1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "tree-log.h" 20 #include "disk-io.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "locking.h" 25 #include "free-space-cache.h" 26 #include "free-space-tree.h" 27 #include "math.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 32 #undef SCRAMBLE_DELAYED_REFS 33 34 /* 35 * control flags for do_chunk_alloc's force field 36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 37 * if we really need one. 38 * 39 * CHUNK_ALLOC_LIMITED means to only try and allocate one 40 * if we have very few chunks already allocated. This is 41 * used as part of the clustering code to help make sure 42 * we have a good pool of storage to cluster in, without 43 * filling the FS with empty chunks 44 * 45 * CHUNK_ALLOC_FORCE means it must try to allocate one 46 * 47 */ 48 enum { 49 CHUNK_ALLOC_NO_FORCE = 0, 50 CHUNK_ALLOC_LIMITED = 1, 51 CHUNK_ALLOC_FORCE = 2, 52 }; 53 54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 55 struct btrfs_fs_info *fs_info, 56 struct btrfs_delayed_ref_node *node, u64 parent, 57 u64 root_objectid, u64 owner_objectid, 58 u64 owner_offset, int refs_to_drop, 59 struct btrfs_delayed_extent_op *extra_op); 60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 61 struct extent_buffer *leaf, 62 struct btrfs_extent_item *ei); 63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 64 struct btrfs_fs_info *fs_info, 65 u64 parent, u64 root_objectid, 66 u64 flags, u64 owner, u64 offset, 67 struct btrfs_key *ins, int ref_mod); 68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 69 struct btrfs_fs_info *fs_info, 70 u64 parent, u64 root_objectid, 71 u64 flags, struct btrfs_disk_key *key, 72 int level, struct btrfs_key *ins); 73 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 74 struct btrfs_fs_info *fs_info, u64 flags, 75 int force); 76 static int find_next_key(struct btrfs_path *path, int level, 77 struct btrfs_key *key); 78 static void dump_space_info(struct btrfs_fs_info *fs_info, 79 struct btrfs_space_info *info, u64 bytes, 80 int dump_block_groups); 81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 82 u64 num_bytes); 83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 84 struct btrfs_space_info *space_info, 85 u64 num_bytes); 86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 87 struct btrfs_space_info *space_info, 88 u64 num_bytes); 89 90 static noinline int 91 block_group_cache_done(struct btrfs_block_group_cache *cache) 92 { 93 smp_mb(); 94 return cache->cached == BTRFS_CACHE_FINISHED || 95 cache->cached == BTRFS_CACHE_ERROR; 96 } 97 98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 99 { 100 return (cache->flags & bits) == bits; 101 } 102 103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 104 { 105 atomic_inc(&cache->count); 106 } 107 108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 109 { 110 if (atomic_dec_and_test(&cache->count)) { 111 WARN_ON(cache->pinned > 0); 112 WARN_ON(cache->reserved > 0); 113 114 /* 115 * If not empty, someone is still holding mutex of 116 * full_stripe_lock, which can only be released by caller. 117 * And it will definitely cause use-after-free when caller 118 * tries to release full stripe lock. 119 * 120 * No better way to resolve, but only to warn. 121 */ 122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 123 kfree(cache->free_space_ctl); 124 kfree(cache); 125 } 126 } 127 128 /* 129 * this adds the block group to the fs_info rb tree for the block group 130 * cache 131 */ 132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 133 struct btrfs_block_group_cache *block_group) 134 { 135 struct rb_node **p; 136 struct rb_node *parent = NULL; 137 struct btrfs_block_group_cache *cache; 138 139 spin_lock(&info->block_group_cache_lock); 140 p = &info->block_group_cache_tree.rb_node; 141 142 while (*p) { 143 parent = *p; 144 cache = rb_entry(parent, struct btrfs_block_group_cache, 145 cache_node); 146 if (block_group->key.objectid < cache->key.objectid) { 147 p = &(*p)->rb_left; 148 } else if (block_group->key.objectid > cache->key.objectid) { 149 p = &(*p)->rb_right; 150 } else { 151 spin_unlock(&info->block_group_cache_lock); 152 return -EEXIST; 153 } 154 } 155 156 rb_link_node(&block_group->cache_node, parent, p); 157 rb_insert_color(&block_group->cache_node, 158 &info->block_group_cache_tree); 159 160 if (info->first_logical_byte > block_group->key.objectid) 161 info->first_logical_byte = block_group->key.objectid; 162 163 spin_unlock(&info->block_group_cache_lock); 164 165 return 0; 166 } 167 168 /* 169 * This will return the block group at or after bytenr if contains is 0, else 170 * it will return the block group that contains the bytenr 171 */ 172 static struct btrfs_block_group_cache * 173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 174 int contains) 175 { 176 struct btrfs_block_group_cache *cache, *ret = NULL; 177 struct rb_node *n; 178 u64 end, start; 179 180 spin_lock(&info->block_group_cache_lock); 181 n = info->block_group_cache_tree.rb_node; 182 183 while (n) { 184 cache = rb_entry(n, struct btrfs_block_group_cache, 185 cache_node); 186 end = cache->key.objectid + cache->key.offset - 1; 187 start = cache->key.objectid; 188 189 if (bytenr < start) { 190 if (!contains && (!ret || start < ret->key.objectid)) 191 ret = cache; 192 n = n->rb_left; 193 } else if (bytenr > start) { 194 if (contains && bytenr <= end) { 195 ret = cache; 196 break; 197 } 198 n = n->rb_right; 199 } else { 200 ret = cache; 201 break; 202 } 203 } 204 if (ret) { 205 btrfs_get_block_group(ret); 206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 207 info->first_logical_byte = ret->key.objectid; 208 } 209 spin_unlock(&info->block_group_cache_lock); 210 211 return ret; 212 } 213 214 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 215 u64 start, u64 num_bytes) 216 { 217 u64 end = start + num_bytes - 1; 218 set_extent_bits(&fs_info->freed_extents[0], 219 start, end, EXTENT_UPTODATE); 220 set_extent_bits(&fs_info->freed_extents[1], 221 start, end, EXTENT_UPTODATE); 222 return 0; 223 } 224 225 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 226 struct btrfs_block_group_cache *cache) 227 { 228 u64 start, end; 229 230 start = cache->key.objectid; 231 end = start + cache->key.offset - 1; 232 233 clear_extent_bits(&fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE); 235 clear_extent_bits(&fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE); 237 } 238 239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 240 struct btrfs_block_group_cache *cache) 241 { 242 u64 bytenr; 243 u64 *logical; 244 int stripe_len; 245 int i, nr, ret; 246 247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 249 cache->bytes_super += stripe_len; 250 ret = add_excluded_extent(fs_info, cache->key.objectid, 251 stripe_len); 252 if (ret) 253 return ret; 254 } 255 256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 257 bytenr = btrfs_sb_offset(i); 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 259 bytenr, 0, &logical, &nr, &stripe_len); 260 if (ret) 261 return ret; 262 263 while (nr--) { 264 u64 start, len; 265 266 if (logical[nr] > cache->key.objectid + 267 cache->key.offset) 268 continue; 269 270 if (logical[nr] + stripe_len <= cache->key.objectid) 271 continue; 272 273 start = logical[nr]; 274 if (start < cache->key.objectid) { 275 start = cache->key.objectid; 276 len = (logical[nr] + stripe_len) - start; 277 } else { 278 len = min_t(u64, stripe_len, 279 cache->key.objectid + 280 cache->key.offset - start); 281 } 282 283 cache->bytes_super += len; 284 ret = add_excluded_extent(fs_info, start, len); 285 if (ret) { 286 kfree(logical); 287 return ret; 288 } 289 } 290 291 kfree(logical); 292 } 293 return 0; 294 } 295 296 static struct btrfs_caching_control * 297 get_caching_control(struct btrfs_block_group_cache *cache) 298 { 299 struct btrfs_caching_control *ctl; 300 301 spin_lock(&cache->lock); 302 if (!cache->caching_ctl) { 303 spin_unlock(&cache->lock); 304 return NULL; 305 } 306 307 ctl = cache->caching_ctl; 308 refcount_inc(&ctl->count); 309 spin_unlock(&cache->lock); 310 return ctl; 311 } 312 313 static void put_caching_control(struct btrfs_caching_control *ctl) 314 { 315 if (refcount_dec_and_test(&ctl->count)) 316 kfree(ctl); 317 } 318 319 #ifdef CONFIG_BTRFS_DEBUG 320 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 321 { 322 struct btrfs_fs_info *fs_info = block_group->fs_info; 323 u64 start = block_group->key.objectid; 324 u64 len = block_group->key.offset; 325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 326 fs_info->nodesize : fs_info->sectorsize; 327 u64 step = chunk << 1; 328 329 while (len > chunk) { 330 btrfs_remove_free_space(block_group, start, chunk); 331 start += step; 332 if (len < step) 333 len = 0; 334 else 335 len -= step; 336 } 337 } 338 #endif 339 340 /* 341 * this is only called by cache_block_group, since we could have freed extents 342 * we need to check the pinned_extents for any extents that can't be used yet 343 * since their free space will be released as soon as the transaction commits. 344 */ 345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 346 struct btrfs_fs_info *info, u64 start, u64 end) 347 { 348 u64 extent_start, extent_end, size, total_added = 0; 349 int ret; 350 351 while (start < end) { 352 ret = find_first_extent_bit(info->pinned_extents, start, 353 &extent_start, &extent_end, 354 EXTENT_DIRTY | EXTENT_UPTODATE, 355 NULL); 356 if (ret) 357 break; 358 359 if (extent_start <= start) { 360 start = extent_end + 1; 361 } else if (extent_start > start && extent_start < end) { 362 size = extent_start - start; 363 total_added += size; 364 ret = btrfs_add_free_space(block_group, start, 365 size); 366 BUG_ON(ret); /* -ENOMEM or logic error */ 367 start = extent_end + 1; 368 } else { 369 break; 370 } 371 } 372 373 if (start < end) { 374 size = end - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, size); 377 BUG_ON(ret); /* -ENOMEM or logic error */ 378 } 379 380 return total_added; 381 } 382 383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 384 { 385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 386 struct btrfs_fs_info *fs_info = block_group->fs_info; 387 struct btrfs_root *extent_root = fs_info->extent_root; 388 struct btrfs_path *path; 389 struct extent_buffer *leaf; 390 struct btrfs_key key; 391 u64 total_found = 0; 392 u64 last = 0; 393 u32 nritems; 394 int ret; 395 bool wakeup = true; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 return -ENOMEM; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 #ifdef CONFIG_BTRFS_DEBUG 404 /* 405 * If we're fragmenting we don't want to make anybody think we can 406 * allocate from this block group until we've had a chance to fragment 407 * the free space. 408 */ 409 if (btrfs_should_fragment_free_space(block_group)) 410 wakeup = false; 411 #endif 412 /* 413 * We don't want to deadlock with somebody trying to allocate a new 414 * extent for the extent root while also trying to search the extent 415 * root to add free space. So we skip locking and search the commit 416 * root, since its read-only 417 */ 418 path->skip_locking = 1; 419 path->search_commit_root = 1; 420 path->reada = READA_FORWARD; 421 422 key.objectid = last; 423 key.offset = 0; 424 key.type = BTRFS_EXTENT_ITEM_KEY; 425 426 next: 427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 428 if (ret < 0) 429 goto out; 430 431 leaf = path->nodes[0]; 432 nritems = btrfs_header_nritems(leaf); 433 434 while (1) { 435 if (btrfs_fs_closing(fs_info) > 1) { 436 last = (u64)-1; 437 break; 438 } 439 440 if (path->slots[0] < nritems) { 441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 442 } else { 443 ret = find_next_key(path, 0, &key); 444 if (ret) 445 break; 446 447 if (need_resched() || 448 rwsem_is_contended(&fs_info->commit_root_sem)) { 449 if (wakeup) 450 caching_ctl->progress = last; 451 btrfs_release_path(path); 452 up_read(&fs_info->commit_root_sem); 453 mutex_unlock(&caching_ctl->mutex); 454 cond_resched(); 455 mutex_lock(&caching_ctl->mutex); 456 down_read(&fs_info->commit_root_sem); 457 goto next; 458 } 459 460 ret = btrfs_next_leaf(extent_root, path); 461 if (ret < 0) 462 goto out; 463 if (ret) 464 break; 465 leaf = path->nodes[0]; 466 nritems = btrfs_header_nritems(leaf); 467 continue; 468 } 469 470 if (key.objectid < last) { 471 key.objectid = last; 472 key.offset = 0; 473 key.type = BTRFS_EXTENT_ITEM_KEY; 474 475 if (wakeup) 476 caching_ctl->progress = last; 477 btrfs_release_path(path); 478 goto next; 479 } 480 481 if (key.objectid < block_group->key.objectid) { 482 path->slots[0]++; 483 continue; 484 } 485 486 if (key.objectid >= block_group->key.objectid + 487 block_group->key.offset) 488 break; 489 490 if (key.type == BTRFS_EXTENT_ITEM_KEY || 491 key.type == BTRFS_METADATA_ITEM_KEY) { 492 total_found += add_new_free_space(block_group, 493 fs_info, last, 494 key.objectid); 495 if (key.type == BTRFS_METADATA_ITEM_KEY) 496 last = key.objectid + 497 fs_info->nodesize; 498 else 499 last = key.objectid + key.offset; 500 501 if (total_found > CACHING_CTL_WAKE_UP) { 502 total_found = 0; 503 if (wakeup) 504 wake_up(&caching_ctl->wait); 505 } 506 } 507 path->slots[0]++; 508 } 509 ret = 0; 510 511 total_found += add_new_free_space(block_group, fs_info, last, 512 block_group->key.objectid + 513 block_group->key.offset); 514 caching_ctl->progress = (u64)-1; 515 516 out: 517 btrfs_free_path(path); 518 return ret; 519 } 520 521 static noinline void caching_thread(struct btrfs_work *work) 522 { 523 struct btrfs_block_group_cache *block_group; 524 struct btrfs_fs_info *fs_info; 525 struct btrfs_caching_control *caching_ctl; 526 int ret; 527 528 caching_ctl = container_of(work, struct btrfs_caching_control, work); 529 block_group = caching_ctl->block_group; 530 fs_info = block_group->fs_info; 531 532 mutex_lock(&caching_ctl->mutex); 533 down_read(&fs_info->commit_root_sem); 534 535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 536 ret = load_free_space_tree(caching_ctl); 537 else 538 ret = load_extent_tree_free(caching_ctl); 539 540 spin_lock(&block_group->lock); 541 block_group->caching_ctl = NULL; 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 543 spin_unlock(&block_group->lock); 544 545 #ifdef CONFIG_BTRFS_DEBUG 546 if (btrfs_should_fragment_free_space(block_group)) { 547 u64 bytes_used; 548 549 spin_lock(&block_group->space_info->lock); 550 spin_lock(&block_group->lock); 551 bytes_used = block_group->key.offset - 552 btrfs_block_group_used(&block_group->item); 553 block_group->space_info->bytes_used += bytes_used >> 1; 554 spin_unlock(&block_group->lock); 555 spin_unlock(&block_group->space_info->lock); 556 fragment_free_space(block_group); 557 } 558 #endif 559 560 caching_ctl->progress = (u64)-1; 561 562 up_read(&fs_info->commit_root_sem); 563 free_excluded_extents(fs_info, block_group); 564 mutex_unlock(&caching_ctl->mutex); 565 566 wake_up(&caching_ctl->wait); 567 568 put_caching_control(caching_ctl); 569 btrfs_put_block_group(block_group); 570 } 571 572 static int cache_block_group(struct btrfs_block_group_cache *cache, 573 int load_cache_only) 574 { 575 DEFINE_WAIT(wait); 576 struct btrfs_fs_info *fs_info = cache->fs_info; 577 struct btrfs_caching_control *caching_ctl; 578 int ret = 0; 579 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 581 if (!caching_ctl) 582 return -ENOMEM; 583 584 INIT_LIST_HEAD(&caching_ctl->list); 585 mutex_init(&caching_ctl->mutex); 586 init_waitqueue_head(&caching_ctl->wait); 587 caching_ctl->block_group = cache; 588 caching_ctl->progress = cache->key.objectid; 589 refcount_set(&caching_ctl->count, 1); 590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 591 caching_thread, NULL, NULL); 592 593 spin_lock(&cache->lock); 594 /* 595 * This should be a rare occasion, but this could happen I think in the 596 * case where one thread starts to load the space cache info, and then 597 * some other thread starts a transaction commit which tries to do an 598 * allocation while the other thread is still loading the space cache 599 * info. The previous loop should have kept us from choosing this block 600 * group, but if we've moved to the state where we will wait on caching 601 * block groups we need to first check if we're doing a fast load here, 602 * so we can wait for it to finish, otherwise we could end up allocating 603 * from a block group who's cache gets evicted for one reason or 604 * another. 605 */ 606 while (cache->cached == BTRFS_CACHE_FAST) { 607 struct btrfs_caching_control *ctl; 608 609 ctl = cache->caching_ctl; 610 refcount_inc(&ctl->count); 611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 612 spin_unlock(&cache->lock); 613 614 schedule(); 615 616 finish_wait(&ctl->wait, &wait); 617 put_caching_control(ctl); 618 spin_lock(&cache->lock); 619 } 620 621 if (cache->cached != BTRFS_CACHE_NO) { 622 spin_unlock(&cache->lock); 623 kfree(caching_ctl); 624 return 0; 625 } 626 WARN_ON(cache->caching_ctl); 627 cache->caching_ctl = caching_ctl; 628 cache->cached = BTRFS_CACHE_FAST; 629 spin_unlock(&cache->lock); 630 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 632 mutex_lock(&caching_ctl->mutex); 633 ret = load_free_space_cache(fs_info, cache); 634 635 spin_lock(&cache->lock); 636 if (ret == 1) { 637 cache->caching_ctl = NULL; 638 cache->cached = BTRFS_CACHE_FINISHED; 639 cache->last_byte_to_unpin = (u64)-1; 640 caching_ctl->progress = (u64)-1; 641 } else { 642 if (load_cache_only) { 643 cache->caching_ctl = NULL; 644 cache->cached = BTRFS_CACHE_NO; 645 } else { 646 cache->cached = BTRFS_CACHE_STARTED; 647 cache->has_caching_ctl = 1; 648 } 649 } 650 spin_unlock(&cache->lock); 651 #ifdef CONFIG_BTRFS_DEBUG 652 if (ret == 1 && 653 btrfs_should_fragment_free_space(cache)) { 654 u64 bytes_used; 655 656 spin_lock(&cache->space_info->lock); 657 spin_lock(&cache->lock); 658 bytes_used = cache->key.offset - 659 btrfs_block_group_used(&cache->item); 660 cache->space_info->bytes_used += bytes_used >> 1; 661 spin_unlock(&cache->lock); 662 spin_unlock(&cache->space_info->lock); 663 fragment_free_space(cache); 664 } 665 #endif 666 mutex_unlock(&caching_ctl->mutex); 667 668 wake_up(&caching_ctl->wait); 669 if (ret == 1) { 670 put_caching_control(caching_ctl); 671 free_excluded_extents(fs_info, cache); 672 return 0; 673 } 674 } else { 675 /* 676 * We're either using the free space tree or no caching at all. 677 * Set cached to the appropriate value and wakeup any waiters. 678 */ 679 spin_lock(&cache->lock); 680 if (load_cache_only) { 681 cache->caching_ctl = NULL; 682 cache->cached = BTRFS_CACHE_NO; 683 } else { 684 cache->cached = BTRFS_CACHE_STARTED; 685 cache->has_caching_ctl = 1; 686 } 687 spin_unlock(&cache->lock); 688 wake_up(&caching_ctl->wait); 689 } 690 691 if (load_cache_only) { 692 put_caching_control(caching_ctl); 693 return 0; 694 } 695 696 down_write(&fs_info->commit_root_sem); 697 refcount_inc(&caching_ctl->count); 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 699 up_write(&fs_info->commit_root_sem); 700 701 btrfs_get_block_group(cache); 702 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 704 705 return ret; 706 } 707 708 /* 709 * return the block group that starts at or after bytenr 710 */ 711 static struct btrfs_block_group_cache * 712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 713 { 714 return block_group_cache_tree_search(info, bytenr, 0); 715 } 716 717 /* 718 * return the block group that contains the given bytenr 719 */ 720 struct btrfs_block_group_cache *btrfs_lookup_block_group( 721 struct btrfs_fs_info *info, 722 u64 bytenr) 723 { 724 return block_group_cache_tree_search(info, bytenr, 1); 725 } 726 727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 728 u64 flags) 729 { 730 struct list_head *head = &info->space_info; 731 struct btrfs_space_info *found; 732 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 734 735 rcu_read_lock(); 736 list_for_each_entry_rcu(found, head, list) { 737 if (found->flags & flags) { 738 rcu_read_unlock(); 739 return found; 740 } 741 } 742 rcu_read_unlock(); 743 return NULL; 744 } 745 746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 747 u64 owner, u64 root_objectid) 748 { 749 struct btrfs_space_info *space_info; 750 u64 flags; 751 752 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 754 flags = BTRFS_BLOCK_GROUP_SYSTEM; 755 else 756 flags = BTRFS_BLOCK_GROUP_METADATA; 757 } else { 758 flags = BTRFS_BLOCK_GROUP_DATA; 759 } 760 761 space_info = __find_space_info(fs_info, flags); 762 ASSERT(space_info); 763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 764 } 765 766 /* 767 * after adding space to the filesystem, we need to clear the full flags 768 * on all the space infos. 769 */ 770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 771 { 772 struct list_head *head = &info->space_info; 773 struct btrfs_space_info *found; 774 775 rcu_read_lock(); 776 list_for_each_entry_rcu(found, head, list) 777 found->full = 0; 778 rcu_read_unlock(); 779 } 780 781 /* simple helper to search for an existing data extent at a given offset */ 782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 783 { 784 int ret; 785 struct btrfs_key key; 786 struct btrfs_path *path; 787 788 path = btrfs_alloc_path(); 789 if (!path) 790 return -ENOMEM; 791 792 key.objectid = start; 793 key.offset = len; 794 key.type = BTRFS_EXTENT_ITEM_KEY; 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 796 btrfs_free_path(path); 797 return ret; 798 } 799 800 /* 801 * helper function to lookup reference count and flags of a tree block. 802 * 803 * the head node for delayed ref is used to store the sum of all the 804 * reference count modifications queued up in the rbtree. the head 805 * node may also store the extent flags to set. This way you can check 806 * to see what the reference count and extent flags would be if all of 807 * the delayed refs are not processed. 808 */ 809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 810 struct btrfs_fs_info *fs_info, u64 bytenr, 811 u64 offset, int metadata, u64 *refs, u64 *flags) 812 { 813 struct btrfs_delayed_ref_head *head; 814 struct btrfs_delayed_ref_root *delayed_refs; 815 struct btrfs_path *path; 816 struct btrfs_extent_item *ei; 817 struct extent_buffer *leaf; 818 struct btrfs_key key; 819 u32 item_size; 820 u64 num_refs; 821 u64 extent_flags; 822 int ret; 823 824 /* 825 * If we don't have skinny metadata, don't bother doing anything 826 * different 827 */ 828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 829 offset = fs_info->nodesize; 830 metadata = 0; 831 } 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return -ENOMEM; 836 837 if (!trans) { 838 path->skip_locking = 1; 839 path->search_commit_root = 1; 840 } 841 842 search_again: 843 key.objectid = bytenr; 844 key.offset = offset; 845 if (metadata) 846 key.type = BTRFS_METADATA_ITEM_KEY; 847 else 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 851 if (ret < 0) 852 goto out_free; 853 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 855 if (path->slots[0]) { 856 path->slots[0]--; 857 btrfs_item_key_to_cpu(path->nodes[0], &key, 858 path->slots[0]); 859 if (key.objectid == bytenr && 860 key.type == BTRFS_EXTENT_ITEM_KEY && 861 key.offset == fs_info->nodesize) 862 ret = 0; 863 } 864 } 865 866 if (ret == 0) { 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (item_size >= sizeof(*ei)) { 870 ei = btrfs_item_ptr(leaf, path->slots[0], 871 struct btrfs_extent_item); 872 num_refs = btrfs_extent_refs(leaf, ei); 873 extent_flags = btrfs_extent_flags(leaf, ei); 874 } else { 875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 876 struct btrfs_extent_item_v0 *ei0; 877 BUG_ON(item_size != sizeof(*ei0)); 878 ei0 = btrfs_item_ptr(leaf, path->slots[0], 879 struct btrfs_extent_item_v0); 880 num_refs = btrfs_extent_refs_v0(leaf, ei0); 881 /* FIXME: this isn't correct for data */ 882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 883 #else 884 BUG(); 885 #endif 886 } 887 BUG_ON(num_refs == 0); 888 } else { 889 num_refs = 0; 890 extent_flags = 0; 891 ret = 0; 892 } 893 894 if (!trans) 895 goto out; 896 897 delayed_refs = &trans->transaction->delayed_refs; 898 spin_lock(&delayed_refs->lock); 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 900 if (head) { 901 if (!mutex_trylock(&head->mutex)) { 902 refcount_inc(&head->refs); 903 spin_unlock(&delayed_refs->lock); 904 905 btrfs_release_path(path); 906 907 /* 908 * Mutex was contended, block until it's released and try 909 * again 910 */ 911 mutex_lock(&head->mutex); 912 mutex_unlock(&head->mutex); 913 btrfs_put_delayed_ref_head(head); 914 goto search_again; 915 } 916 spin_lock(&head->lock); 917 if (head->extent_op && head->extent_op->update_flags) 918 extent_flags |= head->extent_op->flags_to_set; 919 else 920 BUG_ON(num_refs == 0); 921 922 num_refs += head->ref_mod; 923 spin_unlock(&head->lock); 924 mutex_unlock(&head->mutex); 925 } 926 spin_unlock(&delayed_refs->lock); 927 out: 928 WARN_ON(num_refs == 0); 929 if (refs) 930 *refs = num_refs; 931 if (flags) 932 *flags = extent_flags; 933 out_free: 934 btrfs_free_path(path); 935 return ret; 936 } 937 938 /* 939 * Back reference rules. Back refs have three main goals: 940 * 941 * 1) differentiate between all holders of references to an extent so that 942 * when a reference is dropped we can make sure it was a valid reference 943 * before freeing the extent. 944 * 945 * 2) Provide enough information to quickly find the holders of an extent 946 * if we notice a given block is corrupted or bad. 947 * 948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 949 * maintenance. This is actually the same as #2, but with a slightly 950 * different use case. 951 * 952 * There are two kinds of back refs. The implicit back refs is optimized 953 * for pointers in non-shared tree blocks. For a given pointer in a block, 954 * back refs of this kind provide information about the block's owner tree 955 * and the pointer's key. These information allow us to find the block by 956 * b-tree searching. The full back refs is for pointers in tree blocks not 957 * referenced by their owner trees. The location of tree block is recorded 958 * in the back refs. Actually the full back refs is generic, and can be 959 * used in all cases the implicit back refs is used. The major shortcoming 960 * of the full back refs is its overhead. Every time a tree block gets 961 * COWed, we have to update back refs entry for all pointers in it. 962 * 963 * For a newly allocated tree block, we use implicit back refs for 964 * pointers in it. This means most tree related operations only involve 965 * implicit back refs. For a tree block created in old transaction, the 966 * only way to drop a reference to it is COW it. So we can detect the 967 * event that tree block loses its owner tree's reference and do the 968 * back refs conversion. 969 * 970 * When a tree block is COWed through a tree, there are four cases: 971 * 972 * The reference count of the block is one and the tree is the block's 973 * owner tree. Nothing to do in this case. 974 * 975 * The reference count of the block is one and the tree is not the 976 * block's owner tree. In this case, full back refs is used for pointers 977 * in the block. Remove these full back refs, add implicit back refs for 978 * every pointers in the new block. 979 * 980 * The reference count of the block is greater than one and the tree is 981 * the block's owner tree. In this case, implicit back refs is used for 982 * pointers in the block. Add full back refs for every pointers in the 983 * block, increase lower level extents' reference counts. The original 984 * implicit back refs are entailed to the new block. 985 * 986 * The reference count of the block is greater than one and the tree is 987 * not the block's owner tree. Add implicit back refs for every pointer in 988 * the new block, increase lower level extents' reference count. 989 * 990 * Back Reference Key composing: 991 * 992 * The key objectid corresponds to the first byte in the extent, 993 * The key type is used to differentiate between types of back refs. 994 * There are different meanings of the key offset for different types 995 * of back refs. 996 * 997 * File extents can be referenced by: 998 * 999 * - multiple snapshots, subvolumes, or different generations in one subvol 1000 * - different files inside a single subvolume 1001 * - different offsets inside a file (bookend extents in file.c) 1002 * 1003 * The extent ref structure for the implicit back refs has fields for: 1004 * 1005 * - Objectid of the subvolume root 1006 * - objectid of the file holding the reference 1007 * - original offset in the file 1008 * - how many bookend extents 1009 * 1010 * The key offset for the implicit back refs is hash of the first 1011 * three fields. 1012 * 1013 * The extent ref structure for the full back refs has field for: 1014 * 1015 * - number of pointers in the tree leaf 1016 * 1017 * The key offset for the implicit back refs is the first byte of 1018 * the tree leaf 1019 * 1020 * When a file extent is allocated, The implicit back refs is used. 1021 * the fields are filled in: 1022 * 1023 * (root_key.objectid, inode objectid, offset in file, 1) 1024 * 1025 * When a file extent is removed file truncation, we find the 1026 * corresponding implicit back refs and check the following fields: 1027 * 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1029 * 1030 * Btree extents can be referenced by: 1031 * 1032 * - Different subvolumes 1033 * 1034 * Both the implicit back refs and the full back refs for tree blocks 1035 * only consist of key. The key offset for the implicit back refs is 1036 * objectid of block's owner tree. The key offset for the full back refs 1037 * is the first byte of parent block. 1038 * 1039 * When implicit back refs is used, information about the lowest key and 1040 * level of the tree block are required. These information are stored in 1041 * tree block info structure. 1042 */ 1043 1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1046 struct btrfs_fs_info *fs_info, 1047 struct btrfs_path *path, 1048 u64 owner, u32 extra_size) 1049 { 1050 struct btrfs_root *root = fs_info->extent_root; 1051 struct btrfs_extent_item *item; 1052 struct btrfs_extent_item_v0 *ei0; 1053 struct btrfs_extent_ref_v0 *ref0; 1054 struct btrfs_tree_block_info *bi; 1055 struct extent_buffer *leaf; 1056 struct btrfs_key key; 1057 struct btrfs_key found_key; 1058 u32 new_size = sizeof(*item); 1059 u64 refs; 1060 int ret; 1061 1062 leaf = path->nodes[0]; 1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1064 1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1066 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_extent_item_v0); 1068 refs = btrfs_extent_refs_v0(leaf, ei0); 1069 1070 if (owner == (u64)-1) { 1071 while (1) { 1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1073 ret = btrfs_next_leaf(root, path); 1074 if (ret < 0) 1075 return ret; 1076 BUG_ON(ret > 0); /* Corruption */ 1077 leaf = path->nodes[0]; 1078 } 1079 btrfs_item_key_to_cpu(leaf, &found_key, 1080 path->slots[0]); 1081 BUG_ON(key.objectid != found_key.objectid); 1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1083 path->slots[0]++; 1084 continue; 1085 } 1086 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_extent_ref_v0); 1088 owner = btrfs_ref_objectid_v0(leaf, ref0); 1089 break; 1090 } 1091 } 1092 btrfs_release_path(path); 1093 1094 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1095 new_size += sizeof(*bi); 1096 1097 new_size -= sizeof(*ei0); 1098 ret = btrfs_search_slot(trans, root, &key, path, 1099 new_size + extra_size, 1); 1100 if (ret < 0) 1101 return ret; 1102 BUG_ON(ret); /* Corruption */ 1103 1104 btrfs_extend_item(fs_info, path, new_size); 1105 1106 leaf = path->nodes[0]; 1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1108 btrfs_set_extent_refs(leaf, item, refs); 1109 /* FIXME: get real generation */ 1110 btrfs_set_extent_generation(leaf, item, 0); 1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1112 btrfs_set_extent_flags(leaf, item, 1113 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1114 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1115 bi = (struct btrfs_tree_block_info *)(item + 1); 1116 /* FIXME: get first key of the block */ 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1118 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1119 } else { 1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1121 } 1122 btrfs_mark_buffer_dirty(leaf); 1123 return 0; 1124 } 1125 #endif 1126 1127 /* 1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1131 */ 1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1133 struct btrfs_extent_inline_ref *iref, 1134 enum btrfs_inline_ref_type is_data) 1135 { 1136 int type = btrfs_extent_inline_ref_type(eb, iref); 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1138 1139 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1140 type == BTRFS_SHARED_BLOCK_REF_KEY || 1141 type == BTRFS_SHARED_DATA_REF_KEY || 1142 type == BTRFS_EXTENT_DATA_REF_KEY) { 1143 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1145 return type; 1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1147 ASSERT(eb->fs_info); 1148 /* 1149 * Every shared one has parent tree 1150 * block, which must be aligned to 1151 * nodesize. 1152 */ 1153 if (offset && 1154 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1155 return type; 1156 } 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else { 1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1173 return type; 1174 } 1175 } 1176 1177 btrfs_print_leaf((struct extent_buffer *)eb); 1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1179 eb->start, type); 1180 WARN_ON(1); 1181 1182 return BTRFS_REF_TYPE_INVALID; 1183 } 1184 1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1186 { 1187 u32 high_crc = ~(u32)0; 1188 u32 low_crc = ~(u32)0; 1189 __le64 lenum; 1190 1191 lenum = cpu_to_le64(root_objectid); 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1193 lenum = cpu_to_le64(owner); 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1195 lenum = cpu_to_le64(offset); 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1197 1198 return ((u64)high_crc << 31) ^ (u64)low_crc; 1199 } 1200 1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1202 struct btrfs_extent_data_ref *ref) 1203 { 1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1205 btrfs_extent_data_ref_objectid(leaf, ref), 1206 btrfs_extent_data_ref_offset(leaf, ref)); 1207 } 1208 1209 static int match_extent_data_ref(struct extent_buffer *leaf, 1210 struct btrfs_extent_data_ref *ref, 1211 u64 root_objectid, u64 owner, u64 offset) 1212 { 1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1215 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1216 return 0; 1217 return 1; 1218 } 1219 1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1221 struct btrfs_fs_info *fs_info, 1222 struct btrfs_path *path, 1223 u64 bytenr, u64 parent, 1224 u64 root_objectid, 1225 u64 owner, u64 offset) 1226 { 1227 struct btrfs_root *root = fs_info->extent_root; 1228 struct btrfs_key key; 1229 struct btrfs_extent_data_ref *ref; 1230 struct extent_buffer *leaf; 1231 u32 nritems; 1232 int ret; 1233 int recow; 1234 int err = -ENOENT; 1235 1236 key.objectid = bytenr; 1237 if (parent) { 1238 key.type = BTRFS_SHARED_DATA_REF_KEY; 1239 key.offset = parent; 1240 } else { 1241 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1242 key.offset = hash_extent_data_ref(root_objectid, 1243 owner, offset); 1244 } 1245 again: 1246 recow = 0; 1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1248 if (ret < 0) { 1249 err = ret; 1250 goto fail; 1251 } 1252 1253 if (parent) { 1254 if (!ret) 1255 return 0; 1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1257 key.type = BTRFS_EXTENT_REF_V0_KEY; 1258 btrfs_release_path(path); 1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1260 if (ret < 0) { 1261 err = ret; 1262 goto fail; 1263 } 1264 if (!ret) 1265 return 0; 1266 #endif 1267 goto fail; 1268 } 1269 1270 leaf = path->nodes[0]; 1271 nritems = btrfs_header_nritems(leaf); 1272 while (1) { 1273 if (path->slots[0] >= nritems) { 1274 ret = btrfs_next_leaf(root, path); 1275 if (ret < 0) 1276 err = ret; 1277 if (ret) 1278 goto fail; 1279 1280 leaf = path->nodes[0]; 1281 nritems = btrfs_header_nritems(leaf); 1282 recow = 1; 1283 } 1284 1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1286 if (key.objectid != bytenr || 1287 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1288 goto fail; 1289 1290 ref = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_extent_data_ref); 1292 1293 if (match_extent_data_ref(leaf, ref, root_objectid, 1294 owner, offset)) { 1295 if (recow) { 1296 btrfs_release_path(path); 1297 goto again; 1298 } 1299 err = 0; 1300 break; 1301 } 1302 path->slots[0]++; 1303 } 1304 fail: 1305 return err; 1306 } 1307 1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info, 1310 struct btrfs_path *path, 1311 u64 bytenr, u64 parent, 1312 u64 root_objectid, u64 owner, 1313 u64 offset, int refs_to_add) 1314 { 1315 struct btrfs_root *root = fs_info->extent_root; 1316 struct btrfs_key key; 1317 struct extent_buffer *leaf; 1318 u32 size; 1319 u32 num_refs; 1320 int ret; 1321 1322 key.objectid = bytenr; 1323 if (parent) { 1324 key.type = BTRFS_SHARED_DATA_REF_KEY; 1325 key.offset = parent; 1326 size = sizeof(struct btrfs_shared_data_ref); 1327 } else { 1328 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1329 key.offset = hash_extent_data_ref(root_objectid, 1330 owner, offset); 1331 size = sizeof(struct btrfs_extent_data_ref); 1332 } 1333 1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1335 if (ret && ret != -EEXIST) 1336 goto fail; 1337 1338 leaf = path->nodes[0]; 1339 if (parent) { 1340 struct btrfs_shared_data_ref *ref; 1341 ref = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_shared_data_ref); 1343 if (ret == 0) { 1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1345 } else { 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1347 num_refs += refs_to_add; 1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1349 } 1350 } else { 1351 struct btrfs_extent_data_ref *ref; 1352 while (ret == -EEXIST) { 1353 ref = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_extent_data_ref); 1355 if (match_extent_data_ref(leaf, ref, root_objectid, 1356 owner, offset)) 1357 break; 1358 btrfs_release_path(path); 1359 key.offset++; 1360 ret = btrfs_insert_empty_item(trans, root, path, &key, 1361 size); 1362 if (ret && ret != -EEXIST) 1363 goto fail; 1364 1365 leaf = path->nodes[0]; 1366 } 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (ret == 0) { 1370 btrfs_set_extent_data_ref_root(leaf, ref, 1371 root_objectid); 1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1375 } else { 1376 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1377 num_refs += refs_to_add; 1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1379 } 1380 } 1381 btrfs_mark_buffer_dirty(leaf); 1382 ret = 0; 1383 fail: 1384 btrfs_release_path(path); 1385 return ret; 1386 } 1387 1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info, 1390 struct btrfs_path *path, 1391 int refs_to_drop, int *last_ref) 1392 { 1393 struct btrfs_key key; 1394 struct btrfs_extent_data_ref *ref1 = NULL; 1395 struct btrfs_shared_data_ref *ref2 = NULL; 1396 struct extent_buffer *leaf; 1397 u32 num_refs = 0; 1398 int ret = 0; 1399 1400 leaf = path->nodes[0]; 1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1402 1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1404 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1405 struct btrfs_extent_data_ref); 1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1408 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1409 struct btrfs_shared_data_ref); 1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1413 struct btrfs_extent_ref_v0 *ref0; 1414 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1415 struct btrfs_extent_ref_v0); 1416 num_refs = btrfs_ref_count_v0(leaf, ref0); 1417 #endif 1418 } else { 1419 BUG(); 1420 } 1421 1422 BUG_ON(num_refs < refs_to_drop); 1423 num_refs -= refs_to_drop; 1424 1425 if (num_refs == 0) { 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1427 *last_ref = 1; 1428 } else { 1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1434 else { 1435 struct btrfs_extent_ref_v0 *ref0; 1436 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1437 struct btrfs_extent_ref_v0); 1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1439 } 1440 #endif 1441 btrfs_mark_buffer_dirty(leaf); 1442 } 1443 return ret; 1444 } 1445 1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1447 struct btrfs_extent_inline_ref *iref) 1448 { 1449 struct btrfs_key key; 1450 struct extent_buffer *leaf; 1451 struct btrfs_extent_data_ref *ref1; 1452 struct btrfs_shared_data_ref *ref2; 1453 u32 num_refs = 0; 1454 int type; 1455 1456 leaf = path->nodes[0]; 1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1458 if (iref) { 1459 /* 1460 * If type is invalid, we should have bailed out earlier than 1461 * this call. 1462 */ 1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1464 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1468 } else { 1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1471 } 1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1473 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1474 struct btrfs_extent_data_ref); 1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1477 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1478 struct btrfs_shared_data_ref); 1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1482 struct btrfs_extent_ref_v0 *ref0; 1483 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1484 struct btrfs_extent_ref_v0); 1485 num_refs = btrfs_ref_count_v0(leaf, ref0); 1486 #endif 1487 } else { 1488 WARN_ON(1); 1489 } 1490 return num_refs; 1491 } 1492 1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1494 struct btrfs_fs_info *fs_info, 1495 struct btrfs_path *path, 1496 u64 bytenr, u64 parent, 1497 u64 root_objectid) 1498 { 1499 struct btrfs_root *root = fs_info->extent_root; 1500 struct btrfs_key key; 1501 int ret; 1502 1503 key.objectid = bytenr; 1504 if (parent) { 1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1506 key.offset = parent; 1507 } else { 1508 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1509 key.offset = root_objectid; 1510 } 1511 1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1513 if (ret > 0) 1514 ret = -ENOENT; 1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1516 if (ret == -ENOENT && parent) { 1517 btrfs_release_path(path); 1518 key.type = BTRFS_EXTENT_REF_V0_KEY; 1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1520 if (ret > 0) 1521 ret = -ENOENT; 1522 } 1523 #endif 1524 return ret; 1525 } 1526 1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1528 struct btrfs_fs_info *fs_info, 1529 struct btrfs_path *path, 1530 u64 bytenr, u64 parent, 1531 u64 root_objectid) 1532 { 1533 struct btrfs_key key; 1534 int ret; 1535 1536 key.objectid = bytenr; 1537 if (parent) { 1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1539 key.offset = parent; 1540 } else { 1541 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1542 key.offset = root_objectid; 1543 } 1544 1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1546 path, &key, 0); 1547 btrfs_release_path(path); 1548 return ret; 1549 } 1550 1551 static inline int extent_ref_type(u64 parent, u64 owner) 1552 { 1553 int type; 1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1555 if (parent > 0) 1556 type = BTRFS_SHARED_BLOCK_REF_KEY; 1557 else 1558 type = BTRFS_TREE_BLOCK_REF_KEY; 1559 } else { 1560 if (parent > 0) 1561 type = BTRFS_SHARED_DATA_REF_KEY; 1562 else 1563 type = BTRFS_EXTENT_DATA_REF_KEY; 1564 } 1565 return type; 1566 } 1567 1568 static int find_next_key(struct btrfs_path *path, int level, 1569 struct btrfs_key *key) 1570 1571 { 1572 for (; level < BTRFS_MAX_LEVEL; level++) { 1573 if (!path->nodes[level]) 1574 break; 1575 if (path->slots[level] + 1 >= 1576 btrfs_header_nritems(path->nodes[level])) 1577 continue; 1578 if (level == 0) 1579 btrfs_item_key_to_cpu(path->nodes[level], key, 1580 path->slots[level] + 1); 1581 else 1582 btrfs_node_key_to_cpu(path->nodes[level], key, 1583 path->slots[level] + 1); 1584 return 0; 1585 } 1586 return 1; 1587 } 1588 1589 /* 1590 * look for inline back ref. if back ref is found, *ref_ret is set 1591 * to the address of inline back ref, and 0 is returned. 1592 * 1593 * if back ref isn't found, *ref_ret is set to the address where it 1594 * should be inserted, and -ENOENT is returned. 1595 * 1596 * if insert is true and there are too many inline back refs, the path 1597 * points to the extent item, and -EAGAIN is returned. 1598 * 1599 * NOTE: inline back refs are ordered in the same way that back ref 1600 * items in the tree are ordered. 1601 */ 1602 static noinline_for_stack 1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1604 struct btrfs_fs_info *fs_info, 1605 struct btrfs_path *path, 1606 struct btrfs_extent_inline_ref **ref_ret, 1607 u64 bytenr, u64 num_bytes, 1608 u64 parent, u64 root_objectid, 1609 u64 owner, u64 offset, int insert) 1610 { 1611 struct btrfs_root *root = fs_info->extent_root; 1612 struct btrfs_key key; 1613 struct extent_buffer *leaf; 1614 struct btrfs_extent_item *ei; 1615 struct btrfs_extent_inline_ref *iref; 1616 u64 flags; 1617 u64 item_size; 1618 unsigned long ptr; 1619 unsigned long end; 1620 int extra_size; 1621 int type; 1622 int want; 1623 int ret; 1624 int err = 0; 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1626 int needed; 1627 1628 key.objectid = bytenr; 1629 key.type = BTRFS_EXTENT_ITEM_KEY; 1630 key.offset = num_bytes; 1631 1632 want = extent_ref_type(parent, owner); 1633 if (insert) { 1634 extra_size = btrfs_extent_inline_ref_size(want); 1635 path->keep_locks = 1; 1636 } else 1637 extra_size = -1; 1638 1639 /* 1640 * Owner is our parent level, so we can just add one to get the level 1641 * for the block we are interested in. 1642 */ 1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1644 key.type = BTRFS_METADATA_ITEM_KEY; 1645 key.offset = owner; 1646 } 1647 1648 again: 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1650 if (ret < 0) { 1651 err = ret; 1652 goto out; 1653 } 1654 1655 /* 1656 * We may be a newly converted file system which still has the old fat 1657 * extent entries for metadata, so try and see if we have one of those. 1658 */ 1659 if (ret > 0 && skinny_metadata) { 1660 skinny_metadata = false; 1661 if (path->slots[0]) { 1662 path->slots[0]--; 1663 btrfs_item_key_to_cpu(path->nodes[0], &key, 1664 path->slots[0]); 1665 if (key.objectid == bytenr && 1666 key.type == BTRFS_EXTENT_ITEM_KEY && 1667 key.offset == num_bytes) 1668 ret = 0; 1669 } 1670 if (ret) { 1671 key.objectid = bytenr; 1672 key.type = BTRFS_EXTENT_ITEM_KEY; 1673 key.offset = num_bytes; 1674 btrfs_release_path(path); 1675 goto again; 1676 } 1677 } 1678 1679 if (ret && !insert) { 1680 err = -ENOENT; 1681 goto out; 1682 } else if (WARN_ON(ret)) { 1683 err = -EIO; 1684 goto out; 1685 } 1686 1687 leaf = path->nodes[0]; 1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1690 if (item_size < sizeof(*ei)) { 1691 if (!insert) { 1692 err = -ENOENT; 1693 goto out; 1694 } 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1696 extra_size); 1697 if (ret < 0) { 1698 err = ret; 1699 goto out; 1700 } 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 } 1704 #endif 1705 BUG_ON(item_size < sizeof(*ei)); 1706 1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1708 flags = btrfs_extent_flags(leaf, ei); 1709 1710 ptr = (unsigned long)(ei + 1); 1711 end = (unsigned long)ei + item_size; 1712 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1714 ptr += sizeof(struct btrfs_tree_block_info); 1715 BUG_ON(ptr > end); 1716 } 1717 1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1719 needed = BTRFS_REF_TYPE_DATA; 1720 else 1721 needed = BTRFS_REF_TYPE_BLOCK; 1722 1723 err = -ENOENT; 1724 while (1) { 1725 if (ptr >= end) { 1726 WARN_ON(ptr > end); 1727 break; 1728 } 1729 iref = (struct btrfs_extent_inline_ref *)ptr; 1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1731 if (type == BTRFS_REF_TYPE_INVALID) { 1732 err = -EINVAL; 1733 goto out; 1734 } 1735 1736 if (want < type) 1737 break; 1738 if (want > type) { 1739 ptr += btrfs_extent_inline_ref_size(type); 1740 continue; 1741 } 1742 1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1744 struct btrfs_extent_data_ref *dref; 1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1746 if (match_extent_data_ref(leaf, dref, root_objectid, 1747 owner, offset)) { 1748 err = 0; 1749 break; 1750 } 1751 if (hash_extent_data_ref_item(leaf, dref) < 1752 hash_extent_data_ref(root_objectid, owner, offset)) 1753 break; 1754 } else { 1755 u64 ref_offset; 1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1757 if (parent > 0) { 1758 if (parent == ref_offset) { 1759 err = 0; 1760 break; 1761 } 1762 if (ref_offset < parent) 1763 break; 1764 } else { 1765 if (root_objectid == ref_offset) { 1766 err = 0; 1767 break; 1768 } 1769 if (ref_offset < root_objectid) 1770 break; 1771 } 1772 } 1773 ptr += btrfs_extent_inline_ref_size(type); 1774 } 1775 if (err == -ENOENT && insert) { 1776 if (item_size + extra_size >= 1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1778 err = -EAGAIN; 1779 goto out; 1780 } 1781 /* 1782 * To add new inline back ref, we have to make sure 1783 * there is no corresponding back ref item. 1784 * For simplicity, we just do not add new inline back 1785 * ref if there is any kind of item for this block 1786 */ 1787 if (find_next_key(path, 0, &key) == 0 && 1788 key.objectid == bytenr && 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1790 err = -EAGAIN; 1791 goto out; 1792 } 1793 } 1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1795 out: 1796 if (insert) { 1797 path->keep_locks = 0; 1798 btrfs_unlock_up_safe(path, 1); 1799 } 1800 return err; 1801 } 1802 1803 /* 1804 * helper to add new inline back ref 1805 */ 1806 static noinline_for_stack 1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1808 struct btrfs_path *path, 1809 struct btrfs_extent_inline_ref *iref, 1810 u64 parent, u64 root_objectid, 1811 u64 owner, u64 offset, int refs_to_add, 1812 struct btrfs_delayed_extent_op *extent_op) 1813 { 1814 struct extent_buffer *leaf; 1815 struct btrfs_extent_item *ei; 1816 unsigned long ptr; 1817 unsigned long end; 1818 unsigned long item_offset; 1819 u64 refs; 1820 int size; 1821 int type; 1822 1823 leaf = path->nodes[0]; 1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1825 item_offset = (unsigned long)iref - (unsigned long)ei; 1826 1827 type = extent_ref_type(parent, owner); 1828 size = btrfs_extent_inline_ref_size(type); 1829 1830 btrfs_extend_item(fs_info, path, size); 1831 1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1833 refs = btrfs_extent_refs(leaf, ei); 1834 refs += refs_to_add; 1835 btrfs_set_extent_refs(leaf, ei, refs); 1836 if (extent_op) 1837 __run_delayed_extent_op(extent_op, leaf, ei); 1838 1839 ptr = (unsigned long)ei + item_offset; 1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1841 if (ptr < end - size) 1842 memmove_extent_buffer(leaf, ptr + size, ptr, 1843 end - size - ptr); 1844 1845 iref = (struct btrfs_extent_inline_ref *)ptr; 1846 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1848 struct btrfs_extent_data_ref *dref; 1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1855 struct btrfs_shared_data_ref *sref; 1856 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1861 } else { 1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1863 } 1864 btrfs_mark_buffer_dirty(leaf); 1865 } 1866 1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1868 struct btrfs_fs_info *fs_info, 1869 struct btrfs_path *path, 1870 struct btrfs_extent_inline_ref **ref_ret, 1871 u64 bytenr, u64 num_bytes, u64 parent, 1872 u64 root_objectid, u64 owner, u64 offset) 1873 { 1874 int ret; 1875 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1877 bytenr, num_bytes, parent, 1878 root_objectid, owner, offset, 0); 1879 if (ret != -ENOENT) 1880 return ret; 1881 1882 btrfs_release_path(path); 1883 *ref_ret = NULL; 1884 1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1887 parent, root_objectid); 1888 } else { 1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1890 parent, root_objectid, owner, 1891 offset); 1892 } 1893 return ret; 1894 } 1895 1896 /* 1897 * helper to update/remove inline back ref 1898 */ 1899 static noinline_for_stack 1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1901 struct btrfs_path *path, 1902 struct btrfs_extent_inline_ref *iref, 1903 int refs_to_mod, 1904 struct btrfs_delayed_extent_op *extent_op, 1905 int *last_ref) 1906 { 1907 struct extent_buffer *leaf; 1908 struct btrfs_extent_item *ei; 1909 struct btrfs_extent_data_ref *dref = NULL; 1910 struct btrfs_shared_data_ref *sref = NULL; 1911 unsigned long ptr; 1912 unsigned long end; 1913 u32 item_size; 1914 int size; 1915 int type; 1916 u64 refs; 1917 1918 leaf = path->nodes[0]; 1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1920 refs = btrfs_extent_refs(leaf, ei); 1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1922 refs += refs_to_mod; 1923 btrfs_set_extent_refs(leaf, ei, refs); 1924 if (extent_op) 1925 __run_delayed_extent_op(extent_op, leaf, ei); 1926 1927 /* 1928 * If type is invalid, we should have bailed out after 1929 * lookup_inline_extent_backref(). 1930 */ 1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1932 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1933 1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1936 refs = btrfs_extent_data_ref_count(leaf, dref); 1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1938 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1939 refs = btrfs_shared_data_ref_count(leaf, sref); 1940 } else { 1941 refs = 1; 1942 BUG_ON(refs_to_mod != -1); 1943 } 1944 1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1946 refs += refs_to_mod; 1947 1948 if (refs > 0) { 1949 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1950 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1951 else 1952 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1953 } else { 1954 *last_ref = 1; 1955 size = btrfs_extent_inline_ref_size(type); 1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1957 ptr = (unsigned long)iref; 1958 end = (unsigned long)ei + item_size; 1959 if (ptr + size < end) 1960 memmove_extent_buffer(leaf, ptr, ptr + size, 1961 end - ptr - size); 1962 item_size -= size; 1963 btrfs_truncate_item(fs_info, path, item_size, 1); 1964 } 1965 btrfs_mark_buffer_dirty(leaf); 1966 } 1967 1968 static noinline_for_stack 1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1970 struct btrfs_fs_info *fs_info, 1971 struct btrfs_path *path, 1972 u64 bytenr, u64 num_bytes, u64 parent, 1973 u64 root_objectid, u64 owner, 1974 u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_extent_inline_ref *iref; 1978 int ret; 1979 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1981 bytenr, num_bytes, parent, 1982 root_objectid, owner, offset, 1); 1983 if (ret == 0) { 1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1985 update_inline_extent_backref(fs_info, path, iref, 1986 refs_to_add, extent_op, NULL); 1987 } else if (ret == -ENOENT) { 1988 setup_inline_extent_backref(fs_info, path, iref, parent, 1989 root_objectid, owner, offset, 1990 refs_to_add, extent_op); 1991 ret = 0; 1992 } 1993 return ret; 1994 } 1995 1996 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1997 struct btrfs_fs_info *fs_info, 1998 struct btrfs_path *path, 1999 u64 bytenr, u64 parent, u64 root_objectid, 2000 u64 owner, u64 offset, int refs_to_add) 2001 { 2002 int ret; 2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2004 BUG_ON(refs_to_add != 1); 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2006 parent, root_objectid); 2007 } else { 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2009 parent, root_objectid, 2010 owner, offset, refs_to_add); 2011 } 2012 return ret; 2013 } 2014 2015 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2016 struct btrfs_fs_info *fs_info, 2017 struct btrfs_path *path, 2018 struct btrfs_extent_inline_ref *iref, 2019 int refs_to_drop, int is_data, int *last_ref) 2020 { 2021 int ret = 0; 2022 2023 BUG_ON(!is_data && refs_to_drop != 1); 2024 if (iref) { 2025 update_inline_extent_backref(fs_info, path, iref, 2026 -refs_to_drop, NULL, last_ref); 2027 } else if (is_data) { 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2029 last_ref); 2030 } else { 2031 *last_ref = 1; 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2033 } 2034 return ret; 2035 } 2036 2037 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2039 u64 *discarded_bytes) 2040 { 2041 int j, ret = 0; 2042 u64 bytes_left, end; 2043 u64 aligned_start = ALIGN(start, 1 << 9); 2044 2045 if (WARN_ON(start != aligned_start)) { 2046 len -= aligned_start - start; 2047 len = round_down(len, 1 << 9); 2048 start = aligned_start; 2049 } 2050 2051 *discarded_bytes = 0; 2052 2053 if (!len) 2054 return 0; 2055 2056 end = start + len; 2057 bytes_left = len; 2058 2059 /* Skip any superblocks on this device. */ 2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2061 u64 sb_start = btrfs_sb_offset(j); 2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2063 u64 size = sb_start - start; 2064 2065 if (!in_range(sb_start, start, bytes_left) && 2066 !in_range(sb_end, start, bytes_left) && 2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2068 continue; 2069 2070 /* 2071 * Superblock spans beginning of range. Adjust start and 2072 * try again. 2073 */ 2074 if (sb_start <= start) { 2075 start += sb_end - start; 2076 if (start > end) { 2077 bytes_left = 0; 2078 break; 2079 } 2080 bytes_left = end - start; 2081 continue; 2082 } 2083 2084 if (size) { 2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2086 GFP_NOFS, 0); 2087 if (!ret) 2088 *discarded_bytes += size; 2089 else if (ret != -EOPNOTSUPP) 2090 return ret; 2091 } 2092 2093 start = sb_end; 2094 if (start > end) { 2095 bytes_left = 0; 2096 break; 2097 } 2098 bytes_left = end - start; 2099 } 2100 2101 if (bytes_left) { 2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2103 GFP_NOFS, 0); 2104 if (!ret) 2105 *discarded_bytes += bytes_left; 2106 } 2107 return ret; 2108 } 2109 2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2111 u64 num_bytes, u64 *actual_bytes) 2112 { 2113 int ret; 2114 u64 discarded_bytes = 0; 2115 struct btrfs_bio *bbio = NULL; 2116 2117 2118 /* 2119 * Avoid races with device replace and make sure our bbio has devices 2120 * associated to its stripes that don't go away while we are discarding. 2121 */ 2122 btrfs_bio_counter_inc_blocked(fs_info); 2123 /* Tell the block device(s) that the sectors can be discarded */ 2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2125 &bbio, 0); 2126 /* Error condition is -ENOMEM */ 2127 if (!ret) { 2128 struct btrfs_bio_stripe *stripe = bbio->stripes; 2129 int i; 2130 2131 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2133 u64 bytes; 2134 struct request_queue *req_q; 2135 2136 if (!stripe->dev->bdev) { 2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2138 continue; 2139 } 2140 req_q = bdev_get_queue(stripe->dev->bdev); 2141 if (!blk_queue_discard(req_q)) 2142 continue; 2143 2144 ret = btrfs_issue_discard(stripe->dev->bdev, 2145 stripe->physical, 2146 stripe->length, 2147 &bytes); 2148 if (!ret) 2149 discarded_bytes += bytes; 2150 else if (ret != -EOPNOTSUPP) 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2152 2153 /* 2154 * Just in case we get back EOPNOTSUPP for some reason, 2155 * just ignore the return value so we don't screw up 2156 * people calling discard_extent. 2157 */ 2158 ret = 0; 2159 } 2160 btrfs_put_bbio(bbio); 2161 } 2162 btrfs_bio_counter_dec(fs_info); 2163 2164 if (actual_bytes) 2165 *actual_bytes = discarded_bytes; 2166 2167 2168 if (ret == -EOPNOTSUPP) 2169 ret = 0; 2170 return ret; 2171 } 2172 2173 /* Can return -ENOMEM */ 2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2175 struct btrfs_root *root, 2176 u64 bytenr, u64 num_bytes, u64 parent, 2177 u64 root_objectid, u64 owner, u64 offset) 2178 { 2179 struct btrfs_fs_info *fs_info = root->fs_info; 2180 int old_ref_mod, new_ref_mod; 2181 int ret; 2182 2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2184 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2185 2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2187 owner, offset, BTRFS_ADD_DELAYED_REF); 2188 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2191 num_bytes, parent, 2192 root_objectid, (int)owner, 2193 BTRFS_ADD_DELAYED_REF, NULL, 2194 &old_ref_mod, &new_ref_mod); 2195 } else { 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2197 num_bytes, parent, 2198 root_objectid, owner, offset, 2199 0, BTRFS_ADD_DELAYED_REF, 2200 &old_ref_mod, &new_ref_mod); 2201 } 2202 2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2204 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2205 2206 return ret; 2207 } 2208 2209 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2210 struct btrfs_fs_info *fs_info, 2211 struct btrfs_delayed_ref_node *node, 2212 u64 parent, u64 root_objectid, 2213 u64 owner, u64 offset, int refs_to_add, 2214 struct btrfs_delayed_extent_op *extent_op) 2215 { 2216 struct btrfs_path *path; 2217 struct extent_buffer *leaf; 2218 struct btrfs_extent_item *item; 2219 struct btrfs_key key; 2220 u64 bytenr = node->bytenr; 2221 u64 num_bytes = node->num_bytes; 2222 u64 refs; 2223 int ret; 2224 2225 path = btrfs_alloc_path(); 2226 if (!path) 2227 return -ENOMEM; 2228 2229 path->reada = READA_FORWARD; 2230 path->leave_spinning = 1; 2231 /* this will setup the path even if it fails to insert the back ref */ 2232 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2233 num_bytes, parent, root_objectid, 2234 owner, offset, 2235 refs_to_add, extent_op); 2236 if ((ret < 0 && ret != -EAGAIN) || !ret) 2237 goto out; 2238 2239 /* 2240 * Ok we had -EAGAIN which means we didn't have space to insert and 2241 * inline extent ref, so just update the reference count and add a 2242 * normal backref. 2243 */ 2244 leaf = path->nodes[0]; 2245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2247 refs = btrfs_extent_refs(leaf, item); 2248 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2249 if (extent_op) 2250 __run_delayed_extent_op(extent_op, leaf, item); 2251 2252 btrfs_mark_buffer_dirty(leaf); 2253 btrfs_release_path(path); 2254 2255 path->reada = READA_FORWARD; 2256 path->leave_spinning = 1; 2257 /* now insert the actual backref */ 2258 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2259 root_objectid, owner, offset, refs_to_add); 2260 if (ret) 2261 btrfs_abort_transaction(trans, ret); 2262 out: 2263 btrfs_free_path(path); 2264 return ret; 2265 } 2266 2267 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2268 struct btrfs_fs_info *fs_info, 2269 struct btrfs_delayed_ref_node *node, 2270 struct btrfs_delayed_extent_op *extent_op, 2271 int insert_reserved) 2272 { 2273 int ret = 0; 2274 struct btrfs_delayed_data_ref *ref; 2275 struct btrfs_key ins; 2276 u64 parent = 0; 2277 u64 ref_root = 0; 2278 u64 flags = 0; 2279 2280 ins.objectid = node->bytenr; 2281 ins.offset = node->num_bytes; 2282 ins.type = BTRFS_EXTENT_ITEM_KEY; 2283 2284 ref = btrfs_delayed_node_to_data_ref(node); 2285 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2286 2287 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2288 parent = ref->parent; 2289 ref_root = ref->root; 2290 2291 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2292 if (extent_op) 2293 flags |= extent_op->flags_to_set; 2294 ret = alloc_reserved_file_extent(trans, fs_info, 2295 parent, ref_root, flags, 2296 ref->objectid, ref->offset, 2297 &ins, node->ref_mod); 2298 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2299 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2300 ref_root, ref->objectid, 2301 ref->offset, node->ref_mod, 2302 extent_op); 2303 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2304 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2305 ref_root, ref->objectid, 2306 ref->offset, node->ref_mod, 2307 extent_op); 2308 } else { 2309 BUG(); 2310 } 2311 return ret; 2312 } 2313 2314 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2315 struct extent_buffer *leaf, 2316 struct btrfs_extent_item *ei) 2317 { 2318 u64 flags = btrfs_extent_flags(leaf, ei); 2319 if (extent_op->update_flags) { 2320 flags |= extent_op->flags_to_set; 2321 btrfs_set_extent_flags(leaf, ei, flags); 2322 } 2323 2324 if (extent_op->update_key) { 2325 struct btrfs_tree_block_info *bi; 2326 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2327 bi = (struct btrfs_tree_block_info *)(ei + 1); 2328 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2329 } 2330 } 2331 2332 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2333 struct btrfs_fs_info *fs_info, 2334 struct btrfs_delayed_ref_head *head, 2335 struct btrfs_delayed_extent_op *extent_op) 2336 { 2337 struct btrfs_key key; 2338 struct btrfs_path *path; 2339 struct btrfs_extent_item *ei; 2340 struct extent_buffer *leaf; 2341 u32 item_size; 2342 int ret; 2343 int err = 0; 2344 int metadata = !extent_op->is_data; 2345 2346 if (trans->aborted) 2347 return 0; 2348 2349 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2350 metadata = 0; 2351 2352 path = btrfs_alloc_path(); 2353 if (!path) 2354 return -ENOMEM; 2355 2356 key.objectid = head->bytenr; 2357 2358 if (metadata) { 2359 key.type = BTRFS_METADATA_ITEM_KEY; 2360 key.offset = extent_op->level; 2361 } else { 2362 key.type = BTRFS_EXTENT_ITEM_KEY; 2363 key.offset = head->num_bytes; 2364 } 2365 2366 again: 2367 path->reada = READA_FORWARD; 2368 path->leave_spinning = 1; 2369 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2370 if (ret < 0) { 2371 err = ret; 2372 goto out; 2373 } 2374 if (ret > 0) { 2375 if (metadata) { 2376 if (path->slots[0] > 0) { 2377 path->slots[0]--; 2378 btrfs_item_key_to_cpu(path->nodes[0], &key, 2379 path->slots[0]); 2380 if (key.objectid == head->bytenr && 2381 key.type == BTRFS_EXTENT_ITEM_KEY && 2382 key.offset == head->num_bytes) 2383 ret = 0; 2384 } 2385 if (ret > 0) { 2386 btrfs_release_path(path); 2387 metadata = 0; 2388 2389 key.objectid = head->bytenr; 2390 key.offset = head->num_bytes; 2391 key.type = BTRFS_EXTENT_ITEM_KEY; 2392 goto again; 2393 } 2394 } else { 2395 err = -EIO; 2396 goto out; 2397 } 2398 } 2399 2400 leaf = path->nodes[0]; 2401 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2402 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2403 if (item_size < sizeof(*ei)) { 2404 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2405 if (ret < 0) { 2406 err = ret; 2407 goto out; 2408 } 2409 leaf = path->nodes[0]; 2410 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2411 } 2412 #endif 2413 BUG_ON(item_size < sizeof(*ei)); 2414 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2415 __run_delayed_extent_op(extent_op, leaf, ei); 2416 2417 btrfs_mark_buffer_dirty(leaf); 2418 out: 2419 btrfs_free_path(path); 2420 return err; 2421 } 2422 2423 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2424 struct btrfs_fs_info *fs_info, 2425 struct btrfs_delayed_ref_node *node, 2426 struct btrfs_delayed_extent_op *extent_op, 2427 int insert_reserved) 2428 { 2429 int ret = 0; 2430 struct btrfs_delayed_tree_ref *ref; 2431 struct btrfs_key ins; 2432 u64 parent = 0; 2433 u64 ref_root = 0; 2434 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2435 2436 ref = btrfs_delayed_node_to_tree_ref(node); 2437 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2438 2439 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2440 parent = ref->parent; 2441 ref_root = ref->root; 2442 2443 ins.objectid = node->bytenr; 2444 if (skinny_metadata) { 2445 ins.offset = ref->level; 2446 ins.type = BTRFS_METADATA_ITEM_KEY; 2447 } else { 2448 ins.offset = node->num_bytes; 2449 ins.type = BTRFS_EXTENT_ITEM_KEY; 2450 } 2451 2452 if (node->ref_mod != 1) { 2453 btrfs_err(fs_info, 2454 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2455 node->bytenr, node->ref_mod, node->action, ref_root, 2456 parent); 2457 return -EIO; 2458 } 2459 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2460 BUG_ON(!extent_op || !extent_op->update_flags); 2461 ret = alloc_reserved_tree_block(trans, fs_info, 2462 parent, ref_root, 2463 extent_op->flags_to_set, 2464 &extent_op->key, 2465 ref->level, &ins); 2466 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2467 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2468 parent, ref_root, 2469 ref->level, 0, 1, 2470 extent_op); 2471 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2472 ret = __btrfs_free_extent(trans, fs_info, node, 2473 parent, ref_root, 2474 ref->level, 0, 1, extent_op); 2475 } else { 2476 BUG(); 2477 } 2478 return ret; 2479 } 2480 2481 /* helper function to actually process a single delayed ref entry */ 2482 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2483 struct btrfs_fs_info *fs_info, 2484 struct btrfs_delayed_ref_node *node, 2485 struct btrfs_delayed_extent_op *extent_op, 2486 int insert_reserved) 2487 { 2488 int ret = 0; 2489 2490 if (trans->aborted) { 2491 if (insert_reserved) 2492 btrfs_pin_extent(fs_info, node->bytenr, 2493 node->num_bytes, 1); 2494 return 0; 2495 } 2496 2497 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2498 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2499 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2500 insert_reserved); 2501 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2502 node->type == BTRFS_SHARED_DATA_REF_KEY) 2503 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2504 insert_reserved); 2505 else 2506 BUG(); 2507 return ret; 2508 } 2509 2510 static inline struct btrfs_delayed_ref_node * 2511 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2512 { 2513 struct btrfs_delayed_ref_node *ref; 2514 2515 if (RB_EMPTY_ROOT(&head->ref_tree)) 2516 return NULL; 2517 2518 /* 2519 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2520 * This is to prevent a ref count from going down to zero, which deletes 2521 * the extent item from the extent tree, when there still are references 2522 * to add, which would fail because they would not find the extent item. 2523 */ 2524 if (!list_empty(&head->ref_add_list)) 2525 return list_first_entry(&head->ref_add_list, 2526 struct btrfs_delayed_ref_node, add_list); 2527 2528 ref = rb_entry(rb_first(&head->ref_tree), 2529 struct btrfs_delayed_ref_node, ref_node); 2530 ASSERT(list_empty(&ref->add_list)); 2531 return ref; 2532 } 2533 2534 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2535 struct btrfs_delayed_ref_head *head) 2536 { 2537 spin_lock(&delayed_refs->lock); 2538 head->processing = 0; 2539 delayed_refs->num_heads_ready++; 2540 spin_unlock(&delayed_refs->lock); 2541 btrfs_delayed_ref_unlock(head); 2542 } 2543 2544 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2545 struct btrfs_fs_info *fs_info, 2546 struct btrfs_delayed_ref_head *head) 2547 { 2548 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2549 int ret; 2550 2551 if (!extent_op) 2552 return 0; 2553 head->extent_op = NULL; 2554 if (head->must_insert_reserved) { 2555 btrfs_free_delayed_extent_op(extent_op); 2556 return 0; 2557 } 2558 spin_unlock(&head->lock); 2559 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2560 btrfs_free_delayed_extent_op(extent_op); 2561 return ret ? ret : 1; 2562 } 2563 2564 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2565 struct btrfs_fs_info *fs_info, 2566 struct btrfs_delayed_ref_head *head) 2567 { 2568 struct btrfs_delayed_ref_root *delayed_refs; 2569 int ret; 2570 2571 delayed_refs = &trans->transaction->delayed_refs; 2572 2573 ret = cleanup_extent_op(trans, fs_info, head); 2574 if (ret < 0) { 2575 unselect_delayed_ref_head(delayed_refs, head); 2576 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2577 return ret; 2578 } else if (ret) { 2579 return ret; 2580 } 2581 2582 /* 2583 * Need to drop our head ref lock and re-acquire the delayed ref lock 2584 * and then re-check to make sure nobody got added. 2585 */ 2586 spin_unlock(&head->lock); 2587 spin_lock(&delayed_refs->lock); 2588 spin_lock(&head->lock); 2589 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2590 spin_unlock(&head->lock); 2591 spin_unlock(&delayed_refs->lock); 2592 return 1; 2593 } 2594 delayed_refs->num_heads--; 2595 rb_erase(&head->href_node, &delayed_refs->href_root); 2596 RB_CLEAR_NODE(&head->href_node); 2597 spin_unlock(&delayed_refs->lock); 2598 spin_unlock(&head->lock); 2599 atomic_dec(&delayed_refs->num_entries); 2600 2601 trace_run_delayed_ref_head(fs_info, head, 0); 2602 2603 if (head->total_ref_mod < 0) { 2604 struct btrfs_block_group_cache *cache; 2605 2606 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 2607 ASSERT(cache); 2608 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2609 -head->num_bytes); 2610 btrfs_put_block_group(cache); 2611 2612 if (head->is_data) { 2613 spin_lock(&delayed_refs->lock); 2614 delayed_refs->pending_csums -= head->num_bytes; 2615 spin_unlock(&delayed_refs->lock); 2616 } 2617 } 2618 2619 if (head->must_insert_reserved) { 2620 btrfs_pin_extent(fs_info, head->bytenr, 2621 head->num_bytes, 1); 2622 if (head->is_data) { 2623 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2624 head->num_bytes); 2625 } 2626 } 2627 2628 /* Also free its reserved qgroup space */ 2629 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2630 head->qgroup_reserved); 2631 btrfs_delayed_ref_unlock(head); 2632 btrfs_put_delayed_ref_head(head); 2633 return 0; 2634 } 2635 2636 /* 2637 * Returns 0 on success or if called with an already aborted transaction. 2638 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2639 */ 2640 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2641 unsigned long nr) 2642 { 2643 struct btrfs_fs_info *fs_info = trans->fs_info; 2644 struct btrfs_delayed_ref_root *delayed_refs; 2645 struct btrfs_delayed_ref_node *ref; 2646 struct btrfs_delayed_ref_head *locked_ref = NULL; 2647 struct btrfs_delayed_extent_op *extent_op; 2648 ktime_t start = ktime_get(); 2649 int ret; 2650 unsigned long count = 0; 2651 unsigned long actual_count = 0; 2652 int must_insert_reserved = 0; 2653 2654 delayed_refs = &trans->transaction->delayed_refs; 2655 while (1) { 2656 if (!locked_ref) { 2657 if (count >= nr) 2658 break; 2659 2660 spin_lock(&delayed_refs->lock); 2661 locked_ref = btrfs_select_ref_head(trans); 2662 if (!locked_ref) { 2663 spin_unlock(&delayed_refs->lock); 2664 break; 2665 } 2666 2667 /* grab the lock that says we are going to process 2668 * all the refs for this head */ 2669 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2670 spin_unlock(&delayed_refs->lock); 2671 /* 2672 * we may have dropped the spin lock to get the head 2673 * mutex lock, and that might have given someone else 2674 * time to free the head. If that's true, it has been 2675 * removed from our list and we can move on. 2676 */ 2677 if (ret == -EAGAIN) { 2678 locked_ref = NULL; 2679 count++; 2680 continue; 2681 } 2682 } 2683 2684 /* 2685 * We need to try and merge add/drops of the same ref since we 2686 * can run into issues with relocate dropping the implicit ref 2687 * and then it being added back again before the drop can 2688 * finish. If we merged anything we need to re-loop so we can 2689 * get a good ref. 2690 * Or we can get node references of the same type that weren't 2691 * merged when created due to bumps in the tree mod seq, and 2692 * we need to merge them to prevent adding an inline extent 2693 * backref before dropping it (triggering a BUG_ON at 2694 * insert_inline_extent_backref()). 2695 */ 2696 spin_lock(&locked_ref->lock); 2697 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2698 locked_ref); 2699 2700 /* 2701 * locked_ref is the head node, so we have to go one 2702 * node back for any delayed ref updates 2703 */ 2704 ref = select_delayed_ref(locked_ref); 2705 2706 if (ref && ref->seq && 2707 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2708 spin_unlock(&locked_ref->lock); 2709 unselect_delayed_ref_head(delayed_refs, locked_ref); 2710 locked_ref = NULL; 2711 cond_resched(); 2712 count++; 2713 continue; 2714 } 2715 2716 /* 2717 * We're done processing refs in this ref_head, clean everything 2718 * up and move on to the next ref_head. 2719 */ 2720 if (!ref) { 2721 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2722 if (ret > 0 ) { 2723 /* We dropped our lock, we need to loop. */ 2724 ret = 0; 2725 continue; 2726 } else if (ret) { 2727 return ret; 2728 } 2729 locked_ref = NULL; 2730 count++; 2731 continue; 2732 } 2733 2734 actual_count++; 2735 ref->in_tree = 0; 2736 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2737 RB_CLEAR_NODE(&ref->ref_node); 2738 if (!list_empty(&ref->add_list)) 2739 list_del(&ref->add_list); 2740 /* 2741 * When we play the delayed ref, also correct the ref_mod on 2742 * head 2743 */ 2744 switch (ref->action) { 2745 case BTRFS_ADD_DELAYED_REF: 2746 case BTRFS_ADD_DELAYED_EXTENT: 2747 locked_ref->ref_mod -= ref->ref_mod; 2748 break; 2749 case BTRFS_DROP_DELAYED_REF: 2750 locked_ref->ref_mod += ref->ref_mod; 2751 break; 2752 default: 2753 WARN_ON(1); 2754 } 2755 atomic_dec(&delayed_refs->num_entries); 2756 2757 /* 2758 * Record the must-insert_reserved flag before we drop the spin 2759 * lock. 2760 */ 2761 must_insert_reserved = locked_ref->must_insert_reserved; 2762 locked_ref->must_insert_reserved = 0; 2763 2764 extent_op = locked_ref->extent_op; 2765 locked_ref->extent_op = NULL; 2766 spin_unlock(&locked_ref->lock); 2767 2768 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2769 must_insert_reserved); 2770 2771 btrfs_free_delayed_extent_op(extent_op); 2772 if (ret) { 2773 unselect_delayed_ref_head(delayed_refs, locked_ref); 2774 btrfs_put_delayed_ref(ref); 2775 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2776 ret); 2777 return ret; 2778 } 2779 2780 btrfs_put_delayed_ref(ref); 2781 count++; 2782 cond_resched(); 2783 } 2784 2785 /* 2786 * We don't want to include ref heads since we can have empty ref heads 2787 * and those will drastically skew our runtime down since we just do 2788 * accounting, no actual extent tree updates. 2789 */ 2790 if (actual_count > 0) { 2791 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2792 u64 avg; 2793 2794 /* 2795 * We weigh the current average higher than our current runtime 2796 * to avoid large swings in the average. 2797 */ 2798 spin_lock(&delayed_refs->lock); 2799 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2800 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2801 spin_unlock(&delayed_refs->lock); 2802 } 2803 return 0; 2804 } 2805 2806 #ifdef SCRAMBLE_DELAYED_REFS 2807 /* 2808 * Normally delayed refs get processed in ascending bytenr order. This 2809 * correlates in most cases to the order added. To expose dependencies on this 2810 * order, we start to process the tree in the middle instead of the beginning 2811 */ 2812 static u64 find_middle(struct rb_root *root) 2813 { 2814 struct rb_node *n = root->rb_node; 2815 struct btrfs_delayed_ref_node *entry; 2816 int alt = 1; 2817 u64 middle; 2818 u64 first = 0, last = 0; 2819 2820 n = rb_first(root); 2821 if (n) { 2822 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2823 first = entry->bytenr; 2824 } 2825 n = rb_last(root); 2826 if (n) { 2827 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2828 last = entry->bytenr; 2829 } 2830 n = root->rb_node; 2831 2832 while (n) { 2833 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2834 WARN_ON(!entry->in_tree); 2835 2836 middle = entry->bytenr; 2837 2838 if (alt) 2839 n = n->rb_left; 2840 else 2841 n = n->rb_right; 2842 2843 alt = 1 - alt; 2844 } 2845 return middle; 2846 } 2847 #endif 2848 2849 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2850 { 2851 u64 num_bytes; 2852 2853 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2854 sizeof(struct btrfs_extent_inline_ref)); 2855 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2856 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2857 2858 /* 2859 * We don't ever fill up leaves all the way so multiply by 2 just to be 2860 * closer to what we're really going to want to use. 2861 */ 2862 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2863 } 2864 2865 /* 2866 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2867 * would require to store the csums for that many bytes. 2868 */ 2869 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2870 { 2871 u64 csum_size; 2872 u64 num_csums_per_leaf; 2873 u64 num_csums; 2874 2875 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2876 num_csums_per_leaf = div64_u64(csum_size, 2877 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2878 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2879 num_csums += num_csums_per_leaf - 1; 2880 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2881 return num_csums; 2882 } 2883 2884 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2885 struct btrfs_fs_info *fs_info) 2886 { 2887 struct btrfs_block_rsv *global_rsv; 2888 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2889 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2890 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2891 u64 num_bytes, num_dirty_bgs_bytes; 2892 int ret = 0; 2893 2894 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2895 num_heads = heads_to_leaves(fs_info, num_heads); 2896 if (num_heads > 1) 2897 num_bytes += (num_heads - 1) * fs_info->nodesize; 2898 num_bytes <<= 1; 2899 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2900 fs_info->nodesize; 2901 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2902 num_dirty_bgs); 2903 global_rsv = &fs_info->global_block_rsv; 2904 2905 /* 2906 * If we can't allocate any more chunks lets make sure we have _lots_ of 2907 * wiggle room since running delayed refs can create more delayed refs. 2908 */ 2909 if (global_rsv->space_info->full) { 2910 num_dirty_bgs_bytes <<= 1; 2911 num_bytes <<= 1; 2912 } 2913 2914 spin_lock(&global_rsv->lock); 2915 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2916 ret = 1; 2917 spin_unlock(&global_rsv->lock); 2918 return ret; 2919 } 2920 2921 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2922 struct btrfs_fs_info *fs_info) 2923 { 2924 u64 num_entries = 2925 atomic_read(&trans->transaction->delayed_refs.num_entries); 2926 u64 avg_runtime; 2927 u64 val; 2928 2929 smp_mb(); 2930 avg_runtime = fs_info->avg_delayed_ref_runtime; 2931 val = num_entries * avg_runtime; 2932 if (val >= NSEC_PER_SEC) 2933 return 1; 2934 if (val >= NSEC_PER_SEC / 2) 2935 return 2; 2936 2937 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2938 } 2939 2940 struct async_delayed_refs { 2941 struct btrfs_root *root; 2942 u64 transid; 2943 int count; 2944 int error; 2945 int sync; 2946 struct completion wait; 2947 struct btrfs_work work; 2948 }; 2949 2950 static inline struct async_delayed_refs * 2951 to_async_delayed_refs(struct btrfs_work *work) 2952 { 2953 return container_of(work, struct async_delayed_refs, work); 2954 } 2955 2956 static void delayed_ref_async_start(struct btrfs_work *work) 2957 { 2958 struct async_delayed_refs *async = to_async_delayed_refs(work); 2959 struct btrfs_trans_handle *trans; 2960 struct btrfs_fs_info *fs_info = async->root->fs_info; 2961 int ret; 2962 2963 /* if the commit is already started, we don't need to wait here */ 2964 if (btrfs_transaction_blocked(fs_info)) 2965 goto done; 2966 2967 trans = btrfs_join_transaction(async->root); 2968 if (IS_ERR(trans)) { 2969 async->error = PTR_ERR(trans); 2970 goto done; 2971 } 2972 2973 /* 2974 * trans->sync means that when we call end_transaction, we won't 2975 * wait on delayed refs 2976 */ 2977 trans->sync = true; 2978 2979 /* Don't bother flushing if we got into a different transaction */ 2980 if (trans->transid > async->transid) 2981 goto end; 2982 2983 ret = btrfs_run_delayed_refs(trans, async->count); 2984 if (ret) 2985 async->error = ret; 2986 end: 2987 ret = btrfs_end_transaction(trans); 2988 if (ret && !async->error) 2989 async->error = ret; 2990 done: 2991 if (async->sync) 2992 complete(&async->wait); 2993 else 2994 kfree(async); 2995 } 2996 2997 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 2998 unsigned long count, u64 transid, int wait) 2999 { 3000 struct async_delayed_refs *async; 3001 int ret; 3002 3003 async = kmalloc(sizeof(*async), GFP_NOFS); 3004 if (!async) 3005 return -ENOMEM; 3006 3007 async->root = fs_info->tree_root; 3008 async->count = count; 3009 async->error = 0; 3010 async->transid = transid; 3011 if (wait) 3012 async->sync = 1; 3013 else 3014 async->sync = 0; 3015 init_completion(&async->wait); 3016 3017 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3018 delayed_ref_async_start, NULL, NULL); 3019 3020 btrfs_queue_work(fs_info->extent_workers, &async->work); 3021 3022 if (wait) { 3023 wait_for_completion(&async->wait); 3024 ret = async->error; 3025 kfree(async); 3026 return ret; 3027 } 3028 return 0; 3029 } 3030 3031 /* 3032 * this starts processing the delayed reference count updates and 3033 * extent insertions we have queued up so far. count can be 3034 * 0, which means to process everything in the tree at the start 3035 * of the run (but not newly added entries), or it can be some target 3036 * number you'd like to process. 3037 * 3038 * Returns 0 on success or if called with an aborted transaction 3039 * Returns <0 on error and aborts the transaction 3040 */ 3041 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3042 unsigned long count) 3043 { 3044 struct btrfs_fs_info *fs_info = trans->fs_info; 3045 struct rb_node *node; 3046 struct btrfs_delayed_ref_root *delayed_refs; 3047 struct btrfs_delayed_ref_head *head; 3048 int ret; 3049 int run_all = count == (unsigned long)-1; 3050 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3051 3052 /* We'll clean this up in btrfs_cleanup_transaction */ 3053 if (trans->aborted) 3054 return 0; 3055 3056 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3057 return 0; 3058 3059 delayed_refs = &trans->transaction->delayed_refs; 3060 if (count == 0) 3061 count = atomic_read(&delayed_refs->num_entries) * 2; 3062 3063 again: 3064 #ifdef SCRAMBLE_DELAYED_REFS 3065 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3066 #endif 3067 trans->can_flush_pending_bgs = false; 3068 ret = __btrfs_run_delayed_refs(trans, count); 3069 if (ret < 0) { 3070 btrfs_abort_transaction(trans, ret); 3071 return ret; 3072 } 3073 3074 if (run_all) { 3075 if (!list_empty(&trans->new_bgs)) 3076 btrfs_create_pending_block_groups(trans); 3077 3078 spin_lock(&delayed_refs->lock); 3079 node = rb_first(&delayed_refs->href_root); 3080 if (!node) { 3081 spin_unlock(&delayed_refs->lock); 3082 goto out; 3083 } 3084 head = rb_entry(node, struct btrfs_delayed_ref_head, 3085 href_node); 3086 refcount_inc(&head->refs); 3087 spin_unlock(&delayed_refs->lock); 3088 3089 /* Mutex was contended, block until it's released and retry. */ 3090 mutex_lock(&head->mutex); 3091 mutex_unlock(&head->mutex); 3092 3093 btrfs_put_delayed_ref_head(head); 3094 cond_resched(); 3095 goto again; 3096 } 3097 out: 3098 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3099 return 0; 3100 } 3101 3102 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3103 struct btrfs_fs_info *fs_info, 3104 u64 bytenr, u64 num_bytes, u64 flags, 3105 int level, int is_data) 3106 { 3107 struct btrfs_delayed_extent_op *extent_op; 3108 int ret; 3109 3110 extent_op = btrfs_alloc_delayed_extent_op(); 3111 if (!extent_op) 3112 return -ENOMEM; 3113 3114 extent_op->flags_to_set = flags; 3115 extent_op->update_flags = true; 3116 extent_op->update_key = false; 3117 extent_op->is_data = is_data ? true : false; 3118 extent_op->level = level; 3119 3120 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3121 num_bytes, extent_op); 3122 if (ret) 3123 btrfs_free_delayed_extent_op(extent_op); 3124 return ret; 3125 } 3126 3127 static noinline int check_delayed_ref(struct btrfs_root *root, 3128 struct btrfs_path *path, 3129 u64 objectid, u64 offset, u64 bytenr) 3130 { 3131 struct btrfs_delayed_ref_head *head; 3132 struct btrfs_delayed_ref_node *ref; 3133 struct btrfs_delayed_data_ref *data_ref; 3134 struct btrfs_delayed_ref_root *delayed_refs; 3135 struct btrfs_transaction *cur_trans; 3136 struct rb_node *node; 3137 int ret = 0; 3138 3139 cur_trans = root->fs_info->running_transaction; 3140 if (!cur_trans) 3141 return 0; 3142 3143 delayed_refs = &cur_trans->delayed_refs; 3144 spin_lock(&delayed_refs->lock); 3145 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3146 if (!head) { 3147 spin_unlock(&delayed_refs->lock); 3148 return 0; 3149 } 3150 3151 if (!mutex_trylock(&head->mutex)) { 3152 refcount_inc(&head->refs); 3153 spin_unlock(&delayed_refs->lock); 3154 3155 btrfs_release_path(path); 3156 3157 /* 3158 * Mutex was contended, block until it's released and let 3159 * caller try again 3160 */ 3161 mutex_lock(&head->mutex); 3162 mutex_unlock(&head->mutex); 3163 btrfs_put_delayed_ref_head(head); 3164 return -EAGAIN; 3165 } 3166 spin_unlock(&delayed_refs->lock); 3167 3168 spin_lock(&head->lock); 3169 /* 3170 * XXX: We should replace this with a proper search function in the 3171 * future. 3172 */ 3173 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3174 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3175 /* If it's a shared ref we know a cross reference exists */ 3176 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3177 ret = 1; 3178 break; 3179 } 3180 3181 data_ref = btrfs_delayed_node_to_data_ref(ref); 3182 3183 /* 3184 * If our ref doesn't match the one we're currently looking at 3185 * then we have a cross reference. 3186 */ 3187 if (data_ref->root != root->root_key.objectid || 3188 data_ref->objectid != objectid || 3189 data_ref->offset != offset) { 3190 ret = 1; 3191 break; 3192 } 3193 } 3194 spin_unlock(&head->lock); 3195 mutex_unlock(&head->mutex); 3196 return ret; 3197 } 3198 3199 static noinline int check_committed_ref(struct btrfs_root *root, 3200 struct btrfs_path *path, 3201 u64 objectid, u64 offset, u64 bytenr) 3202 { 3203 struct btrfs_fs_info *fs_info = root->fs_info; 3204 struct btrfs_root *extent_root = fs_info->extent_root; 3205 struct extent_buffer *leaf; 3206 struct btrfs_extent_data_ref *ref; 3207 struct btrfs_extent_inline_ref *iref; 3208 struct btrfs_extent_item *ei; 3209 struct btrfs_key key; 3210 u32 item_size; 3211 int type; 3212 int ret; 3213 3214 key.objectid = bytenr; 3215 key.offset = (u64)-1; 3216 key.type = BTRFS_EXTENT_ITEM_KEY; 3217 3218 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3219 if (ret < 0) 3220 goto out; 3221 BUG_ON(ret == 0); /* Corruption */ 3222 3223 ret = -ENOENT; 3224 if (path->slots[0] == 0) 3225 goto out; 3226 3227 path->slots[0]--; 3228 leaf = path->nodes[0]; 3229 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3230 3231 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3232 goto out; 3233 3234 ret = 1; 3235 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3236 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3237 if (item_size < sizeof(*ei)) { 3238 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3239 goto out; 3240 } 3241 #endif 3242 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3243 3244 if (item_size != sizeof(*ei) + 3245 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3246 goto out; 3247 3248 if (btrfs_extent_generation(leaf, ei) <= 3249 btrfs_root_last_snapshot(&root->root_item)) 3250 goto out; 3251 3252 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3253 3254 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3255 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3256 goto out; 3257 3258 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3259 if (btrfs_extent_refs(leaf, ei) != 3260 btrfs_extent_data_ref_count(leaf, ref) || 3261 btrfs_extent_data_ref_root(leaf, ref) != 3262 root->root_key.objectid || 3263 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3264 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3265 goto out; 3266 3267 ret = 0; 3268 out: 3269 return ret; 3270 } 3271 3272 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3273 u64 bytenr) 3274 { 3275 struct btrfs_path *path; 3276 int ret; 3277 int ret2; 3278 3279 path = btrfs_alloc_path(); 3280 if (!path) 3281 return -ENOENT; 3282 3283 do { 3284 ret = check_committed_ref(root, path, objectid, 3285 offset, bytenr); 3286 if (ret && ret != -ENOENT) 3287 goto out; 3288 3289 ret2 = check_delayed_ref(root, path, objectid, 3290 offset, bytenr); 3291 } while (ret2 == -EAGAIN); 3292 3293 if (ret2 && ret2 != -ENOENT) { 3294 ret = ret2; 3295 goto out; 3296 } 3297 3298 if (ret != -ENOENT || ret2 != -ENOENT) 3299 ret = 0; 3300 out: 3301 btrfs_free_path(path); 3302 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3303 WARN_ON(ret > 0); 3304 return ret; 3305 } 3306 3307 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3308 struct btrfs_root *root, 3309 struct extent_buffer *buf, 3310 int full_backref, int inc) 3311 { 3312 struct btrfs_fs_info *fs_info = root->fs_info; 3313 u64 bytenr; 3314 u64 num_bytes; 3315 u64 parent; 3316 u64 ref_root; 3317 u32 nritems; 3318 struct btrfs_key key; 3319 struct btrfs_file_extent_item *fi; 3320 int i; 3321 int level; 3322 int ret = 0; 3323 int (*process_func)(struct btrfs_trans_handle *, 3324 struct btrfs_root *, 3325 u64, u64, u64, u64, u64, u64); 3326 3327 3328 if (btrfs_is_testing(fs_info)) 3329 return 0; 3330 3331 ref_root = btrfs_header_owner(buf); 3332 nritems = btrfs_header_nritems(buf); 3333 level = btrfs_header_level(buf); 3334 3335 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3336 return 0; 3337 3338 if (inc) 3339 process_func = btrfs_inc_extent_ref; 3340 else 3341 process_func = btrfs_free_extent; 3342 3343 if (full_backref) 3344 parent = buf->start; 3345 else 3346 parent = 0; 3347 3348 for (i = 0; i < nritems; i++) { 3349 if (level == 0) { 3350 btrfs_item_key_to_cpu(buf, &key, i); 3351 if (key.type != BTRFS_EXTENT_DATA_KEY) 3352 continue; 3353 fi = btrfs_item_ptr(buf, i, 3354 struct btrfs_file_extent_item); 3355 if (btrfs_file_extent_type(buf, fi) == 3356 BTRFS_FILE_EXTENT_INLINE) 3357 continue; 3358 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3359 if (bytenr == 0) 3360 continue; 3361 3362 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3363 key.offset -= btrfs_file_extent_offset(buf, fi); 3364 ret = process_func(trans, root, bytenr, num_bytes, 3365 parent, ref_root, key.objectid, 3366 key.offset); 3367 if (ret) 3368 goto fail; 3369 } else { 3370 bytenr = btrfs_node_blockptr(buf, i); 3371 num_bytes = fs_info->nodesize; 3372 ret = process_func(trans, root, bytenr, num_bytes, 3373 parent, ref_root, level - 1, 0); 3374 if (ret) 3375 goto fail; 3376 } 3377 } 3378 return 0; 3379 fail: 3380 return ret; 3381 } 3382 3383 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3384 struct extent_buffer *buf, int full_backref) 3385 { 3386 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3387 } 3388 3389 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3390 struct extent_buffer *buf, int full_backref) 3391 { 3392 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3393 } 3394 3395 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3396 struct btrfs_fs_info *fs_info, 3397 struct btrfs_path *path, 3398 struct btrfs_block_group_cache *cache) 3399 { 3400 int ret; 3401 struct btrfs_root *extent_root = fs_info->extent_root; 3402 unsigned long bi; 3403 struct extent_buffer *leaf; 3404 3405 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3406 if (ret) { 3407 if (ret > 0) 3408 ret = -ENOENT; 3409 goto fail; 3410 } 3411 3412 leaf = path->nodes[0]; 3413 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3414 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3415 btrfs_mark_buffer_dirty(leaf); 3416 fail: 3417 btrfs_release_path(path); 3418 return ret; 3419 3420 } 3421 3422 static struct btrfs_block_group_cache * 3423 next_block_group(struct btrfs_fs_info *fs_info, 3424 struct btrfs_block_group_cache *cache) 3425 { 3426 struct rb_node *node; 3427 3428 spin_lock(&fs_info->block_group_cache_lock); 3429 3430 /* If our block group was removed, we need a full search. */ 3431 if (RB_EMPTY_NODE(&cache->cache_node)) { 3432 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3433 3434 spin_unlock(&fs_info->block_group_cache_lock); 3435 btrfs_put_block_group(cache); 3436 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3437 } 3438 node = rb_next(&cache->cache_node); 3439 btrfs_put_block_group(cache); 3440 if (node) { 3441 cache = rb_entry(node, struct btrfs_block_group_cache, 3442 cache_node); 3443 btrfs_get_block_group(cache); 3444 } else 3445 cache = NULL; 3446 spin_unlock(&fs_info->block_group_cache_lock); 3447 return cache; 3448 } 3449 3450 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3451 struct btrfs_trans_handle *trans, 3452 struct btrfs_path *path) 3453 { 3454 struct btrfs_fs_info *fs_info = block_group->fs_info; 3455 struct btrfs_root *root = fs_info->tree_root; 3456 struct inode *inode = NULL; 3457 struct extent_changeset *data_reserved = NULL; 3458 u64 alloc_hint = 0; 3459 int dcs = BTRFS_DC_ERROR; 3460 u64 num_pages = 0; 3461 int retries = 0; 3462 int ret = 0; 3463 3464 /* 3465 * If this block group is smaller than 100 megs don't bother caching the 3466 * block group. 3467 */ 3468 if (block_group->key.offset < (100 * SZ_1M)) { 3469 spin_lock(&block_group->lock); 3470 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3471 spin_unlock(&block_group->lock); 3472 return 0; 3473 } 3474 3475 if (trans->aborted) 3476 return 0; 3477 again: 3478 inode = lookup_free_space_inode(fs_info, block_group, path); 3479 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3480 ret = PTR_ERR(inode); 3481 btrfs_release_path(path); 3482 goto out; 3483 } 3484 3485 if (IS_ERR(inode)) { 3486 BUG_ON(retries); 3487 retries++; 3488 3489 if (block_group->ro) 3490 goto out_free; 3491 3492 ret = create_free_space_inode(fs_info, trans, block_group, 3493 path); 3494 if (ret) 3495 goto out_free; 3496 goto again; 3497 } 3498 3499 /* 3500 * We want to set the generation to 0, that way if anything goes wrong 3501 * from here on out we know not to trust this cache when we load up next 3502 * time. 3503 */ 3504 BTRFS_I(inode)->generation = 0; 3505 ret = btrfs_update_inode(trans, root, inode); 3506 if (ret) { 3507 /* 3508 * So theoretically we could recover from this, simply set the 3509 * super cache generation to 0 so we know to invalidate the 3510 * cache, but then we'd have to keep track of the block groups 3511 * that fail this way so we know we _have_ to reset this cache 3512 * before the next commit or risk reading stale cache. So to 3513 * limit our exposure to horrible edge cases lets just abort the 3514 * transaction, this only happens in really bad situations 3515 * anyway. 3516 */ 3517 btrfs_abort_transaction(trans, ret); 3518 goto out_put; 3519 } 3520 WARN_ON(ret); 3521 3522 /* We've already setup this transaction, go ahead and exit */ 3523 if (block_group->cache_generation == trans->transid && 3524 i_size_read(inode)) { 3525 dcs = BTRFS_DC_SETUP; 3526 goto out_put; 3527 } 3528 3529 if (i_size_read(inode) > 0) { 3530 ret = btrfs_check_trunc_cache_free_space(fs_info, 3531 &fs_info->global_block_rsv); 3532 if (ret) 3533 goto out_put; 3534 3535 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3536 if (ret) 3537 goto out_put; 3538 } 3539 3540 spin_lock(&block_group->lock); 3541 if (block_group->cached != BTRFS_CACHE_FINISHED || 3542 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3543 /* 3544 * don't bother trying to write stuff out _if_ 3545 * a) we're not cached, 3546 * b) we're with nospace_cache mount option, 3547 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3548 */ 3549 dcs = BTRFS_DC_WRITTEN; 3550 spin_unlock(&block_group->lock); 3551 goto out_put; 3552 } 3553 spin_unlock(&block_group->lock); 3554 3555 /* 3556 * We hit an ENOSPC when setting up the cache in this transaction, just 3557 * skip doing the setup, we've already cleared the cache so we're safe. 3558 */ 3559 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3560 ret = -ENOSPC; 3561 goto out_put; 3562 } 3563 3564 /* 3565 * Try to preallocate enough space based on how big the block group is. 3566 * Keep in mind this has to include any pinned space which could end up 3567 * taking up quite a bit since it's not folded into the other space 3568 * cache. 3569 */ 3570 num_pages = div_u64(block_group->key.offset, SZ_256M); 3571 if (!num_pages) 3572 num_pages = 1; 3573 3574 num_pages *= 16; 3575 num_pages *= PAGE_SIZE; 3576 3577 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3578 if (ret) 3579 goto out_put; 3580 3581 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3582 num_pages, num_pages, 3583 &alloc_hint); 3584 /* 3585 * Our cache requires contiguous chunks so that we don't modify a bunch 3586 * of metadata or split extents when writing the cache out, which means 3587 * we can enospc if we are heavily fragmented in addition to just normal 3588 * out of space conditions. So if we hit this just skip setting up any 3589 * other block groups for this transaction, maybe we'll unpin enough 3590 * space the next time around. 3591 */ 3592 if (!ret) 3593 dcs = BTRFS_DC_SETUP; 3594 else if (ret == -ENOSPC) 3595 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3596 3597 out_put: 3598 iput(inode); 3599 out_free: 3600 btrfs_release_path(path); 3601 out: 3602 spin_lock(&block_group->lock); 3603 if (!ret && dcs == BTRFS_DC_SETUP) 3604 block_group->cache_generation = trans->transid; 3605 block_group->disk_cache_state = dcs; 3606 spin_unlock(&block_group->lock); 3607 3608 extent_changeset_free(data_reserved); 3609 return ret; 3610 } 3611 3612 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3613 struct btrfs_fs_info *fs_info) 3614 { 3615 struct btrfs_block_group_cache *cache, *tmp; 3616 struct btrfs_transaction *cur_trans = trans->transaction; 3617 struct btrfs_path *path; 3618 3619 if (list_empty(&cur_trans->dirty_bgs) || 3620 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3621 return 0; 3622 3623 path = btrfs_alloc_path(); 3624 if (!path) 3625 return -ENOMEM; 3626 3627 /* Could add new block groups, use _safe just in case */ 3628 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3629 dirty_list) { 3630 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3631 cache_save_setup(cache, trans, path); 3632 } 3633 3634 btrfs_free_path(path); 3635 return 0; 3636 } 3637 3638 /* 3639 * transaction commit does final block group cache writeback during a 3640 * critical section where nothing is allowed to change the FS. This is 3641 * required in order for the cache to actually match the block group, 3642 * but can introduce a lot of latency into the commit. 3643 * 3644 * So, btrfs_start_dirty_block_groups is here to kick off block group 3645 * cache IO. There's a chance we'll have to redo some of it if the 3646 * block group changes again during the commit, but it greatly reduces 3647 * the commit latency by getting rid of the easy block groups while 3648 * we're still allowing others to join the commit. 3649 */ 3650 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3651 { 3652 struct btrfs_fs_info *fs_info = trans->fs_info; 3653 struct btrfs_block_group_cache *cache; 3654 struct btrfs_transaction *cur_trans = trans->transaction; 3655 int ret = 0; 3656 int should_put; 3657 struct btrfs_path *path = NULL; 3658 LIST_HEAD(dirty); 3659 struct list_head *io = &cur_trans->io_bgs; 3660 int num_started = 0; 3661 int loops = 0; 3662 3663 spin_lock(&cur_trans->dirty_bgs_lock); 3664 if (list_empty(&cur_trans->dirty_bgs)) { 3665 spin_unlock(&cur_trans->dirty_bgs_lock); 3666 return 0; 3667 } 3668 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3669 spin_unlock(&cur_trans->dirty_bgs_lock); 3670 3671 again: 3672 /* 3673 * make sure all the block groups on our dirty list actually 3674 * exist 3675 */ 3676 btrfs_create_pending_block_groups(trans); 3677 3678 if (!path) { 3679 path = btrfs_alloc_path(); 3680 if (!path) 3681 return -ENOMEM; 3682 } 3683 3684 /* 3685 * cache_write_mutex is here only to save us from balance or automatic 3686 * removal of empty block groups deleting this block group while we are 3687 * writing out the cache 3688 */ 3689 mutex_lock(&trans->transaction->cache_write_mutex); 3690 while (!list_empty(&dirty)) { 3691 cache = list_first_entry(&dirty, 3692 struct btrfs_block_group_cache, 3693 dirty_list); 3694 /* 3695 * this can happen if something re-dirties a block 3696 * group that is already under IO. Just wait for it to 3697 * finish and then do it all again 3698 */ 3699 if (!list_empty(&cache->io_list)) { 3700 list_del_init(&cache->io_list); 3701 btrfs_wait_cache_io(trans, cache, path); 3702 btrfs_put_block_group(cache); 3703 } 3704 3705 3706 /* 3707 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3708 * if it should update the cache_state. Don't delete 3709 * until after we wait. 3710 * 3711 * Since we're not running in the commit critical section 3712 * we need the dirty_bgs_lock to protect from update_block_group 3713 */ 3714 spin_lock(&cur_trans->dirty_bgs_lock); 3715 list_del_init(&cache->dirty_list); 3716 spin_unlock(&cur_trans->dirty_bgs_lock); 3717 3718 should_put = 1; 3719 3720 cache_save_setup(cache, trans, path); 3721 3722 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3723 cache->io_ctl.inode = NULL; 3724 ret = btrfs_write_out_cache(fs_info, trans, 3725 cache, path); 3726 if (ret == 0 && cache->io_ctl.inode) { 3727 num_started++; 3728 should_put = 0; 3729 3730 /* 3731 * The cache_write_mutex is protecting the 3732 * io_list, also refer to the definition of 3733 * btrfs_transaction::io_bgs for more details 3734 */ 3735 list_add_tail(&cache->io_list, io); 3736 } else { 3737 /* 3738 * if we failed to write the cache, the 3739 * generation will be bad and life goes on 3740 */ 3741 ret = 0; 3742 } 3743 } 3744 if (!ret) { 3745 ret = write_one_cache_group(trans, fs_info, 3746 path, cache); 3747 /* 3748 * Our block group might still be attached to the list 3749 * of new block groups in the transaction handle of some 3750 * other task (struct btrfs_trans_handle->new_bgs). This 3751 * means its block group item isn't yet in the extent 3752 * tree. If this happens ignore the error, as we will 3753 * try again later in the critical section of the 3754 * transaction commit. 3755 */ 3756 if (ret == -ENOENT) { 3757 ret = 0; 3758 spin_lock(&cur_trans->dirty_bgs_lock); 3759 if (list_empty(&cache->dirty_list)) { 3760 list_add_tail(&cache->dirty_list, 3761 &cur_trans->dirty_bgs); 3762 btrfs_get_block_group(cache); 3763 } 3764 spin_unlock(&cur_trans->dirty_bgs_lock); 3765 } else if (ret) { 3766 btrfs_abort_transaction(trans, ret); 3767 } 3768 } 3769 3770 /* if its not on the io list, we need to put the block group */ 3771 if (should_put) 3772 btrfs_put_block_group(cache); 3773 3774 if (ret) 3775 break; 3776 3777 /* 3778 * Avoid blocking other tasks for too long. It might even save 3779 * us from writing caches for block groups that are going to be 3780 * removed. 3781 */ 3782 mutex_unlock(&trans->transaction->cache_write_mutex); 3783 mutex_lock(&trans->transaction->cache_write_mutex); 3784 } 3785 mutex_unlock(&trans->transaction->cache_write_mutex); 3786 3787 /* 3788 * go through delayed refs for all the stuff we've just kicked off 3789 * and then loop back (just once) 3790 */ 3791 ret = btrfs_run_delayed_refs(trans, 0); 3792 if (!ret && loops == 0) { 3793 loops++; 3794 spin_lock(&cur_trans->dirty_bgs_lock); 3795 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3796 /* 3797 * dirty_bgs_lock protects us from concurrent block group 3798 * deletes too (not just cache_write_mutex). 3799 */ 3800 if (!list_empty(&dirty)) { 3801 spin_unlock(&cur_trans->dirty_bgs_lock); 3802 goto again; 3803 } 3804 spin_unlock(&cur_trans->dirty_bgs_lock); 3805 } else if (ret < 0) { 3806 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3807 } 3808 3809 btrfs_free_path(path); 3810 return ret; 3811 } 3812 3813 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3814 struct btrfs_fs_info *fs_info) 3815 { 3816 struct btrfs_block_group_cache *cache; 3817 struct btrfs_transaction *cur_trans = trans->transaction; 3818 int ret = 0; 3819 int should_put; 3820 struct btrfs_path *path; 3821 struct list_head *io = &cur_trans->io_bgs; 3822 int num_started = 0; 3823 3824 path = btrfs_alloc_path(); 3825 if (!path) 3826 return -ENOMEM; 3827 3828 /* 3829 * Even though we are in the critical section of the transaction commit, 3830 * we can still have concurrent tasks adding elements to this 3831 * transaction's list of dirty block groups. These tasks correspond to 3832 * endio free space workers started when writeback finishes for a 3833 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3834 * allocate new block groups as a result of COWing nodes of the root 3835 * tree when updating the free space inode. The writeback for the space 3836 * caches is triggered by an earlier call to 3837 * btrfs_start_dirty_block_groups() and iterations of the following 3838 * loop. 3839 * Also we want to do the cache_save_setup first and then run the 3840 * delayed refs to make sure we have the best chance at doing this all 3841 * in one shot. 3842 */ 3843 spin_lock(&cur_trans->dirty_bgs_lock); 3844 while (!list_empty(&cur_trans->dirty_bgs)) { 3845 cache = list_first_entry(&cur_trans->dirty_bgs, 3846 struct btrfs_block_group_cache, 3847 dirty_list); 3848 3849 /* 3850 * this can happen if cache_save_setup re-dirties a block 3851 * group that is already under IO. Just wait for it to 3852 * finish and then do it all again 3853 */ 3854 if (!list_empty(&cache->io_list)) { 3855 spin_unlock(&cur_trans->dirty_bgs_lock); 3856 list_del_init(&cache->io_list); 3857 btrfs_wait_cache_io(trans, cache, path); 3858 btrfs_put_block_group(cache); 3859 spin_lock(&cur_trans->dirty_bgs_lock); 3860 } 3861 3862 /* 3863 * don't remove from the dirty list until after we've waited 3864 * on any pending IO 3865 */ 3866 list_del_init(&cache->dirty_list); 3867 spin_unlock(&cur_trans->dirty_bgs_lock); 3868 should_put = 1; 3869 3870 cache_save_setup(cache, trans, path); 3871 3872 if (!ret) 3873 ret = btrfs_run_delayed_refs(trans, 3874 (unsigned long) -1); 3875 3876 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3877 cache->io_ctl.inode = NULL; 3878 ret = btrfs_write_out_cache(fs_info, trans, 3879 cache, path); 3880 if (ret == 0 && cache->io_ctl.inode) { 3881 num_started++; 3882 should_put = 0; 3883 list_add_tail(&cache->io_list, io); 3884 } else { 3885 /* 3886 * if we failed to write the cache, the 3887 * generation will be bad and life goes on 3888 */ 3889 ret = 0; 3890 } 3891 } 3892 if (!ret) { 3893 ret = write_one_cache_group(trans, fs_info, 3894 path, cache); 3895 /* 3896 * One of the free space endio workers might have 3897 * created a new block group while updating a free space 3898 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3899 * and hasn't released its transaction handle yet, in 3900 * which case the new block group is still attached to 3901 * its transaction handle and its creation has not 3902 * finished yet (no block group item in the extent tree 3903 * yet, etc). If this is the case, wait for all free 3904 * space endio workers to finish and retry. This is a 3905 * a very rare case so no need for a more efficient and 3906 * complex approach. 3907 */ 3908 if (ret == -ENOENT) { 3909 wait_event(cur_trans->writer_wait, 3910 atomic_read(&cur_trans->num_writers) == 1); 3911 ret = write_one_cache_group(trans, fs_info, 3912 path, cache); 3913 } 3914 if (ret) 3915 btrfs_abort_transaction(trans, ret); 3916 } 3917 3918 /* if its not on the io list, we need to put the block group */ 3919 if (should_put) 3920 btrfs_put_block_group(cache); 3921 spin_lock(&cur_trans->dirty_bgs_lock); 3922 } 3923 spin_unlock(&cur_trans->dirty_bgs_lock); 3924 3925 /* 3926 * Refer to the definition of io_bgs member for details why it's safe 3927 * to use it without any locking 3928 */ 3929 while (!list_empty(io)) { 3930 cache = list_first_entry(io, struct btrfs_block_group_cache, 3931 io_list); 3932 list_del_init(&cache->io_list); 3933 btrfs_wait_cache_io(trans, cache, path); 3934 btrfs_put_block_group(cache); 3935 } 3936 3937 btrfs_free_path(path); 3938 return ret; 3939 } 3940 3941 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3942 { 3943 struct btrfs_block_group_cache *block_group; 3944 int readonly = 0; 3945 3946 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3947 if (!block_group || block_group->ro) 3948 readonly = 1; 3949 if (block_group) 3950 btrfs_put_block_group(block_group); 3951 return readonly; 3952 } 3953 3954 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3955 { 3956 struct btrfs_block_group_cache *bg; 3957 bool ret = true; 3958 3959 bg = btrfs_lookup_block_group(fs_info, bytenr); 3960 if (!bg) 3961 return false; 3962 3963 spin_lock(&bg->lock); 3964 if (bg->ro) 3965 ret = false; 3966 else 3967 atomic_inc(&bg->nocow_writers); 3968 spin_unlock(&bg->lock); 3969 3970 /* no put on block group, done by btrfs_dec_nocow_writers */ 3971 if (!ret) 3972 btrfs_put_block_group(bg); 3973 3974 return ret; 3975 3976 } 3977 3978 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3979 { 3980 struct btrfs_block_group_cache *bg; 3981 3982 bg = btrfs_lookup_block_group(fs_info, bytenr); 3983 ASSERT(bg); 3984 if (atomic_dec_and_test(&bg->nocow_writers)) 3985 wake_up_var(&bg->nocow_writers); 3986 /* 3987 * Once for our lookup and once for the lookup done by a previous call 3988 * to btrfs_inc_nocow_writers() 3989 */ 3990 btrfs_put_block_group(bg); 3991 btrfs_put_block_group(bg); 3992 } 3993 3994 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3995 { 3996 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 3997 } 3998 3999 static const char *alloc_name(u64 flags) 4000 { 4001 switch (flags) { 4002 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4003 return "mixed"; 4004 case BTRFS_BLOCK_GROUP_METADATA: 4005 return "metadata"; 4006 case BTRFS_BLOCK_GROUP_DATA: 4007 return "data"; 4008 case BTRFS_BLOCK_GROUP_SYSTEM: 4009 return "system"; 4010 default: 4011 WARN_ON(1); 4012 return "invalid-combination"; 4013 }; 4014 } 4015 4016 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4017 struct btrfs_space_info **new) 4018 { 4019 4020 struct btrfs_space_info *space_info; 4021 int i; 4022 int ret; 4023 4024 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4025 if (!space_info) 4026 return -ENOMEM; 4027 4028 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4029 GFP_KERNEL); 4030 if (ret) { 4031 kfree(space_info); 4032 return ret; 4033 } 4034 4035 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4036 INIT_LIST_HEAD(&space_info->block_groups[i]); 4037 init_rwsem(&space_info->groups_sem); 4038 spin_lock_init(&space_info->lock); 4039 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4040 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4041 init_waitqueue_head(&space_info->wait); 4042 INIT_LIST_HEAD(&space_info->ro_bgs); 4043 INIT_LIST_HEAD(&space_info->tickets); 4044 INIT_LIST_HEAD(&space_info->priority_tickets); 4045 4046 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4047 info->space_info_kobj, "%s", 4048 alloc_name(space_info->flags)); 4049 if (ret) { 4050 percpu_counter_destroy(&space_info->total_bytes_pinned); 4051 kfree(space_info); 4052 return ret; 4053 } 4054 4055 *new = space_info; 4056 list_add_rcu(&space_info->list, &info->space_info); 4057 if (flags & BTRFS_BLOCK_GROUP_DATA) 4058 info->data_sinfo = space_info; 4059 4060 return ret; 4061 } 4062 4063 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4064 u64 total_bytes, u64 bytes_used, 4065 u64 bytes_readonly, 4066 struct btrfs_space_info **space_info) 4067 { 4068 struct btrfs_space_info *found; 4069 int factor; 4070 4071 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4072 BTRFS_BLOCK_GROUP_RAID10)) 4073 factor = 2; 4074 else 4075 factor = 1; 4076 4077 found = __find_space_info(info, flags); 4078 ASSERT(found); 4079 spin_lock(&found->lock); 4080 found->total_bytes += total_bytes; 4081 found->disk_total += total_bytes * factor; 4082 found->bytes_used += bytes_used; 4083 found->disk_used += bytes_used * factor; 4084 found->bytes_readonly += bytes_readonly; 4085 if (total_bytes > 0) 4086 found->full = 0; 4087 space_info_add_new_bytes(info, found, total_bytes - 4088 bytes_used - bytes_readonly); 4089 spin_unlock(&found->lock); 4090 *space_info = found; 4091 } 4092 4093 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4094 { 4095 u64 extra_flags = chunk_to_extended(flags) & 4096 BTRFS_EXTENDED_PROFILE_MASK; 4097 4098 write_seqlock(&fs_info->profiles_lock); 4099 if (flags & BTRFS_BLOCK_GROUP_DATA) 4100 fs_info->avail_data_alloc_bits |= extra_flags; 4101 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4102 fs_info->avail_metadata_alloc_bits |= extra_flags; 4103 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4104 fs_info->avail_system_alloc_bits |= extra_flags; 4105 write_sequnlock(&fs_info->profiles_lock); 4106 } 4107 4108 /* 4109 * returns target flags in extended format or 0 if restripe for this 4110 * chunk_type is not in progress 4111 * 4112 * should be called with either volume_mutex or balance_lock held 4113 */ 4114 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4115 { 4116 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4117 u64 target = 0; 4118 4119 if (!bctl) 4120 return 0; 4121 4122 if (flags & BTRFS_BLOCK_GROUP_DATA && 4123 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4124 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4125 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4126 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4127 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4128 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4129 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4130 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4131 } 4132 4133 return target; 4134 } 4135 4136 /* 4137 * @flags: available profiles in extended format (see ctree.h) 4138 * 4139 * Returns reduced profile in chunk format. If profile changing is in 4140 * progress (either running or paused) picks the target profile (if it's 4141 * already available), otherwise falls back to plain reducing. 4142 */ 4143 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4144 { 4145 u64 num_devices = fs_info->fs_devices->rw_devices; 4146 u64 target; 4147 u64 raid_type; 4148 u64 allowed = 0; 4149 4150 /* 4151 * see if restripe for this chunk_type is in progress, if so 4152 * try to reduce to the target profile 4153 */ 4154 spin_lock(&fs_info->balance_lock); 4155 target = get_restripe_target(fs_info, flags); 4156 if (target) { 4157 /* pick target profile only if it's already available */ 4158 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4159 spin_unlock(&fs_info->balance_lock); 4160 return extended_to_chunk(target); 4161 } 4162 } 4163 spin_unlock(&fs_info->balance_lock); 4164 4165 /* First, mask out the RAID levels which aren't possible */ 4166 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4167 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4168 allowed |= btrfs_raid_group[raid_type]; 4169 } 4170 allowed &= flags; 4171 4172 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4173 allowed = BTRFS_BLOCK_GROUP_RAID6; 4174 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4175 allowed = BTRFS_BLOCK_GROUP_RAID5; 4176 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4177 allowed = BTRFS_BLOCK_GROUP_RAID10; 4178 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4179 allowed = BTRFS_BLOCK_GROUP_RAID1; 4180 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4181 allowed = BTRFS_BLOCK_GROUP_RAID0; 4182 4183 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4184 4185 return extended_to_chunk(flags | allowed); 4186 } 4187 4188 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4189 { 4190 unsigned seq; 4191 u64 flags; 4192 4193 do { 4194 flags = orig_flags; 4195 seq = read_seqbegin(&fs_info->profiles_lock); 4196 4197 if (flags & BTRFS_BLOCK_GROUP_DATA) 4198 flags |= fs_info->avail_data_alloc_bits; 4199 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4200 flags |= fs_info->avail_system_alloc_bits; 4201 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4202 flags |= fs_info->avail_metadata_alloc_bits; 4203 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4204 4205 return btrfs_reduce_alloc_profile(fs_info, flags); 4206 } 4207 4208 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4209 { 4210 struct btrfs_fs_info *fs_info = root->fs_info; 4211 u64 flags; 4212 u64 ret; 4213 4214 if (data) 4215 flags = BTRFS_BLOCK_GROUP_DATA; 4216 else if (root == fs_info->chunk_root) 4217 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4218 else 4219 flags = BTRFS_BLOCK_GROUP_METADATA; 4220 4221 ret = get_alloc_profile(fs_info, flags); 4222 return ret; 4223 } 4224 4225 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4226 { 4227 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4228 } 4229 4230 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4231 { 4232 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4233 } 4234 4235 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4236 { 4237 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4238 } 4239 4240 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4241 bool may_use_included) 4242 { 4243 ASSERT(s_info); 4244 return s_info->bytes_used + s_info->bytes_reserved + 4245 s_info->bytes_pinned + s_info->bytes_readonly + 4246 (may_use_included ? s_info->bytes_may_use : 0); 4247 } 4248 4249 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4250 { 4251 struct btrfs_root *root = inode->root; 4252 struct btrfs_fs_info *fs_info = root->fs_info; 4253 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4254 u64 used; 4255 int ret = 0; 4256 int need_commit = 2; 4257 int have_pinned_space; 4258 4259 /* make sure bytes are sectorsize aligned */ 4260 bytes = ALIGN(bytes, fs_info->sectorsize); 4261 4262 if (btrfs_is_free_space_inode(inode)) { 4263 need_commit = 0; 4264 ASSERT(current->journal_info); 4265 } 4266 4267 again: 4268 /* make sure we have enough space to handle the data first */ 4269 spin_lock(&data_sinfo->lock); 4270 used = btrfs_space_info_used(data_sinfo, true); 4271 4272 if (used + bytes > data_sinfo->total_bytes) { 4273 struct btrfs_trans_handle *trans; 4274 4275 /* 4276 * if we don't have enough free bytes in this space then we need 4277 * to alloc a new chunk. 4278 */ 4279 if (!data_sinfo->full) { 4280 u64 alloc_target; 4281 4282 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4283 spin_unlock(&data_sinfo->lock); 4284 4285 alloc_target = btrfs_data_alloc_profile(fs_info); 4286 /* 4287 * It is ugly that we don't call nolock join 4288 * transaction for the free space inode case here. 4289 * But it is safe because we only do the data space 4290 * reservation for the free space cache in the 4291 * transaction context, the common join transaction 4292 * just increase the counter of the current transaction 4293 * handler, doesn't try to acquire the trans_lock of 4294 * the fs. 4295 */ 4296 trans = btrfs_join_transaction(root); 4297 if (IS_ERR(trans)) 4298 return PTR_ERR(trans); 4299 4300 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4301 CHUNK_ALLOC_NO_FORCE); 4302 btrfs_end_transaction(trans); 4303 if (ret < 0) { 4304 if (ret != -ENOSPC) 4305 return ret; 4306 else { 4307 have_pinned_space = 1; 4308 goto commit_trans; 4309 } 4310 } 4311 4312 goto again; 4313 } 4314 4315 /* 4316 * If we don't have enough pinned space to deal with this 4317 * allocation, and no removed chunk in current transaction, 4318 * don't bother committing the transaction. 4319 */ 4320 have_pinned_space = percpu_counter_compare( 4321 &data_sinfo->total_bytes_pinned, 4322 used + bytes - data_sinfo->total_bytes); 4323 spin_unlock(&data_sinfo->lock); 4324 4325 /* commit the current transaction and try again */ 4326 commit_trans: 4327 if (need_commit) { 4328 need_commit--; 4329 4330 if (need_commit > 0) { 4331 btrfs_start_delalloc_roots(fs_info, 0, -1); 4332 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4333 (u64)-1); 4334 } 4335 4336 trans = btrfs_join_transaction(root); 4337 if (IS_ERR(trans)) 4338 return PTR_ERR(trans); 4339 if (have_pinned_space >= 0 || 4340 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4341 &trans->transaction->flags) || 4342 need_commit > 0) { 4343 ret = btrfs_commit_transaction(trans); 4344 if (ret) 4345 return ret; 4346 /* 4347 * The cleaner kthread might still be doing iput 4348 * operations. Wait for it to finish so that 4349 * more space is released. 4350 */ 4351 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4352 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4353 goto again; 4354 } else { 4355 btrfs_end_transaction(trans); 4356 } 4357 } 4358 4359 trace_btrfs_space_reservation(fs_info, 4360 "space_info:enospc", 4361 data_sinfo->flags, bytes, 1); 4362 return -ENOSPC; 4363 } 4364 data_sinfo->bytes_may_use += bytes; 4365 trace_btrfs_space_reservation(fs_info, "space_info", 4366 data_sinfo->flags, bytes, 1); 4367 spin_unlock(&data_sinfo->lock); 4368 4369 return ret; 4370 } 4371 4372 int btrfs_check_data_free_space(struct inode *inode, 4373 struct extent_changeset **reserved, u64 start, u64 len) 4374 { 4375 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4376 int ret; 4377 4378 /* align the range */ 4379 len = round_up(start + len, fs_info->sectorsize) - 4380 round_down(start, fs_info->sectorsize); 4381 start = round_down(start, fs_info->sectorsize); 4382 4383 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4384 if (ret < 0) 4385 return ret; 4386 4387 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4388 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4389 if (ret < 0) 4390 btrfs_free_reserved_data_space_noquota(inode, start, len); 4391 else 4392 ret = 0; 4393 return ret; 4394 } 4395 4396 /* 4397 * Called if we need to clear a data reservation for this inode 4398 * Normally in a error case. 4399 * 4400 * This one will *NOT* use accurate qgroup reserved space API, just for case 4401 * which we can't sleep and is sure it won't affect qgroup reserved space. 4402 * Like clear_bit_hook(). 4403 */ 4404 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4405 u64 len) 4406 { 4407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4408 struct btrfs_space_info *data_sinfo; 4409 4410 /* Make sure the range is aligned to sectorsize */ 4411 len = round_up(start + len, fs_info->sectorsize) - 4412 round_down(start, fs_info->sectorsize); 4413 start = round_down(start, fs_info->sectorsize); 4414 4415 data_sinfo = fs_info->data_sinfo; 4416 spin_lock(&data_sinfo->lock); 4417 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4418 data_sinfo->bytes_may_use = 0; 4419 else 4420 data_sinfo->bytes_may_use -= len; 4421 trace_btrfs_space_reservation(fs_info, "space_info", 4422 data_sinfo->flags, len, 0); 4423 spin_unlock(&data_sinfo->lock); 4424 } 4425 4426 /* 4427 * Called if we need to clear a data reservation for this inode 4428 * Normally in a error case. 4429 * 4430 * This one will handle the per-inode data rsv map for accurate reserved 4431 * space framework. 4432 */ 4433 void btrfs_free_reserved_data_space(struct inode *inode, 4434 struct extent_changeset *reserved, u64 start, u64 len) 4435 { 4436 struct btrfs_root *root = BTRFS_I(inode)->root; 4437 4438 /* Make sure the range is aligned to sectorsize */ 4439 len = round_up(start + len, root->fs_info->sectorsize) - 4440 round_down(start, root->fs_info->sectorsize); 4441 start = round_down(start, root->fs_info->sectorsize); 4442 4443 btrfs_free_reserved_data_space_noquota(inode, start, len); 4444 btrfs_qgroup_free_data(inode, reserved, start, len); 4445 } 4446 4447 static void force_metadata_allocation(struct btrfs_fs_info *info) 4448 { 4449 struct list_head *head = &info->space_info; 4450 struct btrfs_space_info *found; 4451 4452 rcu_read_lock(); 4453 list_for_each_entry_rcu(found, head, list) { 4454 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4455 found->force_alloc = CHUNK_ALLOC_FORCE; 4456 } 4457 rcu_read_unlock(); 4458 } 4459 4460 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4461 { 4462 return (global->size << 1); 4463 } 4464 4465 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4466 struct btrfs_space_info *sinfo, int force) 4467 { 4468 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4469 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4470 u64 thresh; 4471 4472 if (force == CHUNK_ALLOC_FORCE) 4473 return 1; 4474 4475 /* 4476 * We need to take into account the global rsv because for all intents 4477 * and purposes it's used space. Don't worry about locking the 4478 * global_rsv, it doesn't change except when the transaction commits. 4479 */ 4480 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4481 bytes_used += calc_global_rsv_need_space(global_rsv); 4482 4483 /* 4484 * in limited mode, we want to have some free space up to 4485 * about 1% of the FS size. 4486 */ 4487 if (force == CHUNK_ALLOC_LIMITED) { 4488 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4489 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4490 4491 if (sinfo->total_bytes - bytes_used < thresh) 4492 return 1; 4493 } 4494 4495 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4496 return 0; 4497 return 1; 4498 } 4499 4500 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4501 { 4502 u64 num_dev; 4503 4504 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4505 BTRFS_BLOCK_GROUP_RAID0 | 4506 BTRFS_BLOCK_GROUP_RAID5 | 4507 BTRFS_BLOCK_GROUP_RAID6)) 4508 num_dev = fs_info->fs_devices->rw_devices; 4509 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4510 num_dev = 2; 4511 else 4512 num_dev = 1; /* DUP or single */ 4513 4514 return num_dev; 4515 } 4516 4517 /* 4518 * If @is_allocation is true, reserve space in the system space info necessary 4519 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4520 * removing a chunk. 4521 */ 4522 void check_system_chunk(struct btrfs_trans_handle *trans, 4523 struct btrfs_fs_info *fs_info, u64 type) 4524 { 4525 struct btrfs_space_info *info; 4526 u64 left; 4527 u64 thresh; 4528 int ret = 0; 4529 u64 num_devs; 4530 4531 /* 4532 * Needed because we can end up allocating a system chunk and for an 4533 * atomic and race free space reservation in the chunk block reserve. 4534 */ 4535 lockdep_assert_held(&fs_info->chunk_mutex); 4536 4537 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4538 spin_lock(&info->lock); 4539 left = info->total_bytes - btrfs_space_info_used(info, true); 4540 spin_unlock(&info->lock); 4541 4542 num_devs = get_profile_num_devs(fs_info, type); 4543 4544 /* num_devs device items to update and 1 chunk item to add or remove */ 4545 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4546 btrfs_calc_trans_metadata_size(fs_info, 1); 4547 4548 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4549 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4550 left, thresh, type); 4551 dump_space_info(fs_info, info, 0, 0); 4552 } 4553 4554 if (left < thresh) { 4555 u64 flags = btrfs_system_alloc_profile(fs_info); 4556 4557 /* 4558 * Ignore failure to create system chunk. We might end up not 4559 * needing it, as we might not need to COW all nodes/leafs from 4560 * the paths we visit in the chunk tree (they were already COWed 4561 * or created in the current transaction for example). 4562 */ 4563 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4564 } 4565 4566 if (!ret) { 4567 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4568 &fs_info->chunk_block_rsv, 4569 thresh, BTRFS_RESERVE_NO_FLUSH); 4570 if (!ret) 4571 trans->chunk_bytes_reserved += thresh; 4572 } 4573 } 4574 4575 /* 4576 * If force is CHUNK_ALLOC_FORCE: 4577 * - return 1 if it successfully allocates a chunk, 4578 * - return errors including -ENOSPC otherwise. 4579 * If force is NOT CHUNK_ALLOC_FORCE: 4580 * - return 0 if it doesn't need to allocate a new chunk, 4581 * - return 1 if it successfully allocates a chunk, 4582 * - return errors including -ENOSPC otherwise. 4583 */ 4584 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4585 struct btrfs_fs_info *fs_info, u64 flags, int force) 4586 { 4587 struct btrfs_space_info *space_info; 4588 int wait_for_alloc = 0; 4589 int ret = 0; 4590 4591 /* Don't re-enter if we're already allocating a chunk */ 4592 if (trans->allocating_chunk) 4593 return -ENOSPC; 4594 4595 space_info = __find_space_info(fs_info, flags); 4596 ASSERT(space_info); 4597 4598 again: 4599 spin_lock(&space_info->lock); 4600 if (force < space_info->force_alloc) 4601 force = space_info->force_alloc; 4602 if (space_info->full) { 4603 if (should_alloc_chunk(fs_info, space_info, force)) 4604 ret = -ENOSPC; 4605 else 4606 ret = 0; 4607 spin_unlock(&space_info->lock); 4608 return ret; 4609 } 4610 4611 if (!should_alloc_chunk(fs_info, space_info, force)) { 4612 spin_unlock(&space_info->lock); 4613 return 0; 4614 } else if (space_info->chunk_alloc) { 4615 wait_for_alloc = 1; 4616 } else { 4617 space_info->chunk_alloc = 1; 4618 } 4619 4620 spin_unlock(&space_info->lock); 4621 4622 mutex_lock(&fs_info->chunk_mutex); 4623 4624 /* 4625 * The chunk_mutex is held throughout the entirety of a chunk 4626 * allocation, so once we've acquired the chunk_mutex we know that the 4627 * other guy is done and we need to recheck and see if we should 4628 * allocate. 4629 */ 4630 if (wait_for_alloc) { 4631 mutex_unlock(&fs_info->chunk_mutex); 4632 wait_for_alloc = 0; 4633 cond_resched(); 4634 goto again; 4635 } 4636 4637 trans->allocating_chunk = true; 4638 4639 /* 4640 * If we have mixed data/metadata chunks we want to make sure we keep 4641 * allocating mixed chunks instead of individual chunks. 4642 */ 4643 if (btrfs_mixed_space_info(space_info)) 4644 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4645 4646 /* 4647 * if we're doing a data chunk, go ahead and make sure that 4648 * we keep a reasonable number of metadata chunks allocated in the 4649 * FS as well. 4650 */ 4651 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4652 fs_info->data_chunk_allocations++; 4653 if (!(fs_info->data_chunk_allocations % 4654 fs_info->metadata_ratio)) 4655 force_metadata_allocation(fs_info); 4656 } 4657 4658 /* 4659 * Check if we have enough space in SYSTEM chunk because we may need 4660 * to update devices. 4661 */ 4662 check_system_chunk(trans, fs_info, flags); 4663 4664 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4665 trans->allocating_chunk = false; 4666 4667 spin_lock(&space_info->lock); 4668 if (ret < 0 && ret != -ENOSPC) 4669 goto out; 4670 if (ret) 4671 space_info->full = 1; 4672 else 4673 ret = 1; 4674 4675 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4676 out: 4677 space_info->chunk_alloc = 0; 4678 spin_unlock(&space_info->lock); 4679 mutex_unlock(&fs_info->chunk_mutex); 4680 /* 4681 * When we allocate a new chunk we reserve space in the chunk block 4682 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4683 * add new nodes/leafs to it if we end up needing to do it when 4684 * inserting the chunk item and updating device items as part of the 4685 * second phase of chunk allocation, performed by 4686 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4687 * large number of new block groups to create in our transaction 4688 * handle's new_bgs list to avoid exhausting the chunk block reserve 4689 * in extreme cases - like having a single transaction create many new 4690 * block groups when starting to write out the free space caches of all 4691 * the block groups that were made dirty during the lifetime of the 4692 * transaction. 4693 */ 4694 if (trans->can_flush_pending_bgs && 4695 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4696 btrfs_create_pending_block_groups(trans); 4697 btrfs_trans_release_chunk_metadata(trans); 4698 } 4699 return ret; 4700 } 4701 4702 static int can_overcommit(struct btrfs_fs_info *fs_info, 4703 struct btrfs_space_info *space_info, u64 bytes, 4704 enum btrfs_reserve_flush_enum flush, 4705 bool system_chunk) 4706 { 4707 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4708 u64 profile; 4709 u64 space_size; 4710 u64 avail; 4711 u64 used; 4712 4713 /* Don't overcommit when in mixed mode. */ 4714 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4715 return 0; 4716 4717 if (system_chunk) 4718 profile = btrfs_system_alloc_profile(fs_info); 4719 else 4720 profile = btrfs_metadata_alloc_profile(fs_info); 4721 4722 used = btrfs_space_info_used(space_info, false); 4723 4724 /* 4725 * We only want to allow over committing if we have lots of actual space 4726 * free, but if we don't have enough space to handle the global reserve 4727 * space then we could end up having a real enospc problem when trying 4728 * to allocate a chunk or some other such important allocation. 4729 */ 4730 spin_lock(&global_rsv->lock); 4731 space_size = calc_global_rsv_need_space(global_rsv); 4732 spin_unlock(&global_rsv->lock); 4733 if (used + space_size >= space_info->total_bytes) 4734 return 0; 4735 4736 used += space_info->bytes_may_use; 4737 4738 avail = atomic64_read(&fs_info->free_chunk_space); 4739 4740 /* 4741 * If we have dup, raid1 or raid10 then only half of the free 4742 * space is actually useable. For raid56, the space info used 4743 * doesn't include the parity drive, so we don't have to 4744 * change the math 4745 */ 4746 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4747 BTRFS_BLOCK_GROUP_RAID1 | 4748 BTRFS_BLOCK_GROUP_RAID10)) 4749 avail >>= 1; 4750 4751 /* 4752 * If we aren't flushing all things, let us overcommit up to 4753 * 1/2th of the space. If we can flush, don't let us overcommit 4754 * too much, let it overcommit up to 1/8 of the space. 4755 */ 4756 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4757 avail >>= 3; 4758 else 4759 avail >>= 1; 4760 4761 if (used + bytes < space_info->total_bytes + avail) 4762 return 1; 4763 return 0; 4764 } 4765 4766 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4767 unsigned long nr_pages, int nr_items) 4768 { 4769 struct super_block *sb = fs_info->sb; 4770 4771 if (down_read_trylock(&sb->s_umount)) { 4772 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4773 up_read(&sb->s_umount); 4774 } else { 4775 /* 4776 * We needn't worry the filesystem going from r/w to r/o though 4777 * we don't acquire ->s_umount mutex, because the filesystem 4778 * should guarantee the delalloc inodes list be empty after 4779 * the filesystem is readonly(all dirty pages are written to 4780 * the disk). 4781 */ 4782 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4783 if (!current->journal_info) 4784 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4785 } 4786 } 4787 4788 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4789 u64 to_reclaim) 4790 { 4791 u64 bytes; 4792 u64 nr; 4793 4794 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4795 nr = div64_u64(to_reclaim, bytes); 4796 if (!nr) 4797 nr = 1; 4798 return nr; 4799 } 4800 4801 #define EXTENT_SIZE_PER_ITEM SZ_256K 4802 4803 /* 4804 * shrink metadata reservation for delalloc 4805 */ 4806 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4807 u64 orig, bool wait_ordered) 4808 { 4809 struct btrfs_space_info *space_info; 4810 struct btrfs_trans_handle *trans; 4811 u64 delalloc_bytes; 4812 u64 max_reclaim; 4813 u64 items; 4814 long time_left; 4815 unsigned long nr_pages; 4816 int loops; 4817 4818 /* Calc the number of the pages we need flush for space reservation */ 4819 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4820 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4821 4822 trans = (struct btrfs_trans_handle *)current->journal_info; 4823 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4824 4825 delalloc_bytes = percpu_counter_sum_positive( 4826 &fs_info->delalloc_bytes); 4827 if (delalloc_bytes == 0) { 4828 if (trans) 4829 return; 4830 if (wait_ordered) 4831 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4832 return; 4833 } 4834 4835 loops = 0; 4836 while (delalloc_bytes && loops < 3) { 4837 max_reclaim = min(delalloc_bytes, to_reclaim); 4838 nr_pages = max_reclaim >> PAGE_SHIFT; 4839 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4840 /* 4841 * We need to wait for the async pages to actually start before 4842 * we do anything. 4843 */ 4844 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4845 if (!max_reclaim) 4846 goto skip_async; 4847 4848 if (max_reclaim <= nr_pages) 4849 max_reclaim = 0; 4850 else 4851 max_reclaim -= nr_pages; 4852 4853 wait_event(fs_info->async_submit_wait, 4854 atomic_read(&fs_info->async_delalloc_pages) <= 4855 (int)max_reclaim); 4856 skip_async: 4857 spin_lock(&space_info->lock); 4858 if (list_empty(&space_info->tickets) && 4859 list_empty(&space_info->priority_tickets)) { 4860 spin_unlock(&space_info->lock); 4861 break; 4862 } 4863 spin_unlock(&space_info->lock); 4864 4865 loops++; 4866 if (wait_ordered && !trans) { 4867 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4868 } else { 4869 time_left = schedule_timeout_killable(1); 4870 if (time_left) 4871 break; 4872 } 4873 delalloc_bytes = percpu_counter_sum_positive( 4874 &fs_info->delalloc_bytes); 4875 } 4876 } 4877 4878 struct reserve_ticket { 4879 u64 bytes; 4880 int error; 4881 struct list_head list; 4882 wait_queue_head_t wait; 4883 }; 4884 4885 /** 4886 * maybe_commit_transaction - possibly commit the transaction if its ok to 4887 * @root - the root we're allocating for 4888 * @bytes - the number of bytes we want to reserve 4889 * @force - force the commit 4890 * 4891 * This will check to make sure that committing the transaction will actually 4892 * get us somewhere and then commit the transaction if it does. Otherwise it 4893 * will return -ENOSPC. 4894 */ 4895 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4896 struct btrfs_space_info *space_info) 4897 { 4898 struct reserve_ticket *ticket = NULL; 4899 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4900 struct btrfs_trans_handle *trans; 4901 u64 bytes; 4902 4903 trans = (struct btrfs_trans_handle *)current->journal_info; 4904 if (trans) 4905 return -EAGAIN; 4906 4907 spin_lock(&space_info->lock); 4908 if (!list_empty(&space_info->priority_tickets)) 4909 ticket = list_first_entry(&space_info->priority_tickets, 4910 struct reserve_ticket, list); 4911 else if (!list_empty(&space_info->tickets)) 4912 ticket = list_first_entry(&space_info->tickets, 4913 struct reserve_ticket, list); 4914 bytes = (ticket) ? ticket->bytes : 0; 4915 spin_unlock(&space_info->lock); 4916 4917 if (!bytes) 4918 return 0; 4919 4920 /* See if there is enough pinned space to make this reservation */ 4921 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4922 bytes) >= 0) 4923 goto commit; 4924 4925 /* 4926 * See if there is some space in the delayed insertion reservation for 4927 * this reservation. 4928 */ 4929 if (space_info != delayed_rsv->space_info) 4930 return -ENOSPC; 4931 4932 spin_lock(&delayed_rsv->lock); 4933 if (delayed_rsv->size > bytes) 4934 bytes = 0; 4935 else 4936 bytes -= delayed_rsv->size; 4937 spin_unlock(&delayed_rsv->lock); 4938 4939 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4940 bytes) < 0) { 4941 return -ENOSPC; 4942 } 4943 4944 commit: 4945 trans = btrfs_join_transaction(fs_info->extent_root); 4946 if (IS_ERR(trans)) 4947 return -ENOSPC; 4948 4949 return btrfs_commit_transaction(trans); 4950 } 4951 4952 /* 4953 * Try to flush some data based on policy set by @state. This is only advisory 4954 * and may fail for various reasons. The caller is supposed to examine the 4955 * state of @space_info to detect the outcome. 4956 */ 4957 static void flush_space(struct btrfs_fs_info *fs_info, 4958 struct btrfs_space_info *space_info, u64 num_bytes, 4959 int state) 4960 { 4961 struct btrfs_root *root = fs_info->extent_root; 4962 struct btrfs_trans_handle *trans; 4963 int nr; 4964 int ret = 0; 4965 4966 switch (state) { 4967 case FLUSH_DELAYED_ITEMS_NR: 4968 case FLUSH_DELAYED_ITEMS: 4969 if (state == FLUSH_DELAYED_ITEMS_NR) 4970 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4971 else 4972 nr = -1; 4973 4974 trans = btrfs_join_transaction(root); 4975 if (IS_ERR(trans)) { 4976 ret = PTR_ERR(trans); 4977 break; 4978 } 4979 ret = btrfs_run_delayed_items_nr(trans, nr); 4980 btrfs_end_transaction(trans); 4981 break; 4982 case FLUSH_DELALLOC: 4983 case FLUSH_DELALLOC_WAIT: 4984 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4985 state == FLUSH_DELALLOC_WAIT); 4986 break; 4987 case ALLOC_CHUNK: 4988 trans = btrfs_join_transaction(root); 4989 if (IS_ERR(trans)) { 4990 ret = PTR_ERR(trans); 4991 break; 4992 } 4993 ret = do_chunk_alloc(trans, fs_info, 4994 btrfs_metadata_alloc_profile(fs_info), 4995 CHUNK_ALLOC_NO_FORCE); 4996 btrfs_end_transaction(trans); 4997 if (ret > 0 || ret == -ENOSPC) 4998 ret = 0; 4999 break; 5000 case COMMIT_TRANS: 5001 ret = may_commit_transaction(fs_info, space_info); 5002 break; 5003 default: 5004 ret = -ENOSPC; 5005 break; 5006 } 5007 5008 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5009 ret); 5010 return; 5011 } 5012 5013 static inline u64 5014 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5015 struct btrfs_space_info *space_info, 5016 bool system_chunk) 5017 { 5018 struct reserve_ticket *ticket; 5019 u64 used; 5020 u64 expected; 5021 u64 to_reclaim = 0; 5022 5023 list_for_each_entry(ticket, &space_info->tickets, list) 5024 to_reclaim += ticket->bytes; 5025 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5026 to_reclaim += ticket->bytes; 5027 if (to_reclaim) 5028 return to_reclaim; 5029 5030 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5031 if (can_overcommit(fs_info, space_info, to_reclaim, 5032 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5033 return 0; 5034 5035 used = btrfs_space_info_used(space_info, true); 5036 5037 if (can_overcommit(fs_info, space_info, SZ_1M, 5038 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5039 expected = div_factor_fine(space_info->total_bytes, 95); 5040 else 5041 expected = div_factor_fine(space_info->total_bytes, 90); 5042 5043 if (used > expected) 5044 to_reclaim = used - expected; 5045 else 5046 to_reclaim = 0; 5047 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5048 space_info->bytes_reserved); 5049 return to_reclaim; 5050 } 5051 5052 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5053 struct btrfs_space_info *space_info, 5054 u64 used, bool system_chunk) 5055 { 5056 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5057 5058 /* If we're just plain full then async reclaim just slows us down. */ 5059 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5060 return 0; 5061 5062 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5063 system_chunk)) 5064 return 0; 5065 5066 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5067 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5068 } 5069 5070 static void wake_all_tickets(struct list_head *head) 5071 { 5072 struct reserve_ticket *ticket; 5073 5074 while (!list_empty(head)) { 5075 ticket = list_first_entry(head, struct reserve_ticket, list); 5076 list_del_init(&ticket->list); 5077 ticket->error = -ENOSPC; 5078 wake_up(&ticket->wait); 5079 } 5080 } 5081 5082 /* 5083 * This is for normal flushers, we can wait all goddamned day if we want to. We 5084 * will loop and continuously try to flush as long as we are making progress. 5085 * We count progress as clearing off tickets each time we have to loop. 5086 */ 5087 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5088 { 5089 struct btrfs_fs_info *fs_info; 5090 struct btrfs_space_info *space_info; 5091 u64 to_reclaim; 5092 int flush_state; 5093 int commit_cycles = 0; 5094 u64 last_tickets_id; 5095 5096 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5097 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5098 5099 spin_lock(&space_info->lock); 5100 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5101 false); 5102 if (!to_reclaim) { 5103 space_info->flush = 0; 5104 spin_unlock(&space_info->lock); 5105 return; 5106 } 5107 last_tickets_id = space_info->tickets_id; 5108 spin_unlock(&space_info->lock); 5109 5110 flush_state = FLUSH_DELAYED_ITEMS_NR; 5111 do { 5112 flush_space(fs_info, space_info, to_reclaim, flush_state); 5113 spin_lock(&space_info->lock); 5114 if (list_empty(&space_info->tickets)) { 5115 space_info->flush = 0; 5116 spin_unlock(&space_info->lock); 5117 return; 5118 } 5119 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5120 space_info, 5121 false); 5122 if (last_tickets_id == space_info->tickets_id) { 5123 flush_state++; 5124 } else { 5125 last_tickets_id = space_info->tickets_id; 5126 flush_state = FLUSH_DELAYED_ITEMS_NR; 5127 if (commit_cycles) 5128 commit_cycles--; 5129 } 5130 5131 if (flush_state > COMMIT_TRANS) { 5132 commit_cycles++; 5133 if (commit_cycles > 2) { 5134 wake_all_tickets(&space_info->tickets); 5135 space_info->flush = 0; 5136 } else { 5137 flush_state = FLUSH_DELAYED_ITEMS_NR; 5138 } 5139 } 5140 spin_unlock(&space_info->lock); 5141 } while (flush_state <= COMMIT_TRANS); 5142 } 5143 5144 void btrfs_init_async_reclaim_work(struct work_struct *work) 5145 { 5146 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5147 } 5148 5149 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5150 struct btrfs_space_info *space_info, 5151 struct reserve_ticket *ticket) 5152 { 5153 u64 to_reclaim; 5154 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5155 5156 spin_lock(&space_info->lock); 5157 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5158 false); 5159 if (!to_reclaim) { 5160 spin_unlock(&space_info->lock); 5161 return; 5162 } 5163 spin_unlock(&space_info->lock); 5164 5165 do { 5166 flush_space(fs_info, space_info, to_reclaim, flush_state); 5167 flush_state++; 5168 spin_lock(&space_info->lock); 5169 if (ticket->bytes == 0) { 5170 spin_unlock(&space_info->lock); 5171 return; 5172 } 5173 spin_unlock(&space_info->lock); 5174 5175 /* 5176 * Priority flushers can't wait on delalloc without 5177 * deadlocking. 5178 */ 5179 if (flush_state == FLUSH_DELALLOC || 5180 flush_state == FLUSH_DELALLOC_WAIT) 5181 flush_state = ALLOC_CHUNK; 5182 } while (flush_state < COMMIT_TRANS); 5183 } 5184 5185 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5186 struct btrfs_space_info *space_info, 5187 struct reserve_ticket *ticket, u64 orig_bytes) 5188 5189 { 5190 DEFINE_WAIT(wait); 5191 int ret = 0; 5192 5193 spin_lock(&space_info->lock); 5194 while (ticket->bytes > 0 && ticket->error == 0) { 5195 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5196 if (ret) { 5197 ret = -EINTR; 5198 break; 5199 } 5200 spin_unlock(&space_info->lock); 5201 5202 schedule(); 5203 5204 finish_wait(&ticket->wait, &wait); 5205 spin_lock(&space_info->lock); 5206 } 5207 if (!ret) 5208 ret = ticket->error; 5209 if (!list_empty(&ticket->list)) 5210 list_del_init(&ticket->list); 5211 if (ticket->bytes && ticket->bytes < orig_bytes) { 5212 u64 num_bytes = orig_bytes - ticket->bytes; 5213 space_info->bytes_may_use -= num_bytes; 5214 trace_btrfs_space_reservation(fs_info, "space_info", 5215 space_info->flags, num_bytes, 0); 5216 } 5217 spin_unlock(&space_info->lock); 5218 5219 return ret; 5220 } 5221 5222 /** 5223 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5224 * @root - the root we're allocating for 5225 * @space_info - the space info we want to allocate from 5226 * @orig_bytes - the number of bytes we want 5227 * @flush - whether or not we can flush to make our reservation 5228 * 5229 * This will reserve orig_bytes number of bytes from the space info associated 5230 * with the block_rsv. If there is not enough space it will make an attempt to 5231 * flush out space to make room. It will do this by flushing delalloc if 5232 * possible or committing the transaction. If flush is 0 then no attempts to 5233 * regain reservations will be made and this will fail if there is not enough 5234 * space already. 5235 */ 5236 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5237 struct btrfs_space_info *space_info, 5238 u64 orig_bytes, 5239 enum btrfs_reserve_flush_enum flush, 5240 bool system_chunk) 5241 { 5242 struct reserve_ticket ticket; 5243 u64 used; 5244 int ret = 0; 5245 5246 ASSERT(orig_bytes); 5247 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5248 5249 spin_lock(&space_info->lock); 5250 ret = -ENOSPC; 5251 used = btrfs_space_info_used(space_info, true); 5252 5253 /* 5254 * If we have enough space then hooray, make our reservation and carry 5255 * on. If not see if we can overcommit, and if we can, hooray carry on. 5256 * If not things get more complicated. 5257 */ 5258 if (used + orig_bytes <= space_info->total_bytes) { 5259 space_info->bytes_may_use += orig_bytes; 5260 trace_btrfs_space_reservation(fs_info, "space_info", 5261 space_info->flags, orig_bytes, 1); 5262 ret = 0; 5263 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5264 system_chunk)) { 5265 space_info->bytes_may_use += orig_bytes; 5266 trace_btrfs_space_reservation(fs_info, "space_info", 5267 space_info->flags, orig_bytes, 1); 5268 ret = 0; 5269 } 5270 5271 /* 5272 * If we couldn't make a reservation then setup our reservation ticket 5273 * and kick the async worker if it's not already running. 5274 * 5275 * If we are a priority flusher then we just need to add our ticket to 5276 * the list and we will do our own flushing further down. 5277 */ 5278 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5279 ticket.bytes = orig_bytes; 5280 ticket.error = 0; 5281 init_waitqueue_head(&ticket.wait); 5282 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5283 list_add_tail(&ticket.list, &space_info->tickets); 5284 if (!space_info->flush) { 5285 space_info->flush = 1; 5286 trace_btrfs_trigger_flush(fs_info, 5287 space_info->flags, 5288 orig_bytes, flush, 5289 "enospc"); 5290 queue_work(system_unbound_wq, 5291 &fs_info->async_reclaim_work); 5292 } 5293 } else { 5294 list_add_tail(&ticket.list, 5295 &space_info->priority_tickets); 5296 } 5297 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5298 used += orig_bytes; 5299 /* 5300 * We will do the space reservation dance during log replay, 5301 * which means we won't have fs_info->fs_root set, so don't do 5302 * the async reclaim as we will panic. 5303 */ 5304 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5305 need_do_async_reclaim(fs_info, space_info, 5306 used, system_chunk) && 5307 !work_busy(&fs_info->async_reclaim_work)) { 5308 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5309 orig_bytes, flush, "preempt"); 5310 queue_work(system_unbound_wq, 5311 &fs_info->async_reclaim_work); 5312 } 5313 } 5314 spin_unlock(&space_info->lock); 5315 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5316 return ret; 5317 5318 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5319 return wait_reserve_ticket(fs_info, space_info, &ticket, 5320 orig_bytes); 5321 5322 ret = 0; 5323 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5324 spin_lock(&space_info->lock); 5325 if (ticket.bytes) { 5326 if (ticket.bytes < orig_bytes) { 5327 u64 num_bytes = orig_bytes - ticket.bytes; 5328 space_info->bytes_may_use -= num_bytes; 5329 trace_btrfs_space_reservation(fs_info, "space_info", 5330 space_info->flags, 5331 num_bytes, 0); 5332 5333 } 5334 list_del_init(&ticket.list); 5335 ret = -ENOSPC; 5336 } 5337 spin_unlock(&space_info->lock); 5338 ASSERT(list_empty(&ticket.list)); 5339 return ret; 5340 } 5341 5342 /** 5343 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5344 * @root - the root we're allocating for 5345 * @block_rsv - the block_rsv we're allocating for 5346 * @orig_bytes - the number of bytes we want 5347 * @flush - whether or not we can flush to make our reservation 5348 * 5349 * This will reserve orgi_bytes number of bytes from the space info associated 5350 * with the block_rsv. If there is not enough space it will make an attempt to 5351 * flush out space to make room. It will do this by flushing delalloc if 5352 * possible or committing the transaction. If flush is 0 then no attempts to 5353 * regain reservations will be made and this will fail if there is not enough 5354 * space already. 5355 */ 5356 static int reserve_metadata_bytes(struct btrfs_root *root, 5357 struct btrfs_block_rsv *block_rsv, 5358 u64 orig_bytes, 5359 enum btrfs_reserve_flush_enum flush) 5360 { 5361 struct btrfs_fs_info *fs_info = root->fs_info; 5362 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5363 int ret; 5364 bool system_chunk = (root == fs_info->chunk_root); 5365 5366 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5367 orig_bytes, flush, system_chunk); 5368 if (ret == -ENOSPC && 5369 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5370 if (block_rsv != global_rsv && 5371 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5372 ret = 0; 5373 } 5374 if (ret == -ENOSPC) { 5375 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5376 block_rsv->space_info->flags, 5377 orig_bytes, 1); 5378 5379 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5380 dump_space_info(fs_info, block_rsv->space_info, 5381 orig_bytes, 0); 5382 } 5383 return ret; 5384 } 5385 5386 static struct btrfs_block_rsv *get_block_rsv( 5387 const struct btrfs_trans_handle *trans, 5388 const struct btrfs_root *root) 5389 { 5390 struct btrfs_fs_info *fs_info = root->fs_info; 5391 struct btrfs_block_rsv *block_rsv = NULL; 5392 5393 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5394 (root == fs_info->csum_root && trans->adding_csums) || 5395 (root == fs_info->uuid_root)) 5396 block_rsv = trans->block_rsv; 5397 5398 if (!block_rsv) 5399 block_rsv = root->block_rsv; 5400 5401 if (!block_rsv) 5402 block_rsv = &fs_info->empty_block_rsv; 5403 5404 return block_rsv; 5405 } 5406 5407 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5408 u64 num_bytes) 5409 { 5410 int ret = -ENOSPC; 5411 spin_lock(&block_rsv->lock); 5412 if (block_rsv->reserved >= num_bytes) { 5413 block_rsv->reserved -= num_bytes; 5414 if (block_rsv->reserved < block_rsv->size) 5415 block_rsv->full = 0; 5416 ret = 0; 5417 } 5418 spin_unlock(&block_rsv->lock); 5419 return ret; 5420 } 5421 5422 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5423 u64 num_bytes, int update_size) 5424 { 5425 spin_lock(&block_rsv->lock); 5426 block_rsv->reserved += num_bytes; 5427 if (update_size) 5428 block_rsv->size += num_bytes; 5429 else if (block_rsv->reserved >= block_rsv->size) 5430 block_rsv->full = 1; 5431 spin_unlock(&block_rsv->lock); 5432 } 5433 5434 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5435 struct btrfs_block_rsv *dest, u64 num_bytes, 5436 int min_factor) 5437 { 5438 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5439 u64 min_bytes; 5440 5441 if (global_rsv->space_info != dest->space_info) 5442 return -ENOSPC; 5443 5444 spin_lock(&global_rsv->lock); 5445 min_bytes = div_factor(global_rsv->size, min_factor); 5446 if (global_rsv->reserved < min_bytes + num_bytes) { 5447 spin_unlock(&global_rsv->lock); 5448 return -ENOSPC; 5449 } 5450 global_rsv->reserved -= num_bytes; 5451 if (global_rsv->reserved < global_rsv->size) 5452 global_rsv->full = 0; 5453 spin_unlock(&global_rsv->lock); 5454 5455 block_rsv_add_bytes(dest, num_bytes, 1); 5456 return 0; 5457 } 5458 5459 /* 5460 * This is for space we already have accounted in space_info->bytes_may_use, so 5461 * basically when we're returning space from block_rsv's. 5462 */ 5463 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5464 struct btrfs_space_info *space_info, 5465 u64 num_bytes) 5466 { 5467 struct reserve_ticket *ticket; 5468 struct list_head *head; 5469 u64 used; 5470 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5471 bool check_overcommit = false; 5472 5473 spin_lock(&space_info->lock); 5474 head = &space_info->priority_tickets; 5475 5476 /* 5477 * If we are over our limit then we need to check and see if we can 5478 * overcommit, and if we can't then we just need to free up our space 5479 * and not satisfy any requests. 5480 */ 5481 used = btrfs_space_info_used(space_info, true); 5482 if (used - num_bytes >= space_info->total_bytes) 5483 check_overcommit = true; 5484 again: 5485 while (!list_empty(head) && num_bytes) { 5486 ticket = list_first_entry(head, struct reserve_ticket, 5487 list); 5488 /* 5489 * We use 0 bytes because this space is already reserved, so 5490 * adding the ticket space would be a double count. 5491 */ 5492 if (check_overcommit && 5493 !can_overcommit(fs_info, space_info, 0, flush, false)) 5494 break; 5495 if (num_bytes >= ticket->bytes) { 5496 list_del_init(&ticket->list); 5497 num_bytes -= ticket->bytes; 5498 ticket->bytes = 0; 5499 space_info->tickets_id++; 5500 wake_up(&ticket->wait); 5501 } else { 5502 ticket->bytes -= num_bytes; 5503 num_bytes = 0; 5504 } 5505 } 5506 5507 if (num_bytes && head == &space_info->priority_tickets) { 5508 head = &space_info->tickets; 5509 flush = BTRFS_RESERVE_FLUSH_ALL; 5510 goto again; 5511 } 5512 space_info->bytes_may_use -= num_bytes; 5513 trace_btrfs_space_reservation(fs_info, "space_info", 5514 space_info->flags, num_bytes, 0); 5515 spin_unlock(&space_info->lock); 5516 } 5517 5518 /* 5519 * This is for newly allocated space that isn't accounted in 5520 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5521 * we use this helper. 5522 */ 5523 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5524 struct btrfs_space_info *space_info, 5525 u64 num_bytes) 5526 { 5527 struct reserve_ticket *ticket; 5528 struct list_head *head = &space_info->priority_tickets; 5529 5530 again: 5531 while (!list_empty(head) && num_bytes) { 5532 ticket = list_first_entry(head, struct reserve_ticket, 5533 list); 5534 if (num_bytes >= ticket->bytes) { 5535 trace_btrfs_space_reservation(fs_info, "space_info", 5536 space_info->flags, 5537 ticket->bytes, 1); 5538 list_del_init(&ticket->list); 5539 num_bytes -= ticket->bytes; 5540 space_info->bytes_may_use += ticket->bytes; 5541 ticket->bytes = 0; 5542 space_info->tickets_id++; 5543 wake_up(&ticket->wait); 5544 } else { 5545 trace_btrfs_space_reservation(fs_info, "space_info", 5546 space_info->flags, 5547 num_bytes, 1); 5548 space_info->bytes_may_use += num_bytes; 5549 ticket->bytes -= num_bytes; 5550 num_bytes = 0; 5551 } 5552 } 5553 5554 if (num_bytes && head == &space_info->priority_tickets) { 5555 head = &space_info->tickets; 5556 goto again; 5557 } 5558 } 5559 5560 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5561 struct btrfs_block_rsv *block_rsv, 5562 struct btrfs_block_rsv *dest, u64 num_bytes) 5563 { 5564 struct btrfs_space_info *space_info = block_rsv->space_info; 5565 u64 ret; 5566 5567 spin_lock(&block_rsv->lock); 5568 if (num_bytes == (u64)-1) 5569 num_bytes = block_rsv->size; 5570 block_rsv->size -= num_bytes; 5571 if (block_rsv->reserved >= block_rsv->size) { 5572 num_bytes = block_rsv->reserved - block_rsv->size; 5573 block_rsv->reserved = block_rsv->size; 5574 block_rsv->full = 1; 5575 } else { 5576 num_bytes = 0; 5577 } 5578 spin_unlock(&block_rsv->lock); 5579 5580 ret = num_bytes; 5581 if (num_bytes > 0) { 5582 if (dest) { 5583 spin_lock(&dest->lock); 5584 if (!dest->full) { 5585 u64 bytes_to_add; 5586 5587 bytes_to_add = dest->size - dest->reserved; 5588 bytes_to_add = min(num_bytes, bytes_to_add); 5589 dest->reserved += bytes_to_add; 5590 if (dest->reserved >= dest->size) 5591 dest->full = 1; 5592 num_bytes -= bytes_to_add; 5593 } 5594 spin_unlock(&dest->lock); 5595 } 5596 if (num_bytes) 5597 space_info_add_old_bytes(fs_info, space_info, 5598 num_bytes); 5599 } 5600 return ret; 5601 } 5602 5603 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5604 struct btrfs_block_rsv *dst, u64 num_bytes, 5605 int update_size) 5606 { 5607 int ret; 5608 5609 ret = block_rsv_use_bytes(src, num_bytes); 5610 if (ret) 5611 return ret; 5612 5613 block_rsv_add_bytes(dst, num_bytes, update_size); 5614 return 0; 5615 } 5616 5617 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5618 { 5619 memset(rsv, 0, sizeof(*rsv)); 5620 spin_lock_init(&rsv->lock); 5621 rsv->type = type; 5622 } 5623 5624 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5625 struct btrfs_block_rsv *rsv, 5626 unsigned short type) 5627 { 5628 btrfs_init_block_rsv(rsv, type); 5629 rsv->space_info = __find_space_info(fs_info, 5630 BTRFS_BLOCK_GROUP_METADATA); 5631 } 5632 5633 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5634 unsigned short type) 5635 { 5636 struct btrfs_block_rsv *block_rsv; 5637 5638 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5639 if (!block_rsv) 5640 return NULL; 5641 5642 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5643 return block_rsv; 5644 } 5645 5646 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5647 struct btrfs_block_rsv *rsv) 5648 { 5649 if (!rsv) 5650 return; 5651 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5652 kfree(rsv); 5653 } 5654 5655 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5656 { 5657 kfree(rsv); 5658 } 5659 5660 int btrfs_block_rsv_add(struct btrfs_root *root, 5661 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5662 enum btrfs_reserve_flush_enum flush) 5663 { 5664 int ret; 5665 5666 if (num_bytes == 0) 5667 return 0; 5668 5669 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5670 if (!ret) { 5671 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5672 return 0; 5673 } 5674 5675 return ret; 5676 } 5677 5678 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5679 { 5680 u64 num_bytes = 0; 5681 int ret = -ENOSPC; 5682 5683 if (!block_rsv) 5684 return 0; 5685 5686 spin_lock(&block_rsv->lock); 5687 num_bytes = div_factor(block_rsv->size, min_factor); 5688 if (block_rsv->reserved >= num_bytes) 5689 ret = 0; 5690 spin_unlock(&block_rsv->lock); 5691 5692 return ret; 5693 } 5694 5695 int btrfs_block_rsv_refill(struct btrfs_root *root, 5696 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5697 enum btrfs_reserve_flush_enum flush) 5698 { 5699 u64 num_bytes = 0; 5700 int ret = -ENOSPC; 5701 5702 if (!block_rsv) 5703 return 0; 5704 5705 spin_lock(&block_rsv->lock); 5706 num_bytes = min_reserved; 5707 if (block_rsv->reserved >= num_bytes) 5708 ret = 0; 5709 else 5710 num_bytes -= block_rsv->reserved; 5711 spin_unlock(&block_rsv->lock); 5712 5713 if (!ret) 5714 return 0; 5715 5716 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5717 if (!ret) { 5718 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5719 return 0; 5720 } 5721 5722 return ret; 5723 } 5724 5725 /** 5726 * btrfs_inode_rsv_refill - refill the inode block rsv. 5727 * @inode - the inode we are refilling. 5728 * @flush - the flusing restriction. 5729 * 5730 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5731 * block_rsv->size as the minimum size. We'll either refill the missing amount 5732 * or return if we already have enough space. This will also handle the resreve 5733 * tracepoint for the reserved amount. 5734 */ 5735 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5736 enum btrfs_reserve_flush_enum flush) 5737 { 5738 struct btrfs_root *root = inode->root; 5739 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5740 u64 num_bytes = 0; 5741 int ret = -ENOSPC; 5742 5743 spin_lock(&block_rsv->lock); 5744 if (block_rsv->reserved < block_rsv->size) 5745 num_bytes = block_rsv->size - block_rsv->reserved; 5746 spin_unlock(&block_rsv->lock); 5747 5748 if (num_bytes == 0) 5749 return 0; 5750 5751 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 5752 if (ret) 5753 return ret; 5754 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5755 if (!ret) { 5756 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5757 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5758 btrfs_ino(inode), num_bytes, 1); 5759 } 5760 return ret; 5761 } 5762 5763 /** 5764 * btrfs_inode_rsv_release - release any excessive reservation. 5765 * @inode - the inode we need to release from. 5766 * @qgroup_free - free or convert qgroup meta. 5767 * Unlike normal operation, qgroup meta reservation needs to know if we are 5768 * freeing qgroup reservation or just converting it into per-trans. Normally 5769 * @qgroup_free is true for error handling, and false for normal release. 5770 * 5771 * This is the same as btrfs_block_rsv_release, except that it handles the 5772 * tracepoint for the reservation. 5773 */ 5774 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5775 { 5776 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5777 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5778 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5779 u64 released = 0; 5780 5781 /* 5782 * Since we statically set the block_rsv->size we just want to say we 5783 * are releasing 0 bytes, and then we'll just get the reservation over 5784 * the size free'd. 5785 */ 5786 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0); 5787 if (released > 0) 5788 trace_btrfs_space_reservation(fs_info, "delalloc", 5789 btrfs_ino(inode), released, 0); 5790 if (qgroup_free) 5791 btrfs_qgroup_free_meta_prealloc(inode->root, released); 5792 else 5793 btrfs_qgroup_convert_reserved_meta(inode->root, released); 5794 } 5795 5796 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5797 struct btrfs_block_rsv *block_rsv, 5798 u64 num_bytes) 5799 { 5800 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5801 5802 if (global_rsv == block_rsv || 5803 block_rsv->space_info != global_rsv->space_info) 5804 global_rsv = NULL; 5805 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5806 } 5807 5808 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5809 { 5810 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5811 struct btrfs_space_info *sinfo = block_rsv->space_info; 5812 u64 num_bytes; 5813 5814 /* 5815 * The global block rsv is based on the size of the extent tree, the 5816 * checksum tree and the root tree. If the fs is empty we want to set 5817 * it to a minimal amount for safety. 5818 */ 5819 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5820 btrfs_root_used(&fs_info->csum_root->root_item) + 5821 btrfs_root_used(&fs_info->tree_root->root_item); 5822 num_bytes = max_t(u64, num_bytes, SZ_16M); 5823 5824 spin_lock(&sinfo->lock); 5825 spin_lock(&block_rsv->lock); 5826 5827 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5828 5829 if (block_rsv->reserved < block_rsv->size) { 5830 num_bytes = btrfs_space_info_used(sinfo, true); 5831 if (sinfo->total_bytes > num_bytes) { 5832 num_bytes = sinfo->total_bytes - num_bytes; 5833 num_bytes = min(num_bytes, 5834 block_rsv->size - block_rsv->reserved); 5835 block_rsv->reserved += num_bytes; 5836 sinfo->bytes_may_use += num_bytes; 5837 trace_btrfs_space_reservation(fs_info, "space_info", 5838 sinfo->flags, num_bytes, 5839 1); 5840 } 5841 } else if (block_rsv->reserved > block_rsv->size) { 5842 num_bytes = block_rsv->reserved - block_rsv->size; 5843 sinfo->bytes_may_use -= num_bytes; 5844 trace_btrfs_space_reservation(fs_info, "space_info", 5845 sinfo->flags, num_bytes, 0); 5846 block_rsv->reserved = block_rsv->size; 5847 } 5848 5849 if (block_rsv->reserved == block_rsv->size) 5850 block_rsv->full = 1; 5851 else 5852 block_rsv->full = 0; 5853 5854 spin_unlock(&block_rsv->lock); 5855 spin_unlock(&sinfo->lock); 5856 } 5857 5858 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5859 { 5860 struct btrfs_space_info *space_info; 5861 5862 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5863 fs_info->chunk_block_rsv.space_info = space_info; 5864 5865 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5866 fs_info->global_block_rsv.space_info = space_info; 5867 fs_info->trans_block_rsv.space_info = space_info; 5868 fs_info->empty_block_rsv.space_info = space_info; 5869 fs_info->delayed_block_rsv.space_info = space_info; 5870 5871 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5872 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5873 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5874 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5875 if (fs_info->quota_root) 5876 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5877 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5878 5879 update_global_block_rsv(fs_info); 5880 } 5881 5882 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5883 { 5884 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5885 (u64)-1); 5886 WARN_ON(fs_info->trans_block_rsv.size > 0); 5887 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5888 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5889 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5890 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5891 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5892 } 5893 5894 5895 /* 5896 * To be called after all the new block groups attached to the transaction 5897 * handle have been created (btrfs_create_pending_block_groups()). 5898 */ 5899 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5900 { 5901 struct btrfs_fs_info *fs_info = trans->fs_info; 5902 5903 if (!trans->chunk_bytes_reserved) 5904 return; 5905 5906 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5907 5908 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5909 trans->chunk_bytes_reserved); 5910 trans->chunk_bytes_reserved = 0; 5911 } 5912 5913 /* Can only return 0 or -ENOSPC */ 5914 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5915 struct btrfs_inode *inode) 5916 { 5917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5918 struct btrfs_root *root = inode->root; 5919 /* 5920 * We always use trans->block_rsv here as we will have reserved space 5921 * for our orphan when starting the transaction, using get_block_rsv() 5922 * here will sometimes make us choose the wrong block rsv as we could be 5923 * doing a reloc inode for a non refcounted root. 5924 */ 5925 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5926 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5927 5928 /* 5929 * We need to hold space in order to delete our orphan item once we've 5930 * added it, so this takes the reservation so we can release it later 5931 * when we are truly done with the orphan item. 5932 */ 5933 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5934 5935 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5936 num_bytes, 1); 5937 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5938 } 5939 5940 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5941 { 5942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5943 struct btrfs_root *root = inode->root; 5944 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5945 5946 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5947 num_bytes, 0); 5948 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5949 } 5950 5951 /* 5952 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5953 * root: the root of the parent directory 5954 * rsv: block reservation 5955 * items: the number of items that we need do reservation 5956 * qgroup_reserved: used to return the reserved size in qgroup 5957 * 5958 * This function is used to reserve the space for snapshot/subvolume 5959 * creation and deletion. Those operations are different with the 5960 * common file/directory operations, they change two fs/file trees 5961 * and root tree, the number of items that the qgroup reserves is 5962 * different with the free space reservation. So we can not use 5963 * the space reservation mechanism in start_transaction(). 5964 */ 5965 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5966 struct btrfs_block_rsv *rsv, 5967 int items, 5968 u64 *qgroup_reserved, 5969 bool use_global_rsv) 5970 { 5971 u64 num_bytes; 5972 int ret; 5973 struct btrfs_fs_info *fs_info = root->fs_info; 5974 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5975 5976 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5977 /* One for parent inode, two for dir entries */ 5978 num_bytes = 3 * fs_info->nodesize; 5979 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 5980 if (ret) 5981 return ret; 5982 } else { 5983 num_bytes = 0; 5984 } 5985 5986 *qgroup_reserved = num_bytes; 5987 5988 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5989 rsv->space_info = __find_space_info(fs_info, 5990 BTRFS_BLOCK_GROUP_METADATA); 5991 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5992 BTRFS_RESERVE_FLUSH_ALL); 5993 5994 if (ret == -ENOSPC && use_global_rsv) 5995 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5996 5997 if (ret && *qgroup_reserved) 5998 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved); 5999 6000 return ret; 6001 } 6002 6003 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6004 struct btrfs_block_rsv *rsv) 6005 { 6006 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6007 } 6008 6009 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6010 struct btrfs_inode *inode) 6011 { 6012 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6013 u64 reserve_size = 0; 6014 u64 csum_leaves; 6015 unsigned outstanding_extents; 6016 6017 lockdep_assert_held(&inode->lock); 6018 outstanding_extents = inode->outstanding_extents; 6019 if (outstanding_extents) 6020 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6021 outstanding_extents + 1); 6022 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6023 inode->csum_bytes); 6024 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6025 csum_leaves); 6026 6027 spin_lock(&block_rsv->lock); 6028 block_rsv->size = reserve_size; 6029 spin_unlock(&block_rsv->lock); 6030 } 6031 6032 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6033 { 6034 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6035 unsigned nr_extents; 6036 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6037 int ret = 0; 6038 bool delalloc_lock = true; 6039 6040 /* If we are a free space inode we need to not flush since we will be in 6041 * the middle of a transaction commit. We also don't need the delalloc 6042 * mutex since we won't race with anybody. We need this mostly to make 6043 * lockdep shut its filthy mouth. 6044 * 6045 * If we have a transaction open (can happen if we call truncate_block 6046 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6047 */ 6048 if (btrfs_is_free_space_inode(inode)) { 6049 flush = BTRFS_RESERVE_NO_FLUSH; 6050 delalloc_lock = false; 6051 } else { 6052 if (current->journal_info) 6053 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6054 6055 if (btrfs_transaction_in_commit(fs_info)) 6056 schedule_timeout(1); 6057 } 6058 6059 if (delalloc_lock) 6060 mutex_lock(&inode->delalloc_mutex); 6061 6062 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6063 6064 /* Add our new extents and calculate the new rsv size. */ 6065 spin_lock(&inode->lock); 6066 nr_extents = count_max_extents(num_bytes); 6067 btrfs_mod_outstanding_extents(inode, nr_extents); 6068 inode->csum_bytes += num_bytes; 6069 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6070 spin_unlock(&inode->lock); 6071 6072 ret = btrfs_inode_rsv_refill(inode, flush); 6073 if (unlikely(ret)) 6074 goto out_fail; 6075 6076 if (delalloc_lock) 6077 mutex_unlock(&inode->delalloc_mutex); 6078 return 0; 6079 6080 out_fail: 6081 spin_lock(&inode->lock); 6082 nr_extents = count_max_extents(num_bytes); 6083 btrfs_mod_outstanding_extents(inode, -nr_extents); 6084 inode->csum_bytes -= num_bytes; 6085 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6086 spin_unlock(&inode->lock); 6087 6088 btrfs_inode_rsv_release(inode, true); 6089 if (delalloc_lock) 6090 mutex_unlock(&inode->delalloc_mutex); 6091 return ret; 6092 } 6093 6094 /** 6095 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6096 * @inode: the inode to release the reservation for. 6097 * @num_bytes: the number of bytes we are releasing. 6098 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 6099 * 6100 * This will release the metadata reservation for an inode. This can be called 6101 * once we complete IO for a given set of bytes to release their metadata 6102 * reservations, or on error for the same reason. 6103 */ 6104 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 6105 bool qgroup_free) 6106 { 6107 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6108 6109 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6110 spin_lock(&inode->lock); 6111 inode->csum_bytes -= num_bytes; 6112 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6113 spin_unlock(&inode->lock); 6114 6115 if (btrfs_is_testing(fs_info)) 6116 return; 6117 6118 btrfs_inode_rsv_release(inode, qgroup_free); 6119 } 6120 6121 /** 6122 * btrfs_delalloc_release_extents - release our outstanding_extents 6123 * @inode: the inode to balance the reservation for. 6124 * @num_bytes: the number of bytes we originally reserved with 6125 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6126 * 6127 * When we reserve space we increase outstanding_extents for the extents we may 6128 * add. Once we've set the range as delalloc or created our ordered extents we 6129 * have outstanding_extents to track the real usage, so we use this to free our 6130 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6131 * with btrfs_delalloc_reserve_metadata. 6132 */ 6133 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6134 bool qgroup_free) 6135 { 6136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6137 unsigned num_extents; 6138 6139 spin_lock(&inode->lock); 6140 num_extents = count_max_extents(num_bytes); 6141 btrfs_mod_outstanding_extents(inode, -num_extents); 6142 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6143 spin_unlock(&inode->lock); 6144 6145 if (btrfs_is_testing(fs_info)) 6146 return; 6147 6148 btrfs_inode_rsv_release(inode, qgroup_free); 6149 } 6150 6151 /** 6152 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6153 * delalloc 6154 * @inode: inode we're writing to 6155 * @start: start range we are writing to 6156 * @len: how long the range we are writing to 6157 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6158 * current reservation. 6159 * 6160 * This will do the following things 6161 * 6162 * o reserve space in data space info for num bytes 6163 * and reserve precious corresponding qgroup space 6164 * (Done in check_data_free_space) 6165 * 6166 * o reserve space for metadata space, based on the number of outstanding 6167 * extents and how much csums will be needed 6168 * also reserve metadata space in a per root over-reserve method. 6169 * o add to the inodes->delalloc_bytes 6170 * o add it to the fs_info's delalloc inodes list. 6171 * (Above 3 all done in delalloc_reserve_metadata) 6172 * 6173 * Return 0 for success 6174 * Return <0 for error(-ENOSPC or -EQUOT) 6175 */ 6176 int btrfs_delalloc_reserve_space(struct inode *inode, 6177 struct extent_changeset **reserved, u64 start, u64 len) 6178 { 6179 int ret; 6180 6181 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6182 if (ret < 0) 6183 return ret; 6184 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6185 if (ret < 0) 6186 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6187 return ret; 6188 } 6189 6190 /** 6191 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6192 * @inode: inode we're releasing space for 6193 * @start: start position of the space already reserved 6194 * @len: the len of the space already reserved 6195 * @release_bytes: the len of the space we consumed or didn't use 6196 * 6197 * This function will release the metadata space that was not used and will 6198 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6199 * list if there are no delalloc bytes left. 6200 * Also it will handle the qgroup reserved space. 6201 */ 6202 void btrfs_delalloc_release_space(struct inode *inode, 6203 struct extent_changeset *reserved, 6204 u64 start, u64 len, bool qgroup_free) 6205 { 6206 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6207 btrfs_free_reserved_data_space(inode, reserved, start, len); 6208 } 6209 6210 static int update_block_group(struct btrfs_trans_handle *trans, 6211 struct btrfs_fs_info *info, u64 bytenr, 6212 u64 num_bytes, int alloc) 6213 { 6214 struct btrfs_block_group_cache *cache = NULL; 6215 u64 total = num_bytes; 6216 u64 old_val; 6217 u64 byte_in_group; 6218 int factor; 6219 6220 /* block accounting for super block */ 6221 spin_lock(&info->delalloc_root_lock); 6222 old_val = btrfs_super_bytes_used(info->super_copy); 6223 if (alloc) 6224 old_val += num_bytes; 6225 else 6226 old_val -= num_bytes; 6227 btrfs_set_super_bytes_used(info->super_copy, old_val); 6228 spin_unlock(&info->delalloc_root_lock); 6229 6230 while (total) { 6231 cache = btrfs_lookup_block_group(info, bytenr); 6232 if (!cache) 6233 return -ENOENT; 6234 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6235 BTRFS_BLOCK_GROUP_RAID1 | 6236 BTRFS_BLOCK_GROUP_RAID10)) 6237 factor = 2; 6238 else 6239 factor = 1; 6240 /* 6241 * If this block group has free space cache written out, we 6242 * need to make sure to load it if we are removing space. This 6243 * is because we need the unpinning stage to actually add the 6244 * space back to the block group, otherwise we will leak space. 6245 */ 6246 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6247 cache_block_group(cache, 1); 6248 6249 byte_in_group = bytenr - cache->key.objectid; 6250 WARN_ON(byte_in_group > cache->key.offset); 6251 6252 spin_lock(&cache->space_info->lock); 6253 spin_lock(&cache->lock); 6254 6255 if (btrfs_test_opt(info, SPACE_CACHE) && 6256 cache->disk_cache_state < BTRFS_DC_CLEAR) 6257 cache->disk_cache_state = BTRFS_DC_CLEAR; 6258 6259 old_val = btrfs_block_group_used(&cache->item); 6260 num_bytes = min(total, cache->key.offset - byte_in_group); 6261 if (alloc) { 6262 old_val += num_bytes; 6263 btrfs_set_block_group_used(&cache->item, old_val); 6264 cache->reserved -= num_bytes; 6265 cache->space_info->bytes_reserved -= num_bytes; 6266 cache->space_info->bytes_used += num_bytes; 6267 cache->space_info->disk_used += num_bytes * factor; 6268 spin_unlock(&cache->lock); 6269 spin_unlock(&cache->space_info->lock); 6270 } else { 6271 old_val -= num_bytes; 6272 btrfs_set_block_group_used(&cache->item, old_val); 6273 cache->pinned += num_bytes; 6274 cache->space_info->bytes_pinned += num_bytes; 6275 cache->space_info->bytes_used -= num_bytes; 6276 cache->space_info->disk_used -= num_bytes * factor; 6277 spin_unlock(&cache->lock); 6278 spin_unlock(&cache->space_info->lock); 6279 6280 trace_btrfs_space_reservation(info, "pinned", 6281 cache->space_info->flags, 6282 num_bytes, 1); 6283 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6284 num_bytes); 6285 set_extent_dirty(info->pinned_extents, 6286 bytenr, bytenr + num_bytes - 1, 6287 GFP_NOFS | __GFP_NOFAIL); 6288 } 6289 6290 spin_lock(&trans->transaction->dirty_bgs_lock); 6291 if (list_empty(&cache->dirty_list)) { 6292 list_add_tail(&cache->dirty_list, 6293 &trans->transaction->dirty_bgs); 6294 trans->transaction->num_dirty_bgs++; 6295 btrfs_get_block_group(cache); 6296 } 6297 spin_unlock(&trans->transaction->dirty_bgs_lock); 6298 6299 /* 6300 * No longer have used bytes in this block group, queue it for 6301 * deletion. We do this after adding the block group to the 6302 * dirty list to avoid races between cleaner kthread and space 6303 * cache writeout. 6304 */ 6305 if (!alloc && old_val == 0) { 6306 spin_lock(&info->unused_bgs_lock); 6307 if (list_empty(&cache->bg_list)) { 6308 btrfs_get_block_group(cache); 6309 list_add_tail(&cache->bg_list, 6310 &info->unused_bgs); 6311 } 6312 spin_unlock(&info->unused_bgs_lock); 6313 } 6314 6315 btrfs_put_block_group(cache); 6316 total -= num_bytes; 6317 bytenr += num_bytes; 6318 } 6319 return 0; 6320 } 6321 6322 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6323 { 6324 struct btrfs_block_group_cache *cache; 6325 u64 bytenr; 6326 6327 spin_lock(&fs_info->block_group_cache_lock); 6328 bytenr = fs_info->first_logical_byte; 6329 spin_unlock(&fs_info->block_group_cache_lock); 6330 6331 if (bytenr < (u64)-1) 6332 return bytenr; 6333 6334 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6335 if (!cache) 6336 return 0; 6337 6338 bytenr = cache->key.objectid; 6339 btrfs_put_block_group(cache); 6340 6341 return bytenr; 6342 } 6343 6344 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6345 struct btrfs_block_group_cache *cache, 6346 u64 bytenr, u64 num_bytes, int reserved) 6347 { 6348 spin_lock(&cache->space_info->lock); 6349 spin_lock(&cache->lock); 6350 cache->pinned += num_bytes; 6351 cache->space_info->bytes_pinned += num_bytes; 6352 if (reserved) { 6353 cache->reserved -= num_bytes; 6354 cache->space_info->bytes_reserved -= num_bytes; 6355 } 6356 spin_unlock(&cache->lock); 6357 spin_unlock(&cache->space_info->lock); 6358 6359 trace_btrfs_space_reservation(fs_info, "pinned", 6360 cache->space_info->flags, num_bytes, 1); 6361 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6362 set_extent_dirty(fs_info->pinned_extents, bytenr, 6363 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6364 return 0; 6365 } 6366 6367 /* 6368 * this function must be called within transaction 6369 */ 6370 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6371 u64 bytenr, u64 num_bytes, int reserved) 6372 { 6373 struct btrfs_block_group_cache *cache; 6374 6375 cache = btrfs_lookup_block_group(fs_info, bytenr); 6376 BUG_ON(!cache); /* Logic error */ 6377 6378 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6379 6380 btrfs_put_block_group(cache); 6381 return 0; 6382 } 6383 6384 /* 6385 * this function must be called within transaction 6386 */ 6387 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6388 u64 bytenr, u64 num_bytes) 6389 { 6390 struct btrfs_block_group_cache *cache; 6391 int ret; 6392 6393 cache = btrfs_lookup_block_group(fs_info, bytenr); 6394 if (!cache) 6395 return -EINVAL; 6396 6397 /* 6398 * pull in the free space cache (if any) so that our pin 6399 * removes the free space from the cache. We have load_only set 6400 * to one because the slow code to read in the free extents does check 6401 * the pinned extents. 6402 */ 6403 cache_block_group(cache, 1); 6404 6405 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6406 6407 /* remove us from the free space cache (if we're there at all) */ 6408 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6409 btrfs_put_block_group(cache); 6410 return ret; 6411 } 6412 6413 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6414 u64 start, u64 num_bytes) 6415 { 6416 int ret; 6417 struct btrfs_block_group_cache *block_group; 6418 struct btrfs_caching_control *caching_ctl; 6419 6420 block_group = btrfs_lookup_block_group(fs_info, start); 6421 if (!block_group) 6422 return -EINVAL; 6423 6424 cache_block_group(block_group, 0); 6425 caching_ctl = get_caching_control(block_group); 6426 6427 if (!caching_ctl) { 6428 /* Logic error */ 6429 BUG_ON(!block_group_cache_done(block_group)); 6430 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6431 } else { 6432 mutex_lock(&caching_ctl->mutex); 6433 6434 if (start >= caching_ctl->progress) { 6435 ret = add_excluded_extent(fs_info, start, num_bytes); 6436 } else if (start + num_bytes <= caching_ctl->progress) { 6437 ret = btrfs_remove_free_space(block_group, 6438 start, num_bytes); 6439 } else { 6440 num_bytes = caching_ctl->progress - start; 6441 ret = btrfs_remove_free_space(block_group, 6442 start, num_bytes); 6443 if (ret) 6444 goto out_lock; 6445 6446 num_bytes = (start + num_bytes) - 6447 caching_ctl->progress; 6448 start = caching_ctl->progress; 6449 ret = add_excluded_extent(fs_info, start, num_bytes); 6450 } 6451 out_lock: 6452 mutex_unlock(&caching_ctl->mutex); 6453 put_caching_control(caching_ctl); 6454 } 6455 btrfs_put_block_group(block_group); 6456 return ret; 6457 } 6458 6459 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6460 struct extent_buffer *eb) 6461 { 6462 struct btrfs_file_extent_item *item; 6463 struct btrfs_key key; 6464 int found_type; 6465 int i; 6466 6467 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6468 return 0; 6469 6470 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6471 btrfs_item_key_to_cpu(eb, &key, i); 6472 if (key.type != BTRFS_EXTENT_DATA_KEY) 6473 continue; 6474 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6475 found_type = btrfs_file_extent_type(eb, item); 6476 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6477 continue; 6478 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6479 continue; 6480 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6481 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6482 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6483 } 6484 6485 return 0; 6486 } 6487 6488 static void 6489 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6490 { 6491 atomic_inc(&bg->reservations); 6492 } 6493 6494 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6495 const u64 start) 6496 { 6497 struct btrfs_block_group_cache *bg; 6498 6499 bg = btrfs_lookup_block_group(fs_info, start); 6500 ASSERT(bg); 6501 if (atomic_dec_and_test(&bg->reservations)) 6502 wake_up_var(&bg->reservations); 6503 btrfs_put_block_group(bg); 6504 } 6505 6506 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6507 { 6508 struct btrfs_space_info *space_info = bg->space_info; 6509 6510 ASSERT(bg->ro); 6511 6512 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6513 return; 6514 6515 /* 6516 * Our block group is read only but before we set it to read only, 6517 * some task might have had allocated an extent from it already, but it 6518 * has not yet created a respective ordered extent (and added it to a 6519 * root's list of ordered extents). 6520 * Therefore wait for any task currently allocating extents, since the 6521 * block group's reservations counter is incremented while a read lock 6522 * on the groups' semaphore is held and decremented after releasing 6523 * the read access on that semaphore and creating the ordered extent. 6524 */ 6525 down_write(&space_info->groups_sem); 6526 up_write(&space_info->groups_sem); 6527 6528 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6529 } 6530 6531 /** 6532 * btrfs_add_reserved_bytes - update the block_group and space info counters 6533 * @cache: The cache we are manipulating 6534 * @ram_bytes: The number of bytes of file content, and will be same to 6535 * @num_bytes except for the compress path. 6536 * @num_bytes: The number of bytes in question 6537 * @delalloc: The blocks are allocated for the delalloc write 6538 * 6539 * This is called by the allocator when it reserves space. If this is a 6540 * reservation and the block group has become read only we cannot make the 6541 * reservation and return -EAGAIN, otherwise this function always succeeds. 6542 */ 6543 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6544 u64 ram_bytes, u64 num_bytes, int delalloc) 6545 { 6546 struct btrfs_space_info *space_info = cache->space_info; 6547 int ret = 0; 6548 6549 spin_lock(&space_info->lock); 6550 spin_lock(&cache->lock); 6551 if (cache->ro) { 6552 ret = -EAGAIN; 6553 } else { 6554 cache->reserved += num_bytes; 6555 space_info->bytes_reserved += num_bytes; 6556 6557 trace_btrfs_space_reservation(cache->fs_info, 6558 "space_info", space_info->flags, 6559 ram_bytes, 0); 6560 space_info->bytes_may_use -= ram_bytes; 6561 if (delalloc) 6562 cache->delalloc_bytes += num_bytes; 6563 } 6564 spin_unlock(&cache->lock); 6565 spin_unlock(&space_info->lock); 6566 return ret; 6567 } 6568 6569 /** 6570 * btrfs_free_reserved_bytes - update the block_group and space info counters 6571 * @cache: The cache we are manipulating 6572 * @num_bytes: The number of bytes in question 6573 * @delalloc: The blocks are allocated for the delalloc write 6574 * 6575 * This is called by somebody who is freeing space that was never actually used 6576 * on disk. For example if you reserve some space for a new leaf in transaction 6577 * A and before transaction A commits you free that leaf, you call this with 6578 * reserve set to 0 in order to clear the reservation. 6579 */ 6580 6581 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6582 u64 num_bytes, int delalloc) 6583 { 6584 struct btrfs_space_info *space_info = cache->space_info; 6585 int ret = 0; 6586 6587 spin_lock(&space_info->lock); 6588 spin_lock(&cache->lock); 6589 if (cache->ro) 6590 space_info->bytes_readonly += num_bytes; 6591 cache->reserved -= num_bytes; 6592 space_info->bytes_reserved -= num_bytes; 6593 6594 if (delalloc) 6595 cache->delalloc_bytes -= num_bytes; 6596 spin_unlock(&cache->lock); 6597 spin_unlock(&space_info->lock); 6598 return ret; 6599 } 6600 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6601 { 6602 struct btrfs_caching_control *next; 6603 struct btrfs_caching_control *caching_ctl; 6604 struct btrfs_block_group_cache *cache; 6605 6606 down_write(&fs_info->commit_root_sem); 6607 6608 list_for_each_entry_safe(caching_ctl, next, 6609 &fs_info->caching_block_groups, list) { 6610 cache = caching_ctl->block_group; 6611 if (block_group_cache_done(cache)) { 6612 cache->last_byte_to_unpin = (u64)-1; 6613 list_del_init(&caching_ctl->list); 6614 put_caching_control(caching_ctl); 6615 } else { 6616 cache->last_byte_to_unpin = caching_ctl->progress; 6617 } 6618 } 6619 6620 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6621 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6622 else 6623 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6624 6625 up_write(&fs_info->commit_root_sem); 6626 6627 update_global_block_rsv(fs_info); 6628 } 6629 6630 /* 6631 * Returns the free cluster for the given space info and sets empty_cluster to 6632 * what it should be based on the mount options. 6633 */ 6634 static struct btrfs_free_cluster * 6635 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6636 struct btrfs_space_info *space_info, u64 *empty_cluster) 6637 { 6638 struct btrfs_free_cluster *ret = NULL; 6639 6640 *empty_cluster = 0; 6641 if (btrfs_mixed_space_info(space_info)) 6642 return ret; 6643 6644 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6645 ret = &fs_info->meta_alloc_cluster; 6646 if (btrfs_test_opt(fs_info, SSD)) 6647 *empty_cluster = SZ_2M; 6648 else 6649 *empty_cluster = SZ_64K; 6650 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6651 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6652 *empty_cluster = SZ_2M; 6653 ret = &fs_info->data_alloc_cluster; 6654 } 6655 6656 return ret; 6657 } 6658 6659 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6660 u64 start, u64 end, 6661 const bool return_free_space) 6662 { 6663 struct btrfs_block_group_cache *cache = NULL; 6664 struct btrfs_space_info *space_info; 6665 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6666 struct btrfs_free_cluster *cluster = NULL; 6667 u64 len; 6668 u64 total_unpinned = 0; 6669 u64 empty_cluster = 0; 6670 bool readonly; 6671 6672 while (start <= end) { 6673 readonly = false; 6674 if (!cache || 6675 start >= cache->key.objectid + cache->key.offset) { 6676 if (cache) 6677 btrfs_put_block_group(cache); 6678 total_unpinned = 0; 6679 cache = btrfs_lookup_block_group(fs_info, start); 6680 BUG_ON(!cache); /* Logic error */ 6681 6682 cluster = fetch_cluster_info(fs_info, 6683 cache->space_info, 6684 &empty_cluster); 6685 empty_cluster <<= 1; 6686 } 6687 6688 len = cache->key.objectid + cache->key.offset - start; 6689 len = min(len, end + 1 - start); 6690 6691 if (start < cache->last_byte_to_unpin) { 6692 len = min(len, cache->last_byte_to_unpin - start); 6693 if (return_free_space) 6694 btrfs_add_free_space(cache, start, len); 6695 } 6696 6697 start += len; 6698 total_unpinned += len; 6699 space_info = cache->space_info; 6700 6701 /* 6702 * If this space cluster has been marked as fragmented and we've 6703 * unpinned enough in this block group to potentially allow a 6704 * cluster to be created inside of it go ahead and clear the 6705 * fragmented check. 6706 */ 6707 if (cluster && cluster->fragmented && 6708 total_unpinned > empty_cluster) { 6709 spin_lock(&cluster->lock); 6710 cluster->fragmented = 0; 6711 spin_unlock(&cluster->lock); 6712 } 6713 6714 spin_lock(&space_info->lock); 6715 spin_lock(&cache->lock); 6716 cache->pinned -= len; 6717 space_info->bytes_pinned -= len; 6718 6719 trace_btrfs_space_reservation(fs_info, "pinned", 6720 space_info->flags, len, 0); 6721 space_info->max_extent_size = 0; 6722 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6723 if (cache->ro) { 6724 space_info->bytes_readonly += len; 6725 readonly = true; 6726 } 6727 spin_unlock(&cache->lock); 6728 if (!readonly && return_free_space && 6729 global_rsv->space_info == space_info) { 6730 u64 to_add = len; 6731 6732 spin_lock(&global_rsv->lock); 6733 if (!global_rsv->full) { 6734 to_add = min(len, global_rsv->size - 6735 global_rsv->reserved); 6736 global_rsv->reserved += to_add; 6737 space_info->bytes_may_use += to_add; 6738 if (global_rsv->reserved >= global_rsv->size) 6739 global_rsv->full = 1; 6740 trace_btrfs_space_reservation(fs_info, 6741 "space_info", 6742 space_info->flags, 6743 to_add, 1); 6744 len -= to_add; 6745 } 6746 spin_unlock(&global_rsv->lock); 6747 /* Add to any tickets we may have */ 6748 if (len) 6749 space_info_add_new_bytes(fs_info, space_info, 6750 len); 6751 } 6752 spin_unlock(&space_info->lock); 6753 } 6754 6755 if (cache) 6756 btrfs_put_block_group(cache); 6757 return 0; 6758 } 6759 6760 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6761 { 6762 struct btrfs_fs_info *fs_info = trans->fs_info; 6763 struct btrfs_block_group_cache *block_group, *tmp; 6764 struct list_head *deleted_bgs; 6765 struct extent_io_tree *unpin; 6766 u64 start; 6767 u64 end; 6768 int ret; 6769 6770 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6771 unpin = &fs_info->freed_extents[1]; 6772 else 6773 unpin = &fs_info->freed_extents[0]; 6774 6775 while (!trans->aborted) { 6776 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6777 ret = find_first_extent_bit(unpin, 0, &start, &end, 6778 EXTENT_DIRTY, NULL); 6779 if (ret) { 6780 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6781 break; 6782 } 6783 6784 if (btrfs_test_opt(fs_info, DISCARD)) 6785 ret = btrfs_discard_extent(fs_info, start, 6786 end + 1 - start, NULL); 6787 6788 clear_extent_dirty(unpin, start, end); 6789 unpin_extent_range(fs_info, start, end, true); 6790 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6791 cond_resched(); 6792 } 6793 6794 /* 6795 * Transaction is finished. We don't need the lock anymore. We 6796 * do need to clean up the block groups in case of a transaction 6797 * abort. 6798 */ 6799 deleted_bgs = &trans->transaction->deleted_bgs; 6800 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6801 u64 trimmed = 0; 6802 6803 ret = -EROFS; 6804 if (!trans->aborted) 6805 ret = btrfs_discard_extent(fs_info, 6806 block_group->key.objectid, 6807 block_group->key.offset, 6808 &trimmed); 6809 6810 list_del_init(&block_group->bg_list); 6811 btrfs_put_block_group_trimming(block_group); 6812 btrfs_put_block_group(block_group); 6813 6814 if (ret) { 6815 const char *errstr = btrfs_decode_error(ret); 6816 btrfs_warn(fs_info, 6817 "discard failed while removing blockgroup: errno=%d %s", 6818 ret, errstr); 6819 } 6820 } 6821 6822 return 0; 6823 } 6824 6825 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6826 struct btrfs_fs_info *info, 6827 struct btrfs_delayed_ref_node *node, u64 parent, 6828 u64 root_objectid, u64 owner_objectid, 6829 u64 owner_offset, int refs_to_drop, 6830 struct btrfs_delayed_extent_op *extent_op) 6831 { 6832 struct btrfs_key key; 6833 struct btrfs_path *path; 6834 struct btrfs_root *extent_root = info->extent_root; 6835 struct extent_buffer *leaf; 6836 struct btrfs_extent_item *ei; 6837 struct btrfs_extent_inline_ref *iref; 6838 int ret; 6839 int is_data; 6840 int extent_slot = 0; 6841 int found_extent = 0; 6842 int num_to_del = 1; 6843 u32 item_size; 6844 u64 refs; 6845 u64 bytenr = node->bytenr; 6846 u64 num_bytes = node->num_bytes; 6847 int last_ref = 0; 6848 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6849 6850 path = btrfs_alloc_path(); 6851 if (!path) 6852 return -ENOMEM; 6853 6854 path->reada = READA_FORWARD; 6855 path->leave_spinning = 1; 6856 6857 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6858 BUG_ON(!is_data && refs_to_drop != 1); 6859 6860 if (is_data) 6861 skinny_metadata = false; 6862 6863 ret = lookup_extent_backref(trans, info, path, &iref, 6864 bytenr, num_bytes, parent, 6865 root_objectid, owner_objectid, 6866 owner_offset); 6867 if (ret == 0) { 6868 extent_slot = path->slots[0]; 6869 while (extent_slot >= 0) { 6870 btrfs_item_key_to_cpu(path->nodes[0], &key, 6871 extent_slot); 6872 if (key.objectid != bytenr) 6873 break; 6874 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6875 key.offset == num_bytes) { 6876 found_extent = 1; 6877 break; 6878 } 6879 if (key.type == BTRFS_METADATA_ITEM_KEY && 6880 key.offset == owner_objectid) { 6881 found_extent = 1; 6882 break; 6883 } 6884 if (path->slots[0] - extent_slot > 5) 6885 break; 6886 extent_slot--; 6887 } 6888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6889 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6890 if (found_extent && item_size < sizeof(*ei)) 6891 found_extent = 0; 6892 #endif 6893 if (!found_extent) { 6894 BUG_ON(iref); 6895 ret = remove_extent_backref(trans, info, path, NULL, 6896 refs_to_drop, 6897 is_data, &last_ref); 6898 if (ret) { 6899 btrfs_abort_transaction(trans, ret); 6900 goto out; 6901 } 6902 btrfs_release_path(path); 6903 path->leave_spinning = 1; 6904 6905 key.objectid = bytenr; 6906 key.type = BTRFS_EXTENT_ITEM_KEY; 6907 key.offset = num_bytes; 6908 6909 if (!is_data && skinny_metadata) { 6910 key.type = BTRFS_METADATA_ITEM_KEY; 6911 key.offset = owner_objectid; 6912 } 6913 6914 ret = btrfs_search_slot(trans, extent_root, 6915 &key, path, -1, 1); 6916 if (ret > 0 && skinny_metadata && path->slots[0]) { 6917 /* 6918 * Couldn't find our skinny metadata item, 6919 * see if we have ye olde extent item. 6920 */ 6921 path->slots[0]--; 6922 btrfs_item_key_to_cpu(path->nodes[0], &key, 6923 path->slots[0]); 6924 if (key.objectid == bytenr && 6925 key.type == BTRFS_EXTENT_ITEM_KEY && 6926 key.offset == num_bytes) 6927 ret = 0; 6928 } 6929 6930 if (ret > 0 && skinny_metadata) { 6931 skinny_metadata = false; 6932 key.objectid = bytenr; 6933 key.type = BTRFS_EXTENT_ITEM_KEY; 6934 key.offset = num_bytes; 6935 btrfs_release_path(path); 6936 ret = btrfs_search_slot(trans, extent_root, 6937 &key, path, -1, 1); 6938 } 6939 6940 if (ret) { 6941 btrfs_err(info, 6942 "umm, got %d back from search, was looking for %llu", 6943 ret, bytenr); 6944 if (ret > 0) 6945 btrfs_print_leaf(path->nodes[0]); 6946 } 6947 if (ret < 0) { 6948 btrfs_abort_transaction(trans, ret); 6949 goto out; 6950 } 6951 extent_slot = path->slots[0]; 6952 } 6953 } else if (WARN_ON(ret == -ENOENT)) { 6954 btrfs_print_leaf(path->nodes[0]); 6955 btrfs_err(info, 6956 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6957 bytenr, parent, root_objectid, owner_objectid, 6958 owner_offset); 6959 btrfs_abort_transaction(trans, ret); 6960 goto out; 6961 } else { 6962 btrfs_abort_transaction(trans, ret); 6963 goto out; 6964 } 6965 6966 leaf = path->nodes[0]; 6967 item_size = btrfs_item_size_nr(leaf, extent_slot); 6968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6969 if (item_size < sizeof(*ei)) { 6970 BUG_ON(found_extent || extent_slot != path->slots[0]); 6971 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 6972 0); 6973 if (ret < 0) { 6974 btrfs_abort_transaction(trans, ret); 6975 goto out; 6976 } 6977 6978 btrfs_release_path(path); 6979 path->leave_spinning = 1; 6980 6981 key.objectid = bytenr; 6982 key.type = BTRFS_EXTENT_ITEM_KEY; 6983 key.offset = num_bytes; 6984 6985 ret = btrfs_search_slot(trans, extent_root, &key, path, 6986 -1, 1); 6987 if (ret) { 6988 btrfs_err(info, 6989 "umm, got %d back from search, was looking for %llu", 6990 ret, bytenr); 6991 btrfs_print_leaf(path->nodes[0]); 6992 } 6993 if (ret < 0) { 6994 btrfs_abort_transaction(trans, ret); 6995 goto out; 6996 } 6997 6998 extent_slot = path->slots[0]; 6999 leaf = path->nodes[0]; 7000 item_size = btrfs_item_size_nr(leaf, extent_slot); 7001 } 7002 #endif 7003 BUG_ON(item_size < sizeof(*ei)); 7004 ei = btrfs_item_ptr(leaf, extent_slot, 7005 struct btrfs_extent_item); 7006 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7007 key.type == BTRFS_EXTENT_ITEM_KEY) { 7008 struct btrfs_tree_block_info *bi; 7009 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7010 bi = (struct btrfs_tree_block_info *)(ei + 1); 7011 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7012 } 7013 7014 refs = btrfs_extent_refs(leaf, ei); 7015 if (refs < refs_to_drop) { 7016 btrfs_err(info, 7017 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7018 refs_to_drop, refs, bytenr); 7019 ret = -EINVAL; 7020 btrfs_abort_transaction(trans, ret); 7021 goto out; 7022 } 7023 refs -= refs_to_drop; 7024 7025 if (refs > 0) { 7026 if (extent_op) 7027 __run_delayed_extent_op(extent_op, leaf, ei); 7028 /* 7029 * In the case of inline back ref, reference count will 7030 * be updated by remove_extent_backref 7031 */ 7032 if (iref) { 7033 BUG_ON(!found_extent); 7034 } else { 7035 btrfs_set_extent_refs(leaf, ei, refs); 7036 btrfs_mark_buffer_dirty(leaf); 7037 } 7038 if (found_extent) { 7039 ret = remove_extent_backref(trans, info, path, 7040 iref, refs_to_drop, 7041 is_data, &last_ref); 7042 if (ret) { 7043 btrfs_abort_transaction(trans, ret); 7044 goto out; 7045 } 7046 } 7047 } else { 7048 if (found_extent) { 7049 BUG_ON(is_data && refs_to_drop != 7050 extent_data_ref_count(path, iref)); 7051 if (iref) { 7052 BUG_ON(path->slots[0] != extent_slot); 7053 } else { 7054 BUG_ON(path->slots[0] != extent_slot + 1); 7055 path->slots[0] = extent_slot; 7056 num_to_del = 2; 7057 } 7058 } 7059 7060 last_ref = 1; 7061 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7062 num_to_del); 7063 if (ret) { 7064 btrfs_abort_transaction(trans, ret); 7065 goto out; 7066 } 7067 btrfs_release_path(path); 7068 7069 if (is_data) { 7070 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7071 if (ret) { 7072 btrfs_abort_transaction(trans, ret); 7073 goto out; 7074 } 7075 } 7076 7077 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7078 if (ret) { 7079 btrfs_abort_transaction(trans, ret); 7080 goto out; 7081 } 7082 7083 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7084 if (ret) { 7085 btrfs_abort_transaction(trans, ret); 7086 goto out; 7087 } 7088 } 7089 btrfs_release_path(path); 7090 7091 out: 7092 btrfs_free_path(path); 7093 return ret; 7094 } 7095 7096 /* 7097 * when we free an block, it is possible (and likely) that we free the last 7098 * delayed ref for that extent as well. This searches the delayed ref tree for 7099 * a given extent, and if there are no other delayed refs to be processed, it 7100 * removes it from the tree. 7101 */ 7102 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7103 u64 bytenr) 7104 { 7105 struct btrfs_delayed_ref_head *head; 7106 struct btrfs_delayed_ref_root *delayed_refs; 7107 int ret = 0; 7108 7109 delayed_refs = &trans->transaction->delayed_refs; 7110 spin_lock(&delayed_refs->lock); 7111 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7112 if (!head) 7113 goto out_delayed_unlock; 7114 7115 spin_lock(&head->lock); 7116 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7117 goto out; 7118 7119 if (head->extent_op) { 7120 if (!head->must_insert_reserved) 7121 goto out; 7122 btrfs_free_delayed_extent_op(head->extent_op); 7123 head->extent_op = NULL; 7124 } 7125 7126 /* 7127 * waiting for the lock here would deadlock. If someone else has it 7128 * locked they are already in the process of dropping it anyway 7129 */ 7130 if (!mutex_trylock(&head->mutex)) 7131 goto out; 7132 7133 /* 7134 * at this point we have a head with no other entries. Go 7135 * ahead and process it. 7136 */ 7137 rb_erase(&head->href_node, &delayed_refs->href_root); 7138 RB_CLEAR_NODE(&head->href_node); 7139 atomic_dec(&delayed_refs->num_entries); 7140 7141 /* 7142 * we don't take a ref on the node because we're removing it from the 7143 * tree, so we just steal the ref the tree was holding. 7144 */ 7145 delayed_refs->num_heads--; 7146 if (head->processing == 0) 7147 delayed_refs->num_heads_ready--; 7148 head->processing = 0; 7149 spin_unlock(&head->lock); 7150 spin_unlock(&delayed_refs->lock); 7151 7152 BUG_ON(head->extent_op); 7153 if (head->must_insert_reserved) 7154 ret = 1; 7155 7156 mutex_unlock(&head->mutex); 7157 btrfs_put_delayed_ref_head(head); 7158 return ret; 7159 out: 7160 spin_unlock(&head->lock); 7161 7162 out_delayed_unlock: 7163 spin_unlock(&delayed_refs->lock); 7164 return 0; 7165 } 7166 7167 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7168 struct btrfs_root *root, 7169 struct extent_buffer *buf, 7170 u64 parent, int last_ref) 7171 { 7172 struct btrfs_fs_info *fs_info = root->fs_info; 7173 int pin = 1; 7174 int ret; 7175 7176 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7177 int old_ref_mod, new_ref_mod; 7178 7179 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7180 root->root_key.objectid, 7181 btrfs_header_level(buf), 0, 7182 BTRFS_DROP_DELAYED_REF); 7183 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7184 buf->len, parent, 7185 root->root_key.objectid, 7186 btrfs_header_level(buf), 7187 BTRFS_DROP_DELAYED_REF, NULL, 7188 &old_ref_mod, &new_ref_mod); 7189 BUG_ON(ret); /* -ENOMEM */ 7190 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7191 } 7192 7193 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7194 struct btrfs_block_group_cache *cache; 7195 7196 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7197 ret = check_ref_cleanup(trans, buf->start); 7198 if (!ret) 7199 goto out; 7200 } 7201 7202 pin = 0; 7203 cache = btrfs_lookup_block_group(fs_info, buf->start); 7204 7205 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7206 pin_down_extent(fs_info, cache, buf->start, 7207 buf->len, 1); 7208 btrfs_put_block_group(cache); 7209 goto out; 7210 } 7211 7212 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7213 7214 btrfs_add_free_space(cache, buf->start, buf->len); 7215 btrfs_free_reserved_bytes(cache, buf->len, 0); 7216 btrfs_put_block_group(cache); 7217 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7218 } 7219 out: 7220 if (pin) 7221 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7222 root->root_key.objectid); 7223 7224 if (last_ref) { 7225 /* 7226 * Deleting the buffer, clear the corrupt flag since it doesn't 7227 * matter anymore. 7228 */ 7229 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7230 } 7231 } 7232 7233 /* Can return -ENOMEM */ 7234 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7235 struct btrfs_root *root, 7236 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7237 u64 owner, u64 offset) 7238 { 7239 struct btrfs_fs_info *fs_info = root->fs_info; 7240 int old_ref_mod, new_ref_mod; 7241 int ret; 7242 7243 if (btrfs_is_testing(fs_info)) 7244 return 0; 7245 7246 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7247 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7248 root_objectid, owner, offset, 7249 BTRFS_DROP_DELAYED_REF); 7250 7251 /* 7252 * tree log blocks never actually go into the extent allocation 7253 * tree, just update pinning info and exit early. 7254 */ 7255 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7256 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7257 /* unlocks the pinned mutex */ 7258 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7259 old_ref_mod = new_ref_mod = 0; 7260 ret = 0; 7261 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7262 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7263 num_bytes, parent, 7264 root_objectid, (int)owner, 7265 BTRFS_DROP_DELAYED_REF, NULL, 7266 &old_ref_mod, &new_ref_mod); 7267 } else { 7268 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7269 num_bytes, parent, 7270 root_objectid, owner, offset, 7271 0, BTRFS_DROP_DELAYED_REF, 7272 &old_ref_mod, &new_ref_mod); 7273 } 7274 7275 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7276 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7277 7278 return ret; 7279 } 7280 7281 /* 7282 * when we wait for progress in the block group caching, its because 7283 * our allocation attempt failed at least once. So, we must sleep 7284 * and let some progress happen before we try again. 7285 * 7286 * This function will sleep at least once waiting for new free space to 7287 * show up, and then it will check the block group free space numbers 7288 * for our min num_bytes. Another option is to have it go ahead 7289 * and look in the rbtree for a free extent of a given size, but this 7290 * is a good start. 7291 * 7292 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7293 * any of the information in this block group. 7294 */ 7295 static noinline void 7296 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7297 u64 num_bytes) 7298 { 7299 struct btrfs_caching_control *caching_ctl; 7300 7301 caching_ctl = get_caching_control(cache); 7302 if (!caching_ctl) 7303 return; 7304 7305 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7306 (cache->free_space_ctl->free_space >= num_bytes)); 7307 7308 put_caching_control(caching_ctl); 7309 } 7310 7311 static noinline int 7312 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7313 { 7314 struct btrfs_caching_control *caching_ctl; 7315 int ret = 0; 7316 7317 caching_ctl = get_caching_control(cache); 7318 if (!caching_ctl) 7319 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7320 7321 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7322 if (cache->cached == BTRFS_CACHE_ERROR) 7323 ret = -EIO; 7324 put_caching_control(caching_ctl); 7325 return ret; 7326 } 7327 7328 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7329 [BTRFS_RAID_RAID10] = "raid10", 7330 [BTRFS_RAID_RAID1] = "raid1", 7331 [BTRFS_RAID_DUP] = "dup", 7332 [BTRFS_RAID_RAID0] = "raid0", 7333 [BTRFS_RAID_SINGLE] = "single", 7334 [BTRFS_RAID_RAID5] = "raid5", 7335 [BTRFS_RAID_RAID6] = "raid6", 7336 }; 7337 7338 static const char *get_raid_name(enum btrfs_raid_types type) 7339 { 7340 if (type >= BTRFS_NR_RAID_TYPES) 7341 return NULL; 7342 7343 return btrfs_raid_type_names[type]; 7344 } 7345 7346 enum btrfs_loop_type { 7347 LOOP_CACHING_NOWAIT = 0, 7348 LOOP_CACHING_WAIT = 1, 7349 LOOP_ALLOC_CHUNK = 2, 7350 LOOP_NO_EMPTY_SIZE = 3, 7351 }; 7352 7353 static inline void 7354 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7355 int delalloc) 7356 { 7357 if (delalloc) 7358 down_read(&cache->data_rwsem); 7359 } 7360 7361 static inline void 7362 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7363 int delalloc) 7364 { 7365 btrfs_get_block_group(cache); 7366 if (delalloc) 7367 down_read(&cache->data_rwsem); 7368 } 7369 7370 static struct btrfs_block_group_cache * 7371 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7372 struct btrfs_free_cluster *cluster, 7373 int delalloc) 7374 { 7375 struct btrfs_block_group_cache *used_bg = NULL; 7376 7377 spin_lock(&cluster->refill_lock); 7378 while (1) { 7379 used_bg = cluster->block_group; 7380 if (!used_bg) 7381 return NULL; 7382 7383 if (used_bg == block_group) 7384 return used_bg; 7385 7386 btrfs_get_block_group(used_bg); 7387 7388 if (!delalloc) 7389 return used_bg; 7390 7391 if (down_read_trylock(&used_bg->data_rwsem)) 7392 return used_bg; 7393 7394 spin_unlock(&cluster->refill_lock); 7395 7396 /* We should only have one-level nested. */ 7397 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7398 7399 spin_lock(&cluster->refill_lock); 7400 if (used_bg == cluster->block_group) 7401 return used_bg; 7402 7403 up_read(&used_bg->data_rwsem); 7404 btrfs_put_block_group(used_bg); 7405 } 7406 } 7407 7408 static inline void 7409 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7410 int delalloc) 7411 { 7412 if (delalloc) 7413 up_read(&cache->data_rwsem); 7414 btrfs_put_block_group(cache); 7415 } 7416 7417 /* 7418 * walks the btree of allocated extents and find a hole of a given size. 7419 * The key ins is changed to record the hole: 7420 * ins->objectid == start position 7421 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7422 * ins->offset == the size of the hole. 7423 * Any available blocks before search_start are skipped. 7424 * 7425 * If there is no suitable free space, we will record the max size of 7426 * the free space extent currently. 7427 */ 7428 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7429 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7430 u64 hint_byte, struct btrfs_key *ins, 7431 u64 flags, int delalloc) 7432 { 7433 int ret = 0; 7434 struct btrfs_root *root = fs_info->extent_root; 7435 struct btrfs_free_cluster *last_ptr = NULL; 7436 struct btrfs_block_group_cache *block_group = NULL; 7437 u64 search_start = 0; 7438 u64 max_extent_size = 0; 7439 u64 empty_cluster = 0; 7440 struct btrfs_space_info *space_info; 7441 int loop = 0; 7442 int index = btrfs_bg_flags_to_raid_index(flags); 7443 bool failed_cluster_refill = false; 7444 bool failed_alloc = false; 7445 bool use_cluster = true; 7446 bool have_caching_bg = false; 7447 bool orig_have_caching_bg = false; 7448 bool full_search = false; 7449 7450 WARN_ON(num_bytes < fs_info->sectorsize); 7451 ins->type = BTRFS_EXTENT_ITEM_KEY; 7452 ins->objectid = 0; 7453 ins->offset = 0; 7454 7455 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7456 7457 space_info = __find_space_info(fs_info, flags); 7458 if (!space_info) { 7459 btrfs_err(fs_info, "No space info for %llu", flags); 7460 return -ENOSPC; 7461 } 7462 7463 /* 7464 * If our free space is heavily fragmented we may not be able to make 7465 * big contiguous allocations, so instead of doing the expensive search 7466 * for free space, simply return ENOSPC with our max_extent_size so we 7467 * can go ahead and search for a more manageable chunk. 7468 * 7469 * If our max_extent_size is large enough for our allocation simply 7470 * disable clustering since we will likely not be able to find enough 7471 * space to create a cluster and induce latency trying. 7472 */ 7473 if (unlikely(space_info->max_extent_size)) { 7474 spin_lock(&space_info->lock); 7475 if (space_info->max_extent_size && 7476 num_bytes > space_info->max_extent_size) { 7477 ins->offset = space_info->max_extent_size; 7478 spin_unlock(&space_info->lock); 7479 return -ENOSPC; 7480 } else if (space_info->max_extent_size) { 7481 use_cluster = false; 7482 } 7483 spin_unlock(&space_info->lock); 7484 } 7485 7486 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7487 if (last_ptr) { 7488 spin_lock(&last_ptr->lock); 7489 if (last_ptr->block_group) 7490 hint_byte = last_ptr->window_start; 7491 if (last_ptr->fragmented) { 7492 /* 7493 * We still set window_start so we can keep track of the 7494 * last place we found an allocation to try and save 7495 * some time. 7496 */ 7497 hint_byte = last_ptr->window_start; 7498 use_cluster = false; 7499 } 7500 spin_unlock(&last_ptr->lock); 7501 } 7502 7503 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7504 search_start = max(search_start, hint_byte); 7505 if (search_start == hint_byte) { 7506 block_group = btrfs_lookup_block_group(fs_info, search_start); 7507 /* 7508 * we don't want to use the block group if it doesn't match our 7509 * allocation bits, or if its not cached. 7510 * 7511 * However if we are re-searching with an ideal block group 7512 * picked out then we don't care that the block group is cached. 7513 */ 7514 if (block_group && block_group_bits(block_group, flags) && 7515 block_group->cached != BTRFS_CACHE_NO) { 7516 down_read(&space_info->groups_sem); 7517 if (list_empty(&block_group->list) || 7518 block_group->ro) { 7519 /* 7520 * someone is removing this block group, 7521 * we can't jump into the have_block_group 7522 * target because our list pointers are not 7523 * valid 7524 */ 7525 btrfs_put_block_group(block_group); 7526 up_read(&space_info->groups_sem); 7527 } else { 7528 index = btrfs_bg_flags_to_raid_index( 7529 block_group->flags); 7530 btrfs_lock_block_group(block_group, delalloc); 7531 goto have_block_group; 7532 } 7533 } else if (block_group) { 7534 btrfs_put_block_group(block_group); 7535 } 7536 } 7537 search: 7538 have_caching_bg = false; 7539 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7540 full_search = true; 7541 down_read(&space_info->groups_sem); 7542 list_for_each_entry(block_group, &space_info->block_groups[index], 7543 list) { 7544 u64 offset; 7545 int cached; 7546 7547 /* If the block group is read-only, we can skip it entirely. */ 7548 if (unlikely(block_group->ro)) 7549 continue; 7550 7551 btrfs_grab_block_group(block_group, delalloc); 7552 search_start = block_group->key.objectid; 7553 7554 /* 7555 * this can happen if we end up cycling through all the 7556 * raid types, but we want to make sure we only allocate 7557 * for the proper type. 7558 */ 7559 if (!block_group_bits(block_group, flags)) { 7560 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7561 BTRFS_BLOCK_GROUP_RAID1 | 7562 BTRFS_BLOCK_GROUP_RAID5 | 7563 BTRFS_BLOCK_GROUP_RAID6 | 7564 BTRFS_BLOCK_GROUP_RAID10; 7565 7566 /* 7567 * if they asked for extra copies and this block group 7568 * doesn't provide them, bail. This does allow us to 7569 * fill raid0 from raid1. 7570 */ 7571 if ((flags & extra) && !(block_group->flags & extra)) 7572 goto loop; 7573 } 7574 7575 have_block_group: 7576 cached = block_group_cache_done(block_group); 7577 if (unlikely(!cached)) { 7578 have_caching_bg = true; 7579 ret = cache_block_group(block_group, 0); 7580 BUG_ON(ret < 0); 7581 ret = 0; 7582 } 7583 7584 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7585 goto loop; 7586 7587 /* 7588 * Ok we want to try and use the cluster allocator, so 7589 * lets look there 7590 */ 7591 if (last_ptr && use_cluster) { 7592 struct btrfs_block_group_cache *used_block_group; 7593 unsigned long aligned_cluster; 7594 /* 7595 * the refill lock keeps out other 7596 * people trying to start a new cluster 7597 */ 7598 used_block_group = btrfs_lock_cluster(block_group, 7599 last_ptr, 7600 delalloc); 7601 if (!used_block_group) 7602 goto refill_cluster; 7603 7604 if (used_block_group != block_group && 7605 (used_block_group->ro || 7606 !block_group_bits(used_block_group, flags))) 7607 goto release_cluster; 7608 7609 offset = btrfs_alloc_from_cluster(used_block_group, 7610 last_ptr, 7611 num_bytes, 7612 used_block_group->key.objectid, 7613 &max_extent_size); 7614 if (offset) { 7615 /* we have a block, we're done */ 7616 spin_unlock(&last_ptr->refill_lock); 7617 trace_btrfs_reserve_extent_cluster(fs_info, 7618 used_block_group, 7619 search_start, num_bytes); 7620 if (used_block_group != block_group) { 7621 btrfs_release_block_group(block_group, 7622 delalloc); 7623 block_group = used_block_group; 7624 } 7625 goto checks; 7626 } 7627 7628 WARN_ON(last_ptr->block_group != used_block_group); 7629 release_cluster: 7630 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7631 * set up a new clusters, so lets just skip it 7632 * and let the allocator find whatever block 7633 * it can find. If we reach this point, we 7634 * will have tried the cluster allocator 7635 * plenty of times and not have found 7636 * anything, so we are likely way too 7637 * fragmented for the clustering stuff to find 7638 * anything. 7639 * 7640 * However, if the cluster is taken from the 7641 * current block group, release the cluster 7642 * first, so that we stand a better chance of 7643 * succeeding in the unclustered 7644 * allocation. */ 7645 if (loop >= LOOP_NO_EMPTY_SIZE && 7646 used_block_group != block_group) { 7647 spin_unlock(&last_ptr->refill_lock); 7648 btrfs_release_block_group(used_block_group, 7649 delalloc); 7650 goto unclustered_alloc; 7651 } 7652 7653 /* 7654 * this cluster didn't work out, free it and 7655 * start over 7656 */ 7657 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7658 7659 if (used_block_group != block_group) 7660 btrfs_release_block_group(used_block_group, 7661 delalloc); 7662 refill_cluster: 7663 if (loop >= LOOP_NO_EMPTY_SIZE) { 7664 spin_unlock(&last_ptr->refill_lock); 7665 goto unclustered_alloc; 7666 } 7667 7668 aligned_cluster = max_t(unsigned long, 7669 empty_cluster + empty_size, 7670 block_group->full_stripe_len); 7671 7672 /* allocate a cluster in this block group */ 7673 ret = btrfs_find_space_cluster(fs_info, block_group, 7674 last_ptr, search_start, 7675 num_bytes, 7676 aligned_cluster); 7677 if (ret == 0) { 7678 /* 7679 * now pull our allocation out of this 7680 * cluster 7681 */ 7682 offset = btrfs_alloc_from_cluster(block_group, 7683 last_ptr, 7684 num_bytes, 7685 search_start, 7686 &max_extent_size); 7687 if (offset) { 7688 /* we found one, proceed */ 7689 spin_unlock(&last_ptr->refill_lock); 7690 trace_btrfs_reserve_extent_cluster(fs_info, 7691 block_group, search_start, 7692 num_bytes); 7693 goto checks; 7694 } 7695 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7696 && !failed_cluster_refill) { 7697 spin_unlock(&last_ptr->refill_lock); 7698 7699 failed_cluster_refill = true; 7700 wait_block_group_cache_progress(block_group, 7701 num_bytes + empty_cluster + empty_size); 7702 goto have_block_group; 7703 } 7704 7705 /* 7706 * at this point we either didn't find a cluster 7707 * or we weren't able to allocate a block from our 7708 * cluster. Free the cluster we've been trying 7709 * to use, and go to the next block group 7710 */ 7711 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7712 spin_unlock(&last_ptr->refill_lock); 7713 goto loop; 7714 } 7715 7716 unclustered_alloc: 7717 /* 7718 * We are doing an unclustered alloc, set the fragmented flag so 7719 * we don't bother trying to setup a cluster again until we get 7720 * more space. 7721 */ 7722 if (unlikely(last_ptr)) { 7723 spin_lock(&last_ptr->lock); 7724 last_ptr->fragmented = 1; 7725 spin_unlock(&last_ptr->lock); 7726 } 7727 if (cached) { 7728 struct btrfs_free_space_ctl *ctl = 7729 block_group->free_space_ctl; 7730 7731 spin_lock(&ctl->tree_lock); 7732 if (ctl->free_space < 7733 num_bytes + empty_cluster + empty_size) { 7734 if (ctl->free_space > max_extent_size) 7735 max_extent_size = ctl->free_space; 7736 spin_unlock(&ctl->tree_lock); 7737 goto loop; 7738 } 7739 spin_unlock(&ctl->tree_lock); 7740 } 7741 7742 offset = btrfs_find_space_for_alloc(block_group, search_start, 7743 num_bytes, empty_size, 7744 &max_extent_size); 7745 /* 7746 * If we didn't find a chunk, and we haven't failed on this 7747 * block group before, and this block group is in the middle of 7748 * caching and we are ok with waiting, then go ahead and wait 7749 * for progress to be made, and set failed_alloc to true. 7750 * 7751 * If failed_alloc is true then we've already waited on this 7752 * block group once and should move on to the next block group. 7753 */ 7754 if (!offset && !failed_alloc && !cached && 7755 loop > LOOP_CACHING_NOWAIT) { 7756 wait_block_group_cache_progress(block_group, 7757 num_bytes + empty_size); 7758 failed_alloc = true; 7759 goto have_block_group; 7760 } else if (!offset) { 7761 goto loop; 7762 } 7763 checks: 7764 search_start = ALIGN(offset, fs_info->stripesize); 7765 7766 /* move on to the next group */ 7767 if (search_start + num_bytes > 7768 block_group->key.objectid + block_group->key.offset) { 7769 btrfs_add_free_space(block_group, offset, num_bytes); 7770 goto loop; 7771 } 7772 7773 if (offset < search_start) 7774 btrfs_add_free_space(block_group, offset, 7775 search_start - offset); 7776 BUG_ON(offset > search_start); 7777 7778 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7779 num_bytes, delalloc); 7780 if (ret == -EAGAIN) { 7781 btrfs_add_free_space(block_group, offset, num_bytes); 7782 goto loop; 7783 } 7784 btrfs_inc_block_group_reservations(block_group); 7785 7786 /* we are all good, lets return */ 7787 ins->objectid = search_start; 7788 ins->offset = num_bytes; 7789 7790 trace_btrfs_reserve_extent(fs_info, block_group, 7791 search_start, num_bytes); 7792 btrfs_release_block_group(block_group, delalloc); 7793 break; 7794 loop: 7795 failed_cluster_refill = false; 7796 failed_alloc = false; 7797 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7798 index); 7799 btrfs_release_block_group(block_group, delalloc); 7800 cond_resched(); 7801 } 7802 up_read(&space_info->groups_sem); 7803 7804 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7805 && !orig_have_caching_bg) 7806 orig_have_caching_bg = true; 7807 7808 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7809 goto search; 7810 7811 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7812 goto search; 7813 7814 /* 7815 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7816 * caching kthreads as we move along 7817 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7818 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7819 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7820 * again 7821 */ 7822 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7823 index = 0; 7824 if (loop == LOOP_CACHING_NOWAIT) { 7825 /* 7826 * We want to skip the LOOP_CACHING_WAIT step if we 7827 * don't have any uncached bgs and we've already done a 7828 * full search through. 7829 */ 7830 if (orig_have_caching_bg || !full_search) 7831 loop = LOOP_CACHING_WAIT; 7832 else 7833 loop = LOOP_ALLOC_CHUNK; 7834 } else { 7835 loop++; 7836 } 7837 7838 if (loop == LOOP_ALLOC_CHUNK) { 7839 struct btrfs_trans_handle *trans; 7840 int exist = 0; 7841 7842 trans = current->journal_info; 7843 if (trans) 7844 exist = 1; 7845 else 7846 trans = btrfs_join_transaction(root); 7847 7848 if (IS_ERR(trans)) { 7849 ret = PTR_ERR(trans); 7850 goto out; 7851 } 7852 7853 ret = do_chunk_alloc(trans, fs_info, flags, 7854 CHUNK_ALLOC_FORCE); 7855 7856 /* 7857 * If we can't allocate a new chunk we've already looped 7858 * through at least once, move on to the NO_EMPTY_SIZE 7859 * case. 7860 */ 7861 if (ret == -ENOSPC) 7862 loop = LOOP_NO_EMPTY_SIZE; 7863 7864 /* 7865 * Do not bail out on ENOSPC since we 7866 * can do more things. 7867 */ 7868 if (ret < 0 && ret != -ENOSPC) 7869 btrfs_abort_transaction(trans, ret); 7870 else 7871 ret = 0; 7872 if (!exist) 7873 btrfs_end_transaction(trans); 7874 if (ret) 7875 goto out; 7876 } 7877 7878 if (loop == LOOP_NO_EMPTY_SIZE) { 7879 /* 7880 * Don't loop again if we already have no empty_size and 7881 * no empty_cluster. 7882 */ 7883 if (empty_size == 0 && 7884 empty_cluster == 0) { 7885 ret = -ENOSPC; 7886 goto out; 7887 } 7888 empty_size = 0; 7889 empty_cluster = 0; 7890 } 7891 7892 goto search; 7893 } else if (!ins->objectid) { 7894 ret = -ENOSPC; 7895 } else if (ins->objectid) { 7896 if (!use_cluster && last_ptr) { 7897 spin_lock(&last_ptr->lock); 7898 last_ptr->window_start = ins->objectid; 7899 spin_unlock(&last_ptr->lock); 7900 } 7901 ret = 0; 7902 } 7903 out: 7904 if (ret == -ENOSPC) { 7905 spin_lock(&space_info->lock); 7906 space_info->max_extent_size = max_extent_size; 7907 spin_unlock(&space_info->lock); 7908 ins->offset = max_extent_size; 7909 } 7910 return ret; 7911 } 7912 7913 static void dump_space_info(struct btrfs_fs_info *fs_info, 7914 struct btrfs_space_info *info, u64 bytes, 7915 int dump_block_groups) 7916 { 7917 struct btrfs_block_group_cache *cache; 7918 int index = 0; 7919 7920 spin_lock(&info->lock); 7921 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7922 info->flags, 7923 info->total_bytes - btrfs_space_info_used(info, true), 7924 info->full ? "" : "not "); 7925 btrfs_info(fs_info, 7926 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7927 info->total_bytes, info->bytes_used, info->bytes_pinned, 7928 info->bytes_reserved, info->bytes_may_use, 7929 info->bytes_readonly); 7930 spin_unlock(&info->lock); 7931 7932 if (!dump_block_groups) 7933 return; 7934 7935 down_read(&info->groups_sem); 7936 again: 7937 list_for_each_entry(cache, &info->block_groups[index], list) { 7938 spin_lock(&cache->lock); 7939 btrfs_info(fs_info, 7940 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7941 cache->key.objectid, cache->key.offset, 7942 btrfs_block_group_used(&cache->item), cache->pinned, 7943 cache->reserved, cache->ro ? "[readonly]" : ""); 7944 btrfs_dump_free_space(cache, bytes); 7945 spin_unlock(&cache->lock); 7946 } 7947 if (++index < BTRFS_NR_RAID_TYPES) 7948 goto again; 7949 up_read(&info->groups_sem); 7950 } 7951 7952 /* 7953 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 7954 * hole that is at least as big as @num_bytes. 7955 * 7956 * @root - The root that will contain this extent 7957 * 7958 * @ram_bytes - The amount of space in ram that @num_bytes take. This 7959 * is used for accounting purposes. This value differs 7960 * from @num_bytes only in the case of compressed extents. 7961 * 7962 * @num_bytes - Number of bytes to allocate on-disk. 7963 * 7964 * @min_alloc_size - Indicates the minimum amount of space that the 7965 * allocator should try to satisfy. In some cases 7966 * @num_bytes may be larger than what is required and if 7967 * the filesystem is fragmented then allocation fails. 7968 * However, the presence of @min_alloc_size gives a 7969 * chance to try and satisfy the smaller allocation. 7970 * 7971 * @empty_size - A hint that you plan on doing more COW. This is the 7972 * size in bytes the allocator should try to find free 7973 * next to the block it returns. This is just a hint and 7974 * may be ignored by the allocator. 7975 * 7976 * @hint_byte - Hint to the allocator to start searching above the byte 7977 * address passed. It might be ignored. 7978 * 7979 * @ins - This key is modified to record the found hole. It will 7980 * have the following values: 7981 * ins->objectid == start position 7982 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7983 * ins->offset == the size of the hole. 7984 * 7985 * @is_data - Boolean flag indicating whether an extent is 7986 * allocated for data (true) or metadata (false) 7987 * 7988 * @delalloc - Boolean flag indicating whether this allocation is for 7989 * delalloc or not. If 'true' data_rwsem of block groups 7990 * is going to be acquired. 7991 * 7992 * 7993 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 7994 * case -ENOSPC is returned then @ins->offset will contain the size of the 7995 * largest available hole the allocator managed to find. 7996 */ 7997 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7998 u64 num_bytes, u64 min_alloc_size, 7999 u64 empty_size, u64 hint_byte, 8000 struct btrfs_key *ins, int is_data, int delalloc) 8001 { 8002 struct btrfs_fs_info *fs_info = root->fs_info; 8003 bool final_tried = num_bytes == min_alloc_size; 8004 u64 flags; 8005 int ret; 8006 8007 flags = get_alloc_profile_by_root(root, is_data); 8008 again: 8009 WARN_ON(num_bytes < fs_info->sectorsize); 8010 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8011 hint_byte, ins, flags, delalloc); 8012 if (!ret && !is_data) { 8013 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8014 } else if (ret == -ENOSPC) { 8015 if (!final_tried && ins->offset) { 8016 num_bytes = min(num_bytes >> 1, ins->offset); 8017 num_bytes = round_down(num_bytes, 8018 fs_info->sectorsize); 8019 num_bytes = max(num_bytes, min_alloc_size); 8020 ram_bytes = num_bytes; 8021 if (num_bytes == min_alloc_size) 8022 final_tried = true; 8023 goto again; 8024 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8025 struct btrfs_space_info *sinfo; 8026 8027 sinfo = __find_space_info(fs_info, flags); 8028 btrfs_err(fs_info, 8029 "allocation failed flags %llu, wanted %llu", 8030 flags, num_bytes); 8031 if (sinfo) 8032 dump_space_info(fs_info, sinfo, num_bytes, 1); 8033 } 8034 } 8035 8036 return ret; 8037 } 8038 8039 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8040 u64 start, u64 len, 8041 int pin, int delalloc) 8042 { 8043 struct btrfs_block_group_cache *cache; 8044 int ret = 0; 8045 8046 cache = btrfs_lookup_block_group(fs_info, start); 8047 if (!cache) { 8048 btrfs_err(fs_info, "Unable to find block group for %llu", 8049 start); 8050 return -ENOSPC; 8051 } 8052 8053 if (pin) 8054 pin_down_extent(fs_info, cache, start, len, 1); 8055 else { 8056 if (btrfs_test_opt(fs_info, DISCARD)) 8057 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8058 btrfs_add_free_space(cache, start, len); 8059 btrfs_free_reserved_bytes(cache, len, delalloc); 8060 trace_btrfs_reserved_extent_free(fs_info, start, len); 8061 } 8062 8063 btrfs_put_block_group(cache); 8064 return ret; 8065 } 8066 8067 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8068 u64 start, u64 len, int delalloc) 8069 { 8070 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8071 } 8072 8073 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8074 u64 start, u64 len) 8075 { 8076 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8077 } 8078 8079 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8080 struct btrfs_fs_info *fs_info, 8081 u64 parent, u64 root_objectid, 8082 u64 flags, u64 owner, u64 offset, 8083 struct btrfs_key *ins, int ref_mod) 8084 { 8085 int ret; 8086 struct btrfs_extent_item *extent_item; 8087 struct btrfs_extent_inline_ref *iref; 8088 struct btrfs_path *path; 8089 struct extent_buffer *leaf; 8090 int type; 8091 u32 size; 8092 8093 if (parent > 0) 8094 type = BTRFS_SHARED_DATA_REF_KEY; 8095 else 8096 type = BTRFS_EXTENT_DATA_REF_KEY; 8097 8098 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8099 8100 path = btrfs_alloc_path(); 8101 if (!path) 8102 return -ENOMEM; 8103 8104 path->leave_spinning = 1; 8105 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8106 ins, size); 8107 if (ret) { 8108 btrfs_free_path(path); 8109 return ret; 8110 } 8111 8112 leaf = path->nodes[0]; 8113 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8114 struct btrfs_extent_item); 8115 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8116 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8117 btrfs_set_extent_flags(leaf, extent_item, 8118 flags | BTRFS_EXTENT_FLAG_DATA); 8119 8120 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8121 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8122 if (parent > 0) { 8123 struct btrfs_shared_data_ref *ref; 8124 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8125 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8126 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8127 } else { 8128 struct btrfs_extent_data_ref *ref; 8129 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8130 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8131 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8132 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8133 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8134 } 8135 8136 btrfs_mark_buffer_dirty(path->nodes[0]); 8137 btrfs_free_path(path); 8138 8139 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8140 ins->offset); 8141 if (ret) 8142 return ret; 8143 8144 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8145 if (ret) { /* -ENOENT, logic error */ 8146 btrfs_err(fs_info, "update block group failed for %llu %llu", 8147 ins->objectid, ins->offset); 8148 BUG(); 8149 } 8150 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8151 return ret; 8152 } 8153 8154 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8155 struct btrfs_fs_info *fs_info, 8156 u64 parent, u64 root_objectid, 8157 u64 flags, struct btrfs_disk_key *key, 8158 int level, struct btrfs_key *ins) 8159 { 8160 int ret; 8161 struct btrfs_extent_item *extent_item; 8162 struct btrfs_tree_block_info *block_info; 8163 struct btrfs_extent_inline_ref *iref; 8164 struct btrfs_path *path; 8165 struct extent_buffer *leaf; 8166 u32 size = sizeof(*extent_item) + sizeof(*iref); 8167 u64 num_bytes = ins->offset; 8168 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8169 8170 if (!skinny_metadata) 8171 size += sizeof(*block_info); 8172 8173 path = btrfs_alloc_path(); 8174 if (!path) { 8175 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8176 fs_info->nodesize); 8177 return -ENOMEM; 8178 } 8179 8180 path->leave_spinning = 1; 8181 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8182 ins, size); 8183 if (ret) { 8184 btrfs_free_path(path); 8185 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8186 fs_info->nodesize); 8187 return ret; 8188 } 8189 8190 leaf = path->nodes[0]; 8191 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8192 struct btrfs_extent_item); 8193 btrfs_set_extent_refs(leaf, extent_item, 1); 8194 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8195 btrfs_set_extent_flags(leaf, extent_item, 8196 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8197 8198 if (skinny_metadata) { 8199 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8200 num_bytes = fs_info->nodesize; 8201 } else { 8202 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8203 btrfs_set_tree_block_key(leaf, block_info, key); 8204 btrfs_set_tree_block_level(leaf, block_info, level); 8205 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8206 } 8207 8208 if (parent > 0) { 8209 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8210 btrfs_set_extent_inline_ref_type(leaf, iref, 8211 BTRFS_SHARED_BLOCK_REF_KEY); 8212 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8213 } else { 8214 btrfs_set_extent_inline_ref_type(leaf, iref, 8215 BTRFS_TREE_BLOCK_REF_KEY); 8216 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8217 } 8218 8219 btrfs_mark_buffer_dirty(leaf); 8220 btrfs_free_path(path); 8221 8222 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8223 num_bytes); 8224 if (ret) 8225 return ret; 8226 8227 ret = update_block_group(trans, fs_info, ins->objectid, 8228 fs_info->nodesize, 1); 8229 if (ret) { /* -ENOENT, logic error */ 8230 btrfs_err(fs_info, "update block group failed for %llu %llu", 8231 ins->objectid, ins->offset); 8232 BUG(); 8233 } 8234 8235 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8236 fs_info->nodesize); 8237 return ret; 8238 } 8239 8240 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8241 struct btrfs_root *root, u64 owner, 8242 u64 offset, u64 ram_bytes, 8243 struct btrfs_key *ins) 8244 { 8245 struct btrfs_fs_info *fs_info = root->fs_info; 8246 int ret; 8247 8248 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8249 8250 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8251 root->root_key.objectid, owner, offset, 8252 BTRFS_ADD_DELAYED_EXTENT); 8253 8254 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8255 ins->offset, 0, 8256 root->root_key.objectid, owner, 8257 offset, ram_bytes, 8258 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8259 return ret; 8260 } 8261 8262 /* 8263 * this is used by the tree logging recovery code. It records that 8264 * an extent has been allocated and makes sure to clear the free 8265 * space cache bits as well 8266 */ 8267 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8268 struct btrfs_fs_info *fs_info, 8269 u64 root_objectid, u64 owner, u64 offset, 8270 struct btrfs_key *ins) 8271 { 8272 int ret; 8273 struct btrfs_block_group_cache *block_group; 8274 struct btrfs_space_info *space_info; 8275 8276 /* 8277 * Mixed block groups will exclude before processing the log so we only 8278 * need to do the exclude dance if this fs isn't mixed. 8279 */ 8280 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8281 ret = __exclude_logged_extent(fs_info, ins->objectid, 8282 ins->offset); 8283 if (ret) 8284 return ret; 8285 } 8286 8287 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8288 if (!block_group) 8289 return -EINVAL; 8290 8291 space_info = block_group->space_info; 8292 spin_lock(&space_info->lock); 8293 spin_lock(&block_group->lock); 8294 space_info->bytes_reserved += ins->offset; 8295 block_group->reserved += ins->offset; 8296 spin_unlock(&block_group->lock); 8297 spin_unlock(&space_info->lock); 8298 8299 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8300 0, owner, offset, ins, 1); 8301 btrfs_put_block_group(block_group); 8302 return ret; 8303 } 8304 8305 static struct extent_buffer * 8306 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8307 u64 bytenr, int level) 8308 { 8309 struct btrfs_fs_info *fs_info = root->fs_info; 8310 struct extent_buffer *buf; 8311 8312 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8313 if (IS_ERR(buf)) 8314 return buf; 8315 8316 btrfs_set_header_generation(buf, trans->transid); 8317 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8318 btrfs_tree_lock(buf); 8319 clean_tree_block(fs_info, buf); 8320 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8321 8322 btrfs_set_lock_blocking(buf); 8323 set_extent_buffer_uptodate(buf); 8324 8325 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8326 buf->log_index = root->log_transid % 2; 8327 /* 8328 * we allow two log transactions at a time, use different 8329 * EXENT bit to differentiate dirty pages. 8330 */ 8331 if (buf->log_index == 0) 8332 set_extent_dirty(&root->dirty_log_pages, buf->start, 8333 buf->start + buf->len - 1, GFP_NOFS); 8334 else 8335 set_extent_new(&root->dirty_log_pages, buf->start, 8336 buf->start + buf->len - 1); 8337 } else { 8338 buf->log_index = -1; 8339 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8340 buf->start + buf->len - 1, GFP_NOFS); 8341 } 8342 trans->dirty = true; 8343 /* this returns a buffer locked for blocking */ 8344 return buf; 8345 } 8346 8347 static struct btrfs_block_rsv * 8348 use_block_rsv(struct btrfs_trans_handle *trans, 8349 struct btrfs_root *root, u32 blocksize) 8350 { 8351 struct btrfs_fs_info *fs_info = root->fs_info; 8352 struct btrfs_block_rsv *block_rsv; 8353 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8354 int ret; 8355 bool global_updated = false; 8356 8357 block_rsv = get_block_rsv(trans, root); 8358 8359 if (unlikely(block_rsv->size == 0)) 8360 goto try_reserve; 8361 again: 8362 ret = block_rsv_use_bytes(block_rsv, blocksize); 8363 if (!ret) 8364 return block_rsv; 8365 8366 if (block_rsv->failfast) 8367 return ERR_PTR(ret); 8368 8369 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8370 global_updated = true; 8371 update_global_block_rsv(fs_info); 8372 goto again; 8373 } 8374 8375 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8376 static DEFINE_RATELIMIT_STATE(_rs, 8377 DEFAULT_RATELIMIT_INTERVAL * 10, 8378 /*DEFAULT_RATELIMIT_BURST*/ 1); 8379 if (__ratelimit(&_rs)) 8380 WARN(1, KERN_DEBUG 8381 "BTRFS: block rsv returned %d\n", ret); 8382 } 8383 try_reserve: 8384 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8385 BTRFS_RESERVE_NO_FLUSH); 8386 if (!ret) 8387 return block_rsv; 8388 /* 8389 * If we couldn't reserve metadata bytes try and use some from 8390 * the global reserve if its space type is the same as the global 8391 * reservation. 8392 */ 8393 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8394 block_rsv->space_info == global_rsv->space_info) { 8395 ret = block_rsv_use_bytes(global_rsv, blocksize); 8396 if (!ret) 8397 return global_rsv; 8398 } 8399 return ERR_PTR(ret); 8400 } 8401 8402 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8403 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8404 { 8405 block_rsv_add_bytes(block_rsv, blocksize, 0); 8406 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8407 } 8408 8409 /* 8410 * finds a free extent and does all the dirty work required for allocation 8411 * returns the tree buffer or an ERR_PTR on error. 8412 */ 8413 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8414 struct btrfs_root *root, 8415 u64 parent, u64 root_objectid, 8416 const struct btrfs_disk_key *key, 8417 int level, u64 hint, 8418 u64 empty_size) 8419 { 8420 struct btrfs_fs_info *fs_info = root->fs_info; 8421 struct btrfs_key ins; 8422 struct btrfs_block_rsv *block_rsv; 8423 struct extent_buffer *buf; 8424 struct btrfs_delayed_extent_op *extent_op; 8425 u64 flags = 0; 8426 int ret; 8427 u32 blocksize = fs_info->nodesize; 8428 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8429 8430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8431 if (btrfs_is_testing(fs_info)) { 8432 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8433 level); 8434 if (!IS_ERR(buf)) 8435 root->alloc_bytenr += blocksize; 8436 return buf; 8437 } 8438 #endif 8439 8440 block_rsv = use_block_rsv(trans, root, blocksize); 8441 if (IS_ERR(block_rsv)) 8442 return ERR_CAST(block_rsv); 8443 8444 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8445 empty_size, hint, &ins, 0, 0); 8446 if (ret) 8447 goto out_unuse; 8448 8449 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8450 if (IS_ERR(buf)) { 8451 ret = PTR_ERR(buf); 8452 goto out_free_reserved; 8453 } 8454 8455 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8456 if (parent == 0) 8457 parent = ins.objectid; 8458 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8459 } else 8460 BUG_ON(parent > 0); 8461 8462 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8463 extent_op = btrfs_alloc_delayed_extent_op(); 8464 if (!extent_op) { 8465 ret = -ENOMEM; 8466 goto out_free_buf; 8467 } 8468 if (key) 8469 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8470 else 8471 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8472 extent_op->flags_to_set = flags; 8473 extent_op->update_key = skinny_metadata ? false : true; 8474 extent_op->update_flags = true; 8475 extent_op->is_data = false; 8476 extent_op->level = level; 8477 8478 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8479 root_objectid, level, 0, 8480 BTRFS_ADD_DELAYED_EXTENT); 8481 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8482 ins.offset, parent, 8483 root_objectid, level, 8484 BTRFS_ADD_DELAYED_EXTENT, 8485 extent_op, NULL, NULL); 8486 if (ret) 8487 goto out_free_delayed; 8488 } 8489 return buf; 8490 8491 out_free_delayed: 8492 btrfs_free_delayed_extent_op(extent_op); 8493 out_free_buf: 8494 free_extent_buffer(buf); 8495 out_free_reserved: 8496 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8497 out_unuse: 8498 unuse_block_rsv(fs_info, block_rsv, blocksize); 8499 return ERR_PTR(ret); 8500 } 8501 8502 struct walk_control { 8503 u64 refs[BTRFS_MAX_LEVEL]; 8504 u64 flags[BTRFS_MAX_LEVEL]; 8505 struct btrfs_key update_progress; 8506 int stage; 8507 int level; 8508 int shared_level; 8509 int update_ref; 8510 int keep_locks; 8511 int reada_slot; 8512 int reada_count; 8513 int for_reloc; 8514 }; 8515 8516 #define DROP_REFERENCE 1 8517 #define UPDATE_BACKREF 2 8518 8519 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8520 struct btrfs_root *root, 8521 struct walk_control *wc, 8522 struct btrfs_path *path) 8523 { 8524 struct btrfs_fs_info *fs_info = root->fs_info; 8525 u64 bytenr; 8526 u64 generation; 8527 u64 refs; 8528 u64 flags; 8529 u32 nritems; 8530 struct btrfs_key key; 8531 struct extent_buffer *eb; 8532 int ret; 8533 int slot; 8534 int nread = 0; 8535 8536 if (path->slots[wc->level] < wc->reada_slot) { 8537 wc->reada_count = wc->reada_count * 2 / 3; 8538 wc->reada_count = max(wc->reada_count, 2); 8539 } else { 8540 wc->reada_count = wc->reada_count * 3 / 2; 8541 wc->reada_count = min_t(int, wc->reada_count, 8542 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8543 } 8544 8545 eb = path->nodes[wc->level]; 8546 nritems = btrfs_header_nritems(eb); 8547 8548 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8549 if (nread >= wc->reada_count) 8550 break; 8551 8552 cond_resched(); 8553 bytenr = btrfs_node_blockptr(eb, slot); 8554 generation = btrfs_node_ptr_generation(eb, slot); 8555 8556 if (slot == path->slots[wc->level]) 8557 goto reada; 8558 8559 if (wc->stage == UPDATE_BACKREF && 8560 generation <= root->root_key.offset) 8561 continue; 8562 8563 /* We don't lock the tree block, it's OK to be racy here */ 8564 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8565 wc->level - 1, 1, &refs, 8566 &flags); 8567 /* We don't care about errors in readahead. */ 8568 if (ret < 0) 8569 continue; 8570 BUG_ON(refs == 0); 8571 8572 if (wc->stage == DROP_REFERENCE) { 8573 if (refs == 1) 8574 goto reada; 8575 8576 if (wc->level == 1 && 8577 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8578 continue; 8579 if (!wc->update_ref || 8580 generation <= root->root_key.offset) 8581 continue; 8582 btrfs_node_key_to_cpu(eb, &key, slot); 8583 ret = btrfs_comp_cpu_keys(&key, 8584 &wc->update_progress); 8585 if (ret < 0) 8586 continue; 8587 } else { 8588 if (wc->level == 1 && 8589 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8590 continue; 8591 } 8592 reada: 8593 readahead_tree_block(fs_info, bytenr); 8594 nread++; 8595 } 8596 wc->reada_slot = slot; 8597 } 8598 8599 /* 8600 * helper to process tree block while walking down the tree. 8601 * 8602 * when wc->stage == UPDATE_BACKREF, this function updates 8603 * back refs for pointers in the block. 8604 * 8605 * NOTE: return value 1 means we should stop walking down. 8606 */ 8607 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8608 struct btrfs_root *root, 8609 struct btrfs_path *path, 8610 struct walk_control *wc, int lookup_info) 8611 { 8612 struct btrfs_fs_info *fs_info = root->fs_info; 8613 int level = wc->level; 8614 struct extent_buffer *eb = path->nodes[level]; 8615 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8616 int ret; 8617 8618 if (wc->stage == UPDATE_BACKREF && 8619 btrfs_header_owner(eb) != root->root_key.objectid) 8620 return 1; 8621 8622 /* 8623 * when reference count of tree block is 1, it won't increase 8624 * again. once full backref flag is set, we never clear it. 8625 */ 8626 if (lookup_info && 8627 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8628 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8629 BUG_ON(!path->locks[level]); 8630 ret = btrfs_lookup_extent_info(trans, fs_info, 8631 eb->start, level, 1, 8632 &wc->refs[level], 8633 &wc->flags[level]); 8634 BUG_ON(ret == -ENOMEM); 8635 if (ret) 8636 return ret; 8637 BUG_ON(wc->refs[level] == 0); 8638 } 8639 8640 if (wc->stage == DROP_REFERENCE) { 8641 if (wc->refs[level] > 1) 8642 return 1; 8643 8644 if (path->locks[level] && !wc->keep_locks) { 8645 btrfs_tree_unlock_rw(eb, path->locks[level]); 8646 path->locks[level] = 0; 8647 } 8648 return 0; 8649 } 8650 8651 /* wc->stage == UPDATE_BACKREF */ 8652 if (!(wc->flags[level] & flag)) { 8653 BUG_ON(!path->locks[level]); 8654 ret = btrfs_inc_ref(trans, root, eb, 1); 8655 BUG_ON(ret); /* -ENOMEM */ 8656 ret = btrfs_dec_ref(trans, root, eb, 0); 8657 BUG_ON(ret); /* -ENOMEM */ 8658 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8659 eb->len, flag, 8660 btrfs_header_level(eb), 0); 8661 BUG_ON(ret); /* -ENOMEM */ 8662 wc->flags[level] |= flag; 8663 } 8664 8665 /* 8666 * the block is shared by multiple trees, so it's not good to 8667 * keep the tree lock 8668 */ 8669 if (path->locks[level] && level > 0) { 8670 btrfs_tree_unlock_rw(eb, path->locks[level]); 8671 path->locks[level] = 0; 8672 } 8673 return 0; 8674 } 8675 8676 /* 8677 * helper to process tree block pointer. 8678 * 8679 * when wc->stage == DROP_REFERENCE, this function checks 8680 * reference count of the block pointed to. if the block 8681 * is shared and we need update back refs for the subtree 8682 * rooted at the block, this function changes wc->stage to 8683 * UPDATE_BACKREF. if the block is shared and there is no 8684 * need to update back, this function drops the reference 8685 * to the block. 8686 * 8687 * NOTE: return value 1 means we should stop walking down. 8688 */ 8689 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8690 struct btrfs_root *root, 8691 struct btrfs_path *path, 8692 struct walk_control *wc, int *lookup_info) 8693 { 8694 struct btrfs_fs_info *fs_info = root->fs_info; 8695 u64 bytenr; 8696 u64 generation; 8697 u64 parent; 8698 u32 blocksize; 8699 struct btrfs_key key; 8700 struct btrfs_key first_key; 8701 struct extent_buffer *next; 8702 int level = wc->level; 8703 int reada = 0; 8704 int ret = 0; 8705 bool need_account = false; 8706 8707 generation = btrfs_node_ptr_generation(path->nodes[level], 8708 path->slots[level]); 8709 /* 8710 * if the lower level block was created before the snapshot 8711 * was created, we know there is no need to update back refs 8712 * for the subtree 8713 */ 8714 if (wc->stage == UPDATE_BACKREF && 8715 generation <= root->root_key.offset) { 8716 *lookup_info = 1; 8717 return 1; 8718 } 8719 8720 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8721 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8722 path->slots[level]); 8723 blocksize = fs_info->nodesize; 8724 8725 next = find_extent_buffer(fs_info, bytenr); 8726 if (!next) { 8727 next = btrfs_find_create_tree_block(fs_info, bytenr); 8728 if (IS_ERR(next)) 8729 return PTR_ERR(next); 8730 8731 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8732 level - 1); 8733 reada = 1; 8734 } 8735 btrfs_tree_lock(next); 8736 btrfs_set_lock_blocking(next); 8737 8738 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8739 &wc->refs[level - 1], 8740 &wc->flags[level - 1]); 8741 if (ret < 0) 8742 goto out_unlock; 8743 8744 if (unlikely(wc->refs[level - 1] == 0)) { 8745 btrfs_err(fs_info, "Missing references."); 8746 ret = -EIO; 8747 goto out_unlock; 8748 } 8749 *lookup_info = 0; 8750 8751 if (wc->stage == DROP_REFERENCE) { 8752 if (wc->refs[level - 1] > 1) { 8753 need_account = true; 8754 if (level == 1 && 8755 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8756 goto skip; 8757 8758 if (!wc->update_ref || 8759 generation <= root->root_key.offset) 8760 goto skip; 8761 8762 btrfs_node_key_to_cpu(path->nodes[level], &key, 8763 path->slots[level]); 8764 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8765 if (ret < 0) 8766 goto skip; 8767 8768 wc->stage = UPDATE_BACKREF; 8769 wc->shared_level = level - 1; 8770 } 8771 } else { 8772 if (level == 1 && 8773 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8774 goto skip; 8775 } 8776 8777 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8778 btrfs_tree_unlock(next); 8779 free_extent_buffer(next); 8780 next = NULL; 8781 *lookup_info = 1; 8782 } 8783 8784 if (!next) { 8785 if (reada && level == 1) 8786 reada_walk_down(trans, root, wc, path); 8787 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8788 &first_key); 8789 if (IS_ERR(next)) { 8790 return PTR_ERR(next); 8791 } else if (!extent_buffer_uptodate(next)) { 8792 free_extent_buffer(next); 8793 return -EIO; 8794 } 8795 btrfs_tree_lock(next); 8796 btrfs_set_lock_blocking(next); 8797 } 8798 8799 level--; 8800 ASSERT(level == btrfs_header_level(next)); 8801 if (level != btrfs_header_level(next)) { 8802 btrfs_err(root->fs_info, "mismatched level"); 8803 ret = -EIO; 8804 goto out_unlock; 8805 } 8806 path->nodes[level] = next; 8807 path->slots[level] = 0; 8808 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8809 wc->level = level; 8810 if (wc->level == 1) 8811 wc->reada_slot = 0; 8812 return 0; 8813 skip: 8814 wc->refs[level - 1] = 0; 8815 wc->flags[level - 1] = 0; 8816 if (wc->stage == DROP_REFERENCE) { 8817 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8818 parent = path->nodes[level]->start; 8819 } else { 8820 ASSERT(root->root_key.objectid == 8821 btrfs_header_owner(path->nodes[level])); 8822 if (root->root_key.objectid != 8823 btrfs_header_owner(path->nodes[level])) { 8824 btrfs_err(root->fs_info, 8825 "mismatched block owner"); 8826 ret = -EIO; 8827 goto out_unlock; 8828 } 8829 parent = 0; 8830 } 8831 8832 if (need_account) { 8833 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8834 generation, level - 1); 8835 if (ret) { 8836 btrfs_err_rl(fs_info, 8837 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8838 ret); 8839 } 8840 } 8841 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8842 parent, root->root_key.objectid, 8843 level - 1, 0); 8844 if (ret) 8845 goto out_unlock; 8846 } 8847 8848 *lookup_info = 1; 8849 ret = 1; 8850 8851 out_unlock: 8852 btrfs_tree_unlock(next); 8853 free_extent_buffer(next); 8854 8855 return ret; 8856 } 8857 8858 /* 8859 * helper to process tree block while walking up the tree. 8860 * 8861 * when wc->stage == DROP_REFERENCE, this function drops 8862 * reference count on the block. 8863 * 8864 * when wc->stage == UPDATE_BACKREF, this function changes 8865 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8866 * to UPDATE_BACKREF previously while processing the block. 8867 * 8868 * NOTE: return value 1 means we should stop walking up. 8869 */ 8870 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8871 struct btrfs_root *root, 8872 struct btrfs_path *path, 8873 struct walk_control *wc) 8874 { 8875 struct btrfs_fs_info *fs_info = root->fs_info; 8876 int ret; 8877 int level = wc->level; 8878 struct extent_buffer *eb = path->nodes[level]; 8879 u64 parent = 0; 8880 8881 if (wc->stage == UPDATE_BACKREF) { 8882 BUG_ON(wc->shared_level < level); 8883 if (level < wc->shared_level) 8884 goto out; 8885 8886 ret = find_next_key(path, level + 1, &wc->update_progress); 8887 if (ret > 0) 8888 wc->update_ref = 0; 8889 8890 wc->stage = DROP_REFERENCE; 8891 wc->shared_level = -1; 8892 path->slots[level] = 0; 8893 8894 /* 8895 * check reference count again if the block isn't locked. 8896 * we should start walking down the tree again if reference 8897 * count is one. 8898 */ 8899 if (!path->locks[level]) { 8900 BUG_ON(level == 0); 8901 btrfs_tree_lock(eb); 8902 btrfs_set_lock_blocking(eb); 8903 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8904 8905 ret = btrfs_lookup_extent_info(trans, fs_info, 8906 eb->start, level, 1, 8907 &wc->refs[level], 8908 &wc->flags[level]); 8909 if (ret < 0) { 8910 btrfs_tree_unlock_rw(eb, path->locks[level]); 8911 path->locks[level] = 0; 8912 return ret; 8913 } 8914 BUG_ON(wc->refs[level] == 0); 8915 if (wc->refs[level] == 1) { 8916 btrfs_tree_unlock_rw(eb, path->locks[level]); 8917 path->locks[level] = 0; 8918 return 1; 8919 } 8920 } 8921 } 8922 8923 /* wc->stage == DROP_REFERENCE */ 8924 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8925 8926 if (wc->refs[level] == 1) { 8927 if (level == 0) { 8928 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8929 ret = btrfs_dec_ref(trans, root, eb, 1); 8930 else 8931 ret = btrfs_dec_ref(trans, root, eb, 0); 8932 BUG_ON(ret); /* -ENOMEM */ 8933 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8934 if (ret) { 8935 btrfs_err_rl(fs_info, 8936 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8937 ret); 8938 } 8939 } 8940 /* make block locked assertion in clean_tree_block happy */ 8941 if (!path->locks[level] && 8942 btrfs_header_generation(eb) == trans->transid) { 8943 btrfs_tree_lock(eb); 8944 btrfs_set_lock_blocking(eb); 8945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8946 } 8947 clean_tree_block(fs_info, eb); 8948 } 8949 8950 if (eb == root->node) { 8951 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8952 parent = eb->start; 8953 else 8954 BUG_ON(root->root_key.objectid != 8955 btrfs_header_owner(eb)); 8956 } else { 8957 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8958 parent = path->nodes[level + 1]->start; 8959 else 8960 BUG_ON(root->root_key.objectid != 8961 btrfs_header_owner(path->nodes[level + 1])); 8962 } 8963 8964 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8965 out: 8966 wc->refs[level] = 0; 8967 wc->flags[level] = 0; 8968 return 0; 8969 } 8970 8971 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8972 struct btrfs_root *root, 8973 struct btrfs_path *path, 8974 struct walk_control *wc) 8975 { 8976 int level = wc->level; 8977 int lookup_info = 1; 8978 int ret; 8979 8980 while (level >= 0) { 8981 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8982 if (ret > 0) 8983 break; 8984 8985 if (level == 0) 8986 break; 8987 8988 if (path->slots[level] >= 8989 btrfs_header_nritems(path->nodes[level])) 8990 break; 8991 8992 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8993 if (ret > 0) { 8994 path->slots[level]++; 8995 continue; 8996 } else if (ret < 0) 8997 return ret; 8998 level = wc->level; 8999 } 9000 return 0; 9001 } 9002 9003 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9004 struct btrfs_root *root, 9005 struct btrfs_path *path, 9006 struct walk_control *wc, int max_level) 9007 { 9008 int level = wc->level; 9009 int ret; 9010 9011 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9012 while (level < max_level && path->nodes[level]) { 9013 wc->level = level; 9014 if (path->slots[level] + 1 < 9015 btrfs_header_nritems(path->nodes[level])) { 9016 path->slots[level]++; 9017 return 0; 9018 } else { 9019 ret = walk_up_proc(trans, root, path, wc); 9020 if (ret > 0) 9021 return 0; 9022 9023 if (path->locks[level]) { 9024 btrfs_tree_unlock_rw(path->nodes[level], 9025 path->locks[level]); 9026 path->locks[level] = 0; 9027 } 9028 free_extent_buffer(path->nodes[level]); 9029 path->nodes[level] = NULL; 9030 level++; 9031 } 9032 } 9033 return 1; 9034 } 9035 9036 /* 9037 * drop a subvolume tree. 9038 * 9039 * this function traverses the tree freeing any blocks that only 9040 * referenced by the tree. 9041 * 9042 * when a shared tree block is found. this function decreases its 9043 * reference count by one. if update_ref is true, this function 9044 * also make sure backrefs for the shared block and all lower level 9045 * blocks are properly updated. 9046 * 9047 * If called with for_reloc == 0, may exit early with -EAGAIN 9048 */ 9049 int btrfs_drop_snapshot(struct btrfs_root *root, 9050 struct btrfs_block_rsv *block_rsv, int update_ref, 9051 int for_reloc) 9052 { 9053 struct btrfs_fs_info *fs_info = root->fs_info; 9054 struct btrfs_path *path; 9055 struct btrfs_trans_handle *trans; 9056 struct btrfs_root *tree_root = fs_info->tree_root; 9057 struct btrfs_root_item *root_item = &root->root_item; 9058 struct walk_control *wc; 9059 struct btrfs_key key; 9060 int err = 0; 9061 int ret; 9062 int level; 9063 bool root_dropped = false; 9064 9065 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9066 9067 path = btrfs_alloc_path(); 9068 if (!path) { 9069 err = -ENOMEM; 9070 goto out; 9071 } 9072 9073 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9074 if (!wc) { 9075 btrfs_free_path(path); 9076 err = -ENOMEM; 9077 goto out; 9078 } 9079 9080 trans = btrfs_start_transaction(tree_root, 0); 9081 if (IS_ERR(trans)) { 9082 err = PTR_ERR(trans); 9083 goto out_free; 9084 } 9085 9086 if (block_rsv) 9087 trans->block_rsv = block_rsv; 9088 9089 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9090 level = btrfs_header_level(root->node); 9091 path->nodes[level] = btrfs_lock_root_node(root); 9092 btrfs_set_lock_blocking(path->nodes[level]); 9093 path->slots[level] = 0; 9094 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9095 memset(&wc->update_progress, 0, 9096 sizeof(wc->update_progress)); 9097 } else { 9098 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9099 memcpy(&wc->update_progress, &key, 9100 sizeof(wc->update_progress)); 9101 9102 level = root_item->drop_level; 9103 BUG_ON(level == 0); 9104 path->lowest_level = level; 9105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9106 path->lowest_level = 0; 9107 if (ret < 0) { 9108 err = ret; 9109 goto out_end_trans; 9110 } 9111 WARN_ON(ret > 0); 9112 9113 /* 9114 * unlock our path, this is safe because only this 9115 * function is allowed to delete this snapshot 9116 */ 9117 btrfs_unlock_up_safe(path, 0); 9118 9119 level = btrfs_header_level(root->node); 9120 while (1) { 9121 btrfs_tree_lock(path->nodes[level]); 9122 btrfs_set_lock_blocking(path->nodes[level]); 9123 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9124 9125 ret = btrfs_lookup_extent_info(trans, fs_info, 9126 path->nodes[level]->start, 9127 level, 1, &wc->refs[level], 9128 &wc->flags[level]); 9129 if (ret < 0) { 9130 err = ret; 9131 goto out_end_trans; 9132 } 9133 BUG_ON(wc->refs[level] == 0); 9134 9135 if (level == root_item->drop_level) 9136 break; 9137 9138 btrfs_tree_unlock(path->nodes[level]); 9139 path->locks[level] = 0; 9140 WARN_ON(wc->refs[level] != 1); 9141 level--; 9142 } 9143 } 9144 9145 wc->level = level; 9146 wc->shared_level = -1; 9147 wc->stage = DROP_REFERENCE; 9148 wc->update_ref = update_ref; 9149 wc->keep_locks = 0; 9150 wc->for_reloc = for_reloc; 9151 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9152 9153 while (1) { 9154 9155 ret = walk_down_tree(trans, root, path, wc); 9156 if (ret < 0) { 9157 err = ret; 9158 break; 9159 } 9160 9161 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9162 if (ret < 0) { 9163 err = ret; 9164 break; 9165 } 9166 9167 if (ret > 0) { 9168 BUG_ON(wc->stage != DROP_REFERENCE); 9169 break; 9170 } 9171 9172 if (wc->stage == DROP_REFERENCE) { 9173 level = wc->level; 9174 btrfs_node_key(path->nodes[level], 9175 &root_item->drop_progress, 9176 path->slots[level]); 9177 root_item->drop_level = level; 9178 } 9179 9180 BUG_ON(wc->level == 0); 9181 if (btrfs_should_end_transaction(trans) || 9182 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9183 ret = btrfs_update_root(trans, tree_root, 9184 &root->root_key, 9185 root_item); 9186 if (ret) { 9187 btrfs_abort_transaction(trans, ret); 9188 err = ret; 9189 goto out_end_trans; 9190 } 9191 9192 btrfs_end_transaction_throttle(trans); 9193 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9194 btrfs_debug(fs_info, 9195 "drop snapshot early exit"); 9196 err = -EAGAIN; 9197 goto out_free; 9198 } 9199 9200 trans = btrfs_start_transaction(tree_root, 0); 9201 if (IS_ERR(trans)) { 9202 err = PTR_ERR(trans); 9203 goto out_free; 9204 } 9205 if (block_rsv) 9206 trans->block_rsv = block_rsv; 9207 } 9208 } 9209 btrfs_release_path(path); 9210 if (err) 9211 goto out_end_trans; 9212 9213 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9214 if (ret) { 9215 btrfs_abort_transaction(trans, ret); 9216 err = ret; 9217 goto out_end_trans; 9218 } 9219 9220 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9221 ret = btrfs_find_root(tree_root, &root->root_key, path, 9222 NULL, NULL); 9223 if (ret < 0) { 9224 btrfs_abort_transaction(trans, ret); 9225 err = ret; 9226 goto out_end_trans; 9227 } else if (ret > 0) { 9228 /* if we fail to delete the orphan item this time 9229 * around, it'll get picked up the next time. 9230 * 9231 * The most common failure here is just -ENOENT. 9232 */ 9233 btrfs_del_orphan_item(trans, tree_root, 9234 root->root_key.objectid); 9235 } 9236 } 9237 9238 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9239 btrfs_add_dropped_root(trans, root); 9240 } else { 9241 free_extent_buffer(root->node); 9242 free_extent_buffer(root->commit_root); 9243 btrfs_put_fs_root(root); 9244 } 9245 root_dropped = true; 9246 out_end_trans: 9247 btrfs_end_transaction_throttle(trans); 9248 out_free: 9249 kfree(wc); 9250 btrfs_free_path(path); 9251 out: 9252 /* 9253 * So if we need to stop dropping the snapshot for whatever reason we 9254 * need to make sure to add it back to the dead root list so that we 9255 * keep trying to do the work later. This also cleans up roots if we 9256 * don't have it in the radix (like when we recover after a power fail 9257 * or unmount) so we don't leak memory. 9258 */ 9259 if (!for_reloc && !root_dropped) 9260 btrfs_add_dead_root(root); 9261 if (err && err != -EAGAIN) 9262 btrfs_handle_fs_error(fs_info, err, NULL); 9263 return err; 9264 } 9265 9266 /* 9267 * drop subtree rooted at tree block 'node'. 9268 * 9269 * NOTE: this function will unlock and release tree block 'node' 9270 * only used by relocation code 9271 */ 9272 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9273 struct btrfs_root *root, 9274 struct extent_buffer *node, 9275 struct extent_buffer *parent) 9276 { 9277 struct btrfs_fs_info *fs_info = root->fs_info; 9278 struct btrfs_path *path; 9279 struct walk_control *wc; 9280 int level; 9281 int parent_level; 9282 int ret = 0; 9283 int wret; 9284 9285 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9286 9287 path = btrfs_alloc_path(); 9288 if (!path) 9289 return -ENOMEM; 9290 9291 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9292 if (!wc) { 9293 btrfs_free_path(path); 9294 return -ENOMEM; 9295 } 9296 9297 btrfs_assert_tree_locked(parent); 9298 parent_level = btrfs_header_level(parent); 9299 extent_buffer_get(parent); 9300 path->nodes[parent_level] = parent; 9301 path->slots[parent_level] = btrfs_header_nritems(parent); 9302 9303 btrfs_assert_tree_locked(node); 9304 level = btrfs_header_level(node); 9305 path->nodes[level] = node; 9306 path->slots[level] = 0; 9307 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9308 9309 wc->refs[parent_level] = 1; 9310 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9311 wc->level = level; 9312 wc->shared_level = -1; 9313 wc->stage = DROP_REFERENCE; 9314 wc->update_ref = 0; 9315 wc->keep_locks = 1; 9316 wc->for_reloc = 1; 9317 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9318 9319 while (1) { 9320 wret = walk_down_tree(trans, root, path, wc); 9321 if (wret < 0) { 9322 ret = wret; 9323 break; 9324 } 9325 9326 wret = walk_up_tree(trans, root, path, wc, parent_level); 9327 if (wret < 0) 9328 ret = wret; 9329 if (wret != 0) 9330 break; 9331 } 9332 9333 kfree(wc); 9334 btrfs_free_path(path); 9335 return ret; 9336 } 9337 9338 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9339 { 9340 u64 num_devices; 9341 u64 stripped; 9342 9343 /* 9344 * if restripe for this chunk_type is on pick target profile and 9345 * return, otherwise do the usual balance 9346 */ 9347 stripped = get_restripe_target(fs_info, flags); 9348 if (stripped) 9349 return extended_to_chunk(stripped); 9350 9351 num_devices = fs_info->fs_devices->rw_devices; 9352 9353 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9354 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9355 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9356 9357 if (num_devices == 1) { 9358 stripped |= BTRFS_BLOCK_GROUP_DUP; 9359 stripped = flags & ~stripped; 9360 9361 /* turn raid0 into single device chunks */ 9362 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9363 return stripped; 9364 9365 /* turn mirroring into duplication */ 9366 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9367 BTRFS_BLOCK_GROUP_RAID10)) 9368 return stripped | BTRFS_BLOCK_GROUP_DUP; 9369 } else { 9370 /* they already had raid on here, just return */ 9371 if (flags & stripped) 9372 return flags; 9373 9374 stripped |= BTRFS_BLOCK_GROUP_DUP; 9375 stripped = flags & ~stripped; 9376 9377 /* switch duplicated blocks with raid1 */ 9378 if (flags & BTRFS_BLOCK_GROUP_DUP) 9379 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9380 9381 /* this is drive concat, leave it alone */ 9382 } 9383 9384 return flags; 9385 } 9386 9387 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9388 { 9389 struct btrfs_space_info *sinfo = cache->space_info; 9390 u64 num_bytes; 9391 u64 min_allocable_bytes; 9392 int ret = -ENOSPC; 9393 9394 /* 9395 * We need some metadata space and system metadata space for 9396 * allocating chunks in some corner cases until we force to set 9397 * it to be readonly. 9398 */ 9399 if ((sinfo->flags & 9400 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9401 !force) 9402 min_allocable_bytes = SZ_1M; 9403 else 9404 min_allocable_bytes = 0; 9405 9406 spin_lock(&sinfo->lock); 9407 spin_lock(&cache->lock); 9408 9409 if (cache->ro) { 9410 cache->ro++; 9411 ret = 0; 9412 goto out; 9413 } 9414 9415 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9416 cache->bytes_super - btrfs_block_group_used(&cache->item); 9417 9418 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9419 min_allocable_bytes <= sinfo->total_bytes) { 9420 sinfo->bytes_readonly += num_bytes; 9421 cache->ro++; 9422 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9423 ret = 0; 9424 } 9425 out: 9426 spin_unlock(&cache->lock); 9427 spin_unlock(&sinfo->lock); 9428 return ret; 9429 } 9430 9431 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9432 struct btrfs_block_group_cache *cache) 9433 9434 { 9435 struct btrfs_trans_handle *trans; 9436 u64 alloc_flags; 9437 int ret; 9438 9439 again: 9440 trans = btrfs_join_transaction(fs_info->extent_root); 9441 if (IS_ERR(trans)) 9442 return PTR_ERR(trans); 9443 9444 /* 9445 * we're not allowed to set block groups readonly after the dirty 9446 * block groups cache has started writing. If it already started, 9447 * back off and let this transaction commit 9448 */ 9449 mutex_lock(&fs_info->ro_block_group_mutex); 9450 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9451 u64 transid = trans->transid; 9452 9453 mutex_unlock(&fs_info->ro_block_group_mutex); 9454 btrfs_end_transaction(trans); 9455 9456 ret = btrfs_wait_for_commit(fs_info, transid); 9457 if (ret) 9458 return ret; 9459 goto again; 9460 } 9461 9462 /* 9463 * if we are changing raid levels, try to allocate a corresponding 9464 * block group with the new raid level. 9465 */ 9466 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9467 if (alloc_flags != cache->flags) { 9468 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9469 CHUNK_ALLOC_FORCE); 9470 /* 9471 * ENOSPC is allowed here, we may have enough space 9472 * already allocated at the new raid level to 9473 * carry on 9474 */ 9475 if (ret == -ENOSPC) 9476 ret = 0; 9477 if (ret < 0) 9478 goto out; 9479 } 9480 9481 ret = inc_block_group_ro(cache, 0); 9482 if (!ret) 9483 goto out; 9484 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9485 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9486 CHUNK_ALLOC_FORCE); 9487 if (ret < 0) 9488 goto out; 9489 ret = inc_block_group_ro(cache, 0); 9490 out: 9491 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9492 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9493 mutex_lock(&fs_info->chunk_mutex); 9494 check_system_chunk(trans, fs_info, alloc_flags); 9495 mutex_unlock(&fs_info->chunk_mutex); 9496 } 9497 mutex_unlock(&fs_info->ro_block_group_mutex); 9498 9499 btrfs_end_transaction(trans); 9500 return ret; 9501 } 9502 9503 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9504 struct btrfs_fs_info *fs_info, u64 type) 9505 { 9506 u64 alloc_flags = get_alloc_profile(fs_info, type); 9507 9508 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9509 } 9510 9511 /* 9512 * helper to account the unused space of all the readonly block group in the 9513 * space_info. takes mirrors into account. 9514 */ 9515 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9516 { 9517 struct btrfs_block_group_cache *block_group; 9518 u64 free_bytes = 0; 9519 int factor; 9520 9521 /* It's df, we don't care if it's racy */ 9522 if (list_empty(&sinfo->ro_bgs)) 9523 return 0; 9524 9525 spin_lock(&sinfo->lock); 9526 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9527 spin_lock(&block_group->lock); 9528 9529 if (!block_group->ro) { 9530 spin_unlock(&block_group->lock); 9531 continue; 9532 } 9533 9534 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9535 BTRFS_BLOCK_GROUP_RAID10 | 9536 BTRFS_BLOCK_GROUP_DUP)) 9537 factor = 2; 9538 else 9539 factor = 1; 9540 9541 free_bytes += (block_group->key.offset - 9542 btrfs_block_group_used(&block_group->item)) * 9543 factor; 9544 9545 spin_unlock(&block_group->lock); 9546 } 9547 spin_unlock(&sinfo->lock); 9548 9549 return free_bytes; 9550 } 9551 9552 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9553 { 9554 struct btrfs_space_info *sinfo = cache->space_info; 9555 u64 num_bytes; 9556 9557 BUG_ON(!cache->ro); 9558 9559 spin_lock(&sinfo->lock); 9560 spin_lock(&cache->lock); 9561 if (!--cache->ro) { 9562 num_bytes = cache->key.offset - cache->reserved - 9563 cache->pinned - cache->bytes_super - 9564 btrfs_block_group_used(&cache->item); 9565 sinfo->bytes_readonly -= num_bytes; 9566 list_del_init(&cache->ro_list); 9567 } 9568 spin_unlock(&cache->lock); 9569 spin_unlock(&sinfo->lock); 9570 } 9571 9572 /* 9573 * checks to see if its even possible to relocate this block group. 9574 * 9575 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9576 * ok to go ahead and try. 9577 */ 9578 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9579 { 9580 struct btrfs_root *root = fs_info->extent_root; 9581 struct btrfs_block_group_cache *block_group; 9582 struct btrfs_space_info *space_info; 9583 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9584 struct btrfs_device *device; 9585 struct btrfs_trans_handle *trans; 9586 u64 min_free; 9587 u64 dev_min = 1; 9588 u64 dev_nr = 0; 9589 u64 target; 9590 int debug; 9591 int index; 9592 int full = 0; 9593 int ret = 0; 9594 9595 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9596 9597 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9598 9599 /* odd, couldn't find the block group, leave it alone */ 9600 if (!block_group) { 9601 if (debug) 9602 btrfs_warn(fs_info, 9603 "can't find block group for bytenr %llu", 9604 bytenr); 9605 return -1; 9606 } 9607 9608 min_free = btrfs_block_group_used(&block_group->item); 9609 9610 /* no bytes used, we're good */ 9611 if (!min_free) 9612 goto out; 9613 9614 space_info = block_group->space_info; 9615 spin_lock(&space_info->lock); 9616 9617 full = space_info->full; 9618 9619 /* 9620 * if this is the last block group we have in this space, we can't 9621 * relocate it unless we're able to allocate a new chunk below. 9622 * 9623 * Otherwise, we need to make sure we have room in the space to handle 9624 * all of the extents from this block group. If we can, we're good 9625 */ 9626 if ((space_info->total_bytes != block_group->key.offset) && 9627 (btrfs_space_info_used(space_info, false) + min_free < 9628 space_info->total_bytes)) { 9629 spin_unlock(&space_info->lock); 9630 goto out; 9631 } 9632 spin_unlock(&space_info->lock); 9633 9634 /* 9635 * ok we don't have enough space, but maybe we have free space on our 9636 * devices to allocate new chunks for relocation, so loop through our 9637 * alloc devices and guess if we have enough space. if this block 9638 * group is going to be restriped, run checks against the target 9639 * profile instead of the current one. 9640 */ 9641 ret = -1; 9642 9643 /* 9644 * index: 9645 * 0: raid10 9646 * 1: raid1 9647 * 2: dup 9648 * 3: raid0 9649 * 4: single 9650 */ 9651 target = get_restripe_target(fs_info, block_group->flags); 9652 if (target) { 9653 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9654 } else { 9655 /* 9656 * this is just a balance, so if we were marked as full 9657 * we know there is no space for a new chunk 9658 */ 9659 if (full) { 9660 if (debug) 9661 btrfs_warn(fs_info, 9662 "no space to alloc new chunk for block group %llu", 9663 block_group->key.objectid); 9664 goto out; 9665 } 9666 9667 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9668 } 9669 9670 if (index == BTRFS_RAID_RAID10) { 9671 dev_min = 4; 9672 /* Divide by 2 */ 9673 min_free >>= 1; 9674 } else if (index == BTRFS_RAID_RAID1) { 9675 dev_min = 2; 9676 } else if (index == BTRFS_RAID_DUP) { 9677 /* Multiply by 2 */ 9678 min_free <<= 1; 9679 } else if (index == BTRFS_RAID_RAID0) { 9680 dev_min = fs_devices->rw_devices; 9681 min_free = div64_u64(min_free, dev_min); 9682 } 9683 9684 /* We need to do this so that we can look at pending chunks */ 9685 trans = btrfs_join_transaction(root); 9686 if (IS_ERR(trans)) { 9687 ret = PTR_ERR(trans); 9688 goto out; 9689 } 9690 9691 mutex_lock(&fs_info->chunk_mutex); 9692 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9693 u64 dev_offset; 9694 9695 /* 9696 * check to make sure we can actually find a chunk with enough 9697 * space to fit our block group in. 9698 */ 9699 if (device->total_bytes > device->bytes_used + min_free && 9700 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9701 ret = find_free_dev_extent(trans, device, min_free, 9702 &dev_offset, NULL); 9703 if (!ret) 9704 dev_nr++; 9705 9706 if (dev_nr >= dev_min) 9707 break; 9708 9709 ret = -1; 9710 } 9711 } 9712 if (debug && ret == -1) 9713 btrfs_warn(fs_info, 9714 "no space to allocate a new chunk for block group %llu", 9715 block_group->key.objectid); 9716 mutex_unlock(&fs_info->chunk_mutex); 9717 btrfs_end_transaction(trans); 9718 out: 9719 btrfs_put_block_group(block_group); 9720 return ret; 9721 } 9722 9723 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9724 struct btrfs_path *path, 9725 struct btrfs_key *key) 9726 { 9727 struct btrfs_root *root = fs_info->extent_root; 9728 int ret = 0; 9729 struct btrfs_key found_key; 9730 struct extent_buffer *leaf; 9731 int slot; 9732 9733 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9734 if (ret < 0) 9735 goto out; 9736 9737 while (1) { 9738 slot = path->slots[0]; 9739 leaf = path->nodes[0]; 9740 if (slot >= btrfs_header_nritems(leaf)) { 9741 ret = btrfs_next_leaf(root, path); 9742 if (ret == 0) 9743 continue; 9744 if (ret < 0) 9745 goto out; 9746 break; 9747 } 9748 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9749 9750 if (found_key.objectid >= key->objectid && 9751 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9752 struct extent_map_tree *em_tree; 9753 struct extent_map *em; 9754 9755 em_tree = &root->fs_info->mapping_tree.map_tree; 9756 read_lock(&em_tree->lock); 9757 em = lookup_extent_mapping(em_tree, found_key.objectid, 9758 found_key.offset); 9759 read_unlock(&em_tree->lock); 9760 if (!em) { 9761 btrfs_err(fs_info, 9762 "logical %llu len %llu found bg but no related chunk", 9763 found_key.objectid, found_key.offset); 9764 ret = -ENOENT; 9765 } else { 9766 ret = 0; 9767 } 9768 free_extent_map(em); 9769 goto out; 9770 } 9771 path->slots[0]++; 9772 } 9773 out: 9774 return ret; 9775 } 9776 9777 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9778 { 9779 struct btrfs_block_group_cache *block_group; 9780 u64 last = 0; 9781 9782 while (1) { 9783 struct inode *inode; 9784 9785 block_group = btrfs_lookup_first_block_group(info, last); 9786 while (block_group) { 9787 spin_lock(&block_group->lock); 9788 if (block_group->iref) 9789 break; 9790 spin_unlock(&block_group->lock); 9791 block_group = next_block_group(info, block_group); 9792 } 9793 if (!block_group) { 9794 if (last == 0) 9795 break; 9796 last = 0; 9797 continue; 9798 } 9799 9800 inode = block_group->inode; 9801 block_group->iref = 0; 9802 block_group->inode = NULL; 9803 spin_unlock(&block_group->lock); 9804 ASSERT(block_group->io_ctl.inode == NULL); 9805 iput(inode); 9806 last = block_group->key.objectid + block_group->key.offset; 9807 btrfs_put_block_group(block_group); 9808 } 9809 } 9810 9811 /* 9812 * Must be called only after stopping all workers, since we could have block 9813 * group caching kthreads running, and therefore they could race with us if we 9814 * freed the block groups before stopping them. 9815 */ 9816 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9817 { 9818 struct btrfs_block_group_cache *block_group; 9819 struct btrfs_space_info *space_info; 9820 struct btrfs_caching_control *caching_ctl; 9821 struct rb_node *n; 9822 9823 down_write(&info->commit_root_sem); 9824 while (!list_empty(&info->caching_block_groups)) { 9825 caching_ctl = list_entry(info->caching_block_groups.next, 9826 struct btrfs_caching_control, list); 9827 list_del(&caching_ctl->list); 9828 put_caching_control(caching_ctl); 9829 } 9830 up_write(&info->commit_root_sem); 9831 9832 spin_lock(&info->unused_bgs_lock); 9833 while (!list_empty(&info->unused_bgs)) { 9834 block_group = list_first_entry(&info->unused_bgs, 9835 struct btrfs_block_group_cache, 9836 bg_list); 9837 list_del_init(&block_group->bg_list); 9838 btrfs_put_block_group(block_group); 9839 } 9840 spin_unlock(&info->unused_bgs_lock); 9841 9842 spin_lock(&info->block_group_cache_lock); 9843 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9844 block_group = rb_entry(n, struct btrfs_block_group_cache, 9845 cache_node); 9846 rb_erase(&block_group->cache_node, 9847 &info->block_group_cache_tree); 9848 RB_CLEAR_NODE(&block_group->cache_node); 9849 spin_unlock(&info->block_group_cache_lock); 9850 9851 down_write(&block_group->space_info->groups_sem); 9852 list_del(&block_group->list); 9853 up_write(&block_group->space_info->groups_sem); 9854 9855 /* 9856 * We haven't cached this block group, which means we could 9857 * possibly have excluded extents on this block group. 9858 */ 9859 if (block_group->cached == BTRFS_CACHE_NO || 9860 block_group->cached == BTRFS_CACHE_ERROR) 9861 free_excluded_extents(info, block_group); 9862 9863 btrfs_remove_free_space_cache(block_group); 9864 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9865 ASSERT(list_empty(&block_group->dirty_list)); 9866 ASSERT(list_empty(&block_group->io_list)); 9867 ASSERT(list_empty(&block_group->bg_list)); 9868 ASSERT(atomic_read(&block_group->count) == 1); 9869 btrfs_put_block_group(block_group); 9870 9871 spin_lock(&info->block_group_cache_lock); 9872 } 9873 spin_unlock(&info->block_group_cache_lock); 9874 9875 /* now that all the block groups are freed, go through and 9876 * free all the space_info structs. This is only called during 9877 * the final stages of unmount, and so we know nobody is 9878 * using them. We call synchronize_rcu() once before we start, 9879 * just to be on the safe side. 9880 */ 9881 synchronize_rcu(); 9882 9883 release_global_block_rsv(info); 9884 9885 while (!list_empty(&info->space_info)) { 9886 int i; 9887 9888 space_info = list_entry(info->space_info.next, 9889 struct btrfs_space_info, 9890 list); 9891 9892 /* 9893 * Do not hide this behind enospc_debug, this is actually 9894 * important and indicates a real bug if this happens. 9895 */ 9896 if (WARN_ON(space_info->bytes_pinned > 0 || 9897 space_info->bytes_reserved > 0 || 9898 space_info->bytes_may_use > 0)) 9899 dump_space_info(info, space_info, 0, 0); 9900 list_del(&space_info->list); 9901 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9902 struct kobject *kobj; 9903 kobj = space_info->block_group_kobjs[i]; 9904 space_info->block_group_kobjs[i] = NULL; 9905 if (kobj) { 9906 kobject_del(kobj); 9907 kobject_put(kobj); 9908 } 9909 } 9910 kobject_del(&space_info->kobj); 9911 kobject_put(&space_info->kobj); 9912 } 9913 return 0; 9914 } 9915 9916 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9917 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9918 { 9919 struct btrfs_space_info *space_info; 9920 struct raid_kobject *rkobj; 9921 LIST_HEAD(list); 9922 int index; 9923 int ret = 0; 9924 9925 spin_lock(&fs_info->pending_raid_kobjs_lock); 9926 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9927 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9928 9929 list_for_each_entry(rkobj, &list, list) { 9930 space_info = __find_space_info(fs_info, rkobj->flags); 9931 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9932 9933 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9934 "%s", get_raid_name(index)); 9935 if (ret) { 9936 kobject_put(&rkobj->kobj); 9937 break; 9938 } 9939 } 9940 if (ret) 9941 btrfs_warn(fs_info, 9942 "failed to add kobject for block cache, ignoring"); 9943 } 9944 9945 static void link_block_group(struct btrfs_block_group_cache *cache) 9946 { 9947 struct btrfs_space_info *space_info = cache->space_info; 9948 struct btrfs_fs_info *fs_info = cache->fs_info; 9949 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9950 bool first = false; 9951 9952 down_write(&space_info->groups_sem); 9953 if (list_empty(&space_info->block_groups[index])) 9954 first = true; 9955 list_add_tail(&cache->list, &space_info->block_groups[index]); 9956 up_write(&space_info->groups_sem); 9957 9958 if (first) { 9959 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9960 if (!rkobj) { 9961 btrfs_warn(cache->fs_info, 9962 "couldn't alloc memory for raid level kobject"); 9963 return; 9964 } 9965 rkobj->flags = cache->flags; 9966 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9967 9968 spin_lock(&fs_info->pending_raid_kobjs_lock); 9969 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 9970 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9971 space_info->block_group_kobjs[index] = &rkobj->kobj; 9972 } 9973 } 9974 9975 static struct btrfs_block_group_cache * 9976 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9977 u64 start, u64 size) 9978 { 9979 struct btrfs_block_group_cache *cache; 9980 9981 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9982 if (!cache) 9983 return NULL; 9984 9985 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9986 GFP_NOFS); 9987 if (!cache->free_space_ctl) { 9988 kfree(cache); 9989 return NULL; 9990 } 9991 9992 cache->key.objectid = start; 9993 cache->key.offset = size; 9994 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9995 9996 cache->fs_info = fs_info; 9997 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 9998 set_free_space_tree_thresholds(cache); 9999 10000 atomic_set(&cache->count, 1); 10001 spin_lock_init(&cache->lock); 10002 init_rwsem(&cache->data_rwsem); 10003 INIT_LIST_HEAD(&cache->list); 10004 INIT_LIST_HEAD(&cache->cluster_list); 10005 INIT_LIST_HEAD(&cache->bg_list); 10006 INIT_LIST_HEAD(&cache->ro_list); 10007 INIT_LIST_HEAD(&cache->dirty_list); 10008 INIT_LIST_HEAD(&cache->io_list); 10009 btrfs_init_free_space_ctl(cache); 10010 atomic_set(&cache->trimming, 0); 10011 mutex_init(&cache->free_space_lock); 10012 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10013 10014 return cache; 10015 } 10016 10017 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10018 { 10019 struct btrfs_path *path; 10020 int ret; 10021 struct btrfs_block_group_cache *cache; 10022 struct btrfs_space_info *space_info; 10023 struct btrfs_key key; 10024 struct btrfs_key found_key; 10025 struct extent_buffer *leaf; 10026 int need_clear = 0; 10027 u64 cache_gen; 10028 u64 feature; 10029 int mixed; 10030 10031 feature = btrfs_super_incompat_flags(info->super_copy); 10032 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10033 10034 key.objectid = 0; 10035 key.offset = 0; 10036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10037 path = btrfs_alloc_path(); 10038 if (!path) 10039 return -ENOMEM; 10040 path->reada = READA_FORWARD; 10041 10042 cache_gen = btrfs_super_cache_generation(info->super_copy); 10043 if (btrfs_test_opt(info, SPACE_CACHE) && 10044 btrfs_super_generation(info->super_copy) != cache_gen) 10045 need_clear = 1; 10046 if (btrfs_test_opt(info, CLEAR_CACHE)) 10047 need_clear = 1; 10048 10049 while (1) { 10050 ret = find_first_block_group(info, path, &key); 10051 if (ret > 0) 10052 break; 10053 if (ret != 0) 10054 goto error; 10055 10056 leaf = path->nodes[0]; 10057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10058 10059 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10060 found_key.offset); 10061 if (!cache) { 10062 ret = -ENOMEM; 10063 goto error; 10064 } 10065 10066 if (need_clear) { 10067 /* 10068 * When we mount with old space cache, we need to 10069 * set BTRFS_DC_CLEAR and set dirty flag. 10070 * 10071 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10072 * truncate the old free space cache inode and 10073 * setup a new one. 10074 * b) Setting 'dirty flag' makes sure that we flush 10075 * the new space cache info onto disk. 10076 */ 10077 if (btrfs_test_opt(info, SPACE_CACHE)) 10078 cache->disk_cache_state = BTRFS_DC_CLEAR; 10079 } 10080 10081 read_extent_buffer(leaf, &cache->item, 10082 btrfs_item_ptr_offset(leaf, path->slots[0]), 10083 sizeof(cache->item)); 10084 cache->flags = btrfs_block_group_flags(&cache->item); 10085 if (!mixed && 10086 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10087 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10088 btrfs_err(info, 10089 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10090 cache->key.objectid); 10091 ret = -EINVAL; 10092 goto error; 10093 } 10094 10095 key.objectid = found_key.objectid + found_key.offset; 10096 btrfs_release_path(path); 10097 10098 /* 10099 * We need to exclude the super stripes now so that the space 10100 * info has super bytes accounted for, otherwise we'll think 10101 * we have more space than we actually do. 10102 */ 10103 ret = exclude_super_stripes(info, cache); 10104 if (ret) { 10105 /* 10106 * We may have excluded something, so call this just in 10107 * case. 10108 */ 10109 free_excluded_extents(info, cache); 10110 btrfs_put_block_group(cache); 10111 goto error; 10112 } 10113 10114 /* 10115 * check for two cases, either we are full, and therefore 10116 * don't need to bother with the caching work since we won't 10117 * find any space, or we are empty, and we can just add all 10118 * the space in and be done with it. This saves us _alot_ of 10119 * time, particularly in the full case. 10120 */ 10121 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10122 cache->last_byte_to_unpin = (u64)-1; 10123 cache->cached = BTRFS_CACHE_FINISHED; 10124 free_excluded_extents(info, cache); 10125 } else if (btrfs_block_group_used(&cache->item) == 0) { 10126 cache->last_byte_to_unpin = (u64)-1; 10127 cache->cached = BTRFS_CACHE_FINISHED; 10128 add_new_free_space(cache, info, 10129 found_key.objectid, 10130 found_key.objectid + 10131 found_key.offset); 10132 free_excluded_extents(info, cache); 10133 } 10134 10135 ret = btrfs_add_block_group_cache(info, cache); 10136 if (ret) { 10137 btrfs_remove_free_space_cache(cache); 10138 btrfs_put_block_group(cache); 10139 goto error; 10140 } 10141 10142 trace_btrfs_add_block_group(info, cache, 0); 10143 update_space_info(info, cache->flags, found_key.offset, 10144 btrfs_block_group_used(&cache->item), 10145 cache->bytes_super, &space_info); 10146 10147 cache->space_info = space_info; 10148 10149 link_block_group(cache); 10150 10151 set_avail_alloc_bits(info, cache->flags); 10152 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10153 inc_block_group_ro(cache, 1); 10154 } else if (btrfs_block_group_used(&cache->item) == 0) { 10155 spin_lock(&info->unused_bgs_lock); 10156 /* Should always be true but just in case. */ 10157 if (list_empty(&cache->bg_list)) { 10158 btrfs_get_block_group(cache); 10159 list_add_tail(&cache->bg_list, 10160 &info->unused_bgs); 10161 } 10162 spin_unlock(&info->unused_bgs_lock); 10163 } 10164 } 10165 10166 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10167 if (!(get_alloc_profile(info, space_info->flags) & 10168 (BTRFS_BLOCK_GROUP_RAID10 | 10169 BTRFS_BLOCK_GROUP_RAID1 | 10170 BTRFS_BLOCK_GROUP_RAID5 | 10171 BTRFS_BLOCK_GROUP_RAID6 | 10172 BTRFS_BLOCK_GROUP_DUP))) 10173 continue; 10174 /* 10175 * avoid allocating from un-mirrored block group if there are 10176 * mirrored block groups. 10177 */ 10178 list_for_each_entry(cache, 10179 &space_info->block_groups[BTRFS_RAID_RAID0], 10180 list) 10181 inc_block_group_ro(cache, 1); 10182 list_for_each_entry(cache, 10183 &space_info->block_groups[BTRFS_RAID_SINGLE], 10184 list) 10185 inc_block_group_ro(cache, 1); 10186 } 10187 10188 btrfs_add_raid_kobjects(info); 10189 init_global_block_rsv(info); 10190 ret = 0; 10191 error: 10192 btrfs_free_path(path); 10193 return ret; 10194 } 10195 10196 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10197 { 10198 struct btrfs_fs_info *fs_info = trans->fs_info; 10199 struct btrfs_block_group_cache *block_group, *tmp; 10200 struct btrfs_root *extent_root = fs_info->extent_root; 10201 struct btrfs_block_group_item item; 10202 struct btrfs_key key; 10203 int ret = 0; 10204 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10205 10206 trans->can_flush_pending_bgs = false; 10207 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10208 if (ret) 10209 goto next; 10210 10211 spin_lock(&block_group->lock); 10212 memcpy(&item, &block_group->item, sizeof(item)); 10213 memcpy(&key, &block_group->key, sizeof(key)); 10214 spin_unlock(&block_group->lock); 10215 10216 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10217 sizeof(item)); 10218 if (ret) 10219 btrfs_abort_transaction(trans, ret); 10220 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10221 key.offset); 10222 if (ret) 10223 btrfs_abort_transaction(trans, ret); 10224 add_block_group_free_space(trans, fs_info, block_group); 10225 /* already aborted the transaction if it failed. */ 10226 next: 10227 list_del_init(&block_group->bg_list); 10228 } 10229 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10230 } 10231 10232 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10233 struct btrfs_fs_info *fs_info, u64 bytes_used, 10234 u64 type, u64 chunk_offset, u64 size) 10235 { 10236 struct btrfs_block_group_cache *cache; 10237 int ret; 10238 10239 btrfs_set_log_full_commit(fs_info, trans); 10240 10241 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10242 if (!cache) 10243 return -ENOMEM; 10244 10245 btrfs_set_block_group_used(&cache->item, bytes_used); 10246 btrfs_set_block_group_chunk_objectid(&cache->item, 10247 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10248 btrfs_set_block_group_flags(&cache->item, type); 10249 10250 cache->flags = type; 10251 cache->last_byte_to_unpin = (u64)-1; 10252 cache->cached = BTRFS_CACHE_FINISHED; 10253 cache->needs_free_space = 1; 10254 ret = exclude_super_stripes(fs_info, cache); 10255 if (ret) { 10256 /* 10257 * We may have excluded something, so call this just in 10258 * case. 10259 */ 10260 free_excluded_extents(fs_info, cache); 10261 btrfs_put_block_group(cache); 10262 return ret; 10263 } 10264 10265 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10266 10267 free_excluded_extents(fs_info, cache); 10268 10269 #ifdef CONFIG_BTRFS_DEBUG 10270 if (btrfs_should_fragment_free_space(cache)) { 10271 u64 new_bytes_used = size - bytes_used; 10272 10273 bytes_used += new_bytes_used >> 1; 10274 fragment_free_space(cache); 10275 } 10276 #endif 10277 /* 10278 * Ensure the corresponding space_info object is created and 10279 * assigned to our block group. We want our bg to be added to the rbtree 10280 * with its ->space_info set. 10281 */ 10282 cache->space_info = __find_space_info(fs_info, cache->flags); 10283 ASSERT(cache->space_info); 10284 10285 ret = btrfs_add_block_group_cache(fs_info, cache); 10286 if (ret) { 10287 btrfs_remove_free_space_cache(cache); 10288 btrfs_put_block_group(cache); 10289 return ret; 10290 } 10291 10292 /* 10293 * Now that our block group has its ->space_info set and is inserted in 10294 * the rbtree, update the space info's counters. 10295 */ 10296 trace_btrfs_add_block_group(fs_info, cache, 1); 10297 update_space_info(fs_info, cache->flags, size, bytes_used, 10298 cache->bytes_super, &cache->space_info); 10299 update_global_block_rsv(fs_info); 10300 10301 link_block_group(cache); 10302 10303 list_add_tail(&cache->bg_list, &trans->new_bgs); 10304 10305 set_avail_alloc_bits(fs_info, type); 10306 return 0; 10307 } 10308 10309 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10310 { 10311 u64 extra_flags = chunk_to_extended(flags) & 10312 BTRFS_EXTENDED_PROFILE_MASK; 10313 10314 write_seqlock(&fs_info->profiles_lock); 10315 if (flags & BTRFS_BLOCK_GROUP_DATA) 10316 fs_info->avail_data_alloc_bits &= ~extra_flags; 10317 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10318 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10319 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10320 fs_info->avail_system_alloc_bits &= ~extra_flags; 10321 write_sequnlock(&fs_info->profiles_lock); 10322 } 10323 10324 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10325 struct btrfs_fs_info *fs_info, u64 group_start, 10326 struct extent_map *em) 10327 { 10328 struct btrfs_root *root = fs_info->extent_root; 10329 struct btrfs_path *path; 10330 struct btrfs_block_group_cache *block_group; 10331 struct btrfs_free_cluster *cluster; 10332 struct btrfs_root *tree_root = fs_info->tree_root; 10333 struct btrfs_key key; 10334 struct inode *inode; 10335 struct kobject *kobj = NULL; 10336 int ret; 10337 int index; 10338 int factor; 10339 struct btrfs_caching_control *caching_ctl = NULL; 10340 bool remove_em; 10341 10342 block_group = btrfs_lookup_block_group(fs_info, group_start); 10343 BUG_ON(!block_group); 10344 BUG_ON(!block_group->ro); 10345 10346 /* 10347 * Free the reserved super bytes from this block group before 10348 * remove it. 10349 */ 10350 free_excluded_extents(fs_info, block_group); 10351 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10352 block_group->key.offset); 10353 10354 memcpy(&key, &block_group->key, sizeof(key)); 10355 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10356 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10357 BTRFS_BLOCK_GROUP_RAID1 | 10358 BTRFS_BLOCK_GROUP_RAID10)) 10359 factor = 2; 10360 else 10361 factor = 1; 10362 10363 /* make sure this block group isn't part of an allocation cluster */ 10364 cluster = &fs_info->data_alloc_cluster; 10365 spin_lock(&cluster->refill_lock); 10366 btrfs_return_cluster_to_free_space(block_group, cluster); 10367 spin_unlock(&cluster->refill_lock); 10368 10369 /* 10370 * make sure this block group isn't part of a metadata 10371 * allocation cluster 10372 */ 10373 cluster = &fs_info->meta_alloc_cluster; 10374 spin_lock(&cluster->refill_lock); 10375 btrfs_return_cluster_to_free_space(block_group, cluster); 10376 spin_unlock(&cluster->refill_lock); 10377 10378 path = btrfs_alloc_path(); 10379 if (!path) { 10380 ret = -ENOMEM; 10381 goto out; 10382 } 10383 10384 /* 10385 * get the inode first so any iput calls done for the io_list 10386 * aren't the final iput (no unlinks allowed now) 10387 */ 10388 inode = lookup_free_space_inode(fs_info, block_group, path); 10389 10390 mutex_lock(&trans->transaction->cache_write_mutex); 10391 /* 10392 * make sure our free spache cache IO is done before remove the 10393 * free space inode 10394 */ 10395 spin_lock(&trans->transaction->dirty_bgs_lock); 10396 if (!list_empty(&block_group->io_list)) { 10397 list_del_init(&block_group->io_list); 10398 10399 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10400 10401 spin_unlock(&trans->transaction->dirty_bgs_lock); 10402 btrfs_wait_cache_io(trans, block_group, path); 10403 btrfs_put_block_group(block_group); 10404 spin_lock(&trans->transaction->dirty_bgs_lock); 10405 } 10406 10407 if (!list_empty(&block_group->dirty_list)) { 10408 list_del_init(&block_group->dirty_list); 10409 btrfs_put_block_group(block_group); 10410 } 10411 spin_unlock(&trans->transaction->dirty_bgs_lock); 10412 mutex_unlock(&trans->transaction->cache_write_mutex); 10413 10414 if (!IS_ERR(inode)) { 10415 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10416 if (ret) { 10417 btrfs_add_delayed_iput(inode); 10418 goto out; 10419 } 10420 clear_nlink(inode); 10421 /* One for the block groups ref */ 10422 spin_lock(&block_group->lock); 10423 if (block_group->iref) { 10424 block_group->iref = 0; 10425 block_group->inode = NULL; 10426 spin_unlock(&block_group->lock); 10427 iput(inode); 10428 } else { 10429 spin_unlock(&block_group->lock); 10430 } 10431 /* One for our lookup ref */ 10432 btrfs_add_delayed_iput(inode); 10433 } 10434 10435 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10436 key.offset = block_group->key.objectid; 10437 key.type = 0; 10438 10439 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10440 if (ret < 0) 10441 goto out; 10442 if (ret > 0) 10443 btrfs_release_path(path); 10444 if (ret == 0) { 10445 ret = btrfs_del_item(trans, tree_root, path); 10446 if (ret) 10447 goto out; 10448 btrfs_release_path(path); 10449 } 10450 10451 spin_lock(&fs_info->block_group_cache_lock); 10452 rb_erase(&block_group->cache_node, 10453 &fs_info->block_group_cache_tree); 10454 RB_CLEAR_NODE(&block_group->cache_node); 10455 10456 if (fs_info->first_logical_byte == block_group->key.objectid) 10457 fs_info->first_logical_byte = (u64)-1; 10458 spin_unlock(&fs_info->block_group_cache_lock); 10459 10460 down_write(&block_group->space_info->groups_sem); 10461 /* 10462 * we must use list_del_init so people can check to see if they 10463 * are still on the list after taking the semaphore 10464 */ 10465 list_del_init(&block_group->list); 10466 if (list_empty(&block_group->space_info->block_groups[index])) { 10467 kobj = block_group->space_info->block_group_kobjs[index]; 10468 block_group->space_info->block_group_kobjs[index] = NULL; 10469 clear_avail_alloc_bits(fs_info, block_group->flags); 10470 } 10471 up_write(&block_group->space_info->groups_sem); 10472 if (kobj) { 10473 kobject_del(kobj); 10474 kobject_put(kobj); 10475 } 10476 10477 if (block_group->has_caching_ctl) 10478 caching_ctl = get_caching_control(block_group); 10479 if (block_group->cached == BTRFS_CACHE_STARTED) 10480 wait_block_group_cache_done(block_group); 10481 if (block_group->has_caching_ctl) { 10482 down_write(&fs_info->commit_root_sem); 10483 if (!caching_ctl) { 10484 struct btrfs_caching_control *ctl; 10485 10486 list_for_each_entry(ctl, 10487 &fs_info->caching_block_groups, list) 10488 if (ctl->block_group == block_group) { 10489 caching_ctl = ctl; 10490 refcount_inc(&caching_ctl->count); 10491 break; 10492 } 10493 } 10494 if (caching_ctl) 10495 list_del_init(&caching_ctl->list); 10496 up_write(&fs_info->commit_root_sem); 10497 if (caching_ctl) { 10498 /* Once for the caching bgs list and once for us. */ 10499 put_caching_control(caching_ctl); 10500 put_caching_control(caching_ctl); 10501 } 10502 } 10503 10504 spin_lock(&trans->transaction->dirty_bgs_lock); 10505 if (!list_empty(&block_group->dirty_list)) { 10506 WARN_ON(1); 10507 } 10508 if (!list_empty(&block_group->io_list)) { 10509 WARN_ON(1); 10510 } 10511 spin_unlock(&trans->transaction->dirty_bgs_lock); 10512 btrfs_remove_free_space_cache(block_group); 10513 10514 spin_lock(&block_group->space_info->lock); 10515 list_del_init(&block_group->ro_list); 10516 10517 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10518 WARN_ON(block_group->space_info->total_bytes 10519 < block_group->key.offset); 10520 WARN_ON(block_group->space_info->bytes_readonly 10521 < block_group->key.offset); 10522 WARN_ON(block_group->space_info->disk_total 10523 < block_group->key.offset * factor); 10524 } 10525 block_group->space_info->total_bytes -= block_group->key.offset; 10526 block_group->space_info->bytes_readonly -= block_group->key.offset; 10527 block_group->space_info->disk_total -= block_group->key.offset * factor; 10528 10529 spin_unlock(&block_group->space_info->lock); 10530 10531 memcpy(&key, &block_group->key, sizeof(key)); 10532 10533 mutex_lock(&fs_info->chunk_mutex); 10534 if (!list_empty(&em->list)) { 10535 /* We're in the transaction->pending_chunks list. */ 10536 free_extent_map(em); 10537 } 10538 spin_lock(&block_group->lock); 10539 block_group->removed = 1; 10540 /* 10541 * At this point trimming can't start on this block group, because we 10542 * removed the block group from the tree fs_info->block_group_cache_tree 10543 * so no one can't find it anymore and even if someone already got this 10544 * block group before we removed it from the rbtree, they have already 10545 * incremented block_group->trimming - if they didn't, they won't find 10546 * any free space entries because we already removed them all when we 10547 * called btrfs_remove_free_space_cache(). 10548 * 10549 * And we must not remove the extent map from the fs_info->mapping_tree 10550 * to prevent the same logical address range and physical device space 10551 * ranges from being reused for a new block group. This is because our 10552 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10553 * completely transactionless, so while it is trimming a range the 10554 * currently running transaction might finish and a new one start, 10555 * allowing for new block groups to be created that can reuse the same 10556 * physical device locations unless we take this special care. 10557 * 10558 * There may also be an implicit trim operation if the file system 10559 * is mounted with -odiscard. The same protections must remain 10560 * in place until the extents have been discarded completely when 10561 * the transaction commit has completed. 10562 */ 10563 remove_em = (atomic_read(&block_group->trimming) == 0); 10564 /* 10565 * Make sure a trimmer task always sees the em in the pinned_chunks list 10566 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10567 * before checking block_group->removed). 10568 */ 10569 if (!remove_em) { 10570 /* 10571 * Our em might be in trans->transaction->pending_chunks which 10572 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10573 * and so is the fs_info->pinned_chunks list. 10574 * 10575 * So at this point we must be holding the chunk_mutex to avoid 10576 * any races with chunk allocation (more specifically at 10577 * volumes.c:contains_pending_extent()), to ensure it always 10578 * sees the em, either in the pending_chunks list or in the 10579 * pinned_chunks list. 10580 */ 10581 list_move_tail(&em->list, &fs_info->pinned_chunks); 10582 } 10583 spin_unlock(&block_group->lock); 10584 10585 if (remove_em) { 10586 struct extent_map_tree *em_tree; 10587 10588 em_tree = &fs_info->mapping_tree.map_tree; 10589 write_lock(&em_tree->lock); 10590 /* 10591 * The em might be in the pending_chunks list, so make sure the 10592 * chunk mutex is locked, since remove_extent_mapping() will 10593 * delete us from that list. 10594 */ 10595 remove_extent_mapping(em_tree, em); 10596 write_unlock(&em_tree->lock); 10597 /* once for the tree */ 10598 free_extent_map(em); 10599 } 10600 10601 mutex_unlock(&fs_info->chunk_mutex); 10602 10603 ret = remove_block_group_free_space(trans, fs_info, block_group); 10604 if (ret) 10605 goto out; 10606 10607 btrfs_put_block_group(block_group); 10608 btrfs_put_block_group(block_group); 10609 10610 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10611 if (ret > 0) 10612 ret = -EIO; 10613 if (ret < 0) 10614 goto out; 10615 10616 ret = btrfs_del_item(trans, root, path); 10617 out: 10618 btrfs_free_path(path); 10619 return ret; 10620 } 10621 10622 struct btrfs_trans_handle * 10623 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10624 const u64 chunk_offset) 10625 { 10626 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10627 struct extent_map *em; 10628 struct map_lookup *map; 10629 unsigned int num_items; 10630 10631 read_lock(&em_tree->lock); 10632 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10633 read_unlock(&em_tree->lock); 10634 ASSERT(em && em->start == chunk_offset); 10635 10636 /* 10637 * We need to reserve 3 + N units from the metadata space info in order 10638 * to remove a block group (done at btrfs_remove_chunk() and at 10639 * btrfs_remove_block_group()), which are used for: 10640 * 10641 * 1 unit for adding the free space inode's orphan (located in the tree 10642 * of tree roots). 10643 * 1 unit for deleting the block group item (located in the extent 10644 * tree). 10645 * 1 unit for deleting the free space item (located in tree of tree 10646 * roots). 10647 * N units for deleting N device extent items corresponding to each 10648 * stripe (located in the device tree). 10649 * 10650 * In order to remove a block group we also need to reserve units in the 10651 * system space info in order to update the chunk tree (update one or 10652 * more device items and remove one chunk item), but this is done at 10653 * btrfs_remove_chunk() through a call to check_system_chunk(). 10654 */ 10655 map = em->map_lookup; 10656 num_items = 3 + map->num_stripes; 10657 free_extent_map(em); 10658 10659 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10660 num_items, 1); 10661 } 10662 10663 /* 10664 * Process the unused_bgs list and remove any that don't have any allocated 10665 * space inside of them. 10666 */ 10667 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10668 { 10669 struct btrfs_block_group_cache *block_group; 10670 struct btrfs_space_info *space_info; 10671 struct btrfs_trans_handle *trans; 10672 int ret = 0; 10673 10674 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10675 return; 10676 10677 spin_lock(&fs_info->unused_bgs_lock); 10678 while (!list_empty(&fs_info->unused_bgs)) { 10679 u64 start, end; 10680 int trimming; 10681 10682 block_group = list_first_entry(&fs_info->unused_bgs, 10683 struct btrfs_block_group_cache, 10684 bg_list); 10685 list_del_init(&block_group->bg_list); 10686 10687 space_info = block_group->space_info; 10688 10689 if (ret || btrfs_mixed_space_info(space_info)) { 10690 btrfs_put_block_group(block_group); 10691 continue; 10692 } 10693 spin_unlock(&fs_info->unused_bgs_lock); 10694 10695 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10696 10697 /* Don't want to race with allocators so take the groups_sem */ 10698 down_write(&space_info->groups_sem); 10699 spin_lock(&block_group->lock); 10700 if (block_group->reserved || 10701 btrfs_block_group_used(&block_group->item) || 10702 block_group->ro || 10703 list_is_singular(&block_group->list)) { 10704 /* 10705 * We want to bail if we made new allocations or have 10706 * outstanding allocations in this block group. We do 10707 * the ro check in case balance is currently acting on 10708 * this block group. 10709 */ 10710 spin_unlock(&block_group->lock); 10711 up_write(&space_info->groups_sem); 10712 goto next; 10713 } 10714 spin_unlock(&block_group->lock); 10715 10716 /* We don't want to force the issue, only flip if it's ok. */ 10717 ret = inc_block_group_ro(block_group, 0); 10718 up_write(&space_info->groups_sem); 10719 if (ret < 0) { 10720 ret = 0; 10721 goto next; 10722 } 10723 10724 /* 10725 * Want to do this before we do anything else so we can recover 10726 * properly if we fail to join the transaction. 10727 */ 10728 trans = btrfs_start_trans_remove_block_group(fs_info, 10729 block_group->key.objectid); 10730 if (IS_ERR(trans)) { 10731 btrfs_dec_block_group_ro(block_group); 10732 ret = PTR_ERR(trans); 10733 goto next; 10734 } 10735 10736 /* 10737 * We could have pending pinned extents for this block group, 10738 * just delete them, we don't care about them anymore. 10739 */ 10740 start = block_group->key.objectid; 10741 end = start + block_group->key.offset - 1; 10742 /* 10743 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10744 * btrfs_finish_extent_commit(). If we are at transaction N, 10745 * another task might be running finish_extent_commit() for the 10746 * previous transaction N - 1, and have seen a range belonging 10747 * to the block group in freed_extents[] before we were able to 10748 * clear the whole block group range from freed_extents[]. This 10749 * means that task can lookup for the block group after we 10750 * unpinned it from freed_extents[] and removed it, leading to 10751 * a BUG_ON() at btrfs_unpin_extent_range(). 10752 */ 10753 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10754 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10755 EXTENT_DIRTY); 10756 if (ret) { 10757 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10758 btrfs_dec_block_group_ro(block_group); 10759 goto end_trans; 10760 } 10761 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10762 EXTENT_DIRTY); 10763 if (ret) { 10764 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10765 btrfs_dec_block_group_ro(block_group); 10766 goto end_trans; 10767 } 10768 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10769 10770 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10771 spin_lock(&space_info->lock); 10772 spin_lock(&block_group->lock); 10773 10774 space_info->bytes_pinned -= block_group->pinned; 10775 space_info->bytes_readonly += block_group->pinned; 10776 percpu_counter_add(&space_info->total_bytes_pinned, 10777 -block_group->pinned); 10778 block_group->pinned = 0; 10779 10780 spin_unlock(&block_group->lock); 10781 spin_unlock(&space_info->lock); 10782 10783 /* DISCARD can flip during remount */ 10784 trimming = btrfs_test_opt(fs_info, DISCARD); 10785 10786 /* Implicit trim during transaction commit. */ 10787 if (trimming) 10788 btrfs_get_block_group_trimming(block_group); 10789 10790 /* 10791 * Btrfs_remove_chunk will abort the transaction if things go 10792 * horribly wrong. 10793 */ 10794 ret = btrfs_remove_chunk(trans, fs_info, 10795 block_group->key.objectid); 10796 10797 if (ret) { 10798 if (trimming) 10799 btrfs_put_block_group_trimming(block_group); 10800 goto end_trans; 10801 } 10802 10803 /* 10804 * If we're not mounted with -odiscard, we can just forget 10805 * about this block group. Otherwise we'll need to wait 10806 * until transaction commit to do the actual discard. 10807 */ 10808 if (trimming) { 10809 spin_lock(&fs_info->unused_bgs_lock); 10810 /* 10811 * A concurrent scrub might have added us to the list 10812 * fs_info->unused_bgs, so use a list_move operation 10813 * to add the block group to the deleted_bgs list. 10814 */ 10815 list_move(&block_group->bg_list, 10816 &trans->transaction->deleted_bgs); 10817 spin_unlock(&fs_info->unused_bgs_lock); 10818 btrfs_get_block_group(block_group); 10819 } 10820 end_trans: 10821 btrfs_end_transaction(trans); 10822 next: 10823 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10824 btrfs_put_block_group(block_group); 10825 spin_lock(&fs_info->unused_bgs_lock); 10826 } 10827 spin_unlock(&fs_info->unused_bgs_lock); 10828 } 10829 10830 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10831 { 10832 struct btrfs_space_info *space_info; 10833 struct btrfs_super_block *disk_super; 10834 u64 features; 10835 u64 flags; 10836 int mixed = 0; 10837 int ret; 10838 10839 disk_super = fs_info->super_copy; 10840 if (!btrfs_super_root(disk_super)) 10841 return -EINVAL; 10842 10843 features = btrfs_super_incompat_flags(disk_super); 10844 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10845 mixed = 1; 10846 10847 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10848 ret = create_space_info(fs_info, flags, &space_info); 10849 if (ret) 10850 goto out; 10851 10852 if (mixed) { 10853 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10854 ret = create_space_info(fs_info, flags, &space_info); 10855 } else { 10856 flags = BTRFS_BLOCK_GROUP_METADATA; 10857 ret = create_space_info(fs_info, flags, &space_info); 10858 if (ret) 10859 goto out; 10860 10861 flags = BTRFS_BLOCK_GROUP_DATA; 10862 ret = create_space_info(fs_info, flags, &space_info); 10863 } 10864 out: 10865 return ret; 10866 } 10867 10868 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10869 u64 start, u64 end) 10870 { 10871 return unpin_extent_range(fs_info, start, end, false); 10872 } 10873 10874 /* 10875 * It used to be that old block groups would be left around forever. 10876 * Iterating over them would be enough to trim unused space. Since we 10877 * now automatically remove them, we also need to iterate over unallocated 10878 * space. 10879 * 10880 * We don't want a transaction for this since the discard may take a 10881 * substantial amount of time. We don't require that a transaction be 10882 * running, but we do need to take a running transaction into account 10883 * to ensure that we're not discarding chunks that were released in 10884 * the current transaction. 10885 * 10886 * Holding the chunks lock will prevent other threads from allocating 10887 * or releasing chunks, but it won't prevent a running transaction 10888 * from committing and releasing the memory that the pending chunks 10889 * list head uses. For that, we need to take a reference to the 10890 * transaction. 10891 */ 10892 static int btrfs_trim_free_extents(struct btrfs_device *device, 10893 u64 minlen, u64 *trimmed) 10894 { 10895 u64 start = 0, len = 0; 10896 int ret; 10897 10898 *trimmed = 0; 10899 10900 /* Not writeable = nothing to do. */ 10901 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10902 return 0; 10903 10904 /* No free space = nothing to do. */ 10905 if (device->total_bytes <= device->bytes_used) 10906 return 0; 10907 10908 ret = 0; 10909 10910 while (1) { 10911 struct btrfs_fs_info *fs_info = device->fs_info; 10912 struct btrfs_transaction *trans; 10913 u64 bytes; 10914 10915 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10916 if (ret) 10917 return ret; 10918 10919 down_read(&fs_info->commit_root_sem); 10920 10921 spin_lock(&fs_info->trans_lock); 10922 trans = fs_info->running_transaction; 10923 if (trans) 10924 refcount_inc(&trans->use_count); 10925 spin_unlock(&fs_info->trans_lock); 10926 10927 ret = find_free_dev_extent_start(trans, device, minlen, start, 10928 &start, &len); 10929 if (trans) 10930 btrfs_put_transaction(trans); 10931 10932 if (ret) { 10933 up_read(&fs_info->commit_root_sem); 10934 mutex_unlock(&fs_info->chunk_mutex); 10935 if (ret == -ENOSPC) 10936 ret = 0; 10937 break; 10938 } 10939 10940 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10941 up_read(&fs_info->commit_root_sem); 10942 mutex_unlock(&fs_info->chunk_mutex); 10943 10944 if (ret) 10945 break; 10946 10947 start += len; 10948 *trimmed += bytes; 10949 10950 if (fatal_signal_pending(current)) { 10951 ret = -ERESTARTSYS; 10952 break; 10953 } 10954 10955 cond_resched(); 10956 } 10957 10958 return ret; 10959 } 10960 10961 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10962 { 10963 struct btrfs_block_group_cache *cache = NULL; 10964 struct btrfs_device *device; 10965 struct list_head *devices; 10966 u64 group_trimmed; 10967 u64 start; 10968 u64 end; 10969 u64 trimmed = 0; 10970 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10971 int ret = 0; 10972 10973 /* 10974 * try to trim all FS space, our block group may start from non-zero. 10975 */ 10976 if (range->len == total_bytes) 10977 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10978 else 10979 cache = btrfs_lookup_block_group(fs_info, range->start); 10980 10981 while (cache) { 10982 if (cache->key.objectid >= (range->start + range->len)) { 10983 btrfs_put_block_group(cache); 10984 break; 10985 } 10986 10987 start = max(range->start, cache->key.objectid); 10988 end = min(range->start + range->len, 10989 cache->key.objectid + cache->key.offset); 10990 10991 if (end - start >= range->minlen) { 10992 if (!block_group_cache_done(cache)) { 10993 ret = cache_block_group(cache, 0); 10994 if (ret) { 10995 btrfs_put_block_group(cache); 10996 break; 10997 } 10998 ret = wait_block_group_cache_done(cache); 10999 if (ret) { 11000 btrfs_put_block_group(cache); 11001 break; 11002 } 11003 } 11004 ret = btrfs_trim_block_group(cache, 11005 &group_trimmed, 11006 start, 11007 end, 11008 range->minlen); 11009 11010 trimmed += group_trimmed; 11011 if (ret) { 11012 btrfs_put_block_group(cache); 11013 break; 11014 } 11015 } 11016 11017 cache = next_block_group(fs_info, cache); 11018 } 11019 11020 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11021 devices = &fs_info->fs_devices->alloc_list; 11022 list_for_each_entry(device, devices, dev_alloc_list) { 11023 ret = btrfs_trim_free_extents(device, range->minlen, 11024 &group_trimmed); 11025 if (ret) 11026 break; 11027 11028 trimmed += group_trimmed; 11029 } 11030 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11031 11032 range->len = trimmed; 11033 return ret; 11034 } 11035 11036 /* 11037 * btrfs_{start,end}_write_no_snapshotting() are similar to 11038 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11039 * data into the page cache through nocow before the subvolume is snapshoted, 11040 * but flush the data into disk after the snapshot creation, or to prevent 11041 * operations while snapshotting is ongoing and that cause the snapshot to be 11042 * inconsistent (writes followed by expanding truncates for example). 11043 */ 11044 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11045 { 11046 percpu_counter_dec(&root->subv_writers->counter); 11047 /* 11048 * Make sure counter is updated before we wake up waiters. 11049 */ 11050 smp_mb(); 11051 if (waitqueue_active(&root->subv_writers->wait)) 11052 wake_up(&root->subv_writers->wait); 11053 } 11054 11055 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11056 { 11057 if (atomic_read(&root->will_be_snapshotted)) 11058 return 0; 11059 11060 percpu_counter_inc(&root->subv_writers->counter); 11061 /* 11062 * Make sure counter is updated before we check for snapshot creation. 11063 */ 11064 smp_mb(); 11065 if (atomic_read(&root->will_be_snapshotted)) { 11066 btrfs_end_write_no_snapshotting(root); 11067 return 0; 11068 } 11069 return 1; 11070 } 11071 11072 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11073 { 11074 while (true) { 11075 int ret; 11076 11077 ret = btrfs_start_write_no_snapshotting(root); 11078 if (ret) 11079 break; 11080 wait_var_event(&root->will_be_snapshotted, 11081 !atomic_read(&root->will_be_snapshotted)); 11082 } 11083 } 11084