xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision a48c7709)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 			       struct btrfs_fs_info *fs_info,
56 				struct btrfs_delayed_ref_node *node, u64 parent,
57 				u64 root_objectid, u64 owner_objectid,
58 				u64 owner_offset, int refs_to_drop,
59 				struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 				    struct extent_buffer *leaf,
62 				    struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 				      struct btrfs_fs_info *fs_info,
65 				      u64 parent, u64 root_objectid,
66 				      u64 flags, u64 owner, u64 offset,
67 				      struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 				     struct btrfs_fs_info *fs_info,
70 				     u64 parent, u64 root_objectid,
71 				     u64 flags, struct btrfs_disk_key *key,
72 				     int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74 			  struct btrfs_fs_info *fs_info, u64 flags,
75 			  int force);
76 static int find_next_key(struct btrfs_path *path, int level,
77 			 struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79 			    struct btrfs_space_info *info, u64 bytes,
80 			    int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 			       u64 num_bytes);
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 				     struct btrfs_space_info *space_info,
85 				     u64 num_bytes);
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 				     struct btrfs_space_info *space_info,
88 				     u64 num_bytes);
89 
90 static noinline int
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 {
93 	smp_mb();
94 	return cache->cached == BTRFS_CACHE_FINISHED ||
95 		cache->cached == BTRFS_CACHE_ERROR;
96 }
97 
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99 {
100 	return (cache->flags & bits) == bits;
101 }
102 
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104 {
105 	atomic_inc(&cache->count);
106 }
107 
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109 {
110 	if (atomic_dec_and_test(&cache->count)) {
111 		WARN_ON(cache->pinned > 0);
112 		WARN_ON(cache->reserved > 0);
113 
114 		/*
115 		 * If not empty, someone is still holding mutex of
116 		 * full_stripe_lock, which can only be released by caller.
117 		 * And it will definitely cause use-after-free when caller
118 		 * tries to release full stripe lock.
119 		 *
120 		 * No better way to resolve, but only to warn.
121 		 */
122 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123 		kfree(cache->free_space_ctl);
124 		kfree(cache);
125 	}
126 }
127 
128 /*
129  * this adds the block group to the fs_info rb tree for the block group
130  * cache
131  */
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133 				struct btrfs_block_group_cache *block_group)
134 {
135 	struct rb_node **p;
136 	struct rb_node *parent = NULL;
137 	struct btrfs_block_group_cache *cache;
138 
139 	spin_lock(&info->block_group_cache_lock);
140 	p = &info->block_group_cache_tree.rb_node;
141 
142 	while (*p) {
143 		parent = *p;
144 		cache = rb_entry(parent, struct btrfs_block_group_cache,
145 				 cache_node);
146 		if (block_group->key.objectid < cache->key.objectid) {
147 			p = &(*p)->rb_left;
148 		} else if (block_group->key.objectid > cache->key.objectid) {
149 			p = &(*p)->rb_right;
150 		} else {
151 			spin_unlock(&info->block_group_cache_lock);
152 			return -EEXIST;
153 		}
154 	}
155 
156 	rb_link_node(&block_group->cache_node, parent, p);
157 	rb_insert_color(&block_group->cache_node,
158 			&info->block_group_cache_tree);
159 
160 	if (info->first_logical_byte > block_group->key.objectid)
161 		info->first_logical_byte = block_group->key.objectid;
162 
163 	spin_unlock(&info->block_group_cache_lock);
164 
165 	return 0;
166 }
167 
168 /*
169  * This will return the block group at or after bytenr if contains is 0, else
170  * it will return the block group that contains the bytenr
171  */
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 			      int contains)
175 {
176 	struct btrfs_block_group_cache *cache, *ret = NULL;
177 	struct rb_node *n;
178 	u64 end, start;
179 
180 	spin_lock(&info->block_group_cache_lock);
181 	n = info->block_group_cache_tree.rb_node;
182 
183 	while (n) {
184 		cache = rb_entry(n, struct btrfs_block_group_cache,
185 				 cache_node);
186 		end = cache->key.objectid + cache->key.offset - 1;
187 		start = cache->key.objectid;
188 
189 		if (bytenr < start) {
190 			if (!contains && (!ret || start < ret->key.objectid))
191 				ret = cache;
192 			n = n->rb_left;
193 		} else if (bytenr > start) {
194 			if (contains && bytenr <= end) {
195 				ret = cache;
196 				break;
197 			}
198 			n = n->rb_right;
199 		} else {
200 			ret = cache;
201 			break;
202 		}
203 	}
204 	if (ret) {
205 		btrfs_get_block_group(ret);
206 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 			info->first_logical_byte = ret->key.objectid;
208 	}
209 	spin_unlock(&info->block_group_cache_lock);
210 
211 	return ret;
212 }
213 
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215 			       u64 start, u64 num_bytes)
216 {
217 	u64 end = start + num_bytes - 1;
218 	set_extent_bits(&fs_info->freed_extents[0],
219 			start, end, EXTENT_UPTODATE);
220 	set_extent_bits(&fs_info->freed_extents[1],
221 			start, end, EXTENT_UPTODATE);
222 	return 0;
223 }
224 
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226 				  struct btrfs_block_group_cache *cache)
227 {
228 	u64 start, end;
229 
230 	start = cache->key.objectid;
231 	end = start + cache->key.offset - 1;
232 
233 	clear_extent_bits(&fs_info->freed_extents[0],
234 			  start, end, EXTENT_UPTODATE);
235 	clear_extent_bits(&fs_info->freed_extents[1],
236 			  start, end, EXTENT_UPTODATE);
237 }
238 
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240 				 struct btrfs_block_group_cache *cache)
241 {
242 	u64 bytenr;
243 	u64 *logical;
244 	int stripe_len;
245 	int i, nr, ret;
246 
247 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 		cache->bytes_super += stripe_len;
250 		ret = add_excluded_extent(fs_info, cache->key.objectid,
251 					  stripe_len);
252 		if (ret)
253 			return ret;
254 	}
255 
256 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 		bytenr = btrfs_sb_offset(i);
258 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259 				       bytenr, 0, &logical, &nr, &stripe_len);
260 		if (ret)
261 			return ret;
262 
263 		while (nr--) {
264 			u64 start, len;
265 
266 			if (logical[nr] > cache->key.objectid +
267 			    cache->key.offset)
268 				continue;
269 
270 			if (logical[nr] + stripe_len <= cache->key.objectid)
271 				continue;
272 
273 			start = logical[nr];
274 			if (start < cache->key.objectid) {
275 				start = cache->key.objectid;
276 				len = (logical[nr] + stripe_len) - start;
277 			} else {
278 				len = min_t(u64, stripe_len,
279 					    cache->key.objectid +
280 					    cache->key.offset - start);
281 			}
282 
283 			cache->bytes_super += len;
284 			ret = add_excluded_extent(fs_info, start, len);
285 			if (ret) {
286 				kfree(logical);
287 				return ret;
288 			}
289 		}
290 
291 		kfree(logical);
292 	}
293 	return 0;
294 }
295 
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
298 {
299 	struct btrfs_caching_control *ctl;
300 
301 	spin_lock(&cache->lock);
302 	if (!cache->caching_ctl) {
303 		spin_unlock(&cache->lock);
304 		return NULL;
305 	}
306 
307 	ctl = cache->caching_ctl;
308 	refcount_inc(&ctl->count);
309 	spin_unlock(&cache->lock);
310 	return ctl;
311 }
312 
313 static void put_caching_control(struct btrfs_caching_control *ctl)
314 {
315 	if (refcount_dec_and_test(&ctl->count))
316 		kfree(ctl);
317 }
318 
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321 {
322 	struct btrfs_fs_info *fs_info = block_group->fs_info;
323 	u64 start = block_group->key.objectid;
324 	u64 len = block_group->key.offset;
325 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326 		fs_info->nodesize : fs_info->sectorsize;
327 	u64 step = chunk << 1;
328 
329 	while (len > chunk) {
330 		btrfs_remove_free_space(block_group, start, chunk);
331 		start += step;
332 		if (len < step)
333 			len = 0;
334 		else
335 			len -= step;
336 	}
337 }
338 #endif
339 
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 		       struct btrfs_fs_info *info, u64 start, u64 end)
347 {
348 	u64 extent_start, extent_end, size, total_added = 0;
349 	int ret;
350 
351 	while (start < end) {
352 		ret = find_first_extent_bit(info->pinned_extents, start,
353 					    &extent_start, &extent_end,
354 					    EXTENT_DIRTY | EXTENT_UPTODATE,
355 					    NULL);
356 		if (ret)
357 			break;
358 
359 		if (extent_start <= start) {
360 			start = extent_end + 1;
361 		} else if (extent_start > start && extent_start < end) {
362 			size = extent_start - start;
363 			total_added += size;
364 			ret = btrfs_add_free_space(block_group, start,
365 						   size);
366 			BUG_ON(ret); /* -ENOMEM or logic error */
367 			start = extent_end + 1;
368 		} else {
369 			break;
370 		}
371 	}
372 
373 	if (start < end) {
374 		size = end - start;
375 		total_added += size;
376 		ret = btrfs_add_free_space(block_group, start, size);
377 		BUG_ON(ret); /* -ENOMEM or logic error */
378 	}
379 
380 	return total_added;
381 }
382 
383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384 {
385 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 	struct btrfs_fs_info *fs_info = block_group->fs_info;
387 	struct btrfs_root *extent_root = fs_info->extent_root;
388 	struct btrfs_path *path;
389 	struct extent_buffer *leaf;
390 	struct btrfs_key key;
391 	u64 total_found = 0;
392 	u64 last = 0;
393 	u32 nritems;
394 	int ret;
395 	bool wakeup = true;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		return -ENOMEM;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 #ifdef CONFIG_BTRFS_DEBUG
404 	/*
405 	 * If we're fragmenting we don't want to make anybody think we can
406 	 * allocate from this block group until we've had a chance to fragment
407 	 * the free space.
408 	 */
409 	if (btrfs_should_fragment_free_space(block_group))
410 		wakeup = false;
411 #endif
412 	/*
413 	 * We don't want to deadlock with somebody trying to allocate a new
414 	 * extent for the extent root while also trying to search the extent
415 	 * root to add free space.  So we skip locking and search the commit
416 	 * root, since its read-only
417 	 */
418 	path->skip_locking = 1;
419 	path->search_commit_root = 1;
420 	path->reada = READA_FORWARD;
421 
422 	key.objectid = last;
423 	key.offset = 0;
424 	key.type = BTRFS_EXTENT_ITEM_KEY;
425 
426 next:
427 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428 	if (ret < 0)
429 		goto out;
430 
431 	leaf = path->nodes[0];
432 	nritems = btrfs_header_nritems(leaf);
433 
434 	while (1) {
435 		if (btrfs_fs_closing(fs_info) > 1) {
436 			last = (u64)-1;
437 			break;
438 		}
439 
440 		if (path->slots[0] < nritems) {
441 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 		} else {
443 			ret = find_next_key(path, 0, &key);
444 			if (ret)
445 				break;
446 
447 			if (need_resched() ||
448 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
449 				if (wakeup)
450 					caching_ctl->progress = last;
451 				btrfs_release_path(path);
452 				up_read(&fs_info->commit_root_sem);
453 				mutex_unlock(&caching_ctl->mutex);
454 				cond_resched();
455 				mutex_lock(&caching_ctl->mutex);
456 				down_read(&fs_info->commit_root_sem);
457 				goto next;
458 			}
459 
460 			ret = btrfs_next_leaf(extent_root, path);
461 			if (ret < 0)
462 				goto out;
463 			if (ret)
464 				break;
465 			leaf = path->nodes[0];
466 			nritems = btrfs_header_nritems(leaf);
467 			continue;
468 		}
469 
470 		if (key.objectid < last) {
471 			key.objectid = last;
472 			key.offset = 0;
473 			key.type = BTRFS_EXTENT_ITEM_KEY;
474 
475 			if (wakeup)
476 				caching_ctl->progress = last;
477 			btrfs_release_path(path);
478 			goto next;
479 		}
480 
481 		if (key.objectid < block_group->key.objectid) {
482 			path->slots[0]++;
483 			continue;
484 		}
485 
486 		if (key.objectid >= block_group->key.objectid +
487 		    block_group->key.offset)
488 			break;
489 
490 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 		    key.type == BTRFS_METADATA_ITEM_KEY) {
492 			total_found += add_new_free_space(block_group,
493 							  fs_info, last,
494 							  key.objectid);
495 			if (key.type == BTRFS_METADATA_ITEM_KEY)
496 				last = key.objectid +
497 					fs_info->nodesize;
498 			else
499 				last = key.objectid + key.offset;
500 
501 			if (total_found > CACHING_CTL_WAKE_UP) {
502 				total_found = 0;
503 				if (wakeup)
504 					wake_up(&caching_ctl->wait);
505 			}
506 		}
507 		path->slots[0]++;
508 	}
509 	ret = 0;
510 
511 	total_found += add_new_free_space(block_group, fs_info, last,
512 					  block_group->key.objectid +
513 					  block_group->key.offset);
514 	caching_ctl->progress = (u64)-1;
515 
516 out:
517 	btrfs_free_path(path);
518 	return ret;
519 }
520 
521 static noinline void caching_thread(struct btrfs_work *work)
522 {
523 	struct btrfs_block_group_cache *block_group;
524 	struct btrfs_fs_info *fs_info;
525 	struct btrfs_caching_control *caching_ctl;
526 	int ret;
527 
528 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 	block_group = caching_ctl->block_group;
530 	fs_info = block_group->fs_info;
531 
532 	mutex_lock(&caching_ctl->mutex);
533 	down_read(&fs_info->commit_root_sem);
534 
535 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 		ret = load_free_space_tree(caching_ctl);
537 	else
538 		ret = load_extent_tree_free(caching_ctl);
539 
540 	spin_lock(&block_group->lock);
541 	block_group->caching_ctl = NULL;
542 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543 	spin_unlock(&block_group->lock);
544 
545 #ifdef CONFIG_BTRFS_DEBUG
546 	if (btrfs_should_fragment_free_space(block_group)) {
547 		u64 bytes_used;
548 
549 		spin_lock(&block_group->space_info->lock);
550 		spin_lock(&block_group->lock);
551 		bytes_used = block_group->key.offset -
552 			btrfs_block_group_used(&block_group->item);
553 		block_group->space_info->bytes_used += bytes_used >> 1;
554 		spin_unlock(&block_group->lock);
555 		spin_unlock(&block_group->space_info->lock);
556 		fragment_free_space(block_group);
557 	}
558 #endif
559 
560 	caching_ctl->progress = (u64)-1;
561 
562 	up_read(&fs_info->commit_root_sem);
563 	free_excluded_extents(fs_info, block_group);
564 	mutex_unlock(&caching_ctl->mutex);
565 
566 	wake_up(&caching_ctl->wait);
567 
568 	put_caching_control(caching_ctl);
569 	btrfs_put_block_group(block_group);
570 }
571 
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
573 			     int load_cache_only)
574 {
575 	DEFINE_WAIT(wait);
576 	struct btrfs_fs_info *fs_info = cache->fs_info;
577 	struct btrfs_caching_control *caching_ctl;
578 	int ret = 0;
579 
580 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581 	if (!caching_ctl)
582 		return -ENOMEM;
583 
584 	INIT_LIST_HEAD(&caching_ctl->list);
585 	mutex_init(&caching_ctl->mutex);
586 	init_waitqueue_head(&caching_ctl->wait);
587 	caching_ctl->block_group = cache;
588 	caching_ctl->progress = cache->key.objectid;
589 	refcount_set(&caching_ctl->count, 1);
590 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 			caching_thread, NULL, NULL);
592 
593 	spin_lock(&cache->lock);
594 	/*
595 	 * This should be a rare occasion, but this could happen I think in the
596 	 * case where one thread starts to load the space cache info, and then
597 	 * some other thread starts a transaction commit which tries to do an
598 	 * allocation while the other thread is still loading the space cache
599 	 * info.  The previous loop should have kept us from choosing this block
600 	 * group, but if we've moved to the state where we will wait on caching
601 	 * block groups we need to first check if we're doing a fast load here,
602 	 * so we can wait for it to finish, otherwise we could end up allocating
603 	 * from a block group who's cache gets evicted for one reason or
604 	 * another.
605 	 */
606 	while (cache->cached == BTRFS_CACHE_FAST) {
607 		struct btrfs_caching_control *ctl;
608 
609 		ctl = cache->caching_ctl;
610 		refcount_inc(&ctl->count);
611 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 		spin_unlock(&cache->lock);
613 
614 		schedule();
615 
616 		finish_wait(&ctl->wait, &wait);
617 		put_caching_control(ctl);
618 		spin_lock(&cache->lock);
619 	}
620 
621 	if (cache->cached != BTRFS_CACHE_NO) {
622 		spin_unlock(&cache->lock);
623 		kfree(caching_ctl);
624 		return 0;
625 	}
626 	WARN_ON(cache->caching_ctl);
627 	cache->caching_ctl = caching_ctl;
628 	cache->cached = BTRFS_CACHE_FAST;
629 	spin_unlock(&cache->lock);
630 
631 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632 		mutex_lock(&caching_ctl->mutex);
633 		ret = load_free_space_cache(fs_info, cache);
634 
635 		spin_lock(&cache->lock);
636 		if (ret == 1) {
637 			cache->caching_ctl = NULL;
638 			cache->cached = BTRFS_CACHE_FINISHED;
639 			cache->last_byte_to_unpin = (u64)-1;
640 			caching_ctl->progress = (u64)-1;
641 		} else {
642 			if (load_cache_only) {
643 				cache->caching_ctl = NULL;
644 				cache->cached = BTRFS_CACHE_NO;
645 			} else {
646 				cache->cached = BTRFS_CACHE_STARTED;
647 				cache->has_caching_ctl = 1;
648 			}
649 		}
650 		spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
652 		if (ret == 1 &&
653 		    btrfs_should_fragment_free_space(cache)) {
654 			u64 bytes_used;
655 
656 			spin_lock(&cache->space_info->lock);
657 			spin_lock(&cache->lock);
658 			bytes_used = cache->key.offset -
659 				btrfs_block_group_used(&cache->item);
660 			cache->space_info->bytes_used += bytes_used >> 1;
661 			spin_unlock(&cache->lock);
662 			spin_unlock(&cache->space_info->lock);
663 			fragment_free_space(cache);
664 		}
665 #endif
666 		mutex_unlock(&caching_ctl->mutex);
667 
668 		wake_up(&caching_ctl->wait);
669 		if (ret == 1) {
670 			put_caching_control(caching_ctl);
671 			free_excluded_extents(fs_info, cache);
672 			return 0;
673 		}
674 	} else {
675 		/*
676 		 * We're either using the free space tree or no caching at all.
677 		 * Set cached to the appropriate value and wakeup any waiters.
678 		 */
679 		spin_lock(&cache->lock);
680 		if (load_cache_only) {
681 			cache->caching_ctl = NULL;
682 			cache->cached = BTRFS_CACHE_NO;
683 		} else {
684 			cache->cached = BTRFS_CACHE_STARTED;
685 			cache->has_caching_ctl = 1;
686 		}
687 		spin_unlock(&cache->lock);
688 		wake_up(&caching_ctl->wait);
689 	}
690 
691 	if (load_cache_only) {
692 		put_caching_control(caching_ctl);
693 		return 0;
694 	}
695 
696 	down_write(&fs_info->commit_root_sem);
697 	refcount_inc(&caching_ctl->count);
698 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699 	up_write(&fs_info->commit_root_sem);
700 
701 	btrfs_get_block_group(cache);
702 
703 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 
705 	return ret;
706 }
707 
708 /*
709  * return the block group that starts at or after bytenr
710  */
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713 {
714 	return block_group_cache_tree_search(info, bytenr, 0);
715 }
716 
717 /*
718  * return the block group that contains the given bytenr
719  */
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 						 struct btrfs_fs_info *info,
722 						 u64 bytenr)
723 {
724 	return block_group_cache_tree_search(info, bytenr, 1);
725 }
726 
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 						  u64 flags)
729 {
730 	struct list_head *head = &info->space_info;
731 	struct btrfs_space_info *found;
732 
733 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734 
735 	rcu_read_lock();
736 	list_for_each_entry_rcu(found, head, list) {
737 		if (found->flags & flags) {
738 			rcu_read_unlock();
739 			return found;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return NULL;
744 }
745 
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 			     u64 owner, u64 root_objectid)
748 {
749 	struct btrfs_space_info *space_info;
750 	u64 flags;
751 
752 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
753 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 		else
756 			flags = BTRFS_BLOCK_GROUP_METADATA;
757 	} else {
758 		flags = BTRFS_BLOCK_GROUP_DATA;
759 	}
760 
761 	space_info = __find_space_info(fs_info, flags);
762 	ASSERT(space_info);
763 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764 }
765 
766 /*
767  * after adding space to the filesystem, we need to clear the full flags
768  * on all the space infos.
769  */
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 {
772 	struct list_head *head = &info->space_info;
773 	struct btrfs_space_info *found;
774 
775 	rcu_read_lock();
776 	list_for_each_entry_rcu(found, head, list)
777 		found->full = 0;
778 	rcu_read_unlock();
779 }
780 
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 {
784 	int ret;
785 	struct btrfs_key key;
786 	struct btrfs_path *path;
787 
788 	path = btrfs_alloc_path();
789 	if (!path)
790 		return -ENOMEM;
791 
792 	key.objectid = start;
793 	key.offset = len;
794 	key.type = BTRFS_EXTENT_ITEM_KEY;
795 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796 	btrfs_free_path(path);
797 	return ret;
798 }
799 
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 			     struct btrfs_fs_info *fs_info, u64 bytenr,
811 			     u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 	struct btrfs_delayed_ref_head *head;
814 	struct btrfs_delayed_ref_root *delayed_refs;
815 	struct btrfs_path *path;
816 	struct btrfs_extent_item *ei;
817 	struct extent_buffer *leaf;
818 	struct btrfs_key key;
819 	u32 item_size;
820 	u64 num_refs;
821 	u64 extent_flags;
822 	int ret;
823 
824 	/*
825 	 * If we don't have skinny metadata, don't bother doing anything
826 	 * different
827 	 */
828 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 		offset = fs_info->nodesize;
830 		metadata = 0;
831 	}
832 
833 	path = btrfs_alloc_path();
834 	if (!path)
835 		return -ENOMEM;
836 
837 	if (!trans) {
838 		path->skip_locking = 1;
839 		path->search_commit_root = 1;
840 	}
841 
842 search_again:
843 	key.objectid = bytenr;
844 	key.offset = offset;
845 	if (metadata)
846 		key.type = BTRFS_METADATA_ITEM_KEY;
847 	else
848 		key.type = BTRFS_EXTENT_ITEM_KEY;
849 
850 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851 	if (ret < 0)
852 		goto out_free;
853 
854 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855 		if (path->slots[0]) {
856 			path->slots[0]--;
857 			btrfs_item_key_to_cpu(path->nodes[0], &key,
858 					      path->slots[0]);
859 			if (key.objectid == bytenr &&
860 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
861 			    key.offset == fs_info->nodesize)
862 				ret = 0;
863 		}
864 	}
865 
866 	if (ret == 0) {
867 		leaf = path->nodes[0];
868 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 		if (item_size >= sizeof(*ei)) {
870 			ei = btrfs_item_ptr(leaf, path->slots[0],
871 					    struct btrfs_extent_item);
872 			num_refs = btrfs_extent_refs(leaf, ei);
873 			extent_flags = btrfs_extent_flags(leaf, ei);
874 		} else {
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 			struct btrfs_extent_item_v0 *ei0;
877 			BUG_ON(item_size != sizeof(*ei0));
878 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 					     struct btrfs_extent_item_v0);
880 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 			/* FIXME: this isn't correct for data */
882 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 #else
884 			BUG();
885 #endif
886 		}
887 		BUG_ON(num_refs == 0);
888 	} else {
889 		num_refs = 0;
890 		extent_flags = 0;
891 		ret = 0;
892 	}
893 
894 	if (!trans)
895 		goto out;
896 
897 	delayed_refs = &trans->transaction->delayed_refs;
898 	spin_lock(&delayed_refs->lock);
899 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900 	if (head) {
901 		if (!mutex_trylock(&head->mutex)) {
902 			refcount_inc(&head->refs);
903 			spin_unlock(&delayed_refs->lock);
904 
905 			btrfs_release_path(path);
906 
907 			/*
908 			 * Mutex was contended, block until it's released and try
909 			 * again
910 			 */
911 			mutex_lock(&head->mutex);
912 			mutex_unlock(&head->mutex);
913 			btrfs_put_delayed_ref_head(head);
914 			goto search_again;
915 		}
916 		spin_lock(&head->lock);
917 		if (head->extent_op && head->extent_op->update_flags)
918 			extent_flags |= head->extent_op->flags_to_set;
919 		else
920 			BUG_ON(num_refs == 0);
921 
922 		num_refs += head->ref_mod;
923 		spin_unlock(&head->lock);
924 		mutex_unlock(&head->mutex);
925 	}
926 	spin_unlock(&delayed_refs->lock);
927 out:
928 	WARN_ON(num_refs == 0);
929 	if (refs)
930 		*refs = num_refs;
931 	if (flags)
932 		*flags = extent_flags;
933 out_free:
934 	btrfs_free_path(path);
935 	return ret;
936 }
937 
938 /*
939  * Back reference rules.  Back refs have three main goals:
940  *
941  * 1) differentiate between all holders of references to an extent so that
942  *    when a reference is dropped we can make sure it was a valid reference
943  *    before freeing the extent.
944  *
945  * 2) Provide enough information to quickly find the holders of an extent
946  *    if we notice a given block is corrupted or bad.
947  *
948  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949  *    maintenance.  This is actually the same as #2, but with a slightly
950  *    different use case.
951  *
952  * There are two kinds of back refs. The implicit back refs is optimized
953  * for pointers in non-shared tree blocks. For a given pointer in a block,
954  * back refs of this kind provide information about the block's owner tree
955  * and the pointer's key. These information allow us to find the block by
956  * b-tree searching. The full back refs is for pointers in tree blocks not
957  * referenced by their owner trees. The location of tree block is recorded
958  * in the back refs. Actually the full back refs is generic, and can be
959  * used in all cases the implicit back refs is used. The major shortcoming
960  * of the full back refs is its overhead. Every time a tree block gets
961  * COWed, we have to update back refs entry for all pointers in it.
962  *
963  * For a newly allocated tree block, we use implicit back refs for
964  * pointers in it. This means most tree related operations only involve
965  * implicit back refs. For a tree block created in old transaction, the
966  * only way to drop a reference to it is COW it. So we can detect the
967  * event that tree block loses its owner tree's reference and do the
968  * back refs conversion.
969  *
970  * When a tree block is COWed through a tree, there are four cases:
971  *
972  * The reference count of the block is one and the tree is the block's
973  * owner tree. Nothing to do in this case.
974  *
975  * The reference count of the block is one and the tree is not the
976  * block's owner tree. In this case, full back refs is used for pointers
977  * in the block. Remove these full back refs, add implicit back refs for
978  * every pointers in the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * the block's owner tree. In this case, implicit back refs is used for
982  * pointers in the block. Add full back refs for every pointers in the
983  * block, increase lower level extents' reference counts. The original
984  * implicit back refs are entailed to the new block.
985  *
986  * The reference count of the block is greater than one and the tree is
987  * not the block's owner tree. Add implicit back refs for every pointer in
988  * the new block, increase lower level extents' reference count.
989  *
990  * Back Reference Key composing:
991  *
992  * The key objectid corresponds to the first byte in the extent,
993  * The key type is used to differentiate between types of back refs.
994  * There are different meanings of the key offset for different types
995  * of back refs.
996  *
997  * File extents can be referenced by:
998  *
999  * - multiple snapshots, subvolumes, or different generations in one subvol
1000  * - different files inside a single subvolume
1001  * - different offsets inside a file (bookend extents in file.c)
1002  *
1003  * The extent ref structure for the implicit back refs has fields for:
1004  *
1005  * - Objectid of the subvolume root
1006  * - objectid of the file holding the reference
1007  * - original offset in the file
1008  * - how many bookend extents
1009  *
1010  * The key offset for the implicit back refs is hash of the first
1011  * three fields.
1012  *
1013  * The extent ref structure for the full back refs has field for:
1014  *
1015  * - number of pointers in the tree leaf
1016  *
1017  * The key offset for the implicit back refs is the first byte of
1018  * the tree leaf
1019  *
1020  * When a file extent is allocated, The implicit back refs is used.
1021  * the fields are filled in:
1022  *
1023  *     (root_key.objectid, inode objectid, offset in file, 1)
1024  *
1025  * When a file extent is removed file truncation, we find the
1026  * corresponding implicit back refs and check the following fields:
1027  *
1028  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1029  *
1030  * Btree extents can be referenced by:
1031  *
1032  * - Different subvolumes
1033  *
1034  * Both the implicit back refs and the full back refs for tree blocks
1035  * only consist of key. The key offset for the implicit back refs is
1036  * objectid of block's owner tree. The key offset for the full back refs
1037  * is the first byte of parent block.
1038  *
1039  * When implicit back refs is used, information about the lowest key and
1040  * level of the tree block are required. These information are stored in
1041  * tree block info structure.
1042  */
1043 
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046 				  struct btrfs_fs_info *fs_info,
1047 				  struct btrfs_path *path,
1048 				  u64 owner, u32 extra_size)
1049 {
1050 	struct btrfs_root *root = fs_info->extent_root;
1051 	struct btrfs_extent_item *item;
1052 	struct btrfs_extent_item_v0 *ei0;
1053 	struct btrfs_extent_ref_v0 *ref0;
1054 	struct btrfs_tree_block_info *bi;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_key key;
1057 	struct btrfs_key found_key;
1058 	u32 new_size = sizeof(*item);
1059 	u64 refs;
1060 	int ret;
1061 
1062 	leaf = path->nodes[0];
1063 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064 
1065 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 			     struct btrfs_extent_item_v0);
1068 	refs = btrfs_extent_refs_v0(leaf, ei0);
1069 
1070 	if (owner == (u64)-1) {
1071 		while (1) {
1072 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 				ret = btrfs_next_leaf(root, path);
1074 				if (ret < 0)
1075 					return ret;
1076 				BUG_ON(ret > 0); /* Corruption */
1077 				leaf = path->nodes[0];
1078 			}
1079 			btrfs_item_key_to_cpu(leaf, &found_key,
1080 					      path->slots[0]);
1081 			BUG_ON(key.objectid != found_key.objectid);
1082 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 				path->slots[0]++;
1084 				continue;
1085 			}
1086 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 					      struct btrfs_extent_ref_v0);
1088 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 			break;
1090 		}
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 		new_size += sizeof(*bi);
1096 
1097 	new_size -= sizeof(*ei0);
1098 	ret = btrfs_search_slot(trans, root, &key, path,
1099 				new_size + extra_size, 1);
1100 	if (ret < 0)
1101 		return ret;
1102 	BUG_ON(ret); /* Corruption */
1103 
1104 	btrfs_extend_item(fs_info, path, new_size);
1105 
1106 	leaf = path->nodes[0];
1107 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 	btrfs_set_extent_refs(leaf, item, refs);
1109 	/* FIXME: get real generation */
1110 	btrfs_set_extent_generation(leaf, item, 0);
1111 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 		btrfs_set_extent_flags(leaf, item,
1113 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 		bi = (struct btrfs_tree_block_info *)(item + 1);
1116 		/* FIXME: get first key of the block */
1117 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 	} else {
1120 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 	}
1122 	btrfs_mark_buffer_dirty(leaf);
1123 	return 0;
1124 }
1125 #endif
1126 
1127 /*
1128  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131  */
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 				     struct btrfs_extent_inline_ref *iref,
1134 				     enum btrfs_inline_ref_type is_data)
1135 {
1136 	int type = btrfs_extent_inline_ref_type(eb, iref);
1137 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138 
1139 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1142 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145 				return type;
1146 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 				ASSERT(eb->fs_info);
1148 				/*
1149 				 * Every shared one has parent tree
1150 				 * block, which must be aligned to
1151 				 * nodesize.
1152 				 */
1153 				if (offset &&
1154 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 					return type;
1156 			}
1157 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1158 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else {
1172 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 			return type;
1174 		}
1175 	}
1176 
1177 	btrfs_print_leaf((struct extent_buffer *)eb);
1178 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 		  eb->start, type);
1180 	WARN_ON(1);
1181 
1182 	return BTRFS_REF_TYPE_INVALID;
1183 }
1184 
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186 {
1187 	u32 high_crc = ~(u32)0;
1188 	u32 low_crc = ~(u32)0;
1189 	__le64 lenum;
1190 
1191 	lenum = cpu_to_le64(root_objectid);
1192 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193 	lenum = cpu_to_le64(owner);
1194 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195 	lenum = cpu_to_le64(offset);
1196 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197 
1198 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 }
1200 
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 				     struct btrfs_extent_data_ref *ref)
1203 {
1204 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 				    btrfs_extent_data_ref_objectid(leaf, ref),
1206 				    btrfs_extent_data_ref_offset(leaf, ref));
1207 }
1208 
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210 				 struct btrfs_extent_data_ref *ref,
1211 				 u64 root_objectid, u64 owner, u64 offset)
1212 {
1213 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 		return 0;
1217 	return 1;
1218 }
1219 
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221 					   struct btrfs_fs_info *fs_info,
1222 					   struct btrfs_path *path,
1223 					   u64 bytenr, u64 parent,
1224 					   u64 root_objectid,
1225 					   u64 owner, u64 offset)
1226 {
1227 	struct btrfs_root *root = fs_info->extent_root;
1228 	struct btrfs_key key;
1229 	struct btrfs_extent_data_ref *ref;
1230 	struct extent_buffer *leaf;
1231 	u32 nritems;
1232 	int ret;
1233 	int recow;
1234 	int err = -ENOENT;
1235 
1236 	key.objectid = bytenr;
1237 	if (parent) {
1238 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 		key.offset = parent;
1240 	} else {
1241 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 		key.offset = hash_extent_data_ref(root_objectid,
1243 						  owner, offset);
1244 	}
1245 again:
1246 	recow = 0;
1247 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 	if (ret < 0) {
1249 		err = ret;
1250 		goto fail;
1251 	}
1252 
1253 	if (parent) {
1254 		if (!ret)
1255 			return 0;
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1258 		btrfs_release_path(path);
1259 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 		if (ret < 0) {
1261 			err = ret;
1262 			goto fail;
1263 		}
1264 		if (!ret)
1265 			return 0;
1266 #endif
1267 		goto fail;
1268 	}
1269 
1270 	leaf = path->nodes[0];
1271 	nritems = btrfs_header_nritems(leaf);
1272 	while (1) {
1273 		if (path->slots[0] >= nritems) {
1274 			ret = btrfs_next_leaf(root, path);
1275 			if (ret < 0)
1276 				err = ret;
1277 			if (ret)
1278 				goto fail;
1279 
1280 			leaf = path->nodes[0];
1281 			nritems = btrfs_header_nritems(leaf);
1282 			recow = 1;
1283 		}
1284 
1285 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 		if (key.objectid != bytenr ||
1287 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 			goto fail;
1289 
1290 		ref = btrfs_item_ptr(leaf, path->slots[0],
1291 				     struct btrfs_extent_data_ref);
1292 
1293 		if (match_extent_data_ref(leaf, ref, root_objectid,
1294 					  owner, offset)) {
1295 			if (recow) {
1296 				btrfs_release_path(path);
1297 				goto again;
1298 			}
1299 			err = 0;
1300 			break;
1301 		}
1302 		path->slots[0]++;
1303 	}
1304 fail:
1305 	return err;
1306 }
1307 
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309 					   struct btrfs_fs_info *fs_info,
1310 					   struct btrfs_path *path,
1311 					   u64 bytenr, u64 parent,
1312 					   u64 root_objectid, u64 owner,
1313 					   u64 offset, int refs_to_add)
1314 {
1315 	struct btrfs_root *root = fs_info->extent_root;
1316 	struct btrfs_key key;
1317 	struct extent_buffer *leaf;
1318 	u32 size;
1319 	u32 num_refs;
1320 	int ret;
1321 
1322 	key.objectid = bytenr;
1323 	if (parent) {
1324 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 		key.offset = parent;
1326 		size = sizeof(struct btrfs_shared_data_ref);
1327 	} else {
1328 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 		key.offset = hash_extent_data_ref(root_objectid,
1330 						  owner, offset);
1331 		size = sizeof(struct btrfs_extent_data_ref);
1332 	}
1333 
1334 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 	if (ret && ret != -EEXIST)
1336 		goto fail;
1337 
1338 	leaf = path->nodes[0];
1339 	if (parent) {
1340 		struct btrfs_shared_data_ref *ref;
1341 		ref = btrfs_item_ptr(leaf, path->slots[0],
1342 				     struct btrfs_shared_data_ref);
1343 		if (ret == 0) {
1344 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 		} else {
1346 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 			num_refs += refs_to_add;
1348 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349 		}
1350 	} else {
1351 		struct btrfs_extent_data_ref *ref;
1352 		while (ret == -EEXIST) {
1353 			ref = btrfs_item_ptr(leaf, path->slots[0],
1354 					     struct btrfs_extent_data_ref);
1355 			if (match_extent_data_ref(leaf, ref, root_objectid,
1356 						  owner, offset))
1357 				break;
1358 			btrfs_release_path(path);
1359 			key.offset++;
1360 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 						      size);
1362 			if (ret && ret != -EEXIST)
1363 				goto fail;
1364 
1365 			leaf = path->nodes[0];
1366 		}
1367 		ref = btrfs_item_ptr(leaf, path->slots[0],
1368 				     struct btrfs_extent_data_ref);
1369 		if (ret == 0) {
1370 			btrfs_set_extent_data_ref_root(leaf, ref,
1371 						       root_objectid);
1372 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 		} else {
1376 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 			num_refs += refs_to_add;
1378 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379 		}
1380 	}
1381 	btrfs_mark_buffer_dirty(leaf);
1382 	ret = 0;
1383 fail:
1384 	btrfs_release_path(path);
1385 	return ret;
1386 }
1387 
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389 					   struct btrfs_fs_info *fs_info,
1390 					   struct btrfs_path *path,
1391 					   int refs_to_drop, int *last_ref)
1392 {
1393 	struct btrfs_key key;
1394 	struct btrfs_extent_data_ref *ref1 = NULL;
1395 	struct btrfs_shared_data_ref *ref2 = NULL;
1396 	struct extent_buffer *leaf;
1397 	u32 num_refs = 0;
1398 	int ret = 0;
1399 
1400 	leaf = path->nodes[0];
1401 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 
1403 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 				      struct btrfs_extent_data_ref);
1406 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 				      struct btrfs_shared_data_ref);
1410 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 		struct btrfs_extent_ref_v0 *ref0;
1414 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 				      struct btrfs_extent_ref_v0);
1416 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418 	} else {
1419 		BUG();
1420 	}
1421 
1422 	BUG_ON(num_refs < refs_to_drop);
1423 	num_refs -= refs_to_drop;
1424 
1425 	if (num_refs == 0) {
1426 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427 		*last_ref = 1;
1428 	} else {
1429 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 		else {
1435 			struct btrfs_extent_ref_v0 *ref0;
1436 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 					struct btrfs_extent_ref_v0);
1438 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 		}
1440 #endif
1441 		btrfs_mark_buffer_dirty(leaf);
1442 	}
1443 	return ret;
1444 }
1445 
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447 					  struct btrfs_extent_inline_ref *iref)
1448 {
1449 	struct btrfs_key key;
1450 	struct extent_buffer *leaf;
1451 	struct btrfs_extent_data_ref *ref1;
1452 	struct btrfs_shared_data_ref *ref2;
1453 	u32 num_refs = 0;
1454 	int type;
1455 
1456 	leaf = path->nodes[0];
1457 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 	if (iref) {
1459 		/*
1460 		 * If type is invalid, we should have bailed out earlier than
1461 		 * this call.
1462 		 */
1463 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 		} else {
1469 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 		}
1472 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 				      struct btrfs_extent_data_ref);
1475 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 				      struct btrfs_shared_data_ref);
1479 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 		struct btrfs_extent_ref_v0 *ref0;
1483 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 				      struct btrfs_extent_ref_v0);
1485 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1486 #endif
1487 	} else {
1488 		WARN_ON(1);
1489 	}
1490 	return num_refs;
1491 }
1492 
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494 					  struct btrfs_fs_info *fs_info,
1495 					  struct btrfs_path *path,
1496 					  u64 bytenr, u64 parent,
1497 					  u64 root_objectid)
1498 {
1499 	struct btrfs_root *root = fs_info->extent_root;
1500 	struct btrfs_key key;
1501 	int ret;
1502 
1503 	key.objectid = bytenr;
1504 	if (parent) {
1505 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 		key.offset = parent;
1507 	} else {
1508 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 		key.offset = root_objectid;
1510 	}
1511 
1512 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 	if (ret > 0)
1514 		ret = -ENOENT;
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 	if (ret == -ENOENT && parent) {
1517 		btrfs_release_path(path);
1518 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 		if (ret > 0)
1521 			ret = -ENOENT;
1522 	}
1523 #endif
1524 	return ret;
1525 }
1526 
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528 					  struct btrfs_fs_info *fs_info,
1529 					  struct btrfs_path *path,
1530 					  u64 bytenr, u64 parent,
1531 					  u64 root_objectid)
1532 {
1533 	struct btrfs_key key;
1534 	int ret;
1535 
1536 	key.objectid = bytenr;
1537 	if (parent) {
1538 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 		key.offset = parent;
1540 	} else {
1541 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 		key.offset = root_objectid;
1543 	}
1544 
1545 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 				      path, &key, 0);
1547 	btrfs_release_path(path);
1548 	return ret;
1549 }
1550 
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1552 {
1553 	int type;
1554 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 		if (parent > 0)
1556 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 		else
1558 			type = BTRFS_TREE_BLOCK_REF_KEY;
1559 	} else {
1560 		if (parent > 0)
1561 			type = BTRFS_SHARED_DATA_REF_KEY;
1562 		else
1563 			type = BTRFS_EXTENT_DATA_REF_KEY;
1564 	}
1565 	return type;
1566 }
1567 
1568 static int find_next_key(struct btrfs_path *path, int level,
1569 			 struct btrfs_key *key)
1570 
1571 {
1572 	for (; level < BTRFS_MAX_LEVEL; level++) {
1573 		if (!path->nodes[level])
1574 			break;
1575 		if (path->slots[level] + 1 >=
1576 		    btrfs_header_nritems(path->nodes[level]))
1577 			continue;
1578 		if (level == 0)
1579 			btrfs_item_key_to_cpu(path->nodes[level], key,
1580 					      path->slots[level] + 1);
1581 		else
1582 			btrfs_node_key_to_cpu(path->nodes[level], key,
1583 					      path->slots[level] + 1);
1584 		return 0;
1585 	}
1586 	return 1;
1587 }
1588 
1589 /*
1590  * look for inline back ref. if back ref is found, *ref_ret is set
1591  * to the address of inline back ref, and 0 is returned.
1592  *
1593  * if back ref isn't found, *ref_ret is set to the address where it
1594  * should be inserted, and -ENOENT is returned.
1595  *
1596  * if insert is true and there are too many inline back refs, the path
1597  * points to the extent item, and -EAGAIN is returned.
1598  *
1599  * NOTE: inline back refs are ordered in the same way that back ref
1600  *	 items in the tree are ordered.
1601  */
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604 				 struct btrfs_fs_info *fs_info,
1605 				 struct btrfs_path *path,
1606 				 struct btrfs_extent_inline_ref **ref_ret,
1607 				 u64 bytenr, u64 num_bytes,
1608 				 u64 parent, u64 root_objectid,
1609 				 u64 owner, u64 offset, int insert)
1610 {
1611 	struct btrfs_root *root = fs_info->extent_root;
1612 	struct btrfs_key key;
1613 	struct extent_buffer *leaf;
1614 	struct btrfs_extent_item *ei;
1615 	struct btrfs_extent_inline_ref *iref;
1616 	u64 flags;
1617 	u64 item_size;
1618 	unsigned long ptr;
1619 	unsigned long end;
1620 	int extra_size;
1621 	int type;
1622 	int want;
1623 	int ret;
1624 	int err = 0;
1625 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626 	int needed;
1627 
1628 	key.objectid = bytenr;
1629 	key.type = BTRFS_EXTENT_ITEM_KEY;
1630 	key.offset = num_bytes;
1631 
1632 	want = extent_ref_type(parent, owner);
1633 	if (insert) {
1634 		extra_size = btrfs_extent_inline_ref_size(want);
1635 		path->keep_locks = 1;
1636 	} else
1637 		extra_size = -1;
1638 
1639 	/*
1640 	 * Owner is our parent level, so we can just add one to get the level
1641 	 * for the block we are interested in.
1642 	 */
1643 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 		key.type = BTRFS_METADATA_ITEM_KEY;
1645 		key.offset = owner;
1646 	}
1647 
1648 again:
1649 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650 	if (ret < 0) {
1651 		err = ret;
1652 		goto out;
1653 	}
1654 
1655 	/*
1656 	 * We may be a newly converted file system which still has the old fat
1657 	 * extent entries for metadata, so try and see if we have one of those.
1658 	 */
1659 	if (ret > 0 && skinny_metadata) {
1660 		skinny_metadata = false;
1661 		if (path->slots[0]) {
1662 			path->slots[0]--;
1663 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 					      path->slots[0]);
1665 			if (key.objectid == bytenr &&
1666 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 			    key.offset == num_bytes)
1668 				ret = 0;
1669 		}
1670 		if (ret) {
1671 			key.objectid = bytenr;
1672 			key.type = BTRFS_EXTENT_ITEM_KEY;
1673 			key.offset = num_bytes;
1674 			btrfs_release_path(path);
1675 			goto again;
1676 		}
1677 	}
1678 
1679 	if (ret && !insert) {
1680 		err = -ENOENT;
1681 		goto out;
1682 	} else if (WARN_ON(ret)) {
1683 		err = -EIO;
1684 		goto out;
1685 	}
1686 
1687 	leaf = path->nodes[0];
1688 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 	if (item_size < sizeof(*ei)) {
1691 		if (!insert) {
1692 			err = -ENOENT;
1693 			goto out;
1694 		}
1695 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696 					     extra_size);
1697 		if (ret < 0) {
1698 			err = ret;
1699 			goto out;
1700 		}
1701 		leaf = path->nodes[0];
1702 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 	}
1704 #endif
1705 	BUG_ON(item_size < sizeof(*ei));
1706 
1707 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 	flags = btrfs_extent_flags(leaf, ei);
1709 
1710 	ptr = (unsigned long)(ei + 1);
1711 	end = (unsigned long)ei + item_size;
1712 
1713 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714 		ptr += sizeof(struct btrfs_tree_block_info);
1715 		BUG_ON(ptr > end);
1716 	}
1717 
1718 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 		needed = BTRFS_REF_TYPE_DATA;
1720 	else
1721 		needed = BTRFS_REF_TYPE_BLOCK;
1722 
1723 	err = -ENOENT;
1724 	while (1) {
1725 		if (ptr >= end) {
1726 			WARN_ON(ptr > end);
1727 			break;
1728 		}
1729 		iref = (struct btrfs_extent_inline_ref *)ptr;
1730 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 		if (type == BTRFS_REF_TYPE_INVALID) {
1732 			err = -EINVAL;
1733 			goto out;
1734 		}
1735 
1736 		if (want < type)
1737 			break;
1738 		if (want > type) {
1739 			ptr += btrfs_extent_inline_ref_size(type);
1740 			continue;
1741 		}
1742 
1743 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 			struct btrfs_extent_data_ref *dref;
1745 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 			if (match_extent_data_ref(leaf, dref, root_objectid,
1747 						  owner, offset)) {
1748 				err = 0;
1749 				break;
1750 			}
1751 			if (hash_extent_data_ref_item(leaf, dref) <
1752 			    hash_extent_data_ref(root_objectid, owner, offset))
1753 				break;
1754 		} else {
1755 			u64 ref_offset;
1756 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 			if (parent > 0) {
1758 				if (parent == ref_offset) {
1759 					err = 0;
1760 					break;
1761 				}
1762 				if (ref_offset < parent)
1763 					break;
1764 			} else {
1765 				if (root_objectid == ref_offset) {
1766 					err = 0;
1767 					break;
1768 				}
1769 				if (ref_offset < root_objectid)
1770 					break;
1771 			}
1772 		}
1773 		ptr += btrfs_extent_inline_ref_size(type);
1774 	}
1775 	if (err == -ENOENT && insert) {
1776 		if (item_size + extra_size >=
1777 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 			err = -EAGAIN;
1779 			goto out;
1780 		}
1781 		/*
1782 		 * To add new inline back ref, we have to make sure
1783 		 * there is no corresponding back ref item.
1784 		 * For simplicity, we just do not add new inline back
1785 		 * ref if there is any kind of item for this block
1786 		 */
1787 		if (find_next_key(path, 0, &key) == 0 &&
1788 		    key.objectid == bytenr &&
1789 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790 			err = -EAGAIN;
1791 			goto out;
1792 		}
1793 	}
1794 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795 out:
1796 	if (insert) {
1797 		path->keep_locks = 0;
1798 		btrfs_unlock_up_safe(path, 1);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  * helper to add new inline back ref
1805  */
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808 				 struct btrfs_path *path,
1809 				 struct btrfs_extent_inline_ref *iref,
1810 				 u64 parent, u64 root_objectid,
1811 				 u64 owner, u64 offset, int refs_to_add,
1812 				 struct btrfs_delayed_extent_op *extent_op)
1813 {
1814 	struct extent_buffer *leaf;
1815 	struct btrfs_extent_item *ei;
1816 	unsigned long ptr;
1817 	unsigned long end;
1818 	unsigned long item_offset;
1819 	u64 refs;
1820 	int size;
1821 	int type;
1822 
1823 	leaf = path->nodes[0];
1824 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 	item_offset = (unsigned long)iref - (unsigned long)ei;
1826 
1827 	type = extent_ref_type(parent, owner);
1828 	size = btrfs_extent_inline_ref_size(type);
1829 
1830 	btrfs_extend_item(fs_info, path, size);
1831 
1832 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 	refs = btrfs_extent_refs(leaf, ei);
1834 	refs += refs_to_add;
1835 	btrfs_set_extent_refs(leaf, ei, refs);
1836 	if (extent_op)
1837 		__run_delayed_extent_op(extent_op, leaf, ei);
1838 
1839 	ptr = (unsigned long)ei + item_offset;
1840 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 	if (ptr < end - size)
1842 		memmove_extent_buffer(leaf, ptr + size, ptr,
1843 				      end - size - ptr);
1844 
1845 	iref = (struct btrfs_extent_inline_ref *)ptr;
1846 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 		struct btrfs_extent_data_ref *dref;
1849 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 		struct btrfs_shared_data_ref *sref;
1856 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 	} else {
1862 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 	}
1864 	btrfs_mark_buffer_dirty(leaf);
1865 }
1866 
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868 				 struct btrfs_fs_info *fs_info,
1869 				 struct btrfs_path *path,
1870 				 struct btrfs_extent_inline_ref **ref_ret,
1871 				 u64 bytenr, u64 num_bytes, u64 parent,
1872 				 u64 root_objectid, u64 owner, u64 offset)
1873 {
1874 	int ret;
1875 
1876 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877 					   bytenr, num_bytes, parent,
1878 					   root_objectid, owner, offset, 0);
1879 	if (ret != -ENOENT)
1880 		return ret;
1881 
1882 	btrfs_release_path(path);
1883 	*ref_ret = NULL;
1884 
1885 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 					    parent, root_objectid);
1888 	} else {
1889 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 					     parent, root_objectid, owner,
1891 					     offset);
1892 	}
1893 	return ret;
1894 }
1895 
1896 /*
1897  * helper to update/remove inline back ref
1898  */
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901 				  struct btrfs_path *path,
1902 				  struct btrfs_extent_inline_ref *iref,
1903 				  int refs_to_mod,
1904 				  struct btrfs_delayed_extent_op *extent_op,
1905 				  int *last_ref)
1906 {
1907 	struct extent_buffer *leaf;
1908 	struct btrfs_extent_item *ei;
1909 	struct btrfs_extent_data_ref *dref = NULL;
1910 	struct btrfs_shared_data_ref *sref = NULL;
1911 	unsigned long ptr;
1912 	unsigned long end;
1913 	u32 item_size;
1914 	int size;
1915 	int type;
1916 	u64 refs;
1917 
1918 	leaf = path->nodes[0];
1919 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 	refs = btrfs_extent_refs(leaf, ei);
1921 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 	refs += refs_to_mod;
1923 	btrfs_set_extent_refs(leaf, ei, refs);
1924 	if (extent_op)
1925 		__run_delayed_extent_op(extent_op, leaf, ei);
1926 
1927 	/*
1928 	 * If type is invalid, we should have bailed out after
1929 	 * lookup_inline_extent_backref().
1930 	 */
1931 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933 
1934 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 		refs = btrfs_extent_data_ref_count(leaf, dref);
1937 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 		refs = btrfs_shared_data_ref_count(leaf, sref);
1940 	} else {
1941 		refs = 1;
1942 		BUG_ON(refs_to_mod != -1);
1943 	}
1944 
1945 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 	refs += refs_to_mod;
1947 
1948 	if (refs > 0) {
1949 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 		else
1952 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 	} else {
1954 		*last_ref = 1;
1955 		size =  btrfs_extent_inline_ref_size(type);
1956 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 		ptr = (unsigned long)iref;
1958 		end = (unsigned long)ei + item_size;
1959 		if (ptr + size < end)
1960 			memmove_extent_buffer(leaf, ptr, ptr + size,
1961 					      end - ptr - size);
1962 		item_size -= size;
1963 		btrfs_truncate_item(fs_info, path, item_size, 1);
1964 	}
1965 	btrfs_mark_buffer_dirty(leaf);
1966 }
1967 
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970 				 struct btrfs_fs_info *fs_info,
1971 				 struct btrfs_path *path,
1972 				 u64 bytenr, u64 num_bytes, u64 parent,
1973 				 u64 root_objectid, u64 owner,
1974 				 u64 offset, int refs_to_add,
1975 				 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_extent_inline_ref *iref;
1978 	int ret;
1979 
1980 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981 					   bytenr, num_bytes, parent,
1982 					   root_objectid, owner, offset, 1);
1983 	if (ret == 0) {
1984 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985 		update_inline_extent_backref(fs_info, path, iref,
1986 					     refs_to_add, extent_op, NULL);
1987 	} else if (ret == -ENOENT) {
1988 		setup_inline_extent_backref(fs_info, path, iref, parent,
1989 					    root_objectid, owner, offset,
1990 					    refs_to_add, extent_op);
1991 		ret = 0;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997 				 struct btrfs_fs_info *fs_info,
1998 				 struct btrfs_path *path,
1999 				 u64 bytenr, u64 parent, u64 root_objectid,
2000 				 u64 owner, u64 offset, int refs_to_add)
2001 {
2002 	int ret;
2003 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 		BUG_ON(refs_to_add != 1);
2005 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006 					    parent, root_objectid);
2007 	} else {
2008 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009 					     parent, root_objectid,
2010 					     owner, offset, refs_to_add);
2011 	}
2012 	return ret;
2013 }
2014 
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016 				 struct btrfs_fs_info *fs_info,
2017 				 struct btrfs_path *path,
2018 				 struct btrfs_extent_inline_ref *iref,
2019 				 int refs_to_drop, int is_data, int *last_ref)
2020 {
2021 	int ret = 0;
2022 
2023 	BUG_ON(!is_data && refs_to_drop != 1);
2024 	if (iref) {
2025 		update_inline_extent_backref(fs_info, path, iref,
2026 					     -refs_to_drop, NULL, last_ref);
2027 	} else if (is_data) {
2028 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029 					     last_ref);
2030 	} else {
2031 		*last_ref = 1;
2032 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033 	}
2034 	return ret;
2035 }
2036 
2037 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 			       u64 *discarded_bytes)
2040 {
2041 	int j, ret = 0;
2042 	u64 bytes_left, end;
2043 	u64 aligned_start = ALIGN(start, 1 << 9);
2044 
2045 	if (WARN_ON(start != aligned_start)) {
2046 		len -= aligned_start - start;
2047 		len = round_down(len, 1 << 9);
2048 		start = aligned_start;
2049 	}
2050 
2051 	*discarded_bytes = 0;
2052 
2053 	if (!len)
2054 		return 0;
2055 
2056 	end = start + len;
2057 	bytes_left = len;
2058 
2059 	/* Skip any superblocks on this device. */
2060 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 		u64 sb_start = btrfs_sb_offset(j);
2062 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 		u64 size = sb_start - start;
2064 
2065 		if (!in_range(sb_start, start, bytes_left) &&
2066 		    !in_range(sb_end, start, bytes_left) &&
2067 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 			continue;
2069 
2070 		/*
2071 		 * Superblock spans beginning of range.  Adjust start and
2072 		 * try again.
2073 		 */
2074 		if (sb_start <= start) {
2075 			start += sb_end - start;
2076 			if (start > end) {
2077 				bytes_left = 0;
2078 				break;
2079 			}
2080 			bytes_left = end - start;
2081 			continue;
2082 		}
2083 
2084 		if (size) {
2085 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 						   GFP_NOFS, 0);
2087 			if (!ret)
2088 				*discarded_bytes += size;
2089 			else if (ret != -EOPNOTSUPP)
2090 				return ret;
2091 		}
2092 
2093 		start = sb_end;
2094 		if (start > end) {
2095 			bytes_left = 0;
2096 			break;
2097 		}
2098 		bytes_left = end - start;
2099 	}
2100 
2101 	if (bytes_left) {
2102 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103 					   GFP_NOFS, 0);
2104 		if (!ret)
2105 			*discarded_bytes += bytes_left;
2106 	}
2107 	return ret;
2108 }
2109 
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111 			 u64 num_bytes, u64 *actual_bytes)
2112 {
2113 	int ret;
2114 	u64 discarded_bytes = 0;
2115 	struct btrfs_bio *bbio = NULL;
2116 
2117 
2118 	/*
2119 	 * Avoid races with device replace and make sure our bbio has devices
2120 	 * associated to its stripes that don't go away while we are discarding.
2121 	 */
2122 	btrfs_bio_counter_inc_blocked(fs_info);
2123 	/* Tell the block device(s) that the sectors can be discarded */
2124 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 			      &bbio, 0);
2126 	/* Error condition is -ENOMEM */
2127 	if (!ret) {
2128 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2129 		int i;
2130 
2131 
2132 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133 			u64 bytes;
2134 			struct request_queue *req_q;
2135 
2136 			if (!stripe->dev->bdev) {
2137 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 				continue;
2139 			}
2140 			req_q = bdev_get_queue(stripe->dev->bdev);
2141 			if (!blk_queue_discard(req_q))
2142 				continue;
2143 
2144 			ret = btrfs_issue_discard(stripe->dev->bdev,
2145 						  stripe->physical,
2146 						  stripe->length,
2147 						  &bytes);
2148 			if (!ret)
2149 				discarded_bytes += bytes;
2150 			else if (ret != -EOPNOTSUPP)
2151 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152 
2153 			/*
2154 			 * Just in case we get back EOPNOTSUPP for some reason,
2155 			 * just ignore the return value so we don't screw up
2156 			 * people calling discard_extent.
2157 			 */
2158 			ret = 0;
2159 		}
2160 		btrfs_put_bbio(bbio);
2161 	}
2162 	btrfs_bio_counter_dec(fs_info);
2163 
2164 	if (actual_bytes)
2165 		*actual_bytes = discarded_bytes;
2166 
2167 
2168 	if (ret == -EOPNOTSUPP)
2169 		ret = 0;
2170 	return ret;
2171 }
2172 
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175 			 struct btrfs_root *root,
2176 			 u64 bytenr, u64 num_bytes, u64 parent,
2177 			 u64 root_objectid, u64 owner, u64 offset)
2178 {
2179 	struct btrfs_fs_info *fs_info = root->fs_info;
2180 	int old_ref_mod, new_ref_mod;
2181 	int ret;
2182 
2183 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185 
2186 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2188 
2189 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191 						 num_bytes, parent,
2192 						 root_objectid, (int)owner,
2193 						 BTRFS_ADD_DELAYED_REF, NULL,
2194 						 &old_ref_mod, &new_ref_mod);
2195 	} else {
2196 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197 						 num_bytes, parent,
2198 						 root_objectid, owner, offset,
2199 						 0, BTRFS_ADD_DELAYED_REF,
2200 						 &old_ref_mod, &new_ref_mod);
2201 	}
2202 
2203 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2204 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2205 
2206 	return ret;
2207 }
2208 
2209 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2210 				  struct btrfs_fs_info *fs_info,
2211 				  struct btrfs_delayed_ref_node *node,
2212 				  u64 parent, u64 root_objectid,
2213 				  u64 owner, u64 offset, int refs_to_add,
2214 				  struct btrfs_delayed_extent_op *extent_op)
2215 {
2216 	struct btrfs_path *path;
2217 	struct extent_buffer *leaf;
2218 	struct btrfs_extent_item *item;
2219 	struct btrfs_key key;
2220 	u64 bytenr = node->bytenr;
2221 	u64 num_bytes = node->num_bytes;
2222 	u64 refs;
2223 	int ret;
2224 
2225 	path = btrfs_alloc_path();
2226 	if (!path)
2227 		return -ENOMEM;
2228 
2229 	path->reada = READA_FORWARD;
2230 	path->leave_spinning = 1;
2231 	/* this will setup the path even if it fails to insert the back ref */
2232 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2233 					   num_bytes, parent, root_objectid,
2234 					   owner, offset,
2235 					   refs_to_add, extent_op);
2236 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2237 		goto out;
2238 
2239 	/*
2240 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2241 	 * inline extent ref, so just update the reference count and add a
2242 	 * normal backref.
2243 	 */
2244 	leaf = path->nodes[0];
2245 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2246 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2247 	refs = btrfs_extent_refs(leaf, item);
2248 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2249 	if (extent_op)
2250 		__run_delayed_extent_op(extent_op, leaf, item);
2251 
2252 	btrfs_mark_buffer_dirty(leaf);
2253 	btrfs_release_path(path);
2254 
2255 	path->reada = READA_FORWARD;
2256 	path->leave_spinning = 1;
2257 	/* now insert the actual backref */
2258 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2259 				    root_objectid, owner, offset, refs_to_add);
2260 	if (ret)
2261 		btrfs_abort_transaction(trans, ret);
2262 out:
2263 	btrfs_free_path(path);
2264 	return ret;
2265 }
2266 
2267 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2268 				struct btrfs_fs_info *fs_info,
2269 				struct btrfs_delayed_ref_node *node,
2270 				struct btrfs_delayed_extent_op *extent_op,
2271 				int insert_reserved)
2272 {
2273 	int ret = 0;
2274 	struct btrfs_delayed_data_ref *ref;
2275 	struct btrfs_key ins;
2276 	u64 parent = 0;
2277 	u64 ref_root = 0;
2278 	u64 flags = 0;
2279 
2280 	ins.objectid = node->bytenr;
2281 	ins.offset = node->num_bytes;
2282 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2283 
2284 	ref = btrfs_delayed_node_to_data_ref(node);
2285 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2286 
2287 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2288 		parent = ref->parent;
2289 	ref_root = ref->root;
2290 
2291 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2292 		if (extent_op)
2293 			flags |= extent_op->flags_to_set;
2294 		ret = alloc_reserved_file_extent(trans, fs_info,
2295 						 parent, ref_root, flags,
2296 						 ref->objectid, ref->offset,
2297 						 &ins, node->ref_mod);
2298 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2299 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2300 					     ref_root, ref->objectid,
2301 					     ref->offset, node->ref_mod,
2302 					     extent_op);
2303 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2304 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2305 					  ref_root, ref->objectid,
2306 					  ref->offset, node->ref_mod,
2307 					  extent_op);
2308 	} else {
2309 		BUG();
2310 	}
2311 	return ret;
2312 }
2313 
2314 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2315 				    struct extent_buffer *leaf,
2316 				    struct btrfs_extent_item *ei)
2317 {
2318 	u64 flags = btrfs_extent_flags(leaf, ei);
2319 	if (extent_op->update_flags) {
2320 		flags |= extent_op->flags_to_set;
2321 		btrfs_set_extent_flags(leaf, ei, flags);
2322 	}
2323 
2324 	if (extent_op->update_key) {
2325 		struct btrfs_tree_block_info *bi;
2326 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2327 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2328 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2329 	}
2330 }
2331 
2332 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2333 				 struct btrfs_fs_info *fs_info,
2334 				 struct btrfs_delayed_ref_head *head,
2335 				 struct btrfs_delayed_extent_op *extent_op)
2336 {
2337 	struct btrfs_key key;
2338 	struct btrfs_path *path;
2339 	struct btrfs_extent_item *ei;
2340 	struct extent_buffer *leaf;
2341 	u32 item_size;
2342 	int ret;
2343 	int err = 0;
2344 	int metadata = !extent_op->is_data;
2345 
2346 	if (trans->aborted)
2347 		return 0;
2348 
2349 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2350 		metadata = 0;
2351 
2352 	path = btrfs_alloc_path();
2353 	if (!path)
2354 		return -ENOMEM;
2355 
2356 	key.objectid = head->bytenr;
2357 
2358 	if (metadata) {
2359 		key.type = BTRFS_METADATA_ITEM_KEY;
2360 		key.offset = extent_op->level;
2361 	} else {
2362 		key.type = BTRFS_EXTENT_ITEM_KEY;
2363 		key.offset = head->num_bytes;
2364 	}
2365 
2366 again:
2367 	path->reada = READA_FORWARD;
2368 	path->leave_spinning = 1;
2369 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2370 	if (ret < 0) {
2371 		err = ret;
2372 		goto out;
2373 	}
2374 	if (ret > 0) {
2375 		if (metadata) {
2376 			if (path->slots[0] > 0) {
2377 				path->slots[0]--;
2378 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2379 						      path->slots[0]);
2380 				if (key.objectid == head->bytenr &&
2381 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2382 				    key.offset == head->num_bytes)
2383 					ret = 0;
2384 			}
2385 			if (ret > 0) {
2386 				btrfs_release_path(path);
2387 				metadata = 0;
2388 
2389 				key.objectid = head->bytenr;
2390 				key.offset = head->num_bytes;
2391 				key.type = BTRFS_EXTENT_ITEM_KEY;
2392 				goto again;
2393 			}
2394 		} else {
2395 			err = -EIO;
2396 			goto out;
2397 		}
2398 	}
2399 
2400 	leaf = path->nodes[0];
2401 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2402 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2403 	if (item_size < sizeof(*ei)) {
2404 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2405 		if (ret < 0) {
2406 			err = ret;
2407 			goto out;
2408 		}
2409 		leaf = path->nodes[0];
2410 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2411 	}
2412 #endif
2413 	BUG_ON(item_size < sizeof(*ei));
2414 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2415 	__run_delayed_extent_op(extent_op, leaf, ei);
2416 
2417 	btrfs_mark_buffer_dirty(leaf);
2418 out:
2419 	btrfs_free_path(path);
2420 	return err;
2421 }
2422 
2423 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2424 				struct btrfs_fs_info *fs_info,
2425 				struct btrfs_delayed_ref_node *node,
2426 				struct btrfs_delayed_extent_op *extent_op,
2427 				int insert_reserved)
2428 {
2429 	int ret = 0;
2430 	struct btrfs_delayed_tree_ref *ref;
2431 	struct btrfs_key ins;
2432 	u64 parent = 0;
2433 	u64 ref_root = 0;
2434 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2435 
2436 	ref = btrfs_delayed_node_to_tree_ref(node);
2437 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2438 
2439 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2440 		parent = ref->parent;
2441 	ref_root = ref->root;
2442 
2443 	ins.objectid = node->bytenr;
2444 	if (skinny_metadata) {
2445 		ins.offset = ref->level;
2446 		ins.type = BTRFS_METADATA_ITEM_KEY;
2447 	} else {
2448 		ins.offset = node->num_bytes;
2449 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2450 	}
2451 
2452 	if (node->ref_mod != 1) {
2453 		btrfs_err(fs_info,
2454 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2455 			  node->bytenr, node->ref_mod, node->action, ref_root,
2456 			  parent);
2457 		return -EIO;
2458 	}
2459 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2460 		BUG_ON(!extent_op || !extent_op->update_flags);
2461 		ret = alloc_reserved_tree_block(trans, fs_info,
2462 						parent, ref_root,
2463 						extent_op->flags_to_set,
2464 						&extent_op->key,
2465 						ref->level, &ins);
2466 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2467 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2468 					     parent, ref_root,
2469 					     ref->level, 0, 1,
2470 					     extent_op);
2471 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2472 		ret = __btrfs_free_extent(trans, fs_info, node,
2473 					  parent, ref_root,
2474 					  ref->level, 0, 1, extent_op);
2475 	} else {
2476 		BUG();
2477 	}
2478 	return ret;
2479 }
2480 
2481 /* helper function to actually process a single delayed ref entry */
2482 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2483 			       struct btrfs_fs_info *fs_info,
2484 			       struct btrfs_delayed_ref_node *node,
2485 			       struct btrfs_delayed_extent_op *extent_op,
2486 			       int insert_reserved)
2487 {
2488 	int ret = 0;
2489 
2490 	if (trans->aborted) {
2491 		if (insert_reserved)
2492 			btrfs_pin_extent(fs_info, node->bytenr,
2493 					 node->num_bytes, 1);
2494 		return 0;
2495 	}
2496 
2497 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2498 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2499 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2500 					   insert_reserved);
2501 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2502 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2503 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2504 					   insert_reserved);
2505 	else
2506 		BUG();
2507 	return ret;
2508 }
2509 
2510 static inline struct btrfs_delayed_ref_node *
2511 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2512 {
2513 	struct btrfs_delayed_ref_node *ref;
2514 
2515 	if (RB_EMPTY_ROOT(&head->ref_tree))
2516 		return NULL;
2517 
2518 	/*
2519 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2520 	 * This is to prevent a ref count from going down to zero, which deletes
2521 	 * the extent item from the extent tree, when there still are references
2522 	 * to add, which would fail because they would not find the extent item.
2523 	 */
2524 	if (!list_empty(&head->ref_add_list))
2525 		return list_first_entry(&head->ref_add_list,
2526 				struct btrfs_delayed_ref_node, add_list);
2527 
2528 	ref = rb_entry(rb_first(&head->ref_tree),
2529 		       struct btrfs_delayed_ref_node, ref_node);
2530 	ASSERT(list_empty(&ref->add_list));
2531 	return ref;
2532 }
2533 
2534 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2535 				      struct btrfs_delayed_ref_head *head)
2536 {
2537 	spin_lock(&delayed_refs->lock);
2538 	head->processing = 0;
2539 	delayed_refs->num_heads_ready++;
2540 	spin_unlock(&delayed_refs->lock);
2541 	btrfs_delayed_ref_unlock(head);
2542 }
2543 
2544 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2545 			     struct btrfs_fs_info *fs_info,
2546 			     struct btrfs_delayed_ref_head *head)
2547 {
2548 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2549 	int ret;
2550 
2551 	if (!extent_op)
2552 		return 0;
2553 	head->extent_op = NULL;
2554 	if (head->must_insert_reserved) {
2555 		btrfs_free_delayed_extent_op(extent_op);
2556 		return 0;
2557 	}
2558 	spin_unlock(&head->lock);
2559 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2560 	btrfs_free_delayed_extent_op(extent_op);
2561 	return ret ? ret : 1;
2562 }
2563 
2564 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2565 			    struct btrfs_fs_info *fs_info,
2566 			    struct btrfs_delayed_ref_head *head)
2567 {
2568 	struct btrfs_delayed_ref_root *delayed_refs;
2569 	int ret;
2570 
2571 	delayed_refs = &trans->transaction->delayed_refs;
2572 
2573 	ret = cleanup_extent_op(trans, fs_info, head);
2574 	if (ret < 0) {
2575 		unselect_delayed_ref_head(delayed_refs, head);
2576 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2577 		return ret;
2578 	} else if (ret) {
2579 		return ret;
2580 	}
2581 
2582 	/*
2583 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2584 	 * and then re-check to make sure nobody got added.
2585 	 */
2586 	spin_unlock(&head->lock);
2587 	spin_lock(&delayed_refs->lock);
2588 	spin_lock(&head->lock);
2589 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2590 		spin_unlock(&head->lock);
2591 		spin_unlock(&delayed_refs->lock);
2592 		return 1;
2593 	}
2594 	delayed_refs->num_heads--;
2595 	rb_erase(&head->href_node, &delayed_refs->href_root);
2596 	RB_CLEAR_NODE(&head->href_node);
2597 	spin_unlock(&delayed_refs->lock);
2598 	spin_unlock(&head->lock);
2599 	atomic_dec(&delayed_refs->num_entries);
2600 
2601 	trace_run_delayed_ref_head(fs_info, head, 0);
2602 
2603 	if (head->total_ref_mod < 0) {
2604 		struct btrfs_block_group_cache *cache;
2605 
2606 		cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2607 		ASSERT(cache);
2608 		percpu_counter_add(&cache->space_info->total_bytes_pinned,
2609 				   -head->num_bytes);
2610 		btrfs_put_block_group(cache);
2611 
2612 		if (head->is_data) {
2613 			spin_lock(&delayed_refs->lock);
2614 			delayed_refs->pending_csums -= head->num_bytes;
2615 			spin_unlock(&delayed_refs->lock);
2616 		}
2617 	}
2618 
2619 	if (head->must_insert_reserved) {
2620 		btrfs_pin_extent(fs_info, head->bytenr,
2621 				 head->num_bytes, 1);
2622 		if (head->is_data) {
2623 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2624 					      head->num_bytes);
2625 		}
2626 	}
2627 
2628 	/* Also free its reserved qgroup space */
2629 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2630 				      head->qgroup_reserved);
2631 	btrfs_delayed_ref_unlock(head);
2632 	btrfs_put_delayed_ref_head(head);
2633 	return 0;
2634 }
2635 
2636 /*
2637  * Returns 0 on success or if called with an already aborted transaction.
2638  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2639  */
2640 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2641 					     unsigned long nr)
2642 {
2643 	struct btrfs_fs_info *fs_info = trans->fs_info;
2644 	struct btrfs_delayed_ref_root *delayed_refs;
2645 	struct btrfs_delayed_ref_node *ref;
2646 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2647 	struct btrfs_delayed_extent_op *extent_op;
2648 	ktime_t start = ktime_get();
2649 	int ret;
2650 	unsigned long count = 0;
2651 	unsigned long actual_count = 0;
2652 	int must_insert_reserved = 0;
2653 
2654 	delayed_refs = &trans->transaction->delayed_refs;
2655 	while (1) {
2656 		if (!locked_ref) {
2657 			if (count >= nr)
2658 				break;
2659 
2660 			spin_lock(&delayed_refs->lock);
2661 			locked_ref = btrfs_select_ref_head(trans);
2662 			if (!locked_ref) {
2663 				spin_unlock(&delayed_refs->lock);
2664 				break;
2665 			}
2666 
2667 			/* grab the lock that says we are going to process
2668 			 * all the refs for this head */
2669 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2670 			spin_unlock(&delayed_refs->lock);
2671 			/*
2672 			 * we may have dropped the spin lock to get the head
2673 			 * mutex lock, and that might have given someone else
2674 			 * time to free the head.  If that's true, it has been
2675 			 * removed from our list and we can move on.
2676 			 */
2677 			if (ret == -EAGAIN) {
2678 				locked_ref = NULL;
2679 				count++;
2680 				continue;
2681 			}
2682 		}
2683 
2684 		/*
2685 		 * We need to try and merge add/drops of the same ref since we
2686 		 * can run into issues with relocate dropping the implicit ref
2687 		 * and then it being added back again before the drop can
2688 		 * finish.  If we merged anything we need to re-loop so we can
2689 		 * get a good ref.
2690 		 * Or we can get node references of the same type that weren't
2691 		 * merged when created due to bumps in the tree mod seq, and
2692 		 * we need to merge them to prevent adding an inline extent
2693 		 * backref before dropping it (triggering a BUG_ON at
2694 		 * insert_inline_extent_backref()).
2695 		 */
2696 		spin_lock(&locked_ref->lock);
2697 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2698 					 locked_ref);
2699 
2700 		/*
2701 		 * locked_ref is the head node, so we have to go one
2702 		 * node back for any delayed ref updates
2703 		 */
2704 		ref = select_delayed_ref(locked_ref);
2705 
2706 		if (ref && ref->seq &&
2707 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2708 			spin_unlock(&locked_ref->lock);
2709 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2710 			locked_ref = NULL;
2711 			cond_resched();
2712 			count++;
2713 			continue;
2714 		}
2715 
2716 		/*
2717 		 * We're done processing refs in this ref_head, clean everything
2718 		 * up and move on to the next ref_head.
2719 		 */
2720 		if (!ref) {
2721 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2722 			if (ret > 0 ) {
2723 				/* We dropped our lock, we need to loop. */
2724 				ret = 0;
2725 				continue;
2726 			} else if (ret) {
2727 				return ret;
2728 			}
2729 			locked_ref = NULL;
2730 			count++;
2731 			continue;
2732 		}
2733 
2734 		actual_count++;
2735 		ref->in_tree = 0;
2736 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2737 		RB_CLEAR_NODE(&ref->ref_node);
2738 		if (!list_empty(&ref->add_list))
2739 			list_del(&ref->add_list);
2740 		/*
2741 		 * When we play the delayed ref, also correct the ref_mod on
2742 		 * head
2743 		 */
2744 		switch (ref->action) {
2745 		case BTRFS_ADD_DELAYED_REF:
2746 		case BTRFS_ADD_DELAYED_EXTENT:
2747 			locked_ref->ref_mod -= ref->ref_mod;
2748 			break;
2749 		case BTRFS_DROP_DELAYED_REF:
2750 			locked_ref->ref_mod += ref->ref_mod;
2751 			break;
2752 		default:
2753 			WARN_ON(1);
2754 		}
2755 		atomic_dec(&delayed_refs->num_entries);
2756 
2757 		/*
2758 		 * Record the must-insert_reserved flag before we drop the spin
2759 		 * lock.
2760 		 */
2761 		must_insert_reserved = locked_ref->must_insert_reserved;
2762 		locked_ref->must_insert_reserved = 0;
2763 
2764 		extent_op = locked_ref->extent_op;
2765 		locked_ref->extent_op = NULL;
2766 		spin_unlock(&locked_ref->lock);
2767 
2768 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2769 					  must_insert_reserved);
2770 
2771 		btrfs_free_delayed_extent_op(extent_op);
2772 		if (ret) {
2773 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2774 			btrfs_put_delayed_ref(ref);
2775 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2776 				    ret);
2777 			return ret;
2778 		}
2779 
2780 		btrfs_put_delayed_ref(ref);
2781 		count++;
2782 		cond_resched();
2783 	}
2784 
2785 	/*
2786 	 * We don't want to include ref heads since we can have empty ref heads
2787 	 * and those will drastically skew our runtime down since we just do
2788 	 * accounting, no actual extent tree updates.
2789 	 */
2790 	if (actual_count > 0) {
2791 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2792 		u64 avg;
2793 
2794 		/*
2795 		 * We weigh the current average higher than our current runtime
2796 		 * to avoid large swings in the average.
2797 		 */
2798 		spin_lock(&delayed_refs->lock);
2799 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2800 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2801 		spin_unlock(&delayed_refs->lock);
2802 	}
2803 	return 0;
2804 }
2805 
2806 #ifdef SCRAMBLE_DELAYED_REFS
2807 /*
2808  * Normally delayed refs get processed in ascending bytenr order. This
2809  * correlates in most cases to the order added. To expose dependencies on this
2810  * order, we start to process the tree in the middle instead of the beginning
2811  */
2812 static u64 find_middle(struct rb_root *root)
2813 {
2814 	struct rb_node *n = root->rb_node;
2815 	struct btrfs_delayed_ref_node *entry;
2816 	int alt = 1;
2817 	u64 middle;
2818 	u64 first = 0, last = 0;
2819 
2820 	n = rb_first(root);
2821 	if (n) {
2822 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2823 		first = entry->bytenr;
2824 	}
2825 	n = rb_last(root);
2826 	if (n) {
2827 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2828 		last = entry->bytenr;
2829 	}
2830 	n = root->rb_node;
2831 
2832 	while (n) {
2833 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2834 		WARN_ON(!entry->in_tree);
2835 
2836 		middle = entry->bytenr;
2837 
2838 		if (alt)
2839 			n = n->rb_left;
2840 		else
2841 			n = n->rb_right;
2842 
2843 		alt = 1 - alt;
2844 	}
2845 	return middle;
2846 }
2847 #endif
2848 
2849 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2850 {
2851 	u64 num_bytes;
2852 
2853 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2854 			     sizeof(struct btrfs_extent_inline_ref));
2855 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2856 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2857 
2858 	/*
2859 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2860 	 * closer to what we're really going to want to use.
2861 	 */
2862 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2863 }
2864 
2865 /*
2866  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2867  * would require to store the csums for that many bytes.
2868  */
2869 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2870 {
2871 	u64 csum_size;
2872 	u64 num_csums_per_leaf;
2873 	u64 num_csums;
2874 
2875 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2876 	num_csums_per_leaf = div64_u64(csum_size,
2877 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2878 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2879 	num_csums += num_csums_per_leaf - 1;
2880 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2881 	return num_csums;
2882 }
2883 
2884 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2885 				       struct btrfs_fs_info *fs_info)
2886 {
2887 	struct btrfs_block_rsv *global_rsv;
2888 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2889 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2890 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2891 	u64 num_bytes, num_dirty_bgs_bytes;
2892 	int ret = 0;
2893 
2894 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2895 	num_heads = heads_to_leaves(fs_info, num_heads);
2896 	if (num_heads > 1)
2897 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2898 	num_bytes <<= 1;
2899 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2900 							fs_info->nodesize;
2901 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2902 							     num_dirty_bgs);
2903 	global_rsv = &fs_info->global_block_rsv;
2904 
2905 	/*
2906 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2907 	 * wiggle room since running delayed refs can create more delayed refs.
2908 	 */
2909 	if (global_rsv->space_info->full) {
2910 		num_dirty_bgs_bytes <<= 1;
2911 		num_bytes <<= 1;
2912 	}
2913 
2914 	spin_lock(&global_rsv->lock);
2915 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2916 		ret = 1;
2917 	spin_unlock(&global_rsv->lock);
2918 	return ret;
2919 }
2920 
2921 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2922 				       struct btrfs_fs_info *fs_info)
2923 {
2924 	u64 num_entries =
2925 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2926 	u64 avg_runtime;
2927 	u64 val;
2928 
2929 	smp_mb();
2930 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2931 	val = num_entries * avg_runtime;
2932 	if (val >= NSEC_PER_SEC)
2933 		return 1;
2934 	if (val >= NSEC_PER_SEC / 2)
2935 		return 2;
2936 
2937 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2938 }
2939 
2940 struct async_delayed_refs {
2941 	struct btrfs_root *root;
2942 	u64 transid;
2943 	int count;
2944 	int error;
2945 	int sync;
2946 	struct completion wait;
2947 	struct btrfs_work work;
2948 };
2949 
2950 static inline struct async_delayed_refs *
2951 to_async_delayed_refs(struct btrfs_work *work)
2952 {
2953 	return container_of(work, struct async_delayed_refs, work);
2954 }
2955 
2956 static void delayed_ref_async_start(struct btrfs_work *work)
2957 {
2958 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2959 	struct btrfs_trans_handle *trans;
2960 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2961 	int ret;
2962 
2963 	/* if the commit is already started, we don't need to wait here */
2964 	if (btrfs_transaction_blocked(fs_info))
2965 		goto done;
2966 
2967 	trans = btrfs_join_transaction(async->root);
2968 	if (IS_ERR(trans)) {
2969 		async->error = PTR_ERR(trans);
2970 		goto done;
2971 	}
2972 
2973 	/*
2974 	 * trans->sync means that when we call end_transaction, we won't
2975 	 * wait on delayed refs
2976 	 */
2977 	trans->sync = true;
2978 
2979 	/* Don't bother flushing if we got into a different transaction */
2980 	if (trans->transid > async->transid)
2981 		goto end;
2982 
2983 	ret = btrfs_run_delayed_refs(trans, async->count);
2984 	if (ret)
2985 		async->error = ret;
2986 end:
2987 	ret = btrfs_end_transaction(trans);
2988 	if (ret && !async->error)
2989 		async->error = ret;
2990 done:
2991 	if (async->sync)
2992 		complete(&async->wait);
2993 	else
2994 		kfree(async);
2995 }
2996 
2997 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2998 				 unsigned long count, u64 transid, int wait)
2999 {
3000 	struct async_delayed_refs *async;
3001 	int ret;
3002 
3003 	async = kmalloc(sizeof(*async), GFP_NOFS);
3004 	if (!async)
3005 		return -ENOMEM;
3006 
3007 	async->root = fs_info->tree_root;
3008 	async->count = count;
3009 	async->error = 0;
3010 	async->transid = transid;
3011 	if (wait)
3012 		async->sync = 1;
3013 	else
3014 		async->sync = 0;
3015 	init_completion(&async->wait);
3016 
3017 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3018 			delayed_ref_async_start, NULL, NULL);
3019 
3020 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3021 
3022 	if (wait) {
3023 		wait_for_completion(&async->wait);
3024 		ret = async->error;
3025 		kfree(async);
3026 		return ret;
3027 	}
3028 	return 0;
3029 }
3030 
3031 /*
3032  * this starts processing the delayed reference count updates and
3033  * extent insertions we have queued up so far.  count can be
3034  * 0, which means to process everything in the tree at the start
3035  * of the run (but not newly added entries), or it can be some target
3036  * number you'd like to process.
3037  *
3038  * Returns 0 on success or if called with an aborted transaction
3039  * Returns <0 on error and aborts the transaction
3040  */
3041 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3042 			   unsigned long count)
3043 {
3044 	struct btrfs_fs_info *fs_info = trans->fs_info;
3045 	struct rb_node *node;
3046 	struct btrfs_delayed_ref_root *delayed_refs;
3047 	struct btrfs_delayed_ref_head *head;
3048 	int ret;
3049 	int run_all = count == (unsigned long)-1;
3050 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3051 
3052 	/* We'll clean this up in btrfs_cleanup_transaction */
3053 	if (trans->aborted)
3054 		return 0;
3055 
3056 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3057 		return 0;
3058 
3059 	delayed_refs = &trans->transaction->delayed_refs;
3060 	if (count == 0)
3061 		count = atomic_read(&delayed_refs->num_entries) * 2;
3062 
3063 again:
3064 #ifdef SCRAMBLE_DELAYED_REFS
3065 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3066 #endif
3067 	trans->can_flush_pending_bgs = false;
3068 	ret = __btrfs_run_delayed_refs(trans, count);
3069 	if (ret < 0) {
3070 		btrfs_abort_transaction(trans, ret);
3071 		return ret;
3072 	}
3073 
3074 	if (run_all) {
3075 		if (!list_empty(&trans->new_bgs))
3076 			btrfs_create_pending_block_groups(trans);
3077 
3078 		spin_lock(&delayed_refs->lock);
3079 		node = rb_first(&delayed_refs->href_root);
3080 		if (!node) {
3081 			spin_unlock(&delayed_refs->lock);
3082 			goto out;
3083 		}
3084 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3085 				href_node);
3086 		refcount_inc(&head->refs);
3087 		spin_unlock(&delayed_refs->lock);
3088 
3089 		/* Mutex was contended, block until it's released and retry. */
3090 		mutex_lock(&head->mutex);
3091 		mutex_unlock(&head->mutex);
3092 
3093 		btrfs_put_delayed_ref_head(head);
3094 		cond_resched();
3095 		goto again;
3096 	}
3097 out:
3098 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3099 	return 0;
3100 }
3101 
3102 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3103 				struct btrfs_fs_info *fs_info,
3104 				u64 bytenr, u64 num_bytes, u64 flags,
3105 				int level, int is_data)
3106 {
3107 	struct btrfs_delayed_extent_op *extent_op;
3108 	int ret;
3109 
3110 	extent_op = btrfs_alloc_delayed_extent_op();
3111 	if (!extent_op)
3112 		return -ENOMEM;
3113 
3114 	extent_op->flags_to_set = flags;
3115 	extent_op->update_flags = true;
3116 	extent_op->update_key = false;
3117 	extent_op->is_data = is_data ? true : false;
3118 	extent_op->level = level;
3119 
3120 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3121 					  num_bytes, extent_op);
3122 	if (ret)
3123 		btrfs_free_delayed_extent_op(extent_op);
3124 	return ret;
3125 }
3126 
3127 static noinline int check_delayed_ref(struct btrfs_root *root,
3128 				      struct btrfs_path *path,
3129 				      u64 objectid, u64 offset, u64 bytenr)
3130 {
3131 	struct btrfs_delayed_ref_head *head;
3132 	struct btrfs_delayed_ref_node *ref;
3133 	struct btrfs_delayed_data_ref *data_ref;
3134 	struct btrfs_delayed_ref_root *delayed_refs;
3135 	struct btrfs_transaction *cur_trans;
3136 	struct rb_node *node;
3137 	int ret = 0;
3138 
3139 	cur_trans = root->fs_info->running_transaction;
3140 	if (!cur_trans)
3141 		return 0;
3142 
3143 	delayed_refs = &cur_trans->delayed_refs;
3144 	spin_lock(&delayed_refs->lock);
3145 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3146 	if (!head) {
3147 		spin_unlock(&delayed_refs->lock);
3148 		return 0;
3149 	}
3150 
3151 	if (!mutex_trylock(&head->mutex)) {
3152 		refcount_inc(&head->refs);
3153 		spin_unlock(&delayed_refs->lock);
3154 
3155 		btrfs_release_path(path);
3156 
3157 		/*
3158 		 * Mutex was contended, block until it's released and let
3159 		 * caller try again
3160 		 */
3161 		mutex_lock(&head->mutex);
3162 		mutex_unlock(&head->mutex);
3163 		btrfs_put_delayed_ref_head(head);
3164 		return -EAGAIN;
3165 	}
3166 	spin_unlock(&delayed_refs->lock);
3167 
3168 	spin_lock(&head->lock);
3169 	/*
3170 	 * XXX: We should replace this with a proper search function in the
3171 	 * future.
3172 	 */
3173 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3174 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3175 		/* If it's a shared ref we know a cross reference exists */
3176 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3177 			ret = 1;
3178 			break;
3179 		}
3180 
3181 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3182 
3183 		/*
3184 		 * If our ref doesn't match the one we're currently looking at
3185 		 * then we have a cross reference.
3186 		 */
3187 		if (data_ref->root != root->root_key.objectid ||
3188 		    data_ref->objectid != objectid ||
3189 		    data_ref->offset != offset) {
3190 			ret = 1;
3191 			break;
3192 		}
3193 	}
3194 	spin_unlock(&head->lock);
3195 	mutex_unlock(&head->mutex);
3196 	return ret;
3197 }
3198 
3199 static noinline int check_committed_ref(struct btrfs_root *root,
3200 					struct btrfs_path *path,
3201 					u64 objectid, u64 offset, u64 bytenr)
3202 {
3203 	struct btrfs_fs_info *fs_info = root->fs_info;
3204 	struct btrfs_root *extent_root = fs_info->extent_root;
3205 	struct extent_buffer *leaf;
3206 	struct btrfs_extent_data_ref *ref;
3207 	struct btrfs_extent_inline_ref *iref;
3208 	struct btrfs_extent_item *ei;
3209 	struct btrfs_key key;
3210 	u32 item_size;
3211 	int type;
3212 	int ret;
3213 
3214 	key.objectid = bytenr;
3215 	key.offset = (u64)-1;
3216 	key.type = BTRFS_EXTENT_ITEM_KEY;
3217 
3218 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3219 	if (ret < 0)
3220 		goto out;
3221 	BUG_ON(ret == 0); /* Corruption */
3222 
3223 	ret = -ENOENT;
3224 	if (path->slots[0] == 0)
3225 		goto out;
3226 
3227 	path->slots[0]--;
3228 	leaf = path->nodes[0];
3229 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3230 
3231 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3232 		goto out;
3233 
3234 	ret = 1;
3235 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3236 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3237 	if (item_size < sizeof(*ei)) {
3238 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3239 		goto out;
3240 	}
3241 #endif
3242 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3243 
3244 	if (item_size != sizeof(*ei) +
3245 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3246 		goto out;
3247 
3248 	if (btrfs_extent_generation(leaf, ei) <=
3249 	    btrfs_root_last_snapshot(&root->root_item))
3250 		goto out;
3251 
3252 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3253 
3254 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3255 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3256 		goto out;
3257 
3258 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3259 	if (btrfs_extent_refs(leaf, ei) !=
3260 	    btrfs_extent_data_ref_count(leaf, ref) ||
3261 	    btrfs_extent_data_ref_root(leaf, ref) !=
3262 	    root->root_key.objectid ||
3263 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3264 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3265 		goto out;
3266 
3267 	ret = 0;
3268 out:
3269 	return ret;
3270 }
3271 
3272 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3273 			  u64 bytenr)
3274 {
3275 	struct btrfs_path *path;
3276 	int ret;
3277 	int ret2;
3278 
3279 	path = btrfs_alloc_path();
3280 	if (!path)
3281 		return -ENOENT;
3282 
3283 	do {
3284 		ret = check_committed_ref(root, path, objectid,
3285 					  offset, bytenr);
3286 		if (ret && ret != -ENOENT)
3287 			goto out;
3288 
3289 		ret2 = check_delayed_ref(root, path, objectid,
3290 					 offset, bytenr);
3291 	} while (ret2 == -EAGAIN);
3292 
3293 	if (ret2 && ret2 != -ENOENT) {
3294 		ret = ret2;
3295 		goto out;
3296 	}
3297 
3298 	if (ret != -ENOENT || ret2 != -ENOENT)
3299 		ret = 0;
3300 out:
3301 	btrfs_free_path(path);
3302 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3303 		WARN_ON(ret > 0);
3304 	return ret;
3305 }
3306 
3307 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3308 			   struct btrfs_root *root,
3309 			   struct extent_buffer *buf,
3310 			   int full_backref, int inc)
3311 {
3312 	struct btrfs_fs_info *fs_info = root->fs_info;
3313 	u64 bytenr;
3314 	u64 num_bytes;
3315 	u64 parent;
3316 	u64 ref_root;
3317 	u32 nritems;
3318 	struct btrfs_key key;
3319 	struct btrfs_file_extent_item *fi;
3320 	int i;
3321 	int level;
3322 	int ret = 0;
3323 	int (*process_func)(struct btrfs_trans_handle *,
3324 			    struct btrfs_root *,
3325 			    u64, u64, u64, u64, u64, u64);
3326 
3327 
3328 	if (btrfs_is_testing(fs_info))
3329 		return 0;
3330 
3331 	ref_root = btrfs_header_owner(buf);
3332 	nritems = btrfs_header_nritems(buf);
3333 	level = btrfs_header_level(buf);
3334 
3335 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3336 		return 0;
3337 
3338 	if (inc)
3339 		process_func = btrfs_inc_extent_ref;
3340 	else
3341 		process_func = btrfs_free_extent;
3342 
3343 	if (full_backref)
3344 		parent = buf->start;
3345 	else
3346 		parent = 0;
3347 
3348 	for (i = 0; i < nritems; i++) {
3349 		if (level == 0) {
3350 			btrfs_item_key_to_cpu(buf, &key, i);
3351 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3352 				continue;
3353 			fi = btrfs_item_ptr(buf, i,
3354 					    struct btrfs_file_extent_item);
3355 			if (btrfs_file_extent_type(buf, fi) ==
3356 			    BTRFS_FILE_EXTENT_INLINE)
3357 				continue;
3358 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3359 			if (bytenr == 0)
3360 				continue;
3361 
3362 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3363 			key.offset -= btrfs_file_extent_offset(buf, fi);
3364 			ret = process_func(trans, root, bytenr, num_bytes,
3365 					   parent, ref_root, key.objectid,
3366 					   key.offset);
3367 			if (ret)
3368 				goto fail;
3369 		} else {
3370 			bytenr = btrfs_node_blockptr(buf, i);
3371 			num_bytes = fs_info->nodesize;
3372 			ret = process_func(trans, root, bytenr, num_bytes,
3373 					   parent, ref_root, level - 1, 0);
3374 			if (ret)
3375 				goto fail;
3376 		}
3377 	}
3378 	return 0;
3379 fail:
3380 	return ret;
3381 }
3382 
3383 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3384 		  struct extent_buffer *buf, int full_backref)
3385 {
3386 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3387 }
3388 
3389 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3390 		  struct extent_buffer *buf, int full_backref)
3391 {
3392 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3393 }
3394 
3395 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3396 				 struct btrfs_fs_info *fs_info,
3397 				 struct btrfs_path *path,
3398 				 struct btrfs_block_group_cache *cache)
3399 {
3400 	int ret;
3401 	struct btrfs_root *extent_root = fs_info->extent_root;
3402 	unsigned long bi;
3403 	struct extent_buffer *leaf;
3404 
3405 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3406 	if (ret) {
3407 		if (ret > 0)
3408 			ret = -ENOENT;
3409 		goto fail;
3410 	}
3411 
3412 	leaf = path->nodes[0];
3413 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3414 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3415 	btrfs_mark_buffer_dirty(leaf);
3416 fail:
3417 	btrfs_release_path(path);
3418 	return ret;
3419 
3420 }
3421 
3422 static struct btrfs_block_group_cache *
3423 next_block_group(struct btrfs_fs_info *fs_info,
3424 		 struct btrfs_block_group_cache *cache)
3425 {
3426 	struct rb_node *node;
3427 
3428 	spin_lock(&fs_info->block_group_cache_lock);
3429 
3430 	/* If our block group was removed, we need a full search. */
3431 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3432 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3433 
3434 		spin_unlock(&fs_info->block_group_cache_lock);
3435 		btrfs_put_block_group(cache);
3436 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3437 	}
3438 	node = rb_next(&cache->cache_node);
3439 	btrfs_put_block_group(cache);
3440 	if (node) {
3441 		cache = rb_entry(node, struct btrfs_block_group_cache,
3442 				 cache_node);
3443 		btrfs_get_block_group(cache);
3444 	} else
3445 		cache = NULL;
3446 	spin_unlock(&fs_info->block_group_cache_lock);
3447 	return cache;
3448 }
3449 
3450 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3451 			    struct btrfs_trans_handle *trans,
3452 			    struct btrfs_path *path)
3453 {
3454 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3455 	struct btrfs_root *root = fs_info->tree_root;
3456 	struct inode *inode = NULL;
3457 	struct extent_changeset *data_reserved = NULL;
3458 	u64 alloc_hint = 0;
3459 	int dcs = BTRFS_DC_ERROR;
3460 	u64 num_pages = 0;
3461 	int retries = 0;
3462 	int ret = 0;
3463 
3464 	/*
3465 	 * If this block group is smaller than 100 megs don't bother caching the
3466 	 * block group.
3467 	 */
3468 	if (block_group->key.offset < (100 * SZ_1M)) {
3469 		spin_lock(&block_group->lock);
3470 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3471 		spin_unlock(&block_group->lock);
3472 		return 0;
3473 	}
3474 
3475 	if (trans->aborted)
3476 		return 0;
3477 again:
3478 	inode = lookup_free_space_inode(fs_info, block_group, path);
3479 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3480 		ret = PTR_ERR(inode);
3481 		btrfs_release_path(path);
3482 		goto out;
3483 	}
3484 
3485 	if (IS_ERR(inode)) {
3486 		BUG_ON(retries);
3487 		retries++;
3488 
3489 		if (block_group->ro)
3490 			goto out_free;
3491 
3492 		ret = create_free_space_inode(fs_info, trans, block_group,
3493 					      path);
3494 		if (ret)
3495 			goto out_free;
3496 		goto again;
3497 	}
3498 
3499 	/*
3500 	 * We want to set the generation to 0, that way if anything goes wrong
3501 	 * from here on out we know not to trust this cache when we load up next
3502 	 * time.
3503 	 */
3504 	BTRFS_I(inode)->generation = 0;
3505 	ret = btrfs_update_inode(trans, root, inode);
3506 	if (ret) {
3507 		/*
3508 		 * So theoretically we could recover from this, simply set the
3509 		 * super cache generation to 0 so we know to invalidate the
3510 		 * cache, but then we'd have to keep track of the block groups
3511 		 * that fail this way so we know we _have_ to reset this cache
3512 		 * before the next commit or risk reading stale cache.  So to
3513 		 * limit our exposure to horrible edge cases lets just abort the
3514 		 * transaction, this only happens in really bad situations
3515 		 * anyway.
3516 		 */
3517 		btrfs_abort_transaction(trans, ret);
3518 		goto out_put;
3519 	}
3520 	WARN_ON(ret);
3521 
3522 	/* We've already setup this transaction, go ahead and exit */
3523 	if (block_group->cache_generation == trans->transid &&
3524 	    i_size_read(inode)) {
3525 		dcs = BTRFS_DC_SETUP;
3526 		goto out_put;
3527 	}
3528 
3529 	if (i_size_read(inode) > 0) {
3530 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3531 					&fs_info->global_block_rsv);
3532 		if (ret)
3533 			goto out_put;
3534 
3535 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3536 		if (ret)
3537 			goto out_put;
3538 	}
3539 
3540 	spin_lock(&block_group->lock);
3541 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3542 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3543 		/*
3544 		 * don't bother trying to write stuff out _if_
3545 		 * a) we're not cached,
3546 		 * b) we're with nospace_cache mount option,
3547 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3548 		 */
3549 		dcs = BTRFS_DC_WRITTEN;
3550 		spin_unlock(&block_group->lock);
3551 		goto out_put;
3552 	}
3553 	spin_unlock(&block_group->lock);
3554 
3555 	/*
3556 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3557 	 * skip doing the setup, we've already cleared the cache so we're safe.
3558 	 */
3559 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3560 		ret = -ENOSPC;
3561 		goto out_put;
3562 	}
3563 
3564 	/*
3565 	 * Try to preallocate enough space based on how big the block group is.
3566 	 * Keep in mind this has to include any pinned space which could end up
3567 	 * taking up quite a bit since it's not folded into the other space
3568 	 * cache.
3569 	 */
3570 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3571 	if (!num_pages)
3572 		num_pages = 1;
3573 
3574 	num_pages *= 16;
3575 	num_pages *= PAGE_SIZE;
3576 
3577 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3578 	if (ret)
3579 		goto out_put;
3580 
3581 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3582 					      num_pages, num_pages,
3583 					      &alloc_hint);
3584 	/*
3585 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3586 	 * of metadata or split extents when writing the cache out, which means
3587 	 * we can enospc if we are heavily fragmented in addition to just normal
3588 	 * out of space conditions.  So if we hit this just skip setting up any
3589 	 * other block groups for this transaction, maybe we'll unpin enough
3590 	 * space the next time around.
3591 	 */
3592 	if (!ret)
3593 		dcs = BTRFS_DC_SETUP;
3594 	else if (ret == -ENOSPC)
3595 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3596 
3597 out_put:
3598 	iput(inode);
3599 out_free:
3600 	btrfs_release_path(path);
3601 out:
3602 	spin_lock(&block_group->lock);
3603 	if (!ret && dcs == BTRFS_DC_SETUP)
3604 		block_group->cache_generation = trans->transid;
3605 	block_group->disk_cache_state = dcs;
3606 	spin_unlock(&block_group->lock);
3607 
3608 	extent_changeset_free(data_reserved);
3609 	return ret;
3610 }
3611 
3612 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3613 			    struct btrfs_fs_info *fs_info)
3614 {
3615 	struct btrfs_block_group_cache *cache, *tmp;
3616 	struct btrfs_transaction *cur_trans = trans->transaction;
3617 	struct btrfs_path *path;
3618 
3619 	if (list_empty(&cur_trans->dirty_bgs) ||
3620 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3621 		return 0;
3622 
3623 	path = btrfs_alloc_path();
3624 	if (!path)
3625 		return -ENOMEM;
3626 
3627 	/* Could add new block groups, use _safe just in case */
3628 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3629 				 dirty_list) {
3630 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3631 			cache_save_setup(cache, trans, path);
3632 	}
3633 
3634 	btrfs_free_path(path);
3635 	return 0;
3636 }
3637 
3638 /*
3639  * transaction commit does final block group cache writeback during a
3640  * critical section where nothing is allowed to change the FS.  This is
3641  * required in order for the cache to actually match the block group,
3642  * but can introduce a lot of latency into the commit.
3643  *
3644  * So, btrfs_start_dirty_block_groups is here to kick off block group
3645  * cache IO.  There's a chance we'll have to redo some of it if the
3646  * block group changes again during the commit, but it greatly reduces
3647  * the commit latency by getting rid of the easy block groups while
3648  * we're still allowing others to join the commit.
3649  */
3650 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3651 {
3652 	struct btrfs_fs_info *fs_info = trans->fs_info;
3653 	struct btrfs_block_group_cache *cache;
3654 	struct btrfs_transaction *cur_trans = trans->transaction;
3655 	int ret = 0;
3656 	int should_put;
3657 	struct btrfs_path *path = NULL;
3658 	LIST_HEAD(dirty);
3659 	struct list_head *io = &cur_trans->io_bgs;
3660 	int num_started = 0;
3661 	int loops = 0;
3662 
3663 	spin_lock(&cur_trans->dirty_bgs_lock);
3664 	if (list_empty(&cur_trans->dirty_bgs)) {
3665 		spin_unlock(&cur_trans->dirty_bgs_lock);
3666 		return 0;
3667 	}
3668 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3669 	spin_unlock(&cur_trans->dirty_bgs_lock);
3670 
3671 again:
3672 	/*
3673 	 * make sure all the block groups on our dirty list actually
3674 	 * exist
3675 	 */
3676 	btrfs_create_pending_block_groups(trans);
3677 
3678 	if (!path) {
3679 		path = btrfs_alloc_path();
3680 		if (!path)
3681 			return -ENOMEM;
3682 	}
3683 
3684 	/*
3685 	 * cache_write_mutex is here only to save us from balance or automatic
3686 	 * removal of empty block groups deleting this block group while we are
3687 	 * writing out the cache
3688 	 */
3689 	mutex_lock(&trans->transaction->cache_write_mutex);
3690 	while (!list_empty(&dirty)) {
3691 		cache = list_first_entry(&dirty,
3692 					 struct btrfs_block_group_cache,
3693 					 dirty_list);
3694 		/*
3695 		 * this can happen if something re-dirties a block
3696 		 * group that is already under IO.  Just wait for it to
3697 		 * finish and then do it all again
3698 		 */
3699 		if (!list_empty(&cache->io_list)) {
3700 			list_del_init(&cache->io_list);
3701 			btrfs_wait_cache_io(trans, cache, path);
3702 			btrfs_put_block_group(cache);
3703 		}
3704 
3705 
3706 		/*
3707 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3708 		 * if it should update the cache_state.  Don't delete
3709 		 * until after we wait.
3710 		 *
3711 		 * Since we're not running in the commit critical section
3712 		 * we need the dirty_bgs_lock to protect from update_block_group
3713 		 */
3714 		spin_lock(&cur_trans->dirty_bgs_lock);
3715 		list_del_init(&cache->dirty_list);
3716 		spin_unlock(&cur_trans->dirty_bgs_lock);
3717 
3718 		should_put = 1;
3719 
3720 		cache_save_setup(cache, trans, path);
3721 
3722 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3723 			cache->io_ctl.inode = NULL;
3724 			ret = btrfs_write_out_cache(fs_info, trans,
3725 						    cache, path);
3726 			if (ret == 0 && cache->io_ctl.inode) {
3727 				num_started++;
3728 				should_put = 0;
3729 
3730 				/*
3731 				 * The cache_write_mutex is protecting the
3732 				 * io_list, also refer to the definition of
3733 				 * btrfs_transaction::io_bgs for more details
3734 				 */
3735 				list_add_tail(&cache->io_list, io);
3736 			} else {
3737 				/*
3738 				 * if we failed to write the cache, the
3739 				 * generation will be bad and life goes on
3740 				 */
3741 				ret = 0;
3742 			}
3743 		}
3744 		if (!ret) {
3745 			ret = write_one_cache_group(trans, fs_info,
3746 						    path, cache);
3747 			/*
3748 			 * Our block group might still be attached to the list
3749 			 * of new block groups in the transaction handle of some
3750 			 * other task (struct btrfs_trans_handle->new_bgs). This
3751 			 * means its block group item isn't yet in the extent
3752 			 * tree. If this happens ignore the error, as we will
3753 			 * try again later in the critical section of the
3754 			 * transaction commit.
3755 			 */
3756 			if (ret == -ENOENT) {
3757 				ret = 0;
3758 				spin_lock(&cur_trans->dirty_bgs_lock);
3759 				if (list_empty(&cache->dirty_list)) {
3760 					list_add_tail(&cache->dirty_list,
3761 						      &cur_trans->dirty_bgs);
3762 					btrfs_get_block_group(cache);
3763 				}
3764 				spin_unlock(&cur_trans->dirty_bgs_lock);
3765 			} else if (ret) {
3766 				btrfs_abort_transaction(trans, ret);
3767 			}
3768 		}
3769 
3770 		/* if its not on the io list, we need to put the block group */
3771 		if (should_put)
3772 			btrfs_put_block_group(cache);
3773 
3774 		if (ret)
3775 			break;
3776 
3777 		/*
3778 		 * Avoid blocking other tasks for too long. It might even save
3779 		 * us from writing caches for block groups that are going to be
3780 		 * removed.
3781 		 */
3782 		mutex_unlock(&trans->transaction->cache_write_mutex);
3783 		mutex_lock(&trans->transaction->cache_write_mutex);
3784 	}
3785 	mutex_unlock(&trans->transaction->cache_write_mutex);
3786 
3787 	/*
3788 	 * go through delayed refs for all the stuff we've just kicked off
3789 	 * and then loop back (just once)
3790 	 */
3791 	ret = btrfs_run_delayed_refs(trans, 0);
3792 	if (!ret && loops == 0) {
3793 		loops++;
3794 		spin_lock(&cur_trans->dirty_bgs_lock);
3795 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3796 		/*
3797 		 * dirty_bgs_lock protects us from concurrent block group
3798 		 * deletes too (not just cache_write_mutex).
3799 		 */
3800 		if (!list_empty(&dirty)) {
3801 			spin_unlock(&cur_trans->dirty_bgs_lock);
3802 			goto again;
3803 		}
3804 		spin_unlock(&cur_trans->dirty_bgs_lock);
3805 	} else if (ret < 0) {
3806 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3807 	}
3808 
3809 	btrfs_free_path(path);
3810 	return ret;
3811 }
3812 
3813 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3814 				   struct btrfs_fs_info *fs_info)
3815 {
3816 	struct btrfs_block_group_cache *cache;
3817 	struct btrfs_transaction *cur_trans = trans->transaction;
3818 	int ret = 0;
3819 	int should_put;
3820 	struct btrfs_path *path;
3821 	struct list_head *io = &cur_trans->io_bgs;
3822 	int num_started = 0;
3823 
3824 	path = btrfs_alloc_path();
3825 	if (!path)
3826 		return -ENOMEM;
3827 
3828 	/*
3829 	 * Even though we are in the critical section of the transaction commit,
3830 	 * we can still have concurrent tasks adding elements to this
3831 	 * transaction's list of dirty block groups. These tasks correspond to
3832 	 * endio free space workers started when writeback finishes for a
3833 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3834 	 * allocate new block groups as a result of COWing nodes of the root
3835 	 * tree when updating the free space inode. The writeback for the space
3836 	 * caches is triggered by an earlier call to
3837 	 * btrfs_start_dirty_block_groups() and iterations of the following
3838 	 * loop.
3839 	 * Also we want to do the cache_save_setup first and then run the
3840 	 * delayed refs to make sure we have the best chance at doing this all
3841 	 * in one shot.
3842 	 */
3843 	spin_lock(&cur_trans->dirty_bgs_lock);
3844 	while (!list_empty(&cur_trans->dirty_bgs)) {
3845 		cache = list_first_entry(&cur_trans->dirty_bgs,
3846 					 struct btrfs_block_group_cache,
3847 					 dirty_list);
3848 
3849 		/*
3850 		 * this can happen if cache_save_setup re-dirties a block
3851 		 * group that is already under IO.  Just wait for it to
3852 		 * finish and then do it all again
3853 		 */
3854 		if (!list_empty(&cache->io_list)) {
3855 			spin_unlock(&cur_trans->dirty_bgs_lock);
3856 			list_del_init(&cache->io_list);
3857 			btrfs_wait_cache_io(trans, cache, path);
3858 			btrfs_put_block_group(cache);
3859 			spin_lock(&cur_trans->dirty_bgs_lock);
3860 		}
3861 
3862 		/*
3863 		 * don't remove from the dirty list until after we've waited
3864 		 * on any pending IO
3865 		 */
3866 		list_del_init(&cache->dirty_list);
3867 		spin_unlock(&cur_trans->dirty_bgs_lock);
3868 		should_put = 1;
3869 
3870 		cache_save_setup(cache, trans, path);
3871 
3872 		if (!ret)
3873 			ret = btrfs_run_delayed_refs(trans,
3874 						     (unsigned long) -1);
3875 
3876 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3877 			cache->io_ctl.inode = NULL;
3878 			ret = btrfs_write_out_cache(fs_info, trans,
3879 						    cache, path);
3880 			if (ret == 0 && cache->io_ctl.inode) {
3881 				num_started++;
3882 				should_put = 0;
3883 				list_add_tail(&cache->io_list, io);
3884 			} else {
3885 				/*
3886 				 * if we failed to write the cache, the
3887 				 * generation will be bad and life goes on
3888 				 */
3889 				ret = 0;
3890 			}
3891 		}
3892 		if (!ret) {
3893 			ret = write_one_cache_group(trans, fs_info,
3894 						    path, cache);
3895 			/*
3896 			 * One of the free space endio workers might have
3897 			 * created a new block group while updating a free space
3898 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3899 			 * and hasn't released its transaction handle yet, in
3900 			 * which case the new block group is still attached to
3901 			 * its transaction handle and its creation has not
3902 			 * finished yet (no block group item in the extent tree
3903 			 * yet, etc). If this is the case, wait for all free
3904 			 * space endio workers to finish and retry. This is a
3905 			 * a very rare case so no need for a more efficient and
3906 			 * complex approach.
3907 			 */
3908 			if (ret == -ENOENT) {
3909 				wait_event(cur_trans->writer_wait,
3910 				   atomic_read(&cur_trans->num_writers) == 1);
3911 				ret = write_one_cache_group(trans, fs_info,
3912 							    path, cache);
3913 			}
3914 			if (ret)
3915 				btrfs_abort_transaction(trans, ret);
3916 		}
3917 
3918 		/* if its not on the io list, we need to put the block group */
3919 		if (should_put)
3920 			btrfs_put_block_group(cache);
3921 		spin_lock(&cur_trans->dirty_bgs_lock);
3922 	}
3923 	spin_unlock(&cur_trans->dirty_bgs_lock);
3924 
3925 	/*
3926 	 * Refer to the definition of io_bgs member for details why it's safe
3927 	 * to use it without any locking
3928 	 */
3929 	while (!list_empty(io)) {
3930 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3931 					 io_list);
3932 		list_del_init(&cache->io_list);
3933 		btrfs_wait_cache_io(trans, cache, path);
3934 		btrfs_put_block_group(cache);
3935 	}
3936 
3937 	btrfs_free_path(path);
3938 	return ret;
3939 }
3940 
3941 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3942 {
3943 	struct btrfs_block_group_cache *block_group;
3944 	int readonly = 0;
3945 
3946 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3947 	if (!block_group || block_group->ro)
3948 		readonly = 1;
3949 	if (block_group)
3950 		btrfs_put_block_group(block_group);
3951 	return readonly;
3952 }
3953 
3954 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3955 {
3956 	struct btrfs_block_group_cache *bg;
3957 	bool ret = true;
3958 
3959 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3960 	if (!bg)
3961 		return false;
3962 
3963 	spin_lock(&bg->lock);
3964 	if (bg->ro)
3965 		ret = false;
3966 	else
3967 		atomic_inc(&bg->nocow_writers);
3968 	spin_unlock(&bg->lock);
3969 
3970 	/* no put on block group, done by btrfs_dec_nocow_writers */
3971 	if (!ret)
3972 		btrfs_put_block_group(bg);
3973 
3974 	return ret;
3975 
3976 }
3977 
3978 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3979 {
3980 	struct btrfs_block_group_cache *bg;
3981 
3982 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3983 	ASSERT(bg);
3984 	if (atomic_dec_and_test(&bg->nocow_writers))
3985 		wake_up_var(&bg->nocow_writers);
3986 	/*
3987 	 * Once for our lookup and once for the lookup done by a previous call
3988 	 * to btrfs_inc_nocow_writers()
3989 	 */
3990 	btrfs_put_block_group(bg);
3991 	btrfs_put_block_group(bg);
3992 }
3993 
3994 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3995 {
3996 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3997 }
3998 
3999 static const char *alloc_name(u64 flags)
4000 {
4001 	switch (flags) {
4002 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4003 		return "mixed";
4004 	case BTRFS_BLOCK_GROUP_METADATA:
4005 		return "metadata";
4006 	case BTRFS_BLOCK_GROUP_DATA:
4007 		return "data";
4008 	case BTRFS_BLOCK_GROUP_SYSTEM:
4009 		return "system";
4010 	default:
4011 		WARN_ON(1);
4012 		return "invalid-combination";
4013 	};
4014 }
4015 
4016 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4017 			     struct btrfs_space_info **new)
4018 {
4019 
4020 	struct btrfs_space_info *space_info;
4021 	int i;
4022 	int ret;
4023 
4024 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4025 	if (!space_info)
4026 		return -ENOMEM;
4027 
4028 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4029 				 GFP_KERNEL);
4030 	if (ret) {
4031 		kfree(space_info);
4032 		return ret;
4033 	}
4034 
4035 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4036 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4037 	init_rwsem(&space_info->groups_sem);
4038 	spin_lock_init(&space_info->lock);
4039 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4040 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4041 	init_waitqueue_head(&space_info->wait);
4042 	INIT_LIST_HEAD(&space_info->ro_bgs);
4043 	INIT_LIST_HEAD(&space_info->tickets);
4044 	INIT_LIST_HEAD(&space_info->priority_tickets);
4045 
4046 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4047 				    info->space_info_kobj, "%s",
4048 				    alloc_name(space_info->flags));
4049 	if (ret) {
4050 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4051 		kfree(space_info);
4052 		return ret;
4053 	}
4054 
4055 	*new = space_info;
4056 	list_add_rcu(&space_info->list, &info->space_info);
4057 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4058 		info->data_sinfo = space_info;
4059 
4060 	return ret;
4061 }
4062 
4063 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4064 			     u64 total_bytes, u64 bytes_used,
4065 			     u64 bytes_readonly,
4066 			     struct btrfs_space_info **space_info)
4067 {
4068 	struct btrfs_space_info *found;
4069 	int factor;
4070 
4071 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4072 		     BTRFS_BLOCK_GROUP_RAID10))
4073 		factor = 2;
4074 	else
4075 		factor = 1;
4076 
4077 	found = __find_space_info(info, flags);
4078 	ASSERT(found);
4079 	spin_lock(&found->lock);
4080 	found->total_bytes += total_bytes;
4081 	found->disk_total += total_bytes * factor;
4082 	found->bytes_used += bytes_used;
4083 	found->disk_used += bytes_used * factor;
4084 	found->bytes_readonly += bytes_readonly;
4085 	if (total_bytes > 0)
4086 		found->full = 0;
4087 	space_info_add_new_bytes(info, found, total_bytes -
4088 				 bytes_used - bytes_readonly);
4089 	spin_unlock(&found->lock);
4090 	*space_info = found;
4091 }
4092 
4093 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4094 {
4095 	u64 extra_flags = chunk_to_extended(flags) &
4096 				BTRFS_EXTENDED_PROFILE_MASK;
4097 
4098 	write_seqlock(&fs_info->profiles_lock);
4099 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4100 		fs_info->avail_data_alloc_bits |= extra_flags;
4101 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4102 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4103 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4104 		fs_info->avail_system_alloc_bits |= extra_flags;
4105 	write_sequnlock(&fs_info->profiles_lock);
4106 }
4107 
4108 /*
4109  * returns target flags in extended format or 0 if restripe for this
4110  * chunk_type is not in progress
4111  *
4112  * should be called with either volume_mutex or balance_lock held
4113  */
4114 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4115 {
4116 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4117 	u64 target = 0;
4118 
4119 	if (!bctl)
4120 		return 0;
4121 
4122 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4123 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4124 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4125 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4126 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4127 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4128 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4129 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4130 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4131 	}
4132 
4133 	return target;
4134 }
4135 
4136 /*
4137  * @flags: available profiles in extended format (see ctree.h)
4138  *
4139  * Returns reduced profile in chunk format.  If profile changing is in
4140  * progress (either running or paused) picks the target profile (if it's
4141  * already available), otherwise falls back to plain reducing.
4142  */
4143 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4144 {
4145 	u64 num_devices = fs_info->fs_devices->rw_devices;
4146 	u64 target;
4147 	u64 raid_type;
4148 	u64 allowed = 0;
4149 
4150 	/*
4151 	 * see if restripe for this chunk_type is in progress, if so
4152 	 * try to reduce to the target profile
4153 	 */
4154 	spin_lock(&fs_info->balance_lock);
4155 	target = get_restripe_target(fs_info, flags);
4156 	if (target) {
4157 		/* pick target profile only if it's already available */
4158 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4159 			spin_unlock(&fs_info->balance_lock);
4160 			return extended_to_chunk(target);
4161 		}
4162 	}
4163 	spin_unlock(&fs_info->balance_lock);
4164 
4165 	/* First, mask out the RAID levels which aren't possible */
4166 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4167 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4168 			allowed |= btrfs_raid_group[raid_type];
4169 	}
4170 	allowed &= flags;
4171 
4172 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4173 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4174 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4175 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4176 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4177 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4178 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4179 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4180 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4181 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4182 
4183 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4184 
4185 	return extended_to_chunk(flags | allowed);
4186 }
4187 
4188 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4189 {
4190 	unsigned seq;
4191 	u64 flags;
4192 
4193 	do {
4194 		flags = orig_flags;
4195 		seq = read_seqbegin(&fs_info->profiles_lock);
4196 
4197 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4198 			flags |= fs_info->avail_data_alloc_bits;
4199 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4200 			flags |= fs_info->avail_system_alloc_bits;
4201 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4202 			flags |= fs_info->avail_metadata_alloc_bits;
4203 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4204 
4205 	return btrfs_reduce_alloc_profile(fs_info, flags);
4206 }
4207 
4208 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4209 {
4210 	struct btrfs_fs_info *fs_info = root->fs_info;
4211 	u64 flags;
4212 	u64 ret;
4213 
4214 	if (data)
4215 		flags = BTRFS_BLOCK_GROUP_DATA;
4216 	else if (root == fs_info->chunk_root)
4217 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4218 	else
4219 		flags = BTRFS_BLOCK_GROUP_METADATA;
4220 
4221 	ret = get_alloc_profile(fs_info, flags);
4222 	return ret;
4223 }
4224 
4225 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4226 {
4227 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4228 }
4229 
4230 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4231 {
4232 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4233 }
4234 
4235 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4236 {
4237 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4238 }
4239 
4240 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4241 				 bool may_use_included)
4242 {
4243 	ASSERT(s_info);
4244 	return s_info->bytes_used + s_info->bytes_reserved +
4245 		s_info->bytes_pinned + s_info->bytes_readonly +
4246 		(may_use_included ? s_info->bytes_may_use : 0);
4247 }
4248 
4249 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4250 {
4251 	struct btrfs_root *root = inode->root;
4252 	struct btrfs_fs_info *fs_info = root->fs_info;
4253 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4254 	u64 used;
4255 	int ret = 0;
4256 	int need_commit = 2;
4257 	int have_pinned_space;
4258 
4259 	/* make sure bytes are sectorsize aligned */
4260 	bytes = ALIGN(bytes, fs_info->sectorsize);
4261 
4262 	if (btrfs_is_free_space_inode(inode)) {
4263 		need_commit = 0;
4264 		ASSERT(current->journal_info);
4265 	}
4266 
4267 again:
4268 	/* make sure we have enough space to handle the data first */
4269 	spin_lock(&data_sinfo->lock);
4270 	used = btrfs_space_info_used(data_sinfo, true);
4271 
4272 	if (used + bytes > data_sinfo->total_bytes) {
4273 		struct btrfs_trans_handle *trans;
4274 
4275 		/*
4276 		 * if we don't have enough free bytes in this space then we need
4277 		 * to alloc a new chunk.
4278 		 */
4279 		if (!data_sinfo->full) {
4280 			u64 alloc_target;
4281 
4282 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4283 			spin_unlock(&data_sinfo->lock);
4284 
4285 			alloc_target = btrfs_data_alloc_profile(fs_info);
4286 			/*
4287 			 * It is ugly that we don't call nolock join
4288 			 * transaction for the free space inode case here.
4289 			 * But it is safe because we only do the data space
4290 			 * reservation for the free space cache in the
4291 			 * transaction context, the common join transaction
4292 			 * just increase the counter of the current transaction
4293 			 * handler, doesn't try to acquire the trans_lock of
4294 			 * the fs.
4295 			 */
4296 			trans = btrfs_join_transaction(root);
4297 			if (IS_ERR(trans))
4298 				return PTR_ERR(trans);
4299 
4300 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4301 					     CHUNK_ALLOC_NO_FORCE);
4302 			btrfs_end_transaction(trans);
4303 			if (ret < 0) {
4304 				if (ret != -ENOSPC)
4305 					return ret;
4306 				else {
4307 					have_pinned_space = 1;
4308 					goto commit_trans;
4309 				}
4310 			}
4311 
4312 			goto again;
4313 		}
4314 
4315 		/*
4316 		 * If we don't have enough pinned space to deal with this
4317 		 * allocation, and no removed chunk in current transaction,
4318 		 * don't bother committing the transaction.
4319 		 */
4320 		have_pinned_space = percpu_counter_compare(
4321 			&data_sinfo->total_bytes_pinned,
4322 			used + bytes - data_sinfo->total_bytes);
4323 		spin_unlock(&data_sinfo->lock);
4324 
4325 		/* commit the current transaction and try again */
4326 commit_trans:
4327 		if (need_commit) {
4328 			need_commit--;
4329 
4330 			if (need_commit > 0) {
4331 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4332 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4333 							 (u64)-1);
4334 			}
4335 
4336 			trans = btrfs_join_transaction(root);
4337 			if (IS_ERR(trans))
4338 				return PTR_ERR(trans);
4339 			if (have_pinned_space >= 0 ||
4340 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4341 				     &trans->transaction->flags) ||
4342 			    need_commit > 0) {
4343 				ret = btrfs_commit_transaction(trans);
4344 				if (ret)
4345 					return ret;
4346 				/*
4347 				 * The cleaner kthread might still be doing iput
4348 				 * operations. Wait for it to finish so that
4349 				 * more space is released.
4350 				 */
4351 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4352 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4353 				goto again;
4354 			} else {
4355 				btrfs_end_transaction(trans);
4356 			}
4357 		}
4358 
4359 		trace_btrfs_space_reservation(fs_info,
4360 					      "space_info:enospc",
4361 					      data_sinfo->flags, bytes, 1);
4362 		return -ENOSPC;
4363 	}
4364 	data_sinfo->bytes_may_use += bytes;
4365 	trace_btrfs_space_reservation(fs_info, "space_info",
4366 				      data_sinfo->flags, bytes, 1);
4367 	spin_unlock(&data_sinfo->lock);
4368 
4369 	return ret;
4370 }
4371 
4372 int btrfs_check_data_free_space(struct inode *inode,
4373 			struct extent_changeset **reserved, u64 start, u64 len)
4374 {
4375 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4376 	int ret;
4377 
4378 	/* align the range */
4379 	len = round_up(start + len, fs_info->sectorsize) -
4380 	      round_down(start, fs_info->sectorsize);
4381 	start = round_down(start, fs_info->sectorsize);
4382 
4383 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4384 	if (ret < 0)
4385 		return ret;
4386 
4387 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4388 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4389 	if (ret < 0)
4390 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4391 	else
4392 		ret = 0;
4393 	return ret;
4394 }
4395 
4396 /*
4397  * Called if we need to clear a data reservation for this inode
4398  * Normally in a error case.
4399  *
4400  * This one will *NOT* use accurate qgroup reserved space API, just for case
4401  * which we can't sleep and is sure it won't affect qgroup reserved space.
4402  * Like clear_bit_hook().
4403  */
4404 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4405 					    u64 len)
4406 {
4407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4408 	struct btrfs_space_info *data_sinfo;
4409 
4410 	/* Make sure the range is aligned to sectorsize */
4411 	len = round_up(start + len, fs_info->sectorsize) -
4412 	      round_down(start, fs_info->sectorsize);
4413 	start = round_down(start, fs_info->sectorsize);
4414 
4415 	data_sinfo = fs_info->data_sinfo;
4416 	spin_lock(&data_sinfo->lock);
4417 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4418 		data_sinfo->bytes_may_use = 0;
4419 	else
4420 		data_sinfo->bytes_may_use -= len;
4421 	trace_btrfs_space_reservation(fs_info, "space_info",
4422 				      data_sinfo->flags, len, 0);
4423 	spin_unlock(&data_sinfo->lock);
4424 }
4425 
4426 /*
4427  * Called if we need to clear a data reservation for this inode
4428  * Normally in a error case.
4429  *
4430  * This one will handle the per-inode data rsv map for accurate reserved
4431  * space framework.
4432  */
4433 void btrfs_free_reserved_data_space(struct inode *inode,
4434 			struct extent_changeset *reserved, u64 start, u64 len)
4435 {
4436 	struct btrfs_root *root = BTRFS_I(inode)->root;
4437 
4438 	/* Make sure the range is aligned to sectorsize */
4439 	len = round_up(start + len, root->fs_info->sectorsize) -
4440 	      round_down(start, root->fs_info->sectorsize);
4441 	start = round_down(start, root->fs_info->sectorsize);
4442 
4443 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4444 	btrfs_qgroup_free_data(inode, reserved, start, len);
4445 }
4446 
4447 static void force_metadata_allocation(struct btrfs_fs_info *info)
4448 {
4449 	struct list_head *head = &info->space_info;
4450 	struct btrfs_space_info *found;
4451 
4452 	rcu_read_lock();
4453 	list_for_each_entry_rcu(found, head, list) {
4454 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4455 			found->force_alloc = CHUNK_ALLOC_FORCE;
4456 	}
4457 	rcu_read_unlock();
4458 }
4459 
4460 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4461 {
4462 	return (global->size << 1);
4463 }
4464 
4465 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4466 			      struct btrfs_space_info *sinfo, int force)
4467 {
4468 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4469 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4470 	u64 thresh;
4471 
4472 	if (force == CHUNK_ALLOC_FORCE)
4473 		return 1;
4474 
4475 	/*
4476 	 * We need to take into account the global rsv because for all intents
4477 	 * and purposes it's used space.  Don't worry about locking the
4478 	 * global_rsv, it doesn't change except when the transaction commits.
4479 	 */
4480 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4481 		bytes_used += calc_global_rsv_need_space(global_rsv);
4482 
4483 	/*
4484 	 * in limited mode, we want to have some free space up to
4485 	 * about 1% of the FS size.
4486 	 */
4487 	if (force == CHUNK_ALLOC_LIMITED) {
4488 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4489 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4490 
4491 		if (sinfo->total_bytes - bytes_used < thresh)
4492 			return 1;
4493 	}
4494 
4495 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4496 		return 0;
4497 	return 1;
4498 }
4499 
4500 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4501 {
4502 	u64 num_dev;
4503 
4504 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4505 		    BTRFS_BLOCK_GROUP_RAID0 |
4506 		    BTRFS_BLOCK_GROUP_RAID5 |
4507 		    BTRFS_BLOCK_GROUP_RAID6))
4508 		num_dev = fs_info->fs_devices->rw_devices;
4509 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4510 		num_dev = 2;
4511 	else
4512 		num_dev = 1;	/* DUP or single */
4513 
4514 	return num_dev;
4515 }
4516 
4517 /*
4518  * If @is_allocation is true, reserve space in the system space info necessary
4519  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4520  * removing a chunk.
4521  */
4522 void check_system_chunk(struct btrfs_trans_handle *trans,
4523 			struct btrfs_fs_info *fs_info, u64 type)
4524 {
4525 	struct btrfs_space_info *info;
4526 	u64 left;
4527 	u64 thresh;
4528 	int ret = 0;
4529 	u64 num_devs;
4530 
4531 	/*
4532 	 * Needed because we can end up allocating a system chunk and for an
4533 	 * atomic and race free space reservation in the chunk block reserve.
4534 	 */
4535 	lockdep_assert_held(&fs_info->chunk_mutex);
4536 
4537 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4538 	spin_lock(&info->lock);
4539 	left = info->total_bytes - btrfs_space_info_used(info, true);
4540 	spin_unlock(&info->lock);
4541 
4542 	num_devs = get_profile_num_devs(fs_info, type);
4543 
4544 	/* num_devs device items to update and 1 chunk item to add or remove */
4545 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4546 		btrfs_calc_trans_metadata_size(fs_info, 1);
4547 
4548 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4549 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4550 			   left, thresh, type);
4551 		dump_space_info(fs_info, info, 0, 0);
4552 	}
4553 
4554 	if (left < thresh) {
4555 		u64 flags = btrfs_system_alloc_profile(fs_info);
4556 
4557 		/*
4558 		 * Ignore failure to create system chunk. We might end up not
4559 		 * needing it, as we might not need to COW all nodes/leafs from
4560 		 * the paths we visit in the chunk tree (they were already COWed
4561 		 * or created in the current transaction for example).
4562 		 */
4563 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4564 	}
4565 
4566 	if (!ret) {
4567 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4568 					  &fs_info->chunk_block_rsv,
4569 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4570 		if (!ret)
4571 			trans->chunk_bytes_reserved += thresh;
4572 	}
4573 }
4574 
4575 /*
4576  * If force is CHUNK_ALLOC_FORCE:
4577  *    - return 1 if it successfully allocates a chunk,
4578  *    - return errors including -ENOSPC otherwise.
4579  * If force is NOT CHUNK_ALLOC_FORCE:
4580  *    - return 0 if it doesn't need to allocate a new chunk,
4581  *    - return 1 if it successfully allocates a chunk,
4582  *    - return errors including -ENOSPC otherwise.
4583  */
4584 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4585 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4586 {
4587 	struct btrfs_space_info *space_info;
4588 	int wait_for_alloc = 0;
4589 	int ret = 0;
4590 
4591 	/* Don't re-enter if we're already allocating a chunk */
4592 	if (trans->allocating_chunk)
4593 		return -ENOSPC;
4594 
4595 	space_info = __find_space_info(fs_info, flags);
4596 	ASSERT(space_info);
4597 
4598 again:
4599 	spin_lock(&space_info->lock);
4600 	if (force < space_info->force_alloc)
4601 		force = space_info->force_alloc;
4602 	if (space_info->full) {
4603 		if (should_alloc_chunk(fs_info, space_info, force))
4604 			ret = -ENOSPC;
4605 		else
4606 			ret = 0;
4607 		spin_unlock(&space_info->lock);
4608 		return ret;
4609 	}
4610 
4611 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4612 		spin_unlock(&space_info->lock);
4613 		return 0;
4614 	} else if (space_info->chunk_alloc) {
4615 		wait_for_alloc = 1;
4616 	} else {
4617 		space_info->chunk_alloc = 1;
4618 	}
4619 
4620 	spin_unlock(&space_info->lock);
4621 
4622 	mutex_lock(&fs_info->chunk_mutex);
4623 
4624 	/*
4625 	 * The chunk_mutex is held throughout the entirety of a chunk
4626 	 * allocation, so once we've acquired the chunk_mutex we know that the
4627 	 * other guy is done and we need to recheck and see if we should
4628 	 * allocate.
4629 	 */
4630 	if (wait_for_alloc) {
4631 		mutex_unlock(&fs_info->chunk_mutex);
4632 		wait_for_alloc = 0;
4633 		cond_resched();
4634 		goto again;
4635 	}
4636 
4637 	trans->allocating_chunk = true;
4638 
4639 	/*
4640 	 * If we have mixed data/metadata chunks we want to make sure we keep
4641 	 * allocating mixed chunks instead of individual chunks.
4642 	 */
4643 	if (btrfs_mixed_space_info(space_info))
4644 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4645 
4646 	/*
4647 	 * if we're doing a data chunk, go ahead and make sure that
4648 	 * we keep a reasonable number of metadata chunks allocated in the
4649 	 * FS as well.
4650 	 */
4651 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4652 		fs_info->data_chunk_allocations++;
4653 		if (!(fs_info->data_chunk_allocations %
4654 		      fs_info->metadata_ratio))
4655 			force_metadata_allocation(fs_info);
4656 	}
4657 
4658 	/*
4659 	 * Check if we have enough space in SYSTEM chunk because we may need
4660 	 * to update devices.
4661 	 */
4662 	check_system_chunk(trans, fs_info, flags);
4663 
4664 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4665 	trans->allocating_chunk = false;
4666 
4667 	spin_lock(&space_info->lock);
4668 	if (ret < 0 && ret != -ENOSPC)
4669 		goto out;
4670 	if (ret)
4671 		space_info->full = 1;
4672 	else
4673 		ret = 1;
4674 
4675 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4676 out:
4677 	space_info->chunk_alloc = 0;
4678 	spin_unlock(&space_info->lock);
4679 	mutex_unlock(&fs_info->chunk_mutex);
4680 	/*
4681 	 * When we allocate a new chunk we reserve space in the chunk block
4682 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4683 	 * add new nodes/leafs to it if we end up needing to do it when
4684 	 * inserting the chunk item and updating device items as part of the
4685 	 * second phase of chunk allocation, performed by
4686 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4687 	 * large number of new block groups to create in our transaction
4688 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4689 	 * in extreme cases - like having a single transaction create many new
4690 	 * block groups when starting to write out the free space caches of all
4691 	 * the block groups that were made dirty during the lifetime of the
4692 	 * transaction.
4693 	 */
4694 	if (trans->can_flush_pending_bgs &&
4695 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4696 		btrfs_create_pending_block_groups(trans);
4697 		btrfs_trans_release_chunk_metadata(trans);
4698 	}
4699 	return ret;
4700 }
4701 
4702 static int can_overcommit(struct btrfs_fs_info *fs_info,
4703 			  struct btrfs_space_info *space_info, u64 bytes,
4704 			  enum btrfs_reserve_flush_enum flush,
4705 			  bool system_chunk)
4706 {
4707 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4708 	u64 profile;
4709 	u64 space_size;
4710 	u64 avail;
4711 	u64 used;
4712 
4713 	/* Don't overcommit when in mixed mode. */
4714 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4715 		return 0;
4716 
4717 	if (system_chunk)
4718 		profile = btrfs_system_alloc_profile(fs_info);
4719 	else
4720 		profile = btrfs_metadata_alloc_profile(fs_info);
4721 
4722 	used = btrfs_space_info_used(space_info, false);
4723 
4724 	/*
4725 	 * We only want to allow over committing if we have lots of actual space
4726 	 * free, but if we don't have enough space to handle the global reserve
4727 	 * space then we could end up having a real enospc problem when trying
4728 	 * to allocate a chunk or some other such important allocation.
4729 	 */
4730 	spin_lock(&global_rsv->lock);
4731 	space_size = calc_global_rsv_need_space(global_rsv);
4732 	spin_unlock(&global_rsv->lock);
4733 	if (used + space_size >= space_info->total_bytes)
4734 		return 0;
4735 
4736 	used += space_info->bytes_may_use;
4737 
4738 	avail = atomic64_read(&fs_info->free_chunk_space);
4739 
4740 	/*
4741 	 * If we have dup, raid1 or raid10 then only half of the free
4742 	 * space is actually useable.  For raid56, the space info used
4743 	 * doesn't include the parity drive, so we don't have to
4744 	 * change the math
4745 	 */
4746 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4747 		       BTRFS_BLOCK_GROUP_RAID1 |
4748 		       BTRFS_BLOCK_GROUP_RAID10))
4749 		avail >>= 1;
4750 
4751 	/*
4752 	 * If we aren't flushing all things, let us overcommit up to
4753 	 * 1/2th of the space. If we can flush, don't let us overcommit
4754 	 * too much, let it overcommit up to 1/8 of the space.
4755 	 */
4756 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4757 		avail >>= 3;
4758 	else
4759 		avail >>= 1;
4760 
4761 	if (used + bytes < space_info->total_bytes + avail)
4762 		return 1;
4763 	return 0;
4764 }
4765 
4766 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4767 					 unsigned long nr_pages, int nr_items)
4768 {
4769 	struct super_block *sb = fs_info->sb;
4770 
4771 	if (down_read_trylock(&sb->s_umount)) {
4772 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4773 		up_read(&sb->s_umount);
4774 	} else {
4775 		/*
4776 		 * We needn't worry the filesystem going from r/w to r/o though
4777 		 * we don't acquire ->s_umount mutex, because the filesystem
4778 		 * should guarantee the delalloc inodes list be empty after
4779 		 * the filesystem is readonly(all dirty pages are written to
4780 		 * the disk).
4781 		 */
4782 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4783 		if (!current->journal_info)
4784 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4785 	}
4786 }
4787 
4788 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4789 					u64 to_reclaim)
4790 {
4791 	u64 bytes;
4792 	u64 nr;
4793 
4794 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4795 	nr = div64_u64(to_reclaim, bytes);
4796 	if (!nr)
4797 		nr = 1;
4798 	return nr;
4799 }
4800 
4801 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4802 
4803 /*
4804  * shrink metadata reservation for delalloc
4805  */
4806 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4807 			    u64 orig, bool wait_ordered)
4808 {
4809 	struct btrfs_space_info *space_info;
4810 	struct btrfs_trans_handle *trans;
4811 	u64 delalloc_bytes;
4812 	u64 max_reclaim;
4813 	u64 items;
4814 	long time_left;
4815 	unsigned long nr_pages;
4816 	int loops;
4817 
4818 	/* Calc the number of the pages we need flush for space reservation */
4819 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4820 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4821 
4822 	trans = (struct btrfs_trans_handle *)current->journal_info;
4823 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4824 
4825 	delalloc_bytes = percpu_counter_sum_positive(
4826 						&fs_info->delalloc_bytes);
4827 	if (delalloc_bytes == 0) {
4828 		if (trans)
4829 			return;
4830 		if (wait_ordered)
4831 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4832 		return;
4833 	}
4834 
4835 	loops = 0;
4836 	while (delalloc_bytes && loops < 3) {
4837 		max_reclaim = min(delalloc_bytes, to_reclaim);
4838 		nr_pages = max_reclaim >> PAGE_SHIFT;
4839 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4840 		/*
4841 		 * We need to wait for the async pages to actually start before
4842 		 * we do anything.
4843 		 */
4844 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4845 		if (!max_reclaim)
4846 			goto skip_async;
4847 
4848 		if (max_reclaim <= nr_pages)
4849 			max_reclaim = 0;
4850 		else
4851 			max_reclaim -= nr_pages;
4852 
4853 		wait_event(fs_info->async_submit_wait,
4854 			   atomic_read(&fs_info->async_delalloc_pages) <=
4855 			   (int)max_reclaim);
4856 skip_async:
4857 		spin_lock(&space_info->lock);
4858 		if (list_empty(&space_info->tickets) &&
4859 		    list_empty(&space_info->priority_tickets)) {
4860 			spin_unlock(&space_info->lock);
4861 			break;
4862 		}
4863 		spin_unlock(&space_info->lock);
4864 
4865 		loops++;
4866 		if (wait_ordered && !trans) {
4867 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4868 		} else {
4869 			time_left = schedule_timeout_killable(1);
4870 			if (time_left)
4871 				break;
4872 		}
4873 		delalloc_bytes = percpu_counter_sum_positive(
4874 						&fs_info->delalloc_bytes);
4875 	}
4876 }
4877 
4878 struct reserve_ticket {
4879 	u64 bytes;
4880 	int error;
4881 	struct list_head list;
4882 	wait_queue_head_t wait;
4883 };
4884 
4885 /**
4886  * maybe_commit_transaction - possibly commit the transaction if its ok to
4887  * @root - the root we're allocating for
4888  * @bytes - the number of bytes we want to reserve
4889  * @force - force the commit
4890  *
4891  * This will check to make sure that committing the transaction will actually
4892  * get us somewhere and then commit the transaction if it does.  Otherwise it
4893  * will return -ENOSPC.
4894  */
4895 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4896 				  struct btrfs_space_info *space_info)
4897 {
4898 	struct reserve_ticket *ticket = NULL;
4899 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4900 	struct btrfs_trans_handle *trans;
4901 	u64 bytes;
4902 
4903 	trans = (struct btrfs_trans_handle *)current->journal_info;
4904 	if (trans)
4905 		return -EAGAIN;
4906 
4907 	spin_lock(&space_info->lock);
4908 	if (!list_empty(&space_info->priority_tickets))
4909 		ticket = list_first_entry(&space_info->priority_tickets,
4910 					  struct reserve_ticket, list);
4911 	else if (!list_empty(&space_info->tickets))
4912 		ticket = list_first_entry(&space_info->tickets,
4913 					  struct reserve_ticket, list);
4914 	bytes = (ticket) ? ticket->bytes : 0;
4915 	spin_unlock(&space_info->lock);
4916 
4917 	if (!bytes)
4918 		return 0;
4919 
4920 	/* See if there is enough pinned space to make this reservation */
4921 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4922 				   bytes) >= 0)
4923 		goto commit;
4924 
4925 	/*
4926 	 * See if there is some space in the delayed insertion reservation for
4927 	 * this reservation.
4928 	 */
4929 	if (space_info != delayed_rsv->space_info)
4930 		return -ENOSPC;
4931 
4932 	spin_lock(&delayed_rsv->lock);
4933 	if (delayed_rsv->size > bytes)
4934 		bytes = 0;
4935 	else
4936 		bytes -= delayed_rsv->size;
4937 	spin_unlock(&delayed_rsv->lock);
4938 
4939 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4940 				   bytes) < 0) {
4941 		return -ENOSPC;
4942 	}
4943 
4944 commit:
4945 	trans = btrfs_join_transaction(fs_info->extent_root);
4946 	if (IS_ERR(trans))
4947 		return -ENOSPC;
4948 
4949 	return btrfs_commit_transaction(trans);
4950 }
4951 
4952 /*
4953  * Try to flush some data based on policy set by @state. This is only advisory
4954  * and may fail for various reasons. The caller is supposed to examine the
4955  * state of @space_info to detect the outcome.
4956  */
4957 static void flush_space(struct btrfs_fs_info *fs_info,
4958 		       struct btrfs_space_info *space_info, u64 num_bytes,
4959 		       int state)
4960 {
4961 	struct btrfs_root *root = fs_info->extent_root;
4962 	struct btrfs_trans_handle *trans;
4963 	int nr;
4964 	int ret = 0;
4965 
4966 	switch (state) {
4967 	case FLUSH_DELAYED_ITEMS_NR:
4968 	case FLUSH_DELAYED_ITEMS:
4969 		if (state == FLUSH_DELAYED_ITEMS_NR)
4970 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4971 		else
4972 			nr = -1;
4973 
4974 		trans = btrfs_join_transaction(root);
4975 		if (IS_ERR(trans)) {
4976 			ret = PTR_ERR(trans);
4977 			break;
4978 		}
4979 		ret = btrfs_run_delayed_items_nr(trans, nr);
4980 		btrfs_end_transaction(trans);
4981 		break;
4982 	case FLUSH_DELALLOC:
4983 	case FLUSH_DELALLOC_WAIT:
4984 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4985 				state == FLUSH_DELALLOC_WAIT);
4986 		break;
4987 	case ALLOC_CHUNK:
4988 		trans = btrfs_join_transaction(root);
4989 		if (IS_ERR(trans)) {
4990 			ret = PTR_ERR(trans);
4991 			break;
4992 		}
4993 		ret = do_chunk_alloc(trans, fs_info,
4994 				     btrfs_metadata_alloc_profile(fs_info),
4995 				     CHUNK_ALLOC_NO_FORCE);
4996 		btrfs_end_transaction(trans);
4997 		if (ret > 0 || ret == -ENOSPC)
4998 			ret = 0;
4999 		break;
5000 	case COMMIT_TRANS:
5001 		ret = may_commit_transaction(fs_info, space_info);
5002 		break;
5003 	default:
5004 		ret = -ENOSPC;
5005 		break;
5006 	}
5007 
5008 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5009 				ret);
5010 	return;
5011 }
5012 
5013 static inline u64
5014 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5015 				 struct btrfs_space_info *space_info,
5016 				 bool system_chunk)
5017 {
5018 	struct reserve_ticket *ticket;
5019 	u64 used;
5020 	u64 expected;
5021 	u64 to_reclaim = 0;
5022 
5023 	list_for_each_entry(ticket, &space_info->tickets, list)
5024 		to_reclaim += ticket->bytes;
5025 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5026 		to_reclaim += ticket->bytes;
5027 	if (to_reclaim)
5028 		return to_reclaim;
5029 
5030 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5031 	if (can_overcommit(fs_info, space_info, to_reclaim,
5032 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5033 		return 0;
5034 
5035 	used = btrfs_space_info_used(space_info, true);
5036 
5037 	if (can_overcommit(fs_info, space_info, SZ_1M,
5038 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5039 		expected = div_factor_fine(space_info->total_bytes, 95);
5040 	else
5041 		expected = div_factor_fine(space_info->total_bytes, 90);
5042 
5043 	if (used > expected)
5044 		to_reclaim = used - expected;
5045 	else
5046 		to_reclaim = 0;
5047 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5048 				     space_info->bytes_reserved);
5049 	return to_reclaim;
5050 }
5051 
5052 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5053 					struct btrfs_space_info *space_info,
5054 					u64 used, bool system_chunk)
5055 {
5056 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5057 
5058 	/* If we're just plain full then async reclaim just slows us down. */
5059 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5060 		return 0;
5061 
5062 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5063 					      system_chunk))
5064 		return 0;
5065 
5066 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5067 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5068 }
5069 
5070 static void wake_all_tickets(struct list_head *head)
5071 {
5072 	struct reserve_ticket *ticket;
5073 
5074 	while (!list_empty(head)) {
5075 		ticket = list_first_entry(head, struct reserve_ticket, list);
5076 		list_del_init(&ticket->list);
5077 		ticket->error = -ENOSPC;
5078 		wake_up(&ticket->wait);
5079 	}
5080 }
5081 
5082 /*
5083  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5084  * will loop and continuously try to flush as long as we are making progress.
5085  * We count progress as clearing off tickets each time we have to loop.
5086  */
5087 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5088 {
5089 	struct btrfs_fs_info *fs_info;
5090 	struct btrfs_space_info *space_info;
5091 	u64 to_reclaim;
5092 	int flush_state;
5093 	int commit_cycles = 0;
5094 	u64 last_tickets_id;
5095 
5096 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5097 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5098 
5099 	spin_lock(&space_info->lock);
5100 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5101 						      false);
5102 	if (!to_reclaim) {
5103 		space_info->flush = 0;
5104 		spin_unlock(&space_info->lock);
5105 		return;
5106 	}
5107 	last_tickets_id = space_info->tickets_id;
5108 	spin_unlock(&space_info->lock);
5109 
5110 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5111 	do {
5112 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5113 		spin_lock(&space_info->lock);
5114 		if (list_empty(&space_info->tickets)) {
5115 			space_info->flush = 0;
5116 			spin_unlock(&space_info->lock);
5117 			return;
5118 		}
5119 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5120 							      space_info,
5121 							      false);
5122 		if (last_tickets_id == space_info->tickets_id) {
5123 			flush_state++;
5124 		} else {
5125 			last_tickets_id = space_info->tickets_id;
5126 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5127 			if (commit_cycles)
5128 				commit_cycles--;
5129 		}
5130 
5131 		if (flush_state > COMMIT_TRANS) {
5132 			commit_cycles++;
5133 			if (commit_cycles > 2) {
5134 				wake_all_tickets(&space_info->tickets);
5135 				space_info->flush = 0;
5136 			} else {
5137 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5138 			}
5139 		}
5140 		spin_unlock(&space_info->lock);
5141 	} while (flush_state <= COMMIT_TRANS);
5142 }
5143 
5144 void btrfs_init_async_reclaim_work(struct work_struct *work)
5145 {
5146 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5147 }
5148 
5149 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5150 					    struct btrfs_space_info *space_info,
5151 					    struct reserve_ticket *ticket)
5152 {
5153 	u64 to_reclaim;
5154 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5155 
5156 	spin_lock(&space_info->lock);
5157 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5158 						      false);
5159 	if (!to_reclaim) {
5160 		spin_unlock(&space_info->lock);
5161 		return;
5162 	}
5163 	spin_unlock(&space_info->lock);
5164 
5165 	do {
5166 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5167 		flush_state++;
5168 		spin_lock(&space_info->lock);
5169 		if (ticket->bytes == 0) {
5170 			spin_unlock(&space_info->lock);
5171 			return;
5172 		}
5173 		spin_unlock(&space_info->lock);
5174 
5175 		/*
5176 		 * Priority flushers can't wait on delalloc without
5177 		 * deadlocking.
5178 		 */
5179 		if (flush_state == FLUSH_DELALLOC ||
5180 		    flush_state == FLUSH_DELALLOC_WAIT)
5181 			flush_state = ALLOC_CHUNK;
5182 	} while (flush_state < COMMIT_TRANS);
5183 }
5184 
5185 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5186 			       struct btrfs_space_info *space_info,
5187 			       struct reserve_ticket *ticket, u64 orig_bytes)
5188 
5189 {
5190 	DEFINE_WAIT(wait);
5191 	int ret = 0;
5192 
5193 	spin_lock(&space_info->lock);
5194 	while (ticket->bytes > 0 && ticket->error == 0) {
5195 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5196 		if (ret) {
5197 			ret = -EINTR;
5198 			break;
5199 		}
5200 		spin_unlock(&space_info->lock);
5201 
5202 		schedule();
5203 
5204 		finish_wait(&ticket->wait, &wait);
5205 		spin_lock(&space_info->lock);
5206 	}
5207 	if (!ret)
5208 		ret = ticket->error;
5209 	if (!list_empty(&ticket->list))
5210 		list_del_init(&ticket->list);
5211 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5212 		u64 num_bytes = orig_bytes - ticket->bytes;
5213 		space_info->bytes_may_use -= num_bytes;
5214 		trace_btrfs_space_reservation(fs_info, "space_info",
5215 					      space_info->flags, num_bytes, 0);
5216 	}
5217 	spin_unlock(&space_info->lock);
5218 
5219 	return ret;
5220 }
5221 
5222 /**
5223  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5224  * @root - the root we're allocating for
5225  * @space_info - the space info we want to allocate from
5226  * @orig_bytes - the number of bytes we want
5227  * @flush - whether or not we can flush to make our reservation
5228  *
5229  * This will reserve orig_bytes number of bytes from the space info associated
5230  * with the block_rsv.  If there is not enough space it will make an attempt to
5231  * flush out space to make room.  It will do this by flushing delalloc if
5232  * possible or committing the transaction.  If flush is 0 then no attempts to
5233  * regain reservations will be made and this will fail if there is not enough
5234  * space already.
5235  */
5236 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5237 				    struct btrfs_space_info *space_info,
5238 				    u64 orig_bytes,
5239 				    enum btrfs_reserve_flush_enum flush,
5240 				    bool system_chunk)
5241 {
5242 	struct reserve_ticket ticket;
5243 	u64 used;
5244 	int ret = 0;
5245 
5246 	ASSERT(orig_bytes);
5247 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5248 
5249 	spin_lock(&space_info->lock);
5250 	ret = -ENOSPC;
5251 	used = btrfs_space_info_used(space_info, true);
5252 
5253 	/*
5254 	 * If we have enough space then hooray, make our reservation and carry
5255 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5256 	 * If not things get more complicated.
5257 	 */
5258 	if (used + orig_bytes <= space_info->total_bytes) {
5259 		space_info->bytes_may_use += orig_bytes;
5260 		trace_btrfs_space_reservation(fs_info, "space_info",
5261 					      space_info->flags, orig_bytes, 1);
5262 		ret = 0;
5263 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5264 				  system_chunk)) {
5265 		space_info->bytes_may_use += orig_bytes;
5266 		trace_btrfs_space_reservation(fs_info, "space_info",
5267 					      space_info->flags, orig_bytes, 1);
5268 		ret = 0;
5269 	}
5270 
5271 	/*
5272 	 * If we couldn't make a reservation then setup our reservation ticket
5273 	 * and kick the async worker if it's not already running.
5274 	 *
5275 	 * If we are a priority flusher then we just need to add our ticket to
5276 	 * the list and we will do our own flushing further down.
5277 	 */
5278 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5279 		ticket.bytes = orig_bytes;
5280 		ticket.error = 0;
5281 		init_waitqueue_head(&ticket.wait);
5282 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5283 			list_add_tail(&ticket.list, &space_info->tickets);
5284 			if (!space_info->flush) {
5285 				space_info->flush = 1;
5286 				trace_btrfs_trigger_flush(fs_info,
5287 							  space_info->flags,
5288 							  orig_bytes, flush,
5289 							  "enospc");
5290 				queue_work(system_unbound_wq,
5291 					   &fs_info->async_reclaim_work);
5292 			}
5293 		} else {
5294 			list_add_tail(&ticket.list,
5295 				      &space_info->priority_tickets);
5296 		}
5297 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5298 		used += orig_bytes;
5299 		/*
5300 		 * We will do the space reservation dance during log replay,
5301 		 * which means we won't have fs_info->fs_root set, so don't do
5302 		 * the async reclaim as we will panic.
5303 		 */
5304 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5305 		    need_do_async_reclaim(fs_info, space_info,
5306 					  used, system_chunk) &&
5307 		    !work_busy(&fs_info->async_reclaim_work)) {
5308 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5309 						  orig_bytes, flush, "preempt");
5310 			queue_work(system_unbound_wq,
5311 				   &fs_info->async_reclaim_work);
5312 		}
5313 	}
5314 	spin_unlock(&space_info->lock);
5315 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5316 		return ret;
5317 
5318 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5319 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5320 					   orig_bytes);
5321 
5322 	ret = 0;
5323 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5324 	spin_lock(&space_info->lock);
5325 	if (ticket.bytes) {
5326 		if (ticket.bytes < orig_bytes) {
5327 			u64 num_bytes = orig_bytes - ticket.bytes;
5328 			space_info->bytes_may_use -= num_bytes;
5329 			trace_btrfs_space_reservation(fs_info, "space_info",
5330 						      space_info->flags,
5331 						      num_bytes, 0);
5332 
5333 		}
5334 		list_del_init(&ticket.list);
5335 		ret = -ENOSPC;
5336 	}
5337 	spin_unlock(&space_info->lock);
5338 	ASSERT(list_empty(&ticket.list));
5339 	return ret;
5340 }
5341 
5342 /**
5343  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5344  * @root - the root we're allocating for
5345  * @block_rsv - the block_rsv we're allocating for
5346  * @orig_bytes - the number of bytes we want
5347  * @flush - whether or not we can flush to make our reservation
5348  *
5349  * This will reserve orgi_bytes number of bytes from the space info associated
5350  * with the block_rsv.  If there is not enough space it will make an attempt to
5351  * flush out space to make room.  It will do this by flushing delalloc if
5352  * possible or committing the transaction.  If flush is 0 then no attempts to
5353  * regain reservations will be made and this will fail if there is not enough
5354  * space already.
5355  */
5356 static int reserve_metadata_bytes(struct btrfs_root *root,
5357 				  struct btrfs_block_rsv *block_rsv,
5358 				  u64 orig_bytes,
5359 				  enum btrfs_reserve_flush_enum flush)
5360 {
5361 	struct btrfs_fs_info *fs_info = root->fs_info;
5362 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5363 	int ret;
5364 	bool system_chunk = (root == fs_info->chunk_root);
5365 
5366 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5367 				       orig_bytes, flush, system_chunk);
5368 	if (ret == -ENOSPC &&
5369 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5370 		if (block_rsv != global_rsv &&
5371 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5372 			ret = 0;
5373 	}
5374 	if (ret == -ENOSPC) {
5375 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5376 					      block_rsv->space_info->flags,
5377 					      orig_bytes, 1);
5378 
5379 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5380 			dump_space_info(fs_info, block_rsv->space_info,
5381 					orig_bytes, 0);
5382 	}
5383 	return ret;
5384 }
5385 
5386 static struct btrfs_block_rsv *get_block_rsv(
5387 					const struct btrfs_trans_handle *trans,
5388 					const struct btrfs_root *root)
5389 {
5390 	struct btrfs_fs_info *fs_info = root->fs_info;
5391 	struct btrfs_block_rsv *block_rsv = NULL;
5392 
5393 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5394 	    (root == fs_info->csum_root && trans->adding_csums) ||
5395 	    (root == fs_info->uuid_root))
5396 		block_rsv = trans->block_rsv;
5397 
5398 	if (!block_rsv)
5399 		block_rsv = root->block_rsv;
5400 
5401 	if (!block_rsv)
5402 		block_rsv = &fs_info->empty_block_rsv;
5403 
5404 	return block_rsv;
5405 }
5406 
5407 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5408 			       u64 num_bytes)
5409 {
5410 	int ret = -ENOSPC;
5411 	spin_lock(&block_rsv->lock);
5412 	if (block_rsv->reserved >= num_bytes) {
5413 		block_rsv->reserved -= num_bytes;
5414 		if (block_rsv->reserved < block_rsv->size)
5415 			block_rsv->full = 0;
5416 		ret = 0;
5417 	}
5418 	spin_unlock(&block_rsv->lock);
5419 	return ret;
5420 }
5421 
5422 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5423 				u64 num_bytes, int update_size)
5424 {
5425 	spin_lock(&block_rsv->lock);
5426 	block_rsv->reserved += num_bytes;
5427 	if (update_size)
5428 		block_rsv->size += num_bytes;
5429 	else if (block_rsv->reserved >= block_rsv->size)
5430 		block_rsv->full = 1;
5431 	spin_unlock(&block_rsv->lock);
5432 }
5433 
5434 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5435 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5436 			     int min_factor)
5437 {
5438 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5439 	u64 min_bytes;
5440 
5441 	if (global_rsv->space_info != dest->space_info)
5442 		return -ENOSPC;
5443 
5444 	spin_lock(&global_rsv->lock);
5445 	min_bytes = div_factor(global_rsv->size, min_factor);
5446 	if (global_rsv->reserved < min_bytes + num_bytes) {
5447 		spin_unlock(&global_rsv->lock);
5448 		return -ENOSPC;
5449 	}
5450 	global_rsv->reserved -= num_bytes;
5451 	if (global_rsv->reserved < global_rsv->size)
5452 		global_rsv->full = 0;
5453 	spin_unlock(&global_rsv->lock);
5454 
5455 	block_rsv_add_bytes(dest, num_bytes, 1);
5456 	return 0;
5457 }
5458 
5459 /*
5460  * This is for space we already have accounted in space_info->bytes_may_use, so
5461  * basically when we're returning space from block_rsv's.
5462  */
5463 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5464 				     struct btrfs_space_info *space_info,
5465 				     u64 num_bytes)
5466 {
5467 	struct reserve_ticket *ticket;
5468 	struct list_head *head;
5469 	u64 used;
5470 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5471 	bool check_overcommit = false;
5472 
5473 	spin_lock(&space_info->lock);
5474 	head = &space_info->priority_tickets;
5475 
5476 	/*
5477 	 * If we are over our limit then we need to check and see if we can
5478 	 * overcommit, and if we can't then we just need to free up our space
5479 	 * and not satisfy any requests.
5480 	 */
5481 	used = btrfs_space_info_used(space_info, true);
5482 	if (used - num_bytes >= space_info->total_bytes)
5483 		check_overcommit = true;
5484 again:
5485 	while (!list_empty(head) && num_bytes) {
5486 		ticket = list_first_entry(head, struct reserve_ticket,
5487 					  list);
5488 		/*
5489 		 * We use 0 bytes because this space is already reserved, so
5490 		 * adding the ticket space would be a double count.
5491 		 */
5492 		if (check_overcommit &&
5493 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5494 			break;
5495 		if (num_bytes >= ticket->bytes) {
5496 			list_del_init(&ticket->list);
5497 			num_bytes -= ticket->bytes;
5498 			ticket->bytes = 0;
5499 			space_info->tickets_id++;
5500 			wake_up(&ticket->wait);
5501 		} else {
5502 			ticket->bytes -= num_bytes;
5503 			num_bytes = 0;
5504 		}
5505 	}
5506 
5507 	if (num_bytes && head == &space_info->priority_tickets) {
5508 		head = &space_info->tickets;
5509 		flush = BTRFS_RESERVE_FLUSH_ALL;
5510 		goto again;
5511 	}
5512 	space_info->bytes_may_use -= num_bytes;
5513 	trace_btrfs_space_reservation(fs_info, "space_info",
5514 				      space_info->flags, num_bytes, 0);
5515 	spin_unlock(&space_info->lock);
5516 }
5517 
5518 /*
5519  * This is for newly allocated space that isn't accounted in
5520  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5521  * we use this helper.
5522  */
5523 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5524 				     struct btrfs_space_info *space_info,
5525 				     u64 num_bytes)
5526 {
5527 	struct reserve_ticket *ticket;
5528 	struct list_head *head = &space_info->priority_tickets;
5529 
5530 again:
5531 	while (!list_empty(head) && num_bytes) {
5532 		ticket = list_first_entry(head, struct reserve_ticket,
5533 					  list);
5534 		if (num_bytes >= ticket->bytes) {
5535 			trace_btrfs_space_reservation(fs_info, "space_info",
5536 						      space_info->flags,
5537 						      ticket->bytes, 1);
5538 			list_del_init(&ticket->list);
5539 			num_bytes -= ticket->bytes;
5540 			space_info->bytes_may_use += ticket->bytes;
5541 			ticket->bytes = 0;
5542 			space_info->tickets_id++;
5543 			wake_up(&ticket->wait);
5544 		} else {
5545 			trace_btrfs_space_reservation(fs_info, "space_info",
5546 						      space_info->flags,
5547 						      num_bytes, 1);
5548 			space_info->bytes_may_use += num_bytes;
5549 			ticket->bytes -= num_bytes;
5550 			num_bytes = 0;
5551 		}
5552 	}
5553 
5554 	if (num_bytes && head == &space_info->priority_tickets) {
5555 		head = &space_info->tickets;
5556 		goto again;
5557 	}
5558 }
5559 
5560 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5561 				    struct btrfs_block_rsv *block_rsv,
5562 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5563 {
5564 	struct btrfs_space_info *space_info = block_rsv->space_info;
5565 	u64 ret;
5566 
5567 	spin_lock(&block_rsv->lock);
5568 	if (num_bytes == (u64)-1)
5569 		num_bytes = block_rsv->size;
5570 	block_rsv->size -= num_bytes;
5571 	if (block_rsv->reserved >= block_rsv->size) {
5572 		num_bytes = block_rsv->reserved - block_rsv->size;
5573 		block_rsv->reserved = block_rsv->size;
5574 		block_rsv->full = 1;
5575 	} else {
5576 		num_bytes = 0;
5577 	}
5578 	spin_unlock(&block_rsv->lock);
5579 
5580 	ret = num_bytes;
5581 	if (num_bytes > 0) {
5582 		if (dest) {
5583 			spin_lock(&dest->lock);
5584 			if (!dest->full) {
5585 				u64 bytes_to_add;
5586 
5587 				bytes_to_add = dest->size - dest->reserved;
5588 				bytes_to_add = min(num_bytes, bytes_to_add);
5589 				dest->reserved += bytes_to_add;
5590 				if (dest->reserved >= dest->size)
5591 					dest->full = 1;
5592 				num_bytes -= bytes_to_add;
5593 			}
5594 			spin_unlock(&dest->lock);
5595 		}
5596 		if (num_bytes)
5597 			space_info_add_old_bytes(fs_info, space_info,
5598 						 num_bytes);
5599 	}
5600 	return ret;
5601 }
5602 
5603 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5604 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5605 			    int update_size)
5606 {
5607 	int ret;
5608 
5609 	ret = block_rsv_use_bytes(src, num_bytes);
5610 	if (ret)
5611 		return ret;
5612 
5613 	block_rsv_add_bytes(dst, num_bytes, update_size);
5614 	return 0;
5615 }
5616 
5617 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5618 {
5619 	memset(rsv, 0, sizeof(*rsv));
5620 	spin_lock_init(&rsv->lock);
5621 	rsv->type = type;
5622 }
5623 
5624 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5625 				   struct btrfs_block_rsv *rsv,
5626 				   unsigned short type)
5627 {
5628 	btrfs_init_block_rsv(rsv, type);
5629 	rsv->space_info = __find_space_info(fs_info,
5630 					    BTRFS_BLOCK_GROUP_METADATA);
5631 }
5632 
5633 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5634 					      unsigned short type)
5635 {
5636 	struct btrfs_block_rsv *block_rsv;
5637 
5638 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5639 	if (!block_rsv)
5640 		return NULL;
5641 
5642 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5643 	return block_rsv;
5644 }
5645 
5646 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5647 			  struct btrfs_block_rsv *rsv)
5648 {
5649 	if (!rsv)
5650 		return;
5651 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5652 	kfree(rsv);
5653 }
5654 
5655 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5656 {
5657 	kfree(rsv);
5658 }
5659 
5660 int btrfs_block_rsv_add(struct btrfs_root *root,
5661 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5662 			enum btrfs_reserve_flush_enum flush)
5663 {
5664 	int ret;
5665 
5666 	if (num_bytes == 0)
5667 		return 0;
5668 
5669 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5670 	if (!ret) {
5671 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5672 		return 0;
5673 	}
5674 
5675 	return ret;
5676 }
5677 
5678 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5679 {
5680 	u64 num_bytes = 0;
5681 	int ret = -ENOSPC;
5682 
5683 	if (!block_rsv)
5684 		return 0;
5685 
5686 	spin_lock(&block_rsv->lock);
5687 	num_bytes = div_factor(block_rsv->size, min_factor);
5688 	if (block_rsv->reserved >= num_bytes)
5689 		ret = 0;
5690 	spin_unlock(&block_rsv->lock);
5691 
5692 	return ret;
5693 }
5694 
5695 int btrfs_block_rsv_refill(struct btrfs_root *root,
5696 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5697 			   enum btrfs_reserve_flush_enum flush)
5698 {
5699 	u64 num_bytes = 0;
5700 	int ret = -ENOSPC;
5701 
5702 	if (!block_rsv)
5703 		return 0;
5704 
5705 	spin_lock(&block_rsv->lock);
5706 	num_bytes = min_reserved;
5707 	if (block_rsv->reserved >= num_bytes)
5708 		ret = 0;
5709 	else
5710 		num_bytes -= block_rsv->reserved;
5711 	spin_unlock(&block_rsv->lock);
5712 
5713 	if (!ret)
5714 		return 0;
5715 
5716 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5717 	if (!ret) {
5718 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5719 		return 0;
5720 	}
5721 
5722 	return ret;
5723 }
5724 
5725 /**
5726  * btrfs_inode_rsv_refill - refill the inode block rsv.
5727  * @inode - the inode we are refilling.
5728  * @flush - the flusing restriction.
5729  *
5730  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5731  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5732  * or return if we already have enough space.  This will also handle the resreve
5733  * tracepoint for the reserved amount.
5734  */
5735 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5736 				  enum btrfs_reserve_flush_enum flush)
5737 {
5738 	struct btrfs_root *root = inode->root;
5739 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5740 	u64 num_bytes = 0;
5741 	int ret = -ENOSPC;
5742 
5743 	spin_lock(&block_rsv->lock);
5744 	if (block_rsv->reserved < block_rsv->size)
5745 		num_bytes = block_rsv->size - block_rsv->reserved;
5746 	spin_unlock(&block_rsv->lock);
5747 
5748 	if (num_bytes == 0)
5749 		return 0;
5750 
5751 	ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5752 	if (ret)
5753 		return ret;
5754 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5755 	if (!ret) {
5756 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5757 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5758 					      btrfs_ino(inode), num_bytes, 1);
5759 	}
5760 	return ret;
5761 }
5762 
5763 /**
5764  * btrfs_inode_rsv_release - release any excessive reservation.
5765  * @inode - the inode we need to release from.
5766  * @qgroup_free - free or convert qgroup meta.
5767  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5768  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5769  *   @qgroup_free is true for error handling, and false for normal release.
5770  *
5771  * This is the same as btrfs_block_rsv_release, except that it handles the
5772  * tracepoint for the reservation.
5773  */
5774 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5775 {
5776 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5777 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5778 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5779 	u64 released = 0;
5780 
5781 	/*
5782 	 * Since we statically set the block_rsv->size we just want to say we
5783 	 * are releasing 0 bytes, and then we'll just get the reservation over
5784 	 * the size free'd.
5785 	 */
5786 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5787 	if (released > 0)
5788 		trace_btrfs_space_reservation(fs_info, "delalloc",
5789 					      btrfs_ino(inode), released, 0);
5790 	if (qgroup_free)
5791 		btrfs_qgroup_free_meta_prealloc(inode->root, released);
5792 	else
5793 		btrfs_qgroup_convert_reserved_meta(inode->root, released);
5794 }
5795 
5796 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5797 			     struct btrfs_block_rsv *block_rsv,
5798 			     u64 num_bytes)
5799 {
5800 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5801 
5802 	if (global_rsv == block_rsv ||
5803 	    block_rsv->space_info != global_rsv->space_info)
5804 		global_rsv = NULL;
5805 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5806 }
5807 
5808 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5809 {
5810 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5811 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5812 	u64 num_bytes;
5813 
5814 	/*
5815 	 * The global block rsv is based on the size of the extent tree, the
5816 	 * checksum tree and the root tree.  If the fs is empty we want to set
5817 	 * it to a minimal amount for safety.
5818 	 */
5819 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5820 		btrfs_root_used(&fs_info->csum_root->root_item) +
5821 		btrfs_root_used(&fs_info->tree_root->root_item);
5822 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5823 
5824 	spin_lock(&sinfo->lock);
5825 	spin_lock(&block_rsv->lock);
5826 
5827 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5828 
5829 	if (block_rsv->reserved < block_rsv->size) {
5830 		num_bytes = btrfs_space_info_used(sinfo, true);
5831 		if (sinfo->total_bytes > num_bytes) {
5832 			num_bytes = sinfo->total_bytes - num_bytes;
5833 			num_bytes = min(num_bytes,
5834 					block_rsv->size - block_rsv->reserved);
5835 			block_rsv->reserved += num_bytes;
5836 			sinfo->bytes_may_use += num_bytes;
5837 			trace_btrfs_space_reservation(fs_info, "space_info",
5838 						      sinfo->flags, num_bytes,
5839 						      1);
5840 		}
5841 	} else if (block_rsv->reserved > block_rsv->size) {
5842 		num_bytes = block_rsv->reserved - block_rsv->size;
5843 		sinfo->bytes_may_use -= num_bytes;
5844 		trace_btrfs_space_reservation(fs_info, "space_info",
5845 				      sinfo->flags, num_bytes, 0);
5846 		block_rsv->reserved = block_rsv->size;
5847 	}
5848 
5849 	if (block_rsv->reserved == block_rsv->size)
5850 		block_rsv->full = 1;
5851 	else
5852 		block_rsv->full = 0;
5853 
5854 	spin_unlock(&block_rsv->lock);
5855 	spin_unlock(&sinfo->lock);
5856 }
5857 
5858 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5859 {
5860 	struct btrfs_space_info *space_info;
5861 
5862 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5863 	fs_info->chunk_block_rsv.space_info = space_info;
5864 
5865 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5866 	fs_info->global_block_rsv.space_info = space_info;
5867 	fs_info->trans_block_rsv.space_info = space_info;
5868 	fs_info->empty_block_rsv.space_info = space_info;
5869 	fs_info->delayed_block_rsv.space_info = space_info;
5870 
5871 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5872 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5873 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5874 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5875 	if (fs_info->quota_root)
5876 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5877 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5878 
5879 	update_global_block_rsv(fs_info);
5880 }
5881 
5882 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5883 {
5884 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5885 				(u64)-1);
5886 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5887 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5888 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5889 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5890 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5891 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5892 }
5893 
5894 
5895 /*
5896  * To be called after all the new block groups attached to the transaction
5897  * handle have been created (btrfs_create_pending_block_groups()).
5898  */
5899 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5900 {
5901 	struct btrfs_fs_info *fs_info = trans->fs_info;
5902 
5903 	if (!trans->chunk_bytes_reserved)
5904 		return;
5905 
5906 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5907 
5908 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5909 				trans->chunk_bytes_reserved);
5910 	trans->chunk_bytes_reserved = 0;
5911 }
5912 
5913 /* Can only return 0 or -ENOSPC */
5914 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5915 				  struct btrfs_inode *inode)
5916 {
5917 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5918 	struct btrfs_root *root = inode->root;
5919 	/*
5920 	 * We always use trans->block_rsv here as we will have reserved space
5921 	 * for our orphan when starting the transaction, using get_block_rsv()
5922 	 * here will sometimes make us choose the wrong block rsv as we could be
5923 	 * doing a reloc inode for a non refcounted root.
5924 	 */
5925 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5926 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5927 
5928 	/*
5929 	 * We need to hold space in order to delete our orphan item once we've
5930 	 * added it, so this takes the reservation so we can release it later
5931 	 * when we are truly done with the orphan item.
5932 	 */
5933 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5934 
5935 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5936 			num_bytes, 1);
5937 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5938 }
5939 
5940 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5941 {
5942 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5943 	struct btrfs_root *root = inode->root;
5944 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5945 
5946 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5947 			num_bytes, 0);
5948 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5949 }
5950 
5951 /*
5952  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5953  * root: the root of the parent directory
5954  * rsv: block reservation
5955  * items: the number of items that we need do reservation
5956  * qgroup_reserved: used to return the reserved size in qgroup
5957  *
5958  * This function is used to reserve the space for snapshot/subvolume
5959  * creation and deletion. Those operations are different with the
5960  * common file/directory operations, they change two fs/file trees
5961  * and root tree, the number of items that the qgroup reserves is
5962  * different with the free space reservation. So we can not use
5963  * the space reservation mechanism in start_transaction().
5964  */
5965 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5966 				     struct btrfs_block_rsv *rsv,
5967 				     int items,
5968 				     u64 *qgroup_reserved,
5969 				     bool use_global_rsv)
5970 {
5971 	u64 num_bytes;
5972 	int ret;
5973 	struct btrfs_fs_info *fs_info = root->fs_info;
5974 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5975 
5976 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5977 		/* One for parent inode, two for dir entries */
5978 		num_bytes = 3 * fs_info->nodesize;
5979 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5980 		if (ret)
5981 			return ret;
5982 	} else {
5983 		num_bytes = 0;
5984 	}
5985 
5986 	*qgroup_reserved = num_bytes;
5987 
5988 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5989 	rsv->space_info = __find_space_info(fs_info,
5990 					    BTRFS_BLOCK_GROUP_METADATA);
5991 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5992 				  BTRFS_RESERVE_FLUSH_ALL);
5993 
5994 	if (ret == -ENOSPC && use_global_rsv)
5995 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5996 
5997 	if (ret && *qgroup_reserved)
5998 		btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
5999 
6000 	return ret;
6001 }
6002 
6003 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6004 				      struct btrfs_block_rsv *rsv)
6005 {
6006 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6007 }
6008 
6009 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6010 						 struct btrfs_inode *inode)
6011 {
6012 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6013 	u64 reserve_size = 0;
6014 	u64 csum_leaves;
6015 	unsigned outstanding_extents;
6016 
6017 	lockdep_assert_held(&inode->lock);
6018 	outstanding_extents = inode->outstanding_extents;
6019 	if (outstanding_extents)
6020 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6021 						outstanding_extents + 1);
6022 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6023 						 inode->csum_bytes);
6024 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6025 						       csum_leaves);
6026 
6027 	spin_lock(&block_rsv->lock);
6028 	block_rsv->size = reserve_size;
6029 	spin_unlock(&block_rsv->lock);
6030 }
6031 
6032 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6033 {
6034 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6035 	unsigned nr_extents;
6036 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6037 	int ret = 0;
6038 	bool delalloc_lock = true;
6039 
6040 	/* If we are a free space inode we need to not flush since we will be in
6041 	 * the middle of a transaction commit.  We also don't need the delalloc
6042 	 * mutex since we won't race with anybody.  We need this mostly to make
6043 	 * lockdep shut its filthy mouth.
6044 	 *
6045 	 * If we have a transaction open (can happen if we call truncate_block
6046 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6047 	 */
6048 	if (btrfs_is_free_space_inode(inode)) {
6049 		flush = BTRFS_RESERVE_NO_FLUSH;
6050 		delalloc_lock = false;
6051 	} else {
6052 		if (current->journal_info)
6053 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6054 
6055 		if (btrfs_transaction_in_commit(fs_info))
6056 			schedule_timeout(1);
6057 	}
6058 
6059 	if (delalloc_lock)
6060 		mutex_lock(&inode->delalloc_mutex);
6061 
6062 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6063 
6064 	/* Add our new extents and calculate the new rsv size. */
6065 	spin_lock(&inode->lock);
6066 	nr_extents = count_max_extents(num_bytes);
6067 	btrfs_mod_outstanding_extents(inode, nr_extents);
6068 	inode->csum_bytes += num_bytes;
6069 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6070 	spin_unlock(&inode->lock);
6071 
6072 	ret = btrfs_inode_rsv_refill(inode, flush);
6073 	if (unlikely(ret))
6074 		goto out_fail;
6075 
6076 	if (delalloc_lock)
6077 		mutex_unlock(&inode->delalloc_mutex);
6078 	return 0;
6079 
6080 out_fail:
6081 	spin_lock(&inode->lock);
6082 	nr_extents = count_max_extents(num_bytes);
6083 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6084 	inode->csum_bytes -= num_bytes;
6085 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6086 	spin_unlock(&inode->lock);
6087 
6088 	btrfs_inode_rsv_release(inode, true);
6089 	if (delalloc_lock)
6090 		mutex_unlock(&inode->delalloc_mutex);
6091 	return ret;
6092 }
6093 
6094 /**
6095  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6096  * @inode: the inode to release the reservation for.
6097  * @num_bytes: the number of bytes we are releasing.
6098  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6099  *
6100  * This will release the metadata reservation for an inode.  This can be called
6101  * once we complete IO for a given set of bytes to release their metadata
6102  * reservations, or on error for the same reason.
6103  */
6104 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6105 				     bool qgroup_free)
6106 {
6107 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6108 
6109 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6110 	spin_lock(&inode->lock);
6111 	inode->csum_bytes -= num_bytes;
6112 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6113 	spin_unlock(&inode->lock);
6114 
6115 	if (btrfs_is_testing(fs_info))
6116 		return;
6117 
6118 	btrfs_inode_rsv_release(inode, qgroup_free);
6119 }
6120 
6121 /**
6122  * btrfs_delalloc_release_extents - release our outstanding_extents
6123  * @inode: the inode to balance the reservation for.
6124  * @num_bytes: the number of bytes we originally reserved with
6125  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6126  *
6127  * When we reserve space we increase outstanding_extents for the extents we may
6128  * add.  Once we've set the range as delalloc or created our ordered extents we
6129  * have outstanding_extents to track the real usage, so we use this to free our
6130  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6131  * with btrfs_delalloc_reserve_metadata.
6132  */
6133 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6134 				    bool qgroup_free)
6135 {
6136 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6137 	unsigned num_extents;
6138 
6139 	spin_lock(&inode->lock);
6140 	num_extents = count_max_extents(num_bytes);
6141 	btrfs_mod_outstanding_extents(inode, -num_extents);
6142 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6143 	spin_unlock(&inode->lock);
6144 
6145 	if (btrfs_is_testing(fs_info))
6146 		return;
6147 
6148 	btrfs_inode_rsv_release(inode, qgroup_free);
6149 }
6150 
6151 /**
6152  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6153  * delalloc
6154  * @inode: inode we're writing to
6155  * @start: start range we are writing to
6156  * @len: how long the range we are writing to
6157  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6158  * 	      current reservation.
6159  *
6160  * This will do the following things
6161  *
6162  * o reserve space in data space info for num bytes
6163  *   and reserve precious corresponding qgroup space
6164  *   (Done in check_data_free_space)
6165  *
6166  * o reserve space for metadata space, based on the number of outstanding
6167  *   extents and how much csums will be needed
6168  *   also reserve metadata space in a per root over-reserve method.
6169  * o add to the inodes->delalloc_bytes
6170  * o add it to the fs_info's delalloc inodes list.
6171  *   (Above 3 all done in delalloc_reserve_metadata)
6172  *
6173  * Return 0 for success
6174  * Return <0 for error(-ENOSPC or -EQUOT)
6175  */
6176 int btrfs_delalloc_reserve_space(struct inode *inode,
6177 			struct extent_changeset **reserved, u64 start, u64 len)
6178 {
6179 	int ret;
6180 
6181 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6182 	if (ret < 0)
6183 		return ret;
6184 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6185 	if (ret < 0)
6186 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6187 	return ret;
6188 }
6189 
6190 /**
6191  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6192  * @inode: inode we're releasing space for
6193  * @start: start position of the space already reserved
6194  * @len: the len of the space already reserved
6195  * @release_bytes: the len of the space we consumed or didn't use
6196  *
6197  * This function will release the metadata space that was not used and will
6198  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6199  * list if there are no delalloc bytes left.
6200  * Also it will handle the qgroup reserved space.
6201  */
6202 void btrfs_delalloc_release_space(struct inode *inode,
6203 				  struct extent_changeset *reserved,
6204 				  u64 start, u64 len, bool qgroup_free)
6205 {
6206 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6207 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6208 }
6209 
6210 static int update_block_group(struct btrfs_trans_handle *trans,
6211 			      struct btrfs_fs_info *info, u64 bytenr,
6212 			      u64 num_bytes, int alloc)
6213 {
6214 	struct btrfs_block_group_cache *cache = NULL;
6215 	u64 total = num_bytes;
6216 	u64 old_val;
6217 	u64 byte_in_group;
6218 	int factor;
6219 
6220 	/* block accounting for super block */
6221 	spin_lock(&info->delalloc_root_lock);
6222 	old_val = btrfs_super_bytes_used(info->super_copy);
6223 	if (alloc)
6224 		old_val += num_bytes;
6225 	else
6226 		old_val -= num_bytes;
6227 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6228 	spin_unlock(&info->delalloc_root_lock);
6229 
6230 	while (total) {
6231 		cache = btrfs_lookup_block_group(info, bytenr);
6232 		if (!cache)
6233 			return -ENOENT;
6234 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6235 				    BTRFS_BLOCK_GROUP_RAID1 |
6236 				    BTRFS_BLOCK_GROUP_RAID10))
6237 			factor = 2;
6238 		else
6239 			factor = 1;
6240 		/*
6241 		 * If this block group has free space cache written out, we
6242 		 * need to make sure to load it if we are removing space.  This
6243 		 * is because we need the unpinning stage to actually add the
6244 		 * space back to the block group, otherwise we will leak space.
6245 		 */
6246 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6247 			cache_block_group(cache, 1);
6248 
6249 		byte_in_group = bytenr - cache->key.objectid;
6250 		WARN_ON(byte_in_group > cache->key.offset);
6251 
6252 		spin_lock(&cache->space_info->lock);
6253 		spin_lock(&cache->lock);
6254 
6255 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6256 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6257 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6258 
6259 		old_val = btrfs_block_group_used(&cache->item);
6260 		num_bytes = min(total, cache->key.offset - byte_in_group);
6261 		if (alloc) {
6262 			old_val += num_bytes;
6263 			btrfs_set_block_group_used(&cache->item, old_val);
6264 			cache->reserved -= num_bytes;
6265 			cache->space_info->bytes_reserved -= num_bytes;
6266 			cache->space_info->bytes_used += num_bytes;
6267 			cache->space_info->disk_used += num_bytes * factor;
6268 			spin_unlock(&cache->lock);
6269 			spin_unlock(&cache->space_info->lock);
6270 		} else {
6271 			old_val -= num_bytes;
6272 			btrfs_set_block_group_used(&cache->item, old_val);
6273 			cache->pinned += num_bytes;
6274 			cache->space_info->bytes_pinned += num_bytes;
6275 			cache->space_info->bytes_used -= num_bytes;
6276 			cache->space_info->disk_used -= num_bytes * factor;
6277 			spin_unlock(&cache->lock);
6278 			spin_unlock(&cache->space_info->lock);
6279 
6280 			trace_btrfs_space_reservation(info, "pinned",
6281 						      cache->space_info->flags,
6282 						      num_bytes, 1);
6283 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6284 					   num_bytes);
6285 			set_extent_dirty(info->pinned_extents,
6286 					 bytenr, bytenr + num_bytes - 1,
6287 					 GFP_NOFS | __GFP_NOFAIL);
6288 		}
6289 
6290 		spin_lock(&trans->transaction->dirty_bgs_lock);
6291 		if (list_empty(&cache->dirty_list)) {
6292 			list_add_tail(&cache->dirty_list,
6293 				      &trans->transaction->dirty_bgs);
6294 				trans->transaction->num_dirty_bgs++;
6295 			btrfs_get_block_group(cache);
6296 		}
6297 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6298 
6299 		/*
6300 		 * No longer have used bytes in this block group, queue it for
6301 		 * deletion. We do this after adding the block group to the
6302 		 * dirty list to avoid races between cleaner kthread and space
6303 		 * cache writeout.
6304 		 */
6305 		if (!alloc && old_val == 0) {
6306 			spin_lock(&info->unused_bgs_lock);
6307 			if (list_empty(&cache->bg_list)) {
6308 				btrfs_get_block_group(cache);
6309 				list_add_tail(&cache->bg_list,
6310 					      &info->unused_bgs);
6311 			}
6312 			spin_unlock(&info->unused_bgs_lock);
6313 		}
6314 
6315 		btrfs_put_block_group(cache);
6316 		total -= num_bytes;
6317 		bytenr += num_bytes;
6318 	}
6319 	return 0;
6320 }
6321 
6322 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6323 {
6324 	struct btrfs_block_group_cache *cache;
6325 	u64 bytenr;
6326 
6327 	spin_lock(&fs_info->block_group_cache_lock);
6328 	bytenr = fs_info->first_logical_byte;
6329 	spin_unlock(&fs_info->block_group_cache_lock);
6330 
6331 	if (bytenr < (u64)-1)
6332 		return bytenr;
6333 
6334 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6335 	if (!cache)
6336 		return 0;
6337 
6338 	bytenr = cache->key.objectid;
6339 	btrfs_put_block_group(cache);
6340 
6341 	return bytenr;
6342 }
6343 
6344 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6345 			   struct btrfs_block_group_cache *cache,
6346 			   u64 bytenr, u64 num_bytes, int reserved)
6347 {
6348 	spin_lock(&cache->space_info->lock);
6349 	spin_lock(&cache->lock);
6350 	cache->pinned += num_bytes;
6351 	cache->space_info->bytes_pinned += num_bytes;
6352 	if (reserved) {
6353 		cache->reserved -= num_bytes;
6354 		cache->space_info->bytes_reserved -= num_bytes;
6355 	}
6356 	spin_unlock(&cache->lock);
6357 	spin_unlock(&cache->space_info->lock);
6358 
6359 	trace_btrfs_space_reservation(fs_info, "pinned",
6360 				      cache->space_info->flags, num_bytes, 1);
6361 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6362 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6363 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6364 	return 0;
6365 }
6366 
6367 /*
6368  * this function must be called within transaction
6369  */
6370 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6371 		     u64 bytenr, u64 num_bytes, int reserved)
6372 {
6373 	struct btrfs_block_group_cache *cache;
6374 
6375 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6376 	BUG_ON(!cache); /* Logic error */
6377 
6378 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6379 
6380 	btrfs_put_block_group(cache);
6381 	return 0;
6382 }
6383 
6384 /*
6385  * this function must be called within transaction
6386  */
6387 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6388 				    u64 bytenr, u64 num_bytes)
6389 {
6390 	struct btrfs_block_group_cache *cache;
6391 	int ret;
6392 
6393 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6394 	if (!cache)
6395 		return -EINVAL;
6396 
6397 	/*
6398 	 * pull in the free space cache (if any) so that our pin
6399 	 * removes the free space from the cache.  We have load_only set
6400 	 * to one because the slow code to read in the free extents does check
6401 	 * the pinned extents.
6402 	 */
6403 	cache_block_group(cache, 1);
6404 
6405 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6406 
6407 	/* remove us from the free space cache (if we're there at all) */
6408 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6409 	btrfs_put_block_group(cache);
6410 	return ret;
6411 }
6412 
6413 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6414 				   u64 start, u64 num_bytes)
6415 {
6416 	int ret;
6417 	struct btrfs_block_group_cache *block_group;
6418 	struct btrfs_caching_control *caching_ctl;
6419 
6420 	block_group = btrfs_lookup_block_group(fs_info, start);
6421 	if (!block_group)
6422 		return -EINVAL;
6423 
6424 	cache_block_group(block_group, 0);
6425 	caching_ctl = get_caching_control(block_group);
6426 
6427 	if (!caching_ctl) {
6428 		/* Logic error */
6429 		BUG_ON(!block_group_cache_done(block_group));
6430 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6431 	} else {
6432 		mutex_lock(&caching_ctl->mutex);
6433 
6434 		if (start >= caching_ctl->progress) {
6435 			ret = add_excluded_extent(fs_info, start, num_bytes);
6436 		} else if (start + num_bytes <= caching_ctl->progress) {
6437 			ret = btrfs_remove_free_space(block_group,
6438 						      start, num_bytes);
6439 		} else {
6440 			num_bytes = caching_ctl->progress - start;
6441 			ret = btrfs_remove_free_space(block_group,
6442 						      start, num_bytes);
6443 			if (ret)
6444 				goto out_lock;
6445 
6446 			num_bytes = (start + num_bytes) -
6447 				caching_ctl->progress;
6448 			start = caching_ctl->progress;
6449 			ret = add_excluded_extent(fs_info, start, num_bytes);
6450 		}
6451 out_lock:
6452 		mutex_unlock(&caching_ctl->mutex);
6453 		put_caching_control(caching_ctl);
6454 	}
6455 	btrfs_put_block_group(block_group);
6456 	return ret;
6457 }
6458 
6459 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6460 				 struct extent_buffer *eb)
6461 {
6462 	struct btrfs_file_extent_item *item;
6463 	struct btrfs_key key;
6464 	int found_type;
6465 	int i;
6466 
6467 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6468 		return 0;
6469 
6470 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6471 		btrfs_item_key_to_cpu(eb, &key, i);
6472 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6473 			continue;
6474 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6475 		found_type = btrfs_file_extent_type(eb, item);
6476 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6477 			continue;
6478 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6479 			continue;
6480 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6481 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6482 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6483 	}
6484 
6485 	return 0;
6486 }
6487 
6488 static void
6489 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6490 {
6491 	atomic_inc(&bg->reservations);
6492 }
6493 
6494 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6495 					const u64 start)
6496 {
6497 	struct btrfs_block_group_cache *bg;
6498 
6499 	bg = btrfs_lookup_block_group(fs_info, start);
6500 	ASSERT(bg);
6501 	if (atomic_dec_and_test(&bg->reservations))
6502 		wake_up_var(&bg->reservations);
6503 	btrfs_put_block_group(bg);
6504 }
6505 
6506 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6507 {
6508 	struct btrfs_space_info *space_info = bg->space_info;
6509 
6510 	ASSERT(bg->ro);
6511 
6512 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6513 		return;
6514 
6515 	/*
6516 	 * Our block group is read only but before we set it to read only,
6517 	 * some task might have had allocated an extent from it already, but it
6518 	 * has not yet created a respective ordered extent (and added it to a
6519 	 * root's list of ordered extents).
6520 	 * Therefore wait for any task currently allocating extents, since the
6521 	 * block group's reservations counter is incremented while a read lock
6522 	 * on the groups' semaphore is held and decremented after releasing
6523 	 * the read access on that semaphore and creating the ordered extent.
6524 	 */
6525 	down_write(&space_info->groups_sem);
6526 	up_write(&space_info->groups_sem);
6527 
6528 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6529 }
6530 
6531 /**
6532  * btrfs_add_reserved_bytes - update the block_group and space info counters
6533  * @cache:	The cache we are manipulating
6534  * @ram_bytes:  The number of bytes of file content, and will be same to
6535  *              @num_bytes except for the compress path.
6536  * @num_bytes:	The number of bytes in question
6537  * @delalloc:   The blocks are allocated for the delalloc write
6538  *
6539  * This is called by the allocator when it reserves space. If this is a
6540  * reservation and the block group has become read only we cannot make the
6541  * reservation and return -EAGAIN, otherwise this function always succeeds.
6542  */
6543 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6544 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6545 {
6546 	struct btrfs_space_info *space_info = cache->space_info;
6547 	int ret = 0;
6548 
6549 	spin_lock(&space_info->lock);
6550 	spin_lock(&cache->lock);
6551 	if (cache->ro) {
6552 		ret = -EAGAIN;
6553 	} else {
6554 		cache->reserved += num_bytes;
6555 		space_info->bytes_reserved += num_bytes;
6556 
6557 		trace_btrfs_space_reservation(cache->fs_info,
6558 				"space_info", space_info->flags,
6559 				ram_bytes, 0);
6560 		space_info->bytes_may_use -= ram_bytes;
6561 		if (delalloc)
6562 			cache->delalloc_bytes += num_bytes;
6563 	}
6564 	spin_unlock(&cache->lock);
6565 	spin_unlock(&space_info->lock);
6566 	return ret;
6567 }
6568 
6569 /**
6570  * btrfs_free_reserved_bytes - update the block_group and space info counters
6571  * @cache:      The cache we are manipulating
6572  * @num_bytes:  The number of bytes in question
6573  * @delalloc:   The blocks are allocated for the delalloc write
6574  *
6575  * This is called by somebody who is freeing space that was never actually used
6576  * on disk.  For example if you reserve some space for a new leaf in transaction
6577  * A and before transaction A commits you free that leaf, you call this with
6578  * reserve set to 0 in order to clear the reservation.
6579  */
6580 
6581 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6582 				     u64 num_bytes, int delalloc)
6583 {
6584 	struct btrfs_space_info *space_info = cache->space_info;
6585 	int ret = 0;
6586 
6587 	spin_lock(&space_info->lock);
6588 	spin_lock(&cache->lock);
6589 	if (cache->ro)
6590 		space_info->bytes_readonly += num_bytes;
6591 	cache->reserved -= num_bytes;
6592 	space_info->bytes_reserved -= num_bytes;
6593 
6594 	if (delalloc)
6595 		cache->delalloc_bytes -= num_bytes;
6596 	spin_unlock(&cache->lock);
6597 	spin_unlock(&space_info->lock);
6598 	return ret;
6599 }
6600 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6601 {
6602 	struct btrfs_caching_control *next;
6603 	struct btrfs_caching_control *caching_ctl;
6604 	struct btrfs_block_group_cache *cache;
6605 
6606 	down_write(&fs_info->commit_root_sem);
6607 
6608 	list_for_each_entry_safe(caching_ctl, next,
6609 				 &fs_info->caching_block_groups, list) {
6610 		cache = caching_ctl->block_group;
6611 		if (block_group_cache_done(cache)) {
6612 			cache->last_byte_to_unpin = (u64)-1;
6613 			list_del_init(&caching_ctl->list);
6614 			put_caching_control(caching_ctl);
6615 		} else {
6616 			cache->last_byte_to_unpin = caching_ctl->progress;
6617 		}
6618 	}
6619 
6620 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6621 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6622 	else
6623 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6624 
6625 	up_write(&fs_info->commit_root_sem);
6626 
6627 	update_global_block_rsv(fs_info);
6628 }
6629 
6630 /*
6631  * Returns the free cluster for the given space info and sets empty_cluster to
6632  * what it should be based on the mount options.
6633  */
6634 static struct btrfs_free_cluster *
6635 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6636 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6637 {
6638 	struct btrfs_free_cluster *ret = NULL;
6639 
6640 	*empty_cluster = 0;
6641 	if (btrfs_mixed_space_info(space_info))
6642 		return ret;
6643 
6644 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6645 		ret = &fs_info->meta_alloc_cluster;
6646 		if (btrfs_test_opt(fs_info, SSD))
6647 			*empty_cluster = SZ_2M;
6648 		else
6649 			*empty_cluster = SZ_64K;
6650 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6651 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6652 		*empty_cluster = SZ_2M;
6653 		ret = &fs_info->data_alloc_cluster;
6654 	}
6655 
6656 	return ret;
6657 }
6658 
6659 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6660 			      u64 start, u64 end,
6661 			      const bool return_free_space)
6662 {
6663 	struct btrfs_block_group_cache *cache = NULL;
6664 	struct btrfs_space_info *space_info;
6665 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6666 	struct btrfs_free_cluster *cluster = NULL;
6667 	u64 len;
6668 	u64 total_unpinned = 0;
6669 	u64 empty_cluster = 0;
6670 	bool readonly;
6671 
6672 	while (start <= end) {
6673 		readonly = false;
6674 		if (!cache ||
6675 		    start >= cache->key.objectid + cache->key.offset) {
6676 			if (cache)
6677 				btrfs_put_block_group(cache);
6678 			total_unpinned = 0;
6679 			cache = btrfs_lookup_block_group(fs_info, start);
6680 			BUG_ON(!cache); /* Logic error */
6681 
6682 			cluster = fetch_cluster_info(fs_info,
6683 						     cache->space_info,
6684 						     &empty_cluster);
6685 			empty_cluster <<= 1;
6686 		}
6687 
6688 		len = cache->key.objectid + cache->key.offset - start;
6689 		len = min(len, end + 1 - start);
6690 
6691 		if (start < cache->last_byte_to_unpin) {
6692 			len = min(len, cache->last_byte_to_unpin - start);
6693 			if (return_free_space)
6694 				btrfs_add_free_space(cache, start, len);
6695 		}
6696 
6697 		start += len;
6698 		total_unpinned += len;
6699 		space_info = cache->space_info;
6700 
6701 		/*
6702 		 * If this space cluster has been marked as fragmented and we've
6703 		 * unpinned enough in this block group to potentially allow a
6704 		 * cluster to be created inside of it go ahead and clear the
6705 		 * fragmented check.
6706 		 */
6707 		if (cluster && cluster->fragmented &&
6708 		    total_unpinned > empty_cluster) {
6709 			spin_lock(&cluster->lock);
6710 			cluster->fragmented = 0;
6711 			spin_unlock(&cluster->lock);
6712 		}
6713 
6714 		spin_lock(&space_info->lock);
6715 		spin_lock(&cache->lock);
6716 		cache->pinned -= len;
6717 		space_info->bytes_pinned -= len;
6718 
6719 		trace_btrfs_space_reservation(fs_info, "pinned",
6720 					      space_info->flags, len, 0);
6721 		space_info->max_extent_size = 0;
6722 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6723 		if (cache->ro) {
6724 			space_info->bytes_readonly += len;
6725 			readonly = true;
6726 		}
6727 		spin_unlock(&cache->lock);
6728 		if (!readonly && return_free_space &&
6729 		    global_rsv->space_info == space_info) {
6730 			u64 to_add = len;
6731 
6732 			spin_lock(&global_rsv->lock);
6733 			if (!global_rsv->full) {
6734 				to_add = min(len, global_rsv->size -
6735 					     global_rsv->reserved);
6736 				global_rsv->reserved += to_add;
6737 				space_info->bytes_may_use += to_add;
6738 				if (global_rsv->reserved >= global_rsv->size)
6739 					global_rsv->full = 1;
6740 				trace_btrfs_space_reservation(fs_info,
6741 							      "space_info",
6742 							      space_info->flags,
6743 							      to_add, 1);
6744 				len -= to_add;
6745 			}
6746 			spin_unlock(&global_rsv->lock);
6747 			/* Add to any tickets we may have */
6748 			if (len)
6749 				space_info_add_new_bytes(fs_info, space_info,
6750 							 len);
6751 		}
6752 		spin_unlock(&space_info->lock);
6753 	}
6754 
6755 	if (cache)
6756 		btrfs_put_block_group(cache);
6757 	return 0;
6758 }
6759 
6760 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6761 {
6762 	struct btrfs_fs_info *fs_info = trans->fs_info;
6763 	struct btrfs_block_group_cache *block_group, *tmp;
6764 	struct list_head *deleted_bgs;
6765 	struct extent_io_tree *unpin;
6766 	u64 start;
6767 	u64 end;
6768 	int ret;
6769 
6770 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6771 		unpin = &fs_info->freed_extents[1];
6772 	else
6773 		unpin = &fs_info->freed_extents[0];
6774 
6775 	while (!trans->aborted) {
6776 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6777 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6778 					    EXTENT_DIRTY, NULL);
6779 		if (ret) {
6780 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6781 			break;
6782 		}
6783 
6784 		if (btrfs_test_opt(fs_info, DISCARD))
6785 			ret = btrfs_discard_extent(fs_info, start,
6786 						   end + 1 - start, NULL);
6787 
6788 		clear_extent_dirty(unpin, start, end);
6789 		unpin_extent_range(fs_info, start, end, true);
6790 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6791 		cond_resched();
6792 	}
6793 
6794 	/*
6795 	 * Transaction is finished.  We don't need the lock anymore.  We
6796 	 * do need to clean up the block groups in case of a transaction
6797 	 * abort.
6798 	 */
6799 	deleted_bgs = &trans->transaction->deleted_bgs;
6800 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6801 		u64 trimmed = 0;
6802 
6803 		ret = -EROFS;
6804 		if (!trans->aborted)
6805 			ret = btrfs_discard_extent(fs_info,
6806 						   block_group->key.objectid,
6807 						   block_group->key.offset,
6808 						   &trimmed);
6809 
6810 		list_del_init(&block_group->bg_list);
6811 		btrfs_put_block_group_trimming(block_group);
6812 		btrfs_put_block_group(block_group);
6813 
6814 		if (ret) {
6815 			const char *errstr = btrfs_decode_error(ret);
6816 			btrfs_warn(fs_info,
6817 			   "discard failed while removing blockgroup: errno=%d %s",
6818 				   ret, errstr);
6819 		}
6820 	}
6821 
6822 	return 0;
6823 }
6824 
6825 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6826 				struct btrfs_fs_info *info,
6827 				struct btrfs_delayed_ref_node *node, u64 parent,
6828 				u64 root_objectid, u64 owner_objectid,
6829 				u64 owner_offset, int refs_to_drop,
6830 				struct btrfs_delayed_extent_op *extent_op)
6831 {
6832 	struct btrfs_key key;
6833 	struct btrfs_path *path;
6834 	struct btrfs_root *extent_root = info->extent_root;
6835 	struct extent_buffer *leaf;
6836 	struct btrfs_extent_item *ei;
6837 	struct btrfs_extent_inline_ref *iref;
6838 	int ret;
6839 	int is_data;
6840 	int extent_slot = 0;
6841 	int found_extent = 0;
6842 	int num_to_del = 1;
6843 	u32 item_size;
6844 	u64 refs;
6845 	u64 bytenr = node->bytenr;
6846 	u64 num_bytes = node->num_bytes;
6847 	int last_ref = 0;
6848 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6849 
6850 	path = btrfs_alloc_path();
6851 	if (!path)
6852 		return -ENOMEM;
6853 
6854 	path->reada = READA_FORWARD;
6855 	path->leave_spinning = 1;
6856 
6857 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6858 	BUG_ON(!is_data && refs_to_drop != 1);
6859 
6860 	if (is_data)
6861 		skinny_metadata = false;
6862 
6863 	ret = lookup_extent_backref(trans, info, path, &iref,
6864 				    bytenr, num_bytes, parent,
6865 				    root_objectid, owner_objectid,
6866 				    owner_offset);
6867 	if (ret == 0) {
6868 		extent_slot = path->slots[0];
6869 		while (extent_slot >= 0) {
6870 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6871 					      extent_slot);
6872 			if (key.objectid != bytenr)
6873 				break;
6874 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6875 			    key.offset == num_bytes) {
6876 				found_extent = 1;
6877 				break;
6878 			}
6879 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6880 			    key.offset == owner_objectid) {
6881 				found_extent = 1;
6882 				break;
6883 			}
6884 			if (path->slots[0] - extent_slot > 5)
6885 				break;
6886 			extent_slot--;
6887 		}
6888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6889 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6890 		if (found_extent && item_size < sizeof(*ei))
6891 			found_extent = 0;
6892 #endif
6893 		if (!found_extent) {
6894 			BUG_ON(iref);
6895 			ret = remove_extent_backref(trans, info, path, NULL,
6896 						    refs_to_drop,
6897 						    is_data, &last_ref);
6898 			if (ret) {
6899 				btrfs_abort_transaction(trans, ret);
6900 				goto out;
6901 			}
6902 			btrfs_release_path(path);
6903 			path->leave_spinning = 1;
6904 
6905 			key.objectid = bytenr;
6906 			key.type = BTRFS_EXTENT_ITEM_KEY;
6907 			key.offset = num_bytes;
6908 
6909 			if (!is_data && skinny_metadata) {
6910 				key.type = BTRFS_METADATA_ITEM_KEY;
6911 				key.offset = owner_objectid;
6912 			}
6913 
6914 			ret = btrfs_search_slot(trans, extent_root,
6915 						&key, path, -1, 1);
6916 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6917 				/*
6918 				 * Couldn't find our skinny metadata item,
6919 				 * see if we have ye olde extent item.
6920 				 */
6921 				path->slots[0]--;
6922 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6923 						      path->slots[0]);
6924 				if (key.objectid == bytenr &&
6925 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6926 				    key.offset == num_bytes)
6927 					ret = 0;
6928 			}
6929 
6930 			if (ret > 0 && skinny_metadata) {
6931 				skinny_metadata = false;
6932 				key.objectid = bytenr;
6933 				key.type = BTRFS_EXTENT_ITEM_KEY;
6934 				key.offset = num_bytes;
6935 				btrfs_release_path(path);
6936 				ret = btrfs_search_slot(trans, extent_root,
6937 							&key, path, -1, 1);
6938 			}
6939 
6940 			if (ret) {
6941 				btrfs_err(info,
6942 					  "umm, got %d back from search, was looking for %llu",
6943 					  ret, bytenr);
6944 				if (ret > 0)
6945 					btrfs_print_leaf(path->nodes[0]);
6946 			}
6947 			if (ret < 0) {
6948 				btrfs_abort_transaction(trans, ret);
6949 				goto out;
6950 			}
6951 			extent_slot = path->slots[0];
6952 		}
6953 	} else if (WARN_ON(ret == -ENOENT)) {
6954 		btrfs_print_leaf(path->nodes[0]);
6955 		btrfs_err(info,
6956 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6957 			bytenr, parent, root_objectid, owner_objectid,
6958 			owner_offset);
6959 		btrfs_abort_transaction(trans, ret);
6960 		goto out;
6961 	} else {
6962 		btrfs_abort_transaction(trans, ret);
6963 		goto out;
6964 	}
6965 
6966 	leaf = path->nodes[0];
6967 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6969 	if (item_size < sizeof(*ei)) {
6970 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6971 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6972 					     0);
6973 		if (ret < 0) {
6974 			btrfs_abort_transaction(trans, ret);
6975 			goto out;
6976 		}
6977 
6978 		btrfs_release_path(path);
6979 		path->leave_spinning = 1;
6980 
6981 		key.objectid = bytenr;
6982 		key.type = BTRFS_EXTENT_ITEM_KEY;
6983 		key.offset = num_bytes;
6984 
6985 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6986 					-1, 1);
6987 		if (ret) {
6988 			btrfs_err(info,
6989 				  "umm, got %d back from search, was looking for %llu",
6990 				ret, bytenr);
6991 			btrfs_print_leaf(path->nodes[0]);
6992 		}
6993 		if (ret < 0) {
6994 			btrfs_abort_transaction(trans, ret);
6995 			goto out;
6996 		}
6997 
6998 		extent_slot = path->slots[0];
6999 		leaf = path->nodes[0];
7000 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7001 	}
7002 #endif
7003 	BUG_ON(item_size < sizeof(*ei));
7004 	ei = btrfs_item_ptr(leaf, extent_slot,
7005 			    struct btrfs_extent_item);
7006 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7007 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7008 		struct btrfs_tree_block_info *bi;
7009 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7010 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7011 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7012 	}
7013 
7014 	refs = btrfs_extent_refs(leaf, ei);
7015 	if (refs < refs_to_drop) {
7016 		btrfs_err(info,
7017 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7018 			  refs_to_drop, refs, bytenr);
7019 		ret = -EINVAL;
7020 		btrfs_abort_transaction(trans, ret);
7021 		goto out;
7022 	}
7023 	refs -= refs_to_drop;
7024 
7025 	if (refs > 0) {
7026 		if (extent_op)
7027 			__run_delayed_extent_op(extent_op, leaf, ei);
7028 		/*
7029 		 * In the case of inline back ref, reference count will
7030 		 * be updated by remove_extent_backref
7031 		 */
7032 		if (iref) {
7033 			BUG_ON(!found_extent);
7034 		} else {
7035 			btrfs_set_extent_refs(leaf, ei, refs);
7036 			btrfs_mark_buffer_dirty(leaf);
7037 		}
7038 		if (found_extent) {
7039 			ret = remove_extent_backref(trans, info, path,
7040 						    iref, refs_to_drop,
7041 						    is_data, &last_ref);
7042 			if (ret) {
7043 				btrfs_abort_transaction(trans, ret);
7044 				goto out;
7045 			}
7046 		}
7047 	} else {
7048 		if (found_extent) {
7049 			BUG_ON(is_data && refs_to_drop !=
7050 			       extent_data_ref_count(path, iref));
7051 			if (iref) {
7052 				BUG_ON(path->slots[0] != extent_slot);
7053 			} else {
7054 				BUG_ON(path->slots[0] != extent_slot + 1);
7055 				path->slots[0] = extent_slot;
7056 				num_to_del = 2;
7057 			}
7058 		}
7059 
7060 		last_ref = 1;
7061 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7062 				      num_to_del);
7063 		if (ret) {
7064 			btrfs_abort_transaction(trans, ret);
7065 			goto out;
7066 		}
7067 		btrfs_release_path(path);
7068 
7069 		if (is_data) {
7070 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7071 			if (ret) {
7072 				btrfs_abort_transaction(trans, ret);
7073 				goto out;
7074 			}
7075 		}
7076 
7077 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7078 		if (ret) {
7079 			btrfs_abort_transaction(trans, ret);
7080 			goto out;
7081 		}
7082 
7083 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7084 		if (ret) {
7085 			btrfs_abort_transaction(trans, ret);
7086 			goto out;
7087 		}
7088 	}
7089 	btrfs_release_path(path);
7090 
7091 out:
7092 	btrfs_free_path(path);
7093 	return ret;
7094 }
7095 
7096 /*
7097  * when we free an block, it is possible (and likely) that we free the last
7098  * delayed ref for that extent as well.  This searches the delayed ref tree for
7099  * a given extent, and if there are no other delayed refs to be processed, it
7100  * removes it from the tree.
7101  */
7102 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7103 				      u64 bytenr)
7104 {
7105 	struct btrfs_delayed_ref_head *head;
7106 	struct btrfs_delayed_ref_root *delayed_refs;
7107 	int ret = 0;
7108 
7109 	delayed_refs = &trans->transaction->delayed_refs;
7110 	spin_lock(&delayed_refs->lock);
7111 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7112 	if (!head)
7113 		goto out_delayed_unlock;
7114 
7115 	spin_lock(&head->lock);
7116 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7117 		goto out;
7118 
7119 	if (head->extent_op) {
7120 		if (!head->must_insert_reserved)
7121 			goto out;
7122 		btrfs_free_delayed_extent_op(head->extent_op);
7123 		head->extent_op = NULL;
7124 	}
7125 
7126 	/*
7127 	 * waiting for the lock here would deadlock.  If someone else has it
7128 	 * locked they are already in the process of dropping it anyway
7129 	 */
7130 	if (!mutex_trylock(&head->mutex))
7131 		goto out;
7132 
7133 	/*
7134 	 * at this point we have a head with no other entries.  Go
7135 	 * ahead and process it.
7136 	 */
7137 	rb_erase(&head->href_node, &delayed_refs->href_root);
7138 	RB_CLEAR_NODE(&head->href_node);
7139 	atomic_dec(&delayed_refs->num_entries);
7140 
7141 	/*
7142 	 * we don't take a ref on the node because we're removing it from the
7143 	 * tree, so we just steal the ref the tree was holding.
7144 	 */
7145 	delayed_refs->num_heads--;
7146 	if (head->processing == 0)
7147 		delayed_refs->num_heads_ready--;
7148 	head->processing = 0;
7149 	spin_unlock(&head->lock);
7150 	spin_unlock(&delayed_refs->lock);
7151 
7152 	BUG_ON(head->extent_op);
7153 	if (head->must_insert_reserved)
7154 		ret = 1;
7155 
7156 	mutex_unlock(&head->mutex);
7157 	btrfs_put_delayed_ref_head(head);
7158 	return ret;
7159 out:
7160 	spin_unlock(&head->lock);
7161 
7162 out_delayed_unlock:
7163 	spin_unlock(&delayed_refs->lock);
7164 	return 0;
7165 }
7166 
7167 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7168 			   struct btrfs_root *root,
7169 			   struct extent_buffer *buf,
7170 			   u64 parent, int last_ref)
7171 {
7172 	struct btrfs_fs_info *fs_info = root->fs_info;
7173 	int pin = 1;
7174 	int ret;
7175 
7176 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7177 		int old_ref_mod, new_ref_mod;
7178 
7179 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7180 				   root->root_key.objectid,
7181 				   btrfs_header_level(buf), 0,
7182 				   BTRFS_DROP_DELAYED_REF);
7183 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7184 						 buf->len, parent,
7185 						 root->root_key.objectid,
7186 						 btrfs_header_level(buf),
7187 						 BTRFS_DROP_DELAYED_REF, NULL,
7188 						 &old_ref_mod, &new_ref_mod);
7189 		BUG_ON(ret); /* -ENOMEM */
7190 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7191 	}
7192 
7193 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7194 		struct btrfs_block_group_cache *cache;
7195 
7196 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7197 			ret = check_ref_cleanup(trans, buf->start);
7198 			if (!ret)
7199 				goto out;
7200 		}
7201 
7202 		pin = 0;
7203 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7204 
7205 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7206 			pin_down_extent(fs_info, cache, buf->start,
7207 					buf->len, 1);
7208 			btrfs_put_block_group(cache);
7209 			goto out;
7210 		}
7211 
7212 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7213 
7214 		btrfs_add_free_space(cache, buf->start, buf->len);
7215 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7216 		btrfs_put_block_group(cache);
7217 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7218 	}
7219 out:
7220 	if (pin)
7221 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7222 				 root->root_key.objectid);
7223 
7224 	if (last_ref) {
7225 		/*
7226 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7227 		 * matter anymore.
7228 		 */
7229 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7230 	}
7231 }
7232 
7233 /* Can return -ENOMEM */
7234 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7235 		      struct btrfs_root *root,
7236 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7237 		      u64 owner, u64 offset)
7238 {
7239 	struct btrfs_fs_info *fs_info = root->fs_info;
7240 	int old_ref_mod, new_ref_mod;
7241 	int ret;
7242 
7243 	if (btrfs_is_testing(fs_info))
7244 		return 0;
7245 
7246 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7247 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7248 				   root_objectid, owner, offset,
7249 				   BTRFS_DROP_DELAYED_REF);
7250 
7251 	/*
7252 	 * tree log blocks never actually go into the extent allocation
7253 	 * tree, just update pinning info and exit early.
7254 	 */
7255 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7256 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7257 		/* unlocks the pinned mutex */
7258 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7259 		old_ref_mod = new_ref_mod = 0;
7260 		ret = 0;
7261 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7262 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7263 						 num_bytes, parent,
7264 						 root_objectid, (int)owner,
7265 						 BTRFS_DROP_DELAYED_REF, NULL,
7266 						 &old_ref_mod, &new_ref_mod);
7267 	} else {
7268 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7269 						 num_bytes, parent,
7270 						 root_objectid, owner, offset,
7271 						 0, BTRFS_DROP_DELAYED_REF,
7272 						 &old_ref_mod, &new_ref_mod);
7273 	}
7274 
7275 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7276 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7277 
7278 	return ret;
7279 }
7280 
7281 /*
7282  * when we wait for progress in the block group caching, its because
7283  * our allocation attempt failed at least once.  So, we must sleep
7284  * and let some progress happen before we try again.
7285  *
7286  * This function will sleep at least once waiting for new free space to
7287  * show up, and then it will check the block group free space numbers
7288  * for our min num_bytes.  Another option is to have it go ahead
7289  * and look in the rbtree for a free extent of a given size, but this
7290  * is a good start.
7291  *
7292  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7293  * any of the information in this block group.
7294  */
7295 static noinline void
7296 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7297 				u64 num_bytes)
7298 {
7299 	struct btrfs_caching_control *caching_ctl;
7300 
7301 	caching_ctl = get_caching_control(cache);
7302 	if (!caching_ctl)
7303 		return;
7304 
7305 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7306 		   (cache->free_space_ctl->free_space >= num_bytes));
7307 
7308 	put_caching_control(caching_ctl);
7309 }
7310 
7311 static noinline int
7312 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7313 {
7314 	struct btrfs_caching_control *caching_ctl;
7315 	int ret = 0;
7316 
7317 	caching_ctl = get_caching_control(cache);
7318 	if (!caching_ctl)
7319 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7320 
7321 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7322 	if (cache->cached == BTRFS_CACHE_ERROR)
7323 		ret = -EIO;
7324 	put_caching_control(caching_ctl);
7325 	return ret;
7326 }
7327 
7328 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7329 	[BTRFS_RAID_RAID10]	= "raid10",
7330 	[BTRFS_RAID_RAID1]	= "raid1",
7331 	[BTRFS_RAID_DUP]	= "dup",
7332 	[BTRFS_RAID_RAID0]	= "raid0",
7333 	[BTRFS_RAID_SINGLE]	= "single",
7334 	[BTRFS_RAID_RAID5]	= "raid5",
7335 	[BTRFS_RAID_RAID6]	= "raid6",
7336 };
7337 
7338 static const char *get_raid_name(enum btrfs_raid_types type)
7339 {
7340 	if (type >= BTRFS_NR_RAID_TYPES)
7341 		return NULL;
7342 
7343 	return btrfs_raid_type_names[type];
7344 }
7345 
7346 enum btrfs_loop_type {
7347 	LOOP_CACHING_NOWAIT = 0,
7348 	LOOP_CACHING_WAIT = 1,
7349 	LOOP_ALLOC_CHUNK = 2,
7350 	LOOP_NO_EMPTY_SIZE = 3,
7351 };
7352 
7353 static inline void
7354 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7355 		       int delalloc)
7356 {
7357 	if (delalloc)
7358 		down_read(&cache->data_rwsem);
7359 }
7360 
7361 static inline void
7362 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7363 		       int delalloc)
7364 {
7365 	btrfs_get_block_group(cache);
7366 	if (delalloc)
7367 		down_read(&cache->data_rwsem);
7368 }
7369 
7370 static struct btrfs_block_group_cache *
7371 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7372 		   struct btrfs_free_cluster *cluster,
7373 		   int delalloc)
7374 {
7375 	struct btrfs_block_group_cache *used_bg = NULL;
7376 
7377 	spin_lock(&cluster->refill_lock);
7378 	while (1) {
7379 		used_bg = cluster->block_group;
7380 		if (!used_bg)
7381 			return NULL;
7382 
7383 		if (used_bg == block_group)
7384 			return used_bg;
7385 
7386 		btrfs_get_block_group(used_bg);
7387 
7388 		if (!delalloc)
7389 			return used_bg;
7390 
7391 		if (down_read_trylock(&used_bg->data_rwsem))
7392 			return used_bg;
7393 
7394 		spin_unlock(&cluster->refill_lock);
7395 
7396 		/* We should only have one-level nested. */
7397 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7398 
7399 		spin_lock(&cluster->refill_lock);
7400 		if (used_bg == cluster->block_group)
7401 			return used_bg;
7402 
7403 		up_read(&used_bg->data_rwsem);
7404 		btrfs_put_block_group(used_bg);
7405 	}
7406 }
7407 
7408 static inline void
7409 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7410 			 int delalloc)
7411 {
7412 	if (delalloc)
7413 		up_read(&cache->data_rwsem);
7414 	btrfs_put_block_group(cache);
7415 }
7416 
7417 /*
7418  * walks the btree of allocated extents and find a hole of a given size.
7419  * The key ins is changed to record the hole:
7420  * ins->objectid == start position
7421  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7422  * ins->offset == the size of the hole.
7423  * Any available blocks before search_start are skipped.
7424  *
7425  * If there is no suitable free space, we will record the max size of
7426  * the free space extent currently.
7427  */
7428 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7429 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7430 				u64 hint_byte, struct btrfs_key *ins,
7431 				u64 flags, int delalloc)
7432 {
7433 	int ret = 0;
7434 	struct btrfs_root *root = fs_info->extent_root;
7435 	struct btrfs_free_cluster *last_ptr = NULL;
7436 	struct btrfs_block_group_cache *block_group = NULL;
7437 	u64 search_start = 0;
7438 	u64 max_extent_size = 0;
7439 	u64 empty_cluster = 0;
7440 	struct btrfs_space_info *space_info;
7441 	int loop = 0;
7442 	int index = btrfs_bg_flags_to_raid_index(flags);
7443 	bool failed_cluster_refill = false;
7444 	bool failed_alloc = false;
7445 	bool use_cluster = true;
7446 	bool have_caching_bg = false;
7447 	bool orig_have_caching_bg = false;
7448 	bool full_search = false;
7449 
7450 	WARN_ON(num_bytes < fs_info->sectorsize);
7451 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7452 	ins->objectid = 0;
7453 	ins->offset = 0;
7454 
7455 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7456 
7457 	space_info = __find_space_info(fs_info, flags);
7458 	if (!space_info) {
7459 		btrfs_err(fs_info, "No space info for %llu", flags);
7460 		return -ENOSPC;
7461 	}
7462 
7463 	/*
7464 	 * If our free space is heavily fragmented we may not be able to make
7465 	 * big contiguous allocations, so instead of doing the expensive search
7466 	 * for free space, simply return ENOSPC with our max_extent_size so we
7467 	 * can go ahead and search for a more manageable chunk.
7468 	 *
7469 	 * If our max_extent_size is large enough for our allocation simply
7470 	 * disable clustering since we will likely not be able to find enough
7471 	 * space to create a cluster and induce latency trying.
7472 	 */
7473 	if (unlikely(space_info->max_extent_size)) {
7474 		spin_lock(&space_info->lock);
7475 		if (space_info->max_extent_size &&
7476 		    num_bytes > space_info->max_extent_size) {
7477 			ins->offset = space_info->max_extent_size;
7478 			spin_unlock(&space_info->lock);
7479 			return -ENOSPC;
7480 		} else if (space_info->max_extent_size) {
7481 			use_cluster = false;
7482 		}
7483 		spin_unlock(&space_info->lock);
7484 	}
7485 
7486 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7487 	if (last_ptr) {
7488 		spin_lock(&last_ptr->lock);
7489 		if (last_ptr->block_group)
7490 			hint_byte = last_ptr->window_start;
7491 		if (last_ptr->fragmented) {
7492 			/*
7493 			 * We still set window_start so we can keep track of the
7494 			 * last place we found an allocation to try and save
7495 			 * some time.
7496 			 */
7497 			hint_byte = last_ptr->window_start;
7498 			use_cluster = false;
7499 		}
7500 		spin_unlock(&last_ptr->lock);
7501 	}
7502 
7503 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7504 	search_start = max(search_start, hint_byte);
7505 	if (search_start == hint_byte) {
7506 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7507 		/*
7508 		 * we don't want to use the block group if it doesn't match our
7509 		 * allocation bits, or if its not cached.
7510 		 *
7511 		 * However if we are re-searching with an ideal block group
7512 		 * picked out then we don't care that the block group is cached.
7513 		 */
7514 		if (block_group && block_group_bits(block_group, flags) &&
7515 		    block_group->cached != BTRFS_CACHE_NO) {
7516 			down_read(&space_info->groups_sem);
7517 			if (list_empty(&block_group->list) ||
7518 			    block_group->ro) {
7519 				/*
7520 				 * someone is removing this block group,
7521 				 * we can't jump into the have_block_group
7522 				 * target because our list pointers are not
7523 				 * valid
7524 				 */
7525 				btrfs_put_block_group(block_group);
7526 				up_read(&space_info->groups_sem);
7527 			} else {
7528 				index = btrfs_bg_flags_to_raid_index(
7529 						block_group->flags);
7530 				btrfs_lock_block_group(block_group, delalloc);
7531 				goto have_block_group;
7532 			}
7533 		} else if (block_group) {
7534 			btrfs_put_block_group(block_group);
7535 		}
7536 	}
7537 search:
7538 	have_caching_bg = false;
7539 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7540 		full_search = true;
7541 	down_read(&space_info->groups_sem);
7542 	list_for_each_entry(block_group, &space_info->block_groups[index],
7543 			    list) {
7544 		u64 offset;
7545 		int cached;
7546 
7547 		/* If the block group is read-only, we can skip it entirely. */
7548 		if (unlikely(block_group->ro))
7549 			continue;
7550 
7551 		btrfs_grab_block_group(block_group, delalloc);
7552 		search_start = block_group->key.objectid;
7553 
7554 		/*
7555 		 * this can happen if we end up cycling through all the
7556 		 * raid types, but we want to make sure we only allocate
7557 		 * for the proper type.
7558 		 */
7559 		if (!block_group_bits(block_group, flags)) {
7560 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7561 				BTRFS_BLOCK_GROUP_RAID1 |
7562 				BTRFS_BLOCK_GROUP_RAID5 |
7563 				BTRFS_BLOCK_GROUP_RAID6 |
7564 				BTRFS_BLOCK_GROUP_RAID10;
7565 
7566 			/*
7567 			 * if they asked for extra copies and this block group
7568 			 * doesn't provide them, bail.  This does allow us to
7569 			 * fill raid0 from raid1.
7570 			 */
7571 			if ((flags & extra) && !(block_group->flags & extra))
7572 				goto loop;
7573 		}
7574 
7575 have_block_group:
7576 		cached = block_group_cache_done(block_group);
7577 		if (unlikely(!cached)) {
7578 			have_caching_bg = true;
7579 			ret = cache_block_group(block_group, 0);
7580 			BUG_ON(ret < 0);
7581 			ret = 0;
7582 		}
7583 
7584 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7585 			goto loop;
7586 
7587 		/*
7588 		 * Ok we want to try and use the cluster allocator, so
7589 		 * lets look there
7590 		 */
7591 		if (last_ptr && use_cluster) {
7592 			struct btrfs_block_group_cache *used_block_group;
7593 			unsigned long aligned_cluster;
7594 			/*
7595 			 * the refill lock keeps out other
7596 			 * people trying to start a new cluster
7597 			 */
7598 			used_block_group = btrfs_lock_cluster(block_group,
7599 							      last_ptr,
7600 							      delalloc);
7601 			if (!used_block_group)
7602 				goto refill_cluster;
7603 
7604 			if (used_block_group != block_group &&
7605 			    (used_block_group->ro ||
7606 			     !block_group_bits(used_block_group, flags)))
7607 				goto release_cluster;
7608 
7609 			offset = btrfs_alloc_from_cluster(used_block_group,
7610 						last_ptr,
7611 						num_bytes,
7612 						used_block_group->key.objectid,
7613 						&max_extent_size);
7614 			if (offset) {
7615 				/* we have a block, we're done */
7616 				spin_unlock(&last_ptr->refill_lock);
7617 				trace_btrfs_reserve_extent_cluster(fs_info,
7618 						used_block_group,
7619 						search_start, num_bytes);
7620 				if (used_block_group != block_group) {
7621 					btrfs_release_block_group(block_group,
7622 								  delalloc);
7623 					block_group = used_block_group;
7624 				}
7625 				goto checks;
7626 			}
7627 
7628 			WARN_ON(last_ptr->block_group != used_block_group);
7629 release_cluster:
7630 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7631 			 * set up a new clusters, so lets just skip it
7632 			 * and let the allocator find whatever block
7633 			 * it can find.  If we reach this point, we
7634 			 * will have tried the cluster allocator
7635 			 * plenty of times and not have found
7636 			 * anything, so we are likely way too
7637 			 * fragmented for the clustering stuff to find
7638 			 * anything.
7639 			 *
7640 			 * However, if the cluster is taken from the
7641 			 * current block group, release the cluster
7642 			 * first, so that we stand a better chance of
7643 			 * succeeding in the unclustered
7644 			 * allocation.  */
7645 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7646 			    used_block_group != block_group) {
7647 				spin_unlock(&last_ptr->refill_lock);
7648 				btrfs_release_block_group(used_block_group,
7649 							  delalloc);
7650 				goto unclustered_alloc;
7651 			}
7652 
7653 			/*
7654 			 * this cluster didn't work out, free it and
7655 			 * start over
7656 			 */
7657 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7658 
7659 			if (used_block_group != block_group)
7660 				btrfs_release_block_group(used_block_group,
7661 							  delalloc);
7662 refill_cluster:
7663 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7664 				spin_unlock(&last_ptr->refill_lock);
7665 				goto unclustered_alloc;
7666 			}
7667 
7668 			aligned_cluster = max_t(unsigned long,
7669 						empty_cluster + empty_size,
7670 					      block_group->full_stripe_len);
7671 
7672 			/* allocate a cluster in this block group */
7673 			ret = btrfs_find_space_cluster(fs_info, block_group,
7674 						       last_ptr, search_start,
7675 						       num_bytes,
7676 						       aligned_cluster);
7677 			if (ret == 0) {
7678 				/*
7679 				 * now pull our allocation out of this
7680 				 * cluster
7681 				 */
7682 				offset = btrfs_alloc_from_cluster(block_group,
7683 							last_ptr,
7684 							num_bytes,
7685 							search_start,
7686 							&max_extent_size);
7687 				if (offset) {
7688 					/* we found one, proceed */
7689 					spin_unlock(&last_ptr->refill_lock);
7690 					trace_btrfs_reserve_extent_cluster(fs_info,
7691 						block_group, search_start,
7692 						num_bytes);
7693 					goto checks;
7694 				}
7695 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7696 				   && !failed_cluster_refill) {
7697 				spin_unlock(&last_ptr->refill_lock);
7698 
7699 				failed_cluster_refill = true;
7700 				wait_block_group_cache_progress(block_group,
7701 				       num_bytes + empty_cluster + empty_size);
7702 				goto have_block_group;
7703 			}
7704 
7705 			/*
7706 			 * at this point we either didn't find a cluster
7707 			 * or we weren't able to allocate a block from our
7708 			 * cluster.  Free the cluster we've been trying
7709 			 * to use, and go to the next block group
7710 			 */
7711 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7712 			spin_unlock(&last_ptr->refill_lock);
7713 			goto loop;
7714 		}
7715 
7716 unclustered_alloc:
7717 		/*
7718 		 * We are doing an unclustered alloc, set the fragmented flag so
7719 		 * we don't bother trying to setup a cluster again until we get
7720 		 * more space.
7721 		 */
7722 		if (unlikely(last_ptr)) {
7723 			spin_lock(&last_ptr->lock);
7724 			last_ptr->fragmented = 1;
7725 			spin_unlock(&last_ptr->lock);
7726 		}
7727 		if (cached) {
7728 			struct btrfs_free_space_ctl *ctl =
7729 				block_group->free_space_ctl;
7730 
7731 			spin_lock(&ctl->tree_lock);
7732 			if (ctl->free_space <
7733 			    num_bytes + empty_cluster + empty_size) {
7734 				if (ctl->free_space > max_extent_size)
7735 					max_extent_size = ctl->free_space;
7736 				spin_unlock(&ctl->tree_lock);
7737 				goto loop;
7738 			}
7739 			spin_unlock(&ctl->tree_lock);
7740 		}
7741 
7742 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7743 						    num_bytes, empty_size,
7744 						    &max_extent_size);
7745 		/*
7746 		 * If we didn't find a chunk, and we haven't failed on this
7747 		 * block group before, and this block group is in the middle of
7748 		 * caching and we are ok with waiting, then go ahead and wait
7749 		 * for progress to be made, and set failed_alloc to true.
7750 		 *
7751 		 * If failed_alloc is true then we've already waited on this
7752 		 * block group once and should move on to the next block group.
7753 		 */
7754 		if (!offset && !failed_alloc && !cached &&
7755 		    loop > LOOP_CACHING_NOWAIT) {
7756 			wait_block_group_cache_progress(block_group,
7757 						num_bytes + empty_size);
7758 			failed_alloc = true;
7759 			goto have_block_group;
7760 		} else if (!offset) {
7761 			goto loop;
7762 		}
7763 checks:
7764 		search_start = ALIGN(offset, fs_info->stripesize);
7765 
7766 		/* move on to the next group */
7767 		if (search_start + num_bytes >
7768 		    block_group->key.objectid + block_group->key.offset) {
7769 			btrfs_add_free_space(block_group, offset, num_bytes);
7770 			goto loop;
7771 		}
7772 
7773 		if (offset < search_start)
7774 			btrfs_add_free_space(block_group, offset,
7775 					     search_start - offset);
7776 		BUG_ON(offset > search_start);
7777 
7778 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7779 				num_bytes, delalloc);
7780 		if (ret == -EAGAIN) {
7781 			btrfs_add_free_space(block_group, offset, num_bytes);
7782 			goto loop;
7783 		}
7784 		btrfs_inc_block_group_reservations(block_group);
7785 
7786 		/* we are all good, lets return */
7787 		ins->objectid = search_start;
7788 		ins->offset = num_bytes;
7789 
7790 		trace_btrfs_reserve_extent(fs_info, block_group,
7791 					   search_start, num_bytes);
7792 		btrfs_release_block_group(block_group, delalloc);
7793 		break;
7794 loop:
7795 		failed_cluster_refill = false;
7796 		failed_alloc = false;
7797 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7798 		       index);
7799 		btrfs_release_block_group(block_group, delalloc);
7800 		cond_resched();
7801 	}
7802 	up_read(&space_info->groups_sem);
7803 
7804 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7805 		&& !orig_have_caching_bg)
7806 		orig_have_caching_bg = true;
7807 
7808 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7809 		goto search;
7810 
7811 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7812 		goto search;
7813 
7814 	/*
7815 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7816 	 *			caching kthreads as we move along
7817 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7818 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7819 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7820 	 *			again
7821 	 */
7822 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7823 		index = 0;
7824 		if (loop == LOOP_CACHING_NOWAIT) {
7825 			/*
7826 			 * We want to skip the LOOP_CACHING_WAIT step if we
7827 			 * don't have any uncached bgs and we've already done a
7828 			 * full search through.
7829 			 */
7830 			if (orig_have_caching_bg || !full_search)
7831 				loop = LOOP_CACHING_WAIT;
7832 			else
7833 				loop = LOOP_ALLOC_CHUNK;
7834 		} else {
7835 			loop++;
7836 		}
7837 
7838 		if (loop == LOOP_ALLOC_CHUNK) {
7839 			struct btrfs_trans_handle *trans;
7840 			int exist = 0;
7841 
7842 			trans = current->journal_info;
7843 			if (trans)
7844 				exist = 1;
7845 			else
7846 				trans = btrfs_join_transaction(root);
7847 
7848 			if (IS_ERR(trans)) {
7849 				ret = PTR_ERR(trans);
7850 				goto out;
7851 			}
7852 
7853 			ret = do_chunk_alloc(trans, fs_info, flags,
7854 					     CHUNK_ALLOC_FORCE);
7855 
7856 			/*
7857 			 * If we can't allocate a new chunk we've already looped
7858 			 * through at least once, move on to the NO_EMPTY_SIZE
7859 			 * case.
7860 			 */
7861 			if (ret == -ENOSPC)
7862 				loop = LOOP_NO_EMPTY_SIZE;
7863 
7864 			/*
7865 			 * Do not bail out on ENOSPC since we
7866 			 * can do more things.
7867 			 */
7868 			if (ret < 0 && ret != -ENOSPC)
7869 				btrfs_abort_transaction(trans, ret);
7870 			else
7871 				ret = 0;
7872 			if (!exist)
7873 				btrfs_end_transaction(trans);
7874 			if (ret)
7875 				goto out;
7876 		}
7877 
7878 		if (loop == LOOP_NO_EMPTY_SIZE) {
7879 			/*
7880 			 * Don't loop again if we already have no empty_size and
7881 			 * no empty_cluster.
7882 			 */
7883 			if (empty_size == 0 &&
7884 			    empty_cluster == 0) {
7885 				ret = -ENOSPC;
7886 				goto out;
7887 			}
7888 			empty_size = 0;
7889 			empty_cluster = 0;
7890 		}
7891 
7892 		goto search;
7893 	} else if (!ins->objectid) {
7894 		ret = -ENOSPC;
7895 	} else if (ins->objectid) {
7896 		if (!use_cluster && last_ptr) {
7897 			spin_lock(&last_ptr->lock);
7898 			last_ptr->window_start = ins->objectid;
7899 			spin_unlock(&last_ptr->lock);
7900 		}
7901 		ret = 0;
7902 	}
7903 out:
7904 	if (ret == -ENOSPC) {
7905 		spin_lock(&space_info->lock);
7906 		space_info->max_extent_size = max_extent_size;
7907 		spin_unlock(&space_info->lock);
7908 		ins->offset = max_extent_size;
7909 	}
7910 	return ret;
7911 }
7912 
7913 static void dump_space_info(struct btrfs_fs_info *fs_info,
7914 			    struct btrfs_space_info *info, u64 bytes,
7915 			    int dump_block_groups)
7916 {
7917 	struct btrfs_block_group_cache *cache;
7918 	int index = 0;
7919 
7920 	spin_lock(&info->lock);
7921 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7922 		   info->flags,
7923 		   info->total_bytes - btrfs_space_info_used(info, true),
7924 		   info->full ? "" : "not ");
7925 	btrfs_info(fs_info,
7926 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7927 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7928 		info->bytes_reserved, info->bytes_may_use,
7929 		info->bytes_readonly);
7930 	spin_unlock(&info->lock);
7931 
7932 	if (!dump_block_groups)
7933 		return;
7934 
7935 	down_read(&info->groups_sem);
7936 again:
7937 	list_for_each_entry(cache, &info->block_groups[index], list) {
7938 		spin_lock(&cache->lock);
7939 		btrfs_info(fs_info,
7940 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7941 			cache->key.objectid, cache->key.offset,
7942 			btrfs_block_group_used(&cache->item), cache->pinned,
7943 			cache->reserved, cache->ro ? "[readonly]" : "");
7944 		btrfs_dump_free_space(cache, bytes);
7945 		spin_unlock(&cache->lock);
7946 	}
7947 	if (++index < BTRFS_NR_RAID_TYPES)
7948 		goto again;
7949 	up_read(&info->groups_sem);
7950 }
7951 
7952 /*
7953  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7954  *			  hole that is at least as big as @num_bytes.
7955  *
7956  * @root           -	The root that will contain this extent
7957  *
7958  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
7959  *			is used for accounting purposes. This value differs
7960  *			from @num_bytes only in the case of compressed extents.
7961  *
7962  * @num_bytes      -	Number of bytes to allocate on-disk.
7963  *
7964  * @min_alloc_size -	Indicates the minimum amount of space that the
7965  *			allocator should try to satisfy. In some cases
7966  *			@num_bytes may be larger than what is required and if
7967  *			the filesystem is fragmented then allocation fails.
7968  *			However, the presence of @min_alloc_size gives a
7969  *			chance to try and satisfy the smaller allocation.
7970  *
7971  * @empty_size     -	A hint that you plan on doing more COW. This is the
7972  *			size in bytes the allocator should try to find free
7973  *			next to the block it returns.  This is just a hint and
7974  *			may be ignored by the allocator.
7975  *
7976  * @hint_byte      -	Hint to the allocator to start searching above the byte
7977  *			address passed. It might be ignored.
7978  *
7979  * @ins            -	This key is modified to record the found hole. It will
7980  *			have the following values:
7981  *			ins->objectid == start position
7982  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
7983  *			ins->offset == the size of the hole.
7984  *
7985  * @is_data        -	Boolean flag indicating whether an extent is
7986  *			allocated for data (true) or metadata (false)
7987  *
7988  * @delalloc       -	Boolean flag indicating whether this allocation is for
7989  *			delalloc or not. If 'true' data_rwsem of block groups
7990  *			is going to be acquired.
7991  *
7992  *
7993  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7994  * case -ENOSPC is returned then @ins->offset will contain the size of the
7995  * largest available hole the allocator managed to find.
7996  */
7997 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7998 			 u64 num_bytes, u64 min_alloc_size,
7999 			 u64 empty_size, u64 hint_byte,
8000 			 struct btrfs_key *ins, int is_data, int delalloc)
8001 {
8002 	struct btrfs_fs_info *fs_info = root->fs_info;
8003 	bool final_tried = num_bytes == min_alloc_size;
8004 	u64 flags;
8005 	int ret;
8006 
8007 	flags = get_alloc_profile_by_root(root, is_data);
8008 again:
8009 	WARN_ON(num_bytes < fs_info->sectorsize);
8010 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8011 			       hint_byte, ins, flags, delalloc);
8012 	if (!ret && !is_data) {
8013 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8014 	} else if (ret == -ENOSPC) {
8015 		if (!final_tried && ins->offset) {
8016 			num_bytes = min(num_bytes >> 1, ins->offset);
8017 			num_bytes = round_down(num_bytes,
8018 					       fs_info->sectorsize);
8019 			num_bytes = max(num_bytes, min_alloc_size);
8020 			ram_bytes = num_bytes;
8021 			if (num_bytes == min_alloc_size)
8022 				final_tried = true;
8023 			goto again;
8024 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8025 			struct btrfs_space_info *sinfo;
8026 
8027 			sinfo = __find_space_info(fs_info, flags);
8028 			btrfs_err(fs_info,
8029 				  "allocation failed flags %llu, wanted %llu",
8030 				  flags, num_bytes);
8031 			if (sinfo)
8032 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8033 		}
8034 	}
8035 
8036 	return ret;
8037 }
8038 
8039 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8040 					u64 start, u64 len,
8041 					int pin, int delalloc)
8042 {
8043 	struct btrfs_block_group_cache *cache;
8044 	int ret = 0;
8045 
8046 	cache = btrfs_lookup_block_group(fs_info, start);
8047 	if (!cache) {
8048 		btrfs_err(fs_info, "Unable to find block group for %llu",
8049 			  start);
8050 		return -ENOSPC;
8051 	}
8052 
8053 	if (pin)
8054 		pin_down_extent(fs_info, cache, start, len, 1);
8055 	else {
8056 		if (btrfs_test_opt(fs_info, DISCARD))
8057 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8058 		btrfs_add_free_space(cache, start, len);
8059 		btrfs_free_reserved_bytes(cache, len, delalloc);
8060 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8061 	}
8062 
8063 	btrfs_put_block_group(cache);
8064 	return ret;
8065 }
8066 
8067 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8068 			       u64 start, u64 len, int delalloc)
8069 {
8070 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8071 }
8072 
8073 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8074 				       u64 start, u64 len)
8075 {
8076 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8077 }
8078 
8079 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8080 				      struct btrfs_fs_info *fs_info,
8081 				      u64 parent, u64 root_objectid,
8082 				      u64 flags, u64 owner, u64 offset,
8083 				      struct btrfs_key *ins, int ref_mod)
8084 {
8085 	int ret;
8086 	struct btrfs_extent_item *extent_item;
8087 	struct btrfs_extent_inline_ref *iref;
8088 	struct btrfs_path *path;
8089 	struct extent_buffer *leaf;
8090 	int type;
8091 	u32 size;
8092 
8093 	if (parent > 0)
8094 		type = BTRFS_SHARED_DATA_REF_KEY;
8095 	else
8096 		type = BTRFS_EXTENT_DATA_REF_KEY;
8097 
8098 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8099 
8100 	path = btrfs_alloc_path();
8101 	if (!path)
8102 		return -ENOMEM;
8103 
8104 	path->leave_spinning = 1;
8105 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8106 				      ins, size);
8107 	if (ret) {
8108 		btrfs_free_path(path);
8109 		return ret;
8110 	}
8111 
8112 	leaf = path->nodes[0];
8113 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8114 				     struct btrfs_extent_item);
8115 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8116 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8117 	btrfs_set_extent_flags(leaf, extent_item,
8118 			       flags | BTRFS_EXTENT_FLAG_DATA);
8119 
8120 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8121 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8122 	if (parent > 0) {
8123 		struct btrfs_shared_data_ref *ref;
8124 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8125 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8126 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8127 	} else {
8128 		struct btrfs_extent_data_ref *ref;
8129 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8130 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8131 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8132 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8133 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8134 	}
8135 
8136 	btrfs_mark_buffer_dirty(path->nodes[0]);
8137 	btrfs_free_path(path);
8138 
8139 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8140 					  ins->offset);
8141 	if (ret)
8142 		return ret;
8143 
8144 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8145 	if (ret) { /* -ENOENT, logic error */
8146 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8147 			ins->objectid, ins->offset);
8148 		BUG();
8149 	}
8150 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8151 	return ret;
8152 }
8153 
8154 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8155 				     struct btrfs_fs_info *fs_info,
8156 				     u64 parent, u64 root_objectid,
8157 				     u64 flags, struct btrfs_disk_key *key,
8158 				     int level, struct btrfs_key *ins)
8159 {
8160 	int ret;
8161 	struct btrfs_extent_item *extent_item;
8162 	struct btrfs_tree_block_info *block_info;
8163 	struct btrfs_extent_inline_ref *iref;
8164 	struct btrfs_path *path;
8165 	struct extent_buffer *leaf;
8166 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8167 	u64 num_bytes = ins->offset;
8168 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8169 
8170 	if (!skinny_metadata)
8171 		size += sizeof(*block_info);
8172 
8173 	path = btrfs_alloc_path();
8174 	if (!path) {
8175 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8176 						   fs_info->nodesize);
8177 		return -ENOMEM;
8178 	}
8179 
8180 	path->leave_spinning = 1;
8181 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8182 				      ins, size);
8183 	if (ret) {
8184 		btrfs_free_path(path);
8185 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8186 						   fs_info->nodesize);
8187 		return ret;
8188 	}
8189 
8190 	leaf = path->nodes[0];
8191 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8192 				     struct btrfs_extent_item);
8193 	btrfs_set_extent_refs(leaf, extent_item, 1);
8194 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8195 	btrfs_set_extent_flags(leaf, extent_item,
8196 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8197 
8198 	if (skinny_metadata) {
8199 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8200 		num_bytes = fs_info->nodesize;
8201 	} else {
8202 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8203 		btrfs_set_tree_block_key(leaf, block_info, key);
8204 		btrfs_set_tree_block_level(leaf, block_info, level);
8205 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8206 	}
8207 
8208 	if (parent > 0) {
8209 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8210 		btrfs_set_extent_inline_ref_type(leaf, iref,
8211 						 BTRFS_SHARED_BLOCK_REF_KEY);
8212 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8213 	} else {
8214 		btrfs_set_extent_inline_ref_type(leaf, iref,
8215 						 BTRFS_TREE_BLOCK_REF_KEY);
8216 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8217 	}
8218 
8219 	btrfs_mark_buffer_dirty(leaf);
8220 	btrfs_free_path(path);
8221 
8222 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8223 					  num_bytes);
8224 	if (ret)
8225 		return ret;
8226 
8227 	ret = update_block_group(trans, fs_info, ins->objectid,
8228 				 fs_info->nodesize, 1);
8229 	if (ret) { /* -ENOENT, logic error */
8230 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8231 			ins->objectid, ins->offset);
8232 		BUG();
8233 	}
8234 
8235 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8236 					  fs_info->nodesize);
8237 	return ret;
8238 }
8239 
8240 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8241 				     struct btrfs_root *root, u64 owner,
8242 				     u64 offset, u64 ram_bytes,
8243 				     struct btrfs_key *ins)
8244 {
8245 	struct btrfs_fs_info *fs_info = root->fs_info;
8246 	int ret;
8247 
8248 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8249 
8250 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8251 			   root->root_key.objectid, owner, offset,
8252 			   BTRFS_ADD_DELAYED_EXTENT);
8253 
8254 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8255 					 ins->offset, 0,
8256 					 root->root_key.objectid, owner,
8257 					 offset, ram_bytes,
8258 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8259 	return ret;
8260 }
8261 
8262 /*
8263  * this is used by the tree logging recovery code.  It records that
8264  * an extent has been allocated and makes sure to clear the free
8265  * space cache bits as well
8266  */
8267 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8268 				   struct btrfs_fs_info *fs_info,
8269 				   u64 root_objectid, u64 owner, u64 offset,
8270 				   struct btrfs_key *ins)
8271 {
8272 	int ret;
8273 	struct btrfs_block_group_cache *block_group;
8274 	struct btrfs_space_info *space_info;
8275 
8276 	/*
8277 	 * Mixed block groups will exclude before processing the log so we only
8278 	 * need to do the exclude dance if this fs isn't mixed.
8279 	 */
8280 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8281 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8282 					      ins->offset);
8283 		if (ret)
8284 			return ret;
8285 	}
8286 
8287 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8288 	if (!block_group)
8289 		return -EINVAL;
8290 
8291 	space_info = block_group->space_info;
8292 	spin_lock(&space_info->lock);
8293 	spin_lock(&block_group->lock);
8294 	space_info->bytes_reserved += ins->offset;
8295 	block_group->reserved += ins->offset;
8296 	spin_unlock(&block_group->lock);
8297 	spin_unlock(&space_info->lock);
8298 
8299 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8300 					 0, owner, offset, ins, 1);
8301 	btrfs_put_block_group(block_group);
8302 	return ret;
8303 }
8304 
8305 static struct extent_buffer *
8306 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8307 		      u64 bytenr, int level)
8308 {
8309 	struct btrfs_fs_info *fs_info = root->fs_info;
8310 	struct extent_buffer *buf;
8311 
8312 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8313 	if (IS_ERR(buf))
8314 		return buf;
8315 
8316 	btrfs_set_header_generation(buf, trans->transid);
8317 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8318 	btrfs_tree_lock(buf);
8319 	clean_tree_block(fs_info, buf);
8320 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8321 
8322 	btrfs_set_lock_blocking(buf);
8323 	set_extent_buffer_uptodate(buf);
8324 
8325 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8326 		buf->log_index = root->log_transid % 2;
8327 		/*
8328 		 * we allow two log transactions at a time, use different
8329 		 * EXENT bit to differentiate dirty pages.
8330 		 */
8331 		if (buf->log_index == 0)
8332 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8333 					buf->start + buf->len - 1, GFP_NOFS);
8334 		else
8335 			set_extent_new(&root->dirty_log_pages, buf->start,
8336 					buf->start + buf->len - 1);
8337 	} else {
8338 		buf->log_index = -1;
8339 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8340 			 buf->start + buf->len - 1, GFP_NOFS);
8341 	}
8342 	trans->dirty = true;
8343 	/* this returns a buffer locked for blocking */
8344 	return buf;
8345 }
8346 
8347 static struct btrfs_block_rsv *
8348 use_block_rsv(struct btrfs_trans_handle *trans,
8349 	      struct btrfs_root *root, u32 blocksize)
8350 {
8351 	struct btrfs_fs_info *fs_info = root->fs_info;
8352 	struct btrfs_block_rsv *block_rsv;
8353 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8354 	int ret;
8355 	bool global_updated = false;
8356 
8357 	block_rsv = get_block_rsv(trans, root);
8358 
8359 	if (unlikely(block_rsv->size == 0))
8360 		goto try_reserve;
8361 again:
8362 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8363 	if (!ret)
8364 		return block_rsv;
8365 
8366 	if (block_rsv->failfast)
8367 		return ERR_PTR(ret);
8368 
8369 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8370 		global_updated = true;
8371 		update_global_block_rsv(fs_info);
8372 		goto again;
8373 	}
8374 
8375 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8376 		static DEFINE_RATELIMIT_STATE(_rs,
8377 				DEFAULT_RATELIMIT_INTERVAL * 10,
8378 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8379 		if (__ratelimit(&_rs))
8380 			WARN(1, KERN_DEBUG
8381 				"BTRFS: block rsv returned %d\n", ret);
8382 	}
8383 try_reserve:
8384 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8385 				     BTRFS_RESERVE_NO_FLUSH);
8386 	if (!ret)
8387 		return block_rsv;
8388 	/*
8389 	 * If we couldn't reserve metadata bytes try and use some from
8390 	 * the global reserve if its space type is the same as the global
8391 	 * reservation.
8392 	 */
8393 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8394 	    block_rsv->space_info == global_rsv->space_info) {
8395 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8396 		if (!ret)
8397 			return global_rsv;
8398 	}
8399 	return ERR_PTR(ret);
8400 }
8401 
8402 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8403 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8404 {
8405 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8406 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8407 }
8408 
8409 /*
8410  * finds a free extent and does all the dirty work required for allocation
8411  * returns the tree buffer or an ERR_PTR on error.
8412  */
8413 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8414 					     struct btrfs_root *root,
8415 					     u64 parent, u64 root_objectid,
8416 					     const struct btrfs_disk_key *key,
8417 					     int level, u64 hint,
8418 					     u64 empty_size)
8419 {
8420 	struct btrfs_fs_info *fs_info = root->fs_info;
8421 	struct btrfs_key ins;
8422 	struct btrfs_block_rsv *block_rsv;
8423 	struct extent_buffer *buf;
8424 	struct btrfs_delayed_extent_op *extent_op;
8425 	u64 flags = 0;
8426 	int ret;
8427 	u32 blocksize = fs_info->nodesize;
8428 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8429 
8430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8431 	if (btrfs_is_testing(fs_info)) {
8432 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8433 					    level);
8434 		if (!IS_ERR(buf))
8435 			root->alloc_bytenr += blocksize;
8436 		return buf;
8437 	}
8438 #endif
8439 
8440 	block_rsv = use_block_rsv(trans, root, blocksize);
8441 	if (IS_ERR(block_rsv))
8442 		return ERR_CAST(block_rsv);
8443 
8444 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8445 				   empty_size, hint, &ins, 0, 0);
8446 	if (ret)
8447 		goto out_unuse;
8448 
8449 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8450 	if (IS_ERR(buf)) {
8451 		ret = PTR_ERR(buf);
8452 		goto out_free_reserved;
8453 	}
8454 
8455 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8456 		if (parent == 0)
8457 			parent = ins.objectid;
8458 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8459 	} else
8460 		BUG_ON(parent > 0);
8461 
8462 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8463 		extent_op = btrfs_alloc_delayed_extent_op();
8464 		if (!extent_op) {
8465 			ret = -ENOMEM;
8466 			goto out_free_buf;
8467 		}
8468 		if (key)
8469 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8470 		else
8471 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8472 		extent_op->flags_to_set = flags;
8473 		extent_op->update_key = skinny_metadata ? false : true;
8474 		extent_op->update_flags = true;
8475 		extent_op->is_data = false;
8476 		extent_op->level = level;
8477 
8478 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8479 				   root_objectid, level, 0,
8480 				   BTRFS_ADD_DELAYED_EXTENT);
8481 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8482 						 ins.offset, parent,
8483 						 root_objectid, level,
8484 						 BTRFS_ADD_DELAYED_EXTENT,
8485 						 extent_op, NULL, NULL);
8486 		if (ret)
8487 			goto out_free_delayed;
8488 	}
8489 	return buf;
8490 
8491 out_free_delayed:
8492 	btrfs_free_delayed_extent_op(extent_op);
8493 out_free_buf:
8494 	free_extent_buffer(buf);
8495 out_free_reserved:
8496 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8497 out_unuse:
8498 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8499 	return ERR_PTR(ret);
8500 }
8501 
8502 struct walk_control {
8503 	u64 refs[BTRFS_MAX_LEVEL];
8504 	u64 flags[BTRFS_MAX_LEVEL];
8505 	struct btrfs_key update_progress;
8506 	int stage;
8507 	int level;
8508 	int shared_level;
8509 	int update_ref;
8510 	int keep_locks;
8511 	int reada_slot;
8512 	int reada_count;
8513 	int for_reloc;
8514 };
8515 
8516 #define DROP_REFERENCE	1
8517 #define UPDATE_BACKREF	2
8518 
8519 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8520 				     struct btrfs_root *root,
8521 				     struct walk_control *wc,
8522 				     struct btrfs_path *path)
8523 {
8524 	struct btrfs_fs_info *fs_info = root->fs_info;
8525 	u64 bytenr;
8526 	u64 generation;
8527 	u64 refs;
8528 	u64 flags;
8529 	u32 nritems;
8530 	struct btrfs_key key;
8531 	struct extent_buffer *eb;
8532 	int ret;
8533 	int slot;
8534 	int nread = 0;
8535 
8536 	if (path->slots[wc->level] < wc->reada_slot) {
8537 		wc->reada_count = wc->reada_count * 2 / 3;
8538 		wc->reada_count = max(wc->reada_count, 2);
8539 	} else {
8540 		wc->reada_count = wc->reada_count * 3 / 2;
8541 		wc->reada_count = min_t(int, wc->reada_count,
8542 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8543 	}
8544 
8545 	eb = path->nodes[wc->level];
8546 	nritems = btrfs_header_nritems(eb);
8547 
8548 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8549 		if (nread >= wc->reada_count)
8550 			break;
8551 
8552 		cond_resched();
8553 		bytenr = btrfs_node_blockptr(eb, slot);
8554 		generation = btrfs_node_ptr_generation(eb, slot);
8555 
8556 		if (slot == path->slots[wc->level])
8557 			goto reada;
8558 
8559 		if (wc->stage == UPDATE_BACKREF &&
8560 		    generation <= root->root_key.offset)
8561 			continue;
8562 
8563 		/* We don't lock the tree block, it's OK to be racy here */
8564 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8565 					       wc->level - 1, 1, &refs,
8566 					       &flags);
8567 		/* We don't care about errors in readahead. */
8568 		if (ret < 0)
8569 			continue;
8570 		BUG_ON(refs == 0);
8571 
8572 		if (wc->stage == DROP_REFERENCE) {
8573 			if (refs == 1)
8574 				goto reada;
8575 
8576 			if (wc->level == 1 &&
8577 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 				continue;
8579 			if (!wc->update_ref ||
8580 			    generation <= root->root_key.offset)
8581 				continue;
8582 			btrfs_node_key_to_cpu(eb, &key, slot);
8583 			ret = btrfs_comp_cpu_keys(&key,
8584 						  &wc->update_progress);
8585 			if (ret < 0)
8586 				continue;
8587 		} else {
8588 			if (wc->level == 1 &&
8589 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8590 				continue;
8591 		}
8592 reada:
8593 		readahead_tree_block(fs_info, bytenr);
8594 		nread++;
8595 	}
8596 	wc->reada_slot = slot;
8597 }
8598 
8599 /*
8600  * helper to process tree block while walking down the tree.
8601  *
8602  * when wc->stage == UPDATE_BACKREF, this function updates
8603  * back refs for pointers in the block.
8604  *
8605  * NOTE: return value 1 means we should stop walking down.
8606  */
8607 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8608 				   struct btrfs_root *root,
8609 				   struct btrfs_path *path,
8610 				   struct walk_control *wc, int lookup_info)
8611 {
8612 	struct btrfs_fs_info *fs_info = root->fs_info;
8613 	int level = wc->level;
8614 	struct extent_buffer *eb = path->nodes[level];
8615 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8616 	int ret;
8617 
8618 	if (wc->stage == UPDATE_BACKREF &&
8619 	    btrfs_header_owner(eb) != root->root_key.objectid)
8620 		return 1;
8621 
8622 	/*
8623 	 * when reference count of tree block is 1, it won't increase
8624 	 * again. once full backref flag is set, we never clear it.
8625 	 */
8626 	if (lookup_info &&
8627 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8628 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8629 		BUG_ON(!path->locks[level]);
8630 		ret = btrfs_lookup_extent_info(trans, fs_info,
8631 					       eb->start, level, 1,
8632 					       &wc->refs[level],
8633 					       &wc->flags[level]);
8634 		BUG_ON(ret == -ENOMEM);
8635 		if (ret)
8636 			return ret;
8637 		BUG_ON(wc->refs[level] == 0);
8638 	}
8639 
8640 	if (wc->stage == DROP_REFERENCE) {
8641 		if (wc->refs[level] > 1)
8642 			return 1;
8643 
8644 		if (path->locks[level] && !wc->keep_locks) {
8645 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8646 			path->locks[level] = 0;
8647 		}
8648 		return 0;
8649 	}
8650 
8651 	/* wc->stage == UPDATE_BACKREF */
8652 	if (!(wc->flags[level] & flag)) {
8653 		BUG_ON(!path->locks[level]);
8654 		ret = btrfs_inc_ref(trans, root, eb, 1);
8655 		BUG_ON(ret); /* -ENOMEM */
8656 		ret = btrfs_dec_ref(trans, root, eb, 0);
8657 		BUG_ON(ret); /* -ENOMEM */
8658 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8659 						  eb->len, flag,
8660 						  btrfs_header_level(eb), 0);
8661 		BUG_ON(ret); /* -ENOMEM */
8662 		wc->flags[level] |= flag;
8663 	}
8664 
8665 	/*
8666 	 * the block is shared by multiple trees, so it's not good to
8667 	 * keep the tree lock
8668 	 */
8669 	if (path->locks[level] && level > 0) {
8670 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8671 		path->locks[level] = 0;
8672 	}
8673 	return 0;
8674 }
8675 
8676 /*
8677  * helper to process tree block pointer.
8678  *
8679  * when wc->stage == DROP_REFERENCE, this function checks
8680  * reference count of the block pointed to. if the block
8681  * is shared and we need update back refs for the subtree
8682  * rooted at the block, this function changes wc->stage to
8683  * UPDATE_BACKREF. if the block is shared and there is no
8684  * need to update back, this function drops the reference
8685  * to the block.
8686  *
8687  * NOTE: return value 1 means we should stop walking down.
8688  */
8689 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8690 				 struct btrfs_root *root,
8691 				 struct btrfs_path *path,
8692 				 struct walk_control *wc, int *lookup_info)
8693 {
8694 	struct btrfs_fs_info *fs_info = root->fs_info;
8695 	u64 bytenr;
8696 	u64 generation;
8697 	u64 parent;
8698 	u32 blocksize;
8699 	struct btrfs_key key;
8700 	struct btrfs_key first_key;
8701 	struct extent_buffer *next;
8702 	int level = wc->level;
8703 	int reada = 0;
8704 	int ret = 0;
8705 	bool need_account = false;
8706 
8707 	generation = btrfs_node_ptr_generation(path->nodes[level],
8708 					       path->slots[level]);
8709 	/*
8710 	 * if the lower level block was created before the snapshot
8711 	 * was created, we know there is no need to update back refs
8712 	 * for the subtree
8713 	 */
8714 	if (wc->stage == UPDATE_BACKREF &&
8715 	    generation <= root->root_key.offset) {
8716 		*lookup_info = 1;
8717 		return 1;
8718 	}
8719 
8720 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8721 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8722 			      path->slots[level]);
8723 	blocksize = fs_info->nodesize;
8724 
8725 	next = find_extent_buffer(fs_info, bytenr);
8726 	if (!next) {
8727 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8728 		if (IS_ERR(next))
8729 			return PTR_ERR(next);
8730 
8731 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8732 					       level - 1);
8733 		reada = 1;
8734 	}
8735 	btrfs_tree_lock(next);
8736 	btrfs_set_lock_blocking(next);
8737 
8738 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8739 				       &wc->refs[level - 1],
8740 				       &wc->flags[level - 1]);
8741 	if (ret < 0)
8742 		goto out_unlock;
8743 
8744 	if (unlikely(wc->refs[level - 1] == 0)) {
8745 		btrfs_err(fs_info, "Missing references.");
8746 		ret = -EIO;
8747 		goto out_unlock;
8748 	}
8749 	*lookup_info = 0;
8750 
8751 	if (wc->stage == DROP_REFERENCE) {
8752 		if (wc->refs[level - 1] > 1) {
8753 			need_account = true;
8754 			if (level == 1 &&
8755 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8756 				goto skip;
8757 
8758 			if (!wc->update_ref ||
8759 			    generation <= root->root_key.offset)
8760 				goto skip;
8761 
8762 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8763 					      path->slots[level]);
8764 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8765 			if (ret < 0)
8766 				goto skip;
8767 
8768 			wc->stage = UPDATE_BACKREF;
8769 			wc->shared_level = level - 1;
8770 		}
8771 	} else {
8772 		if (level == 1 &&
8773 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8774 			goto skip;
8775 	}
8776 
8777 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8778 		btrfs_tree_unlock(next);
8779 		free_extent_buffer(next);
8780 		next = NULL;
8781 		*lookup_info = 1;
8782 	}
8783 
8784 	if (!next) {
8785 		if (reada && level == 1)
8786 			reada_walk_down(trans, root, wc, path);
8787 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8788 				       &first_key);
8789 		if (IS_ERR(next)) {
8790 			return PTR_ERR(next);
8791 		} else if (!extent_buffer_uptodate(next)) {
8792 			free_extent_buffer(next);
8793 			return -EIO;
8794 		}
8795 		btrfs_tree_lock(next);
8796 		btrfs_set_lock_blocking(next);
8797 	}
8798 
8799 	level--;
8800 	ASSERT(level == btrfs_header_level(next));
8801 	if (level != btrfs_header_level(next)) {
8802 		btrfs_err(root->fs_info, "mismatched level");
8803 		ret = -EIO;
8804 		goto out_unlock;
8805 	}
8806 	path->nodes[level] = next;
8807 	path->slots[level] = 0;
8808 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8809 	wc->level = level;
8810 	if (wc->level == 1)
8811 		wc->reada_slot = 0;
8812 	return 0;
8813 skip:
8814 	wc->refs[level - 1] = 0;
8815 	wc->flags[level - 1] = 0;
8816 	if (wc->stage == DROP_REFERENCE) {
8817 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8818 			parent = path->nodes[level]->start;
8819 		} else {
8820 			ASSERT(root->root_key.objectid ==
8821 			       btrfs_header_owner(path->nodes[level]));
8822 			if (root->root_key.objectid !=
8823 			    btrfs_header_owner(path->nodes[level])) {
8824 				btrfs_err(root->fs_info,
8825 						"mismatched block owner");
8826 				ret = -EIO;
8827 				goto out_unlock;
8828 			}
8829 			parent = 0;
8830 		}
8831 
8832 		if (need_account) {
8833 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8834 							 generation, level - 1);
8835 			if (ret) {
8836 				btrfs_err_rl(fs_info,
8837 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8838 					     ret);
8839 			}
8840 		}
8841 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8842 					parent, root->root_key.objectid,
8843 					level - 1, 0);
8844 		if (ret)
8845 			goto out_unlock;
8846 	}
8847 
8848 	*lookup_info = 1;
8849 	ret = 1;
8850 
8851 out_unlock:
8852 	btrfs_tree_unlock(next);
8853 	free_extent_buffer(next);
8854 
8855 	return ret;
8856 }
8857 
8858 /*
8859  * helper to process tree block while walking up the tree.
8860  *
8861  * when wc->stage == DROP_REFERENCE, this function drops
8862  * reference count on the block.
8863  *
8864  * when wc->stage == UPDATE_BACKREF, this function changes
8865  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8866  * to UPDATE_BACKREF previously while processing the block.
8867  *
8868  * NOTE: return value 1 means we should stop walking up.
8869  */
8870 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8871 				 struct btrfs_root *root,
8872 				 struct btrfs_path *path,
8873 				 struct walk_control *wc)
8874 {
8875 	struct btrfs_fs_info *fs_info = root->fs_info;
8876 	int ret;
8877 	int level = wc->level;
8878 	struct extent_buffer *eb = path->nodes[level];
8879 	u64 parent = 0;
8880 
8881 	if (wc->stage == UPDATE_BACKREF) {
8882 		BUG_ON(wc->shared_level < level);
8883 		if (level < wc->shared_level)
8884 			goto out;
8885 
8886 		ret = find_next_key(path, level + 1, &wc->update_progress);
8887 		if (ret > 0)
8888 			wc->update_ref = 0;
8889 
8890 		wc->stage = DROP_REFERENCE;
8891 		wc->shared_level = -1;
8892 		path->slots[level] = 0;
8893 
8894 		/*
8895 		 * check reference count again if the block isn't locked.
8896 		 * we should start walking down the tree again if reference
8897 		 * count is one.
8898 		 */
8899 		if (!path->locks[level]) {
8900 			BUG_ON(level == 0);
8901 			btrfs_tree_lock(eb);
8902 			btrfs_set_lock_blocking(eb);
8903 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8904 
8905 			ret = btrfs_lookup_extent_info(trans, fs_info,
8906 						       eb->start, level, 1,
8907 						       &wc->refs[level],
8908 						       &wc->flags[level]);
8909 			if (ret < 0) {
8910 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8911 				path->locks[level] = 0;
8912 				return ret;
8913 			}
8914 			BUG_ON(wc->refs[level] == 0);
8915 			if (wc->refs[level] == 1) {
8916 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8917 				path->locks[level] = 0;
8918 				return 1;
8919 			}
8920 		}
8921 	}
8922 
8923 	/* wc->stage == DROP_REFERENCE */
8924 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8925 
8926 	if (wc->refs[level] == 1) {
8927 		if (level == 0) {
8928 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8929 				ret = btrfs_dec_ref(trans, root, eb, 1);
8930 			else
8931 				ret = btrfs_dec_ref(trans, root, eb, 0);
8932 			BUG_ON(ret); /* -ENOMEM */
8933 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8934 			if (ret) {
8935 				btrfs_err_rl(fs_info,
8936 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8937 					     ret);
8938 			}
8939 		}
8940 		/* make block locked assertion in clean_tree_block happy */
8941 		if (!path->locks[level] &&
8942 		    btrfs_header_generation(eb) == trans->transid) {
8943 			btrfs_tree_lock(eb);
8944 			btrfs_set_lock_blocking(eb);
8945 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8946 		}
8947 		clean_tree_block(fs_info, eb);
8948 	}
8949 
8950 	if (eb == root->node) {
8951 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8952 			parent = eb->start;
8953 		else
8954 			BUG_ON(root->root_key.objectid !=
8955 			       btrfs_header_owner(eb));
8956 	} else {
8957 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8958 			parent = path->nodes[level + 1]->start;
8959 		else
8960 			BUG_ON(root->root_key.objectid !=
8961 			       btrfs_header_owner(path->nodes[level + 1]));
8962 	}
8963 
8964 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8965 out:
8966 	wc->refs[level] = 0;
8967 	wc->flags[level] = 0;
8968 	return 0;
8969 }
8970 
8971 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8972 				   struct btrfs_root *root,
8973 				   struct btrfs_path *path,
8974 				   struct walk_control *wc)
8975 {
8976 	int level = wc->level;
8977 	int lookup_info = 1;
8978 	int ret;
8979 
8980 	while (level >= 0) {
8981 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8982 		if (ret > 0)
8983 			break;
8984 
8985 		if (level == 0)
8986 			break;
8987 
8988 		if (path->slots[level] >=
8989 		    btrfs_header_nritems(path->nodes[level]))
8990 			break;
8991 
8992 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8993 		if (ret > 0) {
8994 			path->slots[level]++;
8995 			continue;
8996 		} else if (ret < 0)
8997 			return ret;
8998 		level = wc->level;
8999 	}
9000 	return 0;
9001 }
9002 
9003 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9004 				 struct btrfs_root *root,
9005 				 struct btrfs_path *path,
9006 				 struct walk_control *wc, int max_level)
9007 {
9008 	int level = wc->level;
9009 	int ret;
9010 
9011 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9012 	while (level < max_level && path->nodes[level]) {
9013 		wc->level = level;
9014 		if (path->slots[level] + 1 <
9015 		    btrfs_header_nritems(path->nodes[level])) {
9016 			path->slots[level]++;
9017 			return 0;
9018 		} else {
9019 			ret = walk_up_proc(trans, root, path, wc);
9020 			if (ret > 0)
9021 				return 0;
9022 
9023 			if (path->locks[level]) {
9024 				btrfs_tree_unlock_rw(path->nodes[level],
9025 						     path->locks[level]);
9026 				path->locks[level] = 0;
9027 			}
9028 			free_extent_buffer(path->nodes[level]);
9029 			path->nodes[level] = NULL;
9030 			level++;
9031 		}
9032 	}
9033 	return 1;
9034 }
9035 
9036 /*
9037  * drop a subvolume tree.
9038  *
9039  * this function traverses the tree freeing any blocks that only
9040  * referenced by the tree.
9041  *
9042  * when a shared tree block is found. this function decreases its
9043  * reference count by one. if update_ref is true, this function
9044  * also make sure backrefs for the shared block and all lower level
9045  * blocks are properly updated.
9046  *
9047  * If called with for_reloc == 0, may exit early with -EAGAIN
9048  */
9049 int btrfs_drop_snapshot(struct btrfs_root *root,
9050 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9051 			 int for_reloc)
9052 {
9053 	struct btrfs_fs_info *fs_info = root->fs_info;
9054 	struct btrfs_path *path;
9055 	struct btrfs_trans_handle *trans;
9056 	struct btrfs_root *tree_root = fs_info->tree_root;
9057 	struct btrfs_root_item *root_item = &root->root_item;
9058 	struct walk_control *wc;
9059 	struct btrfs_key key;
9060 	int err = 0;
9061 	int ret;
9062 	int level;
9063 	bool root_dropped = false;
9064 
9065 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9066 
9067 	path = btrfs_alloc_path();
9068 	if (!path) {
9069 		err = -ENOMEM;
9070 		goto out;
9071 	}
9072 
9073 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9074 	if (!wc) {
9075 		btrfs_free_path(path);
9076 		err = -ENOMEM;
9077 		goto out;
9078 	}
9079 
9080 	trans = btrfs_start_transaction(tree_root, 0);
9081 	if (IS_ERR(trans)) {
9082 		err = PTR_ERR(trans);
9083 		goto out_free;
9084 	}
9085 
9086 	if (block_rsv)
9087 		trans->block_rsv = block_rsv;
9088 
9089 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9090 		level = btrfs_header_level(root->node);
9091 		path->nodes[level] = btrfs_lock_root_node(root);
9092 		btrfs_set_lock_blocking(path->nodes[level]);
9093 		path->slots[level] = 0;
9094 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9095 		memset(&wc->update_progress, 0,
9096 		       sizeof(wc->update_progress));
9097 	} else {
9098 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9099 		memcpy(&wc->update_progress, &key,
9100 		       sizeof(wc->update_progress));
9101 
9102 		level = root_item->drop_level;
9103 		BUG_ON(level == 0);
9104 		path->lowest_level = level;
9105 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9106 		path->lowest_level = 0;
9107 		if (ret < 0) {
9108 			err = ret;
9109 			goto out_end_trans;
9110 		}
9111 		WARN_ON(ret > 0);
9112 
9113 		/*
9114 		 * unlock our path, this is safe because only this
9115 		 * function is allowed to delete this snapshot
9116 		 */
9117 		btrfs_unlock_up_safe(path, 0);
9118 
9119 		level = btrfs_header_level(root->node);
9120 		while (1) {
9121 			btrfs_tree_lock(path->nodes[level]);
9122 			btrfs_set_lock_blocking(path->nodes[level]);
9123 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9124 
9125 			ret = btrfs_lookup_extent_info(trans, fs_info,
9126 						path->nodes[level]->start,
9127 						level, 1, &wc->refs[level],
9128 						&wc->flags[level]);
9129 			if (ret < 0) {
9130 				err = ret;
9131 				goto out_end_trans;
9132 			}
9133 			BUG_ON(wc->refs[level] == 0);
9134 
9135 			if (level == root_item->drop_level)
9136 				break;
9137 
9138 			btrfs_tree_unlock(path->nodes[level]);
9139 			path->locks[level] = 0;
9140 			WARN_ON(wc->refs[level] != 1);
9141 			level--;
9142 		}
9143 	}
9144 
9145 	wc->level = level;
9146 	wc->shared_level = -1;
9147 	wc->stage = DROP_REFERENCE;
9148 	wc->update_ref = update_ref;
9149 	wc->keep_locks = 0;
9150 	wc->for_reloc = for_reloc;
9151 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9152 
9153 	while (1) {
9154 
9155 		ret = walk_down_tree(trans, root, path, wc);
9156 		if (ret < 0) {
9157 			err = ret;
9158 			break;
9159 		}
9160 
9161 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9162 		if (ret < 0) {
9163 			err = ret;
9164 			break;
9165 		}
9166 
9167 		if (ret > 0) {
9168 			BUG_ON(wc->stage != DROP_REFERENCE);
9169 			break;
9170 		}
9171 
9172 		if (wc->stage == DROP_REFERENCE) {
9173 			level = wc->level;
9174 			btrfs_node_key(path->nodes[level],
9175 				       &root_item->drop_progress,
9176 				       path->slots[level]);
9177 			root_item->drop_level = level;
9178 		}
9179 
9180 		BUG_ON(wc->level == 0);
9181 		if (btrfs_should_end_transaction(trans) ||
9182 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9183 			ret = btrfs_update_root(trans, tree_root,
9184 						&root->root_key,
9185 						root_item);
9186 			if (ret) {
9187 				btrfs_abort_transaction(trans, ret);
9188 				err = ret;
9189 				goto out_end_trans;
9190 			}
9191 
9192 			btrfs_end_transaction_throttle(trans);
9193 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9194 				btrfs_debug(fs_info,
9195 					    "drop snapshot early exit");
9196 				err = -EAGAIN;
9197 				goto out_free;
9198 			}
9199 
9200 			trans = btrfs_start_transaction(tree_root, 0);
9201 			if (IS_ERR(trans)) {
9202 				err = PTR_ERR(trans);
9203 				goto out_free;
9204 			}
9205 			if (block_rsv)
9206 				trans->block_rsv = block_rsv;
9207 		}
9208 	}
9209 	btrfs_release_path(path);
9210 	if (err)
9211 		goto out_end_trans;
9212 
9213 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9214 	if (ret) {
9215 		btrfs_abort_transaction(trans, ret);
9216 		err = ret;
9217 		goto out_end_trans;
9218 	}
9219 
9220 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9221 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9222 				      NULL, NULL);
9223 		if (ret < 0) {
9224 			btrfs_abort_transaction(trans, ret);
9225 			err = ret;
9226 			goto out_end_trans;
9227 		} else if (ret > 0) {
9228 			/* if we fail to delete the orphan item this time
9229 			 * around, it'll get picked up the next time.
9230 			 *
9231 			 * The most common failure here is just -ENOENT.
9232 			 */
9233 			btrfs_del_orphan_item(trans, tree_root,
9234 					      root->root_key.objectid);
9235 		}
9236 	}
9237 
9238 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9239 		btrfs_add_dropped_root(trans, root);
9240 	} else {
9241 		free_extent_buffer(root->node);
9242 		free_extent_buffer(root->commit_root);
9243 		btrfs_put_fs_root(root);
9244 	}
9245 	root_dropped = true;
9246 out_end_trans:
9247 	btrfs_end_transaction_throttle(trans);
9248 out_free:
9249 	kfree(wc);
9250 	btrfs_free_path(path);
9251 out:
9252 	/*
9253 	 * So if we need to stop dropping the snapshot for whatever reason we
9254 	 * need to make sure to add it back to the dead root list so that we
9255 	 * keep trying to do the work later.  This also cleans up roots if we
9256 	 * don't have it in the radix (like when we recover after a power fail
9257 	 * or unmount) so we don't leak memory.
9258 	 */
9259 	if (!for_reloc && !root_dropped)
9260 		btrfs_add_dead_root(root);
9261 	if (err && err != -EAGAIN)
9262 		btrfs_handle_fs_error(fs_info, err, NULL);
9263 	return err;
9264 }
9265 
9266 /*
9267  * drop subtree rooted at tree block 'node'.
9268  *
9269  * NOTE: this function will unlock and release tree block 'node'
9270  * only used by relocation code
9271  */
9272 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9273 			struct btrfs_root *root,
9274 			struct extent_buffer *node,
9275 			struct extent_buffer *parent)
9276 {
9277 	struct btrfs_fs_info *fs_info = root->fs_info;
9278 	struct btrfs_path *path;
9279 	struct walk_control *wc;
9280 	int level;
9281 	int parent_level;
9282 	int ret = 0;
9283 	int wret;
9284 
9285 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9286 
9287 	path = btrfs_alloc_path();
9288 	if (!path)
9289 		return -ENOMEM;
9290 
9291 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9292 	if (!wc) {
9293 		btrfs_free_path(path);
9294 		return -ENOMEM;
9295 	}
9296 
9297 	btrfs_assert_tree_locked(parent);
9298 	parent_level = btrfs_header_level(parent);
9299 	extent_buffer_get(parent);
9300 	path->nodes[parent_level] = parent;
9301 	path->slots[parent_level] = btrfs_header_nritems(parent);
9302 
9303 	btrfs_assert_tree_locked(node);
9304 	level = btrfs_header_level(node);
9305 	path->nodes[level] = node;
9306 	path->slots[level] = 0;
9307 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9308 
9309 	wc->refs[parent_level] = 1;
9310 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9311 	wc->level = level;
9312 	wc->shared_level = -1;
9313 	wc->stage = DROP_REFERENCE;
9314 	wc->update_ref = 0;
9315 	wc->keep_locks = 1;
9316 	wc->for_reloc = 1;
9317 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9318 
9319 	while (1) {
9320 		wret = walk_down_tree(trans, root, path, wc);
9321 		if (wret < 0) {
9322 			ret = wret;
9323 			break;
9324 		}
9325 
9326 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9327 		if (wret < 0)
9328 			ret = wret;
9329 		if (wret != 0)
9330 			break;
9331 	}
9332 
9333 	kfree(wc);
9334 	btrfs_free_path(path);
9335 	return ret;
9336 }
9337 
9338 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9339 {
9340 	u64 num_devices;
9341 	u64 stripped;
9342 
9343 	/*
9344 	 * if restripe for this chunk_type is on pick target profile and
9345 	 * return, otherwise do the usual balance
9346 	 */
9347 	stripped = get_restripe_target(fs_info, flags);
9348 	if (stripped)
9349 		return extended_to_chunk(stripped);
9350 
9351 	num_devices = fs_info->fs_devices->rw_devices;
9352 
9353 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9354 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9355 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9356 
9357 	if (num_devices == 1) {
9358 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9359 		stripped = flags & ~stripped;
9360 
9361 		/* turn raid0 into single device chunks */
9362 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9363 			return stripped;
9364 
9365 		/* turn mirroring into duplication */
9366 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9367 			     BTRFS_BLOCK_GROUP_RAID10))
9368 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9369 	} else {
9370 		/* they already had raid on here, just return */
9371 		if (flags & stripped)
9372 			return flags;
9373 
9374 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9375 		stripped = flags & ~stripped;
9376 
9377 		/* switch duplicated blocks with raid1 */
9378 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9379 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9380 
9381 		/* this is drive concat, leave it alone */
9382 	}
9383 
9384 	return flags;
9385 }
9386 
9387 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9388 {
9389 	struct btrfs_space_info *sinfo = cache->space_info;
9390 	u64 num_bytes;
9391 	u64 min_allocable_bytes;
9392 	int ret = -ENOSPC;
9393 
9394 	/*
9395 	 * We need some metadata space and system metadata space for
9396 	 * allocating chunks in some corner cases until we force to set
9397 	 * it to be readonly.
9398 	 */
9399 	if ((sinfo->flags &
9400 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9401 	    !force)
9402 		min_allocable_bytes = SZ_1M;
9403 	else
9404 		min_allocable_bytes = 0;
9405 
9406 	spin_lock(&sinfo->lock);
9407 	spin_lock(&cache->lock);
9408 
9409 	if (cache->ro) {
9410 		cache->ro++;
9411 		ret = 0;
9412 		goto out;
9413 	}
9414 
9415 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9416 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9417 
9418 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9419 	    min_allocable_bytes <= sinfo->total_bytes) {
9420 		sinfo->bytes_readonly += num_bytes;
9421 		cache->ro++;
9422 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9423 		ret = 0;
9424 	}
9425 out:
9426 	spin_unlock(&cache->lock);
9427 	spin_unlock(&sinfo->lock);
9428 	return ret;
9429 }
9430 
9431 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9432 			     struct btrfs_block_group_cache *cache)
9433 
9434 {
9435 	struct btrfs_trans_handle *trans;
9436 	u64 alloc_flags;
9437 	int ret;
9438 
9439 again:
9440 	trans = btrfs_join_transaction(fs_info->extent_root);
9441 	if (IS_ERR(trans))
9442 		return PTR_ERR(trans);
9443 
9444 	/*
9445 	 * we're not allowed to set block groups readonly after the dirty
9446 	 * block groups cache has started writing.  If it already started,
9447 	 * back off and let this transaction commit
9448 	 */
9449 	mutex_lock(&fs_info->ro_block_group_mutex);
9450 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9451 		u64 transid = trans->transid;
9452 
9453 		mutex_unlock(&fs_info->ro_block_group_mutex);
9454 		btrfs_end_transaction(trans);
9455 
9456 		ret = btrfs_wait_for_commit(fs_info, transid);
9457 		if (ret)
9458 			return ret;
9459 		goto again;
9460 	}
9461 
9462 	/*
9463 	 * if we are changing raid levels, try to allocate a corresponding
9464 	 * block group with the new raid level.
9465 	 */
9466 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9467 	if (alloc_flags != cache->flags) {
9468 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9469 				     CHUNK_ALLOC_FORCE);
9470 		/*
9471 		 * ENOSPC is allowed here, we may have enough space
9472 		 * already allocated at the new raid level to
9473 		 * carry on
9474 		 */
9475 		if (ret == -ENOSPC)
9476 			ret = 0;
9477 		if (ret < 0)
9478 			goto out;
9479 	}
9480 
9481 	ret = inc_block_group_ro(cache, 0);
9482 	if (!ret)
9483 		goto out;
9484 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9485 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9486 			     CHUNK_ALLOC_FORCE);
9487 	if (ret < 0)
9488 		goto out;
9489 	ret = inc_block_group_ro(cache, 0);
9490 out:
9491 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9492 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9493 		mutex_lock(&fs_info->chunk_mutex);
9494 		check_system_chunk(trans, fs_info, alloc_flags);
9495 		mutex_unlock(&fs_info->chunk_mutex);
9496 	}
9497 	mutex_unlock(&fs_info->ro_block_group_mutex);
9498 
9499 	btrfs_end_transaction(trans);
9500 	return ret;
9501 }
9502 
9503 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9504 			    struct btrfs_fs_info *fs_info, u64 type)
9505 {
9506 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9507 
9508 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9509 }
9510 
9511 /*
9512  * helper to account the unused space of all the readonly block group in the
9513  * space_info. takes mirrors into account.
9514  */
9515 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9516 {
9517 	struct btrfs_block_group_cache *block_group;
9518 	u64 free_bytes = 0;
9519 	int factor;
9520 
9521 	/* It's df, we don't care if it's racy */
9522 	if (list_empty(&sinfo->ro_bgs))
9523 		return 0;
9524 
9525 	spin_lock(&sinfo->lock);
9526 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9527 		spin_lock(&block_group->lock);
9528 
9529 		if (!block_group->ro) {
9530 			spin_unlock(&block_group->lock);
9531 			continue;
9532 		}
9533 
9534 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9535 					  BTRFS_BLOCK_GROUP_RAID10 |
9536 					  BTRFS_BLOCK_GROUP_DUP))
9537 			factor = 2;
9538 		else
9539 			factor = 1;
9540 
9541 		free_bytes += (block_group->key.offset -
9542 			       btrfs_block_group_used(&block_group->item)) *
9543 			       factor;
9544 
9545 		spin_unlock(&block_group->lock);
9546 	}
9547 	spin_unlock(&sinfo->lock);
9548 
9549 	return free_bytes;
9550 }
9551 
9552 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9553 {
9554 	struct btrfs_space_info *sinfo = cache->space_info;
9555 	u64 num_bytes;
9556 
9557 	BUG_ON(!cache->ro);
9558 
9559 	spin_lock(&sinfo->lock);
9560 	spin_lock(&cache->lock);
9561 	if (!--cache->ro) {
9562 		num_bytes = cache->key.offset - cache->reserved -
9563 			    cache->pinned - cache->bytes_super -
9564 			    btrfs_block_group_used(&cache->item);
9565 		sinfo->bytes_readonly -= num_bytes;
9566 		list_del_init(&cache->ro_list);
9567 	}
9568 	spin_unlock(&cache->lock);
9569 	spin_unlock(&sinfo->lock);
9570 }
9571 
9572 /*
9573  * checks to see if its even possible to relocate this block group.
9574  *
9575  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9576  * ok to go ahead and try.
9577  */
9578 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9579 {
9580 	struct btrfs_root *root = fs_info->extent_root;
9581 	struct btrfs_block_group_cache *block_group;
9582 	struct btrfs_space_info *space_info;
9583 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9584 	struct btrfs_device *device;
9585 	struct btrfs_trans_handle *trans;
9586 	u64 min_free;
9587 	u64 dev_min = 1;
9588 	u64 dev_nr = 0;
9589 	u64 target;
9590 	int debug;
9591 	int index;
9592 	int full = 0;
9593 	int ret = 0;
9594 
9595 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9596 
9597 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9598 
9599 	/* odd, couldn't find the block group, leave it alone */
9600 	if (!block_group) {
9601 		if (debug)
9602 			btrfs_warn(fs_info,
9603 				   "can't find block group for bytenr %llu",
9604 				   bytenr);
9605 		return -1;
9606 	}
9607 
9608 	min_free = btrfs_block_group_used(&block_group->item);
9609 
9610 	/* no bytes used, we're good */
9611 	if (!min_free)
9612 		goto out;
9613 
9614 	space_info = block_group->space_info;
9615 	spin_lock(&space_info->lock);
9616 
9617 	full = space_info->full;
9618 
9619 	/*
9620 	 * if this is the last block group we have in this space, we can't
9621 	 * relocate it unless we're able to allocate a new chunk below.
9622 	 *
9623 	 * Otherwise, we need to make sure we have room in the space to handle
9624 	 * all of the extents from this block group.  If we can, we're good
9625 	 */
9626 	if ((space_info->total_bytes != block_group->key.offset) &&
9627 	    (btrfs_space_info_used(space_info, false) + min_free <
9628 	     space_info->total_bytes)) {
9629 		spin_unlock(&space_info->lock);
9630 		goto out;
9631 	}
9632 	spin_unlock(&space_info->lock);
9633 
9634 	/*
9635 	 * ok we don't have enough space, but maybe we have free space on our
9636 	 * devices to allocate new chunks for relocation, so loop through our
9637 	 * alloc devices and guess if we have enough space.  if this block
9638 	 * group is going to be restriped, run checks against the target
9639 	 * profile instead of the current one.
9640 	 */
9641 	ret = -1;
9642 
9643 	/*
9644 	 * index:
9645 	 *      0: raid10
9646 	 *      1: raid1
9647 	 *      2: dup
9648 	 *      3: raid0
9649 	 *      4: single
9650 	 */
9651 	target = get_restripe_target(fs_info, block_group->flags);
9652 	if (target) {
9653 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9654 	} else {
9655 		/*
9656 		 * this is just a balance, so if we were marked as full
9657 		 * we know there is no space for a new chunk
9658 		 */
9659 		if (full) {
9660 			if (debug)
9661 				btrfs_warn(fs_info,
9662 					   "no space to alloc new chunk for block group %llu",
9663 					   block_group->key.objectid);
9664 			goto out;
9665 		}
9666 
9667 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9668 	}
9669 
9670 	if (index == BTRFS_RAID_RAID10) {
9671 		dev_min = 4;
9672 		/* Divide by 2 */
9673 		min_free >>= 1;
9674 	} else if (index == BTRFS_RAID_RAID1) {
9675 		dev_min = 2;
9676 	} else if (index == BTRFS_RAID_DUP) {
9677 		/* Multiply by 2 */
9678 		min_free <<= 1;
9679 	} else if (index == BTRFS_RAID_RAID0) {
9680 		dev_min = fs_devices->rw_devices;
9681 		min_free = div64_u64(min_free, dev_min);
9682 	}
9683 
9684 	/* We need to do this so that we can look at pending chunks */
9685 	trans = btrfs_join_transaction(root);
9686 	if (IS_ERR(trans)) {
9687 		ret = PTR_ERR(trans);
9688 		goto out;
9689 	}
9690 
9691 	mutex_lock(&fs_info->chunk_mutex);
9692 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9693 		u64 dev_offset;
9694 
9695 		/*
9696 		 * check to make sure we can actually find a chunk with enough
9697 		 * space to fit our block group in.
9698 		 */
9699 		if (device->total_bytes > device->bytes_used + min_free &&
9700 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9701 			ret = find_free_dev_extent(trans, device, min_free,
9702 						   &dev_offset, NULL);
9703 			if (!ret)
9704 				dev_nr++;
9705 
9706 			if (dev_nr >= dev_min)
9707 				break;
9708 
9709 			ret = -1;
9710 		}
9711 	}
9712 	if (debug && ret == -1)
9713 		btrfs_warn(fs_info,
9714 			   "no space to allocate a new chunk for block group %llu",
9715 			   block_group->key.objectid);
9716 	mutex_unlock(&fs_info->chunk_mutex);
9717 	btrfs_end_transaction(trans);
9718 out:
9719 	btrfs_put_block_group(block_group);
9720 	return ret;
9721 }
9722 
9723 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9724 				  struct btrfs_path *path,
9725 				  struct btrfs_key *key)
9726 {
9727 	struct btrfs_root *root = fs_info->extent_root;
9728 	int ret = 0;
9729 	struct btrfs_key found_key;
9730 	struct extent_buffer *leaf;
9731 	int slot;
9732 
9733 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9734 	if (ret < 0)
9735 		goto out;
9736 
9737 	while (1) {
9738 		slot = path->slots[0];
9739 		leaf = path->nodes[0];
9740 		if (slot >= btrfs_header_nritems(leaf)) {
9741 			ret = btrfs_next_leaf(root, path);
9742 			if (ret == 0)
9743 				continue;
9744 			if (ret < 0)
9745 				goto out;
9746 			break;
9747 		}
9748 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9749 
9750 		if (found_key.objectid >= key->objectid &&
9751 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9752 			struct extent_map_tree *em_tree;
9753 			struct extent_map *em;
9754 
9755 			em_tree = &root->fs_info->mapping_tree.map_tree;
9756 			read_lock(&em_tree->lock);
9757 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9758 						   found_key.offset);
9759 			read_unlock(&em_tree->lock);
9760 			if (!em) {
9761 				btrfs_err(fs_info,
9762 			"logical %llu len %llu found bg but no related chunk",
9763 					  found_key.objectid, found_key.offset);
9764 				ret = -ENOENT;
9765 			} else {
9766 				ret = 0;
9767 			}
9768 			free_extent_map(em);
9769 			goto out;
9770 		}
9771 		path->slots[0]++;
9772 	}
9773 out:
9774 	return ret;
9775 }
9776 
9777 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9778 {
9779 	struct btrfs_block_group_cache *block_group;
9780 	u64 last = 0;
9781 
9782 	while (1) {
9783 		struct inode *inode;
9784 
9785 		block_group = btrfs_lookup_first_block_group(info, last);
9786 		while (block_group) {
9787 			spin_lock(&block_group->lock);
9788 			if (block_group->iref)
9789 				break;
9790 			spin_unlock(&block_group->lock);
9791 			block_group = next_block_group(info, block_group);
9792 		}
9793 		if (!block_group) {
9794 			if (last == 0)
9795 				break;
9796 			last = 0;
9797 			continue;
9798 		}
9799 
9800 		inode = block_group->inode;
9801 		block_group->iref = 0;
9802 		block_group->inode = NULL;
9803 		spin_unlock(&block_group->lock);
9804 		ASSERT(block_group->io_ctl.inode == NULL);
9805 		iput(inode);
9806 		last = block_group->key.objectid + block_group->key.offset;
9807 		btrfs_put_block_group(block_group);
9808 	}
9809 }
9810 
9811 /*
9812  * Must be called only after stopping all workers, since we could have block
9813  * group caching kthreads running, and therefore they could race with us if we
9814  * freed the block groups before stopping them.
9815  */
9816 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9817 {
9818 	struct btrfs_block_group_cache *block_group;
9819 	struct btrfs_space_info *space_info;
9820 	struct btrfs_caching_control *caching_ctl;
9821 	struct rb_node *n;
9822 
9823 	down_write(&info->commit_root_sem);
9824 	while (!list_empty(&info->caching_block_groups)) {
9825 		caching_ctl = list_entry(info->caching_block_groups.next,
9826 					 struct btrfs_caching_control, list);
9827 		list_del(&caching_ctl->list);
9828 		put_caching_control(caching_ctl);
9829 	}
9830 	up_write(&info->commit_root_sem);
9831 
9832 	spin_lock(&info->unused_bgs_lock);
9833 	while (!list_empty(&info->unused_bgs)) {
9834 		block_group = list_first_entry(&info->unused_bgs,
9835 					       struct btrfs_block_group_cache,
9836 					       bg_list);
9837 		list_del_init(&block_group->bg_list);
9838 		btrfs_put_block_group(block_group);
9839 	}
9840 	spin_unlock(&info->unused_bgs_lock);
9841 
9842 	spin_lock(&info->block_group_cache_lock);
9843 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9844 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9845 				       cache_node);
9846 		rb_erase(&block_group->cache_node,
9847 			 &info->block_group_cache_tree);
9848 		RB_CLEAR_NODE(&block_group->cache_node);
9849 		spin_unlock(&info->block_group_cache_lock);
9850 
9851 		down_write(&block_group->space_info->groups_sem);
9852 		list_del(&block_group->list);
9853 		up_write(&block_group->space_info->groups_sem);
9854 
9855 		/*
9856 		 * We haven't cached this block group, which means we could
9857 		 * possibly have excluded extents on this block group.
9858 		 */
9859 		if (block_group->cached == BTRFS_CACHE_NO ||
9860 		    block_group->cached == BTRFS_CACHE_ERROR)
9861 			free_excluded_extents(info, block_group);
9862 
9863 		btrfs_remove_free_space_cache(block_group);
9864 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9865 		ASSERT(list_empty(&block_group->dirty_list));
9866 		ASSERT(list_empty(&block_group->io_list));
9867 		ASSERT(list_empty(&block_group->bg_list));
9868 		ASSERT(atomic_read(&block_group->count) == 1);
9869 		btrfs_put_block_group(block_group);
9870 
9871 		spin_lock(&info->block_group_cache_lock);
9872 	}
9873 	spin_unlock(&info->block_group_cache_lock);
9874 
9875 	/* now that all the block groups are freed, go through and
9876 	 * free all the space_info structs.  This is only called during
9877 	 * the final stages of unmount, and so we know nobody is
9878 	 * using them.  We call synchronize_rcu() once before we start,
9879 	 * just to be on the safe side.
9880 	 */
9881 	synchronize_rcu();
9882 
9883 	release_global_block_rsv(info);
9884 
9885 	while (!list_empty(&info->space_info)) {
9886 		int i;
9887 
9888 		space_info = list_entry(info->space_info.next,
9889 					struct btrfs_space_info,
9890 					list);
9891 
9892 		/*
9893 		 * Do not hide this behind enospc_debug, this is actually
9894 		 * important and indicates a real bug if this happens.
9895 		 */
9896 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9897 			    space_info->bytes_reserved > 0 ||
9898 			    space_info->bytes_may_use > 0))
9899 			dump_space_info(info, space_info, 0, 0);
9900 		list_del(&space_info->list);
9901 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9902 			struct kobject *kobj;
9903 			kobj = space_info->block_group_kobjs[i];
9904 			space_info->block_group_kobjs[i] = NULL;
9905 			if (kobj) {
9906 				kobject_del(kobj);
9907 				kobject_put(kobj);
9908 			}
9909 		}
9910 		kobject_del(&space_info->kobj);
9911 		kobject_put(&space_info->kobj);
9912 	}
9913 	return 0;
9914 }
9915 
9916 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9917 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9918 {
9919 	struct btrfs_space_info *space_info;
9920 	struct raid_kobject *rkobj;
9921 	LIST_HEAD(list);
9922 	int index;
9923 	int ret = 0;
9924 
9925 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9926 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9927 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9928 
9929 	list_for_each_entry(rkobj, &list, list) {
9930 		space_info = __find_space_info(fs_info, rkobj->flags);
9931 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9932 
9933 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9934 				  "%s", get_raid_name(index));
9935 		if (ret) {
9936 			kobject_put(&rkobj->kobj);
9937 			break;
9938 		}
9939 	}
9940 	if (ret)
9941 		btrfs_warn(fs_info,
9942 			   "failed to add kobject for block cache, ignoring");
9943 }
9944 
9945 static void link_block_group(struct btrfs_block_group_cache *cache)
9946 {
9947 	struct btrfs_space_info *space_info = cache->space_info;
9948 	struct btrfs_fs_info *fs_info = cache->fs_info;
9949 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9950 	bool first = false;
9951 
9952 	down_write(&space_info->groups_sem);
9953 	if (list_empty(&space_info->block_groups[index]))
9954 		first = true;
9955 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9956 	up_write(&space_info->groups_sem);
9957 
9958 	if (first) {
9959 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9960 		if (!rkobj) {
9961 			btrfs_warn(cache->fs_info,
9962 				"couldn't alloc memory for raid level kobject");
9963 			return;
9964 		}
9965 		rkobj->flags = cache->flags;
9966 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9967 
9968 		spin_lock(&fs_info->pending_raid_kobjs_lock);
9969 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9970 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
9971 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9972 	}
9973 }
9974 
9975 static struct btrfs_block_group_cache *
9976 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9977 			       u64 start, u64 size)
9978 {
9979 	struct btrfs_block_group_cache *cache;
9980 
9981 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9982 	if (!cache)
9983 		return NULL;
9984 
9985 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9986 					GFP_NOFS);
9987 	if (!cache->free_space_ctl) {
9988 		kfree(cache);
9989 		return NULL;
9990 	}
9991 
9992 	cache->key.objectid = start;
9993 	cache->key.offset = size;
9994 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9995 
9996 	cache->fs_info = fs_info;
9997 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9998 	set_free_space_tree_thresholds(cache);
9999 
10000 	atomic_set(&cache->count, 1);
10001 	spin_lock_init(&cache->lock);
10002 	init_rwsem(&cache->data_rwsem);
10003 	INIT_LIST_HEAD(&cache->list);
10004 	INIT_LIST_HEAD(&cache->cluster_list);
10005 	INIT_LIST_HEAD(&cache->bg_list);
10006 	INIT_LIST_HEAD(&cache->ro_list);
10007 	INIT_LIST_HEAD(&cache->dirty_list);
10008 	INIT_LIST_HEAD(&cache->io_list);
10009 	btrfs_init_free_space_ctl(cache);
10010 	atomic_set(&cache->trimming, 0);
10011 	mutex_init(&cache->free_space_lock);
10012 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10013 
10014 	return cache;
10015 }
10016 
10017 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10018 {
10019 	struct btrfs_path *path;
10020 	int ret;
10021 	struct btrfs_block_group_cache *cache;
10022 	struct btrfs_space_info *space_info;
10023 	struct btrfs_key key;
10024 	struct btrfs_key found_key;
10025 	struct extent_buffer *leaf;
10026 	int need_clear = 0;
10027 	u64 cache_gen;
10028 	u64 feature;
10029 	int mixed;
10030 
10031 	feature = btrfs_super_incompat_flags(info->super_copy);
10032 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10033 
10034 	key.objectid = 0;
10035 	key.offset = 0;
10036 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10037 	path = btrfs_alloc_path();
10038 	if (!path)
10039 		return -ENOMEM;
10040 	path->reada = READA_FORWARD;
10041 
10042 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10043 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10044 	    btrfs_super_generation(info->super_copy) != cache_gen)
10045 		need_clear = 1;
10046 	if (btrfs_test_opt(info, CLEAR_CACHE))
10047 		need_clear = 1;
10048 
10049 	while (1) {
10050 		ret = find_first_block_group(info, path, &key);
10051 		if (ret > 0)
10052 			break;
10053 		if (ret != 0)
10054 			goto error;
10055 
10056 		leaf = path->nodes[0];
10057 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10058 
10059 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10060 						       found_key.offset);
10061 		if (!cache) {
10062 			ret = -ENOMEM;
10063 			goto error;
10064 		}
10065 
10066 		if (need_clear) {
10067 			/*
10068 			 * When we mount with old space cache, we need to
10069 			 * set BTRFS_DC_CLEAR and set dirty flag.
10070 			 *
10071 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10072 			 *    truncate the old free space cache inode and
10073 			 *    setup a new one.
10074 			 * b) Setting 'dirty flag' makes sure that we flush
10075 			 *    the new space cache info onto disk.
10076 			 */
10077 			if (btrfs_test_opt(info, SPACE_CACHE))
10078 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10079 		}
10080 
10081 		read_extent_buffer(leaf, &cache->item,
10082 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10083 				   sizeof(cache->item));
10084 		cache->flags = btrfs_block_group_flags(&cache->item);
10085 		if (!mixed &&
10086 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10087 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10088 			btrfs_err(info,
10089 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10090 				  cache->key.objectid);
10091 			ret = -EINVAL;
10092 			goto error;
10093 		}
10094 
10095 		key.objectid = found_key.objectid + found_key.offset;
10096 		btrfs_release_path(path);
10097 
10098 		/*
10099 		 * We need to exclude the super stripes now so that the space
10100 		 * info has super bytes accounted for, otherwise we'll think
10101 		 * we have more space than we actually do.
10102 		 */
10103 		ret = exclude_super_stripes(info, cache);
10104 		if (ret) {
10105 			/*
10106 			 * We may have excluded something, so call this just in
10107 			 * case.
10108 			 */
10109 			free_excluded_extents(info, cache);
10110 			btrfs_put_block_group(cache);
10111 			goto error;
10112 		}
10113 
10114 		/*
10115 		 * check for two cases, either we are full, and therefore
10116 		 * don't need to bother with the caching work since we won't
10117 		 * find any space, or we are empty, and we can just add all
10118 		 * the space in and be done with it.  This saves us _alot_ of
10119 		 * time, particularly in the full case.
10120 		 */
10121 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10122 			cache->last_byte_to_unpin = (u64)-1;
10123 			cache->cached = BTRFS_CACHE_FINISHED;
10124 			free_excluded_extents(info, cache);
10125 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10126 			cache->last_byte_to_unpin = (u64)-1;
10127 			cache->cached = BTRFS_CACHE_FINISHED;
10128 			add_new_free_space(cache, info,
10129 					   found_key.objectid,
10130 					   found_key.objectid +
10131 					   found_key.offset);
10132 			free_excluded_extents(info, cache);
10133 		}
10134 
10135 		ret = btrfs_add_block_group_cache(info, cache);
10136 		if (ret) {
10137 			btrfs_remove_free_space_cache(cache);
10138 			btrfs_put_block_group(cache);
10139 			goto error;
10140 		}
10141 
10142 		trace_btrfs_add_block_group(info, cache, 0);
10143 		update_space_info(info, cache->flags, found_key.offset,
10144 				  btrfs_block_group_used(&cache->item),
10145 				  cache->bytes_super, &space_info);
10146 
10147 		cache->space_info = space_info;
10148 
10149 		link_block_group(cache);
10150 
10151 		set_avail_alloc_bits(info, cache->flags);
10152 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10153 			inc_block_group_ro(cache, 1);
10154 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10155 			spin_lock(&info->unused_bgs_lock);
10156 			/* Should always be true but just in case. */
10157 			if (list_empty(&cache->bg_list)) {
10158 				btrfs_get_block_group(cache);
10159 				list_add_tail(&cache->bg_list,
10160 					      &info->unused_bgs);
10161 			}
10162 			spin_unlock(&info->unused_bgs_lock);
10163 		}
10164 	}
10165 
10166 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10167 		if (!(get_alloc_profile(info, space_info->flags) &
10168 		      (BTRFS_BLOCK_GROUP_RAID10 |
10169 		       BTRFS_BLOCK_GROUP_RAID1 |
10170 		       BTRFS_BLOCK_GROUP_RAID5 |
10171 		       BTRFS_BLOCK_GROUP_RAID6 |
10172 		       BTRFS_BLOCK_GROUP_DUP)))
10173 			continue;
10174 		/*
10175 		 * avoid allocating from un-mirrored block group if there are
10176 		 * mirrored block groups.
10177 		 */
10178 		list_for_each_entry(cache,
10179 				&space_info->block_groups[BTRFS_RAID_RAID0],
10180 				list)
10181 			inc_block_group_ro(cache, 1);
10182 		list_for_each_entry(cache,
10183 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10184 				list)
10185 			inc_block_group_ro(cache, 1);
10186 	}
10187 
10188 	btrfs_add_raid_kobjects(info);
10189 	init_global_block_rsv(info);
10190 	ret = 0;
10191 error:
10192 	btrfs_free_path(path);
10193 	return ret;
10194 }
10195 
10196 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10197 {
10198 	struct btrfs_fs_info *fs_info = trans->fs_info;
10199 	struct btrfs_block_group_cache *block_group, *tmp;
10200 	struct btrfs_root *extent_root = fs_info->extent_root;
10201 	struct btrfs_block_group_item item;
10202 	struct btrfs_key key;
10203 	int ret = 0;
10204 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10205 
10206 	trans->can_flush_pending_bgs = false;
10207 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10208 		if (ret)
10209 			goto next;
10210 
10211 		spin_lock(&block_group->lock);
10212 		memcpy(&item, &block_group->item, sizeof(item));
10213 		memcpy(&key, &block_group->key, sizeof(key));
10214 		spin_unlock(&block_group->lock);
10215 
10216 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10217 					sizeof(item));
10218 		if (ret)
10219 			btrfs_abort_transaction(trans, ret);
10220 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10221 					       key.offset);
10222 		if (ret)
10223 			btrfs_abort_transaction(trans, ret);
10224 		add_block_group_free_space(trans, fs_info, block_group);
10225 		/* already aborted the transaction if it failed. */
10226 next:
10227 		list_del_init(&block_group->bg_list);
10228 	}
10229 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10230 }
10231 
10232 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10233 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10234 			   u64 type, u64 chunk_offset, u64 size)
10235 {
10236 	struct btrfs_block_group_cache *cache;
10237 	int ret;
10238 
10239 	btrfs_set_log_full_commit(fs_info, trans);
10240 
10241 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10242 	if (!cache)
10243 		return -ENOMEM;
10244 
10245 	btrfs_set_block_group_used(&cache->item, bytes_used);
10246 	btrfs_set_block_group_chunk_objectid(&cache->item,
10247 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10248 	btrfs_set_block_group_flags(&cache->item, type);
10249 
10250 	cache->flags = type;
10251 	cache->last_byte_to_unpin = (u64)-1;
10252 	cache->cached = BTRFS_CACHE_FINISHED;
10253 	cache->needs_free_space = 1;
10254 	ret = exclude_super_stripes(fs_info, cache);
10255 	if (ret) {
10256 		/*
10257 		 * We may have excluded something, so call this just in
10258 		 * case.
10259 		 */
10260 		free_excluded_extents(fs_info, cache);
10261 		btrfs_put_block_group(cache);
10262 		return ret;
10263 	}
10264 
10265 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10266 
10267 	free_excluded_extents(fs_info, cache);
10268 
10269 #ifdef CONFIG_BTRFS_DEBUG
10270 	if (btrfs_should_fragment_free_space(cache)) {
10271 		u64 new_bytes_used = size - bytes_used;
10272 
10273 		bytes_used += new_bytes_used >> 1;
10274 		fragment_free_space(cache);
10275 	}
10276 #endif
10277 	/*
10278 	 * Ensure the corresponding space_info object is created and
10279 	 * assigned to our block group. We want our bg to be added to the rbtree
10280 	 * with its ->space_info set.
10281 	 */
10282 	cache->space_info = __find_space_info(fs_info, cache->flags);
10283 	ASSERT(cache->space_info);
10284 
10285 	ret = btrfs_add_block_group_cache(fs_info, cache);
10286 	if (ret) {
10287 		btrfs_remove_free_space_cache(cache);
10288 		btrfs_put_block_group(cache);
10289 		return ret;
10290 	}
10291 
10292 	/*
10293 	 * Now that our block group has its ->space_info set and is inserted in
10294 	 * the rbtree, update the space info's counters.
10295 	 */
10296 	trace_btrfs_add_block_group(fs_info, cache, 1);
10297 	update_space_info(fs_info, cache->flags, size, bytes_used,
10298 				cache->bytes_super, &cache->space_info);
10299 	update_global_block_rsv(fs_info);
10300 
10301 	link_block_group(cache);
10302 
10303 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10304 
10305 	set_avail_alloc_bits(fs_info, type);
10306 	return 0;
10307 }
10308 
10309 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10310 {
10311 	u64 extra_flags = chunk_to_extended(flags) &
10312 				BTRFS_EXTENDED_PROFILE_MASK;
10313 
10314 	write_seqlock(&fs_info->profiles_lock);
10315 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10316 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10317 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10318 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10319 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10320 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10321 	write_sequnlock(&fs_info->profiles_lock);
10322 }
10323 
10324 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10325 			     struct btrfs_fs_info *fs_info, u64 group_start,
10326 			     struct extent_map *em)
10327 {
10328 	struct btrfs_root *root = fs_info->extent_root;
10329 	struct btrfs_path *path;
10330 	struct btrfs_block_group_cache *block_group;
10331 	struct btrfs_free_cluster *cluster;
10332 	struct btrfs_root *tree_root = fs_info->tree_root;
10333 	struct btrfs_key key;
10334 	struct inode *inode;
10335 	struct kobject *kobj = NULL;
10336 	int ret;
10337 	int index;
10338 	int factor;
10339 	struct btrfs_caching_control *caching_ctl = NULL;
10340 	bool remove_em;
10341 
10342 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10343 	BUG_ON(!block_group);
10344 	BUG_ON(!block_group->ro);
10345 
10346 	/*
10347 	 * Free the reserved super bytes from this block group before
10348 	 * remove it.
10349 	 */
10350 	free_excluded_extents(fs_info, block_group);
10351 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10352 				  block_group->key.offset);
10353 
10354 	memcpy(&key, &block_group->key, sizeof(key));
10355 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10356 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10357 				  BTRFS_BLOCK_GROUP_RAID1 |
10358 				  BTRFS_BLOCK_GROUP_RAID10))
10359 		factor = 2;
10360 	else
10361 		factor = 1;
10362 
10363 	/* make sure this block group isn't part of an allocation cluster */
10364 	cluster = &fs_info->data_alloc_cluster;
10365 	spin_lock(&cluster->refill_lock);
10366 	btrfs_return_cluster_to_free_space(block_group, cluster);
10367 	spin_unlock(&cluster->refill_lock);
10368 
10369 	/*
10370 	 * make sure this block group isn't part of a metadata
10371 	 * allocation cluster
10372 	 */
10373 	cluster = &fs_info->meta_alloc_cluster;
10374 	spin_lock(&cluster->refill_lock);
10375 	btrfs_return_cluster_to_free_space(block_group, cluster);
10376 	spin_unlock(&cluster->refill_lock);
10377 
10378 	path = btrfs_alloc_path();
10379 	if (!path) {
10380 		ret = -ENOMEM;
10381 		goto out;
10382 	}
10383 
10384 	/*
10385 	 * get the inode first so any iput calls done for the io_list
10386 	 * aren't the final iput (no unlinks allowed now)
10387 	 */
10388 	inode = lookup_free_space_inode(fs_info, block_group, path);
10389 
10390 	mutex_lock(&trans->transaction->cache_write_mutex);
10391 	/*
10392 	 * make sure our free spache cache IO is done before remove the
10393 	 * free space inode
10394 	 */
10395 	spin_lock(&trans->transaction->dirty_bgs_lock);
10396 	if (!list_empty(&block_group->io_list)) {
10397 		list_del_init(&block_group->io_list);
10398 
10399 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10400 
10401 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10402 		btrfs_wait_cache_io(trans, block_group, path);
10403 		btrfs_put_block_group(block_group);
10404 		spin_lock(&trans->transaction->dirty_bgs_lock);
10405 	}
10406 
10407 	if (!list_empty(&block_group->dirty_list)) {
10408 		list_del_init(&block_group->dirty_list);
10409 		btrfs_put_block_group(block_group);
10410 	}
10411 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10412 	mutex_unlock(&trans->transaction->cache_write_mutex);
10413 
10414 	if (!IS_ERR(inode)) {
10415 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10416 		if (ret) {
10417 			btrfs_add_delayed_iput(inode);
10418 			goto out;
10419 		}
10420 		clear_nlink(inode);
10421 		/* One for the block groups ref */
10422 		spin_lock(&block_group->lock);
10423 		if (block_group->iref) {
10424 			block_group->iref = 0;
10425 			block_group->inode = NULL;
10426 			spin_unlock(&block_group->lock);
10427 			iput(inode);
10428 		} else {
10429 			spin_unlock(&block_group->lock);
10430 		}
10431 		/* One for our lookup ref */
10432 		btrfs_add_delayed_iput(inode);
10433 	}
10434 
10435 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10436 	key.offset = block_group->key.objectid;
10437 	key.type = 0;
10438 
10439 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10440 	if (ret < 0)
10441 		goto out;
10442 	if (ret > 0)
10443 		btrfs_release_path(path);
10444 	if (ret == 0) {
10445 		ret = btrfs_del_item(trans, tree_root, path);
10446 		if (ret)
10447 			goto out;
10448 		btrfs_release_path(path);
10449 	}
10450 
10451 	spin_lock(&fs_info->block_group_cache_lock);
10452 	rb_erase(&block_group->cache_node,
10453 		 &fs_info->block_group_cache_tree);
10454 	RB_CLEAR_NODE(&block_group->cache_node);
10455 
10456 	if (fs_info->first_logical_byte == block_group->key.objectid)
10457 		fs_info->first_logical_byte = (u64)-1;
10458 	spin_unlock(&fs_info->block_group_cache_lock);
10459 
10460 	down_write(&block_group->space_info->groups_sem);
10461 	/*
10462 	 * we must use list_del_init so people can check to see if they
10463 	 * are still on the list after taking the semaphore
10464 	 */
10465 	list_del_init(&block_group->list);
10466 	if (list_empty(&block_group->space_info->block_groups[index])) {
10467 		kobj = block_group->space_info->block_group_kobjs[index];
10468 		block_group->space_info->block_group_kobjs[index] = NULL;
10469 		clear_avail_alloc_bits(fs_info, block_group->flags);
10470 	}
10471 	up_write(&block_group->space_info->groups_sem);
10472 	if (kobj) {
10473 		kobject_del(kobj);
10474 		kobject_put(kobj);
10475 	}
10476 
10477 	if (block_group->has_caching_ctl)
10478 		caching_ctl = get_caching_control(block_group);
10479 	if (block_group->cached == BTRFS_CACHE_STARTED)
10480 		wait_block_group_cache_done(block_group);
10481 	if (block_group->has_caching_ctl) {
10482 		down_write(&fs_info->commit_root_sem);
10483 		if (!caching_ctl) {
10484 			struct btrfs_caching_control *ctl;
10485 
10486 			list_for_each_entry(ctl,
10487 				    &fs_info->caching_block_groups, list)
10488 				if (ctl->block_group == block_group) {
10489 					caching_ctl = ctl;
10490 					refcount_inc(&caching_ctl->count);
10491 					break;
10492 				}
10493 		}
10494 		if (caching_ctl)
10495 			list_del_init(&caching_ctl->list);
10496 		up_write(&fs_info->commit_root_sem);
10497 		if (caching_ctl) {
10498 			/* Once for the caching bgs list and once for us. */
10499 			put_caching_control(caching_ctl);
10500 			put_caching_control(caching_ctl);
10501 		}
10502 	}
10503 
10504 	spin_lock(&trans->transaction->dirty_bgs_lock);
10505 	if (!list_empty(&block_group->dirty_list)) {
10506 		WARN_ON(1);
10507 	}
10508 	if (!list_empty(&block_group->io_list)) {
10509 		WARN_ON(1);
10510 	}
10511 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10512 	btrfs_remove_free_space_cache(block_group);
10513 
10514 	spin_lock(&block_group->space_info->lock);
10515 	list_del_init(&block_group->ro_list);
10516 
10517 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10518 		WARN_ON(block_group->space_info->total_bytes
10519 			< block_group->key.offset);
10520 		WARN_ON(block_group->space_info->bytes_readonly
10521 			< block_group->key.offset);
10522 		WARN_ON(block_group->space_info->disk_total
10523 			< block_group->key.offset * factor);
10524 	}
10525 	block_group->space_info->total_bytes -= block_group->key.offset;
10526 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10527 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10528 
10529 	spin_unlock(&block_group->space_info->lock);
10530 
10531 	memcpy(&key, &block_group->key, sizeof(key));
10532 
10533 	mutex_lock(&fs_info->chunk_mutex);
10534 	if (!list_empty(&em->list)) {
10535 		/* We're in the transaction->pending_chunks list. */
10536 		free_extent_map(em);
10537 	}
10538 	spin_lock(&block_group->lock);
10539 	block_group->removed = 1;
10540 	/*
10541 	 * At this point trimming can't start on this block group, because we
10542 	 * removed the block group from the tree fs_info->block_group_cache_tree
10543 	 * so no one can't find it anymore and even if someone already got this
10544 	 * block group before we removed it from the rbtree, they have already
10545 	 * incremented block_group->trimming - if they didn't, they won't find
10546 	 * any free space entries because we already removed them all when we
10547 	 * called btrfs_remove_free_space_cache().
10548 	 *
10549 	 * And we must not remove the extent map from the fs_info->mapping_tree
10550 	 * to prevent the same logical address range and physical device space
10551 	 * ranges from being reused for a new block group. This is because our
10552 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10553 	 * completely transactionless, so while it is trimming a range the
10554 	 * currently running transaction might finish and a new one start,
10555 	 * allowing for new block groups to be created that can reuse the same
10556 	 * physical device locations unless we take this special care.
10557 	 *
10558 	 * There may also be an implicit trim operation if the file system
10559 	 * is mounted with -odiscard. The same protections must remain
10560 	 * in place until the extents have been discarded completely when
10561 	 * the transaction commit has completed.
10562 	 */
10563 	remove_em = (atomic_read(&block_group->trimming) == 0);
10564 	/*
10565 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10566 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10567 	 * before checking block_group->removed).
10568 	 */
10569 	if (!remove_em) {
10570 		/*
10571 		 * Our em might be in trans->transaction->pending_chunks which
10572 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10573 		 * and so is the fs_info->pinned_chunks list.
10574 		 *
10575 		 * So at this point we must be holding the chunk_mutex to avoid
10576 		 * any races with chunk allocation (more specifically at
10577 		 * volumes.c:contains_pending_extent()), to ensure it always
10578 		 * sees the em, either in the pending_chunks list or in the
10579 		 * pinned_chunks list.
10580 		 */
10581 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10582 	}
10583 	spin_unlock(&block_group->lock);
10584 
10585 	if (remove_em) {
10586 		struct extent_map_tree *em_tree;
10587 
10588 		em_tree = &fs_info->mapping_tree.map_tree;
10589 		write_lock(&em_tree->lock);
10590 		/*
10591 		 * The em might be in the pending_chunks list, so make sure the
10592 		 * chunk mutex is locked, since remove_extent_mapping() will
10593 		 * delete us from that list.
10594 		 */
10595 		remove_extent_mapping(em_tree, em);
10596 		write_unlock(&em_tree->lock);
10597 		/* once for the tree */
10598 		free_extent_map(em);
10599 	}
10600 
10601 	mutex_unlock(&fs_info->chunk_mutex);
10602 
10603 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10604 	if (ret)
10605 		goto out;
10606 
10607 	btrfs_put_block_group(block_group);
10608 	btrfs_put_block_group(block_group);
10609 
10610 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10611 	if (ret > 0)
10612 		ret = -EIO;
10613 	if (ret < 0)
10614 		goto out;
10615 
10616 	ret = btrfs_del_item(trans, root, path);
10617 out:
10618 	btrfs_free_path(path);
10619 	return ret;
10620 }
10621 
10622 struct btrfs_trans_handle *
10623 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10624 				     const u64 chunk_offset)
10625 {
10626 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10627 	struct extent_map *em;
10628 	struct map_lookup *map;
10629 	unsigned int num_items;
10630 
10631 	read_lock(&em_tree->lock);
10632 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10633 	read_unlock(&em_tree->lock);
10634 	ASSERT(em && em->start == chunk_offset);
10635 
10636 	/*
10637 	 * We need to reserve 3 + N units from the metadata space info in order
10638 	 * to remove a block group (done at btrfs_remove_chunk() and at
10639 	 * btrfs_remove_block_group()), which are used for:
10640 	 *
10641 	 * 1 unit for adding the free space inode's orphan (located in the tree
10642 	 * of tree roots).
10643 	 * 1 unit for deleting the block group item (located in the extent
10644 	 * tree).
10645 	 * 1 unit for deleting the free space item (located in tree of tree
10646 	 * roots).
10647 	 * N units for deleting N device extent items corresponding to each
10648 	 * stripe (located in the device tree).
10649 	 *
10650 	 * In order to remove a block group we also need to reserve units in the
10651 	 * system space info in order to update the chunk tree (update one or
10652 	 * more device items and remove one chunk item), but this is done at
10653 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10654 	 */
10655 	map = em->map_lookup;
10656 	num_items = 3 + map->num_stripes;
10657 	free_extent_map(em);
10658 
10659 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10660 							   num_items, 1);
10661 }
10662 
10663 /*
10664  * Process the unused_bgs list and remove any that don't have any allocated
10665  * space inside of them.
10666  */
10667 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10668 {
10669 	struct btrfs_block_group_cache *block_group;
10670 	struct btrfs_space_info *space_info;
10671 	struct btrfs_trans_handle *trans;
10672 	int ret = 0;
10673 
10674 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10675 		return;
10676 
10677 	spin_lock(&fs_info->unused_bgs_lock);
10678 	while (!list_empty(&fs_info->unused_bgs)) {
10679 		u64 start, end;
10680 		int trimming;
10681 
10682 		block_group = list_first_entry(&fs_info->unused_bgs,
10683 					       struct btrfs_block_group_cache,
10684 					       bg_list);
10685 		list_del_init(&block_group->bg_list);
10686 
10687 		space_info = block_group->space_info;
10688 
10689 		if (ret || btrfs_mixed_space_info(space_info)) {
10690 			btrfs_put_block_group(block_group);
10691 			continue;
10692 		}
10693 		spin_unlock(&fs_info->unused_bgs_lock);
10694 
10695 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10696 
10697 		/* Don't want to race with allocators so take the groups_sem */
10698 		down_write(&space_info->groups_sem);
10699 		spin_lock(&block_group->lock);
10700 		if (block_group->reserved ||
10701 		    btrfs_block_group_used(&block_group->item) ||
10702 		    block_group->ro ||
10703 		    list_is_singular(&block_group->list)) {
10704 			/*
10705 			 * We want to bail if we made new allocations or have
10706 			 * outstanding allocations in this block group.  We do
10707 			 * the ro check in case balance is currently acting on
10708 			 * this block group.
10709 			 */
10710 			spin_unlock(&block_group->lock);
10711 			up_write(&space_info->groups_sem);
10712 			goto next;
10713 		}
10714 		spin_unlock(&block_group->lock);
10715 
10716 		/* We don't want to force the issue, only flip if it's ok. */
10717 		ret = inc_block_group_ro(block_group, 0);
10718 		up_write(&space_info->groups_sem);
10719 		if (ret < 0) {
10720 			ret = 0;
10721 			goto next;
10722 		}
10723 
10724 		/*
10725 		 * Want to do this before we do anything else so we can recover
10726 		 * properly if we fail to join the transaction.
10727 		 */
10728 		trans = btrfs_start_trans_remove_block_group(fs_info,
10729 						     block_group->key.objectid);
10730 		if (IS_ERR(trans)) {
10731 			btrfs_dec_block_group_ro(block_group);
10732 			ret = PTR_ERR(trans);
10733 			goto next;
10734 		}
10735 
10736 		/*
10737 		 * We could have pending pinned extents for this block group,
10738 		 * just delete them, we don't care about them anymore.
10739 		 */
10740 		start = block_group->key.objectid;
10741 		end = start + block_group->key.offset - 1;
10742 		/*
10743 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10744 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10745 		 * another task might be running finish_extent_commit() for the
10746 		 * previous transaction N - 1, and have seen a range belonging
10747 		 * to the block group in freed_extents[] before we were able to
10748 		 * clear the whole block group range from freed_extents[]. This
10749 		 * means that task can lookup for the block group after we
10750 		 * unpinned it from freed_extents[] and removed it, leading to
10751 		 * a BUG_ON() at btrfs_unpin_extent_range().
10752 		 */
10753 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10754 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10755 				  EXTENT_DIRTY);
10756 		if (ret) {
10757 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10758 			btrfs_dec_block_group_ro(block_group);
10759 			goto end_trans;
10760 		}
10761 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10762 				  EXTENT_DIRTY);
10763 		if (ret) {
10764 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10765 			btrfs_dec_block_group_ro(block_group);
10766 			goto end_trans;
10767 		}
10768 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10769 
10770 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10771 		spin_lock(&space_info->lock);
10772 		spin_lock(&block_group->lock);
10773 
10774 		space_info->bytes_pinned -= block_group->pinned;
10775 		space_info->bytes_readonly += block_group->pinned;
10776 		percpu_counter_add(&space_info->total_bytes_pinned,
10777 				   -block_group->pinned);
10778 		block_group->pinned = 0;
10779 
10780 		spin_unlock(&block_group->lock);
10781 		spin_unlock(&space_info->lock);
10782 
10783 		/* DISCARD can flip during remount */
10784 		trimming = btrfs_test_opt(fs_info, DISCARD);
10785 
10786 		/* Implicit trim during transaction commit. */
10787 		if (trimming)
10788 			btrfs_get_block_group_trimming(block_group);
10789 
10790 		/*
10791 		 * Btrfs_remove_chunk will abort the transaction if things go
10792 		 * horribly wrong.
10793 		 */
10794 		ret = btrfs_remove_chunk(trans, fs_info,
10795 					 block_group->key.objectid);
10796 
10797 		if (ret) {
10798 			if (trimming)
10799 				btrfs_put_block_group_trimming(block_group);
10800 			goto end_trans;
10801 		}
10802 
10803 		/*
10804 		 * If we're not mounted with -odiscard, we can just forget
10805 		 * about this block group. Otherwise we'll need to wait
10806 		 * until transaction commit to do the actual discard.
10807 		 */
10808 		if (trimming) {
10809 			spin_lock(&fs_info->unused_bgs_lock);
10810 			/*
10811 			 * A concurrent scrub might have added us to the list
10812 			 * fs_info->unused_bgs, so use a list_move operation
10813 			 * to add the block group to the deleted_bgs list.
10814 			 */
10815 			list_move(&block_group->bg_list,
10816 				  &trans->transaction->deleted_bgs);
10817 			spin_unlock(&fs_info->unused_bgs_lock);
10818 			btrfs_get_block_group(block_group);
10819 		}
10820 end_trans:
10821 		btrfs_end_transaction(trans);
10822 next:
10823 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10824 		btrfs_put_block_group(block_group);
10825 		spin_lock(&fs_info->unused_bgs_lock);
10826 	}
10827 	spin_unlock(&fs_info->unused_bgs_lock);
10828 }
10829 
10830 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10831 {
10832 	struct btrfs_space_info *space_info;
10833 	struct btrfs_super_block *disk_super;
10834 	u64 features;
10835 	u64 flags;
10836 	int mixed = 0;
10837 	int ret;
10838 
10839 	disk_super = fs_info->super_copy;
10840 	if (!btrfs_super_root(disk_super))
10841 		return -EINVAL;
10842 
10843 	features = btrfs_super_incompat_flags(disk_super);
10844 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10845 		mixed = 1;
10846 
10847 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10848 	ret = create_space_info(fs_info, flags, &space_info);
10849 	if (ret)
10850 		goto out;
10851 
10852 	if (mixed) {
10853 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10854 		ret = create_space_info(fs_info, flags, &space_info);
10855 	} else {
10856 		flags = BTRFS_BLOCK_GROUP_METADATA;
10857 		ret = create_space_info(fs_info, flags, &space_info);
10858 		if (ret)
10859 			goto out;
10860 
10861 		flags = BTRFS_BLOCK_GROUP_DATA;
10862 		ret = create_space_info(fs_info, flags, &space_info);
10863 	}
10864 out:
10865 	return ret;
10866 }
10867 
10868 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10869 				   u64 start, u64 end)
10870 {
10871 	return unpin_extent_range(fs_info, start, end, false);
10872 }
10873 
10874 /*
10875  * It used to be that old block groups would be left around forever.
10876  * Iterating over them would be enough to trim unused space.  Since we
10877  * now automatically remove them, we also need to iterate over unallocated
10878  * space.
10879  *
10880  * We don't want a transaction for this since the discard may take a
10881  * substantial amount of time.  We don't require that a transaction be
10882  * running, but we do need to take a running transaction into account
10883  * to ensure that we're not discarding chunks that were released in
10884  * the current transaction.
10885  *
10886  * Holding the chunks lock will prevent other threads from allocating
10887  * or releasing chunks, but it won't prevent a running transaction
10888  * from committing and releasing the memory that the pending chunks
10889  * list head uses.  For that, we need to take a reference to the
10890  * transaction.
10891  */
10892 static int btrfs_trim_free_extents(struct btrfs_device *device,
10893 				   u64 minlen, u64 *trimmed)
10894 {
10895 	u64 start = 0, len = 0;
10896 	int ret;
10897 
10898 	*trimmed = 0;
10899 
10900 	/* Not writeable = nothing to do. */
10901 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10902 		return 0;
10903 
10904 	/* No free space = nothing to do. */
10905 	if (device->total_bytes <= device->bytes_used)
10906 		return 0;
10907 
10908 	ret = 0;
10909 
10910 	while (1) {
10911 		struct btrfs_fs_info *fs_info = device->fs_info;
10912 		struct btrfs_transaction *trans;
10913 		u64 bytes;
10914 
10915 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10916 		if (ret)
10917 			return ret;
10918 
10919 		down_read(&fs_info->commit_root_sem);
10920 
10921 		spin_lock(&fs_info->trans_lock);
10922 		trans = fs_info->running_transaction;
10923 		if (trans)
10924 			refcount_inc(&trans->use_count);
10925 		spin_unlock(&fs_info->trans_lock);
10926 
10927 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10928 						 &start, &len);
10929 		if (trans)
10930 			btrfs_put_transaction(trans);
10931 
10932 		if (ret) {
10933 			up_read(&fs_info->commit_root_sem);
10934 			mutex_unlock(&fs_info->chunk_mutex);
10935 			if (ret == -ENOSPC)
10936 				ret = 0;
10937 			break;
10938 		}
10939 
10940 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10941 		up_read(&fs_info->commit_root_sem);
10942 		mutex_unlock(&fs_info->chunk_mutex);
10943 
10944 		if (ret)
10945 			break;
10946 
10947 		start += len;
10948 		*trimmed += bytes;
10949 
10950 		if (fatal_signal_pending(current)) {
10951 			ret = -ERESTARTSYS;
10952 			break;
10953 		}
10954 
10955 		cond_resched();
10956 	}
10957 
10958 	return ret;
10959 }
10960 
10961 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10962 {
10963 	struct btrfs_block_group_cache *cache = NULL;
10964 	struct btrfs_device *device;
10965 	struct list_head *devices;
10966 	u64 group_trimmed;
10967 	u64 start;
10968 	u64 end;
10969 	u64 trimmed = 0;
10970 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10971 	int ret = 0;
10972 
10973 	/*
10974 	 * try to trim all FS space, our block group may start from non-zero.
10975 	 */
10976 	if (range->len == total_bytes)
10977 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10978 	else
10979 		cache = btrfs_lookup_block_group(fs_info, range->start);
10980 
10981 	while (cache) {
10982 		if (cache->key.objectid >= (range->start + range->len)) {
10983 			btrfs_put_block_group(cache);
10984 			break;
10985 		}
10986 
10987 		start = max(range->start, cache->key.objectid);
10988 		end = min(range->start + range->len,
10989 				cache->key.objectid + cache->key.offset);
10990 
10991 		if (end - start >= range->minlen) {
10992 			if (!block_group_cache_done(cache)) {
10993 				ret = cache_block_group(cache, 0);
10994 				if (ret) {
10995 					btrfs_put_block_group(cache);
10996 					break;
10997 				}
10998 				ret = wait_block_group_cache_done(cache);
10999 				if (ret) {
11000 					btrfs_put_block_group(cache);
11001 					break;
11002 				}
11003 			}
11004 			ret = btrfs_trim_block_group(cache,
11005 						     &group_trimmed,
11006 						     start,
11007 						     end,
11008 						     range->minlen);
11009 
11010 			trimmed += group_trimmed;
11011 			if (ret) {
11012 				btrfs_put_block_group(cache);
11013 				break;
11014 			}
11015 		}
11016 
11017 		cache = next_block_group(fs_info, cache);
11018 	}
11019 
11020 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11021 	devices = &fs_info->fs_devices->alloc_list;
11022 	list_for_each_entry(device, devices, dev_alloc_list) {
11023 		ret = btrfs_trim_free_extents(device, range->minlen,
11024 					      &group_trimmed);
11025 		if (ret)
11026 			break;
11027 
11028 		trimmed += group_trimmed;
11029 	}
11030 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11031 
11032 	range->len = trimmed;
11033 	return ret;
11034 }
11035 
11036 /*
11037  * btrfs_{start,end}_write_no_snapshotting() are similar to
11038  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11039  * data into the page cache through nocow before the subvolume is snapshoted,
11040  * but flush the data into disk after the snapshot creation, or to prevent
11041  * operations while snapshotting is ongoing and that cause the snapshot to be
11042  * inconsistent (writes followed by expanding truncates for example).
11043  */
11044 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11045 {
11046 	percpu_counter_dec(&root->subv_writers->counter);
11047 	/*
11048 	 * Make sure counter is updated before we wake up waiters.
11049 	 */
11050 	smp_mb();
11051 	if (waitqueue_active(&root->subv_writers->wait))
11052 		wake_up(&root->subv_writers->wait);
11053 }
11054 
11055 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11056 {
11057 	if (atomic_read(&root->will_be_snapshotted))
11058 		return 0;
11059 
11060 	percpu_counter_inc(&root->subv_writers->counter);
11061 	/*
11062 	 * Make sure counter is updated before we check for snapshot creation.
11063 	 */
11064 	smp_mb();
11065 	if (atomic_read(&root->will_be_snapshotted)) {
11066 		btrfs_end_write_no_snapshotting(root);
11067 		return 0;
11068 	}
11069 	return 1;
11070 }
11071 
11072 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11073 {
11074 	while (true) {
11075 		int ret;
11076 
11077 		ret = btrfs_start_write_no_snapshotting(root);
11078 		if (ret)
11079 			break;
11080 		wait_var_event(&root->will_be_snapshotted,
11081 			       !atomic_read(&root->will_be_snapshotted));
11082 	}
11083 }
11084