			return ret;
10591 
10592 		down_read(&fs_info->commit_root_sem);
10593 
10594 		spin_lock(&fs_info->trans_lock);
10595 		trans = fs_info->running_transaction;
10596 		if (trans)
10597 			atomic_inc(&trans->use_count);
10598 		spin_unlock(&fs_info->trans_lock);
10599 
10600 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10601 						 &start, &len);
10602 		if (trans)
10603 			btrfs_put_transaction(trans);
10604 
10605 		if (ret) {
10606 			up_read(&fs_info->commit_root_sem);
10607 			mutex_unlock(&fs_info->chunk_mutex);
10608 			if (ret == -ENOSPC)
10609 				ret = 0;
10610 			break;
10611 		}
10612 
10613 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10614 		up_read(&fs_info->commit_root_sem);
10615 		mutex_unlock(&fs_info->chunk_mutex);
10616 
10617 		if (ret)
10618 			break;
10619 
10620 		start += len;
10621 		*trimmed += bytes;
10622 
10623 		if (fatal_signal_pending(current)) {
10624 			ret = -ERESTARTSYS;
10625 			break;
10626 		}
10627 
10628 		cond_resched();
10629 	}
10630 
10631 	return ret;
10632 }
10633 
10634 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10635 {
10636 	struct btrfs_fs_info *fs_info = root->fs_info;
10637 	struct btrfs_block_group_cache *cache = NULL;
10638 	struct btrfs_device *device;
10639 	struct list_head *devices;
10640 	u64 group_trimmed;
10641 	u64 start;
10642 	u64 end;
10643 	u64 trimmed = 0;
10644 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10645 	int ret = 0;
10646 
10647 	/*
10648 	 * try to trim all FS space, our block group may start from non-zero.
10649 	 */
10650 	if (range->len == total_bytes)
10651 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10652 	else
10653 		cache = btrfs_lookup_block_group(fs_info, range->start);
10654 
10655 	while (cache) {
10656 		if (cache->key.objectid >= (range->start + range->len)) {
10657 			btrfs_put_block_group(cache);
10658 			break;
10659 		}
10660 
10661 		start = max(range->start, cache->key.objectid);
10662 		end = min(range->start + range->len,
10663 				cache->key.objectid + cache->key.offset);
10664 
10665 		if (end - start >= range->minlen) {
10666 			if (!block_group_cache_done(cache)) {
10667 				ret = cache_block_group(cache, 0);
10668 				if (ret) {
10669 					btrfs_put_block_group(cache);
10670 					break;
10671 				}
10672 				ret = wait_block_group_cache_done(cache);
10673 				if (ret) {
10674 					btrfs_put_block_group(cache);
10675 					break;
10676 				}
10677 			}
10678 			ret = btrfs_trim_block_group(cache,
10679 						     &group_trimmed,
10680 						     start,
10681 						     end,
10682 						     range->minlen);
10683 
10684 			trimmed += group_trimmed;
10685 			if (ret) {
10686 				btrfs_put_block_group(cache);
10687 				break;
10688 			}
10689 		}
10690 
10691 		cache = next_block_group(fs_info->tree_root, cache);
10692 	}
10693 
10694 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10695 	devices = &root->fs_info->fs_devices->alloc_list;
10696 	list_for_each_entry(device, devices, dev_alloc_list) {
10697 		ret = btrfs_trim_free_extents(device, range->minlen,
10698 					      &group_trimmed);
10699 		if (ret)
10700 			break;
10701 
10702 		trimmed += group_trimmed;
10703 	}
10704 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10705 
10706 	range->len = trimmed;
10707 	return ret;
10708 }
10709 
10710 /*
10711  * btrfs_{start,end}_write_no_snapshoting() are similar to
10712  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10713  * data into the page cache through nocow before the subvolume is snapshoted,
10714  * but flush the data into disk after the snapshot creation, or to prevent
10715  * operations while snapshoting is ongoing and that cause the snapshot to be
10716  * inconsistent (writes followed by expanding truncates for example).
10717  */
10718 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10719 {
10720 	percpu_counter_dec(&root->subv_writers->counter);
10721 	/*
10722 	 * Make sure counter is updated before we wake up waiters.
10723 	 */
10724 	smp_mb();
10725 	if (waitqueue_active(&root->subv_writers->wait))
10726 		wake_up(&root->subv_writers->wait);
10727 }
10728 
10729 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10730 {
10731 	if (atomic_read(&root->will_be_snapshoted))
10732 		return 0;
10733 
10734 	percpu_counter_inc(&root->subv_writers->counter);
10735 	/*
10736 	 * Make sure counter is updated before we check for snapshot creation.
10737 	 */
10738 	smp_mb();
10739 	if (atomic_read(&root->will_be_snapshoted)) {
10740 		btrfs_end_write_no_snapshoting(root);
10741 		return 0;
10742 	}
10743 	return 1;
10744 }
10745