xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 /*
64  * Control how reservations are dealt with.
65  *
66  * RESERVE_FREE - freeing a reservation.
67  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68  *   ENOSPC accounting
69  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70  *   bytes_may_use as the ENOSPC accounting is done elsewhere
71  */
72 enum {
73 	RESERVE_FREE = 0,
74 	RESERVE_ALLOC = 1,
75 	RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77 
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 			      struct btrfs_root *root, u64 bytenr,
80 			      u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 				struct btrfs_root *root,
83 				struct btrfs_delayed_ref_node *node, u64 parent,
84 				u64 root_objectid, u64 owner_objectid,
85 				u64 owner_offset, int refs_to_drop,
86 				struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 				struct btrfs_block_group_cache *block_group)
338 {
339 	u64 start = block_group->key.objectid;
340 	u64 len = block_group->key.offset;
341 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 		root->nodesize : root->sectorsize;
343 	u64 step = chunk << 1;
344 
345 	while (len > chunk) {
346 		btrfs_remove_free_space(block_group, start, chunk);
347 		start += step;
348 		if (len < step)
349 			len = 0;
350 		else
351 			len -= step;
352 	}
353 }
354 #endif
355 
356 /*
357  * this is only called by cache_block_group, since we could have freed extents
358  * we need to check the pinned_extents for any extents that can't be used yet
359  * since their free space will be released as soon as the transaction commits.
360  */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 		       struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364 	u64 extent_start, extent_end, size, total_added = 0;
365 	int ret;
366 
367 	while (start < end) {
368 		ret = find_first_extent_bit(info->pinned_extents, start,
369 					    &extent_start, &extent_end,
370 					    EXTENT_DIRTY | EXTENT_UPTODATE,
371 					    NULL);
372 		if (ret)
373 			break;
374 
375 		if (extent_start <= start) {
376 			start = extent_end + 1;
377 		} else if (extent_start > start && extent_start < end) {
378 			size = extent_start - start;
379 			total_added += size;
380 			ret = btrfs_add_free_space(block_group, start,
381 						   size);
382 			BUG_ON(ret); /* -ENOMEM or logic error */
383 			start = extent_end + 1;
384 		} else {
385 			break;
386 		}
387 	}
388 
389 	if (start < end) {
390 		size = end - start;
391 		total_added += size;
392 		ret = btrfs_add_free_space(block_group, start, size);
393 		BUG_ON(ret); /* -ENOMEM or logic error */
394 	}
395 
396 	return total_added;
397 }
398 
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401 	struct btrfs_block_group_cache *block_group;
402 	struct btrfs_fs_info *fs_info;
403 	struct btrfs_root *extent_root;
404 	struct btrfs_path *path;
405 	struct extent_buffer *leaf;
406 	struct btrfs_key key;
407 	u64 total_found = 0;
408 	u64 last = 0;
409 	u32 nritems;
410 	int ret;
411 	bool wakeup = true;
412 
413 	block_group = caching_ctl->block_group;
414 	fs_info = block_group->fs_info;
415 	extent_root = fs_info->extent_root;
416 
417 	path = btrfs_alloc_path();
418 	if (!path)
419 		return -ENOMEM;
420 
421 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422 
423 #ifdef CONFIG_BTRFS_DEBUG
424 	/*
425 	 * If we're fragmenting we don't want to make anybody think we can
426 	 * allocate from this block group until we've had a chance to fragment
427 	 * the free space.
428 	 */
429 	if (btrfs_should_fragment_free_space(extent_root, block_group))
430 		wakeup = false;
431 #endif
432 	/*
433 	 * We don't want to deadlock with somebody trying to allocate a new
434 	 * extent for the extent root while also trying to search the extent
435 	 * root to add free space.  So we skip locking and search the commit
436 	 * root, since its read-only
437 	 */
438 	path->skip_locking = 1;
439 	path->search_commit_root = 1;
440 	path->reada = READA_FORWARD;
441 
442 	key.objectid = last;
443 	key.offset = 0;
444 	key.type = BTRFS_EXTENT_ITEM_KEY;
445 
446 next:
447 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 	if (ret < 0)
449 		goto out;
450 
451 	leaf = path->nodes[0];
452 	nritems = btrfs_header_nritems(leaf);
453 
454 	while (1) {
455 		if (btrfs_fs_closing(fs_info) > 1) {
456 			last = (u64)-1;
457 			break;
458 		}
459 
460 		if (path->slots[0] < nritems) {
461 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 		} else {
463 			ret = find_next_key(path, 0, &key);
464 			if (ret)
465 				break;
466 
467 			if (need_resched() ||
468 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
469 				if (wakeup)
470 					caching_ctl->progress = last;
471 				btrfs_release_path(path);
472 				up_read(&fs_info->commit_root_sem);
473 				mutex_unlock(&caching_ctl->mutex);
474 				cond_resched();
475 				mutex_lock(&caching_ctl->mutex);
476 				down_read(&fs_info->commit_root_sem);
477 				goto next;
478 			}
479 
480 			ret = btrfs_next_leaf(extent_root, path);
481 			if (ret < 0)
482 				goto out;
483 			if (ret)
484 				break;
485 			leaf = path->nodes[0];
486 			nritems = btrfs_header_nritems(leaf);
487 			continue;
488 		}
489 
490 		if (key.objectid < last) {
491 			key.objectid = last;
492 			key.offset = 0;
493 			key.type = BTRFS_EXTENT_ITEM_KEY;
494 
495 			if (wakeup)
496 				caching_ctl->progress = last;
497 			btrfs_release_path(path);
498 			goto next;
499 		}
500 
501 		if (key.objectid < block_group->key.objectid) {
502 			path->slots[0]++;
503 			continue;
504 		}
505 
506 		if (key.objectid >= block_group->key.objectid +
507 		    block_group->key.offset)
508 			break;
509 
510 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 		    key.type == BTRFS_METADATA_ITEM_KEY) {
512 			total_found += add_new_free_space(block_group,
513 							  fs_info, last,
514 							  key.objectid);
515 			if (key.type == BTRFS_METADATA_ITEM_KEY)
516 				last = key.objectid +
517 					fs_info->tree_root->nodesize;
518 			else
519 				last = key.objectid + key.offset;
520 
521 			if (total_found > CACHING_CTL_WAKE_UP) {
522 				total_found = 0;
523 				if (wakeup)
524 					wake_up(&caching_ctl->wait);
525 			}
526 		}
527 		path->slots[0]++;
528 	}
529 	ret = 0;
530 
531 	total_found += add_new_free_space(block_group, fs_info, last,
532 					  block_group->key.objectid +
533 					  block_group->key.offset);
534 	caching_ctl->progress = (u64)-1;
535 
536 out:
537 	btrfs_free_path(path);
538 	return ret;
539 }
540 
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543 	struct btrfs_block_group_cache *block_group;
544 	struct btrfs_fs_info *fs_info;
545 	struct btrfs_caching_control *caching_ctl;
546 	struct btrfs_root *extent_root;
547 	int ret;
548 
549 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 	block_group = caching_ctl->block_group;
551 	fs_info = block_group->fs_info;
552 	extent_root = fs_info->extent_root;
553 
554 	mutex_lock(&caching_ctl->mutex);
555 	down_read(&fs_info->commit_root_sem);
556 
557 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 		ret = load_free_space_tree(caching_ctl);
559 	else
560 		ret = load_extent_tree_free(caching_ctl);
561 
562 	spin_lock(&block_group->lock);
563 	block_group->caching_ctl = NULL;
564 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 	spin_unlock(&block_group->lock);
566 
567 #ifdef CONFIG_BTRFS_DEBUG
568 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 		u64 bytes_used;
570 
571 		spin_lock(&block_group->space_info->lock);
572 		spin_lock(&block_group->lock);
573 		bytes_used = block_group->key.offset -
574 			btrfs_block_group_used(&block_group->item);
575 		block_group->space_info->bytes_used += bytes_used >> 1;
576 		spin_unlock(&block_group->lock);
577 		spin_unlock(&block_group->space_info->lock);
578 		fragment_free_space(extent_root, block_group);
579 	}
580 #endif
581 
582 	caching_ctl->progress = (u64)-1;
583 
584 	up_read(&fs_info->commit_root_sem);
585 	free_excluded_extents(fs_info->extent_root, block_group);
586 	mutex_unlock(&caching_ctl->mutex);
587 
588 	wake_up(&caching_ctl->wait);
589 
590 	put_caching_control(caching_ctl);
591 	btrfs_put_block_group(block_group);
592 }
593 
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595 			     int load_cache_only)
596 {
597 	DEFINE_WAIT(wait);
598 	struct btrfs_fs_info *fs_info = cache->fs_info;
599 	struct btrfs_caching_control *caching_ctl;
600 	int ret = 0;
601 
602 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 	if (!caching_ctl)
604 		return -ENOMEM;
605 
606 	INIT_LIST_HEAD(&caching_ctl->list);
607 	mutex_init(&caching_ctl->mutex);
608 	init_waitqueue_head(&caching_ctl->wait);
609 	caching_ctl->block_group = cache;
610 	caching_ctl->progress = cache->key.objectid;
611 	atomic_set(&caching_ctl->count, 1);
612 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 			caching_thread, NULL, NULL);
614 
615 	spin_lock(&cache->lock);
616 	/*
617 	 * This should be a rare occasion, but this could happen I think in the
618 	 * case where one thread starts to load the space cache info, and then
619 	 * some other thread starts a transaction commit which tries to do an
620 	 * allocation while the other thread is still loading the space cache
621 	 * info.  The previous loop should have kept us from choosing this block
622 	 * group, but if we've moved to the state where we will wait on caching
623 	 * block groups we need to first check if we're doing a fast load here,
624 	 * so we can wait for it to finish, otherwise we could end up allocating
625 	 * from a block group who's cache gets evicted for one reason or
626 	 * another.
627 	 */
628 	while (cache->cached == BTRFS_CACHE_FAST) {
629 		struct btrfs_caching_control *ctl;
630 
631 		ctl = cache->caching_ctl;
632 		atomic_inc(&ctl->count);
633 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 		spin_unlock(&cache->lock);
635 
636 		schedule();
637 
638 		finish_wait(&ctl->wait, &wait);
639 		put_caching_control(ctl);
640 		spin_lock(&cache->lock);
641 	}
642 
643 	if (cache->cached != BTRFS_CACHE_NO) {
644 		spin_unlock(&cache->lock);
645 		kfree(caching_ctl);
646 		return 0;
647 	}
648 	WARN_ON(cache->caching_ctl);
649 	cache->caching_ctl = caching_ctl;
650 	cache->cached = BTRFS_CACHE_FAST;
651 	spin_unlock(&cache->lock);
652 
653 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 		mutex_lock(&caching_ctl->mutex);
655 		ret = load_free_space_cache(fs_info, cache);
656 
657 		spin_lock(&cache->lock);
658 		if (ret == 1) {
659 			cache->caching_ctl = NULL;
660 			cache->cached = BTRFS_CACHE_FINISHED;
661 			cache->last_byte_to_unpin = (u64)-1;
662 			caching_ctl->progress = (u64)-1;
663 		} else {
664 			if (load_cache_only) {
665 				cache->caching_ctl = NULL;
666 				cache->cached = BTRFS_CACHE_NO;
667 			} else {
668 				cache->cached = BTRFS_CACHE_STARTED;
669 				cache->has_caching_ctl = 1;
670 			}
671 		}
672 		spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674 		if (ret == 1 &&
675 		    btrfs_should_fragment_free_space(fs_info->extent_root,
676 						     cache)) {
677 			u64 bytes_used;
678 
679 			spin_lock(&cache->space_info->lock);
680 			spin_lock(&cache->lock);
681 			bytes_used = cache->key.offset -
682 				btrfs_block_group_used(&cache->item);
683 			cache->space_info->bytes_used += bytes_used >> 1;
684 			spin_unlock(&cache->lock);
685 			spin_unlock(&cache->space_info->lock);
686 			fragment_free_space(fs_info->extent_root, cache);
687 		}
688 #endif
689 		mutex_unlock(&caching_ctl->mutex);
690 
691 		wake_up(&caching_ctl->wait);
692 		if (ret == 1) {
693 			put_caching_control(caching_ctl);
694 			free_excluded_extents(fs_info->extent_root, cache);
695 			return 0;
696 		}
697 	} else {
698 		/*
699 		 * We're either using the free space tree or no caching at all.
700 		 * Set cached to the appropriate value and wakeup any waiters.
701 		 */
702 		spin_lock(&cache->lock);
703 		if (load_cache_only) {
704 			cache->caching_ctl = NULL;
705 			cache->cached = BTRFS_CACHE_NO;
706 		} else {
707 			cache->cached = BTRFS_CACHE_STARTED;
708 			cache->has_caching_ctl = 1;
709 		}
710 		spin_unlock(&cache->lock);
711 		wake_up(&caching_ctl->wait);
712 	}
713 
714 	if (load_cache_only) {
715 		put_caching_control(caching_ctl);
716 		return 0;
717 	}
718 
719 	down_write(&fs_info->commit_root_sem);
720 	atomic_inc(&caching_ctl->count);
721 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 	up_write(&fs_info->commit_root_sem);
723 
724 	btrfs_get_block_group(cache);
725 
726 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727 
728 	return ret;
729 }
730 
731 /*
732  * return the block group that starts at or after bytenr
733  */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 	struct btrfs_block_group_cache *cache;
738 
739 	cache = block_group_cache_tree_search(info, bytenr, 0);
740 
741 	return cache;
742 }
743 
744 /*
745  * return the block group that contains the given bytenr
746  */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 						 struct btrfs_fs_info *info,
749 						 u64 bytenr)
750 {
751 	struct btrfs_block_group_cache *cache;
752 
753 	cache = block_group_cache_tree_search(info, bytenr, 1);
754 
755 	return cache;
756 }
757 
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 						  u64 flags)
760 {
761 	struct list_head *head = &info->space_info;
762 	struct btrfs_space_info *found;
763 
764 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765 
766 	rcu_read_lock();
767 	list_for_each_entry_rcu(found, head, list) {
768 		if (found->flags & flags) {
769 			rcu_read_unlock();
770 			return found;
771 		}
772 	}
773 	rcu_read_unlock();
774 	return NULL;
775 }
776 
777 /*
778  * after adding space to the filesystem, we need to clear the full flags
779  * on all the space infos.
780  */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783 	struct list_head *head = &info->space_info;
784 	struct btrfs_space_info *found;
785 
786 	rcu_read_lock();
787 	list_for_each_entry_rcu(found, head, list)
788 		found->full = 0;
789 	rcu_read_unlock();
790 }
791 
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795 	int ret;
796 	struct btrfs_key key;
797 	struct btrfs_path *path;
798 
799 	path = btrfs_alloc_path();
800 	if (!path)
801 		return -ENOMEM;
802 
803 	key.objectid = start;
804 	key.offset = len;
805 	key.type = BTRFS_EXTENT_ITEM_KEY;
806 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 				0, 0);
808 	btrfs_free_path(path);
809 	return ret;
810 }
811 
812 /*
813  * helper function to lookup reference count and flags of a tree block.
814  *
815  * the head node for delayed ref is used to store the sum of all the
816  * reference count modifications queued up in the rbtree. the head
817  * node may also store the extent flags to set. This way you can check
818  * to see what the reference count and extent flags would be if all of
819  * the delayed refs are not processed.
820  */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 			     struct btrfs_root *root, u64 bytenr,
823 			     u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 	struct btrfs_delayed_ref_head *head;
826 	struct btrfs_delayed_ref_root *delayed_refs;
827 	struct btrfs_path *path;
828 	struct btrfs_extent_item *ei;
829 	struct extent_buffer *leaf;
830 	struct btrfs_key key;
831 	u32 item_size;
832 	u64 num_refs;
833 	u64 extent_flags;
834 	int ret;
835 
836 	/*
837 	 * If we don't have skinny metadata, don't bother doing anything
838 	 * different
839 	 */
840 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 		offset = root->nodesize;
842 		metadata = 0;
843 	}
844 
845 	path = btrfs_alloc_path();
846 	if (!path)
847 		return -ENOMEM;
848 
849 	if (!trans) {
850 		path->skip_locking = 1;
851 		path->search_commit_root = 1;
852 	}
853 
854 search_again:
855 	key.objectid = bytenr;
856 	key.offset = offset;
857 	if (metadata)
858 		key.type = BTRFS_METADATA_ITEM_KEY;
859 	else
860 		key.type = BTRFS_EXTENT_ITEM_KEY;
861 
862 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 				&key, path, 0, 0);
864 	if (ret < 0)
865 		goto out_free;
866 
867 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 		if (path->slots[0]) {
869 			path->slots[0]--;
870 			btrfs_item_key_to_cpu(path->nodes[0], &key,
871 					      path->slots[0]);
872 			if (key.objectid == bytenr &&
873 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
874 			    key.offset == root->nodesize)
875 				ret = 0;
876 		}
877 	}
878 
879 	if (ret == 0) {
880 		leaf = path->nodes[0];
881 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 		if (item_size >= sizeof(*ei)) {
883 			ei = btrfs_item_ptr(leaf, path->slots[0],
884 					    struct btrfs_extent_item);
885 			num_refs = btrfs_extent_refs(leaf, ei);
886 			extent_flags = btrfs_extent_flags(leaf, ei);
887 		} else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 			struct btrfs_extent_item_v0 *ei0;
890 			BUG_ON(item_size != sizeof(*ei0));
891 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 					     struct btrfs_extent_item_v0);
893 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 			/* FIXME: this isn't correct for data */
895 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897 			BUG();
898 #endif
899 		}
900 		BUG_ON(num_refs == 0);
901 	} else {
902 		num_refs = 0;
903 		extent_flags = 0;
904 		ret = 0;
905 	}
906 
907 	if (!trans)
908 		goto out;
909 
910 	delayed_refs = &trans->transaction->delayed_refs;
911 	spin_lock(&delayed_refs->lock);
912 	head = btrfs_find_delayed_ref_head(trans, bytenr);
913 	if (head) {
914 		if (!mutex_trylock(&head->mutex)) {
915 			atomic_inc(&head->node.refs);
916 			spin_unlock(&delayed_refs->lock);
917 
918 			btrfs_release_path(path);
919 
920 			/*
921 			 * Mutex was contended, block until it's released and try
922 			 * again
923 			 */
924 			mutex_lock(&head->mutex);
925 			mutex_unlock(&head->mutex);
926 			btrfs_put_delayed_ref(&head->node);
927 			goto search_again;
928 		}
929 		spin_lock(&head->lock);
930 		if (head->extent_op && head->extent_op->update_flags)
931 			extent_flags |= head->extent_op->flags_to_set;
932 		else
933 			BUG_ON(num_refs == 0);
934 
935 		num_refs += head->node.ref_mod;
936 		spin_unlock(&head->lock);
937 		mutex_unlock(&head->mutex);
938 	}
939 	spin_unlock(&delayed_refs->lock);
940 out:
941 	WARN_ON(num_refs == 0);
942 	if (refs)
943 		*refs = num_refs;
944 	if (flags)
945 		*flags = extent_flags;
946 out_free:
947 	btrfs_free_path(path);
948 	return ret;
949 }
950 
951 /*
952  * Back reference rules.  Back refs have three main goals:
953  *
954  * 1) differentiate between all holders of references to an extent so that
955  *    when a reference is dropped we can make sure it was a valid reference
956  *    before freeing the extent.
957  *
958  * 2) Provide enough information to quickly find the holders of an extent
959  *    if we notice a given block is corrupted or bad.
960  *
961  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962  *    maintenance.  This is actually the same as #2, but with a slightly
963  *    different use case.
964  *
965  * There are two kinds of back refs. The implicit back refs is optimized
966  * for pointers in non-shared tree blocks. For a given pointer in a block,
967  * back refs of this kind provide information about the block's owner tree
968  * and the pointer's key. These information allow us to find the block by
969  * b-tree searching. The full back refs is for pointers in tree blocks not
970  * referenced by their owner trees. The location of tree block is recorded
971  * in the back refs. Actually the full back refs is generic, and can be
972  * used in all cases the implicit back refs is used. The major shortcoming
973  * of the full back refs is its overhead. Every time a tree block gets
974  * COWed, we have to update back refs entry for all pointers in it.
975  *
976  * For a newly allocated tree block, we use implicit back refs for
977  * pointers in it. This means most tree related operations only involve
978  * implicit back refs. For a tree block created in old transaction, the
979  * only way to drop a reference to it is COW it. So we can detect the
980  * event that tree block loses its owner tree's reference and do the
981  * back refs conversion.
982  *
983  * When a tree block is COW'd through a tree, there are four cases:
984  *
985  * The reference count of the block is one and the tree is the block's
986  * owner tree. Nothing to do in this case.
987  *
988  * The reference count of the block is one and the tree is not the
989  * block's owner tree. In this case, full back refs is used for pointers
990  * in the block. Remove these full back refs, add implicit back refs for
991  * every pointers in the new block.
992  *
993  * The reference count of the block is greater than one and the tree is
994  * the block's owner tree. In this case, implicit back refs is used for
995  * pointers in the block. Add full back refs for every pointers in the
996  * block, increase lower level extents' reference counts. The original
997  * implicit back refs are entailed to the new block.
998  *
999  * The reference count of the block is greater than one and the tree is
1000  * not the block's owner tree. Add implicit back refs for every pointer in
1001  * the new block, increase lower level extents' reference count.
1002  *
1003  * Back Reference Key composing:
1004  *
1005  * The key objectid corresponds to the first byte in the extent,
1006  * The key type is used to differentiate between types of back refs.
1007  * There are different meanings of the key offset for different types
1008  * of back refs.
1009  *
1010  * File extents can be referenced by:
1011  *
1012  * - multiple snapshots, subvolumes, or different generations in one subvol
1013  * - different files inside a single subvolume
1014  * - different offsets inside a file (bookend extents in file.c)
1015  *
1016  * The extent ref structure for the implicit back refs has fields for:
1017  *
1018  * - Objectid of the subvolume root
1019  * - objectid of the file holding the reference
1020  * - original offset in the file
1021  * - how many bookend extents
1022  *
1023  * The key offset for the implicit back refs is hash of the first
1024  * three fields.
1025  *
1026  * The extent ref structure for the full back refs has field for:
1027  *
1028  * - number of pointers in the tree leaf
1029  *
1030  * The key offset for the implicit back refs is the first byte of
1031  * the tree leaf
1032  *
1033  * When a file extent is allocated, The implicit back refs is used.
1034  * the fields are filled in:
1035  *
1036  *     (root_key.objectid, inode objectid, offset in file, 1)
1037  *
1038  * When a file extent is removed file truncation, we find the
1039  * corresponding implicit back refs and check the following fields:
1040  *
1041  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1042  *
1043  * Btree extents can be referenced by:
1044  *
1045  * - Different subvolumes
1046  *
1047  * Both the implicit back refs and the full back refs for tree blocks
1048  * only consist of key. The key offset for the implicit back refs is
1049  * objectid of block's owner tree. The key offset for the full back refs
1050  * is the first byte of parent block.
1051  *
1052  * When implicit back refs is used, information about the lowest key and
1053  * level of the tree block are required. These information are stored in
1054  * tree block info structure.
1055  */
1056 
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 				  struct btrfs_root *root,
1060 				  struct btrfs_path *path,
1061 				  u64 owner, u32 extra_size)
1062 {
1063 	struct btrfs_extent_item *item;
1064 	struct btrfs_extent_item_v0 *ei0;
1065 	struct btrfs_extent_ref_v0 *ref0;
1066 	struct btrfs_tree_block_info *bi;
1067 	struct extent_buffer *leaf;
1068 	struct btrfs_key key;
1069 	struct btrfs_key found_key;
1070 	u32 new_size = sizeof(*item);
1071 	u64 refs;
1072 	int ret;
1073 
1074 	leaf = path->nodes[0];
1075 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076 
1077 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 			     struct btrfs_extent_item_v0);
1080 	refs = btrfs_extent_refs_v0(leaf, ei0);
1081 
1082 	if (owner == (u64)-1) {
1083 		while (1) {
1084 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 				ret = btrfs_next_leaf(root, path);
1086 				if (ret < 0)
1087 					return ret;
1088 				BUG_ON(ret > 0); /* Corruption */
1089 				leaf = path->nodes[0];
1090 			}
1091 			btrfs_item_key_to_cpu(leaf, &found_key,
1092 					      path->slots[0]);
1093 			BUG_ON(key.objectid != found_key.objectid);
1094 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 				path->slots[0]++;
1096 				continue;
1097 			}
1098 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 					      struct btrfs_extent_ref_v0);
1100 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 			break;
1102 		}
1103 	}
1104 	btrfs_release_path(path);
1105 
1106 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 		new_size += sizeof(*bi);
1108 
1109 	new_size -= sizeof(*ei0);
1110 	ret = btrfs_search_slot(trans, root, &key, path,
1111 				new_size + extra_size, 1);
1112 	if (ret < 0)
1113 		return ret;
1114 	BUG_ON(ret); /* Corruption */
1115 
1116 	btrfs_extend_item(root, path, new_size);
1117 
1118 	leaf = path->nodes[0];
1119 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 	btrfs_set_extent_refs(leaf, item, refs);
1121 	/* FIXME: get real generation */
1122 	btrfs_set_extent_generation(leaf, item, 0);
1123 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 		btrfs_set_extent_flags(leaf, item,
1125 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 		bi = (struct btrfs_tree_block_info *)(item + 1);
1128 		/* FIXME: get first key of the block */
1129 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 	} else {
1132 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 	}
1134 	btrfs_mark_buffer_dirty(leaf);
1135 	return 0;
1136 }
1137 #endif
1138 
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141 	u32 high_crc = ~(u32)0;
1142 	u32 low_crc = ~(u32)0;
1143 	__le64 lenum;
1144 
1145 	lenum = cpu_to_le64(root_objectid);
1146 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 	lenum = cpu_to_le64(owner);
1148 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 	lenum = cpu_to_le64(offset);
1150 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151 
1152 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154 
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 				     struct btrfs_extent_data_ref *ref)
1157 {
1158 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 				    btrfs_extent_data_ref_objectid(leaf, ref),
1160 				    btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162 
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 				 struct btrfs_extent_data_ref *ref,
1165 				 u64 root_objectid, u64 owner, u64 offset)
1166 {
1167 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 		return 0;
1171 	return 1;
1172 }
1173 
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 					   struct btrfs_root *root,
1176 					   struct btrfs_path *path,
1177 					   u64 bytenr, u64 parent,
1178 					   u64 root_objectid,
1179 					   u64 owner, u64 offset)
1180 {
1181 	struct btrfs_key key;
1182 	struct btrfs_extent_data_ref *ref;
1183 	struct extent_buffer *leaf;
1184 	u32 nritems;
1185 	int ret;
1186 	int recow;
1187 	int err = -ENOENT;
1188 
1189 	key.objectid = bytenr;
1190 	if (parent) {
1191 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 		key.offset = parent;
1193 	} else {
1194 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 		key.offset = hash_extent_data_ref(root_objectid,
1196 						  owner, offset);
1197 	}
1198 again:
1199 	recow = 0;
1200 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 	if (ret < 0) {
1202 		err = ret;
1203 		goto fail;
1204 	}
1205 
1206 	if (parent) {
1207 		if (!ret)
1208 			return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 		btrfs_release_path(path);
1212 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 		if (ret < 0) {
1214 			err = ret;
1215 			goto fail;
1216 		}
1217 		if (!ret)
1218 			return 0;
1219 #endif
1220 		goto fail;
1221 	}
1222 
1223 	leaf = path->nodes[0];
1224 	nritems = btrfs_header_nritems(leaf);
1225 	while (1) {
1226 		if (path->slots[0] >= nritems) {
1227 			ret = btrfs_next_leaf(root, path);
1228 			if (ret < 0)
1229 				err = ret;
1230 			if (ret)
1231 				goto fail;
1232 
1233 			leaf = path->nodes[0];
1234 			nritems = btrfs_header_nritems(leaf);
1235 			recow = 1;
1236 		}
1237 
1238 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 		if (key.objectid != bytenr ||
1240 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 			goto fail;
1242 
1243 		ref = btrfs_item_ptr(leaf, path->slots[0],
1244 				     struct btrfs_extent_data_ref);
1245 
1246 		if (match_extent_data_ref(leaf, ref, root_objectid,
1247 					  owner, offset)) {
1248 			if (recow) {
1249 				btrfs_release_path(path);
1250 				goto again;
1251 			}
1252 			err = 0;
1253 			break;
1254 		}
1255 		path->slots[0]++;
1256 	}
1257 fail:
1258 	return err;
1259 }
1260 
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   u64 bytenr, u64 parent,
1265 					   u64 root_objectid, u64 owner,
1266 					   u64 offset, int refs_to_add)
1267 {
1268 	struct btrfs_key key;
1269 	struct extent_buffer *leaf;
1270 	u32 size;
1271 	u32 num_refs;
1272 	int ret;
1273 
1274 	key.objectid = bytenr;
1275 	if (parent) {
1276 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 		key.offset = parent;
1278 		size = sizeof(struct btrfs_shared_data_ref);
1279 	} else {
1280 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 		key.offset = hash_extent_data_ref(root_objectid,
1282 						  owner, offset);
1283 		size = sizeof(struct btrfs_extent_data_ref);
1284 	}
1285 
1286 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 	if (ret && ret != -EEXIST)
1288 		goto fail;
1289 
1290 	leaf = path->nodes[0];
1291 	if (parent) {
1292 		struct btrfs_shared_data_ref *ref;
1293 		ref = btrfs_item_ptr(leaf, path->slots[0],
1294 				     struct btrfs_shared_data_ref);
1295 		if (ret == 0) {
1296 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 		} else {
1298 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 			num_refs += refs_to_add;
1300 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 		}
1302 	} else {
1303 		struct btrfs_extent_data_ref *ref;
1304 		while (ret == -EEXIST) {
1305 			ref = btrfs_item_ptr(leaf, path->slots[0],
1306 					     struct btrfs_extent_data_ref);
1307 			if (match_extent_data_ref(leaf, ref, root_objectid,
1308 						  owner, offset))
1309 				break;
1310 			btrfs_release_path(path);
1311 			key.offset++;
1312 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 						      size);
1314 			if (ret && ret != -EEXIST)
1315 				goto fail;
1316 
1317 			leaf = path->nodes[0];
1318 		}
1319 		ref = btrfs_item_ptr(leaf, path->slots[0],
1320 				     struct btrfs_extent_data_ref);
1321 		if (ret == 0) {
1322 			btrfs_set_extent_data_ref_root(leaf, ref,
1323 						       root_objectid);
1324 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 		} else {
1328 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 			num_refs += refs_to_add;
1330 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 		}
1332 	}
1333 	btrfs_mark_buffer_dirty(leaf);
1334 	ret = 0;
1335 fail:
1336 	btrfs_release_path(path);
1337 	return ret;
1338 }
1339 
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 					   struct btrfs_root *root,
1342 					   struct btrfs_path *path,
1343 					   int refs_to_drop, int *last_ref)
1344 {
1345 	struct btrfs_key key;
1346 	struct btrfs_extent_data_ref *ref1 = NULL;
1347 	struct btrfs_shared_data_ref *ref2 = NULL;
1348 	struct extent_buffer *leaf;
1349 	u32 num_refs = 0;
1350 	int ret = 0;
1351 
1352 	leaf = path->nodes[0];
1353 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354 
1355 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 				      struct btrfs_extent_data_ref);
1358 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_shared_data_ref);
1362 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 		struct btrfs_extent_ref_v0 *ref0;
1366 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 				      struct btrfs_extent_ref_v0);
1368 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370 	} else {
1371 		BUG();
1372 	}
1373 
1374 	BUG_ON(num_refs < refs_to_drop);
1375 	num_refs -= refs_to_drop;
1376 
1377 	if (num_refs == 0) {
1378 		ret = btrfs_del_item(trans, root, path);
1379 		*last_ref = 1;
1380 	} else {
1381 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 		else {
1387 			struct btrfs_extent_ref_v0 *ref0;
1388 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 					struct btrfs_extent_ref_v0);
1390 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 		}
1392 #endif
1393 		btrfs_mark_buffer_dirty(leaf);
1394 	}
1395 	return ret;
1396 }
1397 
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 					  struct btrfs_extent_inline_ref *iref)
1400 {
1401 	struct btrfs_key key;
1402 	struct extent_buffer *leaf;
1403 	struct btrfs_extent_data_ref *ref1;
1404 	struct btrfs_shared_data_ref *ref2;
1405 	u32 num_refs = 0;
1406 
1407 	leaf = path->nodes[0];
1408 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 	if (iref) {
1410 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 		    BTRFS_EXTENT_DATA_REF_KEY) {
1412 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 		} else {
1415 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 		}
1418 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 				      struct btrfs_extent_data_ref);
1421 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 				      struct btrfs_shared_data_ref);
1425 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 		struct btrfs_extent_ref_v0 *ref0;
1429 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 				      struct btrfs_extent_ref_v0);
1431 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433 	} else {
1434 		WARN_ON(1);
1435 	}
1436 	return num_refs;
1437 }
1438 
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 					  struct btrfs_root *root,
1441 					  struct btrfs_path *path,
1442 					  u64 bytenr, u64 parent,
1443 					  u64 root_objectid)
1444 {
1445 	struct btrfs_key key;
1446 	int ret;
1447 
1448 	key.objectid = bytenr;
1449 	if (parent) {
1450 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 		key.offset = parent;
1452 	} else {
1453 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 		key.offset = root_objectid;
1455 	}
1456 
1457 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 	if (ret > 0)
1459 		ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 	if (ret == -ENOENT && parent) {
1462 		btrfs_release_path(path);
1463 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 		if (ret > 0)
1466 			ret = -ENOENT;
1467 	}
1468 #endif
1469 	return ret;
1470 }
1471 
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 					  struct btrfs_root *root,
1474 					  struct btrfs_path *path,
1475 					  u64 bytenr, u64 parent,
1476 					  u64 root_objectid)
1477 {
1478 	struct btrfs_key key;
1479 	int ret;
1480 
1481 	key.objectid = bytenr;
1482 	if (parent) {
1483 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 		key.offset = parent;
1485 	} else {
1486 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 		key.offset = root_objectid;
1488 	}
1489 
1490 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 	btrfs_release_path(path);
1492 	return ret;
1493 }
1494 
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497 	int type;
1498 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 		if (parent > 0)
1500 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 		else
1502 			type = BTRFS_TREE_BLOCK_REF_KEY;
1503 	} else {
1504 		if (parent > 0)
1505 			type = BTRFS_SHARED_DATA_REF_KEY;
1506 		else
1507 			type = BTRFS_EXTENT_DATA_REF_KEY;
1508 	}
1509 	return type;
1510 }
1511 
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 			 struct btrfs_key *key)
1514 
1515 {
1516 	for (; level < BTRFS_MAX_LEVEL; level++) {
1517 		if (!path->nodes[level])
1518 			break;
1519 		if (path->slots[level] + 1 >=
1520 		    btrfs_header_nritems(path->nodes[level]))
1521 			continue;
1522 		if (level == 0)
1523 			btrfs_item_key_to_cpu(path->nodes[level], key,
1524 					      path->slots[level] + 1);
1525 		else
1526 			btrfs_node_key_to_cpu(path->nodes[level], key,
1527 					      path->slots[level] + 1);
1528 		return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 /*
1534  * look for inline back ref. if back ref is found, *ref_ret is set
1535  * to the address of inline back ref, and 0 is returned.
1536  *
1537  * if back ref isn't found, *ref_ret is set to the address where it
1538  * should be inserted, and -ENOENT is returned.
1539  *
1540  * if insert is true and there are too many inline back refs, the path
1541  * points to the extent item, and -EAGAIN is returned.
1542  *
1543  * NOTE: inline back refs are ordered in the same way that back ref
1544  *	 items in the tree are ordered.
1545  */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 				 struct btrfs_root *root,
1549 				 struct btrfs_path *path,
1550 				 struct btrfs_extent_inline_ref **ref_ret,
1551 				 u64 bytenr, u64 num_bytes,
1552 				 u64 parent, u64 root_objectid,
1553 				 u64 owner, u64 offset, int insert)
1554 {
1555 	struct btrfs_key key;
1556 	struct extent_buffer *leaf;
1557 	struct btrfs_extent_item *ei;
1558 	struct btrfs_extent_inline_ref *iref;
1559 	u64 flags;
1560 	u64 item_size;
1561 	unsigned long ptr;
1562 	unsigned long end;
1563 	int extra_size;
1564 	int type;
1565 	int want;
1566 	int ret;
1567 	int err = 0;
1568 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 						 SKINNY_METADATA);
1570 
1571 	key.objectid = bytenr;
1572 	key.type = BTRFS_EXTENT_ITEM_KEY;
1573 	key.offset = num_bytes;
1574 
1575 	want = extent_ref_type(parent, owner);
1576 	if (insert) {
1577 		extra_size = btrfs_extent_inline_ref_size(want);
1578 		path->keep_locks = 1;
1579 	} else
1580 		extra_size = -1;
1581 
1582 	/*
1583 	 * Owner is our parent level, so we can just add one to get the level
1584 	 * for the block we are interested in.
1585 	 */
1586 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 		key.type = BTRFS_METADATA_ITEM_KEY;
1588 		key.offset = owner;
1589 	}
1590 
1591 again:
1592 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 	if (ret < 0) {
1594 		err = ret;
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * We may be a newly converted file system which still has the old fat
1600 	 * extent entries for metadata, so try and see if we have one of those.
1601 	 */
1602 	if (ret > 0 && skinny_metadata) {
1603 		skinny_metadata = false;
1604 		if (path->slots[0]) {
1605 			path->slots[0]--;
1606 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 					      path->slots[0]);
1608 			if (key.objectid == bytenr &&
1609 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 			    key.offset == num_bytes)
1611 				ret = 0;
1612 		}
1613 		if (ret) {
1614 			key.objectid = bytenr;
1615 			key.type = BTRFS_EXTENT_ITEM_KEY;
1616 			key.offset = num_bytes;
1617 			btrfs_release_path(path);
1618 			goto again;
1619 		}
1620 	}
1621 
1622 	if (ret && !insert) {
1623 		err = -ENOENT;
1624 		goto out;
1625 	} else if (WARN_ON(ret)) {
1626 		err = -EIO;
1627 		goto out;
1628 	}
1629 
1630 	leaf = path->nodes[0];
1631 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 	if (item_size < sizeof(*ei)) {
1634 		if (!insert) {
1635 			err = -ENOENT;
1636 			goto out;
1637 		}
1638 		ret = convert_extent_item_v0(trans, root, path, owner,
1639 					     extra_size);
1640 		if (ret < 0) {
1641 			err = ret;
1642 			goto out;
1643 		}
1644 		leaf = path->nodes[0];
1645 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 	}
1647 #endif
1648 	BUG_ON(item_size < sizeof(*ei));
1649 
1650 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 	flags = btrfs_extent_flags(leaf, ei);
1652 
1653 	ptr = (unsigned long)(ei + 1);
1654 	end = (unsigned long)ei + item_size;
1655 
1656 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 		ptr += sizeof(struct btrfs_tree_block_info);
1658 		BUG_ON(ptr > end);
1659 	}
1660 
1661 	err = -ENOENT;
1662 	while (1) {
1663 		if (ptr >= end) {
1664 			WARN_ON(ptr > end);
1665 			break;
1666 		}
1667 		iref = (struct btrfs_extent_inline_ref *)ptr;
1668 		type = btrfs_extent_inline_ref_type(leaf, iref);
1669 		if (want < type)
1670 			break;
1671 		if (want > type) {
1672 			ptr += btrfs_extent_inline_ref_size(type);
1673 			continue;
1674 		}
1675 
1676 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 			struct btrfs_extent_data_ref *dref;
1678 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 			if (match_extent_data_ref(leaf, dref, root_objectid,
1680 						  owner, offset)) {
1681 				err = 0;
1682 				break;
1683 			}
1684 			if (hash_extent_data_ref_item(leaf, dref) <
1685 			    hash_extent_data_ref(root_objectid, owner, offset))
1686 				break;
1687 		} else {
1688 			u64 ref_offset;
1689 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 			if (parent > 0) {
1691 				if (parent == ref_offset) {
1692 					err = 0;
1693 					break;
1694 				}
1695 				if (ref_offset < parent)
1696 					break;
1697 			} else {
1698 				if (root_objectid == ref_offset) {
1699 					err = 0;
1700 					break;
1701 				}
1702 				if (ref_offset < root_objectid)
1703 					break;
1704 			}
1705 		}
1706 		ptr += btrfs_extent_inline_ref_size(type);
1707 	}
1708 	if (err == -ENOENT && insert) {
1709 		if (item_size + extra_size >=
1710 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 			err = -EAGAIN;
1712 			goto out;
1713 		}
1714 		/*
1715 		 * To add new inline back ref, we have to make sure
1716 		 * there is no corresponding back ref item.
1717 		 * For simplicity, we just do not add new inline back
1718 		 * ref if there is any kind of item for this block
1719 		 */
1720 		if (find_next_key(path, 0, &key) == 0 &&
1721 		    key.objectid == bytenr &&
1722 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 			err = -EAGAIN;
1724 			goto out;
1725 		}
1726 	}
1727 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729 	if (insert) {
1730 		path->keep_locks = 0;
1731 		btrfs_unlock_up_safe(path, 1);
1732 	}
1733 	return err;
1734 }
1735 
1736 /*
1737  * helper to add new inline back ref
1738  */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 				 struct btrfs_path *path,
1742 				 struct btrfs_extent_inline_ref *iref,
1743 				 u64 parent, u64 root_objectid,
1744 				 u64 owner, u64 offset, int refs_to_add,
1745 				 struct btrfs_delayed_extent_op *extent_op)
1746 {
1747 	struct extent_buffer *leaf;
1748 	struct btrfs_extent_item *ei;
1749 	unsigned long ptr;
1750 	unsigned long end;
1751 	unsigned long item_offset;
1752 	u64 refs;
1753 	int size;
1754 	int type;
1755 
1756 	leaf = path->nodes[0];
1757 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 	item_offset = (unsigned long)iref - (unsigned long)ei;
1759 
1760 	type = extent_ref_type(parent, owner);
1761 	size = btrfs_extent_inline_ref_size(type);
1762 
1763 	btrfs_extend_item(root, path, size);
1764 
1765 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 	refs = btrfs_extent_refs(leaf, ei);
1767 	refs += refs_to_add;
1768 	btrfs_set_extent_refs(leaf, ei, refs);
1769 	if (extent_op)
1770 		__run_delayed_extent_op(extent_op, leaf, ei);
1771 
1772 	ptr = (unsigned long)ei + item_offset;
1773 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 	if (ptr < end - size)
1775 		memmove_extent_buffer(leaf, ptr + size, ptr,
1776 				      end - size - ptr);
1777 
1778 	iref = (struct btrfs_extent_inline_ref *)ptr;
1779 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 		struct btrfs_extent_data_ref *dref;
1782 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		struct btrfs_shared_data_ref *sref;
1789 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 	} else {
1795 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 	}
1797 	btrfs_mark_buffer_dirty(leaf);
1798 }
1799 
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 				 struct btrfs_root *root,
1802 				 struct btrfs_path *path,
1803 				 struct btrfs_extent_inline_ref **ref_ret,
1804 				 u64 bytenr, u64 num_bytes, u64 parent,
1805 				 u64 root_objectid, u64 owner, u64 offset)
1806 {
1807 	int ret;
1808 
1809 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 					   bytenr, num_bytes, parent,
1811 					   root_objectid, owner, offset, 0);
1812 	if (ret != -ENOENT)
1813 		return ret;
1814 
1815 	btrfs_release_path(path);
1816 	*ref_ret = NULL;
1817 
1818 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 					    root_objectid);
1821 	} else {
1822 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 					     root_objectid, owner, offset);
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * helper to update/remove inline back ref
1830  */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 				  struct btrfs_path *path,
1834 				  struct btrfs_extent_inline_ref *iref,
1835 				  int refs_to_mod,
1836 				  struct btrfs_delayed_extent_op *extent_op,
1837 				  int *last_ref)
1838 {
1839 	struct extent_buffer *leaf;
1840 	struct btrfs_extent_item *ei;
1841 	struct btrfs_extent_data_ref *dref = NULL;
1842 	struct btrfs_shared_data_ref *sref = NULL;
1843 	unsigned long ptr;
1844 	unsigned long end;
1845 	u32 item_size;
1846 	int size;
1847 	int type;
1848 	u64 refs;
1849 
1850 	leaf = path->nodes[0];
1851 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 	refs = btrfs_extent_refs(leaf, ei);
1853 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 	refs += refs_to_mod;
1855 	btrfs_set_extent_refs(leaf, ei, refs);
1856 	if (extent_op)
1857 		__run_delayed_extent_op(extent_op, leaf, ei);
1858 
1859 	type = btrfs_extent_inline_ref_type(leaf, iref);
1860 
1861 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 		refs = btrfs_extent_data_ref_count(leaf, dref);
1864 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 		refs = btrfs_shared_data_ref_count(leaf, sref);
1867 	} else {
1868 		refs = 1;
1869 		BUG_ON(refs_to_mod != -1);
1870 	}
1871 
1872 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 	refs += refs_to_mod;
1874 
1875 	if (refs > 0) {
1876 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 		else
1879 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 	} else {
1881 		*last_ref = 1;
1882 		size =  btrfs_extent_inline_ref_size(type);
1883 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 		ptr = (unsigned long)iref;
1885 		end = (unsigned long)ei + item_size;
1886 		if (ptr + size < end)
1887 			memmove_extent_buffer(leaf, ptr, ptr + size,
1888 					      end - ptr - size);
1889 		item_size -= size;
1890 		btrfs_truncate_item(root, path, item_size, 1);
1891 	}
1892 	btrfs_mark_buffer_dirty(leaf);
1893 }
1894 
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 				 struct btrfs_root *root,
1898 				 struct btrfs_path *path,
1899 				 u64 bytenr, u64 num_bytes, u64 parent,
1900 				 u64 root_objectid, u64 owner,
1901 				 u64 offset, int refs_to_add,
1902 				 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 	struct btrfs_extent_inline_ref *iref;
1905 	int ret;
1906 
1907 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 					   bytenr, num_bytes, parent,
1909 					   root_objectid, owner, offset, 1);
1910 	if (ret == 0) {
1911 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 		update_inline_extent_backref(root, path, iref,
1913 					     refs_to_add, extent_op, NULL);
1914 	} else if (ret == -ENOENT) {
1915 		setup_inline_extent_backref(root, path, iref, parent,
1916 					    root_objectid, owner, offset,
1917 					    refs_to_add, extent_op);
1918 		ret = 0;
1919 	}
1920 	return ret;
1921 }
1922 
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 				 struct btrfs_root *root,
1925 				 struct btrfs_path *path,
1926 				 u64 bytenr, u64 parent, u64 root_objectid,
1927 				 u64 owner, u64 offset, int refs_to_add)
1928 {
1929 	int ret;
1930 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 		BUG_ON(refs_to_add != 1);
1932 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 					    parent, root_objectid);
1934 	} else {
1935 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 					     parent, root_objectid,
1937 					     owner, offset, refs_to_add);
1938 	}
1939 	return ret;
1940 }
1941 
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 				 struct btrfs_root *root,
1944 				 struct btrfs_path *path,
1945 				 struct btrfs_extent_inline_ref *iref,
1946 				 int refs_to_drop, int is_data, int *last_ref)
1947 {
1948 	int ret = 0;
1949 
1950 	BUG_ON(!is_data && refs_to_drop != 1);
1951 	if (iref) {
1952 		update_inline_extent_backref(root, path, iref,
1953 					     -refs_to_drop, NULL, last_ref);
1954 	} else if (is_data) {
1955 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 					     last_ref);
1957 	} else {
1958 		*last_ref = 1;
1959 		ret = btrfs_del_item(trans, root, path);
1960 	}
1961 	return ret;
1962 }
1963 
1964 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 			       u64 *discarded_bytes)
1967 {
1968 	int j, ret = 0;
1969 	u64 bytes_left, end;
1970 	u64 aligned_start = ALIGN(start, 1 << 9);
1971 
1972 	if (WARN_ON(start != aligned_start)) {
1973 		len -= aligned_start - start;
1974 		len = round_down(len, 1 << 9);
1975 		start = aligned_start;
1976 	}
1977 
1978 	*discarded_bytes = 0;
1979 
1980 	if (!len)
1981 		return 0;
1982 
1983 	end = start + len;
1984 	bytes_left = len;
1985 
1986 	/* Skip any superblocks on this device. */
1987 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 		u64 sb_start = btrfs_sb_offset(j);
1989 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 		u64 size = sb_start - start;
1991 
1992 		if (!in_range(sb_start, start, bytes_left) &&
1993 		    !in_range(sb_end, start, bytes_left) &&
1994 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 			continue;
1996 
1997 		/*
1998 		 * Superblock spans beginning of range.  Adjust start and
1999 		 * try again.
2000 		 */
2001 		if (sb_start <= start) {
2002 			start += sb_end - start;
2003 			if (start > end) {
2004 				bytes_left = 0;
2005 				break;
2006 			}
2007 			bytes_left = end - start;
2008 			continue;
2009 		}
2010 
2011 		if (size) {
2012 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 						   GFP_NOFS, 0);
2014 			if (!ret)
2015 				*discarded_bytes += size;
2016 			else if (ret != -EOPNOTSUPP)
2017 				return ret;
2018 		}
2019 
2020 		start = sb_end;
2021 		if (start > end) {
2022 			bytes_left = 0;
2023 			break;
2024 		}
2025 		bytes_left = end - start;
2026 	}
2027 
2028 	if (bytes_left) {
2029 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 					   GFP_NOFS, 0);
2031 		if (!ret)
2032 			*discarded_bytes += bytes_left;
2033 	}
2034 	return ret;
2035 }
2036 
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 			 u64 num_bytes, u64 *actual_bytes)
2039 {
2040 	int ret;
2041 	u64 discarded_bytes = 0;
2042 	struct btrfs_bio *bbio = NULL;
2043 
2044 
2045 	/* Tell the block device(s) that the sectors can be discarded */
2046 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2047 			      bytenr, &num_bytes, &bbio, 0);
2048 	/* Error condition is -ENOMEM */
2049 	if (!ret) {
2050 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2051 		int i;
2052 
2053 
2054 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2055 			u64 bytes;
2056 			if (!stripe->dev->can_discard)
2057 				continue;
2058 
2059 			ret = btrfs_issue_discard(stripe->dev->bdev,
2060 						  stripe->physical,
2061 						  stripe->length,
2062 						  &bytes);
2063 			if (!ret)
2064 				discarded_bytes += bytes;
2065 			else if (ret != -EOPNOTSUPP)
2066 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2067 
2068 			/*
2069 			 * Just in case we get back EOPNOTSUPP for some reason,
2070 			 * just ignore the return value so we don't screw up
2071 			 * people calling discard_extent.
2072 			 */
2073 			ret = 0;
2074 		}
2075 		btrfs_put_bbio(bbio);
2076 	}
2077 
2078 	if (actual_bytes)
2079 		*actual_bytes = discarded_bytes;
2080 
2081 
2082 	if (ret == -EOPNOTSUPP)
2083 		ret = 0;
2084 	return ret;
2085 }
2086 
2087 /* Can return -ENOMEM */
2088 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089 			 struct btrfs_root *root,
2090 			 u64 bytenr, u64 num_bytes, u64 parent,
2091 			 u64 root_objectid, u64 owner, u64 offset)
2092 {
2093 	int ret;
2094 	struct btrfs_fs_info *fs_info = root->fs_info;
2095 
2096 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2098 
2099 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2100 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2101 					num_bytes,
2102 					parent, root_objectid, (int)owner,
2103 					BTRFS_ADD_DELAYED_REF, NULL);
2104 	} else {
2105 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2106 					num_bytes, parent, root_objectid,
2107 					owner, offset, 0,
2108 					BTRFS_ADD_DELAYED_REF, NULL);
2109 	}
2110 	return ret;
2111 }
2112 
2113 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114 				  struct btrfs_root *root,
2115 				  struct btrfs_delayed_ref_node *node,
2116 				  u64 parent, u64 root_objectid,
2117 				  u64 owner, u64 offset, int refs_to_add,
2118 				  struct btrfs_delayed_extent_op *extent_op)
2119 {
2120 	struct btrfs_fs_info *fs_info = root->fs_info;
2121 	struct btrfs_path *path;
2122 	struct extent_buffer *leaf;
2123 	struct btrfs_extent_item *item;
2124 	struct btrfs_key key;
2125 	u64 bytenr = node->bytenr;
2126 	u64 num_bytes = node->num_bytes;
2127 	u64 refs;
2128 	int ret;
2129 
2130 	path = btrfs_alloc_path();
2131 	if (!path)
2132 		return -ENOMEM;
2133 
2134 	path->reada = READA_FORWARD;
2135 	path->leave_spinning = 1;
2136 	/* this will setup the path even if it fails to insert the back ref */
2137 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138 					   bytenr, num_bytes, parent,
2139 					   root_objectid, owner, offset,
2140 					   refs_to_add, extent_op);
2141 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 		goto out;
2143 
2144 	/*
2145 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 	 * inline extent ref, so just update the reference count and add a
2147 	 * normal backref.
2148 	 */
2149 	leaf = path->nodes[0];
2150 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 	refs = btrfs_extent_refs(leaf, item);
2153 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 	if (extent_op)
2155 		__run_delayed_extent_op(extent_op, leaf, item);
2156 
2157 	btrfs_mark_buffer_dirty(leaf);
2158 	btrfs_release_path(path);
2159 
2160 	path->reada = READA_FORWARD;
2161 	path->leave_spinning = 1;
2162 	/* now insert the actual backref */
2163 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2164 				    path, bytenr, parent, root_objectid,
2165 				    owner, offset, refs_to_add);
2166 	if (ret)
2167 		btrfs_abort_transaction(trans, root, ret);
2168 out:
2169 	btrfs_free_path(path);
2170 	return ret;
2171 }
2172 
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 				struct btrfs_root *root,
2175 				struct btrfs_delayed_ref_node *node,
2176 				struct btrfs_delayed_extent_op *extent_op,
2177 				int insert_reserved)
2178 {
2179 	int ret = 0;
2180 	struct btrfs_delayed_data_ref *ref;
2181 	struct btrfs_key ins;
2182 	u64 parent = 0;
2183 	u64 ref_root = 0;
2184 	u64 flags = 0;
2185 
2186 	ins.objectid = node->bytenr;
2187 	ins.offset = node->num_bytes;
2188 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2189 
2190 	ref = btrfs_delayed_node_to_data_ref(node);
2191 	trace_run_delayed_data_ref(node, ref, node->action);
2192 
2193 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 		parent = ref->parent;
2195 	ref_root = ref->root;
2196 
2197 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198 		if (extent_op)
2199 			flags |= extent_op->flags_to_set;
2200 		ret = alloc_reserved_file_extent(trans, root,
2201 						 parent, ref_root, flags,
2202 						 ref->objectid, ref->offset,
2203 						 &ins, node->ref_mod);
2204 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2206 					     ref_root, ref->objectid,
2207 					     ref->offset, node->ref_mod,
2208 					     extent_op);
2209 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2210 		ret = __btrfs_free_extent(trans, root, node, parent,
2211 					  ref_root, ref->objectid,
2212 					  ref->offset, node->ref_mod,
2213 					  extent_op);
2214 	} else {
2215 		BUG();
2216 	}
2217 	return ret;
2218 }
2219 
2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 				    struct extent_buffer *leaf,
2222 				    struct btrfs_extent_item *ei)
2223 {
2224 	u64 flags = btrfs_extent_flags(leaf, ei);
2225 	if (extent_op->update_flags) {
2226 		flags |= extent_op->flags_to_set;
2227 		btrfs_set_extent_flags(leaf, ei, flags);
2228 	}
2229 
2230 	if (extent_op->update_key) {
2231 		struct btrfs_tree_block_info *bi;
2232 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 	}
2236 }
2237 
2238 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 				 struct btrfs_root *root,
2240 				 struct btrfs_delayed_ref_node *node,
2241 				 struct btrfs_delayed_extent_op *extent_op)
2242 {
2243 	struct btrfs_key key;
2244 	struct btrfs_path *path;
2245 	struct btrfs_extent_item *ei;
2246 	struct extent_buffer *leaf;
2247 	u32 item_size;
2248 	int ret;
2249 	int err = 0;
2250 	int metadata = !extent_op->is_data;
2251 
2252 	if (trans->aborted)
2253 		return 0;
2254 
2255 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2256 		metadata = 0;
2257 
2258 	path = btrfs_alloc_path();
2259 	if (!path)
2260 		return -ENOMEM;
2261 
2262 	key.objectid = node->bytenr;
2263 
2264 	if (metadata) {
2265 		key.type = BTRFS_METADATA_ITEM_KEY;
2266 		key.offset = extent_op->level;
2267 	} else {
2268 		key.type = BTRFS_EXTENT_ITEM_KEY;
2269 		key.offset = node->num_bytes;
2270 	}
2271 
2272 again:
2273 	path->reada = READA_FORWARD;
2274 	path->leave_spinning = 1;
2275 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2276 				path, 0, 1);
2277 	if (ret < 0) {
2278 		err = ret;
2279 		goto out;
2280 	}
2281 	if (ret > 0) {
2282 		if (metadata) {
2283 			if (path->slots[0] > 0) {
2284 				path->slots[0]--;
2285 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2286 						      path->slots[0]);
2287 				if (key.objectid == node->bytenr &&
2288 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2289 				    key.offset == node->num_bytes)
2290 					ret = 0;
2291 			}
2292 			if (ret > 0) {
2293 				btrfs_release_path(path);
2294 				metadata = 0;
2295 
2296 				key.objectid = node->bytenr;
2297 				key.offset = node->num_bytes;
2298 				key.type = BTRFS_EXTENT_ITEM_KEY;
2299 				goto again;
2300 			}
2301 		} else {
2302 			err = -EIO;
2303 			goto out;
2304 		}
2305 	}
2306 
2307 	leaf = path->nodes[0];
2308 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 	if (item_size < sizeof(*ei)) {
2311 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2312 					     path, (u64)-1, 0);
2313 		if (ret < 0) {
2314 			err = ret;
2315 			goto out;
2316 		}
2317 		leaf = path->nodes[0];
2318 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2319 	}
2320 #endif
2321 	BUG_ON(item_size < sizeof(*ei));
2322 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 	__run_delayed_extent_op(extent_op, leaf, ei);
2324 
2325 	btrfs_mark_buffer_dirty(leaf);
2326 out:
2327 	btrfs_free_path(path);
2328 	return err;
2329 }
2330 
2331 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332 				struct btrfs_root *root,
2333 				struct btrfs_delayed_ref_node *node,
2334 				struct btrfs_delayed_extent_op *extent_op,
2335 				int insert_reserved)
2336 {
2337 	int ret = 0;
2338 	struct btrfs_delayed_tree_ref *ref;
2339 	struct btrfs_key ins;
2340 	u64 parent = 0;
2341 	u64 ref_root = 0;
2342 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2343 						 SKINNY_METADATA);
2344 
2345 	ref = btrfs_delayed_node_to_tree_ref(node);
2346 	trace_run_delayed_tree_ref(node, ref, node->action);
2347 
2348 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349 		parent = ref->parent;
2350 	ref_root = ref->root;
2351 
2352 	ins.objectid = node->bytenr;
2353 	if (skinny_metadata) {
2354 		ins.offset = ref->level;
2355 		ins.type = BTRFS_METADATA_ITEM_KEY;
2356 	} else {
2357 		ins.offset = node->num_bytes;
2358 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2359 	}
2360 
2361 	BUG_ON(node->ref_mod != 1);
2362 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 		BUG_ON(!extent_op || !extent_op->update_flags);
2364 		ret = alloc_reserved_tree_block(trans, root,
2365 						parent, ref_root,
2366 						extent_op->flags_to_set,
2367 						&extent_op->key,
2368 						ref->level, &ins);
2369 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 		ret = __btrfs_inc_extent_ref(trans, root, node,
2371 					     parent, ref_root,
2372 					     ref->level, 0, 1,
2373 					     extent_op);
2374 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 		ret = __btrfs_free_extent(trans, root, node,
2376 					  parent, ref_root,
2377 					  ref->level, 0, 1, extent_op);
2378 	} else {
2379 		BUG();
2380 	}
2381 	return ret;
2382 }
2383 
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 			       struct btrfs_root *root,
2387 			       struct btrfs_delayed_ref_node *node,
2388 			       struct btrfs_delayed_extent_op *extent_op,
2389 			       int insert_reserved)
2390 {
2391 	int ret = 0;
2392 
2393 	if (trans->aborted) {
2394 		if (insert_reserved)
2395 			btrfs_pin_extent(root, node->bytenr,
2396 					 node->num_bytes, 1);
2397 		return 0;
2398 	}
2399 
2400 	if (btrfs_delayed_ref_is_head(node)) {
2401 		struct btrfs_delayed_ref_head *head;
2402 		/*
2403 		 * we've hit the end of the chain and we were supposed
2404 		 * to insert this extent into the tree.  But, it got
2405 		 * deleted before we ever needed to insert it, so all
2406 		 * we have to do is clean up the accounting
2407 		 */
2408 		BUG_ON(extent_op);
2409 		head = btrfs_delayed_node_to_head(node);
2410 		trace_run_delayed_ref_head(node, head, node->action);
2411 
2412 		if (insert_reserved) {
2413 			btrfs_pin_extent(root, node->bytenr,
2414 					 node->num_bytes, 1);
2415 			if (head->is_data) {
2416 				ret = btrfs_del_csums(trans, root,
2417 						      node->bytenr,
2418 						      node->num_bytes);
2419 			}
2420 		}
2421 
2422 		/* Also free its reserved qgroup space */
2423 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2424 					      head->qgroup_ref_root,
2425 					      head->qgroup_reserved);
2426 		return ret;
2427 	}
2428 
2429 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2432 					   insert_reserved);
2433 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2436 					   insert_reserved);
2437 	else
2438 		BUG();
2439 	return ret;
2440 }
2441 
2442 static inline struct btrfs_delayed_ref_node *
2443 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2444 {
2445 	struct btrfs_delayed_ref_node *ref;
2446 
2447 	if (list_empty(&head->ref_list))
2448 		return NULL;
2449 
2450 	/*
2451 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 	 * This is to prevent a ref count from going down to zero, which deletes
2453 	 * the extent item from the extent tree, when there still are references
2454 	 * to add, which would fail because they would not find the extent item.
2455 	 */
2456 	list_for_each_entry(ref, &head->ref_list, list) {
2457 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2458 			return ref;
2459 	}
2460 
2461 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2462 			  list);
2463 }
2464 
2465 /*
2466  * Returns 0 on success or if called with an already aborted transaction.
2467  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2468  */
2469 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 					     struct btrfs_root *root,
2471 					     unsigned long nr)
2472 {
2473 	struct btrfs_delayed_ref_root *delayed_refs;
2474 	struct btrfs_delayed_ref_node *ref;
2475 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2476 	struct btrfs_delayed_extent_op *extent_op;
2477 	struct btrfs_fs_info *fs_info = root->fs_info;
2478 	ktime_t start = ktime_get();
2479 	int ret;
2480 	unsigned long count = 0;
2481 	unsigned long actual_count = 0;
2482 	int must_insert_reserved = 0;
2483 
2484 	delayed_refs = &trans->transaction->delayed_refs;
2485 	while (1) {
2486 		if (!locked_ref) {
2487 			if (count >= nr)
2488 				break;
2489 
2490 			spin_lock(&delayed_refs->lock);
2491 			locked_ref = btrfs_select_ref_head(trans);
2492 			if (!locked_ref) {
2493 				spin_unlock(&delayed_refs->lock);
2494 				break;
2495 			}
2496 
2497 			/* grab the lock that says we are going to process
2498 			 * all the refs for this head */
2499 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2500 			spin_unlock(&delayed_refs->lock);
2501 			/*
2502 			 * we may have dropped the spin lock to get the head
2503 			 * mutex lock, and that might have given someone else
2504 			 * time to free the head.  If that's true, it has been
2505 			 * removed from our list and we can move on.
2506 			 */
2507 			if (ret == -EAGAIN) {
2508 				locked_ref = NULL;
2509 				count++;
2510 				continue;
2511 			}
2512 		}
2513 
2514 		/*
2515 		 * We need to try and merge add/drops of the same ref since we
2516 		 * can run into issues with relocate dropping the implicit ref
2517 		 * and then it being added back again before the drop can
2518 		 * finish.  If we merged anything we need to re-loop so we can
2519 		 * get a good ref.
2520 		 * Or we can get node references of the same type that weren't
2521 		 * merged when created due to bumps in the tree mod seq, and
2522 		 * we need to merge them to prevent adding an inline extent
2523 		 * backref before dropping it (triggering a BUG_ON at
2524 		 * insert_inline_extent_backref()).
2525 		 */
2526 		spin_lock(&locked_ref->lock);
2527 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2528 					 locked_ref);
2529 
2530 		/*
2531 		 * locked_ref is the head node, so we have to go one
2532 		 * node back for any delayed ref updates
2533 		 */
2534 		ref = select_delayed_ref(locked_ref);
2535 
2536 		if (ref && ref->seq &&
2537 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2538 			spin_unlock(&locked_ref->lock);
2539 			btrfs_delayed_ref_unlock(locked_ref);
2540 			spin_lock(&delayed_refs->lock);
2541 			locked_ref->processing = 0;
2542 			delayed_refs->num_heads_ready++;
2543 			spin_unlock(&delayed_refs->lock);
2544 			locked_ref = NULL;
2545 			cond_resched();
2546 			count++;
2547 			continue;
2548 		}
2549 
2550 		/*
2551 		 * record the must insert reserved flag before we
2552 		 * drop the spin lock.
2553 		 */
2554 		must_insert_reserved = locked_ref->must_insert_reserved;
2555 		locked_ref->must_insert_reserved = 0;
2556 
2557 		extent_op = locked_ref->extent_op;
2558 		locked_ref->extent_op = NULL;
2559 
2560 		if (!ref) {
2561 
2562 
2563 			/* All delayed refs have been processed, Go ahead
2564 			 * and send the head node to run_one_delayed_ref,
2565 			 * so that any accounting fixes can happen
2566 			 */
2567 			ref = &locked_ref->node;
2568 
2569 			if (extent_op && must_insert_reserved) {
2570 				btrfs_free_delayed_extent_op(extent_op);
2571 				extent_op = NULL;
2572 			}
2573 
2574 			if (extent_op) {
2575 				spin_unlock(&locked_ref->lock);
2576 				ret = run_delayed_extent_op(trans, root,
2577 							    ref, extent_op);
2578 				btrfs_free_delayed_extent_op(extent_op);
2579 
2580 				if (ret) {
2581 					/*
2582 					 * Need to reset must_insert_reserved if
2583 					 * there was an error so the abort stuff
2584 					 * can cleanup the reserved space
2585 					 * properly.
2586 					 */
2587 					if (must_insert_reserved)
2588 						locked_ref->must_insert_reserved = 1;
2589 					locked_ref->processing = 0;
2590 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 					btrfs_delayed_ref_unlock(locked_ref);
2592 					return ret;
2593 				}
2594 				continue;
2595 			}
2596 
2597 			/*
2598 			 * Need to drop our head ref lock and re-aqcuire the
2599 			 * delayed ref lock and then re-check to make sure
2600 			 * nobody got added.
2601 			 */
2602 			spin_unlock(&locked_ref->lock);
2603 			spin_lock(&delayed_refs->lock);
2604 			spin_lock(&locked_ref->lock);
2605 			if (!list_empty(&locked_ref->ref_list) ||
2606 			    locked_ref->extent_op) {
2607 				spin_unlock(&locked_ref->lock);
2608 				spin_unlock(&delayed_refs->lock);
2609 				continue;
2610 			}
2611 			ref->in_tree = 0;
2612 			delayed_refs->num_heads--;
2613 			rb_erase(&locked_ref->href_node,
2614 				 &delayed_refs->href_root);
2615 			spin_unlock(&delayed_refs->lock);
2616 		} else {
2617 			actual_count++;
2618 			ref->in_tree = 0;
2619 			list_del(&ref->list);
2620 		}
2621 		atomic_dec(&delayed_refs->num_entries);
2622 
2623 		if (!btrfs_delayed_ref_is_head(ref)) {
2624 			/*
2625 			 * when we play the delayed ref, also correct the
2626 			 * ref_mod on head
2627 			 */
2628 			switch (ref->action) {
2629 			case BTRFS_ADD_DELAYED_REF:
2630 			case BTRFS_ADD_DELAYED_EXTENT:
2631 				locked_ref->node.ref_mod -= ref->ref_mod;
2632 				break;
2633 			case BTRFS_DROP_DELAYED_REF:
2634 				locked_ref->node.ref_mod += ref->ref_mod;
2635 				break;
2636 			default:
2637 				WARN_ON(1);
2638 			}
2639 		}
2640 		spin_unlock(&locked_ref->lock);
2641 
2642 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2643 					  must_insert_reserved);
2644 
2645 		btrfs_free_delayed_extent_op(extent_op);
2646 		if (ret) {
2647 			locked_ref->processing = 0;
2648 			btrfs_delayed_ref_unlock(locked_ref);
2649 			btrfs_put_delayed_ref(ref);
2650 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2651 			return ret;
2652 		}
2653 
2654 		/*
2655 		 * If this node is a head, that means all the refs in this head
2656 		 * have been dealt with, and we will pick the next head to deal
2657 		 * with, so we must unlock the head and drop it from the cluster
2658 		 * list before we release it.
2659 		 */
2660 		if (btrfs_delayed_ref_is_head(ref)) {
2661 			if (locked_ref->is_data &&
2662 			    locked_ref->total_ref_mod < 0) {
2663 				spin_lock(&delayed_refs->lock);
2664 				delayed_refs->pending_csums -= ref->num_bytes;
2665 				spin_unlock(&delayed_refs->lock);
2666 			}
2667 			btrfs_delayed_ref_unlock(locked_ref);
2668 			locked_ref = NULL;
2669 		}
2670 		btrfs_put_delayed_ref(ref);
2671 		count++;
2672 		cond_resched();
2673 	}
2674 
2675 	/*
2676 	 * We don't want to include ref heads since we can have empty ref heads
2677 	 * and those will drastically skew our runtime down since we just do
2678 	 * accounting, no actual extent tree updates.
2679 	 */
2680 	if (actual_count > 0) {
2681 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2682 		u64 avg;
2683 
2684 		/*
2685 		 * We weigh the current average higher than our current runtime
2686 		 * to avoid large swings in the average.
2687 		 */
2688 		spin_lock(&delayed_refs->lock);
2689 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2690 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2691 		spin_unlock(&delayed_refs->lock);
2692 	}
2693 	return 0;
2694 }
2695 
2696 #ifdef SCRAMBLE_DELAYED_REFS
2697 /*
2698  * Normally delayed refs get processed in ascending bytenr order. This
2699  * correlates in most cases to the order added. To expose dependencies on this
2700  * order, we start to process the tree in the middle instead of the beginning
2701  */
2702 static u64 find_middle(struct rb_root *root)
2703 {
2704 	struct rb_node *n = root->rb_node;
2705 	struct btrfs_delayed_ref_node *entry;
2706 	int alt = 1;
2707 	u64 middle;
2708 	u64 first = 0, last = 0;
2709 
2710 	n = rb_first(root);
2711 	if (n) {
2712 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713 		first = entry->bytenr;
2714 	}
2715 	n = rb_last(root);
2716 	if (n) {
2717 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718 		last = entry->bytenr;
2719 	}
2720 	n = root->rb_node;
2721 
2722 	while (n) {
2723 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 		WARN_ON(!entry->in_tree);
2725 
2726 		middle = entry->bytenr;
2727 
2728 		if (alt)
2729 			n = n->rb_left;
2730 		else
2731 			n = n->rb_right;
2732 
2733 		alt = 1 - alt;
2734 	}
2735 	return middle;
2736 }
2737 #endif
2738 
2739 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2740 {
2741 	u64 num_bytes;
2742 
2743 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744 			     sizeof(struct btrfs_extent_inline_ref));
2745 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2747 
2748 	/*
2749 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2750 	 * closer to what we're really going to want to ouse.
2751 	 */
2752 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2753 }
2754 
2755 /*
2756  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757  * would require to store the csums for that many bytes.
2758  */
2759 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2760 {
2761 	u64 csum_size;
2762 	u64 num_csums_per_leaf;
2763 	u64 num_csums;
2764 
2765 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766 	num_csums_per_leaf = div64_u64(csum_size,
2767 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2769 	num_csums += num_csums_per_leaf - 1;
2770 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2771 	return num_csums;
2772 }
2773 
2774 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2775 				       struct btrfs_root *root)
2776 {
2777 	struct btrfs_block_rsv *global_rsv;
2778 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2779 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2780 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781 	u64 num_bytes, num_dirty_bgs_bytes;
2782 	int ret = 0;
2783 
2784 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785 	num_heads = heads_to_leaves(root, num_heads);
2786 	if (num_heads > 1)
2787 		num_bytes += (num_heads - 1) * root->nodesize;
2788 	num_bytes <<= 1;
2789 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2790 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2791 							     num_dirty_bgs);
2792 	global_rsv = &root->fs_info->global_block_rsv;
2793 
2794 	/*
2795 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 	 * wiggle room since running delayed refs can create more delayed refs.
2797 	 */
2798 	if (global_rsv->space_info->full) {
2799 		num_dirty_bgs_bytes <<= 1;
2800 		num_bytes <<= 1;
2801 	}
2802 
2803 	spin_lock(&global_rsv->lock);
2804 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2805 		ret = 1;
2806 	spin_unlock(&global_rsv->lock);
2807 	return ret;
2808 }
2809 
2810 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811 				       struct btrfs_root *root)
2812 {
2813 	struct btrfs_fs_info *fs_info = root->fs_info;
2814 	u64 num_entries =
2815 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2816 	u64 avg_runtime;
2817 	u64 val;
2818 
2819 	smp_mb();
2820 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2821 	val = num_entries * avg_runtime;
2822 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2823 		return 1;
2824 	if (val >= NSEC_PER_SEC / 2)
2825 		return 2;
2826 
2827 	return btrfs_check_space_for_delayed_refs(trans, root);
2828 }
2829 
2830 struct async_delayed_refs {
2831 	struct btrfs_root *root;
2832 	int count;
2833 	int error;
2834 	int sync;
2835 	struct completion wait;
2836 	struct btrfs_work work;
2837 };
2838 
2839 static void delayed_ref_async_start(struct btrfs_work *work)
2840 {
2841 	struct async_delayed_refs *async;
2842 	struct btrfs_trans_handle *trans;
2843 	int ret;
2844 
2845 	async = container_of(work, struct async_delayed_refs, work);
2846 
2847 	trans = btrfs_join_transaction(async->root);
2848 	if (IS_ERR(trans)) {
2849 		async->error = PTR_ERR(trans);
2850 		goto done;
2851 	}
2852 
2853 	/*
2854 	 * trans->sync means that when we call end_transaciton, we won't
2855 	 * wait on delayed refs
2856 	 */
2857 	trans->sync = true;
2858 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2859 	if (ret)
2860 		async->error = ret;
2861 
2862 	ret = btrfs_end_transaction(trans, async->root);
2863 	if (ret && !async->error)
2864 		async->error = ret;
2865 done:
2866 	if (async->sync)
2867 		complete(&async->wait);
2868 	else
2869 		kfree(async);
2870 }
2871 
2872 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873 				 unsigned long count, int wait)
2874 {
2875 	struct async_delayed_refs *async;
2876 	int ret;
2877 
2878 	async = kmalloc(sizeof(*async), GFP_NOFS);
2879 	if (!async)
2880 		return -ENOMEM;
2881 
2882 	async->root = root->fs_info->tree_root;
2883 	async->count = count;
2884 	async->error = 0;
2885 	if (wait)
2886 		async->sync = 1;
2887 	else
2888 		async->sync = 0;
2889 	init_completion(&async->wait);
2890 
2891 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892 			delayed_ref_async_start, NULL, NULL);
2893 
2894 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2895 
2896 	if (wait) {
2897 		wait_for_completion(&async->wait);
2898 		ret = async->error;
2899 		kfree(async);
2900 		return ret;
2901 	}
2902 	return 0;
2903 }
2904 
2905 /*
2906  * this starts processing the delayed reference count updates and
2907  * extent insertions we have queued up so far.  count can be
2908  * 0, which means to process everything in the tree at the start
2909  * of the run (but not newly added entries), or it can be some target
2910  * number you'd like to process.
2911  *
2912  * Returns 0 on success or if called with an aborted transaction
2913  * Returns <0 on error and aborts the transaction
2914  */
2915 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916 			   struct btrfs_root *root, unsigned long count)
2917 {
2918 	struct rb_node *node;
2919 	struct btrfs_delayed_ref_root *delayed_refs;
2920 	struct btrfs_delayed_ref_head *head;
2921 	int ret;
2922 	int run_all = count == (unsigned long)-1;
2923 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2924 
2925 	/* We'll clean this up in btrfs_cleanup_transaction */
2926 	if (trans->aborted)
2927 		return 0;
2928 
2929 	if (root->fs_info->creating_free_space_tree)
2930 		return 0;
2931 
2932 	if (root == root->fs_info->extent_root)
2933 		root = root->fs_info->tree_root;
2934 
2935 	delayed_refs = &trans->transaction->delayed_refs;
2936 	if (count == 0)
2937 		count = atomic_read(&delayed_refs->num_entries) * 2;
2938 
2939 again:
2940 #ifdef SCRAMBLE_DELAYED_REFS
2941 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2942 #endif
2943 	trans->can_flush_pending_bgs = false;
2944 	ret = __btrfs_run_delayed_refs(trans, root, count);
2945 	if (ret < 0) {
2946 		btrfs_abort_transaction(trans, root, ret);
2947 		return ret;
2948 	}
2949 
2950 	if (run_all) {
2951 		if (!list_empty(&trans->new_bgs))
2952 			btrfs_create_pending_block_groups(trans, root);
2953 
2954 		spin_lock(&delayed_refs->lock);
2955 		node = rb_first(&delayed_refs->href_root);
2956 		if (!node) {
2957 			spin_unlock(&delayed_refs->lock);
2958 			goto out;
2959 		}
2960 		count = (unsigned long)-1;
2961 
2962 		while (node) {
2963 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2964 					href_node);
2965 			if (btrfs_delayed_ref_is_head(&head->node)) {
2966 				struct btrfs_delayed_ref_node *ref;
2967 
2968 				ref = &head->node;
2969 				atomic_inc(&ref->refs);
2970 
2971 				spin_unlock(&delayed_refs->lock);
2972 				/*
2973 				 * Mutex was contended, block until it's
2974 				 * released and try again
2975 				 */
2976 				mutex_lock(&head->mutex);
2977 				mutex_unlock(&head->mutex);
2978 
2979 				btrfs_put_delayed_ref(ref);
2980 				cond_resched();
2981 				goto again;
2982 			} else {
2983 				WARN_ON(1);
2984 			}
2985 			node = rb_next(node);
2986 		}
2987 		spin_unlock(&delayed_refs->lock);
2988 		cond_resched();
2989 		goto again;
2990 	}
2991 out:
2992 	assert_qgroups_uptodate(trans);
2993 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
2994 	return 0;
2995 }
2996 
2997 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998 				struct btrfs_root *root,
2999 				u64 bytenr, u64 num_bytes, u64 flags,
3000 				int level, int is_data)
3001 {
3002 	struct btrfs_delayed_extent_op *extent_op;
3003 	int ret;
3004 
3005 	extent_op = btrfs_alloc_delayed_extent_op();
3006 	if (!extent_op)
3007 		return -ENOMEM;
3008 
3009 	extent_op->flags_to_set = flags;
3010 	extent_op->update_flags = true;
3011 	extent_op->update_key = false;
3012 	extent_op->is_data = is_data ? true : false;
3013 	extent_op->level = level;
3014 
3015 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016 					  num_bytes, extent_op);
3017 	if (ret)
3018 		btrfs_free_delayed_extent_op(extent_op);
3019 	return ret;
3020 }
3021 
3022 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023 				      struct btrfs_root *root,
3024 				      struct btrfs_path *path,
3025 				      u64 objectid, u64 offset, u64 bytenr)
3026 {
3027 	struct btrfs_delayed_ref_head *head;
3028 	struct btrfs_delayed_ref_node *ref;
3029 	struct btrfs_delayed_data_ref *data_ref;
3030 	struct btrfs_delayed_ref_root *delayed_refs;
3031 	int ret = 0;
3032 
3033 	delayed_refs = &trans->transaction->delayed_refs;
3034 	spin_lock(&delayed_refs->lock);
3035 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3036 	if (!head) {
3037 		spin_unlock(&delayed_refs->lock);
3038 		return 0;
3039 	}
3040 
3041 	if (!mutex_trylock(&head->mutex)) {
3042 		atomic_inc(&head->node.refs);
3043 		spin_unlock(&delayed_refs->lock);
3044 
3045 		btrfs_release_path(path);
3046 
3047 		/*
3048 		 * Mutex was contended, block until it's released and let
3049 		 * caller try again
3050 		 */
3051 		mutex_lock(&head->mutex);
3052 		mutex_unlock(&head->mutex);
3053 		btrfs_put_delayed_ref(&head->node);
3054 		return -EAGAIN;
3055 	}
3056 	spin_unlock(&delayed_refs->lock);
3057 
3058 	spin_lock(&head->lock);
3059 	list_for_each_entry(ref, &head->ref_list, list) {
3060 		/* If it's a shared ref we know a cross reference exists */
3061 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3062 			ret = 1;
3063 			break;
3064 		}
3065 
3066 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3067 
3068 		/*
3069 		 * If our ref doesn't match the one we're currently looking at
3070 		 * then we have a cross reference.
3071 		 */
3072 		if (data_ref->root != root->root_key.objectid ||
3073 		    data_ref->objectid != objectid ||
3074 		    data_ref->offset != offset) {
3075 			ret = 1;
3076 			break;
3077 		}
3078 	}
3079 	spin_unlock(&head->lock);
3080 	mutex_unlock(&head->mutex);
3081 	return ret;
3082 }
3083 
3084 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085 					struct btrfs_root *root,
3086 					struct btrfs_path *path,
3087 					u64 objectid, u64 offset, u64 bytenr)
3088 {
3089 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3090 	struct extent_buffer *leaf;
3091 	struct btrfs_extent_data_ref *ref;
3092 	struct btrfs_extent_inline_ref *iref;
3093 	struct btrfs_extent_item *ei;
3094 	struct btrfs_key key;
3095 	u32 item_size;
3096 	int ret;
3097 
3098 	key.objectid = bytenr;
3099 	key.offset = (u64)-1;
3100 	key.type = BTRFS_EXTENT_ITEM_KEY;
3101 
3102 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3103 	if (ret < 0)
3104 		goto out;
3105 	BUG_ON(ret == 0); /* Corruption */
3106 
3107 	ret = -ENOENT;
3108 	if (path->slots[0] == 0)
3109 		goto out;
3110 
3111 	path->slots[0]--;
3112 	leaf = path->nodes[0];
3113 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3114 
3115 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3116 		goto out;
3117 
3118 	ret = 1;
3119 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 	if (item_size < sizeof(*ei)) {
3122 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3123 		goto out;
3124 	}
3125 #endif
3126 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3127 
3128 	if (item_size != sizeof(*ei) +
3129 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3130 		goto out;
3131 
3132 	if (btrfs_extent_generation(leaf, ei) <=
3133 	    btrfs_root_last_snapshot(&root->root_item))
3134 		goto out;
3135 
3136 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138 	    BTRFS_EXTENT_DATA_REF_KEY)
3139 		goto out;
3140 
3141 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142 	if (btrfs_extent_refs(leaf, ei) !=
3143 	    btrfs_extent_data_ref_count(leaf, ref) ||
3144 	    btrfs_extent_data_ref_root(leaf, ref) !=
3145 	    root->root_key.objectid ||
3146 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3148 		goto out;
3149 
3150 	ret = 0;
3151 out:
3152 	return ret;
3153 }
3154 
3155 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156 			  struct btrfs_root *root,
3157 			  u64 objectid, u64 offset, u64 bytenr)
3158 {
3159 	struct btrfs_path *path;
3160 	int ret;
3161 	int ret2;
3162 
3163 	path = btrfs_alloc_path();
3164 	if (!path)
3165 		return -ENOENT;
3166 
3167 	do {
3168 		ret = check_committed_ref(trans, root, path, objectid,
3169 					  offset, bytenr);
3170 		if (ret && ret != -ENOENT)
3171 			goto out;
3172 
3173 		ret2 = check_delayed_ref(trans, root, path, objectid,
3174 					 offset, bytenr);
3175 	} while (ret2 == -EAGAIN);
3176 
3177 	if (ret2 && ret2 != -ENOENT) {
3178 		ret = ret2;
3179 		goto out;
3180 	}
3181 
3182 	if (ret != -ENOENT || ret2 != -ENOENT)
3183 		ret = 0;
3184 out:
3185 	btrfs_free_path(path);
3186 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3187 		WARN_ON(ret > 0);
3188 	return ret;
3189 }
3190 
3191 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3192 			   struct btrfs_root *root,
3193 			   struct extent_buffer *buf,
3194 			   int full_backref, int inc)
3195 {
3196 	u64 bytenr;
3197 	u64 num_bytes;
3198 	u64 parent;
3199 	u64 ref_root;
3200 	u32 nritems;
3201 	struct btrfs_key key;
3202 	struct btrfs_file_extent_item *fi;
3203 	int i;
3204 	int level;
3205 	int ret = 0;
3206 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3207 			    u64, u64, u64, u64, u64, u64);
3208 
3209 
3210 	if (btrfs_test_is_dummy_root(root))
3211 		return 0;
3212 
3213 	ref_root = btrfs_header_owner(buf);
3214 	nritems = btrfs_header_nritems(buf);
3215 	level = btrfs_header_level(buf);
3216 
3217 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3218 		return 0;
3219 
3220 	if (inc)
3221 		process_func = btrfs_inc_extent_ref;
3222 	else
3223 		process_func = btrfs_free_extent;
3224 
3225 	if (full_backref)
3226 		parent = buf->start;
3227 	else
3228 		parent = 0;
3229 
3230 	for (i = 0; i < nritems; i++) {
3231 		if (level == 0) {
3232 			btrfs_item_key_to_cpu(buf, &key, i);
3233 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3234 				continue;
3235 			fi = btrfs_item_ptr(buf, i,
3236 					    struct btrfs_file_extent_item);
3237 			if (btrfs_file_extent_type(buf, fi) ==
3238 			    BTRFS_FILE_EXTENT_INLINE)
3239 				continue;
3240 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3241 			if (bytenr == 0)
3242 				continue;
3243 
3244 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245 			key.offset -= btrfs_file_extent_offset(buf, fi);
3246 			ret = process_func(trans, root, bytenr, num_bytes,
3247 					   parent, ref_root, key.objectid,
3248 					   key.offset);
3249 			if (ret)
3250 				goto fail;
3251 		} else {
3252 			bytenr = btrfs_node_blockptr(buf, i);
3253 			num_bytes = root->nodesize;
3254 			ret = process_func(trans, root, bytenr, num_bytes,
3255 					   parent, ref_root, level - 1, 0);
3256 			if (ret)
3257 				goto fail;
3258 		}
3259 	}
3260 	return 0;
3261 fail:
3262 	return ret;
3263 }
3264 
3265 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3266 		  struct extent_buffer *buf, int full_backref)
3267 {
3268 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3269 }
3270 
3271 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 		  struct extent_buffer *buf, int full_backref)
3273 {
3274 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3275 }
3276 
3277 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278 				 struct btrfs_root *root,
3279 				 struct btrfs_path *path,
3280 				 struct btrfs_block_group_cache *cache)
3281 {
3282 	int ret;
3283 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3284 	unsigned long bi;
3285 	struct extent_buffer *leaf;
3286 
3287 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3288 	if (ret) {
3289 		if (ret > 0)
3290 			ret = -ENOENT;
3291 		goto fail;
3292 	}
3293 
3294 	leaf = path->nodes[0];
3295 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297 	btrfs_mark_buffer_dirty(leaf);
3298 fail:
3299 	btrfs_release_path(path);
3300 	return ret;
3301 
3302 }
3303 
3304 static struct btrfs_block_group_cache *
3305 next_block_group(struct btrfs_root *root,
3306 		 struct btrfs_block_group_cache *cache)
3307 {
3308 	struct rb_node *node;
3309 
3310 	spin_lock(&root->fs_info->block_group_cache_lock);
3311 
3312 	/* If our block group was removed, we need a full search. */
3313 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3314 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3315 
3316 		spin_unlock(&root->fs_info->block_group_cache_lock);
3317 		btrfs_put_block_group(cache);
3318 		cache = btrfs_lookup_first_block_group(root->fs_info,
3319 						       next_bytenr);
3320 		return cache;
3321 	}
3322 	node = rb_next(&cache->cache_node);
3323 	btrfs_put_block_group(cache);
3324 	if (node) {
3325 		cache = rb_entry(node, struct btrfs_block_group_cache,
3326 				 cache_node);
3327 		btrfs_get_block_group(cache);
3328 	} else
3329 		cache = NULL;
3330 	spin_unlock(&root->fs_info->block_group_cache_lock);
3331 	return cache;
3332 }
3333 
3334 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335 			    struct btrfs_trans_handle *trans,
3336 			    struct btrfs_path *path)
3337 {
3338 	struct btrfs_root *root = block_group->fs_info->tree_root;
3339 	struct inode *inode = NULL;
3340 	u64 alloc_hint = 0;
3341 	int dcs = BTRFS_DC_ERROR;
3342 	u64 num_pages = 0;
3343 	int retries = 0;
3344 	int ret = 0;
3345 
3346 	/*
3347 	 * If this block group is smaller than 100 megs don't bother caching the
3348 	 * block group.
3349 	 */
3350 	if (block_group->key.offset < (100 * SZ_1M)) {
3351 		spin_lock(&block_group->lock);
3352 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353 		spin_unlock(&block_group->lock);
3354 		return 0;
3355 	}
3356 
3357 	if (trans->aborted)
3358 		return 0;
3359 again:
3360 	inode = lookup_free_space_inode(root, block_group, path);
3361 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362 		ret = PTR_ERR(inode);
3363 		btrfs_release_path(path);
3364 		goto out;
3365 	}
3366 
3367 	if (IS_ERR(inode)) {
3368 		BUG_ON(retries);
3369 		retries++;
3370 
3371 		if (block_group->ro)
3372 			goto out_free;
3373 
3374 		ret = create_free_space_inode(root, trans, block_group, path);
3375 		if (ret)
3376 			goto out_free;
3377 		goto again;
3378 	}
3379 
3380 	/* We've already setup this transaction, go ahead and exit */
3381 	if (block_group->cache_generation == trans->transid &&
3382 	    i_size_read(inode)) {
3383 		dcs = BTRFS_DC_SETUP;
3384 		goto out_put;
3385 	}
3386 
3387 	/*
3388 	 * We want to set the generation to 0, that way if anything goes wrong
3389 	 * from here on out we know not to trust this cache when we load up next
3390 	 * time.
3391 	 */
3392 	BTRFS_I(inode)->generation = 0;
3393 	ret = btrfs_update_inode(trans, root, inode);
3394 	if (ret) {
3395 		/*
3396 		 * So theoretically we could recover from this, simply set the
3397 		 * super cache generation to 0 so we know to invalidate the
3398 		 * cache, but then we'd have to keep track of the block groups
3399 		 * that fail this way so we know we _have_ to reset this cache
3400 		 * before the next commit or risk reading stale cache.  So to
3401 		 * limit our exposure to horrible edge cases lets just abort the
3402 		 * transaction, this only happens in really bad situations
3403 		 * anyway.
3404 		 */
3405 		btrfs_abort_transaction(trans, root, ret);
3406 		goto out_put;
3407 	}
3408 	WARN_ON(ret);
3409 
3410 	if (i_size_read(inode) > 0) {
3411 		ret = btrfs_check_trunc_cache_free_space(root,
3412 					&root->fs_info->global_block_rsv);
3413 		if (ret)
3414 			goto out_put;
3415 
3416 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3417 		if (ret)
3418 			goto out_put;
3419 	}
3420 
3421 	spin_lock(&block_group->lock);
3422 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3423 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3424 		/*
3425 		 * don't bother trying to write stuff out _if_
3426 		 * a) we're not cached,
3427 		 * b) we're with nospace_cache mount option.
3428 		 */
3429 		dcs = BTRFS_DC_WRITTEN;
3430 		spin_unlock(&block_group->lock);
3431 		goto out_put;
3432 	}
3433 	spin_unlock(&block_group->lock);
3434 
3435 	/*
3436 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 	 * skip doing the setup, we've already cleared the cache so we're safe.
3438 	 */
3439 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3440 		ret = -ENOSPC;
3441 		goto out_put;
3442 	}
3443 
3444 	/*
3445 	 * Try to preallocate enough space based on how big the block group is.
3446 	 * Keep in mind this has to include any pinned space which could end up
3447 	 * taking up quite a bit since it's not folded into the other space
3448 	 * cache.
3449 	 */
3450 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3451 	if (!num_pages)
3452 		num_pages = 1;
3453 
3454 	num_pages *= 16;
3455 	num_pages *= PAGE_CACHE_SIZE;
3456 
3457 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3458 	if (ret)
3459 		goto out_put;
3460 
3461 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462 					      num_pages, num_pages,
3463 					      &alloc_hint);
3464 	/*
3465 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 	 * of metadata or split extents when writing the cache out, which means
3467 	 * we can enospc if we are heavily fragmented in addition to just normal
3468 	 * out of space conditions.  So if we hit this just skip setting up any
3469 	 * other block groups for this transaction, maybe we'll unpin enough
3470 	 * space the next time around.
3471 	 */
3472 	if (!ret)
3473 		dcs = BTRFS_DC_SETUP;
3474 	else if (ret == -ENOSPC)
3475 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3476 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3477 
3478 out_put:
3479 	iput(inode);
3480 out_free:
3481 	btrfs_release_path(path);
3482 out:
3483 	spin_lock(&block_group->lock);
3484 	if (!ret && dcs == BTRFS_DC_SETUP)
3485 		block_group->cache_generation = trans->transid;
3486 	block_group->disk_cache_state = dcs;
3487 	spin_unlock(&block_group->lock);
3488 
3489 	return ret;
3490 }
3491 
3492 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493 			    struct btrfs_root *root)
3494 {
3495 	struct btrfs_block_group_cache *cache, *tmp;
3496 	struct btrfs_transaction *cur_trans = trans->transaction;
3497 	struct btrfs_path *path;
3498 
3499 	if (list_empty(&cur_trans->dirty_bgs) ||
3500 	    !btrfs_test_opt(root, SPACE_CACHE))
3501 		return 0;
3502 
3503 	path = btrfs_alloc_path();
3504 	if (!path)
3505 		return -ENOMEM;
3506 
3507 	/* Could add new block groups, use _safe just in case */
3508 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3509 				 dirty_list) {
3510 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511 			cache_save_setup(cache, trans, path);
3512 	}
3513 
3514 	btrfs_free_path(path);
3515 	return 0;
3516 }
3517 
3518 /*
3519  * transaction commit does final block group cache writeback during a
3520  * critical section where nothing is allowed to change the FS.  This is
3521  * required in order for the cache to actually match the block group,
3522  * but can introduce a lot of latency into the commit.
3523  *
3524  * So, btrfs_start_dirty_block_groups is here to kick off block group
3525  * cache IO.  There's a chance we'll have to redo some of it if the
3526  * block group changes again during the commit, but it greatly reduces
3527  * the commit latency by getting rid of the easy block groups while
3528  * we're still allowing others to join the commit.
3529  */
3530 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3531 				   struct btrfs_root *root)
3532 {
3533 	struct btrfs_block_group_cache *cache;
3534 	struct btrfs_transaction *cur_trans = trans->transaction;
3535 	int ret = 0;
3536 	int should_put;
3537 	struct btrfs_path *path = NULL;
3538 	LIST_HEAD(dirty);
3539 	struct list_head *io = &cur_trans->io_bgs;
3540 	int num_started = 0;
3541 	int loops = 0;
3542 
3543 	spin_lock(&cur_trans->dirty_bgs_lock);
3544 	if (list_empty(&cur_trans->dirty_bgs)) {
3545 		spin_unlock(&cur_trans->dirty_bgs_lock);
3546 		return 0;
3547 	}
3548 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3549 	spin_unlock(&cur_trans->dirty_bgs_lock);
3550 
3551 again:
3552 	/*
3553 	 * make sure all the block groups on our dirty list actually
3554 	 * exist
3555 	 */
3556 	btrfs_create_pending_block_groups(trans, root);
3557 
3558 	if (!path) {
3559 		path = btrfs_alloc_path();
3560 		if (!path)
3561 			return -ENOMEM;
3562 	}
3563 
3564 	/*
3565 	 * cache_write_mutex is here only to save us from balance or automatic
3566 	 * removal of empty block groups deleting this block group while we are
3567 	 * writing out the cache
3568 	 */
3569 	mutex_lock(&trans->transaction->cache_write_mutex);
3570 	while (!list_empty(&dirty)) {
3571 		cache = list_first_entry(&dirty,
3572 					 struct btrfs_block_group_cache,
3573 					 dirty_list);
3574 		/*
3575 		 * this can happen if something re-dirties a block
3576 		 * group that is already under IO.  Just wait for it to
3577 		 * finish and then do it all again
3578 		 */
3579 		if (!list_empty(&cache->io_list)) {
3580 			list_del_init(&cache->io_list);
3581 			btrfs_wait_cache_io(root, trans, cache,
3582 					    &cache->io_ctl, path,
3583 					    cache->key.objectid);
3584 			btrfs_put_block_group(cache);
3585 		}
3586 
3587 
3588 		/*
3589 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 		 * if it should update the cache_state.  Don't delete
3591 		 * until after we wait.
3592 		 *
3593 		 * Since we're not running in the commit critical section
3594 		 * we need the dirty_bgs_lock to protect from update_block_group
3595 		 */
3596 		spin_lock(&cur_trans->dirty_bgs_lock);
3597 		list_del_init(&cache->dirty_list);
3598 		spin_unlock(&cur_trans->dirty_bgs_lock);
3599 
3600 		should_put = 1;
3601 
3602 		cache_save_setup(cache, trans, path);
3603 
3604 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605 			cache->io_ctl.inode = NULL;
3606 			ret = btrfs_write_out_cache(root, trans, cache, path);
3607 			if (ret == 0 && cache->io_ctl.inode) {
3608 				num_started++;
3609 				should_put = 0;
3610 
3611 				/*
3612 				 * the cache_write_mutex is protecting
3613 				 * the io_list
3614 				 */
3615 				list_add_tail(&cache->io_list, io);
3616 			} else {
3617 				/*
3618 				 * if we failed to write the cache, the
3619 				 * generation will be bad and life goes on
3620 				 */
3621 				ret = 0;
3622 			}
3623 		}
3624 		if (!ret) {
3625 			ret = write_one_cache_group(trans, root, path, cache);
3626 			/*
3627 			 * Our block group might still be attached to the list
3628 			 * of new block groups in the transaction handle of some
3629 			 * other task (struct btrfs_trans_handle->new_bgs). This
3630 			 * means its block group item isn't yet in the extent
3631 			 * tree. If this happens ignore the error, as we will
3632 			 * try again later in the critical section of the
3633 			 * transaction commit.
3634 			 */
3635 			if (ret == -ENOENT) {
3636 				ret = 0;
3637 				spin_lock(&cur_trans->dirty_bgs_lock);
3638 				if (list_empty(&cache->dirty_list)) {
3639 					list_add_tail(&cache->dirty_list,
3640 						      &cur_trans->dirty_bgs);
3641 					btrfs_get_block_group(cache);
3642 				}
3643 				spin_unlock(&cur_trans->dirty_bgs_lock);
3644 			} else if (ret) {
3645 				btrfs_abort_transaction(trans, root, ret);
3646 			}
3647 		}
3648 
3649 		/* if its not on the io list, we need to put the block group */
3650 		if (should_put)
3651 			btrfs_put_block_group(cache);
3652 
3653 		if (ret)
3654 			break;
3655 
3656 		/*
3657 		 * Avoid blocking other tasks for too long. It might even save
3658 		 * us from writing caches for block groups that are going to be
3659 		 * removed.
3660 		 */
3661 		mutex_unlock(&trans->transaction->cache_write_mutex);
3662 		mutex_lock(&trans->transaction->cache_write_mutex);
3663 	}
3664 	mutex_unlock(&trans->transaction->cache_write_mutex);
3665 
3666 	/*
3667 	 * go through delayed refs for all the stuff we've just kicked off
3668 	 * and then loop back (just once)
3669 	 */
3670 	ret = btrfs_run_delayed_refs(trans, root, 0);
3671 	if (!ret && loops == 0) {
3672 		loops++;
3673 		spin_lock(&cur_trans->dirty_bgs_lock);
3674 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675 		/*
3676 		 * dirty_bgs_lock protects us from concurrent block group
3677 		 * deletes too (not just cache_write_mutex).
3678 		 */
3679 		if (!list_empty(&dirty)) {
3680 			spin_unlock(&cur_trans->dirty_bgs_lock);
3681 			goto again;
3682 		}
3683 		spin_unlock(&cur_trans->dirty_bgs_lock);
3684 	}
3685 
3686 	btrfs_free_path(path);
3687 	return ret;
3688 }
3689 
3690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691 				   struct btrfs_root *root)
3692 {
3693 	struct btrfs_block_group_cache *cache;
3694 	struct btrfs_transaction *cur_trans = trans->transaction;
3695 	int ret = 0;
3696 	int should_put;
3697 	struct btrfs_path *path;
3698 	struct list_head *io = &cur_trans->io_bgs;
3699 	int num_started = 0;
3700 
3701 	path = btrfs_alloc_path();
3702 	if (!path)
3703 		return -ENOMEM;
3704 
3705 	/*
3706 	 * Even though we are in the critical section of the transaction commit,
3707 	 * we can still have concurrent tasks adding elements to this
3708 	 * transaction's list of dirty block groups. These tasks correspond to
3709 	 * endio free space workers started when writeback finishes for a
3710 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 	 * allocate new block groups as a result of COWing nodes of the root
3712 	 * tree when updating the free space inode. The writeback for the space
3713 	 * caches is triggered by an earlier call to
3714 	 * btrfs_start_dirty_block_groups() and iterations of the following
3715 	 * loop.
3716 	 * Also we want to do the cache_save_setup first and then run the
3717 	 * delayed refs to make sure we have the best chance at doing this all
3718 	 * in one shot.
3719 	 */
3720 	spin_lock(&cur_trans->dirty_bgs_lock);
3721 	while (!list_empty(&cur_trans->dirty_bgs)) {
3722 		cache = list_first_entry(&cur_trans->dirty_bgs,
3723 					 struct btrfs_block_group_cache,
3724 					 dirty_list);
3725 
3726 		/*
3727 		 * this can happen if cache_save_setup re-dirties a block
3728 		 * group that is already under IO.  Just wait for it to
3729 		 * finish and then do it all again
3730 		 */
3731 		if (!list_empty(&cache->io_list)) {
3732 			spin_unlock(&cur_trans->dirty_bgs_lock);
3733 			list_del_init(&cache->io_list);
3734 			btrfs_wait_cache_io(root, trans, cache,
3735 					    &cache->io_ctl, path,
3736 					    cache->key.objectid);
3737 			btrfs_put_block_group(cache);
3738 			spin_lock(&cur_trans->dirty_bgs_lock);
3739 		}
3740 
3741 		/*
3742 		 * don't remove from the dirty list until after we've waited
3743 		 * on any pending IO
3744 		 */
3745 		list_del_init(&cache->dirty_list);
3746 		spin_unlock(&cur_trans->dirty_bgs_lock);
3747 		should_put = 1;
3748 
3749 		cache_save_setup(cache, trans, path);
3750 
3751 		if (!ret)
3752 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3753 
3754 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755 			cache->io_ctl.inode = NULL;
3756 			ret = btrfs_write_out_cache(root, trans, cache, path);
3757 			if (ret == 0 && cache->io_ctl.inode) {
3758 				num_started++;
3759 				should_put = 0;
3760 				list_add_tail(&cache->io_list, io);
3761 			} else {
3762 				/*
3763 				 * if we failed to write the cache, the
3764 				 * generation will be bad and life goes on
3765 				 */
3766 				ret = 0;
3767 			}
3768 		}
3769 		if (!ret) {
3770 			ret = write_one_cache_group(trans, root, path, cache);
3771 			/*
3772 			 * One of the free space endio workers might have
3773 			 * created a new block group while updating a free space
3774 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775 			 * and hasn't released its transaction handle yet, in
3776 			 * which case the new block group is still attached to
3777 			 * its transaction handle and its creation has not
3778 			 * finished yet (no block group item in the extent tree
3779 			 * yet, etc). If this is the case, wait for all free
3780 			 * space endio workers to finish and retry. This is a
3781 			 * a very rare case so no need for a more efficient and
3782 			 * complex approach.
3783 			 */
3784 			if (ret == -ENOENT) {
3785 				wait_event(cur_trans->writer_wait,
3786 				   atomic_read(&cur_trans->num_writers) == 1);
3787 				ret = write_one_cache_group(trans, root, path,
3788 							    cache);
3789 			}
3790 			if (ret)
3791 				btrfs_abort_transaction(trans, root, ret);
3792 		}
3793 
3794 		/* if its not on the io list, we need to put the block group */
3795 		if (should_put)
3796 			btrfs_put_block_group(cache);
3797 		spin_lock(&cur_trans->dirty_bgs_lock);
3798 	}
3799 	spin_unlock(&cur_trans->dirty_bgs_lock);
3800 
3801 	while (!list_empty(io)) {
3802 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3803 					 io_list);
3804 		list_del_init(&cache->io_list);
3805 		btrfs_wait_cache_io(root, trans, cache,
3806 				    &cache->io_ctl, path, cache->key.objectid);
3807 		btrfs_put_block_group(cache);
3808 	}
3809 
3810 	btrfs_free_path(path);
3811 	return ret;
3812 }
3813 
3814 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3815 {
3816 	struct btrfs_block_group_cache *block_group;
3817 	int readonly = 0;
3818 
3819 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3820 	if (!block_group || block_group->ro)
3821 		readonly = 1;
3822 	if (block_group)
3823 		btrfs_put_block_group(block_group);
3824 	return readonly;
3825 }
3826 
3827 static const char *alloc_name(u64 flags)
3828 {
3829 	switch (flags) {
3830 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3831 		return "mixed";
3832 	case BTRFS_BLOCK_GROUP_METADATA:
3833 		return "metadata";
3834 	case BTRFS_BLOCK_GROUP_DATA:
3835 		return "data";
3836 	case BTRFS_BLOCK_GROUP_SYSTEM:
3837 		return "system";
3838 	default:
3839 		WARN_ON(1);
3840 		return "invalid-combination";
3841 	};
3842 }
3843 
3844 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3845 			     u64 total_bytes, u64 bytes_used,
3846 			     struct btrfs_space_info **space_info)
3847 {
3848 	struct btrfs_space_info *found;
3849 	int i;
3850 	int factor;
3851 	int ret;
3852 
3853 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3854 		     BTRFS_BLOCK_GROUP_RAID10))
3855 		factor = 2;
3856 	else
3857 		factor = 1;
3858 
3859 	found = __find_space_info(info, flags);
3860 	if (found) {
3861 		spin_lock(&found->lock);
3862 		found->total_bytes += total_bytes;
3863 		found->disk_total += total_bytes * factor;
3864 		found->bytes_used += bytes_used;
3865 		found->disk_used += bytes_used * factor;
3866 		if (total_bytes > 0)
3867 			found->full = 0;
3868 		spin_unlock(&found->lock);
3869 		*space_info = found;
3870 		return 0;
3871 	}
3872 	found = kzalloc(sizeof(*found), GFP_NOFS);
3873 	if (!found)
3874 		return -ENOMEM;
3875 
3876 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3877 	if (ret) {
3878 		kfree(found);
3879 		return ret;
3880 	}
3881 
3882 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3883 		INIT_LIST_HEAD(&found->block_groups[i]);
3884 	init_rwsem(&found->groups_sem);
3885 	spin_lock_init(&found->lock);
3886 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3887 	found->total_bytes = total_bytes;
3888 	found->disk_total = total_bytes * factor;
3889 	found->bytes_used = bytes_used;
3890 	found->disk_used = bytes_used * factor;
3891 	found->bytes_pinned = 0;
3892 	found->bytes_reserved = 0;
3893 	found->bytes_readonly = 0;
3894 	found->bytes_may_use = 0;
3895 	found->full = 0;
3896 	found->max_extent_size = 0;
3897 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3898 	found->chunk_alloc = 0;
3899 	found->flush = 0;
3900 	init_waitqueue_head(&found->wait);
3901 	INIT_LIST_HEAD(&found->ro_bgs);
3902 
3903 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3904 				    info->space_info_kobj, "%s",
3905 				    alloc_name(found->flags));
3906 	if (ret) {
3907 		kfree(found);
3908 		return ret;
3909 	}
3910 
3911 	*space_info = found;
3912 	list_add_rcu(&found->list, &info->space_info);
3913 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3914 		info->data_sinfo = found;
3915 
3916 	return ret;
3917 }
3918 
3919 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3920 {
3921 	u64 extra_flags = chunk_to_extended(flags) &
3922 				BTRFS_EXTENDED_PROFILE_MASK;
3923 
3924 	write_seqlock(&fs_info->profiles_lock);
3925 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3926 		fs_info->avail_data_alloc_bits |= extra_flags;
3927 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3928 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3929 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3930 		fs_info->avail_system_alloc_bits |= extra_flags;
3931 	write_sequnlock(&fs_info->profiles_lock);
3932 }
3933 
3934 /*
3935  * returns target flags in extended format or 0 if restripe for this
3936  * chunk_type is not in progress
3937  *
3938  * should be called with either volume_mutex or balance_lock held
3939  */
3940 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3941 {
3942 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3943 	u64 target = 0;
3944 
3945 	if (!bctl)
3946 		return 0;
3947 
3948 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3949 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3950 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3951 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3952 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3953 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3954 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3955 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3956 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3957 	}
3958 
3959 	return target;
3960 }
3961 
3962 /*
3963  * @flags: available profiles in extended format (see ctree.h)
3964  *
3965  * Returns reduced profile in chunk format.  If profile changing is in
3966  * progress (either running or paused) picks the target profile (if it's
3967  * already available), otherwise falls back to plain reducing.
3968  */
3969 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3970 {
3971 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3972 	u64 target;
3973 	u64 raid_type;
3974 	u64 allowed = 0;
3975 
3976 	/*
3977 	 * see if restripe for this chunk_type is in progress, if so
3978 	 * try to reduce to the target profile
3979 	 */
3980 	spin_lock(&root->fs_info->balance_lock);
3981 	target = get_restripe_target(root->fs_info, flags);
3982 	if (target) {
3983 		/* pick target profile only if it's already available */
3984 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3985 			spin_unlock(&root->fs_info->balance_lock);
3986 			return extended_to_chunk(target);
3987 		}
3988 	}
3989 	spin_unlock(&root->fs_info->balance_lock);
3990 
3991 	/* First, mask out the RAID levels which aren't possible */
3992 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3994 			allowed |= btrfs_raid_group[raid_type];
3995 	}
3996 	allowed &= flags;
3997 
3998 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3999 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4000 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4001 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4002 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4003 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4004 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4005 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4006 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4007 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4008 
4009 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4010 
4011 	return extended_to_chunk(flags | allowed);
4012 }
4013 
4014 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4015 {
4016 	unsigned seq;
4017 	u64 flags;
4018 
4019 	do {
4020 		flags = orig_flags;
4021 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4022 
4023 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4024 			flags |= root->fs_info->avail_data_alloc_bits;
4025 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4026 			flags |= root->fs_info->avail_system_alloc_bits;
4027 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4028 			flags |= root->fs_info->avail_metadata_alloc_bits;
4029 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4030 
4031 	return btrfs_reduce_alloc_profile(root, flags);
4032 }
4033 
4034 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4035 {
4036 	u64 flags;
4037 	u64 ret;
4038 
4039 	if (data)
4040 		flags = BTRFS_BLOCK_GROUP_DATA;
4041 	else if (root == root->fs_info->chunk_root)
4042 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4043 	else
4044 		flags = BTRFS_BLOCK_GROUP_METADATA;
4045 
4046 	ret = get_alloc_profile(root, flags);
4047 	return ret;
4048 }
4049 
4050 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4051 {
4052 	struct btrfs_space_info *data_sinfo;
4053 	struct btrfs_root *root = BTRFS_I(inode)->root;
4054 	struct btrfs_fs_info *fs_info = root->fs_info;
4055 	u64 used;
4056 	int ret = 0;
4057 	int need_commit = 2;
4058 	int have_pinned_space;
4059 
4060 	/* make sure bytes are sectorsize aligned */
4061 	bytes = ALIGN(bytes, root->sectorsize);
4062 
4063 	if (btrfs_is_free_space_inode(inode)) {
4064 		need_commit = 0;
4065 		ASSERT(current->journal_info);
4066 	}
4067 
4068 	data_sinfo = fs_info->data_sinfo;
4069 	if (!data_sinfo)
4070 		goto alloc;
4071 
4072 again:
4073 	/* make sure we have enough space to handle the data first */
4074 	spin_lock(&data_sinfo->lock);
4075 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4076 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4077 		data_sinfo->bytes_may_use;
4078 
4079 	if (used + bytes > data_sinfo->total_bytes) {
4080 		struct btrfs_trans_handle *trans;
4081 
4082 		/*
4083 		 * if we don't have enough free bytes in this space then we need
4084 		 * to alloc a new chunk.
4085 		 */
4086 		if (!data_sinfo->full) {
4087 			u64 alloc_target;
4088 
4089 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4090 			spin_unlock(&data_sinfo->lock);
4091 alloc:
4092 			alloc_target = btrfs_get_alloc_profile(root, 1);
4093 			/*
4094 			 * It is ugly that we don't call nolock join
4095 			 * transaction for the free space inode case here.
4096 			 * But it is safe because we only do the data space
4097 			 * reservation for the free space cache in the
4098 			 * transaction context, the common join transaction
4099 			 * just increase the counter of the current transaction
4100 			 * handler, doesn't try to acquire the trans_lock of
4101 			 * the fs.
4102 			 */
4103 			trans = btrfs_join_transaction(root);
4104 			if (IS_ERR(trans))
4105 				return PTR_ERR(trans);
4106 
4107 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4108 					     alloc_target,
4109 					     CHUNK_ALLOC_NO_FORCE);
4110 			btrfs_end_transaction(trans, root);
4111 			if (ret < 0) {
4112 				if (ret != -ENOSPC)
4113 					return ret;
4114 				else {
4115 					have_pinned_space = 1;
4116 					goto commit_trans;
4117 				}
4118 			}
4119 
4120 			if (!data_sinfo)
4121 				data_sinfo = fs_info->data_sinfo;
4122 
4123 			goto again;
4124 		}
4125 
4126 		/*
4127 		 * If we don't have enough pinned space to deal with this
4128 		 * allocation, and no removed chunk in current transaction,
4129 		 * don't bother committing the transaction.
4130 		 */
4131 		have_pinned_space = percpu_counter_compare(
4132 			&data_sinfo->total_bytes_pinned,
4133 			used + bytes - data_sinfo->total_bytes);
4134 		spin_unlock(&data_sinfo->lock);
4135 
4136 		/* commit the current transaction and try again */
4137 commit_trans:
4138 		if (need_commit &&
4139 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4140 			need_commit--;
4141 
4142 			if (need_commit > 0) {
4143 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4144 				btrfs_wait_ordered_roots(fs_info, -1);
4145 			}
4146 
4147 			trans = btrfs_join_transaction(root);
4148 			if (IS_ERR(trans))
4149 				return PTR_ERR(trans);
4150 			if (have_pinned_space >= 0 ||
4151 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4152 				     &trans->transaction->flags) ||
4153 			    need_commit > 0) {
4154 				ret = btrfs_commit_transaction(trans, root);
4155 				if (ret)
4156 					return ret;
4157 				/*
4158 				 * The cleaner kthread might still be doing iput
4159 				 * operations. Wait for it to finish so that
4160 				 * more space is released.
4161 				 */
4162 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4163 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4164 				goto again;
4165 			} else {
4166 				btrfs_end_transaction(trans, root);
4167 			}
4168 		}
4169 
4170 		trace_btrfs_space_reservation(root->fs_info,
4171 					      "space_info:enospc",
4172 					      data_sinfo->flags, bytes, 1);
4173 		return -ENOSPC;
4174 	}
4175 	data_sinfo->bytes_may_use += bytes;
4176 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4177 				      data_sinfo->flags, bytes, 1);
4178 	spin_unlock(&data_sinfo->lock);
4179 
4180 	return ret;
4181 }
4182 
4183 /*
4184  * New check_data_free_space() with ability for precious data reservation
4185  * Will replace old btrfs_check_data_free_space(), but for patch split,
4186  * add a new function first and then replace it.
4187  */
4188 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4189 {
4190 	struct btrfs_root *root = BTRFS_I(inode)->root;
4191 	int ret;
4192 
4193 	/* align the range */
4194 	len = round_up(start + len, root->sectorsize) -
4195 	      round_down(start, root->sectorsize);
4196 	start = round_down(start, root->sectorsize);
4197 
4198 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4199 	if (ret < 0)
4200 		return ret;
4201 
4202 	/*
4203 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4204 	 *
4205 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4206 	 * range, but don't impact performance on quota disable case.
4207 	 */
4208 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4209 	return ret;
4210 }
4211 
4212 /*
4213  * Called if we need to clear a data reservation for this inode
4214  * Normally in a error case.
4215  *
4216  * This one will *NOT* use accurate qgroup reserved space API, just for case
4217  * which we can't sleep and is sure it won't affect qgroup reserved space.
4218  * Like clear_bit_hook().
4219  */
4220 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4221 					    u64 len)
4222 {
4223 	struct btrfs_root *root = BTRFS_I(inode)->root;
4224 	struct btrfs_space_info *data_sinfo;
4225 
4226 	/* Make sure the range is aligned to sectorsize */
4227 	len = round_up(start + len, root->sectorsize) -
4228 	      round_down(start, root->sectorsize);
4229 	start = round_down(start, root->sectorsize);
4230 
4231 	data_sinfo = root->fs_info->data_sinfo;
4232 	spin_lock(&data_sinfo->lock);
4233 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4234 		data_sinfo->bytes_may_use = 0;
4235 	else
4236 		data_sinfo->bytes_may_use -= len;
4237 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4238 				      data_sinfo->flags, len, 0);
4239 	spin_unlock(&data_sinfo->lock);
4240 }
4241 
4242 /*
4243  * Called if we need to clear a data reservation for this inode
4244  * Normally in a error case.
4245  *
4246  * This one will handle the per-indoe data rsv map for accurate reserved
4247  * space framework.
4248  */
4249 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4250 {
4251 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4252 	btrfs_qgroup_free_data(inode, start, len);
4253 }
4254 
4255 static void force_metadata_allocation(struct btrfs_fs_info *info)
4256 {
4257 	struct list_head *head = &info->space_info;
4258 	struct btrfs_space_info *found;
4259 
4260 	rcu_read_lock();
4261 	list_for_each_entry_rcu(found, head, list) {
4262 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4263 			found->force_alloc = CHUNK_ALLOC_FORCE;
4264 	}
4265 	rcu_read_unlock();
4266 }
4267 
4268 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4269 {
4270 	return (global->size << 1);
4271 }
4272 
4273 static int should_alloc_chunk(struct btrfs_root *root,
4274 			      struct btrfs_space_info *sinfo, int force)
4275 {
4276 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4277 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4278 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4279 	u64 thresh;
4280 
4281 	if (force == CHUNK_ALLOC_FORCE)
4282 		return 1;
4283 
4284 	/*
4285 	 * We need to take into account the global rsv because for all intents
4286 	 * and purposes it's used space.  Don't worry about locking the
4287 	 * global_rsv, it doesn't change except when the transaction commits.
4288 	 */
4289 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4290 		num_allocated += calc_global_rsv_need_space(global_rsv);
4291 
4292 	/*
4293 	 * in limited mode, we want to have some free space up to
4294 	 * about 1% of the FS size.
4295 	 */
4296 	if (force == CHUNK_ALLOC_LIMITED) {
4297 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4298 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4299 
4300 		if (num_bytes - num_allocated < thresh)
4301 			return 1;
4302 	}
4303 
4304 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4305 		return 0;
4306 	return 1;
4307 }
4308 
4309 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4310 {
4311 	u64 num_dev;
4312 
4313 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4314 		    BTRFS_BLOCK_GROUP_RAID0 |
4315 		    BTRFS_BLOCK_GROUP_RAID5 |
4316 		    BTRFS_BLOCK_GROUP_RAID6))
4317 		num_dev = root->fs_info->fs_devices->rw_devices;
4318 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4319 		num_dev = 2;
4320 	else
4321 		num_dev = 1;	/* DUP or single */
4322 
4323 	return num_dev;
4324 }
4325 
4326 /*
4327  * If @is_allocation is true, reserve space in the system space info necessary
4328  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4329  * removing a chunk.
4330  */
4331 void check_system_chunk(struct btrfs_trans_handle *trans,
4332 			struct btrfs_root *root,
4333 			u64 type)
4334 {
4335 	struct btrfs_space_info *info;
4336 	u64 left;
4337 	u64 thresh;
4338 	int ret = 0;
4339 	u64 num_devs;
4340 
4341 	/*
4342 	 * Needed because we can end up allocating a system chunk and for an
4343 	 * atomic and race free space reservation in the chunk block reserve.
4344 	 */
4345 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4346 
4347 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4348 	spin_lock(&info->lock);
4349 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4350 		info->bytes_reserved - info->bytes_readonly -
4351 		info->bytes_may_use;
4352 	spin_unlock(&info->lock);
4353 
4354 	num_devs = get_profile_num_devs(root, type);
4355 
4356 	/* num_devs device items to update and 1 chunk item to add or remove */
4357 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4358 		btrfs_calc_trans_metadata_size(root, 1);
4359 
4360 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4361 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4362 			left, thresh, type);
4363 		dump_space_info(info, 0, 0);
4364 	}
4365 
4366 	if (left < thresh) {
4367 		u64 flags;
4368 
4369 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4370 		/*
4371 		 * Ignore failure to create system chunk. We might end up not
4372 		 * needing it, as we might not need to COW all nodes/leafs from
4373 		 * the paths we visit in the chunk tree (they were already COWed
4374 		 * or created in the current transaction for example).
4375 		 */
4376 		ret = btrfs_alloc_chunk(trans, root, flags);
4377 	}
4378 
4379 	if (!ret) {
4380 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4381 					  &root->fs_info->chunk_block_rsv,
4382 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4383 		if (!ret)
4384 			trans->chunk_bytes_reserved += thresh;
4385 	}
4386 }
4387 
4388 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4389 			  struct btrfs_root *extent_root, u64 flags, int force)
4390 {
4391 	struct btrfs_space_info *space_info;
4392 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4393 	int wait_for_alloc = 0;
4394 	int ret = 0;
4395 
4396 	/* Don't re-enter if we're already allocating a chunk */
4397 	if (trans->allocating_chunk)
4398 		return -ENOSPC;
4399 
4400 	space_info = __find_space_info(extent_root->fs_info, flags);
4401 	if (!space_info) {
4402 		ret = update_space_info(extent_root->fs_info, flags,
4403 					0, 0, &space_info);
4404 		BUG_ON(ret); /* -ENOMEM */
4405 	}
4406 	BUG_ON(!space_info); /* Logic error */
4407 
4408 again:
4409 	spin_lock(&space_info->lock);
4410 	if (force < space_info->force_alloc)
4411 		force = space_info->force_alloc;
4412 	if (space_info->full) {
4413 		if (should_alloc_chunk(extent_root, space_info, force))
4414 			ret = -ENOSPC;
4415 		else
4416 			ret = 0;
4417 		spin_unlock(&space_info->lock);
4418 		return ret;
4419 	}
4420 
4421 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4422 		spin_unlock(&space_info->lock);
4423 		return 0;
4424 	} else if (space_info->chunk_alloc) {
4425 		wait_for_alloc = 1;
4426 	} else {
4427 		space_info->chunk_alloc = 1;
4428 	}
4429 
4430 	spin_unlock(&space_info->lock);
4431 
4432 	mutex_lock(&fs_info->chunk_mutex);
4433 
4434 	/*
4435 	 * The chunk_mutex is held throughout the entirety of a chunk
4436 	 * allocation, so once we've acquired the chunk_mutex we know that the
4437 	 * other guy is done and we need to recheck and see if we should
4438 	 * allocate.
4439 	 */
4440 	if (wait_for_alloc) {
4441 		mutex_unlock(&fs_info->chunk_mutex);
4442 		wait_for_alloc = 0;
4443 		goto again;
4444 	}
4445 
4446 	trans->allocating_chunk = true;
4447 
4448 	/*
4449 	 * If we have mixed data/metadata chunks we want to make sure we keep
4450 	 * allocating mixed chunks instead of individual chunks.
4451 	 */
4452 	if (btrfs_mixed_space_info(space_info))
4453 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4454 
4455 	/*
4456 	 * if we're doing a data chunk, go ahead and make sure that
4457 	 * we keep a reasonable number of metadata chunks allocated in the
4458 	 * FS as well.
4459 	 */
4460 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4461 		fs_info->data_chunk_allocations++;
4462 		if (!(fs_info->data_chunk_allocations %
4463 		      fs_info->metadata_ratio))
4464 			force_metadata_allocation(fs_info);
4465 	}
4466 
4467 	/*
4468 	 * Check if we have enough space in SYSTEM chunk because we may need
4469 	 * to update devices.
4470 	 */
4471 	check_system_chunk(trans, extent_root, flags);
4472 
4473 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4474 	trans->allocating_chunk = false;
4475 
4476 	spin_lock(&space_info->lock);
4477 	if (ret < 0 && ret != -ENOSPC)
4478 		goto out;
4479 	if (ret)
4480 		space_info->full = 1;
4481 	else
4482 		ret = 1;
4483 
4484 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4485 out:
4486 	space_info->chunk_alloc = 0;
4487 	spin_unlock(&space_info->lock);
4488 	mutex_unlock(&fs_info->chunk_mutex);
4489 	/*
4490 	 * When we allocate a new chunk we reserve space in the chunk block
4491 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4492 	 * add new nodes/leafs to it if we end up needing to do it when
4493 	 * inserting the chunk item and updating device items as part of the
4494 	 * second phase of chunk allocation, performed by
4495 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4496 	 * large number of new block groups to create in our transaction
4497 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4498 	 * in extreme cases - like having a single transaction create many new
4499 	 * block groups when starting to write out the free space caches of all
4500 	 * the block groups that were made dirty during the lifetime of the
4501 	 * transaction.
4502 	 */
4503 	if (trans->can_flush_pending_bgs &&
4504 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4505 		btrfs_create_pending_block_groups(trans, trans->root);
4506 		btrfs_trans_release_chunk_metadata(trans);
4507 	}
4508 	return ret;
4509 }
4510 
4511 static int can_overcommit(struct btrfs_root *root,
4512 			  struct btrfs_space_info *space_info, u64 bytes,
4513 			  enum btrfs_reserve_flush_enum flush)
4514 {
4515 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4516 	u64 profile = btrfs_get_alloc_profile(root, 0);
4517 	u64 space_size;
4518 	u64 avail;
4519 	u64 used;
4520 
4521 	used = space_info->bytes_used + space_info->bytes_reserved +
4522 		space_info->bytes_pinned + space_info->bytes_readonly;
4523 
4524 	/*
4525 	 * We only want to allow over committing if we have lots of actual space
4526 	 * free, but if we don't have enough space to handle the global reserve
4527 	 * space then we could end up having a real enospc problem when trying
4528 	 * to allocate a chunk or some other such important allocation.
4529 	 */
4530 	spin_lock(&global_rsv->lock);
4531 	space_size = calc_global_rsv_need_space(global_rsv);
4532 	spin_unlock(&global_rsv->lock);
4533 	if (used + space_size >= space_info->total_bytes)
4534 		return 0;
4535 
4536 	used += space_info->bytes_may_use;
4537 
4538 	spin_lock(&root->fs_info->free_chunk_lock);
4539 	avail = root->fs_info->free_chunk_space;
4540 	spin_unlock(&root->fs_info->free_chunk_lock);
4541 
4542 	/*
4543 	 * If we have dup, raid1 or raid10 then only half of the free
4544 	 * space is actually useable.  For raid56, the space info used
4545 	 * doesn't include the parity drive, so we don't have to
4546 	 * change the math
4547 	 */
4548 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4549 		       BTRFS_BLOCK_GROUP_RAID1 |
4550 		       BTRFS_BLOCK_GROUP_RAID10))
4551 		avail >>= 1;
4552 
4553 	/*
4554 	 * If we aren't flushing all things, let us overcommit up to
4555 	 * 1/2th of the space. If we can flush, don't let us overcommit
4556 	 * too much, let it overcommit up to 1/8 of the space.
4557 	 */
4558 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4559 		avail >>= 3;
4560 	else
4561 		avail >>= 1;
4562 
4563 	if (used + bytes < space_info->total_bytes + avail)
4564 		return 1;
4565 	return 0;
4566 }
4567 
4568 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4569 					 unsigned long nr_pages, int nr_items)
4570 {
4571 	struct super_block *sb = root->fs_info->sb;
4572 
4573 	if (down_read_trylock(&sb->s_umount)) {
4574 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4575 		up_read(&sb->s_umount);
4576 	} else {
4577 		/*
4578 		 * We needn't worry the filesystem going from r/w to r/o though
4579 		 * we don't acquire ->s_umount mutex, because the filesystem
4580 		 * should guarantee the delalloc inodes list be empty after
4581 		 * the filesystem is readonly(all dirty pages are written to
4582 		 * the disk).
4583 		 */
4584 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4585 		if (!current->journal_info)
4586 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4587 	}
4588 }
4589 
4590 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4591 {
4592 	u64 bytes;
4593 	int nr;
4594 
4595 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4596 	nr = (int)div64_u64(to_reclaim, bytes);
4597 	if (!nr)
4598 		nr = 1;
4599 	return nr;
4600 }
4601 
4602 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4603 
4604 /*
4605  * shrink metadata reservation for delalloc
4606  */
4607 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4608 			    bool wait_ordered)
4609 {
4610 	struct btrfs_block_rsv *block_rsv;
4611 	struct btrfs_space_info *space_info;
4612 	struct btrfs_trans_handle *trans;
4613 	u64 delalloc_bytes;
4614 	u64 max_reclaim;
4615 	long time_left;
4616 	unsigned long nr_pages;
4617 	int loops;
4618 	int items;
4619 	enum btrfs_reserve_flush_enum flush;
4620 
4621 	/* Calc the number of the pages we need flush for space reservation */
4622 	items = calc_reclaim_items_nr(root, to_reclaim);
4623 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4624 
4625 	trans = (struct btrfs_trans_handle *)current->journal_info;
4626 	block_rsv = &root->fs_info->delalloc_block_rsv;
4627 	space_info = block_rsv->space_info;
4628 
4629 	delalloc_bytes = percpu_counter_sum_positive(
4630 						&root->fs_info->delalloc_bytes);
4631 	if (delalloc_bytes == 0) {
4632 		if (trans)
4633 			return;
4634 		if (wait_ordered)
4635 			btrfs_wait_ordered_roots(root->fs_info, items);
4636 		return;
4637 	}
4638 
4639 	loops = 0;
4640 	while (delalloc_bytes && loops < 3) {
4641 		max_reclaim = min(delalloc_bytes, to_reclaim);
4642 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4643 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4644 		/*
4645 		 * We need to wait for the async pages to actually start before
4646 		 * we do anything.
4647 		 */
4648 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4649 		if (!max_reclaim)
4650 			goto skip_async;
4651 
4652 		if (max_reclaim <= nr_pages)
4653 			max_reclaim = 0;
4654 		else
4655 			max_reclaim -= nr_pages;
4656 
4657 		wait_event(root->fs_info->async_submit_wait,
4658 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4659 			   (int)max_reclaim);
4660 skip_async:
4661 		if (!trans)
4662 			flush = BTRFS_RESERVE_FLUSH_ALL;
4663 		else
4664 			flush = BTRFS_RESERVE_NO_FLUSH;
4665 		spin_lock(&space_info->lock);
4666 		if (can_overcommit(root, space_info, orig, flush)) {
4667 			spin_unlock(&space_info->lock);
4668 			break;
4669 		}
4670 		spin_unlock(&space_info->lock);
4671 
4672 		loops++;
4673 		if (wait_ordered && !trans) {
4674 			btrfs_wait_ordered_roots(root->fs_info, items);
4675 		} else {
4676 			time_left = schedule_timeout_killable(1);
4677 			if (time_left)
4678 				break;
4679 		}
4680 		delalloc_bytes = percpu_counter_sum_positive(
4681 						&root->fs_info->delalloc_bytes);
4682 	}
4683 }
4684 
4685 /**
4686  * maybe_commit_transaction - possibly commit the transaction if its ok to
4687  * @root - the root we're allocating for
4688  * @bytes - the number of bytes we want to reserve
4689  * @force - force the commit
4690  *
4691  * This will check to make sure that committing the transaction will actually
4692  * get us somewhere and then commit the transaction if it does.  Otherwise it
4693  * will return -ENOSPC.
4694  */
4695 static int may_commit_transaction(struct btrfs_root *root,
4696 				  struct btrfs_space_info *space_info,
4697 				  u64 bytes, int force)
4698 {
4699 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4700 	struct btrfs_trans_handle *trans;
4701 
4702 	trans = (struct btrfs_trans_handle *)current->journal_info;
4703 	if (trans)
4704 		return -EAGAIN;
4705 
4706 	if (force)
4707 		goto commit;
4708 
4709 	/* See if there is enough pinned space to make this reservation */
4710 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4711 				   bytes) >= 0)
4712 		goto commit;
4713 
4714 	/*
4715 	 * See if there is some space in the delayed insertion reservation for
4716 	 * this reservation.
4717 	 */
4718 	if (space_info != delayed_rsv->space_info)
4719 		return -ENOSPC;
4720 
4721 	spin_lock(&delayed_rsv->lock);
4722 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4723 				   bytes - delayed_rsv->size) >= 0) {
4724 		spin_unlock(&delayed_rsv->lock);
4725 		return -ENOSPC;
4726 	}
4727 	spin_unlock(&delayed_rsv->lock);
4728 
4729 commit:
4730 	trans = btrfs_join_transaction(root);
4731 	if (IS_ERR(trans))
4732 		return -ENOSPC;
4733 
4734 	return btrfs_commit_transaction(trans, root);
4735 }
4736 
4737 enum flush_state {
4738 	FLUSH_DELAYED_ITEMS_NR	=	1,
4739 	FLUSH_DELAYED_ITEMS	=	2,
4740 	FLUSH_DELALLOC		=	3,
4741 	FLUSH_DELALLOC_WAIT	=	4,
4742 	ALLOC_CHUNK		=	5,
4743 	COMMIT_TRANS		=	6,
4744 };
4745 
4746 static int flush_space(struct btrfs_root *root,
4747 		       struct btrfs_space_info *space_info, u64 num_bytes,
4748 		       u64 orig_bytes, int state)
4749 {
4750 	struct btrfs_trans_handle *trans;
4751 	int nr;
4752 	int ret = 0;
4753 
4754 	switch (state) {
4755 	case FLUSH_DELAYED_ITEMS_NR:
4756 	case FLUSH_DELAYED_ITEMS:
4757 		if (state == FLUSH_DELAYED_ITEMS_NR)
4758 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4759 		else
4760 			nr = -1;
4761 
4762 		trans = btrfs_join_transaction(root);
4763 		if (IS_ERR(trans)) {
4764 			ret = PTR_ERR(trans);
4765 			break;
4766 		}
4767 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4768 		btrfs_end_transaction(trans, root);
4769 		break;
4770 	case FLUSH_DELALLOC:
4771 	case FLUSH_DELALLOC_WAIT:
4772 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4773 				state == FLUSH_DELALLOC_WAIT);
4774 		break;
4775 	case ALLOC_CHUNK:
4776 		trans = btrfs_join_transaction(root);
4777 		if (IS_ERR(trans)) {
4778 			ret = PTR_ERR(trans);
4779 			break;
4780 		}
4781 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4782 				     btrfs_get_alloc_profile(root, 0),
4783 				     CHUNK_ALLOC_NO_FORCE);
4784 		btrfs_end_transaction(trans, root);
4785 		if (ret == -ENOSPC)
4786 			ret = 0;
4787 		break;
4788 	case COMMIT_TRANS:
4789 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4790 		break;
4791 	default:
4792 		ret = -ENOSPC;
4793 		break;
4794 	}
4795 
4796 	return ret;
4797 }
4798 
4799 static inline u64
4800 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4801 				 struct btrfs_space_info *space_info)
4802 {
4803 	u64 used;
4804 	u64 expected;
4805 	u64 to_reclaim;
4806 
4807 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4808 	spin_lock(&space_info->lock);
4809 	if (can_overcommit(root, space_info, to_reclaim,
4810 			   BTRFS_RESERVE_FLUSH_ALL)) {
4811 		to_reclaim = 0;
4812 		goto out;
4813 	}
4814 
4815 	used = space_info->bytes_used + space_info->bytes_reserved +
4816 	       space_info->bytes_pinned + space_info->bytes_readonly +
4817 	       space_info->bytes_may_use;
4818 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4819 		expected = div_factor_fine(space_info->total_bytes, 95);
4820 	else
4821 		expected = div_factor_fine(space_info->total_bytes, 90);
4822 
4823 	if (used > expected)
4824 		to_reclaim = used - expected;
4825 	else
4826 		to_reclaim = 0;
4827 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4828 				     space_info->bytes_reserved);
4829 out:
4830 	spin_unlock(&space_info->lock);
4831 
4832 	return to_reclaim;
4833 }
4834 
4835 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4836 					struct btrfs_fs_info *fs_info, u64 used)
4837 {
4838 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4839 
4840 	/* If we're just plain full then async reclaim just slows us down. */
4841 	if (space_info->bytes_used >= thresh)
4842 		return 0;
4843 
4844 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4845 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4846 }
4847 
4848 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4849 				       struct btrfs_fs_info *fs_info,
4850 				       int flush_state)
4851 {
4852 	u64 used;
4853 
4854 	spin_lock(&space_info->lock);
4855 	/*
4856 	 * We run out of space and have not got any free space via flush_space,
4857 	 * so don't bother doing async reclaim.
4858 	 */
4859 	if (flush_state > COMMIT_TRANS && space_info->full) {
4860 		spin_unlock(&space_info->lock);
4861 		return 0;
4862 	}
4863 
4864 	used = space_info->bytes_used + space_info->bytes_reserved +
4865 	       space_info->bytes_pinned + space_info->bytes_readonly +
4866 	       space_info->bytes_may_use;
4867 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4868 		spin_unlock(&space_info->lock);
4869 		return 1;
4870 	}
4871 	spin_unlock(&space_info->lock);
4872 
4873 	return 0;
4874 }
4875 
4876 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4877 {
4878 	struct btrfs_fs_info *fs_info;
4879 	struct btrfs_space_info *space_info;
4880 	u64 to_reclaim;
4881 	int flush_state;
4882 
4883 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4884 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4885 
4886 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4887 						      space_info);
4888 	if (!to_reclaim)
4889 		return;
4890 
4891 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4892 	do {
4893 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4894 			    to_reclaim, flush_state);
4895 		flush_state++;
4896 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4897 						 flush_state))
4898 			return;
4899 	} while (flush_state < COMMIT_TRANS);
4900 }
4901 
4902 void btrfs_init_async_reclaim_work(struct work_struct *work)
4903 {
4904 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4905 }
4906 
4907 /**
4908  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4909  * @root - the root we're allocating for
4910  * @block_rsv - the block_rsv we're allocating for
4911  * @orig_bytes - the number of bytes we want
4912  * @flush - whether or not we can flush to make our reservation
4913  *
4914  * This will reserve orgi_bytes number of bytes from the space info associated
4915  * with the block_rsv.  If there is not enough space it will make an attempt to
4916  * flush out space to make room.  It will do this by flushing delalloc if
4917  * possible or committing the transaction.  If flush is 0 then no attempts to
4918  * regain reservations will be made and this will fail if there is not enough
4919  * space already.
4920  */
4921 static int reserve_metadata_bytes(struct btrfs_root *root,
4922 				  struct btrfs_block_rsv *block_rsv,
4923 				  u64 orig_bytes,
4924 				  enum btrfs_reserve_flush_enum flush)
4925 {
4926 	struct btrfs_space_info *space_info = block_rsv->space_info;
4927 	u64 used;
4928 	u64 num_bytes = orig_bytes;
4929 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4930 	int ret = 0;
4931 	bool flushing = false;
4932 
4933 again:
4934 	ret = 0;
4935 	spin_lock(&space_info->lock);
4936 	/*
4937 	 * We only want to wait if somebody other than us is flushing and we
4938 	 * are actually allowed to flush all things.
4939 	 */
4940 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4941 	       space_info->flush) {
4942 		spin_unlock(&space_info->lock);
4943 		/*
4944 		 * If we have a trans handle we can't wait because the flusher
4945 		 * may have to commit the transaction, which would mean we would
4946 		 * deadlock since we are waiting for the flusher to finish, but
4947 		 * hold the current transaction open.
4948 		 */
4949 		if (current->journal_info)
4950 			return -EAGAIN;
4951 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4952 		/* Must have been killed, return */
4953 		if (ret)
4954 			return -EINTR;
4955 
4956 		spin_lock(&space_info->lock);
4957 	}
4958 
4959 	ret = -ENOSPC;
4960 	used = space_info->bytes_used + space_info->bytes_reserved +
4961 		space_info->bytes_pinned + space_info->bytes_readonly +
4962 		space_info->bytes_may_use;
4963 
4964 	/*
4965 	 * The idea here is that we've not already over-reserved the block group
4966 	 * then we can go ahead and save our reservation first and then start
4967 	 * flushing if we need to.  Otherwise if we've already overcommitted
4968 	 * lets start flushing stuff first and then come back and try to make
4969 	 * our reservation.
4970 	 */
4971 	if (used <= space_info->total_bytes) {
4972 		if (used + orig_bytes <= space_info->total_bytes) {
4973 			space_info->bytes_may_use += orig_bytes;
4974 			trace_btrfs_space_reservation(root->fs_info,
4975 				"space_info", space_info->flags, orig_bytes, 1);
4976 			ret = 0;
4977 		} else {
4978 			/*
4979 			 * Ok set num_bytes to orig_bytes since we aren't
4980 			 * overocmmitted, this way we only try and reclaim what
4981 			 * we need.
4982 			 */
4983 			num_bytes = orig_bytes;
4984 		}
4985 	} else {
4986 		/*
4987 		 * Ok we're over committed, set num_bytes to the overcommitted
4988 		 * amount plus the amount of bytes that we need for this
4989 		 * reservation.
4990 		 */
4991 		num_bytes = used - space_info->total_bytes +
4992 			(orig_bytes * 2);
4993 	}
4994 
4995 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4996 		space_info->bytes_may_use += orig_bytes;
4997 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4998 					      space_info->flags, orig_bytes,
4999 					      1);
5000 		ret = 0;
5001 	}
5002 
5003 	/*
5004 	 * Couldn't make our reservation, save our place so while we're trying
5005 	 * to reclaim space we can actually use it instead of somebody else
5006 	 * stealing it from us.
5007 	 *
5008 	 * We make the other tasks wait for the flush only when we can flush
5009 	 * all things.
5010 	 */
5011 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5012 		flushing = true;
5013 		space_info->flush = 1;
5014 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5015 		used += orig_bytes;
5016 		/*
5017 		 * We will do the space reservation dance during log replay,
5018 		 * which means we won't have fs_info->fs_root set, so don't do
5019 		 * the async reclaim as we will panic.
5020 		 */
5021 		if (!root->fs_info->log_root_recovering &&
5022 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
5023 		    !work_busy(&root->fs_info->async_reclaim_work))
5024 			queue_work(system_unbound_wq,
5025 				   &root->fs_info->async_reclaim_work);
5026 	}
5027 	spin_unlock(&space_info->lock);
5028 
5029 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5030 		goto out;
5031 
5032 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
5033 			  flush_state);
5034 	flush_state++;
5035 
5036 	/*
5037 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5038 	 * would happen. So skip delalloc flush.
5039 	 */
5040 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5041 	    (flush_state == FLUSH_DELALLOC ||
5042 	     flush_state == FLUSH_DELALLOC_WAIT))
5043 		flush_state = ALLOC_CHUNK;
5044 
5045 	if (!ret)
5046 		goto again;
5047 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5048 		 flush_state < COMMIT_TRANS)
5049 		goto again;
5050 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5051 		 flush_state <= COMMIT_TRANS)
5052 		goto again;
5053 
5054 out:
5055 	if (ret == -ENOSPC &&
5056 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5057 		struct btrfs_block_rsv *global_rsv =
5058 			&root->fs_info->global_block_rsv;
5059 
5060 		if (block_rsv != global_rsv &&
5061 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5062 			ret = 0;
5063 	}
5064 	if (ret == -ENOSPC)
5065 		trace_btrfs_space_reservation(root->fs_info,
5066 					      "space_info:enospc",
5067 					      space_info->flags, orig_bytes, 1);
5068 	if (flushing) {
5069 		spin_lock(&space_info->lock);
5070 		space_info->flush = 0;
5071 		wake_up_all(&space_info->wait);
5072 		spin_unlock(&space_info->lock);
5073 	}
5074 	return ret;
5075 }
5076 
5077 static struct btrfs_block_rsv *get_block_rsv(
5078 					const struct btrfs_trans_handle *trans,
5079 					const struct btrfs_root *root)
5080 {
5081 	struct btrfs_block_rsv *block_rsv = NULL;
5082 
5083 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5084 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5085 	     (root == root->fs_info->uuid_root))
5086 		block_rsv = trans->block_rsv;
5087 
5088 	if (!block_rsv)
5089 		block_rsv = root->block_rsv;
5090 
5091 	if (!block_rsv)
5092 		block_rsv = &root->fs_info->empty_block_rsv;
5093 
5094 	return block_rsv;
5095 }
5096 
5097 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5098 			       u64 num_bytes)
5099 {
5100 	int ret = -ENOSPC;
5101 	spin_lock(&block_rsv->lock);
5102 	if (block_rsv->reserved >= num_bytes) {
5103 		block_rsv->reserved -= num_bytes;
5104 		if (block_rsv->reserved < block_rsv->size)
5105 			block_rsv->full = 0;
5106 		ret = 0;
5107 	}
5108 	spin_unlock(&block_rsv->lock);
5109 	return ret;
5110 }
5111 
5112 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5113 				u64 num_bytes, int update_size)
5114 {
5115 	spin_lock(&block_rsv->lock);
5116 	block_rsv->reserved += num_bytes;
5117 	if (update_size)
5118 		block_rsv->size += num_bytes;
5119 	else if (block_rsv->reserved >= block_rsv->size)
5120 		block_rsv->full = 1;
5121 	spin_unlock(&block_rsv->lock);
5122 }
5123 
5124 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5125 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5126 			     int min_factor)
5127 {
5128 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5129 	u64 min_bytes;
5130 
5131 	if (global_rsv->space_info != dest->space_info)
5132 		return -ENOSPC;
5133 
5134 	spin_lock(&global_rsv->lock);
5135 	min_bytes = div_factor(global_rsv->size, min_factor);
5136 	if (global_rsv->reserved < min_bytes + num_bytes) {
5137 		spin_unlock(&global_rsv->lock);
5138 		return -ENOSPC;
5139 	}
5140 	global_rsv->reserved -= num_bytes;
5141 	if (global_rsv->reserved < global_rsv->size)
5142 		global_rsv->full = 0;
5143 	spin_unlock(&global_rsv->lock);
5144 
5145 	block_rsv_add_bytes(dest, num_bytes, 1);
5146 	return 0;
5147 }
5148 
5149 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5150 				    struct btrfs_block_rsv *block_rsv,
5151 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5152 {
5153 	struct btrfs_space_info *space_info = block_rsv->space_info;
5154 
5155 	spin_lock(&block_rsv->lock);
5156 	if (num_bytes == (u64)-1)
5157 		num_bytes = block_rsv->size;
5158 	block_rsv->size -= num_bytes;
5159 	if (block_rsv->reserved >= block_rsv->size) {
5160 		num_bytes = block_rsv->reserved - block_rsv->size;
5161 		block_rsv->reserved = block_rsv->size;
5162 		block_rsv->full = 1;
5163 	} else {
5164 		num_bytes = 0;
5165 	}
5166 	spin_unlock(&block_rsv->lock);
5167 
5168 	if (num_bytes > 0) {
5169 		if (dest) {
5170 			spin_lock(&dest->lock);
5171 			if (!dest->full) {
5172 				u64 bytes_to_add;
5173 
5174 				bytes_to_add = dest->size - dest->reserved;
5175 				bytes_to_add = min(num_bytes, bytes_to_add);
5176 				dest->reserved += bytes_to_add;
5177 				if (dest->reserved >= dest->size)
5178 					dest->full = 1;
5179 				num_bytes -= bytes_to_add;
5180 			}
5181 			spin_unlock(&dest->lock);
5182 		}
5183 		if (num_bytes) {
5184 			spin_lock(&space_info->lock);
5185 			space_info->bytes_may_use -= num_bytes;
5186 			trace_btrfs_space_reservation(fs_info, "space_info",
5187 					space_info->flags, num_bytes, 0);
5188 			spin_unlock(&space_info->lock);
5189 		}
5190 	}
5191 }
5192 
5193 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5194 				   struct btrfs_block_rsv *dst, u64 num_bytes)
5195 {
5196 	int ret;
5197 
5198 	ret = block_rsv_use_bytes(src, num_bytes);
5199 	if (ret)
5200 		return ret;
5201 
5202 	block_rsv_add_bytes(dst, num_bytes, 1);
5203 	return 0;
5204 }
5205 
5206 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5207 {
5208 	memset(rsv, 0, sizeof(*rsv));
5209 	spin_lock_init(&rsv->lock);
5210 	rsv->type = type;
5211 }
5212 
5213 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5214 					      unsigned short type)
5215 {
5216 	struct btrfs_block_rsv *block_rsv;
5217 	struct btrfs_fs_info *fs_info = root->fs_info;
5218 
5219 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5220 	if (!block_rsv)
5221 		return NULL;
5222 
5223 	btrfs_init_block_rsv(block_rsv, type);
5224 	block_rsv->space_info = __find_space_info(fs_info,
5225 						  BTRFS_BLOCK_GROUP_METADATA);
5226 	return block_rsv;
5227 }
5228 
5229 void btrfs_free_block_rsv(struct btrfs_root *root,
5230 			  struct btrfs_block_rsv *rsv)
5231 {
5232 	if (!rsv)
5233 		return;
5234 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5235 	kfree(rsv);
5236 }
5237 
5238 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5239 {
5240 	kfree(rsv);
5241 }
5242 
5243 int btrfs_block_rsv_add(struct btrfs_root *root,
5244 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5245 			enum btrfs_reserve_flush_enum flush)
5246 {
5247 	int ret;
5248 
5249 	if (num_bytes == 0)
5250 		return 0;
5251 
5252 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5253 	if (!ret) {
5254 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5255 		return 0;
5256 	}
5257 
5258 	return ret;
5259 }
5260 
5261 int btrfs_block_rsv_check(struct btrfs_root *root,
5262 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5263 {
5264 	u64 num_bytes = 0;
5265 	int ret = -ENOSPC;
5266 
5267 	if (!block_rsv)
5268 		return 0;
5269 
5270 	spin_lock(&block_rsv->lock);
5271 	num_bytes = div_factor(block_rsv->size, min_factor);
5272 	if (block_rsv->reserved >= num_bytes)
5273 		ret = 0;
5274 	spin_unlock(&block_rsv->lock);
5275 
5276 	return ret;
5277 }
5278 
5279 int btrfs_block_rsv_refill(struct btrfs_root *root,
5280 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5281 			   enum btrfs_reserve_flush_enum flush)
5282 {
5283 	u64 num_bytes = 0;
5284 	int ret = -ENOSPC;
5285 
5286 	if (!block_rsv)
5287 		return 0;
5288 
5289 	spin_lock(&block_rsv->lock);
5290 	num_bytes = min_reserved;
5291 	if (block_rsv->reserved >= num_bytes)
5292 		ret = 0;
5293 	else
5294 		num_bytes -= block_rsv->reserved;
5295 	spin_unlock(&block_rsv->lock);
5296 
5297 	if (!ret)
5298 		return 0;
5299 
5300 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5301 	if (!ret) {
5302 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5303 		return 0;
5304 	}
5305 
5306 	return ret;
5307 }
5308 
5309 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5310 			    struct btrfs_block_rsv *dst_rsv,
5311 			    u64 num_bytes)
5312 {
5313 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5314 }
5315 
5316 void btrfs_block_rsv_release(struct btrfs_root *root,
5317 			     struct btrfs_block_rsv *block_rsv,
5318 			     u64 num_bytes)
5319 {
5320 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5321 	if (global_rsv == block_rsv ||
5322 	    block_rsv->space_info != global_rsv->space_info)
5323 		global_rsv = NULL;
5324 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5325 				num_bytes);
5326 }
5327 
5328 /*
5329  * helper to calculate size of global block reservation.
5330  * the desired value is sum of space used by extent tree,
5331  * checksum tree and root tree
5332  */
5333 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5334 {
5335 	struct btrfs_space_info *sinfo;
5336 	u64 num_bytes;
5337 	u64 meta_used;
5338 	u64 data_used;
5339 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5340 
5341 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5342 	spin_lock(&sinfo->lock);
5343 	data_used = sinfo->bytes_used;
5344 	spin_unlock(&sinfo->lock);
5345 
5346 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5347 	spin_lock(&sinfo->lock);
5348 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5349 		data_used = 0;
5350 	meta_used = sinfo->bytes_used;
5351 	spin_unlock(&sinfo->lock);
5352 
5353 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5354 		    csum_size * 2;
5355 	num_bytes += div_u64(data_used + meta_used, 50);
5356 
5357 	if (num_bytes * 3 > meta_used)
5358 		num_bytes = div_u64(meta_used, 3);
5359 
5360 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5361 }
5362 
5363 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5364 {
5365 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5366 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5367 	u64 num_bytes;
5368 
5369 	num_bytes = calc_global_metadata_size(fs_info);
5370 
5371 	spin_lock(&sinfo->lock);
5372 	spin_lock(&block_rsv->lock);
5373 
5374 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5375 
5376 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5377 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5378 		    sinfo->bytes_may_use;
5379 
5380 	if (sinfo->total_bytes > num_bytes) {
5381 		num_bytes = sinfo->total_bytes - num_bytes;
5382 		block_rsv->reserved += num_bytes;
5383 		sinfo->bytes_may_use += num_bytes;
5384 		trace_btrfs_space_reservation(fs_info, "space_info",
5385 				      sinfo->flags, num_bytes, 1);
5386 	}
5387 
5388 	if (block_rsv->reserved >= block_rsv->size) {
5389 		num_bytes = block_rsv->reserved - block_rsv->size;
5390 		sinfo->bytes_may_use -= num_bytes;
5391 		trace_btrfs_space_reservation(fs_info, "space_info",
5392 				      sinfo->flags, num_bytes, 0);
5393 		block_rsv->reserved = block_rsv->size;
5394 		block_rsv->full = 1;
5395 	}
5396 
5397 	spin_unlock(&block_rsv->lock);
5398 	spin_unlock(&sinfo->lock);
5399 }
5400 
5401 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5402 {
5403 	struct btrfs_space_info *space_info;
5404 
5405 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5406 	fs_info->chunk_block_rsv.space_info = space_info;
5407 
5408 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5409 	fs_info->global_block_rsv.space_info = space_info;
5410 	fs_info->delalloc_block_rsv.space_info = space_info;
5411 	fs_info->trans_block_rsv.space_info = space_info;
5412 	fs_info->empty_block_rsv.space_info = space_info;
5413 	fs_info->delayed_block_rsv.space_info = space_info;
5414 
5415 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5416 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5417 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5418 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5419 	if (fs_info->quota_root)
5420 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5421 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5422 
5423 	update_global_block_rsv(fs_info);
5424 }
5425 
5426 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5427 {
5428 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5429 				(u64)-1);
5430 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5431 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5432 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5433 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5434 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5435 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5436 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5437 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5438 }
5439 
5440 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5441 				  struct btrfs_root *root)
5442 {
5443 	if (!trans->block_rsv)
5444 		return;
5445 
5446 	if (!trans->bytes_reserved)
5447 		return;
5448 
5449 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5450 				      trans->transid, trans->bytes_reserved, 0);
5451 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5452 	trans->bytes_reserved = 0;
5453 }
5454 
5455 /*
5456  * To be called after all the new block groups attached to the transaction
5457  * handle have been created (btrfs_create_pending_block_groups()).
5458  */
5459 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5460 {
5461 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5462 
5463 	if (!trans->chunk_bytes_reserved)
5464 		return;
5465 
5466 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5467 
5468 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5469 				trans->chunk_bytes_reserved);
5470 	trans->chunk_bytes_reserved = 0;
5471 }
5472 
5473 /* Can only return 0 or -ENOSPC */
5474 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5475 				  struct inode *inode)
5476 {
5477 	struct btrfs_root *root = BTRFS_I(inode)->root;
5478 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5479 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5480 
5481 	/*
5482 	 * We need to hold space in order to delete our orphan item once we've
5483 	 * added it, so this takes the reservation so we can release it later
5484 	 * when we are truly done with the orphan item.
5485 	 */
5486 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5487 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5488 				      btrfs_ino(inode), num_bytes, 1);
5489 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5490 }
5491 
5492 void btrfs_orphan_release_metadata(struct inode *inode)
5493 {
5494 	struct btrfs_root *root = BTRFS_I(inode)->root;
5495 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5496 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5497 				      btrfs_ino(inode), num_bytes, 0);
5498 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5499 }
5500 
5501 /*
5502  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5503  * root: the root of the parent directory
5504  * rsv: block reservation
5505  * items: the number of items that we need do reservation
5506  * qgroup_reserved: used to return the reserved size in qgroup
5507  *
5508  * This function is used to reserve the space for snapshot/subvolume
5509  * creation and deletion. Those operations are different with the
5510  * common file/directory operations, they change two fs/file trees
5511  * and root tree, the number of items that the qgroup reserves is
5512  * different with the free space reservation. So we can not use
5513  * the space reseravtion mechanism in start_transaction().
5514  */
5515 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5516 				     struct btrfs_block_rsv *rsv,
5517 				     int items,
5518 				     u64 *qgroup_reserved,
5519 				     bool use_global_rsv)
5520 {
5521 	u64 num_bytes;
5522 	int ret;
5523 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5524 
5525 	if (root->fs_info->quota_enabled) {
5526 		/* One for parent inode, two for dir entries */
5527 		num_bytes = 3 * root->nodesize;
5528 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5529 		if (ret)
5530 			return ret;
5531 	} else {
5532 		num_bytes = 0;
5533 	}
5534 
5535 	*qgroup_reserved = num_bytes;
5536 
5537 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5538 	rsv->space_info = __find_space_info(root->fs_info,
5539 					    BTRFS_BLOCK_GROUP_METADATA);
5540 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5541 				  BTRFS_RESERVE_FLUSH_ALL);
5542 
5543 	if (ret == -ENOSPC && use_global_rsv)
5544 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5545 
5546 	if (ret && *qgroup_reserved)
5547 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5548 
5549 	return ret;
5550 }
5551 
5552 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5553 				      struct btrfs_block_rsv *rsv,
5554 				      u64 qgroup_reserved)
5555 {
5556 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5557 }
5558 
5559 /**
5560  * drop_outstanding_extent - drop an outstanding extent
5561  * @inode: the inode we're dropping the extent for
5562  * @num_bytes: the number of bytes we're relaseing.
5563  *
5564  * This is called when we are freeing up an outstanding extent, either called
5565  * after an error or after an extent is written.  This will return the number of
5566  * reserved extents that need to be freed.  This must be called with
5567  * BTRFS_I(inode)->lock held.
5568  */
5569 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5570 {
5571 	unsigned drop_inode_space = 0;
5572 	unsigned dropped_extents = 0;
5573 	unsigned num_extents = 0;
5574 
5575 	num_extents = (unsigned)div64_u64(num_bytes +
5576 					  BTRFS_MAX_EXTENT_SIZE - 1,
5577 					  BTRFS_MAX_EXTENT_SIZE);
5578 	ASSERT(num_extents);
5579 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5580 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5581 
5582 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5583 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5584 			       &BTRFS_I(inode)->runtime_flags))
5585 		drop_inode_space = 1;
5586 
5587 	/*
5588 	 * If we have more or the same amount of outsanding extents than we have
5589 	 * reserved then we need to leave the reserved extents count alone.
5590 	 */
5591 	if (BTRFS_I(inode)->outstanding_extents >=
5592 	    BTRFS_I(inode)->reserved_extents)
5593 		return drop_inode_space;
5594 
5595 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5596 		BTRFS_I(inode)->outstanding_extents;
5597 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5598 	return dropped_extents + drop_inode_space;
5599 }
5600 
5601 /**
5602  * calc_csum_metadata_size - return the amount of metada space that must be
5603  *	reserved/free'd for the given bytes.
5604  * @inode: the inode we're manipulating
5605  * @num_bytes: the number of bytes in question
5606  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5607  *
5608  * This adjusts the number of csum_bytes in the inode and then returns the
5609  * correct amount of metadata that must either be reserved or freed.  We
5610  * calculate how many checksums we can fit into one leaf and then divide the
5611  * number of bytes that will need to be checksumed by this value to figure out
5612  * how many checksums will be required.  If we are adding bytes then the number
5613  * may go up and we will return the number of additional bytes that must be
5614  * reserved.  If it is going down we will return the number of bytes that must
5615  * be freed.
5616  *
5617  * This must be called with BTRFS_I(inode)->lock held.
5618  */
5619 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5620 				   int reserve)
5621 {
5622 	struct btrfs_root *root = BTRFS_I(inode)->root;
5623 	u64 old_csums, num_csums;
5624 
5625 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5626 	    BTRFS_I(inode)->csum_bytes == 0)
5627 		return 0;
5628 
5629 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5630 	if (reserve)
5631 		BTRFS_I(inode)->csum_bytes += num_bytes;
5632 	else
5633 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5634 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5635 
5636 	/* No change, no need to reserve more */
5637 	if (old_csums == num_csums)
5638 		return 0;
5639 
5640 	if (reserve)
5641 		return btrfs_calc_trans_metadata_size(root,
5642 						      num_csums - old_csums);
5643 
5644 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5645 }
5646 
5647 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5648 {
5649 	struct btrfs_root *root = BTRFS_I(inode)->root;
5650 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5651 	u64 to_reserve = 0;
5652 	u64 csum_bytes;
5653 	unsigned nr_extents = 0;
5654 	int extra_reserve = 0;
5655 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5656 	int ret = 0;
5657 	bool delalloc_lock = true;
5658 	u64 to_free = 0;
5659 	unsigned dropped;
5660 
5661 	/* If we are a free space inode we need to not flush since we will be in
5662 	 * the middle of a transaction commit.  We also don't need the delalloc
5663 	 * mutex since we won't race with anybody.  We need this mostly to make
5664 	 * lockdep shut its filthy mouth.
5665 	 */
5666 	if (btrfs_is_free_space_inode(inode)) {
5667 		flush = BTRFS_RESERVE_NO_FLUSH;
5668 		delalloc_lock = false;
5669 	}
5670 
5671 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5672 	    btrfs_transaction_in_commit(root->fs_info))
5673 		schedule_timeout(1);
5674 
5675 	if (delalloc_lock)
5676 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5677 
5678 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5679 
5680 	spin_lock(&BTRFS_I(inode)->lock);
5681 	nr_extents = (unsigned)div64_u64(num_bytes +
5682 					 BTRFS_MAX_EXTENT_SIZE - 1,
5683 					 BTRFS_MAX_EXTENT_SIZE);
5684 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5685 	nr_extents = 0;
5686 
5687 	if (BTRFS_I(inode)->outstanding_extents >
5688 	    BTRFS_I(inode)->reserved_extents)
5689 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5690 			BTRFS_I(inode)->reserved_extents;
5691 
5692 	/*
5693 	 * Add an item to reserve for updating the inode when we complete the
5694 	 * delalloc io.
5695 	 */
5696 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5697 		      &BTRFS_I(inode)->runtime_flags)) {
5698 		nr_extents++;
5699 		extra_reserve = 1;
5700 	}
5701 
5702 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5703 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5704 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5705 	spin_unlock(&BTRFS_I(inode)->lock);
5706 
5707 	if (root->fs_info->quota_enabled) {
5708 		ret = btrfs_qgroup_reserve_meta(root,
5709 				nr_extents * root->nodesize);
5710 		if (ret)
5711 			goto out_fail;
5712 	}
5713 
5714 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5715 	if (unlikely(ret)) {
5716 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5717 		goto out_fail;
5718 	}
5719 
5720 	spin_lock(&BTRFS_I(inode)->lock);
5721 	if (extra_reserve) {
5722 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5723 			&BTRFS_I(inode)->runtime_flags);
5724 		nr_extents--;
5725 	}
5726 	BTRFS_I(inode)->reserved_extents += nr_extents;
5727 	spin_unlock(&BTRFS_I(inode)->lock);
5728 
5729 	if (delalloc_lock)
5730 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5731 
5732 	if (to_reserve)
5733 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5734 					      btrfs_ino(inode), to_reserve, 1);
5735 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5736 
5737 	return 0;
5738 
5739 out_fail:
5740 	spin_lock(&BTRFS_I(inode)->lock);
5741 	dropped = drop_outstanding_extent(inode, num_bytes);
5742 	/*
5743 	 * If the inodes csum_bytes is the same as the original
5744 	 * csum_bytes then we know we haven't raced with any free()ers
5745 	 * so we can just reduce our inodes csum bytes and carry on.
5746 	 */
5747 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5748 		calc_csum_metadata_size(inode, num_bytes, 0);
5749 	} else {
5750 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5751 		u64 bytes;
5752 
5753 		/*
5754 		 * This is tricky, but first we need to figure out how much we
5755 		 * free'd from any free-ers that occured during this
5756 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5757 		 * before we dropped our lock, and then call the free for the
5758 		 * number of bytes that were freed while we were trying our
5759 		 * reservation.
5760 		 */
5761 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5762 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5763 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5764 
5765 
5766 		/*
5767 		 * Now we need to see how much we would have freed had we not
5768 		 * been making this reservation and our ->csum_bytes were not
5769 		 * artificially inflated.
5770 		 */
5771 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5772 		bytes = csum_bytes - orig_csum_bytes;
5773 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5774 
5775 		/*
5776 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5777 		 * more than to_free then we would have free'd more space had we
5778 		 * not had an artificially high ->csum_bytes, so we need to free
5779 		 * the remainder.  If bytes is the same or less then we don't
5780 		 * need to do anything, the other free-ers did the correct
5781 		 * thing.
5782 		 */
5783 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5784 		if (bytes > to_free)
5785 			to_free = bytes - to_free;
5786 		else
5787 			to_free = 0;
5788 	}
5789 	spin_unlock(&BTRFS_I(inode)->lock);
5790 	if (dropped)
5791 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5792 
5793 	if (to_free) {
5794 		btrfs_block_rsv_release(root, block_rsv, to_free);
5795 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5796 					      btrfs_ino(inode), to_free, 0);
5797 	}
5798 	if (delalloc_lock)
5799 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5800 	return ret;
5801 }
5802 
5803 /**
5804  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5805  * @inode: the inode to release the reservation for
5806  * @num_bytes: the number of bytes we're releasing
5807  *
5808  * This will release the metadata reservation for an inode.  This can be called
5809  * once we complete IO for a given set of bytes to release their metadata
5810  * reservations.
5811  */
5812 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5813 {
5814 	struct btrfs_root *root = BTRFS_I(inode)->root;
5815 	u64 to_free = 0;
5816 	unsigned dropped;
5817 
5818 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5819 	spin_lock(&BTRFS_I(inode)->lock);
5820 	dropped = drop_outstanding_extent(inode, num_bytes);
5821 
5822 	if (num_bytes)
5823 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5824 	spin_unlock(&BTRFS_I(inode)->lock);
5825 	if (dropped > 0)
5826 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5827 
5828 	if (btrfs_test_is_dummy_root(root))
5829 		return;
5830 
5831 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5832 				      btrfs_ino(inode), to_free, 0);
5833 
5834 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5835 				to_free);
5836 }
5837 
5838 /**
5839  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5840  * delalloc
5841  * @inode: inode we're writing to
5842  * @start: start range we are writing to
5843  * @len: how long the range we are writing to
5844  *
5845  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5846  *
5847  * This will do the following things
5848  *
5849  * o reserve space in data space info for num bytes
5850  *   and reserve precious corresponding qgroup space
5851  *   (Done in check_data_free_space)
5852  *
5853  * o reserve space for metadata space, based on the number of outstanding
5854  *   extents and how much csums will be needed
5855  *   also reserve metadata space in a per root over-reserve method.
5856  * o add to the inodes->delalloc_bytes
5857  * o add it to the fs_info's delalloc inodes list.
5858  *   (Above 3 all done in delalloc_reserve_metadata)
5859  *
5860  * Return 0 for success
5861  * Return <0 for error(-ENOSPC or -EQUOT)
5862  */
5863 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5864 {
5865 	int ret;
5866 
5867 	ret = btrfs_check_data_free_space(inode, start, len);
5868 	if (ret < 0)
5869 		return ret;
5870 	ret = btrfs_delalloc_reserve_metadata(inode, len);
5871 	if (ret < 0)
5872 		btrfs_free_reserved_data_space(inode, start, len);
5873 	return ret;
5874 }
5875 
5876 /**
5877  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5878  * @inode: inode we're releasing space for
5879  * @start: start position of the space already reserved
5880  * @len: the len of the space already reserved
5881  *
5882  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5883  * called in the case that we don't need the metadata AND data reservations
5884  * anymore.  So if there is an error or we insert an inline extent.
5885  *
5886  * This function will release the metadata space that was not used and will
5887  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5888  * list if there are no delalloc bytes left.
5889  * Also it will handle the qgroup reserved space.
5890  */
5891 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5892 {
5893 	btrfs_delalloc_release_metadata(inode, len);
5894 	btrfs_free_reserved_data_space(inode, start, len);
5895 }
5896 
5897 static int update_block_group(struct btrfs_trans_handle *trans,
5898 			      struct btrfs_root *root, u64 bytenr,
5899 			      u64 num_bytes, int alloc)
5900 {
5901 	struct btrfs_block_group_cache *cache = NULL;
5902 	struct btrfs_fs_info *info = root->fs_info;
5903 	u64 total = num_bytes;
5904 	u64 old_val;
5905 	u64 byte_in_group;
5906 	int factor;
5907 
5908 	/* block accounting for super block */
5909 	spin_lock(&info->delalloc_root_lock);
5910 	old_val = btrfs_super_bytes_used(info->super_copy);
5911 	if (alloc)
5912 		old_val += num_bytes;
5913 	else
5914 		old_val -= num_bytes;
5915 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5916 	spin_unlock(&info->delalloc_root_lock);
5917 
5918 	while (total) {
5919 		cache = btrfs_lookup_block_group(info, bytenr);
5920 		if (!cache)
5921 			return -ENOENT;
5922 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5923 				    BTRFS_BLOCK_GROUP_RAID1 |
5924 				    BTRFS_BLOCK_GROUP_RAID10))
5925 			factor = 2;
5926 		else
5927 			factor = 1;
5928 		/*
5929 		 * If this block group has free space cache written out, we
5930 		 * need to make sure to load it if we are removing space.  This
5931 		 * is because we need the unpinning stage to actually add the
5932 		 * space back to the block group, otherwise we will leak space.
5933 		 */
5934 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5935 			cache_block_group(cache, 1);
5936 
5937 		byte_in_group = bytenr - cache->key.objectid;
5938 		WARN_ON(byte_in_group > cache->key.offset);
5939 
5940 		spin_lock(&cache->space_info->lock);
5941 		spin_lock(&cache->lock);
5942 
5943 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5944 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5945 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5946 
5947 		old_val = btrfs_block_group_used(&cache->item);
5948 		num_bytes = min(total, cache->key.offset - byte_in_group);
5949 		if (alloc) {
5950 			old_val += num_bytes;
5951 			btrfs_set_block_group_used(&cache->item, old_val);
5952 			cache->reserved -= num_bytes;
5953 			cache->space_info->bytes_reserved -= num_bytes;
5954 			cache->space_info->bytes_used += num_bytes;
5955 			cache->space_info->disk_used += num_bytes * factor;
5956 			spin_unlock(&cache->lock);
5957 			spin_unlock(&cache->space_info->lock);
5958 		} else {
5959 			old_val -= num_bytes;
5960 			btrfs_set_block_group_used(&cache->item, old_val);
5961 			cache->pinned += num_bytes;
5962 			cache->space_info->bytes_pinned += num_bytes;
5963 			cache->space_info->bytes_used -= num_bytes;
5964 			cache->space_info->disk_used -= num_bytes * factor;
5965 			spin_unlock(&cache->lock);
5966 			spin_unlock(&cache->space_info->lock);
5967 
5968 			set_extent_dirty(info->pinned_extents,
5969 					 bytenr, bytenr + num_bytes - 1,
5970 					 GFP_NOFS | __GFP_NOFAIL);
5971 		}
5972 
5973 		spin_lock(&trans->transaction->dirty_bgs_lock);
5974 		if (list_empty(&cache->dirty_list)) {
5975 			list_add_tail(&cache->dirty_list,
5976 				      &trans->transaction->dirty_bgs);
5977 				trans->transaction->num_dirty_bgs++;
5978 			btrfs_get_block_group(cache);
5979 		}
5980 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5981 
5982 		/*
5983 		 * No longer have used bytes in this block group, queue it for
5984 		 * deletion. We do this after adding the block group to the
5985 		 * dirty list to avoid races between cleaner kthread and space
5986 		 * cache writeout.
5987 		 */
5988 		if (!alloc && old_val == 0) {
5989 			spin_lock(&info->unused_bgs_lock);
5990 			if (list_empty(&cache->bg_list)) {
5991 				btrfs_get_block_group(cache);
5992 				list_add_tail(&cache->bg_list,
5993 					      &info->unused_bgs);
5994 			}
5995 			spin_unlock(&info->unused_bgs_lock);
5996 		}
5997 
5998 		btrfs_put_block_group(cache);
5999 		total -= num_bytes;
6000 		bytenr += num_bytes;
6001 	}
6002 	return 0;
6003 }
6004 
6005 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6006 {
6007 	struct btrfs_block_group_cache *cache;
6008 	u64 bytenr;
6009 
6010 	spin_lock(&root->fs_info->block_group_cache_lock);
6011 	bytenr = root->fs_info->first_logical_byte;
6012 	spin_unlock(&root->fs_info->block_group_cache_lock);
6013 
6014 	if (bytenr < (u64)-1)
6015 		return bytenr;
6016 
6017 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6018 	if (!cache)
6019 		return 0;
6020 
6021 	bytenr = cache->key.objectid;
6022 	btrfs_put_block_group(cache);
6023 
6024 	return bytenr;
6025 }
6026 
6027 static int pin_down_extent(struct btrfs_root *root,
6028 			   struct btrfs_block_group_cache *cache,
6029 			   u64 bytenr, u64 num_bytes, int reserved)
6030 {
6031 	spin_lock(&cache->space_info->lock);
6032 	spin_lock(&cache->lock);
6033 	cache->pinned += num_bytes;
6034 	cache->space_info->bytes_pinned += num_bytes;
6035 	if (reserved) {
6036 		cache->reserved -= num_bytes;
6037 		cache->space_info->bytes_reserved -= num_bytes;
6038 	}
6039 	spin_unlock(&cache->lock);
6040 	spin_unlock(&cache->space_info->lock);
6041 
6042 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6043 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6044 	if (reserved)
6045 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6046 	return 0;
6047 }
6048 
6049 /*
6050  * this function must be called within transaction
6051  */
6052 int btrfs_pin_extent(struct btrfs_root *root,
6053 		     u64 bytenr, u64 num_bytes, int reserved)
6054 {
6055 	struct btrfs_block_group_cache *cache;
6056 
6057 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6058 	BUG_ON(!cache); /* Logic error */
6059 
6060 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6061 
6062 	btrfs_put_block_group(cache);
6063 	return 0;
6064 }
6065 
6066 /*
6067  * this function must be called within transaction
6068  */
6069 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6070 				    u64 bytenr, u64 num_bytes)
6071 {
6072 	struct btrfs_block_group_cache *cache;
6073 	int ret;
6074 
6075 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6076 	if (!cache)
6077 		return -EINVAL;
6078 
6079 	/*
6080 	 * pull in the free space cache (if any) so that our pin
6081 	 * removes the free space from the cache.  We have load_only set
6082 	 * to one because the slow code to read in the free extents does check
6083 	 * the pinned extents.
6084 	 */
6085 	cache_block_group(cache, 1);
6086 
6087 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6088 
6089 	/* remove us from the free space cache (if we're there at all) */
6090 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6091 	btrfs_put_block_group(cache);
6092 	return ret;
6093 }
6094 
6095 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6096 {
6097 	int ret;
6098 	struct btrfs_block_group_cache *block_group;
6099 	struct btrfs_caching_control *caching_ctl;
6100 
6101 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6102 	if (!block_group)
6103 		return -EINVAL;
6104 
6105 	cache_block_group(block_group, 0);
6106 	caching_ctl = get_caching_control(block_group);
6107 
6108 	if (!caching_ctl) {
6109 		/* Logic error */
6110 		BUG_ON(!block_group_cache_done(block_group));
6111 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6112 	} else {
6113 		mutex_lock(&caching_ctl->mutex);
6114 
6115 		if (start >= caching_ctl->progress) {
6116 			ret = add_excluded_extent(root, start, num_bytes);
6117 		} else if (start + num_bytes <= caching_ctl->progress) {
6118 			ret = btrfs_remove_free_space(block_group,
6119 						      start, num_bytes);
6120 		} else {
6121 			num_bytes = caching_ctl->progress - start;
6122 			ret = btrfs_remove_free_space(block_group,
6123 						      start, num_bytes);
6124 			if (ret)
6125 				goto out_lock;
6126 
6127 			num_bytes = (start + num_bytes) -
6128 				caching_ctl->progress;
6129 			start = caching_ctl->progress;
6130 			ret = add_excluded_extent(root, start, num_bytes);
6131 		}
6132 out_lock:
6133 		mutex_unlock(&caching_ctl->mutex);
6134 		put_caching_control(caching_ctl);
6135 	}
6136 	btrfs_put_block_group(block_group);
6137 	return ret;
6138 }
6139 
6140 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6141 				 struct extent_buffer *eb)
6142 {
6143 	struct btrfs_file_extent_item *item;
6144 	struct btrfs_key key;
6145 	int found_type;
6146 	int i;
6147 
6148 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6149 		return 0;
6150 
6151 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6152 		btrfs_item_key_to_cpu(eb, &key, i);
6153 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6154 			continue;
6155 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6156 		found_type = btrfs_file_extent_type(eb, item);
6157 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6158 			continue;
6159 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6160 			continue;
6161 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6162 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6163 		__exclude_logged_extent(log, key.objectid, key.offset);
6164 	}
6165 
6166 	return 0;
6167 }
6168 
6169 /**
6170  * btrfs_update_reserved_bytes - update the block_group and space info counters
6171  * @cache:	The cache we are manipulating
6172  * @num_bytes:	The number of bytes in question
6173  * @reserve:	One of the reservation enums
6174  * @delalloc:   The blocks are allocated for the delalloc write
6175  *
6176  * This is called by the allocator when it reserves space, or by somebody who is
6177  * freeing space that was never actually used on disk.  For example if you
6178  * reserve some space for a new leaf in transaction A and before transaction A
6179  * commits you free that leaf, you call this with reserve set to 0 in order to
6180  * clear the reservation.
6181  *
6182  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6183  * ENOSPC accounting.  For data we handle the reservation through clearing the
6184  * delalloc bits in the io_tree.  We have to do this since we could end up
6185  * allocating less disk space for the amount of data we have reserved in the
6186  * case of compression.
6187  *
6188  * If this is a reservation and the block group has become read only we cannot
6189  * make the reservation and return -EAGAIN, otherwise this function always
6190  * succeeds.
6191  */
6192 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6193 				       u64 num_bytes, int reserve, int delalloc)
6194 {
6195 	struct btrfs_space_info *space_info = cache->space_info;
6196 	int ret = 0;
6197 
6198 	spin_lock(&space_info->lock);
6199 	spin_lock(&cache->lock);
6200 	if (reserve != RESERVE_FREE) {
6201 		if (cache->ro) {
6202 			ret = -EAGAIN;
6203 		} else {
6204 			cache->reserved += num_bytes;
6205 			space_info->bytes_reserved += num_bytes;
6206 			if (reserve == RESERVE_ALLOC) {
6207 				trace_btrfs_space_reservation(cache->fs_info,
6208 						"space_info", space_info->flags,
6209 						num_bytes, 0);
6210 				space_info->bytes_may_use -= num_bytes;
6211 			}
6212 
6213 			if (delalloc)
6214 				cache->delalloc_bytes += num_bytes;
6215 		}
6216 	} else {
6217 		if (cache->ro)
6218 			space_info->bytes_readonly += num_bytes;
6219 		cache->reserved -= num_bytes;
6220 		space_info->bytes_reserved -= num_bytes;
6221 
6222 		if (delalloc)
6223 			cache->delalloc_bytes -= num_bytes;
6224 	}
6225 	spin_unlock(&cache->lock);
6226 	spin_unlock(&space_info->lock);
6227 	return ret;
6228 }
6229 
6230 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6231 				struct btrfs_root *root)
6232 {
6233 	struct btrfs_fs_info *fs_info = root->fs_info;
6234 	struct btrfs_caching_control *next;
6235 	struct btrfs_caching_control *caching_ctl;
6236 	struct btrfs_block_group_cache *cache;
6237 
6238 	down_write(&fs_info->commit_root_sem);
6239 
6240 	list_for_each_entry_safe(caching_ctl, next,
6241 				 &fs_info->caching_block_groups, list) {
6242 		cache = caching_ctl->block_group;
6243 		if (block_group_cache_done(cache)) {
6244 			cache->last_byte_to_unpin = (u64)-1;
6245 			list_del_init(&caching_ctl->list);
6246 			put_caching_control(caching_ctl);
6247 		} else {
6248 			cache->last_byte_to_unpin = caching_ctl->progress;
6249 		}
6250 	}
6251 
6252 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6253 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6254 	else
6255 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6256 
6257 	up_write(&fs_info->commit_root_sem);
6258 
6259 	update_global_block_rsv(fs_info);
6260 }
6261 
6262 /*
6263  * Returns the free cluster for the given space info and sets empty_cluster to
6264  * what it should be based on the mount options.
6265  */
6266 static struct btrfs_free_cluster *
6267 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6268 		   u64 *empty_cluster)
6269 {
6270 	struct btrfs_free_cluster *ret = NULL;
6271 	bool ssd = btrfs_test_opt(root, SSD);
6272 
6273 	*empty_cluster = 0;
6274 	if (btrfs_mixed_space_info(space_info))
6275 		return ret;
6276 
6277 	if (ssd)
6278 		*empty_cluster = SZ_2M;
6279 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6280 		ret = &root->fs_info->meta_alloc_cluster;
6281 		if (!ssd)
6282 			*empty_cluster = SZ_64K;
6283 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6284 		ret = &root->fs_info->data_alloc_cluster;
6285 	}
6286 
6287 	return ret;
6288 }
6289 
6290 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6291 			      const bool return_free_space)
6292 {
6293 	struct btrfs_fs_info *fs_info = root->fs_info;
6294 	struct btrfs_block_group_cache *cache = NULL;
6295 	struct btrfs_space_info *space_info;
6296 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6297 	struct btrfs_free_cluster *cluster = NULL;
6298 	u64 len;
6299 	u64 total_unpinned = 0;
6300 	u64 empty_cluster = 0;
6301 	bool readonly;
6302 
6303 	while (start <= end) {
6304 		readonly = false;
6305 		if (!cache ||
6306 		    start >= cache->key.objectid + cache->key.offset) {
6307 			if (cache)
6308 				btrfs_put_block_group(cache);
6309 			total_unpinned = 0;
6310 			cache = btrfs_lookup_block_group(fs_info, start);
6311 			BUG_ON(!cache); /* Logic error */
6312 
6313 			cluster = fetch_cluster_info(root,
6314 						     cache->space_info,
6315 						     &empty_cluster);
6316 			empty_cluster <<= 1;
6317 		}
6318 
6319 		len = cache->key.objectid + cache->key.offset - start;
6320 		len = min(len, end + 1 - start);
6321 
6322 		if (start < cache->last_byte_to_unpin) {
6323 			len = min(len, cache->last_byte_to_unpin - start);
6324 			if (return_free_space)
6325 				btrfs_add_free_space(cache, start, len);
6326 		}
6327 
6328 		start += len;
6329 		total_unpinned += len;
6330 		space_info = cache->space_info;
6331 
6332 		/*
6333 		 * If this space cluster has been marked as fragmented and we've
6334 		 * unpinned enough in this block group to potentially allow a
6335 		 * cluster to be created inside of it go ahead and clear the
6336 		 * fragmented check.
6337 		 */
6338 		if (cluster && cluster->fragmented &&
6339 		    total_unpinned > empty_cluster) {
6340 			spin_lock(&cluster->lock);
6341 			cluster->fragmented = 0;
6342 			spin_unlock(&cluster->lock);
6343 		}
6344 
6345 		spin_lock(&space_info->lock);
6346 		spin_lock(&cache->lock);
6347 		cache->pinned -= len;
6348 		space_info->bytes_pinned -= len;
6349 		space_info->max_extent_size = 0;
6350 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6351 		if (cache->ro) {
6352 			space_info->bytes_readonly += len;
6353 			readonly = true;
6354 		}
6355 		spin_unlock(&cache->lock);
6356 		if (!readonly && global_rsv->space_info == space_info) {
6357 			spin_lock(&global_rsv->lock);
6358 			if (!global_rsv->full) {
6359 				len = min(len, global_rsv->size -
6360 					  global_rsv->reserved);
6361 				global_rsv->reserved += len;
6362 				space_info->bytes_may_use += len;
6363 				if (global_rsv->reserved >= global_rsv->size)
6364 					global_rsv->full = 1;
6365 			}
6366 			spin_unlock(&global_rsv->lock);
6367 		}
6368 		spin_unlock(&space_info->lock);
6369 	}
6370 
6371 	if (cache)
6372 		btrfs_put_block_group(cache);
6373 	return 0;
6374 }
6375 
6376 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6377 			       struct btrfs_root *root)
6378 {
6379 	struct btrfs_fs_info *fs_info = root->fs_info;
6380 	struct btrfs_block_group_cache *block_group, *tmp;
6381 	struct list_head *deleted_bgs;
6382 	struct extent_io_tree *unpin;
6383 	u64 start;
6384 	u64 end;
6385 	int ret;
6386 
6387 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6388 		unpin = &fs_info->freed_extents[1];
6389 	else
6390 		unpin = &fs_info->freed_extents[0];
6391 
6392 	while (!trans->aborted) {
6393 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6394 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6395 					    EXTENT_DIRTY, NULL);
6396 		if (ret) {
6397 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6398 			break;
6399 		}
6400 
6401 		if (btrfs_test_opt(root, DISCARD))
6402 			ret = btrfs_discard_extent(root, start,
6403 						   end + 1 - start, NULL);
6404 
6405 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6406 		unpin_extent_range(root, start, end, true);
6407 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6408 		cond_resched();
6409 	}
6410 
6411 	/*
6412 	 * Transaction is finished.  We don't need the lock anymore.  We
6413 	 * do need to clean up the block groups in case of a transaction
6414 	 * abort.
6415 	 */
6416 	deleted_bgs = &trans->transaction->deleted_bgs;
6417 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6418 		u64 trimmed = 0;
6419 
6420 		ret = -EROFS;
6421 		if (!trans->aborted)
6422 			ret = btrfs_discard_extent(root,
6423 						   block_group->key.objectid,
6424 						   block_group->key.offset,
6425 						   &trimmed);
6426 
6427 		list_del_init(&block_group->bg_list);
6428 		btrfs_put_block_group_trimming(block_group);
6429 		btrfs_put_block_group(block_group);
6430 
6431 		if (ret) {
6432 			const char *errstr = btrfs_decode_error(ret);
6433 			btrfs_warn(fs_info,
6434 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6435 				   ret, errstr);
6436 		}
6437 	}
6438 
6439 	return 0;
6440 }
6441 
6442 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6443 			     u64 owner, u64 root_objectid)
6444 {
6445 	struct btrfs_space_info *space_info;
6446 	u64 flags;
6447 
6448 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6449 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6450 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6451 		else
6452 			flags = BTRFS_BLOCK_GROUP_METADATA;
6453 	} else {
6454 		flags = BTRFS_BLOCK_GROUP_DATA;
6455 	}
6456 
6457 	space_info = __find_space_info(fs_info, flags);
6458 	BUG_ON(!space_info); /* Logic bug */
6459 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6460 }
6461 
6462 
6463 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6464 				struct btrfs_root *root,
6465 				struct btrfs_delayed_ref_node *node, u64 parent,
6466 				u64 root_objectid, u64 owner_objectid,
6467 				u64 owner_offset, int refs_to_drop,
6468 				struct btrfs_delayed_extent_op *extent_op)
6469 {
6470 	struct btrfs_key key;
6471 	struct btrfs_path *path;
6472 	struct btrfs_fs_info *info = root->fs_info;
6473 	struct btrfs_root *extent_root = info->extent_root;
6474 	struct extent_buffer *leaf;
6475 	struct btrfs_extent_item *ei;
6476 	struct btrfs_extent_inline_ref *iref;
6477 	int ret;
6478 	int is_data;
6479 	int extent_slot = 0;
6480 	int found_extent = 0;
6481 	int num_to_del = 1;
6482 	u32 item_size;
6483 	u64 refs;
6484 	u64 bytenr = node->bytenr;
6485 	u64 num_bytes = node->num_bytes;
6486 	int last_ref = 0;
6487 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6488 						 SKINNY_METADATA);
6489 
6490 	path = btrfs_alloc_path();
6491 	if (!path)
6492 		return -ENOMEM;
6493 
6494 	path->reada = READA_FORWARD;
6495 	path->leave_spinning = 1;
6496 
6497 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6498 	BUG_ON(!is_data && refs_to_drop != 1);
6499 
6500 	if (is_data)
6501 		skinny_metadata = 0;
6502 
6503 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6504 				    bytenr, num_bytes, parent,
6505 				    root_objectid, owner_objectid,
6506 				    owner_offset);
6507 	if (ret == 0) {
6508 		extent_slot = path->slots[0];
6509 		while (extent_slot >= 0) {
6510 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6511 					      extent_slot);
6512 			if (key.objectid != bytenr)
6513 				break;
6514 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6515 			    key.offset == num_bytes) {
6516 				found_extent = 1;
6517 				break;
6518 			}
6519 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6520 			    key.offset == owner_objectid) {
6521 				found_extent = 1;
6522 				break;
6523 			}
6524 			if (path->slots[0] - extent_slot > 5)
6525 				break;
6526 			extent_slot--;
6527 		}
6528 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6529 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6530 		if (found_extent && item_size < sizeof(*ei))
6531 			found_extent = 0;
6532 #endif
6533 		if (!found_extent) {
6534 			BUG_ON(iref);
6535 			ret = remove_extent_backref(trans, extent_root, path,
6536 						    NULL, refs_to_drop,
6537 						    is_data, &last_ref);
6538 			if (ret) {
6539 				btrfs_abort_transaction(trans, extent_root, ret);
6540 				goto out;
6541 			}
6542 			btrfs_release_path(path);
6543 			path->leave_spinning = 1;
6544 
6545 			key.objectid = bytenr;
6546 			key.type = BTRFS_EXTENT_ITEM_KEY;
6547 			key.offset = num_bytes;
6548 
6549 			if (!is_data && skinny_metadata) {
6550 				key.type = BTRFS_METADATA_ITEM_KEY;
6551 				key.offset = owner_objectid;
6552 			}
6553 
6554 			ret = btrfs_search_slot(trans, extent_root,
6555 						&key, path, -1, 1);
6556 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6557 				/*
6558 				 * Couldn't find our skinny metadata item,
6559 				 * see if we have ye olde extent item.
6560 				 */
6561 				path->slots[0]--;
6562 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6563 						      path->slots[0]);
6564 				if (key.objectid == bytenr &&
6565 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6566 				    key.offset == num_bytes)
6567 					ret = 0;
6568 			}
6569 
6570 			if (ret > 0 && skinny_metadata) {
6571 				skinny_metadata = false;
6572 				key.objectid = bytenr;
6573 				key.type = BTRFS_EXTENT_ITEM_KEY;
6574 				key.offset = num_bytes;
6575 				btrfs_release_path(path);
6576 				ret = btrfs_search_slot(trans, extent_root,
6577 							&key, path, -1, 1);
6578 			}
6579 
6580 			if (ret) {
6581 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6582 					ret, bytenr);
6583 				if (ret > 0)
6584 					btrfs_print_leaf(extent_root,
6585 							 path->nodes[0]);
6586 			}
6587 			if (ret < 0) {
6588 				btrfs_abort_transaction(trans, extent_root, ret);
6589 				goto out;
6590 			}
6591 			extent_slot = path->slots[0];
6592 		}
6593 	} else if (WARN_ON(ret == -ENOENT)) {
6594 		btrfs_print_leaf(extent_root, path->nodes[0]);
6595 		btrfs_err(info,
6596 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6597 			bytenr, parent, root_objectid, owner_objectid,
6598 			owner_offset);
6599 		btrfs_abort_transaction(trans, extent_root, ret);
6600 		goto out;
6601 	} else {
6602 		btrfs_abort_transaction(trans, extent_root, ret);
6603 		goto out;
6604 	}
6605 
6606 	leaf = path->nodes[0];
6607 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6608 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6609 	if (item_size < sizeof(*ei)) {
6610 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6611 		ret = convert_extent_item_v0(trans, extent_root, path,
6612 					     owner_objectid, 0);
6613 		if (ret < 0) {
6614 			btrfs_abort_transaction(trans, extent_root, ret);
6615 			goto out;
6616 		}
6617 
6618 		btrfs_release_path(path);
6619 		path->leave_spinning = 1;
6620 
6621 		key.objectid = bytenr;
6622 		key.type = BTRFS_EXTENT_ITEM_KEY;
6623 		key.offset = num_bytes;
6624 
6625 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6626 					-1, 1);
6627 		if (ret) {
6628 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6629 				ret, bytenr);
6630 			btrfs_print_leaf(extent_root, path->nodes[0]);
6631 		}
6632 		if (ret < 0) {
6633 			btrfs_abort_transaction(trans, extent_root, ret);
6634 			goto out;
6635 		}
6636 
6637 		extent_slot = path->slots[0];
6638 		leaf = path->nodes[0];
6639 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6640 	}
6641 #endif
6642 	BUG_ON(item_size < sizeof(*ei));
6643 	ei = btrfs_item_ptr(leaf, extent_slot,
6644 			    struct btrfs_extent_item);
6645 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6646 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6647 		struct btrfs_tree_block_info *bi;
6648 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6649 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6650 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6651 	}
6652 
6653 	refs = btrfs_extent_refs(leaf, ei);
6654 	if (refs < refs_to_drop) {
6655 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6656 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6657 		ret = -EINVAL;
6658 		btrfs_abort_transaction(trans, extent_root, ret);
6659 		goto out;
6660 	}
6661 	refs -= refs_to_drop;
6662 
6663 	if (refs > 0) {
6664 		if (extent_op)
6665 			__run_delayed_extent_op(extent_op, leaf, ei);
6666 		/*
6667 		 * In the case of inline back ref, reference count will
6668 		 * be updated by remove_extent_backref
6669 		 */
6670 		if (iref) {
6671 			BUG_ON(!found_extent);
6672 		} else {
6673 			btrfs_set_extent_refs(leaf, ei, refs);
6674 			btrfs_mark_buffer_dirty(leaf);
6675 		}
6676 		if (found_extent) {
6677 			ret = remove_extent_backref(trans, extent_root, path,
6678 						    iref, refs_to_drop,
6679 						    is_data, &last_ref);
6680 			if (ret) {
6681 				btrfs_abort_transaction(trans, extent_root, ret);
6682 				goto out;
6683 			}
6684 		}
6685 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6686 				 root_objectid);
6687 	} else {
6688 		if (found_extent) {
6689 			BUG_ON(is_data && refs_to_drop !=
6690 			       extent_data_ref_count(path, iref));
6691 			if (iref) {
6692 				BUG_ON(path->slots[0] != extent_slot);
6693 			} else {
6694 				BUG_ON(path->slots[0] != extent_slot + 1);
6695 				path->slots[0] = extent_slot;
6696 				num_to_del = 2;
6697 			}
6698 		}
6699 
6700 		last_ref = 1;
6701 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6702 				      num_to_del);
6703 		if (ret) {
6704 			btrfs_abort_transaction(trans, extent_root, ret);
6705 			goto out;
6706 		}
6707 		btrfs_release_path(path);
6708 
6709 		if (is_data) {
6710 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6711 			if (ret) {
6712 				btrfs_abort_transaction(trans, extent_root, ret);
6713 				goto out;
6714 			}
6715 		}
6716 
6717 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6718 					     num_bytes);
6719 		if (ret) {
6720 			btrfs_abort_transaction(trans, extent_root, ret);
6721 			goto out;
6722 		}
6723 
6724 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6725 		if (ret) {
6726 			btrfs_abort_transaction(trans, extent_root, ret);
6727 			goto out;
6728 		}
6729 	}
6730 	btrfs_release_path(path);
6731 
6732 out:
6733 	btrfs_free_path(path);
6734 	return ret;
6735 }
6736 
6737 /*
6738  * when we free an block, it is possible (and likely) that we free the last
6739  * delayed ref for that extent as well.  This searches the delayed ref tree for
6740  * a given extent, and if there are no other delayed refs to be processed, it
6741  * removes it from the tree.
6742  */
6743 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6744 				      struct btrfs_root *root, u64 bytenr)
6745 {
6746 	struct btrfs_delayed_ref_head *head;
6747 	struct btrfs_delayed_ref_root *delayed_refs;
6748 	int ret = 0;
6749 
6750 	delayed_refs = &trans->transaction->delayed_refs;
6751 	spin_lock(&delayed_refs->lock);
6752 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6753 	if (!head)
6754 		goto out_delayed_unlock;
6755 
6756 	spin_lock(&head->lock);
6757 	if (!list_empty(&head->ref_list))
6758 		goto out;
6759 
6760 	if (head->extent_op) {
6761 		if (!head->must_insert_reserved)
6762 			goto out;
6763 		btrfs_free_delayed_extent_op(head->extent_op);
6764 		head->extent_op = NULL;
6765 	}
6766 
6767 	/*
6768 	 * waiting for the lock here would deadlock.  If someone else has it
6769 	 * locked they are already in the process of dropping it anyway
6770 	 */
6771 	if (!mutex_trylock(&head->mutex))
6772 		goto out;
6773 
6774 	/*
6775 	 * at this point we have a head with no other entries.  Go
6776 	 * ahead and process it.
6777 	 */
6778 	head->node.in_tree = 0;
6779 	rb_erase(&head->href_node, &delayed_refs->href_root);
6780 
6781 	atomic_dec(&delayed_refs->num_entries);
6782 
6783 	/*
6784 	 * we don't take a ref on the node because we're removing it from the
6785 	 * tree, so we just steal the ref the tree was holding.
6786 	 */
6787 	delayed_refs->num_heads--;
6788 	if (head->processing == 0)
6789 		delayed_refs->num_heads_ready--;
6790 	head->processing = 0;
6791 	spin_unlock(&head->lock);
6792 	spin_unlock(&delayed_refs->lock);
6793 
6794 	BUG_ON(head->extent_op);
6795 	if (head->must_insert_reserved)
6796 		ret = 1;
6797 
6798 	mutex_unlock(&head->mutex);
6799 	btrfs_put_delayed_ref(&head->node);
6800 	return ret;
6801 out:
6802 	spin_unlock(&head->lock);
6803 
6804 out_delayed_unlock:
6805 	spin_unlock(&delayed_refs->lock);
6806 	return 0;
6807 }
6808 
6809 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6810 			   struct btrfs_root *root,
6811 			   struct extent_buffer *buf,
6812 			   u64 parent, int last_ref)
6813 {
6814 	int pin = 1;
6815 	int ret;
6816 
6817 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6818 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6819 					buf->start, buf->len,
6820 					parent, root->root_key.objectid,
6821 					btrfs_header_level(buf),
6822 					BTRFS_DROP_DELAYED_REF, NULL);
6823 		BUG_ON(ret); /* -ENOMEM */
6824 	}
6825 
6826 	if (!last_ref)
6827 		return;
6828 
6829 	if (btrfs_header_generation(buf) == trans->transid) {
6830 		struct btrfs_block_group_cache *cache;
6831 
6832 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6833 			ret = check_ref_cleanup(trans, root, buf->start);
6834 			if (!ret)
6835 				goto out;
6836 		}
6837 
6838 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6839 
6840 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6841 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6842 			btrfs_put_block_group(cache);
6843 			goto out;
6844 		}
6845 
6846 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6847 
6848 		btrfs_add_free_space(cache, buf->start, buf->len);
6849 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6850 		btrfs_put_block_group(cache);
6851 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6852 		pin = 0;
6853 	}
6854 out:
6855 	if (pin)
6856 		add_pinned_bytes(root->fs_info, buf->len,
6857 				 btrfs_header_level(buf),
6858 				 root->root_key.objectid);
6859 
6860 	/*
6861 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6862 	 * anymore.
6863 	 */
6864 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6865 }
6866 
6867 /* Can return -ENOMEM */
6868 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6869 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6870 		      u64 owner, u64 offset)
6871 {
6872 	int ret;
6873 	struct btrfs_fs_info *fs_info = root->fs_info;
6874 
6875 	if (btrfs_test_is_dummy_root(root))
6876 		return 0;
6877 
6878 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6879 
6880 	/*
6881 	 * tree log blocks never actually go into the extent allocation
6882 	 * tree, just update pinning info and exit early.
6883 	 */
6884 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6885 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6886 		/* unlocks the pinned mutex */
6887 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6888 		ret = 0;
6889 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6890 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6891 					num_bytes,
6892 					parent, root_objectid, (int)owner,
6893 					BTRFS_DROP_DELAYED_REF, NULL);
6894 	} else {
6895 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6896 						num_bytes,
6897 						parent, root_objectid, owner,
6898 						offset, 0,
6899 						BTRFS_DROP_DELAYED_REF, NULL);
6900 	}
6901 	return ret;
6902 }
6903 
6904 /*
6905  * when we wait for progress in the block group caching, its because
6906  * our allocation attempt failed at least once.  So, we must sleep
6907  * and let some progress happen before we try again.
6908  *
6909  * This function will sleep at least once waiting for new free space to
6910  * show up, and then it will check the block group free space numbers
6911  * for our min num_bytes.  Another option is to have it go ahead
6912  * and look in the rbtree for a free extent of a given size, but this
6913  * is a good start.
6914  *
6915  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6916  * any of the information in this block group.
6917  */
6918 static noinline void
6919 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6920 				u64 num_bytes)
6921 {
6922 	struct btrfs_caching_control *caching_ctl;
6923 
6924 	caching_ctl = get_caching_control(cache);
6925 	if (!caching_ctl)
6926 		return;
6927 
6928 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6929 		   (cache->free_space_ctl->free_space >= num_bytes));
6930 
6931 	put_caching_control(caching_ctl);
6932 }
6933 
6934 static noinline int
6935 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6936 {
6937 	struct btrfs_caching_control *caching_ctl;
6938 	int ret = 0;
6939 
6940 	caching_ctl = get_caching_control(cache);
6941 	if (!caching_ctl)
6942 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6943 
6944 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6945 	if (cache->cached == BTRFS_CACHE_ERROR)
6946 		ret = -EIO;
6947 	put_caching_control(caching_ctl);
6948 	return ret;
6949 }
6950 
6951 int __get_raid_index(u64 flags)
6952 {
6953 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6954 		return BTRFS_RAID_RAID10;
6955 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6956 		return BTRFS_RAID_RAID1;
6957 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6958 		return BTRFS_RAID_DUP;
6959 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6960 		return BTRFS_RAID_RAID0;
6961 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6962 		return BTRFS_RAID_RAID5;
6963 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6964 		return BTRFS_RAID_RAID6;
6965 
6966 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6967 }
6968 
6969 int get_block_group_index(struct btrfs_block_group_cache *cache)
6970 {
6971 	return __get_raid_index(cache->flags);
6972 }
6973 
6974 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6975 	[BTRFS_RAID_RAID10]	= "raid10",
6976 	[BTRFS_RAID_RAID1]	= "raid1",
6977 	[BTRFS_RAID_DUP]	= "dup",
6978 	[BTRFS_RAID_RAID0]	= "raid0",
6979 	[BTRFS_RAID_SINGLE]	= "single",
6980 	[BTRFS_RAID_RAID5]	= "raid5",
6981 	[BTRFS_RAID_RAID6]	= "raid6",
6982 };
6983 
6984 static const char *get_raid_name(enum btrfs_raid_types type)
6985 {
6986 	if (type >= BTRFS_NR_RAID_TYPES)
6987 		return NULL;
6988 
6989 	return btrfs_raid_type_names[type];
6990 }
6991 
6992 enum btrfs_loop_type {
6993 	LOOP_CACHING_NOWAIT = 0,
6994 	LOOP_CACHING_WAIT = 1,
6995 	LOOP_ALLOC_CHUNK = 2,
6996 	LOOP_NO_EMPTY_SIZE = 3,
6997 };
6998 
6999 static inline void
7000 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7001 		       int delalloc)
7002 {
7003 	if (delalloc)
7004 		down_read(&cache->data_rwsem);
7005 }
7006 
7007 static inline void
7008 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7009 		       int delalloc)
7010 {
7011 	btrfs_get_block_group(cache);
7012 	if (delalloc)
7013 		down_read(&cache->data_rwsem);
7014 }
7015 
7016 static struct btrfs_block_group_cache *
7017 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7018 		   struct btrfs_free_cluster *cluster,
7019 		   int delalloc)
7020 {
7021 	struct btrfs_block_group_cache *used_bg;
7022 	bool locked = false;
7023 again:
7024 	spin_lock(&cluster->refill_lock);
7025 	if (locked) {
7026 		if (used_bg == cluster->block_group)
7027 			return used_bg;
7028 
7029 		up_read(&used_bg->data_rwsem);
7030 		btrfs_put_block_group(used_bg);
7031 	}
7032 
7033 	used_bg = cluster->block_group;
7034 	if (!used_bg)
7035 		return NULL;
7036 
7037 	if (used_bg == block_group)
7038 		return used_bg;
7039 
7040 	btrfs_get_block_group(used_bg);
7041 
7042 	if (!delalloc)
7043 		return used_bg;
7044 
7045 	if (down_read_trylock(&used_bg->data_rwsem))
7046 		return used_bg;
7047 
7048 	spin_unlock(&cluster->refill_lock);
7049 	down_read(&used_bg->data_rwsem);
7050 	locked = true;
7051 	goto again;
7052 }
7053 
7054 static inline void
7055 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7056 			 int delalloc)
7057 {
7058 	if (delalloc)
7059 		up_read(&cache->data_rwsem);
7060 	btrfs_put_block_group(cache);
7061 }
7062 
7063 /*
7064  * walks the btree of allocated extents and find a hole of a given size.
7065  * The key ins is changed to record the hole:
7066  * ins->objectid == start position
7067  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7068  * ins->offset == the size of the hole.
7069  * Any available blocks before search_start are skipped.
7070  *
7071  * If there is no suitable free space, we will record the max size of
7072  * the free space extent currently.
7073  */
7074 static noinline int find_free_extent(struct btrfs_root *orig_root,
7075 				     u64 num_bytes, u64 empty_size,
7076 				     u64 hint_byte, struct btrfs_key *ins,
7077 				     u64 flags, int delalloc)
7078 {
7079 	int ret = 0;
7080 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7081 	struct btrfs_free_cluster *last_ptr = NULL;
7082 	struct btrfs_block_group_cache *block_group = NULL;
7083 	u64 search_start = 0;
7084 	u64 max_extent_size = 0;
7085 	u64 empty_cluster = 0;
7086 	struct btrfs_space_info *space_info;
7087 	int loop = 0;
7088 	int index = __get_raid_index(flags);
7089 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7090 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7091 	bool failed_cluster_refill = false;
7092 	bool failed_alloc = false;
7093 	bool use_cluster = true;
7094 	bool have_caching_bg = false;
7095 	bool orig_have_caching_bg = false;
7096 	bool full_search = false;
7097 
7098 	WARN_ON(num_bytes < root->sectorsize);
7099 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7100 	ins->objectid = 0;
7101 	ins->offset = 0;
7102 
7103 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7104 
7105 	space_info = __find_space_info(root->fs_info, flags);
7106 	if (!space_info) {
7107 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7108 		return -ENOSPC;
7109 	}
7110 
7111 	/*
7112 	 * If our free space is heavily fragmented we may not be able to make
7113 	 * big contiguous allocations, so instead of doing the expensive search
7114 	 * for free space, simply return ENOSPC with our max_extent_size so we
7115 	 * can go ahead and search for a more manageable chunk.
7116 	 *
7117 	 * If our max_extent_size is large enough for our allocation simply
7118 	 * disable clustering since we will likely not be able to find enough
7119 	 * space to create a cluster and induce latency trying.
7120 	 */
7121 	if (unlikely(space_info->max_extent_size)) {
7122 		spin_lock(&space_info->lock);
7123 		if (space_info->max_extent_size &&
7124 		    num_bytes > space_info->max_extent_size) {
7125 			ins->offset = space_info->max_extent_size;
7126 			spin_unlock(&space_info->lock);
7127 			return -ENOSPC;
7128 		} else if (space_info->max_extent_size) {
7129 			use_cluster = false;
7130 		}
7131 		spin_unlock(&space_info->lock);
7132 	}
7133 
7134 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7135 	if (last_ptr) {
7136 		spin_lock(&last_ptr->lock);
7137 		if (last_ptr->block_group)
7138 			hint_byte = last_ptr->window_start;
7139 		if (last_ptr->fragmented) {
7140 			/*
7141 			 * We still set window_start so we can keep track of the
7142 			 * last place we found an allocation to try and save
7143 			 * some time.
7144 			 */
7145 			hint_byte = last_ptr->window_start;
7146 			use_cluster = false;
7147 		}
7148 		spin_unlock(&last_ptr->lock);
7149 	}
7150 
7151 	search_start = max(search_start, first_logical_byte(root, 0));
7152 	search_start = max(search_start, hint_byte);
7153 	if (search_start == hint_byte) {
7154 		block_group = btrfs_lookup_block_group(root->fs_info,
7155 						       search_start);
7156 		/*
7157 		 * we don't want to use the block group if it doesn't match our
7158 		 * allocation bits, or if its not cached.
7159 		 *
7160 		 * However if we are re-searching with an ideal block group
7161 		 * picked out then we don't care that the block group is cached.
7162 		 */
7163 		if (block_group && block_group_bits(block_group, flags) &&
7164 		    block_group->cached != BTRFS_CACHE_NO) {
7165 			down_read(&space_info->groups_sem);
7166 			if (list_empty(&block_group->list) ||
7167 			    block_group->ro) {
7168 				/*
7169 				 * someone is removing this block group,
7170 				 * we can't jump into the have_block_group
7171 				 * target because our list pointers are not
7172 				 * valid
7173 				 */
7174 				btrfs_put_block_group(block_group);
7175 				up_read(&space_info->groups_sem);
7176 			} else {
7177 				index = get_block_group_index(block_group);
7178 				btrfs_lock_block_group(block_group, delalloc);
7179 				goto have_block_group;
7180 			}
7181 		} else if (block_group) {
7182 			btrfs_put_block_group(block_group);
7183 		}
7184 	}
7185 search:
7186 	have_caching_bg = false;
7187 	if (index == 0 || index == __get_raid_index(flags))
7188 		full_search = true;
7189 	down_read(&space_info->groups_sem);
7190 	list_for_each_entry(block_group, &space_info->block_groups[index],
7191 			    list) {
7192 		u64 offset;
7193 		int cached;
7194 
7195 		btrfs_grab_block_group(block_group, delalloc);
7196 		search_start = block_group->key.objectid;
7197 
7198 		/*
7199 		 * this can happen if we end up cycling through all the
7200 		 * raid types, but we want to make sure we only allocate
7201 		 * for the proper type.
7202 		 */
7203 		if (!block_group_bits(block_group, flags)) {
7204 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7205 				BTRFS_BLOCK_GROUP_RAID1 |
7206 				BTRFS_BLOCK_GROUP_RAID5 |
7207 				BTRFS_BLOCK_GROUP_RAID6 |
7208 				BTRFS_BLOCK_GROUP_RAID10;
7209 
7210 			/*
7211 			 * if they asked for extra copies and this block group
7212 			 * doesn't provide them, bail.  This does allow us to
7213 			 * fill raid0 from raid1.
7214 			 */
7215 			if ((flags & extra) && !(block_group->flags & extra))
7216 				goto loop;
7217 		}
7218 
7219 have_block_group:
7220 		cached = block_group_cache_done(block_group);
7221 		if (unlikely(!cached)) {
7222 			have_caching_bg = true;
7223 			ret = cache_block_group(block_group, 0);
7224 			BUG_ON(ret < 0);
7225 			ret = 0;
7226 		}
7227 
7228 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7229 			goto loop;
7230 		if (unlikely(block_group->ro))
7231 			goto loop;
7232 
7233 		/*
7234 		 * Ok we want to try and use the cluster allocator, so
7235 		 * lets look there
7236 		 */
7237 		if (last_ptr && use_cluster) {
7238 			struct btrfs_block_group_cache *used_block_group;
7239 			unsigned long aligned_cluster;
7240 			/*
7241 			 * the refill lock keeps out other
7242 			 * people trying to start a new cluster
7243 			 */
7244 			used_block_group = btrfs_lock_cluster(block_group,
7245 							      last_ptr,
7246 							      delalloc);
7247 			if (!used_block_group)
7248 				goto refill_cluster;
7249 
7250 			if (used_block_group != block_group &&
7251 			    (used_block_group->ro ||
7252 			     !block_group_bits(used_block_group, flags)))
7253 				goto release_cluster;
7254 
7255 			offset = btrfs_alloc_from_cluster(used_block_group,
7256 						last_ptr,
7257 						num_bytes,
7258 						used_block_group->key.objectid,
7259 						&max_extent_size);
7260 			if (offset) {
7261 				/* we have a block, we're done */
7262 				spin_unlock(&last_ptr->refill_lock);
7263 				trace_btrfs_reserve_extent_cluster(root,
7264 						used_block_group,
7265 						search_start, num_bytes);
7266 				if (used_block_group != block_group) {
7267 					btrfs_release_block_group(block_group,
7268 								  delalloc);
7269 					block_group = used_block_group;
7270 				}
7271 				goto checks;
7272 			}
7273 
7274 			WARN_ON(last_ptr->block_group != used_block_group);
7275 release_cluster:
7276 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7277 			 * set up a new clusters, so lets just skip it
7278 			 * and let the allocator find whatever block
7279 			 * it can find.  If we reach this point, we
7280 			 * will have tried the cluster allocator
7281 			 * plenty of times and not have found
7282 			 * anything, so we are likely way too
7283 			 * fragmented for the clustering stuff to find
7284 			 * anything.
7285 			 *
7286 			 * However, if the cluster is taken from the
7287 			 * current block group, release the cluster
7288 			 * first, so that we stand a better chance of
7289 			 * succeeding in the unclustered
7290 			 * allocation.  */
7291 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7292 			    used_block_group != block_group) {
7293 				spin_unlock(&last_ptr->refill_lock);
7294 				btrfs_release_block_group(used_block_group,
7295 							  delalloc);
7296 				goto unclustered_alloc;
7297 			}
7298 
7299 			/*
7300 			 * this cluster didn't work out, free it and
7301 			 * start over
7302 			 */
7303 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7304 
7305 			if (used_block_group != block_group)
7306 				btrfs_release_block_group(used_block_group,
7307 							  delalloc);
7308 refill_cluster:
7309 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7310 				spin_unlock(&last_ptr->refill_lock);
7311 				goto unclustered_alloc;
7312 			}
7313 
7314 			aligned_cluster = max_t(unsigned long,
7315 						empty_cluster + empty_size,
7316 					      block_group->full_stripe_len);
7317 
7318 			/* allocate a cluster in this block group */
7319 			ret = btrfs_find_space_cluster(root, block_group,
7320 						       last_ptr, search_start,
7321 						       num_bytes,
7322 						       aligned_cluster);
7323 			if (ret == 0) {
7324 				/*
7325 				 * now pull our allocation out of this
7326 				 * cluster
7327 				 */
7328 				offset = btrfs_alloc_from_cluster(block_group,
7329 							last_ptr,
7330 							num_bytes,
7331 							search_start,
7332 							&max_extent_size);
7333 				if (offset) {
7334 					/* we found one, proceed */
7335 					spin_unlock(&last_ptr->refill_lock);
7336 					trace_btrfs_reserve_extent_cluster(root,
7337 						block_group, search_start,
7338 						num_bytes);
7339 					goto checks;
7340 				}
7341 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7342 				   && !failed_cluster_refill) {
7343 				spin_unlock(&last_ptr->refill_lock);
7344 
7345 				failed_cluster_refill = true;
7346 				wait_block_group_cache_progress(block_group,
7347 				       num_bytes + empty_cluster + empty_size);
7348 				goto have_block_group;
7349 			}
7350 
7351 			/*
7352 			 * at this point we either didn't find a cluster
7353 			 * or we weren't able to allocate a block from our
7354 			 * cluster.  Free the cluster we've been trying
7355 			 * to use, and go to the next block group
7356 			 */
7357 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7358 			spin_unlock(&last_ptr->refill_lock);
7359 			goto loop;
7360 		}
7361 
7362 unclustered_alloc:
7363 		/*
7364 		 * We are doing an unclustered alloc, set the fragmented flag so
7365 		 * we don't bother trying to setup a cluster again until we get
7366 		 * more space.
7367 		 */
7368 		if (unlikely(last_ptr)) {
7369 			spin_lock(&last_ptr->lock);
7370 			last_ptr->fragmented = 1;
7371 			spin_unlock(&last_ptr->lock);
7372 		}
7373 		spin_lock(&block_group->free_space_ctl->tree_lock);
7374 		if (cached &&
7375 		    block_group->free_space_ctl->free_space <
7376 		    num_bytes + empty_cluster + empty_size) {
7377 			if (block_group->free_space_ctl->free_space >
7378 			    max_extent_size)
7379 				max_extent_size =
7380 					block_group->free_space_ctl->free_space;
7381 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7382 			goto loop;
7383 		}
7384 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7385 
7386 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7387 						    num_bytes, empty_size,
7388 						    &max_extent_size);
7389 		/*
7390 		 * If we didn't find a chunk, and we haven't failed on this
7391 		 * block group before, and this block group is in the middle of
7392 		 * caching and we are ok with waiting, then go ahead and wait
7393 		 * for progress to be made, and set failed_alloc to true.
7394 		 *
7395 		 * If failed_alloc is true then we've already waited on this
7396 		 * block group once and should move on to the next block group.
7397 		 */
7398 		if (!offset && !failed_alloc && !cached &&
7399 		    loop > LOOP_CACHING_NOWAIT) {
7400 			wait_block_group_cache_progress(block_group,
7401 						num_bytes + empty_size);
7402 			failed_alloc = true;
7403 			goto have_block_group;
7404 		} else if (!offset) {
7405 			goto loop;
7406 		}
7407 checks:
7408 		search_start = ALIGN(offset, root->stripesize);
7409 
7410 		/* move on to the next group */
7411 		if (search_start + num_bytes >
7412 		    block_group->key.objectid + block_group->key.offset) {
7413 			btrfs_add_free_space(block_group, offset, num_bytes);
7414 			goto loop;
7415 		}
7416 
7417 		if (offset < search_start)
7418 			btrfs_add_free_space(block_group, offset,
7419 					     search_start - offset);
7420 		BUG_ON(offset > search_start);
7421 
7422 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7423 						  alloc_type, delalloc);
7424 		if (ret == -EAGAIN) {
7425 			btrfs_add_free_space(block_group, offset, num_bytes);
7426 			goto loop;
7427 		}
7428 
7429 		/* we are all good, lets return */
7430 		ins->objectid = search_start;
7431 		ins->offset = num_bytes;
7432 
7433 		trace_btrfs_reserve_extent(orig_root, block_group,
7434 					   search_start, num_bytes);
7435 		btrfs_release_block_group(block_group, delalloc);
7436 		break;
7437 loop:
7438 		failed_cluster_refill = false;
7439 		failed_alloc = false;
7440 		BUG_ON(index != get_block_group_index(block_group));
7441 		btrfs_release_block_group(block_group, delalloc);
7442 	}
7443 	up_read(&space_info->groups_sem);
7444 
7445 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7446 		&& !orig_have_caching_bg)
7447 		orig_have_caching_bg = true;
7448 
7449 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7450 		goto search;
7451 
7452 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7453 		goto search;
7454 
7455 	/*
7456 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7457 	 *			caching kthreads as we move along
7458 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7459 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7460 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7461 	 *			again
7462 	 */
7463 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7464 		index = 0;
7465 		if (loop == LOOP_CACHING_NOWAIT) {
7466 			/*
7467 			 * We want to skip the LOOP_CACHING_WAIT step if we
7468 			 * don't have any unached bgs and we've alrelady done a
7469 			 * full search through.
7470 			 */
7471 			if (orig_have_caching_bg || !full_search)
7472 				loop = LOOP_CACHING_WAIT;
7473 			else
7474 				loop = LOOP_ALLOC_CHUNK;
7475 		} else {
7476 			loop++;
7477 		}
7478 
7479 		if (loop == LOOP_ALLOC_CHUNK) {
7480 			struct btrfs_trans_handle *trans;
7481 			int exist = 0;
7482 
7483 			trans = current->journal_info;
7484 			if (trans)
7485 				exist = 1;
7486 			else
7487 				trans = btrfs_join_transaction(root);
7488 
7489 			if (IS_ERR(trans)) {
7490 				ret = PTR_ERR(trans);
7491 				goto out;
7492 			}
7493 
7494 			ret = do_chunk_alloc(trans, root, flags,
7495 					     CHUNK_ALLOC_FORCE);
7496 
7497 			/*
7498 			 * If we can't allocate a new chunk we've already looped
7499 			 * through at least once, move on to the NO_EMPTY_SIZE
7500 			 * case.
7501 			 */
7502 			if (ret == -ENOSPC)
7503 				loop = LOOP_NO_EMPTY_SIZE;
7504 
7505 			/*
7506 			 * Do not bail out on ENOSPC since we
7507 			 * can do more things.
7508 			 */
7509 			if (ret < 0 && ret != -ENOSPC)
7510 				btrfs_abort_transaction(trans,
7511 							root, ret);
7512 			else
7513 				ret = 0;
7514 			if (!exist)
7515 				btrfs_end_transaction(trans, root);
7516 			if (ret)
7517 				goto out;
7518 		}
7519 
7520 		if (loop == LOOP_NO_EMPTY_SIZE) {
7521 			/*
7522 			 * Don't loop again if we already have no empty_size and
7523 			 * no empty_cluster.
7524 			 */
7525 			if (empty_size == 0 &&
7526 			    empty_cluster == 0) {
7527 				ret = -ENOSPC;
7528 				goto out;
7529 			}
7530 			empty_size = 0;
7531 			empty_cluster = 0;
7532 		}
7533 
7534 		goto search;
7535 	} else if (!ins->objectid) {
7536 		ret = -ENOSPC;
7537 	} else if (ins->objectid) {
7538 		if (!use_cluster && last_ptr) {
7539 			spin_lock(&last_ptr->lock);
7540 			last_ptr->window_start = ins->objectid;
7541 			spin_unlock(&last_ptr->lock);
7542 		}
7543 		ret = 0;
7544 	}
7545 out:
7546 	if (ret == -ENOSPC) {
7547 		spin_lock(&space_info->lock);
7548 		space_info->max_extent_size = max_extent_size;
7549 		spin_unlock(&space_info->lock);
7550 		ins->offset = max_extent_size;
7551 	}
7552 	return ret;
7553 }
7554 
7555 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7556 			    int dump_block_groups)
7557 {
7558 	struct btrfs_block_group_cache *cache;
7559 	int index = 0;
7560 
7561 	spin_lock(&info->lock);
7562 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7563 	       info->flags,
7564 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7565 	       info->bytes_reserved - info->bytes_readonly,
7566 	       (info->full) ? "" : "not ");
7567 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7568 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7569 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7570 	       info->bytes_reserved, info->bytes_may_use,
7571 	       info->bytes_readonly);
7572 	spin_unlock(&info->lock);
7573 
7574 	if (!dump_block_groups)
7575 		return;
7576 
7577 	down_read(&info->groups_sem);
7578 again:
7579 	list_for_each_entry(cache, &info->block_groups[index], list) {
7580 		spin_lock(&cache->lock);
7581 		printk(KERN_INFO "BTRFS: "
7582 			   "block group %llu has %llu bytes, "
7583 			   "%llu used %llu pinned %llu reserved %s\n",
7584 		       cache->key.objectid, cache->key.offset,
7585 		       btrfs_block_group_used(&cache->item), cache->pinned,
7586 		       cache->reserved, cache->ro ? "[readonly]" : "");
7587 		btrfs_dump_free_space(cache, bytes);
7588 		spin_unlock(&cache->lock);
7589 	}
7590 	if (++index < BTRFS_NR_RAID_TYPES)
7591 		goto again;
7592 	up_read(&info->groups_sem);
7593 }
7594 
7595 int btrfs_reserve_extent(struct btrfs_root *root,
7596 			 u64 num_bytes, u64 min_alloc_size,
7597 			 u64 empty_size, u64 hint_byte,
7598 			 struct btrfs_key *ins, int is_data, int delalloc)
7599 {
7600 	bool final_tried = num_bytes == min_alloc_size;
7601 	u64 flags;
7602 	int ret;
7603 
7604 	flags = btrfs_get_alloc_profile(root, is_data);
7605 again:
7606 	WARN_ON(num_bytes < root->sectorsize);
7607 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7608 			       flags, delalloc);
7609 
7610 	if (ret == -ENOSPC) {
7611 		if (!final_tried && ins->offset) {
7612 			num_bytes = min(num_bytes >> 1, ins->offset);
7613 			num_bytes = round_down(num_bytes, root->sectorsize);
7614 			num_bytes = max(num_bytes, min_alloc_size);
7615 			if (num_bytes == min_alloc_size)
7616 				final_tried = true;
7617 			goto again;
7618 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7619 			struct btrfs_space_info *sinfo;
7620 
7621 			sinfo = __find_space_info(root->fs_info, flags);
7622 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7623 				flags, num_bytes);
7624 			if (sinfo)
7625 				dump_space_info(sinfo, num_bytes, 1);
7626 		}
7627 	}
7628 
7629 	return ret;
7630 }
7631 
7632 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7633 					u64 start, u64 len,
7634 					int pin, int delalloc)
7635 {
7636 	struct btrfs_block_group_cache *cache;
7637 	int ret = 0;
7638 
7639 	cache = btrfs_lookup_block_group(root->fs_info, start);
7640 	if (!cache) {
7641 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7642 			start);
7643 		return -ENOSPC;
7644 	}
7645 
7646 	if (pin)
7647 		pin_down_extent(root, cache, start, len, 1);
7648 	else {
7649 		if (btrfs_test_opt(root, DISCARD))
7650 			ret = btrfs_discard_extent(root, start, len, NULL);
7651 		btrfs_add_free_space(cache, start, len);
7652 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7653 	}
7654 
7655 	btrfs_put_block_group(cache);
7656 
7657 	trace_btrfs_reserved_extent_free(root, start, len);
7658 
7659 	return ret;
7660 }
7661 
7662 int btrfs_free_reserved_extent(struct btrfs_root *root,
7663 			       u64 start, u64 len, int delalloc)
7664 {
7665 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7666 }
7667 
7668 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7669 				       u64 start, u64 len)
7670 {
7671 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7672 }
7673 
7674 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7675 				      struct btrfs_root *root,
7676 				      u64 parent, u64 root_objectid,
7677 				      u64 flags, u64 owner, u64 offset,
7678 				      struct btrfs_key *ins, int ref_mod)
7679 {
7680 	int ret;
7681 	struct btrfs_fs_info *fs_info = root->fs_info;
7682 	struct btrfs_extent_item *extent_item;
7683 	struct btrfs_extent_inline_ref *iref;
7684 	struct btrfs_path *path;
7685 	struct extent_buffer *leaf;
7686 	int type;
7687 	u32 size;
7688 
7689 	if (parent > 0)
7690 		type = BTRFS_SHARED_DATA_REF_KEY;
7691 	else
7692 		type = BTRFS_EXTENT_DATA_REF_KEY;
7693 
7694 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7695 
7696 	path = btrfs_alloc_path();
7697 	if (!path)
7698 		return -ENOMEM;
7699 
7700 	path->leave_spinning = 1;
7701 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7702 				      ins, size);
7703 	if (ret) {
7704 		btrfs_free_path(path);
7705 		return ret;
7706 	}
7707 
7708 	leaf = path->nodes[0];
7709 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7710 				     struct btrfs_extent_item);
7711 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7712 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7713 	btrfs_set_extent_flags(leaf, extent_item,
7714 			       flags | BTRFS_EXTENT_FLAG_DATA);
7715 
7716 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7717 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7718 	if (parent > 0) {
7719 		struct btrfs_shared_data_ref *ref;
7720 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7722 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7723 	} else {
7724 		struct btrfs_extent_data_ref *ref;
7725 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7726 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7727 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7728 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7729 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7730 	}
7731 
7732 	btrfs_mark_buffer_dirty(path->nodes[0]);
7733 	btrfs_free_path(path);
7734 
7735 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7736 					  ins->offset);
7737 	if (ret)
7738 		return ret;
7739 
7740 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7741 	if (ret) { /* -ENOENT, logic error */
7742 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7743 			ins->objectid, ins->offset);
7744 		BUG();
7745 	}
7746 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7747 	return ret;
7748 }
7749 
7750 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7751 				     struct btrfs_root *root,
7752 				     u64 parent, u64 root_objectid,
7753 				     u64 flags, struct btrfs_disk_key *key,
7754 				     int level, struct btrfs_key *ins)
7755 {
7756 	int ret;
7757 	struct btrfs_fs_info *fs_info = root->fs_info;
7758 	struct btrfs_extent_item *extent_item;
7759 	struct btrfs_tree_block_info *block_info;
7760 	struct btrfs_extent_inline_ref *iref;
7761 	struct btrfs_path *path;
7762 	struct extent_buffer *leaf;
7763 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7764 	u64 num_bytes = ins->offset;
7765 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7766 						 SKINNY_METADATA);
7767 
7768 	if (!skinny_metadata)
7769 		size += sizeof(*block_info);
7770 
7771 	path = btrfs_alloc_path();
7772 	if (!path) {
7773 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7774 						   root->nodesize);
7775 		return -ENOMEM;
7776 	}
7777 
7778 	path->leave_spinning = 1;
7779 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7780 				      ins, size);
7781 	if (ret) {
7782 		btrfs_free_path(path);
7783 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7784 						   root->nodesize);
7785 		return ret;
7786 	}
7787 
7788 	leaf = path->nodes[0];
7789 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7790 				     struct btrfs_extent_item);
7791 	btrfs_set_extent_refs(leaf, extent_item, 1);
7792 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7793 	btrfs_set_extent_flags(leaf, extent_item,
7794 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7795 
7796 	if (skinny_metadata) {
7797 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7798 		num_bytes = root->nodesize;
7799 	} else {
7800 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7801 		btrfs_set_tree_block_key(leaf, block_info, key);
7802 		btrfs_set_tree_block_level(leaf, block_info, level);
7803 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7804 	}
7805 
7806 	if (parent > 0) {
7807 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7808 		btrfs_set_extent_inline_ref_type(leaf, iref,
7809 						 BTRFS_SHARED_BLOCK_REF_KEY);
7810 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7811 	} else {
7812 		btrfs_set_extent_inline_ref_type(leaf, iref,
7813 						 BTRFS_TREE_BLOCK_REF_KEY);
7814 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7815 	}
7816 
7817 	btrfs_mark_buffer_dirty(leaf);
7818 	btrfs_free_path(path);
7819 
7820 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7821 					  num_bytes);
7822 	if (ret)
7823 		return ret;
7824 
7825 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7826 				 1);
7827 	if (ret) { /* -ENOENT, logic error */
7828 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7829 			ins->objectid, ins->offset);
7830 		BUG();
7831 	}
7832 
7833 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7834 	return ret;
7835 }
7836 
7837 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7838 				     struct btrfs_root *root,
7839 				     u64 root_objectid, u64 owner,
7840 				     u64 offset, u64 ram_bytes,
7841 				     struct btrfs_key *ins)
7842 {
7843 	int ret;
7844 
7845 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7846 
7847 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7848 					 ins->offset, 0,
7849 					 root_objectid, owner, offset,
7850 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7851 					 NULL);
7852 	return ret;
7853 }
7854 
7855 /*
7856  * this is used by the tree logging recovery code.  It records that
7857  * an extent has been allocated and makes sure to clear the free
7858  * space cache bits as well
7859  */
7860 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7861 				   struct btrfs_root *root,
7862 				   u64 root_objectid, u64 owner, u64 offset,
7863 				   struct btrfs_key *ins)
7864 {
7865 	int ret;
7866 	struct btrfs_block_group_cache *block_group;
7867 
7868 	/*
7869 	 * Mixed block groups will exclude before processing the log so we only
7870 	 * need to do the exlude dance if this fs isn't mixed.
7871 	 */
7872 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7873 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7874 		if (ret)
7875 			return ret;
7876 	}
7877 
7878 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7879 	if (!block_group)
7880 		return -EINVAL;
7881 
7882 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7883 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7884 	BUG_ON(ret); /* logic error */
7885 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7886 					 0, owner, offset, ins, 1);
7887 	btrfs_put_block_group(block_group);
7888 	return ret;
7889 }
7890 
7891 static struct extent_buffer *
7892 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7893 		      u64 bytenr, int level)
7894 {
7895 	struct extent_buffer *buf;
7896 
7897 	buf = btrfs_find_create_tree_block(root, bytenr);
7898 	if (!buf)
7899 		return ERR_PTR(-ENOMEM);
7900 	btrfs_set_header_generation(buf, trans->transid);
7901 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7902 	btrfs_tree_lock(buf);
7903 	clean_tree_block(trans, root->fs_info, buf);
7904 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7905 
7906 	btrfs_set_lock_blocking(buf);
7907 	set_extent_buffer_uptodate(buf);
7908 
7909 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7910 		buf->log_index = root->log_transid % 2;
7911 		/*
7912 		 * we allow two log transactions at a time, use different
7913 		 * EXENT bit to differentiate dirty pages.
7914 		 */
7915 		if (buf->log_index == 0)
7916 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7917 					buf->start + buf->len - 1, GFP_NOFS);
7918 		else
7919 			set_extent_new(&root->dirty_log_pages, buf->start,
7920 					buf->start + buf->len - 1, GFP_NOFS);
7921 	} else {
7922 		buf->log_index = -1;
7923 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7924 			 buf->start + buf->len - 1, GFP_NOFS);
7925 	}
7926 	trans->blocks_used++;
7927 	/* this returns a buffer locked for blocking */
7928 	return buf;
7929 }
7930 
7931 static struct btrfs_block_rsv *
7932 use_block_rsv(struct btrfs_trans_handle *trans,
7933 	      struct btrfs_root *root, u32 blocksize)
7934 {
7935 	struct btrfs_block_rsv *block_rsv;
7936 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7937 	int ret;
7938 	bool global_updated = false;
7939 
7940 	block_rsv = get_block_rsv(trans, root);
7941 
7942 	if (unlikely(block_rsv->size == 0))
7943 		goto try_reserve;
7944 again:
7945 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7946 	if (!ret)
7947 		return block_rsv;
7948 
7949 	if (block_rsv->failfast)
7950 		return ERR_PTR(ret);
7951 
7952 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7953 		global_updated = true;
7954 		update_global_block_rsv(root->fs_info);
7955 		goto again;
7956 	}
7957 
7958 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7959 		static DEFINE_RATELIMIT_STATE(_rs,
7960 				DEFAULT_RATELIMIT_INTERVAL * 10,
7961 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7962 		if (__ratelimit(&_rs))
7963 			WARN(1, KERN_DEBUG
7964 				"BTRFS: block rsv returned %d\n", ret);
7965 	}
7966 try_reserve:
7967 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7968 				     BTRFS_RESERVE_NO_FLUSH);
7969 	if (!ret)
7970 		return block_rsv;
7971 	/*
7972 	 * If we couldn't reserve metadata bytes try and use some from
7973 	 * the global reserve if its space type is the same as the global
7974 	 * reservation.
7975 	 */
7976 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7977 	    block_rsv->space_info == global_rsv->space_info) {
7978 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7979 		if (!ret)
7980 			return global_rsv;
7981 	}
7982 	return ERR_PTR(ret);
7983 }
7984 
7985 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7986 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7987 {
7988 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7989 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7990 }
7991 
7992 /*
7993  * finds a free extent and does all the dirty work required for allocation
7994  * returns the tree buffer or an ERR_PTR on error.
7995  */
7996 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7997 					struct btrfs_root *root,
7998 					u64 parent, u64 root_objectid,
7999 					struct btrfs_disk_key *key, int level,
8000 					u64 hint, u64 empty_size)
8001 {
8002 	struct btrfs_key ins;
8003 	struct btrfs_block_rsv *block_rsv;
8004 	struct extent_buffer *buf;
8005 	struct btrfs_delayed_extent_op *extent_op;
8006 	u64 flags = 0;
8007 	int ret;
8008 	u32 blocksize = root->nodesize;
8009 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8010 						 SKINNY_METADATA);
8011 
8012 	if (btrfs_test_is_dummy_root(root)) {
8013 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8014 					    level);
8015 		if (!IS_ERR(buf))
8016 			root->alloc_bytenr += blocksize;
8017 		return buf;
8018 	}
8019 
8020 	block_rsv = use_block_rsv(trans, root, blocksize);
8021 	if (IS_ERR(block_rsv))
8022 		return ERR_CAST(block_rsv);
8023 
8024 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
8025 				   empty_size, hint, &ins, 0, 0);
8026 	if (ret)
8027 		goto out_unuse;
8028 
8029 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8030 	if (IS_ERR(buf)) {
8031 		ret = PTR_ERR(buf);
8032 		goto out_free_reserved;
8033 	}
8034 
8035 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8036 		if (parent == 0)
8037 			parent = ins.objectid;
8038 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8039 	} else
8040 		BUG_ON(parent > 0);
8041 
8042 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8043 		extent_op = btrfs_alloc_delayed_extent_op();
8044 		if (!extent_op) {
8045 			ret = -ENOMEM;
8046 			goto out_free_buf;
8047 		}
8048 		if (key)
8049 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8050 		else
8051 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8052 		extent_op->flags_to_set = flags;
8053 		extent_op->update_key = skinny_metadata ? false : true;
8054 		extent_op->update_flags = true;
8055 		extent_op->is_data = false;
8056 		extent_op->level = level;
8057 
8058 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8059 						 ins.objectid, ins.offset,
8060 						 parent, root_objectid, level,
8061 						 BTRFS_ADD_DELAYED_EXTENT,
8062 						 extent_op);
8063 		if (ret)
8064 			goto out_free_delayed;
8065 	}
8066 	return buf;
8067 
8068 out_free_delayed:
8069 	btrfs_free_delayed_extent_op(extent_op);
8070 out_free_buf:
8071 	free_extent_buffer(buf);
8072 out_free_reserved:
8073 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8074 out_unuse:
8075 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8076 	return ERR_PTR(ret);
8077 }
8078 
8079 struct walk_control {
8080 	u64 refs[BTRFS_MAX_LEVEL];
8081 	u64 flags[BTRFS_MAX_LEVEL];
8082 	struct btrfs_key update_progress;
8083 	int stage;
8084 	int level;
8085 	int shared_level;
8086 	int update_ref;
8087 	int keep_locks;
8088 	int reada_slot;
8089 	int reada_count;
8090 	int for_reloc;
8091 };
8092 
8093 #define DROP_REFERENCE	1
8094 #define UPDATE_BACKREF	2
8095 
8096 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8097 				     struct btrfs_root *root,
8098 				     struct walk_control *wc,
8099 				     struct btrfs_path *path)
8100 {
8101 	u64 bytenr;
8102 	u64 generation;
8103 	u64 refs;
8104 	u64 flags;
8105 	u32 nritems;
8106 	u32 blocksize;
8107 	struct btrfs_key key;
8108 	struct extent_buffer *eb;
8109 	int ret;
8110 	int slot;
8111 	int nread = 0;
8112 
8113 	if (path->slots[wc->level] < wc->reada_slot) {
8114 		wc->reada_count = wc->reada_count * 2 / 3;
8115 		wc->reada_count = max(wc->reada_count, 2);
8116 	} else {
8117 		wc->reada_count = wc->reada_count * 3 / 2;
8118 		wc->reada_count = min_t(int, wc->reada_count,
8119 					BTRFS_NODEPTRS_PER_BLOCK(root));
8120 	}
8121 
8122 	eb = path->nodes[wc->level];
8123 	nritems = btrfs_header_nritems(eb);
8124 	blocksize = root->nodesize;
8125 
8126 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8127 		if (nread >= wc->reada_count)
8128 			break;
8129 
8130 		cond_resched();
8131 		bytenr = btrfs_node_blockptr(eb, slot);
8132 		generation = btrfs_node_ptr_generation(eb, slot);
8133 
8134 		if (slot == path->slots[wc->level])
8135 			goto reada;
8136 
8137 		if (wc->stage == UPDATE_BACKREF &&
8138 		    generation <= root->root_key.offset)
8139 			continue;
8140 
8141 		/* We don't lock the tree block, it's OK to be racy here */
8142 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8143 					       wc->level - 1, 1, &refs,
8144 					       &flags);
8145 		/* We don't care about errors in readahead. */
8146 		if (ret < 0)
8147 			continue;
8148 		BUG_ON(refs == 0);
8149 
8150 		if (wc->stage == DROP_REFERENCE) {
8151 			if (refs == 1)
8152 				goto reada;
8153 
8154 			if (wc->level == 1 &&
8155 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8156 				continue;
8157 			if (!wc->update_ref ||
8158 			    generation <= root->root_key.offset)
8159 				continue;
8160 			btrfs_node_key_to_cpu(eb, &key, slot);
8161 			ret = btrfs_comp_cpu_keys(&key,
8162 						  &wc->update_progress);
8163 			if (ret < 0)
8164 				continue;
8165 		} else {
8166 			if (wc->level == 1 &&
8167 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8168 				continue;
8169 		}
8170 reada:
8171 		readahead_tree_block(root, bytenr);
8172 		nread++;
8173 	}
8174 	wc->reada_slot = slot;
8175 }
8176 
8177 /*
8178  * These may not be seen by the usual inc/dec ref code so we have to
8179  * add them here.
8180  */
8181 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8182 				     struct btrfs_root *root, u64 bytenr,
8183 				     u64 num_bytes)
8184 {
8185 	struct btrfs_qgroup_extent_record *qrecord;
8186 	struct btrfs_delayed_ref_root *delayed_refs;
8187 
8188 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8189 	if (!qrecord)
8190 		return -ENOMEM;
8191 
8192 	qrecord->bytenr = bytenr;
8193 	qrecord->num_bytes = num_bytes;
8194 	qrecord->old_roots = NULL;
8195 
8196 	delayed_refs = &trans->transaction->delayed_refs;
8197 	spin_lock(&delayed_refs->lock);
8198 	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8199 		kfree(qrecord);
8200 	spin_unlock(&delayed_refs->lock);
8201 
8202 	return 0;
8203 }
8204 
8205 static int account_leaf_items(struct btrfs_trans_handle *trans,
8206 			      struct btrfs_root *root,
8207 			      struct extent_buffer *eb)
8208 {
8209 	int nr = btrfs_header_nritems(eb);
8210 	int i, extent_type, ret;
8211 	struct btrfs_key key;
8212 	struct btrfs_file_extent_item *fi;
8213 	u64 bytenr, num_bytes;
8214 
8215 	/* We can be called directly from walk_up_proc() */
8216 	if (!root->fs_info->quota_enabled)
8217 		return 0;
8218 
8219 	for (i = 0; i < nr; i++) {
8220 		btrfs_item_key_to_cpu(eb, &key, i);
8221 
8222 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8223 			continue;
8224 
8225 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8226 		/* filter out non qgroup-accountable extents  */
8227 		extent_type = btrfs_file_extent_type(eb, fi);
8228 
8229 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8230 			continue;
8231 
8232 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8233 		if (!bytenr)
8234 			continue;
8235 
8236 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8237 
8238 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8239 		if (ret)
8240 			return ret;
8241 	}
8242 	return 0;
8243 }
8244 
8245 /*
8246  * Walk up the tree from the bottom, freeing leaves and any interior
8247  * nodes which have had all slots visited. If a node (leaf or
8248  * interior) is freed, the node above it will have it's slot
8249  * incremented. The root node will never be freed.
8250  *
8251  * At the end of this function, we should have a path which has all
8252  * slots incremented to the next position for a search. If we need to
8253  * read a new node it will be NULL and the node above it will have the
8254  * correct slot selected for a later read.
8255  *
8256  * If we increment the root nodes slot counter past the number of
8257  * elements, 1 is returned to signal completion of the search.
8258  */
8259 static int adjust_slots_upwards(struct btrfs_root *root,
8260 				struct btrfs_path *path, int root_level)
8261 {
8262 	int level = 0;
8263 	int nr, slot;
8264 	struct extent_buffer *eb;
8265 
8266 	if (root_level == 0)
8267 		return 1;
8268 
8269 	while (level <= root_level) {
8270 		eb = path->nodes[level];
8271 		nr = btrfs_header_nritems(eb);
8272 		path->slots[level]++;
8273 		slot = path->slots[level];
8274 		if (slot >= nr || level == 0) {
8275 			/*
8276 			 * Don't free the root -  we will detect this
8277 			 * condition after our loop and return a
8278 			 * positive value for caller to stop walking the tree.
8279 			 */
8280 			if (level != root_level) {
8281 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8282 				path->locks[level] = 0;
8283 
8284 				free_extent_buffer(eb);
8285 				path->nodes[level] = NULL;
8286 				path->slots[level] = 0;
8287 			}
8288 		} else {
8289 			/*
8290 			 * We have a valid slot to walk back down
8291 			 * from. Stop here so caller can process these
8292 			 * new nodes.
8293 			 */
8294 			break;
8295 		}
8296 
8297 		level++;
8298 	}
8299 
8300 	eb = path->nodes[root_level];
8301 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8302 		return 1;
8303 
8304 	return 0;
8305 }
8306 
8307 /*
8308  * root_eb is the subtree root and is locked before this function is called.
8309  */
8310 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8311 				  struct btrfs_root *root,
8312 				  struct extent_buffer *root_eb,
8313 				  u64 root_gen,
8314 				  int root_level)
8315 {
8316 	int ret = 0;
8317 	int level;
8318 	struct extent_buffer *eb = root_eb;
8319 	struct btrfs_path *path = NULL;
8320 
8321 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8322 	BUG_ON(root_eb == NULL);
8323 
8324 	if (!root->fs_info->quota_enabled)
8325 		return 0;
8326 
8327 	if (!extent_buffer_uptodate(root_eb)) {
8328 		ret = btrfs_read_buffer(root_eb, root_gen);
8329 		if (ret)
8330 			goto out;
8331 	}
8332 
8333 	if (root_level == 0) {
8334 		ret = account_leaf_items(trans, root, root_eb);
8335 		goto out;
8336 	}
8337 
8338 	path = btrfs_alloc_path();
8339 	if (!path)
8340 		return -ENOMEM;
8341 
8342 	/*
8343 	 * Walk down the tree.  Missing extent blocks are filled in as
8344 	 * we go. Metadata is accounted every time we read a new
8345 	 * extent block.
8346 	 *
8347 	 * When we reach a leaf, we account for file extent items in it,
8348 	 * walk back up the tree (adjusting slot pointers as we go)
8349 	 * and restart the search process.
8350 	 */
8351 	extent_buffer_get(root_eb); /* For path */
8352 	path->nodes[root_level] = root_eb;
8353 	path->slots[root_level] = 0;
8354 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8355 walk_down:
8356 	level = root_level;
8357 	while (level >= 0) {
8358 		if (path->nodes[level] == NULL) {
8359 			int parent_slot;
8360 			u64 child_gen;
8361 			u64 child_bytenr;
8362 
8363 			/* We need to get child blockptr/gen from
8364 			 * parent before we can read it. */
8365 			eb = path->nodes[level + 1];
8366 			parent_slot = path->slots[level + 1];
8367 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8368 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8369 
8370 			eb = read_tree_block(root, child_bytenr, child_gen);
8371 			if (IS_ERR(eb)) {
8372 				ret = PTR_ERR(eb);
8373 				goto out;
8374 			} else if (!extent_buffer_uptodate(eb)) {
8375 				free_extent_buffer(eb);
8376 				ret = -EIO;
8377 				goto out;
8378 			}
8379 
8380 			path->nodes[level] = eb;
8381 			path->slots[level] = 0;
8382 
8383 			btrfs_tree_read_lock(eb);
8384 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8385 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8386 
8387 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8388 							root->nodesize);
8389 			if (ret)
8390 				goto out;
8391 		}
8392 
8393 		if (level == 0) {
8394 			ret = account_leaf_items(trans, root, path->nodes[level]);
8395 			if (ret)
8396 				goto out;
8397 
8398 			/* Nonzero return here means we completed our search */
8399 			ret = adjust_slots_upwards(root, path, root_level);
8400 			if (ret)
8401 				break;
8402 
8403 			/* Restart search with new slots */
8404 			goto walk_down;
8405 		}
8406 
8407 		level--;
8408 	}
8409 
8410 	ret = 0;
8411 out:
8412 	btrfs_free_path(path);
8413 
8414 	return ret;
8415 }
8416 
8417 /*
8418  * helper to process tree block while walking down the tree.
8419  *
8420  * when wc->stage == UPDATE_BACKREF, this function updates
8421  * back refs for pointers in the block.
8422  *
8423  * NOTE: return value 1 means we should stop walking down.
8424  */
8425 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8426 				   struct btrfs_root *root,
8427 				   struct btrfs_path *path,
8428 				   struct walk_control *wc, int lookup_info)
8429 {
8430 	int level = wc->level;
8431 	struct extent_buffer *eb = path->nodes[level];
8432 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8433 	int ret;
8434 
8435 	if (wc->stage == UPDATE_BACKREF &&
8436 	    btrfs_header_owner(eb) != root->root_key.objectid)
8437 		return 1;
8438 
8439 	/*
8440 	 * when reference count of tree block is 1, it won't increase
8441 	 * again. once full backref flag is set, we never clear it.
8442 	 */
8443 	if (lookup_info &&
8444 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8445 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8446 		BUG_ON(!path->locks[level]);
8447 		ret = btrfs_lookup_extent_info(trans, root,
8448 					       eb->start, level, 1,
8449 					       &wc->refs[level],
8450 					       &wc->flags[level]);
8451 		BUG_ON(ret == -ENOMEM);
8452 		if (ret)
8453 			return ret;
8454 		BUG_ON(wc->refs[level] == 0);
8455 	}
8456 
8457 	if (wc->stage == DROP_REFERENCE) {
8458 		if (wc->refs[level] > 1)
8459 			return 1;
8460 
8461 		if (path->locks[level] && !wc->keep_locks) {
8462 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8463 			path->locks[level] = 0;
8464 		}
8465 		return 0;
8466 	}
8467 
8468 	/* wc->stage == UPDATE_BACKREF */
8469 	if (!(wc->flags[level] & flag)) {
8470 		BUG_ON(!path->locks[level]);
8471 		ret = btrfs_inc_ref(trans, root, eb, 1);
8472 		BUG_ON(ret); /* -ENOMEM */
8473 		ret = btrfs_dec_ref(trans, root, eb, 0);
8474 		BUG_ON(ret); /* -ENOMEM */
8475 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8476 						  eb->len, flag,
8477 						  btrfs_header_level(eb), 0);
8478 		BUG_ON(ret); /* -ENOMEM */
8479 		wc->flags[level] |= flag;
8480 	}
8481 
8482 	/*
8483 	 * the block is shared by multiple trees, so it's not good to
8484 	 * keep the tree lock
8485 	 */
8486 	if (path->locks[level] && level > 0) {
8487 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8488 		path->locks[level] = 0;
8489 	}
8490 	return 0;
8491 }
8492 
8493 /*
8494  * helper to process tree block pointer.
8495  *
8496  * when wc->stage == DROP_REFERENCE, this function checks
8497  * reference count of the block pointed to. if the block
8498  * is shared and we need update back refs for the subtree
8499  * rooted at the block, this function changes wc->stage to
8500  * UPDATE_BACKREF. if the block is shared and there is no
8501  * need to update back, this function drops the reference
8502  * to the block.
8503  *
8504  * NOTE: return value 1 means we should stop walking down.
8505  */
8506 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8507 				 struct btrfs_root *root,
8508 				 struct btrfs_path *path,
8509 				 struct walk_control *wc, int *lookup_info)
8510 {
8511 	u64 bytenr;
8512 	u64 generation;
8513 	u64 parent;
8514 	u32 blocksize;
8515 	struct btrfs_key key;
8516 	struct extent_buffer *next;
8517 	int level = wc->level;
8518 	int reada = 0;
8519 	int ret = 0;
8520 	bool need_account = false;
8521 
8522 	generation = btrfs_node_ptr_generation(path->nodes[level],
8523 					       path->slots[level]);
8524 	/*
8525 	 * if the lower level block was created before the snapshot
8526 	 * was created, we know there is no need to update back refs
8527 	 * for the subtree
8528 	 */
8529 	if (wc->stage == UPDATE_BACKREF &&
8530 	    generation <= root->root_key.offset) {
8531 		*lookup_info = 1;
8532 		return 1;
8533 	}
8534 
8535 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8536 	blocksize = root->nodesize;
8537 
8538 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8539 	if (!next) {
8540 		next = btrfs_find_create_tree_block(root, bytenr);
8541 		if (!next)
8542 			return -ENOMEM;
8543 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8544 					       level - 1);
8545 		reada = 1;
8546 	}
8547 	btrfs_tree_lock(next);
8548 	btrfs_set_lock_blocking(next);
8549 
8550 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8551 				       &wc->refs[level - 1],
8552 				       &wc->flags[level - 1]);
8553 	if (ret < 0) {
8554 		btrfs_tree_unlock(next);
8555 		return ret;
8556 	}
8557 
8558 	if (unlikely(wc->refs[level - 1] == 0)) {
8559 		btrfs_err(root->fs_info, "Missing references.");
8560 		BUG();
8561 	}
8562 	*lookup_info = 0;
8563 
8564 	if (wc->stage == DROP_REFERENCE) {
8565 		if (wc->refs[level - 1] > 1) {
8566 			need_account = true;
8567 			if (level == 1 &&
8568 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8569 				goto skip;
8570 
8571 			if (!wc->update_ref ||
8572 			    generation <= root->root_key.offset)
8573 				goto skip;
8574 
8575 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8576 					      path->slots[level]);
8577 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8578 			if (ret < 0)
8579 				goto skip;
8580 
8581 			wc->stage = UPDATE_BACKREF;
8582 			wc->shared_level = level - 1;
8583 		}
8584 	} else {
8585 		if (level == 1 &&
8586 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587 			goto skip;
8588 	}
8589 
8590 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8591 		btrfs_tree_unlock(next);
8592 		free_extent_buffer(next);
8593 		next = NULL;
8594 		*lookup_info = 1;
8595 	}
8596 
8597 	if (!next) {
8598 		if (reada && level == 1)
8599 			reada_walk_down(trans, root, wc, path);
8600 		next = read_tree_block(root, bytenr, generation);
8601 		if (IS_ERR(next)) {
8602 			return PTR_ERR(next);
8603 		} else if (!extent_buffer_uptodate(next)) {
8604 			free_extent_buffer(next);
8605 			return -EIO;
8606 		}
8607 		btrfs_tree_lock(next);
8608 		btrfs_set_lock_blocking(next);
8609 	}
8610 
8611 	level--;
8612 	BUG_ON(level != btrfs_header_level(next));
8613 	path->nodes[level] = next;
8614 	path->slots[level] = 0;
8615 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8616 	wc->level = level;
8617 	if (wc->level == 1)
8618 		wc->reada_slot = 0;
8619 	return 0;
8620 skip:
8621 	wc->refs[level - 1] = 0;
8622 	wc->flags[level - 1] = 0;
8623 	if (wc->stage == DROP_REFERENCE) {
8624 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8625 			parent = path->nodes[level]->start;
8626 		} else {
8627 			BUG_ON(root->root_key.objectid !=
8628 			       btrfs_header_owner(path->nodes[level]));
8629 			parent = 0;
8630 		}
8631 
8632 		if (need_account) {
8633 			ret = account_shared_subtree(trans, root, next,
8634 						     generation, level - 1);
8635 			if (ret) {
8636 				btrfs_err_rl(root->fs_info,
8637 					"Error "
8638 					"%d accounting shared subtree. Quota "
8639 					"is out of sync, rescan required.",
8640 					ret);
8641 			}
8642 		}
8643 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8644 				root->root_key.objectid, level - 1, 0);
8645 		BUG_ON(ret); /* -ENOMEM */
8646 	}
8647 	btrfs_tree_unlock(next);
8648 	free_extent_buffer(next);
8649 	*lookup_info = 1;
8650 	return 1;
8651 }
8652 
8653 /*
8654  * helper to process tree block while walking up the tree.
8655  *
8656  * when wc->stage == DROP_REFERENCE, this function drops
8657  * reference count on the block.
8658  *
8659  * when wc->stage == UPDATE_BACKREF, this function changes
8660  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8661  * to UPDATE_BACKREF previously while processing the block.
8662  *
8663  * NOTE: return value 1 means we should stop walking up.
8664  */
8665 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8666 				 struct btrfs_root *root,
8667 				 struct btrfs_path *path,
8668 				 struct walk_control *wc)
8669 {
8670 	int ret;
8671 	int level = wc->level;
8672 	struct extent_buffer *eb = path->nodes[level];
8673 	u64 parent = 0;
8674 
8675 	if (wc->stage == UPDATE_BACKREF) {
8676 		BUG_ON(wc->shared_level < level);
8677 		if (level < wc->shared_level)
8678 			goto out;
8679 
8680 		ret = find_next_key(path, level + 1, &wc->update_progress);
8681 		if (ret > 0)
8682 			wc->update_ref = 0;
8683 
8684 		wc->stage = DROP_REFERENCE;
8685 		wc->shared_level = -1;
8686 		path->slots[level] = 0;
8687 
8688 		/*
8689 		 * check reference count again if the block isn't locked.
8690 		 * we should start walking down the tree again if reference
8691 		 * count is one.
8692 		 */
8693 		if (!path->locks[level]) {
8694 			BUG_ON(level == 0);
8695 			btrfs_tree_lock(eb);
8696 			btrfs_set_lock_blocking(eb);
8697 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8698 
8699 			ret = btrfs_lookup_extent_info(trans, root,
8700 						       eb->start, level, 1,
8701 						       &wc->refs[level],
8702 						       &wc->flags[level]);
8703 			if (ret < 0) {
8704 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8705 				path->locks[level] = 0;
8706 				return ret;
8707 			}
8708 			BUG_ON(wc->refs[level] == 0);
8709 			if (wc->refs[level] == 1) {
8710 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8711 				path->locks[level] = 0;
8712 				return 1;
8713 			}
8714 		}
8715 	}
8716 
8717 	/* wc->stage == DROP_REFERENCE */
8718 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8719 
8720 	if (wc->refs[level] == 1) {
8721 		if (level == 0) {
8722 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8723 				ret = btrfs_dec_ref(trans, root, eb, 1);
8724 			else
8725 				ret = btrfs_dec_ref(trans, root, eb, 0);
8726 			BUG_ON(ret); /* -ENOMEM */
8727 			ret = account_leaf_items(trans, root, eb);
8728 			if (ret) {
8729 				btrfs_err_rl(root->fs_info,
8730 					"error "
8731 					"%d accounting leaf items. Quota "
8732 					"is out of sync, rescan required.",
8733 					ret);
8734 			}
8735 		}
8736 		/* make block locked assertion in clean_tree_block happy */
8737 		if (!path->locks[level] &&
8738 		    btrfs_header_generation(eb) == trans->transid) {
8739 			btrfs_tree_lock(eb);
8740 			btrfs_set_lock_blocking(eb);
8741 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8742 		}
8743 		clean_tree_block(trans, root->fs_info, eb);
8744 	}
8745 
8746 	if (eb == root->node) {
8747 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8748 			parent = eb->start;
8749 		else
8750 			BUG_ON(root->root_key.objectid !=
8751 			       btrfs_header_owner(eb));
8752 	} else {
8753 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8754 			parent = path->nodes[level + 1]->start;
8755 		else
8756 			BUG_ON(root->root_key.objectid !=
8757 			       btrfs_header_owner(path->nodes[level + 1]));
8758 	}
8759 
8760 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8761 out:
8762 	wc->refs[level] = 0;
8763 	wc->flags[level] = 0;
8764 	return 0;
8765 }
8766 
8767 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8768 				   struct btrfs_root *root,
8769 				   struct btrfs_path *path,
8770 				   struct walk_control *wc)
8771 {
8772 	int level = wc->level;
8773 	int lookup_info = 1;
8774 	int ret;
8775 
8776 	while (level >= 0) {
8777 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8778 		if (ret > 0)
8779 			break;
8780 
8781 		if (level == 0)
8782 			break;
8783 
8784 		if (path->slots[level] >=
8785 		    btrfs_header_nritems(path->nodes[level]))
8786 			break;
8787 
8788 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8789 		if (ret > 0) {
8790 			path->slots[level]++;
8791 			continue;
8792 		} else if (ret < 0)
8793 			return ret;
8794 		level = wc->level;
8795 	}
8796 	return 0;
8797 }
8798 
8799 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8800 				 struct btrfs_root *root,
8801 				 struct btrfs_path *path,
8802 				 struct walk_control *wc, int max_level)
8803 {
8804 	int level = wc->level;
8805 	int ret;
8806 
8807 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8808 	while (level < max_level && path->nodes[level]) {
8809 		wc->level = level;
8810 		if (path->slots[level] + 1 <
8811 		    btrfs_header_nritems(path->nodes[level])) {
8812 			path->slots[level]++;
8813 			return 0;
8814 		} else {
8815 			ret = walk_up_proc(trans, root, path, wc);
8816 			if (ret > 0)
8817 				return 0;
8818 
8819 			if (path->locks[level]) {
8820 				btrfs_tree_unlock_rw(path->nodes[level],
8821 						     path->locks[level]);
8822 				path->locks[level] = 0;
8823 			}
8824 			free_extent_buffer(path->nodes[level]);
8825 			path->nodes[level] = NULL;
8826 			level++;
8827 		}
8828 	}
8829 	return 1;
8830 }
8831 
8832 /*
8833  * drop a subvolume tree.
8834  *
8835  * this function traverses the tree freeing any blocks that only
8836  * referenced by the tree.
8837  *
8838  * when a shared tree block is found. this function decreases its
8839  * reference count by one. if update_ref is true, this function
8840  * also make sure backrefs for the shared block and all lower level
8841  * blocks are properly updated.
8842  *
8843  * If called with for_reloc == 0, may exit early with -EAGAIN
8844  */
8845 int btrfs_drop_snapshot(struct btrfs_root *root,
8846 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8847 			 int for_reloc)
8848 {
8849 	struct btrfs_path *path;
8850 	struct btrfs_trans_handle *trans;
8851 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8852 	struct btrfs_root_item *root_item = &root->root_item;
8853 	struct walk_control *wc;
8854 	struct btrfs_key key;
8855 	int err = 0;
8856 	int ret;
8857 	int level;
8858 	bool root_dropped = false;
8859 
8860 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8861 
8862 	path = btrfs_alloc_path();
8863 	if (!path) {
8864 		err = -ENOMEM;
8865 		goto out;
8866 	}
8867 
8868 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8869 	if (!wc) {
8870 		btrfs_free_path(path);
8871 		err = -ENOMEM;
8872 		goto out;
8873 	}
8874 
8875 	trans = btrfs_start_transaction(tree_root, 0);
8876 	if (IS_ERR(trans)) {
8877 		err = PTR_ERR(trans);
8878 		goto out_free;
8879 	}
8880 
8881 	if (block_rsv)
8882 		trans->block_rsv = block_rsv;
8883 
8884 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8885 		level = btrfs_header_level(root->node);
8886 		path->nodes[level] = btrfs_lock_root_node(root);
8887 		btrfs_set_lock_blocking(path->nodes[level]);
8888 		path->slots[level] = 0;
8889 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8890 		memset(&wc->update_progress, 0,
8891 		       sizeof(wc->update_progress));
8892 	} else {
8893 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8894 		memcpy(&wc->update_progress, &key,
8895 		       sizeof(wc->update_progress));
8896 
8897 		level = root_item->drop_level;
8898 		BUG_ON(level == 0);
8899 		path->lowest_level = level;
8900 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8901 		path->lowest_level = 0;
8902 		if (ret < 0) {
8903 			err = ret;
8904 			goto out_end_trans;
8905 		}
8906 		WARN_ON(ret > 0);
8907 
8908 		/*
8909 		 * unlock our path, this is safe because only this
8910 		 * function is allowed to delete this snapshot
8911 		 */
8912 		btrfs_unlock_up_safe(path, 0);
8913 
8914 		level = btrfs_header_level(root->node);
8915 		while (1) {
8916 			btrfs_tree_lock(path->nodes[level]);
8917 			btrfs_set_lock_blocking(path->nodes[level]);
8918 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8919 
8920 			ret = btrfs_lookup_extent_info(trans, root,
8921 						path->nodes[level]->start,
8922 						level, 1, &wc->refs[level],
8923 						&wc->flags[level]);
8924 			if (ret < 0) {
8925 				err = ret;
8926 				goto out_end_trans;
8927 			}
8928 			BUG_ON(wc->refs[level] == 0);
8929 
8930 			if (level == root_item->drop_level)
8931 				break;
8932 
8933 			btrfs_tree_unlock(path->nodes[level]);
8934 			path->locks[level] = 0;
8935 			WARN_ON(wc->refs[level] != 1);
8936 			level--;
8937 		}
8938 	}
8939 
8940 	wc->level = level;
8941 	wc->shared_level = -1;
8942 	wc->stage = DROP_REFERENCE;
8943 	wc->update_ref = update_ref;
8944 	wc->keep_locks = 0;
8945 	wc->for_reloc = for_reloc;
8946 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8947 
8948 	while (1) {
8949 
8950 		ret = walk_down_tree(trans, root, path, wc);
8951 		if (ret < 0) {
8952 			err = ret;
8953 			break;
8954 		}
8955 
8956 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8957 		if (ret < 0) {
8958 			err = ret;
8959 			break;
8960 		}
8961 
8962 		if (ret > 0) {
8963 			BUG_ON(wc->stage != DROP_REFERENCE);
8964 			break;
8965 		}
8966 
8967 		if (wc->stage == DROP_REFERENCE) {
8968 			level = wc->level;
8969 			btrfs_node_key(path->nodes[level],
8970 				       &root_item->drop_progress,
8971 				       path->slots[level]);
8972 			root_item->drop_level = level;
8973 		}
8974 
8975 		BUG_ON(wc->level == 0);
8976 		if (btrfs_should_end_transaction(trans, tree_root) ||
8977 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8978 			ret = btrfs_update_root(trans, tree_root,
8979 						&root->root_key,
8980 						root_item);
8981 			if (ret) {
8982 				btrfs_abort_transaction(trans, tree_root, ret);
8983 				err = ret;
8984 				goto out_end_trans;
8985 			}
8986 
8987 			btrfs_end_transaction_throttle(trans, tree_root);
8988 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8989 				pr_debug("BTRFS: drop snapshot early exit\n");
8990 				err = -EAGAIN;
8991 				goto out_free;
8992 			}
8993 
8994 			trans = btrfs_start_transaction(tree_root, 0);
8995 			if (IS_ERR(trans)) {
8996 				err = PTR_ERR(trans);
8997 				goto out_free;
8998 			}
8999 			if (block_rsv)
9000 				trans->block_rsv = block_rsv;
9001 		}
9002 	}
9003 	btrfs_release_path(path);
9004 	if (err)
9005 		goto out_end_trans;
9006 
9007 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9008 	if (ret) {
9009 		btrfs_abort_transaction(trans, tree_root, ret);
9010 		goto out_end_trans;
9011 	}
9012 
9013 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9014 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9015 				      NULL, NULL);
9016 		if (ret < 0) {
9017 			btrfs_abort_transaction(trans, tree_root, ret);
9018 			err = ret;
9019 			goto out_end_trans;
9020 		} else if (ret > 0) {
9021 			/* if we fail to delete the orphan item this time
9022 			 * around, it'll get picked up the next time.
9023 			 *
9024 			 * The most common failure here is just -ENOENT.
9025 			 */
9026 			btrfs_del_orphan_item(trans, tree_root,
9027 					      root->root_key.objectid);
9028 		}
9029 	}
9030 
9031 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9032 		btrfs_add_dropped_root(trans, root);
9033 	} else {
9034 		free_extent_buffer(root->node);
9035 		free_extent_buffer(root->commit_root);
9036 		btrfs_put_fs_root(root);
9037 	}
9038 	root_dropped = true;
9039 out_end_trans:
9040 	btrfs_end_transaction_throttle(trans, tree_root);
9041 out_free:
9042 	kfree(wc);
9043 	btrfs_free_path(path);
9044 out:
9045 	/*
9046 	 * So if we need to stop dropping the snapshot for whatever reason we
9047 	 * need to make sure to add it back to the dead root list so that we
9048 	 * keep trying to do the work later.  This also cleans up roots if we
9049 	 * don't have it in the radix (like when we recover after a power fail
9050 	 * or unmount) so we don't leak memory.
9051 	 */
9052 	if (!for_reloc && root_dropped == false)
9053 		btrfs_add_dead_root(root);
9054 	if (err && err != -EAGAIN)
9055 		btrfs_std_error(root->fs_info, err, NULL);
9056 	return err;
9057 }
9058 
9059 /*
9060  * drop subtree rooted at tree block 'node'.
9061  *
9062  * NOTE: this function will unlock and release tree block 'node'
9063  * only used by relocation code
9064  */
9065 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9066 			struct btrfs_root *root,
9067 			struct extent_buffer *node,
9068 			struct extent_buffer *parent)
9069 {
9070 	struct btrfs_path *path;
9071 	struct walk_control *wc;
9072 	int level;
9073 	int parent_level;
9074 	int ret = 0;
9075 	int wret;
9076 
9077 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9078 
9079 	path = btrfs_alloc_path();
9080 	if (!path)
9081 		return -ENOMEM;
9082 
9083 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9084 	if (!wc) {
9085 		btrfs_free_path(path);
9086 		return -ENOMEM;
9087 	}
9088 
9089 	btrfs_assert_tree_locked(parent);
9090 	parent_level = btrfs_header_level(parent);
9091 	extent_buffer_get(parent);
9092 	path->nodes[parent_level] = parent;
9093 	path->slots[parent_level] = btrfs_header_nritems(parent);
9094 
9095 	btrfs_assert_tree_locked(node);
9096 	level = btrfs_header_level(node);
9097 	path->nodes[level] = node;
9098 	path->slots[level] = 0;
9099 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9100 
9101 	wc->refs[parent_level] = 1;
9102 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9103 	wc->level = level;
9104 	wc->shared_level = -1;
9105 	wc->stage = DROP_REFERENCE;
9106 	wc->update_ref = 0;
9107 	wc->keep_locks = 1;
9108 	wc->for_reloc = 1;
9109 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9110 
9111 	while (1) {
9112 		wret = walk_down_tree(trans, root, path, wc);
9113 		if (wret < 0) {
9114 			ret = wret;
9115 			break;
9116 		}
9117 
9118 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9119 		if (wret < 0)
9120 			ret = wret;
9121 		if (wret != 0)
9122 			break;
9123 	}
9124 
9125 	kfree(wc);
9126 	btrfs_free_path(path);
9127 	return ret;
9128 }
9129 
9130 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9131 {
9132 	u64 num_devices;
9133 	u64 stripped;
9134 
9135 	/*
9136 	 * if restripe for this chunk_type is on pick target profile and
9137 	 * return, otherwise do the usual balance
9138 	 */
9139 	stripped = get_restripe_target(root->fs_info, flags);
9140 	if (stripped)
9141 		return extended_to_chunk(stripped);
9142 
9143 	num_devices = root->fs_info->fs_devices->rw_devices;
9144 
9145 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9146 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9147 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9148 
9149 	if (num_devices == 1) {
9150 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9151 		stripped = flags & ~stripped;
9152 
9153 		/* turn raid0 into single device chunks */
9154 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9155 			return stripped;
9156 
9157 		/* turn mirroring into duplication */
9158 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9159 			     BTRFS_BLOCK_GROUP_RAID10))
9160 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9161 	} else {
9162 		/* they already had raid on here, just return */
9163 		if (flags & stripped)
9164 			return flags;
9165 
9166 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9167 		stripped = flags & ~stripped;
9168 
9169 		/* switch duplicated blocks with raid1 */
9170 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9171 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9172 
9173 		/* this is drive concat, leave it alone */
9174 	}
9175 
9176 	return flags;
9177 }
9178 
9179 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9180 {
9181 	struct btrfs_space_info *sinfo = cache->space_info;
9182 	u64 num_bytes;
9183 	u64 min_allocable_bytes;
9184 	int ret = -ENOSPC;
9185 
9186 	/*
9187 	 * We need some metadata space and system metadata space for
9188 	 * allocating chunks in some corner cases until we force to set
9189 	 * it to be readonly.
9190 	 */
9191 	if ((sinfo->flags &
9192 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9193 	    !force)
9194 		min_allocable_bytes = SZ_1M;
9195 	else
9196 		min_allocable_bytes = 0;
9197 
9198 	spin_lock(&sinfo->lock);
9199 	spin_lock(&cache->lock);
9200 
9201 	if (cache->ro) {
9202 		cache->ro++;
9203 		ret = 0;
9204 		goto out;
9205 	}
9206 
9207 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9208 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9209 
9210 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9211 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9212 	    min_allocable_bytes <= sinfo->total_bytes) {
9213 		sinfo->bytes_readonly += num_bytes;
9214 		cache->ro++;
9215 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9216 		ret = 0;
9217 	}
9218 out:
9219 	spin_unlock(&cache->lock);
9220 	spin_unlock(&sinfo->lock);
9221 	return ret;
9222 }
9223 
9224 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9225 			     struct btrfs_block_group_cache *cache)
9226 
9227 {
9228 	struct btrfs_trans_handle *trans;
9229 	u64 alloc_flags;
9230 	int ret;
9231 
9232 again:
9233 	trans = btrfs_join_transaction(root);
9234 	if (IS_ERR(trans))
9235 		return PTR_ERR(trans);
9236 
9237 	/*
9238 	 * we're not allowed to set block groups readonly after the dirty
9239 	 * block groups cache has started writing.  If it already started,
9240 	 * back off and let this transaction commit
9241 	 */
9242 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9243 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9244 		u64 transid = trans->transid;
9245 
9246 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9247 		btrfs_end_transaction(trans, root);
9248 
9249 		ret = btrfs_wait_for_commit(root, transid);
9250 		if (ret)
9251 			return ret;
9252 		goto again;
9253 	}
9254 
9255 	/*
9256 	 * if we are changing raid levels, try to allocate a corresponding
9257 	 * block group with the new raid level.
9258 	 */
9259 	alloc_flags = update_block_group_flags(root, cache->flags);
9260 	if (alloc_flags != cache->flags) {
9261 		ret = do_chunk_alloc(trans, root, alloc_flags,
9262 				     CHUNK_ALLOC_FORCE);
9263 		/*
9264 		 * ENOSPC is allowed here, we may have enough space
9265 		 * already allocated at the new raid level to
9266 		 * carry on
9267 		 */
9268 		if (ret == -ENOSPC)
9269 			ret = 0;
9270 		if (ret < 0)
9271 			goto out;
9272 	}
9273 
9274 	ret = inc_block_group_ro(cache, 0);
9275 	if (!ret)
9276 		goto out;
9277 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9278 	ret = do_chunk_alloc(trans, root, alloc_flags,
9279 			     CHUNK_ALLOC_FORCE);
9280 	if (ret < 0)
9281 		goto out;
9282 	ret = inc_block_group_ro(cache, 0);
9283 out:
9284 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9285 		alloc_flags = update_block_group_flags(root, cache->flags);
9286 		lock_chunks(root->fs_info->chunk_root);
9287 		check_system_chunk(trans, root, alloc_flags);
9288 		unlock_chunks(root->fs_info->chunk_root);
9289 	}
9290 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9291 
9292 	btrfs_end_transaction(trans, root);
9293 	return ret;
9294 }
9295 
9296 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9297 			    struct btrfs_root *root, u64 type)
9298 {
9299 	u64 alloc_flags = get_alloc_profile(root, type);
9300 	return do_chunk_alloc(trans, root, alloc_flags,
9301 			      CHUNK_ALLOC_FORCE);
9302 }
9303 
9304 /*
9305  * helper to account the unused space of all the readonly block group in the
9306  * space_info. takes mirrors into account.
9307  */
9308 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9309 {
9310 	struct btrfs_block_group_cache *block_group;
9311 	u64 free_bytes = 0;
9312 	int factor;
9313 
9314 	/* It's df, we don't care if it's racey */
9315 	if (list_empty(&sinfo->ro_bgs))
9316 		return 0;
9317 
9318 	spin_lock(&sinfo->lock);
9319 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9320 		spin_lock(&block_group->lock);
9321 
9322 		if (!block_group->ro) {
9323 			spin_unlock(&block_group->lock);
9324 			continue;
9325 		}
9326 
9327 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9328 					  BTRFS_BLOCK_GROUP_RAID10 |
9329 					  BTRFS_BLOCK_GROUP_DUP))
9330 			factor = 2;
9331 		else
9332 			factor = 1;
9333 
9334 		free_bytes += (block_group->key.offset -
9335 			       btrfs_block_group_used(&block_group->item)) *
9336 			       factor;
9337 
9338 		spin_unlock(&block_group->lock);
9339 	}
9340 	spin_unlock(&sinfo->lock);
9341 
9342 	return free_bytes;
9343 }
9344 
9345 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9346 			      struct btrfs_block_group_cache *cache)
9347 {
9348 	struct btrfs_space_info *sinfo = cache->space_info;
9349 	u64 num_bytes;
9350 
9351 	BUG_ON(!cache->ro);
9352 
9353 	spin_lock(&sinfo->lock);
9354 	spin_lock(&cache->lock);
9355 	if (!--cache->ro) {
9356 		num_bytes = cache->key.offset - cache->reserved -
9357 			    cache->pinned - cache->bytes_super -
9358 			    btrfs_block_group_used(&cache->item);
9359 		sinfo->bytes_readonly -= num_bytes;
9360 		list_del_init(&cache->ro_list);
9361 	}
9362 	spin_unlock(&cache->lock);
9363 	spin_unlock(&sinfo->lock);
9364 }
9365 
9366 /*
9367  * checks to see if its even possible to relocate this block group.
9368  *
9369  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9370  * ok to go ahead and try.
9371  */
9372 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9373 {
9374 	struct btrfs_block_group_cache *block_group;
9375 	struct btrfs_space_info *space_info;
9376 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9377 	struct btrfs_device *device;
9378 	struct btrfs_trans_handle *trans;
9379 	u64 min_free;
9380 	u64 dev_min = 1;
9381 	u64 dev_nr = 0;
9382 	u64 target;
9383 	int index;
9384 	int full = 0;
9385 	int ret = 0;
9386 
9387 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9388 
9389 	/* odd, couldn't find the block group, leave it alone */
9390 	if (!block_group)
9391 		return -1;
9392 
9393 	min_free = btrfs_block_group_used(&block_group->item);
9394 
9395 	/* no bytes used, we're good */
9396 	if (!min_free)
9397 		goto out;
9398 
9399 	space_info = block_group->space_info;
9400 	spin_lock(&space_info->lock);
9401 
9402 	full = space_info->full;
9403 
9404 	/*
9405 	 * if this is the last block group we have in this space, we can't
9406 	 * relocate it unless we're able to allocate a new chunk below.
9407 	 *
9408 	 * Otherwise, we need to make sure we have room in the space to handle
9409 	 * all of the extents from this block group.  If we can, we're good
9410 	 */
9411 	if ((space_info->total_bytes != block_group->key.offset) &&
9412 	    (space_info->bytes_used + space_info->bytes_reserved +
9413 	     space_info->bytes_pinned + space_info->bytes_readonly +
9414 	     min_free < space_info->total_bytes)) {
9415 		spin_unlock(&space_info->lock);
9416 		goto out;
9417 	}
9418 	spin_unlock(&space_info->lock);
9419 
9420 	/*
9421 	 * ok we don't have enough space, but maybe we have free space on our
9422 	 * devices to allocate new chunks for relocation, so loop through our
9423 	 * alloc devices and guess if we have enough space.  if this block
9424 	 * group is going to be restriped, run checks against the target
9425 	 * profile instead of the current one.
9426 	 */
9427 	ret = -1;
9428 
9429 	/*
9430 	 * index:
9431 	 *      0: raid10
9432 	 *      1: raid1
9433 	 *      2: dup
9434 	 *      3: raid0
9435 	 *      4: single
9436 	 */
9437 	target = get_restripe_target(root->fs_info, block_group->flags);
9438 	if (target) {
9439 		index = __get_raid_index(extended_to_chunk(target));
9440 	} else {
9441 		/*
9442 		 * this is just a balance, so if we were marked as full
9443 		 * we know there is no space for a new chunk
9444 		 */
9445 		if (full)
9446 			goto out;
9447 
9448 		index = get_block_group_index(block_group);
9449 	}
9450 
9451 	if (index == BTRFS_RAID_RAID10) {
9452 		dev_min = 4;
9453 		/* Divide by 2 */
9454 		min_free >>= 1;
9455 	} else if (index == BTRFS_RAID_RAID1) {
9456 		dev_min = 2;
9457 	} else if (index == BTRFS_RAID_DUP) {
9458 		/* Multiply by 2 */
9459 		min_free <<= 1;
9460 	} else if (index == BTRFS_RAID_RAID0) {
9461 		dev_min = fs_devices->rw_devices;
9462 		min_free = div64_u64(min_free, dev_min);
9463 	}
9464 
9465 	/* We need to do this so that we can look at pending chunks */
9466 	trans = btrfs_join_transaction(root);
9467 	if (IS_ERR(trans)) {
9468 		ret = PTR_ERR(trans);
9469 		goto out;
9470 	}
9471 
9472 	mutex_lock(&root->fs_info->chunk_mutex);
9473 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9474 		u64 dev_offset;
9475 
9476 		/*
9477 		 * check to make sure we can actually find a chunk with enough
9478 		 * space to fit our block group in.
9479 		 */
9480 		if (device->total_bytes > device->bytes_used + min_free &&
9481 		    !device->is_tgtdev_for_dev_replace) {
9482 			ret = find_free_dev_extent(trans, device, min_free,
9483 						   &dev_offset, NULL);
9484 			if (!ret)
9485 				dev_nr++;
9486 
9487 			if (dev_nr >= dev_min)
9488 				break;
9489 
9490 			ret = -1;
9491 		}
9492 	}
9493 	mutex_unlock(&root->fs_info->chunk_mutex);
9494 	btrfs_end_transaction(trans, root);
9495 out:
9496 	btrfs_put_block_group(block_group);
9497 	return ret;
9498 }
9499 
9500 static int find_first_block_group(struct btrfs_root *root,
9501 		struct btrfs_path *path, struct btrfs_key *key)
9502 {
9503 	int ret = 0;
9504 	struct btrfs_key found_key;
9505 	struct extent_buffer *leaf;
9506 	int slot;
9507 
9508 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9509 	if (ret < 0)
9510 		goto out;
9511 
9512 	while (1) {
9513 		slot = path->slots[0];
9514 		leaf = path->nodes[0];
9515 		if (slot >= btrfs_header_nritems(leaf)) {
9516 			ret = btrfs_next_leaf(root, path);
9517 			if (ret == 0)
9518 				continue;
9519 			if (ret < 0)
9520 				goto out;
9521 			break;
9522 		}
9523 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9524 
9525 		if (found_key.objectid >= key->objectid &&
9526 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9527 			ret = 0;
9528 			goto out;
9529 		}
9530 		path->slots[0]++;
9531 	}
9532 out:
9533 	return ret;
9534 }
9535 
9536 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9537 {
9538 	struct btrfs_block_group_cache *block_group;
9539 	u64 last = 0;
9540 
9541 	while (1) {
9542 		struct inode *inode;
9543 
9544 		block_group = btrfs_lookup_first_block_group(info, last);
9545 		while (block_group) {
9546 			spin_lock(&block_group->lock);
9547 			if (block_group->iref)
9548 				break;
9549 			spin_unlock(&block_group->lock);
9550 			block_group = next_block_group(info->tree_root,
9551 						       block_group);
9552 		}
9553 		if (!block_group) {
9554 			if (last == 0)
9555 				break;
9556 			last = 0;
9557 			continue;
9558 		}
9559 
9560 		inode = block_group->inode;
9561 		block_group->iref = 0;
9562 		block_group->inode = NULL;
9563 		spin_unlock(&block_group->lock);
9564 		iput(inode);
9565 		last = block_group->key.objectid + block_group->key.offset;
9566 		btrfs_put_block_group(block_group);
9567 	}
9568 }
9569 
9570 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9571 {
9572 	struct btrfs_block_group_cache *block_group;
9573 	struct btrfs_space_info *space_info;
9574 	struct btrfs_caching_control *caching_ctl;
9575 	struct rb_node *n;
9576 
9577 	down_write(&info->commit_root_sem);
9578 	while (!list_empty(&info->caching_block_groups)) {
9579 		caching_ctl = list_entry(info->caching_block_groups.next,
9580 					 struct btrfs_caching_control, list);
9581 		list_del(&caching_ctl->list);
9582 		put_caching_control(caching_ctl);
9583 	}
9584 	up_write(&info->commit_root_sem);
9585 
9586 	spin_lock(&info->unused_bgs_lock);
9587 	while (!list_empty(&info->unused_bgs)) {
9588 		block_group = list_first_entry(&info->unused_bgs,
9589 					       struct btrfs_block_group_cache,
9590 					       bg_list);
9591 		list_del_init(&block_group->bg_list);
9592 		btrfs_put_block_group(block_group);
9593 	}
9594 	spin_unlock(&info->unused_bgs_lock);
9595 
9596 	spin_lock(&info->block_group_cache_lock);
9597 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9598 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9599 				       cache_node);
9600 		rb_erase(&block_group->cache_node,
9601 			 &info->block_group_cache_tree);
9602 		RB_CLEAR_NODE(&block_group->cache_node);
9603 		spin_unlock(&info->block_group_cache_lock);
9604 
9605 		down_write(&block_group->space_info->groups_sem);
9606 		list_del(&block_group->list);
9607 		up_write(&block_group->space_info->groups_sem);
9608 
9609 		if (block_group->cached == BTRFS_CACHE_STARTED)
9610 			wait_block_group_cache_done(block_group);
9611 
9612 		/*
9613 		 * We haven't cached this block group, which means we could
9614 		 * possibly have excluded extents on this block group.
9615 		 */
9616 		if (block_group->cached == BTRFS_CACHE_NO ||
9617 		    block_group->cached == BTRFS_CACHE_ERROR)
9618 			free_excluded_extents(info->extent_root, block_group);
9619 
9620 		btrfs_remove_free_space_cache(block_group);
9621 		btrfs_put_block_group(block_group);
9622 
9623 		spin_lock(&info->block_group_cache_lock);
9624 	}
9625 	spin_unlock(&info->block_group_cache_lock);
9626 
9627 	/* now that all the block groups are freed, go through and
9628 	 * free all the space_info structs.  This is only called during
9629 	 * the final stages of unmount, and so we know nobody is
9630 	 * using them.  We call synchronize_rcu() once before we start,
9631 	 * just to be on the safe side.
9632 	 */
9633 	synchronize_rcu();
9634 
9635 	release_global_block_rsv(info);
9636 
9637 	while (!list_empty(&info->space_info)) {
9638 		int i;
9639 
9640 		space_info = list_entry(info->space_info.next,
9641 					struct btrfs_space_info,
9642 					list);
9643 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9644 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9645 			    space_info->bytes_reserved > 0 ||
9646 			    space_info->bytes_may_use > 0)) {
9647 				dump_space_info(space_info, 0, 0);
9648 			}
9649 		}
9650 		list_del(&space_info->list);
9651 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9652 			struct kobject *kobj;
9653 			kobj = space_info->block_group_kobjs[i];
9654 			space_info->block_group_kobjs[i] = NULL;
9655 			if (kobj) {
9656 				kobject_del(kobj);
9657 				kobject_put(kobj);
9658 			}
9659 		}
9660 		kobject_del(&space_info->kobj);
9661 		kobject_put(&space_info->kobj);
9662 	}
9663 	return 0;
9664 }
9665 
9666 static void __link_block_group(struct btrfs_space_info *space_info,
9667 			       struct btrfs_block_group_cache *cache)
9668 {
9669 	int index = get_block_group_index(cache);
9670 	bool first = false;
9671 
9672 	down_write(&space_info->groups_sem);
9673 	if (list_empty(&space_info->block_groups[index]))
9674 		first = true;
9675 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9676 	up_write(&space_info->groups_sem);
9677 
9678 	if (first) {
9679 		struct raid_kobject *rkobj;
9680 		int ret;
9681 
9682 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9683 		if (!rkobj)
9684 			goto out_err;
9685 		rkobj->raid_type = index;
9686 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9687 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9688 				  "%s", get_raid_name(index));
9689 		if (ret) {
9690 			kobject_put(&rkobj->kobj);
9691 			goto out_err;
9692 		}
9693 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9694 	}
9695 
9696 	return;
9697 out_err:
9698 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9699 }
9700 
9701 static struct btrfs_block_group_cache *
9702 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9703 {
9704 	struct btrfs_block_group_cache *cache;
9705 
9706 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9707 	if (!cache)
9708 		return NULL;
9709 
9710 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9711 					GFP_NOFS);
9712 	if (!cache->free_space_ctl) {
9713 		kfree(cache);
9714 		return NULL;
9715 	}
9716 
9717 	cache->key.objectid = start;
9718 	cache->key.offset = size;
9719 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9720 
9721 	cache->sectorsize = root->sectorsize;
9722 	cache->fs_info = root->fs_info;
9723 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9724 					       &root->fs_info->mapping_tree,
9725 					       start);
9726 	set_free_space_tree_thresholds(cache);
9727 
9728 	atomic_set(&cache->count, 1);
9729 	spin_lock_init(&cache->lock);
9730 	init_rwsem(&cache->data_rwsem);
9731 	INIT_LIST_HEAD(&cache->list);
9732 	INIT_LIST_HEAD(&cache->cluster_list);
9733 	INIT_LIST_HEAD(&cache->bg_list);
9734 	INIT_LIST_HEAD(&cache->ro_list);
9735 	INIT_LIST_HEAD(&cache->dirty_list);
9736 	INIT_LIST_HEAD(&cache->io_list);
9737 	btrfs_init_free_space_ctl(cache);
9738 	atomic_set(&cache->trimming, 0);
9739 	mutex_init(&cache->free_space_lock);
9740 
9741 	return cache;
9742 }
9743 
9744 int btrfs_read_block_groups(struct btrfs_root *root)
9745 {
9746 	struct btrfs_path *path;
9747 	int ret;
9748 	struct btrfs_block_group_cache *cache;
9749 	struct btrfs_fs_info *info = root->fs_info;
9750 	struct btrfs_space_info *space_info;
9751 	struct btrfs_key key;
9752 	struct btrfs_key found_key;
9753 	struct extent_buffer *leaf;
9754 	int need_clear = 0;
9755 	u64 cache_gen;
9756 
9757 	root = info->extent_root;
9758 	key.objectid = 0;
9759 	key.offset = 0;
9760 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9761 	path = btrfs_alloc_path();
9762 	if (!path)
9763 		return -ENOMEM;
9764 	path->reada = READA_FORWARD;
9765 
9766 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9767 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9768 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9769 		need_clear = 1;
9770 	if (btrfs_test_opt(root, CLEAR_CACHE))
9771 		need_clear = 1;
9772 
9773 	while (1) {
9774 		ret = find_first_block_group(root, path, &key);
9775 		if (ret > 0)
9776 			break;
9777 		if (ret != 0)
9778 			goto error;
9779 
9780 		leaf = path->nodes[0];
9781 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9782 
9783 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9784 						       found_key.offset);
9785 		if (!cache) {
9786 			ret = -ENOMEM;
9787 			goto error;
9788 		}
9789 
9790 		if (need_clear) {
9791 			/*
9792 			 * When we mount with old space cache, we need to
9793 			 * set BTRFS_DC_CLEAR and set dirty flag.
9794 			 *
9795 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9796 			 *    truncate the old free space cache inode and
9797 			 *    setup a new one.
9798 			 * b) Setting 'dirty flag' makes sure that we flush
9799 			 *    the new space cache info onto disk.
9800 			 */
9801 			if (btrfs_test_opt(root, SPACE_CACHE))
9802 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9803 		}
9804 
9805 		read_extent_buffer(leaf, &cache->item,
9806 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9807 				   sizeof(cache->item));
9808 		cache->flags = btrfs_block_group_flags(&cache->item);
9809 
9810 		key.objectid = found_key.objectid + found_key.offset;
9811 		btrfs_release_path(path);
9812 
9813 		/*
9814 		 * We need to exclude the super stripes now so that the space
9815 		 * info has super bytes accounted for, otherwise we'll think
9816 		 * we have more space than we actually do.
9817 		 */
9818 		ret = exclude_super_stripes(root, cache);
9819 		if (ret) {
9820 			/*
9821 			 * We may have excluded something, so call this just in
9822 			 * case.
9823 			 */
9824 			free_excluded_extents(root, cache);
9825 			btrfs_put_block_group(cache);
9826 			goto error;
9827 		}
9828 
9829 		/*
9830 		 * check for two cases, either we are full, and therefore
9831 		 * don't need to bother with the caching work since we won't
9832 		 * find any space, or we are empty, and we can just add all
9833 		 * the space in and be done with it.  This saves us _alot_ of
9834 		 * time, particularly in the full case.
9835 		 */
9836 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9837 			cache->last_byte_to_unpin = (u64)-1;
9838 			cache->cached = BTRFS_CACHE_FINISHED;
9839 			free_excluded_extents(root, cache);
9840 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9841 			cache->last_byte_to_unpin = (u64)-1;
9842 			cache->cached = BTRFS_CACHE_FINISHED;
9843 			add_new_free_space(cache, root->fs_info,
9844 					   found_key.objectid,
9845 					   found_key.objectid +
9846 					   found_key.offset);
9847 			free_excluded_extents(root, cache);
9848 		}
9849 
9850 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9851 		if (ret) {
9852 			btrfs_remove_free_space_cache(cache);
9853 			btrfs_put_block_group(cache);
9854 			goto error;
9855 		}
9856 
9857 		ret = update_space_info(info, cache->flags, found_key.offset,
9858 					btrfs_block_group_used(&cache->item),
9859 					&space_info);
9860 		if (ret) {
9861 			btrfs_remove_free_space_cache(cache);
9862 			spin_lock(&info->block_group_cache_lock);
9863 			rb_erase(&cache->cache_node,
9864 				 &info->block_group_cache_tree);
9865 			RB_CLEAR_NODE(&cache->cache_node);
9866 			spin_unlock(&info->block_group_cache_lock);
9867 			btrfs_put_block_group(cache);
9868 			goto error;
9869 		}
9870 
9871 		cache->space_info = space_info;
9872 		spin_lock(&cache->space_info->lock);
9873 		cache->space_info->bytes_readonly += cache->bytes_super;
9874 		spin_unlock(&cache->space_info->lock);
9875 
9876 		__link_block_group(space_info, cache);
9877 
9878 		set_avail_alloc_bits(root->fs_info, cache->flags);
9879 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9880 			inc_block_group_ro(cache, 1);
9881 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9882 			spin_lock(&info->unused_bgs_lock);
9883 			/* Should always be true but just in case. */
9884 			if (list_empty(&cache->bg_list)) {
9885 				btrfs_get_block_group(cache);
9886 				list_add_tail(&cache->bg_list,
9887 					      &info->unused_bgs);
9888 			}
9889 			spin_unlock(&info->unused_bgs_lock);
9890 		}
9891 	}
9892 
9893 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9894 		if (!(get_alloc_profile(root, space_info->flags) &
9895 		      (BTRFS_BLOCK_GROUP_RAID10 |
9896 		       BTRFS_BLOCK_GROUP_RAID1 |
9897 		       BTRFS_BLOCK_GROUP_RAID5 |
9898 		       BTRFS_BLOCK_GROUP_RAID6 |
9899 		       BTRFS_BLOCK_GROUP_DUP)))
9900 			continue;
9901 		/*
9902 		 * avoid allocating from un-mirrored block group if there are
9903 		 * mirrored block groups.
9904 		 */
9905 		list_for_each_entry(cache,
9906 				&space_info->block_groups[BTRFS_RAID_RAID0],
9907 				list)
9908 			inc_block_group_ro(cache, 1);
9909 		list_for_each_entry(cache,
9910 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9911 				list)
9912 			inc_block_group_ro(cache, 1);
9913 	}
9914 
9915 	init_global_block_rsv(info);
9916 	ret = 0;
9917 error:
9918 	btrfs_free_path(path);
9919 	return ret;
9920 }
9921 
9922 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9923 				       struct btrfs_root *root)
9924 {
9925 	struct btrfs_block_group_cache *block_group, *tmp;
9926 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9927 	struct btrfs_block_group_item item;
9928 	struct btrfs_key key;
9929 	int ret = 0;
9930 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9931 
9932 	trans->can_flush_pending_bgs = false;
9933 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9934 		if (ret)
9935 			goto next;
9936 
9937 		spin_lock(&block_group->lock);
9938 		memcpy(&item, &block_group->item, sizeof(item));
9939 		memcpy(&key, &block_group->key, sizeof(key));
9940 		spin_unlock(&block_group->lock);
9941 
9942 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9943 					sizeof(item));
9944 		if (ret)
9945 			btrfs_abort_transaction(trans, extent_root, ret);
9946 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9947 					       key.objectid, key.offset);
9948 		if (ret)
9949 			btrfs_abort_transaction(trans, extent_root, ret);
9950 		add_block_group_free_space(trans, root->fs_info, block_group);
9951 		/* already aborted the transaction if it failed. */
9952 next:
9953 		list_del_init(&block_group->bg_list);
9954 	}
9955 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
9956 }
9957 
9958 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9959 			   struct btrfs_root *root, u64 bytes_used,
9960 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9961 			   u64 size)
9962 {
9963 	int ret;
9964 	struct btrfs_root *extent_root;
9965 	struct btrfs_block_group_cache *cache;
9966 
9967 	extent_root = root->fs_info->extent_root;
9968 
9969 	btrfs_set_log_full_commit(root->fs_info, trans);
9970 
9971 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9972 	if (!cache)
9973 		return -ENOMEM;
9974 
9975 	btrfs_set_block_group_used(&cache->item, bytes_used);
9976 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9977 	btrfs_set_block_group_flags(&cache->item, type);
9978 
9979 	cache->flags = type;
9980 	cache->last_byte_to_unpin = (u64)-1;
9981 	cache->cached = BTRFS_CACHE_FINISHED;
9982 	cache->needs_free_space = 1;
9983 	ret = exclude_super_stripes(root, cache);
9984 	if (ret) {
9985 		/*
9986 		 * We may have excluded something, so call this just in
9987 		 * case.
9988 		 */
9989 		free_excluded_extents(root, cache);
9990 		btrfs_put_block_group(cache);
9991 		return ret;
9992 	}
9993 
9994 	add_new_free_space(cache, root->fs_info, chunk_offset,
9995 			   chunk_offset + size);
9996 
9997 	free_excluded_extents(root, cache);
9998 
9999 #ifdef CONFIG_BTRFS_DEBUG
10000 	if (btrfs_should_fragment_free_space(root, cache)) {
10001 		u64 new_bytes_used = size - bytes_used;
10002 
10003 		bytes_used += new_bytes_used >> 1;
10004 		fragment_free_space(root, cache);
10005 	}
10006 #endif
10007 	/*
10008 	 * Call to ensure the corresponding space_info object is created and
10009 	 * assigned to our block group, but don't update its counters just yet.
10010 	 * We want our bg to be added to the rbtree with its ->space_info set.
10011 	 */
10012 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10013 				&cache->space_info);
10014 	if (ret) {
10015 		btrfs_remove_free_space_cache(cache);
10016 		btrfs_put_block_group(cache);
10017 		return ret;
10018 	}
10019 
10020 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10021 	if (ret) {
10022 		btrfs_remove_free_space_cache(cache);
10023 		btrfs_put_block_group(cache);
10024 		return ret;
10025 	}
10026 
10027 	/*
10028 	 * Now that our block group has its ->space_info set and is inserted in
10029 	 * the rbtree, update the space info's counters.
10030 	 */
10031 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10032 				&cache->space_info);
10033 	if (ret) {
10034 		btrfs_remove_free_space_cache(cache);
10035 		spin_lock(&root->fs_info->block_group_cache_lock);
10036 		rb_erase(&cache->cache_node,
10037 			 &root->fs_info->block_group_cache_tree);
10038 		RB_CLEAR_NODE(&cache->cache_node);
10039 		spin_unlock(&root->fs_info->block_group_cache_lock);
10040 		btrfs_put_block_group(cache);
10041 		return ret;
10042 	}
10043 	update_global_block_rsv(root->fs_info);
10044 
10045 	spin_lock(&cache->space_info->lock);
10046 	cache->space_info->bytes_readonly += cache->bytes_super;
10047 	spin_unlock(&cache->space_info->lock);
10048 
10049 	__link_block_group(cache->space_info, cache);
10050 
10051 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10052 
10053 	set_avail_alloc_bits(extent_root->fs_info, type);
10054 
10055 	return 0;
10056 }
10057 
10058 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10059 {
10060 	u64 extra_flags = chunk_to_extended(flags) &
10061 				BTRFS_EXTENDED_PROFILE_MASK;
10062 
10063 	write_seqlock(&fs_info->profiles_lock);
10064 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10065 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10066 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10067 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10068 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10069 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10070 	write_sequnlock(&fs_info->profiles_lock);
10071 }
10072 
10073 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10074 			     struct btrfs_root *root, u64 group_start,
10075 			     struct extent_map *em)
10076 {
10077 	struct btrfs_path *path;
10078 	struct btrfs_block_group_cache *block_group;
10079 	struct btrfs_free_cluster *cluster;
10080 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10081 	struct btrfs_key key;
10082 	struct inode *inode;
10083 	struct kobject *kobj = NULL;
10084 	int ret;
10085 	int index;
10086 	int factor;
10087 	struct btrfs_caching_control *caching_ctl = NULL;
10088 	bool remove_em;
10089 
10090 	root = root->fs_info->extent_root;
10091 
10092 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10093 	BUG_ON(!block_group);
10094 	BUG_ON(!block_group->ro);
10095 
10096 	/*
10097 	 * Free the reserved super bytes from this block group before
10098 	 * remove it.
10099 	 */
10100 	free_excluded_extents(root, block_group);
10101 
10102 	memcpy(&key, &block_group->key, sizeof(key));
10103 	index = get_block_group_index(block_group);
10104 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10105 				  BTRFS_BLOCK_GROUP_RAID1 |
10106 				  BTRFS_BLOCK_GROUP_RAID10))
10107 		factor = 2;
10108 	else
10109 		factor = 1;
10110 
10111 	/* make sure this block group isn't part of an allocation cluster */
10112 	cluster = &root->fs_info->data_alloc_cluster;
10113 	spin_lock(&cluster->refill_lock);
10114 	btrfs_return_cluster_to_free_space(block_group, cluster);
10115 	spin_unlock(&cluster->refill_lock);
10116 
10117 	/*
10118 	 * make sure this block group isn't part of a metadata
10119 	 * allocation cluster
10120 	 */
10121 	cluster = &root->fs_info->meta_alloc_cluster;
10122 	spin_lock(&cluster->refill_lock);
10123 	btrfs_return_cluster_to_free_space(block_group, cluster);
10124 	spin_unlock(&cluster->refill_lock);
10125 
10126 	path = btrfs_alloc_path();
10127 	if (!path) {
10128 		ret = -ENOMEM;
10129 		goto out;
10130 	}
10131 
10132 	/*
10133 	 * get the inode first so any iput calls done for the io_list
10134 	 * aren't the final iput (no unlinks allowed now)
10135 	 */
10136 	inode = lookup_free_space_inode(tree_root, block_group, path);
10137 
10138 	mutex_lock(&trans->transaction->cache_write_mutex);
10139 	/*
10140 	 * make sure our free spache cache IO is done before remove the
10141 	 * free space inode
10142 	 */
10143 	spin_lock(&trans->transaction->dirty_bgs_lock);
10144 	if (!list_empty(&block_group->io_list)) {
10145 		list_del_init(&block_group->io_list);
10146 
10147 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10148 
10149 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10150 		btrfs_wait_cache_io(root, trans, block_group,
10151 				    &block_group->io_ctl, path,
10152 				    block_group->key.objectid);
10153 		btrfs_put_block_group(block_group);
10154 		spin_lock(&trans->transaction->dirty_bgs_lock);
10155 	}
10156 
10157 	if (!list_empty(&block_group->dirty_list)) {
10158 		list_del_init(&block_group->dirty_list);
10159 		btrfs_put_block_group(block_group);
10160 	}
10161 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10162 	mutex_unlock(&trans->transaction->cache_write_mutex);
10163 
10164 	if (!IS_ERR(inode)) {
10165 		ret = btrfs_orphan_add(trans, inode);
10166 		if (ret) {
10167 			btrfs_add_delayed_iput(inode);
10168 			goto out;
10169 		}
10170 		clear_nlink(inode);
10171 		/* One for the block groups ref */
10172 		spin_lock(&block_group->lock);
10173 		if (block_group->iref) {
10174 			block_group->iref = 0;
10175 			block_group->inode = NULL;
10176 			spin_unlock(&block_group->lock);
10177 			iput(inode);
10178 		} else {
10179 			spin_unlock(&block_group->lock);
10180 		}
10181 		/* One for our lookup ref */
10182 		btrfs_add_delayed_iput(inode);
10183 	}
10184 
10185 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10186 	key.offset = block_group->key.objectid;
10187 	key.type = 0;
10188 
10189 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10190 	if (ret < 0)
10191 		goto out;
10192 	if (ret > 0)
10193 		btrfs_release_path(path);
10194 	if (ret == 0) {
10195 		ret = btrfs_del_item(trans, tree_root, path);
10196 		if (ret)
10197 			goto out;
10198 		btrfs_release_path(path);
10199 	}
10200 
10201 	spin_lock(&root->fs_info->block_group_cache_lock);
10202 	rb_erase(&block_group->cache_node,
10203 		 &root->fs_info->block_group_cache_tree);
10204 	RB_CLEAR_NODE(&block_group->cache_node);
10205 
10206 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10207 		root->fs_info->first_logical_byte = (u64)-1;
10208 	spin_unlock(&root->fs_info->block_group_cache_lock);
10209 
10210 	down_write(&block_group->space_info->groups_sem);
10211 	/*
10212 	 * we must use list_del_init so people can check to see if they
10213 	 * are still on the list after taking the semaphore
10214 	 */
10215 	list_del_init(&block_group->list);
10216 	if (list_empty(&block_group->space_info->block_groups[index])) {
10217 		kobj = block_group->space_info->block_group_kobjs[index];
10218 		block_group->space_info->block_group_kobjs[index] = NULL;
10219 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10220 	}
10221 	up_write(&block_group->space_info->groups_sem);
10222 	if (kobj) {
10223 		kobject_del(kobj);
10224 		kobject_put(kobj);
10225 	}
10226 
10227 	if (block_group->has_caching_ctl)
10228 		caching_ctl = get_caching_control(block_group);
10229 	if (block_group->cached == BTRFS_CACHE_STARTED)
10230 		wait_block_group_cache_done(block_group);
10231 	if (block_group->has_caching_ctl) {
10232 		down_write(&root->fs_info->commit_root_sem);
10233 		if (!caching_ctl) {
10234 			struct btrfs_caching_control *ctl;
10235 
10236 			list_for_each_entry(ctl,
10237 				    &root->fs_info->caching_block_groups, list)
10238 				if (ctl->block_group == block_group) {
10239 					caching_ctl = ctl;
10240 					atomic_inc(&caching_ctl->count);
10241 					break;
10242 				}
10243 		}
10244 		if (caching_ctl)
10245 			list_del_init(&caching_ctl->list);
10246 		up_write(&root->fs_info->commit_root_sem);
10247 		if (caching_ctl) {
10248 			/* Once for the caching bgs list and once for us. */
10249 			put_caching_control(caching_ctl);
10250 			put_caching_control(caching_ctl);
10251 		}
10252 	}
10253 
10254 	spin_lock(&trans->transaction->dirty_bgs_lock);
10255 	if (!list_empty(&block_group->dirty_list)) {
10256 		WARN_ON(1);
10257 	}
10258 	if (!list_empty(&block_group->io_list)) {
10259 		WARN_ON(1);
10260 	}
10261 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10262 	btrfs_remove_free_space_cache(block_group);
10263 
10264 	spin_lock(&block_group->space_info->lock);
10265 	list_del_init(&block_group->ro_list);
10266 
10267 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10268 		WARN_ON(block_group->space_info->total_bytes
10269 			< block_group->key.offset);
10270 		WARN_ON(block_group->space_info->bytes_readonly
10271 			< block_group->key.offset);
10272 		WARN_ON(block_group->space_info->disk_total
10273 			< block_group->key.offset * factor);
10274 	}
10275 	block_group->space_info->total_bytes -= block_group->key.offset;
10276 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10277 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10278 
10279 	spin_unlock(&block_group->space_info->lock);
10280 
10281 	memcpy(&key, &block_group->key, sizeof(key));
10282 
10283 	lock_chunks(root);
10284 	if (!list_empty(&em->list)) {
10285 		/* We're in the transaction->pending_chunks list. */
10286 		free_extent_map(em);
10287 	}
10288 	spin_lock(&block_group->lock);
10289 	block_group->removed = 1;
10290 	/*
10291 	 * At this point trimming can't start on this block group, because we
10292 	 * removed the block group from the tree fs_info->block_group_cache_tree
10293 	 * so no one can't find it anymore and even if someone already got this
10294 	 * block group before we removed it from the rbtree, they have already
10295 	 * incremented block_group->trimming - if they didn't, they won't find
10296 	 * any free space entries because we already removed them all when we
10297 	 * called btrfs_remove_free_space_cache().
10298 	 *
10299 	 * And we must not remove the extent map from the fs_info->mapping_tree
10300 	 * to prevent the same logical address range and physical device space
10301 	 * ranges from being reused for a new block group. This is because our
10302 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10303 	 * completely transactionless, so while it is trimming a range the
10304 	 * currently running transaction might finish and a new one start,
10305 	 * allowing for new block groups to be created that can reuse the same
10306 	 * physical device locations unless we take this special care.
10307 	 *
10308 	 * There may also be an implicit trim operation if the file system
10309 	 * is mounted with -odiscard. The same protections must remain
10310 	 * in place until the extents have been discarded completely when
10311 	 * the transaction commit has completed.
10312 	 */
10313 	remove_em = (atomic_read(&block_group->trimming) == 0);
10314 	/*
10315 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10316 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10317 	 * before checking block_group->removed).
10318 	 */
10319 	if (!remove_em) {
10320 		/*
10321 		 * Our em might be in trans->transaction->pending_chunks which
10322 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10323 		 * and so is the fs_info->pinned_chunks list.
10324 		 *
10325 		 * So at this point we must be holding the chunk_mutex to avoid
10326 		 * any races with chunk allocation (more specifically at
10327 		 * volumes.c:contains_pending_extent()), to ensure it always
10328 		 * sees the em, either in the pending_chunks list or in the
10329 		 * pinned_chunks list.
10330 		 */
10331 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10332 	}
10333 	spin_unlock(&block_group->lock);
10334 
10335 	if (remove_em) {
10336 		struct extent_map_tree *em_tree;
10337 
10338 		em_tree = &root->fs_info->mapping_tree.map_tree;
10339 		write_lock(&em_tree->lock);
10340 		/*
10341 		 * The em might be in the pending_chunks list, so make sure the
10342 		 * chunk mutex is locked, since remove_extent_mapping() will
10343 		 * delete us from that list.
10344 		 */
10345 		remove_extent_mapping(em_tree, em);
10346 		write_unlock(&em_tree->lock);
10347 		/* once for the tree */
10348 		free_extent_map(em);
10349 	}
10350 
10351 	unlock_chunks(root);
10352 
10353 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10354 	if (ret)
10355 		goto out;
10356 
10357 	btrfs_put_block_group(block_group);
10358 	btrfs_put_block_group(block_group);
10359 
10360 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10361 	if (ret > 0)
10362 		ret = -EIO;
10363 	if (ret < 0)
10364 		goto out;
10365 
10366 	ret = btrfs_del_item(trans, root, path);
10367 out:
10368 	btrfs_free_path(path);
10369 	return ret;
10370 }
10371 
10372 struct btrfs_trans_handle *
10373 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10374 				     const u64 chunk_offset)
10375 {
10376 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10377 	struct extent_map *em;
10378 	struct map_lookup *map;
10379 	unsigned int num_items;
10380 
10381 	read_lock(&em_tree->lock);
10382 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10383 	read_unlock(&em_tree->lock);
10384 	ASSERT(em && em->start == chunk_offset);
10385 
10386 	/*
10387 	 * We need to reserve 3 + N units from the metadata space info in order
10388 	 * to remove a block group (done at btrfs_remove_chunk() and at
10389 	 * btrfs_remove_block_group()), which are used for:
10390 	 *
10391 	 * 1 unit for adding the free space inode's orphan (located in the tree
10392 	 * of tree roots).
10393 	 * 1 unit for deleting the block group item (located in the extent
10394 	 * tree).
10395 	 * 1 unit for deleting the free space item (located in tree of tree
10396 	 * roots).
10397 	 * N units for deleting N device extent items corresponding to each
10398 	 * stripe (located in the device tree).
10399 	 *
10400 	 * In order to remove a block group we also need to reserve units in the
10401 	 * system space info in order to update the chunk tree (update one or
10402 	 * more device items and remove one chunk item), but this is done at
10403 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10404 	 */
10405 	map = em->map_lookup;
10406 	num_items = 3 + map->num_stripes;
10407 	free_extent_map(em);
10408 
10409 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10410 							   num_items, 1);
10411 }
10412 
10413 /*
10414  * Process the unused_bgs list and remove any that don't have any allocated
10415  * space inside of them.
10416  */
10417 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10418 {
10419 	struct btrfs_block_group_cache *block_group;
10420 	struct btrfs_space_info *space_info;
10421 	struct btrfs_root *root = fs_info->extent_root;
10422 	struct btrfs_trans_handle *trans;
10423 	int ret = 0;
10424 
10425 	if (!fs_info->open)
10426 		return;
10427 
10428 	spin_lock(&fs_info->unused_bgs_lock);
10429 	while (!list_empty(&fs_info->unused_bgs)) {
10430 		u64 start, end;
10431 		int trimming;
10432 
10433 		block_group = list_first_entry(&fs_info->unused_bgs,
10434 					       struct btrfs_block_group_cache,
10435 					       bg_list);
10436 		list_del_init(&block_group->bg_list);
10437 
10438 		space_info = block_group->space_info;
10439 
10440 		if (ret || btrfs_mixed_space_info(space_info)) {
10441 			btrfs_put_block_group(block_group);
10442 			continue;
10443 		}
10444 		spin_unlock(&fs_info->unused_bgs_lock);
10445 
10446 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10447 
10448 		/* Don't want to race with allocators so take the groups_sem */
10449 		down_write(&space_info->groups_sem);
10450 		spin_lock(&block_group->lock);
10451 		if (block_group->reserved ||
10452 		    btrfs_block_group_used(&block_group->item) ||
10453 		    block_group->ro ||
10454 		    list_is_singular(&block_group->list)) {
10455 			/*
10456 			 * We want to bail if we made new allocations or have
10457 			 * outstanding allocations in this block group.  We do
10458 			 * the ro check in case balance is currently acting on
10459 			 * this block group.
10460 			 */
10461 			spin_unlock(&block_group->lock);
10462 			up_write(&space_info->groups_sem);
10463 			goto next;
10464 		}
10465 		spin_unlock(&block_group->lock);
10466 
10467 		/* We don't want to force the issue, only flip if it's ok. */
10468 		ret = inc_block_group_ro(block_group, 0);
10469 		up_write(&space_info->groups_sem);
10470 		if (ret < 0) {
10471 			ret = 0;
10472 			goto next;
10473 		}
10474 
10475 		/*
10476 		 * Want to do this before we do anything else so we can recover
10477 		 * properly if we fail to join the transaction.
10478 		 */
10479 		trans = btrfs_start_trans_remove_block_group(fs_info,
10480 						     block_group->key.objectid);
10481 		if (IS_ERR(trans)) {
10482 			btrfs_dec_block_group_ro(root, block_group);
10483 			ret = PTR_ERR(trans);
10484 			goto next;
10485 		}
10486 
10487 		/*
10488 		 * We could have pending pinned extents for this block group,
10489 		 * just delete them, we don't care about them anymore.
10490 		 */
10491 		start = block_group->key.objectid;
10492 		end = start + block_group->key.offset - 1;
10493 		/*
10494 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10495 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10496 		 * another task might be running finish_extent_commit() for the
10497 		 * previous transaction N - 1, and have seen a range belonging
10498 		 * to the block group in freed_extents[] before we were able to
10499 		 * clear the whole block group range from freed_extents[]. This
10500 		 * means that task can lookup for the block group after we
10501 		 * unpinned it from freed_extents[] and removed it, leading to
10502 		 * a BUG_ON() at btrfs_unpin_extent_range().
10503 		 */
10504 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10505 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10506 				  EXTENT_DIRTY, GFP_NOFS);
10507 		if (ret) {
10508 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10509 			btrfs_dec_block_group_ro(root, block_group);
10510 			goto end_trans;
10511 		}
10512 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10513 				  EXTENT_DIRTY, GFP_NOFS);
10514 		if (ret) {
10515 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10516 			btrfs_dec_block_group_ro(root, block_group);
10517 			goto end_trans;
10518 		}
10519 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10520 
10521 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10522 		spin_lock(&space_info->lock);
10523 		spin_lock(&block_group->lock);
10524 
10525 		space_info->bytes_pinned -= block_group->pinned;
10526 		space_info->bytes_readonly += block_group->pinned;
10527 		percpu_counter_add(&space_info->total_bytes_pinned,
10528 				   -block_group->pinned);
10529 		block_group->pinned = 0;
10530 
10531 		spin_unlock(&block_group->lock);
10532 		spin_unlock(&space_info->lock);
10533 
10534 		/* DISCARD can flip during remount */
10535 		trimming = btrfs_test_opt(root, DISCARD);
10536 
10537 		/* Implicit trim during transaction commit. */
10538 		if (trimming)
10539 			btrfs_get_block_group_trimming(block_group);
10540 
10541 		/*
10542 		 * Btrfs_remove_chunk will abort the transaction if things go
10543 		 * horribly wrong.
10544 		 */
10545 		ret = btrfs_remove_chunk(trans, root,
10546 					 block_group->key.objectid);
10547 
10548 		if (ret) {
10549 			if (trimming)
10550 				btrfs_put_block_group_trimming(block_group);
10551 			goto end_trans;
10552 		}
10553 
10554 		/*
10555 		 * If we're not mounted with -odiscard, we can just forget
10556 		 * about this block group. Otherwise we'll need to wait
10557 		 * until transaction commit to do the actual discard.
10558 		 */
10559 		if (trimming) {
10560 			spin_lock(&fs_info->unused_bgs_lock);
10561 			/*
10562 			 * A concurrent scrub might have added us to the list
10563 			 * fs_info->unused_bgs, so use a list_move operation
10564 			 * to add the block group to the deleted_bgs list.
10565 			 */
10566 			list_move(&block_group->bg_list,
10567 				  &trans->transaction->deleted_bgs);
10568 			spin_unlock(&fs_info->unused_bgs_lock);
10569 			btrfs_get_block_group(block_group);
10570 		}
10571 end_trans:
10572 		btrfs_end_transaction(trans, root);
10573 next:
10574 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10575 		btrfs_put_block_group(block_group);
10576 		spin_lock(&fs_info->unused_bgs_lock);
10577 	}
10578 	spin_unlock(&fs_info->unused_bgs_lock);
10579 }
10580 
10581 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10582 {
10583 	struct btrfs_space_info *space_info;
10584 	struct btrfs_super_block *disk_super;
10585 	u64 features;
10586 	u64 flags;
10587 	int mixed = 0;
10588 	int ret;
10589 
10590 	disk_super = fs_info->super_copy;
10591 	if (!btrfs_super_root(disk_super))
10592 		return -EINVAL;
10593 
10594 	features = btrfs_super_incompat_flags(disk_super);
10595 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10596 		mixed = 1;
10597 
10598 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10599 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10600 	if (ret)
10601 		goto out;
10602 
10603 	if (mixed) {
10604 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10605 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10606 	} else {
10607 		flags = BTRFS_BLOCK_GROUP_METADATA;
10608 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10609 		if (ret)
10610 			goto out;
10611 
10612 		flags = BTRFS_BLOCK_GROUP_DATA;
10613 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10614 	}
10615 out:
10616 	return ret;
10617 }
10618 
10619 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10620 {
10621 	return unpin_extent_range(root, start, end, false);
10622 }
10623 
10624 /*
10625  * It used to be that old block groups would be left around forever.
10626  * Iterating over them would be enough to trim unused space.  Since we
10627  * now automatically remove them, we also need to iterate over unallocated
10628  * space.
10629  *
10630  * We don't want a transaction for this since the discard may take a
10631  * substantial amount of time.  We don't require that a transaction be
10632  * running, but we do need to take a running transaction into account
10633  * to ensure that we're not discarding chunks that were released in
10634  * the current transaction.
10635  *
10636  * Holding the chunks lock will prevent other threads from allocating
10637  * or releasing chunks, but it won't prevent a running transaction
10638  * from committing and releasing the memory that the pending chunks
10639  * list head uses.  For that, we need to take a reference to the
10640  * transaction.
10641  */
10642 static int btrfs_trim_free_extents(struct btrfs_device *device,
10643 				   u64 minlen, u64 *trimmed)
10644 {
10645 	u64 start = 0, len = 0;
10646 	int ret;
10647 
10648 	*trimmed = 0;
10649 
10650 	/* Not writeable = nothing to do. */
10651 	if (!device->writeable)
10652 		return 0;
10653 
10654 	/* No free space = nothing to do. */
10655 	if (device->total_bytes <= device->bytes_used)
10656 		return 0;
10657 
10658 	ret = 0;
10659 
10660 	while (1) {
10661 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10662 		struct btrfs_transaction *trans;
10663 		u64 bytes;
10664 
10665 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10666 		if (ret)
10667 			return ret;
10668 
10669 		down_read(&fs_info->commit_root_sem);
10670 
10671 		spin_lock(&fs_info->trans_lock);
10672 		trans = fs_info->running_transaction;
10673 		if (trans)
10674 			atomic_inc(&trans->use_count);
10675 		spin_unlock(&fs_info->trans_lock);
10676 
10677 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10678 						 &start, &len);
10679 		if (trans)
10680 			btrfs_put_transaction(trans);
10681 
10682 		if (ret) {
10683 			up_read(&fs_info->commit_root_sem);
10684 			mutex_unlock(&fs_info->chunk_mutex);
10685 			if (ret == -ENOSPC)
10686 				ret = 0;
10687 			break;
10688 		}
10689 
10690 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10691 		up_read(&fs_info->commit_root_sem);
10692 		mutex_unlock(&fs_info->chunk_mutex);
10693 
10694 		if (ret)
10695 			break;
10696 
10697 		start += len;
10698 		*trimmed += bytes;
10699 
10700 		if (fatal_signal_pending(current)) {
10701 			ret = -ERESTARTSYS;
10702 			break;
10703 		}
10704 
10705 		cond_resched();
10706 	}
10707 
10708 	return ret;
10709 }
10710 
10711 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10712 {
10713 	struct btrfs_fs_info *fs_info = root->fs_info;
10714 	struct btrfs_block_group_cache *cache = NULL;
10715 	struct btrfs_device *device;
10716 	struct list_head *devices;
10717 	u64 group_trimmed;
10718 	u64 start;
10719 	u64 end;
10720 	u64 trimmed = 0;
10721 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10722 	int ret = 0;
10723 
10724 	/*
10725 	 * try to trim all FS space, our block group may start from non-zero.
10726 	 */
10727 	if (range->len == total_bytes)
10728 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10729 	else
10730 		cache = btrfs_lookup_block_group(fs_info, range->start);
10731 
10732 	while (cache) {
10733 		if (cache->key.objectid >= (range->start + range->len)) {
10734 			btrfs_put_block_group(cache);
10735 			break;
10736 		}
10737 
10738 		start = max(range->start, cache->key.objectid);
10739 		end = min(range->start + range->len,
10740 				cache->key.objectid + cache->key.offset);
10741 
10742 		if (end - start >= range->minlen) {
10743 			if (!block_group_cache_done(cache)) {
10744 				ret = cache_block_group(cache, 0);
10745 				if (ret) {
10746 					btrfs_put_block_group(cache);
10747 					break;
10748 				}
10749 				ret = wait_block_group_cache_done(cache);
10750 				if (ret) {
10751 					btrfs_put_block_group(cache);
10752 					break;
10753 				}
10754 			}
10755 			ret = btrfs_trim_block_group(cache,
10756 						     &group_trimmed,
10757 						     start,
10758 						     end,
10759 						     range->minlen);
10760 
10761 			trimmed += group_trimmed;
10762 			if (ret) {
10763 				btrfs_put_block_group(cache);
10764 				break;
10765 			}
10766 		}
10767 
10768 		cache = next_block_group(fs_info->tree_root, cache);
10769 	}
10770 
10771 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10772 	devices = &root->fs_info->fs_devices->alloc_list;
10773 	list_for_each_entry(device, devices, dev_alloc_list) {
10774 		ret = btrfs_trim_free_extents(device, range->minlen,
10775 					      &group_trimmed);
10776 		if (ret)
10777 			break;
10778 
10779 		trimmed += group_trimmed;
10780 	}
10781 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10782 
10783 	range->len = trimmed;
10784 	return ret;
10785 }
10786 
10787 /*
10788  * btrfs_{start,end}_write_no_snapshoting() are similar to
10789  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10790  * data into the page cache through nocow before the subvolume is snapshoted,
10791  * but flush the data into disk after the snapshot creation, or to prevent
10792  * operations while snapshoting is ongoing and that cause the snapshot to be
10793  * inconsistent (writes followed by expanding truncates for example).
10794  */
10795 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10796 {
10797 	percpu_counter_dec(&root->subv_writers->counter);
10798 	/*
10799 	 * Make sure counter is updated before we wake up waiters.
10800 	 */
10801 	smp_mb();
10802 	if (waitqueue_active(&root->subv_writers->wait))
10803 		wake_up(&root->subv_writers->wait);
10804 }
10805 
10806 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10807 {
10808 	if (atomic_read(&root->will_be_snapshoted))
10809 		return 0;
10810 
10811 	percpu_counter_inc(&root->subv_writers->counter);
10812 	/*
10813 	 * Make sure counter is updated before we check for snapshot creation.
10814 	 */
10815 	smp_mb();
10816 	if (atomic_read(&root->will_be_snapshoted)) {
10817 		btrfs_end_write_no_snapshoting(root);
10818 		return 0;
10819 	}
10820 	return 1;
10821 }
10822 
10823 static int wait_snapshoting_atomic_t(atomic_t *a)
10824 {
10825 	schedule();
10826 	return 0;
10827 }
10828 
10829 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10830 {
10831 	while (true) {
10832 		int ret;
10833 
10834 		ret = btrfs_start_write_no_snapshoting(root);
10835 		if (ret)
10836 			break;
10837 		wait_on_atomic_t(&root->will_be_snapshoted,
10838 				 wait_snapshoting_atomic_t,
10839 				 TASK_UNINTERRUPTIBLE);
10840 	}
10841 }
10842