1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 int ret; 91 struct btrfs_key key; 92 struct btrfs_path *path; 93 94 path = btrfs_alloc_path(); 95 if (!path) 96 return -ENOMEM; 97 98 key.objectid = start; 99 key.offset = len; 100 key.type = BTRFS_EXTENT_ITEM_KEY; 101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 102 btrfs_free_path(path); 103 return ret; 104 } 105 106 /* 107 * helper function to lookup reference count and flags of a tree block. 108 * 109 * the head node for delayed ref is used to store the sum of all the 110 * reference count modifications queued up in the rbtree. the head 111 * node may also store the extent flags to set. This way you can check 112 * to see what the reference count and extent flags would be if all of 113 * the delayed refs are not processed. 114 */ 115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 116 struct btrfs_fs_info *fs_info, u64 bytenr, 117 u64 offset, int metadata, u64 *refs, u64 *flags) 118 { 119 struct btrfs_delayed_ref_head *head; 120 struct btrfs_delayed_ref_root *delayed_refs; 121 struct btrfs_path *path; 122 struct btrfs_extent_item *ei; 123 struct extent_buffer *leaf; 124 struct btrfs_key key; 125 u32 item_size; 126 u64 num_refs; 127 u64 extent_flags; 128 int ret; 129 130 /* 131 * If we don't have skinny metadata, don't bother doing anything 132 * different 133 */ 134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 135 offset = fs_info->nodesize; 136 metadata = 0; 137 } 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 if (!trans) { 144 path->skip_locking = 1; 145 path->search_commit_root = 1; 146 } 147 148 search_again: 149 key.objectid = bytenr; 150 key.offset = offset; 151 if (metadata) 152 key.type = BTRFS_METADATA_ITEM_KEY; 153 else 154 key.type = BTRFS_EXTENT_ITEM_KEY; 155 156 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 157 if (ret < 0) 158 goto out_free; 159 160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 161 if (path->slots[0]) { 162 path->slots[0]--; 163 btrfs_item_key_to_cpu(path->nodes[0], &key, 164 path->slots[0]); 165 if (key.objectid == bytenr && 166 key.type == BTRFS_EXTENT_ITEM_KEY && 167 key.offset == fs_info->nodesize) 168 ret = 0; 169 } 170 } 171 172 if (ret == 0) { 173 leaf = path->nodes[0]; 174 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 175 if (item_size >= sizeof(*ei)) { 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_extent_item); 178 num_refs = btrfs_extent_refs(leaf, ei); 179 extent_flags = btrfs_extent_flags(leaf, ei); 180 } else { 181 ret = -EINVAL; 182 btrfs_print_v0_err(fs_info); 183 if (trans) 184 btrfs_abort_transaction(trans, ret); 185 else 186 btrfs_handle_fs_error(fs_info, ret, NULL); 187 188 goto out_free; 189 } 190 191 BUG_ON(num_refs == 0); 192 } else { 193 num_refs = 0; 194 extent_flags = 0; 195 ret = 0; 196 } 197 198 if (!trans) 199 goto out; 200 201 delayed_refs = &trans->transaction->delayed_refs; 202 spin_lock(&delayed_refs->lock); 203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 204 if (head) { 205 if (!mutex_trylock(&head->mutex)) { 206 refcount_inc(&head->refs); 207 spin_unlock(&delayed_refs->lock); 208 209 btrfs_release_path(path); 210 211 /* 212 * Mutex was contended, block until it's released and try 213 * again 214 */ 215 mutex_lock(&head->mutex); 216 mutex_unlock(&head->mutex); 217 btrfs_put_delayed_ref_head(head); 218 goto search_again; 219 } 220 spin_lock(&head->lock); 221 if (head->extent_op && head->extent_op->update_flags) 222 extent_flags |= head->extent_op->flags_to_set; 223 else 224 BUG_ON(num_refs == 0); 225 226 num_refs += head->ref_mod; 227 spin_unlock(&head->lock); 228 mutex_unlock(&head->mutex); 229 } 230 spin_unlock(&delayed_refs->lock); 231 out: 232 WARN_ON(num_refs == 0); 233 if (refs) 234 *refs = num_refs; 235 if (flags) 236 *flags = extent_flags; 237 out_free: 238 btrfs_free_path(path); 239 return ret; 240 } 241 242 /* 243 * Back reference rules. Back refs have three main goals: 244 * 245 * 1) differentiate between all holders of references to an extent so that 246 * when a reference is dropped we can make sure it was a valid reference 247 * before freeing the extent. 248 * 249 * 2) Provide enough information to quickly find the holders of an extent 250 * if we notice a given block is corrupted or bad. 251 * 252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 253 * maintenance. This is actually the same as #2, but with a slightly 254 * different use case. 255 * 256 * There are two kinds of back refs. The implicit back refs is optimized 257 * for pointers in non-shared tree blocks. For a given pointer in a block, 258 * back refs of this kind provide information about the block's owner tree 259 * and the pointer's key. These information allow us to find the block by 260 * b-tree searching. The full back refs is for pointers in tree blocks not 261 * referenced by their owner trees. The location of tree block is recorded 262 * in the back refs. Actually the full back refs is generic, and can be 263 * used in all cases the implicit back refs is used. The major shortcoming 264 * of the full back refs is its overhead. Every time a tree block gets 265 * COWed, we have to update back refs entry for all pointers in it. 266 * 267 * For a newly allocated tree block, we use implicit back refs for 268 * pointers in it. This means most tree related operations only involve 269 * implicit back refs. For a tree block created in old transaction, the 270 * only way to drop a reference to it is COW it. So we can detect the 271 * event that tree block loses its owner tree's reference and do the 272 * back refs conversion. 273 * 274 * When a tree block is COWed through a tree, there are four cases: 275 * 276 * The reference count of the block is one and the tree is the block's 277 * owner tree. Nothing to do in this case. 278 * 279 * The reference count of the block is one and the tree is not the 280 * block's owner tree. In this case, full back refs is used for pointers 281 * in the block. Remove these full back refs, add implicit back refs for 282 * every pointers in the new block. 283 * 284 * The reference count of the block is greater than one and the tree is 285 * the block's owner tree. In this case, implicit back refs is used for 286 * pointers in the block. Add full back refs for every pointers in the 287 * block, increase lower level extents' reference counts. The original 288 * implicit back refs are entailed to the new block. 289 * 290 * The reference count of the block is greater than one and the tree is 291 * not the block's owner tree. Add implicit back refs for every pointer in 292 * the new block, increase lower level extents' reference count. 293 * 294 * Back Reference Key composing: 295 * 296 * The key objectid corresponds to the first byte in the extent, 297 * The key type is used to differentiate between types of back refs. 298 * There are different meanings of the key offset for different types 299 * of back refs. 300 * 301 * File extents can be referenced by: 302 * 303 * - multiple snapshots, subvolumes, or different generations in one subvol 304 * - different files inside a single subvolume 305 * - different offsets inside a file (bookend extents in file.c) 306 * 307 * The extent ref structure for the implicit back refs has fields for: 308 * 309 * - Objectid of the subvolume root 310 * - objectid of the file holding the reference 311 * - original offset in the file 312 * - how many bookend extents 313 * 314 * The key offset for the implicit back refs is hash of the first 315 * three fields. 316 * 317 * The extent ref structure for the full back refs has field for: 318 * 319 * - number of pointers in the tree leaf 320 * 321 * The key offset for the implicit back refs is the first byte of 322 * the tree leaf 323 * 324 * When a file extent is allocated, The implicit back refs is used. 325 * the fields are filled in: 326 * 327 * (root_key.objectid, inode objectid, offset in file, 1) 328 * 329 * When a file extent is removed file truncation, we find the 330 * corresponding implicit back refs and check the following fields: 331 * 332 * (btrfs_header_owner(leaf), inode objectid, offset in file) 333 * 334 * Btree extents can be referenced by: 335 * 336 * - Different subvolumes 337 * 338 * Both the implicit back refs and the full back refs for tree blocks 339 * only consist of key. The key offset for the implicit back refs is 340 * objectid of block's owner tree. The key offset for the full back refs 341 * is the first byte of parent block. 342 * 343 * When implicit back refs is used, information about the lowest key and 344 * level of the tree block are required. These information are stored in 345 * tree block info structure. 346 */ 347 348 /* 349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 352 */ 353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 354 struct btrfs_extent_inline_ref *iref, 355 enum btrfs_inline_ref_type is_data) 356 { 357 int type = btrfs_extent_inline_ref_type(eb, iref); 358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 359 360 if (type == BTRFS_TREE_BLOCK_REF_KEY || 361 type == BTRFS_SHARED_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_DATA_REF_KEY || 363 type == BTRFS_EXTENT_DATA_REF_KEY) { 364 if (is_data == BTRFS_REF_TYPE_BLOCK) { 365 if (type == BTRFS_TREE_BLOCK_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 368 ASSERT(eb->fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(eb->fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 btrfs_print_leaf((struct extent_buffer *)eb); 397 btrfs_err(eb->fs_info, 398 "eb %llu iref 0x%lx invalid extent inline ref type %d", 399 eb->start, (unsigned long)iref, type); 400 WARN_ON(1); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = trans->fs_info->extent_root; 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = trans->fs_info->extent_root; 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_path *path, 597 int refs_to_drop, int *last_ref) 598 { 599 struct btrfs_key key; 600 struct btrfs_extent_data_ref *ref1 = NULL; 601 struct btrfs_shared_data_ref *ref2 = NULL; 602 struct extent_buffer *leaf; 603 u32 num_refs = 0; 604 int ret = 0; 605 606 leaf = path->nodes[0]; 607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 608 609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 610 ref1 = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 614 ref2 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_shared_data_ref); 616 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 618 btrfs_print_v0_err(trans->fs_info); 619 btrfs_abort_transaction(trans, -EINVAL); 620 return -EINVAL; 621 } else { 622 BUG(); 623 } 624 625 BUG_ON(num_refs < refs_to_drop); 626 num_refs -= refs_to_drop; 627 628 if (num_refs == 0) { 629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 630 *last_ref = 1; 631 } else { 632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 636 btrfs_mark_buffer_dirty(leaf); 637 } 638 return ret; 639 } 640 641 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 642 struct btrfs_extent_inline_ref *iref) 643 { 644 struct btrfs_key key; 645 struct extent_buffer *leaf; 646 struct btrfs_extent_data_ref *ref1; 647 struct btrfs_shared_data_ref *ref2; 648 u32 num_refs = 0; 649 int type; 650 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 653 654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 655 if (iref) { 656 /* 657 * If type is invalid, we should have bailed out earlier than 658 * this call. 659 */ 660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 661 ASSERT(type != BTRFS_REF_TYPE_INVALID); 662 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 664 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 665 } else { 666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 667 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 668 } 669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 670 ref1 = btrfs_item_ptr(leaf, path->slots[0], 671 struct btrfs_extent_data_ref); 672 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 674 ref2 = btrfs_item_ptr(leaf, path->slots[0], 675 struct btrfs_shared_data_ref); 676 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 677 } else { 678 WARN_ON(1); 679 } 680 return num_refs; 681 } 682 683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 684 struct btrfs_path *path, 685 u64 bytenr, u64 parent, 686 u64 root_objectid) 687 { 688 struct btrfs_root *root = trans->fs_info->extent_root; 689 struct btrfs_key key; 690 int ret; 691 692 key.objectid = bytenr; 693 if (parent) { 694 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 695 key.offset = parent; 696 } else { 697 key.type = BTRFS_TREE_BLOCK_REF_KEY; 698 key.offset = root_objectid; 699 } 700 701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 702 if (ret > 0) 703 ret = -ENOENT; 704 return ret; 705 } 706 707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 708 struct btrfs_path *path, 709 u64 bytenr, u64 parent, 710 u64 root_objectid) 711 { 712 struct btrfs_key key; 713 int ret; 714 715 key.objectid = bytenr; 716 if (parent) { 717 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 718 key.offset = parent; 719 } else { 720 key.type = BTRFS_TREE_BLOCK_REF_KEY; 721 key.offset = root_objectid; 722 } 723 724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 725 path, &key, 0); 726 btrfs_release_path(path); 727 return ret; 728 } 729 730 static inline int extent_ref_type(u64 parent, u64 owner) 731 { 732 int type; 733 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 734 if (parent > 0) 735 type = BTRFS_SHARED_BLOCK_REF_KEY; 736 else 737 type = BTRFS_TREE_BLOCK_REF_KEY; 738 } else { 739 if (parent > 0) 740 type = BTRFS_SHARED_DATA_REF_KEY; 741 else 742 type = BTRFS_EXTENT_DATA_REF_KEY; 743 } 744 return type; 745 } 746 747 static int find_next_key(struct btrfs_path *path, int level, 748 struct btrfs_key *key) 749 750 { 751 for (; level < BTRFS_MAX_LEVEL; level++) { 752 if (!path->nodes[level]) 753 break; 754 if (path->slots[level] + 1 >= 755 btrfs_header_nritems(path->nodes[level])) 756 continue; 757 if (level == 0) 758 btrfs_item_key_to_cpu(path->nodes[level], key, 759 path->slots[level] + 1); 760 else 761 btrfs_node_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 return 0; 764 } 765 return 1; 766 } 767 768 /* 769 * look for inline back ref. if back ref is found, *ref_ret is set 770 * to the address of inline back ref, and 0 is returned. 771 * 772 * if back ref isn't found, *ref_ret is set to the address where it 773 * should be inserted, and -ENOENT is returned. 774 * 775 * if insert is true and there are too many inline back refs, the path 776 * points to the extent item, and -EAGAIN is returned. 777 * 778 * NOTE: inline back refs are ordered in the same way that back ref 779 * items in the tree are ordered. 780 */ 781 static noinline_for_stack 782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 783 struct btrfs_path *path, 784 struct btrfs_extent_inline_ref **ref_ret, 785 u64 bytenr, u64 num_bytes, 786 u64 parent, u64 root_objectid, 787 u64 owner, u64 offset, int insert) 788 { 789 struct btrfs_fs_info *fs_info = trans->fs_info; 790 struct btrfs_root *root = fs_info->extent_root; 791 struct btrfs_key key; 792 struct extent_buffer *leaf; 793 struct btrfs_extent_item *ei; 794 struct btrfs_extent_inline_ref *iref; 795 u64 flags; 796 u64 item_size; 797 unsigned long ptr; 798 unsigned long end; 799 int extra_size; 800 int type; 801 int want; 802 int ret; 803 int err = 0; 804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 805 int needed; 806 807 key.objectid = bytenr; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 key.offset = num_bytes; 810 811 want = extent_ref_type(parent, owner); 812 if (insert) { 813 extra_size = btrfs_extent_inline_ref_size(want); 814 path->search_for_extension = 1; 815 path->keep_locks = 1; 816 } else 817 extra_size = -1; 818 819 /* 820 * Owner is our level, so we can just add one to get the level for the 821 * block we are interested in. 822 */ 823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 824 key.type = BTRFS_METADATA_ITEM_KEY; 825 key.offset = owner; 826 } 827 828 again: 829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 830 if (ret < 0) { 831 err = ret; 832 goto out; 833 } 834 835 /* 836 * We may be a newly converted file system which still has the old fat 837 * extent entries for metadata, so try and see if we have one of those. 838 */ 839 if (ret > 0 && skinny_metadata) { 840 skinny_metadata = false; 841 if (path->slots[0]) { 842 path->slots[0]--; 843 btrfs_item_key_to_cpu(path->nodes[0], &key, 844 path->slots[0]); 845 if (key.objectid == bytenr && 846 key.type == BTRFS_EXTENT_ITEM_KEY && 847 key.offset == num_bytes) 848 ret = 0; 849 } 850 if (ret) { 851 key.objectid = bytenr; 852 key.type = BTRFS_EXTENT_ITEM_KEY; 853 key.offset = num_bytes; 854 btrfs_release_path(path); 855 goto again; 856 } 857 } 858 859 if (ret && !insert) { 860 err = -ENOENT; 861 goto out; 862 } else if (WARN_ON(ret)) { 863 err = -EIO; 864 goto out; 865 } 866 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (unlikely(item_size < sizeof(*ei))) { 870 err = -EINVAL; 871 btrfs_print_v0_err(fs_info); 872 btrfs_abort_transaction(trans, err); 873 goto out; 874 } 875 876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 877 flags = btrfs_extent_flags(leaf, ei); 878 879 ptr = (unsigned long)(ei + 1); 880 end = (unsigned long)ei + item_size; 881 882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 883 ptr += sizeof(struct btrfs_tree_block_info); 884 BUG_ON(ptr > end); 885 } 886 887 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 888 needed = BTRFS_REF_TYPE_DATA; 889 else 890 needed = BTRFS_REF_TYPE_BLOCK; 891 892 err = -ENOENT; 893 while (1) { 894 if (ptr >= end) { 895 WARN_ON(ptr > end); 896 break; 897 } 898 iref = (struct btrfs_extent_inline_ref *)ptr; 899 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 900 if (type == BTRFS_REF_TYPE_INVALID) { 901 err = -EUCLEAN; 902 goto out; 903 } 904 905 if (want < type) 906 break; 907 if (want > type) { 908 ptr += btrfs_extent_inline_ref_size(type); 909 continue; 910 } 911 912 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 913 struct btrfs_extent_data_ref *dref; 914 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 915 if (match_extent_data_ref(leaf, dref, root_objectid, 916 owner, offset)) { 917 err = 0; 918 break; 919 } 920 if (hash_extent_data_ref_item(leaf, dref) < 921 hash_extent_data_ref(root_objectid, owner, offset)) 922 break; 923 } else { 924 u64 ref_offset; 925 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 926 if (parent > 0) { 927 if (parent == ref_offset) { 928 err = 0; 929 break; 930 } 931 if (ref_offset < parent) 932 break; 933 } else { 934 if (root_objectid == ref_offset) { 935 err = 0; 936 break; 937 } 938 if (ref_offset < root_objectid) 939 break; 940 } 941 } 942 ptr += btrfs_extent_inline_ref_size(type); 943 } 944 if (err == -ENOENT && insert) { 945 if (item_size + extra_size >= 946 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 947 err = -EAGAIN; 948 goto out; 949 } 950 /* 951 * To add new inline back ref, we have to make sure 952 * there is no corresponding back ref item. 953 * For simplicity, we just do not add new inline back 954 * ref if there is any kind of item for this block 955 */ 956 if (find_next_key(path, 0, &key) == 0 && 957 key.objectid == bytenr && 958 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 959 err = -EAGAIN; 960 goto out; 961 } 962 } 963 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 964 out: 965 if (insert) { 966 path->keep_locks = 0; 967 path->search_for_extension = 0; 968 btrfs_unlock_up_safe(path, 1); 969 } 970 return err; 971 } 972 973 /* 974 * helper to add new inline back ref 975 */ 976 static noinline_for_stack 977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 978 struct btrfs_path *path, 979 struct btrfs_extent_inline_ref *iref, 980 u64 parent, u64 root_objectid, 981 u64 owner, u64 offset, int refs_to_add, 982 struct btrfs_delayed_extent_op *extent_op) 983 { 984 struct extent_buffer *leaf; 985 struct btrfs_extent_item *ei; 986 unsigned long ptr; 987 unsigned long end; 988 unsigned long item_offset; 989 u64 refs; 990 int size; 991 int type; 992 993 leaf = path->nodes[0]; 994 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 995 item_offset = (unsigned long)iref - (unsigned long)ei; 996 997 type = extent_ref_type(parent, owner); 998 size = btrfs_extent_inline_ref_size(type); 999 1000 btrfs_extend_item(path, size); 1001 1002 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1003 refs = btrfs_extent_refs(leaf, ei); 1004 refs += refs_to_add; 1005 btrfs_set_extent_refs(leaf, ei, refs); 1006 if (extent_op) 1007 __run_delayed_extent_op(extent_op, leaf, ei); 1008 1009 ptr = (unsigned long)ei + item_offset; 1010 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1011 if (ptr < end - size) 1012 memmove_extent_buffer(leaf, ptr + size, ptr, 1013 end - size - ptr); 1014 1015 iref = (struct btrfs_extent_inline_ref *)ptr; 1016 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1017 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1018 struct btrfs_extent_data_ref *dref; 1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1020 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1021 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1022 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1023 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1024 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1025 struct btrfs_shared_data_ref *sref; 1026 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1027 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1028 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1029 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1033 } 1034 btrfs_mark_buffer_dirty(leaf); 1035 } 1036 1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1038 struct btrfs_path *path, 1039 struct btrfs_extent_inline_ref **ref_ret, 1040 u64 bytenr, u64 num_bytes, u64 parent, 1041 u64 root_objectid, u64 owner, u64 offset) 1042 { 1043 int ret; 1044 1045 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1046 num_bytes, parent, root_objectid, 1047 owner, offset, 0); 1048 if (ret != -ENOENT) 1049 return ret; 1050 1051 btrfs_release_path(path); 1052 *ref_ret = NULL; 1053 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1056 root_objectid); 1057 } else { 1058 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1059 root_objectid, owner, offset); 1060 } 1061 return ret; 1062 } 1063 1064 /* 1065 * helper to update/remove inline back ref 1066 */ 1067 static noinline_for_stack 1068 void update_inline_extent_backref(struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op, 1072 int *last_ref) 1073 { 1074 struct extent_buffer *leaf = path->nodes[0]; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1088 refs += refs_to_mod; 1089 btrfs_set_extent_refs(leaf, ei, refs); 1090 if (extent_op) 1091 __run_delayed_extent_op(extent_op, leaf, ei); 1092 1093 /* 1094 * If type is invalid, we should have bailed out after 1095 * lookup_inline_extent_backref(). 1096 */ 1097 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1098 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1099 1100 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1101 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1102 refs = btrfs_extent_data_ref_count(leaf, dref); 1103 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1104 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1105 refs = btrfs_shared_data_ref_count(leaf, sref); 1106 } else { 1107 refs = 1; 1108 BUG_ON(refs_to_mod != -1); 1109 } 1110 1111 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1112 refs += refs_to_mod; 1113 1114 if (refs > 0) { 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1116 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1117 else 1118 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1119 } else { 1120 *last_ref = 1; 1121 size = btrfs_extent_inline_ref_size(type); 1122 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1123 ptr = (unsigned long)iref; 1124 end = (unsigned long)ei + item_size; 1125 if (ptr + size < end) 1126 memmove_extent_buffer(leaf, ptr, ptr + size, 1127 end - ptr - size); 1128 item_size -= size; 1129 btrfs_truncate_item(path, item_size, 1); 1130 } 1131 btrfs_mark_buffer_dirty(leaf); 1132 } 1133 1134 static noinline_for_stack 1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1136 struct btrfs_path *path, 1137 u64 bytenr, u64 num_bytes, u64 parent, 1138 u64 root_objectid, u64 owner, 1139 u64 offset, int refs_to_add, 1140 struct btrfs_delayed_extent_op *extent_op) 1141 { 1142 struct btrfs_extent_inline_ref *iref; 1143 int ret; 1144 1145 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1146 num_bytes, parent, root_objectid, 1147 owner, offset, 1); 1148 if (ret == 0) { 1149 /* 1150 * We're adding refs to a tree block we already own, this 1151 * should not happen at all. 1152 */ 1153 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1154 btrfs_crit(trans->fs_info, 1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1156 bytenr, num_bytes, root_objectid); 1157 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1158 WARN_ON(1); 1159 btrfs_crit(trans->fs_info, 1160 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1161 btrfs_print_leaf(path->nodes[0]); 1162 } 1163 return -EUCLEAN; 1164 } 1165 update_inline_extent_backref(path, iref, refs_to_add, 1166 extent_op, NULL); 1167 } else if (ret == -ENOENT) { 1168 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1169 root_objectid, owner, offset, 1170 refs_to_add, extent_op); 1171 ret = 0; 1172 } 1173 return ret; 1174 } 1175 1176 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1177 struct btrfs_path *path, 1178 struct btrfs_extent_inline_ref *iref, 1179 int refs_to_drop, int is_data, int *last_ref) 1180 { 1181 int ret = 0; 1182 1183 BUG_ON(!is_data && refs_to_drop != 1); 1184 if (iref) { 1185 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1186 last_ref); 1187 } else if (is_data) { 1188 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1189 last_ref); 1190 } else { 1191 *last_ref = 1; 1192 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1193 } 1194 return ret; 1195 } 1196 1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1198 u64 *discarded_bytes) 1199 { 1200 int j, ret = 0; 1201 u64 bytes_left, end; 1202 u64 aligned_start = ALIGN(start, 1 << 9); 1203 1204 if (WARN_ON(start != aligned_start)) { 1205 len -= aligned_start - start; 1206 len = round_down(len, 1 << 9); 1207 start = aligned_start; 1208 } 1209 1210 *discarded_bytes = 0; 1211 1212 if (!len) 1213 return 0; 1214 1215 end = start + len; 1216 bytes_left = len; 1217 1218 /* Skip any superblocks on this device. */ 1219 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1220 u64 sb_start = btrfs_sb_offset(j); 1221 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1222 u64 size = sb_start - start; 1223 1224 if (!in_range(sb_start, start, bytes_left) && 1225 !in_range(sb_end, start, bytes_left) && 1226 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1227 continue; 1228 1229 /* 1230 * Superblock spans beginning of range. Adjust start and 1231 * try again. 1232 */ 1233 if (sb_start <= start) { 1234 start += sb_end - start; 1235 if (start > end) { 1236 bytes_left = 0; 1237 break; 1238 } 1239 bytes_left = end - start; 1240 continue; 1241 } 1242 1243 if (size) { 1244 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1245 GFP_NOFS, 0); 1246 if (!ret) 1247 *discarded_bytes += size; 1248 else if (ret != -EOPNOTSUPP) 1249 return ret; 1250 } 1251 1252 start = sb_end; 1253 if (start > end) { 1254 bytes_left = 0; 1255 break; 1256 } 1257 bytes_left = end - start; 1258 } 1259 1260 if (bytes_left) { 1261 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1262 GFP_NOFS, 0); 1263 if (!ret) 1264 *discarded_bytes += bytes_left; 1265 } 1266 return ret; 1267 } 1268 1269 static int do_discard_extent(struct btrfs_bio_stripe *stripe, u64 *bytes) 1270 { 1271 struct btrfs_device *dev = stripe->dev; 1272 struct btrfs_fs_info *fs_info = dev->fs_info; 1273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1274 u64 phys = stripe->physical; 1275 u64 len = stripe->length; 1276 u64 discarded = 0; 1277 int ret = 0; 1278 1279 /* Zone reset on a zoned filesystem */ 1280 if (btrfs_can_zone_reset(dev, phys, len)) { 1281 u64 src_disc; 1282 1283 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1284 if (ret) 1285 goto out; 1286 1287 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1288 dev != dev_replace->srcdev) 1289 goto out; 1290 1291 src_disc = discarded; 1292 1293 /* Send to replace target as well */ 1294 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1295 &discarded); 1296 discarded += src_disc; 1297 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) { 1298 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1299 } else { 1300 ret = 0; 1301 *bytes = 0; 1302 } 1303 1304 out: 1305 *bytes = discarded; 1306 return ret; 1307 } 1308 1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1310 u64 num_bytes, u64 *actual_bytes) 1311 { 1312 int ret = 0; 1313 u64 discarded_bytes = 0; 1314 u64 end = bytenr + num_bytes; 1315 u64 cur = bytenr; 1316 struct btrfs_bio *bbio = NULL; 1317 1318 1319 /* 1320 * Avoid races with device replace and make sure our bbio has devices 1321 * associated to its stripes that don't go away while we are discarding. 1322 */ 1323 btrfs_bio_counter_inc_blocked(fs_info); 1324 while (cur < end) { 1325 struct btrfs_bio_stripe *stripe; 1326 int i; 1327 1328 num_bytes = end - cur; 1329 /* Tell the block device(s) that the sectors can be discarded */ 1330 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1331 &num_bytes, &bbio, 0); 1332 /* 1333 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1334 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1335 * thus we can't continue anyway. 1336 */ 1337 if (ret < 0) 1338 goto out; 1339 1340 stripe = bbio->stripes; 1341 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1342 u64 bytes; 1343 struct btrfs_device *device = stripe->dev; 1344 1345 if (!device->bdev) { 1346 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1347 continue; 1348 } 1349 1350 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 1351 continue; 1352 1353 ret = do_discard_extent(stripe, &bytes); 1354 if (!ret) { 1355 discarded_bytes += bytes; 1356 } else if (ret != -EOPNOTSUPP) { 1357 /* 1358 * Logic errors or -ENOMEM, or -EIO, but 1359 * unlikely to happen. 1360 * 1361 * And since there are two loops, explicitly 1362 * go to out to avoid confusion. 1363 */ 1364 btrfs_put_bbio(bbio); 1365 goto out; 1366 } 1367 1368 /* 1369 * Just in case we get back EOPNOTSUPP for some reason, 1370 * just ignore the return value so we don't screw up 1371 * people calling discard_extent. 1372 */ 1373 ret = 0; 1374 } 1375 btrfs_put_bbio(bbio); 1376 cur += num_bytes; 1377 } 1378 out: 1379 btrfs_bio_counter_dec(fs_info); 1380 1381 if (actual_bytes) 1382 *actual_bytes = discarded_bytes; 1383 1384 1385 if (ret == -EOPNOTSUPP) 1386 ret = 0; 1387 return ret; 1388 } 1389 1390 /* Can return -ENOMEM */ 1391 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1392 struct btrfs_ref *generic_ref) 1393 { 1394 struct btrfs_fs_info *fs_info = trans->fs_info; 1395 int ret; 1396 1397 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1398 generic_ref->action); 1399 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1400 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1401 1402 if (generic_ref->type == BTRFS_REF_METADATA) 1403 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1404 else 1405 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1406 1407 btrfs_ref_tree_mod(fs_info, generic_ref); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * __btrfs_inc_extent_ref - insert backreference for a given extent 1414 * 1415 * The counterpart is in __btrfs_free_extent(), with examples and more details 1416 * how it works. 1417 * 1418 * @trans: Handle of transaction 1419 * 1420 * @node: The delayed ref node used to get the bytenr/length for 1421 * extent whose references are incremented. 1422 * 1423 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1424 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1425 * bytenr of the parent block. Since new extents are always 1426 * created with indirect references, this will only be the case 1427 * when relocating a shared extent. In that case, root_objectid 1428 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1429 * be 0 1430 * 1431 * @root_objectid: The id of the root where this modification has originated, 1432 * this can be either one of the well-known metadata trees or 1433 * the subvolume id which references this extent. 1434 * 1435 * @owner: For data extents it is the inode number of the owning file. 1436 * For metadata extents this parameter holds the level in the 1437 * tree of the extent. 1438 * 1439 * @offset: For metadata extents the offset is ignored and is currently 1440 * always passed as 0. For data extents it is the fileoffset 1441 * this extent belongs to. 1442 * 1443 * @refs_to_add Number of references to add 1444 * 1445 * @extent_op Pointer to a structure, holding information necessary when 1446 * updating a tree block's flags 1447 * 1448 */ 1449 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1450 struct btrfs_delayed_ref_node *node, 1451 u64 parent, u64 root_objectid, 1452 u64 owner, u64 offset, int refs_to_add, 1453 struct btrfs_delayed_extent_op *extent_op) 1454 { 1455 struct btrfs_path *path; 1456 struct extent_buffer *leaf; 1457 struct btrfs_extent_item *item; 1458 struct btrfs_key key; 1459 u64 bytenr = node->bytenr; 1460 u64 num_bytes = node->num_bytes; 1461 u64 refs; 1462 int ret; 1463 1464 path = btrfs_alloc_path(); 1465 if (!path) 1466 return -ENOMEM; 1467 1468 /* this will setup the path even if it fails to insert the back ref */ 1469 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1470 parent, root_objectid, owner, 1471 offset, refs_to_add, extent_op); 1472 if ((ret < 0 && ret != -EAGAIN) || !ret) 1473 goto out; 1474 1475 /* 1476 * Ok we had -EAGAIN which means we didn't have space to insert and 1477 * inline extent ref, so just update the reference count and add a 1478 * normal backref. 1479 */ 1480 leaf = path->nodes[0]; 1481 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1482 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1483 refs = btrfs_extent_refs(leaf, item); 1484 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1485 if (extent_op) 1486 __run_delayed_extent_op(extent_op, leaf, item); 1487 1488 btrfs_mark_buffer_dirty(leaf); 1489 btrfs_release_path(path); 1490 1491 /* now insert the actual backref */ 1492 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1493 BUG_ON(refs_to_add != 1); 1494 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1495 root_objectid); 1496 } else { 1497 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1498 root_objectid, owner, offset, 1499 refs_to_add); 1500 } 1501 if (ret) 1502 btrfs_abort_transaction(trans, ret); 1503 out: 1504 btrfs_free_path(path); 1505 return ret; 1506 } 1507 1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1509 struct btrfs_delayed_ref_node *node, 1510 struct btrfs_delayed_extent_op *extent_op, 1511 int insert_reserved) 1512 { 1513 int ret = 0; 1514 struct btrfs_delayed_data_ref *ref; 1515 struct btrfs_key ins; 1516 u64 parent = 0; 1517 u64 ref_root = 0; 1518 u64 flags = 0; 1519 1520 ins.objectid = node->bytenr; 1521 ins.offset = node->num_bytes; 1522 ins.type = BTRFS_EXTENT_ITEM_KEY; 1523 1524 ref = btrfs_delayed_node_to_data_ref(node); 1525 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1526 1527 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1528 parent = ref->parent; 1529 ref_root = ref->root; 1530 1531 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1532 if (extent_op) 1533 flags |= extent_op->flags_to_set; 1534 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1535 flags, ref->objectid, 1536 ref->offset, &ins, 1537 node->ref_mod); 1538 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1539 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1540 ref->objectid, ref->offset, 1541 node->ref_mod, extent_op); 1542 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1543 ret = __btrfs_free_extent(trans, node, parent, 1544 ref_root, ref->objectid, 1545 ref->offset, node->ref_mod, 1546 extent_op); 1547 } else { 1548 BUG(); 1549 } 1550 return ret; 1551 } 1552 1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1554 struct extent_buffer *leaf, 1555 struct btrfs_extent_item *ei) 1556 { 1557 u64 flags = btrfs_extent_flags(leaf, ei); 1558 if (extent_op->update_flags) { 1559 flags |= extent_op->flags_to_set; 1560 btrfs_set_extent_flags(leaf, ei, flags); 1561 } 1562 1563 if (extent_op->update_key) { 1564 struct btrfs_tree_block_info *bi; 1565 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1566 bi = (struct btrfs_tree_block_info *)(ei + 1); 1567 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1568 } 1569 } 1570 1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1572 struct btrfs_delayed_ref_head *head, 1573 struct btrfs_delayed_extent_op *extent_op) 1574 { 1575 struct btrfs_fs_info *fs_info = trans->fs_info; 1576 struct btrfs_key key; 1577 struct btrfs_path *path; 1578 struct btrfs_extent_item *ei; 1579 struct extent_buffer *leaf; 1580 u32 item_size; 1581 int ret; 1582 int err = 0; 1583 int metadata = !extent_op->is_data; 1584 1585 if (TRANS_ABORTED(trans)) 1586 return 0; 1587 1588 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1589 metadata = 0; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 key.objectid = head->bytenr; 1596 1597 if (metadata) { 1598 key.type = BTRFS_METADATA_ITEM_KEY; 1599 key.offset = extent_op->level; 1600 } else { 1601 key.type = BTRFS_EXTENT_ITEM_KEY; 1602 key.offset = head->num_bytes; 1603 } 1604 1605 again: 1606 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1607 if (ret < 0) { 1608 err = ret; 1609 goto out; 1610 } 1611 if (ret > 0) { 1612 if (metadata) { 1613 if (path->slots[0] > 0) { 1614 path->slots[0]--; 1615 btrfs_item_key_to_cpu(path->nodes[0], &key, 1616 path->slots[0]); 1617 if (key.objectid == head->bytenr && 1618 key.type == BTRFS_EXTENT_ITEM_KEY && 1619 key.offset == head->num_bytes) 1620 ret = 0; 1621 } 1622 if (ret > 0) { 1623 btrfs_release_path(path); 1624 metadata = 0; 1625 1626 key.objectid = head->bytenr; 1627 key.offset = head->num_bytes; 1628 key.type = BTRFS_EXTENT_ITEM_KEY; 1629 goto again; 1630 } 1631 } else { 1632 err = -EIO; 1633 goto out; 1634 } 1635 } 1636 1637 leaf = path->nodes[0]; 1638 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1639 1640 if (unlikely(item_size < sizeof(*ei))) { 1641 err = -EINVAL; 1642 btrfs_print_v0_err(fs_info); 1643 btrfs_abort_transaction(trans, err); 1644 goto out; 1645 } 1646 1647 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1648 __run_delayed_extent_op(extent_op, leaf, ei); 1649 1650 btrfs_mark_buffer_dirty(leaf); 1651 out: 1652 btrfs_free_path(path); 1653 return err; 1654 } 1655 1656 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1657 struct btrfs_delayed_ref_node *node, 1658 struct btrfs_delayed_extent_op *extent_op, 1659 int insert_reserved) 1660 { 1661 int ret = 0; 1662 struct btrfs_delayed_tree_ref *ref; 1663 u64 parent = 0; 1664 u64 ref_root = 0; 1665 1666 ref = btrfs_delayed_node_to_tree_ref(node); 1667 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1668 1669 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1670 parent = ref->parent; 1671 ref_root = ref->root; 1672 1673 if (node->ref_mod != 1) { 1674 btrfs_err(trans->fs_info, 1675 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1676 node->bytenr, node->ref_mod, node->action, ref_root, 1677 parent); 1678 return -EIO; 1679 } 1680 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1681 BUG_ON(!extent_op || !extent_op->update_flags); 1682 ret = alloc_reserved_tree_block(trans, node, extent_op); 1683 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1684 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1685 ref->level, 0, 1, extent_op); 1686 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1687 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1688 ref->level, 0, 1, extent_op); 1689 } else { 1690 BUG(); 1691 } 1692 return ret; 1693 } 1694 1695 /* helper function to actually process a single delayed ref entry */ 1696 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1697 struct btrfs_delayed_ref_node *node, 1698 struct btrfs_delayed_extent_op *extent_op, 1699 int insert_reserved) 1700 { 1701 int ret = 0; 1702 1703 if (TRANS_ABORTED(trans)) { 1704 if (insert_reserved) 1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1706 return 0; 1707 } 1708 1709 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1710 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1711 ret = run_delayed_tree_ref(trans, node, extent_op, 1712 insert_reserved); 1713 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1714 node->type == BTRFS_SHARED_DATA_REF_KEY) 1715 ret = run_delayed_data_ref(trans, node, extent_op, 1716 insert_reserved); 1717 else 1718 BUG(); 1719 if (ret && insert_reserved) 1720 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1721 return ret; 1722 } 1723 1724 static inline struct btrfs_delayed_ref_node * 1725 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1726 { 1727 struct btrfs_delayed_ref_node *ref; 1728 1729 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1730 return NULL; 1731 1732 /* 1733 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1734 * This is to prevent a ref count from going down to zero, which deletes 1735 * the extent item from the extent tree, when there still are references 1736 * to add, which would fail because they would not find the extent item. 1737 */ 1738 if (!list_empty(&head->ref_add_list)) 1739 return list_first_entry(&head->ref_add_list, 1740 struct btrfs_delayed_ref_node, add_list); 1741 1742 ref = rb_entry(rb_first_cached(&head->ref_tree), 1743 struct btrfs_delayed_ref_node, ref_node); 1744 ASSERT(list_empty(&ref->add_list)); 1745 return ref; 1746 } 1747 1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1749 struct btrfs_delayed_ref_head *head) 1750 { 1751 spin_lock(&delayed_refs->lock); 1752 head->processing = 0; 1753 delayed_refs->num_heads_ready++; 1754 spin_unlock(&delayed_refs->lock); 1755 btrfs_delayed_ref_unlock(head); 1756 } 1757 1758 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1759 struct btrfs_delayed_ref_head *head) 1760 { 1761 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1762 1763 if (!extent_op) 1764 return NULL; 1765 1766 if (head->must_insert_reserved) { 1767 head->extent_op = NULL; 1768 btrfs_free_delayed_extent_op(extent_op); 1769 return NULL; 1770 } 1771 return extent_op; 1772 } 1773 1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1775 struct btrfs_delayed_ref_head *head) 1776 { 1777 struct btrfs_delayed_extent_op *extent_op; 1778 int ret; 1779 1780 extent_op = cleanup_extent_op(head); 1781 if (!extent_op) 1782 return 0; 1783 head->extent_op = NULL; 1784 spin_unlock(&head->lock); 1785 ret = run_delayed_extent_op(trans, head, extent_op); 1786 btrfs_free_delayed_extent_op(extent_op); 1787 return ret ? ret : 1; 1788 } 1789 1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1791 struct btrfs_delayed_ref_root *delayed_refs, 1792 struct btrfs_delayed_ref_head *head) 1793 { 1794 int nr_items = 1; /* Dropping this ref head update. */ 1795 1796 /* 1797 * We had csum deletions accounted for in our delayed refs rsv, we need 1798 * to drop the csum leaves for this update from our delayed_refs_rsv. 1799 */ 1800 if (head->total_ref_mod < 0 && head->is_data) { 1801 spin_lock(&delayed_refs->lock); 1802 delayed_refs->pending_csums -= head->num_bytes; 1803 spin_unlock(&delayed_refs->lock); 1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1805 } 1806 1807 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1808 } 1809 1810 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1811 struct btrfs_delayed_ref_head *head) 1812 { 1813 1814 struct btrfs_fs_info *fs_info = trans->fs_info; 1815 struct btrfs_delayed_ref_root *delayed_refs; 1816 int ret; 1817 1818 delayed_refs = &trans->transaction->delayed_refs; 1819 1820 ret = run_and_cleanup_extent_op(trans, head); 1821 if (ret < 0) { 1822 unselect_delayed_ref_head(delayed_refs, head); 1823 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1824 return ret; 1825 } else if (ret) { 1826 return ret; 1827 } 1828 1829 /* 1830 * Need to drop our head ref lock and re-acquire the delayed ref lock 1831 * and then re-check to make sure nobody got added. 1832 */ 1833 spin_unlock(&head->lock); 1834 spin_lock(&delayed_refs->lock); 1835 spin_lock(&head->lock); 1836 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1837 spin_unlock(&head->lock); 1838 spin_unlock(&delayed_refs->lock); 1839 return 1; 1840 } 1841 btrfs_delete_ref_head(delayed_refs, head); 1842 spin_unlock(&head->lock); 1843 spin_unlock(&delayed_refs->lock); 1844 1845 if (head->must_insert_reserved) { 1846 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1847 if (head->is_data) { 1848 ret = btrfs_del_csums(trans, fs_info->csum_root, 1849 head->bytenr, head->num_bytes); 1850 } 1851 } 1852 1853 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1854 1855 trace_run_delayed_ref_head(fs_info, head, 0); 1856 btrfs_delayed_ref_unlock(head); 1857 btrfs_put_delayed_ref_head(head); 1858 return ret; 1859 } 1860 1861 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1862 struct btrfs_trans_handle *trans) 1863 { 1864 struct btrfs_delayed_ref_root *delayed_refs = 1865 &trans->transaction->delayed_refs; 1866 struct btrfs_delayed_ref_head *head = NULL; 1867 int ret; 1868 1869 spin_lock(&delayed_refs->lock); 1870 head = btrfs_select_ref_head(delayed_refs); 1871 if (!head) { 1872 spin_unlock(&delayed_refs->lock); 1873 return head; 1874 } 1875 1876 /* 1877 * Grab the lock that says we are going to process all the refs for 1878 * this head 1879 */ 1880 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1881 spin_unlock(&delayed_refs->lock); 1882 1883 /* 1884 * We may have dropped the spin lock to get the head mutex lock, and 1885 * that might have given someone else time to free the head. If that's 1886 * true, it has been removed from our list and we can move on. 1887 */ 1888 if (ret == -EAGAIN) 1889 head = ERR_PTR(-EAGAIN); 1890 1891 return head; 1892 } 1893 1894 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1895 struct btrfs_delayed_ref_head *locked_ref, 1896 unsigned long *run_refs) 1897 { 1898 struct btrfs_fs_info *fs_info = trans->fs_info; 1899 struct btrfs_delayed_ref_root *delayed_refs; 1900 struct btrfs_delayed_extent_op *extent_op; 1901 struct btrfs_delayed_ref_node *ref; 1902 int must_insert_reserved = 0; 1903 int ret; 1904 1905 delayed_refs = &trans->transaction->delayed_refs; 1906 1907 lockdep_assert_held(&locked_ref->mutex); 1908 lockdep_assert_held(&locked_ref->lock); 1909 1910 while ((ref = select_delayed_ref(locked_ref))) { 1911 if (ref->seq && 1912 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1913 spin_unlock(&locked_ref->lock); 1914 unselect_delayed_ref_head(delayed_refs, locked_ref); 1915 return -EAGAIN; 1916 } 1917 1918 (*run_refs)++; 1919 ref->in_tree = 0; 1920 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1921 RB_CLEAR_NODE(&ref->ref_node); 1922 if (!list_empty(&ref->add_list)) 1923 list_del(&ref->add_list); 1924 /* 1925 * When we play the delayed ref, also correct the ref_mod on 1926 * head 1927 */ 1928 switch (ref->action) { 1929 case BTRFS_ADD_DELAYED_REF: 1930 case BTRFS_ADD_DELAYED_EXTENT: 1931 locked_ref->ref_mod -= ref->ref_mod; 1932 break; 1933 case BTRFS_DROP_DELAYED_REF: 1934 locked_ref->ref_mod += ref->ref_mod; 1935 break; 1936 default: 1937 WARN_ON(1); 1938 } 1939 atomic_dec(&delayed_refs->num_entries); 1940 1941 /* 1942 * Record the must_insert_reserved flag before we drop the 1943 * spin lock. 1944 */ 1945 must_insert_reserved = locked_ref->must_insert_reserved; 1946 locked_ref->must_insert_reserved = 0; 1947 1948 extent_op = locked_ref->extent_op; 1949 locked_ref->extent_op = NULL; 1950 spin_unlock(&locked_ref->lock); 1951 1952 ret = run_one_delayed_ref(trans, ref, extent_op, 1953 must_insert_reserved); 1954 1955 btrfs_free_delayed_extent_op(extent_op); 1956 if (ret) { 1957 unselect_delayed_ref_head(delayed_refs, locked_ref); 1958 btrfs_put_delayed_ref(ref); 1959 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1960 ret); 1961 return ret; 1962 } 1963 1964 btrfs_put_delayed_ref(ref); 1965 cond_resched(); 1966 1967 spin_lock(&locked_ref->lock); 1968 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1969 } 1970 1971 return 0; 1972 } 1973 1974 /* 1975 * Returns 0 on success or if called with an already aborted transaction. 1976 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1977 */ 1978 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1979 unsigned long nr) 1980 { 1981 struct btrfs_fs_info *fs_info = trans->fs_info; 1982 struct btrfs_delayed_ref_root *delayed_refs; 1983 struct btrfs_delayed_ref_head *locked_ref = NULL; 1984 ktime_t start = ktime_get(); 1985 int ret; 1986 unsigned long count = 0; 1987 unsigned long actual_count = 0; 1988 1989 delayed_refs = &trans->transaction->delayed_refs; 1990 do { 1991 if (!locked_ref) { 1992 locked_ref = btrfs_obtain_ref_head(trans); 1993 if (IS_ERR_OR_NULL(locked_ref)) { 1994 if (PTR_ERR(locked_ref) == -EAGAIN) { 1995 continue; 1996 } else { 1997 break; 1998 } 1999 } 2000 count++; 2001 } 2002 /* 2003 * We need to try and merge add/drops of the same ref since we 2004 * can run into issues with relocate dropping the implicit ref 2005 * and then it being added back again before the drop can 2006 * finish. If we merged anything we need to re-loop so we can 2007 * get a good ref. 2008 * Or we can get node references of the same type that weren't 2009 * merged when created due to bumps in the tree mod seq, and 2010 * we need to merge them to prevent adding an inline extent 2011 * backref before dropping it (triggering a BUG_ON at 2012 * insert_inline_extent_backref()). 2013 */ 2014 spin_lock(&locked_ref->lock); 2015 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2016 2017 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2018 &actual_count); 2019 if (ret < 0 && ret != -EAGAIN) { 2020 /* 2021 * Error, btrfs_run_delayed_refs_for_head already 2022 * unlocked everything so just bail out 2023 */ 2024 return ret; 2025 } else if (!ret) { 2026 /* 2027 * Success, perform the usual cleanup of a processed 2028 * head 2029 */ 2030 ret = cleanup_ref_head(trans, locked_ref); 2031 if (ret > 0 ) { 2032 /* We dropped our lock, we need to loop. */ 2033 ret = 0; 2034 continue; 2035 } else if (ret) { 2036 return ret; 2037 } 2038 } 2039 2040 /* 2041 * Either success case or btrfs_run_delayed_refs_for_head 2042 * returned -EAGAIN, meaning we need to select another head 2043 */ 2044 2045 locked_ref = NULL; 2046 cond_resched(); 2047 } while ((nr != -1 && count < nr) || locked_ref); 2048 2049 /* 2050 * We don't want to include ref heads since we can have empty ref heads 2051 * and those will drastically skew our runtime down since we just do 2052 * accounting, no actual extent tree updates. 2053 */ 2054 if (actual_count > 0) { 2055 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2056 u64 avg; 2057 2058 /* 2059 * We weigh the current average higher than our current runtime 2060 * to avoid large swings in the average. 2061 */ 2062 spin_lock(&delayed_refs->lock); 2063 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2064 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2065 spin_unlock(&delayed_refs->lock); 2066 } 2067 return 0; 2068 } 2069 2070 #ifdef SCRAMBLE_DELAYED_REFS 2071 /* 2072 * Normally delayed refs get processed in ascending bytenr order. This 2073 * correlates in most cases to the order added. To expose dependencies on this 2074 * order, we start to process the tree in the middle instead of the beginning 2075 */ 2076 static u64 find_middle(struct rb_root *root) 2077 { 2078 struct rb_node *n = root->rb_node; 2079 struct btrfs_delayed_ref_node *entry; 2080 int alt = 1; 2081 u64 middle; 2082 u64 first = 0, last = 0; 2083 2084 n = rb_first(root); 2085 if (n) { 2086 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2087 first = entry->bytenr; 2088 } 2089 n = rb_last(root); 2090 if (n) { 2091 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2092 last = entry->bytenr; 2093 } 2094 n = root->rb_node; 2095 2096 while (n) { 2097 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2098 WARN_ON(!entry->in_tree); 2099 2100 middle = entry->bytenr; 2101 2102 if (alt) 2103 n = n->rb_left; 2104 else 2105 n = n->rb_right; 2106 2107 alt = 1 - alt; 2108 } 2109 return middle; 2110 } 2111 #endif 2112 2113 /* 2114 * this starts processing the delayed reference count updates and 2115 * extent insertions we have queued up so far. count can be 2116 * 0, which means to process everything in the tree at the start 2117 * of the run (but not newly added entries), or it can be some target 2118 * number you'd like to process. 2119 * 2120 * Returns 0 on success or if called with an aborted transaction 2121 * Returns <0 on error and aborts the transaction 2122 */ 2123 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2124 unsigned long count) 2125 { 2126 struct btrfs_fs_info *fs_info = trans->fs_info; 2127 struct rb_node *node; 2128 struct btrfs_delayed_ref_root *delayed_refs; 2129 struct btrfs_delayed_ref_head *head; 2130 int ret; 2131 int run_all = count == (unsigned long)-1; 2132 2133 /* We'll clean this up in btrfs_cleanup_transaction */ 2134 if (TRANS_ABORTED(trans)) 2135 return 0; 2136 2137 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2138 return 0; 2139 2140 delayed_refs = &trans->transaction->delayed_refs; 2141 if (count == 0) 2142 count = delayed_refs->num_heads_ready; 2143 2144 again: 2145 #ifdef SCRAMBLE_DELAYED_REFS 2146 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2147 #endif 2148 ret = __btrfs_run_delayed_refs(trans, count); 2149 if (ret < 0) { 2150 btrfs_abort_transaction(trans, ret); 2151 return ret; 2152 } 2153 2154 if (run_all) { 2155 btrfs_create_pending_block_groups(trans); 2156 2157 spin_lock(&delayed_refs->lock); 2158 node = rb_first_cached(&delayed_refs->href_root); 2159 if (!node) { 2160 spin_unlock(&delayed_refs->lock); 2161 goto out; 2162 } 2163 head = rb_entry(node, struct btrfs_delayed_ref_head, 2164 href_node); 2165 refcount_inc(&head->refs); 2166 spin_unlock(&delayed_refs->lock); 2167 2168 /* Mutex was contended, block until it's released and retry. */ 2169 mutex_lock(&head->mutex); 2170 mutex_unlock(&head->mutex); 2171 2172 btrfs_put_delayed_ref_head(head); 2173 cond_resched(); 2174 goto again; 2175 } 2176 out: 2177 return 0; 2178 } 2179 2180 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2181 struct extent_buffer *eb, u64 flags, 2182 int level, int is_data) 2183 { 2184 struct btrfs_delayed_extent_op *extent_op; 2185 int ret; 2186 2187 extent_op = btrfs_alloc_delayed_extent_op(); 2188 if (!extent_op) 2189 return -ENOMEM; 2190 2191 extent_op->flags_to_set = flags; 2192 extent_op->update_flags = true; 2193 extent_op->update_key = false; 2194 extent_op->is_data = is_data ? true : false; 2195 extent_op->level = level; 2196 2197 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2198 if (ret) 2199 btrfs_free_delayed_extent_op(extent_op); 2200 return ret; 2201 } 2202 2203 static noinline int check_delayed_ref(struct btrfs_root *root, 2204 struct btrfs_path *path, 2205 u64 objectid, u64 offset, u64 bytenr) 2206 { 2207 struct btrfs_delayed_ref_head *head; 2208 struct btrfs_delayed_ref_node *ref; 2209 struct btrfs_delayed_data_ref *data_ref; 2210 struct btrfs_delayed_ref_root *delayed_refs; 2211 struct btrfs_transaction *cur_trans; 2212 struct rb_node *node; 2213 int ret = 0; 2214 2215 spin_lock(&root->fs_info->trans_lock); 2216 cur_trans = root->fs_info->running_transaction; 2217 if (cur_trans) 2218 refcount_inc(&cur_trans->use_count); 2219 spin_unlock(&root->fs_info->trans_lock); 2220 if (!cur_trans) 2221 return 0; 2222 2223 delayed_refs = &cur_trans->delayed_refs; 2224 spin_lock(&delayed_refs->lock); 2225 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2226 if (!head) { 2227 spin_unlock(&delayed_refs->lock); 2228 btrfs_put_transaction(cur_trans); 2229 return 0; 2230 } 2231 2232 if (!mutex_trylock(&head->mutex)) { 2233 refcount_inc(&head->refs); 2234 spin_unlock(&delayed_refs->lock); 2235 2236 btrfs_release_path(path); 2237 2238 /* 2239 * Mutex was contended, block until it's released and let 2240 * caller try again 2241 */ 2242 mutex_lock(&head->mutex); 2243 mutex_unlock(&head->mutex); 2244 btrfs_put_delayed_ref_head(head); 2245 btrfs_put_transaction(cur_trans); 2246 return -EAGAIN; 2247 } 2248 spin_unlock(&delayed_refs->lock); 2249 2250 spin_lock(&head->lock); 2251 /* 2252 * XXX: We should replace this with a proper search function in the 2253 * future. 2254 */ 2255 for (node = rb_first_cached(&head->ref_tree); node; 2256 node = rb_next(node)) { 2257 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2258 /* If it's a shared ref we know a cross reference exists */ 2259 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2260 ret = 1; 2261 break; 2262 } 2263 2264 data_ref = btrfs_delayed_node_to_data_ref(ref); 2265 2266 /* 2267 * If our ref doesn't match the one we're currently looking at 2268 * then we have a cross reference. 2269 */ 2270 if (data_ref->root != root->root_key.objectid || 2271 data_ref->objectid != objectid || 2272 data_ref->offset != offset) { 2273 ret = 1; 2274 break; 2275 } 2276 } 2277 spin_unlock(&head->lock); 2278 mutex_unlock(&head->mutex); 2279 btrfs_put_transaction(cur_trans); 2280 return ret; 2281 } 2282 2283 static noinline int check_committed_ref(struct btrfs_root *root, 2284 struct btrfs_path *path, 2285 u64 objectid, u64 offset, u64 bytenr, 2286 bool strict) 2287 { 2288 struct btrfs_fs_info *fs_info = root->fs_info; 2289 struct btrfs_root *extent_root = fs_info->extent_root; 2290 struct extent_buffer *leaf; 2291 struct btrfs_extent_data_ref *ref; 2292 struct btrfs_extent_inline_ref *iref; 2293 struct btrfs_extent_item *ei; 2294 struct btrfs_key key; 2295 u32 item_size; 2296 int type; 2297 int ret; 2298 2299 key.objectid = bytenr; 2300 key.offset = (u64)-1; 2301 key.type = BTRFS_EXTENT_ITEM_KEY; 2302 2303 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2304 if (ret < 0) 2305 goto out; 2306 BUG_ON(ret == 0); /* Corruption */ 2307 2308 ret = -ENOENT; 2309 if (path->slots[0] == 0) 2310 goto out; 2311 2312 path->slots[0]--; 2313 leaf = path->nodes[0]; 2314 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2315 2316 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2317 goto out; 2318 2319 ret = 1; 2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2321 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2322 2323 /* If extent item has more than 1 inline ref then it's shared */ 2324 if (item_size != sizeof(*ei) + 2325 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2326 goto out; 2327 2328 /* 2329 * If extent created before last snapshot => it's shared unless the 2330 * snapshot has been deleted. Use the heuristic if strict is false. 2331 */ 2332 if (!strict && 2333 (btrfs_extent_generation(leaf, ei) <= 2334 btrfs_root_last_snapshot(&root->root_item))) 2335 goto out; 2336 2337 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2338 2339 /* If this extent has SHARED_DATA_REF then it's shared */ 2340 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2341 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2342 goto out; 2343 2344 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2345 if (btrfs_extent_refs(leaf, ei) != 2346 btrfs_extent_data_ref_count(leaf, ref) || 2347 btrfs_extent_data_ref_root(leaf, ref) != 2348 root->root_key.objectid || 2349 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2350 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2351 goto out; 2352 2353 ret = 0; 2354 out: 2355 return ret; 2356 } 2357 2358 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2359 u64 bytenr, bool strict) 2360 { 2361 struct btrfs_path *path; 2362 int ret; 2363 2364 path = btrfs_alloc_path(); 2365 if (!path) 2366 return -ENOMEM; 2367 2368 do { 2369 ret = check_committed_ref(root, path, objectid, 2370 offset, bytenr, strict); 2371 if (ret && ret != -ENOENT) 2372 goto out; 2373 2374 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2375 } while (ret == -EAGAIN); 2376 2377 out: 2378 btrfs_free_path(path); 2379 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2380 WARN_ON(ret > 0); 2381 return ret; 2382 } 2383 2384 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2385 struct btrfs_root *root, 2386 struct extent_buffer *buf, 2387 int full_backref, int inc) 2388 { 2389 struct btrfs_fs_info *fs_info = root->fs_info; 2390 u64 bytenr; 2391 u64 num_bytes; 2392 u64 parent; 2393 u64 ref_root; 2394 u32 nritems; 2395 struct btrfs_key key; 2396 struct btrfs_file_extent_item *fi; 2397 struct btrfs_ref generic_ref = { 0 }; 2398 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2399 int i; 2400 int action; 2401 int level; 2402 int ret = 0; 2403 2404 if (btrfs_is_testing(fs_info)) 2405 return 0; 2406 2407 ref_root = btrfs_header_owner(buf); 2408 nritems = btrfs_header_nritems(buf); 2409 level = btrfs_header_level(buf); 2410 2411 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2412 return 0; 2413 2414 if (full_backref) 2415 parent = buf->start; 2416 else 2417 parent = 0; 2418 if (inc) 2419 action = BTRFS_ADD_DELAYED_REF; 2420 else 2421 action = BTRFS_DROP_DELAYED_REF; 2422 2423 for (i = 0; i < nritems; i++) { 2424 if (level == 0) { 2425 btrfs_item_key_to_cpu(buf, &key, i); 2426 if (key.type != BTRFS_EXTENT_DATA_KEY) 2427 continue; 2428 fi = btrfs_item_ptr(buf, i, 2429 struct btrfs_file_extent_item); 2430 if (btrfs_file_extent_type(buf, fi) == 2431 BTRFS_FILE_EXTENT_INLINE) 2432 continue; 2433 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2434 if (bytenr == 0) 2435 continue; 2436 2437 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2438 key.offset -= btrfs_file_extent_offset(buf, fi); 2439 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2440 num_bytes, parent); 2441 generic_ref.real_root = root->root_key.objectid; 2442 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2443 key.offset); 2444 generic_ref.skip_qgroup = for_reloc; 2445 if (inc) 2446 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2447 else 2448 ret = btrfs_free_extent(trans, &generic_ref); 2449 if (ret) 2450 goto fail; 2451 } else { 2452 bytenr = btrfs_node_blockptr(buf, i); 2453 num_bytes = fs_info->nodesize; 2454 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2455 num_bytes, parent); 2456 generic_ref.real_root = root->root_key.objectid; 2457 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2458 generic_ref.skip_qgroup = for_reloc; 2459 if (inc) 2460 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2461 else 2462 ret = btrfs_free_extent(trans, &generic_ref); 2463 if (ret) 2464 goto fail; 2465 } 2466 } 2467 return 0; 2468 fail: 2469 return ret; 2470 } 2471 2472 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2473 struct extent_buffer *buf, int full_backref) 2474 { 2475 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2476 } 2477 2478 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2479 struct extent_buffer *buf, int full_backref) 2480 { 2481 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2482 } 2483 2484 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2485 { 2486 struct btrfs_fs_info *fs_info = root->fs_info; 2487 u64 flags; 2488 u64 ret; 2489 2490 if (data) 2491 flags = BTRFS_BLOCK_GROUP_DATA; 2492 else if (root == fs_info->chunk_root) 2493 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2494 else 2495 flags = BTRFS_BLOCK_GROUP_METADATA; 2496 2497 ret = btrfs_get_alloc_profile(fs_info, flags); 2498 return ret; 2499 } 2500 2501 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2502 { 2503 struct btrfs_block_group *cache; 2504 u64 bytenr; 2505 2506 spin_lock(&fs_info->block_group_cache_lock); 2507 bytenr = fs_info->first_logical_byte; 2508 spin_unlock(&fs_info->block_group_cache_lock); 2509 2510 if (bytenr < (u64)-1) 2511 return bytenr; 2512 2513 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2514 if (!cache) 2515 return 0; 2516 2517 bytenr = cache->start; 2518 btrfs_put_block_group(cache); 2519 2520 return bytenr; 2521 } 2522 2523 static int pin_down_extent(struct btrfs_trans_handle *trans, 2524 struct btrfs_block_group *cache, 2525 u64 bytenr, u64 num_bytes, int reserved) 2526 { 2527 struct btrfs_fs_info *fs_info = cache->fs_info; 2528 2529 spin_lock(&cache->space_info->lock); 2530 spin_lock(&cache->lock); 2531 cache->pinned += num_bytes; 2532 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2533 num_bytes); 2534 if (reserved) { 2535 cache->reserved -= num_bytes; 2536 cache->space_info->bytes_reserved -= num_bytes; 2537 } 2538 spin_unlock(&cache->lock); 2539 spin_unlock(&cache->space_info->lock); 2540 2541 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2542 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2543 return 0; 2544 } 2545 2546 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2547 u64 bytenr, u64 num_bytes, int reserved) 2548 { 2549 struct btrfs_block_group *cache; 2550 2551 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2552 BUG_ON(!cache); /* Logic error */ 2553 2554 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2555 2556 btrfs_put_block_group(cache); 2557 return 0; 2558 } 2559 2560 /* 2561 * this function must be called within transaction 2562 */ 2563 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2564 u64 bytenr, u64 num_bytes) 2565 { 2566 struct btrfs_block_group *cache; 2567 int ret; 2568 2569 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2570 if (!cache) 2571 return -EINVAL; 2572 2573 /* 2574 * pull in the free space cache (if any) so that our pin 2575 * removes the free space from the cache. We have load_only set 2576 * to one because the slow code to read in the free extents does check 2577 * the pinned extents. 2578 */ 2579 btrfs_cache_block_group(cache, 1); 2580 /* 2581 * Make sure we wait until the cache is completely built in case it is 2582 * missing or is invalid and therefore needs to be rebuilt. 2583 */ 2584 ret = btrfs_wait_block_group_cache_done(cache); 2585 if (ret) 2586 goto out; 2587 2588 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2589 2590 /* remove us from the free space cache (if we're there at all) */ 2591 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2592 out: 2593 btrfs_put_block_group(cache); 2594 return ret; 2595 } 2596 2597 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2598 u64 start, u64 num_bytes) 2599 { 2600 int ret; 2601 struct btrfs_block_group *block_group; 2602 2603 block_group = btrfs_lookup_block_group(fs_info, start); 2604 if (!block_group) 2605 return -EINVAL; 2606 2607 btrfs_cache_block_group(block_group, 1); 2608 /* 2609 * Make sure we wait until the cache is completely built in case it is 2610 * missing or is invalid and therefore needs to be rebuilt. 2611 */ 2612 ret = btrfs_wait_block_group_cache_done(block_group); 2613 if (ret) 2614 goto out; 2615 2616 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2617 out: 2618 btrfs_put_block_group(block_group); 2619 return ret; 2620 } 2621 2622 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2623 { 2624 struct btrfs_fs_info *fs_info = eb->fs_info; 2625 struct btrfs_file_extent_item *item; 2626 struct btrfs_key key; 2627 int found_type; 2628 int i; 2629 int ret = 0; 2630 2631 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2632 return 0; 2633 2634 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2635 btrfs_item_key_to_cpu(eb, &key, i); 2636 if (key.type != BTRFS_EXTENT_DATA_KEY) 2637 continue; 2638 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2639 found_type = btrfs_file_extent_type(eb, item); 2640 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2641 continue; 2642 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2643 continue; 2644 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2645 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2646 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2647 if (ret) 2648 break; 2649 } 2650 2651 return ret; 2652 } 2653 2654 static void 2655 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2656 { 2657 atomic_inc(&bg->reservations); 2658 } 2659 2660 /* 2661 * Returns the free cluster for the given space info and sets empty_cluster to 2662 * what it should be based on the mount options. 2663 */ 2664 static struct btrfs_free_cluster * 2665 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2666 struct btrfs_space_info *space_info, u64 *empty_cluster) 2667 { 2668 struct btrfs_free_cluster *ret = NULL; 2669 2670 *empty_cluster = 0; 2671 if (btrfs_mixed_space_info(space_info)) 2672 return ret; 2673 2674 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2675 ret = &fs_info->meta_alloc_cluster; 2676 if (btrfs_test_opt(fs_info, SSD)) 2677 *empty_cluster = SZ_2M; 2678 else 2679 *empty_cluster = SZ_64K; 2680 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2681 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2682 *empty_cluster = SZ_2M; 2683 ret = &fs_info->data_alloc_cluster; 2684 } 2685 2686 return ret; 2687 } 2688 2689 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2690 u64 start, u64 end, 2691 const bool return_free_space) 2692 { 2693 struct btrfs_block_group *cache = NULL; 2694 struct btrfs_space_info *space_info; 2695 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2696 struct btrfs_free_cluster *cluster = NULL; 2697 u64 len; 2698 u64 total_unpinned = 0; 2699 u64 empty_cluster = 0; 2700 bool readonly; 2701 2702 while (start <= end) { 2703 readonly = false; 2704 if (!cache || 2705 start >= cache->start + cache->length) { 2706 if (cache) 2707 btrfs_put_block_group(cache); 2708 total_unpinned = 0; 2709 cache = btrfs_lookup_block_group(fs_info, start); 2710 BUG_ON(!cache); /* Logic error */ 2711 2712 cluster = fetch_cluster_info(fs_info, 2713 cache->space_info, 2714 &empty_cluster); 2715 empty_cluster <<= 1; 2716 } 2717 2718 len = cache->start + cache->length - start; 2719 len = min(len, end + 1 - start); 2720 2721 down_read(&fs_info->commit_root_sem); 2722 if (start < cache->last_byte_to_unpin && return_free_space) { 2723 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2724 2725 btrfs_add_free_space(cache, start, add_len); 2726 } 2727 up_read(&fs_info->commit_root_sem); 2728 2729 start += len; 2730 total_unpinned += len; 2731 space_info = cache->space_info; 2732 2733 /* 2734 * If this space cluster has been marked as fragmented and we've 2735 * unpinned enough in this block group to potentially allow a 2736 * cluster to be created inside of it go ahead and clear the 2737 * fragmented check. 2738 */ 2739 if (cluster && cluster->fragmented && 2740 total_unpinned > empty_cluster) { 2741 spin_lock(&cluster->lock); 2742 cluster->fragmented = 0; 2743 spin_unlock(&cluster->lock); 2744 } 2745 2746 spin_lock(&space_info->lock); 2747 spin_lock(&cache->lock); 2748 cache->pinned -= len; 2749 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2750 space_info->max_extent_size = 0; 2751 if (cache->ro) { 2752 space_info->bytes_readonly += len; 2753 readonly = true; 2754 } else if (btrfs_is_zoned(fs_info)) { 2755 /* Need reset before reusing in a zoned block group */ 2756 space_info->bytes_zone_unusable += len; 2757 readonly = true; 2758 } 2759 spin_unlock(&cache->lock); 2760 if (!readonly && return_free_space && 2761 global_rsv->space_info == space_info) { 2762 u64 to_add = len; 2763 2764 spin_lock(&global_rsv->lock); 2765 if (!global_rsv->full) { 2766 to_add = min(len, global_rsv->size - 2767 global_rsv->reserved); 2768 global_rsv->reserved += to_add; 2769 btrfs_space_info_update_bytes_may_use(fs_info, 2770 space_info, to_add); 2771 if (global_rsv->reserved >= global_rsv->size) 2772 global_rsv->full = 1; 2773 len -= to_add; 2774 } 2775 spin_unlock(&global_rsv->lock); 2776 } 2777 /* Add to any tickets we may have */ 2778 if (!readonly && return_free_space && len) 2779 btrfs_try_granting_tickets(fs_info, space_info); 2780 spin_unlock(&space_info->lock); 2781 } 2782 2783 if (cache) 2784 btrfs_put_block_group(cache); 2785 return 0; 2786 } 2787 2788 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2789 { 2790 struct btrfs_fs_info *fs_info = trans->fs_info; 2791 struct btrfs_block_group *block_group, *tmp; 2792 struct list_head *deleted_bgs; 2793 struct extent_io_tree *unpin; 2794 u64 start; 2795 u64 end; 2796 int ret; 2797 2798 unpin = &trans->transaction->pinned_extents; 2799 2800 while (!TRANS_ABORTED(trans)) { 2801 struct extent_state *cached_state = NULL; 2802 2803 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2804 ret = find_first_extent_bit(unpin, 0, &start, &end, 2805 EXTENT_DIRTY, &cached_state); 2806 if (ret) { 2807 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2808 break; 2809 } 2810 2811 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2812 ret = btrfs_discard_extent(fs_info, start, 2813 end + 1 - start, NULL); 2814 2815 clear_extent_dirty(unpin, start, end, &cached_state); 2816 unpin_extent_range(fs_info, start, end, true); 2817 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2818 free_extent_state(cached_state); 2819 cond_resched(); 2820 } 2821 2822 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2823 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2824 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2825 } 2826 2827 /* 2828 * Transaction is finished. We don't need the lock anymore. We 2829 * do need to clean up the block groups in case of a transaction 2830 * abort. 2831 */ 2832 deleted_bgs = &trans->transaction->deleted_bgs; 2833 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2834 u64 trimmed = 0; 2835 2836 ret = -EROFS; 2837 if (!TRANS_ABORTED(trans)) 2838 ret = btrfs_discard_extent(fs_info, 2839 block_group->start, 2840 block_group->length, 2841 &trimmed); 2842 2843 list_del_init(&block_group->bg_list); 2844 btrfs_unfreeze_block_group(block_group); 2845 btrfs_put_block_group(block_group); 2846 2847 if (ret) { 2848 const char *errstr = btrfs_decode_error(ret); 2849 btrfs_warn(fs_info, 2850 "discard failed while removing blockgroup: errno=%d %s", 2851 ret, errstr); 2852 } 2853 } 2854 2855 return 0; 2856 } 2857 2858 /* 2859 * Drop one or more refs of @node. 2860 * 2861 * 1. Locate the extent refs. 2862 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2863 * Locate it, then reduce the refs number or remove the ref line completely. 2864 * 2865 * 2. Update the refs count in EXTENT/METADATA_ITEM 2866 * 2867 * Inline backref case: 2868 * 2869 * in extent tree we have: 2870 * 2871 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2872 * refs 2 gen 6 flags DATA 2873 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2874 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2875 * 2876 * This function gets called with: 2877 * 2878 * node->bytenr = 13631488 2879 * node->num_bytes = 1048576 2880 * root_objectid = FS_TREE 2881 * owner_objectid = 257 2882 * owner_offset = 0 2883 * refs_to_drop = 1 2884 * 2885 * Then we should get some like: 2886 * 2887 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2888 * refs 1 gen 6 flags DATA 2889 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2890 * 2891 * Keyed backref case: 2892 * 2893 * in extent tree we have: 2894 * 2895 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2896 * refs 754 gen 6 flags DATA 2897 * [...] 2898 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2899 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2900 * 2901 * This function get called with: 2902 * 2903 * node->bytenr = 13631488 2904 * node->num_bytes = 1048576 2905 * root_objectid = FS_TREE 2906 * owner_objectid = 866 2907 * owner_offset = 0 2908 * refs_to_drop = 1 2909 * 2910 * Then we should get some like: 2911 * 2912 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2913 * refs 753 gen 6 flags DATA 2914 * 2915 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2916 */ 2917 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2918 struct btrfs_delayed_ref_node *node, u64 parent, 2919 u64 root_objectid, u64 owner_objectid, 2920 u64 owner_offset, int refs_to_drop, 2921 struct btrfs_delayed_extent_op *extent_op) 2922 { 2923 struct btrfs_fs_info *info = trans->fs_info; 2924 struct btrfs_key key; 2925 struct btrfs_path *path; 2926 struct btrfs_root *extent_root = info->extent_root; 2927 struct extent_buffer *leaf; 2928 struct btrfs_extent_item *ei; 2929 struct btrfs_extent_inline_ref *iref; 2930 int ret; 2931 int is_data; 2932 int extent_slot = 0; 2933 int found_extent = 0; 2934 int num_to_del = 1; 2935 u32 item_size; 2936 u64 refs; 2937 u64 bytenr = node->bytenr; 2938 u64 num_bytes = node->num_bytes; 2939 int last_ref = 0; 2940 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2941 2942 path = btrfs_alloc_path(); 2943 if (!path) 2944 return -ENOMEM; 2945 2946 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2947 2948 if (!is_data && refs_to_drop != 1) { 2949 btrfs_crit(info, 2950 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2951 node->bytenr, refs_to_drop); 2952 ret = -EINVAL; 2953 btrfs_abort_transaction(trans, ret); 2954 goto out; 2955 } 2956 2957 if (is_data) 2958 skinny_metadata = false; 2959 2960 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2961 parent, root_objectid, owner_objectid, 2962 owner_offset); 2963 if (ret == 0) { 2964 /* 2965 * Either the inline backref or the SHARED_DATA_REF/ 2966 * SHARED_BLOCK_REF is found 2967 * 2968 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2969 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2970 */ 2971 extent_slot = path->slots[0]; 2972 while (extent_slot >= 0) { 2973 btrfs_item_key_to_cpu(path->nodes[0], &key, 2974 extent_slot); 2975 if (key.objectid != bytenr) 2976 break; 2977 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2978 key.offset == num_bytes) { 2979 found_extent = 1; 2980 break; 2981 } 2982 if (key.type == BTRFS_METADATA_ITEM_KEY && 2983 key.offset == owner_objectid) { 2984 found_extent = 1; 2985 break; 2986 } 2987 2988 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2989 if (path->slots[0] - extent_slot > 5) 2990 break; 2991 extent_slot--; 2992 } 2993 2994 if (!found_extent) { 2995 if (iref) { 2996 btrfs_crit(info, 2997 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 2998 btrfs_abort_transaction(trans, -EUCLEAN); 2999 goto err_dump; 3000 } 3001 /* Must be SHARED_* item, remove the backref first */ 3002 ret = remove_extent_backref(trans, path, NULL, 3003 refs_to_drop, 3004 is_data, &last_ref); 3005 if (ret) { 3006 btrfs_abort_transaction(trans, ret); 3007 goto out; 3008 } 3009 btrfs_release_path(path); 3010 3011 /* Slow path to locate EXTENT/METADATA_ITEM */ 3012 key.objectid = bytenr; 3013 key.type = BTRFS_EXTENT_ITEM_KEY; 3014 key.offset = num_bytes; 3015 3016 if (!is_data && skinny_metadata) { 3017 key.type = BTRFS_METADATA_ITEM_KEY; 3018 key.offset = owner_objectid; 3019 } 3020 3021 ret = btrfs_search_slot(trans, extent_root, 3022 &key, path, -1, 1); 3023 if (ret > 0 && skinny_metadata && path->slots[0]) { 3024 /* 3025 * Couldn't find our skinny metadata item, 3026 * see if we have ye olde extent item. 3027 */ 3028 path->slots[0]--; 3029 btrfs_item_key_to_cpu(path->nodes[0], &key, 3030 path->slots[0]); 3031 if (key.objectid == bytenr && 3032 key.type == BTRFS_EXTENT_ITEM_KEY && 3033 key.offset == num_bytes) 3034 ret = 0; 3035 } 3036 3037 if (ret > 0 && skinny_metadata) { 3038 skinny_metadata = false; 3039 key.objectid = bytenr; 3040 key.type = BTRFS_EXTENT_ITEM_KEY; 3041 key.offset = num_bytes; 3042 btrfs_release_path(path); 3043 ret = btrfs_search_slot(trans, extent_root, 3044 &key, path, -1, 1); 3045 } 3046 3047 if (ret) { 3048 btrfs_err(info, 3049 "umm, got %d back from search, was looking for %llu", 3050 ret, bytenr); 3051 if (ret > 0) 3052 btrfs_print_leaf(path->nodes[0]); 3053 } 3054 if (ret < 0) { 3055 btrfs_abort_transaction(trans, ret); 3056 goto out; 3057 } 3058 extent_slot = path->slots[0]; 3059 } 3060 } else if (WARN_ON(ret == -ENOENT)) { 3061 btrfs_print_leaf(path->nodes[0]); 3062 btrfs_err(info, 3063 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3064 bytenr, parent, root_objectid, owner_objectid, 3065 owner_offset); 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } else { 3069 btrfs_abort_transaction(trans, ret); 3070 goto out; 3071 } 3072 3073 leaf = path->nodes[0]; 3074 item_size = btrfs_item_size_nr(leaf, extent_slot); 3075 if (unlikely(item_size < sizeof(*ei))) { 3076 ret = -EINVAL; 3077 btrfs_print_v0_err(info); 3078 btrfs_abort_transaction(trans, ret); 3079 goto out; 3080 } 3081 ei = btrfs_item_ptr(leaf, extent_slot, 3082 struct btrfs_extent_item); 3083 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3084 key.type == BTRFS_EXTENT_ITEM_KEY) { 3085 struct btrfs_tree_block_info *bi; 3086 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3087 btrfs_crit(info, 3088 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3089 key.objectid, key.type, key.offset, 3090 owner_objectid, item_size, 3091 sizeof(*ei) + sizeof(*bi)); 3092 btrfs_abort_transaction(trans, -EUCLEAN); 3093 goto err_dump; 3094 } 3095 bi = (struct btrfs_tree_block_info *)(ei + 1); 3096 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3097 } 3098 3099 refs = btrfs_extent_refs(leaf, ei); 3100 if (refs < refs_to_drop) { 3101 btrfs_crit(info, 3102 "trying to drop %d refs but we only have %llu for bytenr %llu", 3103 refs_to_drop, refs, bytenr); 3104 btrfs_abort_transaction(trans, -EUCLEAN); 3105 goto err_dump; 3106 } 3107 refs -= refs_to_drop; 3108 3109 if (refs > 0) { 3110 if (extent_op) 3111 __run_delayed_extent_op(extent_op, leaf, ei); 3112 /* 3113 * In the case of inline back ref, reference count will 3114 * be updated by remove_extent_backref 3115 */ 3116 if (iref) { 3117 if (!found_extent) { 3118 btrfs_crit(info, 3119 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3120 btrfs_abort_transaction(trans, -EUCLEAN); 3121 goto err_dump; 3122 } 3123 } else { 3124 btrfs_set_extent_refs(leaf, ei, refs); 3125 btrfs_mark_buffer_dirty(leaf); 3126 } 3127 if (found_extent) { 3128 ret = remove_extent_backref(trans, path, iref, 3129 refs_to_drop, is_data, 3130 &last_ref); 3131 if (ret) { 3132 btrfs_abort_transaction(trans, ret); 3133 goto out; 3134 } 3135 } 3136 } else { 3137 /* In this branch refs == 1 */ 3138 if (found_extent) { 3139 if (is_data && refs_to_drop != 3140 extent_data_ref_count(path, iref)) { 3141 btrfs_crit(info, 3142 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3143 extent_data_ref_count(path, iref), 3144 refs_to_drop); 3145 btrfs_abort_transaction(trans, -EUCLEAN); 3146 goto err_dump; 3147 } 3148 if (iref) { 3149 if (path->slots[0] != extent_slot) { 3150 btrfs_crit(info, 3151 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3152 key.objectid, key.type, 3153 key.offset); 3154 btrfs_abort_transaction(trans, -EUCLEAN); 3155 goto err_dump; 3156 } 3157 } else { 3158 /* 3159 * No inline ref, we must be at SHARED_* item, 3160 * And it's single ref, it must be: 3161 * | extent_slot ||extent_slot + 1| 3162 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3163 */ 3164 if (path->slots[0] != extent_slot + 1) { 3165 btrfs_crit(info, 3166 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3167 btrfs_abort_transaction(trans, -EUCLEAN); 3168 goto err_dump; 3169 } 3170 path->slots[0] = extent_slot; 3171 num_to_del = 2; 3172 } 3173 } 3174 3175 last_ref = 1; 3176 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3177 num_to_del); 3178 if (ret) { 3179 btrfs_abort_transaction(trans, ret); 3180 goto out; 3181 } 3182 btrfs_release_path(path); 3183 3184 if (is_data) { 3185 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3186 num_bytes); 3187 if (ret) { 3188 btrfs_abort_transaction(trans, ret); 3189 goto out; 3190 } 3191 } 3192 3193 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3194 if (ret) { 3195 btrfs_abort_transaction(trans, ret); 3196 goto out; 3197 } 3198 3199 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3200 if (ret) { 3201 btrfs_abort_transaction(trans, ret); 3202 goto out; 3203 } 3204 } 3205 btrfs_release_path(path); 3206 3207 out: 3208 btrfs_free_path(path); 3209 return ret; 3210 err_dump: 3211 /* 3212 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3213 * dump for debug build. 3214 */ 3215 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3216 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3217 path->slots[0], extent_slot); 3218 btrfs_print_leaf(path->nodes[0]); 3219 } 3220 3221 btrfs_free_path(path); 3222 return -EUCLEAN; 3223 } 3224 3225 /* 3226 * when we free an block, it is possible (and likely) that we free the last 3227 * delayed ref for that extent as well. This searches the delayed ref tree for 3228 * a given extent, and if there are no other delayed refs to be processed, it 3229 * removes it from the tree. 3230 */ 3231 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3232 u64 bytenr) 3233 { 3234 struct btrfs_delayed_ref_head *head; 3235 struct btrfs_delayed_ref_root *delayed_refs; 3236 int ret = 0; 3237 3238 delayed_refs = &trans->transaction->delayed_refs; 3239 spin_lock(&delayed_refs->lock); 3240 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3241 if (!head) 3242 goto out_delayed_unlock; 3243 3244 spin_lock(&head->lock); 3245 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3246 goto out; 3247 3248 if (cleanup_extent_op(head) != NULL) 3249 goto out; 3250 3251 /* 3252 * waiting for the lock here would deadlock. If someone else has it 3253 * locked they are already in the process of dropping it anyway 3254 */ 3255 if (!mutex_trylock(&head->mutex)) 3256 goto out; 3257 3258 btrfs_delete_ref_head(delayed_refs, head); 3259 head->processing = 0; 3260 3261 spin_unlock(&head->lock); 3262 spin_unlock(&delayed_refs->lock); 3263 3264 BUG_ON(head->extent_op); 3265 if (head->must_insert_reserved) 3266 ret = 1; 3267 3268 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3269 mutex_unlock(&head->mutex); 3270 btrfs_put_delayed_ref_head(head); 3271 return ret; 3272 out: 3273 spin_unlock(&head->lock); 3274 3275 out_delayed_unlock: 3276 spin_unlock(&delayed_refs->lock); 3277 return 0; 3278 } 3279 3280 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3281 struct btrfs_root *root, 3282 struct extent_buffer *buf, 3283 u64 parent, int last_ref) 3284 { 3285 struct btrfs_fs_info *fs_info = root->fs_info; 3286 struct btrfs_ref generic_ref = { 0 }; 3287 int ret; 3288 3289 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3290 buf->start, buf->len, parent); 3291 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3292 root->root_key.objectid); 3293 3294 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3295 btrfs_ref_tree_mod(fs_info, &generic_ref); 3296 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3297 BUG_ON(ret); /* -ENOMEM */ 3298 } 3299 3300 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3301 struct btrfs_block_group *cache; 3302 bool must_pin = false; 3303 3304 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3305 ret = check_ref_cleanup(trans, buf->start); 3306 if (!ret) { 3307 btrfs_redirty_list_add(trans->transaction, buf); 3308 goto out; 3309 } 3310 } 3311 3312 cache = btrfs_lookup_block_group(fs_info, buf->start); 3313 3314 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3315 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3316 btrfs_put_block_group(cache); 3317 goto out; 3318 } 3319 3320 /* 3321 * If this is a leaf and there are tree mod log users, we may 3322 * have recorded mod log operations that point to this leaf. 3323 * So we must make sure no one reuses this leaf's extent before 3324 * mod log operations are applied to a node, otherwise after 3325 * rewinding a node using the mod log operations we get an 3326 * inconsistent btree, as the leaf's extent may now be used as 3327 * a node or leaf for another different btree. 3328 * We are safe from races here because at this point no other 3329 * node or root points to this extent buffer, so if after this 3330 * check a new tree mod log user joins, it will not be able to 3331 * find a node pointing to this leaf and record operations that 3332 * point to this leaf. 3333 */ 3334 if (btrfs_header_level(buf) == 0 && 3335 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3336 must_pin = true; 3337 3338 if (must_pin || btrfs_is_zoned(fs_info)) { 3339 btrfs_redirty_list_add(trans->transaction, buf); 3340 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3341 btrfs_put_block_group(cache); 3342 goto out; 3343 } 3344 3345 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3346 3347 btrfs_add_free_space(cache, buf->start, buf->len); 3348 btrfs_free_reserved_bytes(cache, buf->len, 0); 3349 btrfs_put_block_group(cache); 3350 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3351 } 3352 out: 3353 if (last_ref) { 3354 /* 3355 * Deleting the buffer, clear the corrupt flag since it doesn't 3356 * matter anymore. 3357 */ 3358 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3359 } 3360 } 3361 3362 /* Can return -ENOMEM */ 3363 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3364 { 3365 struct btrfs_fs_info *fs_info = trans->fs_info; 3366 int ret; 3367 3368 if (btrfs_is_testing(fs_info)) 3369 return 0; 3370 3371 /* 3372 * tree log blocks never actually go into the extent allocation 3373 * tree, just update pinning info and exit early. 3374 */ 3375 if ((ref->type == BTRFS_REF_METADATA && 3376 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3377 (ref->type == BTRFS_REF_DATA && 3378 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3379 /* unlocks the pinned mutex */ 3380 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3381 ret = 0; 3382 } else if (ref->type == BTRFS_REF_METADATA) { 3383 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3384 } else { 3385 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3386 } 3387 3388 if (!((ref->type == BTRFS_REF_METADATA && 3389 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3390 (ref->type == BTRFS_REF_DATA && 3391 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3392 btrfs_ref_tree_mod(fs_info, ref); 3393 3394 return ret; 3395 } 3396 3397 enum btrfs_loop_type { 3398 LOOP_CACHING_NOWAIT, 3399 LOOP_CACHING_WAIT, 3400 LOOP_ALLOC_CHUNK, 3401 LOOP_NO_EMPTY_SIZE, 3402 }; 3403 3404 static inline void 3405 btrfs_lock_block_group(struct btrfs_block_group *cache, 3406 int delalloc) 3407 { 3408 if (delalloc) 3409 down_read(&cache->data_rwsem); 3410 } 3411 3412 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3413 int delalloc) 3414 { 3415 btrfs_get_block_group(cache); 3416 if (delalloc) 3417 down_read(&cache->data_rwsem); 3418 } 3419 3420 static struct btrfs_block_group *btrfs_lock_cluster( 3421 struct btrfs_block_group *block_group, 3422 struct btrfs_free_cluster *cluster, 3423 int delalloc) 3424 __acquires(&cluster->refill_lock) 3425 { 3426 struct btrfs_block_group *used_bg = NULL; 3427 3428 spin_lock(&cluster->refill_lock); 3429 while (1) { 3430 used_bg = cluster->block_group; 3431 if (!used_bg) 3432 return NULL; 3433 3434 if (used_bg == block_group) 3435 return used_bg; 3436 3437 btrfs_get_block_group(used_bg); 3438 3439 if (!delalloc) 3440 return used_bg; 3441 3442 if (down_read_trylock(&used_bg->data_rwsem)) 3443 return used_bg; 3444 3445 spin_unlock(&cluster->refill_lock); 3446 3447 /* We should only have one-level nested. */ 3448 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3449 3450 spin_lock(&cluster->refill_lock); 3451 if (used_bg == cluster->block_group) 3452 return used_bg; 3453 3454 up_read(&used_bg->data_rwsem); 3455 btrfs_put_block_group(used_bg); 3456 } 3457 } 3458 3459 static inline void 3460 btrfs_release_block_group(struct btrfs_block_group *cache, 3461 int delalloc) 3462 { 3463 if (delalloc) 3464 up_read(&cache->data_rwsem); 3465 btrfs_put_block_group(cache); 3466 } 3467 3468 enum btrfs_extent_allocation_policy { 3469 BTRFS_EXTENT_ALLOC_CLUSTERED, 3470 BTRFS_EXTENT_ALLOC_ZONED, 3471 }; 3472 3473 /* 3474 * Structure used internally for find_free_extent() function. Wraps needed 3475 * parameters. 3476 */ 3477 struct find_free_extent_ctl { 3478 /* Basic allocation info */ 3479 u64 num_bytes; 3480 u64 empty_size; 3481 u64 flags; 3482 int delalloc; 3483 3484 /* Where to start the search inside the bg */ 3485 u64 search_start; 3486 3487 /* For clustered allocation */ 3488 u64 empty_cluster; 3489 struct btrfs_free_cluster *last_ptr; 3490 bool use_cluster; 3491 3492 bool have_caching_bg; 3493 bool orig_have_caching_bg; 3494 3495 /* Allocation is called for tree-log */ 3496 bool for_treelog; 3497 3498 /* RAID index, converted from flags */ 3499 int index; 3500 3501 /* 3502 * Current loop number, check find_free_extent_update_loop() for details 3503 */ 3504 int loop; 3505 3506 /* 3507 * Whether we're refilling a cluster, if true we need to re-search 3508 * current block group but don't try to refill the cluster again. 3509 */ 3510 bool retry_clustered; 3511 3512 /* 3513 * Whether we're updating free space cache, if true we need to re-search 3514 * current block group but don't try updating free space cache again. 3515 */ 3516 bool retry_unclustered; 3517 3518 /* If current block group is cached */ 3519 int cached; 3520 3521 /* Max contiguous hole found */ 3522 u64 max_extent_size; 3523 3524 /* Total free space from free space cache, not always contiguous */ 3525 u64 total_free_space; 3526 3527 /* Found result */ 3528 u64 found_offset; 3529 3530 /* Hint where to start looking for an empty space */ 3531 u64 hint_byte; 3532 3533 /* Allocation policy */ 3534 enum btrfs_extent_allocation_policy policy; 3535 }; 3536 3537 3538 /* 3539 * Helper function for find_free_extent(). 3540 * 3541 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3542 * Return -EAGAIN to inform caller that we need to re-search this block group 3543 * Return >0 to inform caller that we find nothing 3544 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3545 */ 3546 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3547 struct find_free_extent_ctl *ffe_ctl, 3548 struct btrfs_block_group **cluster_bg_ret) 3549 { 3550 struct btrfs_block_group *cluster_bg; 3551 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3552 u64 aligned_cluster; 3553 u64 offset; 3554 int ret; 3555 3556 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3557 if (!cluster_bg) 3558 goto refill_cluster; 3559 if (cluster_bg != bg && (cluster_bg->ro || 3560 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3561 goto release_cluster; 3562 3563 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3564 ffe_ctl->num_bytes, cluster_bg->start, 3565 &ffe_ctl->max_extent_size); 3566 if (offset) { 3567 /* We have a block, we're done */ 3568 spin_unlock(&last_ptr->refill_lock); 3569 trace_btrfs_reserve_extent_cluster(cluster_bg, 3570 ffe_ctl->search_start, ffe_ctl->num_bytes); 3571 *cluster_bg_ret = cluster_bg; 3572 ffe_ctl->found_offset = offset; 3573 return 0; 3574 } 3575 WARN_ON(last_ptr->block_group != cluster_bg); 3576 3577 release_cluster: 3578 /* 3579 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3580 * lets just skip it and let the allocator find whatever block it can 3581 * find. If we reach this point, we will have tried the cluster 3582 * allocator plenty of times and not have found anything, so we are 3583 * likely way too fragmented for the clustering stuff to find anything. 3584 * 3585 * However, if the cluster is taken from the current block group, 3586 * release the cluster first, so that we stand a better chance of 3587 * succeeding in the unclustered allocation. 3588 */ 3589 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3590 spin_unlock(&last_ptr->refill_lock); 3591 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3592 return -ENOENT; 3593 } 3594 3595 /* This cluster didn't work out, free it and start over */ 3596 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3597 3598 if (cluster_bg != bg) 3599 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3600 3601 refill_cluster: 3602 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3603 spin_unlock(&last_ptr->refill_lock); 3604 return -ENOENT; 3605 } 3606 3607 aligned_cluster = max_t(u64, 3608 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3609 bg->full_stripe_len); 3610 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3611 ffe_ctl->num_bytes, aligned_cluster); 3612 if (ret == 0) { 3613 /* Now pull our allocation out of this cluster */ 3614 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3615 ffe_ctl->num_bytes, ffe_ctl->search_start, 3616 &ffe_ctl->max_extent_size); 3617 if (offset) { 3618 /* We found one, proceed */ 3619 spin_unlock(&last_ptr->refill_lock); 3620 trace_btrfs_reserve_extent_cluster(bg, 3621 ffe_ctl->search_start, 3622 ffe_ctl->num_bytes); 3623 ffe_ctl->found_offset = offset; 3624 return 0; 3625 } 3626 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3627 !ffe_ctl->retry_clustered) { 3628 spin_unlock(&last_ptr->refill_lock); 3629 3630 ffe_ctl->retry_clustered = true; 3631 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3632 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3633 return -EAGAIN; 3634 } 3635 /* 3636 * At this point we either didn't find a cluster or we weren't able to 3637 * allocate a block from our cluster. Free the cluster we've been 3638 * trying to use, and go to the next block group. 3639 */ 3640 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3641 spin_unlock(&last_ptr->refill_lock); 3642 return 1; 3643 } 3644 3645 /* 3646 * Return >0 to inform caller that we find nothing 3647 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3648 * Return -EAGAIN to inform caller that we need to re-search this block group 3649 */ 3650 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3651 struct find_free_extent_ctl *ffe_ctl) 3652 { 3653 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3654 u64 offset; 3655 3656 /* 3657 * We are doing an unclustered allocation, set the fragmented flag so 3658 * we don't bother trying to setup a cluster again until we get more 3659 * space. 3660 */ 3661 if (unlikely(last_ptr)) { 3662 spin_lock(&last_ptr->lock); 3663 last_ptr->fragmented = 1; 3664 spin_unlock(&last_ptr->lock); 3665 } 3666 if (ffe_ctl->cached) { 3667 struct btrfs_free_space_ctl *free_space_ctl; 3668 3669 free_space_ctl = bg->free_space_ctl; 3670 spin_lock(&free_space_ctl->tree_lock); 3671 if (free_space_ctl->free_space < 3672 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3673 ffe_ctl->empty_size) { 3674 ffe_ctl->total_free_space = max_t(u64, 3675 ffe_ctl->total_free_space, 3676 free_space_ctl->free_space); 3677 spin_unlock(&free_space_ctl->tree_lock); 3678 return 1; 3679 } 3680 spin_unlock(&free_space_ctl->tree_lock); 3681 } 3682 3683 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3684 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3685 &ffe_ctl->max_extent_size); 3686 3687 /* 3688 * If we didn't find a chunk, and we haven't failed on this block group 3689 * before, and this block group is in the middle of caching and we are 3690 * ok with waiting, then go ahead and wait for progress to be made, and 3691 * set @retry_unclustered to true. 3692 * 3693 * If @retry_unclustered is true then we've already waited on this 3694 * block group once and should move on to the next block group. 3695 */ 3696 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3697 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3698 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3699 ffe_ctl->empty_size); 3700 ffe_ctl->retry_unclustered = true; 3701 return -EAGAIN; 3702 } else if (!offset) { 3703 return 1; 3704 } 3705 ffe_ctl->found_offset = offset; 3706 return 0; 3707 } 3708 3709 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3710 struct find_free_extent_ctl *ffe_ctl, 3711 struct btrfs_block_group **bg_ret) 3712 { 3713 int ret; 3714 3715 /* We want to try and use the cluster allocator, so lets look there */ 3716 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3717 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3718 if (ret >= 0 || ret == -EAGAIN) 3719 return ret; 3720 /* ret == -ENOENT case falls through */ 3721 } 3722 3723 return find_free_extent_unclustered(block_group, ffe_ctl); 3724 } 3725 3726 /* 3727 * Tree-log block group locking 3728 * ============================ 3729 * 3730 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3731 * indicates the starting address of a block group, which is reserved only 3732 * for tree-log metadata. 3733 * 3734 * Lock nesting 3735 * ============ 3736 * 3737 * space_info::lock 3738 * block_group::lock 3739 * fs_info::treelog_bg_lock 3740 */ 3741 3742 /* 3743 * Simple allocator for sequential-only block group. It only allows sequential 3744 * allocation. No need to play with trees. This function also reserves the 3745 * bytes as in btrfs_add_reserved_bytes. 3746 */ 3747 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3748 struct find_free_extent_ctl *ffe_ctl, 3749 struct btrfs_block_group **bg_ret) 3750 { 3751 struct btrfs_fs_info *fs_info = block_group->fs_info; 3752 struct btrfs_space_info *space_info = block_group->space_info; 3753 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3754 u64 start = block_group->start; 3755 u64 num_bytes = ffe_ctl->num_bytes; 3756 u64 avail; 3757 u64 bytenr = block_group->start; 3758 u64 log_bytenr; 3759 int ret = 0; 3760 bool skip; 3761 3762 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3763 3764 /* 3765 * Do not allow non-tree-log blocks in the dedicated tree-log block 3766 * group, and vice versa. 3767 */ 3768 spin_lock(&fs_info->treelog_bg_lock); 3769 log_bytenr = fs_info->treelog_bg; 3770 skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3771 (!ffe_ctl->for_treelog && bytenr == log_bytenr)); 3772 spin_unlock(&fs_info->treelog_bg_lock); 3773 if (skip) 3774 return 1; 3775 3776 spin_lock(&space_info->lock); 3777 spin_lock(&block_group->lock); 3778 spin_lock(&fs_info->treelog_bg_lock); 3779 3780 ASSERT(!ffe_ctl->for_treelog || 3781 block_group->start == fs_info->treelog_bg || 3782 fs_info->treelog_bg == 0); 3783 3784 if (block_group->ro) { 3785 ret = 1; 3786 goto out; 3787 } 3788 3789 /* 3790 * Do not allow currently using block group to be tree-log dedicated 3791 * block group. 3792 */ 3793 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3794 (block_group->used || block_group->reserved)) { 3795 ret = 1; 3796 goto out; 3797 } 3798 3799 avail = block_group->length - block_group->alloc_offset; 3800 if (avail < num_bytes) { 3801 if (ffe_ctl->max_extent_size < avail) { 3802 /* 3803 * With sequential allocator, free space is always 3804 * contiguous 3805 */ 3806 ffe_ctl->max_extent_size = avail; 3807 ffe_ctl->total_free_space = avail; 3808 } 3809 ret = 1; 3810 goto out; 3811 } 3812 3813 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3814 fs_info->treelog_bg = block_group->start; 3815 3816 ffe_ctl->found_offset = start + block_group->alloc_offset; 3817 block_group->alloc_offset += num_bytes; 3818 spin_lock(&ctl->tree_lock); 3819 ctl->free_space -= num_bytes; 3820 spin_unlock(&ctl->tree_lock); 3821 3822 /* 3823 * We do not check if found_offset is aligned to stripesize. The 3824 * address is anyway rewritten when using zone append writing. 3825 */ 3826 3827 ffe_ctl->search_start = ffe_ctl->found_offset; 3828 3829 out: 3830 if (ret && ffe_ctl->for_treelog) 3831 fs_info->treelog_bg = 0; 3832 spin_unlock(&fs_info->treelog_bg_lock); 3833 spin_unlock(&block_group->lock); 3834 spin_unlock(&space_info->lock); 3835 return ret; 3836 } 3837 3838 static int do_allocation(struct btrfs_block_group *block_group, 3839 struct find_free_extent_ctl *ffe_ctl, 3840 struct btrfs_block_group **bg_ret) 3841 { 3842 switch (ffe_ctl->policy) { 3843 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3844 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3845 case BTRFS_EXTENT_ALLOC_ZONED: 3846 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3847 default: 3848 BUG(); 3849 } 3850 } 3851 3852 static void release_block_group(struct btrfs_block_group *block_group, 3853 struct find_free_extent_ctl *ffe_ctl, 3854 int delalloc) 3855 { 3856 switch (ffe_ctl->policy) { 3857 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3858 ffe_ctl->retry_clustered = false; 3859 ffe_ctl->retry_unclustered = false; 3860 break; 3861 case BTRFS_EXTENT_ALLOC_ZONED: 3862 /* Nothing to do */ 3863 break; 3864 default: 3865 BUG(); 3866 } 3867 3868 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3869 ffe_ctl->index); 3870 btrfs_release_block_group(block_group, delalloc); 3871 } 3872 3873 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3874 struct btrfs_key *ins) 3875 { 3876 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3877 3878 if (!ffe_ctl->use_cluster && last_ptr) { 3879 spin_lock(&last_ptr->lock); 3880 last_ptr->window_start = ins->objectid; 3881 spin_unlock(&last_ptr->lock); 3882 } 3883 } 3884 3885 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3886 struct btrfs_key *ins) 3887 { 3888 switch (ffe_ctl->policy) { 3889 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3890 found_extent_clustered(ffe_ctl, ins); 3891 break; 3892 case BTRFS_EXTENT_ALLOC_ZONED: 3893 /* Nothing to do */ 3894 break; 3895 default: 3896 BUG(); 3897 } 3898 } 3899 3900 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3901 { 3902 switch (ffe_ctl->policy) { 3903 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3904 /* 3905 * If we can't allocate a new chunk we've already looped through 3906 * at least once, move on to the NO_EMPTY_SIZE case. 3907 */ 3908 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3909 return 0; 3910 case BTRFS_EXTENT_ALLOC_ZONED: 3911 /* Give up here */ 3912 return -ENOSPC; 3913 default: 3914 BUG(); 3915 } 3916 } 3917 3918 /* 3919 * Return >0 means caller needs to re-search for free extent 3920 * Return 0 means we have the needed free extent. 3921 * Return <0 means we failed to locate any free extent. 3922 */ 3923 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3924 struct btrfs_key *ins, 3925 struct find_free_extent_ctl *ffe_ctl, 3926 bool full_search) 3927 { 3928 struct btrfs_root *root = fs_info->extent_root; 3929 int ret; 3930 3931 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3932 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3933 ffe_ctl->orig_have_caching_bg = true; 3934 3935 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3936 ffe_ctl->have_caching_bg) 3937 return 1; 3938 3939 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3940 return 1; 3941 3942 if (ins->objectid) { 3943 found_extent(ffe_ctl, ins); 3944 return 0; 3945 } 3946 3947 /* 3948 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3949 * caching kthreads as we move along 3950 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3951 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3952 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3953 * again 3954 */ 3955 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3956 ffe_ctl->index = 0; 3957 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3958 /* 3959 * We want to skip the LOOP_CACHING_WAIT step if we 3960 * don't have any uncached bgs and we've already done a 3961 * full search through. 3962 */ 3963 if (ffe_ctl->orig_have_caching_bg || !full_search) 3964 ffe_ctl->loop = LOOP_CACHING_WAIT; 3965 else 3966 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3967 } else { 3968 ffe_ctl->loop++; 3969 } 3970 3971 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3972 struct btrfs_trans_handle *trans; 3973 int exist = 0; 3974 3975 trans = current->journal_info; 3976 if (trans) 3977 exist = 1; 3978 else 3979 trans = btrfs_join_transaction(root); 3980 3981 if (IS_ERR(trans)) { 3982 ret = PTR_ERR(trans); 3983 return ret; 3984 } 3985 3986 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3987 CHUNK_ALLOC_FORCE); 3988 3989 /* Do not bail out on ENOSPC since we can do more. */ 3990 if (ret == -ENOSPC) 3991 ret = chunk_allocation_failed(ffe_ctl); 3992 else if (ret < 0) 3993 btrfs_abort_transaction(trans, ret); 3994 else 3995 ret = 0; 3996 if (!exist) 3997 btrfs_end_transaction(trans); 3998 if (ret) 3999 return ret; 4000 } 4001 4002 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4003 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4004 return -ENOSPC; 4005 4006 /* 4007 * Don't loop again if we already have no empty_size and 4008 * no empty_cluster. 4009 */ 4010 if (ffe_ctl->empty_size == 0 && 4011 ffe_ctl->empty_cluster == 0) 4012 return -ENOSPC; 4013 ffe_ctl->empty_size = 0; 4014 ffe_ctl->empty_cluster = 0; 4015 } 4016 return 1; 4017 } 4018 return -ENOSPC; 4019 } 4020 4021 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4022 struct find_free_extent_ctl *ffe_ctl, 4023 struct btrfs_space_info *space_info, 4024 struct btrfs_key *ins) 4025 { 4026 /* 4027 * If our free space is heavily fragmented we may not be able to make 4028 * big contiguous allocations, so instead of doing the expensive search 4029 * for free space, simply return ENOSPC with our max_extent_size so we 4030 * can go ahead and search for a more manageable chunk. 4031 * 4032 * If our max_extent_size is large enough for our allocation simply 4033 * disable clustering since we will likely not be able to find enough 4034 * space to create a cluster and induce latency trying. 4035 */ 4036 if (space_info->max_extent_size) { 4037 spin_lock(&space_info->lock); 4038 if (space_info->max_extent_size && 4039 ffe_ctl->num_bytes > space_info->max_extent_size) { 4040 ins->offset = space_info->max_extent_size; 4041 spin_unlock(&space_info->lock); 4042 return -ENOSPC; 4043 } else if (space_info->max_extent_size) { 4044 ffe_ctl->use_cluster = false; 4045 } 4046 spin_unlock(&space_info->lock); 4047 } 4048 4049 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4050 &ffe_ctl->empty_cluster); 4051 if (ffe_ctl->last_ptr) { 4052 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4053 4054 spin_lock(&last_ptr->lock); 4055 if (last_ptr->block_group) 4056 ffe_ctl->hint_byte = last_ptr->window_start; 4057 if (last_ptr->fragmented) { 4058 /* 4059 * We still set window_start so we can keep track of the 4060 * last place we found an allocation to try and save 4061 * some time. 4062 */ 4063 ffe_ctl->hint_byte = last_ptr->window_start; 4064 ffe_ctl->use_cluster = false; 4065 } 4066 spin_unlock(&last_ptr->lock); 4067 } 4068 4069 return 0; 4070 } 4071 4072 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4073 struct find_free_extent_ctl *ffe_ctl, 4074 struct btrfs_space_info *space_info, 4075 struct btrfs_key *ins) 4076 { 4077 switch (ffe_ctl->policy) { 4078 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4079 return prepare_allocation_clustered(fs_info, ffe_ctl, 4080 space_info, ins); 4081 case BTRFS_EXTENT_ALLOC_ZONED: 4082 if (ffe_ctl->for_treelog) { 4083 spin_lock(&fs_info->treelog_bg_lock); 4084 if (fs_info->treelog_bg) 4085 ffe_ctl->hint_byte = fs_info->treelog_bg; 4086 spin_unlock(&fs_info->treelog_bg_lock); 4087 } 4088 return 0; 4089 default: 4090 BUG(); 4091 } 4092 } 4093 4094 /* 4095 * walks the btree of allocated extents and find a hole of a given size. 4096 * The key ins is changed to record the hole: 4097 * ins->objectid == start position 4098 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4099 * ins->offset == the size of the hole. 4100 * Any available blocks before search_start are skipped. 4101 * 4102 * If there is no suitable free space, we will record the max size of 4103 * the free space extent currently. 4104 * 4105 * The overall logic and call chain: 4106 * 4107 * find_free_extent() 4108 * |- Iterate through all block groups 4109 * | |- Get a valid block group 4110 * | |- Try to do clustered allocation in that block group 4111 * | |- Try to do unclustered allocation in that block group 4112 * | |- Check if the result is valid 4113 * | | |- If valid, then exit 4114 * | |- Jump to next block group 4115 * | 4116 * |- Push harder to find free extents 4117 * |- If not found, re-iterate all block groups 4118 */ 4119 static noinline int find_free_extent(struct btrfs_root *root, 4120 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4121 u64 hint_byte_orig, struct btrfs_key *ins, 4122 u64 flags, int delalloc) 4123 { 4124 struct btrfs_fs_info *fs_info = root->fs_info; 4125 int ret = 0; 4126 int cache_block_group_error = 0; 4127 struct btrfs_block_group *block_group = NULL; 4128 struct find_free_extent_ctl ffe_ctl = {0}; 4129 struct btrfs_space_info *space_info; 4130 bool full_search = false; 4131 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4132 4133 WARN_ON(num_bytes < fs_info->sectorsize); 4134 4135 ffe_ctl.num_bytes = num_bytes; 4136 ffe_ctl.empty_size = empty_size; 4137 ffe_ctl.flags = flags; 4138 ffe_ctl.search_start = 0; 4139 ffe_ctl.delalloc = delalloc; 4140 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4141 ffe_ctl.have_caching_bg = false; 4142 ffe_ctl.orig_have_caching_bg = false; 4143 ffe_ctl.found_offset = 0; 4144 ffe_ctl.hint_byte = hint_byte_orig; 4145 ffe_ctl.for_treelog = for_treelog; 4146 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4147 4148 /* For clustered allocation */ 4149 ffe_ctl.retry_clustered = false; 4150 ffe_ctl.retry_unclustered = false; 4151 ffe_ctl.last_ptr = NULL; 4152 ffe_ctl.use_cluster = true; 4153 4154 if (btrfs_is_zoned(fs_info)) 4155 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED; 4156 4157 ins->type = BTRFS_EXTENT_ITEM_KEY; 4158 ins->objectid = 0; 4159 ins->offset = 0; 4160 4161 trace_find_free_extent(root, num_bytes, empty_size, flags); 4162 4163 space_info = btrfs_find_space_info(fs_info, flags); 4164 if (!space_info) { 4165 btrfs_err(fs_info, "No space info for %llu", flags); 4166 return -ENOSPC; 4167 } 4168 4169 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4170 if (ret < 0) 4171 return ret; 4172 4173 ffe_ctl.search_start = max(ffe_ctl.search_start, 4174 first_logical_byte(fs_info, 0)); 4175 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4176 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4177 block_group = btrfs_lookup_block_group(fs_info, 4178 ffe_ctl.search_start); 4179 /* 4180 * we don't want to use the block group if it doesn't match our 4181 * allocation bits, or if its not cached. 4182 * 4183 * However if we are re-searching with an ideal block group 4184 * picked out then we don't care that the block group is cached. 4185 */ 4186 if (block_group && block_group_bits(block_group, flags) && 4187 block_group->cached != BTRFS_CACHE_NO) { 4188 down_read(&space_info->groups_sem); 4189 if (list_empty(&block_group->list) || 4190 block_group->ro) { 4191 /* 4192 * someone is removing this block group, 4193 * we can't jump into the have_block_group 4194 * target because our list pointers are not 4195 * valid 4196 */ 4197 btrfs_put_block_group(block_group); 4198 up_read(&space_info->groups_sem); 4199 } else { 4200 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4201 block_group->flags); 4202 btrfs_lock_block_group(block_group, delalloc); 4203 goto have_block_group; 4204 } 4205 } else if (block_group) { 4206 btrfs_put_block_group(block_group); 4207 } 4208 } 4209 search: 4210 ffe_ctl.have_caching_bg = false; 4211 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4212 ffe_ctl.index == 0) 4213 full_search = true; 4214 down_read(&space_info->groups_sem); 4215 list_for_each_entry(block_group, 4216 &space_info->block_groups[ffe_ctl.index], list) { 4217 struct btrfs_block_group *bg_ret; 4218 4219 /* If the block group is read-only, we can skip it entirely. */ 4220 if (unlikely(block_group->ro)) { 4221 if (for_treelog) 4222 btrfs_clear_treelog_bg(block_group); 4223 continue; 4224 } 4225 4226 btrfs_grab_block_group(block_group, delalloc); 4227 ffe_ctl.search_start = block_group->start; 4228 4229 /* 4230 * this can happen if we end up cycling through all the 4231 * raid types, but we want to make sure we only allocate 4232 * for the proper type. 4233 */ 4234 if (!block_group_bits(block_group, flags)) { 4235 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4236 BTRFS_BLOCK_GROUP_RAID1_MASK | 4237 BTRFS_BLOCK_GROUP_RAID56_MASK | 4238 BTRFS_BLOCK_GROUP_RAID10; 4239 4240 /* 4241 * if they asked for extra copies and this block group 4242 * doesn't provide them, bail. This does allow us to 4243 * fill raid0 from raid1. 4244 */ 4245 if ((flags & extra) && !(block_group->flags & extra)) 4246 goto loop; 4247 4248 /* 4249 * This block group has different flags than we want. 4250 * It's possible that we have MIXED_GROUP flag but no 4251 * block group is mixed. Just skip such block group. 4252 */ 4253 btrfs_release_block_group(block_group, delalloc); 4254 continue; 4255 } 4256 4257 have_block_group: 4258 ffe_ctl.cached = btrfs_block_group_done(block_group); 4259 if (unlikely(!ffe_ctl.cached)) { 4260 ffe_ctl.have_caching_bg = true; 4261 ret = btrfs_cache_block_group(block_group, 0); 4262 4263 /* 4264 * If we get ENOMEM here or something else we want to 4265 * try other block groups, because it may not be fatal. 4266 * However if we can't find anything else we need to 4267 * save our return here so that we return the actual 4268 * error that caused problems, not ENOSPC. 4269 */ 4270 if (ret < 0) { 4271 if (!cache_block_group_error) 4272 cache_block_group_error = ret; 4273 ret = 0; 4274 goto loop; 4275 } 4276 ret = 0; 4277 } 4278 4279 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4280 goto loop; 4281 4282 bg_ret = NULL; 4283 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4284 if (ret == 0) { 4285 if (bg_ret && bg_ret != block_group) { 4286 btrfs_release_block_group(block_group, delalloc); 4287 block_group = bg_ret; 4288 } 4289 } else if (ret == -EAGAIN) { 4290 goto have_block_group; 4291 } else if (ret > 0) { 4292 goto loop; 4293 } 4294 4295 /* Checks */ 4296 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4297 fs_info->stripesize); 4298 4299 /* move on to the next group */ 4300 if (ffe_ctl.search_start + num_bytes > 4301 block_group->start + block_group->length) { 4302 btrfs_add_free_space_unused(block_group, 4303 ffe_ctl.found_offset, num_bytes); 4304 goto loop; 4305 } 4306 4307 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4308 btrfs_add_free_space_unused(block_group, 4309 ffe_ctl.found_offset, 4310 ffe_ctl.search_start - ffe_ctl.found_offset); 4311 4312 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4313 num_bytes, delalloc); 4314 if (ret == -EAGAIN) { 4315 btrfs_add_free_space_unused(block_group, 4316 ffe_ctl.found_offset, num_bytes); 4317 goto loop; 4318 } 4319 btrfs_inc_block_group_reservations(block_group); 4320 4321 /* we are all good, lets return */ 4322 ins->objectid = ffe_ctl.search_start; 4323 ins->offset = num_bytes; 4324 4325 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4326 num_bytes); 4327 btrfs_release_block_group(block_group, delalloc); 4328 break; 4329 loop: 4330 release_block_group(block_group, &ffe_ctl, delalloc); 4331 cond_resched(); 4332 } 4333 up_read(&space_info->groups_sem); 4334 4335 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4336 if (ret > 0) 4337 goto search; 4338 4339 if (ret == -ENOSPC && !cache_block_group_error) { 4340 /* 4341 * Use ffe_ctl->total_free_space as fallback if we can't find 4342 * any contiguous hole. 4343 */ 4344 if (!ffe_ctl.max_extent_size) 4345 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4346 spin_lock(&space_info->lock); 4347 space_info->max_extent_size = ffe_ctl.max_extent_size; 4348 spin_unlock(&space_info->lock); 4349 ins->offset = ffe_ctl.max_extent_size; 4350 } else if (ret == -ENOSPC) { 4351 ret = cache_block_group_error; 4352 } 4353 return ret; 4354 } 4355 4356 /* 4357 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4358 * hole that is at least as big as @num_bytes. 4359 * 4360 * @root - The root that will contain this extent 4361 * 4362 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4363 * is used for accounting purposes. This value differs 4364 * from @num_bytes only in the case of compressed extents. 4365 * 4366 * @num_bytes - Number of bytes to allocate on-disk. 4367 * 4368 * @min_alloc_size - Indicates the minimum amount of space that the 4369 * allocator should try to satisfy. In some cases 4370 * @num_bytes may be larger than what is required and if 4371 * the filesystem is fragmented then allocation fails. 4372 * However, the presence of @min_alloc_size gives a 4373 * chance to try and satisfy the smaller allocation. 4374 * 4375 * @empty_size - A hint that you plan on doing more COW. This is the 4376 * size in bytes the allocator should try to find free 4377 * next to the block it returns. This is just a hint and 4378 * may be ignored by the allocator. 4379 * 4380 * @hint_byte - Hint to the allocator to start searching above the byte 4381 * address passed. It might be ignored. 4382 * 4383 * @ins - This key is modified to record the found hole. It will 4384 * have the following values: 4385 * ins->objectid == start position 4386 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4387 * ins->offset == the size of the hole. 4388 * 4389 * @is_data - Boolean flag indicating whether an extent is 4390 * allocated for data (true) or metadata (false) 4391 * 4392 * @delalloc - Boolean flag indicating whether this allocation is for 4393 * delalloc or not. If 'true' data_rwsem of block groups 4394 * is going to be acquired. 4395 * 4396 * 4397 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4398 * case -ENOSPC is returned then @ins->offset will contain the size of the 4399 * largest available hole the allocator managed to find. 4400 */ 4401 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4402 u64 num_bytes, u64 min_alloc_size, 4403 u64 empty_size, u64 hint_byte, 4404 struct btrfs_key *ins, int is_data, int delalloc) 4405 { 4406 struct btrfs_fs_info *fs_info = root->fs_info; 4407 bool final_tried = num_bytes == min_alloc_size; 4408 u64 flags; 4409 int ret; 4410 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4411 4412 flags = get_alloc_profile_by_root(root, is_data); 4413 again: 4414 WARN_ON(num_bytes < fs_info->sectorsize); 4415 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4416 hint_byte, ins, flags, delalloc); 4417 if (!ret && !is_data) { 4418 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4419 } else if (ret == -ENOSPC) { 4420 if (!final_tried && ins->offset) { 4421 num_bytes = min(num_bytes >> 1, ins->offset); 4422 num_bytes = round_down(num_bytes, 4423 fs_info->sectorsize); 4424 num_bytes = max(num_bytes, min_alloc_size); 4425 ram_bytes = num_bytes; 4426 if (num_bytes == min_alloc_size) 4427 final_tried = true; 4428 goto again; 4429 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4430 struct btrfs_space_info *sinfo; 4431 4432 sinfo = btrfs_find_space_info(fs_info, flags); 4433 btrfs_err(fs_info, 4434 "allocation failed flags %llu, wanted %llu tree-log %d", 4435 flags, num_bytes, for_treelog); 4436 if (sinfo) 4437 btrfs_dump_space_info(fs_info, sinfo, 4438 num_bytes, 1); 4439 } 4440 } 4441 4442 return ret; 4443 } 4444 4445 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4446 u64 start, u64 len, int delalloc) 4447 { 4448 struct btrfs_block_group *cache; 4449 4450 cache = btrfs_lookup_block_group(fs_info, start); 4451 if (!cache) { 4452 btrfs_err(fs_info, "Unable to find block group for %llu", 4453 start); 4454 return -ENOSPC; 4455 } 4456 4457 btrfs_add_free_space(cache, start, len); 4458 btrfs_free_reserved_bytes(cache, len, delalloc); 4459 trace_btrfs_reserved_extent_free(fs_info, start, len); 4460 4461 btrfs_put_block_group(cache); 4462 return 0; 4463 } 4464 4465 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4466 u64 len) 4467 { 4468 struct btrfs_block_group *cache; 4469 int ret = 0; 4470 4471 cache = btrfs_lookup_block_group(trans->fs_info, start); 4472 if (!cache) { 4473 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4474 start); 4475 return -ENOSPC; 4476 } 4477 4478 ret = pin_down_extent(trans, cache, start, len, 1); 4479 btrfs_put_block_group(cache); 4480 return ret; 4481 } 4482 4483 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4484 u64 parent, u64 root_objectid, 4485 u64 flags, u64 owner, u64 offset, 4486 struct btrfs_key *ins, int ref_mod) 4487 { 4488 struct btrfs_fs_info *fs_info = trans->fs_info; 4489 int ret; 4490 struct btrfs_extent_item *extent_item; 4491 struct btrfs_extent_inline_ref *iref; 4492 struct btrfs_path *path; 4493 struct extent_buffer *leaf; 4494 int type; 4495 u32 size; 4496 4497 if (parent > 0) 4498 type = BTRFS_SHARED_DATA_REF_KEY; 4499 else 4500 type = BTRFS_EXTENT_DATA_REF_KEY; 4501 4502 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4503 4504 path = btrfs_alloc_path(); 4505 if (!path) 4506 return -ENOMEM; 4507 4508 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4509 ins, size); 4510 if (ret) { 4511 btrfs_free_path(path); 4512 return ret; 4513 } 4514 4515 leaf = path->nodes[0]; 4516 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4517 struct btrfs_extent_item); 4518 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4519 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4520 btrfs_set_extent_flags(leaf, extent_item, 4521 flags | BTRFS_EXTENT_FLAG_DATA); 4522 4523 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4524 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4525 if (parent > 0) { 4526 struct btrfs_shared_data_ref *ref; 4527 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4528 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4529 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4530 } else { 4531 struct btrfs_extent_data_ref *ref; 4532 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4533 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4534 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4535 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4536 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4537 } 4538 4539 btrfs_mark_buffer_dirty(path->nodes[0]); 4540 btrfs_free_path(path); 4541 4542 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4543 if (ret) 4544 return ret; 4545 4546 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4547 if (ret) { /* -ENOENT, logic error */ 4548 btrfs_err(fs_info, "update block group failed for %llu %llu", 4549 ins->objectid, ins->offset); 4550 BUG(); 4551 } 4552 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4553 return ret; 4554 } 4555 4556 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4557 struct btrfs_delayed_ref_node *node, 4558 struct btrfs_delayed_extent_op *extent_op) 4559 { 4560 struct btrfs_fs_info *fs_info = trans->fs_info; 4561 int ret; 4562 struct btrfs_extent_item *extent_item; 4563 struct btrfs_key extent_key; 4564 struct btrfs_tree_block_info *block_info; 4565 struct btrfs_extent_inline_ref *iref; 4566 struct btrfs_path *path; 4567 struct extent_buffer *leaf; 4568 struct btrfs_delayed_tree_ref *ref; 4569 u32 size = sizeof(*extent_item) + sizeof(*iref); 4570 u64 num_bytes; 4571 u64 flags = extent_op->flags_to_set; 4572 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4573 4574 ref = btrfs_delayed_node_to_tree_ref(node); 4575 4576 extent_key.objectid = node->bytenr; 4577 if (skinny_metadata) { 4578 extent_key.offset = ref->level; 4579 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4580 num_bytes = fs_info->nodesize; 4581 } else { 4582 extent_key.offset = node->num_bytes; 4583 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4584 size += sizeof(*block_info); 4585 num_bytes = node->num_bytes; 4586 } 4587 4588 path = btrfs_alloc_path(); 4589 if (!path) 4590 return -ENOMEM; 4591 4592 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4593 &extent_key, size); 4594 if (ret) { 4595 btrfs_free_path(path); 4596 return ret; 4597 } 4598 4599 leaf = path->nodes[0]; 4600 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4601 struct btrfs_extent_item); 4602 btrfs_set_extent_refs(leaf, extent_item, 1); 4603 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4604 btrfs_set_extent_flags(leaf, extent_item, 4605 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4606 4607 if (skinny_metadata) { 4608 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4609 } else { 4610 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4611 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4612 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4613 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4614 } 4615 4616 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4617 btrfs_set_extent_inline_ref_type(leaf, iref, 4618 BTRFS_SHARED_BLOCK_REF_KEY); 4619 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4620 } else { 4621 btrfs_set_extent_inline_ref_type(leaf, iref, 4622 BTRFS_TREE_BLOCK_REF_KEY); 4623 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4624 } 4625 4626 btrfs_mark_buffer_dirty(leaf); 4627 btrfs_free_path(path); 4628 4629 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4630 num_bytes); 4631 if (ret) 4632 return ret; 4633 4634 ret = btrfs_update_block_group(trans, extent_key.objectid, 4635 fs_info->nodesize, 1); 4636 if (ret) { /* -ENOENT, logic error */ 4637 btrfs_err(fs_info, "update block group failed for %llu %llu", 4638 extent_key.objectid, extent_key.offset); 4639 BUG(); 4640 } 4641 4642 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4643 fs_info->nodesize); 4644 return ret; 4645 } 4646 4647 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4648 struct btrfs_root *root, u64 owner, 4649 u64 offset, u64 ram_bytes, 4650 struct btrfs_key *ins) 4651 { 4652 struct btrfs_ref generic_ref = { 0 }; 4653 4654 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4655 4656 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4657 ins->objectid, ins->offset, 0); 4658 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4659 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4660 4661 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4662 } 4663 4664 /* 4665 * this is used by the tree logging recovery code. It records that 4666 * an extent has been allocated and makes sure to clear the free 4667 * space cache bits as well 4668 */ 4669 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4670 u64 root_objectid, u64 owner, u64 offset, 4671 struct btrfs_key *ins) 4672 { 4673 struct btrfs_fs_info *fs_info = trans->fs_info; 4674 int ret; 4675 struct btrfs_block_group *block_group; 4676 struct btrfs_space_info *space_info; 4677 4678 /* 4679 * Mixed block groups will exclude before processing the log so we only 4680 * need to do the exclude dance if this fs isn't mixed. 4681 */ 4682 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4683 ret = __exclude_logged_extent(fs_info, ins->objectid, 4684 ins->offset); 4685 if (ret) 4686 return ret; 4687 } 4688 4689 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4690 if (!block_group) 4691 return -EINVAL; 4692 4693 space_info = block_group->space_info; 4694 spin_lock(&space_info->lock); 4695 spin_lock(&block_group->lock); 4696 space_info->bytes_reserved += ins->offset; 4697 block_group->reserved += ins->offset; 4698 spin_unlock(&block_group->lock); 4699 spin_unlock(&space_info->lock); 4700 4701 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4702 offset, ins, 1); 4703 if (ret) 4704 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4705 btrfs_put_block_group(block_group); 4706 return ret; 4707 } 4708 4709 static struct extent_buffer * 4710 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4711 u64 bytenr, int level, u64 owner, 4712 enum btrfs_lock_nesting nest) 4713 { 4714 struct btrfs_fs_info *fs_info = root->fs_info; 4715 struct extent_buffer *buf; 4716 4717 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4718 if (IS_ERR(buf)) 4719 return buf; 4720 4721 /* 4722 * Extra safety check in case the extent tree is corrupted and extent 4723 * allocator chooses to use a tree block which is already used and 4724 * locked. 4725 */ 4726 if (buf->lock_owner == current->pid) { 4727 btrfs_err_rl(fs_info, 4728 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4729 buf->start, btrfs_header_owner(buf), current->pid); 4730 free_extent_buffer(buf); 4731 return ERR_PTR(-EUCLEAN); 4732 } 4733 4734 /* 4735 * This needs to stay, because we could allocate a freed block from an 4736 * old tree into a new tree, so we need to make sure this new block is 4737 * set to the appropriate level and owner. 4738 */ 4739 btrfs_set_buffer_lockdep_class(owner, buf, level); 4740 __btrfs_tree_lock(buf, nest); 4741 btrfs_clean_tree_block(buf); 4742 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4743 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4744 4745 set_extent_buffer_uptodate(buf); 4746 4747 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4748 btrfs_set_header_level(buf, level); 4749 btrfs_set_header_bytenr(buf, buf->start); 4750 btrfs_set_header_generation(buf, trans->transid); 4751 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4752 btrfs_set_header_owner(buf, owner); 4753 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4754 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4755 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4756 buf->log_index = root->log_transid % 2; 4757 /* 4758 * we allow two log transactions at a time, use different 4759 * EXTENT bit to differentiate dirty pages. 4760 */ 4761 if (buf->log_index == 0) 4762 set_extent_dirty(&root->dirty_log_pages, buf->start, 4763 buf->start + buf->len - 1, GFP_NOFS); 4764 else 4765 set_extent_new(&root->dirty_log_pages, buf->start, 4766 buf->start + buf->len - 1); 4767 } else { 4768 buf->log_index = -1; 4769 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4770 buf->start + buf->len - 1, GFP_NOFS); 4771 } 4772 /* this returns a buffer locked for blocking */ 4773 return buf; 4774 } 4775 4776 /* 4777 * finds a free extent and does all the dirty work required for allocation 4778 * returns the tree buffer or an ERR_PTR on error. 4779 */ 4780 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4781 struct btrfs_root *root, 4782 u64 parent, u64 root_objectid, 4783 const struct btrfs_disk_key *key, 4784 int level, u64 hint, 4785 u64 empty_size, 4786 enum btrfs_lock_nesting nest) 4787 { 4788 struct btrfs_fs_info *fs_info = root->fs_info; 4789 struct btrfs_key ins; 4790 struct btrfs_block_rsv *block_rsv; 4791 struct extent_buffer *buf; 4792 struct btrfs_delayed_extent_op *extent_op; 4793 struct btrfs_ref generic_ref = { 0 }; 4794 u64 flags = 0; 4795 int ret; 4796 u32 blocksize = fs_info->nodesize; 4797 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4798 4799 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4800 if (btrfs_is_testing(fs_info)) { 4801 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4802 level, root_objectid, nest); 4803 if (!IS_ERR(buf)) 4804 root->alloc_bytenr += blocksize; 4805 return buf; 4806 } 4807 #endif 4808 4809 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4810 if (IS_ERR(block_rsv)) 4811 return ERR_CAST(block_rsv); 4812 4813 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4814 empty_size, hint, &ins, 0, 0); 4815 if (ret) 4816 goto out_unuse; 4817 4818 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4819 root_objectid, nest); 4820 if (IS_ERR(buf)) { 4821 ret = PTR_ERR(buf); 4822 goto out_free_reserved; 4823 } 4824 4825 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4826 if (parent == 0) 4827 parent = ins.objectid; 4828 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4829 } else 4830 BUG_ON(parent > 0); 4831 4832 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4833 extent_op = btrfs_alloc_delayed_extent_op(); 4834 if (!extent_op) { 4835 ret = -ENOMEM; 4836 goto out_free_buf; 4837 } 4838 if (key) 4839 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4840 else 4841 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4842 extent_op->flags_to_set = flags; 4843 extent_op->update_key = skinny_metadata ? false : true; 4844 extent_op->update_flags = true; 4845 extent_op->is_data = false; 4846 extent_op->level = level; 4847 4848 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4849 ins.objectid, ins.offset, parent); 4850 generic_ref.real_root = root->root_key.objectid; 4851 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4852 btrfs_ref_tree_mod(fs_info, &generic_ref); 4853 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4854 if (ret) 4855 goto out_free_delayed; 4856 } 4857 return buf; 4858 4859 out_free_delayed: 4860 btrfs_free_delayed_extent_op(extent_op); 4861 out_free_buf: 4862 free_extent_buffer(buf); 4863 out_free_reserved: 4864 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4865 out_unuse: 4866 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4867 return ERR_PTR(ret); 4868 } 4869 4870 struct walk_control { 4871 u64 refs[BTRFS_MAX_LEVEL]; 4872 u64 flags[BTRFS_MAX_LEVEL]; 4873 struct btrfs_key update_progress; 4874 struct btrfs_key drop_progress; 4875 int drop_level; 4876 int stage; 4877 int level; 4878 int shared_level; 4879 int update_ref; 4880 int keep_locks; 4881 int reada_slot; 4882 int reada_count; 4883 int restarted; 4884 }; 4885 4886 #define DROP_REFERENCE 1 4887 #define UPDATE_BACKREF 2 4888 4889 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4890 struct btrfs_root *root, 4891 struct walk_control *wc, 4892 struct btrfs_path *path) 4893 { 4894 struct btrfs_fs_info *fs_info = root->fs_info; 4895 u64 bytenr; 4896 u64 generation; 4897 u64 refs; 4898 u64 flags; 4899 u32 nritems; 4900 struct btrfs_key key; 4901 struct extent_buffer *eb; 4902 int ret; 4903 int slot; 4904 int nread = 0; 4905 4906 if (path->slots[wc->level] < wc->reada_slot) { 4907 wc->reada_count = wc->reada_count * 2 / 3; 4908 wc->reada_count = max(wc->reada_count, 2); 4909 } else { 4910 wc->reada_count = wc->reada_count * 3 / 2; 4911 wc->reada_count = min_t(int, wc->reada_count, 4912 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4913 } 4914 4915 eb = path->nodes[wc->level]; 4916 nritems = btrfs_header_nritems(eb); 4917 4918 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4919 if (nread >= wc->reada_count) 4920 break; 4921 4922 cond_resched(); 4923 bytenr = btrfs_node_blockptr(eb, slot); 4924 generation = btrfs_node_ptr_generation(eb, slot); 4925 4926 if (slot == path->slots[wc->level]) 4927 goto reada; 4928 4929 if (wc->stage == UPDATE_BACKREF && 4930 generation <= root->root_key.offset) 4931 continue; 4932 4933 /* We don't lock the tree block, it's OK to be racy here */ 4934 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4935 wc->level - 1, 1, &refs, 4936 &flags); 4937 /* We don't care about errors in readahead. */ 4938 if (ret < 0) 4939 continue; 4940 BUG_ON(refs == 0); 4941 4942 if (wc->stage == DROP_REFERENCE) { 4943 if (refs == 1) 4944 goto reada; 4945 4946 if (wc->level == 1 && 4947 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4948 continue; 4949 if (!wc->update_ref || 4950 generation <= root->root_key.offset) 4951 continue; 4952 btrfs_node_key_to_cpu(eb, &key, slot); 4953 ret = btrfs_comp_cpu_keys(&key, 4954 &wc->update_progress); 4955 if (ret < 0) 4956 continue; 4957 } else { 4958 if (wc->level == 1 && 4959 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4960 continue; 4961 } 4962 reada: 4963 btrfs_readahead_node_child(eb, slot); 4964 nread++; 4965 } 4966 wc->reada_slot = slot; 4967 } 4968 4969 /* 4970 * helper to process tree block while walking down the tree. 4971 * 4972 * when wc->stage == UPDATE_BACKREF, this function updates 4973 * back refs for pointers in the block. 4974 * 4975 * NOTE: return value 1 means we should stop walking down. 4976 */ 4977 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4978 struct btrfs_root *root, 4979 struct btrfs_path *path, 4980 struct walk_control *wc, int lookup_info) 4981 { 4982 struct btrfs_fs_info *fs_info = root->fs_info; 4983 int level = wc->level; 4984 struct extent_buffer *eb = path->nodes[level]; 4985 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4986 int ret; 4987 4988 if (wc->stage == UPDATE_BACKREF && 4989 btrfs_header_owner(eb) != root->root_key.objectid) 4990 return 1; 4991 4992 /* 4993 * when reference count of tree block is 1, it won't increase 4994 * again. once full backref flag is set, we never clear it. 4995 */ 4996 if (lookup_info && 4997 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4998 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4999 BUG_ON(!path->locks[level]); 5000 ret = btrfs_lookup_extent_info(trans, fs_info, 5001 eb->start, level, 1, 5002 &wc->refs[level], 5003 &wc->flags[level]); 5004 BUG_ON(ret == -ENOMEM); 5005 if (ret) 5006 return ret; 5007 BUG_ON(wc->refs[level] == 0); 5008 } 5009 5010 if (wc->stage == DROP_REFERENCE) { 5011 if (wc->refs[level] > 1) 5012 return 1; 5013 5014 if (path->locks[level] && !wc->keep_locks) { 5015 btrfs_tree_unlock_rw(eb, path->locks[level]); 5016 path->locks[level] = 0; 5017 } 5018 return 0; 5019 } 5020 5021 /* wc->stage == UPDATE_BACKREF */ 5022 if (!(wc->flags[level] & flag)) { 5023 BUG_ON(!path->locks[level]); 5024 ret = btrfs_inc_ref(trans, root, eb, 1); 5025 BUG_ON(ret); /* -ENOMEM */ 5026 ret = btrfs_dec_ref(trans, root, eb, 0); 5027 BUG_ON(ret); /* -ENOMEM */ 5028 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5029 btrfs_header_level(eb), 0); 5030 BUG_ON(ret); /* -ENOMEM */ 5031 wc->flags[level] |= flag; 5032 } 5033 5034 /* 5035 * the block is shared by multiple trees, so it's not good to 5036 * keep the tree lock 5037 */ 5038 if (path->locks[level] && level > 0) { 5039 btrfs_tree_unlock_rw(eb, path->locks[level]); 5040 path->locks[level] = 0; 5041 } 5042 return 0; 5043 } 5044 5045 /* 5046 * This is used to verify a ref exists for this root to deal with a bug where we 5047 * would have a drop_progress key that hadn't been updated properly. 5048 */ 5049 static int check_ref_exists(struct btrfs_trans_handle *trans, 5050 struct btrfs_root *root, u64 bytenr, u64 parent, 5051 int level) 5052 { 5053 struct btrfs_path *path; 5054 struct btrfs_extent_inline_ref *iref; 5055 int ret; 5056 5057 path = btrfs_alloc_path(); 5058 if (!path) 5059 return -ENOMEM; 5060 5061 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5062 root->fs_info->nodesize, parent, 5063 root->root_key.objectid, level, 0); 5064 btrfs_free_path(path); 5065 if (ret == -ENOENT) 5066 return 0; 5067 if (ret < 0) 5068 return ret; 5069 return 1; 5070 } 5071 5072 /* 5073 * helper to process tree block pointer. 5074 * 5075 * when wc->stage == DROP_REFERENCE, this function checks 5076 * reference count of the block pointed to. if the block 5077 * is shared and we need update back refs for the subtree 5078 * rooted at the block, this function changes wc->stage to 5079 * UPDATE_BACKREF. if the block is shared and there is no 5080 * need to update back, this function drops the reference 5081 * to the block. 5082 * 5083 * NOTE: return value 1 means we should stop walking down. 5084 */ 5085 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5086 struct btrfs_root *root, 5087 struct btrfs_path *path, 5088 struct walk_control *wc, int *lookup_info) 5089 { 5090 struct btrfs_fs_info *fs_info = root->fs_info; 5091 u64 bytenr; 5092 u64 generation; 5093 u64 parent; 5094 struct btrfs_key key; 5095 struct btrfs_key first_key; 5096 struct btrfs_ref ref = { 0 }; 5097 struct extent_buffer *next; 5098 int level = wc->level; 5099 int reada = 0; 5100 int ret = 0; 5101 bool need_account = false; 5102 5103 generation = btrfs_node_ptr_generation(path->nodes[level], 5104 path->slots[level]); 5105 /* 5106 * if the lower level block was created before the snapshot 5107 * was created, we know there is no need to update back refs 5108 * for the subtree 5109 */ 5110 if (wc->stage == UPDATE_BACKREF && 5111 generation <= root->root_key.offset) { 5112 *lookup_info = 1; 5113 return 1; 5114 } 5115 5116 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5117 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5118 path->slots[level]); 5119 5120 next = find_extent_buffer(fs_info, bytenr); 5121 if (!next) { 5122 next = btrfs_find_create_tree_block(fs_info, bytenr, 5123 root->root_key.objectid, level - 1); 5124 if (IS_ERR(next)) 5125 return PTR_ERR(next); 5126 reada = 1; 5127 } 5128 btrfs_tree_lock(next); 5129 5130 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5131 &wc->refs[level - 1], 5132 &wc->flags[level - 1]); 5133 if (ret < 0) 5134 goto out_unlock; 5135 5136 if (unlikely(wc->refs[level - 1] == 0)) { 5137 btrfs_err(fs_info, "Missing references."); 5138 ret = -EIO; 5139 goto out_unlock; 5140 } 5141 *lookup_info = 0; 5142 5143 if (wc->stage == DROP_REFERENCE) { 5144 if (wc->refs[level - 1] > 1) { 5145 need_account = true; 5146 if (level == 1 && 5147 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5148 goto skip; 5149 5150 if (!wc->update_ref || 5151 generation <= root->root_key.offset) 5152 goto skip; 5153 5154 btrfs_node_key_to_cpu(path->nodes[level], &key, 5155 path->slots[level]); 5156 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5157 if (ret < 0) 5158 goto skip; 5159 5160 wc->stage = UPDATE_BACKREF; 5161 wc->shared_level = level - 1; 5162 } 5163 } else { 5164 if (level == 1 && 5165 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5166 goto skip; 5167 } 5168 5169 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5170 btrfs_tree_unlock(next); 5171 free_extent_buffer(next); 5172 next = NULL; 5173 *lookup_info = 1; 5174 } 5175 5176 if (!next) { 5177 if (reada && level == 1) 5178 reada_walk_down(trans, root, wc, path); 5179 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5180 generation, level - 1, &first_key); 5181 if (IS_ERR(next)) { 5182 return PTR_ERR(next); 5183 } else if (!extent_buffer_uptodate(next)) { 5184 free_extent_buffer(next); 5185 return -EIO; 5186 } 5187 btrfs_tree_lock(next); 5188 } 5189 5190 level--; 5191 ASSERT(level == btrfs_header_level(next)); 5192 if (level != btrfs_header_level(next)) { 5193 btrfs_err(root->fs_info, "mismatched level"); 5194 ret = -EIO; 5195 goto out_unlock; 5196 } 5197 path->nodes[level] = next; 5198 path->slots[level] = 0; 5199 path->locks[level] = BTRFS_WRITE_LOCK; 5200 wc->level = level; 5201 if (wc->level == 1) 5202 wc->reada_slot = 0; 5203 return 0; 5204 skip: 5205 wc->refs[level - 1] = 0; 5206 wc->flags[level - 1] = 0; 5207 if (wc->stage == DROP_REFERENCE) { 5208 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5209 parent = path->nodes[level]->start; 5210 } else { 5211 ASSERT(root->root_key.objectid == 5212 btrfs_header_owner(path->nodes[level])); 5213 if (root->root_key.objectid != 5214 btrfs_header_owner(path->nodes[level])) { 5215 btrfs_err(root->fs_info, 5216 "mismatched block owner"); 5217 ret = -EIO; 5218 goto out_unlock; 5219 } 5220 parent = 0; 5221 } 5222 5223 /* 5224 * If we had a drop_progress we need to verify the refs are set 5225 * as expected. If we find our ref then we know that from here 5226 * on out everything should be correct, and we can clear the 5227 * ->restarted flag. 5228 */ 5229 if (wc->restarted) { 5230 ret = check_ref_exists(trans, root, bytenr, parent, 5231 level - 1); 5232 if (ret < 0) 5233 goto out_unlock; 5234 if (ret == 0) 5235 goto no_delete; 5236 ret = 0; 5237 wc->restarted = 0; 5238 } 5239 5240 /* 5241 * Reloc tree doesn't contribute to qgroup numbers, and we have 5242 * already accounted them at merge time (replace_path), 5243 * thus we could skip expensive subtree trace here. 5244 */ 5245 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5246 need_account) { 5247 ret = btrfs_qgroup_trace_subtree(trans, next, 5248 generation, level - 1); 5249 if (ret) { 5250 btrfs_err_rl(fs_info, 5251 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5252 ret); 5253 } 5254 } 5255 5256 /* 5257 * We need to update the next key in our walk control so we can 5258 * update the drop_progress key accordingly. We don't care if 5259 * find_next_key doesn't find a key because that means we're at 5260 * the end and are going to clean up now. 5261 */ 5262 wc->drop_level = level; 5263 find_next_key(path, level, &wc->drop_progress); 5264 5265 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5266 fs_info->nodesize, parent); 5267 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5268 ret = btrfs_free_extent(trans, &ref); 5269 if (ret) 5270 goto out_unlock; 5271 } 5272 no_delete: 5273 *lookup_info = 1; 5274 ret = 1; 5275 5276 out_unlock: 5277 btrfs_tree_unlock(next); 5278 free_extent_buffer(next); 5279 5280 return ret; 5281 } 5282 5283 /* 5284 * helper to process tree block while walking up the tree. 5285 * 5286 * when wc->stage == DROP_REFERENCE, this function drops 5287 * reference count on the block. 5288 * 5289 * when wc->stage == UPDATE_BACKREF, this function changes 5290 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5291 * to UPDATE_BACKREF previously while processing the block. 5292 * 5293 * NOTE: return value 1 means we should stop walking up. 5294 */ 5295 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5296 struct btrfs_root *root, 5297 struct btrfs_path *path, 5298 struct walk_control *wc) 5299 { 5300 struct btrfs_fs_info *fs_info = root->fs_info; 5301 int ret; 5302 int level = wc->level; 5303 struct extent_buffer *eb = path->nodes[level]; 5304 u64 parent = 0; 5305 5306 if (wc->stage == UPDATE_BACKREF) { 5307 BUG_ON(wc->shared_level < level); 5308 if (level < wc->shared_level) 5309 goto out; 5310 5311 ret = find_next_key(path, level + 1, &wc->update_progress); 5312 if (ret > 0) 5313 wc->update_ref = 0; 5314 5315 wc->stage = DROP_REFERENCE; 5316 wc->shared_level = -1; 5317 path->slots[level] = 0; 5318 5319 /* 5320 * check reference count again if the block isn't locked. 5321 * we should start walking down the tree again if reference 5322 * count is one. 5323 */ 5324 if (!path->locks[level]) { 5325 BUG_ON(level == 0); 5326 btrfs_tree_lock(eb); 5327 path->locks[level] = BTRFS_WRITE_LOCK; 5328 5329 ret = btrfs_lookup_extent_info(trans, fs_info, 5330 eb->start, level, 1, 5331 &wc->refs[level], 5332 &wc->flags[level]); 5333 if (ret < 0) { 5334 btrfs_tree_unlock_rw(eb, path->locks[level]); 5335 path->locks[level] = 0; 5336 return ret; 5337 } 5338 BUG_ON(wc->refs[level] == 0); 5339 if (wc->refs[level] == 1) { 5340 btrfs_tree_unlock_rw(eb, path->locks[level]); 5341 path->locks[level] = 0; 5342 return 1; 5343 } 5344 } 5345 } 5346 5347 /* wc->stage == DROP_REFERENCE */ 5348 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5349 5350 if (wc->refs[level] == 1) { 5351 if (level == 0) { 5352 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5353 ret = btrfs_dec_ref(trans, root, eb, 1); 5354 else 5355 ret = btrfs_dec_ref(trans, root, eb, 0); 5356 BUG_ON(ret); /* -ENOMEM */ 5357 if (is_fstree(root->root_key.objectid)) { 5358 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5359 if (ret) { 5360 btrfs_err_rl(fs_info, 5361 "error %d accounting leaf items, quota is out of sync, rescan required", 5362 ret); 5363 } 5364 } 5365 } 5366 /* make block locked assertion in btrfs_clean_tree_block happy */ 5367 if (!path->locks[level] && 5368 btrfs_header_generation(eb) == trans->transid) { 5369 btrfs_tree_lock(eb); 5370 path->locks[level] = BTRFS_WRITE_LOCK; 5371 } 5372 btrfs_clean_tree_block(eb); 5373 } 5374 5375 if (eb == root->node) { 5376 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5377 parent = eb->start; 5378 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5379 goto owner_mismatch; 5380 } else { 5381 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5382 parent = path->nodes[level + 1]->start; 5383 else if (root->root_key.objectid != 5384 btrfs_header_owner(path->nodes[level + 1])) 5385 goto owner_mismatch; 5386 } 5387 5388 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5389 out: 5390 wc->refs[level] = 0; 5391 wc->flags[level] = 0; 5392 return 0; 5393 5394 owner_mismatch: 5395 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5396 btrfs_header_owner(eb), root->root_key.objectid); 5397 return -EUCLEAN; 5398 } 5399 5400 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5401 struct btrfs_root *root, 5402 struct btrfs_path *path, 5403 struct walk_control *wc) 5404 { 5405 int level = wc->level; 5406 int lookup_info = 1; 5407 int ret; 5408 5409 while (level >= 0) { 5410 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5411 if (ret > 0) 5412 break; 5413 5414 if (level == 0) 5415 break; 5416 5417 if (path->slots[level] >= 5418 btrfs_header_nritems(path->nodes[level])) 5419 break; 5420 5421 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5422 if (ret > 0) { 5423 path->slots[level]++; 5424 continue; 5425 } else if (ret < 0) 5426 return ret; 5427 level = wc->level; 5428 } 5429 return 0; 5430 } 5431 5432 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5433 struct btrfs_root *root, 5434 struct btrfs_path *path, 5435 struct walk_control *wc, int max_level) 5436 { 5437 int level = wc->level; 5438 int ret; 5439 5440 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5441 while (level < max_level && path->nodes[level]) { 5442 wc->level = level; 5443 if (path->slots[level] + 1 < 5444 btrfs_header_nritems(path->nodes[level])) { 5445 path->slots[level]++; 5446 return 0; 5447 } else { 5448 ret = walk_up_proc(trans, root, path, wc); 5449 if (ret > 0) 5450 return 0; 5451 if (ret < 0) 5452 return ret; 5453 5454 if (path->locks[level]) { 5455 btrfs_tree_unlock_rw(path->nodes[level], 5456 path->locks[level]); 5457 path->locks[level] = 0; 5458 } 5459 free_extent_buffer(path->nodes[level]); 5460 path->nodes[level] = NULL; 5461 level++; 5462 } 5463 } 5464 return 1; 5465 } 5466 5467 /* 5468 * drop a subvolume tree. 5469 * 5470 * this function traverses the tree freeing any blocks that only 5471 * referenced by the tree. 5472 * 5473 * when a shared tree block is found. this function decreases its 5474 * reference count by one. if update_ref is true, this function 5475 * also make sure backrefs for the shared block and all lower level 5476 * blocks are properly updated. 5477 * 5478 * If called with for_reloc == 0, may exit early with -EAGAIN 5479 */ 5480 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5481 { 5482 struct btrfs_fs_info *fs_info = root->fs_info; 5483 struct btrfs_path *path; 5484 struct btrfs_trans_handle *trans; 5485 struct btrfs_root *tree_root = fs_info->tree_root; 5486 struct btrfs_root_item *root_item = &root->root_item; 5487 struct walk_control *wc; 5488 struct btrfs_key key; 5489 int err = 0; 5490 int ret; 5491 int level; 5492 bool root_dropped = false; 5493 5494 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5495 5496 path = btrfs_alloc_path(); 5497 if (!path) { 5498 err = -ENOMEM; 5499 goto out; 5500 } 5501 5502 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5503 if (!wc) { 5504 btrfs_free_path(path); 5505 err = -ENOMEM; 5506 goto out; 5507 } 5508 5509 /* 5510 * Use join to avoid potential EINTR from transaction start. See 5511 * wait_reserve_ticket and the whole reservation callchain. 5512 */ 5513 if (for_reloc) 5514 trans = btrfs_join_transaction(tree_root); 5515 else 5516 trans = btrfs_start_transaction(tree_root, 0); 5517 if (IS_ERR(trans)) { 5518 err = PTR_ERR(trans); 5519 goto out_free; 5520 } 5521 5522 err = btrfs_run_delayed_items(trans); 5523 if (err) 5524 goto out_end_trans; 5525 5526 /* 5527 * This will help us catch people modifying the fs tree while we're 5528 * dropping it. It is unsafe to mess with the fs tree while it's being 5529 * dropped as we unlock the root node and parent nodes as we walk down 5530 * the tree, assuming nothing will change. If something does change 5531 * then we'll have stale information and drop references to blocks we've 5532 * already dropped. 5533 */ 5534 set_bit(BTRFS_ROOT_DELETING, &root->state); 5535 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5536 level = btrfs_header_level(root->node); 5537 path->nodes[level] = btrfs_lock_root_node(root); 5538 path->slots[level] = 0; 5539 path->locks[level] = BTRFS_WRITE_LOCK; 5540 memset(&wc->update_progress, 0, 5541 sizeof(wc->update_progress)); 5542 } else { 5543 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5544 memcpy(&wc->update_progress, &key, 5545 sizeof(wc->update_progress)); 5546 5547 level = btrfs_root_drop_level(root_item); 5548 BUG_ON(level == 0); 5549 path->lowest_level = level; 5550 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5551 path->lowest_level = 0; 5552 if (ret < 0) { 5553 err = ret; 5554 goto out_end_trans; 5555 } 5556 WARN_ON(ret > 0); 5557 5558 /* 5559 * unlock our path, this is safe because only this 5560 * function is allowed to delete this snapshot 5561 */ 5562 btrfs_unlock_up_safe(path, 0); 5563 5564 level = btrfs_header_level(root->node); 5565 while (1) { 5566 btrfs_tree_lock(path->nodes[level]); 5567 path->locks[level] = BTRFS_WRITE_LOCK; 5568 5569 ret = btrfs_lookup_extent_info(trans, fs_info, 5570 path->nodes[level]->start, 5571 level, 1, &wc->refs[level], 5572 &wc->flags[level]); 5573 if (ret < 0) { 5574 err = ret; 5575 goto out_end_trans; 5576 } 5577 BUG_ON(wc->refs[level] == 0); 5578 5579 if (level == btrfs_root_drop_level(root_item)) 5580 break; 5581 5582 btrfs_tree_unlock(path->nodes[level]); 5583 path->locks[level] = 0; 5584 WARN_ON(wc->refs[level] != 1); 5585 level--; 5586 } 5587 } 5588 5589 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5590 wc->level = level; 5591 wc->shared_level = -1; 5592 wc->stage = DROP_REFERENCE; 5593 wc->update_ref = update_ref; 5594 wc->keep_locks = 0; 5595 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5596 5597 while (1) { 5598 5599 ret = walk_down_tree(trans, root, path, wc); 5600 if (ret < 0) { 5601 err = ret; 5602 break; 5603 } 5604 5605 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5606 if (ret < 0) { 5607 err = ret; 5608 break; 5609 } 5610 5611 if (ret > 0) { 5612 BUG_ON(wc->stage != DROP_REFERENCE); 5613 break; 5614 } 5615 5616 if (wc->stage == DROP_REFERENCE) { 5617 wc->drop_level = wc->level; 5618 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5619 &wc->drop_progress, 5620 path->slots[wc->drop_level]); 5621 } 5622 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5623 &wc->drop_progress); 5624 btrfs_set_root_drop_level(root_item, wc->drop_level); 5625 5626 BUG_ON(wc->level == 0); 5627 if (btrfs_should_end_transaction(trans) || 5628 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5629 ret = btrfs_update_root(trans, tree_root, 5630 &root->root_key, 5631 root_item); 5632 if (ret) { 5633 btrfs_abort_transaction(trans, ret); 5634 err = ret; 5635 goto out_end_trans; 5636 } 5637 5638 btrfs_end_transaction_throttle(trans); 5639 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5640 btrfs_debug(fs_info, 5641 "drop snapshot early exit"); 5642 err = -EAGAIN; 5643 goto out_free; 5644 } 5645 5646 /* 5647 * Use join to avoid potential EINTR from transaction 5648 * start. See wait_reserve_ticket and the whole 5649 * reservation callchain. 5650 */ 5651 if (for_reloc) 5652 trans = btrfs_join_transaction(tree_root); 5653 else 5654 trans = btrfs_start_transaction(tree_root, 0); 5655 if (IS_ERR(trans)) { 5656 err = PTR_ERR(trans); 5657 goto out_free; 5658 } 5659 } 5660 } 5661 btrfs_release_path(path); 5662 if (err) 5663 goto out_end_trans; 5664 5665 ret = btrfs_del_root(trans, &root->root_key); 5666 if (ret) { 5667 btrfs_abort_transaction(trans, ret); 5668 err = ret; 5669 goto out_end_trans; 5670 } 5671 5672 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5673 ret = btrfs_find_root(tree_root, &root->root_key, path, 5674 NULL, NULL); 5675 if (ret < 0) { 5676 btrfs_abort_transaction(trans, ret); 5677 err = ret; 5678 goto out_end_trans; 5679 } else if (ret > 0) { 5680 /* if we fail to delete the orphan item this time 5681 * around, it'll get picked up the next time. 5682 * 5683 * The most common failure here is just -ENOENT. 5684 */ 5685 btrfs_del_orphan_item(trans, tree_root, 5686 root->root_key.objectid); 5687 } 5688 } 5689 5690 /* 5691 * This subvolume is going to be completely dropped, and won't be 5692 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5693 * commit transaction time. So free it here manually. 5694 */ 5695 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5696 btrfs_qgroup_free_meta_all_pertrans(root); 5697 5698 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5699 btrfs_add_dropped_root(trans, root); 5700 else 5701 btrfs_put_root(root); 5702 root_dropped = true; 5703 out_end_trans: 5704 btrfs_end_transaction_throttle(trans); 5705 out_free: 5706 kfree(wc); 5707 btrfs_free_path(path); 5708 out: 5709 /* 5710 * So if we need to stop dropping the snapshot for whatever reason we 5711 * need to make sure to add it back to the dead root list so that we 5712 * keep trying to do the work later. This also cleans up roots if we 5713 * don't have it in the radix (like when we recover after a power fail 5714 * or unmount) so we don't leak memory. 5715 */ 5716 if (!for_reloc && !root_dropped) 5717 btrfs_add_dead_root(root); 5718 return err; 5719 } 5720 5721 /* 5722 * drop subtree rooted at tree block 'node'. 5723 * 5724 * NOTE: this function will unlock and release tree block 'node' 5725 * only used by relocation code 5726 */ 5727 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5728 struct btrfs_root *root, 5729 struct extent_buffer *node, 5730 struct extent_buffer *parent) 5731 { 5732 struct btrfs_fs_info *fs_info = root->fs_info; 5733 struct btrfs_path *path; 5734 struct walk_control *wc; 5735 int level; 5736 int parent_level; 5737 int ret = 0; 5738 int wret; 5739 5740 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5741 5742 path = btrfs_alloc_path(); 5743 if (!path) 5744 return -ENOMEM; 5745 5746 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5747 if (!wc) { 5748 btrfs_free_path(path); 5749 return -ENOMEM; 5750 } 5751 5752 btrfs_assert_tree_locked(parent); 5753 parent_level = btrfs_header_level(parent); 5754 atomic_inc(&parent->refs); 5755 path->nodes[parent_level] = parent; 5756 path->slots[parent_level] = btrfs_header_nritems(parent); 5757 5758 btrfs_assert_tree_locked(node); 5759 level = btrfs_header_level(node); 5760 path->nodes[level] = node; 5761 path->slots[level] = 0; 5762 path->locks[level] = BTRFS_WRITE_LOCK; 5763 5764 wc->refs[parent_level] = 1; 5765 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5766 wc->level = level; 5767 wc->shared_level = -1; 5768 wc->stage = DROP_REFERENCE; 5769 wc->update_ref = 0; 5770 wc->keep_locks = 1; 5771 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5772 5773 while (1) { 5774 wret = walk_down_tree(trans, root, path, wc); 5775 if (wret < 0) { 5776 ret = wret; 5777 break; 5778 } 5779 5780 wret = walk_up_tree(trans, root, path, wc, parent_level); 5781 if (wret < 0) 5782 ret = wret; 5783 if (wret != 0) 5784 break; 5785 } 5786 5787 kfree(wc); 5788 btrfs_free_path(path); 5789 return ret; 5790 } 5791 5792 /* 5793 * helper to account the unused space of all the readonly block group in the 5794 * space_info. takes mirrors into account. 5795 */ 5796 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5797 { 5798 struct btrfs_block_group *block_group; 5799 u64 free_bytes = 0; 5800 int factor; 5801 5802 /* It's df, we don't care if it's racy */ 5803 if (list_empty(&sinfo->ro_bgs)) 5804 return 0; 5805 5806 spin_lock(&sinfo->lock); 5807 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5808 spin_lock(&block_group->lock); 5809 5810 if (!block_group->ro) { 5811 spin_unlock(&block_group->lock); 5812 continue; 5813 } 5814 5815 factor = btrfs_bg_type_to_factor(block_group->flags); 5816 free_bytes += (block_group->length - 5817 block_group->used) * factor; 5818 5819 spin_unlock(&block_group->lock); 5820 } 5821 spin_unlock(&sinfo->lock); 5822 5823 return free_bytes; 5824 } 5825 5826 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5827 u64 start, u64 end) 5828 { 5829 return unpin_extent_range(fs_info, start, end, false); 5830 } 5831 5832 /* 5833 * It used to be that old block groups would be left around forever. 5834 * Iterating over them would be enough to trim unused space. Since we 5835 * now automatically remove them, we also need to iterate over unallocated 5836 * space. 5837 * 5838 * We don't want a transaction for this since the discard may take a 5839 * substantial amount of time. We don't require that a transaction be 5840 * running, but we do need to take a running transaction into account 5841 * to ensure that we're not discarding chunks that were released or 5842 * allocated in the current transaction. 5843 * 5844 * Holding the chunks lock will prevent other threads from allocating 5845 * or releasing chunks, but it won't prevent a running transaction 5846 * from committing and releasing the memory that the pending chunks 5847 * list head uses. For that, we need to take a reference to the 5848 * transaction and hold the commit root sem. We only need to hold 5849 * it while performing the free space search since we have already 5850 * held back allocations. 5851 */ 5852 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5853 { 5854 u64 start = SZ_1M, len = 0, end = 0; 5855 int ret; 5856 5857 *trimmed = 0; 5858 5859 /* Discard not supported = nothing to do. */ 5860 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5861 return 0; 5862 5863 /* Not writable = nothing to do. */ 5864 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5865 return 0; 5866 5867 /* No free space = nothing to do. */ 5868 if (device->total_bytes <= device->bytes_used) 5869 return 0; 5870 5871 ret = 0; 5872 5873 while (1) { 5874 struct btrfs_fs_info *fs_info = device->fs_info; 5875 u64 bytes; 5876 5877 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5878 if (ret) 5879 break; 5880 5881 find_first_clear_extent_bit(&device->alloc_state, start, 5882 &start, &end, 5883 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5884 5885 /* Check if there are any CHUNK_* bits left */ 5886 if (start > device->total_bytes) { 5887 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5888 btrfs_warn_in_rcu(fs_info, 5889 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5890 start, end - start + 1, 5891 rcu_str_deref(device->name), 5892 device->total_bytes); 5893 mutex_unlock(&fs_info->chunk_mutex); 5894 ret = 0; 5895 break; 5896 } 5897 5898 /* Ensure we skip the reserved area in the first 1M */ 5899 start = max_t(u64, start, SZ_1M); 5900 5901 /* 5902 * If find_first_clear_extent_bit find a range that spans the 5903 * end of the device it will set end to -1, in this case it's up 5904 * to the caller to trim the value to the size of the device. 5905 */ 5906 end = min(end, device->total_bytes - 1); 5907 5908 len = end - start + 1; 5909 5910 /* We didn't find any extents */ 5911 if (!len) { 5912 mutex_unlock(&fs_info->chunk_mutex); 5913 ret = 0; 5914 break; 5915 } 5916 5917 ret = btrfs_issue_discard(device->bdev, start, len, 5918 &bytes); 5919 if (!ret) 5920 set_extent_bits(&device->alloc_state, start, 5921 start + bytes - 1, 5922 CHUNK_TRIMMED); 5923 mutex_unlock(&fs_info->chunk_mutex); 5924 5925 if (ret) 5926 break; 5927 5928 start += len; 5929 *trimmed += bytes; 5930 5931 if (fatal_signal_pending(current)) { 5932 ret = -ERESTARTSYS; 5933 break; 5934 } 5935 5936 cond_resched(); 5937 } 5938 5939 return ret; 5940 } 5941 5942 /* 5943 * Trim the whole filesystem by: 5944 * 1) trimming the free space in each block group 5945 * 2) trimming the unallocated space on each device 5946 * 5947 * This will also continue trimming even if a block group or device encounters 5948 * an error. The return value will be the last error, or 0 if nothing bad 5949 * happens. 5950 */ 5951 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5952 { 5953 struct btrfs_block_group *cache = NULL; 5954 struct btrfs_device *device; 5955 struct list_head *devices; 5956 u64 group_trimmed; 5957 u64 range_end = U64_MAX; 5958 u64 start; 5959 u64 end; 5960 u64 trimmed = 0; 5961 u64 bg_failed = 0; 5962 u64 dev_failed = 0; 5963 int bg_ret = 0; 5964 int dev_ret = 0; 5965 int ret = 0; 5966 5967 /* 5968 * Check range overflow if range->len is set. 5969 * The default range->len is U64_MAX. 5970 */ 5971 if (range->len != U64_MAX && 5972 check_add_overflow(range->start, range->len, &range_end)) 5973 return -EINVAL; 5974 5975 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5976 for (; cache; cache = btrfs_next_block_group(cache)) { 5977 if (cache->start >= range_end) { 5978 btrfs_put_block_group(cache); 5979 break; 5980 } 5981 5982 start = max(range->start, cache->start); 5983 end = min(range_end, cache->start + cache->length); 5984 5985 if (end - start >= range->minlen) { 5986 if (!btrfs_block_group_done(cache)) { 5987 ret = btrfs_cache_block_group(cache, 0); 5988 if (ret) { 5989 bg_failed++; 5990 bg_ret = ret; 5991 continue; 5992 } 5993 ret = btrfs_wait_block_group_cache_done(cache); 5994 if (ret) { 5995 bg_failed++; 5996 bg_ret = ret; 5997 continue; 5998 } 5999 } 6000 ret = btrfs_trim_block_group(cache, 6001 &group_trimmed, 6002 start, 6003 end, 6004 range->minlen); 6005 6006 trimmed += group_trimmed; 6007 if (ret) { 6008 bg_failed++; 6009 bg_ret = ret; 6010 continue; 6011 } 6012 } 6013 } 6014 6015 if (bg_failed) 6016 btrfs_warn(fs_info, 6017 "failed to trim %llu block group(s), last error %d", 6018 bg_failed, bg_ret); 6019 mutex_lock(&fs_info->fs_devices->device_list_mutex); 6020 devices = &fs_info->fs_devices->devices; 6021 list_for_each_entry(device, devices, dev_list) { 6022 ret = btrfs_trim_free_extents(device, &group_trimmed); 6023 if (ret) { 6024 dev_failed++; 6025 dev_ret = ret; 6026 break; 6027 } 6028 6029 trimmed += group_trimmed; 6030 } 6031 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 6032 6033 if (dev_failed) 6034 btrfs_warn(fs_info, 6035 "failed to trim %llu device(s), last error %d", 6036 dev_failed, dev_ret); 6037 range->len = trimmed; 6038 if (bg_ret) 6039 return bg_ret; 6040 return dev_ret; 6041 } 6042